Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109 select SGL_ALLOC
110
111config CRYPTO_ACOMP
112 tristate
113 select CRYPTO_ALGAPI
114 select CRYPTO_ACOMP2
115
116config CRYPTO_RSA
117 tristate "RSA algorithm"
118 select CRYPTO_AKCIPHER
119 select CRYPTO_MANAGER
120 select MPILIB
121 select ASN1
122 help
123 Generic implementation of the RSA public key algorithm.
124
125config CRYPTO_DH
126 tristate "Diffie-Hellman algorithm"
127 select CRYPTO_KPP
128 select MPILIB
129 help
130 Generic implementation of the Diffie-Hellman algorithm.
131
132config CRYPTO_ECDH
133 tristate "ECDH algorithm"
134 select CRYPTO_KPP
135 select CRYPTO_RNG_DEFAULT
136 help
137 Generic implementation of the ECDH algorithm
138
139config CRYPTO_MANAGER
140 tristate "Cryptographic algorithm manager"
141 select CRYPTO_MANAGER2
142 help
143 Create default cryptographic template instantiations such as
144 cbc(aes).
145
146config CRYPTO_MANAGER2
147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
148 select CRYPTO_AEAD2
149 select CRYPTO_HASH2
150 select CRYPTO_BLKCIPHER2
151 select CRYPTO_AKCIPHER2
152 select CRYPTO_KPP2
153 select CRYPTO_ACOMP2
154
155config CRYPTO_USER
156 tristate "Userspace cryptographic algorithm configuration"
157 depends on NET
158 select CRYPTO_MANAGER
159 help
160 Userspace configuration for cryptographic instantiations such as
161 cbc(aes).
162
163config CRYPTO_MANAGER_DISABLE_TESTS
164 bool "Disable run-time self tests"
165 default y
166 depends on CRYPTO_MANAGER2
167 help
168 Disable run-time self tests that normally take place at
169 algorithm registration.
170
171config CRYPTO_GF128MUL
172 tristate "GF(2^128) multiplication functions"
173 help
174 Efficient table driven implementation of multiplications in the
175 field GF(2^128). This is needed by some cypher modes. This
176 option will be selected automatically if you select such a
177 cipher mode. Only select this option by hand if you expect to load
178 an external module that requires these functions.
179
180config CRYPTO_NULL
181 tristate "Null algorithms"
182 select CRYPTO_NULL2
183 help
184 These are 'Null' algorithms, used by IPsec, which do nothing.
185
186config CRYPTO_NULL2
187 tristate
188 select CRYPTO_ALGAPI2
189 select CRYPTO_BLKCIPHER2
190 select CRYPTO_HASH2
191
192config CRYPTO_PCRYPT
193 tristate "Parallel crypto engine"
194 depends on SMP
195 select PADATA
196 select CRYPTO_MANAGER
197 select CRYPTO_AEAD
198 help
199 This converts an arbitrary crypto algorithm into a parallel
200 algorithm that executes in kernel threads.
201
202config CRYPTO_WORKQUEUE
203 tristate
204
205config CRYPTO_CRYPTD
206 tristate "Software async crypto daemon"
207 select CRYPTO_BLKCIPHER
208 select CRYPTO_HASH
209 select CRYPTO_MANAGER
210 select CRYPTO_WORKQUEUE
211 help
212 This is a generic software asynchronous crypto daemon that
213 converts an arbitrary synchronous software crypto algorithm
214 into an asynchronous algorithm that executes in a kernel thread.
215
216config CRYPTO_MCRYPTD
217 tristate "Software async multi-buffer crypto daemon"
218 select CRYPTO_BLKCIPHER
219 select CRYPTO_HASH
220 select CRYPTO_MANAGER
221 select CRYPTO_WORKQUEUE
222 help
223 This is a generic software asynchronous crypto daemon that
224 provides the kernel thread to assist multi-buffer crypto
225 algorithms for submitting jobs and flushing jobs in multi-buffer
226 crypto algorithms. Multi-buffer crypto algorithms are executed
227 in the context of this kernel thread and drivers can post
228 their crypto request asynchronously to be processed by this daemon.
229
230config CRYPTO_AUTHENC
231 tristate "Authenc support"
232 select CRYPTO_AEAD
233 select CRYPTO_BLKCIPHER
234 select CRYPTO_MANAGER
235 select CRYPTO_HASH
236 select CRYPTO_NULL
237 help
238 Authenc: Combined mode wrapper for IPsec.
239 This is required for IPSec.
240
241config CRYPTO_TEST
242 tristate "Testing module"
243 depends on m
244 select CRYPTO_MANAGER
245 help
246 Quick & dirty crypto test module.
247
248config CRYPTO_SIMD
249 tristate
250 select CRYPTO_CRYPTD
251
252config CRYPTO_GLUE_HELPER_X86
253 tristate
254 depends on X86
255 select CRYPTO_BLKCIPHER
256
257config CRYPTO_ENGINE
258 tristate
259
260comment "Authenticated Encryption with Associated Data"
261
262config CRYPTO_CCM
263 tristate "CCM support"
264 select CRYPTO_CTR
265 select CRYPTO_HASH
266 select CRYPTO_AEAD
267 help
268 Support for Counter with CBC MAC. Required for IPsec.
269
270config CRYPTO_GCM
271 tristate "GCM/GMAC support"
272 select CRYPTO_CTR
273 select CRYPTO_AEAD
274 select CRYPTO_GHASH
275 select CRYPTO_NULL
276 help
277 Support for Galois/Counter Mode (GCM) and Galois Message
278 Authentication Code (GMAC). Required for IPSec.
279
280config CRYPTO_CHACHA20POLY1305
281 tristate "ChaCha20-Poly1305 AEAD support"
282 select CRYPTO_CHACHA20
283 select CRYPTO_POLY1305
284 select CRYPTO_AEAD
285 help
286 ChaCha20-Poly1305 AEAD support, RFC7539.
287
288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289 with the Poly1305 authenticator. It is defined in RFC7539 for use in
290 IETF protocols.
291
292config CRYPTO_SEQIV
293 tristate "Sequence Number IV Generator"
294 select CRYPTO_AEAD
295 select CRYPTO_BLKCIPHER
296 select CRYPTO_NULL
297 select CRYPTO_RNG_DEFAULT
298 help
299 This IV generator generates an IV based on a sequence number by
300 xoring it with a salt. This algorithm is mainly useful for CTR
301
302config CRYPTO_ECHAINIV
303 tristate "Encrypted Chain IV Generator"
304 select CRYPTO_AEAD
305 select CRYPTO_NULL
306 select CRYPTO_RNG_DEFAULT
307 default m
308 help
309 This IV generator generates an IV based on the encryption of
310 a sequence number xored with a salt. This is the default
311 algorithm for CBC.
312
313comment "Block modes"
314
315config CRYPTO_CBC
316 tristate "CBC support"
317 select CRYPTO_BLKCIPHER
318 select CRYPTO_MANAGER
319 help
320 CBC: Cipher Block Chaining mode
321 This block cipher algorithm is required for IPSec.
322
323config CRYPTO_CFB
324 tristate "CFB support"
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_MANAGER
327 help
328 CFB: Cipher FeedBack mode
329 This block cipher algorithm is required for TPM2 Cryptography.
330
331config CRYPTO_CTR
332 tristate "CTR support"
333 select CRYPTO_BLKCIPHER
334 select CRYPTO_SEQIV
335 select CRYPTO_MANAGER
336 help
337 CTR: Counter mode
338 This block cipher algorithm is required for IPSec.
339
340config CRYPTO_CTS
341 tristate "CTS support"
342 select CRYPTO_BLKCIPHER
343 help
344 CTS: Cipher Text Stealing
345 This is the Cipher Text Stealing mode as described by
346 Section 8 of rfc2040 and referenced by rfc3962.
347 (rfc3962 includes errata information in its Appendix A)
348 This mode is required for Kerberos gss mechanism support
349 for AES encryption.
350
351config CRYPTO_ECB
352 tristate "ECB support"
353 select CRYPTO_BLKCIPHER
354 select CRYPTO_MANAGER
355 help
356 ECB: Electronic CodeBook mode
357 This is the simplest block cipher algorithm. It simply encrypts
358 the input block by block.
359
360config CRYPTO_LRW
361 tristate "LRW support"
362 select CRYPTO_BLKCIPHER
363 select CRYPTO_MANAGER
364 select CRYPTO_GF128MUL
365 help
366 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
367 narrow block cipher mode for dm-crypt. Use it with cipher
368 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
369 The first 128, 192 or 256 bits in the key are used for AES and the
370 rest is used to tie each cipher block to its logical position.
371
372config CRYPTO_PCBC
373 tristate "PCBC support"
374 select CRYPTO_BLKCIPHER
375 select CRYPTO_MANAGER
376 help
377 PCBC: Propagating Cipher Block Chaining mode
378 This block cipher algorithm is required for RxRPC.
379
380config CRYPTO_XTS
381 tristate "XTS support"
382 select CRYPTO_BLKCIPHER
383 select CRYPTO_MANAGER
384 select CRYPTO_ECB
385 help
386 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
387 key size 256, 384 or 512 bits. This implementation currently
388 can't handle a sectorsize which is not a multiple of 16 bytes.
389
390config CRYPTO_KEYWRAP
391 tristate "Key wrapping support"
392 select CRYPTO_BLKCIPHER
393 help
394 Support for key wrapping (NIST SP800-38F / RFC3394) without
395 padding.
396
397comment "Hash modes"
398
399config CRYPTO_CMAC
400 tristate "CMAC support"
401 select CRYPTO_HASH
402 select CRYPTO_MANAGER
403 help
404 Cipher-based Message Authentication Code (CMAC) specified by
405 The National Institute of Standards and Technology (NIST).
406
407 https://tools.ietf.org/html/rfc4493
408 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
409
410config CRYPTO_HMAC
411 tristate "HMAC support"
412 select CRYPTO_HASH
413 select CRYPTO_MANAGER
414 help
415 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
416 This is required for IPSec.
417
418config CRYPTO_XCBC
419 tristate "XCBC support"
420 select CRYPTO_HASH
421 select CRYPTO_MANAGER
422 help
423 XCBC: Keyed-Hashing with encryption algorithm
424 http://www.ietf.org/rfc/rfc3566.txt
425 http://csrc.nist.gov/encryption/modes/proposedmodes/
426 xcbc-mac/xcbc-mac-spec.pdf
427
428config CRYPTO_VMAC
429 tristate "VMAC support"
430 select CRYPTO_HASH
431 select CRYPTO_MANAGER
432 help
433 VMAC is a message authentication algorithm designed for
434 very high speed on 64-bit architectures.
435
436 See also:
437 <http://fastcrypto.org/vmac>
438
439comment "Digest"
440
441config CRYPTO_CRC32C
442 tristate "CRC32c CRC algorithm"
443 select CRYPTO_HASH
444 select CRC32
445 help
446 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
447 by iSCSI for header and data digests and by others.
448 See Castagnoli93. Module will be crc32c.
449
450config CRYPTO_CRC32C_INTEL
451 tristate "CRC32c INTEL hardware acceleration"
452 depends on X86
453 select CRYPTO_HASH
454 help
455 In Intel processor with SSE4.2 supported, the processor will
456 support CRC32C implementation using hardware accelerated CRC32
457 instruction. This option will create 'crc32c-intel' module,
458 which will enable any routine to use the CRC32 instruction to
459 gain performance compared with software implementation.
460 Module will be crc32c-intel.
461
462config CRYPTO_CRC32C_VPMSUM
463 tristate "CRC32c CRC algorithm (powerpc64)"
464 depends on PPC64 && ALTIVEC
465 select CRYPTO_HASH
466 select CRC32
467 help
468 CRC32c algorithm implemented using vector polynomial multiply-sum
469 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
470 and newer processors for improved performance.
471
472
473config CRYPTO_CRC32C_SPARC64
474 tristate "CRC32c CRC algorithm (SPARC64)"
475 depends on SPARC64
476 select CRYPTO_HASH
477 select CRC32
478 help
479 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
480 when available.
481
482config CRYPTO_CRC32
483 tristate "CRC32 CRC algorithm"
484 select CRYPTO_HASH
485 select CRC32
486 help
487 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
488 Shash crypto api wrappers to crc32_le function.
489
490config CRYPTO_CRC32_PCLMUL
491 tristate "CRC32 PCLMULQDQ hardware acceleration"
492 depends on X86
493 select CRYPTO_HASH
494 select CRC32
495 help
496 From Intel Westmere and AMD Bulldozer processor with SSE4.2
497 and PCLMULQDQ supported, the processor will support
498 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
499 instruction. This option will create 'crc32-plcmul' module,
500 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
501 and gain better performance as compared with the table implementation.
502
503config CRYPTO_CRC32_MIPS
504 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
505 depends on MIPS_CRC_SUPPORT
506 select CRYPTO_HASH
507 help
508 CRC32c and CRC32 CRC algorithms implemented using mips crypto
509 instructions, when available.
510
511
512config CRYPTO_CRCT10DIF
513 tristate "CRCT10DIF algorithm"
514 select CRYPTO_HASH
515 help
516 CRC T10 Data Integrity Field computation is being cast as
517 a crypto transform. This allows for faster crc t10 diff
518 transforms to be used if they are available.
519
520config CRYPTO_CRCT10DIF_PCLMUL
521 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
522 depends on X86 && 64BIT && CRC_T10DIF
523 select CRYPTO_HASH
524 help
525 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
526 CRC T10 DIF PCLMULQDQ computation can be hardware
527 accelerated PCLMULQDQ instruction. This option will create
528 'crct10dif-plcmul' module, which is faster when computing the
529 crct10dif checksum as compared with the generic table implementation.
530
531config CRYPTO_CRCT10DIF_VPMSUM
532 tristate "CRC32T10DIF powerpc64 hardware acceleration"
533 depends on PPC64 && ALTIVEC && CRC_T10DIF
534 select CRYPTO_HASH
535 help
536 CRC10T10DIF algorithm implemented using vector polynomial
537 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
538 POWER8 and newer processors for improved performance.
539
540config CRYPTO_VPMSUM_TESTER
541 tristate "Powerpc64 vpmsum hardware acceleration tester"
542 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
543 help
544 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
545 POWER8 vpmsum instructions.
546 Unless you are testing these algorithms, you don't need this.
547
548config CRYPTO_GHASH
549 tristate "GHASH digest algorithm"
550 select CRYPTO_GF128MUL
551 select CRYPTO_HASH
552 help
553 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
554
555config CRYPTO_POLY1305
556 tristate "Poly1305 authenticator algorithm"
557 select CRYPTO_HASH
558 help
559 Poly1305 authenticator algorithm, RFC7539.
560
561 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
562 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
563 in IETF protocols. This is the portable C implementation of Poly1305.
564
565config CRYPTO_POLY1305_X86_64
566 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
567 depends on X86 && 64BIT
568 select CRYPTO_POLY1305
569 help
570 Poly1305 authenticator algorithm, RFC7539.
571
572 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
573 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
574 in IETF protocols. This is the x86_64 assembler implementation using SIMD
575 instructions.
576
577config CRYPTO_MD4
578 tristate "MD4 digest algorithm"
579 select CRYPTO_HASH
580 help
581 MD4 message digest algorithm (RFC1320).
582
583config CRYPTO_MD5
584 tristate "MD5 digest algorithm"
585 select CRYPTO_HASH
586 help
587 MD5 message digest algorithm (RFC1321).
588
589config CRYPTO_MD5_OCTEON
590 tristate "MD5 digest algorithm (OCTEON)"
591 depends on CPU_CAVIUM_OCTEON
592 select CRYPTO_MD5
593 select CRYPTO_HASH
594 help
595 MD5 message digest algorithm (RFC1321) implemented
596 using OCTEON crypto instructions, when available.
597
598config CRYPTO_MD5_PPC
599 tristate "MD5 digest algorithm (PPC)"
600 depends on PPC
601 select CRYPTO_HASH
602 help
603 MD5 message digest algorithm (RFC1321) implemented
604 in PPC assembler.
605
606config CRYPTO_MD5_SPARC64
607 tristate "MD5 digest algorithm (SPARC64)"
608 depends on SPARC64
609 select CRYPTO_MD5
610 select CRYPTO_HASH
611 help
612 MD5 message digest algorithm (RFC1321) implemented
613 using sparc64 crypto instructions, when available.
614
615config CRYPTO_MICHAEL_MIC
616 tristate "Michael MIC keyed digest algorithm"
617 select CRYPTO_HASH
618 help
619 Michael MIC is used for message integrity protection in TKIP
620 (IEEE 802.11i). This algorithm is required for TKIP, but it
621 should not be used for other purposes because of the weakness
622 of the algorithm.
623
624config CRYPTO_RMD128
625 tristate "RIPEMD-128 digest algorithm"
626 select CRYPTO_HASH
627 help
628 RIPEMD-128 (ISO/IEC 10118-3:2004).
629
630 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
631 be used as a secure replacement for RIPEMD. For other use cases,
632 RIPEMD-160 should be used.
633
634 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
635 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
636
637config CRYPTO_RMD160
638 tristate "RIPEMD-160 digest algorithm"
639 select CRYPTO_HASH
640 help
641 RIPEMD-160 (ISO/IEC 10118-3:2004).
642
643 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
644 to be used as a secure replacement for the 128-bit hash functions
645 MD4, MD5 and it's predecessor RIPEMD
646 (not to be confused with RIPEMD-128).
647
648 It's speed is comparable to SHA1 and there are no known attacks
649 against RIPEMD-160.
650
651 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
652 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
653
654config CRYPTO_RMD256
655 tristate "RIPEMD-256 digest algorithm"
656 select CRYPTO_HASH
657 help
658 RIPEMD-256 is an optional extension of RIPEMD-128 with a
659 256 bit hash. It is intended for applications that require
660 longer hash-results, without needing a larger security level
661 (than RIPEMD-128).
662
663 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
664 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
665
666config CRYPTO_RMD320
667 tristate "RIPEMD-320 digest algorithm"
668 select CRYPTO_HASH
669 help
670 RIPEMD-320 is an optional extension of RIPEMD-160 with a
671 320 bit hash. It is intended for applications that require
672 longer hash-results, without needing a larger security level
673 (than RIPEMD-160).
674
675 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
676 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
677
678config CRYPTO_SHA1
679 tristate "SHA1 digest algorithm"
680 select CRYPTO_HASH
681 help
682 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
683
684config CRYPTO_SHA1_SSSE3
685 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
686 depends on X86 && 64BIT
687 select CRYPTO_SHA1
688 select CRYPTO_HASH
689 help
690 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
691 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
692 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
693 when available.
694
695config CRYPTO_SHA256_SSSE3
696 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
697 depends on X86 && 64BIT
698 select CRYPTO_SHA256
699 select CRYPTO_HASH
700 help
701 SHA-256 secure hash standard (DFIPS 180-2) implemented
702 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
703 Extensions version 1 (AVX1), or Advanced Vector Extensions
704 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
705 Instructions) when available.
706
707config CRYPTO_SHA512_SSSE3
708 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
709 depends on X86 && 64BIT
710 select CRYPTO_SHA512
711 select CRYPTO_HASH
712 help
713 SHA-512 secure hash standard (DFIPS 180-2) implemented
714 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
715 Extensions version 1 (AVX1), or Advanced Vector Extensions
716 version 2 (AVX2) instructions, when available.
717
718config CRYPTO_SHA1_OCTEON
719 tristate "SHA1 digest algorithm (OCTEON)"
720 depends on CPU_CAVIUM_OCTEON
721 select CRYPTO_SHA1
722 select CRYPTO_HASH
723 help
724 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
725 using OCTEON crypto instructions, when available.
726
727config CRYPTO_SHA1_SPARC64
728 tristate "SHA1 digest algorithm (SPARC64)"
729 depends on SPARC64
730 select CRYPTO_SHA1
731 select CRYPTO_HASH
732 help
733 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
734 using sparc64 crypto instructions, when available.
735
736config CRYPTO_SHA1_PPC
737 tristate "SHA1 digest algorithm (powerpc)"
738 depends on PPC
739 help
740 This is the powerpc hardware accelerated implementation of the
741 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
742
743config CRYPTO_SHA1_PPC_SPE
744 tristate "SHA1 digest algorithm (PPC SPE)"
745 depends on PPC && SPE
746 help
747 SHA-1 secure hash standard (DFIPS 180-4) implemented
748 using powerpc SPE SIMD instruction set.
749
750config CRYPTO_SHA1_MB
751 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
752 depends on X86 && 64BIT
753 select CRYPTO_SHA1
754 select CRYPTO_HASH
755 select CRYPTO_MCRYPTD
756 help
757 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
758 using multi-buffer technique. This algorithm computes on
759 multiple data lanes concurrently with SIMD instructions for
760 better throughput. It should not be enabled by default but
761 used when there is significant amount of work to keep the keep
762 the data lanes filled to get performance benefit. If the data
763 lanes remain unfilled, a flush operation will be initiated to
764 process the crypto jobs, adding a slight latency.
765
766config CRYPTO_SHA256_MB
767 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
768 depends on X86 && 64BIT
769 select CRYPTO_SHA256
770 select CRYPTO_HASH
771 select CRYPTO_MCRYPTD
772 help
773 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
774 using multi-buffer technique. This algorithm computes on
775 multiple data lanes concurrently with SIMD instructions for
776 better throughput. It should not be enabled by default but
777 used when there is significant amount of work to keep the keep
778 the data lanes filled to get performance benefit. If the data
779 lanes remain unfilled, a flush operation will be initiated to
780 process the crypto jobs, adding a slight latency.
781
782config CRYPTO_SHA512_MB
783 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
784 depends on X86 && 64BIT
785 select CRYPTO_SHA512
786 select CRYPTO_HASH
787 select CRYPTO_MCRYPTD
788 help
789 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
790 using multi-buffer technique. This algorithm computes on
791 multiple data lanes concurrently with SIMD instructions for
792 better throughput. It should not be enabled by default but
793 used when there is significant amount of work to keep the keep
794 the data lanes filled to get performance benefit. If the data
795 lanes remain unfilled, a flush operation will be initiated to
796 process the crypto jobs, adding a slight latency.
797
798config CRYPTO_SHA256
799 tristate "SHA224 and SHA256 digest algorithm"
800 select CRYPTO_HASH
801 help
802 SHA256 secure hash standard (DFIPS 180-2).
803
804 This version of SHA implements a 256 bit hash with 128 bits of
805 security against collision attacks.
806
807 This code also includes SHA-224, a 224 bit hash with 112 bits
808 of security against collision attacks.
809
810config CRYPTO_SHA256_PPC_SPE
811 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
812 depends on PPC && SPE
813 select CRYPTO_SHA256
814 select CRYPTO_HASH
815 help
816 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
817 implemented using powerpc SPE SIMD instruction set.
818
819config CRYPTO_SHA256_OCTEON
820 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
821 depends on CPU_CAVIUM_OCTEON
822 select CRYPTO_SHA256
823 select CRYPTO_HASH
824 help
825 SHA-256 secure hash standard (DFIPS 180-2) implemented
826 using OCTEON crypto instructions, when available.
827
828config CRYPTO_SHA256_SPARC64
829 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
830 depends on SPARC64
831 select CRYPTO_SHA256
832 select CRYPTO_HASH
833 help
834 SHA-256 secure hash standard (DFIPS 180-2) implemented
835 using sparc64 crypto instructions, when available.
836
837config CRYPTO_SHA512
838 tristate "SHA384 and SHA512 digest algorithms"
839 select CRYPTO_HASH
840 help
841 SHA512 secure hash standard (DFIPS 180-2).
842
843 This version of SHA implements a 512 bit hash with 256 bits of
844 security against collision attacks.
845
846 This code also includes SHA-384, a 384 bit hash with 192 bits
847 of security against collision attacks.
848
849config CRYPTO_SHA512_OCTEON
850 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
851 depends on CPU_CAVIUM_OCTEON
852 select CRYPTO_SHA512
853 select CRYPTO_HASH
854 help
855 SHA-512 secure hash standard (DFIPS 180-2) implemented
856 using OCTEON crypto instructions, when available.
857
858config CRYPTO_SHA512_SPARC64
859 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
860 depends on SPARC64
861 select CRYPTO_SHA512
862 select CRYPTO_HASH
863 help
864 SHA-512 secure hash standard (DFIPS 180-2) implemented
865 using sparc64 crypto instructions, when available.
866
867config CRYPTO_SHA3
868 tristate "SHA3 digest algorithm"
869 select CRYPTO_HASH
870 help
871 SHA-3 secure hash standard (DFIPS 202). It's based on
872 cryptographic sponge function family called Keccak.
873
874 References:
875 http://keccak.noekeon.org/
876
877config CRYPTO_SM3
878 tristate "SM3 digest algorithm"
879 select CRYPTO_HASH
880 help
881 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
882 It is part of the Chinese Commercial Cryptography suite.
883
884 References:
885 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
886 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
887
888config CRYPTO_TGR192
889 tristate "Tiger digest algorithms"
890 select CRYPTO_HASH
891 help
892 Tiger hash algorithm 192, 160 and 128-bit hashes
893
894 Tiger is a hash function optimized for 64-bit processors while
895 still having decent performance on 32-bit processors.
896 Tiger was developed by Ross Anderson and Eli Biham.
897
898 See also:
899 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
900
901config CRYPTO_WP512
902 tristate "Whirlpool digest algorithms"
903 select CRYPTO_HASH
904 help
905 Whirlpool hash algorithm 512, 384 and 256-bit hashes
906
907 Whirlpool-512 is part of the NESSIE cryptographic primitives.
908 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
909
910 See also:
911 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
912
913config CRYPTO_GHASH_CLMUL_NI_INTEL
914 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
915 depends on X86 && 64BIT
916 select CRYPTO_CRYPTD
917 help
918 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
919 The implementation is accelerated by CLMUL-NI of Intel.
920
921comment "Ciphers"
922
923config CRYPTO_AES
924 tristate "AES cipher algorithms"
925 select CRYPTO_ALGAPI
926 help
927 AES cipher algorithms (FIPS-197). AES uses the Rijndael
928 algorithm.
929
930 Rijndael appears to be consistently a very good performer in
931 both hardware and software across a wide range of computing
932 environments regardless of its use in feedback or non-feedback
933 modes. Its key setup time is excellent, and its key agility is
934 good. Rijndael's very low memory requirements make it very well
935 suited for restricted-space environments, in which it also
936 demonstrates excellent performance. Rijndael's operations are
937 among the easiest to defend against power and timing attacks.
938
939 The AES specifies three key sizes: 128, 192 and 256 bits
940
941 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
942
943config CRYPTO_AES_TI
944 tristate "Fixed time AES cipher"
945 select CRYPTO_ALGAPI
946 help
947 This is a generic implementation of AES that attempts to eliminate
948 data dependent latencies as much as possible without affecting
949 performance too much. It is intended for use by the generic CCM
950 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
951 solely on encryption (although decryption is supported as well, but
952 with a more dramatic performance hit)
953
954 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
955 8 for decryption), this implementation only uses just two S-boxes of
956 256 bytes each, and attempts to eliminate data dependent latencies by
957 prefetching the entire table into the cache at the start of each
958 block.
959
960config CRYPTO_AES_586
961 tristate "AES cipher algorithms (i586)"
962 depends on (X86 || UML_X86) && !64BIT
963 select CRYPTO_ALGAPI
964 select CRYPTO_AES
965 help
966 AES cipher algorithms (FIPS-197). AES uses the Rijndael
967 algorithm.
968
969 Rijndael appears to be consistently a very good performer in
970 both hardware and software across a wide range of computing
971 environments regardless of its use in feedback or non-feedback
972 modes. Its key setup time is excellent, and its key agility is
973 good. Rijndael's very low memory requirements make it very well
974 suited for restricted-space environments, in which it also
975 demonstrates excellent performance. Rijndael's operations are
976 among the easiest to defend against power and timing attacks.
977
978 The AES specifies three key sizes: 128, 192 and 256 bits
979
980 See <http://csrc.nist.gov/encryption/aes/> for more information.
981
982config CRYPTO_AES_X86_64
983 tristate "AES cipher algorithms (x86_64)"
984 depends on (X86 || UML_X86) && 64BIT
985 select CRYPTO_ALGAPI
986 select CRYPTO_AES
987 help
988 AES cipher algorithms (FIPS-197). AES uses the Rijndael
989 algorithm.
990
991 Rijndael appears to be consistently a very good performer in
992 both hardware and software across a wide range of computing
993 environments regardless of its use in feedback or non-feedback
994 modes. Its key setup time is excellent, and its key agility is
995 good. Rijndael's very low memory requirements make it very well
996 suited for restricted-space environments, in which it also
997 demonstrates excellent performance. Rijndael's operations are
998 among the easiest to defend against power and timing attacks.
999
1000 The AES specifies three key sizes: 128, 192 and 256 bits
1001
1002 See <http://csrc.nist.gov/encryption/aes/> for more information.
1003
1004config CRYPTO_AES_NI_INTEL
1005 tristate "AES cipher algorithms (AES-NI)"
1006 depends on X86
1007 select CRYPTO_AEAD
1008 select CRYPTO_AES_X86_64 if 64BIT
1009 select CRYPTO_AES_586 if !64BIT
1010 select CRYPTO_ALGAPI
1011 select CRYPTO_BLKCIPHER
1012 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1013 select CRYPTO_SIMD
1014 help
1015 Use Intel AES-NI instructions for AES algorithm.
1016
1017 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1018 algorithm.
1019
1020 Rijndael appears to be consistently a very good performer in
1021 both hardware and software across a wide range of computing
1022 environments regardless of its use in feedback or non-feedback
1023 modes. Its key setup time is excellent, and its key agility is
1024 good. Rijndael's very low memory requirements make it very well
1025 suited for restricted-space environments, in which it also
1026 demonstrates excellent performance. Rijndael's operations are
1027 among the easiest to defend against power and timing attacks.
1028
1029 The AES specifies three key sizes: 128, 192 and 256 bits
1030
1031 See <http://csrc.nist.gov/encryption/aes/> for more information.
1032
1033 In addition to AES cipher algorithm support, the acceleration
1034 for some popular block cipher mode is supported too, including
1035 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1036 acceleration for CTR.
1037
1038config CRYPTO_AES_SPARC64
1039 tristate "AES cipher algorithms (SPARC64)"
1040 depends on SPARC64
1041 select CRYPTO_CRYPTD
1042 select CRYPTO_ALGAPI
1043 help
1044 Use SPARC64 crypto opcodes for AES algorithm.
1045
1046 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1047 algorithm.
1048
1049 Rijndael appears to be consistently a very good performer in
1050 both hardware and software across a wide range of computing
1051 environments regardless of its use in feedback or non-feedback
1052 modes. Its key setup time is excellent, and its key agility is
1053 good. Rijndael's very low memory requirements make it very well
1054 suited for restricted-space environments, in which it also
1055 demonstrates excellent performance. Rijndael's operations are
1056 among the easiest to defend against power and timing attacks.
1057
1058 The AES specifies three key sizes: 128, 192 and 256 bits
1059
1060 See <http://csrc.nist.gov/encryption/aes/> for more information.
1061
1062 In addition to AES cipher algorithm support, the acceleration
1063 for some popular block cipher mode is supported too, including
1064 ECB and CBC.
1065
1066config CRYPTO_AES_PPC_SPE
1067 tristate "AES cipher algorithms (PPC SPE)"
1068 depends on PPC && SPE
1069 help
1070 AES cipher algorithms (FIPS-197). Additionally the acceleration
1071 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072 This module should only be used for low power (router) devices
1073 without hardware AES acceleration (e.g. caam crypto). It reduces the
1074 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075 timining attacks. Nevertheless it might be not as secure as other
1076 architecture specific assembler implementations that work on 1KB
1077 tables or 256 bytes S-boxes.
1078
1079config CRYPTO_ANUBIS
1080 tristate "Anubis cipher algorithm"
1081 select CRYPTO_ALGAPI
1082 help
1083 Anubis cipher algorithm.
1084
1085 Anubis is a variable key length cipher which can use keys from
1086 128 bits to 320 bits in length. It was evaluated as a entrant
1087 in the NESSIE competition.
1088
1089 See also:
1090 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1091 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1092
1093config CRYPTO_ARC4
1094 tristate "ARC4 cipher algorithm"
1095 select CRYPTO_BLKCIPHER
1096 help
1097 ARC4 cipher algorithm.
1098
1099 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100 bits in length. This algorithm is required for driver-based
1101 WEP, but it should not be for other purposes because of the
1102 weakness of the algorithm.
1103
1104config CRYPTO_BLOWFISH
1105 tristate "Blowfish cipher algorithm"
1106 select CRYPTO_ALGAPI
1107 select CRYPTO_BLOWFISH_COMMON
1108 help
1109 Blowfish cipher algorithm, by Bruce Schneier.
1110
1111 This is a variable key length cipher which can use keys from 32
1112 bits to 448 bits in length. It's fast, simple and specifically
1113 designed for use on "large microprocessors".
1114
1115 See also:
1116 <http://www.schneier.com/blowfish.html>
1117
1118config CRYPTO_BLOWFISH_COMMON
1119 tristate
1120 help
1121 Common parts of the Blowfish cipher algorithm shared by the
1122 generic c and the assembler implementations.
1123
1124 See also:
1125 <http://www.schneier.com/blowfish.html>
1126
1127config CRYPTO_BLOWFISH_X86_64
1128 tristate "Blowfish cipher algorithm (x86_64)"
1129 depends on X86 && 64BIT
1130 select CRYPTO_BLKCIPHER
1131 select CRYPTO_BLOWFISH_COMMON
1132 help
1133 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1134
1135 This is a variable key length cipher which can use keys from 32
1136 bits to 448 bits in length. It's fast, simple and specifically
1137 designed for use on "large microprocessors".
1138
1139 See also:
1140 <http://www.schneier.com/blowfish.html>
1141
1142config CRYPTO_CAMELLIA
1143 tristate "Camellia cipher algorithms"
1144 depends on CRYPTO
1145 select CRYPTO_ALGAPI
1146 help
1147 Camellia cipher algorithms module.
1148
1149 Camellia is a symmetric key block cipher developed jointly
1150 at NTT and Mitsubishi Electric Corporation.
1151
1152 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153
1154 See also:
1155 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156
1157config CRYPTO_CAMELLIA_X86_64
1158 tristate "Camellia cipher algorithm (x86_64)"
1159 depends on X86 && 64BIT
1160 depends on CRYPTO
1161 select CRYPTO_BLKCIPHER
1162 select CRYPTO_GLUE_HELPER_X86
1163 help
1164 Camellia cipher algorithm module (x86_64).
1165
1166 Camellia is a symmetric key block cipher developed jointly
1167 at NTT and Mitsubishi Electric Corporation.
1168
1169 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171 See also:
1172 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176 depends on X86 && 64BIT
1177 depends on CRYPTO
1178 select CRYPTO_BLKCIPHER
1179 select CRYPTO_CAMELLIA_X86_64
1180 select CRYPTO_GLUE_HELPER_X86
1181 select CRYPTO_SIMD
1182 select CRYPTO_XTS
1183 help
1184 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185
1186 Camellia is a symmetric key block cipher developed jointly
1187 at NTT and Mitsubishi Electric Corporation.
1188
1189 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191 See also:
1192 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196 depends on X86 && 64BIT
1197 depends on CRYPTO
1198 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199 help
1200 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201
1202 Camellia is a symmetric key block cipher developed jointly
1203 at NTT and Mitsubishi Electric Corporation.
1204
1205 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206
1207 See also:
1208 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209
1210config CRYPTO_CAMELLIA_SPARC64
1211 tristate "Camellia cipher algorithm (SPARC64)"
1212 depends on SPARC64
1213 depends on CRYPTO
1214 select CRYPTO_ALGAPI
1215 help
1216 Camellia cipher algorithm module (SPARC64).
1217
1218 Camellia is a symmetric key block cipher developed jointly
1219 at NTT and Mitsubishi Electric Corporation.
1220
1221 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1222
1223 See also:
1224 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1225
1226config CRYPTO_CAST_COMMON
1227 tristate
1228 help
1229 Common parts of the CAST cipher algorithms shared by the
1230 generic c and the assembler implementations.
1231
1232config CRYPTO_CAST5
1233 tristate "CAST5 (CAST-128) cipher algorithm"
1234 select CRYPTO_ALGAPI
1235 select CRYPTO_CAST_COMMON
1236 help
1237 The CAST5 encryption algorithm (synonymous with CAST-128) is
1238 described in RFC2144.
1239
1240config CRYPTO_CAST5_AVX_X86_64
1241 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1242 depends on X86 && 64BIT
1243 select CRYPTO_BLKCIPHER
1244 select CRYPTO_CAST5
1245 select CRYPTO_CAST_COMMON
1246 select CRYPTO_SIMD
1247 help
1248 The CAST5 encryption algorithm (synonymous with CAST-128) is
1249 described in RFC2144.
1250
1251 This module provides the Cast5 cipher algorithm that processes
1252 sixteen blocks parallel using the AVX instruction set.
1253
1254config CRYPTO_CAST6
1255 tristate "CAST6 (CAST-256) cipher algorithm"
1256 select CRYPTO_ALGAPI
1257 select CRYPTO_CAST_COMMON
1258 help
1259 The CAST6 encryption algorithm (synonymous with CAST-256) is
1260 described in RFC2612.
1261
1262config CRYPTO_CAST6_AVX_X86_64
1263 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1264 depends on X86 && 64BIT
1265 select CRYPTO_BLKCIPHER
1266 select CRYPTO_CAST6
1267 select CRYPTO_CAST_COMMON
1268 select CRYPTO_GLUE_HELPER_X86
1269 select CRYPTO_SIMD
1270 select CRYPTO_XTS
1271 help
1272 The CAST6 encryption algorithm (synonymous with CAST-256) is
1273 described in RFC2612.
1274
1275 This module provides the Cast6 cipher algorithm that processes
1276 eight blocks parallel using the AVX instruction set.
1277
1278config CRYPTO_DES
1279 tristate "DES and Triple DES EDE cipher algorithms"
1280 select CRYPTO_ALGAPI
1281 help
1282 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283
1284config CRYPTO_DES_SPARC64
1285 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286 depends on SPARC64
1287 select CRYPTO_ALGAPI
1288 select CRYPTO_DES
1289 help
1290 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291 optimized using SPARC64 crypto opcodes.
1292
1293config CRYPTO_DES3_EDE_X86_64
1294 tristate "Triple DES EDE cipher algorithm (x86-64)"
1295 depends on X86 && 64BIT
1296 select CRYPTO_BLKCIPHER
1297 select CRYPTO_DES
1298 help
1299 Triple DES EDE (FIPS 46-3) algorithm.
1300
1301 This module provides implementation of the Triple DES EDE cipher
1302 algorithm that is optimized for x86-64 processors. Two versions of
1303 algorithm are provided; regular processing one input block and
1304 one that processes three blocks parallel.
1305
1306config CRYPTO_FCRYPT
1307 tristate "FCrypt cipher algorithm"
1308 select CRYPTO_ALGAPI
1309 select CRYPTO_BLKCIPHER
1310 help
1311 FCrypt algorithm used by RxRPC.
1312
1313config CRYPTO_KHAZAD
1314 tristate "Khazad cipher algorithm"
1315 select CRYPTO_ALGAPI
1316 help
1317 Khazad cipher algorithm.
1318
1319 Khazad was a finalist in the initial NESSIE competition. It is
1320 an algorithm optimized for 64-bit processors with good performance
1321 on 32-bit processors. Khazad uses an 128 bit key size.
1322
1323 See also:
1324 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325
1326config CRYPTO_SALSA20
1327 tristate "Salsa20 stream cipher algorithm"
1328 select CRYPTO_BLKCIPHER
1329 help
1330 Salsa20 stream cipher algorithm.
1331
1332 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1333 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334
1335 The Salsa20 stream cipher algorithm is designed by Daniel J.
1336 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1337
1338config CRYPTO_SALSA20_586
1339 tristate "Salsa20 stream cipher algorithm (i586)"
1340 depends on (X86 || UML_X86) && !64BIT
1341 select CRYPTO_BLKCIPHER
1342 select CRYPTO_SALSA20
1343 help
1344 Salsa20 stream cipher algorithm.
1345
1346 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348
1349 The Salsa20 stream cipher algorithm is designed by Daniel J.
1350 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351
1352config CRYPTO_SALSA20_X86_64
1353 tristate "Salsa20 stream cipher algorithm (x86_64)"
1354 depends on (X86 || UML_X86) && 64BIT
1355 select CRYPTO_BLKCIPHER
1356 select CRYPTO_SALSA20
1357 help
1358 Salsa20 stream cipher algorithm.
1359
1360 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1361 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1362
1363 The Salsa20 stream cipher algorithm is designed by Daniel J.
1364 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1365
1366config CRYPTO_CHACHA20
1367 tristate "ChaCha20 cipher algorithm"
1368 select CRYPTO_BLKCIPHER
1369 help
1370 ChaCha20 cipher algorithm, RFC7539.
1371
1372 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373 Bernstein and further specified in RFC7539 for use in IETF protocols.
1374 This is the portable C implementation of ChaCha20.
1375
1376 See also:
1377 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1378
1379config CRYPTO_CHACHA20_X86_64
1380 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381 depends on X86 && 64BIT
1382 select CRYPTO_BLKCIPHER
1383 select CRYPTO_CHACHA20
1384 help
1385 ChaCha20 cipher algorithm, RFC7539.
1386
1387 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388 Bernstein and further specified in RFC7539 for use in IETF protocols.
1389 This is the x86_64 assembler implementation using SIMD instructions.
1390
1391 See also:
1392 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1393
1394config CRYPTO_SEED
1395 tristate "SEED cipher algorithm"
1396 select CRYPTO_ALGAPI
1397 help
1398 SEED cipher algorithm (RFC4269).
1399
1400 SEED is a 128-bit symmetric key block cipher that has been
1401 developed by KISA (Korea Information Security Agency) as a
1402 national standard encryption algorithm of the Republic of Korea.
1403 It is a 16 round block cipher with the key size of 128 bit.
1404
1405 See also:
1406 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407
1408config CRYPTO_SERPENT
1409 tristate "Serpent cipher algorithm"
1410 select CRYPTO_ALGAPI
1411 help
1412 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413
1414 Keys are allowed to be from 0 to 256 bits in length, in steps
1415 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1416 variant of Serpent for compatibility with old kerneli.org code.
1417
1418 See also:
1419 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420
1421config CRYPTO_SERPENT_SSE2_X86_64
1422 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423 depends on X86 && 64BIT
1424 select CRYPTO_BLKCIPHER
1425 select CRYPTO_GLUE_HELPER_X86
1426 select CRYPTO_SERPENT
1427 select CRYPTO_SIMD
1428 help
1429 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430
1431 Keys are allowed to be from 0 to 256 bits in length, in steps
1432 of 8 bits.
1433
1434 This module provides Serpent cipher algorithm that processes eight
1435 blocks parallel using SSE2 instruction set.
1436
1437 See also:
1438 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439
1440config CRYPTO_SERPENT_SSE2_586
1441 tristate "Serpent cipher algorithm (i586/SSE2)"
1442 depends on X86 && !64BIT
1443 select CRYPTO_BLKCIPHER
1444 select CRYPTO_GLUE_HELPER_X86
1445 select CRYPTO_SERPENT
1446 select CRYPTO_SIMD
1447 help
1448 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449
1450 Keys are allowed to be from 0 to 256 bits in length, in steps
1451 of 8 bits.
1452
1453 This module provides Serpent cipher algorithm that processes four
1454 blocks parallel using SSE2 instruction set.
1455
1456 See also:
1457 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458
1459config CRYPTO_SERPENT_AVX_X86_64
1460 tristate "Serpent cipher algorithm (x86_64/AVX)"
1461 depends on X86 && 64BIT
1462 select CRYPTO_BLKCIPHER
1463 select CRYPTO_GLUE_HELPER_X86
1464 select CRYPTO_SERPENT
1465 select CRYPTO_SIMD
1466 select CRYPTO_XTS
1467 help
1468 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470 Keys are allowed to be from 0 to 256 bits in length, in steps
1471 of 8 bits.
1472
1473 This module provides the Serpent cipher algorithm that processes
1474 eight blocks parallel using the AVX instruction set.
1475
1476 See also:
1477 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_SERPENT_AVX2_X86_64
1480 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1481 depends on X86 && 64BIT
1482 select CRYPTO_SERPENT_AVX_X86_64
1483 help
1484 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1485
1486 Keys are allowed to be from 0 to 256 bits in length, in steps
1487 of 8 bits.
1488
1489 This module provides Serpent cipher algorithm that processes 16
1490 blocks parallel using AVX2 instruction set.
1491
1492 See also:
1493 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SM4
1496 tristate "SM4 cipher algorithm"
1497 select CRYPTO_ALGAPI
1498 help
1499 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500
1501 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502 Organization of State Commercial Administration of China (OSCCA)
1503 as an authorized cryptographic algorithms for the use within China.
1504
1505 SMS4 was originally created for use in protecting wireless
1506 networks, and is mandated in the Chinese National Standard for
1507 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508 (GB.15629.11-2003).
1509
1510 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511 standardized through TC 260 of the Standardization Administration
1512 of the People's Republic of China (SAC).
1513
1514 The input, output, and key of SMS4 are each 128 bits.
1515
1516 See also: <https://eprint.iacr.org/2008/329.pdf>
1517
1518 If unsure, say N.
1519
1520config CRYPTO_SPECK
1521 tristate "Speck cipher algorithm"
1522 select CRYPTO_ALGAPI
1523 help
1524 Speck is a lightweight block cipher that is tuned for optimal
1525 performance in software (rather than hardware).
1526
1527 Speck may not be as secure as AES, and should only be used on systems
1528 where AES is not fast enough.
1529
1530 See also: <https://eprint.iacr.org/2013/404.pdf>
1531
1532 If unsure, say N.
1533
1534config CRYPTO_TEA
1535 tristate "TEA, XTEA and XETA cipher algorithms"
1536 select CRYPTO_ALGAPI
1537 help
1538 TEA cipher algorithm.
1539
1540 Tiny Encryption Algorithm is a simple cipher that uses
1541 many rounds for security. It is very fast and uses
1542 little memory.
1543
1544 Xtendend Tiny Encryption Algorithm is a modification to
1545 the TEA algorithm to address a potential key weakness
1546 in the TEA algorithm.
1547
1548 Xtendend Encryption Tiny Algorithm is a mis-implementation
1549 of the XTEA algorithm for compatibility purposes.
1550
1551config CRYPTO_TWOFISH
1552 tristate "Twofish cipher algorithm"
1553 select CRYPTO_ALGAPI
1554 select CRYPTO_TWOFISH_COMMON
1555 help
1556 Twofish cipher algorithm.
1557
1558 Twofish was submitted as an AES (Advanced Encryption Standard)
1559 candidate cipher by researchers at CounterPane Systems. It is a
1560 16 round block cipher supporting key sizes of 128, 192, and 256
1561 bits.
1562
1563 See also:
1564 <http://www.schneier.com/twofish.html>
1565
1566config CRYPTO_TWOFISH_COMMON
1567 tristate
1568 help
1569 Common parts of the Twofish cipher algorithm shared by the
1570 generic c and the assembler implementations.
1571
1572config CRYPTO_TWOFISH_586
1573 tristate "Twofish cipher algorithms (i586)"
1574 depends on (X86 || UML_X86) && !64BIT
1575 select CRYPTO_ALGAPI
1576 select CRYPTO_TWOFISH_COMMON
1577 help
1578 Twofish cipher algorithm.
1579
1580 Twofish was submitted as an AES (Advanced Encryption Standard)
1581 candidate cipher by researchers at CounterPane Systems. It is a
1582 16 round block cipher supporting key sizes of 128, 192, and 256
1583 bits.
1584
1585 See also:
1586 <http://www.schneier.com/twofish.html>
1587
1588config CRYPTO_TWOFISH_X86_64
1589 tristate "Twofish cipher algorithm (x86_64)"
1590 depends on (X86 || UML_X86) && 64BIT
1591 select CRYPTO_ALGAPI
1592 select CRYPTO_TWOFISH_COMMON
1593 help
1594 Twofish cipher algorithm (x86_64).
1595
1596 Twofish was submitted as an AES (Advanced Encryption Standard)
1597 candidate cipher by researchers at CounterPane Systems. It is a
1598 16 round block cipher supporting key sizes of 128, 192, and 256
1599 bits.
1600
1601 See also:
1602 <http://www.schneier.com/twofish.html>
1603
1604config CRYPTO_TWOFISH_X86_64_3WAY
1605 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606 depends on X86 && 64BIT
1607 select CRYPTO_BLKCIPHER
1608 select CRYPTO_TWOFISH_COMMON
1609 select CRYPTO_TWOFISH_X86_64
1610 select CRYPTO_GLUE_HELPER_X86
1611 help
1612 Twofish cipher algorithm (x86_64, 3-way parallel).
1613
1614 Twofish was submitted as an AES (Advanced Encryption Standard)
1615 candidate cipher by researchers at CounterPane Systems. It is a
1616 16 round block cipher supporting key sizes of 128, 192, and 256
1617 bits.
1618
1619 This module provides Twofish cipher algorithm that processes three
1620 blocks parallel, utilizing resources of out-of-order CPUs better.
1621
1622 See also:
1623 <http://www.schneier.com/twofish.html>
1624
1625config CRYPTO_TWOFISH_AVX_X86_64
1626 tristate "Twofish cipher algorithm (x86_64/AVX)"
1627 depends on X86 && 64BIT
1628 select CRYPTO_BLKCIPHER
1629 select CRYPTO_GLUE_HELPER_X86
1630 select CRYPTO_SIMD
1631 select CRYPTO_TWOFISH_COMMON
1632 select CRYPTO_TWOFISH_X86_64
1633 select CRYPTO_TWOFISH_X86_64_3WAY
1634 help
1635 Twofish cipher algorithm (x86_64/AVX).
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 This module provides the Twofish cipher algorithm that processes
1643 eight blocks parallel using the AVX Instruction Set.
1644
1645 See also:
1646 <http://www.schneier.com/twofish.html>
1647
1648comment "Compression"
1649
1650config CRYPTO_DEFLATE
1651 tristate "Deflate compression algorithm"
1652 select CRYPTO_ALGAPI
1653 select CRYPTO_ACOMP2
1654 select ZLIB_INFLATE
1655 select ZLIB_DEFLATE
1656 help
1657 This is the Deflate algorithm (RFC1951), specified for use in
1658 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1659
1660 You will most probably want this if using IPSec.
1661
1662config CRYPTO_LZO
1663 tristate "LZO compression algorithm"
1664 select CRYPTO_ALGAPI
1665 select CRYPTO_ACOMP2
1666 select LZO_COMPRESS
1667 select LZO_DECOMPRESS
1668 help
1669 This is the LZO algorithm.
1670
1671config CRYPTO_842
1672 tristate "842 compression algorithm"
1673 select CRYPTO_ALGAPI
1674 select CRYPTO_ACOMP2
1675 select 842_COMPRESS
1676 select 842_DECOMPRESS
1677 help
1678 This is the 842 algorithm.
1679
1680config CRYPTO_LZ4
1681 tristate "LZ4 compression algorithm"
1682 select CRYPTO_ALGAPI
1683 select CRYPTO_ACOMP2
1684 select LZ4_COMPRESS
1685 select LZ4_DECOMPRESS
1686 help
1687 This is the LZ4 algorithm.
1688
1689config CRYPTO_LZ4HC
1690 tristate "LZ4HC compression algorithm"
1691 select CRYPTO_ALGAPI
1692 select CRYPTO_ACOMP2
1693 select LZ4HC_COMPRESS
1694 select LZ4_DECOMPRESS
1695 help
1696 This is the LZ4 high compression mode algorithm.
1697
1698comment "Random Number Generation"
1699
1700config CRYPTO_ANSI_CPRNG
1701 tristate "Pseudo Random Number Generation for Cryptographic modules"
1702 select CRYPTO_AES
1703 select CRYPTO_RNG
1704 help
1705 This option enables the generic pseudo random number generator
1706 for cryptographic modules. Uses the Algorithm specified in
1707 ANSI X9.31 A.2.4. Note that this option must be enabled if
1708 CRYPTO_FIPS is selected
1709
1710menuconfig CRYPTO_DRBG_MENU
1711 tristate "NIST SP800-90A DRBG"
1712 help
1713 NIST SP800-90A compliant DRBG. In the following submenu, one or
1714 more of the DRBG types must be selected.
1715
1716if CRYPTO_DRBG_MENU
1717
1718config CRYPTO_DRBG_HMAC
1719 bool
1720 default y
1721 select CRYPTO_HMAC
1722 select CRYPTO_SHA256
1723
1724config CRYPTO_DRBG_HASH
1725 bool "Enable Hash DRBG"
1726 select CRYPTO_SHA256
1727 help
1728 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1729
1730config CRYPTO_DRBG_CTR
1731 bool "Enable CTR DRBG"
1732 select CRYPTO_AES
1733 depends on CRYPTO_CTR
1734 help
1735 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1736
1737config CRYPTO_DRBG
1738 tristate
1739 default CRYPTO_DRBG_MENU
1740 select CRYPTO_RNG
1741 select CRYPTO_JITTERENTROPY
1742
1743endif # if CRYPTO_DRBG_MENU
1744
1745config CRYPTO_JITTERENTROPY
1746 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1747 select CRYPTO_RNG
1748 help
1749 The Jitterentropy RNG is a noise that is intended
1750 to provide seed to another RNG. The RNG does not
1751 perform any cryptographic whitening of the generated
1752 random numbers. This Jitterentropy RNG registers with
1753 the kernel crypto API and can be used by any caller.
1754
1755config CRYPTO_USER_API
1756 tristate
1757
1758config CRYPTO_USER_API_HASH
1759 tristate "User-space interface for hash algorithms"
1760 depends on NET
1761 select CRYPTO_HASH
1762 select CRYPTO_USER_API
1763 help
1764 This option enables the user-spaces interface for hash
1765 algorithms.
1766
1767config CRYPTO_USER_API_SKCIPHER
1768 tristate "User-space interface for symmetric key cipher algorithms"
1769 depends on NET
1770 select CRYPTO_BLKCIPHER
1771 select CRYPTO_USER_API
1772 help
1773 This option enables the user-spaces interface for symmetric
1774 key cipher algorithms.
1775
1776config CRYPTO_USER_API_RNG
1777 tristate "User-space interface for random number generator algorithms"
1778 depends on NET
1779 select CRYPTO_RNG
1780 select CRYPTO_USER_API
1781 help
1782 This option enables the user-spaces interface for random
1783 number generator algorithms.
1784
1785config CRYPTO_USER_API_AEAD
1786 tristate "User-space interface for AEAD cipher algorithms"
1787 depends on NET
1788 select CRYPTO_AEAD
1789 select CRYPTO_BLKCIPHER
1790 select CRYPTO_NULL
1791 select CRYPTO_USER_API
1792 help
1793 This option enables the user-spaces interface for AEAD
1794 cipher algorithms.
1795
1796config CRYPTO_HASH_INFO
1797 bool
1798
1799source "drivers/crypto/Kconfig"
1800source crypto/asymmetric_keys/Kconfig
1801source certs/Kconfig
1802
1803endif # if CRYPTO
1#
2# Generic algorithms support
3#
4config XOR_BLOCKS
5 tristate
6
7#
8# async_tx api: hardware offloaded memory transfer/transform support
9#
10source "crypto/async_tx/Kconfig"
11
12#
13# Cryptographic API Configuration
14#
15menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20if CRYPTO
21
22comment "Crypto core or helper"
23
24config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
27 help
28 This options enables the fips boot option which is
29 required if you want to system to operate in a FIPS 200
30 certification. You should say no unless you know what
31 this is.
32
33config CRYPTO_ALGAPI
34 tristate
35 select CRYPTO_ALGAPI2
36 help
37 This option provides the API for cryptographic algorithms.
38
39config CRYPTO_ALGAPI2
40 tristate
41
42config CRYPTO_AEAD
43 tristate
44 select CRYPTO_AEAD2
45 select CRYPTO_ALGAPI
46
47config CRYPTO_AEAD2
48 tristate
49 select CRYPTO_ALGAPI2
50
51config CRYPTO_BLKCIPHER
52 tristate
53 select CRYPTO_BLKCIPHER2
54 select CRYPTO_ALGAPI
55
56config CRYPTO_BLKCIPHER2
57 tristate
58 select CRYPTO_ALGAPI2
59 select CRYPTO_RNG2
60 select CRYPTO_WORKQUEUE
61
62config CRYPTO_HASH
63 tristate
64 select CRYPTO_HASH2
65 select CRYPTO_ALGAPI
66
67config CRYPTO_HASH2
68 tristate
69 select CRYPTO_ALGAPI2
70
71config CRYPTO_RNG
72 tristate
73 select CRYPTO_RNG2
74 select CRYPTO_ALGAPI
75
76config CRYPTO_RNG2
77 tristate
78 select CRYPTO_ALGAPI2
79
80config CRYPTO_PCOMP
81 tristate
82 select CRYPTO_PCOMP2
83 select CRYPTO_ALGAPI
84
85config CRYPTO_PCOMP2
86 tristate
87 select CRYPTO_ALGAPI2
88
89config CRYPTO_MANAGER
90 tristate "Cryptographic algorithm manager"
91 select CRYPTO_MANAGER2
92 help
93 Create default cryptographic template instantiations such as
94 cbc(aes).
95
96config CRYPTO_MANAGER2
97 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
98 select CRYPTO_AEAD2
99 select CRYPTO_HASH2
100 select CRYPTO_BLKCIPHER2
101 select CRYPTO_PCOMP2
102
103config CRYPTO_MANAGER_DISABLE_TESTS
104 bool "Disable run-time self tests"
105 default y
106 depends on CRYPTO_MANAGER2
107 help
108 Disable run-time self tests that normally take place at
109 algorithm registration.
110
111config CRYPTO_GF128MUL
112 tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
113 help
114 Efficient table driven implementation of multiplications in the
115 field GF(2^128). This is needed by some cypher modes. This
116 option will be selected automatically if you select such a
117 cipher mode. Only select this option by hand if you expect to load
118 an external module that requires these functions.
119
120config CRYPTO_NULL
121 tristate "Null algorithms"
122 select CRYPTO_ALGAPI
123 select CRYPTO_BLKCIPHER
124 select CRYPTO_HASH
125 help
126 These are 'Null' algorithms, used by IPsec, which do nothing.
127
128config CRYPTO_PCRYPT
129 tristate "Parallel crypto engine (EXPERIMENTAL)"
130 depends on SMP && EXPERIMENTAL
131 select PADATA
132 select CRYPTO_MANAGER
133 select CRYPTO_AEAD
134 help
135 This converts an arbitrary crypto algorithm into a parallel
136 algorithm that executes in kernel threads.
137
138config CRYPTO_WORKQUEUE
139 tristate
140
141config CRYPTO_CRYPTD
142 tristate "Software async crypto daemon"
143 select CRYPTO_BLKCIPHER
144 select CRYPTO_HASH
145 select CRYPTO_MANAGER
146 select CRYPTO_WORKQUEUE
147 help
148 This is a generic software asynchronous crypto daemon that
149 converts an arbitrary synchronous software crypto algorithm
150 into an asynchronous algorithm that executes in a kernel thread.
151
152config CRYPTO_AUTHENC
153 tristate "Authenc support"
154 select CRYPTO_AEAD
155 select CRYPTO_BLKCIPHER
156 select CRYPTO_MANAGER
157 select CRYPTO_HASH
158 help
159 Authenc: Combined mode wrapper for IPsec.
160 This is required for IPSec.
161
162config CRYPTO_TEST
163 tristate "Testing module"
164 depends on m
165 select CRYPTO_MANAGER
166 help
167 Quick & dirty crypto test module.
168
169comment "Authenticated Encryption with Associated Data"
170
171config CRYPTO_CCM
172 tristate "CCM support"
173 select CRYPTO_CTR
174 select CRYPTO_AEAD
175 help
176 Support for Counter with CBC MAC. Required for IPsec.
177
178config CRYPTO_GCM
179 tristate "GCM/GMAC support"
180 select CRYPTO_CTR
181 select CRYPTO_AEAD
182 select CRYPTO_GHASH
183 help
184 Support for Galois/Counter Mode (GCM) and Galois Message
185 Authentication Code (GMAC). Required for IPSec.
186
187config CRYPTO_SEQIV
188 tristate "Sequence Number IV Generator"
189 select CRYPTO_AEAD
190 select CRYPTO_BLKCIPHER
191 select CRYPTO_RNG
192 help
193 This IV generator generates an IV based on a sequence number by
194 xoring it with a salt. This algorithm is mainly useful for CTR
195
196comment "Block modes"
197
198config CRYPTO_CBC
199 tristate "CBC support"
200 select CRYPTO_BLKCIPHER
201 select CRYPTO_MANAGER
202 help
203 CBC: Cipher Block Chaining mode
204 This block cipher algorithm is required for IPSec.
205
206config CRYPTO_CTR
207 tristate "CTR support"
208 select CRYPTO_BLKCIPHER
209 select CRYPTO_SEQIV
210 select CRYPTO_MANAGER
211 help
212 CTR: Counter mode
213 This block cipher algorithm is required for IPSec.
214
215config CRYPTO_CTS
216 tristate "CTS support"
217 select CRYPTO_BLKCIPHER
218 help
219 CTS: Cipher Text Stealing
220 This is the Cipher Text Stealing mode as described by
221 Section 8 of rfc2040 and referenced by rfc3962.
222 (rfc3962 includes errata information in its Appendix A)
223 This mode is required for Kerberos gss mechanism support
224 for AES encryption.
225
226config CRYPTO_ECB
227 tristate "ECB support"
228 select CRYPTO_BLKCIPHER
229 select CRYPTO_MANAGER
230 help
231 ECB: Electronic CodeBook mode
232 This is the simplest block cipher algorithm. It simply encrypts
233 the input block by block.
234
235config CRYPTO_LRW
236 tristate "LRW support (EXPERIMENTAL)"
237 depends on EXPERIMENTAL
238 select CRYPTO_BLKCIPHER
239 select CRYPTO_MANAGER
240 select CRYPTO_GF128MUL
241 help
242 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
243 narrow block cipher mode for dm-crypt. Use it with cipher
244 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
245 The first 128, 192 or 256 bits in the key are used for AES and the
246 rest is used to tie each cipher block to its logical position.
247
248config CRYPTO_PCBC
249 tristate "PCBC support"
250 select CRYPTO_BLKCIPHER
251 select CRYPTO_MANAGER
252 help
253 PCBC: Propagating Cipher Block Chaining mode
254 This block cipher algorithm is required for RxRPC.
255
256config CRYPTO_XTS
257 tristate "XTS support (EXPERIMENTAL)"
258 depends on EXPERIMENTAL
259 select CRYPTO_BLKCIPHER
260 select CRYPTO_MANAGER
261 select CRYPTO_GF128MUL
262 help
263 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
264 key size 256, 384 or 512 bits. This implementation currently
265 can't handle a sectorsize which is not a multiple of 16 bytes.
266
267comment "Hash modes"
268
269config CRYPTO_HMAC
270 tristate "HMAC support"
271 select CRYPTO_HASH
272 select CRYPTO_MANAGER
273 help
274 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
275 This is required for IPSec.
276
277config CRYPTO_XCBC
278 tristate "XCBC support"
279 depends on EXPERIMENTAL
280 select CRYPTO_HASH
281 select CRYPTO_MANAGER
282 help
283 XCBC: Keyed-Hashing with encryption algorithm
284 http://www.ietf.org/rfc/rfc3566.txt
285 http://csrc.nist.gov/encryption/modes/proposedmodes/
286 xcbc-mac/xcbc-mac-spec.pdf
287
288config CRYPTO_VMAC
289 tristate "VMAC support"
290 depends on EXPERIMENTAL
291 select CRYPTO_HASH
292 select CRYPTO_MANAGER
293 help
294 VMAC is a message authentication algorithm designed for
295 very high speed on 64-bit architectures.
296
297 See also:
298 <http://fastcrypto.org/vmac>
299
300comment "Digest"
301
302config CRYPTO_CRC32C
303 tristate "CRC32c CRC algorithm"
304 select CRYPTO_HASH
305 help
306 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
307 by iSCSI for header and data digests and by others.
308 See Castagnoli93. Module will be crc32c.
309
310config CRYPTO_CRC32C_INTEL
311 tristate "CRC32c INTEL hardware acceleration"
312 depends on X86
313 select CRYPTO_HASH
314 help
315 In Intel processor with SSE4.2 supported, the processor will
316 support CRC32C implementation using hardware accelerated CRC32
317 instruction. This option will create 'crc32c-intel' module,
318 which will enable any routine to use the CRC32 instruction to
319 gain performance compared with software implementation.
320 Module will be crc32c-intel.
321
322config CRYPTO_GHASH
323 tristate "GHASH digest algorithm"
324 select CRYPTO_SHASH
325 select CRYPTO_GF128MUL
326 help
327 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
328
329config CRYPTO_MD4
330 tristate "MD4 digest algorithm"
331 select CRYPTO_HASH
332 help
333 MD4 message digest algorithm (RFC1320).
334
335config CRYPTO_MD5
336 tristate "MD5 digest algorithm"
337 select CRYPTO_HASH
338 help
339 MD5 message digest algorithm (RFC1321).
340
341config CRYPTO_MICHAEL_MIC
342 tristate "Michael MIC keyed digest algorithm"
343 select CRYPTO_HASH
344 help
345 Michael MIC is used for message integrity protection in TKIP
346 (IEEE 802.11i). This algorithm is required for TKIP, but it
347 should not be used for other purposes because of the weakness
348 of the algorithm.
349
350config CRYPTO_RMD128
351 tristate "RIPEMD-128 digest algorithm"
352 select CRYPTO_HASH
353 help
354 RIPEMD-128 (ISO/IEC 10118-3:2004).
355
356 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
357 be used as a secure replacement for RIPEMD. For other use cases,
358 RIPEMD-160 should be used.
359
360 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
361 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
362
363config CRYPTO_RMD160
364 tristate "RIPEMD-160 digest algorithm"
365 select CRYPTO_HASH
366 help
367 RIPEMD-160 (ISO/IEC 10118-3:2004).
368
369 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
370 to be used as a secure replacement for the 128-bit hash functions
371 MD4, MD5 and it's predecessor RIPEMD
372 (not to be confused with RIPEMD-128).
373
374 It's speed is comparable to SHA1 and there are no known attacks
375 against RIPEMD-160.
376
377 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
378 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
379
380config CRYPTO_RMD256
381 tristate "RIPEMD-256 digest algorithm"
382 select CRYPTO_HASH
383 help
384 RIPEMD-256 is an optional extension of RIPEMD-128 with a
385 256 bit hash. It is intended for applications that require
386 longer hash-results, without needing a larger security level
387 (than RIPEMD-128).
388
389 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
390 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
391
392config CRYPTO_RMD320
393 tristate "RIPEMD-320 digest algorithm"
394 select CRYPTO_HASH
395 help
396 RIPEMD-320 is an optional extension of RIPEMD-160 with a
397 320 bit hash. It is intended for applications that require
398 longer hash-results, without needing a larger security level
399 (than RIPEMD-160).
400
401 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
402 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
403
404config CRYPTO_SHA1
405 tristate "SHA1 digest algorithm"
406 select CRYPTO_HASH
407 help
408 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
409
410config CRYPTO_SHA256
411 tristate "SHA224 and SHA256 digest algorithm"
412 select CRYPTO_HASH
413 help
414 SHA256 secure hash standard (DFIPS 180-2).
415
416 This version of SHA implements a 256 bit hash with 128 bits of
417 security against collision attacks.
418
419 This code also includes SHA-224, a 224 bit hash with 112 bits
420 of security against collision attacks.
421
422config CRYPTO_SHA512
423 tristate "SHA384 and SHA512 digest algorithms"
424 select CRYPTO_HASH
425 help
426 SHA512 secure hash standard (DFIPS 180-2).
427
428 This version of SHA implements a 512 bit hash with 256 bits of
429 security against collision attacks.
430
431 This code also includes SHA-384, a 384 bit hash with 192 bits
432 of security against collision attacks.
433
434config CRYPTO_TGR192
435 tristate "Tiger digest algorithms"
436 select CRYPTO_HASH
437 help
438 Tiger hash algorithm 192, 160 and 128-bit hashes
439
440 Tiger is a hash function optimized for 64-bit processors while
441 still having decent performance on 32-bit processors.
442 Tiger was developed by Ross Anderson and Eli Biham.
443
444 See also:
445 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
446
447config CRYPTO_WP512
448 tristate "Whirlpool digest algorithms"
449 select CRYPTO_HASH
450 help
451 Whirlpool hash algorithm 512, 384 and 256-bit hashes
452
453 Whirlpool-512 is part of the NESSIE cryptographic primitives.
454 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
455
456 See also:
457 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
458
459config CRYPTO_GHASH_CLMUL_NI_INTEL
460 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
461 depends on X86 && 64BIT
462 select CRYPTO_SHASH
463 select CRYPTO_CRYPTD
464 help
465 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
466 The implementation is accelerated by CLMUL-NI of Intel.
467
468comment "Ciphers"
469
470config CRYPTO_AES
471 tristate "AES cipher algorithms"
472 select CRYPTO_ALGAPI
473 help
474 AES cipher algorithms (FIPS-197). AES uses the Rijndael
475 algorithm.
476
477 Rijndael appears to be consistently a very good performer in
478 both hardware and software across a wide range of computing
479 environments regardless of its use in feedback or non-feedback
480 modes. Its key setup time is excellent, and its key agility is
481 good. Rijndael's very low memory requirements make it very well
482 suited for restricted-space environments, in which it also
483 demonstrates excellent performance. Rijndael's operations are
484 among the easiest to defend against power and timing attacks.
485
486 The AES specifies three key sizes: 128, 192 and 256 bits
487
488 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
489
490config CRYPTO_AES_586
491 tristate "AES cipher algorithms (i586)"
492 depends on (X86 || UML_X86) && !64BIT
493 select CRYPTO_ALGAPI
494 select CRYPTO_AES
495 help
496 AES cipher algorithms (FIPS-197). AES uses the Rijndael
497 algorithm.
498
499 Rijndael appears to be consistently a very good performer in
500 both hardware and software across a wide range of computing
501 environments regardless of its use in feedback or non-feedback
502 modes. Its key setup time is excellent, and its key agility is
503 good. Rijndael's very low memory requirements make it very well
504 suited for restricted-space environments, in which it also
505 demonstrates excellent performance. Rijndael's operations are
506 among the easiest to defend against power and timing attacks.
507
508 The AES specifies three key sizes: 128, 192 and 256 bits
509
510 See <http://csrc.nist.gov/encryption/aes/> for more information.
511
512config CRYPTO_AES_X86_64
513 tristate "AES cipher algorithms (x86_64)"
514 depends on (X86 || UML_X86) && 64BIT
515 select CRYPTO_ALGAPI
516 select CRYPTO_AES
517 help
518 AES cipher algorithms (FIPS-197). AES uses the Rijndael
519 algorithm.
520
521 Rijndael appears to be consistently a very good performer in
522 both hardware and software across a wide range of computing
523 environments regardless of its use in feedback or non-feedback
524 modes. Its key setup time is excellent, and its key agility is
525 good. Rijndael's very low memory requirements make it very well
526 suited for restricted-space environments, in which it also
527 demonstrates excellent performance. Rijndael's operations are
528 among the easiest to defend against power and timing attacks.
529
530 The AES specifies three key sizes: 128, 192 and 256 bits
531
532 See <http://csrc.nist.gov/encryption/aes/> for more information.
533
534config CRYPTO_AES_NI_INTEL
535 tristate "AES cipher algorithms (AES-NI)"
536 depends on X86
537 select CRYPTO_AES_X86_64 if 64BIT
538 select CRYPTO_AES_586 if !64BIT
539 select CRYPTO_CRYPTD
540 select CRYPTO_ALGAPI
541 help
542 Use Intel AES-NI instructions for AES algorithm.
543
544 AES cipher algorithms (FIPS-197). AES uses the Rijndael
545 algorithm.
546
547 Rijndael appears to be consistently a very good performer in
548 both hardware and software across a wide range of computing
549 environments regardless of its use in feedback or non-feedback
550 modes. Its key setup time is excellent, and its key agility is
551 good. Rijndael's very low memory requirements make it very well
552 suited for restricted-space environments, in which it also
553 demonstrates excellent performance. Rijndael's operations are
554 among the easiest to defend against power and timing attacks.
555
556 The AES specifies three key sizes: 128, 192 and 256 bits
557
558 See <http://csrc.nist.gov/encryption/aes/> for more information.
559
560 In addition to AES cipher algorithm support, the acceleration
561 for some popular block cipher mode is supported too, including
562 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
563 acceleration for CTR.
564
565config CRYPTO_ANUBIS
566 tristate "Anubis cipher algorithm"
567 select CRYPTO_ALGAPI
568 help
569 Anubis cipher algorithm.
570
571 Anubis is a variable key length cipher which can use keys from
572 128 bits to 320 bits in length. It was evaluated as a entrant
573 in the NESSIE competition.
574
575 See also:
576 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
577 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
578
579config CRYPTO_ARC4
580 tristate "ARC4 cipher algorithm"
581 select CRYPTO_ALGAPI
582 help
583 ARC4 cipher algorithm.
584
585 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
586 bits in length. This algorithm is required for driver-based
587 WEP, but it should not be for other purposes because of the
588 weakness of the algorithm.
589
590config CRYPTO_BLOWFISH
591 tristate "Blowfish cipher algorithm"
592 select CRYPTO_ALGAPI
593 help
594 Blowfish cipher algorithm, by Bruce Schneier.
595
596 This is a variable key length cipher which can use keys from 32
597 bits to 448 bits in length. It's fast, simple and specifically
598 designed for use on "large microprocessors".
599
600 See also:
601 <http://www.schneier.com/blowfish.html>
602
603config CRYPTO_CAMELLIA
604 tristate "Camellia cipher algorithms"
605 depends on CRYPTO
606 select CRYPTO_ALGAPI
607 help
608 Camellia cipher algorithms module.
609
610 Camellia is a symmetric key block cipher developed jointly
611 at NTT and Mitsubishi Electric Corporation.
612
613 The Camellia specifies three key sizes: 128, 192 and 256 bits.
614
615 See also:
616 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
617
618config CRYPTO_CAST5
619 tristate "CAST5 (CAST-128) cipher algorithm"
620 select CRYPTO_ALGAPI
621 help
622 The CAST5 encryption algorithm (synonymous with CAST-128) is
623 described in RFC2144.
624
625config CRYPTO_CAST6
626 tristate "CAST6 (CAST-256) cipher algorithm"
627 select CRYPTO_ALGAPI
628 help
629 The CAST6 encryption algorithm (synonymous with CAST-256) is
630 described in RFC2612.
631
632config CRYPTO_DES
633 tristate "DES and Triple DES EDE cipher algorithms"
634 select CRYPTO_ALGAPI
635 help
636 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
637
638config CRYPTO_FCRYPT
639 tristate "FCrypt cipher algorithm"
640 select CRYPTO_ALGAPI
641 select CRYPTO_BLKCIPHER
642 help
643 FCrypt algorithm used by RxRPC.
644
645config CRYPTO_KHAZAD
646 tristate "Khazad cipher algorithm"
647 select CRYPTO_ALGAPI
648 help
649 Khazad cipher algorithm.
650
651 Khazad was a finalist in the initial NESSIE competition. It is
652 an algorithm optimized for 64-bit processors with good performance
653 on 32-bit processors. Khazad uses an 128 bit key size.
654
655 See also:
656 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
657
658config CRYPTO_SALSA20
659 tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
660 depends on EXPERIMENTAL
661 select CRYPTO_BLKCIPHER
662 help
663 Salsa20 stream cipher algorithm.
664
665 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
666 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
667
668 The Salsa20 stream cipher algorithm is designed by Daniel J.
669 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
670
671config CRYPTO_SALSA20_586
672 tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
673 depends on (X86 || UML_X86) && !64BIT
674 depends on EXPERIMENTAL
675 select CRYPTO_BLKCIPHER
676 help
677 Salsa20 stream cipher algorithm.
678
679 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
680 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
681
682 The Salsa20 stream cipher algorithm is designed by Daniel J.
683 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
684
685config CRYPTO_SALSA20_X86_64
686 tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
687 depends on (X86 || UML_X86) && 64BIT
688 depends on EXPERIMENTAL
689 select CRYPTO_BLKCIPHER
690 help
691 Salsa20 stream cipher algorithm.
692
693 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
694 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
695
696 The Salsa20 stream cipher algorithm is designed by Daniel J.
697 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
698
699config CRYPTO_SEED
700 tristate "SEED cipher algorithm"
701 select CRYPTO_ALGAPI
702 help
703 SEED cipher algorithm (RFC4269).
704
705 SEED is a 128-bit symmetric key block cipher that has been
706 developed by KISA (Korea Information Security Agency) as a
707 national standard encryption algorithm of the Republic of Korea.
708 It is a 16 round block cipher with the key size of 128 bit.
709
710 See also:
711 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
712
713config CRYPTO_SERPENT
714 tristate "Serpent cipher algorithm"
715 select CRYPTO_ALGAPI
716 help
717 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
718
719 Keys are allowed to be from 0 to 256 bits in length, in steps
720 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
721 variant of Serpent for compatibility with old kerneli.org code.
722
723 See also:
724 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
725
726config CRYPTO_TEA
727 tristate "TEA, XTEA and XETA cipher algorithms"
728 select CRYPTO_ALGAPI
729 help
730 TEA cipher algorithm.
731
732 Tiny Encryption Algorithm is a simple cipher that uses
733 many rounds for security. It is very fast and uses
734 little memory.
735
736 Xtendend Tiny Encryption Algorithm is a modification to
737 the TEA algorithm to address a potential key weakness
738 in the TEA algorithm.
739
740 Xtendend Encryption Tiny Algorithm is a mis-implementation
741 of the XTEA algorithm for compatibility purposes.
742
743config CRYPTO_TWOFISH
744 tristate "Twofish cipher algorithm"
745 select CRYPTO_ALGAPI
746 select CRYPTO_TWOFISH_COMMON
747 help
748 Twofish cipher algorithm.
749
750 Twofish was submitted as an AES (Advanced Encryption Standard)
751 candidate cipher by researchers at CounterPane Systems. It is a
752 16 round block cipher supporting key sizes of 128, 192, and 256
753 bits.
754
755 See also:
756 <http://www.schneier.com/twofish.html>
757
758config CRYPTO_TWOFISH_COMMON
759 tristate
760 help
761 Common parts of the Twofish cipher algorithm shared by the
762 generic c and the assembler implementations.
763
764config CRYPTO_TWOFISH_586
765 tristate "Twofish cipher algorithms (i586)"
766 depends on (X86 || UML_X86) && !64BIT
767 select CRYPTO_ALGAPI
768 select CRYPTO_TWOFISH_COMMON
769 help
770 Twofish cipher algorithm.
771
772 Twofish was submitted as an AES (Advanced Encryption Standard)
773 candidate cipher by researchers at CounterPane Systems. It is a
774 16 round block cipher supporting key sizes of 128, 192, and 256
775 bits.
776
777 See also:
778 <http://www.schneier.com/twofish.html>
779
780config CRYPTO_TWOFISH_X86_64
781 tristate "Twofish cipher algorithm (x86_64)"
782 depends on (X86 || UML_X86) && 64BIT
783 select CRYPTO_ALGAPI
784 select CRYPTO_TWOFISH_COMMON
785 help
786 Twofish cipher algorithm (x86_64).
787
788 Twofish was submitted as an AES (Advanced Encryption Standard)
789 candidate cipher by researchers at CounterPane Systems. It is a
790 16 round block cipher supporting key sizes of 128, 192, and 256
791 bits.
792
793 See also:
794 <http://www.schneier.com/twofish.html>
795
796comment "Compression"
797
798config CRYPTO_DEFLATE
799 tristate "Deflate compression algorithm"
800 select CRYPTO_ALGAPI
801 select ZLIB_INFLATE
802 select ZLIB_DEFLATE
803 help
804 This is the Deflate algorithm (RFC1951), specified for use in
805 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
806
807 You will most probably want this if using IPSec.
808
809config CRYPTO_ZLIB
810 tristate "Zlib compression algorithm"
811 select CRYPTO_PCOMP
812 select ZLIB_INFLATE
813 select ZLIB_DEFLATE
814 select NLATTR
815 help
816 This is the zlib algorithm.
817
818config CRYPTO_LZO
819 tristate "LZO compression algorithm"
820 select CRYPTO_ALGAPI
821 select LZO_COMPRESS
822 select LZO_DECOMPRESS
823 help
824 This is the LZO algorithm.
825
826comment "Random Number Generation"
827
828config CRYPTO_ANSI_CPRNG
829 tristate "Pseudo Random Number Generation for Cryptographic modules"
830 default m
831 select CRYPTO_AES
832 select CRYPTO_RNG
833 help
834 This option enables the generic pseudo random number generator
835 for cryptographic modules. Uses the Algorithm specified in
836 ANSI X9.31 A.2.4. Note that this option must be enabled if
837 CRYPTO_FIPS is selected
838
839config CRYPTO_USER_API
840 tristate
841
842config CRYPTO_USER_API_HASH
843 tristate "User-space interface for hash algorithms"
844 depends on NET
845 select CRYPTO_HASH
846 select CRYPTO_USER_API
847 help
848 This option enables the user-spaces interface for hash
849 algorithms.
850
851config CRYPTO_USER_API_SKCIPHER
852 tristate "User-space interface for symmetric key cipher algorithms"
853 depends on NET
854 select CRYPTO_BLKCIPHER
855 select CRYPTO_USER_API
856 help
857 This option enables the user-spaces interface for symmetric
858 key cipher algorithms.
859
860source "drivers/crypto/Kconfig"
861
862endif # if CRYPTO