Loading...
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/sas_ata.h>
32#include <scsi/scsi_transport.h>
33#include <scsi/scsi_transport_sas.h>
34#include "../scsi_sas_internal.h"
35
36static int sas_discover_expander(struct domain_device *dev);
37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42/* ---------- SMP task management ---------- */
43
44static void smp_task_timedout(unsigned long _task)
45{
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
48
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54 complete(&task->slow_task->completion);
55}
56
57static void smp_task_done(struct sas_task *task)
58{
59 if (!del_timer(&task->slow_task->timer))
60 return;
61 complete(&task->slow_task->completion);
62}
63
64/* Give it some long enough timeout. In seconds. */
65#define SMP_TIMEOUT 10
66
67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 void *resp, int resp_size)
69{
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
80 }
81
82 task = sas_alloc_slow_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
86 }
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 sg_init_one(&task->smp_task.smp_req, req, req_size);
90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92 task->task_done = smp_task_done;
93
94 task->slow_task->timer.data = (unsigned long) task;
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
98
99 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->slow_task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->slow_task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152}
153
154/* ---------- Allocations ---------- */
155
156static inline void *alloc_smp_req(int size)
157{
158 u8 *p = kzalloc(size, GFP_KERNEL);
159 if (p)
160 p[0] = SMP_REQUEST;
161 return p;
162}
163
164static inline void *alloc_smp_resp(int size)
165{
166 return kzalloc(size, GFP_KERNEL);
167}
168
169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170{
171 switch (phy->routing_attr) {
172 case TABLE_ROUTING:
173 if (dev->ex_dev.t2t_supp)
174 return 'U';
175 else
176 return 'T';
177 case DIRECT_ROUTING:
178 return 'D';
179 case SUBTRACTIVE_ROUTING:
180 return 'S';
181 default:
182 return '?';
183 }
184}
185
186static enum sas_device_type to_dev_type(struct discover_resp *dr)
187{
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
190 */
191 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SAS_SATA_PENDING;
194 else
195 return dr->attached_dev_type;
196}
197
198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199{
200 enum sas_device_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
210 char *type;
211
212 if (new_phy) {
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 return;
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217 /* FIXME: error_handling */
218 BUG_ON(!phy->phy);
219 }
220
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
224 break;
225 default:
226 phy->phy_state = PHY_NOT_PRESENT;
227 break;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
230 break;
231 }
232
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238 /* Handle vacant phy - rest of dr data is not valid so skip it */
239 if (phy->phy_state == PHY_VACANT) {
240 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241 phy->attached_dev_type = SAS_PHY_UNUSED;
242 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243 phy->phy_id = phy_id;
244 goto skip;
245 } else
246 goto out;
247 }
248
249 phy->attached_dev_type = to_dev_type(dr);
250 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251 goto out;
252 phy->phy_id = phy_id;
253 phy->linkrate = dr->linkrate;
254 phy->attached_sata_host = dr->attached_sata_host;
255 phy->attached_sata_dev = dr->attached_sata_dev;
256 phy->attached_sata_ps = dr->attached_sata_ps;
257 phy->attached_iproto = dr->iproto << 1;
258 phy->attached_tproto = dr->tproto << 1;
259 /* help some expanders that fail to zero sas_address in the 'no
260 * device' case
261 */
262 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265 else
266 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267 phy->attached_phy_id = dr->attached_phy_id;
268 phy->phy_change_count = dr->change_count;
269 phy->routing_attr = dr->routing_attr;
270 phy->virtual = dr->virtual;
271 phy->last_da_index = -1;
272
273 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274 phy->phy->identify.device_type = dr->attached_dev_type;
275 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276 phy->phy->identify.target_port_protocols = phy->attached_tproto;
277 if (!phy->attached_tproto && dr->attached_sata_dev)
278 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279 phy->phy->identify.phy_identifier = phy_id;
280 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282 phy->phy->minimum_linkrate = dr->pmin_linkrate;
283 phy->phy->maximum_linkrate = dr->pmax_linkrate;
284 phy->phy->negotiated_linkrate = phy->linkrate;
285
286 skip:
287 if (new_phy)
288 if (sas_phy_add(phy->phy)) {
289 sas_phy_free(phy->phy);
290 return;
291 }
292
293 out:
294 switch (phy->attached_dev_type) {
295 case SAS_SATA_PENDING:
296 type = "stp pending";
297 break;
298 case SAS_PHY_UNUSED:
299 type = "no device";
300 break;
301 case SAS_END_DEVICE:
302 if (phy->attached_iproto) {
303 if (phy->attached_tproto)
304 type = "host+target";
305 else
306 type = "host";
307 } else {
308 if (dr->attached_sata_dev)
309 type = "stp";
310 else
311 type = "ssp";
312 }
313 break;
314 case SAS_EDGE_EXPANDER_DEVICE:
315 case SAS_FANOUT_EXPANDER_DEVICE:
316 type = "smp";
317 break;
318 default:
319 type = "unknown";
320 }
321
322 /* this routine is polled by libata error recovery so filter
323 * unimportant messages
324 */
325 if (new_phy || phy->attached_dev_type != dev_type ||
326 phy->linkrate != linkrate ||
327 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
328 /* pass */;
329 else
330 return;
331
332 /* if the attached device type changed and ata_eh is active,
333 * make sure we run revalidation when eh completes (see:
334 * sas_enable_revalidation)
335 */
336 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
337 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
338
339 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
340 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
341 SAS_ADDR(dev->sas_addr), phy->phy_id,
342 sas_route_char(dev, phy), phy->linkrate,
343 SAS_ADDR(phy->attached_sas_addr), type);
344}
345
346/* check if we have an existing attached ata device on this expander phy */
347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
348{
349 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
350 struct domain_device *dev;
351 struct sas_rphy *rphy;
352
353 if (!ex_phy->port)
354 return NULL;
355
356 rphy = ex_phy->port->rphy;
357 if (!rphy)
358 return NULL;
359
360 dev = sas_find_dev_by_rphy(rphy);
361
362 if (dev && dev_is_sata(dev))
363 return dev;
364
365 return NULL;
366}
367
368#define DISCOVER_REQ_SIZE 16
369#define DISCOVER_RESP_SIZE 56
370
371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
372 u8 *disc_resp, int single)
373{
374 struct discover_resp *dr;
375 int res;
376
377 disc_req[9] = single;
378
379 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
380 disc_resp, DISCOVER_RESP_SIZE);
381 if (res)
382 return res;
383 dr = &((struct smp_resp *)disc_resp)->disc;
384 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
385 sas_printk("Found loopback topology, just ignore it!\n");
386 return 0;
387 }
388 sas_set_ex_phy(dev, single, disc_resp);
389 return 0;
390}
391
392int sas_ex_phy_discover(struct domain_device *dev, int single)
393{
394 struct expander_device *ex = &dev->ex_dev;
395 int res = 0;
396 u8 *disc_req;
397 u8 *disc_resp;
398
399 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
400 if (!disc_req)
401 return -ENOMEM;
402
403 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
404 if (!disc_resp) {
405 kfree(disc_req);
406 return -ENOMEM;
407 }
408
409 disc_req[1] = SMP_DISCOVER;
410
411 if (0 <= single && single < ex->num_phys) {
412 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
413 } else {
414 int i;
415
416 for (i = 0; i < ex->num_phys; i++) {
417 res = sas_ex_phy_discover_helper(dev, disc_req,
418 disc_resp, i);
419 if (res)
420 goto out_err;
421 }
422 }
423out_err:
424 kfree(disc_resp);
425 kfree(disc_req);
426 return res;
427}
428
429static int sas_expander_discover(struct domain_device *dev)
430{
431 struct expander_device *ex = &dev->ex_dev;
432 int res = -ENOMEM;
433
434 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
435 if (!ex->ex_phy)
436 return -ENOMEM;
437
438 res = sas_ex_phy_discover(dev, -1);
439 if (res)
440 goto out_err;
441
442 return 0;
443 out_err:
444 kfree(ex->ex_phy);
445 ex->ex_phy = NULL;
446 return res;
447}
448
449#define MAX_EXPANDER_PHYS 128
450
451static void ex_assign_report_general(struct domain_device *dev,
452 struct smp_resp *resp)
453{
454 struct report_general_resp *rg = &resp->rg;
455
456 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
457 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
458 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
459 dev->ex_dev.t2t_supp = rg->t2t_supp;
460 dev->ex_dev.conf_route_table = rg->conf_route_table;
461 dev->ex_dev.configuring = rg->configuring;
462 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
463}
464
465#define RG_REQ_SIZE 8
466#define RG_RESP_SIZE 32
467
468static int sas_ex_general(struct domain_device *dev)
469{
470 u8 *rg_req;
471 struct smp_resp *rg_resp;
472 int res;
473 int i;
474
475 rg_req = alloc_smp_req(RG_REQ_SIZE);
476 if (!rg_req)
477 return -ENOMEM;
478
479 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
480 if (!rg_resp) {
481 kfree(rg_req);
482 return -ENOMEM;
483 }
484
485 rg_req[1] = SMP_REPORT_GENERAL;
486
487 for (i = 0; i < 5; i++) {
488 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
489 RG_RESP_SIZE);
490
491 if (res) {
492 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
493 SAS_ADDR(dev->sas_addr), res);
494 goto out;
495 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
496 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
497 SAS_ADDR(dev->sas_addr), rg_resp->result);
498 res = rg_resp->result;
499 goto out;
500 }
501
502 ex_assign_report_general(dev, rg_resp);
503
504 if (dev->ex_dev.configuring) {
505 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
506 SAS_ADDR(dev->sas_addr));
507 schedule_timeout_interruptible(5*HZ);
508 } else
509 break;
510 }
511out:
512 kfree(rg_req);
513 kfree(rg_resp);
514 return res;
515}
516
517static void ex_assign_manuf_info(struct domain_device *dev, void
518 *_mi_resp)
519{
520 u8 *mi_resp = _mi_resp;
521 struct sas_rphy *rphy = dev->rphy;
522 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
523
524 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
525 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
526 memcpy(edev->product_rev, mi_resp + 36,
527 SAS_EXPANDER_PRODUCT_REV_LEN);
528
529 if (mi_resp[8] & 1) {
530 memcpy(edev->component_vendor_id, mi_resp + 40,
531 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
532 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
533 edev->component_revision_id = mi_resp[50];
534 }
535}
536
537#define MI_REQ_SIZE 8
538#define MI_RESP_SIZE 64
539
540static int sas_ex_manuf_info(struct domain_device *dev)
541{
542 u8 *mi_req;
543 u8 *mi_resp;
544 int res;
545
546 mi_req = alloc_smp_req(MI_REQ_SIZE);
547 if (!mi_req)
548 return -ENOMEM;
549
550 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
551 if (!mi_resp) {
552 kfree(mi_req);
553 return -ENOMEM;
554 }
555
556 mi_req[1] = SMP_REPORT_MANUF_INFO;
557
558 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
559 if (res) {
560 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
561 SAS_ADDR(dev->sas_addr), res);
562 goto out;
563 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
564 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
565 SAS_ADDR(dev->sas_addr), mi_resp[2]);
566 goto out;
567 }
568
569 ex_assign_manuf_info(dev, mi_resp);
570out:
571 kfree(mi_req);
572 kfree(mi_resp);
573 return res;
574}
575
576#define PC_REQ_SIZE 44
577#define PC_RESP_SIZE 8
578
579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
580 enum phy_func phy_func,
581 struct sas_phy_linkrates *rates)
582{
583 u8 *pc_req;
584 u8 *pc_resp;
585 int res;
586
587 pc_req = alloc_smp_req(PC_REQ_SIZE);
588 if (!pc_req)
589 return -ENOMEM;
590
591 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
592 if (!pc_resp) {
593 kfree(pc_req);
594 return -ENOMEM;
595 }
596
597 pc_req[1] = SMP_PHY_CONTROL;
598 pc_req[9] = phy_id;
599 pc_req[10]= phy_func;
600 if (rates) {
601 pc_req[32] = rates->minimum_linkrate << 4;
602 pc_req[33] = rates->maximum_linkrate << 4;
603 }
604
605 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
606
607 kfree(pc_resp);
608 kfree(pc_req);
609 return res;
610}
611
612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
613{
614 struct expander_device *ex = &dev->ex_dev;
615 struct ex_phy *phy = &ex->ex_phy[phy_id];
616
617 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
618 phy->linkrate = SAS_PHY_DISABLED;
619}
620
621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
622{
623 struct expander_device *ex = &dev->ex_dev;
624 int i;
625
626 for (i = 0; i < ex->num_phys; i++) {
627 struct ex_phy *phy = &ex->ex_phy[i];
628
629 if (phy->phy_state == PHY_VACANT ||
630 phy->phy_state == PHY_NOT_PRESENT)
631 continue;
632
633 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
634 sas_ex_disable_phy(dev, i);
635 }
636}
637
638static int sas_dev_present_in_domain(struct asd_sas_port *port,
639 u8 *sas_addr)
640{
641 struct domain_device *dev;
642
643 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
644 return 1;
645 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
646 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
647 return 1;
648 }
649 return 0;
650}
651
652#define RPEL_REQ_SIZE 16
653#define RPEL_RESP_SIZE 32
654int sas_smp_get_phy_events(struct sas_phy *phy)
655{
656 int res;
657 u8 *req;
658 u8 *resp;
659 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
660 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
661
662 req = alloc_smp_req(RPEL_REQ_SIZE);
663 if (!req)
664 return -ENOMEM;
665
666 resp = alloc_smp_resp(RPEL_RESP_SIZE);
667 if (!resp) {
668 kfree(req);
669 return -ENOMEM;
670 }
671
672 req[1] = SMP_REPORT_PHY_ERR_LOG;
673 req[9] = phy->number;
674
675 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
676 resp, RPEL_RESP_SIZE);
677
678 if (!res)
679 goto out;
680
681 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
682 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
683 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
684 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
685
686 out:
687 kfree(resp);
688 return res;
689
690}
691
692#ifdef CONFIG_SCSI_SAS_ATA
693
694#define RPS_REQ_SIZE 16
695#define RPS_RESP_SIZE 60
696
697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
698 struct smp_resp *rps_resp)
699{
700 int res;
701 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
702 u8 *resp = (u8 *)rps_resp;
703
704 if (!rps_req)
705 return -ENOMEM;
706
707 rps_req[1] = SMP_REPORT_PHY_SATA;
708 rps_req[9] = phy_id;
709
710 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
711 rps_resp, RPS_RESP_SIZE);
712
713 /* 0x34 is the FIS type for the D2H fis. There's a potential
714 * standards cockup here. sas-2 explicitly specifies the FIS
715 * should be encoded so that FIS type is in resp[24].
716 * However, some expanders endian reverse this. Undo the
717 * reversal here */
718 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
719 int i;
720
721 for (i = 0; i < 5; i++) {
722 int j = 24 + (i*4);
723 u8 a, b;
724 a = resp[j + 0];
725 b = resp[j + 1];
726 resp[j + 0] = resp[j + 3];
727 resp[j + 1] = resp[j + 2];
728 resp[j + 2] = b;
729 resp[j + 3] = a;
730 }
731 }
732
733 kfree(rps_req);
734 return res;
735}
736#endif
737
738static void sas_ex_get_linkrate(struct domain_device *parent,
739 struct domain_device *child,
740 struct ex_phy *parent_phy)
741{
742 struct expander_device *parent_ex = &parent->ex_dev;
743 struct sas_port *port;
744 int i;
745
746 child->pathways = 0;
747
748 port = parent_phy->port;
749
750 for (i = 0; i < parent_ex->num_phys; i++) {
751 struct ex_phy *phy = &parent_ex->ex_phy[i];
752
753 if (phy->phy_state == PHY_VACANT ||
754 phy->phy_state == PHY_NOT_PRESENT)
755 continue;
756
757 if (SAS_ADDR(phy->attached_sas_addr) ==
758 SAS_ADDR(child->sas_addr)) {
759
760 child->min_linkrate = min(parent->min_linkrate,
761 phy->linkrate);
762 child->max_linkrate = max(parent->max_linkrate,
763 phy->linkrate);
764 child->pathways++;
765 sas_port_add_phy(port, phy->phy);
766 }
767 }
768 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
769 child->pathways = min(child->pathways, parent->pathways);
770}
771
772static struct domain_device *sas_ex_discover_end_dev(
773 struct domain_device *parent, int phy_id)
774{
775 struct expander_device *parent_ex = &parent->ex_dev;
776 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
777 struct domain_device *child = NULL;
778 struct sas_rphy *rphy;
779 int res;
780
781 if (phy->attached_sata_host || phy->attached_sata_ps)
782 return NULL;
783
784 child = sas_alloc_device();
785 if (!child)
786 return NULL;
787
788 kref_get(&parent->kref);
789 child->parent = parent;
790 child->port = parent->port;
791 child->iproto = phy->attached_iproto;
792 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
793 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
794 if (!phy->port) {
795 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
796 if (unlikely(!phy->port))
797 goto out_err;
798 if (unlikely(sas_port_add(phy->port) != 0)) {
799 sas_port_free(phy->port);
800 goto out_err;
801 }
802 }
803 sas_ex_get_linkrate(parent, child, phy);
804 sas_device_set_phy(child, phy->port);
805
806#ifdef CONFIG_SCSI_SAS_ATA
807 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
808 res = sas_get_ata_info(child, phy);
809 if (res)
810 goto out_free;
811
812 sas_init_dev(child);
813 res = sas_ata_init(child);
814 if (res)
815 goto out_free;
816 rphy = sas_end_device_alloc(phy->port);
817 if (!rphy)
818 goto out_free;
819
820 child->rphy = rphy;
821 get_device(&rphy->dev);
822
823 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
824
825 res = sas_discover_sata(child);
826 if (res) {
827 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
828 "%016llx:0x%x returned 0x%x\n",
829 SAS_ADDR(child->sas_addr),
830 SAS_ADDR(parent->sas_addr), phy_id, res);
831 goto out_list_del;
832 }
833 } else
834#endif
835 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
836 child->dev_type = SAS_END_DEVICE;
837 rphy = sas_end_device_alloc(phy->port);
838 /* FIXME: error handling */
839 if (unlikely(!rphy))
840 goto out_free;
841 child->tproto = phy->attached_tproto;
842 sas_init_dev(child);
843
844 child->rphy = rphy;
845 get_device(&rphy->dev);
846 sas_fill_in_rphy(child, rphy);
847
848 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
849
850 res = sas_discover_end_dev(child);
851 if (res) {
852 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
853 "at %016llx:0x%x returned 0x%x\n",
854 SAS_ADDR(child->sas_addr),
855 SAS_ADDR(parent->sas_addr), phy_id, res);
856 goto out_list_del;
857 }
858 } else {
859 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
860 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
861 phy_id);
862 goto out_free;
863 }
864
865 list_add_tail(&child->siblings, &parent_ex->children);
866 return child;
867
868 out_list_del:
869 sas_rphy_free(child->rphy);
870 list_del(&child->disco_list_node);
871 spin_lock_irq(&parent->port->dev_list_lock);
872 list_del(&child->dev_list_node);
873 spin_unlock_irq(&parent->port->dev_list_lock);
874 out_free:
875 sas_port_delete(phy->port);
876 out_err:
877 phy->port = NULL;
878 sas_put_device(child);
879 return NULL;
880}
881
882/* See if this phy is part of a wide port */
883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
884{
885 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
886 int i;
887
888 for (i = 0; i < parent->ex_dev.num_phys; i++) {
889 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
890
891 if (ephy == phy)
892 continue;
893
894 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
895 SAS_ADDR_SIZE) && ephy->port) {
896 sas_port_add_phy(ephy->port, phy->phy);
897 phy->port = ephy->port;
898 phy->phy_state = PHY_DEVICE_DISCOVERED;
899 return true;
900 }
901 }
902
903 return false;
904}
905
906static struct domain_device *sas_ex_discover_expander(
907 struct domain_device *parent, int phy_id)
908{
909 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
910 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
911 struct domain_device *child = NULL;
912 struct sas_rphy *rphy;
913 struct sas_expander_device *edev;
914 struct asd_sas_port *port;
915 int res;
916
917 if (phy->routing_attr == DIRECT_ROUTING) {
918 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
919 "allowed\n",
920 SAS_ADDR(parent->sas_addr), phy_id,
921 SAS_ADDR(phy->attached_sas_addr),
922 phy->attached_phy_id);
923 return NULL;
924 }
925 child = sas_alloc_device();
926 if (!child)
927 return NULL;
928
929 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
930 /* FIXME: better error handling */
931 BUG_ON(sas_port_add(phy->port) != 0);
932
933
934 switch (phy->attached_dev_type) {
935 case SAS_EDGE_EXPANDER_DEVICE:
936 rphy = sas_expander_alloc(phy->port,
937 SAS_EDGE_EXPANDER_DEVICE);
938 break;
939 case SAS_FANOUT_EXPANDER_DEVICE:
940 rphy = sas_expander_alloc(phy->port,
941 SAS_FANOUT_EXPANDER_DEVICE);
942 break;
943 default:
944 rphy = NULL; /* shut gcc up */
945 BUG();
946 }
947 port = parent->port;
948 child->rphy = rphy;
949 get_device(&rphy->dev);
950 edev = rphy_to_expander_device(rphy);
951 child->dev_type = phy->attached_dev_type;
952 kref_get(&parent->kref);
953 child->parent = parent;
954 child->port = port;
955 child->iproto = phy->attached_iproto;
956 child->tproto = phy->attached_tproto;
957 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
958 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
959 sas_ex_get_linkrate(parent, child, phy);
960 edev->level = parent_ex->level + 1;
961 parent->port->disc.max_level = max(parent->port->disc.max_level,
962 edev->level);
963 sas_init_dev(child);
964 sas_fill_in_rphy(child, rphy);
965 sas_rphy_add(rphy);
966
967 spin_lock_irq(&parent->port->dev_list_lock);
968 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
969 spin_unlock_irq(&parent->port->dev_list_lock);
970
971 res = sas_discover_expander(child);
972 if (res) {
973 sas_rphy_delete(rphy);
974 spin_lock_irq(&parent->port->dev_list_lock);
975 list_del(&child->dev_list_node);
976 spin_unlock_irq(&parent->port->dev_list_lock);
977 sas_put_device(child);
978 return NULL;
979 }
980 list_add_tail(&child->siblings, &parent->ex_dev.children);
981 return child;
982}
983
984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
985{
986 struct expander_device *ex = &dev->ex_dev;
987 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
988 struct domain_device *child = NULL;
989 int res = 0;
990
991 /* Phy state */
992 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
993 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
994 res = sas_ex_phy_discover(dev, phy_id);
995 if (res)
996 return res;
997 }
998
999 /* Parent and domain coherency */
1000 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001 SAS_ADDR(dev->port->sas_addr))) {
1002 sas_add_parent_port(dev, phy_id);
1003 return 0;
1004 }
1005 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006 SAS_ADDR(dev->parent->sas_addr))) {
1007 sas_add_parent_port(dev, phy_id);
1008 if (ex_phy->routing_attr == TABLE_ROUTING)
1009 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010 return 0;
1011 }
1012
1013 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020 }
1021 return 0;
1022 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023 return 0;
1024
1025 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030 "phy 0x%x\n", ex_phy->attached_dev_type,
1031 SAS_ADDR(dev->sas_addr),
1032 phy_id);
1033 return 0;
1034 }
1035
1036 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037 if (res) {
1038 SAS_DPRINTK("configure routing for dev %016llx "
1039 "reported 0x%x. Forgotten\n",
1040 SAS_ADDR(ex_phy->attached_sas_addr), res);
1041 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042 return res;
1043 }
1044
1045 if (sas_ex_join_wide_port(dev, phy_id)) {
1046 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048 return res;
1049 }
1050
1051 switch (ex_phy->attached_dev_type) {
1052 case SAS_END_DEVICE:
1053 case SAS_SATA_PENDING:
1054 child = sas_ex_discover_end_dev(dev, phy_id);
1055 break;
1056 case SAS_FANOUT_EXPANDER_DEVICE:
1057 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059 "attached to ex %016llx phy 0x%x\n",
1060 SAS_ADDR(ex_phy->attached_sas_addr),
1061 ex_phy->attached_phy_id,
1062 SAS_ADDR(dev->sas_addr),
1063 phy_id);
1064 sas_ex_disable_phy(dev, phy_id);
1065 break;
1066 } else
1067 memcpy(dev->port->disc.fanout_sas_addr,
1068 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069 /* fallthrough */
1070 case SAS_EDGE_EXPANDER_DEVICE:
1071 child = sas_ex_discover_expander(dev, phy_id);
1072 break;
1073 default:
1074 break;
1075 }
1076
1077 if (child) {
1078 int i;
1079
1080 for (i = 0; i < ex->num_phys; i++) {
1081 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083 continue;
1084 /*
1085 * Due to races, the phy might not get added to the
1086 * wide port, so we add the phy to the wide port here.
1087 */
1088 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089 SAS_ADDR(child->sas_addr)) {
1090 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091 if (sas_ex_join_wide_port(dev, i))
1092 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095 }
1096 }
1097 }
1098
1099 return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104 struct expander_device *ex = &dev->ex_dev;
1105 int i;
1106
1107 for (i = 0; i < ex->num_phys; i++) {
1108 struct ex_phy *phy = &ex->ex_phy[i];
1109
1110 if (phy->phy_state == PHY_VACANT ||
1111 phy->phy_state == PHY_NOT_PRESENT)
1112 continue;
1113
1114 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120 return 1;
1121 }
1122 }
1123 return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128 struct expander_device *ex = &dev->ex_dev;
1129 struct domain_device *child;
1130 u8 sub_addr[8] = {0, };
1131
1132 list_for_each_entry(child, &ex->children, siblings) {
1133 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135 continue;
1136 if (sub_addr[0] == 0) {
1137 sas_find_sub_addr(child, sub_addr);
1138 continue;
1139 } else {
1140 u8 s2[8];
1141
1142 if (sas_find_sub_addr(child, s2) &&
1143 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146 "diverges from subtractive "
1147 "boundary %016llx\n",
1148 SAS_ADDR(dev->sas_addr),
1149 SAS_ADDR(child->sas_addr),
1150 SAS_ADDR(s2),
1151 SAS_ADDR(sub_addr));
1152
1153 sas_ex_disable_port(child, s2);
1154 }
1155 }
1156 }
1157 return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169 struct expander_device *ex = &dev->ex_dev;
1170 int i = 0, end = ex->num_phys;
1171 int res = 0;
1172
1173 if (0 <= single && single < end) {
1174 i = single;
1175 end = i+1;
1176 }
1177
1178 for ( ; i < end; i++) {
1179 struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181 if (ex_phy->phy_state == PHY_VACANT ||
1182 ex_phy->phy_state == PHY_NOT_PRESENT ||
1183 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184 continue;
1185
1186 switch (ex_phy->linkrate) {
1187 case SAS_PHY_DISABLED:
1188 case SAS_PHY_RESET_PROBLEM:
1189 case SAS_SATA_PORT_SELECTOR:
1190 continue;
1191 default:
1192 res = sas_ex_discover_dev(dev, i);
1193 if (res)
1194 break;
1195 continue;
1196 }
1197 }
1198
1199 if (!res)
1200 sas_check_level_subtractive_boundary(dev);
1201
1202 return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207 struct expander_device *ex = &dev->ex_dev;
1208 int i;
1209 u8 *sub_sas_addr = NULL;
1210
1211 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212 return 0;
1213
1214 for (i = 0; i < ex->num_phys; i++) {
1215 struct ex_phy *phy = &ex->ex_phy[i];
1216
1217 if (phy->phy_state == PHY_VACANT ||
1218 phy->phy_state == PHY_NOT_PRESENT)
1219 continue;
1220
1221 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225 if (!sub_sas_addr)
1226 sub_sas_addr = &phy->attached_sas_addr[0];
1227 else if (SAS_ADDR(sub_sas_addr) !=
1228 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230 SAS_DPRINTK("ex %016llx phy 0x%x "
1231 "diverges(%016llx) on subtractive "
1232 "boundary(%016llx). Disabled\n",
1233 SAS_ADDR(dev->sas_addr), i,
1234 SAS_ADDR(phy->attached_sas_addr),
1235 SAS_ADDR(sub_sas_addr));
1236 sas_ex_disable_phy(dev, i);
1237 }
1238 }
1239 }
1240 return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244 struct ex_phy *parent_phy,
1245 struct ex_phy *child_phy)
1246{
1247 static const char *ex_type[] = {
1248 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250 };
1251 struct domain_device *parent = child->parent;
1252
1253 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254 "phy 0x%x has %c:%c routing link!\n",
1255
1256 ex_type[parent->dev_type],
1257 SAS_ADDR(parent->sas_addr),
1258 parent_phy->phy_id,
1259
1260 ex_type[child->dev_type],
1261 SAS_ADDR(child->sas_addr),
1262 child_phy->phy_id,
1263
1264 sas_route_char(parent, parent_phy),
1265 sas_route_char(child, child_phy));
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269 struct ex_phy *parent_phy,
1270 struct ex_phy *child_phy)
1271{
1272 int res = 0;
1273 struct domain_device *parent = child->parent;
1274
1275 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276 res = -ENODEV;
1277 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278 "phy S:0x%x, while there is a fanout ex %016llx\n",
1279 SAS_ADDR(parent->sas_addr),
1280 parent_phy->phy_id,
1281 SAS_ADDR(child->sas_addr),
1282 child_phy->phy_id,
1283 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286 SAS_ADDR_SIZE);
1287 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288 SAS_ADDR_SIZE);
1289 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290 SAS_ADDR(parent->sas_addr)) ||
1291 (SAS_ADDR(parent->port->disc.eeds_a) ==
1292 SAS_ADDR(child->sas_addr)))
1293 &&
1294 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295 SAS_ADDR(parent->sas_addr)) ||
1296 (SAS_ADDR(parent->port->disc.eeds_b) ==
1297 SAS_ADDR(child->sas_addr))))
1298 ;
1299 else {
1300 res = -ENODEV;
1301 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302 "phy 0x%x link forms a third EEDS!\n",
1303 SAS_ADDR(parent->sas_addr),
1304 parent_phy->phy_id,
1305 SAS_ADDR(child->sas_addr),
1306 child_phy->phy_id);
1307 }
1308
1309 return res;
1310}
1311
1312/* Here we spill over 80 columns. It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316 struct expander_device *child_ex = &child->ex_dev;
1317 struct expander_device *parent_ex;
1318 int i;
1319 int res = 0;
1320
1321 if (!child->parent)
1322 return 0;
1323
1324 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326 return 0;
1327
1328 parent_ex = &child->parent->ex_dev;
1329
1330 for (i = 0; i < parent_ex->num_phys; i++) {
1331 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332 struct ex_phy *child_phy;
1333
1334 if (parent_phy->phy_state == PHY_VACANT ||
1335 parent_phy->phy_state == PHY_NOT_PRESENT)
1336 continue;
1337
1338 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339 continue;
1340
1341 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343 switch (child->parent->dev_type) {
1344 case SAS_EDGE_EXPANDER_DEVICE:
1345 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347 child_phy->routing_attr != TABLE_ROUTING) {
1348 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349 res = -ENODEV;
1350 }
1351 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353 res = sas_check_eeds(child, parent_phy, child_phy);
1354 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1355 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356 res = -ENODEV;
1357 }
1358 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360 (child_phy->routing_attr == TABLE_ROUTING &&
1361 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362 /* All good */;
1363 } else {
1364 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365 res = -ENODEV;
1366 }
1367 }
1368 break;
1369 case SAS_FANOUT_EXPANDER_DEVICE:
1370 if (parent_phy->routing_attr != TABLE_ROUTING ||
1371 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373 res = -ENODEV;
1374 }
1375 break;
1376 default:
1377 break;
1378 }
1379 }
1380
1381 return res;
1382}
1383
1384#define RRI_REQ_SIZE 16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388 u8 *sas_addr, int *index, int *present)
1389{
1390 int i, res = 0;
1391 struct expander_device *ex = &dev->ex_dev;
1392 struct ex_phy *phy = &ex->ex_phy[phy_id];
1393 u8 *rri_req;
1394 u8 *rri_resp;
1395
1396 *present = 0;
1397 *index = 0;
1398
1399 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400 if (!rri_req)
1401 return -ENOMEM;
1402
1403 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404 if (!rri_resp) {
1405 kfree(rri_req);
1406 return -ENOMEM;
1407 }
1408
1409 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410 rri_req[9] = phy_id;
1411
1412 for (i = 0; i < ex->max_route_indexes ; i++) {
1413 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415 RRI_RESP_SIZE);
1416 if (res)
1417 goto out;
1418 res = rri_resp[2];
1419 if (res == SMP_RESP_NO_INDEX) {
1420 SAS_DPRINTK("overflow of indexes: dev %016llx "
1421 "phy 0x%x index 0x%x\n",
1422 SAS_ADDR(dev->sas_addr), phy_id, i);
1423 goto out;
1424 } else if (res != SMP_RESP_FUNC_ACC) {
1425 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426 "result 0x%x\n", __func__,
1427 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428 goto out;
1429 }
1430 if (SAS_ADDR(sas_addr) != 0) {
1431 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432 *index = i;
1433 if ((rri_resp[12] & 0x80) == 0x80)
1434 *present = 0;
1435 else
1436 *present = 1;
1437 goto out;
1438 } else if (SAS_ADDR(rri_resp+16) == 0) {
1439 *index = i;
1440 *present = 0;
1441 goto out;
1442 }
1443 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1444 phy->last_da_index < i) {
1445 phy->last_da_index = i;
1446 *index = i;
1447 *present = 0;
1448 goto out;
1449 }
1450 }
1451 res = -1;
1452out:
1453 kfree(rri_req);
1454 kfree(rri_resp);
1455 return res;
1456}
1457
1458#define CRI_REQ_SIZE 44
1459#define CRI_RESP_SIZE 8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462 u8 *sas_addr, int index, int include)
1463{
1464 int res;
1465 u8 *cri_req;
1466 u8 *cri_resp;
1467
1468 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469 if (!cri_req)
1470 return -ENOMEM;
1471
1472 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473 if (!cri_resp) {
1474 kfree(cri_req);
1475 return -ENOMEM;
1476 }
1477
1478 cri_req[1] = SMP_CONF_ROUTE_INFO;
1479 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480 cri_req[9] = phy_id;
1481 if (SAS_ADDR(sas_addr) == 0 || !include)
1482 cri_req[12] |= 0x80;
1483 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486 CRI_RESP_SIZE);
1487 if (res)
1488 goto out;
1489 res = cri_resp[2];
1490 if (res == SMP_RESP_NO_INDEX) {
1491 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492 "index 0x%x\n",
1493 SAS_ADDR(dev->sas_addr), phy_id, index);
1494 }
1495out:
1496 kfree(cri_req);
1497 kfree(cri_resp);
1498 return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502 u8 *sas_addr, int include)
1503{
1504 int index;
1505 int present;
1506 int res;
1507
1508 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509 if (res)
1510 return res;
1511 if (include ^ present)
1512 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1513
1514 return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524 struct domain_device *child,
1525 u8 *sas_addr, int include)
1526{
1527 struct expander_device *ex_parent = &parent->ex_dev;
1528 int res = 0;
1529 int i;
1530
1531 if (parent->parent) {
1532 res = sas_configure_parent(parent->parent, parent, sas_addr,
1533 include);
1534 if (res)
1535 return res;
1536 }
1537
1538 if (ex_parent->conf_route_table == 0) {
1539 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540 SAS_ADDR(parent->sas_addr));
1541 return 0;
1542 }
1543
1544 for (i = 0; i < ex_parent->num_phys; i++) {
1545 struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547 if ((phy->routing_attr == TABLE_ROUTING) &&
1548 (SAS_ADDR(phy->attached_sas_addr) ==
1549 SAS_ADDR(child->sas_addr))) {
1550 res = sas_configure_phy(parent, i, sas_addr, include);
1551 if (res)
1552 return res;
1553 }
1554 }
1555
1556 return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566 if (dev->parent)
1567 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568 return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1572{
1573 if (dev->parent)
1574 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575 return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586 int res;
1587
1588 res = sas_notify_lldd_dev_found(dev);
1589 if (res)
1590 return res;
1591
1592 res = sas_ex_general(dev);
1593 if (res)
1594 goto out_err;
1595 res = sas_ex_manuf_info(dev);
1596 if (res)
1597 goto out_err;
1598
1599 res = sas_expander_discover(dev);
1600 if (res) {
1601 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602 SAS_ADDR(dev->sas_addr), res);
1603 goto out_err;
1604 }
1605
1606 sas_check_ex_subtractive_boundary(dev);
1607 res = sas_check_parent_topology(dev);
1608 if (res)
1609 goto out_err;
1610 return 0;
1611out_err:
1612 sas_notify_lldd_dev_gone(dev);
1613 return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618 int res = 0;
1619 struct domain_device *dev;
1620
1621 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624 struct sas_expander_device *ex =
1625 rphy_to_expander_device(dev->rphy);
1626
1627 if (level == ex->level)
1628 res = sas_ex_discover_devices(dev, -1);
1629 else if (level > 0)
1630 res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632 }
1633 }
1634
1635 return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640 int res;
1641 int level;
1642
1643 do {
1644 level = port->disc.max_level;
1645 res = sas_ex_level_discovery(port, level);
1646 mb();
1647 } while (level < port->disc.max_level);
1648
1649 return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654 int res;
1655 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657 res = sas_rphy_add(dev->rphy);
1658 if (res)
1659 goto out_err;
1660
1661 ex->level = dev->port->disc.max_level; /* 0 */
1662 res = sas_discover_expander(dev);
1663 if (res)
1664 goto out_err2;
1665
1666 sas_ex_bfs_disc(dev->port);
1667
1668 return res;
1669
1670out_err2:
1671 sas_rphy_remove(dev->rphy);
1672out_err:
1673 return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
1678static int sas_get_phy_discover(struct domain_device *dev,
1679 int phy_id, struct smp_resp *disc_resp)
1680{
1681 int res;
1682 u8 *disc_req;
1683
1684 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685 if (!disc_req)
1686 return -ENOMEM;
1687
1688 disc_req[1] = SMP_DISCOVER;
1689 disc_req[9] = phy_id;
1690
1691 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692 disc_resp, DISCOVER_RESP_SIZE);
1693 if (res)
1694 goto out;
1695 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696 res = disc_resp->result;
1697 goto out;
1698 }
1699out:
1700 kfree(disc_req);
1701 return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705 int phy_id, int *pcc)
1706{
1707 int res;
1708 struct smp_resp *disc_resp;
1709
1710 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711 if (!disc_resp)
1712 return -ENOMEM;
1713
1714 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715 if (!res)
1716 *pcc = disc_resp->disc.change_count;
1717
1718 kfree(disc_resp);
1719 return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723 u8 *sas_addr, enum sas_device_type *type)
1724{
1725 int res;
1726 struct smp_resp *disc_resp;
1727 struct discover_resp *dr;
1728
1729 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730 if (!disc_resp)
1731 return -ENOMEM;
1732 dr = &disc_resp->disc;
1733
1734 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735 if (res == 0) {
1736 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737 *type = to_dev_type(dr);
1738 if (*type == 0)
1739 memset(sas_addr, 0, 8);
1740 }
1741 kfree(disc_resp);
1742 return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746 int from_phy, bool update)
1747{
1748 struct expander_device *ex = &dev->ex_dev;
1749 int res = 0;
1750 int i;
1751
1752 for (i = from_phy; i < ex->num_phys; i++) {
1753 int phy_change_count = 0;
1754
1755 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756 switch (res) {
1757 case SMP_RESP_PHY_VACANT:
1758 case SMP_RESP_NO_PHY:
1759 continue;
1760 case SMP_RESP_FUNC_ACC:
1761 break;
1762 default:
1763 return res;
1764 }
1765
1766 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767 if (update)
1768 ex->ex_phy[i].phy_change_count =
1769 phy_change_count;
1770 *phy_id = i;
1771 return 0;
1772 }
1773 }
1774 return 0;
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779 int res;
1780 u8 *rg_req;
1781 struct smp_resp *rg_resp;
1782
1783 rg_req = alloc_smp_req(RG_REQ_SIZE);
1784 if (!rg_req)
1785 return -ENOMEM;
1786
1787 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788 if (!rg_resp) {
1789 kfree(rg_req);
1790 return -ENOMEM;
1791 }
1792
1793 rg_req[1] = SMP_REPORT_GENERAL;
1794
1795 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796 RG_RESP_SIZE);
1797 if (res)
1798 goto out;
1799 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800 res = rg_resp->result;
1801 goto out;
1802 }
1803
1804 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806 kfree(rg_resp);
1807 kfree(rg_req);
1808 return res;
1809}
1810/**
1811 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826 struct domain_device **src_dev)
1827{
1828 struct expander_device *ex = &dev->ex_dev;
1829 int ex_change_count = -1;
1830 int phy_id = -1;
1831 int res;
1832 struct domain_device *ch;
1833
1834 res = sas_get_ex_change_count(dev, &ex_change_count);
1835 if (res)
1836 goto out;
1837 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838 /* Just detect if this expander phys phy change count changed,
1839 * in order to determine if this expander originate BROADCAST,
1840 * and do not update phy change count field in our structure.
1841 */
1842 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843 if (phy_id != -1) {
1844 *src_dev = dev;
1845 ex->ex_change_count = ex_change_count;
1846 SAS_DPRINTK("Expander phy change count has changed\n");
1847 return res;
1848 } else
1849 SAS_DPRINTK("Expander phys DID NOT change\n");
1850 }
1851 list_for_each_entry(ch, &ex->children, siblings) {
1852 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853 res = sas_find_bcast_dev(ch, src_dev);
1854 if (*src_dev)
1855 return res;
1856 }
1857 }
1858out:
1859 return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864 struct expander_device *ex = &dev->ex_dev;
1865 struct domain_device *child, *n;
1866
1867 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868 set_bit(SAS_DEV_GONE, &child->state);
1869 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871 sas_unregister_ex_tree(port, child);
1872 else
1873 sas_unregister_dev(port, child);
1874 }
1875 sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879 int phy_id, bool last)
1880{
1881 struct expander_device *ex_dev = &parent->ex_dev;
1882 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883 struct domain_device *child, *n, *found = NULL;
1884 if (last) {
1885 list_for_each_entry_safe(child, n,
1886 &ex_dev->children, siblings) {
1887 if (SAS_ADDR(child->sas_addr) ==
1888 SAS_ADDR(phy->attached_sas_addr)) {
1889 set_bit(SAS_DEV_GONE, &child->state);
1890 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892 sas_unregister_ex_tree(parent->port, child);
1893 else
1894 sas_unregister_dev(parent->port, child);
1895 found = child;
1896 break;
1897 }
1898 }
1899 sas_disable_routing(parent, phy->attached_sas_addr);
1900 }
1901 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902 if (phy->port) {
1903 sas_port_delete_phy(phy->port, phy->phy);
1904 sas_device_set_phy(found, phy->port);
1905 if (phy->port->num_phys == 0)
1906 sas_port_delete(phy->port);
1907 phy->port = NULL;
1908 }
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912 const int level)
1913{
1914 struct expander_device *ex_root = &root->ex_dev;
1915 struct domain_device *child;
1916 int res = 0;
1917
1918 list_for_each_entry(child, &ex_root->children, siblings) {
1919 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921 struct sas_expander_device *ex =
1922 rphy_to_expander_device(child->rphy);
1923
1924 if (level > ex->level)
1925 res = sas_discover_bfs_by_root_level(child,
1926 level);
1927 else if (level == ex->level)
1928 res = sas_ex_discover_devices(child, -1);
1929 }
1930 }
1931 return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936 int res;
1937 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938 int level = ex->level+1;
1939
1940 res = sas_ex_discover_devices(dev, -1);
1941 if (res)
1942 goto out;
1943 do {
1944 res = sas_discover_bfs_by_root_level(dev, level);
1945 mb();
1946 level += 1;
1947 } while (level <= dev->port->disc.max_level);
1948out:
1949 return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955 struct domain_device *child;
1956 int res;
1957
1958 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959 SAS_ADDR(dev->sas_addr), phy_id);
1960 res = sas_ex_phy_discover(dev, phy_id);
1961 if (res)
1962 return res;
1963
1964 if (sas_ex_join_wide_port(dev, phy_id))
1965 return 0;
1966
1967 res = sas_ex_discover_devices(dev, phy_id);
1968 if (res)
1969 return res;
1970 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971 if (SAS_ADDR(child->sas_addr) ==
1972 SAS_ADDR(ex_phy->attached_sas_addr)) {
1973 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975 res = sas_discover_bfs_by_root(child);
1976 break;
1977 }
1978 }
1979 return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984 if (old == new)
1985 return true;
1986
1987 /* treat device directed resets as flutter, if we went
1988 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989 */
1990 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992 return true;
1993
1994 return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1998{
1999 struct expander_device *ex = &dev->ex_dev;
2000 struct ex_phy *phy = &ex->ex_phy[phy_id];
2001 enum sas_device_type type = SAS_PHY_UNUSED;
2002 u8 sas_addr[8];
2003 int res;
2004
2005 memset(sas_addr, 0, 8);
2006 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007 switch (res) {
2008 case SMP_RESP_NO_PHY:
2009 phy->phy_state = PHY_NOT_PRESENT;
2010 sas_unregister_devs_sas_addr(dev, phy_id, last);
2011 return res;
2012 case SMP_RESP_PHY_VACANT:
2013 phy->phy_state = PHY_VACANT;
2014 sas_unregister_devs_sas_addr(dev, phy_id, last);
2015 return res;
2016 case SMP_RESP_FUNC_ACC:
2017 break;
2018 case -ECOMM:
2019 break;
2020 default:
2021 return res;
2022 }
2023
2024 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025 phy->phy_state = PHY_EMPTY;
2026 sas_unregister_devs_sas_addr(dev, phy_id, last);
2027 return res;
2028 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029 dev_type_flutter(type, phy->attached_dev_type)) {
2030 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031 char *action = "";
2032
2033 sas_ex_phy_discover(dev, phy_id);
2034
2035 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036 action = ", needs recovery";
2037 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038 SAS_ADDR(dev->sas_addr), phy_id, action);
2039 return res;
2040 }
2041
2042 /* delete the old link */
2043 if (SAS_ADDR(phy->attached_sas_addr) &&
2044 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046 SAS_ADDR(dev->sas_addr), phy_id,
2047 SAS_ADDR(phy->attached_sas_addr));
2048 sas_unregister_devs_sas_addr(dev, phy_id, last);
2049 }
2050
2051 return sas_discover_new(dev, phy_id);
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered. Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070 struct expander_device *ex = &dev->ex_dev;
2071 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072 int res = 0;
2073 int i;
2074 bool last = true; /* is this the last phy of the port */
2075
2076 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077 SAS_ADDR(dev->sas_addr), phy_id);
2078
2079 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080 for (i = 0; i < ex->num_phys; i++) {
2081 struct ex_phy *phy = &ex->ex_phy[i];
2082
2083 if (i == phy_id)
2084 continue;
2085 if (SAS_ADDR(phy->attached_sas_addr) ==
2086 SAS_ADDR(changed_phy->attached_sas_addr)) {
2087 SAS_DPRINTK("phy%d part of wide port with "
2088 "phy%d\n", phy_id, i);
2089 last = false;
2090 break;
2091 }
2092 }
2093 res = sas_rediscover_dev(dev, phy_id, last);
2094 } else
2095 res = sas_discover_new(dev, phy_id);
2096 return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered. Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110 int res;
2111 struct domain_device *dev = NULL;
2112
2113 res = sas_find_bcast_dev(port_dev, &dev);
2114 while (res == 0 && dev) {
2115 struct expander_device *ex = &dev->ex_dev;
2116 int i = 0, phy_id;
2117
2118 do {
2119 phy_id = -1;
2120 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121 if (phy_id == -1)
2122 break;
2123 res = sas_rediscover(dev, phy_id);
2124 i = phy_id + 1;
2125 } while (i < ex->num_phys);
2126
2127 dev = NULL;
2128 res = sas_find_bcast_dev(port_dev, &dev);
2129 }
2130 return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134 struct request *req)
2135{
2136 struct domain_device *dev;
2137 int ret, type;
2138 struct request *rsp = req->next_rq;
2139
2140 if (!rsp) {
2141 printk("%s: space for a smp response is missing\n",
2142 __func__);
2143 return -EINVAL;
2144 }
2145
2146 /* no rphy means no smp target support (ie aic94xx host) */
2147 if (!rphy)
2148 return sas_smp_host_handler(shost, req, rsp);
2149
2150 type = rphy->identify.device_type;
2151
2152 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153 type != SAS_FANOUT_EXPANDER_DEVICE) {
2154 printk("%s: can we send a smp request to a device?\n",
2155 __func__);
2156 return -EINVAL;
2157 }
2158
2159 dev = sas_find_dev_by_rphy(rphy);
2160 if (!dev) {
2161 printk("%s: fail to find a domain_device?\n", __func__);
2162 return -EINVAL;
2163 }
2164
2165 /* do we need to support multiple segments? */
2166 if (bio_multiple_segments(req->bio) ||
2167 bio_multiple_segments(rsp->bio)) {
2168 printk("%s: multiple segments req %u, rsp %u\n",
2169 __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170 return -EINVAL;
2171 }
2172
2173 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174 bio_data(rsp->bio), blk_rq_bytes(rsp));
2175 if (ret > 0) {
2176 /* positive number is the untransferred residual */
2177 rsp->resid_len = ret;
2178 req->resid_len = 0;
2179 ret = 0;
2180 } else if (ret == 0) {
2181 rsp->resid_len = 0;
2182 req->resid_len = 0;
2183 }
2184
2185 return ret;
2186}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11#include <linux/scatterlist.h>
12#include <linux/blkdev.h>
13#include <linux/slab.h>
14#include <asm/unaligned.h>
15
16#include "sas_internal.h"
17
18#include <scsi/sas_ata.h>
19#include <scsi/scsi_transport.h>
20#include <scsi/scsi_transport_sas.h>
21#include "../scsi_sas_internal.h"
22
23static int sas_discover_expander(struct domain_device *dev);
24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29/* ---------- SMP task management ---------- */
30
31static void smp_task_timedout(struct timer_list *t)
32{
33 struct sas_task_slow *slow = from_timer(slow, t, timer);
34 struct sas_task *task = slow->task;
35 unsigned long flags;
36
37 spin_lock_irqsave(&task->task_state_lock, flags);
38 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
39 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
40 complete(&task->slow_task->completion);
41 }
42 spin_unlock_irqrestore(&task->task_state_lock, flags);
43}
44
45static void smp_task_done(struct sas_task *task)
46{
47 del_timer(&task->slow_task->timer);
48 complete(&task->slow_task->completion);
49}
50
51/* Give it some long enough timeout. In seconds. */
52#define SMP_TIMEOUT 10
53
54static int smp_execute_task_sg(struct domain_device *dev,
55 struct scatterlist *req, struct scatterlist *resp)
56{
57 int res, retry;
58 struct sas_task *task = NULL;
59 struct sas_internal *i =
60 to_sas_internal(dev->port->ha->core.shost->transportt);
61
62 mutex_lock(&dev->ex_dev.cmd_mutex);
63 for (retry = 0; retry < 3; retry++) {
64 if (test_bit(SAS_DEV_GONE, &dev->state)) {
65 res = -ECOMM;
66 break;
67 }
68
69 task = sas_alloc_slow_task(GFP_KERNEL);
70 if (!task) {
71 res = -ENOMEM;
72 break;
73 }
74 task->dev = dev;
75 task->task_proto = dev->tproto;
76 task->smp_task.smp_req = *req;
77 task->smp_task.smp_resp = *resp;
78
79 task->task_done = smp_task_done;
80
81 task->slow_task->timer.function = smp_task_timedout;
82 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
83 add_timer(&task->slow_task->timer);
84
85 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
86
87 if (res) {
88 del_timer(&task->slow_task->timer);
89 pr_notice("executing SMP task failed:%d\n", res);
90 break;
91 }
92
93 wait_for_completion(&task->slow_task->completion);
94 res = -ECOMM;
95 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
96 pr_notice("smp task timed out or aborted\n");
97 i->dft->lldd_abort_task(task);
98 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
99 pr_notice("SMP task aborted and not done\n");
100 break;
101 }
102 }
103 if (task->task_status.resp == SAS_TASK_COMPLETE &&
104 task->task_status.stat == SAM_STAT_GOOD) {
105 res = 0;
106 break;
107 }
108 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109 task->task_status.stat == SAS_DATA_UNDERRUN) {
110 /* no error, but return the number of bytes of
111 * underrun */
112 res = task->task_status.residual;
113 break;
114 }
115 if (task->task_status.resp == SAS_TASK_COMPLETE &&
116 task->task_status.stat == SAS_DATA_OVERRUN) {
117 res = -EMSGSIZE;
118 break;
119 }
120 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
121 task->task_status.stat == SAS_DEVICE_UNKNOWN)
122 break;
123 else {
124 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
125 __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
131 }
132 }
133 mutex_unlock(&dev->ex_dev.cmd_mutex);
134
135 BUG_ON(retry == 3 && task != NULL);
136 sas_free_task(task);
137 return res;
138}
139
140static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
141 void *resp, int resp_size)
142{
143 struct scatterlist req_sg;
144 struct scatterlist resp_sg;
145
146 sg_init_one(&req_sg, req, req_size);
147 sg_init_one(&resp_sg, resp, resp_size);
148 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
149}
150
151/* ---------- Allocations ---------- */
152
153static inline void *alloc_smp_req(int size)
154{
155 u8 *p = kzalloc(size, GFP_KERNEL);
156 if (p)
157 p[0] = SMP_REQUEST;
158 return p;
159}
160
161static inline void *alloc_smp_resp(int size)
162{
163 return kzalloc(size, GFP_KERNEL);
164}
165
166static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
167{
168 switch (phy->routing_attr) {
169 case TABLE_ROUTING:
170 if (dev->ex_dev.t2t_supp)
171 return 'U';
172 else
173 return 'T';
174 case DIRECT_ROUTING:
175 return 'D';
176 case SUBTRACTIVE_ROUTING:
177 return 'S';
178 default:
179 return '?';
180 }
181}
182
183static enum sas_device_type to_dev_type(struct discover_resp *dr)
184{
185 /* This is detecting a failure to transmit initial dev to host
186 * FIS as described in section J.5 of sas-2 r16
187 */
188 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
189 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
190 return SAS_SATA_PENDING;
191 else
192 return dr->attached_dev_type;
193}
194
195static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
196{
197 enum sas_device_type dev_type;
198 enum sas_linkrate linkrate;
199 u8 sas_addr[SAS_ADDR_SIZE];
200 struct smp_resp *resp = rsp;
201 struct discover_resp *dr = &resp->disc;
202 struct sas_ha_struct *ha = dev->port->ha;
203 struct expander_device *ex = &dev->ex_dev;
204 struct ex_phy *phy = &ex->ex_phy[phy_id];
205 struct sas_rphy *rphy = dev->rphy;
206 bool new_phy = !phy->phy;
207 char *type;
208
209 if (new_phy) {
210 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
211 return;
212 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
213
214 /* FIXME: error_handling */
215 BUG_ON(!phy->phy);
216 }
217
218 switch (resp->result) {
219 case SMP_RESP_PHY_VACANT:
220 phy->phy_state = PHY_VACANT;
221 break;
222 default:
223 phy->phy_state = PHY_NOT_PRESENT;
224 break;
225 case SMP_RESP_FUNC_ACC:
226 phy->phy_state = PHY_EMPTY; /* do not know yet */
227 break;
228 }
229
230 /* check if anything important changed to squelch debug */
231 dev_type = phy->attached_dev_type;
232 linkrate = phy->linkrate;
233 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
234
235 /* Handle vacant phy - rest of dr data is not valid so skip it */
236 if (phy->phy_state == PHY_VACANT) {
237 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
238 phy->attached_dev_type = SAS_PHY_UNUSED;
239 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
240 phy->phy_id = phy_id;
241 goto skip;
242 } else
243 goto out;
244 }
245
246 phy->attached_dev_type = to_dev_type(dr);
247 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
248 goto out;
249 phy->phy_id = phy_id;
250 phy->linkrate = dr->linkrate;
251 phy->attached_sata_host = dr->attached_sata_host;
252 phy->attached_sata_dev = dr->attached_sata_dev;
253 phy->attached_sata_ps = dr->attached_sata_ps;
254 phy->attached_iproto = dr->iproto << 1;
255 phy->attached_tproto = dr->tproto << 1;
256 /* help some expanders that fail to zero sas_address in the 'no
257 * device' case
258 */
259 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
260 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
261 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
262 else
263 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
264 phy->attached_phy_id = dr->attached_phy_id;
265 phy->phy_change_count = dr->change_count;
266 phy->routing_attr = dr->routing_attr;
267 phy->virtual = dr->virtual;
268 phy->last_da_index = -1;
269
270 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
271 phy->phy->identify.device_type = dr->attached_dev_type;
272 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
273 phy->phy->identify.target_port_protocols = phy->attached_tproto;
274 if (!phy->attached_tproto && dr->attached_sata_dev)
275 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
276 phy->phy->identify.phy_identifier = phy_id;
277 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
278 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
279 phy->phy->minimum_linkrate = dr->pmin_linkrate;
280 phy->phy->maximum_linkrate = dr->pmax_linkrate;
281 phy->phy->negotiated_linkrate = phy->linkrate;
282 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
283
284 skip:
285 if (new_phy)
286 if (sas_phy_add(phy->phy)) {
287 sas_phy_free(phy->phy);
288 return;
289 }
290
291 out:
292 switch (phy->attached_dev_type) {
293 case SAS_SATA_PENDING:
294 type = "stp pending";
295 break;
296 case SAS_PHY_UNUSED:
297 type = "no device";
298 break;
299 case SAS_END_DEVICE:
300 if (phy->attached_iproto) {
301 if (phy->attached_tproto)
302 type = "host+target";
303 else
304 type = "host";
305 } else {
306 if (dr->attached_sata_dev)
307 type = "stp";
308 else
309 type = "ssp";
310 }
311 break;
312 case SAS_EDGE_EXPANDER_DEVICE:
313 case SAS_FANOUT_EXPANDER_DEVICE:
314 type = "smp";
315 break;
316 default:
317 type = "unknown";
318 }
319
320 /* this routine is polled by libata error recovery so filter
321 * unimportant messages
322 */
323 if (new_phy || phy->attached_dev_type != dev_type ||
324 phy->linkrate != linkrate ||
325 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
326 /* pass */;
327 else
328 return;
329
330 /* if the attached device type changed and ata_eh is active,
331 * make sure we run revalidation when eh completes (see:
332 * sas_enable_revalidation)
333 */
334 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
335 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
336
337 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
338 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
339 SAS_ADDR(dev->sas_addr), phy->phy_id,
340 sas_route_char(dev, phy), phy->linkrate,
341 SAS_ADDR(phy->attached_sas_addr), type);
342}
343
344/* check if we have an existing attached ata device on this expander phy */
345struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
346{
347 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
348 struct domain_device *dev;
349 struct sas_rphy *rphy;
350
351 if (!ex_phy->port)
352 return NULL;
353
354 rphy = ex_phy->port->rphy;
355 if (!rphy)
356 return NULL;
357
358 dev = sas_find_dev_by_rphy(rphy);
359
360 if (dev && dev_is_sata(dev))
361 return dev;
362
363 return NULL;
364}
365
366#define DISCOVER_REQ_SIZE 16
367#define DISCOVER_RESP_SIZE 56
368
369static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
370 u8 *disc_resp, int single)
371{
372 struct discover_resp *dr;
373 int res;
374
375 disc_req[9] = single;
376
377 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
378 disc_resp, DISCOVER_RESP_SIZE);
379 if (res)
380 return res;
381 dr = &((struct smp_resp *)disc_resp)->disc;
382 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
383 pr_notice("Found loopback topology, just ignore it!\n");
384 return 0;
385 }
386 sas_set_ex_phy(dev, single, disc_resp);
387 return 0;
388}
389
390int sas_ex_phy_discover(struct domain_device *dev, int single)
391{
392 struct expander_device *ex = &dev->ex_dev;
393 int res = 0;
394 u8 *disc_req;
395 u8 *disc_resp;
396
397 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
398 if (!disc_req)
399 return -ENOMEM;
400
401 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
402 if (!disc_resp) {
403 kfree(disc_req);
404 return -ENOMEM;
405 }
406
407 disc_req[1] = SMP_DISCOVER;
408
409 if (0 <= single && single < ex->num_phys) {
410 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
411 } else {
412 int i;
413
414 for (i = 0; i < ex->num_phys; i++) {
415 res = sas_ex_phy_discover_helper(dev, disc_req,
416 disc_resp, i);
417 if (res)
418 goto out_err;
419 }
420 }
421out_err:
422 kfree(disc_resp);
423 kfree(disc_req);
424 return res;
425}
426
427static int sas_expander_discover(struct domain_device *dev)
428{
429 struct expander_device *ex = &dev->ex_dev;
430 int res;
431
432 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
433 if (!ex->ex_phy)
434 return -ENOMEM;
435
436 res = sas_ex_phy_discover(dev, -1);
437 if (res)
438 goto out_err;
439
440 return 0;
441 out_err:
442 kfree(ex->ex_phy);
443 ex->ex_phy = NULL;
444 return res;
445}
446
447#define MAX_EXPANDER_PHYS 128
448
449static void ex_assign_report_general(struct domain_device *dev,
450 struct smp_resp *resp)
451{
452 struct report_general_resp *rg = &resp->rg;
453
454 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
455 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
456 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
457 dev->ex_dev.t2t_supp = rg->t2t_supp;
458 dev->ex_dev.conf_route_table = rg->conf_route_table;
459 dev->ex_dev.configuring = rg->configuring;
460 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
461}
462
463#define RG_REQ_SIZE 8
464#define RG_RESP_SIZE 32
465
466static int sas_ex_general(struct domain_device *dev)
467{
468 u8 *rg_req;
469 struct smp_resp *rg_resp;
470 int res;
471 int i;
472
473 rg_req = alloc_smp_req(RG_REQ_SIZE);
474 if (!rg_req)
475 return -ENOMEM;
476
477 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
478 if (!rg_resp) {
479 kfree(rg_req);
480 return -ENOMEM;
481 }
482
483 rg_req[1] = SMP_REPORT_GENERAL;
484
485 for (i = 0; i < 5; i++) {
486 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
487 RG_RESP_SIZE);
488
489 if (res) {
490 pr_notice("RG to ex %016llx failed:0x%x\n",
491 SAS_ADDR(dev->sas_addr), res);
492 goto out;
493 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
494 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
495 SAS_ADDR(dev->sas_addr), rg_resp->result);
496 res = rg_resp->result;
497 goto out;
498 }
499
500 ex_assign_report_general(dev, rg_resp);
501
502 if (dev->ex_dev.configuring) {
503 pr_debug("RG: ex %016llx self-configuring...\n",
504 SAS_ADDR(dev->sas_addr));
505 schedule_timeout_interruptible(5*HZ);
506 } else
507 break;
508 }
509out:
510 kfree(rg_req);
511 kfree(rg_resp);
512 return res;
513}
514
515static void ex_assign_manuf_info(struct domain_device *dev, void
516 *_mi_resp)
517{
518 u8 *mi_resp = _mi_resp;
519 struct sas_rphy *rphy = dev->rphy;
520 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
521
522 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
523 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
524 memcpy(edev->product_rev, mi_resp + 36,
525 SAS_EXPANDER_PRODUCT_REV_LEN);
526
527 if (mi_resp[8] & 1) {
528 memcpy(edev->component_vendor_id, mi_resp + 40,
529 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
530 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
531 edev->component_revision_id = mi_resp[50];
532 }
533}
534
535#define MI_REQ_SIZE 8
536#define MI_RESP_SIZE 64
537
538static int sas_ex_manuf_info(struct domain_device *dev)
539{
540 u8 *mi_req;
541 u8 *mi_resp;
542 int res;
543
544 mi_req = alloc_smp_req(MI_REQ_SIZE);
545 if (!mi_req)
546 return -ENOMEM;
547
548 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
549 if (!mi_resp) {
550 kfree(mi_req);
551 return -ENOMEM;
552 }
553
554 mi_req[1] = SMP_REPORT_MANUF_INFO;
555
556 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
557 if (res) {
558 pr_notice("MI: ex %016llx failed:0x%x\n",
559 SAS_ADDR(dev->sas_addr), res);
560 goto out;
561 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
562 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
563 SAS_ADDR(dev->sas_addr), mi_resp[2]);
564 goto out;
565 }
566
567 ex_assign_manuf_info(dev, mi_resp);
568out:
569 kfree(mi_req);
570 kfree(mi_resp);
571 return res;
572}
573
574#define PC_REQ_SIZE 44
575#define PC_RESP_SIZE 8
576
577int sas_smp_phy_control(struct domain_device *dev, int phy_id,
578 enum phy_func phy_func,
579 struct sas_phy_linkrates *rates)
580{
581 u8 *pc_req;
582 u8 *pc_resp;
583 int res;
584
585 pc_req = alloc_smp_req(PC_REQ_SIZE);
586 if (!pc_req)
587 return -ENOMEM;
588
589 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
590 if (!pc_resp) {
591 kfree(pc_req);
592 return -ENOMEM;
593 }
594
595 pc_req[1] = SMP_PHY_CONTROL;
596 pc_req[9] = phy_id;
597 pc_req[10]= phy_func;
598 if (rates) {
599 pc_req[32] = rates->minimum_linkrate << 4;
600 pc_req[33] = rates->maximum_linkrate << 4;
601 }
602
603 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
604 if (res) {
605 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
606 SAS_ADDR(dev->sas_addr), phy_id, res);
607 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
608 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
609 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
610 res = pc_resp[2];
611 }
612 kfree(pc_resp);
613 kfree(pc_req);
614 return res;
615}
616
617static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
618{
619 struct expander_device *ex = &dev->ex_dev;
620 struct ex_phy *phy = &ex->ex_phy[phy_id];
621
622 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
623 phy->linkrate = SAS_PHY_DISABLED;
624}
625
626static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
627{
628 struct expander_device *ex = &dev->ex_dev;
629 int i;
630
631 for (i = 0; i < ex->num_phys; i++) {
632 struct ex_phy *phy = &ex->ex_phy[i];
633
634 if (phy->phy_state == PHY_VACANT ||
635 phy->phy_state == PHY_NOT_PRESENT)
636 continue;
637
638 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
639 sas_ex_disable_phy(dev, i);
640 }
641}
642
643static int sas_dev_present_in_domain(struct asd_sas_port *port,
644 u8 *sas_addr)
645{
646 struct domain_device *dev;
647
648 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
649 return 1;
650 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
651 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
652 return 1;
653 }
654 return 0;
655}
656
657#define RPEL_REQ_SIZE 16
658#define RPEL_RESP_SIZE 32
659int sas_smp_get_phy_events(struct sas_phy *phy)
660{
661 int res;
662 u8 *req;
663 u8 *resp;
664 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
665 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
666
667 req = alloc_smp_req(RPEL_REQ_SIZE);
668 if (!req)
669 return -ENOMEM;
670
671 resp = alloc_smp_resp(RPEL_RESP_SIZE);
672 if (!resp) {
673 kfree(req);
674 return -ENOMEM;
675 }
676
677 req[1] = SMP_REPORT_PHY_ERR_LOG;
678 req[9] = phy->number;
679
680 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
681 resp, RPEL_RESP_SIZE);
682
683 if (res)
684 goto out;
685
686 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
687 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
688 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
689 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
690
691 out:
692 kfree(req);
693 kfree(resp);
694 return res;
695
696}
697
698#ifdef CONFIG_SCSI_SAS_ATA
699
700#define RPS_REQ_SIZE 16
701#define RPS_RESP_SIZE 60
702
703int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
704 struct smp_resp *rps_resp)
705{
706 int res;
707 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
708 u8 *resp = (u8 *)rps_resp;
709
710 if (!rps_req)
711 return -ENOMEM;
712
713 rps_req[1] = SMP_REPORT_PHY_SATA;
714 rps_req[9] = phy_id;
715
716 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
717 rps_resp, RPS_RESP_SIZE);
718
719 /* 0x34 is the FIS type for the D2H fis. There's a potential
720 * standards cockup here. sas-2 explicitly specifies the FIS
721 * should be encoded so that FIS type is in resp[24].
722 * However, some expanders endian reverse this. Undo the
723 * reversal here */
724 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
725 int i;
726
727 for (i = 0; i < 5; i++) {
728 int j = 24 + (i*4);
729 u8 a, b;
730 a = resp[j + 0];
731 b = resp[j + 1];
732 resp[j + 0] = resp[j + 3];
733 resp[j + 1] = resp[j + 2];
734 resp[j + 2] = b;
735 resp[j + 3] = a;
736 }
737 }
738
739 kfree(rps_req);
740 return res;
741}
742#endif
743
744static void sas_ex_get_linkrate(struct domain_device *parent,
745 struct domain_device *child,
746 struct ex_phy *parent_phy)
747{
748 struct expander_device *parent_ex = &parent->ex_dev;
749 struct sas_port *port;
750 int i;
751
752 child->pathways = 0;
753
754 port = parent_phy->port;
755
756 for (i = 0; i < parent_ex->num_phys; i++) {
757 struct ex_phy *phy = &parent_ex->ex_phy[i];
758
759 if (phy->phy_state == PHY_VACANT ||
760 phy->phy_state == PHY_NOT_PRESENT)
761 continue;
762
763 if (SAS_ADDR(phy->attached_sas_addr) ==
764 SAS_ADDR(child->sas_addr)) {
765
766 child->min_linkrate = min(parent->min_linkrate,
767 phy->linkrate);
768 child->max_linkrate = max(parent->max_linkrate,
769 phy->linkrate);
770 child->pathways++;
771 sas_port_add_phy(port, phy->phy);
772 }
773 }
774 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
775 child->pathways = min(child->pathways, parent->pathways);
776}
777
778static struct domain_device *sas_ex_discover_end_dev(
779 struct domain_device *parent, int phy_id)
780{
781 struct expander_device *parent_ex = &parent->ex_dev;
782 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
783 struct domain_device *child = NULL;
784 struct sas_rphy *rphy;
785 int res;
786
787 if (phy->attached_sata_host || phy->attached_sata_ps)
788 return NULL;
789
790 child = sas_alloc_device();
791 if (!child)
792 return NULL;
793
794 kref_get(&parent->kref);
795 child->parent = parent;
796 child->port = parent->port;
797 child->iproto = phy->attached_iproto;
798 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
799 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
800 if (!phy->port) {
801 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
802 if (unlikely(!phy->port))
803 goto out_err;
804 if (unlikely(sas_port_add(phy->port) != 0)) {
805 sas_port_free(phy->port);
806 goto out_err;
807 }
808 }
809 sas_ex_get_linkrate(parent, child, phy);
810 sas_device_set_phy(child, phy->port);
811
812#ifdef CONFIG_SCSI_SAS_ATA
813 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
814 if (child->linkrate > parent->min_linkrate) {
815 struct sas_phy *cphy = child->phy;
816 enum sas_linkrate min_prate = cphy->minimum_linkrate,
817 parent_min_lrate = parent->min_linkrate,
818 min_linkrate = (min_prate > parent_min_lrate) ?
819 parent_min_lrate : 0;
820 struct sas_phy_linkrates rates = {
821 .maximum_linkrate = parent->min_linkrate,
822 .minimum_linkrate = min_linkrate,
823 };
824 int ret;
825
826 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
827 SAS_ADDR(child->sas_addr), phy_id);
828 ret = sas_smp_phy_control(parent, phy_id,
829 PHY_FUNC_LINK_RESET, &rates);
830 if (ret) {
831 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
832 SAS_ADDR(child->sas_addr), phy_id, ret);
833 goto out_free;
834 }
835 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
836 SAS_ADDR(child->sas_addr), phy_id);
837 child->linkrate = child->min_linkrate;
838 }
839 res = sas_get_ata_info(child, phy);
840 if (res)
841 goto out_free;
842
843 sas_init_dev(child);
844 res = sas_ata_init(child);
845 if (res)
846 goto out_free;
847 rphy = sas_end_device_alloc(phy->port);
848 if (!rphy)
849 goto out_free;
850 rphy->identify.phy_identifier = phy_id;
851
852 child->rphy = rphy;
853 get_device(&rphy->dev);
854
855 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
856
857 res = sas_discover_sata(child);
858 if (res) {
859 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
860 SAS_ADDR(child->sas_addr),
861 SAS_ADDR(parent->sas_addr), phy_id, res);
862 goto out_list_del;
863 }
864 } else
865#endif
866 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
867 child->dev_type = SAS_END_DEVICE;
868 rphy = sas_end_device_alloc(phy->port);
869 /* FIXME: error handling */
870 if (unlikely(!rphy))
871 goto out_free;
872 child->tproto = phy->attached_tproto;
873 sas_init_dev(child);
874
875 child->rphy = rphy;
876 get_device(&rphy->dev);
877 rphy->identify.phy_identifier = phy_id;
878 sas_fill_in_rphy(child, rphy);
879
880 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
881
882 res = sas_discover_end_dev(child);
883 if (res) {
884 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
885 SAS_ADDR(child->sas_addr),
886 SAS_ADDR(parent->sas_addr), phy_id, res);
887 goto out_list_del;
888 }
889 } else {
890 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
891 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
892 phy_id);
893 goto out_free;
894 }
895
896 list_add_tail(&child->siblings, &parent_ex->children);
897 return child;
898
899 out_list_del:
900 sas_rphy_free(child->rphy);
901 list_del(&child->disco_list_node);
902 spin_lock_irq(&parent->port->dev_list_lock);
903 list_del(&child->dev_list_node);
904 spin_unlock_irq(&parent->port->dev_list_lock);
905 out_free:
906 sas_port_delete(phy->port);
907 out_err:
908 phy->port = NULL;
909 sas_put_device(child);
910 return NULL;
911}
912
913/* See if this phy is part of a wide port */
914static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
915{
916 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
917 int i;
918
919 for (i = 0; i < parent->ex_dev.num_phys; i++) {
920 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
921
922 if (ephy == phy)
923 continue;
924
925 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
926 SAS_ADDR_SIZE) && ephy->port) {
927 sas_port_add_phy(ephy->port, phy->phy);
928 phy->port = ephy->port;
929 phy->phy_state = PHY_DEVICE_DISCOVERED;
930 return true;
931 }
932 }
933
934 return false;
935}
936
937static struct domain_device *sas_ex_discover_expander(
938 struct domain_device *parent, int phy_id)
939{
940 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
941 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
942 struct domain_device *child = NULL;
943 struct sas_rphy *rphy;
944 struct sas_expander_device *edev;
945 struct asd_sas_port *port;
946 int res;
947
948 if (phy->routing_attr == DIRECT_ROUTING) {
949 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
950 SAS_ADDR(parent->sas_addr), phy_id,
951 SAS_ADDR(phy->attached_sas_addr),
952 phy->attached_phy_id);
953 return NULL;
954 }
955 child = sas_alloc_device();
956 if (!child)
957 return NULL;
958
959 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
960 /* FIXME: better error handling */
961 BUG_ON(sas_port_add(phy->port) != 0);
962
963
964 switch (phy->attached_dev_type) {
965 case SAS_EDGE_EXPANDER_DEVICE:
966 rphy = sas_expander_alloc(phy->port,
967 SAS_EDGE_EXPANDER_DEVICE);
968 break;
969 case SAS_FANOUT_EXPANDER_DEVICE:
970 rphy = sas_expander_alloc(phy->port,
971 SAS_FANOUT_EXPANDER_DEVICE);
972 break;
973 default:
974 rphy = NULL; /* shut gcc up */
975 BUG();
976 }
977 port = parent->port;
978 child->rphy = rphy;
979 get_device(&rphy->dev);
980 edev = rphy_to_expander_device(rphy);
981 child->dev_type = phy->attached_dev_type;
982 kref_get(&parent->kref);
983 child->parent = parent;
984 child->port = port;
985 child->iproto = phy->attached_iproto;
986 child->tproto = phy->attached_tproto;
987 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
988 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
989 sas_ex_get_linkrate(parent, child, phy);
990 edev->level = parent_ex->level + 1;
991 parent->port->disc.max_level = max(parent->port->disc.max_level,
992 edev->level);
993 sas_init_dev(child);
994 sas_fill_in_rphy(child, rphy);
995 sas_rphy_add(rphy);
996
997 spin_lock_irq(&parent->port->dev_list_lock);
998 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
999 spin_unlock_irq(&parent->port->dev_list_lock);
1000
1001 res = sas_discover_expander(child);
1002 if (res) {
1003 sas_rphy_delete(rphy);
1004 spin_lock_irq(&parent->port->dev_list_lock);
1005 list_del(&child->dev_list_node);
1006 spin_unlock_irq(&parent->port->dev_list_lock);
1007 sas_put_device(child);
1008 sas_port_delete(phy->port);
1009 phy->port = NULL;
1010 return NULL;
1011 }
1012 list_add_tail(&child->siblings, &parent->ex_dev.children);
1013 return child;
1014}
1015
1016static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1017{
1018 struct expander_device *ex = &dev->ex_dev;
1019 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020 struct domain_device *child = NULL;
1021 int res = 0;
1022
1023 /* Phy state */
1024 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026 res = sas_ex_phy_discover(dev, phy_id);
1027 if (res)
1028 return res;
1029 }
1030
1031 /* Parent and domain coherency */
1032 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033 SAS_ADDR(dev->port->sas_addr))) {
1034 sas_add_parent_port(dev, phy_id);
1035 return 0;
1036 }
1037 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038 SAS_ADDR(dev->parent->sas_addr))) {
1039 sas_add_parent_port(dev, phy_id);
1040 if (ex_phy->routing_attr == TABLE_ROUTING)
1041 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042 return 0;
1043 }
1044
1045 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1047
1048 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052 }
1053 return 0;
1054 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055 return 0;
1056
1057 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062 ex_phy->attached_dev_type,
1063 SAS_ADDR(dev->sas_addr),
1064 phy_id);
1065 return 0;
1066 }
1067
1068 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069 if (res) {
1070 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071 SAS_ADDR(ex_phy->attached_sas_addr), res);
1072 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073 return res;
1074 }
1075
1076 if (sas_ex_join_wide_port(dev, phy_id)) {
1077 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1079 return res;
1080 }
1081
1082 switch (ex_phy->attached_dev_type) {
1083 case SAS_END_DEVICE:
1084 case SAS_SATA_PENDING:
1085 child = sas_ex_discover_end_dev(dev, phy_id);
1086 break;
1087 case SAS_FANOUT_EXPANDER_DEVICE:
1088 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090 SAS_ADDR(ex_phy->attached_sas_addr),
1091 ex_phy->attached_phy_id,
1092 SAS_ADDR(dev->sas_addr),
1093 phy_id);
1094 sas_ex_disable_phy(dev, phy_id);
1095 return res;
1096 } else
1097 memcpy(dev->port->disc.fanout_sas_addr,
1098 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099 fallthrough;
1100 case SAS_EDGE_EXPANDER_DEVICE:
1101 child = sas_ex_discover_expander(dev, phy_id);
1102 break;
1103 default:
1104 break;
1105 }
1106
1107 if (!child)
1108 pr_notice("ex %016llx phy%02d failed to discover\n",
1109 SAS_ADDR(dev->sas_addr), phy_id);
1110 return res;
1111}
1112
1113static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114{
1115 struct expander_device *ex = &dev->ex_dev;
1116 int i;
1117
1118 for (i = 0; i < ex->num_phys; i++) {
1119 struct ex_phy *phy = &ex->ex_phy[i];
1120
1121 if (phy->phy_state == PHY_VACANT ||
1122 phy->phy_state == PHY_NOT_PRESENT)
1123 continue;
1124
1125 if (dev_is_expander(phy->attached_dev_type) &&
1126 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1127
1128 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1129
1130 return 1;
1131 }
1132 }
1133 return 0;
1134}
1135
1136static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1137{
1138 struct expander_device *ex = &dev->ex_dev;
1139 struct domain_device *child;
1140 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1141
1142 list_for_each_entry(child, &ex->children, siblings) {
1143 if (!dev_is_expander(child->dev_type))
1144 continue;
1145 if (sub_addr[0] == 0) {
1146 sas_find_sub_addr(child, sub_addr);
1147 continue;
1148 } else {
1149 u8 s2[SAS_ADDR_SIZE];
1150
1151 if (sas_find_sub_addr(child, s2) &&
1152 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1153
1154 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155 SAS_ADDR(dev->sas_addr),
1156 SAS_ADDR(child->sas_addr),
1157 SAS_ADDR(s2),
1158 SAS_ADDR(sub_addr));
1159
1160 sas_ex_disable_port(child, s2);
1161 }
1162 }
1163 }
1164 return 0;
1165}
1166/**
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1170 *
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1173 */
1174static int sas_ex_discover_devices(struct domain_device *dev, int single)
1175{
1176 struct expander_device *ex = &dev->ex_dev;
1177 int i = 0, end = ex->num_phys;
1178 int res = 0;
1179
1180 if (0 <= single && single < end) {
1181 i = single;
1182 end = i+1;
1183 }
1184
1185 for ( ; i < end; i++) {
1186 struct ex_phy *ex_phy = &ex->ex_phy[i];
1187
1188 if (ex_phy->phy_state == PHY_VACANT ||
1189 ex_phy->phy_state == PHY_NOT_PRESENT ||
1190 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191 continue;
1192
1193 switch (ex_phy->linkrate) {
1194 case SAS_PHY_DISABLED:
1195 case SAS_PHY_RESET_PROBLEM:
1196 case SAS_SATA_PORT_SELECTOR:
1197 continue;
1198 default:
1199 res = sas_ex_discover_dev(dev, i);
1200 if (res)
1201 break;
1202 continue;
1203 }
1204 }
1205
1206 if (!res)
1207 sas_check_level_subtractive_boundary(dev);
1208
1209 return res;
1210}
1211
1212static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1213{
1214 struct expander_device *ex = &dev->ex_dev;
1215 int i;
1216 u8 *sub_sas_addr = NULL;
1217
1218 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219 return 0;
1220
1221 for (i = 0; i < ex->num_phys; i++) {
1222 struct ex_phy *phy = &ex->ex_phy[i];
1223
1224 if (phy->phy_state == PHY_VACANT ||
1225 phy->phy_state == PHY_NOT_PRESENT)
1226 continue;
1227
1228 if (dev_is_expander(phy->attached_dev_type) &&
1229 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1230
1231 if (!sub_sas_addr)
1232 sub_sas_addr = &phy->attached_sas_addr[0];
1233 else if (SAS_ADDR(sub_sas_addr) !=
1234 SAS_ADDR(phy->attached_sas_addr)) {
1235
1236 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237 SAS_ADDR(dev->sas_addr), i,
1238 SAS_ADDR(phy->attached_sas_addr),
1239 SAS_ADDR(sub_sas_addr));
1240 sas_ex_disable_phy(dev, i);
1241 }
1242 }
1243 }
1244 return 0;
1245}
1246
1247static void sas_print_parent_topology_bug(struct domain_device *child,
1248 struct ex_phy *parent_phy,
1249 struct ex_phy *child_phy)
1250{
1251 static const char *ex_type[] = {
1252 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1254 };
1255 struct domain_device *parent = child->parent;
1256
1257 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258 ex_type[parent->dev_type],
1259 SAS_ADDR(parent->sas_addr),
1260 parent_phy->phy_id,
1261
1262 ex_type[child->dev_type],
1263 SAS_ADDR(child->sas_addr),
1264 child_phy->phy_id,
1265
1266 sas_route_char(parent, parent_phy),
1267 sas_route_char(child, child_phy));
1268}
1269
1270static int sas_check_eeds(struct domain_device *child,
1271 struct ex_phy *parent_phy,
1272 struct ex_phy *child_phy)
1273{
1274 int res = 0;
1275 struct domain_device *parent = child->parent;
1276
1277 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278 res = -ENODEV;
1279 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280 SAS_ADDR(parent->sas_addr),
1281 parent_phy->phy_id,
1282 SAS_ADDR(child->sas_addr),
1283 child_phy->phy_id,
1284 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1285 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287 SAS_ADDR_SIZE);
1288 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289 SAS_ADDR_SIZE);
1290 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291 SAS_ADDR(parent->sas_addr)) ||
1292 (SAS_ADDR(parent->port->disc.eeds_a) ==
1293 SAS_ADDR(child->sas_addr)))
1294 &&
1295 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296 SAS_ADDR(parent->sas_addr)) ||
1297 (SAS_ADDR(parent->port->disc.eeds_b) ==
1298 SAS_ADDR(child->sas_addr))))
1299 ;
1300 else {
1301 res = -ENODEV;
1302 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303 SAS_ADDR(parent->sas_addr),
1304 parent_phy->phy_id,
1305 SAS_ADDR(child->sas_addr),
1306 child_phy->phy_id);
1307 }
1308
1309 return res;
1310}
1311
1312/* Here we spill over 80 columns. It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316 struct expander_device *child_ex = &child->ex_dev;
1317 struct expander_device *parent_ex;
1318 int i;
1319 int res = 0;
1320
1321 if (!child->parent)
1322 return 0;
1323
1324 if (!dev_is_expander(child->parent->dev_type))
1325 return 0;
1326
1327 parent_ex = &child->parent->ex_dev;
1328
1329 for (i = 0; i < parent_ex->num_phys; i++) {
1330 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331 struct ex_phy *child_phy;
1332
1333 if (parent_phy->phy_state == PHY_VACANT ||
1334 parent_phy->phy_state == PHY_NOT_PRESENT)
1335 continue;
1336
1337 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338 continue;
1339
1340 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1341
1342 switch (child->parent->dev_type) {
1343 case SAS_EDGE_EXPANDER_DEVICE:
1344 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346 child_phy->routing_attr != TABLE_ROUTING) {
1347 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348 res = -ENODEV;
1349 }
1350 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352 res = sas_check_eeds(child, parent_phy, child_phy);
1353 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1354 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355 res = -ENODEV;
1356 }
1357 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359 (child_phy->routing_attr == TABLE_ROUTING &&
1360 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361 /* All good */;
1362 } else {
1363 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364 res = -ENODEV;
1365 }
1366 }
1367 break;
1368 case SAS_FANOUT_EXPANDER_DEVICE:
1369 if (parent_phy->routing_attr != TABLE_ROUTING ||
1370 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372 res = -ENODEV;
1373 }
1374 break;
1375 default:
1376 break;
1377 }
1378 }
1379
1380 return res;
1381}
1382
1383#define RRI_REQ_SIZE 16
1384#define RRI_RESP_SIZE 44
1385
1386static int sas_configure_present(struct domain_device *dev, int phy_id,
1387 u8 *sas_addr, int *index, int *present)
1388{
1389 int i, res = 0;
1390 struct expander_device *ex = &dev->ex_dev;
1391 struct ex_phy *phy = &ex->ex_phy[phy_id];
1392 u8 *rri_req;
1393 u8 *rri_resp;
1394
1395 *present = 0;
1396 *index = 0;
1397
1398 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399 if (!rri_req)
1400 return -ENOMEM;
1401
1402 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403 if (!rri_resp) {
1404 kfree(rri_req);
1405 return -ENOMEM;
1406 }
1407
1408 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409 rri_req[9] = phy_id;
1410
1411 for (i = 0; i < ex->max_route_indexes ; i++) {
1412 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414 RRI_RESP_SIZE);
1415 if (res)
1416 goto out;
1417 res = rri_resp[2];
1418 if (res == SMP_RESP_NO_INDEX) {
1419 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420 SAS_ADDR(dev->sas_addr), phy_id, i);
1421 goto out;
1422 } else if (res != SMP_RESP_FUNC_ACC) {
1423 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425 i, res);
1426 goto out;
1427 }
1428 if (SAS_ADDR(sas_addr) != 0) {
1429 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430 *index = i;
1431 if ((rri_resp[12] & 0x80) == 0x80)
1432 *present = 0;
1433 else
1434 *present = 1;
1435 goto out;
1436 } else if (SAS_ADDR(rri_resp+16) == 0) {
1437 *index = i;
1438 *present = 0;
1439 goto out;
1440 }
1441 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1442 phy->last_da_index < i) {
1443 phy->last_da_index = i;
1444 *index = i;
1445 *present = 0;
1446 goto out;
1447 }
1448 }
1449 res = -1;
1450out:
1451 kfree(rri_req);
1452 kfree(rri_resp);
1453 return res;
1454}
1455
1456#define CRI_REQ_SIZE 44
1457#define CRI_RESP_SIZE 8
1458
1459static int sas_configure_set(struct domain_device *dev, int phy_id,
1460 u8 *sas_addr, int index, int include)
1461{
1462 int res;
1463 u8 *cri_req;
1464 u8 *cri_resp;
1465
1466 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467 if (!cri_req)
1468 return -ENOMEM;
1469
1470 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471 if (!cri_resp) {
1472 kfree(cri_req);
1473 return -ENOMEM;
1474 }
1475
1476 cri_req[1] = SMP_CONF_ROUTE_INFO;
1477 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478 cri_req[9] = phy_id;
1479 if (SAS_ADDR(sas_addr) == 0 || !include)
1480 cri_req[12] |= 0x80;
1481 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1482
1483 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484 CRI_RESP_SIZE);
1485 if (res)
1486 goto out;
1487 res = cri_resp[2];
1488 if (res == SMP_RESP_NO_INDEX) {
1489 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490 SAS_ADDR(dev->sas_addr), phy_id, index);
1491 }
1492out:
1493 kfree(cri_req);
1494 kfree(cri_resp);
1495 return res;
1496}
1497
1498static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499 u8 *sas_addr, int include)
1500{
1501 int index;
1502 int present;
1503 int res;
1504
1505 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506 if (res)
1507 return res;
1508 if (include ^ present)
1509 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1510
1511 return res;
1512}
1513
1514/**
1515 * sas_configure_parent - configure routing table of parent
1516 * @parent: parent expander
1517 * @child: child expander
1518 * @sas_addr: SAS port identifier of device directly attached to child
1519 * @include: whether or not to include @child in the expander routing table
1520 */
1521static int sas_configure_parent(struct domain_device *parent,
1522 struct domain_device *child,
1523 u8 *sas_addr, int include)
1524{
1525 struct expander_device *ex_parent = &parent->ex_dev;
1526 int res = 0;
1527 int i;
1528
1529 if (parent->parent) {
1530 res = sas_configure_parent(parent->parent, parent, sas_addr,
1531 include);
1532 if (res)
1533 return res;
1534 }
1535
1536 if (ex_parent->conf_route_table == 0) {
1537 pr_debug("ex %016llx has self-configuring routing table\n",
1538 SAS_ADDR(parent->sas_addr));
1539 return 0;
1540 }
1541
1542 for (i = 0; i < ex_parent->num_phys; i++) {
1543 struct ex_phy *phy = &ex_parent->ex_phy[i];
1544
1545 if ((phy->routing_attr == TABLE_ROUTING) &&
1546 (SAS_ADDR(phy->attached_sas_addr) ==
1547 SAS_ADDR(child->sas_addr))) {
1548 res = sas_configure_phy(parent, i, sas_addr, include);
1549 if (res)
1550 return res;
1551 }
1552 }
1553
1554 return res;
1555}
1556
1557/**
1558 * sas_configure_routing - configure routing
1559 * @dev: expander device
1560 * @sas_addr: port identifier of device directly attached to the expander device
1561 */
1562static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1563{
1564 if (dev->parent)
1565 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1566 return 0;
1567}
1568
1569static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1570{
1571 if (dev->parent)
1572 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1573 return 0;
1574}
1575
1576/**
1577 * sas_discover_expander - expander discovery
1578 * @dev: pointer to expander domain device
1579 *
1580 * See comment in sas_discover_sata().
1581 */
1582static int sas_discover_expander(struct domain_device *dev)
1583{
1584 int res;
1585
1586 res = sas_notify_lldd_dev_found(dev);
1587 if (res)
1588 return res;
1589
1590 res = sas_ex_general(dev);
1591 if (res)
1592 goto out_err;
1593 res = sas_ex_manuf_info(dev);
1594 if (res)
1595 goto out_err;
1596
1597 res = sas_expander_discover(dev);
1598 if (res) {
1599 pr_warn("expander %016llx discovery failed(0x%x)\n",
1600 SAS_ADDR(dev->sas_addr), res);
1601 goto out_err;
1602 }
1603
1604 sas_check_ex_subtractive_boundary(dev);
1605 res = sas_check_parent_topology(dev);
1606 if (res)
1607 goto out_err;
1608 return 0;
1609out_err:
1610 sas_notify_lldd_dev_gone(dev);
1611 return res;
1612}
1613
1614static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1615{
1616 int res = 0;
1617 struct domain_device *dev;
1618
1619 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1620 if (dev_is_expander(dev->dev_type)) {
1621 struct sas_expander_device *ex =
1622 rphy_to_expander_device(dev->rphy);
1623
1624 if (level == ex->level)
1625 res = sas_ex_discover_devices(dev, -1);
1626 else if (level > 0)
1627 res = sas_ex_discover_devices(port->port_dev, -1);
1628
1629 }
1630 }
1631
1632 return res;
1633}
1634
1635static int sas_ex_bfs_disc(struct asd_sas_port *port)
1636{
1637 int res;
1638 int level;
1639
1640 do {
1641 level = port->disc.max_level;
1642 res = sas_ex_level_discovery(port, level);
1643 mb();
1644 } while (level < port->disc.max_level);
1645
1646 return res;
1647}
1648
1649int sas_discover_root_expander(struct domain_device *dev)
1650{
1651 int res;
1652 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653
1654 res = sas_rphy_add(dev->rphy);
1655 if (res)
1656 goto out_err;
1657
1658 ex->level = dev->port->disc.max_level; /* 0 */
1659 res = sas_discover_expander(dev);
1660 if (res)
1661 goto out_err2;
1662
1663 sas_ex_bfs_disc(dev->port);
1664
1665 return res;
1666
1667out_err2:
1668 sas_rphy_remove(dev->rphy);
1669out_err:
1670 return res;
1671}
1672
1673/* ---------- Domain revalidation ---------- */
1674
1675static int sas_get_phy_discover(struct domain_device *dev,
1676 int phy_id, struct smp_resp *disc_resp)
1677{
1678 int res;
1679 u8 *disc_req;
1680
1681 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682 if (!disc_req)
1683 return -ENOMEM;
1684
1685 disc_req[1] = SMP_DISCOVER;
1686 disc_req[9] = phy_id;
1687
1688 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689 disc_resp, DISCOVER_RESP_SIZE);
1690 if (res)
1691 goto out;
1692 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693 res = disc_resp->result;
1694 goto out;
1695 }
1696out:
1697 kfree(disc_req);
1698 return res;
1699}
1700
1701static int sas_get_phy_change_count(struct domain_device *dev,
1702 int phy_id, int *pcc)
1703{
1704 int res;
1705 struct smp_resp *disc_resp;
1706
1707 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708 if (!disc_resp)
1709 return -ENOMEM;
1710
1711 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712 if (!res)
1713 *pcc = disc_resp->disc.change_count;
1714
1715 kfree(disc_resp);
1716 return res;
1717}
1718
1719static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720 u8 *sas_addr, enum sas_device_type *type)
1721{
1722 int res;
1723 struct smp_resp *disc_resp;
1724 struct discover_resp *dr;
1725
1726 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727 if (!disc_resp)
1728 return -ENOMEM;
1729 dr = &disc_resp->disc;
1730
1731 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732 if (res == 0) {
1733 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1734 SAS_ADDR_SIZE);
1735 *type = to_dev_type(dr);
1736 if (*type == 0)
1737 memset(sas_addr, 0, SAS_ADDR_SIZE);
1738 }
1739 kfree(disc_resp);
1740 return res;
1741}
1742
1743static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1744 int from_phy, bool update)
1745{
1746 struct expander_device *ex = &dev->ex_dev;
1747 int res = 0;
1748 int i;
1749
1750 for (i = from_phy; i < ex->num_phys; i++) {
1751 int phy_change_count = 0;
1752
1753 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1754 switch (res) {
1755 case SMP_RESP_PHY_VACANT:
1756 case SMP_RESP_NO_PHY:
1757 continue;
1758 case SMP_RESP_FUNC_ACC:
1759 break;
1760 default:
1761 return res;
1762 }
1763
1764 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1765 if (update)
1766 ex->ex_phy[i].phy_change_count =
1767 phy_change_count;
1768 *phy_id = i;
1769 return 0;
1770 }
1771 }
1772 return 0;
1773}
1774
1775static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1776{
1777 int res;
1778 u8 *rg_req;
1779 struct smp_resp *rg_resp;
1780
1781 rg_req = alloc_smp_req(RG_REQ_SIZE);
1782 if (!rg_req)
1783 return -ENOMEM;
1784
1785 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1786 if (!rg_resp) {
1787 kfree(rg_req);
1788 return -ENOMEM;
1789 }
1790
1791 rg_req[1] = SMP_REPORT_GENERAL;
1792
1793 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1794 RG_RESP_SIZE);
1795 if (res)
1796 goto out;
1797 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1798 res = rg_resp->result;
1799 goto out;
1800 }
1801
1802 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1803out:
1804 kfree(rg_resp);
1805 kfree(rg_req);
1806 return res;
1807}
1808/**
1809 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1810 * @dev:domain device to be detect.
1811 * @src_dev: the device which originated BROADCAST(CHANGE).
1812 *
1813 * Add self-configuration expander support. Suppose two expander cascading,
1814 * when the first level expander is self-configuring, hotplug the disks in
1815 * second level expander, BROADCAST(CHANGE) will not only be originated
1816 * in the second level expander, but also be originated in the first level
1817 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818 * expander changed count in two level expanders will all increment at least
1819 * once, but the phy which chang count has changed is the source device which
1820 * we concerned.
1821 */
1822
1823static int sas_find_bcast_dev(struct domain_device *dev,
1824 struct domain_device **src_dev)
1825{
1826 struct expander_device *ex = &dev->ex_dev;
1827 int ex_change_count = -1;
1828 int phy_id = -1;
1829 int res;
1830 struct domain_device *ch;
1831
1832 res = sas_get_ex_change_count(dev, &ex_change_count);
1833 if (res)
1834 goto out;
1835 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1836 /* Just detect if this expander phys phy change count changed,
1837 * in order to determine if this expander originate BROADCAST,
1838 * and do not update phy change count field in our structure.
1839 */
1840 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1841 if (phy_id != -1) {
1842 *src_dev = dev;
1843 ex->ex_change_count = ex_change_count;
1844 pr_info("ex %016llx phy%02d change count has changed\n",
1845 SAS_ADDR(dev->sas_addr), phy_id);
1846 return res;
1847 } else
1848 pr_info("ex %016llx phys DID NOT change\n",
1849 SAS_ADDR(dev->sas_addr));
1850 }
1851 list_for_each_entry(ch, &ex->children, siblings) {
1852 if (dev_is_expander(ch->dev_type)) {
1853 res = sas_find_bcast_dev(ch, src_dev);
1854 if (*src_dev)
1855 return res;
1856 }
1857 }
1858out:
1859 return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864 struct expander_device *ex = &dev->ex_dev;
1865 struct domain_device *child, *n;
1866
1867 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868 set_bit(SAS_DEV_GONE, &child->state);
1869 if (dev_is_expander(child->dev_type))
1870 sas_unregister_ex_tree(port, child);
1871 else
1872 sas_unregister_dev(port, child);
1873 }
1874 sas_unregister_dev(port, dev);
1875}
1876
1877static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1878 int phy_id, bool last)
1879{
1880 struct expander_device *ex_dev = &parent->ex_dev;
1881 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1882 struct domain_device *child, *n, *found = NULL;
1883 if (last) {
1884 list_for_each_entry_safe(child, n,
1885 &ex_dev->children, siblings) {
1886 if (SAS_ADDR(child->sas_addr) ==
1887 SAS_ADDR(phy->attached_sas_addr)) {
1888 set_bit(SAS_DEV_GONE, &child->state);
1889 if (dev_is_expander(child->dev_type))
1890 sas_unregister_ex_tree(parent->port, child);
1891 else
1892 sas_unregister_dev(parent->port, child);
1893 found = child;
1894 break;
1895 }
1896 }
1897 sas_disable_routing(parent, phy->attached_sas_addr);
1898 }
1899 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1900 if (phy->port) {
1901 sas_port_delete_phy(phy->port, phy->phy);
1902 sas_device_set_phy(found, phy->port);
1903 if (phy->port->num_phys == 0)
1904 list_add_tail(&phy->port->del_list,
1905 &parent->port->sas_port_del_list);
1906 phy->port = NULL;
1907 }
1908}
1909
1910static int sas_discover_bfs_by_root_level(struct domain_device *root,
1911 const int level)
1912{
1913 struct expander_device *ex_root = &root->ex_dev;
1914 struct domain_device *child;
1915 int res = 0;
1916
1917 list_for_each_entry(child, &ex_root->children, siblings) {
1918 if (dev_is_expander(child->dev_type)) {
1919 struct sas_expander_device *ex =
1920 rphy_to_expander_device(child->rphy);
1921
1922 if (level > ex->level)
1923 res = sas_discover_bfs_by_root_level(child,
1924 level);
1925 else if (level == ex->level)
1926 res = sas_ex_discover_devices(child, -1);
1927 }
1928 }
1929 return res;
1930}
1931
1932static int sas_discover_bfs_by_root(struct domain_device *dev)
1933{
1934 int res;
1935 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936 int level = ex->level+1;
1937
1938 res = sas_ex_discover_devices(dev, -1);
1939 if (res)
1940 goto out;
1941 do {
1942 res = sas_discover_bfs_by_root_level(dev, level);
1943 mb();
1944 level += 1;
1945 } while (level <= dev->port->disc.max_level);
1946out:
1947 return res;
1948}
1949
1950static int sas_discover_new(struct domain_device *dev, int phy_id)
1951{
1952 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953 struct domain_device *child;
1954 int res;
1955
1956 pr_debug("ex %016llx phy%02d new device attached\n",
1957 SAS_ADDR(dev->sas_addr), phy_id);
1958 res = sas_ex_phy_discover(dev, phy_id);
1959 if (res)
1960 return res;
1961
1962 if (sas_ex_join_wide_port(dev, phy_id))
1963 return 0;
1964
1965 res = sas_ex_discover_devices(dev, phy_id);
1966 if (res)
1967 return res;
1968 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969 if (SAS_ADDR(child->sas_addr) ==
1970 SAS_ADDR(ex_phy->attached_sas_addr)) {
1971 if (dev_is_expander(child->dev_type))
1972 res = sas_discover_bfs_by_root(child);
1973 break;
1974 }
1975 }
1976 return res;
1977}
1978
1979static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1980{
1981 if (old == new)
1982 return true;
1983
1984 /* treat device directed resets as flutter, if we went
1985 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1986 */
1987 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1988 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1989 return true;
1990
1991 return false;
1992}
1993
1994static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1995 bool last, int sibling)
1996{
1997 struct expander_device *ex = &dev->ex_dev;
1998 struct ex_phy *phy = &ex->ex_phy[phy_id];
1999 enum sas_device_type type = SAS_PHY_UNUSED;
2000 u8 sas_addr[SAS_ADDR_SIZE];
2001 char msg[80] = "";
2002 int res;
2003
2004 if (!last)
2005 sprintf(msg, ", part of a wide port with phy%02d", sibling);
2006
2007 pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008 SAS_ADDR(dev->sas_addr), phy_id, msg);
2009
2010 memset(sas_addr, 0, SAS_ADDR_SIZE);
2011 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2012 switch (res) {
2013 case SMP_RESP_NO_PHY:
2014 phy->phy_state = PHY_NOT_PRESENT;
2015 sas_unregister_devs_sas_addr(dev, phy_id, last);
2016 return res;
2017 case SMP_RESP_PHY_VACANT:
2018 phy->phy_state = PHY_VACANT;
2019 sas_unregister_devs_sas_addr(dev, phy_id, last);
2020 return res;
2021 case SMP_RESP_FUNC_ACC:
2022 break;
2023 case -ECOMM:
2024 break;
2025 default:
2026 return res;
2027 }
2028
2029 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2030 phy->phy_state = PHY_EMPTY;
2031 sas_unregister_devs_sas_addr(dev, phy_id, last);
2032 /*
2033 * Even though the PHY is empty, for convenience we discover
2034 * the PHY to update the PHY info, like negotiated linkrate.
2035 */
2036 sas_ex_phy_discover(dev, phy_id);
2037 return res;
2038 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2039 dev_type_flutter(type, phy->attached_dev_type)) {
2040 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2041 char *action = "";
2042
2043 sas_ex_phy_discover(dev, phy_id);
2044
2045 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2046 action = ", needs recovery";
2047 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048 SAS_ADDR(dev->sas_addr), phy_id, action);
2049 return res;
2050 }
2051
2052 /* we always have to delete the old device when we went here */
2053 pr_info("ex %016llx phy%02d replace %016llx\n",
2054 SAS_ADDR(dev->sas_addr), phy_id,
2055 SAS_ADDR(phy->attached_sas_addr));
2056 sas_unregister_devs_sas_addr(dev, phy_id, last);
2057
2058 return sas_discover_new(dev, phy_id);
2059}
2060
2061/**
2062 * sas_rediscover - revalidate the domain.
2063 * @dev:domain device to be detect.
2064 * @phy_id: the phy id will be detected.
2065 *
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered. Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.For plugging out, we un-register the device only when it is
2070 * the last phy in the port, for other phys in this port, we just delete it
2071 * from the port.For inserting, we do discovery when it is the
2072 * first phy,for other phys in this port, we add it to the port to
2073 * forming the wide-port.
2074 */
2075static int sas_rediscover(struct domain_device *dev, const int phy_id)
2076{
2077 struct expander_device *ex = &dev->ex_dev;
2078 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2079 int res = 0;
2080 int i;
2081 bool last = true; /* is this the last phy of the port */
2082
2083 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084 SAS_ADDR(dev->sas_addr), phy_id);
2085
2086 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2087 for (i = 0; i < ex->num_phys; i++) {
2088 struct ex_phy *phy = &ex->ex_phy[i];
2089
2090 if (i == phy_id)
2091 continue;
2092 if (SAS_ADDR(phy->attached_sas_addr) ==
2093 SAS_ADDR(changed_phy->attached_sas_addr)) {
2094 last = false;
2095 break;
2096 }
2097 }
2098 res = sas_rediscover_dev(dev, phy_id, last, i);
2099 } else
2100 res = sas_discover_new(dev, phy_id);
2101 return res;
2102}
2103
2104/**
2105 * sas_ex_revalidate_domain - revalidate the domain
2106 * @port_dev: port domain device.
2107 *
2108 * NOTE: this process _must_ quit (return) as soon as any connection
2109 * errors are encountered. Connection recovery is done elsewhere.
2110 * Discover process only interrogates devices in order to discover the
2111 * domain.
2112 */
2113int sas_ex_revalidate_domain(struct domain_device *port_dev)
2114{
2115 int res;
2116 struct domain_device *dev = NULL;
2117
2118 res = sas_find_bcast_dev(port_dev, &dev);
2119 if (res == 0 && dev) {
2120 struct expander_device *ex = &dev->ex_dev;
2121 int i = 0, phy_id;
2122
2123 do {
2124 phy_id = -1;
2125 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2126 if (phy_id == -1)
2127 break;
2128 res = sas_rediscover(dev, phy_id);
2129 i = phy_id + 1;
2130 } while (i < ex->num_phys);
2131 }
2132 return res;
2133}
2134
2135void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2136 struct sas_rphy *rphy)
2137{
2138 struct domain_device *dev;
2139 unsigned int rcvlen = 0;
2140 int ret = -EINVAL;
2141
2142 /* no rphy means no smp target support (ie aic94xx host) */
2143 if (!rphy)
2144 return sas_smp_host_handler(job, shost);
2145
2146 switch (rphy->identify.device_type) {
2147 case SAS_EDGE_EXPANDER_DEVICE:
2148 case SAS_FANOUT_EXPANDER_DEVICE:
2149 break;
2150 default:
2151 pr_err("%s: can we send a smp request to a device?\n",
2152 __func__);
2153 goto out;
2154 }
2155
2156 dev = sas_find_dev_by_rphy(rphy);
2157 if (!dev) {
2158 pr_err("%s: fail to find a domain_device?\n", __func__);
2159 goto out;
2160 }
2161
2162 /* do we need to support multiple segments? */
2163 if (job->request_payload.sg_cnt > 1 ||
2164 job->reply_payload.sg_cnt > 1) {
2165 pr_info("%s: multiple segments req %u, rsp %u\n",
2166 __func__, job->request_payload.payload_len,
2167 job->reply_payload.payload_len);
2168 goto out;
2169 }
2170
2171 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2172 job->reply_payload.sg_list);
2173 if (ret >= 0) {
2174 /* bsg_job_done() requires the length received */
2175 rcvlen = job->reply_payload.payload_len - ret;
2176 ret = 0;
2177 }
2178
2179out:
2180 bsg_job_done(job, ret, rcvlen);
2181}