Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 *  Copyright (C) 1994 Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *  General FPU state handling cleanups
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8#include <asm/fpu/internal.h>
  9#include <asm/fpu/regset.h>
 10#include <asm/fpu/signal.h>
 11#include <asm/fpu/types.h>
 12#include <asm/traps.h>
 
 13
 14#include <linux/hardirq.h>
 15#include <linux/pkeys.h>
 16
 17#define CREATE_TRACE_POINTS
 18#include <asm/trace/fpu.h>
 19
 20/*
 21 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 22 * depending on the FPU hardware format:
 23 */
 24union fpregs_state init_fpstate __read_mostly;
 25
 26/*
 27 * Track whether the kernel is using the FPU state
 28 * currently.
 29 *
 30 * This flag is used:
 31 *
 32 *   - by IRQ context code to potentially use the FPU
 33 *     if it's unused.
 34 *
 35 *   - to debug kernel_fpu_begin()/end() correctness
 36 */
 37static DEFINE_PER_CPU(bool, in_kernel_fpu);
 38
 39/*
 40 * Track which context is using the FPU on the CPU:
 41 */
 42DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 43
 44static void kernel_fpu_disable(void)
 45{
 46	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
 47	this_cpu_write(in_kernel_fpu, true);
 48}
 49
 50static void kernel_fpu_enable(void)
 51{
 52	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
 53	this_cpu_write(in_kernel_fpu, false);
 54}
 55
 56static bool kernel_fpu_disabled(void)
 57{
 58	return this_cpu_read(in_kernel_fpu);
 59}
 60
 61static bool interrupted_kernel_fpu_idle(void)
 62{
 63	return !kernel_fpu_disabled();
 64}
 65
 66/*
 67 * Were we in user mode (or vm86 mode) when we were
 68 * interrupted?
 69 *
 70 * Doing kernel_fpu_begin/end() is ok if we are running
 71 * in an interrupt context from user mode - we'll just
 72 * save the FPU state as required.
 73 */
 74static bool interrupted_user_mode(void)
 75{
 76	struct pt_regs *regs = get_irq_regs();
 77	return regs && user_mode(regs);
 78}
 79
 80/*
 81 * Can we use the FPU in kernel mode with the
 82 * whole "kernel_fpu_begin/end()" sequence?
 83 *
 84 * It's always ok in process context (ie "not interrupt")
 85 * but it is sometimes ok even from an irq.
 86 */
 87bool irq_fpu_usable(void)
 88{
 89	return !in_interrupt() ||
 90		interrupted_user_mode() ||
 91		interrupted_kernel_fpu_idle();
 92}
 93EXPORT_SYMBOL(irq_fpu_usable);
 94
 95void __kernel_fpu_begin(void)
 
 
 
 
 
 
 
 
 
 
 96{
 97	struct fpu *fpu = &current->thread.fpu;
 
 98
 99	WARN_ON_FPU(!irq_fpu_usable());
100
101	kernel_fpu_disable();
102
103	if (fpu->initialized) {
104		/*
105		 * Ignore return value -- we don't care if reg state
106		 * is clobbered.
107		 */
108		copy_fpregs_to_fpstate(fpu);
109	} else {
110		__cpu_invalidate_fpregs_state();
111	}
112}
113EXPORT_SYMBOL(__kernel_fpu_begin);
114
115void __kernel_fpu_end(void)
116{
117	struct fpu *fpu = &current->thread.fpu;
 
118
119	if (fpu->initialized)
120		copy_kernel_to_fpregs(&fpu->state);
 
 
 
121
122	kernel_fpu_enable();
123}
124EXPORT_SYMBOL(__kernel_fpu_end);
125
126void kernel_fpu_begin(void)
127{
128	preempt_disable();
129	__kernel_fpu_begin();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130}
131EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132
133void kernel_fpu_end(void)
134{
135	__kernel_fpu_end();
 
 
136	preempt_enable();
137}
138EXPORT_SYMBOL_GPL(kernel_fpu_end);
139
140/*
141 * Save the FPU state (mark it for reload if necessary):
142 *
143 * This only ever gets called for the current task.
144 */
145void fpu__save(struct fpu *fpu)
146{
147	WARN_ON_FPU(fpu != &current->thread.fpu);
148
149	preempt_disable();
150	trace_x86_fpu_before_save(fpu);
151	if (fpu->initialized) {
 
152		if (!copy_fpregs_to_fpstate(fpu)) {
153			copy_kernel_to_fpregs(&fpu->state);
154		}
155	}
 
156	trace_x86_fpu_after_save(fpu);
157	preempt_enable();
158}
159EXPORT_SYMBOL_GPL(fpu__save);
160
161/*
162 * Legacy x87 fpstate state init:
163 */
164static inline void fpstate_init_fstate(struct fregs_state *fp)
165{
166	fp->cwd = 0xffff037fu;
167	fp->swd = 0xffff0000u;
168	fp->twd = 0xffffffffu;
169	fp->fos = 0xffff0000u;
170}
171
172void fpstate_init(union fpregs_state *state)
173{
174	if (!static_cpu_has(X86_FEATURE_FPU)) {
175		fpstate_init_soft(&state->soft);
176		return;
177	}
178
179	memset(state, 0, fpu_kernel_xstate_size);
180
181	if (static_cpu_has(X86_FEATURE_XSAVES))
182		fpstate_init_xstate(&state->xsave);
183	if (static_cpu_has(X86_FEATURE_FXSR))
184		fpstate_init_fxstate(&state->fxsave);
185	else
186		fpstate_init_fstate(&state->fsave);
187}
188EXPORT_SYMBOL_GPL(fpstate_init);
189
190int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
191{
 
 
 
192	dst_fpu->last_cpu = -1;
193
194	if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
195		return 0;
196
197	WARN_ON_FPU(src_fpu != &current->thread.fpu);
198
199	/*
200	 * Don't let 'init optimized' areas of the XSAVE area
201	 * leak into the child task:
202	 */
203	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
204
205	/*
206	 * Save current FPU registers directly into the child
207	 * FPU context, without any memory-to-memory copying.
 
208	 *
209	 * ( The function 'fails' in the FNSAVE case, which destroys
210	 *   register contents so we have to copy them back. )
211	 */
212	if (!copy_fpregs_to_fpstate(dst_fpu)) {
213		memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
214		copy_kernel_to_fpregs(&src_fpu->state);
215	}
 
 
 
 
 
 
216
217	trace_x86_fpu_copy_src(src_fpu);
218	trace_x86_fpu_copy_dst(dst_fpu);
219
220	return 0;
221}
222
223/*
224 * Activate the current task's in-memory FPU context,
225 * if it has not been used before:
226 */
227void fpu__initialize(struct fpu *fpu)
228{
229	WARN_ON_FPU(fpu != &current->thread.fpu);
230
231	if (!fpu->initialized) {
232		fpstate_init(&fpu->state);
233		trace_x86_fpu_init_state(fpu);
234
235		trace_x86_fpu_activate_state(fpu);
236		/* Safe to do for the current task: */
237		fpu->initialized = 1;
238	}
239}
240EXPORT_SYMBOL_GPL(fpu__initialize);
241
242/*
243 * This function must be called before we read a task's fpstate.
244 *
245 * There's two cases where this gets called:
246 *
247 * - for the current task (when coredumping), in which case we have
248 *   to save the latest FPU registers into the fpstate,
249 *
250 * - or it's called for stopped tasks (ptrace), in which case the
251 *   registers were already saved by the context-switch code when
252 *   the task scheduled out - we only have to initialize the registers
253 *   if they've never been initialized.
254 *
255 * If the task has used the FPU before then save it.
256 */
257void fpu__prepare_read(struct fpu *fpu)
258{
259	if (fpu == &current->thread.fpu) {
260		fpu__save(fpu);
261	} else {
262		if (!fpu->initialized) {
263			fpstate_init(&fpu->state);
264			trace_x86_fpu_init_state(fpu);
265
266			trace_x86_fpu_activate_state(fpu);
267			/* Safe to do for current and for stopped child tasks: */
268			fpu->initialized = 1;
269		}
270	}
271}
272
273/*
274 * This function must be called before we write a task's fpstate.
275 *
276 * If the task has used the FPU before then invalidate any cached FPU registers.
277 * If the task has not used the FPU before then initialize its fpstate.
278 *
279 * After this function call, after registers in the fpstate are
280 * modified and the child task has woken up, the child task will
281 * restore the modified FPU state from the modified context. If we
282 * didn't clear its cached status here then the cached in-registers
283 * state pending on its former CPU could be restored, corrupting
284 * the modifications.
285 */
286void fpu__prepare_write(struct fpu *fpu)
287{
288	/*
289	 * Only stopped child tasks can be used to modify the FPU
290	 * state in the fpstate buffer:
291	 */
292	WARN_ON_FPU(fpu == &current->thread.fpu);
293
294	if (fpu->initialized) {
295		/* Invalidate any cached state: */
296		__fpu_invalidate_fpregs_state(fpu);
297	} else {
298		fpstate_init(&fpu->state);
299		trace_x86_fpu_init_state(fpu);
300
301		trace_x86_fpu_activate_state(fpu);
302		/* Safe to do for stopped child tasks: */
303		fpu->initialized = 1;
304	}
305}
306
307/*
308 * 'fpu__restore()' is called to copy FPU registers from
309 * the FPU fpstate to the live hw registers and to activate
310 * access to the hardware registers, so that FPU instructions
311 * can be used afterwards.
312 *
313 * Must be called with kernel preemption disabled (for example
314 * with local interrupts disabled, as it is in the case of
315 * do_device_not_available()).
316 */
317void fpu__restore(struct fpu *fpu)
318{
319	fpu__initialize(fpu);
320
321	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
322	kernel_fpu_disable();
323	trace_x86_fpu_before_restore(fpu);
324	fpregs_activate(fpu);
325	copy_kernel_to_fpregs(&fpu->state);
326	trace_x86_fpu_after_restore(fpu);
327	kernel_fpu_enable();
328}
329EXPORT_SYMBOL_GPL(fpu__restore);
330
331/*
332 * Drops current FPU state: deactivates the fpregs and
333 * the fpstate. NOTE: it still leaves previous contents
334 * in the fpregs in the eager-FPU case.
335 *
336 * This function can be used in cases where we know that
337 * a state-restore is coming: either an explicit one,
338 * or a reschedule.
339 */
340void fpu__drop(struct fpu *fpu)
341{
342	preempt_disable();
343
344	if (fpu == &current->thread.fpu) {
345		if (fpu->initialized) {
346			/* Ignore delayed exceptions from user space */
347			asm volatile("1: fwait\n"
348				     "2:\n"
349				     _ASM_EXTABLE(1b, 2b));
350			fpregs_deactivate(fpu);
351		}
352	}
353
354	fpu->initialized = 0;
355
356	trace_x86_fpu_dropped(fpu);
357
358	preempt_enable();
359}
360
361/*
362 * Clear FPU registers by setting them up from
363 * the init fpstate:
364 */
365static inline void copy_init_fpstate_to_fpregs(void)
366{
367	if (use_xsave())
368		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
369	else if (static_cpu_has(X86_FEATURE_FXSR))
370		copy_kernel_to_fxregs(&init_fpstate.fxsave);
371	else
372		copy_kernel_to_fregs(&init_fpstate.fsave);
373
374	if (boot_cpu_has(X86_FEATURE_OSPKE))
375		copy_init_pkru_to_fpregs();
376}
377
378/*
379 * Clear the FPU state back to init state.
380 *
381 * Called by sys_execve(), by the signal handler code and by various
382 * error paths.
383 */
384void fpu__clear(struct fpu *fpu)
385{
386	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
387
388	fpu__drop(fpu);
389
390	/*
391	 * Make sure fpstate is cleared and initialized.
392	 */
393	if (static_cpu_has(X86_FEATURE_FPU)) {
394		preempt_disable();
395		fpu__initialize(fpu);
396		user_fpu_begin();
397		copy_init_fpstate_to_fpregs();
398		preempt_enable();
399	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400}
 
401
402/*
403 * x87 math exception handling:
404 */
405
406int fpu__exception_code(struct fpu *fpu, int trap_nr)
407{
408	int err;
409
410	if (trap_nr == X86_TRAP_MF) {
411		unsigned short cwd, swd;
412		/*
413		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
414		 * status.  0x3f is the exception bits in these regs, 0x200 is the
415		 * C1 reg you need in case of a stack fault, 0x040 is the stack
416		 * fault bit.  We should only be taking one exception at a time,
417		 * so if this combination doesn't produce any single exception,
418		 * then we have a bad program that isn't synchronizing its FPU usage
419		 * and it will suffer the consequences since we won't be able to
420		 * fully reproduce the context of the exception.
421		 */
422		if (boot_cpu_has(X86_FEATURE_FXSR)) {
423			cwd = fpu->state.fxsave.cwd;
424			swd = fpu->state.fxsave.swd;
425		} else {
426			cwd = (unsigned short)fpu->state.fsave.cwd;
427			swd = (unsigned short)fpu->state.fsave.swd;
428		}
429
430		err = swd & ~cwd;
431	} else {
432		/*
433		 * The SIMD FPU exceptions are handled a little differently, as there
434		 * is only a single status/control register.  Thus, to determine which
435		 * unmasked exception was caught we must mask the exception mask bits
436		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
437		 */
438		unsigned short mxcsr = MXCSR_DEFAULT;
439
440		if (boot_cpu_has(X86_FEATURE_XMM))
441			mxcsr = fpu->state.fxsave.mxcsr;
442
443		err = ~(mxcsr >> 7) & mxcsr;
444	}
445
446	if (err & 0x001) {	/* Invalid op */
447		/*
448		 * swd & 0x240 == 0x040: Stack Underflow
449		 * swd & 0x240 == 0x240: Stack Overflow
450		 * User must clear the SF bit (0x40) if set
451		 */
452		return FPE_FLTINV;
453	} else if (err & 0x004) { /* Divide by Zero */
454		return FPE_FLTDIV;
455	} else if (err & 0x008) { /* Overflow */
456		return FPE_FLTOVF;
457	} else if (err & 0x012) { /* Denormal, Underflow */
458		return FPE_FLTUND;
459	} else if (err & 0x020) { /* Precision */
460		return FPE_FLTRES;
461	}
462
463	/*
464	 * If we're using IRQ 13, or supposedly even some trap
465	 * X86_TRAP_MF implementations, it's possible
466	 * we get a spurious trap, which is not an error.
467	 */
468	return 0;
469}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1994 Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *  General FPU state handling cleanups
  7 *	Gareth Hughes <gareth@valinux.com>, May 2000
  8 */
  9#include <asm/fpu/internal.h>
 10#include <asm/fpu/regset.h>
 11#include <asm/fpu/signal.h>
 12#include <asm/fpu/types.h>
 13#include <asm/traps.h>
 14#include <asm/irq_regs.h>
 15
 16#include <linux/hardirq.h>
 17#include <linux/pkeys.h>
 18
 19#define CREATE_TRACE_POINTS
 20#include <asm/trace/fpu.h>
 21
 22/*
 23 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 24 * depending on the FPU hardware format:
 25 */
 26union fpregs_state init_fpstate __read_mostly;
 27
 28/*
 29 * Track whether the kernel is using the FPU state
 30 * currently.
 31 *
 32 * This flag is used:
 33 *
 34 *   - by IRQ context code to potentially use the FPU
 35 *     if it's unused.
 36 *
 37 *   - to debug kernel_fpu_begin()/end() correctness
 38 */
 39static DEFINE_PER_CPU(bool, in_kernel_fpu);
 40
 41/*
 42 * Track which context is using the FPU on the CPU:
 43 */
 44DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 45
 
 
 
 
 
 
 
 
 
 
 
 
 46static bool kernel_fpu_disabled(void)
 47{
 48	return this_cpu_read(in_kernel_fpu);
 49}
 50
 51static bool interrupted_kernel_fpu_idle(void)
 52{
 53	return !kernel_fpu_disabled();
 54}
 55
 56/*
 57 * Were we in user mode (or vm86 mode) when we were
 58 * interrupted?
 59 *
 60 * Doing kernel_fpu_begin/end() is ok if we are running
 61 * in an interrupt context from user mode - we'll just
 62 * save the FPU state as required.
 63 */
 64static bool interrupted_user_mode(void)
 65{
 66	struct pt_regs *regs = get_irq_regs();
 67	return regs && user_mode(regs);
 68}
 69
 70/*
 71 * Can we use the FPU in kernel mode with the
 72 * whole "kernel_fpu_begin/end()" sequence?
 73 *
 74 * It's always ok in process context (ie "not interrupt")
 75 * but it is sometimes ok even from an irq.
 76 */
 77bool irq_fpu_usable(void)
 78{
 79	return !in_interrupt() ||
 80		interrupted_user_mode() ||
 81		interrupted_kernel_fpu_idle();
 82}
 83EXPORT_SYMBOL(irq_fpu_usable);
 84
 85/*
 86 * These must be called with preempt disabled. Returns
 87 * 'true' if the FPU state is still intact and we can
 88 * keep registers active.
 89 *
 90 * The legacy FNSAVE instruction cleared all FPU state
 91 * unconditionally, so registers are essentially destroyed.
 92 * Modern FPU state can be kept in registers, if there are
 93 * no pending FP exceptions.
 94 */
 95int copy_fpregs_to_fpstate(struct fpu *fpu)
 96{
 97	if (likely(use_xsave())) {
 98		copy_xregs_to_kernel(&fpu->state.xsave);
 99
 
 
 
 
 
100		/*
101		 * AVX512 state is tracked here because its use is
102		 * known to slow the max clock speed of the core.
103		 */
104		if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
105			fpu->avx512_timestamp = jiffies;
106		return 1;
107	}
 
 
108
109	if (likely(use_fxsr())) {
110		copy_fxregs_to_kernel(fpu);
111		return 1;
112	}
113
114	/*
115	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
116	 * so we have to mark them inactive:
117	 */
118	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
119
120	return 0;
121}
122EXPORT_SYMBOL(copy_fpregs_to_fpstate);
123
124void kernel_fpu_begin(void)
125{
126	preempt_disable();
127
128	WARN_ON_FPU(!irq_fpu_usable());
129	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
130
131	this_cpu_write(in_kernel_fpu, true);
132
133	if (!(current->flags & PF_KTHREAD) &&
134	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
135		set_thread_flag(TIF_NEED_FPU_LOAD);
136		/*
137		 * Ignore return value -- we don't care if reg state
138		 * is clobbered.
139		 */
140		copy_fpregs_to_fpstate(&current->thread.fpu);
141	}
142	__cpu_invalidate_fpregs_state();
143
144	if (boot_cpu_has(X86_FEATURE_XMM))
145		ldmxcsr(MXCSR_DEFAULT);
146
147	if (boot_cpu_has(X86_FEATURE_FPU))
148		asm volatile ("fninit");
149}
150EXPORT_SYMBOL_GPL(kernel_fpu_begin);
151
152void kernel_fpu_end(void)
153{
154	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
155
156	this_cpu_write(in_kernel_fpu, false);
157	preempt_enable();
158}
159EXPORT_SYMBOL_GPL(kernel_fpu_end);
160
161/*
162 * Save the FPU state (mark it for reload if necessary):
163 *
164 * This only ever gets called for the current task.
165 */
166void fpu__save(struct fpu *fpu)
167{
168	WARN_ON_FPU(fpu != &current->thread.fpu);
169
170	fpregs_lock();
171	trace_x86_fpu_before_save(fpu);
172
173	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
174		if (!copy_fpregs_to_fpstate(fpu)) {
175			copy_kernel_to_fpregs(&fpu->state);
176		}
177	}
178
179	trace_x86_fpu_after_save(fpu);
180	fpregs_unlock();
181}
 
182
183/*
184 * Legacy x87 fpstate state init:
185 */
186static inline void fpstate_init_fstate(struct fregs_state *fp)
187{
188	fp->cwd = 0xffff037fu;
189	fp->swd = 0xffff0000u;
190	fp->twd = 0xffffffffu;
191	fp->fos = 0xffff0000u;
192}
193
194void fpstate_init(union fpregs_state *state)
195{
196	if (!static_cpu_has(X86_FEATURE_FPU)) {
197		fpstate_init_soft(&state->soft);
198		return;
199	}
200
201	memset(state, 0, fpu_kernel_xstate_size);
202
203	if (static_cpu_has(X86_FEATURE_XSAVES))
204		fpstate_init_xstate(&state->xsave);
205	if (static_cpu_has(X86_FEATURE_FXSR))
206		fpstate_init_fxstate(&state->fxsave);
207	else
208		fpstate_init_fstate(&state->fsave);
209}
210EXPORT_SYMBOL_GPL(fpstate_init);
211
212int fpu__copy(struct task_struct *dst, struct task_struct *src)
213{
214	struct fpu *dst_fpu = &dst->thread.fpu;
215	struct fpu *src_fpu = &src->thread.fpu;
216
217	dst_fpu->last_cpu = -1;
218
219	if (!static_cpu_has(X86_FEATURE_FPU))
220		return 0;
221
222	WARN_ON_FPU(src_fpu != &current->thread.fpu);
223
224	/*
225	 * Don't let 'init optimized' areas of the XSAVE area
226	 * leak into the child task:
227	 */
228	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
229
230	/*
231	 * If the FPU registers are not current just memcpy() the state.
232	 * Otherwise save current FPU registers directly into the child's FPU
233	 * context, without any memory-to-memory copying.
234	 *
235	 * ( The function 'fails' in the FNSAVE case, which destroys
236	 *   register contents so we have to load them back. )
237	 */
238	fpregs_lock();
239	if (test_thread_flag(TIF_NEED_FPU_LOAD))
240		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
241
242	else if (!copy_fpregs_to_fpstate(dst_fpu))
243		copy_kernel_to_fpregs(&dst_fpu->state);
244
245	fpregs_unlock();
246
247	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
248
249	trace_x86_fpu_copy_src(src_fpu);
250	trace_x86_fpu_copy_dst(dst_fpu);
251
252	return 0;
253}
254
255/*
256 * Activate the current task's in-memory FPU context,
257 * if it has not been used before:
258 */
259static void fpu__initialize(struct fpu *fpu)
260{
261	WARN_ON_FPU(fpu != &current->thread.fpu);
262
263	set_thread_flag(TIF_NEED_FPU_LOAD);
264	fpstate_init(&fpu->state);
265	trace_x86_fpu_init_state(fpu);
 
 
 
 
 
266}
 
267
268/*
269 * This function must be called before we read a task's fpstate.
270 *
271 * There's two cases where this gets called:
272 *
273 * - for the current task (when coredumping), in which case we have
274 *   to save the latest FPU registers into the fpstate,
275 *
276 * - or it's called for stopped tasks (ptrace), in which case the
277 *   registers were already saved by the context-switch code when
278 *   the task scheduled out.
 
279 *
280 * If the task has used the FPU before then save it.
281 */
282void fpu__prepare_read(struct fpu *fpu)
283{
284	if (fpu == &current->thread.fpu)
285		fpu__save(fpu);
 
 
 
 
 
 
 
 
 
 
286}
287
288/*
289 * This function must be called before we write a task's fpstate.
290 *
291 * Invalidate any cached FPU registers.
 
292 *
293 * After this function call, after registers in the fpstate are
294 * modified and the child task has woken up, the child task will
295 * restore the modified FPU state from the modified context. If we
296 * didn't clear its cached status here then the cached in-registers
297 * state pending on its former CPU could be restored, corrupting
298 * the modifications.
299 */
300void fpu__prepare_write(struct fpu *fpu)
301{
302	/*
303	 * Only stopped child tasks can be used to modify the FPU
304	 * state in the fpstate buffer:
305	 */
306	WARN_ON_FPU(fpu == &current->thread.fpu);
307
308	/* Invalidate any cached state: */
309	__fpu_invalidate_fpregs_state(fpu);
 
 
 
 
 
 
 
 
 
310}
311
312/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313 * Drops current FPU state: deactivates the fpregs and
314 * the fpstate. NOTE: it still leaves previous contents
315 * in the fpregs in the eager-FPU case.
316 *
317 * This function can be used in cases where we know that
318 * a state-restore is coming: either an explicit one,
319 * or a reschedule.
320 */
321void fpu__drop(struct fpu *fpu)
322{
323	preempt_disable();
324
325	if (fpu == &current->thread.fpu) {
326		/* Ignore delayed exceptions from user space */
327		asm volatile("1: fwait\n"
328			     "2:\n"
329			     _ASM_EXTABLE(1b, 2b));
330		fpregs_deactivate(fpu);
 
 
331	}
332
 
 
333	trace_x86_fpu_dropped(fpu);
334
335	preempt_enable();
336}
337
338/*
339 * Clear FPU registers by setting them up from the init fpstate.
340 * Caller must do fpregs_[un]lock() around it.
341 */
342static inline void copy_init_fpstate_to_fpregs(u64 features_mask)
343{
344	if (use_xsave())
345		copy_kernel_to_xregs(&init_fpstate.xsave, features_mask);
346	else if (static_cpu_has(X86_FEATURE_FXSR))
347		copy_kernel_to_fxregs(&init_fpstate.fxsave);
348	else
349		copy_kernel_to_fregs(&init_fpstate.fsave);
350
351	if (boot_cpu_has(X86_FEATURE_OSPKE))
352		copy_init_pkru_to_fpregs();
353}
354
355/*
356 * Clear the FPU state back to init state.
357 *
358 * Called by sys_execve(), by the signal handler code and by various
359 * error paths.
360 */
361static void fpu__clear(struct fpu *fpu, bool user_only)
362{
363	WARN_ON_FPU(fpu != &current->thread.fpu);
 
 
364
365	if (!static_cpu_has(X86_FEATURE_FPU)) {
366		fpu__drop(fpu);
 
 
 
367		fpu__initialize(fpu);
368		return;
 
 
369	}
370
371	fpregs_lock();
372
373	if (user_only) {
374		if (!fpregs_state_valid(fpu, smp_processor_id()) &&
375		    xfeatures_mask_supervisor())
376			copy_kernel_to_xregs(&fpu->state.xsave,
377					     xfeatures_mask_supervisor());
378		copy_init_fpstate_to_fpregs(xfeatures_mask_user());
379	} else {
380		copy_init_fpstate_to_fpregs(xfeatures_mask_all);
381	}
382
383	fpregs_mark_activate();
384	fpregs_unlock();
385}
386
387void fpu__clear_user_states(struct fpu *fpu)
388{
389	fpu__clear(fpu, true);
390}
391
392void fpu__clear_all(struct fpu *fpu)
393{
394	fpu__clear(fpu, false);
395}
396
397/*
398 * Load FPU context before returning to userspace.
399 */
400void switch_fpu_return(void)
401{
402	if (!static_cpu_has(X86_FEATURE_FPU))
403		return;
404
405	__fpregs_load_activate();
406}
407EXPORT_SYMBOL_GPL(switch_fpu_return);
408
409#ifdef CONFIG_X86_DEBUG_FPU
410/*
411 * If current FPU state according to its tracking (loaded FPU context on this
412 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
413 * loaded on return to userland.
414 */
415void fpregs_assert_state_consistent(void)
416{
417	struct fpu *fpu = &current->thread.fpu;
418
419	if (test_thread_flag(TIF_NEED_FPU_LOAD))
420		return;
421
422	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
423}
424EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
425#endif
426
427void fpregs_mark_activate(void)
428{
429	struct fpu *fpu = &current->thread.fpu;
430
431	fpregs_activate(fpu);
432	fpu->last_cpu = smp_processor_id();
433	clear_thread_flag(TIF_NEED_FPU_LOAD);
434}
435EXPORT_SYMBOL_GPL(fpregs_mark_activate);
436
437/*
438 * x87 math exception handling:
439 */
440
441int fpu__exception_code(struct fpu *fpu, int trap_nr)
442{
443	int err;
444
445	if (trap_nr == X86_TRAP_MF) {
446		unsigned short cwd, swd;
447		/*
448		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
449		 * status.  0x3f is the exception bits in these regs, 0x200 is the
450		 * C1 reg you need in case of a stack fault, 0x040 is the stack
451		 * fault bit.  We should only be taking one exception at a time,
452		 * so if this combination doesn't produce any single exception,
453		 * then we have a bad program that isn't synchronizing its FPU usage
454		 * and it will suffer the consequences since we won't be able to
455		 * fully reproduce the context of the exception.
456		 */
457		if (boot_cpu_has(X86_FEATURE_FXSR)) {
458			cwd = fpu->state.fxsave.cwd;
459			swd = fpu->state.fxsave.swd;
460		} else {
461			cwd = (unsigned short)fpu->state.fsave.cwd;
462			swd = (unsigned short)fpu->state.fsave.swd;
463		}
464
465		err = swd & ~cwd;
466	} else {
467		/*
468		 * The SIMD FPU exceptions are handled a little differently, as there
469		 * is only a single status/control register.  Thus, to determine which
470		 * unmasked exception was caught we must mask the exception mask bits
471		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
472		 */
473		unsigned short mxcsr = MXCSR_DEFAULT;
474
475		if (boot_cpu_has(X86_FEATURE_XMM))
476			mxcsr = fpu->state.fxsave.mxcsr;
477
478		err = ~(mxcsr >> 7) & mxcsr;
479	}
480
481	if (err & 0x001) {	/* Invalid op */
482		/*
483		 * swd & 0x240 == 0x040: Stack Underflow
484		 * swd & 0x240 == 0x240: Stack Overflow
485		 * User must clear the SF bit (0x40) if set
486		 */
487		return FPE_FLTINV;
488	} else if (err & 0x004) { /* Divide by Zero */
489		return FPE_FLTDIV;
490	} else if (err & 0x008) { /* Overflow */
491		return FPE_FLTOVF;
492	} else if (err & 0x012) { /* Denormal, Underflow */
493		return FPE_FLTUND;
494	} else if (err & 0x020) { /* Precision */
495		return FPE_FLTRES;
496	}
497
498	/*
499	 * If we're using IRQ 13, or supposedly even some trap
500	 * X86_TRAP_MF implementations, it's possible
501	 * we get a spurious trap, which is not an error.
502	 */
503	return 0;
504}