Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
 
 
 
  23#include "tree-log.h"
  24#include "disk-io.h"
  25#include "locking.h"
  26#include "print-tree.h"
  27#include "backref.h"
  28#include "hash.h"
  29#include "compression.h"
  30#include "qgroup.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32/* magic values for the inode_only field in btrfs_log_inode:
  33 *
  34 * LOG_INODE_ALL means to log everything
  35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  36 * during log replay
  37 */
  38#define LOG_INODE_ALL 0
  39#define LOG_INODE_EXISTS 1
  40#define LOG_OTHER_INODE 2
 
  41
  42/*
  43 * directory trouble cases
  44 *
  45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  46 * log, we must force a full commit before doing an fsync of the directory
  47 * where the unlink was done.
  48 * ---> record transid of last unlink/rename per directory
  49 *
  50 * mkdir foo/some_dir
  51 * normal commit
  52 * rename foo/some_dir foo2/some_dir
  53 * mkdir foo/some_dir
  54 * fsync foo/some_dir/some_file
  55 *
  56 * The fsync above will unlink the original some_dir without recording
  57 * it in its new location (foo2).  After a crash, some_dir will be gone
  58 * unless the fsync of some_file forces a full commit
  59 *
  60 * 2) we must log any new names for any file or dir that is in the fsync
  61 * log. ---> check inode while renaming/linking.
  62 *
  63 * 2a) we must log any new names for any file or dir during rename
  64 * when the directory they are being removed from was logged.
  65 * ---> check inode and old parent dir during rename
  66 *
  67 *  2a is actually the more important variant.  With the extra logging
  68 *  a crash might unlink the old name without recreating the new one
  69 *
  70 * 3) after a crash, we must go through any directories with a link count
  71 * of zero and redo the rm -rf
  72 *
  73 * mkdir f1/foo
  74 * normal commit
  75 * rm -rf f1/foo
  76 * fsync(f1)
  77 *
  78 * The directory f1 was fully removed from the FS, but fsync was never
  79 * called on f1, only its parent dir.  After a crash the rm -rf must
  80 * be replayed.  This must be able to recurse down the entire
  81 * directory tree.  The inode link count fixup code takes care of the
  82 * ugly details.
  83 */
  84
  85/*
  86 * stages for the tree walking.  The first
  87 * stage (0) is to only pin down the blocks we find
  88 * the second stage (1) is to make sure that all the inodes
  89 * we find in the log are created in the subvolume.
  90 *
  91 * The last stage is to deal with directories and links and extents
  92 * and all the other fun semantics
  93 */
  94#define LOG_WALK_PIN_ONLY 0
  95#define LOG_WALK_REPLAY_INODES 1
  96#define LOG_WALK_REPLAY_DIR_INDEX 2
  97#define LOG_WALK_REPLAY_ALL 3
 
 
  98
  99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 100			   struct btrfs_root *root, struct inode *inode,
 101			   int inode_only,
 102			   const loff_t start,
 103			   const loff_t end,
 104			   struct btrfs_log_ctx *ctx);
 105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 106			     struct btrfs_root *root,
 107			     struct btrfs_path *path, u64 objectid);
 108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 109				       struct btrfs_root *root,
 110				       struct btrfs_root *log,
 111				       struct btrfs_path *path,
 112				       u64 dirid, int del_all);
 
 113
 114/*
 115 * tree logging is a special write ahead log used to make sure that
 116 * fsyncs and O_SYNCs can happen without doing full tree commits.
 117 *
 118 * Full tree commits are expensive because they require commonly
 119 * modified blocks to be recowed, creating many dirty pages in the
 120 * extent tree an 4x-6x higher write load than ext3.
 121 *
 122 * Instead of doing a tree commit on every fsync, we use the
 123 * key ranges and transaction ids to find items for a given file or directory
 124 * that have changed in this transaction.  Those items are copied into
 125 * a special tree (one per subvolume root), that tree is written to disk
 126 * and then the fsync is considered complete.
 127 *
 128 * After a crash, items are copied out of the log-tree back into the
 129 * subvolume tree.  Any file data extents found are recorded in the extent
 130 * allocation tree, and the log-tree freed.
 131 *
 132 * The log tree is read three times, once to pin down all the extents it is
 133 * using in ram and once, once to create all the inodes logged in the tree
 134 * and once to do all the other items.
 135 */
 136
 137/*
 138 * start a sub transaction and setup the log tree
 139 * this increments the log tree writer count to make the people
 140 * syncing the tree wait for us to finish
 141 */
 142static int start_log_trans(struct btrfs_trans_handle *trans,
 143			   struct btrfs_root *root,
 144			   struct btrfs_log_ctx *ctx)
 145{
 146	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 147	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149	mutex_lock(&root->log_mutex);
 150
 
 151	if (root->log_root) {
 152		if (btrfs_need_log_full_commit(fs_info, trans)) {
 153			ret = -EAGAIN;
 
 
 154			goto out;
 155		}
 156
 
 
 
 
 
 157		if (!root->log_start_pid) {
 158			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 159			root->log_start_pid = current->pid;
 160		} else if (root->log_start_pid != current->pid) {
 161			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 162		}
 163	} else {
 164		mutex_lock(&fs_info->tree_log_mutex);
 165		if (!fs_info->log_root_tree)
 166			ret = btrfs_init_log_root_tree(trans, fs_info);
 167		mutex_unlock(&fs_info->tree_log_mutex);
 168		if (ret)
 
 
 
 169			goto out;
 
 170
 171		ret = btrfs_add_log_tree(trans, root);
 172		if (ret)
 173			goto out;
 174
 
 175		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 176		root->log_start_pid = current->pid;
 177	}
 178
 179	atomic_inc(&root->log_batch);
 180	atomic_inc(&root->log_writers);
 181	if (ctx) {
 182		int index = root->log_transid % 2;
 183		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 184		ctx->log_transid = root->log_transid;
 185	}
 186
 187out:
 188	mutex_unlock(&root->log_mutex);
 189	return ret;
 190}
 191
 192/*
 193 * returns 0 if there was a log transaction running and we were able
 194 * to join, or returns -ENOENT if there were not transactions
 195 * in progress
 196 */
 197static int join_running_log_trans(struct btrfs_root *root)
 198{
 
 199	int ret = -ENOENT;
 200
 201	smp_mb();
 202	if (!root->log_root)
 203		return -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 
 206	if (root->log_root) {
 
 
 207		ret = 0;
 
 
 
 
 208		atomic_inc(&root->log_writers);
 209	}
 210	mutex_unlock(&root->log_mutex);
 211	return ret;
 212}
 213
 214/*
 215 * This either makes the current running log transaction wait
 216 * until you call btrfs_end_log_trans() or it makes any future
 217 * log transactions wait until you call btrfs_end_log_trans()
 218 */
 219int btrfs_pin_log_trans(struct btrfs_root *root)
 220{
 221	int ret = -ENOENT;
 222
 223	mutex_lock(&root->log_mutex);
 224	atomic_inc(&root->log_writers);
 225	mutex_unlock(&root->log_mutex);
 226	return ret;
 227}
 228
 229/*
 230 * indicate we're done making changes to the log tree
 231 * and wake up anyone waiting to do a sync
 232 */
 233void btrfs_end_log_trans(struct btrfs_root *root)
 234{
 235	if (atomic_dec_and_test(&root->log_writers)) {
 236		/*
 237		 * Implicit memory barrier after atomic_dec_and_test
 238		 */
 239		if (waitqueue_active(&root->log_writer_wait))
 240			wake_up(&root->log_writer_wait);
 241	}
 242}
 243
 244
 245/*
 246 * the walk control struct is used to pass state down the chain when
 247 * processing the log tree.  The stage field tells us which part
 248 * of the log tree processing we are currently doing.  The others
 249 * are state fields used for that specific part
 250 */
 251struct walk_control {
 252	/* should we free the extent on disk when done?  This is used
 253	 * at transaction commit time while freeing a log tree
 254	 */
 255	int free;
 256
 257	/* should we write out the extent buffer?  This is used
 258	 * while flushing the log tree to disk during a sync
 259	 */
 260	int write;
 261
 262	/* should we wait for the extent buffer io to finish?  Also used
 263	 * while flushing the log tree to disk for a sync
 264	 */
 265	int wait;
 266
 267	/* pin only walk, we record which extents on disk belong to the
 268	 * log trees
 269	 */
 270	int pin;
 271
 272	/* what stage of the replay code we're currently in */
 273	int stage;
 274
 
 
 
 
 
 
 
 275	/* the root we are currently replaying */
 276	struct btrfs_root *replay_dest;
 277
 278	/* the trans handle for the current replay */
 279	struct btrfs_trans_handle *trans;
 280
 281	/* the function that gets used to process blocks we find in the
 282	 * tree.  Note the extent_buffer might not be up to date when it is
 283	 * passed in, and it must be checked or read if you need the data
 284	 * inside it
 285	 */
 286	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 287			    struct walk_control *wc, u64 gen);
 288};
 289
 290/*
 291 * process_func used to pin down extents, write them or wait on them
 292 */
 293static int process_one_buffer(struct btrfs_root *log,
 294			      struct extent_buffer *eb,
 295			      struct walk_control *wc, u64 gen)
 296{
 297	struct btrfs_fs_info *fs_info = log->fs_info;
 298	int ret = 0;
 299
 300	/*
 301	 * If this fs is mixed then we need to be able to process the leaves to
 302	 * pin down any logged extents, so we have to read the block.
 303	 */
 304	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 305		ret = btrfs_read_buffer(eb, gen);
 
 
 
 
 
 306		if (ret)
 307			return ret;
 308	}
 309
 310	if (wc->pin)
 311		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 312						      eb->len);
 313
 314	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 315		if (wc->pin && btrfs_header_level(eb) == 0)
 316			ret = btrfs_exclude_logged_extents(fs_info, eb);
 317		if (wc->write)
 318			btrfs_write_tree_block(eb);
 319		if (wc->wait)
 320			btrfs_wait_tree_block_writeback(eb);
 321	}
 322	return ret;
 323}
 324
 325/*
 326 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 327 * to the src data we are copying out.
 328 *
 329 * root is the tree we are copying into, and path is a scratch
 330 * path for use in this function (it should be released on entry and
 331 * will be released on exit).
 332 *
 333 * If the key is already in the destination tree the existing item is
 334 * overwritten.  If the existing item isn't big enough, it is extended.
 335 * If it is too large, it is truncated.
 336 *
 337 * If the key isn't in the destination yet, a new item is inserted.
 338 */
 339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 340				   struct btrfs_root *root,
 341				   struct btrfs_path *path,
 342				   struct extent_buffer *eb, int slot,
 343				   struct btrfs_key *key)
 344{
 345	struct btrfs_fs_info *fs_info = root->fs_info;
 346	int ret;
 347	u32 item_size;
 348	u64 saved_i_size = 0;
 349	int save_old_i_size = 0;
 350	unsigned long src_ptr;
 351	unsigned long dst_ptr;
 352	int overwrite_root = 0;
 353	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 354
 355	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 356		overwrite_root = 1;
 
 
 
 
 
 
 357
 358	item_size = btrfs_item_size_nr(eb, slot);
 359	src_ptr = btrfs_item_ptr_offset(eb, slot);
 360
 361	/* look for the key in the destination tree */
 362	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 363	if (ret < 0)
 364		return ret;
 365
 366	if (ret == 0) {
 367		char *src_copy;
 368		char *dst_copy;
 369		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 370						  path->slots[0]);
 371		if (dst_size != item_size)
 372			goto insert;
 373
 374		if (item_size == 0) {
 375			btrfs_release_path(path);
 376			return 0;
 377		}
 378		dst_copy = kmalloc(item_size, GFP_NOFS);
 379		src_copy = kmalloc(item_size, GFP_NOFS);
 380		if (!dst_copy || !src_copy) {
 381			btrfs_release_path(path);
 382			kfree(dst_copy);
 383			kfree(src_copy);
 384			return -ENOMEM;
 385		}
 386
 387		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 388
 389		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 390		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 391				   item_size);
 392		ret = memcmp(dst_copy, src_copy, item_size);
 393
 394		kfree(dst_copy);
 395		kfree(src_copy);
 396		/*
 397		 * they have the same contents, just return, this saves
 398		 * us from cowing blocks in the destination tree and doing
 399		 * extra writes that may not have been done by a previous
 400		 * sync
 401		 */
 402		if (ret == 0) {
 403			btrfs_release_path(path);
 404			return 0;
 405		}
 406
 407		/*
 408		 * We need to load the old nbytes into the inode so when we
 409		 * replay the extents we've logged we get the right nbytes.
 410		 */
 411		if (inode_item) {
 412			struct btrfs_inode_item *item;
 413			u64 nbytes;
 414			u32 mode;
 415
 416			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 417					      struct btrfs_inode_item);
 418			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 419			item = btrfs_item_ptr(eb, slot,
 420					      struct btrfs_inode_item);
 421			btrfs_set_inode_nbytes(eb, item, nbytes);
 422
 423			/*
 424			 * If this is a directory we need to reset the i_size to
 425			 * 0 so that we can set it up properly when replaying
 426			 * the rest of the items in this log.
 427			 */
 428			mode = btrfs_inode_mode(eb, item);
 429			if (S_ISDIR(mode))
 430				btrfs_set_inode_size(eb, item, 0);
 431		}
 432	} else if (inode_item) {
 433		struct btrfs_inode_item *item;
 434		u32 mode;
 435
 436		/*
 437		 * New inode, set nbytes to 0 so that the nbytes comes out
 438		 * properly when we replay the extents.
 439		 */
 440		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 441		btrfs_set_inode_nbytes(eb, item, 0);
 442
 443		/*
 444		 * If this is a directory we need to reset the i_size to 0 so
 445		 * that we can set it up properly when replaying the rest of
 446		 * the items in this log.
 447		 */
 448		mode = btrfs_inode_mode(eb, item);
 449		if (S_ISDIR(mode))
 450			btrfs_set_inode_size(eb, item, 0);
 451	}
 452insert:
 453	btrfs_release_path(path);
 454	/* try to insert the key into the destination tree */
 455	path->skip_release_on_error = 1;
 456	ret = btrfs_insert_empty_item(trans, root, path,
 457				      key, item_size);
 458	path->skip_release_on_error = 0;
 459
 460	/* make sure any existing item is the correct size */
 461	if (ret == -EEXIST || ret == -EOVERFLOW) {
 462		u32 found_size;
 463		found_size = btrfs_item_size_nr(path->nodes[0],
 464						path->slots[0]);
 465		if (found_size > item_size)
 466			btrfs_truncate_item(fs_info, path, item_size, 1);
 467		else if (found_size < item_size)
 468			btrfs_extend_item(fs_info, path,
 469					  item_size - found_size);
 470	} else if (ret) {
 471		return ret;
 472	}
 473	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 474					path->slots[0]);
 475
 476	/* don't overwrite an existing inode if the generation number
 477	 * was logged as zero.  This is done when the tree logging code
 478	 * is just logging an inode to make sure it exists after recovery.
 479	 *
 480	 * Also, don't overwrite i_size on directories during replay.
 481	 * log replay inserts and removes directory items based on the
 482	 * state of the tree found in the subvolume, and i_size is modified
 483	 * as it goes
 484	 */
 485	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 486		struct btrfs_inode_item *src_item;
 487		struct btrfs_inode_item *dst_item;
 488
 489		src_item = (struct btrfs_inode_item *)src_ptr;
 490		dst_item = (struct btrfs_inode_item *)dst_ptr;
 491
 492		if (btrfs_inode_generation(eb, src_item) == 0) {
 493			struct extent_buffer *dst_eb = path->nodes[0];
 494			const u64 ino_size = btrfs_inode_size(eb, src_item);
 495
 496			/*
 497			 * For regular files an ino_size == 0 is used only when
 498			 * logging that an inode exists, as part of a directory
 499			 * fsync, and the inode wasn't fsynced before. In this
 500			 * case don't set the size of the inode in the fs/subvol
 501			 * tree, otherwise we would be throwing valid data away.
 502			 */
 503			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 504			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 505			    ino_size != 0) {
 506				struct btrfs_map_token token;
 507
 508				btrfs_init_map_token(&token);
 509				btrfs_set_token_inode_size(dst_eb, dst_item,
 510							   ino_size, &token);
 511			}
 512			goto no_copy;
 513		}
 514
 515		if (overwrite_root &&
 516		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 517		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 518			save_old_i_size = 1;
 519			saved_i_size = btrfs_inode_size(path->nodes[0],
 520							dst_item);
 521		}
 522	}
 523
 524	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 525			   src_ptr, item_size);
 526
 527	if (save_old_i_size) {
 528		struct btrfs_inode_item *dst_item;
 529		dst_item = (struct btrfs_inode_item *)dst_ptr;
 530		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 531	}
 532
 533	/* make sure the generation is filled in */
 534	if (key->type == BTRFS_INODE_ITEM_KEY) {
 535		struct btrfs_inode_item *dst_item;
 536		dst_item = (struct btrfs_inode_item *)dst_ptr;
 537		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 538			btrfs_set_inode_generation(path->nodes[0], dst_item,
 539						   trans->transid);
 540		}
 541	}
 542no_copy:
 543	btrfs_mark_buffer_dirty(path->nodes[0]);
 544	btrfs_release_path(path);
 545	return 0;
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548/*
 549 * simple helper to read an inode off the disk from a given root
 550 * This can only be called for subvolume roots and not for the log
 551 */
 552static noinline struct inode *read_one_inode(struct btrfs_root *root,
 553					     u64 objectid)
 554{
 555	struct btrfs_key key;
 556	struct inode *inode;
 557
 558	key.objectid = objectid;
 559	key.type = BTRFS_INODE_ITEM_KEY;
 560	key.offset = 0;
 561	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 562	if (IS_ERR(inode)) {
 563		inode = NULL;
 564	} else if (is_bad_inode(inode)) {
 565		iput(inode);
 566		inode = NULL;
 567	}
 568	return inode;
 569}
 570
 571/* replays a single extent in 'eb' at 'slot' with 'key' into the
 572 * subvolume 'root'.  path is released on entry and should be released
 573 * on exit.
 574 *
 575 * extents in the log tree have not been allocated out of the extent
 576 * tree yet.  So, this completes the allocation, taking a reference
 577 * as required if the extent already exists or creating a new extent
 578 * if it isn't in the extent allocation tree yet.
 579 *
 580 * The extent is inserted into the file, dropping any existing extents
 581 * from the file that overlap the new one.
 582 */
 583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 584				      struct btrfs_root *root,
 585				      struct btrfs_path *path,
 586				      struct extent_buffer *eb, int slot,
 587				      struct btrfs_key *key)
 588{
 
 589	struct btrfs_fs_info *fs_info = root->fs_info;
 590	int found_type;
 591	u64 extent_end;
 592	u64 start = key->offset;
 593	u64 nbytes = 0;
 594	struct btrfs_file_extent_item *item;
 595	struct inode *inode = NULL;
 596	unsigned long size;
 597	int ret = 0;
 598
 599	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 600	found_type = btrfs_file_extent_type(eb, item);
 601
 602	if (found_type == BTRFS_FILE_EXTENT_REG ||
 603	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 604		nbytes = btrfs_file_extent_num_bytes(eb, item);
 605		extent_end = start + nbytes;
 606
 607		/*
 608		 * We don't add to the inodes nbytes if we are prealloc or a
 609		 * hole.
 610		 */
 611		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 612			nbytes = 0;
 613	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 614		size = btrfs_file_extent_inline_len(eb, slot, item);
 615		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 616		extent_end = ALIGN(start + size,
 617				   fs_info->sectorsize);
 618	} else {
 619		ret = 0;
 620		goto out;
 621	}
 622
 623	inode = read_one_inode(root, key->objectid);
 624	if (!inode) {
 625		ret = -EIO;
 626		goto out;
 627	}
 628
 629	/*
 630	 * first check to see if we already have this extent in the
 631	 * file.  This must be done before the btrfs_drop_extents run
 632	 * so we don't try to drop this extent.
 633	 */
 634	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 635				       start, 0);
 636
 637	if (ret == 0 &&
 638	    (found_type == BTRFS_FILE_EXTENT_REG ||
 639	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 640		struct btrfs_file_extent_item cmp1;
 641		struct btrfs_file_extent_item cmp2;
 642		struct btrfs_file_extent_item *existing;
 643		struct extent_buffer *leaf;
 644
 645		leaf = path->nodes[0];
 646		existing = btrfs_item_ptr(leaf, path->slots[0],
 647					  struct btrfs_file_extent_item);
 648
 649		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 650				   sizeof(cmp1));
 651		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 652				   sizeof(cmp2));
 653
 654		/*
 655		 * we already have a pointer to this exact extent,
 656		 * we don't have to do anything
 657		 */
 658		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 659			btrfs_release_path(path);
 660			goto out;
 661		}
 662	}
 663	btrfs_release_path(path);
 664
 665	/* drop any overlapping extents */
 666	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 
 
 
 667	if (ret)
 668		goto out;
 669
 670	if (found_type == BTRFS_FILE_EXTENT_REG ||
 671	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 672		u64 offset;
 673		unsigned long dest_offset;
 674		struct btrfs_key ins;
 675
 
 
 
 
 676		ret = btrfs_insert_empty_item(trans, root, path, key,
 677					      sizeof(*item));
 678		if (ret)
 679			goto out;
 680		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 681						    path->slots[0]);
 682		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 683				(unsigned long)item,  sizeof(*item));
 684
 685		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 686		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 687		ins.type = BTRFS_EXTENT_ITEM_KEY;
 688		offset = key->offset - btrfs_file_extent_offset(eb, item);
 689
 690		/*
 691		 * Manually record dirty extent, as here we did a shallow
 692		 * file extent item copy and skip normal backref update,
 693		 * but modifying extent tree all by ourselves.
 694		 * So need to manually record dirty extent for qgroup,
 695		 * as the owner of the file extent changed from log tree
 696		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 697		 */
 698		ret = btrfs_qgroup_trace_extent(trans, fs_info,
 699				btrfs_file_extent_disk_bytenr(eb, item),
 700				btrfs_file_extent_disk_num_bytes(eb, item),
 701				GFP_NOFS);
 702		if (ret < 0)
 703			goto out;
 704
 705		if (ins.objectid > 0) {
 
 706			u64 csum_start;
 707			u64 csum_end;
 708			LIST_HEAD(ordered_sums);
 
 709			/*
 710			 * is this extent already allocated in the extent
 711			 * allocation tree?  If so, just add a reference
 712			 */
 713			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 714						ins.offset);
 715			if (ret == 0) {
 716				ret = btrfs_inc_extent_ref(trans, fs_info,
 717						ins.objectid, ins.offset,
 718						0, root->root_key.objectid,
 719						key->objectid, offset);
 
 
 
 
 
 
 720				if (ret)
 721					goto out;
 722			} else {
 723				/*
 724				 * insert the extent pointer in the extent
 725				 * allocation tree
 726				 */
 727				ret = btrfs_alloc_logged_file_extent(trans,
 728						fs_info,
 729						root->root_key.objectid,
 730						key->objectid, offset, &ins);
 731				if (ret)
 732					goto out;
 733			}
 734			btrfs_release_path(path);
 735
 736			if (btrfs_file_extent_compression(eb, item)) {
 737				csum_start = ins.objectid;
 738				csum_end = csum_start + ins.offset;
 739			} else {
 740				csum_start = ins.objectid +
 741					btrfs_file_extent_offset(eb, item);
 742				csum_end = csum_start +
 743					btrfs_file_extent_num_bytes(eb, item);
 744			}
 745
 746			ret = btrfs_lookup_csums_range(root->log_root,
 747						csum_start, csum_end - 1,
 748						&ordered_sums, 0);
 749			if (ret)
 750				goto out;
 751			/*
 752			 * Now delete all existing cums in the csum root that
 753			 * cover our range. We do this because we can have an
 754			 * extent that is completely referenced by one file
 755			 * extent item and partially referenced by another
 756			 * file extent item (like after using the clone or
 757			 * extent_same ioctls). In this case if we end up doing
 758			 * the replay of the one that partially references the
 759			 * extent first, and we do not do the csum deletion
 760			 * below, we can get 2 csum items in the csum tree that
 761			 * overlap each other. For example, imagine our log has
 762			 * the two following file extent items:
 763			 *
 764			 * key (257 EXTENT_DATA 409600)
 765			 *     extent data disk byte 12845056 nr 102400
 766			 *     extent data offset 20480 nr 20480 ram 102400
 767			 *
 768			 * key (257 EXTENT_DATA 819200)
 769			 *     extent data disk byte 12845056 nr 102400
 770			 *     extent data offset 0 nr 102400 ram 102400
 771			 *
 772			 * Where the second one fully references the 100K extent
 773			 * that starts at disk byte 12845056, and the log tree
 774			 * has a single csum item that covers the entire range
 775			 * of the extent:
 776			 *
 777			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 778			 *
 779			 * After the first file extent item is replayed, the
 780			 * csum tree gets the following csum item:
 781			 *
 782			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 783			 *
 784			 * Which covers the 20K sub-range starting at offset 20K
 785			 * of our extent. Now when we replay the second file
 786			 * extent item, if we do not delete existing csum items
 787			 * that cover any of its blocks, we end up getting two
 788			 * csum items in our csum tree that overlap each other:
 789			 *
 790			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 791			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 792			 *
 793			 * Which is a problem, because after this anyone trying
 794			 * to lookup up for the checksum of any block of our
 795			 * extent starting at an offset of 40K or higher, will
 796			 * end up looking at the second csum item only, which
 797			 * does not contain the checksum for any block starting
 798			 * at offset 40K or higher of our extent.
 799			 */
 800			while (!list_empty(&ordered_sums)) {
 801				struct btrfs_ordered_sum *sums;
 
 
 802				sums = list_entry(ordered_sums.next,
 803						struct btrfs_ordered_sum,
 804						list);
 
 
 805				if (!ret)
 806					ret = btrfs_del_csums(trans, fs_info,
 807							      sums->bytenr,
 808							      sums->len);
 809				if (!ret)
 810					ret = btrfs_csum_file_blocks(trans,
 811						fs_info->csum_root, sums);
 
 812				list_del(&sums->list);
 813				kfree(sums);
 814			}
 815			if (ret)
 816				goto out;
 817		} else {
 818			btrfs_release_path(path);
 819		}
 820	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 821		/* inline extents are easy, we just overwrite them */
 822		ret = overwrite_item(trans, root, path, eb, slot, key);
 823		if (ret)
 824			goto out;
 825	}
 826
 827	inode_add_bytes(inode, nbytes);
 828	ret = btrfs_update_inode(trans, root, inode);
 
 
 
 
 
 
 829out:
 830	if (inode)
 831		iput(inode);
 832	return ret;
 833}
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835/*
 836 * when cleaning up conflicts between the directory names in the
 837 * subvolume, directory names in the log and directory names in the
 838 * inode back references, we may have to unlink inodes from directories.
 839 *
 840 * This is a helper function to do the unlink of a specific directory
 841 * item
 842 */
 843static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 844				      struct btrfs_root *root,
 845				      struct btrfs_path *path,
 846				      struct inode *dir,
 847				      struct btrfs_dir_item *di)
 848{
 849	struct btrfs_fs_info *fs_info = root->fs_info;
 850	struct inode *inode;
 851	char *name;
 852	int name_len;
 853	struct extent_buffer *leaf;
 854	struct btrfs_key location;
 855	int ret;
 856
 857	leaf = path->nodes[0];
 858
 859	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 860	name_len = btrfs_dir_name_len(leaf, di);
 861	name = kmalloc(name_len, GFP_NOFS);
 862	if (!name)
 863		return -ENOMEM;
 864
 865	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 866	btrfs_release_path(path);
 867
 868	inode = read_one_inode(root, location.objectid);
 869	if (!inode) {
 870		ret = -EIO;
 871		goto out;
 872	}
 873
 874	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 875	if (ret)
 876		goto out;
 877
 878	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 879	if (ret)
 880		goto out;
 881	else
 882		ret = btrfs_run_delayed_items(trans, fs_info);
 883out:
 884	kfree(name);
 885	iput(inode);
 886	return ret;
 887}
 888
 889/*
 890 * helper function to see if a given name and sequence number found
 891 * in an inode back reference are already in a directory and correctly
 892 * point to this inode
 
 
 893 */
 894static noinline int inode_in_dir(struct btrfs_root *root,
 895				 struct btrfs_path *path,
 896				 u64 dirid, u64 objectid, u64 index,
 897				 const char *name, int name_len)
 898{
 899	struct btrfs_dir_item *di;
 900	struct btrfs_key location;
 901	int match = 0;
 902
 903	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 904					 index, name, name_len, 0);
 905	if (di && !IS_ERR(di)) {
 
 
 
 906		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 907		if (location.objectid != objectid)
 908			goto out;
 909	} else
 910		goto out;
 911	btrfs_release_path(path);
 912
 913	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 914	if (di && !IS_ERR(di)) {
 915		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 916		if (location.objectid != objectid)
 917			goto out;
 918	} else
 919		goto out;
 920	match = 1;
 
 
 
 
 921out:
 922	btrfs_release_path(path);
 923	return match;
 924}
 925
 926/*
 927 * helper function to check a log tree for a named back reference in
 928 * an inode.  This is used to decide if a back reference that is
 929 * found in the subvolume conflicts with what we find in the log.
 930 *
 931 * inode backreferences may have multiple refs in a single item,
 932 * during replay we process one reference at a time, and we don't
 933 * want to delete valid links to a file from the subvolume if that
 934 * link is also in the log.
 935 */
 936static noinline int backref_in_log(struct btrfs_root *log,
 937				   struct btrfs_key *key,
 938				   u64 ref_objectid,
 939				   const char *name, int namelen)
 940{
 941	struct btrfs_path *path;
 942	struct btrfs_inode_ref *ref;
 943	unsigned long ptr;
 944	unsigned long ptr_end;
 945	unsigned long name_ptr;
 946	int found_name_len;
 947	int item_size;
 948	int ret;
 949	int match = 0;
 950
 951	path = btrfs_alloc_path();
 952	if (!path)
 953		return -ENOMEM;
 954
 955	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 956	if (ret != 0)
 957		goto out;
 958
 959	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 960
 961	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 962		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 963						   name, namelen, NULL))
 964			match = 1;
 965
 966		goto out;
 967	}
 968
 969	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 970	ptr_end = ptr + item_size;
 971	while (ptr < ptr_end) {
 972		ref = (struct btrfs_inode_ref *)ptr;
 973		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 974		if (found_name_len == namelen) {
 975			name_ptr = (unsigned long)(ref + 1);
 976			ret = memcmp_extent_buffer(path->nodes[0], name,
 977						   name_ptr, namelen);
 978			if (ret == 0) {
 979				match = 1;
 980				goto out;
 981			}
 982		}
 983		ptr = (unsigned long)(ref + 1) + found_name_len;
 984	}
 985out:
 986	btrfs_free_path(path);
 987	return match;
 988}
 989
 990static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 991				  struct btrfs_root *root,
 992				  struct btrfs_path *path,
 993				  struct btrfs_root *log_root,
 994				  struct inode *dir, struct inode *inode,
 995				  struct extent_buffer *eb,
 996				  u64 inode_objectid, u64 parent_objectid,
 997				  u64 ref_index, char *name, int namelen,
 998				  int *search_done)
 999{
1000	struct btrfs_fs_info *fs_info = root->fs_info;
1001	int ret;
1002	char *victim_name;
1003	int victim_name_len;
1004	struct extent_buffer *leaf;
1005	struct btrfs_dir_item *di;
1006	struct btrfs_key search_key;
1007	struct btrfs_inode_extref *extref;
1008
1009again:
1010	/* Search old style refs */
1011	search_key.objectid = inode_objectid;
1012	search_key.type = BTRFS_INODE_REF_KEY;
1013	search_key.offset = parent_objectid;
1014	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1015	if (ret == 0) {
1016		struct btrfs_inode_ref *victim_ref;
1017		unsigned long ptr;
1018		unsigned long ptr_end;
1019
1020		leaf = path->nodes[0];
1021
1022		/* are we trying to overwrite a back ref for the root directory
1023		 * if so, just jump out, we're done
1024		 */
1025		if (search_key.objectid == search_key.offset)
1026			return 1;
1027
1028		/* check all the names in this back reference to see
1029		 * if they are in the log.  if so, we allow them to stay
1030		 * otherwise they must be unlinked as a conflict
1031		 */
1032		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1033		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1034		while (ptr < ptr_end) {
 
 
1035			victim_ref = (struct btrfs_inode_ref *)ptr;
1036			victim_name_len = btrfs_inode_ref_name_len(leaf,
1037								   victim_ref);
1038			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1039			if (!victim_name)
1040				return -ENOMEM;
1041
1042			read_extent_buffer(leaf, victim_name,
1043					   (unsigned long)(victim_ref + 1),
1044					   victim_name_len);
1045
1046			if (!backref_in_log(log_root, &search_key,
1047					    parent_objectid,
1048					    victim_name,
1049					    victim_name_len)) {
1050				inc_nlink(inode);
1051				btrfs_release_path(path);
1052
1053				ret = btrfs_unlink_inode(trans, root, dir,
1054							 inode, victim_name,
1055							 victim_name_len);
1056				kfree(victim_name);
1057				if (ret)
1058					return ret;
1059				ret = btrfs_run_delayed_items(trans, fs_info);
1060				if (ret)
1061					return ret;
1062				*search_done = 1;
1063				goto again;
1064			}
1065			kfree(victim_name);
1066
1067			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1068		}
1069
1070		/*
1071		 * NOTE: we have searched root tree and checked the
1072		 * corresponding ref, it does not need to check again.
1073		 */
1074		*search_done = 1;
1075	}
1076	btrfs_release_path(path);
1077
1078	/* Same search but for extended refs */
1079	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1080					   inode_objectid, parent_objectid, 0,
1081					   0);
1082	if (!IS_ERR_OR_NULL(extref)) {
 
 
1083		u32 item_size;
1084		u32 cur_offset = 0;
1085		unsigned long base;
1086		struct inode *victim_parent;
1087
1088		leaf = path->nodes[0];
1089
1090		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1091		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1092
1093		while (cur_offset < item_size) {
1094			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1095
1096			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1097
1098			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1099				goto next;
1100
1101			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1102			if (!victim_name)
1103				return -ENOMEM;
1104			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1105					   victim_name_len);
1106
1107			search_key.objectid = inode_objectid;
1108			search_key.type = BTRFS_INODE_EXTREF_KEY;
1109			search_key.offset = btrfs_extref_hash(parent_objectid,
1110							      victim_name,
1111							      victim_name_len);
1112			ret = 0;
1113			if (!backref_in_log(log_root, &search_key,
1114					    parent_objectid, victim_name,
1115					    victim_name_len)) {
 
 
1116				ret = -ENOENT;
1117				victim_parent = read_one_inode(root,
1118							       parent_objectid);
1119				if (victim_parent) {
1120					inc_nlink(inode);
1121					btrfs_release_path(path);
1122
1123					ret = btrfs_unlink_inode(trans, root,
1124								 victim_parent,
1125								 inode,
1126								 victim_name,
1127								 victim_name_len);
1128					if (!ret)
1129						ret = btrfs_run_delayed_items(
1130								  trans,
1131								  fs_info);
1132				}
1133				iput(victim_parent);
1134				kfree(victim_name);
1135				if (ret)
1136					return ret;
1137				*search_done = 1;
1138				goto again;
1139			}
1140			kfree(victim_name);
1141			if (ret)
1142				return ret;
1143next:
1144			cur_offset += victim_name_len + sizeof(*extref);
1145		}
1146		*search_done = 1;
1147	}
1148	btrfs_release_path(path);
1149
1150	/* look for a conflicting sequence number */
1151	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1152					 ref_index, name, namelen, 0);
1153	if (di && !IS_ERR(di)) {
1154		ret = drop_one_dir_item(trans, root, path, dir, di);
 
 
1155		if (ret)
1156			return ret;
1157	}
1158	btrfs_release_path(path);
1159
1160	/* look for a conflicing name */
1161	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1162				   name, namelen, 0);
1163	if (di && !IS_ERR(di)) {
1164		ret = drop_one_dir_item(trans, root, path, dir, di);
 
1165		if (ret)
1166			return ret;
1167	}
1168	btrfs_release_path(path);
1169
1170	return 0;
1171}
1172
1173static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1174			     u32 *namelen, char **name, u64 *index,
1175			     u64 *parent_objectid)
1176{
1177	struct btrfs_inode_extref *extref;
 
1178
1179	extref = (struct btrfs_inode_extref *)ref_ptr;
1180
1181	*namelen = btrfs_inode_extref_name_len(eb, extref);
1182	*name = kmalloc(*namelen, GFP_NOFS);
1183	if (*name == NULL)
1184		return -ENOMEM;
1185
1186	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1187			   *namelen);
1188
1189	*index = btrfs_inode_extref_index(eb, extref);
 
1190	if (parent_objectid)
1191		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1192
1193	return 0;
1194}
1195
1196static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1197			  u32 *namelen, char **name, u64 *index)
1198{
1199	struct btrfs_inode_ref *ref;
 
1200
1201	ref = (struct btrfs_inode_ref *)ref_ptr;
1202
1203	*namelen = btrfs_inode_ref_name_len(eb, ref);
1204	*name = kmalloc(*namelen, GFP_NOFS);
1205	if (*name == NULL)
1206		return -ENOMEM;
1207
1208	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1209
1210	*index = btrfs_inode_ref_index(eb, ref);
 
1211
1212	return 0;
1213}
1214
1215/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216 * replay one inode back reference item found in the log tree.
1217 * eb, slot and key refer to the buffer and key found in the log tree.
1218 * root is the destination we are replaying into, and path is for temp
1219 * use by this function.  (it should be released on return).
1220 */
1221static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1222				  struct btrfs_root *root,
1223				  struct btrfs_root *log,
1224				  struct btrfs_path *path,
1225				  struct extent_buffer *eb, int slot,
1226				  struct btrfs_key *key)
1227{
1228	struct inode *dir = NULL;
1229	struct inode *inode = NULL;
1230	unsigned long ref_ptr;
1231	unsigned long ref_end;
1232	char *name = NULL;
1233	int namelen;
1234	int ret;
1235	int search_done = 0;
1236	int log_ref_ver = 0;
1237	u64 parent_objectid;
1238	u64 inode_objectid;
1239	u64 ref_index = 0;
1240	int ref_struct_size;
1241
1242	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1243	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1244
1245	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1246		struct btrfs_inode_extref *r;
1247
1248		ref_struct_size = sizeof(struct btrfs_inode_extref);
1249		log_ref_ver = 1;
1250		r = (struct btrfs_inode_extref *)ref_ptr;
1251		parent_objectid = btrfs_inode_extref_parent(eb, r);
1252	} else {
1253		ref_struct_size = sizeof(struct btrfs_inode_ref);
1254		parent_objectid = key->offset;
1255	}
1256	inode_objectid = key->objectid;
1257
1258	/*
1259	 * it is possible that we didn't log all the parent directories
1260	 * for a given inode.  If we don't find the dir, just don't
1261	 * copy the back ref in.  The link count fixup code will take
1262	 * care of the rest
1263	 */
1264	dir = read_one_inode(root, parent_objectid);
1265	if (!dir) {
1266		ret = -ENOENT;
1267		goto out;
1268	}
1269
1270	inode = read_one_inode(root, inode_objectid);
1271	if (!inode) {
1272		ret = -EIO;
1273		goto out;
1274	}
1275
1276	while (ref_ptr < ref_end) {
1277		if (log_ref_ver) {
1278			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1279						&ref_index, &parent_objectid);
1280			/*
1281			 * parent object can change from one array
1282			 * item to another.
1283			 */
1284			if (!dir)
1285				dir = read_one_inode(root, parent_objectid);
1286			if (!dir) {
1287				ret = -ENOENT;
1288				goto out;
1289			}
1290		} else {
1291			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1292					     &ref_index);
1293		}
1294		if (ret)
1295			goto out;
1296
1297		/* if we already have a perfect match, we're done */
1298		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1299				  ref_index, name, namelen)) {
 
 
1300			/*
1301			 * look for a conflicting back reference in the
1302			 * metadata. if we find one we have to unlink that name
1303			 * of the file before we add our new link.  Later on, we
1304			 * overwrite any existing back reference, and we don't
1305			 * want to create dangling pointers in the directory.
1306			 */
1307
1308			if (!search_done) {
1309				ret = __add_inode_ref(trans, root, path, log,
1310						      dir, inode, eb,
1311						      inode_objectid,
1312						      parent_objectid,
1313						      ref_index, name, namelen,
1314						      &search_done);
1315				if (ret) {
1316					if (ret == 1)
1317						ret = 0;
1318					goto out;
1319				}
1320			}
1321
1322			/* insert our name */
1323			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1324					     0, ref_index);
1325			if (ret)
1326				goto out;
1327
1328			btrfs_update_inode(trans, root, inode);
 
 
1329		}
 
1330
1331		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1332		kfree(name);
1333		name = NULL;
1334		if (log_ref_ver) {
1335			iput(dir);
1336			dir = NULL;
1337		}
1338	}
1339
 
 
 
 
 
 
 
 
 
 
 
 
 
1340	/* finally write the back reference in the inode */
1341	ret = overwrite_item(trans, root, path, eb, slot, key);
1342out:
1343	btrfs_release_path(path);
1344	kfree(name);
1345	iput(dir);
1346	iput(inode);
1347	return ret;
1348}
1349
1350static int insert_orphan_item(struct btrfs_trans_handle *trans,
1351			      struct btrfs_root *root, u64 ino)
1352{
1353	int ret;
1354
1355	ret = btrfs_insert_orphan_item(trans, root, ino);
1356	if (ret == -EEXIST)
1357		ret = 0;
1358
1359	return ret;
1360}
1361
1362static int count_inode_extrefs(struct btrfs_root *root,
1363			       struct inode *inode, struct btrfs_path *path)
1364{
1365	int ret = 0;
1366	int name_len;
1367	unsigned int nlink = 0;
1368	u32 item_size;
1369	u32 cur_offset = 0;
1370	u64 inode_objectid = btrfs_ino(inode);
1371	u64 offset = 0;
1372	unsigned long ptr;
1373	struct btrfs_inode_extref *extref;
1374	struct extent_buffer *leaf;
1375
1376	while (1) {
1377		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1378					    &extref, &offset);
1379		if (ret)
1380			break;
1381
1382		leaf = path->nodes[0];
1383		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1384		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1385		cur_offset = 0;
1386
1387		while (cur_offset < item_size) {
1388			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1389			name_len = btrfs_inode_extref_name_len(leaf, extref);
1390
1391			nlink++;
1392
1393			cur_offset += name_len + sizeof(*extref);
1394		}
1395
1396		offset++;
1397		btrfs_release_path(path);
1398	}
1399	btrfs_release_path(path);
1400
1401	if (ret < 0 && ret != -ENOENT)
1402		return ret;
1403	return nlink;
1404}
1405
1406static int count_inode_refs(struct btrfs_root *root,
1407			       struct inode *inode, struct btrfs_path *path)
1408{
1409	int ret;
1410	struct btrfs_key key;
1411	unsigned int nlink = 0;
1412	unsigned long ptr;
1413	unsigned long ptr_end;
1414	int name_len;
1415	u64 ino = btrfs_ino(inode);
1416
1417	key.objectid = ino;
1418	key.type = BTRFS_INODE_REF_KEY;
1419	key.offset = (u64)-1;
1420
1421	while (1) {
1422		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423		if (ret < 0)
1424			break;
1425		if (ret > 0) {
1426			if (path->slots[0] == 0)
1427				break;
1428			path->slots[0]--;
1429		}
1430process_slot:
1431		btrfs_item_key_to_cpu(path->nodes[0], &key,
1432				      path->slots[0]);
1433		if (key.objectid != ino ||
1434		    key.type != BTRFS_INODE_REF_KEY)
1435			break;
1436		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1437		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1438						   path->slots[0]);
1439		while (ptr < ptr_end) {
1440			struct btrfs_inode_ref *ref;
1441
1442			ref = (struct btrfs_inode_ref *)ptr;
1443			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1444							    ref);
1445			ptr = (unsigned long)(ref + 1) + name_len;
1446			nlink++;
1447		}
1448
1449		if (key.offset == 0)
1450			break;
1451		if (path->slots[0] > 0) {
1452			path->slots[0]--;
1453			goto process_slot;
1454		}
1455		key.offset--;
1456		btrfs_release_path(path);
1457	}
1458	btrfs_release_path(path);
1459
1460	return nlink;
1461}
1462
1463/*
1464 * There are a few corners where the link count of the file can't
1465 * be properly maintained during replay.  So, instead of adding
1466 * lots of complexity to the log code, we just scan the backrefs
1467 * for any file that has been through replay.
1468 *
1469 * The scan will update the link count on the inode to reflect the
1470 * number of back refs found.  If it goes down to zero, the iput
1471 * will free the inode.
1472 */
1473static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1474					   struct btrfs_root *root,
1475					   struct inode *inode)
1476{
 
1477	struct btrfs_path *path;
1478	int ret;
1479	u64 nlink = 0;
1480	u64 ino = btrfs_ino(inode);
1481
1482	path = btrfs_alloc_path();
1483	if (!path)
1484		return -ENOMEM;
1485
1486	ret = count_inode_refs(root, inode, path);
1487	if (ret < 0)
1488		goto out;
1489
1490	nlink = ret;
1491
1492	ret = count_inode_extrefs(root, inode, path);
1493	if (ret < 0)
1494		goto out;
1495
1496	nlink += ret;
1497
1498	ret = 0;
1499
1500	if (nlink != inode->i_nlink) {
1501		set_nlink(inode, nlink);
1502		btrfs_update_inode(trans, root, inode);
 
 
1503	}
1504	BTRFS_I(inode)->index_cnt = (u64)-1;
1505
1506	if (inode->i_nlink == 0) {
1507		if (S_ISDIR(inode->i_mode)) {
1508			ret = replay_dir_deletes(trans, root, NULL, path,
1509						 ino, 1);
1510			if (ret)
1511				goto out;
1512		}
1513		ret = insert_orphan_item(trans, root, ino);
 
 
1514	}
1515
1516out:
1517	btrfs_free_path(path);
1518	return ret;
1519}
1520
1521static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1522					    struct btrfs_root *root,
1523					    struct btrfs_path *path)
1524{
1525	int ret;
1526	struct btrfs_key key;
1527	struct inode *inode;
1528
1529	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1530	key.type = BTRFS_ORPHAN_ITEM_KEY;
1531	key.offset = (u64)-1;
1532	while (1) {
1533		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534		if (ret < 0)
1535			break;
1536
1537		if (ret == 1) {
 
1538			if (path->slots[0] == 0)
1539				break;
1540			path->slots[0]--;
1541		}
1542
1543		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1544		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1545		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1546			break;
1547
1548		ret = btrfs_del_item(trans, root, path);
1549		if (ret)
1550			goto out;
1551
1552		btrfs_release_path(path);
1553		inode = read_one_inode(root, key.offset);
1554		if (!inode)
1555			return -EIO;
 
 
1556
1557		ret = fixup_inode_link_count(trans, root, inode);
1558		iput(inode);
1559		if (ret)
1560			goto out;
1561
1562		/*
1563		 * fixup on a directory may create new entries,
1564		 * make sure we always look for the highset possible
1565		 * offset
1566		 */
1567		key.offset = (u64)-1;
1568	}
1569	ret = 0;
1570out:
1571	btrfs_release_path(path);
1572	return ret;
1573}
1574
1575
1576/*
1577 * record a given inode in the fixup dir so we can check its link
1578 * count when replay is done.  The link count is incremented here
1579 * so the inode won't go away until we check it
1580 */
1581static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1582				      struct btrfs_root *root,
1583				      struct btrfs_path *path,
1584				      u64 objectid)
1585{
1586	struct btrfs_key key;
1587	int ret = 0;
1588	struct inode *inode;
1589
1590	inode = read_one_inode(root, objectid);
1591	if (!inode)
1592		return -EIO;
1593
1594	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1595	key.type = BTRFS_ORPHAN_ITEM_KEY;
1596	key.offset = objectid;
1597
1598	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1599
1600	btrfs_release_path(path);
1601	if (ret == 0) {
1602		if (!inode->i_nlink)
1603			set_nlink(inode, 1);
1604		else
1605			inc_nlink(inode);
1606		ret = btrfs_update_inode(trans, root, inode);
1607	} else if (ret == -EEXIST) {
1608		ret = 0;
1609	} else {
1610		BUG(); /* Logic Error */
1611	}
1612	iput(inode);
1613
1614	return ret;
1615}
1616
1617/*
1618 * when replaying the log for a directory, we only insert names
1619 * for inodes that actually exist.  This means an fsync on a directory
1620 * does not implicitly fsync all the new files in it
1621 */
1622static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1623				    struct btrfs_root *root,
1624				    u64 dirid, u64 index,
1625				    char *name, int name_len,
1626				    struct btrfs_key *location)
1627{
1628	struct inode *inode;
1629	struct inode *dir;
1630	int ret;
1631
1632	inode = read_one_inode(root, location->objectid);
1633	if (!inode)
1634		return -ENOENT;
1635
1636	dir = read_one_inode(root, dirid);
1637	if (!dir) {
1638		iput(inode);
1639		return -EIO;
1640	}
1641
1642	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 
1643
1644	/* FIXME, put inode into FIXUP list */
1645
1646	iput(inode);
1647	iput(dir);
1648	return ret;
1649}
1650
1651/*
1652 * Return true if an inode reference exists in the log for the given name,
1653 * inode and parent inode.
1654 */
1655static bool name_in_log_ref(struct btrfs_root *log_root,
1656			    const char *name, const int name_len,
1657			    const u64 dirid, const u64 ino)
1658{
1659	struct btrfs_key search_key;
1660
1661	search_key.objectid = ino;
1662	search_key.type = BTRFS_INODE_REF_KEY;
1663	search_key.offset = dirid;
1664	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1665		return true;
 
 
1666
1667	search_key.type = BTRFS_INODE_EXTREF_KEY;
1668	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1669	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1670		return true;
 
 
1671
1672	return false;
1673}
1674
1675/*
1676 * take a single entry in a log directory item and replay it into
1677 * the subvolume.
1678 *
1679 * if a conflicting item exists in the subdirectory already,
1680 * the inode it points to is unlinked and put into the link count
1681 * fix up tree.
1682 *
1683 * If a name from the log points to a file or directory that does
1684 * not exist in the FS, it is skipped.  fsyncs on directories
1685 * do not force down inodes inside that directory, just changes to the
1686 * names or unlinks in a directory.
1687 *
1688 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1689 * non-existing inode) and 1 if the name was replayed.
1690 */
1691static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1692				    struct btrfs_root *root,
1693				    struct btrfs_path *path,
1694				    struct extent_buffer *eb,
1695				    struct btrfs_dir_item *di,
1696				    struct btrfs_key *key)
1697{
1698	char *name;
1699	int name_len;
1700	struct btrfs_dir_item *dst_di;
1701	struct btrfs_key found_key;
 
1702	struct btrfs_key log_key;
 
1703	struct inode *dir;
1704	u8 log_type;
1705	int exists;
1706	int ret = 0;
1707	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1708	bool name_added = false;
1709
1710	dir = read_one_inode(root, key->objectid);
1711	if (!dir)
1712		return -EIO;
1713
1714	name_len = btrfs_dir_name_len(eb, di);
1715	name = kmalloc(name_len, GFP_NOFS);
1716	if (!name) {
1717		ret = -ENOMEM;
1718		goto out;
1719	}
1720
1721	log_type = btrfs_dir_type(eb, di);
1722	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1723		   name_len);
1724
 
1725	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1726	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1727	if (exists == 0)
1728		exists = 1;
1729	else
1730		exists = 0;
1731	btrfs_release_path(path);
 
 
 
 
1732
1733	if (key->type == BTRFS_DIR_ITEM_KEY) {
1734		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1735				       name, name_len, 1);
1736	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1737		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1738						     key->objectid,
1739						     key->offset, name,
1740						     name_len, 1);
1741	} else {
1742		/* Corruption */
1743		ret = -EINVAL;
1744		goto out;
 
 
 
 
 
 
 
1745	}
1746	if (IS_ERR_OR_NULL(dst_di)) {
1747		/* we need a sequence number to insert, so we only
1748		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749		 */
1750		if (key->type != BTRFS_DIR_INDEX_KEY)
 
 
 
 
 
 
 
 
 
1751			goto out;
1752		goto insert;
1753	}
1754
1755	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1756	/* the existing item matches the logged item */
1757	if (found_key.objectid == log_key.objectid &&
1758	    found_key.type == log_key.type &&
1759	    found_key.offset == log_key.offset &&
1760	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1761		update_size = false;
1762		goto out;
1763	}
1764
1765	/*
1766	 * don't drop the conflicting directory entry if the inode
1767	 * for the new entry doesn't exist
1768	 */
1769	if (!exists)
1770		goto out;
1771
1772	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1773	if (ret)
1774		goto out;
1775
1776	if (key->type == BTRFS_DIR_INDEX_KEY)
1777		goto insert;
1778out:
1779	btrfs_release_path(path);
1780	if (!ret && update_size) {
1781		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1782		ret = btrfs_update_inode(trans, root, dir);
1783	}
1784	kfree(name);
1785	iput(dir);
1786	if (!ret && name_added)
1787		ret = 1;
1788	return ret;
1789
1790insert:
1791	if (name_in_log_ref(root->log_root, name, name_len,
1792			    key->objectid, log_key.objectid)) {
 
 
 
 
1793		/* The dentry will be added later. */
1794		ret = 0;
1795		update_size = false;
1796		goto out;
1797	}
1798	btrfs_release_path(path);
1799	ret = insert_one_name(trans, root, key->objectid, key->offset,
1800			      name, name_len, &log_key);
1801	if (ret && ret != -ENOENT && ret != -EEXIST)
1802		goto out;
1803	if (!ret)
1804		name_added = true;
1805	update_size = false;
1806	ret = 0;
1807	goto out;
 
 
 
 
 
 
 
 
 
 
1808}
1809
1810/*
1811 * find all the names in a directory item and reconcile them into
1812 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1813 * one name in a directory item, but the same code gets used for
1814 * both directory index types
1815 */
1816static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1817					struct btrfs_root *root,
1818					struct btrfs_path *path,
1819					struct extent_buffer *eb, int slot,
1820					struct btrfs_key *key)
1821{
1822	struct btrfs_fs_info *fs_info = root->fs_info;
1823	int ret = 0;
1824	u32 item_size = btrfs_item_size_nr(eb, slot);
1825	struct btrfs_dir_item *di;
1826	int name_len;
1827	unsigned long ptr;
1828	unsigned long ptr_end;
1829	struct btrfs_path *fixup_path = NULL;
1830
1831	ptr = btrfs_item_ptr_offset(eb, slot);
1832	ptr_end = ptr + item_size;
1833	while (ptr < ptr_end) {
1834		di = (struct btrfs_dir_item *)ptr;
1835		if (verify_dir_item(fs_info, eb, di))
1836			return -EIO;
1837		name_len = btrfs_dir_name_len(eb, di);
1838		ret = replay_one_name(trans, root, path, eb, di, key);
1839		if (ret < 0)
1840			break;
1841		ptr = (unsigned long)(di + 1);
1842		ptr += name_len;
1843
1844		/*
1845		 * If this entry refers to a non-directory (directories can not
1846		 * have a link count > 1) and it was added in the transaction
1847		 * that was not committed, make sure we fixup the link count of
1848		 * the inode it the entry points to. Otherwise something like
1849		 * the following would result in a directory pointing to an
1850		 * inode with a wrong link that does not account for this dir
1851		 * entry:
1852		 *
1853		 * mkdir testdir
1854		 * touch testdir/foo
1855		 * touch testdir/bar
1856		 * sync
1857		 *
1858		 * ln testdir/bar testdir/bar_link
1859		 * ln testdir/foo testdir/foo_link
1860		 * xfs_io -c "fsync" testdir/bar
1861		 *
1862		 * <power failure>
1863		 *
1864		 * mount fs, log replay happens
1865		 *
1866		 * File foo would remain with a link count of 1 when it has two
1867		 * entries pointing to it in the directory testdir. This would
1868		 * make it impossible to ever delete the parent directory has
1869		 * it would result in stale dentries that can never be deleted.
1870		 */
1871		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1872			struct btrfs_key di_key;
1873
1874			if (!fixup_path) {
1875				fixup_path = btrfs_alloc_path();
1876				if (!fixup_path) {
1877					ret = -ENOMEM;
1878					break;
1879				}
1880			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881
1882			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1883			ret = link_to_fixup_dir(trans, root, fixup_path,
1884						di_key.objectid);
1885			if (ret)
1886				break;
1887		}
1888		ret = 0;
1889	}
1890	btrfs_free_path(fixup_path);
1891	return ret;
1892}
1893
1894/*
1895 * directory replay has two parts.  There are the standard directory
1896 * items in the log copied from the subvolume, and range items
1897 * created in the log while the subvolume was logged.
1898 *
1899 * The range items tell us which parts of the key space the log
1900 * is authoritative for.  During replay, if a key in the subvolume
1901 * directory is in a logged range item, but not actually in the log
1902 * that means it was deleted from the directory before the fsync
1903 * and should be removed.
1904 */
1905static noinline int find_dir_range(struct btrfs_root *root,
1906				   struct btrfs_path *path,
1907				   u64 dirid, int key_type,
1908				   u64 *start_ret, u64 *end_ret)
1909{
1910	struct btrfs_key key;
1911	u64 found_end;
1912	struct btrfs_dir_log_item *item;
1913	int ret;
1914	int nritems;
1915
1916	if (*start_ret == (u64)-1)
1917		return 1;
1918
1919	key.objectid = dirid;
1920	key.type = key_type;
1921	key.offset = *start_ret;
1922
1923	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924	if (ret < 0)
1925		goto out;
1926	if (ret > 0) {
1927		if (path->slots[0] == 0)
1928			goto out;
1929		path->slots[0]--;
1930	}
1931	if (ret != 0)
1932		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933
1934	if (key.type != key_type || key.objectid != dirid) {
1935		ret = 1;
1936		goto next;
1937	}
1938	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939			      struct btrfs_dir_log_item);
1940	found_end = btrfs_dir_log_end(path->nodes[0], item);
1941
1942	if (*start_ret >= key.offset && *start_ret <= found_end) {
1943		ret = 0;
1944		*start_ret = key.offset;
1945		*end_ret = found_end;
1946		goto out;
1947	}
1948	ret = 1;
1949next:
1950	/* check the next slot in the tree to see if it is a valid item */
1951	nritems = btrfs_header_nritems(path->nodes[0]);
1952	path->slots[0]++;
1953	if (path->slots[0] >= nritems) {
1954		ret = btrfs_next_leaf(root, path);
1955		if (ret)
1956			goto out;
1957	}
1958
1959	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1960
1961	if (key.type != key_type || key.objectid != dirid) {
1962		ret = 1;
1963		goto out;
1964	}
1965	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1966			      struct btrfs_dir_log_item);
1967	found_end = btrfs_dir_log_end(path->nodes[0], item);
1968	*start_ret = key.offset;
1969	*end_ret = found_end;
1970	ret = 0;
1971out:
1972	btrfs_release_path(path);
1973	return ret;
1974}
1975
1976/*
1977 * this looks for a given directory item in the log.  If the directory
1978 * item is not in the log, the item is removed and the inode it points
1979 * to is unlinked
1980 */
1981static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1982				      struct btrfs_root *root,
1983				      struct btrfs_root *log,
1984				      struct btrfs_path *path,
1985				      struct btrfs_path *log_path,
1986				      struct inode *dir,
1987				      struct btrfs_key *dir_key)
1988{
1989	struct btrfs_fs_info *fs_info = root->fs_info;
1990	int ret;
1991	struct extent_buffer *eb;
1992	int slot;
1993	u32 item_size;
1994	struct btrfs_dir_item *di;
1995	struct btrfs_dir_item *log_di;
1996	int name_len;
1997	unsigned long ptr;
1998	unsigned long ptr_end;
1999	char *name;
2000	struct inode *inode;
2001	struct btrfs_key location;
2002
2003again:
 
 
 
 
 
 
 
2004	eb = path->nodes[0];
2005	slot = path->slots[0];
2006	item_size = btrfs_item_size_nr(eb, slot);
2007	ptr = btrfs_item_ptr_offset(eb, slot);
2008	ptr_end = ptr + item_size;
2009	while (ptr < ptr_end) {
2010		di = (struct btrfs_dir_item *)ptr;
2011		if (verify_dir_item(fs_info, eb, di)) {
2012			ret = -EIO;
2013			goto out;
2014		}
2015
2016		name_len = btrfs_dir_name_len(eb, di);
2017		name = kmalloc(name_len, GFP_NOFS);
2018		if (!name) {
2019			ret = -ENOMEM;
2020			goto out;
2021		}
2022		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023				  name_len);
2024		log_di = NULL;
2025		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2026			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027						       dir_key->objectid,
2028						       name, name_len, 0);
2029		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2030			log_di = btrfs_lookup_dir_index_item(trans, log,
2031						     log_path,
2032						     dir_key->objectid,
2033						     dir_key->offset,
2034						     name, name_len, 0);
2035		}
2036		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2037			btrfs_dir_item_key_to_cpu(eb, di, &location);
2038			btrfs_release_path(path);
2039			btrfs_release_path(log_path);
2040			inode = read_one_inode(root, location.objectid);
2041			if (!inode) {
2042				kfree(name);
2043				return -EIO;
2044			}
2045
2046			ret = link_to_fixup_dir(trans, root,
2047						path, location.objectid);
2048			if (ret) {
2049				kfree(name);
2050				iput(inode);
2051				goto out;
2052			}
2053
2054			inc_nlink(inode);
2055			ret = btrfs_unlink_inode(trans, root, dir, inode,
2056						 name, name_len);
2057			if (!ret)
2058				ret = btrfs_run_delayed_items(trans, fs_info);
2059			kfree(name);
2060			iput(inode);
2061			if (ret)
2062				goto out;
2063
2064			/* there might still be more names under this key
2065			 * check and repeat if required
2066			 */
2067			ret = btrfs_search_slot(NULL, root, dir_key, path,
2068						0, 0);
2069			if (ret == 0)
2070				goto again;
 
2071			ret = 0;
2072			goto out;
2073		} else if (IS_ERR(log_di)) {
2074			kfree(name);
2075			return PTR_ERR(log_di);
2076		}
2077		btrfs_release_path(log_path);
2078		kfree(name);
2079
2080		ptr = (unsigned long)(di + 1);
2081		ptr += name_len;
 
 
 
 
 
2082	}
2083	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2084out:
2085	btrfs_release_path(path);
2086	btrfs_release_path(log_path);
 
 
2087	return ret;
2088}
2089
2090static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091			      struct btrfs_root *root,
2092			      struct btrfs_root *log,
2093			      struct btrfs_path *path,
2094			      const u64 ino)
2095{
2096	struct btrfs_key search_key;
2097	struct btrfs_path *log_path;
2098	int i;
2099	int nritems;
2100	int ret;
2101
2102	log_path = btrfs_alloc_path();
2103	if (!log_path)
2104		return -ENOMEM;
2105
2106	search_key.objectid = ino;
2107	search_key.type = BTRFS_XATTR_ITEM_KEY;
2108	search_key.offset = 0;
2109again:
2110	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111	if (ret < 0)
2112		goto out;
2113process_leaf:
2114	nritems = btrfs_header_nritems(path->nodes[0]);
2115	for (i = path->slots[0]; i < nritems; i++) {
2116		struct btrfs_key key;
2117		struct btrfs_dir_item *di;
2118		struct btrfs_dir_item *log_di;
2119		u32 total_size;
2120		u32 cur;
2121
2122		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124			ret = 0;
2125			goto out;
2126		}
2127
2128		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129		total_size = btrfs_item_size_nr(path->nodes[0], i);
2130		cur = 0;
2131		while (cur < total_size) {
2132			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134			u32 this_len = sizeof(*di) + name_len + data_len;
2135			char *name;
2136
2137			name = kmalloc(name_len, GFP_NOFS);
2138			if (!name) {
2139				ret = -ENOMEM;
2140				goto out;
2141			}
2142			read_extent_buffer(path->nodes[0], name,
2143					   (unsigned long)(di + 1), name_len);
2144
2145			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146						    name, name_len, 0);
2147			btrfs_release_path(log_path);
2148			if (!log_di) {
2149				/* Doesn't exist in log tree, so delete it. */
2150				btrfs_release_path(path);
2151				di = btrfs_lookup_xattr(trans, root, path, ino,
2152							name, name_len, -1);
2153				kfree(name);
2154				if (IS_ERR(di)) {
2155					ret = PTR_ERR(di);
2156					goto out;
2157				}
2158				ASSERT(di);
2159				ret = btrfs_delete_one_dir_name(trans, root,
2160								path, di);
2161				if (ret)
2162					goto out;
2163				btrfs_release_path(path);
2164				search_key = key;
2165				goto again;
2166			}
2167			kfree(name);
2168			if (IS_ERR(log_di)) {
2169				ret = PTR_ERR(log_di);
2170				goto out;
2171			}
2172			cur += this_len;
2173			di = (struct btrfs_dir_item *)((char *)di + this_len);
2174		}
2175	}
2176	ret = btrfs_next_leaf(root, path);
2177	if (ret > 0)
2178		ret = 0;
2179	else if (ret == 0)
2180		goto process_leaf;
2181out:
2182	btrfs_free_path(log_path);
2183	btrfs_release_path(path);
2184	return ret;
2185}
2186
2187
2188/*
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes.  It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2194 *
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2197 */
2198static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199				       struct btrfs_root *root,
2200				       struct btrfs_root *log,
2201				       struct btrfs_path *path,
2202				       u64 dirid, int del_all)
2203{
2204	u64 range_start;
2205	u64 range_end;
2206	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207	int ret = 0;
2208	struct btrfs_key dir_key;
2209	struct btrfs_key found_key;
2210	struct btrfs_path *log_path;
2211	struct inode *dir;
2212
2213	dir_key.objectid = dirid;
2214	dir_key.type = BTRFS_DIR_ITEM_KEY;
2215	log_path = btrfs_alloc_path();
2216	if (!log_path)
2217		return -ENOMEM;
2218
2219	dir = read_one_inode(root, dirid);
2220	/* it isn't an error if the inode isn't there, that can happen
2221	 * because we replay the deletes before we copy in the inode item
2222	 * from the log
2223	 */
2224	if (!dir) {
2225		btrfs_free_path(log_path);
2226		return 0;
2227	}
2228again:
2229	range_start = 0;
2230	range_end = 0;
2231	while (1) {
2232		if (del_all)
2233			range_end = (u64)-1;
2234		else {
2235			ret = find_dir_range(log, path, dirid, key_type,
2236					     &range_start, &range_end);
2237			if (ret != 0)
 
 
2238				break;
2239		}
2240
2241		dir_key.offset = range_start;
2242		while (1) {
2243			int nritems;
2244			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245						0, 0);
2246			if (ret < 0)
2247				goto out;
2248
2249			nritems = btrfs_header_nritems(path->nodes[0]);
2250			if (path->slots[0] >= nritems) {
2251				ret = btrfs_next_leaf(root, path);
2252				if (ret)
2253					break;
 
 
2254			}
2255			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256					      path->slots[0]);
2257			if (found_key.objectid != dirid ||
2258			    found_key.type != dir_key.type)
2259				goto next_type;
 
 
2260
2261			if (found_key.offset > range_end)
2262				break;
2263
2264			ret = check_item_in_log(trans, root, log, path,
2265						log_path, dir,
2266						&found_key);
2267			if (ret)
2268				goto out;
2269			if (found_key.offset == (u64)-1)
2270				break;
2271			dir_key.offset = found_key.offset + 1;
2272		}
2273		btrfs_release_path(path);
2274		if (range_end == (u64)-1)
2275			break;
2276		range_start = range_end + 1;
2277	}
2278
2279next_type:
2280	ret = 0;
2281	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283		dir_key.type = BTRFS_DIR_INDEX_KEY;
2284		btrfs_release_path(path);
2285		goto again;
2286	}
2287out:
2288	btrfs_release_path(path);
2289	btrfs_free_path(log_path);
2290	iput(dir);
2291	return ret;
2292}
2293
2294/*
2295 * the process_func used to replay items from the log tree.  This
2296 * gets called in two different stages.  The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2298 *
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume.  The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2304 */
2305static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306			     struct walk_control *wc, u64 gen)
2307{
2308	int nritems;
 
 
 
 
2309	struct btrfs_path *path;
2310	struct btrfs_root *root = wc->replay_dest;
2311	struct btrfs_key key;
2312	int level;
2313	int i;
2314	int ret;
2315
2316	ret = btrfs_read_buffer(eb, gen);
2317	if (ret)
2318		return ret;
2319
2320	level = btrfs_header_level(eb);
2321
2322	if (level != 0)
2323		return 0;
2324
2325	path = btrfs_alloc_path();
2326	if (!path)
2327		return -ENOMEM;
2328
2329	nritems = btrfs_header_nritems(eb);
2330	for (i = 0; i < nritems; i++) {
2331		btrfs_item_key_to_cpu(eb, &key, i);
2332
2333		/* inode keys are done during the first stage */
2334		if (key.type == BTRFS_INODE_ITEM_KEY &&
2335		    wc->stage == LOG_WALK_REPLAY_INODES) {
2336			struct btrfs_inode_item *inode_item;
2337			u32 mode;
2338
2339			inode_item = btrfs_item_ptr(eb, i,
2340					    struct btrfs_inode_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341			ret = replay_xattr_deletes(wc->trans, root, log,
2342						   path, key.objectid);
2343			if (ret)
2344				break;
2345			mode = btrfs_inode_mode(eb, inode_item);
2346			if (S_ISDIR(mode)) {
2347				ret = replay_dir_deletes(wc->trans,
2348					 root, log, path, key.objectid, 0);
2349				if (ret)
2350					break;
2351			}
2352			ret = overwrite_item(wc->trans, root, path,
2353					     eb, i, &key);
2354			if (ret)
2355				break;
2356
2357			/* for regular files, make sure corresponding
2358			 * orphan item exist. extents past the new EOF
2359			 * will be truncated later by orphan cleanup.
 
 
 
 
2360			 */
2361			if (S_ISREG(mode)) {
2362				ret = insert_orphan_item(wc->trans, root,
2363							 key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364				if (ret)
2365					break;
2366			}
2367
2368			ret = link_to_fixup_dir(wc->trans, root,
2369						path, key.objectid);
2370			if (ret)
2371				break;
2372		}
2373
 
 
 
2374		if (key.type == BTRFS_DIR_INDEX_KEY &&
2375		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376			ret = replay_one_dir_item(wc->trans, root, path,
2377						  eb, i, &key);
2378			if (ret)
2379				break;
2380		}
2381
2382		if (wc->stage < LOG_WALK_REPLAY_ALL)
2383			continue;
2384
2385		/* these keys are simply copied */
2386		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387			ret = overwrite_item(wc->trans, root, path,
2388					     eb, i, &key);
2389			if (ret)
2390				break;
2391		} else if (key.type == BTRFS_INODE_REF_KEY ||
2392			   key.type == BTRFS_INODE_EXTREF_KEY) {
2393			ret = add_inode_ref(wc->trans, root, log, path,
2394					    eb, i, &key);
2395			if (ret && ret != -ENOENT)
2396				break;
2397			ret = 0;
2398		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399			ret = replay_one_extent(wc->trans, root, path,
2400						eb, i, &key);
2401			if (ret)
2402				break;
2403		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2404			ret = replay_one_dir_item(wc->trans, root, path,
2405						  eb, i, &key);
2406			if (ret)
2407				break;
2408		}
 
 
 
 
 
 
2409	}
2410	btrfs_free_path(path);
2411	return ret;
2412}
2413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2415				   struct btrfs_root *root,
2416				   struct btrfs_path *path, int *level,
2417				   struct walk_control *wc)
2418{
2419	struct btrfs_fs_info *fs_info = root->fs_info;
2420	u64 root_owner;
2421	u64 bytenr;
2422	u64 ptr_gen;
2423	struct extent_buffer *next;
2424	struct extent_buffer *cur;
2425	struct extent_buffer *parent;
2426	u32 blocksize;
2427	int ret = 0;
2428
2429	WARN_ON(*level < 0);
2430	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431
2432	while (*level > 0) {
2433		WARN_ON(*level < 0);
2434		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435		cur = path->nodes[*level];
2436
2437		WARN_ON(btrfs_header_level(cur) != *level);
2438
2439		if (path->slots[*level] >=
2440		    btrfs_header_nritems(cur))
2441			break;
2442
2443		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2445		blocksize = fs_info->nodesize;
2446
2447		parent = path->nodes[*level];
2448		root_owner = btrfs_header_owner(parent);
2449
2450		next = btrfs_find_create_tree_block(fs_info, bytenr);
 
 
2451		if (IS_ERR(next))
2452			return PTR_ERR(next);
2453
2454		if (*level == 1) {
2455			ret = wc->process_func(root, next, wc, ptr_gen);
 
2456			if (ret) {
2457				free_extent_buffer(next);
2458				return ret;
2459			}
2460
2461			path->slots[*level]++;
2462			if (wc->free) {
2463				ret = btrfs_read_buffer(next, ptr_gen);
2464				if (ret) {
2465					free_extent_buffer(next);
2466					return ret;
2467				}
2468
2469				if (trans) {
2470					btrfs_tree_lock(next);
2471					btrfs_set_lock_blocking(next);
2472					clean_tree_block(trans, fs_info, next);
2473					btrfs_wait_tree_block_writeback(next);
2474					btrfs_tree_unlock(next);
2475				}
2476
2477				WARN_ON(root_owner !=
2478					BTRFS_TREE_LOG_OBJECTID);
2479				ret = btrfs_free_and_pin_reserved_extent(
2480							fs_info, bytenr,
2481							blocksize);
2482				if (ret) {
2483					free_extent_buffer(next);
2484					return ret;
2485				}
2486			}
2487			free_extent_buffer(next);
2488			continue;
2489		}
2490		ret = btrfs_read_buffer(next, ptr_gen);
2491		if (ret) {
2492			free_extent_buffer(next);
2493			return ret;
2494		}
2495
2496		WARN_ON(*level <= 0);
2497		if (path->nodes[*level-1])
2498			free_extent_buffer(path->nodes[*level-1]);
2499		path->nodes[*level-1] = next;
2500		*level = btrfs_header_level(next);
2501		path->slots[*level] = 0;
2502		cond_resched();
2503	}
2504	WARN_ON(*level < 0);
2505	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2506
2507	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2508
2509	cond_resched();
2510	return 0;
2511}
2512
2513static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2514				 struct btrfs_root *root,
2515				 struct btrfs_path *path, int *level,
2516				 struct walk_control *wc)
2517{
2518	struct btrfs_fs_info *fs_info = root->fs_info;
2519	u64 root_owner;
2520	int i;
2521	int slot;
2522	int ret;
2523
2524	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2525		slot = path->slots[i];
2526		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2527			path->slots[i]++;
2528			*level = i;
2529			WARN_ON(*level == 0);
2530			return 0;
2531		} else {
2532			struct extent_buffer *parent;
2533			if (path->nodes[*level] == root->node)
2534				parent = path->nodes[*level];
2535			else
2536				parent = path->nodes[*level + 1];
2537
2538			root_owner = btrfs_header_owner(parent);
2539			ret = wc->process_func(root, path->nodes[*level], wc,
2540				 btrfs_header_generation(path->nodes[*level]));
 
2541			if (ret)
2542				return ret;
2543
2544			if (wc->free) {
2545				struct extent_buffer *next;
2546
2547				next = path->nodes[*level];
2548
2549				if (trans) {
2550					btrfs_tree_lock(next);
2551					btrfs_set_lock_blocking(next);
2552					clean_tree_block(trans, fs_info, next);
2553					btrfs_wait_tree_block_writeback(next);
2554					btrfs_tree_unlock(next);
2555				}
2556
2557				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2558				ret = btrfs_free_and_pin_reserved_extent(
2559						fs_info,
2560						path->nodes[*level]->start,
2561						path->nodes[*level]->len);
2562				if (ret)
2563					return ret;
2564			}
2565			free_extent_buffer(path->nodes[*level]);
2566			path->nodes[*level] = NULL;
2567			*level = i + 1;
2568		}
2569	}
2570	return 1;
2571}
2572
2573/*
2574 * drop the reference count on the tree rooted at 'snap'.  This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2576 * decremented.
2577 */
2578static int walk_log_tree(struct btrfs_trans_handle *trans,
2579			 struct btrfs_root *log, struct walk_control *wc)
2580{
2581	struct btrfs_fs_info *fs_info = log->fs_info;
2582	int ret = 0;
2583	int wret;
2584	int level;
2585	struct btrfs_path *path;
2586	int orig_level;
2587
2588	path = btrfs_alloc_path();
2589	if (!path)
2590		return -ENOMEM;
2591
2592	level = btrfs_header_level(log->node);
2593	orig_level = level;
2594	path->nodes[level] = log->node;
2595	extent_buffer_get(log->node);
2596	path->slots[level] = 0;
2597
2598	while (1) {
2599		wret = walk_down_log_tree(trans, log, path, &level, wc);
2600		if (wret > 0)
2601			break;
2602		if (wret < 0) {
2603			ret = wret;
2604			goto out;
2605		}
2606
2607		wret = walk_up_log_tree(trans, log, path, &level, wc);
2608		if (wret > 0)
2609			break;
2610		if (wret < 0) {
2611			ret = wret;
2612			goto out;
2613		}
2614	}
2615
2616	/* was the root node processed? if not, catch it here */
2617	if (path->nodes[orig_level]) {
2618		ret = wc->process_func(log, path->nodes[orig_level], wc,
2619			 btrfs_header_generation(path->nodes[orig_level]));
 
2620		if (ret)
2621			goto out;
2622		if (wc->free) {
2623			struct extent_buffer *next;
2624
2625			next = path->nodes[orig_level];
2626
2627			if (trans) {
2628				btrfs_tree_lock(next);
2629				btrfs_set_lock_blocking(next);
2630				clean_tree_block(trans, fs_info, next);
2631				btrfs_wait_tree_block_writeback(next);
2632				btrfs_tree_unlock(next);
2633			}
2634
2635			WARN_ON(log->root_key.objectid !=
2636				BTRFS_TREE_LOG_OBJECTID);
2637			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2638							next->start, next->len);
2639			if (ret)
2640				goto out;
2641		}
2642	}
2643
2644out:
2645	btrfs_free_path(path);
2646	return ret;
2647}
2648
2649/*
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2652 */
2653static int update_log_root(struct btrfs_trans_handle *trans,
2654			   struct btrfs_root *log)
 
2655{
2656	struct btrfs_fs_info *fs_info = log->fs_info;
2657	int ret;
2658
2659	if (log->log_transid == 1) {
2660		/* insert root item on the first sync */
2661		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2662				&log->root_key, &log->root_item);
2663	} else {
2664		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2665				&log->root_key, &log->root_item);
2666	}
2667	return ret;
2668}
2669
2670static void wait_log_commit(struct btrfs_root *root, int transid)
2671{
2672	DEFINE_WAIT(wait);
2673	int index = transid % 2;
2674
2675	/*
2676	 * we only allow two pending log transactions at a time,
2677	 * so we know that if ours is more than 2 older than the
2678	 * current transaction, we're done
2679	 */
2680	do {
2681		prepare_to_wait(&root->log_commit_wait[index],
2682				&wait, TASK_UNINTERRUPTIBLE);
2683		mutex_unlock(&root->log_mutex);
2684
2685		if (root->log_transid_committed < transid &&
2686		    atomic_read(&root->log_commit[index]))
2687			schedule();
2688
2689		finish_wait(&root->log_commit_wait[index], &wait);
 
2690		mutex_lock(&root->log_mutex);
2691	} while (root->log_transid_committed < transid &&
2692		 atomic_read(&root->log_commit[index]));
2693}
2694
2695static void wait_for_writer(struct btrfs_root *root)
2696{
2697	DEFINE_WAIT(wait);
2698
2699	while (atomic_read(&root->log_writers)) {
2700		prepare_to_wait(&root->log_writer_wait,
2701				&wait, TASK_UNINTERRUPTIBLE);
 
 
 
2702		mutex_unlock(&root->log_mutex);
2703		if (atomic_read(&root->log_writers))
2704			schedule();
2705		finish_wait(&root->log_writer_wait, &wait);
2706		mutex_lock(&root->log_mutex);
2707	}
 
2708}
2709
2710static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2711					struct btrfs_log_ctx *ctx)
2712{
2713	if (!ctx)
2714		return;
2715
2716	mutex_lock(&root->log_mutex);
2717	list_del_init(&ctx->list);
2718	mutex_unlock(&root->log_mutex);
2719}
2720
2721/* 
2722 * Invoked in log mutex context, or be sure there is no other task which
2723 * can access the list.
2724 */
2725static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2726					     int index, int error)
2727{
2728	struct btrfs_log_ctx *ctx;
2729	struct btrfs_log_ctx *safe;
2730
2731	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2732		list_del_init(&ctx->list);
2733		ctx->log_ret = error;
2734	}
2735
2736	INIT_LIST_HEAD(&root->log_ctxs[index]);
2737}
2738
2739/*
2740 * btrfs_sync_log does sends a given tree log down to the disk and
2741 * updates the super blocks to record it.  When this call is done,
2742 * you know that any inodes previously logged are safely on disk only
2743 * if it returns 0.
2744 *
2745 * Any other return value means you need to call btrfs_commit_transaction.
2746 * Some of the edge cases for fsyncing directories that have had unlinks
2747 * or renames done in the past mean that sometimes the only safe
2748 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2749 * that has happened.
2750 */
2751int btrfs_sync_log(struct btrfs_trans_handle *trans,
2752		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2753{
2754	int index1;
2755	int index2;
2756	int mark;
2757	int ret;
2758	struct btrfs_fs_info *fs_info = root->fs_info;
2759	struct btrfs_root *log = root->log_root;
2760	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
 
2761	int log_transid = 0;
2762	struct btrfs_log_ctx root_log_ctx;
2763	struct blk_plug plug;
 
 
2764
2765	mutex_lock(&root->log_mutex);
2766	log_transid = ctx->log_transid;
2767	if (root->log_transid_committed >= log_transid) {
2768		mutex_unlock(&root->log_mutex);
2769		return ctx->log_ret;
2770	}
2771
2772	index1 = log_transid % 2;
2773	if (atomic_read(&root->log_commit[index1])) {
2774		wait_log_commit(root, log_transid);
2775		mutex_unlock(&root->log_mutex);
2776		return ctx->log_ret;
2777	}
2778	ASSERT(log_transid == root->log_transid);
2779	atomic_set(&root->log_commit[index1], 1);
2780
2781	/* wait for previous tree log sync to complete */
2782	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2783		wait_log_commit(root, log_transid - 1);
2784
2785	while (1) {
2786		int batch = atomic_read(&root->log_batch);
2787		/* when we're on an ssd, just kick the log commit out */
2788		if (!btrfs_test_opt(fs_info, SSD) &&
2789		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2790			mutex_unlock(&root->log_mutex);
2791			schedule_timeout_uninterruptible(1);
2792			mutex_lock(&root->log_mutex);
2793		}
2794		wait_for_writer(root);
2795		if (batch == atomic_read(&root->log_batch))
2796			break;
2797	}
2798
2799	/* bail out if we need to do a full commit */
2800	if (btrfs_need_log_full_commit(fs_info, trans)) {
2801		ret = -EAGAIN;
2802		btrfs_free_logged_extents(log, log_transid);
2803		mutex_unlock(&root->log_mutex);
2804		goto out;
2805	}
2806
2807	if (log_transid % 2 == 0)
2808		mark = EXTENT_DIRTY;
2809	else
2810		mark = EXTENT_NEW;
2811
2812	/* we start IO on  all the marked extents here, but we don't actually
2813	 * wait for them until later.
2814	 */
2815	blk_start_plug(&plug);
2816	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
 
 
 
 
 
 
 
 
 
 
 
2817	if (ret) {
2818		blk_finish_plug(&plug);
2819		btrfs_abort_transaction(trans, ret);
2820		btrfs_free_logged_extents(log, log_transid);
2821		btrfs_set_log_full_commit(fs_info, trans);
2822		mutex_unlock(&root->log_mutex);
2823		goto out;
2824	}
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	btrfs_set_root_node(&log->root_item, log->node);
 
2827
2828	root->log_transid++;
2829	log->log_transid = root->log_transid;
2830	root->log_start_pid = 0;
2831	/*
2832	 * IO has been started, blocks of the log tree have WRITTEN flag set
2833	 * in their headers. new modifications of the log will be written to
2834	 * new positions. so it's safe to allow log writers to go in.
2835	 */
2836	mutex_unlock(&root->log_mutex);
2837
 
 
 
 
 
 
 
 
 
 
 
 
 
2838	btrfs_init_log_ctx(&root_log_ctx, NULL);
2839
2840	mutex_lock(&log_root_tree->log_mutex);
2841	atomic_inc(&log_root_tree->log_batch);
2842	atomic_inc(&log_root_tree->log_writers);
2843
2844	index2 = log_root_tree->log_transid % 2;
2845	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2846	root_log_ctx.log_transid = log_root_tree->log_transid;
2847
2848	mutex_unlock(&log_root_tree->log_mutex);
2849
2850	ret = update_log_root(trans, log);
2851
2852	mutex_lock(&log_root_tree->log_mutex);
2853	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2854		/*
2855		 * Implicit memory barrier after atomic_dec_and_test
2856		 */
2857		if (waitqueue_active(&log_root_tree->log_writer_wait))
2858			wake_up(&log_root_tree->log_writer_wait);
2859	}
2860
2861	if (ret) {
2862		if (!list_empty(&root_log_ctx.list))
2863			list_del_init(&root_log_ctx.list);
2864
2865		blk_finish_plug(&plug);
2866		btrfs_set_log_full_commit(fs_info, trans);
2867
2868		if (ret != -ENOSPC) {
2869			btrfs_abort_transaction(trans, ret);
2870			mutex_unlock(&log_root_tree->log_mutex);
2871			goto out;
2872		}
2873		btrfs_wait_tree_log_extents(log, mark);
2874		btrfs_free_logged_extents(log, log_transid);
2875		mutex_unlock(&log_root_tree->log_mutex);
2876		ret = -EAGAIN;
2877		goto out;
2878	}
2879
2880	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2881		blk_finish_plug(&plug);
2882		list_del_init(&root_log_ctx.list);
2883		mutex_unlock(&log_root_tree->log_mutex);
2884		ret = root_log_ctx.log_ret;
2885		goto out;
2886	}
2887
2888	index2 = root_log_ctx.log_transid % 2;
2889	if (atomic_read(&log_root_tree->log_commit[index2])) {
2890		blk_finish_plug(&plug);
2891		ret = btrfs_wait_tree_log_extents(log, mark);
2892		btrfs_wait_logged_extents(trans, log, log_transid);
2893		wait_log_commit(log_root_tree,
2894				root_log_ctx.log_transid);
2895		mutex_unlock(&log_root_tree->log_mutex);
2896		if (!ret)
2897			ret = root_log_ctx.log_ret;
2898		goto out;
2899	}
2900	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2901	atomic_set(&log_root_tree->log_commit[index2], 1);
2902
2903	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2904		wait_log_commit(log_root_tree,
2905				root_log_ctx.log_transid - 1);
2906	}
2907
2908	wait_for_writer(log_root_tree);
2909
2910	/*
2911	 * now that we've moved on to the tree of log tree roots,
2912	 * check the full commit flag again
2913	 */
2914	if (btrfs_need_log_full_commit(fs_info, trans)) {
2915		blk_finish_plug(&plug);
2916		btrfs_wait_tree_log_extents(log, mark);
2917		btrfs_free_logged_extents(log, log_transid);
2918		mutex_unlock(&log_root_tree->log_mutex);
2919		ret = -EAGAIN;
2920		goto out_wake_log_root;
2921	}
2922
2923	ret = btrfs_write_marked_extents(fs_info,
2924					 &log_root_tree->dirty_log_pages,
2925					 EXTENT_DIRTY | EXTENT_NEW);
2926	blk_finish_plug(&plug);
2927	if (ret) {
2928		btrfs_set_log_full_commit(fs_info, trans);
2929		btrfs_abort_transaction(trans, ret);
2930		btrfs_free_logged_extents(log, log_transid);
 
 
 
 
 
 
 
 
2931		mutex_unlock(&log_root_tree->log_mutex);
2932		goto out_wake_log_root;
2933	}
2934	ret = btrfs_wait_tree_log_extents(log, mark);
2935	if (!ret)
2936		ret = btrfs_wait_tree_log_extents(log_root_tree,
2937						  EXTENT_NEW | EXTENT_DIRTY);
2938	if (ret) {
2939		btrfs_set_log_full_commit(fs_info, trans);
2940		btrfs_free_logged_extents(log, log_transid);
2941		mutex_unlock(&log_root_tree->log_mutex);
2942		goto out_wake_log_root;
2943	}
2944	btrfs_wait_logged_extents(trans, log, log_transid);
2945
2946	btrfs_set_super_log_root(fs_info->super_for_commit,
2947				 log_root_tree->node->start);
2948	btrfs_set_super_log_root_level(fs_info->super_for_commit,
2949				       btrfs_header_level(log_root_tree->node));
2950
 
 
2951	log_root_tree->log_transid++;
2952	mutex_unlock(&log_root_tree->log_mutex);
2953
2954	/*
2955	 * nobody else is going to jump in and write the the ctree
2956	 * super here because the log_commit atomic below is protecting
2957	 * us.  We must be called with a transaction handle pinning
2958	 * the running transaction open, so a full commit can't hop
2959	 * in and cause problems either.
 
 
 
 
 
 
 
 
2960	 */
2961	ret = write_ctree_super(trans, fs_info, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962	if (ret) {
2963		btrfs_set_log_full_commit(fs_info, trans);
2964		btrfs_abort_transaction(trans, ret);
2965		goto out_wake_log_root;
2966	}
2967
2968	mutex_lock(&root->log_mutex);
2969	if (root->last_log_commit < log_transid)
2970		root->last_log_commit = log_transid;
2971	mutex_unlock(&root->log_mutex);
 
 
 
 
 
 
2972
2973out_wake_log_root:
2974	mutex_lock(&log_root_tree->log_mutex);
2975	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2976
2977	log_root_tree->log_transid_committed++;
2978	atomic_set(&log_root_tree->log_commit[index2], 0);
2979	mutex_unlock(&log_root_tree->log_mutex);
2980
2981	/*
2982	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2983	 */
2984	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2985		wake_up(&log_root_tree->log_commit_wait[index2]);
2986out:
2987	mutex_lock(&root->log_mutex);
2988	btrfs_remove_all_log_ctxs(root, index1, ret);
2989	root->log_transid_committed++;
2990	atomic_set(&root->log_commit[index1], 0);
2991	mutex_unlock(&root->log_mutex);
2992
2993	/*
2994	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2995	 */
2996	if (waitqueue_active(&root->log_commit_wait[index1]))
2997		wake_up(&root->log_commit_wait[index1]);
2998	return ret;
2999}
3000
3001static void free_log_tree(struct btrfs_trans_handle *trans,
3002			  struct btrfs_root *log)
3003{
3004	int ret;
3005	u64 start;
3006	u64 end;
3007	struct walk_control wc = {
3008		.free = 1,
3009		.process_func = process_one_buffer
3010	};
3011
3012	ret = walk_log_tree(trans, log, &wc);
3013	/* I don't think this can happen but just in case */
3014	if (ret)
3015		btrfs_abort_transaction(trans, ret);
 
 
 
 
 
 
 
3016
3017	while (1) {
3018		ret = find_first_extent_bit(&log->dirty_log_pages,
3019				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3020				NULL);
3021		if (ret)
3022			break;
 
 
 
 
 
 
 
3023
3024		clear_extent_bits(&log->dirty_log_pages, start, end,
3025				  EXTENT_DIRTY | EXTENT_NEW);
 
 
 
3026	}
3027
3028	/*
3029	 * We may have short-circuited the log tree with the full commit logic
3030	 * and left ordered extents on our list, so clear these out to keep us
3031	 * from leaking inodes and memory.
3032	 */
3033	btrfs_free_logged_extents(log, 0);
3034	btrfs_free_logged_extents(log, 1);
3035
3036	free_extent_buffer(log->node);
3037	kfree(log);
3038}
3039
3040/*
3041 * free all the extents used by the tree log.  This should be called
3042 * at commit time of the full transaction
3043 */
3044int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3045{
3046	if (root->log_root) {
3047		free_log_tree(trans, root->log_root);
3048		root->log_root = NULL;
 
3049	}
3050	return 0;
3051}
3052
3053int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3054			     struct btrfs_fs_info *fs_info)
3055{
3056	if (fs_info->log_root_tree) {
3057		free_log_tree(trans, fs_info->log_root_tree);
3058		fs_info->log_root_tree = NULL;
 
3059	}
3060	return 0;
3061}
3062
3063/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064 * If both a file and directory are logged, and unlinks or renames are
3065 * mixed in, we have a few interesting corners:
3066 *
3067 * create file X in dir Y
3068 * link file X to X.link in dir Y
3069 * fsync file X
3070 * unlink file X but leave X.link
3071 * fsync dir Y
3072 *
3073 * After a crash we would expect only X.link to exist.  But file X
3074 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 *
3076 * We solve this by removing directory entries and inode backrefs from the
3077 * log when a file that was logged in the current transaction is
3078 * unlinked.  Any later fsync will include the updated log entries, and
3079 * we'll be able to reconstruct the proper directory items from backrefs.
3080 *
3081 * This optimizations allows us to avoid relogging the entire inode
3082 * or the entire directory.
3083 */
3084int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3085				 struct btrfs_root *root,
3086				 const char *name, int name_len,
3087				 struct inode *dir, u64 index)
3088{
3089	struct btrfs_root *log;
3090	struct btrfs_dir_item *di;
3091	struct btrfs_path *path;
3092	int ret;
3093	int err = 0;
3094	int bytes_del = 0;
3095	u64 dir_ino = btrfs_ino(dir);
3096
3097	if (BTRFS_I(dir)->logged_trans < trans->transid)
3098		return 0;
 
 
 
 
 
3099
3100	ret = join_running_log_trans(root);
3101	if (ret)
3102		return 0;
3103
3104	mutex_lock(&BTRFS_I(dir)->log_mutex);
3105
3106	log = root->log_root;
3107	path = btrfs_alloc_path();
3108	if (!path) {
3109		err = -ENOMEM;
3110		goto out_unlock;
3111	}
3112
3113	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3114				   name, name_len, -1);
3115	if (IS_ERR(di)) {
3116		err = PTR_ERR(di);
3117		goto fail;
3118	}
3119	if (di) {
3120		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3121		bytes_del += name_len;
3122		if (ret) {
3123			err = ret;
3124			goto fail;
3125		}
3126	}
3127	btrfs_release_path(path);
3128	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3129					 index, name, name_len, -1);
3130	if (IS_ERR(di)) {
3131		err = PTR_ERR(di);
3132		goto fail;
3133	}
3134	if (di) {
3135		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3136		bytes_del += name_len;
3137		if (ret) {
3138			err = ret;
3139			goto fail;
3140		}
3141	}
3142
3143	/* update the directory size in the log to reflect the names
3144	 * we have removed
3145	 */
3146	if (bytes_del) {
3147		struct btrfs_key key;
3148
3149		key.objectid = dir_ino;
3150		key.offset = 0;
3151		key.type = BTRFS_INODE_ITEM_KEY;
3152		btrfs_release_path(path);
3153
3154		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3155		if (ret < 0) {
3156			err = ret;
3157			goto fail;
3158		}
3159		if (ret == 0) {
3160			struct btrfs_inode_item *item;
3161			u64 i_size;
3162
3163			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3164					      struct btrfs_inode_item);
3165			i_size = btrfs_inode_size(path->nodes[0], item);
3166			if (i_size > bytes_del)
3167				i_size -= bytes_del;
3168			else
3169				i_size = 0;
3170			btrfs_set_inode_size(path->nodes[0], item, i_size);
3171			btrfs_mark_buffer_dirty(path->nodes[0]);
3172		} else
3173			ret = 0;
3174		btrfs_release_path(path);
3175	}
3176fail:
3177	btrfs_free_path(path);
3178out_unlock:
3179	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3180	if (ret == -ENOSPC) {
3181		btrfs_set_log_full_commit(root->fs_info, trans);
3182		ret = 0;
3183	} else if (ret < 0)
3184		btrfs_abort_transaction(trans, ret);
3185
3186	btrfs_end_log_trans(root);
3187
3188	return err;
3189}
3190
3191/* see comments for btrfs_del_dir_entries_in_log */
3192int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3193			       struct btrfs_root *root,
3194			       const char *name, int name_len,
3195			       struct inode *inode, u64 dirid)
3196{
3197	struct btrfs_fs_info *fs_info = root->fs_info;
3198	struct btrfs_root *log;
3199	u64 index;
3200	int ret;
3201
3202	if (BTRFS_I(inode)->logged_trans < trans->transid)
3203		return 0;
 
 
 
 
 
3204
3205	ret = join_running_log_trans(root);
3206	if (ret)
3207		return 0;
3208	log = root->log_root;
3209	mutex_lock(&BTRFS_I(inode)->log_mutex);
3210
3211	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3212				  dirid, &index);
3213	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3214	if (ret == -ENOSPC) {
3215		btrfs_set_log_full_commit(fs_info, trans);
3216		ret = 0;
3217	} else if (ret < 0 && ret != -ENOENT)
3218		btrfs_abort_transaction(trans, ret);
3219	btrfs_end_log_trans(root);
3220
3221	return ret;
3222}
3223
3224/*
3225 * creates a range item in the log for 'dirid'.  first_offset and
3226 * last_offset tell us which parts of the key space the log should
3227 * be considered authoritative for.
3228 */
3229static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3230				       struct btrfs_root *log,
3231				       struct btrfs_path *path,
3232				       int key_type, u64 dirid,
3233				       u64 first_offset, u64 last_offset)
3234{
3235	int ret;
3236	struct btrfs_key key;
3237	struct btrfs_dir_log_item *item;
3238
3239	key.objectid = dirid;
3240	key.offset = first_offset;
3241	if (key_type == BTRFS_DIR_ITEM_KEY)
3242		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3243	else
3244		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3245	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3246	if (ret)
 
 
 
 
 
 
 
3247		return ret;
3248
3249	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3250			      struct btrfs_dir_log_item);
 
 
 
 
 
 
 
 
 
 
 
3251	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3252	btrfs_mark_buffer_dirty(path->nodes[0]);
3253	btrfs_release_path(path);
3254	return 0;
3255}
3256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257/*
3258 * log all the items included in the current transaction for a given
3259 * directory.  This also creates the range items in the log tree required
3260 * to replay anything deleted before the fsync
3261 */
3262static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3263			  struct btrfs_root *root, struct inode *inode,
3264			  struct btrfs_path *path,
3265			  struct btrfs_path *dst_path, int key_type,
3266			  struct btrfs_log_ctx *ctx,
3267			  u64 min_offset, u64 *last_offset_ret)
3268{
3269	struct btrfs_key min_key;
 
3270	struct btrfs_root *log = root->log_root;
3271	struct extent_buffer *src;
3272	int err = 0;
3273	int ret;
3274	int i;
3275	int nritems;
3276	u64 first_offset = min_offset;
3277	u64 last_offset = (u64)-1;
3278	u64 ino = btrfs_ino(inode);
3279
3280	log = root->log_root;
3281
3282	min_key.objectid = ino;
3283	min_key.type = key_type;
3284	min_key.offset = min_offset;
3285
3286	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3287
3288	/*
3289	 * we didn't find anything from this transaction, see if there
3290	 * is anything at all
3291	 */
3292	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
 
3293		min_key.objectid = ino;
3294		min_key.type = key_type;
3295		min_key.offset = (u64)-1;
3296		btrfs_release_path(path);
3297		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3298		if (ret < 0) {
3299			btrfs_release_path(path);
3300			return ret;
3301		}
3302		ret = btrfs_previous_item(root, path, ino, key_type);
3303
3304		/* if ret == 0 there are items for this type,
3305		 * create a range to tell us the last key of this type.
3306		 * otherwise, there are no items in this directory after
3307		 * *min_offset, and we create a range to indicate that.
3308		 */
3309		if (ret == 0) {
3310			struct btrfs_key tmp;
 
3311			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3312					      path->slots[0]);
3313			if (key_type == tmp.type)
3314				first_offset = max(min_offset, tmp.offset) + 1;
 
 
3315		}
 
3316		goto done;
3317	}
3318
3319	/* go backward to find any previous key */
3320	ret = btrfs_previous_item(root, path, ino, key_type);
3321	if (ret == 0) {
3322		struct btrfs_key tmp;
 
3323		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3324		if (key_type == tmp.type) {
3325			first_offset = tmp.offset;
3326			ret = overwrite_item(trans, log, dst_path,
3327					     path->nodes[0], path->slots[0],
3328					     &tmp);
3329			if (ret) {
3330				err = ret;
3331				goto done;
3332			}
3333		}
 
 
3334	}
 
3335	btrfs_release_path(path);
3336
3337	/* find the first key from this transaction again */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3339	if (WARN_ON(ret != 0))
 
 
 
 
 
 
 
 
3340		goto done;
3341
3342	/*
3343	 * we have a block from this transaction, log every item in it
3344	 * from our directory
3345	 */
3346	while (1) {
3347		struct btrfs_key tmp;
3348		src = path->nodes[0];
3349		nritems = btrfs_header_nritems(src);
3350		for (i = path->slots[0]; i < nritems; i++) {
3351			struct btrfs_dir_item *di;
3352
3353			btrfs_item_key_to_cpu(src, &min_key, i);
3354
3355			if (min_key.objectid != ino || min_key.type != key_type)
3356				goto done;
3357			ret = overwrite_item(trans, log, dst_path, src, i,
3358					     &min_key);
3359			if (ret) {
3360				err = ret;
3361				goto done;
3362			}
3363
3364			/*
3365			 * We must make sure that when we log a directory entry,
3366			 * the corresponding inode, after log replay, has a
3367			 * matching link count. For example:
3368			 *
3369			 * touch foo
3370			 * mkdir mydir
3371			 * sync
3372			 * ln foo mydir/bar
3373			 * xfs_io -c "fsync" mydir
3374			 * <crash>
3375			 * <mount fs and log replay>
3376			 *
3377			 * Would result in a fsync log that when replayed, our
3378			 * file inode would have a link count of 1, but we get
3379			 * two directory entries pointing to the same inode.
3380			 * After removing one of the names, it would not be
3381			 * possible to remove the other name, which resulted
3382			 * always in stale file handle errors, and would not
3383			 * be possible to rmdir the parent directory, since
3384			 * its i_size could never decrement to the value
3385			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386			 */
3387			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3388			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389			if (ctx &&
3390			    (btrfs_dir_transid(src, di) == trans->transid ||
3391			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3392			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3393				ctx->log_new_dentries = true;
3394		}
3395		path->slots[0] = nritems;
3396
3397		/*
3398		 * look ahead to the next item and see if it is also
3399		 * from this directory and from this transaction
3400		 */
3401		ret = btrfs_next_leaf(root, path);
3402		if (ret == 1) {
3403			last_offset = (u64)-1;
 
 
 
3404			goto done;
3405		}
3406		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3407		if (tmp.objectid != ino || tmp.type != key_type) {
3408			last_offset = (u64)-1;
3409			goto done;
3410		}
3411		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3412			ret = overwrite_item(trans, log, dst_path,
3413					     path->nodes[0], path->slots[0],
3414					     &tmp);
3415			if (ret)
3416				err = ret;
3417			else
3418				last_offset = tmp.offset;
 
 
 
3419			goto done;
3420		}
 
 
 
 
 
3421	}
3422done:
3423	btrfs_release_path(path);
3424	btrfs_release_path(dst_path);
3425
3426	if (err == 0) {
3427		*last_offset_ret = last_offset;
3428		/*
3429		 * insert the log range keys to indicate where the log
3430		 * is valid
 
 
 
 
3431		 */
3432		ret = insert_dir_log_key(trans, log, path, key_type,
3433					 ino, first_offset, last_offset);
3434		if (ret)
3435			err = ret;
 
3436	}
3437	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3438}
3439
3440/*
3441 * logging directories is very similar to logging inodes, We find all the items
3442 * from the current transaction and write them to the log.
3443 *
3444 * The recovery code scans the directory in the subvolume, and if it finds a
3445 * key in the range logged that is not present in the log tree, then it means
3446 * that dir entry was unlinked during the transaction.
3447 *
3448 * In order for that scan to work, we must include one key smaller than
3449 * the smallest logged by this transaction and one key larger than the largest
3450 * key logged by this transaction.
3451 */
3452static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3453			  struct btrfs_root *root, struct inode *inode,
3454			  struct btrfs_path *path,
3455			  struct btrfs_path *dst_path,
3456			  struct btrfs_log_ctx *ctx)
3457{
3458	u64 min_key;
3459	u64 max_key;
3460	int ret;
3461	int key_type = BTRFS_DIR_ITEM_KEY;
3462
3463again:
3464	min_key = 0;
 
 
 
3465	max_key = 0;
 
3466	while (1) {
3467		ret = log_dir_items(trans, root, inode, path,
3468				    dst_path, key_type, ctx, min_key,
3469				    &max_key);
3470		if (ret)
3471			return ret;
3472		if (max_key == (u64)-1)
3473			break;
3474		min_key = max_key + 1;
3475	}
3476
3477	if (key_type == BTRFS_DIR_ITEM_KEY) {
3478		key_type = BTRFS_DIR_INDEX_KEY;
3479		goto again;
3480	}
3481	return 0;
3482}
3483
3484/*
3485 * a helper function to drop items from the log before we relog an
3486 * inode.  max_key_type indicates the highest item type to remove.
3487 * This cannot be run for file data extents because it does not
3488 * free the extents they point to.
3489 */
3490static int drop_objectid_items(struct btrfs_trans_handle *trans,
3491				  struct btrfs_root *log,
3492				  struct btrfs_path *path,
3493				  u64 objectid, int max_key_type)
 
3494{
3495	int ret;
3496	struct btrfs_key key;
3497	struct btrfs_key found_key;
3498	int start_slot;
3499
3500	key.objectid = objectid;
3501	key.type = max_key_type;
3502	key.offset = (u64)-1;
3503
3504	while (1) {
3505		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3506		BUG_ON(ret == 0); /* Logic error */
3507		if (ret < 0)
3508			break;
3509
3510		if (path->slots[0] == 0)
3511			break;
 
 
 
 
 
3512
3513		path->slots[0]--;
3514		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3515				      path->slots[0]);
3516
3517		if (found_key.objectid != objectid)
3518			break;
3519
3520		found_key.offset = 0;
3521		found_key.type = 0;
3522		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3523				       &start_slot);
 
3524
3525		ret = btrfs_del_items(trans, log, path, start_slot,
3526				      path->slots[0] - start_slot + 1);
3527		/*
3528		 * If start slot isn't 0 then we don't need to re-search, we've
3529		 * found the last guy with the objectid in this tree.
3530		 */
3531		if (ret || start_slot != 0)
3532			break;
3533		btrfs_release_path(path);
3534	}
3535	btrfs_release_path(path);
3536	if (ret > 0)
3537		ret = 0;
3538	return ret;
3539}
3540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3541static void fill_inode_item(struct btrfs_trans_handle *trans,
3542			    struct extent_buffer *leaf,
3543			    struct btrfs_inode_item *item,
3544			    struct inode *inode, int log_inode_only,
3545			    u64 logged_isize)
3546{
3547	struct btrfs_map_token token;
 
3548
3549	btrfs_init_map_token(&token);
3550
3551	if (log_inode_only) {
3552		/* set the generation to zero so the recover code
3553		 * can tell the difference between an logging
3554		 * just to say 'this inode exists' and a logging
3555		 * to say 'update this inode with these values'
3556		 */
3557		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3558		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3559	} else {
3560		btrfs_set_token_inode_generation(leaf, item,
3561						 BTRFS_I(inode)->generation,
3562						 &token);
3563		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3564	}
3565
3566	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3567	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3568	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3569	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3570
3571	btrfs_set_token_timespec_sec(leaf, &item->atime,
3572				     inode->i_atime.tv_sec, &token);
3573	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3574				      inode->i_atime.tv_nsec, &token);
3575
3576	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3577				     inode->i_mtime.tv_sec, &token);
3578	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3579				      inode->i_mtime.tv_nsec, &token);
3580
3581	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3582				     inode->i_ctime.tv_sec, &token);
3583	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3584				      inode->i_ctime.tv_nsec, &token);
3585
3586	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3587				     &token);
3588
3589	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3590	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3591	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3592	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3593	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
 
 
 
 
 
 
 
3594}
3595
3596static int log_inode_item(struct btrfs_trans_handle *trans,
3597			  struct btrfs_root *log, struct btrfs_path *path,
3598			  struct inode *inode)
3599{
3600	struct btrfs_inode_item *inode_item;
3601	int ret;
3602
3603	ret = btrfs_insert_empty_item(trans, log, path,
3604				      &BTRFS_I(inode)->location,
3605				      sizeof(*inode_item));
3606	if (ret && ret != -EEXIST)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3607		return ret;
3608	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609				    struct btrfs_inode_item);
3610	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
 
3611	btrfs_release_path(path);
3612	return 0;
3613}
3614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615static noinline int copy_items(struct btrfs_trans_handle *trans,
3616			       struct inode *inode,
3617			       struct btrfs_path *dst_path,
3618			       struct btrfs_path *src_path, u64 *last_extent,
3619			       int start_slot, int nr, int inode_only,
3620			       u64 logged_isize)
3621{
3622	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3623	unsigned long src_offset;
3624	unsigned long dst_offset;
3625	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3626	struct btrfs_file_extent_item *extent;
3627	struct btrfs_inode_item *inode_item;
3628	struct extent_buffer *src = src_path->nodes[0];
3629	struct btrfs_key first_key, last_key, key;
3630	int ret;
3631	struct btrfs_key *ins_keys;
3632	u32 *ins_sizes;
 
3633	char *ins_data;
3634	int i;
3635	struct list_head ordered_sums;
3636	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3637	bool has_extents = false;
3638	bool need_find_last_extent = true;
3639	bool done = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3640
3641	INIT_LIST_HEAD(&ordered_sums);
 
 
 
3642
3643	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3644			   nr * sizeof(u32), GFP_NOFS);
3645	if (!ins_data)
3646		return -ENOMEM;
3647
3648	first_key.objectid = (u64)-1;
3649
3650	ins_sizes = (u32 *)ins_data;
3651	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 
 
 
 
3652
 
3653	for (i = 0; i < nr; i++) {
3654		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3655		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3656	}
3657	ret = btrfs_insert_empty_items(trans, log, dst_path,
3658				       ins_keys, ins_sizes, nr);
3659	if (ret) {
3660		kfree(ins_data);
3661		return ret;
3662	}
 
3663
3664	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3665		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3666						   dst_path->slots[0]);
3667
3668		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3669
3670		if ((i == (nr - 1)))
3671			last_key = ins_keys[i];
3672
3673		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3674			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3675						    dst_path->slots[0],
3676						    struct btrfs_inode_item);
3677			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3678					inode, inode_only == LOG_INODE_EXISTS,
3679					logged_isize);
3680		} else {
3681			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3682					   src_offset, ins_sizes[i]);
3683		}
3684
3685		/*
3686		 * We set need_find_last_extent here in case we know we were
3687		 * processing other items and then walk into the first extent in
3688		 * the inode.  If we don't hit an extent then nothing changes,
3689		 * we'll do the last search the next time around.
 
 
 
 
 
 
 
3690		 */
3691		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3692			has_extents = true;
3693			if (first_key.objectid == (u64)-1)
3694				first_key = ins_keys[i];
3695		} else {
3696			need_find_last_extent = false;
3697		}
 
 
 
 
3698
3699		/* take a reference on file data extents so that truncates
3700		 * or deletes of this inode don't have to relog the inode
3701		 * again
 
3702		 */
3703		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3704		    !skip_csum) {
3705			int found_type;
3706			extent = btrfs_item_ptr(src, start_slot + i,
3707						struct btrfs_file_extent_item);
3708
3709			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3710				continue;
 
 
 
 
 
 
 
 
 
 
 
 
3711
3712			found_type = btrfs_file_extent_type(src, extent);
3713			if (found_type == BTRFS_FILE_EXTENT_REG) {
3714				u64 ds, dl, cs, cl;
3715				ds = btrfs_file_extent_disk_bytenr(src,
3716								extent);
3717				/* ds == 0 is a hole */
3718				if (ds == 0)
3719					continue;
3720
3721				dl = btrfs_file_extent_disk_num_bytes(src,
3722								extent);
3723				cs = btrfs_file_extent_offset(src, extent);
3724				cl = btrfs_file_extent_num_bytes(src,
3725								extent);
3726				if (btrfs_file_extent_compression(src,
3727								  extent)) {
3728					cs = 0;
3729					cl = dl;
3730				}
3731
3732				ret = btrfs_lookup_csums_range(
3733						fs_info->csum_root,
3734						ds + cs, ds + cs + cl - 1,
3735						&ordered_sums, 0);
3736				if (ret) {
3737					btrfs_release_path(dst_path);
3738					kfree(ins_data);
3739					return ret;
3740				}
3741			}
3742		}
3743	}
 
3744
3745	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3746	btrfs_release_path(dst_path);
3747	kfree(ins_data);
 
 
 
3748
3749	/*
3750	 * we have to do this after the loop above to avoid changing the
3751	 * log tree while trying to change the log tree.
3752	 */
3753	ret = 0;
3754	while (!list_empty(&ordered_sums)) {
3755		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3756						   struct btrfs_ordered_sum,
3757						   list);
3758		if (!ret)
3759			ret = btrfs_csum_file_blocks(trans, log, sums);
3760		list_del(&sums->list);
3761		kfree(sums);
3762	}
3763
3764	if (!has_extents)
3765		return ret;
 
 
 
 
 
 
 
 
 
3766
3767	if (need_find_last_extent && *last_extent == first_key.offset) {
3768		/*
3769		 * We don't have any leafs between our current one and the one
3770		 * we processed before that can have file extent items for our
3771		 * inode (and have a generation number smaller than our current
3772		 * transaction id).
3773		 */
3774		need_find_last_extent = false;
3775	}
3776
3777	/*
3778	 * Because we use btrfs_search_forward we could skip leaves that were
3779	 * not modified and then assume *last_extent is valid when it really
3780	 * isn't.  So back up to the previous leaf and read the end of the last
3781	 * extent before we go and fill in holes.
3782	 */
3783	if (need_find_last_extent) {
3784		u64 len;
3785
3786		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3787		if (ret < 0)
3788			return ret;
3789		if (ret)
3790			goto fill_holes;
3791		if (src_path->slots[0])
3792			src_path->slots[0]--;
3793		src = src_path->nodes[0];
3794		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3795		if (key.objectid != btrfs_ino(inode) ||
3796		    key.type != BTRFS_EXTENT_DATA_KEY)
3797			goto fill_holes;
3798		extent = btrfs_item_ptr(src, src_path->slots[0],
3799					struct btrfs_file_extent_item);
3800		if (btrfs_file_extent_type(src, extent) ==
3801		    BTRFS_FILE_EXTENT_INLINE) {
3802			len = btrfs_file_extent_inline_len(src,
3803							   src_path->slots[0],
3804							   extent);
3805			*last_extent = ALIGN(key.offset + len,
3806					     fs_info->sectorsize);
3807		} else {
3808			len = btrfs_file_extent_num_bytes(src, extent);
3809			*last_extent = key.offset + len;
3810		}
3811	}
3812fill_holes:
3813	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3814	 * things could have happened
3815	 *
3816	 * 1) A merge could have happened, so we could currently be on a leaf
3817	 * that holds what we were copying in the first place.
3818	 * 2) A split could have happened, and now not all of the items we want
3819	 * are on the same leaf.
3820	 *
3821	 * So we need to adjust how we search for holes, we need to drop the
3822	 * path and re-search for the first extent key we found, and then walk
3823	 * forward until we hit the last one we copied.
3824	 */
3825	if (need_find_last_extent) {
3826		/* btrfs_prev_leaf could return 1 without releasing the path */
3827		btrfs_release_path(src_path);
3828		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3829					src_path, 0, 0);
3830		if (ret < 0)
3831			return ret;
3832		ASSERT(ret == 0);
3833		src = src_path->nodes[0];
3834		i = src_path->slots[0];
3835	} else {
3836		i = start_slot;
3837	}
3838
3839	/*
3840	 * Ok so here we need to go through and fill in any holes we may have
3841	 * to make sure that holes are punched for those areas in case they had
3842	 * extents previously.
3843	 */
3844	while (!done) {
3845		u64 offset, len;
3846		u64 extent_end;
3847
3848		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3849			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3850			if (ret < 0)
3851				return ret;
3852			ASSERT(ret == 0);
3853			src = src_path->nodes[0];
3854			i = 0;
3855		}
3856
3857		btrfs_item_key_to_cpu(src, &key, i);
3858		if (!btrfs_comp_cpu_keys(&key, &last_key))
3859			done = true;
3860		if (key.objectid != btrfs_ino(inode) ||
3861		    key.type != BTRFS_EXTENT_DATA_KEY) {
3862			i++;
3863			continue;
3864		}
3865		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866		if (btrfs_file_extent_type(src, extent) ==
3867		    BTRFS_FILE_EXTENT_INLINE) {
3868			len = btrfs_file_extent_inline_len(src, i, extent);
3869			extent_end = ALIGN(key.offset + len,
3870					   fs_info->sectorsize);
3871		} else {
3872			len = btrfs_file_extent_num_bytes(src, extent);
3873			extent_end = key.offset + len;
3874		}
3875		i++;
3876
3877		if (*last_extent == key.offset) {
3878			*last_extent = extent_end;
3879			continue;
3880		}
3881		offset = *last_extent;
3882		len = key.offset - *last_extent;
3883		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884					       offset, 0, 0, len, 0, len, 0,
3885					       0, 0);
3886		if (ret)
3887			break;
3888		*last_extent = extent_end;
3889	}
3890	/*
3891	 * Need to let the callers know we dropped the path so they should
3892	 * re-search.
3893	 */
3894	if (!ret && need_find_last_extent)
3895		ret = 1;
3896	return ret;
3897}
3898
3899static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
 
3900{
3901	struct extent_map *em1, *em2;
3902
3903	em1 = list_entry(a, struct extent_map, list);
3904	em2 = list_entry(b, struct extent_map, list);
3905
3906	if (em1->start < em2->start)
3907		return -1;
3908	else if (em1->start > em2->start)
3909		return 1;
3910	return 0;
3911}
3912
3913static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3914				struct inode *inode,
3915				struct btrfs_root *root,
3916				const struct extent_map *em,
3917				const struct list_head *logged_list,
3918				bool *ordered_io_error)
3919{
3920	struct btrfs_fs_info *fs_info = root->fs_info;
3921	struct btrfs_ordered_extent *ordered;
3922	struct btrfs_root *log = root->log_root;
3923	u64 mod_start = em->mod_start;
3924	u64 mod_len = em->mod_len;
3925	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3926	u64 csum_offset;
3927	u64 csum_len;
 
 
3928	LIST_HEAD(ordered_sums);
3929	int ret = 0;
3930
3931	*ordered_io_error = false;
3932
3933	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3934	    em->block_start == EXTENT_MAP_HOLE)
3935		return 0;
3936
3937	/*
3938	 * Wait far any ordered extent that covers our extent map. If it
3939	 * finishes without an error, first check and see if our csums are on
3940	 * our outstanding ordered extents.
3941	 */
3942	list_for_each_entry(ordered, logged_list, log_list) {
3943		struct btrfs_ordered_sum *sum;
3944
3945		if (!mod_len)
3946			break;
3947
3948		if (ordered->file_offset + ordered->len <= mod_start ||
3949		    mod_start + mod_len <= ordered->file_offset)
3950			continue;
3951
3952		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3953		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3954		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3955			const u64 start = ordered->file_offset;
3956			const u64 end = ordered->file_offset + ordered->len - 1;
3957
3958			WARN_ON(ordered->inode != inode);
3959			filemap_fdatawrite_range(inode->i_mapping, start, end);
3960		}
3961
3962		wait_event(ordered->wait,
3963			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3964			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965
3966		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967			/*
3968			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3969			 * i_mapping flags, so that the next fsync won't get
3970			 * an outdated io error too.
3971			 */
3972			filemap_check_errors(inode->i_mapping);
3973			*ordered_io_error = true;
3974			break;
3975		}
3976		/*
3977		 * We are going to copy all the csums on this ordered extent, so
3978		 * go ahead and adjust mod_start and mod_len in case this
3979		 * ordered extent has already been logged.
3980		 */
3981		if (ordered->file_offset > mod_start) {
3982			if (ordered->file_offset + ordered->len >=
3983			    mod_start + mod_len)
3984				mod_len = ordered->file_offset - mod_start;
3985			/*
3986			 * If we have this case
3987			 *
3988			 * |--------- logged extent ---------|
3989			 *       |----- ordered extent ----|
3990			 *
3991			 * Just don't mess with mod_start and mod_len, we'll
3992			 * just end up logging more csums than we need and it
3993			 * will be ok.
3994			 */
3995		} else {
3996			if (ordered->file_offset + ordered->len <
3997			    mod_start + mod_len) {
3998				mod_len = (mod_start + mod_len) -
3999					(ordered->file_offset + ordered->len);
4000				mod_start = ordered->file_offset +
4001					ordered->len;
4002			} else {
4003				mod_len = 0;
4004			}
4005		}
4006
4007		if (skip_csum)
4008			continue;
4009
4010		/*
4011		 * To keep us from looping for the above case of an ordered
4012		 * extent that falls inside of the logged extent.
4013		 */
4014		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4015				     &ordered->flags))
4016			continue;
4017
4018		list_for_each_entry(sum, &ordered->list, list) {
4019			ret = btrfs_csum_file_blocks(trans, log, sum);
4020			if (ret)
4021				break;
4022		}
4023	}
4024
4025	if (*ordered_io_error || !mod_len || ret || skip_csum)
4026		return ret;
 
4027
4028	if (em->compress_type) {
 
4029		csum_offset = 0;
4030		csum_len = max(em->block_len, em->orig_block_len);
4031	} else {
4032		csum_offset = mod_start - em->start;
4033		csum_len = mod_len;
4034	}
4035
4036	/* block start is already adjusted for the file extent offset. */
4037	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4038				       em->block_start + csum_offset,
4039				       em->block_start + csum_offset +
4040				       csum_len - 1, &ordered_sums, 0);
4041	if (ret)
4042		return ret;
4043
4044	while (!list_empty(&ordered_sums)) {
4045		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4046						   struct btrfs_ordered_sum,
4047						   list);
4048		if (!ret)
4049			ret = btrfs_csum_file_blocks(trans, log, sums);
4050		list_del(&sums->list);
4051		kfree(sums);
4052	}
4053
4054	return ret;
4055}
4056
4057static int log_one_extent(struct btrfs_trans_handle *trans,
4058			  struct inode *inode, struct btrfs_root *root,
4059			  const struct extent_map *em,
4060			  struct btrfs_path *path,
4061			  const struct list_head *logged_list,
4062			  struct btrfs_log_ctx *ctx)
4063{
4064	struct btrfs_root *log = root->log_root;
4065	struct btrfs_file_extent_item *fi;
 
4066	struct extent_buffer *leaf;
4067	struct btrfs_map_token token;
4068	struct btrfs_key key;
 
4069	u64 extent_offset = em->start - em->orig_start;
4070	u64 block_len;
4071	int ret;
4072	int extent_inserted = 0;
4073	bool ordered_io_err = false;
4074
4075	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4076				   &ordered_io_err);
4077	if (ret)
4078		return ret;
 
4079
4080	if (ordered_io_err) {
4081		ctx->io_err = -EIO;
4082		return 0;
 
 
 
 
 
 
4083	}
4084
4085	btrfs_init_map_token(&token);
 
 
 
4086
4087	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4088				   em->start + em->len, NULL, 0, 1,
4089				   sizeof(*fi), &extent_inserted);
4090	if (ret)
4091		return ret;
4092
4093	if (!extent_inserted) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4094		key.objectid = btrfs_ino(inode);
4095		key.type = BTRFS_EXTENT_DATA_KEY;
4096		key.offset = em->start;
4097
4098		ret = btrfs_insert_empty_item(trans, log, path, &key,
4099					      sizeof(*fi));
4100		if (ret)
4101			return ret;
4102	}
4103	leaf = path->nodes[0];
4104	fi = btrfs_item_ptr(leaf, path->slots[0],
4105			    struct btrfs_file_extent_item);
 
 
4106
4107	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108					       &token);
4109	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4110		btrfs_set_token_file_extent_type(leaf, fi,
4111						 BTRFS_FILE_EXTENT_PREALLOC,
4112						 &token);
4113	else
4114		btrfs_set_token_file_extent_type(leaf, fi,
4115						 BTRFS_FILE_EXTENT_REG,
4116						 &token);
4117
4118	block_len = max(em->block_len, em->orig_block_len);
4119	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4120		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4121							em->block_start,
4122							&token);
4123		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124							   &token);
4125	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4126		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127							em->block_start -
4128							extent_offset, &token);
4129		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130							   &token);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4131	} else {
4132		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4133		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4134							   &token);
4135	}
4136
4137	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4138	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4139	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4140	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141						&token);
4142	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4143	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4144	btrfs_mark_buffer_dirty(leaf);
4145
4146	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4148	return ret;
4149}
4150
4151static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4152				     struct btrfs_root *root,
4153				     struct inode *inode,
4154				     struct btrfs_path *path,
4155				     struct list_head *logged_list,
4156				     struct btrfs_log_ctx *ctx,
4157				     const u64 start,
4158				     const u64 end)
4159{
 
 
4160	struct extent_map *em, *n;
4161	struct list_head extents;
4162	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4163	u64 test_gen;
4164	int ret = 0;
4165	int num = 0;
4166
4167	INIT_LIST_HEAD(&extents);
4168
4169	down_write(&BTRFS_I(inode)->dio_sem);
4170	write_lock(&tree->lock);
4171	test_gen = root->fs_info->last_trans_committed;
4172
4173	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4174		list_del_init(&em->list);
4175
4176		/*
4177		 * Just an arbitrary number, this can be really CPU intensive
4178		 * once we start getting a lot of extents, and really once we
4179		 * have a bunch of extents we just want to commit since it will
4180		 * be faster.
4181		 */
4182		if (++num > 32768) {
4183			list_del_init(&tree->modified_extents);
4184			ret = -EFBIG;
4185			goto process;
4186		}
4187
4188		if (em->generation <= test_gen)
4189			continue;
 
 
 
 
 
 
4190		/* Need a ref to keep it from getting evicted from cache */
4191		atomic_inc(&em->refs);
4192		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4193		list_add_tail(&em->list, &extents);
4194		num++;
4195	}
4196
4197	list_sort(NULL, &extents, extent_cmp);
4198	btrfs_get_logged_extents(inode, logged_list, start, end);
4199	/*
4200	 * Some ordered extents started by fsync might have completed
4201	 * before we could collect them into the list logged_list, which
4202	 * means they're gone, not in our logged_list nor in the inode's
4203	 * ordered tree. We want the application/user space to know an
4204	 * error happened while attempting to persist file data so that
4205	 * it can take proper action. If such error happened, we leave
4206	 * without writing to the log tree and the fsync must report the
4207	 * file data write error and not commit the current transaction.
4208	 */
4209	ret = filemap_check_errors(inode->i_mapping);
4210	if (ret)
4211		ctx->io_err = ret;
4212process:
4213	while (!list_empty(&extents)) {
4214		em = list_entry(extents.next, struct extent_map, list);
4215
4216		list_del_init(&em->list);
4217
4218		/*
4219		 * If we had an error we just need to delete everybody from our
4220		 * private list.
4221		 */
4222		if (ret) {
4223			clear_em_logging(tree, em);
4224			free_extent_map(em);
4225			continue;
4226		}
4227
4228		write_unlock(&tree->lock);
4229
4230		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231				     ctx);
4232		write_lock(&tree->lock);
4233		clear_em_logging(tree, em);
4234		free_extent_map(em);
4235	}
4236	WARN_ON(!list_empty(&extents));
4237	write_unlock(&tree->lock);
4238	up_write(&BTRFS_I(inode)->dio_sem);
4239
4240	btrfs_release_path(path);
4241	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4242}
4243
4244static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4245			     struct btrfs_path *path, u64 *size_ret)
4246{
4247	struct btrfs_key key;
4248	int ret;
4249
4250	key.objectid = btrfs_ino(inode);
4251	key.type = BTRFS_INODE_ITEM_KEY;
4252	key.offset = 0;
4253
4254	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4255	if (ret < 0) {
4256		return ret;
4257	} else if (ret > 0) {
4258		*size_ret = 0;
4259	} else {
4260		struct btrfs_inode_item *item;
4261
4262		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4263				      struct btrfs_inode_item);
4264		*size_ret = btrfs_inode_size(path->nodes[0], item);
 
 
 
 
 
 
 
 
 
 
 
 
 
4265	}
4266
4267	btrfs_release_path(path);
4268	return 0;
4269}
4270
4271/*
4272 * At the moment we always log all xattrs. This is to figure out at log replay
4273 * time which xattrs must have their deletion replayed. If a xattr is missing
4274 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4275 * because if a xattr is deleted, the inode is fsynced and a power failure
4276 * happens, causing the log to be replayed the next time the fs is mounted,
4277 * we want the xattr to not exist anymore (same behaviour as other filesystems
4278 * with a journal, ext3/4, xfs, f2fs, etc).
4279 */
4280static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4281				struct btrfs_root *root,
4282				struct inode *inode,
4283				struct btrfs_path *path,
4284				struct btrfs_path *dst_path)
4285{
 
4286	int ret;
4287	struct btrfs_key key;
4288	const u64 ino = btrfs_ino(inode);
4289	int ins_nr = 0;
4290	int start_slot = 0;
 
 
 
 
4291
4292	key.objectid = ino;
4293	key.type = BTRFS_XATTR_ITEM_KEY;
4294	key.offset = 0;
4295
4296	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4297	if (ret < 0)
4298		return ret;
4299
4300	while (true) {
4301		int slot = path->slots[0];
4302		struct extent_buffer *leaf = path->nodes[0];
4303		int nritems = btrfs_header_nritems(leaf);
4304
4305		if (slot >= nritems) {
4306			if (ins_nr > 0) {
4307				u64 last_extent = 0;
4308
4309				ret = copy_items(trans, inode, dst_path, path,
4310						 &last_extent, start_slot,
4311						 ins_nr, 1, 0);
4312				/* can't be 1, extent items aren't processed */
4313				ASSERT(ret <= 0);
4314				if (ret < 0)
4315					return ret;
4316				ins_nr = 0;
4317			}
4318			ret = btrfs_next_leaf(root, path);
4319			if (ret < 0)
4320				return ret;
4321			else if (ret > 0)
4322				break;
4323			continue;
4324		}
4325
4326		btrfs_item_key_to_cpu(leaf, &key, slot);
4327		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4328			break;
4329
4330		if (ins_nr == 0)
4331			start_slot = slot;
4332		ins_nr++;
4333		path->slots[0]++;
 
4334		cond_resched();
4335	}
4336	if (ins_nr > 0) {
4337		u64 last_extent = 0;
4338
4339		ret = copy_items(trans, inode, dst_path, path,
4340				 &last_extent, start_slot,
4341				 ins_nr, 1, 0);
4342		/* can't be 1, extent items aren't processed */
4343		ASSERT(ret <= 0);
4344		if (ret < 0)
4345			return ret;
4346	}
4347
 
 
 
4348	return 0;
4349}
4350
4351/*
4352 * If the no holes feature is enabled we need to make sure any hole between the
4353 * last extent and the i_size of our inode is explicitly marked in the log. This
4354 * is to make sure that doing something like:
4355 *
4356 *      1) create file with 128Kb of data
4357 *      2) truncate file to 64Kb
4358 *      3) truncate file to 256Kb
4359 *      4) fsync file
4360 *      5) <crash/power failure>
4361 *      6) mount fs and trigger log replay
4362 *
4363 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4364 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4365 * file correspond to a hole. The presence of explicit holes in a log tree is
4366 * what guarantees that log replay will remove/adjust file extent items in the
4367 * fs/subvol tree.
4368 *
4369 * Here we do not need to care about holes between extents, that is already done
4370 * by copy_items(). We also only need to do this in the full sync path, where we
4371 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4372 * lookup the list of modified extent maps and if any represents a hole, we
4373 * insert a corresponding extent representing a hole in the log tree.
4374 */
4375static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4376				   struct btrfs_root *root,
4377				   struct inode *inode,
4378				   struct btrfs_path *path)
4379{
 
4380	struct btrfs_fs_info *fs_info = root->fs_info;
4381	int ret;
4382	struct btrfs_key key;
4383	u64 hole_start;
4384	u64 hole_size;
4385	struct extent_buffer *leaf;
4386	struct btrfs_root *log = root->log_root;
4387	const u64 ino = btrfs_ino(inode);
4388	const u64 i_size = i_size_read(inode);
 
 
4389
4390	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4391		return 0;
4392
4393	key.objectid = ino;
4394	key.type = BTRFS_EXTENT_DATA_KEY;
4395	key.offset = (u64)-1;
4396
4397	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398	ASSERT(ret != 0);
4399	if (ret < 0)
4400		return ret;
4401
4402	ASSERT(path->slots[0] > 0);
4403	path->slots[0]--;
4404	leaf = path->nodes[0];
4405	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406
4407	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4408		/* inode does not have any extents */
4409		hole_start = 0;
4410		hole_size = i_size;
4411	} else {
4412		struct btrfs_file_extent_item *extent;
4413		u64 len;
 
 
 
4414
4415		/*
4416		 * If there's an extent beyond i_size, an explicit hole was
4417		 * already inserted by copy_items().
4418		 */
4419		if (key.offset >= i_size)
4420			return 0;
4421
4422		extent = btrfs_item_ptr(leaf, path->slots[0],
4423					struct btrfs_file_extent_item);
 
4424
4425		if (btrfs_file_extent_type(leaf, extent) ==
4426		    BTRFS_FILE_EXTENT_INLINE) {
4427			len = btrfs_file_extent_inline_len(leaf,
4428							   path->slots[0],
4429							   extent);
4430			ASSERT(len == i_size);
4431			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4432		}
4433
4434		len = btrfs_file_extent_num_bytes(leaf, extent);
4435		/* Last extent goes beyond i_size, no need to log a hole. */
4436		if (key.offset + len > i_size)
4437			return 0;
4438		hole_start = key.offset + len;
4439		hole_size = i_size - hole_start;
4440	}
4441	btrfs_release_path(path);
4442
4443	/* Last extent ends at i_size. */
4444	if (hole_size == 0)
4445		return 0;
4446
4447	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4448	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4449				       hole_size, 0, hole_size, 0, 0, 0);
4450	return ret;
 
 
 
 
 
4451}
4452
4453/*
4454 * When we are logging a new inode X, check if it doesn't have a reference that
4455 * matches the reference from some other inode Y created in a past transaction
4456 * and that was renamed in the current transaction. If we don't do this, then at
4457 * log replay time we can lose inode Y (and all its files if it's a directory):
4458 *
4459 * mkdir /mnt/x
4460 * echo "hello world" > /mnt/x/foobar
4461 * sync
4462 * mv /mnt/x /mnt/y
4463 * mkdir /mnt/x                 # or touch /mnt/x
4464 * xfs_io -c fsync /mnt/x
4465 * <power fail>
4466 * mount fs, trigger log replay
4467 *
4468 * After the log replay procedure, we would lose the first directory and all its
4469 * files (file foobar).
4470 * For the case where inode Y is not a directory we simply end up losing it:
4471 *
4472 * echo "123" > /mnt/foo
4473 * sync
4474 * mv /mnt/foo /mnt/bar
4475 * echo "abc" > /mnt/foo
4476 * xfs_io -c fsync /mnt/foo
4477 * <power fail>
4478 *
4479 * We also need this for cases where a snapshot entry is replaced by some other
4480 * entry (file or directory) otherwise we end up with an unreplayable log due to
4481 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4482 * if it were a regular entry:
4483 *
4484 * mkdir /mnt/x
4485 * btrfs subvolume snapshot /mnt /mnt/x/snap
4486 * btrfs subvolume delete /mnt/x/snap
4487 * rmdir /mnt/x
4488 * mkdir /mnt/x
4489 * fsync /mnt/x or fsync some new file inside it
4490 * <power fail>
4491 *
4492 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4493 * the same transaction.
4494 */
4495static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496					 const int slot,
4497					 const struct btrfs_key *key,
4498					 struct inode *inode,
4499					 u64 *other_ino)
4500{
4501	int ret;
4502	struct btrfs_path *search_path;
4503	char *name = NULL;
4504	u32 name_len = 0;
4505	u32 item_size = btrfs_item_size_nr(eb, slot);
4506	u32 cur_offset = 0;
4507	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508
4509	search_path = btrfs_alloc_path();
4510	if (!search_path)
4511		return -ENOMEM;
4512	search_path->search_commit_root = 1;
4513	search_path->skip_locking = 1;
4514
4515	while (cur_offset < item_size) {
4516		u64 parent;
4517		u32 this_name_len;
4518		u32 this_len;
4519		unsigned long name_ptr;
4520		struct btrfs_dir_item *di;
 
4521
4522		if (key->type == BTRFS_INODE_REF_KEY) {
4523			struct btrfs_inode_ref *iref;
4524
4525			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4526			parent = key->offset;
4527			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4528			name_ptr = (unsigned long)(iref + 1);
4529			this_len = sizeof(*iref) + this_name_len;
4530		} else {
4531			struct btrfs_inode_extref *extref;
4532
4533			extref = (struct btrfs_inode_extref *)(ptr +
4534							       cur_offset);
4535			parent = btrfs_inode_extref_parent(eb, extref);
4536			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4537			name_ptr = (unsigned long)&extref->name;
4538			this_len = sizeof(*extref) + this_name_len;
4539		}
4540
4541		if (this_name_len > name_len) {
4542			char *new_name;
4543
4544			new_name = krealloc(name, this_name_len, GFP_NOFS);
4545			if (!new_name) {
4546				ret = -ENOMEM;
4547				goto out;
4548			}
4549			name_len = this_name_len;
4550			name = new_name;
4551		}
4552
4553		read_extent_buffer(eb, name, name_ptr, this_name_len);
4554		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4555					   search_path, parent,
4556					   name, this_name_len, 0);
 
 
4557		if (di && !IS_ERR(di)) {
4558			struct btrfs_key di_key;
4559
4560			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4561						  di, &di_key);
4562			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4563				ret = 1;
4564				*other_ino = di_key.objectid;
 
 
 
 
 
4565			} else {
4566				ret = -EAGAIN;
4567			}
4568			goto out;
4569		} else if (IS_ERR(di)) {
4570			ret = PTR_ERR(di);
4571			goto out;
4572		}
4573		btrfs_release_path(search_path);
4574
4575		cur_offset += this_len;
4576	}
4577	ret = 0;
4578out:
4579	btrfs_free_path(search_path);
4580	kfree(name);
4581	return ret;
4582}
4583
4584/* log a single inode in the tree log.
4585 * At least one parent directory for this inode must exist in the tree
4586 * or be logged already.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4587 *
4588 * Any items from this inode changed by the current transaction are copied
4589 * to the log tree.  An extra reference is taken on any extents in this
4590 * file, allowing us to avoid a whole pile of corner cases around logging
4591 * blocks that have been removed from the tree.
 
 
4592 *
4593 * See LOG_INODE_ALL and related defines for a description of what inode_only
4594 * does.
 
4595 *
4596 * This handles both files and directories.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4597 */
4598static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4599			   struct btrfs_root *root, struct inode *inode,
4600			   int inode_only,
4601			   const loff_t start,
4602			   const loff_t end,
4603			   struct btrfs_log_ctx *ctx)
4604{
 
4605	struct btrfs_fs_info *fs_info = root->fs_info;
4606	struct btrfs_path *path;
4607	struct btrfs_path *dst_path;
4608	struct btrfs_key min_key;
4609	struct btrfs_key max_key;
4610	struct btrfs_root *log = root->log_root;
4611	struct extent_buffer *src = NULL;
4612	LIST_HEAD(logged_list);
4613	u64 last_extent = 0;
4614	int err = 0;
4615	int ret;
4616	int nritems;
4617	int ins_start_slot = 0;
4618	int ins_nr;
4619	bool fast_search = false;
4620	u64 ino = btrfs_ino(inode);
4621	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4622	u64 logged_isize = 0;
4623	bool need_log_inode_item = true;
4624
4625	path = btrfs_alloc_path();
4626	if (!path)
4627		return -ENOMEM;
4628	dst_path = btrfs_alloc_path();
4629	if (!dst_path) {
4630		btrfs_free_path(path);
4631		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632	}
 
 
 
 
4633
4634	min_key.objectid = ino;
4635	min_key.type = BTRFS_INODE_ITEM_KEY;
4636	min_key.offset = 0;
4637
4638	max_key.objectid = ino;
 
 
4639
 
 
4640
4641	/* today the code can only do partial logging of directories */
4642	if (S_ISDIR(inode->i_mode) ||
4643	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4644		       &BTRFS_I(inode)->runtime_flags) &&
4645	     inode_only >= LOG_INODE_EXISTS))
4646		max_key.type = BTRFS_XATTR_ITEM_KEY;
4647	else
4648		max_key.type = (u8)-1;
4649	max_key.offset = (u64)-1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4650
4651	/*
4652	 * Only run delayed items if we are a dir or a new file.
4653	 * Otherwise commit the delayed inode only, which is needed in
4654	 * order for the log replay code to mark inodes for link count
4655	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
 
4656	 */
4657	if (S_ISDIR(inode->i_mode) ||
4658	    BTRFS_I(inode)->generation > fs_info->last_trans_committed)
4659		ret = btrfs_commit_inode_delayed_items(trans, inode);
4660	else
4661		ret = btrfs_commit_inode_delayed_inode(inode);
4662
4663	if (ret) {
4664		btrfs_free_path(path);
4665		btrfs_free_path(dst_path);
4666		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4667	}
4668
4669	if (inode_only == LOG_OTHER_INODE) {
4670		inode_only = LOG_INODE_EXISTS;
4671		mutex_lock_nested(&BTRFS_I(inode)->log_mutex,
4672				  SINGLE_DEPTH_NESTING);
4673	} else {
4674		mutex_lock(&BTRFS_I(inode)->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4675	}
4676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4677	/*
4678	 * a brute force approach to making sure we get the most uptodate
4679	 * copies of everything.
 
4680	 */
4681	if (S_ISDIR(inode->i_mode)) {
4682		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4683
4684		if (inode_only == LOG_INODE_EXISTS)
4685			max_key_type = BTRFS_XATTR_ITEM_KEY;
4686		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4687	} else {
4688		if (inode_only == LOG_INODE_EXISTS) {
4689			/*
4690			 * Make sure the new inode item we write to the log has
4691			 * the same isize as the current one (if it exists).
4692			 * This is necessary to prevent data loss after log
4693			 * replay, and also to prevent doing a wrong expanding
4694			 * truncate - for e.g. create file, write 4K into offset
4695			 * 0, fsync, write 4K into offset 4096, add hard link,
4696			 * fsync some other file (to sync log), power fail - if
4697			 * we use the inode's current i_size, after log replay
4698			 * we get a 8Kb file, with the last 4Kb extent as a hole
4699			 * (zeroes), as if an expanding truncate happened,
4700			 * instead of getting a file of 4Kb only.
4701			 */
4702			err = logged_inode_size(log, inode, path,
4703						&logged_isize);
4704			if (err)
4705				goto out_unlock;
 
 
4706		}
4707		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4708			     &BTRFS_I(inode)->runtime_flags)) {
4709			if (inode_only == LOG_INODE_EXISTS) {
4710				max_key.type = BTRFS_XATTR_ITEM_KEY;
4711				ret = drop_objectid_items(trans, log, path, ino,
4712							  max_key.type);
4713			} else {
4714				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4715					  &BTRFS_I(inode)->runtime_flags);
4716				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4717					  &BTRFS_I(inode)->runtime_flags);
4718				while(1) {
4719					ret = btrfs_truncate_inode_items(trans,
4720							 log, inode, 0, 0);
4721					if (ret != -EAGAIN)
4722						break;
4723				}
4724			}
4725		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4726					      &BTRFS_I(inode)->runtime_flags) ||
4727			   inode_only == LOG_INODE_EXISTS) {
4728			if (inode_only == LOG_INODE_ALL)
4729				fast_search = true;
4730			max_key.type = BTRFS_XATTR_ITEM_KEY;
4731			ret = drop_objectid_items(trans, log, path, ino,
4732						  max_key.type);
4733		} else {
4734			if (inode_only == LOG_INODE_ALL)
4735				fast_search = true;
4736			goto log_extents;
4737		}
4738
4739	}
4740	if (ret) {
4741		err = ret;
4742		goto out_unlock;
 
 
 
 
 
 
 
4743	}
4744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4745	while (1) {
4746		ins_nr = 0;
4747		ret = btrfs_search_forward(root, &min_key,
4748					   path, trans->transid);
4749		if (ret < 0) {
4750			err = ret;
4751			goto out_unlock;
4752		}
4753		if (ret != 0)
4754			break;
 
4755again:
4756		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4757		if (min_key.objectid != ino)
4758			break;
4759		if (min_key.type > max_key.type)
4760			break;
4761
4762		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4763			need_log_inode_item = false;
4764
4765		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4766		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4767		    BTRFS_I(inode)->generation == trans->transid) {
 
 
 
 
 
 
 
 
 
4768			u64 other_ino = 0;
 
4769
4770			ret = btrfs_check_ref_name_override(path->nodes[0],
4771							    path->slots[0],
4772							    &min_key, inode,
4773							    &other_ino);
4774			if (ret < 0) {
4775				err = ret;
4776				goto out_unlock;
4777			} else if (ret > 0 && ctx &&
4778				   other_ino != btrfs_ino(ctx->inode)) {
4779				struct btrfs_key inode_key;
4780				struct inode *other_inode;
4781
4782				if (ins_nr > 0) {
4783					ins_nr++;
4784				} else {
4785					ins_nr = 1;
4786					ins_start_slot = path->slots[0];
4787				}
4788				ret = copy_items(trans, inode, dst_path, path,
4789						 &last_extent, ins_start_slot,
4790						 ins_nr, inode_only,
4791						 logged_isize);
4792				if (ret < 0) {
4793					err = ret;
4794					goto out_unlock;
4795				}
4796				ins_nr = 0;
 
4797				btrfs_release_path(path);
4798				inode_key.objectid = other_ino;
4799				inode_key.type = BTRFS_INODE_ITEM_KEY;
4800				inode_key.offset = 0;
4801				other_inode = btrfs_iget(fs_info->sb,
4802							 &inode_key, root,
4803							 NULL);
4804				/*
4805				 * If the other inode that had a conflicting dir
4806				 * entry was deleted in the current transaction,
4807				 * we don't need to do more work nor fallback to
4808				 * a transaction commit.
4809				 */
4810				if (IS_ERR(other_inode) &&
4811				    PTR_ERR(other_inode) == -ENOENT) {
4812					goto next_key;
4813				} else if (IS_ERR(other_inode)) {
4814					err = PTR_ERR(other_inode);
4815					goto out_unlock;
4816				}
4817				/*
4818				 * We are safe logging the other inode without
4819				 * acquiring its i_mutex as long as we log with
4820				 * the LOG_INODE_EXISTS mode. We're safe against
4821				 * concurrent renames of the other inode as well
4822				 * because during a rename we pin the log and
4823				 * update the log with the new name before we
4824				 * unpin it.
4825				 */
4826				err = btrfs_log_inode(trans, root, other_inode,
4827						      LOG_OTHER_INODE,
4828						      0, LLONG_MAX, ctx);
4829				iput(other_inode);
4830				if (err)
4831					goto out_unlock;
4832				else
4833					goto next_key;
4834			}
4835		}
4836
4837		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4838		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4839			if (ins_nr == 0)
4840				goto next_slot;
4841			ret = copy_items(trans, inode, dst_path, path,
4842					 &last_extent, ins_start_slot,
4843					 ins_nr, inode_only, logged_isize);
4844			if (ret < 0) {
4845				err = ret;
4846				goto out_unlock;
4847			}
4848			ins_nr = 0;
4849			if (ret) {
4850				btrfs_release_path(path);
4851				continue;
4852			}
4853			goto next_slot;
4854		}
4855
4856		src = path->nodes[0];
4857		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4858			ins_nr++;
4859			goto next_slot;
4860		} else if (!ins_nr) {
4861			ins_start_slot = path->slots[0];
4862			ins_nr = 1;
4863			goto next_slot;
4864		}
4865
4866		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4867				 ins_start_slot, ins_nr, inode_only,
4868				 logged_isize);
4869		if (ret < 0) {
4870			err = ret;
4871			goto out_unlock;
4872		}
4873		if (ret) {
4874			ins_nr = 0;
4875			btrfs_release_path(path);
4876			continue;
4877		}
4878		ins_nr = 1;
4879		ins_start_slot = path->slots[0];
4880next_slot:
4881
4882		nritems = btrfs_header_nritems(path->nodes[0]);
4883		path->slots[0]++;
4884		if (path->slots[0] < nritems) {
4885			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4886					      path->slots[0]);
4887			goto again;
4888		}
4889		if (ins_nr) {
4890			ret = copy_items(trans, inode, dst_path, path,
4891					 &last_extent, ins_start_slot,
4892					 ins_nr, inode_only, logged_isize);
4893			if (ret < 0) {
4894				err = ret;
4895				goto out_unlock;
4896			}
4897			ret = 0;
4898			ins_nr = 0;
4899		}
4900		btrfs_release_path(path);
4901next_key:
4902		if (min_key.offset < (u64)-1) {
4903			min_key.offset++;
4904		} else if (min_key.type < max_key.type) {
4905			min_key.type++;
4906			min_key.offset = 0;
4907		} else {
4908			break;
4909		}
 
 
 
 
 
 
 
4910	}
4911	if (ins_nr) {
4912		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4913				 ins_start_slot, ins_nr, inode_only,
4914				 logged_isize);
4915		if (ret < 0) {
4916			err = ret;
4917			goto out_unlock;
4918		}
4919		ret = 0;
4920		ins_nr = 0;
4921	}
4922
4923	btrfs_release_path(path);
4924	btrfs_release_path(dst_path);
4925	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4926	if (err)
4927		goto out_unlock;
4928	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4929		btrfs_release_path(path);
4930		btrfs_release_path(dst_path);
4931		err = btrfs_log_trailing_hole(trans, root, inode, path);
4932		if (err)
4933			goto out_unlock;
4934	}
4935log_extents:
4936	btrfs_release_path(path);
4937	btrfs_release_path(dst_path);
4938	if (need_log_inode_item) {
4939		err = log_inode_item(trans, log, dst_path, inode);
4940		if (err)
4941			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4942	}
4943	if (fast_search) {
4944		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4945						&logged_list, ctx, start, end);
4946		if (ret) {
4947			err = ret;
4948			goto out_unlock;
4949		}
4950	} else if (inode_only == LOG_INODE_ALL) {
4951		struct extent_map *em, *n;
4952
4953		write_lock(&em_tree->lock);
4954		/*
4955		 * We can't just remove every em if we're called for a ranged
4956		 * fsync - that is, one that doesn't cover the whole possible
4957		 * file range (0 to LLONG_MAX). This is because we can have
4958		 * em's that fall outside the range we're logging and therefore
4959		 * their ordered operations haven't completed yet
4960		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4961		 * didn't get their respective file extent item in the fs/subvol
4962		 * tree yet, and need to let the next fast fsync (one which
4963		 * consults the list of modified extent maps) find the em so
4964		 * that it logs a matching file extent item and waits for the
4965		 * respective ordered operation to complete (if it's still
4966		 * running).
4967		 *
4968		 * Removing every em outside the range we're logging would make
4969		 * the next fast fsync not log their matching file extent items,
4970		 * therefore making us lose data after a log replay.
4971		 */
4972		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4973					 list) {
4974			const u64 mod_end = em->mod_start + em->mod_len - 1;
 
 
 
 
 
 
 
 
 
4975
4976			if (em->mod_start >= start && mod_end <= end)
4977				list_del_init(&em->list);
 
 
 
 
 
 
 
 
 
 
4978		}
4979		write_unlock(&em_tree->lock);
4980	}
4981
4982	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4983		ret = log_directory_changes(trans, root, inode, path, dst_path,
4984					    ctx);
4985		if (ret) {
4986			err = ret;
4987			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4988		}
 
 
 
 
 
 
 
 
 
4989	}
4990
4991	spin_lock(&BTRFS_I(inode)->lock);
4992	BTRFS_I(inode)->logged_trans = trans->transid;
4993	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4994	spin_unlock(&BTRFS_I(inode)->lock);
4995out_unlock:
4996	if (unlikely(err))
4997		btrfs_put_logged_extents(&logged_list);
4998	else
4999		btrfs_submit_logged_extents(&logged_list, log);
5000	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5001
5002	btrfs_free_path(path);
5003	btrfs_free_path(dst_path);
5004	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5005}
5006
5007/*
5008 * Check if we must fallback to a transaction commit when logging an inode.
5009 * This must be called after logging the inode and is used only in the context
5010 * when fsyncing an inode requires the need to log some other inode - in which
5011 * case we can't lock the i_mutex of each other inode we need to log as that
5012 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5013 * log inodes up or down in the hierarchy) or rename operations for example. So
5014 * we take the log_mutex of the inode after we have logged it and then check for
5015 * its last_unlink_trans value - this is safe because any task setting
5016 * last_unlink_trans must take the log_mutex and it must do this before it does
5017 * the actual unlink operation, so if we do this check before a concurrent task
5018 * sets last_unlink_trans it means we've logged a consistent version/state of
5019 * all the inode items, otherwise we are not sure and must do a transaction
5020 * commit (the concurrent task might have only updated last_unlink_trans before
5021 * we logged the inode or it might have also done the unlink).
5022 */
5023static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5024					  struct inode *inode)
5025{
5026	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5027	bool ret = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5028
5029	mutex_lock(&BTRFS_I(inode)->log_mutex);
5030	if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5031		/*
5032		 * Make sure any commits to the log are forced to be full
5033		 * commits.
 
 
5034		 */
5035		btrfs_set_log_full_commit(fs_info, trans);
5036		ret = true;
 
 
 
 
 
 
 
 
 
 
5037	}
5038	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5039
5040	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5041}
5042
5043/*
5044 * follow the dentry parent pointers up the chain and see if any
5045 * of the directories in it require a full commit before they can
5046 * be logged.  Returns zero if nothing special needs to be done or 1 if
5047 * a full commit is required.
5048 */
5049static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5050					       struct inode *inode,
5051					       struct dentry *parent,
5052					       struct super_block *sb,
5053					       u64 last_committed)
5054{
 
 
 
5055	int ret = 0;
5056	struct dentry *old_parent = NULL;
5057	struct inode *orig_inode = inode;
5058
5059	/*
5060	 * for regular files, if its inode is already on disk, we don't
5061	 * have to worry about the parents at all.  This is because
5062	 * we can use the last_unlink_trans field to record renames
5063	 * and other fun in this file.
5064	 */
5065	if (S_ISREG(inode->i_mode) &&
5066	    BTRFS_I(inode)->generation <= last_committed &&
5067	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
5068			goto out;
 
 
 
 
 
5069
5070	if (!S_ISDIR(inode->i_mode)) {
5071		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5072			goto out;
5073		inode = d_inode(parent);
5074	}
5075
5076	while (1) {
5077		/*
5078		 * If we are logging a directory then we start with our inode,
5079		 * not our parent's inode, so we need to skip setting the
5080		 * logged_trans so that further down in the log code we don't
5081		 * think this inode has already been logged.
5082		 */
5083		if (inode != orig_inode)
5084			BTRFS_I(inode)->logged_trans = trans->transid;
5085		smp_mb();
5086
5087		if (btrfs_must_commit_transaction(trans, inode)) {
5088			ret = 1;
 
5089			break;
5090		}
5091
5092		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5093			break;
5094
5095		if (IS_ROOT(parent)) {
5096			inode = d_inode(parent);
5097			if (btrfs_must_commit_transaction(trans, inode))
5098				ret = 1;
5099			break;
5100		}
5101
5102		parent = dget_parent(parent);
5103		dput(old_parent);
5104		old_parent = parent;
5105		inode = d_inode(parent);
 
5106
 
 
 
 
 
 
 
5107	}
5108	dput(old_parent);
5109out:
 
 
5110	return ret;
5111}
5112
5113struct btrfs_dir_list {
5114	u64 ino;
5115	struct list_head list;
5116};
5117
5118/*
5119 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5120 * details about the why it is needed.
5121 * This is a recursive operation - if an existing dentry corresponds to a
5122 * directory, that directory's new entries are logged too (same behaviour as
5123 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5124 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5125 * complains about the following circular lock dependency / possible deadlock:
5126 *
5127 *        CPU0                                        CPU1
5128 *        ----                                        ----
5129 * lock(&type->i_mutex_dir_key#3/2);
5130 *                                            lock(sb_internal#2);
5131 *                                            lock(&type->i_mutex_dir_key#3/2);
5132 * lock(&sb->s_type->i_mutex_key#14);
5133 *
5134 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5135 * sb_start_intwrite() in btrfs_start_transaction().
5136 * Not locking i_mutex of the inodes is still safe because:
 
5137 *
5138 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5139 *    that while logging the inode new references (names) are added or removed
5140 *    from the inode, leaving the logged inode item with a link count that does
5141 *    not match the number of logged inode reference items. This is fine because
5142 *    at log replay time we compute the real number of links and correct the
5143 *    link count in the inode item (see replay_one_buffer() and
5144 *    link_to_fixup_dir());
5145 *
5146 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5147 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5148 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5149 *    has a size that doesn't match the sum of the lengths of all the logged
5150 *    names. This does not result in a problem because if a dir_item key is
5151 *    logged but its matching dir_index key is not logged, at log replay time we
5152 *    don't use it to replay the respective name (see replay_one_name()). On the
5153 *    other hand if only the dir_index key ends up being logged, the respective
5154 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5155 *    keys created (see replay_one_name()).
5156 *    The directory's inode item with a wrong i_size is not a problem as well,
5157 *    since we don't use it at log replay time to set the i_size in the inode
5158 *    item of the fs/subvol tree (see overwrite_item()).
5159 */
5160static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5161				struct btrfs_root *root,
5162				struct inode *start_inode,
5163				struct btrfs_log_ctx *ctx)
5164{
5165	struct btrfs_fs_info *fs_info = root->fs_info;
5166	struct btrfs_root *log = root->log_root;
5167	struct btrfs_path *path;
5168	LIST_HEAD(dir_list);
5169	struct btrfs_dir_list *dir_elem;
5170	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
5171
5172	path = btrfs_alloc_path();
5173	if (!path)
5174		return -ENOMEM;
5175
5176	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5177	if (!dir_elem) {
5178		btrfs_free_path(path);
5179		return -ENOMEM;
5180	}
5181	dir_elem->ino = btrfs_ino(start_inode);
5182	list_add_tail(&dir_elem->list, &dir_list);
5183
5184	while (!list_empty(&dir_list)) {
5185		struct extent_buffer *leaf;
5186		struct btrfs_key min_key;
5187		int nritems;
5188		int i;
5189
5190		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5191					    list);
5192		if (ret)
5193			goto next_dir_inode;
5194
5195		min_key.objectid = dir_elem->ino;
5196		min_key.type = BTRFS_DIR_ITEM_KEY;
5197		min_key.offset = 0;
5198again:
5199		btrfs_release_path(path);
5200		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5201		if (ret < 0) {
5202			goto next_dir_inode;
5203		} else if (ret > 0) {
5204			ret = 0;
5205			goto next_dir_inode;
5206		}
5207
5208process_leaf:
5209		leaf = path->nodes[0];
5210		nritems = btrfs_header_nritems(leaf);
5211		for (i = path->slots[0]; i < nritems; i++) {
5212			struct btrfs_dir_item *di;
5213			struct btrfs_key di_key;
5214			struct inode *di_inode;
5215			struct btrfs_dir_list *new_dir_elem;
5216			int log_mode = LOG_INODE_EXISTS;
5217			int type;
5218
5219			btrfs_item_key_to_cpu(leaf, &min_key, i);
5220			if (min_key.objectid != dir_elem->ino ||
5221			    min_key.type != BTRFS_DIR_ITEM_KEY)
5222				goto next_dir_inode;
5223
5224			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5225			type = btrfs_dir_type(leaf, di);
5226			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5227			    type != BTRFS_FT_DIR)
5228				continue;
5229			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5230			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5231				continue;
5232
5233			btrfs_release_path(path);
5234			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5235			if (IS_ERR(di_inode)) {
5236				ret = PTR_ERR(di_inode);
5237				goto next_dir_inode;
5238			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5239
5240			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5241				iput(di_inode);
5242				break;
5243			}
5244
5245			ctx->log_new_dentries = false;
5246			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5247				log_mode = LOG_INODE_ALL;
5248			ret = btrfs_log_inode(trans, root, di_inode,
5249					      log_mode, 0, LLONG_MAX, ctx);
5250			if (!ret &&
5251			    btrfs_must_commit_transaction(trans, di_inode))
5252				ret = 1;
5253			iput(di_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5254			if (ret)
5255				goto next_dir_inode;
5256			if (ctx->log_new_dentries) {
5257				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5258						       GFP_NOFS);
5259				if (!new_dir_elem) {
5260					ret = -ENOMEM;
5261					goto next_dir_inode;
5262				}
5263				new_dir_elem->ino = di_key.objectid;
5264				list_add_tail(&new_dir_elem->list, &dir_list);
5265			}
5266			break;
5267		}
5268		if (i == nritems) {
5269			ret = btrfs_next_leaf(log, path);
5270			if (ret < 0) {
5271				goto next_dir_inode;
5272			} else if (ret > 0) {
5273				ret = 0;
5274				goto next_dir_inode;
 
 
 
 
 
 
 
 
5275			}
5276			goto process_leaf;
 
 
 
 
 
 
 
 
 
 
 
 
 
5277		}
5278		if (min_key.offset < (u64)-1) {
5279			min_key.offset++;
5280			goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5281		}
5282next_dir_inode:
5283		list_del(&dir_elem->list);
5284		kfree(dir_elem);
5285	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5286
 
 
 
 
 
 
 
 
 
 
5287	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5288	return ret;
5289}
5290
5291static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5292				 struct inode *inode,
5293				 struct btrfs_log_ctx *ctx)
5294{
5295	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5296	int ret;
5297	struct btrfs_path *path;
5298	struct btrfs_key key;
5299	struct btrfs_root *root = BTRFS_I(inode)->root;
5300	const u64 ino = btrfs_ino(inode);
5301
5302	path = btrfs_alloc_path();
5303	if (!path)
5304		return -ENOMEM;
5305	path->skip_locking = 1;
5306	path->search_commit_root = 1;
5307
5308	key.objectid = ino;
5309	key.type = BTRFS_INODE_REF_KEY;
5310	key.offset = 0;
5311	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5312	if (ret < 0)
5313		goto out;
5314
5315	while (true) {
5316		struct extent_buffer *leaf = path->nodes[0];
5317		int slot = path->slots[0];
5318		u32 cur_offset = 0;
5319		u32 item_size;
5320		unsigned long ptr;
5321
5322		if (slot >= btrfs_header_nritems(leaf)) {
5323			ret = btrfs_next_leaf(root, path);
5324			if (ret < 0)
5325				goto out;
5326			else if (ret > 0)
5327				break;
5328			continue;
5329		}
5330
5331		btrfs_item_key_to_cpu(leaf, &key, slot);
5332		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5333		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5334			break;
5335
5336		item_size = btrfs_item_size_nr(leaf, slot);
5337		ptr = btrfs_item_ptr_offset(leaf, slot);
5338		while (cur_offset < item_size) {
5339			struct btrfs_key inode_key;
5340			struct inode *dir_inode;
5341
5342			inode_key.type = BTRFS_INODE_ITEM_KEY;
5343			inode_key.offset = 0;
5344
5345			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5346				struct btrfs_inode_extref *extref;
5347
5348				extref = (struct btrfs_inode_extref *)
5349					(ptr + cur_offset);
5350				inode_key.objectid = btrfs_inode_extref_parent(
5351					leaf, extref);
5352				cur_offset += sizeof(*extref);
5353				cur_offset += btrfs_inode_extref_name_len(leaf,
5354					extref);
5355			} else {
5356				inode_key.objectid = key.offset;
5357				cur_offset = item_size;
5358			}
5359
5360			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5361					       root, NULL);
5362			/* If parent inode was deleted, skip it. */
5363			if (IS_ERR(dir_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364				continue;
 
5365
5366			if (ctx)
5367				ctx->log_new_dentries = false;
5368			ret = btrfs_log_inode(trans, root, dir_inode,
5369					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5370			if (!ret &&
5371			    btrfs_must_commit_transaction(trans, dir_inode))
5372				ret = 1;
5373			if (!ret && ctx && ctx->log_new_dentries)
5374				ret = log_new_dir_dentries(trans, root,
5375							   dir_inode, ctx);
5376			iput(dir_inode);
5377			if (ret)
5378				goto out;
5379		}
5380		path->slots[0]++;
5381	}
5382	ret = 0;
5383out:
5384	btrfs_free_path(path);
5385	return ret;
5386}
5387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388/*
5389 * helper function around btrfs_log_inode to make sure newly created
5390 * parent directories also end up in the log.  A minimal inode and backref
5391 * only logging is done of any parent directories that are older than
5392 * the last committed transaction
5393 */
5394static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5395			    	  struct btrfs_root *root, struct inode *inode,
5396				  struct dentry *parent,
5397				  const loff_t start,
5398				  const loff_t end,
5399				  int exists_only,
5400				  struct btrfs_log_ctx *ctx)
5401{
 
5402	struct btrfs_fs_info *fs_info = root->fs_info;
5403	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5404	struct super_block *sb;
5405	struct dentry *old_parent = NULL;
5406	int ret = 0;
5407	u64 last_committed = fs_info->last_trans_committed;
5408	bool log_dentries = false;
5409	struct inode *orig_inode = inode;
5410
5411	sb = inode->i_sb;
5412
5413	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5414		ret = 1;
5415		goto end_no_trans;
5416	}
5417
5418	/*
5419	 * The prev transaction commit doesn't complete, we need do
5420	 * full commit by ourselves.
5421	 */
5422	if (fs_info->last_trans_log_full_commit >
5423	    fs_info->last_trans_committed) {
5424		ret = 1;
5425		goto end_no_trans;
5426	}
5427
5428	if (root != BTRFS_I(inode)->root ||
5429	    btrfs_root_refs(&root->root_item) == 0) {
5430		ret = 1;
5431		goto end_no_trans;
5432	}
5433
5434	ret = check_parent_dirs_for_sync(trans, inode, parent,
5435					 sb, last_committed);
5436	if (ret)
5437		goto end_no_trans;
5438
5439	if (btrfs_inode_in_log(inode, trans->transid)) {
5440		ret = BTRFS_NO_LOG_SYNC;
5441		goto end_no_trans;
5442	}
5443
5444	ret = start_log_trans(trans, root, ctx);
5445	if (ret)
5446		goto end_no_trans;
5447
5448	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5449	if (ret)
5450		goto end_trans;
5451
5452	/*
5453	 * for regular files, if its inode is already on disk, we don't
5454	 * have to worry about the parents at all.  This is because
5455	 * we can use the last_unlink_trans field to record renames
5456	 * and other fun in this file.
5457	 */
5458	if (S_ISREG(inode->i_mode) &&
5459	    BTRFS_I(inode)->generation <= last_committed &&
5460	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5461		ret = 0;
5462		goto end_trans;
5463	}
5464
5465	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5466		log_dentries = true;
5467
5468	/*
5469	 * On unlink we must make sure all our current and old parent directory
5470	 * inodes are fully logged. This is to prevent leaving dangling
5471	 * directory index entries in directories that were our parents but are
5472	 * not anymore. Not doing this results in old parent directory being
5473	 * impossible to delete after log replay (rmdir will always fail with
5474	 * error -ENOTEMPTY).
5475	 *
5476	 * Example 1:
5477	 *
5478	 * mkdir testdir
5479	 * touch testdir/foo
5480	 * ln testdir/foo testdir/bar
5481	 * sync
5482	 * unlink testdir/bar
5483	 * xfs_io -c fsync testdir/foo
5484	 * <power failure>
5485	 * mount fs, triggers log replay
5486	 *
5487	 * If we don't log the parent directory (testdir), after log replay the
5488	 * directory still has an entry pointing to the file inode using the bar
5489	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5490	 * the file inode has a link count of 1.
5491	 *
5492	 * Example 2:
5493	 *
5494	 * mkdir testdir
5495	 * touch foo
5496	 * ln foo testdir/foo2
5497	 * ln foo testdir/foo3
5498	 * sync
5499	 * unlink testdir/foo3
5500	 * xfs_io -c fsync foo
5501	 * <power failure>
5502	 * mount fs, triggers log replay
5503	 *
5504	 * Similar as the first example, after log replay the parent directory
5505	 * testdir still has an entry pointing to the inode file with name foo3
5506	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5507	 * and has a link count of 2.
5508	 */
5509	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5510		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5511		if (ret)
5512			goto end_trans;
5513	}
5514
5515	while (1) {
5516		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5517			break;
5518
5519		inode = d_inode(parent);
5520		if (root != BTRFS_I(inode)->root)
5521			break;
5522
5523		if (BTRFS_I(inode)->generation > last_committed) {
5524			ret = btrfs_log_inode(trans, root, inode,
5525					      LOG_INODE_EXISTS,
5526					      0, LLONG_MAX, ctx);
5527			if (ret)
5528				goto end_trans;
5529		}
5530		if (IS_ROOT(parent))
5531			break;
5532
5533		parent = dget_parent(parent);
5534		dput(old_parent);
5535		old_parent = parent;
5536	}
5537	if (log_dentries)
5538		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5539	else
5540		ret = 0;
5541end_trans:
5542	dput(old_parent);
5543	if (ret < 0) {
5544		btrfs_set_log_full_commit(fs_info, trans);
5545		ret = 1;
5546	}
5547
5548	if (ret)
5549		btrfs_remove_log_ctx(root, ctx);
5550	btrfs_end_log_trans(root);
5551end_no_trans:
5552	return ret;
5553}
5554
5555/*
5556 * it is not safe to log dentry if the chunk root has added new
5557 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5558 * If this returns 1, you must commit the transaction to safely get your
5559 * data on disk.
5560 */
5561int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5562			  struct btrfs_root *root, struct dentry *dentry,
5563			  const loff_t start,
5564			  const loff_t end,
5565			  struct btrfs_log_ctx *ctx)
5566{
5567	struct dentry *parent = dget_parent(dentry);
5568	int ret;
5569
5570	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5571				     start, end, 0, ctx);
5572	dput(parent);
5573
5574	return ret;
5575}
5576
5577/*
5578 * should be called during mount to recover any replay any log trees
5579 * from the FS
5580 */
5581int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5582{
5583	int ret;
5584	struct btrfs_path *path;
5585	struct btrfs_trans_handle *trans;
5586	struct btrfs_key key;
5587	struct btrfs_key found_key;
5588	struct btrfs_key tmp_key;
5589	struct btrfs_root *log;
5590	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5591	struct walk_control wc = {
5592		.process_func = process_one_buffer,
5593		.stage = 0,
5594	};
5595
5596	path = btrfs_alloc_path();
5597	if (!path)
5598		return -ENOMEM;
5599
5600	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5601
5602	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5603	if (IS_ERR(trans)) {
5604		ret = PTR_ERR(trans);
5605		goto error;
5606	}
5607
5608	wc.trans = trans;
5609	wc.pin = 1;
5610
5611	ret = walk_log_tree(trans, log_root_tree, &wc);
5612	if (ret) {
5613		btrfs_handle_fs_error(fs_info, ret,
5614			"Failed to pin buffers while recovering log root tree.");
5615		goto error;
5616	}
5617
5618again:
5619	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5620	key.offset = (u64)-1;
5621	key.type = BTRFS_ROOT_ITEM_KEY;
5622
5623	while (1) {
5624		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5625
5626		if (ret < 0) {
5627			btrfs_handle_fs_error(fs_info, ret,
5628				    "Couldn't find tree log root.");
5629			goto error;
5630		}
5631		if (ret > 0) {
5632			if (path->slots[0] == 0)
5633				break;
5634			path->slots[0]--;
5635		}
5636		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5637				      path->slots[0]);
5638		btrfs_release_path(path);
5639		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5640			break;
5641
5642		log = btrfs_read_fs_root(log_root_tree, &found_key);
5643		if (IS_ERR(log)) {
5644			ret = PTR_ERR(log);
5645			btrfs_handle_fs_error(fs_info, ret,
5646				    "Couldn't read tree log root.");
5647			goto error;
5648		}
5649
5650		tmp_key.objectid = found_key.offset;
5651		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5652		tmp_key.offset = (u64)-1;
5653
5654		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5655		if (IS_ERR(wc.replay_dest)) {
5656			ret = PTR_ERR(wc.replay_dest);
5657			free_extent_buffer(log->node);
5658			free_extent_buffer(log->commit_root);
5659			kfree(log);
5660			btrfs_handle_fs_error(fs_info, ret,
5661				"Couldn't read target root for tree log recovery.");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5662			goto error;
5663		}
5664
5665		wc.replay_dest->log_root = log;
5666		btrfs_record_root_in_trans(trans, wc.replay_dest);
5667		ret = walk_log_tree(trans, log, &wc);
 
 
 
 
5668
5669		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5670			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5671						      path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5672		}
5673
5674		key.offset = found_key.offset - 1;
5675		wc.replay_dest->log_root = NULL;
5676		free_extent_buffer(log->node);
5677		free_extent_buffer(log->commit_root);
5678		kfree(log);
5679
5680		if (ret)
5681			goto error;
5682
5683		if (found_key.offset == 0)
5684			break;
 
5685	}
5686	btrfs_release_path(path);
5687
5688	/* step one is to pin it all, step two is to replay just inodes */
5689	if (wc.pin) {
5690		wc.pin = 0;
5691		wc.process_func = replay_one_buffer;
5692		wc.stage = LOG_WALK_REPLAY_INODES;
5693		goto again;
5694	}
5695	/* step three is to replay everything */
5696	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5697		wc.stage++;
5698		goto again;
5699	}
5700
5701	btrfs_free_path(path);
5702
5703	/* step 4: commit the transaction, which also unpins the blocks */
5704	ret = btrfs_commit_transaction(trans);
5705	if (ret)
5706		return ret;
5707
5708	free_extent_buffer(log_root_tree->node);
5709	log_root_tree->log_root = NULL;
5710	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5711	kfree(log_root_tree);
5712
5713	return 0;
5714error:
5715	if (wc.trans)
5716		btrfs_end_transaction(wc.trans);
 
5717	btrfs_free_path(path);
5718	return ret;
5719}
5720
5721/*
5722 * there are some corner cases where we want to force a full
5723 * commit instead of allowing a directory to be logged.
5724 *
5725 * They revolve around files there were unlinked from the directory, and
5726 * this function updates the parent directory so that a full commit is
5727 * properly done if it is fsync'd later after the unlinks are done.
5728 *
5729 * Must be called before the unlink operations (updates to the subvolume tree,
5730 * inodes, etc) are done.
5731 */
5732void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5733			     struct inode *dir, struct inode *inode,
5734			     int for_rename)
5735{
5736	/*
5737	 * when we're logging a file, if it hasn't been renamed
5738	 * or unlinked, and its inode is fully committed on disk,
5739	 * we don't have to worry about walking up the directory chain
5740	 * to log its parents.
5741	 *
5742	 * So, we use the last_unlink_trans field to put this transid
5743	 * into the file.  When the file is logged we check it and
5744	 * don't log the parents if the file is fully on disk.
5745	 */
5746	mutex_lock(&BTRFS_I(inode)->log_mutex);
5747	BTRFS_I(inode)->last_unlink_trans = trans->transid;
5748	mutex_unlock(&BTRFS_I(inode)->log_mutex);
 
 
 
5749
5750	/*
5751	 * if this directory was already logged any new
5752	 * names for this file/dir will get recorded
 
 
5753	 */
5754	smp_mb();
5755	if (BTRFS_I(dir)->logged_trans == trans->transid)
5756		return;
5757
5758	/*
5759	 * if the inode we're about to unlink was logged,
5760	 * the log will be properly updated for any new names
 
 
5761	 */
5762	if (BTRFS_I(inode)->logged_trans == trans->transid)
5763		return;
5764
5765	/*
5766	 * when renaming files across directories, if the directory
5767	 * there we're unlinking from gets fsync'd later on, there's
5768	 * no way to find the destination directory later and fsync it
5769	 * properly.  So, we have to be conservative and force commits
5770	 * so the new name gets discovered.
5771	 */
5772	if (for_rename)
5773		goto record;
5774
5775	/* we can safely do the unlink without any special recording */
5776	return;
5777
5778record:
5779	mutex_lock(&BTRFS_I(dir)->log_mutex);
5780	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5781	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5782}
5783
5784/*
5785 * Make sure that if someone attempts to fsync the parent directory of a deleted
5786 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5787 * that after replaying the log tree of the parent directory's root we will not
5788 * see the snapshot anymore and at log replay time we will not see any log tree
5789 * corresponding to the deleted snapshot's root, which could lead to replaying
5790 * it after replaying the log tree of the parent directory (which would replay
5791 * the snapshot delete operation).
5792 *
5793 * Must be called before the actual snapshot destroy operation (updates to the
5794 * parent root and tree of tree roots trees, etc) are done.
5795 */
5796void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5797				   struct inode *dir)
5798{
5799	mutex_lock(&BTRFS_I(dir)->log_mutex);
5800	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5801	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5802}
5803
5804/*
5805 * Call this after adding a new name for a file and it will properly
5806 * update the log to reflect the new name.
5807 *
5808 * It will return zero if all goes well, and it will return 1 if a
5809 * full transaction commit is required.
5810 */
5811int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5812			struct inode *inode, struct inode *old_dir,
5813			struct dentry *parent)
5814{
5815	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5816	struct btrfs_root * root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
5817
5818	/*
5819	 * this will force the logging code to walk the dentry chain
5820	 * up for the file
5821	 */
5822	if (S_ISREG(inode->i_mode))
5823		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5824
5825	/*
5826	 * if this inode hasn't been logged and directory we're renaming it
5827	 * from hasn't been logged, we don't need to log it
5828	 */
5829	if (BTRFS_I(inode)->logged_trans <=
5830	    fs_info->last_trans_committed &&
5831	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5832		    fs_info->last_trans_committed))
5833		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5834
5835	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5836				      LLONG_MAX, 1, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5837}
5838
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
 
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "block-group.h"
  21#include "space-info.h"
  22#include "zoned.h"
  23#include "inode-item.h"
  24#include "fs.h"
  25#include "accessors.h"
  26#include "extent-tree.h"
  27#include "root-tree.h"
  28#include "dir-item.h"
  29#include "file-item.h"
  30#include "file.h"
  31#include "orphan.h"
  32#include "tree-checker.h"
  33
  34#define MAX_CONFLICT_INODES 10
  35
  36/* magic values for the inode_only field in btrfs_log_inode:
  37 *
  38 * LOG_INODE_ALL means to log everything
  39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  40 * during log replay
  41 */
  42enum {
  43	LOG_INODE_ALL,
  44	LOG_INODE_EXISTS,
  45};
  46
  47/*
  48 * directory trouble cases
  49 *
  50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  51 * log, we must force a full commit before doing an fsync of the directory
  52 * where the unlink was done.
  53 * ---> record transid of last unlink/rename per directory
  54 *
  55 * mkdir foo/some_dir
  56 * normal commit
  57 * rename foo/some_dir foo2/some_dir
  58 * mkdir foo/some_dir
  59 * fsync foo/some_dir/some_file
  60 *
  61 * The fsync above will unlink the original some_dir without recording
  62 * it in its new location (foo2).  After a crash, some_dir will be gone
  63 * unless the fsync of some_file forces a full commit
  64 *
  65 * 2) we must log any new names for any file or dir that is in the fsync
  66 * log. ---> check inode while renaming/linking.
  67 *
  68 * 2a) we must log any new names for any file or dir during rename
  69 * when the directory they are being removed from was logged.
  70 * ---> check inode and old parent dir during rename
  71 *
  72 *  2a is actually the more important variant.  With the extra logging
  73 *  a crash might unlink the old name without recreating the new one
  74 *
  75 * 3) after a crash, we must go through any directories with a link count
  76 * of zero and redo the rm -rf
  77 *
  78 * mkdir f1/foo
  79 * normal commit
  80 * rm -rf f1/foo
  81 * fsync(f1)
  82 *
  83 * The directory f1 was fully removed from the FS, but fsync was never
  84 * called on f1, only its parent dir.  After a crash the rm -rf must
  85 * be replayed.  This must be able to recurse down the entire
  86 * directory tree.  The inode link count fixup code takes care of the
  87 * ugly details.
  88 */
  89
  90/*
  91 * stages for the tree walking.  The first
  92 * stage (0) is to only pin down the blocks we find
  93 * the second stage (1) is to make sure that all the inodes
  94 * we find in the log are created in the subvolume.
  95 *
  96 * The last stage is to deal with directories and links and extents
  97 * and all the other fun semantics
  98 */
  99enum {
 100	LOG_WALK_PIN_ONLY,
 101	LOG_WALK_REPLAY_INODES,
 102	LOG_WALK_REPLAY_DIR_INDEX,
 103	LOG_WALK_REPLAY_ALL,
 104};
 105
 106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 107			   struct btrfs_inode *inode,
 108			   int inode_only,
 
 
 109			   struct btrfs_log_ctx *ctx);
 110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 111			     struct btrfs_root *root,
 112			     struct btrfs_path *path, u64 objectid);
 113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 114				       struct btrfs_root *root,
 115				       struct btrfs_root *log,
 116				       struct btrfs_path *path,
 117				       u64 dirid, int del_all);
 118static void wait_log_commit(struct btrfs_root *root, int transid);
 119
 120/*
 121 * tree logging is a special write ahead log used to make sure that
 122 * fsyncs and O_SYNCs can happen without doing full tree commits.
 123 *
 124 * Full tree commits are expensive because they require commonly
 125 * modified blocks to be recowed, creating many dirty pages in the
 126 * extent tree an 4x-6x higher write load than ext3.
 127 *
 128 * Instead of doing a tree commit on every fsync, we use the
 129 * key ranges and transaction ids to find items for a given file or directory
 130 * that have changed in this transaction.  Those items are copied into
 131 * a special tree (one per subvolume root), that tree is written to disk
 132 * and then the fsync is considered complete.
 133 *
 134 * After a crash, items are copied out of the log-tree back into the
 135 * subvolume tree.  Any file data extents found are recorded in the extent
 136 * allocation tree, and the log-tree freed.
 137 *
 138 * The log tree is read three times, once to pin down all the extents it is
 139 * using in ram and once, once to create all the inodes logged in the tree
 140 * and once to do all the other items.
 141 */
 142
 143/*
 144 * start a sub transaction and setup the log tree
 145 * this increments the log tree writer count to make the people
 146 * syncing the tree wait for us to finish
 147 */
 148static int start_log_trans(struct btrfs_trans_handle *trans,
 149			   struct btrfs_root *root,
 150			   struct btrfs_log_ctx *ctx)
 151{
 152	struct btrfs_fs_info *fs_info = root->fs_info;
 153	struct btrfs_root *tree_root = fs_info->tree_root;
 154	const bool zoned = btrfs_is_zoned(fs_info);
 155	int ret = 0;
 156	bool created = false;
 157
 158	/*
 159	 * First check if the log root tree was already created. If not, create
 160	 * it before locking the root's log_mutex, just to keep lockdep happy.
 161	 */
 162	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
 163		mutex_lock(&tree_root->log_mutex);
 164		if (!fs_info->log_root_tree) {
 165			ret = btrfs_init_log_root_tree(trans, fs_info);
 166			if (!ret) {
 167				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
 168				created = true;
 169			}
 170		}
 171		mutex_unlock(&tree_root->log_mutex);
 172		if (ret)
 173			return ret;
 174	}
 175
 176	mutex_lock(&root->log_mutex);
 177
 178again:
 179	if (root->log_root) {
 180		int index = (root->log_transid + 1) % 2;
 181
 182		if (btrfs_need_log_full_commit(trans)) {
 183			ret = BTRFS_LOG_FORCE_COMMIT;
 184			goto out;
 185		}
 186
 187		if (zoned && atomic_read(&root->log_commit[index])) {
 188			wait_log_commit(root, root->log_transid - 1);
 189			goto again;
 190		}
 191
 192		if (!root->log_start_pid) {
 193			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 194			root->log_start_pid = current->pid;
 195		} else if (root->log_start_pid != current->pid) {
 196			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 197		}
 198	} else {
 199		/*
 200		 * This means fs_info->log_root_tree was already created
 201		 * for some other FS trees. Do the full commit not to mix
 202		 * nodes from multiple log transactions to do sequential
 203		 * writing.
 204		 */
 205		if (zoned && !created) {
 206			ret = BTRFS_LOG_FORCE_COMMIT;
 207			goto out;
 208		}
 209
 210		ret = btrfs_add_log_tree(trans, root);
 211		if (ret)
 212			goto out;
 213
 214		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 215		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 216		root->log_start_pid = current->pid;
 217	}
 218
 
 219	atomic_inc(&root->log_writers);
 220	if (!ctx->logging_new_name) {
 221		int index = root->log_transid % 2;
 222		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 223		ctx->log_transid = root->log_transid;
 224	}
 225
 226out:
 227	mutex_unlock(&root->log_mutex);
 228	return ret;
 229}
 230
 231/*
 232 * returns 0 if there was a log transaction running and we were able
 233 * to join, or returns -ENOENT if there were not transactions
 234 * in progress
 235 */
 236static int join_running_log_trans(struct btrfs_root *root)
 237{
 238	const bool zoned = btrfs_is_zoned(root->fs_info);
 239	int ret = -ENOENT;
 240
 241	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 242		return ret;
 
 243
 244	mutex_lock(&root->log_mutex);
 245again:
 246	if (root->log_root) {
 247		int index = (root->log_transid + 1) % 2;
 248
 249		ret = 0;
 250		if (zoned && atomic_read(&root->log_commit[index])) {
 251			wait_log_commit(root, root->log_transid - 1);
 252			goto again;
 253		}
 254		atomic_inc(&root->log_writers);
 255	}
 256	mutex_unlock(&root->log_mutex);
 257	return ret;
 258}
 259
 260/*
 261 * This either makes the current running log transaction wait
 262 * until you call btrfs_end_log_trans() or it makes any future
 263 * log transactions wait until you call btrfs_end_log_trans()
 264 */
 265void btrfs_pin_log_trans(struct btrfs_root *root)
 266{
 
 
 
 267	atomic_inc(&root->log_writers);
 
 
 268}
 269
 270/*
 271 * indicate we're done making changes to the log tree
 272 * and wake up anyone waiting to do a sync
 273 */
 274void btrfs_end_log_trans(struct btrfs_root *root)
 275{
 276	if (atomic_dec_and_test(&root->log_writers)) {
 277		/* atomic_dec_and_test implies a barrier */
 278		cond_wake_up_nomb(&root->log_writer_wait);
 
 
 
 279	}
 280}
 281
 
 282/*
 283 * the walk control struct is used to pass state down the chain when
 284 * processing the log tree.  The stage field tells us which part
 285 * of the log tree processing we are currently doing.  The others
 286 * are state fields used for that specific part
 287 */
 288struct walk_control {
 289	/* should we free the extent on disk when done?  This is used
 290	 * at transaction commit time while freeing a log tree
 291	 */
 292	int free;
 293
 
 
 
 
 
 
 
 
 
 
 294	/* pin only walk, we record which extents on disk belong to the
 295	 * log trees
 296	 */
 297	int pin;
 298
 299	/* what stage of the replay code we're currently in */
 300	int stage;
 301
 302	/*
 303	 * Ignore any items from the inode currently being processed. Needs
 304	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 305	 * the LOG_WALK_REPLAY_INODES stage.
 306	 */
 307	bool ignore_cur_inode;
 308
 309	/* the root we are currently replaying */
 310	struct btrfs_root *replay_dest;
 311
 312	/* the trans handle for the current replay */
 313	struct btrfs_trans_handle *trans;
 314
 315	/* the function that gets used to process blocks we find in the
 316	 * tree.  Note the extent_buffer might not be up to date when it is
 317	 * passed in, and it must be checked or read if you need the data
 318	 * inside it
 319	 */
 320	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 321			    struct walk_control *wc, u64 gen, int level);
 322};
 323
 324/*
 325 * process_func used to pin down extents, write them or wait on them
 326 */
 327static int process_one_buffer(struct btrfs_root *log,
 328			      struct extent_buffer *eb,
 329			      struct walk_control *wc, u64 gen, int level)
 330{
 331	struct btrfs_fs_info *fs_info = log->fs_info;
 332	int ret = 0;
 333
 334	/*
 335	 * If this fs is mixed then we need to be able to process the leaves to
 336	 * pin down any logged extents, so we have to read the block.
 337	 */
 338	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 339		struct btrfs_tree_parent_check check = {
 340			.level = level,
 341			.transid = gen
 342		};
 343
 344		ret = btrfs_read_extent_buffer(eb, &check);
 345		if (ret)
 346			return ret;
 347	}
 348
 349	if (wc->pin) {
 350		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
 351		if (ret)
 352			return ret;
 353
 354		if (btrfs_buffer_uptodate(eb, gen, 0) &&
 355		    btrfs_header_level(eb) == 0)
 356			ret = btrfs_exclude_logged_extents(eb);
 
 
 
 357	}
 358	return ret;
 359}
 360
 361/*
 362 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 363 * to the src data we are copying out.
 364 *
 365 * root is the tree we are copying into, and path is a scratch
 366 * path for use in this function (it should be released on entry and
 367 * will be released on exit).
 368 *
 369 * If the key is already in the destination tree the existing item is
 370 * overwritten.  If the existing item isn't big enough, it is extended.
 371 * If it is too large, it is truncated.
 372 *
 373 * If the key isn't in the destination yet, a new item is inserted.
 374 */
 375static int overwrite_item(struct btrfs_trans_handle *trans,
 376			  struct btrfs_root *root,
 377			  struct btrfs_path *path,
 378			  struct extent_buffer *eb, int slot,
 379			  struct btrfs_key *key)
 380{
 
 381	int ret;
 382	u32 item_size;
 383	u64 saved_i_size = 0;
 384	int save_old_i_size = 0;
 385	unsigned long src_ptr;
 386	unsigned long dst_ptr;
 
 387	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 388
 389	/*
 390	 * This is only used during log replay, so the root is always from a
 391	 * fs/subvolume tree. In case we ever need to support a log root, then
 392	 * we'll have to clone the leaf in the path, release the path and use
 393	 * the leaf before writing into the log tree. See the comments at
 394	 * copy_items() for more details.
 395	 */
 396	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 397
 398	item_size = btrfs_item_size(eb, slot);
 399	src_ptr = btrfs_item_ptr_offset(eb, slot);
 400
 401	/* Look for the key in the destination tree. */
 402	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 403	if (ret < 0)
 404		return ret;
 405
 406	if (ret == 0) {
 407		char *src_copy;
 408		char *dst_copy;
 409		u32 dst_size = btrfs_item_size(path->nodes[0],
 410						  path->slots[0]);
 411		if (dst_size != item_size)
 412			goto insert;
 413
 414		if (item_size == 0) {
 415			btrfs_release_path(path);
 416			return 0;
 417		}
 418		dst_copy = kmalloc(item_size, GFP_NOFS);
 419		src_copy = kmalloc(item_size, GFP_NOFS);
 420		if (!dst_copy || !src_copy) {
 421			btrfs_release_path(path);
 422			kfree(dst_copy);
 423			kfree(src_copy);
 424			return -ENOMEM;
 425		}
 426
 427		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 428
 429		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 430		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 431				   item_size);
 432		ret = memcmp(dst_copy, src_copy, item_size);
 433
 434		kfree(dst_copy);
 435		kfree(src_copy);
 436		/*
 437		 * they have the same contents, just return, this saves
 438		 * us from cowing blocks in the destination tree and doing
 439		 * extra writes that may not have been done by a previous
 440		 * sync
 441		 */
 442		if (ret == 0) {
 443			btrfs_release_path(path);
 444			return 0;
 445		}
 446
 447		/*
 448		 * We need to load the old nbytes into the inode so when we
 449		 * replay the extents we've logged we get the right nbytes.
 450		 */
 451		if (inode_item) {
 452			struct btrfs_inode_item *item;
 453			u64 nbytes;
 454			u32 mode;
 455
 456			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 457					      struct btrfs_inode_item);
 458			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 459			item = btrfs_item_ptr(eb, slot,
 460					      struct btrfs_inode_item);
 461			btrfs_set_inode_nbytes(eb, item, nbytes);
 462
 463			/*
 464			 * If this is a directory we need to reset the i_size to
 465			 * 0 so that we can set it up properly when replaying
 466			 * the rest of the items in this log.
 467			 */
 468			mode = btrfs_inode_mode(eb, item);
 469			if (S_ISDIR(mode))
 470				btrfs_set_inode_size(eb, item, 0);
 471		}
 472	} else if (inode_item) {
 473		struct btrfs_inode_item *item;
 474		u32 mode;
 475
 476		/*
 477		 * New inode, set nbytes to 0 so that the nbytes comes out
 478		 * properly when we replay the extents.
 479		 */
 480		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 481		btrfs_set_inode_nbytes(eb, item, 0);
 482
 483		/*
 484		 * If this is a directory we need to reset the i_size to 0 so
 485		 * that we can set it up properly when replaying the rest of
 486		 * the items in this log.
 487		 */
 488		mode = btrfs_inode_mode(eb, item);
 489		if (S_ISDIR(mode))
 490			btrfs_set_inode_size(eb, item, 0);
 491	}
 492insert:
 493	btrfs_release_path(path);
 494	/* try to insert the key into the destination tree */
 495	path->skip_release_on_error = 1;
 496	ret = btrfs_insert_empty_item(trans, root, path,
 497				      key, item_size);
 498	path->skip_release_on_error = 0;
 499
 500	/* make sure any existing item is the correct size */
 501	if (ret == -EEXIST || ret == -EOVERFLOW) {
 502		u32 found_size;
 503		found_size = btrfs_item_size(path->nodes[0],
 504						path->slots[0]);
 505		if (found_size > item_size)
 506			btrfs_truncate_item(trans, path, item_size, 1);
 507		else if (found_size < item_size)
 508			btrfs_extend_item(trans, path, item_size - found_size);
 
 509	} else if (ret) {
 510		return ret;
 511	}
 512	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 513					path->slots[0]);
 514
 515	/* don't overwrite an existing inode if the generation number
 516	 * was logged as zero.  This is done when the tree logging code
 517	 * is just logging an inode to make sure it exists after recovery.
 518	 *
 519	 * Also, don't overwrite i_size on directories during replay.
 520	 * log replay inserts and removes directory items based on the
 521	 * state of the tree found in the subvolume, and i_size is modified
 522	 * as it goes
 523	 */
 524	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 525		struct btrfs_inode_item *src_item;
 526		struct btrfs_inode_item *dst_item;
 527
 528		src_item = (struct btrfs_inode_item *)src_ptr;
 529		dst_item = (struct btrfs_inode_item *)dst_ptr;
 530
 531		if (btrfs_inode_generation(eb, src_item) == 0) {
 532			struct extent_buffer *dst_eb = path->nodes[0];
 533			const u64 ino_size = btrfs_inode_size(eb, src_item);
 534
 535			/*
 536			 * For regular files an ino_size == 0 is used only when
 537			 * logging that an inode exists, as part of a directory
 538			 * fsync, and the inode wasn't fsynced before. In this
 539			 * case don't set the size of the inode in the fs/subvol
 540			 * tree, otherwise we would be throwing valid data away.
 541			 */
 542			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 543			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 544			    ino_size != 0)
 545				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 
 
 
 
 
 546			goto no_copy;
 547		}
 548
 549		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 
 550		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 551			save_old_i_size = 1;
 552			saved_i_size = btrfs_inode_size(path->nodes[0],
 553							dst_item);
 554		}
 555	}
 556
 557	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 558			   src_ptr, item_size);
 559
 560	if (save_old_i_size) {
 561		struct btrfs_inode_item *dst_item;
 562		dst_item = (struct btrfs_inode_item *)dst_ptr;
 563		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 564	}
 565
 566	/* make sure the generation is filled in */
 567	if (key->type == BTRFS_INODE_ITEM_KEY) {
 568		struct btrfs_inode_item *dst_item;
 569		dst_item = (struct btrfs_inode_item *)dst_ptr;
 570		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 571			btrfs_set_inode_generation(path->nodes[0], dst_item,
 572						   trans->transid);
 573		}
 574	}
 575no_copy:
 576	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
 577	btrfs_release_path(path);
 578	return 0;
 579}
 580
 581static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
 582			       struct fscrypt_str *name)
 583{
 584	char *buf;
 585
 586	buf = kmalloc(len, GFP_NOFS);
 587	if (!buf)
 588		return -ENOMEM;
 589
 590	read_extent_buffer(eb, buf, (unsigned long)start, len);
 591	name->name = buf;
 592	name->len = len;
 593	return 0;
 594}
 595
 596/*
 597 * simple helper to read an inode off the disk from a given root
 598 * This can only be called for subvolume roots and not for the log
 599 */
 600static noinline struct inode *read_one_inode(struct btrfs_root *root,
 601					     u64 objectid)
 602{
 
 603	struct inode *inode;
 604
 605	inode = btrfs_iget(root->fs_info->sb, objectid, root);
 606	if (IS_ERR(inode))
 
 
 
 
 
 
 607		inode = NULL;
 
 608	return inode;
 609}
 610
 611/* replays a single extent in 'eb' at 'slot' with 'key' into the
 612 * subvolume 'root'.  path is released on entry and should be released
 613 * on exit.
 614 *
 615 * extents in the log tree have not been allocated out of the extent
 616 * tree yet.  So, this completes the allocation, taking a reference
 617 * as required if the extent already exists or creating a new extent
 618 * if it isn't in the extent allocation tree yet.
 619 *
 620 * The extent is inserted into the file, dropping any existing extents
 621 * from the file that overlap the new one.
 622 */
 623static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 624				      struct btrfs_root *root,
 625				      struct btrfs_path *path,
 626				      struct extent_buffer *eb, int slot,
 627				      struct btrfs_key *key)
 628{
 629	struct btrfs_drop_extents_args drop_args = { 0 };
 630	struct btrfs_fs_info *fs_info = root->fs_info;
 631	int found_type;
 632	u64 extent_end;
 633	u64 start = key->offset;
 634	u64 nbytes = 0;
 635	struct btrfs_file_extent_item *item;
 636	struct inode *inode = NULL;
 637	unsigned long size;
 638	int ret = 0;
 639
 640	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 641	found_type = btrfs_file_extent_type(eb, item);
 642
 643	if (found_type == BTRFS_FILE_EXTENT_REG ||
 644	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 645		nbytes = btrfs_file_extent_num_bytes(eb, item);
 646		extent_end = start + nbytes;
 647
 648		/*
 649		 * We don't add to the inodes nbytes if we are prealloc or a
 650		 * hole.
 651		 */
 652		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 653			nbytes = 0;
 654	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 655		size = btrfs_file_extent_ram_bytes(eb, item);
 656		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 657		extent_end = ALIGN(start + size,
 658				   fs_info->sectorsize);
 659	} else {
 660		ret = 0;
 661		goto out;
 662	}
 663
 664	inode = read_one_inode(root, key->objectid);
 665	if (!inode) {
 666		ret = -EIO;
 667		goto out;
 668	}
 669
 670	/*
 671	 * first check to see if we already have this extent in the
 672	 * file.  This must be done before the btrfs_drop_extents run
 673	 * so we don't try to drop this extent.
 674	 */
 675	ret = btrfs_lookup_file_extent(trans, root, path,
 676			btrfs_ino(BTRFS_I(inode)), start, 0);
 677
 678	if (ret == 0 &&
 679	    (found_type == BTRFS_FILE_EXTENT_REG ||
 680	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 681		struct btrfs_file_extent_item cmp1;
 682		struct btrfs_file_extent_item cmp2;
 683		struct btrfs_file_extent_item *existing;
 684		struct extent_buffer *leaf;
 685
 686		leaf = path->nodes[0];
 687		existing = btrfs_item_ptr(leaf, path->slots[0],
 688					  struct btrfs_file_extent_item);
 689
 690		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 691				   sizeof(cmp1));
 692		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 693				   sizeof(cmp2));
 694
 695		/*
 696		 * we already have a pointer to this exact extent,
 697		 * we don't have to do anything
 698		 */
 699		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 700			btrfs_release_path(path);
 701			goto out;
 702		}
 703	}
 704	btrfs_release_path(path);
 705
 706	/* drop any overlapping extents */
 707	drop_args.start = start;
 708	drop_args.end = extent_end;
 709	drop_args.drop_cache = true;
 710	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
 711	if (ret)
 712		goto out;
 713
 714	if (found_type == BTRFS_FILE_EXTENT_REG ||
 715	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 716		u64 offset;
 717		unsigned long dest_offset;
 718		struct btrfs_key ins;
 719
 720		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 721		    btrfs_fs_incompat(fs_info, NO_HOLES))
 722			goto update_inode;
 723
 724		ret = btrfs_insert_empty_item(trans, root, path, key,
 725					      sizeof(*item));
 726		if (ret)
 727			goto out;
 728		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 729						    path->slots[0]);
 730		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 731				(unsigned long)item,  sizeof(*item));
 732
 733		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 734		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 735		ins.type = BTRFS_EXTENT_ITEM_KEY;
 736		offset = key->offset - btrfs_file_extent_offset(eb, item);
 737
 738		/*
 739		 * Manually record dirty extent, as here we did a shallow
 740		 * file extent item copy and skip normal backref update,
 741		 * but modifying extent tree all by ourselves.
 742		 * So need to manually record dirty extent for qgroup,
 743		 * as the owner of the file extent changed from log tree
 744		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 745		 */
 746		ret = btrfs_qgroup_trace_extent(trans,
 747				btrfs_file_extent_disk_bytenr(eb, item),
 748				btrfs_file_extent_disk_num_bytes(eb, item));
 
 749		if (ret < 0)
 750			goto out;
 751
 752		if (ins.objectid > 0) {
 753			struct btrfs_ref ref = { 0 };
 754			u64 csum_start;
 755			u64 csum_end;
 756			LIST_HEAD(ordered_sums);
 757
 758			/*
 759			 * is this extent already allocated in the extent
 760			 * allocation tree?  If so, just add a reference
 761			 */
 762			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 763						ins.offset);
 764			if (ret < 0) {
 765				goto out;
 766			} else if (ret == 0) {
 767				btrfs_init_generic_ref(&ref,
 768						BTRFS_ADD_DELAYED_REF,
 769						ins.objectid, ins.offset, 0,
 770						root->root_key.objectid);
 771				btrfs_init_data_ref(&ref,
 772						root->root_key.objectid,
 773						key->objectid, offset, 0, false);
 774				ret = btrfs_inc_extent_ref(trans, &ref);
 775				if (ret)
 776					goto out;
 777			} else {
 778				/*
 779				 * insert the extent pointer in the extent
 780				 * allocation tree
 781				 */
 782				ret = btrfs_alloc_logged_file_extent(trans,
 
 783						root->root_key.objectid,
 784						key->objectid, offset, &ins);
 785				if (ret)
 786					goto out;
 787			}
 788			btrfs_release_path(path);
 789
 790			if (btrfs_file_extent_compression(eb, item)) {
 791				csum_start = ins.objectid;
 792				csum_end = csum_start + ins.offset;
 793			} else {
 794				csum_start = ins.objectid +
 795					btrfs_file_extent_offset(eb, item);
 796				csum_end = csum_start +
 797					btrfs_file_extent_num_bytes(eb, item);
 798			}
 799
 800			ret = btrfs_lookup_csums_list(root->log_root,
 801						csum_start, csum_end - 1,
 802						&ordered_sums, 0, false);
 803			if (ret)
 804				goto out;
 805			/*
 806			 * Now delete all existing cums in the csum root that
 807			 * cover our range. We do this because we can have an
 808			 * extent that is completely referenced by one file
 809			 * extent item and partially referenced by another
 810			 * file extent item (like after using the clone or
 811			 * extent_same ioctls). In this case if we end up doing
 812			 * the replay of the one that partially references the
 813			 * extent first, and we do not do the csum deletion
 814			 * below, we can get 2 csum items in the csum tree that
 815			 * overlap each other. For example, imagine our log has
 816			 * the two following file extent items:
 817			 *
 818			 * key (257 EXTENT_DATA 409600)
 819			 *     extent data disk byte 12845056 nr 102400
 820			 *     extent data offset 20480 nr 20480 ram 102400
 821			 *
 822			 * key (257 EXTENT_DATA 819200)
 823			 *     extent data disk byte 12845056 nr 102400
 824			 *     extent data offset 0 nr 102400 ram 102400
 825			 *
 826			 * Where the second one fully references the 100K extent
 827			 * that starts at disk byte 12845056, and the log tree
 828			 * has a single csum item that covers the entire range
 829			 * of the extent:
 830			 *
 831			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 832			 *
 833			 * After the first file extent item is replayed, the
 834			 * csum tree gets the following csum item:
 835			 *
 836			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 837			 *
 838			 * Which covers the 20K sub-range starting at offset 20K
 839			 * of our extent. Now when we replay the second file
 840			 * extent item, if we do not delete existing csum items
 841			 * that cover any of its blocks, we end up getting two
 842			 * csum items in our csum tree that overlap each other:
 843			 *
 844			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 845			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 846			 *
 847			 * Which is a problem, because after this anyone trying
 848			 * to lookup up for the checksum of any block of our
 849			 * extent starting at an offset of 40K or higher, will
 850			 * end up looking at the second csum item only, which
 851			 * does not contain the checksum for any block starting
 852			 * at offset 40K or higher of our extent.
 853			 */
 854			while (!list_empty(&ordered_sums)) {
 855				struct btrfs_ordered_sum *sums;
 856				struct btrfs_root *csum_root;
 857
 858				sums = list_entry(ordered_sums.next,
 859						struct btrfs_ordered_sum,
 860						list);
 861				csum_root = btrfs_csum_root(fs_info,
 862							    sums->logical);
 863				if (!ret)
 864					ret = btrfs_del_csums(trans, csum_root,
 865							      sums->logical,
 866							      sums->len);
 867				if (!ret)
 868					ret = btrfs_csum_file_blocks(trans,
 869								     csum_root,
 870								     sums);
 871				list_del(&sums->list);
 872				kfree(sums);
 873			}
 874			if (ret)
 875				goto out;
 876		} else {
 877			btrfs_release_path(path);
 878		}
 879	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 880		/* inline extents are easy, we just overwrite them */
 881		ret = overwrite_item(trans, root, path, eb, slot, key);
 882		if (ret)
 883			goto out;
 884	}
 885
 886	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 887						extent_end - start);
 888	if (ret)
 889		goto out;
 890
 891update_inode:
 892	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
 893	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 894out:
 895	iput(inode);
 
 896	return ret;
 897}
 898
 899static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
 900				       struct btrfs_inode *dir,
 901				       struct btrfs_inode *inode,
 902				       const struct fscrypt_str *name)
 903{
 904	int ret;
 905
 906	ret = btrfs_unlink_inode(trans, dir, inode, name);
 907	if (ret)
 908		return ret;
 909	/*
 910	 * Whenever we need to check if a name exists or not, we check the
 911	 * fs/subvolume tree. So after an unlink we must run delayed items, so
 912	 * that future checks for a name during log replay see that the name
 913	 * does not exists anymore.
 914	 */
 915	return btrfs_run_delayed_items(trans);
 916}
 917
 918/*
 919 * when cleaning up conflicts between the directory names in the
 920 * subvolume, directory names in the log and directory names in the
 921 * inode back references, we may have to unlink inodes from directories.
 922 *
 923 * This is a helper function to do the unlink of a specific directory
 924 * item
 925 */
 926static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 
 927				      struct btrfs_path *path,
 928				      struct btrfs_inode *dir,
 929				      struct btrfs_dir_item *di)
 930{
 931	struct btrfs_root *root = dir->root;
 932	struct inode *inode;
 933	struct fscrypt_str name;
 
 934	struct extent_buffer *leaf;
 935	struct btrfs_key location;
 936	int ret;
 937
 938	leaf = path->nodes[0];
 939
 940	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 941	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
 942	if (ret)
 
 943		return -ENOMEM;
 944
 
 945	btrfs_release_path(path);
 946
 947	inode = read_one_inode(root, location.objectid);
 948	if (!inode) {
 949		ret = -EIO;
 950		goto out;
 951	}
 952
 953	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 954	if (ret)
 955		goto out;
 956
 957	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
 
 
 
 
 958out:
 959	kfree(name.name);
 960	iput(inode);
 961	return ret;
 962}
 963
 964/*
 965 * See if a given name and sequence number found in an inode back reference are
 966 * already in a directory and correctly point to this inode.
 967 *
 968 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 969 * exists.
 970 */
 971static noinline int inode_in_dir(struct btrfs_root *root,
 972				 struct btrfs_path *path,
 973				 u64 dirid, u64 objectid, u64 index,
 974				 struct fscrypt_str *name)
 975{
 976	struct btrfs_dir_item *di;
 977	struct btrfs_key location;
 978	int ret = 0;
 979
 980	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 981					 index, name, 0);
 982	if (IS_ERR(di)) {
 983		ret = PTR_ERR(di);
 984		goto out;
 985	} else if (di) {
 986		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 987		if (location.objectid != objectid)
 988			goto out;
 989	} else {
 990		goto out;
 991	}
 992
 993	btrfs_release_path(path);
 994	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
 995	if (IS_ERR(di)) {
 996		ret = PTR_ERR(di);
 
 
 997		goto out;
 998	} else if (di) {
 999		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000		if (location.objectid == objectid)
1001			ret = 1;
1002	}
1003out:
1004	btrfs_release_path(path);
1005	return ret;
1006}
1007
1008/*
1009 * helper function to check a log tree for a named back reference in
1010 * an inode.  This is used to decide if a back reference that is
1011 * found in the subvolume conflicts with what we find in the log.
1012 *
1013 * inode backreferences may have multiple refs in a single item,
1014 * during replay we process one reference at a time, and we don't
1015 * want to delete valid links to a file from the subvolume if that
1016 * link is also in the log.
1017 */
1018static noinline int backref_in_log(struct btrfs_root *log,
1019				   struct btrfs_key *key,
1020				   u64 ref_objectid,
1021				   const struct fscrypt_str *name)
1022{
1023	struct btrfs_path *path;
 
 
 
 
 
 
1024	int ret;
 
1025
1026	path = btrfs_alloc_path();
1027	if (!path)
1028		return -ENOMEM;
1029
1030	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1031	if (ret < 0) {
1032		goto out;
1033	} else if (ret == 1) {
1034		ret = 0;
 
 
 
 
 
 
1035		goto out;
1036	}
1037
1038	if (key->type == BTRFS_INODE_EXTREF_KEY)
1039		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040						       path->slots[0],
1041						       ref_objectid, name);
1042	else
1043		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1044						   path->slots[0], name);
 
 
 
 
 
 
 
 
 
1045out:
1046	btrfs_free_path(path);
1047	return ret;
1048}
1049
1050static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1051				  struct btrfs_root *root,
1052				  struct btrfs_path *path,
1053				  struct btrfs_root *log_root,
1054				  struct btrfs_inode *dir,
1055				  struct btrfs_inode *inode,
1056				  u64 inode_objectid, u64 parent_objectid,
1057				  u64 ref_index, struct fscrypt_str *name)
 
1058{
 
1059	int ret;
 
 
1060	struct extent_buffer *leaf;
1061	struct btrfs_dir_item *di;
1062	struct btrfs_key search_key;
1063	struct btrfs_inode_extref *extref;
1064
1065again:
1066	/* Search old style refs */
1067	search_key.objectid = inode_objectid;
1068	search_key.type = BTRFS_INODE_REF_KEY;
1069	search_key.offset = parent_objectid;
1070	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1071	if (ret == 0) {
1072		struct btrfs_inode_ref *victim_ref;
1073		unsigned long ptr;
1074		unsigned long ptr_end;
1075
1076		leaf = path->nodes[0];
1077
1078		/* are we trying to overwrite a back ref for the root directory
1079		 * if so, just jump out, we're done
1080		 */
1081		if (search_key.objectid == search_key.offset)
1082			return 1;
1083
1084		/* check all the names in this back reference to see
1085		 * if they are in the log.  if so, we allow them to stay
1086		 * otherwise they must be unlinked as a conflict
1087		 */
1088		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1090		while (ptr < ptr_end) {
1091			struct fscrypt_str victim_name;
1092
1093			victim_ref = (struct btrfs_inode_ref *)ptr;
1094			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095				 btrfs_inode_ref_name_len(leaf, victim_ref),
1096				 &victim_name);
1097			if (ret)
1098				return ret;
1099
1100			ret = backref_in_log(log_root, &search_key,
1101					     parent_objectid, &victim_name);
1102			if (ret < 0) {
1103				kfree(victim_name.name);
1104				return ret;
1105			} else if (!ret) {
1106				inc_nlink(&inode->vfs_inode);
 
 
1107				btrfs_release_path(path);
1108
1109				ret = unlink_inode_for_log_replay(trans, dir, inode,
1110						&victim_name);
1111				kfree(victim_name.name);
 
 
 
 
1112				if (ret)
1113					return ret;
 
1114				goto again;
1115			}
1116			kfree(victim_name.name);
1117
1118			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1119		}
 
 
 
 
 
 
1120	}
1121	btrfs_release_path(path);
1122
1123	/* Same search but for extended refs */
1124	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1125					   inode_objectid, parent_objectid, 0,
1126					   0);
1127	if (IS_ERR(extref)) {
1128		return PTR_ERR(extref);
1129	} else if (extref) {
1130		u32 item_size;
1131		u32 cur_offset = 0;
1132		unsigned long base;
1133		struct inode *victim_parent;
1134
1135		leaf = path->nodes[0];
1136
1137		item_size = btrfs_item_size(leaf, path->slots[0]);
1138		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139
1140		while (cur_offset < item_size) {
1141			struct fscrypt_str victim_name;
1142
1143			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1144
1145			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146				goto next;
1147
1148			ret = read_alloc_one_name(leaf, &extref->name,
1149				 btrfs_inode_extref_name_len(leaf, extref),
1150				 &victim_name);
1151			if (ret)
1152				return ret;
1153
1154			search_key.objectid = inode_objectid;
1155			search_key.type = BTRFS_INODE_EXTREF_KEY;
1156			search_key.offset = btrfs_extref_hash(parent_objectid,
1157							      victim_name.name,
1158							      victim_name.len);
1159			ret = backref_in_log(log_root, &search_key,
1160					     parent_objectid, &victim_name);
1161			if (ret < 0) {
1162				kfree(victim_name.name);
1163				return ret;
1164			} else if (!ret) {
1165				ret = -ENOENT;
1166				victim_parent = read_one_inode(root,
1167						parent_objectid);
1168				if (victim_parent) {
1169					inc_nlink(&inode->vfs_inode);
1170					btrfs_release_path(path);
1171
1172					ret = unlink_inode_for_log_replay(trans,
1173							BTRFS_I(victim_parent),
1174							inode, &victim_name);
 
 
 
 
 
 
1175				}
1176				iput(victim_parent);
1177				kfree(victim_name.name);
1178				if (ret)
1179					return ret;
 
1180				goto again;
1181			}
1182			kfree(victim_name.name);
 
 
1183next:
1184			cur_offset += victim_name.len + sizeof(*extref);
1185		}
 
1186	}
1187	btrfs_release_path(path);
1188
1189	/* look for a conflicting sequence number */
1190	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191					 ref_index, name, 0);
1192	if (IS_ERR(di)) {
1193		return PTR_ERR(di);
1194	} else if (di) {
1195		ret = drop_one_dir_item(trans, path, dir, di);
1196		if (ret)
1197			return ret;
1198	}
1199	btrfs_release_path(path);
1200
1201	/* look for a conflicting name */
1202	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1203	if (IS_ERR(di)) {
1204		return PTR_ERR(di);
1205	} else if (di) {
1206		ret = drop_one_dir_item(trans, path, dir, di);
1207		if (ret)
1208			return ret;
1209	}
1210	btrfs_release_path(path);
1211
1212	return 0;
1213}
1214
1215static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1216			     struct fscrypt_str *name, u64 *index,
1217			     u64 *parent_objectid)
1218{
1219	struct btrfs_inode_extref *extref;
1220	int ret;
1221
1222	extref = (struct btrfs_inode_extref *)ref_ptr;
1223
1224	ret = read_alloc_one_name(eb, &extref->name,
1225				  btrfs_inode_extref_name_len(eb, extref), name);
1226	if (ret)
1227		return ret;
 
 
 
1228
1229	if (index)
1230		*index = btrfs_inode_extref_index(eb, extref);
1231	if (parent_objectid)
1232		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233
1234	return 0;
1235}
1236
1237static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1238			  struct fscrypt_str *name, u64 *index)
1239{
1240	struct btrfs_inode_ref *ref;
1241	int ret;
1242
1243	ref = (struct btrfs_inode_ref *)ref_ptr;
1244
1245	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246				  name);
1247	if (ret)
1248		return ret;
 
 
1249
1250	if (index)
1251		*index = btrfs_inode_ref_index(eb, ref);
1252
1253	return 0;
1254}
1255
1256/*
1257 * Take an inode reference item from the log tree and iterate all names from the
1258 * inode reference item in the subvolume tree with the same key (if it exists).
1259 * For any name that is not in the inode reference item from the log tree, do a
1260 * proper unlink of that name (that is, remove its entry from the inode
1261 * reference item and both dir index keys).
1262 */
1263static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264				 struct btrfs_root *root,
1265				 struct btrfs_path *path,
1266				 struct btrfs_inode *inode,
1267				 struct extent_buffer *log_eb,
1268				 int log_slot,
1269				 struct btrfs_key *key)
1270{
1271	int ret;
1272	unsigned long ref_ptr;
1273	unsigned long ref_end;
1274	struct extent_buffer *eb;
1275
1276again:
1277	btrfs_release_path(path);
1278	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279	if (ret > 0) {
1280		ret = 0;
1281		goto out;
1282	}
1283	if (ret < 0)
1284		goto out;
1285
1286	eb = path->nodes[0];
1287	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1288	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1289	while (ref_ptr < ref_end) {
1290		struct fscrypt_str name;
1291		u64 parent_id;
1292
1293		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1294			ret = extref_get_fields(eb, ref_ptr, &name,
1295						NULL, &parent_id);
1296		} else {
1297			parent_id = key->offset;
1298			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1299		}
1300		if (ret)
1301			goto out;
1302
1303		if (key->type == BTRFS_INODE_EXTREF_KEY)
1304			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1305							       parent_id, &name);
1306		else
1307			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1308
1309		if (!ret) {
1310			struct inode *dir;
1311
1312			btrfs_release_path(path);
1313			dir = read_one_inode(root, parent_id);
1314			if (!dir) {
1315				ret = -ENOENT;
1316				kfree(name.name);
1317				goto out;
1318			}
1319			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1320						 inode, &name);
1321			kfree(name.name);
1322			iput(dir);
1323			if (ret)
1324				goto out;
1325			goto again;
1326		}
1327
1328		kfree(name.name);
1329		ref_ptr += name.len;
1330		if (key->type == BTRFS_INODE_EXTREF_KEY)
1331			ref_ptr += sizeof(struct btrfs_inode_extref);
1332		else
1333			ref_ptr += sizeof(struct btrfs_inode_ref);
1334	}
1335	ret = 0;
1336 out:
1337	btrfs_release_path(path);
1338	return ret;
1339}
1340
1341/*
1342 * replay one inode back reference item found in the log tree.
1343 * eb, slot and key refer to the buffer and key found in the log tree.
1344 * root is the destination we are replaying into, and path is for temp
1345 * use by this function.  (it should be released on return).
1346 */
1347static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348				  struct btrfs_root *root,
1349				  struct btrfs_root *log,
1350				  struct btrfs_path *path,
1351				  struct extent_buffer *eb, int slot,
1352				  struct btrfs_key *key)
1353{
1354	struct inode *dir = NULL;
1355	struct inode *inode = NULL;
1356	unsigned long ref_ptr;
1357	unsigned long ref_end;
1358	struct fscrypt_str name;
 
1359	int ret;
 
1360	int log_ref_ver = 0;
1361	u64 parent_objectid;
1362	u64 inode_objectid;
1363	u64 ref_index = 0;
1364	int ref_struct_size;
1365
1366	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1367	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1368
1369	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370		struct btrfs_inode_extref *r;
1371
1372		ref_struct_size = sizeof(struct btrfs_inode_extref);
1373		log_ref_ver = 1;
1374		r = (struct btrfs_inode_extref *)ref_ptr;
1375		parent_objectid = btrfs_inode_extref_parent(eb, r);
1376	} else {
1377		ref_struct_size = sizeof(struct btrfs_inode_ref);
1378		parent_objectid = key->offset;
1379	}
1380	inode_objectid = key->objectid;
1381
1382	/*
1383	 * it is possible that we didn't log all the parent directories
1384	 * for a given inode.  If we don't find the dir, just don't
1385	 * copy the back ref in.  The link count fixup code will take
1386	 * care of the rest
1387	 */
1388	dir = read_one_inode(root, parent_objectid);
1389	if (!dir) {
1390		ret = -ENOENT;
1391		goto out;
1392	}
1393
1394	inode = read_one_inode(root, inode_objectid);
1395	if (!inode) {
1396		ret = -EIO;
1397		goto out;
1398	}
1399
1400	while (ref_ptr < ref_end) {
1401		if (log_ref_ver) {
1402			ret = extref_get_fields(eb, ref_ptr, &name,
1403						&ref_index, &parent_objectid);
1404			/*
1405			 * parent object can change from one array
1406			 * item to another.
1407			 */
1408			if (!dir)
1409				dir = read_one_inode(root, parent_objectid);
1410			if (!dir) {
1411				ret = -ENOENT;
1412				goto out;
1413			}
1414		} else {
1415			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
 
1416		}
1417		if (ret)
1418			goto out;
1419
1420		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1422		if (ret < 0) {
1423			goto out;
1424		} else if (ret == 0) {
1425			/*
1426			 * look for a conflicting back reference in the
1427			 * metadata. if we find one we have to unlink that name
1428			 * of the file before we add our new link.  Later on, we
1429			 * overwrite any existing back reference, and we don't
1430			 * want to create dangling pointers in the directory.
1431			 */
1432			ret = __add_inode_ref(trans, root, path, log,
1433					      BTRFS_I(dir), BTRFS_I(inode),
1434					      inode_objectid, parent_objectid,
1435					      ref_index, &name);
1436			if (ret) {
1437				if (ret == 1)
1438					ret = 0;
1439				goto out;
 
 
 
 
 
1440			}
1441
1442			/* insert our name */
1443			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1444					     &name, 0, ref_index);
1445			if (ret)
1446				goto out;
1447
1448			ret = btrfs_update_inode(trans, BTRFS_I(inode));
1449			if (ret)
1450				goto out;
1451		}
1452		/* Else, ret == 1, we already have a perfect match, we're done. */
1453
1454		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455		kfree(name.name);
1456		name.name = NULL;
1457		if (log_ref_ver) {
1458			iput(dir);
1459			dir = NULL;
1460		}
1461	}
1462
1463	/*
1464	 * Before we overwrite the inode reference item in the subvolume tree
1465	 * with the item from the log tree, we must unlink all names from the
1466	 * parent directory that are in the subvolume's tree inode reference
1467	 * item, otherwise we end up with an inconsistent subvolume tree where
1468	 * dir index entries exist for a name but there is no inode reference
1469	 * item with the same name.
1470	 */
1471	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472				    key);
1473	if (ret)
1474		goto out;
1475
1476	/* finally write the back reference in the inode */
1477	ret = overwrite_item(trans, root, path, eb, slot, key);
1478out:
1479	btrfs_release_path(path);
1480	kfree(name.name);
1481	iput(dir);
1482	iput(inode);
1483	return ret;
1484}
1485
1486static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
1487{
1488	int ret = 0;
1489	int name_len;
1490	unsigned int nlink = 0;
1491	u32 item_size;
1492	u32 cur_offset = 0;
1493	u64 inode_objectid = btrfs_ino(inode);
1494	u64 offset = 0;
1495	unsigned long ptr;
1496	struct btrfs_inode_extref *extref;
1497	struct extent_buffer *leaf;
1498
1499	while (1) {
1500		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1501					    path, &extref, &offset);
1502		if (ret)
1503			break;
1504
1505		leaf = path->nodes[0];
1506		item_size = btrfs_item_size(leaf, path->slots[0]);
1507		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1508		cur_offset = 0;
1509
1510		while (cur_offset < item_size) {
1511			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1512			name_len = btrfs_inode_extref_name_len(leaf, extref);
1513
1514			nlink++;
1515
1516			cur_offset += name_len + sizeof(*extref);
1517		}
1518
1519		offset++;
1520		btrfs_release_path(path);
1521	}
1522	btrfs_release_path(path);
1523
1524	if (ret < 0 && ret != -ENOENT)
1525		return ret;
1526	return nlink;
1527}
1528
1529static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
 
1530{
1531	int ret;
1532	struct btrfs_key key;
1533	unsigned int nlink = 0;
1534	unsigned long ptr;
1535	unsigned long ptr_end;
1536	int name_len;
1537	u64 ino = btrfs_ino(inode);
1538
1539	key.objectid = ino;
1540	key.type = BTRFS_INODE_REF_KEY;
1541	key.offset = (u64)-1;
1542
1543	while (1) {
1544		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1545		if (ret < 0)
1546			break;
1547		if (ret > 0) {
1548			if (path->slots[0] == 0)
1549				break;
1550			path->slots[0]--;
1551		}
1552process_slot:
1553		btrfs_item_key_to_cpu(path->nodes[0], &key,
1554				      path->slots[0]);
1555		if (key.objectid != ino ||
1556		    key.type != BTRFS_INODE_REF_KEY)
1557			break;
1558		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1559		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1560						   path->slots[0]);
1561		while (ptr < ptr_end) {
1562			struct btrfs_inode_ref *ref;
1563
1564			ref = (struct btrfs_inode_ref *)ptr;
1565			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1566							    ref);
1567			ptr = (unsigned long)(ref + 1) + name_len;
1568			nlink++;
1569		}
1570
1571		if (key.offset == 0)
1572			break;
1573		if (path->slots[0] > 0) {
1574			path->slots[0]--;
1575			goto process_slot;
1576		}
1577		key.offset--;
1578		btrfs_release_path(path);
1579	}
1580	btrfs_release_path(path);
1581
1582	return nlink;
1583}
1584
1585/*
1586 * There are a few corners where the link count of the file can't
1587 * be properly maintained during replay.  So, instead of adding
1588 * lots of complexity to the log code, we just scan the backrefs
1589 * for any file that has been through replay.
1590 *
1591 * The scan will update the link count on the inode to reflect the
1592 * number of back refs found.  If it goes down to zero, the iput
1593 * will free the inode.
1594 */
1595static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 
1596					   struct inode *inode)
1597{
1598	struct btrfs_root *root = BTRFS_I(inode)->root;
1599	struct btrfs_path *path;
1600	int ret;
1601	u64 nlink = 0;
1602	u64 ino = btrfs_ino(BTRFS_I(inode));
1603
1604	path = btrfs_alloc_path();
1605	if (!path)
1606		return -ENOMEM;
1607
1608	ret = count_inode_refs(BTRFS_I(inode), path);
1609	if (ret < 0)
1610		goto out;
1611
1612	nlink = ret;
1613
1614	ret = count_inode_extrefs(BTRFS_I(inode), path);
1615	if (ret < 0)
1616		goto out;
1617
1618	nlink += ret;
1619
1620	ret = 0;
1621
1622	if (nlink != inode->i_nlink) {
1623		set_nlink(inode, nlink);
1624		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1625		if (ret)
1626			goto out;
1627	}
1628	BTRFS_I(inode)->index_cnt = (u64)-1;
1629
1630	if (inode->i_nlink == 0) {
1631		if (S_ISDIR(inode->i_mode)) {
1632			ret = replay_dir_deletes(trans, root, NULL, path,
1633						 ino, 1);
1634			if (ret)
1635				goto out;
1636		}
1637		ret = btrfs_insert_orphan_item(trans, root, ino);
1638		if (ret == -EEXIST)
1639			ret = 0;
1640	}
1641
1642out:
1643	btrfs_free_path(path);
1644	return ret;
1645}
1646
1647static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1648					    struct btrfs_root *root,
1649					    struct btrfs_path *path)
1650{
1651	int ret;
1652	struct btrfs_key key;
1653	struct inode *inode;
1654
1655	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1656	key.type = BTRFS_ORPHAN_ITEM_KEY;
1657	key.offset = (u64)-1;
1658	while (1) {
1659		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1660		if (ret < 0)
1661			break;
1662
1663		if (ret == 1) {
1664			ret = 0;
1665			if (path->slots[0] == 0)
1666				break;
1667			path->slots[0]--;
1668		}
1669
1670		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1671		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1672		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1673			break;
1674
1675		ret = btrfs_del_item(trans, root, path);
1676		if (ret)
1677			break;
1678
1679		btrfs_release_path(path);
1680		inode = read_one_inode(root, key.offset);
1681		if (!inode) {
1682			ret = -EIO;
1683			break;
1684		}
1685
1686		ret = fixup_inode_link_count(trans, inode);
1687		iput(inode);
1688		if (ret)
1689			break;
1690
1691		/*
1692		 * fixup on a directory may create new entries,
1693		 * make sure we always look for the highset possible
1694		 * offset
1695		 */
1696		key.offset = (u64)-1;
1697	}
 
 
1698	btrfs_release_path(path);
1699	return ret;
1700}
1701
1702
1703/*
1704 * record a given inode in the fixup dir so we can check its link
1705 * count when replay is done.  The link count is incremented here
1706 * so the inode won't go away until we check it
1707 */
1708static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1709				      struct btrfs_root *root,
1710				      struct btrfs_path *path,
1711				      u64 objectid)
1712{
1713	struct btrfs_key key;
1714	int ret = 0;
1715	struct inode *inode;
1716
1717	inode = read_one_inode(root, objectid);
1718	if (!inode)
1719		return -EIO;
1720
1721	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1722	key.type = BTRFS_ORPHAN_ITEM_KEY;
1723	key.offset = objectid;
1724
1725	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1726
1727	btrfs_release_path(path);
1728	if (ret == 0) {
1729		if (!inode->i_nlink)
1730			set_nlink(inode, 1);
1731		else
1732			inc_nlink(inode);
1733		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1734	} else if (ret == -EEXIST) {
1735		ret = 0;
 
 
1736	}
1737	iput(inode);
1738
1739	return ret;
1740}
1741
1742/*
1743 * when replaying the log for a directory, we only insert names
1744 * for inodes that actually exist.  This means an fsync on a directory
1745 * does not implicitly fsync all the new files in it
1746 */
1747static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1748				    struct btrfs_root *root,
1749				    u64 dirid, u64 index,
1750				    const struct fscrypt_str *name,
1751				    struct btrfs_key *location)
1752{
1753	struct inode *inode;
1754	struct inode *dir;
1755	int ret;
1756
1757	inode = read_one_inode(root, location->objectid);
1758	if (!inode)
1759		return -ENOENT;
1760
1761	dir = read_one_inode(root, dirid);
1762	if (!dir) {
1763		iput(inode);
1764		return -EIO;
1765	}
1766
1767	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1768			     1, index);
1769
1770	/* FIXME, put inode into FIXUP list */
1771
1772	iput(inode);
1773	iput(dir);
1774	return ret;
1775}
1776
1777static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1778					struct btrfs_inode *dir,
1779					struct btrfs_path *path,
1780					struct btrfs_dir_item *dst_di,
1781					const struct btrfs_key *log_key,
1782					u8 log_flags,
1783					bool exists)
1784{
1785	struct btrfs_key found_key;
1786
1787	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1788	/* The existing dentry points to the same inode, don't delete it. */
1789	if (found_key.objectid == log_key->objectid &&
1790	    found_key.type == log_key->type &&
1791	    found_key.offset == log_key->offset &&
1792	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1793		return 1;
1794
1795	/*
1796	 * Don't drop the conflicting directory entry if the inode for the new
1797	 * entry doesn't exist.
1798	 */
1799	if (!exists)
1800		return 0;
1801
1802	return drop_one_dir_item(trans, path, dir, dst_di);
1803}
1804
1805/*
1806 * take a single entry in a log directory item and replay it into
1807 * the subvolume.
1808 *
1809 * if a conflicting item exists in the subdirectory already,
1810 * the inode it points to is unlinked and put into the link count
1811 * fix up tree.
1812 *
1813 * If a name from the log points to a file or directory that does
1814 * not exist in the FS, it is skipped.  fsyncs on directories
1815 * do not force down inodes inside that directory, just changes to the
1816 * names or unlinks in a directory.
1817 *
1818 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1819 * non-existing inode) and 1 if the name was replayed.
1820 */
1821static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1822				    struct btrfs_root *root,
1823				    struct btrfs_path *path,
1824				    struct extent_buffer *eb,
1825				    struct btrfs_dir_item *di,
1826				    struct btrfs_key *key)
1827{
1828	struct fscrypt_str name;
1829	struct btrfs_dir_item *dir_dst_di;
1830	struct btrfs_dir_item *index_dst_di;
1831	bool dir_dst_matches = false;
1832	bool index_dst_matches = false;
1833	struct btrfs_key log_key;
1834	struct btrfs_key search_key;
1835	struct inode *dir;
1836	u8 log_flags;
1837	bool exists;
1838	int ret;
1839	bool update_size = true;
1840	bool name_added = false;
1841
1842	dir = read_one_inode(root, key->objectid);
1843	if (!dir)
1844		return -EIO;
1845
1846	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1847	if (ret)
 
 
1848		goto out;
 
 
 
 
 
1849
1850	log_flags = btrfs_dir_flags(eb, di);
1851	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1852	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 
 
 
 
1853	btrfs_release_path(path);
1854	if (ret < 0)
1855		goto out;
1856	exists = (ret == 0);
1857	ret = 0;
1858
1859	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1860					   &name, 1);
1861	if (IS_ERR(dir_dst_di)) {
1862		ret = PTR_ERR(dir_dst_di);
 
 
 
 
 
 
 
1863		goto out;
1864	} else if (dir_dst_di) {
1865		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1866						   dir_dst_di, &log_key,
1867						   log_flags, exists);
1868		if (ret < 0)
1869			goto out;
1870		dir_dst_matches = (ret == 1);
1871	}
1872
1873	btrfs_release_path(path);
1874
1875	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1876						   key->objectid, key->offset,
1877						   &name, 1);
1878	if (IS_ERR(index_dst_di)) {
1879		ret = PTR_ERR(index_dst_di);
1880		goto out;
1881	} else if (index_dst_di) {
1882		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1883						   index_dst_di, &log_key,
1884						   log_flags, exists);
1885		if (ret < 0)
1886			goto out;
1887		index_dst_matches = (ret == 1);
1888	}
1889
1890	btrfs_release_path(path);
1891
1892	if (dir_dst_matches && index_dst_matches) {
1893		ret = 0;
 
 
1894		update_size = false;
1895		goto out;
1896	}
1897
1898	/*
1899	 * Check if the inode reference exists in the log for the given name,
1900	 * inode and parent inode
1901	 */
1902	search_key.objectid = log_key.objectid;
1903	search_key.type = BTRFS_INODE_REF_KEY;
1904	search_key.offset = key->objectid;
1905	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1906	if (ret < 0) {
1907	        goto out;
1908	} else if (ret) {
1909	        /* The dentry will be added later. */
1910	        ret = 0;
1911	        update_size = false;
1912	        goto out;
 
 
 
1913	}
 
 
 
 
 
1914
1915	search_key.objectid = log_key.objectid;
1916	search_key.type = BTRFS_INODE_EXTREF_KEY;
1917	search_key.offset = key->objectid;
1918	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1919	if (ret < 0) {
1920		goto out;
1921	} else if (ret) {
1922		/* The dentry will be added later. */
1923		ret = 0;
1924		update_size = false;
1925		goto out;
1926	}
1927	btrfs_release_path(path);
1928	ret = insert_one_name(trans, root, key->objectid, key->offset,
1929			      &name, &log_key);
1930	if (ret && ret != -ENOENT && ret != -EEXIST)
1931		goto out;
1932	if (!ret)
1933		name_added = true;
1934	update_size = false;
1935	ret = 0;
1936
1937out:
1938	if (!ret && update_size) {
1939		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1940		ret = btrfs_update_inode(trans, BTRFS_I(dir));
1941	}
1942	kfree(name.name);
1943	iput(dir);
1944	if (!ret && name_added)
1945		ret = 1;
1946	return ret;
1947}
1948
1949/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
 
 
 
 
 
1950static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1951					struct btrfs_root *root,
1952					struct btrfs_path *path,
1953					struct extent_buffer *eb, int slot,
1954					struct btrfs_key *key)
1955{
1956	int ret;
 
 
1957	struct btrfs_dir_item *di;
 
 
 
 
1958
1959	/* We only log dir index keys, which only contain a single dir item. */
1960	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
 
 
 
 
 
 
 
 
 
 
1961
1962	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1963	ret = replay_one_name(trans, root, path, eb, di, key);
1964	if (ret < 0)
1965		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966
1967	/*
1968	 * If this entry refers to a non-directory (directories can not have a
1969	 * link count > 1) and it was added in the transaction that was not
1970	 * committed, make sure we fixup the link count of the inode the entry
1971	 * points to. Otherwise something like the following would result in a
1972	 * directory pointing to an inode with a wrong link that does not account
1973	 * for this dir entry:
1974	 *
1975	 * mkdir testdir
1976	 * touch testdir/foo
1977	 * touch testdir/bar
1978	 * sync
1979	 *
1980	 * ln testdir/bar testdir/bar_link
1981	 * ln testdir/foo testdir/foo_link
1982	 * xfs_io -c "fsync" testdir/bar
1983	 *
1984	 * <power failure>
1985	 *
1986	 * mount fs, log replay happens
1987	 *
1988	 * File foo would remain with a link count of 1 when it has two entries
1989	 * pointing to it in the directory testdir. This would make it impossible
1990	 * to ever delete the parent directory has it would result in stale
1991	 * dentries that can never be deleted.
1992	 */
1993	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1994		struct btrfs_path *fixup_path;
1995		struct btrfs_key di_key;
1996
1997		fixup_path = btrfs_alloc_path();
1998		if (!fixup_path)
1999			return -ENOMEM;
2000
2001		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2002		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2003		btrfs_free_path(fixup_path);
2004	}
2005
2006	return ret;
2007}
2008
2009/*
2010 * directory replay has two parts.  There are the standard directory
2011 * items in the log copied from the subvolume, and range items
2012 * created in the log while the subvolume was logged.
2013 *
2014 * The range items tell us which parts of the key space the log
2015 * is authoritative for.  During replay, if a key in the subvolume
2016 * directory is in a logged range item, but not actually in the log
2017 * that means it was deleted from the directory before the fsync
2018 * and should be removed.
2019 */
2020static noinline int find_dir_range(struct btrfs_root *root,
2021				   struct btrfs_path *path,
2022				   u64 dirid,
2023				   u64 *start_ret, u64 *end_ret)
2024{
2025	struct btrfs_key key;
2026	u64 found_end;
2027	struct btrfs_dir_log_item *item;
2028	int ret;
2029	int nritems;
2030
2031	if (*start_ret == (u64)-1)
2032		return 1;
2033
2034	key.objectid = dirid;
2035	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2036	key.offset = *start_ret;
2037
2038	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2039	if (ret < 0)
2040		goto out;
2041	if (ret > 0) {
2042		if (path->slots[0] == 0)
2043			goto out;
2044		path->slots[0]--;
2045	}
2046	if (ret != 0)
2047		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2048
2049	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2050		ret = 1;
2051		goto next;
2052	}
2053	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2054			      struct btrfs_dir_log_item);
2055	found_end = btrfs_dir_log_end(path->nodes[0], item);
2056
2057	if (*start_ret >= key.offset && *start_ret <= found_end) {
2058		ret = 0;
2059		*start_ret = key.offset;
2060		*end_ret = found_end;
2061		goto out;
2062	}
2063	ret = 1;
2064next:
2065	/* check the next slot in the tree to see if it is a valid item */
2066	nritems = btrfs_header_nritems(path->nodes[0]);
2067	path->slots[0]++;
2068	if (path->slots[0] >= nritems) {
2069		ret = btrfs_next_leaf(root, path);
2070		if (ret)
2071			goto out;
2072	}
2073
2074	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2075
2076	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2077		ret = 1;
2078		goto out;
2079	}
2080	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2081			      struct btrfs_dir_log_item);
2082	found_end = btrfs_dir_log_end(path->nodes[0], item);
2083	*start_ret = key.offset;
2084	*end_ret = found_end;
2085	ret = 0;
2086out:
2087	btrfs_release_path(path);
2088	return ret;
2089}
2090
2091/*
2092 * this looks for a given directory item in the log.  If the directory
2093 * item is not in the log, the item is removed and the inode it points
2094 * to is unlinked
2095 */
2096static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 
2097				      struct btrfs_root *log,
2098				      struct btrfs_path *path,
2099				      struct btrfs_path *log_path,
2100				      struct inode *dir,
2101				      struct btrfs_key *dir_key)
2102{
2103	struct btrfs_root *root = BTRFS_I(dir)->root;
2104	int ret;
2105	struct extent_buffer *eb;
2106	int slot;
 
2107	struct btrfs_dir_item *di;
2108	struct fscrypt_str name;
2109	struct inode *inode = NULL;
 
 
 
 
2110	struct btrfs_key location;
2111
2112	/*
2113	 * Currently we only log dir index keys. Even if we replay a log created
2114	 * by an older kernel that logged both dir index and dir item keys, all
2115	 * we need to do is process the dir index keys, we (and our caller) can
2116	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2117	 */
2118	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2119
2120	eb = path->nodes[0];
2121	slot = path->slots[0];
2122	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2123	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2124	if (ret)
2125		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126
2127	if (log) {
2128		struct btrfs_dir_item *log_di;
 
 
 
 
 
 
 
2129
2130		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2131						     dir_key->objectid,
2132						     dir_key->offset, &name, 0);
2133		if (IS_ERR(log_di)) {
2134			ret = PTR_ERR(log_di);
2135			goto out;
2136		} else if (log_di) {
2137			/* The dentry exists in the log, we have nothing to do. */
2138			ret = 0;
2139			goto out;
 
 
 
2140		}
2141	}
 
2142
2143	btrfs_dir_item_key_to_cpu(eb, di, &location);
2144	btrfs_release_path(path);
2145	btrfs_release_path(log_path);
2146	inode = read_one_inode(root, location.objectid);
2147	if (!inode) {
2148		ret = -EIO;
2149		goto out;
2150	}
2151
2152	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2153	if (ret)
2154		goto out;
2155
2156	inc_nlink(inode);
2157	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2158					  &name);
2159	/*
2160	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2161	 * them, as there are no key collisions since each key has a unique offset
2162	 * (an index number), so we're done.
2163	 */
2164out:
2165	btrfs_release_path(path);
2166	btrfs_release_path(log_path);
2167	kfree(name.name);
2168	iput(inode);
2169	return ret;
2170}
2171
2172static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2173			      struct btrfs_root *root,
2174			      struct btrfs_root *log,
2175			      struct btrfs_path *path,
2176			      const u64 ino)
2177{
2178	struct btrfs_key search_key;
2179	struct btrfs_path *log_path;
2180	int i;
2181	int nritems;
2182	int ret;
2183
2184	log_path = btrfs_alloc_path();
2185	if (!log_path)
2186		return -ENOMEM;
2187
2188	search_key.objectid = ino;
2189	search_key.type = BTRFS_XATTR_ITEM_KEY;
2190	search_key.offset = 0;
2191again:
2192	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2193	if (ret < 0)
2194		goto out;
2195process_leaf:
2196	nritems = btrfs_header_nritems(path->nodes[0]);
2197	for (i = path->slots[0]; i < nritems; i++) {
2198		struct btrfs_key key;
2199		struct btrfs_dir_item *di;
2200		struct btrfs_dir_item *log_di;
2201		u32 total_size;
2202		u32 cur;
2203
2204		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2205		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2206			ret = 0;
2207			goto out;
2208		}
2209
2210		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2211		total_size = btrfs_item_size(path->nodes[0], i);
2212		cur = 0;
2213		while (cur < total_size) {
2214			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2215			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2216			u32 this_len = sizeof(*di) + name_len + data_len;
2217			char *name;
2218
2219			name = kmalloc(name_len, GFP_NOFS);
2220			if (!name) {
2221				ret = -ENOMEM;
2222				goto out;
2223			}
2224			read_extent_buffer(path->nodes[0], name,
2225					   (unsigned long)(di + 1), name_len);
2226
2227			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2228						    name, name_len, 0);
2229			btrfs_release_path(log_path);
2230			if (!log_di) {
2231				/* Doesn't exist in log tree, so delete it. */
2232				btrfs_release_path(path);
2233				di = btrfs_lookup_xattr(trans, root, path, ino,
2234							name, name_len, -1);
2235				kfree(name);
2236				if (IS_ERR(di)) {
2237					ret = PTR_ERR(di);
2238					goto out;
2239				}
2240				ASSERT(di);
2241				ret = btrfs_delete_one_dir_name(trans, root,
2242								path, di);
2243				if (ret)
2244					goto out;
2245				btrfs_release_path(path);
2246				search_key = key;
2247				goto again;
2248			}
2249			kfree(name);
2250			if (IS_ERR(log_di)) {
2251				ret = PTR_ERR(log_di);
2252				goto out;
2253			}
2254			cur += this_len;
2255			di = (struct btrfs_dir_item *)((char *)di + this_len);
2256		}
2257	}
2258	ret = btrfs_next_leaf(root, path);
2259	if (ret > 0)
2260		ret = 0;
2261	else if (ret == 0)
2262		goto process_leaf;
2263out:
2264	btrfs_free_path(log_path);
2265	btrfs_release_path(path);
2266	return ret;
2267}
2268
2269
2270/*
2271 * deletion replay happens before we copy any new directory items
2272 * out of the log or out of backreferences from inodes.  It
2273 * scans the log to find ranges of keys that log is authoritative for,
2274 * and then scans the directory to find items in those ranges that are
2275 * not present in the log.
2276 *
2277 * Anything we don't find in the log is unlinked and removed from the
2278 * directory.
2279 */
2280static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2281				       struct btrfs_root *root,
2282				       struct btrfs_root *log,
2283				       struct btrfs_path *path,
2284				       u64 dirid, int del_all)
2285{
2286	u64 range_start;
2287	u64 range_end;
 
2288	int ret = 0;
2289	struct btrfs_key dir_key;
2290	struct btrfs_key found_key;
2291	struct btrfs_path *log_path;
2292	struct inode *dir;
2293
2294	dir_key.objectid = dirid;
2295	dir_key.type = BTRFS_DIR_INDEX_KEY;
2296	log_path = btrfs_alloc_path();
2297	if (!log_path)
2298		return -ENOMEM;
2299
2300	dir = read_one_inode(root, dirid);
2301	/* it isn't an error if the inode isn't there, that can happen
2302	 * because we replay the deletes before we copy in the inode item
2303	 * from the log
2304	 */
2305	if (!dir) {
2306		btrfs_free_path(log_path);
2307		return 0;
2308	}
2309
2310	range_start = 0;
2311	range_end = 0;
2312	while (1) {
2313		if (del_all)
2314			range_end = (u64)-1;
2315		else {
2316			ret = find_dir_range(log, path, dirid,
2317					     &range_start, &range_end);
2318			if (ret < 0)
2319				goto out;
2320			else if (ret > 0)
2321				break;
2322		}
2323
2324		dir_key.offset = range_start;
2325		while (1) {
2326			int nritems;
2327			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2328						0, 0);
2329			if (ret < 0)
2330				goto out;
2331
2332			nritems = btrfs_header_nritems(path->nodes[0]);
2333			if (path->slots[0] >= nritems) {
2334				ret = btrfs_next_leaf(root, path);
2335				if (ret == 1)
2336					break;
2337				else if (ret < 0)
2338					goto out;
2339			}
2340			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2341					      path->slots[0]);
2342			if (found_key.objectid != dirid ||
2343			    found_key.type != dir_key.type) {
2344				ret = 0;
2345				goto out;
2346			}
2347
2348			if (found_key.offset > range_end)
2349				break;
2350
2351			ret = check_item_in_log(trans, log, path,
2352						log_path, dir,
2353						&found_key);
2354			if (ret)
2355				goto out;
2356			if (found_key.offset == (u64)-1)
2357				break;
2358			dir_key.offset = found_key.offset + 1;
2359		}
2360		btrfs_release_path(path);
2361		if (range_end == (u64)-1)
2362			break;
2363		range_start = range_end + 1;
2364	}
 
 
2365	ret = 0;
 
 
 
 
 
 
2366out:
2367	btrfs_release_path(path);
2368	btrfs_free_path(log_path);
2369	iput(dir);
2370	return ret;
2371}
2372
2373/*
2374 * the process_func used to replay items from the log tree.  This
2375 * gets called in two different stages.  The first stage just looks
2376 * for inodes and makes sure they are all copied into the subvolume.
2377 *
2378 * The second stage copies all the other item types from the log into
2379 * the subvolume.  The two stage approach is slower, but gets rid of
2380 * lots of complexity around inodes referencing other inodes that exist
2381 * only in the log (references come from either directory items or inode
2382 * back refs).
2383 */
2384static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2385			     struct walk_control *wc, u64 gen, int level)
2386{
2387	int nritems;
2388	struct btrfs_tree_parent_check check = {
2389		.transid = gen,
2390		.level = level
2391	};
2392	struct btrfs_path *path;
2393	struct btrfs_root *root = wc->replay_dest;
2394	struct btrfs_key key;
 
2395	int i;
2396	int ret;
2397
2398	ret = btrfs_read_extent_buffer(eb, &check);
2399	if (ret)
2400		return ret;
2401
2402	level = btrfs_header_level(eb);
2403
2404	if (level != 0)
2405		return 0;
2406
2407	path = btrfs_alloc_path();
2408	if (!path)
2409		return -ENOMEM;
2410
2411	nritems = btrfs_header_nritems(eb);
2412	for (i = 0; i < nritems; i++) {
2413		btrfs_item_key_to_cpu(eb, &key, i);
2414
2415		/* inode keys are done during the first stage */
2416		if (key.type == BTRFS_INODE_ITEM_KEY &&
2417		    wc->stage == LOG_WALK_REPLAY_INODES) {
2418			struct btrfs_inode_item *inode_item;
2419			u32 mode;
2420
2421			inode_item = btrfs_item_ptr(eb, i,
2422					    struct btrfs_inode_item);
2423			/*
2424			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2425			 * and never got linked before the fsync, skip it, as
2426			 * replaying it is pointless since it would be deleted
2427			 * later. We skip logging tmpfiles, but it's always
2428			 * possible we are replaying a log created with a kernel
2429			 * that used to log tmpfiles.
2430			 */
2431			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2432				wc->ignore_cur_inode = true;
2433				continue;
2434			} else {
2435				wc->ignore_cur_inode = false;
2436			}
2437			ret = replay_xattr_deletes(wc->trans, root, log,
2438						   path, key.objectid);
2439			if (ret)
2440				break;
2441			mode = btrfs_inode_mode(eb, inode_item);
2442			if (S_ISDIR(mode)) {
2443				ret = replay_dir_deletes(wc->trans,
2444					 root, log, path, key.objectid, 0);
2445				if (ret)
2446					break;
2447			}
2448			ret = overwrite_item(wc->trans, root, path,
2449					     eb, i, &key);
2450			if (ret)
2451				break;
2452
2453			/*
2454			 * Before replaying extents, truncate the inode to its
2455			 * size. We need to do it now and not after log replay
2456			 * because before an fsync we can have prealloc extents
2457			 * added beyond the inode's i_size. If we did it after,
2458			 * through orphan cleanup for example, we would drop
2459			 * those prealloc extents just after replaying them.
2460			 */
2461			if (S_ISREG(mode)) {
2462				struct btrfs_drop_extents_args drop_args = { 0 };
2463				struct inode *inode;
2464				u64 from;
2465
2466				inode = read_one_inode(root, key.objectid);
2467				if (!inode) {
2468					ret = -EIO;
2469					break;
2470				}
2471				from = ALIGN(i_size_read(inode),
2472					     root->fs_info->sectorsize);
2473				drop_args.start = from;
2474				drop_args.end = (u64)-1;
2475				drop_args.drop_cache = true;
2476				ret = btrfs_drop_extents(wc->trans, root,
2477							 BTRFS_I(inode),
2478							 &drop_args);
2479				if (!ret) {
2480					inode_sub_bytes(inode,
2481							drop_args.bytes_found);
2482					/* Update the inode's nbytes. */
2483					ret = btrfs_update_inode(wc->trans,
2484								 BTRFS_I(inode));
2485				}
2486				iput(inode);
2487				if (ret)
2488					break;
2489			}
2490
2491			ret = link_to_fixup_dir(wc->trans, root,
2492						path, key.objectid);
2493			if (ret)
2494				break;
2495		}
2496
2497		if (wc->ignore_cur_inode)
2498			continue;
2499
2500		if (key.type == BTRFS_DIR_INDEX_KEY &&
2501		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2502			ret = replay_one_dir_item(wc->trans, root, path,
2503						  eb, i, &key);
2504			if (ret)
2505				break;
2506		}
2507
2508		if (wc->stage < LOG_WALK_REPLAY_ALL)
2509			continue;
2510
2511		/* these keys are simply copied */
2512		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2513			ret = overwrite_item(wc->trans, root, path,
2514					     eb, i, &key);
2515			if (ret)
2516				break;
2517		} else if (key.type == BTRFS_INODE_REF_KEY ||
2518			   key.type == BTRFS_INODE_EXTREF_KEY) {
2519			ret = add_inode_ref(wc->trans, root, log, path,
2520					    eb, i, &key);
2521			if (ret && ret != -ENOENT)
2522				break;
2523			ret = 0;
2524		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2525			ret = replay_one_extent(wc->trans, root, path,
2526						eb, i, &key);
2527			if (ret)
2528				break;
 
 
 
 
 
2529		}
2530		/*
2531		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2532		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2533		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2534		 * older kernel with such keys, ignore them.
2535		 */
2536	}
2537	btrfs_free_path(path);
2538	return ret;
2539}
2540
2541/*
2542 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2543 */
2544static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2545{
2546	struct btrfs_block_group *cache;
2547
2548	cache = btrfs_lookup_block_group(fs_info, start);
2549	if (!cache) {
2550		btrfs_err(fs_info, "unable to find block group for %llu", start);
2551		return;
2552	}
2553
2554	spin_lock(&cache->space_info->lock);
2555	spin_lock(&cache->lock);
2556	cache->reserved -= fs_info->nodesize;
2557	cache->space_info->bytes_reserved -= fs_info->nodesize;
2558	spin_unlock(&cache->lock);
2559	spin_unlock(&cache->space_info->lock);
2560
2561	btrfs_put_block_group(cache);
2562}
2563
2564static int clean_log_buffer(struct btrfs_trans_handle *trans,
2565			    struct extent_buffer *eb)
2566{
2567	int ret;
2568
2569	btrfs_tree_lock(eb);
2570	btrfs_clear_buffer_dirty(trans, eb);
2571	wait_on_extent_buffer_writeback(eb);
2572	btrfs_tree_unlock(eb);
2573
2574	if (trans) {
2575		ret = btrfs_pin_reserved_extent(trans, eb);
2576		if (ret)
2577			return ret;
2578	} else {
2579		unaccount_log_buffer(eb->fs_info, eb->start);
2580	}
2581
2582	return 0;
2583}
2584
2585static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2586				   struct btrfs_root *root,
2587				   struct btrfs_path *path, int *level,
2588				   struct walk_control *wc)
2589{
2590	struct btrfs_fs_info *fs_info = root->fs_info;
 
2591	u64 bytenr;
2592	u64 ptr_gen;
2593	struct extent_buffer *next;
2594	struct extent_buffer *cur;
 
 
2595	int ret = 0;
2596
 
 
 
2597	while (*level > 0) {
2598		struct btrfs_tree_parent_check check = { 0 };
2599
2600		cur = path->nodes[*level];
2601
2602		WARN_ON(btrfs_header_level(cur) != *level);
2603
2604		if (path->slots[*level] >=
2605		    btrfs_header_nritems(cur))
2606			break;
2607
2608		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2609		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2610		check.transid = ptr_gen;
2611		check.level = *level - 1;
2612		check.has_first_key = true;
2613		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2614
2615		next = btrfs_find_create_tree_block(fs_info, bytenr,
2616						    btrfs_header_owner(cur),
2617						    *level - 1);
2618		if (IS_ERR(next))
2619			return PTR_ERR(next);
2620
2621		if (*level == 1) {
2622			ret = wc->process_func(root, next, wc, ptr_gen,
2623					       *level - 1);
2624			if (ret) {
2625				free_extent_buffer(next);
2626				return ret;
2627			}
2628
2629			path->slots[*level]++;
2630			if (wc->free) {
2631				ret = btrfs_read_extent_buffer(next, &check);
2632				if (ret) {
2633					free_extent_buffer(next);
2634					return ret;
2635				}
2636
2637				ret = clean_log_buffer(trans, next);
 
 
 
 
 
 
 
 
 
 
 
 
2638				if (ret) {
2639					free_extent_buffer(next);
2640					return ret;
2641				}
2642			}
2643			free_extent_buffer(next);
2644			continue;
2645		}
2646		ret = btrfs_read_extent_buffer(next, &check);
2647		if (ret) {
2648			free_extent_buffer(next);
2649			return ret;
2650		}
2651
 
2652		if (path->nodes[*level-1])
2653			free_extent_buffer(path->nodes[*level-1]);
2654		path->nodes[*level-1] = next;
2655		*level = btrfs_header_level(next);
2656		path->slots[*level] = 0;
2657		cond_resched();
2658	}
 
 
 
2659	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2660
2661	cond_resched();
2662	return 0;
2663}
2664
2665static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2666				 struct btrfs_root *root,
2667				 struct btrfs_path *path, int *level,
2668				 struct walk_control *wc)
2669{
 
 
2670	int i;
2671	int slot;
2672	int ret;
2673
2674	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2675		slot = path->slots[i];
2676		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2677			path->slots[i]++;
2678			*level = i;
2679			WARN_ON(*level == 0);
2680			return 0;
2681		} else {
 
 
 
 
 
 
 
2682			ret = wc->process_func(root, path->nodes[*level], wc,
2683				 btrfs_header_generation(path->nodes[*level]),
2684				 *level);
2685			if (ret)
2686				return ret;
2687
2688			if (wc->free) {
2689				ret = clean_log_buffer(trans, path->nodes[*level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690				if (ret)
2691					return ret;
2692			}
2693			free_extent_buffer(path->nodes[*level]);
2694			path->nodes[*level] = NULL;
2695			*level = i + 1;
2696		}
2697	}
2698	return 1;
2699}
2700
2701/*
2702 * drop the reference count on the tree rooted at 'snap'.  This traverses
2703 * the tree freeing any blocks that have a ref count of zero after being
2704 * decremented.
2705 */
2706static int walk_log_tree(struct btrfs_trans_handle *trans,
2707			 struct btrfs_root *log, struct walk_control *wc)
2708{
 
2709	int ret = 0;
2710	int wret;
2711	int level;
2712	struct btrfs_path *path;
2713	int orig_level;
2714
2715	path = btrfs_alloc_path();
2716	if (!path)
2717		return -ENOMEM;
2718
2719	level = btrfs_header_level(log->node);
2720	orig_level = level;
2721	path->nodes[level] = log->node;
2722	atomic_inc(&log->node->refs);
2723	path->slots[level] = 0;
2724
2725	while (1) {
2726		wret = walk_down_log_tree(trans, log, path, &level, wc);
2727		if (wret > 0)
2728			break;
2729		if (wret < 0) {
2730			ret = wret;
2731			goto out;
2732		}
2733
2734		wret = walk_up_log_tree(trans, log, path, &level, wc);
2735		if (wret > 0)
2736			break;
2737		if (wret < 0) {
2738			ret = wret;
2739			goto out;
2740		}
2741	}
2742
2743	/* was the root node processed? if not, catch it here */
2744	if (path->nodes[orig_level]) {
2745		ret = wc->process_func(log, path->nodes[orig_level], wc,
2746			 btrfs_header_generation(path->nodes[orig_level]),
2747			 orig_level);
2748		if (ret)
2749			goto out;
2750		if (wc->free)
2751			ret = clean_log_buffer(trans, path->nodes[orig_level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752	}
2753
2754out:
2755	btrfs_free_path(path);
2756	return ret;
2757}
2758
2759/*
2760 * helper function to update the item for a given subvolumes log root
2761 * in the tree of log roots
2762 */
2763static int update_log_root(struct btrfs_trans_handle *trans,
2764			   struct btrfs_root *log,
2765			   struct btrfs_root_item *root_item)
2766{
2767	struct btrfs_fs_info *fs_info = log->fs_info;
2768	int ret;
2769
2770	if (log->log_transid == 1) {
2771		/* insert root item on the first sync */
2772		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2773				&log->root_key, root_item);
2774	} else {
2775		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2776				&log->root_key, root_item);
2777	}
2778	return ret;
2779}
2780
2781static void wait_log_commit(struct btrfs_root *root, int transid)
2782{
2783	DEFINE_WAIT(wait);
2784	int index = transid % 2;
2785
2786	/*
2787	 * we only allow two pending log transactions at a time,
2788	 * so we know that if ours is more than 2 older than the
2789	 * current transaction, we're done
2790	 */
2791	for (;;) {
2792		prepare_to_wait(&root->log_commit_wait[index],
2793				&wait, TASK_UNINTERRUPTIBLE);
 
2794
2795		if (!(root->log_transid_committed < transid &&
2796		      atomic_read(&root->log_commit[index])))
2797			break;
2798
2799		mutex_unlock(&root->log_mutex);
2800		schedule();
2801		mutex_lock(&root->log_mutex);
2802	}
2803	finish_wait(&root->log_commit_wait[index], &wait);
2804}
2805
2806static void wait_for_writer(struct btrfs_root *root)
2807{
2808	DEFINE_WAIT(wait);
2809
2810	for (;;) {
2811		prepare_to_wait(&root->log_writer_wait, &wait,
2812				TASK_UNINTERRUPTIBLE);
2813		if (!atomic_read(&root->log_writers))
2814			break;
2815
2816		mutex_unlock(&root->log_mutex);
2817		schedule();
 
 
2818		mutex_lock(&root->log_mutex);
2819	}
2820	finish_wait(&root->log_writer_wait, &wait);
2821}
2822
2823static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2824					struct btrfs_log_ctx *ctx)
2825{
 
 
 
2826	mutex_lock(&root->log_mutex);
2827	list_del_init(&ctx->list);
2828	mutex_unlock(&root->log_mutex);
2829}
2830
2831/* 
2832 * Invoked in log mutex context, or be sure there is no other task which
2833 * can access the list.
2834 */
2835static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2836					     int index, int error)
2837{
2838	struct btrfs_log_ctx *ctx;
2839	struct btrfs_log_ctx *safe;
2840
2841	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2842		list_del_init(&ctx->list);
2843		ctx->log_ret = error;
2844	}
 
 
2845}
2846
2847/*
2848 * Sends a given tree log down to the disk and updates the super blocks to
2849 * record it.  When this call is done, you know that any inodes previously
2850 * logged are safely on disk only if it returns 0.
 
2851 *
2852 * Any other return value means you need to call btrfs_commit_transaction.
2853 * Some of the edge cases for fsyncing directories that have had unlinks
2854 * or renames done in the past mean that sometimes the only safe
2855 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2856 * that has happened.
2857 */
2858int btrfs_sync_log(struct btrfs_trans_handle *trans,
2859		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2860{
2861	int index1;
2862	int index2;
2863	int mark;
2864	int ret;
2865	struct btrfs_fs_info *fs_info = root->fs_info;
2866	struct btrfs_root *log = root->log_root;
2867	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2868	struct btrfs_root_item new_root_item;
2869	int log_transid = 0;
2870	struct btrfs_log_ctx root_log_ctx;
2871	struct blk_plug plug;
2872	u64 log_root_start;
2873	u64 log_root_level;
2874
2875	mutex_lock(&root->log_mutex);
2876	log_transid = ctx->log_transid;
2877	if (root->log_transid_committed >= log_transid) {
2878		mutex_unlock(&root->log_mutex);
2879		return ctx->log_ret;
2880	}
2881
2882	index1 = log_transid % 2;
2883	if (atomic_read(&root->log_commit[index1])) {
2884		wait_log_commit(root, log_transid);
2885		mutex_unlock(&root->log_mutex);
2886		return ctx->log_ret;
2887	}
2888	ASSERT(log_transid == root->log_transid);
2889	atomic_set(&root->log_commit[index1], 1);
2890
2891	/* wait for previous tree log sync to complete */
2892	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2893		wait_log_commit(root, log_transid - 1);
2894
2895	while (1) {
2896		int batch = atomic_read(&root->log_batch);
2897		/* when we're on an ssd, just kick the log commit out */
2898		if (!btrfs_test_opt(fs_info, SSD) &&
2899		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2900			mutex_unlock(&root->log_mutex);
2901			schedule_timeout_uninterruptible(1);
2902			mutex_lock(&root->log_mutex);
2903		}
2904		wait_for_writer(root);
2905		if (batch == atomic_read(&root->log_batch))
2906			break;
2907	}
2908
2909	/* bail out if we need to do a full commit */
2910	if (btrfs_need_log_full_commit(trans)) {
2911		ret = BTRFS_LOG_FORCE_COMMIT;
 
2912		mutex_unlock(&root->log_mutex);
2913		goto out;
2914	}
2915
2916	if (log_transid % 2 == 0)
2917		mark = EXTENT_DIRTY;
2918	else
2919		mark = EXTENT_NEW;
2920
2921	/* we start IO on  all the marked extents here, but we don't actually
2922	 * wait for them until later.
2923	 */
2924	blk_start_plug(&plug);
2925	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2926	/*
2927	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2928	 *  commit, writes a dirty extent in this tree-log commit. This
2929	 *  concurrent write will create a hole writing out the extents,
2930	 *  and we cannot proceed on a zoned filesystem, requiring
2931	 *  sequential writing. While we can bail out to a full commit
2932	 *  here, but we can continue hoping the concurrent writing fills
2933	 *  the hole.
2934	 */
2935	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2936		ret = 0;
2937	if (ret) {
2938		blk_finish_plug(&plug);
2939		btrfs_set_log_full_commit(trans);
 
 
2940		mutex_unlock(&root->log_mutex);
2941		goto out;
2942	}
2943
2944	/*
2945	 * We _must_ update under the root->log_mutex in order to make sure we
2946	 * have a consistent view of the log root we are trying to commit at
2947	 * this moment.
2948	 *
2949	 * We _must_ copy this into a local copy, because we are not holding the
2950	 * log_root_tree->log_mutex yet.  This is important because when we
2951	 * commit the log_root_tree we must have a consistent view of the
2952	 * log_root_tree when we update the super block to point at the
2953	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2954	 * with the commit and possibly point at the new block which we may not
2955	 * have written out.
2956	 */
2957	btrfs_set_root_node(&log->root_item, log->node);
2958	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2959
2960	btrfs_set_root_log_transid(root, root->log_transid + 1);
2961	log->log_transid = root->log_transid;
2962	root->log_start_pid = 0;
2963	/*
2964	 * IO has been started, blocks of the log tree have WRITTEN flag set
2965	 * in their headers. new modifications of the log will be written to
2966	 * new positions. so it's safe to allow log writers to go in.
2967	 */
2968	mutex_unlock(&root->log_mutex);
2969
2970	if (btrfs_is_zoned(fs_info)) {
2971		mutex_lock(&fs_info->tree_root->log_mutex);
2972		if (!log_root_tree->node) {
2973			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
2974			if (ret) {
2975				mutex_unlock(&fs_info->tree_root->log_mutex);
2976				blk_finish_plug(&plug);
2977				goto out;
2978			}
2979		}
2980		mutex_unlock(&fs_info->tree_root->log_mutex);
2981	}
2982
2983	btrfs_init_log_ctx(&root_log_ctx, NULL);
2984
2985	mutex_lock(&log_root_tree->log_mutex);
 
 
2986
2987	index2 = log_root_tree->log_transid % 2;
2988	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2989	root_log_ctx.log_transid = log_root_tree->log_transid;
2990
2991	/*
2992	 * Now we are safe to update the log_root_tree because we're under the
2993	 * log_mutex, and we're a current writer so we're holding the commit
2994	 * open until we drop the log_mutex.
2995	 */
2996	ret = update_log_root(trans, log, &new_root_item);
 
 
 
 
 
 
 
2997	if (ret) {
2998		list_del_init(&root_log_ctx.list);
 
 
2999		blk_finish_plug(&plug);
3000		btrfs_set_log_full_commit(trans);
3001		if (ret != -ENOSPC)
3002			btrfs_err(fs_info,
3003				  "failed to update log for root %llu ret %d",
3004				  root->root_key.objectid, ret);
 
 
3005		btrfs_wait_tree_log_extents(log, mark);
 
3006		mutex_unlock(&log_root_tree->log_mutex);
 
3007		goto out;
3008	}
3009
3010	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3011		blk_finish_plug(&plug);
3012		list_del_init(&root_log_ctx.list);
3013		mutex_unlock(&log_root_tree->log_mutex);
3014		ret = root_log_ctx.log_ret;
3015		goto out;
3016	}
3017
 
3018	if (atomic_read(&log_root_tree->log_commit[index2])) {
3019		blk_finish_plug(&plug);
3020		ret = btrfs_wait_tree_log_extents(log, mark);
 
3021		wait_log_commit(log_root_tree,
3022				root_log_ctx.log_transid);
3023		mutex_unlock(&log_root_tree->log_mutex);
3024		if (!ret)
3025			ret = root_log_ctx.log_ret;
3026		goto out;
3027	}
3028	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3029	atomic_set(&log_root_tree->log_commit[index2], 1);
3030
3031	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3032		wait_log_commit(log_root_tree,
3033				root_log_ctx.log_transid - 1);
3034	}
3035
 
 
3036	/*
3037	 * now that we've moved on to the tree of log tree roots,
3038	 * check the full commit flag again
3039	 */
3040	if (btrfs_need_log_full_commit(trans)) {
3041		blk_finish_plug(&plug);
3042		btrfs_wait_tree_log_extents(log, mark);
 
3043		mutex_unlock(&log_root_tree->log_mutex);
3044		ret = BTRFS_LOG_FORCE_COMMIT;
3045		goto out_wake_log_root;
3046	}
3047
3048	ret = btrfs_write_marked_extents(fs_info,
3049					 &log_root_tree->dirty_log_pages,
3050					 EXTENT_DIRTY | EXTENT_NEW);
3051	blk_finish_plug(&plug);
3052	/*
3053	 * As described above, -EAGAIN indicates a hole in the extents. We
3054	 * cannot wait for these write outs since the waiting cause a
3055	 * deadlock. Bail out to the full commit instead.
3056	 */
3057	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3058		btrfs_set_log_full_commit(trans);
3059		btrfs_wait_tree_log_extents(log, mark);
3060		mutex_unlock(&log_root_tree->log_mutex);
3061		goto out_wake_log_root;
3062	} else if (ret) {
3063		btrfs_set_log_full_commit(trans);
3064		mutex_unlock(&log_root_tree->log_mutex);
3065		goto out_wake_log_root;
3066	}
3067	ret = btrfs_wait_tree_log_extents(log, mark);
3068	if (!ret)
3069		ret = btrfs_wait_tree_log_extents(log_root_tree,
3070						  EXTENT_NEW | EXTENT_DIRTY);
3071	if (ret) {
3072		btrfs_set_log_full_commit(trans);
 
3073		mutex_unlock(&log_root_tree->log_mutex);
3074		goto out_wake_log_root;
3075	}
 
 
 
 
 
 
3076
3077	log_root_start = log_root_tree->node->start;
3078	log_root_level = btrfs_header_level(log_root_tree->node);
3079	log_root_tree->log_transid++;
3080	mutex_unlock(&log_root_tree->log_mutex);
3081
3082	/*
3083	 * Here we are guaranteed that nobody is going to write the superblock
3084	 * for the current transaction before us and that neither we do write
3085	 * our superblock before the previous transaction finishes its commit
3086	 * and writes its superblock, because:
3087	 *
3088	 * 1) We are holding a handle on the current transaction, so no body
3089	 *    can commit it until we release the handle;
3090	 *
3091	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3092	 *    if the previous transaction is still committing, and hasn't yet
3093	 *    written its superblock, we wait for it to do it, because a
3094	 *    transaction commit acquires the tree_log_mutex when the commit
3095	 *    begins and releases it only after writing its superblock.
3096	 */
3097	mutex_lock(&fs_info->tree_log_mutex);
3098
3099	/*
3100	 * The previous transaction writeout phase could have failed, and thus
3101	 * marked the fs in an error state.  We must not commit here, as we
3102	 * could have updated our generation in the super_for_commit and
3103	 * writing the super here would result in transid mismatches.  If there
3104	 * is an error here just bail.
3105	 */
3106	if (BTRFS_FS_ERROR(fs_info)) {
3107		ret = -EIO;
3108		btrfs_set_log_full_commit(trans);
3109		btrfs_abort_transaction(trans, ret);
3110		mutex_unlock(&fs_info->tree_log_mutex);
3111		goto out_wake_log_root;
3112	}
3113
3114	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3115	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3116	ret = write_all_supers(fs_info, 1);
3117	mutex_unlock(&fs_info->tree_log_mutex);
3118	if (ret) {
3119		btrfs_set_log_full_commit(trans);
3120		btrfs_abort_transaction(trans, ret);
3121		goto out_wake_log_root;
3122	}
3123
3124	/*
3125	 * We know there can only be one task here, since we have not yet set
3126	 * root->log_commit[index1] to 0 and any task attempting to sync the
3127	 * log must wait for the previous log transaction to commit if it's
3128	 * still in progress or wait for the current log transaction commit if
3129	 * someone else already started it. We use <= and not < because the
3130	 * first log transaction has an ID of 0.
3131	 */
3132	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3133	btrfs_set_root_last_log_commit(root, log_transid);
3134
3135out_wake_log_root:
3136	mutex_lock(&log_root_tree->log_mutex);
3137	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3138
3139	log_root_tree->log_transid_committed++;
3140	atomic_set(&log_root_tree->log_commit[index2], 0);
3141	mutex_unlock(&log_root_tree->log_mutex);
3142
3143	/*
3144	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3145	 * all the updates above are seen by the woken threads. It might not be
3146	 * necessary, but proving that seems to be hard.
3147	 */
3148	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
 
3149out:
3150	mutex_lock(&root->log_mutex);
3151	btrfs_remove_all_log_ctxs(root, index1, ret);
3152	root->log_transid_committed++;
3153	atomic_set(&root->log_commit[index1], 0);
3154	mutex_unlock(&root->log_mutex);
3155
3156	/*
3157	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3158	 * all the updates above are seen by the woken threads. It might not be
3159	 * necessary, but proving that seems to be hard.
3160	 */
3161	cond_wake_up(&root->log_commit_wait[index1]);
 
3162	return ret;
3163}
3164
3165static void free_log_tree(struct btrfs_trans_handle *trans,
3166			  struct btrfs_root *log)
3167{
3168	int ret;
 
 
3169	struct walk_control wc = {
3170		.free = 1,
3171		.process_func = process_one_buffer
3172	};
3173
3174	if (log->node) {
3175		ret = walk_log_tree(trans, log, &wc);
3176		if (ret) {
3177			/*
3178			 * We weren't able to traverse the entire log tree, the
3179			 * typical scenario is getting an -EIO when reading an
3180			 * extent buffer of the tree, due to a previous writeback
3181			 * failure of it.
3182			 */
3183			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3184				&log->fs_info->fs_state);
3185
3186			/*
3187			 * Some extent buffers of the log tree may still be dirty
3188			 * and not yet written back to storage, because we may
3189			 * have updates to a log tree without syncing a log tree,
3190			 * such as during rename and link operations. So flush
3191			 * them out and wait for their writeback to complete, so
3192			 * that we properly cleanup their state and pages.
3193			 */
3194			btrfs_write_marked_extents(log->fs_info,
3195						   &log->dirty_log_pages,
3196						   EXTENT_DIRTY | EXTENT_NEW);
3197			btrfs_wait_tree_log_extents(log,
3198						    EXTENT_DIRTY | EXTENT_NEW);
3199
3200			if (trans)
3201				btrfs_abort_transaction(trans, ret);
3202			else
3203				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3204		}
3205	}
3206
3207	extent_io_tree_release(&log->dirty_log_pages);
3208	extent_io_tree_release(&log->log_csum_range);
 
 
 
 
 
3209
3210	btrfs_put_root(log);
 
3211}
3212
3213/*
3214 * free all the extents used by the tree log.  This should be called
3215 * at commit time of the full transaction
3216 */
3217int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3218{
3219	if (root->log_root) {
3220		free_log_tree(trans, root->log_root);
3221		root->log_root = NULL;
3222		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3223	}
3224	return 0;
3225}
3226
3227int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3228			     struct btrfs_fs_info *fs_info)
3229{
3230	if (fs_info->log_root_tree) {
3231		free_log_tree(trans, fs_info->log_root_tree);
3232		fs_info->log_root_tree = NULL;
3233		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3234	}
3235	return 0;
3236}
3237
3238/*
3239 * Check if an inode was logged in the current transaction. This correctly deals
3240 * with the case where the inode was logged but has a logged_trans of 0, which
3241 * happens if the inode is evicted and loaded again, as logged_trans is an in
3242 * memory only field (not persisted).
3243 *
3244 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3245 * and < 0 on error.
3246 */
3247static int inode_logged(const struct btrfs_trans_handle *trans,
3248			struct btrfs_inode *inode,
3249			struct btrfs_path *path_in)
3250{
3251	struct btrfs_path *path = path_in;
3252	struct btrfs_key key;
3253	int ret;
3254
3255	if (inode->logged_trans == trans->transid)
3256		return 1;
3257
3258	/*
3259	 * If logged_trans is not 0, then we know the inode logged was not logged
3260	 * in this transaction, so we can return false right away.
3261	 */
3262	if (inode->logged_trans > 0)
3263		return 0;
3264
3265	/*
3266	 * If no log tree was created for this root in this transaction, then
3267	 * the inode can not have been logged in this transaction. In that case
3268	 * set logged_trans to anything greater than 0 and less than the current
3269	 * transaction's ID, to avoid the search below in a future call in case
3270	 * a log tree gets created after this.
3271	 */
3272	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3273		inode->logged_trans = trans->transid - 1;
3274		return 0;
3275	}
3276
3277	/*
3278	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3279	 * for sure if the inode was logged before in this transaction by looking
3280	 * only at logged_trans. We could be pessimistic and assume it was, but
3281	 * that can lead to unnecessarily logging an inode during rename and link
3282	 * operations, and then further updating the log in followup rename and
3283	 * link operations, specially if it's a directory, which adds latency
3284	 * visible to applications doing a series of rename or link operations.
3285	 *
3286	 * A logged_trans of 0 here can mean several things:
3287	 *
3288	 * 1) The inode was never logged since the filesystem was mounted, and may
3289	 *    or may have not been evicted and loaded again;
3290	 *
3291	 * 2) The inode was logged in a previous transaction, then evicted and
3292	 *    then loaded again;
3293	 *
3294	 * 3) The inode was logged in the current transaction, then evicted and
3295	 *    then loaded again.
3296	 *
3297	 * For cases 1) and 2) we don't want to return true, but we need to detect
3298	 * case 3) and return true. So we do a search in the log root for the inode
3299	 * item.
3300	 */
3301	key.objectid = btrfs_ino(inode);
3302	key.type = BTRFS_INODE_ITEM_KEY;
3303	key.offset = 0;
3304
3305	if (!path) {
3306		path = btrfs_alloc_path();
3307		if (!path)
3308			return -ENOMEM;
3309	}
3310
3311	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3312
3313	if (path_in)
3314		btrfs_release_path(path);
3315	else
3316		btrfs_free_path(path);
3317
3318	/*
3319	 * Logging an inode always results in logging its inode item. So if we
3320	 * did not find the item we know the inode was not logged for sure.
3321	 */
3322	if (ret < 0) {
3323		return ret;
3324	} else if (ret > 0) {
3325		/*
3326		 * Set logged_trans to a value greater than 0 and less then the
3327		 * current transaction to avoid doing the search in future calls.
3328		 */
3329		inode->logged_trans = trans->transid - 1;
3330		return 0;
3331	}
3332
3333	/*
3334	 * The inode was previously logged and then evicted, set logged_trans to
3335	 * the current transacion's ID, to avoid future tree searches as long as
3336	 * the inode is not evicted again.
3337	 */
3338	inode->logged_trans = trans->transid;
3339
3340	/*
3341	 * If it's a directory, then we must set last_dir_index_offset to the
3342	 * maximum possible value, so that the next attempt to log the inode does
3343	 * not skip checking if dir index keys found in modified subvolume tree
3344	 * leaves have been logged before, otherwise it would result in attempts
3345	 * to insert duplicate dir index keys in the log tree. This must be done
3346	 * because last_dir_index_offset is an in-memory only field, not persisted
3347	 * in the inode item or any other on-disk structure, so its value is lost
3348	 * once the inode is evicted.
3349	 */
3350	if (S_ISDIR(inode->vfs_inode.i_mode))
3351		inode->last_dir_index_offset = (u64)-1;
3352
3353	return 1;
3354}
3355
3356/*
3357 * Delete a directory entry from the log if it exists.
3358 *
3359 * Returns < 0 on error
3360 *           1 if the entry does not exists
3361 *           0 if the entry existed and was successfully deleted
3362 */
3363static int del_logged_dentry(struct btrfs_trans_handle *trans,
3364			     struct btrfs_root *log,
3365			     struct btrfs_path *path,
3366			     u64 dir_ino,
3367			     const struct fscrypt_str *name,
3368			     u64 index)
3369{
3370	struct btrfs_dir_item *di;
3371
3372	/*
3373	 * We only log dir index items of a directory, so we don't need to look
3374	 * for dir item keys.
3375	 */
3376	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3377					 index, name, -1);
3378	if (IS_ERR(di))
3379		return PTR_ERR(di);
3380	else if (!di)
3381		return 1;
3382
3383	/*
3384	 * We do not need to update the size field of the directory's
3385	 * inode item because on log replay we update the field to reflect
3386	 * all existing entries in the directory (see overwrite_item()).
3387	 */
3388	return btrfs_delete_one_dir_name(trans, log, path, di);
3389}
3390
3391/*
3392 * If both a file and directory are logged, and unlinks or renames are
3393 * mixed in, we have a few interesting corners:
3394 *
3395 * create file X in dir Y
3396 * link file X to X.link in dir Y
3397 * fsync file X
3398 * unlink file X but leave X.link
3399 * fsync dir Y
3400 *
3401 * After a crash we would expect only X.link to exist.  But file X
3402 * didn't get fsync'd again so the log has back refs for X and X.link.
3403 *
3404 * We solve this by removing directory entries and inode backrefs from the
3405 * log when a file that was logged in the current transaction is
3406 * unlinked.  Any later fsync will include the updated log entries, and
3407 * we'll be able to reconstruct the proper directory items from backrefs.
3408 *
3409 * This optimizations allows us to avoid relogging the entire inode
3410 * or the entire directory.
3411 */
3412void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3413				  struct btrfs_root *root,
3414				  const struct fscrypt_str *name,
3415				  struct btrfs_inode *dir, u64 index)
3416{
 
 
3417	struct btrfs_path *path;
3418	int ret;
 
 
 
3419
3420	ret = inode_logged(trans, dir, NULL);
3421	if (ret == 0)
3422		return;
3423	else if (ret < 0) {
3424		btrfs_set_log_full_commit(trans);
3425		return;
3426	}
3427
3428	ret = join_running_log_trans(root);
3429	if (ret)
3430		return;
3431
3432	mutex_lock(&dir->log_mutex);
3433
 
3434	path = btrfs_alloc_path();
3435	if (!path) {
3436		ret = -ENOMEM;
3437		goto out_unlock;
3438	}
3439
3440	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3441				name, index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442	btrfs_free_path(path);
3443out_unlock:
3444	mutex_unlock(&dir->log_mutex);
3445	if (ret < 0)
3446		btrfs_set_log_full_commit(trans);
 
 
 
 
3447	btrfs_end_log_trans(root);
 
 
3448}
3449
3450/* see comments for btrfs_del_dir_entries_in_log */
3451void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3452				struct btrfs_root *root,
3453				const struct fscrypt_str *name,
3454				struct btrfs_inode *inode, u64 dirid)
3455{
 
3456	struct btrfs_root *log;
3457	u64 index;
3458	int ret;
3459
3460	ret = inode_logged(trans, inode, NULL);
3461	if (ret == 0)
3462		return;
3463	else if (ret < 0) {
3464		btrfs_set_log_full_commit(trans);
3465		return;
3466	}
3467
3468	ret = join_running_log_trans(root);
3469	if (ret)
3470		return;
3471	log = root->log_root;
3472	mutex_lock(&inode->log_mutex);
3473
3474	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3475				  dirid, &index);
3476	mutex_unlock(&inode->log_mutex);
3477	if (ret < 0 && ret != -ENOENT)
3478		btrfs_set_log_full_commit(trans);
 
 
 
3479	btrfs_end_log_trans(root);
 
 
3480}
3481
3482/*
3483 * creates a range item in the log for 'dirid'.  first_offset and
3484 * last_offset tell us which parts of the key space the log should
3485 * be considered authoritative for.
3486 */
3487static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3488				       struct btrfs_root *log,
3489				       struct btrfs_path *path,
3490				       u64 dirid,
3491				       u64 first_offset, u64 last_offset)
3492{
3493	int ret;
3494	struct btrfs_key key;
3495	struct btrfs_dir_log_item *item;
3496
3497	key.objectid = dirid;
3498	key.offset = first_offset;
3499	key.type = BTRFS_DIR_LOG_INDEX_KEY;
 
 
 
3500	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3501	/*
3502	 * -EEXIST is fine and can happen sporadically when we are logging a
3503	 * directory and have concurrent insertions in the subvolume's tree for
3504	 * items from other inodes and that result in pushing off some dir items
3505	 * from one leaf to another in order to accommodate for the new items.
3506	 * This results in logging the same dir index range key.
3507	 */
3508	if (ret && ret != -EEXIST)
3509		return ret;
3510
3511	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3512			      struct btrfs_dir_log_item);
3513	if (ret == -EEXIST) {
3514		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3515
3516		/*
3517		 * btrfs_del_dir_entries_in_log() might have been called during
3518		 * an unlink between the initial insertion of this key and the
3519		 * current update, or we might be logging a single entry deletion
3520		 * during a rename, so set the new last_offset to the max value.
3521		 */
3522		last_offset = max(last_offset, curr_end);
3523	}
3524	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3526	btrfs_release_path(path);
3527	return 0;
3528}
3529
3530static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3531				 struct btrfs_inode *inode,
3532				 struct extent_buffer *src,
3533				 struct btrfs_path *dst_path,
3534				 int start_slot,
3535				 int count)
3536{
3537	struct btrfs_root *log = inode->root->log_root;
3538	char *ins_data = NULL;
3539	struct btrfs_item_batch batch;
3540	struct extent_buffer *dst;
3541	unsigned long src_offset;
3542	unsigned long dst_offset;
3543	u64 last_index;
3544	struct btrfs_key key;
3545	u32 item_size;
3546	int ret;
3547	int i;
3548
3549	ASSERT(count > 0);
3550	batch.nr = count;
3551
3552	if (count == 1) {
3553		btrfs_item_key_to_cpu(src, &key, start_slot);
3554		item_size = btrfs_item_size(src, start_slot);
3555		batch.keys = &key;
3556		batch.data_sizes = &item_size;
3557		batch.total_data_size = item_size;
3558	} else {
3559		struct btrfs_key *ins_keys;
3560		u32 *ins_sizes;
3561
3562		ins_data = kmalloc(count * sizeof(u32) +
3563				   count * sizeof(struct btrfs_key), GFP_NOFS);
3564		if (!ins_data)
3565			return -ENOMEM;
3566
3567		ins_sizes = (u32 *)ins_data;
3568		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3569		batch.keys = ins_keys;
3570		batch.data_sizes = ins_sizes;
3571		batch.total_data_size = 0;
3572
3573		for (i = 0; i < count; i++) {
3574			const int slot = start_slot + i;
3575
3576			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3577			ins_sizes[i] = btrfs_item_size(src, slot);
3578			batch.total_data_size += ins_sizes[i];
3579		}
3580	}
3581
3582	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3583	if (ret)
3584		goto out;
3585
3586	dst = dst_path->nodes[0];
3587	/*
3588	 * Copy all the items in bulk, in a single copy operation. Item data is
3589	 * organized such that it's placed at the end of a leaf and from right
3590	 * to left. For example, the data for the second item ends at an offset
3591	 * that matches the offset where the data for the first item starts, the
3592	 * data for the third item ends at an offset that matches the offset
3593	 * where the data of the second items starts, and so on.
3594	 * Therefore our source and destination start offsets for copy match the
3595	 * offsets of the last items (highest slots).
3596	 */
3597	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3598	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3599	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3600	btrfs_release_path(dst_path);
3601
3602	last_index = batch.keys[count - 1].offset;
3603	ASSERT(last_index > inode->last_dir_index_offset);
3604
3605	/*
3606	 * If for some unexpected reason the last item's index is not greater
3607	 * than the last index we logged, warn and force a transaction commit.
3608	 */
3609	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3610		ret = BTRFS_LOG_FORCE_COMMIT;
3611	else
3612		inode->last_dir_index_offset = last_index;
3613
3614	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3615		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3616out:
3617	kfree(ins_data);
3618
3619	return ret;
3620}
3621
3622static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3623				  struct btrfs_inode *inode,
3624				  struct btrfs_path *path,
3625				  struct btrfs_path *dst_path,
3626				  struct btrfs_log_ctx *ctx,
3627				  u64 *last_old_dentry_offset)
3628{
3629	struct btrfs_root *log = inode->root->log_root;
3630	struct extent_buffer *src;
3631	const int nritems = btrfs_header_nritems(path->nodes[0]);
3632	const u64 ino = btrfs_ino(inode);
3633	bool last_found = false;
3634	int batch_start = 0;
3635	int batch_size = 0;
3636	int i;
3637
3638	/*
3639	 * We need to clone the leaf, release the read lock on it, and use the
3640	 * clone before modifying the log tree. See the comment at copy_items()
3641	 * about why we need to do this.
3642	 */
3643	src = btrfs_clone_extent_buffer(path->nodes[0]);
3644	if (!src)
3645		return -ENOMEM;
3646
3647	i = path->slots[0];
3648	btrfs_release_path(path);
3649	path->nodes[0] = src;
3650	path->slots[0] = i;
3651
3652	for (; i < nritems; i++) {
3653		struct btrfs_dir_item *di;
3654		struct btrfs_key key;
3655		int ret;
3656
3657		btrfs_item_key_to_cpu(src, &key, i);
3658
3659		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3660			last_found = true;
3661			break;
3662		}
3663
3664		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3665
3666		/*
3667		 * Skip ranges of items that consist only of dir item keys created
3668		 * in past transactions. However if we find a gap, we must log a
3669		 * dir index range item for that gap, so that index keys in that
3670		 * gap are deleted during log replay.
3671		 */
3672		if (btrfs_dir_transid(src, di) < trans->transid) {
3673			if (key.offset > *last_old_dentry_offset + 1) {
3674				ret = insert_dir_log_key(trans, log, dst_path,
3675						 ino, *last_old_dentry_offset + 1,
3676						 key.offset - 1);
3677				if (ret < 0)
3678					return ret;
3679			}
3680
3681			*last_old_dentry_offset = key.offset;
3682			continue;
3683		}
3684
3685		/* If we logged this dir index item before, we can skip it. */
3686		if (key.offset <= inode->last_dir_index_offset)
3687			continue;
3688
3689		/*
3690		 * We must make sure that when we log a directory entry, the
3691		 * corresponding inode, after log replay, has a matching link
3692		 * count. For example:
3693		 *
3694		 * touch foo
3695		 * mkdir mydir
3696		 * sync
3697		 * ln foo mydir/bar
3698		 * xfs_io -c "fsync" mydir
3699		 * <crash>
3700		 * <mount fs and log replay>
3701		 *
3702		 * Would result in a fsync log that when replayed, our file inode
3703		 * would have a link count of 1, but we get two directory entries
3704		 * pointing to the same inode. After removing one of the names,
3705		 * it would not be possible to remove the other name, which
3706		 * resulted always in stale file handle errors, and would not be
3707		 * possible to rmdir the parent directory, since its i_size could
3708		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3709		 * resulting in -ENOTEMPTY errors.
3710		 */
3711		if (!ctx->log_new_dentries) {
3712			struct btrfs_key di_key;
3713
3714			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3715			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3716				ctx->log_new_dentries = true;
3717		}
3718
3719		if (batch_size == 0)
3720			batch_start = i;
3721		batch_size++;
3722	}
3723
3724	if (batch_size > 0) {
3725		int ret;
3726
3727		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3728					    batch_start, batch_size);
3729		if (ret < 0)
3730			return ret;
3731	}
3732
3733	return last_found ? 1 : 0;
3734}
3735
3736/*
3737 * log all the items included in the current transaction for a given
3738 * directory.  This also creates the range items in the log tree required
3739 * to replay anything deleted before the fsync
3740 */
3741static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3742			  struct btrfs_inode *inode,
3743			  struct btrfs_path *path,
3744			  struct btrfs_path *dst_path,
3745			  struct btrfs_log_ctx *ctx,
3746			  u64 min_offset, u64 *last_offset_ret)
3747{
3748	struct btrfs_key min_key;
3749	struct btrfs_root *root = inode->root;
3750	struct btrfs_root *log = root->log_root;
 
 
3751	int ret;
3752	u64 last_old_dentry_offset = min_offset - 1;
 
 
3753	u64 last_offset = (u64)-1;
3754	u64 ino = btrfs_ino(inode);
3755
 
 
3756	min_key.objectid = ino;
3757	min_key.type = BTRFS_DIR_INDEX_KEY;
3758	min_key.offset = min_offset;
3759
3760	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3761
3762	/*
3763	 * we didn't find anything from this transaction, see if there
3764	 * is anything at all
3765	 */
3766	if (ret != 0 || min_key.objectid != ino ||
3767	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3768		min_key.objectid = ino;
3769		min_key.type = BTRFS_DIR_INDEX_KEY;
3770		min_key.offset = (u64)-1;
3771		btrfs_release_path(path);
3772		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3773		if (ret < 0) {
3774			btrfs_release_path(path);
3775			return ret;
3776		}
3777		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3778
3779		/* if ret == 0 there are items for this type,
3780		 * create a range to tell us the last key of this type.
3781		 * otherwise, there are no items in this directory after
3782		 * *min_offset, and we create a range to indicate that.
3783		 */
3784		if (ret == 0) {
3785			struct btrfs_key tmp;
3786
3787			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3788					      path->slots[0]);
3789			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3790				last_old_dentry_offset = tmp.offset;
3791		} else if (ret > 0) {
3792			ret = 0;
3793		}
3794
3795		goto done;
3796	}
3797
3798	/* go backward to find any previous key */
3799	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3800	if (ret == 0) {
3801		struct btrfs_key tmp;
3802
3803		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3804		/*
3805		 * The dir index key before the first one we found that needs to
3806		 * be logged might be in a previous leaf, and there might be a
3807		 * gap between these keys, meaning that we had deletions that
3808		 * happened. So the key range item we log (key type
3809		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3810		 * previous key's offset plus 1, so that those deletes are replayed.
3811		 */
3812		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3813			last_old_dentry_offset = tmp.offset;
3814	} else if (ret < 0) {
3815		goto done;
3816	}
3817
3818	btrfs_release_path(path);
3819
3820	/*
3821	 * Find the first key from this transaction again or the one we were at
3822	 * in the loop below in case we had to reschedule. We may be logging the
3823	 * directory without holding its VFS lock, which happen when logging new
3824	 * dentries (through log_new_dir_dentries()) or in some cases when we
3825	 * need to log the parent directory of an inode. This means a dir index
3826	 * key might be deleted from the inode's root, and therefore we may not
3827	 * find it anymore. If we can't find it, just move to the next key. We
3828	 * can not bail out and ignore, because if we do that we will simply
3829	 * not log dir index keys that come after the one that was just deleted
3830	 * and we can end up logging a dir index range that ends at (u64)-1
3831	 * (@last_offset is initialized to that), resulting in removing dir
3832	 * entries we should not remove at log replay time.
3833	 */
3834search:
3835	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3836	if (ret > 0) {
3837		ret = btrfs_next_item(root, path);
3838		if (ret > 0) {
3839			/* There are no more keys in the inode's root. */
3840			ret = 0;
3841			goto done;
3842		}
3843	}
3844	if (ret < 0)
3845		goto done;
3846
3847	/*
3848	 * we have a block from this transaction, log every item in it
3849	 * from our directory
3850	 */
3851	while (1) {
3852		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3853					     &last_old_dentry_offset);
3854		if (ret != 0) {
3855			if (ret > 0)
3856				ret = 0;
3857			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3858		}
3859		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3860
3861		/*
3862		 * look ahead to the next item and see if it is also
3863		 * from this directory and from this transaction
3864		 */
3865		ret = btrfs_next_leaf(root, path);
3866		if (ret) {
3867			if (ret == 1) {
3868				last_offset = (u64)-1;
3869				ret = 0;
3870			}
3871			goto done;
3872		}
3873		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3874		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3875			last_offset = (u64)-1;
3876			goto done;
3877		}
3878		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3879			/*
3880			 * The next leaf was not changed in the current transaction
3881			 * and has at least one dir index key.
3882			 * We check for the next key because there might have been
3883			 * one or more deletions between the last key we logged and
3884			 * that next key. So the key range item we log (key type
3885			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3886			 * offset minus 1, so that those deletes are replayed.
3887			 */
3888			last_offset = min_key.offset - 1;
3889			goto done;
3890		}
3891		if (need_resched()) {
3892			btrfs_release_path(path);
3893			cond_resched();
3894			goto search;
3895		}
3896	}
3897done:
3898	btrfs_release_path(path);
3899	btrfs_release_path(dst_path);
3900
3901	if (ret == 0) {
3902		*last_offset_ret = last_offset;
3903		/*
3904		 * In case the leaf was changed in the current transaction but
3905		 * all its dir items are from a past transaction, the last item
3906		 * in the leaf is a dir item and there's no gap between that last
3907		 * dir item and the first one on the next leaf (which did not
3908		 * change in the current transaction), then we don't need to log
3909		 * a range, last_old_dentry_offset is == to last_offset.
3910		 */
3911		ASSERT(last_old_dentry_offset <= last_offset);
3912		if (last_old_dentry_offset < last_offset)
3913			ret = insert_dir_log_key(trans, log, path, ino,
3914						 last_old_dentry_offset + 1,
3915						 last_offset);
3916	}
3917
3918	return ret;
3919}
3920
3921/*
3922 * If the inode was logged before and it was evicted, then its
3923 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3924 * key offset. If that's the case, search for it and update the inode. This
3925 * is to avoid lookups in the log tree every time we try to insert a dir index
3926 * key from a leaf changed in the current transaction, and to allow us to always
3927 * do batch insertions of dir index keys.
3928 */
3929static int update_last_dir_index_offset(struct btrfs_inode *inode,
3930					struct btrfs_path *path,
3931					const struct btrfs_log_ctx *ctx)
3932{
3933	const u64 ino = btrfs_ino(inode);
3934	struct btrfs_key key;
3935	int ret;
3936
3937	lockdep_assert_held(&inode->log_mutex);
3938
3939	if (inode->last_dir_index_offset != (u64)-1)
3940		return 0;
3941
3942	if (!ctx->logged_before) {
3943		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3944		return 0;
3945	}
3946
3947	key.objectid = ino;
3948	key.type = BTRFS_DIR_INDEX_KEY;
3949	key.offset = (u64)-1;
3950
3951	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3952	/*
3953	 * An error happened or we actually have an index key with an offset
3954	 * value of (u64)-1. Bail out, we're done.
3955	 */
3956	if (ret <= 0)
3957		goto out;
3958
3959	ret = 0;
3960	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3961
3962	/*
3963	 * No dir index items, bail out and leave last_dir_index_offset with
3964	 * the value right before the first valid index value.
3965	 */
3966	if (path->slots[0] == 0)
3967		goto out;
3968
3969	/*
3970	 * btrfs_search_slot() left us at one slot beyond the slot with the last
3971	 * index key, or beyond the last key of the directory that is not an
3972	 * index key. If we have an index key before, set last_dir_index_offset
3973	 * to its offset value, otherwise leave it with a value right before the
3974	 * first valid index value, as it means we have an empty directory.
3975	 */
3976	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3977	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
3978		inode->last_dir_index_offset = key.offset;
3979
3980out:
3981	btrfs_release_path(path);
3982
3983	return ret;
3984}
3985
3986/*
3987 * logging directories is very similar to logging inodes, We find all the items
3988 * from the current transaction and write them to the log.
3989 *
3990 * The recovery code scans the directory in the subvolume, and if it finds a
3991 * key in the range logged that is not present in the log tree, then it means
3992 * that dir entry was unlinked during the transaction.
3993 *
3994 * In order for that scan to work, we must include one key smaller than
3995 * the smallest logged by this transaction and one key larger than the largest
3996 * key logged by this transaction.
3997 */
3998static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3999			  struct btrfs_inode *inode,
4000			  struct btrfs_path *path,
4001			  struct btrfs_path *dst_path,
4002			  struct btrfs_log_ctx *ctx)
4003{
4004	u64 min_key;
4005	u64 max_key;
4006	int ret;
 
4007
4008	ret = update_last_dir_index_offset(inode, path, ctx);
4009	if (ret)
4010		return ret;
4011
4012	min_key = BTRFS_DIR_START_INDEX;
4013	max_key = 0;
4014
4015	while (1) {
4016		ret = log_dir_items(trans, inode, path, dst_path,
4017				ctx, min_key, &max_key);
 
4018		if (ret)
4019			return ret;
4020		if (max_key == (u64)-1)
4021			break;
4022		min_key = max_key + 1;
4023	}
4024
 
 
 
 
4025	return 0;
4026}
4027
4028/*
4029 * a helper function to drop items from the log before we relog an
4030 * inode.  max_key_type indicates the highest item type to remove.
4031 * This cannot be run for file data extents because it does not
4032 * free the extents they point to.
4033 */
4034static int drop_inode_items(struct btrfs_trans_handle *trans,
4035				  struct btrfs_root *log,
4036				  struct btrfs_path *path,
4037				  struct btrfs_inode *inode,
4038				  int max_key_type)
4039{
4040	int ret;
4041	struct btrfs_key key;
4042	struct btrfs_key found_key;
4043	int start_slot;
4044
4045	key.objectid = btrfs_ino(inode);
4046	key.type = max_key_type;
4047	key.offset = (u64)-1;
4048
4049	while (1) {
4050		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4051		if (ret < 0) {
 
 
 
 
4052			break;
4053		} else if (ret > 0) {
4054			if (path->slots[0] == 0)
4055				break;
4056			path->slots[0]--;
4057		}
4058
 
4059		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4060				      path->slots[0]);
4061
4062		if (found_key.objectid != key.objectid)
4063			break;
4064
4065		found_key.offset = 0;
4066		found_key.type = 0;
4067		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4068		if (ret < 0)
4069			break;
4070
4071		ret = btrfs_del_items(trans, log, path, start_slot,
4072				      path->slots[0] - start_slot + 1);
4073		/*
4074		 * If start slot isn't 0 then we don't need to re-search, we've
4075		 * found the last guy with the objectid in this tree.
4076		 */
4077		if (ret || start_slot != 0)
4078			break;
4079		btrfs_release_path(path);
4080	}
4081	btrfs_release_path(path);
4082	if (ret > 0)
4083		ret = 0;
4084	return ret;
4085}
4086
4087static int truncate_inode_items(struct btrfs_trans_handle *trans,
4088				struct btrfs_root *log_root,
4089				struct btrfs_inode *inode,
4090				u64 new_size, u32 min_type)
4091{
4092	struct btrfs_truncate_control control = {
4093		.new_size = new_size,
4094		.ino = btrfs_ino(inode),
4095		.min_type = min_type,
4096		.skip_ref_updates = true,
4097	};
4098
4099	return btrfs_truncate_inode_items(trans, log_root, &control);
4100}
4101
4102static void fill_inode_item(struct btrfs_trans_handle *trans,
4103			    struct extent_buffer *leaf,
4104			    struct btrfs_inode_item *item,
4105			    struct inode *inode, int log_inode_only,
4106			    u64 logged_isize)
4107{
4108	struct btrfs_map_token token;
4109	u64 flags;
4110
4111	btrfs_init_map_token(&token, leaf);
4112
4113	if (log_inode_only) {
4114		/* set the generation to zero so the recover code
4115		 * can tell the difference between an logging
4116		 * just to say 'this inode exists' and a logging
4117		 * to say 'update this inode with these values'
4118		 */
4119		btrfs_set_token_inode_generation(&token, item, 0);
4120		btrfs_set_token_inode_size(&token, item, logged_isize);
4121	} else {
4122		btrfs_set_token_inode_generation(&token, item,
4123						 BTRFS_I(inode)->generation);
4124		btrfs_set_token_inode_size(&token, item, inode->i_size);
4125	}
4126
4127	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4128	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4129	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4130	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4131
4132	btrfs_set_token_timespec_sec(&token, &item->atime,
4133				     inode_get_atime_sec(inode));
4134	btrfs_set_token_timespec_nsec(&token, &item->atime,
4135				      inode_get_atime_nsec(inode));
4136
4137	btrfs_set_token_timespec_sec(&token, &item->mtime,
4138				     inode_get_mtime_sec(inode));
4139	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4140				      inode_get_mtime_nsec(inode));
4141
4142	btrfs_set_token_timespec_sec(&token, &item->ctime,
4143				     inode_get_ctime_sec(inode));
4144	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4145				      inode_get_ctime_nsec(inode));
4146
4147	/*
4148	 * We do not need to set the nbytes field, in fact during a fast fsync
4149	 * its value may not even be correct, since a fast fsync does not wait
4150	 * for ordered extent completion, which is where we update nbytes, it
4151	 * only waits for writeback to complete. During log replay as we find
4152	 * file extent items and replay them, we adjust the nbytes field of the
4153	 * inode item in subvolume tree as needed (see overwrite_item()).
4154	 */
4155
4156	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4157	btrfs_set_token_inode_transid(&token, item, trans->transid);
4158	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4159	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4160					  BTRFS_I(inode)->ro_flags);
4161	btrfs_set_token_inode_flags(&token, item, flags);
4162	btrfs_set_token_inode_block_group(&token, item, 0);
4163}
4164
4165static int log_inode_item(struct btrfs_trans_handle *trans,
4166			  struct btrfs_root *log, struct btrfs_path *path,
4167			  struct btrfs_inode *inode, bool inode_item_dropped)
4168{
4169	struct btrfs_inode_item *inode_item;
4170	int ret;
4171
4172	/*
4173	 * If we are doing a fast fsync and the inode was logged before in the
4174	 * current transaction, then we know the inode was previously logged and
4175	 * it exists in the log tree. For performance reasons, in this case use
4176	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4177	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4178	 * contention in case there are concurrent fsyncs for other inodes of the
4179	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4180	 * already exists can also result in unnecessarily splitting a leaf.
4181	 */
4182	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4183		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4184		ASSERT(ret <= 0);
4185		if (ret > 0)
4186			ret = -ENOENT;
4187	} else {
4188		/*
4189		 * This means it is the first fsync in the current transaction,
4190		 * so the inode item is not in the log and we need to insert it.
4191		 * We can never get -EEXIST because we are only called for a fast
4192		 * fsync and in case an inode eviction happens after the inode was
4193		 * logged before in the current transaction, when we load again
4194		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4195		 * flags and set ->logged_trans to 0.
4196		 */
4197		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4198					      sizeof(*inode_item));
4199		ASSERT(ret != -EEXIST);
4200	}
4201	if (ret)
4202		return ret;
4203	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4204				    struct btrfs_inode_item);
4205	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4206			0, 0);
4207	btrfs_release_path(path);
4208	return 0;
4209}
4210
4211static int log_csums(struct btrfs_trans_handle *trans,
4212		     struct btrfs_inode *inode,
4213		     struct btrfs_root *log_root,
4214		     struct btrfs_ordered_sum *sums)
4215{
4216	const u64 lock_end = sums->logical + sums->len - 1;
4217	struct extent_state *cached_state = NULL;
4218	int ret;
4219
4220	/*
4221	 * If this inode was not used for reflink operations in the current
4222	 * transaction with new extents, then do the fast path, no need to
4223	 * worry about logging checksum items with overlapping ranges.
4224	 */
4225	if (inode->last_reflink_trans < trans->transid)
4226		return btrfs_csum_file_blocks(trans, log_root, sums);
4227
4228	/*
4229	 * Serialize logging for checksums. This is to avoid racing with the
4230	 * same checksum being logged by another task that is logging another
4231	 * file which happens to refer to the same extent as well. Such races
4232	 * can leave checksum items in the log with overlapping ranges.
4233	 */
4234	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4235			  &cached_state);
4236	if (ret)
4237		return ret;
4238	/*
4239	 * Due to extent cloning, we might have logged a csum item that covers a
4240	 * subrange of a cloned extent, and later we can end up logging a csum
4241	 * item for a larger subrange of the same extent or the entire range.
4242	 * This would leave csum items in the log tree that cover the same range
4243	 * and break the searches for checksums in the log tree, resulting in
4244	 * some checksums missing in the fs/subvolume tree. So just delete (or
4245	 * trim and adjust) any existing csum items in the log for this range.
4246	 */
4247	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4248	if (!ret)
4249		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4250
4251	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4252		      &cached_state);
4253
4254	return ret;
4255}
4256
4257static noinline int copy_items(struct btrfs_trans_handle *trans,
4258			       struct btrfs_inode *inode,
4259			       struct btrfs_path *dst_path,
4260			       struct btrfs_path *src_path,
4261			       int start_slot, int nr, int inode_only,
4262			       u64 logged_isize)
4263{
4264	struct btrfs_root *log = inode->root->log_root;
 
 
 
4265	struct btrfs_file_extent_item *extent;
4266	struct extent_buffer *src;
4267	int ret = 0;
 
 
4268	struct btrfs_key *ins_keys;
4269	u32 *ins_sizes;
4270	struct btrfs_item_batch batch;
4271	char *ins_data;
4272	int i;
4273	int dst_index;
4274	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4275	const u64 i_size = i_size_read(&inode->vfs_inode);
4276
4277	/*
4278	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4279	 * use the clone. This is because otherwise we would be changing the log
4280	 * tree, to insert items from the subvolume tree or insert csum items,
4281	 * while holding a read lock on a leaf from the subvolume tree, which
4282	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4283	 *
4284	 * 1) Modifying the log tree triggers an extent buffer allocation while
4285	 *    holding a write lock on a parent extent buffer from the log tree.
4286	 *    Allocating the pages for an extent buffer, or the extent buffer
4287	 *    struct, can trigger inode eviction and finally the inode eviction
4288	 *    will trigger a release/remove of a delayed node, which requires
4289	 *    taking the delayed node's mutex;
4290	 *
4291	 * 2) Allocating a metadata extent for a log tree can trigger the async
4292	 *    reclaim thread and make us wait for it to release enough space and
4293	 *    unblock our reservation ticket. The reclaim thread can start
4294	 *    flushing delayed items, and that in turn results in the need to
4295	 *    lock delayed node mutexes and in the need to write lock extent
4296	 *    buffers of a subvolume tree - all this while holding a write lock
4297	 *    on the parent extent buffer in the log tree.
4298	 *
4299	 * So one task in scenario 1) running in parallel with another task in
4300	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4301	 * node mutex while having a read lock on a leaf from the subvolume,
4302	 * while the other is holding the delayed node's mutex and wants to
4303	 * write lock the same subvolume leaf for flushing delayed items.
4304	 */
4305	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4306	if (!src)
4307		return -ENOMEM;
4308
4309	i = src_path->slots[0];
4310	btrfs_release_path(src_path);
4311	src_path->nodes[0] = src;
4312	src_path->slots[0] = i;
4313
4314	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4315			   nr * sizeof(u32), GFP_NOFS);
4316	if (!ins_data)
4317		return -ENOMEM;
4318
 
 
4319	ins_sizes = (u32 *)ins_data;
4320	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4321	batch.keys = ins_keys;
4322	batch.data_sizes = ins_sizes;
4323	batch.total_data_size = 0;
4324	batch.nr = 0;
4325
4326	dst_index = 0;
4327	for (i = 0; i < nr; i++) {
4328		const int src_slot = start_slot + i;
4329		struct btrfs_root *csum_root;
4330		struct btrfs_ordered_sum *sums;
4331		struct btrfs_ordered_sum *sums_next;
4332		LIST_HEAD(ordered_sums);
4333		u64 disk_bytenr;
4334		u64 disk_num_bytes;
4335		u64 extent_offset;
4336		u64 extent_num_bytes;
4337		bool is_old_extent;
4338
4339		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4340
4341		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4342			goto add_to_batch;
4343
4344		extent = btrfs_item_ptr(src, src_slot,
4345					struct btrfs_file_extent_item);
4346
4347		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4348				 trans->transid);
 
 
 
 
 
 
 
 
 
 
4349
4350		/*
4351		 * Don't copy extents from past generations. That would make us
4352		 * log a lot more metadata for common cases like doing only a
4353		 * few random writes into a file and then fsync it for the first
4354		 * time or after the full sync flag is set on the inode. We can
4355		 * get leaves full of extent items, most of which are from past
4356		 * generations, so we can skip them - as long as the inode has
4357		 * not been the target of a reflink operation in this transaction,
4358		 * as in that case it might have had file extent items with old
4359		 * generations copied into it. We also must always log prealloc
4360		 * extents that start at or beyond eof, otherwise we would lose
4361		 * them on log replay.
4362		 */
4363		if (is_old_extent &&
4364		    ins_keys[dst_index].offset < i_size &&
4365		    inode->last_reflink_trans < trans->transid)
4366			continue;
4367
4368		if (skip_csum)
4369			goto add_to_batch;
4370
4371		/* Only regular extents have checksums. */
4372		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4373			goto add_to_batch;
4374
4375		/*
4376		 * If it's an extent created in a past transaction, then its
4377		 * checksums are already accessible from the committed csum tree,
4378		 * no need to log them.
4379		 */
4380		if (is_old_extent)
4381			goto add_to_batch;
 
 
 
4382
4383		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4384		/* If it's an explicit hole, there are no checksums. */
4385		if (disk_bytenr == 0)
4386			goto add_to_batch;
4387
4388		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4389
4390		if (btrfs_file_extent_compression(src, extent)) {
4391			extent_offset = 0;
4392			extent_num_bytes = disk_num_bytes;
4393		} else {
4394			extent_offset = btrfs_file_extent_offset(src, extent);
4395			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4396		}
4397
4398		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4399		disk_bytenr += extent_offset;
4400		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4401					      disk_bytenr + extent_num_bytes - 1,
4402					      &ordered_sums, 0, false);
4403		if (ret)
4404			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
4405
4406		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4407			if (!ret)
4408				ret = log_csums(trans, inode, log, sums);
4409			list_del(&sums->list);
4410			kfree(sums);
 
 
 
 
 
4411		}
4412		if (ret)
4413			goto out;
4414
4415add_to_batch:
4416		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4417		batch.total_data_size += ins_sizes[dst_index];
4418		batch.nr++;
4419		dst_index++;
4420	}
4421
4422	/*
4423	 * We have a leaf full of old extent items that don't need to be logged,
4424	 * so we don't need to do anything.
4425	 */
4426	if (batch.nr == 0)
4427		goto out;
 
 
 
 
 
 
 
 
4428
4429	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4430	if (ret)
4431		goto out;
4432
4433	dst_index = 0;
4434	for (i = 0; i < nr; i++) {
4435		const int src_slot = start_slot + i;
4436		const int dst_slot = dst_path->slots[0] + dst_index;
4437		struct btrfs_key key;
4438		unsigned long src_offset;
4439		unsigned long dst_offset;
4440
 
4441		/*
4442		 * We're done, all the remaining items in the source leaf
4443		 * correspond to old file extent items.
 
 
4444		 */
4445		if (dst_index >= batch.nr)
4446			break;
4447
4448		btrfs_item_key_to_cpu(src, &key, src_slot);
 
 
 
 
 
 
 
4449
4450		if (key.type != BTRFS_EXTENT_DATA_KEY)
4451			goto copy_item;
4452
4453		extent = btrfs_item_ptr(src, src_slot,
 
 
 
 
 
 
 
 
 
4454					struct btrfs_file_extent_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4455
4456		/* See the comment in the previous loop, same logic. */
4457		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4458		    key.offset < i_size &&
4459		    inode->last_reflink_trans < trans->transid)
4460			continue;
 
 
 
4461
4462copy_item:
4463		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4464		src_offset = btrfs_item_ptr_offset(src, src_slot);
 
 
 
 
 
4465
4466		if (key.type == BTRFS_INODE_ITEM_KEY) {
4467			struct btrfs_inode_item *inode_item;
4468
4469			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4470						    struct btrfs_inode_item);
4471			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4472					&inode->vfs_inode,
4473					inode_only == LOG_INODE_EXISTS,
4474					logged_isize);
 
 
 
 
 
4475		} else {
4476			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4477					   src_offset, ins_sizes[dst_index]);
4478		}
 
4479
4480		dst_index++;
 
 
 
 
 
 
 
 
 
 
 
4481	}
4482
4483	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4484	btrfs_release_path(dst_path);
4485out:
4486	kfree(ins_data);
4487
4488	return ret;
4489}
4490
4491static int extent_cmp(void *priv, const struct list_head *a,
4492		      const struct list_head *b)
4493{
4494	const struct extent_map *em1, *em2;
4495
4496	em1 = list_entry(a, struct extent_map, list);
4497	em2 = list_entry(b, struct extent_map, list);
4498
4499	if (em1->start < em2->start)
4500		return -1;
4501	else if (em1->start > em2->start)
4502		return 1;
4503	return 0;
4504}
4505
4506static int log_extent_csums(struct btrfs_trans_handle *trans,
4507			    struct btrfs_inode *inode,
4508			    struct btrfs_root *log_root,
4509			    const struct extent_map *em,
4510			    struct btrfs_log_ctx *ctx)
 
4511{
 
4512	struct btrfs_ordered_extent *ordered;
4513	struct btrfs_root *csum_root;
 
 
 
4514	u64 csum_offset;
4515	u64 csum_len;
4516	u64 mod_start = em->mod_start;
4517	u64 mod_len = em->mod_len;
4518	LIST_HEAD(ordered_sums);
4519	int ret = 0;
4520
4521	if (inode->flags & BTRFS_INODE_NODATASUM ||
4522	    (em->flags & EXTENT_FLAG_PREALLOC) ||
 
4523	    em->block_start == EXTENT_MAP_HOLE)
4524		return 0;
4525
4526	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4527		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4528		const u64 mod_end = mod_start + mod_len;
4529		struct btrfs_ordered_sum *sums;
 
 
 
4530
4531		if (mod_len == 0)
4532			break;
4533
4534		if (ordered_end <= mod_start)
 
4535			continue;
4536		if (mod_end <= ordered->file_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4537			break;
4538
4539		/*
4540		 * We are going to copy all the csums on this ordered extent, so
4541		 * go ahead and adjust mod_start and mod_len in case this ordered
4542		 * extent has already been logged.
4543		 */
4544		if (ordered->file_offset > mod_start) {
4545			if (ordered_end >= mod_end)
 
4546				mod_len = ordered->file_offset - mod_start;
4547			/*
4548			 * If we have this case
4549			 *
4550			 * |--------- logged extent ---------|
4551			 *       |----- ordered extent ----|
4552			 *
4553			 * Just don't mess with mod_start and mod_len, we'll
4554			 * just end up logging more csums than we need and it
4555			 * will be ok.
4556			 */
4557		} else {
4558			if (ordered_end < mod_end) {
4559				mod_len = mod_end - ordered_end;
4560				mod_start = ordered_end;
 
 
 
4561			} else {
4562				mod_len = 0;
4563			}
4564		}
4565
 
 
 
4566		/*
4567		 * To keep us from looping for the above case of an ordered
4568		 * extent that falls inside of the logged extent.
4569		 */
4570		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
 
4571			continue;
4572
4573		list_for_each_entry(sums, &ordered->list, list) {
4574			ret = log_csums(trans, inode, log_root, sums);
4575			if (ret)
4576				return ret;
4577		}
4578	}
4579
4580	/* We're done, found all csums in the ordered extents. */
4581	if (mod_len == 0)
4582		return 0;
4583
4584	/* If we're compressed we have to save the entire range of csums. */
4585	if (extent_map_is_compressed(em)) {
4586		csum_offset = 0;
4587		csum_len = max(em->block_len, em->orig_block_len);
4588	} else {
4589		csum_offset = mod_start - em->start;
4590		csum_len = mod_len;
4591	}
4592
4593	/* block start is already adjusted for the file extent offset. */
4594	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4595	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4596				      em->block_start + csum_offset +
4597				      csum_len - 1, &ordered_sums, 0, false);
4598	if (ret)
4599		return ret;
4600
4601	while (!list_empty(&ordered_sums)) {
4602		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4603						   struct btrfs_ordered_sum,
4604						   list);
4605		if (!ret)
4606			ret = log_csums(trans, inode, log_root, sums);
4607		list_del(&sums->list);
4608		kfree(sums);
4609	}
4610
4611	return ret;
4612}
4613
4614static int log_one_extent(struct btrfs_trans_handle *trans,
4615			  struct btrfs_inode *inode,
4616			  const struct extent_map *em,
4617			  struct btrfs_path *path,
 
4618			  struct btrfs_log_ctx *ctx)
4619{
4620	struct btrfs_drop_extents_args drop_args = { 0 };
4621	struct btrfs_root *log = inode->root->log_root;
4622	struct btrfs_file_extent_item fi = { 0 };
4623	struct extent_buffer *leaf;
 
4624	struct btrfs_key key;
4625	enum btrfs_compression_type compress_type;
4626	u64 extent_offset = em->start - em->orig_start;
4627	u64 block_len;
4628	int ret;
 
 
4629
4630	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4631	if (em->flags & EXTENT_FLAG_PREALLOC)
4632		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4633	else
4634		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4635
4636	block_len = max(em->block_len, em->orig_block_len);
4637	compress_type = extent_map_compression(em);
4638	if (compress_type != BTRFS_COMPRESS_NONE) {
4639		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4640		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4641	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4642		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4643							extent_offset);
4644		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4645	}
4646
4647	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4648	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4649	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4650	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4651
4652	ret = log_extent_csums(trans, inode, log, em, ctx);
 
 
4653	if (ret)
4654		return ret;
4655
4656	/*
4657	 * If this is the first time we are logging the inode in the current
4658	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4659	 * because it does a deletion search, which always acquires write locks
4660	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4661	 * but also adds significant contention in a log tree, since log trees
4662	 * are small, with a root at level 2 or 3 at most, due to their short
4663	 * life span.
4664	 */
4665	if (ctx->logged_before) {
4666		drop_args.path = path;
4667		drop_args.start = em->start;
4668		drop_args.end = em->start + em->len;
4669		drop_args.replace_extent = true;
4670		drop_args.extent_item_size = sizeof(fi);
4671		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4672		if (ret)
4673			return ret;
4674	}
4675
4676	if (!drop_args.extent_inserted) {
4677		key.objectid = btrfs_ino(inode);
4678		key.type = BTRFS_EXTENT_DATA_KEY;
4679		key.offset = em->start;
4680
4681		ret = btrfs_insert_empty_item(trans, log, path, &key,
4682					      sizeof(fi));
4683		if (ret)
4684			return ret;
4685	}
4686	leaf = path->nodes[0];
4687	write_extent_buffer(leaf, &fi,
4688			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4689			    sizeof(fi));
4690	btrfs_mark_buffer_dirty(trans, leaf);
4691
4692	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
4693
4694	return ret;
4695}
4696
4697/*
4698 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4699 * lose them after doing a full/fast fsync and replaying the log. We scan the
4700 * subvolume's root instead of iterating the inode's extent map tree because
4701 * otherwise we can log incorrect extent items based on extent map conversion.
4702 * That can happen due to the fact that extent maps are merged when they
4703 * are not in the extent map tree's list of modified extents.
4704 */
4705static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4706				      struct btrfs_inode *inode,
4707				      struct btrfs_path *path)
4708{
4709	struct btrfs_root *root = inode->root;
4710	struct btrfs_key key;
4711	const u64 i_size = i_size_read(&inode->vfs_inode);
4712	const u64 ino = btrfs_ino(inode);
4713	struct btrfs_path *dst_path = NULL;
4714	bool dropped_extents = false;
4715	u64 truncate_offset = i_size;
4716	struct extent_buffer *leaf;
4717	int slot;
4718	int ins_nr = 0;
4719	int start_slot = 0;
4720	int ret;
4721
4722	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4723		return 0;
4724
4725	key.objectid = ino;
4726	key.type = BTRFS_EXTENT_DATA_KEY;
4727	key.offset = i_size;
4728	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4729	if (ret < 0)
4730		goto out;
4731
4732	/*
4733	 * We must check if there is a prealloc extent that starts before the
4734	 * i_size and crosses the i_size boundary. This is to ensure later we
4735	 * truncate down to the end of that extent and not to the i_size, as
4736	 * otherwise we end up losing part of the prealloc extent after a log
4737	 * replay and with an implicit hole if there is another prealloc extent
4738	 * that starts at an offset beyond i_size.
4739	 */
4740	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4741	if (ret < 0)
4742		goto out;
4743
4744	if (ret == 0) {
4745		struct btrfs_file_extent_item *ei;
4746
4747		leaf = path->nodes[0];
4748		slot = path->slots[0];
4749		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4750
4751		if (btrfs_file_extent_type(leaf, ei) ==
4752		    BTRFS_FILE_EXTENT_PREALLOC) {
4753			u64 extent_end;
4754
4755			btrfs_item_key_to_cpu(leaf, &key, slot);
4756			extent_end = key.offset +
4757				btrfs_file_extent_num_bytes(leaf, ei);
4758
4759			if (extent_end > i_size)
4760				truncate_offset = extent_end;
4761		}
4762	} else {
4763		ret = 0;
 
 
4764	}
4765
4766	while (true) {
4767		leaf = path->nodes[0];
4768		slot = path->slots[0];
 
 
 
 
 
4769
4770		if (slot >= btrfs_header_nritems(leaf)) {
4771			if (ins_nr > 0) {
4772				ret = copy_items(trans, inode, dst_path, path,
4773						 start_slot, ins_nr, 1, 0);
4774				if (ret < 0)
4775					goto out;
4776				ins_nr = 0;
4777			}
4778			ret = btrfs_next_leaf(root, path);
4779			if (ret < 0)
4780				goto out;
4781			if (ret > 0) {
4782				ret = 0;
4783				break;
4784			}
4785			continue;
4786		}
4787
4788		btrfs_item_key_to_cpu(leaf, &key, slot);
4789		if (key.objectid > ino)
4790			break;
4791		if (WARN_ON_ONCE(key.objectid < ino) ||
4792		    key.type < BTRFS_EXTENT_DATA_KEY ||
4793		    key.offset < i_size) {
4794			path->slots[0]++;
4795			continue;
4796		}
4797		if (!dropped_extents) {
4798			/*
4799			 * Avoid logging extent items logged in past fsync calls
4800			 * and leading to duplicate keys in the log tree.
4801			 */
4802			ret = truncate_inode_items(trans, root->log_root, inode,
4803						   truncate_offset,
4804						   BTRFS_EXTENT_DATA_KEY);
4805			if (ret)
4806				goto out;
4807			dropped_extents = true;
4808		}
4809		if (ins_nr == 0)
4810			start_slot = slot;
4811		ins_nr++;
4812		path->slots[0]++;
4813		if (!dst_path) {
4814			dst_path = btrfs_alloc_path();
4815			if (!dst_path) {
4816				ret = -ENOMEM;
4817				goto out;
4818			}
4819		}
4820	}
4821	if (ins_nr > 0)
4822		ret = copy_items(trans, inode, dst_path, path,
4823				 start_slot, ins_nr, 1, 0);
4824out:
4825	btrfs_release_path(path);
4826	btrfs_free_path(dst_path);
4827	return ret;
4828}
4829
4830static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4831				     struct btrfs_inode *inode,
 
4832				     struct btrfs_path *path,
4833				     struct btrfs_log_ctx *ctx)
 
 
 
4834{
4835	struct btrfs_ordered_extent *ordered;
4836	struct btrfs_ordered_extent *tmp;
4837	struct extent_map *em, *n;
4838	LIST_HEAD(extents);
4839	struct extent_map_tree *tree = &inode->extent_tree;
 
4840	int ret = 0;
4841	int num = 0;
4842
 
 
 
4843	write_lock(&tree->lock);
 
4844
4845	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4846		list_del_init(&em->list);
 
4847		/*
4848		 * Just an arbitrary number, this can be really CPU intensive
4849		 * once we start getting a lot of extents, and really once we
4850		 * have a bunch of extents we just want to commit since it will
4851		 * be faster.
4852		 */
4853		if (++num > 32768) {
4854			list_del_init(&tree->modified_extents);
4855			ret = -EFBIG;
4856			goto process;
4857		}
4858
4859		if (em->generation < trans->transid)
4860			continue;
4861
4862		/* We log prealloc extents beyond eof later. */
4863		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4864		    em->start >= i_size_read(&inode->vfs_inode))
4865			continue;
4866
4867		/* Need a ref to keep it from getting evicted from cache */
4868		refcount_inc(&em->refs);
4869		em->flags |= EXTENT_FLAG_LOGGING;
4870		list_add_tail(&em->list, &extents);
4871		num++;
4872	}
4873
4874	list_sort(NULL, &extents, extent_cmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4875process:
4876	while (!list_empty(&extents)) {
4877		em = list_entry(extents.next, struct extent_map, list);
4878
4879		list_del_init(&em->list);
4880
4881		/*
4882		 * If we had an error we just need to delete everybody from our
4883		 * private list.
4884		 */
4885		if (ret) {
4886			clear_em_logging(tree, em);
4887			free_extent_map(em);
4888			continue;
4889		}
4890
4891		write_unlock(&tree->lock);
4892
4893		ret = log_one_extent(trans, inode, em, path, ctx);
 
4894		write_lock(&tree->lock);
4895		clear_em_logging(tree, em);
4896		free_extent_map(em);
4897	}
4898	WARN_ON(!list_empty(&extents));
4899	write_unlock(&tree->lock);
 
4900
4901	if (!ret)
4902		ret = btrfs_log_prealloc_extents(trans, inode, path);
4903	if (ret)
4904		return ret;
4905
4906	/*
4907	 * We have logged all extents successfully, now make sure the commit of
4908	 * the current transaction waits for the ordered extents to complete
4909	 * before it commits and wipes out the log trees, otherwise we would
4910	 * lose data if an ordered extents completes after the transaction
4911	 * commits and a power failure happens after the transaction commit.
4912	 */
4913	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4914		list_del_init(&ordered->log_list);
4915		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4916
4917		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4918			spin_lock_irq(&inode->ordered_tree_lock);
4919			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4920				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4921				atomic_inc(&trans->transaction->pending_ordered);
4922			}
4923			spin_unlock_irq(&inode->ordered_tree_lock);
4924		}
4925		btrfs_put_ordered_extent(ordered);
4926	}
4927
4928	return 0;
4929}
4930
4931static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4932			     struct btrfs_path *path, u64 *size_ret)
4933{
4934	struct btrfs_key key;
4935	int ret;
4936
4937	key.objectid = btrfs_ino(inode);
4938	key.type = BTRFS_INODE_ITEM_KEY;
4939	key.offset = 0;
4940
4941	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4942	if (ret < 0) {
4943		return ret;
4944	} else if (ret > 0) {
4945		*size_ret = 0;
4946	} else {
4947		struct btrfs_inode_item *item;
4948
4949		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4950				      struct btrfs_inode_item);
4951		*size_ret = btrfs_inode_size(path->nodes[0], item);
4952		/*
4953		 * If the in-memory inode's i_size is smaller then the inode
4954		 * size stored in the btree, return the inode's i_size, so
4955		 * that we get a correct inode size after replaying the log
4956		 * when before a power failure we had a shrinking truncate
4957		 * followed by addition of a new name (rename / new hard link).
4958		 * Otherwise return the inode size from the btree, to avoid
4959		 * data loss when replaying a log due to previously doing a
4960		 * write that expands the inode's size and logging a new name
4961		 * immediately after.
4962		 */
4963		if (*size_ret > inode->vfs_inode.i_size)
4964			*size_ret = inode->vfs_inode.i_size;
4965	}
4966
4967	btrfs_release_path(path);
4968	return 0;
4969}
4970
4971/*
4972 * At the moment we always log all xattrs. This is to figure out at log replay
4973 * time which xattrs must have their deletion replayed. If a xattr is missing
4974 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4975 * because if a xattr is deleted, the inode is fsynced and a power failure
4976 * happens, causing the log to be replayed the next time the fs is mounted,
4977 * we want the xattr to not exist anymore (same behaviour as other filesystems
4978 * with a journal, ext3/4, xfs, f2fs, etc).
4979 */
4980static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4981				struct btrfs_inode *inode,
 
4982				struct btrfs_path *path,
4983				struct btrfs_path *dst_path)
4984{
4985	struct btrfs_root *root = inode->root;
4986	int ret;
4987	struct btrfs_key key;
4988	const u64 ino = btrfs_ino(inode);
4989	int ins_nr = 0;
4990	int start_slot = 0;
4991	bool found_xattrs = false;
4992
4993	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4994		return 0;
4995
4996	key.objectid = ino;
4997	key.type = BTRFS_XATTR_ITEM_KEY;
4998	key.offset = 0;
4999
5000	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5001	if (ret < 0)
5002		return ret;
5003
5004	while (true) {
5005		int slot = path->slots[0];
5006		struct extent_buffer *leaf = path->nodes[0];
5007		int nritems = btrfs_header_nritems(leaf);
5008
5009		if (slot >= nritems) {
5010			if (ins_nr > 0) {
 
 
5011				ret = copy_items(trans, inode, dst_path, path,
5012						 start_slot, ins_nr, 1, 0);
 
 
 
5013				if (ret < 0)
5014					return ret;
5015				ins_nr = 0;
5016			}
5017			ret = btrfs_next_leaf(root, path);
5018			if (ret < 0)
5019				return ret;
5020			else if (ret > 0)
5021				break;
5022			continue;
5023		}
5024
5025		btrfs_item_key_to_cpu(leaf, &key, slot);
5026		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5027			break;
5028
5029		if (ins_nr == 0)
5030			start_slot = slot;
5031		ins_nr++;
5032		path->slots[0]++;
5033		found_xattrs = true;
5034		cond_resched();
5035	}
5036	if (ins_nr > 0) {
 
 
5037		ret = copy_items(trans, inode, dst_path, path,
5038				 start_slot, ins_nr, 1, 0);
 
 
 
5039		if (ret < 0)
5040			return ret;
5041	}
5042
5043	if (!found_xattrs)
5044		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5045
5046	return 0;
5047}
5048
5049/*
5050 * When using the NO_HOLES feature if we punched a hole that causes the
5051 * deletion of entire leafs or all the extent items of the first leaf (the one
5052 * that contains the inode item and references) we may end up not processing
5053 * any extents, because there are no leafs with a generation matching the
5054 * current transaction that have extent items for our inode. So we need to find
5055 * if any holes exist and then log them. We also need to log holes after any
5056 * truncate operation that changes the inode's size.
5057 */
5058static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5059			   struct btrfs_inode *inode,
5060			   struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5061{
5062	struct btrfs_root *root = inode->root;
5063	struct btrfs_fs_info *fs_info = root->fs_info;
 
5064	struct btrfs_key key;
 
 
 
 
5065	const u64 ino = btrfs_ino(inode);
5066	const u64 i_size = i_size_read(&inode->vfs_inode);
5067	u64 prev_extent_end = 0;
5068	int ret;
5069
5070	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5071		return 0;
5072
5073	key.objectid = ino;
5074	key.type = BTRFS_EXTENT_DATA_KEY;
5075	key.offset = 0;
5076
5077	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
5078	if (ret < 0)
5079		return ret;
5080
5081	while (true) {
5082		struct extent_buffer *leaf = path->nodes[0];
 
 
5083
5084		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5085			ret = btrfs_next_leaf(root, path);
5086			if (ret < 0)
5087				return ret;
5088			if (ret > 0) {
5089				ret = 0;
5090				break;
5091			}
5092			leaf = path->nodes[0];
5093		}
5094
5095		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5096		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5097			break;
 
 
 
5098
5099		/* We have a hole, log it. */
5100		if (prev_extent_end < key.offset) {
5101			const u64 hole_len = key.offset - prev_extent_end;
5102
5103			/*
5104			 * Release the path to avoid deadlocks with other code
5105			 * paths that search the root while holding locks on
5106			 * leafs from the log root.
5107			 */
5108			btrfs_release_path(path);
5109			ret = btrfs_insert_hole_extent(trans, root->log_root,
5110						       ino, prev_extent_end,
5111						       hole_len);
5112			if (ret < 0)
5113				return ret;
5114
5115			/*
5116			 * Search for the same key again in the root. Since it's
5117			 * an extent item and we are holding the inode lock, the
5118			 * key must still exist. If it doesn't just emit warning
5119			 * and return an error to fall back to a transaction
5120			 * commit.
5121			 */
5122			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5123			if (ret < 0)
5124				return ret;
5125			if (WARN_ON(ret > 0))
5126				return -ENOENT;
5127			leaf = path->nodes[0];
5128		}
5129
5130		prev_extent_end = btrfs_file_extent_end(path);
5131		path->slots[0]++;
5132		cond_resched();
 
 
 
5133	}
 
5134
5135	if (prev_extent_end < i_size) {
5136		u64 hole_len;
 
5137
5138		btrfs_release_path(path);
5139		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5140		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5141					       prev_extent_end, hole_len);
5142		if (ret < 0)
5143			return ret;
5144	}
5145
5146	return 0;
5147}
5148
5149/*
5150 * When we are logging a new inode X, check if it doesn't have a reference that
5151 * matches the reference from some other inode Y created in a past transaction
5152 * and that was renamed in the current transaction. If we don't do this, then at
5153 * log replay time we can lose inode Y (and all its files if it's a directory):
5154 *
5155 * mkdir /mnt/x
5156 * echo "hello world" > /mnt/x/foobar
5157 * sync
5158 * mv /mnt/x /mnt/y
5159 * mkdir /mnt/x                 # or touch /mnt/x
5160 * xfs_io -c fsync /mnt/x
5161 * <power fail>
5162 * mount fs, trigger log replay
5163 *
5164 * After the log replay procedure, we would lose the first directory and all its
5165 * files (file foobar).
5166 * For the case where inode Y is not a directory we simply end up losing it:
5167 *
5168 * echo "123" > /mnt/foo
5169 * sync
5170 * mv /mnt/foo /mnt/bar
5171 * echo "abc" > /mnt/foo
5172 * xfs_io -c fsync /mnt/foo
5173 * <power fail>
5174 *
5175 * We also need this for cases where a snapshot entry is replaced by some other
5176 * entry (file or directory) otherwise we end up with an unreplayable log due to
5177 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5178 * if it were a regular entry:
5179 *
5180 * mkdir /mnt/x
5181 * btrfs subvolume snapshot /mnt /mnt/x/snap
5182 * btrfs subvolume delete /mnt/x/snap
5183 * rmdir /mnt/x
5184 * mkdir /mnt/x
5185 * fsync /mnt/x or fsync some new file inside it
5186 * <power fail>
5187 *
5188 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5189 * the same transaction.
5190 */
5191static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5192					 const int slot,
5193					 const struct btrfs_key *key,
5194					 struct btrfs_inode *inode,
5195					 u64 *other_ino, u64 *other_parent)
5196{
5197	int ret;
5198	struct btrfs_path *search_path;
5199	char *name = NULL;
5200	u32 name_len = 0;
5201	u32 item_size = btrfs_item_size(eb, slot);
5202	u32 cur_offset = 0;
5203	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5204
5205	search_path = btrfs_alloc_path();
5206	if (!search_path)
5207		return -ENOMEM;
5208	search_path->search_commit_root = 1;
5209	search_path->skip_locking = 1;
5210
5211	while (cur_offset < item_size) {
5212		u64 parent;
5213		u32 this_name_len;
5214		u32 this_len;
5215		unsigned long name_ptr;
5216		struct btrfs_dir_item *di;
5217		struct fscrypt_str name_str;
5218
5219		if (key->type == BTRFS_INODE_REF_KEY) {
5220			struct btrfs_inode_ref *iref;
5221
5222			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5223			parent = key->offset;
5224			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5225			name_ptr = (unsigned long)(iref + 1);
5226			this_len = sizeof(*iref) + this_name_len;
5227		} else {
5228			struct btrfs_inode_extref *extref;
5229
5230			extref = (struct btrfs_inode_extref *)(ptr +
5231							       cur_offset);
5232			parent = btrfs_inode_extref_parent(eb, extref);
5233			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5234			name_ptr = (unsigned long)&extref->name;
5235			this_len = sizeof(*extref) + this_name_len;
5236		}
5237
5238		if (this_name_len > name_len) {
5239			char *new_name;
5240
5241			new_name = krealloc(name, this_name_len, GFP_NOFS);
5242			if (!new_name) {
5243				ret = -ENOMEM;
5244				goto out;
5245			}
5246			name_len = this_name_len;
5247			name = new_name;
5248		}
5249
5250		read_extent_buffer(eb, name, name_ptr, this_name_len);
5251
5252		name_str.name = name;
5253		name_str.len = this_name_len;
5254		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5255				parent, &name_str, 0);
5256		if (di && !IS_ERR(di)) {
5257			struct btrfs_key di_key;
5258
5259			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5260						  di, &di_key);
5261			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5262				if (di_key.objectid != key->objectid) {
5263					ret = 1;
5264					*other_ino = di_key.objectid;
5265					*other_parent = parent;
5266				} else {
5267					ret = 0;
5268				}
5269			} else {
5270				ret = -EAGAIN;
5271			}
5272			goto out;
5273		} else if (IS_ERR(di)) {
5274			ret = PTR_ERR(di);
5275			goto out;
5276		}
5277		btrfs_release_path(search_path);
5278
5279		cur_offset += this_len;
5280	}
5281	ret = 0;
5282out:
5283	btrfs_free_path(search_path);
5284	kfree(name);
5285	return ret;
5286}
5287
5288/*
5289 * Check if we need to log an inode. This is used in contexts where while
5290 * logging an inode we need to log another inode (either that it exists or in
5291 * full mode). This is used instead of btrfs_inode_in_log() because the later
5292 * requires the inode to be in the log and have the log transaction committed,
5293 * while here we do not care if the log transaction was already committed - our
5294 * caller will commit the log later - and we want to avoid logging an inode
5295 * multiple times when multiple tasks have joined the same log transaction.
5296 */
5297static bool need_log_inode(const struct btrfs_trans_handle *trans,
5298			   struct btrfs_inode *inode)
5299{
5300	/*
5301	 * If a directory was not modified, no dentries added or removed, we can
5302	 * and should avoid logging it.
5303	 */
5304	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5305		return false;
5306
5307	/*
5308	 * If this inode does not have new/updated/deleted xattrs since the last
5309	 * time it was logged and is flagged as logged in the current transaction,
5310	 * we can skip logging it. As for new/deleted names, those are updated in
5311	 * the log by link/unlink/rename operations.
5312	 * In case the inode was logged and then evicted and reloaded, its
5313	 * logged_trans will be 0, in which case we have to fully log it since
5314	 * logged_trans is a transient field, not persisted.
5315	 */
5316	if (inode_logged(trans, inode, NULL) == 1 &&
5317	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5318		return false;
5319
5320	return true;
5321}
5322
5323struct btrfs_dir_list {
5324	u64 ino;
5325	struct list_head list;
5326};
5327
5328/*
5329 * Log the inodes of the new dentries of a directory.
5330 * See process_dir_items_leaf() for details about why it is needed.
5331 * This is a recursive operation - if an existing dentry corresponds to a
5332 * directory, that directory's new entries are logged too (same behaviour as
5333 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5334 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5335 * complains about the following circular lock dependency / possible deadlock:
5336 *
5337 *        CPU0                                        CPU1
5338 *        ----                                        ----
5339 * lock(&type->i_mutex_dir_key#3/2);
5340 *                                            lock(sb_internal#2);
5341 *                                            lock(&type->i_mutex_dir_key#3/2);
5342 * lock(&sb->s_type->i_mutex_key#14);
5343 *
5344 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5345 * sb_start_intwrite() in btrfs_start_transaction().
5346 * Not acquiring the VFS lock of the inodes is still safe because:
5347 *
5348 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5349 *    that while logging the inode new references (names) are added or removed
5350 *    from the inode, leaving the logged inode item with a link count that does
5351 *    not match the number of logged inode reference items. This is fine because
5352 *    at log replay time we compute the real number of links and correct the
5353 *    link count in the inode item (see replay_one_buffer() and
5354 *    link_to_fixup_dir());
5355 *
5356 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5357 *    while logging the inode's items new index items (key type
5358 *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5359 *    has a size that doesn't match the sum of the lengths of all the logged
5360 *    names - this is ok, not a problem, because at log replay time we set the
5361 *    directory's i_size to the correct value (see replay_one_name() and
5362 *    overwrite_item()).
5363 */
5364static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5365				struct btrfs_inode *start_inode,
5366				struct btrfs_log_ctx *ctx)
 
 
 
5367{
5368	struct btrfs_root *root = start_inode->root;
5369	struct btrfs_fs_info *fs_info = root->fs_info;
5370	struct btrfs_path *path;
5371	LIST_HEAD(dir_list);
5372	struct btrfs_dir_list *dir_elem;
5373	u64 ino = btrfs_ino(start_inode);
5374	struct btrfs_inode *curr_inode = start_inode;
5375	int ret = 0;
5376
5377	/*
5378	 * If we are logging a new name, as part of a link or rename operation,
5379	 * don't bother logging new dentries, as we just want to log the names
5380	 * of an inode and that any new parents exist.
5381	 */
5382	if (ctx->logging_new_name)
5383		return 0;
 
 
 
 
5384
5385	path = btrfs_alloc_path();
5386	if (!path)
5387		return -ENOMEM;
5388
5389	/* Pairs with btrfs_add_delayed_iput below. */
5390	ihold(&curr_inode->vfs_inode);
5391
5392	while (true) {
5393		struct inode *vfs_inode;
5394		struct btrfs_key key;
5395		struct btrfs_key found_key;
5396		u64 next_index;
5397		bool continue_curr_inode = true;
5398		int iter_ret;
5399
5400		key.objectid = ino;
5401		key.type = BTRFS_DIR_INDEX_KEY;
5402		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5403		next_index = key.offset;
5404again:
5405		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5406			struct extent_buffer *leaf = path->nodes[0];
5407			struct btrfs_dir_item *di;
5408			struct btrfs_key di_key;
5409			struct inode *di_inode;
5410			int log_mode = LOG_INODE_EXISTS;
5411			int type;
5412
5413			if (found_key.objectid != ino ||
5414			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5415				continue_curr_inode = false;
5416				break;
5417			}
5418
5419			next_index = found_key.offset + 1;
5420
5421			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5422			type = btrfs_dir_ftype(leaf, di);
5423			if (btrfs_dir_transid(leaf, di) < trans->transid)
5424				continue;
5425			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5426			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5427				continue;
5428
5429			btrfs_release_path(path);
5430			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5431			if (IS_ERR(di_inode)) {
5432				ret = PTR_ERR(di_inode);
5433				goto out;
5434			}
5435
5436			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5437				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5438				break;
5439			}
5440
5441			ctx->log_new_dentries = false;
5442			if (type == BTRFS_FT_DIR)
5443				log_mode = LOG_INODE_ALL;
5444			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5445					      log_mode, ctx);
5446			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5447			if (ret)
5448				goto out;
5449			if (ctx->log_new_dentries) {
5450				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5451				if (!dir_elem) {
5452					ret = -ENOMEM;
5453					goto out;
5454				}
5455				dir_elem->ino = di_key.objectid;
5456				list_add_tail(&dir_elem->list, &dir_list);
5457			}
5458			break;
5459		}
5460
5461		btrfs_release_path(path);
5462
5463		if (iter_ret < 0) {
5464			ret = iter_ret;
5465			goto out;
5466		} else if (iter_ret > 0) {
5467			continue_curr_inode = false;
5468		} else {
5469			key = found_key;
5470		}
5471
5472		if (continue_curr_inode && key.offset < (u64)-1) {
5473			key.offset++;
5474			goto again;
5475		}
5476
5477		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5478
5479		if (list_empty(&dir_list))
5480			break;
5481
5482		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5483		ino = dir_elem->ino;
5484		list_del(&dir_elem->list);
5485		kfree(dir_elem);
5486
5487		btrfs_add_delayed_iput(curr_inode);
5488		curr_inode = NULL;
5489
5490		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5491		if (IS_ERR(vfs_inode)) {
5492			ret = PTR_ERR(vfs_inode);
5493			break;
5494		}
5495		curr_inode = BTRFS_I(vfs_inode);
5496	}
5497out:
5498	btrfs_free_path(path);
5499	if (curr_inode)
5500		btrfs_add_delayed_iput(curr_inode);
5501
5502	if (ret) {
5503		struct btrfs_dir_list *next;
 
5504
5505		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5506			kfree(dir_elem);
5507	}
5508
5509	return ret;
5510}
5511
5512struct btrfs_ino_list {
5513	u64 ino;
5514	u64 parent;
5515	struct list_head list;
5516};
5517
5518static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5519{
5520	struct btrfs_ino_list *curr;
5521	struct btrfs_ino_list *next;
5522
5523	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5524		list_del(&curr->list);
5525		kfree(curr);
5526	}
5527}
5528
5529static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5530				    struct btrfs_path *path)
5531{
5532	struct btrfs_key key;
5533	int ret;
5534
5535	key.objectid = ino;
5536	key.type = BTRFS_INODE_ITEM_KEY;
5537	key.offset = 0;
5538
5539	path->search_commit_root = 1;
5540	path->skip_locking = 1;
5541
5542	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5543	if (WARN_ON_ONCE(ret > 0)) {
5544		/*
5545		 * We have previously found the inode through the commit root
5546		 * so this should not happen. If it does, just error out and
5547		 * fallback to a transaction commit.
5548		 */
5549		ret = -ENOENT;
5550	} else if (ret == 0) {
5551		struct btrfs_inode_item *item;
5552
5553		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5554				      struct btrfs_inode_item);
5555		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5556			ret = 1;
5557	}
5558
5559	btrfs_release_path(path);
5560	path->search_commit_root = 0;
5561	path->skip_locking = 0;
5562
5563	return ret;
5564}
5565
5566static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5567				 struct btrfs_root *root,
5568				 struct btrfs_path *path,
5569				 u64 ino, u64 parent,
5570				 struct btrfs_log_ctx *ctx)
5571{
5572	struct btrfs_ino_list *ino_elem;
5573	struct inode *inode;
5574
5575	/*
5576	 * It's rare to have a lot of conflicting inodes, in practice it is not
5577	 * common to have more than 1 or 2. We don't want to collect too many,
5578	 * as we could end up logging too many inodes (even if only in
5579	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5580	 * commits.
5581	 */
5582	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5583		return BTRFS_LOG_FORCE_COMMIT;
 
 
 
5584
5585	inode = btrfs_iget(root->fs_info->sb, ino, root);
5586	/*
5587	 * If the other inode that had a conflicting dir entry was deleted in
5588	 * the current transaction then we either:
5589	 *
5590	 * 1) Log the parent directory (later after adding it to the list) if
5591	 *    the inode is a directory. This is because it may be a deleted
5592	 *    subvolume/snapshot or it may be a regular directory that had
5593	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5594	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5595	 *    during log replay. So we just log the parent, which will result in
5596	 *    a fallback to a transaction commit if we are dealing with those
5597	 *    cases (last_unlink_trans will match the current transaction);
5598	 *
5599	 * 2) Do nothing if it's not a directory. During log replay we simply
5600	 *    unlink the conflicting dentry from the parent directory and then
5601	 *    add the dentry for our inode. Like this we can avoid logging the
5602	 *    parent directory (and maybe fallback to a transaction commit in
5603	 *    case it has a last_unlink_trans == trans->transid, due to moving
5604	 *    some inode from it to some other directory).
5605	 */
5606	if (IS_ERR(inode)) {
5607		int ret = PTR_ERR(inode);
5608
5609		if (ret != -ENOENT)
5610			return ret;
5611
5612		ret = conflicting_inode_is_dir(root, ino, path);
5613		/* Not a directory or we got an error. */
5614		if (ret <= 0)
5615			return ret;
5616
5617		/* Conflicting inode is a directory, so we'll log its parent. */
5618		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5619		if (!ino_elem)
5620			return -ENOMEM;
5621		ino_elem->ino = ino;
5622		ino_elem->parent = parent;
5623		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5624		ctx->num_conflict_inodes++;
5625
5626		return 0;
5627	}
5628
5629	/*
5630	 * If the inode was already logged skip it - otherwise we can hit an
5631	 * infinite loop. Example:
5632	 *
5633	 * From the commit root (previous transaction) we have the following
5634	 * inodes:
5635	 *
5636	 * inode 257 a directory
5637	 * inode 258 with references "zz" and "zz_link" on inode 257
5638	 * inode 259 with reference "a" on inode 257
5639	 *
5640	 * And in the current (uncommitted) transaction we have:
5641	 *
5642	 * inode 257 a directory, unchanged
5643	 * inode 258 with references "a" and "a2" on inode 257
5644	 * inode 259 with reference "zz_link" on inode 257
5645	 * inode 261 with reference "zz" on inode 257
5646	 *
5647	 * When logging inode 261 the following infinite loop could
5648	 * happen if we don't skip already logged inodes:
5649	 *
5650	 * - we detect inode 258 as a conflicting inode, with inode 261
5651	 *   on reference "zz", and log it;
5652	 *
5653	 * - we detect inode 259 as a conflicting inode, with inode 258
5654	 *   on reference "a", and log it;
5655	 *
5656	 * - we detect inode 258 as a conflicting inode, with inode 259
5657	 *   on reference "zz_link", and log it - again! After this we
5658	 *   repeat the above steps forever.
5659	 *
5660	 * Here we can use need_log_inode() because we only need to log the
5661	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5662	 * so that the log ends up with the new name and without the old name.
5663	 */
5664	if (!need_log_inode(trans, BTRFS_I(inode))) {
5665		btrfs_add_delayed_iput(BTRFS_I(inode));
5666		return 0;
5667	}
5668
5669	btrfs_add_delayed_iput(BTRFS_I(inode));
5670
5671	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5672	if (!ino_elem)
5673		return -ENOMEM;
5674	ino_elem->ino = ino;
5675	ino_elem->parent = parent;
5676	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5677	ctx->num_conflict_inodes++;
5678
5679	return 0;
5680}
5681
5682static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5683				  struct btrfs_root *root,
5684				  struct btrfs_log_ctx *ctx)
5685{
5686	struct btrfs_fs_info *fs_info = root->fs_info;
5687	int ret = 0;
5688
5689	/*
5690	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5691	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5692	 * calls. This check guarantees we can have only 1 level of recursion.
5693	 */
5694	if (ctx->logging_conflict_inodes)
5695		return 0;
5696
5697	ctx->logging_conflict_inodes = true;
5698
5699	/*
5700	 * New conflicting inodes may be found and added to the list while we
5701	 * are logging a conflicting inode, so keep iterating while the list is
5702	 * not empty.
5703	 */
5704	while (!list_empty(&ctx->conflict_inodes)) {
5705		struct btrfs_ino_list *curr;
5706		struct inode *inode;
5707		u64 ino;
5708		u64 parent;
5709
5710		curr = list_first_entry(&ctx->conflict_inodes,
5711					struct btrfs_ino_list, list);
5712		ino = curr->ino;
5713		parent = curr->parent;
5714		list_del(&curr->list);
5715		kfree(curr);
5716
5717		inode = btrfs_iget(fs_info->sb, ino, root);
5718		/*
5719		 * If the other inode that had a conflicting dir entry was
5720		 * deleted in the current transaction, we need to log its parent
5721		 * directory. See the comment at add_conflicting_inode().
5722		 */
5723		if (IS_ERR(inode)) {
5724			ret = PTR_ERR(inode);
5725			if (ret != -ENOENT)
5726				break;
5727
5728			inode = btrfs_iget(fs_info->sb, parent, root);
5729			if (IS_ERR(inode)) {
5730				ret = PTR_ERR(inode);
5731				break;
5732			}
5733
 
 
 
 
 
5734			/*
5735			 * Always log the directory, we cannot make this
5736			 * conditional on need_log_inode() because the directory
5737			 * might have been logged in LOG_INODE_EXISTS mode or
5738			 * the dir index of the conflicting inode is not in a
5739			 * dir index key range logged for the directory. So we
5740			 * must make sure the deletion is recorded.
 
 
 
 
 
5741			 */
5742			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5743					      LOG_INODE_ALL, ctx);
5744			btrfs_add_delayed_iput(BTRFS_I(inode));
5745			if (ret)
5746				break;
5747			continue;
5748		}
5749
5750		/*
5751		 * Here we can use need_log_inode() because we only need to log
5752		 * the inode in LOG_INODE_EXISTS mode and rename operations
5753		 * update the log, so that the log ends up with the new name and
5754		 * without the old name.
5755		 *
5756		 * We did this check at add_conflicting_inode(), but here we do
5757		 * it again because if some other task logged the inode after
5758		 * that, we can avoid doing it again.
5759		 */
5760		if (!need_log_inode(trans, BTRFS_I(inode))) {
5761			btrfs_add_delayed_iput(BTRFS_I(inode));
5762			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5763		}
5764
5765		/*
5766		 * We are safe logging the other inode without acquiring its
5767		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5768		 * are safe against concurrent renames of the other inode as
5769		 * well because during a rename we pin the log and update the
5770		 * log with the new name before we unpin it.
5771		 */
5772		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5773		btrfs_add_delayed_iput(BTRFS_I(inode));
5774		if (ret)
5775			break;
5776	}
5777
5778	ctx->logging_conflict_inodes = false;
5779	if (ret)
5780		free_conflicting_inodes(ctx);
5781
5782	return ret;
5783}
5784
5785static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5786				   struct btrfs_inode *inode,
5787				   struct btrfs_key *min_key,
5788				   const struct btrfs_key *max_key,
5789				   struct btrfs_path *path,
5790				   struct btrfs_path *dst_path,
5791				   const u64 logged_isize,
5792				   const int inode_only,
5793				   struct btrfs_log_ctx *ctx,
5794				   bool *need_log_inode_item)
5795{
5796	const u64 i_size = i_size_read(&inode->vfs_inode);
5797	struct btrfs_root *root = inode->root;
5798	int ins_start_slot = 0;
5799	int ins_nr = 0;
5800	int ret;
5801
5802	while (1) {
5803		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5804		if (ret < 0)
5805			return ret;
5806		if (ret > 0) {
5807			ret = 0;
 
 
 
5808			break;
5809		}
5810again:
5811		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5812		if (min_key->objectid != max_key->objectid)
5813			break;
5814		if (min_key->type > max_key->type)
5815			break;
5816
5817		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5818			*need_log_inode_item = false;
5819		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5820			   min_key->offset >= i_size) {
5821			/*
5822			 * Extents at and beyond eof are logged with
5823			 * btrfs_log_prealloc_extents().
5824			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5825			 * and no keys greater than that, so bail out.
5826			 */
5827			break;
5828		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5829			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5830			   (inode->generation == trans->transid ||
5831			    ctx->logging_conflict_inodes)) {
5832			u64 other_ino = 0;
5833			u64 other_parent = 0;
5834
5835			ret = btrfs_check_ref_name_override(path->nodes[0],
5836					path->slots[0], min_key, inode,
5837					&other_ino, &other_parent);
 
5838			if (ret < 0) {
5839				return ret;
5840			} else if (ret > 0 &&
5841				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
 
 
 
 
5842				if (ins_nr > 0) {
5843					ins_nr++;
5844				} else {
5845					ins_nr = 1;
5846					ins_start_slot = path->slots[0];
5847				}
5848				ret = copy_items(trans, inode, dst_path, path,
5849						 ins_start_slot, ins_nr,
5850						 inode_only, logged_isize);
5851				if (ret < 0)
5852					return ret;
 
 
 
5853				ins_nr = 0;
5854
5855				btrfs_release_path(path);
5856				ret = add_conflicting_inode(trans, root, path,
5857							    other_ino,
5858							    other_parent, ctx);
5859				if (ret)
5860					return ret;
5861				goto next_key;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5862			}
5863		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5864			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
 
 
5865			if (ins_nr == 0)
5866				goto next_slot;
5867			ret = copy_items(trans, inode, dst_path, path,
5868					 ins_start_slot,
5869					 ins_nr, inode_only, logged_isize);
5870			if (ret < 0)
5871				return ret;
 
 
5872			ins_nr = 0;
 
 
 
 
5873			goto next_slot;
5874		}
5875
 
5876		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5877			ins_nr++;
5878			goto next_slot;
5879		} else if (!ins_nr) {
5880			ins_start_slot = path->slots[0];
5881			ins_nr = 1;
5882			goto next_slot;
5883		}
5884
5885		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5886				 ins_nr, inode_only, logged_isize);
5887		if (ret < 0)
5888			return ret;
 
 
 
 
 
 
 
 
5889		ins_nr = 1;
5890		ins_start_slot = path->slots[0];
5891next_slot:
 
 
5892		path->slots[0]++;
5893		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5894			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5895					      path->slots[0]);
5896			goto again;
5897		}
5898		if (ins_nr) {
5899			ret = copy_items(trans, inode, dst_path, path,
5900					 ins_start_slot, ins_nr, inode_only,
5901					 logged_isize);
5902			if (ret < 0)
5903				return ret;
 
 
 
5904			ins_nr = 0;
5905		}
5906		btrfs_release_path(path);
5907next_key:
5908		if (min_key->offset < (u64)-1) {
5909			min_key->offset++;
5910		} else if (min_key->type < max_key->type) {
5911			min_key->type++;
5912			min_key->offset = 0;
5913		} else {
5914			break;
5915		}
5916
5917		/*
5918		 * We may process many leaves full of items for our inode, so
5919		 * avoid monopolizing a cpu for too long by rescheduling while
5920		 * not holding locks on any tree.
5921		 */
5922		cond_resched();
5923	}
5924	if (ins_nr) {
5925		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5926				 ins_nr, inode_only, logged_isize);
5927		if (ret)
5928			return ret;
 
 
 
 
 
5929	}
5930
5931	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5932		/*
5933		 * Release the path because otherwise we might attempt to double
5934		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5935		 */
 
5936		btrfs_release_path(path);
5937		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
 
 
 
5938	}
5939
5940	return ret;
5941}
5942
5943static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5944				      struct btrfs_root *log,
5945				      struct btrfs_path *path,
5946				      const struct btrfs_item_batch *batch,
5947				      const struct btrfs_delayed_item *first_item)
5948{
5949	const struct btrfs_delayed_item *curr = first_item;
5950	int ret;
5951
5952	ret = btrfs_insert_empty_items(trans, log, path, batch);
5953	if (ret)
5954		return ret;
5955
5956	for (int i = 0; i < batch->nr; i++) {
5957		char *data_ptr;
5958
5959		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5960		write_extent_buffer(path->nodes[0], &curr->data,
5961				    (unsigned long)data_ptr, curr->data_len);
5962		curr = list_next_entry(curr, log_list);
5963		path->slots[0]++;
5964	}
 
 
 
 
 
 
 
 
 
5965
5966	btrfs_release_path(path);
5967
5968	return 0;
5969}
5970
5971static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5972				       struct btrfs_inode *inode,
5973				       struct btrfs_path *path,
5974				       const struct list_head *delayed_ins_list,
5975				       struct btrfs_log_ctx *ctx)
5976{
5977	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5978	const int max_batch_size = 195;
5979	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5980	const u64 ino = btrfs_ino(inode);
5981	struct btrfs_root *log = inode->root->log_root;
5982	struct btrfs_item_batch batch = {
5983		.nr = 0,
5984		.total_data_size = 0,
5985	};
5986	const struct btrfs_delayed_item *first = NULL;
5987	const struct btrfs_delayed_item *curr;
5988	char *ins_data;
5989	struct btrfs_key *ins_keys;
5990	u32 *ins_sizes;
5991	u64 curr_batch_size = 0;
5992	int batch_idx = 0;
5993	int ret;
5994
5995	/* We are adding dir index items to the log tree. */
5996	lockdep_assert_held(&inode->log_mutex);
5997
5998	/*
5999	 * We collect delayed items before copying index keys from the subvolume
6000	 * to the log tree. However just after we collected them, they may have
6001	 * been flushed (all of them or just some of them), and therefore we
6002	 * could have copied them from the subvolume tree to the log tree.
6003	 * So find the first delayed item that was not yet logged (they are
6004	 * sorted by index number).
6005	 */
6006	list_for_each_entry(curr, delayed_ins_list, log_list) {
6007		if (curr->index > inode->last_dir_index_offset) {
6008			first = curr;
6009			break;
6010		}
 
6011	}
6012
6013	/* Empty list or all delayed items were already logged. */
6014	if (!first)
6015		return 0;
6016
6017	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6018			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6019	if (!ins_data)
6020		return -ENOMEM;
6021	ins_sizes = (u32 *)ins_data;
6022	batch.data_sizes = ins_sizes;
6023	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6024	batch.keys = ins_keys;
6025
6026	curr = first;
6027	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6028		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6029
6030		if (curr_batch_size + curr_size > leaf_data_size ||
6031		    batch.nr == max_batch_size) {
6032			ret = insert_delayed_items_batch(trans, log, path,
6033							 &batch, first);
6034			if (ret)
6035				goto out;
6036			batch_idx = 0;
6037			batch.nr = 0;
6038			batch.total_data_size = 0;
6039			curr_batch_size = 0;
6040			first = curr;
6041		}
6042
6043		ins_sizes[batch_idx] = curr->data_len;
6044		ins_keys[batch_idx].objectid = ino;
6045		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6046		ins_keys[batch_idx].offset = curr->index;
6047		curr_batch_size += curr_size;
6048		batch.total_data_size += curr->data_len;
6049		batch.nr++;
6050		batch_idx++;
6051		curr = list_next_entry(curr, log_list);
6052	}
6053
6054	ASSERT(batch.nr >= 1);
6055	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6056
6057	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6058			       log_list);
6059	inode->last_dir_index_offset = curr->index;
6060out:
6061	kfree(ins_data);
6062
6063	return ret;
6064}
6065
6066static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6067				      struct btrfs_inode *inode,
6068				      struct btrfs_path *path,
6069				      const struct list_head *delayed_del_list,
6070				      struct btrfs_log_ctx *ctx)
6071{
6072	const u64 ino = btrfs_ino(inode);
6073	const struct btrfs_delayed_item *curr;
6074
6075	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6076				log_list);
6077
6078	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6079		u64 first_dir_index = curr->index;
6080		u64 last_dir_index;
6081		const struct btrfs_delayed_item *next;
6082		int ret;
6083
6084		/*
6085		 * Find a range of consecutive dir index items to delete. Like
6086		 * this we log a single dir range item spanning several contiguous
6087		 * dir items instead of logging one range item per dir index item.
6088		 */
6089		next = list_next_entry(curr, log_list);
6090		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6091			if (next->index != curr->index + 1)
6092				break;
6093			curr = next;
6094			next = list_next_entry(next, log_list);
6095		}
6096
6097		last_dir_index = curr->index;
6098		ASSERT(last_dir_index >= first_dir_index);
6099
6100		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6101					 ino, first_dir_index, last_dir_index);
6102		if (ret)
6103			return ret;
6104		curr = list_next_entry(curr, log_list);
6105	}
6106
6107	return 0;
6108}
 
 
 
 
 
 
 
 
6109
6110static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6111					struct btrfs_inode *inode,
6112					struct btrfs_path *path,
6113					struct btrfs_log_ctx *ctx,
6114					const struct list_head *delayed_del_list,
6115					const struct btrfs_delayed_item *first,
6116					const struct btrfs_delayed_item **last_ret)
6117{
6118	const struct btrfs_delayed_item *next;
6119	struct extent_buffer *leaf = path->nodes[0];
6120	const int last_slot = btrfs_header_nritems(leaf) - 1;
6121	int slot = path->slots[0] + 1;
6122	const u64 ino = btrfs_ino(inode);
6123
6124	next = list_next_entry(first, log_list);
6125
6126	while (slot < last_slot &&
6127	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6128		struct btrfs_key key;
6129
6130		btrfs_item_key_to_cpu(leaf, &key, slot);
6131		if (key.objectid != ino ||
6132		    key.type != BTRFS_DIR_INDEX_KEY ||
6133		    key.offset != next->index)
6134			break;
6135
6136		slot++;
6137		*last_ret = next;
6138		next = list_next_entry(next, log_list);
6139	}
6140
6141	return btrfs_del_items(trans, inode->root->log_root, path,
6142			       path->slots[0], slot - path->slots[0]);
6143}
6144
6145static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6146					     struct btrfs_inode *inode,
6147					     struct btrfs_path *path,
6148					     const struct list_head *delayed_del_list,
6149					     struct btrfs_log_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
6150{
6151	struct btrfs_root *log = inode->root->log_root;
6152	const struct btrfs_delayed_item *curr;
6153	u64 last_range_start = 0;
6154	u64 last_range_end = 0;
6155	struct btrfs_key key;
6156
6157	key.objectid = btrfs_ino(inode);
6158	key.type = BTRFS_DIR_INDEX_KEY;
6159	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6160				log_list);
6161
6162	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6163		const struct btrfs_delayed_item *last = curr;
6164		u64 first_dir_index = curr->index;
6165		u64 last_dir_index;
6166		bool deleted_items = false;
6167		int ret;
6168
6169		key.offset = curr->index;
6170		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6171		if (ret < 0) {
6172			return ret;
6173		} else if (ret == 0) {
6174			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6175							   delayed_del_list, curr,
6176							   &last);
6177			if (ret)
6178				return ret;
6179			deleted_items = true;
6180		}
6181
6182		btrfs_release_path(path);
6183
6184		/*
6185		 * If we deleted items from the leaf, it means we have a range
6186		 * item logging their range, so no need to add one or update an
6187		 * existing one. Otherwise we have to log a dir range item.
6188		 */
6189		if (deleted_items)
6190			goto next_batch;
6191
6192		last_dir_index = last->index;
6193		ASSERT(last_dir_index >= first_dir_index);
6194		/*
6195		 * If this range starts right after where the previous one ends,
6196		 * then we want to reuse the previous range item and change its
6197		 * end offset to the end of this range. This is just to minimize
6198		 * leaf space usage, by avoiding adding a new range item.
6199		 */
6200		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6201			first_dir_index = last_range_start;
6202
6203		ret = insert_dir_log_key(trans, log, path, key.objectid,
6204					 first_dir_index, last_dir_index);
6205		if (ret)
6206			return ret;
6207
6208		last_range_start = first_dir_index;
6209		last_range_end = last_dir_index;
6210next_batch:
6211		curr = list_next_entry(last, log_list);
6212	}
 
6213
6214	return 0;
6215}
6216
6217static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6218				      struct btrfs_inode *inode,
6219				      struct btrfs_path *path,
6220				      const struct list_head *delayed_del_list,
6221				      struct btrfs_log_ctx *ctx)
6222{
6223	/*
6224	 * We are deleting dir index items from the log tree or adding range
6225	 * items to it.
6226	 */
6227	lockdep_assert_held(&inode->log_mutex);
6228
6229	if (list_empty(delayed_del_list))
6230		return 0;
6231
6232	if (ctx->logged_before)
6233		return log_delayed_deletions_incremental(trans, inode, path,
6234							 delayed_del_list, ctx);
6235
6236	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6237					  ctx);
6238}
6239
6240/*
6241 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6242 * items instead of the subvolume tree.
 
 
6243 */
6244static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6245				    struct btrfs_inode *inode,
6246				    const struct list_head *delayed_ins_list,
6247				    struct btrfs_log_ctx *ctx)
 
6248{
6249	const bool orig_log_new_dentries = ctx->log_new_dentries;
6250	struct btrfs_fs_info *fs_info = trans->fs_info;
6251	struct btrfs_delayed_item *item;
6252	int ret = 0;
 
 
6253
6254	/*
6255	 * No need for the log mutex, plus to avoid potential deadlocks or
6256	 * lockdep annotations due to nesting of delayed inode mutexes and log
6257	 * mutexes.
6258	 */
6259	lockdep_assert_not_held(&inode->log_mutex);
6260
6261	ASSERT(!ctx->logging_new_delayed_dentries);
6262	ctx->logging_new_delayed_dentries = true;
6263
6264	list_for_each_entry(item, delayed_ins_list, log_list) {
6265		struct btrfs_dir_item *dir_item;
6266		struct inode *di_inode;
6267		struct btrfs_key key;
6268		int log_mode = LOG_INODE_EXISTS;
6269
6270		dir_item = (struct btrfs_dir_item *)item->data;
6271		btrfs_disk_key_to_cpu(&key, &dir_item->location);
 
 
 
6272
6273		if (key.type == BTRFS_ROOT_ITEM_KEY)
6274			continue;
 
 
 
 
 
 
 
 
6275
6276		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6277		if (IS_ERR(di_inode)) {
6278			ret = PTR_ERR(di_inode);
6279			break;
6280		}
6281
6282		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6283			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6284			continue;
 
 
 
 
 
6285		}
6286
6287		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6288			log_mode = LOG_INODE_ALL;
6289
6290		ctx->log_new_dentries = false;
6291		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6292
6293		if (!ret && ctx->log_new_dentries)
6294			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6295
6296		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6297
6298		if (ret)
6299			break;
6300	}
6301
6302	ctx->log_new_dentries = orig_log_new_dentries;
6303	ctx->logging_new_delayed_dentries = false;
6304
6305	return ret;
6306}
6307
6308/* log a single inode in the tree log.
6309 * At least one parent directory for this inode must exist in the tree
6310 * or be logged already.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6311 *
6312 * Any items from this inode changed by the current transaction are copied
6313 * to the log tree.  An extra reference is taken on any extents in this
6314 * file, allowing us to avoid a whole pile of corner cases around logging
6315 * blocks that have been removed from the tree.
6316 *
6317 * See LOG_INODE_ALL and related defines for a description of what inode_only
6318 * does.
 
 
 
 
 
6319 *
6320 * This handles both files and directories.
 
 
 
 
 
 
 
 
 
 
 
 
6321 */
6322static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6323			   struct btrfs_inode *inode,
6324			   int inode_only,
6325			   struct btrfs_log_ctx *ctx)
6326{
 
 
6327	struct btrfs_path *path;
6328	struct btrfs_path *dst_path;
6329	struct btrfs_key min_key;
6330	struct btrfs_key max_key;
6331	struct btrfs_root *log = inode->root->log_root;
6332	int ret;
6333	bool fast_search = false;
6334	u64 ino = btrfs_ino(inode);
6335	struct extent_map_tree *em_tree = &inode->extent_tree;
6336	u64 logged_isize = 0;
6337	bool need_log_inode_item = true;
6338	bool xattrs_logged = false;
6339	bool inode_item_dropped = true;
6340	bool full_dir_logging = false;
6341	LIST_HEAD(delayed_ins_list);
6342	LIST_HEAD(delayed_del_list);
6343
6344	path = btrfs_alloc_path();
6345	if (!path)
6346		return -ENOMEM;
6347	dst_path = btrfs_alloc_path();
6348	if (!dst_path) {
 
6349		btrfs_free_path(path);
6350		return -ENOMEM;
6351	}
 
 
6352
6353	min_key.objectid = ino;
6354	min_key.type = BTRFS_INODE_ITEM_KEY;
6355	min_key.offset = 0;
 
 
6356
6357	max_key.objectid = ino;
 
 
 
6358
 
 
 
 
 
 
 
 
 
 
 
 
6359
6360	/* today the code can only do partial logging of directories */
6361	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6362	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6363		       &inode->runtime_flags) &&
6364	     inode_only >= LOG_INODE_EXISTS))
6365		max_key.type = BTRFS_XATTR_ITEM_KEY;
6366	else
6367		max_key.type = (u8)-1;
6368	max_key.offset = (u64)-1;
 
6369
6370	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6371		full_dir_logging = true;
 
 
 
 
 
 
 
 
 
 
 
6372
6373	/*
6374	 * If we are logging a directory while we are logging dentries of the
6375	 * delayed items of some other inode, then we need to flush the delayed
6376	 * items of this directory and not log the delayed items directly. This
6377	 * is to prevent more than one level of recursion into btrfs_log_inode()
6378	 * by having something like this:
6379	 *
6380	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6381	 *     $ xfs_io -c "fsync" a
6382	 *
6383	 * Where all directories in the path did not exist before and are
6384	 * created in the current transaction.
6385	 * So in such a case we directly log the delayed items of the main
6386	 * directory ("a") without flushing them first, while for each of its
6387	 * subdirectories we flush their delayed items before logging them.
6388	 * This prevents a potential unbounded recursion like this:
6389	 *
6390	 * btrfs_log_inode()
6391	 *   log_new_delayed_dentries()
6392	 *      btrfs_log_inode()
6393	 *        log_new_delayed_dentries()
6394	 *          btrfs_log_inode()
6395	 *            log_new_delayed_dentries()
6396	 *              (...)
6397	 *
6398	 * We have thresholds for the maximum number of delayed items to have in
6399	 * memory, and once they are hit, the items are flushed asynchronously.
6400	 * However the limit is quite high, so lets prevent deep levels of
6401	 * recursion to happen by limiting the maximum depth to be 1.
6402	 */
6403	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6404		ret = btrfs_commit_inode_delayed_items(trans, inode);
6405		if (ret)
6406			goto out;
6407	}
6408
6409	mutex_lock(&inode->log_mutex);
 
 
 
6410
6411	/*
6412	 * For symlinks, we must always log their content, which is stored in an
6413	 * inline extent, otherwise we could end up with an empty symlink after
6414	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6415	 * one attempts to create an empty symlink).
6416	 * We don't need to worry about flushing delalloc, because when we create
6417	 * the inline extent when the symlink is created (we never have delalloc
6418	 * for symlinks).
6419	 */
6420	if (S_ISLNK(inode->vfs_inode.i_mode))
6421		inode_only = LOG_INODE_ALL;
6422
6423	/*
6424	 * Before logging the inode item, cache the value returned by
6425	 * inode_logged(), because after that we have the need to figure out if
6426	 * the inode was previously logged in this transaction.
6427	 */
6428	ret = inode_logged(trans, inode, path);
6429	if (ret < 0)
6430		goto out_unlock;
6431	ctx->logged_before = (ret == 1);
6432	ret = 0;
6433
6434	/*
6435	 * This is for cases where logging a directory could result in losing a
6436	 * a file after replaying the log. For example, if we move a file from a
6437	 * directory A to a directory B, then fsync directory A, we have no way
6438	 * to known the file was moved from A to B, so logging just A would
6439	 * result in losing the file after a log replay.
6440	 */
6441	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6442		ret = BTRFS_LOG_FORCE_COMMIT;
6443		goto out_unlock;
6444	}
6445
6446	/*
6447	 * a brute force approach to making sure we get the most uptodate
6448	 * copies of everything.
6449	 */
6450	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6451		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6452		if (ctx->logged_before)
6453			ret = drop_inode_items(trans, log, path, inode,
6454					       BTRFS_XATTR_ITEM_KEY);
6455	} else {
6456		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6457			/*
6458			 * Make sure the new inode item we write to the log has
6459			 * the same isize as the current one (if it exists).
6460			 * This is necessary to prevent data loss after log
6461			 * replay, and also to prevent doing a wrong expanding
6462			 * truncate - for e.g. create file, write 4K into offset
6463			 * 0, fsync, write 4K into offset 4096, add hard link,
6464			 * fsync some other file (to sync log), power fail - if
6465			 * we use the inode's current i_size, after log replay
6466			 * we get a 8Kb file, with the last 4Kb extent as a hole
6467			 * (zeroes), as if an expanding truncate happened,
6468			 * instead of getting a file of 4Kb only.
6469			 */
6470			ret = logged_inode_size(log, inode, path, &logged_isize);
6471			if (ret)
6472				goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
6473		}
6474		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6475			     &inode->runtime_flags)) {
6476			if (inode_only == LOG_INODE_EXISTS) {
6477				max_key.type = BTRFS_XATTR_ITEM_KEY;
6478				if (ctx->logged_before)
6479					ret = drop_inode_items(trans, log, path,
6480							       inode, max_key.type);
6481			} else {
6482				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6483					  &inode->runtime_flags);
6484				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6485					  &inode->runtime_flags);
6486				if (ctx->logged_before)
6487					ret = truncate_inode_items(trans, log,
6488								   inode, 0, 0);
6489			}
6490		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6491					      &inode->runtime_flags) ||
6492			   inode_only == LOG_INODE_EXISTS) {
6493			if (inode_only == LOG_INODE_ALL)
6494				fast_search = true;
6495			max_key.type = BTRFS_XATTR_ITEM_KEY;
6496			if (ctx->logged_before)
6497				ret = drop_inode_items(trans, log, path, inode,
6498						       max_key.type);
6499		} else {
6500			if (inode_only == LOG_INODE_ALL)
6501				fast_search = true;
6502			inode_item_dropped = false;
6503			goto log_extents;
6504		}
6505
6506	}
6507	if (ret)
6508		goto out_unlock;
6509
6510	/*
6511	 * If we are logging a directory in full mode, collect the delayed items
6512	 * before iterating the subvolume tree, so that we don't miss any new
6513	 * dir index items in case they get flushed while or right after we are
6514	 * iterating the subvolume tree.
6515	 */
6516	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6517		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6518					    &delayed_del_list);
6519
6520	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6521				      path, dst_path, logged_isize,
6522				      inode_only, ctx,
6523				      &need_log_inode_item);
6524	if (ret)
6525		goto out_unlock;
6526
6527	btrfs_release_path(path);
6528	btrfs_release_path(dst_path);
6529	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6530	if (ret)
6531		goto out_unlock;
6532	xattrs_logged = true;
6533	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6534		btrfs_release_path(path);
6535		btrfs_release_path(dst_path);
6536		ret = btrfs_log_holes(trans, inode, path);
6537		if (ret)
6538			goto out_unlock;
6539	}
6540log_extents:
6541	btrfs_release_path(path);
6542	btrfs_release_path(dst_path);
6543	if (need_log_inode_item) {
6544		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6545		if (ret)
6546			goto out_unlock;
6547		/*
6548		 * If we are doing a fast fsync and the inode was logged before
6549		 * in this transaction, we don't need to log the xattrs because
6550		 * they were logged before. If xattrs were added, changed or
6551		 * deleted since the last time we logged the inode, then we have
6552		 * already logged them because the inode had the runtime flag
6553		 * BTRFS_INODE_COPY_EVERYTHING set.
6554		 */
6555		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6556			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6557			if (ret)
6558				goto out_unlock;
6559			btrfs_release_path(path);
6560		}
 
 
 
6561	}
6562	if (fast_search) {
6563		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6564		if (ret)
6565			goto out_unlock;
6566	} else if (inode_only == LOG_INODE_ALL) {
6567		struct extent_map *em, *n;
6568
6569		write_lock(&em_tree->lock);
6570		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6571			list_del_init(&em->list);
6572		write_unlock(&em_tree->lock);
6573	}
6574
6575	if (full_dir_logging) {
6576		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6577		if (ret)
6578			goto out_unlock;
6579		ret = log_delayed_insertion_items(trans, inode, path,
6580						  &delayed_ins_list, ctx);
6581		if (ret)
6582			goto out_unlock;
6583		ret = log_delayed_deletion_items(trans, inode, path,
6584						 &delayed_del_list, ctx);
6585		if (ret)
6586			goto out_unlock;
6587	}
6588
6589	spin_lock(&inode->lock);
6590	inode->logged_trans = trans->transid;
6591	/*
6592	 * Don't update last_log_commit if we logged that an inode exists.
6593	 * We do this for three reasons:
6594	 *
6595	 * 1) We might have had buffered writes to this inode that were
6596	 *    flushed and had their ordered extents completed in this
6597	 *    transaction, but we did not previously log the inode with
6598	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6599	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6600	 *    happened. We must make sure that if an explicit fsync against
6601	 *    the inode is performed later, it logs the new extents, an
6602	 *    updated inode item, etc, and syncs the log. The same logic
6603	 *    applies to direct IO writes instead of buffered writes.
6604	 *
6605	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6606	 *    is logged with an i_size of 0 or whatever value was logged
6607	 *    before. If later the i_size of the inode is increased by a
6608	 *    truncate operation, the log is synced through an fsync of
6609	 *    some other inode and then finally an explicit fsync against
6610	 *    this inode is made, we must make sure this fsync logs the
6611	 *    inode with the new i_size, the hole between old i_size and
6612	 *    the new i_size, and syncs the log.
6613	 *
6614	 * 3) If we are logging that an ancestor inode exists as part of
6615	 *    logging a new name from a link or rename operation, don't update
6616	 *    its last_log_commit - otherwise if an explicit fsync is made
6617	 *    against an ancestor, the fsync considers the inode in the log
6618	 *    and doesn't sync the log, resulting in the ancestor missing after
6619	 *    a power failure unless the log was synced as part of an fsync
6620	 *    against any other unrelated inode.
6621	 */
6622	if (inode_only != LOG_INODE_EXISTS)
6623		inode->last_log_commit = inode->last_sub_trans;
6624	spin_unlock(&inode->lock);
6625
6626	/*
6627	 * Reset the last_reflink_trans so that the next fsync does not need to
6628	 * go through the slower path when logging extents and their checksums.
6629	 */
6630	if (inode_only == LOG_INODE_ALL)
6631		inode->last_reflink_trans = 0;
6632
6633out_unlock:
6634	mutex_unlock(&inode->log_mutex);
6635out:
6636	btrfs_free_path(path);
6637	btrfs_free_path(dst_path);
6638
6639	if (ret)
6640		free_conflicting_inodes(ctx);
6641	else
6642		ret = log_conflicting_inodes(trans, inode->root, ctx);
6643
6644	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6645		if (!ret)
6646			ret = log_new_delayed_dentries(trans, inode,
6647						       &delayed_ins_list, ctx);
6648
6649		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6650					    &delayed_del_list);
6651	}
6652
6653	return ret;
6654}
6655
6656static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6657				 struct btrfs_inode *inode,
6658				 struct btrfs_log_ctx *ctx)
6659{
6660	struct btrfs_fs_info *fs_info = trans->fs_info;
6661	int ret;
6662	struct btrfs_path *path;
6663	struct btrfs_key key;
6664	struct btrfs_root *root = inode->root;
6665	const u64 ino = btrfs_ino(inode);
6666
6667	path = btrfs_alloc_path();
6668	if (!path)
6669		return -ENOMEM;
6670	path->skip_locking = 1;
6671	path->search_commit_root = 1;
6672
6673	key.objectid = ino;
6674	key.type = BTRFS_INODE_REF_KEY;
6675	key.offset = 0;
6676	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6677	if (ret < 0)
6678		goto out;
6679
6680	while (true) {
6681		struct extent_buffer *leaf = path->nodes[0];
6682		int slot = path->slots[0];
6683		u32 cur_offset = 0;
6684		u32 item_size;
6685		unsigned long ptr;
6686
6687		if (slot >= btrfs_header_nritems(leaf)) {
6688			ret = btrfs_next_leaf(root, path);
6689			if (ret < 0)
6690				goto out;
6691			else if (ret > 0)
6692				break;
6693			continue;
6694		}
6695
6696		btrfs_item_key_to_cpu(leaf, &key, slot);
6697		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6698		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6699			break;
6700
6701		item_size = btrfs_item_size(leaf, slot);
6702		ptr = btrfs_item_ptr_offset(leaf, slot);
6703		while (cur_offset < item_size) {
6704			struct btrfs_key inode_key;
6705			struct inode *dir_inode;
6706
6707			inode_key.type = BTRFS_INODE_ITEM_KEY;
6708			inode_key.offset = 0;
6709
6710			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6711				struct btrfs_inode_extref *extref;
6712
6713				extref = (struct btrfs_inode_extref *)
6714					(ptr + cur_offset);
6715				inode_key.objectid = btrfs_inode_extref_parent(
6716					leaf, extref);
6717				cur_offset += sizeof(*extref);
6718				cur_offset += btrfs_inode_extref_name_len(leaf,
6719					extref);
6720			} else {
6721				inode_key.objectid = key.offset;
6722				cur_offset = item_size;
6723			}
6724
6725			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6726					       root);
6727			/*
6728			 * If the parent inode was deleted, return an error to
6729			 * fallback to a transaction commit. This is to prevent
6730			 * getting an inode that was moved from one parent A to
6731			 * a parent B, got its former parent A deleted and then
6732			 * it got fsync'ed, from existing at both parents after
6733			 * a log replay (and the old parent still existing).
6734			 * Example:
6735			 *
6736			 * mkdir /mnt/A
6737			 * mkdir /mnt/B
6738			 * touch /mnt/B/bar
6739			 * sync
6740			 * mv /mnt/B/bar /mnt/A/bar
6741			 * mv -T /mnt/A /mnt/B
6742			 * fsync /mnt/B/bar
6743			 * <power fail>
6744			 *
6745			 * If we ignore the old parent B which got deleted,
6746			 * after a log replay we would have file bar linked
6747			 * at both parents and the old parent B would still
6748			 * exist.
6749			 */
6750			if (IS_ERR(dir_inode)) {
6751				ret = PTR_ERR(dir_inode);
6752				goto out;
6753			}
6754
6755			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6756				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6757				continue;
6758			}
6759
6760			ctx->log_new_dentries = false;
6761			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6762					      LOG_INODE_ALL, ctx);
6763			if (!ret && ctx->log_new_dentries)
6764				ret = log_new_dir_dentries(trans,
6765						   BTRFS_I(dir_inode), ctx);
6766			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
 
 
 
 
6767			if (ret)
6768				goto out;
6769		}
6770		path->slots[0]++;
6771	}
6772	ret = 0;
6773out:
6774	btrfs_free_path(path);
6775	return ret;
6776}
6777
6778static int log_new_ancestors(struct btrfs_trans_handle *trans,
6779			     struct btrfs_root *root,
6780			     struct btrfs_path *path,
6781			     struct btrfs_log_ctx *ctx)
6782{
6783	struct btrfs_key found_key;
6784
6785	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6786
6787	while (true) {
6788		struct btrfs_fs_info *fs_info = root->fs_info;
6789		struct extent_buffer *leaf;
6790		int slot;
6791		struct btrfs_key search_key;
6792		struct inode *inode;
6793		u64 ino;
6794		int ret = 0;
6795
6796		btrfs_release_path(path);
6797
6798		ino = found_key.offset;
6799
6800		search_key.objectid = found_key.offset;
6801		search_key.type = BTRFS_INODE_ITEM_KEY;
6802		search_key.offset = 0;
6803		inode = btrfs_iget(fs_info->sb, ino, root);
6804		if (IS_ERR(inode))
6805			return PTR_ERR(inode);
6806
6807		if (BTRFS_I(inode)->generation >= trans->transid &&
6808		    need_log_inode(trans, BTRFS_I(inode)))
6809			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6810					      LOG_INODE_EXISTS, ctx);
6811		btrfs_add_delayed_iput(BTRFS_I(inode));
6812		if (ret)
6813			return ret;
6814
6815		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6816			break;
6817
6818		search_key.type = BTRFS_INODE_REF_KEY;
6819		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6820		if (ret < 0)
6821			return ret;
6822
6823		leaf = path->nodes[0];
6824		slot = path->slots[0];
6825		if (slot >= btrfs_header_nritems(leaf)) {
6826			ret = btrfs_next_leaf(root, path);
6827			if (ret < 0)
6828				return ret;
6829			else if (ret > 0)
6830				return -ENOENT;
6831			leaf = path->nodes[0];
6832			slot = path->slots[0];
6833		}
6834
6835		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6836		if (found_key.objectid != search_key.objectid ||
6837		    found_key.type != BTRFS_INODE_REF_KEY)
6838			return -ENOENT;
6839	}
6840	return 0;
6841}
6842
6843static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6844				  struct btrfs_inode *inode,
6845				  struct dentry *parent,
6846				  struct btrfs_log_ctx *ctx)
6847{
6848	struct btrfs_root *root = inode->root;
6849	struct dentry *old_parent = NULL;
6850	struct super_block *sb = inode->vfs_inode.i_sb;
6851	int ret = 0;
6852
6853	while (true) {
6854		if (!parent || d_really_is_negative(parent) ||
6855		    sb != parent->d_sb)
6856			break;
6857
6858		inode = BTRFS_I(d_inode(parent));
6859		if (root != inode->root)
6860			break;
6861
6862		if (inode->generation >= trans->transid &&
6863		    need_log_inode(trans, inode)) {
6864			ret = btrfs_log_inode(trans, inode,
6865					      LOG_INODE_EXISTS, ctx);
6866			if (ret)
6867				break;
6868		}
6869		if (IS_ROOT(parent))
6870			break;
6871
6872		parent = dget_parent(parent);
6873		dput(old_parent);
6874		old_parent = parent;
6875	}
6876	dput(old_parent);
6877
6878	return ret;
6879}
6880
6881static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6882				 struct btrfs_inode *inode,
6883				 struct dentry *parent,
6884				 struct btrfs_log_ctx *ctx)
6885{
6886	struct btrfs_root *root = inode->root;
6887	const u64 ino = btrfs_ino(inode);
6888	struct btrfs_path *path;
6889	struct btrfs_key search_key;
6890	int ret;
6891
6892	/*
6893	 * For a single hard link case, go through a fast path that does not
6894	 * need to iterate the fs/subvolume tree.
6895	 */
6896	if (inode->vfs_inode.i_nlink < 2)
6897		return log_new_ancestors_fast(trans, inode, parent, ctx);
6898
6899	path = btrfs_alloc_path();
6900	if (!path)
6901		return -ENOMEM;
6902
6903	search_key.objectid = ino;
6904	search_key.type = BTRFS_INODE_REF_KEY;
6905	search_key.offset = 0;
6906again:
6907	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6908	if (ret < 0)
6909		goto out;
6910	if (ret == 0)
6911		path->slots[0]++;
6912
6913	while (true) {
6914		struct extent_buffer *leaf = path->nodes[0];
6915		int slot = path->slots[0];
6916		struct btrfs_key found_key;
6917
6918		if (slot >= btrfs_header_nritems(leaf)) {
6919			ret = btrfs_next_leaf(root, path);
6920			if (ret < 0)
6921				goto out;
6922			else if (ret > 0)
6923				break;
6924			continue;
6925		}
6926
6927		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6928		if (found_key.objectid != ino ||
6929		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6930			break;
6931
6932		/*
6933		 * Don't deal with extended references because they are rare
6934		 * cases and too complex to deal with (we would need to keep
6935		 * track of which subitem we are processing for each item in
6936		 * this loop, etc). So just return some error to fallback to
6937		 * a transaction commit.
6938		 */
6939		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6940			ret = -EMLINK;
6941			goto out;
6942		}
6943
6944		/*
6945		 * Logging ancestors needs to do more searches on the fs/subvol
6946		 * tree, so it releases the path as needed to avoid deadlocks.
6947		 * Keep track of the last inode ref key and resume from that key
6948		 * after logging all new ancestors for the current hard link.
6949		 */
6950		memcpy(&search_key, &found_key, sizeof(search_key));
6951
6952		ret = log_new_ancestors(trans, root, path, ctx);
6953		if (ret)
6954			goto out;
6955		btrfs_release_path(path);
6956		goto again;
6957	}
6958	ret = 0;
6959out:
6960	btrfs_free_path(path);
6961	return ret;
6962}
6963
6964/*
6965 * helper function around btrfs_log_inode to make sure newly created
6966 * parent directories also end up in the log.  A minimal inode and backref
6967 * only logging is done of any parent directories that are older than
6968 * the last committed transaction
6969 */
6970static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6971				  struct btrfs_inode *inode,
6972				  struct dentry *parent,
6973				  int inode_only,
 
 
6974				  struct btrfs_log_ctx *ctx)
6975{
6976	struct btrfs_root *root = inode->root;
6977	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 
6978	int ret = 0;
 
6979	bool log_dentries = false;
 
 
 
6980
6981	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6982		ret = BTRFS_LOG_FORCE_COMMIT;
6983		goto end_no_trans;
6984	}
6985
6986	if (btrfs_root_refs(&root->root_item) == 0) {
6987		ret = BTRFS_LOG_FORCE_COMMIT;
 
 
 
 
 
6988		goto end_no_trans;
6989	}
6990
6991	/*
6992	 * Skip already logged inodes or inodes corresponding to tmpfiles
6993	 * (since logging them is pointless, a link count of 0 means they
6994	 * will never be accessible).
6995	 */
6996	if ((btrfs_inode_in_log(inode, trans->transid) &&
6997	     list_empty(&ctx->ordered_extents)) ||
6998	    inode->vfs_inode.i_nlink == 0) {
 
 
 
 
6999		ret = BTRFS_NO_LOG_SYNC;
7000		goto end_no_trans;
7001	}
7002
7003	ret = start_log_trans(trans, root, ctx);
7004	if (ret)
7005		goto end_no_trans;
7006
7007	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7008	if (ret)
7009		goto end_trans;
7010
7011	/*
7012	 * for regular files, if its inode is already on disk, we don't
7013	 * have to worry about the parents at all.  This is because
7014	 * we can use the last_unlink_trans field to record renames
7015	 * and other fun in this file.
7016	 */
7017	if (S_ISREG(inode->vfs_inode.i_mode) &&
7018	    inode->generation < trans->transid &&
7019	    inode->last_unlink_trans < trans->transid) {
7020		ret = 0;
7021		goto end_trans;
7022	}
7023
7024	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7025		log_dentries = true;
7026
7027	/*
7028	 * On unlink we must make sure all our current and old parent directory
7029	 * inodes are fully logged. This is to prevent leaving dangling
7030	 * directory index entries in directories that were our parents but are
7031	 * not anymore. Not doing this results in old parent directory being
7032	 * impossible to delete after log replay (rmdir will always fail with
7033	 * error -ENOTEMPTY).
7034	 *
7035	 * Example 1:
7036	 *
7037	 * mkdir testdir
7038	 * touch testdir/foo
7039	 * ln testdir/foo testdir/bar
7040	 * sync
7041	 * unlink testdir/bar
7042	 * xfs_io -c fsync testdir/foo
7043	 * <power failure>
7044	 * mount fs, triggers log replay
7045	 *
7046	 * If we don't log the parent directory (testdir), after log replay the
7047	 * directory still has an entry pointing to the file inode using the bar
7048	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7049	 * the file inode has a link count of 1.
7050	 *
7051	 * Example 2:
7052	 *
7053	 * mkdir testdir
7054	 * touch foo
7055	 * ln foo testdir/foo2
7056	 * ln foo testdir/foo3
7057	 * sync
7058	 * unlink testdir/foo3
7059	 * xfs_io -c fsync foo
7060	 * <power failure>
7061	 * mount fs, triggers log replay
7062	 *
7063	 * Similar as the first example, after log replay the parent directory
7064	 * testdir still has an entry pointing to the inode file with name foo3
7065	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7066	 * and has a link count of 2.
7067	 */
7068	if (inode->last_unlink_trans >= trans->transid) {
7069		ret = btrfs_log_all_parents(trans, inode, ctx);
7070		if (ret)
7071			goto end_trans;
7072	}
7073
7074	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7075	if (ret)
7076		goto end_trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7077
 
 
 
 
7078	if (log_dentries)
7079		ret = log_new_dir_dentries(trans, inode, ctx);
7080	else
7081		ret = 0;
7082end_trans:
 
7083	if (ret < 0) {
7084		btrfs_set_log_full_commit(trans);
7085		ret = BTRFS_LOG_FORCE_COMMIT;
7086	}
7087
7088	if (ret)
7089		btrfs_remove_log_ctx(root, ctx);
7090	btrfs_end_log_trans(root);
7091end_no_trans:
7092	return ret;
7093}
7094
7095/*
7096 * it is not safe to log dentry if the chunk root has added new
7097 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7098 * If this returns 1, you must commit the transaction to safely get your
7099 * data on disk.
7100 */
7101int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7102			  struct dentry *dentry,
 
 
7103			  struct btrfs_log_ctx *ctx)
7104{
7105	struct dentry *parent = dget_parent(dentry);
7106	int ret;
7107
7108	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7109				     LOG_INODE_ALL, ctx);
7110	dput(parent);
7111
7112	return ret;
7113}
7114
7115/*
7116 * should be called during mount to recover any replay any log trees
7117 * from the FS
7118 */
7119int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7120{
7121	int ret;
7122	struct btrfs_path *path;
7123	struct btrfs_trans_handle *trans;
7124	struct btrfs_key key;
7125	struct btrfs_key found_key;
 
7126	struct btrfs_root *log;
7127	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7128	struct walk_control wc = {
7129		.process_func = process_one_buffer,
7130		.stage = LOG_WALK_PIN_ONLY,
7131	};
7132
7133	path = btrfs_alloc_path();
7134	if (!path)
7135		return -ENOMEM;
7136
7137	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7138
7139	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7140	if (IS_ERR(trans)) {
7141		ret = PTR_ERR(trans);
7142		goto error;
7143	}
7144
7145	wc.trans = trans;
7146	wc.pin = 1;
7147
7148	ret = walk_log_tree(trans, log_root_tree, &wc);
7149	if (ret) {
7150		btrfs_abort_transaction(trans, ret);
 
7151		goto error;
7152	}
7153
7154again:
7155	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7156	key.offset = (u64)-1;
7157	key.type = BTRFS_ROOT_ITEM_KEY;
7158
7159	while (1) {
7160		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7161
7162		if (ret < 0) {
7163			btrfs_abort_transaction(trans, ret);
 
7164			goto error;
7165		}
7166		if (ret > 0) {
7167			if (path->slots[0] == 0)
7168				break;
7169			path->slots[0]--;
7170		}
7171		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7172				      path->slots[0]);
7173		btrfs_release_path(path);
7174		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7175			break;
7176
7177		log = btrfs_read_tree_root(log_root_tree, &found_key);
7178		if (IS_ERR(log)) {
7179			ret = PTR_ERR(log);
7180			btrfs_abort_transaction(trans, ret);
 
7181			goto error;
7182		}
7183
7184		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7185						   true);
 
 
 
7186		if (IS_ERR(wc.replay_dest)) {
7187			ret = PTR_ERR(wc.replay_dest);
7188
7189			/*
7190			 * We didn't find the subvol, likely because it was
7191			 * deleted.  This is ok, simply skip this log and go to
7192			 * the next one.
7193			 *
7194			 * We need to exclude the root because we can't have
7195			 * other log replays overwriting this log as we'll read
7196			 * it back in a few more times.  This will keep our
7197			 * block from being modified, and we'll just bail for
7198			 * each subsequent pass.
7199			 */
7200			if (ret == -ENOENT)
7201				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7202			btrfs_put_root(log);
7203
7204			if (!ret)
7205				goto next;
7206			btrfs_abort_transaction(trans, ret);
7207			goto error;
7208		}
7209
7210		wc.replay_dest->log_root = log;
7211		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7212		if (ret)
7213			/* The loop needs to continue due to the root refs */
7214			btrfs_abort_transaction(trans, ret);
7215		else
7216			ret = walk_log_tree(trans, log, &wc);
7217
7218		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7219			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7220						      path);
7221			if (ret)
7222				btrfs_abort_transaction(trans, ret);
7223		}
7224
7225		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7226			struct btrfs_root *root = wc.replay_dest;
7227
7228			btrfs_release_path(path);
7229
7230			/*
7231			 * We have just replayed everything, and the highest
7232			 * objectid of fs roots probably has changed in case
7233			 * some inode_item's got replayed.
7234			 *
7235			 * root->objectid_mutex is not acquired as log replay
7236			 * could only happen during mount.
7237			 */
7238			ret = btrfs_init_root_free_objectid(root);
7239			if (ret)
7240				btrfs_abort_transaction(trans, ret);
7241		}
7242
 
7243		wc.replay_dest->log_root = NULL;
7244		btrfs_put_root(wc.replay_dest);
7245		btrfs_put_root(log);
 
7246
7247		if (ret)
7248			goto error;
7249next:
7250		if (found_key.offset == 0)
7251			break;
7252		key.offset = found_key.offset - 1;
7253	}
7254	btrfs_release_path(path);
7255
7256	/* step one is to pin it all, step two is to replay just inodes */
7257	if (wc.pin) {
7258		wc.pin = 0;
7259		wc.process_func = replay_one_buffer;
7260		wc.stage = LOG_WALK_REPLAY_INODES;
7261		goto again;
7262	}
7263	/* step three is to replay everything */
7264	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7265		wc.stage++;
7266		goto again;
7267	}
7268
7269	btrfs_free_path(path);
7270
7271	/* step 4: commit the transaction, which also unpins the blocks */
7272	ret = btrfs_commit_transaction(trans);
7273	if (ret)
7274		return ret;
7275
 
7276	log_root_tree->log_root = NULL;
7277	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7278	btrfs_put_root(log_root_tree);
7279
7280	return 0;
7281error:
7282	if (wc.trans)
7283		btrfs_end_transaction(wc.trans);
7284	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7285	btrfs_free_path(path);
7286	return ret;
7287}
7288
7289/*
7290 * there are some corner cases where we want to force a full
7291 * commit instead of allowing a directory to be logged.
7292 *
7293 * They revolve around files there were unlinked from the directory, and
7294 * this function updates the parent directory so that a full commit is
7295 * properly done if it is fsync'd later after the unlinks are done.
7296 *
7297 * Must be called before the unlink operations (updates to the subvolume tree,
7298 * inodes, etc) are done.
7299 */
7300void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7301			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7302			     bool for_rename)
7303{
7304	/*
7305	 * when we're logging a file, if it hasn't been renamed
7306	 * or unlinked, and its inode is fully committed on disk,
7307	 * we don't have to worry about walking up the directory chain
7308	 * to log its parents.
7309	 *
7310	 * So, we use the last_unlink_trans field to put this transid
7311	 * into the file.  When the file is logged we check it and
7312	 * don't log the parents if the file is fully on disk.
7313	 */
7314	mutex_lock(&inode->log_mutex);
7315	inode->last_unlink_trans = trans->transid;
7316	mutex_unlock(&inode->log_mutex);
7317
7318	if (!for_rename)
7319		return;
7320
7321	/*
7322	 * If this directory was already logged, any new names will be logged
7323	 * with btrfs_log_new_name() and old names will be deleted from the log
7324	 * tree with btrfs_del_dir_entries_in_log() or with
7325	 * btrfs_del_inode_ref_in_log().
7326	 */
7327	if (inode_logged(trans, dir, NULL) == 1)
 
7328		return;
7329
7330	/*
7331	 * If the inode we're about to unlink was logged before, the log will be
7332	 * properly updated with the new name with btrfs_log_new_name() and the
7333	 * old name removed with btrfs_del_dir_entries_in_log() or with
7334	 * btrfs_del_inode_ref_in_log().
7335	 */
7336	if (inode_logged(trans, inode, NULL) == 1)
7337		return;
7338
7339	/*
7340	 * when renaming files across directories, if the directory
7341	 * there we're unlinking from gets fsync'd later on, there's
7342	 * no way to find the destination directory later and fsync it
7343	 * properly.  So, we have to be conservative and force commits
7344	 * so the new name gets discovered.
7345	 */
7346	mutex_lock(&dir->log_mutex);
7347	dir->last_unlink_trans = trans->transid;
7348	mutex_unlock(&dir->log_mutex);
 
 
 
 
 
 
 
7349}
7350
7351/*
7352 * Make sure that if someone attempts to fsync the parent directory of a deleted
7353 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7354 * that after replaying the log tree of the parent directory's root we will not
7355 * see the snapshot anymore and at log replay time we will not see any log tree
7356 * corresponding to the deleted snapshot's root, which could lead to replaying
7357 * it after replaying the log tree of the parent directory (which would replay
7358 * the snapshot delete operation).
7359 *
7360 * Must be called before the actual snapshot destroy operation (updates to the
7361 * parent root and tree of tree roots trees, etc) are done.
7362 */
7363void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7364				   struct btrfs_inode *dir)
7365{
7366	mutex_lock(&dir->log_mutex);
7367	dir->last_unlink_trans = trans->transid;
7368	mutex_unlock(&dir->log_mutex);
7369}
7370
7371/*
7372 * Update the log after adding a new name for an inode.
7373 *
7374 * @trans:              Transaction handle.
7375 * @old_dentry:         The dentry associated with the old name and the old
7376 *                      parent directory.
7377 * @old_dir:            The inode of the previous parent directory for the case
7378 *                      of a rename. For a link operation, it must be NULL.
7379 * @old_dir_index:      The index number associated with the old name, meaningful
7380 *                      only for rename operations (when @old_dir is not NULL).
7381 *                      Ignored for link operations.
7382 * @parent:             The dentry associated with the directory under which the
7383 *                      new name is located.
7384 *
7385 * Call this after adding a new name for an inode, as a result of a link or
7386 * rename operation, and it will properly update the log to reflect the new name.
7387 */
7388void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7389			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7390			u64 old_dir_index, struct dentry *parent)
7391{
7392	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7393	struct btrfs_root *root = inode->root;
7394	struct btrfs_log_ctx ctx;
7395	bool log_pinned = false;
7396	int ret;
7397
7398	/*
7399	 * this will force the logging code to walk the dentry chain
7400	 * up for the file
7401	 */
7402	if (!S_ISDIR(inode->vfs_inode.i_mode))
7403		inode->last_unlink_trans = trans->transid;
7404
7405	/*
7406	 * if this inode hasn't been logged and directory we're renaming it
7407	 * from hasn't been logged, we don't need to log it
7408	 */
7409	ret = inode_logged(trans, inode, NULL);
7410	if (ret < 0) {
7411		goto out;
7412	} else if (ret == 0) {
7413		if (!old_dir)
7414			return;
7415		/*
7416		 * If the inode was not logged and we are doing a rename (old_dir is not
7417		 * NULL), check if old_dir was logged - if it was not we can return and
7418		 * do nothing.
7419		 */
7420		ret = inode_logged(trans, old_dir, NULL);
7421		if (ret < 0)
7422			goto out;
7423		else if (ret == 0)
7424			return;
7425	}
7426	ret = 0;
7427
7428	/*
7429	 * If we are doing a rename (old_dir is not NULL) from a directory that
7430	 * was previously logged, make sure that on log replay we get the old
7431	 * dir entry deleted. This is needed because we will also log the new
7432	 * name of the renamed inode, so we need to make sure that after log
7433	 * replay we don't end up with both the new and old dir entries existing.
7434	 */
7435	if (old_dir && old_dir->logged_trans == trans->transid) {
7436		struct btrfs_root *log = old_dir->root->log_root;
7437		struct btrfs_path *path;
7438		struct fscrypt_name fname;
7439
7440		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7441
7442		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7443					     &old_dentry->d_name, 0, &fname);
7444		if (ret)
7445			goto out;
7446		/*
7447		 * We have two inodes to update in the log, the old directory and
7448		 * the inode that got renamed, so we must pin the log to prevent
7449		 * anyone from syncing the log until we have updated both inodes
7450		 * in the log.
7451		 */
7452		ret = join_running_log_trans(root);
7453		/*
7454		 * At least one of the inodes was logged before, so this should
7455		 * not fail, but if it does, it's not serious, just bail out and
7456		 * mark the log for a full commit.
7457		 */
7458		if (WARN_ON_ONCE(ret < 0)) {
7459			fscrypt_free_filename(&fname);
7460			goto out;
7461		}
7462
7463		log_pinned = true;
7464
7465		path = btrfs_alloc_path();
7466		if (!path) {
7467			ret = -ENOMEM;
7468			fscrypt_free_filename(&fname);
7469			goto out;
7470		}
7471
7472		/*
7473		 * Other concurrent task might be logging the old directory,
7474		 * as it can be triggered when logging other inode that had or
7475		 * still has a dentry in the old directory. We lock the old
7476		 * directory's log_mutex to ensure the deletion of the old
7477		 * name is persisted, because during directory logging we
7478		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7479		 * the old name's dir index item is in the delayed items, so
7480		 * it could be missed by an in progress directory logging.
7481		 */
7482		mutex_lock(&old_dir->log_mutex);
7483		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7484					&fname.disk_name, old_dir_index);
7485		if (ret > 0) {
7486			/*
7487			 * The dentry does not exist in the log, so record its
7488			 * deletion.
7489			 */
7490			btrfs_release_path(path);
7491			ret = insert_dir_log_key(trans, log, path,
7492						 btrfs_ino(old_dir),
7493						 old_dir_index, old_dir_index);
7494		}
7495		mutex_unlock(&old_dir->log_mutex);
7496
7497		btrfs_free_path(path);
7498		fscrypt_free_filename(&fname);
7499		if (ret < 0)
7500			goto out;
7501	}
7502
7503	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7504	ctx.logging_new_name = true;
7505	/*
7506	 * We don't care about the return value. If we fail to log the new name
7507	 * then we know the next attempt to sync the log will fallback to a full
7508	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7509	 * we don't need to worry about getting a log committed that has an
7510	 * inconsistent state after a rename operation.
7511	 */
7512	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7513	ASSERT(list_empty(&ctx.conflict_inodes));
7514out:
7515	/*
7516	 * If an error happened mark the log for a full commit because it's not
7517	 * consistent and up to date or we couldn't find out if one of the
7518	 * inodes was logged before in this transaction. Do it before unpinning
7519	 * the log, to avoid any races with someone else trying to commit it.
7520	 */
7521	if (ret < 0)
7522		btrfs_set_log_full_commit(trans);
7523	if (log_pinned)
7524		btrfs_end_log_trans(root);
7525}
7526