Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
 
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->slow_task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->slow_task->timer))
  60		return;
  61	complete(&task->slow_task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
  74
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_slow_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->slow_task->timer.data = (unsigned long) task;
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_device_type to_dev_type(struct discover_resp *dr)
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SAS_SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 199{
 200	enum sas_device_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 238	/* Handle vacant phy - rest of dr data is not valid so skip it */
 239	if (phy->phy_state == PHY_VACANT) {
 240		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 241		phy->attached_dev_type = SAS_PHY_UNUSED;
 242		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 243			phy->phy_id = phy_id;
 244			goto skip;
 245		} else
 246			goto out;
 247	}
 248
 249	phy->attached_dev_type = to_dev_type(dr);
 250	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 251		goto out;
 252	phy->phy_id = phy_id;
 253	phy->linkrate = dr->linkrate;
 254	phy->attached_sata_host = dr->attached_sata_host;
 255	phy->attached_sata_dev  = dr->attached_sata_dev;
 256	phy->attached_sata_ps   = dr->attached_sata_ps;
 257	phy->attached_iproto = dr->iproto << 1;
 258	phy->attached_tproto = dr->tproto << 1;
 259	/* help some expanders that fail to zero sas_address in the 'no
 260	 * device' case
 261	 */
 262	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 263	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 264		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 265	else
 266		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 267	phy->attached_phy_id = dr->attached_phy_id;
 268	phy->phy_change_count = dr->change_count;
 269	phy->routing_attr = dr->routing_attr;
 270	phy->virtual = dr->virtual;
 271	phy->last_da_index = -1;
 272
 273	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 274	phy->phy->identify.device_type = dr->attached_dev_type;
 275	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 276	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 277	if (!phy->attached_tproto && dr->attached_sata_dev)
 278		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 279	phy->phy->identify.phy_identifier = phy_id;
 280	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 281	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 282	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 283	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 284	phy->phy->negotiated_linkrate = phy->linkrate;
 
 285
 286 skip:
 287	if (new_phy)
 288		if (sas_phy_add(phy->phy)) {
 289			sas_phy_free(phy->phy);
 290			return;
 291		}
 292
 293 out:
 294	switch (phy->attached_dev_type) {
 295	case SAS_SATA_PENDING:
 296		type = "stp pending";
 297		break;
 298	case SAS_PHY_UNUSED:
 299		type = "no device";
 300		break;
 301	case SAS_END_DEVICE:
 302		if (phy->attached_iproto) {
 303			if (phy->attached_tproto)
 304				type = "host+target";
 305			else
 306				type = "host";
 307		} else {
 308			if (dr->attached_sata_dev)
 309				type = "stp";
 310			else
 311				type = "ssp";
 312		}
 313		break;
 314	case SAS_EDGE_EXPANDER_DEVICE:
 315	case SAS_FANOUT_EXPANDER_DEVICE:
 316		type = "smp";
 317		break;
 318	default:
 319		type = "unknown";
 320	}
 321
 322	/* this routine is polled by libata error recovery so filter
 323	 * unimportant messages
 324	 */
 325	if (new_phy || phy->attached_dev_type != dev_type ||
 326	    phy->linkrate != linkrate ||
 327	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 328		/* pass */;
 329	else
 330		return;
 331
 332	/* if the attached device type changed and ata_eh is active,
 333	 * make sure we run revalidation when eh completes (see:
 334	 * sas_enable_revalidation)
 335	 */
 336	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 337		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 338
 339	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 340		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 341		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 342		    sas_route_char(dev, phy), phy->linkrate,
 343		    SAS_ADDR(phy->attached_sas_addr), type);
 344}
 345
 346/* check if we have an existing attached ata device on this expander phy */
 347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 348{
 349	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 350	struct domain_device *dev;
 351	struct sas_rphy *rphy;
 352
 353	if (!ex_phy->port)
 354		return NULL;
 355
 356	rphy = ex_phy->port->rphy;
 357	if (!rphy)
 358		return NULL;
 359
 360	dev = sas_find_dev_by_rphy(rphy);
 361
 362	if (dev && dev_is_sata(dev))
 363		return dev;
 364
 365	return NULL;
 366}
 367
 368#define DISCOVER_REQ_SIZE  16
 369#define DISCOVER_RESP_SIZE 56
 370
 371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 372				      u8 *disc_resp, int single)
 373{
 374	struct discover_resp *dr;
 375	int res;
 376
 377	disc_req[9] = single;
 378
 379	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 380			       disc_resp, DISCOVER_RESP_SIZE);
 381	if (res)
 382		return res;
 383	dr = &((struct smp_resp *)disc_resp)->disc;
 384	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 385		sas_printk("Found loopback topology, just ignore it!\n");
 386		return 0;
 387	}
 388	sas_set_ex_phy(dev, single, disc_resp);
 389	return 0;
 390}
 391
 392int sas_ex_phy_discover(struct domain_device *dev, int single)
 393{
 394	struct expander_device *ex = &dev->ex_dev;
 395	int  res = 0;
 396	u8   *disc_req;
 397	u8   *disc_resp;
 398
 399	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 400	if (!disc_req)
 401		return -ENOMEM;
 402
 403	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 404	if (!disc_resp) {
 405		kfree(disc_req);
 406		return -ENOMEM;
 407	}
 408
 409	disc_req[1] = SMP_DISCOVER;
 410
 411	if (0 <= single && single < ex->num_phys) {
 412		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 413	} else {
 414		int i;
 415
 416		for (i = 0; i < ex->num_phys; i++) {
 417			res = sas_ex_phy_discover_helper(dev, disc_req,
 418							 disc_resp, i);
 419			if (res)
 420				goto out_err;
 421		}
 422	}
 423out_err:
 424	kfree(disc_resp);
 425	kfree(disc_req);
 426	return res;
 427}
 428
 429static int sas_expander_discover(struct domain_device *dev)
 430{
 431	struct expander_device *ex = &dev->ex_dev;
 432	int res = -ENOMEM;
 433
 434	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 435	if (!ex->ex_phy)
 436		return -ENOMEM;
 437
 438	res = sas_ex_phy_discover(dev, -1);
 439	if (res)
 440		goto out_err;
 441
 442	return 0;
 443 out_err:
 444	kfree(ex->ex_phy);
 445	ex->ex_phy = NULL;
 446	return res;
 447}
 448
 449#define MAX_EXPANDER_PHYS 128
 450
 451static void ex_assign_report_general(struct domain_device *dev,
 452					    struct smp_resp *resp)
 453{
 454	struct report_general_resp *rg = &resp->rg;
 455
 456	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 457	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 458	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 459	dev->ex_dev.t2t_supp = rg->t2t_supp;
 460	dev->ex_dev.conf_route_table = rg->conf_route_table;
 461	dev->ex_dev.configuring = rg->configuring;
 462	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 463}
 464
 465#define RG_REQ_SIZE   8
 466#define RG_RESP_SIZE 32
 467
 468static int sas_ex_general(struct domain_device *dev)
 469{
 470	u8 *rg_req;
 471	struct smp_resp *rg_resp;
 472	int res;
 473	int i;
 474
 475	rg_req = alloc_smp_req(RG_REQ_SIZE);
 476	if (!rg_req)
 477		return -ENOMEM;
 478
 479	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 480	if (!rg_resp) {
 481		kfree(rg_req);
 482		return -ENOMEM;
 483	}
 484
 485	rg_req[1] = SMP_REPORT_GENERAL;
 486
 487	for (i = 0; i < 5; i++) {
 488		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 489				       RG_RESP_SIZE);
 490
 491		if (res) {
 492			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 493				    SAS_ADDR(dev->sas_addr), res);
 494			goto out;
 495		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 496			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 497				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 498			res = rg_resp->result;
 499			goto out;
 500		}
 501
 502		ex_assign_report_general(dev, rg_resp);
 503
 504		if (dev->ex_dev.configuring) {
 505			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 506				    SAS_ADDR(dev->sas_addr));
 507			schedule_timeout_interruptible(5*HZ);
 508		} else
 509			break;
 510	}
 511out:
 512	kfree(rg_req);
 513	kfree(rg_resp);
 514	return res;
 515}
 516
 517static void ex_assign_manuf_info(struct domain_device *dev, void
 518					*_mi_resp)
 519{
 520	u8 *mi_resp = _mi_resp;
 521	struct sas_rphy *rphy = dev->rphy;
 522	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 523
 524	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 525	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 526	memcpy(edev->product_rev, mi_resp + 36,
 527	       SAS_EXPANDER_PRODUCT_REV_LEN);
 528
 529	if (mi_resp[8] & 1) {
 530		memcpy(edev->component_vendor_id, mi_resp + 40,
 531		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 532		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 533		edev->component_revision_id = mi_resp[50];
 534	}
 535}
 536
 537#define MI_REQ_SIZE   8
 538#define MI_RESP_SIZE 64
 539
 540static int sas_ex_manuf_info(struct domain_device *dev)
 541{
 542	u8 *mi_req;
 543	u8 *mi_resp;
 544	int res;
 545
 546	mi_req = alloc_smp_req(MI_REQ_SIZE);
 547	if (!mi_req)
 548		return -ENOMEM;
 549
 550	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 551	if (!mi_resp) {
 552		kfree(mi_req);
 553		return -ENOMEM;
 554	}
 555
 556	mi_req[1] = SMP_REPORT_MANUF_INFO;
 557
 558	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 559	if (res) {
 560		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 561			    SAS_ADDR(dev->sas_addr), res);
 562		goto out;
 563	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 564		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 565			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 566		goto out;
 567	}
 568
 569	ex_assign_manuf_info(dev, mi_resp);
 570out:
 571	kfree(mi_req);
 572	kfree(mi_resp);
 573	return res;
 574}
 575
 576#define PC_REQ_SIZE  44
 577#define PC_RESP_SIZE 8
 578
 579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 580			enum phy_func phy_func,
 581			struct sas_phy_linkrates *rates)
 582{
 583	u8 *pc_req;
 584	u8 *pc_resp;
 585	int res;
 586
 587	pc_req = alloc_smp_req(PC_REQ_SIZE);
 588	if (!pc_req)
 589		return -ENOMEM;
 590
 591	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 592	if (!pc_resp) {
 593		kfree(pc_req);
 594		return -ENOMEM;
 595	}
 596
 597	pc_req[1] = SMP_PHY_CONTROL;
 598	pc_req[9] = phy_id;
 599	pc_req[10]= phy_func;
 600	if (rates) {
 601		pc_req[32] = rates->minimum_linkrate << 4;
 602		pc_req[33] = rates->maximum_linkrate << 4;
 603	}
 604
 605	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 606
 607	kfree(pc_resp);
 608	kfree(pc_req);
 609	return res;
 610}
 611
 612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 613{
 614	struct expander_device *ex = &dev->ex_dev;
 615	struct ex_phy *phy = &ex->ex_phy[phy_id];
 616
 617	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 618	phy->linkrate = SAS_PHY_DISABLED;
 619}
 620
 621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 622{
 623	struct expander_device *ex = &dev->ex_dev;
 624	int i;
 625
 626	for (i = 0; i < ex->num_phys; i++) {
 627		struct ex_phy *phy = &ex->ex_phy[i];
 628
 629		if (phy->phy_state == PHY_VACANT ||
 630		    phy->phy_state == PHY_NOT_PRESENT)
 631			continue;
 632
 633		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 634			sas_ex_disable_phy(dev, i);
 635	}
 636}
 637
 638static int sas_dev_present_in_domain(struct asd_sas_port *port,
 639					    u8 *sas_addr)
 640{
 641	struct domain_device *dev;
 642
 643	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 644		return 1;
 645	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 646		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 647			return 1;
 648	}
 649	return 0;
 650}
 651
 652#define RPEL_REQ_SIZE	16
 653#define RPEL_RESP_SIZE	32
 654int sas_smp_get_phy_events(struct sas_phy *phy)
 655{
 656	int res;
 657	u8 *req;
 658	u8 *resp;
 659	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 660	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 661
 662	req = alloc_smp_req(RPEL_REQ_SIZE);
 663	if (!req)
 664		return -ENOMEM;
 665
 666	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 667	if (!resp) {
 668		kfree(req);
 669		return -ENOMEM;
 670	}
 671
 672	req[1] = SMP_REPORT_PHY_ERR_LOG;
 673	req[9] = phy->number;
 674
 675	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 676			            resp, RPEL_RESP_SIZE);
 677
 678	if (!res)
 679		goto out;
 680
 681	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 682	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 683	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 684	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 685
 686 out:
 
 687	kfree(resp);
 688	return res;
 689
 690}
 691
 692#ifdef CONFIG_SCSI_SAS_ATA
 693
 694#define RPS_REQ_SIZE  16
 695#define RPS_RESP_SIZE 60
 696
 697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 698			    struct smp_resp *rps_resp)
 699{
 700	int res;
 701	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 702	u8 *resp = (u8 *)rps_resp;
 703
 704	if (!rps_req)
 705		return -ENOMEM;
 706
 707	rps_req[1] = SMP_REPORT_PHY_SATA;
 708	rps_req[9] = phy_id;
 709
 710	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 711			            rps_resp, RPS_RESP_SIZE);
 712
 713	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 714	 * standards cockup here.  sas-2 explicitly specifies the FIS
 715	 * should be encoded so that FIS type is in resp[24].
 716	 * However, some expanders endian reverse this.  Undo the
 717	 * reversal here */
 718	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 719		int i;
 720
 721		for (i = 0; i < 5; i++) {
 722			int j = 24 + (i*4);
 723			u8 a, b;
 724			a = resp[j + 0];
 725			b = resp[j + 1];
 726			resp[j + 0] = resp[j + 3];
 727			resp[j + 1] = resp[j + 2];
 728			resp[j + 2] = b;
 729			resp[j + 3] = a;
 730		}
 731	}
 732
 733	kfree(rps_req);
 734	return res;
 735}
 736#endif
 737
 738static void sas_ex_get_linkrate(struct domain_device *parent,
 739				       struct domain_device *child,
 740				       struct ex_phy *parent_phy)
 741{
 742	struct expander_device *parent_ex = &parent->ex_dev;
 743	struct sas_port *port;
 744	int i;
 745
 746	child->pathways = 0;
 747
 748	port = parent_phy->port;
 749
 750	for (i = 0; i < parent_ex->num_phys; i++) {
 751		struct ex_phy *phy = &parent_ex->ex_phy[i];
 752
 753		if (phy->phy_state == PHY_VACANT ||
 754		    phy->phy_state == PHY_NOT_PRESENT)
 755			continue;
 756
 757		if (SAS_ADDR(phy->attached_sas_addr) ==
 758		    SAS_ADDR(child->sas_addr)) {
 759
 760			child->min_linkrate = min(parent->min_linkrate,
 761						  phy->linkrate);
 762			child->max_linkrate = max(parent->max_linkrate,
 763						  phy->linkrate);
 764			child->pathways++;
 765			sas_port_add_phy(port, phy->phy);
 766		}
 767	}
 768	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 769	child->pathways = min(child->pathways, parent->pathways);
 770}
 771
 772static struct domain_device *sas_ex_discover_end_dev(
 773	struct domain_device *parent, int phy_id)
 774{
 775	struct expander_device *parent_ex = &parent->ex_dev;
 776	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 777	struct domain_device *child = NULL;
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	if (phy->attached_sata_host || phy->attached_sata_ps)
 782		return NULL;
 783
 784	child = sas_alloc_device();
 785	if (!child)
 786		return NULL;
 787
 788	kref_get(&parent->kref);
 789	child->parent = parent;
 790	child->port   = parent->port;
 791	child->iproto = phy->attached_iproto;
 792	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 793	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 794	if (!phy->port) {
 795		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 796		if (unlikely(!phy->port))
 797			goto out_err;
 798		if (unlikely(sas_port_add(phy->port) != 0)) {
 799			sas_port_free(phy->port);
 800			goto out_err;
 801		}
 802	}
 803	sas_ex_get_linkrate(parent, child, phy);
 804	sas_device_set_phy(child, phy->port);
 805
 806#ifdef CONFIG_SCSI_SAS_ATA
 807	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 808		res = sas_get_ata_info(child, phy);
 809		if (res)
 810			goto out_free;
 811
 812		sas_init_dev(child);
 813		res = sas_ata_init(child);
 814		if (res)
 815			goto out_free;
 816		rphy = sas_end_device_alloc(phy->port);
 817		if (!rphy)
 818			goto out_free;
 819
 820		child->rphy = rphy;
 821		get_device(&rphy->dev);
 822
 823		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 824
 825		res = sas_discover_sata(child);
 826		if (res) {
 827			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 828				    "%016llx:0x%x returned 0x%x\n",
 829				    SAS_ADDR(child->sas_addr),
 830				    SAS_ADDR(parent->sas_addr), phy_id, res);
 831			goto out_list_del;
 832		}
 833	} else
 834#endif
 835	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 836		child->dev_type = SAS_END_DEVICE;
 837		rphy = sas_end_device_alloc(phy->port);
 838		/* FIXME: error handling */
 839		if (unlikely(!rphy))
 840			goto out_free;
 841		child->tproto = phy->attached_tproto;
 842		sas_init_dev(child);
 843
 844		child->rphy = rphy;
 845		get_device(&rphy->dev);
 846		sas_fill_in_rphy(child, rphy);
 847
 848		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 849
 850		res = sas_discover_end_dev(child);
 851		if (res) {
 852			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 853				    "at %016llx:0x%x returned 0x%x\n",
 854				    SAS_ADDR(child->sas_addr),
 855				    SAS_ADDR(parent->sas_addr), phy_id, res);
 856			goto out_list_del;
 857		}
 858	} else {
 859		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 860			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 861			    phy_id);
 862		goto out_free;
 863	}
 864
 865	list_add_tail(&child->siblings, &parent_ex->children);
 866	return child;
 867
 868 out_list_del:
 869	sas_rphy_free(child->rphy);
 870	list_del(&child->disco_list_node);
 871	spin_lock_irq(&parent->port->dev_list_lock);
 872	list_del(&child->dev_list_node);
 873	spin_unlock_irq(&parent->port->dev_list_lock);
 874 out_free:
 875	sas_port_delete(phy->port);
 876 out_err:
 877	phy->port = NULL;
 878	sas_put_device(child);
 879	return NULL;
 880}
 881
 882/* See if this phy is part of a wide port */
 883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 884{
 885	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 886	int i;
 887
 888	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 889		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 890
 891		if (ephy == phy)
 892			continue;
 893
 894		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 895			    SAS_ADDR_SIZE) && ephy->port) {
 896			sas_port_add_phy(ephy->port, phy->phy);
 897			phy->port = ephy->port;
 898			phy->phy_state = PHY_DEVICE_DISCOVERED;
 899			return true;
 900		}
 901	}
 902
 903	return false;
 904}
 905
 906static struct domain_device *sas_ex_discover_expander(
 907	struct domain_device *parent, int phy_id)
 908{
 909	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 910	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 911	struct domain_device *child = NULL;
 912	struct sas_rphy *rphy;
 913	struct sas_expander_device *edev;
 914	struct asd_sas_port *port;
 915	int res;
 916
 917	if (phy->routing_attr == DIRECT_ROUTING) {
 918		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 919			    "allowed\n",
 920			    SAS_ADDR(parent->sas_addr), phy_id,
 921			    SAS_ADDR(phy->attached_sas_addr),
 922			    phy->attached_phy_id);
 923		return NULL;
 924	}
 925	child = sas_alloc_device();
 926	if (!child)
 927		return NULL;
 928
 929	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 930	/* FIXME: better error handling */
 931	BUG_ON(sas_port_add(phy->port) != 0);
 932
 933
 934	switch (phy->attached_dev_type) {
 935	case SAS_EDGE_EXPANDER_DEVICE:
 936		rphy = sas_expander_alloc(phy->port,
 937					  SAS_EDGE_EXPANDER_DEVICE);
 938		break;
 939	case SAS_FANOUT_EXPANDER_DEVICE:
 940		rphy = sas_expander_alloc(phy->port,
 941					  SAS_FANOUT_EXPANDER_DEVICE);
 942		break;
 943	default:
 944		rphy = NULL;	/* shut gcc up */
 945		BUG();
 946	}
 947	port = parent->port;
 948	child->rphy = rphy;
 949	get_device(&rphy->dev);
 950	edev = rphy_to_expander_device(rphy);
 951	child->dev_type = phy->attached_dev_type;
 952	kref_get(&parent->kref);
 953	child->parent = parent;
 954	child->port = port;
 955	child->iproto = phy->attached_iproto;
 956	child->tproto = phy->attached_tproto;
 957	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 958	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 959	sas_ex_get_linkrate(parent, child, phy);
 960	edev->level = parent_ex->level + 1;
 961	parent->port->disc.max_level = max(parent->port->disc.max_level,
 962					   edev->level);
 963	sas_init_dev(child);
 964	sas_fill_in_rphy(child, rphy);
 965	sas_rphy_add(rphy);
 966
 967	spin_lock_irq(&parent->port->dev_list_lock);
 968	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 969	spin_unlock_irq(&parent->port->dev_list_lock);
 970
 971	res = sas_discover_expander(child);
 972	if (res) {
 973		sas_rphy_delete(rphy);
 974		spin_lock_irq(&parent->port->dev_list_lock);
 975		list_del(&child->dev_list_node);
 976		spin_unlock_irq(&parent->port->dev_list_lock);
 977		sas_put_device(child);
 978		return NULL;
 979	}
 980	list_add_tail(&child->siblings, &parent->ex_dev.children);
 981	return child;
 982}
 983
 984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 985{
 986	struct expander_device *ex = &dev->ex_dev;
 987	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 988	struct domain_device *child = NULL;
 989	int res = 0;
 990
 991	/* Phy state */
 992	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 993		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 994			res = sas_ex_phy_discover(dev, phy_id);
 995		if (res)
 996			return res;
 997	}
 998
 999	/* Parent and domain coherency */
1000	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001			     SAS_ADDR(dev->port->sas_addr))) {
1002		sas_add_parent_port(dev, phy_id);
1003		return 0;
1004	}
1005	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006			    SAS_ADDR(dev->parent->sas_addr))) {
1007		sas_add_parent_port(dev, phy_id);
1008		if (ex_phy->routing_attr == TABLE_ROUTING)
1009			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010		return 0;
1011	}
1012
1013	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020		}
1021		return 0;
1022	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023		return 0;
1024
1025	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030			    "phy 0x%x\n", ex_phy->attached_dev_type,
1031			    SAS_ADDR(dev->sas_addr),
1032			    phy_id);
1033		return 0;
1034	}
1035
1036	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037	if (res) {
1038		SAS_DPRINTK("configure routing for dev %016llx "
1039			    "reported 0x%x. Forgotten\n",
1040			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1041		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042		return res;
1043	}
1044
1045	if (sas_ex_join_wide_port(dev, phy_id)) {
1046		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048		return res;
1049	}
1050
1051	switch (ex_phy->attached_dev_type) {
1052	case SAS_END_DEVICE:
1053	case SAS_SATA_PENDING:
1054		child = sas_ex_discover_end_dev(dev, phy_id);
1055		break;
1056	case SAS_FANOUT_EXPANDER_DEVICE:
1057		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059				    "attached to ex %016llx phy 0x%x\n",
1060				    SAS_ADDR(ex_phy->attached_sas_addr),
1061				    ex_phy->attached_phy_id,
1062				    SAS_ADDR(dev->sas_addr),
1063				    phy_id);
1064			sas_ex_disable_phy(dev, phy_id);
1065			break;
1066		} else
1067			memcpy(dev->port->disc.fanout_sas_addr,
1068			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069		/* fallthrough */
1070	case SAS_EDGE_EXPANDER_DEVICE:
1071		child = sas_ex_discover_expander(dev, phy_id);
1072		break;
1073	default:
1074		break;
1075	}
1076
1077	if (child) {
1078		int i;
1079
1080		for (i = 0; i < ex->num_phys; i++) {
1081			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083				continue;
1084			/*
1085			 * Due to races, the phy might not get added to the
1086			 * wide port, so we add the phy to the wide port here.
1087			 */
1088			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089			    SAS_ADDR(child->sas_addr)) {
1090				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091				if (sas_ex_join_wide_port(dev, i))
1092					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095			}
1096		}
1097	}
1098
1099	return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104	struct expander_device *ex = &dev->ex_dev;
1105	int i;
1106
1107	for (i = 0; i < ex->num_phys; i++) {
1108		struct ex_phy *phy = &ex->ex_phy[i];
1109
1110		if (phy->phy_state == PHY_VACANT ||
1111		    phy->phy_state == PHY_NOT_PRESENT)
1112			continue;
1113
1114		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120			return 1;
1121		}
1122	}
1123	return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128	struct expander_device *ex = &dev->ex_dev;
1129	struct domain_device *child;
1130	u8 sub_addr[8] = {0, };
1131
1132	list_for_each_entry(child, &ex->children, siblings) {
1133		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135			continue;
1136		if (sub_addr[0] == 0) {
1137			sas_find_sub_addr(child, sub_addr);
1138			continue;
1139		} else {
1140			u8 s2[8];
1141
1142			if (sas_find_sub_addr(child, s2) &&
1143			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146					    "diverges from subtractive "
1147					    "boundary %016llx\n",
1148					    SAS_ADDR(dev->sas_addr),
1149					    SAS_ADDR(child->sas_addr),
1150					    SAS_ADDR(s2),
1151					    SAS_ADDR(sub_addr));
1152
1153				sas_ex_disable_port(child, s2);
1154			}
1155		}
1156	}
1157	return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169	struct expander_device *ex = &dev->ex_dev;
1170	int i = 0, end = ex->num_phys;
1171	int res = 0;
1172
1173	if (0 <= single && single < end) {
1174		i = single;
1175		end = i+1;
1176	}
1177
1178	for ( ; i < end; i++) {
1179		struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181		if (ex_phy->phy_state == PHY_VACANT ||
1182		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1183		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184			continue;
1185
1186		switch (ex_phy->linkrate) {
1187		case SAS_PHY_DISABLED:
1188		case SAS_PHY_RESET_PROBLEM:
1189		case SAS_SATA_PORT_SELECTOR:
1190			continue;
1191		default:
1192			res = sas_ex_discover_dev(dev, i);
1193			if (res)
1194				break;
1195			continue;
1196		}
1197	}
1198
1199	if (!res)
1200		sas_check_level_subtractive_boundary(dev);
1201
1202	return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207	struct expander_device *ex = &dev->ex_dev;
1208	int i;
1209	u8  *sub_sas_addr = NULL;
1210
1211	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212		return 0;
1213
1214	for (i = 0; i < ex->num_phys; i++) {
1215		struct ex_phy *phy = &ex->ex_phy[i];
1216
1217		if (phy->phy_state == PHY_VACANT ||
1218		    phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225			if (!sub_sas_addr)
1226				sub_sas_addr = &phy->attached_sas_addr[0];
1227			else if (SAS_ADDR(sub_sas_addr) !=
1228				 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230				SAS_DPRINTK("ex %016llx phy 0x%x "
1231					    "diverges(%016llx) on subtractive "
1232					    "boundary(%016llx). Disabled\n",
1233					    SAS_ADDR(dev->sas_addr), i,
1234					    SAS_ADDR(phy->attached_sas_addr),
1235					    SAS_ADDR(sub_sas_addr));
1236				sas_ex_disable_phy(dev, i);
1237			}
1238		}
1239	}
1240	return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244						 struct ex_phy *parent_phy,
1245						 struct ex_phy *child_phy)
1246{
1247	static const char *ex_type[] = {
1248		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250	};
1251	struct domain_device *parent = child->parent;
1252
1253	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254		   "phy 0x%x has %c:%c routing link!\n",
1255
1256		   ex_type[parent->dev_type],
1257		   SAS_ADDR(parent->sas_addr),
1258		   parent_phy->phy_id,
1259
1260		   ex_type[child->dev_type],
1261		   SAS_ADDR(child->sas_addr),
1262		   child_phy->phy_id,
1263
1264		   sas_route_char(parent, parent_phy),
1265		   sas_route_char(child, child_phy));
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269				 struct ex_phy *parent_phy,
1270				 struct ex_phy *child_phy)
1271{
1272	int res = 0;
1273	struct domain_device *parent = child->parent;
1274
1275	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276		res = -ENODEV;
1277		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1279			    SAS_ADDR(parent->sas_addr),
1280			    parent_phy->phy_id,
1281			    SAS_ADDR(child->sas_addr),
1282			    child_phy->phy_id,
1283			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286		       SAS_ADDR_SIZE);
1287		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288		       SAS_ADDR_SIZE);
1289	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290		    SAS_ADDR(parent->sas_addr)) ||
1291		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1292		    SAS_ADDR(child->sas_addr)))
1293		   &&
1294		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295		     SAS_ADDR(parent->sas_addr)) ||
1296		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1297		     SAS_ADDR(child->sas_addr))))
1298		;
1299	else {
1300		res = -ENODEV;
1301		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302			    "phy 0x%x link forms a third EEDS!\n",
1303			    SAS_ADDR(parent->sas_addr),
1304			    parent_phy->phy_id,
1305			    SAS_ADDR(child->sas_addr),
1306			    child_phy->phy_id);
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326		return 0;
1327
1328	parent_ex = &child->parent->ex_dev;
1329
1330	for (i = 0; i < parent_ex->num_phys; i++) {
1331		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332		struct ex_phy *child_phy;
1333
1334		if (parent_phy->phy_state == PHY_VACANT ||
1335		    parent_phy->phy_state == PHY_NOT_PRESENT)
1336			continue;
1337
1338		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339			continue;
1340
1341		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343		switch (child->parent->dev_type) {
1344		case SAS_EDGE_EXPANDER_DEVICE:
1345			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347				    child_phy->routing_attr != TABLE_ROUTING) {
1348					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349					res = -ENODEV;
1350				}
1351			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353					res = sas_check_eeds(child, parent_phy, child_phy);
1354				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1355					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356					res = -ENODEV;
1357				}
1358			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360				    (child_phy->routing_attr == TABLE_ROUTING &&
1361				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362					/* All good */;
1363				} else {
1364					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365					res = -ENODEV;
1366				}
1367			}
1368			break;
1369		case SAS_FANOUT_EXPANDER_DEVICE:
1370			if (parent_phy->routing_attr != TABLE_ROUTING ||
1371			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373				res = -ENODEV;
1374			}
1375			break;
1376		default:
1377			break;
1378		}
1379	}
1380
1381	return res;
1382}
1383
1384#define RRI_REQ_SIZE  16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388				 u8 *sas_addr, int *index, int *present)
1389{
1390	int i, res = 0;
1391	struct expander_device *ex = &dev->ex_dev;
1392	struct ex_phy *phy = &ex->ex_phy[phy_id];
1393	u8 *rri_req;
1394	u8 *rri_resp;
1395
1396	*present = 0;
1397	*index = 0;
1398
1399	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400	if (!rri_req)
1401		return -ENOMEM;
1402
1403	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404	if (!rri_resp) {
1405		kfree(rri_req);
1406		return -ENOMEM;
1407	}
1408
1409	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410	rri_req[9] = phy_id;
1411
1412	for (i = 0; i < ex->max_route_indexes ; i++) {
1413		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415				       RRI_RESP_SIZE);
1416		if (res)
1417			goto out;
1418		res = rri_resp[2];
1419		if (res == SMP_RESP_NO_INDEX) {
1420			SAS_DPRINTK("overflow of indexes: dev %016llx "
1421				    "phy 0x%x index 0x%x\n",
1422				    SAS_ADDR(dev->sas_addr), phy_id, i);
1423			goto out;
1424		} else if (res != SMP_RESP_FUNC_ACC) {
1425			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426				    "result 0x%x\n", __func__,
1427				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428			goto out;
1429		}
1430		if (SAS_ADDR(sas_addr) != 0) {
1431			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432				*index = i;
1433				if ((rri_resp[12] & 0x80) == 0x80)
1434					*present = 0;
1435				else
1436					*present = 1;
1437				goto out;
1438			} else if (SAS_ADDR(rri_resp+16) == 0) {
1439				*index = i;
1440				*present = 0;
1441				goto out;
1442			}
1443		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1444			   phy->last_da_index < i) {
1445			phy->last_da_index = i;
1446			*index = i;
1447			*present = 0;
1448			goto out;
1449		}
1450	}
1451	res = -1;
1452out:
1453	kfree(rri_req);
1454	kfree(rri_resp);
1455	return res;
1456}
1457
1458#define CRI_REQ_SIZE  44
1459#define CRI_RESP_SIZE  8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462			     u8 *sas_addr, int index, int include)
1463{
1464	int res;
1465	u8 *cri_req;
1466	u8 *cri_resp;
1467
1468	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469	if (!cri_req)
1470		return -ENOMEM;
1471
1472	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473	if (!cri_resp) {
1474		kfree(cri_req);
1475		return -ENOMEM;
1476	}
1477
1478	cri_req[1] = SMP_CONF_ROUTE_INFO;
1479	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480	cri_req[9] = phy_id;
1481	if (SAS_ADDR(sas_addr) == 0 || !include)
1482		cri_req[12] |= 0x80;
1483	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486			       CRI_RESP_SIZE);
1487	if (res)
1488		goto out;
1489	res = cri_resp[2];
1490	if (res == SMP_RESP_NO_INDEX) {
1491		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492			    "index 0x%x\n",
1493			    SAS_ADDR(dev->sas_addr), phy_id, index);
1494	}
1495out:
1496	kfree(cri_req);
1497	kfree(cri_resp);
1498	return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502				    u8 *sas_addr, int include)
1503{
1504	int index;
1505	int present;
1506	int res;
1507
1508	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509	if (res)
1510		return res;
1511	if (include ^ present)
1512		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1513
1514	return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
 
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524				struct domain_device *child,
1525				u8 *sas_addr, int include)
1526{
1527	struct expander_device *ex_parent = &parent->ex_dev;
1528	int res = 0;
1529	int i;
1530
1531	if (parent->parent) {
1532		res = sas_configure_parent(parent->parent, parent, sas_addr,
1533					   include);
1534		if (res)
1535			return res;
1536	}
1537
1538	if (ex_parent->conf_route_table == 0) {
1539		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540			    SAS_ADDR(parent->sas_addr));
1541		return 0;
1542	}
1543
1544	for (i = 0; i < ex_parent->num_phys; i++) {
1545		struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547		if ((phy->routing_attr == TABLE_ROUTING) &&
1548		    (SAS_ADDR(phy->attached_sas_addr) ==
1549		     SAS_ADDR(child->sas_addr))) {
1550			res = sas_configure_phy(parent, i, sas_addr, include);
1551			if (res)
1552				return res;
1553		}
1554	}
1555
1556	return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566	if (dev->parent)
1567		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568	return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572{
1573	if (dev->parent)
1574		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575	return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586	int res;
1587
1588	res = sas_notify_lldd_dev_found(dev);
1589	if (res)
1590		return res;
1591
1592	res = sas_ex_general(dev);
1593	if (res)
1594		goto out_err;
1595	res = sas_ex_manuf_info(dev);
1596	if (res)
1597		goto out_err;
1598
1599	res = sas_expander_discover(dev);
1600	if (res) {
1601		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602			    SAS_ADDR(dev->sas_addr), res);
1603		goto out_err;
1604	}
1605
1606	sas_check_ex_subtractive_boundary(dev);
1607	res = sas_check_parent_topology(dev);
1608	if (res)
1609		goto out_err;
1610	return 0;
1611out_err:
1612	sas_notify_lldd_dev_gone(dev);
1613	return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618	int res = 0;
1619	struct domain_device *dev;
1620
1621	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624			struct sas_expander_device *ex =
1625				rphy_to_expander_device(dev->rphy);
1626
1627			if (level == ex->level)
1628				res = sas_ex_discover_devices(dev, -1);
1629			else if (level > 0)
1630				res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632		}
1633	}
1634
1635	return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640	int res;
1641	int level;
1642
1643	do {
1644		level = port->disc.max_level;
1645		res = sas_ex_level_discovery(port, level);
1646		mb();
1647	} while (level < port->disc.max_level);
1648
1649	return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654	int res;
1655	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657	res = sas_rphy_add(dev->rphy);
1658	if (res)
1659		goto out_err;
1660
1661	ex->level = dev->port->disc.max_level; /* 0 */
1662	res = sas_discover_expander(dev);
1663	if (res)
1664		goto out_err2;
1665
1666	sas_ex_bfs_disc(dev->port);
1667
1668	return res;
1669
1670out_err2:
1671	sas_rphy_remove(dev->rphy);
1672out_err:
1673	return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
1678static int sas_get_phy_discover(struct domain_device *dev,
1679				int phy_id, struct smp_resp *disc_resp)
1680{
1681	int res;
1682	u8 *disc_req;
1683
1684	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685	if (!disc_req)
1686		return -ENOMEM;
1687
1688	disc_req[1] = SMP_DISCOVER;
1689	disc_req[9] = phy_id;
1690
1691	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692			       disc_resp, DISCOVER_RESP_SIZE);
1693	if (res)
1694		goto out;
1695	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696		res = disc_resp->result;
1697		goto out;
1698	}
1699out:
1700	kfree(disc_req);
1701	return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705				    int phy_id, int *pcc)
1706{
1707	int res;
1708	struct smp_resp *disc_resp;
1709
1710	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711	if (!disc_resp)
1712		return -ENOMEM;
1713
1714	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715	if (!res)
1716		*pcc = disc_resp->disc.change_count;
1717
1718	kfree(disc_resp);
1719	return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723				    u8 *sas_addr, enum sas_device_type *type)
1724{
1725	int res;
1726	struct smp_resp *disc_resp;
1727	struct discover_resp *dr;
1728
1729	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730	if (!disc_resp)
1731		return -ENOMEM;
1732	dr = &disc_resp->disc;
1733
1734	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735	if (res == 0) {
1736		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737		*type = to_dev_type(dr);
1738		if (*type == 0)
1739			memset(sas_addr, 0, 8);
1740	}
1741	kfree(disc_resp);
1742	return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746			      int from_phy, bool update)
1747{
1748	struct expander_device *ex = &dev->ex_dev;
1749	int res = 0;
1750	int i;
1751
1752	for (i = from_phy; i < ex->num_phys; i++) {
1753		int phy_change_count = 0;
1754
1755		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756		switch (res) {
1757		case SMP_RESP_PHY_VACANT:
1758		case SMP_RESP_NO_PHY:
1759			continue;
1760		case SMP_RESP_FUNC_ACC:
1761			break;
1762		default:
1763			return res;
1764		}
1765
1766		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767			if (update)
1768				ex->ex_phy[i].phy_change_count =
1769					phy_change_count;
1770			*phy_id = i;
1771			return 0;
1772		}
1773	}
1774	return 0;
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779	int res;
1780	u8  *rg_req;
1781	struct smp_resp  *rg_resp;
1782
1783	rg_req = alloc_smp_req(RG_REQ_SIZE);
1784	if (!rg_req)
1785		return -ENOMEM;
1786
1787	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788	if (!rg_resp) {
1789		kfree(rg_req);
1790		return -ENOMEM;
1791	}
1792
1793	rg_req[1] = SMP_REPORT_GENERAL;
1794
1795	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796			       RG_RESP_SIZE);
1797	if (res)
1798		goto out;
1799	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800		res = rg_resp->result;
1801		goto out;
1802	}
1803
1804	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806	kfree(rg_resp);
1807	kfree(rg_req);
1808	return res;
1809}
1810/**
1811 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826			      struct domain_device **src_dev)
1827{
1828	struct expander_device *ex = &dev->ex_dev;
1829	int ex_change_count = -1;
1830	int phy_id = -1;
1831	int res;
1832	struct domain_device *ch;
1833
1834	res = sas_get_ex_change_count(dev, &ex_change_count);
1835	if (res)
1836		goto out;
1837	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838		/* Just detect if this expander phys phy change count changed,
1839		* in order to determine if this expander originate BROADCAST,
1840		* and do not update phy change count field in our structure.
1841		*/
1842		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843		if (phy_id != -1) {
1844			*src_dev = dev;
1845			ex->ex_change_count = ex_change_count;
1846			SAS_DPRINTK("Expander phy change count has changed\n");
1847			return res;
1848		} else
1849			SAS_DPRINTK("Expander phys DID NOT change\n");
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871			sas_unregister_ex_tree(port, child);
1872		else
1873			sas_unregister_dev(port, child);
1874	}
1875	sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879					 int phy_id, bool last)
1880{
1881	struct expander_device *ex_dev = &parent->ex_dev;
1882	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883	struct domain_device *child, *n, *found = NULL;
1884	if (last) {
1885		list_for_each_entry_safe(child, n,
1886			&ex_dev->children, siblings) {
1887			if (SAS_ADDR(child->sas_addr) ==
1888			    SAS_ADDR(phy->attached_sas_addr)) {
1889				set_bit(SAS_DEV_GONE, &child->state);
1890				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892					sas_unregister_ex_tree(parent->port, child);
1893				else
1894					sas_unregister_dev(parent->port, child);
1895				found = child;
1896				break;
1897			}
1898		}
1899		sas_disable_routing(parent, phy->attached_sas_addr);
1900	}
1901	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902	if (phy->port) {
1903		sas_port_delete_phy(phy->port, phy->phy);
1904		sas_device_set_phy(found, phy->port);
1905		if (phy->port->num_phys == 0)
1906			sas_port_delete(phy->port);
 
1907		phy->port = NULL;
1908	}
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912					  const int level)
1913{
1914	struct expander_device *ex_root = &root->ex_dev;
1915	struct domain_device *child;
1916	int res = 0;
1917
1918	list_for_each_entry(child, &ex_root->children, siblings) {
1919		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921			struct sas_expander_device *ex =
1922				rphy_to_expander_device(child->rphy);
1923
1924			if (level > ex->level)
1925				res = sas_discover_bfs_by_root_level(child,
1926								     level);
1927			else if (level == ex->level)
1928				res = sas_ex_discover_devices(child, -1);
1929		}
1930	}
1931	return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936	int res;
1937	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938	int level = ex->level+1;
1939
1940	res = sas_ex_discover_devices(dev, -1);
1941	if (res)
1942		goto out;
1943	do {
1944		res = sas_discover_bfs_by_root_level(dev, level);
1945		mb();
1946		level += 1;
1947	} while (level <= dev->port->disc.max_level);
1948out:
1949	return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955	struct domain_device *child;
1956	int res;
1957
1958	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959		    SAS_ADDR(dev->sas_addr), phy_id);
1960	res = sas_ex_phy_discover(dev, phy_id);
1961	if (res)
1962		return res;
1963
1964	if (sas_ex_join_wide_port(dev, phy_id))
1965		return 0;
1966
1967	res = sas_ex_discover_devices(dev, phy_id);
1968	if (res)
1969		return res;
1970	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971		if (SAS_ADDR(child->sas_addr) ==
1972		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1973			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975				res = sas_discover_bfs_by_root(child);
1976			break;
1977		}
1978	}
1979	return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984	if (old == new)
1985		return true;
1986
1987	/* treat device directed resets as flutter, if we went
1988	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989	 */
1990	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992		return true;
1993
1994	return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1998{
1999	struct expander_device *ex = &dev->ex_dev;
2000	struct ex_phy *phy = &ex->ex_phy[phy_id];
2001	enum sas_device_type type = SAS_PHY_UNUSED;
2002	u8 sas_addr[8];
2003	int res;
2004
2005	memset(sas_addr, 0, 8);
2006	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007	switch (res) {
2008	case SMP_RESP_NO_PHY:
2009		phy->phy_state = PHY_NOT_PRESENT;
2010		sas_unregister_devs_sas_addr(dev, phy_id, last);
2011		return res;
2012	case SMP_RESP_PHY_VACANT:
2013		phy->phy_state = PHY_VACANT;
2014		sas_unregister_devs_sas_addr(dev, phy_id, last);
2015		return res;
2016	case SMP_RESP_FUNC_ACC:
2017		break;
2018	case -ECOMM:
2019		break;
2020	default:
2021		return res;
2022	}
2023
2024	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025		phy->phy_state = PHY_EMPTY;
2026		sas_unregister_devs_sas_addr(dev, phy_id, last);
2027		return res;
2028	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029		   dev_type_flutter(type, phy->attached_dev_type)) {
2030		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031		char *action = "";
2032
2033		sas_ex_phy_discover(dev, phy_id);
2034
2035		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036			action = ", needs recovery";
2037		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038			    SAS_ADDR(dev->sas_addr), phy_id, action);
2039		return res;
2040	}
2041
2042	/* delete the old link */
2043	if (SAS_ADDR(phy->attached_sas_addr) &&
2044	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046			    SAS_ADDR(dev->sas_addr), phy_id,
2047			    SAS_ADDR(phy->attached_sas_addr));
2048		sas_unregister_devs_sas_addr(dev, phy_id, last);
2049	}
2050
2051	return sas_discover_new(dev, phy_id);
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered.  Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070	struct expander_device *ex = &dev->ex_dev;
2071	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072	int res = 0;
2073	int i;
2074	bool last = true;	/* is this the last phy of the port */
2075
2076	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077		    SAS_ADDR(dev->sas_addr), phy_id);
2078
2079	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080		for (i = 0; i < ex->num_phys; i++) {
2081			struct ex_phy *phy = &ex->ex_phy[i];
2082
2083			if (i == phy_id)
2084				continue;
2085			if (SAS_ADDR(phy->attached_sas_addr) ==
2086			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2087				SAS_DPRINTK("phy%d part of wide port with "
2088					    "phy%d\n", phy_id, i);
2089				last = false;
2090				break;
2091			}
2092		}
2093		res = sas_rediscover_dev(dev, phy_id, last);
2094	} else
2095		res = sas_discover_new(dev, phy_id);
2096	return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered.  Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110	int res;
2111	struct domain_device *dev = NULL;
2112
2113	res = sas_find_bcast_dev(port_dev, &dev);
2114	while (res == 0 && dev) {
2115		struct expander_device *ex = &dev->ex_dev;
2116		int i = 0, phy_id;
2117
2118		do {
2119			phy_id = -1;
2120			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121			if (phy_id == -1)
2122				break;
2123			res = sas_rediscover(dev, phy_id);
2124			i = phy_id + 1;
2125		} while (i < ex->num_phys);
2126
2127		dev = NULL;
2128		res = sas_find_bcast_dev(port_dev, &dev);
2129	}
2130	return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134		    struct request *req)
2135{
2136	struct domain_device *dev;
2137	int ret, type;
2138	struct request *rsp = req->next_rq;
2139
2140	if (!rsp) {
2141		printk("%s: space for a smp response is missing\n",
2142		       __func__);
2143		return -EINVAL;
2144	}
2145
2146	/* no rphy means no smp target support (ie aic94xx host) */
2147	if (!rphy)
2148		return sas_smp_host_handler(shost, req, rsp);
2149
2150	type = rphy->identify.device_type;
2151
2152	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153	    type != SAS_FANOUT_EXPANDER_DEVICE) {
 
 
 
2154		printk("%s: can we send a smp request to a device?\n",
2155		       __func__);
2156		return -EINVAL;
2157	}
2158
2159	dev = sas_find_dev_by_rphy(rphy);
2160	if (!dev) {
2161		printk("%s: fail to find a domain_device?\n", __func__);
2162		return -EINVAL;
2163	}
2164
2165	/* do we need to support multiple segments? */
2166	if (bio_multiple_segments(req->bio) ||
2167	    bio_multiple_segments(rsp->bio)) {
2168		printk("%s: multiple segments req %u, rsp %u\n",
2169		       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170		return -EINVAL;
 
2171	}
2172
2173	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2175	if (ret > 0) {
2176		/* positive number is the untransferred residual */
2177		rsp->resid_len = ret;
2178		req->resid_len = 0;
2179		ret = 0;
2180	} else if (ret == 0) {
2181		rsp->resid_len = 0;
2182		req->resid_len = 0;
2183	}
2184
2185	return ret;
 
2186}
v4.17
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(struct timer_list *t)
  45{
  46	struct sas_task_slow *slow = from_timer(slow, t, timer);
  47	struct sas_task *task = slow->task;
  48	unsigned long flags;
  49
  50	spin_lock_irqsave(&task->task_state_lock, flags);
  51	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  52		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  53	spin_unlock_irqrestore(&task->task_state_lock, flags);
  54
  55	complete(&task->slow_task->completion);
  56}
  57
  58static void smp_task_done(struct sas_task *task)
  59{
  60	if (!del_timer(&task->slow_task->timer))
  61		return;
  62	complete(&task->slow_task->completion);
  63}
  64
  65/* Give it some long enough timeout. In seconds. */
  66#define SMP_TIMEOUT 10
  67
  68static int smp_execute_task_sg(struct domain_device *dev,
  69		struct scatterlist *req, struct scatterlist *resp)
  70{
  71	int res, retry;
  72	struct sas_task *task = NULL;
  73	struct sas_internal *i =
  74		to_sas_internal(dev->port->ha->core.shost->transportt);
  75
  76	mutex_lock(&dev->ex_dev.cmd_mutex);
  77	for (retry = 0; retry < 3; retry++) {
  78		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  79			res = -ECOMM;
  80			break;
  81		}
  82
  83		task = sas_alloc_slow_task(GFP_KERNEL);
  84		if (!task) {
  85			res = -ENOMEM;
  86			break;
  87		}
  88		task->dev = dev;
  89		task->task_proto = dev->tproto;
  90		task->smp_task.smp_req = *req;
  91		task->smp_task.smp_resp = *resp;
  92
  93		task->task_done = smp_task_done;
  94
 
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 154static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 155			    void *resp, int resp_size)
 156{
 157	struct scatterlist req_sg;
 158	struct scatterlist resp_sg;
 159
 160	sg_init_one(&req_sg, req, req_size);
 161	sg_init_one(&resp_sg, resp, resp_size);
 162	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 163}
 164
 165/* ---------- Allocations ---------- */
 166
 167static inline void *alloc_smp_req(int size)
 168{
 169	u8 *p = kzalloc(size, GFP_KERNEL);
 170	if (p)
 171		p[0] = SMP_REQUEST;
 172	return p;
 173}
 174
 175static inline void *alloc_smp_resp(int size)
 176{
 177	return kzalloc(size, GFP_KERNEL);
 178}
 179
 180static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 181{
 182	switch (phy->routing_attr) {
 183	case TABLE_ROUTING:
 184		if (dev->ex_dev.t2t_supp)
 185			return 'U';
 186		else
 187			return 'T';
 188	case DIRECT_ROUTING:
 189		return 'D';
 190	case SUBTRACTIVE_ROUTING:
 191		return 'S';
 192	default:
 193		return '?';
 194	}
 195}
 196
 197static enum sas_device_type to_dev_type(struct discover_resp *dr)
 198{
 199	/* This is detecting a failure to transmit initial dev to host
 200	 * FIS as described in section J.5 of sas-2 r16
 201	 */
 202	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 203	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 204		return SAS_SATA_PENDING;
 205	else
 206		return dr->attached_dev_type;
 207}
 208
 209static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 210{
 211	enum sas_device_type dev_type;
 212	enum sas_linkrate linkrate;
 213	u8 sas_addr[SAS_ADDR_SIZE];
 214	struct smp_resp *resp = rsp;
 215	struct discover_resp *dr = &resp->disc;
 216	struct sas_ha_struct *ha = dev->port->ha;
 217	struct expander_device *ex = &dev->ex_dev;
 218	struct ex_phy *phy = &ex->ex_phy[phy_id];
 219	struct sas_rphy *rphy = dev->rphy;
 220	bool new_phy = !phy->phy;
 221	char *type;
 222
 223	if (new_phy) {
 224		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 225			return;
 226		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 227
 228		/* FIXME: error_handling */
 229		BUG_ON(!phy->phy);
 230	}
 231
 232	switch (resp->result) {
 233	case SMP_RESP_PHY_VACANT:
 234		phy->phy_state = PHY_VACANT;
 235		break;
 236	default:
 237		phy->phy_state = PHY_NOT_PRESENT;
 238		break;
 239	case SMP_RESP_FUNC_ACC:
 240		phy->phy_state = PHY_EMPTY; /* do not know yet */
 241		break;
 242	}
 243
 244	/* check if anything important changed to squelch debug */
 245	dev_type = phy->attached_dev_type;
 246	linkrate  = phy->linkrate;
 247	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 248
 249	/* Handle vacant phy - rest of dr data is not valid so skip it */
 250	if (phy->phy_state == PHY_VACANT) {
 251		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 252		phy->attached_dev_type = SAS_PHY_UNUSED;
 253		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 254			phy->phy_id = phy_id;
 255			goto skip;
 256		} else
 257			goto out;
 258	}
 259
 260	phy->attached_dev_type = to_dev_type(dr);
 261	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 262		goto out;
 263	phy->phy_id = phy_id;
 264	phy->linkrate = dr->linkrate;
 265	phy->attached_sata_host = dr->attached_sata_host;
 266	phy->attached_sata_dev  = dr->attached_sata_dev;
 267	phy->attached_sata_ps   = dr->attached_sata_ps;
 268	phy->attached_iproto = dr->iproto << 1;
 269	phy->attached_tproto = dr->tproto << 1;
 270	/* help some expanders that fail to zero sas_address in the 'no
 271	 * device' case
 272	 */
 273	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 274	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 275		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 276	else
 277		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 278	phy->attached_phy_id = dr->attached_phy_id;
 279	phy->phy_change_count = dr->change_count;
 280	phy->routing_attr = dr->routing_attr;
 281	phy->virtual = dr->virtual;
 282	phy->last_da_index = -1;
 283
 284	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 285	phy->phy->identify.device_type = dr->attached_dev_type;
 286	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 287	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 288	if (!phy->attached_tproto && dr->attached_sata_dev)
 289		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 290	phy->phy->identify.phy_identifier = phy_id;
 291	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 292	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 293	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 294	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 295	phy->phy->negotiated_linkrate = phy->linkrate;
 296	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 297
 298 skip:
 299	if (new_phy)
 300		if (sas_phy_add(phy->phy)) {
 301			sas_phy_free(phy->phy);
 302			return;
 303		}
 304
 305 out:
 306	switch (phy->attached_dev_type) {
 307	case SAS_SATA_PENDING:
 308		type = "stp pending";
 309		break;
 310	case SAS_PHY_UNUSED:
 311		type = "no device";
 312		break;
 313	case SAS_END_DEVICE:
 314		if (phy->attached_iproto) {
 315			if (phy->attached_tproto)
 316				type = "host+target";
 317			else
 318				type = "host";
 319		} else {
 320			if (dr->attached_sata_dev)
 321				type = "stp";
 322			else
 323				type = "ssp";
 324		}
 325		break;
 326	case SAS_EDGE_EXPANDER_DEVICE:
 327	case SAS_FANOUT_EXPANDER_DEVICE:
 328		type = "smp";
 329		break;
 330	default:
 331		type = "unknown";
 332	}
 333
 334	/* this routine is polled by libata error recovery so filter
 335	 * unimportant messages
 336	 */
 337	if (new_phy || phy->attached_dev_type != dev_type ||
 338	    phy->linkrate != linkrate ||
 339	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 340		/* pass */;
 341	else
 342		return;
 343
 344	/* if the attached device type changed and ata_eh is active,
 345	 * make sure we run revalidation when eh completes (see:
 346	 * sas_enable_revalidation)
 347	 */
 348	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 349		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 350
 351	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 352		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 353		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 354		    sas_route_char(dev, phy), phy->linkrate,
 355		    SAS_ADDR(phy->attached_sas_addr), type);
 356}
 357
 358/* check if we have an existing attached ata device on this expander phy */
 359struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 360{
 361	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 362	struct domain_device *dev;
 363	struct sas_rphy *rphy;
 364
 365	if (!ex_phy->port)
 366		return NULL;
 367
 368	rphy = ex_phy->port->rphy;
 369	if (!rphy)
 370		return NULL;
 371
 372	dev = sas_find_dev_by_rphy(rphy);
 373
 374	if (dev && dev_is_sata(dev))
 375		return dev;
 376
 377	return NULL;
 378}
 379
 380#define DISCOVER_REQ_SIZE  16
 381#define DISCOVER_RESP_SIZE 56
 382
 383static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 384				      u8 *disc_resp, int single)
 385{
 386	struct discover_resp *dr;
 387	int res;
 388
 389	disc_req[9] = single;
 390
 391	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 392			       disc_resp, DISCOVER_RESP_SIZE);
 393	if (res)
 394		return res;
 395	dr = &((struct smp_resp *)disc_resp)->disc;
 396	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 397		sas_printk("Found loopback topology, just ignore it!\n");
 398		return 0;
 399	}
 400	sas_set_ex_phy(dev, single, disc_resp);
 401	return 0;
 402}
 403
 404int sas_ex_phy_discover(struct domain_device *dev, int single)
 405{
 406	struct expander_device *ex = &dev->ex_dev;
 407	int  res = 0;
 408	u8   *disc_req;
 409	u8   *disc_resp;
 410
 411	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 412	if (!disc_req)
 413		return -ENOMEM;
 414
 415	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 416	if (!disc_resp) {
 417		kfree(disc_req);
 418		return -ENOMEM;
 419	}
 420
 421	disc_req[1] = SMP_DISCOVER;
 422
 423	if (0 <= single && single < ex->num_phys) {
 424		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 425	} else {
 426		int i;
 427
 428		for (i = 0; i < ex->num_phys; i++) {
 429			res = sas_ex_phy_discover_helper(dev, disc_req,
 430							 disc_resp, i);
 431			if (res)
 432				goto out_err;
 433		}
 434	}
 435out_err:
 436	kfree(disc_resp);
 437	kfree(disc_req);
 438	return res;
 439}
 440
 441static int sas_expander_discover(struct domain_device *dev)
 442{
 443	struct expander_device *ex = &dev->ex_dev;
 444	int res = -ENOMEM;
 445
 446	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 447	if (!ex->ex_phy)
 448		return -ENOMEM;
 449
 450	res = sas_ex_phy_discover(dev, -1);
 451	if (res)
 452		goto out_err;
 453
 454	return 0;
 455 out_err:
 456	kfree(ex->ex_phy);
 457	ex->ex_phy = NULL;
 458	return res;
 459}
 460
 461#define MAX_EXPANDER_PHYS 128
 462
 463static void ex_assign_report_general(struct domain_device *dev,
 464					    struct smp_resp *resp)
 465{
 466	struct report_general_resp *rg = &resp->rg;
 467
 468	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 469	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 470	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 471	dev->ex_dev.t2t_supp = rg->t2t_supp;
 472	dev->ex_dev.conf_route_table = rg->conf_route_table;
 473	dev->ex_dev.configuring = rg->configuring;
 474	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 475}
 476
 477#define RG_REQ_SIZE   8
 478#define RG_RESP_SIZE 32
 479
 480static int sas_ex_general(struct domain_device *dev)
 481{
 482	u8 *rg_req;
 483	struct smp_resp *rg_resp;
 484	int res;
 485	int i;
 486
 487	rg_req = alloc_smp_req(RG_REQ_SIZE);
 488	if (!rg_req)
 489		return -ENOMEM;
 490
 491	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 492	if (!rg_resp) {
 493		kfree(rg_req);
 494		return -ENOMEM;
 495	}
 496
 497	rg_req[1] = SMP_REPORT_GENERAL;
 498
 499	for (i = 0; i < 5; i++) {
 500		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 501				       RG_RESP_SIZE);
 502
 503		if (res) {
 504			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 505				    SAS_ADDR(dev->sas_addr), res);
 506			goto out;
 507		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 508			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 509				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 510			res = rg_resp->result;
 511			goto out;
 512		}
 513
 514		ex_assign_report_general(dev, rg_resp);
 515
 516		if (dev->ex_dev.configuring) {
 517			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 518				    SAS_ADDR(dev->sas_addr));
 519			schedule_timeout_interruptible(5*HZ);
 520		} else
 521			break;
 522	}
 523out:
 524	kfree(rg_req);
 525	kfree(rg_resp);
 526	return res;
 527}
 528
 529static void ex_assign_manuf_info(struct domain_device *dev, void
 530					*_mi_resp)
 531{
 532	u8 *mi_resp = _mi_resp;
 533	struct sas_rphy *rphy = dev->rphy;
 534	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 535
 536	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 537	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 538	memcpy(edev->product_rev, mi_resp + 36,
 539	       SAS_EXPANDER_PRODUCT_REV_LEN);
 540
 541	if (mi_resp[8] & 1) {
 542		memcpy(edev->component_vendor_id, mi_resp + 40,
 543		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 544		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 545		edev->component_revision_id = mi_resp[50];
 546	}
 547}
 548
 549#define MI_REQ_SIZE   8
 550#define MI_RESP_SIZE 64
 551
 552static int sas_ex_manuf_info(struct domain_device *dev)
 553{
 554	u8 *mi_req;
 555	u8 *mi_resp;
 556	int res;
 557
 558	mi_req = alloc_smp_req(MI_REQ_SIZE);
 559	if (!mi_req)
 560		return -ENOMEM;
 561
 562	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 563	if (!mi_resp) {
 564		kfree(mi_req);
 565		return -ENOMEM;
 566	}
 567
 568	mi_req[1] = SMP_REPORT_MANUF_INFO;
 569
 570	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 571	if (res) {
 572		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 573			    SAS_ADDR(dev->sas_addr), res);
 574		goto out;
 575	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 576		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 577			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 578		goto out;
 579	}
 580
 581	ex_assign_manuf_info(dev, mi_resp);
 582out:
 583	kfree(mi_req);
 584	kfree(mi_resp);
 585	return res;
 586}
 587
 588#define PC_REQ_SIZE  44
 589#define PC_RESP_SIZE 8
 590
 591int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 592			enum phy_func phy_func,
 593			struct sas_phy_linkrates *rates)
 594{
 595	u8 *pc_req;
 596	u8 *pc_resp;
 597	int res;
 598
 599	pc_req = alloc_smp_req(PC_REQ_SIZE);
 600	if (!pc_req)
 601		return -ENOMEM;
 602
 603	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 604	if (!pc_resp) {
 605		kfree(pc_req);
 606		return -ENOMEM;
 607	}
 608
 609	pc_req[1] = SMP_PHY_CONTROL;
 610	pc_req[9] = phy_id;
 611	pc_req[10]= phy_func;
 612	if (rates) {
 613		pc_req[32] = rates->minimum_linkrate << 4;
 614		pc_req[33] = rates->maximum_linkrate << 4;
 615	}
 616
 617	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 618
 619	kfree(pc_resp);
 620	kfree(pc_req);
 621	return res;
 622}
 623
 624static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 625{
 626	struct expander_device *ex = &dev->ex_dev;
 627	struct ex_phy *phy = &ex->ex_phy[phy_id];
 628
 629	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 630	phy->linkrate = SAS_PHY_DISABLED;
 631}
 632
 633static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 634{
 635	struct expander_device *ex = &dev->ex_dev;
 636	int i;
 637
 638	for (i = 0; i < ex->num_phys; i++) {
 639		struct ex_phy *phy = &ex->ex_phy[i];
 640
 641		if (phy->phy_state == PHY_VACANT ||
 642		    phy->phy_state == PHY_NOT_PRESENT)
 643			continue;
 644
 645		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 646			sas_ex_disable_phy(dev, i);
 647	}
 648}
 649
 650static int sas_dev_present_in_domain(struct asd_sas_port *port,
 651					    u8 *sas_addr)
 652{
 653	struct domain_device *dev;
 654
 655	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 656		return 1;
 657	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 658		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 659			return 1;
 660	}
 661	return 0;
 662}
 663
 664#define RPEL_REQ_SIZE	16
 665#define RPEL_RESP_SIZE	32
 666int sas_smp_get_phy_events(struct sas_phy *phy)
 667{
 668	int res;
 669	u8 *req;
 670	u8 *resp;
 671	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 672	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 673
 674	req = alloc_smp_req(RPEL_REQ_SIZE);
 675	if (!req)
 676		return -ENOMEM;
 677
 678	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 679	if (!resp) {
 680		kfree(req);
 681		return -ENOMEM;
 682	}
 683
 684	req[1] = SMP_REPORT_PHY_ERR_LOG;
 685	req[9] = phy->number;
 686
 687	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 688			            resp, RPEL_RESP_SIZE);
 689
 690	if (res)
 691		goto out;
 692
 693	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 694	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 695	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 696	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 697
 698 out:
 699	kfree(req);
 700	kfree(resp);
 701	return res;
 702
 703}
 704
 705#ifdef CONFIG_SCSI_SAS_ATA
 706
 707#define RPS_REQ_SIZE  16
 708#define RPS_RESP_SIZE 60
 709
 710int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 711			    struct smp_resp *rps_resp)
 712{
 713	int res;
 714	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 715	u8 *resp = (u8 *)rps_resp;
 716
 717	if (!rps_req)
 718		return -ENOMEM;
 719
 720	rps_req[1] = SMP_REPORT_PHY_SATA;
 721	rps_req[9] = phy_id;
 722
 723	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 724			            rps_resp, RPS_RESP_SIZE);
 725
 726	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 727	 * standards cockup here.  sas-2 explicitly specifies the FIS
 728	 * should be encoded so that FIS type is in resp[24].
 729	 * However, some expanders endian reverse this.  Undo the
 730	 * reversal here */
 731	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 732		int i;
 733
 734		for (i = 0; i < 5; i++) {
 735			int j = 24 + (i*4);
 736			u8 a, b;
 737			a = resp[j + 0];
 738			b = resp[j + 1];
 739			resp[j + 0] = resp[j + 3];
 740			resp[j + 1] = resp[j + 2];
 741			resp[j + 2] = b;
 742			resp[j + 3] = a;
 743		}
 744	}
 745
 746	kfree(rps_req);
 747	return res;
 748}
 749#endif
 750
 751static void sas_ex_get_linkrate(struct domain_device *parent,
 752				       struct domain_device *child,
 753				       struct ex_phy *parent_phy)
 754{
 755	struct expander_device *parent_ex = &parent->ex_dev;
 756	struct sas_port *port;
 757	int i;
 758
 759	child->pathways = 0;
 760
 761	port = parent_phy->port;
 762
 763	for (i = 0; i < parent_ex->num_phys; i++) {
 764		struct ex_phy *phy = &parent_ex->ex_phy[i];
 765
 766		if (phy->phy_state == PHY_VACANT ||
 767		    phy->phy_state == PHY_NOT_PRESENT)
 768			continue;
 769
 770		if (SAS_ADDR(phy->attached_sas_addr) ==
 771		    SAS_ADDR(child->sas_addr)) {
 772
 773			child->min_linkrate = min(parent->min_linkrate,
 774						  phy->linkrate);
 775			child->max_linkrate = max(parent->max_linkrate,
 776						  phy->linkrate);
 777			child->pathways++;
 778			sas_port_add_phy(port, phy->phy);
 779		}
 780	}
 781	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 782	child->pathways = min(child->pathways, parent->pathways);
 783}
 784
 785static struct domain_device *sas_ex_discover_end_dev(
 786	struct domain_device *parent, int phy_id)
 787{
 788	struct expander_device *parent_ex = &parent->ex_dev;
 789	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 790	struct domain_device *child = NULL;
 791	struct sas_rphy *rphy;
 792	int res;
 793
 794	if (phy->attached_sata_host || phy->attached_sata_ps)
 795		return NULL;
 796
 797	child = sas_alloc_device();
 798	if (!child)
 799		return NULL;
 800
 801	kref_get(&parent->kref);
 802	child->parent = parent;
 803	child->port   = parent->port;
 804	child->iproto = phy->attached_iproto;
 805	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 806	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 807	if (!phy->port) {
 808		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 809		if (unlikely(!phy->port))
 810			goto out_err;
 811		if (unlikely(sas_port_add(phy->port) != 0)) {
 812			sas_port_free(phy->port);
 813			goto out_err;
 814		}
 815	}
 816	sas_ex_get_linkrate(parent, child, phy);
 817	sas_device_set_phy(child, phy->port);
 818
 819#ifdef CONFIG_SCSI_SAS_ATA
 820	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 821		res = sas_get_ata_info(child, phy);
 822		if (res)
 823			goto out_free;
 824
 825		sas_init_dev(child);
 826		res = sas_ata_init(child);
 827		if (res)
 828			goto out_free;
 829		rphy = sas_end_device_alloc(phy->port);
 830		if (!rphy)
 831			goto out_free;
 832
 833		child->rphy = rphy;
 834		get_device(&rphy->dev);
 835
 836		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 837
 838		res = sas_discover_sata(child);
 839		if (res) {
 840			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 841				    "%016llx:0x%x returned 0x%x\n",
 842				    SAS_ADDR(child->sas_addr),
 843				    SAS_ADDR(parent->sas_addr), phy_id, res);
 844			goto out_list_del;
 845		}
 846	} else
 847#endif
 848	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 849		child->dev_type = SAS_END_DEVICE;
 850		rphy = sas_end_device_alloc(phy->port);
 851		/* FIXME: error handling */
 852		if (unlikely(!rphy))
 853			goto out_free;
 854		child->tproto = phy->attached_tproto;
 855		sas_init_dev(child);
 856
 857		child->rphy = rphy;
 858		get_device(&rphy->dev);
 859		sas_fill_in_rphy(child, rphy);
 860
 861		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 862
 863		res = sas_discover_end_dev(child);
 864		if (res) {
 865			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 866				    "at %016llx:0x%x returned 0x%x\n",
 867				    SAS_ADDR(child->sas_addr),
 868				    SAS_ADDR(parent->sas_addr), phy_id, res);
 869			goto out_list_del;
 870		}
 871	} else {
 872		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 873			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 874			    phy_id);
 875		goto out_free;
 876	}
 877
 878	list_add_tail(&child->siblings, &parent_ex->children);
 879	return child;
 880
 881 out_list_del:
 882	sas_rphy_free(child->rphy);
 883	list_del(&child->disco_list_node);
 884	spin_lock_irq(&parent->port->dev_list_lock);
 885	list_del(&child->dev_list_node);
 886	spin_unlock_irq(&parent->port->dev_list_lock);
 887 out_free:
 888	sas_port_delete(phy->port);
 889 out_err:
 890	phy->port = NULL;
 891	sas_put_device(child);
 892	return NULL;
 893}
 894
 895/* See if this phy is part of a wide port */
 896static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 897{
 898	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 899	int i;
 900
 901	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 902		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 903
 904		if (ephy == phy)
 905			continue;
 906
 907		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 908			    SAS_ADDR_SIZE) && ephy->port) {
 909			sas_port_add_phy(ephy->port, phy->phy);
 910			phy->port = ephy->port;
 911			phy->phy_state = PHY_DEVICE_DISCOVERED;
 912			return true;
 913		}
 914	}
 915
 916	return false;
 917}
 918
 919static struct domain_device *sas_ex_discover_expander(
 920	struct domain_device *parent, int phy_id)
 921{
 922	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 923	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 924	struct domain_device *child = NULL;
 925	struct sas_rphy *rphy;
 926	struct sas_expander_device *edev;
 927	struct asd_sas_port *port;
 928	int res;
 929
 930	if (phy->routing_attr == DIRECT_ROUTING) {
 931		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 932			    "allowed\n",
 933			    SAS_ADDR(parent->sas_addr), phy_id,
 934			    SAS_ADDR(phy->attached_sas_addr),
 935			    phy->attached_phy_id);
 936		return NULL;
 937	}
 938	child = sas_alloc_device();
 939	if (!child)
 940		return NULL;
 941
 942	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 943	/* FIXME: better error handling */
 944	BUG_ON(sas_port_add(phy->port) != 0);
 945
 946
 947	switch (phy->attached_dev_type) {
 948	case SAS_EDGE_EXPANDER_DEVICE:
 949		rphy = sas_expander_alloc(phy->port,
 950					  SAS_EDGE_EXPANDER_DEVICE);
 951		break;
 952	case SAS_FANOUT_EXPANDER_DEVICE:
 953		rphy = sas_expander_alloc(phy->port,
 954					  SAS_FANOUT_EXPANDER_DEVICE);
 955		break;
 956	default:
 957		rphy = NULL;	/* shut gcc up */
 958		BUG();
 959	}
 960	port = parent->port;
 961	child->rphy = rphy;
 962	get_device(&rphy->dev);
 963	edev = rphy_to_expander_device(rphy);
 964	child->dev_type = phy->attached_dev_type;
 965	kref_get(&parent->kref);
 966	child->parent = parent;
 967	child->port = port;
 968	child->iproto = phy->attached_iproto;
 969	child->tproto = phy->attached_tproto;
 970	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 971	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 972	sas_ex_get_linkrate(parent, child, phy);
 973	edev->level = parent_ex->level + 1;
 974	parent->port->disc.max_level = max(parent->port->disc.max_level,
 975					   edev->level);
 976	sas_init_dev(child);
 977	sas_fill_in_rphy(child, rphy);
 978	sas_rphy_add(rphy);
 979
 980	spin_lock_irq(&parent->port->dev_list_lock);
 981	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 982	spin_unlock_irq(&parent->port->dev_list_lock);
 983
 984	res = sas_discover_expander(child);
 985	if (res) {
 986		sas_rphy_delete(rphy);
 987		spin_lock_irq(&parent->port->dev_list_lock);
 988		list_del(&child->dev_list_node);
 989		spin_unlock_irq(&parent->port->dev_list_lock);
 990		sas_put_device(child);
 991		return NULL;
 992	}
 993	list_add_tail(&child->siblings, &parent->ex_dev.children);
 994	return child;
 995}
 996
 997static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 998{
 999	struct expander_device *ex = &dev->ex_dev;
1000	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001	struct domain_device *child = NULL;
1002	int res = 0;
1003
1004	/* Phy state */
1005	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007			res = sas_ex_phy_discover(dev, phy_id);
1008		if (res)
1009			return res;
1010	}
1011
1012	/* Parent and domain coherency */
1013	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014			     SAS_ADDR(dev->port->sas_addr))) {
1015		sas_add_parent_port(dev, phy_id);
1016		return 0;
1017	}
1018	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019			    SAS_ADDR(dev->parent->sas_addr))) {
1020		sas_add_parent_port(dev, phy_id);
1021		if (ex_phy->routing_attr == TABLE_ROUTING)
1022			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023		return 0;
1024	}
1025
1026	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028
1029	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033		}
1034		return 0;
1035	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036		return 0;
1037
1038	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043			    "phy 0x%x\n", ex_phy->attached_dev_type,
1044			    SAS_ADDR(dev->sas_addr),
1045			    phy_id);
1046		return 0;
1047	}
1048
1049	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050	if (res) {
1051		SAS_DPRINTK("configure routing for dev %016llx "
1052			    "reported 0x%x. Forgotten\n",
1053			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1054		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055		return res;
1056	}
1057
1058	if (sas_ex_join_wide_port(dev, phy_id)) {
1059		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061		return res;
1062	}
1063
1064	switch (ex_phy->attached_dev_type) {
1065	case SAS_END_DEVICE:
1066	case SAS_SATA_PENDING:
1067		child = sas_ex_discover_end_dev(dev, phy_id);
1068		break;
1069	case SAS_FANOUT_EXPANDER_DEVICE:
1070		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072				    "attached to ex %016llx phy 0x%x\n",
1073				    SAS_ADDR(ex_phy->attached_sas_addr),
1074				    ex_phy->attached_phy_id,
1075				    SAS_ADDR(dev->sas_addr),
1076				    phy_id);
1077			sas_ex_disable_phy(dev, phy_id);
1078			break;
1079		} else
1080			memcpy(dev->port->disc.fanout_sas_addr,
1081			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082		/* fallthrough */
1083	case SAS_EDGE_EXPANDER_DEVICE:
1084		child = sas_ex_discover_expander(dev, phy_id);
1085		break;
1086	default:
1087		break;
1088	}
1089
1090	if (child) {
1091		int i;
1092
1093		for (i = 0; i < ex->num_phys; i++) {
1094			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096				continue;
1097			/*
1098			 * Due to races, the phy might not get added to the
1099			 * wide port, so we add the phy to the wide port here.
1100			 */
1101			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102			    SAS_ADDR(child->sas_addr)) {
1103				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104				if (sas_ex_join_wide_port(dev, i))
1105					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1107
1108			}
1109		}
1110	}
1111
1112	return res;
1113}
1114
1115static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116{
1117	struct expander_device *ex = &dev->ex_dev;
1118	int i;
1119
1120	for (i = 0; i < ex->num_phys; i++) {
1121		struct ex_phy *phy = &ex->ex_phy[i];
1122
1123		if (phy->phy_state == PHY_VACANT ||
1124		    phy->phy_state == PHY_NOT_PRESENT)
1125			continue;
1126
1127		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130
1131			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132
1133			return 1;
1134		}
1135	}
1136	return 0;
1137}
1138
1139static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140{
1141	struct expander_device *ex = &dev->ex_dev;
1142	struct domain_device *child;
1143	u8 sub_addr[8] = {0, };
1144
1145	list_for_each_entry(child, &ex->children, siblings) {
1146		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148			continue;
1149		if (sub_addr[0] == 0) {
1150			sas_find_sub_addr(child, sub_addr);
1151			continue;
1152		} else {
1153			u8 s2[8];
1154
1155			if (sas_find_sub_addr(child, s2) &&
1156			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157
1158				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159					    "diverges from subtractive "
1160					    "boundary %016llx\n",
1161					    SAS_ADDR(dev->sas_addr),
1162					    SAS_ADDR(child->sas_addr),
1163					    SAS_ADDR(s2),
1164					    SAS_ADDR(sub_addr));
1165
1166				sas_ex_disable_port(child, s2);
1167			}
1168		}
1169	}
1170	return 0;
1171}
1172/**
1173 * sas_ex_discover_devices - discover devices attached to this expander
1174 * @dev: pointer to the expander domain device
1175 * @single: if you want to do a single phy, else set to -1;
1176 *
1177 * Configure this expander for use with its devices and register the
1178 * devices of this expander.
1179 */
1180static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181{
1182	struct expander_device *ex = &dev->ex_dev;
1183	int i = 0, end = ex->num_phys;
1184	int res = 0;
1185
1186	if (0 <= single && single < end) {
1187		i = single;
1188		end = i+1;
1189	}
1190
1191	for ( ; i < end; i++) {
1192		struct ex_phy *ex_phy = &ex->ex_phy[i];
1193
1194		if (ex_phy->phy_state == PHY_VACANT ||
1195		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1196		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197			continue;
1198
1199		switch (ex_phy->linkrate) {
1200		case SAS_PHY_DISABLED:
1201		case SAS_PHY_RESET_PROBLEM:
1202		case SAS_SATA_PORT_SELECTOR:
1203			continue;
1204		default:
1205			res = sas_ex_discover_dev(dev, i);
1206			if (res)
1207				break;
1208			continue;
1209		}
1210	}
1211
1212	if (!res)
1213		sas_check_level_subtractive_boundary(dev);
1214
1215	return res;
1216}
1217
1218static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219{
1220	struct expander_device *ex = &dev->ex_dev;
1221	int i;
1222	u8  *sub_sas_addr = NULL;
1223
1224	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225		return 0;
1226
1227	for (i = 0; i < ex->num_phys; i++) {
1228		struct ex_phy *phy = &ex->ex_phy[i];
1229
1230		if (phy->phy_state == PHY_VACANT ||
1231		    phy->phy_state == PHY_NOT_PRESENT)
1232			continue;
1233
1234		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237
1238			if (!sub_sas_addr)
1239				sub_sas_addr = &phy->attached_sas_addr[0];
1240			else if (SAS_ADDR(sub_sas_addr) !=
1241				 SAS_ADDR(phy->attached_sas_addr)) {
1242
1243				SAS_DPRINTK("ex %016llx phy 0x%x "
1244					    "diverges(%016llx) on subtractive "
1245					    "boundary(%016llx). Disabled\n",
1246					    SAS_ADDR(dev->sas_addr), i,
1247					    SAS_ADDR(phy->attached_sas_addr),
1248					    SAS_ADDR(sub_sas_addr));
1249				sas_ex_disable_phy(dev, i);
1250			}
1251		}
1252	}
1253	return 0;
1254}
1255
1256static void sas_print_parent_topology_bug(struct domain_device *child,
1257						 struct ex_phy *parent_phy,
1258						 struct ex_phy *child_phy)
1259{
1260	static const char *ex_type[] = {
1261		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263	};
1264	struct domain_device *parent = child->parent;
1265
1266	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267		   "phy 0x%x has %c:%c routing link!\n",
1268
1269		   ex_type[parent->dev_type],
1270		   SAS_ADDR(parent->sas_addr),
1271		   parent_phy->phy_id,
1272
1273		   ex_type[child->dev_type],
1274		   SAS_ADDR(child->sas_addr),
1275		   child_phy->phy_id,
1276
1277		   sas_route_char(parent, parent_phy),
1278		   sas_route_char(child, child_phy));
1279}
1280
1281static int sas_check_eeds(struct domain_device *child,
1282				 struct ex_phy *parent_phy,
1283				 struct ex_phy *child_phy)
1284{
1285	int res = 0;
1286	struct domain_device *parent = child->parent;
1287
1288	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289		res = -ENODEV;
1290		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1292			    SAS_ADDR(parent->sas_addr),
1293			    parent_phy->phy_id,
1294			    SAS_ADDR(child->sas_addr),
1295			    child_phy->phy_id,
1296			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299		       SAS_ADDR_SIZE);
1300		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301		       SAS_ADDR_SIZE);
1302	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303		    SAS_ADDR(parent->sas_addr)) ||
1304		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1305		    SAS_ADDR(child->sas_addr)))
1306		   &&
1307		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308		     SAS_ADDR(parent->sas_addr)) ||
1309		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1310		     SAS_ADDR(child->sas_addr))))
1311		;
1312	else {
1313		res = -ENODEV;
1314		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315			    "phy 0x%x link forms a third EEDS!\n",
1316			    SAS_ADDR(parent->sas_addr),
1317			    parent_phy->phy_id,
1318			    SAS_ADDR(child->sas_addr),
1319			    child_phy->phy_id);
1320	}
1321
1322	return res;
1323}
1324
1325/* Here we spill over 80 columns.  It is intentional.
1326 */
1327static int sas_check_parent_topology(struct domain_device *child)
1328{
1329	struct expander_device *child_ex = &child->ex_dev;
1330	struct expander_device *parent_ex;
1331	int i;
1332	int res = 0;
1333
1334	if (!child->parent)
1335		return 0;
1336
1337	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339		return 0;
1340
1341	parent_ex = &child->parent->ex_dev;
1342
1343	for (i = 0; i < parent_ex->num_phys; i++) {
1344		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345		struct ex_phy *child_phy;
1346
1347		if (parent_phy->phy_state == PHY_VACANT ||
1348		    parent_phy->phy_state == PHY_NOT_PRESENT)
1349			continue;
1350
1351		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352			continue;
1353
1354		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355
1356		switch (child->parent->dev_type) {
1357		case SAS_EDGE_EXPANDER_DEVICE:
1358			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360				    child_phy->routing_attr != TABLE_ROUTING) {
1361					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362					res = -ENODEV;
1363				}
1364			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366					res = sas_check_eeds(child, parent_phy, child_phy);
1367				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1368					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369					res = -ENODEV;
1370				}
1371			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373				    (child_phy->routing_attr == TABLE_ROUTING &&
1374				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375					/* All good */;
1376				} else {
1377					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378					res = -ENODEV;
1379				}
1380			}
1381			break;
1382		case SAS_FANOUT_EXPANDER_DEVICE:
1383			if (parent_phy->routing_attr != TABLE_ROUTING ||
1384			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386				res = -ENODEV;
1387			}
1388			break;
1389		default:
1390			break;
1391		}
1392	}
1393
1394	return res;
1395}
1396
1397#define RRI_REQ_SIZE  16
1398#define RRI_RESP_SIZE 44
1399
1400static int sas_configure_present(struct domain_device *dev, int phy_id,
1401				 u8 *sas_addr, int *index, int *present)
1402{
1403	int i, res = 0;
1404	struct expander_device *ex = &dev->ex_dev;
1405	struct ex_phy *phy = &ex->ex_phy[phy_id];
1406	u8 *rri_req;
1407	u8 *rri_resp;
1408
1409	*present = 0;
1410	*index = 0;
1411
1412	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413	if (!rri_req)
1414		return -ENOMEM;
1415
1416	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417	if (!rri_resp) {
1418		kfree(rri_req);
1419		return -ENOMEM;
1420	}
1421
1422	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423	rri_req[9] = phy_id;
1424
1425	for (i = 0; i < ex->max_route_indexes ; i++) {
1426		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428				       RRI_RESP_SIZE);
1429		if (res)
1430			goto out;
1431		res = rri_resp[2];
1432		if (res == SMP_RESP_NO_INDEX) {
1433			SAS_DPRINTK("overflow of indexes: dev %016llx "
1434				    "phy 0x%x index 0x%x\n",
1435				    SAS_ADDR(dev->sas_addr), phy_id, i);
1436			goto out;
1437		} else if (res != SMP_RESP_FUNC_ACC) {
1438			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439				    "result 0x%x\n", __func__,
1440				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441			goto out;
1442		}
1443		if (SAS_ADDR(sas_addr) != 0) {
1444			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445				*index = i;
1446				if ((rri_resp[12] & 0x80) == 0x80)
1447					*present = 0;
1448				else
1449					*present = 1;
1450				goto out;
1451			} else if (SAS_ADDR(rri_resp+16) == 0) {
1452				*index = i;
1453				*present = 0;
1454				goto out;
1455			}
1456		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1457			   phy->last_da_index < i) {
1458			phy->last_da_index = i;
1459			*index = i;
1460			*present = 0;
1461			goto out;
1462		}
1463	}
1464	res = -1;
1465out:
1466	kfree(rri_req);
1467	kfree(rri_resp);
1468	return res;
1469}
1470
1471#define CRI_REQ_SIZE  44
1472#define CRI_RESP_SIZE  8
1473
1474static int sas_configure_set(struct domain_device *dev, int phy_id,
1475			     u8 *sas_addr, int index, int include)
1476{
1477	int res;
1478	u8 *cri_req;
1479	u8 *cri_resp;
1480
1481	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482	if (!cri_req)
1483		return -ENOMEM;
1484
1485	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486	if (!cri_resp) {
1487		kfree(cri_req);
1488		return -ENOMEM;
1489	}
1490
1491	cri_req[1] = SMP_CONF_ROUTE_INFO;
1492	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493	cri_req[9] = phy_id;
1494	if (SAS_ADDR(sas_addr) == 0 || !include)
1495		cri_req[12] |= 0x80;
1496	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497
1498	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499			       CRI_RESP_SIZE);
1500	if (res)
1501		goto out;
1502	res = cri_resp[2];
1503	if (res == SMP_RESP_NO_INDEX) {
1504		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505			    "index 0x%x\n",
1506			    SAS_ADDR(dev->sas_addr), phy_id, index);
1507	}
1508out:
1509	kfree(cri_req);
1510	kfree(cri_resp);
1511	return res;
1512}
1513
1514static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515				    u8 *sas_addr, int include)
1516{
1517	int index;
1518	int present;
1519	int res;
1520
1521	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522	if (res)
1523		return res;
1524	if (include ^ present)
1525		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1526
1527	return res;
1528}
1529
1530/**
1531 * sas_configure_parent - configure routing table of parent
1532 * @parent: parent expander
1533 * @child: child expander
1534 * @sas_addr: SAS port identifier of device directly attached to child
1535 * @include: whether or not to include @child in the expander routing table
1536 */
1537static int sas_configure_parent(struct domain_device *parent,
1538				struct domain_device *child,
1539				u8 *sas_addr, int include)
1540{
1541	struct expander_device *ex_parent = &parent->ex_dev;
1542	int res = 0;
1543	int i;
1544
1545	if (parent->parent) {
1546		res = sas_configure_parent(parent->parent, parent, sas_addr,
1547					   include);
1548		if (res)
1549			return res;
1550	}
1551
1552	if (ex_parent->conf_route_table == 0) {
1553		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1554			    SAS_ADDR(parent->sas_addr));
1555		return 0;
1556	}
1557
1558	for (i = 0; i < ex_parent->num_phys; i++) {
1559		struct ex_phy *phy = &ex_parent->ex_phy[i];
1560
1561		if ((phy->routing_attr == TABLE_ROUTING) &&
1562		    (SAS_ADDR(phy->attached_sas_addr) ==
1563		     SAS_ADDR(child->sas_addr))) {
1564			res = sas_configure_phy(parent, i, sas_addr, include);
1565			if (res)
1566				return res;
1567		}
1568	}
1569
1570	return res;
1571}
1572
1573/**
1574 * sas_configure_routing - configure routing
1575 * @dev: expander device
1576 * @sas_addr: port identifier of device directly attached to the expander device
1577 */
1578static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579{
1580	if (dev->parent)
1581		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1582	return 0;
1583}
1584
1585static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1586{
1587	if (dev->parent)
1588		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1589	return 0;
1590}
1591
1592/**
1593 * sas_discover_expander - expander discovery
1594 * @dev: pointer to expander domain device
1595 *
1596 * See comment in sas_discover_sata().
1597 */
1598static int sas_discover_expander(struct domain_device *dev)
1599{
1600	int res;
1601
1602	res = sas_notify_lldd_dev_found(dev);
1603	if (res)
1604		return res;
1605
1606	res = sas_ex_general(dev);
1607	if (res)
1608		goto out_err;
1609	res = sas_ex_manuf_info(dev);
1610	if (res)
1611		goto out_err;
1612
1613	res = sas_expander_discover(dev);
1614	if (res) {
1615		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1616			    SAS_ADDR(dev->sas_addr), res);
1617		goto out_err;
1618	}
1619
1620	sas_check_ex_subtractive_boundary(dev);
1621	res = sas_check_parent_topology(dev);
1622	if (res)
1623		goto out_err;
1624	return 0;
1625out_err:
1626	sas_notify_lldd_dev_gone(dev);
1627	return res;
1628}
1629
1630static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631{
1632	int res = 0;
1633	struct domain_device *dev;
1634
1635	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1636		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1637		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1638			struct sas_expander_device *ex =
1639				rphy_to_expander_device(dev->rphy);
1640
1641			if (level == ex->level)
1642				res = sas_ex_discover_devices(dev, -1);
1643			else if (level > 0)
1644				res = sas_ex_discover_devices(port->port_dev, -1);
1645
1646		}
1647	}
1648
1649	return res;
1650}
1651
1652static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653{
1654	int res;
1655	int level;
1656
1657	do {
1658		level = port->disc.max_level;
1659		res = sas_ex_level_discovery(port, level);
1660		mb();
1661	} while (level < port->disc.max_level);
1662
1663	return res;
1664}
1665
1666int sas_discover_root_expander(struct domain_device *dev)
1667{
1668	int res;
1669	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670
1671	res = sas_rphy_add(dev->rphy);
1672	if (res)
1673		goto out_err;
1674
1675	ex->level = dev->port->disc.max_level; /* 0 */
1676	res = sas_discover_expander(dev);
1677	if (res)
1678		goto out_err2;
1679
1680	sas_ex_bfs_disc(dev->port);
1681
1682	return res;
1683
1684out_err2:
1685	sas_rphy_remove(dev->rphy);
1686out_err:
1687	return res;
1688}
1689
1690/* ---------- Domain revalidation ---------- */
1691
1692static int sas_get_phy_discover(struct domain_device *dev,
1693				int phy_id, struct smp_resp *disc_resp)
1694{
1695	int res;
1696	u8 *disc_req;
1697
1698	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1699	if (!disc_req)
1700		return -ENOMEM;
1701
1702	disc_req[1] = SMP_DISCOVER;
1703	disc_req[9] = phy_id;
1704
1705	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1706			       disc_resp, DISCOVER_RESP_SIZE);
1707	if (res)
1708		goto out;
1709	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1710		res = disc_resp->result;
1711		goto out;
1712	}
1713out:
1714	kfree(disc_req);
1715	return res;
1716}
1717
1718static int sas_get_phy_change_count(struct domain_device *dev,
1719				    int phy_id, int *pcc)
1720{
1721	int res;
1722	struct smp_resp *disc_resp;
1723
1724	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725	if (!disc_resp)
1726		return -ENOMEM;
1727
1728	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1729	if (!res)
1730		*pcc = disc_resp->disc.change_count;
1731
1732	kfree(disc_resp);
1733	return res;
1734}
1735
1736static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1737				    u8 *sas_addr, enum sas_device_type *type)
1738{
1739	int res;
1740	struct smp_resp *disc_resp;
1741	struct discover_resp *dr;
1742
1743	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1744	if (!disc_resp)
1745		return -ENOMEM;
1746	dr = &disc_resp->disc;
1747
1748	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749	if (res == 0) {
1750		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1751		*type = to_dev_type(dr);
1752		if (*type == 0)
1753			memset(sas_addr, 0, 8);
1754	}
1755	kfree(disc_resp);
1756	return res;
1757}
1758
1759static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1760			      int from_phy, bool update)
1761{
1762	struct expander_device *ex = &dev->ex_dev;
1763	int res = 0;
1764	int i;
1765
1766	for (i = from_phy; i < ex->num_phys; i++) {
1767		int phy_change_count = 0;
1768
1769		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1770		switch (res) {
1771		case SMP_RESP_PHY_VACANT:
1772		case SMP_RESP_NO_PHY:
1773			continue;
1774		case SMP_RESP_FUNC_ACC:
1775			break;
1776		default:
1777			return res;
1778		}
1779
1780		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1781			if (update)
1782				ex->ex_phy[i].phy_change_count =
1783					phy_change_count;
1784			*phy_id = i;
1785			return 0;
1786		}
1787	}
1788	return 0;
1789}
1790
1791static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792{
1793	int res;
1794	u8  *rg_req;
1795	struct smp_resp  *rg_resp;
1796
1797	rg_req = alloc_smp_req(RG_REQ_SIZE);
1798	if (!rg_req)
1799		return -ENOMEM;
1800
1801	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1802	if (!rg_resp) {
1803		kfree(rg_req);
1804		return -ENOMEM;
1805	}
1806
1807	rg_req[1] = SMP_REPORT_GENERAL;
1808
1809	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1810			       RG_RESP_SIZE);
1811	if (res)
1812		goto out;
1813	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1814		res = rg_resp->result;
1815		goto out;
1816	}
1817
1818	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1819out:
1820	kfree(rg_resp);
1821	kfree(rg_req);
1822	return res;
1823}
1824/**
1825 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1826 * @dev:domain device to be detect.
1827 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 *
1829 * Add self-configuration expander support. Suppose two expander cascading,
1830 * when the first level expander is self-configuring, hotplug the disks in
1831 * second level expander, BROADCAST(CHANGE) will not only be originated
1832 * in the second level expander, but also be originated in the first level
1833 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1834 * expander changed count in two level expanders will all increment at least
1835 * once, but the phy which chang count has changed is the source device which
1836 * we concerned.
1837 */
1838
1839static int sas_find_bcast_dev(struct domain_device *dev,
1840			      struct domain_device **src_dev)
1841{
1842	struct expander_device *ex = &dev->ex_dev;
1843	int ex_change_count = -1;
1844	int phy_id = -1;
1845	int res;
1846	struct domain_device *ch;
1847
1848	res = sas_get_ex_change_count(dev, &ex_change_count);
1849	if (res)
1850		goto out;
1851	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1852		/* Just detect if this expander phys phy change count changed,
1853		* in order to determine if this expander originate BROADCAST,
1854		* and do not update phy change count field in our structure.
1855		*/
1856		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1857		if (phy_id != -1) {
1858			*src_dev = dev;
1859			ex->ex_change_count = ex_change_count;
1860			SAS_DPRINTK("Expander phy change count has changed\n");
1861			return res;
1862		} else
1863			SAS_DPRINTK("Expander phys DID NOT change\n");
1864	}
1865	list_for_each_entry(ch, &ex->children, siblings) {
1866		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1867			res = sas_find_bcast_dev(ch, src_dev);
1868			if (*src_dev)
1869				return res;
1870		}
1871	}
1872out:
1873	return res;
1874}
1875
1876static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877{
1878	struct expander_device *ex = &dev->ex_dev;
1879	struct domain_device *child, *n;
1880
1881	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1882		set_bit(SAS_DEV_GONE, &child->state);
1883		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1884		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1885			sas_unregister_ex_tree(port, child);
1886		else
1887			sas_unregister_dev(port, child);
1888	}
1889	sas_unregister_dev(port, dev);
1890}
1891
1892static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1893					 int phy_id, bool last)
1894{
1895	struct expander_device *ex_dev = &parent->ex_dev;
1896	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1897	struct domain_device *child, *n, *found = NULL;
1898	if (last) {
1899		list_for_each_entry_safe(child, n,
1900			&ex_dev->children, siblings) {
1901			if (SAS_ADDR(child->sas_addr) ==
1902			    SAS_ADDR(phy->attached_sas_addr)) {
1903				set_bit(SAS_DEV_GONE, &child->state);
1904				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906					sas_unregister_ex_tree(parent->port, child);
1907				else
1908					sas_unregister_dev(parent->port, child);
1909				found = child;
1910				break;
1911			}
1912		}
1913		sas_disable_routing(parent, phy->attached_sas_addr);
1914	}
1915	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1916	if (phy->port) {
1917		sas_port_delete_phy(phy->port, phy->phy);
1918		sas_device_set_phy(found, phy->port);
1919		if (phy->port->num_phys == 0)
1920			list_add_tail(&phy->port->del_list,
1921				&parent->port->sas_port_del_list);
1922		phy->port = NULL;
1923	}
1924}
1925
1926static int sas_discover_bfs_by_root_level(struct domain_device *root,
1927					  const int level)
1928{
1929	struct expander_device *ex_root = &root->ex_dev;
1930	struct domain_device *child;
1931	int res = 0;
1932
1933	list_for_each_entry(child, &ex_root->children, siblings) {
1934		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1936			struct sas_expander_device *ex =
1937				rphy_to_expander_device(child->rphy);
1938
1939			if (level > ex->level)
1940				res = sas_discover_bfs_by_root_level(child,
1941								     level);
1942			else if (level == ex->level)
1943				res = sas_ex_discover_devices(child, -1);
1944		}
1945	}
1946	return res;
1947}
1948
1949static int sas_discover_bfs_by_root(struct domain_device *dev)
1950{
1951	int res;
1952	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1953	int level = ex->level+1;
1954
1955	res = sas_ex_discover_devices(dev, -1);
1956	if (res)
1957		goto out;
1958	do {
1959		res = sas_discover_bfs_by_root_level(dev, level);
1960		mb();
1961		level += 1;
1962	} while (level <= dev->port->disc.max_level);
1963out:
1964	return res;
1965}
1966
1967static int sas_discover_new(struct domain_device *dev, int phy_id)
1968{
1969	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1970	struct domain_device *child;
1971	int res;
1972
1973	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1974		    SAS_ADDR(dev->sas_addr), phy_id);
1975	res = sas_ex_phy_discover(dev, phy_id);
1976	if (res)
1977		return res;
1978
1979	if (sas_ex_join_wide_port(dev, phy_id))
1980		return 0;
1981
1982	res = sas_ex_discover_devices(dev, phy_id);
1983	if (res)
1984		return res;
1985	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1986		if (SAS_ADDR(child->sas_addr) ==
1987		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1988			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1989			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1990				res = sas_discover_bfs_by_root(child);
1991			break;
1992		}
1993	}
1994	return res;
1995}
1996
1997static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998{
1999	if (old == new)
2000		return true;
2001
2002	/* treat device directed resets as flutter, if we went
2003	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004	 */
2005	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2006	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2007		return true;
2008
2009	return false;
2010}
2011
2012static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013{
2014	struct expander_device *ex = &dev->ex_dev;
2015	struct ex_phy *phy = &ex->ex_phy[phy_id];
2016	enum sas_device_type type = SAS_PHY_UNUSED;
2017	u8 sas_addr[8];
2018	int res;
2019
2020	memset(sas_addr, 0, 8);
2021	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2022	switch (res) {
2023	case SMP_RESP_NO_PHY:
2024		phy->phy_state = PHY_NOT_PRESENT;
2025		sas_unregister_devs_sas_addr(dev, phy_id, last);
2026		return res;
2027	case SMP_RESP_PHY_VACANT:
2028		phy->phy_state = PHY_VACANT;
2029		sas_unregister_devs_sas_addr(dev, phy_id, last);
2030		return res;
2031	case SMP_RESP_FUNC_ACC:
2032		break;
2033	case -ECOMM:
2034		break;
2035	default:
2036		return res;
2037	}
2038
2039	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2040		phy->phy_state = PHY_EMPTY;
2041		sas_unregister_devs_sas_addr(dev, phy_id, last);
2042		return res;
2043	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2044		   dev_type_flutter(type, phy->attached_dev_type)) {
2045		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2046		char *action = "";
2047
2048		sas_ex_phy_discover(dev, phy_id);
2049
2050		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2051			action = ", needs recovery";
2052		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2053			    SAS_ADDR(dev->sas_addr), phy_id, action);
2054		return res;
2055	}
2056
2057	/* delete the old link */
2058	if (SAS_ADDR(phy->attached_sas_addr) &&
2059	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2060		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2061			    SAS_ADDR(dev->sas_addr), phy_id,
2062			    SAS_ADDR(phy->attached_sas_addr));
2063		sas_unregister_devs_sas_addr(dev, phy_id, last);
2064	}
2065
2066	return sas_discover_new(dev, phy_id);
2067}
2068
2069/**
2070 * sas_rediscover - revalidate the domain.
2071 * @dev:domain device to be detect.
2072 * @phy_id: the phy id will be detected.
2073 *
2074 * NOTE: this process _must_ quit (return) as soon as any connection
2075 * errors are encountered.  Connection recovery is done elsewhere.
2076 * Discover process only interrogates devices in order to discover the
2077 * domain.For plugging out, we un-register the device only when it is
2078 * the last phy in the port, for other phys in this port, we just delete it
2079 * from the port.For inserting, we do discovery when it is the
2080 * first phy,for other phys in this port, we add it to the port to
2081 * forming the wide-port.
2082 */
2083static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084{
2085	struct expander_device *ex = &dev->ex_dev;
2086	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2087	int res = 0;
2088	int i;
2089	bool last = true;	/* is this the last phy of the port */
2090
2091	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2092		    SAS_ADDR(dev->sas_addr), phy_id);
2093
2094	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2095		for (i = 0; i < ex->num_phys; i++) {
2096			struct ex_phy *phy = &ex->ex_phy[i];
2097
2098			if (i == phy_id)
2099				continue;
2100			if (SAS_ADDR(phy->attached_sas_addr) ==
2101			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2102				SAS_DPRINTK("phy%d part of wide port with "
2103					    "phy%d\n", phy_id, i);
2104				last = false;
2105				break;
2106			}
2107		}
2108		res = sas_rediscover_dev(dev, phy_id, last);
2109	} else
2110		res = sas_discover_new(dev, phy_id);
2111	return res;
2112}
2113
2114/**
2115 * sas_ex_revalidate_domain - revalidate the domain
2116 * @port_dev: port domain device.
2117 *
2118 * NOTE: this process _must_ quit (return) as soon as any connection
2119 * errors are encountered.  Connection recovery is done elsewhere.
2120 * Discover process only interrogates devices in order to discover the
2121 * domain.
2122 */
2123int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124{
2125	int res;
2126	struct domain_device *dev = NULL;
2127
2128	res = sas_find_bcast_dev(port_dev, &dev);
2129	if (res == 0 && dev) {
2130		struct expander_device *ex = &dev->ex_dev;
2131		int i = 0, phy_id;
2132
2133		do {
2134			phy_id = -1;
2135			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2136			if (phy_id == -1)
2137				break;
2138			res = sas_rediscover(dev, phy_id);
2139			i = phy_id + 1;
2140		} while (i < ex->num_phys);
 
 
 
2141	}
2142	return res;
2143}
2144
2145void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2146		struct sas_rphy *rphy)
2147{
2148	struct domain_device *dev;
2149	unsigned int rcvlen = 0;
2150	int ret = -EINVAL;
 
 
 
 
 
 
2151
2152	/* no rphy means no smp target support (ie aic94xx host) */
2153	if (!rphy)
2154		return sas_smp_host_handler(job, shost);
 
 
2155
2156	switch (rphy->identify.device_type) {
2157	case SAS_EDGE_EXPANDER_DEVICE:
2158	case SAS_FANOUT_EXPANDER_DEVICE:
2159		break;
2160	default:
2161		printk("%s: can we send a smp request to a device?\n",
2162		       __func__);
2163		goto out;
2164	}
2165
2166	dev = sas_find_dev_by_rphy(rphy);
2167	if (!dev) {
2168		printk("%s: fail to find a domain_device?\n", __func__);
2169		goto out;
2170	}
2171
2172	/* do we need to support multiple segments? */
2173	if (job->request_payload.sg_cnt > 1 ||
2174	    job->reply_payload.sg_cnt > 1) {
2175		printk("%s: multiple segments req %u, rsp %u\n",
2176		       __func__, job->request_payload.payload_len,
2177		       job->reply_payload.payload_len);
2178		goto out;
2179	}
2180
2181	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2182			job->reply_payload.sg_list);
2183	if (ret >= 0) {
2184		/* bsg_job_done() requires the length received  */
2185		rcvlen = job->reply_payload.payload_len - ret;
 
2186		ret = 0;
 
 
 
2187	}
2188
2189out:
2190	bsg_job_done(job, ret, rcvlen);
2191}