Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->slow_task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->slow_task->timer))
  60		return;
  61	complete(&task->slow_task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
 
  74
 
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_slow_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->slow_task->timer.data = (unsigned long) task;
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_device_type to_dev_type(struct discover_resp *dr)
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SAS_SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 199{
 200	enum sas_device_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 238	/* Handle vacant phy - rest of dr data is not valid so skip it */
 239	if (phy->phy_state == PHY_VACANT) {
 240		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 241		phy->attached_dev_type = SAS_PHY_UNUSED;
 242		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 243			phy->phy_id = phy_id;
 244			goto skip;
 245		} else
 246			goto out;
 247	}
 248
 249	phy->attached_dev_type = to_dev_type(dr);
 250	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 251		goto out;
 252	phy->phy_id = phy_id;
 253	phy->linkrate = dr->linkrate;
 254	phy->attached_sata_host = dr->attached_sata_host;
 255	phy->attached_sata_dev  = dr->attached_sata_dev;
 256	phy->attached_sata_ps   = dr->attached_sata_ps;
 257	phy->attached_iproto = dr->iproto << 1;
 258	phy->attached_tproto = dr->tproto << 1;
 259	/* help some expanders that fail to zero sas_address in the 'no
 260	 * device' case
 261	 */
 262	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 263	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 264		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 265	else
 266		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 267	phy->attached_phy_id = dr->attached_phy_id;
 268	phy->phy_change_count = dr->change_count;
 269	phy->routing_attr = dr->routing_attr;
 270	phy->virtual = dr->virtual;
 271	phy->last_da_index = -1;
 272
 273	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 274	phy->phy->identify.device_type = dr->attached_dev_type;
 275	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 276	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 277	if (!phy->attached_tproto && dr->attached_sata_dev)
 278		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 279	phy->phy->identify.phy_identifier = phy_id;
 280	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 281	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 282	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 283	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 284	phy->phy->negotiated_linkrate = phy->linkrate;
 
 285
 286 skip:
 287	if (new_phy)
 288		if (sas_phy_add(phy->phy)) {
 289			sas_phy_free(phy->phy);
 290			return;
 291		}
 292
 293 out:
 294	switch (phy->attached_dev_type) {
 295	case SAS_SATA_PENDING:
 296		type = "stp pending";
 297		break;
 298	case SAS_PHY_UNUSED:
 299		type = "no device";
 300		break;
 301	case SAS_END_DEVICE:
 302		if (phy->attached_iproto) {
 303			if (phy->attached_tproto)
 304				type = "host+target";
 305			else
 306				type = "host";
 307		} else {
 308			if (dr->attached_sata_dev)
 309				type = "stp";
 310			else
 311				type = "ssp";
 312		}
 313		break;
 314	case SAS_EDGE_EXPANDER_DEVICE:
 315	case SAS_FANOUT_EXPANDER_DEVICE:
 316		type = "smp";
 317		break;
 318	default:
 319		type = "unknown";
 320	}
 321
 322	/* this routine is polled by libata error recovery so filter
 323	 * unimportant messages
 324	 */
 325	if (new_phy || phy->attached_dev_type != dev_type ||
 326	    phy->linkrate != linkrate ||
 327	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 328		/* pass */;
 329	else
 330		return;
 331
 332	/* if the attached device type changed and ata_eh is active,
 333	 * make sure we run revalidation when eh completes (see:
 334	 * sas_enable_revalidation)
 335	 */
 336	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 337		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 338
 339	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 340		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 341		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 342		    sas_route_char(dev, phy), phy->linkrate,
 343		    SAS_ADDR(phy->attached_sas_addr), type);
 344}
 345
 346/* check if we have an existing attached ata device on this expander phy */
 347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 348{
 349	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 350	struct domain_device *dev;
 351	struct sas_rphy *rphy;
 352
 353	if (!ex_phy->port)
 354		return NULL;
 355
 356	rphy = ex_phy->port->rphy;
 357	if (!rphy)
 358		return NULL;
 359
 360	dev = sas_find_dev_by_rphy(rphy);
 361
 362	if (dev && dev_is_sata(dev))
 363		return dev;
 364
 365	return NULL;
 366}
 367
 368#define DISCOVER_REQ_SIZE  16
 369#define DISCOVER_RESP_SIZE 56
 370
 371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 372				      u8 *disc_resp, int single)
 
 373{
 374	struct discover_resp *dr;
 375	int res;
 376
 377	disc_req[9] = single;
 378
 379	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 380			       disc_resp, DISCOVER_RESP_SIZE);
 381	if (res)
 382		return res;
 383	dr = &((struct smp_resp *)disc_resp)->disc;
 384	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 385		sas_printk("Found loopback topology, just ignore it!\n");
 386		return 0;
 387	}
 388	sas_set_ex_phy(dev, single, disc_resp);
 389	return 0;
 390}
 391
 392int sas_ex_phy_discover(struct domain_device *dev, int single)
 393{
 394	struct expander_device *ex = &dev->ex_dev;
 395	int  res = 0;
 396	u8   *disc_req;
 397	u8   *disc_resp;
 398
 399	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 400	if (!disc_req)
 401		return -ENOMEM;
 402
 403	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 404	if (!disc_resp) {
 405		kfree(disc_req);
 406		return -ENOMEM;
 407	}
 408
 409	disc_req[1] = SMP_DISCOVER;
 410
 411	if (0 <= single && single < ex->num_phys) {
 412		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 413	} else {
 414		int i;
 415
 416		for (i = 0; i < ex->num_phys; i++) {
 417			res = sas_ex_phy_discover_helper(dev, disc_req,
 418							 disc_resp, i);
 419			if (res)
 420				goto out_err;
 421		}
 422	}
 423out_err:
 424	kfree(disc_resp);
 425	kfree(disc_req);
 426	return res;
 427}
 428
 429static int sas_expander_discover(struct domain_device *dev)
 430{
 431	struct expander_device *ex = &dev->ex_dev;
 432	int res = -ENOMEM;
 433
 434	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 435	if (!ex->ex_phy)
 436		return -ENOMEM;
 437
 438	res = sas_ex_phy_discover(dev, -1);
 439	if (res)
 440		goto out_err;
 441
 442	return 0;
 443 out_err:
 444	kfree(ex->ex_phy);
 445	ex->ex_phy = NULL;
 446	return res;
 447}
 448
 449#define MAX_EXPANDER_PHYS 128
 450
 451static void ex_assign_report_general(struct domain_device *dev,
 452					    struct smp_resp *resp)
 453{
 454	struct report_general_resp *rg = &resp->rg;
 455
 456	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 457	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 458	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 459	dev->ex_dev.t2t_supp = rg->t2t_supp;
 460	dev->ex_dev.conf_route_table = rg->conf_route_table;
 461	dev->ex_dev.configuring = rg->configuring;
 462	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 463}
 464
 465#define RG_REQ_SIZE   8
 466#define RG_RESP_SIZE 32
 467
 468static int sas_ex_general(struct domain_device *dev)
 469{
 470	u8 *rg_req;
 471	struct smp_resp *rg_resp;
 
 472	int res;
 473	int i;
 474
 475	rg_req = alloc_smp_req(RG_REQ_SIZE);
 476	if (!rg_req)
 477		return -ENOMEM;
 478
 479	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 480	if (!rg_resp) {
 481		kfree(rg_req);
 482		return -ENOMEM;
 483	}
 484
 485	rg_req[1] = SMP_REPORT_GENERAL;
 486
 487	for (i = 0; i < 5; i++) {
 488		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 489				       RG_RESP_SIZE);
 490
 491		if (res) {
 492			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 493				    SAS_ADDR(dev->sas_addr), res);
 494			goto out;
 495		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 496			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 497				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 498			res = rg_resp->result;
 499			goto out;
 500		}
 501
 502		ex_assign_report_general(dev, rg_resp);
 
 
 
 
 
 
 
 
 503
 504		if (dev->ex_dev.configuring) {
 505			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 506				    SAS_ADDR(dev->sas_addr));
 507			schedule_timeout_interruptible(5*HZ);
 508		} else
 509			break;
 510	}
 511out:
 512	kfree(rg_req);
 513	kfree(rg_resp);
 514	return res;
 515}
 516
 517static void ex_assign_manuf_info(struct domain_device *dev, void
 518					*_mi_resp)
 519{
 520	u8 *mi_resp = _mi_resp;
 521	struct sas_rphy *rphy = dev->rphy;
 522	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 523
 524	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 525	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 526	memcpy(edev->product_rev, mi_resp + 36,
 527	       SAS_EXPANDER_PRODUCT_REV_LEN);
 528
 529	if (mi_resp[8] & 1) {
 530		memcpy(edev->component_vendor_id, mi_resp + 40,
 531		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 532		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 533		edev->component_revision_id = mi_resp[50];
 534	}
 535}
 536
 537#define MI_REQ_SIZE   8
 538#define MI_RESP_SIZE 64
 539
 540static int sas_ex_manuf_info(struct domain_device *dev)
 541{
 542	u8 *mi_req;
 543	u8 *mi_resp;
 544	int res;
 545
 546	mi_req = alloc_smp_req(MI_REQ_SIZE);
 547	if (!mi_req)
 548		return -ENOMEM;
 549
 550	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 551	if (!mi_resp) {
 552		kfree(mi_req);
 553		return -ENOMEM;
 554	}
 555
 556	mi_req[1] = SMP_REPORT_MANUF_INFO;
 557
 558	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 559	if (res) {
 560		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 561			    SAS_ADDR(dev->sas_addr), res);
 562		goto out;
 563	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 564		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 565			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 566		goto out;
 567	}
 568
 569	ex_assign_manuf_info(dev, mi_resp);
 570out:
 571	kfree(mi_req);
 572	kfree(mi_resp);
 573	return res;
 574}
 575
 576#define PC_REQ_SIZE  44
 577#define PC_RESP_SIZE 8
 578
 579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 580			enum phy_func phy_func,
 581			struct sas_phy_linkrates *rates)
 582{
 583	u8 *pc_req;
 584	u8 *pc_resp;
 585	int res;
 586
 587	pc_req = alloc_smp_req(PC_REQ_SIZE);
 588	if (!pc_req)
 589		return -ENOMEM;
 590
 591	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 592	if (!pc_resp) {
 593		kfree(pc_req);
 594		return -ENOMEM;
 595	}
 596
 597	pc_req[1] = SMP_PHY_CONTROL;
 598	pc_req[9] = phy_id;
 599	pc_req[10]= phy_func;
 600	if (rates) {
 601		pc_req[32] = rates->minimum_linkrate << 4;
 602		pc_req[33] = rates->maximum_linkrate << 4;
 603	}
 604
 605	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 606
 
 
 
 
 
 
 
 607	kfree(pc_resp);
 608	kfree(pc_req);
 609	return res;
 610}
 611
 612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 613{
 614	struct expander_device *ex = &dev->ex_dev;
 615	struct ex_phy *phy = &ex->ex_phy[phy_id];
 616
 617	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 618	phy->linkrate = SAS_PHY_DISABLED;
 619}
 620
 621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 622{
 623	struct expander_device *ex = &dev->ex_dev;
 624	int i;
 625
 626	for (i = 0; i < ex->num_phys; i++) {
 627		struct ex_phy *phy = &ex->ex_phy[i];
 628
 629		if (phy->phy_state == PHY_VACANT ||
 630		    phy->phy_state == PHY_NOT_PRESENT)
 631			continue;
 632
 633		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 634			sas_ex_disable_phy(dev, i);
 635	}
 636}
 637
 638static int sas_dev_present_in_domain(struct asd_sas_port *port,
 639					    u8 *sas_addr)
 640{
 641	struct domain_device *dev;
 642
 643	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 644		return 1;
 645	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 646		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 647			return 1;
 648	}
 649	return 0;
 650}
 651
 652#define RPEL_REQ_SIZE	16
 653#define RPEL_RESP_SIZE	32
 654int sas_smp_get_phy_events(struct sas_phy *phy)
 655{
 656	int res;
 657	u8 *req;
 658	u8 *resp;
 659	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 660	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 661
 662	req = alloc_smp_req(RPEL_REQ_SIZE);
 663	if (!req)
 664		return -ENOMEM;
 665
 666	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 667	if (!resp) {
 668		kfree(req);
 669		return -ENOMEM;
 670	}
 671
 672	req[1] = SMP_REPORT_PHY_ERR_LOG;
 673	req[9] = phy->number;
 674
 675	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 676			            resp, RPEL_RESP_SIZE);
 677
 678	if (!res)
 679		goto out;
 680
 681	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 682	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 683	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 684	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 685
 686 out:
 
 687	kfree(resp);
 688	return res;
 689
 690}
 691
 692#ifdef CONFIG_SCSI_SAS_ATA
 693
 694#define RPS_REQ_SIZE  16
 695#define RPS_RESP_SIZE 60
 696
 697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 698			    struct smp_resp *rps_resp)
 699{
 700	int res;
 701	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 702	u8 *resp = (u8 *)rps_resp;
 703
 704	if (!rps_req)
 705		return -ENOMEM;
 706
 707	rps_req[1] = SMP_REPORT_PHY_SATA;
 708	rps_req[9] = phy_id;
 709
 710	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 711			            rps_resp, RPS_RESP_SIZE);
 712
 713	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 714	 * standards cockup here.  sas-2 explicitly specifies the FIS
 715	 * should be encoded so that FIS type is in resp[24].
 716	 * However, some expanders endian reverse this.  Undo the
 717	 * reversal here */
 718	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 719		int i;
 720
 721		for (i = 0; i < 5; i++) {
 722			int j = 24 + (i*4);
 723			u8 a, b;
 724			a = resp[j + 0];
 725			b = resp[j + 1];
 726			resp[j + 0] = resp[j + 3];
 727			resp[j + 1] = resp[j + 2];
 728			resp[j + 2] = b;
 729			resp[j + 3] = a;
 730		}
 731	}
 732
 733	kfree(rps_req);
 734	return res;
 735}
 736#endif
 737
 738static void sas_ex_get_linkrate(struct domain_device *parent,
 739				       struct domain_device *child,
 740				       struct ex_phy *parent_phy)
 741{
 742	struct expander_device *parent_ex = &parent->ex_dev;
 743	struct sas_port *port;
 744	int i;
 745
 746	child->pathways = 0;
 747
 748	port = parent_phy->port;
 749
 750	for (i = 0; i < parent_ex->num_phys; i++) {
 751		struct ex_phy *phy = &parent_ex->ex_phy[i];
 752
 753		if (phy->phy_state == PHY_VACANT ||
 754		    phy->phy_state == PHY_NOT_PRESENT)
 755			continue;
 756
 757		if (SAS_ADDR(phy->attached_sas_addr) ==
 758		    SAS_ADDR(child->sas_addr)) {
 759
 760			child->min_linkrate = min(parent->min_linkrate,
 761						  phy->linkrate);
 762			child->max_linkrate = max(parent->max_linkrate,
 763						  phy->linkrate);
 764			child->pathways++;
 765			sas_port_add_phy(port, phy->phy);
 766		}
 767	}
 768	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 769	child->pathways = min(child->pathways, parent->pathways);
 770}
 771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772static struct domain_device *sas_ex_discover_end_dev(
 773	struct domain_device *parent, int phy_id)
 774{
 775	struct expander_device *parent_ex = &parent->ex_dev;
 776	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 777	struct domain_device *child = NULL;
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	if (phy->attached_sata_host || phy->attached_sata_ps)
 782		return NULL;
 783
 784	child = sas_alloc_device();
 785	if (!child)
 786		return NULL;
 787
 788	kref_get(&parent->kref);
 789	child->parent = parent;
 790	child->port   = parent->port;
 791	child->iproto = phy->attached_iproto;
 792	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 793	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 794	if (!phy->port) {
 795		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 796		if (unlikely(!phy->port))
 797			goto out_err;
 798		if (unlikely(sas_port_add(phy->port) != 0)) {
 799			sas_port_free(phy->port);
 800			goto out_err;
 801		}
 802	}
 803	sas_ex_get_linkrate(parent, child, phy);
 804	sas_device_set_phy(child, phy->port);
 805
 806#ifdef CONFIG_SCSI_SAS_ATA
 807	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 808		res = sas_get_ata_info(child, phy);
 809		if (res)
 810			goto out_free;
 811
 812		sas_init_dev(child);
 813		res = sas_ata_init(child);
 814		if (res)
 815			goto out_free;
 816		rphy = sas_end_device_alloc(phy->port);
 817		if (!rphy)
 818			goto out_free;
 819
 820		child->rphy = rphy;
 821		get_device(&rphy->dev);
 822
 823		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 824
 825		res = sas_discover_sata(child);
 826		if (res) {
 827			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 828				    "%016llx:0x%x returned 0x%x\n",
 829				    SAS_ADDR(child->sas_addr),
 830				    SAS_ADDR(parent->sas_addr), phy_id, res);
 831			goto out_list_del;
 832		}
 833	} else
 834#endif
 835	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 836		child->dev_type = SAS_END_DEVICE;
 837		rphy = sas_end_device_alloc(phy->port);
 838		/* FIXME: error handling */
 839		if (unlikely(!rphy))
 840			goto out_free;
 841		child->tproto = phy->attached_tproto;
 842		sas_init_dev(child);
 843
 844		child->rphy = rphy;
 845		get_device(&rphy->dev);
 846		sas_fill_in_rphy(child, rphy);
 847
 848		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 849
 850		res = sas_discover_end_dev(child);
 851		if (res) {
 852			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 853				    "at %016llx:0x%x returned 0x%x\n",
 854				    SAS_ADDR(child->sas_addr),
 855				    SAS_ADDR(parent->sas_addr), phy_id, res);
 856			goto out_list_del;
 857		}
 858	} else {
 859		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 860			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 861			    phy_id);
 862		goto out_free;
 863	}
 864
 
 
 
 865	list_add_tail(&child->siblings, &parent_ex->children);
 866	return child;
 867
 868 out_list_del:
 869	sas_rphy_free(child->rphy);
 870	list_del(&child->disco_list_node);
 871	spin_lock_irq(&parent->port->dev_list_lock);
 872	list_del(&child->dev_list_node);
 873	spin_unlock_irq(&parent->port->dev_list_lock);
 874 out_free:
 875	sas_port_delete(phy->port);
 876 out_err:
 877	phy->port = NULL;
 878	sas_put_device(child);
 879	return NULL;
 880}
 881
 882/* See if this phy is part of a wide port */
 883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 884{
 885	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 886	int i;
 887
 888	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 889		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 890
 891		if (ephy == phy)
 892			continue;
 893
 894		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 895			    SAS_ADDR_SIZE) && ephy->port) {
 896			sas_port_add_phy(ephy->port, phy->phy);
 897			phy->port = ephy->port;
 898			phy->phy_state = PHY_DEVICE_DISCOVERED;
 899			return true;
 900		}
 901	}
 902
 903	return false;
 904}
 905
 906static struct domain_device *sas_ex_discover_expander(
 907	struct domain_device *parent, int phy_id)
 908{
 909	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 910	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 911	struct domain_device *child = NULL;
 912	struct sas_rphy *rphy;
 913	struct sas_expander_device *edev;
 914	struct asd_sas_port *port;
 915	int res;
 916
 917	if (phy->routing_attr == DIRECT_ROUTING) {
 918		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 919			    "allowed\n",
 920			    SAS_ADDR(parent->sas_addr), phy_id,
 921			    SAS_ADDR(phy->attached_sas_addr),
 922			    phy->attached_phy_id);
 923		return NULL;
 924	}
 925	child = sas_alloc_device();
 926	if (!child)
 927		return NULL;
 928
 929	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 930	/* FIXME: better error handling */
 931	BUG_ON(sas_port_add(phy->port) != 0);
 932
 933
 934	switch (phy->attached_dev_type) {
 935	case SAS_EDGE_EXPANDER_DEVICE:
 936		rphy = sas_expander_alloc(phy->port,
 937					  SAS_EDGE_EXPANDER_DEVICE);
 938		break;
 939	case SAS_FANOUT_EXPANDER_DEVICE:
 940		rphy = sas_expander_alloc(phy->port,
 941					  SAS_FANOUT_EXPANDER_DEVICE);
 942		break;
 943	default:
 944		rphy = NULL;	/* shut gcc up */
 945		BUG();
 946	}
 947	port = parent->port;
 948	child->rphy = rphy;
 949	get_device(&rphy->dev);
 950	edev = rphy_to_expander_device(rphy);
 951	child->dev_type = phy->attached_dev_type;
 952	kref_get(&parent->kref);
 953	child->parent = parent;
 954	child->port = port;
 955	child->iproto = phy->attached_iproto;
 956	child->tproto = phy->attached_tproto;
 957	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 958	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 959	sas_ex_get_linkrate(parent, child, phy);
 960	edev->level = parent_ex->level + 1;
 961	parent->port->disc.max_level = max(parent->port->disc.max_level,
 962					   edev->level);
 963	sas_init_dev(child);
 964	sas_fill_in_rphy(child, rphy);
 965	sas_rphy_add(rphy);
 966
 967	spin_lock_irq(&parent->port->dev_list_lock);
 968	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 969	spin_unlock_irq(&parent->port->dev_list_lock);
 970
 971	res = sas_discover_expander(child);
 972	if (res) {
 973		sas_rphy_delete(rphy);
 974		spin_lock_irq(&parent->port->dev_list_lock);
 975		list_del(&child->dev_list_node);
 976		spin_unlock_irq(&parent->port->dev_list_lock);
 977		sas_put_device(child);
 
 
 978		return NULL;
 979	}
 980	list_add_tail(&child->siblings, &parent->ex_dev.children);
 981	return child;
 982}
 983
 984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 985{
 986	struct expander_device *ex = &dev->ex_dev;
 987	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 988	struct domain_device *child = NULL;
 989	int res = 0;
 990
 991	/* Phy state */
 992	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 993		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 994			res = sas_ex_phy_discover(dev, phy_id);
 995		if (res)
 996			return res;
 997	}
 998
 999	/* Parent and domain coherency */
1000	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001			     SAS_ADDR(dev->port->sas_addr))) {
1002		sas_add_parent_port(dev, phy_id);
1003		return 0;
1004	}
1005	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006			    SAS_ADDR(dev->parent->sas_addr))) {
1007		sas_add_parent_port(dev, phy_id);
1008		if (ex_phy->routing_attr == TABLE_ROUTING)
1009			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010		return 0;
1011	}
1012
1013	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020		}
1021		return 0;
1022	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023		return 0;
1024
1025	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030			    "phy 0x%x\n", ex_phy->attached_dev_type,
1031			    SAS_ADDR(dev->sas_addr),
1032			    phy_id);
1033		return 0;
1034	}
1035
1036	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037	if (res) {
1038		SAS_DPRINTK("configure routing for dev %016llx "
1039			    "reported 0x%x. Forgotten\n",
1040			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1041		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042		return res;
1043	}
1044
1045	if (sas_ex_join_wide_port(dev, phy_id)) {
1046		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048		return res;
1049	}
1050
1051	switch (ex_phy->attached_dev_type) {
1052	case SAS_END_DEVICE:
1053	case SAS_SATA_PENDING:
1054		child = sas_ex_discover_end_dev(dev, phy_id);
1055		break;
1056	case SAS_FANOUT_EXPANDER_DEVICE:
1057		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059				    "attached to ex %016llx phy 0x%x\n",
1060				    SAS_ADDR(ex_phy->attached_sas_addr),
1061				    ex_phy->attached_phy_id,
1062				    SAS_ADDR(dev->sas_addr),
1063				    phy_id);
1064			sas_ex_disable_phy(dev, phy_id);
1065			break;
1066		} else
1067			memcpy(dev->port->disc.fanout_sas_addr,
1068			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069		/* fallthrough */
1070	case SAS_EDGE_EXPANDER_DEVICE:
1071		child = sas_ex_discover_expander(dev, phy_id);
1072		break;
1073	default:
1074		break;
1075	}
1076
1077	if (child) {
1078		int i;
1079
1080		for (i = 0; i < ex->num_phys; i++) {
1081			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083				continue;
1084			/*
1085			 * Due to races, the phy might not get added to the
1086			 * wide port, so we add the phy to the wide port here.
1087			 */
1088			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089			    SAS_ADDR(child->sas_addr)) {
1090				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091				if (sas_ex_join_wide_port(dev, i))
1092					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095			}
1096		}
1097	}
1098
1099	return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104	struct expander_device *ex = &dev->ex_dev;
1105	int i;
1106
1107	for (i = 0; i < ex->num_phys; i++) {
1108		struct ex_phy *phy = &ex->ex_phy[i];
1109
1110		if (phy->phy_state == PHY_VACANT ||
1111		    phy->phy_state == PHY_NOT_PRESENT)
1112			continue;
1113
1114		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120			return 1;
1121		}
1122	}
1123	return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128	struct expander_device *ex = &dev->ex_dev;
1129	struct domain_device *child;
1130	u8 sub_addr[8] = {0, };
1131
1132	list_for_each_entry(child, &ex->children, siblings) {
1133		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135			continue;
1136		if (sub_addr[0] == 0) {
1137			sas_find_sub_addr(child, sub_addr);
1138			continue;
1139		} else {
1140			u8 s2[8];
1141
1142			if (sas_find_sub_addr(child, s2) &&
1143			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146					    "diverges from subtractive "
1147					    "boundary %016llx\n",
1148					    SAS_ADDR(dev->sas_addr),
1149					    SAS_ADDR(child->sas_addr),
1150					    SAS_ADDR(s2),
1151					    SAS_ADDR(sub_addr));
1152
1153				sas_ex_disable_port(child, s2);
1154			}
1155		}
1156	}
1157	return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169	struct expander_device *ex = &dev->ex_dev;
1170	int i = 0, end = ex->num_phys;
1171	int res = 0;
1172
1173	if (0 <= single && single < end) {
1174		i = single;
1175		end = i+1;
1176	}
1177
1178	for ( ; i < end; i++) {
1179		struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181		if (ex_phy->phy_state == PHY_VACANT ||
1182		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1183		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184			continue;
1185
1186		switch (ex_phy->linkrate) {
1187		case SAS_PHY_DISABLED:
1188		case SAS_PHY_RESET_PROBLEM:
1189		case SAS_SATA_PORT_SELECTOR:
1190			continue;
1191		default:
1192			res = sas_ex_discover_dev(dev, i);
1193			if (res)
1194				break;
1195			continue;
1196		}
1197	}
1198
1199	if (!res)
1200		sas_check_level_subtractive_boundary(dev);
1201
1202	return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207	struct expander_device *ex = &dev->ex_dev;
1208	int i;
1209	u8  *sub_sas_addr = NULL;
1210
1211	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212		return 0;
1213
1214	for (i = 0; i < ex->num_phys; i++) {
1215		struct ex_phy *phy = &ex->ex_phy[i];
1216
1217		if (phy->phy_state == PHY_VACANT ||
1218		    phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225			if (!sub_sas_addr)
1226				sub_sas_addr = &phy->attached_sas_addr[0];
1227			else if (SAS_ADDR(sub_sas_addr) !=
1228				 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230				SAS_DPRINTK("ex %016llx phy 0x%x "
1231					    "diverges(%016llx) on subtractive "
1232					    "boundary(%016llx). Disabled\n",
1233					    SAS_ADDR(dev->sas_addr), i,
1234					    SAS_ADDR(phy->attached_sas_addr),
1235					    SAS_ADDR(sub_sas_addr));
1236				sas_ex_disable_phy(dev, i);
1237			}
1238		}
1239	}
1240	return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244						 struct ex_phy *parent_phy,
1245						 struct ex_phy *child_phy)
1246{
1247	static const char *ex_type[] = {
1248		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250	};
1251	struct domain_device *parent = child->parent;
1252
1253	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254		   "phy 0x%x has %c:%c routing link!\n",
 
 
 
 
 
 
1255
1256		   ex_type[parent->dev_type],
1257		   SAS_ADDR(parent->sas_addr),
1258		   parent_phy->phy_id,
1259
1260		   ex_type[child->dev_type],
1261		   SAS_ADDR(child->sas_addr),
1262		   child_phy->phy_id,
 
1263
1264		   sas_route_char(parent, parent_phy),
1265		   sas_route_char(child, child_phy));
 
 
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269				 struct ex_phy *parent_phy,
1270				 struct ex_phy *child_phy)
1271{
1272	int res = 0;
1273	struct domain_device *parent = child->parent;
 
1274
1275	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276		res = -ENODEV;
1277		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1279			    SAS_ADDR(parent->sas_addr),
1280			    parent_phy->phy_id,
1281			    SAS_ADDR(child->sas_addr),
1282			    child_phy->phy_id,
1283			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286		       SAS_ADDR_SIZE);
1287		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288		       SAS_ADDR_SIZE);
1289	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290		    SAS_ADDR(parent->sas_addr)) ||
1291		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1292		    SAS_ADDR(child->sas_addr)))
1293		   &&
1294		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295		     SAS_ADDR(parent->sas_addr)) ||
1296		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1297		     SAS_ADDR(child->sas_addr))))
1298		;
1299	else {
1300		res = -ENODEV;
1301		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302			    "phy 0x%x link forms a third EEDS!\n",
1303			    SAS_ADDR(parent->sas_addr),
1304			    parent_phy->phy_id,
1305			    SAS_ADDR(child->sas_addr),
1306			    child_phy->phy_id);
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326		return 0;
1327
1328	parent_ex = &child->parent->ex_dev;
1329
1330	for (i = 0; i < parent_ex->num_phys; i++) {
1331		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332		struct ex_phy *child_phy;
1333
1334		if (parent_phy->phy_state == PHY_VACANT ||
1335		    parent_phy->phy_state == PHY_NOT_PRESENT)
1336			continue;
1337
1338		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339			continue;
1340
1341		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343		switch (child->parent->dev_type) {
1344		case SAS_EDGE_EXPANDER_DEVICE:
1345			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347				    child_phy->routing_attr != TABLE_ROUTING) {
1348					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349					res = -ENODEV;
1350				}
1351			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353					res = sas_check_eeds(child, parent_phy, child_phy);
1354				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1355					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356					res = -ENODEV;
1357				}
1358			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360				    (child_phy->routing_attr == TABLE_ROUTING &&
1361				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362					/* All good */;
1363				} else {
1364					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365					res = -ENODEV;
1366				}
1367			}
1368			break;
1369		case SAS_FANOUT_EXPANDER_DEVICE:
1370			if (parent_phy->routing_attr != TABLE_ROUTING ||
1371			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373				res = -ENODEV;
1374			}
1375			break;
1376		default:
1377			break;
1378		}
1379	}
1380
1381	return res;
1382}
1383
1384#define RRI_REQ_SIZE  16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388				 u8 *sas_addr, int *index, int *present)
1389{
1390	int i, res = 0;
1391	struct expander_device *ex = &dev->ex_dev;
1392	struct ex_phy *phy = &ex->ex_phy[phy_id];
1393	u8 *rri_req;
1394	u8 *rri_resp;
1395
1396	*present = 0;
1397	*index = 0;
1398
1399	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400	if (!rri_req)
1401		return -ENOMEM;
1402
1403	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404	if (!rri_resp) {
1405		kfree(rri_req);
1406		return -ENOMEM;
1407	}
1408
1409	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410	rri_req[9] = phy_id;
1411
1412	for (i = 0; i < ex->max_route_indexes ; i++) {
1413		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415				       RRI_RESP_SIZE);
1416		if (res)
1417			goto out;
1418		res = rri_resp[2];
1419		if (res == SMP_RESP_NO_INDEX) {
1420			SAS_DPRINTK("overflow of indexes: dev %016llx "
1421				    "phy 0x%x index 0x%x\n",
1422				    SAS_ADDR(dev->sas_addr), phy_id, i);
1423			goto out;
1424		} else if (res != SMP_RESP_FUNC_ACC) {
1425			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426				    "result 0x%x\n", __func__,
1427				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428			goto out;
1429		}
1430		if (SAS_ADDR(sas_addr) != 0) {
1431			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432				*index = i;
1433				if ((rri_resp[12] & 0x80) == 0x80)
1434					*present = 0;
1435				else
1436					*present = 1;
1437				goto out;
1438			} else if (SAS_ADDR(rri_resp+16) == 0) {
1439				*index = i;
1440				*present = 0;
1441				goto out;
1442			}
1443		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1444			   phy->last_da_index < i) {
1445			phy->last_da_index = i;
1446			*index = i;
1447			*present = 0;
1448			goto out;
1449		}
1450	}
1451	res = -1;
1452out:
1453	kfree(rri_req);
1454	kfree(rri_resp);
1455	return res;
1456}
1457
1458#define CRI_REQ_SIZE  44
1459#define CRI_RESP_SIZE  8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462			     u8 *sas_addr, int index, int include)
1463{
1464	int res;
1465	u8 *cri_req;
1466	u8 *cri_resp;
1467
1468	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469	if (!cri_req)
1470		return -ENOMEM;
1471
1472	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473	if (!cri_resp) {
1474		kfree(cri_req);
1475		return -ENOMEM;
1476	}
1477
1478	cri_req[1] = SMP_CONF_ROUTE_INFO;
1479	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480	cri_req[9] = phy_id;
1481	if (SAS_ADDR(sas_addr) == 0 || !include)
1482		cri_req[12] |= 0x80;
1483	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486			       CRI_RESP_SIZE);
1487	if (res)
1488		goto out;
1489	res = cri_resp[2];
1490	if (res == SMP_RESP_NO_INDEX) {
1491		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492			    "index 0x%x\n",
1493			    SAS_ADDR(dev->sas_addr), phy_id, index);
1494	}
1495out:
1496	kfree(cri_req);
1497	kfree(cri_resp);
1498	return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502				    u8 *sas_addr, int include)
1503{
1504	int index;
1505	int present;
1506	int res;
1507
1508	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509	if (res)
1510		return res;
1511	if (include ^ present)
1512		return sas_configure_set(dev, phy_id, sas_addr, index,include);
 
1513
1514	return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
 
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524				struct domain_device *child,
1525				u8 *sas_addr, int include)
1526{
1527	struct expander_device *ex_parent = &parent->ex_dev;
1528	int res = 0;
1529	int i;
1530
1531	if (parent->parent) {
1532		res = sas_configure_parent(parent->parent, parent, sas_addr,
1533					   include);
1534		if (res)
1535			return res;
1536	}
1537
1538	if (ex_parent->conf_route_table == 0) {
1539		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540			    SAS_ADDR(parent->sas_addr));
1541		return 0;
1542	}
1543
1544	for (i = 0; i < ex_parent->num_phys; i++) {
1545		struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547		if ((phy->routing_attr == TABLE_ROUTING) &&
1548		    (SAS_ADDR(phy->attached_sas_addr) ==
1549		     SAS_ADDR(child->sas_addr))) {
1550			res = sas_configure_phy(parent, i, sas_addr, include);
1551			if (res)
1552				return res;
1553		}
1554	}
1555
1556	return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566	if (dev->parent)
1567		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568	return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572{
1573	if (dev->parent)
1574		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575	return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586	int res;
1587
1588	res = sas_notify_lldd_dev_found(dev);
1589	if (res)
1590		return res;
1591
1592	res = sas_ex_general(dev);
1593	if (res)
1594		goto out_err;
1595	res = sas_ex_manuf_info(dev);
1596	if (res)
1597		goto out_err;
1598
1599	res = sas_expander_discover(dev);
1600	if (res) {
1601		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602			    SAS_ADDR(dev->sas_addr), res);
1603		goto out_err;
1604	}
1605
1606	sas_check_ex_subtractive_boundary(dev);
1607	res = sas_check_parent_topology(dev);
1608	if (res)
1609		goto out_err;
1610	return 0;
1611out_err:
1612	sas_notify_lldd_dev_gone(dev);
1613	return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618	int res = 0;
1619	struct domain_device *dev;
1620
1621	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624			struct sas_expander_device *ex =
1625				rphy_to_expander_device(dev->rphy);
1626
1627			if (level == ex->level)
1628				res = sas_ex_discover_devices(dev, -1);
1629			else if (level > 0)
1630				res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632		}
1633	}
1634
1635	return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640	int res;
1641	int level;
1642
1643	do {
1644		level = port->disc.max_level;
1645		res = sas_ex_level_discovery(port, level);
1646		mb();
1647	} while (level < port->disc.max_level);
1648
1649	return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654	int res;
1655	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657	res = sas_rphy_add(dev->rphy);
1658	if (res)
1659		goto out_err;
1660
1661	ex->level = dev->port->disc.max_level; /* 0 */
1662	res = sas_discover_expander(dev);
1663	if (res)
1664		goto out_err2;
1665
1666	sas_ex_bfs_disc(dev->port);
1667
1668	return res;
1669
1670out_err2:
1671	sas_rphy_remove(dev->rphy);
1672out_err:
1673	return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
 
 
 
 
 
 
 
 
 
 
1678static int sas_get_phy_discover(struct domain_device *dev,
1679				int phy_id, struct smp_resp *disc_resp)
1680{
1681	int res;
1682	u8 *disc_req;
1683
1684	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685	if (!disc_req)
1686		return -ENOMEM;
1687
1688	disc_req[1] = SMP_DISCOVER;
1689	disc_req[9] = phy_id;
1690
1691	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692			       disc_resp, DISCOVER_RESP_SIZE);
1693	if (res)
1694		goto out;
1695	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696		res = disc_resp->result;
1697		goto out;
1698	}
1699out:
1700	kfree(disc_req);
1701	return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705				    int phy_id, int *pcc)
1706{
1707	int res;
1708	struct smp_resp *disc_resp;
1709
1710	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711	if (!disc_resp)
1712		return -ENOMEM;
1713
1714	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715	if (!res)
1716		*pcc = disc_resp->disc.change_count;
1717
1718	kfree(disc_resp);
1719	return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723				    u8 *sas_addr, enum sas_device_type *type)
1724{
1725	int res;
1726	struct smp_resp *disc_resp;
1727	struct discover_resp *dr;
1728
1729	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730	if (!disc_resp)
1731		return -ENOMEM;
1732	dr = &disc_resp->disc;
1733
1734	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735	if (res == 0) {
1736		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737		*type = to_dev_type(dr);
1738		if (*type == 0)
1739			memset(sas_addr, 0, 8);
1740	}
1741	kfree(disc_resp);
1742	return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746			      int from_phy, bool update)
1747{
1748	struct expander_device *ex = &dev->ex_dev;
1749	int res = 0;
1750	int i;
1751
1752	for (i = from_phy; i < ex->num_phys; i++) {
1753		int phy_change_count = 0;
1754
1755		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756		switch (res) {
1757		case SMP_RESP_PHY_VACANT:
1758		case SMP_RESP_NO_PHY:
1759			continue;
1760		case SMP_RESP_FUNC_ACC:
1761			break;
1762		default:
1763			return res;
1764		}
1765
1766		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767			if (update)
1768				ex->ex_phy[i].phy_change_count =
1769					phy_change_count;
1770			*phy_id = i;
1771			return 0;
1772		}
1773	}
1774	return 0;
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779	int res;
1780	u8  *rg_req;
1781	struct smp_resp  *rg_resp;
1782
1783	rg_req = alloc_smp_req(RG_REQ_SIZE);
1784	if (!rg_req)
1785		return -ENOMEM;
1786
1787	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788	if (!rg_resp) {
1789		kfree(rg_req);
1790		return -ENOMEM;
1791	}
1792
1793	rg_req[1] = SMP_REPORT_GENERAL;
1794
1795	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796			       RG_RESP_SIZE);
1797	if (res)
1798		goto out;
1799	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800		res = rg_resp->result;
1801		goto out;
1802	}
1803
1804	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806	kfree(rg_resp);
1807	kfree(rg_req);
1808	return res;
1809}
1810/**
1811 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826			      struct domain_device **src_dev)
1827{
1828	struct expander_device *ex = &dev->ex_dev;
1829	int ex_change_count = -1;
1830	int phy_id = -1;
1831	int res;
1832	struct domain_device *ch;
1833
1834	res = sas_get_ex_change_count(dev, &ex_change_count);
1835	if (res)
1836		goto out;
1837	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838		/* Just detect if this expander phys phy change count changed,
1839		* in order to determine if this expander originate BROADCAST,
1840		* and do not update phy change count field in our structure.
1841		*/
1842		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843		if (phy_id != -1) {
1844			*src_dev = dev;
1845			ex->ex_change_count = ex_change_count;
1846			SAS_DPRINTK("Expander phy change count has changed\n");
 
1847			return res;
1848		} else
1849			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871			sas_unregister_ex_tree(port, child);
1872		else
1873			sas_unregister_dev(port, child);
1874	}
1875	sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879					 int phy_id, bool last)
1880{
1881	struct expander_device *ex_dev = &parent->ex_dev;
1882	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883	struct domain_device *child, *n, *found = NULL;
1884	if (last) {
1885		list_for_each_entry_safe(child, n,
1886			&ex_dev->children, siblings) {
1887			if (SAS_ADDR(child->sas_addr) ==
1888			    SAS_ADDR(phy->attached_sas_addr)) {
1889				set_bit(SAS_DEV_GONE, &child->state);
1890				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892					sas_unregister_ex_tree(parent->port, child);
1893				else
1894					sas_unregister_dev(parent->port, child);
1895				found = child;
1896				break;
1897			}
1898		}
1899		sas_disable_routing(parent, phy->attached_sas_addr);
1900	}
1901	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902	if (phy->port) {
1903		sas_port_delete_phy(phy->port, phy->phy);
1904		sas_device_set_phy(found, phy->port);
1905		if (phy->port->num_phys == 0)
1906			sas_port_delete(phy->port);
 
1907		phy->port = NULL;
1908	}
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912					  const int level)
1913{
1914	struct expander_device *ex_root = &root->ex_dev;
1915	struct domain_device *child;
1916	int res = 0;
1917
1918	list_for_each_entry(child, &ex_root->children, siblings) {
1919		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921			struct sas_expander_device *ex =
1922				rphy_to_expander_device(child->rphy);
1923
1924			if (level > ex->level)
1925				res = sas_discover_bfs_by_root_level(child,
1926								     level);
1927			else if (level == ex->level)
1928				res = sas_ex_discover_devices(child, -1);
1929		}
1930	}
1931	return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936	int res;
1937	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938	int level = ex->level+1;
1939
1940	res = sas_ex_discover_devices(dev, -1);
1941	if (res)
1942		goto out;
1943	do {
1944		res = sas_discover_bfs_by_root_level(dev, level);
1945		mb();
1946		level += 1;
1947	} while (level <= dev->port->disc.max_level);
1948out:
1949	return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955	struct domain_device *child;
1956	int res;
1957
1958	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959		    SAS_ADDR(dev->sas_addr), phy_id);
1960	res = sas_ex_phy_discover(dev, phy_id);
1961	if (res)
1962		return res;
1963
1964	if (sas_ex_join_wide_port(dev, phy_id))
1965		return 0;
1966
1967	res = sas_ex_discover_devices(dev, phy_id);
1968	if (res)
1969		return res;
1970	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971		if (SAS_ADDR(child->sas_addr) ==
1972		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1973			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975				res = sas_discover_bfs_by_root(child);
1976			break;
1977		}
1978	}
1979	return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984	if (old == new)
1985		return true;
1986
1987	/* treat device directed resets as flutter, if we went
1988	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989	 */
1990	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992		return true;
1993
1994	return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
1998{
1999	struct expander_device *ex = &dev->ex_dev;
2000	struct ex_phy *phy = &ex->ex_phy[phy_id];
2001	enum sas_device_type type = SAS_PHY_UNUSED;
2002	u8 sas_addr[8];
 
 
2003	int res;
2004
2005	memset(sas_addr, 0, 8);
2006	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
 
 
 
 
 
 
 
 
 
 
2007	switch (res) {
2008	case SMP_RESP_NO_PHY:
2009		phy->phy_state = PHY_NOT_PRESENT;
2010		sas_unregister_devs_sas_addr(dev, phy_id, last);
2011		return res;
2012	case SMP_RESP_PHY_VACANT:
2013		phy->phy_state = PHY_VACANT;
2014		sas_unregister_devs_sas_addr(dev, phy_id, last);
2015		return res;
2016	case SMP_RESP_FUNC_ACC:
2017		break;
2018	case -ECOMM:
2019		break;
2020	default:
2021		return res;
2022	}
2023
 
 
 
2024	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025		phy->phy_state = PHY_EMPTY;
2026		sas_unregister_devs_sas_addr(dev, phy_id, last);
2027		return res;
 
 
 
 
 
 
2028	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029		   dev_type_flutter(type, phy->attached_dev_type)) {
2030		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031		char *action = "";
2032
2033		sas_ex_phy_discover(dev, phy_id);
2034
2035		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036			action = ", needs recovery";
2037		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038			    SAS_ADDR(dev->sas_addr), phy_id, action);
2039		return res;
2040	}
2041
2042	/* delete the old link */
2043	if (SAS_ADDR(phy->attached_sas_addr) &&
2044	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046			    SAS_ADDR(dev->sas_addr), phy_id,
2047			    SAS_ADDR(phy->attached_sas_addr));
2048		sas_unregister_devs_sas_addr(dev, phy_id, last);
2049	}
2050
2051	return sas_discover_new(dev, phy_id);
 
 
 
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered.  Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070	struct expander_device *ex = &dev->ex_dev;
2071	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072	int res = 0;
2073	int i;
2074	bool last = true;	/* is this the last phy of the port */
2075
2076	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077		    SAS_ADDR(dev->sas_addr), phy_id);
2078
2079	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080		for (i = 0; i < ex->num_phys; i++) {
2081			struct ex_phy *phy = &ex->ex_phy[i];
2082
2083			if (i == phy_id)
2084				continue;
2085			if (SAS_ADDR(phy->attached_sas_addr) ==
2086			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2087				SAS_DPRINTK("phy%d part of wide port with "
2088					    "phy%d\n", phy_id, i);
2089				last = false;
2090				break;
2091			}
2092		}
2093		res = sas_rediscover_dev(dev, phy_id, last);
2094	} else
2095		res = sas_discover_new(dev, phy_id);
2096	return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered.  Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110	int res;
2111	struct domain_device *dev = NULL;
2112
2113	res = sas_find_bcast_dev(port_dev, &dev);
2114	while (res == 0 && dev) {
2115		struct expander_device *ex = &dev->ex_dev;
2116		int i = 0, phy_id;
2117
2118		do {
2119			phy_id = -1;
2120			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121			if (phy_id == -1)
2122				break;
2123			res = sas_rediscover(dev, phy_id);
2124			i = phy_id + 1;
2125		} while (i < ex->num_phys);
2126
2127		dev = NULL;
2128		res = sas_find_bcast_dev(port_dev, &dev);
2129	}
2130	return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134		    struct request *req)
2135{
2136	struct domain_device *dev;
2137	int ret, type;
2138	struct request *rsp = req->next_rq;
2139
2140	if (!rsp) {
2141		printk("%s: space for a smp response is missing\n",
2142		       __func__);
2143		return -EINVAL;
2144	}
2145
 
 
 
 
 
 
 
 
 
 
 
2146	/* no rphy means no smp target support (ie aic94xx host) */
2147	if (!rphy)
2148		return sas_smp_host_handler(shost, req, rsp);
2149
2150	type = rphy->identify.device_type;
2151
2152	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2154		printk("%s: can we send a smp request to a device?\n",
 
2155		       __func__);
2156		return -EINVAL;
2157	}
2158
2159	dev = sas_find_dev_by_rphy(rphy);
2160	if (!dev) {
2161		printk("%s: fail to find a domain_device?\n", __func__);
2162		return -EINVAL;
2163	}
2164
2165	/* do we need to support multiple segments? */
2166	if (bio_multiple_segments(req->bio) ||
2167	    bio_multiple_segments(rsp->bio)) {
2168		printk("%s: multiple segments req %u, rsp %u\n",
2169		       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170		return -EINVAL;
 
2171	}
2172
2173	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2175	if (ret > 0) {
2176		/* positive number is the untransferred residual */
2177		rsp->resid_len = ret;
2178		req->resid_len = 0;
2179		ret = 0;
2180	} else if (ret == 0) {
2181		rsp->resid_len = 0;
2182		req->resid_len = 0;
2183	}
2184
2185	return ret;
 
2186}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
  30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31/* Give it some long enough timeout. In seconds. */
  32#define SMP_TIMEOUT 10
  33
  34static int smp_execute_task_sg(struct domain_device *dev,
  35		struct scatterlist *req, struct scatterlist *resp)
  36{
  37	int res, retry;
  38	struct sas_task *task = NULL;
  39	struct sas_internal *i =
  40		to_sas_internal(dev->port->ha->shost->transportt);
  41	struct sas_ha_struct *ha = dev->port->ha;
  42
  43	pm_runtime_get_sync(ha->dev);
  44	mutex_lock(&dev->ex_dev.cmd_mutex);
  45	for (retry = 0; retry < 3; retry++) {
  46		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  47			res = -ECOMM;
  48			break;
  49		}
  50
  51		task = sas_alloc_slow_task(GFP_KERNEL);
  52		if (!task) {
  53			res = -ENOMEM;
  54			break;
  55		}
  56		task->dev = dev;
  57		task->task_proto = dev->tproto;
  58		task->smp_task.smp_req = *req;
  59		task->smp_task.smp_resp = *resp;
  60
  61		task->task_done = sas_task_internal_done;
  62
  63		task->slow_task->timer.function = sas_task_internal_timedout;
 
  64		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  65		add_timer(&task->slow_task->timer);
  66
  67		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  68
  69		if (res) {
  70			del_timer_sync(&task->slow_task->timer);
  71			pr_notice("executing SMP task failed:%d\n", res);
  72			break;
  73		}
  74
  75		wait_for_completion(&task->slow_task->completion);
  76		res = -ECOMM;
  77		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  78			pr_notice("smp task timed out or aborted\n");
  79			i->dft->lldd_abort_task(task);
  80			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  81				pr_notice("SMP task aborted and not done\n");
  82				break;
  83			}
  84		}
  85		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  86		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
  87			res = 0;
  88			break;
  89		}
  90		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  91		    task->task_status.stat == SAS_DATA_UNDERRUN) {
  92			/* no error, but return the number of bytes of
  93			 * underrun */
  94			res = task->task_status.residual;
  95			break;
  96		}
  97		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  98		    task->task_status.stat == SAS_DATA_OVERRUN) {
  99			res = -EMSGSIZE;
 100			break;
 101		}
 102		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 103		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 104			break;
 105		else {
 106			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 107				  __func__,
 108				  SAS_ADDR(dev->sas_addr),
 109				  task->task_status.resp,
 110				  task->task_status.stat);
 111			sas_free_task(task);
 112			task = NULL;
 113		}
 114	}
 115	mutex_unlock(&dev->ex_dev.cmd_mutex);
 116	pm_runtime_put_sync(ha->dev);
 117
 118	BUG_ON(retry == 3 && task != NULL);
 119	sas_free_task(task);
 120	return res;
 121}
 122
 123static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 124			    void *resp, int resp_size)
 125{
 126	struct scatterlist req_sg;
 127	struct scatterlist resp_sg;
 128
 129	sg_init_one(&req_sg, req, req_size);
 130	sg_init_one(&resp_sg, resp, resp_size);
 131	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 132}
 133
 134/* ---------- Allocations ---------- */
 135
 136static inline void *alloc_smp_req(int size)
 137{
 138	u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL);
 139	if (p)
 140		p[0] = SMP_REQUEST;
 141	return p;
 142}
 143
 144static inline void *alloc_smp_resp(int size)
 145{
 146	return kzalloc(size, GFP_KERNEL);
 147}
 148
 149static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 150{
 151	switch (phy->routing_attr) {
 152	case TABLE_ROUTING:
 153		if (dev->ex_dev.t2t_supp)
 154			return 'U';
 155		else
 156			return 'T';
 157	case DIRECT_ROUTING:
 158		return 'D';
 159	case SUBTRACTIVE_ROUTING:
 160		return 'S';
 161	default:
 162		return '?';
 163	}
 164}
 165
 166static enum sas_device_type to_dev_type(struct discover_resp *dr)
 167{
 168	/* This is detecting a failure to transmit initial dev to host
 169	 * FIS as described in section J.5 of sas-2 r16
 170	 */
 171	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 172	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 173		return SAS_SATA_PENDING;
 174	else
 175		return dr->attached_dev_type;
 176}
 177
 178static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 179			   struct smp_disc_resp *disc_resp)
 180{
 181	enum sas_device_type dev_type;
 182	enum sas_linkrate linkrate;
 183	u8 sas_addr[SAS_ADDR_SIZE];
 184	struct discover_resp *dr = &disc_resp->disc;
 
 185	struct sas_ha_struct *ha = dev->port->ha;
 186	struct expander_device *ex = &dev->ex_dev;
 187	struct ex_phy *phy = &ex->ex_phy[phy_id];
 188	struct sas_rphy *rphy = dev->rphy;
 189	bool new_phy = !phy->phy;
 190	char *type;
 191
 192	if (new_phy) {
 193		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 194			return;
 195		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 196
 197		/* FIXME: error_handling */
 198		BUG_ON(!phy->phy);
 199	}
 200
 201	switch (disc_resp->result) {
 202	case SMP_RESP_PHY_VACANT:
 203		phy->phy_state = PHY_VACANT;
 204		break;
 205	default:
 206		phy->phy_state = PHY_NOT_PRESENT;
 207		break;
 208	case SMP_RESP_FUNC_ACC:
 209		phy->phy_state = PHY_EMPTY; /* do not know yet */
 210		break;
 211	}
 212
 213	/* check if anything important changed to squelch debug */
 214	dev_type = phy->attached_dev_type;
 215	linkrate  = phy->linkrate;
 216	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 217
 218	/* Handle vacant phy - rest of dr data is not valid so skip it */
 219	if (phy->phy_state == PHY_VACANT) {
 220		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 221		phy->attached_dev_type = SAS_PHY_UNUSED;
 222		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 223			phy->phy_id = phy_id;
 224			goto skip;
 225		} else
 226			goto out;
 227	}
 228
 229	phy->attached_dev_type = to_dev_type(dr);
 230	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 231		goto out;
 232	phy->phy_id = phy_id;
 233	phy->linkrate = dr->linkrate;
 234	phy->attached_sata_host = dr->attached_sata_host;
 235	phy->attached_sata_dev  = dr->attached_sata_dev;
 236	phy->attached_sata_ps   = dr->attached_sata_ps;
 237	phy->attached_iproto = dr->iproto << 1;
 238	phy->attached_tproto = dr->tproto << 1;
 239	/* help some expanders that fail to zero sas_address in the 'no
 240	 * device' case
 241	 */
 242	if (phy->attached_dev_type == SAS_PHY_UNUSED)
 
 243		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 244	else
 245		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 246	phy->attached_phy_id = dr->attached_phy_id;
 247	phy->phy_change_count = dr->change_count;
 248	phy->routing_attr = dr->routing_attr;
 249	phy->virtual = dr->virtual;
 250	phy->last_da_index = -1;
 251
 252	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 253	phy->phy->identify.device_type = dr->attached_dev_type;
 254	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 255	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 256	if (!phy->attached_tproto && dr->attached_sata_dev)
 257		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 258	phy->phy->identify.phy_identifier = phy_id;
 259	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 260	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 261	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 262	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 263	phy->phy->negotiated_linkrate = phy->linkrate;
 264	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 265
 266 skip:
 267	if (new_phy)
 268		if (sas_phy_add(phy->phy)) {
 269			sas_phy_free(phy->phy);
 270			return;
 271		}
 272
 273 out:
 274	switch (phy->attached_dev_type) {
 275	case SAS_SATA_PENDING:
 276		type = "stp pending";
 277		break;
 278	case SAS_PHY_UNUSED:
 279		type = "no device";
 280		break;
 281	case SAS_END_DEVICE:
 282		if (phy->attached_iproto) {
 283			if (phy->attached_tproto)
 284				type = "host+target";
 285			else
 286				type = "host";
 287		} else {
 288			if (dr->attached_sata_dev)
 289				type = "stp";
 290			else
 291				type = "ssp";
 292		}
 293		break;
 294	case SAS_EDGE_EXPANDER_DEVICE:
 295	case SAS_FANOUT_EXPANDER_DEVICE:
 296		type = "smp";
 297		break;
 298	default:
 299		type = "unknown";
 300	}
 301
 302	/* this routine is polled by libata error recovery so filter
 303	 * unimportant messages
 304	 */
 305	if (new_phy || phy->attached_dev_type != dev_type ||
 306	    phy->linkrate != linkrate ||
 307	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 308		/* pass */;
 309	else
 310		return;
 311
 312	/* if the attached device type changed and ata_eh is active,
 313	 * make sure we run revalidation when eh completes (see:
 314	 * sas_enable_revalidation)
 315	 */
 316	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 317		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 318
 319	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 320		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 321		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 322		 sas_route_char(dev, phy), phy->linkrate,
 323		 SAS_ADDR(phy->attached_sas_addr), type);
 324}
 325
 326/* check if we have an existing attached ata device on this expander phy */
 327struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 328{
 329	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 330	struct domain_device *dev;
 331	struct sas_rphy *rphy;
 332
 333	if (!ex_phy->port)
 334		return NULL;
 335
 336	rphy = ex_phy->port->rphy;
 337	if (!rphy)
 338		return NULL;
 339
 340	dev = sas_find_dev_by_rphy(rphy);
 341
 342	if (dev && dev_is_sata(dev))
 343		return dev;
 344
 345	return NULL;
 346}
 347
 348#define DISCOVER_REQ_SIZE  16
 349#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
 350
 351static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 352				      struct smp_disc_resp *disc_resp,
 353				      int single)
 354{
 355	struct discover_resp *dr = &disc_resp->disc;
 356	int res;
 357
 358	disc_req[9] = single;
 359
 360	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 361			       disc_resp, DISCOVER_RESP_SIZE);
 362	if (res)
 363		return res;
 
 364	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 365		pr_notice("Found loopback topology, just ignore it!\n");
 366		return 0;
 367	}
 368	sas_set_ex_phy(dev, single, disc_resp);
 369	return 0;
 370}
 371
 372int sas_ex_phy_discover(struct domain_device *dev, int single)
 373{
 374	struct expander_device *ex = &dev->ex_dev;
 375	int  res = 0;
 376	u8   *disc_req;
 377	struct smp_disc_resp *disc_resp;
 378
 379	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 380	if (!disc_req)
 381		return -ENOMEM;
 382
 383	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 384	if (!disc_resp) {
 385		kfree(disc_req);
 386		return -ENOMEM;
 387	}
 388
 389	disc_req[1] = SMP_DISCOVER;
 390
 391	if (0 <= single && single < ex->num_phys) {
 392		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 393	} else {
 394		int i;
 395
 396		for (i = 0; i < ex->num_phys; i++) {
 397			res = sas_ex_phy_discover_helper(dev, disc_req,
 398							 disc_resp, i);
 399			if (res)
 400				goto out_err;
 401		}
 402	}
 403out_err:
 404	kfree(disc_resp);
 405	kfree(disc_req);
 406	return res;
 407}
 408
 409static int sas_expander_discover(struct domain_device *dev)
 410{
 411	struct expander_device *ex = &dev->ex_dev;
 412	int res;
 413
 414	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 415	if (!ex->ex_phy)
 416		return -ENOMEM;
 417
 418	res = sas_ex_phy_discover(dev, -1);
 419	if (res)
 420		goto out_err;
 421
 422	return 0;
 423 out_err:
 424	kfree(ex->ex_phy);
 425	ex->ex_phy = NULL;
 426	return res;
 427}
 428
 429#define MAX_EXPANDER_PHYS 128
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431#define RG_REQ_SIZE   8
 432#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
 433
 434static int sas_ex_general(struct domain_device *dev)
 435{
 436	u8 *rg_req;
 437	struct smp_rg_resp *rg_resp;
 438	struct report_general_resp *rg;
 439	int res;
 440	int i;
 441
 442	rg_req = alloc_smp_req(RG_REQ_SIZE);
 443	if (!rg_req)
 444		return -ENOMEM;
 445
 446	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 447	if (!rg_resp) {
 448		kfree(rg_req);
 449		return -ENOMEM;
 450	}
 451
 452	rg_req[1] = SMP_REPORT_GENERAL;
 453
 454	for (i = 0; i < 5; i++) {
 455		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 456				       RG_RESP_SIZE);
 457
 458		if (res) {
 459			pr_notice("RG to ex %016llx failed:0x%x\n",
 460				  SAS_ADDR(dev->sas_addr), res);
 461			goto out;
 462		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 463			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 464				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 465			res = rg_resp->result;
 466			goto out;
 467		}
 468
 469		rg = &rg_resp->rg;
 470		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 471		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 472		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 473		dev->ex_dev.t2t_supp = rg->t2t_supp;
 474		dev->ex_dev.conf_route_table = rg->conf_route_table;
 475		dev->ex_dev.configuring = rg->configuring;
 476		memcpy(dev->ex_dev.enclosure_logical_id,
 477		       rg->enclosure_logical_id, 8);
 478
 479		if (dev->ex_dev.configuring) {
 480			pr_debug("RG: ex %016llx self-configuring...\n",
 481				 SAS_ADDR(dev->sas_addr));
 482			schedule_timeout_interruptible(5*HZ);
 483		} else
 484			break;
 485	}
 486out:
 487	kfree(rg_req);
 488	kfree(rg_resp);
 489	return res;
 490}
 491
 492static void ex_assign_manuf_info(struct domain_device *dev, void
 493					*_mi_resp)
 494{
 495	u8 *mi_resp = _mi_resp;
 496	struct sas_rphy *rphy = dev->rphy;
 497	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 498
 499	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 500	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 501	memcpy(edev->product_rev, mi_resp + 36,
 502	       SAS_EXPANDER_PRODUCT_REV_LEN);
 503
 504	if (mi_resp[8] & 1) {
 505		memcpy(edev->component_vendor_id, mi_resp + 40,
 506		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 507		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 508		edev->component_revision_id = mi_resp[50];
 509	}
 510}
 511
 512#define MI_REQ_SIZE   8
 513#define MI_RESP_SIZE 64
 514
 515static int sas_ex_manuf_info(struct domain_device *dev)
 516{
 517	u8 *mi_req;
 518	u8 *mi_resp;
 519	int res;
 520
 521	mi_req = alloc_smp_req(MI_REQ_SIZE);
 522	if (!mi_req)
 523		return -ENOMEM;
 524
 525	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 526	if (!mi_resp) {
 527		kfree(mi_req);
 528		return -ENOMEM;
 529	}
 530
 531	mi_req[1] = SMP_REPORT_MANUF_INFO;
 532
 533	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 534	if (res) {
 535		pr_notice("MI: ex %016llx failed:0x%x\n",
 536			  SAS_ADDR(dev->sas_addr), res);
 537		goto out;
 538	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 539		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 540			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 541		goto out;
 542	}
 543
 544	ex_assign_manuf_info(dev, mi_resp);
 545out:
 546	kfree(mi_req);
 547	kfree(mi_resp);
 548	return res;
 549}
 550
 551#define PC_REQ_SIZE  44
 552#define PC_RESP_SIZE 8
 553
 554int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 555			enum phy_func phy_func,
 556			struct sas_phy_linkrates *rates)
 557{
 558	u8 *pc_req;
 559	u8 *pc_resp;
 560	int res;
 561
 562	pc_req = alloc_smp_req(PC_REQ_SIZE);
 563	if (!pc_req)
 564		return -ENOMEM;
 565
 566	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 567	if (!pc_resp) {
 568		kfree(pc_req);
 569		return -ENOMEM;
 570	}
 571
 572	pc_req[1] = SMP_PHY_CONTROL;
 573	pc_req[9] = phy_id;
 574	pc_req[10] = phy_func;
 575	if (rates) {
 576		pc_req[32] = rates->minimum_linkrate << 4;
 577		pc_req[33] = rates->maximum_linkrate << 4;
 578	}
 579
 580	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 581	if (res) {
 582		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 583		       SAS_ADDR(dev->sas_addr), phy_id, res);
 584	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 585		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 586		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 587		res = pc_resp[2];
 588	}
 589	kfree(pc_resp);
 590	kfree(pc_req);
 591	return res;
 592}
 593
 594static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 595{
 596	struct expander_device *ex = &dev->ex_dev;
 597	struct ex_phy *phy = &ex->ex_phy[phy_id];
 598
 599	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 600	phy->linkrate = SAS_PHY_DISABLED;
 601}
 602
 603static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 604{
 605	struct expander_device *ex = &dev->ex_dev;
 606	int i;
 607
 608	for (i = 0; i < ex->num_phys; i++) {
 609		struct ex_phy *phy = &ex->ex_phy[i];
 610
 611		if (phy->phy_state == PHY_VACANT ||
 612		    phy->phy_state == PHY_NOT_PRESENT)
 613			continue;
 614
 615		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 616			sas_ex_disable_phy(dev, i);
 617	}
 618}
 619
 620static int sas_dev_present_in_domain(struct asd_sas_port *port,
 621					    u8 *sas_addr)
 622{
 623	struct domain_device *dev;
 624
 625	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 626		return 1;
 627	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 628		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 629			return 1;
 630	}
 631	return 0;
 632}
 633
 634#define RPEL_REQ_SIZE	16
 635#define RPEL_RESP_SIZE	32
 636int sas_smp_get_phy_events(struct sas_phy *phy)
 637{
 638	int res;
 639	u8 *req;
 640	u8 *resp;
 641	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 642	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 643
 644	req = alloc_smp_req(RPEL_REQ_SIZE);
 645	if (!req)
 646		return -ENOMEM;
 647
 648	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 649	if (!resp) {
 650		kfree(req);
 651		return -ENOMEM;
 652	}
 653
 654	req[1] = SMP_REPORT_PHY_ERR_LOG;
 655	req[9] = phy->number;
 656
 657	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 658			       resp, RPEL_RESP_SIZE);
 659
 660	if (res)
 661		goto out;
 662
 663	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 664	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 665	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 666	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 667
 668 out:
 669	kfree(req);
 670	kfree(resp);
 671	return res;
 672
 673}
 674
 675#ifdef CONFIG_SCSI_SAS_ATA
 676
 677#define RPS_REQ_SIZE  16
 678#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
 679
 680int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 681			    struct smp_rps_resp *rps_resp)
 682{
 683	int res;
 684	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 685	u8 *resp = (u8 *)rps_resp;
 686
 687	if (!rps_req)
 688		return -ENOMEM;
 689
 690	rps_req[1] = SMP_REPORT_PHY_SATA;
 691	rps_req[9] = phy_id;
 692
 693	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 694			       rps_resp, RPS_RESP_SIZE);
 695
 696	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 697	 * standards cockup here.  sas-2 explicitly specifies the FIS
 698	 * should be encoded so that FIS type is in resp[24].
 699	 * However, some expanders endian reverse this.  Undo the
 700	 * reversal here */
 701	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 702		int i;
 703
 704		for (i = 0; i < 5; i++) {
 705			int j = 24 + (i*4);
 706			u8 a, b;
 707			a = resp[j + 0];
 708			b = resp[j + 1];
 709			resp[j + 0] = resp[j + 3];
 710			resp[j + 1] = resp[j + 2];
 711			resp[j + 2] = b;
 712			resp[j + 3] = a;
 713		}
 714	}
 715
 716	kfree(rps_req);
 717	return res;
 718}
 719#endif
 720
 721static void sas_ex_get_linkrate(struct domain_device *parent,
 722				       struct domain_device *child,
 723				       struct ex_phy *parent_phy)
 724{
 725	struct expander_device *parent_ex = &parent->ex_dev;
 726	struct sas_port *port;
 727	int i;
 728
 729	child->pathways = 0;
 730
 731	port = parent_phy->port;
 732
 733	for (i = 0; i < parent_ex->num_phys; i++) {
 734		struct ex_phy *phy = &parent_ex->ex_phy[i];
 735
 736		if (phy->phy_state == PHY_VACANT ||
 737		    phy->phy_state == PHY_NOT_PRESENT)
 738			continue;
 739
 740		if (sas_phy_match_dev_addr(child, phy)) {
 
 
 741			child->min_linkrate = min(parent->min_linkrate,
 742						  phy->linkrate);
 743			child->max_linkrate = max(parent->max_linkrate,
 744						  phy->linkrate);
 745			child->pathways++;
 746			sas_port_add_phy(port, phy->phy);
 747		}
 748	}
 749	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 750	child->pathways = min(child->pathways, parent->pathways);
 751}
 752
 753static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
 754			  struct domain_device *child, int phy_id)
 755{
 756	struct sas_rphy *rphy;
 757	int res;
 758
 759	child->dev_type = SAS_END_DEVICE;
 760	rphy = sas_end_device_alloc(phy->port);
 761	if (!rphy)
 762		return -ENOMEM;
 763
 764	child->tproto = phy->attached_tproto;
 765	sas_init_dev(child);
 766
 767	child->rphy = rphy;
 768	get_device(&rphy->dev);
 769	rphy->identify.phy_identifier = phy_id;
 770	sas_fill_in_rphy(child, rphy);
 771
 772	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 773
 774	res = sas_notify_lldd_dev_found(child);
 775	if (res) {
 776		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
 777			  SAS_ADDR(child->sas_addr),
 778			  SAS_ADDR(parent->sas_addr), phy_id, res);
 779		sas_rphy_free(child->rphy);
 780		list_del(&child->disco_list_node);
 781		return res;
 782	}
 783
 784	return 0;
 785}
 786
 787static struct domain_device *sas_ex_discover_end_dev(
 788	struct domain_device *parent, int phy_id)
 789{
 790	struct expander_device *parent_ex = &parent->ex_dev;
 791	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 792	struct domain_device *child = NULL;
 
 793	int res;
 794
 795	if (phy->attached_sata_host || phy->attached_sata_ps)
 796		return NULL;
 797
 798	child = sas_alloc_device();
 799	if (!child)
 800		return NULL;
 801
 802	kref_get(&parent->kref);
 803	child->parent = parent;
 804	child->port   = parent->port;
 805	child->iproto = phy->attached_iproto;
 806	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 807	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 808	if (!phy->port) {
 809		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 810		if (unlikely(!phy->port))
 811			goto out_err;
 812		if (unlikely(sas_port_add(phy->port) != 0)) {
 813			sas_port_free(phy->port);
 814			goto out_err;
 815		}
 816	}
 817	sas_ex_get_linkrate(parent, child, phy);
 818	sas_device_set_phy(child, phy->port);
 819
 
 820	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 821		res = sas_ata_add_dev(parent, phy, child, phy_id);
 822	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 823		res = sas_ex_add_dev(parent, phy, child, phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824	} else {
 825		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 826			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 827			  phy_id);
 828		res = -ENODEV;
 829	}
 830
 831	if (res)
 832		goto out_free;
 833
 834	list_add_tail(&child->siblings, &parent_ex->children);
 835	return child;
 836
 
 
 
 
 
 
 837 out_free:
 838	sas_port_delete(phy->port);
 839 out_err:
 840	phy->port = NULL;
 841	sas_put_device(child);
 842	return NULL;
 843}
 844
 845/* See if this phy is part of a wide port */
 846static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 847{
 848	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 849	int i;
 850
 851	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 852		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 853
 854		if (ephy == phy)
 855			continue;
 856
 857		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 858			    SAS_ADDR_SIZE) && ephy->port) {
 859			sas_port_add_phy(ephy->port, phy->phy);
 860			phy->port = ephy->port;
 861			phy->phy_state = PHY_DEVICE_DISCOVERED;
 862			return true;
 863		}
 864	}
 865
 866	return false;
 867}
 868
 869static struct domain_device *sas_ex_discover_expander(
 870	struct domain_device *parent, int phy_id)
 871{
 872	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 873	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 874	struct domain_device *child = NULL;
 875	struct sas_rphy *rphy;
 876	struct sas_expander_device *edev;
 877	struct asd_sas_port *port;
 878	int res;
 879
 880	if (phy->routing_attr == DIRECT_ROUTING) {
 881		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 882			SAS_ADDR(parent->sas_addr), phy_id,
 883			SAS_ADDR(phy->attached_sas_addr),
 884			phy->attached_phy_id);
 
 885		return NULL;
 886	}
 887	child = sas_alloc_device();
 888	if (!child)
 889		return NULL;
 890
 891	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 892	/* FIXME: better error handling */
 893	BUG_ON(sas_port_add(phy->port) != 0);
 894
 895
 896	switch (phy->attached_dev_type) {
 897	case SAS_EDGE_EXPANDER_DEVICE:
 898		rphy = sas_expander_alloc(phy->port,
 899					  SAS_EDGE_EXPANDER_DEVICE);
 900		break;
 901	case SAS_FANOUT_EXPANDER_DEVICE:
 902		rphy = sas_expander_alloc(phy->port,
 903					  SAS_FANOUT_EXPANDER_DEVICE);
 904		break;
 905	default:
 906		rphy = NULL;	/* shut gcc up */
 907		BUG();
 908	}
 909	port = parent->port;
 910	child->rphy = rphy;
 911	get_device(&rphy->dev);
 912	edev = rphy_to_expander_device(rphy);
 913	child->dev_type = phy->attached_dev_type;
 914	kref_get(&parent->kref);
 915	child->parent = parent;
 916	child->port = port;
 917	child->iproto = phy->attached_iproto;
 918	child->tproto = phy->attached_tproto;
 919	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 920	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 921	sas_ex_get_linkrate(parent, child, phy);
 922	edev->level = parent_ex->level + 1;
 923	parent->port->disc.max_level = max(parent->port->disc.max_level,
 924					   edev->level);
 925	sas_init_dev(child);
 926	sas_fill_in_rphy(child, rphy);
 927	sas_rphy_add(rphy);
 928
 929	spin_lock_irq(&parent->port->dev_list_lock);
 930	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 931	spin_unlock_irq(&parent->port->dev_list_lock);
 932
 933	res = sas_discover_expander(child);
 934	if (res) {
 935		sas_rphy_delete(rphy);
 936		spin_lock_irq(&parent->port->dev_list_lock);
 937		list_del(&child->dev_list_node);
 938		spin_unlock_irq(&parent->port->dev_list_lock);
 939		sas_put_device(child);
 940		sas_port_delete(phy->port);
 941		phy->port = NULL;
 942		return NULL;
 943	}
 944	list_add_tail(&child->siblings, &parent->ex_dev.children);
 945	return child;
 946}
 947
 948static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 949{
 950	struct expander_device *ex = &dev->ex_dev;
 951	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 952	struct domain_device *child = NULL;
 953	int res = 0;
 954
 955	/* Phy state */
 956	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 957		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 958			res = sas_ex_phy_discover(dev, phy_id);
 959		if (res)
 960			return res;
 961	}
 962
 963	/* Parent and domain coherency */
 964	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
 
 965		sas_add_parent_port(dev, phy_id);
 966		return 0;
 967	}
 968	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
 
 969		sas_add_parent_port(dev, phy_id);
 970		if (ex_phy->routing_attr == TABLE_ROUTING)
 971			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 972		return 0;
 973	}
 974
 975	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 976		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 977
 978	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
 979		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 980			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 981			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 982		}
 983		return 0;
 984	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 985		return 0;
 986
 987	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
 988	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
 989	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
 990	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
 991		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
 992			ex_phy->attached_dev_type,
 993			SAS_ADDR(dev->sas_addr),
 994			phy_id);
 995		return 0;
 996	}
 997
 998	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
 999	if (res) {
1000		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1001			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1002		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1003		return res;
1004	}
1005
1006	if (sas_ex_join_wide_port(dev, phy_id)) {
1007		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1008			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1009		return res;
1010	}
1011
1012	switch (ex_phy->attached_dev_type) {
1013	case SAS_END_DEVICE:
1014	case SAS_SATA_PENDING:
1015		child = sas_ex_discover_end_dev(dev, phy_id);
1016		break;
1017	case SAS_FANOUT_EXPANDER_DEVICE:
1018		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1019			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1020				 SAS_ADDR(ex_phy->attached_sas_addr),
1021				 ex_phy->attached_phy_id,
1022				 SAS_ADDR(dev->sas_addr),
1023				 phy_id);
 
1024			sas_ex_disable_phy(dev, phy_id);
1025			return res;
1026		} else
1027			memcpy(dev->port->disc.fanout_sas_addr,
1028			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1029		fallthrough;
1030	case SAS_EDGE_EXPANDER_DEVICE:
1031		child = sas_ex_discover_expander(dev, phy_id);
1032		break;
1033	default:
1034		break;
1035	}
1036
1037	if (!child)
1038		pr_notice("ex %016llx phy%02d failed to discover\n",
1039			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040	return res;
1041}
1042
1043static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1044{
1045	struct expander_device *ex = &dev->ex_dev;
1046	int i;
1047
1048	for (i = 0; i < ex->num_phys; i++) {
1049		struct ex_phy *phy = &ex->ex_phy[i];
1050
1051		if (phy->phy_state == PHY_VACANT ||
1052		    phy->phy_state == PHY_NOT_PRESENT)
1053			continue;
1054
1055		if (dev_is_expander(phy->attached_dev_type) &&
 
1056		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1057
1058			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1059
1060			return 1;
1061		}
1062	}
1063	return 0;
1064}
1065
1066static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1067{
1068	struct expander_device *ex = &dev->ex_dev;
1069	struct domain_device *child;
1070	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1071
1072	list_for_each_entry(child, &ex->children, siblings) {
1073		if (!dev_is_expander(child->dev_type))
 
1074			continue;
1075		if (sub_addr[0] == 0) {
1076			sas_find_sub_addr(child, sub_addr);
1077			continue;
1078		} else {
1079			u8 s2[SAS_ADDR_SIZE];
1080
1081			if (sas_find_sub_addr(child, s2) &&
1082			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1083
1084				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1085					  SAS_ADDR(dev->sas_addr),
1086					  SAS_ADDR(child->sas_addr),
1087					  SAS_ADDR(s2),
1088					  SAS_ADDR(sub_addr));
 
 
1089
1090				sas_ex_disable_port(child, s2);
1091			}
1092		}
1093	}
1094	return 0;
1095}
1096/**
1097 * sas_ex_discover_devices - discover devices attached to this expander
1098 * @dev: pointer to the expander domain device
1099 * @single: if you want to do a single phy, else set to -1;
1100 *
1101 * Configure this expander for use with its devices and register the
1102 * devices of this expander.
1103 */
1104static int sas_ex_discover_devices(struct domain_device *dev, int single)
1105{
1106	struct expander_device *ex = &dev->ex_dev;
1107	int i = 0, end = ex->num_phys;
1108	int res = 0;
1109
1110	if (0 <= single && single < end) {
1111		i = single;
1112		end = i+1;
1113	}
1114
1115	for ( ; i < end; i++) {
1116		struct ex_phy *ex_phy = &ex->ex_phy[i];
1117
1118		if (ex_phy->phy_state == PHY_VACANT ||
1119		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1120		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1121			continue;
1122
1123		switch (ex_phy->linkrate) {
1124		case SAS_PHY_DISABLED:
1125		case SAS_PHY_RESET_PROBLEM:
1126		case SAS_SATA_PORT_SELECTOR:
1127			continue;
1128		default:
1129			res = sas_ex_discover_dev(dev, i);
1130			if (res)
1131				break;
1132			continue;
1133		}
1134	}
1135
1136	if (!res)
1137		sas_check_level_subtractive_boundary(dev);
1138
1139	return res;
1140}
1141
1142static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1143{
1144	struct expander_device *ex = &dev->ex_dev;
1145	int i;
1146	u8  *sub_sas_addr = NULL;
1147
1148	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1149		return 0;
1150
1151	for (i = 0; i < ex->num_phys; i++) {
1152		struct ex_phy *phy = &ex->ex_phy[i];
1153
1154		if (phy->phy_state == PHY_VACANT ||
1155		    phy->phy_state == PHY_NOT_PRESENT)
1156			continue;
1157
1158		if (dev_is_expander(phy->attached_dev_type) &&
 
1159		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1160
1161			if (!sub_sas_addr)
1162				sub_sas_addr = &phy->attached_sas_addr[0];
1163			else if (SAS_ADDR(sub_sas_addr) !=
1164				 SAS_ADDR(phy->attached_sas_addr)) {
1165
1166				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1167					  SAS_ADDR(dev->sas_addr), i,
1168					  SAS_ADDR(phy->attached_sas_addr),
1169					  SAS_ADDR(sub_sas_addr));
 
 
1170				sas_ex_disable_phy(dev, i);
1171			}
1172		}
1173	}
1174	return 0;
1175}
1176
1177static void sas_print_parent_topology_bug(struct domain_device *child,
1178						 struct ex_phy *parent_phy,
1179						 struct ex_phy *child_phy)
1180{
1181	static const char *ex_type[] = {
1182		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1183		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1184	};
1185	struct domain_device *parent = child->parent;
1186
1187	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1188		  ex_type[parent->dev_type],
1189		  SAS_ADDR(parent->sas_addr),
1190		  parent_phy->phy_id,
1191
1192		  ex_type[child->dev_type],
1193		  SAS_ADDR(child->sas_addr),
1194		  child_phy->phy_id,
1195
1196		  sas_route_char(parent, parent_phy),
1197		  sas_route_char(child, child_phy));
1198}
1199
1200static bool sas_eeds_valid(struct domain_device *parent,
1201			   struct domain_device *child)
1202{
1203	struct sas_discovery *disc = &parent->port->disc;
1204
1205	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1206		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1207	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1208		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1209}
1210
1211static int sas_check_eeds(struct domain_device *child,
1212			  struct ex_phy *parent_phy,
1213			  struct ex_phy *child_phy)
1214{
1215	int res = 0;
1216	struct domain_device *parent = child->parent;
1217	struct sas_discovery *disc = &parent->port->disc;
1218
1219	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1220		res = -ENODEV;
1221		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1222			SAS_ADDR(parent->sas_addr),
1223			parent_phy->phy_id,
1224			SAS_ADDR(child->sas_addr),
1225			child_phy->phy_id,
1226			SAS_ADDR(disc->fanout_sas_addr));
1227	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1228		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1229		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1230	} else if (!sas_eeds_valid(parent, child)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1231		res = -ENODEV;
1232		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1233			SAS_ADDR(parent->sas_addr),
1234			parent_phy->phy_id,
1235			SAS_ADDR(child->sas_addr),
1236			child_phy->phy_id);
 
1237	}
1238
1239	return res;
1240}
1241
1242static int sas_check_edge_expander_topo(struct domain_device *child,
1243					struct ex_phy *parent_phy)
1244{
1245	struct expander_device *child_ex = &child->ex_dev;
1246	struct expander_device *parent_ex = &child->parent->ex_dev;
1247	struct ex_phy *child_phy;
1248
1249	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1250
1251	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1252		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1253		    child_phy->routing_attr != TABLE_ROUTING)
1254			goto error;
1255	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1256		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1257			return sas_check_eeds(child, parent_phy, child_phy);
1258		else if (child_phy->routing_attr != TABLE_ROUTING)
1259			goto error;
1260	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1261		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1262		    (child_phy->routing_attr != TABLE_ROUTING ||
1263		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1264			goto error;
1265	}
1266
1267	return 0;
1268error:
1269	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1270	return -ENODEV;
1271}
1272
1273static int sas_check_fanout_expander_topo(struct domain_device *child,
1274					  struct ex_phy *parent_phy)
1275{
1276	struct expander_device *child_ex = &child->ex_dev;
1277	struct ex_phy *child_phy;
1278
1279	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1280
1281	if (parent_phy->routing_attr == TABLE_ROUTING &&
1282	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1283		return 0;
1284
1285	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1286
1287	return -ENODEV;
1288}
1289
1290static int sas_check_parent_topology(struct domain_device *child)
1291{
1292	struct expander_device *parent_ex;
1293	int i;
1294	int res = 0;
1295
1296	if (!child->parent)
1297		return 0;
1298
1299	if (!dev_is_expander(child->parent->dev_type))
 
1300		return 0;
1301
1302	parent_ex = &child->parent->ex_dev;
1303
1304	for (i = 0; i < parent_ex->num_phys; i++) {
1305		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
 
1306
1307		if (parent_phy->phy_state == PHY_VACANT ||
1308		    parent_phy->phy_state == PHY_NOT_PRESENT)
1309			continue;
1310
1311		if (!sas_phy_match_dev_addr(child, parent_phy))
1312			continue;
1313
 
 
1314		switch (child->parent->dev_type) {
1315		case SAS_EDGE_EXPANDER_DEVICE:
1316			if (sas_check_edge_expander_topo(child, parent_phy))
1317				res = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318			break;
1319		case SAS_FANOUT_EXPANDER_DEVICE:
1320			if (sas_check_fanout_expander_topo(child, parent_phy))
 
 
1321				res = -ENODEV;
 
1322			break;
1323		default:
1324			break;
1325		}
1326	}
1327
1328	return res;
1329}
1330
1331#define RRI_REQ_SIZE  16
1332#define RRI_RESP_SIZE 44
1333
1334static int sas_configure_present(struct domain_device *dev, int phy_id,
1335				 u8 *sas_addr, int *index, int *present)
1336{
1337	int i, res = 0;
1338	struct expander_device *ex = &dev->ex_dev;
1339	struct ex_phy *phy = &ex->ex_phy[phy_id];
1340	u8 *rri_req;
1341	u8 *rri_resp;
1342
1343	*present = 0;
1344	*index = 0;
1345
1346	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1347	if (!rri_req)
1348		return -ENOMEM;
1349
1350	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1351	if (!rri_resp) {
1352		kfree(rri_req);
1353		return -ENOMEM;
1354	}
1355
1356	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1357	rri_req[9] = phy_id;
1358
1359	for (i = 0; i < ex->max_route_indexes ; i++) {
1360		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1361		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1362				       RRI_RESP_SIZE);
1363		if (res)
1364			goto out;
1365		res = rri_resp[2];
1366		if (res == SMP_RESP_NO_INDEX) {
1367			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1368				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1369			goto out;
1370		} else if (res != SMP_RESP_FUNC_ACC) {
1371			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1372				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1373				  i, res);
1374			goto out;
1375		}
1376		if (SAS_ADDR(sas_addr) != 0) {
1377			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1378				*index = i;
1379				if ((rri_resp[12] & 0x80) == 0x80)
1380					*present = 0;
1381				else
1382					*present = 1;
1383				goto out;
1384			} else if (SAS_ADDR(rri_resp+16) == 0) {
1385				*index = i;
1386				*present = 0;
1387				goto out;
1388			}
1389		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1390			   phy->last_da_index < i) {
1391			phy->last_da_index = i;
1392			*index = i;
1393			*present = 0;
1394			goto out;
1395		}
1396	}
1397	res = -1;
1398out:
1399	kfree(rri_req);
1400	kfree(rri_resp);
1401	return res;
1402}
1403
1404#define CRI_REQ_SIZE  44
1405#define CRI_RESP_SIZE  8
1406
1407static int sas_configure_set(struct domain_device *dev, int phy_id,
1408			     u8 *sas_addr, int index, int include)
1409{
1410	int res;
1411	u8 *cri_req;
1412	u8 *cri_resp;
1413
1414	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1415	if (!cri_req)
1416		return -ENOMEM;
1417
1418	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1419	if (!cri_resp) {
1420		kfree(cri_req);
1421		return -ENOMEM;
1422	}
1423
1424	cri_req[1] = SMP_CONF_ROUTE_INFO;
1425	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1426	cri_req[9] = phy_id;
1427	if (SAS_ADDR(sas_addr) == 0 || !include)
1428		cri_req[12] |= 0x80;
1429	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1430
1431	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1432			       CRI_RESP_SIZE);
1433	if (res)
1434		goto out;
1435	res = cri_resp[2];
1436	if (res == SMP_RESP_NO_INDEX) {
1437		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1438			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1439	}
1440out:
1441	kfree(cri_req);
1442	kfree(cri_resp);
1443	return res;
1444}
1445
1446static int sas_configure_phy(struct domain_device *dev, int phy_id,
1447				    u8 *sas_addr, int include)
1448{
1449	int index;
1450	int present;
1451	int res;
1452
1453	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1454	if (res)
1455		return res;
1456	if (include ^ present)
1457		return sas_configure_set(dev, phy_id, sas_addr, index,
1458					 include);
1459
1460	return res;
1461}
1462
1463/**
1464 * sas_configure_parent - configure routing table of parent
1465 * @parent: parent expander
1466 * @child: child expander
1467 * @sas_addr: SAS port identifier of device directly attached to child
1468 * @include: whether or not to include @child in the expander routing table
1469 */
1470static int sas_configure_parent(struct domain_device *parent,
1471				struct domain_device *child,
1472				u8 *sas_addr, int include)
1473{
1474	struct expander_device *ex_parent = &parent->ex_dev;
1475	int res = 0;
1476	int i;
1477
1478	if (parent->parent) {
1479		res = sas_configure_parent(parent->parent, parent, sas_addr,
1480					   include);
1481		if (res)
1482			return res;
1483	}
1484
1485	if (ex_parent->conf_route_table == 0) {
1486		pr_debug("ex %016llx has self-configuring routing table\n",
1487			 SAS_ADDR(parent->sas_addr));
1488		return 0;
1489	}
1490
1491	for (i = 0; i < ex_parent->num_phys; i++) {
1492		struct ex_phy *phy = &ex_parent->ex_phy[i];
1493
1494		if ((phy->routing_attr == TABLE_ROUTING) &&
1495		    sas_phy_match_dev_addr(child, phy)) {
 
1496			res = sas_configure_phy(parent, i, sas_addr, include);
1497			if (res)
1498				return res;
1499		}
1500	}
1501
1502	return res;
1503}
1504
1505/**
1506 * sas_configure_routing - configure routing
1507 * @dev: expander device
1508 * @sas_addr: port identifier of device directly attached to the expander device
1509 */
1510static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1511{
1512	if (dev->parent)
1513		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1514	return 0;
1515}
1516
1517static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1518{
1519	if (dev->parent)
1520		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1521	return 0;
1522}
1523
1524/**
1525 * sas_discover_expander - expander discovery
1526 * @dev: pointer to expander domain device
1527 *
1528 * See comment in sas_discover_sata().
1529 */
1530static int sas_discover_expander(struct domain_device *dev)
1531{
1532	int res;
1533
1534	res = sas_notify_lldd_dev_found(dev);
1535	if (res)
1536		return res;
1537
1538	res = sas_ex_general(dev);
1539	if (res)
1540		goto out_err;
1541	res = sas_ex_manuf_info(dev);
1542	if (res)
1543		goto out_err;
1544
1545	res = sas_expander_discover(dev);
1546	if (res) {
1547		pr_warn("expander %016llx discovery failed(0x%x)\n",
1548			SAS_ADDR(dev->sas_addr), res);
1549		goto out_err;
1550	}
1551
1552	sas_check_ex_subtractive_boundary(dev);
1553	res = sas_check_parent_topology(dev);
1554	if (res)
1555		goto out_err;
1556	return 0;
1557out_err:
1558	sas_notify_lldd_dev_gone(dev);
1559	return res;
1560}
1561
1562static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1563{
1564	int res = 0;
1565	struct domain_device *dev;
1566
1567	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1568		if (dev_is_expander(dev->dev_type)) {
 
1569			struct sas_expander_device *ex =
1570				rphy_to_expander_device(dev->rphy);
1571
1572			if (level == ex->level)
1573				res = sas_ex_discover_devices(dev, -1);
1574			else if (level > 0)
1575				res = sas_ex_discover_devices(port->port_dev, -1);
1576
1577		}
1578	}
1579
1580	return res;
1581}
1582
1583static int sas_ex_bfs_disc(struct asd_sas_port *port)
1584{
1585	int res;
1586	int level;
1587
1588	do {
1589		level = port->disc.max_level;
1590		res = sas_ex_level_discovery(port, level);
1591		mb();
1592	} while (level < port->disc.max_level);
1593
1594	return res;
1595}
1596
1597int sas_discover_root_expander(struct domain_device *dev)
1598{
1599	int res;
1600	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1601
1602	res = sas_rphy_add(dev->rphy);
1603	if (res)
1604		goto out_err;
1605
1606	ex->level = dev->port->disc.max_level; /* 0 */
1607	res = sas_discover_expander(dev);
1608	if (res)
1609		goto out_err2;
1610
1611	sas_ex_bfs_disc(dev->port);
1612
1613	return res;
1614
1615out_err2:
1616	sas_rphy_remove(dev->rphy);
1617out_err:
1618	return res;
1619}
1620
1621/* ---------- Domain revalidation ---------- */
1622
1623static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp,
1624					  u8 *sas_addr,
1625					  enum sas_device_type *type)
1626{
1627	memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE);
1628	*type = to_dev_type(&disc_resp->disc);
1629	if (*type == SAS_PHY_UNUSED)
1630		memset(sas_addr, 0, SAS_ADDR_SIZE);
1631}
1632
1633static int sas_get_phy_discover(struct domain_device *dev,
1634				int phy_id, struct smp_disc_resp *disc_resp)
1635{
1636	int res;
1637	u8 *disc_req;
1638
1639	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1640	if (!disc_req)
1641		return -ENOMEM;
1642
1643	disc_req[1] = SMP_DISCOVER;
1644	disc_req[9] = phy_id;
1645
1646	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1647			       disc_resp, DISCOVER_RESP_SIZE);
1648	if (res)
1649		goto out;
1650	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1651		res = disc_resp->result;
 
 
1652out:
1653	kfree(disc_req);
1654	return res;
1655}
1656
1657static int sas_get_phy_change_count(struct domain_device *dev,
1658				    int phy_id, int *pcc)
1659{
1660	int res;
1661	struct smp_disc_resp *disc_resp;
1662
1663	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1664	if (!disc_resp)
1665		return -ENOMEM;
1666
1667	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1668	if (!res)
1669		*pcc = disc_resp->disc.change_count;
1670
1671	kfree(disc_resp);
1672	return res;
1673}
1674
1675int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1676			     u8 *sas_addr, enum sas_device_type *type)
1677{
1678	int res;
1679	struct smp_disc_resp *disc_resp;
 
1680
1681	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1682	if (!disc_resp)
1683		return -ENOMEM;
 
1684
1685	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1686	if (res == 0)
1687		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type);
 
 
 
 
1688	kfree(disc_resp);
1689	return res;
1690}
1691
1692static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1693			      int from_phy, bool update)
1694{
1695	struct expander_device *ex = &dev->ex_dev;
1696	int res = 0;
1697	int i;
1698
1699	for (i = from_phy; i < ex->num_phys; i++) {
1700		int phy_change_count = 0;
1701
1702		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1703		switch (res) {
1704		case SMP_RESP_PHY_VACANT:
1705		case SMP_RESP_NO_PHY:
1706			continue;
1707		case SMP_RESP_FUNC_ACC:
1708			break;
1709		default:
1710			return res;
1711		}
1712
1713		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1714			if (update)
1715				ex->ex_phy[i].phy_change_count =
1716					phy_change_count;
1717			*phy_id = i;
1718			return 0;
1719		}
1720	}
1721	return 0;
1722}
1723
1724static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1725{
1726	int res;
1727	u8  *rg_req;
1728	struct smp_rg_resp  *rg_resp;
1729
1730	rg_req = alloc_smp_req(RG_REQ_SIZE);
1731	if (!rg_req)
1732		return -ENOMEM;
1733
1734	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1735	if (!rg_resp) {
1736		kfree(rg_req);
1737		return -ENOMEM;
1738	}
1739
1740	rg_req[1] = SMP_REPORT_GENERAL;
1741
1742	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1743			       RG_RESP_SIZE);
1744	if (res)
1745		goto out;
1746	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1747		res = rg_resp->result;
1748		goto out;
1749	}
1750
1751	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1752out:
1753	kfree(rg_resp);
1754	kfree(rg_req);
1755	return res;
1756}
1757/**
1758 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1759 * @dev:domain device to be detect.
1760 * @src_dev: the device which originated BROADCAST(CHANGE).
1761 *
1762 * Add self-configuration expander support. Suppose two expander cascading,
1763 * when the first level expander is self-configuring, hotplug the disks in
1764 * second level expander, BROADCAST(CHANGE) will not only be originated
1765 * in the second level expander, but also be originated in the first level
1766 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1767 * expander changed count in two level expanders will all increment at least
1768 * once, but the phy which chang count has changed is the source device which
1769 * we concerned.
1770 */
1771
1772static int sas_find_bcast_dev(struct domain_device *dev,
1773			      struct domain_device **src_dev)
1774{
1775	struct expander_device *ex = &dev->ex_dev;
1776	int ex_change_count = -1;
1777	int phy_id = -1;
1778	int res;
1779	struct domain_device *ch;
1780
1781	res = sas_get_ex_change_count(dev, &ex_change_count);
1782	if (res)
1783		goto out;
1784	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1785		/* Just detect if this expander phys phy change count changed,
1786		* in order to determine if this expander originate BROADCAST,
1787		* and do not update phy change count field in our structure.
1788		*/
1789		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1790		if (phy_id != -1) {
1791			*src_dev = dev;
1792			ex->ex_change_count = ex_change_count;
1793			pr_info("ex %016llx phy%02d change count has changed\n",
1794				SAS_ADDR(dev->sas_addr), phy_id);
1795			return res;
1796		} else
1797			pr_info("ex %016llx phys DID NOT change\n",
1798				SAS_ADDR(dev->sas_addr));
1799	}
1800	list_for_each_entry(ch, &ex->children, siblings) {
1801		if (dev_is_expander(ch->dev_type)) {
1802			res = sas_find_bcast_dev(ch, src_dev);
1803			if (*src_dev)
1804				return res;
1805		}
1806	}
1807out:
1808	return res;
1809}
1810
1811static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1812{
1813	struct expander_device *ex = &dev->ex_dev;
1814	struct domain_device *child, *n;
1815
1816	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1817		set_bit(SAS_DEV_GONE, &child->state);
1818		if (dev_is_expander(child->dev_type))
 
1819			sas_unregister_ex_tree(port, child);
1820		else
1821			sas_unregister_dev(port, child);
1822	}
1823	sas_unregister_dev(port, dev);
1824}
1825
1826static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1827					 int phy_id, bool last)
1828{
1829	struct expander_device *ex_dev = &parent->ex_dev;
1830	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1831	struct domain_device *child, *n, *found = NULL;
1832	if (last) {
1833		list_for_each_entry_safe(child, n,
1834			&ex_dev->children, siblings) {
1835			if (sas_phy_match_dev_addr(child, phy)) {
 
1836				set_bit(SAS_DEV_GONE, &child->state);
1837				if (dev_is_expander(child->dev_type))
 
1838					sas_unregister_ex_tree(parent->port, child);
1839				else
1840					sas_unregister_dev(parent->port, child);
1841				found = child;
1842				break;
1843			}
1844		}
1845		sas_disable_routing(parent, phy->attached_sas_addr);
1846	}
1847	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1848	if (phy->port) {
1849		sas_port_delete_phy(phy->port, phy->phy);
1850		sas_device_set_phy(found, phy->port);
1851		if (phy->port->num_phys == 0)
1852			list_add_tail(&phy->port->del_list,
1853				&parent->port->sas_port_del_list);
1854		phy->port = NULL;
1855	}
1856}
1857
1858static int sas_discover_bfs_by_root_level(struct domain_device *root,
1859					  const int level)
1860{
1861	struct expander_device *ex_root = &root->ex_dev;
1862	struct domain_device *child;
1863	int res = 0;
1864
1865	list_for_each_entry(child, &ex_root->children, siblings) {
1866		if (dev_is_expander(child->dev_type)) {
 
1867			struct sas_expander_device *ex =
1868				rphy_to_expander_device(child->rphy);
1869
1870			if (level > ex->level)
1871				res = sas_discover_bfs_by_root_level(child,
1872								     level);
1873			else if (level == ex->level)
1874				res = sas_ex_discover_devices(child, -1);
1875		}
1876	}
1877	return res;
1878}
1879
1880static int sas_discover_bfs_by_root(struct domain_device *dev)
1881{
1882	int res;
1883	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1884	int level = ex->level+1;
1885
1886	res = sas_ex_discover_devices(dev, -1);
1887	if (res)
1888		goto out;
1889	do {
1890		res = sas_discover_bfs_by_root_level(dev, level);
1891		mb();
1892		level += 1;
1893	} while (level <= dev->port->disc.max_level);
1894out:
1895	return res;
1896}
1897
1898static int sas_discover_new(struct domain_device *dev, int phy_id)
1899{
1900	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1901	struct domain_device *child;
1902	int res;
1903
1904	pr_debug("ex %016llx phy%02d new device attached\n",
1905		 SAS_ADDR(dev->sas_addr), phy_id);
1906	res = sas_ex_phy_discover(dev, phy_id);
1907	if (res)
1908		return res;
1909
1910	if (sas_ex_join_wide_port(dev, phy_id))
1911		return 0;
1912
1913	res = sas_ex_discover_devices(dev, phy_id);
1914	if (res)
1915		return res;
1916	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1917		if (sas_phy_match_dev_addr(child, ex_phy)) {
1918			if (dev_is_expander(child->dev_type))
 
 
1919				res = sas_discover_bfs_by_root(child);
1920			break;
1921		}
1922	}
1923	return res;
1924}
1925
1926static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1927{
1928	if (old == new)
1929		return true;
1930
1931	/* treat device directed resets as flutter, if we went
1932	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1933	 */
1934	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1935	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1936		return true;
1937
1938	return false;
1939}
1940
1941static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1942			      bool last, int sibling)
1943{
1944	struct expander_device *ex = &dev->ex_dev;
1945	struct ex_phy *phy = &ex->ex_phy[phy_id];
1946	enum sas_device_type type = SAS_PHY_UNUSED;
1947	struct smp_disc_resp *disc_resp;
1948	u8 sas_addr[SAS_ADDR_SIZE];
1949	char msg[80] = "";
1950	int res;
1951
1952	if (!last)
1953		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1954
1955	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1956		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1957
1958	memset(sas_addr, 0, SAS_ADDR_SIZE);
1959	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1960	if (!disc_resp)
1961		return -ENOMEM;
1962
1963	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1964	switch (res) {
1965	case SMP_RESP_NO_PHY:
1966		phy->phy_state = PHY_NOT_PRESENT;
1967		sas_unregister_devs_sas_addr(dev, phy_id, last);
1968		goto out_free_resp;
1969	case SMP_RESP_PHY_VACANT:
1970		phy->phy_state = PHY_VACANT;
1971		sas_unregister_devs_sas_addr(dev, phy_id, last);
1972		goto out_free_resp;
1973	case SMP_RESP_FUNC_ACC:
1974		break;
1975	case -ECOMM:
1976		break;
1977	default:
1978		goto out_free_resp;
1979	}
1980
1981	if (res == 0)
1982		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type);
1983
1984	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1985		phy->phy_state = PHY_EMPTY;
1986		sas_unregister_devs_sas_addr(dev, phy_id, last);
1987		/*
1988		 * Even though the PHY is empty, for convenience we update
1989		 * the PHY info, like negotiated linkrate.
1990		 */
1991		if (res == 0)
1992			sas_set_ex_phy(dev, phy_id, disc_resp);
1993		goto out_free_resp;
1994	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1995		   dev_type_flutter(type, phy->attached_dev_type)) {
1996		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1997		char *action = "";
1998
1999		sas_ex_phy_discover(dev, phy_id);
2000
2001		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2002			action = ", needs recovery";
2003		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2004			 SAS_ADDR(dev->sas_addr), phy_id, action);
2005		goto out_free_resp;
2006	}
2007
2008	/* we always have to delete the old device when we went here */
2009	pr_info("ex %016llx phy%02d replace %016llx\n",
2010		SAS_ADDR(dev->sas_addr), phy_id,
2011		SAS_ADDR(phy->attached_sas_addr));
2012	sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
2013
2014	res = sas_discover_new(dev, phy_id);
2015out_free_resp:
2016	kfree(disc_resp);
2017	return res;
2018}
2019
2020/**
2021 * sas_rediscover - revalidate the domain.
2022 * @dev:domain device to be detect.
2023 * @phy_id: the phy id will be detected.
2024 *
2025 * NOTE: this process _must_ quit (return) as soon as any connection
2026 * errors are encountered.  Connection recovery is done elsewhere.
2027 * Discover process only interrogates devices in order to discover the
2028 * domain.For plugging out, we un-register the device only when it is
2029 * the last phy in the port, for other phys in this port, we just delete it
2030 * from the port.For inserting, we do discovery when it is the
2031 * first phy,for other phys in this port, we add it to the port to
2032 * forming the wide-port.
2033 */
2034static int sas_rediscover(struct domain_device *dev, const int phy_id)
2035{
2036	struct expander_device *ex = &dev->ex_dev;
2037	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2038	int res = 0;
2039	int i;
2040	bool last = true;	/* is this the last phy of the port */
2041
2042	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2043		 SAS_ADDR(dev->sas_addr), phy_id);
2044
2045	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2046		for (i = 0; i < ex->num_phys; i++) {
2047			struct ex_phy *phy = &ex->ex_phy[i];
2048
2049			if (i == phy_id)
2050				continue;
2051			if (sas_phy_addr_match(phy, changed_phy)) {
 
 
 
2052				last = false;
2053				break;
2054			}
2055		}
2056		res = sas_rediscover_dev(dev, phy_id, last, i);
2057	} else
2058		res = sas_discover_new(dev, phy_id);
2059	return res;
2060}
2061
2062/**
2063 * sas_ex_revalidate_domain - revalidate the domain
2064 * @port_dev: port domain device.
2065 *
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered.  Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.
2070 */
2071int sas_ex_revalidate_domain(struct domain_device *port_dev)
2072{
2073	int res;
2074	struct domain_device *dev = NULL;
2075
2076	res = sas_find_bcast_dev(port_dev, &dev);
2077	if (res == 0 && dev) {
2078		struct expander_device *ex = &dev->ex_dev;
2079		int i = 0, phy_id;
2080
2081		do {
2082			phy_id = -1;
2083			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2084			if (phy_id == -1)
2085				break;
2086			res = sas_rediscover(dev, phy_id);
2087			i = phy_id + 1;
2088		} while (i < ex->num_phys);
 
 
 
2089	}
2090	return res;
2091}
2092
2093int sas_find_attached_phy_id(struct expander_device *ex_dev,
2094			     struct domain_device *dev)
2095{
2096	struct ex_phy *phy;
2097	int phy_id;
 
2098
2099	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2100		phy = &ex_dev->ex_phy[phy_id];
2101		if (sas_phy_match_dev_addr(dev, phy))
2102			return phy_id;
2103	}
2104
2105	return -ENODEV;
2106}
2107EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2108
2109void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2110		struct sas_rphy *rphy)
2111{
2112	struct domain_device *dev;
2113	unsigned int rcvlen = 0;
2114	int ret = -EINVAL;
2115
2116	/* no rphy means no smp target support (ie aic94xx host) */
2117	if (!rphy)
2118		return sas_smp_host_handler(job, shost);
2119
2120	switch (rphy->identify.device_type) {
2121	case SAS_EDGE_EXPANDER_DEVICE:
2122	case SAS_FANOUT_EXPANDER_DEVICE:
2123		break;
2124	default:
2125		pr_err("%s: can we send a smp request to a device?\n",
2126		       __func__);
2127		goto out;
2128	}
2129
2130	dev = sas_find_dev_by_rphy(rphy);
2131	if (!dev) {
2132		pr_err("%s: fail to find a domain_device?\n", __func__);
2133		goto out;
2134	}
2135
2136	/* do we need to support multiple segments? */
2137	if (job->request_payload.sg_cnt > 1 ||
2138	    job->reply_payload.sg_cnt > 1) {
2139		pr_info("%s: multiple segments req %u, rsp %u\n",
2140			__func__, job->request_payload.payload_len,
2141			job->reply_payload.payload_len);
2142		goto out;
2143	}
2144
2145	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2146			job->reply_payload.sg_list);
2147	if (ret >= 0) {
2148		/* bsg_job_done() requires the length received  */
2149		rcvlen = job->reply_payload.payload_len - ret;
 
2150		ret = 0;
 
 
 
2151	}
2152
2153out:
2154	bsg_job_done(job, ret, rcvlen);
2155}