Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
 
 
 
  23#include "tree-log.h"
  24#include "disk-io.h"
  25#include "locking.h"
  26#include "print-tree.h"
  27#include "backref.h"
  28#include "hash.h"
  29#include "compression.h"
  30#include "qgroup.h"
 
 
 
  31
  32/* magic values for the inode_only field in btrfs_log_inode:
  33 *
  34 * LOG_INODE_ALL means to log everything
  35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  36 * during log replay
  37 */
  38#define LOG_INODE_ALL 0
  39#define LOG_INODE_EXISTS 1
  40#define LOG_OTHER_INODE 2
 
 
 
  41
  42/*
  43 * directory trouble cases
  44 *
  45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  46 * log, we must force a full commit before doing an fsync of the directory
  47 * where the unlink was done.
  48 * ---> record transid of last unlink/rename per directory
  49 *
  50 * mkdir foo/some_dir
  51 * normal commit
  52 * rename foo/some_dir foo2/some_dir
  53 * mkdir foo/some_dir
  54 * fsync foo/some_dir/some_file
  55 *
  56 * The fsync above will unlink the original some_dir without recording
  57 * it in its new location (foo2).  After a crash, some_dir will be gone
  58 * unless the fsync of some_file forces a full commit
  59 *
  60 * 2) we must log any new names for any file or dir that is in the fsync
  61 * log. ---> check inode while renaming/linking.
  62 *
  63 * 2a) we must log any new names for any file or dir during rename
  64 * when the directory they are being removed from was logged.
  65 * ---> check inode and old parent dir during rename
  66 *
  67 *  2a is actually the more important variant.  With the extra logging
  68 *  a crash might unlink the old name without recreating the new one
  69 *
  70 * 3) after a crash, we must go through any directories with a link count
  71 * of zero and redo the rm -rf
  72 *
  73 * mkdir f1/foo
  74 * normal commit
  75 * rm -rf f1/foo
  76 * fsync(f1)
  77 *
  78 * The directory f1 was fully removed from the FS, but fsync was never
  79 * called on f1, only its parent dir.  After a crash the rm -rf must
  80 * be replayed.  This must be able to recurse down the entire
  81 * directory tree.  The inode link count fixup code takes care of the
  82 * ugly details.
  83 */
  84
  85/*
  86 * stages for the tree walking.  The first
  87 * stage (0) is to only pin down the blocks we find
  88 * the second stage (1) is to make sure that all the inodes
  89 * we find in the log are created in the subvolume.
  90 *
  91 * The last stage is to deal with directories and links and extents
  92 * and all the other fun semantics
  93 */
  94#define LOG_WALK_PIN_ONLY 0
  95#define LOG_WALK_REPLAY_INODES 1
  96#define LOG_WALK_REPLAY_DIR_INDEX 2
  97#define LOG_WALK_REPLAY_ALL 3
 
 
  98
  99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 100			   struct btrfs_root *root, struct inode *inode,
 101			   int inode_only,
 102			   const loff_t start,
 103			   const loff_t end,
 104			   struct btrfs_log_ctx *ctx);
 105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 106			     struct btrfs_root *root,
 107			     struct btrfs_path *path, u64 objectid);
 108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 109				       struct btrfs_root *root,
 110				       struct btrfs_root *log,
 111				       struct btrfs_path *path,
 112				       u64 dirid, int del_all);
 
 113
 114/*
 115 * tree logging is a special write ahead log used to make sure that
 116 * fsyncs and O_SYNCs can happen without doing full tree commits.
 117 *
 118 * Full tree commits are expensive because they require commonly
 119 * modified blocks to be recowed, creating many dirty pages in the
 120 * extent tree an 4x-6x higher write load than ext3.
 121 *
 122 * Instead of doing a tree commit on every fsync, we use the
 123 * key ranges and transaction ids to find items for a given file or directory
 124 * that have changed in this transaction.  Those items are copied into
 125 * a special tree (one per subvolume root), that tree is written to disk
 126 * and then the fsync is considered complete.
 127 *
 128 * After a crash, items are copied out of the log-tree back into the
 129 * subvolume tree.  Any file data extents found are recorded in the extent
 130 * allocation tree, and the log-tree freed.
 131 *
 132 * The log tree is read three times, once to pin down all the extents it is
 133 * using in ram and once, once to create all the inodes logged in the tree
 134 * and once to do all the other items.
 135 */
 136
 137/*
 138 * start a sub transaction and setup the log tree
 139 * this increments the log tree writer count to make the people
 140 * syncing the tree wait for us to finish
 141 */
 142static int start_log_trans(struct btrfs_trans_handle *trans,
 143			   struct btrfs_root *root,
 144			   struct btrfs_log_ctx *ctx)
 145{
 146	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 147	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149	mutex_lock(&root->log_mutex);
 150
 
 151	if (root->log_root) {
 152		if (btrfs_need_log_full_commit(fs_info, trans)) {
 
 
 153			ret = -EAGAIN;
 154			goto out;
 155		}
 156
 
 
 
 
 
 157		if (!root->log_start_pid) {
 158			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 159			root->log_start_pid = current->pid;
 160		} else if (root->log_start_pid != current->pid) {
 161			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 162		}
 163	} else {
 164		mutex_lock(&fs_info->tree_log_mutex);
 165		if (!fs_info->log_root_tree)
 166			ret = btrfs_init_log_root_tree(trans, fs_info);
 167		mutex_unlock(&fs_info->tree_log_mutex);
 168		if (ret)
 
 
 
 169			goto out;
 
 170
 171		ret = btrfs_add_log_tree(trans, root);
 172		if (ret)
 173			goto out;
 174
 
 175		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 176		root->log_start_pid = current->pid;
 177	}
 178
 179	atomic_inc(&root->log_batch);
 180	atomic_inc(&root->log_writers);
 181	if (ctx) {
 182		int index = root->log_transid % 2;
 183		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 184		ctx->log_transid = root->log_transid;
 185	}
 186
 187out:
 188	mutex_unlock(&root->log_mutex);
 189	return ret;
 190}
 191
 192/*
 193 * returns 0 if there was a log transaction running and we were able
 194 * to join, or returns -ENOENT if there were not transactions
 195 * in progress
 196 */
 197static int join_running_log_trans(struct btrfs_root *root)
 198{
 
 199	int ret = -ENOENT;
 200
 201	smp_mb();
 202	if (!root->log_root)
 203		return -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 
 206	if (root->log_root) {
 
 
 207		ret = 0;
 
 
 
 
 208		atomic_inc(&root->log_writers);
 209	}
 210	mutex_unlock(&root->log_mutex);
 211	return ret;
 212}
 213
 214/*
 215 * This either makes the current running log transaction wait
 216 * until you call btrfs_end_log_trans() or it makes any future
 217 * log transactions wait until you call btrfs_end_log_trans()
 218 */
 219int btrfs_pin_log_trans(struct btrfs_root *root)
 220{
 221	int ret = -ENOENT;
 222
 223	mutex_lock(&root->log_mutex);
 224	atomic_inc(&root->log_writers);
 225	mutex_unlock(&root->log_mutex);
 226	return ret;
 227}
 228
 229/*
 230 * indicate we're done making changes to the log tree
 231 * and wake up anyone waiting to do a sync
 232 */
 233void btrfs_end_log_trans(struct btrfs_root *root)
 234{
 235	if (atomic_dec_and_test(&root->log_writers)) {
 236		/*
 237		 * Implicit memory barrier after atomic_dec_and_test
 238		 */
 239		if (waitqueue_active(&root->log_writer_wait))
 240			wake_up(&root->log_writer_wait);
 241	}
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 244
 245/*
 246 * the walk control struct is used to pass state down the chain when
 247 * processing the log tree.  The stage field tells us which part
 248 * of the log tree processing we are currently doing.  The others
 249 * are state fields used for that specific part
 250 */
 251struct walk_control {
 252	/* should we free the extent on disk when done?  This is used
 253	 * at transaction commit time while freeing a log tree
 254	 */
 255	int free;
 256
 257	/* should we write out the extent buffer?  This is used
 258	 * while flushing the log tree to disk during a sync
 259	 */
 260	int write;
 261
 262	/* should we wait for the extent buffer io to finish?  Also used
 263	 * while flushing the log tree to disk for a sync
 264	 */
 265	int wait;
 266
 267	/* pin only walk, we record which extents on disk belong to the
 268	 * log trees
 269	 */
 270	int pin;
 271
 272	/* what stage of the replay code we're currently in */
 273	int stage;
 274
 
 
 
 
 
 
 
 275	/* the root we are currently replaying */
 276	struct btrfs_root *replay_dest;
 277
 278	/* the trans handle for the current replay */
 279	struct btrfs_trans_handle *trans;
 280
 281	/* the function that gets used to process blocks we find in the
 282	 * tree.  Note the extent_buffer might not be up to date when it is
 283	 * passed in, and it must be checked or read if you need the data
 284	 * inside it
 285	 */
 286	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 287			    struct walk_control *wc, u64 gen);
 288};
 289
 290/*
 291 * process_func used to pin down extents, write them or wait on them
 292 */
 293static int process_one_buffer(struct btrfs_root *log,
 294			      struct extent_buffer *eb,
 295			      struct walk_control *wc, u64 gen)
 296{
 297	struct btrfs_fs_info *fs_info = log->fs_info;
 298	int ret = 0;
 299
 300	/*
 301	 * If this fs is mixed then we need to be able to process the leaves to
 302	 * pin down any logged extents, so we have to read the block.
 303	 */
 304	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 305		ret = btrfs_read_buffer(eb, gen);
 306		if (ret)
 307			return ret;
 308	}
 309
 310	if (wc->pin)
 311		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 312						      eb->len);
 313
 314	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 315		if (wc->pin && btrfs_header_level(eb) == 0)
 316			ret = btrfs_exclude_logged_extents(fs_info, eb);
 317		if (wc->write)
 318			btrfs_write_tree_block(eb);
 319		if (wc->wait)
 320			btrfs_wait_tree_block_writeback(eb);
 321	}
 322	return ret;
 323}
 324
 325/*
 326 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 327 * to the src data we are copying out.
 328 *
 329 * root is the tree we are copying into, and path is a scratch
 330 * path for use in this function (it should be released on entry and
 331 * will be released on exit).
 332 *
 333 * If the key is already in the destination tree the existing item is
 334 * overwritten.  If the existing item isn't big enough, it is extended.
 335 * If it is too large, it is truncated.
 336 *
 337 * If the key isn't in the destination yet, a new item is inserted.
 338 */
 339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 340				   struct btrfs_root *root,
 341				   struct btrfs_path *path,
 342				   struct extent_buffer *eb, int slot,
 343				   struct btrfs_key *key)
 344{
 345	struct btrfs_fs_info *fs_info = root->fs_info;
 346	int ret;
 347	u32 item_size;
 348	u64 saved_i_size = 0;
 349	int save_old_i_size = 0;
 350	unsigned long src_ptr;
 351	unsigned long dst_ptr;
 352	int overwrite_root = 0;
 353	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 354
 355	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 356		overwrite_root = 1;
 357
 358	item_size = btrfs_item_size_nr(eb, slot);
 359	src_ptr = btrfs_item_ptr_offset(eb, slot);
 360
 361	/* look for the key in the destination tree */
 362	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 363	if (ret < 0)
 364		return ret;
 365
 366	if (ret == 0) {
 367		char *src_copy;
 368		char *dst_copy;
 369		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 370						  path->slots[0]);
 371		if (dst_size != item_size)
 372			goto insert;
 373
 374		if (item_size == 0) {
 375			btrfs_release_path(path);
 376			return 0;
 377		}
 378		dst_copy = kmalloc(item_size, GFP_NOFS);
 379		src_copy = kmalloc(item_size, GFP_NOFS);
 380		if (!dst_copy || !src_copy) {
 381			btrfs_release_path(path);
 382			kfree(dst_copy);
 383			kfree(src_copy);
 384			return -ENOMEM;
 385		}
 386
 387		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 388
 389		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 390		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 391				   item_size);
 392		ret = memcmp(dst_copy, src_copy, item_size);
 393
 394		kfree(dst_copy);
 395		kfree(src_copy);
 396		/*
 397		 * they have the same contents, just return, this saves
 398		 * us from cowing blocks in the destination tree and doing
 399		 * extra writes that may not have been done by a previous
 400		 * sync
 401		 */
 402		if (ret == 0) {
 403			btrfs_release_path(path);
 404			return 0;
 405		}
 406
 407		/*
 408		 * We need to load the old nbytes into the inode so when we
 409		 * replay the extents we've logged we get the right nbytes.
 410		 */
 411		if (inode_item) {
 412			struct btrfs_inode_item *item;
 413			u64 nbytes;
 414			u32 mode;
 415
 416			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 417					      struct btrfs_inode_item);
 418			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 419			item = btrfs_item_ptr(eb, slot,
 420					      struct btrfs_inode_item);
 421			btrfs_set_inode_nbytes(eb, item, nbytes);
 422
 423			/*
 424			 * If this is a directory we need to reset the i_size to
 425			 * 0 so that we can set it up properly when replaying
 426			 * the rest of the items in this log.
 427			 */
 428			mode = btrfs_inode_mode(eb, item);
 429			if (S_ISDIR(mode))
 430				btrfs_set_inode_size(eb, item, 0);
 431		}
 432	} else if (inode_item) {
 433		struct btrfs_inode_item *item;
 434		u32 mode;
 435
 436		/*
 437		 * New inode, set nbytes to 0 so that the nbytes comes out
 438		 * properly when we replay the extents.
 439		 */
 440		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 441		btrfs_set_inode_nbytes(eb, item, 0);
 442
 443		/*
 444		 * If this is a directory we need to reset the i_size to 0 so
 445		 * that we can set it up properly when replaying the rest of
 446		 * the items in this log.
 447		 */
 448		mode = btrfs_inode_mode(eb, item);
 449		if (S_ISDIR(mode))
 450			btrfs_set_inode_size(eb, item, 0);
 451	}
 452insert:
 453	btrfs_release_path(path);
 454	/* try to insert the key into the destination tree */
 455	path->skip_release_on_error = 1;
 456	ret = btrfs_insert_empty_item(trans, root, path,
 457				      key, item_size);
 458	path->skip_release_on_error = 0;
 459
 460	/* make sure any existing item is the correct size */
 461	if (ret == -EEXIST || ret == -EOVERFLOW) {
 462		u32 found_size;
 463		found_size = btrfs_item_size_nr(path->nodes[0],
 464						path->slots[0]);
 465		if (found_size > item_size)
 466			btrfs_truncate_item(fs_info, path, item_size, 1);
 467		else if (found_size < item_size)
 468			btrfs_extend_item(fs_info, path,
 469					  item_size - found_size);
 470	} else if (ret) {
 471		return ret;
 472	}
 473	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 474					path->slots[0]);
 475
 476	/* don't overwrite an existing inode if the generation number
 477	 * was logged as zero.  This is done when the tree logging code
 478	 * is just logging an inode to make sure it exists after recovery.
 479	 *
 480	 * Also, don't overwrite i_size on directories during replay.
 481	 * log replay inserts and removes directory items based on the
 482	 * state of the tree found in the subvolume, and i_size is modified
 483	 * as it goes
 484	 */
 485	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 486		struct btrfs_inode_item *src_item;
 487		struct btrfs_inode_item *dst_item;
 488
 489		src_item = (struct btrfs_inode_item *)src_ptr;
 490		dst_item = (struct btrfs_inode_item *)dst_ptr;
 491
 492		if (btrfs_inode_generation(eb, src_item) == 0) {
 493			struct extent_buffer *dst_eb = path->nodes[0];
 494			const u64 ino_size = btrfs_inode_size(eb, src_item);
 495
 496			/*
 497			 * For regular files an ino_size == 0 is used only when
 498			 * logging that an inode exists, as part of a directory
 499			 * fsync, and the inode wasn't fsynced before. In this
 500			 * case don't set the size of the inode in the fs/subvol
 501			 * tree, otherwise we would be throwing valid data away.
 502			 */
 503			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 504			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 505			    ino_size != 0) {
 506				struct btrfs_map_token token;
 507
 508				btrfs_init_map_token(&token);
 509				btrfs_set_token_inode_size(dst_eb, dst_item,
 510							   ino_size, &token);
 511			}
 512			goto no_copy;
 513		}
 514
 515		if (overwrite_root &&
 516		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 517		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 518			save_old_i_size = 1;
 519			saved_i_size = btrfs_inode_size(path->nodes[0],
 520							dst_item);
 521		}
 522	}
 523
 524	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 525			   src_ptr, item_size);
 526
 527	if (save_old_i_size) {
 528		struct btrfs_inode_item *dst_item;
 529		dst_item = (struct btrfs_inode_item *)dst_ptr;
 530		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 531	}
 532
 533	/* make sure the generation is filled in */
 534	if (key->type == BTRFS_INODE_ITEM_KEY) {
 535		struct btrfs_inode_item *dst_item;
 536		dst_item = (struct btrfs_inode_item *)dst_ptr;
 537		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 538			btrfs_set_inode_generation(path->nodes[0], dst_item,
 539						   trans->transid);
 540		}
 541	}
 542no_copy:
 543	btrfs_mark_buffer_dirty(path->nodes[0]);
 544	btrfs_release_path(path);
 545	return 0;
 546}
 547
 548/*
 549 * simple helper to read an inode off the disk from a given root
 550 * This can only be called for subvolume roots and not for the log
 551 */
 552static noinline struct inode *read_one_inode(struct btrfs_root *root,
 553					     u64 objectid)
 554{
 555	struct btrfs_key key;
 556	struct inode *inode;
 557
 558	key.objectid = objectid;
 559	key.type = BTRFS_INODE_ITEM_KEY;
 560	key.offset = 0;
 561	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 562	if (IS_ERR(inode)) {
 563		inode = NULL;
 564	} else if (is_bad_inode(inode)) {
 565		iput(inode);
 566		inode = NULL;
 567	}
 568	return inode;
 569}
 570
 571/* replays a single extent in 'eb' at 'slot' with 'key' into the
 572 * subvolume 'root'.  path is released on entry and should be released
 573 * on exit.
 574 *
 575 * extents in the log tree have not been allocated out of the extent
 576 * tree yet.  So, this completes the allocation, taking a reference
 577 * as required if the extent already exists or creating a new extent
 578 * if it isn't in the extent allocation tree yet.
 579 *
 580 * The extent is inserted into the file, dropping any existing extents
 581 * from the file that overlap the new one.
 582 */
 583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 584				      struct btrfs_root *root,
 585				      struct btrfs_path *path,
 586				      struct extent_buffer *eb, int slot,
 587				      struct btrfs_key *key)
 588{
 
 589	struct btrfs_fs_info *fs_info = root->fs_info;
 590	int found_type;
 591	u64 extent_end;
 592	u64 start = key->offset;
 593	u64 nbytes = 0;
 594	struct btrfs_file_extent_item *item;
 595	struct inode *inode = NULL;
 596	unsigned long size;
 597	int ret = 0;
 598
 599	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 600	found_type = btrfs_file_extent_type(eb, item);
 601
 602	if (found_type == BTRFS_FILE_EXTENT_REG ||
 603	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 604		nbytes = btrfs_file_extent_num_bytes(eb, item);
 605		extent_end = start + nbytes;
 606
 607		/*
 608		 * We don't add to the inodes nbytes if we are prealloc or a
 609		 * hole.
 610		 */
 611		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 612			nbytes = 0;
 613	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 614		size = btrfs_file_extent_inline_len(eb, slot, item);
 615		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 616		extent_end = ALIGN(start + size,
 617				   fs_info->sectorsize);
 618	} else {
 619		ret = 0;
 620		goto out;
 621	}
 622
 623	inode = read_one_inode(root, key->objectid);
 624	if (!inode) {
 625		ret = -EIO;
 626		goto out;
 627	}
 628
 629	/*
 630	 * first check to see if we already have this extent in the
 631	 * file.  This must be done before the btrfs_drop_extents run
 632	 * so we don't try to drop this extent.
 633	 */
 634	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 635				       start, 0);
 636
 637	if (ret == 0 &&
 638	    (found_type == BTRFS_FILE_EXTENT_REG ||
 639	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 640		struct btrfs_file_extent_item cmp1;
 641		struct btrfs_file_extent_item cmp2;
 642		struct btrfs_file_extent_item *existing;
 643		struct extent_buffer *leaf;
 644
 645		leaf = path->nodes[0];
 646		existing = btrfs_item_ptr(leaf, path->slots[0],
 647					  struct btrfs_file_extent_item);
 648
 649		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 650				   sizeof(cmp1));
 651		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 652				   sizeof(cmp2));
 653
 654		/*
 655		 * we already have a pointer to this exact extent,
 656		 * we don't have to do anything
 657		 */
 658		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 659			btrfs_release_path(path);
 660			goto out;
 661		}
 662	}
 663	btrfs_release_path(path);
 664
 665	/* drop any overlapping extents */
 666	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 
 
 
 667	if (ret)
 668		goto out;
 669
 670	if (found_type == BTRFS_FILE_EXTENT_REG ||
 671	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 672		u64 offset;
 673		unsigned long dest_offset;
 674		struct btrfs_key ins;
 675
 
 
 
 
 676		ret = btrfs_insert_empty_item(trans, root, path, key,
 677					      sizeof(*item));
 678		if (ret)
 679			goto out;
 680		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 681						    path->slots[0]);
 682		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 683				(unsigned long)item,  sizeof(*item));
 684
 685		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 686		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 687		ins.type = BTRFS_EXTENT_ITEM_KEY;
 688		offset = key->offset - btrfs_file_extent_offset(eb, item);
 689
 690		/*
 691		 * Manually record dirty extent, as here we did a shallow
 692		 * file extent item copy and skip normal backref update,
 693		 * but modifying extent tree all by ourselves.
 694		 * So need to manually record dirty extent for qgroup,
 695		 * as the owner of the file extent changed from log tree
 696		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 697		 */
 698		ret = btrfs_qgroup_trace_extent(trans, fs_info,
 699				btrfs_file_extent_disk_bytenr(eb, item),
 700				btrfs_file_extent_disk_num_bytes(eb, item),
 701				GFP_NOFS);
 702		if (ret < 0)
 703			goto out;
 704
 705		if (ins.objectid > 0) {
 
 706			u64 csum_start;
 707			u64 csum_end;
 708			LIST_HEAD(ordered_sums);
 
 709			/*
 710			 * is this extent already allocated in the extent
 711			 * allocation tree?  If so, just add a reference
 712			 */
 713			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 714						ins.offset);
 715			if (ret == 0) {
 716				ret = btrfs_inc_extent_ref(trans, fs_info,
 717						ins.objectid, ins.offset,
 718						0, root->root_key.objectid,
 
 
 
 
 719						key->objectid, offset);
 
 720				if (ret)
 721					goto out;
 722			} else {
 723				/*
 724				 * insert the extent pointer in the extent
 725				 * allocation tree
 726				 */
 727				ret = btrfs_alloc_logged_file_extent(trans,
 728						fs_info,
 729						root->root_key.objectid,
 730						key->objectid, offset, &ins);
 731				if (ret)
 732					goto out;
 733			}
 734			btrfs_release_path(path);
 735
 736			if (btrfs_file_extent_compression(eb, item)) {
 737				csum_start = ins.objectid;
 738				csum_end = csum_start + ins.offset;
 739			} else {
 740				csum_start = ins.objectid +
 741					btrfs_file_extent_offset(eb, item);
 742				csum_end = csum_start +
 743					btrfs_file_extent_num_bytes(eb, item);
 744			}
 745
 746			ret = btrfs_lookup_csums_range(root->log_root,
 747						csum_start, csum_end - 1,
 748						&ordered_sums, 0);
 749			if (ret)
 750				goto out;
 751			/*
 752			 * Now delete all existing cums in the csum root that
 753			 * cover our range. We do this because we can have an
 754			 * extent that is completely referenced by one file
 755			 * extent item and partially referenced by another
 756			 * file extent item (like after using the clone or
 757			 * extent_same ioctls). In this case if we end up doing
 758			 * the replay of the one that partially references the
 759			 * extent first, and we do not do the csum deletion
 760			 * below, we can get 2 csum items in the csum tree that
 761			 * overlap each other. For example, imagine our log has
 762			 * the two following file extent items:
 763			 *
 764			 * key (257 EXTENT_DATA 409600)
 765			 *     extent data disk byte 12845056 nr 102400
 766			 *     extent data offset 20480 nr 20480 ram 102400
 767			 *
 768			 * key (257 EXTENT_DATA 819200)
 769			 *     extent data disk byte 12845056 nr 102400
 770			 *     extent data offset 0 nr 102400 ram 102400
 771			 *
 772			 * Where the second one fully references the 100K extent
 773			 * that starts at disk byte 12845056, and the log tree
 774			 * has a single csum item that covers the entire range
 775			 * of the extent:
 776			 *
 777			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 778			 *
 779			 * After the first file extent item is replayed, the
 780			 * csum tree gets the following csum item:
 781			 *
 782			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 783			 *
 784			 * Which covers the 20K sub-range starting at offset 20K
 785			 * of our extent. Now when we replay the second file
 786			 * extent item, if we do not delete existing csum items
 787			 * that cover any of its blocks, we end up getting two
 788			 * csum items in our csum tree that overlap each other:
 789			 *
 790			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 791			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 792			 *
 793			 * Which is a problem, because after this anyone trying
 794			 * to lookup up for the checksum of any block of our
 795			 * extent starting at an offset of 40K or higher, will
 796			 * end up looking at the second csum item only, which
 797			 * does not contain the checksum for any block starting
 798			 * at offset 40K or higher of our extent.
 799			 */
 800			while (!list_empty(&ordered_sums)) {
 801				struct btrfs_ordered_sum *sums;
 802				sums = list_entry(ordered_sums.next,
 803						struct btrfs_ordered_sum,
 804						list);
 805				if (!ret)
 806					ret = btrfs_del_csums(trans, fs_info,
 
 807							      sums->bytenr,
 808							      sums->len);
 809				if (!ret)
 810					ret = btrfs_csum_file_blocks(trans,
 811						fs_info->csum_root, sums);
 812				list_del(&sums->list);
 813				kfree(sums);
 814			}
 815			if (ret)
 816				goto out;
 817		} else {
 818			btrfs_release_path(path);
 819		}
 820	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 821		/* inline extents are easy, we just overwrite them */
 822		ret = overwrite_item(trans, root, path, eb, slot, key);
 823		if (ret)
 824			goto out;
 825	}
 826
 827	inode_add_bytes(inode, nbytes);
 828	ret = btrfs_update_inode(trans, root, inode);
 
 
 
 
 
 
 829out:
 830	if (inode)
 831		iput(inode);
 832	return ret;
 833}
 834
 835/*
 836 * when cleaning up conflicts between the directory names in the
 837 * subvolume, directory names in the log and directory names in the
 838 * inode back references, we may have to unlink inodes from directories.
 839 *
 840 * This is a helper function to do the unlink of a specific directory
 841 * item
 842 */
 843static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 844				      struct btrfs_root *root,
 845				      struct btrfs_path *path,
 846				      struct inode *dir,
 847				      struct btrfs_dir_item *di)
 848{
 849	struct btrfs_fs_info *fs_info = root->fs_info;
 850	struct inode *inode;
 851	char *name;
 852	int name_len;
 853	struct extent_buffer *leaf;
 854	struct btrfs_key location;
 855	int ret;
 856
 857	leaf = path->nodes[0];
 858
 859	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 860	name_len = btrfs_dir_name_len(leaf, di);
 861	name = kmalloc(name_len, GFP_NOFS);
 862	if (!name)
 863		return -ENOMEM;
 864
 865	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 866	btrfs_release_path(path);
 867
 868	inode = read_one_inode(root, location.objectid);
 869	if (!inode) {
 870		ret = -EIO;
 871		goto out;
 872	}
 873
 874	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 875	if (ret)
 876		goto out;
 877
 878	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 
 879	if (ret)
 880		goto out;
 881	else
 882		ret = btrfs_run_delayed_items(trans, fs_info);
 883out:
 884	kfree(name);
 885	iput(inode);
 886	return ret;
 887}
 888
 889/*
 890 * helper function to see if a given name and sequence number found
 891 * in an inode back reference are already in a directory and correctly
 892 * point to this inode
 
 
 893 */
 894static noinline int inode_in_dir(struct btrfs_root *root,
 895				 struct btrfs_path *path,
 896				 u64 dirid, u64 objectid, u64 index,
 897				 const char *name, int name_len)
 898{
 899	struct btrfs_dir_item *di;
 900	struct btrfs_key location;
 901	int match = 0;
 902
 903	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 904					 index, name, name_len, 0);
 905	if (di && !IS_ERR(di)) {
 
 
 
 
 906		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 907		if (location.objectid != objectid)
 908			goto out;
 909	} else
 910		goto out;
 911	btrfs_release_path(path);
 912
 
 913	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 914	if (di && !IS_ERR(di)) {
 915		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 916		if (location.objectid != objectid)
 917			goto out;
 918	} else
 919		goto out;
 920	match = 1;
 
 
 
 
 921out:
 922	btrfs_release_path(path);
 923	return match;
 924}
 925
 926/*
 927 * helper function to check a log tree for a named back reference in
 928 * an inode.  This is used to decide if a back reference that is
 929 * found in the subvolume conflicts with what we find in the log.
 930 *
 931 * inode backreferences may have multiple refs in a single item,
 932 * during replay we process one reference at a time, and we don't
 933 * want to delete valid links to a file from the subvolume if that
 934 * link is also in the log.
 935 */
 936static noinline int backref_in_log(struct btrfs_root *log,
 937				   struct btrfs_key *key,
 938				   u64 ref_objectid,
 939				   const char *name, int namelen)
 940{
 941	struct btrfs_path *path;
 942	struct btrfs_inode_ref *ref;
 943	unsigned long ptr;
 944	unsigned long ptr_end;
 945	unsigned long name_ptr;
 946	int found_name_len;
 947	int item_size;
 948	int ret;
 949	int match = 0;
 950
 951	path = btrfs_alloc_path();
 952	if (!path)
 953		return -ENOMEM;
 954
 955	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 956	if (ret != 0)
 957		goto out;
 958
 959	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 960
 961	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 962		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 963						   name, namelen, NULL))
 964			match = 1;
 965
 966		goto out;
 967	}
 968
 969	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 970	ptr_end = ptr + item_size;
 971	while (ptr < ptr_end) {
 972		ref = (struct btrfs_inode_ref *)ptr;
 973		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 974		if (found_name_len == namelen) {
 975			name_ptr = (unsigned long)(ref + 1);
 976			ret = memcmp_extent_buffer(path->nodes[0], name,
 977						   name_ptr, namelen);
 978			if (ret == 0) {
 979				match = 1;
 980				goto out;
 981			}
 982		}
 983		ptr = (unsigned long)(ref + 1) + found_name_len;
 984	}
 985out:
 986	btrfs_free_path(path);
 987	return match;
 988}
 989
 990static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 991				  struct btrfs_root *root,
 992				  struct btrfs_path *path,
 993				  struct btrfs_root *log_root,
 994				  struct inode *dir, struct inode *inode,
 995				  struct extent_buffer *eb,
 996				  u64 inode_objectid, u64 parent_objectid,
 997				  u64 ref_index, char *name, int namelen,
 998				  int *search_done)
 999{
1000	struct btrfs_fs_info *fs_info = root->fs_info;
1001	int ret;
1002	char *victim_name;
1003	int victim_name_len;
1004	struct extent_buffer *leaf;
1005	struct btrfs_dir_item *di;
1006	struct btrfs_key search_key;
1007	struct btrfs_inode_extref *extref;
1008
1009again:
1010	/* Search old style refs */
1011	search_key.objectid = inode_objectid;
1012	search_key.type = BTRFS_INODE_REF_KEY;
1013	search_key.offset = parent_objectid;
1014	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1015	if (ret == 0) {
1016		struct btrfs_inode_ref *victim_ref;
1017		unsigned long ptr;
1018		unsigned long ptr_end;
1019
1020		leaf = path->nodes[0];
1021
1022		/* are we trying to overwrite a back ref for the root directory
1023		 * if so, just jump out, we're done
1024		 */
1025		if (search_key.objectid == search_key.offset)
1026			return 1;
1027
1028		/* check all the names in this back reference to see
1029		 * if they are in the log.  if so, we allow them to stay
1030		 * otherwise they must be unlinked as a conflict
1031		 */
1032		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1033		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1034		while (ptr < ptr_end) {
1035			victim_ref = (struct btrfs_inode_ref *)ptr;
1036			victim_name_len = btrfs_inode_ref_name_len(leaf,
1037								   victim_ref);
1038			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1039			if (!victim_name)
1040				return -ENOMEM;
1041
1042			read_extent_buffer(leaf, victim_name,
1043					   (unsigned long)(victim_ref + 1),
1044					   victim_name_len);
1045
1046			if (!backref_in_log(log_root, &search_key,
1047					    parent_objectid,
1048					    victim_name,
1049					    victim_name_len)) {
1050				inc_nlink(inode);
 
 
 
1051				btrfs_release_path(path);
1052
1053				ret = btrfs_unlink_inode(trans, root, dir,
1054							 inode, victim_name,
1055							 victim_name_len);
1056				kfree(victim_name);
1057				if (ret)
1058					return ret;
1059				ret = btrfs_run_delayed_items(trans, fs_info);
1060				if (ret)
1061					return ret;
1062				*search_done = 1;
1063				goto again;
1064			}
1065			kfree(victim_name);
1066
1067			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1068		}
1069
1070		/*
1071		 * NOTE: we have searched root tree and checked the
1072		 * corresponding ref, it does not need to check again.
1073		 */
1074		*search_done = 1;
1075	}
1076	btrfs_release_path(path);
1077
1078	/* Same search but for extended refs */
1079	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1080					   inode_objectid, parent_objectid, 0,
1081					   0);
1082	if (!IS_ERR_OR_NULL(extref)) {
1083		u32 item_size;
1084		u32 cur_offset = 0;
1085		unsigned long base;
1086		struct inode *victim_parent;
1087
1088		leaf = path->nodes[0];
1089
1090		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1091		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1092
1093		while (cur_offset < item_size) {
1094			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1095
1096			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1097
1098			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1099				goto next;
1100
1101			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1102			if (!victim_name)
1103				return -ENOMEM;
1104			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1105					   victim_name_len);
1106
1107			search_key.objectid = inode_objectid;
1108			search_key.type = BTRFS_INODE_EXTREF_KEY;
1109			search_key.offset = btrfs_extref_hash(parent_objectid,
1110							      victim_name,
1111							      victim_name_len);
1112			ret = 0;
1113			if (!backref_in_log(log_root, &search_key,
1114					    parent_objectid, victim_name,
1115					    victim_name_len)) {
 
 
1116				ret = -ENOENT;
1117				victim_parent = read_one_inode(root,
1118							       parent_objectid);
1119				if (victim_parent) {
1120					inc_nlink(inode);
1121					btrfs_release_path(path);
1122
1123					ret = btrfs_unlink_inode(trans, root,
1124								 victim_parent,
1125								 inode,
1126								 victim_name,
1127								 victim_name_len);
1128					if (!ret)
1129						ret = btrfs_run_delayed_items(
1130								  trans,
1131								  fs_info);
1132				}
1133				iput(victim_parent);
1134				kfree(victim_name);
1135				if (ret)
1136					return ret;
1137				*search_done = 1;
1138				goto again;
1139			}
1140			kfree(victim_name);
1141			if (ret)
1142				return ret;
1143next:
1144			cur_offset += victim_name_len + sizeof(*extref);
1145		}
1146		*search_done = 1;
1147	}
1148	btrfs_release_path(path);
1149
1150	/* look for a conflicting sequence number */
1151	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1152					 ref_index, name, namelen, 0);
1153	if (di && !IS_ERR(di)) {
 
 
 
1154		ret = drop_one_dir_item(trans, root, path, dir, di);
1155		if (ret)
1156			return ret;
1157	}
1158	btrfs_release_path(path);
1159
1160	/* look for a conflicing name */
1161	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1162				   name, namelen, 0);
1163	if (di && !IS_ERR(di)) {
 
 
1164		ret = drop_one_dir_item(trans, root, path, dir, di);
1165		if (ret)
1166			return ret;
1167	}
1168	btrfs_release_path(path);
1169
1170	return 0;
1171}
1172
1173static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1174			     u32 *namelen, char **name, u64 *index,
1175			     u64 *parent_objectid)
1176{
1177	struct btrfs_inode_extref *extref;
1178
1179	extref = (struct btrfs_inode_extref *)ref_ptr;
1180
1181	*namelen = btrfs_inode_extref_name_len(eb, extref);
1182	*name = kmalloc(*namelen, GFP_NOFS);
1183	if (*name == NULL)
1184		return -ENOMEM;
1185
1186	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1187			   *namelen);
1188
1189	*index = btrfs_inode_extref_index(eb, extref);
 
1190	if (parent_objectid)
1191		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1192
1193	return 0;
1194}
1195
1196static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1197			  u32 *namelen, char **name, u64 *index)
1198{
1199	struct btrfs_inode_ref *ref;
1200
1201	ref = (struct btrfs_inode_ref *)ref_ptr;
1202
1203	*namelen = btrfs_inode_ref_name_len(eb, ref);
1204	*name = kmalloc(*namelen, GFP_NOFS);
1205	if (*name == NULL)
1206		return -ENOMEM;
1207
1208	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1209
1210	*index = btrfs_inode_ref_index(eb, ref);
 
1211
1212	return 0;
1213}
1214
1215/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216 * replay one inode back reference item found in the log tree.
1217 * eb, slot and key refer to the buffer and key found in the log tree.
1218 * root is the destination we are replaying into, and path is for temp
1219 * use by this function.  (it should be released on return).
1220 */
1221static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1222				  struct btrfs_root *root,
1223				  struct btrfs_root *log,
1224				  struct btrfs_path *path,
1225				  struct extent_buffer *eb, int slot,
1226				  struct btrfs_key *key)
1227{
1228	struct inode *dir = NULL;
1229	struct inode *inode = NULL;
1230	unsigned long ref_ptr;
1231	unsigned long ref_end;
1232	char *name = NULL;
1233	int namelen;
1234	int ret;
1235	int search_done = 0;
1236	int log_ref_ver = 0;
1237	u64 parent_objectid;
1238	u64 inode_objectid;
1239	u64 ref_index = 0;
1240	int ref_struct_size;
1241
1242	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1243	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1244
1245	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1246		struct btrfs_inode_extref *r;
1247
1248		ref_struct_size = sizeof(struct btrfs_inode_extref);
1249		log_ref_ver = 1;
1250		r = (struct btrfs_inode_extref *)ref_ptr;
1251		parent_objectid = btrfs_inode_extref_parent(eb, r);
1252	} else {
1253		ref_struct_size = sizeof(struct btrfs_inode_ref);
1254		parent_objectid = key->offset;
1255	}
1256	inode_objectid = key->objectid;
1257
1258	/*
1259	 * it is possible that we didn't log all the parent directories
1260	 * for a given inode.  If we don't find the dir, just don't
1261	 * copy the back ref in.  The link count fixup code will take
1262	 * care of the rest
1263	 */
1264	dir = read_one_inode(root, parent_objectid);
1265	if (!dir) {
1266		ret = -ENOENT;
1267		goto out;
1268	}
1269
1270	inode = read_one_inode(root, inode_objectid);
1271	if (!inode) {
1272		ret = -EIO;
1273		goto out;
1274	}
1275
1276	while (ref_ptr < ref_end) {
1277		if (log_ref_ver) {
1278			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1279						&ref_index, &parent_objectid);
1280			/*
1281			 * parent object can change from one array
1282			 * item to another.
1283			 */
1284			if (!dir)
1285				dir = read_one_inode(root, parent_objectid);
1286			if (!dir) {
1287				ret = -ENOENT;
1288				goto out;
1289			}
1290		} else {
1291			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1292					     &ref_index);
1293		}
1294		if (ret)
1295			goto out;
1296
1297		/* if we already have a perfect match, we're done */
1298		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1299				  ref_index, name, namelen)) {
 
 
 
1300			/*
1301			 * look for a conflicting back reference in the
1302			 * metadata. if we find one we have to unlink that name
1303			 * of the file before we add our new link.  Later on, we
1304			 * overwrite any existing back reference, and we don't
1305			 * want to create dangling pointers in the directory.
1306			 */
1307
1308			if (!search_done) {
1309				ret = __add_inode_ref(trans, root, path, log,
1310						      dir, inode, eb,
 
1311						      inode_objectid,
1312						      parent_objectid,
1313						      ref_index, name, namelen,
1314						      &search_done);
1315				if (ret) {
1316					if (ret == 1)
1317						ret = 0;
1318					goto out;
1319				}
1320			}
1321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322			/* insert our name */
1323			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1324					     0, ref_index);
1325			if (ret)
1326				goto out;
1327
1328			btrfs_update_inode(trans, root, inode);
 
 
1329		}
 
1330
1331		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1332		kfree(name);
1333		name = NULL;
1334		if (log_ref_ver) {
1335			iput(dir);
1336			dir = NULL;
1337		}
1338	}
1339
 
 
 
 
 
 
 
 
 
 
 
 
 
1340	/* finally write the back reference in the inode */
1341	ret = overwrite_item(trans, root, path, eb, slot, key);
1342out:
1343	btrfs_release_path(path);
1344	kfree(name);
1345	iput(dir);
1346	iput(inode);
1347	return ret;
1348}
1349
1350static int insert_orphan_item(struct btrfs_trans_handle *trans,
1351			      struct btrfs_root *root, u64 ino)
1352{
1353	int ret;
1354
1355	ret = btrfs_insert_orphan_item(trans, root, ino);
1356	if (ret == -EEXIST)
1357		ret = 0;
1358
1359	return ret;
1360}
1361
1362static int count_inode_extrefs(struct btrfs_root *root,
1363			       struct inode *inode, struct btrfs_path *path)
1364{
1365	int ret = 0;
1366	int name_len;
1367	unsigned int nlink = 0;
1368	u32 item_size;
1369	u32 cur_offset = 0;
1370	u64 inode_objectid = btrfs_ino(inode);
1371	u64 offset = 0;
1372	unsigned long ptr;
1373	struct btrfs_inode_extref *extref;
1374	struct extent_buffer *leaf;
1375
1376	while (1) {
1377		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1378					    &extref, &offset);
1379		if (ret)
1380			break;
1381
1382		leaf = path->nodes[0];
1383		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1384		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1385		cur_offset = 0;
1386
1387		while (cur_offset < item_size) {
1388			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1389			name_len = btrfs_inode_extref_name_len(leaf, extref);
1390
1391			nlink++;
1392
1393			cur_offset += name_len + sizeof(*extref);
1394		}
1395
1396		offset++;
1397		btrfs_release_path(path);
1398	}
1399	btrfs_release_path(path);
1400
1401	if (ret < 0 && ret != -ENOENT)
1402		return ret;
1403	return nlink;
1404}
1405
1406static int count_inode_refs(struct btrfs_root *root,
1407			       struct inode *inode, struct btrfs_path *path)
1408{
1409	int ret;
1410	struct btrfs_key key;
1411	unsigned int nlink = 0;
1412	unsigned long ptr;
1413	unsigned long ptr_end;
1414	int name_len;
1415	u64 ino = btrfs_ino(inode);
1416
1417	key.objectid = ino;
1418	key.type = BTRFS_INODE_REF_KEY;
1419	key.offset = (u64)-1;
1420
1421	while (1) {
1422		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423		if (ret < 0)
1424			break;
1425		if (ret > 0) {
1426			if (path->slots[0] == 0)
1427				break;
1428			path->slots[0]--;
1429		}
1430process_slot:
1431		btrfs_item_key_to_cpu(path->nodes[0], &key,
1432				      path->slots[0]);
1433		if (key.objectid != ino ||
1434		    key.type != BTRFS_INODE_REF_KEY)
1435			break;
1436		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1437		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1438						   path->slots[0]);
1439		while (ptr < ptr_end) {
1440			struct btrfs_inode_ref *ref;
1441
1442			ref = (struct btrfs_inode_ref *)ptr;
1443			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1444							    ref);
1445			ptr = (unsigned long)(ref + 1) + name_len;
1446			nlink++;
1447		}
1448
1449		if (key.offset == 0)
1450			break;
1451		if (path->slots[0] > 0) {
1452			path->slots[0]--;
1453			goto process_slot;
1454		}
1455		key.offset--;
1456		btrfs_release_path(path);
1457	}
1458	btrfs_release_path(path);
1459
1460	return nlink;
1461}
1462
1463/*
1464 * There are a few corners where the link count of the file can't
1465 * be properly maintained during replay.  So, instead of adding
1466 * lots of complexity to the log code, we just scan the backrefs
1467 * for any file that has been through replay.
1468 *
1469 * The scan will update the link count on the inode to reflect the
1470 * number of back refs found.  If it goes down to zero, the iput
1471 * will free the inode.
1472 */
1473static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1474					   struct btrfs_root *root,
1475					   struct inode *inode)
1476{
1477	struct btrfs_path *path;
1478	int ret;
1479	u64 nlink = 0;
1480	u64 ino = btrfs_ino(inode);
1481
1482	path = btrfs_alloc_path();
1483	if (!path)
1484		return -ENOMEM;
1485
1486	ret = count_inode_refs(root, inode, path);
1487	if (ret < 0)
1488		goto out;
1489
1490	nlink = ret;
1491
1492	ret = count_inode_extrefs(root, inode, path);
1493	if (ret < 0)
1494		goto out;
1495
1496	nlink += ret;
1497
1498	ret = 0;
1499
1500	if (nlink != inode->i_nlink) {
1501		set_nlink(inode, nlink);
1502		btrfs_update_inode(trans, root, inode);
 
 
1503	}
1504	BTRFS_I(inode)->index_cnt = (u64)-1;
1505
1506	if (inode->i_nlink == 0) {
1507		if (S_ISDIR(inode->i_mode)) {
1508			ret = replay_dir_deletes(trans, root, NULL, path,
1509						 ino, 1);
1510			if (ret)
1511				goto out;
1512		}
1513		ret = insert_orphan_item(trans, root, ino);
 
 
1514	}
1515
1516out:
1517	btrfs_free_path(path);
1518	return ret;
1519}
1520
1521static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1522					    struct btrfs_root *root,
1523					    struct btrfs_path *path)
1524{
1525	int ret;
1526	struct btrfs_key key;
1527	struct inode *inode;
1528
1529	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1530	key.type = BTRFS_ORPHAN_ITEM_KEY;
1531	key.offset = (u64)-1;
1532	while (1) {
1533		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534		if (ret < 0)
1535			break;
1536
1537		if (ret == 1) {
 
1538			if (path->slots[0] == 0)
1539				break;
1540			path->slots[0]--;
1541		}
1542
1543		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1544		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1545		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1546			break;
1547
1548		ret = btrfs_del_item(trans, root, path);
1549		if (ret)
1550			goto out;
1551
1552		btrfs_release_path(path);
1553		inode = read_one_inode(root, key.offset);
1554		if (!inode)
1555			return -EIO;
 
 
1556
1557		ret = fixup_inode_link_count(trans, root, inode);
1558		iput(inode);
1559		if (ret)
1560			goto out;
1561
1562		/*
1563		 * fixup on a directory may create new entries,
1564		 * make sure we always look for the highset possible
1565		 * offset
1566		 */
1567		key.offset = (u64)-1;
1568	}
1569	ret = 0;
1570out:
1571	btrfs_release_path(path);
1572	return ret;
1573}
1574
1575
1576/*
1577 * record a given inode in the fixup dir so we can check its link
1578 * count when replay is done.  The link count is incremented here
1579 * so the inode won't go away until we check it
1580 */
1581static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1582				      struct btrfs_root *root,
1583				      struct btrfs_path *path,
1584				      u64 objectid)
1585{
1586	struct btrfs_key key;
1587	int ret = 0;
1588	struct inode *inode;
1589
1590	inode = read_one_inode(root, objectid);
1591	if (!inode)
1592		return -EIO;
1593
1594	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1595	key.type = BTRFS_ORPHAN_ITEM_KEY;
1596	key.offset = objectid;
1597
1598	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1599
1600	btrfs_release_path(path);
1601	if (ret == 0) {
1602		if (!inode->i_nlink)
1603			set_nlink(inode, 1);
1604		else
1605			inc_nlink(inode);
1606		ret = btrfs_update_inode(trans, root, inode);
1607	} else if (ret == -EEXIST) {
1608		ret = 0;
1609	} else {
1610		BUG(); /* Logic Error */
1611	}
1612	iput(inode);
1613
1614	return ret;
1615}
1616
1617/*
1618 * when replaying the log for a directory, we only insert names
1619 * for inodes that actually exist.  This means an fsync on a directory
1620 * does not implicitly fsync all the new files in it
1621 */
1622static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1623				    struct btrfs_root *root,
1624				    u64 dirid, u64 index,
1625				    char *name, int name_len,
1626				    struct btrfs_key *location)
1627{
1628	struct inode *inode;
1629	struct inode *dir;
1630	int ret;
1631
1632	inode = read_one_inode(root, location->objectid);
1633	if (!inode)
1634		return -ENOENT;
1635
1636	dir = read_one_inode(root, dirid);
1637	if (!dir) {
1638		iput(inode);
1639		return -EIO;
1640	}
1641
1642	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 
1643
1644	/* FIXME, put inode into FIXUP list */
1645
1646	iput(inode);
1647	iput(dir);
1648	return ret;
1649}
1650
1651/*
1652 * Return true if an inode reference exists in the log for the given name,
1653 * inode and parent inode.
1654 */
1655static bool name_in_log_ref(struct btrfs_root *log_root,
1656			    const char *name, const int name_len,
1657			    const u64 dirid, const u64 ino)
1658{
1659	struct btrfs_key search_key;
1660
1661	search_key.objectid = ino;
1662	search_key.type = BTRFS_INODE_REF_KEY;
1663	search_key.offset = dirid;
1664	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1665		return true;
1666
1667	search_key.type = BTRFS_INODE_EXTREF_KEY;
1668	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1669	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1670		return true;
1671
1672	return false;
1673}
1674
1675/*
1676 * take a single entry in a log directory item and replay it into
1677 * the subvolume.
1678 *
1679 * if a conflicting item exists in the subdirectory already,
1680 * the inode it points to is unlinked and put into the link count
1681 * fix up tree.
1682 *
1683 * If a name from the log points to a file or directory that does
1684 * not exist in the FS, it is skipped.  fsyncs on directories
1685 * do not force down inodes inside that directory, just changes to the
1686 * names or unlinks in a directory.
1687 *
1688 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1689 * non-existing inode) and 1 if the name was replayed.
1690 */
1691static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1692				    struct btrfs_root *root,
1693				    struct btrfs_path *path,
1694				    struct extent_buffer *eb,
1695				    struct btrfs_dir_item *di,
1696				    struct btrfs_key *key)
1697{
1698	char *name;
1699	int name_len;
1700	struct btrfs_dir_item *dst_di;
1701	struct btrfs_key found_key;
1702	struct btrfs_key log_key;
1703	struct inode *dir;
1704	u8 log_type;
1705	int exists;
1706	int ret = 0;
1707	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1708	bool name_added = false;
1709
1710	dir = read_one_inode(root, key->objectid);
1711	if (!dir)
1712		return -EIO;
1713
1714	name_len = btrfs_dir_name_len(eb, di);
1715	name = kmalloc(name_len, GFP_NOFS);
1716	if (!name) {
1717		ret = -ENOMEM;
1718		goto out;
1719	}
1720
1721	log_type = btrfs_dir_type(eb, di);
1722	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1723		   name_len);
1724
1725	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1726	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1727	if (exists == 0)
1728		exists = 1;
1729	else
1730		exists = 0;
1731	btrfs_release_path(path);
 
 
 
 
1732
1733	if (key->type == BTRFS_DIR_ITEM_KEY) {
1734		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1735				       name, name_len, 1);
1736	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1737		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1738						     key->objectid,
1739						     key->offset, name,
1740						     name_len, 1);
1741	} else {
1742		/* Corruption */
1743		ret = -EINVAL;
1744		goto out;
1745	}
1746	if (IS_ERR_OR_NULL(dst_di)) {
 
 
 
 
 
 
 
1747		/* we need a sequence number to insert, so we only
1748		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749		 */
1750		if (key->type != BTRFS_DIR_INDEX_KEY)
1751			goto out;
1752		goto insert;
1753	}
1754
1755	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1756	/* the existing item matches the logged item */
1757	if (found_key.objectid == log_key.objectid &&
1758	    found_key.type == log_key.type &&
1759	    found_key.offset == log_key.offset &&
1760	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1761		update_size = false;
1762		goto out;
1763	}
1764
1765	/*
1766	 * don't drop the conflicting directory entry if the inode
1767	 * for the new entry doesn't exist
1768	 */
1769	if (!exists)
1770		goto out;
1771
1772	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1773	if (ret)
1774		goto out;
1775
1776	if (key->type == BTRFS_DIR_INDEX_KEY)
1777		goto insert;
1778out:
1779	btrfs_release_path(path);
1780	if (!ret && update_size) {
1781		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1782		ret = btrfs_update_inode(trans, root, dir);
1783	}
1784	kfree(name);
1785	iput(dir);
1786	if (!ret && name_added)
1787		ret = 1;
1788	return ret;
1789
1790insert:
1791	if (name_in_log_ref(root->log_root, name, name_len,
1792			    key->objectid, log_key.objectid)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793		/* The dentry will be added later. */
1794		ret = 0;
1795		update_size = false;
1796		goto out;
1797	}
1798	btrfs_release_path(path);
1799	ret = insert_one_name(trans, root, key->objectid, key->offset,
1800			      name, name_len, &log_key);
1801	if (ret && ret != -ENOENT && ret != -EEXIST)
1802		goto out;
1803	if (!ret)
1804		name_added = true;
1805	update_size = false;
1806	ret = 0;
1807	goto out;
1808}
1809
1810/*
1811 * find all the names in a directory item and reconcile them into
1812 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1813 * one name in a directory item, but the same code gets used for
1814 * both directory index types
1815 */
1816static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1817					struct btrfs_root *root,
1818					struct btrfs_path *path,
1819					struct extent_buffer *eb, int slot,
1820					struct btrfs_key *key)
1821{
1822	struct btrfs_fs_info *fs_info = root->fs_info;
1823	int ret = 0;
1824	u32 item_size = btrfs_item_size_nr(eb, slot);
1825	struct btrfs_dir_item *di;
1826	int name_len;
1827	unsigned long ptr;
1828	unsigned long ptr_end;
1829	struct btrfs_path *fixup_path = NULL;
1830
1831	ptr = btrfs_item_ptr_offset(eb, slot);
1832	ptr_end = ptr + item_size;
1833	while (ptr < ptr_end) {
1834		di = (struct btrfs_dir_item *)ptr;
1835		if (verify_dir_item(fs_info, eb, di))
1836			return -EIO;
1837		name_len = btrfs_dir_name_len(eb, di);
1838		ret = replay_one_name(trans, root, path, eb, di, key);
1839		if (ret < 0)
1840			break;
1841		ptr = (unsigned long)(di + 1);
1842		ptr += name_len;
1843
1844		/*
1845		 * If this entry refers to a non-directory (directories can not
1846		 * have a link count > 1) and it was added in the transaction
1847		 * that was not committed, make sure we fixup the link count of
1848		 * the inode it the entry points to. Otherwise something like
1849		 * the following would result in a directory pointing to an
1850		 * inode with a wrong link that does not account for this dir
1851		 * entry:
1852		 *
1853		 * mkdir testdir
1854		 * touch testdir/foo
1855		 * touch testdir/bar
1856		 * sync
1857		 *
1858		 * ln testdir/bar testdir/bar_link
1859		 * ln testdir/foo testdir/foo_link
1860		 * xfs_io -c "fsync" testdir/bar
1861		 *
1862		 * <power failure>
1863		 *
1864		 * mount fs, log replay happens
1865		 *
1866		 * File foo would remain with a link count of 1 when it has two
1867		 * entries pointing to it in the directory testdir. This would
1868		 * make it impossible to ever delete the parent directory has
1869		 * it would result in stale dentries that can never be deleted.
1870		 */
1871		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1872			struct btrfs_key di_key;
1873
1874			if (!fixup_path) {
1875				fixup_path = btrfs_alloc_path();
1876				if (!fixup_path) {
1877					ret = -ENOMEM;
1878					break;
1879				}
1880			}
1881
1882			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1883			ret = link_to_fixup_dir(trans, root, fixup_path,
1884						di_key.objectid);
1885			if (ret)
1886				break;
1887		}
1888		ret = 0;
1889	}
1890	btrfs_free_path(fixup_path);
1891	return ret;
1892}
1893
1894/*
1895 * directory replay has two parts.  There are the standard directory
1896 * items in the log copied from the subvolume, and range items
1897 * created in the log while the subvolume was logged.
1898 *
1899 * The range items tell us which parts of the key space the log
1900 * is authoritative for.  During replay, if a key in the subvolume
1901 * directory is in a logged range item, but not actually in the log
1902 * that means it was deleted from the directory before the fsync
1903 * and should be removed.
1904 */
1905static noinline int find_dir_range(struct btrfs_root *root,
1906				   struct btrfs_path *path,
1907				   u64 dirid, int key_type,
1908				   u64 *start_ret, u64 *end_ret)
1909{
1910	struct btrfs_key key;
1911	u64 found_end;
1912	struct btrfs_dir_log_item *item;
1913	int ret;
1914	int nritems;
1915
1916	if (*start_ret == (u64)-1)
1917		return 1;
1918
1919	key.objectid = dirid;
1920	key.type = key_type;
1921	key.offset = *start_ret;
1922
1923	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924	if (ret < 0)
1925		goto out;
1926	if (ret > 0) {
1927		if (path->slots[0] == 0)
1928			goto out;
1929		path->slots[0]--;
1930	}
1931	if (ret != 0)
1932		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933
1934	if (key.type != key_type || key.objectid != dirid) {
1935		ret = 1;
1936		goto next;
1937	}
1938	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939			      struct btrfs_dir_log_item);
1940	found_end = btrfs_dir_log_end(path->nodes[0], item);
1941
1942	if (*start_ret >= key.offset && *start_ret <= found_end) {
1943		ret = 0;
1944		*start_ret = key.offset;
1945		*end_ret = found_end;
1946		goto out;
1947	}
1948	ret = 1;
1949next:
1950	/* check the next slot in the tree to see if it is a valid item */
1951	nritems = btrfs_header_nritems(path->nodes[0]);
1952	path->slots[0]++;
1953	if (path->slots[0] >= nritems) {
1954		ret = btrfs_next_leaf(root, path);
1955		if (ret)
1956			goto out;
1957	}
1958
1959	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1960
1961	if (key.type != key_type || key.objectid != dirid) {
1962		ret = 1;
1963		goto out;
1964	}
1965	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1966			      struct btrfs_dir_log_item);
1967	found_end = btrfs_dir_log_end(path->nodes[0], item);
1968	*start_ret = key.offset;
1969	*end_ret = found_end;
1970	ret = 0;
1971out:
1972	btrfs_release_path(path);
1973	return ret;
1974}
1975
1976/*
1977 * this looks for a given directory item in the log.  If the directory
1978 * item is not in the log, the item is removed and the inode it points
1979 * to is unlinked
1980 */
1981static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1982				      struct btrfs_root *root,
1983				      struct btrfs_root *log,
1984				      struct btrfs_path *path,
1985				      struct btrfs_path *log_path,
1986				      struct inode *dir,
1987				      struct btrfs_key *dir_key)
1988{
1989	struct btrfs_fs_info *fs_info = root->fs_info;
1990	int ret;
1991	struct extent_buffer *eb;
1992	int slot;
1993	u32 item_size;
1994	struct btrfs_dir_item *di;
1995	struct btrfs_dir_item *log_di;
1996	int name_len;
1997	unsigned long ptr;
1998	unsigned long ptr_end;
1999	char *name;
2000	struct inode *inode;
2001	struct btrfs_key location;
2002
2003again:
2004	eb = path->nodes[0];
2005	slot = path->slots[0];
2006	item_size = btrfs_item_size_nr(eb, slot);
2007	ptr = btrfs_item_ptr_offset(eb, slot);
2008	ptr_end = ptr + item_size;
2009	while (ptr < ptr_end) {
2010		di = (struct btrfs_dir_item *)ptr;
2011		if (verify_dir_item(fs_info, eb, di)) {
2012			ret = -EIO;
2013			goto out;
2014		}
2015
2016		name_len = btrfs_dir_name_len(eb, di);
2017		name = kmalloc(name_len, GFP_NOFS);
2018		if (!name) {
2019			ret = -ENOMEM;
2020			goto out;
2021		}
2022		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023				  name_len);
2024		log_di = NULL;
2025		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2026			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027						       dir_key->objectid,
2028						       name, name_len, 0);
2029		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2030			log_di = btrfs_lookup_dir_index_item(trans, log,
2031						     log_path,
2032						     dir_key->objectid,
2033						     dir_key->offset,
2034						     name, name_len, 0);
2035		}
2036		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2037			btrfs_dir_item_key_to_cpu(eb, di, &location);
2038			btrfs_release_path(path);
2039			btrfs_release_path(log_path);
2040			inode = read_one_inode(root, location.objectid);
2041			if (!inode) {
2042				kfree(name);
2043				return -EIO;
2044			}
2045
2046			ret = link_to_fixup_dir(trans, root,
2047						path, location.objectid);
2048			if (ret) {
2049				kfree(name);
2050				iput(inode);
2051				goto out;
2052			}
2053
2054			inc_nlink(inode);
2055			ret = btrfs_unlink_inode(trans, root, dir, inode,
2056						 name, name_len);
2057			if (!ret)
2058				ret = btrfs_run_delayed_items(trans, fs_info);
2059			kfree(name);
2060			iput(inode);
2061			if (ret)
2062				goto out;
2063
2064			/* there might still be more names under this key
2065			 * check and repeat if required
2066			 */
2067			ret = btrfs_search_slot(NULL, root, dir_key, path,
2068						0, 0);
2069			if (ret == 0)
2070				goto again;
2071			ret = 0;
2072			goto out;
2073		} else if (IS_ERR(log_di)) {
2074			kfree(name);
2075			return PTR_ERR(log_di);
2076		}
2077		btrfs_release_path(log_path);
2078		kfree(name);
2079
2080		ptr = (unsigned long)(di + 1);
2081		ptr += name_len;
2082	}
2083	ret = 0;
2084out:
2085	btrfs_release_path(path);
2086	btrfs_release_path(log_path);
2087	return ret;
2088}
2089
2090static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091			      struct btrfs_root *root,
2092			      struct btrfs_root *log,
2093			      struct btrfs_path *path,
2094			      const u64 ino)
2095{
2096	struct btrfs_key search_key;
2097	struct btrfs_path *log_path;
2098	int i;
2099	int nritems;
2100	int ret;
2101
2102	log_path = btrfs_alloc_path();
2103	if (!log_path)
2104		return -ENOMEM;
2105
2106	search_key.objectid = ino;
2107	search_key.type = BTRFS_XATTR_ITEM_KEY;
2108	search_key.offset = 0;
2109again:
2110	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111	if (ret < 0)
2112		goto out;
2113process_leaf:
2114	nritems = btrfs_header_nritems(path->nodes[0]);
2115	for (i = path->slots[0]; i < nritems; i++) {
2116		struct btrfs_key key;
2117		struct btrfs_dir_item *di;
2118		struct btrfs_dir_item *log_di;
2119		u32 total_size;
2120		u32 cur;
2121
2122		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124			ret = 0;
2125			goto out;
2126		}
2127
2128		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129		total_size = btrfs_item_size_nr(path->nodes[0], i);
2130		cur = 0;
2131		while (cur < total_size) {
2132			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134			u32 this_len = sizeof(*di) + name_len + data_len;
2135			char *name;
2136
2137			name = kmalloc(name_len, GFP_NOFS);
2138			if (!name) {
2139				ret = -ENOMEM;
2140				goto out;
2141			}
2142			read_extent_buffer(path->nodes[0], name,
2143					   (unsigned long)(di + 1), name_len);
2144
2145			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146						    name, name_len, 0);
2147			btrfs_release_path(log_path);
2148			if (!log_di) {
2149				/* Doesn't exist in log tree, so delete it. */
2150				btrfs_release_path(path);
2151				di = btrfs_lookup_xattr(trans, root, path, ino,
2152							name, name_len, -1);
2153				kfree(name);
2154				if (IS_ERR(di)) {
2155					ret = PTR_ERR(di);
2156					goto out;
2157				}
2158				ASSERT(di);
2159				ret = btrfs_delete_one_dir_name(trans, root,
2160								path, di);
2161				if (ret)
2162					goto out;
2163				btrfs_release_path(path);
2164				search_key = key;
2165				goto again;
2166			}
2167			kfree(name);
2168			if (IS_ERR(log_di)) {
2169				ret = PTR_ERR(log_di);
2170				goto out;
2171			}
2172			cur += this_len;
2173			di = (struct btrfs_dir_item *)((char *)di + this_len);
2174		}
2175	}
2176	ret = btrfs_next_leaf(root, path);
2177	if (ret > 0)
2178		ret = 0;
2179	else if (ret == 0)
2180		goto process_leaf;
2181out:
2182	btrfs_free_path(log_path);
2183	btrfs_release_path(path);
2184	return ret;
2185}
2186
2187
2188/*
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes.  It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2194 *
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2197 */
2198static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199				       struct btrfs_root *root,
2200				       struct btrfs_root *log,
2201				       struct btrfs_path *path,
2202				       u64 dirid, int del_all)
2203{
2204	u64 range_start;
2205	u64 range_end;
2206	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207	int ret = 0;
2208	struct btrfs_key dir_key;
2209	struct btrfs_key found_key;
2210	struct btrfs_path *log_path;
2211	struct inode *dir;
2212
2213	dir_key.objectid = dirid;
2214	dir_key.type = BTRFS_DIR_ITEM_KEY;
2215	log_path = btrfs_alloc_path();
2216	if (!log_path)
2217		return -ENOMEM;
2218
2219	dir = read_one_inode(root, dirid);
2220	/* it isn't an error if the inode isn't there, that can happen
2221	 * because we replay the deletes before we copy in the inode item
2222	 * from the log
2223	 */
2224	if (!dir) {
2225		btrfs_free_path(log_path);
2226		return 0;
2227	}
2228again:
2229	range_start = 0;
2230	range_end = 0;
2231	while (1) {
2232		if (del_all)
2233			range_end = (u64)-1;
2234		else {
2235			ret = find_dir_range(log, path, dirid, key_type,
2236					     &range_start, &range_end);
2237			if (ret != 0)
2238				break;
2239		}
2240
2241		dir_key.offset = range_start;
2242		while (1) {
2243			int nritems;
2244			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245						0, 0);
2246			if (ret < 0)
2247				goto out;
2248
2249			nritems = btrfs_header_nritems(path->nodes[0]);
2250			if (path->slots[0] >= nritems) {
2251				ret = btrfs_next_leaf(root, path);
2252				if (ret)
2253					break;
 
 
2254			}
2255			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256					      path->slots[0]);
2257			if (found_key.objectid != dirid ||
2258			    found_key.type != dir_key.type)
2259				goto next_type;
2260
2261			if (found_key.offset > range_end)
2262				break;
2263
2264			ret = check_item_in_log(trans, root, log, path,
2265						log_path, dir,
2266						&found_key);
2267			if (ret)
2268				goto out;
2269			if (found_key.offset == (u64)-1)
2270				break;
2271			dir_key.offset = found_key.offset + 1;
2272		}
2273		btrfs_release_path(path);
2274		if (range_end == (u64)-1)
2275			break;
2276		range_start = range_end + 1;
2277	}
2278
2279next_type:
2280	ret = 0;
2281	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283		dir_key.type = BTRFS_DIR_INDEX_KEY;
2284		btrfs_release_path(path);
2285		goto again;
2286	}
2287out:
2288	btrfs_release_path(path);
2289	btrfs_free_path(log_path);
2290	iput(dir);
2291	return ret;
2292}
2293
2294/*
2295 * the process_func used to replay items from the log tree.  This
2296 * gets called in two different stages.  The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2298 *
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume.  The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2304 */
2305static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306			     struct walk_control *wc, u64 gen)
2307{
2308	int nritems;
2309	struct btrfs_path *path;
2310	struct btrfs_root *root = wc->replay_dest;
2311	struct btrfs_key key;
2312	int level;
2313	int i;
2314	int ret;
2315
2316	ret = btrfs_read_buffer(eb, gen);
2317	if (ret)
2318		return ret;
2319
2320	level = btrfs_header_level(eb);
2321
2322	if (level != 0)
2323		return 0;
2324
2325	path = btrfs_alloc_path();
2326	if (!path)
2327		return -ENOMEM;
2328
2329	nritems = btrfs_header_nritems(eb);
2330	for (i = 0; i < nritems; i++) {
2331		btrfs_item_key_to_cpu(eb, &key, i);
2332
2333		/* inode keys are done during the first stage */
2334		if (key.type == BTRFS_INODE_ITEM_KEY &&
2335		    wc->stage == LOG_WALK_REPLAY_INODES) {
2336			struct btrfs_inode_item *inode_item;
2337			u32 mode;
2338
2339			inode_item = btrfs_item_ptr(eb, i,
2340					    struct btrfs_inode_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341			ret = replay_xattr_deletes(wc->trans, root, log,
2342						   path, key.objectid);
2343			if (ret)
2344				break;
2345			mode = btrfs_inode_mode(eb, inode_item);
2346			if (S_ISDIR(mode)) {
2347				ret = replay_dir_deletes(wc->trans,
2348					 root, log, path, key.objectid, 0);
2349				if (ret)
2350					break;
2351			}
2352			ret = overwrite_item(wc->trans, root, path,
2353					     eb, i, &key);
2354			if (ret)
2355				break;
2356
2357			/* for regular files, make sure corresponding
2358			 * orphan item exist. extents past the new EOF
2359			 * will be truncated later by orphan cleanup.
 
 
 
 
2360			 */
2361			if (S_ISREG(mode)) {
2362				ret = insert_orphan_item(wc->trans, root,
2363							 key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364				if (ret)
2365					break;
2366			}
2367
2368			ret = link_to_fixup_dir(wc->trans, root,
2369						path, key.objectid);
2370			if (ret)
2371				break;
2372		}
2373
 
 
 
2374		if (key.type == BTRFS_DIR_INDEX_KEY &&
2375		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376			ret = replay_one_dir_item(wc->trans, root, path,
2377						  eb, i, &key);
2378			if (ret)
2379				break;
2380		}
2381
2382		if (wc->stage < LOG_WALK_REPLAY_ALL)
2383			continue;
2384
2385		/* these keys are simply copied */
2386		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387			ret = overwrite_item(wc->trans, root, path,
2388					     eb, i, &key);
2389			if (ret)
2390				break;
2391		} else if (key.type == BTRFS_INODE_REF_KEY ||
2392			   key.type == BTRFS_INODE_EXTREF_KEY) {
2393			ret = add_inode_ref(wc->trans, root, log, path,
2394					    eb, i, &key);
2395			if (ret && ret != -ENOENT)
2396				break;
2397			ret = 0;
2398		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399			ret = replay_one_extent(wc->trans, root, path,
2400						eb, i, &key);
2401			if (ret)
2402				break;
2403		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2404			ret = replay_one_dir_item(wc->trans, root, path,
2405						  eb, i, &key);
2406			if (ret)
2407				break;
2408		}
2409	}
2410	btrfs_free_path(path);
2411	return ret;
2412}
2413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2415				   struct btrfs_root *root,
2416				   struct btrfs_path *path, int *level,
2417				   struct walk_control *wc)
2418{
2419	struct btrfs_fs_info *fs_info = root->fs_info;
2420	u64 root_owner;
2421	u64 bytenr;
2422	u64 ptr_gen;
2423	struct extent_buffer *next;
2424	struct extent_buffer *cur;
2425	struct extent_buffer *parent;
2426	u32 blocksize;
2427	int ret = 0;
2428
2429	WARN_ON(*level < 0);
2430	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431
2432	while (*level > 0) {
2433		WARN_ON(*level < 0);
2434		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435		cur = path->nodes[*level];
2436
2437		WARN_ON(btrfs_header_level(cur) != *level);
2438
2439		if (path->slots[*level] >=
2440		    btrfs_header_nritems(cur))
2441			break;
2442
2443		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
 
2445		blocksize = fs_info->nodesize;
2446
2447		parent = path->nodes[*level];
2448		root_owner = btrfs_header_owner(parent);
2449
2450		next = btrfs_find_create_tree_block(fs_info, bytenr);
2451		if (IS_ERR(next))
2452			return PTR_ERR(next);
2453
2454		if (*level == 1) {
2455			ret = wc->process_func(root, next, wc, ptr_gen);
 
2456			if (ret) {
2457				free_extent_buffer(next);
2458				return ret;
2459			}
2460
2461			path->slots[*level]++;
2462			if (wc->free) {
2463				ret = btrfs_read_buffer(next, ptr_gen);
 
2464				if (ret) {
2465					free_extent_buffer(next);
2466					return ret;
2467				}
2468
2469				if (trans) {
2470					btrfs_tree_lock(next);
2471					btrfs_set_lock_blocking(next);
2472					clean_tree_block(trans, fs_info, next);
2473					btrfs_wait_tree_block_writeback(next);
2474					btrfs_tree_unlock(next);
2475				}
2476
2477				WARN_ON(root_owner !=
2478					BTRFS_TREE_LOG_OBJECTID);
2479				ret = btrfs_free_and_pin_reserved_extent(
2480							fs_info, bytenr,
2481							blocksize);
2482				if (ret) {
2483					free_extent_buffer(next);
2484					return ret;
 
 
2485				}
2486			}
2487			free_extent_buffer(next);
2488			continue;
2489		}
2490		ret = btrfs_read_buffer(next, ptr_gen);
2491		if (ret) {
2492			free_extent_buffer(next);
2493			return ret;
2494		}
2495
2496		WARN_ON(*level <= 0);
2497		if (path->nodes[*level-1])
2498			free_extent_buffer(path->nodes[*level-1]);
2499		path->nodes[*level-1] = next;
2500		*level = btrfs_header_level(next);
2501		path->slots[*level] = 0;
2502		cond_resched();
2503	}
2504	WARN_ON(*level < 0);
2505	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2506
2507	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2508
2509	cond_resched();
2510	return 0;
2511}
2512
2513static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2514				 struct btrfs_root *root,
2515				 struct btrfs_path *path, int *level,
2516				 struct walk_control *wc)
2517{
2518	struct btrfs_fs_info *fs_info = root->fs_info;
2519	u64 root_owner;
2520	int i;
2521	int slot;
2522	int ret;
2523
2524	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2525		slot = path->slots[i];
2526		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2527			path->slots[i]++;
2528			*level = i;
2529			WARN_ON(*level == 0);
2530			return 0;
2531		} else {
2532			struct extent_buffer *parent;
2533			if (path->nodes[*level] == root->node)
2534				parent = path->nodes[*level];
2535			else
2536				parent = path->nodes[*level + 1];
2537
2538			root_owner = btrfs_header_owner(parent);
2539			ret = wc->process_func(root, path->nodes[*level], wc,
2540				 btrfs_header_generation(path->nodes[*level]));
 
2541			if (ret)
2542				return ret;
2543
2544			if (wc->free) {
2545				struct extent_buffer *next;
2546
2547				next = path->nodes[*level];
2548
2549				if (trans) {
2550					btrfs_tree_lock(next);
2551					btrfs_set_lock_blocking(next);
2552					clean_tree_block(trans, fs_info, next);
2553					btrfs_wait_tree_block_writeback(next);
2554					btrfs_tree_unlock(next);
2555				}
 
 
 
 
 
 
 
2556
2557				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2558				ret = btrfs_free_and_pin_reserved_extent(
2559						fs_info,
2560						path->nodes[*level]->start,
2561						path->nodes[*level]->len);
2562				if (ret)
2563					return ret;
2564			}
2565			free_extent_buffer(path->nodes[*level]);
2566			path->nodes[*level] = NULL;
2567			*level = i + 1;
2568		}
2569	}
2570	return 1;
2571}
2572
2573/*
2574 * drop the reference count on the tree rooted at 'snap'.  This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2576 * decremented.
2577 */
2578static int walk_log_tree(struct btrfs_trans_handle *trans,
2579			 struct btrfs_root *log, struct walk_control *wc)
2580{
2581	struct btrfs_fs_info *fs_info = log->fs_info;
2582	int ret = 0;
2583	int wret;
2584	int level;
2585	struct btrfs_path *path;
2586	int orig_level;
2587
2588	path = btrfs_alloc_path();
2589	if (!path)
2590		return -ENOMEM;
2591
2592	level = btrfs_header_level(log->node);
2593	orig_level = level;
2594	path->nodes[level] = log->node;
2595	extent_buffer_get(log->node);
2596	path->slots[level] = 0;
2597
2598	while (1) {
2599		wret = walk_down_log_tree(trans, log, path, &level, wc);
2600		if (wret > 0)
2601			break;
2602		if (wret < 0) {
2603			ret = wret;
2604			goto out;
2605		}
2606
2607		wret = walk_up_log_tree(trans, log, path, &level, wc);
2608		if (wret > 0)
2609			break;
2610		if (wret < 0) {
2611			ret = wret;
2612			goto out;
2613		}
2614	}
2615
2616	/* was the root node processed? if not, catch it here */
2617	if (path->nodes[orig_level]) {
2618		ret = wc->process_func(log, path->nodes[orig_level], wc,
2619			 btrfs_header_generation(path->nodes[orig_level]));
 
2620		if (ret)
2621			goto out;
2622		if (wc->free) {
2623			struct extent_buffer *next;
2624
2625			next = path->nodes[orig_level];
2626
2627			if (trans) {
2628				btrfs_tree_lock(next);
2629				btrfs_set_lock_blocking(next);
2630				clean_tree_block(trans, fs_info, next);
2631				btrfs_wait_tree_block_writeback(next);
2632				btrfs_tree_unlock(next);
 
 
 
 
 
 
 
 
2633			}
2634
2635			WARN_ON(log->root_key.objectid !=
2636				BTRFS_TREE_LOG_OBJECTID);
2637			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2638							next->start, next->len);
2639			if (ret)
2640				goto out;
2641		}
2642	}
2643
2644out:
2645	btrfs_free_path(path);
2646	return ret;
2647}
2648
2649/*
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2652 */
2653static int update_log_root(struct btrfs_trans_handle *trans,
2654			   struct btrfs_root *log)
 
2655{
2656	struct btrfs_fs_info *fs_info = log->fs_info;
2657	int ret;
2658
2659	if (log->log_transid == 1) {
2660		/* insert root item on the first sync */
2661		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2662				&log->root_key, &log->root_item);
2663	} else {
2664		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2665				&log->root_key, &log->root_item);
2666	}
2667	return ret;
2668}
2669
2670static void wait_log_commit(struct btrfs_root *root, int transid)
2671{
2672	DEFINE_WAIT(wait);
2673	int index = transid % 2;
2674
2675	/*
2676	 * we only allow two pending log transactions at a time,
2677	 * so we know that if ours is more than 2 older than the
2678	 * current transaction, we're done
2679	 */
2680	do {
2681		prepare_to_wait(&root->log_commit_wait[index],
2682				&wait, TASK_UNINTERRUPTIBLE);
2683		mutex_unlock(&root->log_mutex);
2684
2685		if (root->log_transid_committed < transid &&
2686		    atomic_read(&root->log_commit[index]))
2687			schedule();
2688
2689		finish_wait(&root->log_commit_wait[index], &wait);
 
2690		mutex_lock(&root->log_mutex);
2691	} while (root->log_transid_committed < transid &&
2692		 atomic_read(&root->log_commit[index]));
2693}
2694
2695static void wait_for_writer(struct btrfs_root *root)
2696{
2697	DEFINE_WAIT(wait);
2698
2699	while (atomic_read(&root->log_writers)) {
2700		prepare_to_wait(&root->log_writer_wait,
2701				&wait, TASK_UNINTERRUPTIBLE);
 
 
 
2702		mutex_unlock(&root->log_mutex);
2703		if (atomic_read(&root->log_writers))
2704			schedule();
2705		finish_wait(&root->log_writer_wait, &wait);
2706		mutex_lock(&root->log_mutex);
2707	}
 
2708}
2709
2710static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2711					struct btrfs_log_ctx *ctx)
2712{
2713	if (!ctx)
2714		return;
2715
2716	mutex_lock(&root->log_mutex);
2717	list_del_init(&ctx->list);
2718	mutex_unlock(&root->log_mutex);
2719}
2720
2721/* 
2722 * Invoked in log mutex context, or be sure there is no other task which
2723 * can access the list.
2724 */
2725static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2726					     int index, int error)
2727{
2728	struct btrfs_log_ctx *ctx;
2729	struct btrfs_log_ctx *safe;
2730
2731	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2732		list_del_init(&ctx->list);
2733		ctx->log_ret = error;
2734	}
2735
2736	INIT_LIST_HEAD(&root->log_ctxs[index]);
2737}
2738
2739/*
2740 * btrfs_sync_log does sends a given tree log down to the disk and
2741 * updates the super blocks to record it.  When this call is done,
2742 * you know that any inodes previously logged are safely on disk only
2743 * if it returns 0.
2744 *
2745 * Any other return value means you need to call btrfs_commit_transaction.
2746 * Some of the edge cases for fsyncing directories that have had unlinks
2747 * or renames done in the past mean that sometimes the only safe
2748 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2749 * that has happened.
2750 */
2751int btrfs_sync_log(struct btrfs_trans_handle *trans,
2752		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2753{
2754	int index1;
2755	int index2;
2756	int mark;
2757	int ret;
2758	struct btrfs_fs_info *fs_info = root->fs_info;
2759	struct btrfs_root *log = root->log_root;
2760	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
 
2761	int log_transid = 0;
2762	struct btrfs_log_ctx root_log_ctx;
2763	struct blk_plug plug;
 
 
2764
2765	mutex_lock(&root->log_mutex);
2766	log_transid = ctx->log_transid;
2767	if (root->log_transid_committed >= log_transid) {
2768		mutex_unlock(&root->log_mutex);
2769		return ctx->log_ret;
2770	}
2771
2772	index1 = log_transid % 2;
2773	if (atomic_read(&root->log_commit[index1])) {
2774		wait_log_commit(root, log_transid);
2775		mutex_unlock(&root->log_mutex);
2776		return ctx->log_ret;
2777	}
2778	ASSERT(log_transid == root->log_transid);
2779	atomic_set(&root->log_commit[index1], 1);
2780
2781	/* wait for previous tree log sync to complete */
2782	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2783		wait_log_commit(root, log_transid - 1);
2784
2785	while (1) {
2786		int batch = atomic_read(&root->log_batch);
2787		/* when we're on an ssd, just kick the log commit out */
2788		if (!btrfs_test_opt(fs_info, SSD) &&
2789		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2790			mutex_unlock(&root->log_mutex);
2791			schedule_timeout_uninterruptible(1);
2792			mutex_lock(&root->log_mutex);
2793		}
2794		wait_for_writer(root);
2795		if (batch == atomic_read(&root->log_batch))
2796			break;
2797	}
2798
2799	/* bail out if we need to do a full commit */
2800	if (btrfs_need_log_full_commit(fs_info, trans)) {
2801		ret = -EAGAIN;
2802		btrfs_free_logged_extents(log, log_transid);
2803		mutex_unlock(&root->log_mutex);
2804		goto out;
2805	}
2806
2807	if (log_transid % 2 == 0)
2808		mark = EXTENT_DIRTY;
2809	else
2810		mark = EXTENT_NEW;
2811
2812	/* we start IO on  all the marked extents here, but we don't actually
2813	 * wait for them until later.
2814	 */
2815	blk_start_plug(&plug);
2816	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
 
 
 
 
 
 
 
 
 
 
 
2817	if (ret) {
2818		blk_finish_plug(&plug);
2819		btrfs_abort_transaction(trans, ret);
2820		btrfs_free_logged_extents(log, log_transid);
2821		btrfs_set_log_full_commit(fs_info, trans);
2822		mutex_unlock(&root->log_mutex);
2823		goto out;
2824	}
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	btrfs_set_root_node(&log->root_item, log->node);
 
2827
2828	root->log_transid++;
2829	log->log_transid = root->log_transid;
2830	root->log_start_pid = 0;
2831	/*
2832	 * IO has been started, blocks of the log tree have WRITTEN flag set
2833	 * in their headers. new modifications of the log will be written to
2834	 * new positions. so it's safe to allow log writers to go in.
2835	 */
2836	mutex_unlock(&root->log_mutex);
2837
 
 
 
 
 
 
 
 
 
 
 
 
2838	btrfs_init_log_ctx(&root_log_ctx, NULL);
2839
2840	mutex_lock(&log_root_tree->log_mutex);
2841	atomic_inc(&log_root_tree->log_batch);
2842	atomic_inc(&log_root_tree->log_writers);
2843
2844	index2 = log_root_tree->log_transid % 2;
2845	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2846	root_log_ctx.log_transid = log_root_tree->log_transid;
2847
2848	mutex_unlock(&log_root_tree->log_mutex);
2849
2850	ret = update_log_root(trans, log);
2851
2852	mutex_lock(&log_root_tree->log_mutex);
2853	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2854		/*
2855		 * Implicit memory barrier after atomic_dec_and_test
2856		 */
2857		if (waitqueue_active(&log_root_tree->log_writer_wait))
2858			wake_up(&log_root_tree->log_writer_wait);
2859	}
2860
2861	if (ret) {
2862		if (!list_empty(&root_log_ctx.list))
2863			list_del_init(&root_log_ctx.list);
2864
2865		blk_finish_plug(&plug);
2866		btrfs_set_log_full_commit(fs_info, trans);
2867
2868		if (ret != -ENOSPC) {
2869			btrfs_abort_transaction(trans, ret);
2870			mutex_unlock(&log_root_tree->log_mutex);
2871			goto out;
2872		}
2873		btrfs_wait_tree_log_extents(log, mark);
2874		btrfs_free_logged_extents(log, log_transid);
2875		mutex_unlock(&log_root_tree->log_mutex);
2876		ret = -EAGAIN;
2877		goto out;
2878	}
2879
2880	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2881		blk_finish_plug(&plug);
2882		list_del_init(&root_log_ctx.list);
2883		mutex_unlock(&log_root_tree->log_mutex);
2884		ret = root_log_ctx.log_ret;
2885		goto out;
2886	}
2887
2888	index2 = root_log_ctx.log_transid % 2;
2889	if (atomic_read(&log_root_tree->log_commit[index2])) {
2890		blk_finish_plug(&plug);
2891		ret = btrfs_wait_tree_log_extents(log, mark);
2892		btrfs_wait_logged_extents(trans, log, log_transid);
2893		wait_log_commit(log_root_tree,
2894				root_log_ctx.log_transid);
2895		mutex_unlock(&log_root_tree->log_mutex);
2896		if (!ret)
2897			ret = root_log_ctx.log_ret;
2898		goto out;
2899	}
2900	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2901	atomic_set(&log_root_tree->log_commit[index2], 1);
2902
2903	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2904		wait_log_commit(log_root_tree,
2905				root_log_ctx.log_transid - 1);
2906	}
2907
2908	wait_for_writer(log_root_tree);
2909
2910	/*
2911	 * now that we've moved on to the tree of log tree roots,
2912	 * check the full commit flag again
2913	 */
2914	if (btrfs_need_log_full_commit(fs_info, trans)) {
2915		blk_finish_plug(&plug);
2916		btrfs_wait_tree_log_extents(log, mark);
2917		btrfs_free_logged_extents(log, log_transid);
2918		mutex_unlock(&log_root_tree->log_mutex);
2919		ret = -EAGAIN;
2920		goto out_wake_log_root;
2921	}
2922
2923	ret = btrfs_write_marked_extents(fs_info,
2924					 &log_root_tree->dirty_log_pages,
2925					 EXTENT_DIRTY | EXTENT_NEW);
2926	blk_finish_plug(&plug);
2927	if (ret) {
2928		btrfs_set_log_full_commit(fs_info, trans);
 
 
 
 
 
 
 
 
 
 
2929		btrfs_abort_transaction(trans, ret);
2930		btrfs_free_logged_extents(log, log_transid);
2931		mutex_unlock(&log_root_tree->log_mutex);
2932		goto out_wake_log_root;
2933	}
2934	ret = btrfs_wait_tree_log_extents(log, mark);
2935	if (!ret)
2936		ret = btrfs_wait_tree_log_extents(log_root_tree,
2937						  EXTENT_NEW | EXTENT_DIRTY);
2938	if (ret) {
2939		btrfs_set_log_full_commit(fs_info, trans);
2940		btrfs_free_logged_extents(log, log_transid);
2941		mutex_unlock(&log_root_tree->log_mutex);
2942		goto out_wake_log_root;
2943	}
2944	btrfs_wait_logged_extents(trans, log, log_transid);
2945
2946	btrfs_set_super_log_root(fs_info->super_for_commit,
2947				 log_root_tree->node->start);
2948	btrfs_set_super_log_root_level(fs_info->super_for_commit,
2949				       btrfs_header_level(log_root_tree->node));
2950
 
 
2951	log_root_tree->log_transid++;
2952	mutex_unlock(&log_root_tree->log_mutex);
2953
2954	/*
2955	 * nobody else is going to jump in and write the the ctree
2956	 * super here because the log_commit atomic below is protecting
2957	 * us.  We must be called with a transaction handle pinning
2958	 * the running transaction open, so a full commit can't hop
2959	 * in and cause problems either.
 
 
 
 
 
 
 
 
2960	 */
2961	ret = write_ctree_super(trans, fs_info, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962	if (ret) {
2963		btrfs_set_log_full_commit(fs_info, trans);
2964		btrfs_abort_transaction(trans, ret);
2965		goto out_wake_log_root;
2966	}
2967
2968	mutex_lock(&root->log_mutex);
2969	if (root->last_log_commit < log_transid)
2970		root->last_log_commit = log_transid;
2971	mutex_unlock(&root->log_mutex);
2972
2973out_wake_log_root:
2974	mutex_lock(&log_root_tree->log_mutex);
2975	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2976
2977	log_root_tree->log_transid_committed++;
2978	atomic_set(&log_root_tree->log_commit[index2], 0);
2979	mutex_unlock(&log_root_tree->log_mutex);
2980
2981	/*
2982	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2983	 */
2984	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2985		wake_up(&log_root_tree->log_commit_wait[index2]);
2986out:
2987	mutex_lock(&root->log_mutex);
2988	btrfs_remove_all_log_ctxs(root, index1, ret);
2989	root->log_transid_committed++;
2990	atomic_set(&root->log_commit[index1], 0);
2991	mutex_unlock(&root->log_mutex);
2992
2993	/*
2994	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2995	 */
2996	if (waitqueue_active(&root->log_commit_wait[index1]))
2997		wake_up(&root->log_commit_wait[index1]);
2998	return ret;
2999}
3000
3001static void free_log_tree(struct btrfs_trans_handle *trans,
3002			  struct btrfs_root *log)
3003{
3004	int ret;
3005	u64 start;
3006	u64 end;
3007	struct walk_control wc = {
3008		.free = 1,
3009		.process_func = process_one_buffer
3010	};
3011
3012	ret = walk_log_tree(trans, log, &wc);
3013	/* I don't think this can happen but just in case */
3014	if (ret)
3015		btrfs_abort_transaction(trans, ret);
3016
3017	while (1) {
3018		ret = find_first_extent_bit(&log->dirty_log_pages,
3019				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3020				NULL);
3021		if (ret)
3022			break;
3023
3024		clear_extent_bits(&log->dirty_log_pages, start, end,
3025				  EXTENT_DIRTY | EXTENT_NEW);
3026	}
3027
3028	/*
3029	 * We may have short-circuited the log tree with the full commit logic
3030	 * and left ordered extents on our list, so clear these out to keep us
3031	 * from leaking inodes and memory.
3032	 */
3033	btrfs_free_logged_extents(log, 0);
3034	btrfs_free_logged_extents(log, 1);
3035
3036	free_extent_buffer(log->node);
3037	kfree(log);
 
3038}
3039
3040/*
3041 * free all the extents used by the tree log.  This should be called
3042 * at commit time of the full transaction
3043 */
3044int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3045{
3046	if (root->log_root) {
3047		free_log_tree(trans, root->log_root);
3048		root->log_root = NULL;
 
3049	}
3050	return 0;
3051}
3052
3053int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3054			     struct btrfs_fs_info *fs_info)
3055{
3056	if (fs_info->log_root_tree) {
3057		free_log_tree(trans, fs_info->log_root_tree);
3058		fs_info->log_root_tree = NULL;
 
3059	}
3060	return 0;
3061}
3062
3063/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064 * If both a file and directory are logged, and unlinks or renames are
3065 * mixed in, we have a few interesting corners:
3066 *
3067 * create file X in dir Y
3068 * link file X to X.link in dir Y
3069 * fsync file X
3070 * unlink file X but leave X.link
3071 * fsync dir Y
3072 *
3073 * After a crash we would expect only X.link to exist.  But file X
3074 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 *
3076 * We solve this by removing directory entries and inode backrefs from the
3077 * log when a file that was logged in the current transaction is
3078 * unlinked.  Any later fsync will include the updated log entries, and
3079 * we'll be able to reconstruct the proper directory items from backrefs.
3080 *
3081 * This optimizations allows us to avoid relogging the entire inode
3082 * or the entire directory.
3083 */
3084int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3085				 struct btrfs_root *root,
3086				 const char *name, int name_len,
3087				 struct inode *dir, u64 index)
3088{
3089	struct btrfs_root *log;
3090	struct btrfs_dir_item *di;
3091	struct btrfs_path *path;
3092	int ret;
3093	int err = 0;
3094	int bytes_del = 0;
3095	u64 dir_ino = btrfs_ino(dir);
3096
3097	if (BTRFS_I(dir)->logged_trans < trans->transid)
3098		return 0;
3099
3100	ret = join_running_log_trans(root);
3101	if (ret)
3102		return 0;
3103
3104	mutex_lock(&BTRFS_I(dir)->log_mutex);
3105
3106	log = root->log_root;
3107	path = btrfs_alloc_path();
3108	if (!path) {
3109		err = -ENOMEM;
3110		goto out_unlock;
3111	}
3112
3113	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3114				   name, name_len, -1);
3115	if (IS_ERR(di)) {
3116		err = PTR_ERR(di);
3117		goto fail;
3118	}
3119	if (di) {
3120		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3121		bytes_del += name_len;
3122		if (ret) {
3123			err = ret;
3124			goto fail;
3125		}
3126	}
3127	btrfs_release_path(path);
3128	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3129					 index, name, name_len, -1);
3130	if (IS_ERR(di)) {
3131		err = PTR_ERR(di);
3132		goto fail;
3133	}
3134	if (di) {
3135		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3136		bytes_del += name_len;
3137		if (ret) {
3138			err = ret;
3139			goto fail;
3140		}
3141	}
3142
3143	/* update the directory size in the log to reflect the names
3144	 * we have removed
 
 
3145	 */
3146	if (bytes_del) {
3147		struct btrfs_key key;
3148
3149		key.objectid = dir_ino;
3150		key.offset = 0;
3151		key.type = BTRFS_INODE_ITEM_KEY;
3152		btrfs_release_path(path);
3153
3154		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3155		if (ret < 0) {
3156			err = ret;
3157			goto fail;
3158		}
3159		if (ret == 0) {
3160			struct btrfs_inode_item *item;
3161			u64 i_size;
3162
3163			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3164					      struct btrfs_inode_item);
3165			i_size = btrfs_inode_size(path->nodes[0], item);
3166			if (i_size > bytes_del)
3167				i_size -= bytes_del;
3168			else
3169				i_size = 0;
3170			btrfs_set_inode_size(path->nodes[0], item, i_size);
3171			btrfs_mark_buffer_dirty(path->nodes[0]);
3172		} else
3173			ret = 0;
3174		btrfs_release_path(path);
3175	}
3176fail:
3177	btrfs_free_path(path);
3178out_unlock:
3179	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3180	if (ret == -ENOSPC) {
3181		btrfs_set_log_full_commit(root->fs_info, trans);
3182		ret = 0;
3183	} else if (ret < 0)
3184		btrfs_abort_transaction(trans, ret);
 
 
3185
3186	btrfs_end_log_trans(root);
3187
3188	return err;
3189}
3190
3191/* see comments for btrfs_del_dir_entries_in_log */
3192int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3193			       struct btrfs_root *root,
3194			       const char *name, int name_len,
3195			       struct inode *inode, u64 dirid)
3196{
3197	struct btrfs_fs_info *fs_info = root->fs_info;
3198	struct btrfs_root *log;
3199	u64 index;
3200	int ret;
3201
3202	if (BTRFS_I(inode)->logged_trans < trans->transid)
3203		return 0;
3204
3205	ret = join_running_log_trans(root);
3206	if (ret)
3207		return 0;
3208	log = root->log_root;
3209	mutex_lock(&BTRFS_I(inode)->log_mutex);
3210
3211	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3212				  dirid, &index);
3213	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3214	if (ret == -ENOSPC) {
3215		btrfs_set_log_full_commit(fs_info, trans);
3216		ret = 0;
3217	} else if (ret < 0 && ret != -ENOENT)
3218		btrfs_abort_transaction(trans, ret);
3219	btrfs_end_log_trans(root);
3220
3221	return ret;
3222}
3223
3224/*
3225 * creates a range item in the log for 'dirid'.  first_offset and
3226 * last_offset tell us which parts of the key space the log should
3227 * be considered authoritative for.
3228 */
3229static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3230				       struct btrfs_root *log,
3231				       struct btrfs_path *path,
3232				       int key_type, u64 dirid,
3233				       u64 first_offset, u64 last_offset)
3234{
3235	int ret;
3236	struct btrfs_key key;
3237	struct btrfs_dir_log_item *item;
3238
3239	key.objectid = dirid;
3240	key.offset = first_offset;
3241	if (key_type == BTRFS_DIR_ITEM_KEY)
3242		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3243	else
3244		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3245	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3246	if (ret)
3247		return ret;
3248
3249	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3250			      struct btrfs_dir_log_item);
3251	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3252	btrfs_mark_buffer_dirty(path->nodes[0]);
3253	btrfs_release_path(path);
3254	return 0;
3255}
3256
3257/*
3258 * log all the items included in the current transaction for a given
3259 * directory.  This also creates the range items in the log tree required
3260 * to replay anything deleted before the fsync
3261 */
3262static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3263			  struct btrfs_root *root, struct inode *inode,
3264			  struct btrfs_path *path,
3265			  struct btrfs_path *dst_path, int key_type,
3266			  struct btrfs_log_ctx *ctx,
3267			  u64 min_offset, u64 *last_offset_ret)
3268{
3269	struct btrfs_key min_key;
3270	struct btrfs_root *log = root->log_root;
3271	struct extent_buffer *src;
3272	int err = 0;
3273	int ret;
3274	int i;
3275	int nritems;
3276	u64 first_offset = min_offset;
3277	u64 last_offset = (u64)-1;
3278	u64 ino = btrfs_ino(inode);
3279
3280	log = root->log_root;
3281
3282	min_key.objectid = ino;
3283	min_key.type = key_type;
3284	min_key.offset = min_offset;
3285
3286	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3287
3288	/*
3289	 * we didn't find anything from this transaction, see if there
3290	 * is anything at all
3291	 */
3292	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3293		min_key.objectid = ino;
3294		min_key.type = key_type;
3295		min_key.offset = (u64)-1;
3296		btrfs_release_path(path);
3297		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3298		if (ret < 0) {
3299			btrfs_release_path(path);
3300			return ret;
3301		}
3302		ret = btrfs_previous_item(root, path, ino, key_type);
3303
3304		/* if ret == 0 there are items for this type,
3305		 * create a range to tell us the last key of this type.
3306		 * otherwise, there are no items in this directory after
3307		 * *min_offset, and we create a range to indicate that.
3308		 */
3309		if (ret == 0) {
3310			struct btrfs_key tmp;
3311			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3312					      path->slots[0]);
3313			if (key_type == tmp.type)
3314				first_offset = max(min_offset, tmp.offset) + 1;
3315		}
3316		goto done;
3317	}
3318
3319	/* go backward to find any previous key */
3320	ret = btrfs_previous_item(root, path, ino, key_type);
3321	if (ret == 0) {
3322		struct btrfs_key tmp;
3323		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3324		if (key_type == tmp.type) {
3325			first_offset = tmp.offset;
3326			ret = overwrite_item(trans, log, dst_path,
3327					     path->nodes[0], path->slots[0],
3328					     &tmp);
3329			if (ret) {
3330				err = ret;
3331				goto done;
3332			}
3333		}
3334	}
3335	btrfs_release_path(path);
3336
3337	/* find the first key from this transaction again */
 
 
 
 
 
 
 
 
3338	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3339	if (WARN_ON(ret != 0))
3340		goto done;
3341
3342	/*
3343	 * we have a block from this transaction, log every item in it
3344	 * from our directory
3345	 */
3346	while (1) {
3347		struct btrfs_key tmp;
3348		src = path->nodes[0];
3349		nritems = btrfs_header_nritems(src);
3350		for (i = path->slots[0]; i < nritems; i++) {
3351			struct btrfs_dir_item *di;
3352
3353			btrfs_item_key_to_cpu(src, &min_key, i);
3354
3355			if (min_key.objectid != ino || min_key.type != key_type)
3356				goto done;
 
 
 
 
 
 
 
3357			ret = overwrite_item(trans, log, dst_path, src, i,
3358					     &min_key);
3359			if (ret) {
3360				err = ret;
3361				goto done;
3362			}
3363
3364			/*
3365			 * We must make sure that when we log a directory entry,
3366			 * the corresponding inode, after log replay, has a
3367			 * matching link count. For example:
3368			 *
3369			 * touch foo
3370			 * mkdir mydir
3371			 * sync
3372			 * ln foo mydir/bar
3373			 * xfs_io -c "fsync" mydir
3374			 * <crash>
3375			 * <mount fs and log replay>
3376			 *
3377			 * Would result in a fsync log that when replayed, our
3378			 * file inode would have a link count of 1, but we get
3379			 * two directory entries pointing to the same inode.
3380			 * After removing one of the names, it would not be
3381			 * possible to remove the other name, which resulted
3382			 * always in stale file handle errors, and would not
3383			 * be possible to rmdir the parent directory, since
3384			 * its i_size could never decrement to the value
3385			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386			 */
3387			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3388			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389			if (ctx &&
3390			    (btrfs_dir_transid(src, di) == trans->transid ||
3391			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3392			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3393				ctx->log_new_dentries = true;
3394		}
3395		path->slots[0] = nritems;
3396
3397		/*
3398		 * look ahead to the next item and see if it is also
3399		 * from this directory and from this transaction
3400		 */
3401		ret = btrfs_next_leaf(root, path);
3402		if (ret == 1) {
3403			last_offset = (u64)-1;
 
 
 
3404			goto done;
3405		}
3406		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3407		if (tmp.objectid != ino || tmp.type != key_type) {
3408			last_offset = (u64)-1;
3409			goto done;
3410		}
3411		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3412			ret = overwrite_item(trans, log, dst_path,
3413					     path->nodes[0], path->slots[0],
3414					     &tmp);
3415			if (ret)
3416				err = ret;
3417			else
3418				last_offset = tmp.offset;
3419			goto done;
3420		}
3421	}
3422done:
3423	btrfs_release_path(path);
3424	btrfs_release_path(dst_path);
3425
3426	if (err == 0) {
3427		*last_offset_ret = last_offset;
3428		/*
3429		 * insert the log range keys to indicate where the log
3430		 * is valid
3431		 */
3432		ret = insert_dir_log_key(trans, log, path, key_type,
3433					 ino, first_offset, last_offset);
3434		if (ret)
3435			err = ret;
3436	}
3437	return err;
3438}
3439
3440/*
3441 * logging directories is very similar to logging inodes, We find all the items
3442 * from the current transaction and write them to the log.
3443 *
3444 * The recovery code scans the directory in the subvolume, and if it finds a
3445 * key in the range logged that is not present in the log tree, then it means
3446 * that dir entry was unlinked during the transaction.
3447 *
3448 * In order for that scan to work, we must include one key smaller than
3449 * the smallest logged by this transaction and one key larger than the largest
3450 * key logged by this transaction.
3451 */
3452static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3453			  struct btrfs_root *root, struct inode *inode,
3454			  struct btrfs_path *path,
3455			  struct btrfs_path *dst_path,
3456			  struct btrfs_log_ctx *ctx)
3457{
3458	u64 min_key;
3459	u64 max_key;
3460	int ret;
3461	int key_type = BTRFS_DIR_ITEM_KEY;
3462
3463again:
3464	min_key = 0;
3465	max_key = 0;
3466	while (1) {
3467		ret = log_dir_items(trans, root, inode, path,
3468				    dst_path, key_type, ctx, min_key,
3469				    &max_key);
3470		if (ret)
3471			return ret;
3472		if (max_key == (u64)-1)
3473			break;
3474		min_key = max_key + 1;
3475	}
3476
3477	if (key_type == BTRFS_DIR_ITEM_KEY) {
3478		key_type = BTRFS_DIR_INDEX_KEY;
3479		goto again;
3480	}
3481	return 0;
3482}
3483
3484/*
3485 * a helper function to drop items from the log before we relog an
3486 * inode.  max_key_type indicates the highest item type to remove.
3487 * This cannot be run for file data extents because it does not
3488 * free the extents they point to.
3489 */
3490static int drop_objectid_items(struct btrfs_trans_handle *trans,
3491				  struct btrfs_root *log,
3492				  struct btrfs_path *path,
3493				  u64 objectid, int max_key_type)
3494{
3495	int ret;
3496	struct btrfs_key key;
3497	struct btrfs_key found_key;
3498	int start_slot;
3499
3500	key.objectid = objectid;
3501	key.type = max_key_type;
3502	key.offset = (u64)-1;
3503
3504	while (1) {
3505		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3506		BUG_ON(ret == 0); /* Logic error */
3507		if (ret < 0)
3508			break;
3509
3510		if (path->slots[0] == 0)
3511			break;
3512
3513		path->slots[0]--;
3514		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3515				      path->slots[0]);
3516
3517		if (found_key.objectid != objectid)
3518			break;
3519
3520		found_key.offset = 0;
3521		found_key.type = 0;
3522		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3523				       &start_slot);
 
3524
3525		ret = btrfs_del_items(trans, log, path, start_slot,
3526				      path->slots[0] - start_slot + 1);
3527		/*
3528		 * If start slot isn't 0 then we don't need to re-search, we've
3529		 * found the last guy with the objectid in this tree.
3530		 */
3531		if (ret || start_slot != 0)
3532			break;
3533		btrfs_release_path(path);
3534	}
3535	btrfs_release_path(path);
3536	if (ret > 0)
3537		ret = 0;
3538	return ret;
3539}
3540
3541static void fill_inode_item(struct btrfs_trans_handle *trans,
3542			    struct extent_buffer *leaf,
3543			    struct btrfs_inode_item *item,
3544			    struct inode *inode, int log_inode_only,
3545			    u64 logged_isize)
3546{
3547	struct btrfs_map_token token;
3548
3549	btrfs_init_map_token(&token);
3550
3551	if (log_inode_only) {
3552		/* set the generation to zero so the recover code
3553		 * can tell the difference between an logging
3554		 * just to say 'this inode exists' and a logging
3555		 * to say 'update this inode with these values'
3556		 */
3557		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3558		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3559	} else {
3560		btrfs_set_token_inode_generation(leaf, item,
3561						 BTRFS_I(inode)->generation,
3562						 &token);
3563		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3564	}
3565
3566	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3567	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3568	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3569	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3570
3571	btrfs_set_token_timespec_sec(leaf, &item->atime,
3572				     inode->i_atime.tv_sec, &token);
3573	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3574				      inode->i_atime.tv_nsec, &token);
3575
3576	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3577				     inode->i_mtime.tv_sec, &token);
3578	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3579				      inode->i_mtime.tv_nsec, &token);
3580
3581	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3582				     inode->i_ctime.tv_sec, &token);
3583	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3584				      inode->i_ctime.tv_nsec, &token);
3585
3586	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3587				     &token);
3588
3589	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3590	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3591	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3592	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3593	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
 
 
 
 
 
3594}
3595
3596static int log_inode_item(struct btrfs_trans_handle *trans,
3597			  struct btrfs_root *log, struct btrfs_path *path,
3598			  struct inode *inode)
3599{
3600	struct btrfs_inode_item *inode_item;
3601	int ret;
3602
3603	ret = btrfs_insert_empty_item(trans, log, path,
3604				      &BTRFS_I(inode)->location,
3605				      sizeof(*inode_item));
3606	if (ret && ret != -EEXIST)
3607		return ret;
3608	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609				    struct btrfs_inode_item);
3610	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
 
3611	btrfs_release_path(path);
3612	return 0;
3613}
3614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615static noinline int copy_items(struct btrfs_trans_handle *trans,
3616			       struct inode *inode,
3617			       struct btrfs_path *dst_path,
3618			       struct btrfs_path *src_path, u64 *last_extent,
3619			       int start_slot, int nr, int inode_only,
3620			       u64 logged_isize)
3621{
3622	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3623	unsigned long src_offset;
3624	unsigned long dst_offset;
3625	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3626	struct btrfs_file_extent_item *extent;
3627	struct btrfs_inode_item *inode_item;
3628	struct extent_buffer *src = src_path->nodes[0];
3629	struct btrfs_key first_key, last_key, key;
3630	int ret;
3631	struct btrfs_key *ins_keys;
3632	u32 *ins_sizes;
3633	char *ins_data;
3634	int i;
3635	struct list_head ordered_sums;
3636	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3637	bool has_extents = false;
3638	bool need_find_last_extent = true;
3639	bool done = false;
3640
3641	INIT_LIST_HEAD(&ordered_sums);
3642
3643	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3644			   nr * sizeof(u32), GFP_NOFS);
3645	if (!ins_data)
3646		return -ENOMEM;
3647
3648	first_key.objectid = (u64)-1;
3649
3650	ins_sizes = (u32 *)ins_data;
3651	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3652
3653	for (i = 0; i < nr; i++) {
3654		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3655		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3656	}
3657	ret = btrfs_insert_empty_items(trans, log, dst_path,
3658				       ins_keys, ins_sizes, nr);
3659	if (ret) {
3660		kfree(ins_data);
3661		return ret;
3662	}
3663
3664	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3665		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3666						   dst_path->slots[0]);
3667
3668		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3669
3670		if ((i == (nr - 1)))
3671			last_key = ins_keys[i];
3672
3673		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3674			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3675						    dst_path->slots[0],
3676						    struct btrfs_inode_item);
3677			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3678					inode, inode_only == LOG_INODE_EXISTS,
 
3679					logged_isize);
3680		} else {
3681			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3682					   src_offset, ins_sizes[i]);
3683		}
3684
3685		/*
3686		 * We set need_find_last_extent here in case we know we were
3687		 * processing other items and then walk into the first extent in
3688		 * the inode.  If we don't hit an extent then nothing changes,
3689		 * we'll do the last search the next time around.
3690		 */
3691		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3692			has_extents = true;
3693			if (first_key.objectid == (u64)-1)
3694				first_key = ins_keys[i];
3695		} else {
3696			need_find_last_extent = false;
3697		}
3698
3699		/* take a reference on file data extents so that truncates
3700		 * or deletes of this inode don't have to relog the inode
3701		 * again
3702		 */
3703		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3704		    !skip_csum) {
3705			int found_type;
3706			extent = btrfs_item_ptr(src, start_slot + i,
3707						struct btrfs_file_extent_item);
3708
3709			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3710				continue;
3711
3712			found_type = btrfs_file_extent_type(src, extent);
3713			if (found_type == BTRFS_FILE_EXTENT_REG) {
3714				u64 ds, dl, cs, cl;
3715				ds = btrfs_file_extent_disk_bytenr(src,
3716								extent);
3717				/* ds == 0 is a hole */
3718				if (ds == 0)
3719					continue;
3720
3721				dl = btrfs_file_extent_disk_num_bytes(src,
3722								extent);
3723				cs = btrfs_file_extent_offset(src, extent);
3724				cl = btrfs_file_extent_num_bytes(src,
3725								extent);
3726				if (btrfs_file_extent_compression(src,
3727								  extent)) {
3728					cs = 0;
3729					cl = dl;
3730				}
3731
3732				ret = btrfs_lookup_csums_range(
3733						fs_info->csum_root,
3734						ds + cs, ds + cs + cl - 1,
3735						&ordered_sums, 0);
3736				if (ret) {
3737					btrfs_release_path(dst_path);
3738					kfree(ins_data);
3739					return ret;
3740				}
3741			}
3742		}
3743	}
3744
3745	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3746	btrfs_release_path(dst_path);
3747	kfree(ins_data);
3748
3749	/*
3750	 * we have to do this after the loop above to avoid changing the
3751	 * log tree while trying to change the log tree.
3752	 */
3753	ret = 0;
3754	while (!list_empty(&ordered_sums)) {
3755		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3756						   struct btrfs_ordered_sum,
3757						   list);
3758		if (!ret)
3759			ret = btrfs_csum_file_blocks(trans, log, sums);
3760		list_del(&sums->list);
3761		kfree(sums);
3762	}
3763
3764	if (!has_extents)
3765		return ret;
3766
3767	if (need_find_last_extent && *last_extent == first_key.offset) {
3768		/*
3769		 * We don't have any leafs between our current one and the one
3770		 * we processed before that can have file extent items for our
3771		 * inode (and have a generation number smaller than our current
3772		 * transaction id).
3773		 */
3774		need_find_last_extent = false;
3775	}
3776
3777	/*
3778	 * Because we use btrfs_search_forward we could skip leaves that were
3779	 * not modified and then assume *last_extent is valid when it really
3780	 * isn't.  So back up to the previous leaf and read the end of the last
3781	 * extent before we go and fill in holes.
3782	 */
3783	if (need_find_last_extent) {
3784		u64 len;
3785
3786		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3787		if (ret < 0)
3788			return ret;
3789		if (ret)
3790			goto fill_holes;
3791		if (src_path->slots[0])
3792			src_path->slots[0]--;
3793		src = src_path->nodes[0];
3794		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3795		if (key.objectid != btrfs_ino(inode) ||
3796		    key.type != BTRFS_EXTENT_DATA_KEY)
3797			goto fill_holes;
3798		extent = btrfs_item_ptr(src, src_path->slots[0],
3799					struct btrfs_file_extent_item);
3800		if (btrfs_file_extent_type(src, extent) ==
3801		    BTRFS_FILE_EXTENT_INLINE) {
3802			len = btrfs_file_extent_inline_len(src,
3803							   src_path->slots[0],
3804							   extent);
3805			*last_extent = ALIGN(key.offset + len,
3806					     fs_info->sectorsize);
3807		} else {
3808			len = btrfs_file_extent_num_bytes(src, extent);
3809			*last_extent = key.offset + len;
3810		}
3811	}
3812fill_holes:
3813	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3814	 * things could have happened
3815	 *
3816	 * 1) A merge could have happened, so we could currently be on a leaf
3817	 * that holds what we were copying in the first place.
3818	 * 2) A split could have happened, and now not all of the items we want
3819	 * are on the same leaf.
3820	 *
3821	 * So we need to adjust how we search for holes, we need to drop the
3822	 * path and re-search for the first extent key we found, and then walk
3823	 * forward until we hit the last one we copied.
3824	 */
3825	if (need_find_last_extent) {
3826		/* btrfs_prev_leaf could return 1 without releasing the path */
3827		btrfs_release_path(src_path);
3828		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3829					src_path, 0, 0);
3830		if (ret < 0)
3831			return ret;
3832		ASSERT(ret == 0);
3833		src = src_path->nodes[0];
3834		i = src_path->slots[0];
3835	} else {
3836		i = start_slot;
3837	}
3838
3839	/*
3840	 * Ok so here we need to go through and fill in any holes we may have
3841	 * to make sure that holes are punched for those areas in case they had
3842	 * extents previously.
3843	 */
3844	while (!done) {
3845		u64 offset, len;
3846		u64 extent_end;
3847
3848		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3849			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3850			if (ret < 0)
3851				return ret;
3852			ASSERT(ret == 0);
3853			src = src_path->nodes[0];
3854			i = 0;
3855		}
3856
3857		btrfs_item_key_to_cpu(src, &key, i);
3858		if (!btrfs_comp_cpu_keys(&key, &last_key))
3859			done = true;
3860		if (key.objectid != btrfs_ino(inode) ||
3861		    key.type != BTRFS_EXTENT_DATA_KEY) {
3862			i++;
3863			continue;
3864		}
3865		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866		if (btrfs_file_extent_type(src, extent) ==
3867		    BTRFS_FILE_EXTENT_INLINE) {
3868			len = btrfs_file_extent_inline_len(src, i, extent);
3869			extent_end = ALIGN(key.offset + len,
3870					   fs_info->sectorsize);
3871		} else {
3872			len = btrfs_file_extent_num_bytes(src, extent);
3873			extent_end = key.offset + len;
3874		}
3875		i++;
3876
3877		if (*last_extent == key.offset) {
3878			*last_extent = extent_end;
3879			continue;
3880		}
3881		offset = *last_extent;
3882		len = key.offset - *last_extent;
3883		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884					       offset, 0, 0, len, 0, len, 0,
3885					       0, 0);
3886		if (ret)
3887			break;
3888		*last_extent = extent_end;
3889	}
3890	/*
3891	 * Need to let the callers know we dropped the path so they should
3892	 * re-search.
3893	 */
3894	if (!ret && need_find_last_extent)
3895		ret = 1;
3896	return ret;
3897}
3898
3899static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
 
3900{
3901	struct extent_map *em1, *em2;
3902
3903	em1 = list_entry(a, struct extent_map, list);
3904	em2 = list_entry(b, struct extent_map, list);
3905
3906	if (em1->start < em2->start)
3907		return -1;
3908	else if (em1->start > em2->start)
3909		return 1;
3910	return 0;
3911}
3912
3913static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3914				struct inode *inode,
3915				struct btrfs_root *root,
3916				const struct extent_map *em,
3917				const struct list_head *logged_list,
3918				bool *ordered_io_error)
3919{
3920	struct btrfs_fs_info *fs_info = root->fs_info;
3921	struct btrfs_ordered_extent *ordered;
3922	struct btrfs_root *log = root->log_root;
3923	u64 mod_start = em->mod_start;
3924	u64 mod_len = em->mod_len;
3925	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3926	u64 csum_offset;
3927	u64 csum_len;
 
 
3928	LIST_HEAD(ordered_sums);
3929	int ret = 0;
3930
3931	*ordered_io_error = false;
3932
3933	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3934	    em->block_start == EXTENT_MAP_HOLE)
3935		return 0;
3936
3937	/*
3938	 * Wait far any ordered extent that covers our extent map. If it
3939	 * finishes without an error, first check and see if our csums are on
3940	 * our outstanding ordered extents.
3941	 */
3942	list_for_each_entry(ordered, logged_list, log_list) {
3943		struct btrfs_ordered_sum *sum;
3944
3945		if (!mod_len)
3946			break;
3947
3948		if (ordered->file_offset + ordered->len <= mod_start ||
3949		    mod_start + mod_len <= ordered->file_offset)
3950			continue;
3951
3952		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3953		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3954		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3955			const u64 start = ordered->file_offset;
3956			const u64 end = ordered->file_offset + ordered->len - 1;
3957
3958			WARN_ON(ordered->inode != inode);
3959			filemap_fdatawrite_range(inode->i_mapping, start, end);
3960		}
3961
3962		wait_event(ordered->wait,
3963			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3964			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965
3966		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967			/*
3968			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3969			 * i_mapping flags, so that the next fsync won't get
3970			 * an outdated io error too.
3971			 */
3972			filemap_check_errors(inode->i_mapping);
3973			*ordered_io_error = true;
3974			break;
3975		}
3976		/*
3977		 * We are going to copy all the csums on this ordered extent, so
3978		 * go ahead and adjust mod_start and mod_len in case this
3979		 * ordered extent has already been logged.
3980		 */
3981		if (ordered->file_offset > mod_start) {
3982			if (ordered->file_offset + ordered->len >=
3983			    mod_start + mod_len)
3984				mod_len = ordered->file_offset - mod_start;
3985			/*
3986			 * If we have this case
3987			 *
3988			 * |--------- logged extent ---------|
3989			 *       |----- ordered extent ----|
3990			 *
3991			 * Just don't mess with mod_start and mod_len, we'll
3992			 * just end up logging more csums than we need and it
3993			 * will be ok.
3994			 */
3995		} else {
3996			if (ordered->file_offset + ordered->len <
3997			    mod_start + mod_len) {
3998				mod_len = (mod_start + mod_len) -
3999					(ordered->file_offset + ordered->len);
4000				mod_start = ordered->file_offset +
4001					ordered->len;
4002			} else {
4003				mod_len = 0;
4004			}
4005		}
4006
4007		if (skip_csum)
4008			continue;
4009
4010		/*
4011		 * To keep us from looping for the above case of an ordered
4012		 * extent that falls inside of the logged extent.
4013		 */
4014		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4015				     &ordered->flags))
4016			continue;
4017
4018		list_for_each_entry(sum, &ordered->list, list) {
4019			ret = btrfs_csum_file_blocks(trans, log, sum);
4020			if (ret)
4021				break;
4022		}
4023	}
4024
4025	if (*ordered_io_error || !mod_len || ret || skip_csum)
4026		return ret;
 
4027
 
4028	if (em->compress_type) {
4029		csum_offset = 0;
4030		csum_len = max(em->block_len, em->orig_block_len);
4031	} else {
4032		csum_offset = mod_start - em->start;
4033		csum_len = mod_len;
4034	}
4035
4036	/* block start is already adjusted for the file extent offset. */
4037	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4038				       em->block_start + csum_offset,
4039				       em->block_start + csum_offset +
4040				       csum_len - 1, &ordered_sums, 0);
4041	if (ret)
4042		return ret;
4043
4044	while (!list_empty(&ordered_sums)) {
4045		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4046						   struct btrfs_ordered_sum,
4047						   list);
4048		if (!ret)
4049			ret = btrfs_csum_file_blocks(trans, log, sums);
4050		list_del(&sums->list);
4051		kfree(sums);
4052	}
4053
4054	return ret;
4055}
4056
4057static int log_one_extent(struct btrfs_trans_handle *trans,
4058			  struct inode *inode, struct btrfs_root *root,
4059			  const struct extent_map *em,
4060			  struct btrfs_path *path,
4061			  const struct list_head *logged_list,
4062			  struct btrfs_log_ctx *ctx)
4063{
 
4064	struct btrfs_root *log = root->log_root;
4065	struct btrfs_file_extent_item *fi;
4066	struct extent_buffer *leaf;
4067	struct btrfs_map_token token;
4068	struct btrfs_key key;
4069	u64 extent_offset = em->start - em->orig_start;
4070	u64 block_len;
4071	int ret;
4072	int extent_inserted = 0;
4073	bool ordered_io_err = false;
4074
4075	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4076				   &ordered_io_err);
4077	if (ret)
4078		return ret;
4079
4080	if (ordered_io_err) {
4081		ctx->io_err = -EIO;
4082		return 0;
4083	}
4084
4085	btrfs_init_map_token(&token);
4086
4087	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4088				   em->start + em->len, NULL, 0, 1,
4089				   sizeof(*fi), &extent_inserted);
4090	if (ret)
4091		return ret;
4092
4093	if (!extent_inserted) {
4094		key.objectid = btrfs_ino(inode);
4095		key.type = BTRFS_EXTENT_DATA_KEY;
4096		key.offset = em->start;
4097
4098		ret = btrfs_insert_empty_item(trans, log, path, &key,
4099					      sizeof(*fi));
4100		if (ret)
4101			return ret;
4102	}
4103	leaf = path->nodes[0];
 
4104	fi = btrfs_item_ptr(leaf, path->slots[0],
4105			    struct btrfs_file_extent_item);
4106
4107	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108					       &token);
4109	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4110		btrfs_set_token_file_extent_type(leaf, fi,
4111						 BTRFS_FILE_EXTENT_PREALLOC,
4112						 &token);
4113	else
4114		btrfs_set_token_file_extent_type(leaf, fi,
4115						 BTRFS_FILE_EXTENT_REG,
4116						 &token);
4117
4118	block_len = max(em->block_len, em->orig_block_len);
4119	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4120		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4121							em->block_start,
4122							&token);
4123		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124							   &token);
4125	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4126		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127							em->block_start -
4128							extent_offset, &token);
4129		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130							   &token);
4131	} else {
4132		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4133		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4134							   &token);
4135	}
4136
4137	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4138	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4139	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4140	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141						&token);
4142	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4143	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4144	btrfs_mark_buffer_dirty(leaf);
4145
4146	btrfs_release_path(path);
4147
4148	return ret;
4149}
4150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4151static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4152				     struct btrfs_root *root,
4153				     struct inode *inode,
4154				     struct btrfs_path *path,
4155				     struct list_head *logged_list,
4156				     struct btrfs_log_ctx *ctx,
4157				     const u64 start,
4158				     const u64 end)
4159{
 
 
4160	struct extent_map *em, *n;
4161	struct list_head extents;
4162	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4163	u64 test_gen;
4164	int ret = 0;
4165	int num = 0;
4166
4167	INIT_LIST_HEAD(&extents);
4168
4169	down_write(&BTRFS_I(inode)->dio_sem);
4170	write_lock(&tree->lock);
4171	test_gen = root->fs_info->last_trans_committed;
4172
4173	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4174		list_del_init(&em->list);
4175
4176		/*
4177		 * Just an arbitrary number, this can be really CPU intensive
4178		 * once we start getting a lot of extents, and really once we
4179		 * have a bunch of extents we just want to commit since it will
4180		 * be faster.
4181		 */
4182		if (++num > 32768) {
4183			list_del_init(&tree->modified_extents);
4184			ret = -EFBIG;
4185			goto process;
4186		}
4187
4188		if (em->generation <= test_gen)
 
 
 
 
 
4189			continue;
 
4190		/* Need a ref to keep it from getting evicted from cache */
4191		atomic_inc(&em->refs);
4192		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4193		list_add_tail(&em->list, &extents);
4194		num++;
4195	}
4196
4197	list_sort(NULL, &extents, extent_cmp);
4198	btrfs_get_logged_extents(inode, logged_list, start, end);
4199	/*
4200	 * Some ordered extents started by fsync might have completed
4201	 * before we could collect them into the list logged_list, which
4202	 * means they're gone, not in our logged_list nor in the inode's
4203	 * ordered tree. We want the application/user space to know an
4204	 * error happened while attempting to persist file data so that
4205	 * it can take proper action. If such error happened, we leave
4206	 * without writing to the log tree and the fsync must report the
4207	 * file data write error and not commit the current transaction.
4208	 */
4209	ret = filemap_check_errors(inode->i_mapping);
4210	if (ret)
4211		ctx->io_err = ret;
4212process:
4213	while (!list_empty(&extents)) {
4214		em = list_entry(extents.next, struct extent_map, list);
4215
4216		list_del_init(&em->list);
4217
4218		/*
4219		 * If we had an error we just need to delete everybody from our
4220		 * private list.
4221		 */
4222		if (ret) {
4223			clear_em_logging(tree, em);
4224			free_extent_map(em);
4225			continue;
4226		}
4227
4228		write_unlock(&tree->lock);
4229
4230		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231				     ctx);
4232		write_lock(&tree->lock);
4233		clear_em_logging(tree, em);
4234		free_extent_map(em);
4235	}
4236	WARN_ON(!list_empty(&extents));
4237	write_unlock(&tree->lock);
4238	up_write(&BTRFS_I(inode)->dio_sem);
4239
4240	btrfs_release_path(path);
4241	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4242}
4243
4244static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4245			     struct btrfs_path *path, u64 *size_ret)
4246{
4247	struct btrfs_key key;
4248	int ret;
4249
4250	key.objectid = btrfs_ino(inode);
4251	key.type = BTRFS_INODE_ITEM_KEY;
4252	key.offset = 0;
4253
4254	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4255	if (ret < 0) {
4256		return ret;
4257	} else if (ret > 0) {
4258		*size_ret = 0;
4259	} else {
4260		struct btrfs_inode_item *item;
4261
4262		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4263				      struct btrfs_inode_item);
4264		*size_ret = btrfs_inode_size(path->nodes[0], item);
 
 
 
 
 
 
 
 
 
 
 
 
 
4265	}
4266
4267	btrfs_release_path(path);
4268	return 0;
4269}
4270
4271/*
4272 * At the moment we always log all xattrs. This is to figure out at log replay
4273 * time which xattrs must have their deletion replayed. If a xattr is missing
4274 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4275 * because if a xattr is deleted, the inode is fsynced and a power failure
4276 * happens, causing the log to be replayed the next time the fs is mounted,
4277 * we want the xattr to not exist anymore (same behaviour as other filesystems
4278 * with a journal, ext3/4, xfs, f2fs, etc).
4279 */
4280static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4281				struct btrfs_root *root,
4282				struct inode *inode,
4283				struct btrfs_path *path,
4284				struct btrfs_path *dst_path)
4285{
4286	int ret;
4287	struct btrfs_key key;
4288	const u64 ino = btrfs_ino(inode);
4289	int ins_nr = 0;
4290	int start_slot = 0;
 
 
 
 
4291
4292	key.objectid = ino;
4293	key.type = BTRFS_XATTR_ITEM_KEY;
4294	key.offset = 0;
4295
4296	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4297	if (ret < 0)
4298		return ret;
4299
4300	while (true) {
4301		int slot = path->slots[0];
4302		struct extent_buffer *leaf = path->nodes[0];
4303		int nritems = btrfs_header_nritems(leaf);
4304
4305		if (slot >= nritems) {
4306			if (ins_nr > 0) {
4307				u64 last_extent = 0;
4308
4309				ret = copy_items(trans, inode, dst_path, path,
4310						 &last_extent, start_slot,
4311						 ins_nr, 1, 0);
4312				/* can't be 1, extent items aren't processed */
4313				ASSERT(ret <= 0);
4314				if (ret < 0)
4315					return ret;
4316				ins_nr = 0;
4317			}
4318			ret = btrfs_next_leaf(root, path);
4319			if (ret < 0)
4320				return ret;
4321			else if (ret > 0)
4322				break;
4323			continue;
4324		}
4325
4326		btrfs_item_key_to_cpu(leaf, &key, slot);
4327		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4328			break;
4329
4330		if (ins_nr == 0)
4331			start_slot = slot;
4332		ins_nr++;
4333		path->slots[0]++;
 
4334		cond_resched();
4335	}
4336	if (ins_nr > 0) {
4337		u64 last_extent = 0;
4338
4339		ret = copy_items(trans, inode, dst_path, path,
4340				 &last_extent, start_slot,
4341				 ins_nr, 1, 0);
4342		/* can't be 1, extent items aren't processed */
4343		ASSERT(ret <= 0);
4344		if (ret < 0)
4345			return ret;
4346	}
4347
 
 
 
4348	return 0;
4349}
4350
4351/*
4352 * If the no holes feature is enabled we need to make sure any hole between the
4353 * last extent and the i_size of our inode is explicitly marked in the log. This
4354 * is to make sure that doing something like:
4355 *
4356 *      1) create file with 128Kb of data
4357 *      2) truncate file to 64Kb
4358 *      3) truncate file to 256Kb
4359 *      4) fsync file
4360 *      5) <crash/power failure>
4361 *      6) mount fs and trigger log replay
4362 *
4363 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4364 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4365 * file correspond to a hole. The presence of explicit holes in a log tree is
4366 * what guarantees that log replay will remove/adjust file extent items in the
4367 * fs/subvol tree.
4368 *
4369 * Here we do not need to care about holes between extents, that is already done
4370 * by copy_items(). We also only need to do this in the full sync path, where we
4371 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4372 * lookup the list of modified extent maps and if any represents a hole, we
4373 * insert a corresponding extent representing a hole in the log tree.
4374 */
4375static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4376				   struct btrfs_root *root,
4377				   struct inode *inode,
4378				   struct btrfs_path *path)
4379{
4380	struct btrfs_fs_info *fs_info = root->fs_info;
4381	int ret;
4382	struct btrfs_key key;
4383	u64 hole_start;
4384	u64 hole_size;
4385	struct extent_buffer *leaf;
4386	struct btrfs_root *log = root->log_root;
4387	const u64 ino = btrfs_ino(inode);
4388	const u64 i_size = i_size_read(inode);
 
 
4389
4390	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4391		return 0;
4392
4393	key.objectid = ino;
4394	key.type = BTRFS_EXTENT_DATA_KEY;
4395	key.offset = (u64)-1;
4396
4397	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398	ASSERT(ret != 0);
4399	if (ret < 0)
4400		return ret;
4401
4402	ASSERT(path->slots[0] > 0);
4403	path->slots[0]--;
4404	leaf = path->nodes[0];
4405	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406
4407	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4408		/* inode does not have any extents */
4409		hole_start = 0;
4410		hole_size = i_size;
4411	} else {
4412		struct btrfs_file_extent_item *extent;
4413		u64 len;
 
 
 
4414
4415		/*
4416		 * If there's an extent beyond i_size, an explicit hole was
4417		 * already inserted by copy_items().
4418		 */
4419		if (key.offset >= i_size)
4420			return 0;
4421
4422		extent = btrfs_item_ptr(leaf, path->slots[0],
4423					struct btrfs_file_extent_item);
 
4424
4425		if (btrfs_file_extent_type(leaf, extent) ==
4426		    BTRFS_FILE_EXTENT_INLINE) {
4427			len = btrfs_file_extent_inline_len(leaf,
4428							   path->slots[0],
4429							   extent);
4430			ASSERT(len == i_size);
4431			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4432		}
4433
4434		len = btrfs_file_extent_num_bytes(leaf, extent);
4435		/* Last extent goes beyond i_size, no need to log a hole. */
4436		if (key.offset + len > i_size)
4437			return 0;
4438		hole_start = key.offset + len;
4439		hole_size = i_size - hole_start;
4440	}
4441	btrfs_release_path(path);
4442
4443	/* Last extent ends at i_size. */
4444	if (hole_size == 0)
4445		return 0;
4446
4447	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4448	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4449				       hole_size, 0, hole_size, 0, 0, 0);
4450	return ret;
 
 
 
 
 
 
 
4451}
4452
4453/*
4454 * When we are logging a new inode X, check if it doesn't have a reference that
4455 * matches the reference from some other inode Y created in a past transaction
4456 * and that was renamed in the current transaction. If we don't do this, then at
4457 * log replay time we can lose inode Y (and all its files if it's a directory):
4458 *
4459 * mkdir /mnt/x
4460 * echo "hello world" > /mnt/x/foobar
4461 * sync
4462 * mv /mnt/x /mnt/y
4463 * mkdir /mnt/x                 # or touch /mnt/x
4464 * xfs_io -c fsync /mnt/x
4465 * <power fail>
4466 * mount fs, trigger log replay
4467 *
4468 * After the log replay procedure, we would lose the first directory and all its
4469 * files (file foobar).
4470 * For the case where inode Y is not a directory we simply end up losing it:
4471 *
4472 * echo "123" > /mnt/foo
4473 * sync
4474 * mv /mnt/foo /mnt/bar
4475 * echo "abc" > /mnt/foo
4476 * xfs_io -c fsync /mnt/foo
4477 * <power fail>
4478 *
4479 * We also need this for cases where a snapshot entry is replaced by some other
4480 * entry (file or directory) otherwise we end up with an unreplayable log due to
4481 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4482 * if it were a regular entry:
4483 *
4484 * mkdir /mnt/x
4485 * btrfs subvolume snapshot /mnt /mnt/x/snap
4486 * btrfs subvolume delete /mnt/x/snap
4487 * rmdir /mnt/x
4488 * mkdir /mnt/x
4489 * fsync /mnt/x or fsync some new file inside it
4490 * <power fail>
4491 *
4492 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4493 * the same transaction.
4494 */
4495static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496					 const int slot,
4497					 const struct btrfs_key *key,
4498					 struct inode *inode,
4499					 u64 *other_ino)
4500{
4501	int ret;
4502	struct btrfs_path *search_path;
4503	char *name = NULL;
4504	u32 name_len = 0;
4505	u32 item_size = btrfs_item_size_nr(eb, slot);
4506	u32 cur_offset = 0;
4507	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508
4509	search_path = btrfs_alloc_path();
4510	if (!search_path)
4511		return -ENOMEM;
4512	search_path->search_commit_root = 1;
4513	search_path->skip_locking = 1;
4514
4515	while (cur_offset < item_size) {
4516		u64 parent;
4517		u32 this_name_len;
4518		u32 this_len;
4519		unsigned long name_ptr;
4520		struct btrfs_dir_item *di;
4521
4522		if (key->type == BTRFS_INODE_REF_KEY) {
4523			struct btrfs_inode_ref *iref;
4524
4525			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4526			parent = key->offset;
4527			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4528			name_ptr = (unsigned long)(iref + 1);
4529			this_len = sizeof(*iref) + this_name_len;
4530		} else {
4531			struct btrfs_inode_extref *extref;
4532
4533			extref = (struct btrfs_inode_extref *)(ptr +
4534							       cur_offset);
4535			parent = btrfs_inode_extref_parent(eb, extref);
4536			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4537			name_ptr = (unsigned long)&extref->name;
4538			this_len = sizeof(*extref) + this_name_len;
4539		}
4540
4541		if (this_name_len > name_len) {
4542			char *new_name;
4543
4544			new_name = krealloc(name, this_name_len, GFP_NOFS);
4545			if (!new_name) {
4546				ret = -ENOMEM;
4547				goto out;
4548			}
4549			name_len = this_name_len;
4550			name = new_name;
4551		}
4552
4553		read_extent_buffer(eb, name, name_ptr, this_name_len);
4554		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4555					   search_path, parent,
4556					   name, this_name_len, 0);
4557		if (di && !IS_ERR(di)) {
4558			struct btrfs_key di_key;
4559
4560			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4561						  di, &di_key);
4562			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4563				ret = 1;
4564				*other_ino = di_key.objectid;
 
 
 
 
 
4565			} else {
4566				ret = -EAGAIN;
4567			}
4568			goto out;
4569		} else if (IS_ERR(di)) {
4570			ret = PTR_ERR(di);
4571			goto out;
4572		}
4573		btrfs_release_path(search_path);
4574
4575		cur_offset += this_len;
4576	}
4577	ret = 0;
4578out:
4579	btrfs_free_path(search_path);
4580	kfree(name);
4581	return ret;
4582}
4583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584/* log a single inode in the tree log.
4585 * At least one parent directory for this inode must exist in the tree
4586 * or be logged already.
4587 *
4588 * Any items from this inode changed by the current transaction are copied
4589 * to the log tree.  An extra reference is taken on any extents in this
4590 * file, allowing us to avoid a whole pile of corner cases around logging
4591 * blocks that have been removed from the tree.
4592 *
4593 * See LOG_INODE_ALL and related defines for a description of what inode_only
4594 * does.
4595 *
4596 * This handles both files and directories.
4597 */
4598static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4599			   struct btrfs_root *root, struct inode *inode,
4600			   int inode_only,
4601			   const loff_t start,
4602			   const loff_t end,
4603			   struct btrfs_log_ctx *ctx)
4604{
4605	struct btrfs_fs_info *fs_info = root->fs_info;
4606	struct btrfs_path *path;
4607	struct btrfs_path *dst_path;
4608	struct btrfs_key min_key;
4609	struct btrfs_key max_key;
4610	struct btrfs_root *log = root->log_root;
4611	struct extent_buffer *src = NULL;
4612	LIST_HEAD(logged_list);
4613	u64 last_extent = 0;
4614	int err = 0;
4615	int ret;
4616	int nritems;
4617	int ins_start_slot = 0;
4618	int ins_nr;
4619	bool fast_search = false;
4620	u64 ino = btrfs_ino(inode);
4621	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4622	u64 logged_isize = 0;
4623	bool need_log_inode_item = true;
 
 
4624
4625	path = btrfs_alloc_path();
4626	if (!path)
4627		return -ENOMEM;
4628	dst_path = btrfs_alloc_path();
4629	if (!dst_path) {
4630		btrfs_free_path(path);
4631		return -ENOMEM;
4632	}
4633
4634	min_key.objectid = ino;
4635	min_key.type = BTRFS_INODE_ITEM_KEY;
4636	min_key.offset = 0;
4637
4638	max_key.objectid = ino;
4639
4640
4641	/* today the code can only do partial logging of directories */
4642	if (S_ISDIR(inode->i_mode) ||
4643	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4644		       &BTRFS_I(inode)->runtime_flags) &&
4645	     inode_only >= LOG_INODE_EXISTS))
4646		max_key.type = BTRFS_XATTR_ITEM_KEY;
4647	else
4648		max_key.type = (u8)-1;
4649	max_key.offset = (u64)-1;
4650
4651	/*
4652	 * Only run delayed items if we are a dir or a new file.
4653	 * Otherwise commit the delayed inode only, which is needed in
4654	 * order for the log replay code to mark inodes for link count
4655	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
 
 
 
 
 
4656	 */
4657	if (S_ISDIR(inode->i_mode) ||
4658	    BTRFS_I(inode)->generation > fs_info->last_trans_committed)
4659		ret = btrfs_commit_inode_delayed_items(trans, inode);
4660	else
4661		ret = btrfs_commit_inode_delayed_inode(inode);
4662
4663	if (ret) {
4664		btrfs_free_path(path);
4665		btrfs_free_path(dst_path);
4666		return ret;
4667	}
4668
4669	if (inode_only == LOG_OTHER_INODE) {
4670		inode_only = LOG_INODE_EXISTS;
4671		mutex_lock_nested(&BTRFS_I(inode)->log_mutex,
4672				  SINGLE_DEPTH_NESTING);
 
 
 
4673	} else {
4674		mutex_lock(&BTRFS_I(inode)->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4675	}
4676
4677	/*
4678	 * a brute force approach to making sure we get the most uptodate
4679	 * copies of everything.
4680	 */
4681	if (S_ISDIR(inode->i_mode)) {
4682		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4683
 
4684		if (inode_only == LOG_INODE_EXISTS)
4685			max_key_type = BTRFS_XATTR_ITEM_KEY;
4686		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4687	} else {
4688		if (inode_only == LOG_INODE_EXISTS) {
4689			/*
4690			 * Make sure the new inode item we write to the log has
4691			 * the same isize as the current one (if it exists).
4692			 * This is necessary to prevent data loss after log
4693			 * replay, and also to prevent doing a wrong expanding
4694			 * truncate - for e.g. create file, write 4K into offset
4695			 * 0, fsync, write 4K into offset 4096, add hard link,
4696			 * fsync some other file (to sync log), power fail - if
4697			 * we use the inode's current i_size, after log replay
4698			 * we get a 8Kb file, with the last 4Kb extent as a hole
4699			 * (zeroes), as if an expanding truncate happened,
4700			 * instead of getting a file of 4Kb only.
4701			 */
4702			err = logged_inode_size(log, inode, path,
4703						&logged_isize);
4704			if (err)
4705				goto out_unlock;
4706		}
4707		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4708			     &BTRFS_I(inode)->runtime_flags)) {
4709			if (inode_only == LOG_INODE_EXISTS) {
4710				max_key.type = BTRFS_XATTR_ITEM_KEY;
4711				ret = drop_objectid_items(trans, log, path, ino,
4712							  max_key.type);
4713			} else {
4714				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4715					  &BTRFS_I(inode)->runtime_flags);
4716				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4717					  &BTRFS_I(inode)->runtime_flags);
4718				while(1) {
4719					ret = btrfs_truncate_inode_items(trans,
4720							 log, inode, 0, 0);
4721					if (ret != -EAGAIN)
4722						break;
4723				}
4724			}
4725		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4726					      &BTRFS_I(inode)->runtime_flags) ||
4727			   inode_only == LOG_INODE_EXISTS) {
4728			if (inode_only == LOG_INODE_ALL)
4729				fast_search = true;
4730			max_key.type = BTRFS_XATTR_ITEM_KEY;
4731			ret = drop_objectid_items(trans, log, path, ino,
4732						  max_key.type);
4733		} else {
4734			if (inode_only == LOG_INODE_ALL)
4735				fast_search = true;
4736			goto log_extents;
4737		}
4738
4739	}
4740	if (ret) {
4741		err = ret;
4742		goto out_unlock;
4743	}
4744
4745	while (1) {
4746		ins_nr = 0;
4747		ret = btrfs_search_forward(root, &min_key,
4748					   path, trans->transid);
4749		if (ret < 0) {
4750			err = ret;
4751			goto out_unlock;
4752		}
4753		if (ret != 0)
4754			break;
4755again:
4756		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4757		if (min_key.objectid != ino)
4758			break;
4759		if (min_key.type > max_key.type)
4760			break;
4761
4762		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4763			need_log_inode_item = false;
4764
4765		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4766		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4767		    BTRFS_I(inode)->generation == trans->transid) {
4768			u64 other_ino = 0;
4769
4770			ret = btrfs_check_ref_name_override(path->nodes[0],
4771							    path->slots[0],
4772							    &min_key, inode,
4773							    &other_ino);
4774			if (ret < 0) {
4775				err = ret;
4776				goto out_unlock;
4777			} else if (ret > 0 && ctx &&
4778				   other_ino != btrfs_ino(ctx->inode)) {
4779				struct btrfs_key inode_key;
4780				struct inode *other_inode;
4781
4782				if (ins_nr > 0) {
4783					ins_nr++;
4784				} else {
4785					ins_nr = 1;
4786					ins_start_slot = path->slots[0];
4787				}
4788				ret = copy_items(trans, inode, dst_path, path,
4789						 &last_extent, ins_start_slot,
4790						 ins_nr, inode_only,
4791						 logged_isize);
4792				if (ret < 0) {
4793					err = ret;
4794					goto out_unlock;
4795				}
4796				ins_nr = 0;
4797				btrfs_release_path(path);
4798				inode_key.objectid = other_ino;
4799				inode_key.type = BTRFS_INODE_ITEM_KEY;
4800				inode_key.offset = 0;
4801				other_inode = btrfs_iget(fs_info->sb,
4802							 &inode_key, root,
4803							 NULL);
4804				/*
4805				 * If the other inode that had a conflicting dir
4806				 * entry was deleted in the current transaction,
4807				 * we don't need to do more work nor fallback to
4808				 * a transaction commit.
4809				 */
4810				if (IS_ERR(other_inode) &&
4811				    PTR_ERR(other_inode) == -ENOENT) {
4812					goto next_key;
4813				} else if (IS_ERR(other_inode)) {
4814					err = PTR_ERR(other_inode);
4815					goto out_unlock;
4816				}
4817				/*
4818				 * We are safe logging the other inode without
4819				 * acquiring its i_mutex as long as we log with
4820				 * the LOG_INODE_EXISTS mode. We're safe against
4821				 * concurrent renames of the other inode as well
4822				 * because during a rename we pin the log and
4823				 * update the log with the new name before we
4824				 * unpin it.
4825				 */
4826				err = btrfs_log_inode(trans, root, other_inode,
4827						      LOG_OTHER_INODE,
4828						      0, LLONG_MAX, ctx);
4829				iput(other_inode);
4830				if (err)
4831					goto out_unlock;
4832				else
4833					goto next_key;
4834			}
4835		}
4836
4837		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4838		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4839			if (ins_nr == 0)
4840				goto next_slot;
4841			ret = copy_items(trans, inode, dst_path, path,
4842					 &last_extent, ins_start_slot,
4843					 ins_nr, inode_only, logged_isize);
4844			if (ret < 0) {
4845				err = ret;
4846				goto out_unlock;
4847			}
4848			ins_nr = 0;
4849			if (ret) {
4850				btrfs_release_path(path);
4851				continue;
4852			}
4853			goto next_slot;
4854		}
4855
4856		src = path->nodes[0];
4857		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4858			ins_nr++;
4859			goto next_slot;
4860		} else if (!ins_nr) {
4861			ins_start_slot = path->slots[0];
4862			ins_nr = 1;
4863			goto next_slot;
4864		}
4865
4866		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4867				 ins_start_slot, ins_nr, inode_only,
4868				 logged_isize);
4869		if (ret < 0) {
4870			err = ret;
4871			goto out_unlock;
4872		}
4873		if (ret) {
4874			ins_nr = 0;
4875			btrfs_release_path(path);
4876			continue;
4877		}
4878		ins_nr = 1;
4879		ins_start_slot = path->slots[0];
4880next_slot:
4881
4882		nritems = btrfs_header_nritems(path->nodes[0]);
4883		path->slots[0]++;
4884		if (path->slots[0] < nritems) {
4885			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4886					      path->slots[0]);
4887			goto again;
4888		}
4889		if (ins_nr) {
4890			ret = copy_items(trans, inode, dst_path, path,
4891					 &last_extent, ins_start_slot,
4892					 ins_nr, inode_only, logged_isize);
4893			if (ret < 0) {
4894				err = ret;
4895				goto out_unlock;
4896			}
4897			ret = 0;
4898			ins_nr = 0;
4899		}
4900		btrfs_release_path(path);
4901next_key:
4902		if (min_key.offset < (u64)-1) {
4903			min_key.offset++;
4904		} else if (min_key.type < max_key.type) {
4905			min_key.type++;
4906			min_key.offset = 0;
4907		} else {
4908			break;
4909		}
4910	}
4911	if (ins_nr) {
4912		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4913				 ins_start_slot, ins_nr, inode_only,
4914				 logged_isize);
4915		if (ret < 0) {
4916			err = ret;
4917			goto out_unlock;
4918		}
4919		ret = 0;
4920		ins_nr = 0;
4921	}
4922
4923	btrfs_release_path(path);
4924	btrfs_release_path(dst_path);
4925	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4926	if (err)
4927		goto out_unlock;
 
4928	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4929		btrfs_release_path(path);
4930		btrfs_release_path(dst_path);
4931		err = btrfs_log_trailing_hole(trans, root, inode, path);
4932		if (err)
4933			goto out_unlock;
4934	}
4935log_extents:
4936	btrfs_release_path(path);
4937	btrfs_release_path(dst_path);
4938	if (need_log_inode_item) {
4939		err = log_inode_item(trans, log, dst_path, inode);
4940		if (err)
4941			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4942	}
4943	if (fast_search) {
4944		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4945						&logged_list, ctx, start, end);
4946		if (ret) {
4947			err = ret;
4948			goto out_unlock;
4949		}
4950	} else if (inode_only == LOG_INODE_ALL) {
4951		struct extent_map *em, *n;
4952
4953		write_lock(&em_tree->lock);
4954		/*
4955		 * We can't just remove every em if we're called for a ranged
4956		 * fsync - that is, one that doesn't cover the whole possible
4957		 * file range (0 to LLONG_MAX). This is because we can have
4958		 * em's that fall outside the range we're logging and therefore
4959		 * their ordered operations haven't completed yet
4960		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4961		 * didn't get their respective file extent item in the fs/subvol
4962		 * tree yet, and need to let the next fast fsync (one which
4963		 * consults the list of modified extent maps) find the em so
4964		 * that it logs a matching file extent item and waits for the
4965		 * respective ordered operation to complete (if it's still
4966		 * running).
4967		 *
4968		 * Removing every em outside the range we're logging would make
4969		 * the next fast fsync not log their matching file extent items,
4970		 * therefore making us lose data after a log replay.
4971		 */
4972		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4973					 list) {
4974			const u64 mod_end = em->mod_start + em->mod_len - 1;
4975
4976			if (em->mod_start >= start && mod_end <= end)
4977				list_del_init(&em->list);
4978		}
4979		write_unlock(&em_tree->lock);
4980	}
4981
4982	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4983		ret = log_directory_changes(trans, root, inode, path, dst_path,
4984					    ctx);
4985		if (ret) {
4986			err = ret;
4987			goto out_unlock;
4988		}
4989	}
4990
4991	spin_lock(&BTRFS_I(inode)->lock);
4992	BTRFS_I(inode)->logged_trans = trans->transid;
4993	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4994	spin_unlock(&BTRFS_I(inode)->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4995out_unlock:
4996	if (unlikely(err))
4997		btrfs_put_logged_extents(&logged_list);
4998	else
4999		btrfs_submit_logged_extents(&logged_list, log);
5000	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5001
5002	btrfs_free_path(path);
5003	btrfs_free_path(dst_path);
5004	return err;
5005}
5006
5007/*
5008 * Check if we must fallback to a transaction commit when logging an inode.
5009 * This must be called after logging the inode and is used only in the context
5010 * when fsyncing an inode requires the need to log some other inode - in which
5011 * case we can't lock the i_mutex of each other inode we need to log as that
5012 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5013 * log inodes up or down in the hierarchy) or rename operations for example. So
5014 * we take the log_mutex of the inode after we have logged it and then check for
5015 * its last_unlink_trans value - this is safe because any task setting
5016 * last_unlink_trans must take the log_mutex and it must do this before it does
5017 * the actual unlink operation, so if we do this check before a concurrent task
5018 * sets last_unlink_trans it means we've logged a consistent version/state of
5019 * all the inode items, otherwise we are not sure and must do a transaction
5020 * commit (the concurrent task might have only updated last_unlink_trans before
5021 * we logged the inode or it might have also done the unlink).
5022 */
5023static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5024					  struct inode *inode)
5025{
5026	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5027	bool ret = false;
5028
5029	mutex_lock(&BTRFS_I(inode)->log_mutex);
5030	if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5031		/*
5032		 * Make sure any commits to the log are forced to be full
5033		 * commits.
5034		 */
5035		btrfs_set_log_full_commit(fs_info, trans);
5036		ret = true;
5037	}
5038	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5039
5040	return ret;
5041}
5042
5043/*
5044 * follow the dentry parent pointers up the chain and see if any
5045 * of the directories in it require a full commit before they can
5046 * be logged.  Returns zero if nothing special needs to be done or 1 if
5047 * a full commit is required.
5048 */
5049static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5050					       struct inode *inode,
5051					       struct dentry *parent,
5052					       struct super_block *sb,
5053					       u64 last_committed)
5054{
5055	int ret = 0;
5056	struct dentry *old_parent = NULL;
5057	struct inode *orig_inode = inode;
5058
5059	/*
5060	 * for regular files, if its inode is already on disk, we don't
5061	 * have to worry about the parents at all.  This is because
5062	 * we can use the last_unlink_trans field to record renames
5063	 * and other fun in this file.
5064	 */
5065	if (S_ISREG(inode->i_mode) &&
5066	    BTRFS_I(inode)->generation <= last_committed &&
5067	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
5068			goto out;
5069
5070	if (!S_ISDIR(inode->i_mode)) {
5071		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5072			goto out;
5073		inode = d_inode(parent);
5074	}
5075
5076	while (1) {
5077		/*
5078		 * If we are logging a directory then we start with our inode,
5079		 * not our parent's inode, so we need to skip setting the
5080		 * logged_trans so that further down in the log code we don't
5081		 * think this inode has already been logged.
5082		 */
5083		if (inode != orig_inode)
5084			BTRFS_I(inode)->logged_trans = trans->transid;
5085		smp_mb();
5086
5087		if (btrfs_must_commit_transaction(trans, inode)) {
5088			ret = 1;
5089			break;
5090		}
5091
5092		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5093			break;
5094
5095		if (IS_ROOT(parent)) {
5096			inode = d_inode(parent);
5097			if (btrfs_must_commit_transaction(trans, inode))
5098				ret = 1;
5099			break;
5100		}
5101
5102		parent = dget_parent(parent);
5103		dput(old_parent);
5104		old_parent = parent;
5105		inode = d_inode(parent);
5106
5107	}
5108	dput(old_parent);
5109out:
5110	return ret;
5111}
5112
5113struct btrfs_dir_list {
5114	u64 ino;
5115	struct list_head list;
5116};
5117
5118/*
5119 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5120 * details about the why it is needed.
5121 * This is a recursive operation - if an existing dentry corresponds to a
5122 * directory, that directory's new entries are logged too (same behaviour as
5123 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5124 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5125 * complains about the following circular lock dependency / possible deadlock:
5126 *
5127 *        CPU0                                        CPU1
5128 *        ----                                        ----
5129 * lock(&type->i_mutex_dir_key#3/2);
5130 *                                            lock(sb_internal#2);
5131 *                                            lock(&type->i_mutex_dir_key#3/2);
5132 * lock(&sb->s_type->i_mutex_key#14);
5133 *
5134 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5135 * sb_start_intwrite() in btrfs_start_transaction().
5136 * Not locking i_mutex of the inodes is still safe because:
5137 *
5138 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5139 *    that while logging the inode new references (names) are added or removed
5140 *    from the inode, leaving the logged inode item with a link count that does
5141 *    not match the number of logged inode reference items. This is fine because
5142 *    at log replay time we compute the real number of links and correct the
5143 *    link count in the inode item (see replay_one_buffer() and
5144 *    link_to_fixup_dir());
5145 *
5146 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5147 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5148 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5149 *    has a size that doesn't match the sum of the lengths of all the logged
5150 *    names. This does not result in a problem because if a dir_item key is
5151 *    logged but its matching dir_index key is not logged, at log replay time we
5152 *    don't use it to replay the respective name (see replay_one_name()). On the
5153 *    other hand if only the dir_index key ends up being logged, the respective
5154 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5155 *    keys created (see replay_one_name()).
5156 *    The directory's inode item with a wrong i_size is not a problem as well,
5157 *    since we don't use it at log replay time to set the i_size in the inode
5158 *    item of the fs/subvol tree (see overwrite_item()).
5159 */
5160static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5161				struct btrfs_root *root,
5162				struct inode *start_inode,
5163				struct btrfs_log_ctx *ctx)
5164{
5165	struct btrfs_fs_info *fs_info = root->fs_info;
5166	struct btrfs_root *log = root->log_root;
5167	struct btrfs_path *path;
5168	LIST_HEAD(dir_list);
5169	struct btrfs_dir_list *dir_elem;
5170	int ret = 0;
5171
5172	path = btrfs_alloc_path();
5173	if (!path)
5174		return -ENOMEM;
5175
5176	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5177	if (!dir_elem) {
5178		btrfs_free_path(path);
5179		return -ENOMEM;
5180	}
5181	dir_elem->ino = btrfs_ino(start_inode);
5182	list_add_tail(&dir_elem->list, &dir_list);
5183
5184	while (!list_empty(&dir_list)) {
5185		struct extent_buffer *leaf;
5186		struct btrfs_key min_key;
5187		int nritems;
5188		int i;
5189
5190		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5191					    list);
5192		if (ret)
5193			goto next_dir_inode;
5194
5195		min_key.objectid = dir_elem->ino;
5196		min_key.type = BTRFS_DIR_ITEM_KEY;
5197		min_key.offset = 0;
5198again:
5199		btrfs_release_path(path);
5200		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5201		if (ret < 0) {
5202			goto next_dir_inode;
5203		} else if (ret > 0) {
5204			ret = 0;
5205			goto next_dir_inode;
5206		}
5207
5208process_leaf:
5209		leaf = path->nodes[0];
5210		nritems = btrfs_header_nritems(leaf);
5211		for (i = path->slots[0]; i < nritems; i++) {
5212			struct btrfs_dir_item *di;
5213			struct btrfs_key di_key;
5214			struct inode *di_inode;
5215			struct btrfs_dir_list *new_dir_elem;
5216			int log_mode = LOG_INODE_EXISTS;
5217			int type;
5218
5219			btrfs_item_key_to_cpu(leaf, &min_key, i);
5220			if (min_key.objectid != dir_elem->ino ||
5221			    min_key.type != BTRFS_DIR_ITEM_KEY)
5222				goto next_dir_inode;
5223
5224			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5225			type = btrfs_dir_type(leaf, di);
5226			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5227			    type != BTRFS_FT_DIR)
5228				continue;
5229			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5230			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5231				continue;
5232
5233			btrfs_release_path(path);
5234			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5235			if (IS_ERR(di_inode)) {
5236				ret = PTR_ERR(di_inode);
5237				goto next_dir_inode;
5238			}
5239
5240			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5241				iput(di_inode);
5242				break;
5243			}
5244
5245			ctx->log_new_dentries = false;
5246			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5247				log_mode = LOG_INODE_ALL;
5248			ret = btrfs_log_inode(trans, root, di_inode,
5249					      log_mode, 0, LLONG_MAX, ctx);
5250			if (!ret &&
5251			    btrfs_must_commit_transaction(trans, di_inode))
5252				ret = 1;
5253			iput(di_inode);
5254			if (ret)
5255				goto next_dir_inode;
5256			if (ctx->log_new_dentries) {
5257				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5258						       GFP_NOFS);
5259				if (!new_dir_elem) {
5260					ret = -ENOMEM;
5261					goto next_dir_inode;
5262				}
5263				new_dir_elem->ino = di_key.objectid;
5264				list_add_tail(&new_dir_elem->list, &dir_list);
5265			}
5266			break;
5267		}
5268		if (i == nritems) {
5269			ret = btrfs_next_leaf(log, path);
5270			if (ret < 0) {
5271				goto next_dir_inode;
5272			} else if (ret > 0) {
5273				ret = 0;
5274				goto next_dir_inode;
5275			}
5276			goto process_leaf;
5277		}
5278		if (min_key.offset < (u64)-1) {
5279			min_key.offset++;
5280			goto again;
5281		}
5282next_dir_inode:
5283		list_del(&dir_elem->list);
5284		kfree(dir_elem);
5285	}
5286
5287	btrfs_free_path(path);
5288	return ret;
5289}
5290
5291static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5292				 struct inode *inode,
5293				 struct btrfs_log_ctx *ctx)
5294{
5295	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5296	int ret;
5297	struct btrfs_path *path;
5298	struct btrfs_key key;
5299	struct btrfs_root *root = BTRFS_I(inode)->root;
5300	const u64 ino = btrfs_ino(inode);
5301
5302	path = btrfs_alloc_path();
5303	if (!path)
5304		return -ENOMEM;
5305	path->skip_locking = 1;
5306	path->search_commit_root = 1;
5307
5308	key.objectid = ino;
5309	key.type = BTRFS_INODE_REF_KEY;
5310	key.offset = 0;
5311	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5312	if (ret < 0)
5313		goto out;
5314
5315	while (true) {
5316		struct extent_buffer *leaf = path->nodes[0];
5317		int slot = path->slots[0];
5318		u32 cur_offset = 0;
5319		u32 item_size;
5320		unsigned long ptr;
5321
5322		if (slot >= btrfs_header_nritems(leaf)) {
5323			ret = btrfs_next_leaf(root, path);
5324			if (ret < 0)
5325				goto out;
5326			else if (ret > 0)
5327				break;
5328			continue;
5329		}
5330
5331		btrfs_item_key_to_cpu(leaf, &key, slot);
5332		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5333		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5334			break;
5335
5336		item_size = btrfs_item_size_nr(leaf, slot);
5337		ptr = btrfs_item_ptr_offset(leaf, slot);
5338		while (cur_offset < item_size) {
5339			struct btrfs_key inode_key;
5340			struct inode *dir_inode;
5341
5342			inode_key.type = BTRFS_INODE_ITEM_KEY;
5343			inode_key.offset = 0;
5344
5345			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5346				struct btrfs_inode_extref *extref;
5347
5348				extref = (struct btrfs_inode_extref *)
5349					(ptr + cur_offset);
5350				inode_key.objectid = btrfs_inode_extref_parent(
5351					leaf, extref);
5352				cur_offset += sizeof(*extref);
5353				cur_offset += btrfs_inode_extref_name_len(leaf,
5354					extref);
5355			} else {
5356				inode_key.objectid = key.offset;
5357				cur_offset = item_size;
5358			}
5359
5360			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5361					       root, NULL);
5362			/* If parent inode was deleted, skip it. */
5363			if (IS_ERR(dir_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364				continue;
 
5365
5366			if (ctx)
5367				ctx->log_new_dentries = false;
5368			ret = btrfs_log_inode(trans, root, dir_inode,
5369					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5370			if (!ret &&
5371			    btrfs_must_commit_transaction(trans, dir_inode))
5372				ret = 1;
5373			if (!ret && ctx && ctx->log_new_dentries)
5374				ret = log_new_dir_dentries(trans, root,
5375							   dir_inode, ctx);
5376			iput(dir_inode);
5377			if (ret)
5378				goto out;
5379		}
5380		path->slots[0]++;
5381	}
5382	ret = 0;
5383out:
5384	btrfs_free_path(path);
5385	return ret;
5386}
5387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388/*
5389 * helper function around btrfs_log_inode to make sure newly created
5390 * parent directories also end up in the log.  A minimal inode and backref
5391 * only logging is done of any parent directories that are older than
5392 * the last committed transaction
5393 */
5394static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5395			    	  struct btrfs_root *root, struct inode *inode,
5396				  struct dentry *parent,
5397				  const loff_t start,
5398				  const loff_t end,
5399				  int exists_only,
5400				  struct btrfs_log_ctx *ctx)
5401{
 
5402	struct btrfs_fs_info *fs_info = root->fs_info;
5403	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5404	struct super_block *sb;
5405	struct dentry *old_parent = NULL;
5406	int ret = 0;
5407	u64 last_committed = fs_info->last_trans_committed;
5408	bool log_dentries = false;
5409	struct inode *orig_inode = inode;
5410
5411	sb = inode->i_sb;
5412
5413	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5414		ret = 1;
5415		goto end_no_trans;
5416	}
5417
5418	/*
5419	 * The prev transaction commit doesn't complete, we need do
5420	 * full commit by ourselves.
5421	 */
5422	if (fs_info->last_trans_log_full_commit >
5423	    fs_info->last_trans_committed) {
5424		ret = 1;
5425		goto end_no_trans;
5426	}
5427
5428	if (root != BTRFS_I(inode)->root ||
5429	    btrfs_root_refs(&root->root_item) == 0) {
5430		ret = 1;
5431		goto end_no_trans;
5432	}
5433
5434	ret = check_parent_dirs_for_sync(trans, inode, parent,
5435					 sb, last_committed);
5436	if (ret)
5437		goto end_no_trans;
5438
5439	if (btrfs_inode_in_log(inode, trans->transid)) {
5440		ret = BTRFS_NO_LOG_SYNC;
5441		goto end_no_trans;
5442	}
5443
5444	ret = start_log_trans(trans, root, ctx);
5445	if (ret)
5446		goto end_no_trans;
5447
5448	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5449	if (ret)
5450		goto end_trans;
5451
5452	/*
5453	 * for regular files, if its inode is already on disk, we don't
5454	 * have to worry about the parents at all.  This is because
5455	 * we can use the last_unlink_trans field to record renames
5456	 * and other fun in this file.
5457	 */
5458	if (S_ISREG(inode->i_mode) &&
5459	    BTRFS_I(inode)->generation <= last_committed &&
5460	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5461		ret = 0;
5462		goto end_trans;
5463	}
5464
5465	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5466		log_dentries = true;
5467
5468	/*
5469	 * On unlink we must make sure all our current and old parent directory
5470	 * inodes are fully logged. This is to prevent leaving dangling
5471	 * directory index entries in directories that were our parents but are
5472	 * not anymore. Not doing this results in old parent directory being
5473	 * impossible to delete after log replay (rmdir will always fail with
5474	 * error -ENOTEMPTY).
5475	 *
5476	 * Example 1:
5477	 *
5478	 * mkdir testdir
5479	 * touch testdir/foo
5480	 * ln testdir/foo testdir/bar
5481	 * sync
5482	 * unlink testdir/bar
5483	 * xfs_io -c fsync testdir/foo
5484	 * <power failure>
5485	 * mount fs, triggers log replay
5486	 *
5487	 * If we don't log the parent directory (testdir), after log replay the
5488	 * directory still has an entry pointing to the file inode using the bar
5489	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5490	 * the file inode has a link count of 1.
5491	 *
5492	 * Example 2:
5493	 *
5494	 * mkdir testdir
5495	 * touch foo
5496	 * ln foo testdir/foo2
5497	 * ln foo testdir/foo3
5498	 * sync
5499	 * unlink testdir/foo3
5500	 * xfs_io -c fsync foo
5501	 * <power failure>
5502	 * mount fs, triggers log replay
5503	 *
5504	 * Similar as the first example, after log replay the parent directory
5505	 * testdir still has an entry pointing to the inode file with name foo3
5506	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5507	 * and has a link count of 2.
5508	 */
5509	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5510		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5511		if (ret)
5512			goto end_trans;
5513	}
5514
5515	while (1) {
5516		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5517			break;
5518
5519		inode = d_inode(parent);
5520		if (root != BTRFS_I(inode)->root)
5521			break;
5522
5523		if (BTRFS_I(inode)->generation > last_committed) {
5524			ret = btrfs_log_inode(trans, root, inode,
5525					      LOG_INODE_EXISTS,
5526					      0, LLONG_MAX, ctx);
5527			if (ret)
5528				goto end_trans;
5529		}
5530		if (IS_ROOT(parent))
5531			break;
5532
5533		parent = dget_parent(parent);
5534		dput(old_parent);
5535		old_parent = parent;
5536	}
5537	if (log_dentries)
5538		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5539	else
5540		ret = 0;
5541end_trans:
5542	dput(old_parent);
5543	if (ret < 0) {
5544		btrfs_set_log_full_commit(fs_info, trans);
5545		ret = 1;
5546	}
5547
5548	if (ret)
5549		btrfs_remove_log_ctx(root, ctx);
5550	btrfs_end_log_trans(root);
5551end_no_trans:
5552	return ret;
5553}
5554
5555/*
5556 * it is not safe to log dentry if the chunk root has added new
5557 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5558 * If this returns 1, you must commit the transaction to safely get your
5559 * data on disk.
5560 */
5561int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5562			  struct btrfs_root *root, struct dentry *dentry,
5563			  const loff_t start,
5564			  const loff_t end,
5565			  struct btrfs_log_ctx *ctx)
5566{
5567	struct dentry *parent = dget_parent(dentry);
5568	int ret;
5569
5570	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5571				     start, end, 0, ctx);
5572	dput(parent);
5573
5574	return ret;
5575}
5576
5577/*
5578 * should be called during mount to recover any replay any log trees
5579 * from the FS
5580 */
5581int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5582{
5583	int ret;
5584	struct btrfs_path *path;
5585	struct btrfs_trans_handle *trans;
5586	struct btrfs_key key;
5587	struct btrfs_key found_key;
5588	struct btrfs_key tmp_key;
5589	struct btrfs_root *log;
5590	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5591	struct walk_control wc = {
5592		.process_func = process_one_buffer,
5593		.stage = 0,
5594	};
5595
5596	path = btrfs_alloc_path();
5597	if (!path)
5598		return -ENOMEM;
5599
5600	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5601
5602	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5603	if (IS_ERR(trans)) {
5604		ret = PTR_ERR(trans);
5605		goto error;
5606	}
5607
5608	wc.trans = trans;
5609	wc.pin = 1;
5610
5611	ret = walk_log_tree(trans, log_root_tree, &wc);
5612	if (ret) {
5613		btrfs_handle_fs_error(fs_info, ret,
5614			"Failed to pin buffers while recovering log root tree.");
5615		goto error;
5616	}
5617
5618again:
5619	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5620	key.offset = (u64)-1;
5621	key.type = BTRFS_ROOT_ITEM_KEY;
5622
5623	while (1) {
5624		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5625
5626		if (ret < 0) {
5627			btrfs_handle_fs_error(fs_info, ret,
5628				    "Couldn't find tree log root.");
5629			goto error;
5630		}
5631		if (ret > 0) {
5632			if (path->slots[0] == 0)
5633				break;
5634			path->slots[0]--;
5635		}
5636		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5637				      path->slots[0]);
5638		btrfs_release_path(path);
5639		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5640			break;
5641
5642		log = btrfs_read_fs_root(log_root_tree, &found_key);
5643		if (IS_ERR(log)) {
5644			ret = PTR_ERR(log);
5645			btrfs_handle_fs_error(fs_info, ret,
5646				    "Couldn't read tree log root.");
5647			goto error;
5648		}
5649
5650		tmp_key.objectid = found_key.offset;
5651		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5652		tmp_key.offset = (u64)-1;
5653
5654		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5655		if (IS_ERR(wc.replay_dest)) {
5656			ret = PTR_ERR(wc.replay_dest);
5657			free_extent_buffer(log->node);
5658			free_extent_buffer(log->commit_root);
5659			kfree(log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5660			btrfs_handle_fs_error(fs_info, ret,
5661				"Couldn't read target root for tree log recovery.");
5662			goto error;
5663		}
5664
5665		wc.replay_dest->log_root = log;
5666		btrfs_record_root_in_trans(trans, wc.replay_dest);
5667		ret = walk_log_tree(trans, log, &wc);
 
 
 
 
 
5668
5669		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5670			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5671						      path);
5672		}
5673
5674		key.offset = found_key.offset - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5675		wc.replay_dest->log_root = NULL;
5676		free_extent_buffer(log->node);
5677		free_extent_buffer(log->commit_root);
5678		kfree(log);
5679
5680		if (ret)
5681			goto error;
5682
5683		if (found_key.offset == 0)
5684			break;
 
5685	}
5686	btrfs_release_path(path);
5687
5688	/* step one is to pin it all, step two is to replay just inodes */
5689	if (wc.pin) {
5690		wc.pin = 0;
5691		wc.process_func = replay_one_buffer;
5692		wc.stage = LOG_WALK_REPLAY_INODES;
5693		goto again;
5694	}
5695	/* step three is to replay everything */
5696	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5697		wc.stage++;
5698		goto again;
5699	}
5700
5701	btrfs_free_path(path);
5702
5703	/* step 4: commit the transaction, which also unpins the blocks */
5704	ret = btrfs_commit_transaction(trans);
5705	if (ret)
5706		return ret;
5707
5708	free_extent_buffer(log_root_tree->node);
5709	log_root_tree->log_root = NULL;
5710	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5711	kfree(log_root_tree);
5712
5713	return 0;
5714error:
5715	if (wc.trans)
5716		btrfs_end_transaction(wc.trans);
 
5717	btrfs_free_path(path);
5718	return ret;
5719}
5720
5721/*
5722 * there are some corner cases where we want to force a full
5723 * commit instead of allowing a directory to be logged.
5724 *
5725 * They revolve around files there were unlinked from the directory, and
5726 * this function updates the parent directory so that a full commit is
5727 * properly done if it is fsync'd later after the unlinks are done.
5728 *
5729 * Must be called before the unlink operations (updates to the subvolume tree,
5730 * inodes, etc) are done.
5731 */
5732void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5733			     struct inode *dir, struct inode *inode,
5734			     int for_rename)
5735{
5736	/*
5737	 * when we're logging a file, if it hasn't been renamed
5738	 * or unlinked, and its inode is fully committed on disk,
5739	 * we don't have to worry about walking up the directory chain
5740	 * to log its parents.
5741	 *
5742	 * So, we use the last_unlink_trans field to put this transid
5743	 * into the file.  When the file is logged we check it and
5744	 * don't log the parents if the file is fully on disk.
5745	 */
5746	mutex_lock(&BTRFS_I(inode)->log_mutex);
5747	BTRFS_I(inode)->last_unlink_trans = trans->transid;
5748	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5749
5750	/*
5751	 * if this directory was already logged any new
5752	 * names for this file/dir will get recorded
5753	 */
5754	smp_mb();
5755	if (BTRFS_I(dir)->logged_trans == trans->transid)
5756		return;
5757
5758	/*
5759	 * if the inode we're about to unlink was logged,
5760	 * the log will be properly updated for any new names
5761	 */
5762	if (BTRFS_I(inode)->logged_trans == trans->transid)
5763		return;
5764
5765	/*
5766	 * when renaming files across directories, if the directory
5767	 * there we're unlinking from gets fsync'd later on, there's
5768	 * no way to find the destination directory later and fsync it
5769	 * properly.  So, we have to be conservative and force commits
5770	 * so the new name gets discovered.
5771	 */
5772	if (for_rename)
5773		goto record;
5774
5775	/* we can safely do the unlink without any special recording */
5776	return;
5777
5778record:
5779	mutex_lock(&BTRFS_I(dir)->log_mutex);
5780	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5781	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5782}
5783
5784/*
5785 * Make sure that if someone attempts to fsync the parent directory of a deleted
5786 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5787 * that after replaying the log tree of the parent directory's root we will not
5788 * see the snapshot anymore and at log replay time we will not see any log tree
5789 * corresponding to the deleted snapshot's root, which could lead to replaying
5790 * it after replaying the log tree of the parent directory (which would replay
5791 * the snapshot delete operation).
5792 *
5793 * Must be called before the actual snapshot destroy operation (updates to the
5794 * parent root and tree of tree roots trees, etc) are done.
5795 */
5796void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5797				   struct inode *dir)
5798{
5799	mutex_lock(&BTRFS_I(dir)->log_mutex);
5800	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5801	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5802}
5803
5804/*
5805 * Call this after adding a new name for a file and it will properly
5806 * update the log to reflect the new name.
5807 *
5808 * It will return zero if all goes well, and it will return 1 if a
5809 * full transaction commit is required.
5810 */
5811int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5812			struct inode *inode, struct inode *old_dir,
5813			struct dentry *parent)
5814{
5815	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5816	struct btrfs_root * root = BTRFS_I(inode)->root;
5817
5818	/*
5819	 * this will force the logging code to walk the dentry chain
5820	 * up for the file
5821	 */
5822	if (S_ISREG(inode->i_mode))
5823		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5824
5825	/*
5826	 * if this inode hasn't been logged and directory we're renaming it
5827	 * from hasn't been logged, we don't need to log it
5828	 */
5829	if (BTRFS_I(inode)->logged_trans <=
5830	    fs_info->last_trans_committed &&
5831	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5832		    fs_info->last_trans_committed))
5833		return 0;
5834
5835	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5836				      LLONG_MAX, 1, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5837}
5838
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
 
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "block-group.h"
  21#include "space-info.h"
  22#include "zoned.h"
  23
  24/* magic values for the inode_only field in btrfs_log_inode:
  25 *
  26 * LOG_INODE_ALL means to log everything
  27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  28 * during log replay
  29 */
  30enum {
  31	LOG_INODE_ALL,
  32	LOG_INODE_EXISTS,
  33	LOG_OTHER_INODE,
  34	LOG_OTHER_INODE_ALL,
  35};
  36
  37/*
  38 * directory trouble cases
  39 *
  40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  41 * log, we must force a full commit before doing an fsync of the directory
  42 * where the unlink was done.
  43 * ---> record transid of last unlink/rename per directory
  44 *
  45 * mkdir foo/some_dir
  46 * normal commit
  47 * rename foo/some_dir foo2/some_dir
  48 * mkdir foo/some_dir
  49 * fsync foo/some_dir/some_file
  50 *
  51 * The fsync above will unlink the original some_dir without recording
  52 * it in its new location (foo2).  After a crash, some_dir will be gone
  53 * unless the fsync of some_file forces a full commit
  54 *
  55 * 2) we must log any new names for any file or dir that is in the fsync
  56 * log. ---> check inode while renaming/linking.
  57 *
  58 * 2a) we must log any new names for any file or dir during rename
  59 * when the directory they are being removed from was logged.
  60 * ---> check inode and old parent dir during rename
  61 *
  62 *  2a is actually the more important variant.  With the extra logging
  63 *  a crash might unlink the old name without recreating the new one
  64 *
  65 * 3) after a crash, we must go through any directories with a link count
  66 * of zero and redo the rm -rf
  67 *
  68 * mkdir f1/foo
  69 * normal commit
  70 * rm -rf f1/foo
  71 * fsync(f1)
  72 *
  73 * The directory f1 was fully removed from the FS, but fsync was never
  74 * called on f1, only its parent dir.  After a crash the rm -rf must
  75 * be replayed.  This must be able to recurse down the entire
  76 * directory tree.  The inode link count fixup code takes care of the
  77 * ugly details.
  78 */
  79
  80/*
  81 * stages for the tree walking.  The first
  82 * stage (0) is to only pin down the blocks we find
  83 * the second stage (1) is to make sure that all the inodes
  84 * we find in the log are created in the subvolume.
  85 *
  86 * The last stage is to deal with directories and links and extents
  87 * and all the other fun semantics
  88 */
  89enum {
  90	LOG_WALK_PIN_ONLY,
  91	LOG_WALK_REPLAY_INODES,
  92	LOG_WALK_REPLAY_DIR_INDEX,
  93	LOG_WALK_REPLAY_ALL,
  94};
  95
  96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  97			   struct btrfs_root *root, struct btrfs_inode *inode,
  98			   int inode_only,
 
 
  99			   struct btrfs_log_ctx *ctx);
 100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 101			     struct btrfs_root *root,
 102			     struct btrfs_path *path, u64 objectid);
 103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 104				       struct btrfs_root *root,
 105				       struct btrfs_root *log,
 106				       struct btrfs_path *path,
 107				       u64 dirid, int del_all);
 108static void wait_log_commit(struct btrfs_root *root, int transid);
 109
 110/*
 111 * tree logging is a special write ahead log used to make sure that
 112 * fsyncs and O_SYNCs can happen without doing full tree commits.
 113 *
 114 * Full tree commits are expensive because they require commonly
 115 * modified blocks to be recowed, creating many dirty pages in the
 116 * extent tree an 4x-6x higher write load than ext3.
 117 *
 118 * Instead of doing a tree commit on every fsync, we use the
 119 * key ranges and transaction ids to find items for a given file or directory
 120 * that have changed in this transaction.  Those items are copied into
 121 * a special tree (one per subvolume root), that tree is written to disk
 122 * and then the fsync is considered complete.
 123 *
 124 * After a crash, items are copied out of the log-tree back into the
 125 * subvolume tree.  Any file data extents found are recorded in the extent
 126 * allocation tree, and the log-tree freed.
 127 *
 128 * The log tree is read three times, once to pin down all the extents it is
 129 * using in ram and once, once to create all the inodes logged in the tree
 130 * and once to do all the other items.
 131 */
 132
 133/*
 134 * start a sub transaction and setup the log tree
 135 * this increments the log tree writer count to make the people
 136 * syncing the tree wait for us to finish
 137 */
 138static int start_log_trans(struct btrfs_trans_handle *trans,
 139			   struct btrfs_root *root,
 140			   struct btrfs_log_ctx *ctx)
 141{
 142	struct btrfs_fs_info *fs_info = root->fs_info;
 143	struct btrfs_root *tree_root = fs_info->tree_root;
 144	const bool zoned = btrfs_is_zoned(fs_info);
 145	int ret = 0;
 146	bool created = false;
 147
 148	/*
 149	 * First check if the log root tree was already created. If not, create
 150	 * it before locking the root's log_mutex, just to keep lockdep happy.
 151	 */
 152	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
 153		mutex_lock(&tree_root->log_mutex);
 154		if (!fs_info->log_root_tree) {
 155			ret = btrfs_init_log_root_tree(trans, fs_info);
 156			if (!ret) {
 157				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
 158				created = true;
 159			}
 160		}
 161		mutex_unlock(&tree_root->log_mutex);
 162		if (ret)
 163			return ret;
 164	}
 165
 166	mutex_lock(&root->log_mutex);
 167
 168again:
 169	if (root->log_root) {
 170		int index = (root->log_transid + 1) % 2;
 171
 172		if (btrfs_need_log_full_commit(trans)) {
 173			ret = -EAGAIN;
 174			goto out;
 175		}
 176
 177		if (zoned && atomic_read(&root->log_commit[index])) {
 178			wait_log_commit(root, root->log_transid - 1);
 179			goto again;
 180		}
 181
 182		if (!root->log_start_pid) {
 183			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 184			root->log_start_pid = current->pid;
 185		} else if (root->log_start_pid != current->pid) {
 186			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 187		}
 188	} else {
 189		/*
 190		 * This means fs_info->log_root_tree was already created
 191		 * for some other FS trees. Do the full commit not to mix
 192		 * nodes from multiple log transactions to do sequential
 193		 * writing.
 194		 */
 195		if (zoned && !created) {
 196			ret = -EAGAIN;
 197			goto out;
 198		}
 199
 200		ret = btrfs_add_log_tree(trans, root);
 201		if (ret)
 202			goto out;
 203
 204		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 205		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 206		root->log_start_pid = current->pid;
 207	}
 208
 
 209	atomic_inc(&root->log_writers);
 210	if (ctx && !ctx->logging_new_name) {
 211		int index = root->log_transid % 2;
 212		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 213		ctx->log_transid = root->log_transid;
 214	}
 215
 216out:
 217	mutex_unlock(&root->log_mutex);
 218	return ret;
 219}
 220
 221/*
 222 * returns 0 if there was a log transaction running and we were able
 223 * to join, or returns -ENOENT if there were not transactions
 224 * in progress
 225 */
 226static int join_running_log_trans(struct btrfs_root *root)
 227{
 228	const bool zoned = btrfs_is_zoned(root->fs_info);
 229	int ret = -ENOENT;
 230
 231	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 232		return ret;
 
 233
 234	mutex_lock(&root->log_mutex);
 235again:
 236	if (root->log_root) {
 237		int index = (root->log_transid + 1) % 2;
 238
 239		ret = 0;
 240		if (zoned && atomic_read(&root->log_commit[index])) {
 241			wait_log_commit(root, root->log_transid - 1);
 242			goto again;
 243		}
 244		atomic_inc(&root->log_writers);
 245	}
 246	mutex_unlock(&root->log_mutex);
 247	return ret;
 248}
 249
 250/*
 251 * This either makes the current running log transaction wait
 252 * until you call btrfs_end_log_trans() or it makes any future
 253 * log transactions wait until you call btrfs_end_log_trans()
 254 */
 255void btrfs_pin_log_trans(struct btrfs_root *root)
 256{
 
 
 
 257	atomic_inc(&root->log_writers);
 
 
 258}
 259
 260/*
 261 * indicate we're done making changes to the log tree
 262 * and wake up anyone waiting to do a sync
 263 */
 264void btrfs_end_log_trans(struct btrfs_root *root)
 265{
 266	if (atomic_dec_and_test(&root->log_writers)) {
 267		/* atomic_dec_and_test implies a barrier */
 268		cond_wake_up_nomb(&root->log_writer_wait);
 
 
 
 269	}
 270}
 271
 272static int btrfs_write_tree_block(struct extent_buffer *buf)
 273{
 274	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
 275					buf->start + buf->len - 1);
 276}
 277
 278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 279{
 280	filemap_fdatawait_range(buf->pages[0]->mapping,
 281			        buf->start, buf->start + buf->len - 1);
 282}
 283
 284/*
 285 * the walk control struct is used to pass state down the chain when
 286 * processing the log tree.  The stage field tells us which part
 287 * of the log tree processing we are currently doing.  The others
 288 * are state fields used for that specific part
 289 */
 290struct walk_control {
 291	/* should we free the extent on disk when done?  This is used
 292	 * at transaction commit time while freeing a log tree
 293	 */
 294	int free;
 295
 296	/* should we write out the extent buffer?  This is used
 297	 * while flushing the log tree to disk during a sync
 298	 */
 299	int write;
 300
 301	/* should we wait for the extent buffer io to finish?  Also used
 302	 * while flushing the log tree to disk for a sync
 303	 */
 304	int wait;
 305
 306	/* pin only walk, we record which extents on disk belong to the
 307	 * log trees
 308	 */
 309	int pin;
 310
 311	/* what stage of the replay code we're currently in */
 312	int stage;
 313
 314	/*
 315	 * Ignore any items from the inode currently being processed. Needs
 316	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 317	 * the LOG_WALK_REPLAY_INODES stage.
 318	 */
 319	bool ignore_cur_inode;
 320
 321	/* the root we are currently replaying */
 322	struct btrfs_root *replay_dest;
 323
 324	/* the trans handle for the current replay */
 325	struct btrfs_trans_handle *trans;
 326
 327	/* the function that gets used to process blocks we find in the
 328	 * tree.  Note the extent_buffer might not be up to date when it is
 329	 * passed in, and it must be checked or read if you need the data
 330	 * inside it
 331	 */
 332	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 333			    struct walk_control *wc, u64 gen, int level);
 334};
 335
 336/*
 337 * process_func used to pin down extents, write them or wait on them
 338 */
 339static int process_one_buffer(struct btrfs_root *log,
 340			      struct extent_buffer *eb,
 341			      struct walk_control *wc, u64 gen, int level)
 342{
 343	struct btrfs_fs_info *fs_info = log->fs_info;
 344	int ret = 0;
 345
 346	/*
 347	 * If this fs is mixed then we need to be able to process the leaves to
 348	 * pin down any logged extents, so we have to read the block.
 349	 */
 350	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 351		ret = btrfs_read_buffer(eb, gen, level, NULL);
 352		if (ret)
 353			return ret;
 354	}
 355
 356	if (wc->pin)
 357		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
 358						      eb->len);
 359
 360	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 361		if (wc->pin && btrfs_header_level(eb) == 0)
 362			ret = btrfs_exclude_logged_extents(eb);
 363		if (wc->write)
 364			btrfs_write_tree_block(eb);
 365		if (wc->wait)
 366			btrfs_wait_tree_block_writeback(eb);
 367	}
 368	return ret;
 369}
 370
 371/*
 372 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 373 * to the src data we are copying out.
 374 *
 375 * root is the tree we are copying into, and path is a scratch
 376 * path for use in this function (it should be released on entry and
 377 * will be released on exit).
 378 *
 379 * If the key is already in the destination tree the existing item is
 380 * overwritten.  If the existing item isn't big enough, it is extended.
 381 * If it is too large, it is truncated.
 382 *
 383 * If the key isn't in the destination yet, a new item is inserted.
 384 */
 385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 386				   struct btrfs_root *root,
 387				   struct btrfs_path *path,
 388				   struct extent_buffer *eb, int slot,
 389				   struct btrfs_key *key)
 390{
 
 391	int ret;
 392	u32 item_size;
 393	u64 saved_i_size = 0;
 394	int save_old_i_size = 0;
 395	unsigned long src_ptr;
 396	unsigned long dst_ptr;
 397	int overwrite_root = 0;
 398	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 399
 400	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 401		overwrite_root = 1;
 402
 403	item_size = btrfs_item_size_nr(eb, slot);
 404	src_ptr = btrfs_item_ptr_offset(eb, slot);
 405
 406	/* look for the key in the destination tree */
 407	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 408	if (ret < 0)
 409		return ret;
 410
 411	if (ret == 0) {
 412		char *src_copy;
 413		char *dst_copy;
 414		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 415						  path->slots[0]);
 416		if (dst_size != item_size)
 417			goto insert;
 418
 419		if (item_size == 0) {
 420			btrfs_release_path(path);
 421			return 0;
 422		}
 423		dst_copy = kmalloc(item_size, GFP_NOFS);
 424		src_copy = kmalloc(item_size, GFP_NOFS);
 425		if (!dst_copy || !src_copy) {
 426			btrfs_release_path(path);
 427			kfree(dst_copy);
 428			kfree(src_copy);
 429			return -ENOMEM;
 430		}
 431
 432		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 433
 434		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 435		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 436				   item_size);
 437		ret = memcmp(dst_copy, src_copy, item_size);
 438
 439		kfree(dst_copy);
 440		kfree(src_copy);
 441		/*
 442		 * they have the same contents, just return, this saves
 443		 * us from cowing blocks in the destination tree and doing
 444		 * extra writes that may not have been done by a previous
 445		 * sync
 446		 */
 447		if (ret == 0) {
 448			btrfs_release_path(path);
 449			return 0;
 450		}
 451
 452		/*
 453		 * We need to load the old nbytes into the inode so when we
 454		 * replay the extents we've logged we get the right nbytes.
 455		 */
 456		if (inode_item) {
 457			struct btrfs_inode_item *item;
 458			u64 nbytes;
 459			u32 mode;
 460
 461			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 462					      struct btrfs_inode_item);
 463			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 464			item = btrfs_item_ptr(eb, slot,
 465					      struct btrfs_inode_item);
 466			btrfs_set_inode_nbytes(eb, item, nbytes);
 467
 468			/*
 469			 * If this is a directory we need to reset the i_size to
 470			 * 0 so that we can set it up properly when replaying
 471			 * the rest of the items in this log.
 472			 */
 473			mode = btrfs_inode_mode(eb, item);
 474			if (S_ISDIR(mode))
 475				btrfs_set_inode_size(eb, item, 0);
 476		}
 477	} else if (inode_item) {
 478		struct btrfs_inode_item *item;
 479		u32 mode;
 480
 481		/*
 482		 * New inode, set nbytes to 0 so that the nbytes comes out
 483		 * properly when we replay the extents.
 484		 */
 485		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 486		btrfs_set_inode_nbytes(eb, item, 0);
 487
 488		/*
 489		 * If this is a directory we need to reset the i_size to 0 so
 490		 * that we can set it up properly when replaying the rest of
 491		 * the items in this log.
 492		 */
 493		mode = btrfs_inode_mode(eb, item);
 494		if (S_ISDIR(mode))
 495			btrfs_set_inode_size(eb, item, 0);
 496	}
 497insert:
 498	btrfs_release_path(path);
 499	/* try to insert the key into the destination tree */
 500	path->skip_release_on_error = 1;
 501	ret = btrfs_insert_empty_item(trans, root, path,
 502				      key, item_size);
 503	path->skip_release_on_error = 0;
 504
 505	/* make sure any existing item is the correct size */
 506	if (ret == -EEXIST || ret == -EOVERFLOW) {
 507		u32 found_size;
 508		found_size = btrfs_item_size_nr(path->nodes[0],
 509						path->slots[0]);
 510		if (found_size > item_size)
 511			btrfs_truncate_item(path, item_size, 1);
 512		else if (found_size < item_size)
 513			btrfs_extend_item(path, item_size - found_size);
 
 514	} else if (ret) {
 515		return ret;
 516	}
 517	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 518					path->slots[0]);
 519
 520	/* don't overwrite an existing inode if the generation number
 521	 * was logged as zero.  This is done when the tree logging code
 522	 * is just logging an inode to make sure it exists after recovery.
 523	 *
 524	 * Also, don't overwrite i_size on directories during replay.
 525	 * log replay inserts and removes directory items based on the
 526	 * state of the tree found in the subvolume, and i_size is modified
 527	 * as it goes
 528	 */
 529	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 530		struct btrfs_inode_item *src_item;
 531		struct btrfs_inode_item *dst_item;
 532
 533		src_item = (struct btrfs_inode_item *)src_ptr;
 534		dst_item = (struct btrfs_inode_item *)dst_ptr;
 535
 536		if (btrfs_inode_generation(eb, src_item) == 0) {
 537			struct extent_buffer *dst_eb = path->nodes[0];
 538			const u64 ino_size = btrfs_inode_size(eb, src_item);
 539
 540			/*
 541			 * For regular files an ino_size == 0 is used only when
 542			 * logging that an inode exists, as part of a directory
 543			 * fsync, and the inode wasn't fsynced before. In this
 544			 * case don't set the size of the inode in the fs/subvol
 545			 * tree, otherwise we would be throwing valid data away.
 546			 */
 547			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 548			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 549			    ino_size != 0)
 550				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 
 
 
 
 
 551			goto no_copy;
 552		}
 553
 554		if (overwrite_root &&
 555		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 556		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 557			save_old_i_size = 1;
 558			saved_i_size = btrfs_inode_size(path->nodes[0],
 559							dst_item);
 560		}
 561	}
 562
 563	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 564			   src_ptr, item_size);
 565
 566	if (save_old_i_size) {
 567		struct btrfs_inode_item *dst_item;
 568		dst_item = (struct btrfs_inode_item *)dst_ptr;
 569		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 570	}
 571
 572	/* make sure the generation is filled in */
 573	if (key->type == BTRFS_INODE_ITEM_KEY) {
 574		struct btrfs_inode_item *dst_item;
 575		dst_item = (struct btrfs_inode_item *)dst_ptr;
 576		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 577			btrfs_set_inode_generation(path->nodes[0], dst_item,
 578						   trans->transid);
 579		}
 580	}
 581no_copy:
 582	btrfs_mark_buffer_dirty(path->nodes[0]);
 583	btrfs_release_path(path);
 584	return 0;
 585}
 586
 587/*
 588 * simple helper to read an inode off the disk from a given root
 589 * This can only be called for subvolume roots and not for the log
 590 */
 591static noinline struct inode *read_one_inode(struct btrfs_root *root,
 592					     u64 objectid)
 593{
 
 594	struct inode *inode;
 595
 596	inode = btrfs_iget(root->fs_info->sb, objectid, root);
 597	if (IS_ERR(inode))
 
 
 
 598		inode = NULL;
 
 
 
 
 599	return inode;
 600}
 601
 602/* replays a single extent in 'eb' at 'slot' with 'key' into the
 603 * subvolume 'root'.  path is released on entry and should be released
 604 * on exit.
 605 *
 606 * extents in the log tree have not been allocated out of the extent
 607 * tree yet.  So, this completes the allocation, taking a reference
 608 * as required if the extent already exists or creating a new extent
 609 * if it isn't in the extent allocation tree yet.
 610 *
 611 * The extent is inserted into the file, dropping any existing extents
 612 * from the file that overlap the new one.
 613 */
 614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 615				      struct btrfs_root *root,
 616				      struct btrfs_path *path,
 617				      struct extent_buffer *eb, int slot,
 618				      struct btrfs_key *key)
 619{
 620	struct btrfs_drop_extents_args drop_args = { 0 };
 621	struct btrfs_fs_info *fs_info = root->fs_info;
 622	int found_type;
 623	u64 extent_end;
 624	u64 start = key->offset;
 625	u64 nbytes = 0;
 626	struct btrfs_file_extent_item *item;
 627	struct inode *inode = NULL;
 628	unsigned long size;
 629	int ret = 0;
 630
 631	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 632	found_type = btrfs_file_extent_type(eb, item);
 633
 634	if (found_type == BTRFS_FILE_EXTENT_REG ||
 635	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 636		nbytes = btrfs_file_extent_num_bytes(eb, item);
 637		extent_end = start + nbytes;
 638
 639		/*
 640		 * We don't add to the inodes nbytes if we are prealloc or a
 641		 * hole.
 642		 */
 643		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 644			nbytes = 0;
 645	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 646		size = btrfs_file_extent_ram_bytes(eb, item);
 647		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 648		extent_end = ALIGN(start + size,
 649				   fs_info->sectorsize);
 650	} else {
 651		ret = 0;
 652		goto out;
 653	}
 654
 655	inode = read_one_inode(root, key->objectid);
 656	if (!inode) {
 657		ret = -EIO;
 658		goto out;
 659	}
 660
 661	/*
 662	 * first check to see if we already have this extent in the
 663	 * file.  This must be done before the btrfs_drop_extents run
 664	 * so we don't try to drop this extent.
 665	 */
 666	ret = btrfs_lookup_file_extent(trans, root, path,
 667			btrfs_ino(BTRFS_I(inode)), start, 0);
 668
 669	if (ret == 0 &&
 670	    (found_type == BTRFS_FILE_EXTENT_REG ||
 671	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 672		struct btrfs_file_extent_item cmp1;
 673		struct btrfs_file_extent_item cmp2;
 674		struct btrfs_file_extent_item *existing;
 675		struct extent_buffer *leaf;
 676
 677		leaf = path->nodes[0];
 678		existing = btrfs_item_ptr(leaf, path->slots[0],
 679					  struct btrfs_file_extent_item);
 680
 681		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 682				   sizeof(cmp1));
 683		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 684				   sizeof(cmp2));
 685
 686		/*
 687		 * we already have a pointer to this exact extent,
 688		 * we don't have to do anything
 689		 */
 690		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 691			btrfs_release_path(path);
 692			goto out;
 693		}
 694	}
 695	btrfs_release_path(path);
 696
 697	/* drop any overlapping extents */
 698	drop_args.start = start;
 699	drop_args.end = extent_end;
 700	drop_args.drop_cache = true;
 701	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
 702	if (ret)
 703		goto out;
 704
 705	if (found_type == BTRFS_FILE_EXTENT_REG ||
 706	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 707		u64 offset;
 708		unsigned long dest_offset;
 709		struct btrfs_key ins;
 710
 711		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 712		    btrfs_fs_incompat(fs_info, NO_HOLES))
 713			goto update_inode;
 714
 715		ret = btrfs_insert_empty_item(trans, root, path, key,
 716					      sizeof(*item));
 717		if (ret)
 718			goto out;
 719		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 720						    path->slots[0]);
 721		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 722				(unsigned long)item,  sizeof(*item));
 723
 724		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 725		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 726		ins.type = BTRFS_EXTENT_ITEM_KEY;
 727		offset = key->offset - btrfs_file_extent_offset(eb, item);
 728
 729		/*
 730		 * Manually record dirty extent, as here we did a shallow
 731		 * file extent item copy and skip normal backref update,
 732		 * but modifying extent tree all by ourselves.
 733		 * So need to manually record dirty extent for qgroup,
 734		 * as the owner of the file extent changed from log tree
 735		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 736		 */
 737		ret = btrfs_qgroup_trace_extent(trans,
 738				btrfs_file_extent_disk_bytenr(eb, item),
 739				btrfs_file_extent_disk_num_bytes(eb, item),
 740				GFP_NOFS);
 741		if (ret < 0)
 742			goto out;
 743
 744		if (ins.objectid > 0) {
 745			struct btrfs_ref ref = { 0 };
 746			u64 csum_start;
 747			u64 csum_end;
 748			LIST_HEAD(ordered_sums);
 749
 750			/*
 751			 * is this extent already allocated in the extent
 752			 * allocation tree?  If so, just add a reference
 753			 */
 754			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 755						ins.offset);
 756			if (ret < 0) {
 757				goto out;
 758			} else if (ret == 0) {
 759				btrfs_init_generic_ref(&ref,
 760						BTRFS_ADD_DELAYED_REF,
 761						ins.objectid, ins.offset, 0);
 762				btrfs_init_data_ref(&ref,
 763						root->root_key.objectid,
 764						key->objectid, offset);
 765				ret = btrfs_inc_extent_ref(trans, &ref);
 766				if (ret)
 767					goto out;
 768			} else {
 769				/*
 770				 * insert the extent pointer in the extent
 771				 * allocation tree
 772				 */
 773				ret = btrfs_alloc_logged_file_extent(trans,
 
 774						root->root_key.objectid,
 775						key->objectid, offset, &ins);
 776				if (ret)
 777					goto out;
 778			}
 779			btrfs_release_path(path);
 780
 781			if (btrfs_file_extent_compression(eb, item)) {
 782				csum_start = ins.objectid;
 783				csum_end = csum_start + ins.offset;
 784			} else {
 785				csum_start = ins.objectid +
 786					btrfs_file_extent_offset(eb, item);
 787				csum_end = csum_start +
 788					btrfs_file_extent_num_bytes(eb, item);
 789			}
 790
 791			ret = btrfs_lookup_csums_range(root->log_root,
 792						csum_start, csum_end - 1,
 793						&ordered_sums, 0);
 794			if (ret)
 795				goto out;
 796			/*
 797			 * Now delete all existing cums in the csum root that
 798			 * cover our range. We do this because we can have an
 799			 * extent that is completely referenced by one file
 800			 * extent item and partially referenced by another
 801			 * file extent item (like after using the clone or
 802			 * extent_same ioctls). In this case if we end up doing
 803			 * the replay of the one that partially references the
 804			 * extent first, and we do not do the csum deletion
 805			 * below, we can get 2 csum items in the csum tree that
 806			 * overlap each other. For example, imagine our log has
 807			 * the two following file extent items:
 808			 *
 809			 * key (257 EXTENT_DATA 409600)
 810			 *     extent data disk byte 12845056 nr 102400
 811			 *     extent data offset 20480 nr 20480 ram 102400
 812			 *
 813			 * key (257 EXTENT_DATA 819200)
 814			 *     extent data disk byte 12845056 nr 102400
 815			 *     extent data offset 0 nr 102400 ram 102400
 816			 *
 817			 * Where the second one fully references the 100K extent
 818			 * that starts at disk byte 12845056, and the log tree
 819			 * has a single csum item that covers the entire range
 820			 * of the extent:
 821			 *
 822			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 823			 *
 824			 * After the first file extent item is replayed, the
 825			 * csum tree gets the following csum item:
 826			 *
 827			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 828			 *
 829			 * Which covers the 20K sub-range starting at offset 20K
 830			 * of our extent. Now when we replay the second file
 831			 * extent item, if we do not delete existing csum items
 832			 * that cover any of its blocks, we end up getting two
 833			 * csum items in our csum tree that overlap each other:
 834			 *
 835			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 836			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 837			 *
 838			 * Which is a problem, because after this anyone trying
 839			 * to lookup up for the checksum of any block of our
 840			 * extent starting at an offset of 40K or higher, will
 841			 * end up looking at the second csum item only, which
 842			 * does not contain the checksum for any block starting
 843			 * at offset 40K or higher of our extent.
 844			 */
 845			while (!list_empty(&ordered_sums)) {
 846				struct btrfs_ordered_sum *sums;
 847				sums = list_entry(ordered_sums.next,
 848						struct btrfs_ordered_sum,
 849						list);
 850				if (!ret)
 851					ret = btrfs_del_csums(trans,
 852							      fs_info->csum_root,
 853							      sums->bytenr,
 854							      sums->len);
 855				if (!ret)
 856					ret = btrfs_csum_file_blocks(trans,
 857						fs_info->csum_root, sums);
 858				list_del(&sums->list);
 859				kfree(sums);
 860			}
 861			if (ret)
 862				goto out;
 863		} else {
 864			btrfs_release_path(path);
 865		}
 866	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 867		/* inline extents are easy, we just overwrite them */
 868		ret = overwrite_item(trans, root, path, eb, slot, key);
 869		if (ret)
 870			goto out;
 871	}
 872
 873	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 874						extent_end - start);
 875	if (ret)
 876		goto out;
 877
 878update_inode:
 879	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
 880	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 881out:
 882	if (inode)
 883		iput(inode);
 884	return ret;
 885}
 886
 887/*
 888 * when cleaning up conflicts between the directory names in the
 889 * subvolume, directory names in the log and directory names in the
 890 * inode back references, we may have to unlink inodes from directories.
 891 *
 892 * This is a helper function to do the unlink of a specific directory
 893 * item
 894 */
 895static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 896				      struct btrfs_root *root,
 897				      struct btrfs_path *path,
 898				      struct btrfs_inode *dir,
 899				      struct btrfs_dir_item *di)
 900{
 
 901	struct inode *inode;
 902	char *name;
 903	int name_len;
 904	struct extent_buffer *leaf;
 905	struct btrfs_key location;
 906	int ret;
 907
 908	leaf = path->nodes[0];
 909
 910	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 911	name_len = btrfs_dir_name_len(leaf, di);
 912	name = kmalloc(name_len, GFP_NOFS);
 913	if (!name)
 914		return -ENOMEM;
 915
 916	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 917	btrfs_release_path(path);
 918
 919	inode = read_one_inode(root, location.objectid);
 920	if (!inode) {
 921		ret = -EIO;
 922		goto out;
 923	}
 924
 925	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 926	if (ret)
 927		goto out;
 928
 929	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 930			name_len);
 931	if (ret)
 932		goto out;
 933	else
 934		ret = btrfs_run_delayed_items(trans);
 935out:
 936	kfree(name);
 937	iput(inode);
 938	return ret;
 939}
 940
 941/*
 942 * See if a given name and sequence number found in an inode back reference are
 943 * already in a directory and correctly point to this inode.
 944 *
 945 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 946 * exists.
 947 */
 948static noinline int inode_in_dir(struct btrfs_root *root,
 949				 struct btrfs_path *path,
 950				 u64 dirid, u64 objectid, u64 index,
 951				 const char *name, int name_len)
 952{
 953	struct btrfs_dir_item *di;
 954	struct btrfs_key location;
 955	int ret = 0;
 956
 957	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 958					 index, name, name_len, 0);
 959	if (IS_ERR(di)) {
 960		if (PTR_ERR(di) != -ENOENT)
 961			ret = PTR_ERR(di);
 962		goto out;
 963	} else if (di) {
 964		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 965		if (location.objectid != objectid)
 966			goto out;
 967	} else {
 968		goto out;
 969	}
 970
 971	btrfs_release_path(path);
 972	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 973	if (IS_ERR(di)) {
 974		ret = PTR_ERR(di);
 
 
 
 975		goto out;
 976	} else if (di) {
 977		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 978		if (location.objectid == objectid)
 979			ret = 1;
 980	}
 981out:
 982	btrfs_release_path(path);
 983	return ret;
 984}
 985
 986/*
 987 * helper function to check a log tree for a named back reference in
 988 * an inode.  This is used to decide if a back reference that is
 989 * found in the subvolume conflicts with what we find in the log.
 990 *
 991 * inode backreferences may have multiple refs in a single item,
 992 * during replay we process one reference at a time, and we don't
 993 * want to delete valid links to a file from the subvolume if that
 994 * link is also in the log.
 995 */
 996static noinline int backref_in_log(struct btrfs_root *log,
 997				   struct btrfs_key *key,
 998				   u64 ref_objectid,
 999				   const char *name, int namelen)
1000{
1001	struct btrfs_path *path;
 
 
 
 
 
 
1002	int ret;
 
1003
1004	path = btrfs_alloc_path();
1005	if (!path)
1006		return -ENOMEM;
1007
1008	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1009	if (ret < 0) {
1010		goto out;
1011	} else if (ret == 1) {
1012		ret = 0;
 
 
 
 
 
 
1013		goto out;
1014	}
1015
1016	if (key->type == BTRFS_INODE_EXTREF_KEY)
1017		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1018						       path->slots[0],
1019						       ref_objectid,
1020						       name, namelen);
1021	else
1022		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1023						   path->slots[0],
1024						   name, namelen);
 
 
 
 
 
 
 
1025out:
1026	btrfs_free_path(path);
1027	return ret;
1028}
1029
1030static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1031				  struct btrfs_root *root,
1032				  struct btrfs_path *path,
1033				  struct btrfs_root *log_root,
1034				  struct btrfs_inode *dir,
1035				  struct btrfs_inode *inode,
1036				  u64 inode_objectid, u64 parent_objectid,
1037				  u64 ref_index, char *name, int namelen,
1038				  int *search_done)
1039{
 
1040	int ret;
1041	char *victim_name;
1042	int victim_name_len;
1043	struct extent_buffer *leaf;
1044	struct btrfs_dir_item *di;
1045	struct btrfs_key search_key;
1046	struct btrfs_inode_extref *extref;
1047
1048again:
1049	/* Search old style refs */
1050	search_key.objectid = inode_objectid;
1051	search_key.type = BTRFS_INODE_REF_KEY;
1052	search_key.offset = parent_objectid;
1053	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1054	if (ret == 0) {
1055		struct btrfs_inode_ref *victim_ref;
1056		unsigned long ptr;
1057		unsigned long ptr_end;
1058
1059		leaf = path->nodes[0];
1060
1061		/* are we trying to overwrite a back ref for the root directory
1062		 * if so, just jump out, we're done
1063		 */
1064		if (search_key.objectid == search_key.offset)
1065			return 1;
1066
1067		/* check all the names in this back reference to see
1068		 * if they are in the log.  if so, we allow them to stay
1069		 * otherwise they must be unlinked as a conflict
1070		 */
1071		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1072		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1073		while (ptr < ptr_end) {
1074			victim_ref = (struct btrfs_inode_ref *)ptr;
1075			victim_name_len = btrfs_inode_ref_name_len(leaf,
1076								   victim_ref);
1077			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1078			if (!victim_name)
1079				return -ENOMEM;
1080
1081			read_extent_buffer(leaf, victim_name,
1082					   (unsigned long)(victim_ref + 1),
1083					   victim_name_len);
1084
1085			ret = backref_in_log(log_root, &search_key,
1086					     parent_objectid, victim_name,
1087					     victim_name_len);
1088			if (ret < 0) {
1089				kfree(victim_name);
1090				return ret;
1091			} else if (!ret) {
1092				inc_nlink(&inode->vfs_inode);
1093				btrfs_release_path(path);
1094
1095				ret = btrfs_unlink_inode(trans, root, dir, inode,
1096						victim_name, victim_name_len);
 
1097				kfree(victim_name);
1098				if (ret)
1099					return ret;
1100				ret = btrfs_run_delayed_items(trans);
1101				if (ret)
1102					return ret;
1103				*search_done = 1;
1104				goto again;
1105			}
1106			kfree(victim_name);
1107
1108			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1109		}
1110
1111		/*
1112		 * NOTE: we have searched root tree and checked the
1113		 * corresponding ref, it does not need to check again.
1114		 */
1115		*search_done = 1;
1116	}
1117	btrfs_release_path(path);
1118
1119	/* Same search but for extended refs */
1120	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1121					   inode_objectid, parent_objectid, 0,
1122					   0);
1123	if (!IS_ERR_OR_NULL(extref)) {
1124		u32 item_size;
1125		u32 cur_offset = 0;
1126		unsigned long base;
1127		struct inode *victim_parent;
1128
1129		leaf = path->nodes[0];
1130
1131		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1132		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1133
1134		while (cur_offset < item_size) {
1135			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1136
1137			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1138
1139			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1140				goto next;
1141
1142			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1143			if (!victim_name)
1144				return -ENOMEM;
1145			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1146					   victim_name_len);
1147
1148			search_key.objectid = inode_objectid;
1149			search_key.type = BTRFS_INODE_EXTREF_KEY;
1150			search_key.offset = btrfs_extref_hash(parent_objectid,
1151							      victim_name,
1152							      victim_name_len);
1153			ret = backref_in_log(log_root, &search_key,
1154					     parent_objectid, victim_name,
1155					     victim_name_len);
1156			if (ret < 0) {
1157				return ret;
1158			} else if (!ret) {
1159				ret = -ENOENT;
1160				victim_parent = read_one_inode(root,
1161						parent_objectid);
1162				if (victim_parent) {
1163					inc_nlink(&inode->vfs_inode);
1164					btrfs_release_path(path);
1165
1166					ret = btrfs_unlink_inode(trans, root,
1167							BTRFS_I(victim_parent),
1168							inode,
1169							victim_name,
1170							victim_name_len);
1171					if (!ret)
1172						ret = btrfs_run_delayed_items(
1173								  trans);
 
1174				}
1175				iput(victim_parent);
1176				kfree(victim_name);
1177				if (ret)
1178					return ret;
1179				*search_done = 1;
1180				goto again;
1181			}
1182			kfree(victim_name);
 
 
1183next:
1184			cur_offset += victim_name_len + sizeof(*extref);
1185		}
1186		*search_done = 1;
1187	}
1188	btrfs_release_path(path);
1189
1190	/* look for a conflicting sequence number */
1191	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1192					 ref_index, name, namelen, 0);
1193	if (IS_ERR(di)) {
1194		if (PTR_ERR(di) != -ENOENT)
1195			return PTR_ERR(di);
1196	} else if (di) {
1197		ret = drop_one_dir_item(trans, root, path, dir, di);
1198		if (ret)
1199			return ret;
1200	}
1201	btrfs_release_path(path);
1202
1203	/* look for a conflicting name */
1204	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1205				   name, namelen, 0);
1206	if (IS_ERR(di)) {
1207		return PTR_ERR(di);
1208	} else if (di) {
1209		ret = drop_one_dir_item(trans, root, path, dir, di);
1210		if (ret)
1211			return ret;
1212	}
1213	btrfs_release_path(path);
1214
1215	return 0;
1216}
1217
1218static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1219			     u32 *namelen, char **name, u64 *index,
1220			     u64 *parent_objectid)
1221{
1222	struct btrfs_inode_extref *extref;
1223
1224	extref = (struct btrfs_inode_extref *)ref_ptr;
1225
1226	*namelen = btrfs_inode_extref_name_len(eb, extref);
1227	*name = kmalloc(*namelen, GFP_NOFS);
1228	if (*name == NULL)
1229		return -ENOMEM;
1230
1231	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1232			   *namelen);
1233
1234	if (index)
1235		*index = btrfs_inode_extref_index(eb, extref);
1236	if (parent_objectid)
1237		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1238
1239	return 0;
1240}
1241
1242static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243			  u32 *namelen, char **name, u64 *index)
1244{
1245	struct btrfs_inode_ref *ref;
1246
1247	ref = (struct btrfs_inode_ref *)ref_ptr;
1248
1249	*namelen = btrfs_inode_ref_name_len(eb, ref);
1250	*name = kmalloc(*namelen, GFP_NOFS);
1251	if (*name == NULL)
1252		return -ENOMEM;
1253
1254	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1255
1256	if (index)
1257		*index = btrfs_inode_ref_index(eb, ref);
1258
1259	return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270				 struct btrfs_root *root,
1271				 struct btrfs_path *path,
1272				 struct btrfs_inode *inode,
1273				 struct extent_buffer *log_eb,
1274				 int log_slot,
1275				 struct btrfs_key *key)
1276{
1277	int ret;
1278	unsigned long ref_ptr;
1279	unsigned long ref_end;
1280	struct extent_buffer *eb;
1281
1282again:
1283	btrfs_release_path(path);
1284	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285	if (ret > 0) {
1286		ret = 0;
1287		goto out;
1288	}
1289	if (ret < 0)
1290		goto out;
1291
1292	eb = path->nodes[0];
1293	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1295	while (ref_ptr < ref_end) {
1296		char *name = NULL;
1297		int namelen;
1298		u64 parent_id;
1299
1300		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1301			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1302						NULL, &parent_id);
1303		} else {
1304			parent_id = key->offset;
1305			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1306					     NULL);
1307		}
1308		if (ret)
1309			goto out;
1310
1311		if (key->type == BTRFS_INODE_EXTREF_KEY)
1312			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1313							       parent_id, name,
1314							       namelen);
1315		else
1316			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1317							   name, namelen);
1318
1319		if (!ret) {
1320			struct inode *dir;
1321
1322			btrfs_release_path(path);
1323			dir = read_one_inode(root, parent_id);
1324			if (!dir) {
1325				ret = -ENOENT;
1326				kfree(name);
1327				goto out;
1328			}
1329			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1330						 inode, name, namelen);
1331			kfree(name);
1332			iput(dir);
1333			if (ret)
1334				goto out;
1335			goto again;
1336		}
1337
1338		kfree(name);
1339		ref_ptr += namelen;
1340		if (key->type == BTRFS_INODE_EXTREF_KEY)
1341			ref_ptr += sizeof(struct btrfs_inode_extref);
1342		else
1343			ref_ptr += sizeof(struct btrfs_inode_ref);
1344	}
1345	ret = 0;
1346 out:
1347	btrfs_release_path(path);
1348	return ret;
1349}
1350
1351static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1352				  const u8 ref_type, const char *name,
1353				  const int namelen)
1354{
1355	struct btrfs_key key;
1356	struct btrfs_path *path;
1357	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1358	int ret;
1359
1360	path = btrfs_alloc_path();
1361	if (!path)
1362		return -ENOMEM;
1363
1364	key.objectid = btrfs_ino(BTRFS_I(inode));
1365	key.type = ref_type;
1366	if (key.type == BTRFS_INODE_REF_KEY)
1367		key.offset = parent_id;
1368	else
1369		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1370
1371	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1372	if (ret < 0)
1373		goto out;
1374	if (ret > 0) {
1375		ret = 0;
1376		goto out;
1377	}
1378	if (key.type == BTRFS_INODE_EXTREF_KEY)
1379		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1380				path->slots[0], parent_id, name, namelen);
1381	else
1382		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1383						   name, namelen);
1384
1385out:
1386	btrfs_free_path(path);
1387	return ret;
1388}
1389
1390static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1391		    struct inode *dir, struct inode *inode, const char *name,
1392		    int namelen, u64 ref_index)
1393{
1394	struct btrfs_dir_item *dir_item;
1395	struct btrfs_key key;
1396	struct btrfs_path *path;
1397	struct inode *other_inode = NULL;
1398	int ret;
1399
1400	path = btrfs_alloc_path();
1401	if (!path)
1402		return -ENOMEM;
1403
1404	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1405					 btrfs_ino(BTRFS_I(dir)),
1406					 name, namelen, 0);
1407	if (!dir_item) {
1408		btrfs_release_path(path);
1409		goto add_link;
1410	} else if (IS_ERR(dir_item)) {
1411		ret = PTR_ERR(dir_item);
1412		goto out;
1413	}
1414
1415	/*
1416	 * Our inode's dentry collides with the dentry of another inode which is
1417	 * in the log but not yet processed since it has a higher inode number.
1418	 * So delete that other dentry.
1419	 */
1420	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1421	btrfs_release_path(path);
1422	other_inode = read_one_inode(root, key.objectid);
1423	if (!other_inode) {
1424		ret = -ENOENT;
1425		goto out;
1426	}
1427	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1428				 name, namelen);
1429	if (ret)
1430		goto out;
1431	/*
1432	 * If we dropped the link count to 0, bump it so that later the iput()
1433	 * on the inode will not free it. We will fixup the link count later.
1434	 */
1435	if (other_inode->i_nlink == 0)
1436		inc_nlink(other_inode);
1437
1438	ret = btrfs_run_delayed_items(trans);
1439	if (ret)
1440		goto out;
1441add_link:
1442	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1443			     name, namelen, 0, ref_index);
1444out:
1445	iput(other_inode);
1446	btrfs_free_path(path);
1447
1448	return ret;
1449}
1450
1451/*
1452 * replay one inode back reference item found in the log tree.
1453 * eb, slot and key refer to the buffer and key found in the log tree.
1454 * root is the destination we are replaying into, and path is for temp
1455 * use by this function.  (it should be released on return).
1456 */
1457static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1458				  struct btrfs_root *root,
1459				  struct btrfs_root *log,
1460				  struct btrfs_path *path,
1461				  struct extent_buffer *eb, int slot,
1462				  struct btrfs_key *key)
1463{
1464	struct inode *dir = NULL;
1465	struct inode *inode = NULL;
1466	unsigned long ref_ptr;
1467	unsigned long ref_end;
1468	char *name = NULL;
1469	int namelen;
1470	int ret;
1471	int search_done = 0;
1472	int log_ref_ver = 0;
1473	u64 parent_objectid;
1474	u64 inode_objectid;
1475	u64 ref_index = 0;
1476	int ref_struct_size;
1477
1478	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1479	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1480
1481	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1482		struct btrfs_inode_extref *r;
1483
1484		ref_struct_size = sizeof(struct btrfs_inode_extref);
1485		log_ref_ver = 1;
1486		r = (struct btrfs_inode_extref *)ref_ptr;
1487		parent_objectid = btrfs_inode_extref_parent(eb, r);
1488	} else {
1489		ref_struct_size = sizeof(struct btrfs_inode_ref);
1490		parent_objectid = key->offset;
1491	}
1492	inode_objectid = key->objectid;
1493
1494	/*
1495	 * it is possible that we didn't log all the parent directories
1496	 * for a given inode.  If we don't find the dir, just don't
1497	 * copy the back ref in.  The link count fixup code will take
1498	 * care of the rest
1499	 */
1500	dir = read_one_inode(root, parent_objectid);
1501	if (!dir) {
1502		ret = -ENOENT;
1503		goto out;
1504	}
1505
1506	inode = read_one_inode(root, inode_objectid);
1507	if (!inode) {
1508		ret = -EIO;
1509		goto out;
1510	}
1511
1512	while (ref_ptr < ref_end) {
1513		if (log_ref_ver) {
1514			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1515						&ref_index, &parent_objectid);
1516			/*
1517			 * parent object can change from one array
1518			 * item to another.
1519			 */
1520			if (!dir)
1521				dir = read_one_inode(root, parent_objectid);
1522			if (!dir) {
1523				ret = -ENOENT;
1524				goto out;
1525			}
1526		} else {
1527			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1528					     &ref_index);
1529		}
1530		if (ret)
1531			goto out;
1532
1533		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1534				   btrfs_ino(BTRFS_I(inode)), ref_index,
1535				   name, namelen);
1536		if (ret < 0) {
1537			goto out;
1538		} else if (ret == 0) {
1539			/*
1540			 * look for a conflicting back reference in the
1541			 * metadata. if we find one we have to unlink that name
1542			 * of the file before we add our new link.  Later on, we
1543			 * overwrite any existing back reference, and we don't
1544			 * want to create dangling pointers in the directory.
1545			 */
1546
1547			if (!search_done) {
1548				ret = __add_inode_ref(trans, root, path, log,
1549						      BTRFS_I(dir),
1550						      BTRFS_I(inode),
1551						      inode_objectid,
1552						      parent_objectid,
1553						      ref_index, name, namelen,
1554						      &search_done);
1555				if (ret) {
1556					if (ret == 1)
1557						ret = 0;
1558					goto out;
1559				}
1560			}
1561
1562			/*
1563			 * If a reference item already exists for this inode
1564			 * with the same parent and name, but different index,
1565			 * drop it and the corresponding directory index entries
1566			 * from the parent before adding the new reference item
1567			 * and dir index entries, otherwise we would fail with
1568			 * -EEXIST returned from btrfs_add_link() below.
1569			 */
1570			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1571						     name, namelen);
1572			if (ret > 0) {
1573				ret = btrfs_unlink_inode(trans, root,
1574							 BTRFS_I(dir),
1575							 BTRFS_I(inode),
1576							 name, namelen);
1577				/*
1578				 * If we dropped the link count to 0, bump it so
1579				 * that later the iput() on the inode will not
1580				 * free it. We will fixup the link count later.
1581				 */
1582				if (!ret && inode->i_nlink == 0)
1583					inc_nlink(inode);
1584			}
1585			if (ret < 0)
1586				goto out;
1587
1588			/* insert our name */
1589			ret = add_link(trans, root, dir, inode, name, namelen,
1590				       ref_index);
1591			if (ret)
1592				goto out;
1593
1594			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1595			if (ret)
1596				goto out;
1597		}
1598		/* Else, ret == 1, we already have a perfect match, we're done. */
1599
1600		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1601		kfree(name);
1602		name = NULL;
1603		if (log_ref_ver) {
1604			iput(dir);
1605			dir = NULL;
1606		}
1607	}
1608
1609	/*
1610	 * Before we overwrite the inode reference item in the subvolume tree
1611	 * with the item from the log tree, we must unlink all names from the
1612	 * parent directory that are in the subvolume's tree inode reference
1613	 * item, otherwise we end up with an inconsistent subvolume tree where
1614	 * dir index entries exist for a name but there is no inode reference
1615	 * item with the same name.
1616	 */
1617	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1618				    key);
1619	if (ret)
1620		goto out;
1621
1622	/* finally write the back reference in the inode */
1623	ret = overwrite_item(trans, root, path, eb, slot, key);
1624out:
1625	btrfs_release_path(path);
1626	kfree(name);
1627	iput(dir);
1628	iput(inode);
1629	return ret;
1630}
1631
 
 
 
 
 
 
 
 
 
 
 
 
1632static int count_inode_extrefs(struct btrfs_root *root,
1633		struct btrfs_inode *inode, struct btrfs_path *path)
1634{
1635	int ret = 0;
1636	int name_len;
1637	unsigned int nlink = 0;
1638	u32 item_size;
1639	u32 cur_offset = 0;
1640	u64 inode_objectid = btrfs_ino(inode);
1641	u64 offset = 0;
1642	unsigned long ptr;
1643	struct btrfs_inode_extref *extref;
1644	struct extent_buffer *leaf;
1645
1646	while (1) {
1647		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1648					    &extref, &offset);
1649		if (ret)
1650			break;
1651
1652		leaf = path->nodes[0];
1653		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655		cur_offset = 0;
1656
1657		while (cur_offset < item_size) {
1658			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1659			name_len = btrfs_inode_extref_name_len(leaf, extref);
1660
1661			nlink++;
1662
1663			cur_offset += name_len + sizeof(*extref);
1664		}
1665
1666		offset++;
1667		btrfs_release_path(path);
1668	}
1669	btrfs_release_path(path);
1670
1671	if (ret < 0 && ret != -ENOENT)
1672		return ret;
1673	return nlink;
1674}
1675
1676static int count_inode_refs(struct btrfs_root *root,
1677			struct btrfs_inode *inode, struct btrfs_path *path)
1678{
1679	int ret;
1680	struct btrfs_key key;
1681	unsigned int nlink = 0;
1682	unsigned long ptr;
1683	unsigned long ptr_end;
1684	int name_len;
1685	u64 ino = btrfs_ino(inode);
1686
1687	key.objectid = ino;
1688	key.type = BTRFS_INODE_REF_KEY;
1689	key.offset = (u64)-1;
1690
1691	while (1) {
1692		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1693		if (ret < 0)
1694			break;
1695		if (ret > 0) {
1696			if (path->slots[0] == 0)
1697				break;
1698			path->slots[0]--;
1699		}
1700process_slot:
1701		btrfs_item_key_to_cpu(path->nodes[0], &key,
1702				      path->slots[0]);
1703		if (key.objectid != ino ||
1704		    key.type != BTRFS_INODE_REF_KEY)
1705			break;
1706		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1707		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1708						   path->slots[0]);
1709		while (ptr < ptr_end) {
1710			struct btrfs_inode_ref *ref;
1711
1712			ref = (struct btrfs_inode_ref *)ptr;
1713			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1714							    ref);
1715			ptr = (unsigned long)(ref + 1) + name_len;
1716			nlink++;
1717		}
1718
1719		if (key.offset == 0)
1720			break;
1721		if (path->slots[0] > 0) {
1722			path->slots[0]--;
1723			goto process_slot;
1724		}
1725		key.offset--;
1726		btrfs_release_path(path);
1727	}
1728	btrfs_release_path(path);
1729
1730	return nlink;
1731}
1732
1733/*
1734 * There are a few corners where the link count of the file can't
1735 * be properly maintained during replay.  So, instead of adding
1736 * lots of complexity to the log code, we just scan the backrefs
1737 * for any file that has been through replay.
1738 *
1739 * The scan will update the link count on the inode to reflect the
1740 * number of back refs found.  If it goes down to zero, the iput
1741 * will free the inode.
1742 */
1743static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1744					   struct btrfs_root *root,
1745					   struct inode *inode)
1746{
1747	struct btrfs_path *path;
1748	int ret;
1749	u64 nlink = 0;
1750	u64 ino = btrfs_ino(BTRFS_I(inode));
1751
1752	path = btrfs_alloc_path();
1753	if (!path)
1754		return -ENOMEM;
1755
1756	ret = count_inode_refs(root, BTRFS_I(inode), path);
1757	if (ret < 0)
1758		goto out;
1759
1760	nlink = ret;
1761
1762	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1763	if (ret < 0)
1764		goto out;
1765
1766	nlink += ret;
1767
1768	ret = 0;
1769
1770	if (nlink != inode->i_nlink) {
1771		set_nlink(inode, nlink);
1772		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1773		if (ret)
1774			goto out;
1775	}
1776	BTRFS_I(inode)->index_cnt = (u64)-1;
1777
1778	if (inode->i_nlink == 0) {
1779		if (S_ISDIR(inode->i_mode)) {
1780			ret = replay_dir_deletes(trans, root, NULL, path,
1781						 ino, 1);
1782			if (ret)
1783				goto out;
1784		}
1785		ret = btrfs_insert_orphan_item(trans, root, ino);
1786		if (ret == -EEXIST)
1787			ret = 0;
1788	}
1789
1790out:
1791	btrfs_free_path(path);
1792	return ret;
1793}
1794
1795static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1796					    struct btrfs_root *root,
1797					    struct btrfs_path *path)
1798{
1799	int ret;
1800	struct btrfs_key key;
1801	struct inode *inode;
1802
1803	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1804	key.type = BTRFS_ORPHAN_ITEM_KEY;
1805	key.offset = (u64)-1;
1806	while (1) {
1807		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1808		if (ret < 0)
1809			break;
1810
1811		if (ret == 1) {
1812			ret = 0;
1813			if (path->slots[0] == 0)
1814				break;
1815			path->slots[0]--;
1816		}
1817
1818		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1819		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1820		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1821			break;
1822
1823		ret = btrfs_del_item(trans, root, path);
1824		if (ret)
1825			break;
1826
1827		btrfs_release_path(path);
1828		inode = read_one_inode(root, key.offset);
1829		if (!inode) {
1830			ret = -EIO;
1831			break;
1832		}
1833
1834		ret = fixup_inode_link_count(trans, root, inode);
1835		iput(inode);
1836		if (ret)
1837			break;
1838
1839		/*
1840		 * fixup on a directory may create new entries,
1841		 * make sure we always look for the highset possible
1842		 * offset
1843		 */
1844		key.offset = (u64)-1;
1845	}
 
 
1846	btrfs_release_path(path);
1847	return ret;
1848}
1849
1850
1851/*
1852 * record a given inode in the fixup dir so we can check its link
1853 * count when replay is done.  The link count is incremented here
1854 * so the inode won't go away until we check it
1855 */
1856static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1857				      struct btrfs_root *root,
1858				      struct btrfs_path *path,
1859				      u64 objectid)
1860{
1861	struct btrfs_key key;
1862	int ret = 0;
1863	struct inode *inode;
1864
1865	inode = read_one_inode(root, objectid);
1866	if (!inode)
1867		return -EIO;
1868
1869	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1870	key.type = BTRFS_ORPHAN_ITEM_KEY;
1871	key.offset = objectid;
1872
1873	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1874
1875	btrfs_release_path(path);
1876	if (ret == 0) {
1877		if (!inode->i_nlink)
1878			set_nlink(inode, 1);
1879		else
1880			inc_nlink(inode);
1881		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1882	} else if (ret == -EEXIST) {
1883		ret = 0;
 
 
1884	}
1885	iput(inode);
1886
1887	return ret;
1888}
1889
1890/*
1891 * when replaying the log for a directory, we only insert names
1892 * for inodes that actually exist.  This means an fsync on a directory
1893 * does not implicitly fsync all the new files in it
1894 */
1895static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1896				    struct btrfs_root *root,
1897				    u64 dirid, u64 index,
1898				    char *name, int name_len,
1899				    struct btrfs_key *location)
1900{
1901	struct inode *inode;
1902	struct inode *dir;
1903	int ret;
1904
1905	inode = read_one_inode(root, location->objectid);
1906	if (!inode)
1907		return -ENOENT;
1908
1909	dir = read_one_inode(root, dirid);
1910	if (!dir) {
1911		iput(inode);
1912		return -EIO;
1913	}
1914
1915	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1916			name_len, 1, index);
1917
1918	/* FIXME, put inode into FIXUP list */
1919
1920	iput(inode);
1921	iput(dir);
1922	return ret;
1923}
1924
1925/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926 * take a single entry in a log directory item and replay it into
1927 * the subvolume.
1928 *
1929 * if a conflicting item exists in the subdirectory already,
1930 * the inode it points to is unlinked and put into the link count
1931 * fix up tree.
1932 *
1933 * If a name from the log points to a file or directory that does
1934 * not exist in the FS, it is skipped.  fsyncs on directories
1935 * do not force down inodes inside that directory, just changes to the
1936 * names or unlinks in a directory.
1937 *
1938 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1939 * non-existing inode) and 1 if the name was replayed.
1940 */
1941static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1942				    struct btrfs_root *root,
1943				    struct btrfs_path *path,
1944				    struct extent_buffer *eb,
1945				    struct btrfs_dir_item *di,
1946				    struct btrfs_key *key)
1947{
1948	char *name;
1949	int name_len;
1950	struct btrfs_dir_item *dst_di;
1951	struct btrfs_key found_key;
1952	struct btrfs_key log_key;
1953	struct inode *dir;
1954	u8 log_type;
1955	bool exists;
1956	int ret;
1957	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1958	bool name_added = false;
1959
1960	dir = read_one_inode(root, key->objectid);
1961	if (!dir)
1962		return -EIO;
1963
1964	name_len = btrfs_dir_name_len(eb, di);
1965	name = kmalloc(name_len, GFP_NOFS);
1966	if (!name) {
1967		ret = -ENOMEM;
1968		goto out;
1969	}
1970
1971	log_type = btrfs_dir_type(eb, di);
1972	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1973		   name_len);
1974
1975	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1976	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 
 
 
 
1977	btrfs_release_path(path);
1978	if (ret < 0)
1979		goto out;
1980	exists = (ret == 0);
1981	ret = 0;
1982
1983	if (key->type == BTRFS_DIR_ITEM_KEY) {
1984		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1985				       name, name_len, 1);
1986	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1987		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1988						     key->objectid,
1989						     key->offset, name,
1990						     name_len, 1);
1991	} else {
1992		/* Corruption */
1993		ret = -EINVAL;
1994		goto out;
1995	}
1996
1997	if (dst_di == ERR_PTR(-ENOENT))
1998		dst_di = NULL;
1999
2000	if (IS_ERR(dst_di)) {
2001		ret = PTR_ERR(dst_di);
2002		goto out;
2003	} else if (!dst_di) {
2004		/* we need a sequence number to insert, so we only
2005		 * do inserts for the BTRFS_DIR_INDEX_KEY types
2006		 */
2007		if (key->type != BTRFS_DIR_INDEX_KEY)
2008			goto out;
2009		goto insert;
2010	}
2011
2012	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2013	/* the existing item matches the logged item */
2014	if (found_key.objectid == log_key.objectid &&
2015	    found_key.type == log_key.type &&
2016	    found_key.offset == log_key.offset &&
2017	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2018		update_size = false;
2019		goto out;
2020	}
2021
2022	/*
2023	 * don't drop the conflicting directory entry if the inode
2024	 * for the new entry doesn't exist
2025	 */
2026	if (!exists)
2027		goto out;
2028
2029	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2030	if (ret)
2031		goto out;
2032
2033	if (key->type == BTRFS_DIR_INDEX_KEY)
2034		goto insert;
2035out:
2036	btrfs_release_path(path);
2037	if (!ret && update_size) {
2038		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2039		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2040	}
2041	kfree(name);
2042	iput(dir);
2043	if (!ret && name_added)
2044		ret = 1;
2045	return ret;
2046
2047insert:
2048	/*
2049	 * Check if the inode reference exists in the log for the given name,
2050	 * inode and parent inode
2051	 */
2052	found_key.objectid = log_key.objectid;
2053	found_key.type = BTRFS_INODE_REF_KEY;
2054	found_key.offset = key->objectid;
2055	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2056	if (ret < 0) {
2057	        goto out;
2058	} else if (ret) {
2059	        /* The dentry will be added later. */
2060	        ret = 0;
2061	        update_size = false;
2062	        goto out;
2063	}
2064
2065	found_key.objectid = log_key.objectid;
2066	found_key.type = BTRFS_INODE_EXTREF_KEY;
2067	found_key.offset = key->objectid;
2068	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2069			     name_len);
2070	if (ret < 0) {
2071		goto out;
2072	} else if (ret) {
2073		/* The dentry will be added later. */
2074		ret = 0;
2075		update_size = false;
2076		goto out;
2077	}
2078	btrfs_release_path(path);
2079	ret = insert_one_name(trans, root, key->objectid, key->offset,
2080			      name, name_len, &log_key);
2081	if (ret && ret != -ENOENT && ret != -EEXIST)
2082		goto out;
2083	if (!ret)
2084		name_added = true;
2085	update_size = false;
2086	ret = 0;
2087	goto out;
2088}
2089
2090/*
2091 * find all the names in a directory item and reconcile them into
2092 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2093 * one name in a directory item, but the same code gets used for
2094 * both directory index types
2095 */
2096static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2097					struct btrfs_root *root,
2098					struct btrfs_path *path,
2099					struct extent_buffer *eb, int slot,
2100					struct btrfs_key *key)
2101{
 
2102	int ret = 0;
2103	u32 item_size = btrfs_item_size_nr(eb, slot);
2104	struct btrfs_dir_item *di;
2105	int name_len;
2106	unsigned long ptr;
2107	unsigned long ptr_end;
2108	struct btrfs_path *fixup_path = NULL;
2109
2110	ptr = btrfs_item_ptr_offset(eb, slot);
2111	ptr_end = ptr + item_size;
2112	while (ptr < ptr_end) {
2113		di = (struct btrfs_dir_item *)ptr;
 
 
2114		name_len = btrfs_dir_name_len(eb, di);
2115		ret = replay_one_name(trans, root, path, eb, di, key);
2116		if (ret < 0)
2117			break;
2118		ptr = (unsigned long)(di + 1);
2119		ptr += name_len;
2120
2121		/*
2122		 * If this entry refers to a non-directory (directories can not
2123		 * have a link count > 1) and it was added in the transaction
2124		 * that was not committed, make sure we fixup the link count of
2125		 * the inode it the entry points to. Otherwise something like
2126		 * the following would result in a directory pointing to an
2127		 * inode with a wrong link that does not account for this dir
2128		 * entry:
2129		 *
2130		 * mkdir testdir
2131		 * touch testdir/foo
2132		 * touch testdir/bar
2133		 * sync
2134		 *
2135		 * ln testdir/bar testdir/bar_link
2136		 * ln testdir/foo testdir/foo_link
2137		 * xfs_io -c "fsync" testdir/bar
2138		 *
2139		 * <power failure>
2140		 *
2141		 * mount fs, log replay happens
2142		 *
2143		 * File foo would remain with a link count of 1 when it has two
2144		 * entries pointing to it in the directory testdir. This would
2145		 * make it impossible to ever delete the parent directory has
2146		 * it would result in stale dentries that can never be deleted.
2147		 */
2148		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2149			struct btrfs_key di_key;
2150
2151			if (!fixup_path) {
2152				fixup_path = btrfs_alloc_path();
2153				if (!fixup_path) {
2154					ret = -ENOMEM;
2155					break;
2156				}
2157			}
2158
2159			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2160			ret = link_to_fixup_dir(trans, root, fixup_path,
2161						di_key.objectid);
2162			if (ret)
2163				break;
2164		}
2165		ret = 0;
2166	}
2167	btrfs_free_path(fixup_path);
2168	return ret;
2169}
2170
2171/*
2172 * directory replay has two parts.  There are the standard directory
2173 * items in the log copied from the subvolume, and range items
2174 * created in the log while the subvolume was logged.
2175 *
2176 * The range items tell us which parts of the key space the log
2177 * is authoritative for.  During replay, if a key in the subvolume
2178 * directory is in a logged range item, but not actually in the log
2179 * that means it was deleted from the directory before the fsync
2180 * and should be removed.
2181 */
2182static noinline int find_dir_range(struct btrfs_root *root,
2183				   struct btrfs_path *path,
2184				   u64 dirid, int key_type,
2185				   u64 *start_ret, u64 *end_ret)
2186{
2187	struct btrfs_key key;
2188	u64 found_end;
2189	struct btrfs_dir_log_item *item;
2190	int ret;
2191	int nritems;
2192
2193	if (*start_ret == (u64)-1)
2194		return 1;
2195
2196	key.objectid = dirid;
2197	key.type = key_type;
2198	key.offset = *start_ret;
2199
2200	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2201	if (ret < 0)
2202		goto out;
2203	if (ret > 0) {
2204		if (path->slots[0] == 0)
2205			goto out;
2206		path->slots[0]--;
2207	}
2208	if (ret != 0)
2209		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2210
2211	if (key.type != key_type || key.objectid != dirid) {
2212		ret = 1;
2213		goto next;
2214	}
2215	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2216			      struct btrfs_dir_log_item);
2217	found_end = btrfs_dir_log_end(path->nodes[0], item);
2218
2219	if (*start_ret >= key.offset && *start_ret <= found_end) {
2220		ret = 0;
2221		*start_ret = key.offset;
2222		*end_ret = found_end;
2223		goto out;
2224	}
2225	ret = 1;
2226next:
2227	/* check the next slot in the tree to see if it is a valid item */
2228	nritems = btrfs_header_nritems(path->nodes[0]);
2229	path->slots[0]++;
2230	if (path->slots[0] >= nritems) {
2231		ret = btrfs_next_leaf(root, path);
2232		if (ret)
2233			goto out;
2234	}
2235
2236	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237
2238	if (key.type != key_type || key.objectid != dirid) {
2239		ret = 1;
2240		goto out;
2241	}
2242	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243			      struct btrfs_dir_log_item);
2244	found_end = btrfs_dir_log_end(path->nodes[0], item);
2245	*start_ret = key.offset;
2246	*end_ret = found_end;
2247	ret = 0;
2248out:
2249	btrfs_release_path(path);
2250	return ret;
2251}
2252
2253/*
2254 * this looks for a given directory item in the log.  If the directory
2255 * item is not in the log, the item is removed and the inode it points
2256 * to is unlinked
2257 */
2258static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2259				      struct btrfs_root *root,
2260				      struct btrfs_root *log,
2261				      struct btrfs_path *path,
2262				      struct btrfs_path *log_path,
2263				      struct inode *dir,
2264				      struct btrfs_key *dir_key)
2265{
 
2266	int ret;
2267	struct extent_buffer *eb;
2268	int slot;
2269	u32 item_size;
2270	struct btrfs_dir_item *di;
2271	struct btrfs_dir_item *log_di;
2272	int name_len;
2273	unsigned long ptr;
2274	unsigned long ptr_end;
2275	char *name;
2276	struct inode *inode;
2277	struct btrfs_key location;
2278
2279again:
2280	eb = path->nodes[0];
2281	slot = path->slots[0];
2282	item_size = btrfs_item_size_nr(eb, slot);
2283	ptr = btrfs_item_ptr_offset(eb, slot);
2284	ptr_end = ptr + item_size;
2285	while (ptr < ptr_end) {
2286		di = (struct btrfs_dir_item *)ptr;
 
 
 
 
 
2287		name_len = btrfs_dir_name_len(eb, di);
2288		name = kmalloc(name_len, GFP_NOFS);
2289		if (!name) {
2290			ret = -ENOMEM;
2291			goto out;
2292		}
2293		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2294				  name_len);
2295		log_di = NULL;
2296		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2297			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2298						       dir_key->objectid,
2299						       name, name_len, 0);
2300		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2301			log_di = btrfs_lookup_dir_index_item(trans, log,
2302						     log_path,
2303						     dir_key->objectid,
2304						     dir_key->offset,
2305						     name, name_len, 0);
2306		}
2307		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2308			btrfs_dir_item_key_to_cpu(eb, di, &location);
2309			btrfs_release_path(path);
2310			btrfs_release_path(log_path);
2311			inode = read_one_inode(root, location.objectid);
2312			if (!inode) {
2313				kfree(name);
2314				return -EIO;
2315			}
2316
2317			ret = link_to_fixup_dir(trans, root,
2318						path, location.objectid);
2319			if (ret) {
2320				kfree(name);
2321				iput(inode);
2322				goto out;
2323			}
2324
2325			inc_nlink(inode);
2326			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2327					BTRFS_I(inode), name, name_len);
2328			if (!ret)
2329				ret = btrfs_run_delayed_items(trans);
2330			kfree(name);
2331			iput(inode);
2332			if (ret)
2333				goto out;
2334
2335			/* there might still be more names under this key
2336			 * check and repeat if required
2337			 */
2338			ret = btrfs_search_slot(NULL, root, dir_key, path,
2339						0, 0);
2340			if (ret == 0)
2341				goto again;
2342			ret = 0;
2343			goto out;
2344		} else if (IS_ERR(log_di)) {
2345			kfree(name);
2346			return PTR_ERR(log_di);
2347		}
2348		btrfs_release_path(log_path);
2349		kfree(name);
2350
2351		ptr = (unsigned long)(di + 1);
2352		ptr += name_len;
2353	}
2354	ret = 0;
2355out:
2356	btrfs_release_path(path);
2357	btrfs_release_path(log_path);
2358	return ret;
2359}
2360
2361static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2362			      struct btrfs_root *root,
2363			      struct btrfs_root *log,
2364			      struct btrfs_path *path,
2365			      const u64 ino)
2366{
2367	struct btrfs_key search_key;
2368	struct btrfs_path *log_path;
2369	int i;
2370	int nritems;
2371	int ret;
2372
2373	log_path = btrfs_alloc_path();
2374	if (!log_path)
2375		return -ENOMEM;
2376
2377	search_key.objectid = ino;
2378	search_key.type = BTRFS_XATTR_ITEM_KEY;
2379	search_key.offset = 0;
2380again:
2381	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2382	if (ret < 0)
2383		goto out;
2384process_leaf:
2385	nritems = btrfs_header_nritems(path->nodes[0]);
2386	for (i = path->slots[0]; i < nritems; i++) {
2387		struct btrfs_key key;
2388		struct btrfs_dir_item *di;
2389		struct btrfs_dir_item *log_di;
2390		u32 total_size;
2391		u32 cur;
2392
2393		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2394		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2395			ret = 0;
2396			goto out;
2397		}
2398
2399		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2400		total_size = btrfs_item_size_nr(path->nodes[0], i);
2401		cur = 0;
2402		while (cur < total_size) {
2403			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2404			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2405			u32 this_len = sizeof(*di) + name_len + data_len;
2406			char *name;
2407
2408			name = kmalloc(name_len, GFP_NOFS);
2409			if (!name) {
2410				ret = -ENOMEM;
2411				goto out;
2412			}
2413			read_extent_buffer(path->nodes[0], name,
2414					   (unsigned long)(di + 1), name_len);
2415
2416			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2417						    name, name_len, 0);
2418			btrfs_release_path(log_path);
2419			if (!log_di) {
2420				/* Doesn't exist in log tree, so delete it. */
2421				btrfs_release_path(path);
2422				di = btrfs_lookup_xattr(trans, root, path, ino,
2423							name, name_len, -1);
2424				kfree(name);
2425				if (IS_ERR(di)) {
2426					ret = PTR_ERR(di);
2427					goto out;
2428				}
2429				ASSERT(di);
2430				ret = btrfs_delete_one_dir_name(trans, root,
2431								path, di);
2432				if (ret)
2433					goto out;
2434				btrfs_release_path(path);
2435				search_key = key;
2436				goto again;
2437			}
2438			kfree(name);
2439			if (IS_ERR(log_di)) {
2440				ret = PTR_ERR(log_di);
2441				goto out;
2442			}
2443			cur += this_len;
2444			di = (struct btrfs_dir_item *)((char *)di + this_len);
2445		}
2446	}
2447	ret = btrfs_next_leaf(root, path);
2448	if (ret > 0)
2449		ret = 0;
2450	else if (ret == 0)
2451		goto process_leaf;
2452out:
2453	btrfs_free_path(log_path);
2454	btrfs_release_path(path);
2455	return ret;
2456}
2457
2458
2459/*
2460 * deletion replay happens before we copy any new directory items
2461 * out of the log or out of backreferences from inodes.  It
2462 * scans the log to find ranges of keys that log is authoritative for,
2463 * and then scans the directory to find items in those ranges that are
2464 * not present in the log.
2465 *
2466 * Anything we don't find in the log is unlinked and removed from the
2467 * directory.
2468 */
2469static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2470				       struct btrfs_root *root,
2471				       struct btrfs_root *log,
2472				       struct btrfs_path *path,
2473				       u64 dirid, int del_all)
2474{
2475	u64 range_start;
2476	u64 range_end;
2477	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2478	int ret = 0;
2479	struct btrfs_key dir_key;
2480	struct btrfs_key found_key;
2481	struct btrfs_path *log_path;
2482	struct inode *dir;
2483
2484	dir_key.objectid = dirid;
2485	dir_key.type = BTRFS_DIR_ITEM_KEY;
2486	log_path = btrfs_alloc_path();
2487	if (!log_path)
2488		return -ENOMEM;
2489
2490	dir = read_one_inode(root, dirid);
2491	/* it isn't an error if the inode isn't there, that can happen
2492	 * because we replay the deletes before we copy in the inode item
2493	 * from the log
2494	 */
2495	if (!dir) {
2496		btrfs_free_path(log_path);
2497		return 0;
2498	}
2499again:
2500	range_start = 0;
2501	range_end = 0;
2502	while (1) {
2503		if (del_all)
2504			range_end = (u64)-1;
2505		else {
2506			ret = find_dir_range(log, path, dirid, key_type,
2507					     &range_start, &range_end);
2508			if (ret != 0)
2509				break;
2510		}
2511
2512		dir_key.offset = range_start;
2513		while (1) {
2514			int nritems;
2515			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2516						0, 0);
2517			if (ret < 0)
2518				goto out;
2519
2520			nritems = btrfs_header_nritems(path->nodes[0]);
2521			if (path->slots[0] >= nritems) {
2522				ret = btrfs_next_leaf(root, path);
2523				if (ret == 1)
2524					break;
2525				else if (ret < 0)
2526					goto out;
2527			}
2528			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2529					      path->slots[0]);
2530			if (found_key.objectid != dirid ||
2531			    found_key.type != dir_key.type)
2532				goto next_type;
2533
2534			if (found_key.offset > range_end)
2535				break;
2536
2537			ret = check_item_in_log(trans, root, log, path,
2538						log_path, dir,
2539						&found_key);
2540			if (ret)
2541				goto out;
2542			if (found_key.offset == (u64)-1)
2543				break;
2544			dir_key.offset = found_key.offset + 1;
2545		}
2546		btrfs_release_path(path);
2547		if (range_end == (u64)-1)
2548			break;
2549		range_start = range_end + 1;
2550	}
2551
2552next_type:
2553	ret = 0;
2554	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2555		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2556		dir_key.type = BTRFS_DIR_INDEX_KEY;
2557		btrfs_release_path(path);
2558		goto again;
2559	}
2560out:
2561	btrfs_release_path(path);
2562	btrfs_free_path(log_path);
2563	iput(dir);
2564	return ret;
2565}
2566
2567/*
2568 * the process_func used to replay items from the log tree.  This
2569 * gets called in two different stages.  The first stage just looks
2570 * for inodes and makes sure they are all copied into the subvolume.
2571 *
2572 * The second stage copies all the other item types from the log into
2573 * the subvolume.  The two stage approach is slower, but gets rid of
2574 * lots of complexity around inodes referencing other inodes that exist
2575 * only in the log (references come from either directory items or inode
2576 * back refs).
2577 */
2578static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2579			     struct walk_control *wc, u64 gen, int level)
2580{
2581	int nritems;
2582	struct btrfs_path *path;
2583	struct btrfs_root *root = wc->replay_dest;
2584	struct btrfs_key key;
 
2585	int i;
2586	int ret;
2587
2588	ret = btrfs_read_buffer(eb, gen, level, NULL);
2589	if (ret)
2590		return ret;
2591
2592	level = btrfs_header_level(eb);
2593
2594	if (level != 0)
2595		return 0;
2596
2597	path = btrfs_alloc_path();
2598	if (!path)
2599		return -ENOMEM;
2600
2601	nritems = btrfs_header_nritems(eb);
2602	for (i = 0; i < nritems; i++) {
2603		btrfs_item_key_to_cpu(eb, &key, i);
2604
2605		/* inode keys are done during the first stage */
2606		if (key.type == BTRFS_INODE_ITEM_KEY &&
2607		    wc->stage == LOG_WALK_REPLAY_INODES) {
2608			struct btrfs_inode_item *inode_item;
2609			u32 mode;
2610
2611			inode_item = btrfs_item_ptr(eb, i,
2612					    struct btrfs_inode_item);
2613			/*
2614			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2615			 * and never got linked before the fsync, skip it, as
2616			 * replaying it is pointless since it would be deleted
2617			 * later. We skip logging tmpfiles, but it's always
2618			 * possible we are replaying a log created with a kernel
2619			 * that used to log tmpfiles.
2620			 */
2621			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2622				wc->ignore_cur_inode = true;
2623				continue;
2624			} else {
2625				wc->ignore_cur_inode = false;
2626			}
2627			ret = replay_xattr_deletes(wc->trans, root, log,
2628						   path, key.objectid);
2629			if (ret)
2630				break;
2631			mode = btrfs_inode_mode(eb, inode_item);
2632			if (S_ISDIR(mode)) {
2633				ret = replay_dir_deletes(wc->trans,
2634					 root, log, path, key.objectid, 0);
2635				if (ret)
2636					break;
2637			}
2638			ret = overwrite_item(wc->trans, root, path,
2639					     eb, i, &key);
2640			if (ret)
2641				break;
2642
2643			/*
2644			 * Before replaying extents, truncate the inode to its
2645			 * size. We need to do it now and not after log replay
2646			 * because before an fsync we can have prealloc extents
2647			 * added beyond the inode's i_size. If we did it after,
2648			 * through orphan cleanup for example, we would drop
2649			 * those prealloc extents just after replaying them.
2650			 */
2651			if (S_ISREG(mode)) {
2652				struct btrfs_drop_extents_args drop_args = { 0 };
2653				struct inode *inode;
2654				u64 from;
2655
2656				inode = read_one_inode(root, key.objectid);
2657				if (!inode) {
2658					ret = -EIO;
2659					break;
2660				}
2661				from = ALIGN(i_size_read(inode),
2662					     root->fs_info->sectorsize);
2663				drop_args.start = from;
2664				drop_args.end = (u64)-1;
2665				drop_args.drop_cache = true;
2666				ret = btrfs_drop_extents(wc->trans, root,
2667							 BTRFS_I(inode),
2668							 &drop_args);
2669				if (!ret) {
2670					inode_sub_bytes(inode,
2671							drop_args.bytes_found);
2672					/* Update the inode's nbytes. */
2673					ret = btrfs_update_inode(wc->trans,
2674							root, BTRFS_I(inode));
2675				}
2676				iput(inode);
2677				if (ret)
2678					break;
2679			}
2680
2681			ret = link_to_fixup_dir(wc->trans, root,
2682						path, key.objectid);
2683			if (ret)
2684				break;
2685		}
2686
2687		if (wc->ignore_cur_inode)
2688			continue;
2689
2690		if (key.type == BTRFS_DIR_INDEX_KEY &&
2691		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2692			ret = replay_one_dir_item(wc->trans, root, path,
2693						  eb, i, &key);
2694			if (ret)
2695				break;
2696		}
2697
2698		if (wc->stage < LOG_WALK_REPLAY_ALL)
2699			continue;
2700
2701		/* these keys are simply copied */
2702		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2703			ret = overwrite_item(wc->trans, root, path,
2704					     eb, i, &key);
2705			if (ret)
2706				break;
2707		} else if (key.type == BTRFS_INODE_REF_KEY ||
2708			   key.type == BTRFS_INODE_EXTREF_KEY) {
2709			ret = add_inode_ref(wc->trans, root, log, path,
2710					    eb, i, &key);
2711			if (ret && ret != -ENOENT)
2712				break;
2713			ret = 0;
2714		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2715			ret = replay_one_extent(wc->trans, root, path,
2716						eb, i, &key);
2717			if (ret)
2718				break;
2719		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2720			ret = replay_one_dir_item(wc->trans, root, path,
2721						  eb, i, &key);
2722			if (ret)
2723				break;
2724		}
2725	}
2726	btrfs_free_path(path);
2727	return ret;
2728}
2729
2730/*
2731 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2732 */
2733static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2734{
2735	struct btrfs_block_group *cache;
2736
2737	cache = btrfs_lookup_block_group(fs_info, start);
2738	if (!cache) {
2739		btrfs_err(fs_info, "unable to find block group for %llu", start);
2740		return;
2741	}
2742
2743	spin_lock(&cache->space_info->lock);
2744	spin_lock(&cache->lock);
2745	cache->reserved -= fs_info->nodesize;
2746	cache->space_info->bytes_reserved -= fs_info->nodesize;
2747	spin_unlock(&cache->lock);
2748	spin_unlock(&cache->space_info->lock);
2749
2750	btrfs_put_block_group(cache);
2751}
2752
2753static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2754				   struct btrfs_root *root,
2755				   struct btrfs_path *path, int *level,
2756				   struct walk_control *wc)
2757{
2758	struct btrfs_fs_info *fs_info = root->fs_info;
 
2759	u64 bytenr;
2760	u64 ptr_gen;
2761	struct extent_buffer *next;
2762	struct extent_buffer *cur;
 
2763	u32 blocksize;
2764	int ret = 0;
2765
 
 
 
2766	while (*level > 0) {
2767		struct btrfs_key first_key;
2768
2769		cur = path->nodes[*level];
2770
2771		WARN_ON(btrfs_header_level(cur) != *level);
2772
2773		if (path->slots[*level] >=
2774		    btrfs_header_nritems(cur))
2775			break;
2776
2777		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2778		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2779		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2780		blocksize = fs_info->nodesize;
2781
2782		next = btrfs_find_create_tree_block(fs_info, bytenr,
2783						    btrfs_header_owner(cur),
2784						    *level - 1);
 
2785		if (IS_ERR(next))
2786			return PTR_ERR(next);
2787
2788		if (*level == 1) {
2789			ret = wc->process_func(root, next, wc, ptr_gen,
2790					       *level - 1);
2791			if (ret) {
2792				free_extent_buffer(next);
2793				return ret;
2794			}
2795
2796			path->slots[*level]++;
2797			if (wc->free) {
2798				ret = btrfs_read_buffer(next, ptr_gen,
2799							*level - 1, &first_key);
2800				if (ret) {
2801					free_extent_buffer(next);
2802					return ret;
2803				}
2804
2805				if (trans) {
2806					btrfs_tree_lock(next);
2807					btrfs_clean_tree_block(next);
 
2808					btrfs_wait_tree_block_writeback(next);
2809					btrfs_tree_unlock(next);
2810					ret = btrfs_pin_reserved_extent(trans,
2811							bytenr, blocksize);
2812					if (ret) {
2813						free_extent_buffer(next);
2814						return ret;
2815					}
2816					btrfs_redirty_list_add(
2817						trans->transaction, next);
2818				} else {
2819					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2820						clear_extent_buffer_dirty(next);
2821					unaccount_log_buffer(fs_info, bytenr);
2822				}
2823			}
2824			free_extent_buffer(next);
2825			continue;
2826		}
2827		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2828		if (ret) {
2829			free_extent_buffer(next);
2830			return ret;
2831		}
2832
 
2833		if (path->nodes[*level-1])
2834			free_extent_buffer(path->nodes[*level-1]);
2835		path->nodes[*level-1] = next;
2836		*level = btrfs_header_level(next);
2837		path->slots[*level] = 0;
2838		cond_resched();
2839	}
 
 
 
2840	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2841
2842	cond_resched();
2843	return 0;
2844}
2845
2846static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2847				 struct btrfs_root *root,
2848				 struct btrfs_path *path, int *level,
2849				 struct walk_control *wc)
2850{
2851	struct btrfs_fs_info *fs_info = root->fs_info;
 
2852	int i;
2853	int slot;
2854	int ret;
2855
2856	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2857		slot = path->slots[i];
2858		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2859			path->slots[i]++;
2860			*level = i;
2861			WARN_ON(*level == 0);
2862			return 0;
2863		} else {
 
 
 
 
 
 
 
2864			ret = wc->process_func(root, path->nodes[*level], wc,
2865				 btrfs_header_generation(path->nodes[*level]),
2866				 *level);
2867			if (ret)
2868				return ret;
2869
2870			if (wc->free) {
2871				struct extent_buffer *next;
2872
2873				next = path->nodes[*level];
2874
2875				if (trans) {
2876					btrfs_tree_lock(next);
2877					btrfs_clean_tree_block(next);
 
2878					btrfs_wait_tree_block_writeback(next);
2879					btrfs_tree_unlock(next);
2880					ret = btrfs_pin_reserved_extent(trans,
2881						     path->nodes[*level]->start,
2882						     path->nodes[*level]->len);
2883					if (ret)
2884						return ret;
2885				} else {
2886					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2887						clear_extent_buffer_dirty(next);
2888
2889					unaccount_log_buffer(fs_info,
2890						path->nodes[*level]->start);
2891				}
 
 
 
 
2892			}
2893			free_extent_buffer(path->nodes[*level]);
2894			path->nodes[*level] = NULL;
2895			*level = i + 1;
2896		}
2897	}
2898	return 1;
2899}
2900
2901/*
2902 * drop the reference count on the tree rooted at 'snap'.  This traverses
2903 * the tree freeing any blocks that have a ref count of zero after being
2904 * decremented.
2905 */
2906static int walk_log_tree(struct btrfs_trans_handle *trans,
2907			 struct btrfs_root *log, struct walk_control *wc)
2908{
2909	struct btrfs_fs_info *fs_info = log->fs_info;
2910	int ret = 0;
2911	int wret;
2912	int level;
2913	struct btrfs_path *path;
2914	int orig_level;
2915
2916	path = btrfs_alloc_path();
2917	if (!path)
2918		return -ENOMEM;
2919
2920	level = btrfs_header_level(log->node);
2921	orig_level = level;
2922	path->nodes[level] = log->node;
2923	atomic_inc(&log->node->refs);
2924	path->slots[level] = 0;
2925
2926	while (1) {
2927		wret = walk_down_log_tree(trans, log, path, &level, wc);
2928		if (wret > 0)
2929			break;
2930		if (wret < 0) {
2931			ret = wret;
2932			goto out;
2933		}
2934
2935		wret = walk_up_log_tree(trans, log, path, &level, wc);
2936		if (wret > 0)
2937			break;
2938		if (wret < 0) {
2939			ret = wret;
2940			goto out;
2941		}
2942	}
2943
2944	/* was the root node processed? if not, catch it here */
2945	if (path->nodes[orig_level]) {
2946		ret = wc->process_func(log, path->nodes[orig_level], wc,
2947			 btrfs_header_generation(path->nodes[orig_level]),
2948			 orig_level);
2949		if (ret)
2950			goto out;
2951		if (wc->free) {
2952			struct extent_buffer *next;
2953
2954			next = path->nodes[orig_level];
2955
2956			if (trans) {
2957				btrfs_tree_lock(next);
2958				btrfs_clean_tree_block(next);
 
2959				btrfs_wait_tree_block_writeback(next);
2960				btrfs_tree_unlock(next);
2961				ret = btrfs_pin_reserved_extent(trans,
2962						next->start, next->len);
2963				if (ret)
2964					goto out;
2965			} else {
2966				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2967					clear_extent_buffer_dirty(next);
2968				unaccount_log_buffer(fs_info, next->start);
2969			}
 
 
 
 
 
 
 
2970		}
2971	}
2972
2973out:
2974	btrfs_free_path(path);
2975	return ret;
2976}
2977
2978/*
2979 * helper function to update the item for a given subvolumes log root
2980 * in the tree of log roots
2981 */
2982static int update_log_root(struct btrfs_trans_handle *trans,
2983			   struct btrfs_root *log,
2984			   struct btrfs_root_item *root_item)
2985{
2986	struct btrfs_fs_info *fs_info = log->fs_info;
2987	int ret;
2988
2989	if (log->log_transid == 1) {
2990		/* insert root item on the first sync */
2991		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2992				&log->root_key, root_item);
2993	} else {
2994		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2995				&log->root_key, root_item);
2996	}
2997	return ret;
2998}
2999
3000static void wait_log_commit(struct btrfs_root *root, int transid)
3001{
3002	DEFINE_WAIT(wait);
3003	int index = transid % 2;
3004
3005	/*
3006	 * we only allow two pending log transactions at a time,
3007	 * so we know that if ours is more than 2 older than the
3008	 * current transaction, we're done
3009	 */
3010	for (;;) {
3011		prepare_to_wait(&root->log_commit_wait[index],
3012				&wait, TASK_UNINTERRUPTIBLE);
 
3013
3014		if (!(root->log_transid_committed < transid &&
3015		      atomic_read(&root->log_commit[index])))
3016			break;
3017
3018		mutex_unlock(&root->log_mutex);
3019		schedule();
3020		mutex_lock(&root->log_mutex);
3021	}
3022	finish_wait(&root->log_commit_wait[index], &wait);
3023}
3024
3025static void wait_for_writer(struct btrfs_root *root)
3026{
3027	DEFINE_WAIT(wait);
3028
3029	for (;;) {
3030		prepare_to_wait(&root->log_writer_wait, &wait,
3031				TASK_UNINTERRUPTIBLE);
3032		if (!atomic_read(&root->log_writers))
3033			break;
3034
3035		mutex_unlock(&root->log_mutex);
3036		schedule();
 
 
3037		mutex_lock(&root->log_mutex);
3038	}
3039	finish_wait(&root->log_writer_wait, &wait);
3040}
3041
3042static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3043					struct btrfs_log_ctx *ctx)
3044{
3045	if (!ctx)
3046		return;
3047
3048	mutex_lock(&root->log_mutex);
3049	list_del_init(&ctx->list);
3050	mutex_unlock(&root->log_mutex);
3051}
3052
3053/* 
3054 * Invoked in log mutex context, or be sure there is no other task which
3055 * can access the list.
3056 */
3057static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3058					     int index, int error)
3059{
3060	struct btrfs_log_ctx *ctx;
3061	struct btrfs_log_ctx *safe;
3062
3063	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3064		list_del_init(&ctx->list);
3065		ctx->log_ret = error;
3066	}
3067
3068	INIT_LIST_HEAD(&root->log_ctxs[index]);
3069}
3070
3071/*
3072 * btrfs_sync_log does sends a given tree log down to the disk and
3073 * updates the super blocks to record it.  When this call is done,
3074 * you know that any inodes previously logged are safely on disk only
3075 * if it returns 0.
3076 *
3077 * Any other return value means you need to call btrfs_commit_transaction.
3078 * Some of the edge cases for fsyncing directories that have had unlinks
3079 * or renames done in the past mean that sometimes the only safe
3080 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3081 * that has happened.
3082 */
3083int btrfs_sync_log(struct btrfs_trans_handle *trans,
3084		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3085{
3086	int index1;
3087	int index2;
3088	int mark;
3089	int ret;
3090	struct btrfs_fs_info *fs_info = root->fs_info;
3091	struct btrfs_root *log = root->log_root;
3092	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3093	struct btrfs_root_item new_root_item;
3094	int log_transid = 0;
3095	struct btrfs_log_ctx root_log_ctx;
3096	struct blk_plug plug;
3097	u64 log_root_start;
3098	u64 log_root_level;
3099
3100	mutex_lock(&root->log_mutex);
3101	log_transid = ctx->log_transid;
3102	if (root->log_transid_committed >= log_transid) {
3103		mutex_unlock(&root->log_mutex);
3104		return ctx->log_ret;
3105	}
3106
3107	index1 = log_transid % 2;
3108	if (atomic_read(&root->log_commit[index1])) {
3109		wait_log_commit(root, log_transid);
3110		mutex_unlock(&root->log_mutex);
3111		return ctx->log_ret;
3112	}
3113	ASSERT(log_transid == root->log_transid);
3114	atomic_set(&root->log_commit[index1], 1);
3115
3116	/* wait for previous tree log sync to complete */
3117	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3118		wait_log_commit(root, log_transid - 1);
3119
3120	while (1) {
3121		int batch = atomic_read(&root->log_batch);
3122		/* when we're on an ssd, just kick the log commit out */
3123		if (!btrfs_test_opt(fs_info, SSD) &&
3124		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3125			mutex_unlock(&root->log_mutex);
3126			schedule_timeout_uninterruptible(1);
3127			mutex_lock(&root->log_mutex);
3128		}
3129		wait_for_writer(root);
3130		if (batch == atomic_read(&root->log_batch))
3131			break;
3132	}
3133
3134	/* bail out if we need to do a full commit */
3135	if (btrfs_need_log_full_commit(trans)) {
3136		ret = -EAGAIN;
 
3137		mutex_unlock(&root->log_mutex);
3138		goto out;
3139	}
3140
3141	if (log_transid % 2 == 0)
3142		mark = EXTENT_DIRTY;
3143	else
3144		mark = EXTENT_NEW;
3145
3146	/* we start IO on  all the marked extents here, but we don't actually
3147	 * wait for them until later.
3148	 */
3149	blk_start_plug(&plug);
3150	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3151	/*
3152	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3153	 *  commit, writes a dirty extent in this tree-log commit. This
3154	 *  concurrent write will create a hole writing out the extents,
3155	 *  and we cannot proceed on a zoned filesystem, requiring
3156	 *  sequential writing. While we can bail out to a full commit
3157	 *  here, but we can continue hoping the concurrent writing fills
3158	 *  the hole.
3159	 */
3160	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3161		ret = 0;
3162	if (ret) {
3163		blk_finish_plug(&plug);
3164		btrfs_abort_transaction(trans, ret);
3165		btrfs_set_log_full_commit(trans);
 
3166		mutex_unlock(&root->log_mutex);
3167		goto out;
3168	}
3169
3170	/*
3171	 * We _must_ update under the root->log_mutex in order to make sure we
3172	 * have a consistent view of the log root we are trying to commit at
3173	 * this moment.
3174	 *
3175	 * We _must_ copy this into a local copy, because we are not holding the
3176	 * log_root_tree->log_mutex yet.  This is important because when we
3177	 * commit the log_root_tree we must have a consistent view of the
3178	 * log_root_tree when we update the super block to point at the
3179	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3180	 * with the commit and possibly point at the new block which we may not
3181	 * have written out.
3182	 */
3183	btrfs_set_root_node(&log->root_item, log->node);
3184	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3185
3186	root->log_transid++;
3187	log->log_transid = root->log_transid;
3188	root->log_start_pid = 0;
3189	/*
3190	 * IO has been started, blocks of the log tree have WRITTEN flag set
3191	 * in their headers. new modifications of the log will be written to
3192	 * new positions. so it's safe to allow log writers to go in.
3193	 */
3194	mutex_unlock(&root->log_mutex);
3195
3196	if (btrfs_is_zoned(fs_info)) {
3197		mutex_lock(&fs_info->tree_root->log_mutex);
3198		if (!log_root_tree->node) {
3199			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3200			if (ret) {
3201				mutex_unlock(&fs_info->tree_root->log_mutex);
3202				goto out;
3203			}
3204		}
3205		mutex_unlock(&fs_info->tree_root->log_mutex);
3206	}
3207
3208	btrfs_init_log_ctx(&root_log_ctx, NULL);
3209
3210	mutex_lock(&log_root_tree->log_mutex);
 
 
3211
3212	index2 = log_root_tree->log_transid % 2;
3213	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3214	root_log_ctx.log_transid = log_root_tree->log_transid;
3215
3216	/*
3217	 * Now we are safe to update the log_root_tree because we're under the
3218	 * log_mutex, and we're a current writer so we're holding the commit
3219	 * open until we drop the log_mutex.
3220	 */
3221	ret = update_log_root(trans, log, &new_root_item);
 
 
 
 
 
 
 
3222	if (ret) {
3223		if (!list_empty(&root_log_ctx.list))
3224			list_del_init(&root_log_ctx.list);
3225
3226		blk_finish_plug(&plug);
3227		btrfs_set_log_full_commit(trans);
3228
3229		if (ret != -ENOSPC) {
3230			btrfs_abort_transaction(trans, ret);
3231			mutex_unlock(&log_root_tree->log_mutex);
3232			goto out;
3233		}
3234		btrfs_wait_tree_log_extents(log, mark);
 
3235		mutex_unlock(&log_root_tree->log_mutex);
3236		ret = -EAGAIN;
3237		goto out;
3238	}
3239
3240	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3241		blk_finish_plug(&plug);
3242		list_del_init(&root_log_ctx.list);
3243		mutex_unlock(&log_root_tree->log_mutex);
3244		ret = root_log_ctx.log_ret;
3245		goto out;
3246	}
3247
3248	index2 = root_log_ctx.log_transid % 2;
3249	if (atomic_read(&log_root_tree->log_commit[index2])) {
3250		blk_finish_plug(&plug);
3251		ret = btrfs_wait_tree_log_extents(log, mark);
 
3252		wait_log_commit(log_root_tree,
3253				root_log_ctx.log_transid);
3254		mutex_unlock(&log_root_tree->log_mutex);
3255		if (!ret)
3256			ret = root_log_ctx.log_ret;
3257		goto out;
3258	}
3259	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3260	atomic_set(&log_root_tree->log_commit[index2], 1);
3261
3262	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3263		wait_log_commit(log_root_tree,
3264				root_log_ctx.log_transid - 1);
3265	}
3266
 
 
3267	/*
3268	 * now that we've moved on to the tree of log tree roots,
3269	 * check the full commit flag again
3270	 */
3271	if (btrfs_need_log_full_commit(trans)) {
3272		blk_finish_plug(&plug);
3273		btrfs_wait_tree_log_extents(log, mark);
 
3274		mutex_unlock(&log_root_tree->log_mutex);
3275		ret = -EAGAIN;
3276		goto out_wake_log_root;
3277	}
3278
3279	ret = btrfs_write_marked_extents(fs_info,
3280					 &log_root_tree->dirty_log_pages,
3281					 EXTENT_DIRTY | EXTENT_NEW);
3282	blk_finish_plug(&plug);
3283	/*
3284	 * As described above, -EAGAIN indicates a hole in the extents. We
3285	 * cannot wait for these write outs since the waiting cause a
3286	 * deadlock. Bail out to the full commit instead.
3287	 */
3288	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3289		btrfs_set_log_full_commit(trans);
3290		btrfs_wait_tree_log_extents(log, mark);
3291		mutex_unlock(&log_root_tree->log_mutex);
3292		goto out_wake_log_root;
3293	} else if (ret) {
3294		btrfs_set_log_full_commit(trans);
3295		btrfs_abort_transaction(trans, ret);
 
3296		mutex_unlock(&log_root_tree->log_mutex);
3297		goto out_wake_log_root;
3298	}
3299	ret = btrfs_wait_tree_log_extents(log, mark);
3300	if (!ret)
3301		ret = btrfs_wait_tree_log_extents(log_root_tree,
3302						  EXTENT_NEW | EXTENT_DIRTY);
3303	if (ret) {
3304		btrfs_set_log_full_commit(trans);
 
3305		mutex_unlock(&log_root_tree->log_mutex);
3306		goto out_wake_log_root;
3307	}
 
 
 
 
 
 
3308
3309	log_root_start = log_root_tree->node->start;
3310	log_root_level = btrfs_header_level(log_root_tree->node);
3311	log_root_tree->log_transid++;
3312	mutex_unlock(&log_root_tree->log_mutex);
3313
3314	/*
3315	 * Here we are guaranteed that nobody is going to write the superblock
3316	 * for the current transaction before us and that neither we do write
3317	 * our superblock before the previous transaction finishes its commit
3318	 * and writes its superblock, because:
3319	 *
3320	 * 1) We are holding a handle on the current transaction, so no body
3321	 *    can commit it until we release the handle;
3322	 *
3323	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3324	 *    if the previous transaction is still committing, and hasn't yet
3325	 *    written its superblock, we wait for it to do it, because a
3326	 *    transaction commit acquires the tree_log_mutex when the commit
3327	 *    begins and releases it only after writing its superblock.
3328	 */
3329	mutex_lock(&fs_info->tree_log_mutex);
3330
3331	/*
3332	 * The previous transaction writeout phase could have failed, and thus
3333	 * marked the fs in an error state.  We must not commit here, as we
3334	 * could have updated our generation in the super_for_commit and
3335	 * writing the super here would result in transid mismatches.  If there
3336	 * is an error here just bail.
3337	 */
3338	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3339		ret = -EIO;
3340		btrfs_set_log_full_commit(trans);
3341		btrfs_abort_transaction(trans, ret);
3342		mutex_unlock(&fs_info->tree_log_mutex);
3343		goto out_wake_log_root;
3344	}
3345
3346	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3347	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3348	ret = write_all_supers(fs_info, 1);
3349	mutex_unlock(&fs_info->tree_log_mutex);
3350	if (ret) {
3351		btrfs_set_log_full_commit(trans);
3352		btrfs_abort_transaction(trans, ret);
3353		goto out_wake_log_root;
3354	}
3355
3356	mutex_lock(&root->log_mutex);
3357	if (root->last_log_commit < log_transid)
3358		root->last_log_commit = log_transid;
3359	mutex_unlock(&root->log_mutex);
3360
3361out_wake_log_root:
3362	mutex_lock(&log_root_tree->log_mutex);
3363	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3364
3365	log_root_tree->log_transid_committed++;
3366	atomic_set(&log_root_tree->log_commit[index2], 0);
3367	mutex_unlock(&log_root_tree->log_mutex);
3368
3369	/*
3370	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3371	 * all the updates above are seen by the woken threads. It might not be
3372	 * necessary, but proving that seems to be hard.
3373	 */
3374	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
 
3375out:
3376	mutex_lock(&root->log_mutex);
3377	btrfs_remove_all_log_ctxs(root, index1, ret);
3378	root->log_transid_committed++;
3379	atomic_set(&root->log_commit[index1], 0);
3380	mutex_unlock(&root->log_mutex);
3381
3382	/*
3383	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3384	 * all the updates above are seen by the woken threads. It might not be
3385	 * necessary, but proving that seems to be hard.
3386	 */
3387	cond_wake_up(&root->log_commit_wait[index1]);
 
3388	return ret;
3389}
3390
3391static void free_log_tree(struct btrfs_trans_handle *trans,
3392			  struct btrfs_root *log)
3393{
3394	int ret;
 
 
3395	struct walk_control wc = {
3396		.free = 1,
3397		.process_func = process_one_buffer
3398	};
3399
3400	if (log->node) {
3401		ret = walk_log_tree(trans, log, &wc);
3402		if (ret) {
3403			if (trans)
3404				btrfs_abort_transaction(trans, ret);
3405			else
3406				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3407		}
 
 
 
 
 
 
3408	}
3409
3410	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3411			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3412	extent_io_tree_release(&log->log_csum_range);
 
 
 
 
3413
3414	if (trans && log->node)
3415		btrfs_redirty_list_add(trans->transaction, log->node);
3416	btrfs_put_root(log);
3417}
3418
3419/*
3420 * free all the extents used by the tree log.  This should be called
3421 * at commit time of the full transaction
3422 */
3423int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3424{
3425	if (root->log_root) {
3426		free_log_tree(trans, root->log_root);
3427		root->log_root = NULL;
3428		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3429	}
3430	return 0;
3431}
3432
3433int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3434			     struct btrfs_fs_info *fs_info)
3435{
3436	if (fs_info->log_root_tree) {
3437		free_log_tree(trans, fs_info->log_root_tree);
3438		fs_info->log_root_tree = NULL;
3439		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3440	}
3441	return 0;
3442}
3443
3444/*
3445 * Check if an inode was logged in the current transaction. We can't always rely
3446 * on an inode's logged_trans value, because it's an in-memory only field and
3447 * therefore not persisted. This means that its value is lost if the inode gets
3448 * evicted and loaded again from disk (in which case it has a value of 0, and
3449 * certainly it is smaller then any possible transaction ID), when that happens
3450 * the full_sync flag is set in the inode's runtime flags, so on that case we
3451 * assume eviction happened and ignore the logged_trans value, assuming the
3452 * worst case, that the inode was logged before in the current transaction.
3453 */
3454static bool inode_logged(struct btrfs_trans_handle *trans,
3455			 struct btrfs_inode *inode)
3456{
3457	if (inode->logged_trans == trans->transid)
3458		return true;
3459
3460	if (inode->last_trans == trans->transid &&
3461	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3462	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3463		return true;
3464
3465	return false;
3466}
3467
3468/*
3469 * If both a file and directory are logged, and unlinks or renames are
3470 * mixed in, we have a few interesting corners:
3471 *
3472 * create file X in dir Y
3473 * link file X to X.link in dir Y
3474 * fsync file X
3475 * unlink file X but leave X.link
3476 * fsync dir Y
3477 *
3478 * After a crash we would expect only X.link to exist.  But file X
3479 * didn't get fsync'd again so the log has back refs for X and X.link.
3480 *
3481 * We solve this by removing directory entries and inode backrefs from the
3482 * log when a file that was logged in the current transaction is
3483 * unlinked.  Any later fsync will include the updated log entries, and
3484 * we'll be able to reconstruct the proper directory items from backrefs.
3485 *
3486 * This optimizations allows us to avoid relogging the entire inode
3487 * or the entire directory.
3488 */
3489int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3490				 struct btrfs_root *root,
3491				 const char *name, int name_len,
3492				 struct btrfs_inode *dir, u64 index)
3493{
3494	struct btrfs_root *log;
3495	struct btrfs_dir_item *di;
3496	struct btrfs_path *path;
3497	int ret;
3498	int err = 0;
 
3499	u64 dir_ino = btrfs_ino(dir);
3500
3501	if (!inode_logged(trans, dir))
3502		return 0;
3503
3504	ret = join_running_log_trans(root);
3505	if (ret)
3506		return 0;
3507
3508	mutex_lock(&dir->log_mutex);
3509
3510	log = root->log_root;
3511	path = btrfs_alloc_path();
3512	if (!path) {
3513		err = -ENOMEM;
3514		goto out_unlock;
3515	}
3516
3517	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3518				   name, name_len, -1);
3519	if (IS_ERR(di)) {
3520		err = PTR_ERR(di);
3521		goto fail;
3522	}
3523	if (di) {
3524		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 
3525		if (ret) {
3526			err = ret;
3527			goto fail;
3528		}
3529	}
3530	btrfs_release_path(path);
3531	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3532					 index, name, name_len, -1);
3533	if (IS_ERR(di)) {
3534		err = PTR_ERR(di);
3535		goto fail;
3536	}
3537	if (di) {
3538		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 
3539		if (ret) {
3540			err = ret;
3541			goto fail;
3542		}
3543	}
3544
3545	/*
3546	 * We do not need to update the size field of the directory's inode item
3547	 * because on log replay we update the field to reflect all existing
3548	 * entries in the directory (see overwrite_item()).
3549	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3550fail:
3551	btrfs_free_path(path);
3552out_unlock:
3553	mutex_unlock(&dir->log_mutex);
3554	if (err == -ENOSPC) {
3555		btrfs_set_log_full_commit(trans);
3556		err = 0;
3557	} else if (err < 0 && err != -ENOENT) {
3558		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3559		btrfs_abort_transaction(trans, err);
3560	}
3561
3562	btrfs_end_log_trans(root);
3563
3564	return err;
3565}
3566
3567/* see comments for btrfs_del_dir_entries_in_log */
3568int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3569			       struct btrfs_root *root,
3570			       const char *name, int name_len,
3571			       struct btrfs_inode *inode, u64 dirid)
3572{
 
3573	struct btrfs_root *log;
3574	u64 index;
3575	int ret;
3576
3577	if (!inode_logged(trans, inode))
3578		return 0;
3579
3580	ret = join_running_log_trans(root);
3581	if (ret)
3582		return 0;
3583	log = root->log_root;
3584	mutex_lock(&inode->log_mutex);
3585
3586	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3587				  dirid, &index);
3588	mutex_unlock(&inode->log_mutex);
3589	if (ret == -ENOSPC) {
3590		btrfs_set_log_full_commit(trans);
3591		ret = 0;
3592	} else if (ret < 0 && ret != -ENOENT)
3593		btrfs_abort_transaction(trans, ret);
3594	btrfs_end_log_trans(root);
3595
3596	return ret;
3597}
3598
3599/*
3600 * creates a range item in the log for 'dirid'.  first_offset and
3601 * last_offset tell us which parts of the key space the log should
3602 * be considered authoritative for.
3603 */
3604static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3605				       struct btrfs_root *log,
3606				       struct btrfs_path *path,
3607				       int key_type, u64 dirid,
3608				       u64 first_offset, u64 last_offset)
3609{
3610	int ret;
3611	struct btrfs_key key;
3612	struct btrfs_dir_log_item *item;
3613
3614	key.objectid = dirid;
3615	key.offset = first_offset;
3616	if (key_type == BTRFS_DIR_ITEM_KEY)
3617		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3618	else
3619		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3620	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3621	if (ret)
3622		return ret;
3623
3624	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3625			      struct btrfs_dir_log_item);
3626	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3627	btrfs_mark_buffer_dirty(path->nodes[0]);
3628	btrfs_release_path(path);
3629	return 0;
3630}
3631
3632/*
3633 * log all the items included in the current transaction for a given
3634 * directory.  This also creates the range items in the log tree required
3635 * to replay anything deleted before the fsync
3636 */
3637static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3638			  struct btrfs_root *root, struct btrfs_inode *inode,
3639			  struct btrfs_path *path,
3640			  struct btrfs_path *dst_path, int key_type,
3641			  struct btrfs_log_ctx *ctx,
3642			  u64 min_offset, u64 *last_offset_ret)
3643{
3644	struct btrfs_key min_key;
3645	struct btrfs_root *log = root->log_root;
3646	struct extent_buffer *src;
3647	int err = 0;
3648	int ret;
3649	int i;
3650	int nritems;
3651	u64 first_offset = min_offset;
3652	u64 last_offset = (u64)-1;
3653	u64 ino = btrfs_ino(inode);
3654
3655	log = root->log_root;
3656
3657	min_key.objectid = ino;
3658	min_key.type = key_type;
3659	min_key.offset = min_offset;
3660
3661	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3662
3663	/*
3664	 * we didn't find anything from this transaction, see if there
3665	 * is anything at all
3666	 */
3667	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3668		min_key.objectid = ino;
3669		min_key.type = key_type;
3670		min_key.offset = (u64)-1;
3671		btrfs_release_path(path);
3672		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3673		if (ret < 0) {
3674			btrfs_release_path(path);
3675			return ret;
3676		}
3677		ret = btrfs_previous_item(root, path, ino, key_type);
3678
3679		/* if ret == 0 there are items for this type,
3680		 * create a range to tell us the last key of this type.
3681		 * otherwise, there are no items in this directory after
3682		 * *min_offset, and we create a range to indicate that.
3683		 */
3684		if (ret == 0) {
3685			struct btrfs_key tmp;
3686			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3687					      path->slots[0]);
3688			if (key_type == tmp.type)
3689				first_offset = max(min_offset, tmp.offset) + 1;
3690		}
3691		goto done;
3692	}
3693
3694	/* go backward to find any previous key */
3695	ret = btrfs_previous_item(root, path, ino, key_type);
3696	if (ret == 0) {
3697		struct btrfs_key tmp;
3698		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3699		if (key_type == tmp.type) {
3700			first_offset = tmp.offset;
3701			ret = overwrite_item(trans, log, dst_path,
3702					     path->nodes[0], path->slots[0],
3703					     &tmp);
3704			if (ret) {
3705				err = ret;
3706				goto done;
3707			}
3708		}
3709	}
3710	btrfs_release_path(path);
3711
3712	/*
3713	 * Find the first key from this transaction again.  See the note for
3714	 * log_new_dir_dentries, if we're logging a directory recursively we
3715	 * won't be holding its i_mutex, which means we can modify the directory
3716	 * while we're logging it.  If we remove an entry between our first
3717	 * search and this search we'll not find the key again and can just
3718	 * bail.
3719	 */
3720search:
3721	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3722	if (ret != 0)
3723		goto done;
3724
3725	/*
3726	 * we have a block from this transaction, log every item in it
3727	 * from our directory
3728	 */
3729	while (1) {
3730		struct btrfs_key tmp;
3731		src = path->nodes[0];
3732		nritems = btrfs_header_nritems(src);
3733		for (i = path->slots[0]; i < nritems; i++) {
3734			struct btrfs_dir_item *di;
3735
3736			btrfs_item_key_to_cpu(src, &min_key, i);
3737
3738			if (min_key.objectid != ino || min_key.type != key_type)
3739				goto done;
3740
3741			if (need_resched()) {
3742				btrfs_release_path(path);
3743				cond_resched();
3744				goto search;
3745			}
3746
3747			ret = overwrite_item(trans, log, dst_path, src, i,
3748					     &min_key);
3749			if (ret) {
3750				err = ret;
3751				goto done;
3752			}
3753
3754			/*
3755			 * We must make sure that when we log a directory entry,
3756			 * the corresponding inode, after log replay, has a
3757			 * matching link count. For example:
3758			 *
3759			 * touch foo
3760			 * mkdir mydir
3761			 * sync
3762			 * ln foo mydir/bar
3763			 * xfs_io -c "fsync" mydir
3764			 * <crash>
3765			 * <mount fs and log replay>
3766			 *
3767			 * Would result in a fsync log that when replayed, our
3768			 * file inode would have a link count of 1, but we get
3769			 * two directory entries pointing to the same inode.
3770			 * After removing one of the names, it would not be
3771			 * possible to remove the other name, which resulted
3772			 * always in stale file handle errors, and would not
3773			 * be possible to rmdir the parent directory, since
3774			 * its i_size could never decrement to the value
3775			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3776			 */
3777			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3778			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3779			if (ctx &&
3780			    (btrfs_dir_transid(src, di) == trans->transid ||
3781			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3782			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3783				ctx->log_new_dentries = true;
3784		}
3785		path->slots[0] = nritems;
3786
3787		/*
3788		 * look ahead to the next item and see if it is also
3789		 * from this directory and from this transaction
3790		 */
3791		ret = btrfs_next_leaf(root, path);
3792		if (ret) {
3793			if (ret == 1)
3794				last_offset = (u64)-1;
3795			else
3796				err = ret;
3797			goto done;
3798		}
3799		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3800		if (tmp.objectid != ino || tmp.type != key_type) {
3801			last_offset = (u64)-1;
3802			goto done;
3803		}
3804		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3805			ret = overwrite_item(trans, log, dst_path,
3806					     path->nodes[0], path->slots[0],
3807					     &tmp);
3808			if (ret)
3809				err = ret;
3810			else
3811				last_offset = tmp.offset;
3812			goto done;
3813		}
3814	}
3815done:
3816	btrfs_release_path(path);
3817	btrfs_release_path(dst_path);
3818
3819	if (err == 0) {
3820		*last_offset_ret = last_offset;
3821		/*
3822		 * insert the log range keys to indicate where the log
3823		 * is valid
3824		 */
3825		ret = insert_dir_log_key(trans, log, path, key_type,
3826					 ino, first_offset, last_offset);
3827		if (ret)
3828			err = ret;
3829	}
3830	return err;
3831}
3832
3833/*
3834 * logging directories is very similar to logging inodes, We find all the items
3835 * from the current transaction and write them to the log.
3836 *
3837 * The recovery code scans the directory in the subvolume, and if it finds a
3838 * key in the range logged that is not present in the log tree, then it means
3839 * that dir entry was unlinked during the transaction.
3840 *
3841 * In order for that scan to work, we must include one key smaller than
3842 * the smallest logged by this transaction and one key larger than the largest
3843 * key logged by this transaction.
3844 */
3845static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3846			  struct btrfs_root *root, struct btrfs_inode *inode,
3847			  struct btrfs_path *path,
3848			  struct btrfs_path *dst_path,
3849			  struct btrfs_log_ctx *ctx)
3850{
3851	u64 min_key;
3852	u64 max_key;
3853	int ret;
3854	int key_type = BTRFS_DIR_ITEM_KEY;
3855
3856again:
3857	min_key = 0;
3858	max_key = 0;
3859	while (1) {
3860		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3861				ctx, min_key, &max_key);
 
3862		if (ret)
3863			return ret;
3864		if (max_key == (u64)-1)
3865			break;
3866		min_key = max_key + 1;
3867	}
3868
3869	if (key_type == BTRFS_DIR_ITEM_KEY) {
3870		key_type = BTRFS_DIR_INDEX_KEY;
3871		goto again;
3872	}
3873	return 0;
3874}
3875
3876/*
3877 * a helper function to drop items from the log before we relog an
3878 * inode.  max_key_type indicates the highest item type to remove.
3879 * This cannot be run for file data extents because it does not
3880 * free the extents they point to.
3881 */
3882static int drop_objectid_items(struct btrfs_trans_handle *trans,
3883				  struct btrfs_root *log,
3884				  struct btrfs_path *path,
3885				  u64 objectid, int max_key_type)
3886{
3887	int ret;
3888	struct btrfs_key key;
3889	struct btrfs_key found_key;
3890	int start_slot;
3891
3892	key.objectid = objectid;
3893	key.type = max_key_type;
3894	key.offset = (u64)-1;
3895
3896	while (1) {
3897		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3898		BUG_ON(ret == 0); /* Logic error */
3899		if (ret < 0)
3900			break;
3901
3902		if (path->slots[0] == 0)
3903			break;
3904
3905		path->slots[0]--;
3906		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3907				      path->slots[0]);
3908
3909		if (found_key.objectid != objectid)
3910			break;
3911
3912		found_key.offset = 0;
3913		found_key.type = 0;
3914		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3915		if (ret < 0)
3916			break;
3917
3918		ret = btrfs_del_items(trans, log, path, start_slot,
3919				      path->slots[0] - start_slot + 1);
3920		/*
3921		 * If start slot isn't 0 then we don't need to re-search, we've
3922		 * found the last guy with the objectid in this tree.
3923		 */
3924		if (ret || start_slot != 0)
3925			break;
3926		btrfs_release_path(path);
3927	}
3928	btrfs_release_path(path);
3929	if (ret > 0)
3930		ret = 0;
3931	return ret;
3932}
3933
3934static void fill_inode_item(struct btrfs_trans_handle *trans,
3935			    struct extent_buffer *leaf,
3936			    struct btrfs_inode_item *item,
3937			    struct inode *inode, int log_inode_only,
3938			    u64 logged_isize)
3939{
3940	struct btrfs_map_token token;
3941
3942	btrfs_init_map_token(&token, leaf);
3943
3944	if (log_inode_only) {
3945		/* set the generation to zero so the recover code
3946		 * can tell the difference between an logging
3947		 * just to say 'this inode exists' and a logging
3948		 * to say 'update this inode with these values'
3949		 */
3950		btrfs_set_token_inode_generation(&token, item, 0);
3951		btrfs_set_token_inode_size(&token, item, logged_isize);
3952	} else {
3953		btrfs_set_token_inode_generation(&token, item,
3954						 BTRFS_I(inode)->generation);
3955		btrfs_set_token_inode_size(&token, item, inode->i_size);
3956	}
3957
3958	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3959	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3960	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3961	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3962
3963	btrfs_set_token_timespec_sec(&token, &item->atime,
3964				     inode->i_atime.tv_sec);
3965	btrfs_set_token_timespec_nsec(&token, &item->atime,
3966				      inode->i_atime.tv_nsec);
3967
3968	btrfs_set_token_timespec_sec(&token, &item->mtime,
3969				     inode->i_mtime.tv_sec);
3970	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3971				      inode->i_mtime.tv_nsec);
3972
3973	btrfs_set_token_timespec_sec(&token, &item->ctime,
3974				     inode->i_ctime.tv_sec);
3975	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3976				      inode->i_ctime.tv_nsec);
3977
3978	/*
3979	 * We do not need to set the nbytes field, in fact during a fast fsync
3980	 * its value may not even be correct, since a fast fsync does not wait
3981	 * for ordered extent completion, which is where we update nbytes, it
3982	 * only waits for writeback to complete. During log replay as we find
3983	 * file extent items and replay them, we adjust the nbytes field of the
3984	 * inode item in subvolume tree as needed (see overwrite_item()).
3985	 */
3986
3987	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3988	btrfs_set_token_inode_transid(&token, item, trans->transid);
3989	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3990	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3991	btrfs_set_token_inode_block_group(&token, item, 0);
3992}
3993
3994static int log_inode_item(struct btrfs_trans_handle *trans,
3995			  struct btrfs_root *log, struct btrfs_path *path,
3996			  struct btrfs_inode *inode)
3997{
3998	struct btrfs_inode_item *inode_item;
3999	int ret;
4000
4001	ret = btrfs_insert_empty_item(trans, log, path,
4002				      &inode->location, sizeof(*inode_item));
 
4003	if (ret && ret != -EEXIST)
4004		return ret;
4005	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4006				    struct btrfs_inode_item);
4007	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4008			0, 0);
4009	btrfs_release_path(path);
4010	return 0;
4011}
4012
4013static int log_csums(struct btrfs_trans_handle *trans,
4014		     struct btrfs_inode *inode,
4015		     struct btrfs_root *log_root,
4016		     struct btrfs_ordered_sum *sums)
4017{
4018	const u64 lock_end = sums->bytenr + sums->len - 1;
4019	struct extent_state *cached_state = NULL;
4020	int ret;
4021
4022	/*
4023	 * If this inode was not used for reflink operations in the current
4024	 * transaction with new extents, then do the fast path, no need to
4025	 * worry about logging checksum items with overlapping ranges.
4026	 */
4027	if (inode->last_reflink_trans < trans->transid)
4028		return btrfs_csum_file_blocks(trans, log_root, sums);
4029
4030	/*
4031	 * Serialize logging for checksums. This is to avoid racing with the
4032	 * same checksum being logged by another task that is logging another
4033	 * file which happens to refer to the same extent as well. Such races
4034	 * can leave checksum items in the log with overlapping ranges.
4035	 */
4036	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4037			       lock_end, &cached_state);
4038	if (ret)
4039		return ret;
4040	/*
4041	 * Due to extent cloning, we might have logged a csum item that covers a
4042	 * subrange of a cloned extent, and later we can end up logging a csum
4043	 * item for a larger subrange of the same extent or the entire range.
4044	 * This would leave csum items in the log tree that cover the same range
4045	 * and break the searches for checksums in the log tree, resulting in
4046	 * some checksums missing in the fs/subvolume tree. So just delete (or
4047	 * trim and adjust) any existing csum items in the log for this range.
4048	 */
4049	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4050	if (!ret)
4051		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4052
4053	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4054			     &cached_state);
4055
4056	return ret;
4057}
4058
4059static noinline int copy_items(struct btrfs_trans_handle *trans,
4060			       struct btrfs_inode *inode,
4061			       struct btrfs_path *dst_path,
4062			       struct btrfs_path *src_path,
4063			       int start_slot, int nr, int inode_only,
4064			       u64 logged_isize)
4065{
4066	struct btrfs_fs_info *fs_info = trans->fs_info;
4067	unsigned long src_offset;
4068	unsigned long dst_offset;
4069	struct btrfs_root *log = inode->root->log_root;
4070	struct btrfs_file_extent_item *extent;
4071	struct btrfs_inode_item *inode_item;
4072	struct extent_buffer *src = src_path->nodes[0];
 
4073	int ret;
4074	struct btrfs_key *ins_keys;
4075	u32 *ins_sizes;
4076	char *ins_data;
4077	int i;
4078	struct list_head ordered_sums;
4079	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
 
 
 
4080
4081	INIT_LIST_HEAD(&ordered_sums);
4082
4083	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4084			   nr * sizeof(u32), GFP_NOFS);
4085	if (!ins_data)
4086		return -ENOMEM;
4087
 
 
4088	ins_sizes = (u32 *)ins_data;
4089	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4090
4091	for (i = 0; i < nr; i++) {
4092		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4093		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4094	}
4095	ret = btrfs_insert_empty_items(trans, log, dst_path,
4096				       ins_keys, ins_sizes, nr);
4097	if (ret) {
4098		kfree(ins_data);
4099		return ret;
4100	}
4101
4102	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4103		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4104						   dst_path->slots[0]);
4105
4106		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4107
 
 
 
4108		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4109			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4110						    dst_path->slots[0],
4111						    struct btrfs_inode_item);
4112			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4113					&inode->vfs_inode,
4114					inode_only == LOG_INODE_EXISTS,
4115					logged_isize);
4116		} else {
4117			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4118					   src_offset, ins_sizes[i]);
4119		}
4120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4121		/* take a reference on file data extents so that truncates
4122		 * or deletes of this inode don't have to relog the inode
4123		 * again
4124		 */
4125		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4126		    !skip_csum) {
4127			int found_type;
4128			extent = btrfs_item_ptr(src, start_slot + i,
4129						struct btrfs_file_extent_item);
4130
4131			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4132				continue;
4133
4134			found_type = btrfs_file_extent_type(src, extent);
4135			if (found_type == BTRFS_FILE_EXTENT_REG) {
4136				u64 ds, dl, cs, cl;
4137				ds = btrfs_file_extent_disk_bytenr(src,
4138								extent);
4139				/* ds == 0 is a hole */
4140				if (ds == 0)
4141					continue;
4142
4143				dl = btrfs_file_extent_disk_num_bytes(src,
4144								extent);
4145				cs = btrfs_file_extent_offset(src, extent);
4146				cl = btrfs_file_extent_num_bytes(src,
4147								extent);
4148				if (btrfs_file_extent_compression(src,
4149								  extent)) {
4150					cs = 0;
4151					cl = dl;
4152				}
4153
4154				ret = btrfs_lookup_csums_range(
4155						fs_info->csum_root,
4156						ds + cs, ds + cs + cl - 1,
4157						&ordered_sums, 0);
4158				if (ret)
4159					break;
 
 
 
4160			}
4161		}
4162	}
4163
4164	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4165	btrfs_release_path(dst_path);
4166	kfree(ins_data);
4167
4168	/*
4169	 * we have to do this after the loop above to avoid changing the
4170	 * log tree while trying to change the log tree.
4171	 */
 
4172	while (!list_empty(&ordered_sums)) {
4173		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4174						   struct btrfs_ordered_sum,
4175						   list);
4176		if (!ret)
4177			ret = log_csums(trans, inode, log, sums);
4178		list_del(&sums->list);
4179		kfree(sums);
4180	}
4181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4182	return ret;
4183}
4184
4185static int extent_cmp(void *priv, const struct list_head *a,
4186		      const struct list_head *b)
4187{
4188	struct extent_map *em1, *em2;
4189
4190	em1 = list_entry(a, struct extent_map, list);
4191	em2 = list_entry(b, struct extent_map, list);
4192
4193	if (em1->start < em2->start)
4194		return -1;
4195	else if (em1->start > em2->start)
4196		return 1;
4197	return 0;
4198}
4199
4200static int log_extent_csums(struct btrfs_trans_handle *trans,
4201			    struct btrfs_inode *inode,
4202			    struct btrfs_root *log_root,
4203			    const struct extent_map *em,
4204			    struct btrfs_log_ctx *ctx)
 
4205{
 
4206	struct btrfs_ordered_extent *ordered;
 
 
 
 
4207	u64 csum_offset;
4208	u64 csum_len;
4209	u64 mod_start = em->mod_start;
4210	u64 mod_len = em->mod_len;
4211	LIST_HEAD(ordered_sums);
4212	int ret = 0;
4213
4214	if (inode->flags & BTRFS_INODE_NODATASUM ||
4215	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
 
4216	    em->block_start == EXTENT_MAP_HOLE)
4217		return 0;
4218
4219	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4220		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4221		const u64 mod_end = mod_start + mod_len;
4222		struct btrfs_ordered_sum *sums;
 
 
 
4223
4224		if (mod_len == 0)
4225			break;
4226
4227		if (ordered_end <= mod_start)
 
4228			continue;
4229		if (mod_end <= ordered->file_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4230			break;
4231
4232		/*
4233		 * We are going to copy all the csums on this ordered extent, so
4234		 * go ahead and adjust mod_start and mod_len in case this ordered
4235		 * extent has already been logged.
4236		 */
4237		if (ordered->file_offset > mod_start) {
4238			if (ordered_end >= mod_end)
 
4239				mod_len = ordered->file_offset - mod_start;
4240			/*
4241			 * If we have this case
4242			 *
4243			 * |--------- logged extent ---------|
4244			 *       |----- ordered extent ----|
4245			 *
4246			 * Just don't mess with mod_start and mod_len, we'll
4247			 * just end up logging more csums than we need and it
4248			 * will be ok.
4249			 */
4250		} else {
4251			if (ordered_end < mod_end) {
4252				mod_len = mod_end - ordered_end;
4253				mod_start = ordered_end;
 
 
 
4254			} else {
4255				mod_len = 0;
4256			}
4257		}
4258
 
 
 
4259		/*
4260		 * To keep us from looping for the above case of an ordered
4261		 * extent that falls inside of the logged extent.
4262		 */
4263		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
 
4264			continue;
4265
4266		list_for_each_entry(sums, &ordered->list, list) {
4267			ret = log_csums(trans, inode, log_root, sums);
4268			if (ret)
4269				return ret;
4270		}
4271	}
4272
4273	/* We're done, found all csums in the ordered extents. */
4274	if (mod_len == 0)
4275		return 0;
4276
4277	/* If we're compressed we have to save the entire range of csums. */
4278	if (em->compress_type) {
4279		csum_offset = 0;
4280		csum_len = max(em->block_len, em->orig_block_len);
4281	} else {
4282		csum_offset = mod_start - em->start;
4283		csum_len = mod_len;
4284	}
4285
4286	/* block start is already adjusted for the file extent offset. */
4287	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4288				       em->block_start + csum_offset,
4289				       em->block_start + csum_offset +
4290				       csum_len - 1, &ordered_sums, 0);
4291	if (ret)
4292		return ret;
4293
4294	while (!list_empty(&ordered_sums)) {
4295		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4296						   struct btrfs_ordered_sum,
4297						   list);
4298		if (!ret)
4299			ret = log_csums(trans, inode, log_root, sums);
4300		list_del(&sums->list);
4301		kfree(sums);
4302	}
4303
4304	return ret;
4305}
4306
4307static int log_one_extent(struct btrfs_trans_handle *trans,
4308			  struct btrfs_inode *inode, struct btrfs_root *root,
4309			  const struct extent_map *em,
4310			  struct btrfs_path *path,
 
4311			  struct btrfs_log_ctx *ctx)
4312{
4313	struct btrfs_drop_extents_args drop_args = { 0 };
4314	struct btrfs_root *log = root->log_root;
4315	struct btrfs_file_extent_item *fi;
4316	struct extent_buffer *leaf;
4317	struct btrfs_map_token token;
4318	struct btrfs_key key;
4319	u64 extent_offset = em->start - em->orig_start;
4320	u64 block_len;
4321	int ret;
 
 
4322
4323	ret = log_extent_csums(trans, inode, log, em, ctx);
 
4324	if (ret)
4325		return ret;
4326
4327	drop_args.path = path;
4328	drop_args.start = em->start;
4329	drop_args.end = em->start + em->len;
4330	drop_args.replace_extent = true;
4331	drop_args.extent_item_size = sizeof(*fi);
4332	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
 
 
 
 
4333	if (ret)
4334		return ret;
4335
4336	if (!drop_args.extent_inserted) {
4337		key.objectid = btrfs_ino(inode);
4338		key.type = BTRFS_EXTENT_DATA_KEY;
4339		key.offset = em->start;
4340
4341		ret = btrfs_insert_empty_item(trans, log, path, &key,
4342					      sizeof(*fi));
4343		if (ret)
4344			return ret;
4345	}
4346	leaf = path->nodes[0];
4347	btrfs_init_map_token(&token, leaf);
4348	fi = btrfs_item_ptr(leaf, path->slots[0],
4349			    struct btrfs_file_extent_item);
4350
4351	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
 
4352	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4353		btrfs_set_token_file_extent_type(&token, fi,
4354						 BTRFS_FILE_EXTENT_PREALLOC);
 
4355	else
4356		btrfs_set_token_file_extent_type(&token, fi,
4357						 BTRFS_FILE_EXTENT_REG);
 
4358
4359	block_len = max(em->block_len, em->orig_block_len);
4360	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4361		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4362							em->block_start);
4363		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
 
 
4364	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4365		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4366							em->block_start -
4367							extent_offset);
4368		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
 
4369	} else {
4370		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4371		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
 
4372	}
4373
4374	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4375	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4376	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4377	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4378	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4379	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
 
4380	btrfs_mark_buffer_dirty(leaf);
4381
4382	btrfs_release_path(path);
4383
4384	return ret;
4385}
4386
4387/*
4388 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4389 * lose them after doing a fast fsync and replaying the log. We scan the
4390 * subvolume's root instead of iterating the inode's extent map tree because
4391 * otherwise we can log incorrect extent items based on extent map conversion.
4392 * That can happen due to the fact that extent maps are merged when they
4393 * are not in the extent map tree's list of modified extents.
4394 */
4395static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4396				      struct btrfs_inode *inode,
4397				      struct btrfs_path *path)
4398{
4399	struct btrfs_root *root = inode->root;
4400	struct btrfs_key key;
4401	const u64 i_size = i_size_read(&inode->vfs_inode);
4402	const u64 ino = btrfs_ino(inode);
4403	struct btrfs_path *dst_path = NULL;
4404	bool dropped_extents = false;
4405	u64 truncate_offset = i_size;
4406	struct extent_buffer *leaf;
4407	int slot;
4408	int ins_nr = 0;
4409	int start_slot;
4410	int ret;
4411
4412	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4413		return 0;
4414
4415	key.objectid = ino;
4416	key.type = BTRFS_EXTENT_DATA_KEY;
4417	key.offset = i_size;
4418	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419	if (ret < 0)
4420		goto out;
4421
4422	/*
4423	 * We must check if there is a prealloc extent that starts before the
4424	 * i_size and crosses the i_size boundary. This is to ensure later we
4425	 * truncate down to the end of that extent and not to the i_size, as
4426	 * otherwise we end up losing part of the prealloc extent after a log
4427	 * replay and with an implicit hole if there is another prealloc extent
4428	 * that starts at an offset beyond i_size.
4429	 */
4430	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4431	if (ret < 0)
4432		goto out;
4433
4434	if (ret == 0) {
4435		struct btrfs_file_extent_item *ei;
4436
4437		leaf = path->nodes[0];
4438		slot = path->slots[0];
4439		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4440
4441		if (btrfs_file_extent_type(leaf, ei) ==
4442		    BTRFS_FILE_EXTENT_PREALLOC) {
4443			u64 extent_end;
4444
4445			btrfs_item_key_to_cpu(leaf, &key, slot);
4446			extent_end = key.offset +
4447				btrfs_file_extent_num_bytes(leaf, ei);
4448
4449			if (extent_end > i_size)
4450				truncate_offset = extent_end;
4451		}
4452	} else {
4453		ret = 0;
4454	}
4455
4456	while (true) {
4457		leaf = path->nodes[0];
4458		slot = path->slots[0];
4459
4460		if (slot >= btrfs_header_nritems(leaf)) {
4461			if (ins_nr > 0) {
4462				ret = copy_items(trans, inode, dst_path, path,
4463						 start_slot, ins_nr, 1, 0);
4464				if (ret < 0)
4465					goto out;
4466				ins_nr = 0;
4467			}
4468			ret = btrfs_next_leaf(root, path);
4469			if (ret < 0)
4470				goto out;
4471			if (ret > 0) {
4472				ret = 0;
4473				break;
4474			}
4475			continue;
4476		}
4477
4478		btrfs_item_key_to_cpu(leaf, &key, slot);
4479		if (key.objectid > ino)
4480			break;
4481		if (WARN_ON_ONCE(key.objectid < ino) ||
4482		    key.type < BTRFS_EXTENT_DATA_KEY ||
4483		    key.offset < i_size) {
4484			path->slots[0]++;
4485			continue;
4486		}
4487		if (!dropped_extents) {
4488			/*
4489			 * Avoid logging extent items logged in past fsync calls
4490			 * and leading to duplicate keys in the log tree.
4491			 */
4492			do {
4493				ret = btrfs_truncate_inode_items(trans,
4494							 root->log_root,
4495							 inode, truncate_offset,
4496							 BTRFS_EXTENT_DATA_KEY,
4497							 NULL);
4498			} while (ret == -EAGAIN);
4499			if (ret)
4500				goto out;
4501			dropped_extents = true;
4502		}
4503		if (ins_nr == 0)
4504			start_slot = slot;
4505		ins_nr++;
4506		path->slots[0]++;
4507		if (!dst_path) {
4508			dst_path = btrfs_alloc_path();
4509			if (!dst_path) {
4510				ret = -ENOMEM;
4511				goto out;
4512			}
4513		}
4514	}
4515	if (ins_nr > 0)
4516		ret = copy_items(trans, inode, dst_path, path,
4517				 start_slot, ins_nr, 1, 0);
4518out:
4519	btrfs_release_path(path);
4520	btrfs_free_path(dst_path);
4521	return ret;
4522}
4523
4524static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4525				     struct btrfs_root *root,
4526				     struct btrfs_inode *inode,
4527				     struct btrfs_path *path,
4528				     struct btrfs_log_ctx *ctx)
 
 
 
4529{
4530	struct btrfs_ordered_extent *ordered;
4531	struct btrfs_ordered_extent *tmp;
4532	struct extent_map *em, *n;
4533	struct list_head extents;
4534	struct extent_map_tree *tree = &inode->extent_tree;
 
4535	int ret = 0;
4536	int num = 0;
4537
4538	INIT_LIST_HEAD(&extents);
4539
 
4540	write_lock(&tree->lock);
 
4541
4542	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4543		list_del_init(&em->list);
 
4544		/*
4545		 * Just an arbitrary number, this can be really CPU intensive
4546		 * once we start getting a lot of extents, and really once we
4547		 * have a bunch of extents we just want to commit since it will
4548		 * be faster.
4549		 */
4550		if (++num > 32768) {
4551			list_del_init(&tree->modified_extents);
4552			ret = -EFBIG;
4553			goto process;
4554		}
4555
4556		if (em->generation < trans->transid)
4557			continue;
4558
4559		/* We log prealloc extents beyond eof later. */
4560		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4561		    em->start >= i_size_read(&inode->vfs_inode))
4562			continue;
4563
4564		/* Need a ref to keep it from getting evicted from cache */
4565		refcount_inc(&em->refs);
4566		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4567		list_add_tail(&em->list, &extents);
4568		num++;
4569	}
4570
4571	list_sort(NULL, &extents, extent_cmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4572process:
4573	while (!list_empty(&extents)) {
4574		em = list_entry(extents.next, struct extent_map, list);
4575
4576		list_del_init(&em->list);
4577
4578		/*
4579		 * If we had an error we just need to delete everybody from our
4580		 * private list.
4581		 */
4582		if (ret) {
4583			clear_em_logging(tree, em);
4584			free_extent_map(em);
4585			continue;
4586		}
4587
4588		write_unlock(&tree->lock);
4589
4590		ret = log_one_extent(trans, inode, root, em, path, ctx);
 
4591		write_lock(&tree->lock);
4592		clear_em_logging(tree, em);
4593		free_extent_map(em);
4594	}
4595	WARN_ON(!list_empty(&extents));
4596	write_unlock(&tree->lock);
 
4597
4598	btrfs_release_path(path);
4599	if (!ret)
4600		ret = btrfs_log_prealloc_extents(trans, inode, path);
4601	if (ret)
4602		return ret;
4603
4604	/*
4605	 * We have logged all extents successfully, now make sure the commit of
4606	 * the current transaction waits for the ordered extents to complete
4607	 * before it commits and wipes out the log trees, otherwise we would
4608	 * lose data if an ordered extents completes after the transaction
4609	 * commits and a power failure happens after the transaction commit.
4610	 */
4611	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4612		list_del_init(&ordered->log_list);
4613		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4614
4615		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4616			spin_lock_irq(&inode->ordered_tree.lock);
4617			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4618				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4619				atomic_inc(&trans->transaction->pending_ordered);
4620			}
4621			spin_unlock_irq(&inode->ordered_tree.lock);
4622		}
4623		btrfs_put_ordered_extent(ordered);
4624	}
4625
4626	return 0;
4627}
4628
4629static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4630			     struct btrfs_path *path, u64 *size_ret)
4631{
4632	struct btrfs_key key;
4633	int ret;
4634
4635	key.objectid = btrfs_ino(inode);
4636	key.type = BTRFS_INODE_ITEM_KEY;
4637	key.offset = 0;
4638
4639	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4640	if (ret < 0) {
4641		return ret;
4642	} else if (ret > 0) {
4643		*size_ret = 0;
4644	} else {
4645		struct btrfs_inode_item *item;
4646
4647		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4648				      struct btrfs_inode_item);
4649		*size_ret = btrfs_inode_size(path->nodes[0], item);
4650		/*
4651		 * If the in-memory inode's i_size is smaller then the inode
4652		 * size stored in the btree, return the inode's i_size, so
4653		 * that we get a correct inode size after replaying the log
4654		 * when before a power failure we had a shrinking truncate
4655		 * followed by addition of a new name (rename / new hard link).
4656		 * Otherwise return the inode size from the btree, to avoid
4657		 * data loss when replaying a log due to previously doing a
4658		 * write that expands the inode's size and logging a new name
4659		 * immediately after.
4660		 */
4661		if (*size_ret > inode->vfs_inode.i_size)
4662			*size_ret = inode->vfs_inode.i_size;
4663	}
4664
4665	btrfs_release_path(path);
4666	return 0;
4667}
4668
4669/*
4670 * At the moment we always log all xattrs. This is to figure out at log replay
4671 * time which xattrs must have their deletion replayed. If a xattr is missing
4672 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4673 * because if a xattr is deleted, the inode is fsynced and a power failure
4674 * happens, causing the log to be replayed the next time the fs is mounted,
4675 * we want the xattr to not exist anymore (same behaviour as other filesystems
4676 * with a journal, ext3/4, xfs, f2fs, etc).
4677 */
4678static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4679				struct btrfs_root *root,
4680				struct btrfs_inode *inode,
4681				struct btrfs_path *path,
4682				struct btrfs_path *dst_path)
4683{
4684	int ret;
4685	struct btrfs_key key;
4686	const u64 ino = btrfs_ino(inode);
4687	int ins_nr = 0;
4688	int start_slot = 0;
4689	bool found_xattrs = false;
4690
4691	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4692		return 0;
4693
4694	key.objectid = ino;
4695	key.type = BTRFS_XATTR_ITEM_KEY;
4696	key.offset = 0;
4697
4698	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699	if (ret < 0)
4700		return ret;
4701
4702	while (true) {
4703		int slot = path->slots[0];
4704		struct extent_buffer *leaf = path->nodes[0];
4705		int nritems = btrfs_header_nritems(leaf);
4706
4707		if (slot >= nritems) {
4708			if (ins_nr > 0) {
 
 
4709				ret = copy_items(trans, inode, dst_path, path,
4710						 start_slot, ins_nr, 1, 0);
 
 
 
4711				if (ret < 0)
4712					return ret;
4713				ins_nr = 0;
4714			}
4715			ret = btrfs_next_leaf(root, path);
4716			if (ret < 0)
4717				return ret;
4718			else if (ret > 0)
4719				break;
4720			continue;
4721		}
4722
4723		btrfs_item_key_to_cpu(leaf, &key, slot);
4724		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4725			break;
4726
4727		if (ins_nr == 0)
4728			start_slot = slot;
4729		ins_nr++;
4730		path->slots[0]++;
4731		found_xattrs = true;
4732		cond_resched();
4733	}
4734	if (ins_nr > 0) {
 
 
4735		ret = copy_items(trans, inode, dst_path, path,
4736				 start_slot, ins_nr, 1, 0);
 
 
 
4737		if (ret < 0)
4738			return ret;
4739	}
4740
4741	if (!found_xattrs)
4742		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4743
4744	return 0;
4745}
4746
4747/*
4748 * When using the NO_HOLES feature if we punched a hole that causes the
4749 * deletion of entire leafs or all the extent items of the first leaf (the one
4750 * that contains the inode item and references) we may end up not processing
4751 * any extents, because there are no leafs with a generation matching the
4752 * current transaction that have extent items for our inode. So we need to find
4753 * if any holes exist and then log them. We also need to log holes after any
4754 * truncate operation that changes the inode's size.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4755 */
4756static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4757			   struct btrfs_root *root,
4758			   struct btrfs_inode *inode,
4759			   struct btrfs_path *path)
4760{
4761	struct btrfs_fs_info *fs_info = root->fs_info;
 
4762	struct btrfs_key key;
 
 
 
 
4763	const u64 ino = btrfs_ino(inode);
4764	const u64 i_size = i_size_read(&inode->vfs_inode);
4765	u64 prev_extent_end = 0;
4766	int ret;
4767
4768	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4769		return 0;
4770
4771	key.objectid = ino;
4772	key.type = BTRFS_EXTENT_DATA_KEY;
4773	key.offset = 0;
4774
4775	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
4776	if (ret < 0)
4777		return ret;
4778
4779	while (true) {
4780		struct extent_buffer *leaf = path->nodes[0];
 
 
4781
4782		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4783			ret = btrfs_next_leaf(root, path);
4784			if (ret < 0)
4785				return ret;
4786			if (ret > 0) {
4787				ret = 0;
4788				break;
4789			}
4790			leaf = path->nodes[0];
4791		}
4792
4793		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4794		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4795			break;
 
 
 
4796
4797		/* We have a hole, log it. */
4798		if (prev_extent_end < key.offset) {
4799			const u64 hole_len = key.offset - prev_extent_end;
4800
4801			/*
4802			 * Release the path to avoid deadlocks with other code
4803			 * paths that search the root while holding locks on
4804			 * leafs from the log root.
4805			 */
4806			btrfs_release_path(path);
4807			ret = btrfs_insert_file_extent(trans, root->log_root,
4808						       ino, prev_extent_end, 0,
4809						       0, hole_len, 0, hole_len,
4810						       0, 0, 0);
4811			if (ret < 0)
4812				return ret;
4813
4814			/*
4815			 * Search for the same key again in the root. Since it's
4816			 * an extent item and we are holding the inode lock, the
4817			 * key must still exist. If it doesn't just emit warning
4818			 * and return an error to fall back to a transaction
4819			 * commit.
4820			 */
4821			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822			if (ret < 0)
4823				return ret;
4824			if (WARN_ON(ret > 0))
4825				return -ENOENT;
4826			leaf = path->nodes[0];
4827		}
4828
4829		prev_extent_end = btrfs_file_extent_end(path);
4830		path->slots[0]++;
4831		cond_resched();
 
 
 
4832	}
 
4833
4834	if (prev_extent_end < i_size) {
4835		u64 hole_len;
 
4836
4837		btrfs_release_path(path);
4838		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4839		ret = btrfs_insert_file_extent(trans, root->log_root,
4840					       ino, prev_extent_end, 0, 0,
4841					       hole_len, 0, hole_len,
4842					       0, 0, 0);
4843		if (ret < 0)
4844			return ret;
4845	}
4846
4847	return 0;
4848}
4849
4850/*
4851 * When we are logging a new inode X, check if it doesn't have a reference that
4852 * matches the reference from some other inode Y created in a past transaction
4853 * and that was renamed in the current transaction. If we don't do this, then at
4854 * log replay time we can lose inode Y (and all its files if it's a directory):
4855 *
4856 * mkdir /mnt/x
4857 * echo "hello world" > /mnt/x/foobar
4858 * sync
4859 * mv /mnt/x /mnt/y
4860 * mkdir /mnt/x                 # or touch /mnt/x
4861 * xfs_io -c fsync /mnt/x
4862 * <power fail>
4863 * mount fs, trigger log replay
4864 *
4865 * After the log replay procedure, we would lose the first directory and all its
4866 * files (file foobar).
4867 * For the case where inode Y is not a directory we simply end up losing it:
4868 *
4869 * echo "123" > /mnt/foo
4870 * sync
4871 * mv /mnt/foo /mnt/bar
4872 * echo "abc" > /mnt/foo
4873 * xfs_io -c fsync /mnt/foo
4874 * <power fail>
4875 *
4876 * We also need this for cases where a snapshot entry is replaced by some other
4877 * entry (file or directory) otherwise we end up with an unreplayable log due to
4878 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4879 * if it were a regular entry:
4880 *
4881 * mkdir /mnt/x
4882 * btrfs subvolume snapshot /mnt /mnt/x/snap
4883 * btrfs subvolume delete /mnt/x/snap
4884 * rmdir /mnt/x
4885 * mkdir /mnt/x
4886 * fsync /mnt/x or fsync some new file inside it
4887 * <power fail>
4888 *
4889 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4890 * the same transaction.
4891 */
4892static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4893					 const int slot,
4894					 const struct btrfs_key *key,
4895					 struct btrfs_inode *inode,
4896					 u64 *other_ino, u64 *other_parent)
4897{
4898	int ret;
4899	struct btrfs_path *search_path;
4900	char *name = NULL;
4901	u32 name_len = 0;
4902	u32 item_size = btrfs_item_size_nr(eb, slot);
4903	u32 cur_offset = 0;
4904	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4905
4906	search_path = btrfs_alloc_path();
4907	if (!search_path)
4908		return -ENOMEM;
4909	search_path->search_commit_root = 1;
4910	search_path->skip_locking = 1;
4911
4912	while (cur_offset < item_size) {
4913		u64 parent;
4914		u32 this_name_len;
4915		u32 this_len;
4916		unsigned long name_ptr;
4917		struct btrfs_dir_item *di;
4918
4919		if (key->type == BTRFS_INODE_REF_KEY) {
4920			struct btrfs_inode_ref *iref;
4921
4922			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4923			parent = key->offset;
4924			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4925			name_ptr = (unsigned long)(iref + 1);
4926			this_len = sizeof(*iref) + this_name_len;
4927		} else {
4928			struct btrfs_inode_extref *extref;
4929
4930			extref = (struct btrfs_inode_extref *)(ptr +
4931							       cur_offset);
4932			parent = btrfs_inode_extref_parent(eb, extref);
4933			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4934			name_ptr = (unsigned long)&extref->name;
4935			this_len = sizeof(*extref) + this_name_len;
4936		}
4937
4938		if (this_name_len > name_len) {
4939			char *new_name;
4940
4941			new_name = krealloc(name, this_name_len, GFP_NOFS);
4942			if (!new_name) {
4943				ret = -ENOMEM;
4944				goto out;
4945			}
4946			name_len = this_name_len;
4947			name = new_name;
4948		}
4949
4950		read_extent_buffer(eb, name, name_ptr, this_name_len);
4951		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4952				parent, name, this_name_len, 0);
 
4953		if (di && !IS_ERR(di)) {
4954			struct btrfs_key di_key;
4955
4956			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4957						  di, &di_key);
4958			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4959				if (di_key.objectid != key->objectid) {
4960					ret = 1;
4961					*other_ino = di_key.objectid;
4962					*other_parent = parent;
4963				} else {
4964					ret = 0;
4965				}
4966			} else {
4967				ret = -EAGAIN;
4968			}
4969			goto out;
4970		} else if (IS_ERR(di)) {
4971			ret = PTR_ERR(di);
4972			goto out;
4973		}
4974		btrfs_release_path(search_path);
4975
4976		cur_offset += this_len;
4977	}
4978	ret = 0;
4979out:
4980	btrfs_free_path(search_path);
4981	kfree(name);
4982	return ret;
4983}
4984
4985struct btrfs_ino_list {
4986	u64 ino;
4987	u64 parent;
4988	struct list_head list;
4989};
4990
4991static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4992				  struct btrfs_root *root,
4993				  struct btrfs_path *path,
4994				  struct btrfs_log_ctx *ctx,
4995				  u64 ino, u64 parent)
4996{
4997	struct btrfs_ino_list *ino_elem;
4998	LIST_HEAD(inode_list);
4999	int ret = 0;
5000
5001	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5002	if (!ino_elem)
5003		return -ENOMEM;
5004	ino_elem->ino = ino;
5005	ino_elem->parent = parent;
5006	list_add_tail(&ino_elem->list, &inode_list);
5007
5008	while (!list_empty(&inode_list)) {
5009		struct btrfs_fs_info *fs_info = root->fs_info;
5010		struct btrfs_key key;
5011		struct inode *inode;
5012
5013		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5014					    list);
5015		ino = ino_elem->ino;
5016		parent = ino_elem->parent;
5017		list_del(&ino_elem->list);
5018		kfree(ino_elem);
5019		if (ret)
5020			continue;
5021
5022		btrfs_release_path(path);
5023
5024		inode = btrfs_iget(fs_info->sb, ino, root);
5025		/*
5026		 * If the other inode that had a conflicting dir entry was
5027		 * deleted in the current transaction, we need to log its parent
5028		 * directory.
5029		 */
5030		if (IS_ERR(inode)) {
5031			ret = PTR_ERR(inode);
5032			if (ret == -ENOENT) {
5033				inode = btrfs_iget(fs_info->sb, parent, root);
5034				if (IS_ERR(inode)) {
5035					ret = PTR_ERR(inode);
5036				} else {
5037					ret = btrfs_log_inode(trans, root,
5038						      BTRFS_I(inode),
5039						      LOG_OTHER_INODE_ALL,
5040						      ctx);
5041					btrfs_add_delayed_iput(inode);
5042				}
5043			}
5044			continue;
5045		}
5046		/*
5047		 * If the inode was already logged skip it - otherwise we can
5048		 * hit an infinite loop. Example:
5049		 *
5050		 * From the commit root (previous transaction) we have the
5051		 * following inodes:
5052		 *
5053		 * inode 257 a directory
5054		 * inode 258 with references "zz" and "zz_link" on inode 257
5055		 * inode 259 with reference "a" on inode 257
5056		 *
5057		 * And in the current (uncommitted) transaction we have:
5058		 *
5059		 * inode 257 a directory, unchanged
5060		 * inode 258 with references "a" and "a2" on inode 257
5061		 * inode 259 with reference "zz_link" on inode 257
5062		 * inode 261 with reference "zz" on inode 257
5063		 *
5064		 * When logging inode 261 the following infinite loop could
5065		 * happen if we don't skip already logged inodes:
5066		 *
5067		 * - we detect inode 258 as a conflicting inode, with inode 261
5068		 *   on reference "zz", and log it;
5069		 *
5070		 * - we detect inode 259 as a conflicting inode, with inode 258
5071		 *   on reference "a", and log it;
5072		 *
5073		 * - we detect inode 258 as a conflicting inode, with inode 259
5074		 *   on reference "zz_link", and log it - again! After this we
5075		 *   repeat the above steps forever.
5076		 */
5077		spin_lock(&BTRFS_I(inode)->lock);
5078		/*
5079		 * Check the inode's logged_trans only instead of
5080		 * btrfs_inode_in_log(). This is because the last_log_commit of
5081		 * the inode is not updated when we only log that it exists and
5082		 * it has the full sync bit set (see btrfs_log_inode()).
5083		 */
5084		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5085			spin_unlock(&BTRFS_I(inode)->lock);
5086			btrfs_add_delayed_iput(inode);
5087			continue;
5088		}
5089		spin_unlock(&BTRFS_I(inode)->lock);
5090		/*
5091		 * We are safe logging the other inode without acquiring its
5092		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5093		 * are safe against concurrent renames of the other inode as
5094		 * well because during a rename we pin the log and update the
5095		 * log with the new name before we unpin it.
5096		 */
5097		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5098				      LOG_OTHER_INODE, ctx);
5099		if (ret) {
5100			btrfs_add_delayed_iput(inode);
5101			continue;
5102		}
5103
5104		key.objectid = ino;
5105		key.type = BTRFS_INODE_REF_KEY;
5106		key.offset = 0;
5107		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108		if (ret < 0) {
5109			btrfs_add_delayed_iput(inode);
5110			continue;
5111		}
5112
5113		while (true) {
5114			struct extent_buffer *leaf = path->nodes[0];
5115			int slot = path->slots[0];
5116			u64 other_ino = 0;
5117			u64 other_parent = 0;
5118
5119			if (slot >= btrfs_header_nritems(leaf)) {
5120				ret = btrfs_next_leaf(root, path);
5121				if (ret < 0) {
5122					break;
5123				} else if (ret > 0) {
5124					ret = 0;
5125					break;
5126				}
5127				continue;
5128			}
5129
5130			btrfs_item_key_to_cpu(leaf, &key, slot);
5131			if (key.objectid != ino ||
5132			    (key.type != BTRFS_INODE_REF_KEY &&
5133			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5134				ret = 0;
5135				break;
5136			}
5137
5138			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5139					BTRFS_I(inode), &other_ino,
5140					&other_parent);
5141			if (ret < 0)
5142				break;
5143			if (ret > 0) {
5144				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5145				if (!ino_elem) {
5146					ret = -ENOMEM;
5147					break;
5148				}
5149				ino_elem->ino = other_ino;
5150				ino_elem->parent = other_parent;
5151				list_add_tail(&ino_elem->list, &inode_list);
5152				ret = 0;
5153			}
5154			path->slots[0]++;
5155		}
5156		btrfs_add_delayed_iput(inode);
5157	}
5158
5159	return ret;
5160}
5161
5162static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5163				   struct btrfs_inode *inode,
5164				   struct btrfs_key *min_key,
5165				   const struct btrfs_key *max_key,
5166				   struct btrfs_path *path,
5167				   struct btrfs_path *dst_path,
5168				   const u64 logged_isize,
5169				   const bool recursive_logging,
5170				   const int inode_only,
5171				   struct btrfs_log_ctx *ctx,
5172				   bool *need_log_inode_item)
5173{
5174	struct btrfs_root *root = inode->root;
5175	int ins_start_slot = 0;
5176	int ins_nr = 0;
5177	int ret;
5178
5179	while (1) {
5180		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5181		if (ret < 0)
5182			return ret;
5183		if (ret > 0) {
5184			ret = 0;
5185			break;
5186		}
5187again:
5188		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5189		if (min_key->objectid != max_key->objectid)
5190			break;
5191		if (min_key->type > max_key->type)
5192			break;
5193
5194		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5195			*need_log_inode_item = false;
5196
5197		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5198		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5199		    inode->generation == trans->transid &&
5200		    !recursive_logging) {
5201			u64 other_ino = 0;
5202			u64 other_parent = 0;
5203
5204			ret = btrfs_check_ref_name_override(path->nodes[0],
5205					path->slots[0], min_key, inode,
5206					&other_ino, &other_parent);
5207			if (ret < 0) {
5208				return ret;
5209			} else if (ret > 0 && ctx &&
5210				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5211				if (ins_nr > 0) {
5212					ins_nr++;
5213				} else {
5214					ins_nr = 1;
5215					ins_start_slot = path->slots[0];
5216				}
5217				ret = copy_items(trans, inode, dst_path, path,
5218						 ins_start_slot, ins_nr,
5219						 inode_only, logged_isize);
5220				if (ret < 0)
5221					return ret;
5222				ins_nr = 0;
5223
5224				ret = log_conflicting_inodes(trans, root, path,
5225						ctx, other_ino, other_parent);
5226				if (ret)
5227					return ret;
5228				btrfs_release_path(path);
5229				goto next_key;
5230			}
5231		}
5232
5233		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5234		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5235			if (ins_nr == 0)
5236				goto next_slot;
5237			ret = copy_items(trans, inode, dst_path, path,
5238					 ins_start_slot,
5239					 ins_nr, inode_only, logged_isize);
5240			if (ret < 0)
5241				return ret;
5242			ins_nr = 0;
5243			goto next_slot;
5244		}
5245
5246		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5247			ins_nr++;
5248			goto next_slot;
5249		} else if (!ins_nr) {
5250			ins_start_slot = path->slots[0];
5251			ins_nr = 1;
5252			goto next_slot;
5253		}
5254
5255		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5256				 ins_nr, inode_only, logged_isize);
5257		if (ret < 0)
5258			return ret;
5259		ins_nr = 1;
5260		ins_start_slot = path->slots[0];
5261next_slot:
5262		path->slots[0]++;
5263		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5264			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5265					      path->slots[0]);
5266			goto again;
5267		}
5268		if (ins_nr) {
5269			ret = copy_items(trans, inode, dst_path, path,
5270					 ins_start_slot, ins_nr, inode_only,
5271					 logged_isize);
5272			if (ret < 0)
5273				return ret;
5274			ins_nr = 0;
5275		}
5276		btrfs_release_path(path);
5277next_key:
5278		if (min_key->offset < (u64)-1) {
5279			min_key->offset++;
5280		} else if (min_key->type < max_key->type) {
5281			min_key->type++;
5282			min_key->offset = 0;
5283		} else {
5284			break;
5285		}
5286	}
5287	if (ins_nr)
5288		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5289				 ins_nr, inode_only, logged_isize);
5290
5291	return ret;
5292}
5293
5294/* log a single inode in the tree log.
5295 * At least one parent directory for this inode must exist in the tree
5296 * or be logged already.
5297 *
5298 * Any items from this inode changed by the current transaction are copied
5299 * to the log tree.  An extra reference is taken on any extents in this
5300 * file, allowing us to avoid a whole pile of corner cases around logging
5301 * blocks that have been removed from the tree.
5302 *
5303 * See LOG_INODE_ALL and related defines for a description of what inode_only
5304 * does.
5305 *
5306 * This handles both files and directories.
5307 */
5308static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5309			   struct btrfs_root *root, struct btrfs_inode *inode,
5310			   int inode_only,
 
 
5311			   struct btrfs_log_ctx *ctx)
5312{
 
5313	struct btrfs_path *path;
5314	struct btrfs_path *dst_path;
5315	struct btrfs_key min_key;
5316	struct btrfs_key max_key;
5317	struct btrfs_root *log = root->log_root;
 
 
 
5318	int err = 0;
5319	int ret = 0;
 
 
 
5320	bool fast_search = false;
5321	u64 ino = btrfs_ino(inode);
5322	struct extent_map_tree *em_tree = &inode->extent_tree;
5323	u64 logged_isize = 0;
5324	bool need_log_inode_item = true;
5325	bool xattrs_logged = false;
5326	bool recursive_logging = false;
5327
5328	path = btrfs_alloc_path();
5329	if (!path)
5330		return -ENOMEM;
5331	dst_path = btrfs_alloc_path();
5332	if (!dst_path) {
5333		btrfs_free_path(path);
5334		return -ENOMEM;
5335	}
5336
5337	min_key.objectid = ino;
5338	min_key.type = BTRFS_INODE_ITEM_KEY;
5339	min_key.offset = 0;
5340
5341	max_key.objectid = ino;
5342
5343
5344	/* today the code can only do partial logging of directories */
5345	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5346	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5347		       &inode->runtime_flags) &&
5348	     inode_only >= LOG_INODE_EXISTS))
5349		max_key.type = BTRFS_XATTR_ITEM_KEY;
5350	else
5351		max_key.type = (u8)-1;
5352	max_key.offset = (u64)-1;
5353
5354	/*
5355	 * Only run delayed items if we are a directory. We want to make sure
5356	 * all directory indexes hit the fs/subvolume tree so we can find them
5357	 * and figure out which index ranges have to be logged.
5358	 *
5359	 * Otherwise commit the delayed inode only if the full sync flag is set,
5360	 * as we want to make sure an up to date version is in the subvolume
5361	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5362	 * it to the log tree. For a non full sync, we always log the inode item
5363	 * based on the in-memory struct btrfs_inode which is always up to date.
5364	 */
5365	if (S_ISDIR(inode->vfs_inode.i_mode))
 
5366		ret = btrfs_commit_inode_delayed_items(trans, inode);
5367	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5368		ret = btrfs_commit_inode_delayed_inode(inode);
5369
5370	if (ret) {
5371		btrfs_free_path(path);
5372		btrfs_free_path(dst_path);
5373		return ret;
5374	}
5375
5376	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5377		recursive_logging = true;
5378		if (inode_only == LOG_OTHER_INODE)
5379			inode_only = LOG_INODE_EXISTS;
5380		else
5381			inode_only = LOG_INODE_ALL;
5382		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5383	} else {
5384		mutex_lock(&inode->log_mutex);
5385	}
5386
5387	/*
5388	 * This is for cases where logging a directory could result in losing a
5389	 * a file after replaying the log. For example, if we move a file from a
5390	 * directory A to a directory B, then fsync directory A, we have no way
5391	 * to known the file was moved from A to B, so logging just A would
5392	 * result in losing the file after a log replay.
5393	 */
5394	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5395	    inode_only == LOG_INODE_ALL &&
5396	    inode->last_unlink_trans >= trans->transid) {
5397		btrfs_set_log_full_commit(trans);
5398		err = 1;
5399		goto out_unlock;
5400	}
5401
5402	/*
5403	 * a brute force approach to making sure we get the most uptodate
5404	 * copies of everything.
5405	 */
5406	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5407		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5408
5409		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5410		if (inode_only == LOG_INODE_EXISTS)
5411			max_key_type = BTRFS_XATTR_ITEM_KEY;
5412		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5413	} else {
5414		if (inode_only == LOG_INODE_EXISTS) {
5415			/*
5416			 * Make sure the new inode item we write to the log has
5417			 * the same isize as the current one (if it exists).
5418			 * This is necessary to prevent data loss after log
5419			 * replay, and also to prevent doing a wrong expanding
5420			 * truncate - for e.g. create file, write 4K into offset
5421			 * 0, fsync, write 4K into offset 4096, add hard link,
5422			 * fsync some other file (to sync log), power fail - if
5423			 * we use the inode's current i_size, after log replay
5424			 * we get a 8Kb file, with the last 4Kb extent as a hole
5425			 * (zeroes), as if an expanding truncate happened,
5426			 * instead of getting a file of 4Kb only.
5427			 */
5428			err = logged_inode_size(log, inode, path, &logged_isize);
 
5429			if (err)
5430				goto out_unlock;
5431		}
5432		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5433			     &inode->runtime_flags)) {
5434			if (inode_only == LOG_INODE_EXISTS) {
5435				max_key.type = BTRFS_XATTR_ITEM_KEY;
5436				ret = drop_objectid_items(trans, log, path, ino,
5437							  max_key.type);
5438			} else {
5439				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5440					  &inode->runtime_flags);
5441				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5442					  &inode->runtime_flags);
5443				while(1) {
5444					ret = btrfs_truncate_inode_items(trans,
5445						log, inode, 0, 0, NULL);
5446					if (ret != -EAGAIN)
5447						break;
5448				}
5449			}
5450		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5451					      &inode->runtime_flags) ||
5452			   inode_only == LOG_INODE_EXISTS) {
5453			if (inode_only == LOG_INODE_ALL)
5454				fast_search = true;
5455			max_key.type = BTRFS_XATTR_ITEM_KEY;
5456			ret = drop_objectid_items(trans, log, path, ino,
5457						  max_key.type);
5458		} else {
5459			if (inode_only == LOG_INODE_ALL)
5460				fast_search = true;
5461			goto log_extents;
5462		}
5463
5464	}
5465	if (ret) {
5466		err = ret;
5467		goto out_unlock;
5468	}
5469
5470	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5471				      path, dst_path, logged_isize,
5472				      recursive_logging, inode_only, ctx,
5473				      &need_log_inode_item);
5474	if (err)
5475		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5476
5477	btrfs_release_path(path);
5478	btrfs_release_path(dst_path);
5479	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5480	if (err)
5481		goto out_unlock;
5482	xattrs_logged = true;
5483	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5484		btrfs_release_path(path);
5485		btrfs_release_path(dst_path);
5486		err = btrfs_log_holes(trans, root, inode, path);
5487		if (err)
5488			goto out_unlock;
5489	}
5490log_extents:
5491	btrfs_release_path(path);
5492	btrfs_release_path(dst_path);
5493	if (need_log_inode_item) {
5494		err = log_inode_item(trans, log, dst_path, inode);
5495		if (err)
5496			goto out_unlock;
5497		/*
5498		 * If we are doing a fast fsync and the inode was logged before
5499		 * in this transaction, we don't need to log the xattrs because
5500		 * they were logged before. If xattrs were added, changed or
5501		 * deleted since the last time we logged the inode, then we have
5502		 * already logged them because the inode had the runtime flag
5503		 * BTRFS_INODE_COPY_EVERYTHING set.
5504		 */
5505		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5506			err = btrfs_log_all_xattrs(trans, root, inode, path,
5507						   dst_path);
5508			if (err)
5509				goto out_unlock;
5510			btrfs_release_path(path);
5511		}
5512	}
5513	if (fast_search) {
5514		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5515						ctx);
5516		if (ret) {
5517			err = ret;
5518			goto out_unlock;
5519		}
5520	} else if (inode_only == LOG_INODE_ALL) {
5521		struct extent_map *em, *n;
5522
5523		write_lock(&em_tree->lock);
5524		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5525			list_del_init(&em->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5526		write_unlock(&em_tree->lock);
5527	}
5528
5529	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5530		ret = log_directory_changes(trans, root, inode, path, dst_path,
5531					ctx);
5532		if (ret) {
5533			err = ret;
5534			goto out_unlock;
5535		}
5536	}
5537
5538	/*
5539	 * If we are logging that an ancestor inode exists as part of logging a
5540	 * new name from a link or rename operation, don't mark the inode as
5541	 * logged - otherwise if an explicit fsync is made against an ancestor,
5542	 * the fsync considers the inode in the log and doesn't sync the log,
5543	 * resulting in the ancestor missing after a power failure unless the
5544	 * log was synced as part of an fsync against any other unrelated inode.
5545	 * So keep it simple for this case and just don't flag the ancestors as
5546	 * logged.
5547	 */
5548	if (!ctx ||
5549	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5550	      &inode->vfs_inode != ctx->inode)) {
5551		spin_lock(&inode->lock);
5552		inode->logged_trans = trans->transid;
5553		/*
5554		 * Don't update last_log_commit if we logged that an inode exists.
5555		 * We do this for two reasons:
5556		 *
5557		 * 1) We might have had buffered writes to this inode that were
5558		 *    flushed and had their ordered extents completed in this
5559		 *    transaction, but we did not previously log the inode with
5560		 *    LOG_INODE_ALL. Later the inode was evicted and after that
5561		 *    it was loaded again and this LOG_INODE_EXISTS log operation
5562		 *    happened. We must make sure that if an explicit fsync against
5563		 *    the inode is performed later, it logs the new extents, an
5564		 *    updated inode item, etc, and syncs the log. The same logic
5565		 *    applies to direct IO writes instead of buffered writes.
5566		 *
5567		 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5568		 *    is logged with an i_size of 0 or whatever value was logged
5569		 *    before. If later the i_size of the inode is increased by a
5570		 *    truncate operation, the log is synced through an fsync of
5571		 *    some other inode and then finally an explicit fsync against
5572		 *    this inode is made, we must make sure this fsync logs the
5573		 *    inode with the new i_size, the hole between old i_size and
5574		 *    the new i_size, and syncs the log.
5575		 */
5576		if (inode_only != LOG_INODE_EXISTS)
5577			inode->last_log_commit = inode->last_sub_trans;
5578		spin_unlock(&inode->lock);
5579	}
5580out_unlock:
5581	mutex_unlock(&inode->log_mutex);
 
 
 
 
5582
5583	btrfs_free_path(path);
5584	btrfs_free_path(dst_path);
5585	return err;
5586}
5587
5588/*
5589 * Check if we need to log an inode. This is used in contexts where while
5590 * logging an inode we need to log another inode (either that it exists or in
5591 * full mode). This is used instead of btrfs_inode_in_log() because the later
5592 * requires the inode to be in the log and have the log transaction committed,
5593 * while here we do not care if the log transaction was already committed - our
5594 * caller will commit the log later - and we want to avoid logging an inode
5595 * multiple times when multiple tasks have joined the same log transaction.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5596 */
5597static bool need_log_inode(struct btrfs_trans_handle *trans,
5598			   struct btrfs_inode *inode)
 
 
 
5599{
 
 
 
 
5600	/*
5601	 * If this inode does not have new/updated/deleted xattrs since the last
5602	 * time it was logged and is flagged as logged in the current transaction,
5603	 * we can skip logging it. As for new/deleted names, those are updated in
5604	 * the log by link/unlink/rename operations.
5605	 * In case the inode was logged and then evicted and reloaded, its
5606	 * logged_trans will be 0, in which case we have to fully log it since
5607	 * logged_trans is a transient field, not persisted.
5608	 */
5609	if (inode->logged_trans == trans->transid &&
5610	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5611		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5612
5613	return true;
 
 
 
5614}
5615
5616struct btrfs_dir_list {
5617	u64 ino;
5618	struct list_head list;
5619};
5620
5621/*
5622 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5623 * details about the why it is needed.
5624 * This is a recursive operation - if an existing dentry corresponds to a
5625 * directory, that directory's new entries are logged too (same behaviour as
5626 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5627 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5628 * complains about the following circular lock dependency / possible deadlock:
5629 *
5630 *        CPU0                                        CPU1
5631 *        ----                                        ----
5632 * lock(&type->i_mutex_dir_key#3/2);
5633 *                                            lock(sb_internal#2);
5634 *                                            lock(&type->i_mutex_dir_key#3/2);
5635 * lock(&sb->s_type->i_mutex_key#14);
5636 *
5637 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5638 * sb_start_intwrite() in btrfs_start_transaction().
5639 * Not locking i_mutex of the inodes is still safe because:
5640 *
5641 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5642 *    that while logging the inode new references (names) are added or removed
5643 *    from the inode, leaving the logged inode item with a link count that does
5644 *    not match the number of logged inode reference items. This is fine because
5645 *    at log replay time we compute the real number of links and correct the
5646 *    link count in the inode item (see replay_one_buffer() and
5647 *    link_to_fixup_dir());
5648 *
5649 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5650 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5651 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5652 *    has a size that doesn't match the sum of the lengths of all the logged
5653 *    names. This does not result in a problem because if a dir_item key is
5654 *    logged but its matching dir_index key is not logged, at log replay time we
5655 *    don't use it to replay the respective name (see replay_one_name()). On the
5656 *    other hand if only the dir_index key ends up being logged, the respective
5657 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5658 *    keys created (see replay_one_name()).
5659 *    The directory's inode item with a wrong i_size is not a problem as well,
5660 *    since we don't use it at log replay time to set the i_size in the inode
5661 *    item of the fs/subvol tree (see overwrite_item()).
5662 */
5663static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5664				struct btrfs_root *root,
5665				struct btrfs_inode *start_inode,
5666				struct btrfs_log_ctx *ctx)
5667{
5668	struct btrfs_fs_info *fs_info = root->fs_info;
5669	struct btrfs_root *log = root->log_root;
5670	struct btrfs_path *path;
5671	LIST_HEAD(dir_list);
5672	struct btrfs_dir_list *dir_elem;
5673	int ret = 0;
5674
5675	path = btrfs_alloc_path();
5676	if (!path)
5677		return -ENOMEM;
5678
5679	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5680	if (!dir_elem) {
5681		btrfs_free_path(path);
5682		return -ENOMEM;
5683	}
5684	dir_elem->ino = btrfs_ino(start_inode);
5685	list_add_tail(&dir_elem->list, &dir_list);
5686
5687	while (!list_empty(&dir_list)) {
5688		struct extent_buffer *leaf;
5689		struct btrfs_key min_key;
5690		int nritems;
5691		int i;
5692
5693		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5694					    list);
5695		if (ret)
5696			goto next_dir_inode;
5697
5698		min_key.objectid = dir_elem->ino;
5699		min_key.type = BTRFS_DIR_ITEM_KEY;
5700		min_key.offset = 0;
5701again:
5702		btrfs_release_path(path);
5703		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5704		if (ret < 0) {
5705			goto next_dir_inode;
5706		} else if (ret > 0) {
5707			ret = 0;
5708			goto next_dir_inode;
5709		}
5710
5711process_leaf:
5712		leaf = path->nodes[0];
5713		nritems = btrfs_header_nritems(leaf);
5714		for (i = path->slots[0]; i < nritems; i++) {
5715			struct btrfs_dir_item *di;
5716			struct btrfs_key di_key;
5717			struct inode *di_inode;
5718			struct btrfs_dir_list *new_dir_elem;
5719			int log_mode = LOG_INODE_EXISTS;
5720			int type;
5721
5722			btrfs_item_key_to_cpu(leaf, &min_key, i);
5723			if (min_key.objectid != dir_elem->ino ||
5724			    min_key.type != BTRFS_DIR_ITEM_KEY)
5725				goto next_dir_inode;
5726
5727			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5728			type = btrfs_dir_type(leaf, di);
5729			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5730			    type != BTRFS_FT_DIR)
5731				continue;
5732			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5733			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5734				continue;
5735
5736			btrfs_release_path(path);
5737			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5738			if (IS_ERR(di_inode)) {
5739				ret = PTR_ERR(di_inode);
5740				goto next_dir_inode;
5741			}
5742
5743			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5744				btrfs_add_delayed_iput(di_inode);
5745				break;
5746			}
5747
5748			ctx->log_new_dentries = false;
5749			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5750				log_mode = LOG_INODE_ALL;
5751			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5752					      log_mode, ctx);
5753			btrfs_add_delayed_iput(di_inode);
 
 
 
5754			if (ret)
5755				goto next_dir_inode;
5756			if (ctx->log_new_dentries) {
5757				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5758						       GFP_NOFS);
5759				if (!new_dir_elem) {
5760					ret = -ENOMEM;
5761					goto next_dir_inode;
5762				}
5763				new_dir_elem->ino = di_key.objectid;
5764				list_add_tail(&new_dir_elem->list, &dir_list);
5765			}
5766			break;
5767		}
5768		if (i == nritems) {
5769			ret = btrfs_next_leaf(log, path);
5770			if (ret < 0) {
5771				goto next_dir_inode;
5772			} else if (ret > 0) {
5773				ret = 0;
5774				goto next_dir_inode;
5775			}
5776			goto process_leaf;
5777		}
5778		if (min_key.offset < (u64)-1) {
5779			min_key.offset++;
5780			goto again;
5781		}
5782next_dir_inode:
5783		list_del(&dir_elem->list);
5784		kfree(dir_elem);
5785	}
5786
5787	btrfs_free_path(path);
5788	return ret;
5789}
5790
5791static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5792				 struct btrfs_inode *inode,
5793				 struct btrfs_log_ctx *ctx)
5794{
5795	struct btrfs_fs_info *fs_info = trans->fs_info;
5796	int ret;
5797	struct btrfs_path *path;
5798	struct btrfs_key key;
5799	struct btrfs_root *root = inode->root;
5800	const u64 ino = btrfs_ino(inode);
5801
5802	path = btrfs_alloc_path();
5803	if (!path)
5804		return -ENOMEM;
5805	path->skip_locking = 1;
5806	path->search_commit_root = 1;
5807
5808	key.objectid = ino;
5809	key.type = BTRFS_INODE_REF_KEY;
5810	key.offset = 0;
5811	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5812	if (ret < 0)
5813		goto out;
5814
5815	while (true) {
5816		struct extent_buffer *leaf = path->nodes[0];
5817		int slot = path->slots[0];
5818		u32 cur_offset = 0;
5819		u32 item_size;
5820		unsigned long ptr;
5821
5822		if (slot >= btrfs_header_nritems(leaf)) {
5823			ret = btrfs_next_leaf(root, path);
5824			if (ret < 0)
5825				goto out;
5826			else if (ret > 0)
5827				break;
5828			continue;
5829		}
5830
5831		btrfs_item_key_to_cpu(leaf, &key, slot);
5832		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5833		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5834			break;
5835
5836		item_size = btrfs_item_size_nr(leaf, slot);
5837		ptr = btrfs_item_ptr_offset(leaf, slot);
5838		while (cur_offset < item_size) {
5839			struct btrfs_key inode_key;
5840			struct inode *dir_inode;
5841
5842			inode_key.type = BTRFS_INODE_ITEM_KEY;
5843			inode_key.offset = 0;
5844
5845			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5846				struct btrfs_inode_extref *extref;
5847
5848				extref = (struct btrfs_inode_extref *)
5849					(ptr + cur_offset);
5850				inode_key.objectid = btrfs_inode_extref_parent(
5851					leaf, extref);
5852				cur_offset += sizeof(*extref);
5853				cur_offset += btrfs_inode_extref_name_len(leaf,
5854					extref);
5855			} else {
5856				inode_key.objectid = key.offset;
5857				cur_offset = item_size;
5858			}
5859
5860			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5861					       root);
5862			/*
5863			 * If the parent inode was deleted, return an error to
5864			 * fallback to a transaction commit. This is to prevent
5865			 * getting an inode that was moved from one parent A to
5866			 * a parent B, got its former parent A deleted and then
5867			 * it got fsync'ed, from existing at both parents after
5868			 * a log replay (and the old parent still existing).
5869			 * Example:
5870			 *
5871			 * mkdir /mnt/A
5872			 * mkdir /mnt/B
5873			 * touch /mnt/B/bar
5874			 * sync
5875			 * mv /mnt/B/bar /mnt/A/bar
5876			 * mv -T /mnt/A /mnt/B
5877			 * fsync /mnt/B/bar
5878			 * <power fail>
5879			 *
5880			 * If we ignore the old parent B which got deleted,
5881			 * after a log replay we would have file bar linked
5882			 * at both parents and the old parent B would still
5883			 * exist.
5884			 */
5885			if (IS_ERR(dir_inode)) {
5886				ret = PTR_ERR(dir_inode);
5887				goto out;
5888			}
5889
5890			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5891				btrfs_add_delayed_iput(dir_inode);
5892				continue;
5893			}
5894
5895			if (ctx)
5896				ctx->log_new_dentries = false;
5897			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5898					      LOG_INODE_ALL, ctx);
 
 
 
5899			if (!ret && ctx && ctx->log_new_dentries)
5900				ret = log_new_dir_dentries(trans, root,
5901						   BTRFS_I(dir_inode), ctx);
5902			btrfs_add_delayed_iput(dir_inode);
5903			if (ret)
5904				goto out;
5905		}
5906		path->slots[0]++;
5907	}
5908	ret = 0;
5909out:
5910	btrfs_free_path(path);
5911	return ret;
5912}
5913
5914static int log_new_ancestors(struct btrfs_trans_handle *trans,
5915			     struct btrfs_root *root,
5916			     struct btrfs_path *path,
5917			     struct btrfs_log_ctx *ctx)
5918{
5919	struct btrfs_key found_key;
5920
5921	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5922
5923	while (true) {
5924		struct btrfs_fs_info *fs_info = root->fs_info;
5925		struct extent_buffer *leaf = path->nodes[0];
5926		int slot = path->slots[0];
5927		struct btrfs_key search_key;
5928		struct inode *inode;
5929		u64 ino;
5930		int ret = 0;
5931
5932		btrfs_release_path(path);
5933
5934		ino = found_key.offset;
5935
5936		search_key.objectid = found_key.offset;
5937		search_key.type = BTRFS_INODE_ITEM_KEY;
5938		search_key.offset = 0;
5939		inode = btrfs_iget(fs_info->sb, ino, root);
5940		if (IS_ERR(inode))
5941			return PTR_ERR(inode);
5942
5943		if (BTRFS_I(inode)->generation >= trans->transid &&
5944		    need_log_inode(trans, BTRFS_I(inode)))
5945			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5946					      LOG_INODE_EXISTS, ctx);
5947		btrfs_add_delayed_iput(inode);
5948		if (ret)
5949			return ret;
5950
5951		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5952			break;
5953
5954		search_key.type = BTRFS_INODE_REF_KEY;
5955		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5956		if (ret < 0)
5957			return ret;
5958
5959		leaf = path->nodes[0];
5960		slot = path->slots[0];
5961		if (slot >= btrfs_header_nritems(leaf)) {
5962			ret = btrfs_next_leaf(root, path);
5963			if (ret < 0)
5964				return ret;
5965			else if (ret > 0)
5966				return -ENOENT;
5967			leaf = path->nodes[0];
5968			slot = path->slots[0];
5969		}
5970
5971		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5972		if (found_key.objectid != search_key.objectid ||
5973		    found_key.type != BTRFS_INODE_REF_KEY)
5974			return -ENOENT;
5975	}
5976	return 0;
5977}
5978
5979static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5980				  struct btrfs_inode *inode,
5981				  struct dentry *parent,
5982				  struct btrfs_log_ctx *ctx)
5983{
5984	struct btrfs_root *root = inode->root;
5985	struct dentry *old_parent = NULL;
5986	struct super_block *sb = inode->vfs_inode.i_sb;
5987	int ret = 0;
5988
5989	while (true) {
5990		if (!parent || d_really_is_negative(parent) ||
5991		    sb != parent->d_sb)
5992			break;
5993
5994		inode = BTRFS_I(d_inode(parent));
5995		if (root != inode->root)
5996			break;
5997
5998		if (inode->generation >= trans->transid &&
5999		    need_log_inode(trans, inode)) {
6000			ret = btrfs_log_inode(trans, root, inode,
6001					      LOG_INODE_EXISTS, ctx);
6002			if (ret)
6003				break;
6004		}
6005		if (IS_ROOT(parent))
6006			break;
6007
6008		parent = dget_parent(parent);
6009		dput(old_parent);
6010		old_parent = parent;
6011	}
6012	dput(old_parent);
6013
6014	return ret;
6015}
6016
6017static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6018				 struct btrfs_inode *inode,
6019				 struct dentry *parent,
6020				 struct btrfs_log_ctx *ctx)
6021{
6022	struct btrfs_root *root = inode->root;
6023	const u64 ino = btrfs_ino(inode);
6024	struct btrfs_path *path;
6025	struct btrfs_key search_key;
6026	int ret;
6027
6028	/*
6029	 * For a single hard link case, go through a fast path that does not
6030	 * need to iterate the fs/subvolume tree.
6031	 */
6032	if (inode->vfs_inode.i_nlink < 2)
6033		return log_new_ancestors_fast(trans, inode, parent, ctx);
6034
6035	path = btrfs_alloc_path();
6036	if (!path)
6037		return -ENOMEM;
6038
6039	search_key.objectid = ino;
6040	search_key.type = BTRFS_INODE_REF_KEY;
6041	search_key.offset = 0;
6042again:
6043	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6044	if (ret < 0)
6045		goto out;
6046	if (ret == 0)
6047		path->slots[0]++;
6048
6049	while (true) {
6050		struct extent_buffer *leaf = path->nodes[0];
6051		int slot = path->slots[0];
6052		struct btrfs_key found_key;
6053
6054		if (slot >= btrfs_header_nritems(leaf)) {
6055			ret = btrfs_next_leaf(root, path);
6056			if (ret < 0)
6057				goto out;
6058			else if (ret > 0)
6059				break;
6060			continue;
6061		}
6062
6063		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6064		if (found_key.objectid != ino ||
6065		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6066			break;
6067
6068		/*
6069		 * Don't deal with extended references because they are rare
6070		 * cases and too complex to deal with (we would need to keep
6071		 * track of which subitem we are processing for each item in
6072		 * this loop, etc). So just return some error to fallback to
6073		 * a transaction commit.
6074		 */
6075		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6076			ret = -EMLINK;
6077			goto out;
6078		}
6079
6080		/*
6081		 * Logging ancestors needs to do more searches on the fs/subvol
6082		 * tree, so it releases the path as needed to avoid deadlocks.
6083		 * Keep track of the last inode ref key and resume from that key
6084		 * after logging all new ancestors for the current hard link.
6085		 */
6086		memcpy(&search_key, &found_key, sizeof(search_key));
6087
6088		ret = log_new_ancestors(trans, root, path, ctx);
6089		if (ret)
6090			goto out;
6091		btrfs_release_path(path);
6092		goto again;
6093	}
6094	ret = 0;
6095out:
6096	btrfs_free_path(path);
6097	return ret;
6098}
6099
6100/*
6101 * helper function around btrfs_log_inode to make sure newly created
6102 * parent directories also end up in the log.  A minimal inode and backref
6103 * only logging is done of any parent directories that are older than
6104 * the last committed transaction
6105 */
6106static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6107				  struct btrfs_inode *inode,
6108				  struct dentry *parent,
6109				  int inode_only,
 
 
6110				  struct btrfs_log_ctx *ctx)
6111{
6112	struct btrfs_root *root = inode->root;
6113	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 
6114	int ret = 0;
 
6115	bool log_dentries = false;
 
 
 
6116
6117	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6118		ret = 1;
6119		goto end_no_trans;
6120	}
6121
6122	if (btrfs_root_refs(&root->root_item) == 0) {
 
 
 
 
 
6123		ret = 1;
6124		goto end_no_trans;
6125	}
6126
6127	/*
6128	 * Skip already logged inodes or inodes corresponding to tmpfiles
6129	 * (since logging them is pointless, a link count of 0 means they
6130	 * will never be accessible).
6131	 */
6132	if ((btrfs_inode_in_log(inode, trans->transid) &&
6133	     list_empty(&ctx->ordered_extents)) ||
6134	    inode->vfs_inode.i_nlink == 0) {
 
 
 
 
6135		ret = BTRFS_NO_LOG_SYNC;
6136		goto end_no_trans;
6137	}
6138
6139	ret = start_log_trans(trans, root, ctx);
6140	if (ret)
6141		goto end_no_trans;
6142
6143	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6144	if (ret)
6145		goto end_trans;
6146
6147	/*
6148	 * for regular files, if its inode is already on disk, we don't
6149	 * have to worry about the parents at all.  This is because
6150	 * we can use the last_unlink_trans field to record renames
6151	 * and other fun in this file.
6152	 */
6153	if (S_ISREG(inode->vfs_inode.i_mode) &&
6154	    inode->generation < trans->transid &&
6155	    inode->last_unlink_trans < trans->transid) {
6156		ret = 0;
6157		goto end_trans;
6158	}
6159
6160	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6161		log_dentries = true;
6162
6163	/*
6164	 * On unlink we must make sure all our current and old parent directory
6165	 * inodes are fully logged. This is to prevent leaving dangling
6166	 * directory index entries in directories that were our parents but are
6167	 * not anymore. Not doing this results in old parent directory being
6168	 * impossible to delete after log replay (rmdir will always fail with
6169	 * error -ENOTEMPTY).
6170	 *
6171	 * Example 1:
6172	 *
6173	 * mkdir testdir
6174	 * touch testdir/foo
6175	 * ln testdir/foo testdir/bar
6176	 * sync
6177	 * unlink testdir/bar
6178	 * xfs_io -c fsync testdir/foo
6179	 * <power failure>
6180	 * mount fs, triggers log replay
6181	 *
6182	 * If we don't log the parent directory (testdir), after log replay the
6183	 * directory still has an entry pointing to the file inode using the bar
6184	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6185	 * the file inode has a link count of 1.
6186	 *
6187	 * Example 2:
6188	 *
6189	 * mkdir testdir
6190	 * touch foo
6191	 * ln foo testdir/foo2
6192	 * ln foo testdir/foo3
6193	 * sync
6194	 * unlink testdir/foo3
6195	 * xfs_io -c fsync foo
6196	 * <power failure>
6197	 * mount fs, triggers log replay
6198	 *
6199	 * Similar as the first example, after log replay the parent directory
6200	 * testdir still has an entry pointing to the inode file with name foo3
6201	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6202	 * and has a link count of 2.
6203	 */
6204	if (inode->last_unlink_trans >= trans->transid) {
6205		ret = btrfs_log_all_parents(trans, inode, ctx);
6206		if (ret)
6207			goto end_trans;
6208	}
6209
6210	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6211	if (ret)
6212		goto end_trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6213
 
 
 
 
6214	if (log_dentries)
6215		ret = log_new_dir_dentries(trans, root, inode, ctx);
6216	else
6217		ret = 0;
6218end_trans:
 
6219	if (ret < 0) {
6220		btrfs_set_log_full_commit(trans);
6221		ret = 1;
6222	}
6223
6224	if (ret)
6225		btrfs_remove_log_ctx(root, ctx);
6226	btrfs_end_log_trans(root);
6227end_no_trans:
6228	return ret;
6229}
6230
6231/*
6232 * it is not safe to log dentry if the chunk root has added new
6233 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6234 * If this returns 1, you must commit the transaction to safely get your
6235 * data on disk.
6236 */
6237int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6238			  struct dentry *dentry,
 
 
6239			  struct btrfs_log_ctx *ctx)
6240{
6241	struct dentry *parent = dget_parent(dentry);
6242	int ret;
6243
6244	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6245				     LOG_INODE_ALL, ctx);
6246	dput(parent);
6247
6248	return ret;
6249}
6250
6251/*
6252 * should be called during mount to recover any replay any log trees
6253 * from the FS
6254 */
6255int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6256{
6257	int ret;
6258	struct btrfs_path *path;
6259	struct btrfs_trans_handle *trans;
6260	struct btrfs_key key;
6261	struct btrfs_key found_key;
 
6262	struct btrfs_root *log;
6263	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6264	struct walk_control wc = {
6265		.process_func = process_one_buffer,
6266		.stage = LOG_WALK_PIN_ONLY,
6267	};
6268
6269	path = btrfs_alloc_path();
6270	if (!path)
6271		return -ENOMEM;
6272
6273	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6274
6275	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6276	if (IS_ERR(trans)) {
6277		ret = PTR_ERR(trans);
6278		goto error;
6279	}
6280
6281	wc.trans = trans;
6282	wc.pin = 1;
6283
6284	ret = walk_log_tree(trans, log_root_tree, &wc);
6285	if (ret) {
6286		btrfs_handle_fs_error(fs_info, ret,
6287			"Failed to pin buffers while recovering log root tree.");
6288		goto error;
6289	}
6290
6291again:
6292	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6293	key.offset = (u64)-1;
6294	key.type = BTRFS_ROOT_ITEM_KEY;
6295
6296	while (1) {
6297		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6298
6299		if (ret < 0) {
6300			btrfs_handle_fs_error(fs_info, ret,
6301				    "Couldn't find tree log root.");
6302			goto error;
6303		}
6304		if (ret > 0) {
6305			if (path->slots[0] == 0)
6306				break;
6307			path->slots[0]--;
6308		}
6309		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6310				      path->slots[0]);
6311		btrfs_release_path(path);
6312		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6313			break;
6314
6315		log = btrfs_read_tree_root(log_root_tree, &found_key);
6316		if (IS_ERR(log)) {
6317			ret = PTR_ERR(log);
6318			btrfs_handle_fs_error(fs_info, ret,
6319				    "Couldn't read tree log root.");
6320			goto error;
6321		}
6322
6323		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6324						   true);
 
 
 
6325		if (IS_ERR(wc.replay_dest)) {
6326			ret = PTR_ERR(wc.replay_dest);
6327
6328			/*
6329			 * We didn't find the subvol, likely because it was
6330			 * deleted.  This is ok, simply skip this log and go to
6331			 * the next one.
6332			 *
6333			 * We need to exclude the root because we can't have
6334			 * other log replays overwriting this log as we'll read
6335			 * it back in a few more times.  This will keep our
6336			 * block from being modified, and we'll just bail for
6337			 * each subsequent pass.
6338			 */
6339			if (ret == -ENOENT)
6340				ret = btrfs_pin_extent_for_log_replay(trans,
6341							log->node->start,
6342							log->node->len);
6343			btrfs_put_root(log);
6344
6345			if (!ret)
6346				goto next;
6347			btrfs_handle_fs_error(fs_info, ret,
6348				"Couldn't read target root for tree log recovery.");
6349			goto error;
6350		}
6351
6352		wc.replay_dest->log_root = log;
6353		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6354		if (ret)
6355			/* The loop needs to continue due to the root refs */
6356			btrfs_handle_fs_error(fs_info, ret,
6357				"failed to record the log root in transaction");
6358		else
6359			ret = walk_log_tree(trans, log, &wc);
6360
6361		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6362			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6363						      path);
6364		}
6365
6366		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6367			struct btrfs_root *root = wc.replay_dest;
6368
6369			btrfs_release_path(path);
6370
6371			/*
6372			 * We have just replayed everything, and the highest
6373			 * objectid of fs roots probably has changed in case
6374			 * some inode_item's got replayed.
6375			 *
6376			 * root->objectid_mutex is not acquired as log replay
6377			 * could only happen during mount.
6378			 */
6379			ret = btrfs_init_root_free_objectid(root);
6380		}
6381
6382		wc.replay_dest->log_root = NULL;
6383		btrfs_put_root(wc.replay_dest);
6384		btrfs_put_root(log);
 
6385
6386		if (ret)
6387			goto error;
6388next:
6389		if (found_key.offset == 0)
6390			break;
6391		key.offset = found_key.offset - 1;
6392	}
6393	btrfs_release_path(path);
6394
6395	/* step one is to pin it all, step two is to replay just inodes */
6396	if (wc.pin) {
6397		wc.pin = 0;
6398		wc.process_func = replay_one_buffer;
6399		wc.stage = LOG_WALK_REPLAY_INODES;
6400		goto again;
6401	}
6402	/* step three is to replay everything */
6403	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6404		wc.stage++;
6405		goto again;
6406	}
6407
6408	btrfs_free_path(path);
6409
6410	/* step 4: commit the transaction, which also unpins the blocks */
6411	ret = btrfs_commit_transaction(trans);
6412	if (ret)
6413		return ret;
6414
 
6415	log_root_tree->log_root = NULL;
6416	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6417	btrfs_put_root(log_root_tree);
6418
6419	return 0;
6420error:
6421	if (wc.trans)
6422		btrfs_end_transaction(wc.trans);
6423	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6424	btrfs_free_path(path);
6425	return ret;
6426}
6427
6428/*
6429 * there are some corner cases where we want to force a full
6430 * commit instead of allowing a directory to be logged.
6431 *
6432 * They revolve around files there were unlinked from the directory, and
6433 * this function updates the parent directory so that a full commit is
6434 * properly done if it is fsync'd later after the unlinks are done.
6435 *
6436 * Must be called before the unlink operations (updates to the subvolume tree,
6437 * inodes, etc) are done.
6438 */
6439void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6440			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6441			     int for_rename)
6442{
6443	/*
6444	 * when we're logging a file, if it hasn't been renamed
6445	 * or unlinked, and its inode is fully committed on disk,
6446	 * we don't have to worry about walking up the directory chain
6447	 * to log its parents.
6448	 *
6449	 * So, we use the last_unlink_trans field to put this transid
6450	 * into the file.  When the file is logged we check it and
6451	 * don't log the parents if the file is fully on disk.
6452	 */
6453	mutex_lock(&inode->log_mutex);
6454	inode->last_unlink_trans = trans->transid;
6455	mutex_unlock(&inode->log_mutex);
6456
6457	/*
6458	 * if this directory was already logged any new
6459	 * names for this file/dir will get recorded
6460	 */
6461	if (dir->logged_trans == trans->transid)
 
6462		return;
6463
6464	/*
6465	 * if the inode we're about to unlink was logged,
6466	 * the log will be properly updated for any new names
6467	 */
6468	if (inode->logged_trans == trans->transid)
6469		return;
6470
6471	/*
6472	 * when renaming files across directories, if the directory
6473	 * there we're unlinking from gets fsync'd later on, there's
6474	 * no way to find the destination directory later and fsync it
6475	 * properly.  So, we have to be conservative and force commits
6476	 * so the new name gets discovered.
6477	 */
6478	if (for_rename)
6479		goto record;
6480
6481	/* we can safely do the unlink without any special recording */
6482	return;
6483
6484record:
6485	mutex_lock(&dir->log_mutex);
6486	dir->last_unlink_trans = trans->transid;
6487	mutex_unlock(&dir->log_mutex);
6488}
6489
6490/*
6491 * Make sure that if someone attempts to fsync the parent directory of a deleted
6492 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6493 * that after replaying the log tree of the parent directory's root we will not
6494 * see the snapshot anymore and at log replay time we will not see any log tree
6495 * corresponding to the deleted snapshot's root, which could lead to replaying
6496 * it after replaying the log tree of the parent directory (which would replay
6497 * the snapshot delete operation).
6498 *
6499 * Must be called before the actual snapshot destroy operation (updates to the
6500 * parent root and tree of tree roots trees, etc) are done.
6501 */
6502void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6503				   struct btrfs_inode *dir)
6504{
6505	mutex_lock(&dir->log_mutex);
6506	dir->last_unlink_trans = trans->transid;
6507	mutex_unlock(&dir->log_mutex);
6508}
6509
6510/*
6511 * Call this after adding a new name for a file and it will properly
6512 * update the log to reflect the new name.
 
 
 
6513 */
6514void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6515			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6516			struct dentry *parent)
6517{
6518	struct btrfs_log_ctx ctx;
 
6519
6520	/*
6521	 * this will force the logging code to walk the dentry chain
6522	 * up for the file
6523	 */
6524	if (!S_ISDIR(inode->vfs_inode.i_mode))
6525		inode->last_unlink_trans = trans->transid;
6526
6527	/*
6528	 * if this inode hasn't been logged and directory we're renaming it
6529	 * from hasn't been logged, we don't need to log it
6530	 */
6531	if (!inode_logged(trans, inode) &&
6532	    (!old_dir || !inode_logged(trans, old_dir)))
6533		return;
 
 
6534
6535	/*
6536	 * If we are doing a rename (old_dir is not NULL) from a directory that
6537	 * was previously logged, make sure the next log attempt on the directory
6538	 * is not skipped and logs the inode again. This is because the log may
6539	 * not currently be authoritative for a range including the old
6540	 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6541	 * sure after a log replay we do not end up with both the new and old
6542	 * dentries around (in case the inode is a directory we would have a
6543	 * directory with two hard links and 2 inode references for different
6544	 * parents). The next log attempt of old_dir will happen at
6545	 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6546	 * below, because we have previously set inode->last_unlink_trans to the
6547	 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6548	 * case inode is a directory.
6549	 */
6550	if (old_dir)
6551		old_dir->logged_trans = 0;
6552
6553	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6554	ctx.logging_new_name = true;
6555	/*
6556	 * We don't care about the return value. If we fail to log the new name
6557	 * then we know the next attempt to sync the log will fallback to a full
6558	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6559	 * we don't need to worry about getting a log committed that has an
6560	 * inconsistent state after a rename operation.
6561	 */
6562	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6563}
6564