Loading...
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/blkdev.h>
22#include <linux/list_sort.h>
23#include "tree-log.h"
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
27#include "backref.h"
28#include "hash.h"
29#include "compression.h"
30#include "qgroup.h"
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40#define LOG_OTHER_INODE 2
41
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
96#define LOG_WALK_REPLAY_DIR_INDEX 2
97#define LOG_WALK_REPLAY_ALL 3
98
99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root, struct inode *inode,
101 int inode_only,
102 const loff_t start,
103 const loff_t end,
104 struct btrfs_log_ctx *ctx);
105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
113
114/*
115 * tree logging is a special write ahead log used to make sure that
116 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 *
118 * Full tree commits are expensive because they require commonly
119 * modified blocks to be recowed, creating many dirty pages in the
120 * extent tree an 4x-6x higher write load than ext3.
121 *
122 * Instead of doing a tree commit on every fsync, we use the
123 * key ranges and transaction ids to find items for a given file or directory
124 * that have changed in this transaction. Those items are copied into
125 * a special tree (one per subvolume root), that tree is written to disk
126 * and then the fsync is considered complete.
127 *
128 * After a crash, items are copied out of the log-tree back into the
129 * subvolume tree. Any file data extents found are recorded in the extent
130 * allocation tree, and the log-tree freed.
131 *
132 * The log tree is read three times, once to pin down all the extents it is
133 * using in ram and once, once to create all the inodes logged in the tree
134 * and once to do all the other items.
135 */
136
137/*
138 * start a sub transaction and setup the log tree
139 * this increments the log tree writer count to make the people
140 * syncing the tree wait for us to finish
141 */
142static int start_log_trans(struct btrfs_trans_handle *trans,
143 struct btrfs_root *root,
144 struct btrfs_log_ctx *ctx)
145{
146 struct btrfs_fs_info *fs_info = root->fs_info;
147 int ret = 0;
148
149 mutex_lock(&root->log_mutex);
150
151 if (root->log_root) {
152 if (btrfs_need_log_full_commit(fs_info, trans)) {
153 ret = -EAGAIN;
154 goto out;
155 }
156
157 if (!root->log_start_pid) {
158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 root->log_start_pid = current->pid;
160 } else if (root->log_start_pid != current->pid) {
161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
162 }
163 } else {
164 mutex_lock(&fs_info->tree_log_mutex);
165 if (!fs_info->log_root_tree)
166 ret = btrfs_init_log_root_tree(trans, fs_info);
167 mutex_unlock(&fs_info->tree_log_mutex);
168 if (ret)
169 goto out;
170
171 ret = btrfs_add_log_tree(trans, root);
172 if (ret)
173 goto out;
174
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 root->log_start_pid = current->pid;
177 }
178
179 atomic_inc(&root->log_batch);
180 atomic_inc(&root->log_writers);
181 if (ctx) {
182 int index = root->log_transid % 2;
183 list_add_tail(&ctx->list, &root->log_ctxs[index]);
184 ctx->log_transid = root->log_transid;
185 }
186
187out:
188 mutex_unlock(&root->log_mutex);
189 return ret;
190}
191
192/*
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
195 * in progress
196 */
197static int join_running_log_trans(struct btrfs_root *root)
198{
199 int ret = -ENOENT;
200
201 smp_mb();
202 if (!root->log_root)
203 return -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 if (root->log_root) {
207 ret = 0;
208 atomic_inc(&root->log_writers);
209 }
210 mutex_unlock(&root->log_mutex);
211 return ret;
212}
213
214/*
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
218 */
219int btrfs_pin_log_trans(struct btrfs_root *root)
220{
221 int ret = -ENOENT;
222
223 mutex_lock(&root->log_mutex);
224 atomic_inc(&root->log_writers);
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
229/*
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
232 */
233void btrfs_end_log_trans(struct btrfs_root *root)
234{
235 if (atomic_dec_and_test(&root->log_writers)) {
236 /*
237 * Implicit memory barrier after atomic_dec_and_test
238 */
239 if (waitqueue_active(&root->log_writer_wait))
240 wake_up(&root->log_writer_wait);
241 }
242}
243
244
245/*
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
250 */
251struct walk_control {
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
254 */
255 int free;
256
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
259 */
260 int write;
261
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
264 */
265 int wait;
266
267 /* pin only walk, we record which extents on disk belong to the
268 * log trees
269 */
270 int pin;
271
272 /* what stage of the replay code we're currently in */
273 int stage;
274
275 /* the root we are currently replaying */
276 struct btrfs_root *replay_dest;
277
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle *trans;
280
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
284 * inside it
285 */
286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 struct walk_control *wc, u64 gen);
288};
289
290/*
291 * process_func used to pin down extents, write them or wait on them
292 */
293static int process_one_buffer(struct btrfs_root *log,
294 struct extent_buffer *eb,
295 struct walk_control *wc, u64 gen)
296{
297 struct btrfs_fs_info *fs_info = log->fs_info;
298 int ret = 0;
299
300 /*
301 * If this fs is mixed then we need to be able to process the leaves to
302 * pin down any logged extents, so we have to read the block.
303 */
304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
305 ret = btrfs_read_buffer(eb, gen);
306 if (ret)
307 return ret;
308 }
309
310 if (wc->pin)
311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 eb->len);
313
314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
315 if (wc->pin && btrfs_header_level(eb) == 0)
316 ret = btrfs_exclude_logged_extents(fs_info, eb);
317 if (wc->write)
318 btrfs_write_tree_block(eb);
319 if (wc->wait)
320 btrfs_wait_tree_block_writeback(eb);
321 }
322 return ret;
323}
324
325/*
326 * Item overwrite used by replay and tree logging. eb, slot and key all refer
327 * to the src data we are copying out.
328 *
329 * root is the tree we are copying into, and path is a scratch
330 * path for use in this function (it should be released on entry and
331 * will be released on exit).
332 *
333 * If the key is already in the destination tree the existing item is
334 * overwritten. If the existing item isn't big enough, it is extended.
335 * If it is too large, it is truncated.
336 *
337 * If the key isn't in the destination yet, a new item is inserted.
338 */
339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root,
341 struct btrfs_path *path,
342 struct extent_buffer *eb, int slot,
343 struct btrfs_key *key)
344{
345 struct btrfs_fs_info *fs_info = root->fs_info;
346 int ret;
347 u32 item_size;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 overwrite_root = 1;
357
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 if (ret < 0)
364 return ret;
365
366 if (ret == 0) {
367 char *src_copy;
368 char *dst_copy;
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 path->slots[0]);
371 if (dst_size != item_size)
372 goto insert;
373
374 if (item_size == 0) {
375 btrfs_release_path(path);
376 return 0;
377 }
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
380 if (!dst_copy || !src_copy) {
381 btrfs_release_path(path);
382 kfree(dst_copy);
383 kfree(src_copy);
384 return -ENOMEM;
385 }
386
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 item_size);
392 ret = memcmp(dst_copy, src_copy, item_size);
393
394 kfree(dst_copy);
395 kfree(src_copy);
396 /*
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
400 * sync
401 */
402 if (ret == 0) {
403 btrfs_release_path(path);
404 return 0;
405 }
406
407 /*
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
410 */
411 if (inode_item) {
412 struct btrfs_inode_item *item;
413 u64 nbytes;
414 u32 mode;
415
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
422
423 /*
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
427 */
428 mode = btrfs_inode_mode(eb, item);
429 if (S_ISDIR(mode))
430 btrfs_set_inode_size(eb, item, 0);
431 }
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
434 u32 mode;
435
436 /*
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
439 */
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
442
443 /*
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
447 */
448 mode = btrfs_inode_mode(eb, item);
449 if (S_ISDIR(mode))
450 btrfs_set_inode_size(eb, item, 0);
451 }
452insert:
453 btrfs_release_path(path);
454 /* try to insert the key into the destination tree */
455 path->skip_release_on_error = 1;
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
458 path->skip_release_on_error = 0;
459
460 /* make sure any existing item is the correct size */
461 if (ret == -EEXIST || ret == -EOVERFLOW) {
462 u32 found_size;
463 found_size = btrfs_item_size_nr(path->nodes[0],
464 path->slots[0]);
465 if (found_size > item_size)
466 btrfs_truncate_item(fs_info, path, item_size, 1);
467 else if (found_size < item_size)
468 btrfs_extend_item(fs_info, path,
469 item_size - found_size);
470 } else if (ret) {
471 return ret;
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
494 const u64 ino_size = btrfs_inode_size(eb, src_item);
495
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
506 struct btrfs_map_token token;
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
512 goto no_copy;
513 }
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
544 btrfs_release_path(path);
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
555 struct btrfs_key key;
556 struct inode *inode;
557
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 if (IS_ERR(inode)) {
563 inode = NULL;
564 } else if (is_bad_inode(inode)) {
565 iput(inode);
566 inode = NULL;
567 }
568 return inode;
569}
570
571/* replays a single extent in 'eb' at 'slot' with 'key' into the
572 * subvolume 'root'. path is released on entry and should be released
573 * on exit.
574 *
575 * extents in the log tree have not been allocated out of the extent
576 * tree yet. So, this completes the allocation, taking a reference
577 * as required if the extent already exists or creating a new extent
578 * if it isn't in the extent allocation tree yet.
579 *
580 * The extent is inserted into the file, dropping any existing extents
581 * from the file that overlap the new one.
582 */
583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path,
586 struct extent_buffer *eb, int slot,
587 struct btrfs_key *key)
588{
589 struct btrfs_fs_info *fs_info = root->fs_info;
590 int found_type;
591 u64 extent_end;
592 u64 start = key->offset;
593 u64 nbytes = 0;
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
596 unsigned long size;
597 int ret = 0;
598
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
601
602 if (found_type == BTRFS_FILE_EXTENT_REG ||
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
606
607 /*
608 * We don't add to the inodes nbytes if we are prealloc or a
609 * hole.
610 */
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 nbytes = 0;
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 size = btrfs_file_extent_inline_len(eb, slot, item);
615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 extent_end = ALIGN(start + size,
617 fs_info->sectorsize);
618 } else {
619 ret = 0;
620 goto out;
621 }
622
623 inode = read_one_inode(root, key->objectid);
624 if (!inode) {
625 ret = -EIO;
626 goto out;
627 }
628
629 /*
630 * first check to see if we already have this extent in the
631 * file. This must be done before the btrfs_drop_extents run
632 * so we don't try to drop this extent.
633 */
634 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
635 start, 0);
636
637 if (ret == 0 &&
638 (found_type == BTRFS_FILE_EXTENT_REG ||
639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
640 struct btrfs_file_extent_item cmp1;
641 struct btrfs_file_extent_item cmp2;
642 struct btrfs_file_extent_item *existing;
643 struct extent_buffer *leaf;
644
645 leaf = path->nodes[0];
646 existing = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_file_extent_item);
648
649 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 sizeof(cmp1));
651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 sizeof(cmp2));
653
654 /*
655 * we already have a pointer to this exact extent,
656 * we don't have to do anything
657 */
658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
659 btrfs_release_path(path);
660 goto out;
661 }
662 }
663 btrfs_release_path(path);
664
665 /* drop any overlapping extents */
666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
667 if (ret)
668 goto out;
669
670 if (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 u64 offset;
673 unsigned long dest_offset;
674 struct btrfs_key ins;
675
676 ret = btrfs_insert_empty_item(trans, root, path, key,
677 sizeof(*item));
678 if (ret)
679 goto out;
680 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 path->slots[0]);
682 copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 (unsigned long)item, sizeof(*item));
684
685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 ins.type = BTRFS_EXTENT_ITEM_KEY;
688 offset = key->offset - btrfs_file_extent_offset(eb, item);
689
690 /*
691 * Manually record dirty extent, as here we did a shallow
692 * file extent item copy and skip normal backref update,
693 * but modifying extent tree all by ourselves.
694 * So need to manually record dirty extent for qgroup,
695 * as the owner of the file extent changed from log tree
696 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 */
698 ret = btrfs_qgroup_trace_extent(trans, fs_info,
699 btrfs_file_extent_disk_bytenr(eb, item),
700 btrfs_file_extent_disk_num_bytes(eb, item),
701 GFP_NOFS);
702 if (ret < 0)
703 goto out;
704
705 if (ins.objectid > 0) {
706 u64 csum_start;
707 u64 csum_end;
708 LIST_HEAD(ordered_sums);
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 ins.offset);
715 if (ret == 0) {
716 ret = btrfs_inc_extent_ref(trans, fs_info,
717 ins.objectid, ins.offset,
718 0, root->root_key.objectid,
719 key->objectid, offset);
720 if (ret)
721 goto out;
722 } else {
723 /*
724 * insert the extent pointer in the extent
725 * allocation tree
726 */
727 ret = btrfs_alloc_logged_file_extent(trans,
728 fs_info,
729 root->root_key.objectid,
730 key->objectid, offset, &ins);
731 if (ret)
732 goto out;
733 }
734 btrfs_release_path(path);
735
736 if (btrfs_file_extent_compression(eb, item)) {
737 csum_start = ins.objectid;
738 csum_end = csum_start + ins.offset;
739 } else {
740 csum_start = ins.objectid +
741 btrfs_file_extent_offset(eb, item);
742 csum_end = csum_start +
743 btrfs_file_extent_num_bytes(eb, item);
744 }
745
746 ret = btrfs_lookup_csums_range(root->log_root,
747 csum_start, csum_end - 1,
748 &ordered_sums, 0);
749 if (ret)
750 goto out;
751 /*
752 * Now delete all existing cums in the csum root that
753 * cover our range. We do this because we can have an
754 * extent that is completely referenced by one file
755 * extent item and partially referenced by another
756 * file extent item (like after using the clone or
757 * extent_same ioctls). In this case if we end up doing
758 * the replay of the one that partially references the
759 * extent first, and we do not do the csum deletion
760 * below, we can get 2 csum items in the csum tree that
761 * overlap each other. For example, imagine our log has
762 * the two following file extent items:
763 *
764 * key (257 EXTENT_DATA 409600)
765 * extent data disk byte 12845056 nr 102400
766 * extent data offset 20480 nr 20480 ram 102400
767 *
768 * key (257 EXTENT_DATA 819200)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 0 nr 102400 ram 102400
771 *
772 * Where the second one fully references the 100K extent
773 * that starts at disk byte 12845056, and the log tree
774 * has a single csum item that covers the entire range
775 * of the extent:
776 *
777 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 *
779 * After the first file extent item is replayed, the
780 * csum tree gets the following csum item:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 *
784 * Which covers the 20K sub-range starting at offset 20K
785 * of our extent. Now when we replay the second file
786 * extent item, if we do not delete existing csum items
787 * that cover any of its blocks, we end up getting two
788 * csum items in our csum tree that overlap each other:
789 *
790 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 *
793 * Which is a problem, because after this anyone trying
794 * to lookup up for the checksum of any block of our
795 * extent starting at an offset of 40K or higher, will
796 * end up looking at the second csum item only, which
797 * does not contain the checksum for any block starting
798 * at offset 40K or higher of our extent.
799 */
800 while (!list_empty(&ordered_sums)) {
801 struct btrfs_ordered_sum *sums;
802 sums = list_entry(ordered_sums.next,
803 struct btrfs_ordered_sum,
804 list);
805 if (!ret)
806 ret = btrfs_del_csums(trans, fs_info,
807 sums->bytenr,
808 sums->len);
809 if (!ret)
810 ret = btrfs_csum_file_blocks(trans,
811 fs_info->csum_root, sums);
812 list_del(&sums->list);
813 kfree(sums);
814 }
815 if (ret)
816 goto out;
817 } else {
818 btrfs_release_path(path);
819 }
820 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
821 /* inline extents are easy, we just overwrite them */
822 ret = overwrite_item(trans, root, path, eb, slot, key);
823 if (ret)
824 goto out;
825 }
826
827 inode_add_bytes(inode, nbytes);
828 ret = btrfs_update_inode(trans, root, inode);
829out:
830 if (inode)
831 iput(inode);
832 return ret;
833}
834
835/*
836 * when cleaning up conflicts between the directory names in the
837 * subvolume, directory names in the log and directory names in the
838 * inode back references, we may have to unlink inodes from directories.
839 *
840 * This is a helper function to do the unlink of a specific directory
841 * item
842 */
843static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct inode *dir,
847 struct btrfs_dir_item *di)
848{
849 struct btrfs_fs_info *fs_info = root->fs_info;
850 struct inode *inode;
851 char *name;
852 int name_len;
853 struct extent_buffer *leaf;
854 struct btrfs_key location;
855 int ret;
856
857 leaf = path->nodes[0];
858
859 btrfs_dir_item_key_to_cpu(leaf, di, &location);
860 name_len = btrfs_dir_name_len(leaf, di);
861 name = kmalloc(name_len, GFP_NOFS);
862 if (!name)
863 return -ENOMEM;
864
865 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
866 btrfs_release_path(path);
867
868 inode = read_one_inode(root, location.objectid);
869 if (!inode) {
870 ret = -EIO;
871 goto out;
872 }
873
874 ret = link_to_fixup_dir(trans, root, path, location.objectid);
875 if (ret)
876 goto out;
877
878 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
879 if (ret)
880 goto out;
881 else
882 ret = btrfs_run_delayed_items(trans, fs_info);
883out:
884 kfree(name);
885 iput(inode);
886 return ret;
887}
888
889/*
890 * helper function to see if a given name and sequence number found
891 * in an inode back reference are already in a directory and correctly
892 * point to this inode
893 */
894static noinline int inode_in_dir(struct btrfs_root *root,
895 struct btrfs_path *path,
896 u64 dirid, u64 objectid, u64 index,
897 const char *name, int name_len)
898{
899 struct btrfs_dir_item *di;
900 struct btrfs_key location;
901 int match = 0;
902
903 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
904 index, name, name_len, 0);
905 if (di && !IS_ERR(di)) {
906 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 if (location.objectid != objectid)
908 goto out;
909 } else
910 goto out;
911 btrfs_release_path(path);
912
913 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
920 match = 1;
921out:
922 btrfs_release_path(path);
923 return match;
924}
925
926/*
927 * helper function to check a log tree for a named back reference in
928 * an inode. This is used to decide if a back reference that is
929 * found in the subvolume conflicts with what we find in the log.
930 *
931 * inode backreferences may have multiple refs in a single item,
932 * during replay we process one reference at a time, and we don't
933 * want to delete valid links to a file from the subvolume if that
934 * link is also in the log.
935 */
936static noinline int backref_in_log(struct btrfs_root *log,
937 struct btrfs_key *key,
938 u64 ref_objectid,
939 const char *name, int namelen)
940{
941 struct btrfs_path *path;
942 struct btrfs_inode_ref *ref;
943 unsigned long ptr;
944 unsigned long ptr_end;
945 unsigned long name_ptr;
946 int found_name_len;
947 int item_size;
948 int ret;
949 int match = 0;
950
951 path = btrfs_alloc_path();
952 if (!path)
953 return -ENOMEM;
954
955 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
956 if (ret != 0)
957 goto out;
958
959 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
960
961 if (key->type == BTRFS_INODE_EXTREF_KEY) {
962 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
963 name, namelen, NULL))
964 match = 1;
965
966 goto out;
967 }
968
969 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
970 ptr_end = ptr + item_size;
971 while (ptr < ptr_end) {
972 ref = (struct btrfs_inode_ref *)ptr;
973 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
974 if (found_name_len == namelen) {
975 name_ptr = (unsigned long)(ref + 1);
976 ret = memcmp_extent_buffer(path->nodes[0], name,
977 name_ptr, namelen);
978 if (ret == 0) {
979 match = 1;
980 goto out;
981 }
982 }
983 ptr = (unsigned long)(ref + 1) + found_name_len;
984 }
985out:
986 btrfs_free_path(path);
987 return match;
988}
989
990static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
991 struct btrfs_root *root,
992 struct btrfs_path *path,
993 struct btrfs_root *log_root,
994 struct inode *dir, struct inode *inode,
995 struct extent_buffer *eb,
996 u64 inode_objectid, u64 parent_objectid,
997 u64 ref_index, char *name, int namelen,
998 int *search_done)
999{
1000 struct btrfs_fs_info *fs_info = root->fs_info;
1001 int ret;
1002 char *victim_name;
1003 int victim_name_len;
1004 struct extent_buffer *leaf;
1005 struct btrfs_dir_item *di;
1006 struct btrfs_key search_key;
1007 struct btrfs_inode_extref *extref;
1008
1009again:
1010 /* Search old style refs */
1011 search_key.objectid = inode_objectid;
1012 search_key.type = BTRFS_INODE_REF_KEY;
1013 search_key.offset = parent_objectid;
1014 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1015 if (ret == 0) {
1016 struct btrfs_inode_ref *victim_ref;
1017 unsigned long ptr;
1018 unsigned long ptr_end;
1019
1020 leaf = path->nodes[0];
1021
1022 /* are we trying to overwrite a back ref for the root directory
1023 * if so, just jump out, we're done
1024 */
1025 if (search_key.objectid == search_key.offset)
1026 return 1;
1027
1028 /* check all the names in this back reference to see
1029 * if they are in the log. if so, we allow them to stay
1030 * otherwise they must be unlinked as a conflict
1031 */
1032 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1033 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1034 while (ptr < ptr_end) {
1035 victim_ref = (struct btrfs_inode_ref *)ptr;
1036 victim_name_len = btrfs_inode_ref_name_len(leaf,
1037 victim_ref);
1038 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1039 if (!victim_name)
1040 return -ENOMEM;
1041
1042 read_extent_buffer(leaf, victim_name,
1043 (unsigned long)(victim_ref + 1),
1044 victim_name_len);
1045
1046 if (!backref_in_log(log_root, &search_key,
1047 parent_objectid,
1048 victim_name,
1049 victim_name_len)) {
1050 inc_nlink(inode);
1051 btrfs_release_path(path);
1052
1053 ret = btrfs_unlink_inode(trans, root, dir,
1054 inode, victim_name,
1055 victim_name_len);
1056 kfree(victim_name);
1057 if (ret)
1058 return ret;
1059 ret = btrfs_run_delayed_items(trans, fs_info);
1060 if (ret)
1061 return ret;
1062 *search_done = 1;
1063 goto again;
1064 }
1065 kfree(victim_name);
1066
1067 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1068 }
1069
1070 /*
1071 * NOTE: we have searched root tree and checked the
1072 * corresponding ref, it does not need to check again.
1073 */
1074 *search_done = 1;
1075 }
1076 btrfs_release_path(path);
1077
1078 /* Same search but for extended refs */
1079 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1080 inode_objectid, parent_objectid, 0,
1081 0);
1082 if (!IS_ERR_OR_NULL(extref)) {
1083 u32 item_size;
1084 u32 cur_offset = 0;
1085 unsigned long base;
1086 struct inode *victim_parent;
1087
1088 leaf = path->nodes[0];
1089
1090 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1091 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1092
1093 while (cur_offset < item_size) {
1094 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1095
1096 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1097
1098 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1099 goto next;
1100
1101 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1102 if (!victim_name)
1103 return -ENOMEM;
1104 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1105 victim_name_len);
1106
1107 search_key.objectid = inode_objectid;
1108 search_key.type = BTRFS_INODE_EXTREF_KEY;
1109 search_key.offset = btrfs_extref_hash(parent_objectid,
1110 victim_name,
1111 victim_name_len);
1112 ret = 0;
1113 if (!backref_in_log(log_root, &search_key,
1114 parent_objectid, victim_name,
1115 victim_name_len)) {
1116 ret = -ENOENT;
1117 victim_parent = read_one_inode(root,
1118 parent_objectid);
1119 if (victim_parent) {
1120 inc_nlink(inode);
1121 btrfs_release_path(path);
1122
1123 ret = btrfs_unlink_inode(trans, root,
1124 victim_parent,
1125 inode,
1126 victim_name,
1127 victim_name_len);
1128 if (!ret)
1129 ret = btrfs_run_delayed_items(
1130 trans,
1131 fs_info);
1132 }
1133 iput(victim_parent);
1134 kfree(victim_name);
1135 if (ret)
1136 return ret;
1137 *search_done = 1;
1138 goto again;
1139 }
1140 kfree(victim_name);
1141 if (ret)
1142 return ret;
1143next:
1144 cur_offset += victim_name_len + sizeof(*extref);
1145 }
1146 *search_done = 1;
1147 }
1148 btrfs_release_path(path);
1149
1150 /* look for a conflicting sequence number */
1151 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1152 ref_index, name, namelen, 0);
1153 if (di && !IS_ERR(di)) {
1154 ret = drop_one_dir_item(trans, root, path, dir, di);
1155 if (ret)
1156 return ret;
1157 }
1158 btrfs_release_path(path);
1159
1160 /* look for a conflicing name */
1161 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1162 name, namelen, 0);
1163 if (di && !IS_ERR(di)) {
1164 ret = drop_one_dir_item(trans, root, path, dir, di);
1165 if (ret)
1166 return ret;
1167 }
1168 btrfs_release_path(path);
1169
1170 return 0;
1171}
1172
1173static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1174 u32 *namelen, char **name, u64 *index,
1175 u64 *parent_objectid)
1176{
1177 struct btrfs_inode_extref *extref;
1178
1179 extref = (struct btrfs_inode_extref *)ref_ptr;
1180
1181 *namelen = btrfs_inode_extref_name_len(eb, extref);
1182 *name = kmalloc(*namelen, GFP_NOFS);
1183 if (*name == NULL)
1184 return -ENOMEM;
1185
1186 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1187 *namelen);
1188
1189 *index = btrfs_inode_extref_index(eb, extref);
1190 if (parent_objectid)
1191 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1192
1193 return 0;
1194}
1195
1196static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1197 u32 *namelen, char **name, u64 *index)
1198{
1199 struct btrfs_inode_ref *ref;
1200
1201 ref = (struct btrfs_inode_ref *)ref_ptr;
1202
1203 *namelen = btrfs_inode_ref_name_len(eb, ref);
1204 *name = kmalloc(*namelen, GFP_NOFS);
1205 if (*name == NULL)
1206 return -ENOMEM;
1207
1208 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1209
1210 *index = btrfs_inode_ref_index(eb, ref);
1211
1212 return 0;
1213}
1214
1215/*
1216 * replay one inode back reference item found in the log tree.
1217 * eb, slot and key refer to the buffer and key found in the log tree.
1218 * root is the destination we are replaying into, and path is for temp
1219 * use by this function. (it should be released on return).
1220 */
1221static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1222 struct btrfs_root *root,
1223 struct btrfs_root *log,
1224 struct btrfs_path *path,
1225 struct extent_buffer *eb, int slot,
1226 struct btrfs_key *key)
1227{
1228 struct inode *dir = NULL;
1229 struct inode *inode = NULL;
1230 unsigned long ref_ptr;
1231 unsigned long ref_end;
1232 char *name = NULL;
1233 int namelen;
1234 int ret;
1235 int search_done = 0;
1236 int log_ref_ver = 0;
1237 u64 parent_objectid;
1238 u64 inode_objectid;
1239 u64 ref_index = 0;
1240 int ref_struct_size;
1241
1242 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1243 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1244
1245 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1246 struct btrfs_inode_extref *r;
1247
1248 ref_struct_size = sizeof(struct btrfs_inode_extref);
1249 log_ref_ver = 1;
1250 r = (struct btrfs_inode_extref *)ref_ptr;
1251 parent_objectid = btrfs_inode_extref_parent(eb, r);
1252 } else {
1253 ref_struct_size = sizeof(struct btrfs_inode_ref);
1254 parent_objectid = key->offset;
1255 }
1256 inode_objectid = key->objectid;
1257
1258 /*
1259 * it is possible that we didn't log all the parent directories
1260 * for a given inode. If we don't find the dir, just don't
1261 * copy the back ref in. The link count fixup code will take
1262 * care of the rest
1263 */
1264 dir = read_one_inode(root, parent_objectid);
1265 if (!dir) {
1266 ret = -ENOENT;
1267 goto out;
1268 }
1269
1270 inode = read_one_inode(root, inode_objectid);
1271 if (!inode) {
1272 ret = -EIO;
1273 goto out;
1274 }
1275
1276 while (ref_ptr < ref_end) {
1277 if (log_ref_ver) {
1278 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1279 &ref_index, &parent_objectid);
1280 /*
1281 * parent object can change from one array
1282 * item to another.
1283 */
1284 if (!dir)
1285 dir = read_one_inode(root, parent_objectid);
1286 if (!dir) {
1287 ret = -ENOENT;
1288 goto out;
1289 }
1290 } else {
1291 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1292 &ref_index);
1293 }
1294 if (ret)
1295 goto out;
1296
1297 /* if we already have a perfect match, we're done */
1298 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1299 ref_index, name, namelen)) {
1300 /*
1301 * look for a conflicting back reference in the
1302 * metadata. if we find one we have to unlink that name
1303 * of the file before we add our new link. Later on, we
1304 * overwrite any existing back reference, and we don't
1305 * want to create dangling pointers in the directory.
1306 */
1307
1308 if (!search_done) {
1309 ret = __add_inode_ref(trans, root, path, log,
1310 dir, inode, eb,
1311 inode_objectid,
1312 parent_objectid,
1313 ref_index, name, namelen,
1314 &search_done);
1315 if (ret) {
1316 if (ret == 1)
1317 ret = 0;
1318 goto out;
1319 }
1320 }
1321
1322 /* insert our name */
1323 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1324 0, ref_index);
1325 if (ret)
1326 goto out;
1327
1328 btrfs_update_inode(trans, root, inode);
1329 }
1330
1331 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1332 kfree(name);
1333 name = NULL;
1334 if (log_ref_ver) {
1335 iput(dir);
1336 dir = NULL;
1337 }
1338 }
1339
1340 /* finally write the back reference in the inode */
1341 ret = overwrite_item(trans, root, path, eb, slot, key);
1342out:
1343 btrfs_release_path(path);
1344 kfree(name);
1345 iput(dir);
1346 iput(inode);
1347 return ret;
1348}
1349
1350static int insert_orphan_item(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root, u64 ino)
1352{
1353 int ret;
1354
1355 ret = btrfs_insert_orphan_item(trans, root, ino);
1356 if (ret == -EEXIST)
1357 ret = 0;
1358
1359 return ret;
1360}
1361
1362static int count_inode_extrefs(struct btrfs_root *root,
1363 struct inode *inode, struct btrfs_path *path)
1364{
1365 int ret = 0;
1366 int name_len;
1367 unsigned int nlink = 0;
1368 u32 item_size;
1369 u32 cur_offset = 0;
1370 u64 inode_objectid = btrfs_ino(inode);
1371 u64 offset = 0;
1372 unsigned long ptr;
1373 struct btrfs_inode_extref *extref;
1374 struct extent_buffer *leaf;
1375
1376 while (1) {
1377 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1378 &extref, &offset);
1379 if (ret)
1380 break;
1381
1382 leaf = path->nodes[0];
1383 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1384 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1385 cur_offset = 0;
1386
1387 while (cur_offset < item_size) {
1388 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1389 name_len = btrfs_inode_extref_name_len(leaf, extref);
1390
1391 nlink++;
1392
1393 cur_offset += name_len + sizeof(*extref);
1394 }
1395
1396 offset++;
1397 btrfs_release_path(path);
1398 }
1399 btrfs_release_path(path);
1400
1401 if (ret < 0 && ret != -ENOENT)
1402 return ret;
1403 return nlink;
1404}
1405
1406static int count_inode_refs(struct btrfs_root *root,
1407 struct inode *inode, struct btrfs_path *path)
1408{
1409 int ret;
1410 struct btrfs_key key;
1411 unsigned int nlink = 0;
1412 unsigned long ptr;
1413 unsigned long ptr_end;
1414 int name_len;
1415 u64 ino = btrfs_ino(inode);
1416
1417 key.objectid = ino;
1418 key.type = BTRFS_INODE_REF_KEY;
1419 key.offset = (u64)-1;
1420
1421 while (1) {
1422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423 if (ret < 0)
1424 break;
1425 if (ret > 0) {
1426 if (path->slots[0] == 0)
1427 break;
1428 path->slots[0]--;
1429 }
1430process_slot:
1431 btrfs_item_key_to_cpu(path->nodes[0], &key,
1432 path->slots[0]);
1433 if (key.objectid != ino ||
1434 key.type != BTRFS_INODE_REF_KEY)
1435 break;
1436 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1437 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1438 path->slots[0]);
1439 while (ptr < ptr_end) {
1440 struct btrfs_inode_ref *ref;
1441
1442 ref = (struct btrfs_inode_ref *)ptr;
1443 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1444 ref);
1445 ptr = (unsigned long)(ref + 1) + name_len;
1446 nlink++;
1447 }
1448
1449 if (key.offset == 0)
1450 break;
1451 if (path->slots[0] > 0) {
1452 path->slots[0]--;
1453 goto process_slot;
1454 }
1455 key.offset--;
1456 btrfs_release_path(path);
1457 }
1458 btrfs_release_path(path);
1459
1460 return nlink;
1461}
1462
1463/*
1464 * There are a few corners where the link count of the file can't
1465 * be properly maintained during replay. So, instead of adding
1466 * lots of complexity to the log code, we just scan the backrefs
1467 * for any file that has been through replay.
1468 *
1469 * The scan will update the link count on the inode to reflect the
1470 * number of back refs found. If it goes down to zero, the iput
1471 * will free the inode.
1472 */
1473static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1474 struct btrfs_root *root,
1475 struct inode *inode)
1476{
1477 struct btrfs_path *path;
1478 int ret;
1479 u64 nlink = 0;
1480 u64 ino = btrfs_ino(inode);
1481
1482 path = btrfs_alloc_path();
1483 if (!path)
1484 return -ENOMEM;
1485
1486 ret = count_inode_refs(root, inode, path);
1487 if (ret < 0)
1488 goto out;
1489
1490 nlink = ret;
1491
1492 ret = count_inode_extrefs(root, inode, path);
1493 if (ret < 0)
1494 goto out;
1495
1496 nlink += ret;
1497
1498 ret = 0;
1499
1500 if (nlink != inode->i_nlink) {
1501 set_nlink(inode, nlink);
1502 btrfs_update_inode(trans, root, inode);
1503 }
1504 BTRFS_I(inode)->index_cnt = (u64)-1;
1505
1506 if (inode->i_nlink == 0) {
1507 if (S_ISDIR(inode->i_mode)) {
1508 ret = replay_dir_deletes(trans, root, NULL, path,
1509 ino, 1);
1510 if (ret)
1511 goto out;
1512 }
1513 ret = insert_orphan_item(trans, root, ino);
1514 }
1515
1516out:
1517 btrfs_free_path(path);
1518 return ret;
1519}
1520
1521static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1522 struct btrfs_root *root,
1523 struct btrfs_path *path)
1524{
1525 int ret;
1526 struct btrfs_key key;
1527 struct inode *inode;
1528
1529 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1530 key.type = BTRFS_ORPHAN_ITEM_KEY;
1531 key.offset = (u64)-1;
1532 while (1) {
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret < 0)
1535 break;
1536
1537 if (ret == 1) {
1538 if (path->slots[0] == 0)
1539 break;
1540 path->slots[0]--;
1541 }
1542
1543 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1544 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1545 key.type != BTRFS_ORPHAN_ITEM_KEY)
1546 break;
1547
1548 ret = btrfs_del_item(trans, root, path);
1549 if (ret)
1550 goto out;
1551
1552 btrfs_release_path(path);
1553 inode = read_one_inode(root, key.offset);
1554 if (!inode)
1555 return -EIO;
1556
1557 ret = fixup_inode_link_count(trans, root, inode);
1558 iput(inode);
1559 if (ret)
1560 goto out;
1561
1562 /*
1563 * fixup on a directory may create new entries,
1564 * make sure we always look for the highset possible
1565 * offset
1566 */
1567 key.offset = (u64)-1;
1568 }
1569 ret = 0;
1570out:
1571 btrfs_release_path(path);
1572 return ret;
1573}
1574
1575
1576/*
1577 * record a given inode in the fixup dir so we can check its link
1578 * count when replay is done. The link count is incremented here
1579 * so the inode won't go away until we check it
1580 */
1581static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1582 struct btrfs_root *root,
1583 struct btrfs_path *path,
1584 u64 objectid)
1585{
1586 struct btrfs_key key;
1587 int ret = 0;
1588 struct inode *inode;
1589
1590 inode = read_one_inode(root, objectid);
1591 if (!inode)
1592 return -EIO;
1593
1594 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1595 key.type = BTRFS_ORPHAN_ITEM_KEY;
1596 key.offset = objectid;
1597
1598 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1599
1600 btrfs_release_path(path);
1601 if (ret == 0) {
1602 if (!inode->i_nlink)
1603 set_nlink(inode, 1);
1604 else
1605 inc_nlink(inode);
1606 ret = btrfs_update_inode(trans, root, inode);
1607 } else if (ret == -EEXIST) {
1608 ret = 0;
1609 } else {
1610 BUG(); /* Logic Error */
1611 }
1612 iput(inode);
1613
1614 return ret;
1615}
1616
1617/*
1618 * when replaying the log for a directory, we only insert names
1619 * for inodes that actually exist. This means an fsync on a directory
1620 * does not implicitly fsync all the new files in it
1621 */
1622static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1623 struct btrfs_root *root,
1624 u64 dirid, u64 index,
1625 char *name, int name_len,
1626 struct btrfs_key *location)
1627{
1628 struct inode *inode;
1629 struct inode *dir;
1630 int ret;
1631
1632 inode = read_one_inode(root, location->objectid);
1633 if (!inode)
1634 return -ENOENT;
1635
1636 dir = read_one_inode(root, dirid);
1637 if (!dir) {
1638 iput(inode);
1639 return -EIO;
1640 }
1641
1642 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1643
1644 /* FIXME, put inode into FIXUP list */
1645
1646 iput(inode);
1647 iput(dir);
1648 return ret;
1649}
1650
1651/*
1652 * Return true if an inode reference exists in the log for the given name,
1653 * inode and parent inode.
1654 */
1655static bool name_in_log_ref(struct btrfs_root *log_root,
1656 const char *name, const int name_len,
1657 const u64 dirid, const u64 ino)
1658{
1659 struct btrfs_key search_key;
1660
1661 search_key.objectid = ino;
1662 search_key.type = BTRFS_INODE_REF_KEY;
1663 search_key.offset = dirid;
1664 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1665 return true;
1666
1667 search_key.type = BTRFS_INODE_EXTREF_KEY;
1668 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1669 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1670 return true;
1671
1672 return false;
1673}
1674
1675/*
1676 * take a single entry in a log directory item and replay it into
1677 * the subvolume.
1678 *
1679 * if a conflicting item exists in the subdirectory already,
1680 * the inode it points to is unlinked and put into the link count
1681 * fix up tree.
1682 *
1683 * If a name from the log points to a file or directory that does
1684 * not exist in the FS, it is skipped. fsyncs on directories
1685 * do not force down inodes inside that directory, just changes to the
1686 * names or unlinks in a directory.
1687 *
1688 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1689 * non-existing inode) and 1 if the name was replayed.
1690 */
1691static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 struct btrfs_path *path,
1694 struct extent_buffer *eb,
1695 struct btrfs_dir_item *di,
1696 struct btrfs_key *key)
1697{
1698 char *name;
1699 int name_len;
1700 struct btrfs_dir_item *dst_di;
1701 struct btrfs_key found_key;
1702 struct btrfs_key log_key;
1703 struct inode *dir;
1704 u8 log_type;
1705 int exists;
1706 int ret = 0;
1707 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1708 bool name_added = false;
1709
1710 dir = read_one_inode(root, key->objectid);
1711 if (!dir)
1712 return -EIO;
1713
1714 name_len = btrfs_dir_name_len(eb, di);
1715 name = kmalloc(name_len, GFP_NOFS);
1716 if (!name) {
1717 ret = -ENOMEM;
1718 goto out;
1719 }
1720
1721 log_type = btrfs_dir_type(eb, di);
1722 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1723 name_len);
1724
1725 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1726 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1727 if (exists == 0)
1728 exists = 1;
1729 else
1730 exists = 0;
1731 btrfs_release_path(path);
1732
1733 if (key->type == BTRFS_DIR_ITEM_KEY) {
1734 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1735 name, name_len, 1);
1736 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1737 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1738 key->objectid,
1739 key->offset, name,
1740 name_len, 1);
1741 } else {
1742 /* Corruption */
1743 ret = -EINVAL;
1744 goto out;
1745 }
1746 if (IS_ERR_OR_NULL(dst_di)) {
1747 /* we need a sequence number to insert, so we only
1748 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749 */
1750 if (key->type != BTRFS_DIR_INDEX_KEY)
1751 goto out;
1752 goto insert;
1753 }
1754
1755 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1756 /* the existing item matches the logged item */
1757 if (found_key.objectid == log_key.objectid &&
1758 found_key.type == log_key.type &&
1759 found_key.offset == log_key.offset &&
1760 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1761 update_size = false;
1762 goto out;
1763 }
1764
1765 /*
1766 * don't drop the conflicting directory entry if the inode
1767 * for the new entry doesn't exist
1768 */
1769 if (!exists)
1770 goto out;
1771
1772 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1773 if (ret)
1774 goto out;
1775
1776 if (key->type == BTRFS_DIR_INDEX_KEY)
1777 goto insert;
1778out:
1779 btrfs_release_path(path);
1780 if (!ret && update_size) {
1781 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1782 ret = btrfs_update_inode(trans, root, dir);
1783 }
1784 kfree(name);
1785 iput(dir);
1786 if (!ret && name_added)
1787 ret = 1;
1788 return ret;
1789
1790insert:
1791 if (name_in_log_ref(root->log_root, name, name_len,
1792 key->objectid, log_key.objectid)) {
1793 /* The dentry will be added later. */
1794 ret = 0;
1795 update_size = false;
1796 goto out;
1797 }
1798 btrfs_release_path(path);
1799 ret = insert_one_name(trans, root, key->objectid, key->offset,
1800 name, name_len, &log_key);
1801 if (ret && ret != -ENOENT && ret != -EEXIST)
1802 goto out;
1803 if (!ret)
1804 name_added = true;
1805 update_size = false;
1806 ret = 0;
1807 goto out;
1808}
1809
1810/*
1811 * find all the names in a directory item and reconcile them into
1812 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1813 * one name in a directory item, but the same code gets used for
1814 * both directory index types
1815 */
1816static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 struct extent_buffer *eb, int slot,
1820 struct btrfs_key *key)
1821{
1822 struct btrfs_fs_info *fs_info = root->fs_info;
1823 int ret = 0;
1824 u32 item_size = btrfs_item_size_nr(eb, slot);
1825 struct btrfs_dir_item *di;
1826 int name_len;
1827 unsigned long ptr;
1828 unsigned long ptr_end;
1829 struct btrfs_path *fixup_path = NULL;
1830
1831 ptr = btrfs_item_ptr_offset(eb, slot);
1832 ptr_end = ptr + item_size;
1833 while (ptr < ptr_end) {
1834 di = (struct btrfs_dir_item *)ptr;
1835 if (verify_dir_item(fs_info, eb, di))
1836 return -EIO;
1837 name_len = btrfs_dir_name_len(eb, di);
1838 ret = replay_one_name(trans, root, path, eb, di, key);
1839 if (ret < 0)
1840 break;
1841 ptr = (unsigned long)(di + 1);
1842 ptr += name_len;
1843
1844 /*
1845 * If this entry refers to a non-directory (directories can not
1846 * have a link count > 1) and it was added in the transaction
1847 * that was not committed, make sure we fixup the link count of
1848 * the inode it the entry points to. Otherwise something like
1849 * the following would result in a directory pointing to an
1850 * inode with a wrong link that does not account for this dir
1851 * entry:
1852 *
1853 * mkdir testdir
1854 * touch testdir/foo
1855 * touch testdir/bar
1856 * sync
1857 *
1858 * ln testdir/bar testdir/bar_link
1859 * ln testdir/foo testdir/foo_link
1860 * xfs_io -c "fsync" testdir/bar
1861 *
1862 * <power failure>
1863 *
1864 * mount fs, log replay happens
1865 *
1866 * File foo would remain with a link count of 1 when it has two
1867 * entries pointing to it in the directory testdir. This would
1868 * make it impossible to ever delete the parent directory has
1869 * it would result in stale dentries that can never be deleted.
1870 */
1871 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1872 struct btrfs_key di_key;
1873
1874 if (!fixup_path) {
1875 fixup_path = btrfs_alloc_path();
1876 if (!fixup_path) {
1877 ret = -ENOMEM;
1878 break;
1879 }
1880 }
1881
1882 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1883 ret = link_to_fixup_dir(trans, root, fixup_path,
1884 di_key.objectid);
1885 if (ret)
1886 break;
1887 }
1888 ret = 0;
1889 }
1890 btrfs_free_path(fixup_path);
1891 return ret;
1892}
1893
1894/*
1895 * directory replay has two parts. There are the standard directory
1896 * items in the log copied from the subvolume, and range items
1897 * created in the log while the subvolume was logged.
1898 *
1899 * The range items tell us which parts of the key space the log
1900 * is authoritative for. During replay, if a key in the subvolume
1901 * directory is in a logged range item, but not actually in the log
1902 * that means it was deleted from the directory before the fsync
1903 * and should be removed.
1904 */
1905static noinline int find_dir_range(struct btrfs_root *root,
1906 struct btrfs_path *path,
1907 u64 dirid, int key_type,
1908 u64 *start_ret, u64 *end_ret)
1909{
1910 struct btrfs_key key;
1911 u64 found_end;
1912 struct btrfs_dir_log_item *item;
1913 int ret;
1914 int nritems;
1915
1916 if (*start_ret == (u64)-1)
1917 return 1;
1918
1919 key.objectid = dirid;
1920 key.type = key_type;
1921 key.offset = *start_ret;
1922
1923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924 if (ret < 0)
1925 goto out;
1926 if (ret > 0) {
1927 if (path->slots[0] == 0)
1928 goto out;
1929 path->slots[0]--;
1930 }
1931 if (ret != 0)
1932 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933
1934 if (key.type != key_type || key.objectid != dirid) {
1935 ret = 1;
1936 goto next;
1937 }
1938 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939 struct btrfs_dir_log_item);
1940 found_end = btrfs_dir_log_end(path->nodes[0], item);
1941
1942 if (*start_ret >= key.offset && *start_ret <= found_end) {
1943 ret = 0;
1944 *start_ret = key.offset;
1945 *end_ret = found_end;
1946 goto out;
1947 }
1948 ret = 1;
1949next:
1950 /* check the next slot in the tree to see if it is a valid item */
1951 nritems = btrfs_header_nritems(path->nodes[0]);
1952 path->slots[0]++;
1953 if (path->slots[0] >= nritems) {
1954 ret = btrfs_next_leaf(root, path);
1955 if (ret)
1956 goto out;
1957 }
1958
1959 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1960
1961 if (key.type != key_type || key.objectid != dirid) {
1962 ret = 1;
1963 goto out;
1964 }
1965 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1966 struct btrfs_dir_log_item);
1967 found_end = btrfs_dir_log_end(path->nodes[0], item);
1968 *start_ret = key.offset;
1969 *end_ret = found_end;
1970 ret = 0;
1971out:
1972 btrfs_release_path(path);
1973 return ret;
1974}
1975
1976/*
1977 * this looks for a given directory item in the log. If the directory
1978 * item is not in the log, the item is removed and the inode it points
1979 * to is unlinked
1980 */
1981static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 struct btrfs_root *log,
1984 struct btrfs_path *path,
1985 struct btrfs_path *log_path,
1986 struct inode *dir,
1987 struct btrfs_key *dir_key)
1988{
1989 struct btrfs_fs_info *fs_info = root->fs_info;
1990 int ret;
1991 struct extent_buffer *eb;
1992 int slot;
1993 u32 item_size;
1994 struct btrfs_dir_item *di;
1995 struct btrfs_dir_item *log_di;
1996 int name_len;
1997 unsigned long ptr;
1998 unsigned long ptr_end;
1999 char *name;
2000 struct inode *inode;
2001 struct btrfs_key location;
2002
2003again:
2004 eb = path->nodes[0];
2005 slot = path->slots[0];
2006 item_size = btrfs_item_size_nr(eb, slot);
2007 ptr = btrfs_item_ptr_offset(eb, slot);
2008 ptr_end = ptr + item_size;
2009 while (ptr < ptr_end) {
2010 di = (struct btrfs_dir_item *)ptr;
2011 if (verify_dir_item(fs_info, eb, di)) {
2012 ret = -EIO;
2013 goto out;
2014 }
2015
2016 name_len = btrfs_dir_name_len(eb, di);
2017 name = kmalloc(name_len, GFP_NOFS);
2018 if (!name) {
2019 ret = -ENOMEM;
2020 goto out;
2021 }
2022 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023 name_len);
2024 log_di = NULL;
2025 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2026 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027 dir_key->objectid,
2028 name, name_len, 0);
2029 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2030 log_di = btrfs_lookup_dir_index_item(trans, log,
2031 log_path,
2032 dir_key->objectid,
2033 dir_key->offset,
2034 name, name_len, 0);
2035 }
2036 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2037 btrfs_dir_item_key_to_cpu(eb, di, &location);
2038 btrfs_release_path(path);
2039 btrfs_release_path(log_path);
2040 inode = read_one_inode(root, location.objectid);
2041 if (!inode) {
2042 kfree(name);
2043 return -EIO;
2044 }
2045
2046 ret = link_to_fixup_dir(trans, root,
2047 path, location.objectid);
2048 if (ret) {
2049 kfree(name);
2050 iput(inode);
2051 goto out;
2052 }
2053
2054 inc_nlink(inode);
2055 ret = btrfs_unlink_inode(trans, root, dir, inode,
2056 name, name_len);
2057 if (!ret)
2058 ret = btrfs_run_delayed_items(trans, fs_info);
2059 kfree(name);
2060 iput(inode);
2061 if (ret)
2062 goto out;
2063
2064 /* there might still be more names under this key
2065 * check and repeat if required
2066 */
2067 ret = btrfs_search_slot(NULL, root, dir_key, path,
2068 0, 0);
2069 if (ret == 0)
2070 goto again;
2071 ret = 0;
2072 goto out;
2073 } else if (IS_ERR(log_di)) {
2074 kfree(name);
2075 return PTR_ERR(log_di);
2076 }
2077 btrfs_release_path(log_path);
2078 kfree(name);
2079
2080 ptr = (unsigned long)(di + 1);
2081 ptr += name_len;
2082 }
2083 ret = 0;
2084out:
2085 btrfs_release_path(path);
2086 btrfs_release_path(log_path);
2087 return ret;
2088}
2089
2090static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 const u64 ino)
2095{
2096 struct btrfs_key search_key;
2097 struct btrfs_path *log_path;
2098 int i;
2099 int nritems;
2100 int ret;
2101
2102 log_path = btrfs_alloc_path();
2103 if (!log_path)
2104 return -ENOMEM;
2105
2106 search_key.objectid = ino;
2107 search_key.type = BTRFS_XATTR_ITEM_KEY;
2108 search_key.offset = 0;
2109again:
2110 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111 if (ret < 0)
2112 goto out;
2113process_leaf:
2114 nritems = btrfs_header_nritems(path->nodes[0]);
2115 for (i = path->slots[0]; i < nritems; i++) {
2116 struct btrfs_key key;
2117 struct btrfs_dir_item *di;
2118 struct btrfs_dir_item *log_di;
2119 u32 total_size;
2120 u32 cur;
2121
2122 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124 ret = 0;
2125 goto out;
2126 }
2127
2128 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129 total_size = btrfs_item_size_nr(path->nodes[0], i);
2130 cur = 0;
2131 while (cur < total_size) {
2132 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134 u32 this_len = sizeof(*di) + name_len + data_len;
2135 char *name;
2136
2137 name = kmalloc(name_len, GFP_NOFS);
2138 if (!name) {
2139 ret = -ENOMEM;
2140 goto out;
2141 }
2142 read_extent_buffer(path->nodes[0], name,
2143 (unsigned long)(di + 1), name_len);
2144
2145 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146 name, name_len, 0);
2147 btrfs_release_path(log_path);
2148 if (!log_di) {
2149 /* Doesn't exist in log tree, so delete it. */
2150 btrfs_release_path(path);
2151 di = btrfs_lookup_xattr(trans, root, path, ino,
2152 name, name_len, -1);
2153 kfree(name);
2154 if (IS_ERR(di)) {
2155 ret = PTR_ERR(di);
2156 goto out;
2157 }
2158 ASSERT(di);
2159 ret = btrfs_delete_one_dir_name(trans, root,
2160 path, di);
2161 if (ret)
2162 goto out;
2163 btrfs_release_path(path);
2164 search_key = key;
2165 goto again;
2166 }
2167 kfree(name);
2168 if (IS_ERR(log_di)) {
2169 ret = PTR_ERR(log_di);
2170 goto out;
2171 }
2172 cur += this_len;
2173 di = (struct btrfs_dir_item *)((char *)di + this_len);
2174 }
2175 }
2176 ret = btrfs_next_leaf(root, path);
2177 if (ret > 0)
2178 ret = 0;
2179 else if (ret == 0)
2180 goto process_leaf;
2181out:
2182 btrfs_free_path(log_path);
2183 btrfs_release_path(path);
2184 return ret;
2185}
2186
2187
2188/*
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes. It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2194 *
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2197 */
2198static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct btrfs_root *log,
2201 struct btrfs_path *path,
2202 u64 dirid, int del_all)
2203{
2204 u64 range_start;
2205 u64 range_end;
2206 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207 int ret = 0;
2208 struct btrfs_key dir_key;
2209 struct btrfs_key found_key;
2210 struct btrfs_path *log_path;
2211 struct inode *dir;
2212
2213 dir_key.objectid = dirid;
2214 dir_key.type = BTRFS_DIR_ITEM_KEY;
2215 log_path = btrfs_alloc_path();
2216 if (!log_path)
2217 return -ENOMEM;
2218
2219 dir = read_one_inode(root, dirid);
2220 /* it isn't an error if the inode isn't there, that can happen
2221 * because we replay the deletes before we copy in the inode item
2222 * from the log
2223 */
2224 if (!dir) {
2225 btrfs_free_path(log_path);
2226 return 0;
2227 }
2228again:
2229 range_start = 0;
2230 range_end = 0;
2231 while (1) {
2232 if (del_all)
2233 range_end = (u64)-1;
2234 else {
2235 ret = find_dir_range(log, path, dirid, key_type,
2236 &range_start, &range_end);
2237 if (ret != 0)
2238 break;
2239 }
2240
2241 dir_key.offset = range_start;
2242 while (1) {
2243 int nritems;
2244 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245 0, 0);
2246 if (ret < 0)
2247 goto out;
2248
2249 nritems = btrfs_header_nritems(path->nodes[0]);
2250 if (path->slots[0] >= nritems) {
2251 ret = btrfs_next_leaf(root, path);
2252 if (ret)
2253 break;
2254 }
2255 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256 path->slots[0]);
2257 if (found_key.objectid != dirid ||
2258 found_key.type != dir_key.type)
2259 goto next_type;
2260
2261 if (found_key.offset > range_end)
2262 break;
2263
2264 ret = check_item_in_log(trans, root, log, path,
2265 log_path, dir,
2266 &found_key);
2267 if (ret)
2268 goto out;
2269 if (found_key.offset == (u64)-1)
2270 break;
2271 dir_key.offset = found_key.offset + 1;
2272 }
2273 btrfs_release_path(path);
2274 if (range_end == (u64)-1)
2275 break;
2276 range_start = range_end + 1;
2277 }
2278
2279next_type:
2280 ret = 0;
2281 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283 dir_key.type = BTRFS_DIR_INDEX_KEY;
2284 btrfs_release_path(path);
2285 goto again;
2286 }
2287out:
2288 btrfs_release_path(path);
2289 btrfs_free_path(log_path);
2290 iput(dir);
2291 return ret;
2292}
2293
2294/*
2295 * the process_func used to replay items from the log tree. This
2296 * gets called in two different stages. The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2298 *
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume. The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2304 */
2305static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306 struct walk_control *wc, u64 gen)
2307{
2308 int nritems;
2309 struct btrfs_path *path;
2310 struct btrfs_root *root = wc->replay_dest;
2311 struct btrfs_key key;
2312 int level;
2313 int i;
2314 int ret;
2315
2316 ret = btrfs_read_buffer(eb, gen);
2317 if (ret)
2318 return ret;
2319
2320 level = btrfs_header_level(eb);
2321
2322 if (level != 0)
2323 return 0;
2324
2325 path = btrfs_alloc_path();
2326 if (!path)
2327 return -ENOMEM;
2328
2329 nritems = btrfs_header_nritems(eb);
2330 for (i = 0; i < nritems; i++) {
2331 btrfs_item_key_to_cpu(eb, &key, i);
2332
2333 /* inode keys are done during the first stage */
2334 if (key.type == BTRFS_INODE_ITEM_KEY &&
2335 wc->stage == LOG_WALK_REPLAY_INODES) {
2336 struct btrfs_inode_item *inode_item;
2337 u32 mode;
2338
2339 inode_item = btrfs_item_ptr(eb, i,
2340 struct btrfs_inode_item);
2341 ret = replay_xattr_deletes(wc->trans, root, log,
2342 path, key.objectid);
2343 if (ret)
2344 break;
2345 mode = btrfs_inode_mode(eb, inode_item);
2346 if (S_ISDIR(mode)) {
2347 ret = replay_dir_deletes(wc->trans,
2348 root, log, path, key.objectid, 0);
2349 if (ret)
2350 break;
2351 }
2352 ret = overwrite_item(wc->trans, root, path,
2353 eb, i, &key);
2354 if (ret)
2355 break;
2356
2357 /* for regular files, make sure corresponding
2358 * orphan item exist. extents past the new EOF
2359 * will be truncated later by orphan cleanup.
2360 */
2361 if (S_ISREG(mode)) {
2362 ret = insert_orphan_item(wc->trans, root,
2363 key.objectid);
2364 if (ret)
2365 break;
2366 }
2367
2368 ret = link_to_fixup_dir(wc->trans, root,
2369 path, key.objectid);
2370 if (ret)
2371 break;
2372 }
2373
2374 if (key.type == BTRFS_DIR_INDEX_KEY &&
2375 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376 ret = replay_one_dir_item(wc->trans, root, path,
2377 eb, i, &key);
2378 if (ret)
2379 break;
2380 }
2381
2382 if (wc->stage < LOG_WALK_REPLAY_ALL)
2383 continue;
2384
2385 /* these keys are simply copied */
2386 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387 ret = overwrite_item(wc->trans, root, path,
2388 eb, i, &key);
2389 if (ret)
2390 break;
2391 } else if (key.type == BTRFS_INODE_REF_KEY ||
2392 key.type == BTRFS_INODE_EXTREF_KEY) {
2393 ret = add_inode_ref(wc->trans, root, log, path,
2394 eb, i, &key);
2395 if (ret && ret != -ENOENT)
2396 break;
2397 ret = 0;
2398 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399 ret = replay_one_extent(wc->trans, root, path,
2400 eb, i, &key);
2401 if (ret)
2402 break;
2403 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2404 ret = replay_one_dir_item(wc->trans, root, path,
2405 eb, i, &key);
2406 if (ret)
2407 break;
2408 }
2409 }
2410 btrfs_free_path(path);
2411 return ret;
2412}
2413
2414static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2415 struct btrfs_root *root,
2416 struct btrfs_path *path, int *level,
2417 struct walk_control *wc)
2418{
2419 struct btrfs_fs_info *fs_info = root->fs_info;
2420 u64 root_owner;
2421 u64 bytenr;
2422 u64 ptr_gen;
2423 struct extent_buffer *next;
2424 struct extent_buffer *cur;
2425 struct extent_buffer *parent;
2426 u32 blocksize;
2427 int ret = 0;
2428
2429 WARN_ON(*level < 0);
2430 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431
2432 while (*level > 0) {
2433 WARN_ON(*level < 0);
2434 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435 cur = path->nodes[*level];
2436
2437 WARN_ON(btrfs_header_level(cur) != *level);
2438
2439 if (path->slots[*level] >=
2440 btrfs_header_nritems(cur))
2441 break;
2442
2443 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2445 blocksize = fs_info->nodesize;
2446
2447 parent = path->nodes[*level];
2448 root_owner = btrfs_header_owner(parent);
2449
2450 next = btrfs_find_create_tree_block(fs_info, bytenr);
2451 if (IS_ERR(next))
2452 return PTR_ERR(next);
2453
2454 if (*level == 1) {
2455 ret = wc->process_func(root, next, wc, ptr_gen);
2456 if (ret) {
2457 free_extent_buffer(next);
2458 return ret;
2459 }
2460
2461 path->slots[*level]++;
2462 if (wc->free) {
2463 ret = btrfs_read_buffer(next, ptr_gen);
2464 if (ret) {
2465 free_extent_buffer(next);
2466 return ret;
2467 }
2468
2469 if (trans) {
2470 btrfs_tree_lock(next);
2471 btrfs_set_lock_blocking(next);
2472 clean_tree_block(trans, fs_info, next);
2473 btrfs_wait_tree_block_writeback(next);
2474 btrfs_tree_unlock(next);
2475 }
2476
2477 WARN_ON(root_owner !=
2478 BTRFS_TREE_LOG_OBJECTID);
2479 ret = btrfs_free_and_pin_reserved_extent(
2480 fs_info, bytenr,
2481 blocksize);
2482 if (ret) {
2483 free_extent_buffer(next);
2484 return ret;
2485 }
2486 }
2487 free_extent_buffer(next);
2488 continue;
2489 }
2490 ret = btrfs_read_buffer(next, ptr_gen);
2491 if (ret) {
2492 free_extent_buffer(next);
2493 return ret;
2494 }
2495
2496 WARN_ON(*level <= 0);
2497 if (path->nodes[*level-1])
2498 free_extent_buffer(path->nodes[*level-1]);
2499 path->nodes[*level-1] = next;
2500 *level = btrfs_header_level(next);
2501 path->slots[*level] = 0;
2502 cond_resched();
2503 }
2504 WARN_ON(*level < 0);
2505 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2506
2507 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2508
2509 cond_resched();
2510 return 0;
2511}
2512
2513static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2514 struct btrfs_root *root,
2515 struct btrfs_path *path, int *level,
2516 struct walk_control *wc)
2517{
2518 struct btrfs_fs_info *fs_info = root->fs_info;
2519 u64 root_owner;
2520 int i;
2521 int slot;
2522 int ret;
2523
2524 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2525 slot = path->slots[i];
2526 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2527 path->slots[i]++;
2528 *level = i;
2529 WARN_ON(*level == 0);
2530 return 0;
2531 } else {
2532 struct extent_buffer *parent;
2533 if (path->nodes[*level] == root->node)
2534 parent = path->nodes[*level];
2535 else
2536 parent = path->nodes[*level + 1];
2537
2538 root_owner = btrfs_header_owner(parent);
2539 ret = wc->process_func(root, path->nodes[*level], wc,
2540 btrfs_header_generation(path->nodes[*level]));
2541 if (ret)
2542 return ret;
2543
2544 if (wc->free) {
2545 struct extent_buffer *next;
2546
2547 next = path->nodes[*level];
2548
2549 if (trans) {
2550 btrfs_tree_lock(next);
2551 btrfs_set_lock_blocking(next);
2552 clean_tree_block(trans, fs_info, next);
2553 btrfs_wait_tree_block_writeback(next);
2554 btrfs_tree_unlock(next);
2555 }
2556
2557 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2558 ret = btrfs_free_and_pin_reserved_extent(
2559 fs_info,
2560 path->nodes[*level]->start,
2561 path->nodes[*level]->len);
2562 if (ret)
2563 return ret;
2564 }
2565 free_extent_buffer(path->nodes[*level]);
2566 path->nodes[*level] = NULL;
2567 *level = i + 1;
2568 }
2569 }
2570 return 1;
2571}
2572
2573/*
2574 * drop the reference count on the tree rooted at 'snap'. This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2576 * decremented.
2577 */
2578static int walk_log_tree(struct btrfs_trans_handle *trans,
2579 struct btrfs_root *log, struct walk_control *wc)
2580{
2581 struct btrfs_fs_info *fs_info = log->fs_info;
2582 int ret = 0;
2583 int wret;
2584 int level;
2585 struct btrfs_path *path;
2586 int orig_level;
2587
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2591
2592 level = btrfs_header_level(log->node);
2593 orig_level = level;
2594 path->nodes[level] = log->node;
2595 extent_buffer_get(log->node);
2596 path->slots[level] = 0;
2597
2598 while (1) {
2599 wret = walk_down_log_tree(trans, log, path, &level, wc);
2600 if (wret > 0)
2601 break;
2602 if (wret < 0) {
2603 ret = wret;
2604 goto out;
2605 }
2606
2607 wret = walk_up_log_tree(trans, log, path, &level, wc);
2608 if (wret > 0)
2609 break;
2610 if (wret < 0) {
2611 ret = wret;
2612 goto out;
2613 }
2614 }
2615
2616 /* was the root node processed? if not, catch it here */
2617 if (path->nodes[orig_level]) {
2618 ret = wc->process_func(log, path->nodes[orig_level], wc,
2619 btrfs_header_generation(path->nodes[orig_level]));
2620 if (ret)
2621 goto out;
2622 if (wc->free) {
2623 struct extent_buffer *next;
2624
2625 next = path->nodes[orig_level];
2626
2627 if (trans) {
2628 btrfs_tree_lock(next);
2629 btrfs_set_lock_blocking(next);
2630 clean_tree_block(trans, fs_info, next);
2631 btrfs_wait_tree_block_writeback(next);
2632 btrfs_tree_unlock(next);
2633 }
2634
2635 WARN_ON(log->root_key.objectid !=
2636 BTRFS_TREE_LOG_OBJECTID);
2637 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2638 next->start, next->len);
2639 if (ret)
2640 goto out;
2641 }
2642 }
2643
2644out:
2645 btrfs_free_path(path);
2646 return ret;
2647}
2648
2649/*
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2652 */
2653static int update_log_root(struct btrfs_trans_handle *trans,
2654 struct btrfs_root *log)
2655{
2656 struct btrfs_fs_info *fs_info = log->fs_info;
2657 int ret;
2658
2659 if (log->log_transid == 1) {
2660 /* insert root item on the first sync */
2661 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2662 &log->root_key, &log->root_item);
2663 } else {
2664 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2665 &log->root_key, &log->root_item);
2666 }
2667 return ret;
2668}
2669
2670static void wait_log_commit(struct btrfs_root *root, int transid)
2671{
2672 DEFINE_WAIT(wait);
2673 int index = transid % 2;
2674
2675 /*
2676 * we only allow two pending log transactions at a time,
2677 * so we know that if ours is more than 2 older than the
2678 * current transaction, we're done
2679 */
2680 do {
2681 prepare_to_wait(&root->log_commit_wait[index],
2682 &wait, TASK_UNINTERRUPTIBLE);
2683 mutex_unlock(&root->log_mutex);
2684
2685 if (root->log_transid_committed < transid &&
2686 atomic_read(&root->log_commit[index]))
2687 schedule();
2688
2689 finish_wait(&root->log_commit_wait[index], &wait);
2690 mutex_lock(&root->log_mutex);
2691 } while (root->log_transid_committed < transid &&
2692 atomic_read(&root->log_commit[index]));
2693}
2694
2695static void wait_for_writer(struct btrfs_root *root)
2696{
2697 DEFINE_WAIT(wait);
2698
2699 while (atomic_read(&root->log_writers)) {
2700 prepare_to_wait(&root->log_writer_wait,
2701 &wait, TASK_UNINTERRUPTIBLE);
2702 mutex_unlock(&root->log_mutex);
2703 if (atomic_read(&root->log_writers))
2704 schedule();
2705 finish_wait(&root->log_writer_wait, &wait);
2706 mutex_lock(&root->log_mutex);
2707 }
2708}
2709
2710static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2711 struct btrfs_log_ctx *ctx)
2712{
2713 if (!ctx)
2714 return;
2715
2716 mutex_lock(&root->log_mutex);
2717 list_del_init(&ctx->list);
2718 mutex_unlock(&root->log_mutex);
2719}
2720
2721/*
2722 * Invoked in log mutex context, or be sure there is no other task which
2723 * can access the list.
2724 */
2725static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2726 int index, int error)
2727{
2728 struct btrfs_log_ctx *ctx;
2729 struct btrfs_log_ctx *safe;
2730
2731 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2732 list_del_init(&ctx->list);
2733 ctx->log_ret = error;
2734 }
2735
2736 INIT_LIST_HEAD(&root->log_ctxs[index]);
2737}
2738
2739/*
2740 * btrfs_sync_log does sends a given tree log down to the disk and
2741 * updates the super blocks to record it. When this call is done,
2742 * you know that any inodes previously logged are safely on disk only
2743 * if it returns 0.
2744 *
2745 * Any other return value means you need to call btrfs_commit_transaction.
2746 * Some of the edge cases for fsyncing directories that have had unlinks
2747 * or renames done in the past mean that sometimes the only safe
2748 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2749 * that has happened.
2750 */
2751int btrfs_sync_log(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2753{
2754 int index1;
2755 int index2;
2756 int mark;
2757 int ret;
2758 struct btrfs_fs_info *fs_info = root->fs_info;
2759 struct btrfs_root *log = root->log_root;
2760 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2761 int log_transid = 0;
2762 struct btrfs_log_ctx root_log_ctx;
2763 struct blk_plug plug;
2764
2765 mutex_lock(&root->log_mutex);
2766 log_transid = ctx->log_transid;
2767 if (root->log_transid_committed >= log_transid) {
2768 mutex_unlock(&root->log_mutex);
2769 return ctx->log_ret;
2770 }
2771
2772 index1 = log_transid % 2;
2773 if (atomic_read(&root->log_commit[index1])) {
2774 wait_log_commit(root, log_transid);
2775 mutex_unlock(&root->log_mutex);
2776 return ctx->log_ret;
2777 }
2778 ASSERT(log_transid == root->log_transid);
2779 atomic_set(&root->log_commit[index1], 1);
2780
2781 /* wait for previous tree log sync to complete */
2782 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2783 wait_log_commit(root, log_transid - 1);
2784
2785 while (1) {
2786 int batch = atomic_read(&root->log_batch);
2787 /* when we're on an ssd, just kick the log commit out */
2788 if (!btrfs_test_opt(fs_info, SSD) &&
2789 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2790 mutex_unlock(&root->log_mutex);
2791 schedule_timeout_uninterruptible(1);
2792 mutex_lock(&root->log_mutex);
2793 }
2794 wait_for_writer(root);
2795 if (batch == atomic_read(&root->log_batch))
2796 break;
2797 }
2798
2799 /* bail out if we need to do a full commit */
2800 if (btrfs_need_log_full_commit(fs_info, trans)) {
2801 ret = -EAGAIN;
2802 btrfs_free_logged_extents(log, log_transid);
2803 mutex_unlock(&root->log_mutex);
2804 goto out;
2805 }
2806
2807 if (log_transid % 2 == 0)
2808 mark = EXTENT_DIRTY;
2809 else
2810 mark = EXTENT_NEW;
2811
2812 /* we start IO on all the marked extents here, but we don't actually
2813 * wait for them until later.
2814 */
2815 blk_start_plug(&plug);
2816 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2817 if (ret) {
2818 blk_finish_plug(&plug);
2819 btrfs_abort_transaction(trans, ret);
2820 btrfs_free_logged_extents(log, log_transid);
2821 btrfs_set_log_full_commit(fs_info, trans);
2822 mutex_unlock(&root->log_mutex);
2823 goto out;
2824 }
2825
2826 btrfs_set_root_node(&log->root_item, log->node);
2827
2828 root->log_transid++;
2829 log->log_transid = root->log_transid;
2830 root->log_start_pid = 0;
2831 /*
2832 * IO has been started, blocks of the log tree have WRITTEN flag set
2833 * in their headers. new modifications of the log will be written to
2834 * new positions. so it's safe to allow log writers to go in.
2835 */
2836 mutex_unlock(&root->log_mutex);
2837
2838 btrfs_init_log_ctx(&root_log_ctx, NULL);
2839
2840 mutex_lock(&log_root_tree->log_mutex);
2841 atomic_inc(&log_root_tree->log_batch);
2842 atomic_inc(&log_root_tree->log_writers);
2843
2844 index2 = log_root_tree->log_transid % 2;
2845 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2846 root_log_ctx.log_transid = log_root_tree->log_transid;
2847
2848 mutex_unlock(&log_root_tree->log_mutex);
2849
2850 ret = update_log_root(trans, log);
2851
2852 mutex_lock(&log_root_tree->log_mutex);
2853 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2854 /*
2855 * Implicit memory barrier after atomic_dec_and_test
2856 */
2857 if (waitqueue_active(&log_root_tree->log_writer_wait))
2858 wake_up(&log_root_tree->log_writer_wait);
2859 }
2860
2861 if (ret) {
2862 if (!list_empty(&root_log_ctx.list))
2863 list_del_init(&root_log_ctx.list);
2864
2865 blk_finish_plug(&plug);
2866 btrfs_set_log_full_commit(fs_info, trans);
2867
2868 if (ret != -ENOSPC) {
2869 btrfs_abort_transaction(trans, ret);
2870 mutex_unlock(&log_root_tree->log_mutex);
2871 goto out;
2872 }
2873 btrfs_wait_tree_log_extents(log, mark);
2874 btrfs_free_logged_extents(log, log_transid);
2875 mutex_unlock(&log_root_tree->log_mutex);
2876 ret = -EAGAIN;
2877 goto out;
2878 }
2879
2880 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2881 blk_finish_plug(&plug);
2882 list_del_init(&root_log_ctx.list);
2883 mutex_unlock(&log_root_tree->log_mutex);
2884 ret = root_log_ctx.log_ret;
2885 goto out;
2886 }
2887
2888 index2 = root_log_ctx.log_transid % 2;
2889 if (atomic_read(&log_root_tree->log_commit[index2])) {
2890 blk_finish_plug(&plug);
2891 ret = btrfs_wait_tree_log_extents(log, mark);
2892 btrfs_wait_logged_extents(trans, log, log_transid);
2893 wait_log_commit(log_root_tree,
2894 root_log_ctx.log_transid);
2895 mutex_unlock(&log_root_tree->log_mutex);
2896 if (!ret)
2897 ret = root_log_ctx.log_ret;
2898 goto out;
2899 }
2900 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2901 atomic_set(&log_root_tree->log_commit[index2], 1);
2902
2903 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2904 wait_log_commit(log_root_tree,
2905 root_log_ctx.log_transid - 1);
2906 }
2907
2908 wait_for_writer(log_root_tree);
2909
2910 /*
2911 * now that we've moved on to the tree of log tree roots,
2912 * check the full commit flag again
2913 */
2914 if (btrfs_need_log_full_commit(fs_info, trans)) {
2915 blk_finish_plug(&plug);
2916 btrfs_wait_tree_log_extents(log, mark);
2917 btrfs_free_logged_extents(log, log_transid);
2918 mutex_unlock(&log_root_tree->log_mutex);
2919 ret = -EAGAIN;
2920 goto out_wake_log_root;
2921 }
2922
2923 ret = btrfs_write_marked_extents(fs_info,
2924 &log_root_tree->dirty_log_pages,
2925 EXTENT_DIRTY | EXTENT_NEW);
2926 blk_finish_plug(&plug);
2927 if (ret) {
2928 btrfs_set_log_full_commit(fs_info, trans);
2929 btrfs_abort_transaction(trans, ret);
2930 btrfs_free_logged_extents(log, log_transid);
2931 mutex_unlock(&log_root_tree->log_mutex);
2932 goto out_wake_log_root;
2933 }
2934 ret = btrfs_wait_tree_log_extents(log, mark);
2935 if (!ret)
2936 ret = btrfs_wait_tree_log_extents(log_root_tree,
2937 EXTENT_NEW | EXTENT_DIRTY);
2938 if (ret) {
2939 btrfs_set_log_full_commit(fs_info, trans);
2940 btrfs_free_logged_extents(log, log_transid);
2941 mutex_unlock(&log_root_tree->log_mutex);
2942 goto out_wake_log_root;
2943 }
2944 btrfs_wait_logged_extents(trans, log, log_transid);
2945
2946 btrfs_set_super_log_root(fs_info->super_for_commit,
2947 log_root_tree->node->start);
2948 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2949 btrfs_header_level(log_root_tree->node));
2950
2951 log_root_tree->log_transid++;
2952 mutex_unlock(&log_root_tree->log_mutex);
2953
2954 /*
2955 * nobody else is going to jump in and write the the ctree
2956 * super here because the log_commit atomic below is protecting
2957 * us. We must be called with a transaction handle pinning
2958 * the running transaction open, so a full commit can't hop
2959 * in and cause problems either.
2960 */
2961 ret = write_ctree_super(trans, fs_info, 1);
2962 if (ret) {
2963 btrfs_set_log_full_commit(fs_info, trans);
2964 btrfs_abort_transaction(trans, ret);
2965 goto out_wake_log_root;
2966 }
2967
2968 mutex_lock(&root->log_mutex);
2969 if (root->last_log_commit < log_transid)
2970 root->last_log_commit = log_transid;
2971 mutex_unlock(&root->log_mutex);
2972
2973out_wake_log_root:
2974 mutex_lock(&log_root_tree->log_mutex);
2975 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2976
2977 log_root_tree->log_transid_committed++;
2978 atomic_set(&log_root_tree->log_commit[index2], 0);
2979 mutex_unlock(&log_root_tree->log_mutex);
2980
2981 /*
2982 * The barrier before waitqueue_active is implied by mutex_unlock
2983 */
2984 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2985 wake_up(&log_root_tree->log_commit_wait[index2]);
2986out:
2987 mutex_lock(&root->log_mutex);
2988 btrfs_remove_all_log_ctxs(root, index1, ret);
2989 root->log_transid_committed++;
2990 atomic_set(&root->log_commit[index1], 0);
2991 mutex_unlock(&root->log_mutex);
2992
2993 /*
2994 * The barrier before waitqueue_active is implied by mutex_unlock
2995 */
2996 if (waitqueue_active(&root->log_commit_wait[index1]))
2997 wake_up(&root->log_commit_wait[index1]);
2998 return ret;
2999}
3000
3001static void free_log_tree(struct btrfs_trans_handle *trans,
3002 struct btrfs_root *log)
3003{
3004 int ret;
3005 u64 start;
3006 u64 end;
3007 struct walk_control wc = {
3008 .free = 1,
3009 .process_func = process_one_buffer
3010 };
3011
3012 ret = walk_log_tree(trans, log, &wc);
3013 /* I don't think this can happen but just in case */
3014 if (ret)
3015 btrfs_abort_transaction(trans, ret);
3016
3017 while (1) {
3018 ret = find_first_extent_bit(&log->dirty_log_pages,
3019 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3020 NULL);
3021 if (ret)
3022 break;
3023
3024 clear_extent_bits(&log->dirty_log_pages, start, end,
3025 EXTENT_DIRTY | EXTENT_NEW);
3026 }
3027
3028 /*
3029 * We may have short-circuited the log tree with the full commit logic
3030 * and left ordered extents on our list, so clear these out to keep us
3031 * from leaking inodes and memory.
3032 */
3033 btrfs_free_logged_extents(log, 0);
3034 btrfs_free_logged_extents(log, 1);
3035
3036 free_extent_buffer(log->node);
3037 kfree(log);
3038}
3039
3040/*
3041 * free all the extents used by the tree log. This should be called
3042 * at commit time of the full transaction
3043 */
3044int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3045{
3046 if (root->log_root) {
3047 free_log_tree(trans, root->log_root);
3048 root->log_root = NULL;
3049 }
3050 return 0;
3051}
3052
3053int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3054 struct btrfs_fs_info *fs_info)
3055{
3056 if (fs_info->log_root_tree) {
3057 free_log_tree(trans, fs_info->log_root_tree);
3058 fs_info->log_root_tree = NULL;
3059 }
3060 return 0;
3061}
3062
3063/*
3064 * If both a file and directory are logged, and unlinks or renames are
3065 * mixed in, we have a few interesting corners:
3066 *
3067 * create file X in dir Y
3068 * link file X to X.link in dir Y
3069 * fsync file X
3070 * unlink file X but leave X.link
3071 * fsync dir Y
3072 *
3073 * After a crash we would expect only X.link to exist. But file X
3074 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 *
3076 * We solve this by removing directory entries and inode backrefs from the
3077 * log when a file that was logged in the current transaction is
3078 * unlinked. Any later fsync will include the updated log entries, and
3079 * we'll be able to reconstruct the proper directory items from backrefs.
3080 *
3081 * This optimizations allows us to avoid relogging the entire inode
3082 * or the entire directory.
3083 */
3084int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 const char *name, int name_len,
3087 struct inode *dir, u64 index)
3088{
3089 struct btrfs_root *log;
3090 struct btrfs_dir_item *di;
3091 struct btrfs_path *path;
3092 int ret;
3093 int err = 0;
3094 int bytes_del = 0;
3095 u64 dir_ino = btrfs_ino(dir);
3096
3097 if (BTRFS_I(dir)->logged_trans < trans->transid)
3098 return 0;
3099
3100 ret = join_running_log_trans(root);
3101 if (ret)
3102 return 0;
3103
3104 mutex_lock(&BTRFS_I(dir)->log_mutex);
3105
3106 log = root->log_root;
3107 path = btrfs_alloc_path();
3108 if (!path) {
3109 err = -ENOMEM;
3110 goto out_unlock;
3111 }
3112
3113 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3114 name, name_len, -1);
3115 if (IS_ERR(di)) {
3116 err = PTR_ERR(di);
3117 goto fail;
3118 }
3119 if (di) {
3120 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3121 bytes_del += name_len;
3122 if (ret) {
3123 err = ret;
3124 goto fail;
3125 }
3126 }
3127 btrfs_release_path(path);
3128 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3129 index, name, name_len, -1);
3130 if (IS_ERR(di)) {
3131 err = PTR_ERR(di);
3132 goto fail;
3133 }
3134 if (di) {
3135 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3136 bytes_del += name_len;
3137 if (ret) {
3138 err = ret;
3139 goto fail;
3140 }
3141 }
3142
3143 /* update the directory size in the log to reflect the names
3144 * we have removed
3145 */
3146 if (bytes_del) {
3147 struct btrfs_key key;
3148
3149 key.objectid = dir_ino;
3150 key.offset = 0;
3151 key.type = BTRFS_INODE_ITEM_KEY;
3152 btrfs_release_path(path);
3153
3154 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3155 if (ret < 0) {
3156 err = ret;
3157 goto fail;
3158 }
3159 if (ret == 0) {
3160 struct btrfs_inode_item *item;
3161 u64 i_size;
3162
3163 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3164 struct btrfs_inode_item);
3165 i_size = btrfs_inode_size(path->nodes[0], item);
3166 if (i_size > bytes_del)
3167 i_size -= bytes_del;
3168 else
3169 i_size = 0;
3170 btrfs_set_inode_size(path->nodes[0], item, i_size);
3171 btrfs_mark_buffer_dirty(path->nodes[0]);
3172 } else
3173 ret = 0;
3174 btrfs_release_path(path);
3175 }
3176fail:
3177 btrfs_free_path(path);
3178out_unlock:
3179 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3180 if (ret == -ENOSPC) {
3181 btrfs_set_log_full_commit(root->fs_info, trans);
3182 ret = 0;
3183 } else if (ret < 0)
3184 btrfs_abort_transaction(trans, ret);
3185
3186 btrfs_end_log_trans(root);
3187
3188 return err;
3189}
3190
3191/* see comments for btrfs_del_dir_entries_in_log */
3192int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3193 struct btrfs_root *root,
3194 const char *name, int name_len,
3195 struct inode *inode, u64 dirid)
3196{
3197 struct btrfs_fs_info *fs_info = root->fs_info;
3198 struct btrfs_root *log;
3199 u64 index;
3200 int ret;
3201
3202 if (BTRFS_I(inode)->logged_trans < trans->transid)
3203 return 0;
3204
3205 ret = join_running_log_trans(root);
3206 if (ret)
3207 return 0;
3208 log = root->log_root;
3209 mutex_lock(&BTRFS_I(inode)->log_mutex);
3210
3211 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3212 dirid, &index);
3213 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3214 if (ret == -ENOSPC) {
3215 btrfs_set_log_full_commit(fs_info, trans);
3216 ret = 0;
3217 } else if (ret < 0 && ret != -ENOENT)
3218 btrfs_abort_transaction(trans, ret);
3219 btrfs_end_log_trans(root);
3220
3221 return ret;
3222}
3223
3224/*
3225 * creates a range item in the log for 'dirid'. first_offset and
3226 * last_offset tell us which parts of the key space the log should
3227 * be considered authoritative for.
3228 */
3229static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3230 struct btrfs_root *log,
3231 struct btrfs_path *path,
3232 int key_type, u64 dirid,
3233 u64 first_offset, u64 last_offset)
3234{
3235 int ret;
3236 struct btrfs_key key;
3237 struct btrfs_dir_log_item *item;
3238
3239 key.objectid = dirid;
3240 key.offset = first_offset;
3241 if (key_type == BTRFS_DIR_ITEM_KEY)
3242 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3243 else
3244 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3245 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3246 if (ret)
3247 return ret;
3248
3249 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3250 struct btrfs_dir_log_item);
3251 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3252 btrfs_mark_buffer_dirty(path->nodes[0]);
3253 btrfs_release_path(path);
3254 return 0;
3255}
3256
3257/*
3258 * log all the items included in the current transaction for a given
3259 * directory. This also creates the range items in the log tree required
3260 * to replay anything deleted before the fsync
3261 */
3262static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root, struct inode *inode,
3264 struct btrfs_path *path,
3265 struct btrfs_path *dst_path, int key_type,
3266 struct btrfs_log_ctx *ctx,
3267 u64 min_offset, u64 *last_offset_ret)
3268{
3269 struct btrfs_key min_key;
3270 struct btrfs_root *log = root->log_root;
3271 struct extent_buffer *src;
3272 int err = 0;
3273 int ret;
3274 int i;
3275 int nritems;
3276 u64 first_offset = min_offset;
3277 u64 last_offset = (u64)-1;
3278 u64 ino = btrfs_ino(inode);
3279
3280 log = root->log_root;
3281
3282 min_key.objectid = ino;
3283 min_key.type = key_type;
3284 min_key.offset = min_offset;
3285
3286 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3287
3288 /*
3289 * we didn't find anything from this transaction, see if there
3290 * is anything at all
3291 */
3292 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3293 min_key.objectid = ino;
3294 min_key.type = key_type;
3295 min_key.offset = (u64)-1;
3296 btrfs_release_path(path);
3297 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3298 if (ret < 0) {
3299 btrfs_release_path(path);
3300 return ret;
3301 }
3302 ret = btrfs_previous_item(root, path, ino, key_type);
3303
3304 /* if ret == 0 there are items for this type,
3305 * create a range to tell us the last key of this type.
3306 * otherwise, there are no items in this directory after
3307 * *min_offset, and we create a range to indicate that.
3308 */
3309 if (ret == 0) {
3310 struct btrfs_key tmp;
3311 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3312 path->slots[0]);
3313 if (key_type == tmp.type)
3314 first_offset = max(min_offset, tmp.offset) + 1;
3315 }
3316 goto done;
3317 }
3318
3319 /* go backward to find any previous key */
3320 ret = btrfs_previous_item(root, path, ino, key_type);
3321 if (ret == 0) {
3322 struct btrfs_key tmp;
3323 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3324 if (key_type == tmp.type) {
3325 first_offset = tmp.offset;
3326 ret = overwrite_item(trans, log, dst_path,
3327 path->nodes[0], path->slots[0],
3328 &tmp);
3329 if (ret) {
3330 err = ret;
3331 goto done;
3332 }
3333 }
3334 }
3335 btrfs_release_path(path);
3336
3337 /* find the first key from this transaction again */
3338 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3339 if (WARN_ON(ret != 0))
3340 goto done;
3341
3342 /*
3343 * we have a block from this transaction, log every item in it
3344 * from our directory
3345 */
3346 while (1) {
3347 struct btrfs_key tmp;
3348 src = path->nodes[0];
3349 nritems = btrfs_header_nritems(src);
3350 for (i = path->slots[0]; i < nritems; i++) {
3351 struct btrfs_dir_item *di;
3352
3353 btrfs_item_key_to_cpu(src, &min_key, i);
3354
3355 if (min_key.objectid != ino || min_key.type != key_type)
3356 goto done;
3357 ret = overwrite_item(trans, log, dst_path, src, i,
3358 &min_key);
3359 if (ret) {
3360 err = ret;
3361 goto done;
3362 }
3363
3364 /*
3365 * We must make sure that when we log a directory entry,
3366 * the corresponding inode, after log replay, has a
3367 * matching link count. For example:
3368 *
3369 * touch foo
3370 * mkdir mydir
3371 * sync
3372 * ln foo mydir/bar
3373 * xfs_io -c "fsync" mydir
3374 * <crash>
3375 * <mount fs and log replay>
3376 *
3377 * Would result in a fsync log that when replayed, our
3378 * file inode would have a link count of 1, but we get
3379 * two directory entries pointing to the same inode.
3380 * After removing one of the names, it would not be
3381 * possible to remove the other name, which resulted
3382 * always in stale file handle errors, and would not
3383 * be possible to rmdir the parent directory, since
3384 * its i_size could never decrement to the value
3385 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386 */
3387 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3388 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389 if (ctx &&
3390 (btrfs_dir_transid(src, di) == trans->transid ||
3391 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3392 tmp.type != BTRFS_ROOT_ITEM_KEY)
3393 ctx->log_new_dentries = true;
3394 }
3395 path->slots[0] = nritems;
3396
3397 /*
3398 * look ahead to the next item and see if it is also
3399 * from this directory and from this transaction
3400 */
3401 ret = btrfs_next_leaf(root, path);
3402 if (ret == 1) {
3403 last_offset = (u64)-1;
3404 goto done;
3405 }
3406 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3407 if (tmp.objectid != ino || tmp.type != key_type) {
3408 last_offset = (u64)-1;
3409 goto done;
3410 }
3411 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3412 ret = overwrite_item(trans, log, dst_path,
3413 path->nodes[0], path->slots[0],
3414 &tmp);
3415 if (ret)
3416 err = ret;
3417 else
3418 last_offset = tmp.offset;
3419 goto done;
3420 }
3421 }
3422done:
3423 btrfs_release_path(path);
3424 btrfs_release_path(dst_path);
3425
3426 if (err == 0) {
3427 *last_offset_ret = last_offset;
3428 /*
3429 * insert the log range keys to indicate where the log
3430 * is valid
3431 */
3432 ret = insert_dir_log_key(trans, log, path, key_type,
3433 ino, first_offset, last_offset);
3434 if (ret)
3435 err = ret;
3436 }
3437 return err;
3438}
3439
3440/*
3441 * logging directories is very similar to logging inodes, We find all the items
3442 * from the current transaction and write them to the log.
3443 *
3444 * The recovery code scans the directory in the subvolume, and if it finds a
3445 * key in the range logged that is not present in the log tree, then it means
3446 * that dir entry was unlinked during the transaction.
3447 *
3448 * In order for that scan to work, we must include one key smaller than
3449 * the smallest logged by this transaction and one key larger than the largest
3450 * key logged by this transaction.
3451 */
3452static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3453 struct btrfs_root *root, struct inode *inode,
3454 struct btrfs_path *path,
3455 struct btrfs_path *dst_path,
3456 struct btrfs_log_ctx *ctx)
3457{
3458 u64 min_key;
3459 u64 max_key;
3460 int ret;
3461 int key_type = BTRFS_DIR_ITEM_KEY;
3462
3463again:
3464 min_key = 0;
3465 max_key = 0;
3466 while (1) {
3467 ret = log_dir_items(trans, root, inode, path,
3468 dst_path, key_type, ctx, min_key,
3469 &max_key);
3470 if (ret)
3471 return ret;
3472 if (max_key == (u64)-1)
3473 break;
3474 min_key = max_key + 1;
3475 }
3476
3477 if (key_type == BTRFS_DIR_ITEM_KEY) {
3478 key_type = BTRFS_DIR_INDEX_KEY;
3479 goto again;
3480 }
3481 return 0;
3482}
3483
3484/*
3485 * a helper function to drop items from the log before we relog an
3486 * inode. max_key_type indicates the highest item type to remove.
3487 * This cannot be run for file data extents because it does not
3488 * free the extents they point to.
3489 */
3490static int drop_objectid_items(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *log,
3492 struct btrfs_path *path,
3493 u64 objectid, int max_key_type)
3494{
3495 int ret;
3496 struct btrfs_key key;
3497 struct btrfs_key found_key;
3498 int start_slot;
3499
3500 key.objectid = objectid;
3501 key.type = max_key_type;
3502 key.offset = (u64)-1;
3503
3504 while (1) {
3505 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3506 BUG_ON(ret == 0); /* Logic error */
3507 if (ret < 0)
3508 break;
3509
3510 if (path->slots[0] == 0)
3511 break;
3512
3513 path->slots[0]--;
3514 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3515 path->slots[0]);
3516
3517 if (found_key.objectid != objectid)
3518 break;
3519
3520 found_key.offset = 0;
3521 found_key.type = 0;
3522 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3523 &start_slot);
3524
3525 ret = btrfs_del_items(trans, log, path, start_slot,
3526 path->slots[0] - start_slot + 1);
3527 /*
3528 * If start slot isn't 0 then we don't need to re-search, we've
3529 * found the last guy with the objectid in this tree.
3530 */
3531 if (ret || start_slot != 0)
3532 break;
3533 btrfs_release_path(path);
3534 }
3535 btrfs_release_path(path);
3536 if (ret > 0)
3537 ret = 0;
3538 return ret;
3539}
3540
3541static void fill_inode_item(struct btrfs_trans_handle *trans,
3542 struct extent_buffer *leaf,
3543 struct btrfs_inode_item *item,
3544 struct inode *inode, int log_inode_only,
3545 u64 logged_isize)
3546{
3547 struct btrfs_map_token token;
3548
3549 btrfs_init_map_token(&token);
3550
3551 if (log_inode_only) {
3552 /* set the generation to zero so the recover code
3553 * can tell the difference between an logging
3554 * just to say 'this inode exists' and a logging
3555 * to say 'update this inode with these values'
3556 */
3557 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3558 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3559 } else {
3560 btrfs_set_token_inode_generation(leaf, item,
3561 BTRFS_I(inode)->generation,
3562 &token);
3563 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3564 }
3565
3566 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3567 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3568 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3569 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3570
3571 btrfs_set_token_timespec_sec(leaf, &item->atime,
3572 inode->i_atime.tv_sec, &token);
3573 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3574 inode->i_atime.tv_nsec, &token);
3575
3576 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3577 inode->i_mtime.tv_sec, &token);
3578 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3579 inode->i_mtime.tv_nsec, &token);
3580
3581 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3582 inode->i_ctime.tv_sec, &token);
3583 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3584 inode->i_ctime.tv_nsec, &token);
3585
3586 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3587 &token);
3588
3589 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3590 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3591 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3592 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3593 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3594}
3595
3596static int log_inode_item(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *log, struct btrfs_path *path,
3598 struct inode *inode)
3599{
3600 struct btrfs_inode_item *inode_item;
3601 int ret;
3602
3603 ret = btrfs_insert_empty_item(trans, log, path,
3604 &BTRFS_I(inode)->location,
3605 sizeof(*inode_item));
3606 if (ret && ret != -EEXIST)
3607 return ret;
3608 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609 struct btrfs_inode_item);
3610 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3611 btrfs_release_path(path);
3612 return 0;
3613}
3614
3615static noinline int copy_items(struct btrfs_trans_handle *trans,
3616 struct inode *inode,
3617 struct btrfs_path *dst_path,
3618 struct btrfs_path *src_path, u64 *last_extent,
3619 int start_slot, int nr, int inode_only,
3620 u64 logged_isize)
3621{
3622 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3623 unsigned long src_offset;
3624 unsigned long dst_offset;
3625 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3626 struct btrfs_file_extent_item *extent;
3627 struct btrfs_inode_item *inode_item;
3628 struct extent_buffer *src = src_path->nodes[0];
3629 struct btrfs_key first_key, last_key, key;
3630 int ret;
3631 struct btrfs_key *ins_keys;
3632 u32 *ins_sizes;
3633 char *ins_data;
3634 int i;
3635 struct list_head ordered_sums;
3636 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3637 bool has_extents = false;
3638 bool need_find_last_extent = true;
3639 bool done = false;
3640
3641 INIT_LIST_HEAD(&ordered_sums);
3642
3643 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3644 nr * sizeof(u32), GFP_NOFS);
3645 if (!ins_data)
3646 return -ENOMEM;
3647
3648 first_key.objectid = (u64)-1;
3649
3650 ins_sizes = (u32 *)ins_data;
3651 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3652
3653 for (i = 0; i < nr; i++) {
3654 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3655 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3656 }
3657 ret = btrfs_insert_empty_items(trans, log, dst_path,
3658 ins_keys, ins_sizes, nr);
3659 if (ret) {
3660 kfree(ins_data);
3661 return ret;
3662 }
3663
3664 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3665 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3666 dst_path->slots[0]);
3667
3668 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3669
3670 if ((i == (nr - 1)))
3671 last_key = ins_keys[i];
3672
3673 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3674 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3675 dst_path->slots[0],
3676 struct btrfs_inode_item);
3677 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3678 inode, inode_only == LOG_INODE_EXISTS,
3679 logged_isize);
3680 } else {
3681 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3682 src_offset, ins_sizes[i]);
3683 }
3684
3685 /*
3686 * We set need_find_last_extent here in case we know we were
3687 * processing other items and then walk into the first extent in
3688 * the inode. If we don't hit an extent then nothing changes,
3689 * we'll do the last search the next time around.
3690 */
3691 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3692 has_extents = true;
3693 if (first_key.objectid == (u64)-1)
3694 first_key = ins_keys[i];
3695 } else {
3696 need_find_last_extent = false;
3697 }
3698
3699 /* take a reference on file data extents so that truncates
3700 * or deletes of this inode don't have to relog the inode
3701 * again
3702 */
3703 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3704 !skip_csum) {
3705 int found_type;
3706 extent = btrfs_item_ptr(src, start_slot + i,
3707 struct btrfs_file_extent_item);
3708
3709 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3710 continue;
3711
3712 found_type = btrfs_file_extent_type(src, extent);
3713 if (found_type == BTRFS_FILE_EXTENT_REG) {
3714 u64 ds, dl, cs, cl;
3715 ds = btrfs_file_extent_disk_bytenr(src,
3716 extent);
3717 /* ds == 0 is a hole */
3718 if (ds == 0)
3719 continue;
3720
3721 dl = btrfs_file_extent_disk_num_bytes(src,
3722 extent);
3723 cs = btrfs_file_extent_offset(src, extent);
3724 cl = btrfs_file_extent_num_bytes(src,
3725 extent);
3726 if (btrfs_file_extent_compression(src,
3727 extent)) {
3728 cs = 0;
3729 cl = dl;
3730 }
3731
3732 ret = btrfs_lookup_csums_range(
3733 fs_info->csum_root,
3734 ds + cs, ds + cs + cl - 1,
3735 &ordered_sums, 0);
3736 if (ret) {
3737 btrfs_release_path(dst_path);
3738 kfree(ins_data);
3739 return ret;
3740 }
3741 }
3742 }
3743 }
3744
3745 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3746 btrfs_release_path(dst_path);
3747 kfree(ins_data);
3748
3749 /*
3750 * we have to do this after the loop above to avoid changing the
3751 * log tree while trying to change the log tree.
3752 */
3753 ret = 0;
3754 while (!list_empty(&ordered_sums)) {
3755 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3756 struct btrfs_ordered_sum,
3757 list);
3758 if (!ret)
3759 ret = btrfs_csum_file_blocks(trans, log, sums);
3760 list_del(&sums->list);
3761 kfree(sums);
3762 }
3763
3764 if (!has_extents)
3765 return ret;
3766
3767 if (need_find_last_extent && *last_extent == first_key.offset) {
3768 /*
3769 * We don't have any leafs between our current one and the one
3770 * we processed before that can have file extent items for our
3771 * inode (and have a generation number smaller than our current
3772 * transaction id).
3773 */
3774 need_find_last_extent = false;
3775 }
3776
3777 /*
3778 * Because we use btrfs_search_forward we could skip leaves that were
3779 * not modified and then assume *last_extent is valid when it really
3780 * isn't. So back up to the previous leaf and read the end of the last
3781 * extent before we go and fill in holes.
3782 */
3783 if (need_find_last_extent) {
3784 u64 len;
3785
3786 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3787 if (ret < 0)
3788 return ret;
3789 if (ret)
3790 goto fill_holes;
3791 if (src_path->slots[0])
3792 src_path->slots[0]--;
3793 src = src_path->nodes[0];
3794 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3795 if (key.objectid != btrfs_ino(inode) ||
3796 key.type != BTRFS_EXTENT_DATA_KEY)
3797 goto fill_holes;
3798 extent = btrfs_item_ptr(src, src_path->slots[0],
3799 struct btrfs_file_extent_item);
3800 if (btrfs_file_extent_type(src, extent) ==
3801 BTRFS_FILE_EXTENT_INLINE) {
3802 len = btrfs_file_extent_inline_len(src,
3803 src_path->slots[0],
3804 extent);
3805 *last_extent = ALIGN(key.offset + len,
3806 fs_info->sectorsize);
3807 } else {
3808 len = btrfs_file_extent_num_bytes(src, extent);
3809 *last_extent = key.offset + len;
3810 }
3811 }
3812fill_holes:
3813 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3814 * things could have happened
3815 *
3816 * 1) A merge could have happened, so we could currently be on a leaf
3817 * that holds what we were copying in the first place.
3818 * 2) A split could have happened, and now not all of the items we want
3819 * are on the same leaf.
3820 *
3821 * So we need to adjust how we search for holes, we need to drop the
3822 * path and re-search for the first extent key we found, and then walk
3823 * forward until we hit the last one we copied.
3824 */
3825 if (need_find_last_extent) {
3826 /* btrfs_prev_leaf could return 1 without releasing the path */
3827 btrfs_release_path(src_path);
3828 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3829 src_path, 0, 0);
3830 if (ret < 0)
3831 return ret;
3832 ASSERT(ret == 0);
3833 src = src_path->nodes[0];
3834 i = src_path->slots[0];
3835 } else {
3836 i = start_slot;
3837 }
3838
3839 /*
3840 * Ok so here we need to go through and fill in any holes we may have
3841 * to make sure that holes are punched for those areas in case they had
3842 * extents previously.
3843 */
3844 while (!done) {
3845 u64 offset, len;
3846 u64 extent_end;
3847
3848 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3849 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3850 if (ret < 0)
3851 return ret;
3852 ASSERT(ret == 0);
3853 src = src_path->nodes[0];
3854 i = 0;
3855 }
3856
3857 btrfs_item_key_to_cpu(src, &key, i);
3858 if (!btrfs_comp_cpu_keys(&key, &last_key))
3859 done = true;
3860 if (key.objectid != btrfs_ino(inode) ||
3861 key.type != BTRFS_EXTENT_DATA_KEY) {
3862 i++;
3863 continue;
3864 }
3865 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866 if (btrfs_file_extent_type(src, extent) ==
3867 BTRFS_FILE_EXTENT_INLINE) {
3868 len = btrfs_file_extent_inline_len(src, i, extent);
3869 extent_end = ALIGN(key.offset + len,
3870 fs_info->sectorsize);
3871 } else {
3872 len = btrfs_file_extent_num_bytes(src, extent);
3873 extent_end = key.offset + len;
3874 }
3875 i++;
3876
3877 if (*last_extent == key.offset) {
3878 *last_extent = extent_end;
3879 continue;
3880 }
3881 offset = *last_extent;
3882 len = key.offset - *last_extent;
3883 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884 offset, 0, 0, len, 0, len, 0,
3885 0, 0);
3886 if (ret)
3887 break;
3888 *last_extent = extent_end;
3889 }
3890 /*
3891 * Need to let the callers know we dropped the path so they should
3892 * re-search.
3893 */
3894 if (!ret && need_find_last_extent)
3895 ret = 1;
3896 return ret;
3897}
3898
3899static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3900{
3901 struct extent_map *em1, *em2;
3902
3903 em1 = list_entry(a, struct extent_map, list);
3904 em2 = list_entry(b, struct extent_map, list);
3905
3906 if (em1->start < em2->start)
3907 return -1;
3908 else if (em1->start > em2->start)
3909 return 1;
3910 return 0;
3911}
3912
3913static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3914 struct inode *inode,
3915 struct btrfs_root *root,
3916 const struct extent_map *em,
3917 const struct list_head *logged_list,
3918 bool *ordered_io_error)
3919{
3920 struct btrfs_fs_info *fs_info = root->fs_info;
3921 struct btrfs_ordered_extent *ordered;
3922 struct btrfs_root *log = root->log_root;
3923 u64 mod_start = em->mod_start;
3924 u64 mod_len = em->mod_len;
3925 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3926 u64 csum_offset;
3927 u64 csum_len;
3928 LIST_HEAD(ordered_sums);
3929 int ret = 0;
3930
3931 *ordered_io_error = false;
3932
3933 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3934 em->block_start == EXTENT_MAP_HOLE)
3935 return 0;
3936
3937 /*
3938 * Wait far any ordered extent that covers our extent map. If it
3939 * finishes without an error, first check and see if our csums are on
3940 * our outstanding ordered extents.
3941 */
3942 list_for_each_entry(ordered, logged_list, log_list) {
3943 struct btrfs_ordered_sum *sum;
3944
3945 if (!mod_len)
3946 break;
3947
3948 if (ordered->file_offset + ordered->len <= mod_start ||
3949 mod_start + mod_len <= ordered->file_offset)
3950 continue;
3951
3952 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3953 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3954 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3955 const u64 start = ordered->file_offset;
3956 const u64 end = ordered->file_offset + ordered->len - 1;
3957
3958 WARN_ON(ordered->inode != inode);
3959 filemap_fdatawrite_range(inode->i_mapping, start, end);
3960 }
3961
3962 wait_event(ordered->wait,
3963 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3964 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965
3966 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967 /*
3968 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3969 * i_mapping flags, so that the next fsync won't get
3970 * an outdated io error too.
3971 */
3972 filemap_check_errors(inode->i_mapping);
3973 *ordered_io_error = true;
3974 break;
3975 }
3976 /*
3977 * We are going to copy all the csums on this ordered extent, so
3978 * go ahead and adjust mod_start and mod_len in case this
3979 * ordered extent has already been logged.
3980 */
3981 if (ordered->file_offset > mod_start) {
3982 if (ordered->file_offset + ordered->len >=
3983 mod_start + mod_len)
3984 mod_len = ordered->file_offset - mod_start;
3985 /*
3986 * If we have this case
3987 *
3988 * |--------- logged extent ---------|
3989 * |----- ordered extent ----|
3990 *
3991 * Just don't mess with mod_start and mod_len, we'll
3992 * just end up logging more csums than we need and it
3993 * will be ok.
3994 */
3995 } else {
3996 if (ordered->file_offset + ordered->len <
3997 mod_start + mod_len) {
3998 mod_len = (mod_start + mod_len) -
3999 (ordered->file_offset + ordered->len);
4000 mod_start = ordered->file_offset +
4001 ordered->len;
4002 } else {
4003 mod_len = 0;
4004 }
4005 }
4006
4007 if (skip_csum)
4008 continue;
4009
4010 /*
4011 * To keep us from looping for the above case of an ordered
4012 * extent that falls inside of the logged extent.
4013 */
4014 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4015 &ordered->flags))
4016 continue;
4017
4018 list_for_each_entry(sum, &ordered->list, list) {
4019 ret = btrfs_csum_file_blocks(trans, log, sum);
4020 if (ret)
4021 break;
4022 }
4023 }
4024
4025 if (*ordered_io_error || !mod_len || ret || skip_csum)
4026 return ret;
4027
4028 if (em->compress_type) {
4029 csum_offset = 0;
4030 csum_len = max(em->block_len, em->orig_block_len);
4031 } else {
4032 csum_offset = mod_start - em->start;
4033 csum_len = mod_len;
4034 }
4035
4036 /* block start is already adjusted for the file extent offset. */
4037 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4038 em->block_start + csum_offset,
4039 em->block_start + csum_offset +
4040 csum_len - 1, &ordered_sums, 0);
4041 if (ret)
4042 return ret;
4043
4044 while (!list_empty(&ordered_sums)) {
4045 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4046 struct btrfs_ordered_sum,
4047 list);
4048 if (!ret)
4049 ret = btrfs_csum_file_blocks(trans, log, sums);
4050 list_del(&sums->list);
4051 kfree(sums);
4052 }
4053
4054 return ret;
4055}
4056
4057static int log_one_extent(struct btrfs_trans_handle *trans,
4058 struct inode *inode, struct btrfs_root *root,
4059 const struct extent_map *em,
4060 struct btrfs_path *path,
4061 const struct list_head *logged_list,
4062 struct btrfs_log_ctx *ctx)
4063{
4064 struct btrfs_root *log = root->log_root;
4065 struct btrfs_file_extent_item *fi;
4066 struct extent_buffer *leaf;
4067 struct btrfs_map_token token;
4068 struct btrfs_key key;
4069 u64 extent_offset = em->start - em->orig_start;
4070 u64 block_len;
4071 int ret;
4072 int extent_inserted = 0;
4073 bool ordered_io_err = false;
4074
4075 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4076 &ordered_io_err);
4077 if (ret)
4078 return ret;
4079
4080 if (ordered_io_err) {
4081 ctx->io_err = -EIO;
4082 return 0;
4083 }
4084
4085 btrfs_init_map_token(&token);
4086
4087 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4088 em->start + em->len, NULL, 0, 1,
4089 sizeof(*fi), &extent_inserted);
4090 if (ret)
4091 return ret;
4092
4093 if (!extent_inserted) {
4094 key.objectid = btrfs_ino(inode);
4095 key.type = BTRFS_EXTENT_DATA_KEY;
4096 key.offset = em->start;
4097
4098 ret = btrfs_insert_empty_item(trans, log, path, &key,
4099 sizeof(*fi));
4100 if (ret)
4101 return ret;
4102 }
4103 leaf = path->nodes[0];
4104 fi = btrfs_item_ptr(leaf, path->slots[0],
4105 struct btrfs_file_extent_item);
4106
4107 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108 &token);
4109 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4110 btrfs_set_token_file_extent_type(leaf, fi,
4111 BTRFS_FILE_EXTENT_PREALLOC,
4112 &token);
4113 else
4114 btrfs_set_token_file_extent_type(leaf, fi,
4115 BTRFS_FILE_EXTENT_REG,
4116 &token);
4117
4118 block_len = max(em->block_len, em->orig_block_len);
4119 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4120 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4121 em->block_start,
4122 &token);
4123 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124 &token);
4125 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4126 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127 em->block_start -
4128 extent_offset, &token);
4129 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130 &token);
4131 } else {
4132 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4133 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4134 &token);
4135 }
4136
4137 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4138 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4139 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4140 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141 &token);
4142 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4143 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4144 btrfs_mark_buffer_dirty(leaf);
4145
4146 btrfs_release_path(path);
4147
4148 return ret;
4149}
4150
4151static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4152 struct btrfs_root *root,
4153 struct inode *inode,
4154 struct btrfs_path *path,
4155 struct list_head *logged_list,
4156 struct btrfs_log_ctx *ctx,
4157 const u64 start,
4158 const u64 end)
4159{
4160 struct extent_map *em, *n;
4161 struct list_head extents;
4162 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4163 u64 test_gen;
4164 int ret = 0;
4165 int num = 0;
4166
4167 INIT_LIST_HEAD(&extents);
4168
4169 down_write(&BTRFS_I(inode)->dio_sem);
4170 write_lock(&tree->lock);
4171 test_gen = root->fs_info->last_trans_committed;
4172
4173 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4174 list_del_init(&em->list);
4175
4176 /*
4177 * Just an arbitrary number, this can be really CPU intensive
4178 * once we start getting a lot of extents, and really once we
4179 * have a bunch of extents we just want to commit since it will
4180 * be faster.
4181 */
4182 if (++num > 32768) {
4183 list_del_init(&tree->modified_extents);
4184 ret = -EFBIG;
4185 goto process;
4186 }
4187
4188 if (em->generation <= test_gen)
4189 continue;
4190 /* Need a ref to keep it from getting evicted from cache */
4191 atomic_inc(&em->refs);
4192 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4193 list_add_tail(&em->list, &extents);
4194 num++;
4195 }
4196
4197 list_sort(NULL, &extents, extent_cmp);
4198 btrfs_get_logged_extents(inode, logged_list, start, end);
4199 /*
4200 * Some ordered extents started by fsync might have completed
4201 * before we could collect them into the list logged_list, which
4202 * means they're gone, not in our logged_list nor in the inode's
4203 * ordered tree. We want the application/user space to know an
4204 * error happened while attempting to persist file data so that
4205 * it can take proper action. If such error happened, we leave
4206 * without writing to the log tree and the fsync must report the
4207 * file data write error and not commit the current transaction.
4208 */
4209 ret = filemap_check_errors(inode->i_mapping);
4210 if (ret)
4211 ctx->io_err = ret;
4212process:
4213 while (!list_empty(&extents)) {
4214 em = list_entry(extents.next, struct extent_map, list);
4215
4216 list_del_init(&em->list);
4217
4218 /*
4219 * If we had an error we just need to delete everybody from our
4220 * private list.
4221 */
4222 if (ret) {
4223 clear_em_logging(tree, em);
4224 free_extent_map(em);
4225 continue;
4226 }
4227
4228 write_unlock(&tree->lock);
4229
4230 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231 ctx);
4232 write_lock(&tree->lock);
4233 clear_em_logging(tree, em);
4234 free_extent_map(em);
4235 }
4236 WARN_ON(!list_empty(&extents));
4237 write_unlock(&tree->lock);
4238 up_write(&BTRFS_I(inode)->dio_sem);
4239
4240 btrfs_release_path(path);
4241 return ret;
4242}
4243
4244static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4245 struct btrfs_path *path, u64 *size_ret)
4246{
4247 struct btrfs_key key;
4248 int ret;
4249
4250 key.objectid = btrfs_ino(inode);
4251 key.type = BTRFS_INODE_ITEM_KEY;
4252 key.offset = 0;
4253
4254 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4255 if (ret < 0) {
4256 return ret;
4257 } else if (ret > 0) {
4258 *size_ret = 0;
4259 } else {
4260 struct btrfs_inode_item *item;
4261
4262 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4263 struct btrfs_inode_item);
4264 *size_ret = btrfs_inode_size(path->nodes[0], item);
4265 }
4266
4267 btrfs_release_path(path);
4268 return 0;
4269}
4270
4271/*
4272 * At the moment we always log all xattrs. This is to figure out at log replay
4273 * time which xattrs must have their deletion replayed. If a xattr is missing
4274 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4275 * because if a xattr is deleted, the inode is fsynced and a power failure
4276 * happens, causing the log to be replayed the next time the fs is mounted,
4277 * we want the xattr to not exist anymore (same behaviour as other filesystems
4278 * with a journal, ext3/4, xfs, f2fs, etc).
4279 */
4280static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4281 struct btrfs_root *root,
4282 struct inode *inode,
4283 struct btrfs_path *path,
4284 struct btrfs_path *dst_path)
4285{
4286 int ret;
4287 struct btrfs_key key;
4288 const u64 ino = btrfs_ino(inode);
4289 int ins_nr = 0;
4290 int start_slot = 0;
4291
4292 key.objectid = ino;
4293 key.type = BTRFS_XATTR_ITEM_KEY;
4294 key.offset = 0;
4295
4296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4297 if (ret < 0)
4298 return ret;
4299
4300 while (true) {
4301 int slot = path->slots[0];
4302 struct extent_buffer *leaf = path->nodes[0];
4303 int nritems = btrfs_header_nritems(leaf);
4304
4305 if (slot >= nritems) {
4306 if (ins_nr > 0) {
4307 u64 last_extent = 0;
4308
4309 ret = copy_items(trans, inode, dst_path, path,
4310 &last_extent, start_slot,
4311 ins_nr, 1, 0);
4312 /* can't be 1, extent items aren't processed */
4313 ASSERT(ret <= 0);
4314 if (ret < 0)
4315 return ret;
4316 ins_nr = 0;
4317 }
4318 ret = btrfs_next_leaf(root, path);
4319 if (ret < 0)
4320 return ret;
4321 else if (ret > 0)
4322 break;
4323 continue;
4324 }
4325
4326 btrfs_item_key_to_cpu(leaf, &key, slot);
4327 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4328 break;
4329
4330 if (ins_nr == 0)
4331 start_slot = slot;
4332 ins_nr++;
4333 path->slots[0]++;
4334 cond_resched();
4335 }
4336 if (ins_nr > 0) {
4337 u64 last_extent = 0;
4338
4339 ret = copy_items(trans, inode, dst_path, path,
4340 &last_extent, start_slot,
4341 ins_nr, 1, 0);
4342 /* can't be 1, extent items aren't processed */
4343 ASSERT(ret <= 0);
4344 if (ret < 0)
4345 return ret;
4346 }
4347
4348 return 0;
4349}
4350
4351/*
4352 * If the no holes feature is enabled we need to make sure any hole between the
4353 * last extent and the i_size of our inode is explicitly marked in the log. This
4354 * is to make sure that doing something like:
4355 *
4356 * 1) create file with 128Kb of data
4357 * 2) truncate file to 64Kb
4358 * 3) truncate file to 256Kb
4359 * 4) fsync file
4360 * 5) <crash/power failure>
4361 * 6) mount fs and trigger log replay
4362 *
4363 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4364 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4365 * file correspond to a hole. The presence of explicit holes in a log tree is
4366 * what guarantees that log replay will remove/adjust file extent items in the
4367 * fs/subvol tree.
4368 *
4369 * Here we do not need to care about holes between extents, that is already done
4370 * by copy_items(). We also only need to do this in the full sync path, where we
4371 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4372 * lookup the list of modified extent maps and if any represents a hole, we
4373 * insert a corresponding extent representing a hole in the log tree.
4374 */
4375static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root,
4377 struct inode *inode,
4378 struct btrfs_path *path)
4379{
4380 struct btrfs_fs_info *fs_info = root->fs_info;
4381 int ret;
4382 struct btrfs_key key;
4383 u64 hole_start;
4384 u64 hole_size;
4385 struct extent_buffer *leaf;
4386 struct btrfs_root *log = root->log_root;
4387 const u64 ino = btrfs_ino(inode);
4388 const u64 i_size = i_size_read(inode);
4389
4390 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4391 return 0;
4392
4393 key.objectid = ino;
4394 key.type = BTRFS_EXTENT_DATA_KEY;
4395 key.offset = (u64)-1;
4396
4397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398 ASSERT(ret != 0);
4399 if (ret < 0)
4400 return ret;
4401
4402 ASSERT(path->slots[0] > 0);
4403 path->slots[0]--;
4404 leaf = path->nodes[0];
4405 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406
4407 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4408 /* inode does not have any extents */
4409 hole_start = 0;
4410 hole_size = i_size;
4411 } else {
4412 struct btrfs_file_extent_item *extent;
4413 u64 len;
4414
4415 /*
4416 * If there's an extent beyond i_size, an explicit hole was
4417 * already inserted by copy_items().
4418 */
4419 if (key.offset >= i_size)
4420 return 0;
4421
4422 extent = btrfs_item_ptr(leaf, path->slots[0],
4423 struct btrfs_file_extent_item);
4424
4425 if (btrfs_file_extent_type(leaf, extent) ==
4426 BTRFS_FILE_EXTENT_INLINE) {
4427 len = btrfs_file_extent_inline_len(leaf,
4428 path->slots[0],
4429 extent);
4430 ASSERT(len == i_size);
4431 return 0;
4432 }
4433
4434 len = btrfs_file_extent_num_bytes(leaf, extent);
4435 /* Last extent goes beyond i_size, no need to log a hole. */
4436 if (key.offset + len > i_size)
4437 return 0;
4438 hole_start = key.offset + len;
4439 hole_size = i_size - hole_start;
4440 }
4441 btrfs_release_path(path);
4442
4443 /* Last extent ends at i_size. */
4444 if (hole_size == 0)
4445 return 0;
4446
4447 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4448 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4449 hole_size, 0, hole_size, 0, 0, 0);
4450 return ret;
4451}
4452
4453/*
4454 * When we are logging a new inode X, check if it doesn't have a reference that
4455 * matches the reference from some other inode Y created in a past transaction
4456 * and that was renamed in the current transaction. If we don't do this, then at
4457 * log replay time we can lose inode Y (and all its files if it's a directory):
4458 *
4459 * mkdir /mnt/x
4460 * echo "hello world" > /mnt/x/foobar
4461 * sync
4462 * mv /mnt/x /mnt/y
4463 * mkdir /mnt/x # or touch /mnt/x
4464 * xfs_io -c fsync /mnt/x
4465 * <power fail>
4466 * mount fs, trigger log replay
4467 *
4468 * After the log replay procedure, we would lose the first directory and all its
4469 * files (file foobar).
4470 * For the case where inode Y is not a directory we simply end up losing it:
4471 *
4472 * echo "123" > /mnt/foo
4473 * sync
4474 * mv /mnt/foo /mnt/bar
4475 * echo "abc" > /mnt/foo
4476 * xfs_io -c fsync /mnt/foo
4477 * <power fail>
4478 *
4479 * We also need this for cases where a snapshot entry is replaced by some other
4480 * entry (file or directory) otherwise we end up with an unreplayable log due to
4481 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4482 * if it were a regular entry:
4483 *
4484 * mkdir /mnt/x
4485 * btrfs subvolume snapshot /mnt /mnt/x/snap
4486 * btrfs subvolume delete /mnt/x/snap
4487 * rmdir /mnt/x
4488 * mkdir /mnt/x
4489 * fsync /mnt/x or fsync some new file inside it
4490 * <power fail>
4491 *
4492 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4493 * the same transaction.
4494 */
4495static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496 const int slot,
4497 const struct btrfs_key *key,
4498 struct inode *inode,
4499 u64 *other_ino)
4500{
4501 int ret;
4502 struct btrfs_path *search_path;
4503 char *name = NULL;
4504 u32 name_len = 0;
4505 u32 item_size = btrfs_item_size_nr(eb, slot);
4506 u32 cur_offset = 0;
4507 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508
4509 search_path = btrfs_alloc_path();
4510 if (!search_path)
4511 return -ENOMEM;
4512 search_path->search_commit_root = 1;
4513 search_path->skip_locking = 1;
4514
4515 while (cur_offset < item_size) {
4516 u64 parent;
4517 u32 this_name_len;
4518 u32 this_len;
4519 unsigned long name_ptr;
4520 struct btrfs_dir_item *di;
4521
4522 if (key->type == BTRFS_INODE_REF_KEY) {
4523 struct btrfs_inode_ref *iref;
4524
4525 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4526 parent = key->offset;
4527 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4528 name_ptr = (unsigned long)(iref + 1);
4529 this_len = sizeof(*iref) + this_name_len;
4530 } else {
4531 struct btrfs_inode_extref *extref;
4532
4533 extref = (struct btrfs_inode_extref *)(ptr +
4534 cur_offset);
4535 parent = btrfs_inode_extref_parent(eb, extref);
4536 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4537 name_ptr = (unsigned long)&extref->name;
4538 this_len = sizeof(*extref) + this_name_len;
4539 }
4540
4541 if (this_name_len > name_len) {
4542 char *new_name;
4543
4544 new_name = krealloc(name, this_name_len, GFP_NOFS);
4545 if (!new_name) {
4546 ret = -ENOMEM;
4547 goto out;
4548 }
4549 name_len = this_name_len;
4550 name = new_name;
4551 }
4552
4553 read_extent_buffer(eb, name, name_ptr, this_name_len);
4554 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4555 search_path, parent,
4556 name, this_name_len, 0);
4557 if (di && !IS_ERR(di)) {
4558 struct btrfs_key di_key;
4559
4560 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4561 di, &di_key);
4562 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4563 ret = 1;
4564 *other_ino = di_key.objectid;
4565 } else {
4566 ret = -EAGAIN;
4567 }
4568 goto out;
4569 } else if (IS_ERR(di)) {
4570 ret = PTR_ERR(di);
4571 goto out;
4572 }
4573 btrfs_release_path(search_path);
4574
4575 cur_offset += this_len;
4576 }
4577 ret = 0;
4578out:
4579 btrfs_free_path(search_path);
4580 kfree(name);
4581 return ret;
4582}
4583
4584/* log a single inode in the tree log.
4585 * At least one parent directory for this inode must exist in the tree
4586 * or be logged already.
4587 *
4588 * Any items from this inode changed by the current transaction are copied
4589 * to the log tree. An extra reference is taken on any extents in this
4590 * file, allowing us to avoid a whole pile of corner cases around logging
4591 * blocks that have been removed from the tree.
4592 *
4593 * See LOG_INODE_ALL and related defines for a description of what inode_only
4594 * does.
4595 *
4596 * This handles both files and directories.
4597 */
4598static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4599 struct btrfs_root *root, struct inode *inode,
4600 int inode_only,
4601 const loff_t start,
4602 const loff_t end,
4603 struct btrfs_log_ctx *ctx)
4604{
4605 struct btrfs_fs_info *fs_info = root->fs_info;
4606 struct btrfs_path *path;
4607 struct btrfs_path *dst_path;
4608 struct btrfs_key min_key;
4609 struct btrfs_key max_key;
4610 struct btrfs_root *log = root->log_root;
4611 struct extent_buffer *src = NULL;
4612 LIST_HEAD(logged_list);
4613 u64 last_extent = 0;
4614 int err = 0;
4615 int ret;
4616 int nritems;
4617 int ins_start_slot = 0;
4618 int ins_nr;
4619 bool fast_search = false;
4620 u64 ino = btrfs_ino(inode);
4621 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4622 u64 logged_isize = 0;
4623 bool need_log_inode_item = true;
4624
4625 path = btrfs_alloc_path();
4626 if (!path)
4627 return -ENOMEM;
4628 dst_path = btrfs_alloc_path();
4629 if (!dst_path) {
4630 btrfs_free_path(path);
4631 return -ENOMEM;
4632 }
4633
4634 min_key.objectid = ino;
4635 min_key.type = BTRFS_INODE_ITEM_KEY;
4636 min_key.offset = 0;
4637
4638 max_key.objectid = ino;
4639
4640
4641 /* today the code can only do partial logging of directories */
4642 if (S_ISDIR(inode->i_mode) ||
4643 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4644 &BTRFS_I(inode)->runtime_flags) &&
4645 inode_only >= LOG_INODE_EXISTS))
4646 max_key.type = BTRFS_XATTR_ITEM_KEY;
4647 else
4648 max_key.type = (u8)-1;
4649 max_key.offset = (u64)-1;
4650
4651 /*
4652 * Only run delayed items if we are a dir or a new file.
4653 * Otherwise commit the delayed inode only, which is needed in
4654 * order for the log replay code to mark inodes for link count
4655 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4656 */
4657 if (S_ISDIR(inode->i_mode) ||
4658 BTRFS_I(inode)->generation > fs_info->last_trans_committed)
4659 ret = btrfs_commit_inode_delayed_items(trans, inode);
4660 else
4661 ret = btrfs_commit_inode_delayed_inode(inode);
4662
4663 if (ret) {
4664 btrfs_free_path(path);
4665 btrfs_free_path(dst_path);
4666 return ret;
4667 }
4668
4669 if (inode_only == LOG_OTHER_INODE) {
4670 inode_only = LOG_INODE_EXISTS;
4671 mutex_lock_nested(&BTRFS_I(inode)->log_mutex,
4672 SINGLE_DEPTH_NESTING);
4673 } else {
4674 mutex_lock(&BTRFS_I(inode)->log_mutex);
4675 }
4676
4677 /*
4678 * a brute force approach to making sure we get the most uptodate
4679 * copies of everything.
4680 */
4681 if (S_ISDIR(inode->i_mode)) {
4682 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4683
4684 if (inode_only == LOG_INODE_EXISTS)
4685 max_key_type = BTRFS_XATTR_ITEM_KEY;
4686 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4687 } else {
4688 if (inode_only == LOG_INODE_EXISTS) {
4689 /*
4690 * Make sure the new inode item we write to the log has
4691 * the same isize as the current one (if it exists).
4692 * This is necessary to prevent data loss after log
4693 * replay, and also to prevent doing a wrong expanding
4694 * truncate - for e.g. create file, write 4K into offset
4695 * 0, fsync, write 4K into offset 4096, add hard link,
4696 * fsync some other file (to sync log), power fail - if
4697 * we use the inode's current i_size, after log replay
4698 * we get a 8Kb file, with the last 4Kb extent as a hole
4699 * (zeroes), as if an expanding truncate happened,
4700 * instead of getting a file of 4Kb only.
4701 */
4702 err = logged_inode_size(log, inode, path,
4703 &logged_isize);
4704 if (err)
4705 goto out_unlock;
4706 }
4707 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4708 &BTRFS_I(inode)->runtime_flags)) {
4709 if (inode_only == LOG_INODE_EXISTS) {
4710 max_key.type = BTRFS_XATTR_ITEM_KEY;
4711 ret = drop_objectid_items(trans, log, path, ino,
4712 max_key.type);
4713 } else {
4714 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4715 &BTRFS_I(inode)->runtime_flags);
4716 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4717 &BTRFS_I(inode)->runtime_flags);
4718 while(1) {
4719 ret = btrfs_truncate_inode_items(trans,
4720 log, inode, 0, 0);
4721 if (ret != -EAGAIN)
4722 break;
4723 }
4724 }
4725 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4726 &BTRFS_I(inode)->runtime_flags) ||
4727 inode_only == LOG_INODE_EXISTS) {
4728 if (inode_only == LOG_INODE_ALL)
4729 fast_search = true;
4730 max_key.type = BTRFS_XATTR_ITEM_KEY;
4731 ret = drop_objectid_items(trans, log, path, ino,
4732 max_key.type);
4733 } else {
4734 if (inode_only == LOG_INODE_ALL)
4735 fast_search = true;
4736 goto log_extents;
4737 }
4738
4739 }
4740 if (ret) {
4741 err = ret;
4742 goto out_unlock;
4743 }
4744
4745 while (1) {
4746 ins_nr = 0;
4747 ret = btrfs_search_forward(root, &min_key,
4748 path, trans->transid);
4749 if (ret < 0) {
4750 err = ret;
4751 goto out_unlock;
4752 }
4753 if (ret != 0)
4754 break;
4755again:
4756 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4757 if (min_key.objectid != ino)
4758 break;
4759 if (min_key.type > max_key.type)
4760 break;
4761
4762 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4763 need_log_inode_item = false;
4764
4765 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4766 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4767 BTRFS_I(inode)->generation == trans->transid) {
4768 u64 other_ino = 0;
4769
4770 ret = btrfs_check_ref_name_override(path->nodes[0],
4771 path->slots[0],
4772 &min_key, inode,
4773 &other_ino);
4774 if (ret < 0) {
4775 err = ret;
4776 goto out_unlock;
4777 } else if (ret > 0 && ctx &&
4778 other_ino != btrfs_ino(ctx->inode)) {
4779 struct btrfs_key inode_key;
4780 struct inode *other_inode;
4781
4782 if (ins_nr > 0) {
4783 ins_nr++;
4784 } else {
4785 ins_nr = 1;
4786 ins_start_slot = path->slots[0];
4787 }
4788 ret = copy_items(trans, inode, dst_path, path,
4789 &last_extent, ins_start_slot,
4790 ins_nr, inode_only,
4791 logged_isize);
4792 if (ret < 0) {
4793 err = ret;
4794 goto out_unlock;
4795 }
4796 ins_nr = 0;
4797 btrfs_release_path(path);
4798 inode_key.objectid = other_ino;
4799 inode_key.type = BTRFS_INODE_ITEM_KEY;
4800 inode_key.offset = 0;
4801 other_inode = btrfs_iget(fs_info->sb,
4802 &inode_key, root,
4803 NULL);
4804 /*
4805 * If the other inode that had a conflicting dir
4806 * entry was deleted in the current transaction,
4807 * we don't need to do more work nor fallback to
4808 * a transaction commit.
4809 */
4810 if (IS_ERR(other_inode) &&
4811 PTR_ERR(other_inode) == -ENOENT) {
4812 goto next_key;
4813 } else if (IS_ERR(other_inode)) {
4814 err = PTR_ERR(other_inode);
4815 goto out_unlock;
4816 }
4817 /*
4818 * We are safe logging the other inode without
4819 * acquiring its i_mutex as long as we log with
4820 * the LOG_INODE_EXISTS mode. We're safe against
4821 * concurrent renames of the other inode as well
4822 * because during a rename we pin the log and
4823 * update the log with the new name before we
4824 * unpin it.
4825 */
4826 err = btrfs_log_inode(trans, root, other_inode,
4827 LOG_OTHER_INODE,
4828 0, LLONG_MAX, ctx);
4829 iput(other_inode);
4830 if (err)
4831 goto out_unlock;
4832 else
4833 goto next_key;
4834 }
4835 }
4836
4837 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4838 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4839 if (ins_nr == 0)
4840 goto next_slot;
4841 ret = copy_items(trans, inode, dst_path, path,
4842 &last_extent, ins_start_slot,
4843 ins_nr, inode_only, logged_isize);
4844 if (ret < 0) {
4845 err = ret;
4846 goto out_unlock;
4847 }
4848 ins_nr = 0;
4849 if (ret) {
4850 btrfs_release_path(path);
4851 continue;
4852 }
4853 goto next_slot;
4854 }
4855
4856 src = path->nodes[0];
4857 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4858 ins_nr++;
4859 goto next_slot;
4860 } else if (!ins_nr) {
4861 ins_start_slot = path->slots[0];
4862 ins_nr = 1;
4863 goto next_slot;
4864 }
4865
4866 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4867 ins_start_slot, ins_nr, inode_only,
4868 logged_isize);
4869 if (ret < 0) {
4870 err = ret;
4871 goto out_unlock;
4872 }
4873 if (ret) {
4874 ins_nr = 0;
4875 btrfs_release_path(path);
4876 continue;
4877 }
4878 ins_nr = 1;
4879 ins_start_slot = path->slots[0];
4880next_slot:
4881
4882 nritems = btrfs_header_nritems(path->nodes[0]);
4883 path->slots[0]++;
4884 if (path->slots[0] < nritems) {
4885 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4886 path->slots[0]);
4887 goto again;
4888 }
4889 if (ins_nr) {
4890 ret = copy_items(trans, inode, dst_path, path,
4891 &last_extent, ins_start_slot,
4892 ins_nr, inode_only, logged_isize);
4893 if (ret < 0) {
4894 err = ret;
4895 goto out_unlock;
4896 }
4897 ret = 0;
4898 ins_nr = 0;
4899 }
4900 btrfs_release_path(path);
4901next_key:
4902 if (min_key.offset < (u64)-1) {
4903 min_key.offset++;
4904 } else if (min_key.type < max_key.type) {
4905 min_key.type++;
4906 min_key.offset = 0;
4907 } else {
4908 break;
4909 }
4910 }
4911 if (ins_nr) {
4912 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4913 ins_start_slot, ins_nr, inode_only,
4914 logged_isize);
4915 if (ret < 0) {
4916 err = ret;
4917 goto out_unlock;
4918 }
4919 ret = 0;
4920 ins_nr = 0;
4921 }
4922
4923 btrfs_release_path(path);
4924 btrfs_release_path(dst_path);
4925 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4926 if (err)
4927 goto out_unlock;
4928 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4929 btrfs_release_path(path);
4930 btrfs_release_path(dst_path);
4931 err = btrfs_log_trailing_hole(trans, root, inode, path);
4932 if (err)
4933 goto out_unlock;
4934 }
4935log_extents:
4936 btrfs_release_path(path);
4937 btrfs_release_path(dst_path);
4938 if (need_log_inode_item) {
4939 err = log_inode_item(trans, log, dst_path, inode);
4940 if (err)
4941 goto out_unlock;
4942 }
4943 if (fast_search) {
4944 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4945 &logged_list, ctx, start, end);
4946 if (ret) {
4947 err = ret;
4948 goto out_unlock;
4949 }
4950 } else if (inode_only == LOG_INODE_ALL) {
4951 struct extent_map *em, *n;
4952
4953 write_lock(&em_tree->lock);
4954 /*
4955 * We can't just remove every em if we're called for a ranged
4956 * fsync - that is, one that doesn't cover the whole possible
4957 * file range (0 to LLONG_MAX). This is because we can have
4958 * em's that fall outside the range we're logging and therefore
4959 * their ordered operations haven't completed yet
4960 * (btrfs_finish_ordered_io() not invoked yet). This means we
4961 * didn't get their respective file extent item in the fs/subvol
4962 * tree yet, and need to let the next fast fsync (one which
4963 * consults the list of modified extent maps) find the em so
4964 * that it logs a matching file extent item and waits for the
4965 * respective ordered operation to complete (if it's still
4966 * running).
4967 *
4968 * Removing every em outside the range we're logging would make
4969 * the next fast fsync not log their matching file extent items,
4970 * therefore making us lose data after a log replay.
4971 */
4972 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4973 list) {
4974 const u64 mod_end = em->mod_start + em->mod_len - 1;
4975
4976 if (em->mod_start >= start && mod_end <= end)
4977 list_del_init(&em->list);
4978 }
4979 write_unlock(&em_tree->lock);
4980 }
4981
4982 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4983 ret = log_directory_changes(trans, root, inode, path, dst_path,
4984 ctx);
4985 if (ret) {
4986 err = ret;
4987 goto out_unlock;
4988 }
4989 }
4990
4991 spin_lock(&BTRFS_I(inode)->lock);
4992 BTRFS_I(inode)->logged_trans = trans->transid;
4993 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4994 spin_unlock(&BTRFS_I(inode)->lock);
4995out_unlock:
4996 if (unlikely(err))
4997 btrfs_put_logged_extents(&logged_list);
4998 else
4999 btrfs_submit_logged_extents(&logged_list, log);
5000 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5001
5002 btrfs_free_path(path);
5003 btrfs_free_path(dst_path);
5004 return err;
5005}
5006
5007/*
5008 * Check if we must fallback to a transaction commit when logging an inode.
5009 * This must be called after logging the inode and is used only in the context
5010 * when fsyncing an inode requires the need to log some other inode - in which
5011 * case we can't lock the i_mutex of each other inode we need to log as that
5012 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5013 * log inodes up or down in the hierarchy) or rename operations for example. So
5014 * we take the log_mutex of the inode after we have logged it and then check for
5015 * its last_unlink_trans value - this is safe because any task setting
5016 * last_unlink_trans must take the log_mutex and it must do this before it does
5017 * the actual unlink operation, so if we do this check before a concurrent task
5018 * sets last_unlink_trans it means we've logged a consistent version/state of
5019 * all the inode items, otherwise we are not sure and must do a transaction
5020 * commit (the concurrent task might have only updated last_unlink_trans before
5021 * we logged the inode or it might have also done the unlink).
5022 */
5023static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5024 struct inode *inode)
5025{
5026 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5027 bool ret = false;
5028
5029 mutex_lock(&BTRFS_I(inode)->log_mutex);
5030 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5031 /*
5032 * Make sure any commits to the log are forced to be full
5033 * commits.
5034 */
5035 btrfs_set_log_full_commit(fs_info, trans);
5036 ret = true;
5037 }
5038 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5039
5040 return ret;
5041}
5042
5043/*
5044 * follow the dentry parent pointers up the chain and see if any
5045 * of the directories in it require a full commit before they can
5046 * be logged. Returns zero if nothing special needs to be done or 1 if
5047 * a full commit is required.
5048 */
5049static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5050 struct inode *inode,
5051 struct dentry *parent,
5052 struct super_block *sb,
5053 u64 last_committed)
5054{
5055 int ret = 0;
5056 struct dentry *old_parent = NULL;
5057 struct inode *orig_inode = inode;
5058
5059 /*
5060 * for regular files, if its inode is already on disk, we don't
5061 * have to worry about the parents at all. This is because
5062 * we can use the last_unlink_trans field to record renames
5063 * and other fun in this file.
5064 */
5065 if (S_ISREG(inode->i_mode) &&
5066 BTRFS_I(inode)->generation <= last_committed &&
5067 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5068 goto out;
5069
5070 if (!S_ISDIR(inode->i_mode)) {
5071 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5072 goto out;
5073 inode = d_inode(parent);
5074 }
5075
5076 while (1) {
5077 /*
5078 * If we are logging a directory then we start with our inode,
5079 * not our parent's inode, so we need to skip setting the
5080 * logged_trans so that further down in the log code we don't
5081 * think this inode has already been logged.
5082 */
5083 if (inode != orig_inode)
5084 BTRFS_I(inode)->logged_trans = trans->transid;
5085 smp_mb();
5086
5087 if (btrfs_must_commit_transaction(trans, inode)) {
5088 ret = 1;
5089 break;
5090 }
5091
5092 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5093 break;
5094
5095 if (IS_ROOT(parent)) {
5096 inode = d_inode(parent);
5097 if (btrfs_must_commit_transaction(trans, inode))
5098 ret = 1;
5099 break;
5100 }
5101
5102 parent = dget_parent(parent);
5103 dput(old_parent);
5104 old_parent = parent;
5105 inode = d_inode(parent);
5106
5107 }
5108 dput(old_parent);
5109out:
5110 return ret;
5111}
5112
5113struct btrfs_dir_list {
5114 u64 ino;
5115 struct list_head list;
5116};
5117
5118/*
5119 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5120 * details about the why it is needed.
5121 * This is a recursive operation - if an existing dentry corresponds to a
5122 * directory, that directory's new entries are logged too (same behaviour as
5123 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5124 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5125 * complains about the following circular lock dependency / possible deadlock:
5126 *
5127 * CPU0 CPU1
5128 * ---- ----
5129 * lock(&type->i_mutex_dir_key#3/2);
5130 * lock(sb_internal#2);
5131 * lock(&type->i_mutex_dir_key#3/2);
5132 * lock(&sb->s_type->i_mutex_key#14);
5133 *
5134 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5135 * sb_start_intwrite() in btrfs_start_transaction().
5136 * Not locking i_mutex of the inodes is still safe because:
5137 *
5138 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5139 * that while logging the inode new references (names) are added or removed
5140 * from the inode, leaving the logged inode item with a link count that does
5141 * not match the number of logged inode reference items. This is fine because
5142 * at log replay time we compute the real number of links and correct the
5143 * link count in the inode item (see replay_one_buffer() and
5144 * link_to_fixup_dir());
5145 *
5146 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5147 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5148 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5149 * has a size that doesn't match the sum of the lengths of all the logged
5150 * names. This does not result in a problem because if a dir_item key is
5151 * logged but its matching dir_index key is not logged, at log replay time we
5152 * don't use it to replay the respective name (see replay_one_name()). On the
5153 * other hand if only the dir_index key ends up being logged, the respective
5154 * name is added to the fs/subvol tree with both the dir_item and dir_index
5155 * keys created (see replay_one_name()).
5156 * The directory's inode item with a wrong i_size is not a problem as well,
5157 * since we don't use it at log replay time to set the i_size in the inode
5158 * item of the fs/subvol tree (see overwrite_item()).
5159 */
5160static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5161 struct btrfs_root *root,
5162 struct inode *start_inode,
5163 struct btrfs_log_ctx *ctx)
5164{
5165 struct btrfs_fs_info *fs_info = root->fs_info;
5166 struct btrfs_root *log = root->log_root;
5167 struct btrfs_path *path;
5168 LIST_HEAD(dir_list);
5169 struct btrfs_dir_list *dir_elem;
5170 int ret = 0;
5171
5172 path = btrfs_alloc_path();
5173 if (!path)
5174 return -ENOMEM;
5175
5176 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5177 if (!dir_elem) {
5178 btrfs_free_path(path);
5179 return -ENOMEM;
5180 }
5181 dir_elem->ino = btrfs_ino(start_inode);
5182 list_add_tail(&dir_elem->list, &dir_list);
5183
5184 while (!list_empty(&dir_list)) {
5185 struct extent_buffer *leaf;
5186 struct btrfs_key min_key;
5187 int nritems;
5188 int i;
5189
5190 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5191 list);
5192 if (ret)
5193 goto next_dir_inode;
5194
5195 min_key.objectid = dir_elem->ino;
5196 min_key.type = BTRFS_DIR_ITEM_KEY;
5197 min_key.offset = 0;
5198again:
5199 btrfs_release_path(path);
5200 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5201 if (ret < 0) {
5202 goto next_dir_inode;
5203 } else if (ret > 0) {
5204 ret = 0;
5205 goto next_dir_inode;
5206 }
5207
5208process_leaf:
5209 leaf = path->nodes[0];
5210 nritems = btrfs_header_nritems(leaf);
5211 for (i = path->slots[0]; i < nritems; i++) {
5212 struct btrfs_dir_item *di;
5213 struct btrfs_key di_key;
5214 struct inode *di_inode;
5215 struct btrfs_dir_list *new_dir_elem;
5216 int log_mode = LOG_INODE_EXISTS;
5217 int type;
5218
5219 btrfs_item_key_to_cpu(leaf, &min_key, i);
5220 if (min_key.objectid != dir_elem->ino ||
5221 min_key.type != BTRFS_DIR_ITEM_KEY)
5222 goto next_dir_inode;
5223
5224 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5225 type = btrfs_dir_type(leaf, di);
5226 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5227 type != BTRFS_FT_DIR)
5228 continue;
5229 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5230 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5231 continue;
5232
5233 btrfs_release_path(path);
5234 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5235 if (IS_ERR(di_inode)) {
5236 ret = PTR_ERR(di_inode);
5237 goto next_dir_inode;
5238 }
5239
5240 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5241 iput(di_inode);
5242 break;
5243 }
5244
5245 ctx->log_new_dentries = false;
5246 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5247 log_mode = LOG_INODE_ALL;
5248 ret = btrfs_log_inode(trans, root, di_inode,
5249 log_mode, 0, LLONG_MAX, ctx);
5250 if (!ret &&
5251 btrfs_must_commit_transaction(trans, di_inode))
5252 ret = 1;
5253 iput(di_inode);
5254 if (ret)
5255 goto next_dir_inode;
5256 if (ctx->log_new_dentries) {
5257 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5258 GFP_NOFS);
5259 if (!new_dir_elem) {
5260 ret = -ENOMEM;
5261 goto next_dir_inode;
5262 }
5263 new_dir_elem->ino = di_key.objectid;
5264 list_add_tail(&new_dir_elem->list, &dir_list);
5265 }
5266 break;
5267 }
5268 if (i == nritems) {
5269 ret = btrfs_next_leaf(log, path);
5270 if (ret < 0) {
5271 goto next_dir_inode;
5272 } else if (ret > 0) {
5273 ret = 0;
5274 goto next_dir_inode;
5275 }
5276 goto process_leaf;
5277 }
5278 if (min_key.offset < (u64)-1) {
5279 min_key.offset++;
5280 goto again;
5281 }
5282next_dir_inode:
5283 list_del(&dir_elem->list);
5284 kfree(dir_elem);
5285 }
5286
5287 btrfs_free_path(path);
5288 return ret;
5289}
5290
5291static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5292 struct inode *inode,
5293 struct btrfs_log_ctx *ctx)
5294{
5295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5296 int ret;
5297 struct btrfs_path *path;
5298 struct btrfs_key key;
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 const u64 ino = btrfs_ino(inode);
5301
5302 path = btrfs_alloc_path();
5303 if (!path)
5304 return -ENOMEM;
5305 path->skip_locking = 1;
5306 path->search_commit_root = 1;
5307
5308 key.objectid = ino;
5309 key.type = BTRFS_INODE_REF_KEY;
5310 key.offset = 0;
5311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5312 if (ret < 0)
5313 goto out;
5314
5315 while (true) {
5316 struct extent_buffer *leaf = path->nodes[0];
5317 int slot = path->slots[0];
5318 u32 cur_offset = 0;
5319 u32 item_size;
5320 unsigned long ptr;
5321
5322 if (slot >= btrfs_header_nritems(leaf)) {
5323 ret = btrfs_next_leaf(root, path);
5324 if (ret < 0)
5325 goto out;
5326 else if (ret > 0)
5327 break;
5328 continue;
5329 }
5330
5331 btrfs_item_key_to_cpu(leaf, &key, slot);
5332 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5333 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5334 break;
5335
5336 item_size = btrfs_item_size_nr(leaf, slot);
5337 ptr = btrfs_item_ptr_offset(leaf, slot);
5338 while (cur_offset < item_size) {
5339 struct btrfs_key inode_key;
5340 struct inode *dir_inode;
5341
5342 inode_key.type = BTRFS_INODE_ITEM_KEY;
5343 inode_key.offset = 0;
5344
5345 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5346 struct btrfs_inode_extref *extref;
5347
5348 extref = (struct btrfs_inode_extref *)
5349 (ptr + cur_offset);
5350 inode_key.objectid = btrfs_inode_extref_parent(
5351 leaf, extref);
5352 cur_offset += sizeof(*extref);
5353 cur_offset += btrfs_inode_extref_name_len(leaf,
5354 extref);
5355 } else {
5356 inode_key.objectid = key.offset;
5357 cur_offset = item_size;
5358 }
5359
5360 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5361 root, NULL);
5362 /* If parent inode was deleted, skip it. */
5363 if (IS_ERR(dir_inode))
5364 continue;
5365
5366 if (ctx)
5367 ctx->log_new_dentries = false;
5368 ret = btrfs_log_inode(trans, root, dir_inode,
5369 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5370 if (!ret &&
5371 btrfs_must_commit_transaction(trans, dir_inode))
5372 ret = 1;
5373 if (!ret && ctx && ctx->log_new_dentries)
5374 ret = log_new_dir_dentries(trans, root,
5375 dir_inode, ctx);
5376 iput(dir_inode);
5377 if (ret)
5378 goto out;
5379 }
5380 path->slots[0]++;
5381 }
5382 ret = 0;
5383out:
5384 btrfs_free_path(path);
5385 return ret;
5386}
5387
5388/*
5389 * helper function around btrfs_log_inode to make sure newly created
5390 * parent directories also end up in the log. A minimal inode and backref
5391 * only logging is done of any parent directories that are older than
5392 * the last committed transaction
5393 */
5394static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5395 struct btrfs_root *root, struct inode *inode,
5396 struct dentry *parent,
5397 const loff_t start,
5398 const loff_t end,
5399 int exists_only,
5400 struct btrfs_log_ctx *ctx)
5401{
5402 struct btrfs_fs_info *fs_info = root->fs_info;
5403 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5404 struct super_block *sb;
5405 struct dentry *old_parent = NULL;
5406 int ret = 0;
5407 u64 last_committed = fs_info->last_trans_committed;
5408 bool log_dentries = false;
5409 struct inode *orig_inode = inode;
5410
5411 sb = inode->i_sb;
5412
5413 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5414 ret = 1;
5415 goto end_no_trans;
5416 }
5417
5418 /*
5419 * The prev transaction commit doesn't complete, we need do
5420 * full commit by ourselves.
5421 */
5422 if (fs_info->last_trans_log_full_commit >
5423 fs_info->last_trans_committed) {
5424 ret = 1;
5425 goto end_no_trans;
5426 }
5427
5428 if (root != BTRFS_I(inode)->root ||
5429 btrfs_root_refs(&root->root_item) == 0) {
5430 ret = 1;
5431 goto end_no_trans;
5432 }
5433
5434 ret = check_parent_dirs_for_sync(trans, inode, parent,
5435 sb, last_committed);
5436 if (ret)
5437 goto end_no_trans;
5438
5439 if (btrfs_inode_in_log(inode, trans->transid)) {
5440 ret = BTRFS_NO_LOG_SYNC;
5441 goto end_no_trans;
5442 }
5443
5444 ret = start_log_trans(trans, root, ctx);
5445 if (ret)
5446 goto end_no_trans;
5447
5448 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5449 if (ret)
5450 goto end_trans;
5451
5452 /*
5453 * for regular files, if its inode is already on disk, we don't
5454 * have to worry about the parents at all. This is because
5455 * we can use the last_unlink_trans field to record renames
5456 * and other fun in this file.
5457 */
5458 if (S_ISREG(inode->i_mode) &&
5459 BTRFS_I(inode)->generation <= last_committed &&
5460 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5461 ret = 0;
5462 goto end_trans;
5463 }
5464
5465 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5466 log_dentries = true;
5467
5468 /*
5469 * On unlink we must make sure all our current and old parent directory
5470 * inodes are fully logged. This is to prevent leaving dangling
5471 * directory index entries in directories that were our parents but are
5472 * not anymore. Not doing this results in old parent directory being
5473 * impossible to delete after log replay (rmdir will always fail with
5474 * error -ENOTEMPTY).
5475 *
5476 * Example 1:
5477 *
5478 * mkdir testdir
5479 * touch testdir/foo
5480 * ln testdir/foo testdir/bar
5481 * sync
5482 * unlink testdir/bar
5483 * xfs_io -c fsync testdir/foo
5484 * <power failure>
5485 * mount fs, triggers log replay
5486 *
5487 * If we don't log the parent directory (testdir), after log replay the
5488 * directory still has an entry pointing to the file inode using the bar
5489 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5490 * the file inode has a link count of 1.
5491 *
5492 * Example 2:
5493 *
5494 * mkdir testdir
5495 * touch foo
5496 * ln foo testdir/foo2
5497 * ln foo testdir/foo3
5498 * sync
5499 * unlink testdir/foo3
5500 * xfs_io -c fsync foo
5501 * <power failure>
5502 * mount fs, triggers log replay
5503 *
5504 * Similar as the first example, after log replay the parent directory
5505 * testdir still has an entry pointing to the inode file with name foo3
5506 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5507 * and has a link count of 2.
5508 */
5509 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5510 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5511 if (ret)
5512 goto end_trans;
5513 }
5514
5515 while (1) {
5516 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5517 break;
5518
5519 inode = d_inode(parent);
5520 if (root != BTRFS_I(inode)->root)
5521 break;
5522
5523 if (BTRFS_I(inode)->generation > last_committed) {
5524 ret = btrfs_log_inode(trans, root, inode,
5525 LOG_INODE_EXISTS,
5526 0, LLONG_MAX, ctx);
5527 if (ret)
5528 goto end_trans;
5529 }
5530 if (IS_ROOT(parent))
5531 break;
5532
5533 parent = dget_parent(parent);
5534 dput(old_parent);
5535 old_parent = parent;
5536 }
5537 if (log_dentries)
5538 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5539 else
5540 ret = 0;
5541end_trans:
5542 dput(old_parent);
5543 if (ret < 0) {
5544 btrfs_set_log_full_commit(fs_info, trans);
5545 ret = 1;
5546 }
5547
5548 if (ret)
5549 btrfs_remove_log_ctx(root, ctx);
5550 btrfs_end_log_trans(root);
5551end_no_trans:
5552 return ret;
5553}
5554
5555/*
5556 * it is not safe to log dentry if the chunk root has added new
5557 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5558 * If this returns 1, you must commit the transaction to safely get your
5559 * data on disk.
5560 */
5561int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5562 struct btrfs_root *root, struct dentry *dentry,
5563 const loff_t start,
5564 const loff_t end,
5565 struct btrfs_log_ctx *ctx)
5566{
5567 struct dentry *parent = dget_parent(dentry);
5568 int ret;
5569
5570 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5571 start, end, 0, ctx);
5572 dput(parent);
5573
5574 return ret;
5575}
5576
5577/*
5578 * should be called during mount to recover any replay any log trees
5579 * from the FS
5580 */
5581int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5582{
5583 int ret;
5584 struct btrfs_path *path;
5585 struct btrfs_trans_handle *trans;
5586 struct btrfs_key key;
5587 struct btrfs_key found_key;
5588 struct btrfs_key tmp_key;
5589 struct btrfs_root *log;
5590 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5591 struct walk_control wc = {
5592 .process_func = process_one_buffer,
5593 .stage = 0,
5594 };
5595
5596 path = btrfs_alloc_path();
5597 if (!path)
5598 return -ENOMEM;
5599
5600 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5601
5602 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5603 if (IS_ERR(trans)) {
5604 ret = PTR_ERR(trans);
5605 goto error;
5606 }
5607
5608 wc.trans = trans;
5609 wc.pin = 1;
5610
5611 ret = walk_log_tree(trans, log_root_tree, &wc);
5612 if (ret) {
5613 btrfs_handle_fs_error(fs_info, ret,
5614 "Failed to pin buffers while recovering log root tree.");
5615 goto error;
5616 }
5617
5618again:
5619 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5620 key.offset = (u64)-1;
5621 key.type = BTRFS_ROOT_ITEM_KEY;
5622
5623 while (1) {
5624 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5625
5626 if (ret < 0) {
5627 btrfs_handle_fs_error(fs_info, ret,
5628 "Couldn't find tree log root.");
5629 goto error;
5630 }
5631 if (ret > 0) {
5632 if (path->slots[0] == 0)
5633 break;
5634 path->slots[0]--;
5635 }
5636 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5637 path->slots[0]);
5638 btrfs_release_path(path);
5639 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5640 break;
5641
5642 log = btrfs_read_fs_root(log_root_tree, &found_key);
5643 if (IS_ERR(log)) {
5644 ret = PTR_ERR(log);
5645 btrfs_handle_fs_error(fs_info, ret,
5646 "Couldn't read tree log root.");
5647 goto error;
5648 }
5649
5650 tmp_key.objectid = found_key.offset;
5651 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5652 tmp_key.offset = (u64)-1;
5653
5654 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5655 if (IS_ERR(wc.replay_dest)) {
5656 ret = PTR_ERR(wc.replay_dest);
5657 free_extent_buffer(log->node);
5658 free_extent_buffer(log->commit_root);
5659 kfree(log);
5660 btrfs_handle_fs_error(fs_info, ret,
5661 "Couldn't read target root for tree log recovery.");
5662 goto error;
5663 }
5664
5665 wc.replay_dest->log_root = log;
5666 btrfs_record_root_in_trans(trans, wc.replay_dest);
5667 ret = walk_log_tree(trans, log, &wc);
5668
5669 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5670 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5671 path);
5672 }
5673
5674 key.offset = found_key.offset - 1;
5675 wc.replay_dest->log_root = NULL;
5676 free_extent_buffer(log->node);
5677 free_extent_buffer(log->commit_root);
5678 kfree(log);
5679
5680 if (ret)
5681 goto error;
5682
5683 if (found_key.offset == 0)
5684 break;
5685 }
5686 btrfs_release_path(path);
5687
5688 /* step one is to pin it all, step two is to replay just inodes */
5689 if (wc.pin) {
5690 wc.pin = 0;
5691 wc.process_func = replay_one_buffer;
5692 wc.stage = LOG_WALK_REPLAY_INODES;
5693 goto again;
5694 }
5695 /* step three is to replay everything */
5696 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5697 wc.stage++;
5698 goto again;
5699 }
5700
5701 btrfs_free_path(path);
5702
5703 /* step 4: commit the transaction, which also unpins the blocks */
5704 ret = btrfs_commit_transaction(trans);
5705 if (ret)
5706 return ret;
5707
5708 free_extent_buffer(log_root_tree->node);
5709 log_root_tree->log_root = NULL;
5710 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5711 kfree(log_root_tree);
5712
5713 return 0;
5714error:
5715 if (wc.trans)
5716 btrfs_end_transaction(wc.trans);
5717 btrfs_free_path(path);
5718 return ret;
5719}
5720
5721/*
5722 * there are some corner cases where we want to force a full
5723 * commit instead of allowing a directory to be logged.
5724 *
5725 * They revolve around files there were unlinked from the directory, and
5726 * this function updates the parent directory so that a full commit is
5727 * properly done if it is fsync'd later after the unlinks are done.
5728 *
5729 * Must be called before the unlink operations (updates to the subvolume tree,
5730 * inodes, etc) are done.
5731 */
5732void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5733 struct inode *dir, struct inode *inode,
5734 int for_rename)
5735{
5736 /*
5737 * when we're logging a file, if it hasn't been renamed
5738 * or unlinked, and its inode is fully committed on disk,
5739 * we don't have to worry about walking up the directory chain
5740 * to log its parents.
5741 *
5742 * So, we use the last_unlink_trans field to put this transid
5743 * into the file. When the file is logged we check it and
5744 * don't log the parents if the file is fully on disk.
5745 */
5746 mutex_lock(&BTRFS_I(inode)->log_mutex);
5747 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5748 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5749
5750 /*
5751 * if this directory was already logged any new
5752 * names for this file/dir will get recorded
5753 */
5754 smp_mb();
5755 if (BTRFS_I(dir)->logged_trans == trans->transid)
5756 return;
5757
5758 /*
5759 * if the inode we're about to unlink was logged,
5760 * the log will be properly updated for any new names
5761 */
5762 if (BTRFS_I(inode)->logged_trans == trans->transid)
5763 return;
5764
5765 /*
5766 * when renaming files across directories, if the directory
5767 * there we're unlinking from gets fsync'd later on, there's
5768 * no way to find the destination directory later and fsync it
5769 * properly. So, we have to be conservative and force commits
5770 * so the new name gets discovered.
5771 */
5772 if (for_rename)
5773 goto record;
5774
5775 /* we can safely do the unlink without any special recording */
5776 return;
5777
5778record:
5779 mutex_lock(&BTRFS_I(dir)->log_mutex);
5780 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5781 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5782}
5783
5784/*
5785 * Make sure that if someone attempts to fsync the parent directory of a deleted
5786 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5787 * that after replaying the log tree of the parent directory's root we will not
5788 * see the snapshot anymore and at log replay time we will not see any log tree
5789 * corresponding to the deleted snapshot's root, which could lead to replaying
5790 * it after replaying the log tree of the parent directory (which would replay
5791 * the snapshot delete operation).
5792 *
5793 * Must be called before the actual snapshot destroy operation (updates to the
5794 * parent root and tree of tree roots trees, etc) are done.
5795 */
5796void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5797 struct inode *dir)
5798{
5799 mutex_lock(&BTRFS_I(dir)->log_mutex);
5800 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5801 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5802}
5803
5804/*
5805 * Call this after adding a new name for a file and it will properly
5806 * update the log to reflect the new name.
5807 *
5808 * It will return zero if all goes well, and it will return 1 if a
5809 * full transaction commit is required.
5810 */
5811int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5812 struct inode *inode, struct inode *old_dir,
5813 struct dentry *parent)
5814{
5815 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5816 struct btrfs_root * root = BTRFS_I(inode)->root;
5817
5818 /*
5819 * this will force the logging code to walk the dentry chain
5820 * up for the file
5821 */
5822 if (S_ISREG(inode->i_mode))
5823 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5824
5825 /*
5826 * if this inode hasn't been logged and directory we're renaming it
5827 * from hasn't been logged, we don't need to log it
5828 */
5829 if (BTRFS_I(inode)->logged_trans <=
5830 fs_info->last_trans_committed &&
5831 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5832 fs_info->last_trans_committed))
5833 return 0;
5834
5835 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5836 LLONG_MAX, 1, NULL);
5837}
5838
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "inode-map.h"
21
22/* magic values for the inode_only field in btrfs_log_inode:
23 *
24 * LOG_INODE_ALL means to log everything
25 * LOG_INODE_EXISTS means to log just enough to recreate the inode
26 * during log replay
27 */
28enum {
29 LOG_INODE_ALL,
30 LOG_INODE_EXISTS,
31 LOG_OTHER_INODE,
32 LOG_OTHER_INODE_ALL,
33};
34
35/*
36 * directory trouble cases
37 *
38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39 * log, we must force a full commit before doing an fsync of the directory
40 * where the unlink was done.
41 * ---> record transid of last unlink/rename per directory
42 *
43 * mkdir foo/some_dir
44 * normal commit
45 * rename foo/some_dir foo2/some_dir
46 * mkdir foo/some_dir
47 * fsync foo/some_dir/some_file
48 *
49 * The fsync above will unlink the original some_dir without recording
50 * it in its new location (foo2). After a crash, some_dir will be gone
51 * unless the fsync of some_file forces a full commit
52 *
53 * 2) we must log any new names for any file or dir that is in the fsync
54 * log. ---> check inode while renaming/linking.
55 *
56 * 2a) we must log any new names for any file or dir during rename
57 * when the directory they are being removed from was logged.
58 * ---> check inode and old parent dir during rename
59 *
60 * 2a is actually the more important variant. With the extra logging
61 * a crash might unlink the old name without recreating the new one
62 *
63 * 3) after a crash, we must go through any directories with a link count
64 * of zero and redo the rm -rf
65 *
66 * mkdir f1/foo
67 * normal commit
68 * rm -rf f1/foo
69 * fsync(f1)
70 *
71 * The directory f1 was fully removed from the FS, but fsync was never
72 * called on f1, only its parent dir. After a crash the rm -rf must
73 * be replayed. This must be able to recurse down the entire
74 * directory tree. The inode link count fixup code takes care of the
75 * ugly details.
76 */
77
78/*
79 * stages for the tree walking. The first
80 * stage (0) is to only pin down the blocks we find
81 * the second stage (1) is to make sure that all the inodes
82 * we find in the log are created in the subvolume.
83 *
84 * The last stage is to deal with directories and links and extents
85 * and all the other fun semantics
86 */
87enum {
88 LOG_WALK_PIN_ONLY,
89 LOG_WALK_REPLAY_INODES,
90 LOG_WALK_REPLAY_DIR_INDEX,
91 LOG_WALK_REPLAY_ALL,
92};
93
94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct btrfs_inode *inode,
96 int inode_only,
97 const loff_t start,
98 const loff_t end,
99 struct btrfs_log_ctx *ctx);
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109/*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132/*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root,
139 struct btrfs_log_ctx *ctx)
140{
141 struct btrfs_fs_info *fs_info = root->fs_info;
142 int ret = 0;
143
144 mutex_lock(&root->log_mutex);
145
146 if (root->log_root) {
147 if (btrfs_need_log_full_commit(trans)) {
148 ret = -EAGAIN;
149 goto out;
150 }
151
152 if (!root->log_start_pid) {
153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 root->log_start_pid = current->pid;
155 } else if (root->log_start_pid != current->pid) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 }
158 } else {
159 mutex_lock(&fs_info->tree_log_mutex);
160 if (!fs_info->log_root_tree)
161 ret = btrfs_init_log_root_tree(trans, fs_info);
162 mutex_unlock(&fs_info->tree_log_mutex);
163 if (ret)
164 goto out;
165
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 goto out;
169
170 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 root->log_start_pid = current->pid;
172 }
173
174 atomic_inc(&root->log_batch);
175 atomic_inc(&root->log_writers);
176 if (ctx) {
177 int index = root->log_transid % 2;
178 list_add_tail(&ctx->list, &root->log_ctxs[index]);
179 ctx->log_transid = root->log_transid;
180 }
181
182out:
183 mutex_unlock(&root->log_mutex);
184 return ret;
185}
186
187/*
188 * returns 0 if there was a log transaction running and we were able
189 * to join, or returns -ENOENT if there were not transactions
190 * in progress
191 */
192static int join_running_log_trans(struct btrfs_root *root)
193{
194 int ret = -ENOENT;
195
196 mutex_lock(&root->log_mutex);
197 if (root->log_root) {
198 ret = 0;
199 atomic_inc(&root->log_writers);
200 }
201 mutex_unlock(&root->log_mutex);
202 return ret;
203}
204
205/*
206 * This either makes the current running log transaction wait
207 * until you call btrfs_end_log_trans() or it makes any future
208 * log transactions wait until you call btrfs_end_log_trans()
209 */
210void btrfs_pin_log_trans(struct btrfs_root *root)
211{
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
215}
216
217/*
218 * indicate we're done making changes to the log tree
219 * and wake up anyone waiting to do a sync
220 */
221void btrfs_end_log_trans(struct btrfs_root *root)
222{
223 if (atomic_dec_and_test(&root->log_writers)) {
224 /* atomic_dec_and_test implies a barrier */
225 cond_wake_up_nomb(&root->log_writer_wait);
226 }
227}
228
229static int btrfs_write_tree_block(struct extent_buffer *buf)
230{
231 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 buf->start + buf->len - 1);
233}
234
235static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236{
237 filemap_fdatawait_range(buf->pages[0]->mapping,
238 buf->start, buf->start + buf->len - 1);
239}
240
241/*
242 * the walk control struct is used to pass state down the chain when
243 * processing the log tree. The stage field tells us which part
244 * of the log tree processing we are currently doing. The others
245 * are state fields used for that specific part
246 */
247struct walk_control {
248 /* should we free the extent on disk when done? This is used
249 * at transaction commit time while freeing a log tree
250 */
251 int free;
252
253 /* should we write out the extent buffer? This is used
254 * while flushing the log tree to disk during a sync
255 */
256 int write;
257
258 /* should we wait for the extent buffer io to finish? Also used
259 * while flushing the log tree to disk for a sync
260 */
261 int wait;
262
263 /* pin only walk, we record which extents on disk belong to the
264 * log trees
265 */
266 int pin;
267
268 /* what stage of the replay code we're currently in */
269 int stage;
270
271 /*
272 * Ignore any items from the inode currently being processed. Needs
273 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 * the LOG_WALK_REPLAY_INODES stage.
275 */
276 bool ignore_cur_inode;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen, int level);
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen, int level)
299{
300 struct btrfs_fs_info *fs_info = log->fs_info;
301 int ret = 0;
302
303 /*
304 * If this fs is mixed then we need to be able to process the leaves to
305 * pin down any logged extents, so we have to read the block.
306 */
307 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308 ret = btrfs_read_buffer(eb, gen, level, NULL);
309 if (ret)
310 return ret;
311 }
312
313 if (wc->pin)
314 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 eb->len);
316
317 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 if (wc->pin && btrfs_header_level(eb) == 0)
319 ret = btrfs_exclude_logged_extents(eb);
320 if (wc->write)
321 btrfs_write_tree_block(eb);
322 if (wc->wait)
323 btrfs_wait_tree_block_writeback(eb);
324 }
325 return ret;
326}
327
328/*
329 * Item overwrite used by replay and tree logging. eb, slot and key all refer
330 * to the src data we are copying out.
331 *
332 * root is the tree we are copying into, and path is a scratch
333 * path for use in this function (it should be released on entry and
334 * will be released on exit).
335 *
336 * If the key is already in the destination tree the existing item is
337 * overwritten. If the existing item isn't big enough, it is extended.
338 * If it is too large, it is truncated.
339 *
340 * If the key isn't in the destination yet, a new item is inserted.
341 */
342static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 struct btrfs_root *root,
344 struct btrfs_path *path,
345 struct extent_buffer *eb, int slot,
346 struct btrfs_key *key)
347{
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
359
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
362
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 if (ret < 0)
366 return ret;
367
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
375
376 if (item_size == 0) {
377 btrfs_release_path(path);
378 return 0;
379 }
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
382 if (!dst_copy || !src_copy) {
383 btrfs_release_path(path);
384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
387 }
388
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
395
396 kfree(dst_copy);
397 kfree(src_copy);
398 /*
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
403 */
404 if (ret == 0) {
405 btrfs_release_path(path);
406 return 0;
407 }
408
409 /*
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
412 */
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
416 u32 mode;
417
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
424
425 /*
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
433 }
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
436 u32 mode;
437
438 /*
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
441 */
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
444
445 /*
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
449 */
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
453 }
454insert:
455 btrfs_release_path(path);
456 /* try to insert the key into the destination tree */
457 path->skip_release_on_error = 1;
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
460 path->skip_release_on_error = 0;
461
462 /* make sure any existing item is the correct size */
463 if (ret == -EEXIST || ret == -EOVERFLOW) {
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
467 if (found_size > item_size)
468 btrfs_truncate_item(path, item_size, 1);
469 else if (found_size < item_size)
470 btrfs_extend_item(path, item_size - found_size);
471 } else if (ret) {
472 return ret;
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495 const u64 ino_size = btrfs_inode_size(eb, src_item);
496
497 /*
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
503 */
504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 ino_size != 0) {
507 struct btrfs_map_token token;
508
509 btrfs_init_map_token(&token, dst_eb);
510 btrfs_set_token_inode_size(dst_eb, dst_item,
511 ino_size, &token);
512 }
513 goto no_copy;
514 }
515
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 save_old_i_size = 1;
520 saved_i_size = btrfs_inode_size(path->nodes[0],
521 dst_item);
522 }
523 }
524
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 src_ptr, item_size);
527
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 }
533
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
540 trans->transid);
541 }
542 }
543no_copy:
544 btrfs_mark_buffer_dirty(path->nodes[0]);
545 btrfs_release_path(path);
546 return 0;
547}
548
549/*
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
552 */
553static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 u64 objectid)
555{
556 struct btrfs_key key;
557 struct inode *inode;
558
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
561 key.offset = 0;
562 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 if (IS_ERR(inode))
564 inode = NULL;
565 return inode;
566}
567
568/* replays a single extent in 'eb' at 'slot' with 'key' into the
569 * subvolume 'root'. path is released on entry and should be released
570 * on exit.
571 *
572 * extents in the log tree have not been allocated out of the extent
573 * tree yet. So, this completes the allocation, taking a reference
574 * as required if the extent already exists or creating a new extent
575 * if it isn't in the extent allocation tree yet.
576 *
577 * The extent is inserted into the file, dropping any existing extents
578 * from the file that overlap the new one.
579 */
580static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root,
582 struct btrfs_path *path,
583 struct extent_buffer *eb, int slot,
584 struct btrfs_key *key)
585{
586 struct btrfs_fs_info *fs_info = root->fs_info;
587 int found_type;
588 u64 extent_end;
589 u64 start = key->offset;
590 u64 nbytes = 0;
591 struct btrfs_file_extent_item *item;
592 struct inode *inode = NULL;
593 unsigned long size;
594 int ret = 0;
595
596 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 found_type = btrfs_file_extent_type(eb, item);
598
599 if (found_type == BTRFS_FILE_EXTENT_REG ||
600 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 nbytes = btrfs_file_extent_num_bytes(eb, item);
602 extent_end = start + nbytes;
603
604 /*
605 * We don't add to the inodes nbytes if we are prealloc or a
606 * hole.
607 */
608 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 nbytes = 0;
610 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611 size = btrfs_file_extent_ram_bytes(eb, item);
612 nbytes = btrfs_file_extent_ram_bytes(eb, item);
613 extent_end = ALIGN(start + size,
614 fs_info->sectorsize);
615 } else {
616 ret = 0;
617 goto out;
618 }
619
620 inode = read_one_inode(root, key->objectid);
621 if (!inode) {
622 ret = -EIO;
623 goto out;
624 }
625
626 /*
627 * first check to see if we already have this extent in the
628 * file. This must be done before the btrfs_drop_extents run
629 * so we don't try to drop this extent.
630 */
631 ret = btrfs_lookup_file_extent(trans, root, path,
632 btrfs_ino(BTRFS_I(inode)), start, 0);
633
634 if (ret == 0 &&
635 (found_type == BTRFS_FILE_EXTENT_REG ||
636 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637 struct btrfs_file_extent_item cmp1;
638 struct btrfs_file_extent_item cmp2;
639 struct btrfs_file_extent_item *existing;
640 struct extent_buffer *leaf;
641
642 leaf = path->nodes[0];
643 existing = btrfs_item_ptr(leaf, path->slots[0],
644 struct btrfs_file_extent_item);
645
646 read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 sizeof(cmp1));
648 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 sizeof(cmp2));
650
651 /*
652 * we already have a pointer to this exact extent,
653 * we don't have to do anything
654 */
655 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656 btrfs_release_path(path);
657 goto out;
658 }
659 }
660 btrfs_release_path(path);
661
662 /* drop any overlapping extents */
663 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664 if (ret)
665 goto out;
666
667 if (found_type == BTRFS_FILE_EXTENT_REG ||
668 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669 u64 offset;
670 unsigned long dest_offset;
671 struct btrfs_key ins;
672
673 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 btrfs_fs_incompat(fs_info, NO_HOLES))
675 goto update_inode;
676
677 ret = btrfs_insert_empty_item(trans, root, path, key,
678 sizeof(*item));
679 if (ret)
680 goto out;
681 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 path->slots[0]);
683 copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 (unsigned long)item, sizeof(*item));
685
686 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 ins.type = BTRFS_EXTENT_ITEM_KEY;
689 offset = key->offset - btrfs_file_extent_offset(eb, item);
690
691 /*
692 * Manually record dirty extent, as here we did a shallow
693 * file extent item copy and skip normal backref update,
694 * but modifying extent tree all by ourselves.
695 * So need to manually record dirty extent for qgroup,
696 * as the owner of the file extent changed from log tree
697 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 */
699 ret = btrfs_qgroup_trace_extent(trans,
700 btrfs_file_extent_disk_bytenr(eb, item),
701 btrfs_file_extent_disk_num_bytes(eb, item),
702 GFP_NOFS);
703 if (ret < 0)
704 goto out;
705
706 if (ins.objectid > 0) {
707 struct btrfs_ref ref = { 0 };
708 u64 csum_start;
709 u64 csum_end;
710 LIST_HEAD(ordered_sums);
711
712 /*
713 * is this extent already allocated in the extent
714 * allocation tree? If so, just add a reference
715 */
716 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717 ins.offset);
718 if (ret == 0) {
719 btrfs_init_generic_ref(&ref,
720 BTRFS_ADD_DELAYED_REF,
721 ins.objectid, ins.offset, 0);
722 btrfs_init_data_ref(&ref,
723 root->root_key.objectid,
724 key->objectid, offset);
725 ret = btrfs_inc_extent_ref(trans, &ref);
726 if (ret)
727 goto out;
728 } else {
729 /*
730 * insert the extent pointer in the extent
731 * allocation tree
732 */
733 ret = btrfs_alloc_logged_file_extent(trans,
734 root->root_key.objectid,
735 key->objectid, offset, &ins);
736 if (ret)
737 goto out;
738 }
739 btrfs_release_path(path);
740
741 if (btrfs_file_extent_compression(eb, item)) {
742 csum_start = ins.objectid;
743 csum_end = csum_start + ins.offset;
744 } else {
745 csum_start = ins.objectid +
746 btrfs_file_extent_offset(eb, item);
747 csum_end = csum_start +
748 btrfs_file_extent_num_bytes(eb, item);
749 }
750
751 ret = btrfs_lookup_csums_range(root->log_root,
752 csum_start, csum_end - 1,
753 &ordered_sums, 0);
754 if (ret)
755 goto out;
756 /*
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
768 *
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
772 *
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
776 *
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
780 * of the extent:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 *
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
786 *
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 *
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
794 *
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 *
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
804 */
805 while (!list_empty(&ordered_sums)) {
806 struct btrfs_ordered_sum *sums;
807 sums = list_entry(ordered_sums.next,
808 struct btrfs_ordered_sum,
809 list);
810 if (!ret)
811 ret = btrfs_del_csums(trans, fs_info,
812 sums->bytenr,
813 sums->len);
814 if (!ret)
815 ret = btrfs_csum_file_blocks(trans,
816 fs_info->csum_root, sums);
817 list_del(&sums->list);
818 kfree(sums);
819 }
820 if (ret)
821 goto out;
822 } else {
823 btrfs_release_path(path);
824 }
825 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
826 /* inline extents are easy, we just overwrite them */
827 ret = overwrite_item(trans, root, path, eb, slot, key);
828 if (ret)
829 goto out;
830 }
831
832 inode_add_bytes(inode, nbytes);
833update_inode:
834 ret = btrfs_update_inode(trans, root, inode);
835out:
836 if (inode)
837 iput(inode);
838 return ret;
839}
840
841/*
842 * when cleaning up conflicts between the directory names in the
843 * subvolume, directory names in the log and directory names in the
844 * inode back references, we may have to unlink inodes from directories.
845 *
846 * This is a helper function to do the unlink of a specific directory
847 * item
848 */
849static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
850 struct btrfs_root *root,
851 struct btrfs_path *path,
852 struct btrfs_inode *dir,
853 struct btrfs_dir_item *di)
854{
855 struct inode *inode;
856 char *name;
857 int name_len;
858 struct extent_buffer *leaf;
859 struct btrfs_key location;
860 int ret;
861
862 leaf = path->nodes[0];
863
864 btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 name_len = btrfs_dir_name_len(leaf, di);
866 name = kmalloc(name_len, GFP_NOFS);
867 if (!name)
868 return -ENOMEM;
869
870 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871 btrfs_release_path(path);
872
873 inode = read_one_inode(root, location.objectid);
874 if (!inode) {
875 ret = -EIO;
876 goto out;
877 }
878
879 ret = link_to_fixup_dir(trans, root, path, location.objectid);
880 if (ret)
881 goto out;
882
883 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 name_len);
885 if (ret)
886 goto out;
887 else
888 ret = btrfs_run_delayed_items(trans);
889out:
890 kfree(name);
891 iput(inode);
892 return ret;
893}
894
895/*
896 * helper function to see if a given name and sequence number found
897 * in an inode back reference are already in a directory and correctly
898 * point to this inode
899 */
900static noinline int inode_in_dir(struct btrfs_root *root,
901 struct btrfs_path *path,
902 u64 dirid, u64 objectid, u64 index,
903 const char *name, int name_len)
904{
905 struct btrfs_dir_item *di;
906 struct btrfs_key location;
907 int match = 0;
908
909 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 index, name, name_len, 0);
911 if (di && !IS_ERR(di)) {
912 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 if (location.objectid != objectid)
914 goto out;
915 } else
916 goto out;
917 btrfs_release_path(path);
918
919 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 if (di && !IS_ERR(di)) {
921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 if (location.objectid != objectid)
923 goto out;
924 } else
925 goto out;
926 match = 1;
927out:
928 btrfs_release_path(path);
929 return match;
930}
931
932/*
933 * helper function to check a log tree for a named back reference in
934 * an inode. This is used to decide if a back reference that is
935 * found in the subvolume conflicts with what we find in the log.
936 *
937 * inode backreferences may have multiple refs in a single item,
938 * during replay we process one reference at a time, and we don't
939 * want to delete valid links to a file from the subvolume if that
940 * link is also in the log.
941 */
942static noinline int backref_in_log(struct btrfs_root *log,
943 struct btrfs_key *key,
944 u64 ref_objectid,
945 const char *name, int namelen)
946{
947 struct btrfs_path *path;
948 struct btrfs_inode_ref *ref;
949 unsigned long ptr;
950 unsigned long ptr_end;
951 unsigned long name_ptr;
952 int found_name_len;
953 int item_size;
954 int ret;
955 int match = 0;
956
957 path = btrfs_alloc_path();
958 if (!path)
959 return -ENOMEM;
960
961 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 if (ret != 0)
963 goto out;
964
965 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966
967 if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 if (btrfs_find_name_in_ext_backref(path->nodes[0],
969 path->slots[0],
970 ref_objectid,
971 name, namelen))
972 match = 1;
973
974 goto out;
975 }
976
977 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
978 ptr_end = ptr + item_size;
979 while (ptr < ptr_end) {
980 ref = (struct btrfs_inode_ref *)ptr;
981 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
982 if (found_name_len == namelen) {
983 name_ptr = (unsigned long)(ref + 1);
984 ret = memcmp_extent_buffer(path->nodes[0], name,
985 name_ptr, namelen);
986 if (ret == 0) {
987 match = 1;
988 goto out;
989 }
990 }
991 ptr = (unsigned long)(ref + 1) + found_name_len;
992 }
993out:
994 btrfs_free_path(path);
995 return match;
996}
997
998static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
999 struct btrfs_root *root,
1000 struct btrfs_path *path,
1001 struct btrfs_root *log_root,
1002 struct btrfs_inode *dir,
1003 struct btrfs_inode *inode,
1004 u64 inode_objectid, u64 parent_objectid,
1005 u64 ref_index, char *name, int namelen,
1006 int *search_done)
1007{
1008 int ret;
1009 char *victim_name;
1010 int victim_name_len;
1011 struct extent_buffer *leaf;
1012 struct btrfs_dir_item *di;
1013 struct btrfs_key search_key;
1014 struct btrfs_inode_extref *extref;
1015
1016again:
1017 /* Search old style refs */
1018 search_key.objectid = inode_objectid;
1019 search_key.type = BTRFS_INODE_REF_KEY;
1020 search_key.offset = parent_objectid;
1021 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1022 if (ret == 0) {
1023 struct btrfs_inode_ref *victim_ref;
1024 unsigned long ptr;
1025 unsigned long ptr_end;
1026
1027 leaf = path->nodes[0];
1028
1029 /* are we trying to overwrite a back ref for the root directory
1030 * if so, just jump out, we're done
1031 */
1032 if (search_key.objectid == search_key.offset)
1033 return 1;
1034
1035 /* check all the names in this back reference to see
1036 * if they are in the log. if so, we allow them to stay
1037 * otherwise they must be unlinked as a conflict
1038 */
1039 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041 while (ptr < ptr_end) {
1042 victim_ref = (struct btrfs_inode_ref *)ptr;
1043 victim_name_len = btrfs_inode_ref_name_len(leaf,
1044 victim_ref);
1045 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046 if (!victim_name)
1047 return -ENOMEM;
1048
1049 read_extent_buffer(leaf, victim_name,
1050 (unsigned long)(victim_ref + 1),
1051 victim_name_len);
1052
1053 if (!backref_in_log(log_root, &search_key,
1054 parent_objectid,
1055 victim_name,
1056 victim_name_len)) {
1057 inc_nlink(&inode->vfs_inode);
1058 btrfs_release_path(path);
1059
1060 ret = btrfs_unlink_inode(trans, root, dir, inode,
1061 victim_name, victim_name_len);
1062 kfree(victim_name);
1063 if (ret)
1064 return ret;
1065 ret = btrfs_run_delayed_items(trans);
1066 if (ret)
1067 return ret;
1068 *search_done = 1;
1069 goto again;
1070 }
1071 kfree(victim_name);
1072
1073 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074 }
1075
1076 /*
1077 * NOTE: we have searched root tree and checked the
1078 * corresponding ref, it does not need to check again.
1079 */
1080 *search_done = 1;
1081 }
1082 btrfs_release_path(path);
1083
1084 /* Same search but for extended refs */
1085 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086 inode_objectid, parent_objectid, 0,
1087 0);
1088 if (!IS_ERR_OR_NULL(extref)) {
1089 u32 item_size;
1090 u32 cur_offset = 0;
1091 unsigned long base;
1092 struct inode *victim_parent;
1093
1094 leaf = path->nodes[0];
1095
1096 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098
1099 while (cur_offset < item_size) {
1100 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1101
1102 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103
1104 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105 goto next;
1106
1107 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108 if (!victim_name)
1109 return -ENOMEM;
1110 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111 victim_name_len);
1112
1113 search_key.objectid = inode_objectid;
1114 search_key.type = BTRFS_INODE_EXTREF_KEY;
1115 search_key.offset = btrfs_extref_hash(parent_objectid,
1116 victim_name,
1117 victim_name_len);
1118 ret = 0;
1119 if (!backref_in_log(log_root, &search_key,
1120 parent_objectid, victim_name,
1121 victim_name_len)) {
1122 ret = -ENOENT;
1123 victim_parent = read_one_inode(root,
1124 parent_objectid);
1125 if (victim_parent) {
1126 inc_nlink(&inode->vfs_inode);
1127 btrfs_release_path(path);
1128
1129 ret = btrfs_unlink_inode(trans, root,
1130 BTRFS_I(victim_parent),
1131 inode,
1132 victim_name,
1133 victim_name_len);
1134 if (!ret)
1135 ret = btrfs_run_delayed_items(
1136 trans);
1137 }
1138 iput(victim_parent);
1139 kfree(victim_name);
1140 if (ret)
1141 return ret;
1142 *search_done = 1;
1143 goto again;
1144 }
1145 kfree(victim_name);
1146next:
1147 cur_offset += victim_name_len + sizeof(*extref);
1148 }
1149 *search_done = 1;
1150 }
1151 btrfs_release_path(path);
1152
1153 /* look for a conflicting sequence number */
1154 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155 ref_index, name, namelen, 0);
1156 if (di && !IS_ERR(di)) {
1157 ret = drop_one_dir_item(trans, root, path, dir, di);
1158 if (ret)
1159 return ret;
1160 }
1161 btrfs_release_path(path);
1162
1163 /* look for a conflicting name */
1164 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165 name, namelen, 0);
1166 if (di && !IS_ERR(di)) {
1167 ret = drop_one_dir_item(trans, root, path, dir, di);
1168 if (ret)
1169 return ret;
1170 }
1171 btrfs_release_path(path);
1172
1173 return 0;
1174}
1175
1176static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177 u32 *namelen, char **name, u64 *index,
1178 u64 *parent_objectid)
1179{
1180 struct btrfs_inode_extref *extref;
1181
1182 extref = (struct btrfs_inode_extref *)ref_ptr;
1183
1184 *namelen = btrfs_inode_extref_name_len(eb, extref);
1185 *name = kmalloc(*namelen, GFP_NOFS);
1186 if (*name == NULL)
1187 return -ENOMEM;
1188
1189 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190 *namelen);
1191
1192 if (index)
1193 *index = btrfs_inode_extref_index(eb, extref);
1194 if (parent_objectid)
1195 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196
1197 return 0;
1198}
1199
1200static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201 u32 *namelen, char **name, u64 *index)
1202{
1203 struct btrfs_inode_ref *ref;
1204
1205 ref = (struct btrfs_inode_ref *)ref_ptr;
1206
1207 *namelen = btrfs_inode_ref_name_len(eb, ref);
1208 *name = kmalloc(*namelen, GFP_NOFS);
1209 if (*name == NULL)
1210 return -ENOMEM;
1211
1212 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213
1214 if (index)
1215 *index = btrfs_inode_ref_index(eb, ref);
1216
1217 return 0;
1218}
1219
1220/*
1221 * Take an inode reference item from the log tree and iterate all names from the
1222 * inode reference item in the subvolume tree with the same key (if it exists).
1223 * For any name that is not in the inode reference item from the log tree, do a
1224 * proper unlink of that name (that is, remove its entry from the inode
1225 * reference item and both dir index keys).
1226 */
1227static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228 struct btrfs_root *root,
1229 struct btrfs_path *path,
1230 struct btrfs_inode *inode,
1231 struct extent_buffer *log_eb,
1232 int log_slot,
1233 struct btrfs_key *key)
1234{
1235 int ret;
1236 unsigned long ref_ptr;
1237 unsigned long ref_end;
1238 struct extent_buffer *eb;
1239
1240again:
1241 btrfs_release_path(path);
1242 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243 if (ret > 0) {
1244 ret = 0;
1245 goto out;
1246 }
1247 if (ret < 0)
1248 goto out;
1249
1250 eb = path->nodes[0];
1251 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253 while (ref_ptr < ref_end) {
1254 char *name = NULL;
1255 int namelen;
1256 u64 parent_id;
1257
1258 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260 NULL, &parent_id);
1261 } else {
1262 parent_id = key->offset;
1263 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264 NULL);
1265 }
1266 if (ret)
1267 goto out;
1268
1269 if (key->type == BTRFS_INODE_EXTREF_KEY)
1270 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271 parent_id, name,
1272 namelen);
1273 else
1274 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275 name, namelen);
1276
1277 if (!ret) {
1278 struct inode *dir;
1279
1280 btrfs_release_path(path);
1281 dir = read_one_inode(root, parent_id);
1282 if (!dir) {
1283 ret = -ENOENT;
1284 kfree(name);
1285 goto out;
1286 }
1287 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288 inode, name, namelen);
1289 kfree(name);
1290 iput(dir);
1291 if (ret)
1292 goto out;
1293 goto again;
1294 }
1295
1296 kfree(name);
1297 ref_ptr += namelen;
1298 if (key->type == BTRFS_INODE_EXTREF_KEY)
1299 ref_ptr += sizeof(struct btrfs_inode_extref);
1300 else
1301 ref_ptr += sizeof(struct btrfs_inode_ref);
1302 }
1303 ret = 0;
1304 out:
1305 btrfs_release_path(path);
1306 return ret;
1307}
1308
1309static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1310 const u8 ref_type, const char *name,
1311 const int namelen)
1312{
1313 struct btrfs_key key;
1314 struct btrfs_path *path;
1315 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1316 int ret;
1317
1318 path = btrfs_alloc_path();
1319 if (!path)
1320 return -ENOMEM;
1321
1322 key.objectid = btrfs_ino(BTRFS_I(inode));
1323 key.type = ref_type;
1324 if (key.type == BTRFS_INODE_REF_KEY)
1325 key.offset = parent_id;
1326 else
1327 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1328
1329 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1330 if (ret < 0)
1331 goto out;
1332 if (ret > 0) {
1333 ret = 0;
1334 goto out;
1335 }
1336 if (key.type == BTRFS_INODE_EXTREF_KEY)
1337 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1338 path->slots[0], parent_id, name, namelen);
1339 else
1340 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 name, namelen);
1342
1343out:
1344 btrfs_free_path(path);
1345 return ret;
1346}
1347
1348static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 struct inode *dir, struct inode *inode, const char *name,
1350 int namelen, u64 ref_index)
1351{
1352 struct btrfs_dir_item *dir_item;
1353 struct btrfs_key key;
1354 struct btrfs_path *path;
1355 struct inode *other_inode = NULL;
1356 int ret;
1357
1358 path = btrfs_alloc_path();
1359 if (!path)
1360 return -ENOMEM;
1361
1362 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 btrfs_ino(BTRFS_I(dir)),
1364 name, namelen, 0);
1365 if (!dir_item) {
1366 btrfs_release_path(path);
1367 goto add_link;
1368 } else if (IS_ERR(dir_item)) {
1369 ret = PTR_ERR(dir_item);
1370 goto out;
1371 }
1372
1373 /*
1374 * Our inode's dentry collides with the dentry of another inode which is
1375 * in the log but not yet processed since it has a higher inode number.
1376 * So delete that other dentry.
1377 */
1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 btrfs_release_path(path);
1380 other_inode = read_one_inode(root, key.objectid);
1381 if (!other_inode) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 name, namelen);
1387 if (ret)
1388 goto out;
1389 /*
1390 * If we dropped the link count to 0, bump it so that later the iput()
1391 * on the inode will not free it. We will fixup the link count later.
1392 */
1393 if (other_inode->i_nlink == 0)
1394 inc_nlink(other_inode);
1395
1396 ret = btrfs_run_delayed_items(trans);
1397 if (ret)
1398 goto out;
1399add_link:
1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 name, namelen, 0, ref_index);
1402out:
1403 iput(other_inode);
1404 btrfs_free_path(path);
1405
1406 return ret;
1407}
1408
1409/*
1410 * replay one inode back reference item found in the log tree.
1411 * eb, slot and key refer to the buffer and key found in the log tree.
1412 * root is the destination we are replaying into, and path is for temp
1413 * use by this function. (it should be released on return).
1414 */
1415static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 struct btrfs_root *root,
1417 struct btrfs_root *log,
1418 struct btrfs_path *path,
1419 struct extent_buffer *eb, int slot,
1420 struct btrfs_key *key)
1421{
1422 struct inode *dir = NULL;
1423 struct inode *inode = NULL;
1424 unsigned long ref_ptr;
1425 unsigned long ref_end;
1426 char *name = NULL;
1427 int namelen;
1428 int ret;
1429 int search_done = 0;
1430 int log_ref_ver = 0;
1431 u64 parent_objectid;
1432 u64 inode_objectid;
1433 u64 ref_index = 0;
1434 int ref_struct_size;
1435
1436 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438
1439 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 struct btrfs_inode_extref *r;
1441
1442 ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 log_ref_ver = 1;
1444 r = (struct btrfs_inode_extref *)ref_ptr;
1445 parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 } else {
1447 ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 parent_objectid = key->offset;
1449 }
1450 inode_objectid = key->objectid;
1451
1452 /*
1453 * it is possible that we didn't log all the parent directories
1454 * for a given inode. If we don't find the dir, just don't
1455 * copy the back ref in. The link count fixup code will take
1456 * care of the rest
1457 */
1458 dir = read_one_inode(root, parent_objectid);
1459 if (!dir) {
1460 ret = -ENOENT;
1461 goto out;
1462 }
1463
1464 inode = read_one_inode(root, inode_objectid);
1465 if (!inode) {
1466 ret = -EIO;
1467 goto out;
1468 }
1469
1470 while (ref_ptr < ref_end) {
1471 if (log_ref_ver) {
1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 &ref_index, &parent_objectid);
1474 /*
1475 * parent object can change from one array
1476 * item to another.
1477 */
1478 if (!dir)
1479 dir = read_one_inode(root, parent_objectid);
1480 if (!dir) {
1481 ret = -ENOENT;
1482 goto out;
1483 }
1484 } else {
1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 &ref_index);
1487 }
1488 if (ret)
1489 goto out;
1490
1491 /* if we already have a perfect match, we're done */
1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 btrfs_ino(BTRFS_I(inode)), ref_index,
1494 name, namelen)) {
1495 /*
1496 * look for a conflicting back reference in the
1497 * metadata. if we find one we have to unlink that name
1498 * of the file before we add our new link. Later on, we
1499 * overwrite any existing back reference, and we don't
1500 * want to create dangling pointers in the directory.
1501 */
1502
1503 if (!search_done) {
1504 ret = __add_inode_ref(trans, root, path, log,
1505 BTRFS_I(dir),
1506 BTRFS_I(inode),
1507 inode_objectid,
1508 parent_objectid,
1509 ref_index, name, namelen,
1510 &search_done);
1511 if (ret) {
1512 if (ret == 1)
1513 ret = 0;
1514 goto out;
1515 }
1516 }
1517
1518 /*
1519 * If a reference item already exists for this inode
1520 * with the same parent and name, but different index,
1521 * drop it and the corresponding directory index entries
1522 * from the parent before adding the new reference item
1523 * and dir index entries, otherwise we would fail with
1524 * -EEXIST returned from btrfs_add_link() below.
1525 */
1526 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 name, namelen);
1528 if (ret > 0) {
1529 ret = btrfs_unlink_inode(trans, root,
1530 BTRFS_I(dir),
1531 BTRFS_I(inode),
1532 name, namelen);
1533 /*
1534 * If we dropped the link count to 0, bump it so
1535 * that later the iput() on the inode will not
1536 * free it. We will fixup the link count later.
1537 */
1538 if (!ret && inode->i_nlink == 0)
1539 inc_nlink(inode);
1540 }
1541 if (ret < 0)
1542 goto out;
1543
1544 /* insert our name */
1545 ret = add_link(trans, root, dir, inode, name, namelen,
1546 ref_index);
1547 if (ret)
1548 goto out;
1549
1550 btrfs_update_inode(trans, root, inode);
1551 }
1552
1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554 kfree(name);
1555 name = NULL;
1556 if (log_ref_ver) {
1557 iput(dir);
1558 dir = NULL;
1559 }
1560 }
1561
1562 /*
1563 * Before we overwrite the inode reference item in the subvolume tree
1564 * with the item from the log tree, we must unlink all names from the
1565 * parent directory that are in the subvolume's tree inode reference
1566 * item, otherwise we end up with an inconsistent subvolume tree where
1567 * dir index entries exist for a name but there is no inode reference
1568 * item with the same name.
1569 */
1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 key);
1572 if (ret)
1573 goto out;
1574
1575 /* finally write the back reference in the inode */
1576 ret = overwrite_item(trans, root, path, eb, slot, key);
1577out:
1578 btrfs_release_path(path);
1579 kfree(name);
1580 iput(dir);
1581 iput(inode);
1582 return ret;
1583}
1584
1585static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586 struct btrfs_root *root, u64 ino)
1587{
1588 int ret;
1589
1590 ret = btrfs_insert_orphan_item(trans, root, ino);
1591 if (ret == -EEXIST)
1592 ret = 0;
1593
1594 return ret;
1595}
1596
1597static int count_inode_extrefs(struct btrfs_root *root,
1598 struct btrfs_inode *inode, struct btrfs_path *path)
1599{
1600 int ret = 0;
1601 int name_len;
1602 unsigned int nlink = 0;
1603 u32 item_size;
1604 u32 cur_offset = 0;
1605 u64 inode_objectid = btrfs_ino(inode);
1606 u64 offset = 0;
1607 unsigned long ptr;
1608 struct btrfs_inode_extref *extref;
1609 struct extent_buffer *leaf;
1610
1611 while (1) {
1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 &extref, &offset);
1614 if (ret)
1615 break;
1616
1617 leaf = path->nodes[0];
1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620 cur_offset = 0;
1621
1622 while (cur_offset < item_size) {
1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 name_len = btrfs_inode_extref_name_len(leaf, extref);
1625
1626 nlink++;
1627
1628 cur_offset += name_len + sizeof(*extref);
1629 }
1630
1631 offset++;
1632 btrfs_release_path(path);
1633 }
1634 btrfs_release_path(path);
1635
1636 if (ret < 0 && ret != -ENOENT)
1637 return ret;
1638 return nlink;
1639}
1640
1641static int count_inode_refs(struct btrfs_root *root,
1642 struct btrfs_inode *inode, struct btrfs_path *path)
1643{
1644 int ret;
1645 struct btrfs_key key;
1646 unsigned int nlink = 0;
1647 unsigned long ptr;
1648 unsigned long ptr_end;
1649 int name_len;
1650 u64 ino = btrfs_ino(inode);
1651
1652 key.objectid = ino;
1653 key.type = BTRFS_INODE_REF_KEY;
1654 key.offset = (u64)-1;
1655
1656 while (1) {
1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 if (ret < 0)
1659 break;
1660 if (ret > 0) {
1661 if (path->slots[0] == 0)
1662 break;
1663 path->slots[0]--;
1664 }
1665process_slot:
1666 btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 path->slots[0]);
1668 if (key.objectid != ino ||
1669 key.type != BTRFS_INODE_REF_KEY)
1670 break;
1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 path->slots[0]);
1674 while (ptr < ptr_end) {
1675 struct btrfs_inode_ref *ref;
1676
1677 ref = (struct btrfs_inode_ref *)ptr;
1678 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 ref);
1680 ptr = (unsigned long)(ref + 1) + name_len;
1681 nlink++;
1682 }
1683
1684 if (key.offset == 0)
1685 break;
1686 if (path->slots[0] > 0) {
1687 path->slots[0]--;
1688 goto process_slot;
1689 }
1690 key.offset--;
1691 btrfs_release_path(path);
1692 }
1693 btrfs_release_path(path);
1694
1695 return nlink;
1696}
1697
1698/*
1699 * There are a few corners where the link count of the file can't
1700 * be properly maintained during replay. So, instead of adding
1701 * lots of complexity to the log code, we just scan the backrefs
1702 * for any file that has been through replay.
1703 *
1704 * The scan will update the link count on the inode to reflect the
1705 * number of back refs found. If it goes down to zero, the iput
1706 * will free the inode.
1707 */
1708static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 struct btrfs_root *root,
1710 struct inode *inode)
1711{
1712 struct btrfs_path *path;
1713 int ret;
1714 u64 nlink = 0;
1715 u64 ino = btrfs_ino(BTRFS_I(inode));
1716
1717 path = btrfs_alloc_path();
1718 if (!path)
1719 return -ENOMEM;
1720
1721 ret = count_inode_refs(root, BTRFS_I(inode), path);
1722 if (ret < 0)
1723 goto out;
1724
1725 nlink = ret;
1726
1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728 if (ret < 0)
1729 goto out;
1730
1731 nlink += ret;
1732
1733 ret = 0;
1734
1735 if (nlink != inode->i_nlink) {
1736 set_nlink(inode, nlink);
1737 btrfs_update_inode(trans, root, inode);
1738 }
1739 BTRFS_I(inode)->index_cnt = (u64)-1;
1740
1741 if (inode->i_nlink == 0) {
1742 if (S_ISDIR(inode->i_mode)) {
1743 ret = replay_dir_deletes(trans, root, NULL, path,
1744 ino, 1);
1745 if (ret)
1746 goto out;
1747 }
1748 ret = insert_orphan_item(trans, root, ino);
1749 }
1750
1751out:
1752 btrfs_free_path(path);
1753 return ret;
1754}
1755
1756static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path)
1759{
1760 int ret;
1761 struct btrfs_key key;
1762 struct inode *inode;
1763
1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 key.offset = (u64)-1;
1767 while (1) {
1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 if (ret < 0)
1770 break;
1771
1772 if (ret == 1) {
1773 if (path->slots[0] == 0)
1774 break;
1775 path->slots[0]--;
1776 }
1777
1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 break;
1782
1783 ret = btrfs_del_item(trans, root, path);
1784 if (ret)
1785 goto out;
1786
1787 btrfs_release_path(path);
1788 inode = read_one_inode(root, key.offset);
1789 if (!inode)
1790 return -EIO;
1791
1792 ret = fixup_inode_link_count(trans, root, inode);
1793 iput(inode);
1794 if (ret)
1795 goto out;
1796
1797 /*
1798 * fixup on a directory may create new entries,
1799 * make sure we always look for the highset possible
1800 * offset
1801 */
1802 key.offset = (u64)-1;
1803 }
1804 ret = 0;
1805out:
1806 btrfs_release_path(path);
1807 return ret;
1808}
1809
1810
1811/*
1812 * record a given inode in the fixup dir so we can check its link
1813 * count when replay is done. The link count is incremented here
1814 * so the inode won't go away until we check it
1815 */
1816static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 u64 objectid)
1820{
1821 struct btrfs_key key;
1822 int ret = 0;
1823 struct inode *inode;
1824
1825 inode = read_one_inode(root, objectid);
1826 if (!inode)
1827 return -EIO;
1828
1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830 key.type = BTRFS_ORPHAN_ITEM_KEY;
1831 key.offset = objectid;
1832
1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834
1835 btrfs_release_path(path);
1836 if (ret == 0) {
1837 if (!inode->i_nlink)
1838 set_nlink(inode, 1);
1839 else
1840 inc_nlink(inode);
1841 ret = btrfs_update_inode(trans, root, inode);
1842 } else if (ret == -EEXIST) {
1843 ret = 0;
1844 } else {
1845 BUG(); /* Logic Error */
1846 }
1847 iput(inode);
1848
1849 return ret;
1850}
1851
1852/*
1853 * when replaying the log for a directory, we only insert names
1854 * for inodes that actually exist. This means an fsync on a directory
1855 * does not implicitly fsync all the new files in it
1856 */
1857static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
1859 u64 dirid, u64 index,
1860 char *name, int name_len,
1861 struct btrfs_key *location)
1862{
1863 struct inode *inode;
1864 struct inode *dir;
1865 int ret;
1866
1867 inode = read_one_inode(root, location->objectid);
1868 if (!inode)
1869 return -ENOENT;
1870
1871 dir = read_one_inode(root, dirid);
1872 if (!dir) {
1873 iput(inode);
1874 return -EIO;
1875 }
1876
1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 name_len, 1, index);
1879
1880 /* FIXME, put inode into FIXUP list */
1881
1882 iput(inode);
1883 iput(dir);
1884 return ret;
1885}
1886
1887/*
1888 * Return true if an inode reference exists in the log for the given name,
1889 * inode and parent inode.
1890 */
1891static bool name_in_log_ref(struct btrfs_root *log_root,
1892 const char *name, const int name_len,
1893 const u64 dirid, const u64 ino)
1894{
1895 struct btrfs_key search_key;
1896
1897 search_key.objectid = ino;
1898 search_key.type = BTRFS_INODE_REF_KEY;
1899 search_key.offset = dirid;
1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 return true;
1902
1903 search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 return true;
1907
1908 return false;
1909}
1910
1911/*
1912 * take a single entry in a log directory item and replay it into
1913 * the subvolume.
1914 *
1915 * if a conflicting item exists in the subdirectory already,
1916 * the inode it points to is unlinked and put into the link count
1917 * fix up tree.
1918 *
1919 * If a name from the log points to a file or directory that does
1920 * not exist in the FS, it is skipped. fsyncs on directories
1921 * do not force down inodes inside that directory, just changes to the
1922 * names or unlinks in a directory.
1923 *
1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925 * non-existing inode) and 1 if the name was replayed.
1926 */
1927static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct extent_buffer *eb,
1931 struct btrfs_dir_item *di,
1932 struct btrfs_key *key)
1933{
1934 char *name;
1935 int name_len;
1936 struct btrfs_dir_item *dst_di;
1937 struct btrfs_key found_key;
1938 struct btrfs_key log_key;
1939 struct inode *dir;
1940 u8 log_type;
1941 int exists;
1942 int ret = 0;
1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944 bool name_added = false;
1945
1946 dir = read_one_inode(root, key->objectid);
1947 if (!dir)
1948 return -EIO;
1949
1950 name_len = btrfs_dir_name_len(eb, di);
1951 name = kmalloc(name_len, GFP_NOFS);
1952 if (!name) {
1953 ret = -ENOMEM;
1954 goto out;
1955 }
1956
1957 log_type = btrfs_dir_type(eb, di);
1958 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 name_len);
1960
1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 if (exists == 0)
1964 exists = 1;
1965 else
1966 exists = 0;
1967 btrfs_release_path(path);
1968
1969 if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 name, name_len, 1);
1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 key->objectid,
1975 key->offset, name,
1976 name_len, 1);
1977 } else {
1978 /* Corruption */
1979 ret = -EINVAL;
1980 goto out;
1981 }
1982 if (IS_ERR_OR_NULL(dst_di)) {
1983 /* we need a sequence number to insert, so we only
1984 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 */
1986 if (key->type != BTRFS_DIR_INDEX_KEY)
1987 goto out;
1988 goto insert;
1989 }
1990
1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 /* the existing item matches the logged item */
1993 if (found_key.objectid == log_key.objectid &&
1994 found_key.type == log_key.type &&
1995 found_key.offset == log_key.offset &&
1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997 update_size = false;
1998 goto out;
1999 }
2000
2001 /*
2002 * don't drop the conflicting directory entry if the inode
2003 * for the new entry doesn't exist
2004 */
2005 if (!exists)
2006 goto out;
2007
2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009 if (ret)
2010 goto out;
2011
2012 if (key->type == BTRFS_DIR_INDEX_KEY)
2013 goto insert;
2014out:
2015 btrfs_release_path(path);
2016 if (!ret && update_size) {
2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018 ret = btrfs_update_inode(trans, root, dir);
2019 }
2020 kfree(name);
2021 iput(dir);
2022 if (!ret && name_added)
2023 ret = 1;
2024 return ret;
2025
2026insert:
2027 if (name_in_log_ref(root->log_root, name, name_len,
2028 key->objectid, log_key.objectid)) {
2029 /* The dentry will be added later. */
2030 ret = 0;
2031 update_size = false;
2032 goto out;
2033 }
2034 btrfs_release_path(path);
2035 ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 name, name_len, &log_key);
2037 if (ret && ret != -ENOENT && ret != -EEXIST)
2038 goto out;
2039 if (!ret)
2040 name_added = true;
2041 update_size = false;
2042 ret = 0;
2043 goto out;
2044}
2045
2046/*
2047 * find all the names in a directory item and reconcile them into
2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2049 * one name in a directory item, but the same code gets used for
2050 * both directory index types
2051 */
2052static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 struct btrfs_root *root,
2054 struct btrfs_path *path,
2055 struct extent_buffer *eb, int slot,
2056 struct btrfs_key *key)
2057{
2058 int ret = 0;
2059 u32 item_size = btrfs_item_size_nr(eb, slot);
2060 struct btrfs_dir_item *di;
2061 int name_len;
2062 unsigned long ptr;
2063 unsigned long ptr_end;
2064 struct btrfs_path *fixup_path = NULL;
2065
2066 ptr = btrfs_item_ptr_offset(eb, slot);
2067 ptr_end = ptr + item_size;
2068 while (ptr < ptr_end) {
2069 di = (struct btrfs_dir_item *)ptr;
2070 name_len = btrfs_dir_name_len(eb, di);
2071 ret = replay_one_name(trans, root, path, eb, di, key);
2072 if (ret < 0)
2073 break;
2074 ptr = (unsigned long)(di + 1);
2075 ptr += name_len;
2076
2077 /*
2078 * If this entry refers to a non-directory (directories can not
2079 * have a link count > 1) and it was added in the transaction
2080 * that was not committed, make sure we fixup the link count of
2081 * the inode it the entry points to. Otherwise something like
2082 * the following would result in a directory pointing to an
2083 * inode with a wrong link that does not account for this dir
2084 * entry:
2085 *
2086 * mkdir testdir
2087 * touch testdir/foo
2088 * touch testdir/bar
2089 * sync
2090 *
2091 * ln testdir/bar testdir/bar_link
2092 * ln testdir/foo testdir/foo_link
2093 * xfs_io -c "fsync" testdir/bar
2094 *
2095 * <power failure>
2096 *
2097 * mount fs, log replay happens
2098 *
2099 * File foo would remain with a link count of 1 when it has two
2100 * entries pointing to it in the directory testdir. This would
2101 * make it impossible to ever delete the parent directory has
2102 * it would result in stale dentries that can never be deleted.
2103 */
2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 struct btrfs_key di_key;
2106
2107 if (!fixup_path) {
2108 fixup_path = btrfs_alloc_path();
2109 if (!fixup_path) {
2110 ret = -ENOMEM;
2111 break;
2112 }
2113 }
2114
2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 ret = link_to_fixup_dir(trans, root, fixup_path,
2117 di_key.objectid);
2118 if (ret)
2119 break;
2120 }
2121 ret = 0;
2122 }
2123 btrfs_free_path(fixup_path);
2124 return ret;
2125}
2126
2127/*
2128 * directory replay has two parts. There are the standard directory
2129 * items in the log copied from the subvolume, and range items
2130 * created in the log while the subvolume was logged.
2131 *
2132 * The range items tell us which parts of the key space the log
2133 * is authoritative for. During replay, if a key in the subvolume
2134 * directory is in a logged range item, but not actually in the log
2135 * that means it was deleted from the directory before the fsync
2136 * and should be removed.
2137 */
2138static noinline int find_dir_range(struct btrfs_root *root,
2139 struct btrfs_path *path,
2140 u64 dirid, int key_type,
2141 u64 *start_ret, u64 *end_ret)
2142{
2143 struct btrfs_key key;
2144 u64 found_end;
2145 struct btrfs_dir_log_item *item;
2146 int ret;
2147 int nritems;
2148
2149 if (*start_ret == (u64)-1)
2150 return 1;
2151
2152 key.objectid = dirid;
2153 key.type = key_type;
2154 key.offset = *start_ret;
2155
2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 if (ret < 0)
2158 goto out;
2159 if (ret > 0) {
2160 if (path->slots[0] == 0)
2161 goto out;
2162 path->slots[0]--;
2163 }
2164 if (ret != 0)
2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166
2167 if (key.type != key_type || key.objectid != dirid) {
2168 ret = 1;
2169 goto next;
2170 }
2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 struct btrfs_dir_log_item);
2173 found_end = btrfs_dir_log_end(path->nodes[0], item);
2174
2175 if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 ret = 0;
2177 *start_ret = key.offset;
2178 *end_ret = found_end;
2179 goto out;
2180 }
2181 ret = 1;
2182next:
2183 /* check the next slot in the tree to see if it is a valid item */
2184 nritems = btrfs_header_nritems(path->nodes[0]);
2185 path->slots[0]++;
2186 if (path->slots[0] >= nritems) {
2187 ret = btrfs_next_leaf(root, path);
2188 if (ret)
2189 goto out;
2190 }
2191
2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193
2194 if (key.type != key_type || key.objectid != dirid) {
2195 ret = 1;
2196 goto out;
2197 }
2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 struct btrfs_dir_log_item);
2200 found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 *start_ret = key.offset;
2202 *end_ret = found_end;
2203 ret = 0;
2204out:
2205 btrfs_release_path(path);
2206 return ret;
2207}
2208
2209/*
2210 * this looks for a given directory item in the log. If the directory
2211 * item is not in the log, the item is removed and the inode it points
2212 * to is unlinked
2213 */
2214static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct btrfs_root *log,
2217 struct btrfs_path *path,
2218 struct btrfs_path *log_path,
2219 struct inode *dir,
2220 struct btrfs_key *dir_key)
2221{
2222 int ret;
2223 struct extent_buffer *eb;
2224 int slot;
2225 u32 item_size;
2226 struct btrfs_dir_item *di;
2227 struct btrfs_dir_item *log_di;
2228 int name_len;
2229 unsigned long ptr;
2230 unsigned long ptr_end;
2231 char *name;
2232 struct inode *inode;
2233 struct btrfs_key location;
2234
2235again:
2236 eb = path->nodes[0];
2237 slot = path->slots[0];
2238 item_size = btrfs_item_size_nr(eb, slot);
2239 ptr = btrfs_item_ptr_offset(eb, slot);
2240 ptr_end = ptr + item_size;
2241 while (ptr < ptr_end) {
2242 di = (struct btrfs_dir_item *)ptr;
2243 name_len = btrfs_dir_name_len(eb, di);
2244 name = kmalloc(name_len, GFP_NOFS);
2245 if (!name) {
2246 ret = -ENOMEM;
2247 goto out;
2248 }
2249 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 name_len);
2251 log_di = NULL;
2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 dir_key->objectid,
2255 name, name_len, 0);
2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257 log_di = btrfs_lookup_dir_index_item(trans, log,
2258 log_path,
2259 dir_key->objectid,
2260 dir_key->offset,
2261 name, name_len, 0);
2262 }
2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264 btrfs_dir_item_key_to_cpu(eb, di, &location);
2265 btrfs_release_path(path);
2266 btrfs_release_path(log_path);
2267 inode = read_one_inode(root, location.objectid);
2268 if (!inode) {
2269 kfree(name);
2270 return -EIO;
2271 }
2272
2273 ret = link_to_fixup_dir(trans, root,
2274 path, location.objectid);
2275 if (ret) {
2276 kfree(name);
2277 iput(inode);
2278 goto out;
2279 }
2280
2281 inc_nlink(inode);
2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 BTRFS_I(inode), name, name_len);
2284 if (!ret)
2285 ret = btrfs_run_delayed_items(trans);
2286 kfree(name);
2287 iput(inode);
2288 if (ret)
2289 goto out;
2290
2291 /* there might still be more names under this key
2292 * check and repeat if required
2293 */
2294 ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 0, 0);
2296 if (ret == 0)
2297 goto again;
2298 ret = 0;
2299 goto out;
2300 } else if (IS_ERR(log_di)) {
2301 kfree(name);
2302 return PTR_ERR(log_di);
2303 }
2304 btrfs_release_path(log_path);
2305 kfree(name);
2306
2307 ptr = (unsigned long)(di + 1);
2308 ptr += name_len;
2309 }
2310 ret = 0;
2311out:
2312 btrfs_release_path(path);
2313 btrfs_release_path(log_path);
2314 return ret;
2315}
2316
2317static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 struct btrfs_root *log,
2320 struct btrfs_path *path,
2321 const u64 ino)
2322{
2323 struct btrfs_key search_key;
2324 struct btrfs_path *log_path;
2325 int i;
2326 int nritems;
2327 int ret;
2328
2329 log_path = btrfs_alloc_path();
2330 if (!log_path)
2331 return -ENOMEM;
2332
2333 search_key.objectid = ino;
2334 search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 search_key.offset = 0;
2336again:
2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 if (ret < 0)
2339 goto out;
2340process_leaf:
2341 nritems = btrfs_header_nritems(path->nodes[0]);
2342 for (i = path->slots[0]; i < nritems; i++) {
2343 struct btrfs_key key;
2344 struct btrfs_dir_item *di;
2345 struct btrfs_dir_item *log_di;
2346 u32 total_size;
2347 u32 cur;
2348
2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 ret = 0;
2352 goto out;
2353 }
2354
2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 cur = 0;
2358 while (cur < total_size) {
2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 u32 this_len = sizeof(*di) + name_len + data_len;
2362 char *name;
2363
2364 name = kmalloc(name_len, GFP_NOFS);
2365 if (!name) {
2366 ret = -ENOMEM;
2367 goto out;
2368 }
2369 read_extent_buffer(path->nodes[0], name,
2370 (unsigned long)(di + 1), name_len);
2371
2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 name, name_len, 0);
2374 btrfs_release_path(log_path);
2375 if (!log_di) {
2376 /* Doesn't exist in log tree, so delete it. */
2377 btrfs_release_path(path);
2378 di = btrfs_lookup_xattr(trans, root, path, ino,
2379 name, name_len, -1);
2380 kfree(name);
2381 if (IS_ERR(di)) {
2382 ret = PTR_ERR(di);
2383 goto out;
2384 }
2385 ASSERT(di);
2386 ret = btrfs_delete_one_dir_name(trans, root,
2387 path, di);
2388 if (ret)
2389 goto out;
2390 btrfs_release_path(path);
2391 search_key = key;
2392 goto again;
2393 }
2394 kfree(name);
2395 if (IS_ERR(log_di)) {
2396 ret = PTR_ERR(log_di);
2397 goto out;
2398 }
2399 cur += this_len;
2400 di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 }
2402 }
2403 ret = btrfs_next_leaf(root, path);
2404 if (ret > 0)
2405 ret = 0;
2406 else if (ret == 0)
2407 goto process_leaf;
2408out:
2409 btrfs_free_path(log_path);
2410 btrfs_release_path(path);
2411 return ret;
2412}
2413
2414
2415/*
2416 * deletion replay happens before we copy any new directory items
2417 * out of the log or out of backreferences from inodes. It
2418 * scans the log to find ranges of keys that log is authoritative for,
2419 * and then scans the directory to find items in those ranges that are
2420 * not present in the log.
2421 *
2422 * Anything we don't find in the log is unlinked and removed from the
2423 * directory.
2424 */
2425static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 struct btrfs_root *root,
2427 struct btrfs_root *log,
2428 struct btrfs_path *path,
2429 u64 dirid, int del_all)
2430{
2431 u64 range_start;
2432 u64 range_end;
2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 int ret = 0;
2435 struct btrfs_key dir_key;
2436 struct btrfs_key found_key;
2437 struct btrfs_path *log_path;
2438 struct inode *dir;
2439
2440 dir_key.objectid = dirid;
2441 dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 log_path = btrfs_alloc_path();
2443 if (!log_path)
2444 return -ENOMEM;
2445
2446 dir = read_one_inode(root, dirid);
2447 /* it isn't an error if the inode isn't there, that can happen
2448 * because we replay the deletes before we copy in the inode item
2449 * from the log
2450 */
2451 if (!dir) {
2452 btrfs_free_path(log_path);
2453 return 0;
2454 }
2455again:
2456 range_start = 0;
2457 range_end = 0;
2458 while (1) {
2459 if (del_all)
2460 range_end = (u64)-1;
2461 else {
2462 ret = find_dir_range(log, path, dirid, key_type,
2463 &range_start, &range_end);
2464 if (ret != 0)
2465 break;
2466 }
2467
2468 dir_key.offset = range_start;
2469 while (1) {
2470 int nritems;
2471 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 0, 0);
2473 if (ret < 0)
2474 goto out;
2475
2476 nritems = btrfs_header_nritems(path->nodes[0]);
2477 if (path->slots[0] >= nritems) {
2478 ret = btrfs_next_leaf(root, path);
2479 if (ret == 1)
2480 break;
2481 else if (ret < 0)
2482 goto out;
2483 }
2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 path->slots[0]);
2486 if (found_key.objectid != dirid ||
2487 found_key.type != dir_key.type)
2488 goto next_type;
2489
2490 if (found_key.offset > range_end)
2491 break;
2492
2493 ret = check_item_in_log(trans, root, log, path,
2494 log_path, dir,
2495 &found_key);
2496 if (ret)
2497 goto out;
2498 if (found_key.offset == (u64)-1)
2499 break;
2500 dir_key.offset = found_key.offset + 1;
2501 }
2502 btrfs_release_path(path);
2503 if (range_end == (u64)-1)
2504 break;
2505 range_start = range_end + 1;
2506 }
2507
2508next_type:
2509 ret = 0;
2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 dir_key.type = BTRFS_DIR_INDEX_KEY;
2513 btrfs_release_path(path);
2514 goto again;
2515 }
2516out:
2517 btrfs_release_path(path);
2518 btrfs_free_path(log_path);
2519 iput(dir);
2520 return ret;
2521}
2522
2523/*
2524 * the process_func used to replay items from the log tree. This
2525 * gets called in two different stages. The first stage just looks
2526 * for inodes and makes sure they are all copied into the subvolume.
2527 *
2528 * The second stage copies all the other item types from the log into
2529 * the subvolume. The two stage approach is slower, but gets rid of
2530 * lots of complexity around inodes referencing other inodes that exist
2531 * only in the log (references come from either directory items or inode
2532 * back refs).
2533 */
2534static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535 struct walk_control *wc, u64 gen, int level)
2536{
2537 int nritems;
2538 struct btrfs_path *path;
2539 struct btrfs_root *root = wc->replay_dest;
2540 struct btrfs_key key;
2541 int i;
2542 int ret;
2543
2544 ret = btrfs_read_buffer(eb, gen, level, NULL);
2545 if (ret)
2546 return ret;
2547
2548 level = btrfs_header_level(eb);
2549
2550 if (level != 0)
2551 return 0;
2552
2553 path = btrfs_alloc_path();
2554 if (!path)
2555 return -ENOMEM;
2556
2557 nritems = btrfs_header_nritems(eb);
2558 for (i = 0; i < nritems; i++) {
2559 btrfs_item_key_to_cpu(eb, &key, i);
2560
2561 /* inode keys are done during the first stage */
2562 if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 wc->stage == LOG_WALK_REPLAY_INODES) {
2564 struct btrfs_inode_item *inode_item;
2565 u32 mode;
2566
2567 inode_item = btrfs_item_ptr(eb, i,
2568 struct btrfs_inode_item);
2569 /*
2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 * and never got linked before the fsync, skip it, as
2572 * replaying it is pointless since it would be deleted
2573 * later. We skip logging tmpfiles, but it's always
2574 * possible we are replaying a log created with a kernel
2575 * that used to log tmpfiles.
2576 */
2577 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 wc->ignore_cur_inode = true;
2579 continue;
2580 } else {
2581 wc->ignore_cur_inode = false;
2582 }
2583 ret = replay_xattr_deletes(wc->trans, root, log,
2584 path, key.objectid);
2585 if (ret)
2586 break;
2587 mode = btrfs_inode_mode(eb, inode_item);
2588 if (S_ISDIR(mode)) {
2589 ret = replay_dir_deletes(wc->trans,
2590 root, log, path, key.objectid, 0);
2591 if (ret)
2592 break;
2593 }
2594 ret = overwrite_item(wc->trans, root, path,
2595 eb, i, &key);
2596 if (ret)
2597 break;
2598
2599 /*
2600 * Before replaying extents, truncate the inode to its
2601 * size. We need to do it now and not after log replay
2602 * because before an fsync we can have prealloc extents
2603 * added beyond the inode's i_size. If we did it after,
2604 * through orphan cleanup for example, we would drop
2605 * those prealloc extents just after replaying them.
2606 */
2607 if (S_ISREG(mode)) {
2608 struct inode *inode;
2609 u64 from;
2610
2611 inode = read_one_inode(root, key.objectid);
2612 if (!inode) {
2613 ret = -EIO;
2614 break;
2615 }
2616 from = ALIGN(i_size_read(inode),
2617 root->fs_info->sectorsize);
2618 ret = btrfs_drop_extents(wc->trans, root, inode,
2619 from, (u64)-1, 1);
2620 if (!ret) {
2621 /* Update the inode's nbytes. */
2622 ret = btrfs_update_inode(wc->trans,
2623 root, inode);
2624 }
2625 iput(inode);
2626 if (ret)
2627 break;
2628 }
2629
2630 ret = link_to_fixup_dir(wc->trans, root,
2631 path, key.objectid);
2632 if (ret)
2633 break;
2634 }
2635
2636 if (wc->ignore_cur_inode)
2637 continue;
2638
2639 if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 ret = replay_one_dir_item(wc->trans, root, path,
2642 eb, i, &key);
2643 if (ret)
2644 break;
2645 }
2646
2647 if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 continue;
2649
2650 /* these keys are simply copied */
2651 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 ret = overwrite_item(wc->trans, root, path,
2653 eb, i, &key);
2654 if (ret)
2655 break;
2656 } else if (key.type == BTRFS_INODE_REF_KEY ||
2657 key.type == BTRFS_INODE_EXTREF_KEY) {
2658 ret = add_inode_ref(wc->trans, root, log, path,
2659 eb, i, &key);
2660 if (ret && ret != -ENOENT)
2661 break;
2662 ret = 0;
2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 ret = replay_one_extent(wc->trans, root, path,
2665 eb, i, &key);
2666 if (ret)
2667 break;
2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669 ret = replay_one_dir_item(wc->trans, root, path,
2670 eb, i, &key);
2671 if (ret)
2672 break;
2673 }
2674 }
2675 btrfs_free_path(path);
2676 return ret;
2677}
2678
2679static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root,
2681 struct btrfs_path *path, int *level,
2682 struct walk_control *wc)
2683{
2684 struct btrfs_fs_info *fs_info = root->fs_info;
2685 u64 root_owner;
2686 u64 bytenr;
2687 u64 ptr_gen;
2688 struct extent_buffer *next;
2689 struct extent_buffer *cur;
2690 struct extent_buffer *parent;
2691 u32 blocksize;
2692 int ret = 0;
2693
2694 WARN_ON(*level < 0);
2695 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696
2697 while (*level > 0) {
2698 struct btrfs_key first_key;
2699
2700 WARN_ON(*level < 0);
2701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 cur = path->nodes[*level];
2703
2704 WARN_ON(btrfs_header_level(cur) != *level);
2705
2706 if (path->slots[*level] >=
2707 btrfs_header_nritems(cur))
2708 break;
2709
2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713 blocksize = fs_info->nodesize;
2714
2715 parent = path->nodes[*level];
2716 root_owner = btrfs_header_owner(parent);
2717
2718 next = btrfs_find_create_tree_block(fs_info, bytenr);
2719 if (IS_ERR(next))
2720 return PTR_ERR(next);
2721
2722 if (*level == 1) {
2723 ret = wc->process_func(root, next, wc, ptr_gen,
2724 *level - 1);
2725 if (ret) {
2726 free_extent_buffer(next);
2727 return ret;
2728 }
2729
2730 path->slots[*level]++;
2731 if (wc->free) {
2732 ret = btrfs_read_buffer(next, ptr_gen,
2733 *level - 1, &first_key);
2734 if (ret) {
2735 free_extent_buffer(next);
2736 return ret;
2737 }
2738
2739 if (trans) {
2740 btrfs_tree_lock(next);
2741 btrfs_set_lock_blocking_write(next);
2742 btrfs_clean_tree_block(next);
2743 btrfs_wait_tree_block_writeback(next);
2744 btrfs_tree_unlock(next);
2745 } else {
2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 clear_extent_buffer_dirty(next);
2748 }
2749
2750 WARN_ON(root_owner !=
2751 BTRFS_TREE_LOG_OBJECTID);
2752 ret = btrfs_free_and_pin_reserved_extent(
2753 fs_info, bytenr,
2754 blocksize);
2755 if (ret) {
2756 free_extent_buffer(next);
2757 return ret;
2758 }
2759 }
2760 free_extent_buffer(next);
2761 continue;
2762 }
2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764 if (ret) {
2765 free_extent_buffer(next);
2766 return ret;
2767 }
2768
2769 WARN_ON(*level <= 0);
2770 if (path->nodes[*level-1])
2771 free_extent_buffer(path->nodes[*level-1]);
2772 path->nodes[*level-1] = next;
2773 *level = btrfs_header_level(next);
2774 path->slots[*level] = 0;
2775 cond_resched();
2776 }
2777 WARN_ON(*level < 0);
2778 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779
2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781
2782 cond_resched();
2783 return 0;
2784}
2785
2786static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787 struct btrfs_root *root,
2788 struct btrfs_path *path, int *level,
2789 struct walk_control *wc)
2790{
2791 struct btrfs_fs_info *fs_info = root->fs_info;
2792 u64 root_owner;
2793 int i;
2794 int slot;
2795 int ret;
2796
2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798 slot = path->slots[i];
2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800 path->slots[i]++;
2801 *level = i;
2802 WARN_ON(*level == 0);
2803 return 0;
2804 } else {
2805 struct extent_buffer *parent;
2806 if (path->nodes[*level] == root->node)
2807 parent = path->nodes[*level];
2808 else
2809 parent = path->nodes[*level + 1];
2810
2811 root_owner = btrfs_header_owner(parent);
2812 ret = wc->process_func(root, path->nodes[*level], wc,
2813 btrfs_header_generation(path->nodes[*level]),
2814 *level);
2815 if (ret)
2816 return ret;
2817
2818 if (wc->free) {
2819 struct extent_buffer *next;
2820
2821 next = path->nodes[*level];
2822
2823 if (trans) {
2824 btrfs_tree_lock(next);
2825 btrfs_set_lock_blocking_write(next);
2826 btrfs_clean_tree_block(next);
2827 btrfs_wait_tree_block_writeback(next);
2828 btrfs_tree_unlock(next);
2829 } else {
2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 clear_extent_buffer_dirty(next);
2832 }
2833
2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835 ret = btrfs_free_and_pin_reserved_extent(
2836 fs_info,
2837 path->nodes[*level]->start,
2838 path->nodes[*level]->len);
2839 if (ret)
2840 return ret;
2841 }
2842 free_extent_buffer(path->nodes[*level]);
2843 path->nodes[*level] = NULL;
2844 *level = i + 1;
2845 }
2846 }
2847 return 1;
2848}
2849
2850/*
2851 * drop the reference count on the tree rooted at 'snap'. This traverses
2852 * the tree freeing any blocks that have a ref count of zero after being
2853 * decremented.
2854 */
2855static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 struct btrfs_root *log, struct walk_control *wc)
2857{
2858 struct btrfs_fs_info *fs_info = log->fs_info;
2859 int ret = 0;
2860 int wret;
2861 int level;
2862 struct btrfs_path *path;
2863 int orig_level;
2864
2865 path = btrfs_alloc_path();
2866 if (!path)
2867 return -ENOMEM;
2868
2869 level = btrfs_header_level(log->node);
2870 orig_level = level;
2871 path->nodes[level] = log->node;
2872 extent_buffer_get(log->node);
2873 path->slots[level] = 0;
2874
2875 while (1) {
2876 wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 if (wret > 0)
2878 break;
2879 if (wret < 0) {
2880 ret = wret;
2881 goto out;
2882 }
2883
2884 wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 if (wret > 0)
2886 break;
2887 if (wret < 0) {
2888 ret = wret;
2889 goto out;
2890 }
2891 }
2892
2893 /* was the root node processed? if not, catch it here */
2894 if (path->nodes[orig_level]) {
2895 ret = wc->process_func(log, path->nodes[orig_level], wc,
2896 btrfs_header_generation(path->nodes[orig_level]),
2897 orig_level);
2898 if (ret)
2899 goto out;
2900 if (wc->free) {
2901 struct extent_buffer *next;
2902
2903 next = path->nodes[orig_level];
2904
2905 if (trans) {
2906 btrfs_tree_lock(next);
2907 btrfs_set_lock_blocking_write(next);
2908 btrfs_clean_tree_block(next);
2909 btrfs_wait_tree_block_writeback(next);
2910 btrfs_tree_unlock(next);
2911 } else {
2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 clear_extent_buffer_dirty(next);
2914 }
2915
2916 WARN_ON(log->root_key.objectid !=
2917 BTRFS_TREE_LOG_OBJECTID);
2918 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 next->start, next->len);
2920 if (ret)
2921 goto out;
2922 }
2923 }
2924
2925out:
2926 btrfs_free_path(path);
2927 return ret;
2928}
2929
2930/*
2931 * helper function to update the item for a given subvolumes log root
2932 * in the tree of log roots
2933 */
2934static int update_log_root(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *log,
2936 struct btrfs_root_item *root_item)
2937{
2938 struct btrfs_fs_info *fs_info = log->fs_info;
2939 int ret;
2940
2941 if (log->log_transid == 1) {
2942 /* insert root item on the first sync */
2943 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2944 &log->root_key, root_item);
2945 } else {
2946 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2947 &log->root_key, root_item);
2948 }
2949 return ret;
2950}
2951
2952static void wait_log_commit(struct btrfs_root *root, int transid)
2953{
2954 DEFINE_WAIT(wait);
2955 int index = transid % 2;
2956
2957 /*
2958 * we only allow two pending log transactions at a time,
2959 * so we know that if ours is more than 2 older than the
2960 * current transaction, we're done
2961 */
2962 for (;;) {
2963 prepare_to_wait(&root->log_commit_wait[index],
2964 &wait, TASK_UNINTERRUPTIBLE);
2965
2966 if (!(root->log_transid_committed < transid &&
2967 atomic_read(&root->log_commit[index])))
2968 break;
2969
2970 mutex_unlock(&root->log_mutex);
2971 schedule();
2972 mutex_lock(&root->log_mutex);
2973 }
2974 finish_wait(&root->log_commit_wait[index], &wait);
2975}
2976
2977static void wait_for_writer(struct btrfs_root *root)
2978{
2979 DEFINE_WAIT(wait);
2980
2981 for (;;) {
2982 prepare_to_wait(&root->log_writer_wait, &wait,
2983 TASK_UNINTERRUPTIBLE);
2984 if (!atomic_read(&root->log_writers))
2985 break;
2986
2987 mutex_unlock(&root->log_mutex);
2988 schedule();
2989 mutex_lock(&root->log_mutex);
2990 }
2991 finish_wait(&root->log_writer_wait, &wait);
2992}
2993
2994static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2995 struct btrfs_log_ctx *ctx)
2996{
2997 if (!ctx)
2998 return;
2999
3000 mutex_lock(&root->log_mutex);
3001 list_del_init(&ctx->list);
3002 mutex_unlock(&root->log_mutex);
3003}
3004
3005/*
3006 * Invoked in log mutex context, or be sure there is no other task which
3007 * can access the list.
3008 */
3009static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3010 int index, int error)
3011{
3012 struct btrfs_log_ctx *ctx;
3013 struct btrfs_log_ctx *safe;
3014
3015 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3016 list_del_init(&ctx->list);
3017 ctx->log_ret = error;
3018 }
3019
3020 INIT_LIST_HEAD(&root->log_ctxs[index]);
3021}
3022
3023/*
3024 * btrfs_sync_log does sends a given tree log down to the disk and
3025 * updates the super blocks to record it. When this call is done,
3026 * you know that any inodes previously logged are safely on disk only
3027 * if it returns 0.
3028 *
3029 * Any other return value means you need to call btrfs_commit_transaction.
3030 * Some of the edge cases for fsyncing directories that have had unlinks
3031 * or renames done in the past mean that sometimes the only safe
3032 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3033 * that has happened.
3034 */
3035int btrfs_sync_log(struct btrfs_trans_handle *trans,
3036 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3037{
3038 int index1;
3039 int index2;
3040 int mark;
3041 int ret;
3042 struct btrfs_fs_info *fs_info = root->fs_info;
3043 struct btrfs_root *log = root->log_root;
3044 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3045 struct btrfs_root_item new_root_item;
3046 int log_transid = 0;
3047 struct btrfs_log_ctx root_log_ctx;
3048 struct blk_plug plug;
3049
3050 mutex_lock(&root->log_mutex);
3051 log_transid = ctx->log_transid;
3052 if (root->log_transid_committed >= log_transid) {
3053 mutex_unlock(&root->log_mutex);
3054 return ctx->log_ret;
3055 }
3056
3057 index1 = log_transid % 2;
3058 if (atomic_read(&root->log_commit[index1])) {
3059 wait_log_commit(root, log_transid);
3060 mutex_unlock(&root->log_mutex);
3061 return ctx->log_ret;
3062 }
3063 ASSERT(log_transid == root->log_transid);
3064 atomic_set(&root->log_commit[index1], 1);
3065
3066 /* wait for previous tree log sync to complete */
3067 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3068 wait_log_commit(root, log_transid - 1);
3069
3070 while (1) {
3071 int batch = atomic_read(&root->log_batch);
3072 /* when we're on an ssd, just kick the log commit out */
3073 if (!btrfs_test_opt(fs_info, SSD) &&
3074 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3075 mutex_unlock(&root->log_mutex);
3076 schedule_timeout_uninterruptible(1);
3077 mutex_lock(&root->log_mutex);
3078 }
3079 wait_for_writer(root);
3080 if (batch == atomic_read(&root->log_batch))
3081 break;
3082 }
3083
3084 /* bail out if we need to do a full commit */
3085 if (btrfs_need_log_full_commit(trans)) {
3086 ret = -EAGAIN;
3087 mutex_unlock(&root->log_mutex);
3088 goto out;
3089 }
3090
3091 if (log_transid % 2 == 0)
3092 mark = EXTENT_DIRTY;
3093 else
3094 mark = EXTENT_NEW;
3095
3096 /* we start IO on all the marked extents here, but we don't actually
3097 * wait for them until later.
3098 */
3099 blk_start_plug(&plug);
3100 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3101 if (ret) {
3102 blk_finish_plug(&plug);
3103 btrfs_abort_transaction(trans, ret);
3104 btrfs_set_log_full_commit(trans);
3105 mutex_unlock(&root->log_mutex);
3106 goto out;
3107 }
3108
3109 /*
3110 * We _must_ update under the root->log_mutex in order to make sure we
3111 * have a consistent view of the log root we are trying to commit at
3112 * this moment.
3113 *
3114 * We _must_ copy this into a local copy, because we are not holding the
3115 * log_root_tree->log_mutex yet. This is important because when we
3116 * commit the log_root_tree we must have a consistent view of the
3117 * log_root_tree when we update the super block to point at the
3118 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3119 * with the commit and possibly point at the new block which we may not
3120 * have written out.
3121 */
3122 btrfs_set_root_node(&log->root_item, log->node);
3123 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3124
3125 root->log_transid++;
3126 log->log_transid = root->log_transid;
3127 root->log_start_pid = 0;
3128 /*
3129 * IO has been started, blocks of the log tree have WRITTEN flag set
3130 * in their headers. new modifications of the log will be written to
3131 * new positions. so it's safe to allow log writers to go in.
3132 */
3133 mutex_unlock(&root->log_mutex);
3134
3135 btrfs_init_log_ctx(&root_log_ctx, NULL);
3136
3137 mutex_lock(&log_root_tree->log_mutex);
3138 atomic_inc(&log_root_tree->log_batch);
3139 atomic_inc(&log_root_tree->log_writers);
3140
3141 index2 = log_root_tree->log_transid % 2;
3142 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3143 root_log_ctx.log_transid = log_root_tree->log_transid;
3144
3145 mutex_unlock(&log_root_tree->log_mutex);
3146
3147 mutex_lock(&log_root_tree->log_mutex);
3148
3149 /*
3150 * Now we are safe to update the log_root_tree because we're under the
3151 * log_mutex, and we're a current writer so we're holding the commit
3152 * open until we drop the log_mutex.
3153 */
3154 ret = update_log_root(trans, log, &new_root_item);
3155
3156 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3157 /* atomic_dec_and_test implies a barrier */
3158 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3159 }
3160
3161 if (ret) {
3162 if (!list_empty(&root_log_ctx.list))
3163 list_del_init(&root_log_ctx.list);
3164
3165 blk_finish_plug(&plug);
3166 btrfs_set_log_full_commit(trans);
3167
3168 if (ret != -ENOSPC) {
3169 btrfs_abort_transaction(trans, ret);
3170 mutex_unlock(&log_root_tree->log_mutex);
3171 goto out;
3172 }
3173 btrfs_wait_tree_log_extents(log, mark);
3174 mutex_unlock(&log_root_tree->log_mutex);
3175 ret = -EAGAIN;
3176 goto out;
3177 }
3178
3179 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3180 blk_finish_plug(&plug);
3181 list_del_init(&root_log_ctx.list);
3182 mutex_unlock(&log_root_tree->log_mutex);
3183 ret = root_log_ctx.log_ret;
3184 goto out;
3185 }
3186
3187 index2 = root_log_ctx.log_transid % 2;
3188 if (atomic_read(&log_root_tree->log_commit[index2])) {
3189 blk_finish_plug(&plug);
3190 ret = btrfs_wait_tree_log_extents(log, mark);
3191 wait_log_commit(log_root_tree,
3192 root_log_ctx.log_transid);
3193 mutex_unlock(&log_root_tree->log_mutex);
3194 if (!ret)
3195 ret = root_log_ctx.log_ret;
3196 goto out;
3197 }
3198 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3199 atomic_set(&log_root_tree->log_commit[index2], 1);
3200
3201 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3202 wait_log_commit(log_root_tree,
3203 root_log_ctx.log_transid - 1);
3204 }
3205
3206 wait_for_writer(log_root_tree);
3207
3208 /*
3209 * now that we've moved on to the tree of log tree roots,
3210 * check the full commit flag again
3211 */
3212 if (btrfs_need_log_full_commit(trans)) {
3213 blk_finish_plug(&plug);
3214 btrfs_wait_tree_log_extents(log, mark);
3215 mutex_unlock(&log_root_tree->log_mutex);
3216 ret = -EAGAIN;
3217 goto out_wake_log_root;
3218 }
3219
3220 ret = btrfs_write_marked_extents(fs_info,
3221 &log_root_tree->dirty_log_pages,
3222 EXTENT_DIRTY | EXTENT_NEW);
3223 blk_finish_plug(&plug);
3224 if (ret) {
3225 btrfs_set_log_full_commit(trans);
3226 btrfs_abort_transaction(trans, ret);
3227 mutex_unlock(&log_root_tree->log_mutex);
3228 goto out_wake_log_root;
3229 }
3230 ret = btrfs_wait_tree_log_extents(log, mark);
3231 if (!ret)
3232 ret = btrfs_wait_tree_log_extents(log_root_tree,
3233 EXTENT_NEW | EXTENT_DIRTY);
3234 if (ret) {
3235 btrfs_set_log_full_commit(trans);
3236 mutex_unlock(&log_root_tree->log_mutex);
3237 goto out_wake_log_root;
3238 }
3239
3240 btrfs_set_super_log_root(fs_info->super_for_commit,
3241 log_root_tree->node->start);
3242 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3243 btrfs_header_level(log_root_tree->node));
3244
3245 log_root_tree->log_transid++;
3246 mutex_unlock(&log_root_tree->log_mutex);
3247
3248 /*
3249 * Nobody else is going to jump in and write the ctree
3250 * super here because the log_commit atomic below is protecting
3251 * us. We must be called with a transaction handle pinning
3252 * the running transaction open, so a full commit can't hop
3253 * in and cause problems either.
3254 */
3255 ret = write_all_supers(fs_info, 1);
3256 if (ret) {
3257 btrfs_set_log_full_commit(trans);
3258 btrfs_abort_transaction(trans, ret);
3259 goto out_wake_log_root;
3260 }
3261
3262 mutex_lock(&root->log_mutex);
3263 if (root->last_log_commit < log_transid)
3264 root->last_log_commit = log_transid;
3265 mutex_unlock(&root->log_mutex);
3266
3267out_wake_log_root:
3268 mutex_lock(&log_root_tree->log_mutex);
3269 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3270
3271 log_root_tree->log_transid_committed++;
3272 atomic_set(&log_root_tree->log_commit[index2], 0);
3273 mutex_unlock(&log_root_tree->log_mutex);
3274
3275 /*
3276 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3277 * all the updates above are seen by the woken threads. It might not be
3278 * necessary, but proving that seems to be hard.
3279 */
3280 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3281out:
3282 mutex_lock(&root->log_mutex);
3283 btrfs_remove_all_log_ctxs(root, index1, ret);
3284 root->log_transid_committed++;
3285 atomic_set(&root->log_commit[index1], 0);
3286 mutex_unlock(&root->log_mutex);
3287
3288 /*
3289 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3290 * all the updates above are seen by the woken threads. It might not be
3291 * necessary, but proving that seems to be hard.
3292 */
3293 cond_wake_up(&root->log_commit_wait[index1]);
3294 return ret;
3295}
3296
3297static void free_log_tree(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *log)
3299{
3300 int ret;
3301 struct walk_control wc = {
3302 .free = 1,
3303 .process_func = process_one_buffer
3304 };
3305
3306 ret = walk_log_tree(trans, log, &wc);
3307 if (ret) {
3308 if (trans)
3309 btrfs_abort_transaction(trans, ret);
3310 else
3311 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3312 }
3313
3314 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3315 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3316 free_extent_buffer(log->node);
3317 kfree(log);
3318}
3319
3320/*
3321 * free all the extents used by the tree log. This should be called
3322 * at commit time of the full transaction
3323 */
3324int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3325{
3326 if (root->log_root) {
3327 free_log_tree(trans, root->log_root);
3328 root->log_root = NULL;
3329 }
3330 return 0;
3331}
3332
3333int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3334 struct btrfs_fs_info *fs_info)
3335{
3336 if (fs_info->log_root_tree) {
3337 free_log_tree(trans, fs_info->log_root_tree);
3338 fs_info->log_root_tree = NULL;
3339 }
3340 return 0;
3341}
3342
3343/*
3344 * Check if an inode was logged in the current transaction. We can't always rely
3345 * on an inode's logged_trans value, because it's an in-memory only field and
3346 * therefore not persisted. This means that its value is lost if the inode gets
3347 * evicted and loaded again from disk (in which case it has a value of 0, and
3348 * certainly it is smaller then any possible transaction ID), when that happens
3349 * the full_sync flag is set in the inode's runtime flags, so on that case we
3350 * assume eviction happened and ignore the logged_trans value, assuming the
3351 * worst case, that the inode was logged before in the current transaction.
3352 */
3353static bool inode_logged(struct btrfs_trans_handle *trans,
3354 struct btrfs_inode *inode)
3355{
3356 if (inode->logged_trans == trans->transid)
3357 return true;
3358
3359 if (inode->last_trans == trans->transid &&
3360 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3361 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3362 return true;
3363
3364 return false;
3365}
3366
3367/*
3368 * If both a file and directory are logged, and unlinks or renames are
3369 * mixed in, we have a few interesting corners:
3370 *
3371 * create file X in dir Y
3372 * link file X to X.link in dir Y
3373 * fsync file X
3374 * unlink file X but leave X.link
3375 * fsync dir Y
3376 *
3377 * After a crash we would expect only X.link to exist. But file X
3378 * didn't get fsync'd again so the log has back refs for X and X.link.
3379 *
3380 * We solve this by removing directory entries and inode backrefs from the
3381 * log when a file that was logged in the current transaction is
3382 * unlinked. Any later fsync will include the updated log entries, and
3383 * we'll be able to reconstruct the proper directory items from backrefs.
3384 *
3385 * This optimizations allows us to avoid relogging the entire inode
3386 * or the entire directory.
3387 */
3388int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3389 struct btrfs_root *root,
3390 const char *name, int name_len,
3391 struct btrfs_inode *dir, u64 index)
3392{
3393 struct btrfs_root *log;
3394 struct btrfs_dir_item *di;
3395 struct btrfs_path *path;
3396 int ret;
3397 int err = 0;
3398 int bytes_del = 0;
3399 u64 dir_ino = btrfs_ino(dir);
3400
3401 if (!inode_logged(trans, dir))
3402 return 0;
3403
3404 ret = join_running_log_trans(root);
3405 if (ret)
3406 return 0;
3407
3408 mutex_lock(&dir->log_mutex);
3409
3410 log = root->log_root;
3411 path = btrfs_alloc_path();
3412 if (!path) {
3413 err = -ENOMEM;
3414 goto out_unlock;
3415 }
3416
3417 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3418 name, name_len, -1);
3419 if (IS_ERR(di)) {
3420 err = PTR_ERR(di);
3421 goto fail;
3422 }
3423 if (di) {
3424 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425 bytes_del += name_len;
3426 if (ret) {
3427 err = ret;
3428 goto fail;
3429 }
3430 }
3431 btrfs_release_path(path);
3432 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3433 index, name, name_len, -1);
3434 if (IS_ERR(di)) {
3435 err = PTR_ERR(di);
3436 goto fail;
3437 }
3438 if (di) {
3439 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3440 bytes_del += name_len;
3441 if (ret) {
3442 err = ret;
3443 goto fail;
3444 }
3445 }
3446
3447 /* update the directory size in the log to reflect the names
3448 * we have removed
3449 */
3450 if (bytes_del) {
3451 struct btrfs_key key;
3452
3453 key.objectid = dir_ino;
3454 key.offset = 0;
3455 key.type = BTRFS_INODE_ITEM_KEY;
3456 btrfs_release_path(path);
3457
3458 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3459 if (ret < 0) {
3460 err = ret;
3461 goto fail;
3462 }
3463 if (ret == 0) {
3464 struct btrfs_inode_item *item;
3465 u64 i_size;
3466
3467 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3468 struct btrfs_inode_item);
3469 i_size = btrfs_inode_size(path->nodes[0], item);
3470 if (i_size > bytes_del)
3471 i_size -= bytes_del;
3472 else
3473 i_size = 0;
3474 btrfs_set_inode_size(path->nodes[0], item, i_size);
3475 btrfs_mark_buffer_dirty(path->nodes[0]);
3476 } else
3477 ret = 0;
3478 btrfs_release_path(path);
3479 }
3480fail:
3481 btrfs_free_path(path);
3482out_unlock:
3483 mutex_unlock(&dir->log_mutex);
3484 if (ret == -ENOSPC) {
3485 btrfs_set_log_full_commit(trans);
3486 ret = 0;
3487 } else if (ret < 0)
3488 btrfs_abort_transaction(trans, ret);
3489
3490 btrfs_end_log_trans(root);
3491
3492 return err;
3493}
3494
3495/* see comments for btrfs_del_dir_entries_in_log */
3496int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3497 struct btrfs_root *root,
3498 const char *name, int name_len,
3499 struct btrfs_inode *inode, u64 dirid)
3500{
3501 struct btrfs_root *log;
3502 u64 index;
3503 int ret;
3504
3505 if (!inode_logged(trans, inode))
3506 return 0;
3507
3508 ret = join_running_log_trans(root);
3509 if (ret)
3510 return 0;
3511 log = root->log_root;
3512 mutex_lock(&inode->log_mutex);
3513
3514 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3515 dirid, &index);
3516 mutex_unlock(&inode->log_mutex);
3517 if (ret == -ENOSPC) {
3518 btrfs_set_log_full_commit(trans);
3519 ret = 0;
3520 } else if (ret < 0 && ret != -ENOENT)
3521 btrfs_abort_transaction(trans, ret);
3522 btrfs_end_log_trans(root);
3523
3524 return ret;
3525}
3526
3527/*
3528 * creates a range item in the log for 'dirid'. first_offset and
3529 * last_offset tell us which parts of the key space the log should
3530 * be considered authoritative for.
3531 */
3532static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3533 struct btrfs_root *log,
3534 struct btrfs_path *path,
3535 int key_type, u64 dirid,
3536 u64 first_offset, u64 last_offset)
3537{
3538 int ret;
3539 struct btrfs_key key;
3540 struct btrfs_dir_log_item *item;
3541
3542 key.objectid = dirid;
3543 key.offset = first_offset;
3544 if (key_type == BTRFS_DIR_ITEM_KEY)
3545 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3546 else
3547 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3548 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549 if (ret)
3550 return ret;
3551
3552 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3553 struct btrfs_dir_log_item);
3554 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3555 btrfs_mark_buffer_dirty(path->nodes[0]);
3556 btrfs_release_path(path);
3557 return 0;
3558}
3559
3560/*
3561 * log all the items included in the current transaction for a given
3562 * directory. This also creates the range items in the log tree required
3563 * to replay anything deleted before the fsync
3564 */
3565static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3566 struct btrfs_root *root, struct btrfs_inode *inode,
3567 struct btrfs_path *path,
3568 struct btrfs_path *dst_path, int key_type,
3569 struct btrfs_log_ctx *ctx,
3570 u64 min_offset, u64 *last_offset_ret)
3571{
3572 struct btrfs_key min_key;
3573 struct btrfs_root *log = root->log_root;
3574 struct extent_buffer *src;
3575 int err = 0;
3576 int ret;
3577 int i;
3578 int nritems;
3579 u64 first_offset = min_offset;
3580 u64 last_offset = (u64)-1;
3581 u64 ino = btrfs_ino(inode);
3582
3583 log = root->log_root;
3584
3585 min_key.objectid = ino;
3586 min_key.type = key_type;
3587 min_key.offset = min_offset;
3588
3589 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3590
3591 /*
3592 * we didn't find anything from this transaction, see if there
3593 * is anything at all
3594 */
3595 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3596 min_key.objectid = ino;
3597 min_key.type = key_type;
3598 min_key.offset = (u64)-1;
3599 btrfs_release_path(path);
3600 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3601 if (ret < 0) {
3602 btrfs_release_path(path);
3603 return ret;
3604 }
3605 ret = btrfs_previous_item(root, path, ino, key_type);
3606
3607 /* if ret == 0 there are items for this type,
3608 * create a range to tell us the last key of this type.
3609 * otherwise, there are no items in this directory after
3610 * *min_offset, and we create a range to indicate that.
3611 */
3612 if (ret == 0) {
3613 struct btrfs_key tmp;
3614 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3615 path->slots[0]);
3616 if (key_type == tmp.type)
3617 first_offset = max(min_offset, tmp.offset) + 1;
3618 }
3619 goto done;
3620 }
3621
3622 /* go backward to find any previous key */
3623 ret = btrfs_previous_item(root, path, ino, key_type);
3624 if (ret == 0) {
3625 struct btrfs_key tmp;
3626 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3627 if (key_type == tmp.type) {
3628 first_offset = tmp.offset;
3629 ret = overwrite_item(trans, log, dst_path,
3630 path->nodes[0], path->slots[0],
3631 &tmp);
3632 if (ret) {
3633 err = ret;
3634 goto done;
3635 }
3636 }
3637 }
3638 btrfs_release_path(path);
3639
3640 /*
3641 * Find the first key from this transaction again. See the note for
3642 * log_new_dir_dentries, if we're logging a directory recursively we
3643 * won't be holding its i_mutex, which means we can modify the directory
3644 * while we're logging it. If we remove an entry between our first
3645 * search and this search we'll not find the key again and can just
3646 * bail.
3647 */
3648 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3649 if (ret != 0)
3650 goto done;
3651
3652 /*
3653 * we have a block from this transaction, log every item in it
3654 * from our directory
3655 */
3656 while (1) {
3657 struct btrfs_key tmp;
3658 src = path->nodes[0];
3659 nritems = btrfs_header_nritems(src);
3660 for (i = path->slots[0]; i < nritems; i++) {
3661 struct btrfs_dir_item *di;
3662
3663 btrfs_item_key_to_cpu(src, &min_key, i);
3664
3665 if (min_key.objectid != ino || min_key.type != key_type)
3666 goto done;
3667 ret = overwrite_item(trans, log, dst_path, src, i,
3668 &min_key);
3669 if (ret) {
3670 err = ret;
3671 goto done;
3672 }
3673
3674 /*
3675 * We must make sure that when we log a directory entry,
3676 * the corresponding inode, after log replay, has a
3677 * matching link count. For example:
3678 *
3679 * touch foo
3680 * mkdir mydir
3681 * sync
3682 * ln foo mydir/bar
3683 * xfs_io -c "fsync" mydir
3684 * <crash>
3685 * <mount fs and log replay>
3686 *
3687 * Would result in a fsync log that when replayed, our
3688 * file inode would have a link count of 1, but we get
3689 * two directory entries pointing to the same inode.
3690 * After removing one of the names, it would not be
3691 * possible to remove the other name, which resulted
3692 * always in stale file handle errors, and would not
3693 * be possible to rmdir the parent directory, since
3694 * its i_size could never decrement to the value
3695 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3696 */
3697 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3698 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3699 if (ctx &&
3700 (btrfs_dir_transid(src, di) == trans->transid ||
3701 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3702 tmp.type != BTRFS_ROOT_ITEM_KEY)
3703 ctx->log_new_dentries = true;
3704 }
3705 path->slots[0] = nritems;
3706
3707 /*
3708 * look ahead to the next item and see if it is also
3709 * from this directory and from this transaction
3710 */
3711 ret = btrfs_next_leaf(root, path);
3712 if (ret) {
3713 if (ret == 1)
3714 last_offset = (u64)-1;
3715 else
3716 err = ret;
3717 goto done;
3718 }
3719 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3720 if (tmp.objectid != ino || tmp.type != key_type) {
3721 last_offset = (u64)-1;
3722 goto done;
3723 }
3724 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3725 ret = overwrite_item(trans, log, dst_path,
3726 path->nodes[0], path->slots[0],
3727 &tmp);
3728 if (ret)
3729 err = ret;
3730 else
3731 last_offset = tmp.offset;
3732 goto done;
3733 }
3734 }
3735done:
3736 btrfs_release_path(path);
3737 btrfs_release_path(dst_path);
3738
3739 if (err == 0) {
3740 *last_offset_ret = last_offset;
3741 /*
3742 * insert the log range keys to indicate where the log
3743 * is valid
3744 */
3745 ret = insert_dir_log_key(trans, log, path, key_type,
3746 ino, first_offset, last_offset);
3747 if (ret)
3748 err = ret;
3749 }
3750 return err;
3751}
3752
3753/*
3754 * logging directories is very similar to logging inodes, We find all the items
3755 * from the current transaction and write them to the log.
3756 *
3757 * The recovery code scans the directory in the subvolume, and if it finds a
3758 * key in the range logged that is not present in the log tree, then it means
3759 * that dir entry was unlinked during the transaction.
3760 *
3761 * In order for that scan to work, we must include one key smaller than
3762 * the smallest logged by this transaction and one key larger than the largest
3763 * key logged by this transaction.
3764 */
3765static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3766 struct btrfs_root *root, struct btrfs_inode *inode,
3767 struct btrfs_path *path,
3768 struct btrfs_path *dst_path,
3769 struct btrfs_log_ctx *ctx)
3770{
3771 u64 min_key;
3772 u64 max_key;
3773 int ret;
3774 int key_type = BTRFS_DIR_ITEM_KEY;
3775
3776again:
3777 min_key = 0;
3778 max_key = 0;
3779 while (1) {
3780 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3781 ctx, min_key, &max_key);
3782 if (ret)
3783 return ret;
3784 if (max_key == (u64)-1)
3785 break;
3786 min_key = max_key + 1;
3787 }
3788
3789 if (key_type == BTRFS_DIR_ITEM_KEY) {
3790 key_type = BTRFS_DIR_INDEX_KEY;
3791 goto again;
3792 }
3793 return 0;
3794}
3795
3796/*
3797 * a helper function to drop items from the log before we relog an
3798 * inode. max_key_type indicates the highest item type to remove.
3799 * This cannot be run for file data extents because it does not
3800 * free the extents they point to.
3801 */
3802static int drop_objectid_items(struct btrfs_trans_handle *trans,
3803 struct btrfs_root *log,
3804 struct btrfs_path *path,
3805 u64 objectid, int max_key_type)
3806{
3807 int ret;
3808 struct btrfs_key key;
3809 struct btrfs_key found_key;
3810 int start_slot;
3811
3812 key.objectid = objectid;
3813 key.type = max_key_type;
3814 key.offset = (u64)-1;
3815
3816 while (1) {
3817 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3818 BUG_ON(ret == 0); /* Logic error */
3819 if (ret < 0)
3820 break;
3821
3822 if (path->slots[0] == 0)
3823 break;
3824
3825 path->slots[0]--;
3826 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3827 path->slots[0]);
3828
3829 if (found_key.objectid != objectid)
3830 break;
3831
3832 found_key.offset = 0;
3833 found_key.type = 0;
3834 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3835 &start_slot);
3836 if (ret < 0)
3837 break;
3838
3839 ret = btrfs_del_items(trans, log, path, start_slot,
3840 path->slots[0] - start_slot + 1);
3841 /*
3842 * If start slot isn't 0 then we don't need to re-search, we've
3843 * found the last guy with the objectid in this tree.
3844 */
3845 if (ret || start_slot != 0)
3846 break;
3847 btrfs_release_path(path);
3848 }
3849 btrfs_release_path(path);
3850 if (ret > 0)
3851 ret = 0;
3852 return ret;
3853}
3854
3855static void fill_inode_item(struct btrfs_trans_handle *trans,
3856 struct extent_buffer *leaf,
3857 struct btrfs_inode_item *item,
3858 struct inode *inode, int log_inode_only,
3859 u64 logged_isize)
3860{
3861 struct btrfs_map_token token;
3862
3863 btrfs_init_map_token(&token, leaf);
3864
3865 if (log_inode_only) {
3866 /* set the generation to zero so the recover code
3867 * can tell the difference between an logging
3868 * just to say 'this inode exists' and a logging
3869 * to say 'update this inode with these values'
3870 */
3871 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3872 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3873 } else {
3874 btrfs_set_token_inode_generation(leaf, item,
3875 BTRFS_I(inode)->generation,
3876 &token);
3877 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3878 }
3879
3880 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3881 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3882 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3883 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3884
3885 btrfs_set_token_timespec_sec(leaf, &item->atime,
3886 inode->i_atime.tv_sec, &token);
3887 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3888 inode->i_atime.tv_nsec, &token);
3889
3890 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3891 inode->i_mtime.tv_sec, &token);
3892 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3893 inode->i_mtime.tv_nsec, &token);
3894
3895 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3896 inode->i_ctime.tv_sec, &token);
3897 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3898 inode->i_ctime.tv_nsec, &token);
3899
3900 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3901 &token);
3902
3903 btrfs_set_token_inode_sequence(leaf, item,
3904 inode_peek_iversion(inode), &token);
3905 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3906 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3907 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3908 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3909}
3910
3911static int log_inode_item(struct btrfs_trans_handle *trans,
3912 struct btrfs_root *log, struct btrfs_path *path,
3913 struct btrfs_inode *inode)
3914{
3915 struct btrfs_inode_item *inode_item;
3916 int ret;
3917
3918 ret = btrfs_insert_empty_item(trans, log, path,
3919 &inode->location, sizeof(*inode_item));
3920 if (ret && ret != -EEXIST)
3921 return ret;
3922 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3923 struct btrfs_inode_item);
3924 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3925 0, 0);
3926 btrfs_release_path(path);
3927 return 0;
3928}
3929
3930static noinline int copy_items(struct btrfs_trans_handle *trans,
3931 struct btrfs_inode *inode,
3932 struct btrfs_path *dst_path,
3933 struct btrfs_path *src_path, u64 *last_extent,
3934 int start_slot, int nr, int inode_only,
3935 u64 logged_isize)
3936{
3937 struct btrfs_fs_info *fs_info = trans->fs_info;
3938 unsigned long src_offset;
3939 unsigned long dst_offset;
3940 struct btrfs_root *log = inode->root->log_root;
3941 struct btrfs_file_extent_item *extent;
3942 struct btrfs_inode_item *inode_item;
3943 struct extent_buffer *src = src_path->nodes[0];
3944 struct btrfs_key first_key, last_key, key;
3945 int ret;
3946 struct btrfs_key *ins_keys;
3947 u32 *ins_sizes;
3948 char *ins_data;
3949 int i;
3950 struct list_head ordered_sums;
3951 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3952 bool has_extents = false;
3953 bool need_find_last_extent = true;
3954 bool done = false;
3955
3956 INIT_LIST_HEAD(&ordered_sums);
3957
3958 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3959 nr * sizeof(u32), GFP_NOFS);
3960 if (!ins_data)
3961 return -ENOMEM;
3962
3963 first_key.objectid = (u64)-1;
3964
3965 ins_sizes = (u32 *)ins_data;
3966 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3967
3968 for (i = 0; i < nr; i++) {
3969 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3970 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3971 }
3972 ret = btrfs_insert_empty_items(trans, log, dst_path,
3973 ins_keys, ins_sizes, nr);
3974 if (ret) {
3975 kfree(ins_data);
3976 return ret;
3977 }
3978
3979 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3980 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3981 dst_path->slots[0]);
3982
3983 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3984
3985 if (i == nr - 1)
3986 last_key = ins_keys[i];
3987
3988 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3989 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3990 dst_path->slots[0],
3991 struct btrfs_inode_item);
3992 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3993 &inode->vfs_inode,
3994 inode_only == LOG_INODE_EXISTS,
3995 logged_isize);
3996 } else {
3997 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3998 src_offset, ins_sizes[i]);
3999 }
4000
4001 /*
4002 * We set need_find_last_extent here in case we know we were
4003 * processing other items and then walk into the first extent in
4004 * the inode. If we don't hit an extent then nothing changes,
4005 * we'll do the last search the next time around.
4006 */
4007 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4008 has_extents = true;
4009 if (first_key.objectid == (u64)-1)
4010 first_key = ins_keys[i];
4011 } else {
4012 need_find_last_extent = false;
4013 }
4014
4015 /* take a reference on file data extents so that truncates
4016 * or deletes of this inode don't have to relog the inode
4017 * again
4018 */
4019 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4020 !skip_csum) {
4021 int found_type;
4022 extent = btrfs_item_ptr(src, start_slot + i,
4023 struct btrfs_file_extent_item);
4024
4025 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4026 continue;
4027
4028 found_type = btrfs_file_extent_type(src, extent);
4029 if (found_type == BTRFS_FILE_EXTENT_REG) {
4030 u64 ds, dl, cs, cl;
4031 ds = btrfs_file_extent_disk_bytenr(src,
4032 extent);
4033 /* ds == 0 is a hole */
4034 if (ds == 0)
4035 continue;
4036
4037 dl = btrfs_file_extent_disk_num_bytes(src,
4038 extent);
4039 cs = btrfs_file_extent_offset(src, extent);
4040 cl = btrfs_file_extent_num_bytes(src,
4041 extent);
4042 if (btrfs_file_extent_compression(src,
4043 extent)) {
4044 cs = 0;
4045 cl = dl;
4046 }
4047
4048 ret = btrfs_lookup_csums_range(
4049 fs_info->csum_root,
4050 ds + cs, ds + cs + cl - 1,
4051 &ordered_sums, 0);
4052 if (ret) {
4053 btrfs_release_path(dst_path);
4054 kfree(ins_data);
4055 return ret;
4056 }
4057 }
4058 }
4059 }
4060
4061 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4062 btrfs_release_path(dst_path);
4063 kfree(ins_data);
4064
4065 /*
4066 * we have to do this after the loop above to avoid changing the
4067 * log tree while trying to change the log tree.
4068 */
4069 ret = 0;
4070 while (!list_empty(&ordered_sums)) {
4071 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4072 struct btrfs_ordered_sum,
4073 list);
4074 if (!ret)
4075 ret = btrfs_csum_file_blocks(trans, log, sums);
4076 list_del(&sums->list);
4077 kfree(sums);
4078 }
4079
4080 if (!has_extents)
4081 return ret;
4082
4083 if (need_find_last_extent && *last_extent == first_key.offset) {
4084 /*
4085 * We don't have any leafs between our current one and the one
4086 * we processed before that can have file extent items for our
4087 * inode (and have a generation number smaller than our current
4088 * transaction id).
4089 */
4090 need_find_last_extent = false;
4091 }
4092
4093 /*
4094 * Because we use btrfs_search_forward we could skip leaves that were
4095 * not modified and then assume *last_extent is valid when it really
4096 * isn't. So back up to the previous leaf and read the end of the last
4097 * extent before we go and fill in holes.
4098 */
4099 if (need_find_last_extent) {
4100 u64 len;
4101
4102 ret = btrfs_prev_leaf(inode->root, src_path);
4103 if (ret < 0)
4104 return ret;
4105 if (ret)
4106 goto fill_holes;
4107 if (src_path->slots[0])
4108 src_path->slots[0]--;
4109 src = src_path->nodes[0];
4110 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4111 if (key.objectid != btrfs_ino(inode) ||
4112 key.type != BTRFS_EXTENT_DATA_KEY)
4113 goto fill_holes;
4114 extent = btrfs_item_ptr(src, src_path->slots[0],
4115 struct btrfs_file_extent_item);
4116 if (btrfs_file_extent_type(src, extent) ==
4117 BTRFS_FILE_EXTENT_INLINE) {
4118 len = btrfs_file_extent_ram_bytes(src, extent);
4119 *last_extent = ALIGN(key.offset + len,
4120 fs_info->sectorsize);
4121 } else {
4122 len = btrfs_file_extent_num_bytes(src, extent);
4123 *last_extent = key.offset + len;
4124 }
4125 }
4126fill_holes:
4127 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4128 * things could have happened
4129 *
4130 * 1) A merge could have happened, so we could currently be on a leaf
4131 * that holds what we were copying in the first place.
4132 * 2) A split could have happened, and now not all of the items we want
4133 * are on the same leaf.
4134 *
4135 * So we need to adjust how we search for holes, we need to drop the
4136 * path and re-search for the first extent key we found, and then walk
4137 * forward until we hit the last one we copied.
4138 */
4139 if (need_find_last_extent) {
4140 /* btrfs_prev_leaf could return 1 without releasing the path */
4141 btrfs_release_path(src_path);
4142 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4143 src_path, 0, 0);
4144 if (ret < 0)
4145 return ret;
4146 ASSERT(ret == 0);
4147 src = src_path->nodes[0];
4148 i = src_path->slots[0];
4149 } else {
4150 i = start_slot;
4151 }
4152
4153 /*
4154 * Ok so here we need to go through and fill in any holes we may have
4155 * to make sure that holes are punched for those areas in case they had
4156 * extents previously.
4157 */
4158 while (!done) {
4159 u64 offset, len;
4160 u64 extent_end;
4161
4162 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4163 ret = btrfs_next_leaf(inode->root, src_path);
4164 if (ret < 0)
4165 return ret;
4166 ASSERT(ret == 0);
4167 src = src_path->nodes[0];
4168 i = 0;
4169 need_find_last_extent = true;
4170 }
4171
4172 btrfs_item_key_to_cpu(src, &key, i);
4173 if (!btrfs_comp_cpu_keys(&key, &last_key))
4174 done = true;
4175 if (key.objectid != btrfs_ino(inode) ||
4176 key.type != BTRFS_EXTENT_DATA_KEY) {
4177 i++;
4178 continue;
4179 }
4180 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4181 if (btrfs_file_extent_type(src, extent) ==
4182 BTRFS_FILE_EXTENT_INLINE) {
4183 len = btrfs_file_extent_ram_bytes(src, extent);
4184 extent_end = ALIGN(key.offset + len,
4185 fs_info->sectorsize);
4186 } else {
4187 len = btrfs_file_extent_num_bytes(src, extent);
4188 extent_end = key.offset + len;
4189 }
4190 i++;
4191
4192 if (*last_extent == key.offset) {
4193 *last_extent = extent_end;
4194 continue;
4195 }
4196 offset = *last_extent;
4197 len = key.offset - *last_extent;
4198 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4199 offset, 0, 0, len, 0, len, 0, 0, 0);
4200 if (ret)
4201 break;
4202 *last_extent = extent_end;
4203 }
4204
4205 /*
4206 * Check if there is a hole between the last extent found in our leaf
4207 * and the first extent in the next leaf. If there is one, we need to
4208 * log an explicit hole so that at replay time we can punch the hole.
4209 */
4210 if (ret == 0 &&
4211 key.objectid == btrfs_ino(inode) &&
4212 key.type == BTRFS_EXTENT_DATA_KEY &&
4213 i == btrfs_header_nritems(src_path->nodes[0])) {
4214 ret = btrfs_next_leaf(inode->root, src_path);
4215 need_find_last_extent = true;
4216 if (ret > 0) {
4217 ret = 0;
4218 } else if (ret == 0) {
4219 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4220 src_path->slots[0]);
4221 if (key.objectid == btrfs_ino(inode) &&
4222 key.type == BTRFS_EXTENT_DATA_KEY &&
4223 *last_extent < key.offset) {
4224 const u64 len = key.offset - *last_extent;
4225
4226 ret = btrfs_insert_file_extent(trans, log,
4227 btrfs_ino(inode),
4228 *last_extent, 0,
4229 0, len, 0, len,
4230 0, 0, 0);
4231 *last_extent += len;
4232 }
4233 }
4234 }
4235 /*
4236 * Need to let the callers know we dropped the path so they should
4237 * re-search.
4238 */
4239 if (!ret && need_find_last_extent)
4240 ret = 1;
4241 return ret;
4242}
4243
4244static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4245{
4246 struct extent_map *em1, *em2;
4247
4248 em1 = list_entry(a, struct extent_map, list);
4249 em2 = list_entry(b, struct extent_map, list);
4250
4251 if (em1->start < em2->start)
4252 return -1;
4253 else if (em1->start > em2->start)
4254 return 1;
4255 return 0;
4256}
4257
4258static int log_extent_csums(struct btrfs_trans_handle *trans,
4259 struct btrfs_inode *inode,
4260 struct btrfs_root *log_root,
4261 const struct extent_map *em)
4262{
4263 u64 csum_offset;
4264 u64 csum_len;
4265 LIST_HEAD(ordered_sums);
4266 int ret = 0;
4267
4268 if (inode->flags & BTRFS_INODE_NODATASUM ||
4269 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4270 em->block_start == EXTENT_MAP_HOLE)
4271 return 0;
4272
4273 /* If we're compressed we have to save the entire range of csums. */
4274 if (em->compress_type) {
4275 csum_offset = 0;
4276 csum_len = max(em->block_len, em->orig_block_len);
4277 } else {
4278 csum_offset = em->mod_start - em->start;
4279 csum_len = em->mod_len;
4280 }
4281
4282 /* block start is already adjusted for the file extent offset. */
4283 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4284 em->block_start + csum_offset,
4285 em->block_start + csum_offset +
4286 csum_len - 1, &ordered_sums, 0);
4287 if (ret)
4288 return ret;
4289
4290 while (!list_empty(&ordered_sums)) {
4291 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4292 struct btrfs_ordered_sum,
4293 list);
4294 if (!ret)
4295 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4296 list_del(&sums->list);
4297 kfree(sums);
4298 }
4299
4300 return ret;
4301}
4302
4303static int log_one_extent(struct btrfs_trans_handle *trans,
4304 struct btrfs_inode *inode, struct btrfs_root *root,
4305 const struct extent_map *em,
4306 struct btrfs_path *path,
4307 struct btrfs_log_ctx *ctx)
4308{
4309 struct btrfs_root *log = root->log_root;
4310 struct btrfs_file_extent_item *fi;
4311 struct extent_buffer *leaf;
4312 struct btrfs_map_token token;
4313 struct btrfs_key key;
4314 u64 extent_offset = em->start - em->orig_start;
4315 u64 block_len;
4316 int ret;
4317 int extent_inserted = 0;
4318
4319 ret = log_extent_csums(trans, inode, log, em);
4320 if (ret)
4321 return ret;
4322
4323 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4324 em->start + em->len, NULL, 0, 1,
4325 sizeof(*fi), &extent_inserted);
4326 if (ret)
4327 return ret;
4328
4329 if (!extent_inserted) {
4330 key.objectid = btrfs_ino(inode);
4331 key.type = BTRFS_EXTENT_DATA_KEY;
4332 key.offset = em->start;
4333
4334 ret = btrfs_insert_empty_item(trans, log, path, &key,
4335 sizeof(*fi));
4336 if (ret)
4337 return ret;
4338 }
4339 leaf = path->nodes[0];
4340 btrfs_init_map_token(&token, leaf);
4341 fi = btrfs_item_ptr(leaf, path->slots[0],
4342 struct btrfs_file_extent_item);
4343
4344 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4345 &token);
4346 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4347 btrfs_set_token_file_extent_type(leaf, fi,
4348 BTRFS_FILE_EXTENT_PREALLOC,
4349 &token);
4350 else
4351 btrfs_set_token_file_extent_type(leaf, fi,
4352 BTRFS_FILE_EXTENT_REG,
4353 &token);
4354
4355 block_len = max(em->block_len, em->orig_block_len);
4356 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4357 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4358 em->block_start,
4359 &token);
4360 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4361 &token);
4362 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4363 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4364 em->block_start -
4365 extent_offset, &token);
4366 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4367 &token);
4368 } else {
4369 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4370 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4371 &token);
4372 }
4373
4374 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4375 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4376 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4377 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4378 &token);
4379 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4380 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4381 btrfs_mark_buffer_dirty(leaf);
4382
4383 btrfs_release_path(path);
4384
4385 return ret;
4386}
4387
4388/*
4389 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4390 * lose them after doing a fast fsync and replaying the log. We scan the
4391 * subvolume's root instead of iterating the inode's extent map tree because
4392 * otherwise we can log incorrect extent items based on extent map conversion.
4393 * That can happen due to the fact that extent maps are merged when they
4394 * are not in the extent map tree's list of modified extents.
4395 */
4396static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4397 struct btrfs_inode *inode,
4398 struct btrfs_path *path)
4399{
4400 struct btrfs_root *root = inode->root;
4401 struct btrfs_key key;
4402 const u64 i_size = i_size_read(&inode->vfs_inode);
4403 const u64 ino = btrfs_ino(inode);
4404 struct btrfs_path *dst_path = NULL;
4405 u64 last_extent = (u64)-1;
4406 int ins_nr = 0;
4407 int start_slot;
4408 int ret;
4409
4410 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4411 return 0;
4412
4413 key.objectid = ino;
4414 key.type = BTRFS_EXTENT_DATA_KEY;
4415 key.offset = i_size;
4416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4417 if (ret < 0)
4418 goto out;
4419
4420 while (true) {
4421 struct extent_buffer *leaf = path->nodes[0];
4422 int slot = path->slots[0];
4423
4424 if (slot >= btrfs_header_nritems(leaf)) {
4425 if (ins_nr > 0) {
4426 ret = copy_items(trans, inode, dst_path, path,
4427 &last_extent, start_slot,
4428 ins_nr, 1, 0);
4429 if (ret < 0)
4430 goto out;
4431 ins_nr = 0;
4432 }
4433 ret = btrfs_next_leaf(root, path);
4434 if (ret < 0)
4435 goto out;
4436 if (ret > 0) {
4437 ret = 0;
4438 break;
4439 }
4440 continue;
4441 }
4442
4443 btrfs_item_key_to_cpu(leaf, &key, slot);
4444 if (key.objectid > ino)
4445 break;
4446 if (WARN_ON_ONCE(key.objectid < ino) ||
4447 key.type < BTRFS_EXTENT_DATA_KEY ||
4448 key.offset < i_size) {
4449 path->slots[0]++;
4450 continue;
4451 }
4452 if (last_extent == (u64)-1) {
4453 last_extent = key.offset;
4454 /*
4455 * Avoid logging extent items logged in past fsync calls
4456 * and leading to duplicate keys in the log tree.
4457 */
4458 do {
4459 ret = btrfs_truncate_inode_items(trans,
4460 root->log_root,
4461 &inode->vfs_inode,
4462 i_size,
4463 BTRFS_EXTENT_DATA_KEY);
4464 } while (ret == -EAGAIN);
4465 if (ret)
4466 goto out;
4467 }
4468 if (ins_nr == 0)
4469 start_slot = slot;
4470 ins_nr++;
4471 path->slots[0]++;
4472 if (!dst_path) {
4473 dst_path = btrfs_alloc_path();
4474 if (!dst_path) {
4475 ret = -ENOMEM;
4476 goto out;
4477 }
4478 }
4479 }
4480 if (ins_nr > 0) {
4481 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4482 start_slot, ins_nr, 1, 0);
4483 if (ret > 0)
4484 ret = 0;
4485 }
4486out:
4487 btrfs_release_path(path);
4488 btrfs_free_path(dst_path);
4489 return ret;
4490}
4491
4492static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4493 struct btrfs_root *root,
4494 struct btrfs_inode *inode,
4495 struct btrfs_path *path,
4496 struct btrfs_log_ctx *ctx,
4497 const u64 start,
4498 const u64 end)
4499{
4500 struct extent_map *em, *n;
4501 struct list_head extents;
4502 struct extent_map_tree *tree = &inode->extent_tree;
4503 u64 test_gen;
4504 int ret = 0;
4505 int num = 0;
4506
4507 INIT_LIST_HEAD(&extents);
4508
4509 write_lock(&tree->lock);
4510 test_gen = root->fs_info->last_trans_committed;
4511
4512 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4513 /*
4514 * Skip extents outside our logging range. It's important to do
4515 * it for correctness because if we don't ignore them, we may
4516 * log them before their ordered extent completes, and therefore
4517 * we could log them without logging their respective checksums
4518 * (the checksum items are added to the csum tree at the very
4519 * end of btrfs_finish_ordered_io()). Also leave such extents
4520 * outside of our range in the list, since we may have another
4521 * ranged fsync in the near future that needs them. If an extent
4522 * outside our range corresponds to a hole, log it to avoid
4523 * leaving gaps between extents (fsck will complain when we are
4524 * not using the NO_HOLES feature).
4525 */
4526 if ((em->start > end || em->start + em->len <= start) &&
4527 em->block_start != EXTENT_MAP_HOLE)
4528 continue;
4529
4530 list_del_init(&em->list);
4531 /*
4532 * Just an arbitrary number, this can be really CPU intensive
4533 * once we start getting a lot of extents, and really once we
4534 * have a bunch of extents we just want to commit since it will
4535 * be faster.
4536 */
4537 if (++num > 32768) {
4538 list_del_init(&tree->modified_extents);
4539 ret = -EFBIG;
4540 goto process;
4541 }
4542
4543 if (em->generation <= test_gen)
4544 continue;
4545
4546 /* We log prealloc extents beyond eof later. */
4547 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4548 em->start >= i_size_read(&inode->vfs_inode))
4549 continue;
4550
4551 /* Need a ref to keep it from getting evicted from cache */
4552 refcount_inc(&em->refs);
4553 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4554 list_add_tail(&em->list, &extents);
4555 num++;
4556 }
4557
4558 list_sort(NULL, &extents, extent_cmp);
4559process:
4560 while (!list_empty(&extents)) {
4561 em = list_entry(extents.next, struct extent_map, list);
4562
4563 list_del_init(&em->list);
4564
4565 /*
4566 * If we had an error we just need to delete everybody from our
4567 * private list.
4568 */
4569 if (ret) {
4570 clear_em_logging(tree, em);
4571 free_extent_map(em);
4572 continue;
4573 }
4574
4575 write_unlock(&tree->lock);
4576
4577 ret = log_one_extent(trans, inode, root, em, path, ctx);
4578 write_lock(&tree->lock);
4579 clear_em_logging(tree, em);
4580 free_extent_map(em);
4581 }
4582 WARN_ON(!list_empty(&extents));
4583 write_unlock(&tree->lock);
4584
4585 btrfs_release_path(path);
4586 if (!ret)
4587 ret = btrfs_log_prealloc_extents(trans, inode, path);
4588
4589 return ret;
4590}
4591
4592static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4593 struct btrfs_path *path, u64 *size_ret)
4594{
4595 struct btrfs_key key;
4596 int ret;
4597
4598 key.objectid = btrfs_ino(inode);
4599 key.type = BTRFS_INODE_ITEM_KEY;
4600 key.offset = 0;
4601
4602 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4603 if (ret < 0) {
4604 return ret;
4605 } else if (ret > 0) {
4606 *size_ret = 0;
4607 } else {
4608 struct btrfs_inode_item *item;
4609
4610 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4611 struct btrfs_inode_item);
4612 *size_ret = btrfs_inode_size(path->nodes[0], item);
4613 /*
4614 * If the in-memory inode's i_size is smaller then the inode
4615 * size stored in the btree, return the inode's i_size, so
4616 * that we get a correct inode size after replaying the log
4617 * when before a power failure we had a shrinking truncate
4618 * followed by addition of a new name (rename / new hard link).
4619 * Otherwise return the inode size from the btree, to avoid
4620 * data loss when replaying a log due to previously doing a
4621 * write that expands the inode's size and logging a new name
4622 * immediately after.
4623 */
4624 if (*size_ret > inode->vfs_inode.i_size)
4625 *size_ret = inode->vfs_inode.i_size;
4626 }
4627
4628 btrfs_release_path(path);
4629 return 0;
4630}
4631
4632/*
4633 * At the moment we always log all xattrs. This is to figure out at log replay
4634 * time which xattrs must have their deletion replayed. If a xattr is missing
4635 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4636 * because if a xattr is deleted, the inode is fsynced and a power failure
4637 * happens, causing the log to be replayed the next time the fs is mounted,
4638 * we want the xattr to not exist anymore (same behaviour as other filesystems
4639 * with a journal, ext3/4, xfs, f2fs, etc).
4640 */
4641static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4642 struct btrfs_root *root,
4643 struct btrfs_inode *inode,
4644 struct btrfs_path *path,
4645 struct btrfs_path *dst_path)
4646{
4647 int ret;
4648 struct btrfs_key key;
4649 const u64 ino = btrfs_ino(inode);
4650 int ins_nr = 0;
4651 int start_slot = 0;
4652
4653 key.objectid = ino;
4654 key.type = BTRFS_XATTR_ITEM_KEY;
4655 key.offset = 0;
4656
4657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4658 if (ret < 0)
4659 return ret;
4660
4661 while (true) {
4662 int slot = path->slots[0];
4663 struct extent_buffer *leaf = path->nodes[0];
4664 int nritems = btrfs_header_nritems(leaf);
4665
4666 if (slot >= nritems) {
4667 if (ins_nr > 0) {
4668 u64 last_extent = 0;
4669
4670 ret = copy_items(trans, inode, dst_path, path,
4671 &last_extent, start_slot,
4672 ins_nr, 1, 0);
4673 /* can't be 1, extent items aren't processed */
4674 ASSERT(ret <= 0);
4675 if (ret < 0)
4676 return ret;
4677 ins_nr = 0;
4678 }
4679 ret = btrfs_next_leaf(root, path);
4680 if (ret < 0)
4681 return ret;
4682 else if (ret > 0)
4683 break;
4684 continue;
4685 }
4686
4687 btrfs_item_key_to_cpu(leaf, &key, slot);
4688 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4689 break;
4690
4691 if (ins_nr == 0)
4692 start_slot = slot;
4693 ins_nr++;
4694 path->slots[0]++;
4695 cond_resched();
4696 }
4697 if (ins_nr > 0) {
4698 u64 last_extent = 0;
4699
4700 ret = copy_items(trans, inode, dst_path, path,
4701 &last_extent, start_slot,
4702 ins_nr, 1, 0);
4703 /* can't be 1, extent items aren't processed */
4704 ASSERT(ret <= 0);
4705 if (ret < 0)
4706 return ret;
4707 }
4708
4709 return 0;
4710}
4711
4712/*
4713 * If the no holes feature is enabled we need to make sure any hole between the
4714 * last extent and the i_size of our inode is explicitly marked in the log. This
4715 * is to make sure that doing something like:
4716 *
4717 * 1) create file with 128Kb of data
4718 * 2) truncate file to 64Kb
4719 * 3) truncate file to 256Kb
4720 * 4) fsync file
4721 * 5) <crash/power failure>
4722 * 6) mount fs and trigger log replay
4723 *
4724 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4725 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4726 * file correspond to a hole. The presence of explicit holes in a log tree is
4727 * what guarantees that log replay will remove/adjust file extent items in the
4728 * fs/subvol tree.
4729 *
4730 * Here we do not need to care about holes between extents, that is already done
4731 * by copy_items(). We also only need to do this in the full sync path, where we
4732 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4733 * lookup the list of modified extent maps and if any represents a hole, we
4734 * insert a corresponding extent representing a hole in the log tree.
4735 */
4736static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4737 struct btrfs_root *root,
4738 struct btrfs_inode *inode,
4739 struct btrfs_path *path)
4740{
4741 struct btrfs_fs_info *fs_info = root->fs_info;
4742 int ret;
4743 struct btrfs_key key;
4744 u64 hole_start;
4745 u64 hole_size;
4746 struct extent_buffer *leaf;
4747 struct btrfs_root *log = root->log_root;
4748 const u64 ino = btrfs_ino(inode);
4749 const u64 i_size = i_size_read(&inode->vfs_inode);
4750
4751 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4752 return 0;
4753
4754 key.objectid = ino;
4755 key.type = BTRFS_EXTENT_DATA_KEY;
4756 key.offset = (u64)-1;
4757
4758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4759 ASSERT(ret != 0);
4760 if (ret < 0)
4761 return ret;
4762
4763 ASSERT(path->slots[0] > 0);
4764 path->slots[0]--;
4765 leaf = path->nodes[0];
4766 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4767
4768 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4769 /* inode does not have any extents */
4770 hole_start = 0;
4771 hole_size = i_size;
4772 } else {
4773 struct btrfs_file_extent_item *extent;
4774 u64 len;
4775
4776 /*
4777 * If there's an extent beyond i_size, an explicit hole was
4778 * already inserted by copy_items().
4779 */
4780 if (key.offset >= i_size)
4781 return 0;
4782
4783 extent = btrfs_item_ptr(leaf, path->slots[0],
4784 struct btrfs_file_extent_item);
4785
4786 if (btrfs_file_extent_type(leaf, extent) ==
4787 BTRFS_FILE_EXTENT_INLINE)
4788 return 0;
4789
4790 len = btrfs_file_extent_num_bytes(leaf, extent);
4791 /* Last extent goes beyond i_size, no need to log a hole. */
4792 if (key.offset + len > i_size)
4793 return 0;
4794 hole_start = key.offset + len;
4795 hole_size = i_size - hole_start;
4796 }
4797 btrfs_release_path(path);
4798
4799 /* Last extent ends at i_size. */
4800 if (hole_size == 0)
4801 return 0;
4802
4803 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4804 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4805 hole_size, 0, hole_size, 0, 0, 0);
4806 return ret;
4807}
4808
4809/*
4810 * When we are logging a new inode X, check if it doesn't have a reference that
4811 * matches the reference from some other inode Y created in a past transaction
4812 * and that was renamed in the current transaction. If we don't do this, then at
4813 * log replay time we can lose inode Y (and all its files if it's a directory):
4814 *
4815 * mkdir /mnt/x
4816 * echo "hello world" > /mnt/x/foobar
4817 * sync
4818 * mv /mnt/x /mnt/y
4819 * mkdir /mnt/x # or touch /mnt/x
4820 * xfs_io -c fsync /mnt/x
4821 * <power fail>
4822 * mount fs, trigger log replay
4823 *
4824 * After the log replay procedure, we would lose the first directory and all its
4825 * files (file foobar).
4826 * For the case where inode Y is not a directory we simply end up losing it:
4827 *
4828 * echo "123" > /mnt/foo
4829 * sync
4830 * mv /mnt/foo /mnt/bar
4831 * echo "abc" > /mnt/foo
4832 * xfs_io -c fsync /mnt/foo
4833 * <power fail>
4834 *
4835 * We also need this for cases where a snapshot entry is replaced by some other
4836 * entry (file or directory) otherwise we end up with an unreplayable log due to
4837 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4838 * if it were a regular entry:
4839 *
4840 * mkdir /mnt/x
4841 * btrfs subvolume snapshot /mnt /mnt/x/snap
4842 * btrfs subvolume delete /mnt/x/snap
4843 * rmdir /mnt/x
4844 * mkdir /mnt/x
4845 * fsync /mnt/x or fsync some new file inside it
4846 * <power fail>
4847 *
4848 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4849 * the same transaction.
4850 */
4851static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4852 const int slot,
4853 const struct btrfs_key *key,
4854 struct btrfs_inode *inode,
4855 u64 *other_ino, u64 *other_parent)
4856{
4857 int ret;
4858 struct btrfs_path *search_path;
4859 char *name = NULL;
4860 u32 name_len = 0;
4861 u32 item_size = btrfs_item_size_nr(eb, slot);
4862 u32 cur_offset = 0;
4863 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4864
4865 search_path = btrfs_alloc_path();
4866 if (!search_path)
4867 return -ENOMEM;
4868 search_path->search_commit_root = 1;
4869 search_path->skip_locking = 1;
4870
4871 while (cur_offset < item_size) {
4872 u64 parent;
4873 u32 this_name_len;
4874 u32 this_len;
4875 unsigned long name_ptr;
4876 struct btrfs_dir_item *di;
4877
4878 if (key->type == BTRFS_INODE_REF_KEY) {
4879 struct btrfs_inode_ref *iref;
4880
4881 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4882 parent = key->offset;
4883 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4884 name_ptr = (unsigned long)(iref + 1);
4885 this_len = sizeof(*iref) + this_name_len;
4886 } else {
4887 struct btrfs_inode_extref *extref;
4888
4889 extref = (struct btrfs_inode_extref *)(ptr +
4890 cur_offset);
4891 parent = btrfs_inode_extref_parent(eb, extref);
4892 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4893 name_ptr = (unsigned long)&extref->name;
4894 this_len = sizeof(*extref) + this_name_len;
4895 }
4896
4897 if (this_name_len > name_len) {
4898 char *new_name;
4899
4900 new_name = krealloc(name, this_name_len, GFP_NOFS);
4901 if (!new_name) {
4902 ret = -ENOMEM;
4903 goto out;
4904 }
4905 name_len = this_name_len;
4906 name = new_name;
4907 }
4908
4909 read_extent_buffer(eb, name, name_ptr, this_name_len);
4910 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4911 parent, name, this_name_len, 0);
4912 if (di && !IS_ERR(di)) {
4913 struct btrfs_key di_key;
4914
4915 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4916 di, &di_key);
4917 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4918 if (di_key.objectid != key->objectid) {
4919 ret = 1;
4920 *other_ino = di_key.objectid;
4921 *other_parent = parent;
4922 } else {
4923 ret = 0;
4924 }
4925 } else {
4926 ret = -EAGAIN;
4927 }
4928 goto out;
4929 } else if (IS_ERR(di)) {
4930 ret = PTR_ERR(di);
4931 goto out;
4932 }
4933 btrfs_release_path(search_path);
4934
4935 cur_offset += this_len;
4936 }
4937 ret = 0;
4938out:
4939 btrfs_free_path(search_path);
4940 kfree(name);
4941 return ret;
4942}
4943
4944struct btrfs_ino_list {
4945 u64 ino;
4946 u64 parent;
4947 struct list_head list;
4948};
4949
4950static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4951 struct btrfs_root *root,
4952 struct btrfs_path *path,
4953 struct btrfs_log_ctx *ctx,
4954 u64 ino, u64 parent)
4955{
4956 struct btrfs_ino_list *ino_elem;
4957 LIST_HEAD(inode_list);
4958 int ret = 0;
4959
4960 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4961 if (!ino_elem)
4962 return -ENOMEM;
4963 ino_elem->ino = ino;
4964 ino_elem->parent = parent;
4965 list_add_tail(&ino_elem->list, &inode_list);
4966
4967 while (!list_empty(&inode_list)) {
4968 struct btrfs_fs_info *fs_info = root->fs_info;
4969 struct btrfs_key key;
4970 struct inode *inode;
4971
4972 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4973 list);
4974 ino = ino_elem->ino;
4975 parent = ino_elem->parent;
4976 list_del(&ino_elem->list);
4977 kfree(ino_elem);
4978 if (ret)
4979 continue;
4980
4981 btrfs_release_path(path);
4982
4983 key.objectid = ino;
4984 key.type = BTRFS_INODE_ITEM_KEY;
4985 key.offset = 0;
4986 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4987 /*
4988 * If the other inode that had a conflicting dir entry was
4989 * deleted in the current transaction, we need to log its parent
4990 * directory.
4991 */
4992 if (IS_ERR(inode)) {
4993 ret = PTR_ERR(inode);
4994 if (ret == -ENOENT) {
4995 key.objectid = parent;
4996 inode = btrfs_iget(fs_info->sb, &key, root,
4997 NULL);
4998 if (IS_ERR(inode)) {
4999 ret = PTR_ERR(inode);
5000 } else {
5001 ret = btrfs_log_inode(trans, root,
5002 BTRFS_I(inode),
5003 LOG_OTHER_INODE_ALL,
5004 0, LLONG_MAX, ctx);
5005 btrfs_add_delayed_iput(inode);
5006 }
5007 }
5008 continue;
5009 }
5010 /*
5011 * We are safe logging the other inode without acquiring its
5012 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5013 * are safe against concurrent renames of the other inode as
5014 * well because during a rename we pin the log and update the
5015 * log with the new name before we unpin it.
5016 */
5017 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5018 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5019 if (ret) {
5020 btrfs_add_delayed_iput(inode);
5021 continue;
5022 }
5023
5024 key.objectid = ino;
5025 key.type = BTRFS_INODE_REF_KEY;
5026 key.offset = 0;
5027 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5028 if (ret < 0) {
5029 btrfs_add_delayed_iput(inode);
5030 continue;
5031 }
5032
5033 while (true) {
5034 struct extent_buffer *leaf = path->nodes[0];
5035 int slot = path->slots[0];
5036 u64 other_ino = 0;
5037 u64 other_parent = 0;
5038
5039 if (slot >= btrfs_header_nritems(leaf)) {
5040 ret = btrfs_next_leaf(root, path);
5041 if (ret < 0) {
5042 break;
5043 } else if (ret > 0) {
5044 ret = 0;
5045 break;
5046 }
5047 continue;
5048 }
5049
5050 btrfs_item_key_to_cpu(leaf, &key, slot);
5051 if (key.objectid != ino ||
5052 (key.type != BTRFS_INODE_REF_KEY &&
5053 key.type != BTRFS_INODE_EXTREF_KEY)) {
5054 ret = 0;
5055 break;
5056 }
5057
5058 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5059 BTRFS_I(inode), &other_ino,
5060 &other_parent);
5061 if (ret < 0)
5062 break;
5063 if (ret > 0) {
5064 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5065 if (!ino_elem) {
5066 ret = -ENOMEM;
5067 break;
5068 }
5069 ino_elem->ino = other_ino;
5070 ino_elem->parent = other_parent;
5071 list_add_tail(&ino_elem->list, &inode_list);
5072 ret = 0;
5073 }
5074 path->slots[0]++;
5075 }
5076 btrfs_add_delayed_iput(inode);
5077 }
5078
5079 return ret;
5080}
5081
5082/* log a single inode in the tree log.
5083 * At least one parent directory for this inode must exist in the tree
5084 * or be logged already.
5085 *
5086 * Any items from this inode changed by the current transaction are copied
5087 * to the log tree. An extra reference is taken on any extents in this
5088 * file, allowing us to avoid a whole pile of corner cases around logging
5089 * blocks that have been removed from the tree.
5090 *
5091 * See LOG_INODE_ALL and related defines for a description of what inode_only
5092 * does.
5093 *
5094 * This handles both files and directories.
5095 */
5096static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5097 struct btrfs_root *root, struct btrfs_inode *inode,
5098 int inode_only,
5099 const loff_t start,
5100 const loff_t end,
5101 struct btrfs_log_ctx *ctx)
5102{
5103 struct btrfs_fs_info *fs_info = root->fs_info;
5104 struct btrfs_path *path;
5105 struct btrfs_path *dst_path;
5106 struct btrfs_key min_key;
5107 struct btrfs_key max_key;
5108 struct btrfs_root *log = root->log_root;
5109 u64 last_extent = 0;
5110 int err = 0;
5111 int ret;
5112 int nritems;
5113 int ins_start_slot = 0;
5114 int ins_nr;
5115 bool fast_search = false;
5116 u64 ino = btrfs_ino(inode);
5117 struct extent_map_tree *em_tree = &inode->extent_tree;
5118 u64 logged_isize = 0;
5119 bool need_log_inode_item = true;
5120 bool xattrs_logged = false;
5121 bool recursive_logging = false;
5122
5123 path = btrfs_alloc_path();
5124 if (!path)
5125 return -ENOMEM;
5126 dst_path = btrfs_alloc_path();
5127 if (!dst_path) {
5128 btrfs_free_path(path);
5129 return -ENOMEM;
5130 }
5131
5132 min_key.objectid = ino;
5133 min_key.type = BTRFS_INODE_ITEM_KEY;
5134 min_key.offset = 0;
5135
5136 max_key.objectid = ino;
5137
5138
5139 /* today the code can only do partial logging of directories */
5140 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5141 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5142 &inode->runtime_flags) &&
5143 inode_only >= LOG_INODE_EXISTS))
5144 max_key.type = BTRFS_XATTR_ITEM_KEY;
5145 else
5146 max_key.type = (u8)-1;
5147 max_key.offset = (u64)-1;
5148
5149 /*
5150 * Only run delayed items if we are a dir or a new file.
5151 * Otherwise commit the delayed inode only, which is needed in
5152 * order for the log replay code to mark inodes for link count
5153 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5154 */
5155 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5156 inode->generation > fs_info->last_trans_committed)
5157 ret = btrfs_commit_inode_delayed_items(trans, inode);
5158 else
5159 ret = btrfs_commit_inode_delayed_inode(inode);
5160
5161 if (ret) {
5162 btrfs_free_path(path);
5163 btrfs_free_path(dst_path);
5164 return ret;
5165 }
5166
5167 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5168 recursive_logging = true;
5169 if (inode_only == LOG_OTHER_INODE)
5170 inode_only = LOG_INODE_EXISTS;
5171 else
5172 inode_only = LOG_INODE_ALL;
5173 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5174 } else {
5175 mutex_lock(&inode->log_mutex);
5176 }
5177
5178 /*
5179 * a brute force approach to making sure we get the most uptodate
5180 * copies of everything.
5181 */
5182 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5183 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5184
5185 if (inode_only == LOG_INODE_EXISTS)
5186 max_key_type = BTRFS_XATTR_ITEM_KEY;
5187 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5188 } else {
5189 if (inode_only == LOG_INODE_EXISTS) {
5190 /*
5191 * Make sure the new inode item we write to the log has
5192 * the same isize as the current one (if it exists).
5193 * This is necessary to prevent data loss after log
5194 * replay, and also to prevent doing a wrong expanding
5195 * truncate - for e.g. create file, write 4K into offset
5196 * 0, fsync, write 4K into offset 4096, add hard link,
5197 * fsync some other file (to sync log), power fail - if
5198 * we use the inode's current i_size, after log replay
5199 * we get a 8Kb file, with the last 4Kb extent as a hole
5200 * (zeroes), as if an expanding truncate happened,
5201 * instead of getting a file of 4Kb only.
5202 */
5203 err = logged_inode_size(log, inode, path, &logged_isize);
5204 if (err)
5205 goto out_unlock;
5206 }
5207 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5208 &inode->runtime_flags)) {
5209 if (inode_only == LOG_INODE_EXISTS) {
5210 max_key.type = BTRFS_XATTR_ITEM_KEY;
5211 ret = drop_objectid_items(trans, log, path, ino,
5212 max_key.type);
5213 } else {
5214 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5215 &inode->runtime_flags);
5216 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5217 &inode->runtime_flags);
5218 while(1) {
5219 ret = btrfs_truncate_inode_items(trans,
5220 log, &inode->vfs_inode, 0, 0);
5221 if (ret != -EAGAIN)
5222 break;
5223 }
5224 }
5225 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5226 &inode->runtime_flags) ||
5227 inode_only == LOG_INODE_EXISTS) {
5228 if (inode_only == LOG_INODE_ALL)
5229 fast_search = true;
5230 max_key.type = BTRFS_XATTR_ITEM_KEY;
5231 ret = drop_objectid_items(trans, log, path, ino,
5232 max_key.type);
5233 } else {
5234 if (inode_only == LOG_INODE_ALL)
5235 fast_search = true;
5236 goto log_extents;
5237 }
5238
5239 }
5240 if (ret) {
5241 err = ret;
5242 goto out_unlock;
5243 }
5244
5245 while (1) {
5246 ins_nr = 0;
5247 ret = btrfs_search_forward(root, &min_key,
5248 path, trans->transid);
5249 if (ret < 0) {
5250 err = ret;
5251 goto out_unlock;
5252 }
5253 if (ret != 0)
5254 break;
5255again:
5256 /* note, ins_nr might be > 0 here, cleanup outside the loop */
5257 if (min_key.objectid != ino)
5258 break;
5259 if (min_key.type > max_key.type)
5260 break;
5261
5262 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5263 need_log_inode_item = false;
5264
5265 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5266 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5267 inode->generation == trans->transid &&
5268 !recursive_logging) {
5269 u64 other_ino = 0;
5270 u64 other_parent = 0;
5271
5272 ret = btrfs_check_ref_name_override(path->nodes[0],
5273 path->slots[0], &min_key, inode,
5274 &other_ino, &other_parent);
5275 if (ret < 0) {
5276 err = ret;
5277 goto out_unlock;
5278 } else if (ret > 0 && ctx &&
5279 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5280 if (ins_nr > 0) {
5281 ins_nr++;
5282 } else {
5283 ins_nr = 1;
5284 ins_start_slot = path->slots[0];
5285 }
5286 ret = copy_items(trans, inode, dst_path, path,
5287 &last_extent, ins_start_slot,
5288 ins_nr, inode_only,
5289 logged_isize);
5290 if (ret < 0) {
5291 err = ret;
5292 goto out_unlock;
5293 }
5294 ins_nr = 0;
5295
5296 err = log_conflicting_inodes(trans, root, path,
5297 ctx, other_ino, other_parent);
5298 if (err)
5299 goto out_unlock;
5300 btrfs_release_path(path);
5301 goto next_key;
5302 }
5303 }
5304
5305 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5306 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5307 if (ins_nr == 0)
5308 goto next_slot;
5309 ret = copy_items(trans, inode, dst_path, path,
5310 &last_extent, ins_start_slot,
5311 ins_nr, inode_only, logged_isize);
5312 if (ret < 0) {
5313 err = ret;
5314 goto out_unlock;
5315 }
5316 ins_nr = 0;
5317 if (ret) {
5318 btrfs_release_path(path);
5319 continue;
5320 }
5321 goto next_slot;
5322 }
5323
5324 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5325 ins_nr++;
5326 goto next_slot;
5327 } else if (!ins_nr) {
5328 ins_start_slot = path->slots[0];
5329 ins_nr = 1;
5330 goto next_slot;
5331 }
5332
5333 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5334 ins_start_slot, ins_nr, inode_only,
5335 logged_isize);
5336 if (ret < 0) {
5337 err = ret;
5338 goto out_unlock;
5339 }
5340 if (ret) {
5341 ins_nr = 0;
5342 btrfs_release_path(path);
5343 continue;
5344 }
5345 ins_nr = 1;
5346 ins_start_slot = path->slots[0];
5347next_slot:
5348
5349 nritems = btrfs_header_nritems(path->nodes[0]);
5350 path->slots[0]++;
5351 if (path->slots[0] < nritems) {
5352 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5353 path->slots[0]);
5354 goto again;
5355 }
5356 if (ins_nr) {
5357 ret = copy_items(trans, inode, dst_path, path,
5358 &last_extent, ins_start_slot,
5359 ins_nr, inode_only, logged_isize);
5360 if (ret < 0) {
5361 err = ret;
5362 goto out_unlock;
5363 }
5364 ret = 0;
5365 ins_nr = 0;
5366 }
5367 btrfs_release_path(path);
5368next_key:
5369 if (min_key.offset < (u64)-1) {
5370 min_key.offset++;
5371 } else if (min_key.type < max_key.type) {
5372 min_key.type++;
5373 min_key.offset = 0;
5374 } else {
5375 break;
5376 }
5377 }
5378 if (ins_nr) {
5379 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5380 ins_start_slot, ins_nr, inode_only,
5381 logged_isize);
5382 if (ret < 0) {
5383 err = ret;
5384 goto out_unlock;
5385 }
5386 ret = 0;
5387 ins_nr = 0;
5388 }
5389
5390 btrfs_release_path(path);
5391 btrfs_release_path(dst_path);
5392 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5393 if (err)
5394 goto out_unlock;
5395 xattrs_logged = true;
5396 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5397 btrfs_release_path(path);
5398 btrfs_release_path(dst_path);
5399 err = btrfs_log_trailing_hole(trans, root, inode, path);
5400 if (err)
5401 goto out_unlock;
5402 }
5403log_extents:
5404 btrfs_release_path(path);
5405 btrfs_release_path(dst_path);
5406 if (need_log_inode_item) {
5407 err = log_inode_item(trans, log, dst_path, inode);
5408 if (!err && !xattrs_logged) {
5409 err = btrfs_log_all_xattrs(trans, root, inode, path,
5410 dst_path);
5411 btrfs_release_path(path);
5412 }
5413 if (err)
5414 goto out_unlock;
5415 }
5416 if (fast_search) {
5417 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5418 ctx, start, end);
5419 if (ret) {
5420 err = ret;
5421 goto out_unlock;
5422 }
5423 } else if (inode_only == LOG_INODE_ALL) {
5424 struct extent_map *em, *n;
5425
5426 write_lock(&em_tree->lock);
5427 /*
5428 * We can't just remove every em if we're called for a ranged
5429 * fsync - that is, one that doesn't cover the whole possible
5430 * file range (0 to LLONG_MAX). This is because we can have
5431 * em's that fall outside the range we're logging and therefore
5432 * their ordered operations haven't completed yet
5433 * (btrfs_finish_ordered_io() not invoked yet). This means we
5434 * didn't get their respective file extent item in the fs/subvol
5435 * tree yet, and need to let the next fast fsync (one which
5436 * consults the list of modified extent maps) find the em so
5437 * that it logs a matching file extent item and waits for the
5438 * respective ordered operation to complete (if it's still
5439 * running).
5440 *
5441 * Removing every em outside the range we're logging would make
5442 * the next fast fsync not log their matching file extent items,
5443 * therefore making us lose data after a log replay.
5444 */
5445 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5446 list) {
5447 const u64 mod_end = em->mod_start + em->mod_len - 1;
5448
5449 if (em->mod_start >= start && mod_end <= end)
5450 list_del_init(&em->list);
5451 }
5452 write_unlock(&em_tree->lock);
5453 }
5454
5455 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5456 ret = log_directory_changes(trans, root, inode, path, dst_path,
5457 ctx);
5458 if (ret) {
5459 err = ret;
5460 goto out_unlock;
5461 }
5462 }
5463
5464 /*
5465 * Don't update last_log_commit if we logged that an inode exists after
5466 * it was loaded to memory (full_sync bit set).
5467 * This is to prevent data loss when we do a write to the inode, then
5468 * the inode gets evicted after all delalloc was flushed, then we log
5469 * it exists (due to a rename for example) and then fsync it. This last
5470 * fsync would do nothing (not logging the extents previously written).
5471 */
5472 spin_lock(&inode->lock);
5473 inode->logged_trans = trans->transid;
5474 if (inode_only != LOG_INODE_EXISTS ||
5475 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5476 inode->last_log_commit = inode->last_sub_trans;
5477 spin_unlock(&inode->lock);
5478out_unlock:
5479 mutex_unlock(&inode->log_mutex);
5480
5481 btrfs_free_path(path);
5482 btrfs_free_path(dst_path);
5483 return err;
5484}
5485
5486/*
5487 * Check if we must fallback to a transaction commit when logging an inode.
5488 * This must be called after logging the inode and is used only in the context
5489 * when fsyncing an inode requires the need to log some other inode - in which
5490 * case we can't lock the i_mutex of each other inode we need to log as that
5491 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5492 * log inodes up or down in the hierarchy) or rename operations for example. So
5493 * we take the log_mutex of the inode after we have logged it and then check for
5494 * its last_unlink_trans value - this is safe because any task setting
5495 * last_unlink_trans must take the log_mutex and it must do this before it does
5496 * the actual unlink operation, so if we do this check before a concurrent task
5497 * sets last_unlink_trans it means we've logged a consistent version/state of
5498 * all the inode items, otherwise we are not sure and must do a transaction
5499 * commit (the concurrent task might have only updated last_unlink_trans before
5500 * we logged the inode or it might have also done the unlink).
5501 */
5502static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5503 struct btrfs_inode *inode)
5504{
5505 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5506 bool ret = false;
5507
5508 mutex_lock(&inode->log_mutex);
5509 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5510 /*
5511 * Make sure any commits to the log are forced to be full
5512 * commits.
5513 */
5514 btrfs_set_log_full_commit(trans);
5515 ret = true;
5516 }
5517 mutex_unlock(&inode->log_mutex);
5518
5519 return ret;
5520}
5521
5522/*
5523 * follow the dentry parent pointers up the chain and see if any
5524 * of the directories in it require a full commit before they can
5525 * be logged. Returns zero if nothing special needs to be done or 1 if
5526 * a full commit is required.
5527 */
5528static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5529 struct btrfs_inode *inode,
5530 struct dentry *parent,
5531 struct super_block *sb,
5532 u64 last_committed)
5533{
5534 int ret = 0;
5535 struct dentry *old_parent = NULL;
5536
5537 /*
5538 * for regular files, if its inode is already on disk, we don't
5539 * have to worry about the parents at all. This is because
5540 * we can use the last_unlink_trans field to record renames
5541 * and other fun in this file.
5542 */
5543 if (S_ISREG(inode->vfs_inode.i_mode) &&
5544 inode->generation <= last_committed &&
5545 inode->last_unlink_trans <= last_committed)
5546 goto out;
5547
5548 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5549 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5550 goto out;
5551 inode = BTRFS_I(d_inode(parent));
5552 }
5553
5554 while (1) {
5555 if (btrfs_must_commit_transaction(trans, inode)) {
5556 ret = 1;
5557 break;
5558 }
5559
5560 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5561 break;
5562
5563 if (IS_ROOT(parent)) {
5564 inode = BTRFS_I(d_inode(parent));
5565 if (btrfs_must_commit_transaction(trans, inode))
5566 ret = 1;
5567 break;
5568 }
5569
5570 parent = dget_parent(parent);
5571 dput(old_parent);
5572 old_parent = parent;
5573 inode = BTRFS_I(d_inode(parent));
5574
5575 }
5576 dput(old_parent);
5577out:
5578 return ret;
5579}
5580
5581struct btrfs_dir_list {
5582 u64 ino;
5583 struct list_head list;
5584};
5585
5586/*
5587 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5588 * details about the why it is needed.
5589 * This is a recursive operation - if an existing dentry corresponds to a
5590 * directory, that directory's new entries are logged too (same behaviour as
5591 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5592 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5593 * complains about the following circular lock dependency / possible deadlock:
5594 *
5595 * CPU0 CPU1
5596 * ---- ----
5597 * lock(&type->i_mutex_dir_key#3/2);
5598 * lock(sb_internal#2);
5599 * lock(&type->i_mutex_dir_key#3/2);
5600 * lock(&sb->s_type->i_mutex_key#14);
5601 *
5602 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5603 * sb_start_intwrite() in btrfs_start_transaction().
5604 * Not locking i_mutex of the inodes is still safe because:
5605 *
5606 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5607 * that while logging the inode new references (names) are added or removed
5608 * from the inode, leaving the logged inode item with a link count that does
5609 * not match the number of logged inode reference items. This is fine because
5610 * at log replay time we compute the real number of links and correct the
5611 * link count in the inode item (see replay_one_buffer() and
5612 * link_to_fixup_dir());
5613 *
5614 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5615 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5616 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5617 * has a size that doesn't match the sum of the lengths of all the logged
5618 * names. This does not result in a problem because if a dir_item key is
5619 * logged but its matching dir_index key is not logged, at log replay time we
5620 * don't use it to replay the respective name (see replay_one_name()). On the
5621 * other hand if only the dir_index key ends up being logged, the respective
5622 * name is added to the fs/subvol tree with both the dir_item and dir_index
5623 * keys created (see replay_one_name()).
5624 * The directory's inode item with a wrong i_size is not a problem as well,
5625 * since we don't use it at log replay time to set the i_size in the inode
5626 * item of the fs/subvol tree (see overwrite_item()).
5627 */
5628static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5629 struct btrfs_root *root,
5630 struct btrfs_inode *start_inode,
5631 struct btrfs_log_ctx *ctx)
5632{
5633 struct btrfs_fs_info *fs_info = root->fs_info;
5634 struct btrfs_root *log = root->log_root;
5635 struct btrfs_path *path;
5636 LIST_HEAD(dir_list);
5637 struct btrfs_dir_list *dir_elem;
5638 int ret = 0;
5639
5640 path = btrfs_alloc_path();
5641 if (!path)
5642 return -ENOMEM;
5643
5644 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5645 if (!dir_elem) {
5646 btrfs_free_path(path);
5647 return -ENOMEM;
5648 }
5649 dir_elem->ino = btrfs_ino(start_inode);
5650 list_add_tail(&dir_elem->list, &dir_list);
5651
5652 while (!list_empty(&dir_list)) {
5653 struct extent_buffer *leaf;
5654 struct btrfs_key min_key;
5655 int nritems;
5656 int i;
5657
5658 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5659 list);
5660 if (ret)
5661 goto next_dir_inode;
5662
5663 min_key.objectid = dir_elem->ino;
5664 min_key.type = BTRFS_DIR_ITEM_KEY;
5665 min_key.offset = 0;
5666again:
5667 btrfs_release_path(path);
5668 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5669 if (ret < 0) {
5670 goto next_dir_inode;
5671 } else if (ret > 0) {
5672 ret = 0;
5673 goto next_dir_inode;
5674 }
5675
5676process_leaf:
5677 leaf = path->nodes[0];
5678 nritems = btrfs_header_nritems(leaf);
5679 for (i = path->slots[0]; i < nritems; i++) {
5680 struct btrfs_dir_item *di;
5681 struct btrfs_key di_key;
5682 struct inode *di_inode;
5683 struct btrfs_dir_list *new_dir_elem;
5684 int log_mode = LOG_INODE_EXISTS;
5685 int type;
5686
5687 btrfs_item_key_to_cpu(leaf, &min_key, i);
5688 if (min_key.objectid != dir_elem->ino ||
5689 min_key.type != BTRFS_DIR_ITEM_KEY)
5690 goto next_dir_inode;
5691
5692 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5693 type = btrfs_dir_type(leaf, di);
5694 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5695 type != BTRFS_FT_DIR)
5696 continue;
5697 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5698 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5699 continue;
5700
5701 btrfs_release_path(path);
5702 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5703 if (IS_ERR(di_inode)) {
5704 ret = PTR_ERR(di_inode);
5705 goto next_dir_inode;
5706 }
5707
5708 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5709 btrfs_add_delayed_iput(di_inode);
5710 break;
5711 }
5712
5713 ctx->log_new_dentries = false;
5714 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5715 log_mode = LOG_INODE_ALL;
5716 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5717 log_mode, 0, LLONG_MAX, ctx);
5718 if (!ret &&
5719 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5720 ret = 1;
5721 btrfs_add_delayed_iput(di_inode);
5722 if (ret)
5723 goto next_dir_inode;
5724 if (ctx->log_new_dentries) {
5725 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5726 GFP_NOFS);
5727 if (!new_dir_elem) {
5728 ret = -ENOMEM;
5729 goto next_dir_inode;
5730 }
5731 new_dir_elem->ino = di_key.objectid;
5732 list_add_tail(&new_dir_elem->list, &dir_list);
5733 }
5734 break;
5735 }
5736 if (i == nritems) {
5737 ret = btrfs_next_leaf(log, path);
5738 if (ret < 0) {
5739 goto next_dir_inode;
5740 } else if (ret > 0) {
5741 ret = 0;
5742 goto next_dir_inode;
5743 }
5744 goto process_leaf;
5745 }
5746 if (min_key.offset < (u64)-1) {
5747 min_key.offset++;
5748 goto again;
5749 }
5750next_dir_inode:
5751 list_del(&dir_elem->list);
5752 kfree(dir_elem);
5753 }
5754
5755 btrfs_free_path(path);
5756 return ret;
5757}
5758
5759static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5760 struct btrfs_inode *inode,
5761 struct btrfs_log_ctx *ctx)
5762{
5763 struct btrfs_fs_info *fs_info = trans->fs_info;
5764 int ret;
5765 struct btrfs_path *path;
5766 struct btrfs_key key;
5767 struct btrfs_root *root = inode->root;
5768 const u64 ino = btrfs_ino(inode);
5769
5770 path = btrfs_alloc_path();
5771 if (!path)
5772 return -ENOMEM;
5773 path->skip_locking = 1;
5774 path->search_commit_root = 1;
5775
5776 key.objectid = ino;
5777 key.type = BTRFS_INODE_REF_KEY;
5778 key.offset = 0;
5779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5780 if (ret < 0)
5781 goto out;
5782
5783 while (true) {
5784 struct extent_buffer *leaf = path->nodes[0];
5785 int slot = path->slots[0];
5786 u32 cur_offset = 0;
5787 u32 item_size;
5788 unsigned long ptr;
5789
5790 if (slot >= btrfs_header_nritems(leaf)) {
5791 ret = btrfs_next_leaf(root, path);
5792 if (ret < 0)
5793 goto out;
5794 else if (ret > 0)
5795 break;
5796 continue;
5797 }
5798
5799 btrfs_item_key_to_cpu(leaf, &key, slot);
5800 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5801 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5802 break;
5803
5804 item_size = btrfs_item_size_nr(leaf, slot);
5805 ptr = btrfs_item_ptr_offset(leaf, slot);
5806 while (cur_offset < item_size) {
5807 struct btrfs_key inode_key;
5808 struct inode *dir_inode;
5809
5810 inode_key.type = BTRFS_INODE_ITEM_KEY;
5811 inode_key.offset = 0;
5812
5813 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5814 struct btrfs_inode_extref *extref;
5815
5816 extref = (struct btrfs_inode_extref *)
5817 (ptr + cur_offset);
5818 inode_key.objectid = btrfs_inode_extref_parent(
5819 leaf, extref);
5820 cur_offset += sizeof(*extref);
5821 cur_offset += btrfs_inode_extref_name_len(leaf,
5822 extref);
5823 } else {
5824 inode_key.objectid = key.offset;
5825 cur_offset = item_size;
5826 }
5827
5828 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5829 root, NULL);
5830 /*
5831 * If the parent inode was deleted, return an error to
5832 * fallback to a transaction commit. This is to prevent
5833 * getting an inode that was moved from one parent A to
5834 * a parent B, got its former parent A deleted and then
5835 * it got fsync'ed, from existing at both parents after
5836 * a log replay (and the old parent still existing).
5837 * Example:
5838 *
5839 * mkdir /mnt/A
5840 * mkdir /mnt/B
5841 * touch /mnt/B/bar
5842 * sync
5843 * mv /mnt/B/bar /mnt/A/bar
5844 * mv -T /mnt/A /mnt/B
5845 * fsync /mnt/B/bar
5846 * <power fail>
5847 *
5848 * If we ignore the old parent B which got deleted,
5849 * after a log replay we would have file bar linked
5850 * at both parents and the old parent B would still
5851 * exist.
5852 */
5853 if (IS_ERR(dir_inode)) {
5854 ret = PTR_ERR(dir_inode);
5855 goto out;
5856 }
5857
5858 if (ctx)
5859 ctx->log_new_dentries = false;
5860 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5861 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5862 if (!ret &&
5863 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5864 ret = 1;
5865 if (!ret && ctx && ctx->log_new_dentries)
5866 ret = log_new_dir_dentries(trans, root,
5867 BTRFS_I(dir_inode), ctx);
5868 btrfs_add_delayed_iput(dir_inode);
5869 if (ret)
5870 goto out;
5871 }
5872 path->slots[0]++;
5873 }
5874 ret = 0;
5875out:
5876 btrfs_free_path(path);
5877 return ret;
5878}
5879
5880static int log_new_ancestors(struct btrfs_trans_handle *trans,
5881 struct btrfs_root *root,
5882 struct btrfs_path *path,
5883 struct btrfs_log_ctx *ctx)
5884{
5885 struct btrfs_key found_key;
5886
5887 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5888
5889 while (true) {
5890 struct btrfs_fs_info *fs_info = root->fs_info;
5891 const u64 last_committed = fs_info->last_trans_committed;
5892 struct extent_buffer *leaf = path->nodes[0];
5893 int slot = path->slots[0];
5894 struct btrfs_key search_key;
5895 struct inode *inode;
5896 int ret = 0;
5897
5898 btrfs_release_path(path);
5899
5900 search_key.objectid = found_key.offset;
5901 search_key.type = BTRFS_INODE_ITEM_KEY;
5902 search_key.offset = 0;
5903 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5904 if (IS_ERR(inode))
5905 return PTR_ERR(inode);
5906
5907 if (BTRFS_I(inode)->generation > last_committed)
5908 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5909 LOG_INODE_EXISTS,
5910 0, LLONG_MAX, ctx);
5911 btrfs_add_delayed_iput(inode);
5912 if (ret)
5913 return ret;
5914
5915 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5916 break;
5917
5918 search_key.type = BTRFS_INODE_REF_KEY;
5919 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5920 if (ret < 0)
5921 return ret;
5922
5923 leaf = path->nodes[0];
5924 slot = path->slots[0];
5925 if (slot >= btrfs_header_nritems(leaf)) {
5926 ret = btrfs_next_leaf(root, path);
5927 if (ret < 0)
5928 return ret;
5929 else if (ret > 0)
5930 return -ENOENT;
5931 leaf = path->nodes[0];
5932 slot = path->slots[0];
5933 }
5934
5935 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5936 if (found_key.objectid != search_key.objectid ||
5937 found_key.type != BTRFS_INODE_REF_KEY)
5938 return -ENOENT;
5939 }
5940 return 0;
5941}
5942
5943static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5944 struct btrfs_inode *inode,
5945 struct dentry *parent,
5946 struct btrfs_log_ctx *ctx)
5947{
5948 struct btrfs_root *root = inode->root;
5949 struct btrfs_fs_info *fs_info = root->fs_info;
5950 struct dentry *old_parent = NULL;
5951 struct super_block *sb = inode->vfs_inode.i_sb;
5952 int ret = 0;
5953
5954 while (true) {
5955 if (!parent || d_really_is_negative(parent) ||
5956 sb != parent->d_sb)
5957 break;
5958
5959 inode = BTRFS_I(d_inode(parent));
5960 if (root != inode->root)
5961 break;
5962
5963 if (inode->generation > fs_info->last_trans_committed) {
5964 ret = btrfs_log_inode(trans, root, inode,
5965 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5966 if (ret)
5967 break;
5968 }
5969 if (IS_ROOT(parent))
5970 break;
5971
5972 parent = dget_parent(parent);
5973 dput(old_parent);
5974 old_parent = parent;
5975 }
5976 dput(old_parent);
5977
5978 return ret;
5979}
5980
5981static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5982 struct btrfs_inode *inode,
5983 struct dentry *parent,
5984 struct btrfs_log_ctx *ctx)
5985{
5986 struct btrfs_root *root = inode->root;
5987 const u64 ino = btrfs_ino(inode);
5988 struct btrfs_path *path;
5989 struct btrfs_key search_key;
5990 int ret;
5991
5992 /*
5993 * For a single hard link case, go through a fast path that does not
5994 * need to iterate the fs/subvolume tree.
5995 */
5996 if (inode->vfs_inode.i_nlink < 2)
5997 return log_new_ancestors_fast(trans, inode, parent, ctx);
5998
5999 path = btrfs_alloc_path();
6000 if (!path)
6001 return -ENOMEM;
6002
6003 search_key.objectid = ino;
6004 search_key.type = BTRFS_INODE_REF_KEY;
6005 search_key.offset = 0;
6006again:
6007 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6008 if (ret < 0)
6009 goto out;
6010 if (ret == 0)
6011 path->slots[0]++;
6012
6013 while (true) {
6014 struct extent_buffer *leaf = path->nodes[0];
6015 int slot = path->slots[0];
6016 struct btrfs_key found_key;
6017
6018 if (slot >= btrfs_header_nritems(leaf)) {
6019 ret = btrfs_next_leaf(root, path);
6020 if (ret < 0)
6021 goto out;
6022 else if (ret > 0)
6023 break;
6024 continue;
6025 }
6026
6027 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6028 if (found_key.objectid != ino ||
6029 found_key.type > BTRFS_INODE_EXTREF_KEY)
6030 break;
6031
6032 /*
6033 * Don't deal with extended references because they are rare
6034 * cases and too complex to deal with (we would need to keep
6035 * track of which subitem we are processing for each item in
6036 * this loop, etc). So just return some error to fallback to
6037 * a transaction commit.
6038 */
6039 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6040 ret = -EMLINK;
6041 goto out;
6042 }
6043
6044 /*
6045 * Logging ancestors needs to do more searches on the fs/subvol
6046 * tree, so it releases the path as needed to avoid deadlocks.
6047 * Keep track of the last inode ref key and resume from that key
6048 * after logging all new ancestors for the current hard link.
6049 */
6050 memcpy(&search_key, &found_key, sizeof(search_key));
6051
6052 ret = log_new_ancestors(trans, root, path, ctx);
6053 if (ret)
6054 goto out;
6055 btrfs_release_path(path);
6056 goto again;
6057 }
6058 ret = 0;
6059out:
6060 btrfs_free_path(path);
6061 return ret;
6062}
6063
6064/*
6065 * helper function around btrfs_log_inode to make sure newly created
6066 * parent directories also end up in the log. A minimal inode and backref
6067 * only logging is done of any parent directories that are older than
6068 * the last committed transaction
6069 */
6070static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6071 struct btrfs_inode *inode,
6072 struct dentry *parent,
6073 const loff_t start,
6074 const loff_t end,
6075 int inode_only,
6076 struct btrfs_log_ctx *ctx)
6077{
6078 struct btrfs_root *root = inode->root;
6079 struct btrfs_fs_info *fs_info = root->fs_info;
6080 struct super_block *sb;
6081 int ret = 0;
6082 u64 last_committed = fs_info->last_trans_committed;
6083 bool log_dentries = false;
6084
6085 sb = inode->vfs_inode.i_sb;
6086
6087 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6088 ret = 1;
6089 goto end_no_trans;
6090 }
6091
6092 /*
6093 * The prev transaction commit doesn't complete, we need do
6094 * full commit by ourselves.
6095 */
6096 if (fs_info->last_trans_log_full_commit >
6097 fs_info->last_trans_committed) {
6098 ret = 1;
6099 goto end_no_trans;
6100 }
6101
6102 if (btrfs_root_refs(&root->root_item) == 0) {
6103 ret = 1;
6104 goto end_no_trans;
6105 }
6106
6107 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6108 last_committed);
6109 if (ret)
6110 goto end_no_trans;
6111
6112 /*
6113 * Skip already logged inodes or inodes corresponding to tmpfiles
6114 * (since logging them is pointless, a link count of 0 means they
6115 * will never be accessible).
6116 */
6117 if (btrfs_inode_in_log(inode, trans->transid) ||
6118 inode->vfs_inode.i_nlink == 0) {
6119 ret = BTRFS_NO_LOG_SYNC;
6120 goto end_no_trans;
6121 }
6122
6123 ret = start_log_trans(trans, root, ctx);
6124 if (ret)
6125 goto end_no_trans;
6126
6127 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6128 if (ret)
6129 goto end_trans;
6130
6131 /*
6132 * for regular files, if its inode is already on disk, we don't
6133 * have to worry about the parents at all. This is because
6134 * we can use the last_unlink_trans field to record renames
6135 * and other fun in this file.
6136 */
6137 if (S_ISREG(inode->vfs_inode.i_mode) &&
6138 inode->generation <= last_committed &&
6139 inode->last_unlink_trans <= last_committed) {
6140 ret = 0;
6141 goto end_trans;
6142 }
6143
6144 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6145 log_dentries = true;
6146
6147 /*
6148 * On unlink we must make sure all our current and old parent directory
6149 * inodes are fully logged. This is to prevent leaving dangling
6150 * directory index entries in directories that were our parents but are
6151 * not anymore. Not doing this results in old parent directory being
6152 * impossible to delete after log replay (rmdir will always fail with
6153 * error -ENOTEMPTY).
6154 *
6155 * Example 1:
6156 *
6157 * mkdir testdir
6158 * touch testdir/foo
6159 * ln testdir/foo testdir/bar
6160 * sync
6161 * unlink testdir/bar
6162 * xfs_io -c fsync testdir/foo
6163 * <power failure>
6164 * mount fs, triggers log replay
6165 *
6166 * If we don't log the parent directory (testdir), after log replay the
6167 * directory still has an entry pointing to the file inode using the bar
6168 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6169 * the file inode has a link count of 1.
6170 *
6171 * Example 2:
6172 *
6173 * mkdir testdir
6174 * touch foo
6175 * ln foo testdir/foo2
6176 * ln foo testdir/foo3
6177 * sync
6178 * unlink testdir/foo3
6179 * xfs_io -c fsync foo
6180 * <power failure>
6181 * mount fs, triggers log replay
6182 *
6183 * Similar as the first example, after log replay the parent directory
6184 * testdir still has an entry pointing to the inode file with name foo3
6185 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6186 * and has a link count of 2.
6187 */
6188 if (inode->last_unlink_trans > last_committed) {
6189 ret = btrfs_log_all_parents(trans, inode, ctx);
6190 if (ret)
6191 goto end_trans;
6192 }
6193
6194 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6195 if (ret)
6196 goto end_trans;
6197
6198 if (log_dentries)
6199 ret = log_new_dir_dentries(trans, root, inode, ctx);
6200 else
6201 ret = 0;
6202end_trans:
6203 if (ret < 0) {
6204 btrfs_set_log_full_commit(trans);
6205 ret = 1;
6206 }
6207
6208 if (ret)
6209 btrfs_remove_log_ctx(root, ctx);
6210 btrfs_end_log_trans(root);
6211end_no_trans:
6212 return ret;
6213}
6214
6215/*
6216 * it is not safe to log dentry if the chunk root has added new
6217 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6218 * If this returns 1, you must commit the transaction to safely get your
6219 * data on disk.
6220 */
6221int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6222 struct dentry *dentry,
6223 const loff_t start,
6224 const loff_t end,
6225 struct btrfs_log_ctx *ctx)
6226{
6227 struct dentry *parent = dget_parent(dentry);
6228 int ret;
6229
6230 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6231 start, end, LOG_INODE_ALL, ctx);
6232 dput(parent);
6233
6234 return ret;
6235}
6236
6237/*
6238 * should be called during mount to recover any replay any log trees
6239 * from the FS
6240 */
6241int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6242{
6243 int ret;
6244 struct btrfs_path *path;
6245 struct btrfs_trans_handle *trans;
6246 struct btrfs_key key;
6247 struct btrfs_key found_key;
6248 struct btrfs_key tmp_key;
6249 struct btrfs_root *log;
6250 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6251 struct walk_control wc = {
6252 .process_func = process_one_buffer,
6253 .stage = LOG_WALK_PIN_ONLY,
6254 };
6255
6256 path = btrfs_alloc_path();
6257 if (!path)
6258 return -ENOMEM;
6259
6260 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6261
6262 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6263 if (IS_ERR(trans)) {
6264 ret = PTR_ERR(trans);
6265 goto error;
6266 }
6267
6268 wc.trans = trans;
6269 wc.pin = 1;
6270
6271 ret = walk_log_tree(trans, log_root_tree, &wc);
6272 if (ret) {
6273 btrfs_handle_fs_error(fs_info, ret,
6274 "Failed to pin buffers while recovering log root tree.");
6275 goto error;
6276 }
6277
6278again:
6279 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6280 key.offset = (u64)-1;
6281 key.type = BTRFS_ROOT_ITEM_KEY;
6282
6283 while (1) {
6284 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6285
6286 if (ret < 0) {
6287 btrfs_handle_fs_error(fs_info, ret,
6288 "Couldn't find tree log root.");
6289 goto error;
6290 }
6291 if (ret > 0) {
6292 if (path->slots[0] == 0)
6293 break;
6294 path->slots[0]--;
6295 }
6296 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6297 path->slots[0]);
6298 btrfs_release_path(path);
6299 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6300 break;
6301
6302 log = btrfs_read_fs_root(log_root_tree, &found_key);
6303 if (IS_ERR(log)) {
6304 ret = PTR_ERR(log);
6305 btrfs_handle_fs_error(fs_info, ret,
6306 "Couldn't read tree log root.");
6307 goto error;
6308 }
6309
6310 tmp_key.objectid = found_key.offset;
6311 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6312 tmp_key.offset = (u64)-1;
6313
6314 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6315 if (IS_ERR(wc.replay_dest)) {
6316 ret = PTR_ERR(wc.replay_dest);
6317 free_extent_buffer(log->node);
6318 free_extent_buffer(log->commit_root);
6319 kfree(log);
6320 btrfs_handle_fs_error(fs_info, ret,
6321 "Couldn't read target root for tree log recovery.");
6322 goto error;
6323 }
6324
6325 wc.replay_dest->log_root = log;
6326 btrfs_record_root_in_trans(trans, wc.replay_dest);
6327 ret = walk_log_tree(trans, log, &wc);
6328
6329 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6330 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6331 path);
6332 }
6333
6334 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6335 struct btrfs_root *root = wc.replay_dest;
6336
6337 btrfs_release_path(path);
6338
6339 /*
6340 * We have just replayed everything, and the highest
6341 * objectid of fs roots probably has changed in case
6342 * some inode_item's got replayed.
6343 *
6344 * root->objectid_mutex is not acquired as log replay
6345 * could only happen during mount.
6346 */
6347 ret = btrfs_find_highest_objectid(root,
6348 &root->highest_objectid);
6349 }
6350
6351 key.offset = found_key.offset - 1;
6352 wc.replay_dest->log_root = NULL;
6353 free_extent_buffer(log->node);
6354 free_extent_buffer(log->commit_root);
6355 kfree(log);
6356
6357 if (ret)
6358 goto error;
6359
6360 if (found_key.offset == 0)
6361 break;
6362 }
6363 btrfs_release_path(path);
6364
6365 /* step one is to pin it all, step two is to replay just inodes */
6366 if (wc.pin) {
6367 wc.pin = 0;
6368 wc.process_func = replay_one_buffer;
6369 wc.stage = LOG_WALK_REPLAY_INODES;
6370 goto again;
6371 }
6372 /* step three is to replay everything */
6373 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6374 wc.stage++;
6375 goto again;
6376 }
6377
6378 btrfs_free_path(path);
6379
6380 /* step 4: commit the transaction, which also unpins the blocks */
6381 ret = btrfs_commit_transaction(trans);
6382 if (ret)
6383 return ret;
6384
6385 free_extent_buffer(log_root_tree->node);
6386 log_root_tree->log_root = NULL;
6387 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6388 kfree(log_root_tree);
6389
6390 return 0;
6391error:
6392 if (wc.trans)
6393 btrfs_end_transaction(wc.trans);
6394 btrfs_free_path(path);
6395 return ret;
6396}
6397
6398/*
6399 * there are some corner cases where we want to force a full
6400 * commit instead of allowing a directory to be logged.
6401 *
6402 * They revolve around files there were unlinked from the directory, and
6403 * this function updates the parent directory so that a full commit is
6404 * properly done if it is fsync'd later after the unlinks are done.
6405 *
6406 * Must be called before the unlink operations (updates to the subvolume tree,
6407 * inodes, etc) are done.
6408 */
6409void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6410 struct btrfs_inode *dir, struct btrfs_inode *inode,
6411 int for_rename)
6412{
6413 /*
6414 * when we're logging a file, if it hasn't been renamed
6415 * or unlinked, and its inode is fully committed on disk,
6416 * we don't have to worry about walking up the directory chain
6417 * to log its parents.
6418 *
6419 * So, we use the last_unlink_trans field to put this transid
6420 * into the file. When the file is logged we check it and
6421 * don't log the parents if the file is fully on disk.
6422 */
6423 mutex_lock(&inode->log_mutex);
6424 inode->last_unlink_trans = trans->transid;
6425 mutex_unlock(&inode->log_mutex);
6426
6427 /*
6428 * if this directory was already logged any new
6429 * names for this file/dir will get recorded
6430 */
6431 if (dir->logged_trans == trans->transid)
6432 return;
6433
6434 /*
6435 * if the inode we're about to unlink was logged,
6436 * the log will be properly updated for any new names
6437 */
6438 if (inode->logged_trans == trans->transid)
6439 return;
6440
6441 /*
6442 * when renaming files across directories, if the directory
6443 * there we're unlinking from gets fsync'd later on, there's
6444 * no way to find the destination directory later and fsync it
6445 * properly. So, we have to be conservative and force commits
6446 * so the new name gets discovered.
6447 */
6448 if (for_rename)
6449 goto record;
6450
6451 /* we can safely do the unlink without any special recording */
6452 return;
6453
6454record:
6455 mutex_lock(&dir->log_mutex);
6456 dir->last_unlink_trans = trans->transid;
6457 mutex_unlock(&dir->log_mutex);
6458}
6459
6460/*
6461 * Make sure that if someone attempts to fsync the parent directory of a deleted
6462 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6463 * that after replaying the log tree of the parent directory's root we will not
6464 * see the snapshot anymore and at log replay time we will not see any log tree
6465 * corresponding to the deleted snapshot's root, which could lead to replaying
6466 * it after replaying the log tree of the parent directory (which would replay
6467 * the snapshot delete operation).
6468 *
6469 * Must be called before the actual snapshot destroy operation (updates to the
6470 * parent root and tree of tree roots trees, etc) are done.
6471 */
6472void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6473 struct btrfs_inode *dir)
6474{
6475 mutex_lock(&dir->log_mutex);
6476 dir->last_unlink_trans = trans->transid;
6477 mutex_unlock(&dir->log_mutex);
6478}
6479
6480/*
6481 * Call this after adding a new name for a file and it will properly
6482 * update the log to reflect the new name.
6483 *
6484 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6485 * true (because it's not used).
6486 *
6487 * Return value depends on whether @sync_log is true or false.
6488 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6489 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6490 * otherwise.
6491 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6492 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6493 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6494 * committed (without attempting to sync the log).
6495 */
6496int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6497 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6498 struct dentry *parent,
6499 bool sync_log, struct btrfs_log_ctx *ctx)
6500{
6501 struct btrfs_fs_info *fs_info = trans->fs_info;
6502 int ret;
6503
6504 /*
6505 * this will force the logging code to walk the dentry chain
6506 * up for the file
6507 */
6508 if (!S_ISDIR(inode->vfs_inode.i_mode))
6509 inode->last_unlink_trans = trans->transid;
6510
6511 /*
6512 * if this inode hasn't been logged and directory we're renaming it
6513 * from hasn't been logged, we don't need to log it
6514 */
6515 if (inode->logged_trans <= fs_info->last_trans_committed &&
6516 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6517 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6518 BTRFS_DONT_NEED_LOG_SYNC;
6519
6520 if (sync_log) {
6521 struct btrfs_log_ctx ctx2;
6522
6523 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6524 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6525 LOG_INODE_EXISTS, &ctx2);
6526 if (ret == BTRFS_NO_LOG_SYNC)
6527 return BTRFS_DONT_NEED_TRANS_COMMIT;
6528 else if (ret)
6529 return BTRFS_NEED_TRANS_COMMIT;
6530
6531 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6532 if (ret)
6533 return BTRFS_NEED_TRANS_COMMIT;
6534 return BTRFS_DONT_NEED_TRANS_COMMIT;
6535 }
6536
6537 ASSERT(ctx);
6538 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6539 LOG_INODE_EXISTS, ctx);
6540 if (ret == BTRFS_NO_LOG_SYNC)
6541 return BTRFS_DONT_NEED_LOG_SYNC;
6542 else if (ret)
6543 return BTRFS_NEED_TRANS_COMMIT;
6544
6545 return BTRFS_NEED_LOG_SYNC;
6546}
6547