Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
 
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
 
 
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->slow_task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->slow_task->timer))
  60		return;
  61	complete(&task->slow_task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
  74
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_slow_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->slow_task->timer.data = (unsigned long) task;
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_device_type to_dev_type(struct discover_resp *dr)
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SAS_SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 199{
 200	enum sas_device_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 238	/* Handle vacant phy - rest of dr data is not valid so skip it */
 239	if (phy->phy_state == PHY_VACANT) {
 240		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 241		phy->attached_dev_type = SAS_PHY_UNUSED;
 242		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 243			phy->phy_id = phy_id;
 244			goto skip;
 245		} else
 246			goto out;
 247	}
 248
 249	phy->attached_dev_type = to_dev_type(dr);
 250	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 251		goto out;
 252	phy->phy_id = phy_id;
 253	phy->linkrate = dr->linkrate;
 254	phy->attached_sata_host = dr->attached_sata_host;
 255	phy->attached_sata_dev  = dr->attached_sata_dev;
 256	phy->attached_sata_ps   = dr->attached_sata_ps;
 257	phy->attached_iproto = dr->iproto << 1;
 258	phy->attached_tproto = dr->tproto << 1;
 259	/* help some expanders that fail to zero sas_address in the 'no
 260	 * device' case
 261	 */
 262	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 263	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 264		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 265	else
 266		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 267	phy->attached_phy_id = dr->attached_phy_id;
 268	phy->phy_change_count = dr->change_count;
 269	phy->routing_attr = dr->routing_attr;
 270	phy->virtual = dr->virtual;
 271	phy->last_da_index = -1;
 272
 273	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 274	phy->phy->identify.device_type = dr->attached_dev_type;
 275	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 276	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 277	if (!phy->attached_tproto && dr->attached_sata_dev)
 278		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 279	phy->phy->identify.phy_identifier = phy_id;
 280	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 281	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 282	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 283	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 284	phy->phy->negotiated_linkrate = phy->linkrate;
 
 285
 286 skip:
 287	if (new_phy)
 288		if (sas_phy_add(phy->phy)) {
 289			sas_phy_free(phy->phy);
 290			return;
 291		}
 292
 293 out:
 294	switch (phy->attached_dev_type) {
 295	case SAS_SATA_PENDING:
 296		type = "stp pending";
 297		break;
 298	case SAS_PHY_UNUSED:
 299		type = "no device";
 300		break;
 301	case SAS_END_DEVICE:
 302		if (phy->attached_iproto) {
 303			if (phy->attached_tproto)
 304				type = "host+target";
 305			else
 306				type = "host";
 307		} else {
 308			if (dr->attached_sata_dev)
 309				type = "stp";
 310			else
 311				type = "ssp";
 312		}
 313		break;
 314	case SAS_EDGE_EXPANDER_DEVICE:
 315	case SAS_FANOUT_EXPANDER_DEVICE:
 316		type = "smp";
 317		break;
 318	default:
 319		type = "unknown";
 320	}
 321
 322	/* this routine is polled by libata error recovery so filter
 323	 * unimportant messages
 324	 */
 325	if (new_phy || phy->attached_dev_type != dev_type ||
 326	    phy->linkrate != linkrate ||
 327	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 328		/* pass */;
 329	else
 330		return;
 331
 332	/* if the attached device type changed and ata_eh is active,
 333	 * make sure we run revalidation when eh completes (see:
 334	 * sas_enable_revalidation)
 335	 */
 336	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 337		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 338
 339	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 340		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 341		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 342		    sas_route_char(dev, phy), phy->linkrate,
 343		    SAS_ADDR(phy->attached_sas_addr), type);
 344}
 345
 346/* check if we have an existing attached ata device on this expander phy */
 347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 348{
 349	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 350	struct domain_device *dev;
 351	struct sas_rphy *rphy;
 352
 353	if (!ex_phy->port)
 354		return NULL;
 355
 356	rphy = ex_phy->port->rphy;
 357	if (!rphy)
 358		return NULL;
 359
 360	dev = sas_find_dev_by_rphy(rphy);
 361
 362	if (dev && dev_is_sata(dev))
 363		return dev;
 364
 365	return NULL;
 366}
 367
 368#define DISCOVER_REQ_SIZE  16
 369#define DISCOVER_RESP_SIZE 56
 370
 371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 372				      u8 *disc_resp, int single)
 373{
 374	struct discover_resp *dr;
 375	int res;
 376
 377	disc_req[9] = single;
 378
 379	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 380			       disc_resp, DISCOVER_RESP_SIZE);
 381	if (res)
 382		return res;
 383	dr = &((struct smp_resp *)disc_resp)->disc;
 384	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 385		sas_printk("Found loopback topology, just ignore it!\n");
 386		return 0;
 387	}
 388	sas_set_ex_phy(dev, single, disc_resp);
 389	return 0;
 390}
 391
 392int sas_ex_phy_discover(struct domain_device *dev, int single)
 393{
 394	struct expander_device *ex = &dev->ex_dev;
 395	int  res = 0;
 396	u8   *disc_req;
 397	u8   *disc_resp;
 398
 399	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 400	if (!disc_req)
 401		return -ENOMEM;
 402
 403	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 404	if (!disc_resp) {
 405		kfree(disc_req);
 406		return -ENOMEM;
 407	}
 408
 409	disc_req[1] = SMP_DISCOVER;
 410
 411	if (0 <= single && single < ex->num_phys) {
 412		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 413	} else {
 414		int i;
 415
 416		for (i = 0; i < ex->num_phys; i++) {
 417			res = sas_ex_phy_discover_helper(dev, disc_req,
 418							 disc_resp, i);
 419			if (res)
 420				goto out_err;
 421		}
 422	}
 423out_err:
 424	kfree(disc_resp);
 425	kfree(disc_req);
 426	return res;
 427}
 428
 429static int sas_expander_discover(struct domain_device *dev)
 430{
 431	struct expander_device *ex = &dev->ex_dev;
 432	int res = -ENOMEM;
 433
 434	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 435	if (!ex->ex_phy)
 436		return -ENOMEM;
 437
 438	res = sas_ex_phy_discover(dev, -1);
 439	if (res)
 440		goto out_err;
 441
 442	return 0;
 443 out_err:
 444	kfree(ex->ex_phy);
 445	ex->ex_phy = NULL;
 446	return res;
 447}
 448
 449#define MAX_EXPANDER_PHYS 128
 450
 451static void ex_assign_report_general(struct domain_device *dev,
 452					    struct smp_resp *resp)
 453{
 454	struct report_general_resp *rg = &resp->rg;
 455
 456	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 457	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 458	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 459	dev->ex_dev.t2t_supp = rg->t2t_supp;
 460	dev->ex_dev.conf_route_table = rg->conf_route_table;
 461	dev->ex_dev.configuring = rg->configuring;
 462	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 463}
 464
 465#define RG_REQ_SIZE   8
 466#define RG_RESP_SIZE 32
 467
 468static int sas_ex_general(struct domain_device *dev)
 469{
 470	u8 *rg_req;
 471	struct smp_resp *rg_resp;
 472	int res;
 473	int i;
 474
 475	rg_req = alloc_smp_req(RG_REQ_SIZE);
 476	if (!rg_req)
 477		return -ENOMEM;
 478
 479	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 480	if (!rg_resp) {
 481		kfree(rg_req);
 482		return -ENOMEM;
 483	}
 484
 485	rg_req[1] = SMP_REPORT_GENERAL;
 486
 487	for (i = 0; i < 5; i++) {
 488		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 489				       RG_RESP_SIZE);
 490
 491		if (res) {
 492			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 493				    SAS_ADDR(dev->sas_addr), res);
 494			goto out;
 495		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 496			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 497				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 498			res = rg_resp->result;
 499			goto out;
 500		}
 501
 502		ex_assign_report_general(dev, rg_resp);
 503
 504		if (dev->ex_dev.configuring) {
 505			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 506				    SAS_ADDR(dev->sas_addr));
 507			schedule_timeout_interruptible(5*HZ);
 508		} else
 509			break;
 510	}
 511out:
 512	kfree(rg_req);
 513	kfree(rg_resp);
 514	return res;
 515}
 516
 517static void ex_assign_manuf_info(struct domain_device *dev, void
 518					*_mi_resp)
 519{
 520	u8 *mi_resp = _mi_resp;
 521	struct sas_rphy *rphy = dev->rphy;
 522	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 523
 524	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 525	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 526	memcpy(edev->product_rev, mi_resp + 36,
 527	       SAS_EXPANDER_PRODUCT_REV_LEN);
 528
 529	if (mi_resp[8] & 1) {
 530		memcpy(edev->component_vendor_id, mi_resp + 40,
 531		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 532		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 533		edev->component_revision_id = mi_resp[50];
 534	}
 535}
 536
 537#define MI_REQ_SIZE   8
 538#define MI_RESP_SIZE 64
 539
 540static int sas_ex_manuf_info(struct domain_device *dev)
 541{
 542	u8 *mi_req;
 543	u8 *mi_resp;
 544	int res;
 545
 546	mi_req = alloc_smp_req(MI_REQ_SIZE);
 547	if (!mi_req)
 548		return -ENOMEM;
 549
 550	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 551	if (!mi_resp) {
 552		kfree(mi_req);
 553		return -ENOMEM;
 554	}
 555
 556	mi_req[1] = SMP_REPORT_MANUF_INFO;
 557
 558	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 559	if (res) {
 560		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 561			    SAS_ADDR(dev->sas_addr), res);
 562		goto out;
 563	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 564		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 565			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 566		goto out;
 567	}
 568
 569	ex_assign_manuf_info(dev, mi_resp);
 570out:
 571	kfree(mi_req);
 572	kfree(mi_resp);
 573	return res;
 574}
 575
 576#define PC_REQ_SIZE  44
 577#define PC_RESP_SIZE 8
 578
 579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 580			enum phy_func phy_func,
 581			struct sas_phy_linkrates *rates)
 582{
 583	u8 *pc_req;
 584	u8 *pc_resp;
 585	int res;
 586
 587	pc_req = alloc_smp_req(PC_REQ_SIZE);
 588	if (!pc_req)
 589		return -ENOMEM;
 590
 591	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 592	if (!pc_resp) {
 593		kfree(pc_req);
 594		return -ENOMEM;
 595	}
 596
 597	pc_req[1] = SMP_PHY_CONTROL;
 598	pc_req[9] = phy_id;
 599	pc_req[10]= phy_func;
 600	if (rates) {
 601		pc_req[32] = rates->minimum_linkrate << 4;
 602		pc_req[33] = rates->maximum_linkrate << 4;
 603	}
 604
 605	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 606
 
 
 
 
 
 
 
 607	kfree(pc_resp);
 608	kfree(pc_req);
 609	return res;
 610}
 611
 612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 613{
 614	struct expander_device *ex = &dev->ex_dev;
 615	struct ex_phy *phy = &ex->ex_phy[phy_id];
 616
 617	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 618	phy->linkrate = SAS_PHY_DISABLED;
 619}
 620
 621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 622{
 623	struct expander_device *ex = &dev->ex_dev;
 624	int i;
 625
 626	for (i = 0; i < ex->num_phys; i++) {
 627		struct ex_phy *phy = &ex->ex_phy[i];
 628
 629		if (phy->phy_state == PHY_VACANT ||
 630		    phy->phy_state == PHY_NOT_PRESENT)
 631			continue;
 632
 633		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 634			sas_ex_disable_phy(dev, i);
 635	}
 636}
 637
 638static int sas_dev_present_in_domain(struct asd_sas_port *port,
 639					    u8 *sas_addr)
 640{
 641	struct domain_device *dev;
 642
 643	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 644		return 1;
 645	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 646		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 647			return 1;
 648	}
 649	return 0;
 650}
 651
 652#define RPEL_REQ_SIZE	16
 653#define RPEL_RESP_SIZE	32
 654int sas_smp_get_phy_events(struct sas_phy *phy)
 655{
 656	int res;
 657	u8 *req;
 658	u8 *resp;
 659	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 660	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 661
 662	req = alloc_smp_req(RPEL_REQ_SIZE);
 663	if (!req)
 664		return -ENOMEM;
 665
 666	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 667	if (!resp) {
 668		kfree(req);
 669		return -ENOMEM;
 670	}
 671
 672	req[1] = SMP_REPORT_PHY_ERR_LOG;
 673	req[9] = phy->number;
 674
 675	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 676			            resp, RPEL_RESP_SIZE);
 677
 678	if (!res)
 679		goto out;
 680
 681	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 682	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 683	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 684	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 685
 686 out:
 
 687	kfree(resp);
 688	return res;
 689
 690}
 691
 692#ifdef CONFIG_SCSI_SAS_ATA
 693
 694#define RPS_REQ_SIZE  16
 695#define RPS_RESP_SIZE 60
 696
 697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 698			    struct smp_resp *rps_resp)
 699{
 700	int res;
 701	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 702	u8 *resp = (u8 *)rps_resp;
 703
 704	if (!rps_req)
 705		return -ENOMEM;
 706
 707	rps_req[1] = SMP_REPORT_PHY_SATA;
 708	rps_req[9] = phy_id;
 709
 710	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 711			            rps_resp, RPS_RESP_SIZE);
 712
 713	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 714	 * standards cockup here.  sas-2 explicitly specifies the FIS
 715	 * should be encoded so that FIS type is in resp[24].
 716	 * However, some expanders endian reverse this.  Undo the
 717	 * reversal here */
 718	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 719		int i;
 720
 721		for (i = 0; i < 5; i++) {
 722			int j = 24 + (i*4);
 723			u8 a, b;
 724			a = resp[j + 0];
 725			b = resp[j + 1];
 726			resp[j + 0] = resp[j + 3];
 727			resp[j + 1] = resp[j + 2];
 728			resp[j + 2] = b;
 729			resp[j + 3] = a;
 730		}
 731	}
 732
 733	kfree(rps_req);
 734	return res;
 735}
 736#endif
 737
 738static void sas_ex_get_linkrate(struct domain_device *parent,
 739				       struct domain_device *child,
 740				       struct ex_phy *parent_phy)
 741{
 742	struct expander_device *parent_ex = &parent->ex_dev;
 743	struct sas_port *port;
 744	int i;
 745
 746	child->pathways = 0;
 747
 748	port = parent_phy->port;
 749
 750	for (i = 0; i < parent_ex->num_phys; i++) {
 751		struct ex_phy *phy = &parent_ex->ex_phy[i];
 752
 753		if (phy->phy_state == PHY_VACANT ||
 754		    phy->phy_state == PHY_NOT_PRESENT)
 755			continue;
 756
 757		if (SAS_ADDR(phy->attached_sas_addr) ==
 758		    SAS_ADDR(child->sas_addr)) {
 759
 760			child->min_linkrate = min(parent->min_linkrate,
 761						  phy->linkrate);
 762			child->max_linkrate = max(parent->max_linkrate,
 763						  phy->linkrate);
 764			child->pathways++;
 765			sas_port_add_phy(port, phy->phy);
 766		}
 767	}
 768	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 769	child->pathways = min(child->pathways, parent->pathways);
 770}
 771
 772static struct domain_device *sas_ex_discover_end_dev(
 773	struct domain_device *parent, int phy_id)
 774{
 775	struct expander_device *parent_ex = &parent->ex_dev;
 776	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 777	struct domain_device *child = NULL;
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	if (phy->attached_sata_host || phy->attached_sata_ps)
 782		return NULL;
 783
 784	child = sas_alloc_device();
 785	if (!child)
 786		return NULL;
 787
 788	kref_get(&parent->kref);
 789	child->parent = parent;
 790	child->port   = parent->port;
 791	child->iproto = phy->attached_iproto;
 792	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 793	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 794	if (!phy->port) {
 795		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 796		if (unlikely(!phy->port))
 797			goto out_err;
 798		if (unlikely(sas_port_add(phy->port) != 0)) {
 799			sas_port_free(phy->port);
 800			goto out_err;
 801		}
 802	}
 803	sas_ex_get_linkrate(parent, child, phy);
 804	sas_device_set_phy(child, phy->port);
 805
 806#ifdef CONFIG_SCSI_SAS_ATA
 807	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808		res = sas_get_ata_info(child, phy);
 809		if (res)
 810			goto out_free;
 811
 812		sas_init_dev(child);
 813		res = sas_ata_init(child);
 814		if (res)
 815			goto out_free;
 816		rphy = sas_end_device_alloc(phy->port);
 817		if (!rphy)
 818			goto out_free;
 
 819
 820		child->rphy = rphy;
 821		get_device(&rphy->dev);
 822
 823		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 824
 825		res = sas_discover_sata(child);
 826		if (res) {
 827			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 828				    "%016llx:0x%x returned 0x%x\n",
 829				    SAS_ADDR(child->sas_addr),
 830				    SAS_ADDR(parent->sas_addr), phy_id, res);
 831			goto out_list_del;
 832		}
 833	} else
 834#endif
 835	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 836		child->dev_type = SAS_END_DEVICE;
 837		rphy = sas_end_device_alloc(phy->port);
 838		/* FIXME: error handling */
 839		if (unlikely(!rphy))
 840			goto out_free;
 841		child->tproto = phy->attached_tproto;
 842		sas_init_dev(child);
 843
 844		child->rphy = rphy;
 845		get_device(&rphy->dev);
 
 846		sas_fill_in_rphy(child, rphy);
 847
 848		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 849
 850		res = sas_discover_end_dev(child);
 851		if (res) {
 852			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 853				    "at %016llx:0x%x returned 0x%x\n",
 854				    SAS_ADDR(child->sas_addr),
 855				    SAS_ADDR(parent->sas_addr), phy_id, res);
 856			goto out_list_del;
 857		}
 858	} else {
 859		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 860			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 861			    phy_id);
 862		goto out_free;
 863	}
 864
 865	list_add_tail(&child->siblings, &parent_ex->children);
 866	return child;
 867
 868 out_list_del:
 869	sas_rphy_free(child->rphy);
 870	list_del(&child->disco_list_node);
 871	spin_lock_irq(&parent->port->dev_list_lock);
 872	list_del(&child->dev_list_node);
 873	spin_unlock_irq(&parent->port->dev_list_lock);
 874 out_free:
 875	sas_port_delete(phy->port);
 876 out_err:
 877	phy->port = NULL;
 878	sas_put_device(child);
 879	return NULL;
 880}
 881
 882/* See if this phy is part of a wide port */
 883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 884{
 885	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 886	int i;
 887
 888	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 889		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 890
 891		if (ephy == phy)
 892			continue;
 893
 894		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 895			    SAS_ADDR_SIZE) && ephy->port) {
 896			sas_port_add_phy(ephy->port, phy->phy);
 897			phy->port = ephy->port;
 898			phy->phy_state = PHY_DEVICE_DISCOVERED;
 899			return true;
 900		}
 901	}
 902
 903	return false;
 904}
 905
 906static struct domain_device *sas_ex_discover_expander(
 907	struct domain_device *parent, int phy_id)
 908{
 909	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 910	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 911	struct domain_device *child = NULL;
 912	struct sas_rphy *rphy;
 913	struct sas_expander_device *edev;
 914	struct asd_sas_port *port;
 915	int res;
 916
 917	if (phy->routing_attr == DIRECT_ROUTING) {
 918		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 919			    "allowed\n",
 920			    SAS_ADDR(parent->sas_addr), phy_id,
 921			    SAS_ADDR(phy->attached_sas_addr),
 922			    phy->attached_phy_id);
 923		return NULL;
 924	}
 925	child = sas_alloc_device();
 926	if (!child)
 927		return NULL;
 928
 929	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 930	/* FIXME: better error handling */
 931	BUG_ON(sas_port_add(phy->port) != 0);
 932
 933
 934	switch (phy->attached_dev_type) {
 935	case SAS_EDGE_EXPANDER_DEVICE:
 936		rphy = sas_expander_alloc(phy->port,
 937					  SAS_EDGE_EXPANDER_DEVICE);
 938		break;
 939	case SAS_FANOUT_EXPANDER_DEVICE:
 940		rphy = sas_expander_alloc(phy->port,
 941					  SAS_FANOUT_EXPANDER_DEVICE);
 942		break;
 943	default:
 944		rphy = NULL;	/* shut gcc up */
 945		BUG();
 946	}
 947	port = parent->port;
 948	child->rphy = rphy;
 949	get_device(&rphy->dev);
 950	edev = rphy_to_expander_device(rphy);
 951	child->dev_type = phy->attached_dev_type;
 952	kref_get(&parent->kref);
 953	child->parent = parent;
 954	child->port = port;
 955	child->iproto = phy->attached_iproto;
 956	child->tproto = phy->attached_tproto;
 957	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 958	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 959	sas_ex_get_linkrate(parent, child, phy);
 960	edev->level = parent_ex->level + 1;
 961	parent->port->disc.max_level = max(parent->port->disc.max_level,
 962					   edev->level);
 963	sas_init_dev(child);
 964	sas_fill_in_rphy(child, rphy);
 965	sas_rphy_add(rphy);
 966
 967	spin_lock_irq(&parent->port->dev_list_lock);
 968	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 969	spin_unlock_irq(&parent->port->dev_list_lock);
 970
 971	res = sas_discover_expander(child);
 972	if (res) {
 973		sas_rphy_delete(rphy);
 974		spin_lock_irq(&parent->port->dev_list_lock);
 975		list_del(&child->dev_list_node);
 976		spin_unlock_irq(&parent->port->dev_list_lock);
 977		sas_put_device(child);
 
 
 978		return NULL;
 979	}
 980	list_add_tail(&child->siblings, &parent->ex_dev.children);
 981	return child;
 982}
 983
 984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 985{
 986	struct expander_device *ex = &dev->ex_dev;
 987	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 988	struct domain_device *child = NULL;
 989	int res = 0;
 990
 991	/* Phy state */
 992	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 993		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 994			res = sas_ex_phy_discover(dev, phy_id);
 995		if (res)
 996			return res;
 997	}
 998
 999	/* Parent and domain coherency */
1000	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001			     SAS_ADDR(dev->port->sas_addr))) {
1002		sas_add_parent_port(dev, phy_id);
1003		return 0;
1004	}
1005	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006			    SAS_ADDR(dev->parent->sas_addr))) {
1007		sas_add_parent_port(dev, phy_id);
1008		if (ex_phy->routing_attr == TABLE_ROUTING)
1009			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010		return 0;
1011	}
1012
1013	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020		}
1021		return 0;
1022	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023		return 0;
1024
1025	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030			    "phy 0x%x\n", ex_phy->attached_dev_type,
1031			    SAS_ADDR(dev->sas_addr),
1032			    phy_id);
1033		return 0;
1034	}
1035
1036	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037	if (res) {
1038		SAS_DPRINTK("configure routing for dev %016llx "
1039			    "reported 0x%x. Forgotten\n",
1040			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1041		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042		return res;
1043	}
1044
1045	if (sas_ex_join_wide_port(dev, phy_id)) {
1046		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048		return res;
1049	}
1050
1051	switch (ex_phy->attached_dev_type) {
1052	case SAS_END_DEVICE:
1053	case SAS_SATA_PENDING:
1054		child = sas_ex_discover_end_dev(dev, phy_id);
1055		break;
1056	case SAS_FANOUT_EXPANDER_DEVICE:
1057		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059				    "attached to ex %016llx phy 0x%x\n",
1060				    SAS_ADDR(ex_phy->attached_sas_addr),
1061				    ex_phy->attached_phy_id,
1062				    SAS_ADDR(dev->sas_addr),
1063				    phy_id);
1064			sas_ex_disable_phy(dev, phy_id);
1065			break;
1066		} else
1067			memcpy(dev->port->disc.fanout_sas_addr,
1068			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069		/* fallthrough */
1070	case SAS_EDGE_EXPANDER_DEVICE:
1071		child = sas_ex_discover_expander(dev, phy_id);
1072		break;
1073	default:
1074		break;
1075	}
1076
1077	if (child) {
1078		int i;
1079
1080		for (i = 0; i < ex->num_phys; i++) {
1081			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083				continue;
1084			/*
1085			 * Due to races, the phy might not get added to the
1086			 * wide port, so we add the phy to the wide port here.
1087			 */
1088			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089			    SAS_ADDR(child->sas_addr)) {
1090				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091				if (sas_ex_join_wide_port(dev, i))
1092					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095			}
1096		}
1097	}
1098
1099	return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104	struct expander_device *ex = &dev->ex_dev;
1105	int i;
1106
1107	for (i = 0; i < ex->num_phys; i++) {
1108		struct ex_phy *phy = &ex->ex_phy[i];
1109
1110		if (phy->phy_state == PHY_VACANT ||
1111		    phy->phy_state == PHY_NOT_PRESENT)
1112			continue;
1113
1114		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120			return 1;
1121		}
1122	}
1123	return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128	struct expander_device *ex = &dev->ex_dev;
1129	struct domain_device *child;
1130	u8 sub_addr[8] = {0, };
1131
1132	list_for_each_entry(child, &ex->children, siblings) {
1133		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135			continue;
1136		if (sub_addr[0] == 0) {
1137			sas_find_sub_addr(child, sub_addr);
1138			continue;
1139		} else {
1140			u8 s2[8];
1141
1142			if (sas_find_sub_addr(child, s2) &&
1143			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146					    "diverges from subtractive "
1147					    "boundary %016llx\n",
1148					    SAS_ADDR(dev->sas_addr),
1149					    SAS_ADDR(child->sas_addr),
1150					    SAS_ADDR(s2),
1151					    SAS_ADDR(sub_addr));
1152
1153				sas_ex_disable_port(child, s2);
1154			}
1155		}
1156	}
1157	return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169	struct expander_device *ex = &dev->ex_dev;
1170	int i = 0, end = ex->num_phys;
1171	int res = 0;
1172
1173	if (0 <= single && single < end) {
1174		i = single;
1175		end = i+1;
1176	}
1177
1178	for ( ; i < end; i++) {
1179		struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181		if (ex_phy->phy_state == PHY_VACANT ||
1182		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1183		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184			continue;
1185
1186		switch (ex_phy->linkrate) {
1187		case SAS_PHY_DISABLED:
1188		case SAS_PHY_RESET_PROBLEM:
1189		case SAS_SATA_PORT_SELECTOR:
1190			continue;
1191		default:
1192			res = sas_ex_discover_dev(dev, i);
1193			if (res)
1194				break;
1195			continue;
1196		}
1197	}
1198
1199	if (!res)
1200		sas_check_level_subtractive_boundary(dev);
1201
1202	return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207	struct expander_device *ex = &dev->ex_dev;
1208	int i;
1209	u8  *sub_sas_addr = NULL;
1210
1211	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212		return 0;
1213
1214	for (i = 0; i < ex->num_phys; i++) {
1215		struct ex_phy *phy = &ex->ex_phy[i];
1216
1217		if (phy->phy_state == PHY_VACANT ||
1218		    phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225			if (!sub_sas_addr)
1226				sub_sas_addr = &phy->attached_sas_addr[0];
1227			else if (SAS_ADDR(sub_sas_addr) !=
1228				 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230				SAS_DPRINTK("ex %016llx phy 0x%x "
1231					    "diverges(%016llx) on subtractive "
1232					    "boundary(%016llx). Disabled\n",
1233					    SAS_ADDR(dev->sas_addr), i,
1234					    SAS_ADDR(phy->attached_sas_addr),
1235					    SAS_ADDR(sub_sas_addr));
1236				sas_ex_disable_phy(dev, i);
1237			}
1238		}
1239	}
1240	return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244						 struct ex_phy *parent_phy,
1245						 struct ex_phy *child_phy)
1246{
1247	static const char *ex_type[] = {
1248		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250	};
1251	struct domain_device *parent = child->parent;
1252
1253	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254		   "phy 0x%x has %c:%c routing link!\n",
 
 
 
 
 
 
1255
1256		   ex_type[parent->dev_type],
1257		   SAS_ADDR(parent->sas_addr),
1258		   parent_phy->phy_id,
1259
1260		   ex_type[child->dev_type],
1261		   SAS_ADDR(child->sas_addr),
1262		   child_phy->phy_id,
1263
1264		   sas_route_char(parent, parent_phy),
1265		   sas_route_char(child, child_phy));
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269				 struct ex_phy *parent_phy,
1270				 struct ex_phy *child_phy)
1271{
1272	int res = 0;
1273	struct domain_device *parent = child->parent;
1274
1275	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276		res = -ENODEV;
1277		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1279			    SAS_ADDR(parent->sas_addr),
1280			    parent_phy->phy_id,
1281			    SAS_ADDR(child->sas_addr),
1282			    child_phy->phy_id,
1283			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286		       SAS_ADDR_SIZE);
1287		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288		       SAS_ADDR_SIZE);
1289	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290		    SAS_ADDR(parent->sas_addr)) ||
1291		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1292		    SAS_ADDR(child->sas_addr)))
1293		   &&
1294		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295		     SAS_ADDR(parent->sas_addr)) ||
1296		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1297		     SAS_ADDR(child->sas_addr))))
1298		;
1299	else {
1300		res = -ENODEV;
1301		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302			    "phy 0x%x link forms a third EEDS!\n",
1303			    SAS_ADDR(parent->sas_addr),
1304			    parent_phy->phy_id,
1305			    SAS_ADDR(child->sas_addr),
1306			    child_phy->phy_id);
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326		return 0;
1327
1328	parent_ex = &child->parent->ex_dev;
1329
1330	for (i = 0; i < parent_ex->num_phys; i++) {
1331		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332		struct ex_phy *child_phy;
1333
1334		if (parent_phy->phy_state == PHY_VACANT ||
1335		    parent_phy->phy_state == PHY_NOT_PRESENT)
1336			continue;
1337
1338		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339			continue;
1340
1341		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343		switch (child->parent->dev_type) {
1344		case SAS_EDGE_EXPANDER_DEVICE:
1345			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347				    child_phy->routing_attr != TABLE_ROUTING) {
1348					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349					res = -ENODEV;
1350				}
1351			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353					res = sas_check_eeds(child, parent_phy, child_phy);
1354				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1355					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356					res = -ENODEV;
1357				}
1358			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360				    (child_phy->routing_attr == TABLE_ROUTING &&
1361				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362					/* All good */;
1363				} else {
1364					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365					res = -ENODEV;
1366				}
1367			}
1368			break;
1369		case SAS_FANOUT_EXPANDER_DEVICE:
1370			if (parent_phy->routing_attr != TABLE_ROUTING ||
1371			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373				res = -ENODEV;
1374			}
1375			break;
1376		default:
1377			break;
1378		}
1379	}
1380
1381	return res;
1382}
1383
1384#define RRI_REQ_SIZE  16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388				 u8 *sas_addr, int *index, int *present)
1389{
1390	int i, res = 0;
1391	struct expander_device *ex = &dev->ex_dev;
1392	struct ex_phy *phy = &ex->ex_phy[phy_id];
1393	u8 *rri_req;
1394	u8 *rri_resp;
1395
1396	*present = 0;
1397	*index = 0;
1398
1399	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400	if (!rri_req)
1401		return -ENOMEM;
1402
1403	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404	if (!rri_resp) {
1405		kfree(rri_req);
1406		return -ENOMEM;
1407	}
1408
1409	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410	rri_req[9] = phy_id;
1411
1412	for (i = 0; i < ex->max_route_indexes ; i++) {
1413		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415				       RRI_RESP_SIZE);
1416		if (res)
1417			goto out;
1418		res = rri_resp[2];
1419		if (res == SMP_RESP_NO_INDEX) {
1420			SAS_DPRINTK("overflow of indexes: dev %016llx "
1421				    "phy 0x%x index 0x%x\n",
1422				    SAS_ADDR(dev->sas_addr), phy_id, i);
1423			goto out;
1424		} else if (res != SMP_RESP_FUNC_ACC) {
1425			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426				    "result 0x%x\n", __func__,
1427				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428			goto out;
1429		}
1430		if (SAS_ADDR(sas_addr) != 0) {
1431			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432				*index = i;
1433				if ((rri_resp[12] & 0x80) == 0x80)
1434					*present = 0;
1435				else
1436					*present = 1;
1437				goto out;
1438			} else if (SAS_ADDR(rri_resp+16) == 0) {
1439				*index = i;
1440				*present = 0;
1441				goto out;
1442			}
1443		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1444			   phy->last_da_index < i) {
1445			phy->last_da_index = i;
1446			*index = i;
1447			*present = 0;
1448			goto out;
1449		}
1450	}
1451	res = -1;
1452out:
1453	kfree(rri_req);
1454	kfree(rri_resp);
1455	return res;
1456}
1457
1458#define CRI_REQ_SIZE  44
1459#define CRI_RESP_SIZE  8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462			     u8 *sas_addr, int index, int include)
1463{
1464	int res;
1465	u8 *cri_req;
1466	u8 *cri_resp;
1467
1468	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469	if (!cri_req)
1470		return -ENOMEM;
1471
1472	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473	if (!cri_resp) {
1474		kfree(cri_req);
1475		return -ENOMEM;
1476	}
1477
1478	cri_req[1] = SMP_CONF_ROUTE_INFO;
1479	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480	cri_req[9] = phy_id;
1481	if (SAS_ADDR(sas_addr) == 0 || !include)
1482		cri_req[12] |= 0x80;
1483	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486			       CRI_RESP_SIZE);
1487	if (res)
1488		goto out;
1489	res = cri_resp[2];
1490	if (res == SMP_RESP_NO_INDEX) {
1491		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492			    "index 0x%x\n",
1493			    SAS_ADDR(dev->sas_addr), phy_id, index);
1494	}
1495out:
1496	kfree(cri_req);
1497	kfree(cri_resp);
1498	return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502				    u8 *sas_addr, int include)
1503{
1504	int index;
1505	int present;
1506	int res;
1507
1508	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509	if (res)
1510		return res;
1511	if (include ^ present)
1512		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1513
1514	return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
 
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524				struct domain_device *child,
1525				u8 *sas_addr, int include)
1526{
1527	struct expander_device *ex_parent = &parent->ex_dev;
1528	int res = 0;
1529	int i;
1530
1531	if (parent->parent) {
1532		res = sas_configure_parent(parent->parent, parent, sas_addr,
1533					   include);
1534		if (res)
1535			return res;
1536	}
1537
1538	if (ex_parent->conf_route_table == 0) {
1539		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540			    SAS_ADDR(parent->sas_addr));
1541		return 0;
1542	}
1543
1544	for (i = 0; i < ex_parent->num_phys; i++) {
1545		struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547		if ((phy->routing_attr == TABLE_ROUTING) &&
1548		    (SAS_ADDR(phy->attached_sas_addr) ==
1549		     SAS_ADDR(child->sas_addr))) {
1550			res = sas_configure_phy(parent, i, sas_addr, include);
1551			if (res)
1552				return res;
1553		}
1554	}
1555
1556	return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566	if (dev->parent)
1567		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568	return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572{
1573	if (dev->parent)
1574		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575	return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586	int res;
1587
1588	res = sas_notify_lldd_dev_found(dev);
1589	if (res)
1590		return res;
1591
1592	res = sas_ex_general(dev);
1593	if (res)
1594		goto out_err;
1595	res = sas_ex_manuf_info(dev);
1596	if (res)
1597		goto out_err;
1598
1599	res = sas_expander_discover(dev);
1600	if (res) {
1601		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602			    SAS_ADDR(dev->sas_addr), res);
1603		goto out_err;
1604	}
1605
1606	sas_check_ex_subtractive_boundary(dev);
1607	res = sas_check_parent_topology(dev);
1608	if (res)
1609		goto out_err;
1610	return 0;
1611out_err:
1612	sas_notify_lldd_dev_gone(dev);
1613	return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618	int res = 0;
1619	struct domain_device *dev;
1620
1621	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624			struct sas_expander_device *ex =
1625				rphy_to_expander_device(dev->rphy);
1626
1627			if (level == ex->level)
1628				res = sas_ex_discover_devices(dev, -1);
1629			else if (level > 0)
1630				res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632		}
1633	}
1634
1635	return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640	int res;
1641	int level;
1642
1643	do {
1644		level = port->disc.max_level;
1645		res = sas_ex_level_discovery(port, level);
1646		mb();
1647	} while (level < port->disc.max_level);
1648
1649	return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654	int res;
1655	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657	res = sas_rphy_add(dev->rphy);
1658	if (res)
1659		goto out_err;
1660
1661	ex->level = dev->port->disc.max_level; /* 0 */
1662	res = sas_discover_expander(dev);
1663	if (res)
1664		goto out_err2;
1665
1666	sas_ex_bfs_disc(dev->port);
1667
1668	return res;
1669
1670out_err2:
1671	sas_rphy_remove(dev->rphy);
1672out_err:
1673	return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
1678static int sas_get_phy_discover(struct domain_device *dev,
1679				int phy_id, struct smp_resp *disc_resp)
1680{
1681	int res;
1682	u8 *disc_req;
1683
1684	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685	if (!disc_req)
1686		return -ENOMEM;
1687
1688	disc_req[1] = SMP_DISCOVER;
1689	disc_req[9] = phy_id;
1690
1691	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692			       disc_resp, DISCOVER_RESP_SIZE);
1693	if (res)
1694		goto out;
1695	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696		res = disc_resp->result;
1697		goto out;
1698	}
1699out:
1700	kfree(disc_req);
1701	return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705				    int phy_id, int *pcc)
1706{
1707	int res;
1708	struct smp_resp *disc_resp;
1709
1710	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711	if (!disc_resp)
1712		return -ENOMEM;
1713
1714	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715	if (!res)
1716		*pcc = disc_resp->disc.change_count;
1717
1718	kfree(disc_resp);
1719	return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723				    u8 *sas_addr, enum sas_device_type *type)
1724{
1725	int res;
1726	struct smp_resp *disc_resp;
1727	struct discover_resp *dr;
1728
1729	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730	if (!disc_resp)
1731		return -ENOMEM;
1732	dr = &disc_resp->disc;
1733
1734	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735	if (res == 0) {
1736		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
 
1737		*type = to_dev_type(dr);
1738		if (*type == 0)
1739			memset(sas_addr, 0, 8);
1740	}
1741	kfree(disc_resp);
1742	return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746			      int from_phy, bool update)
1747{
1748	struct expander_device *ex = &dev->ex_dev;
1749	int res = 0;
1750	int i;
1751
1752	for (i = from_phy; i < ex->num_phys; i++) {
1753		int phy_change_count = 0;
1754
1755		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756		switch (res) {
1757		case SMP_RESP_PHY_VACANT:
1758		case SMP_RESP_NO_PHY:
1759			continue;
1760		case SMP_RESP_FUNC_ACC:
1761			break;
1762		default:
1763			return res;
1764		}
1765
1766		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767			if (update)
1768				ex->ex_phy[i].phy_change_count =
1769					phy_change_count;
1770			*phy_id = i;
1771			return 0;
1772		}
1773	}
1774	return 0;
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779	int res;
1780	u8  *rg_req;
1781	struct smp_resp  *rg_resp;
1782
1783	rg_req = alloc_smp_req(RG_REQ_SIZE);
1784	if (!rg_req)
1785		return -ENOMEM;
1786
1787	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788	if (!rg_resp) {
1789		kfree(rg_req);
1790		return -ENOMEM;
1791	}
1792
1793	rg_req[1] = SMP_REPORT_GENERAL;
1794
1795	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796			       RG_RESP_SIZE);
1797	if (res)
1798		goto out;
1799	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800		res = rg_resp->result;
1801		goto out;
1802	}
1803
1804	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806	kfree(rg_resp);
1807	kfree(rg_req);
1808	return res;
1809}
1810/**
1811 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826			      struct domain_device **src_dev)
1827{
1828	struct expander_device *ex = &dev->ex_dev;
1829	int ex_change_count = -1;
1830	int phy_id = -1;
1831	int res;
1832	struct domain_device *ch;
1833
1834	res = sas_get_ex_change_count(dev, &ex_change_count);
1835	if (res)
1836		goto out;
1837	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838		/* Just detect if this expander phys phy change count changed,
1839		* in order to determine if this expander originate BROADCAST,
1840		* and do not update phy change count field in our structure.
1841		*/
1842		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843		if (phy_id != -1) {
1844			*src_dev = dev;
1845			ex->ex_change_count = ex_change_count;
1846			SAS_DPRINTK("Expander phy change count has changed\n");
 
1847			return res;
1848		} else
1849			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871			sas_unregister_ex_tree(port, child);
1872		else
1873			sas_unregister_dev(port, child);
1874	}
1875	sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879					 int phy_id, bool last)
1880{
1881	struct expander_device *ex_dev = &parent->ex_dev;
1882	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883	struct domain_device *child, *n, *found = NULL;
1884	if (last) {
1885		list_for_each_entry_safe(child, n,
1886			&ex_dev->children, siblings) {
1887			if (SAS_ADDR(child->sas_addr) ==
1888			    SAS_ADDR(phy->attached_sas_addr)) {
1889				set_bit(SAS_DEV_GONE, &child->state);
1890				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892					sas_unregister_ex_tree(parent->port, child);
1893				else
1894					sas_unregister_dev(parent->port, child);
1895				found = child;
1896				break;
1897			}
1898		}
1899		sas_disable_routing(parent, phy->attached_sas_addr);
1900	}
1901	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902	if (phy->port) {
1903		sas_port_delete_phy(phy->port, phy->phy);
1904		sas_device_set_phy(found, phy->port);
1905		if (phy->port->num_phys == 0)
1906			sas_port_delete(phy->port);
 
1907		phy->port = NULL;
1908	}
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912					  const int level)
1913{
1914	struct expander_device *ex_root = &root->ex_dev;
1915	struct domain_device *child;
1916	int res = 0;
1917
1918	list_for_each_entry(child, &ex_root->children, siblings) {
1919		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921			struct sas_expander_device *ex =
1922				rphy_to_expander_device(child->rphy);
1923
1924			if (level > ex->level)
1925				res = sas_discover_bfs_by_root_level(child,
1926								     level);
1927			else if (level == ex->level)
1928				res = sas_ex_discover_devices(child, -1);
1929		}
1930	}
1931	return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936	int res;
1937	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938	int level = ex->level+1;
1939
1940	res = sas_ex_discover_devices(dev, -1);
1941	if (res)
1942		goto out;
1943	do {
1944		res = sas_discover_bfs_by_root_level(dev, level);
1945		mb();
1946		level += 1;
1947	} while (level <= dev->port->disc.max_level);
1948out:
1949	return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955	struct domain_device *child;
1956	int res;
1957
1958	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959		    SAS_ADDR(dev->sas_addr), phy_id);
1960	res = sas_ex_phy_discover(dev, phy_id);
1961	if (res)
1962		return res;
1963
1964	if (sas_ex_join_wide_port(dev, phy_id))
1965		return 0;
1966
1967	res = sas_ex_discover_devices(dev, phy_id);
1968	if (res)
1969		return res;
1970	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971		if (SAS_ADDR(child->sas_addr) ==
1972		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1973			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975				res = sas_discover_bfs_by_root(child);
1976			break;
1977		}
1978	}
1979	return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984	if (old == new)
1985		return true;
1986
1987	/* treat device directed resets as flutter, if we went
1988	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989	 */
1990	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992		return true;
1993
1994	return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
1998{
1999	struct expander_device *ex = &dev->ex_dev;
2000	struct ex_phy *phy = &ex->ex_phy[phy_id];
2001	enum sas_device_type type = SAS_PHY_UNUSED;
2002	u8 sas_addr[8];
 
2003	int res;
2004
2005	memset(sas_addr, 0, 8);
 
 
 
 
 
 
2006	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007	switch (res) {
2008	case SMP_RESP_NO_PHY:
2009		phy->phy_state = PHY_NOT_PRESENT;
2010		sas_unregister_devs_sas_addr(dev, phy_id, last);
2011		return res;
2012	case SMP_RESP_PHY_VACANT:
2013		phy->phy_state = PHY_VACANT;
2014		sas_unregister_devs_sas_addr(dev, phy_id, last);
2015		return res;
2016	case SMP_RESP_FUNC_ACC:
2017		break;
2018	case -ECOMM:
2019		break;
2020	default:
2021		return res;
2022	}
2023
2024	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025		phy->phy_state = PHY_EMPTY;
2026		sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
 
 
2027		return res;
2028	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029		   dev_type_flutter(type, phy->attached_dev_type)) {
2030		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031		char *action = "";
2032
2033		sas_ex_phy_discover(dev, phy_id);
2034
2035		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036			action = ", needs recovery";
2037		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038			    SAS_ADDR(dev->sas_addr), phy_id, action);
2039		return res;
2040	}
2041
2042	/* delete the old link */
2043	if (SAS_ADDR(phy->attached_sas_addr) &&
2044	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046			    SAS_ADDR(dev->sas_addr), phy_id,
2047			    SAS_ADDR(phy->attached_sas_addr));
2048		sas_unregister_devs_sas_addr(dev, phy_id, last);
2049	}
2050
2051	return sas_discover_new(dev, phy_id);
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered.  Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070	struct expander_device *ex = &dev->ex_dev;
2071	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072	int res = 0;
2073	int i;
2074	bool last = true;	/* is this the last phy of the port */
2075
2076	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077		    SAS_ADDR(dev->sas_addr), phy_id);
2078
2079	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080		for (i = 0; i < ex->num_phys; i++) {
2081			struct ex_phy *phy = &ex->ex_phy[i];
2082
2083			if (i == phy_id)
2084				continue;
2085			if (SAS_ADDR(phy->attached_sas_addr) ==
2086			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2087				SAS_DPRINTK("phy%d part of wide port with "
2088					    "phy%d\n", phy_id, i);
2089				last = false;
2090				break;
2091			}
2092		}
2093		res = sas_rediscover_dev(dev, phy_id, last);
2094	} else
2095		res = sas_discover_new(dev, phy_id);
2096	return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered.  Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110	int res;
2111	struct domain_device *dev = NULL;
2112
2113	res = sas_find_bcast_dev(port_dev, &dev);
2114	while (res == 0 && dev) {
2115		struct expander_device *ex = &dev->ex_dev;
2116		int i = 0, phy_id;
2117
2118		do {
2119			phy_id = -1;
2120			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121			if (phy_id == -1)
2122				break;
2123			res = sas_rediscover(dev, phy_id);
2124			i = phy_id + 1;
2125		} while (i < ex->num_phys);
2126
2127		dev = NULL;
2128		res = sas_find_bcast_dev(port_dev, &dev);
2129	}
2130	return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134		    struct request *req)
2135{
2136	struct domain_device *dev;
2137	int ret, type;
2138	struct request *rsp = req->next_rq;
2139
2140	if (!rsp) {
2141		printk("%s: space for a smp response is missing\n",
2142		       __func__);
2143		return -EINVAL;
2144	}
2145
2146	/* no rphy means no smp target support (ie aic94xx host) */
2147	if (!rphy)
2148		return sas_smp_host_handler(shost, req, rsp);
2149
2150	type = rphy->identify.device_type;
2151
2152	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2154		printk("%s: can we send a smp request to a device?\n",
 
 
 
2155		       __func__);
2156		return -EINVAL;
2157	}
2158
2159	dev = sas_find_dev_by_rphy(rphy);
2160	if (!dev) {
2161		printk("%s: fail to find a domain_device?\n", __func__);
2162		return -EINVAL;
2163	}
2164
2165	/* do we need to support multiple segments? */
2166	if (bio_multiple_segments(req->bio) ||
2167	    bio_multiple_segments(rsp->bio)) {
2168		printk("%s: multiple segments req %u, rsp %u\n",
2169		       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170		return -EINVAL;
 
2171	}
2172
2173	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2175	if (ret > 0) {
2176		/* positive number is the untransferred residual */
2177		rsp->resid_len = ret;
2178		req->resid_len = 0;
2179		ret = 0;
2180	} else if (ret == 0) {
2181		rsp->resid_len = 0;
2182		req->resid_len = 0;
2183	}
2184
2185	return ret;
 
2186}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "../scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
  30
  31static void smp_task_timedout(struct timer_list *t)
  32{
  33	struct sas_task_slow *slow = from_timer(slow, t, timer);
  34	struct sas_task *task = slow->task;
  35	unsigned long flags;
  36
  37	spin_lock_irqsave(&task->task_state_lock, flags);
  38	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  39		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  40		complete(&task->slow_task->completion);
  41	}
  42	spin_unlock_irqrestore(&task->task_state_lock, flags);
 
 
  43}
  44
  45static void smp_task_done(struct sas_task *task)
  46{
  47	del_timer(&task->slow_task->timer);
 
  48	complete(&task->slow_task->completion);
  49}
  50
  51/* Give it some long enough timeout. In seconds. */
  52#define SMP_TIMEOUT 10
  53
  54static int smp_execute_task_sg(struct domain_device *dev,
  55		struct scatterlist *req, struct scatterlist *resp)
  56{
  57	int res, retry;
  58	struct sas_task *task = NULL;
  59	struct sas_internal *i =
  60		to_sas_internal(dev->port->ha->core.shost->transportt);
  61
  62	mutex_lock(&dev->ex_dev.cmd_mutex);
  63	for (retry = 0; retry < 3; retry++) {
  64		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  65			res = -ECOMM;
  66			break;
  67		}
  68
  69		task = sas_alloc_slow_task(GFP_KERNEL);
  70		if (!task) {
  71			res = -ENOMEM;
  72			break;
  73		}
  74		task->dev = dev;
  75		task->task_proto = dev->tproto;
  76		task->smp_task.smp_req = *req;
  77		task->smp_task.smp_resp = *resp;
  78
  79		task->task_done = smp_task_done;
  80
 
  81		task->slow_task->timer.function = smp_task_timedout;
  82		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  83		add_timer(&task->slow_task->timer);
  84
  85		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  86
  87		if (res) {
  88			del_timer(&task->slow_task->timer);
  89			pr_notice("executing SMP task failed:%d\n", res);
  90			break;
  91		}
  92
  93		wait_for_completion(&task->slow_task->completion);
  94		res = -ECOMM;
  95		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  96			pr_notice("smp task timed out or aborted\n");
  97			i->dft->lldd_abort_task(task);
  98			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  99				pr_notice("SMP task aborted and not done\n");
 100				break;
 101			}
 102		}
 103		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 104		    task->task_status.stat == SAM_STAT_GOOD) {
 105			res = 0;
 106			break;
 107		}
 108		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 109		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 110			/* no error, but return the number of bytes of
 111			 * underrun */
 112			res = task->task_status.residual;
 113			break;
 114		}
 115		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 116		    task->task_status.stat == SAS_DATA_OVERRUN) {
 117			res = -EMSGSIZE;
 118			break;
 119		}
 120		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 121		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 122			break;
 123		else {
 124			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 125				  __func__,
 126				  SAS_ADDR(dev->sas_addr),
 127				  task->task_status.resp,
 128				  task->task_status.stat);
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133	mutex_unlock(&dev->ex_dev.cmd_mutex);
 134
 135	BUG_ON(retry == 3 && task != NULL);
 136	sas_free_task(task);
 137	return res;
 138}
 139
 140static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 141			    void *resp, int resp_size)
 142{
 143	struct scatterlist req_sg;
 144	struct scatterlist resp_sg;
 145
 146	sg_init_one(&req_sg, req, req_size);
 147	sg_init_one(&resp_sg, resp, resp_size);
 148	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 149}
 150
 151/* ---------- Allocations ---------- */
 152
 153static inline void *alloc_smp_req(int size)
 154{
 155	u8 *p = kzalloc(size, GFP_KERNEL);
 156	if (p)
 157		p[0] = SMP_REQUEST;
 158	return p;
 159}
 160
 161static inline void *alloc_smp_resp(int size)
 162{
 163	return kzalloc(size, GFP_KERNEL);
 164}
 165
 166static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 167{
 168	switch (phy->routing_attr) {
 169	case TABLE_ROUTING:
 170		if (dev->ex_dev.t2t_supp)
 171			return 'U';
 172		else
 173			return 'T';
 174	case DIRECT_ROUTING:
 175		return 'D';
 176	case SUBTRACTIVE_ROUTING:
 177		return 'S';
 178	default:
 179		return '?';
 180	}
 181}
 182
 183static enum sas_device_type to_dev_type(struct discover_resp *dr)
 184{
 185	/* This is detecting a failure to transmit initial dev to host
 186	 * FIS as described in section J.5 of sas-2 r16
 187	 */
 188	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 189	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 190		return SAS_SATA_PENDING;
 191	else
 192		return dr->attached_dev_type;
 193}
 194
 195static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 196{
 197	enum sas_device_type dev_type;
 198	enum sas_linkrate linkrate;
 199	u8 sas_addr[SAS_ADDR_SIZE];
 200	struct smp_resp *resp = rsp;
 201	struct discover_resp *dr = &resp->disc;
 202	struct sas_ha_struct *ha = dev->port->ha;
 203	struct expander_device *ex = &dev->ex_dev;
 204	struct ex_phy *phy = &ex->ex_phy[phy_id];
 205	struct sas_rphy *rphy = dev->rphy;
 206	bool new_phy = !phy->phy;
 207	char *type;
 208
 209	if (new_phy) {
 210		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 211			return;
 212		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 213
 214		/* FIXME: error_handling */
 215		BUG_ON(!phy->phy);
 216	}
 217
 218	switch (resp->result) {
 219	case SMP_RESP_PHY_VACANT:
 220		phy->phy_state = PHY_VACANT;
 221		break;
 222	default:
 223		phy->phy_state = PHY_NOT_PRESENT;
 224		break;
 225	case SMP_RESP_FUNC_ACC:
 226		phy->phy_state = PHY_EMPTY; /* do not know yet */
 227		break;
 228	}
 229
 230	/* check if anything important changed to squelch debug */
 231	dev_type = phy->attached_dev_type;
 232	linkrate  = phy->linkrate;
 233	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 234
 235	/* Handle vacant phy - rest of dr data is not valid so skip it */
 236	if (phy->phy_state == PHY_VACANT) {
 237		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 238		phy->attached_dev_type = SAS_PHY_UNUSED;
 239		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 240			phy->phy_id = phy_id;
 241			goto skip;
 242		} else
 243			goto out;
 244	}
 245
 246	phy->attached_dev_type = to_dev_type(dr);
 247	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 248		goto out;
 249	phy->phy_id = phy_id;
 250	phy->linkrate = dr->linkrate;
 251	phy->attached_sata_host = dr->attached_sata_host;
 252	phy->attached_sata_dev  = dr->attached_sata_dev;
 253	phy->attached_sata_ps   = dr->attached_sata_ps;
 254	phy->attached_iproto = dr->iproto << 1;
 255	phy->attached_tproto = dr->tproto << 1;
 256	/* help some expanders that fail to zero sas_address in the 'no
 257	 * device' case
 258	 */
 259	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 260	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 261		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 262	else
 263		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 264	phy->attached_phy_id = dr->attached_phy_id;
 265	phy->phy_change_count = dr->change_count;
 266	phy->routing_attr = dr->routing_attr;
 267	phy->virtual = dr->virtual;
 268	phy->last_da_index = -1;
 269
 270	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 271	phy->phy->identify.device_type = dr->attached_dev_type;
 272	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 273	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 274	if (!phy->attached_tproto && dr->attached_sata_dev)
 275		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 276	phy->phy->identify.phy_identifier = phy_id;
 277	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 278	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 279	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 280	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 281	phy->phy->negotiated_linkrate = phy->linkrate;
 282	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 283
 284 skip:
 285	if (new_phy)
 286		if (sas_phy_add(phy->phy)) {
 287			sas_phy_free(phy->phy);
 288			return;
 289		}
 290
 291 out:
 292	switch (phy->attached_dev_type) {
 293	case SAS_SATA_PENDING:
 294		type = "stp pending";
 295		break;
 296	case SAS_PHY_UNUSED:
 297		type = "no device";
 298		break;
 299	case SAS_END_DEVICE:
 300		if (phy->attached_iproto) {
 301			if (phy->attached_tproto)
 302				type = "host+target";
 303			else
 304				type = "host";
 305		} else {
 306			if (dr->attached_sata_dev)
 307				type = "stp";
 308			else
 309				type = "ssp";
 310		}
 311		break;
 312	case SAS_EDGE_EXPANDER_DEVICE:
 313	case SAS_FANOUT_EXPANDER_DEVICE:
 314		type = "smp";
 315		break;
 316	default:
 317		type = "unknown";
 318	}
 319
 320	/* this routine is polled by libata error recovery so filter
 321	 * unimportant messages
 322	 */
 323	if (new_phy || phy->attached_dev_type != dev_type ||
 324	    phy->linkrate != linkrate ||
 325	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 326		/* pass */;
 327	else
 328		return;
 329
 330	/* if the attached device type changed and ata_eh is active,
 331	 * make sure we run revalidation when eh completes (see:
 332	 * sas_enable_revalidation)
 333	 */
 334	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 335		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 336
 337	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 338		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 339		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 340		 sas_route_char(dev, phy), phy->linkrate,
 341		 SAS_ADDR(phy->attached_sas_addr), type);
 342}
 343
 344/* check if we have an existing attached ata device on this expander phy */
 345struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 346{
 347	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 348	struct domain_device *dev;
 349	struct sas_rphy *rphy;
 350
 351	if (!ex_phy->port)
 352		return NULL;
 353
 354	rphy = ex_phy->port->rphy;
 355	if (!rphy)
 356		return NULL;
 357
 358	dev = sas_find_dev_by_rphy(rphy);
 359
 360	if (dev && dev_is_sata(dev))
 361		return dev;
 362
 363	return NULL;
 364}
 365
 366#define DISCOVER_REQ_SIZE  16
 367#define DISCOVER_RESP_SIZE 56
 368
 369static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 370				      u8 *disc_resp, int single)
 371{
 372	struct discover_resp *dr;
 373	int res;
 374
 375	disc_req[9] = single;
 376
 377	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 378			       disc_resp, DISCOVER_RESP_SIZE);
 379	if (res)
 380		return res;
 381	dr = &((struct smp_resp *)disc_resp)->disc;
 382	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 383		pr_notice("Found loopback topology, just ignore it!\n");
 384		return 0;
 385	}
 386	sas_set_ex_phy(dev, single, disc_resp);
 387	return 0;
 388}
 389
 390int sas_ex_phy_discover(struct domain_device *dev, int single)
 391{
 392	struct expander_device *ex = &dev->ex_dev;
 393	int  res = 0;
 394	u8   *disc_req;
 395	u8   *disc_resp;
 396
 397	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 398	if (!disc_req)
 399		return -ENOMEM;
 400
 401	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 402	if (!disc_resp) {
 403		kfree(disc_req);
 404		return -ENOMEM;
 405	}
 406
 407	disc_req[1] = SMP_DISCOVER;
 408
 409	if (0 <= single && single < ex->num_phys) {
 410		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 411	} else {
 412		int i;
 413
 414		for (i = 0; i < ex->num_phys; i++) {
 415			res = sas_ex_phy_discover_helper(dev, disc_req,
 416							 disc_resp, i);
 417			if (res)
 418				goto out_err;
 419		}
 420	}
 421out_err:
 422	kfree(disc_resp);
 423	kfree(disc_req);
 424	return res;
 425}
 426
 427static int sas_expander_discover(struct domain_device *dev)
 428{
 429	struct expander_device *ex = &dev->ex_dev;
 430	int res;
 431
 432	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 433	if (!ex->ex_phy)
 434		return -ENOMEM;
 435
 436	res = sas_ex_phy_discover(dev, -1);
 437	if (res)
 438		goto out_err;
 439
 440	return 0;
 441 out_err:
 442	kfree(ex->ex_phy);
 443	ex->ex_phy = NULL;
 444	return res;
 445}
 446
 447#define MAX_EXPANDER_PHYS 128
 448
 449static void ex_assign_report_general(struct domain_device *dev,
 450					    struct smp_resp *resp)
 451{
 452	struct report_general_resp *rg = &resp->rg;
 453
 454	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 455	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 456	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 457	dev->ex_dev.t2t_supp = rg->t2t_supp;
 458	dev->ex_dev.conf_route_table = rg->conf_route_table;
 459	dev->ex_dev.configuring = rg->configuring;
 460	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 461}
 462
 463#define RG_REQ_SIZE   8
 464#define RG_RESP_SIZE 32
 465
 466static int sas_ex_general(struct domain_device *dev)
 467{
 468	u8 *rg_req;
 469	struct smp_resp *rg_resp;
 470	int res;
 471	int i;
 472
 473	rg_req = alloc_smp_req(RG_REQ_SIZE);
 474	if (!rg_req)
 475		return -ENOMEM;
 476
 477	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 478	if (!rg_resp) {
 479		kfree(rg_req);
 480		return -ENOMEM;
 481	}
 482
 483	rg_req[1] = SMP_REPORT_GENERAL;
 484
 485	for (i = 0; i < 5; i++) {
 486		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 487				       RG_RESP_SIZE);
 488
 489		if (res) {
 490			pr_notice("RG to ex %016llx failed:0x%x\n",
 491				  SAS_ADDR(dev->sas_addr), res);
 492			goto out;
 493		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 494			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 495				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 496			res = rg_resp->result;
 497			goto out;
 498		}
 499
 500		ex_assign_report_general(dev, rg_resp);
 501
 502		if (dev->ex_dev.configuring) {
 503			pr_debug("RG: ex %016llx self-configuring...\n",
 504				 SAS_ADDR(dev->sas_addr));
 505			schedule_timeout_interruptible(5*HZ);
 506		} else
 507			break;
 508	}
 509out:
 510	kfree(rg_req);
 511	kfree(rg_resp);
 512	return res;
 513}
 514
 515static void ex_assign_manuf_info(struct domain_device *dev, void
 516					*_mi_resp)
 517{
 518	u8 *mi_resp = _mi_resp;
 519	struct sas_rphy *rphy = dev->rphy;
 520	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 521
 522	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 523	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 524	memcpy(edev->product_rev, mi_resp + 36,
 525	       SAS_EXPANDER_PRODUCT_REV_LEN);
 526
 527	if (mi_resp[8] & 1) {
 528		memcpy(edev->component_vendor_id, mi_resp + 40,
 529		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 530		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 531		edev->component_revision_id = mi_resp[50];
 532	}
 533}
 534
 535#define MI_REQ_SIZE   8
 536#define MI_RESP_SIZE 64
 537
 538static int sas_ex_manuf_info(struct domain_device *dev)
 539{
 540	u8 *mi_req;
 541	u8 *mi_resp;
 542	int res;
 543
 544	mi_req = alloc_smp_req(MI_REQ_SIZE);
 545	if (!mi_req)
 546		return -ENOMEM;
 547
 548	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 549	if (!mi_resp) {
 550		kfree(mi_req);
 551		return -ENOMEM;
 552	}
 553
 554	mi_req[1] = SMP_REPORT_MANUF_INFO;
 555
 556	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 557	if (res) {
 558		pr_notice("MI: ex %016llx failed:0x%x\n",
 559			  SAS_ADDR(dev->sas_addr), res);
 560		goto out;
 561	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 562		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 563			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 564		goto out;
 565	}
 566
 567	ex_assign_manuf_info(dev, mi_resp);
 568out:
 569	kfree(mi_req);
 570	kfree(mi_resp);
 571	return res;
 572}
 573
 574#define PC_REQ_SIZE  44
 575#define PC_RESP_SIZE 8
 576
 577int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 578			enum phy_func phy_func,
 579			struct sas_phy_linkrates *rates)
 580{
 581	u8 *pc_req;
 582	u8 *pc_resp;
 583	int res;
 584
 585	pc_req = alloc_smp_req(PC_REQ_SIZE);
 586	if (!pc_req)
 587		return -ENOMEM;
 588
 589	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 590	if (!pc_resp) {
 591		kfree(pc_req);
 592		return -ENOMEM;
 593	}
 594
 595	pc_req[1] = SMP_PHY_CONTROL;
 596	pc_req[9] = phy_id;
 597	pc_req[10]= phy_func;
 598	if (rates) {
 599		pc_req[32] = rates->minimum_linkrate << 4;
 600		pc_req[33] = rates->maximum_linkrate << 4;
 601	}
 602
 603	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 604	if (res) {
 605		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 606		       SAS_ADDR(dev->sas_addr), phy_id, res);
 607	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 608		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 609		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 610		res = pc_resp[2];
 611	}
 612	kfree(pc_resp);
 613	kfree(pc_req);
 614	return res;
 615}
 616
 617static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 618{
 619	struct expander_device *ex = &dev->ex_dev;
 620	struct ex_phy *phy = &ex->ex_phy[phy_id];
 621
 622	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 623	phy->linkrate = SAS_PHY_DISABLED;
 624}
 625
 626static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 627{
 628	struct expander_device *ex = &dev->ex_dev;
 629	int i;
 630
 631	for (i = 0; i < ex->num_phys; i++) {
 632		struct ex_phy *phy = &ex->ex_phy[i];
 633
 634		if (phy->phy_state == PHY_VACANT ||
 635		    phy->phy_state == PHY_NOT_PRESENT)
 636			continue;
 637
 638		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 639			sas_ex_disable_phy(dev, i);
 640	}
 641}
 642
 643static int sas_dev_present_in_domain(struct asd_sas_port *port,
 644					    u8 *sas_addr)
 645{
 646	struct domain_device *dev;
 647
 648	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 649		return 1;
 650	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 651		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 652			return 1;
 653	}
 654	return 0;
 655}
 656
 657#define RPEL_REQ_SIZE	16
 658#define RPEL_RESP_SIZE	32
 659int sas_smp_get_phy_events(struct sas_phy *phy)
 660{
 661	int res;
 662	u8 *req;
 663	u8 *resp;
 664	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 665	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 666
 667	req = alloc_smp_req(RPEL_REQ_SIZE);
 668	if (!req)
 669		return -ENOMEM;
 670
 671	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 672	if (!resp) {
 673		kfree(req);
 674		return -ENOMEM;
 675	}
 676
 677	req[1] = SMP_REPORT_PHY_ERR_LOG;
 678	req[9] = phy->number;
 679
 680	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 681			            resp, RPEL_RESP_SIZE);
 682
 683	if (res)
 684		goto out;
 685
 686	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 687	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 688	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 689	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 690
 691 out:
 692	kfree(req);
 693	kfree(resp);
 694	return res;
 695
 696}
 697
 698#ifdef CONFIG_SCSI_SAS_ATA
 699
 700#define RPS_REQ_SIZE  16
 701#define RPS_RESP_SIZE 60
 702
 703int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 704			    struct smp_resp *rps_resp)
 705{
 706	int res;
 707	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 708	u8 *resp = (u8 *)rps_resp;
 709
 710	if (!rps_req)
 711		return -ENOMEM;
 712
 713	rps_req[1] = SMP_REPORT_PHY_SATA;
 714	rps_req[9] = phy_id;
 715
 716	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 717			            rps_resp, RPS_RESP_SIZE);
 718
 719	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 720	 * standards cockup here.  sas-2 explicitly specifies the FIS
 721	 * should be encoded so that FIS type is in resp[24].
 722	 * However, some expanders endian reverse this.  Undo the
 723	 * reversal here */
 724	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 725		int i;
 726
 727		for (i = 0; i < 5; i++) {
 728			int j = 24 + (i*4);
 729			u8 a, b;
 730			a = resp[j + 0];
 731			b = resp[j + 1];
 732			resp[j + 0] = resp[j + 3];
 733			resp[j + 1] = resp[j + 2];
 734			resp[j + 2] = b;
 735			resp[j + 3] = a;
 736		}
 737	}
 738
 739	kfree(rps_req);
 740	return res;
 741}
 742#endif
 743
 744static void sas_ex_get_linkrate(struct domain_device *parent,
 745				       struct domain_device *child,
 746				       struct ex_phy *parent_phy)
 747{
 748	struct expander_device *parent_ex = &parent->ex_dev;
 749	struct sas_port *port;
 750	int i;
 751
 752	child->pathways = 0;
 753
 754	port = parent_phy->port;
 755
 756	for (i = 0; i < parent_ex->num_phys; i++) {
 757		struct ex_phy *phy = &parent_ex->ex_phy[i];
 758
 759		if (phy->phy_state == PHY_VACANT ||
 760		    phy->phy_state == PHY_NOT_PRESENT)
 761			continue;
 762
 763		if (SAS_ADDR(phy->attached_sas_addr) ==
 764		    SAS_ADDR(child->sas_addr)) {
 765
 766			child->min_linkrate = min(parent->min_linkrate,
 767						  phy->linkrate);
 768			child->max_linkrate = max(parent->max_linkrate,
 769						  phy->linkrate);
 770			child->pathways++;
 771			sas_port_add_phy(port, phy->phy);
 772		}
 773	}
 774	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 775	child->pathways = min(child->pathways, parent->pathways);
 776}
 777
 778static struct domain_device *sas_ex_discover_end_dev(
 779	struct domain_device *parent, int phy_id)
 780{
 781	struct expander_device *parent_ex = &parent->ex_dev;
 782	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 783	struct domain_device *child = NULL;
 784	struct sas_rphy *rphy;
 785	int res;
 786
 787	if (phy->attached_sata_host || phy->attached_sata_ps)
 788		return NULL;
 789
 790	child = sas_alloc_device();
 791	if (!child)
 792		return NULL;
 793
 794	kref_get(&parent->kref);
 795	child->parent = parent;
 796	child->port   = parent->port;
 797	child->iproto = phy->attached_iproto;
 798	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 799	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 800	if (!phy->port) {
 801		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 802		if (unlikely(!phy->port))
 803			goto out_err;
 804		if (unlikely(sas_port_add(phy->port) != 0)) {
 805			sas_port_free(phy->port);
 806			goto out_err;
 807		}
 808	}
 809	sas_ex_get_linkrate(parent, child, phy);
 810	sas_device_set_phy(child, phy->port);
 811
 812#ifdef CONFIG_SCSI_SAS_ATA
 813	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 814		if (child->linkrate > parent->min_linkrate) {
 815			struct sas_phy *cphy = child->phy;
 816			enum sas_linkrate min_prate = cphy->minimum_linkrate,
 817				parent_min_lrate = parent->min_linkrate,
 818				min_linkrate = (min_prate > parent_min_lrate) ?
 819					       parent_min_lrate : 0;
 820			struct sas_phy_linkrates rates = {
 821				.maximum_linkrate = parent->min_linkrate,
 822				.minimum_linkrate = min_linkrate,
 823			};
 824			int ret;
 825
 826			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
 827				   SAS_ADDR(child->sas_addr), phy_id);
 828			ret = sas_smp_phy_control(parent, phy_id,
 829						  PHY_FUNC_LINK_RESET, &rates);
 830			if (ret) {
 831				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
 832				       SAS_ADDR(child->sas_addr), phy_id, ret);
 833				goto out_free;
 834			}
 835			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
 836				  SAS_ADDR(child->sas_addr), phy_id);
 837			child->linkrate = child->min_linkrate;
 838		}
 839		res = sas_get_ata_info(child, phy);
 840		if (res)
 841			goto out_free;
 842
 843		sas_init_dev(child);
 844		res = sas_ata_init(child);
 845		if (res)
 846			goto out_free;
 847		rphy = sas_end_device_alloc(phy->port);
 848		if (!rphy)
 849			goto out_free;
 850		rphy->identify.phy_identifier = phy_id;
 851
 852		child->rphy = rphy;
 853		get_device(&rphy->dev);
 854
 855		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 856
 857		res = sas_discover_sata(child);
 858		if (res) {
 859			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
 860				  SAS_ADDR(child->sas_addr),
 861				  SAS_ADDR(parent->sas_addr), phy_id, res);
 
 862			goto out_list_del;
 863		}
 864	} else
 865#endif
 866	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 867		child->dev_type = SAS_END_DEVICE;
 868		rphy = sas_end_device_alloc(phy->port);
 869		/* FIXME: error handling */
 870		if (unlikely(!rphy))
 871			goto out_free;
 872		child->tproto = phy->attached_tproto;
 873		sas_init_dev(child);
 874
 875		child->rphy = rphy;
 876		get_device(&rphy->dev);
 877		rphy->identify.phy_identifier = phy_id;
 878		sas_fill_in_rphy(child, rphy);
 879
 880		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 881
 882		res = sas_discover_end_dev(child);
 883		if (res) {
 884			pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
 885				  SAS_ADDR(child->sas_addr),
 886				  SAS_ADDR(parent->sas_addr), phy_id, res);
 
 887			goto out_list_del;
 888		}
 889	} else {
 890		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 891			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 892			  phy_id);
 893		goto out_free;
 894	}
 895
 896	list_add_tail(&child->siblings, &parent_ex->children);
 897	return child;
 898
 899 out_list_del:
 900	sas_rphy_free(child->rphy);
 901	list_del(&child->disco_list_node);
 902	spin_lock_irq(&parent->port->dev_list_lock);
 903	list_del(&child->dev_list_node);
 904	spin_unlock_irq(&parent->port->dev_list_lock);
 905 out_free:
 906	sas_port_delete(phy->port);
 907 out_err:
 908	phy->port = NULL;
 909	sas_put_device(child);
 910	return NULL;
 911}
 912
 913/* See if this phy is part of a wide port */
 914static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 915{
 916	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 917	int i;
 918
 919	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 920		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 921
 922		if (ephy == phy)
 923			continue;
 924
 925		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 926			    SAS_ADDR_SIZE) && ephy->port) {
 927			sas_port_add_phy(ephy->port, phy->phy);
 928			phy->port = ephy->port;
 929			phy->phy_state = PHY_DEVICE_DISCOVERED;
 930			return true;
 931		}
 932	}
 933
 934	return false;
 935}
 936
 937static struct domain_device *sas_ex_discover_expander(
 938	struct domain_device *parent, int phy_id)
 939{
 940	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 941	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 942	struct domain_device *child = NULL;
 943	struct sas_rphy *rphy;
 944	struct sas_expander_device *edev;
 945	struct asd_sas_port *port;
 946	int res;
 947
 948	if (phy->routing_attr == DIRECT_ROUTING) {
 949		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 950			SAS_ADDR(parent->sas_addr), phy_id,
 951			SAS_ADDR(phy->attached_sas_addr),
 952			phy->attached_phy_id);
 
 953		return NULL;
 954	}
 955	child = sas_alloc_device();
 956	if (!child)
 957		return NULL;
 958
 959	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 960	/* FIXME: better error handling */
 961	BUG_ON(sas_port_add(phy->port) != 0);
 962
 963
 964	switch (phy->attached_dev_type) {
 965	case SAS_EDGE_EXPANDER_DEVICE:
 966		rphy = sas_expander_alloc(phy->port,
 967					  SAS_EDGE_EXPANDER_DEVICE);
 968		break;
 969	case SAS_FANOUT_EXPANDER_DEVICE:
 970		rphy = sas_expander_alloc(phy->port,
 971					  SAS_FANOUT_EXPANDER_DEVICE);
 972		break;
 973	default:
 974		rphy = NULL;	/* shut gcc up */
 975		BUG();
 976	}
 977	port = parent->port;
 978	child->rphy = rphy;
 979	get_device(&rphy->dev);
 980	edev = rphy_to_expander_device(rphy);
 981	child->dev_type = phy->attached_dev_type;
 982	kref_get(&parent->kref);
 983	child->parent = parent;
 984	child->port = port;
 985	child->iproto = phy->attached_iproto;
 986	child->tproto = phy->attached_tproto;
 987	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 988	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 989	sas_ex_get_linkrate(parent, child, phy);
 990	edev->level = parent_ex->level + 1;
 991	parent->port->disc.max_level = max(parent->port->disc.max_level,
 992					   edev->level);
 993	sas_init_dev(child);
 994	sas_fill_in_rphy(child, rphy);
 995	sas_rphy_add(rphy);
 996
 997	spin_lock_irq(&parent->port->dev_list_lock);
 998	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 999	spin_unlock_irq(&parent->port->dev_list_lock);
1000
1001	res = sas_discover_expander(child);
1002	if (res) {
1003		sas_rphy_delete(rphy);
1004		spin_lock_irq(&parent->port->dev_list_lock);
1005		list_del(&child->dev_list_node);
1006		spin_unlock_irq(&parent->port->dev_list_lock);
1007		sas_put_device(child);
1008		sas_port_delete(phy->port);
1009		phy->port = NULL;
1010		return NULL;
1011	}
1012	list_add_tail(&child->siblings, &parent->ex_dev.children);
1013	return child;
1014}
1015
1016static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1017{
1018	struct expander_device *ex = &dev->ex_dev;
1019	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020	struct domain_device *child = NULL;
1021	int res = 0;
1022
1023	/* Phy state */
1024	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026			res = sas_ex_phy_discover(dev, phy_id);
1027		if (res)
1028			return res;
1029	}
1030
1031	/* Parent and domain coherency */
1032	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033			     SAS_ADDR(dev->port->sas_addr))) {
1034		sas_add_parent_port(dev, phy_id);
1035		return 0;
1036	}
1037	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038			    SAS_ADDR(dev->parent->sas_addr))) {
1039		sas_add_parent_port(dev, phy_id);
1040		if (ex_phy->routing_attr == TABLE_ROUTING)
1041			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042		return 0;
1043	}
1044
1045	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1047
1048	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052		}
1053		return 0;
1054	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055		return 0;
1056
1057	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062			ex_phy->attached_dev_type,
1063			SAS_ADDR(dev->sas_addr),
1064			phy_id);
1065		return 0;
1066	}
1067
1068	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069	if (res) {
1070		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1072		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073		return res;
1074	}
1075
1076	if (sas_ex_join_wide_port(dev, phy_id)) {
1077		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1079		return res;
1080	}
1081
1082	switch (ex_phy->attached_dev_type) {
1083	case SAS_END_DEVICE:
1084	case SAS_SATA_PENDING:
1085		child = sas_ex_discover_end_dev(dev, phy_id);
1086		break;
1087	case SAS_FANOUT_EXPANDER_DEVICE:
1088		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090				 SAS_ADDR(ex_phy->attached_sas_addr),
1091				 ex_phy->attached_phy_id,
1092				 SAS_ADDR(dev->sas_addr),
1093				 phy_id);
 
1094			sas_ex_disable_phy(dev, phy_id);
1095			return res;
1096		} else
1097			memcpy(dev->port->disc.fanout_sas_addr,
1098			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099		fallthrough;
1100	case SAS_EDGE_EXPANDER_DEVICE:
1101		child = sas_ex_discover_expander(dev, phy_id);
1102		break;
1103	default:
1104		break;
1105	}
1106
1107	if (!child)
1108		pr_notice("ex %016llx phy%02d failed to discover\n",
1109			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110	return res;
1111}
1112
1113static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114{
1115	struct expander_device *ex = &dev->ex_dev;
1116	int i;
1117
1118	for (i = 0; i < ex->num_phys; i++) {
1119		struct ex_phy *phy = &ex->ex_phy[i];
1120
1121		if (phy->phy_state == PHY_VACANT ||
1122		    phy->phy_state == PHY_NOT_PRESENT)
1123			continue;
1124
1125		if (dev_is_expander(phy->attached_dev_type) &&
 
1126		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1127
1128			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1129
1130			return 1;
1131		}
1132	}
1133	return 0;
1134}
1135
1136static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1137{
1138	struct expander_device *ex = &dev->ex_dev;
1139	struct domain_device *child;
1140	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1141
1142	list_for_each_entry(child, &ex->children, siblings) {
1143		if (!dev_is_expander(child->dev_type))
 
1144			continue;
1145		if (sub_addr[0] == 0) {
1146			sas_find_sub_addr(child, sub_addr);
1147			continue;
1148		} else {
1149			u8 s2[SAS_ADDR_SIZE];
1150
1151			if (sas_find_sub_addr(child, s2) &&
1152			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1153
1154				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155					  SAS_ADDR(dev->sas_addr),
1156					  SAS_ADDR(child->sas_addr),
1157					  SAS_ADDR(s2),
1158					  SAS_ADDR(sub_addr));
 
 
1159
1160				sas_ex_disable_port(child, s2);
1161			}
1162		}
1163	}
1164	return 0;
1165}
1166/**
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1170 *
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1173 */
1174static int sas_ex_discover_devices(struct domain_device *dev, int single)
1175{
1176	struct expander_device *ex = &dev->ex_dev;
1177	int i = 0, end = ex->num_phys;
1178	int res = 0;
1179
1180	if (0 <= single && single < end) {
1181		i = single;
1182		end = i+1;
1183	}
1184
1185	for ( ; i < end; i++) {
1186		struct ex_phy *ex_phy = &ex->ex_phy[i];
1187
1188		if (ex_phy->phy_state == PHY_VACANT ||
1189		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1190		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191			continue;
1192
1193		switch (ex_phy->linkrate) {
1194		case SAS_PHY_DISABLED:
1195		case SAS_PHY_RESET_PROBLEM:
1196		case SAS_SATA_PORT_SELECTOR:
1197			continue;
1198		default:
1199			res = sas_ex_discover_dev(dev, i);
1200			if (res)
1201				break;
1202			continue;
1203		}
1204	}
1205
1206	if (!res)
1207		sas_check_level_subtractive_boundary(dev);
1208
1209	return res;
1210}
1211
1212static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1213{
1214	struct expander_device *ex = &dev->ex_dev;
1215	int i;
1216	u8  *sub_sas_addr = NULL;
1217
1218	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219		return 0;
1220
1221	for (i = 0; i < ex->num_phys; i++) {
1222		struct ex_phy *phy = &ex->ex_phy[i];
1223
1224		if (phy->phy_state == PHY_VACANT ||
1225		    phy->phy_state == PHY_NOT_PRESENT)
1226			continue;
1227
1228		if (dev_is_expander(phy->attached_dev_type) &&
 
1229		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1230
1231			if (!sub_sas_addr)
1232				sub_sas_addr = &phy->attached_sas_addr[0];
1233			else if (SAS_ADDR(sub_sas_addr) !=
1234				 SAS_ADDR(phy->attached_sas_addr)) {
1235
1236				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237					  SAS_ADDR(dev->sas_addr), i,
1238					  SAS_ADDR(phy->attached_sas_addr),
1239					  SAS_ADDR(sub_sas_addr));
 
 
1240				sas_ex_disable_phy(dev, i);
1241			}
1242		}
1243	}
1244	return 0;
1245}
1246
1247static void sas_print_parent_topology_bug(struct domain_device *child,
1248						 struct ex_phy *parent_phy,
1249						 struct ex_phy *child_phy)
1250{
1251	static const char *ex_type[] = {
1252		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1254	};
1255	struct domain_device *parent = child->parent;
1256
1257	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258		  ex_type[parent->dev_type],
1259		  SAS_ADDR(parent->sas_addr),
1260		  parent_phy->phy_id,
1261
1262		  ex_type[child->dev_type],
1263		  SAS_ADDR(child->sas_addr),
1264		  child_phy->phy_id,
1265
1266		  sas_route_char(parent, parent_phy),
1267		  sas_route_char(child, child_phy));
 
 
 
 
 
 
 
 
1268}
1269
1270static int sas_check_eeds(struct domain_device *child,
1271				 struct ex_phy *parent_phy,
1272				 struct ex_phy *child_phy)
1273{
1274	int res = 0;
1275	struct domain_device *parent = child->parent;
1276
1277	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278		res = -ENODEV;
1279		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280			SAS_ADDR(parent->sas_addr),
1281			parent_phy->phy_id,
1282			SAS_ADDR(child->sas_addr),
1283			child_phy->phy_id,
1284			SAS_ADDR(parent->port->disc.fanout_sas_addr));
 
1285	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287		       SAS_ADDR_SIZE);
1288		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289		       SAS_ADDR_SIZE);
1290	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291		    SAS_ADDR(parent->sas_addr)) ||
1292		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1293		    SAS_ADDR(child->sas_addr)))
1294		   &&
1295		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296		     SAS_ADDR(parent->sas_addr)) ||
1297		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1298		     SAS_ADDR(child->sas_addr))))
1299		;
1300	else {
1301		res = -ENODEV;
1302		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303			SAS_ADDR(parent->sas_addr),
1304			parent_phy->phy_id,
1305			SAS_ADDR(child->sas_addr),
1306			child_phy->phy_id);
 
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (!dev_is_expander(child->parent->dev_type))
 
1325		return 0;
1326
1327	parent_ex = &child->parent->ex_dev;
1328
1329	for (i = 0; i < parent_ex->num_phys; i++) {
1330		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331		struct ex_phy *child_phy;
1332
1333		if (parent_phy->phy_state == PHY_VACANT ||
1334		    parent_phy->phy_state == PHY_NOT_PRESENT)
1335			continue;
1336
1337		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338			continue;
1339
1340		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1341
1342		switch (child->parent->dev_type) {
1343		case SAS_EDGE_EXPANDER_DEVICE:
1344			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346				    child_phy->routing_attr != TABLE_ROUTING) {
1347					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348					res = -ENODEV;
1349				}
1350			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352					res = sas_check_eeds(child, parent_phy, child_phy);
1353				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1354					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355					res = -ENODEV;
1356				}
1357			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359				    (child_phy->routing_attr == TABLE_ROUTING &&
1360				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361					/* All good */;
1362				} else {
1363					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364					res = -ENODEV;
1365				}
1366			}
1367			break;
1368		case SAS_FANOUT_EXPANDER_DEVICE:
1369			if (parent_phy->routing_attr != TABLE_ROUTING ||
1370			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372				res = -ENODEV;
1373			}
1374			break;
1375		default:
1376			break;
1377		}
1378	}
1379
1380	return res;
1381}
1382
1383#define RRI_REQ_SIZE  16
1384#define RRI_RESP_SIZE 44
1385
1386static int sas_configure_present(struct domain_device *dev, int phy_id,
1387				 u8 *sas_addr, int *index, int *present)
1388{
1389	int i, res = 0;
1390	struct expander_device *ex = &dev->ex_dev;
1391	struct ex_phy *phy = &ex->ex_phy[phy_id];
1392	u8 *rri_req;
1393	u8 *rri_resp;
1394
1395	*present = 0;
1396	*index = 0;
1397
1398	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399	if (!rri_req)
1400		return -ENOMEM;
1401
1402	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403	if (!rri_resp) {
1404		kfree(rri_req);
1405		return -ENOMEM;
1406	}
1407
1408	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409	rri_req[9] = phy_id;
1410
1411	for (i = 0; i < ex->max_route_indexes ; i++) {
1412		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414				       RRI_RESP_SIZE);
1415		if (res)
1416			goto out;
1417		res = rri_resp[2];
1418		if (res == SMP_RESP_NO_INDEX) {
1419			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1421			goto out;
1422		} else if (res != SMP_RESP_FUNC_ACC) {
1423			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425				  i, res);
1426			goto out;
1427		}
1428		if (SAS_ADDR(sas_addr) != 0) {
1429			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430				*index = i;
1431				if ((rri_resp[12] & 0x80) == 0x80)
1432					*present = 0;
1433				else
1434					*present = 1;
1435				goto out;
1436			} else if (SAS_ADDR(rri_resp+16) == 0) {
1437				*index = i;
1438				*present = 0;
1439				goto out;
1440			}
1441		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1442			   phy->last_da_index < i) {
1443			phy->last_da_index = i;
1444			*index = i;
1445			*present = 0;
1446			goto out;
1447		}
1448	}
1449	res = -1;
1450out:
1451	kfree(rri_req);
1452	kfree(rri_resp);
1453	return res;
1454}
1455
1456#define CRI_REQ_SIZE  44
1457#define CRI_RESP_SIZE  8
1458
1459static int sas_configure_set(struct domain_device *dev, int phy_id,
1460			     u8 *sas_addr, int index, int include)
1461{
1462	int res;
1463	u8 *cri_req;
1464	u8 *cri_resp;
1465
1466	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467	if (!cri_req)
1468		return -ENOMEM;
1469
1470	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471	if (!cri_resp) {
1472		kfree(cri_req);
1473		return -ENOMEM;
1474	}
1475
1476	cri_req[1] = SMP_CONF_ROUTE_INFO;
1477	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478	cri_req[9] = phy_id;
1479	if (SAS_ADDR(sas_addr) == 0 || !include)
1480		cri_req[12] |= 0x80;
1481	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1482
1483	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484			       CRI_RESP_SIZE);
1485	if (res)
1486		goto out;
1487	res = cri_resp[2];
1488	if (res == SMP_RESP_NO_INDEX) {
1489		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1491	}
1492out:
1493	kfree(cri_req);
1494	kfree(cri_resp);
1495	return res;
1496}
1497
1498static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499				    u8 *sas_addr, int include)
1500{
1501	int index;
1502	int present;
1503	int res;
1504
1505	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506	if (res)
1507		return res;
1508	if (include ^ present)
1509		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1510
1511	return res;
1512}
1513
1514/**
1515 * sas_configure_parent - configure routing table of parent
1516 * @parent: parent expander
1517 * @child: child expander
1518 * @sas_addr: SAS port identifier of device directly attached to child
1519 * @include: whether or not to include @child in the expander routing table
1520 */
1521static int sas_configure_parent(struct domain_device *parent,
1522				struct domain_device *child,
1523				u8 *sas_addr, int include)
1524{
1525	struct expander_device *ex_parent = &parent->ex_dev;
1526	int res = 0;
1527	int i;
1528
1529	if (parent->parent) {
1530		res = sas_configure_parent(parent->parent, parent, sas_addr,
1531					   include);
1532		if (res)
1533			return res;
1534	}
1535
1536	if (ex_parent->conf_route_table == 0) {
1537		pr_debug("ex %016llx has self-configuring routing table\n",
1538			 SAS_ADDR(parent->sas_addr));
1539		return 0;
1540	}
1541
1542	for (i = 0; i < ex_parent->num_phys; i++) {
1543		struct ex_phy *phy = &ex_parent->ex_phy[i];
1544
1545		if ((phy->routing_attr == TABLE_ROUTING) &&
1546		    (SAS_ADDR(phy->attached_sas_addr) ==
1547		     SAS_ADDR(child->sas_addr))) {
1548			res = sas_configure_phy(parent, i, sas_addr, include);
1549			if (res)
1550				return res;
1551		}
1552	}
1553
1554	return res;
1555}
1556
1557/**
1558 * sas_configure_routing - configure routing
1559 * @dev: expander device
1560 * @sas_addr: port identifier of device directly attached to the expander device
1561 */
1562static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1563{
1564	if (dev->parent)
1565		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1566	return 0;
1567}
1568
1569static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1570{
1571	if (dev->parent)
1572		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1573	return 0;
1574}
1575
1576/**
1577 * sas_discover_expander - expander discovery
1578 * @dev: pointer to expander domain device
1579 *
1580 * See comment in sas_discover_sata().
1581 */
1582static int sas_discover_expander(struct domain_device *dev)
1583{
1584	int res;
1585
1586	res = sas_notify_lldd_dev_found(dev);
1587	if (res)
1588		return res;
1589
1590	res = sas_ex_general(dev);
1591	if (res)
1592		goto out_err;
1593	res = sas_ex_manuf_info(dev);
1594	if (res)
1595		goto out_err;
1596
1597	res = sas_expander_discover(dev);
1598	if (res) {
1599		pr_warn("expander %016llx discovery failed(0x%x)\n",
1600			SAS_ADDR(dev->sas_addr), res);
1601		goto out_err;
1602	}
1603
1604	sas_check_ex_subtractive_boundary(dev);
1605	res = sas_check_parent_topology(dev);
1606	if (res)
1607		goto out_err;
1608	return 0;
1609out_err:
1610	sas_notify_lldd_dev_gone(dev);
1611	return res;
1612}
1613
1614static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1615{
1616	int res = 0;
1617	struct domain_device *dev;
1618
1619	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1620		if (dev_is_expander(dev->dev_type)) {
 
1621			struct sas_expander_device *ex =
1622				rphy_to_expander_device(dev->rphy);
1623
1624			if (level == ex->level)
1625				res = sas_ex_discover_devices(dev, -1);
1626			else if (level > 0)
1627				res = sas_ex_discover_devices(port->port_dev, -1);
1628
1629		}
1630	}
1631
1632	return res;
1633}
1634
1635static int sas_ex_bfs_disc(struct asd_sas_port *port)
1636{
1637	int res;
1638	int level;
1639
1640	do {
1641		level = port->disc.max_level;
1642		res = sas_ex_level_discovery(port, level);
1643		mb();
1644	} while (level < port->disc.max_level);
1645
1646	return res;
1647}
1648
1649int sas_discover_root_expander(struct domain_device *dev)
1650{
1651	int res;
1652	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653
1654	res = sas_rphy_add(dev->rphy);
1655	if (res)
1656		goto out_err;
1657
1658	ex->level = dev->port->disc.max_level; /* 0 */
1659	res = sas_discover_expander(dev);
1660	if (res)
1661		goto out_err2;
1662
1663	sas_ex_bfs_disc(dev->port);
1664
1665	return res;
1666
1667out_err2:
1668	sas_rphy_remove(dev->rphy);
1669out_err:
1670	return res;
1671}
1672
1673/* ---------- Domain revalidation ---------- */
1674
1675static int sas_get_phy_discover(struct domain_device *dev,
1676				int phy_id, struct smp_resp *disc_resp)
1677{
1678	int res;
1679	u8 *disc_req;
1680
1681	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682	if (!disc_req)
1683		return -ENOMEM;
1684
1685	disc_req[1] = SMP_DISCOVER;
1686	disc_req[9] = phy_id;
1687
1688	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689			       disc_resp, DISCOVER_RESP_SIZE);
1690	if (res)
1691		goto out;
1692	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693		res = disc_resp->result;
1694		goto out;
1695	}
1696out:
1697	kfree(disc_req);
1698	return res;
1699}
1700
1701static int sas_get_phy_change_count(struct domain_device *dev,
1702				    int phy_id, int *pcc)
1703{
1704	int res;
1705	struct smp_resp *disc_resp;
1706
1707	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708	if (!disc_resp)
1709		return -ENOMEM;
1710
1711	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712	if (!res)
1713		*pcc = disc_resp->disc.change_count;
1714
1715	kfree(disc_resp);
1716	return res;
1717}
1718
1719static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720				    u8 *sas_addr, enum sas_device_type *type)
1721{
1722	int res;
1723	struct smp_resp *disc_resp;
1724	struct discover_resp *dr;
1725
1726	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727	if (!disc_resp)
1728		return -ENOMEM;
1729	dr = &disc_resp->disc;
1730
1731	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732	if (res == 0) {
1733		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1734		       SAS_ADDR_SIZE);
1735		*type = to_dev_type(dr);
1736		if (*type == 0)
1737			memset(sas_addr, 0, SAS_ADDR_SIZE);
1738	}
1739	kfree(disc_resp);
1740	return res;
1741}
1742
1743static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1744			      int from_phy, bool update)
1745{
1746	struct expander_device *ex = &dev->ex_dev;
1747	int res = 0;
1748	int i;
1749
1750	for (i = from_phy; i < ex->num_phys; i++) {
1751		int phy_change_count = 0;
1752
1753		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1754		switch (res) {
1755		case SMP_RESP_PHY_VACANT:
1756		case SMP_RESP_NO_PHY:
1757			continue;
1758		case SMP_RESP_FUNC_ACC:
1759			break;
1760		default:
1761			return res;
1762		}
1763
1764		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1765			if (update)
1766				ex->ex_phy[i].phy_change_count =
1767					phy_change_count;
1768			*phy_id = i;
1769			return 0;
1770		}
1771	}
1772	return 0;
1773}
1774
1775static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1776{
1777	int res;
1778	u8  *rg_req;
1779	struct smp_resp  *rg_resp;
1780
1781	rg_req = alloc_smp_req(RG_REQ_SIZE);
1782	if (!rg_req)
1783		return -ENOMEM;
1784
1785	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1786	if (!rg_resp) {
1787		kfree(rg_req);
1788		return -ENOMEM;
1789	}
1790
1791	rg_req[1] = SMP_REPORT_GENERAL;
1792
1793	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1794			       RG_RESP_SIZE);
1795	if (res)
1796		goto out;
1797	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1798		res = rg_resp->result;
1799		goto out;
1800	}
1801
1802	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1803out:
1804	kfree(rg_resp);
1805	kfree(rg_req);
1806	return res;
1807}
1808/**
1809 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1810 * @dev:domain device to be detect.
1811 * @src_dev: the device which originated BROADCAST(CHANGE).
1812 *
1813 * Add self-configuration expander support. Suppose two expander cascading,
1814 * when the first level expander is self-configuring, hotplug the disks in
1815 * second level expander, BROADCAST(CHANGE) will not only be originated
1816 * in the second level expander, but also be originated in the first level
1817 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818 * expander changed count in two level expanders will all increment at least
1819 * once, but the phy which chang count has changed is the source device which
1820 * we concerned.
1821 */
1822
1823static int sas_find_bcast_dev(struct domain_device *dev,
1824			      struct domain_device **src_dev)
1825{
1826	struct expander_device *ex = &dev->ex_dev;
1827	int ex_change_count = -1;
1828	int phy_id = -1;
1829	int res;
1830	struct domain_device *ch;
1831
1832	res = sas_get_ex_change_count(dev, &ex_change_count);
1833	if (res)
1834		goto out;
1835	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1836		/* Just detect if this expander phys phy change count changed,
1837		* in order to determine if this expander originate BROADCAST,
1838		* and do not update phy change count field in our structure.
1839		*/
1840		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1841		if (phy_id != -1) {
1842			*src_dev = dev;
1843			ex->ex_change_count = ex_change_count;
1844			pr_info("ex %016llx phy%02d change count has changed\n",
1845				SAS_ADDR(dev->sas_addr), phy_id);
1846			return res;
1847		} else
1848			pr_info("ex %016llx phys DID NOT change\n",
1849				SAS_ADDR(dev->sas_addr));
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (dev_is_expander(ch->dev_type)) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (dev_is_expander(child->dev_type))
 
1870			sas_unregister_ex_tree(port, child);
1871		else
1872			sas_unregister_dev(port, child);
1873	}
1874	sas_unregister_dev(port, dev);
1875}
1876
1877static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1878					 int phy_id, bool last)
1879{
1880	struct expander_device *ex_dev = &parent->ex_dev;
1881	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1882	struct domain_device *child, *n, *found = NULL;
1883	if (last) {
1884		list_for_each_entry_safe(child, n,
1885			&ex_dev->children, siblings) {
1886			if (SAS_ADDR(child->sas_addr) ==
1887			    SAS_ADDR(phy->attached_sas_addr)) {
1888				set_bit(SAS_DEV_GONE, &child->state);
1889				if (dev_is_expander(child->dev_type))
 
1890					sas_unregister_ex_tree(parent->port, child);
1891				else
1892					sas_unregister_dev(parent->port, child);
1893				found = child;
1894				break;
1895			}
1896		}
1897		sas_disable_routing(parent, phy->attached_sas_addr);
1898	}
1899	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1900	if (phy->port) {
1901		sas_port_delete_phy(phy->port, phy->phy);
1902		sas_device_set_phy(found, phy->port);
1903		if (phy->port->num_phys == 0)
1904			list_add_tail(&phy->port->del_list,
1905				&parent->port->sas_port_del_list);
1906		phy->port = NULL;
1907	}
1908}
1909
1910static int sas_discover_bfs_by_root_level(struct domain_device *root,
1911					  const int level)
1912{
1913	struct expander_device *ex_root = &root->ex_dev;
1914	struct domain_device *child;
1915	int res = 0;
1916
1917	list_for_each_entry(child, &ex_root->children, siblings) {
1918		if (dev_is_expander(child->dev_type)) {
 
1919			struct sas_expander_device *ex =
1920				rphy_to_expander_device(child->rphy);
1921
1922			if (level > ex->level)
1923				res = sas_discover_bfs_by_root_level(child,
1924								     level);
1925			else if (level == ex->level)
1926				res = sas_ex_discover_devices(child, -1);
1927		}
1928	}
1929	return res;
1930}
1931
1932static int sas_discover_bfs_by_root(struct domain_device *dev)
1933{
1934	int res;
1935	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936	int level = ex->level+1;
1937
1938	res = sas_ex_discover_devices(dev, -1);
1939	if (res)
1940		goto out;
1941	do {
1942		res = sas_discover_bfs_by_root_level(dev, level);
1943		mb();
1944		level += 1;
1945	} while (level <= dev->port->disc.max_level);
1946out:
1947	return res;
1948}
1949
1950static int sas_discover_new(struct domain_device *dev, int phy_id)
1951{
1952	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953	struct domain_device *child;
1954	int res;
1955
1956	pr_debug("ex %016llx phy%02d new device attached\n",
1957		 SAS_ADDR(dev->sas_addr), phy_id);
1958	res = sas_ex_phy_discover(dev, phy_id);
1959	if (res)
1960		return res;
1961
1962	if (sas_ex_join_wide_port(dev, phy_id))
1963		return 0;
1964
1965	res = sas_ex_discover_devices(dev, phy_id);
1966	if (res)
1967		return res;
1968	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969		if (SAS_ADDR(child->sas_addr) ==
1970		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1971			if (dev_is_expander(child->dev_type))
 
1972				res = sas_discover_bfs_by_root(child);
1973			break;
1974		}
1975	}
1976	return res;
1977}
1978
1979static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1980{
1981	if (old == new)
1982		return true;
1983
1984	/* treat device directed resets as flutter, if we went
1985	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1986	 */
1987	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1988	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1989		return true;
1990
1991	return false;
1992}
1993
1994static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1995			      bool last, int sibling)
1996{
1997	struct expander_device *ex = &dev->ex_dev;
1998	struct ex_phy *phy = &ex->ex_phy[phy_id];
1999	enum sas_device_type type = SAS_PHY_UNUSED;
2000	u8 sas_addr[SAS_ADDR_SIZE];
2001	char msg[80] = "";
2002	int res;
2003
2004	if (!last)
2005		sprintf(msg, ", part of a wide port with phy%02d", sibling);
2006
2007	pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008		 SAS_ADDR(dev->sas_addr), phy_id, msg);
2009
2010	memset(sas_addr, 0, SAS_ADDR_SIZE);
2011	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2012	switch (res) {
2013	case SMP_RESP_NO_PHY:
2014		phy->phy_state = PHY_NOT_PRESENT;
2015		sas_unregister_devs_sas_addr(dev, phy_id, last);
2016		return res;
2017	case SMP_RESP_PHY_VACANT:
2018		phy->phy_state = PHY_VACANT;
2019		sas_unregister_devs_sas_addr(dev, phy_id, last);
2020		return res;
2021	case SMP_RESP_FUNC_ACC:
2022		break;
2023	case -ECOMM:
2024		break;
2025	default:
2026		return res;
2027	}
2028
2029	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2030		phy->phy_state = PHY_EMPTY;
2031		sas_unregister_devs_sas_addr(dev, phy_id, last);
2032		/*
2033		 * Even though the PHY is empty, for convenience we discover
2034		 * the PHY to update the PHY info, like negotiated linkrate.
2035		 */
2036		sas_ex_phy_discover(dev, phy_id);
2037		return res;
2038	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2039		   dev_type_flutter(type, phy->attached_dev_type)) {
2040		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2041		char *action = "";
2042
2043		sas_ex_phy_discover(dev, phy_id);
2044
2045		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2046			action = ", needs recovery";
2047		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048			 SAS_ADDR(dev->sas_addr), phy_id, action);
2049		return res;
2050	}
2051
2052	/* we always have to delete the old device when we went here */
2053	pr_info("ex %016llx phy%02d replace %016llx\n",
2054		SAS_ADDR(dev->sas_addr), phy_id,
2055		SAS_ADDR(phy->attached_sas_addr));
2056	sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
2057
2058	return sas_discover_new(dev, phy_id);
2059}
2060
2061/**
2062 * sas_rediscover - revalidate the domain.
2063 * @dev:domain device to be detect.
2064 * @phy_id: the phy id will be detected.
2065 *
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered.  Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.For plugging out, we un-register the device only when it is
2070 * the last phy in the port, for other phys in this port, we just delete it
2071 * from the port.For inserting, we do discovery when it is the
2072 * first phy,for other phys in this port, we add it to the port to
2073 * forming the wide-port.
2074 */
2075static int sas_rediscover(struct domain_device *dev, const int phy_id)
2076{
2077	struct expander_device *ex = &dev->ex_dev;
2078	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2079	int res = 0;
2080	int i;
2081	bool last = true;	/* is this the last phy of the port */
2082
2083	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084		 SAS_ADDR(dev->sas_addr), phy_id);
2085
2086	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2087		for (i = 0; i < ex->num_phys; i++) {
2088			struct ex_phy *phy = &ex->ex_phy[i];
2089
2090			if (i == phy_id)
2091				continue;
2092			if (SAS_ADDR(phy->attached_sas_addr) ==
2093			    SAS_ADDR(changed_phy->attached_sas_addr)) {
 
 
2094				last = false;
2095				break;
2096			}
2097		}
2098		res = sas_rediscover_dev(dev, phy_id, last, i);
2099	} else
2100		res = sas_discover_new(dev, phy_id);
2101	return res;
2102}
2103
2104/**
2105 * sas_ex_revalidate_domain - revalidate the domain
2106 * @port_dev: port domain device.
2107 *
2108 * NOTE: this process _must_ quit (return) as soon as any connection
2109 * errors are encountered.  Connection recovery is done elsewhere.
2110 * Discover process only interrogates devices in order to discover the
2111 * domain.
2112 */
2113int sas_ex_revalidate_domain(struct domain_device *port_dev)
2114{
2115	int res;
2116	struct domain_device *dev = NULL;
2117
2118	res = sas_find_bcast_dev(port_dev, &dev);
2119	if (res == 0 && dev) {
2120		struct expander_device *ex = &dev->ex_dev;
2121		int i = 0, phy_id;
2122
2123		do {
2124			phy_id = -1;
2125			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2126			if (phy_id == -1)
2127				break;
2128			res = sas_rediscover(dev, phy_id);
2129			i = phy_id + 1;
2130		} while (i < ex->num_phys);
 
 
 
2131	}
2132	return res;
2133}
2134
2135void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2136		struct sas_rphy *rphy)
2137{
2138	struct domain_device *dev;
2139	unsigned int rcvlen = 0;
2140	int ret = -EINVAL;
 
 
 
 
 
 
2141
2142	/* no rphy means no smp target support (ie aic94xx host) */
2143	if (!rphy)
2144		return sas_smp_host_handler(job, shost);
 
 
2145
2146	switch (rphy->identify.device_type) {
2147	case SAS_EDGE_EXPANDER_DEVICE:
2148	case SAS_FANOUT_EXPANDER_DEVICE:
2149		break;
2150	default:
2151		pr_err("%s: can we send a smp request to a device?\n",
2152		       __func__);
2153		goto out;
2154	}
2155
2156	dev = sas_find_dev_by_rphy(rphy);
2157	if (!dev) {
2158		pr_err("%s: fail to find a domain_device?\n", __func__);
2159		goto out;
2160	}
2161
2162	/* do we need to support multiple segments? */
2163	if (job->request_payload.sg_cnt > 1 ||
2164	    job->reply_payload.sg_cnt > 1) {
2165		pr_info("%s: multiple segments req %u, rsp %u\n",
2166			__func__, job->request_payload.payload_len,
2167			job->reply_payload.payload_len);
2168		goto out;
2169	}
2170
2171	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2172			job->reply_payload.sg_list);
2173	if (ret >= 0) {
2174		/* bsg_job_done() requires the length received  */
2175		rcvlen = job->reply_payload.payload_len - ret;
 
2176		ret = 0;
 
 
 
2177	}
2178
2179out:
2180	bsg_job_done(job, ret, rcvlen);
2181}