Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/blkdev.h>
  22#include <linux/list_sort.h>
 
 
 
  23#include "tree-log.h"
  24#include "disk-io.h"
  25#include "locking.h"
  26#include "print-tree.h"
  27#include "backref.h"
  28#include "hash.h"
  29#include "compression.h"
  30#include "qgroup.h"
 
  31
  32/* magic values for the inode_only field in btrfs_log_inode:
  33 *
  34 * LOG_INODE_ALL means to log everything
  35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  36 * during log replay
  37 */
  38#define LOG_INODE_ALL 0
  39#define LOG_INODE_EXISTS 1
  40#define LOG_OTHER_INODE 2
 
 
 
  41
  42/*
  43 * directory trouble cases
  44 *
  45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  46 * log, we must force a full commit before doing an fsync of the directory
  47 * where the unlink was done.
  48 * ---> record transid of last unlink/rename per directory
  49 *
  50 * mkdir foo/some_dir
  51 * normal commit
  52 * rename foo/some_dir foo2/some_dir
  53 * mkdir foo/some_dir
  54 * fsync foo/some_dir/some_file
  55 *
  56 * The fsync above will unlink the original some_dir without recording
  57 * it in its new location (foo2).  After a crash, some_dir will be gone
  58 * unless the fsync of some_file forces a full commit
  59 *
  60 * 2) we must log any new names for any file or dir that is in the fsync
  61 * log. ---> check inode while renaming/linking.
  62 *
  63 * 2a) we must log any new names for any file or dir during rename
  64 * when the directory they are being removed from was logged.
  65 * ---> check inode and old parent dir during rename
  66 *
  67 *  2a is actually the more important variant.  With the extra logging
  68 *  a crash might unlink the old name without recreating the new one
  69 *
  70 * 3) after a crash, we must go through any directories with a link count
  71 * of zero and redo the rm -rf
  72 *
  73 * mkdir f1/foo
  74 * normal commit
  75 * rm -rf f1/foo
  76 * fsync(f1)
  77 *
  78 * The directory f1 was fully removed from the FS, but fsync was never
  79 * called on f1, only its parent dir.  After a crash the rm -rf must
  80 * be replayed.  This must be able to recurse down the entire
  81 * directory tree.  The inode link count fixup code takes care of the
  82 * ugly details.
  83 */
  84
  85/*
  86 * stages for the tree walking.  The first
  87 * stage (0) is to only pin down the blocks we find
  88 * the second stage (1) is to make sure that all the inodes
  89 * we find in the log are created in the subvolume.
  90 *
  91 * The last stage is to deal with directories and links and extents
  92 * and all the other fun semantics
  93 */
  94#define LOG_WALK_PIN_ONLY 0
  95#define LOG_WALK_REPLAY_INODES 1
  96#define LOG_WALK_REPLAY_DIR_INDEX 2
  97#define LOG_WALK_REPLAY_ALL 3
 
 
  98
  99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 100			   struct btrfs_root *root, struct inode *inode,
 101			   int inode_only,
 102			   const loff_t start,
 103			   const loff_t end,
 104			   struct btrfs_log_ctx *ctx);
 105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 106			     struct btrfs_root *root,
 107			     struct btrfs_path *path, u64 objectid);
 108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 109				       struct btrfs_root *root,
 110				       struct btrfs_root *log,
 111				       struct btrfs_path *path,
 112				       u64 dirid, int del_all);
 113
 114/*
 115 * tree logging is a special write ahead log used to make sure that
 116 * fsyncs and O_SYNCs can happen without doing full tree commits.
 117 *
 118 * Full tree commits are expensive because they require commonly
 119 * modified blocks to be recowed, creating many dirty pages in the
 120 * extent tree an 4x-6x higher write load than ext3.
 121 *
 122 * Instead of doing a tree commit on every fsync, we use the
 123 * key ranges and transaction ids to find items for a given file or directory
 124 * that have changed in this transaction.  Those items are copied into
 125 * a special tree (one per subvolume root), that tree is written to disk
 126 * and then the fsync is considered complete.
 127 *
 128 * After a crash, items are copied out of the log-tree back into the
 129 * subvolume tree.  Any file data extents found are recorded in the extent
 130 * allocation tree, and the log-tree freed.
 131 *
 132 * The log tree is read three times, once to pin down all the extents it is
 133 * using in ram and once, once to create all the inodes logged in the tree
 134 * and once to do all the other items.
 135 */
 136
 137/*
 138 * start a sub transaction and setup the log tree
 139 * this increments the log tree writer count to make the people
 140 * syncing the tree wait for us to finish
 141 */
 142static int start_log_trans(struct btrfs_trans_handle *trans,
 143			   struct btrfs_root *root,
 144			   struct btrfs_log_ctx *ctx)
 145{
 146	struct btrfs_fs_info *fs_info = root->fs_info;
 147	int ret = 0;
 148
 149	mutex_lock(&root->log_mutex);
 150
 151	if (root->log_root) {
 152		if (btrfs_need_log_full_commit(fs_info, trans)) {
 153			ret = -EAGAIN;
 154			goto out;
 155		}
 156
 157		if (!root->log_start_pid) {
 158			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 159			root->log_start_pid = current->pid;
 160		} else if (root->log_start_pid != current->pid) {
 161			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 162		}
 163	} else {
 164		mutex_lock(&fs_info->tree_log_mutex);
 165		if (!fs_info->log_root_tree)
 166			ret = btrfs_init_log_root_tree(trans, fs_info);
 167		mutex_unlock(&fs_info->tree_log_mutex);
 168		if (ret)
 169			goto out;
 170
 171		ret = btrfs_add_log_tree(trans, root);
 172		if (ret)
 173			goto out;
 174
 175		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 176		root->log_start_pid = current->pid;
 177	}
 178
 179	atomic_inc(&root->log_batch);
 180	atomic_inc(&root->log_writers);
 181	if (ctx) {
 182		int index = root->log_transid % 2;
 183		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 184		ctx->log_transid = root->log_transid;
 185	}
 186
 187out:
 188	mutex_unlock(&root->log_mutex);
 189	return ret;
 190}
 191
 192/*
 193 * returns 0 if there was a log transaction running and we were able
 194 * to join, or returns -ENOENT if there were not transactions
 195 * in progress
 196 */
 197static int join_running_log_trans(struct btrfs_root *root)
 198{
 199	int ret = -ENOENT;
 200
 201	smp_mb();
 202	if (!root->log_root)
 203		return -ENOENT;
 204
 205	mutex_lock(&root->log_mutex);
 206	if (root->log_root) {
 207		ret = 0;
 208		atomic_inc(&root->log_writers);
 209	}
 210	mutex_unlock(&root->log_mutex);
 211	return ret;
 212}
 213
 214/*
 215 * This either makes the current running log transaction wait
 216 * until you call btrfs_end_log_trans() or it makes any future
 217 * log transactions wait until you call btrfs_end_log_trans()
 218 */
 219int btrfs_pin_log_trans(struct btrfs_root *root)
 220{
 221	int ret = -ENOENT;
 222
 223	mutex_lock(&root->log_mutex);
 224	atomic_inc(&root->log_writers);
 225	mutex_unlock(&root->log_mutex);
 226	return ret;
 227}
 228
 229/*
 230 * indicate we're done making changes to the log tree
 231 * and wake up anyone waiting to do a sync
 232 */
 233void btrfs_end_log_trans(struct btrfs_root *root)
 234{
 235	if (atomic_dec_and_test(&root->log_writers)) {
 236		/*
 237		 * Implicit memory barrier after atomic_dec_and_test
 238		 */
 239		if (waitqueue_active(&root->log_writer_wait))
 240			wake_up(&root->log_writer_wait);
 241	}
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 244
 245/*
 246 * the walk control struct is used to pass state down the chain when
 247 * processing the log tree.  The stage field tells us which part
 248 * of the log tree processing we are currently doing.  The others
 249 * are state fields used for that specific part
 250 */
 251struct walk_control {
 252	/* should we free the extent on disk when done?  This is used
 253	 * at transaction commit time while freeing a log tree
 254	 */
 255	int free;
 256
 257	/* should we write out the extent buffer?  This is used
 258	 * while flushing the log tree to disk during a sync
 259	 */
 260	int write;
 261
 262	/* should we wait for the extent buffer io to finish?  Also used
 263	 * while flushing the log tree to disk for a sync
 264	 */
 265	int wait;
 266
 267	/* pin only walk, we record which extents on disk belong to the
 268	 * log trees
 269	 */
 270	int pin;
 271
 272	/* what stage of the replay code we're currently in */
 273	int stage;
 274
 
 
 
 
 
 
 
 275	/* the root we are currently replaying */
 276	struct btrfs_root *replay_dest;
 277
 278	/* the trans handle for the current replay */
 279	struct btrfs_trans_handle *trans;
 280
 281	/* the function that gets used to process blocks we find in the
 282	 * tree.  Note the extent_buffer might not be up to date when it is
 283	 * passed in, and it must be checked or read if you need the data
 284	 * inside it
 285	 */
 286	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 287			    struct walk_control *wc, u64 gen);
 288};
 289
 290/*
 291 * process_func used to pin down extents, write them or wait on them
 292 */
 293static int process_one_buffer(struct btrfs_root *log,
 294			      struct extent_buffer *eb,
 295			      struct walk_control *wc, u64 gen)
 296{
 297	struct btrfs_fs_info *fs_info = log->fs_info;
 298	int ret = 0;
 299
 300	/*
 301	 * If this fs is mixed then we need to be able to process the leaves to
 302	 * pin down any logged extents, so we have to read the block.
 303	 */
 304	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 305		ret = btrfs_read_buffer(eb, gen);
 306		if (ret)
 307			return ret;
 308	}
 309
 310	if (wc->pin)
 311		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 312						      eb->len);
 313
 314	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 315		if (wc->pin && btrfs_header_level(eb) == 0)
 316			ret = btrfs_exclude_logged_extents(fs_info, eb);
 317		if (wc->write)
 318			btrfs_write_tree_block(eb);
 319		if (wc->wait)
 320			btrfs_wait_tree_block_writeback(eb);
 321	}
 322	return ret;
 323}
 324
 325/*
 326 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 327 * to the src data we are copying out.
 328 *
 329 * root is the tree we are copying into, and path is a scratch
 330 * path for use in this function (it should be released on entry and
 331 * will be released on exit).
 332 *
 333 * If the key is already in the destination tree the existing item is
 334 * overwritten.  If the existing item isn't big enough, it is extended.
 335 * If it is too large, it is truncated.
 336 *
 337 * If the key isn't in the destination yet, a new item is inserted.
 338 */
 339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 340				   struct btrfs_root *root,
 341				   struct btrfs_path *path,
 342				   struct extent_buffer *eb, int slot,
 343				   struct btrfs_key *key)
 344{
 345	struct btrfs_fs_info *fs_info = root->fs_info;
 346	int ret;
 347	u32 item_size;
 348	u64 saved_i_size = 0;
 349	int save_old_i_size = 0;
 350	unsigned long src_ptr;
 351	unsigned long dst_ptr;
 352	int overwrite_root = 0;
 353	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 354
 355	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 356		overwrite_root = 1;
 357
 358	item_size = btrfs_item_size_nr(eb, slot);
 359	src_ptr = btrfs_item_ptr_offset(eb, slot);
 360
 361	/* look for the key in the destination tree */
 362	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 363	if (ret < 0)
 364		return ret;
 365
 366	if (ret == 0) {
 367		char *src_copy;
 368		char *dst_copy;
 369		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 370						  path->slots[0]);
 371		if (dst_size != item_size)
 372			goto insert;
 373
 374		if (item_size == 0) {
 375			btrfs_release_path(path);
 376			return 0;
 377		}
 378		dst_copy = kmalloc(item_size, GFP_NOFS);
 379		src_copy = kmalloc(item_size, GFP_NOFS);
 380		if (!dst_copy || !src_copy) {
 381			btrfs_release_path(path);
 382			kfree(dst_copy);
 383			kfree(src_copy);
 384			return -ENOMEM;
 385		}
 386
 387		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 388
 389		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 390		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 391				   item_size);
 392		ret = memcmp(dst_copy, src_copy, item_size);
 393
 394		kfree(dst_copy);
 395		kfree(src_copy);
 396		/*
 397		 * they have the same contents, just return, this saves
 398		 * us from cowing blocks in the destination tree and doing
 399		 * extra writes that may not have been done by a previous
 400		 * sync
 401		 */
 402		if (ret == 0) {
 403			btrfs_release_path(path);
 404			return 0;
 405		}
 406
 407		/*
 408		 * We need to load the old nbytes into the inode so when we
 409		 * replay the extents we've logged we get the right nbytes.
 410		 */
 411		if (inode_item) {
 412			struct btrfs_inode_item *item;
 413			u64 nbytes;
 414			u32 mode;
 415
 416			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 417					      struct btrfs_inode_item);
 418			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 419			item = btrfs_item_ptr(eb, slot,
 420					      struct btrfs_inode_item);
 421			btrfs_set_inode_nbytes(eb, item, nbytes);
 422
 423			/*
 424			 * If this is a directory we need to reset the i_size to
 425			 * 0 so that we can set it up properly when replaying
 426			 * the rest of the items in this log.
 427			 */
 428			mode = btrfs_inode_mode(eb, item);
 429			if (S_ISDIR(mode))
 430				btrfs_set_inode_size(eb, item, 0);
 431		}
 432	} else if (inode_item) {
 433		struct btrfs_inode_item *item;
 434		u32 mode;
 435
 436		/*
 437		 * New inode, set nbytes to 0 so that the nbytes comes out
 438		 * properly when we replay the extents.
 439		 */
 440		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 441		btrfs_set_inode_nbytes(eb, item, 0);
 442
 443		/*
 444		 * If this is a directory we need to reset the i_size to 0 so
 445		 * that we can set it up properly when replaying the rest of
 446		 * the items in this log.
 447		 */
 448		mode = btrfs_inode_mode(eb, item);
 449		if (S_ISDIR(mode))
 450			btrfs_set_inode_size(eb, item, 0);
 451	}
 452insert:
 453	btrfs_release_path(path);
 454	/* try to insert the key into the destination tree */
 455	path->skip_release_on_error = 1;
 456	ret = btrfs_insert_empty_item(trans, root, path,
 457				      key, item_size);
 458	path->skip_release_on_error = 0;
 459
 460	/* make sure any existing item is the correct size */
 461	if (ret == -EEXIST || ret == -EOVERFLOW) {
 462		u32 found_size;
 463		found_size = btrfs_item_size_nr(path->nodes[0],
 464						path->slots[0]);
 465		if (found_size > item_size)
 466			btrfs_truncate_item(fs_info, path, item_size, 1);
 467		else if (found_size < item_size)
 468			btrfs_extend_item(fs_info, path,
 469					  item_size - found_size);
 470	} else if (ret) {
 471		return ret;
 472	}
 473	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 474					path->slots[0]);
 475
 476	/* don't overwrite an existing inode if the generation number
 477	 * was logged as zero.  This is done when the tree logging code
 478	 * is just logging an inode to make sure it exists after recovery.
 479	 *
 480	 * Also, don't overwrite i_size on directories during replay.
 481	 * log replay inserts and removes directory items based on the
 482	 * state of the tree found in the subvolume, and i_size is modified
 483	 * as it goes
 484	 */
 485	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 486		struct btrfs_inode_item *src_item;
 487		struct btrfs_inode_item *dst_item;
 488
 489		src_item = (struct btrfs_inode_item *)src_ptr;
 490		dst_item = (struct btrfs_inode_item *)dst_ptr;
 491
 492		if (btrfs_inode_generation(eb, src_item) == 0) {
 493			struct extent_buffer *dst_eb = path->nodes[0];
 494			const u64 ino_size = btrfs_inode_size(eb, src_item);
 495
 496			/*
 497			 * For regular files an ino_size == 0 is used only when
 498			 * logging that an inode exists, as part of a directory
 499			 * fsync, and the inode wasn't fsynced before. In this
 500			 * case don't set the size of the inode in the fs/subvol
 501			 * tree, otherwise we would be throwing valid data away.
 502			 */
 503			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 504			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 505			    ino_size != 0) {
 506				struct btrfs_map_token token;
 507
 508				btrfs_init_map_token(&token);
 509				btrfs_set_token_inode_size(dst_eb, dst_item,
 510							   ino_size, &token);
 511			}
 512			goto no_copy;
 513		}
 514
 515		if (overwrite_root &&
 516		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 517		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 518			save_old_i_size = 1;
 519			saved_i_size = btrfs_inode_size(path->nodes[0],
 520							dst_item);
 521		}
 522	}
 523
 524	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 525			   src_ptr, item_size);
 526
 527	if (save_old_i_size) {
 528		struct btrfs_inode_item *dst_item;
 529		dst_item = (struct btrfs_inode_item *)dst_ptr;
 530		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 531	}
 532
 533	/* make sure the generation is filled in */
 534	if (key->type == BTRFS_INODE_ITEM_KEY) {
 535		struct btrfs_inode_item *dst_item;
 536		dst_item = (struct btrfs_inode_item *)dst_ptr;
 537		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 538			btrfs_set_inode_generation(path->nodes[0], dst_item,
 539						   trans->transid);
 540		}
 541	}
 542no_copy:
 543	btrfs_mark_buffer_dirty(path->nodes[0]);
 544	btrfs_release_path(path);
 545	return 0;
 546}
 547
 548/*
 549 * simple helper to read an inode off the disk from a given root
 550 * This can only be called for subvolume roots and not for the log
 551 */
 552static noinline struct inode *read_one_inode(struct btrfs_root *root,
 553					     u64 objectid)
 554{
 555	struct btrfs_key key;
 556	struct inode *inode;
 557
 558	key.objectid = objectid;
 559	key.type = BTRFS_INODE_ITEM_KEY;
 560	key.offset = 0;
 561	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 562	if (IS_ERR(inode)) {
 563		inode = NULL;
 564	} else if (is_bad_inode(inode)) {
 565		iput(inode);
 566		inode = NULL;
 567	}
 568	return inode;
 569}
 570
 571/* replays a single extent in 'eb' at 'slot' with 'key' into the
 572 * subvolume 'root'.  path is released on entry and should be released
 573 * on exit.
 574 *
 575 * extents in the log tree have not been allocated out of the extent
 576 * tree yet.  So, this completes the allocation, taking a reference
 577 * as required if the extent already exists or creating a new extent
 578 * if it isn't in the extent allocation tree yet.
 579 *
 580 * The extent is inserted into the file, dropping any existing extents
 581 * from the file that overlap the new one.
 582 */
 583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 584				      struct btrfs_root *root,
 585				      struct btrfs_path *path,
 586				      struct extent_buffer *eb, int slot,
 587				      struct btrfs_key *key)
 588{
 589	struct btrfs_fs_info *fs_info = root->fs_info;
 590	int found_type;
 591	u64 extent_end;
 592	u64 start = key->offset;
 593	u64 nbytes = 0;
 594	struct btrfs_file_extent_item *item;
 595	struct inode *inode = NULL;
 596	unsigned long size;
 597	int ret = 0;
 598
 599	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 600	found_type = btrfs_file_extent_type(eb, item);
 601
 602	if (found_type == BTRFS_FILE_EXTENT_REG ||
 603	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 604		nbytes = btrfs_file_extent_num_bytes(eb, item);
 605		extent_end = start + nbytes;
 606
 607		/*
 608		 * We don't add to the inodes nbytes if we are prealloc or a
 609		 * hole.
 610		 */
 611		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 612			nbytes = 0;
 613	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 614		size = btrfs_file_extent_inline_len(eb, slot, item);
 615		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 616		extent_end = ALIGN(start + size,
 617				   fs_info->sectorsize);
 618	} else {
 619		ret = 0;
 620		goto out;
 621	}
 622
 623	inode = read_one_inode(root, key->objectid);
 624	if (!inode) {
 625		ret = -EIO;
 626		goto out;
 627	}
 628
 629	/*
 630	 * first check to see if we already have this extent in the
 631	 * file.  This must be done before the btrfs_drop_extents run
 632	 * so we don't try to drop this extent.
 633	 */
 634	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 635				       start, 0);
 636
 637	if (ret == 0 &&
 638	    (found_type == BTRFS_FILE_EXTENT_REG ||
 639	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 640		struct btrfs_file_extent_item cmp1;
 641		struct btrfs_file_extent_item cmp2;
 642		struct btrfs_file_extent_item *existing;
 643		struct extent_buffer *leaf;
 644
 645		leaf = path->nodes[0];
 646		existing = btrfs_item_ptr(leaf, path->slots[0],
 647					  struct btrfs_file_extent_item);
 648
 649		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 650				   sizeof(cmp1));
 651		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 652				   sizeof(cmp2));
 653
 654		/*
 655		 * we already have a pointer to this exact extent,
 656		 * we don't have to do anything
 657		 */
 658		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 659			btrfs_release_path(path);
 660			goto out;
 661		}
 662	}
 663	btrfs_release_path(path);
 664
 665	/* drop any overlapping extents */
 666	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 667	if (ret)
 668		goto out;
 669
 670	if (found_type == BTRFS_FILE_EXTENT_REG ||
 671	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 672		u64 offset;
 673		unsigned long dest_offset;
 674		struct btrfs_key ins;
 675
 
 
 
 
 676		ret = btrfs_insert_empty_item(trans, root, path, key,
 677					      sizeof(*item));
 678		if (ret)
 679			goto out;
 680		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 681						    path->slots[0]);
 682		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 683				(unsigned long)item,  sizeof(*item));
 684
 685		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 686		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 687		ins.type = BTRFS_EXTENT_ITEM_KEY;
 688		offset = key->offset - btrfs_file_extent_offset(eb, item);
 689
 690		/*
 691		 * Manually record dirty extent, as here we did a shallow
 692		 * file extent item copy and skip normal backref update,
 693		 * but modifying extent tree all by ourselves.
 694		 * So need to manually record dirty extent for qgroup,
 695		 * as the owner of the file extent changed from log tree
 696		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 697		 */
 698		ret = btrfs_qgroup_trace_extent(trans, fs_info,
 699				btrfs_file_extent_disk_bytenr(eb, item),
 700				btrfs_file_extent_disk_num_bytes(eb, item),
 701				GFP_NOFS);
 702		if (ret < 0)
 703			goto out;
 704
 705		if (ins.objectid > 0) {
 
 706			u64 csum_start;
 707			u64 csum_end;
 708			LIST_HEAD(ordered_sums);
 
 709			/*
 710			 * is this extent already allocated in the extent
 711			 * allocation tree?  If so, just add a reference
 712			 */
 713			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 714						ins.offset);
 715			if (ret == 0) {
 716				ret = btrfs_inc_extent_ref(trans, fs_info,
 717						ins.objectid, ins.offset,
 718						0, root->root_key.objectid,
 
 
 719						key->objectid, offset);
 
 720				if (ret)
 721					goto out;
 722			} else {
 723				/*
 724				 * insert the extent pointer in the extent
 725				 * allocation tree
 726				 */
 727				ret = btrfs_alloc_logged_file_extent(trans,
 728						fs_info,
 729						root->root_key.objectid,
 730						key->objectid, offset, &ins);
 731				if (ret)
 732					goto out;
 733			}
 734			btrfs_release_path(path);
 735
 736			if (btrfs_file_extent_compression(eb, item)) {
 737				csum_start = ins.objectid;
 738				csum_end = csum_start + ins.offset;
 739			} else {
 740				csum_start = ins.objectid +
 741					btrfs_file_extent_offset(eb, item);
 742				csum_end = csum_start +
 743					btrfs_file_extent_num_bytes(eb, item);
 744			}
 745
 746			ret = btrfs_lookup_csums_range(root->log_root,
 747						csum_start, csum_end - 1,
 748						&ordered_sums, 0);
 749			if (ret)
 750				goto out;
 751			/*
 752			 * Now delete all existing cums in the csum root that
 753			 * cover our range. We do this because we can have an
 754			 * extent that is completely referenced by one file
 755			 * extent item and partially referenced by another
 756			 * file extent item (like after using the clone or
 757			 * extent_same ioctls). In this case if we end up doing
 758			 * the replay of the one that partially references the
 759			 * extent first, and we do not do the csum deletion
 760			 * below, we can get 2 csum items in the csum tree that
 761			 * overlap each other. For example, imagine our log has
 762			 * the two following file extent items:
 763			 *
 764			 * key (257 EXTENT_DATA 409600)
 765			 *     extent data disk byte 12845056 nr 102400
 766			 *     extent data offset 20480 nr 20480 ram 102400
 767			 *
 768			 * key (257 EXTENT_DATA 819200)
 769			 *     extent data disk byte 12845056 nr 102400
 770			 *     extent data offset 0 nr 102400 ram 102400
 771			 *
 772			 * Where the second one fully references the 100K extent
 773			 * that starts at disk byte 12845056, and the log tree
 774			 * has a single csum item that covers the entire range
 775			 * of the extent:
 776			 *
 777			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 778			 *
 779			 * After the first file extent item is replayed, the
 780			 * csum tree gets the following csum item:
 781			 *
 782			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 783			 *
 784			 * Which covers the 20K sub-range starting at offset 20K
 785			 * of our extent. Now when we replay the second file
 786			 * extent item, if we do not delete existing csum items
 787			 * that cover any of its blocks, we end up getting two
 788			 * csum items in our csum tree that overlap each other:
 789			 *
 790			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 791			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 792			 *
 793			 * Which is a problem, because after this anyone trying
 794			 * to lookup up for the checksum of any block of our
 795			 * extent starting at an offset of 40K or higher, will
 796			 * end up looking at the second csum item only, which
 797			 * does not contain the checksum for any block starting
 798			 * at offset 40K or higher of our extent.
 799			 */
 800			while (!list_empty(&ordered_sums)) {
 801				struct btrfs_ordered_sum *sums;
 802				sums = list_entry(ordered_sums.next,
 803						struct btrfs_ordered_sum,
 804						list);
 805				if (!ret)
 806					ret = btrfs_del_csums(trans, fs_info,
 807							      sums->bytenr,
 808							      sums->len);
 809				if (!ret)
 810					ret = btrfs_csum_file_blocks(trans,
 811						fs_info->csum_root, sums);
 812				list_del(&sums->list);
 813				kfree(sums);
 814			}
 815			if (ret)
 816				goto out;
 817		} else {
 818			btrfs_release_path(path);
 819		}
 820	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 821		/* inline extents are easy, we just overwrite them */
 822		ret = overwrite_item(trans, root, path, eb, slot, key);
 823		if (ret)
 824			goto out;
 825	}
 826
 827	inode_add_bytes(inode, nbytes);
 
 828	ret = btrfs_update_inode(trans, root, inode);
 829out:
 830	if (inode)
 831		iput(inode);
 832	return ret;
 833}
 834
 835/*
 836 * when cleaning up conflicts between the directory names in the
 837 * subvolume, directory names in the log and directory names in the
 838 * inode back references, we may have to unlink inodes from directories.
 839 *
 840 * This is a helper function to do the unlink of a specific directory
 841 * item
 842 */
 843static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 844				      struct btrfs_root *root,
 845				      struct btrfs_path *path,
 846				      struct inode *dir,
 847				      struct btrfs_dir_item *di)
 848{
 849	struct btrfs_fs_info *fs_info = root->fs_info;
 850	struct inode *inode;
 851	char *name;
 852	int name_len;
 853	struct extent_buffer *leaf;
 854	struct btrfs_key location;
 855	int ret;
 856
 857	leaf = path->nodes[0];
 858
 859	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 860	name_len = btrfs_dir_name_len(leaf, di);
 861	name = kmalloc(name_len, GFP_NOFS);
 862	if (!name)
 863		return -ENOMEM;
 864
 865	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 866	btrfs_release_path(path);
 867
 868	inode = read_one_inode(root, location.objectid);
 869	if (!inode) {
 870		ret = -EIO;
 871		goto out;
 872	}
 873
 874	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 875	if (ret)
 876		goto out;
 877
 878	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 
 879	if (ret)
 880		goto out;
 881	else
 882		ret = btrfs_run_delayed_items(trans, fs_info);
 883out:
 884	kfree(name);
 885	iput(inode);
 886	return ret;
 887}
 888
 889/*
 890 * helper function to see if a given name and sequence number found
 891 * in an inode back reference are already in a directory and correctly
 892 * point to this inode
 893 */
 894static noinline int inode_in_dir(struct btrfs_root *root,
 895				 struct btrfs_path *path,
 896				 u64 dirid, u64 objectid, u64 index,
 897				 const char *name, int name_len)
 898{
 899	struct btrfs_dir_item *di;
 900	struct btrfs_key location;
 901	int match = 0;
 902
 903	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 904					 index, name, name_len, 0);
 905	if (di && !IS_ERR(di)) {
 906		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 907		if (location.objectid != objectid)
 908			goto out;
 909	} else
 910		goto out;
 911	btrfs_release_path(path);
 912
 913	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 914	if (di && !IS_ERR(di)) {
 915		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 916		if (location.objectid != objectid)
 917			goto out;
 918	} else
 919		goto out;
 920	match = 1;
 921out:
 922	btrfs_release_path(path);
 923	return match;
 924}
 925
 926/*
 927 * helper function to check a log tree for a named back reference in
 928 * an inode.  This is used to decide if a back reference that is
 929 * found in the subvolume conflicts with what we find in the log.
 930 *
 931 * inode backreferences may have multiple refs in a single item,
 932 * during replay we process one reference at a time, and we don't
 933 * want to delete valid links to a file from the subvolume if that
 934 * link is also in the log.
 935 */
 936static noinline int backref_in_log(struct btrfs_root *log,
 937				   struct btrfs_key *key,
 938				   u64 ref_objectid,
 939				   const char *name, int namelen)
 940{
 941	struct btrfs_path *path;
 942	struct btrfs_inode_ref *ref;
 943	unsigned long ptr;
 944	unsigned long ptr_end;
 945	unsigned long name_ptr;
 946	int found_name_len;
 947	int item_size;
 948	int ret;
 949	int match = 0;
 950
 951	path = btrfs_alloc_path();
 952	if (!path)
 953		return -ENOMEM;
 954
 955	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 956	if (ret != 0)
 957		goto out;
 958
 959	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 960
 961	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 962		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
 963						   name, namelen, NULL))
 
 
 964			match = 1;
 965
 966		goto out;
 967	}
 968
 969	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 970	ptr_end = ptr + item_size;
 971	while (ptr < ptr_end) {
 972		ref = (struct btrfs_inode_ref *)ptr;
 973		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 974		if (found_name_len == namelen) {
 975			name_ptr = (unsigned long)(ref + 1);
 976			ret = memcmp_extent_buffer(path->nodes[0], name,
 977						   name_ptr, namelen);
 978			if (ret == 0) {
 979				match = 1;
 980				goto out;
 981			}
 982		}
 983		ptr = (unsigned long)(ref + 1) + found_name_len;
 984	}
 985out:
 986	btrfs_free_path(path);
 987	return match;
 988}
 989
 990static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 991				  struct btrfs_root *root,
 992				  struct btrfs_path *path,
 993				  struct btrfs_root *log_root,
 994				  struct inode *dir, struct inode *inode,
 995				  struct extent_buffer *eb,
 996				  u64 inode_objectid, u64 parent_objectid,
 997				  u64 ref_index, char *name, int namelen,
 998				  int *search_done)
 999{
1000	struct btrfs_fs_info *fs_info = root->fs_info;
1001	int ret;
1002	char *victim_name;
1003	int victim_name_len;
1004	struct extent_buffer *leaf;
1005	struct btrfs_dir_item *di;
1006	struct btrfs_key search_key;
1007	struct btrfs_inode_extref *extref;
1008
1009again:
1010	/* Search old style refs */
1011	search_key.objectid = inode_objectid;
1012	search_key.type = BTRFS_INODE_REF_KEY;
1013	search_key.offset = parent_objectid;
1014	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1015	if (ret == 0) {
1016		struct btrfs_inode_ref *victim_ref;
1017		unsigned long ptr;
1018		unsigned long ptr_end;
1019
1020		leaf = path->nodes[0];
1021
1022		/* are we trying to overwrite a back ref for the root directory
1023		 * if so, just jump out, we're done
1024		 */
1025		if (search_key.objectid == search_key.offset)
1026			return 1;
1027
1028		/* check all the names in this back reference to see
1029		 * if they are in the log.  if so, we allow them to stay
1030		 * otherwise they must be unlinked as a conflict
1031		 */
1032		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1033		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1034		while (ptr < ptr_end) {
1035			victim_ref = (struct btrfs_inode_ref *)ptr;
1036			victim_name_len = btrfs_inode_ref_name_len(leaf,
1037								   victim_ref);
1038			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1039			if (!victim_name)
1040				return -ENOMEM;
1041
1042			read_extent_buffer(leaf, victim_name,
1043					   (unsigned long)(victim_ref + 1),
1044					   victim_name_len);
1045
1046			if (!backref_in_log(log_root, &search_key,
1047					    parent_objectid,
1048					    victim_name,
1049					    victim_name_len)) {
1050				inc_nlink(inode);
1051				btrfs_release_path(path);
1052
1053				ret = btrfs_unlink_inode(trans, root, dir,
1054							 inode, victim_name,
1055							 victim_name_len);
1056				kfree(victim_name);
1057				if (ret)
1058					return ret;
1059				ret = btrfs_run_delayed_items(trans, fs_info);
1060				if (ret)
1061					return ret;
1062				*search_done = 1;
1063				goto again;
1064			}
1065			kfree(victim_name);
1066
1067			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1068		}
1069
1070		/*
1071		 * NOTE: we have searched root tree and checked the
1072		 * corresponding ref, it does not need to check again.
1073		 */
1074		*search_done = 1;
1075	}
1076	btrfs_release_path(path);
1077
1078	/* Same search but for extended refs */
1079	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1080					   inode_objectid, parent_objectid, 0,
1081					   0);
1082	if (!IS_ERR_OR_NULL(extref)) {
1083		u32 item_size;
1084		u32 cur_offset = 0;
1085		unsigned long base;
1086		struct inode *victim_parent;
1087
1088		leaf = path->nodes[0];
1089
1090		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1091		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1092
1093		while (cur_offset < item_size) {
1094			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1095
1096			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1097
1098			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1099				goto next;
1100
1101			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1102			if (!victim_name)
1103				return -ENOMEM;
1104			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1105					   victim_name_len);
1106
1107			search_key.objectid = inode_objectid;
1108			search_key.type = BTRFS_INODE_EXTREF_KEY;
1109			search_key.offset = btrfs_extref_hash(parent_objectid,
1110							      victim_name,
1111							      victim_name_len);
1112			ret = 0;
1113			if (!backref_in_log(log_root, &search_key,
1114					    parent_objectid, victim_name,
1115					    victim_name_len)) {
1116				ret = -ENOENT;
1117				victim_parent = read_one_inode(root,
1118							       parent_objectid);
1119				if (victim_parent) {
1120					inc_nlink(inode);
1121					btrfs_release_path(path);
1122
1123					ret = btrfs_unlink_inode(trans, root,
1124								 victim_parent,
1125								 inode,
1126								 victim_name,
1127								 victim_name_len);
1128					if (!ret)
1129						ret = btrfs_run_delayed_items(
1130								  trans,
1131								  fs_info);
1132				}
1133				iput(victim_parent);
1134				kfree(victim_name);
1135				if (ret)
1136					return ret;
1137				*search_done = 1;
1138				goto again;
1139			}
1140			kfree(victim_name);
1141			if (ret)
1142				return ret;
1143next:
1144			cur_offset += victim_name_len + sizeof(*extref);
1145		}
1146		*search_done = 1;
1147	}
1148	btrfs_release_path(path);
1149
1150	/* look for a conflicting sequence number */
1151	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1152					 ref_index, name, namelen, 0);
1153	if (di && !IS_ERR(di)) {
1154		ret = drop_one_dir_item(trans, root, path, dir, di);
1155		if (ret)
1156			return ret;
1157	}
1158	btrfs_release_path(path);
1159
1160	/* look for a conflicing name */
1161	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1162				   name, namelen, 0);
1163	if (di && !IS_ERR(di)) {
1164		ret = drop_one_dir_item(trans, root, path, dir, di);
1165		if (ret)
1166			return ret;
1167	}
1168	btrfs_release_path(path);
1169
1170	return 0;
1171}
1172
1173static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1174			     u32 *namelen, char **name, u64 *index,
1175			     u64 *parent_objectid)
1176{
1177	struct btrfs_inode_extref *extref;
1178
1179	extref = (struct btrfs_inode_extref *)ref_ptr;
1180
1181	*namelen = btrfs_inode_extref_name_len(eb, extref);
1182	*name = kmalloc(*namelen, GFP_NOFS);
1183	if (*name == NULL)
1184		return -ENOMEM;
1185
1186	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1187			   *namelen);
1188
1189	*index = btrfs_inode_extref_index(eb, extref);
 
1190	if (parent_objectid)
1191		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1192
1193	return 0;
1194}
1195
1196static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1197			  u32 *namelen, char **name, u64 *index)
1198{
1199	struct btrfs_inode_ref *ref;
1200
1201	ref = (struct btrfs_inode_ref *)ref_ptr;
1202
1203	*namelen = btrfs_inode_ref_name_len(eb, ref);
1204	*name = kmalloc(*namelen, GFP_NOFS);
1205	if (*name == NULL)
1206		return -ENOMEM;
1207
1208	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1209
1210	*index = btrfs_inode_ref_index(eb, ref);
 
1211
1212	return 0;
1213}
1214
1215/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216 * replay one inode back reference item found in the log tree.
1217 * eb, slot and key refer to the buffer and key found in the log tree.
1218 * root is the destination we are replaying into, and path is for temp
1219 * use by this function.  (it should be released on return).
1220 */
1221static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1222				  struct btrfs_root *root,
1223				  struct btrfs_root *log,
1224				  struct btrfs_path *path,
1225				  struct extent_buffer *eb, int slot,
1226				  struct btrfs_key *key)
1227{
1228	struct inode *dir = NULL;
1229	struct inode *inode = NULL;
1230	unsigned long ref_ptr;
1231	unsigned long ref_end;
1232	char *name = NULL;
1233	int namelen;
1234	int ret;
1235	int search_done = 0;
1236	int log_ref_ver = 0;
1237	u64 parent_objectid;
1238	u64 inode_objectid;
1239	u64 ref_index = 0;
1240	int ref_struct_size;
1241
1242	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1243	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1244
1245	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1246		struct btrfs_inode_extref *r;
1247
1248		ref_struct_size = sizeof(struct btrfs_inode_extref);
1249		log_ref_ver = 1;
1250		r = (struct btrfs_inode_extref *)ref_ptr;
1251		parent_objectid = btrfs_inode_extref_parent(eb, r);
1252	} else {
1253		ref_struct_size = sizeof(struct btrfs_inode_ref);
1254		parent_objectid = key->offset;
1255	}
1256	inode_objectid = key->objectid;
1257
1258	/*
1259	 * it is possible that we didn't log all the parent directories
1260	 * for a given inode.  If we don't find the dir, just don't
1261	 * copy the back ref in.  The link count fixup code will take
1262	 * care of the rest
1263	 */
1264	dir = read_one_inode(root, parent_objectid);
1265	if (!dir) {
1266		ret = -ENOENT;
1267		goto out;
1268	}
1269
1270	inode = read_one_inode(root, inode_objectid);
1271	if (!inode) {
1272		ret = -EIO;
1273		goto out;
1274	}
1275
1276	while (ref_ptr < ref_end) {
1277		if (log_ref_ver) {
1278			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1279						&ref_index, &parent_objectid);
1280			/*
1281			 * parent object can change from one array
1282			 * item to another.
1283			 */
1284			if (!dir)
1285				dir = read_one_inode(root, parent_objectid);
1286			if (!dir) {
1287				ret = -ENOENT;
1288				goto out;
1289			}
1290		} else {
1291			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1292					     &ref_index);
1293		}
1294		if (ret)
1295			goto out;
1296
1297		/* if we already have a perfect match, we're done */
1298		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1299				  ref_index, name, namelen)) {
 
1300			/*
1301			 * look for a conflicting back reference in the
1302			 * metadata. if we find one we have to unlink that name
1303			 * of the file before we add our new link.  Later on, we
1304			 * overwrite any existing back reference, and we don't
1305			 * want to create dangling pointers in the directory.
1306			 */
1307
1308			if (!search_done) {
1309				ret = __add_inode_ref(trans, root, path, log,
1310						      dir, inode, eb,
 
1311						      inode_objectid,
1312						      parent_objectid,
1313						      ref_index, name, namelen,
1314						      &search_done);
1315				if (ret) {
1316					if (ret == 1)
1317						ret = 0;
1318					goto out;
1319				}
1320			}
1321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322			/* insert our name */
1323			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1324					     0, ref_index);
1325			if (ret)
1326				goto out;
1327
1328			btrfs_update_inode(trans, root, inode);
1329		}
1330
1331		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1332		kfree(name);
1333		name = NULL;
1334		if (log_ref_ver) {
1335			iput(dir);
1336			dir = NULL;
1337		}
1338	}
1339
 
 
 
 
 
 
 
 
 
 
 
 
 
1340	/* finally write the back reference in the inode */
1341	ret = overwrite_item(trans, root, path, eb, slot, key);
1342out:
1343	btrfs_release_path(path);
1344	kfree(name);
1345	iput(dir);
1346	iput(inode);
1347	return ret;
1348}
1349
1350static int insert_orphan_item(struct btrfs_trans_handle *trans,
1351			      struct btrfs_root *root, u64 ino)
1352{
1353	int ret;
1354
1355	ret = btrfs_insert_orphan_item(trans, root, ino);
1356	if (ret == -EEXIST)
1357		ret = 0;
1358
1359	return ret;
1360}
1361
1362static int count_inode_extrefs(struct btrfs_root *root,
1363			       struct inode *inode, struct btrfs_path *path)
1364{
1365	int ret = 0;
1366	int name_len;
1367	unsigned int nlink = 0;
1368	u32 item_size;
1369	u32 cur_offset = 0;
1370	u64 inode_objectid = btrfs_ino(inode);
1371	u64 offset = 0;
1372	unsigned long ptr;
1373	struct btrfs_inode_extref *extref;
1374	struct extent_buffer *leaf;
1375
1376	while (1) {
1377		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1378					    &extref, &offset);
1379		if (ret)
1380			break;
1381
1382		leaf = path->nodes[0];
1383		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1384		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1385		cur_offset = 0;
1386
1387		while (cur_offset < item_size) {
1388			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1389			name_len = btrfs_inode_extref_name_len(leaf, extref);
1390
1391			nlink++;
1392
1393			cur_offset += name_len + sizeof(*extref);
1394		}
1395
1396		offset++;
1397		btrfs_release_path(path);
1398	}
1399	btrfs_release_path(path);
1400
1401	if (ret < 0 && ret != -ENOENT)
1402		return ret;
1403	return nlink;
1404}
1405
1406static int count_inode_refs(struct btrfs_root *root,
1407			       struct inode *inode, struct btrfs_path *path)
1408{
1409	int ret;
1410	struct btrfs_key key;
1411	unsigned int nlink = 0;
1412	unsigned long ptr;
1413	unsigned long ptr_end;
1414	int name_len;
1415	u64 ino = btrfs_ino(inode);
1416
1417	key.objectid = ino;
1418	key.type = BTRFS_INODE_REF_KEY;
1419	key.offset = (u64)-1;
1420
1421	while (1) {
1422		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423		if (ret < 0)
1424			break;
1425		if (ret > 0) {
1426			if (path->slots[0] == 0)
1427				break;
1428			path->slots[0]--;
1429		}
1430process_slot:
1431		btrfs_item_key_to_cpu(path->nodes[0], &key,
1432				      path->slots[0]);
1433		if (key.objectid != ino ||
1434		    key.type != BTRFS_INODE_REF_KEY)
1435			break;
1436		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1437		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1438						   path->slots[0]);
1439		while (ptr < ptr_end) {
1440			struct btrfs_inode_ref *ref;
1441
1442			ref = (struct btrfs_inode_ref *)ptr;
1443			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1444							    ref);
1445			ptr = (unsigned long)(ref + 1) + name_len;
1446			nlink++;
1447		}
1448
1449		if (key.offset == 0)
1450			break;
1451		if (path->slots[0] > 0) {
1452			path->slots[0]--;
1453			goto process_slot;
1454		}
1455		key.offset--;
1456		btrfs_release_path(path);
1457	}
1458	btrfs_release_path(path);
1459
1460	return nlink;
1461}
1462
1463/*
1464 * There are a few corners where the link count of the file can't
1465 * be properly maintained during replay.  So, instead of adding
1466 * lots of complexity to the log code, we just scan the backrefs
1467 * for any file that has been through replay.
1468 *
1469 * The scan will update the link count on the inode to reflect the
1470 * number of back refs found.  If it goes down to zero, the iput
1471 * will free the inode.
1472 */
1473static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1474					   struct btrfs_root *root,
1475					   struct inode *inode)
1476{
1477	struct btrfs_path *path;
1478	int ret;
1479	u64 nlink = 0;
1480	u64 ino = btrfs_ino(inode);
1481
1482	path = btrfs_alloc_path();
1483	if (!path)
1484		return -ENOMEM;
1485
1486	ret = count_inode_refs(root, inode, path);
1487	if (ret < 0)
1488		goto out;
1489
1490	nlink = ret;
1491
1492	ret = count_inode_extrefs(root, inode, path);
1493	if (ret < 0)
1494		goto out;
1495
1496	nlink += ret;
1497
1498	ret = 0;
1499
1500	if (nlink != inode->i_nlink) {
1501		set_nlink(inode, nlink);
1502		btrfs_update_inode(trans, root, inode);
1503	}
1504	BTRFS_I(inode)->index_cnt = (u64)-1;
1505
1506	if (inode->i_nlink == 0) {
1507		if (S_ISDIR(inode->i_mode)) {
1508			ret = replay_dir_deletes(trans, root, NULL, path,
1509						 ino, 1);
1510			if (ret)
1511				goto out;
1512		}
1513		ret = insert_orphan_item(trans, root, ino);
1514	}
1515
1516out:
1517	btrfs_free_path(path);
1518	return ret;
1519}
1520
1521static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1522					    struct btrfs_root *root,
1523					    struct btrfs_path *path)
1524{
1525	int ret;
1526	struct btrfs_key key;
1527	struct inode *inode;
1528
1529	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1530	key.type = BTRFS_ORPHAN_ITEM_KEY;
1531	key.offset = (u64)-1;
1532	while (1) {
1533		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534		if (ret < 0)
1535			break;
1536
1537		if (ret == 1) {
1538			if (path->slots[0] == 0)
1539				break;
1540			path->slots[0]--;
1541		}
1542
1543		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1544		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1545		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1546			break;
1547
1548		ret = btrfs_del_item(trans, root, path);
1549		if (ret)
1550			goto out;
1551
1552		btrfs_release_path(path);
1553		inode = read_one_inode(root, key.offset);
1554		if (!inode)
1555			return -EIO;
1556
1557		ret = fixup_inode_link_count(trans, root, inode);
1558		iput(inode);
1559		if (ret)
1560			goto out;
1561
1562		/*
1563		 * fixup on a directory may create new entries,
1564		 * make sure we always look for the highset possible
1565		 * offset
1566		 */
1567		key.offset = (u64)-1;
1568	}
1569	ret = 0;
1570out:
1571	btrfs_release_path(path);
1572	return ret;
1573}
1574
1575
1576/*
1577 * record a given inode in the fixup dir so we can check its link
1578 * count when replay is done.  The link count is incremented here
1579 * so the inode won't go away until we check it
1580 */
1581static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1582				      struct btrfs_root *root,
1583				      struct btrfs_path *path,
1584				      u64 objectid)
1585{
1586	struct btrfs_key key;
1587	int ret = 0;
1588	struct inode *inode;
1589
1590	inode = read_one_inode(root, objectid);
1591	if (!inode)
1592		return -EIO;
1593
1594	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1595	key.type = BTRFS_ORPHAN_ITEM_KEY;
1596	key.offset = objectid;
1597
1598	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1599
1600	btrfs_release_path(path);
1601	if (ret == 0) {
1602		if (!inode->i_nlink)
1603			set_nlink(inode, 1);
1604		else
1605			inc_nlink(inode);
1606		ret = btrfs_update_inode(trans, root, inode);
1607	} else if (ret == -EEXIST) {
1608		ret = 0;
1609	} else {
1610		BUG(); /* Logic Error */
1611	}
1612	iput(inode);
1613
1614	return ret;
1615}
1616
1617/*
1618 * when replaying the log for a directory, we only insert names
1619 * for inodes that actually exist.  This means an fsync on a directory
1620 * does not implicitly fsync all the new files in it
1621 */
1622static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1623				    struct btrfs_root *root,
1624				    u64 dirid, u64 index,
1625				    char *name, int name_len,
1626				    struct btrfs_key *location)
1627{
1628	struct inode *inode;
1629	struct inode *dir;
1630	int ret;
1631
1632	inode = read_one_inode(root, location->objectid);
1633	if (!inode)
1634		return -ENOENT;
1635
1636	dir = read_one_inode(root, dirid);
1637	if (!dir) {
1638		iput(inode);
1639		return -EIO;
1640	}
1641
1642	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 
1643
1644	/* FIXME, put inode into FIXUP list */
1645
1646	iput(inode);
1647	iput(dir);
1648	return ret;
1649}
1650
1651/*
1652 * Return true if an inode reference exists in the log for the given name,
1653 * inode and parent inode.
1654 */
1655static bool name_in_log_ref(struct btrfs_root *log_root,
1656			    const char *name, const int name_len,
1657			    const u64 dirid, const u64 ino)
1658{
1659	struct btrfs_key search_key;
1660
1661	search_key.objectid = ino;
1662	search_key.type = BTRFS_INODE_REF_KEY;
1663	search_key.offset = dirid;
1664	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1665		return true;
1666
1667	search_key.type = BTRFS_INODE_EXTREF_KEY;
1668	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1669	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1670		return true;
1671
1672	return false;
1673}
1674
1675/*
1676 * take a single entry in a log directory item and replay it into
1677 * the subvolume.
1678 *
1679 * if a conflicting item exists in the subdirectory already,
1680 * the inode it points to is unlinked and put into the link count
1681 * fix up tree.
1682 *
1683 * If a name from the log points to a file or directory that does
1684 * not exist in the FS, it is skipped.  fsyncs on directories
1685 * do not force down inodes inside that directory, just changes to the
1686 * names or unlinks in a directory.
1687 *
1688 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1689 * non-existing inode) and 1 if the name was replayed.
1690 */
1691static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1692				    struct btrfs_root *root,
1693				    struct btrfs_path *path,
1694				    struct extent_buffer *eb,
1695				    struct btrfs_dir_item *di,
1696				    struct btrfs_key *key)
1697{
1698	char *name;
1699	int name_len;
1700	struct btrfs_dir_item *dst_di;
1701	struct btrfs_key found_key;
1702	struct btrfs_key log_key;
1703	struct inode *dir;
1704	u8 log_type;
1705	int exists;
1706	int ret = 0;
1707	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1708	bool name_added = false;
1709
1710	dir = read_one_inode(root, key->objectid);
1711	if (!dir)
1712		return -EIO;
1713
1714	name_len = btrfs_dir_name_len(eb, di);
1715	name = kmalloc(name_len, GFP_NOFS);
1716	if (!name) {
1717		ret = -ENOMEM;
1718		goto out;
1719	}
1720
1721	log_type = btrfs_dir_type(eb, di);
1722	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1723		   name_len);
1724
1725	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1726	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1727	if (exists == 0)
1728		exists = 1;
1729	else
1730		exists = 0;
1731	btrfs_release_path(path);
1732
1733	if (key->type == BTRFS_DIR_ITEM_KEY) {
1734		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1735				       name, name_len, 1);
1736	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1737		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1738						     key->objectid,
1739						     key->offset, name,
1740						     name_len, 1);
1741	} else {
1742		/* Corruption */
1743		ret = -EINVAL;
1744		goto out;
1745	}
1746	if (IS_ERR_OR_NULL(dst_di)) {
1747		/* we need a sequence number to insert, so we only
1748		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749		 */
1750		if (key->type != BTRFS_DIR_INDEX_KEY)
1751			goto out;
1752		goto insert;
1753	}
1754
1755	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1756	/* the existing item matches the logged item */
1757	if (found_key.objectid == log_key.objectid &&
1758	    found_key.type == log_key.type &&
1759	    found_key.offset == log_key.offset &&
1760	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1761		update_size = false;
1762		goto out;
1763	}
1764
1765	/*
1766	 * don't drop the conflicting directory entry if the inode
1767	 * for the new entry doesn't exist
1768	 */
1769	if (!exists)
1770		goto out;
1771
1772	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1773	if (ret)
1774		goto out;
1775
1776	if (key->type == BTRFS_DIR_INDEX_KEY)
1777		goto insert;
1778out:
1779	btrfs_release_path(path);
1780	if (!ret && update_size) {
1781		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1782		ret = btrfs_update_inode(trans, root, dir);
1783	}
1784	kfree(name);
1785	iput(dir);
1786	if (!ret && name_added)
1787		ret = 1;
1788	return ret;
1789
1790insert:
1791	if (name_in_log_ref(root->log_root, name, name_len,
1792			    key->objectid, log_key.objectid)) {
1793		/* The dentry will be added later. */
1794		ret = 0;
1795		update_size = false;
1796		goto out;
1797	}
1798	btrfs_release_path(path);
1799	ret = insert_one_name(trans, root, key->objectid, key->offset,
1800			      name, name_len, &log_key);
1801	if (ret && ret != -ENOENT && ret != -EEXIST)
1802		goto out;
1803	if (!ret)
1804		name_added = true;
1805	update_size = false;
1806	ret = 0;
1807	goto out;
1808}
1809
1810/*
1811 * find all the names in a directory item and reconcile them into
1812 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1813 * one name in a directory item, but the same code gets used for
1814 * both directory index types
1815 */
1816static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1817					struct btrfs_root *root,
1818					struct btrfs_path *path,
1819					struct extent_buffer *eb, int slot,
1820					struct btrfs_key *key)
1821{
1822	struct btrfs_fs_info *fs_info = root->fs_info;
1823	int ret = 0;
1824	u32 item_size = btrfs_item_size_nr(eb, slot);
1825	struct btrfs_dir_item *di;
1826	int name_len;
1827	unsigned long ptr;
1828	unsigned long ptr_end;
1829	struct btrfs_path *fixup_path = NULL;
1830
1831	ptr = btrfs_item_ptr_offset(eb, slot);
1832	ptr_end = ptr + item_size;
1833	while (ptr < ptr_end) {
1834		di = (struct btrfs_dir_item *)ptr;
1835		if (verify_dir_item(fs_info, eb, di))
1836			return -EIO;
1837		name_len = btrfs_dir_name_len(eb, di);
1838		ret = replay_one_name(trans, root, path, eb, di, key);
1839		if (ret < 0)
1840			break;
1841		ptr = (unsigned long)(di + 1);
1842		ptr += name_len;
1843
1844		/*
1845		 * If this entry refers to a non-directory (directories can not
1846		 * have a link count > 1) and it was added in the transaction
1847		 * that was not committed, make sure we fixup the link count of
1848		 * the inode it the entry points to. Otherwise something like
1849		 * the following would result in a directory pointing to an
1850		 * inode with a wrong link that does not account for this dir
1851		 * entry:
1852		 *
1853		 * mkdir testdir
1854		 * touch testdir/foo
1855		 * touch testdir/bar
1856		 * sync
1857		 *
1858		 * ln testdir/bar testdir/bar_link
1859		 * ln testdir/foo testdir/foo_link
1860		 * xfs_io -c "fsync" testdir/bar
1861		 *
1862		 * <power failure>
1863		 *
1864		 * mount fs, log replay happens
1865		 *
1866		 * File foo would remain with a link count of 1 when it has two
1867		 * entries pointing to it in the directory testdir. This would
1868		 * make it impossible to ever delete the parent directory has
1869		 * it would result in stale dentries that can never be deleted.
1870		 */
1871		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1872			struct btrfs_key di_key;
1873
1874			if (!fixup_path) {
1875				fixup_path = btrfs_alloc_path();
1876				if (!fixup_path) {
1877					ret = -ENOMEM;
1878					break;
1879				}
1880			}
1881
1882			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1883			ret = link_to_fixup_dir(trans, root, fixup_path,
1884						di_key.objectid);
1885			if (ret)
1886				break;
1887		}
1888		ret = 0;
1889	}
1890	btrfs_free_path(fixup_path);
1891	return ret;
1892}
1893
1894/*
1895 * directory replay has two parts.  There are the standard directory
1896 * items in the log copied from the subvolume, and range items
1897 * created in the log while the subvolume was logged.
1898 *
1899 * The range items tell us which parts of the key space the log
1900 * is authoritative for.  During replay, if a key in the subvolume
1901 * directory is in a logged range item, but not actually in the log
1902 * that means it was deleted from the directory before the fsync
1903 * and should be removed.
1904 */
1905static noinline int find_dir_range(struct btrfs_root *root,
1906				   struct btrfs_path *path,
1907				   u64 dirid, int key_type,
1908				   u64 *start_ret, u64 *end_ret)
1909{
1910	struct btrfs_key key;
1911	u64 found_end;
1912	struct btrfs_dir_log_item *item;
1913	int ret;
1914	int nritems;
1915
1916	if (*start_ret == (u64)-1)
1917		return 1;
1918
1919	key.objectid = dirid;
1920	key.type = key_type;
1921	key.offset = *start_ret;
1922
1923	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924	if (ret < 0)
1925		goto out;
1926	if (ret > 0) {
1927		if (path->slots[0] == 0)
1928			goto out;
1929		path->slots[0]--;
1930	}
1931	if (ret != 0)
1932		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933
1934	if (key.type != key_type || key.objectid != dirid) {
1935		ret = 1;
1936		goto next;
1937	}
1938	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939			      struct btrfs_dir_log_item);
1940	found_end = btrfs_dir_log_end(path->nodes[0], item);
1941
1942	if (*start_ret >= key.offset && *start_ret <= found_end) {
1943		ret = 0;
1944		*start_ret = key.offset;
1945		*end_ret = found_end;
1946		goto out;
1947	}
1948	ret = 1;
1949next:
1950	/* check the next slot in the tree to see if it is a valid item */
1951	nritems = btrfs_header_nritems(path->nodes[0]);
1952	path->slots[0]++;
1953	if (path->slots[0] >= nritems) {
1954		ret = btrfs_next_leaf(root, path);
1955		if (ret)
1956			goto out;
1957	}
1958
1959	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1960
1961	if (key.type != key_type || key.objectid != dirid) {
1962		ret = 1;
1963		goto out;
1964	}
1965	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1966			      struct btrfs_dir_log_item);
1967	found_end = btrfs_dir_log_end(path->nodes[0], item);
1968	*start_ret = key.offset;
1969	*end_ret = found_end;
1970	ret = 0;
1971out:
1972	btrfs_release_path(path);
1973	return ret;
1974}
1975
1976/*
1977 * this looks for a given directory item in the log.  If the directory
1978 * item is not in the log, the item is removed and the inode it points
1979 * to is unlinked
1980 */
1981static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1982				      struct btrfs_root *root,
1983				      struct btrfs_root *log,
1984				      struct btrfs_path *path,
1985				      struct btrfs_path *log_path,
1986				      struct inode *dir,
1987				      struct btrfs_key *dir_key)
1988{
1989	struct btrfs_fs_info *fs_info = root->fs_info;
1990	int ret;
1991	struct extent_buffer *eb;
1992	int slot;
1993	u32 item_size;
1994	struct btrfs_dir_item *di;
1995	struct btrfs_dir_item *log_di;
1996	int name_len;
1997	unsigned long ptr;
1998	unsigned long ptr_end;
1999	char *name;
2000	struct inode *inode;
2001	struct btrfs_key location;
2002
2003again:
2004	eb = path->nodes[0];
2005	slot = path->slots[0];
2006	item_size = btrfs_item_size_nr(eb, slot);
2007	ptr = btrfs_item_ptr_offset(eb, slot);
2008	ptr_end = ptr + item_size;
2009	while (ptr < ptr_end) {
2010		di = (struct btrfs_dir_item *)ptr;
2011		if (verify_dir_item(fs_info, eb, di)) {
2012			ret = -EIO;
2013			goto out;
2014		}
2015
2016		name_len = btrfs_dir_name_len(eb, di);
2017		name = kmalloc(name_len, GFP_NOFS);
2018		if (!name) {
2019			ret = -ENOMEM;
2020			goto out;
2021		}
2022		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023				  name_len);
2024		log_di = NULL;
2025		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2026			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027						       dir_key->objectid,
2028						       name, name_len, 0);
2029		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2030			log_di = btrfs_lookup_dir_index_item(trans, log,
2031						     log_path,
2032						     dir_key->objectid,
2033						     dir_key->offset,
2034						     name, name_len, 0);
2035		}
2036		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2037			btrfs_dir_item_key_to_cpu(eb, di, &location);
2038			btrfs_release_path(path);
2039			btrfs_release_path(log_path);
2040			inode = read_one_inode(root, location.objectid);
2041			if (!inode) {
2042				kfree(name);
2043				return -EIO;
2044			}
2045
2046			ret = link_to_fixup_dir(trans, root,
2047						path, location.objectid);
2048			if (ret) {
2049				kfree(name);
2050				iput(inode);
2051				goto out;
2052			}
2053
2054			inc_nlink(inode);
2055			ret = btrfs_unlink_inode(trans, root, dir, inode,
2056						 name, name_len);
2057			if (!ret)
2058				ret = btrfs_run_delayed_items(trans, fs_info);
2059			kfree(name);
2060			iput(inode);
2061			if (ret)
2062				goto out;
2063
2064			/* there might still be more names under this key
2065			 * check and repeat if required
2066			 */
2067			ret = btrfs_search_slot(NULL, root, dir_key, path,
2068						0, 0);
2069			if (ret == 0)
2070				goto again;
2071			ret = 0;
2072			goto out;
2073		} else if (IS_ERR(log_di)) {
2074			kfree(name);
2075			return PTR_ERR(log_di);
2076		}
2077		btrfs_release_path(log_path);
2078		kfree(name);
2079
2080		ptr = (unsigned long)(di + 1);
2081		ptr += name_len;
2082	}
2083	ret = 0;
2084out:
2085	btrfs_release_path(path);
2086	btrfs_release_path(log_path);
2087	return ret;
2088}
2089
2090static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091			      struct btrfs_root *root,
2092			      struct btrfs_root *log,
2093			      struct btrfs_path *path,
2094			      const u64 ino)
2095{
2096	struct btrfs_key search_key;
2097	struct btrfs_path *log_path;
2098	int i;
2099	int nritems;
2100	int ret;
2101
2102	log_path = btrfs_alloc_path();
2103	if (!log_path)
2104		return -ENOMEM;
2105
2106	search_key.objectid = ino;
2107	search_key.type = BTRFS_XATTR_ITEM_KEY;
2108	search_key.offset = 0;
2109again:
2110	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111	if (ret < 0)
2112		goto out;
2113process_leaf:
2114	nritems = btrfs_header_nritems(path->nodes[0]);
2115	for (i = path->slots[0]; i < nritems; i++) {
2116		struct btrfs_key key;
2117		struct btrfs_dir_item *di;
2118		struct btrfs_dir_item *log_di;
2119		u32 total_size;
2120		u32 cur;
2121
2122		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124			ret = 0;
2125			goto out;
2126		}
2127
2128		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129		total_size = btrfs_item_size_nr(path->nodes[0], i);
2130		cur = 0;
2131		while (cur < total_size) {
2132			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134			u32 this_len = sizeof(*di) + name_len + data_len;
2135			char *name;
2136
2137			name = kmalloc(name_len, GFP_NOFS);
2138			if (!name) {
2139				ret = -ENOMEM;
2140				goto out;
2141			}
2142			read_extent_buffer(path->nodes[0], name,
2143					   (unsigned long)(di + 1), name_len);
2144
2145			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146						    name, name_len, 0);
2147			btrfs_release_path(log_path);
2148			if (!log_di) {
2149				/* Doesn't exist in log tree, so delete it. */
2150				btrfs_release_path(path);
2151				di = btrfs_lookup_xattr(trans, root, path, ino,
2152							name, name_len, -1);
2153				kfree(name);
2154				if (IS_ERR(di)) {
2155					ret = PTR_ERR(di);
2156					goto out;
2157				}
2158				ASSERT(di);
2159				ret = btrfs_delete_one_dir_name(trans, root,
2160								path, di);
2161				if (ret)
2162					goto out;
2163				btrfs_release_path(path);
2164				search_key = key;
2165				goto again;
2166			}
2167			kfree(name);
2168			if (IS_ERR(log_di)) {
2169				ret = PTR_ERR(log_di);
2170				goto out;
2171			}
2172			cur += this_len;
2173			di = (struct btrfs_dir_item *)((char *)di + this_len);
2174		}
2175	}
2176	ret = btrfs_next_leaf(root, path);
2177	if (ret > 0)
2178		ret = 0;
2179	else if (ret == 0)
2180		goto process_leaf;
2181out:
2182	btrfs_free_path(log_path);
2183	btrfs_release_path(path);
2184	return ret;
2185}
2186
2187
2188/*
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes.  It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2194 *
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2197 */
2198static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199				       struct btrfs_root *root,
2200				       struct btrfs_root *log,
2201				       struct btrfs_path *path,
2202				       u64 dirid, int del_all)
2203{
2204	u64 range_start;
2205	u64 range_end;
2206	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207	int ret = 0;
2208	struct btrfs_key dir_key;
2209	struct btrfs_key found_key;
2210	struct btrfs_path *log_path;
2211	struct inode *dir;
2212
2213	dir_key.objectid = dirid;
2214	dir_key.type = BTRFS_DIR_ITEM_KEY;
2215	log_path = btrfs_alloc_path();
2216	if (!log_path)
2217		return -ENOMEM;
2218
2219	dir = read_one_inode(root, dirid);
2220	/* it isn't an error if the inode isn't there, that can happen
2221	 * because we replay the deletes before we copy in the inode item
2222	 * from the log
2223	 */
2224	if (!dir) {
2225		btrfs_free_path(log_path);
2226		return 0;
2227	}
2228again:
2229	range_start = 0;
2230	range_end = 0;
2231	while (1) {
2232		if (del_all)
2233			range_end = (u64)-1;
2234		else {
2235			ret = find_dir_range(log, path, dirid, key_type,
2236					     &range_start, &range_end);
2237			if (ret != 0)
2238				break;
2239		}
2240
2241		dir_key.offset = range_start;
2242		while (1) {
2243			int nritems;
2244			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245						0, 0);
2246			if (ret < 0)
2247				goto out;
2248
2249			nritems = btrfs_header_nritems(path->nodes[0]);
2250			if (path->slots[0] >= nritems) {
2251				ret = btrfs_next_leaf(root, path);
2252				if (ret)
2253					break;
 
 
2254			}
2255			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256					      path->slots[0]);
2257			if (found_key.objectid != dirid ||
2258			    found_key.type != dir_key.type)
2259				goto next_type;
2260
2261			if (found_key.offset > range_end)
2262				break;
2263
2264			ret = check_item_in_log(trans, root, log, path,
2265						log_path, dir,
2266						&found_key);
2267			if (ret)
2268				goto out;
2269			if (found_key.offset == (u64)-1)
2270				break;
2271			dir_key.offset = found_key.offset + 1;
2272		}
2273		btrfs_release_path(path);
2274		if (range_end == (u64)-1)
2275			break;
2276		range_start = range_end + 1;
2277	}
2278
2279next_type:
2280	ret = 0;
2281	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283		dir_key.type = BTRFS_DIR_INDEX_KEY;
2284		btrfs_release_path(path);
2285		goto again;
2286	}
2287out:
2288	btrfs_release_path(path);
2289	btrfs_free_path(log_path);
2290	iput(dir);
2291	return ret;
2292}
2293
2294/*
2295 * the process_func used to replay items from the log tree.  This
2296 * gets called in two different stages.  The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2298 *
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume.  The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2304 */
2305static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306			     struct walk_control *wc, u64 gen)
2307{
2308	int nritems;
2309	struct btrfs_path *path;
2310	struct btrfs_root *root = wc->replay_dest;
2311	struct btrfs_key key;
2312	int level;
2313	int i;
2314	int ret;
2315
2316	ret = btrfs_read_buffer(eb, gen);
2317	if (ret)
2318		return ret;
2319
2320	level = btrfs_header_level(eb);
2321
2322	if (level != 0)
2323		return 0;
2324
2325	path = btrfs_alloc_path();
2326	if (!path)
2327		return -ENOMEM;
2328
2329	nritems = btrfs_header_nritems(eb);
2330	for (i = 0; i < nritems; i++) {
2331		btrfs_item_key_to_cpu(eb, &key, i);
2332
2333		/* inode keys are done during the first stage */
2334		if (key.type == BTRFS_INODE_ITEM_KEY &&
2335		    wc->stage == LOG_WALK_REPLAY_INODES) {
2336			struct btrfs_inode_item *inode_item;
2337			u32 mode;
2338
2339			inode_item = btrfs_item_ptr(eb, i,
2340					    struct btrfs_inode_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341			ret = replay_xattr_deletes(wc->trans, root, log,
2342						   path, key.objectid);
2343			if (ret)
2344				break;
2345			mode = btrfs_inode_mode(eb, inode_item);
2346			if (S_ISDIR(mode)) {
2347				ret = replay_dir_deletes(wc->trans,
2348					 root, log, path, key.objectid, 0);
2349				if (ret)
2350					break;
2351			}
2352			ret = overwrite_item(wc->trans, root, path,
2353					     eb, i, &key);
2354			if (ret)
2355				break;
2356
2357			/* for regular files, make sure corresponding
2358			 * orphan item exist. extents past the new EOF
2359			 * will be truncated later by orphan cleanup.
 
 
 
 
2360			 */
2361			if (S_ISREG(mode)) {
2362				ret = insert_orphan_item(wc->trans, root,
2363							 key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364				if (ret)
2365					break;
2366			}
2367
2368			ret = link_to_fixup_dir(wc->trans, root,
2369						path, key.objectid);
2370			if (ret)
2371				break;
2372		}
2373
 
 
 
2374		if (key.type == BTRFS_DIR_INDEX_KEY &&
2375		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376			ret = replay_one_dir_item(wc->trans, root, path,
2377						  eb, i, &key);
2378			if (ret)
2379				break;
2380		}
2381
2382		if (wc->stage < LOG_WALK_REPLAY_ALL)
2383			continue;
2384
2385		/* these keys are simply copied */
2386		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387			ret = overwrite_item(wc->trans, root, path,
2388					     eb, i, &key);
2389			if (ret)
2390				break;
2391		} else if (key.type == BTRFS_INODE_REF_KEY ||
2392			   key.type == BTRFS_INODE_EXTREF_KEY) {
2393			ret = add_inode_ref(wc->trans, root, log, path,
2394					    eb, i, &key);
2395			if (ret && ret != -ENOENT)
2396				break;
2397			ret = 0;
2398		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399			ret = replay_one_extent(wc->trans, root, path,
2400						eb, i, &key);
2401			if (ret)
2402				break;
2403		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2404			ret = replay_one_dir_item(wc->trans, root, path,
2405						  eb, i, &key);
2406			if (ret)
2407				break;
2408		}
2409	}
2410	btrfs_free_path(path);
2411	return ret;
2412}
2413
2414static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2415				   struct btrfs_root *root,
2416				   struct btrfs_path *path, int *level,
2417				   struct walk_control *wc)
2418{
2419	struct btrfs_fs_info *fs_info = root->fs_info;
2420	u64 root_owner;
2421	u64 bytenr;
2422	u64 ptr_gen;
2423	struct extent_buffer *next;
2424	struct extent_buffer *cur;
2425	struct extent_buffer *parent;
2426	u32 blocksize;
2427	int ret = 0;
2428
2429	WARN_ON(*level < 0);
2430	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431
2432	while (*level > 0) {
 
 
2433		WARN_ON(*level < 0);
2434		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435		cur = path->nodes[*level];
2436
2437		WARN_ON(btrfs_header_level(cur) != *level);
2438
2439		if (path->slots[*level] >=
2440		    btrfs_header_nritems(cur))
2441			break;
2442
2443		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
 
2445		blocksize = fs_info->nodesize;
2446
2447		parent = path->nodes[*level];
2448		root_owner = btrfs_header_owner(parent);
2449
2450		next = btrfs_find_create_tree_block(fs_info, bytenr);
2451		if (IS_ERR(next))
2452			return PTR_ERR(next);
2453
2454		if (*level == 1) {
2455			ret = wc->process_func(root, next, wc, ptr_gen);
 
2456			if (ret) {
2457				free_extent_buffer(next);
2458				return ret;
2459			}
2460
2461			path->slots[*level]++;
2462			if (wc->free) {
2463				ret = btrfs_read_buffer(next, ptr_gen);
 
2464				if (ret) {
2465					free_extent_buffer(next);
2466					return ret;
2467				}
2468
2469				if (trans) {
2470					btrfs_tree_lock(next);
2471					btrfs_set_lock_blocking(next);
2472					clean_tree_block(trans, fs_info, next);
2473					btrfs_wait_tree_block_writeback(next);
2474					btrfs_tree_unlock(next);
 
 
 
2475				}
2476
2477				WARN_ON(root_owner !=
2478					BTRFS_TREE_LOG_OBJECTID);
2479				ret = btrfs_free_and_pin_reserved_extent(
2480							fs_info, bytenr,
2481							blocksize);
2482				if (ret) {
2483					free_extent_buffer(next);
2484					return ret;
2485				}
2486			}
2487			free_extent_buffer(next);
2488			continue;
2489		}
2490		ret = btrfs_read_buffer(next, ptr_gen);
2491		if (ret) {
2492			free_extent_buffer(next);
2493			return ret;
2494		}
2495
2496		WARN_ON(*level <= 0);
2497		if (path->nodes[*level-1])
2498			free_extent_buffer(path->nodes[*level-1]);
2499		path->nodes[*level-1] = next;
2500		*level = btrfs_header_level(next);
2501		path->slots[*level] = 0;
2502		cond_resched();
2503	}
2504	WARN_ON(*level < 0);
2505	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2506
2507	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2508
2509	cond_resched();
2510	return 0;
2511}
2512
2513static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2514				 struct btrfs_root *root,
2515				 struct btrfs_path *path, int *level,
2516				 struct walk_control *wc)
2517{
2518	struct btrfs_fs_info *fs_info = root->fs_info;
2519	u64 root_owner;
2520	int i;
2521	int slot;
2522	int ret;
2523
2524	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2525		slot = path->slots[i];
2526		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2527			path->slots[i]++;
2528			*level = i;
2529			WARN_ON(*level == 0);
2530			return 0;
2531		} else {
2532			struct extent_buffer *parent;
2533			if (path->nodes[*level] == root->node)
2534				parent = path->nodes[*level];
2535			else
2536				parent = path->nodes[*level + 1];
2537
2538			root_owner = btrfs_header_owner(parent);
2539			ret = wc->process_func(root, path->nodes[*level], wc,
2540				 btrfs_header_generation(path->nodes[*level]));
 
2541			if (ret)
2542				return ret;
2543
2544			if (wc->free) {
2545				struct extent_buffer *next;
2546
2547				next = path->nodes[*level];
2548
2549				if (trans) {
2550					btrfs_tree_lock(next);
2551					btrfs_set_lock_blocking(next);
2552					clean_tree_block(trans, fs_info, next);
2553					btrfs_wait_tree_block_writeback(next);
2554					btrfs_tree_unlock(next);
 
 
 
2555				}
2556
2557				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2558				ret = btrfs_free_and_pin_reserved_extent(
2559						fs_info,
2560						path->nodes[*level]->start,
2561						path->nodes[*level]->len);
2562				if (ret)
2563					return ret;
2564			}
2565			free_extent_buffer(path->nodes[*level]);
2566			path->nodes[*level] = NULL;
2567			*level = i + 1;
2568		}
2569	}
2570	return 1;
2571}
2572
2573/*
2574 * drop the reference count on the tree rooted at 'snap'.  This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2576 * decremented.
2577 */
2578static int walk_log_tree(struct btrfs_trans_handle *trans,
2579			 struct btrfs_root *log, struct walk_control *wc)
2580{
2581	struct btrfs_fs_info *fs_info = log->fs_info;
2582	int ret = 0;
2583	int wret;
2584	int level;
2585	struct btrfs_path *path;
2586	int orig_level;
2587
2588	path = btrfs_alloc_path();
2589	if (!path)
2590		return -ENOMEM;
2591
2592	level = btrfs_header_level(log->node);
2593	orig_level = level;
2594	path->nodes[level] = log->node;
2595	extent_buffer_get(log->node);
2596	path->slots[level] = 0;
2597
2598	while (1) {
2599		wret = walk_down_log_tree(trans, log, path, &level, wc);
2600		if (wret > 0)
2601			break;
2602		if (wret < 0) {
2603			ret = wret;
2604			goto out;
2605		}
2606
2607		wret = walk_up_log_tree(trans, log, path, &level, wc);
2608		if (wret > 0)
2609			break;
2610		if (wret < 0) {
2611			ret = wret;
2612			goto out;
2613		}
2614	}
2615
2616	/* was the root node processed? if not, catch it here */
2617	if (path->nodes[orig_level]) {
2618		ret = wc->process_func(log, path->nodes[orig_level], wc,
2619			 btrfs_header_generation(path->nodes[orig_level]));
 
2620		if (ret)
2621			goto out;
2622		if (wc->free) {
2623			struct extent_buffer *next;
2624
2625			next = path->nodes[orig_level];
2626
2627			if (trans) {
2628				btrfs_tree_lock(next);
2629				btrfs_set_lock_blocking(next);
2630				clean_tree_block(trans, fs_info, next);
2631				btrfs_wait_tree_block_writeback(next);
2632				btrfs_tree_unlock(next);
 
 
 
2633			}
2634
2635			WARN_ON(log->root_key.objectid !=
2636				BTRFS_TREE_LOG_OBJECTID);
2637			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2638							next->start, next->len);
2639			if (ret)
2640				goto out;
2641		}
2642	}
2643
2644out:
2645	btrfs_free_path(path);
2646	return ret;
2647}
2648
2649/*
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2652 */
2653static int update_log_root(struct btrfs_trans_handle *trans,
2654			   struct btrfs_root *log)
 
2655{
2656	struct btrfs_fs_info *fs_info = log->fs_info;
2657	int ret;
2658
2659	if (log->log_transid == 1) {
2660		/* insert root item on the first sync */
2661		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2662				&log->root_key, &log->root_item);
2663	} else {
2664		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2665				&log->root_key, &log->root_item);
2666	}
2667	return ret;
2668}
2669
2670static void wait_log_commit(struct btrfs_root *root, int transid)
2671{
2672	DEFINE_WAIT(wait);
2673	int index = transid % 2;
2674
2675	/*
2676	 * we only allow two pending log transactions at a time,
2677	 * so we know that if ours is more than 2 older than the
2678	 * current transaction, we're done
2679	 */
2680	do {
2681		prepare_to_wait(&root->log_commit_wait[index],
2682				&wait, TASK_UNINTERRUPTIBLE);
2683		mutex_unlock(&root->log_mutex);
2684
2685		if (root->log_transid_committed < transid &&
2686		    atomic_read(&root->log_commit[index]))
2687			schedule();
2688
2689		finish_wait(&root->log_commit_wait[index], &wait);
 
2690		mutex_lock(&root->log_mutex);
2691	} while (root->log_transid_committed < transid &&
2692		 atomic_read(&root->log_commit[index]));
2693}
2694
2695static void wait_for_writer(struct btrfs_root *root)
2696{
2697	DEFINE_WAIT(wait);
2698
2699	while (atomic_read(&root->log_writers)) {
2700		prepare_to_wait(&root->log_writer_wait,
2701				&wait, TASK_UNINTERRUPTIBLE);
 
 
 
2702		mutex_unlock(&root->log_mutex);
2703		if (atomic_read(&root->log_writers))
2704			schedule();
2705		finish_wait(&root->log_writer_wait, &wait);
2706		mutex_lock(&root->log_mutex);
2707	}
 
2708}
2709
2710static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2711					struct btrfs_log_ctx *ctx)
2712{
2713	if (!ctx)
2714		return;
2715
2716	mutex_lock(&root->log_mutex);
2717	list_del_init(&ctx->list);
2718	mutex_unlock(&root->log_mutex);
2719}
2720
2721/* 
2722 * Invoked in log mutex context, or be sure there is no other task which
2723 * can access the list.
2724 */
2725static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2726					     int index, int error)
2727{
2728	struct btrfs_log_ctx *ctx;
2729	struct btrfs_log_ctx *safe;
2730
2731	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2732		list_del_init(&ctx->list);
2733		ctx->log_ret = error;
2734	}
2735
2736	INIT_LIST_HEAD(&root->log_ctxs[index]);
2737}
2738
2739/*
2740 * btrfs_sync_log does sends a given tree log down to the disk and
2741 * updates the super blocks to record it.  When this call is done,
2742 * you know that any inodes previously logged are safely on disk only
2743 * if it returns 0.
2744 *
2745 * Any other return value means you need to call btrfs_commit_transaction.
2746 * Some of the edge cases for fsyncing directories that have had unlinks
2747 * or renames done in the past mean that sometimes the only safe
2748 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2749 * that has happened.
2750 */
2751int btrfs_sync_log(struct btrfs_trans_handle *trans,
2752		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2753{
2754	int index1;
2755	int index2;
2756	int mark;
2757	int ret;
2758	struct btrfs_fs_info *fs_info = root->fs_info;
2759	struct btrfs_root *log = root->log_root;
2760	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
 
2761	int log_transid = 0;
2762	struct btrfs_log_ctx root_log_ctx;
2763	struct blk_plug plug;
2764
2765	mutex_lock(&root->log_mutex);
2766	log_transid = ctx->log_transid;
2767	if (root->log_transid_committed >= log_transid) {
2768		mutex_unlock(&root->log_mutex);
2769		return ctx->log_ret;
2770	}
2771
2772	index1 = log_transid % 2;
2773	if (atomic_read(&root->log_commit[index1])) {
2774		wait_log_commit(root, log_transid);
2775		mutex_unlock(&root->log_mutex);
2776		return ctx->log_ret;
2777	}
2778	ASSERT(log_transid == root->log_transid);
2779	atomic_set(&root->log_commit[index1], 1);
2780
2781	/* wait for previous tree log sync to complete */
2782	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2783		wait_log_commit(root, log_transid - 1);
2784
2785	while (1) {
2786		int batch = atomic_read(&root->log_batch);
2787		/* when we're on an ssd, just kick the log commit out */
2788		if (!btrfs_test_opt(fs_info, SSD) &&
2789		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2790			mutex_unlock(&root->log_mutex);
2791			schedule_timeout_uninterruptible(1);
2792			mutex_lock(&root->log_mutex);
2793		}
2794		wait_for_writer(root);
2795		if (batch == atomic_read(&root->log_batch))
2796			break;
2797	}
2798
2799	/* bail out if we need to do a full commit */
2800	if (btrfs_need_log_full_commit(fs_info, trans)) {
2801		ret = -EAGAIN;
2802		btrfs_free_logged_extents(log, log_transid);
2803		mutex_unlock(&root->log_mutex);
2804		goto out;
2805	}
2806
2807	if (log_transid % 2 == 0)
2808		mark = EXTENT_DIRTY;
2809	else
2810		mark = EXTENT_NEW;
2811
2812	/* we start IO on  all the marked extents here, but we don't actually
2813	 * wait for them until later.
2814	 */
2815	blk_start_plug(&plug);
2816	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2817	if (ret) {
2818		blk_finish_plug(&plug);
2819		btrfs_abort_transaction(trans, ret);
2820		btrfs_free_logged_extents(log, log_transid);
2821		btrfs_set_log_full_commit(fs_info, trans);
2822		mutex_unlock(&root->log_mutex);
2823		goto out;
2824	}
2825
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	btrfs_set_root_node(&log->root_item, log->node);
 
2827
2828	root->log_transid++;
2829	log->log_transid = root->log_transid;
2830	root->log_start_pid = 0;
2831	/*
2832	 * IO has been started, blocks of the log tree have WRITTEN flag set
2833	 * in their headers. new modifications of the log will be written to
2834	 * new positions. so it's safe to allow log writers to go in.
2835	 */
2836	mutex_unlock(&root->log_mutex);
2837
2838	btrfs_init_log_ctx(&root_log_ctx, NULL);
2839
2840	mutex_lock(&log_root_tree->log_mutex);
2841	atomic_inc(&log_root_tree->log_batch);
2842	atomic_inc(&log_root_tree->log_writers);
2843
2844	index2 = log_root_tree->log_transid % 2;
2845	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2846	root_log_ctx.log_transid = log_root_tree->log_transid;
2847
2848	mutex_unlock(&log_root_tree->log_mutex);
2849
2850	ret = update_log_root(trans, log);
2851
2852	mutex_lock(&log_root_tree->log_mutex);
 
 
 
 
 
 
 
 
2853	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2854		/*
2855		 * Implicit memory barrier after atomic_dec_and_test
2856		 */
2857		if (waitqueue_active(&log_root_tree->log_writer_wait))
2858			wake_up(&log_root_tree->log_writer_wait);
2859	}
2860
2861	if (ret) {
2862		if (!list_empty(&root_log_ctx.list))
2863			list_del_init(&root_log_ctx.list);
2864
2865		blk_finish_plug(&plug);
2866		btrfs_set_log_full_commit(fs_info, trans);
2867
2868		if (ret != -ENOSPC) {
2869			btrfs_abort_transaction(trans, ret);
2870			mutex_unlock(&log_root_tree->log_mutex);
2871			goto out;
2872		}
2873		btrfs_wait_tree_log_extents(log, mark);
2874		btrfs_free_logged_extents(log, log_transid);
2875		mutex_unlock(&log_root_tree->log_mutex);
2876		ret = -EAGAIN;
2877		goto out;
2878	}
2879
2880	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2881		blk_finish_plug(&plug);
2882		list_del_init(&root_log_ctx.list);
2883		mutex_unlock(&log_root_tree->log_mutex);
2884		ret = root_log_ctx.log_ret;
2885		goto out;
2886	}
2887
2888	index2 = root_log_ctx.log_transid % 2;
2889	if (atomic_read(&log_root_tree->log_commit[index2])) {
2890		blk_finish_plug(&plug);
2891		ret = btrfs_wait_tree_log_extents(log, mark);
2892		btrfs_wait_logged_extents(trans, log, log_transid);
2893		wait_log_commit(log_root_tree,
2894				root_log_ctx.log_transid);
2895		mutex_unlock(&log_root_tree->log_mutex);
2896		if (!ret)
2897			ret = root_log_ctx.log_ret;
2898		goto out;
2899	}
2900	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2901	atomic_set(&log_root_tree->log_commit[index2], 1);
2902
2903	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2904		wait_log_commit(log_root_tree,
2905				root_log_ctx.log_transid - 1);
2906	}
2907
2908	wait_for_writer(log_root_tree);
2909
2910	/*
2911	 * now that we've moved on to the tree of log tree roots,
2912	 * check the full commit flag again
2913	 */
2914	if (btrfs_need_log_full_commit(fs_info, trans)) {
2915		blk_finish_plug(&plug);
2916		btrfs_wait_tree_log_extents(log, mark);
2917		btrfs_free_logged_extents(log, log_transid);
2918		mutex_unlock(&log_root_tree->log_mutex);
2919		ret = -EAGAIN;
2920		goto out_wake_log_root;
2921	}
2922
2923	ret = btrfs_write_marked_extents(fs_info,
2924					 &log_root_tree->dirty_log_pages,
2925					 EXTENT_DIRTY | EXTENT_NEW);
2926	blk_finish_plug(&plug);
2927	if (ret) {
2928		btrfs_set_log_full_commit(fs_info, trans);
2929		btrfs_abort_transaction(trans, ret);
2930		btrfs_free_logged_extents(log, log_transid);
2931		mutex_unlock(&log_root_tree->log_mutex);
2932		goto out_wake_log_root;
2933	}
2934	ret = btrfs_wait_tree_log_extents(log, mark);
2935	if (!ret)
2936		ret = btrfs_wait_tree_log_extents(log_root_tree,
2937						  EXTENT_NEW | EXTENT_DIRTY);
2938	if (ret) {
2939		btrfs_set_log_full_commit(fs_info, trans);
2940		btrfs_free_logged_extents(log, log_transid);
2941		mutex_unlock(&log_root_tree->log_mutex);
2942		goto out_wake_log_root;
2943	}
2944	btrfs_wait_logged_extents(trans, log, log_transid);
2945
2946	btrfs_set_super_log_root(fs_info->super_for_commit,
2947				 log_root_tree->node->start);
2948	btrfs_set_super_log_root_level(fs_info->super_for_commit,
2949				       btrfs_header_level(log_root_tree->node));
2950
2951	log_root_tree->log_transid++;
2952	mutex_unlock(&log_root_tree->log_mutex);
2953
2954	/*
2955	 * nobody else is going to jump in and write the the ctree
2956	 * super here because the log_commit atomic below is protecting
2957	 * us.  We must be called with a transaction handle pinning
2958	 * the running transaction open, so a full commit can't hop
2959	 * in and cause problems either.
2960	 */
2961	ret = write_ctree_super(trans, fs_info, 1);
2962	if (ret) {
2963		btrfs_set_log_full_commit(fs_info, trans);
2964		btrfs_abort_transaction(trans, ret);
2965		goto out_wake_log_root;
2966	}
2967
2968	mutex_lock(&root->log_mutex);
2969	if (root->last_log_commit < log_transid)
2970		root->last_log_commit = log_transid;
2971	mutex_unlock(&root->log_mutex);
2972
2973out_wake_log_root:
2974	mutex_lock(&log_root_tree->log_mutex);
2975	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2976
2977	log_root_tree->log_transid_committed++;
2978	atomic_set(&log_root_tree->log_commit[index2], 0);
2979	mutex_unlock(&log_root_tree->log_mutex);
2980
2981	/*
2982	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2983	 */
2984	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2985		wake_up(&log_root_tree->log_commit_wait[index2]);
2986out:
2987	mutex_lock(&root->log_mutex);
2988	btrfs_remove_all_log_ctxs(root, index1, ret);
2989	root->log_transid_committed++;
2990	atomic_set(&root->log_commit[index1], 0);
2991	mutex_unlock(&root->log_mutex);
2992
2993	/*
2994	 * The barrier before waitqueue_active is implied by mutex_unlock
 
 
2995	 */
2996	if (waitqueue_active(&root->log_commit_wait[index1]))
2997		wake_up(&root->log_commit_wait[index1]);
2998	return ret;
2999}
3000
3001static void free_log_tree(struct btrfs_trans_handle *trans,
3002			  struct btrfs_root *log)
3003{
3004	int ret;
3005	u64 start;
3006	u64 end;
3007	struct walk_control wc = {
3008		.free = 1,
3009		.process_func = process_one_buffer
3010	};
3011
3012	ret = walk_log_tree(trans, log, &wc);
3013	/* I don't think this can happen but just in case */
3014	if (ret)
3015		btrfs_abort_transaction(trans, ret);
3016
3017	while (1) {
3018		ret = find_first_extent_bit(&log->dirty_log_pages,
3019				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3020				NULL);
3021		if (ret)
3022			break;
3023
3024		clear_extent_bits(&log->dirty_log_pages, start, end,
3025				  EXTENT_DIRTY | EXTENT_NEW);
3026	}
3027
3028	/*
3029	 * We may have short-circuited the log tree with the full commit logic
3030	 * and left ordered extents on our list, so clear these out to keep us
3031	 * from leaking inodes and memory.
3032	 */
3033	btrfs_free_logged_extents(log, 0);
3034	btrfs_free_logged_extents(log, 1);
3035
3036	free_extent_buffer(log->node);
3037	kfree(log);
3038}
3039
3040/*
3041 * free all the extents used by the tree log.  This should be called
3042 * at commit time of the full transaction
3043 */
3044int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3045{
3046	if (root->log_root) {
3047		free_log_tree(trans, root->log_root);
3048		root->log_root = NULL;
3049	}
3050	return 0;
3051}
3052
3053int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3054			     struct btrfs_fs_info *fs_info)
3055{
3056	if (fs_info->log_root_tree) {
3057		free_log_tree(trans, fs_info->log_root_tree);
3058		fs_info->log_root_tree = NULL;
3059	}
3060	return 0;
3061}
3062
3063/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064 * If both a file and directory are logged, and unlinks or renames are
3065 * mixed in, we have a few interesting corners:
3066 *
3067 * create file X in dir Y
3068 * link file X to X.link in dir Y
3069 * fsync file X
3070 * unlink file X but leave X.link
3071 * fsync dir Y
3072 *
3073 * After a crash we would expect only X.link to exist.  But file X
3074 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 *
3076 * We solve this by removing directory entries and inode backrefs from the
3077 * log when a file that was logged in the current transaction is
3078 * unlinked.  Any later fsync will include the updated log entries, and
3079 * we'll be able to reconstruct the proper directory items from backrefs.
3080 *
3081 * This optimizations allows us to avoid relogging the entire inode
3082 * or the entire directory.
3083 */
3084int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3085				 struct btrfs_root *root,
3086				 const char *name, int name_len,
3087				 struct inode *dir, u64 index)
3088{
3089	struct btrfs_root *log;
3090	struct btrfs_dir_item *di;
3091	struct btrfs_path *path;
3092	int ret;
3093	int err = 0;
3094	int bytes_del = 0;
3095	u64 dir_ino = btrfs_ino(dir);
3096
3097	if (BTRFS_I(dir)->logged_trans < trans->transid)
3098		return 0;
3099
3100	ret = join_running_log_trans(root);
3101	if (ret)
3102		return 0;
3103
3104	mutex_lock(&BTRFS_I(dir)->log_mutex);
3105
3106	log = root->log_root;
3107	path = btrfs_alloc_path();
3108	if (!path) {
3109		err = -ENOMEM;
3110		goto out_unlock;
3111	}
3112
3113	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3114				   name, name_len, -1);
3115	if (IS_ERR(di)) {
3116		err = PTR_ERR(di);
3117		goto fail;
3118	}
3119	if (di) {
3120		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3121		bytes_del += name_len;
3122		if (ret) {
3123			err = ret;
3124			goto fail;
3125		}
3126	}
3127	btrfs_release_path(path);
3128	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3129					 index, name, name_len, -1);
3130	if (IS_ERR(di)) {
3131		err = PTR_ERR(di);
3132		goto fail;
3133	}
3134	if (di) {
3135		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3136		bytes_del += name_len;
3137		if (ret) {
3138			err = ret;
3139			goto fail;
3140		}
3141	}
3142
3143	/* update the directory size in the log to reflect the names
3144	 * we have removed
3145	 */
3146	if (bytes_del) {
3147		struct btrfs_key key;
3148
3149		key.objectid = dir_ino;
3150		key.offset = 0;
3151		key.type = BTRFS_INODE_ITEM_KEY;
3152		btrfs_release_path(path);
3153
3154		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3155		if (ret < 0) {
3156			err = ret;
3157			goto fail;
3158		}
3159		if (ret == 0) {
3160			struct btrfs_inode_item *item;
3161			u64 i_size;
3162
3163			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3164					      struct btrfs_inode_item);
3165			i_size = btrfs_inode_size(path->nodes[0], item);
3166			if (i_size > bytes_del)
3167				i_size -= bytes_del;
3168			else
3169				i_size = 0;
3170			btrfs_set_inode_size(path->nodes[0], item, i_size);
3171			btrfs_mark_buffer_dirty(path->nodes[0]);
3172		} else
3173			ret = 0;
3174		btrfs_release_path(path);
3175	}
3176fail:
3177	btrfs_free_path(path);
3178out_unlock:
3179	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3180	if (ret == -ENOSPC) {
3181		btrfs_set_log_full_commit(root->fs_info, trans);
3182		ret = 0;
3183	} else if (ret < 0)
3184		btrfs_abort_transaction(trans, ret);
3185
3186	btrfs_end_log_trans(root);
3187
3188	return err;
3189}
3190
3191/* see comments for btrfs_del_dir_entries_in_log */
3192int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3193			       struct btrfs_root *root,
3194			       const char *name, int name_len,
3195			       struct inode *inode, u64 dirid)
3196{
3197	struct btrfs_fs_info *fs_info = root->fs_info;
3198	struct btrfs_root *log;
3199	u64 index;
3200	int ret;
3201
3202	if (BTRFS_I(inode)->logged_trans < trans->transid)
3203		return 0;
3204
3205	ret = join_running_log_trans(root);
3206	if (ret)
3207		return 0;
3208	log = root->log_root;
3209	mutex_lock(&BTRFS_I(inode)->log_mutex);
3210
3211	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3212				  dirid, &index);
3213	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3214	if (ret == -ENOSPC) {
3215		btrfs_set_log_full_commit(fs_info, trans);
3216		ret = 0;
3217	} else if (ret < 0 && ret != -ENOENT)
3218		btrfs_abort_transaction(trans, ret);
3219	btrfs_end_log_trans(root);
3220
3221	return ret;
3222}
3223
3224/*
3225 * creates a range item in the log for 'dirid'.  first_offset and
3226 * last_offset tell us which parts of the key space the log should
3227 * be considered authoritative for.
3228 */
3229static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3230				       struct btrfs_root *log,
3231				       struct btrfs_path *path,
3232				       int key_type, u64 dirid,
3233				       u64 first_offset, u64 last_offset)
3234{
3235	int ret;
3236	struct btrfs_key key;
3237	struct btrfs_dir_log_item *item;
3238
3239	key.objectid = dirid;
3240	key.offset = first_offset;
3241	if (key_type == BTRFS_DIR_ITEM_KEY)
3242		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3243	else
3244		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3245	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3246	if (ret)
3247		return ret;
3248
3249	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3250			      struct btrfs_dir_log_item);
3251	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3252	btrfs_mark_buffer_dirty(path->nodes[0]);
3253	btrfs_release_path(path);
3254	return 0;
3255}
3256
3257/*
3258 * log all the items included in the current transaction for a given
3259 * directory.  This also creates the range items in the log tree required
3260 * to replay anything deleted before the fsync
3261 */
3262static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3263			  struct btrfs_root *root, struct inode *inode,
3264			  struct btrfs_path *path,
3265			  struct btrfs_path *dst_path, int key_type,
3266			  struct btrfs_log_ctx *ctx,
3267			  u64 min_offset, u64 *last_offset_ret)
3268{
3269	struct btrfs_key min_key;
3270	struct btrfs_root *log = root->log_root;
3271	struct extent_buffer *src;
3272	int err = 0;
3273	int ret;
3274	int i;
3275	int nritems;
3276	u64 first_offset = min_offset;
3277	u64 last_offset = (u64)-1;
3278	u64 ino = btrfs_ino(inode);
3279
3280	log = root->log_root;
3281
3282	min_key.objectid = ino;
3283	min_key.type = key_type;
3284	min_key.offset = min_offset;
3285
3286	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3287
3288	/*
3289	 * we didn't find anything from this transaction, see if there
3290	 * is anything at all
3291	 */
3292	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3293		min_key.objectid = ino;
3294		min_key.type = key_type;
3295		min_key.offset = (u64)-1;
3296		btrfs_release_path(path);
3297		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3298		if (ret < 0) {
3299			btrfs_release_path(path);
3300			return ret;
3301		}
3302		ret = btrfs_previous_item(root, path, ino, key_type);
3303
3304		/* if ret == 0 there are items for this type,
3305		 * create a range to tell us the last key of this type.
3306		 * otherwise, there are no items in this directory after
3307		 * *min_offset, and we create a range to indicate that.
3308		 */
3309		if (ret == 0) {
3310			struct btrfs_key tmp;
3311			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3312					      path->slots[0]);
3313			if (key_type == tmp.type)
3314				first_offset = max(min_offset, tmp.offset) + 1;
3315		}
3316		goto done;
3317	}
3318
3319	/* go backward to find any previous key */
3320	ret = btrfs_previous_item(root, path, ino, key_type);
3321	if (ret == 0) {
3322		struct btrfs_key tmp;
3323		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3324		if (key_type == tmp.type) {
3325			first_offset = tmp.offset;
3326			ret = overwrite_item(trans, log, dst_path,
3327					     path->nodes[0], path->slots[0],
3328					     &tmp);
3329			if (ret) {
3330				err = ret;
3331				goto done;
3332			}
3333		}
3334	}
3335	btrfs_release_path(path);
3336
3337	/* find the first key from this transaction again */
 
 
 
 
 
 
 
3338	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3339	if (WARN_ON(ret != 0))
3340		goto done;
3341
3342	/*
3343	 * we have a block from this transaction, log every item in it
3344	 * from our directory
3345	 */
3346	while (1) {
3347		struct btrfs_key tmp;
3348		src = path->nodes[0];
3349		nritems = btrfs_header_nritems(src);
3350		for (i = path->slots[0]; i < nritems; i++) {
3351			struct btrfs_dir_item *di;
3352
3353			btrfs_item_key_to_cpu(src, &min_key, i);
3354
3355			if (min_key.objectid != ino || min_key.type != key_type)
3356				goto done;
3357			ret = overwrite_item(trans, log, dst_path, src, i,
3358					     &min_key);
3359			if (ret) {
3360				err = ret;
3361				goto done;
3362			}
3363
3364			/*
3365			 * We must make sure that when we log a directory entry,
3366			 * the corresponding inode, after log replay, has a
3367			 * matching link count. For example:
3368			 *
3369			 * touch foo
3370			 * mkdir mydir
3371			 * sync
3372			 * ln foo mydir/bar
3373			 * xfs_io -c "fsync" mydir
3374			 * <crash>
3375			 * <mount fs and log replay>
3376			 *
3377			 * Would result in a fsync log that when replayed, our
3378			 * file inode would have a link count of 1, but we get
3379			 * two directory entries pointing to the same inode.
3380			 * After removing one of the names, it would not be
3381			 * possible to remove the other name, which resulted
3382			 * always in stale file handle errors, and would not
3383			 * be possible to rmdir the parent directory, since
3384			 * its i_size could never decrement to the value
3385			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386			 */
3387			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3388			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389			if (ctx &&
3390			    (btrfs_dir_transid(src, di) == trans->transid ||
3391			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3392			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3393				ctx->log_new_dentries = true;
3394		}
3395		path->slots[0] = nritems;
3396
3397		/*
3398		 * look ahead to the next item and see if it is also
3399		 * from this directory and from this transaction
3400		 */
3401		ret = btrfs_next_leaf(root, path);
3402		if (ret == 1) {
3403			last_offset = (u64)-1;
 
 
 
3404			goto done;
3405		}
3406		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3407		if (tmp.objectid != ino || tmp.type != key_type) {
3408			last_offset = (u64)-1;
3409			goto done;
3410		}
3411		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3412			ret = overwrite_item(trans, log, dst_path,
3413					     path->nodes[0], path->slots[0],
3414					     &tmp);
3415			if (ret)
3416				err = ret;
3417			else
3418				last_offset = tmp.offset;
3419			goto done;
3420		}
3421	}
3422done:
3423	btrfs_release_path(path);
3424	btrfs_release_path(dst_path);
3425
3426	if (err == 0) {
3427		*last_offset_ret = last_offset;
3428		/*
3429		 * insert the log range keys to indicate where the log
3430		 * is valid
3431		 */
3432		ret = insert_dir_log_key(trans, log, path, key_type,
3433					 ino, first_offset, last_offset);
3434		if (ret)
3435			err = ret;
3436	}
3437	return err;
3438}
3439
3440/*
3441 * logging directories is very similar to logging inodes, We find all the items
3442 * from the current transaction and write them to the log.
3443 *
3444 * The recovery code scans the directory in the subvolume, and if it finds a
3445 * key in the range logged that is not present in the log tree, then it means
3446 * that dir entry was unlinked during the transaction.
3447 *
3448 * In order for that scan to work, we must include one key smaller than
3449 * the smallest logged by this transaction and one key larger than the largest
3450 * key logged by this transaction.
3451 */
3452static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3453			  struct btrfs_root *root, struct inode *inode,
3454			  struct btrfs_path *path,
3455			  struct btrfs_path *dst_path,
3456			  struct btrfs_log_ctx *ctx)
3457{
3458	u64 min_key;
3459	u64 max_key;
3460	int ret;
3461	int key_type = BTRFS_DIR_ITEM_KEY;
3462
3463again:
3464	min_key = 0;
3465	max_key = 0;
3466	while (1) {
3467		ret = log_dir_items(trans, root, inode, path,
3468				    dst_path, key_type, ctx, min_key,
3469				    &max_key);
3470		if (ret)
3471			return ret;
3472		if (max_key == (u64)-1)
3473			break;
3474		min_key = max_key + 1;
3475	}
3476
3477	if (key_type == BTRFS_DIR_ITEM_KEY) {
3478		key_type = BTRFS_DIR_INDEX_KEY;
3479		goto again;
3480	}
3481	return 0;
3482}
3483
3484/*
3485 * a helper function to drop items from the log before we relog an
3486 * inode.  max_key_type indicates the highest item type to remove.
3487 * This cannot be run for file data extents because it does not
3488 * free the extents they point to.
3489 */
3490static int drop_objectid_items(struct btrfs_trans_handle *trans,
3491				  struct btrfs_root *log,
3492				  struct btrfs_path *path,
3493				  u64 objectid, int max_key_type)
3494{
3495	int ret;
3496	struct btrfs_key key;
3497	struct btrfs_key found_key;
3498	int start_slot;
3499
3500	key.objectid = objectid;
3501	key.type = max_key_type;
3502	key.offset = (u64)-1;
3503
3504	while (1) {
3505		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3506		BUG_ON(ret == 0); /* Logic error */
3507		if (ret < 0)
3508			break;
3509
3510		if (path->slots[0] == 0)
3511			break;
3512
3513		path->slots[0]--;
3514		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3515				      path->slots[0]);
3516
3517		if (found_key.objectid != objectid)
3518			break;
3519
3520		found_key.offset = 0;
3521		found_key.type = 0;
3522		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3523				       &start_slot);
 
 
3524
3525		ret = btrfs_del_items(trans, log, path, start_slot,
3526				      path->slots[0] - start_slot + 1);
3527		/*
3528		 * If start slot isn't 0 then we don't need to re-search, we've
3529		 * found the last guy with the objectid in this tree.
3530		 */
3531		if (ret || start_slot != 0)
3532			break;
3533		btrfs_release_path(path);
3534	}
3535	btrfs_release_path(path);
3536	if (ret > 0)
3537		ret = 0;
3538	return ret;
3539}
3540
3541static void fill_inode_item(struct btrfs_trans_handle *trans,
3542			    struct extent_buffer *leaf,
3543			    struct btrfs_inode_item *item,
3544			    struct inode *inode, int log_inode_only,
3545			    u64 logged_isize)
3546{
3547	struct btrfs_map_token token;
3548
3549	btrfs_init_map_token(&token);
3550
3551	if (log_inode_only) {
3552		/* set the generation to zero so the recover code
3553		 * can tell the difference between an logging
3554		 * just to say 'this inode exists' and a logging
3555		 * to say 'update this inode with these values'
3556		 */
3557		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3558		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3559	} else {
3560		btrfs_set_token_inode_generation(leaf, item,
3561						 BTRFS_I(inode)->generation,
3562						 &token);
3563		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3564	}
3565
3566	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3567	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3568	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3569	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3570
3571	btrfs_set_token_timespec_sec(leaf, &item->atime,
3572				     inode->i_atime.tv_sec, &token);
3573	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3574				      inode->i_atime.tv_nsec, &token);
3575
3576	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3577				     inode->i_mtime.tv_sec, &token);
3578	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3579				      inode->i_mtime.tv_nsec, &token);
3580
3581	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3582				     inode->i_ctime.tv_sec, &token);
3583	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3584				      inode->i_ctime.tv_nsec, &token);
3585
3586	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3587				     &token);
3588
3589	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
 
3590	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3591	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3592	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3593	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3594}
3595
3596static int log_inode_item(struct btrfs_trans_handle *trans,
3597			  struct btrfs_root *log, struct btrfs_path *path,
3598			  struct inode *inode)
3599{
3600	struct btrfs_inode_item *inode_item;
3601	int ret;
3602
3603	ret = btrfs_insert_empty_item(trans, log, path,
3604				      &BTRFS_I(inode)->location,
3605				      sizeof(*inode_item));
3606	if (ret && ret != -EEXIST)
3607		return ret;
3608	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609				    struct btrfs_inode_item);
3610	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
 
3611	btrfs_release_path(path);
3612	return 0;
3613}
3614
3615static noinline int copy_items(struct btrfs_trans_handle *trans,
3616			       struct inode *inode,
3617			       struct btrfs_path *dst_path,
3618			       struct btrfs_path *src_path, u64 *last_extent,
3619			       int start_slot, int nr, int inode_only,
3620			       u64 logged_isize)
3621{
3622	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3623	unsigned long src_offset;
3624	unsigned long dst_offset;
3625	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3626	struct btrfs_file_extent_item *extent;
3627	struct btrfs_inode_item *inode_item;
3628	struct extent_buffer *src = src_path->nodes[0];
3629	struct btrfs_key first_key, last_key, key;
3630	int ret;
3631	struct btrfs_key *ins_keys;
3632	u32 *ins_sizes;
3633	char *ins_data;
3634	int i;
3635	struct list_head ordered_sums;
3636	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3637	bool has_extents = false;
3638	bool need_find_last_extent = true;
3639	bool done = false;
3640
3641	INIT_LIST_HEAD(&ordered_sums);
3642
3643	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3644			   nr * sizeof(u32), GFP_NOFS);
3645	if (!ins_data)
3646		return -ENOMEM;
3647
3648	first_key.objectid = (u64)-1;
3649
3650	ins_sizes = (u32 *)ins_data;
3651	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3652
3653	for (i = 0; i < nr; i++) {
3654		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3655		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3656	}
3657	ret = btrfs_insert_empty_items(trans, log, dst_path,
3658				       ins_keys, ins_sizes, nr);
3659	if (ret) {
3660		kfree(ins_data);
3661		return ret;
3662	}
3663
3664	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3665		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3666						   dst_path->slots[0]);
3667
3668		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3669
3670		if ((i == (nr - 1)))
3671			last_key = ins_keys[i];
3672
3673		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3674			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3675						    dst_path->slots[0],
3676						    struct btrfs_inode_item);
3677			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3678					inode, inode_only == LOG_INODE_EXISTS,
 
3679					logged_isize);
3680		} else {
3681			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3682					   src_offset, ins_sizes[i]);
3683		}
3684
3685		/*
3686		 * We set need_find_last_extent here in case we know we were
3687		 * processing other items and then walk into the first extent in
3688		 * the inode.  If we don't hit an extent then nothing changes,
3689		 * we'll do the last search the next time around.
3690		 */
3691		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3692			has_extents = true;
3693			if (first_key.objectid == (u64)-1)
3694				first_key = ins_keys[i];
3695		} else {
3696			need_find_last_extent = false;
3697		}
3698
3699		/* take a reference on file data extents so that truncates
3700		 * or deletes of this inode don't have to relog the inode
3701		 * again
3702		 */
3703		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3704		    !skip_csum) {
3705			int found_type;
3706			extent = btrfs_item_ptr(src, start_slot + i,
3707						struct btrfs_file_extent_item);
3708
3709			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3710				continue;
3711
3712			found_type = btrfs_file_extent_type(src, extent);
3713			if (found_type == BTRFS_FILE_EXTENT_REG) {
3714				u64 ds, dl, cs, cl;
3715				ds = btrfs_file_extent_disk_bytenr(src,
3716								extent);
3717				/* ds == 0 is a hole */
3718				if (ds == 0)
3719					continue;
3720
3721				dl = btrfs_file_extent_disk_num_bytes(src,
3722								extent);
3723				cs = btrfs_file_extent_offset(src, extent);
3724				cl = btrfs_file_extent_num_bytes(src,
3725								extent);
3726				if (btrfs_file_extent_compression(src,
3727								  extent)) {
3728					cs = 0;
3729					cl = dl;
3730				}
3731
3732				ret = btrfs_lookup_csums_range(
3733						fs_info->csum_root,
3734						ds + cs, ds + cs + cl - 1,
3735						&ordered_sums, 0);
3736				if (ret) {
3737					btrfs_release_path(dst_path);
3738					kfree(ins_data);
3739					return ret;
3740				}
3741			}
3742		}
3743	}
3744
3745	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3746	btrfs_release_path(dst_path);
3747	kfree(ins_data);
3748
3749	/*
3750	 * we have to do this after the loop above to avoid changing the
3751	 * log tree while trying to change the log tree.
3752	 */
3753	ret = 0;
3754	while (!list_empty(&ordered_sums)) {
3755		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3756						   struct btrfs_ordered_sum,
3757						   list);
3758		if (!ret)
3759			ret = btrfs_csum_file_blocks(trans, log, sums);
3760		list_del(&sums->list);
3761		kfree(sums);
3762	}
3763
3764	if (!has_extents)
3765		return ret;
3766
3767	if (need_find_last_extent && *last_extent == first_key.offset) {
3768		/*
3769		 * We don't have any leafs between our current one and the one
3770		 * we processed before that can have file extent items for our
3771		 * inode (and have a generation number smaller than our current
3772		 * transaction id).
3773		 */
3774		need_find_last_extent = false;
3775	}
3776
3777	/*
3778	 * Because we use btrfs_search_forward we could skip leaves that were
3779	 * not modified and then assume *last_extent is valid when it really
3780	 * isn't.  So back up to the previous leaf and read the end of the last
3781	 * extent before we go and fill in holes.
3782	 */
3783	if (need_find_last_extent) {
3784		u64 len;
3785
3786		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3787		if (ret < 0)
3788			return ret;
3789		if (ret)
3790			goto fill_holes;
3791		if (src_path->slots[0])
3792			src_path->slots[0]--;
3793		src = src_path->nodes[0];
3794		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3795		if (key.objectid != btrfs_ino(inode) ||
3796		    key.type != BTRFS_EXTENT_DATA_KEY)
3797			goto fill_holes;
3798		extent = btrfs_item_ptr(src, src_path->slots[0],
3799					struct btrfs_file_extent_item);
3800		if (btrfs_file_extent_type(src, extent) ==
3801		    BTRFS_FILE_EXTENT_INLINE) {
3802			len = btrfs_file_extent_inline_len(src,
3803							   src_path->slots[0],
3804							   extent);
3805			*last_extent = ALIGN(key.offset + len,
3806					     fs_info->sectorsize);
3807		} else {
3808			len = btrfs_file_extent_num_bytes(src, extent);
3809			*last_extent = key.offset + len;
3810		}
3811	}
3812fill_holes:
3813	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3814	 * things could have happened
3815	 *
3816	 * 1) A merge could have happened, so we could currently be on a leaf
3817	 * that holds what we were copying in the first place.
3818	 * 2) A split could have happened, and now not all of the items we want
3819	 * are on the same leaf.
3820	 *
3821	 * So we need to adjust how we search for holes, we need to drop the
3822	 * path and re-search for the first extent key we found, and then walk
3823	 * forward until we hit the last one we copied.
3824	 */
3825	if (need_find_last_extent) {
3826		/* btrfs_prev_leaf could return 1 without releasing the path */
3827		btrfs_release_path(src_path);
3828		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3829					src_path, 0, 0);
3830		if (ret < 0)
3831			return ret;
3832		ASSERT(ret == 0);
3833		src = src_path->nodes[0];
3834		i = src_path->slots[0];
3835	} else {
3836		i = start_slot;
3837	}
3838
3839	/*
3840	 * Ok so here we need to go through and fill in any holes we may have
3841	 * to make sure that holes are punched for those areas in case they had
3842	 * extents previously.
3843	 */
3844	while (!done) {
3845		u64 offset, len;
3846		u64 extent_end;
3847
3848		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3849			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3850			if (ret < 0)
3851				return ret;
3852			ASSERT(ret == 0);
3853			src = src_path->nodes[0];
3854			i = 0;
 
3855		}
3856
3857		btrfs_item_key_to_cpu(src, &key, i);
3858		if (!btrfs_comp_cpu_keys(&key, &last_key))
3859			done = true;
3860		if (key.objectid != btrfs_ino(inode) ||
3861		    key.type != BTRFS_EXTENT_DATA_KEY) {
3862			i++;
3863			continue;
3864		}
3865		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866		if (btrfs_file_extent_type(src, extent) ==
3867		    BTRFS_FILE_EXTENT_INLINE) {
3868			len = btrfs_file_extent_inline_len(src, i, extent);
3869			extent_end = ALIGN(key.offset + len,
3870					   fs_info->sectorsize);
3871		} else {
3872			len = btrfs_file_extent_num_bytes(src, extent);
3873			extent_end = key.offset + len;
3874		}
3875		i++;
3876
3877		if (*last_extent == key.offset) {
3878			*last_extent = extent_end;
3879			continue;
3880		}
3881		offset = *last_extent;
3882		len = key.offset - *last_extent;
3883		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884					       offset, 0, 0, len, 0, len, 0,
3885					       0, 0);
3886		if (ret)
3887			break;
3888		*last_extent = extent_end;
3889	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890	/*
3891	 * Need to let the callers know we dropped the path so they should
3892	 * re-search.
3893	 */
3894	if (!ret && need_find_last_extent)
3895		ret = 1;
3896	return ret;
3897}
3898
3899static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3900{
3901	struct extent_map *em1, *em2;
3902
3903	em1 = list_entry(a, struct extent_map, list);
3904	em2 = list_entry(b, struct extent_map, list);
3905
3906	if (em1->start < em2->start)
3907		return -1;
3908	else if (em1->start > em2->start)
3909		return 1;
3910	return 0;
3911}
3912
3913static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3914				struct inode *inode,
3915				struct btrfs_root *root,
3916				const struct extent_map *em,
3917				const struct list_head *logged_list,
3918				bool *ordered_io_error)
3919{
3920	struct btrfs_fs_info *fs_info = root->fs_info;
3921	struct btrfs_ordered_extent *ordered;
3922	struct btrfs_root *log = root->log_root;
3923	u64 mod_start = em->mod_start;
3924	u64 mod_len = em->mod_len;
3925	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3926	u64 csum_offset;
3927	u64 csum_len;
3928	LIST_HEAD(ordered_sums);
3929	int ret = 0;
3930
3931	*ordered_io_error = false;
3932
3933	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3934	    em->block_start == EXTENT_MAP_HOLE)
3935		return 0;
3936
3937	/*
3938	 * Wait far any ordered extent that covers our extent map. If it
3939	 * finishes without an error, first check and see if our csums are on
3940	 * our outstanding ordered extents.
3941	 */
3942	list_for_each_entry(ordered, logged_list, log_list) {
3943		struct btrfs_ordered_sum *sum;
3944
3945		if (!mod_len)
3946			break;
3947
3948		if (ordered->file_offset + ordered->len <= mod_start ||
3949		    mod_start + mod_len <= ordered->file_offset)
3950			continue;
3951
3952		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3953		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3954		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3955			const u64 start = ordered->file_offset;
3956			const u64 end = ordered->file_offset + ordered->len - 1;
3957
3958			WARN_ON(ordered->inode != inode);
3959			filemap_fdatawrite_range(inode->i_mapping, start, end);
3960		}
3961
3962		wait_event(ordered->wait,
3963			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3964			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965
3966		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967			/*
3968			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3969			 * i_mapping flags, so that the next fsync won't get
3970			 * an outdated io error too.
3971			 */
3972			filemap_check_errors(inode->i_mapping);
3973			*ordered_io_error = true;
3974			break;
3975		}
3976		/*
3977		 * We are going to copy all the csums on this ordered extent, so
3978		 * go ahead and adjust mod_start and mod_len in case this
3979		 * ordered extent has already been logged.
3980		 */
3981		if (ordered->file_offset > mod_start) {
3982			if (ordered->file_offset + ordered->len >=
3983			    mod_start + mod_len)
3984				mod_len = ordered->file_offset - mod_start;
3985			/*
3986			 * If we have this case
3987			 *
3988			 * |--------- logged extent ---------|
3989			 *       |----- ordered extent ----|
3990			 *
3991			 * Just don't mess with mod_start and mod_len, we'll
3992			 * just end up logging more csums than we need and it
3993			 * will be ok.
3994			 */
3995		} else {
3996			if (ordered->file_offset + ordered->len <
3997			    mod_start + mod_len) {
3998				mod_len = (mod_start + mod_len) -
3999					(ordered->file_offset + ordered->len);
4000				mod_start = ordered->file_offset +
4001					ordered->len;
4002			} else {
4003				mod_len = 0;
4004			}
4005		}
4006
4007		if (skip_csum)
4008			continue;
4009
4010		/*
4011		 * To keep us from looping for the above case of an ordered
4012		 * extent that falls inside of the logged extent.
4013		 */
4014		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4015				     &ordered->flags))
4016			continue;
4017
4018		list_for_each_entry(sum, &ordered->list, list) {
4019			ret = btrfs_csum_file_blocks(trans, log, sum);
4020			if (ret)
4021				break;
4022		}
4023	}
4024
4025	if (*ordered_io_error || !mod_len || ret || skip_csum)
4026		return ret;
4027
4028	if (em->compress_type) {
4029		csum_offset = 0;
4030		csum_len = max(em->block_len, em->orig_block_len);
4031	} else {
4032		csum_offset = mod_start - em->start;
4033		csum_len = mod_len;
4034	}
4035
4036	/* block start is already adjusted for the file extent offset. */
4037	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4038				       em->block_start + csum_offset,
4039				       em->block_start + csum_offset +
4040				       csum_len - 1, &ordered_sums, 0);
4041	if (ret)
4042		return ret;
4043
4044	while (!list_empty(&ordered_sums)) {
4045		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4046						   struct btrfs_ordered_sum,
4047						   list);
4048		if (!ret)
4049			ret = btrfs_csum_file_blocks(trans, log, sums);
4050		list_del(&sums->list);
4051		kfree(sums);
4052	}
4053
4054	return ret;
4055}
4056
4057static int log_one_extent(struct btrfs_trans_handle *trans,
4058			  struct inode *inode, struct btrfs_root *root,
4059			  const struct extent_map *em,
4060			  struct btrfs_path *path,
4061			  const struct list_head *logged_list,
4062			  struct btrfs_log_ctx *ctx)
4063{
4064	struct btrfs_root *log = root->log_root;
4065	struct btrfs_file_extent_item *fi;
4066	struct extent_buffer *leaf;
4067	struct btrfs_map_token token;
4068	struct btrfs_key key;
4069	u64 extent_offset = em->start - em->orig_start;
4070	u64 block_len;
4071	int ret;
4072	int extent_inserted = 0;
4073	bool ordered_io_err = false;
4074
4075	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4076				   &ordered_io_err);
4077	if (ret)
4078		return ret;
4079
4080	if (ordered_io_err) {
4081		ctx->io_err = -EIO;
4082		return 0;
4083	}
4084
4085	btrfs_init_map_token(&token);
4086
4087	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4088				   em->start + em->len, NULL, 0, 1,
4089				   sizeof(*fi), &extent_inserted);
4090	if (ret)
4091		return ret;
4092
4093	if (!extent_inserted) {
4094		key.objectid = btrfs_ino(inode);
4095		key.type = BTRFS_EXTENT_DATA_KEY;
4096		key.offset = em->start;
4097
4098		ret = btrfs_insert_empty_item(trans, log, path, &key,
4099					      sizeof(*fi));
4100		if (ret)
4101			return ret;
4102	}
4103	leaf = path->nodes[0];
 
4104	fi = btrfs_item_ptr(leaf, path->slots[0],
4105			    struct btrfs_file_extent_item);
4106
4107	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108					       &token);
4109	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4110		btrfs_set_token_file_extent_type(leaf, fi,
4111						 BTRFS_FILE_EXTENT_PREALLOC,
4112						 &token);
4113	else
4114		btrfs_set_token_file_extent_type(leaf, fi,
4115						 BTRFS_FILE_EXTENT_REG,
4116						 &token);
4117
4118	block_len = max(em->block_len, em->orig_block_len);
4119	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4120		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4121							em->block_start,
4122							&token);
4123		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124							   &token);
4125	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4126		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127							em->block_start -
4128							extent_offset, &token);
4129		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130							   &token);
4131	} else {
4132		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4133		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4134							   &token);
4135	}
4136
4137	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4138	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4139	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4140	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141						&token);
4142	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4143	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4144	btrfs_mark_buffer_dirty(leaf);
4145
4146	btrfs_release_path(path);
4147
4148	return ret;
4149}
4150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4151static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4152				     struct btrfs_root *root,
4153				     struct inode *inode,
4154				     struct btrfs_path *path,
4155				     struct list_head *logged_list,
4156				     struct btrfs_log_ctx *ctx,
4157				     const u64 start,
4158				     const u64 end)
4159{
4160	struct extent_map *em, *n;
4161	struct list_head extents;
4162	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4163	u64 test_gen;
4164	int ret = 0;
4165	int num = 0;
4166
4167	INIT_LIST_HEAD(&extents);
4168
4169	down_write(&BTRFS_I(inode)->dio_sem);
4170	write_lock(&tree->lock);
4171	test_gen = root->fs_info->last_trans_committed;
4172
4173	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4174		list_del_init(&em->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4175
 
4176		/*
4177		 * Just an arbitrary number, this can be really CPU intensive
4178		 * once we start getting a lot of extents, and really once we
4179		 * have a bunch of extents we just want to commit since it will
4180		 * be faster.
4181		 */
4182		if (++num > 32768) {
4183			list_del_init(&tree->modified_extents);
4184			ret = -EFBIG;
4185			goto process;
4186		}
4187
4188		if (em->generation <= test_gen)
4189			continue;
 
 
 
 
 
 
4190		/* Need a ref to keep it from getting evicted from cache */
4191		atomic_inc(&em->refs);
4192		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4193		list_add_tail(&em->list, &extents);
4194		num++;
4195	}
4196
4197	list_sort(NULL, &extents, extent_cmp);
4198	btrfs_get_logged_extents(inode, logged_list, start, end);
4199	/*
4200	 * Some ordered extents started by fsync might have completed
4201	 * before we could collect them into the list logged_list, which
4202	 * means they're gone, not in our logged_list nor in the inode's
4203	 * ordered tree. We want the application/user space to know an
4204	 * error happened while attempting to persist file data so that
4205	 * it can take proper action. If such error happened, we leave
4206	 * without writing to the log tree and the fsync must report the
4207	 * file data write error and not commit the current transaction.
4208	 */
4209	ret = filemap_check_errors(inode->i_mapping);
4210	if (ret)
4211		ctx->io_err = ret;
4212process:
4213	while (!list_empty(&extents)) {
4214		em = list_entry(extents.next, struct extent_map, list);
4215
4216		list_del_init(&em->list);
4217
4218		/*
4219		 * If we had an error we just need to delete everybody from our
4220		 * private list.
4221		 */
4222		if (ret) {
4223			clear_em_logging(tree, em);
4224			free_extent_map(em);
4225			continue;
4226		}
4227
4228		write_unlock(&tree->lock);
4229
4230		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231				     ctx);
4232		write_lock(&tree->lock);
4233		clear_em_logging(tree, em);
4234		free_extent_map(em);
4235	}
4236	WARN_ON(!list_empty(&extents));
4237	write_unlock(&tree->lock);
4238	up_write(&BTRFS_I(inode)->dio_sem);
4239
4240	btrfs_release_path(path);
 
 
 
4241	return ret;
4242}
4243
4244static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4245			     struct btrfs_path *path, u64 *size_ret)
4246{
4247	struct btrfs_key key;
4248	int ret;
4249
4250	key.objectid = btrfs_ino(inode);
4251	key.type = BTRFS_INODE_ITEM_KEY;
4252	key.offset = 0;
4253
4254	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4255	if (ret < 0) {
4256		return ret;
4257	} else if (ret > 0) {
4258		*size_ret = 0;
4259	} else {
4260		struct btrfs_inode_item *item;
4261
4262		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4263				      struct btrfs_inode_item);
4264		*size_ret = btrfs_inode_size(path->nodes[0], item);
 
 
 
 
 
 
 
 
 
 
 
 
 
4265	}
4266
4267	btrfs_release_path(path);
4268	return 0;
4269}
4270
4271/*
4272 * At the moment we always log all xattrs. This is to figure out at log replay
4273 * time which xattrs must have their deletion replayed. If a xattr is missing
4274 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4275 * because if a xattr is deleted, the inode is fsynced and a power failure
4276 * happens, causing the log to be replayed the next time the fs is mounted,
4277 * we want the xattr to not exist anymore (same behaviour as other filesystems
4278 * with a journal, ext3/4, xfs, f2fs, etc).
4279 */
4280static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4281				struct btrfs_root *root,
4282				struct inode *inode,
4283				struct btrfs_path *path,
4284				struct btrfs_path *dst_path)
4285{
4286	int ret;
4287	struct btrfs_key key;
4288	const u64 ino = btrfs_ino(inode);
4289	int ins_nr = 0;
4290	int start_slot = 0;
4291
4292	key.objectid = ino;
4293	key.type = BTRFS_XATTR_ITEM_KEY;
4294	key.offset = 0;
4295
4296	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4297	if (ret < 0)
4298		return ret;
4299
4300	while (true) {
4301		int slot = path->slots[0];
4302		struct extent_buffer *leaf = path->nodes[0];
4303		int nritems = btrfs_header_nritems(leaf);
4304
4305		if (slot >= nritems) {
4306			if (ins_nr > 0) {
4307				u64 last_extent = 0;
4308
4309				ret = copy_items(trans, inode, dst_path, path,
4310						 &last_extent, start_slot,
4311						 ins_nr, 1, 0);
4312				/* can't be 1, extent items aren't processed */
4313				ASSERT(ret <= 0);
4314				if (ret < 0)
4315					return ret;
4316				ins_nr = 0;
4317			}
4318			ret = btrfs_next_leaf(root, path);
4319			if (ret < 0)
4320				return ret;
4321			else if (ret > 0)
4322				break;
4323			continue;
4324		}
4325
4326		btrfs_item_key_to_cpu(leaf, &key, slot);
4327		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4328			break;
4329
4330		if (ins_nr == 0)
4331			start_slot = slot;
4332		ins_nr++;
4333		path->slots[0]++;
4334		cond_resched();
4335	}
4336	if (ins_nr > 0) {
4337		u64 last_extent = 0;
4338
4339		ret = copy_items(trans, inode, dst_path, path,
4340				 &last_extent, start_slot,
4341				 ins_nr, 1, 0);
4342		/* can't be 1, extent items aren't processed */
4343		ASSERT(ret <= 0);
4344		if (ret < 0)
4345			return ret;
4346	}
4347
4348	return 0;
4349}
4350
4351/*
4352 * If the no holes feature is enabled we need to make sure any hole between the
4353 * last extent and the i_size of our inode is explicitly marked in the log. This
4354 * is to make sure that doing something like:
4355 *
4356 *      1) create file with 128Kb of data
4357 *      2) truncate file to 64Kb
4358 *      3) truncate file to 256Kb
4359 *      4) fsync file
4360 *      5) <crash/power failure>
4361 *      6) mount fs and trigger log replay
4362 *
4363 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4364 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4365 * file correspond to a hole. The presence of explicit holes in a log tree is
4366 * what guarantees that log replay will remove/adjust file extent items in the
4367 * fs/subvol tree.
4368 *
4369 * Here we do not need to care about holes between extents, that is already done
4370 * by copy_items(). We also only need to do this in the full sync path, where we
4371 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4372 * lookup the list of modified extent maps and if any represents a hole, we
4373 * insert a corresponding extent representing a hole in the log tree.
4374 */
4375static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4376				   struct btrfs_root *root,
4377				   struct inode *inode,
4378				   struct btrfs_path *path)
4379{
4380	struct btrfs_fs_info *fs_info = root->fs_info;
4381	int ret;
4382	struct btrfs_key key;
4383	u64 hole_start;
4384	u64 hole_size;
4385	struct extent_buffer *leaf;
4386	struct btrfs_root *log = root->log_root;
4387	const u64 ino = btrfs_ino(inode);
4388	const u64 i_size = i_size_read(inode);
4389
4390	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4391		return 0;
4392
4393	key.objectid = ino;
4394	key.type = BTRFS_EXTENT_DATA_KEY;
4395	key.offset = (u64)-1;
4396
4397	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398	ASSERT(ret != 0);
4399	if (ret < 0)
4400		return ret;
4401
4402	ASSERT(path->slots[0] > 0);
4403	path->slots[0]--;
4404	leaf = path->nodes[0];
4405	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406
4407	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4408		/* inode does not have any extents */
4409		hole_start = 0;
4410		hole_size = i_size;
4411	} else {
4412		struct btrfs_file_extent_item *extent;
4413		u64 len;
4414
4415		/*
4416		 * If there's an extent beyond i_size, an explicit hole was
4417		 * already inserted by copy_items().
4418		 */
4419		if (key.offset >= i_size)
4420			return 0;
4421
4422		extent = btrfs_item_ptr(leaf, path->slots[0],
4423					struct btrfs_file_extent_item);
4424
4425		if (btrfs_file_extent_type(leaf, extent) ==
4426		    BTRFS_FILE_EXTENT_INLINE) {
4427			len = btrfs_file_extent_inline_len(leaf,
4428							   path->slots[0],
4429							   extent);
4430			ASSERT(len == i_size);
4431			return 0;
4432		}
4433
4434		len = btrfs_file_extent_num_bytes(leaf, extent);
4435		/* Last extent goes beyond i_size, no need to log a hole. */
4436		if (key.offset + len > i_size)
4437			return 0;
4438		hole_start = key.offset + len;
4439		hole_size = i_size - hole_start;
4440	}
4441	btrfs_release_path(path);
4442
4443	/* Last extent ends at i_size. */
4444	if (hole_size == 0)
4445		return 0;
4446
4447	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4448	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4449				       hole_size, 0, hole_size, 0, 0, 0);
4450	return ret;
4451}
4452
4453/*
4454 * When we are logging a new inode X, check if it doesn't have a reference that
4455 * matches the reference from some other inode Y created in a past transaction
4456 * and that was renamed in the current transaction. If we don't do this, then at
4457 * log replay time we can lose inode Y (and all its files if it's a directory):
4458 *
4459 * mkdir /mnt/x
4460 * echo "hello world" > /mnt/x/foobar
4461 * sync
4462 * mv /mnt/x /mnt/y
4463 * mkdir /mnt/x                 # or touch /mnt/x
4464 * xfs_io -c fsync /mnt/x
4465 * <power fail>
4466 * mount fs, trigger log replay
4467 *
4468 * After the log replay procedure, we would lose the first directory and all its
4469 * files (file foobar).
4470 * For the case where inode Y is not a directory we simply end up losing it:
4471 *
4472 * echo "123" > /mnt/foo
4473 * sync
4474 * mv /mnt/foo /mnt/bar
4475 * echo "abc" > /mnt/foo
4476 * xfs_io -c fsync /mnt/foo
4477 * <power fail>
4478 *
4479 * We also need this for cases where a snapshot entry is replaced by some other
4480 * entry (file or directory) otherwise we end up with an unreplayable log due to
4481 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4482 * if it were a regular entry:
4483 *
4484 * mkdir /mnt/x
4485 * btrfs subvolume snapshot /mnt /mnt/x/snap
4486 * btrfs subvolume delete /mnt/x/snap
4487 * rmdir /mnt/x
4488 * mkdir /mnt/x
4489 * fsync /mnt/x or fsync some new file inside it
4490 * <power fail>
4491 *
4492 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4493 * the same transaction.
4494 */
4495static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496					 const int slot,
4497					 const struct btrfs_key *key,
4498					 struct inode *inode,
4499					 u64 *other_ino)
4500{
4501	int ret;
4502	struct btrfs_path *search_path;
4503	char *name = NULL;
4504	u32 name_len = 0;
4505	u32 item_size = btrfs_item_size_nr(eb, slot);
4506	u32 cur_offset = 0;
4507	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508
4509	search_path = btrfs_alloc_path();
4510	if (!search_path)
4511		return -ENOMEM;
4512	search_path->search_commit_root = 1;
4513	search_path->skip_locking = 1;
4514
4515	while (cur_offset < item_size) {
4516		u64 parent;
4517		u32 this_name_len;
4518		u32 this_len;
4519		unsigned long name_ptr;
4520		struct btrfs_dir_item *di;
4521
4522		if (key->type == BTRFS_INODE_REF_KEY) {
4523			struct btrfs_inode_ref *iref;
4524
4525			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4526			parent = key->offset;
4527			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4528			name_ptr = (unsigned long)(iref + 1);
4529			this_len = sizeof(*iref) + this_name_len;
4530		} else {
4531			struct btrfs_inode_extref *extref;
4532
4533			extref = (struct btrfs_inode_extref *)(ptr +
4534							       cur_offset);
4535			parent = btrfs_inode_extref_parent(eb, extref);
4536			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4537			name_ptr = (unsigned long)&extref->name;
4538			this_len = sizeof(*extref) + this_name_len;
4539		}
4540
4541		if (this_name_len > name_len) {
4542			char *new_name;
4543
4544			new_name = krealloc(name, this_name_len, GFP_NOFS);
4545			if (!new_name) {
4546				ret = -ENOMEM;
4547				goto out;
4548			}
4549			name_len = this_name_len;
4550			name = new_name;
4551		}
4552
4553		read_extent_buffer(eb, name, name_ptr, this_name_len);
4554		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4555					   search_path, parent,
4556					   name, this_name_len, 0);
4557		if (di && !IS_ERR(di)) {
4558			struct btrfs_key di_key;
4559
4560			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4561						  di, &di_key);
4562			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4563				ret = 1;
4564				*other_ino = di_key.objectid;
 
 
 
 
 
4565			} else {
4566				ret = -EAGAIN;
4567			}
4568			goto out;
4569		} else if (IS_ERR(di)) {
4570			ret = PTR_ERR(di);
4571			goto out;
4572		}
4573		btrfs_release_path(search_path);
4574
4575		cur_offset += this_len;
4576	}
4577	ret = 0;
4578out:
4579	btrfs_free_path(search_path);
4580	kfree(name);
4581	return ret;
4582}
4583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4584/* log a single inode in the tree log.
4585 * At least one parent directory for this inode must exist in the tree
4586 * or be logged already.
4587 *
4588 * Any items from this inode changed by the current transaction are copied
4589 * to the log tree.  An extra reference is taken on any extents in this
4590 * file, allowing us to avoid a whole pile of corner cases around logging
4591 * blocks that have been removed from the tree.
4592 *
4593 * See LOG_INODE_ALL and related defines for a description of what inode_only
4594 * does.
4595 *
4596 * This handles both files and directories.
4597 */
4598static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4599			   struct btrfs_root *root, struct inode *inode,
4600			   int inode_only,
4601			   const loff_t start,
4602			   const loff_t end,
4603			   struct btrfs_log_ctx *ctx)
4604{
4605	struct btrfs_fs_info *fs_info = root->fs_info;
4606	struct btrfs_path *path;
4607	struct btrfs_path *dst_path;
4608	struct btrfs_key min_key;
4609	struct btrfs_key max_key;
4610	struct btrfs_root *log = root->log_root;
4611	struct extent_buffer *src = NULL;
4612	LIST_HEAD(logged_list);
4613	u64 last_extent = 0;
4614	int err = 0;
4615	int ret;
4616	int nritems;
4617	int ins_start_slot = 0;
4618	int ins_nr;
4619	bool fast_search = false;
4620	u64 ino = btrfs_ino(inode);
4621	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4622	u64 logged_isize = 0;
4623	bool need_log_inode_item = true;
 
 
4624
4625	path = btrfs_alloc_path();
4626	if (!path)
4627		return -ENOMEM;
4628	dst_path = btrfs_alloc_path();
4629	if (!dst_path) {
4630		btrfs_free_path(path);
4631		return -ENOMEM;
4632	}
4633
4634	min_key.objectid = ino;
4635	min_key.type = BTRFS_INODE_ITEM_KEY;
4636	min_key.offset = 0;
4637
4638	max_key.objectid = ino;
4639
4640
4641	/* today the code can only do partial logging of directories */
4642	if (S_ISDIR(inode->i_mode) ||
4643	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4644		       &BTRFS_I(inode)->runtime_flags) &&
4645	     inode_only >= LOG_INODE_EXISTS))
4646		max_key.type = BTRFS_XATTR_ITEM_KEY;
4647	else
4648		max_key.type = (u8)-1;
4649	max_key.offset = (u64)-1;
4650
4651	/*
4652	 * Only run delayed items if we are a dir or a new file.
4653	 * Otherwise commit the delayed inode only, which is needed in
4654	 * order for the log replay code to mark inodes for link count
4655	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4656	 */
4657	if (S_ISDIR(inode->i_mode) ||
4658	    BTRFS_I(inode)->generation > fs_info->last_trans_committed)
4659		ret = btrfs_commit_inode_delayed_items(trans, inode);
4660	else
4661		ret = btrfs_commit_inode_delayed_inode(inode);
4662
4663	if (ret) {
4664		btrfs_free_path(path);
4665		btrfs_free_path(dst_path);
4666		return ret;
4667	}
4668
4669	if (inode_only == LOG_OTHER_INODE) {
4670		inode_only = LOG_INODE_EXISTS;
4671		mutex_lock_nested(&BTRFS_I(inode)->log_mutex,
4672				  SINGLE_DEPTH_NESTING);
 
 
 
4673	} else {
4674		mutex_lock(&BTRFS_I(inode)->log_mutex);
4675	}
4676
4677	/*
4678	 * a brute force approach to making sure we get the most uptodate
4679	 * copies of everything.
4680	 */
4681	if (S_ISDIR(inode->i_mode)) {
4682		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4683
4684		if (inode_only == LOG_INODE_EXISTS)
4685			max_key_type = BTRFS_XATTR_ITEM_KEY;
4686		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4687	} else {
4688		if (inode_only == LOG_INODE_EXISTS) {
4689			/*
4690			 * Make sure the new inode item we write to the log has
4691			 * the same isize as the current one (if it exists).
4692			 * This is necessary to prevent data loss after log
4693			 * replay, and also to prevent doing a wrong expanding
4694			 * truncate - for e.g. create file, write 4K into offset
4695			 * 0, fsync, write 4K into offset 4096, add hard link,
4696			 * fsync some other file (to sync log), power fail - if
4697			 * we use the inode's current i_size, after log replay
4698			 * we get a 8Kb file, with the last 4Kb extent as a hole
4699			 * (zeroes), as if an expanding truncate happened,
4700			 * instead of getting a file of 4Kb only.
4701			 */
4702			err = logged_inode_size(log, inode, path,
4703						&logged_isize);
4704			if (err)
4705				goto out_unlock;
4706		}
4707		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4708			     &BTRFS_I(inode)->runtime_flags)) {
4709			if (inode_only == LOG_INODE_EXISTS) {
4710				max_key.type = BTRFS_XATTR_ITEM_KEY;
4711				ret = drop_objectid_items(trans, log, path, ino,
4712							  max_key.type);
4713			} else {
4714				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4715					  &BTRFS_I(inode)->runtime_flags);
4716				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4717					  &BTRFS_I(inode)->runtime_flags);
4718				while(1) {
4719					ret = btrfs_truncate_inode_items(trans,
4720							 log, inode, 0, 0);
4721					if (ret != -EAGAIN)
4722						break;
4723				}
4724			}
4725		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4726					      &BTRFS_I(inode)->runtime_flags) ||
4727			   inode_only == LOG_INODE_EXISTS) {
4728			if (inode_only == LOG_INODE_ALL)
4729				fast_search = true;
4730			max_key.type = BTRFS_XATTR_ITEM_KEY;
4731			ret = drop_objectid_items(trans, log, path, ino,
4732						  max_key.type);
4733		} else {
4734			if (inode_only == LOG_INODE_ALL)
4735				fast_search = true;
4736			goto log_extents;
4737		}
4738
4739	}
4740	if (ret) {
4741		err = ret;
4742		goto out_unlock;
4743	}
4744
4745	while (1) {
4746		ins_nr = 0;
4747		ret = btrfs_search_forward(root, &min_key,
4748					   path, trans->transid);
4749		if (ret < 0) {
4750			err = ret;
4751			goto out_unlock;
4752		}
4753		if (ret != 0)
4754			break;
4755again:
4756		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4757		if (min_key.objectid != ino)
4758			break;
4759		if (min_key.type > max_key.type)
4760			break;
4761
4762		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4763			need_log_inode_item = false;
4764
4765		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4766		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4767		    BTRFS_I(inode)->generation == trans->transid) {
 
4768			u64 other_ino = 0;
 
4769
4770			ret = btrfs_check_ref_name_override(path->nodes[0],
4771							    path->slots[0],
4772							    &min_key, inode,
4773							    &other_ino);
4774			if (ret < 0) {
4775				err = ret;
4776				goto out_unlock;
4777			} else if (ret > 0 && ctx &&
4778				   other_ino != btrfs_ino(ctx->inode)) {
4779				struct btrfs_key inode_key;
4780				struct inode *other_inode;
4781
4782				if (ins_nr > 0) {
4783					ins_nr++;
4784				} else {
4785					ins_nr = 1;
4786					ins_start_slot = path->slots[0];
4787				}
4788				ret = copy_items(trans, inode, dst_path, path,
4789						 &last_extent, ins_start_slot,
4790						 ins_nr, inode_only,
4791						 logged_isize);
4792				if (ret < 0) {
4793					err = ret;
4794					goto out_unlock;
4795				}
4796				ins_nr = 0;
4797				btrfs_release_path(path);
4798				inode_key.objectid = other_ino;
4799				inode_key.type = BTRFS_INODE_ITEM_KEY;
4800				inode_key.offset = 0;
4801				other_inode = btrfs_iget(fs_info->sb,
4802							 &inode_key, root,
4803							 NULL);
4804				/*
4805				 * If the other inode that had a conflicting dir
4806				 * entry was deleted in the current transaction,
4807				 * we don't need to do more work nor fallback to
4808				 * a transaction commit.
4809				 */
4810				if (IS_ERR(other_inode) &&
4811				    PTR_ERR(other_inode) == -ENOENT) {
4812					goto next_key;
4813				} else if (IS_ERR(other_inode)) {
4814					err = PTR_ERR(other_inode);
4815					goto out_unlock;
4816				}
4817				/*
4818				 * We are safe logging the other inode without
4819				 * acquiring its i_mutex as long as we log with
4820				 * the LOG_INODE_EXISTS mode. We're safe against
4821				 * concurrent renames of the other inode as well
4822				 * because during a rename we pin the log and
4823				 * update the log with the new name before we
4824				 * unpin it.
4825				 */
4826				err = btrfs_log_inode(trans, root, other_inode,
4827						      LOG_OTHER_INODE,
4828						      0, LLONG_MAX, ctx);
4829				iput(other_inode);
4830				if (err)
4831					goto out_unlock;
4832				else
4833					goto next_key;
4834			}
4835		}
4836
4837		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4838		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4839			if (ins_nr == 0)
4840				goto next_slot;
4841			ret = copy_items(trans, inode, dst_path, path,
4842					 &last_extent, ins_start_slot,
4843					 ins_nr, inode_only, logged_isize);
4844			if (ret < 0) {
4845				err = ret;
4846				goto out_unlock;
4847			}
4848			ins_nr = 0;
4849			if (ret) {
4850				btrfs_release_path(path);
4851				continue;
4852			}
4853			goto next_slot;
4854		}
4855
4856		src = path->nodes[0];
4857		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4858			ins_nr++;
4859			goto next_slot;
4860		} else if (!ins_nr) {
4861			ins_start_slot = path->slots[0];
4862			ins_nr = 1;
4863			goto next_slot;
4864		}
4865
4866		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4867				 ins_start_slot, ins_nr, inode_only,
4868				 logged_isize);
4869		if (ret < 0) {
4870			err = ret;
4871			goto out_unlock;
4872		}
4873		if (ret) {
4874			ins_nr = 0;
4875			btrfs_release_path(path);
4876			continue;
4877		}
4878		ins_nr = 1;
4879		ins_start_slot = path->slots[0];
4880next_slot:
4881
4882		nritems = btrfs_header_nritems(path->nodes[0]);
4883		path->slots[0]++;
4884		if (path->slots[0] < nritems) {
4885			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4886					      path->slots[0]);
4887			goto again;
4888		}
4889		if (ins_nr) {
4890			ret = copy_items(trans, inode, dst_path, path,
4891					 &last_extent, ins_start_slot,
4892					 ins_nr, inode_only, logged_isize);
4893			if (ret < 0) {
4894				err = ret;
4895				goto out_unlock;
4896			}
4897			ret = 0;
4898			ins_nr = 0;
4899		}
4900		btrfs_release_path(path);
4901next_key:
4902		if (min_key.offset < (u64)-1) {
4903			min_key.offset++;
4904		} else if (min_key.type < max_key.type) {
4905			min_key.type++;
4906			min_key.offset = 0;
4907		} else {
4908			break;
4909		}
4910	}
4911	if (ins_nr) {
4912		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4913				 ins_start_slot, ins_nr, inode_only,
4914				 logged_isize);
4915		if (ret < 0) {
4916			err = ret;
4917			goto out_unlock;
4918		}
4919		ret = 0;
4920		ins_nr = 0;
4921	}
4922
4923	btrfs_release_path(path);
4924	btrfs_release_path(dst_path);
4925	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4926	if (err)
4927		goto out_unlock;
 
4928	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4929		btrfs_release_path(path);
4930		btrfs_release_path(dst_path);
4931		err = btrfs_log_trailing_hole(trans, root, inode, path);
4932		if (err)
4933			goto out_unlock;
4934	}
4935log_extents:
4936	btrfs_release_path(path);
4937	btrfs_release_path(dst_path);
4938	if (need_log_inode_item) {
4939		err = log_inode_item(trans, log, dst_path, inode);
 
 
 
 
 
4940		if (err)
4941			goto out_unlock;
4942	}
4943	if (fast_search) {
4944		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4945						&logged_list, ctx, start, end);
4946		if (ret) {
4947			err = ret;
4948			goto out_unlock;
4949		}
4950	} else if (inode_only == LOG_INODE_ALL) {
4951		struct extent_map *em, *n;
4952
4953		write_lock(&em_tree->lock);
4954		/*
4955		 * We can't just remove every em if we're called for a ranged
4956		 * fsync - that is, one that doesn't cover the whole possible
4957		 * file range (0 to LLONG_MAX). This is because we can have
4958		 * em's that fall outside the range we're logging and therefore
4959		 * their ordered operations haven't completed yet
4960		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4961		 * didn't get their respective file extent item in the fs/subvol
4962		 * tree yet, and need to let the next fast fsync (one which
4963		 * consults the list of modified extent maps) find the em so
4964		 * that it logs a matching file extent item and waits for the
4965		 * respective ordered operation to complete (if it's still
4966		 * running).
4967		 *
4968		 * Removing every em outside the range we're logging would make
4969		 * the next fast fsync not log their matching file extent items,
4970		 * therefore making us lose data after a log replay.
4971		 */
4972		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4973					 list) {
4974			const u64 mod_end = em->mod_start + em->mod_len - 1;
4975
4976			if (em->mod_start >= start && mod_end <= end)
4977				list_del_init(&em->list);
4978		}
4979		write_unlock(&em_tree->lock);
4980	}
4981
4982	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4983		ret = log_directory_changes(trans, root, inode, path, dst_path,
4984					    ctx);
4985		if (ret) {
4986			err = ret;
4987			goto out_unlock;
4988		}
4989	}
4990
4991	spin_lock(&BTRFS_I(inode)->lock);
4992	BTRFS_I(inode)->logged_trans = trans->transid;
4993	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4994	spin_unlock(&BTRFS_I(inode)->lock);
 
 
 
 
 
 
 
 
 
 
4995out_unlock:
4996	if (unlikely(err))
4997		btrfs_put_logged_extents(&logged_list);
4998	else
4999		btrfs_submit_logged_extents(&logged_list, log);
5000	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5001
5002	btrfs_free_path(path);
5003	btrfs_free_path(dst_path);
5004	return err;
5005}
5006
5007/*
5008 * Check if we must fallback to a transaction commit when logging an inode.
5009 * This must be called after logging the inode and is used only in the context
5010 * when fsyncing an inode requires the need to log some other inode - in which
5011 * case we can't lock the i_mutex of each other inode we need to log as that
5012 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5013 * log inodes up or down in the hierarchy) or rename operations for example. So
5014 * we take the log_mutex of the inode after we have logged it and then check for
5015 * its last_unlink_trans value - this is safe because any task setting
5016 * last_unlink_trans must take the log_mutex and it must do this before it does
5017 * the actual unlink operation, so if we do this check before a concurrent task
5018 * sets last_unlink_trans it means we've logged a consistent version/state of
5019 * all the inode items, otherwise we are not sure and must do a transaction
5020 * commit (the concurrent task might have only updated last_unlink_trans before
5021 * we logged the inode or it might have also done the unlink).
5022 */
5023static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5024					  struct inode *inode)
5025{
5026	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5027	bool ret = false;
5028
5029	mutex_lock(&BTRFS_I(inode)->log_mutex);
5030	if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5031		/*
5032		 * Make sure any commits to the log are forced to be full
5033		 * commits.
5034		 */
5035		btrfs_set_log_full_commit(fs_info, trans);
5036		ret = true;
5037	}
5038	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5039
5040	return ret;
5041}
5042
5043/*
5044 * follow the dentry parent pointers up the chain and see if any
5045 * of the directories in it require a full commit before they can
5046 * be logged.  Returns zero if nothing special needs to be done or 1 if
5047 * a full commit is required.
5048 */
5049static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5050					       struct inode *inode,
5051					       struct dentry *parent,
5052					       struct super_block *sb,
5053					       u64 last_committed)
5054{
5055	int ret = 0;
5056	struct dentry *old_parent = NULL;
5057	struct inode *orig_inode = inode;
5058
5059	/*
5060	 * for regular files, if its inode is already on disk, we don't
5061	 * have to worry about the parents at all.  This is because
5062	 * we can use the last_unlink_trans field to record renames
5063	 * and other fun in this file.
5064	 */
5065	if (S_ISREG(inode->i_mode) &&
5066	    BTRFS_I(inode)->generation <= last_committed &&
5067	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
5068			goto out;
5069
5070	if (!S_ISDIR(inode->i_mode)) {
5071		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5072			goto out;
5073		inode = d_inode(parent);
5074	}
5075
5076	while (1) {
5077		/*
5078		 * If we are logging a directory then we start with our inode,
5079		 * not our parent's inode, so we need to skip setting the
5080		 * logged_trans so that further down in the log code we don't
5081		 * think this inode has already been logged.
5082		 */
5083		if (inode != orig_inode)
5084			BTRFS_I(inode)->logged_trans = trans->transid;
5085		smp_mb();
5086
5087		if (btrfs_must_commit_transaction(trans, inode)) {
5088			ret = 1;
5089			break;
5090		}
5091
5092		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5093			break;
5094
5095		if (IS_ROOT(parent)) {
5096			inode = d_inode(parent);
5097			if (btrfs_must_commit_transaction(trans, inode))
5098				ret = 1;
5099			break;
5100		}
5101
5102		parent = dget_parent(parent);
5103		dput(old_parent);
5104		old_parent = parent;
5105		inode = d_inode(parent);
5106
5107	}
5108	dput(old_parent);
5109out:
5110	return ret;
5111}
5112
5113struct btrfs_dir_list {
5114	u64 ino;
5115	struct list_head list;
5116};
5117
5118/*
5119 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5120 * details about the why it is needed.
5121 * This is a recursive operation - if an existing dentry corresponds to a
5122 * directory, that directory's new entries are logged too (same behaviour as
5123 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5124 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5125 * complains about the following circular lock dependency / possible deadlock:
5126 *
5127 *        CPU0                                        CPU1
5128 *        ----                                        ----
5129 * lock(&type->i_mutex_dir_key#3/2);
5130 *                                            lock(sb_internal#2);
5131 *                                            lock(&type->i_mutex_dir_key#3/2);
5132 * lock(&sb->s_type->i_mutex_key#14);
5133 *
5134 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5135 * sb_start_intwrite() in btrfs_start_transaction().
5136 * Not locking i_mutex of the inodes is still safe because:
5137 *
5138 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5139 *    that while logging the inode new references (names) are added or removed
5140 *    from the inode, leaving the logged inode item with a link count that does
5141 *    not match the number of logged inode reference items. This is fine because
5142 *    at log replay time we compute the real number of links and correct the
5143 *    link count in the inode item (see replay_one_buffer() and
5144 *    link_to_fixup_dir());
5145 *
5146 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5147 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5148 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5149 *    has a size that doesn't match the sum of the lengths of all the logged
5150 *    names. This does not result in a problem because if a dir_item key is
5151 *    logged but its matching dir_index key is not logged, at log replay time we
5152 *    don't use it to replay the respective name (see replay_one_name()). On the
5153 *    other hand if only the dir_index key ends up being logged, the respective
5154 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5155 *    keys created (see replay_one_name()).
5156 *    The directory's inode item with a wrong i_size is not a problem as well,
5157 *    since we don't use it at log replay time to set the i_size in the inode
5158 *    item of the fs/subvol tree (see overwrite_item()).
5159 */
5160static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5161				struct btrfs_root *root,
5162				struct inode *start_inode,
5163				struct btrfs_log_ctx *ctx)
5164{
5165	struct btrfs_fs_info *fs_info = root->fs_info;
5166	struct btrfs_root *log = root->log_root;
5167	struct btrfs_path *path;
5168	LIST_HEAD(dir_list);
5169	struct btrfs_dir_list *dir_elem;
5170	int ret = 0;
5171
5172	path = btrfs_alloc_path();
5173	if (!path)
5174		return -ENOMEM;
5175
5176	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5177	if (!dir_elem) {
5178		btrfs_free_path(path);
5179		return -ENOMEM;
5180	}
5181	dir_elem->ino = btrfs_ino(start_inode);
5182	list_add_tail(&dir_elem->list, &dir_list);
5183
5184	while (!list_empty(&dir_list)) {
5185		struct extent_buffer *leaf;
5186		struct btrfs_key min_key;
5187		int nritems;
5188		int i;
5189
5190		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5191					    list);
5192		if (ret)
5193			goto next_dir_inode;
5194
5195		min_key.objectid = dir_elem->ino;
5196		min_key.type = BTRFS_DIR_ITEM_KEY;
5197		min_key.offset = 0;
5198again:
5199		btrfs_release_path(path);
5200		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5201		if (ret < 0) {
5202			goto next_dir_inode;
5203		} else if (ret > 0) {
5204			ret = 0;
5205			goto next_dir_inode;
5206		}
5207
5208process_leaf:
5209		leaf = path->nodes[0];
5210		nritems = btrfs_header_nritems(leaf);
5211		for (i = path->slots[0]; i < nritems; i++) {
5212			struct btrfs_dir_item *di;
5213			struct btrfs_key di_key;
5214			struct inode *di_inode;
5215			struct btrfs_dir_list *new_dir_elem;
5216			int log_mode = LOG_INODE_EXISTS;
5217			int type;
5218
5219			btrfs_item_key_to_cpu(leaf, &min_key, i);
5220			if (min_key.objectid != dir_elem->ino ||
5221			    min_key.type != BTRFS_DIR_ITEM_KEY)
5222				goto next_dir_inode;
5223
5224			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5225			type = btrfs_dir_type(leaf, di);
5226			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5227			    type != BTRFS_FT_DIR)
5228				continue;
5229			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5230			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5231				continue;
5232
5233			btrfs_release_path(path);
5234			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5235			if (IS_ERR(di_inode)) {
5236				ret = PTR_ERR(di_inode);
5237				goto next_dir_inode;
5238			}
5239
5240			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5241				iput(di_inode);
5242				break;
5243			}
5244
5245			ctx->log_new_dentries = false;
5246			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5247				log_mode = LOG_INODE_ALL;
5248			ret = btrfs_log_inode(trans, root, di_inode,
5249					      log_mode, 0, LLONG_MAX, ctx);
5250			if (!ret &&
5251			    btrfs_must_commit_transaction(trans, di_inode))
5252				ret = 1;
5253			iput(di_inode);
5254			if (ret)
5255				goto next_dir_inode;
5256			if (ctx->log_new_dentries) {
5257				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5258						       GFP_NOFS);
5259				if (!new_dir_elem) {
5260					ret = -ENOMEM;
5261					goto next_dir_inode;
5262				}
5263				new_dir_elem->ino = di_key.objectid;
5264				list_add_tail(&new_dir_elem->list, &dir_list);
5265			}
5266			break;
5267		}
5268		if (i == nritems) {
5269			ret = btrfs_next_leaf(log, path);
5270			if (ret < 0) {
5271				goto next_dir_inode;
5272			} else if (ret > 0) {
5273				ret = 0;
5274				goto next_dir_inode;
5275			}
5276			goto process_leaf;
5277		}
5278		if (min_key.offset < (u64)-1) {
5279			min_key.offset++;
5280			goto again;
5281		}
5282next_dir_inode:
5283		list_del(&dir_elem->list);
5284		kfree(dir_elem);
5285	}
5286
5287	btrfs_free_path(path);
5288	return ret;
5289}
5290
5291static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5292				 struct inode *inode,
5293				 struct btrfs_log_ctx *ctx)
5294{
5295	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5296	int ret;
5297	struct btrfs_path *path;
5298	struct btrfs_key key;
5299	struct btrfs_root *root = BTRFS_I(inode)->root;
5300	const u64 ino = btrfs_ino(inode);
5301
5302	path = btrfs_alloc_path();
5303	if (!path)
5304		return -ENOMEM;
5305	path->skip_locking = 1;
5306	path->search_commit_root = 1;
5307
5308	key.objectid = ino;
5309	key.type = BTRFS_INODE_REF_KEY;
5310	key.offset = 0;
5311	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5312	if (ret < 0)
5313		goto out;
5314
5315	while (true) {
5316		struct extent_buffer *leaf = path->nodes[0];
5317		int slot = path->slots[0];
5318		u32 cur_offset = 0;
5319		u32 item_size;
5320		unsigned long ptr;
5321
5322		if (slot >= btrfs_header_nritems(leaf)) {
5323			ret = btrfs_next_leaf(root, path);
5324			if (ret < 0)
5325				goto out;
5326			else if (ret > 0)
5327				break;
5328			continue;
5329		}
5330
5331		btrfs_item_key_to_cpu(leaf, &key, slot);
5332		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5333		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5334			break;
5335
5336		item_size = btrfs_item_size_nr(leaf, slot);
5337		ptr = btrfs_item_ptr_offset(leaf, slot);
5338		while (cur_offset < item_size) {
5339			struct btrfs_key inode_key;
5340			struct inode *dir_inode;
5341
5342			inode_key.type = BTRFS_INODE_ITEM_KEY;
5343			inode_key.offset = 0;
5344
5345			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5346				struct btrfs_inode_extref *extref;
5347
5348				extref = (struct btrfs_inode_extref *)
5349					(ptr + cur_offset);
5350				inode_key.objectid = btrfs_inode_extref_parent(
5351					leaf, extref);
5352				cur_offset += sizeof(*extref);
5353				cur_offset += btrfs_inode_extref_name_len(leaf,
5354					extref);
5355			} else {
5356				inode_key.objectid = key.offset;
5357				cur_offset = item_size;
5358			}
5359
5360			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5361					       root, NULL);
5362			/* If parent inode was deleted, skip it. */
5363			if (IS_ERR(dir_inode))
5364				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5365
5366			if (ctx)
5367				ctx->log_new_dentries = false;
5368			ret = btrfs_log_inode(trans, root, dir_inode,
5369					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5370			if (!ret &&
5371			    btrfs_must_commit_transaction(trans, dir_inode))
5372				ret = 1;
5373			if (!ret && ctx && ctx->log_new_dentries)
5374				ret = log_new_dir_dentries(trans, root,
5375							   dir_inode, ctx);
5376			iput(dir_inode);
5377			if (ret)
5378				goto out;
5379		}
5380		path->slots[0]++;
5381	}
5382	ret = 0;
5383out:
5384	btrfs_free_path(path);
5385	return ret;
5386}
5387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388/*
5389 * helper function around btrfs_log_inode to make sure newly created
5390 * parent directories also end up in the log.  A minimal inode and backref
5391 * only logging is done of any parent directories that are older than
5392 * the last committed transaction
5393 */
5394static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5395			    	  struct btrfs_root *root, struct inode *inode,
5396				  struct dentry *parent,
5397				  const loff_t start,
5398				  const loff_t end,
5399				  int exists_only,
5400				  struct btrfs_log_ctx *ctx)
5401{
 
5402	struct btrfs_fs_info *fs_info = root->fs_info;
5403	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5404	struct super_block *sb;
5405	struct dentry *old_parent = NULL;
5406	int ret = 0;
5407	u64 last_committed = fs_info->last_trans_committed;
5408	bool log_dentries = false;
5409	struct inode *orig_inode = inode;
5410
5411	sb = inode->i_sb;
5412
5413	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5414		ret = 1;
5415		goto end_no_trans;
5416	}
5417
5418	/*
5419	 * The prev transaction commit doesn't complete, we need do
5420	 * full commit by ourselves.
5421	 */
5422	if (fs_info->last_trans_log_full_commit >
5423	    fs_info->last_trans_committed) {
5424		ret = 1;
5425		goto end_no_trans;
5426	}
5427
5428	if (root != BTRFS_I(inode)->root ||
5429	    btrfs_root_refs(&root->root_item) == 0) {
5430		ret = 1;
5431		goto end_no_trans;
5432	}
5433
5434	ret = check_parent_dirs_for_sync(trans, inode, parent,
5435					 sb, last_committed);
5436	if (ret)
5437		goto end_no_trans;
5438
5439	if (btrfs_inode_in_log(inode, trans->transid)) {
 
 
 
 
 
 
5440		ret = BTRFS_NO_LOG_SYNC;
5441		goto end_no_trans;
5442	}
5443
5444	ret = start_log_trans(trans, root, ctx);
5445	if (ret)
5446		goto end_no_trans;
5447
5448	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5449	if (ret)
5450		goto end_trans;
5451
5452	/*
5453	 * for regular files, if its inode is already on disk, we don't
5454	 * have to worry about the parents at all.  This is because
5455	 * we can use the last_unlink_trans field to record renames
5456	 * and other fun in this file.
5457	 */
5458	if (S_ISREG(inode->i_mode) &&
5459	    BTRFS_I(inode)->generation <= last_committed &&
5460	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5461		ret = 0;
5462		goto end_trans;
5463	}
5464
5465	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5466		log_dentries = true;
5467
5468	/*
5469	 * On unlink we must make sure all our current and old parent directory
5470	 * inodes are fully logged. This is to prevent leaving dangling
5471	 * directory index entries in directories that were our parents but are
5472	 * not anymore. Not doing this results in old parent directory being
5473	 * impossible to delete after log replay (rmdir will always fail with
5474	 * error -ENOTEMPTY).
5475	 *
5476	 * Example 1:
5477	 *
5478	 * mkdir testdir
5479	 * touch testdir/foo
5480	 * ln testdir/foo testdir/bar
5481	 * sync
5482	 * unlink testdir/bar
5483	 * xfs_io -c fsync testdir/foo
5484	 * <power failure>
5485	 * mount fs, triggers log replay
5486	 *
5487	 * If we don't log the parent directory (testdir), after log replay the
5488	 * directory still has an entry pointing to the file inode using the bar
5489	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5490	 * the file inode has a link count of 1.
5491	 *
5492	 * Example 2:
5493	 *
5494	 * mkdir testdir
5495	 * touch foo
5496	 * ln foo testdir/foo2
5497	 * ln foo testdir/foo3
5498	 * sync
5499	 * unlink testdir/foo3
5500	 * xfs_io -c fsync foo
5501	 * <power failure>
5502	 * mount fs, triggers log replay
5503	 *
5504	 * Similar as the first example, after log replay the parent directory
5505	 * testdir still has an entry pointing to the inode file with name foo3
5506	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5507	 * and has a link count of 2.
5508	 */
5509	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5510		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5511		if (ret)
5512			goto end_trans;
5513	}
5514
5515	while (1) {
5516		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5517			break;
5518
5519		inode = d_inode(parent);
5520		if (root != BTRFS_I(inode)->root)
5521			break;
5522
5523		if (BTRFS_I(inode)->generation > last_committed) {
5524			ret = btrfs_log_inode(trans, root, inode,
5525					      LOG_INODE_EXISTS,
5526					      0, LLONG_MAX, ctx);
5527			if (ret)
5528				goto end_trans;
5529		}
5530		if (IS_ROOT(parent))
5531			break;
5532
5533		parent = dget_parent(parent);
5534		dput(old_parent);
5535		old_parent = parent;
5536	}
5537	if (log_dentries)
5538		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5539	else
5540		ret = 0;
5541end_trans:
5542	dput(old_parent);
5543	if (ret < 0) {
5544		btrfs_set_log_full_commit(fs_info, trans);
5545		ret = 1;
5546	}
5547
5548	if (ret)
5549		btrfs_remove_log_ctx(root, ctx);
5550	btrfs_end_log_trans(root);
5551end_no_trans:
5552	return ret;
5553}
5554
5555/*
5556 * it is not safe to log dentry if the chunk root has added new
5557 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5558 * If this returns 1, you must commit the transaction to safely get your
5559 * data on disk.
5560 */
5561int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5562			  struct btrfs_root *root, struct dentry *dentry,
5563			  const loff_t start,
5564			  const loff_t end,
5565			  struct btrfs_log_ctx *ctx)
5566{
5567	struct dentry *parent = dget_parent(dentry);
5568	int ret;
5569
5570	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5571				     start, end, 0, ctx);
5572	dput(parent);
5573
5574	return ret;
5575}
5576
5577/*
5578 * should be called during mount to recover any replay any log trees
5579 * from the FS
5580 */
5581int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5582{
5583	int ret;
5584	struct btrfs_path *path;
5585	struct btrfs_trans_handle *trans;
5586	struct btrfs_key key;
5587	struct btrfs_key found_key;
5588	struct btrfs_key tmp_key;
5589	struct btrfs_root *log;
5590	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5591	struct walk_control wc = {
5592		.process_func = process_one_buffer,
5593		.stage = 0,
5594	};
5595
5596	path = btrfs_alloc_path();
5597	if (!path)
5598		return -ENOMEM;
5599
5600	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5601
5602	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5603	if (IS_ERR(trans)) {
5604		ret = PTR_ERR(trans);
5605		goto error;
5606	}
5607
5608	wc.trans = trans;
5609	wc.pin = 1;
5610
5611	ret = walk_log_tree(trans, log_root_tree, &wc);
5612	if (ret) {
5613		btrfs_handle_fs_error(fs_info, ret,
5614			"Failed to pin buffers while recovering log root tree.");
5615		goto error;
5616	}
5617
5618again:
5619	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5620	key.offset = (u64)-1;
5621	key.type = BTRFS_ROOT_ITEM_KEY;
5622
5623	while (1) {
5624		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5625
5626		if (ret < 0) {
5627			btrfs_handle_fs_error(fs_info, ret,
5628				    "Couldn't find tree log root.");
5629			goto error;
5630		}
5631		if (ret > 0) {
5632			if (path->slots[0] == 0)
5633				break;
5634			path->slots[0]--;
5635		}
5636		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5637				      path->slots[0]);
5638		btrfs_release_path(path);
5639		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5640			break;
5641
5642		log = btrfs_read_fs_root(log_root_tree, &found_key);
5643		if (IS_ERR(log)) {
5644			ret = PTR_ERR(log);
5645			btrfs_handle_fs_error(fs_info, ret,
5646				    "Couldn't read tree log root.");
5647			goto error;
5648		}
5649
5650		tmp_key.objectid = found_key.offset;
5651		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5652		tmp_key.offset = (u64)-1;
5653
5654		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5655		if (IS_ERR(wc.replay_dest)) {
5656			ret = PTR_ERR(wc.replay_dest);
5657			free_extent_buffer(log->node);
5658			free_extent_buffer(log->commit_root);
5659			kfree(log);
5660			btrfs_handle_fs_error(fs_info, ret,
5661				"Couldn't read target root for tree log recovery.");
5662			goto error;
5663		}
5664
5665		wc.replay_dest->log_root = log;
5666		btrfs_record_root_in_trans(trans, wc.replay_dest);
5667		ret = walk_log_tree(trans, log, &wc);
5668
5669		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5670			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5671						      path);
5672		}
5673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5674		key.offset = found_key.offset - 1;
5675		wc.replay_dest->log_root = NULL;
5676		free_extent_buffer(log->node);
5677		free_extent_buffer(log->commit_root);
5678		kfree(log);
5679
5680		if (ret)
5681			goto error;
5682
5683		if (found_key.offset == 0)
5684			break;
5685	}
5686	btrfs_release_path(path);
5687
5688	/* step one is to pin it all, step two is to replay just inodes */
5689	if (wc.pin) {
5690		wc.pin = 0;
5691		wc.process_func = replay_one_buffer;
5692		wc.stage = LOG_WALK_REPLAY_INODES;
5693		goto again;
5694	}
5695	/* step three is to replay everything */
5696	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5697		wc.stage++;
5698		goto again;
5699	}
5700
5701	btrfs_free_path(path);
5702
5703	/* step 4: commit the transaction, which also unpins the blocks */
5704	ret = btrfs_commit_transaction(trans);
5705	if (ret)
5706		return ret;
5707
5708	free_extent_buffer(log_root_tree->node);
5709	log_root_tree->log_root = NULL;
5710	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5711	kfree(log_root_tree);
5712
5713	return 0;
5714error:
5715	if (wc.trans)
5716		btrfs_end_transaction(wc.trans);
5717	btrfs_free_path(path);
5718	return ret;
5719}
5720
5721/*
5722 * there are some corner cases where we want to force a full
5723 * commit instead of allowing a directory to be logged.
5724 *
5725 * They revolve around files there were unlinked from the directory, and
5726 * this function updates the parent directory so that a full commit is
5727 * properly done if it is fsync'd later after the unlinks are done.
5728 *
5729 * Must be called before the unlink operations (updates to the subvolume tree,
5730 * inodes, etc) are done.
5731 */
5732void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5733			     struct inode *dir, struct inode *inode,
5734			     int for_rename)
5735{
5736	/*
5737	 * when we're logging a file, if it hasn't been renamed
5738	 * or unlinked, and its inode is fully committed on disk,
5739	 * we don't have to worry about walking up the directory chain
5740	 * to log its parents.
5741	 *
5742	 * So, we use the last_unlink_trans field to put this transid
5743	 * into the file.  When the file is logged we check it and
5744	 * don't log the parents if the file is fully on disk.
5745	 */
5746	mutex_lock(&BTRFS_I(inode)->log_mutex);
5747	BTRFS_I(inode)->last_unlink_trans = trans->transid;
5748	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5749
5750	/*
5751	 * if this directory was already logged any new
5752	 * names for this file/dir will get recorded
5753	 */
5754	smp_mb();
5755	if (BTRFS_I(dir)->logged_trans == trans->transid)
5756		return;
5757
5758	/*
5759	 * if the inode we're about to unlink was logged,
5760	 * the log will be properly updated for any new names
5761	 */
5762	if (BTRFS_I(inode)->logged_trans == trans->transid)
5763		return;
5764
5765	/*
5766	 * when renaming files across directories, if the directory
5767	 * there we're unlinking from gets fsync'd later on, there's
5768	 * no way to find the destination directory later and fsync it
5769	 * properly.  So, we have to be conservative and force commits
5770	 * so the new name gets discovered.
5771	 */
5772	if (for_rename)
5773		goto record;
5774
5775	/* we can safely do the unlink without any special recording */
5776	return;
5777
5778record:
5779	mutex_lock(&BTRFS_I(dir)->log_mutex);
5780	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5781	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5782}
5783
5784/*
5785 * Make sure that if someone attempts to fsync the parent directory of a deleted
5786 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5787 * that after replaying the log tree of the parent directory's root we will not
5788 * see the snapshot anymore and at log replay time we will not see any log tree
5789 * corresponding to the deleted snapshot's root, which could lead to replaying
5790 * it after replaying the log tree of the parent directory (which would replay
5791 * the snapshot delete operation).
5792 *
5793 * Must be called before the actual snapshot destroy operation (updates to the
5794 * parent root and tree of tree roots trees, etc) are done.
5795 */
5796void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5797				   struct inode *dir)
5798{
5799	mutex_lock(&BTRFS_I(dir)->log_mutex);
5800	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5801	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5802}
5803
5804/*
5805 * Call this after adding a new name for a file and it will properly
5806 * update the log to reflect the new name.
5807 *
5808 * It will return zero if all goes well, and it will return 1 if a
5809 * full transaction commit is required.
 
 
 
 
 
 
 
 
 
5810 */
5811int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5812			struct inode *inode, struct inode *old_dir,
5813			struct dentry *parent)
 
5814{
5815	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5816	struct btrfs_root * root = BTRFS_I(inode)->root;
5817
5818	/*
5819	 * this will force the logging code to walk the dentry chain
5820	 * up for the file
5821	 */
5822	if (S_ISREG(inode->i_mode))
5823		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5824
5825	/*
5826	 * if this inode hasn't been logged and directory we're renaming it
5827	 * from hasn't been logged, we don't need to log it
5828	 */
5829	if (BTRFS_I(inode)->logged_trans <=
5830	    fs_info->last_trans_committed &&
5831	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5832		    fs_info->last_trans_committed))
5833		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5834
5835	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5836				      LLONG_MAX, 1, NULL);
5837}
5838
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
 
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "inode-map.h"
  21
  22/* magic values for the inode_only field in btrfs_log_inode:
  23 *
  24 * LOG_INODE_ALL means to log everything
  25 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  26 * during log replay
  27 */
  28enum {
  29	LOG_INODE_ALL,
  30	LOG_INODE_EXISTS,
  31	LOG_OTHER_INODE,
  32	LOG_OTHER_INODE_ALL,
  33};
  34
  35/*
  36 * directory trouble cases
  37 *
  38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  39 * log, we must force a full commit before doing an fsync of the directory
  40 * where the unlink was done.
  41 * ---> record transid of last unlink/rename per directory
  42 *
  43 * mkdir foo/some_dir
  44 * normal commit
  45 * rename foo/some_dir foo2/some_dir
  46 * mkdir foo/some_dir
  47 * fsync foo/some_dir/some_file
  48 *
  49 * The fsync above will unlink the original some_dir without recording
  50 * it in its new location (foo2).  After a crash, some_dir will be gone
  51 * unless the fsync of some_file forces a full commit
  52 *
  53 * 2) we must log any new names for any file or dir that is in the fsync
  54 * log. ---> check inode while renaming/linking.
  55 *
  56 * 2a) we must log any new names for any file or dir during rename
  57 * when the directory they are being removed from was logged.
  58 * ---> check inode and old parent dir during rename
  59 *
  60 *  2a is actually the more important variant.  With the extra logging
  61 *  a crash might unlink the old name without recreating the new one
  62 *
  63 * 3) after a crash, we must go through any directories with a link count
  64 * of zero and redo the rm -rf
  65 *
  66 * mkdir f1/foo
  67 * normal commit
  68 * rm -rf f1/foo
  69 * fsync(f1)
  70 *
  71 * The directory f1 was fully removed from the FS, but fsync was never
  72 * called on f1, only its parent dir.  After a crash the rm -rf must
  73 * be replayed.  This must be able to recurse down the entire
  74 * directory tree.  The inode link count fixup code takes care of the
  75 * ugly details.
  76 */
  77
  78/*
  79 * stages for the tree walking.  The first
  80 * stage (0) is to only pin down the blocks we find
  81 * the second stage (1) is to make sure that all the inodes
  82 * we find in the log are created in the subvolume.
  83 *
  84 * The last stage is to deal with directories and links and extents
  85 * and all the other fun semantics
  86 */
  87enum {
  88	LOG_WALK_PIN_ONLY,
  89	LOG_WALK_REPLAY_INODES,
  90	LOG_WALK_REPLAY_DIR_INDEX,
  91	LOG_WALK_REPLAY_ALL,
  92};
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95			   struct btrfs_root *root, struct btrfs_inode *inode,
  96			   int inode_only,
  97			   const loff_t start,
  98			   const loff_t end,
  99			   struct btrfs_log_ctx *ctx);
 100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 101			     struct btrfs_root *root,
 102			     struct btrfs_path *path, u64 objectid);
 103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 104				       struct btrfs_root *root,
 105				       struct btrfs_root *log,
 106				       struct btrfs_path *path,
 107				       u64 dirid, int del_all);
 108
 109/*
 110 * tree logging is a special write ahead log used to make sure that
 111 * fsyncs and O_SYNCs can happen without doing full tree commits.
 112 *
 113 * Full tree commits are expensive because they require commonly
 114 * modified blocks to be recowed, creating many dirty pages in the
 115 * extent tree an 4x-6x higher write load than ext3.
 116 *
 117 * Instead of doing a tree commit on every fsync, we use the
 118 * key ranges and transaction ids to find items for a given file or directory
 119 * that have changed in this transaction.  Those items are copied into
 120 * a special tree (one per subvolume root), that tree is written to disk
 121 * and then the fsync is considered complete.
 122 *
 123 * After a crash, items are copied out of the log-tree back into the
 124 * subvolume tree.  Any file data extents found are recorded in the extent
 125 * allocation tree, and the log-tree freed.
 126 *
 127 * The log tree is read three times, once to pin down all the extents it is
 128 * using in ram and once, once to create all the inodes logged in the tree
 129 * and once to do all the other items.
 130 */
 131
 132/*
 133 * start a sub transaction and setup the log tree
 134 * this increments the log tree writer count to make the people
 135 * syncing the tree wait for us to finish
 136 */
 137static int start_log_trans(struct btrfs_trans_handle *trans,
 138			   struct btrfs_root *root,
 139			   struct btrfs_log_ctx *ctx)
 140{
 141	struct btrfs_fs_info *fs_info = root->fs_info;
 142	int ret = 0;
 143
 144	mutex_lock(&root->log_mutex);
 145
 146	if (root->log_root) {
 147		if (btrfs_need_log_full_commit(trans)) {
 148			ret = -EAGAIN;
 149			goto out;
 150		}
 151
 152		if (!root->log_start_pid) {
 153			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 154			root->log_start_pid = current->pid;
 155		} else if (root->log_start_pid != current->pid) {
 156			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 157		}
 158	} else {
 159		mutex_lock(&fs_info->tree_log_mutex);
 160		if (!fs_info->log_root_tree)
 161			ret = btrfs_init_log_root_tree(trans, fs_info);
 162		mutex_unlock(&fs_info->tree_log_mutex);
 163		if (ret)
 164			goto out;
 165
 166		ret = btrfs_add_log_tree(trans, root);
 167		if (ret)
 168			goto out;
 169
 170		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 171		root->log_start_pid = current->pid;
 172	}
 173
 174	atomic_inc(&root->log_batch);
 175	atomic_inc(&root->log_writers);
 176	if (ctx) {
 177		int index = root->log_transid % 2;
 178		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 179		ctx->log_transid = root->log_transid;
 180	}
 181
 182out:
 183	mutex_unlock(&root->log_mutex);
 184	return ret;
 185}
 186
 187/*
 188 * returns 0 if there was a log transaction running and we were able
 189 * to join, or returns -ENOENT if there were not transactions
 190 * in progress
 191 */
 192static int join_running_log_trans(struct btrfs_root *root)
 193{
 194	int ret = -ENOENT;
 195
 
 
 
 
 196	mutex_lock(&root->log_mutex);
 197	if (root->log_root) {
 198		ret = 0;
 199		atomic_inc(&root->log_writers);
 200	}
 201	mutex_unlock(&root->log_mutex);
 202	return ret;
 203}
 204
 205/*
 206 * This either makes the current running log transaction wait
 207 * until you call btrfs_end_log_trans() or it makes any future
 208 * log transactions wait until you call btrfs_end_log_trans()
 209 */
 210void btrfs_pin_log_trans(struct btrfs_root *root)
 211{
 
 
 212	mutex_lock(&root->log_mutex);
 213	atomic_inc(&root->log_writers);
 214	mutex_unlock(&root->log_mutex);
 
 215}
 216
 217/*
 218 * indicate we're done making changes to the log tree
 219 * and wake up anyone waiting to do a sync
 220 */
 221void btrfs_end_log_trans(struct btrfs_root *root)
 222{
 223	if (atomic_dec_and_test(&root->log_writers)) {
 224		/* atomic_dec_and_test implies a barrier */
 225		cond_wake_up_nomb(&root->log_writer_wait);
 
 
 
 226	}
 227}
 228
 229static int btrfs_write_tree_block(struct extent_buffer *buf)
 230{
 231	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
 232					buf->start + buf->len - 1);
 233}
 234
 235static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 236{
 237	filemap_fdatawait_range(buf->pages[0]->mapping,
 238			        buf->start, buf->start + buf->len - 1);
 239}
 240
 241/*
 242 * the walk control struct is used to pass state down the chain when
 243 * processing the log tree.  The stage field tells us which part
 244 * of the log tree processing we are currently doing.  The others
 245 * are state fields used for that specific part
 246 */
 247struct walk_control {
 248	/* should we free the extent on disk when done?  This is used
 249	 * at transaction commit time while freeing a log tree
 250	 */
 251	int free;
 252
 253	/* should we write out the extent buffer?  This is used
 254	 * while flushing the log tree to disk during a sync
 255	 */
 256	int write;
 257
 258	/* should we wait for the extent buffer io to finish?  Also used
 259	 * while flushing the log tree to disk for a sync
 260	 */
 261	int wait;
 262
 263	/* pin only walk, we record which extents on disk belong to the
 264	 * log trees
 265	 */
 266	int pin;
 267
 268	/* what stage of the replay code we're currently in */
 269	int stage;
 270
 271	/*
 272	 * Ignore any items from the inode currently being processed. Needs
 273	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 274	 * the LOG_WALK_REPLAY_INODES stage.
 275	 */
 276	bool ignore_cur_inode;
 277
 278	/* the root we are currently replaying */
 279	struct btrfs_root *replay_dest;
 280
 281	/* the trans handle for the current replay */
 282	struct btrfs_trans_handle *trans;
 283
 284	/* the function that gets used to process blocks we find in the
 285	 * tree.  Note the extent_buffer might not be up to date when it is
 286	 * passed in, and it must be checked or read if you need the data
 287	 * inside it
 288	 */
 289	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 290			    struct walk_control *wc, u64 gen, int level);
 291};
 292
 293/*
 294 * process_func used to pin down extents, write them or wait on them
 295 */
 296static int process_one_buffer(struct btrfs_root *log,
 297			      struct extent_buffer *eb,
 298			      struct walk_control *wc, u64 gen, int level)
 299{
 300	struct btrfs_fs_info *fs_info = log->fs_info;
 301	int ret = 0;
 302
 303	/*
 304	 * If this fs is mixed then we need to be able to process the leaves to
 305	 * pin down any logged extents, so we have to read the block.
 306	 */
 307	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 308		ret = btrfs_read_buffer(eb, gen, level, NULL);
 309		if (ret)
 310			return ret;
 311	}
 312
 313	if (wc->pin)
 314		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
 315						      eb->len);
 316
 317	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 318		if (wc->pin && btrfs_header_level(eb) == 0)
 319			ret = btrfs_exclude_logged_extents(eb);
 320		if (wc->write)
 321			btrfs_write_tree_block(eb);
 322		if (wc->wait)
 323			btrfs_wait_tree_block_writeback(eb);
 324	}
 325	return ret;
 326}
 327
 328/*
 329 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 330 * to the src data we are copying out.
 331 *
 332 * root is the tree we are copying into, and path is a scratch
 333 * path for use in this function (it should be released on entry and
 334 * will be released on exit).
 335 *
 336 * If the key is already in the destination tree the existing item is
 337 * overwritten.  If the existing item isn't big enough, it is extended.
 338 * If it is too large, it is truncated.
 339 *
 340 * If the key isn't in the destination yet, a new item is inserted.
 341 */
 342static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 343				   struct btrfs_root *root,
 344				   struct btrfs_path *path,
 345				   struct extent_buffer *eb, int slot,
 346				   struct btrfs_key *key)
 347{
 
 348	int ret;
 349	u32 item_size;
 350	u64 saved_i_size = 0;
 351	int save_old_i_size = 0;
 352	unsigned long src_ptr;
 353	unsigned long dst_ptr;
 354	int overwrite_root = 0;
 355	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 356
 357	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 358		overwrite_root = 1;
 359
 360	item_size = btrfs_item_size_nr(eb, slot);
 361	src_ptr = btrfs_item_ptr_offset(eb, slot);
 362
 363	/* look for the key in the destination tree */
 364	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 365	if (ret < 0)
 366		return ret;
 367
 368	if (ret == 0) {
 369		char *src_copy;
 370		char *dst_copy;
 371		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 372						  path->slots[0]);
 373		if (dst_size != item_size)
 374			goto insert;
 375
 376		if (item_size == 0) {
 377			btrfs_release_path(path);
 378			return 0;
 379		}
 380		dst_copy = kmalloc(item_size, GFP_NOFS);
 381		src_copy = kmalloc(item_size, GFP_NOFS);
 382		if (!dst_copy || !src_copy) {
 383			btrfs_release_path(path);
 384			kfree(dst_copy);
 385			kfree(src_copy);
 386			return -ENOMEM;
 387		}
 388
 389		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 390
 391		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 392		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 393				   item_size);
 394		ret = memcmp(dst_copy, src_copy, item_size);
 395
 396		kfree(dst_copy);
 397		kfree(src_copy);
 398		/*
 399		 * they have the same contents, just return, this saves
 400		 * us from cowing blocks in the destination tree and doing
 401		 * extra writes that may not have been done by a previous
 402		 * sync
 403		 */
 404		if (ret == 0) {
 405			btrfs_release_path(path);
 406			return 0;
 407		}
 408
 409		/*
 410		 * We need to load the old nbytes into the inode so when we
 411		 * replay the extents we've logged we get the right nbytes.
 412		 */
 413		if (inode_item) {
 414			struct btrfs_inode_item *item;
 415			u64 nbytes;
 416			u32 mode;
 417
 418			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 419					      struct btrfs_inode_item);
 420			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 421			item = btrfs_item_ptr(eb, slot,
 422					      struct btrfs_inode_item);
 423			btrfs_set_inode_nbytes(eb, item, nbytes);
 424
 425			/*
 426			 * If this is a directory we need to reset the i_size to
 427			 * 0 so that we can set it up properly when replaying
 428			 * the rest of the items in this log.
 429			 */
 430			mode = btrfs_inode_mode(eb, item);
 431			if (S_ISDIR(mode))
 432				btrfs_set_inode_size(eb, item, 0);
 433		}
 434	} else if (inode_item) {
 435		struct btrfs_inode_item *item;
 436		u32 mode;
 437
 438		/*
 439		 * New inode, set nbytes to 0 so that the nbytes comes out
 440		 * properly when we replay the extents.
 441		 */
 442		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 443		btrfs_set_inode_nbytes(eb, item, 0);
 444
 445		/*
 446		 * If this is a directory we need to reset the i_size to 0 so
 447		 * that we can set it up properly when replaying the rest of
 448		 * the items in this log.
 449		 */
 450		mode = btrfs_inode_mode(eb, item);
 451		if (S_ISDIR(mode))
 452			btrfs_set_inode_size(eb, item, 0);
 453	}
 454insert:
 455	btrfs_release_path(path);
 456	/* try to insert the key into the destination tree */
 457	path->skip_release_on_error = 1;
 458	ret = btrfs_insert_empty_item(trans, root, path,
 459				      key, item_size);
 460	path->skip_release_on_error = 0;
 461
 462	/* make sure any existing item is the correct size */
 463	if (ret == -EEXIST || ret == -EOVERFLOW) {
 464		u32 found_size;
 465		found_size = btrfs_item_size_nr(path->nodes[0],
 466						path->slots[0]);
 467		if (found_size > item_size)
 468			btrfs_truncate_item(path, item_size, 1);
 469		else if (found_size < item_size)
 470			btrfs_extend_item(path, item_size - found_size);
 
 471	} else if (ret) {
 472		return ret;
 473	}
 474	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 475					path->slots[0]);
 476
 477	/* don't overwrite an existing inode if the generation number
 478	 * was logged as zero.  This is done when the tree logging code
 479	 * is just logging an inode to make sure it exists after recovery.
 480	 *
 481	 * Also, don't overwrite i_size on directories during replay.
 482	 * log replay inserts and removes directory items based on the
 483	 * state of the tree found in the subvolume, and i_size is modified
 484	 * as it goes
 485	 */
 486	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 487		struct btrfs_inode_item *src_item;
 488		struct btrfs_inode_item *dst_item;
 489
 490		src_item = (struct btrfs_inode_item *)src_ptr;
 491		dst_item = (struct btrfs_inode_item *)dst_ptr;
 492
 493		if (btrfs_inode_generation(eb, src_item) == 0) {
 494			struct extent_buffer *dst_eb = path->nodes[0];
 495			const u64 ino_size = btrfs_inode_size(eb, src_item);
 496
 497			/*
 498			 * For regular files an ino_size == 0 is used only when
 499			 * logging that an inode exists, as part of a directory
 500			 * fsync, and the inode wasn't fsynced before. In this
 501			 * case don't set the size of the inode in the fs/subvol
 502			 * tree, otherwise we would be throwing valid data away.
 503			 */
 504			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 505			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 506			    ino_size != 0) {
 507				struct btrfs_map_token token;
 508
 509				btrfs_init_map_token(&token, dst_eb);
 510				btrfs_set_token_inode_size(dst_eb, dst_item,
 511							   ino_size, &token);
 512			}
 513			goto no_copy;
 514		}
 515
 516		if (overwrite_root &&
 517		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 518		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 519			save_old_i_size = 1;
 520			saved_i_size = btrfs_inode_size(path->nodes[0],
 521							dst_item);
 522		}
 523	}
 524
 525	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 526			   src_ptr, item_size);
 527
 528	if (save_old_i_size) {
 529		struct btrfs_inode_item *dst_item;
 530		dst_item = (struct btrfs_inode_item *)dst_ptr;
 531		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 532	}
 533
 534	/* make sure the generation is filled in */
 535	if (key->type == BTRFS_INODE_ITEM_KEY) {
 536		struct btrfs_inode_item *dst_item;
 537		dst_item = (struct btrfs_inode_item *)dst_ptr;
 538		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 539			btrfs_set_inode_generation(path->nodes[0], dst_item,
 540						   trans->transid);
 541		}
 542	}
 543no_copy:
 544	btrfs_mark_buffer_dirty(path->nodes[0]);
 545	btrfs_release_path(path);
 546	return 0;
 547}
 548
 549/*
 550 * simple helper to read an inode off the disk from a given root
 551 * This can only be called for subvolume roots and not for the log
 552 */
 553static noinline struct inode *read_one_inode(struct btrfs_root *root,
 554					     u64 objectid)
 555{
 556	struct btrfs_key key;
 557	struct inode *inode;
 558
 559	key.objectid = objectid;
 560	key.type = BTRFS_INODE_ITEM_KEY;
 561	key.offset = 0;
 562	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 563	if (IS_ERR(inode))
 
 
 
 564		inode = NULL;
 
 565	return inode;
 566}
 567
 568/* replays a single extent in 'eb' at 'slot' with 'key' into the
 569 * subvolume 'root'.  path is released on entry and should be released
 570 * on exit.
 571 *
 572 * extents in the log tree have not been allocated out of the extent
 573 * tree yet.  So, this completes the allocation, taking a reference
 574 * as required if the extent already exists or creating a new extent
 575 * if it isn't in the extent allocation tree yet.
 576 *
 577 * The extent is inserted into the file, dropping any existing extents
 578 * from the file that overlap the new one.
 579 */
 580static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 581				      struct btrfs_root *root,
 582				      struct btrfs_path *path,
 583				      struct extent_buffer *eb, int slot,
 584				      struct btrfs_key *key)
 585{
 586	struct btrfs_fs_info *fs_info = root->fs_info;
 587	int found_type;
 588	u64 extent_end;
 589	u64 start = key->offset;
 590	u64 nbytes = 0;
 591	struct btrfs_file_extent_item *item;
 592	struct inode *inode = NULL;
 593	unsigned long size;
 594	int ret = 0;
 595
 596	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 597	found_type = btrfs_file_extent_type(eb, item);
 598
 599	if (found_type == BTRFS_FILE_EXTENT_REG ||
 600	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 601		nbytes = btrfs_file_extent_num_bytes(eb, item);
 602		extent_end = start + nbytes;
 603
 604		/*
 605		 * We don't add to the inodes nbytes if we are prealloc or a
 606		 * hole.
 607		 */
 608		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 609			nbytes = 0;
 610	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 611		size = btrfs_file_extent_ram_bytes(eb, item);
 612		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 613		extent_end = ALIGN(start + size,
 614				   fs_info->sectorsize);
 615	} else {
 616		ret = 0;
 617		goto out;
 618	}
 619
 620	inode = read_one_inode(root, key->objectid);
 621	if (!inode) {
 622		ret = -EIO;
 623		goto out;
 624	}
 625
 626	/*
 627	 * first check to see if we already have this extent in the
 628	 * file.  This must be done before the btrfs_drop_extents run
 629	 * so we don't try to drop this extent.
 630	 */
 631	ret = btrfs_lookup_file_extent(trans, root, path,
 632			btrfs_ino(BTRFS_I(inode)), start, 0);
 633
 634	if (ret == 0 &&
 635	    (found_type == BTRFS_FILE_EXTENT_REG ||
 636	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 637		struct btrfs_file_extent_item cmp1;
 638		struct btrfs_file_extent_item cmp2;
 639		struct btrfs_file_extent_item *existing;
 640		struct extent_buffer *leaf;
 641
 642		leaf = path->nodes[0];
 643		existing = btrfs_item_ptr(leaf, path->slots[0],
 644					  struct btrfs_file_extent_item);
 645
 646		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 647				   sizeof(cmp1));
 648		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 649				   sizeof(cmp2));
 650
 651		/*
 652		 * we already have a pointer to this exact extent,
 653		 * we don't have to do anything
 654		 */
 655		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 656			btrfs_release_path(path);
 657			goto out;
 658		}
 659	}
 660	btrfs_release_path(path);
 661
 662	/* drop any overlapping extents */
 663	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 664	if (ret)
 665		goto out;
 666
 667	if (found_type == BTRFS_FILE_EXTENT_REG ||
 668	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 669		u64 offset;
 670		unsigned long dest_offset;
 671		struct btrfs_key ins;
 672
 673		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 674		    btrfs_fs_incompat(fs_info, NO_HOLES))
 675			goto update_inode;
 676
 677		ret = btrfs_insert_empty_item(trans, root, path, key,
 678					      sizeof(*item));
 679		if (ret)
 680			goto out;
 681		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 682						    path->slots[0]);
 683		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 684				(unsigned long)item,  sizeof(*item));
 685
 686		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 687		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 688		ins.type = BTRFS_EXTENT_ITEM_KEY;
 689		offset = key->offset - btrfs_file_extent_offset(eb, item);
 690
 691		/*
 692		 * Manually record dirty extent, as here we did a shallow
 693		 * file extent item copy and skip normal backref update,
 694		 * but modifying extent tree all by ourselves.
 695		 * So need to manually record dirty extent for qgroup,
 696		 * as the owner of the file extent changed from log tree
 697		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 698		 */
 699		ret = btrfs_qgroup_trace_extent(trans,
 700				btrfs_file_extent_disk_bytenr(eb, item),
 701				btrfs_file_extent_disk_num_bytes(eb, item),
 702				GFP_NOFS);
 703		if (ret < 0)
 704			goto out;
 705
 706		if (ins.objectid > 0) {
 707			struct btrfs_ref ref = { 0 };
 708			u64 csum_start;
 709			u64 csum_end;
 710			LIST_HEAD(ordered_sums);
 711
 712			/*
 713			 * is this extent already allocated in the extent
 714			 * allocation tree?  If so, just add a reference
 715			 */
 716			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 717						ins.offset);
 718			if (ret == 0) {
 719				btrfs_init_generic_ref(&ref,
 720						BTRFS_ADD_DELAYED_REF,
 721						ins.objectid, ins.offset, 0);
 722				btrfs_init_data_ref(&ref,
 723						root->root_key.objectid,
 724						key->objectid, offset);
 725				ret = btrfs_inc_extent_ref(trans, &ref);
 726				if (ret)
 727					goto out;
 728			} else {
 729				/*
 730				 * insert the extent pointer in the extent
 731				 * allocation tree
 732				 */
 733				ret = btrfs_alloc_logged_file_extent(trans,
 
 734						root->root_key.objectid,
 735						key->objectid, offset, &ins);
 736				if (ret)
 737					goto out;
 738			}
 739			btrfs_release_path(path);
 740
 741			if (btrfs_file_extent_compression(eb, item)) {
 742				csum_start = ins.objectid;
 743				csum_end = csum_start + ins.offset;
 744			} else {
 745				csum_start = ins.objectid +
 746					btrfs_file_extent_offset(eb, item);
 747				csum_end = csum_start +
 748					btrfs_file_extent_num_bytes(eb, item);
 749			}
 750
 751			ret = btrfs_lookup_csums_range(root->log_root,
 752						csum_start, csum_end - 1,
 753						&ordered_sums, 0);
 754			if (ret)
 755				goto out;
 756			/*
 757			 * Now delete all existing cums in the csum root that
 758			 * cover our range. We do this because we can have an
 759			 * extent that is completely referenced by one file
 760			 * extent item and partially referenced by another
 761			 * file extent item (like after using the clone or
 762			 * extent_same ioctls). In this case if we end up doing
 763			 * the replay of the one that partially references the
 764			 * extent first, and we do not do the csum deletion
 765			 * below, we can get 2 csum items in the csum tree that
 766			 * overlap each other. For example, imagine our log has
 767			 * the two following file extent items:
 768			 *
 769			 * key (257 EXTENT_DATA 409600)
 770			 *     extent data disk byte 12845056 nr 102400
 771			 *     extent data offset 20480 nr 20480 ram 102400
 772			 *
 773			 * key (257 EXTENT_DATA 819200)
 774			 *     extent data disk byte 12845056 nr 102400
 775			 *     extent data offset 0 nr 102400 ram 102400
 776			 *
 777			 * Where the second one fully references the 100K extent
 778			 * that starts at disk byte 12845056, and the log tree
 779			 * has a single csum item that covers the entire range
 780			 * of the extent:
 781			 *
 782			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 783			 *
 784			 * After the first file extent item is replayed, the
 785			 * csum tree gets the following csum item:
 786			 *
 787			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 788			 *
 789			 * Which covers the 20K sub-range starting at offset 20K
 790			 * of our extent. Now when we replay the second file
 791			 * extent item, if we do not delete existing csum items
 792			 * that cover any of its blocks, we end up getting two
 793			 * csum items in our csum tree that overlap each other:
 794			 *
 795			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 796			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 797			 *
 798			 * Which is a problem, because after this anyone trying
 799			 * to lookup up for the checksum of any block of our
 800			 * extent starting at an offset of 40K or higher, will
 801			 * end up looking at the second csum item only, which
 802			 * does not contain the checksum for any block starting
 803			 * at offset 40K or higher of our extent.
 804			 */
 805			while (!list_empty(&ordered_sums)) {
 806				struct btrfs_ordered_sum *sums;
 807				sums = list_entry(ordered_sums.next,
 808						struct btrfs_ordered_sum,
 809						list);
 810				if (!ret)
 811					ret = btrfs_del_csums(trans, fs_info,
 812							      sums->bytenr,
 813							      sums->len);
 814				if (!ret)
 815					ret = btrfs_csum_file_blocks(trans,
 816						fs_info->csum_root, sums);
 817				list_del(&sums->list);
 818				kfree(sums);
 819			}
 820			if (ret)
 821				goto out;
 822		} else {
 823			btrfs_release_path(path);
 824		}
 825	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 826		/* inline extents are easy, we just overwrite them */
 827		ret = overwrite_item(trans, root, path, eb, slot, key);
 828		if (ret)
 829			goto out;
 830	}
 831
 832	inode_add_bytes(inode, nbytes);
 833update_inode:
 834	ret = btrfs_update_inode(trans, root, inode);
 835out:
 836	if (inode)
 837		iput(inode);
 838	return ret;
 839}
 840
 841/*
 842 * when cleaning up conflicts between the directory names in the
 843 * subvolume, directory names in the log and directory names in the
 844 * inode back references, we may have to unlink inodes from directories.
 845 *
 846 * This is a helper function to do the unlink of a specific directory
 847 * item
 848 */
 849static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 850				      struct btrfs_root *root,
 851				      struct btrfs_path *path,
 852				      struct btrfs_inode *dir,
 853				      struct btrfs_dir_item *di)
 854{
 
 855	struct inode *inode;
 856	char *name;
 857	int name_len;
 858	struct extent_buffer *leaf;
 859	struct btrfs_key location;
 860	int ret;
 861
 862	leaf = path->nodes[0];
 863
 864	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 865	name_len = btrfs_dir_name_len(leaf, di);
 866	name = kmalloc(name_len, GFP_NOFS);
 867	if (!name)
 868		return -ENOMEM;
 869
 870	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 871	btrfs_release_path(path);
 872
 873	inode = read_one_inode(root, location.objectid);
 874	if (!inode) {
 875		ret = -EIO;
 876		goto out;
 877	}
 878
 879	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 880	if (ret)
 881		goto out;
 882
 883	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 884			name_len);
 885	if (ret)
 886		goto out;
 887	else
 888		ret = btrfs_run_delayed_items(trans);
 889out:
 890	kfree(name);
 891	iput(inode);
 892	return ret;
 893}
 894
 895/*
 896 * helper function to see if a given name and sequence number found
 897 * in an inode back reference are already in a directory and correctly
 898 * point to this inode
 899 */
 900static noinline int inode_in_dir(struct btrfs_root *root,
 901				 struct btrfs_path *path,
 902				 u64 dirid, u64 objectid, u64 index,
 903				 const char *name, int name_len)
 904{
 905	struct btrfs_dir_item *di;
 906	struct btrfs_key location;
 907	int match = 0;
 908
 909	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 910					 index, name, name_len, 0);
 911	if (di && !IS_ERR(di)) {
 912		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 913		if (location.objectid != objectid)
 914			goto out;
 915	} else
 916		goto out;
 917	btrfs_release_path(path);
 918
 919	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 920	if (di && !IS_ERR(di)) {
 921		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 922		if (location.objectid != objectid)
 923			goto out;
 924	} else
 925		goto out;
 926	match = 1;
 927out:
 928	btrfs_release_path(path);
 929	return match;
 930}
 931
 932/*
 933 * helper function to check a log tree for a named back reference in
 934 * an inode.  This is used to decide if a back reference that is
 935 * found in the subvolume conflicts with what we find in the log.
 936 *
 937 * inode backreferences may have multiple refs in a single item,
 938 * during replay we process one reference at a time, and we don't
 939 * want to delete valid links to a file from the subvolume if that
 940 * link is also in the log.
 941 */
 942static noinline int backref_in_log(struct btrfs_root *log,
 943				   struct btrfs_key *key,
 944				   u64 ref_objectid,
 945				   const char *name, int namelen)
 946{
 947	struct btrfs_path *path;
 948	struct btrfs_inode_ref *ref;
 949	unsigned long ptr;
 950	unsigned long ptr_end;
 951	unsigned long name_ptr;
 952	int found_name_len;
 953	int item_size;
 954	int ret;
 955	int match = 0;
 956
 957	path = btrfs_alloc_path();
 958	if (!path)
 959		return -ENOMEM;
 960
 961	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 962	if (ret != 0)
 963		goto out;
 964
 965	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 966
 967	if (key->type == BTRFS_INODE_EXTREF_KEY) {
 968		if (btrfs_find_name_in_ext_backref(path->nodes[0],
 969						   path->slots[0],
 970						   ref_objectid,
 971						   name, namelen))
 972			match = 1;
 973
 974		goto out;
 975	}
 976
 977	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 978	ptr_end = ptr + item_size;
 979	while (ptr < ptr_end) {
 980		ref = (struct btrfs_inode_ref *)ptr;
 981		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 982		if (found_name_len == namelen) {
 983			name_ptr = (unsigned long)(ref + 1);
 984			ret = memcmp_extent_buffer(path->nodes[0], name,
 985						   name_ptr, namelen);
 986			if (ret == 0) {
 987				match = 1;
 988				goto out;
 989			}
 990		}
 991		ptr = (unsigned long)(ref + 1) + found_name_len;
 992	}
 993out:
 994	btrfs_free_path(path);
 995	return match;
 996}
 997
 998static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 999				  struct btrfs_root *root,
1000				  struct btrfs_path *path,
1001				  struct btrfs_root *log_root,
1002				  struct btrfs_inode *dir,
1003				  struct btrfs_inode *inode,
1004				  u64 inode_objectid, u64 parent_objectid,
1005				  u64 ref_index, char *name, int namelen,
1006				  int *search_done)
1007{
 
1008	int ret;
1009	char *victim_name;
1010	int victim_name_len;
1011	struct extent_buffer *leaf;
1012	struct btrfs_dir_item *di;
1013	struct btrfs_key search_key;
1014	struct btrfs_inode_extref *extref;
1015
1016again:
1017	/* Search old style refs */
1018	search_key.objectid = inode_objectid;
1019	search_key.type = BTRFS_INODE_REF_KEY;
1020	search_key.offset = parent_objectid;
1021	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1022	if (ret == 0) {
1023		struct btrfs_inode_ref *victim_ref;
1024		unsigned long ptr;
1025		unsigned long ptr_end;
1026
1027		leaf = path->nodes[0];
1028
1029		/* are we trying to overwrite a back ref for the root directory
1030		 * if so, just jump out, we're done
1031		 */
1032		if (search_key.objectid == search_key.offset)
1033			return 1;
1034
1035		/* check all the names in this back reference to see
1036		 * if they are in the log.  if so, we allow them to stay
1037		 * otherwise they must be unlinked as a conflict
1038		 */
1039		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041		while (ptr < ptr_end) {
1042			victim_ref = (struct btrfs_inode_ref *)ptr;
1043			victim_name_len = btrfs_inode_ref_name_len(leaf,
1044								   victim_ref);
1045			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046			if (!victim_name)
1047				return -ENOMEM;
1048
1049			read_extent_buffer(leaf, victim_name,
1050					   (unsigned long)(victim_ref + 1),
1051					   victim_name_len);
1052
1053			if (!backref_in_log(log_root, &search_key,
1054					    parent_objectid,
1055					    victim_name,
1056					    victim_name_len)) {
1057				inc_nlink(&inode->vfs_inode);
1058				btrfs_release_path(path);
1059
1060				ret = btrfs_unlink_inode(trans, root, dir, inode,
1061						victim_name, victim_name_len);
 
1062				kfree(victim_name);
1063				if (ret)
1064					return ret;
1065				ret = btrfs_run_delayed_items(trans);
1066				if (ret)
1067					return ret;
1068				*search_done = 1;
1069				goto again;
1070			}
1071			kfree(victim_name);
1072
1073			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074		}
1075
1076		/*
1077		 * NOTE: we have searched root tree and checked the
1078		 * corresponding ref, it does not need to check again.
1079		 */
1080		*search_done = 1;
1081	}
1082	btrfs_release_path(path);
1083
1084	/* Same search but for extended refs */
1085	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086					   inode_objectid, parent_objectid, 0,
1087					   0);
1088	if (!IS_ERR_OR_NULL(extref)) {
1089		u32 item_size;
1090		u32 cur_offset = 0;
1091		unsigned long base;
1092		struct inode *victim_parent;
1093
1094		leaf = path->nodes[0];
1095
1096		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098
1099		while (cur_offset < item_size) {
1100			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1101
1102			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103
1104			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105				goto next;
1106
1107			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108			if (!victim_name)
1109				return -ENOMEM;
1110			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111					   victim_name_len);
1112
1113			search_key.objectid = inode_objectid;
1114			search_key.type = BTRFS_INODE_EXTREF_KEY;
1115			search_key.offset = btrfs_extref_hash(parent_objectid,
1116							      victim_name,
1117							      victim_name_len);
1118			ret = 0;
1119			if (!backref_in_log(log_root, &search_key,
1120					    parent_objectid, victim_name,
1121					    victim_name_len)) {
1122				ret = -ENOENT;
1123				victim_parent = read_one_inode(root,
1124						parent_objectid);
1125				if (victim_parent) {
1126					inc_nlink(&inode->vfs_inode);
1127					btrfs_release_path(path);
1128
1129					ret = btrfs_unlink_inode(trans, root,
1130							BTRFS_I(victim_parent),
1131							inode,
1132							victim_name,
1133							victim_name_len);
1134					if (!ret)
1135						ret = btrfs_run_delayed_items(
1136								  trans);
 
1137				}
1138				iput(victim_parent);
1139				kfree(victim_name);
1140				if (ret)
1141					return ret;
1142				*search_done = 1;
1143				goto again;
1144			}
1145			kfree(victim_name);
 
 
1146next:
1147			cur_offset += victim_name_len + sizeof(*extref);
1148		}
1149		*search_done = 1;
1150	}
1151	btrfs_release_path(path);
1152
1153	/* look for a conflicting sequence number */
1154	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155					 ref_index, name, namelen, 0);
1156	if (di && !IS_ERR(di)) {
1157		ret = drop_one_dir_item(trans, root, path, dir, di);
1158		if (ret)
1159			return ret;
1160	}
1161	btrfs_release_path(path);
1162
1163	/* look for a conflicting name */
1164	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165				   name, namelen, 0);
1166	if (di && !IS_ERR(di)) {
1167		ret = drop_one_dir_item(trans, root, path, dir, di);
1168		if (ret)
1169			return ret;
1170	}
1171	btrfs_release_path(path);
1172
1173	return 0;
1174}
1175
1176static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177			     u32 *namelen, char **name, u64 *index,
1178			     u64 *parent_objectid)
1179{
1180	struct btrfs_inode_extref *extref;
1181
1182	extref = (struct btrfs_inode_extref *)ref_ptr;
1183
1184	*namelen = btrfs_inode_extref_name_len(eb, extref);
1185	*name = kmalloc(*namelen, GFP_NOFS);
1186	if (*name == NULL)
1187		return -ENOMEM;
1188
1189	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190			   *namelen);
1191
1192	if (index)
1193		*index = btrfs_inode_extref_index(eb, extref);
1194	if (parent_objectid)
1195		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196
1197	return 0;
1198}
1199
1200static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201			  u32 *namelen, char **name, u64 *index)
1202{
1203	struct btrfs_inode_ref *ref;
1204
1205	ref = (struct btrfs_inode_ref *)ref_ptr;
1206
1207	*namelen = btrfs_inode_ref_name_len(eb, ref);
1208	*name = kmalloc(*namelen, GFP_NOFS);
1209	if (*name == NULL)
1210		return -ENOMEM;
1211
1212	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213
1214	if (index)
1215		*index = btrfs_inode_ref_index(eb, ref);
1216
1217	return 0;
1218}
1219
1220/*
1221 * Take an inode reference item from the log tree and iterate all names from the
1222 * inode reference item in the subvolume tree with the same key (if it exists).
1223 * For any name that is not in the inode reference item from the log tree, do a
1224 * proper unlink of that name (that is, remove its entry from the inode
1225 * reference item and both dir index keys).
1226 */
1227static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228				 struct btrfs_root *root,
1229				 struct btrfs_path *path,
1230				 struct btrfs_inode *inode,
1231				 struct extent_buffer *log_eb,
1232				 int log_slot,
1233				 struct btrfs_key *key)
1234{
1235	int ret;
1236	unsigned long ref_ptr;
1237	unsigned long ref_end;
1238	struct extent_buffer *eb;
1239
1240again:
1241	btrfs_release_path(path);
1242	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243	if (ret > 0) {
1244		ret = 0;
1245		goto out;
1246	}
1247	if (ret < 0)
1248		goto out;
1249
1250	eb = path->nodes[0];
1251	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253	while (ref_ptr < ref_end) {
1254		char *name = NULL;
1255		int namelen;
1256		u64 parent_id;
1257
1258		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260						NULL, &parent_id);
1261		} else {
1262			parent_id = key->offset;
1263			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264					     NULL);
1265		}
1266		if (ret)
1267			goto out;
1268
1269		if (key->type == BTRFS_INODE_EXTREF_KEY)
1270			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271							       parent_id, name,
1272							       namelen);
1273		else
1274			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275							   name, namelen);
1276
1277		if (!ret) {
1278			struct inode *dir;
1279
1280			btrfs_release_path(path);
1281			dir = read_one_inode(root, parent_id);
1282			if (!dir) {
1283				ret = -ENOENT;
1284				kfree(name);
1285				goto out;
1286			}
1287			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288						 inode, name, namelen);
1289			kfree(name);
1290			iput(dir);
1291			if (ret)
1292				goto out;
1293			goto again;
1294		}
1295
1296		kfree(name);
1297		ref_ptr += namelen;
1298		if (key->type == BTRFS_INODE_EXTREF_KEY)
1299			ref_ptr += sizeof(struct btrfs_inode_extref);
1300		else
1301			ref_ptr += sizeof(struct btrfs_inode_ref);
1302	}
1303	ret = 0;
1304 out:
1305	btrfs_release_path(path);
1306	return ret;
1307}
1308
1309static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1310				  const u8 ref_type, const char *name,
1311				  const int namelen)
1312{
1313	struct btrfs_key key;
1314	struct btrfs_path *path;
1315	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1316	int ret;
1317
1318	path = btrfs_alloc_path();
1319	if (!path)
1320		return -ENOMEM;
1321
1322	key.objectid = btrfs_ino(BTRFS_I(inode));
1323	key.type = ref_type;
1324	if (key.type == BTRFS_INODE_REF_KEY)
1325		key.offset = parent_id;
1326	else
1327		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1328
1329	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1330	if (ret < 0)
1331		goto out;
1332	if (ret > 0) {
1333		ret = 0;
1334		goto out;
1335	}
1336	if (key.type == BTRFS_INODE_EXTREF_KEY)
1337		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1338				path->slots[0], parent_id, name, namelen);
1339	else
1340		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341						   name, namelen);
1342
1343out:
1344	btrfs_free_path(path);
1345	return ret;
1346}
1347
1348static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349		    struct inode *dir, struct inode *inode, const char *name,
1350		    int namelen, u64 ref_index)
1351{
1352	struct btrfs_dir_item *dir_item;
1353	struct btrfs_key key;
1354	struct btrfs_path *path;
1355	struct inode *other_inode = NULL;
1356	int ret;
1357
1358	path = btrfs_alloc_path();
1359	if (!path)
1360		return -ENOMEM;
1361
1362	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363					 btrfs_ino(BTRFS_I(dir)),
1364					 name, namelen, 0);
1365	if (!dir_item) {
1366		btrfs_release_path(path);
1367		goto add_link;
1368	} else if (IS_ERR(dir_item)) {
1369		ret = PTR_ERR(dir_item);
1370		goto out;
1371	}
1372
1373	/*
1374	 * Our inode's dentry collides with the dentry of another inode which is
1375	 * in the log but not yet processed since it has a higher inode number.
1376	 * So delete that other dentry.
1377	 */
1378	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379	btrfs_release_path(path);
1380	other_inode = read_one_inode(root, key.objectid);
1381	if (!other_inode) {
1382		ret = -ENOENT;
1383		goto out;
1384	}
1385	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386				 name, namelen);
1387	if (ret)
1388		goto out;
1389	/*
1390	 * If we dropped the link count to 0, bump it so that later the iput()
1391	 * on the inode will not free it. We will fixup the link count later.
1392	 */
1393	if (other_inode->i_nlink == 0)
1394		inc_nlink(other_inode);
1395
1396	ret = btrfs_run_delayed_items(trans);
1397	if (ret)
1398		goto out;
1399add_link:
1400	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401			     name, namelen, 0, ref_index);
1402out:
1403	iput(other_inode);
1404	btrfs_free_path(path);
1405
1406	return ret;
1407}
1408
1409/*
1410 * replay one inode back reference item found in the log tree.
1411 * eb, slot and key refer to the buffer and key found in the log tree.
1412 * root is the destination we are replaying into, and path is for temp
1413 * use by this function.  (it should be released on return).
1414 */
1415static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416				  struct btrfs_root *root,
1417				  struct btrfs_root *log,
1418				  struct btrfs_path *path,
1419				  struct extent_buffer *eb, int slot,
1420				  struct btrfs_key *key)
1421{
1422	struct inode *dir = NULL;
1423	struct inode *inode = NULL;
1424	unsigned long ref_ptr;
1425	unsigned long ref_end;
1426	char *name = NULL;
1427	int namelen;
1428	int ret;
1429	int search_done = 0;
1430	int log_ref_ver = 0;
1431	u64 parent_objectid;
1432	u64 inode_objectid;
1433	u64 ref_index = 0;
1434	int ref_struct_size;
1435
1436	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438
1439	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440		struct btrfs_inode_extref *r;
1441
1442		ref_struct_size = sizeof(struct btrfs_inode_extref);
1443		log_ref_ver = 1;
1444		r = (struct btrfs_inode_extref *)ref_ptr;
1445		parent_objectid = btrfs_inode_extref_parent(eb, r);
1446	} else {
1447		ref_struct_size = sizeof(struct btrfs_inode_ref);
1448		parent_objectid = key->offset;
1449	}
1450	inode_objectid = key->objectid;
1451
1452	/*
1453	 * it is possible that we didn't log all the parent directories
1454	 * for a given inode.  If we don't find the dir, just don't
1455	 * copy the back ref in.  The link count fixup code will take
1456	 * care of the rest
1457	 */
1458	dir = read_one_inode(root, parent_objectid);
1459	if (!dir) {
1460		ret = -ENOENT;
1461		goto out;
1462	}
1463
1464	inode = read_one_inode(root, inode_objectid);
1465	if (!inode) {
1466		ret = -EIO;
1467		goto out;
1468	}
1469
1470	while (ref_ptr < ref_end) {
1471		if (log_ref_ver) {
1472			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473						&ref_index, &parent_objectid);
1474			/*
1475			 * parent object can change from one array
1476			 * item to another.
1477			 */
1478			if (!dir)
1479				dir = read_one_inode(root, parent_objectid);
1480			if (!dir) {
1481				ret = -ENOENT;
1482				goto out;
1483			}
1484		} else {
1485			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486					     &ref_index);
1487		}
1488		if (ret)
1489			goto out;
1490
1491		/* if we already have a perfect match, we're done */
1492		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493					btrfs_ino(BTRFS_I(inode)), ref_index,
1494					name, namelen)) {
1495			/*
1496			 * look for a conflicting back reference in the
1497			 * metadata. if we find one we have to unlink that name
1498			 * of the file before we add our new link.  Later on, we
1499			 * overwrite any existing back reference, and we don't
1500			 * want to create dangling pointers in the directory.
1501			 */
1502
1503			if (!search_done) {
1504				ret = __add_inode_ref(trans, root, path, log,
1505						      BTRFS_I(dir),
1506						      BTRFS_I(inode),
1507						      inode_objectid,
1508						      parent_objectid,
1509						      ref_index, name, namelen,
1510						      &search_done);
1511				if (ret) {
1512					if (ret == 1)
1513						ret = 0;
1514					goto out;
1515				}
1516			}
1517
1518			/*
1519			 * If a reference item already exists for this inode
1520			 * with the same parent and name, but different index,
1521			 * drop it and the corresponding directory index entries
1522			 * from the parent before adding the new reference item
1523			 * and dir index entries, otherwise we would fail with
1524			 * -EEXIST returned from btrfs_add_link() below.
1525			 */
1526			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527						     name, namelen);
1528			if (ret > 0) {
1529				ret = btrfs_unlink_inode(trans, root,
1530							 BTRFS_I(dir),
1531							 BTRFS_I(inode),
1532							 name, namelen);
1533				/*
1534				 * If we dropped the link count to 0, bump it so
1535				 * that later the iput() on the inode will not
1536				 * free it. We will fixup the link count later.
1537				 */
1538				if (!ret && inode->i_nlink == 0)
1539					inc_nlink(inode);
1540			}
1541			if (ret < 0)
1542				goto out;
1543
1544			/* insert our name */
1545			ret = add_link(trans, root, dir, inode, name, namelen,
1546				       ref_index);
1547			if (ret)
1548				goto out;
1549
1550			btrfs_update_inode(trans, root, inode);
1551		}
1552
1553		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554		kfree(name);
1555		name = NULL;
1556		if (log_ref_ver) {
1557			iput(dir);
1558			dir = NULL;
1559		}
1560	}
1561
1562	/*
1563	 * Before we overwrite the inode reference item in the subvolume tree
1564	 * with the item from the log tree, we must unlink all names from the
1565	 * parent directory that are in the subvolume's tree inode reference
1566	 * item, otherwise we end up with an inconsistent subvolume tree where
1567	 * dir index entries exist for a name but there is no inode reference
1568	 * item with the same name.
1569	 */
1570	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571				    key);
1572	if (ret)
1573		goto out;
1574
1575	/* finally write the back reference in the inode */
1576	ret = overwrite_item(trans, root, path, eb, slot, key);
1577out:
1578	btrfs_release_path(path);
1579	kfree(name);
1580	iput(dir);
1581	iput(inode);
1582	return ret;
1583}
1584
1585static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586			      struct btrfs_root *root, u64 ino)
1587{
1588	int ret;
1589
1590	ret = btrfs_insert_orphan_item(trans, root, ino);
1591	if (ret == -EEXIST)
1592		ret = 0;
1593
1594	return ret;
1595}
1596
1597static int count_inode_extrefs(struct btrfs_root *root,
1598		struct btrfs_inode *inode, struct btrfs_path *path)
1599{
1600	int ret = 0;
1601	int name_len;
1602	unsigned int nlink = 0;
1603	u32 item_size;
1604	u32 cur_offset = 0;
1605	u64 inode_objectid = btrfs_ino(inode);
1606	u64 offset = 0;
1607	unsigned long ptr;
1608	struct btrfs_inode_extref *extref;
1609	struct extent_buffer *leaf;
1610
1611	while (1) {
1612		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613					    &extref, &offset);
1614		if (ret)
1615			break;
1616
1617		leaf = path->nodes[0];
1618		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620		cur_offset = 0;
1621
1622		while (cur_offset < item_size) {
1623			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624			name_len = btrfs_inode_extref_name_len(leaf, extref);
1625
1626			nlink++;
1627
1628			cur_offset += name_len + sizeof(*extref);
1629		}
1630
1631		offset++;
1632		btrfs_release_path(path);
1633	}
1634	btrfs_release_path(path);
1635
1636	if (ret < 0 && ret != -ENOENT)
1637		return ret;
1638	return nlink;
1639}
1640
1641static int count_inode_refs(struct btrfs_root *root,
1642			struct btrfs_inode *inode, struct btrfs_path *path)
1643{
1644	int ret;
1645	struct btrfs_key key;
1646	unsigned int nlink = 0;
1647	unsigned long ptr;
1648	unsigned long ptr_end;
1649	int name_len;
1650	u64 ino = btrfs_ino(inode);
1651
1652	key.objectid = ino;
1653	key.type = BTRFS_INODE_REF_KEY;
1654	key.offset = (u64)-1;
1655
1656	while (1) {
1657		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658		if (ret < 0)
1659			break;
1660		if (ret > 0) {
1661			if (path->slots[0] == 0)
1662				break;
1663			path->slots[0]--;
1664		}
1665process_slot:
1666		btrfs_item_key_to_cpu(path->nodes[0], &key,
1667				      path->slots[0]);
1668		if (key.objectid != ino ||
1669		    key.type != BTRFS_INODE_REF_KEY)
1670			break;
1671		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673						   path->slots[0]);
1674		while (ptr < ptr_end) {
1675			struct btrfs_inode_ref *ref;
1676
1677			ref = (struct btrfs_inode_ref *)ptr;
1678			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679							    ref);
1680			ptr = (unsigned long)(ref + 1) + name_len;
1681			nlink++;
1682		}
1683
1684		if (key.offset == 0)
1685			break;
1686		if (path->slots[0] > 0) {
1687			path->slots[0]--;
1688			goto process_slot;
1689		}
1690		key.offset--;
1691		btrfs_release_path(path);
1692	}
1693	btrfs_release_path(path);
1694
1695	return nlink;
1696}
1697
1698/*
1699 * There are a few corners where the link count of the file can't
1700 * be properly maintained during replay.  So, instead of adding
1701 * lots of complexity to the log code, we just scan the backrefs
1702 * for any file that has been through replay.
1703 *
1704 * The scan will update the link count on the inode to reflect the
1705 * number of back refs found.  If it goes down to zero, the iput
1706 * will free the inode.
1707 */
1708static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709					   struct btrfs_root *root,
1710					   struct inode *inode)
1711{
1712	struct btrfs_path *path;
1713	int ret;
1714	u64 nlink = 0;
1715	u64 ino = btrfs_ino(BTRFS_I(inode));
1716
1717	path = btrfs_alloc_path();
1718	if (!path)
1719		return -ENOMEM;
1720
1721	ret = count_inode_refs(root, BTRFS_I(inode), path);
1722	if (ret < 0)
1723		goto out;
1724
1725	nlink = ret;
1726
1727	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728	if (ret < 0)
1729		goto out;
1730
1731	nlink += ret;
1732
1733	ret = 0;
1734
1735	if (nlink != inode->i_nlink) {
1736		set_nlink(inode, nlink);
1737		btrfs_update_inode(trans, root, inode);
1738	}
1739	BTRFS_I(inode)->index_cnt = (u64)-1;
1740
1741	if (inode->i_nlink == 0) {
1742		if (S_ISDIR(inode->i_mode)) {
1743			ret = replay_dir_deletes(trans, root, NULL, path,
1744						 ino, 1);
1745			if (ret)
1746				goto out;
1747		}
1748		ret = insert_orphan_item(trans, root, ino);
1749	}
1750
1751out:
1752	btrfs_free_path(path);
1753	return ret;
1754}
1755
1756static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757					    struct btrfs_root *root,
1758					    struct btrfs_path *path)
1759{
1760	int ret;
1761	struct btrfs_key key;
1762	struct inode *inode;
1763
1764	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766	key.offset = (u64)-1;
1767	while (1) {
1768		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769		if (ret < 0)
1770			break;
1771
1772		if (ret == 1) {
1773			if (path->slots[0] == 0)
1774				break;
1775			path->slots[0]--;
1776		}
1777
1778		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1781			break;
1782
1783		ret = btrfs_del_item(trans, root, path);
1784		if (ret)
1785			goto out;
1786
1787		btrfs_release_path(path);
1788		inode = read_one_inode(root, key.offset);
1789		if (!inode)
1790			return -EIO;
1791
1792		ret = fixup_inode_link_count(trans, root, inode);
1793		iput(inode);
1794		if (ret)
1795			goto out;
1796
1797		/*
1798		 * fixup on a directory may create new entries,
1799		 * make sure we always look for the highset possible
1800		 * offset
1801		 */
1802		key.offset = (u64)-1;
1803	}
1804	ret = 0;
1805out:
1806	btrfs_release_path(path);
1807	return ret;
1808}
1809
1810
1811/*
1812 * record a given inode in the fixup dir so we can check its link
1813 * count when replay is done.  The link count is incremented here
1814 * so the inode won't go away until we check it
1815 */
1816static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817				      struct btrfs_root *root,
1818				      struct btrfs_path *path,
1819				      u64 objectid)
1820{
1821	struct btrfs_key key;
1822	int ret = 0;
1823	struct inode *inode;
1824
1825	inode = read_one_inode(root, objectid);
1826	if (!inode)
1827		return -EIO;
1828
1829	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830	key.type = BTRFS_ORPHAN_ITEM_KEY;
1831	key.offset = objectid;
1832
1833	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834
1835	btrfs_release_path(path);
1836	if (ret == 0) {
1837		if (!inode->i_nlink)
1838			set_nlink(inode, 1);
1839		else
1840			inc_nlink(inode);
1841		ret = btrfs_update_inode(trans, root, inode);
1842	} else if (ret == -EEXIST) {
1843		ret = 0;
1844	} else {
1845		BUG(); /* Logic Error */
1846	}
1847	iput(inode);
1848
1849	return ret;
1850}
1851
1852/*
1853 * when replaying the log for a directory, we only insert names
1854 * for inodes that actually exist.  This means an fsync on a directory
1855 * does not implicitly fsync all the new files in it
1856 */
1857static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858				    struct btrfs_root *root,
1859				    u64 dirid, u64 index,
1860				    char *name, int name_len,
1861				    struct btrfs_key *location)
1862{
1863	struct inode *inode;
1864	struct inode *dir;
1865	int ret;
1866
1867	inode = read_one_inode(root, location->objectid);
1868	if (!inode)
1869		return -ENOENT;
1870
1871	dir = read_one_inode(root, dirid);
1872	if (!dir) {
1873		iput(inode);
1874		return -EIO;
1875	}
1876
1877	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878			name_len, 1, index);
1879
1880	/* FIXME, put inode into FIXUP list */
1881
1882	iput(inode);
1883	iput(dir);
1884	return ret;
1885}
1886
1887/*
1888 * Return true if an inode reference exists in the log for the given name,
1889 * inode and parent inode.
1890 */
1891static bool name_in_log_ref(struct btrfs_root *log_root,
1892			    const char *name, const int name_len,
1893			    const u64 dirid, const u64 ino)
1894{
1895	struct btrfs_key search_key;
1896
1897	search_key.objectid = ino;
1898	search_key.type = BTRFS_INODE_REF_KEY;
1899	search_key.offset = dirid;
1900	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901		return true;
1902
1903	search_key.type = BTRFS_INODE_EXTREF_KEY;
1904	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906		return true;
1907
1908	return false;
1909}
1910
1911/*
1912 * take a single entry in a log directory item and replay it into
1913 * the subvolume.
1914 *
1915 * if a conflicting item exists in the subdirectory already,
1916 * the inode it points to is unlinked and put into the link count
1917 * fix up tree.
1918 *
1919 * If a name from the log points to a file or directory that does
1920 * not exist in the FS, it is skipped.  fsyncs on directories
1921 * do not force down inodes inside that directory, just changes to the
1922 * names or unlinks in a directory.
1923 *
1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925 * non-existing inode) and 1 if the name was replayed.
1926 */
1927static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928				    struct btrfs_root *root,
1929				    struct btrfs_path *path,
1930				    struct extent_buffer *eb,
1931				    struct btrfs_dir_item *di,
1932				    struct btrfs_key *key)
1933{
1934	char *name;
1935	int name_len;
1936	struct btrfs_dir_item *dst_di;
1937	struct btrfs_key found_key;
1938	struct btrfs_key log_key;
1939	struct inode *dir;
1940	u8 log_type;
1941	int exists;
1942	int ret = 0;
1943	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944	bool name_added = false;
1945
1946	dir = read_one_inode(root, key->objectid);
1947	if (!dir)
1948		return -EIO;
1949
1950	name_len = btrfs_dir_name_len(eb, di);
1951	name = kmalloc(name_len, GFP_NOFS);
1952	if (!name) {
1953		ret = -ENOMEM;
1954		goto out;
1955	}
1956
1957	log_type = btrfs_dir_type(eb, di);
1958	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959		   name_len);
1960
1961	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963	if (exists == 0)
1964		exists = 1;
1965	else
1966		exists = 0;
1967	btrfs_release_path(path);
1968
1969	if (key->type == BTRFS_DIR_ITEM_KEY) {
1970		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971				       name, name_len, 1);
1972	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974						     key->objectid,
1975						     key->offset, name,
1976						     name_len, 1);
1977	} else {
1978		/* Corruption */
1979		ret = -EINVAL;
1980		goto out;
1981	}
1982	if (IS_ERR_OR_NULL(dst_di)) {
1983		/* we need a sequence number to insert, so we only
1984		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985		 */
1986		if (key->type != BTRFS_DIR_INDEX_KEY)
1987			goto out;
1988		goto insert;
1989	}
1990
1991	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992	/* the existing item matches the logged item */
1993	if (found_key.objectid == log_key.objectid &&
1994	    found_key.type == log_key.type &&
1995	    found_key.offset == log_key.offset &&
1996	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997		update_size = false;
1998		goto out;
1999	}
2000
2001	/*
2002	 * don't drop the conflicting directory entry if the inode
2003	 * for the new entry doesn't exist
2004	 */
2005	if (!exists)
2006		goto out;
2007
2008	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009	if (ret)
2010		goto out;
2011
2012	if (key->type == BTRFS_DIR_INDEX_KEY)
2013		goto insert;
2014out:
2015	btrfs_release_path(path);
2016	if (!ret && update_size) {
2017		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018		ret = btrfs_update_inode(trans, root, dir);
2019	}
2020	kfree(name);
2021	iput(dir);
2022	if (!ret && name_added)
2023		ret = 1;
2024	return ret;
2025
2026insert:
2027	if (name_in_log_ref(root->log_root, name, name_len,
2028			    key->objectid, log_key.objectid)) {
2029		/* The dentry will be added later. */
2030		ret = 0;
2031		update_size = false;
2032		goto out;
2033	}
2034	btrfs_release_path(path);
2035	ret = insert_one_name(trans, root, key->objectid, key->offset,
2036			      name, name_len, &log_key);
2037	if (ret && ret != -ENOENT && ret != -EEXIST)
2038		goto out;
2039	if (!ret)
2040		name_added = true;
2041	update_size = false;
2042	ret = 0;
2043	goto out;
2044}
2045
2046/*
2047 * find all the names in a directory item and reconcile them into
2048 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2049 * one name in a directory item, but the same code gets used for
2050 * both directory index types
2051 */
2052static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053					struct btrfs_root *root,
2054					struct btrfs_path *path,
2055					struct extent_buffer *eb, int slot,
2056					struct btrfs_key *key)
2057{
 
2058	int ret = 0;
2059	u32 item_size = btrfs_item_size_nr(eb, slot);
2060	struct btrfs_dir_item *di;
2061	int name_len;
2062	unsigned long ptr;
2063	unsigned long ptr_end;
2064	struct btrfs_path *fixup_path = NULL;
2065
2066	ptr = btrfs_item_ptr_offset(eb, slot);
2067	ptr_end = ptr + item_size;
2068	while (ptr < ptr_end) {
2069		di = (struct btrfs_dir_item *)ptr;
 
 
2070		name_len = btrfs_dir_name_len(eb, di);
2071		ret = replay_one_name(trans, root, path, eb, di, key);
2072		if (ret < 0)
2073			break;
2074		ptr = (unsigned long)(di + 1);
2075		ptr += name_len;
2076
2077		/*
2078		 * If this entry refers to a non-directory (directories can not
2079		 * have a link count > 1) and it was added in the transaction
2080		 * that was not committed, make sure we fixup the link count of
2081		 * the inode it the entry points to. Otherwise something like
2082		 * the following would result in a directory pointing to an
2083		 * inode with a wrong link that does not account for this dir
2084		 * entry:
2085		 *
2086		 * mkdir testdir
2087		 * touch testdir/foo
2088		 * touch testdir/bar
2089		 * sync
2090		 *
2091		 * ln testdir/bar testdir/bar_link
2092		 * ln testdir/foo testdir/foo_link
2093		 * xfs_io -c "fsync" testdir/bar
2094		 *
2095		 * <power failure>
2096		 *
2097		 * mount fs, log replay happens
2098		 *
2099		 * File foo would remain with a link count of 1 when it has two
2100		 * entries pointing to it in the directory testdir. This would
2101		 * make it impossible to ever delete the parent directory has
2102		 * it would result in stale dentries that can never be deleted.
2103		 */
2104		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105			struct btrfs_key di_key;
2106
2107			if (!fixup_path) {
2108				fixup_path = btrfs_alloc_path();
2109				if (!fixup_path) {
2110					ret = -ENOMEM;
2111					break;
2112				}
2113			}
2114
2115			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116			ret = link_to_fixup_dir(trans, root, fixup_path,
2117						di_key.objectid);
2118			if (ret)
2119				break;
2120		}
2121		ret = 0;
2122	}
2123	btrfs_free_path(fixup_path);
2124	return ret;
2125}
2126
2127/*
2128 * directory replay has two parts.  There are the standard directory
2129 * items in the log copied from the subvolume, and range items
2130 * created in the log while the subvolume was logged.
2131 *
2132 * The range items tell us which parts of the key space the log
2133 * is authoritative for.  During replay, if a key in the subvolume
2134 * directory is in a logged range item, but not actually in the log
2135 * that means it was deleted from the directory before the fsync
2136 * and should be removed.
2137 */
2138static noinline int find_dir_range(struct btrfs_root *root,
2139				   struct btrfs_path *path,
2140				   u64 dirid, int key_type,
2141				   u64 *start_ret, u64 *end_ret)
2142{
2143	struct btrfs_key key;
2144	u64 found_end;
2145	struct btrfs_dir_log_item *item;
2146	int ret;
2147	int nritems;
2148
2149	if (*start_ret == (u64)-1)
2150		return 1;
2151
2152	key.objectid = dirid;
2153	key.type = key_type;
2154	key.offset = *start_ret;
2155
2156	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157	if (ret < 0)
2158		goto out;
2159	if (ret > 0) {
2160		if (path->slots[0] == 0)
2161			goto out;
2162		path->slots[0]--;
2163	}
2164	if (ret != 0)
2165		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166
2167	if (key.type != key_type || key.objectid != dirid) {
2168		ret = 1;
2169		goto next;
2170	}
2171	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172			      struct btrfs_dir_log_item);
2173	found_end = btrfs_dir_log_end(path->nodes[0], item);
2174
2175	if (*start_ret >= key.offset && *start_ret <= found_end) {
2176		ret = 0;
2177		*start_ret = key.offset;
2178		*end_ret = found_end;
2179		goto out;
2180	}
2181	ret = 1;
2182next:
2183	/* check the next slot in the tree to see if it is a valid item */
2184	nritems = btrfs_header_nritems(path->nodes[0]);
2185	path->slots[0]++;
2186	if (path->slots[0] >= nritems) {
2187		ret = btrfs_next_leaf(root, path);
2188		if (ret)
2189			goto out;
2190	}
2191
2192	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193
2194	if (key.type != key_type || key.objectid != dirid) {
2195		ret = 1;
2196		goto out;
2197	}
2198	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199			      struct btrfs_dir_log_item);
2200	found_end = btrfs_dir_log_end(path->nodes[0], item);
2201	*start_ret = key.offset;
2202	*end_ret = found_end;
2203	ret = 0;
2204out:
2205	btrfs_release_path(path);
2206	return ret;
2207}
2208
2209/*
2210 * this looks for a given directory item in the log.  If the directory
2211 * item is not in the log, the item is removed and the inode it points
2212 * to is unlinked
2213 */
2214static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215				      struct btrfs_root *root,
2216				      struct btrfs_root *log,
2217				      struct btrfs_path *path,
2218				      struct btrfs_path *log_path,
2219				      struct inode *dir,
2220				      struct btrfs_key *dir_key)
2221{
 
2222	int ret;
2223	struct extent_buffer *eb;
2224	int slot;
2225	u32 item_size;
2226	struct btrfs_dir_item *di;
2227	struct btrfs_dir_item *log_di;
2228	int name_len;
2229	unsigned long ptr;
2230	unsigned long ptr_end;
2231	char *name;
2232	struct inode *inode;
2233	struct btrfs_key location;
2234
2235again:
2236	eb = path->nodes[0];
2237	slot = path->slots[0];
2238	item_size = btrfs_item_size_nr(eb, slot);
2239	ptr = btrfs_item_ptr_offset(eb, slot);
2240	ptr_end = ptr + item_size;
2241	while (ptr < ptr_end) {
2242		di = (struct btrfs_dir_item *)ptr;
 
 
 
 
 
2243		name_len = btrfs_dir_name_len(eb, di);
2244		name = kmalloc(name_len, GFP_NOFS);
2245		if (!name) {
2246			ret = -ENOMEM;
2247			goto out;
2248		}
2249		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250				  name_len);
2251		log_di = NULL;
2252		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254						       dir_key->objectid,
2255						       name, name_len, 0);
2256		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257			log_di = btrfs_lookup_dir_index_item(trans, log,
2258						     log_path,
2259						     dir_key->objectid,
2260						     dir_key->offset,
2261						     name, name_len, 0);
2262		}
2263		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264			btrfs_dir_item_key_to_cpu(eb, di, &location);
2265			btrfs_release_path(path);
2266			btrfs_release_path(log_path);
2267			inode = read_one_inode(root, location.objectid);
2268			if (!inode) {
2269				kfree(name);
2270				return -EIO;
2271			}
2272
2273			ret = link_to_fixup_dir(trans, root,
2274						path, location.objectid);
2275			if (ret) {
2276				kfree(name);
2277				iput(inode);
2278				goto out;
2279			}
2280
2281			inc_nlink(inode);
2282			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283					BTRFS_I(inode), name, name_len);
2284			if (!ret)
2285				ret = btrfs_run_delayed_items(trans);
2286			kfree(name);
2287			iput(inode);
2288			if (ret)
2289				goto out;
2290
2291			/* there might still be more names under this key
2292			 * check and repeat if required
2293			 */
2294			ret = btrfs_search_slot(NULL, root, dir_key, path,
2295						0, 0);
2296			if (ret == 0)
2297				goto again;
2298			ret = 0;
2299			goto out;
2300		} else if (IS_ERR(log_di)) {
2301			kfree(name);
2302			return PTR_ERR(log_di);
2303		}
2304		btrfs_release_path(log_path);
2305		kfree(name);
2306
2307		ptr = (unsigned long)(di + 1);
2308		ptr += name_len;
2309	}
2310	ret = 0;
2311out:
2312	btrfs_release_path(path);
2313	btrfs_release_path(log_path);
2314	return ret;
2315}
2316
2317static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318			      struct btrfs_root *root,
2319			      struct btrfs_root *log,
2320			      struct btrfs_path *path,
2321			      const u64 ino)
2322{
2323	struct btrfs_key search_key;
2324	struct btrfs_path *log_path;
2325	int i;
2326	int nritems;
2327	int ret;
2328
2329	log_path = btrfs_alloc_path();
2330	if (!log_path)
2331		return -ENOMEM;
2332
2333	search_key.objectid = ino;
2334	search_key.type = BTRFS_XATTR_ITEM_KEY;
2335	search_key.offset = 0;
2336again:
2337	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338	if (ret < 0)
2339		goto out;
2340process_leaf:
2341	nritems = btrfs_header_nritems(path->nodes[0]);
2342	for (i = path->slots[0]; i < nritems; i++) {
2343		struct btrfs_key key;
2344		struct btrfs_dir_item *di;
2345		struct btrfs_dir_item *log_di;
2346		u32 total_size;
2347		u32 cur;
2348
2349		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351			ret = 0;
2352			goto out;
2353		}
2354
2355		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356		total_size = btrfs_item_size_nr(path->nodes[0], i);
2357		cur = 0;
2358		while (cur < total_size) {
2359			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361			u32 this_len = sizeof(*di) + name_len + data_len;
2362			char *name;
2363
2364			name = kmalloc(name_len, GFP_NOFS);
2365			if (!name) {
2366				ret = -ENOMEM;
2367				goto out;
2368			}
2369			read_extent_buffer(path->nodes[0], name,
2370					   (unsigned long)(di + 1), name_len);
2371
2372			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373						    name, name_len, 0);
2374			btrfs_release_path(log_path);
2375			if (!log_di) {
2376				/* Doesn't exist in log tree, so delete it. */
2377				btrfs_release_path(path);
2378				di = btrfs_lookup_xattr(trans, root, path, ino,
2379							name, name_len, -1);
2380				kfree(name);
2381				if (IS_ERR(di)) {
2382					ret = PTR_ERR(di);
2383					goto out;
2384				}
2385				ASSERT(di);
2386				ret = btrfs_delete_one_dir_name(trans, root,
2387								path, di);
2388				if (ret)
2389					goto out;
2390				btrfs_release_path(path);
2391				search_key = key;
2392				goto again;
2393			}
2394			kfree(name);
2395			if (IS_ERR(log_di)) {
2396				ret = PTR_ERR(log_di);
2397				goto out;
2398			}
2399			cur += this_len;
2400			di = (struct btrfs_dir_item *)((char *)di + this_len);
2401		}
2402	}
2403	ret = btrfs_next_leaf(root, path);
2404	if (ret > 0)
2405		ret = 0;
2406	else if (ret == 0)
2407		goto process_leaf;
2408out:
2409	btrfs_free_path(log_path);
2410	btrfs_release_path(path);
2411	return ret;
2412}
2413
2414
2415/*
2416 * deletion replay happens before we copy any new directory items
2417 * out of the log or out of backreferences from inodes.  It
2418 * scans the log to find ranges of keys that log is authoritative for,
2419 * and then scans the directory to find items in those ranges that are
2420 * not present in the log.
2421 *
2422 * Anything we don't find in the log is unlinked and removed from the
2423 * directory.
2424 */
2425static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426				       struct btrfs_root *root,
2427				       struct btrfs_root *log,
2428				       struct btrfs_path *path,
2429				       u64 dirid, int del_all)
2430{
2431	u64 range_start;
2432	u64 range_end;
2433	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434	int ret = 0;
2435	struct btrfs_key dir_key;
2436	struct btrfs_key found_key;
2437	struct btrfs_path *log_path;
2438	struct inode *dir;
2439
2440	dir_key.objectid = dirid;
2441	dir_key.type = BTRFS_DIR_ITEM_KEY;
2442	log_path = btrfs_alloc_path();
2443	if (!log_path)
2444		return -ENOMEM;
2445
2446	dir = read_one_inode(root, dirid);
2447	/* it isn't an error if the inode isn't there, that can happen
2448	 * because we replay the deletes before we copy in the inode item
2449	 * from the log
2450	 */
2451	if (!dir) {
2452		btrfs_free_path(log_path);
2453		return 0;
2454	}
2455again:
2456	range_start = 0;
2457	range_end = 0;
2458	while (1) {
2459		if (del_all)
2460			range_end = (u64)-1;
2461		else {
2462			ret = find_dir_range(log, path, dirid, key_type,
2463					     &range_start, &range_end);
2464			if (ret != 0)
2465				break;
2466		}
2467
2468		dir_key.offset = range_start;
2469		while (1) {
2470			int nritems;
2471			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472						0, 0);
2473			if (ret < 0)
2474				goto out;
2475
2476			nritems = btrfs_header_nritems(path->nodes[0]);
2477			if (path->slots[0] >= nritems) {
2478				ret = btrfs_next_leaf(root, path);
2479				if (ret == 1)
2480					break;
2481				else if (ret < 0)
2482					goto out;
2483			}
2484			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485					      path->slots[0]);
2486			if (found_key.objectid != dirid ||
2487			    found_key.type != dir_key.type)
2488				goto next_type;
2489
2490			if (found_key.offset > range_end)
2491				break;
2492
2493			ret = check_item_in_log(trans, root, log, path,
2494						log_path, dir,
2495						&found_key);
2496			if (ret)
2497				goto out;
2498			if (found_key.offset == (u64)-1)
2499				break;
2500			dir_key.offset = found_key.offset + 1;
2501		}
2502		btrfs_release_path(path);
2503		if (range_end == (u64)-1)
2504			break;
2505		range_start = range_end + 1;
2506	}
2507
2508next_type:
2509	ret = 0;
2510	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512		dir_key.type = BTRFS_DIR_INDEX_KEY;
2513		btrfs_release_path(path);
2514		goto again;
2515	}
2516out:
2517	btrfs_release_path(path);
2518	btrfs_free_path(log_path);
2519	iput(dir);
2520	return ret;
2521}
2522
2523/*
2524 * the process_func used to replay items from the log tree.  This
2525 * gets called in two different stages.  The first stage just looks
2526 * for inodes and makes sure they are all copied into the subvolume.
2527 *
2528 * The second stage copies all the other item types from the log into
2529 * the subvolume.  The two stage approach is slower, but gets rid of
2530 * lots of complexity around inodes referencing other inodes that exist
2531 * only in the log (references come from either directory items or inode
2532 * back refs).
2533 */
2534static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535			     struct walk_control *wc, u64 gen, int level)
2536{
2537	int nritems;
2538	struct btrfs_path *path;
2539	struct btrfs_root *root = wc->replay_dest;
2540	struct btrfs_key key;
 
2541	int i;
2542	int ret;
2543
2544	ret = btrfs_read_buffer(eb, gen, level, NULL);
2545	if (ret)
2546		return ret;
2547
2548	level = btrfs_header_level(eb);
2549
2550	if (level != 0)
2551		return 0;
2552
2553	path = btrfs_alloc_path();
2554	if (!path)
2555		return -ENOMEM;
2556
2557	nritems = btrfs_header_nritems(eb);
2558	for (i = 0; i < nritems; i++) {
2559		btrfs_item_key_to_cpu(eb, &key, i);
2560
2561		/* inode keys are done during the first stage */
2562		if (key.type == BTRFS_INODE_ITEM_KEY &&
2563		    wc->stage == LOG_WALK_REPLAY_INODES) {
2564			struct btrfs_inode_item *inode_item;
2565			u32 mode;
2566
2567			inode_item = btrfs_item_ptr(eb, i,
2568					    struct btrfs_inode_item);
2569			/*
2570			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571			 * and never got linked before the fsync, skip it, as
2572			 * replaying it is pointless since it would be deleted
2573			 * later. We skip logging tmpfiles, but it's always
2574			 * possible we are replaying a log created with a kernel
2575			 * that used to log tmpfiles.
2576			 */
2577			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578				wc->ignore_cur_inode = true;
2579				continue;
2580			} else {
2581				wc->ignore_cur_inode = false;
2582			}
2583			ret = replay_xattr_deletes(wc->trans, root, log,
2584						   path, key.objectid);
2585			if (ret)
2586				break;
2587			mode = btrfs_inode_mode(eb, inode_item);
2588			if (S_ISDIR(mode)) {
2589				ret = replay_dir_deletes(wc->trans,
2590					 root, log, path, key.objectid, 0);
2591				if (ret)
2592					break;
2593			}
2594			ret = overwrite_item(wc->trans, root, path,
2595					     eb, i, &key);
2596			if (ret)
2597				break;
2598
2599			/*
2600			 * Before replaying extents, truncate the inode to its
2601			 * size. We need to do it now and not after log replay
2602			 * because before an fsync we can have prealloc extents
2603			 * added beyond the inode's i_size. If we did it after,
2604			 * through orphan cleanup for example, we would drop
2605			 * those prealloc extents just after replaying them.
2606			 */
2607			if (S_ISREG(mode)) {
2608				struct inode *inode;
2609				u64 from;
2610
2611				inode = read_one_inode(root, key.objectid);
2612				if (!inode) {
2613					ret = -EIO;
2614					break;
2615				}
2616				from = ALIGN(i_size_read(inode),
2617					     root->fs_info->sectorsize);
2618				ret = btrfs_drop_extents(wc->trans, root, inode,
2619							 from, (u64)-1, 1);
2620				if (!ret) {
2621					/* Update the inode's nbytes. */
2622					ret = btrfs_update_inode(wc->trans,
2623								 root, inode);
2624				}
2625				iput(inode);
2626				if (ret)
2627					break;
2628			}
2629
2630			ret = link_to_fixup_dir(wc->trans, root,
2631						path, key.objectid);
2632			if (ret)
2633				break;
2634		}
2635
2636		if (wc->ignore_cur_inode)
2637			continue;
2638
2639		if (key.type == BTRFS_DIR_INDEX_KEY &&
2640		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641			ret = replay_one_dir_item(wc->trans, root, path,
2642						  eb, i, &key);
2643			if (ret)
2644				break;
2645		}
2646
2647		if (wc->stage < LOG_WALK_REPLAY_ALL)
2648			continue;
2649
2650		/* these keys are simply copied */
2651		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652			ret = overwrite_item(wc->trans, root, path,
2653					     eb, i, &key);
2654			if (ret)
2655				break;
2656		} else if (key.type == BTRFS_INODE_REF_KEY ||
2657			   key.type == BTRFS_INODE_EXTREF_KEY) {
2658			ret = add_inode_ref(wc->trans, root, log, path,
2659					    eb, i, &key);
2660			if (ret && ret != -ENOENT)
2661				break;
2662			ret = 0;
2663		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664			ret = replay_one_extent(wc->trans, root, path,
2665						eb, i, &key);
2666			if (ret)
2667				break;
2668		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669			ret = replay_one_dir_item(wc->trans, root, path,
2670						  eb, i, &key);
2671			if (ret)
2672				break;
2673		}
2674	}
2675	btrfs_free_path(path);
2676	return ret;
2677}
2678
2679static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680				   struct btrfs_root *root,
2681				   struct btrfs_path *path, int *level,
2682				   struct walk_control *wc)
2683{
2684	struct btrfs_fs_info *fs_info = root->fs_info;
2685	u64 root_owner;
2686	u64 bytenr;
2687	u64 ptr_gen;
2688	struct extent_buffer *next;
2689	struct extent_buffer *cur;
2690	struct extent_buffer *parent;
2691	u32 blocksize;
2692	int ret = 0;
2693
2694	WARN_ON(*level < 0);
2695	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696
2697	while (*level > 0) {
2698		struct btrfs_key first_key;
2699
2700		WARN_ON(*level < 0);
2701		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702		cur = path->nodes[*level];
2703
2704		WARN_ON(btrfs_header_level(cur) != *level);
2705
2706		if (path->slots[*level] >=
2707		    btrfs_header_nritems(cur))
2708			break;
2709
2710		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713		blocksize = fs_info->nodesize;
2714
2715		parent = path->nodes[*level];
2716		root_owner = btrfs_header_owner(parent);
2717
2718		next = btrfs_find_create_tree_block(fs_info, bytenr);
2719		if (IS_ERR(next))
2720			return PTR_ERR(next);
2721
2722		if (*level == 1) {
2723			ret = wc->process_func(root, next, wc, ptr_gen,
2724					       *level - 1);
2725			if (ret) {
2726				free_extent_buffer(next);
2727				return ret;
2728			}
2729
2730			path->slots[*level]++;
2731			if (wc->free) {
2732				ret = btrfs_read_buffer(next, ptr_gen,
2733							*level - 1, &first_key);
2734				if (ret) {
2735					free_extent_buffer(next);
2736					return ret;
2737				}
2738
2739				if (trans) {
2740					btrfs_tree_lock(next);
2741					btrfs_set_lock_blocking_write(next);
2742					btrfs_clean_tree_block(next);
2743					btrfs_wait_tree_block_writeback(next);
2744					btrfs_tree_unlock(next);
2745				} else {
2746					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747						clear_extent_buffer_dirty(next);
2748				}
2749
2750				WARN_ON(root_owner !=
2751					BTRFS_TREE_LOG_OBJECTID);
2752				ret = btrfs_free_and_pin_reserved_extent(
2753							fs_info, bytenr,
2754							blocksize);
2755				if (ret) {
2756					free_extent_buffer(next);
2757					return ret;
2758				}
2759			}
2760			free_extent_buffer(next);
2761			continue;
2762		}
2763		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764		if (ret) {
2765			free_extent_buffer(next);
2766			return ret;
2767		}
2768
2769		WARN_ON(*level <= 0);
2770		if (path->nodes[*level-1])
2771			free_extent_buffer(path->nodes[*level-1]);
2772		path->nodes[*level-1] = next;
2773		*level = btrfs_header_level(next);
2774		path->slots[*level] = 0;
2775		cond_resched();
2776	}
2777	WARN_ON(*level < 0);
2778	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779
2780	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781
2782	cond_resched();
2783	return 0;
2784}
2785
2786static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787				 struct btrfs_root *root,
2788				 struct btrfs_path *path, int *level,
2789				 struct walk_control *wc)
2790{
2791	struct btrfs_fs_info *fs_info = root->fs_info;
2792	u64 root_owner;
2793	int i;
2794	int slot;
2795	int ret;
2796
2797	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798		slot = path->slots[i];
2799		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800			path->slots[i]++;
2801			*level = i;
2802			WARN_ON(*level == 0);
2803			return 0;
2804		} else {
2805			struct extent_buffer *parent;
2806			if (path->nodes[*level] == root->node)
2807				parent = path->nodes[*level];
2808			else
2809				parent = path->nodes[*level + 1];
2810
2811			root_owner = btrfs_header_owner(parent);
2812			ret = wc->process_func(root, path->nodes[*level], wc,
2813				 btrfs_header_generation(path->nodes[*level]),
2814				 *level);
2815			if (ret)
2816				return ret;
2817
2818			if (wc->free) {
2819				struct extent_buffer *next;
2820
2821				next = path->nodes[*level];
2822
2823				if (trans) {
2824					btrfs_tree_lock(next);
2825					btrfs_set_lock_blocking_write(next);
2826					btrfs_clean_tree_block(next);
2827					btrfs_wait_tree_block_writeback(next);
2828					btrfs_tree_unlock(next);
2829				} else {
2830					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831						clear_extent_buffer_dirty(next);
2832				}
2833
2834				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835				ret = btrfs_free_and_pin_reserved_extent(
2836						fs_info,
2837						path->nodes[*level]->start,
2838						path->nodes[*level]->len);
2839				if (ret)
2840					return ret;
2841			}
2842			free_extent_buffer(path->nodes[*level]);
2843			path->nodes[*level] = NULL;
2844			*level = i + 1;
2845		}
2846	}
2847	return 1;
2848}
2849
2850/*
2851 * drop the reference count on the tree rooted at 'snap'.  This traverses
2852 * the tree freeing any blocks that have a ref count of zero after being
2853 * decremented.
2854 */
2855static int walk_log_tree(struct btrfs_trans_handle *trans,
2856			 struct btrfs_root *log, struct walk_control *wc)
2857{
2858	struct btrfs_fs_info *fs_info = log->fs_info;
2859	int ret = 0;
2860	int wret;
2861	int level;
2862	struct btrfs_path *path;
2863	int orig_level;
2864
2865	path = btrfs_alloc_path();
2866	if (!path)
2867		return -ENOMEM;
2868
2869	level = btrfs_header_level(log->node);
2870	orig_level = level;
2871	path->nodes[level] = log->node;
2872	extent_buffer_get(log->node);
2873	path->slots[level] = 0;
2874
2875	while (1) {
2876		wret = walk_down_log_tree(trans, log, path, &level, wc);
2877		if (wret > 0)
2878			break;
2879		if (wret < 0) {
2880			ret = wret;
2881			goto out;
2882		}
2883
2884		wret = walk_up_log_tree(trans, log, path, &level, wc);
2885		if (wret > 0)
2886			break;
2887		if (wret < 0) {
2888			ret = wret;
2889			goto out;
2890		}
2891	}
2892
2893	/* was the root node processed? if not, catch it here */
2894	if (path->nodes[orig_level]) {
2895		ret = wc->process_func(log, path->nodes[orig_level], wc,
2896			 btrfs_header_generation(path->nodes[orig_level]),
2897			 orig_level);
2898		if (ret)
2899			goto out;
2900		if (wc->free) {
2901			struct extent_buffer *next;
2902
2903			next = path->nodes[orig_level];
2904
2905			if (trans) {
2906				btrfs_tree_lock(next);
2907				btrfs_set_lock_blocking_write(next);
2908				btrfs_clean_tree_block(next);
2909				btrfs_wait_tree_block_writeback(next);
2910				btrfs_tree_unlock(next);
2911			} else {
2912				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913					clear_extent_buffer_dirty(next);
2914			}
2915
2916			WARN_ON(log->root_key.objectid !=
2917				BTRFS_TREE_LOG_OBJECTID);
2918			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919							next->start, next->len);
2920			if (ret)
2921				goto out;
2922		}
2923	}
2924
2925out:
2926	btrfs_free_path(path);
2927	return ret;
2928}
2929
2930/*
2931 * helper function to update the item for a given subvolumes log root
2932 * in the tree of log roots
2933 */
2934static int update_log_root(struct btrfs_trans_handle *trans,
2935			   struct btrfs_root *log,
2936			   struct btrfs_root_item *root_item)
2937{
2938	struct btrfs_fs_info *fs_info = log->fs_info;
2939	int ret;
2940
2941	if (log->log_transid == 1) {
2942		/* insert root item on the first sync */
2943		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2944				&log->root_key, root_item);
2945	} else {
2946		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2947				&log->root_key, root_item);
2948	}
2949	return ret;
2950}
2951
2952static void wait_log_commit(struct btrfs_root *root, int transid)
2953{
2954	DEFINE_WAIT(wait);
2955	int index = transid % 2;
2956
2957	/*
2958	 * we only allow two pending log transactions at a time,
2959	 * so we know that if ours is more than 2 older than the
2960	 * current transaction, we're done
2961	 */
2962	for (;;) {
2963		prepare_to_wait(&root->log_commit_wait[index],
2964				&wait, TASK_UNINTERRUPTIBLE);
 
2965
2966		if (!(root->log_transid_committed < transid &&
2967		      atomic_read(&root->log_commit[index])))
2968			break;
2969
2970		mutex_unlock(&root->log_mutex);
2971		schedule();
2972		mutex_lock(&root->log_mutex);
2973	}
2974	finish_wait(&root->log_commit_wait[index], &wait);
2975}
2976
2977static void wait_for_writer(struct btrfs_root *root)
2978{
2979	DEFINE_WAIT(wait);
2980
2981	for (;;) {
2982		prepare_to_wait(&root->log_writer_wait, &wait,
2983				TASK_UNINTERRUPTIBLE);
2984		if (!atomic_read(&root->log_writers))
2985			break;
2986
2987		mutex_unlock(&root->log_mutex);
2988		schedule();
 
 
2989		mutex_lock(&root->log_mutex);
2990	}
2991	finish_wait(&root->log_writer_wait, &wait);
2992}
2993
2994static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2995					struct btrfs_log_ctx *ctx)
2996{
2997	if (!ctx)
2998		return;
2999
3000	mutex_lock(&root->log_mutex);
3001	list_del_init(&ctx->list);
3002	mutex_unlock(&root->log_mutex);
3003}
3004
3005/* 
3006 * Invoked in log mutex context, or be sure there is no other task which
3007 * can access the list.
3008 */
3009static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3010					     int index, int error)
3011{
3012	struct btrfs_log_ctx *ctx;
3013	struct btrfs_log_ctx *safe;
3014
3015	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3016		list_del_init(&ctx->list);
3017		ctx->log_ret = error;
3018	}
3019
3020	INIT_LIST_HEAD(&root->log_ctxs[index]);
3021}
3022
3023/*
3024 * btrfs_sync_log does sends a given tree log down to the disk and
3025 * updates the super blocks to record it.  When this call is done,
3026 * you know that any inodes previously logged are safely on disk only
3027 * if it returns 0.
3028 *
3029 * Any other return value means you need to call btrfs_commit_transaction.
3030 * Some of the edge cases for fsyncing directories that have had unlinks
3031 * or renames done in the past mean that sometimes the only safe
3032 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3033 * that has happened.
3034 */
3035int btrfs_sync_log(struct btrfs_trans_handle *trans,
3036		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3037{
3038	int index1;
3039	int index2;
3040	int mark;
3041	int ret;
3042	struct btrfs_fs_info *fs_info = root->fs_info;
3043	struct btrfs_root *log = root->log_root;
3044	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3045	struct btrfs_root_item new_root_item;
3046	int log_transid = 0;
3047	struct btrfs_log_ctx root_log_ctx;
3048	struct blk_plug plug;
3049
3050	mutex_lock(&root->log_mutex);
3051	log_transid = ctx->log_transid;
3052	if (root->log_transid_committed >= log_transid) {
3053		mutex_unlock(&root->log_mutex);
3054		return ctx->log_ret;
3055	}
3056
3057	index1 = log_transid % 2;
3058	if (atomic_read(&root->log_commit[index1])) {
3059		wait_log_commit(root, log_transid);
3060		mutex_unlock(&root->log_mutex);
3061		return ctx->log_ret;
3062	}
3063	ASSERT(log_transid == root->log_transid);
3064	atomic_set(&root->log_commit[index1], 1);
3065
3066	/* wait for previous tree log sync to complete */
3067	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3068		wait_log_commit(root, log_transid - 1);
3069
3070	while (1) {
3071		int batch = atomic_read(&root->log_batch);
3072		/* when we're on an ssd, just kick the log commit out */
3073		if (!btrfs_test_opt(fs_info, SSD) &&
3074		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3075			mutex_unlock(&root->log_mutex);
3076			schedule_timeout_uninterruptible(1);
3077			mutex_lock(&root->log_mutex);
3078		}
3079		wait_for_writer(root);
3080		if (batch == atomic_read(&root->log_batch))
3081			break;
3082	}
3083
3084	/* bail out if we need to do a full commit */
3085	if (btrfs_need_log_full_commit(trans)) {
3086		ret = -EAGAIN;
 
3087		mutex_unlock(&root->log_mutex);
3088		goto out;
3089	}
3090
3091	if (log_transid % 2 == 0)
3092		mark = EXTENT_DIRTY;
3093	else
3094		mark = EXTENT_NEW;
3095
3096	/* we start IO on  all the marked extents here, but we don't actually
3097	 * wait for them until later.
3098	 */
3099	blk_start_plug(&plug);
3100	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3101	if (ret) {
3102		blk_finish_plug(&plug);
3103		btrfs_abort_transaction(trans, ret);
3104		btrfs_set_log_full_commit(trans);
 
3105		mutex_unlock(&root->log_mutex);
3106		goto out;
3107	}
3108
3109	/*
3110	 * We _must_ update under the root->log_mutex in order to make sure we
3111	 * have a consistent view of the log root we are trying to commit at
3112	 * this moment.
3113	 *
3114	 * We _must_ copy this into a local copy, because we are not holding the
3115	 * log_root_tree->log_mutex yet.  This is important because when we
3116	 * commit the log_root_tree we must have a consistent view of the
3117	 * log_root_tree when we update the super block to point at the
3118	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3119	 * with the commit and possibly point at the new block which we may not
3120	 * have written out.
3121	 */
3122	btrfs_set_root_node(&log->root_item, log->node);
3123	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3124
3125	root->log_transid++;
3126	log->log_transid = root->log_transid;
3127	root->log_start_pid = 0;
3128	/*
3129	 * IO has been started, blocks of the log tree have WRITTEN flag set
3130	 * in their headers. new modifications of the log will be written to
3131	 * new positions. so it's safe to allow log writers to go in.
3132	 */
3133	mutex_unlock(&root->log_mutex);
3134
3135	btrfs_init_log_ctx(&root_log_ctx, NULL);
3136
3137	mutex_lock(&log_root_tree->log_mutex);
3138	atomic_inc(&log_root_tree->log_batch);
3139	atomic_inc(&log_root_tree->log_writers);
3140
3141	index2 = log_root_tree->log_transid % 2;
3142	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3143	root_log_ctx.log_transid = log_root_tree->log_transid;
3144
3145	mutex_unlock(&log_root_tree->log_mutex);
3146
 
 
3147	mutex_lock(&log_root_tree->log_mutex);
3148
3149	/*
3150	 * Now we are safe to update the log_root_tree because we're under the
3151	 * log_mutex, and we're a current writer so we're holding the commit
3152	 * open until we drop the log_mutex.
3153	 */
3154	ret = update_log_root(trans, log, &new_root_item);
3155
3156	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3157		/* atomic_dec_and_test implies a barrier */
3158		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
 
 
 
3159	}
3160
3161	if (ret) {
3162		if (!list_empty(&root_log_ctx.list))
3163			list_del_init(&root_log_ctx.list);
3164
3165		blk_finish_plug(&plug);
3166		btrfs_set_log_full_commit(trans);
3167
3168		if (ret != -ENOSPC) {
3169			btrfs_abort_transaction(trans, ret);
3170			mutex_unlock(&log_root_tree->log_mutex);
3171			goto out;
3172		}
3173		btrfs_wait_tree_log_extents(log, mark);
 
3174		mutex_unlock(&log_root_tree->log_mutex);
3175		ret = -EAGAIN;
3176		goto out;
3177	}
3178
3179	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3180		blk_finish_plug(&plug);
3181		list_del_init(&root_log_ctx.list);
3182		mutex_unlock(&log_root_tree->log_mutex);
3183		ret = root_log_ctx.log_ret;
3184		goto out;
3185	}
3186
3187	index2 = root_log_ctx.log_transid % 2;
3188	if (atomic_read(&log_root_tree->log_commit[index2])) {
3189		blk_finish_plug(&plug);
3190		ret = btrfs_wait_tree_log_extents(log, mark);
 
3191		wait_log_commit(log_root_tree,
3192				root_log_ctx.log_transid);
3193		mutex_unlock(&log_root_tree->log_mutex);
3194		if (!ret)
3195			ret = root_log_ctx.log_ret;
3196		goto out;
3197	}
3198	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3199	atomic_set(&log_root_tree->log_commit[index2], 1);
3200
3201	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3202		wait_log_commit(log_root_tree,
3203				root_log_ctx.log_transid - 1);
3204	}
3205
3206	wait_for_writer(log_root_tree);
3207
3208	/*
3209	 * now that we've moved on to the tree of log tree roots,
3210	 * check the full commit flag again
3211	 */
3212	if (btrfs_need_log_full_commit(trans)) {
3213		blk_finish_plug(&plug);
3214		btrfs_wait_tree_log_extents(log, mark);
 
3215		mutex_unlock(&log_root_tree->log_mutex);
3216		ret = -EAGAIN;
3217		goto out_wake_log_root;
3218	}
3219
3220	ret = btrfs_write_marked_extents(fs_info,
3221					 &log_root_tree->dirty_log_pages,
3222					 EXTENT_DIRTY | EXTENT_NEW);
3223	blk_finish_plug(&plug);
3224	if (ret) {
3225		btrfs_set_log_full_commit(trans);
3226		btrfs_abort_transaction(trans, ret);
 
3227		mutex_unlock(&log_root_tree->log_mutex);
3228		goto out_wake_log_root;
3229	}
3230	ret = btrfs_wait_tree_log_extents(log, mark);
3231	if (!ret)
3232		ret = btrfs_wait_tree_log_extents(log_root_tree,
3233						  EXTENT_NEW | EXTENT_DIRTY);
3234	if (ret) {
3235		btrfs_set_log_full_commit(trans);
 
3236		mutex_unlock(&log_root_tree->log_mutex);
3237		goto out_wake_log_root;
3238	}
 
3239
3240	btrfs_set_super_log_root(fs_info->super_for_commit,
3241				 log_root_tree->node->start);
3242	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3243				       btrfs_header_level(log_root_tree->node));
3244
3245	log_root_tree->log_transid++;
3246	mutex_unlock(&log_root_tree->log_mutex);
3247
3248	/*
3249	 * Nobody else is going to jump in and write the ctree
3250	 * super here because the log_commit atomic below is protecting
3251	 * us.  We must be called with a transaction handle pinning
3252	 * the running transaction open, so a full commit can't hop
3253	 * in and cause problems either.
3254	 */
3255	ret = write_all_supers(fs_info, 1);
3256	if (ret) {
3257		btrfs_set_log_full_commit(trans);
3258		btrfs_abort_transaction(trans, ret);
3259		goto out_wake_log_root;
3260	}
3261
3262	mutex_lock(&root->log_mutex);
3263	if (root->last_log_commit < log_transid)
3264		root->last_log_commit = log_transid;
3265	mutex_unlock(&root->log_mutex);
3266
3267out_wake_log_root:
3268	mutex_lock(&log_root_tree->log_mutex);
3269	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3270
3271	log_root_tree->log_transid_committed++;
3272	atomic_set(&log_root_tree->log_commit[index2], 0);
3273	mutex_unlock(&log_root_tree->log_mutex);
3274
3275	/*
3276	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3277	 * all the updates above are seen by the woken threads. It might not be
3278	 * necessary, but proving that seems to be hard.
3279	 */
3280	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
 
3281out:
3282	mutex_lock(&root->log_mutex);
3283	btrfs_remove_all_log_ctxs(root, index1, ret);
3284	root->log_transid_committed++;
3285	atomic_set(&root->log_commit[index1], 0);
3286	mutex_unlock(&root->log_mutex);
3287
3288	/*
3289	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3290	 * all the updates above are seen by the woken threads. It might not be
3291	 * necessary, but proving that seems to be hard.
3292	 */
3293	cond_wake_up(&root->log_commit_wait[index1]);
 
3294	return ret;
3295}
3296
3297static void free_log_tree(struct btrfs_trans_handle *trans,
3298			  struct btrfs_root *log)
3299{
3300	int ret;
 
 
3301	struct walk_control wc = {
3302		.free = 1,
3303		.process_func = process_one_buffer
3304	};
3305
3306	ret = walk_log_tree(trans, log, &wc);
3307	if (ret) {
3308		if (trans)
3309			btrfs_abort_transaction(trans, ret);
3310		else
3311			btrfs_handle_fs_error(log->fs_info, ret, NULL);
 
 
 
 
 
 
 
 
3312	}
3313
3314	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3315			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
 
 
 
 
 
 
3316	free_extent_buffer(log->node);
3317	kfree(log);
3318}
3319
3320/*
3321 * free all the extents used by the tree log.  This should be called
3322 * at commit time of the full transaction
3323 */
3324int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3325{
3326	if (root->log_root) {
3327		free_log_tree(trans, root->log_root);
3328		root->log_root = NULL;
3329	}
3330	return 0;
3331}
3332
3333int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3334			     struct btrfs_fs_info *fs_info)
3335{
3336	if (fs_info->log_root_tree) {
3337		free_log_tree(trans, fs_info->log_root_tree);
3338		fs_info->log_root_tree = NULL;
3339	}
3340	return 0;
3341}
3342
3343/*
3344 * Check if an inode was logged in the current transaction. We can't always rely
3345 * on an inode's logged_trans value, because it's an in-memory only field and
3346 * therefore not persisted. This means that its value is lost if the inode gets
3347 * evicted and loaded again from disk (in which case it has a value of 0, and
3348 * certainly it is smaller then any possible transaction ID), when that happens
3349 * the full_sync flag is set in the inode's runtime flags, so on that case we
3350 * assume eviction happened and ignore the logged_trans value, assuming the
3351 * worst case, that the inode was logged before in the current transaction.
3352 */
3353static bool inode_logged(struct btrfs_trans_handle *trans,
3354			 struct btrfs_inode *inode)
3355{
3356	if (inode->logged_trans == trans->transid)
3357		return true;
3358
3359	if (inode->last_trans == trans->transid &&
3360	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3361	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3362		return true;
3363
3364	return false;
3365}
3366
3367/*
3368 * If both a file and directory are logged, and unlinks or renames are
3369 * mixed in, we have a few interesting corners:
3370 *
3371 * create file X in dir Y
3372 * link file X to X.link in dir Y
3373 * fsync file X
3374 * unlink file X but leave X.link
3375 * fsync dir Y
3376 *
3377 * After a crash we would expect only X.link to exist.  But file X
3378 * didn't get fsync'd again so the log has back refs for X and X.link.
3379 *
3380 * We solve this by removing directory entries and inode backrefs from the
3381 * log when a file that was logged in the current transaction is
3382 * unlinked.  Any later fsync will include the updated log entries, and
3383 * we'll be able to reconstruct the proper directory items from backrefs.
3384 *
3385 * This optimizations allows us to avoid relogging the entire inode
3386 * or the entire directory.
3387 */
3388int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3389				 struct btrfs_root *root,
3390				 const char *name, int name_len,
3391				 struct btrfs_inode *dir, u64 index)
3392{
3393	struct btrfs_root *log;
3394	struct btrfs_dir_item *di;
3395	struct btrfs_path *path;
3396	int ret;
3397	int err = 0;
3398	int bytes_del = 0;
3399	u64 dir_ino = btrfs_ino(dir);
3400
3401	if (!inode_logged(trans, dir))
3402		return 0;
3403
3404	ret = join_running_log_trans(root);
3405	if (ret)
3406		return 0;
3407
3408	mutex_lock(&dir->log_mutex);
3409
3410	log = root->log_root;
3411	path = btrfs_alloc_path();
3412	if (!path) {
3413		err = -ENOMEM;
3414		goto out_unlock;
3415	}
3416
3417	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3418				   name, name_len, -1);
3419	if (IS_ERR(di)) {
3420		err = PTR_ERR(di);
3421		goto fail;
3422	}
3423	if (di) {
3424		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425		bytes_del += name_len;
3426		if (ret) {
3427			err = ret;
3428			goto fail;
3429		}
3430	}
3431	btrfs_release_path(path);
3432	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3433					 index, name, name_len, -1);
3434	if (IS_ERR(di)) {
3435		err = PTR_ERR(di);
3436		goto fail;
3437	}
3438	if (di) {
3439		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3440		bytes_del += name_len;
3441		if (ret) {
3442			err = ret;
3443			goto fail;
3444		}
3445	}
3446
3447	/* update the directory size in the log to reflect the names
3448	 * we have removed
3449	 */
3450	if (bytes_del) {
3451		struct btrfs_key key;
3452
3453		key.objectid = dir_ino;
3454		key.offset = 0;
3455		key.type = BTRFS_INODE_ITEM_KEY;
3456		btrfs_release_path(path);
3457
3458		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3459		if (ret < 0) {
3460			err = ret;
3461			goto fail;
3462		}
3463		if (ret == 0) {
3464			struct btrfs_inode_item *item;
3465			u64 i_size;
3466
3467			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3468					      struct btrfs_inode_item);
3469			i_size = btrfs_inode_size(path->nodes[0], item);
3470			if (i_size > bytes_del)
3471				i_size -= bytes_del;
3472			else
3473				i_size = 0;
3474			btrfs_set_inode_size(path->nodes[0], item, i_size);
3475			btrfs_mark_buffer_dirty(path->nodes[0]);
3476		} else
3477			ret = 0;
3478		btrfs_release_path(path);
3479	}
3480fail:
3481	btrfs_free_path(path);
3482out_unlock:
3483	mutex_unlock(&dir->log_mutex);
3484	if (ret == -ENOSPC) {
3485		btrfs_set_log_full_commit(trans);
3486		ret = 0;
3487	} else if (ret < 0)
3488		btrfs_abort_transaction(trans, ret);
3489
3490	btrfs_end_log_trans(root);
3491
3492	return err;
3493}
3494
3495/* see comments for btrfs_del_dir_entries_in_log */
3496int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3497			       struct btrfs_root *root,
3498			       const char *name, int name_len,
3499			       struct btrfs_inode *inode, u64 dirid)
3500{
 
3501	struct btrfs_root *log;
3502	u64 index;
3503	int ret;
3504
3505	if (!inode_logged(trans, inode))
3506		return 0;
3507
3508	ret = join_running_log_trans(root);
3509	if (ret)
3510		return 0;
3511	log = root->log_root;
3512	mutex_lock(&inode->log_mutex);
3513
3514	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3515				  dirid, &index);
3516	mutex_unlock(&inode->log_mutex);
3517	if (ret == -ENOSPC) {
3518		btrfs_set_log_full_commit(trans);
3519		ret = 0;
3520	} else if (ret < 0 && ret != -ENOENT)
3521		btrfs_abort_transaction(trans, ret);
3522	btrfs_end_log_trans(root);
3523
3524	return ret;
3525}
3526
3527/*
3528 * creates a range item in the log for 'dirid'.  first_offset and
3529 * last_offset tell us which parts of the key space the log should
3530 * be considered authoritative for.
3531 */
3532static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3533				       struct btrfs_root *log,
3534				       struct btrfs_path *path,
3535				       int key_type, u64 dirid,
3536				       u64 first_offset, u64 last_offset)
3537{
3538	int ret;
3539	struct btrfs_key key;
3540	struct btrfs_dir_log_item *item;
3541
3542	key.objectid = dirid;
3543	key.offset = first_offset;
3544	if (key_type == BTRFS_DIR_ITEM_KEY)
3545		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3546	else
3547		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3548	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549	if (ret)
3550		return ret;
3551
3552	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3553			      struct btrfs_dir_log_item);
3554	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3555	btrfs_mark_buffer_dirty(path->nodes[0]);
3556	btrfs_release_path(path);
3557	return 0;
3558}
3559
3560/*
3561 * log all the items included in the current transaction for a given
3562 * directory.  This also creates the range items in the log tree required
3563 * to replay anything deleted before the fsync
3564 */
3565static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3566			  struct btrfs_root *root, struct btrfs_inode *inode,
3567			  struct btrfs_path *path,
3568			  struct btrfs_path *dst_path, int key_type,
3569			  struct btrfs_log_ctx *ctx,
3570			  u64 min_offset, u64 *last_offset_ret)
3571{
3572	struct btrfs_key min_key;
3573	struct btrfs_root *log = root->log_root;
3574	struct extent_buffer *src;
3575	int err = 0;
3576	int ret;
3577	int i;
3578	int nritems;
3579	u64 first_offset = min_offset;
3580	u64 last_offset = (u64)-1;
3581	u64 ino = btrfs_ino(inode);
3582
3583	log = root->log_root;
3584
3585	min_key.objectid = ino;
3586	min_key.type = key_type;
3587	min_key.offset = min_offset;
3588
3589	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3590
3591	/*
3592	 * we didn't find anything from this transaction, see if there
3593	 * is anything at all
3594	 */
3595	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3596		min_key.objectid = ino;
3597		min_key.type = key_type;
3598		min_key.offset = (u64)-1;
3599		btrfs_release_path(path);
3600		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3601		if (ret < 0) {
3602			btrfs_release_path(path);
3603			return ret;
3604		}
3605		ret = btrfs_previous_item(root, path, ino, key_type);
3606
3607		/* if ret == 0 there are items for this type,
3608		 * create a range to tell us the last key of this type.
3609		 * otherwise, there are no items in this directory after
3610		 * *min_offset, and we create a range to indicate that.
3611		 */
3612		if (ret == 0) {
3613			struct btrfs_key tmp;
3614			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3615					      path->slots[0]);
3616			if (key_type == tmp.type)
3617				first_offset = max(min_offset, tmp.offset) + 1;
3618		}
3619		goto done;
3620	}
3621
3622	/* go backward to find any previous key */
3623	ret = btrfs_previous_item(root, path, ino, key_type);
3624	if (ret == 0) {
3625		struct btrfs_key tmp;
3626		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3627		if (key_type == tmp.type) {
3628			first_offset = tmp.offset;
3629			ret = overwrite_item(trans, log, dst_path,
3630					     path->nodes[0], path->slots[0],
3631					     &tmp);
3632			if (ret) {
3633				err = ret;
3634				goto done;
3635			}
3636		}
3637	}
3638	btrfs_release_path(path);
3639
3640	/*
3641	 * Find the first key from this transaction again.  See the note for
3642	 * log_new_dir_dentries, if we're logging a directory recursively we
3643	 * won't be holding its i_mutex, which means we can modify the directory
3644	 * while we're logging it.  If we remove an entry between our first
3645	 * search and this search we'll not find the key again and can just
3646	 * bail.
3647	 */
3648	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3649	if (ret != 0)
3650		goto done;
3651
3652	/*
3653	 * we have a block from this transaction, log every item in it
3654	 * from our directory
3655	 */
3656	while (1) {
3657		struct btrfs_key tmp;
3658		src = path->nodes[0];
3659		nritems = btrfs_header_nritems(src);
3660		for (i = path->slots[0]; i < nritems; i++) {
3661			struct btrfs_dir_item *di;
3662
3663			btrfs_item_key_to_cpu(src, &min_key, i);
3664
3665			if (min_key.objectid != ino || min_key.type != key_type)
3666				goto done;
3667			ret = overwrite_item(trans, log, dst_path, src, i,
3668					     &min_key);
3669			if (ret) {
3670				err = ret;
3671				goto done;
3672			}
3673
3674			/*
3675			 * We must make sure that when we log a directory entry,
3676			 * the corresponding inode, after log replay, has a
3677			 * matching link count. For example:
3678			 *
3679			 * touch foo
3680			 * mkdir mydir
3681			 * sync
3682			 * ln foo mydir/bar
3683			 * xfs_io -c "fsync" mydir
3684			 * <crash>
3685			 * <mount fs and log replay>
3686			 *
3687			 * Would result in a fsync log that when replayed, our
3688			 * file inode would have a link count of 1, but we get
3689			 * two directory entries pointing to the same inode.
3690			 * After removing one of the names, it would not be
3691			 * possible to remove the other name, which resulted
3692			 * always in stale file handle errors, and would not
3693			 * be possible to rmdir the parent directory, since
3694			 * its i_size could never decrement to the value
3695			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3696			 */
3697			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3698			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3699			if (ctx &&
3700			    (btrfs_dir_transid(src, di) == trans->transid ||
3701			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3702			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3703				ctx->log_new_dentries = true;
3704		}
3705		path->slots[0] = nritems;
3706
3707		/*
3708		 * look ahead to the next item and see if it is also
3709		 * from this directory and from this transaction
3710		 */
3711		ret = btrfs_next_leaf(root, path);
3712		if (ret) {
3713			if (ret == 1)
3714				last_offset = (u64)-1;
3715			else
3716				err = ret;
3717			goto done;
3718		}
3719		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3720		if (tmp.objectid != ino || tmp.type != key_type) {
3721			last_offset = (u64)-1;
3722			goto done;
3723		}
3724		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3725			ret = overwrite_item(trans, log, dst_path,
3726					     path->nodes[0], path->slots[0],
3727					     &tmp);
3728			if (ret)
3729				err = ret;
3730			else
3731				last_offset = tmp.offset;
3732			goto done;
3733		}
3734	}
3735done:
3736	btrfs_release_path(path);
3737	btrfs_release_path(dst_path);
3738
3739	if (err == 0) {
3740		*last_offset_ret = last_offset;
3741		/*
3742		 * insert the log range keys to indicate where the log
3743		 * is valid
3744		 */
3745		ret = insert_dir_log_key(trans, log, path, key_type,
3746					 ino, first_offset, last_offset);
3747		if (ret)
3748			err = ret;
3749	}
3750	return err;
3751}
3752
3753/*
3754 * logging directories is very similar to logging inodes, We find all the items
3755 * from the current transaction and write them to the log.
3756 *
3757 * The recovery code scans the directory in the subvolume, and if it finds a
3758 * key in the range logged that is not present in the log tree, then it means
3759 * that dir entry was unlinked during the transaction.
3760 *
3761 * In order for that scan to work, we must include one key smaller than
3762 * the smallest logged by this transaction and one key larger than the largest
3763 * key logged by this transaction.
3764 */
3765static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3766			  struct btrfs_root *root, struct btrfs_inode *inode,
3767			  struct btrfs_path *path,
3768			  struct btrfs_path *dst_path,
3769			  struct btrfs_log_ctx *ctx)
3770{
3771	u64 min_key;
3772	u64 max_key;
3773	int ret;
3774	int key_type = BTRFS_DIR_ITEM_KEY;
3775
3776again:
3777	min_key = 0;
3778	max_key = 0;
3779	while (1) {
3780		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3781				ctx, min_key, &max_key);
 
3782		if (ret)
3783			return ret;
3784		if (max_key == (u64)-1)
3785			break;
3786		min_key = max_key + 1;
3787	}
3788
3789	if (key_type == BTRFS_DIR_ITEM_KEY) {
3790		key_type = BTRFS_DIR_INDEX_KEY;
3791		goto again;
3792	}
3793	return 0;
3794}
3795
3796/*
3797 * a helper function to drop items from the log before we relog an
3798 * inode.  max_key_type indicates the highest item type to remove.
3799 * This cannot be run for file data extents because it does not
3800 * free the extents they point to.
3801 */
3802static int drop_objectid_items(struct btrfs_trans_handle *trans,
3803				  struct btrfs_root *log,
3804				  struct btrfs_path *path,
3805				  u64 objectid, int max_key_type)
3806{
3807	int ret;
3808	struct btrfs_key key;
3809	struct btrfs_key found_key;
3810	int start_slot;
3811
3812	key.objectid = objectid;
3813	key.type = max_key_type;
3814	key.offset = (u64)-1;
3815
3816	while (1) {
3817		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3818		BUG_ON(ret == 0); /* Logic error */
3819		if (ret < 0)
3820			break;
3821
3822		if (path->slots[0] == 0)
3823			break;
3824
3825		path->slots[0]--;
3826		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3827				      path->slots[0]);
3828
3829		if (found_key.objectid != objectid)
3830			break;
3831
3832		found_key.offset = 0;
3833		found_key.type = 0;
3834		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3835				       &start_slot);
3836		if (ret < 0)
3837			break;
3838
3839		ret = btrfs_del_items(trans, log, path, start_slot,
3840				      path->slots[0] - start_slot + 1);
3841		/*
3842		 * If start slot isn't 0 then we don't need to re-search, we've
3843		 * found the last guy with the objectid in this tree.
3844		 */
3845		if (ret || start_slot != 0)
3846			break;
3847		btrfs_release_path(path);
3848	}
3849	btrfs_release_path(path);
3850	if (ret > 0)
3851		ret = 0;
3852	return ret;
3853}
3854
3855static void fill_inode_item(struct btrfs_trans_handle *trans,
3856			    struct extent_buffer *leaf,
3857			    struct btrfs_inode_item *item,
3858			    struct inode *inode, int log_inode_only,
3859			    u64 logged_isize)
3860{
3861	struct btrfs_map_token token;
3862
3863	btrfs_init_map_token(&token, leaf);
3864
3865	if (log_inode_only) {
3866		/* set the generation to zero so the recover code
3867		 * can tell the difference between an logging
3868		 * just to say 'this inode exists' and a logging
3869		 * to say 'update this inode with these values'
3870		 */
3871		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3872		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3873	} else {
3874		btrfs_set_token_inode_generation(leaf, item,
3875						 BTRFS_I(inode)->generation,
3876						 &token);
3877		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3878	}
3879
3880	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3881	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3882	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3883	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3884
3885	btrfs_set_token_timespec_sec(leaf, &item->atime,
3886				     inode->i_atime.tv_sec, &token);
3887	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3888				      inode->i_atime.tv_nsec, &token);
3889
3890	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3891				     inode->i_mtime.tv_sec, &token);
3892	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3893				      inode->i_mtime.tv_nsec, &token);
3894
3895	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3896				     inode->i_ctime.tv_sec, &token);
3897	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3898				      inode->i_ctime.tv_nsec, &token);
3899
3900	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3901				     &token);
3902
3903	btrfs_set_token_inode_sequence(leaf, item,
3904				       inode_peek_iversion(inode), &token);
3905	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3906	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3907	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3908	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3909}
3910
3911static int log_inode_item(struct btrfs_trans_handle *trans,
3912			  struct btrfs_root *log, struct btrfs_path *path,
3913			  struct btrfs_inode *inode)
3914{
3915	struct btrfs_inode_item *inode_item;
3916	int ret;
3917
3918	ret = btrfs_insert_empty_item(trans, log, path,
3919				      &inode->location, sizeof(*inode_item));
 
3920	if (ret && ret != -EEXIST)
3921		return ret;
3922	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3923				    struct btrfs_inode_item);
3924	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3925			0, 0);
3926	btrfs_release_path(path);
3927	return 0;
3928}
3929
3930static noinline int copy_items(struct btrfs_trans_handle *trans,
3931			       struct btrfs_inode *inode,
3932			       struct btrfs_path *dst_path,
3933			       struct btrfs_path *src_path, u64 *last_extent,
3934			       int start_slot, int nr, int inode_only,
3935			       u64 logged_isize)
3936{
3937	struct btrfs_fs_info *fs_info = trans->fs_info;
3938	unsigned long src_offset;
3939	unsigned long dst_offset;
3940	struct btrfs_root *log = inode->root->log_root;
3941	struct btrfs_file_extent_item *extent;
3942	struct btrfs_inode_item *inode_item;
3943	struct extent_buffer *src = src_path->nodes[0];
3944	struct btrfs_key first_key, last_key, key;
3945	int ret;
3946	struct btrfs_key *ins_keys;
3947	u32 *ins_sizes;
3948	char *ins_data;
3949	int i;
3950	struct list_head ordered_sums;
3951	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3952	bool has_extents = false;
3953	bool need_find_last_extent = true;
3954	bool done = false;
3955
3956	INIT_LIST_HEAD(&ordered_sums);
3957
3958	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3959			   nr * sizeof(u32), GFP_NOFS);
3960	if (!ins_data)
3961		return -ENOMEM;
3962
3963	first_key.objectid = (u64)-1;
3964
3965	ins_sizes = (u32 *)ins_data;
3966	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3967
3968	for (i = 0; i < nr; i++) {
3969		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3970		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3971	}
3972	ret = btrfs_insert_empty_items(trans, log, dst_path,
3973				       ins_keys, ins_sizes, nr);
3974	if (ret) {
3975		kfree(ins_data);
3976		return ret;
3977	}
3978
3979	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3980		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3981						   dst_path->slots[0]);
3982
3983		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3984
3985		if (i == nr - 1)
3986			last_key = ins_keys[i];
3987
3988		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3989			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3990						    dst_path->slots[0],
3991						    struct btrfs_inode_item);
3992			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3993					&inode->vfs_inode,
3994					inode_only == LOG_INODE_EXISTS,
3995					logged_isize);
3996		} else {
3997			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3998					   src_offset, ins_sizes[i]);
3999		}
4000
4001		/*
4002		 * We set need_find_last_extent here in case we know we were
4003		 * processing other items and then walk into the first extent in
4004		 * the inode.  If we don't hit an extent then nothing changes,
4005		 * we'll do the last search the next time around.
4006		 */
4007		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4008			has_extents = true;
4009			if (first_key.objectid == (u64)-1)
4010				first_key = ins_keys[i];
4011		} else {
4012			need_find_last_extent = false;
4013		}
4014
4015		/* take a reference on file data extents so that truncates
4016		 * or deletes of this inode don't have to relog the inode
4017		 * again
4018		 */
4019		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4020		    !skip_csum) {
4021			int found_type;
4022			extent = btrfs_item_ptr(src, start_slot + i,
4023						struct btrfs_file_extent_item);
4024
4025			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4026				continue;
4027
4028			found_type = btrfs_file_extent_type(src, extent);
4029			if (found_type == BTRFS_FILE_EXTENT_REG) {
4030				u64 ds, dl, cs, cl;
4031				ds = btrfs_file_extent_disk_bytenr(src,
4032								extent);
4033				/* ds == 0 is a hole */
4034				if (ds == 0)
4035					continue;
4036
4037				dl = btrfs_file_extent_disk_num_bytes(src,
4038								extent);
4039				cs = btrfs_file_extent_offset(src, extent);
4040				cl = btrfs_file_extent_num_bytes(src,
4041								extent);
4042				if (btrfs_file_extent_compression(src,
4043								  extent)) {
4044					cs = 0;
4045					cl = dl;
4046				}
4047
4048				ret = btrfs_lookup_csums_range(
4049						fs_info->csum_root,
4050						ds + cs, ds + cs + cl - 1,
4051						&ordered_sums, 0);
4052				if (ret) {
4053					btrfs_release_path(dst_path);
4054					kfree(ins_data);
4055					return ret;
4056				}
4057			}
4058		}
4059	}
4060
4061	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4062	btrfs_release_path(dst_path);
4063	kfree(ins_data);
4064
4065	/*
4066	 * we have to do this after the loop above to avoid changing the
4067	 * log tree while trying to change the log tree.
4068	 */
4069	ret = 0;
4070	while (!list_empty(&ordered_sums)) {
4071		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4072						   struct btrfs_ordered_sum,
4073						   list);
4074		if (!ret)
4075			ret = btrfs_csum_file_blocks(trans, log, sums);
4076		list_del(&sums->list);
4077		kfree(sums);
4078	}
4079
4080	if (!has_extents)
4081		return ret;
4082
4083	if (need_find_last_extent && *last_extent == first_key.offset) {
4084		/*
4085		 * We don't have any leafs between our current one and the one
4086		 * we processed before that can have file extent items for our
4087		 * inode (and have a generation number smaller than our current
4088		 * transaction id).
4089		 */
4090		need_find_last_extent = false;
4091	}
4092
4093	/*
4094	 * Because we use btrfs_search_forward we could skip leaves that were
4095	 * not modified and then assume *last_extent is valid when it really
4096	 * isn't.  So back up to the previous leaf and read the end of the last
4097	 * extent before we go and fill in holes.
4098	 */
4099	if (need_find_last_extent) {
4100		u64 len;
4101
4102		ret = btrfs_prev_leaf(inode->root, src_path);
4103		if (ret < 0)
4104			return ret;
4105		if (ret)
4106			goto fill_holes;
4107		if (src_path->slots[0])
4108			src_path->slots[0]--;
4109		src = src_path->nodes[0];
4110		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4111		if (key.objectid != btrfs_ino(inode) ||
4112		    key.type != BTRFS_EXTENT_DATA_KEY)
4113			goto fill_holes;
4114		extent = btrfs_item_ptr(src, src_path->slots[0],
4115					struct btrfs_file_extent_item);
4116		if (btrfs_file_extent_type(src, extent) ==
4117		    BTRFS_FILE_EXTENT_INLINE) {
4118			len = btrfs_file_extent_ram_bytes(src, extent);
 
 
4119			*last_extent = ALIGN(key.offset + len,
4120					     fs_info->sectorsize);
4121		} else {
4122			len = btrfs_file_extent_num_bytes(src, extent);
4123			*last_extent = key.offset + len;
4124		}
4125	}
4126fill_holes:
4127	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4128	 * things could have happened
4129	 *
4130	 * 1) A merge could have happened, so we could currently be on a leaf
4131	 * that holds what we were copying in the first place.
4132	 * 2) A split could have happened, and now not all of the items we want
4133	 * are on the same leaf.
4134	 *
4135	 * So we need to adjust how we search for holes, we need to drop the
4136	 * path and re-search for the first extent key we found, and then walk
4137	 * forward until we hit the last one we copied.
4138	 */
4139	if (need_find_last_extent) {
4140		/* btrfs_prev_leaf could return 1 without releasing the path */
4141		btrfs_release_path(src_path);
4142		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4143				src_path, 0, 0);
4144		if (ret < 0)
4145			return ret;
4146		ASSERT(ret == 0);
4147		src = src_path->nodes[0];
4148		i = src_path->slots[0];
4149	} else {
4150		i = start_slot;
4151	}
4152
4153	/*
4154	 * Ok so here we need to go through and fill in any holes we may have
4155	 * to make sure that holes are punched for those areas in case they had
4156	 * extents previously.
4157	 */
4158	while (!done) {
4159		u64 offset, len;
4160		u64 extent_end;
4161
4162		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4163			ret = btrfs_next_leaf(inode->root, src_path);
4164			if (ret < 0)
4165				return ret;
4166			ASSERT(ret == 0);
4167			src = src_path->nodes[0];
4168			i = 0;
4169			need_find_last_extent = true;
4170		}
4171
4172		btrfs_item_key_to_cpu(src, &key, i);
4173		if (!btrfs_comp_cpu_keys(&key, &last_key))
4174			done = true;
4175		if (key.objectid != btrfs_ino(inode) ||
4176		    key.type != BTRFS_EXTENT_DATA_KEY) {
4177			i++;
4178			continue;
4179		}
4180		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4181		if (btrfs_file_extent_type(src, extent) ==
4182		    BTRFS_FILE_EXTENT_INLINE) {
4183			len = btrfs_file_extent_ram_bytes(src, extent);
4184			extent_end = ALIGN(key.offset + len,
4185					   fs_info->sectorsize);
4186		} else {
4187			len = btrfs_file_extent_num_bytes(src, extent);
4188			extent_end = key.offset + len;
4189		}
4190		i++;
4191
4192		if (*last_extent == key.offset) {
4193			*last_extent = extent_end;
4194			continue;
4195		}
4196		offset = *last_extent;
4197		len = key.offset - *last_extent;
4198		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4199				offset, 0, 0, len, 0, len, 0, 0, 0);
 
4200		if (ret)
4201			break;
4202		*last_extent = extent_end;
4203	}
4204
4205	/*
4206	 * Check if there is a hole between the last extent found in our leaf
4207	 * and the first extent in the next leaf. If there is one, we need to
4208	 * log an explicit hole so that at replay time we can punch the hole.
4209	 */
4210	if (ret == 0 &&
4211	    key.objectid == btrfs_ino(inode) &&
4212	    key.type == BTRFS_EXTENT_DATA_KEY &&
4213	    i == btrfs_header_nritems(src_path->nodes[0])) {
4214		ret = btrfs_next_leaf(inode->root, src_path);
4215		need_find_last_extent = true;
4216		if (ret > 0) {
4217			ret = 0;
4218		} else if (ret == 0) {
4219			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4220					      src_path->slots[0]);
4221			if (key.objectid == btrfs_ino(inode) &&
4222			    key.type == BTRFS_EXTENT_DATA_KEY &&
4223			    *last_extent < key.offset) {
4224				const u64 len = key.offset - *last_extent;
4225
4226				ret = btrfs_insert_file_extent(trans, log,
4227							       btrfs_ino(inode),
4228							       *last_extent, 0,
4229							       0, len, 0, len,
4230							       0, 0, 0);
4231				*last_extent += len;
4232			}
4233		}
4234	}
4235	/*
4236	 * Need to let the callers know we dropped the path so they should
4237	 * re-search.
4238	 */
4239	if (!ret && need_find_last_extent)
4240		ret = 1;
4241	return ret;
4242}
4243
4244static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4245{
4246	struct extent_map *em1, *em2;
4247
4248	em1 = list_entry(a, struct extent_map, list);
4249	em2 = list_entry(b, struct extent_map, list);
4250
4251	if (em1->start < em2->start)
4252		return -1;
4253	else if (em1->start > em2->start)
4254		return 1;
4255	return 0;
4256}
4257
4258static int log_extent_csums(struct btrfs_trans_handle *trans,
4259			    struct btrfs_inode *inode,
4260			    struct btrfs_root *log_root,
4261			    const struct extent_map *em)
 
 
4262{
 
 
 
 
 
 
4263	u64 csum_offset;
4264	u64 csum_len;
4265	LIST_HEAD(ordered_sums);
4266	int ret = 0;
4267
4268	if (inode->flags & BTRFS_INODE_NODATASUM ||
4269	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
 
4270	    em->block_start == EXTENT_MAP_HOLE)
4271		return 0;
4272
4273	/* If we're compressed we have to save the entire range of csums. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4274	if (em->compress_type) {
4275		csum_offset = 0;
4276		csum_len = max(em->block_len, em->orig_block_len);
4277	} else {
4278		csum_offset = em->mod_start - em->start;
4279		csum_len = em->mod_len;
4280	}
4281
4282	/* block start is already adjusted for the file extent offset. */
4283	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4284				       em->block_start + csum_offset,
4285				       em->block_start + csum_offset +
4286				       csum_len - 1, &ordered_sums, 0);
4287	if (ret)
4288		return ret;
4289
4290	while (!list_empty(&ordered_sums)) {
4291		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4292						   struct btrfs_ordered_sum,
4293						   list);
4294		if (!ret)
4295			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4296		list_del(&sums->list);
4297		kfree(sums);
4298	}
4299
4300	return ret;
4301}
4302
4303static int log_one_extent(struct btrfs_trans_handle *trans,
4304			  struct btrfs_inode *inode, struct btrfs_root *root,
4305			  const struct extent_map *em,
4306			  struct btrfs_path *path,
 
4307			  struct btrfs_log_ctx *ctx)
4308{
4309	struct btrfs_root *log = root->log_root;
4310	struct btrfs_file_extent_item *fi;
4311	struct extent_buffer *leaf;
4312	struct btrfs_map_token token;
4313	struct btrfs_key key;
4314	u64 extent_offset = em->start - em->orig_start;
4315	u64 block_len;
4316	int ret;
4317	int extent_inserted = 0;
 
4318
4319	ret = log_extent_csums(trans, inode, log, em);
 
4320	if (ret)
4321		return ret;
4322
4323	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
 
 
 
 
 
 
 
4324				   em->start + em->len, NULL, 0, 1,
4325				   sizeof(*fi), &extent_inserted);
4326	if (ret)
4327		return ret;
4328
4329	if (!extent_inserted) {
4330		key.objectid = btrfs_ino(inode);
4331		key.type = BTRFS_EXTENT_DATA_KEY;
4332		key.offset = em->start;
4333
4334		ret = btrfs_insert_empty_item(trans, log, path, &key,
4335					      sizeof(*fi));
4336		if (ret)
4337			return ret;
4338	}
4339	leaf = path->nodes[0];
4340	btrfs_init_map_token(&token, leaf);
4341	fi = btrfs_item_ptr(leaf, path->slots[0],
4342			    struct btrfs_file_extent_item);
4343
4344	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4345					       &token);
4346	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4347		btrfs_set_token_file_extent_type(leaf, fi,
4348						 BTRFS_FILE_EXTENT_PREALLOC,
4349						 &token);
4350	else
4351		btrfs_set_token_file_extent_type(leaf, fi,
4352						 BTRFS_FILE_EXTENT_REG,
4353						 &token);
4354
4355	block_len = max(em->block_len, em->orig_block_len);
4356	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4357		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4358							em->block_start,
4359							&token);
4360		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4361							   &token);
4362	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4363		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4364							em->block_start -
4365							extent_offset, &token);
4366		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4367							   &token);
4368	} else {
4369		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4370		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4371							   &token);
4372	}
4373
4374	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4375	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4376	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4377	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4378						&token);
4379	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4380	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4381	btrfs_mark_buffer_dirty(leaf);
4382
4383	btrfs_release_path(path);
4384
4385	return ret;
4386}
4387
4388/*
4389 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4390 * lose them after doing a fast fsync and replaying the log. We scan the
4391 * subvolume's root instead of iterating the inode's extent map tree because
4392 * otherwise we can log incorrect extent items based on extent map conversion.
4393 * That can happen due to the fact that extent maps are merged when they
4394 * are not in the extent map tree's list of modified extents.
4395 */
4396static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4397				      struct btrfs_inode *inode,
4398				      struct btrfs_path *path)
4399{
4400	struct btrfs_root *root = inode->root;
4401	struct btrfs_key key;
4402	const u64 i_size = i_size_read(&inode->vfs_inode);
4403	const u64 ino = btrfs_ino(inode);
4404	struct btrfs_path *dst_path = NULL;
4405	u64 last_extent = (u64)-1;
4406	int ins_nr = 0;
4407	int start_slot;
4408	int ret;
4409
4410	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4411		return 0;
4412
4413	key.objectid = ino;
4414	key.type = BTRFS_EXTENT_DATA_KEY;
4415	key.offset = i_size;
4416	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4417	if (ret < 0)
4418		goto out;
4419
4420	while (true) {
4421		struct extent_buffer *leaf = path->nodes[0];
4422		int slot = path->slots[0];
4423
4424		if (slot >= btrfs_header_nritems(leaf)) {
4425			if (ins_nr > 0) {
4426				ret = copy_items(trans, inode, dst_path, path,
4427						 &last_extent, start_slot,
4428						 ins_nr, 1, 0);
4429				if (ret < 0)
4430					goto out;
4431				ins_nr = 0;
4432			}
4433			ret = btrfs_next_leaf(root, path);
4434			if (ret < 0)
4435				goto out;
4436			if (ret > 0) {
4437				ret = 0;
4438				break;
4439			}
4440			continue;
4441		}
4442
4443		btrfs_item_key_to_cpu(leaf, &key, slot);
4444		if (key.objectid > ino)
4445			break;
4446		if (WARN_ON_ONCE(key.objectid < ino) ||
4447		    key.type < BTRFS_EXTENT_DATA_KEY ||
4448		    key.offset < i_size) {
4449			path->slots[0]++;
4450			continue;
4451		}
4452		if (last_extent == (u64)-1) {
4453			last_extent = key.offset;
4454			/*
4455			 * Avoid logging extent items logged in past fsync calls
4456			 * and leading to duplicate keys in the log tree.
4457			 */
4458			do {
4459				ret = btrfs_truncate_inode_items(trans,
4460							 root->log_root,
4461							 &inode->vfs_inode,
4462							 i_size,
4463							 BTRFS_EXTENT_DATA_KEY);
4464			} while (ret == -EAGAIN);
4465			if (ret)
4466				goto out;
4467		}
4468		if (ins_nr == 0)
4469			start_slot = slot;
4470		ins_nr++;
4471		path->slots[0]++;
4472		if (!dst_path) {
4473			dst_path = btrfs_alloc_path();
4474			if (!dst_path) {
4475				ret = -ENOMEM;
4476				goto out;
4477			}
4478		}
4479	}
4480	if (ins_nr > 0) {
4481		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4482				 start_slot, ins_nr, 1, 0);
4483		if (ret > 0)
4484			ret = 0;
4485	}
4486out:
4487	btrfs_release_path(path);
4488	btrfs_free_path(dst_path);
4489	return ret;
4490}
4491
4492static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4493				     struct btrfs_root *root,
4494				     struct btrfs_inode *inode,
4495				     struct btrfs_path *path,
 
4496				     struct btrfs_log_ctx *ctx,
4497				     const u64 start,
4498				     const u64 end)
4499{
4500	struct extent_map *em, *n;
4501	struct list_head extents;
4502	struct extent_map_tree *tree = &inode->extent_tree;
4503	u64 test_gen;
4504	int ret = 0;
4505	int num = 0;
4506
4507	INIT_LIST_HEAD(&extents);
4508
 
4509	write_lock(&tree->lock);
4510	test_gen = root->fs_info->last_trans_committed;
4511
4512	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4513		/*
4514		 * Skip extents outside our logging range. It's important to do
4515		 * it for correctness because if we don't ignore them, we may
4516		 * log them before their ordered extent completes, and therefore
4517		 * we could log them without logging their respective checksums
4518		 * (the checksum items are added to the csum tree at the very
4519		 * end of btrfs_finish_ordered_io()). Also leave such extents
4520		 * outside of our range in the list, since we may have another
4521		 * ranged fsync in the near future that needs them. If an extent
4522		 * outside our range corresponds to a hole, log it to avoid
4523		 * leaving gaps between extents (fsck will complain when we are
4524		 * not using the NO_HOLES feature).
4525		 */
4526		if ((em->start > end || em->start + em->len <= start) &&
4527		    em->block_start != EXTENT_MAP_HOLE)
4528			continue;
4529
4530		list_del_init(&em->list);
4531		/*
4532		 * Just an arbitrary number, this can be really CPU intensive
4533		 * once we start getting a lot of extents, and really once we
4534		 * have a bunch of extents we just want to commit since it will
4535		 * be faster.
4536		 */
4537		if (++num > 32768) {
4538			list_del_init(&tree->modified_extents);
4539			ret = -EFBIG;
4540			goto process;
4541		}
4542
4543		if (em->generation <= test_gen)
4544			continue;
4545
4546		/* We log prealloc extents beyond eof later. */
4547		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4548		    em->start >= i_size_read(&inode->vfs_inode))
4549			continue;
4550
4551		/* Need a ref to keep it from getting evicted from cache */
4552		refcount_inc(&em->refs);
4553		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4554		list_add_tail(&em->list, &extents);
4555		num++;
4556	}
4557
4558	list_sort(NULL, &extents, extent_cmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4559process:
4560	while (!list_empty(&extents)) {
4561		em = list_entry(extents.next, struct extent_map, list);
4562
4563		list_del_init(&em->list);
4564
4565		/*
4566		 * If we had an error we just need to delete everybody from our
4567		 * private list.
4568		 */
4569		if (ret) {
4570			clear_em_logging(tree, em);
4571			free_extent_map(em);
4572			continue;
4573		}
4574
4575		write_unlock(&tree->lock);
4576
4577		ret = log_one_extent(trans, inode, root, em, path, ctx);
 
4578		write_lock(&tree->lock);
4579		clear_em_logging(tree, em);
4580		free_extent_map(em);
4581	}
4582	WARN_ON(!list_empty(&extents));
4583	write_unlock(&tree->lock);
 
4584
4585	btrfs_release_path(path);
4586	if (!ret)
4587		ret = btrfs_log_prealloc_extents(trans, inode, path);
4588
4589	return ret;
4590}
4591
4592static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4593			     struct btrfs_path *path, u64 *size_ret)
4594{
4595	struct btrfs_key key;
4596	int ret;
4597
4598	key.objectid = btrfs_ino(inode);
4599	key.type = BTRFS_INODE_ITEM_KEY;
4600	key.offset = 0;
4601
4602	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4603	if (ret < 0) {
4604		return ret;
4605	} else if (ret > 0) {
4606		*size_ret = 0;
4607	} else {
4608		struct btrfs_inode_item *item;
4609
4610		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4611				      struct btrfs_inode_item);
4612		*size_ret = btrfs_inode_size(path->nodes[0], item);
4613		/*
4614		 * If the in-memory inode's i_size is smaller then the inode
4615		 * size stored in the btree, return the inode's i_size, so
4616		 * that we get a correct inode size after replaying the log
4617		 * when before a power failure we had a shrinking truncate
4618		 * followed by addition of a new name (rename / new hard link).
4619		 * Otherwise return the inode size from the btree, to avoid
4620		 * data loss when replaying a log due to previously doing a
4621		 * write that expands the inode's size and logging a new name
4622		 * immediately after.
4623		 */
4624		if (*size_ret > inode->vfs_inode.i_size)
4625			*size_ret = inode->vfs_inode.i_size;
4626	}
4627
4628	btrfs_release_path(path);
4629	return 0;
4630}
4631
4632/*
4633 * At the moment we always log all xattrs. This is to figure out at log replay
4634 * time which xattrs must have their deletion replayed. If a xattr is missing
4635 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4636 * because if a xattr is deleted, the inode is fsynced and a power failure
4637 * happens, causing the log to be replayed the next time the fs is mounted,
4638 * we want the xattr to not exist anymore (same behaviour as other filesystems
4639 * with a journal, ext3/4, xfs, f2fs, etc).
4640 */
4641static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4642				struct btrfs_root *root,
4643				struct btrfs_inode *inode,
4644				struct btrfs_path *path,
4645				struct btrfs_path *dst_path)
4646{
4647	int ret;
4648	struct btrfs_key key;
4649	const u64 ino = btrfs_ino(inode);
4650	int ins_nr = 0;
4651	int start_slot = 0;
4652
4653	key.objectid = ino;
4654	key.type = BTRFS_XATTR_ITEM_KEY;
4655	key.offset = 0;
4656
4657	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4658	if (ret < 0)
4659		return ret;
4660
4661	while (true) {
4662		int slot = path->slots[0];
4663		struct extent_buffer *leaf = path->nodes[0];
4664		int nritems = btrfs_header_nritems(leaf);
4665
4666		if (slot >= nritems) {
4667			if (ins_nr > 0) {
4668				u64 last_extent = 0;
4669
4670				ret = copy_items(trans, inode, dst_path, path,
4671						 &last_extent, start_slot,
4672						 ins_nr, 1, 0);
4673				/* can't be 1, extent items aren't processed */
4674				ASSERT(ret <= 0);
4675				if (ret < 0)
4676					return ret;
4677				ins_nr = 0;
4678			}
4679			ret = btrfs_next_leaf(root, path);
4680			if (ret < 0)
4681				return ret;
4682			else if (ret > 0)
4683				break;
4684			continue;
4685		}
4686
4687		btrfs_item_key_to_cpu(leaf, &key, slot);
4688		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4689			break;
4690
4691		if (ins_nr == 0)
4692			start_slot = slot;
4693		ins_nr++;
4694		path->slots[0]++;
4695		cond_resched();
4696	}
4697	if (ins_nr > 0) {
4698		u64 last_extent = 0;
4699
4700		ret = copy_items(trans, inode, dst_path, path,
4701				 &last_extent, start_slot,
4702				 ins_nr, 1, 0);
4703		/* can't be 1, extent items aren't processed */
4704		ASSERT(ret <= 0);
4705		if (ret < 0)
4706			return ret;
4707	}
4708
4709	return 0;
4710}
4711
4712/*
4713 * If the no holes feature is enabled we need to make sure any hole between the
4714 * last extent and the i_size of our inode is explicitly marked in the log. This
4715 * is to make sure that doing something like:
4716 *
4717 *      1) create file with 128Kb of data
4718 *      2) truncate file to 64Kb
4719 *      3) truncate file to 256Kb
4720 *      4) fsync file
4721 *      5) <crash/power failure>
4722 *      6) mount fs and trigger log replay
4723 *
4724 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4725 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4726 * file correspond to a hole. The presence of explicit holes in a log tree is
4727 * what guarantees that log replay will remove/adjust file extent items in the
4728 * fs/subvol tree.
4729 *
4730 * Here we do not need to care about holes between extents, that is already done
4731 * by copy_items(). We also only need to do this in the full sync path, where we
4732 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4733 * lookup the list of modified extent maps and if any represents a hole, we
4734 * insert a corresponding extent representing a hole in the log tree.
4735 */
4736static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4737				   struct btrfs_root *root,
4738				   struct btrfs_inode *inode,
4739				   struct btrfs_path *path)
4740{
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	int ret;
4743	struct btrfs_key key;
4744	u64 hole_start;
4745	u64 hole_size;
4746	struct extent_buffer *leaf;
4747	struct btrfs_root *log = root->log_root;
4748	const u64 ino = btrfs_ino(inode);
4749	const u64 i_size = i_size_read(&inode->vfs_inode);
4750
4751	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4752		return 0;
4753
4754	key.objectid = ino;
4755	key.type = BTRFS_EXTENT_DATA_KEY;
4756	key.offset = (u64)-1;
4757
4758	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4759	ASSERT(ret != 0);
4760	if (ret < 0)
4761		return ret;
4762
4763	ASSERT(path->slots[0] > 0);
4764	path->slots[0]--;
4765	leaf = path->nodes[0];
4766	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4767
4768	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4769		/* inode does not have any extents */
4770		hole_start = 0;
4771		hole_size = i_size;
4772	} else {
4773		struct btrfs_file_extent_item *extent;
4774		u64 len;
4775
4776		/*
4777		 * If there's an extent beyond i_size, an explicit hole was
4778		 * already inserted by copy_items().
4779		 */
4780		if (key.offset >= i_size)
4781			return 0;
4782
4783		extent = btrfs_item_ptr(leaf, path->slots[0],
4784					struct btrfs_file_extent_item);
4785
4786		if (btrfs_file_extent_type(leaf, extent) ==
4787		    BTRFS_FILE_EXTENT_INLINE)
 
 
 
 
4788			return 0;
 
4789
4790		len = btrfs_file_extent_num_bytes(leaf, extent);
4791		/* Last extent goes beyond i_size, no need to log a hole. */
4792		if (key.offset + len > i_size)
4793			return 0;
4794		hole_start = key.offset + len;
4795		hole_size = i_size - hole_start;
4796	}
4797	btrfs_release_path(path);
4798
4799	/* Last extent ends at i_size. */
4800	if (hole_size == 0)
4801		return 0;
4802
4803	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4804	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4805				       hole_size, 0, hole_size, 0, 0, 0);
4806	return ret;
4807}
4808
4809/*
4810 * When we are logging a new inode X, check if it doesn't have a reference that
4811 * matches the reference from some other inode Y created in a past transaction
4812 * and that was renamed in the current transaction. If we don't do this, then at
4813 * log replay time we can lose inode Y (and all its files if it's a directory):
4814 *
4815 * mkdir /mnt/x
4816 * echo "hello world" > /mnt/x/foobar
4817 * sync
4818 * mv /mnt/x /mnt/y
4819 * mkdir /mnt/x                 # or touch /mnt/x
4820 * xfs_io -c fsync /mnt/x
4821 * <power fail>
4822 * mount fs, trigger log replay
4823 *
4824 * After the log replay procedure, we would lose the first directory and all its
4825 * files (file foobar).
4826 * For the case where inode Y is not a directory we simply end up losing it:
4827 *
4828 * echo "123" > /mnt/foo
4829 * sync
4830 * mv /mnt/foo /mnt/bar
4831 * echo "abc" > /mnt/foo
4832 * xfs_io -c fsync /mnt/foo
4833 * <power fail>
4834 *
4835 * We also need this for cases where a snapshot entry is replaced by some other
4836 * entry (file or directory) otherwise we end up with an unreplayable log due to
4837 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4838 * if it were a regular entry:
4839 *
4840 * mkdir /mnt/x
4841 * btrfs subvolume snapshot /mnt /mnt/x/snap
4842 * btrfs subvolume delete /mnt/x/snap
4843 * rmdir /mnt/x
4844 * mkdir /mnt/x
4845 * fsync /mnt/x or fsync some new file inside it
4846 * <power fail>
4847 *
4848 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4849 * the same transaction.
4850 */
4851static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4852					 const int slot,
4853					 const struct btrfs_key *key,
4854					 struct btrfs_inode *inode,
4855					 u64 *other_ino, u64 *other_parent)
4856{
4857	int ret;
4858	struct btrfs_path *search_path;
4859	char *name = NULL;
4860	u32 name_len = 0;
4861	u32 item_size = btrfs_item_size_nr(eb, slot);
4862	u32 cur_offset = 0;
4863	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4864
4865	search_path = btrfs_alloc_path();
4866	if (!search_path)
4867		return -ENOMEM;
4868	search_path->search_commit_root = 1;
4869	search_path->skip_locking = 1;
4870
4871	while (cur_offset < item_size) {
4872		u64 parent;
4873		u32 this_name_len;
4874		u32 this_len;
4875		unsigned long name_ptr;
4876		struct btrfs_dir_item *di;
4877
4878		if (key->type == BTRFS_INODE_REF_KEY) {
4879			struct btrfs_inode_ref *iref;
4880
4881			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4882			parent = key->offset;
4883			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4884			name_ptr = (unsigned long)(iref + 1);
4885			this_len = sizeof(*iref) + this_name_len;
4886		} else {
4887			struct btrfs_inode_extref *extref;
4888
4889			extref = (struct btrfs_inode_extref *)(ptr +
4890							       cur_offset);
4891			parent = btrfs_inode_extref_parent(eb, extref);
4892			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4893			name_ptr = (unsigned long)&extref->name;
4894			this_len = sizeof(*extref) + this_name_len;
4895		}
4896
4897		if (this_name_len > name_len) {
4898			char *new_name;
4899
4900			new_name = krealloc(name, this_name_len, GFP_NOFS);
4901			if (!new_name) {
4902				ret = -ENOMEM;
4903				goto out;
4904			}
4905			name_len = this_name_len;
4906			name = new_name;
4907		}
4908
4909		read_extent_buffer(eb, name, name_ptr, this_name_len);
4910		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4911				parent, name, this_name_len, 0);
 
4912		if (di && !IS_ERR(di)) {
4913			struct btrfs_key di_key;
4914
4915			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4916						  di, &di_key);
4917			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4918				if (di_key.objectid != key->objectid) {
4919					ret = 1;
4920					*other_ino = di_key.objectid;
4921					*other_parent = parent;
4922				} else {
4923					ret = 0;
4924				}
4925			} else {
4926				ret = -EAGAIN;
4927			}
4928			goto out;
4929		} else if (IS_ERR(di)) {
4930			ret = PTR_ERR(di);
4931			goto out;
4932		}
4933		btrfs_release_path(search_path);
4934
4935		cur_offset += this_len;
4936	}
4937	ret = 0;
4938out:
4939	btrfs_free_path(search_path);
4940	kfree(name);
4941	return ret;
4942}
4943
4944struct btrfs_ino_list {
4945	u64 ino;
4946	u64 parent;
4947	struct list_head list;
4948};
4949
4950static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4951				  struct btrfs_root *root,
4952				  struct btrfs_path *path,
4953				  struct btrfs_log_ctx *ctx,
4954				  u64 ino, u64 parent)
4955{
4956	struct btrfs_ino_list *ino_elem;
4957	LIST_HEAD(inode_list);
4958	int ret = 0;
4959
4960	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4961	if (!ino_elem)
4962		return -ENOMEM;
4963	ino_elem->ino = ino;
4964	ino_elem->parent = parent;
4965	list_add_tail(&ino_elem->list, &inode_list);
4966
4967	while (!list_empty(&inode_list)) {
4968		struct btrfs_fs_info *fs_info = root->fs_info;
4969		struct btrfs_key key;
4970		struct inode *inode;
4971
4972		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4973					    list);
4974		ino = ino_elem->ino;
4975		parent = ino_elem->parent;
4976		list_del(&ino_elem->list);
4977		kfree(ino_elem);
4978		if (ret)
4979			continue;
4980
4981		btrfs_release_path(path);
4982
4983		key.objectid = ino;
4984		key.type = BTRFS_INODE_ITEM_KEY;
4985		key.offset = 0;
4986		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4987		/*
4988		 * If the other inode that had a conflicting dir entry was
4989		 * deleted in the current transaction, we need to log its parent
4990		 * directory.
4991		 */
4992		if (IS_ERR(inode)) {
4993			ret = PTR_ERR(inode);
4994			if (ret == -ENOENT) {
4995				key.objectid = parent;
4996				inode = btrfs_iget(fs_info->sb, &key, root,
4997						   NULL);
4998				if (IS_ERR(inode)) {
4999					ret = PTR_ERR(inode);
5000				} else {
5001					ret = btrfs_log_inode(trans, root,
5002						      BTRFS_I(inode),
5003						      LOG_OTHER_INODE_ALL,
5004						      0, LLONG_MAX, ctx);
5005					btrfs_add_delayed_iput(inode);
5006				}
5007			}
5008			continue;
5009		}
5010		/*
5011		 * We are safe logging the other inode without acquiring its
5012		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5013		 * are safe against concurrent renames of the other inode as
5014		 * well because during a rename we pin the log and update the
5015		 * log with the new name before we unpin it.
5016		 */
5017		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5018				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5019		if (ret) {
5020			btrfs_add_delayed_iput(inode);
5021			continue;
5022		}
5023
5024		key.objectid = ino;
5025		key.type = BTRFS_INODE_REF_KEY;
5026		key.offset = 0;
5027		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5028		if (ret < 0) {
5029			btrfs_add_delayed_iput(inode);
5030			continue;
5031		}
5032
5033		while (true) {
5034			struct extent_buffer *leaf = path->nodes[0];
5035			int slot = path->slots[0];
5036			u64 other_ino = 0;
5037			u64 other_parent = 0;
5038
5039			if (slot >= btrfs_header_nritems(leaf)) {
5040				ret = btrfs_next_leaf(root, path);
5041				if (ret < 0) {
5042					break;
5043				} else if (ret > 0) {
5044					ret = 0;
5045					break;
5046				}
5047				continue;
5048			}
5049
5050			btrfs_item_key_to_cpu(leaf, &key, slot);
5051			if (key.objectid != ino ||
5052			    (key.type != BTRFS_INODE_REF_KEY &&
5053			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5054				ret = 0;
5055				break;
5056			}
5057
5058			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5059					BTRFS_I(inode), &other_ino,
5060					&other_parent);
5061			if (ret < 0)
5062				break;
5063			if (ret > 0) {
5064				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5065				if (!ino_elem) {
5066					ret = -ENOMEM;
5067					break;
5068				}
5069				ino_elem->ino = other_ino;
5070				ino_elem->parent = other_parent;
5071				list_add_tail(&ino_elem->list, &inode_list);
5072				ret = 0;
5073			}
5074			path->slots[0]++;
5075		}
5076		btrfs_add_delayed_iput(inode);
5077	}
5078
5079	return ret;
5080}
5081
5082/* log a single inode in the tree log.
5083 * At least one parent directory for this inode must exist in the tree
5084 * or be logged already.
5085 *
5086 * Any items from this inode changed by the current transaction are copied
5087 * to the log tree.  An extra reference is taken on any extents in this
5088 * file, allowing us to avoid a whole pile of corner cases around logging
5089 * blocks that have been removed from the tree.
5090 *
5091 * See LOG_INODE_ALL and related defines for a description of what inode_only
5092 * does.
5093 *
5094 * This handles both files and directories.
5095 */
5096static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5097			   struct btrfs_root *root, struct btrfs_inode *inode,
5098			   int inode_only,
5099			   const loff_t start,
5100			   const loff_t end,
5101			   struct btrfs_log_ctx *ctx)
5102{
5103	struct btrfs_fs_info *fs_info = root->fs_info;
5104	struct btrfs_path *path;
5105	struct btrfs_path *dst_path;
5106	struct btrfs_key min_key;
5107	struct btrfs_key max_key;
5108	struct btrfs_root *log = root->log_root;
 
 
5109	u64 last_extent = 0;
5110	int err = 0;
5111	int ret;
5112	int nritems;
5113	int ins_start_slot = 0;
5114	int ins_nr;
5115	bool fast_search = false;
5116	u64 ino = btrfs_ino(inode);
5117	struct extent_map_tree *em_tree = &inode->extent_tree;
5118	u64 logged_isize = 0;
5119	bool need_log_inode_item = true;
5120	bool xattrs_logged = false;
5121	bool recursive_logging = false;
5122
5123	path = btrfs_alloc_path();
5124	if (!path)
5125		return -ENOMEM;
5126	dst_path = btrfs_alloc_path();
5127	if (!dst_path) {
5128		btrfs_free_path(path);
5129		return -ENOMEM;
5130	}
5131
5132	min_key.objectid = ino;
5133	min_key.type = BTRFS_INODE_ITEM_KEY;
5134	min_key.offset = 0;
5135
5136	max_key.objectid = ino;
5137
5138
5139	/* today the code can only do partial logging of directories */
5140	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5141	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5142		       &inode->runtime_flags) &&
5143	     inode_only >= LOG_INODE_EXISTS))
5144		max_key.type = BTRFS_XATTR_ITEM_KEY;
5145	else
5146		max_key.type = (u8)-1;
5147	max_key.offset = (u64)-1;
5148
5149	/*
5150	 * Only run delayed items if we are a dir or a new file.
5151	 * Otherwise commit the delayed inode only, which is needed in
5152	 * order for the log replay code to mark inodes for link count
5153	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5154	 */
5155	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5156	    inode->generation > fs_info->last_trans_committed)
5157		ret = btrfs_commit_inode_delayed_items(trans, inode);
5158	else
5159		ret = btrfs_commit_inode_delayed_inode(inode);
5160
5161	if (ret) {
5162		btrfs_free_path(path);
5163		btrfs_free_path(dst_path);
5164		return ret;
5165	}
5166
5167	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5168		recursive_logging = true;
5169		if (inode_only == LOG_OTHER_INODE)
5170			inode_only = LOG_INODE_EXISTS;
5171		else
5172			inode_only = LOG_INODE_ALL;
5173		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5174	} else {
5175		mutex_lock(&inode->log_mutex);
5176	}
5177
5178	/*
5179	 * a brute force approach to making sure we get the most uptodate
5180	 * copies of everything.
5181	 */
5182	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5183		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5184
5185		if (inode_only == LOG_INODE_EXISTS)
5186			max_key_type = BTRFS_XATTR_ITEM_KEY;
5187		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5188	} else {
5189		if (inode_only == LOG_INODE_EXISTS) {
5190			/*
5191			 * Make sure the new inode item we write to the log has
5192			 * the same isize as the current one (if it exists).
5193			 * This is necessary to prevent data loss after log
5194			 * replay, and also to prevent doing a wrong expanding
5195			 * truncate - for e.g. create file, write 4K into offset
5196			 * 0, fsync, write 4K into offset 4096, add hard link,
5197			 * fsync some other file (to sync log), power fail - if
5198			 * we use the inode's current i_size, after log replay
5199			 * we get a 8Kb file, with the last 4Kb extent as a hole
5200			 * (zeroes), as if an expanding truncate happened,
5201			 * instead of getting a file of 4Kb only.
5202			 */
5203			err = logged_inode_size(log, inode, path, &logged_isize);
 
5204			if (err)
5205				goto out_unlock;
5206		}
5207		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5208			     &inode->runtime_flags)) {
5209			if (inode_only == LOG_INODE_EXISTS) {
5210				max_key.type = BTRFS_XATTR_ITEM_KEY;
5211				ret = drop_objectid_items(trans, log, path, ino,
5212							  max_key.type);
5213			} else {
5214				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5215					  &inode->runtime_flags);
5216				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5217					  &inode->runtime_flags);
5218				while(1) {
5219					ret = btrfs_truncate_inode_items(trans,
5220						log, &inode->vfs_inode, 0, 0);
5221					if (ret != -EAGAIN)
5222						break;
5223				}
5224			}
5225		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5226					      &inode->runtime_flags) ||
5227			   inode_only == LOG_INODE_EXISTS) {
5228			if (inode_only == LOG_INODE_ALL)
5229				fast_search = true;
5230			max_key.type = BTRFS_XATTR_ITEM_KEY;
5231			ret = drop_objectid_items(trans, log, path, ino,
5232						  max_key.type);
5233		} else {
5234			if (inode_only == LOG_INODE_ALL)
5235				fast_search = true;
5236			goto log_extents;
5237		}
5238
5239	}
5240	if (ret) {
5241		err = ret;
5242		goto out_unlock;
5243	}
5244
5245	while (1) {
5246		ins_nr = 0;
5247		ret = btrfs_search_forward(root, &min_key,
5248					   path, trans->transid);
5249		if (ret < 0) {
5250			err = ret;
5251			goto out_unlock;
5252		}
5253		if (ret != 0)
5254			break;
5255again:
5256		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5257		if (min_key.objectid != ino)
5258			break;
5259		if (min_key.type > max_key.type)
5260			break;
5261
5262		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5263			need_log_inode_item = false;
5264
5265		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5266		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5267		    inode->generation == trans->transid &&
5268		    !recursive_logging) {
5269			u64 other_ino = 0;
5270			u64 other_parent = 0;
5271
5272			ret = btrfs_check_ref_name_override(path->nodes[0],
5273					path->slots[0], &min_key, inode,
5274					&other_ino, &other_parent);
 
5275			if (ret < 0) {
5276				err = ret;
5277				goto out_unlock;
5278			} else if (ret > 0 && ctx &&
5279				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
 
 
 
5280				if (ins_nr > 0) {
5281					ins_nr++;
5282				} else {
5283					ins_nr = 1;
5284					ins_start_slot = path->slots[0];
5285				}
5286				ret = copy_items(trans, inode, dst_path, path,
5287						 &last_extent, ins_start_slot,
5288						 ins_nr, inode_only,
5289						 logged_isize);
5290				if (ret < 0) {
5291					err = ret;
5292					goto out_unlock;
5293				}
5294				ins_nr = 0;
5295
5296				err = log_conflicting_inodes(trans, root, path,
5297						ctx, other_ino, other_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5298				if (err)
5299					goto out_unlock;
5300				btrfs_release_path(path);
5301				goto next_key;
5302			}
5303		}
5304
5305		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5306		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5307			if (ins_nr == 0)
5308				goto next_slot;
5309			ret = copy_items(trans, inode, dst_path, path,
5310					 &last_extent, ins_start_slot,
5311					 ins_nr, inode_only, logged_isize);
5312			if (ret < 0) {
5313				err = ret;
5314				goto out_unlock;
5315			}
5316			ins_nr = 0;
5317			if (ret) {
5318				btrfs_release_path(path);
5319				continue;
5320			}
5321			goto next_slot;
5322		}
5323
 
5324		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5325			ins_nr++;
5326			goto next_slot;
5327		} else if (!ins_nr) {
5328			ins_start_slot = path->slots[0];
5329			ins_nr = 1;
5330			goto next_slot;
5331		}
5332
5333		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5334				 ins_start_slot, ins_nr, inode_only,
5335				 logged_isize);
5336		if (ret < 0) {
5337			err = ret;
5338			goto out_unlock;
5339		}
5340		if (ret) {
5341			ins_nr = 0;
5342			btrfs_release_path(path);
5343			continue;
5344		}
5345		ins_nr = 1;
5346		ins_start_slot = path->slots[0];
5347next_slot:
5348
5349		nritems = btrfs_header_nritems(path->nodes[0]);
5350		path->slots[0]++;
5351		if (path->slots[0] < nritems) {
5352			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5353					      path->slots[0]);
5354			goto again;
5355		}
5356		if (ins_nr) {
5357			ret = copy_items(trans, inode, dst_path, path,
5358					 &last_extent, ins_start_slot,
5359					 ins_nr, inode_only, logged_isize);
5360			if (ret < 0) {
5361				err = ret;
5362				goto out_unlock;
5363			}
5364			ret = 0;
5365			ins_nr = 0;
5366		}
5367		btrfs_release_path(path);
5368next_key:
5369		if (min_key.offset < (u64)-1) {
5370			min_key.offset++;
5371		} else if (min_key.type < max_key.type) {
5372			min_key.type++;
5373			min_key.offset = 0;
5374		} else {
5375			break;
5376		}
5377	}
5378	if (ins_nr) {
5379		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5380				 ins_start_slot, ins_nr, inode_only,
5381				 logged_isize);
5382		if (ret < 0) {
5383			err = ret;
5384			goto out_unlock;
5385		}
5386		ret = 0;
5387		ins_nr = 0;
5388	}
5389
5390	btrfs_release_path(path);
5391	btrfs_release_path(dst_path);
5392	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5393	if (err)
5394		goto out_unlock;
5395	xattrs_logged = true;
5396	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5397		btrfs_release_path(path);
5398		btrfs_release_path(dst_path);
5399		err = btrfs_log_trailing_hole(trans, root, inode, path);
5400		if (err)
5401			goto out_unlock;
5402	}
5403log_extents:
5404	btrfs_release_path(path);
5405	btrfs_release_path(dst_path);
5406	if (need_log_inode_item) {
5407		err = log_inode_item(trans, log, dst_path, inode);
5408		if (!err && !xattrs_logged) {
5409			err = btrfs_log_all_xattrs(trans, root, inode, path,
5410						   dst_path);
5411			btrfs_release_path(path);
5412		}
5413		if (err)
5414			goto out_unlock;
5415	}
5416	if (fast_search) {
5417		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5418						ctx, start, end);
5419		if (ret) {
5420			err = ret;
5421			goto out_unlock;
5422		}
5423	} else if (inode_only == LOG_INODE_ALL) {
5424		struct extent_map *em, *n;
5425
5426		write_lock(&em_tree->lock);
5427		/*
5428		 * We can't just remove every em if we're called for a ranged
5429		 * fsync - that is, one that doesn't cover the whole possible
5430		 * file range (0 to LLONG_MAX). This is because we can have
5431		 * em's that fall outside the range we're logging and therefore
5432		 * their ordered operations haven't completed yet
5433		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5434		 * didn't get their respective file extent item in the fs/subvol
5435		 * tree yet, and need to let the next fast fsync (one which
5436		 * consults the list of modified extent maps) find the em so
5437		 * that it logs a matching file extent item and waits for the
5438		 * respective ordered operation to complete (if it's still
5439		 * running).
5440		 *
5441		 * Removing every em outside the range we're logging would make
5442		 * the next fast fsync not log their matching file extent items,
5443		 * therefore making us lose data after a log replay.
5444		 */
5445		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5446					 list) {
5447			const u64 mod_end = em->mod_start + em->mod_len - 1;
5448
5449			if (em->mod_start >= start && mod_end <= end)
5450				list_del_init(&em->list);
5451		}
5452		write_unlock(&em_tree->lock);
5453	}
5454
5455	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5456		ret = log_directory_changes(trans, root, inode, path, dst_path,
5457					ctx);
5458		if (ret) {
5459			err = ret;
5460			goto out_unlock;
5461		}
5462	}
5463
5464	/*
5465	 * Don't update last_log_commit if we logged that an inode exists after
5466	 * it was loaded to memory (full_sync bit set).
5467	 * This is to prevent data loss when we do a write to the inode, then
5468	 * the inode gets evicted after all delalloc was flushed, then we log
5469	 * it exists (due to a rename for example) and then fsync it. This last
5470	 * fsync would do nothing (not logging the extents previously written).
5471	 */
5472	spin_lock(&inode->lock);
5473	inode->logged_trans = trans->transid;
5474	if (inode_only != LOG_INODE_EXISTS ||
5475	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5476		inode->last_log_commit = inode->last_sub_trans;
5477	spin_unlock(&inode->lock);
5478out_unlock:
5479	mutex_unlock(&inode->log_mutex);
 
 
 
 
5480
5481	btrfs_free_path(path);
5482	btrfs_free_path(dst_path);
5483	return err;
5484}
5485
5486/*
5487 * Check if we must fallback to a transaction commit when logging an inode.
5488 * This must be called after logging the inode and is used only in the context
5489 * when fsyncing an inode requires the need to log some other inode - in which
5490 * case we can't lock the i_mutex of each other inode we need to log as that
5491 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5492 * log inodes up or down in the hierarchy) or rename operations for example. So
5493 * we take the log_mutex of the inode after we have logged it and then check for
5494 * its last_unlink_trans value - this is safe because any task setting
5495 * last_unlink_trans must take the log_mutex and it must do this before it does
5496 * the actual unlink operation, so if we do this check before a concurrent task
5497 * sets last_unlink_trans it means we've logged a consistent version/state of
5498 * all the inode items, otherwise we are not sure and must do a transaction
5499 * commit (the concurrent task might have only updated last_unlink_trans before
5500 * we logged the inode or it might have also done the unlink).
5501 */
5502static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5503					  struct btrfs_inode *inode)
5504{
5505	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5506	bool ret = false;
5507
5508	mutex_lock(&inode->log_mutex);
5509	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5510		/*
5511		 * Make sure any commits to the log are forced to be full
5512		 * commits.
5513		 */
5514		btrfs_set_log_full_commit(trans);
5515		ret = true;
5516	}
5517	mutex_unlock(&inode->log_mutex);
5518
5519	return ret;
5520}
5521
5522/*
5523 * follow the dentry parent pointers up the chain and see if any
5524 * of the directories in it require a full commit before they can
5525 * be logged.  Returns zero if nothing special needs to be done or 1 if
5526 * a full commit is required.
5527 */
5528static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5529					       struct btrfs_inode *inode,
5530					       struct dentry *parent,
5531					       struct super_block *sb,
5532					       u64 last_committed)
5533{
5534	int ret = 0;
5535	struct dentry *old_parent = NULL;
 
5536
5537	/*
5538	 * for regular files, if its inode is already on disk, we don't
5539	 * have to worry about the parents at all.  This is because
5540	 * we can use the last_unlink_trans field to record renames
5541	 * and other fun in this file.
5542	 */
5543	if (S_ISREG(inode->vfs_inode.i_mode) &&
5544	    inode->generation <= last_committed &&
5545	    inode->last_unlink_trans <= last_committed)
5546		goto out;
5547
5548	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5549		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5550			goto out;
5551		inode = BTRFS_I(d_inode(parent));
5552	}
5553
5554	while (1) {
 
 
 
 
 
 
 
 
 
 
5555		if (btrfs_must_commit_transaction(trans, inode)) {
5556			ret = 1;
5557			break;
5558		}
5559
5560		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5561			break;
5562
5563		if (IS_ROOT(parent)) {
5564			inode = BTRFS_I(d_inode(parent));
5565			if (btrfs_must_commit_transaction(trans, inode))
5566				ret = 1;
5567			break;
5568		}
5569
5570		parent = dget_parent(parent);
5571		dput(old_parent);
5572		old_parent = parent;
5573		inode = BTRFS_I(d_inode(parent));
5574
5575	}
5576	dput(old_parent);
5577out:
5578	return ret;
5579}
5580
5581struct btrfs_dir_list {
5582	u64 ino;
5583	struct list_head list;
5584};
5585
5586/*
5587 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5588 * details about the why it is needed.
5589 * This is a recursive operation - if an existing dentry corresponds to a
5590 * directory, that directory's new entries are logged too (same behaviour as
5591 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5592 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5593 * complains about the following circular lock dependency / possible deadlock:
5594 *
5595 *        CPU0                                        CPU1
5596 *        ----                                        ----
5597 * lock(&type->i_mutex_dir_key#3/2);
5598 *                                            lock(sb_internal#2);
5599 *                                            lock(&type->i_mutex_dir_key#3/2);
5600 * lock(&sb->s_type->i_mutex_key#14);
5601 *
5602 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5603 * sb_start_intwrite() in btrfs_start_transaction().
5604 * Not locking i_mutex of the inodes is still safe because:
5605 *
5606 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5607 *    that while logging the inode new references (names) are added or removed
5608 *    from the inode, leaving the logged inode item with a link count that does
5609 *    not match the number of logged inode reference items. This is fine because
5610 *    at log replay time we compute the real number of links and correct the
5611 *    link count in the inode item (see replay_one_buffer() and
5612 *    link_to_fixup_dir());
5613 *
5614 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5615 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5616 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5617 *    has a size that doesn't match the sum of the lengths of all the logged
5618 *    names. This does not result in a problem because if a dir_item key is
5619 *    logged but its matching dir_index key is not logged, at log replay time we
5620 *    don't use it to replay the respective name (see replay_one_name()). On the
5621 *    other hand if only the dir_index key ends up being logged, the respective
5622 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5623 *    keys created (see replay_one_name()).
5624 *    The directory's inode item with a wrong i_size is not a problem as well,
5625 *    since we don't use it at log replay time to set the i_size in the inode
5626 *    item of the fs/subvol tree (see overwrite_item()).
5627 */
5628static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5629				struct btrfs_root *root,
5630				struct btrfs_inode *start_inode,
5631				struct btrfs_log_ctx *ctx)
5632{
5633	struct btrfs_fs_info *fs_info = root->fs_info;
5634	struct btrfs_root *log = root->log_root;
5635	struct btrfs_path *path;
5636	LIST_HEAD(dir_list);
5637	struct btrfs_dir_list *dir_elem;
5638	int ret = 0;
5639
5640	path = btrfs_alloc_path();
5641	if (!path)
5642		return -ENOMEM;
5643
5644	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5645	if (!dir_elem) {
5646		btrfs_free_path(path);
5647		return -ENOMEM;
5648	}
5649	dir_elem->ino = btrfs_ino(start_inode);
5650	list_add_tail(&dir_elem->list, &dir_list);
5651
5652	while (!list_empty(&dir_list)) {
5653		struct extent_buffer *leaf;
5654		struct btrfs_key min_key;
5655		int nritems;
5656		int i;
5657
5658		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5659					    list);
5660		if (ret)
5661			goto next_dir_inode;
5662
5663		min_key.objectid = dir_elem->ino;
5664		min_key.type = BTRFS_DIR_ITEM_KEY;
5665		min_key.offset = 0;
5666again:
5667		btrfs_release_path(path);
5668		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5669		if (ret < 0) {
5670			goto next_dir_inode;
5671		} else if (ret > 0) {
5672			ret = 0;
5673			goto next_dir_inode;
5674		}
5675
5676process_leaf:
5677		leaf = path->nodes[0];
5678		nritems = btrfs_header_nritems(leaf);
5679		for (i = path->slots[0]; i < nritems; i++) {
5680			struct btrfs_dir_item *di;
5681			struct btrfs_key di_key;
5682			struct inode *di_inode;
5683			struct btrfs_dir_list *new_dir_elem;
5684			int log_mode = LOG_INODE_EXISTS;
5685			int type;
5686
5687			btrfs_item_key_to_cpu(leaf, &min_key, i);
5688			if (min_key.objectid != dir_elem->ino ||
5689			    min_key.type != BTRFS_DIR_ITEM_KEY)
5690				goto next_dir_inode;
5691
5692			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5693			type = btrfs_dir_type(leaf, di);
5694			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5695			    type != BTRFS_FT_DIR)
5696				continue;
5697			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5698			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5699				continue;
5700
5701			btrfs_release_path(path);
5702			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5703			if (IS_ERR(di_inode)) {
5704				ret = PTR_ERR(di_inode);
5705				goto next_dir_inode;
5706			}
5707
5708			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5709				btrfs_add_delayed_iput(di_inode);
5710				break;
5711			}
5712
5713			ctx->log_new_dentries = false;
5714			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5715				log_mode = LOG_INODE_ALL;
5716			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5717					      log_mode, 0, LLONG_MAX, ctx);
5718			if (!ret &&
5719			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5720				ret = 1;
5721			btrfs_add_delayed_iput(di_inode);
5722			if (ret)
5723				goto next_dir_inode;
5724			if (ctx->log_new_dentries) {
5725				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5726						       GFP_NOFS);
5727				if (!new_dir_elem) {
5728					ret = -ENOMEM;
5729					goto next_dir_inode;
5730				}
5731				new_dir_elem->ino = di_key.objectid;
5732				list_add_tail(&new_dir_elem->list, &dir_list);
5733			}
5734			break;
5735		}
5736		if (i == nritems) {
5737			ret = btrfs_next_leaf(log, path);
5738			if (ret < 0) {
5739				goto next_dir_inode;
5740			} else if (ret > 0) {
5741				ret = 0;
5742				goto next_dir_inode;
5743			}
5744			goto process_leaf;
5745		}
5746		if (min_key.offset < (u64)-1) {
5747			min_key.offset++;
5748			goto again;
5749		}
5750next_dir_inode:
5751		list_del(&dir_elem->list);
5752		kfree(dir_elem);
5753	}
5754
5755	btrfs_free_path(path);
5756	return ret;
5757}
5758
5759static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5760				 struct btrfs_inode *inode,
5761				 struct btrfs_log_ctx *ctx)
5762{
5763	struct btrfs_fs_info *fs_info = trans->fs_info;
5764	int ret;
5765	struct btrfs_path *path;
5766	struct btrfs_key key;
5767	struct btrfs_root *root = inode->root;
5768	const u64 ino = btrfs_ino(inode);
5769
5770	path = btrfs_alloc_path();
5771	if (!path)
5772		return -ENOMEM;
5773	path->skip_locking = 1;
5774	path->search_commit_root = 1;
5775
5776	key.objectid = ino;
5777	key.type = BTRFS_INODE_REF_KEY;
5778	key.offset = 0;
5779	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5780	if (ret < 0)
5781		goto out;
5782
5783	while (true) {
5784		struct extent_buffer *leaf = path->nodes[0];
5785		int slot = path->slots[0];
5786		u32 cur_offset = 0;
5787		u32 item_size;
5788		unsigned long ptr;
5789
5790		if (slot >= btrfs_header_nritems(leaf)) {
5791			ret = btrfs_next_leaf(root, path);
5792			if (ret < 0)
5793				goto out;
5794			else if (ret > 0)
5795				break;
5796			continue;
5797		}
5798
5799		btrfs_item_key_to_cpu(leaf, &key, slot);
5800		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5801		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5802			break;
5803
5804		item_size = btrfs_item_size_nr(leaf, slot);
5805		ptr = btrfs_item_ptr_offset(leaf, slot);
5806		while (cur_offset < item_size) {
5807			struct btrfs_key inode_key;
5808			struct inode *dir_inode;
5809
5810			inode_key.type = BTRFS_INODE_ITEM_KEY;
5811			inode_key.offset = 0;
5812
5813			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5814				struct btrfs_inode_extref *extref;
5815
5816				extref = (struct btrfs_inode_extref *)
5817					(ptr + cur_offset);
5818				inode_key.objectid = btrfs_inode_extref_parent(
5819					leaf, extref);
5820				cur_offset += sizeof(*extref);
5821				cur_offset += btrfs_inode_extref_name_len(leaf,
5822					extref);
5823			} else {
5824				inode_key.objectid = key.offset;
5825				cur_offset = item_size;
5826			}
5827
5828			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5829					       root, NULL);
5830			/*
5831			 * If the parent inode was deleted, return an error to
5832			 * fallback to a transaction commit. This is to prevent
5833			 * getting an inode that was moved from one parent A to
5834			 * a parent B, got its former parent A deleted and then
5835			 * it got fsync'ed, from existing at both parents after
5836			 * a log replay (and the old parent still existing).
5837			 * Example:
5838			 *
5839			 * mkdir /mnt/A
5840			 * mkdir /mnt/B
5841			 * touch /mnt/B/bar
5842			 * sync
5843			 * mv /mnt/B/bar /mnt/A/bar
5844			 * mv -T /mnt/A /mnt/B
5845			 * fsync /mnt/B/bar
5846			 * <power fail>
5847			 *
5848			 * If we ignore the old parent B which got deleted,
5849			 * after a log replay we would have file bar linked
5850			 * at both parents and the old parent B would still
5851			 * exist.
5852			 */
5853			if (IS_ERR(dir_inode)) {
5854				ret = PTR_ERR(dir_inode);
5855				goto out;
5856			}
5857
5858			if (ctx)
5859				ctx->log_new_dentries = false;
5860			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5861					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5862			if (!ret &&
5863			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5864				ret = 1;
5865			if (!ret && ctx && ctx->log_new_dentries)
5866				ret = log_new_dir_dentries(trans, root,
5867						   BTRFS_I(dir_inode), ctx);
5868			btrfs_add_delayed_iput(dir_inode);
5869			if (ret)
5870				goto out;
5871		}
5872		path->slots[0]++;
5873	}
5874	ret = 0;
5875out:
5876	btrfs_free_path(path);
5877	return ret;
5878}
5879
5880static int log_new_ancestors(struct btrfs_trans_handle *trans,
5881			     struct btrfs_root *root,
5882			     struct btrfs_path *path,
5883			     struct btrfs_log_ctx *ctx)
5884{
5885	struct btrfs_key found_key;
5886
5887	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5888
5889	while (true) {
5890		struct btrfs_fs_info *fs_info = root->fs_info;
5891		const u64 last_committed = fs_info->last_trans_committed;
5892		struct extent_buffer *leaf = path->nodes[0];
5893		int slot = path->slots[0];
5894		struct btrfs_key search_key;
5895		struct inode *inode;
5896		int ret = 0;
5897
5898		btrfs_release_path(path);
5899
5900		search_key.objectid = found_key.offset;
5901		search_key.type = BTRFS_INODE_ITEM_KEY;
5902		search_key.offset = 0;
5903		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5904		if (IS_ERR(inode))
5905			return PTR_ERR(inode);
5906
5907		if (BTRFS_I(inode)->generation > last_committed)
5908			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5909					      LOG_INODE_EXISTS,
5910					      0, LLONG_MAX, ctx);
5911		btrfs_add_delayed_iput(inode);
5912		if (ret)
5913			return ret;
5914
5915		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5916			break;
5917
5918		search_key.type = BTRFS_INODE_REF_KEY;
5919		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5920		if (ret < 0)
5921			return ret;
5922
5923		leaf = path->nodes[0];
5924		slot = path->slots[0];
5925		if (slot >= btrfs_header_nritems(leaf)) {
5926			ret = btrfs_next_leaf(root, path);
5927			if (ret < 0)
5928				return ret;
5929			else if (ret > 0)
5930				return -ENOENT;
5931			leaf = path->nodes[0];
5932			slot = path->slots[0];
5933		}
5934
5935		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5936		if (found_key.objectid != search_key.objectid ||
5937		    found_key.type != BTRFS_INODE_REF_KEY)
5938			return -ENOENT;
5939	}
5940	return 0;
5941}
5942
5943static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5944				  struct btrfs_inode *inode,
5945				  struct dentry *parent,
5946				  struct btrfs_log_ctx *ctx)
5947{
5948	struct btrfs_root *root = inode->root;
5949	struct btrfs_fs_info *fs_info = root->fs_info;
5950	struct dentry *old_parent = NULL;
5951	struct super_block *sb = inode->vfs_inode.i_sb;
5952	int ret = 0;
5953
5954	while (true) {
5955		if (!parent || d_really_is_negative(parent) ||
5956		    sb != parent->d_sb)
5957			break;
5958
5959		inode = BTRFS_I(d_inode(parent));
5960		if (root != inode->root)
5961			break;
5962
5963		if (inode->generation > fs_info->last_trans_committed) {
5964			ret = btrfs_log_inode(trans, root, inode,
5965					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5966			if (ret)
5967				break;
5968		}
5969		if (IS_ROOT(parent))
5970			break;
5971
5972		parent = dget_parent(parent);
5973		dput(old_parent);
5974		old_parent = parent;
5975	}
5976	dput(old_parent);
5977
5978	return ret;
5979}
5980
5981static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5982				 struct btrfs_inode *inode,
5983				 struct dentry *parent,
5984				 struct btrfs_log_ctx *ctx)
5985{
5986	struct btrfs_root *root = inode->root;
5987	const u64 ino = btrfs_ino(inode);
5988	struct btrfs_path *path;
5989	struct btrfs_key search_key;
5990	int ret;
5991
5992	/*
5993	 * For a single hard link case, go through a fast path that does not
5994	 * need to iterate the fs/subvolume tree.
5995	 */
5996	if (inode->vfs_inode.i_nlink < 2)
5997		return log_new_ancestors_fast(trans, inode, parent, ctx);
5998
5999	path = btrfs_alloc_path();
6000	if (!path)
6001		return -ENOMEM;
6002
6003	search_key.objectid = ino;
6004	search_key.type = BTRFS_INODE_REF_KEY;
6005	search_key.offset = 0;
6006again:
6007	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6008	if (ret < 0)
6009		goto out;
6010	if (ret == 0)
6011		path->slots[0]++;
6012
6013	while (true) {
6014		struct extent_buffer *leaf = path->nodes[0];
6015		int slot = path->slots[0];
6016		struct btrfs_key found_key;
6017
6018		if (slot >= btrfs_header_nritems(leaf)) {
6019			ret = btrfs_next_leaf(root, path);
6020			if (ret < 0)
6021				goto out;
6022			else if (ret > 0)
6023				break;
6024			continue;
6025		}
6026
6027		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6028		if (found_key.objectid != ino ||
6029		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6030			break;
6031
6032		/*
6033		 * Don't deal with extended references because they are rare
6034		 * cases and too complex to deal with (we would need to keep
6035		 * track of which subitem we are processing for each item in
6036		 * this loop, etc). So just return some error to fallback to
6037		 * a transaction commit.
6038		 */
6039		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6040			ret = -EMLINK;
6041			goto out;
6042		}
6043
6044		/*
6045		 * Logging ancestors needs to do more searches on the fs/subvol
6046		 * tree, so it releases the path as needed to avoid deadlocks.
6047		 * Keep track of the last inode ref key and resume from that key
6048		 * after logging all new ancestors for the current hard link.
6049		 */
6050		memcpy(&search_key, &found_key, sizeof(search_key));
6051
6052		ret = log_new_ancestors(trans, root, path, ctx);
6053		if (ret)
6054			goto out;
6055		btrfs_release_path(path);
6056		goto again;
6057	}
6058	ret = 0;
6059out:
6060	btrfs_free_path(path);
6061	return ret;
6062}
6063
6064/*
6065 * helper function around btrfs_log_inode to make sure newly created
6066 * parent directories also end up in the log.  A minimal inode and backref
6067 * only logging is done of any parent directories that are older than
6068 * the last committed transaction
6069 */
6070static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6071				  struct btrfs_inode *inode,
6072				  struct dentry *parent,
6073				  const loff_t start,
6074				  const loff_t end,
6075				  int inode_only,
6076				  struct btrfs_log_ctx *ctx)
6077{
6078	struct btrfs_root *root = inode->root;
6079	struct btrfs_fs_info *fs_info = root->fs_info;
 
6080	struct super_block *sb;
 
6081	int ret = 0;
6082	u64 last_committed = fs_info->last_trans_committed;
6083	bool log_dentries = false;
 
6084
6085	sb = inode->vfs_inode.i_sb;
6086
6087	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6088		ret = 1;
6089		goto end_no_trans;
6090	}
6091
6092	/*
6093	 * The prev transaction commit doesn't complete, we need do
6094	 * full commit by ourselves.
6095	 */
6096	if (fs_info->last_trans_log_full_commit >
6097	    fs_info->last_trans_committed) {
6098		ret = 1;
6099		goto end_no_trans;
6100	}
6101
6102	if (btrfs_root_refs(&root->root_item) == 0) {
 
6103		ret = 1;
6104		goto end_no_trans;
6105	}
6106
6107	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6108			last_committed);
6109	if (ret)
6110		goto end_no_trans;
6111
6112	/*
6113	 * Skip already logged inodes or inodes corresponding to tmpfiles
6114	 * (since logging them is pointless, a link count of 0 means they
6115	 * will never be accessible).
6116	 */
6117	if (btrfs_inode_in_log(inode, trans->transid) ||
6118	    inode->vfs_inode.i_nlink == 0) {
6119		ret = BTRFS_NO_LOG_SYNC;
6120		goto end_no_trans;
6121	}
6122
6123	ret = start_log_trans(trans, root, ctx);
6124	if (ret)
6125		goto end_no_trans;
6126
6127	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6128	if (ret)
6129		goto end_trans;
6130
6131	/*
6132	 * for regular files, if its inode is already on disk, we don't
6133	 * have to worry about the parents at all.  This is because
6134	 * we can use the last_unlink_trans field to record renames
6135	 * and other fun in this file.
6136	 */
6137	if (S_ISREG(inode->vfs_inode.i_mode) &&
6138	    inode->generation <= last_committed &&
6139	    inode->last_unlink_trans <= last_committed) {
6140		ret = 0;
6141		goto end_trans;
6142	}
6143
6144	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6145		log_dentries = true;
6146
6147	/*
6148	 * On unlink we must make sure all our current and old parent directory
6149	 * inodes are fully logged. This is to prevent leaving dangling
6150	 * directory index entries in directories that were our parents but are
6151	 * not anymore. Not doing this results in old parent directory being
6152	 * impossible to delete after log replay (rmdir will always fail with
6153	 * error -ENOTEMPTY).
6154	 *
6155	 * Example 1:
6156	 *
6157	 * mkdir testdir
6158	 * touch testdir/foo
6159	 * ln testdir/foo testdir/bar
6160	 * sync
6161	 * unlink testdir/bar
6162	 * xfs_io -c fsync testdir/foo
6163	 * <power failure>
6164	 * mount fs, triggers log replay
6165	 *
6166	 * If we don't log the parent directory (testdir), after log replay the
6167	 * directory still has an entry pointing to the file inode using the bar
6168	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6169	 * the file inode has a link count of 1.
6170	 *
6171	 * Example 2:
6172	 *
6173	 * mkdir testdir
6174	 * touch foo
6175	 * ln foo testdir/foo2
6176	 * ln foo testdir/foo3
6177	 * sync
6178	 * unlink testdir/foo3
6179	 * xfs_io -c fsync foo
6180	 * <power failure>
6181	 * mount fs, triggers log replay
6182	 *
6183	 * Similar as the first example, after log replay the parent directory
6184	 * testdir still has an entry pointing to the inode file with name foo3
6185	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6186	 * and has a link count of 2.
6187	 */
6188	if (inode->last_unlink_trans > last_committed) {
6189		ret = btrfs_log_all_parents(trans, inode, ctx);
6190		if (ret)
6191			goto end_trans;
6192	}
6193
6194	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6195	if (ret)
6196		goto end_trans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6197
 
 
 
 
6198	if (log_dentries)
6199		ret = log_new_dir_dentries(trans, root, inode, ctx);
6200	else
6201		ret = 0;
6202end_trans:
 
6203	if (ret < 0) {
6204		btrfs_set_log_full_commit(trans);
6205		ret = 1;
6206	}
6207
6208	if (ret)
6209		btrfs_remove_log_ctx(root, ctx);
6210	btrfs_end_log_trans(root);
6211end_no_trans:
6212	return ret;
6213}
6214
6215/*
6216 * it is not safe to log dentry if the chunk root has added new
6217 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6218 * If this returns 1, you must commit the transaction to safely get your
6219 * data on disk.
6220 */
6221int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6222			  struct dentry *dentry,
6223			  const loff_t start,
6224			  const loff_t end,
6225			  struct btrfs_log_ctx *ctx)
6226{
6227	struct dentry *parent = dget_parent(dentry);
6228	int ret;
6229
6230	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6231				     start, end, LOG_INODE_ALL, ctx);
6232	dput(parent);
6233
6234	return ret;
6235}
6236
6237/*
6238 * should be called during mount to recover any replay any log trees
6239 * from the FS
6240 */
6241int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6242{
6243	int ret;
6244	struct btrfs_path *path;
6245	struct btrfs_trans_handle *trans;
6246	struct btrfs_key key;
6247	struct btrfs_key found_key;
6248	struct btrfs_key tmp_key;
6249	struct btrfs_root *log;
6250	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6251	struct walk_control wc = {
6252		.process_func = process_one_buffer,
6253		.stage = LOG_WALK_PIN_ONLY,
6254	};
6255
6256	path = btrfs_alloc_path();
6257	if (!path)
6258		return -ENOMEM;
6259
6260	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6261
6262	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6263	if (IS_ERR(trans)) {
6264		ret = PTR_ERR(trans);
6265		goto error;
6266	}
6267
6268	wc.trans = trans;
6269	wc.pin = 1;
6270
6271	ret = walk_log_tree(trans, log_root_tree, &wc);
6272	if (ret) {
6273		btrfs_handle_fs_error(fs_info, ret,
6274			"Failed to pin buffers while recovering log root tree.");
6275		goto error;
6276	}
6277
6278again:
6279	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6280	key.offset = (u64)-1;
6281	key.type = BTRFS_ROOT_ITEM_KEY;
6282
6283	while (1) {
6284		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6285
6286		if (ret < 0) {
6287			btrfs_handle_fs_error(fs_info, ret,
6288				    "Couldn't find tree log root.");
6289			goto error;
6290		}
6291		if (ret > 0) {
6292			if (path->slots[0] == 0)
6293				break;
6294			path->slots[0]--;
6295		}
6296		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6297				      path->slots[0]);
6298		btrfs_release_path(path);
6299		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6300			break;
6301
6302		log = btrfs_read_fs_root(log_root_tree, &found_key);
6303		if (IS_ERR(log)) {
6304			ret = PTR_ERR(log);
6305			btrfs_handle_fs_error(fs_info, ret,
6306				    "Couldn't read tree log root.");
6307			goto error;
6308		}
6309
6310		tmp_key.objectid = found_key.offset;
6311		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6312		tmp_key.offset = (u64)-1;
6313
6314		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6315		if (IS_ERR(wc.replay_dest)) {
6316			ret = PTR_ERR(wc.replay_dest);
6317			free_extent_buffer(log->node);
6318			free_extent_buffer(log->commit_root);
6319			kfree(log);
6320			btrfs_handle_fs_error(fs_info, ret,
6321				"Couldn't read target root for tree log recovery.");
6322			goto error;
6323		}
6324
6325		wc.replay_dest->log_root = log;
6326		btrfs_record_root_in_trans(trans, wc.replay_dest);
6327		ret = walk_log_tree(trans, log, &wc);
6328
6329		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6330			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6331						      path);
6332		}
6333
6334		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6335			struct btrfs_root *root = wc.replay_dest;
6336
6337			btrfs_release_path(path);
6338
6339			/*
6340			 * We have just replayed everything, and the highest
6341			 * objectid of fs roots probably has changed in case
6342			 * some inode_item's got replayed.
6343			 *
6344			 * root->objectid_mutex is not acquired as log replay
6345			 * could only happen during mount.
6346			 */
6347			ret = btrfs_find_highest_objectid(root,
6348						  &root->highest_objectid);
6349		}
6350
6351		key.offset = found_key.offset - 1;
6352		wc.replay_dest->log_root = NULL;
6353		free_extent_buffer(log->node);
6354		free_extent_buffer(log->commit_root);
6355		kfree(log);
6356
6357		if (ret)
6358			goto error;
6359
6360		if (found_key.offset == 0)
6361			break;
6362	}
6363	btrfs_release_path(path);
6364
6365	/* step one is to pin it all, step two is to replay just inodes */
6366	if (wc.pin) {
6367		wc.pin = 0;
6368		wc.process_func = replay_one_buffer;
6369		wc.stage = LOG_WALK_REPLAY_INODES;
6370		goto again;
6371	}
6372	/* step three is to replay everything */
6373	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6374		wc.stage++;
6375		goto again;
6376	}
6377
6378	btrfs_free_path(path);
6379
6380	/* step 4: commit the transaction, which also unpins the blocks */
6381	ret = btrfs_commit_transaction(trans);
6382	if (ret)
6383		return ret;
6384
6385	free_extent_buffer(log_root_tree->node);
6386	log_root_tree->log_root = NULL;
6387	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6388	kfree(log_root_tree);
6389
6390	return 0;
6391error:
6392	if (wc.trans)
6393		btrfs_end_transaction(wc.trans);
6394	btrfs_free_path(path);
6395	return ret;
6396}
6397
6398/*
6399 * there are some corner cases where we want to force a full
6400 * commit instead of allowing a directory to be logged.
6401 *
6402 * They revolve around files there were unlinked from the directory, and
6403 * this function updates the parent directory so that a full commit is
6404 * properly done if it is fsync'd later after the unlinks are done.
6405 *
6406 * Must be called before the unlink operations (updates to the subvolume tree,
6407 * inodes, etc) are done.
6408 */
6409void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6410			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6411			     int for_rename)
6412{
6413	/*
6414	 * when we're logging a file, if it hasn't been renamed
6415	 * or unlinked, and its inode is fully committed on disk,
6416	 * we don't have to worry about walking up the directory chain
6417	 * to log its parents.
6418	 *
6419	 * So, we use the last_unlink_trans field to put this transid
6420	 * into the file.  When the file is logged we check it and
6421	 * don't log the parents if the file is fully on disk.
6422	 */
6423	mutex_lock(&inode->log_mutex);
6424	inode->last_unlink_trans = trans->transid;
6425	mutex_unlock(&inode->log_mutex);
6426
6427	/*
6428	 * if this directory was already logged any new
6429	 * names for this file/dir will get recorded
6430	 */
6431	if (dir->logged_trans == trans->transid)
 
6432		return;
6433
6434	/*
6435	 * if the inode we're about to unlink was logged,
6436	 * the log will be properly updated for any new names
6437	 */
6438	if (inode->logged_trans == trans->transid)
6439		return;
6440
6441	/*
6442	 * when renaming files across directories, if the directory
6443	 * there we're unlinking from gets fsync'd later on, there's
6444	 * no way to find the destination directory later and fsync it
6445	 * properly.  So, we have to be conservative and force commits
6446	 * so the new name gets discovered.
6447	 */
6448	if (for_rename)
6449		goto record;
6450
6451	/* we can safely do the unlink without any special recording */
6452	return;
6453
6454record:
6455	mutex_lock(&dir->log_mutex);
6456	dir->last_unlink_trans = trans->transid;
6457	mutex_unlock(&dir->log_mutex);
6458}
6459
6460/*
6461 * Make sure that if someone attempts to fsync the parent directory of a deleted
6462 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6463 * that after replaying the log tree of the parent directory's root we will not
6464 * see the snapshot anymore and at log replay time we will not see any log tree
6465 * corresponding to the deleted snapshot's root, which could lead to replaying
6466 * it after replaying the log tree of the parent directory (which would replay
6467 * the snapshot delete operation).
6468 *
6469 * Must be called before the actual snapshot destroy operation (updates to the
6470 * parent root and tree of tree roots trees, etc) are done.
6471 */
6472void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6473				   struct btrfs_inode *dir)
6474{
6475	mutex_lock(&dir->log_mutex);
6476	dir->last_unlink_trans = trans->transid;
6477	mutex_unlock(&dir->log_mutex);
6478}
6479
6480/*
6481 * Call this after adding a new name for a file and it will properly
6482 * update the log to reflect the new name.
6483 *
6484 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6485 * true (because it's not used).
6486 *
6487 * Return value depends on whether @sync_log is true or false.
6488 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6489 *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6490 *            otherwise.
6491 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6492 *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6493 *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6494 *             committed (without attempting to sync the log).
6495 */
6496int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6497			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6498			struct dentry *parent,
6499			bool sync_log, struct btrfs_log_ctx *ctx)
6500{
6501	struct btrfs_fs_info *fs_info = trans->fs_info;
6502	int ret;
6503
6504	/*
6505	 * this will force the logging code to walk the dentry chain
6506	 * up for the file
6507	 */
6508	if (!S_ISDIR(inode->vfs_inode.i_mode))
6509		inode->last_unlink_trans = trans->transid;
6510
6511	/*
6512	 * if this inode hasn't been logged and directory we're renaming it
6513	 * from hasn't been logged, we don't need to log it
6514	 */
6515	if (inode->logged_trans <= fs_info->last_trans_committed &&
6516	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6517		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6518			BTRFS_DONT_NEED_LOG_SYNC;
6519
6520	if (sync_log) {
6521		struct btrfs_log_ctx ctx2;
6522
6523		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6524		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6525					     LOG_INODE_EXISTS, &ctx2);
6526		if (ret == BTRFS_NO_LOG_SYNC)
6527			return BTRFS_DONT_NEED_TRANS_COMMIT;
6528		else if (ret)
6529			return BTRFS_NEED_TRANS_COMMIT;
6530
6531		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6532		if (ret)
6533			return BTRFS_NEED_TRANS_COMMIT;
6534		return BTRFS_DONT_NEED_TRANS_COMMIT;
6535	}
6536
6537	ASSERT(ctx);
6538	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6539				     LOG_INODE_EXISTS, ctx);
6540	if (ret == BTRFS_NO_LOG_SYNC)
6541		return BTRFS_DONT_NEED_LOG_SYNC;
6542	else if (ret)
6543		return BTRFS_NEED_TRANS_COMMIT;
6544
6545	return BTRFS_NEED_LOG_SYNC;
 
6546}
6547