Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->slow_task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->slow_task->timer))
  60		return;
  61	complete(&task->slow_task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
 
  74
 
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_slow_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->slow_task->timer.data = (unsigned long) task;
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 151	return res;
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_device_type to_dev_type(struct discover_resp *dr)
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SAS_SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 199{
 200	enum sas_device_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 238	/* Handle vacant phy - rest of dr data is not valid so skip it */
 239	if (phy->phy_state == PHY_VACANT) {
 240		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 241		phy->attached_dev_type = SAS_PHY_UNUSED;
 242		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 243			phy->phy_id = phy_id;
 244			goto skip;
 245		} else
 246			goto out;
 247	}
 248
 249	phy->attached_dev_type = to_dev_type(dr);
 250	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 251		goto out;
 252	phy->phy_id = phy_id;
 253	phy->linkrate = dr->linkrate;
 254	phy->attached_sata_host = dr->attached_sata_host;
 255	phy->attached_sata_dev  = dr->attached_sata_dev;
 256	phy->attached_sata_ps   = dr->attached_sata_ps;
 257	phy->attached_iproto = dr->iproto << 1;
 258	phy->attached_tproto = dr->tproto << 1;
 259	/* help some expanders that fail to zero sas_address in the 'no
 260	 * device' case
 261	 */
 262	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 263	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 264		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 265	else
 266		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 267	phy->attached_phy_id = dr->attached_phy_id;
 268	phy->phy_change_count = dr->change_count;
 269	phy->routing_attr = dr->routing_attr;
 270	phy->virtual = dr->virtual;
 271	phy->last_da_index = -1;
 272
 273	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 274	phy->phy->identify.device_type = dr->attached_dev_type;
 275	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 276	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 277	if (!phy->attached_tproto && dr->attached_sata_dev)
 278		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 279	phy->phy->identify.phy_identifier = phy_id;
 280	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 281	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 282	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 283	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 284	phy->phy->negotiated_linkrate = phy->linkrate;
 
 285
 286 skip:
 287	if (new_phy)
 288		if (sas_phy_add(phy->phy)) {
 289			sas_phy_free(phy->phy);
 290			return;
 291		}
 292
 293 out:
 294	switch (phy->attached_dev_type) {
 295	case SAS_SATA_PENDING:
 296		type = "stp pending";
 297		break;
 298	case SAS_PHY_UNUSED:
 299		type = "no device";
 300		break;
 301	case SAS_END_DEVICE:
 302		if (phy->attached_iproto) {
 303			if (phy->attached_tproto)
 304				type = "host+target";
 305			else
 306				type = "host";
 307		} else {
 308			if (dr->attached_sata_dev)
 309				type = "stp";
 310			else
 311				type = "ssp";
 312		}
 313		break;
 314	case SAS_EDGE_EXPANDER_DEVICE:
 315	case SAS_FANOUT_EXPANDER_DEVICE:
 316		type = "smp";
 317		break;
 318	default:
 319		type = "unknown";
 320	}
 321
 322	/* this routine is polled by libata error recovery so filter
 323	 * unimportant messages
 324	 */
 325	if (new_phy || phy->attached_dev_type != dev_type ||
 326	    phy->linkrate != linkrate ||
 327	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 328		/* pass */;
 329	else
 330		return;
 331
 332	/* if the attached device type changed and ata_eh is active,
 333	 * make sure we run revalidation when eh completes (see:
 334	 * sas_enable_revalidation)
 335	 */
 336	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 337		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 338
 339	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 340		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 341		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 342		    sas_route_char(dev, phy), phy->linkrate,
 343		    SAS_ADDR(phy->attached_sas_addr), type);
 344}
 345
 346/* check if we have an existing attached ata device on this expander phy */
 347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 348{
 349	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 350	struct domain_device *dev;
 351	struct sas_rphy *rphy;
 352
 353	if (!ex_phy->port)
 354		return NULL;
 355
 356	rphy = ex_phy->port->rphy;
 357	if (!rphy)
 358		return NULL;
 359
 360	dev = sas_find_dev_by_rphy(rphy);
 361
 362	if (dev && dev_is_sata(dev))
 363		return dev;
 364
 365	return NULL;
 366}
 367
 368#define DISCOVER_REQ_SIZE  16
 369#define DISCOVER_RESP_SIZE 56
 370
 371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 372				      u8 *disc_resp, int single)
 
 373{
 374	struct discover_resp *dr;
 375	int res;
 376
 377	disc_req[9] = single;
 378
 379	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 380			       disc_resp, DISCOVER_RESP_SIZE);
 381	if (res)
 382		return res;
 383	dr = &((struct smp_resp *)disc_resp)->disc;
 384	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 385		sas_printk("Found loopback topology, just ignore it!\n");
 386		return 0;
 387	}
 388	sas_set_ex_phy(dev, single, disc_resp);
 389	return 0;
 390}
 391
 392int sas_ex_phy_discover(struct domain_device *dev, int single)
 393{
 394	struct expander_device *ex = &dev->ex_dev;
 395	int  res = 0;
 396	u8   *disc_req;
 397	u8   *disc_resp;
 398
 399	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 400	if (!disc_req)
 401		return -ENOMEM;
 402
 403	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 404	if (!disc_resp) {
 405		kfree(disc_req);
 406		return -ENOMEM;
 407	}
 408
 409	disc_req[1] = SMP_DISCOVER;
 410
 411	if (0 <= single && single < ex->num_phys) {
 412		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 413	} else {
 414		int i;
 415
 416		for (i = 0; i < ex->num_phys; i++) {
 417			res = sas_ex_phy_discover_helper(dev, disc_req,
 418							 disc_resp, i);
 419			if (res)
 420				goto out_err;
 421		}
 422	}
 423out_err:
 424	kfree(disc_resp);
 425	kfree(disc_req);
 426	return res;
 427}
 428
 429static int sas_expander_discover(struct domain_device *dev)
 430{
 431	struct expander_device *ex = &dev->ex_dev;
 432	int res = -ENOMEM;
 433
 434	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 435	if (!ex->ex_phy)
 436		return -ENOMEM;
 437
 438	res = sas_ex_phy_discover(dev, -1);
 439	if (res)
 440		goto out_err;
 441
 442	return 0;
 443 out_err:
 444	kfree(ex->ex_phy);
 445	ex->ex_phy = NULL;
 446	return res;
 447}
 448
 449#define MAX_EXPANDER_PHYS 128
 450
 451static void ex_assign_report_general(struct domain_device *dev,
 452					    struct smp_resp *resp)
 453{
 454	struct report_general_resp *rg = &resp->rg;
 455
 456	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 457	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 458	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 459	dev->ex_dev.t2t_supp = rg->t2t_supp;
 460	dev->ex_dev.conf_route_table = rg->conf_route_table;
 461	dev->ex_dev.configuring = rg->configuring;
 462	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 463}
 464
 465#define RG_REQ_SIZE   8
 466#define RG_RESP_SIZE 32
 467
 468static int sas_ex_general(struct domain_device *dev)
 469{
 470	u8 *rg_req;
 471	struct smp_resp *rg_resp;
 
 472	int res;
 473	int i;
 474
 475	rg_req = alloc_smp_req(RG_REQ_SIZE);
 476	if (!rg_req)
 477		return -ENOMEM;
 478
 479	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 480	if (!rg_resp) {
 481		kfree(rg_req);
 482		return -ENOMEM;
 483	}
 484
 485	rg_req[1] = SMP_REPORT_GENERAL;
 486
 487	for (i = 0; i < 5; i++) {
 488		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 489				       RG_RESP_SIZE);
 490
 491		if (res) {
 492			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 493				    SAS_ADDR(dev->sas_addr), res);
 494			goto out;
 495		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 496			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 497				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 498			res = rg_resp->result;
 499			goto out;
 500		}
 501
 502		ex_assign_report_general(dev, rg_resp);
 
 
 
 
 
 
 
 
 503
 504		if (dev->ex_dev.configuring) {
 505			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 506				    SAS_ADDR(dev->sas_addr));
 507			schedule_timeout_interruptible(5*HZ);
 508		} else
 509			break;
 510	}
 511out:
 512	kfree(rg_req);
 513	kfree(rg_resp);
 514	return res;
 515}
 516
 517static void ex_assign_manuf_info(struct domain_device *dev, void
 518					*_mi_resp)
 519{
 520	u8 *mi_resp = _mi_resp;
 521	struct sas_rphy *rphy = dev->rphy;
 522	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 523
 524	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 525	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 526	memcpy(edev->product_rev, mi_resp + 36,
 527	       SAS_EXPANDER_PRODUCT_REV_LEN);
 528
 529	if (mi_resp[8] & 1) {
 530		memcpy(edev->component_vendor_id, mi_resp + 40,
 531		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 532		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 533		edev->component_revision_id = mi_resp[50];
 534	}
 535}
 536
 537#define MI_REQ_SIZE   8
 538#define MI_RESP_SIZE 64
 539
 540static int sas_ex_manuf_info(struct domain_device *dev)
 541{
 542	u8 *mi_req;
 543	u8 *mi_resp;
 544	int res;
 545
 546	mi_req = alloc_smp_req(MI_REQ_SIZE);
 547	if (!mi_req)
 548		return -ENOMEM;
 549
 550	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 551	if (!mi_resp) {
 552		kfree(mi_req);
 553		return -ENOMEM;
 554	}
 555
 556	mi_req[1] = SMP_REPORT_MANUF_INFO;
 557
 558	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 559	if (res) {
 560		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 561			    SAS_ADDR(dev->sas_addr), res);
 562		goto out;
 563	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 564		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 565			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 566		goto out;
 567	}
 568
 569	ex_assign_manuf_info(dev, mi_resp);
 570out:
 571	kfree(mi_req);
 572	kfree(mi_resp);
 573	return res;
 574}
 575
 576#define PC_REQ_SIZE  44
 577#define PC_RESP_SIZE 8
 578
 579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 580			enum phy_func phy_func,
 581			struct sas_phy_linkrates *rates)
 582{
 583	u8 *pc_req;
 584	u8 *pc_resp;
 585	int res;
 586
 587	pc_req = alloc_smp_req(PC_REQ_SIZE);
 588	if (!pc_req)
 589		return -ENOMEM;
 590
 591	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 592	if (!pc_resp) {
 593		kfree(pc_req);
 594		return -ENOMEM;
 595	}
 596
 597	pc_req[1] = SMP_PHY_CONTROL;
 598	pc_req[9] = phy_id;
 599	pc_req[10]= phy_func;
 600	if (rates) {
 601		pc_req[32] = rates->minimum_linkrate << 4;
 602		pc_req[33] = rates->maximum_linkrate << 4;
 603	}
 604
 605	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 606
 
 
 
 
 
 
 
 607	kfree(pc_resp);
 608	kfree(pc_req);
 609	return res;
 610}
 611
 612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 613{
 614	struct expander_device *ex = &dev->ex_dev;
 615	struct ex_phy *phy = &ex->ex_phy[phy_id];
 616
 617	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 618	phy->linkrate = SAS_PHY_DISABLED;
 619}
 620
 621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 622{
 623	struct expander_device *ex = &dev->ex_dev;
 624	int i;
 625
 626	for (i = 0; i < ex->num_phys; i++) {
 627		struct ex_phy *phy = &ex->ex_phy[i];
 628
 629		if (phy->phy_state == PHY_VACANT ||
 630		    phy->phy_state == PHY_NOT_PRESENT)
 631			continue;
 632
 633		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 634			sas_ex_disable_phy(dev, i);
 635	}
 636}
 637
 638static int sas_dev_present_in_domain(struct asd_sas_port *port,
 639					    u8 *sas_addr)
 640{
 641	struct domain_device *dev;
 642
 643	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 644		return 1;
 645	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 646		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 647			return 1;
 648	}
 649	return 0;
 650}
 651
 652#define RPEL_REQ_SIZE	16
 653#define RPEL_RESP_SIZE	32
 654int sas_smp_get_phy_events(struct sas_phy *phy)
 655{
 656	int res;
 657	u8 *req;
 658	u8 *resp;
 659	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 660	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 661
 662	req = alloc_smp_req(RPEL_REQ_SIZE);
 663	if (!req)
 664		return -ENOMEM;
 665
 666	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 667	if (!resp) {
 668		kfree(req);
 669		return -ENOMEM;
 670	}
 671
 672	req[1] = SMP_REPORT_PHY_ERR_LOG;
 673	req[9] = phy->number;
 674
 675	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 676			            resp, RPEL_RESP_SIZE);
 677
 678	if (!res)
 679		goto out;
 680
 681	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 682	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 683	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 684	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 685
 686 out:
 
 687	kfree(resp);
 688	return res;
 689
 690}
 691
 692#ifdef CONFIG_SCSI_SAS_ATA
 693
 694#define RPS_REQ_SIZE  16
 695#define RPS_RESP_SIZE 60
 696
 697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 698			    struct smp_resp *rps_resp)
 699{
 700	int res;
 701	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 702	u8 *resp = (u8 *)rps_resp;
 703
 704	if (!rps_req)
 705		return -ENOMEM;
 706
 707	rps_req[1] = SMP_REPORT_PHY_SATA;
 708	rps_req[9] = phy_id;
 709
 710	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 711			            rps_resp, RPS_RESP_SIZE);
 712
 713	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 714	 * standards cockup here.  sas-2 explicitly specifies the FIS
 715	 * should be encoded so that FIS type is in resp[24].
 716	 * However, some expanders endian reverse this.  Undo the
 717	 * reversal here */
 718	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 719		int i;
 720
 721		for (i = 0; i < 5; i++) {
 722			int j = 24 + (i*4);
 723			u8 a, b;
 724			a = resp[j + 0];
 725			b = resp[j + 1];
 726			resp[j + 0] = resp[j + 3];
 727			resp[j + 1] = resp[j + 2];
 728			resp[j + 2] = b;
 729			resp[j + 3] = a;
 730		}
 731	}
 732
 733	kfree(rps_req);
 734	return res;
 735}
 736#endif
 737
 738static void sas_ex_get_linkrate(struct domain_device *parent,
 739				       struct domain_device *child,
 740				       struct ex_phy *parent_phy)
 741{
 742	struct expander_device *parent_ex = &parent->ex_dev;
 743	struct sas_port *port;
 744	int i;
 745
 746	child->pathways = 0;
 747
 748	port = parent_phy->port;
 749
 750	for (i = 0; i < parent_ex->num_phys; i++) {
 751		struct ex_phy *phy = &parent_ex->ex_phy[i];
 752
 753		if (phy->phy_state == PHY_VACANT ||
 754		    phy->phy_state == PHY_NOT_PRESENT)
 755			continue;
 756
 757		if (SAS_ADDR(phy->attached_sas_addr) ==
 758		    SAS_ADDR(child->sas_addr)) {
 759
 760			child->min_linkrate = min(parent->min_linkrate,
 761						  phy->linkrate);
 762			child->max_linkrate = max(parent->max_linkrate,
 763						  phy->linkrate);
 764			child->pathways++;
 765			sas_port_add_phy(port, phy->phy);
 766		}
 767	}
 768	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 769	child->pathways = min(child->pathways, parent->pathways);
 770}
 771
 772static struct domain_device *sas_ex_discover_end_dev(
 773	struct domain_device *parent, int phy_id)
 774{
 775	struct expander_device *parent_ex = &parent->ex_dev;
 776	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 777	struct domain_device *child = NULL;
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	if (phy->attached_sata_host || phy->attached_sata_ps)
 782		return NULL;
 783
 784	child = sas_alloc_device();
 785	if (!child)
 786		return NULL;
 787
 788	kref_get(&parent->kref);
 789	child->parent = parent;
 790	child->port   = parent->port;
 791	child->iproto = phy->attached_iproto;
 792	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 793	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 794	if (!phy->port) {
 795		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 796		if (unlikely(!phy->port))
 797			goto out_err;
 798		if (unlikely(sas_port_add(phy->port) != 0)) {
 799			sas_port_free(phy->port);
 800			goto out_err;
 801		}
 802	}
 803	sas_ex_get_linkrate(parent, child, phy);
 804	sas_device_set_phy(child, phy->port);
 805
 806#ifdef CONFIG_SCSI_SAS_ATA
 807	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808		res = sas_get_ata_info(child, phy);
 809		if (res)
 810			goto out_free;
 811
 812		sas_init_dev(child);
 813		res = sas_ata_init(child);
 814		if (res)
 815			goto out_free;
 816		rphy = sas_end_device_alloc(phy->port);
 817		if (!rphy)
 818			goto out_free;
 
 819
 820		child->rphy = rphy;
 821		get_device(&rphy->dev);
 822
 823		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 824
 825		res = sas_discover_sata(child);
 826		if (res) {
 827			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 828				    "%016llx:0x%x returned 0x%x\n",
 829				    SAS_ADDR(child->sas_addr),
 830				    SAS_ADDR(parent->sas_addr), phy_id, res);
 831			goto out_list_del;
 832		}
 833	} else
 834#endif
 835	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 836		child->dev_type = SAS_END_DEVICE;
 837		rphy = sas_end_device_alloc(phy->port);
 838		/* FIXME: error handling */
 839		if (unlikely(!rphy))
 840			goto out_free;
 841		child->tproto = phy->attached_tproto;
 842		sas_init_dev(child);
 843
 844		child->rphy = rphy;
 845		get_device(&rphy->dev);
 
 846		sas_fill_in_rphy(child, rphy);
 847
 848		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 849
 850		res = sas_discover_end_dev(child);
 851		if (res) {
 852			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 853				    "at %016llx:0x%x returned 0x%x\n",
 854				    SAS_ADDR(child->sas_addr),
 855				    SAS_ADDR(parent->sas_addr), phy_id, res);
 856			goto out_list_del;
 857		}
 858	} else {
 859		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 860			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 861			    phy_id);
 862		goto out_free;
 863	}
 864
 865	list_add_tail(&child->siblings, &parent_ex->children);
 866	return child;
 867
 868 out_list_del:
 869	sas_rphy_free(child->rphy);
 870	list_del(&child->disco_list_node);
 871	spin_lock_irq(&parent->port->dev_list_lock);
 872	list_del(&child->dev_list_node);
 873	spin_unlock_irq(&parent->port->dev_list_lock);
 874 out_free:
 875	sas_port_delete(phy->port);
 876 out_err:
 877	phy->port = NULL;
 878	sas_put_device(child);
 879	return NULL;
 880}
 881
 882/* See if this phy is part of a wide port */
 883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 884{
 885	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 886	int i;
 887
 888	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 889		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 890
 891		if (ephy == phy)
 892			continue;
 893
 894		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 895			    SAS_ADDR_SIZE) && ephy->port) {
 896			sas_port_add_phy(ephy->port, phy->phy);
 897			phy->port = ephy->port;
 898			phy->phy_state = PHY_DEVICE_DISCOVERED;
 899			return true;
 900		}
 901	}
 902
 903	return false;
 904}
 905
 906static struct domain_device *sas_ex_discover_expander(
 907	struct domain_device *parent, int phy_id)
 908{
 909	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 910	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 911	struct domain_device *child = NULL;
 912	struct sas_rphy *rphy;
 913	struct sas_expander_device *edev;
 914	struct asd_sas_port *port;
 915	int res;
 916
 917	if (phy->routing_attr == DIRECT_ROUTING) {
 918		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 919			    "allowed\n",
 920			    SAS_ADDR(parent->sas_addr), phy_id,
 921			    SAS_ADDR(phy->attached_sas_addr),
 922			    phy->attached_phy_id);
 923		return NULL;
 924	}
 925	child = sas_alloc_device();
 926	if (!child)
 927		return NULL;
 928
 929	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 930	/* FIXME: better error handling */
 931	BUG_ON(sas_port_add(phy->port) != 0);
 932
 933
 934	switch (phy->attached_dev_type) {
 935	case SAS_EDGE_EXPANDER_DEVICE:
 936		rphy = sas_expander_alloc(phy->port,
 937					  SAS_EDGE_EXPANDER_DEVICE);
 938		break;
 939	case SAS_FANOUT_EXPANDER_DEVICE:
 940		rphy = sas_expander_alloc(phy->port,
 941					  SAS_FANOUT_EXPANDER_DEVICE);
 942		break;
 943	default:
 944		rphy = NULL;	/* shut gcc up */
 945		BUG();
 946	}
 947	port = parent->port;
 948	child->rphy = rphy;
 949	get_device(&rphy->dev);
 950	edev = rphy_to_expander_device(rphy);
 951	child->dev_type = phy->attached_dev_type;
 952	kref_get(&parent->kref);
 953	child->parent = parent;
 954	child->port = port;
 955	child->iproto = phy->attached_iproto;
 956	child->tproto = phy->attached_tproto;
 957	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 958	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 959	sas_ex_get_linkrate(parent, child, phy);
 960	edev->level = parent_ex->level + 1;
 961	parent->port->disc.max_level = max(parent->port->disc.max_level,
 962					   edev->level);
 963	sas_init_dev(child);
 964	sas_fill_in_rphy(child, rphy);
 965	sas_rphy_add(rphy);
 966
 967	spin_lock_irq(&parent->port->dev_list_lock);
 968	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 969	spin_unlock_irq(&parent->port->dev_list_lock);
 970
 971	res = sas_discover_expander(child);
 972	if (res) {
 973		sas_rphy_delete(rphy);
 974		spin_lock_irq(&parent->port->dev_list_lock);
 975		list_del(&child->dev_list_node);
 976		spin_unlock_irq(&parent->port->dev_list_lock);
 977		sas_put_device(child);
 
 
 978		return NULL;
 979	}
 980	list_add_tail(&child->siblings, &parent->ex_dev.children);
 981	return child;
 982}
 983
 984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 985{
 986	struct expander_device *ex = &dev->ex_dev;
 987	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 988	struct domain_device *child = NULL;
 989	int res = 0;
 990
 991	/* Phy state */
 992	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 993		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 994			res = sas_ex_phy_discover(dev, phy_id);
 995		if (res)
 996			return res;
 997	}
 998
 999	/* Parent and domain coherency */
1000	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001			     SAS_ADDR(dev->port->sas_addr))) {
1002		sas_add_parent_port(dev, phy_id);
1003		return 0;
1004	}
1005	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006			    SAS_ADDR(dev->parent->sas_addr))) {
1007		sas_add_parent_port(dev, phy_id);
1008		if (ex_phy->routing_attr == TABLE_ROUTING)
1009			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010		return 0;
1011	}
1012
1013	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020		}
1021		return 0;
1022	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023		return 0;
1024
1025	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030			    "phy 0x%x\n", ex_phy->attached_dev_type,
1031			    SAS_ADDR(dev->sas_addr),
1032			    phy_id);
1033		return 0;
1034	}
1035
1036	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037	if (res) {
1038		SAS_DPRINTK("configure routing for dev %016llx "
1039			    "reported 0x%x. Forgotten\n",
1040			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1041		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042		return res;
1043	}
1044
1045	if (sas_ex_join_wide_port(dev, phy_id)) {
1046		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048		return res;
1049	}
1050
1051	switch (ex_phy->attached_dev_type) {
1052	case SAS_END_DEVICE:
1053	case SAS_SATA_PENDING:
1054		child = sas_ex_discover_end_dev(dev, phy_id);
1055		break;
1056	case SAS_FANOUT_EXPANDER_DEVICE:
1057		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059				    "attached to ex %016llx phy 0x%x\n",
1060				    SAS_ADDR(ex_phy->attached_sas_addr),
1061				    ex_phy->attached_phy_id,
1062				    SAS_ADDR(dev->sas_addr),
1063				    phy_id);
1064			sas_ex_disable_phy(dev, phy_id);
1065			break;
1066		} else
1067			memcpy(dev->port->disc.fanout_sas_addr,
1068			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069		/* fallthrough */
1070	case SAS_EDGE_EXPANDER_DEVICE:
1071		child = sas_ex_discover_expander(dev, phy_id);
1072		break;
1073	default:
1074		break;
1075	}
1076
1077	if (child) {
1078		int i;
1079
1080		for (i = 0; i < ex->num_phys; i++) {
1081			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083				continue;
1084			/*
1085			 * Due to races, the phy might not get added to the
1086			 * wide port, so we add the phy to the wide port here.
1087			 */
1088			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089			    SAS_ADDR(child->sas_addr)) {
1090				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091				if (sas_ex_join_wide_port(dev, i))
1092					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095			}
1096		}
1097	}
1098
1099	return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104	struct expander_device *ex = &dev->ex_dev;
1105	int i;
1106
1107	for (i = 0; i < ex->num_phys; i++) {
1108		struct ex_phy *phy = &ex->ex_phy[i];
1109
1110		if (phy->phy_state == PHY_VACANT ||
1111		    phy->phy_state == PHY_NOT_PRESENT)
1112			continue;
1113
1114		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120			return 1;
1121		}
1122	}
1123	return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128	struct expander_device *ex = &dev->ex_dev;
1129	struct domain_device *child;
1130	u8 sub_addr[8] = {0, };
1131
1132	list_for_each_entry(child, &ex->children, siblings) {
1133		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135			continue;
1136		if (sub_addr[0] == 0) {
1137			sas_find_sub_addr(child, sub_addr);
1138			continue;
1139		} else {
1140			u8 s2[8];
1141
1142			if (sas_find_sub_addr(child, s2) &&
1143			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146					    "diverges from subtractive "
1147					    "boundary %016llx\n",
1148					    SAS_ADDR(dev->sas_addr),
1149					    SAS_ADDR(child->sas_addr),
1150					    SAS_ADDR(s2),
1151					    SAS_ADDR(sub_addr));
1152
1153				sas_ex_disable_port(child, s2);
1154			}
1155		}
1156	}
1157	return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169	struct expander_device *ex = &dev->ex_dev;
1170	int i = 0, end = ex->num_phys;
1171	int res = 0;
1172
1173	if (0 <= single && single < end) {
1174		i = single;
1175		end = i+1;
1176	}
1177
1178	for ( ; i < end; i++) {
1179		struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181		if (ex_phy->phy_state == PHY_VACANT ||
1182		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1183		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184			continue;
1185
1186		switch (ex_phy->linkrate) {
1187		case SAS_PHY_DISABLED:
1188		case SAS_PHY_RESET_PROBLEM:
1189		case SAS_SATA_PORT_SELECTOR:
1190			continue;
1191		default:
1192			res = sas_ex_discover_dev(dev, i);
1193			if (res)
1194				break;
1195			continue;
1196		}
1197	}
1198
1199	if (!res)
1200		sas_check_level_subtractive_boundary(dev);
1201
1202	return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207	struct expander_device *ex = &dev->ex_dev;
1208	int i;
1209	u8  *sub_sas_addr = NULL;
1210
1211	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212		return 0;
1213
1214	for (i = 0; i < ex->num_phys; i++) {
1215		struct ex_phy *phy = &ex->ex_phy[i];
1216
1217		if (phy->phy_state == PHY_VACANT ||
1218		    phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225			if (!sub_sas_addr)
1226				sub_sas_addr = &phy->attached_sas_addr[0];
1227			else if (SAS_ADDR(sub_sas_addr) !=
1228				 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230				SAS_DPRINTK("ex %016llx phy 0x%x "
1231					    "diverges(%016llx) on subtractive "
1232					    "boundary(%016llx). Disabled\n",
1233					    SAS_ADDR(dev->sas_addr), i,
1234					    SAS_ADDR(phy->attached_sas_addr),
1235					    SAS_ADDR(sub_sas_addr));
1236				sas_ex_disable_phy(dev, i);
1237			}
1238		}
1239	}
1240	return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244						 struct ex_phy *parent_phy,
1245						 struct ex_phy *child_phy)
1246{
1247	static const char *ex_type[] = {
1248		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250	};
1251	struct domain_device *parent = child->parent;
1252
1253	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254		   "phy 0x%x has %c:%c routing link!\n",
 
 
 
 
 
 
1255
1256		   ex_type[parent->dev_type],
1257		   SAS_ADDR(parent->sas_addr),
1258		   parent_phy->phy_id,
1259
1260		   ex_type[child->dev_type],
1261		   SAS_ADDR(child->sas_addr),
1262		   child_phy->phy_id,
1263
1264		   sas_route_char(parent, parent_phy),
1265		   sas_route_char(child, child_phy));
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269				 struct ex_phy *parent_phy,
1270				 struct ex_phy *child_phy)
1271{
1272	int res = 0;
1273	struct domain_device *parent = child->parent;
1274
1275	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276		res = -ENODEV;
1277		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1279			    SAS_ADDR(parent->sas_addr),
1280			    parent_phy->phy_id,
1281			    SAS_ADDR(child->sas_addr),
1282			    child_phy->phy_id,
1283			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286		       SAS_ADDR_SIZE);
1287		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288		       SAS_ADDR_SIZE);
1289	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290		    SAS_ADDR(parent->sas_addr)) ||
1291		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1292		    SAS_ADDR(child->sas_addr)))
1293		   &&
1294		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295		     SAS_ADDR(parent->sas_addr)) ||
1296		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1297		     SAS_ADDR(child->sas_addr))))
1298		;
1299	else {
1300		res = -ENODEV;
1301		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302			    "phy 0x%x link forms a third EEDS!\n",
1303			    SAS_ADDR(parent->sas_addr),
1304			    parent_phy->phy_id,
1305			    SAS_ADDR(child->sas_addr),
1306			    child_phy->phy_id);
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326		return 0;
1327
1328	parent_ex = &child->parent->ex_dev;
1329
1330	for (i = 0; i < parent_ex->num_phys; i++) {
1331		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332		struct ex_phy *child_phy;
1333
1334		if (parent_phy->phy_state == PHY_VACANT ||
1335		    parent_phy->phy_state == PHY_NOT_PRESENT)
1336			continue;
1337
1338		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339			continue;
1340
1341		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343		switch (child->parent->dev_type) {
1344		case SAS_EDGE_EXPANDER_DEVICE:
1345			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347				    child_phy->routing_attr != TABLE_ROUTING) {
1348					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349					res = -ENODEV;
1350				}
1351			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353					res = sas_check_eeds(child, parent_phy, child_phy);
1354				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1355					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356					res = -ENODEV;
1357				}
1358			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360				    (child_phy->routing_attr == TABLE_ROUTING &&
1361				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362					/* All good */;
1363				} else {
1364					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365					res = -ENODEV;
1366				}
1367			}
1368			break;
1369		case SAS_FANOUT_EXPANDER_DEVICE:
1370			if (parent_phy->routing_attr != TABLE_ROUTING ||
1371			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373				res = -ENODEV;
1374			}
1375			break;
1376		default:
1377			break;
1378		}
1379	}
1380
1381	return res;
1382}
1383
1384#define RRI_REQ_SIZE  16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388				 u8 *sas_addr, int *index, int *present)
1389{
1390	int i, res = 0;
1391	struct expander_device *ex = &dev->ex_dev;
1392	struct ex_phy *phy = &ex->ex_phy[phy_id];
1393	u8 *rri_req;
1394	u8 *rri_resp;
1395
1396	*present = 0;
1397	*index = 0;
1398
1399	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400	if (!rri_req)
1401		return -ENOMEM;
1402
1403	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404	if (!rri_resp) {
1405		kfree(rri_req);
1406		return -ENOMEM;
1407	}
1408
1409	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410	rri_req[9] = phy_id;
1411
1412	for (i = 0; i < ex->max_route_indexes ; i++) {
1413		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415				       RRI_RESP_SIZE);
1416		if (res)
1417			goto out;
1418		res = rri_resp[2];
1419		if (res == SMP_RESP_NO_INDEX) {
1420			SAS_DPRINTK("overflow of indexes: dev %016llx "
1421				    "phy 0x%x index 0x%x\n",
1422				    SAS_ADDR(dev->sas_addr), phy_id, i);
1423			goto out;
1424		} else if (res != SMP_RESP_FUNC_ACC) {
1425			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426				    "result 0x%x\n", __func__,
1427				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428			goto out;
1429		}
1430		if (SAS_ADDR(sas_addr) != 0) {
1431			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432				*index = i;
1433				if ((rri_resp[12] & 0x80) == 0x80)
1434					*present = 0;
1435				else
1436					*present = 1;
1437				goto out;
1438			} else if (SAS_ADDR(rri_resp+16) == 0) {
1439				*index = i;
1440				*present = 0;
1441				goto out;
1442			}
1443		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1444			   phy->last_da_index < i) {
1445			phy->last_da_index = i;
1446			*index = i;
1447			*present = 0;
1448			goto out;
1449		}
1450	}
1451	res = -1;
1452out:
1453	kfree(rri_req);
1454	kfree(rri_resp);
1455	return res;
1456}
1457
1458#define CRI_REQ_SIZE  44
1459#define CRI_RESP_SIZE  8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462			     u8 *sas_addr, int index, int include)
1463{
1464	int res;
1465	u8 *cri_req;
1466	u8 *cri_resp;
1467
1468	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469	if (!cri_req)
1470		return -ENOMEM;
1471
1472	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473	if (!cri_resp) {
1474		kfree(cri_req);
1475		return -ENOMEM;
1476	}
1477
1478	cri_req[1] = SMP_CONF_ROUTE_INFO;
1479	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480	cri_req[9] = phy_id;
1481	if (SAS_ADDR(sas_addr) == 0 || !include)
1482		cri_req[12] |= 0x80;
1483	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486			       CRI_RESP_SIZE);
1487	if (res)
1488		goto out;
1489	res = cri_resp[2];
1490	if (res == SMP_RESP_NO_INDEX) {
1491		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492			    "index 0x%x\n",
1493			    SAS_ADDR(dev->sas_addr), phy_id, index);
1494	}
1495out:
1496	kfree(cri_req);
1497	kfree(cri_resp);
1498	return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502				    u8 *sas_addr, int include)
1503{
1504	int index;
1505	int present;
1506	int res;
1507
1508	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509	if (res)
1510		return res;
1511	if (include ^ present)
1512		return sas_configure_set(dev, phy_id, sas_addr, index,include);
 
1513
1514	return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
 
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524				struct domain_device *child,
1525				u8 *sas_addr, int include)
1526{
1527	struct expander_device *ex_parent = &parent->ex_dev;
1528	int res = 0;
1529	int i;
1530
1531	if (parent->parent) {
1532		res = sas_configure_parent(parent->parent, parent, sas_addr,
1533					   include);
1534		if (res)
1535			return res;
1536	}
1537
1538	if (ex_parent->conf_route_table == 0) {
1539		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540			    SAS_ADDR(parent->sas_addr));
1541		return 0;
1542	}
1543
1544	for (i = 0; i < ex_parent->num_phys; i++) {
1545		struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547		if ((phy->routing_attr == TABLE_ROUTING) &&
1548		    (SAS_ADDR(phy->attached_sas_addr) ==
1549		     SAS_ADDR(child->sas_addr))) {
1550			res = sas_configure_phy(parent, i, sas_addr, include);
1551			if (res)
1552				return res;
1553		}
1554	}
1555
1556	return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566	if (dev->parent)
1567		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568	return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572{
1573	if (dev->parent)
1574		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575	return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586	int res;
1587
1588	res = sas_notify_lldd_dev_found(dev);
1589	if (res)
1590		return res;
1591
1592	res = sas_ex_general(dev);
1593	if (res)
1594		goto out_err;
1595	res = sas_ex_manuf_info(dev);
1596	if (res)
1597		goto out_err;
1598
1599	res = sas_expander_discover(dev);
1600	if (res) {
1601		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602			    SAS_ADDR(dev->sas_addr), res);
1603		goto out_err;
1604	}
1605
1606	sas_check_ex_subtractive_boundary(dev);
1607	res = sas_check_parent_topology(dev);
1608	if (res)
1609		goto out_err;
1610	return 0;
1611out_err:
1612	sas_notify_lldd_dev_gone(dev);
1613	return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618	int res = 0;
1619	struct domain_device *dev;
1620
1621	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624			struct sas_expander_device *ex =
1625				rphy_to_expander_device(dev->rphy);
1626
1627			if (level == ex->level)
1628				res = sas_ex_discover_devices(dev, -1);
1629			else if (level > 0)
1630				res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632		}
1633	}
1634
1635	return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640	int res;
1641	int level;
1642
1643	do {
1644		level = port->disc.max_level;
1645		res = sas_ex_level_discovery(port, level);
1646		mb();
1647	} while (level < port->disc.max_level);
1648
1649	return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654	int res;
1655	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657	res = sas_rphy_add(dev->rphy);
1658	if (res)
1659		goto out_err;
1660
1661	ex->level = dev->port->disc.max_level; /* 0 */
1662	res = sas_discover_expander(dev);
1663	if (res)
1664		goto out_err2;
1665
1666	sas_ex_bfs_disc(dev->port);
1667
1668	return res;
1669
1670out_err2:
1671	sas_rphy_remove(dev->rphy);
1672out_err:
1673	return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
1678static int sas_get_phy_discover(struct domain_device *dev,
1679				int phy_id, struct smp_resp *disc_resp)
1680{
1681	int res;
1682	u8 *disc_req;
1683
1684	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685	if (!disc_req)
1686		return -ENOMEM;
1687
1688	disc_req[1] = SMP_DISCOVER;
1689	disc_req[9] = phy_id;
1690
1691	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692			       disc_resp, DISCOVER_RESP_SIZE);
1693	if (res)
1694		goto out;
1695	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696		res = disc_resp->result;
1697		goto out;
1698	}
1699out:
1700	kfree(disc_req);
1701	return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705				    int phy_id, int *pcc)
1706{
1707	int res;
1708	struct smp_resp *disc_resp;
1709
1710	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711	if (!disc_resp)
1712		return -ENOMEM;
1713
1714	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715	if (!res)
1716		*pcc = disc_resp->disc.change_count;
1717
1718	kfree(disc_resp);
1719	return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723				    u8 *sas_addr, enum sas_device_type *type)
1724{
1725	int res;
1726	struct smp_resp *disc_resp;
1727	struct discover_resp *dr;
1728
1729	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730	if (!disc_resp)
1731		return -ENOMEM;
1732	dr = &disc_resp->disc;
1733
1734	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735	if (res == 0) {
1736		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737		*type = to_dev_type(dr);
 
1738		if (*type == 0)
1739			memset(sas_addr, 0, 8);
1740	}
1741	kfree(disc_resp);
1742	return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746			      int from_phy, bool update)
1747{
1748	struct expander_device *ex = &dev->ex_dev;
1749	int res = 0;
1750	int i;
1751
1752	for (i = from_phy; i < ex->num_phys; i++) {
1753		int phy_change_count = 0;
1754
1755		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756		switch (res) {
1757		case SMP_RESP_PHY_VACANT:
1758		case SMP_RESP_NO_PHY:
1759			continue;
1760		case SMP_RESP_FUNC_ACC:
1761			break;
1762		default:
1763			return res;
1764		}
1765
1766		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767			if (update)
1768				ex->ex_phy[i].phy_change_count =
1769					phy_change_count;
1770			*phy_id = i;
1771			return 0;
1772		}
1773	}
1774	return 0;
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779	int res;
1780	u8  *rg_req;
1781	struct smp_resp  *rg_resp;
1782
1783	rg_req = alloc_smp_req(RG_REQ_SIZE);
1784	if (!rg_req)
1785		return -ENOMEM;
1786
1787	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788	if (!rg_resp) {
1789		kfree(rg_req);
1790		return -ENOMEM;
1791	}
1792
1793	rg_req[1] = SMP_REPORT_GENERAL;
1794
1795	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796			       RG_RESP_SIZE);
1797	if (res)
1798		goto out;
1799	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800		res = rg_resp->result;
1801		goto out;
1802	}
1803
1804	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806	kfree(rg_resp);
1807	kfree(rg_req);
1808	return res;
1809}
1810/**
1811 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826			      struct domain_device **src_dev)
1827{
1828	struct expander_device *ex = &dev->ex_dev;
1829	int ex_change_count = -1;
1830	int phy_id = -1;
1831	int res;
1832	struct domain_device *ch;
1833
1834	res = sas_get_ex_change_count(dev, &ex_change_count);
1835	if (res)
1836		goto out;
1837	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838		/* Just detect if this expander phys phy change count changed,
1839		* in order to determine if this expander originate BROADCAST,
1840		* and do not update phy change count field in our structure.
1841		*/
1842		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843		if (phy_id != -1) {
1844			*src_dev = dev;
1845			ex->ex_change_count = ex_change_count;
1846			SAS_DPRINTK("Expander phy change count has changed\n");
 
1847			return res;
1848		} else
1849			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871			sas_unregister_ex_tree(port, child);
1872		else
1873			sas_unregister_dev(port, child);
1874	}
1875	sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879					 int phy_id, bool last)
1880{
1881	struct expander_device *ex_dev = &parent->ex_dev;
1882	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883	struct domain_device *child, *n, *found = NULL;
1884	if (last) {
1885		list_for_each_entry_safe(child, n,
1886			&ex_dev->children, siblings) {
1887			if (SAS_ADDR(child->sas_addr) ==
1888			    SAS_ADDR(phy->attached_sas_addr)) {
1889				set_bit(SAS_DEV_GONE, &child->state);
1890				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892					sas_unregister_ex_tree(parent->port, child);
1893				else
1894					sas_unregister_dev(parent->port, child);
1895				found = child;
1896				break;
1897			}
1898		}
1899		sas_disable_routing(parent, phy->attached_sas_addr);
1900	}
1901	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902	if (phy->port) {
1903		sas_port_delete_phy(phy->port, phy->phy);
1904		sas_device_set_phy(found, phy->port);
1905		if (phy->port->num_phys == 0)
1906			sas_port_delete(phy->port);
 
1907		phy->port = NULL;
1908	}
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912					  const int level)
1913{
1914	struct expander_device *ex_root = &root->ex_dev;
1915	struct domain_device *child;
1916	int res = 0;
1917
1918	list_for_each_entry(child, &ex_root->children, siblings) {
1919		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921			struct sas_expander_device *ex =
1922				rphy_to_expander_device(child->rphy);
1923
1924			if (level > ex->level)
1925				res = sas_discover_bfs_by_root_level(child,
1926								     level);
1927			else if (level == ex->level)
1928				res = sas_ex_discover_devices(child, -1);
1929		}
1930	}
1931	return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936	int res;
1937	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938	int level = ex->level+1;
1939
1940	res = sas_ex_discover_devices(dev, -1);
1941	if (res)
1942		goto out;
1943	do {
1944		res = sas_discover_bfs_by_root_level(dev, level);
1945		mb();
1946		level += 1;
1947	} while (level <= dev->port->disc.max_level);
1948out:
1949	return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955	struct domain_device *child;
1956	int res;
1957
1958	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959		    SAS_ADDR(dev->sas_addr), phy_id);
1960	res = sas_ex_phy_discover(dev, phy_id);
1961	if (res)
1962		return res;
1963
1964	if (sas_ex_join_wide_port(dev, phy_id))
1965		return 0;
1966
1967	res = sas_ex_discover_devices(dev, phy_id);
1968	if (res)
1969		return res;
1970	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971		if (SAS_ADDR(child->sas_addr) ==
1972		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1973			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975				res = sas_discover_bfs_by_root(child);
1976			break;
1977		}
1978	}
1979	return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984	if (old == new)
1985		return true;
1986
1987	/* treat device directed resets as flutter, if we went
1988	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989	 */
1990	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992		return true;
1993
1994	return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
1998{
1999	struct expander_device *ex = &dev->ex_dev;
2000	struct ex_phy *phy = &ex->ex_phy[phy_id];
2001	enum sas_device_type type = SAS_PHY_UNUSED;
2002	u8 sas_addr[8];
 
2003	int res;
2004
2005	memset(sas_addr, 0, 8);
 
 
 
 
 
 
2006	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007	switch (res) {
2008	case SMP_RESP_NO_PHY:
2009		phy->phy_state = PHY_NOT_PRESENT;
2010		sas_unregister_devs_sas_addr(dev, phy_id, last);
2011		return res;
2012	case SMP_RESP_PHY_VACANT:
2013		phy->phy_state = PHY_VACANT;
2014		sas_unregister_devs_sas_addr(dev, phy_id, last);
2015		return res;
2016	case SMP_RESP_FUNC_ACC:
2017		break;
2018	case -ECOMM:
2019		break;
2020	default:
2021		return res;
2022	}
2023
2024	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025		phy->phy_state = PHY_EMPTY;
2026		sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
 
 
2027		return res;
2028	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029		   dev_type_flutter(type, phy->attached_dev_type)) {
2030		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031		char *action = "";
2032
2033		sas_ex_phy_discover(dev, phy_id);
2034
2035		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036			action = ", needs recovery";
2037		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038			    SAS_ADDR(dev->sas_addr), phy_id, action);
2039		return res;
2040	}
2041
2042	/* delete the old link */
2043	if (SAS_ADDR(phy->attached_sas_addr) &&
2044	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046			    SAS_ADDR(dev->sas_addr), phy_id,
2047			    SAS_ADDR(phy->attached_sas_addr));
2048		sas_unregister_devs_sas_addr(dev, phy_id, last);
2049	}
2050
2051	return sas_discover_new(dev, phy_id);
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered.  Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070	struct expander_device *ex = &dev->ex_dev;
2071	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072	int res = 0;
2073	int i;
2074	bool last = true;	/* is this the last phy of the port */
2075
2076	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077		    SAS_ADDR(dev->sas_addr), phy_id);
2078
2079	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080		for (i = 0; i < ex->num_phys; i++) {
2081			struct ex_phy *phy = &ex->ex_phy[i];
2082
2083			if (i == phy_id)
2084				continue;
2085			if (SAS_ADDR(phy->attached_sas_addr) ==
2086			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2087				SAS_DPRINTK("phy%d part of wide port with "
2088					    "phy%d\n", phy_id, i);
2089				last = false;
2090				break;
2091			}
2092		}
2093		res = sas_rediscover_dev(dev, phy_id, last);
2094	} else
2095		res = sas_discover_new(dev, phy_id);
2096	return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered.  Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110	int res;
2111	struct domain_device *dev = NULL;
2112
2113	res = sas_find_bcast_dev(port_dev, &dev);
2114	while (res == 0 && dev) {
2115		struct expander_device *ex = &dev->ex_dev;
2116		int i = 0, phy_id;
2117
2118		do {
2119			phy_id = -1;
2120			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121			if (phy_id == -1)
2122				break;
2123			res = sas_rediscover(dev, phy_id);
2124			i = phy_id + 1;
2125		} while (i < ex->num_phys);
2126
2127		dev = NULL;
2128		res = sas_find_bcast_dev(port_dev, &dev);
2129	}
2130	return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134		    struct request *req)
2135{
2136	struct domain_device *dev;
2137	int ret, type;
2138	struct request *rsp = req->next_rq;
2139
2140	if (!rsp) {
2141		printk("%s: space for a smp response is missing\n",
2142		       __func__);
2143		return -EINVAL;
2144	}
2145
 
 
 
 
 
 
 
 
 
 
 
2146	/* no rphy means no smp target support (ie aic94xx host) */
2147	if (!rphy)
2148		return sas_smp_host_handler(shost, req, rsp);
2149
2150	type = rphy->identify.device_type;
2151
2152	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2154		printk("%s: can we send a smp request to a device?\n",
 
2155		       __func__);
2156		return -EINVAL;
2157	}
2158
2159	dev = sas_find_dev_by_rphy(rphy);
2160	if (!dev) {
2161		printk("%s: fail to find a domain_device?\n", __func__);
2162		return -EINVAL;
2163	}
2164
2165	/* do we need to support multiple segments? */
2166	if (bio_multiple_segments(req->bio) ||
2167	    bio_multiple_segments(rsp->bio)) {
2168		printk("%s: multiple segments req %u, rsp %u\n",
2169		       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170		return -EINVAL;
 
2171	}
2172
2173	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2175	if (ret > 0) {
2176		/* positive number is the untransferred residual */
2177		rsp->resid_len = ret;
2178		req->resid_len = 0;
2179		ret = 0;
2180	} else if (ret == 0) {
2181		rsp->resid_len = 0;
2182		req->resid_len = 0;
2183	}
2184
2185	return ret;
 
2186}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
  30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31/* Give it some long enough timeout. In seconds. */
  32#define SMP_TIMEOUT 10
  33
  34static int smp_execute_task_sg(struct domain_device *dev,
  35		struct scatterlist *req, struct scatterlist *resp)
  36{
  37	int res, retry;
  38	struct sas_task *task = NULL;
  39	struct sas_internal *i =
  40		to_sas_internal(dev->port->ha->core.shost->transportt);
  41	struct sas_ha_struct *ha = dev->port->ha;
  42
  43	pm_runtime_get_sync(ha->dev);
  44	mutex_lock(&dev->ex_dev.cmd_mutex);
  45	for (retry = 0; retry < 3; retry++) {
  46		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  47			res = -ECOMM;
  48			break;
  49		}
  50
  51		task = sas_alloc_slow_task(GFP_KERNEL);
  52		if (!task) {
  53			res = -ENOMEM;
  54			break;
  55		}
  56		task->dev = dev;
  57		task->task_proto = dev->tproto;
  58		task->smp_task.smp_req = *req;
  59		task->smp_task.smp_resp = *resp;
  60
  61		task->task_done = sas_task_internal_done;
  62
  63		task->slow_task->timer.function = sas_task_internal_timedout;
 
  64		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  65		add_timer(&task->slow_task->timer);
  66
  67		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  68
  69		if (res) {
  70			del_timer_sync(&task->slow_task->timer);
  71			pr_notice("executing SMP task failed:%d\n", res);
  72			break;
  73		}
  74
  75		wait_for_completion(&task->slow_task->completion);
  76		res = -ECOMM;
  77		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  78			pr_notice("smp task timed out or aborted\n");
  79			i->dft->lldd_abort_task(task);
  80			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  81				pr_notice("SMP task aborted and not done\n");
  82				break;
  83			}
  84		}
  85		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  86		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
  87			res = 0;
  88			break;
  89		}
  90		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  91		    task->task_status.stat == SAS_DATA_UNDERRUN) {
  92			/* no error, but return the number of bytes of
  93			 * underrun */
  94			res = task->task_status.residual;
  95			break;
  96		}
  97		if (task->task_status.resp == SAS_TASK_COMPLETE &&
  98		    task->task_status.stat == SAS_DATA_OVERRUN) {
  99			res = -EMSGSIZE;
 100			break;
 101		}
 102		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 103		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 104			break;
 105		else {
 106			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 107				  __func__,
 108				  SAS_ADDR(dev->sas_addr),
 109				  task->task_status.resp,
 110				  task->task_status.stat);
 111			sas_free_task(task);
 112			task = NULL;
 113		}
 114	}
 115	mutex_unlock(&dev->ex_dev.cmd_mutex);
 116	pm_runtime_put_sync(ha->dev);
 117
 118	BUG_ON(retry == 3 && task != NULL);
 119	sas_free_task(task);
 120	return res;
 121}
 122
 123static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 124			    void *resp, int resp_size)
 125{
 126	struct scatterlist req_sg;
 127	struct scatterlist resp_sg;
 128
 129	sg_init_one(&req_sg, req, req_size);
 130	sg_init_one(&resp_sg, resp, resp_size);
 131	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 132}
 133
 134/* ---------- Allocations ---------- */
 135
 136static inline void *alloc_smp_req(int size)
 137{
 138	u8 *p = kzalloc(size, GFP_KERNEL);
 139	if (p)
 140		p[0] = SMP_REQUEST;
 141	return p;
 142}
 143
 144static inline void *alloc_smp_resp(int size)
 145{
 146	return kzalloc(size, GFP_KERNEL);
 147}
 148
 149static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 150{
 151	switch (phy->routing_attr) {
 152	case TABLE_ROUTING:
 153		if (dev->ex_dev.t2t_supp)
 154			return 'U';
 155		else
 156			return 'T';
 157	case DIRECT_ROUTING:
 158		return 'D';
 159	case SUBTRACTIVE_ROUTING:
 160		return 'S';
 161	default:
 162		return '?';
 163	}
 164}
 165
 166static enum sas_device_type to_dev_type(struct discover_resp *dr)
 167{
 168	/* This is detecting a failure to transmit initial dev to host
 169	 * FIS as described in section J.5 of sas-2 r16
 170	 */
 171	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 172	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 173		return SAS_SATA_PENDING;
 174	else
 175		return dr->attached_dev_type;
 176}
 177
 178static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 179			   struct smp_disc_resp *disc_resp)
 180{
 181	enum sas_device_type dev_type;
 182	enum sas_linkrate linkrate;
 183	u8 sas_addr[SAS_ADDR_SIZE];
 184	struct discover_resp *dr = &disc_resp->disc;
 
 185	struct sas_ha_struct *ha = dev->port->ha;
 186	struct expander_device *ex = &dev->ex_dev;
 187	struct ex_phy *phy = &ex->ex_phy[phy_id];
 188	struct sas_rphy *rphy = dev->rphy;
 189	bool new_phy = !phy->phy;
 190	char *type;
 191
 192	if (new_phy) {
 193		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 194			return;
 195		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 196
 197		/* FIXME: error_handling */
 198		BUG_ON(!phy->phy);
 199	}
 200
 201	switch (disc_resp->result) {
 202	case SMP_RESP_PHY_VACANT:
 203		phy->phy_state = PHY_VACANT;
 204		break;
 205	default:
 206		phy->phy_state = PHY_NOT_PRESENT;
 207		break;
 208	case SMP_RESP_FUNC_ACC:
 209		phy->phy_state = PHY_EMPTY; /* do not know yet */
 210		break;
 211	}
 212
 213	/* check if anything important changed to squelch debug */
 214	dev_type = phy->attached_dev_type;
 215	linkrate  = phy->linkrate;
 216	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 217
 218	/* Handle vacant phy - rest of dr data is not valid so skip it */
 219	if (phy->phy_state == PHY_VACANT) {
 220		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 221		phy->attached_dev_type = SAS_PHY_UNUSED;
 222		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 223			phy->phy_id = phy_id;
 224			goto skip;
 225		} else
 226			goto out;
 227	}
 228
 229	phy->attached_dev_type = to_dev_type(dr);
 230	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 231		goto out;
 232	phy->phy_id = phy_id;
 233	phy->linkrate = dr->linkrate;
 234	phy->attached_sata_host = dr->attached_sata_host;
 235	phy->attached_sata_dev  = dr->attached_sata_dev;
 236	phy->attached_sata_ps   = dr->attached_sata_ps;
 237	phy->attached_iproto = dr->iproto << 1;
 238	phy->attached_tproto = dr->tproto << 1;
 239	/* help some expanders that fail to zero sas_address in the 'no
 240	 * device' case
 241	 */
 242	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 243	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 244		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 245	else
 246		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 247	phy->attached_phy_id = dr->attached_phy_id;
 248	phy->phy_change_count = dr->change_count;
 249	phy->routing_attr = dr->routing_attr;
 250	phy->virtual = dr->virtual;
 251	phy->last_da_index = -1;
 252
 253	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 254	phy->phy->identify.device_type = dr->attached_dev_type;
 255	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 256	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 257	if (!phy->attached_tproto && dr->attached_sata_dev)
 258		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 259	phy->phy->identify.phy_identifier = phy_id;
 260	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 261	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 262	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 263	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 264	phy->phy->negotiated_linkrate = phy->linkrate;
 265	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 266
 267 skip:
 268	if (new_phy)
 269		if (sas_phy_add(phy->phy)) {
 270			sas_phy_free(phy->phy);
 271			return;
 272		}
 273
 274 out:
 275	switch (phy->attached_dev_type) {
 276	case SAS_SATA_PENDING:
 277		type = "stp pending";
 278		break;
 279	case SAS_PHY_UNUSED:
 280		type = "no device";
 281		break;
 282	case SAS_END_DEVICE:
 283		if (phy->attached_iproto) {
 284			if (phy->attached_tproto)
 285				type = "host+target";
 286			else
 287				type = "host";
 288		} else {
 289			if (dr->attached_sata_dev)
 290				type = "stp";
 291			else
 292				type = "ssp";
 293		}
 294		break;
 295	case SAS_EDGE_EXPANDER_DEVICE:
 296	case SAS_FANOUT_EXPANDER_DEVICE:
 297		type = "smp";
 298		break;
 299	default:
 300		type = "unknown";
 301	}
 302
 303	/* this routine is polled by libata error recovery so filter
 304	 * unimportant messages
 305	 */
 306	if (new_phy || phy->attached_dev_type != dev_type ||
 307	    phy->linkrate != linkrate ||
 308	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 309		/* pass */;
 310	else
 311		return;
 312
 313	/* if the attached device type changed and ata_eh is active,
 314	 * make sure we run revalidation when eh completes (see:
 315	 * sas_enable_revalidation)
 316	 */
 317	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 318		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 319
 320	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 321		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 322		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 323		 sas_route_char(dev, phy), phy->linkrate,
 324		 SAS_ADDR(phy->attached_sas_addr), type);
 325}
 326
 327/* check if we have an existing attached ata device on this expander phy */
 328struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 329{
 330	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 331	struct domain_device *dev;
 332	struct sas_rphy *rphy;
 333
 334	if (!ex_phy->port)
 335		return NULL;
 336
 337	rphy = ex_phy->port->rphy;
 338	if (!rphy)
 339		return NULL;
 340
 341	dev = sas_find_dev_by_rphy(rphy);
 342
 343	if (dev && dev_is_sata(dev))
 344		return dev;
 345
 346	return NULL;
 347}
 348
 349#define DISCOVER_REQ_SIZE  16
 350#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
 351
 352static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 353				      struct smp_disc_resp *disc_resp,
 354				      int single)
 355{
 356	struct discover_resp *dr = &disc_resp->disc;
 357	int res;
 358
 359	disc_req[9] = single;
 360
 361	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 362			       disc_resp, DISCOVER_RESP_SIZE);
 363	if (res)
 364		return res;
 
 365	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 366		pr_notice("Found loopback topology, just ignore it!\n");
 367		return 0;
 368	}
 369	sas_set_ex_phy(dev, single, disc_resp);
 370	return 0;
 371}
 372
 373int sas_ex_phy_discover(struct domain_device *dev, int single)
 374{
 375	struct expander_device *ex = &dev->ex_dev;
 376	int  res = 0;
 377	u8   *disc_req;
 378	struct smp_disc_resp *disc_resp;
 379
 380	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 381	if (!disc_req)
 382		return -ENOMEM;
 383
 384	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 385	if (!disc_resp) {
 386		kfree(disc_req);
 387		return -ENOMEM;
 388	}
 389
 390	disc_req[1] = SMP_DISCOVER;
 391
 392	if (0 <= single && single < ex->num_phys) {
 393		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 394	} else {
 395		int i;
 396
 397		for (i = 0; i < ex->num_phys; i++) {
 398			res = sas_ex_phy_discover_helper(dev, disc_req,
 399							 disc_resp, i);
 400			if (res)
 401				goto out_err;
 402		}
 403	}
 404out_err:
 405	kfree(disc_resp);
 406	kfree(disc_req);
 407	return res;
 408}
 409
 410static int sas_expander_discover(struct domain_device *dev)
 411{
 412	struct expander_device *ex = &dev->ex_dev;
 413	int res;
 414
 415	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 416	if (!ex->ex_phy)
 417		return -ENOMEM;
 418
 419	res = sas_ex_phy_discover(dev, -1);
 420	if (res)
 421		goto out_err;
 422
 423	return 0;
 424 out_err:
 425	kfree(ex->ex_phy);
 426	ex->ex_phy = NULL;
 427	return res;
 428}
 429
 430#define MAX_EXPANDER_PHYS 128
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432#define RG_REQ_SIZE   8
 433#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
 434
 435static int sas_ex_general(struct domain_device *dev)
 436{
 437	u8 *rg_req;
 438	struct smp_rg_resp *rg_resp;
 439	struct report_general_resp *rg;
 440	int res;
 441	int i;
 442
 443	rg_req = alloc_smp_req(RG_REQ_SIZE);
 444	if (!rg_req)
 445		return -ENOMEM;
 446
 447	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 448	if (!rg_resp) {
 449		kfree(rg_req);
 450		return -ENOMEM;
 451	}
 452
 453	rg_req[1] = SMP_REPORT_GENERAL;
 454
 455	for (i = 0; i < 5; i++) {
 456		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 457				       RG_RESP_SIZE);
 458
 459		if (res) {
 460			pr_notice("RG to ex %016llx failed:0x%x\n",
 461				  SAS_ADDR(dev->sas_addr), res);
 462			goto out;
 463		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 464			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 465				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 466			res = rg_resp->result;
 467			goto out;
 468		}
 469
 470		rg = &rg_resp->rg;
 471		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 472		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 473		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 474		dev->ex_dev.t2t_supp = rg->t2t_supp;
 475		dev->ex_dev.conf_route_table = rg->conf_route_table;
 476		dev->ex_dev.configuring = rg->configuring;
 477		memcpy(dev->ex_dev.enclosure_logical_id,
 478		       rg->enclosure_logical_id, 8);
 479
 480		if (dev->ex_dev.configuring) {
 481			pr_debug("RG: ex %016llx self-configuring...\n",
 482				 SAS_ADDR(dev->sas_addr));
 483			schedule_timeout_interruptible(5*HZ);
 484		} else
 485			break;
 486	}
 487out:
 488	kfree(rg_req);
 489	kfree(rg_resp);
 490	return res;
 491}
 492
 493static void ex_assign_manuf_info(struct domain_device *dev, void
 494					*_mi_resp)
 495{
 496	u8 *mi_resp = _mi_resp;
 497	struct sas_rphy *rphy = dev->rphy;
 498	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 499
 500	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 501	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 502	memcpy(edev->product_rev, mi_resp + 36,
 503	       SAS_EXPANDER_PRODUCT_REV_LEN);
 504
 505	if (mi_resp[8] & 1) {
 506		memcpy(edev->component_vendor_id, mi_resp + 40,
 507		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 508		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 509		edev->component_revision_id = mi_resp[50];
 510	}
 511}
 512
 513#define MI_REQ_SIZE   8
 514#define MI_RESP_SIZE 64
 515
 516static int sas_ex_manuf_info(struct domain_device *dev)
 517{
 518	u8 *mi_req;
 519	u8 *mi_resp;
 520	int res;
 521
 522	mi_req = alloc_smp_req(MI_REQ_SIZE);
 523	if (!mi_req)
 524		return -ENOMEM;
 525
 526	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 527	if (!mi_resp) {
 528		kfree(mi_req);
 529		return -ENOMEM;
 530	}
 531
 532	mi_req[1] = SMP_REPORT_MANUF_INFO;
 533
 534	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 535	if (res) {
 536		pr_notice("MI: ex %016llx failed:0x%x\n",
 537			  SAS_ADDR(dev->sas_addr), res);
 538		goto out;
 539	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 540		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 541			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 542		goto out;
 543	}
 544
 545	ex_assign_manuf_info(dev, mi_resp);
 546out:
 547	kfree(mi_req);
 548	kfree(mi_resp);
 549	return res;
 550}
 551
 552#define PC_REQ_SIZE  44
 553#define PC_RESP_SIZE 8
 554
 555int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 556			enum phy_func phy_func,
 557			struct sas_phy_linkrates *rates)
 558{
 559	u8 *pc_req;
 560	u8 *pc_resp;
 561	int res;
 562
 563	pc_req = alloc_smp_req(PC_REQ_SIZE);
 564	if (!pc_req)
 565		return -ENOMEM;
 566
 567	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 568	if (!pc_resp) {
 569		kfree(pc_req);
 570		return -ENOMEM;
 571	}
 572
 573	pc_req[1] = SMP_PHY_CONTROL;
 574	pc_req[9] = phy_id;
 575	pc_req[10] = phy_func;
 576	if (rates) {
 577		pc_req[32] = rates->minimum_linkrate << 4;
 578		pc_req[33] = rates->maximum_linkrate << 4;
 579	}
 580
 581	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 582	if (res) {
 583		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 584		       SAS_ADDR(dev->sas_addr), phy_id, res);
 585	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 586		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 587		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 588		res = pc_resp[2];
 589	}
 590	kfree(pc_resp);
 591	kfree(pc_req);
 592	return res;
 593}
 594
 595static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 596{
 597	struct expander_device *ex = &dev->ex_dev;
 598	struct ex_phy *phy = &ex->ex_phy[phy_id];
 599
 600	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 601	phy->linkrate = SAS_PHY_DISABLED;
 602}
 603
 604static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 605{
 606	struct expander_device *ex = &dev->ex_dev;
 607	int i;
 608
 609	for (i = 0; i < ex->num_phys; i++) {
 610		struct ex_phy *phy = &ex->ex_phy[i];
 611
 612		if (phy->phy_state == PHY_VACANT ||
 613		    phy->phy_state == PHY_NOT_PRESENT)
 614			continue;
 615
 616		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 617			sas_ex_disable_phy(dev, i);
 618	}
 619}
 620
 621static int sas_dev_present_in_domain(struct asd_sas_port *port,
 622					    u8 *sas_addr)
 623{
 624	struct domain_device *dev;
 625
 626	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 627		return 1;
 628	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 629		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 630			return 1;
 631	}
 632	return 0;
 633}
 634
 635#define RPEL_REQ_SIZE	16
 636#define RPEL_RESP_SIZE	32
 637int sas_smp_get_phy_events(struct sas_phy *phy)
 638{
 639	int res;
 640	u8 *req;
 641	u8 *resp;
 642	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 643	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 644
 645	req = alloc_smp_req(RPEL_REQ_SIZE);
 646	if (!req)
 647		return -ENOMEM;
 648
 649	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 650	if (!resp) {
 651		kfree(req);
 652		return -ENOMEM;
 653	}
 654
 655	req[1] = SMP_REPORT_PHY_ERR_LOG;
 656	req[9] = phy->number;
 657
 658	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 659			       resp, RPEL_RESP_SIZE);
 660
 661	if (res)
 662		goto out;
 663
 664	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 665	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 666	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 667	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 668
 669 out:
 670	kfree(req);
 671	kfree(resp);
 672	return res;
 673
 674}
 675
 676#ifdef CONFIG_SCSI_SAS_ATA
 677
 678#define RPS_REQ_SIZE  16
 679#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
 680
 681int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 682			    struct smp_rps_resp *rps_resp)
 683{
 684	int res;
 685	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 686	u8 *resp = (u8 *)rps_resp;
 687
 688	if (!rps_req)
 689		return -ENOMEM;
 690
 691	rps_req[1] = SMP_REPORT_PHY_SATA;
 692	rps_req[9] = phy_id;
 693
 694	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 695			       rps_resp, RPS_RESP_SIZE);
 696
 697	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 698	 * standards cockup here.  sas-2 explicitly specifies the FIS
 699	 * should be encoded so that FIS type is in resp[24].
 700	 * However, some expanders endian reverse this.  Undo the
 701	 * reversal here */
 702	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 703		int i;
 704
 705		for (i = 0; i < 5; i++) {
 706			int j = 24 + (i*4);
 707			u8 a, b;
 708			a = resp[j + 0];
 709			b = resp[j + 1];
 710			resp[j + 0] = resp[j + 3];
 711			resp[j + 1] = resp[j + 2];
 712			resp[j + 2] = b;
 713			resp[j + 3] = a;
 714		}
 715	}
 716
 717	kfree(rps_req);
 718	return res;
 719}
 720#endif
 721
 722static void sas_ex_get_linkrate(struct domain_device *parent,
 723				       struct domain_device *child,
 724				       struct ex_phy *parent_phy)
 725{
 726	struct expander_device *parent_ex = &parent->ex_dev;
 727	struct sas_port *port;
 728	int i;
 729
 730	child->pathways = 0;
 731
 732	port = parent_phy->port;
 733
 734	for (i = 0; i < parent_ex->num_phys; i++) {
 735		struct ex_phy *phy = &parent_ex->ex_phy[i];
 736
 737		if (phy->phy_state == PHY_VACANT ||
 738		    phy->phy_state == PHY_NOT_PRESENT)
 739			continue;
 740
 741		if (sas_phy_match_dev_addr(child, phy)) {
 
 
 742			child->min_linkrate = min(parent->min_linkrate,
 743						  phy->linkrate);
 744			child->max_linkrate = max(parent->max_linkrate,
 745						  phy->linkrate);
 746			child->pathways++;
 747			sas_port_add_phy(port, phy->phy);
 748		}
 749	}
 750	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 751	child->pathways = min(child->pathways, parent->pathways);
 752}
 753
 754static struct domain_device *sas_ex_discover_end_dev(
 755	struct domain_device *parent, int phy_id)
 756{
 757	struct expander_device *parent_ex = &parent->ex_dev;
 758	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 759	struct domain_device *child = NULL;
 760	struct sas_rphy *rphy;
 761	int res;
 762
 763	if (phy->attached_sata_host || phy->attached_sata_ps)
 764		return NULL;
 765
 766	child = sas_alloc_device();
 767	if (!child)
 768		return NULL;
 769
 770	kref_get(&parent->kref);
 771	child->parent = parent;
 772	child->port   = parent->port;
 773	child->iproto = phy->attached_iproto;
 774	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 775	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 776	if (!phy->port) {
 777		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 778		if (unlikely(!phy->port))
 779			goto out_err;
 780		if (unlikely(sas_port_add(phy->port) != 0)) {
 781			sas_port_free(phy->port);
 782			goto out_err;
 783		}
 784	}
 785	sas_ex_get_linkrate(parent, child, phy);
 786	sas_device_set_phy(child, phy->port);
 787
 788#ifdef CONFIG_SCSI_SAS_ATA
 789	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 790		if (child->linkrate > parent->min_linkrate) {
 791			struct sas_phy *cphy = child->phy;
 792			enum sas_linkrate min_prate = cphy->minimum_linkrate,
 793				parent_min_lrate = parent->min_linkrate,
 794				min_linkrate = (min_prate > parent_min_lrate) ?
 795					       parent_min_lrate : 0;
 796			struct sas_phy_linkrates rates = {
 797				.maximum_linkrate = parent->min_linkrate,
 798				.minimum_linkrate = min_linkrate,
 799			};
 800			int ret;
 801
 802			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
 803				   SAS_ADDR(child->sas_addr), phy_id);
 804			ret = sas_smp_phy_control(parent, phy_id,
 805						  PHY_FUNC_LINK_RESET, &rates);
 806			if (ret) {
 807				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
 808				       SAS_ADDR(child->sas_addr), phy_id, ret);
 809				goto out_free;
 810			}
 811			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
 812				  SAS_ADDR(child->sas_addr), phy_id);
 813			child->linkrate = child->min_linkrate;
 814		}
 815		res = sas_get_ata_info(child, phy);
 816		if (res)
 817			goto out_free;
 818
 819		sas_init_dev(child);
 820		res = sas_ata_init(child);
 821		if (res)
 822			goto out_free;
 823		rphy = sas_end_device_alloc(phy->port);
 824		if (!rphy)
 825			goto out_free;
 826		rphy->identify.phy_identifier = phy_id;
 827
 828		child->rphy = rphy;
 829		get_device(&rphy->dev);
 830
 831		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 832
 833		res = sas_discover_sata(child);
 834		if (res) {
 835			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
 836				  SAS_ADDR(child->sas_addr),
 837				  SAS_ADDR(parent->sas_addr), phy_id, res);
 
 838			goto out_list_del;
 839		}
 840	} else
 841#endif
 842	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 843		child->dev_type = SAS_END_DEVICE;
 844		rphy = sas_end_device_alloc(phy->port);
 845		/* FIXME: error handling */
 846		if (unlikely(!rphy))
 847			goto out_free;
 848		child->tproto = phy->attached_tproto;
 849		sas_init_dev(child);
 850
 851		child->rphy = rphy;
 852		get_device(&rphy->dev);
 853		rphy->identify.phy_identifier = phy_id;
 854		sas_fill_in_rphy(child, rphy);
 855
 856		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 857
 858		res = sas_discover_end_dev(child);
 859		if (res) {
 860			pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
 861				  SAS_ADDR(child->sas_addr),
 862				  SAS_ADDR(parent->sas_addr), phy_id, res);
 
 863			goto out_list_del;
 864		}
 865	} else {
 866		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 867			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 868			  phy_id);
 869		goto out_free;
 870	}
 871
 872	list_add_tail(&child->siblings, &parent_ex->children);
 873	return child;
 874
 875 out_list_del:
 876	sas_rphy_free(child->rphy);
 877	list_del(&child->disco_list_node);
 878	spin_lock_irq(&parent->port->dev_list_lock);
 879	list_del(&child->dev_list_node);
 880	spin_unlock_irq(&parent->port->dev_list_lock);
 881 out_free:
 882	sas_port_delete(phy->port);
 883 out_err:
 884	phy->port = NULL;
 885	sas_put_device(child);
 886	return NULL;
 887}
 888
 889/* See if this phy is part of a wide port */
 890static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 891{
 892	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 893	int i;
 894
 895	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 896		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 897
 898		if (ephy == phy)
 899			continue;
 900
 901		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 902			    SAS_ADDR_SIZE) && ephy->port) {
 903			sas_port_add_phy(ephy->port, phy->phy);
 904			phy->port = ephy->port;
 905			phy->phy_state = PHY_DEVICE_DISCOVERED;
 906			return true;
 907		}
 908	}
 909
 910	return false;
 911}
 912
 913static struct domain_device *sas_ex_discover_expander(
 914	struct domain_device *parent, int phy_id)
 915{
 916	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 917	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 918	struct domain_device *child = NULL;
 919	struct sas_rphy *rphy;
 920	struct sas_expander_device *edev;
 921	struct asd_sas_port *port;
 922	int res;
 923
 924	if (phy->routing_attr == DIRECT_ROUTING) {
 925		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 926			SAS_ADDR(parent->sas_addr), phy_id,
 927			SAS_ADDR(phy->attached_sas_addr),
 928			phy->attached_phy_id);
 
 929		return NULL;
 930	}
 931	child = sas_alloc_device();
 932	if (!child)
 933		return NULL;
 934
 935	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 936	/* FIXME: better error handling */
 937	BUG_ON(sas_port_add(phy->port) != 0);
 938
 939
 940	switch (phy->attached_dev_type) {
 941	case SAS_EDGE_EXPANDER_DEVICE:
 942		rphy = sas_expander_alloc(phy->port,
 943					  SAS_EDGE_EXPANDER_DEVICE);
 944		break;
 945	case SAS_FANOUT_EXPANDER_DEVICE:
 946		rphy = sas_expander_alloc(phy->port,
 947					  SAS_FANOUT_EXPANDER_DEVICE);
 948		break;
 949	default:
 950		rphy = NULL;	/* shut gcc up */
 951		BUG();
 952	}
 953	port = parent->port;
 954	child->rphy = rphy;
 955	get_device(&rphy->dev);
 956	edev = rphy_to_expander_device(rphy);
 957	child->dev_type = phy->attached_dev_type;
 958	kref_get(&parent->kref);
 959	child->parent = parent;
 960	child->port = port;
 961	child->iproto = phy->attached_iproto;
 962	child->tproto = phy->attached_tproto;
 963	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 964	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 965	sas_ex_get_linkrate(parent, child, phy);
 966	edev->level = parent_ex->level + 1;
 967	parent->port->disc.max_level = max(parent->port->disc.max_level,
 968					   edev->level);
 969	sas_init_dev(child);
 970	sas_fill_in_rphy(child, rphy);
 971	sas_rphy_add(rphy);
 972
 973	spin_lock_irq(&parent->port->dev_list_lock);
 974	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 975	spin_unlock_irq(&parent->port->dev_list_lock);
 976
 977	res = sas_discover_expander(child);
 978	if (res) {
 979		sas_rphy_delete(rphy);
 980		spin_lock_irq(&parent->port->dev_list_lock);
 981		list_del(&child->dev_list_node);
 982		spin_unlock_irq(&parent->port->dev_list_lock);
 983		sas_put_device(child);
 984		sas_port_delete(phy->port);
 985		phy->port = NULL;
 986		return NULL;
 987	}
 988	list_add_tail(&child->siblings, &parent->ex_dev.children);
 989	return child;
 990}
 991
 992static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 993{
 994	struct expander_device *ex = &dev->ex_dev;
 995	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 996	struct domain_device *child = NULL;
 997	int res = 0;
 998
 999	/* Phy state */
1000	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1001		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1002			res = sas_ex_phy_discover(dev, phy_id);
1003		if (res)
1004			return res;
1005	}
1006
1007	/* Parent and domain coherency */
1008	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
 
1009		sas_add_parent_port(dev, phy_id);
1010		return 0;
1011	}
1012	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
 
1013		sas_add_parent_port(dev, phy_id);
1014		if (ex_phy->routing_attr == TABLE_ROUTING)
1015			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1016		return 0;
1017	}
1018
1019	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1020		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1021
1022	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1023		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1024			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1025			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1026		}
1027		return 0;
1028	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1029		return 0;
1030
1031	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1032	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1033	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1034	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1035		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1036			ex_phy->attached_dev_type,
1037			SAS_ADDR(dev->sas_addr),
1038			phy_id);
1039		return 0;
1040	}
1041
1042	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1043	if (res) {
1044		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1045			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1046		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1047		return res;
1048	}
1049
1050	if (sas_ex_join_wide_port(dev, phy_id)) {
1051		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1052			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1053		return res;
1054	}
1055
1056	switch (ex_phy->attached_dev_type) {
1057	case SAS_END_DEVICE:
1058	case SAS_SATA_PENDING:
1059		child = sas_ex_discover_end_dev(dev, phy_id);
1060		break;
1061	case SAS_FANOUT_EXPANDER_DEVICE:
1062		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1063			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1064				 SAS_ADDR(ex_phy->attached_sas_addr),
1065				 ex_phy->attached_phy_id,
1066				 SAS_ADDR(dev->sas_addr),
1067				 phy_id);
 
1068			sas_ex_disable_phy(dev, phy_id);
1069			return res;
1070		} else
1071			memcpy(dev->port->disc.fanout_sas_addr,
1072			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1073		fallthrough;
1074	case SAS_EDGE_EXPANDER_DEVICE:
1075		child = sas_ex_discover_expander(dev, phy_id);
1076		break;
1077	default:
1078		break;
1079	}
1080
1081	if (!child)
1082		pr_notice("ex %016llx phy%02d failed to discover\n",
1083			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084	return res;
1085}
1086
1087static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1088{
1089	struct expander_device *ex = &dev->ex_dev;
1090	int i;
1091
1092	for (i = 0; i < ex->num_phys; i++) {
1093		struct ex_phy *phy = &ex->ex_phy[i];
1094
1095		if (phy->phy_state == PHY_VACANT ||
1096		    phy->phy_state == PHY_NOT_PRESENT)
1097			continue;
1098
1099		if (dev_is_expander(phy->attached_dev_type) &&
 
1100		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1101
1102			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1103
1104			return 1;
1105		}
1106	}
1107	return 0;
1108}
1109
1110static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1111{
1112	struct expander_device *ex = &dev->ex_dev;
1113	struct domain_device *child;
1114	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1115
1116	list_for_each_entry(child, &ex->children, siblings) {
1117		if (!dev_is_expander(child->dev_type))
 
1118			continue;
1119		if (sub_addr[0] == 0) {
1120			sas_find_sub_addr(child, sub_addr);
1121			continue;
1122		} else {
1123			u8 s2[SAS_ADDR_SIZE];
1124
1125			if (sas_find_sub_addr(child, s2) &&
1126			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1127
1128				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1129					  SAS_ADDR(dev->sas_addr),
1130					  SAS_ADDR(child->sas_addr),
1131					  SAS_ADDR(s2),
1132					  SAS_ADDR(sub_addr));
 
 
1133
1134				sas_ex_disable_port(child, s2);
1135			}
1136		}
1137	}
1138	return 0;
1139}
1140/**
1141 * sas_ex_discover_devices - discover devices attached to this expander
1142 * @dev: pointer to the expander domain device
1143 * @single: if you want to do a single phy, else set to -1;
1144 *
1145 * Configure this expander for use with its devices and register the
1146 * devices of this expander.
1147 */
1148static int sas_ex_discover_devices(struct domain_device *dev, int single)
1149{
1150	struct expander_device *ex = &dev->ex_dev;
1151	int i = 0, end = ex->num_phys;
1152	int res = 0;
1153
1154	if (0 <= single && single < end) {
1155		i = single;
1156		end = i+1;
1157	}
1158
1159	for ( ; i < end; i++) {
1160		struct ex_phy *ex_phy = &ex->ex_phy[i];
1161
1162		if (ex_phy->phy_state == PHY_VACANT ||
1163		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1164		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1165			continue;
1166
1167		switch (ex_phy->linkrate) {
1168		case SAS_PHY_DISABLED:
1169		case SAS_PHY_RESET_PROBLEM:
1170		case SAS_SATA_PORT_SELECTOR:
1171			continue;
1172		default:
1173			res = sas_ex_discover_dev(dev, i);
1174			if (res)
1175				break;
1176			continue;
1177		}
1178	}
1179
1180	if (!res)
1181		sas_check_level_subtractive_boundary(dev);
1182
1183	return res;
1184}
1185
1186static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1187{
1188	struct expander_device *ex = &dev->ex_dev;
1189	int i;
1190	u8  *sub_sas_addr = NULL;
1191
1192	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1193		return 0;
1194
1195	for (i = 0; i < ex->num_phys; i++) {
1196		struct ex_phy *phy = &ex->ex_phy[i];
1197
1198		if (phy->phy_state == PHY_VACANT ||
1199		    phy->phy_state == PHY_NOT_PRESENT)
1200			continue;
1201
1202		if (dev_is_expander(phy->attached_dev_type) &&
 
1203		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1204
1205			if (!sub_sas_addr)
1206				sub_sas_addr = &phy->attached_sas_addr[0];
1207			else if (SAS_ADDR(sub_sas_addr) !=
1208				 SAS_ADDR(phy->attached_sas_addr)) {
1209
1210				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1211					  SAS_ADDR(dev->sas_addr), i,
1212					  SAS_ADDR(phy->attached_sas_addr),
1213					  SAS_ADDR(sub_sas_addr));
 
 
1214				sas_ex_disable_phy(dev, i);
1215			}
1216		}
1217	}
1218	return 0;
1219}
1220
1221static void sas_print_parent_topology_bug(struct domain_device *child,
1222						 struct ex_phy *parent_phy,
1223						 struct ex_phy *child_phy)
1224{
1225	static const char *ex_type[] = {
1226		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1227		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1228	};
1229	struct domain_device *parent = child->parent;
1230
1231	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1232		  ex_type[parent->dev_type],
1233		  SAS_ADDR(parent->sas_addr),
1234		  parent_phy->phy_id,
1235
1236		  ex_type[child->dev_type],
1237		  SAS_ADDR(child->sas_addr),
1238		  child_phy->phy_id,
1239
1240		  sas_route_char(parent, parent_phy),
1241		  sas_route_char(child, child_phy));
 
 
 
 
 
 
 
 
1242}
1243
1244static int sas_check_eeds(struct domain_device *child,
1245				 struct ex_phy *parent_phy,
1246				 struct ex_phy *child_phy)
1247{
1248	int res = 0;
1249	struct domain_device *parent = child->parent;
1250
1251	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1252		res = -ENODEV;
1253		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1254			SAS_ADDR(parent->sas_addr),
1255			parent_phy->phy_id,
1256			SAS_ADDR(child->sas_addr),
1257			child_phy->phy_id,
1258			SAS_ADDR(parent->port->disc.fanout_sas_addr));
 
1259	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1260		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1261		       SAS_ADDR_SIZE);
1262		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1263		       SAS_ADDR_SIZE);
1264	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1265		    SAS_ADDR(parent->sas_addr)) ||
1266		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1267		    SAS_ADDR(child->sas_addr)))
1268		   &&
1269		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1270		     SAS_ADDR(parent->sas_addr)) ||
1271		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1272		     SAS_ADDR(child->sas_addr))))
1273		;
1274	else {
1275		res = -ENODEV;
1276		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1277			SAS_ADDR(parent->sas_addr),
1278			parent_phy->phy_id,
1279			SAS_ADDR(child->sas_addr),
1280			child_phy->phy_id);
 
1281	}
1282
1283	return res;
1284}
1285
1286/* Here we spill over 80 columns.  It is intentional.
1287 */
1288static int sas_check_parent_topology(struct domain_device *child)
1289{
1290	struct expander_device *child_ex = &child->ex_dev;
1291	struct expander_device *parent_ex;
1292	int i;
1293	int res = 0;
1294
1295	if (!child->parent)
1296		return 0;
1297
1298	if (!dev_is_expander(child->parent->dev_type))
 
1299		return 0;
1300
1301	parent_ex = &child->parent->ex_dev;
1302
1303	for (i = 0; i < parent_ex->num_phys; i++) {
1304		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1305		struct ex_phy *child_phy;
1306
1307		if (parent_phy->phy_state == PHY_VACANT ||
1308		    parent_phy->phy_state == PHY_NOT_PRESENT)
1309			continue;
1310
1311		if (!sas_phy_match_dev_addr(child, parent_phy))
1312			continue;
1313
1314		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1315
1316		switch (child->parent->dev_type) {
1317		case SAS_EDGE_EXPANDER_DEVICE:
1318			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1319				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1320				    child_phy->routing_attr != TABLE_ROUTING) {
1321					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1322					res = -ENODEV;
1323				}
1324			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1325				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1326					res = sas_check_eeds(child, parent_phy, child_phy);
1327				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1328					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1329					res = -ENODEV;
1330				}
1331			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1332				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1333				    (child_phy->routing_attr == TABLE_ROUTING &&
1334				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1335					/* All good */;
1336				} else {
1337					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1338					res = -ENODEV;
1339				}
1340			}
1341			break;
1342		case SAS_FANOUT_EXPANDER_DEVICE:
1343			if (parent_phy->routing_attr != TABLE_ROUTING ||
1344			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1345				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1346				res = -ENODEV;
1347			}
1348			break;
1349		default:
1350			break;
1351		}
1352	}
1353
1354	return res;
1355}
1356
1357#define RRI_REQ_SIZE  16
1358#define RRI_RESP_SIZE 44
1359
1360static int sas_configure_present(struct domain_device *dev, int phy_id,
1361				 u8 *sas_addr, int *index, int *present)
1362{
1363	int i, res = 0;
1364	struct expander_device *ex = &dev->ex_dev;
1365	struct ex_phy *phy = &ex->ex_phy[phy_id];
1366	u8 *rri_req;
1367	u8 *rri_resp;
1368
1369	*present = 0;
1370	*index = 0;
1371
1372	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1373	if (!rri_req)
1374		return -ENOMEM;
1375
1376	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1377	if (!rri_resp) {
1378		kfree(rri_req);
1379		return -ENOMEM;
1380	}
1381
1382	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1383	rri_req[9] = phy_id;
1384
1385	for (i = 0; i < ex->max_route_indexes ; i++) {
1386		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1387		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1388				       RRI_RESP_SIZE);
1389		if (res)
1390			goto out;
1391		res = rri_resp[2];
1392		if (res == SMP_RESP_NO_INDEX) {
1393			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1394				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1395			goto out;
1396		} else if (res != SMP_RESP_FUNC_ACC) {
1397			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1398				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1399				  i, res);
1400			goto out;
1401		}
1402		if (SAS_ADDR(sas_addr) != 0) {
1403			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1404				*index = i;
1405				if ((rri_resp[12] & 0x80) == 0x80)
1406					*present = 0;
1407				else
1408					*present = 1;
1409				goto out;
1410			} else if (SAS_ADDR(rri_resp+16) == 0) {
1411				*index = i;
1412				*present = 0;
1413				goto out;
1414			}
1415		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1416			   phy->last_da_index < i) {
1417			phy->last_da_index = i;
1418			*index = i;
1419			*present = 0;
1420			goto out;
1421		}
1422	}
1423	res = -1;
1424out:
1425	kfree(rri_req);
1426	kfree(rri_resp);
1427	return res;
1428}
1429
1430#define CRI_REQ_SIZE  44
1431#define CRI_RESP_SIZE  8
1432
1433static int sas_configure_set(struct domain_device *dev, int phy_id,
1434			     u8 *sas_addr, int index, int include)
1435{
1436	int res;
1437	u8 *cri_req;
1438	u8 *cri_resp;
1439
1440	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1441	if (!cri_req)
1442		return -ENOMEM;
1443
1444	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1445	if (!cri_resp) {
1446		kfree(cri_req);
1447		return -ENOMEM;
1448	}
1449
1450	cri_req[1] = SMP_CONF_ROUTE_INFO;
1451	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1452	cri_req[9] = phy_id;
1453	if (SAS_ADDR(sas_addr) == 0 || !include)
1454		cri_req[12] |= 0x80;
1455	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1456
1457	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1458			       CRI_RESP_SIZE);
1459	if (res)
1460		goto out;
1461	res = cri_resp[2];
1462	if (res == SMP_RESP_NO_INDEX) {
1463		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1464			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1465	}
1466out:
1467	kfree(cri_req);
1468	kfree(cri_resp);
1469	return res;
1470}
1471
1472static int sas_configure_phy(struct domain_device *dev, int phy_id,
1473				    u8 *sas_addr, int include)
1474{
1475	int index;
1476	int present;
1477	int res;
1478
1479	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1480	if (res)
1481		return res;
1482	if (include ^ present)
1483		return sas_configure_set(dev, phy_id, sas_addr, index,
1484					 include);
1485
1486	return res;
1487}
1488
1489/**
1490 * sas_configure_parent - configure routing table of parent
1491 * @parent: parent expander
1492 * @child: child expander
1493 * @sas_addr: SAS port identifier of device directly attached to child
1494 * @include: whether or not to include @child in the expander routing table
1495 */
1496static int sas_configure_parent(struct domain_device *parent,
1497				struct domain_device *child,
1498				u8 *sas_addr, int include)
1499{
1500	struct expander_device *ex_parent = &parent->ex_dev;
1501	int res = 0;
1502	int i;
1503
1504	if (parent->parent) {
1505		res = sas_configure_parent(parent->parent, parent, sas_addr,
1506					   include);
1507		if (res)
1508			return res;
1509	}
1510
1511	if (ex_parent->conf_route_table == 0) {
1512		pr_debug("ex %016llx has self-configuring routing table\n",
1513			 SAS_ADDR(parent->sas_addr));
1514		return 0;
1515	}
1516
1517	for (i = 0; i < ex_parent->num_phys; i++) {
1518		struct ex_phy *phy = &ex_parent->ex_phy[i];
1519
1520		if ((phy->routing_attr == TABLE_ROUTING) &&
1521		    sas_phy_match_dev_addr(child, phy)) {
 
1522			res = sas_configure_phy(parent, i, sas_addr, include);
1523			if (res)
1524				return res;
1525		}
1526	}
1527
1528	return res;
1529}
1530
1531/**
1532 * sas_configure_routing - configure routing
1533 * @dev: expander device
1534 * @sas_addr: port identifier of device directly attached to the expander device
1535 */
1536static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1537{
1538	if (dev->parent)
1539		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1540	return 0;
1541}
1542
1543static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1544{
1545	if (dev->parent)
1546		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1547	return 0;
1548}
1549
1550/**
1551 * sas_discover_expander - expander discovery
1552 * @dev: pointer to expander domain device
1553 *
1554 * See comment in sas_discover_sata().
1555 */
1556static int sas_discover_expander(struct domain_device *dev)
1557{
1558	int res;
1559
1560	res = sas_notify_lldd_dev_found(dev);
1561	if (res)
1562		return res;
1563
1564	res = sas_ex_general(dev);
1565	if (res)
1566		goto out_err;
1567	res = sas_ex_manuf_info(dev);
1568	if (res)
1569		goto out_err;
1570
1571	res = sas_expander_discover(dev);
1572	if (res) {
1573		pr_warn("expander %016llx discovery failed(0x%x)\n",
1574			SAS_ADDR(dev->sas_addr), res);
1575		goto out_err;
1576	}
1577
1578	sas_check_ex_subtractive_boundary(dev);
1579	res = sas_check_parent_topology(dev);
1580	if (res)
1581		goto out_err;
1582	return 0;
1583out_err:
1584	sas_notify_lldd_dev_gone(dev);
1585	return res;
1586}
1587
1588static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1589{
1590	int res = 0;
1591	struct domain_device *dev;
1592
1593	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1594		if (dev_is_expander(dev->dev_type)) {
 
1595			struct sas_expander_device *ex =
1596				rphy_to_expander_device(dev->rphy);
1597
1598			if (level == ex->level)
1599				res = sas_ex_discover_devices(dev, -1);
1600			else if (level > 0)
1601				res = sas_ex_discover_devices(port->port_dev, -1);
1602
1603		}
1604	}
1605
1606	return res;
1607}
1608
1609static int sas_ex_bfs_disc(struct asd_sas_port *port)
1610{
1611	int res;
1612	int level;
1613
1614	do {
1615		level = port->disc.max_level;
1616		res = sas_ex_level_discovery(port, level);
1617		mb();
1618	} while (level < port->disc.max_level);
1619
1620	return res;
1621}
1622
1623int sas_discover_root_expander(struct domain_device *dev)
1624{
1625	int res;
1626	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1627
1628	res = sas_rphy_add(dev->rphy);
1629	if (res)
1630		goto out_err;
1631
1632	ex->level = dev->port->disc.max_level; /* 0 */
1633	res = sas_discover_expander(dev);
1634	if (res)
1635		goto out_err2;
1636
1637	sas_ex_bfs_disc(dev->port);
1638
1639	return res;
1640
1641out_err2:
1642	sas_rphy_remove(dev->rphy);
1643out_err:
1644	return res;
1645}
1646
1647/* ---------- Domain revalidation ---------- */
1648
1649static int sas_get_phy_discover(struct domain_device *dev,
1650				int phy_id, struct smp_disc_resp *disc_resp)
1651{
1652	int res;
1653	u8 *disc_req;
1654
1655	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1656	if (!disc_req)
1657		return -ENOMEM;
1658
1659	disc_req[1] = SMP_DISCOVER;
1660	disc_req[9] = phy_id;
1661
1662	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1663			       disc_resp, DISCOVER_RESP_SIZE);
1664	if (res)
1665		goto out;
1666	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1667		res = disc_resp->result;
 
 
1668out:
1669	kfree(disc_req);
1670	return res;
1671}
1672
1673static int sas_get_phy_change_count(struct domain_device *dev,
1674				    int phy_id, int *pcc)
1675{
1676	int res;
1677	struct smp_disc_resp *disc_resp;
1678
1679	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1680	if (!disc_resp)
1681		return -ENOMEM;
1682
1683	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1684	if (!res)
1685		*pcc = disc_resp->disc.change_count;
1686
1687	kfree(disc_resp);
1688	return res;
1689}
1690
1691int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1692			     u8 *sas_addr, enum sas_device_type *type)
1693{
1694	int res;
1695	struct smp_disc_resp *disc_resp;
 
1696
1697	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1698	if (!disc_resp)
1699		return -ENOMEM;
 
1700
1701	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1702	if (res == 0) {
1703		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1704		       SAS_ADDR_SIZE);
1705		*type = to_dev_type(&disc_resp->disc);
1706		if (*type == 0)
1707			memset(sas_addr, 0, SAS_ADDR_SIZE);
1708	}
1709	kfree(disc_resp);
1710	return res;
1711}
1712
1713static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1714			      int from_phy, bool update)
1715{
1716	struct expander_device *ex = &dev->ex_dev;
1717	int res = 0;
1718	int i;
1719
1720	for (i = from_phy; i < ex->num_phys; i++) {
1721		int phy_change_count = 0;
1722
1723		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1724		switch (res) {
1725		case SMP_RESP_PHY_VACANT:
1726		case SMP_RESP_NO_PHY:
1727			continue;
1728		case SMP_RESP_FUNC_ACC:
1729			break;
1730		default:
1731			return res;
1732		}
1733
1734		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1735			if (update)
1736				ex->ex_phy[i].phy_change_count =
1737					phy_change_count;
1738			*phy_id = i;
1739			return 0;
1740		}
1741	}
1742	return 0;
1743}
1744
1745static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1746{
1747	int res;
1748	u8  *rg_req;
1749	struct smp_rg_resp  *rg_resp;
1750
1751	rg_req = alloc_smp_req(RG_REQ_SIZE);
1752	if (!rg_req)
1753		return -ENOMEM;
1754
1755	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1756	if (!rg_resp) {
1757		kfree(rg_req);
1758		return -ENOMEM;
1759	}
1760
1761	rg_req[1] = SMP_REPORT_GENERAL;
1762
1763	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1764			       RG_RESP_SIZE);
1765	if (res)
1766		goto out;
1767	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1768		res = rg_resp->result;
1769		goto out;
1770	}
1771
1772	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1773out:
1774	kfree(rg_resp);
1775	kfree(rg_req);
1776	return res;
1777}
1778/**
1779 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1780 * @dev:domain device to be detect.
1781 * @src_dev: the device which originated BROADCAST(CHANGE).
1782 *
1783 * Add self-configuration expander support. Suppose two expander cascading,
1784 * when the first level expander is self-configuring, hotplug the disks in
1785 * second level expander, BROADCAST(CHANGE) will not only be originated
1786 * in the second level expander, but also be originated in the first level
1787 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1788 * expander changed count in two level expanders will all increment at least
1789 * once, but the phy which chang count has changed is the source device which
1790 * we concerned.
1791 */
1792
1793static int sas_find_bcast_dev(struct domain_device *dev,
1794			      struct domain_device **src_dev)
1795{
1796	struct expander_device *ex = &dev->ex_dev;
1797	int ex_change_count = -1;
1798	int phy_id = -1;
1799	int res;
1800	struct domain_device *ch;
1801
1802	res = sas_get_ex_change_count(dev, &ex_change_count);
1803	if (res)
1804		goto out;
1805	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1806		/* Just detect if this expander phys phy change count changed,
1807		* in order to determine if this expander originate BROADCAST,
1808		* and do not update phy change count field in our structure.
1809		*/
1810		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1811		if (phy_id != -1) {
1812			*src_dev = dev;
1813			ex->ex_change_count = ex_change_count;
1814			pr_info("ex %016llx phy%02d change count has changed\n",
1815				SAS_ADDR(dev->sas_addr), phy_id);
1816			return res;
1817		} else
1818			pr_info("ex %016llx phys DID NOT change\n",
1819				SAS_ADDR(dev->sas_addr));
1820	}
1821	list_for_each_entry(ch, &ex->children, siblings) {
1822		if (dev_is_expander(ch->dev_type)) {
1823			res = sas_find_bcast_dev(ch, src_dev);
1824			if (*src_dev)
1825				return res;
1826		}
1827	}
1828out:
1829	return res;
1830}
1831
1832static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1833{
1834	struct expander_device *ex = &dev->ex_dev;
1835	struct domain_device *child, *n;
1836
1837	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1838		set_bit(SAS_DEV_GONE, &child->state);
1839		if (dev_is_expander(child->dev_type))
 
1840			sas_unregister_ex_tree(port, child);
1841		else
1842			sas_unregister_dev(port, child);
1843	}
1844	sas_unregister_dev(port, dev);
1845}
1846
1847static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1848					 int phy_id, bool last)
1849{
1850	struct expander_device *ex_dev = &parent->ex_dev;
1851	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1852	struct domain_device *child, *n, *found = NULL;
1853	if (last) {
1854		list_for_each_entry_safe(child, n,
1855			&ex_dev->children, siblings) {
1856			if (sas_phy_match_dev_addr(child, phy)) {
 
1857				set_bit(SAS_DEV_GONE, &child->state);
1858				if (dev_is_expander(child->dev_type))
 
1859					sas_unregister_ex_tree(parent->port, child);
1860				else
1861					sas_unregister_dev(parent->port, child);
1862				found = child;
1863				break;
1864			}
1865		}
1866		sas_disable_routing(parent, phy->attached_sas_addr);
1867	}
1868	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1869	if (phy->port) {
1870		sas_port_delete_phy(phy->port, phy->phy);
1871		sas_device_set_phy(found, phy->port);
1872		if (phy->port->num_phys == 0)
1873			list_add_tail(&phy->port->del_list,
1874				&parent->port->sas_port_del_list);
1875		phy->port = NULL;
1876	}
1877}
1878
1879static int sas_discover_bfs_by_root_level(struct domain_device *root,
1880					  const int level)
1881{
1882	struct expander_device *ex_root = &root->ex_dev;
1883	struct domain_device *child;
1884	int res = 0;
1885
1886	list_for_each_entry(child, &ex_root->children, siblings) {
1887		if (dev_is_expander(child->dev_type)) {
 
1888			struct sas_expander_device *ex =
1889				rphy_to_expander_device(child->rphy);
1890
1891			if (level > ex->level)
1892				res = sas_discover_bfs_by_root_level(child,
1893								     level);
1894			else if (level == ex->level)
1895				res = sas_ex_discover_devices(child, -1);
1896		}
1897	}
1898	return res;
1899}
1900
1901static int sas_discover_bfs_by_root(struct domain_device *dev)
1902{
1903	int res;
1904	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1905	int level = ex->level+1;
1906
1907	res = sas_ex_discover_devices(dev, -1);
1908	if (res)
1909		goto out;
1910	do {
1911		res = sas_discover_bfs_by_root_level(dev, level);
1912		mb();
1913		level += 1;
1914	} while (level <= dev->port->disc.max_level);
1915out:
1916	return res;
1917}
1918
1919static int sas_discover_new(struct domain_device *dev, int phy_id)
1920{
1921	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1922	struct domain_device *child;
1923	int res;
1924
1925	pr_debug("ex %016llx phy%02d new device attached\n",
1926		 SAS_ADDR(dev->sas_addr), phy_id);
1927	res = sas_ex_phy_discover(dev, phy_id);
1928	if (res)
1929		return res;
1930
1931	if (sas_ex_join_wide_port(dev, phy_id))
1932		return 0;
1933
1934	res = sas_ex_discover_devices(dev, phy_id);
1935	if (res)
1936		return res;
1937	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1938		if (sas_phy_match_dev_addr(child, ex_phy)) {
1939			if (dev_is_expander(child->dev_type))
 
 
1940				res = sas_discover_bfs_by_root(child);
1941			break;
1942		}
1943	}
1944	return res;
1945}
1946
1947static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1948{
1949	if (old == new)
1950		return true;
1951
1952	/* treat device directed resets as flutter, if we went
1953	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1954	 */
1955	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1956	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1957		return true;
1958
1959	return false;
1960}
1961
1962static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1963			      bool last, int sibling)
1964{
1965	struct expander_device *ex = &dev->ex_dev;
1966	struct ex_phy *phy = &ex->ex_phy[phy_id];
1967	enum sas_device_type type = SAS_PHY_UNUSED;
1968	u8 sas_addr[SAS_ADDR_SIZE];
1969	char msg[80] = "";
1970	int res;
1971
1972	if (!last)
1973		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1974
1975	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1976		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1977
1978	memset(sas_addr, 0, SAS_ADDR_SIZE);
1979	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1980	switch (res) {
1981	case SMP_RESP_NO_PHY:
1982		phy->phy_state = PHY_NOT_PRESENT;
1983		sas_unregister_devs_sas_addr(dev, phy_id, last);
1984		return res;
1985	case SMP_RESP_PHY_VACANT:
1986		phy->phy_state = PHY_VACANT;
1987		sas_unregister_devs_sas_addr(dev, phy_id, last);
1988		return res;
1989	case SMP_RESP_FUNC_ACC:
1990		break;
1991	case -ECOMM:
1992		break;
1993	default:
1994		return res;
1995	}
1996
1997	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1998		phy->phy_state = PHY_EMPTY;
1999		sas_unregister_devs_sas_addr(dev, phy_id, last);
2000		/*
2001		 * Even though the PHY is empty, for convenience we discover
2002		 * the PHY to update the PHY info, like negotiated linkrate.
2003		 */
2004		sas_ex_phy_discover(dev, phy_id);
2005		return res;
2006	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2007		   dev_type_flutter(type, phy->attached_dev_type)) {
2008		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2009		char *action = "";
2010
2011		sas_ex_phy_discover(dev, phy_id);
2012
2013		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2014			action = ", needs recovery";
2015		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2016			 SAS_ADDR(dev->sas_addr), phy_id, action);
2017		return res;
2018	}
2019
2020	/* we always have to delete the old device when we went here */
2021	pr_info("ex %016llx phy%02d replace %016llx\n",
2022		SAS_ADDR(dev->sas_addr), phy_id,
2023		SAS_ADDR(phy->attached_sas_addr));
2024	sas_unregister_devs_sas_addr(dev, phy_id, last);
 
 
 
2025
2026	return sas_discover_new(dev, phy_id);
2027}
2028
2029/**
2030 * sas_rediscover - revalidate the domain.
2031 * @dev:domain device to be detect.
2032 * @phy_id: the phy id will be detected.
2033 *
2034 * NOTE: this process _must_ quit (return) as soon as any connection
2035 * errors are encountered.  Connection recovery is done elsewhere.
2036 * Discover process only interrogates devices in order to discover the
2037 * domain.For plugging out, we un-register the device only when it is
2038 * the last phy in the port, for other phys in this port, we just delete it
2039 * from the port.For inserting, we do discovery when it is the
2040 * first phy,for other phys in this port, we add it to the port to
2041 * forming the wide-port.
2042 */
2043static int sas_rediscover(struct domain_device *dev, const int phy_id)
2044{
2045	struct expander_device *ex = &dev->ex_dev;
2046	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2047	int res = 0;
2048	int i;
2049	bool last = true;	/* is this the last phy of the port */
2050
2051	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2052		 SAS_ADDR(dev->sas_addr), phy_id);
2053
2054	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2055		for (i = 0; i < ex->num_phys; i++) {
2056			struct ex_phy *phy = &ex->ex_phy[i];
2057
2058			if (i == phy_id)
2059				continue;
2060			if (sas_phy_addr_match(phy, changed_phy)) {
 
 
 
2061				last = false;
2062				break;
2063			}
2064		}
2065		res = sas_rediscover_dev(dev, phy_id, last, i);
2066	} else
2067		res = sas_discover_new(dev, phy_id);
2068	return res;
2069}
2070
2071/**
2072 * sas_ex_revalidate_domain - revalidate the domain
2073 * @port_dev: port domain device.
2074 *
2075 * NOTE: this process _must_ quit (return) as soon as any connection
2076 * errors are encountered.  Connection recovery is done elsewhere.
2077 * Discover process only interrogates devices in order to discover the
2078 * domain.
2079 */
2080int sas_ex_revalidate_domain(struct domain_device *port_dev)
2081{
2082	int res;
2083	struct domain_device *dev = NULL;
2084
2085	res = sas_find_bcast_dev(port_dev, &dev);
2086	if (res == 0 && dev) {
2087		struct expander_device *ex = &dev->ex_dev;
2088		int i = 0, phy_id;
2089
2090		do {
2091			phy_id = -1;
2092			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2093			if (phy_id == -1)
2094				break;
2095			res = sas_rediscover(dev, phy_id);
2096			i = phy_id + 1;
2097		} while (i < ex->num_phys);
 
 
 
2098	}
2099	return res;
2100}
2101
2102int sas_find_attached_phy_id(struct expander_device *ex_dev,
2103			     struct domain_device *dev)
2104{
2105	struct ex_phy *phy;
2106	int phy_id;
 
2107
2108	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2109		phy = &ex_dev->ex_phy[phy_id];
2110		if (sas_phy_match_dev_addr(dev, phy))
2111			return phy_id;
2112	}
2113
2114	return -ENODEV;
2115}
2116EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2117
2118void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2119		struct sas_rphy *rphy)
2120{
2121	struct domain_device *dev;
2122	unsigned int rcvlen = 0;
2123	int ret = -EINVAL;
2124
2125	/* no rphy means no smp target support (ie aic94xx host) */
2126	if (!rphy)
2127		return sas_smp_host_handler(job, shost);
2128
2129	switch (rphy->identify.device_type) {
2130	case SAS_EDGE_EXPANDER_DEVICE:
2131	case SAS_FANOUT_EXPANDER_DEVICE:
2132		break;
2133	default:
2134		pr_err("%s: can we send a smp request to a device?\n",
2135		       __func__);
2136		goto out;
2137	}
2138
2139	dev = sas_find_dev_by_rphy(rphy);
2140	if (!dev) {
2141		pr_err("%s: fail to find a domain_device?\n", __func__);
2142		goto out;
2143	}
2144
2145	/* do we need to support multiple segments? */
2146	if (job->request_payload.sg_cnt > 1 ||
2147	    job->reply_payload.sg_cnt > 1) {
2148		pr_info("%s: multiple segments req %u, rsp %u\n",
2149			__func__, job->request_payload.payload_len,
2150			job->reply_payload.payload_len);
2151		goto out;
2152	}
2153
2154	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2155			job->reply_payload.sg_list);
2156	if (ret >= 0) {
2157		/* bsg_job_done() requires the length received  */
2158		rcvlen = job->reply_payload.payload_len - ret;
 
2159		ret = 0;
 
 
 
2160	}
2161
2162out:
2163	bsg_job_done(job, ret, rcvlen);
2164}