Loading...
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/blkdev.h>
22#include <linux/list_sort.h>
23#include "tree-log.h"
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
27#include "backref.h"
28#include "hash.h"
29#include "compression.h"
30#include "qgroup.h"
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40#define LOG_OTHER_INODE 2
41
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
96#define LOG_WALK_REPLAY_DIR_INDEX 2
97#define LOG_WALK_REPLAY_ALL 3
98
99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root, struct inode *inode,
101 int inode_only,
102 const loff_t start,
103 const loff_t end,
104 struct btrfs_log_ctx *ctx);
105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
113
114/*
115 * tree logging is a special write ahead log used to make sure that
116 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 *
118 * Full tree commits are expensive because they require commonly
119 * modified blocks to be recowed, creating many dirty pages in the
120 * extent tree an 4x-6x higher write load than ext3.
121 *
122 * Instead of doing a tree commit on every fsync, we use the
123 * key ranges and transaction ids to find items for a given file or directory
124 * that have changed in this transaction. Those items are copied into
125 * a special tree (one per subvolume root), that tree is written to disk
126 * and then the fsync is considered complete.
127 *
128 * After a crash, items are copied out of the log-tree back into the
129 * subvolume tree. Any file data extents found are recorded in the extent
130 * allocation tree, and the log-tree freed.
131 *
132 * The log tree is read three times, once to pin down all the extents it is
133 * using in ram and once, once to create all the inodes logged in the tree
134 * and once to do all the other items.
135 */
136
137/*
138 * start a sub transaction and setup the log tree
139 * this increments the log tree writer count to make the people
140 * syncing the tree wait for us to finish
141 */
142static int start_log_trans(struct btrfs_trans_handle *trans,
143 struct btrfs_root *root,
144 struct btrfs_log_ctx *ctx)
145{
146 struct btrfs_fs_info *fs_info = root->fs_info;
147 int ret = 0;
148
149 mutex_lock(&root->log_mutex);
150
151 if (root->log_root) {
152 if (btrfs_need_log_full_commit(fs_info, trans)) {
153 ret = -EAGAIN;
154 goto out;
155 }
156
157 if (!root->log_start_pid) {
158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 root->log_start_pid = current->pid;
160 } else if (root->log_start_pid != current->pid) {
161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
162 }
163 } else {
164 mutex_lock(&fs_info->tree_log_mutex);
165 if (!fs_info->log_root_tree)
166 ret = btrfs_init_log_root_tree(trans, fs_info);
167 mutex_unlock(&fs_info->tree_log_mutex);
168 if (ret)
169 goto out;
170
171 ret = btrfs_add_log_tree(trans, root);
172 if (ret)
173 goto out;
174
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 root->log_start_pid = current->pid;
177 }
178
179 atomic_inc(&root->log_batch);
180 atomic_inc(&root->log_writers);
181 if (ctx) {
182 int index = root->log_transid % 2;
183 list_add_tail(&ctx->list, &root->log_ctxs[index]);
184 ctx->log_transid = root->log_transid;
185 }
186
187out:
188 mutex_unlock(&root->log_mutex);
189 return ret;
190}
191
192/*
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
195 * in progress
196 */
197static int join_running_log_trans(struct btrfs_root *root)
198{
199 int ret = -ENOENT;
200
201 smp_mb();
202 if (!root->log_root)
203 return -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 if (root->log_root) {
207 ret = 0;
208 atomic_inc(&root->log_writers);
209 }
210 mutex_unlock(&root->log_mutex);
211 return ret;
212}
213
214/*
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
218 */
219int btrfs_pin_log_trans(struct btrfs_root *root)
220{
221 int ret = -ENOENT;
222
223 mutex_lock(&root->log_mutex);
224 atomic_inc(&root->log_writers);
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
229/*
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
232 */
233void btrfs_end_log_trans(struct btrfs_root *root)
234{
235 if (atomic_dec_and_test(&root->log_writers)) {
236 /*
237 * Implicit memory barrier after atomic_dec_and_test
238 */
239 if (waitqueue_active(&root->log_writer_wait))
240 wake_up(&root->log_writer_wait);
241 }
242}
243
244
245/*
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
250 */
251struct walk_control {
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
254 */
255 int free;
256
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
259 */
260 int write;
261
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
264 */
265 int wait;
266
267 /* pin only walk, we record which extents on disk belong to the
268 * log trees
269 */
270 int pin;
271
272 /* what stage of the replay code we're currently in */
273 int stage;
274
275 /* the root we are currently replaying */
276 struct btrfs_root *replay_dest;
277
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle *trans;
280
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
284 * inside it
285 */
286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 struct walk_control *wc, u64 gen);
288};
289
290/*
291 * process_func used to pin down extents, write them or wait on them
292 */
293static int process_one_buffer(struct btrfs_root *log,
294 struct extent_buffer *eb,
295 struct walk_control *wc, u64 gen)
296{
297 struct btrfs_fs_info *fs_info = log->fs_info;
298 int ret = 0;
299
300 /*
301 * If this fs is mixed then we need to be able to process the leaves to
302 * pin down any logged extents, so we have to read the block.
303 */
304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
305 ret = btrfs_read_buffer(eb, gen);
306 if (ret)
307 return ret;
308 }
309
310 if (wc->pin)
311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 eb->len);
313
314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
315 if (wc->pin && btrfs_header_level(eb) == 0)
316 ret = btrfs_exclude_logged_extents(fs_info, eb);
317 if (wc->write)
318 btrfs_write_tree_block(eb);
319 if (wc->wait)
320 btrfs_wait_tree_block_writeback(eb);
321 }
322 return ret;
323}
324
325/*
326 * Item overwrite used by replay and tree logging. eb, slot and key all refer
327 * to the src data we are copying out.
328 *
329 * root is the tree we are copying into, and path is a scratch
330 * path for use in this function (it should be released on entry and
331 * will be released on exit).
332 *
333 * If the key is already in the destination tree the existing item is
334 * overwritten. If the existing item isn't big enough, it is extended.
335 * If it is too large, it is truncated.
336 *
337 * If the key isn't in the destination yet, a new item is inserted.
338 */
339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root,
341 struct btrfs_path *path,
342 struct extent_buffer *eb, int slot,
343 struct btrfs_key *key)
344{
345 struct btrfs_fs_info *fs_info = root->fs_info;
346 int ret;
347 u32 item_size;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 overwrite_root = 1;
357
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 if (ret < 0)
364 return ret;
365
366 if (ret == 0) {
367 char *src_copy;
368 char *dst_copy;
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 path->slots[0]);
371 if (dst_size != item_size)
372 goto insert;
373
374 if (item_size == 0) {
375 btrfs_release_path(path);
376 return 0;
377 }
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
380 if (!dst_copy || !src_copy) {
381 btrfs_release_path(path);
382 kfree(dst_copy);
383 kfree(src_copy);
384 return -ENOMEM;
385 }
386
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 item_size);
392 ret = memcmp(dst_copy, src_copy, item_size);
393
394 kfree(dst_copy);
395 kfree(src_copy);
396 /*
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
400 * sync
401 */
402 if (ret == 0) {
403 btrfs_release_path(path);
404 return 0;
405 }
406
407 /*
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
410 */
411 if (inode_item) {
412 struct btrfs_inode_item *item;
413 u64 nbytes;
414 u32 mode;
415
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
422
423 /*
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
427 */
428 mode = btrfs_inode_mode(eb, item);
429 if (S_ISDIR(mode))
430 btrfs_set_inode_size(eb, item, 0);
431 }
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
434 u32 mode;
435
436 /*
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
439 */
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
442
443 /*
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
447 */
448 mode = btrfs_inode_mode(eb, item);
449 if (S_ISDIR(mode))
450 btrfs_set_inode_size(eb, item, 0);
451 }
452insert:
453 btrfs_release_path(path);
454 /* try to insert the key into the destination tree */
455 path->skip_release_on_error = 1;
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
458 path->skip_release_on_error = 0;
459
460 /* make sure any existing item is the correct size */
461 if (ret == -EEXIST || ret == -EOVERFLOW) {
462 u32 found_size;
463 found_size = btrfs_item_size_nr(path->nodes[0],
464 path->slots[0]);
465 if (found_size > item_size)
466 btrfs_truncate_item(fs_info, path, item_size, 1);
467 else if (found_size < item_size)
468 btrfs_extend_item(fs_info, path,
469 item_size - found_size);
470 } else if (ret) {
471 return ret;
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
494 const u64 ino_size = btrfs_inode_size(eb, src_item);
495
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
506 struct btrfs_map_token token;
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
512 goto no_copy;
513 }
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
544 btrfs_release_path(path);
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
555 struct btrfs_key key;
556 struct inode *inode;
557
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 if (IS_ERR(inode)) {
563 inode = NULL;
564 } else if (is_bad_inode(inode)) {
565 iput(inode);
566 inode = NULL;
567 }
568 return inode;
569}
570
571/* replays a single extent in 'eb' at 'slot' with 'key' into the
572 * subvolume 'root'. path is released on entry and should be released
573 * on exit.
574 *
575 * extents in the log tree have not been allocated out of the extent
576 * tree yet. So, this completes the allocation, taking a reference
577 * as required if the extent already exists or creating a new extent
578 * if it isn't in the extent allocation tree yet.
579 *
580 * The extent is inserted into the file, dropping any existing extents
581 * from the file that overlap the new one.
582 */
583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path,
586 struct extent_buffer *eb, int slot,
587 struct btrfs_key *key)
588{
589 struct btrfs_fs_info *fs_info = root->fs_info;
590 int found_type;
591 u64 extent_end;
592 u64 start = key->offset;
593 u64 nbytes = 0;
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
596 unsigned long size;
597 int ret = 0;
598
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
601
602 if (found_type == BTRFS_FILE_EXTENT_REG ||
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
606
607 /*
608 * We don't add to the inodes nbytes if we are prealloc or a
609 * hole.
610 */
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 nbytes = 0;
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 size = btrfs_file_extent_inline_len(eb, slot, item);
615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 extent_end = ALIGN(start + size,
617 fs_info->sectorsize);
618 } else {
619 ret = 0;
620 goto out;
621 }
622
623 inode = read_one_inode(root, key->objectid);
624 if (!inode) {
625 ret = -EIO;
626 goto out;
627 }
628
629 /*
630 * first check to see if we already have this extent in the
631 * file. This must be done before the btrfs_drop_extents run
632 * so we don't try to drop this extent.
633 */
634 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
635 start, 0);
636
637 if (ret == 0 &&
638 (found_type == BTRFS_FILE_EXTENT_REG ||
639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
640 struct btrfs_file_extent_item cmp1;
641 struct btrfs_file_extent_item cmp2;
642 struct btrfs_file_extent_item *existing;
643 struct extent_buffer *leaf;
644
645 leaf = path->nodes[0];
646 existing = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_file_extent_item);
648
649 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 sizeof(cmp1));
651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 sizeof(cmp2));
653
654 /*
655 * we already have a pointer to this exact extent,
656 * we don't have to do anything
657 */
658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
659 btrfs_release_path(path);
660 goto out;
661 }
662 }
663 btrfs_release_path(path);
664
665 /* drop any overlapping extents */
666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
667 if (ret)
668 goto out;
669
670 if (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 u64 offset;
673 unsigned long dest_offset;
674 struct btrfs_key ins;
675
676 ret = btrfs_insert_empty_item(trans, root, path, key,
677 sizeof(*item));
678 if (ret)
679 goto out;
680 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 path->slots[0]);
682 copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 (unsigned long)item, sizeof(*item));
684
685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 ins.type = BTRFS_EXTENT_ITEM_KEY;
688 offset = key->offset - btrfs_file_extent_offset(eb, item);
689
690 /*
691 * Manually record dirty extent, as here we did a shallow
692 * file extent item copy and skip normal backref update,
693 * but modifying extent tree all by ourselves.
694 * So need to manually record dirty extent for qgroup,
695 * as the owner of the file extent changed from log tree
696 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 */
698 ret = btrfs_qgroup_trace_extent(trans, fs_info,
699 btrfs_file_extent_disk_bytenr(eb, item),
700 btrfs_file_extent_disk_num_bytes(eb, item),
701 GFP_NOFS);
702 if (ret < 0)
703 goto out;
704
705 if (ins.objectid > 0) {
706 u64 csum_start;
707 u64 csum_end;
708 LIST_HEAD(ordered_sums);
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 ins.offset);
715 if (ret == 0) {
716 ret = btrfs_inc_extent_ref(trans, fs_info,
717 ins.objectid, ins.offset,
718 0, root->root_key.objectid,
719 key->objectid, offset);
720 if (ret)
721 goto out;
722 } else {
723 /*
724 * insert the extent pointer in the extent
725 * allocation tree
726 */
727 ret = btrfs_alloc_logged_file_extent(trans,
728 fs_info,
729 root->root_key.objectid,
730 key->objectid, offset, &ins);
731 if (ret)
732 goto out;
733 }
734 btrfs_release_path(path);
735
736 if (btrfs_file_extent_compression(eb, item)) {
737 csum_start = ins.objectid;
738 csum_end = csum_start + ins.offset;
739 } else {
740 csum_start = ins.objectid +
741 btrfs_file_extent_offset(eb, item);
742 csum_end = csum_start +
743 btrfs_file_extent_num_bytes(eb, item);
744 }
745
746 ret = btrfs_lookup_csums_range(root->log_root,
747 csum_start, csum_end - 1,
748 &ordered_sums, 0);
749 if (ret)
750 goto out;
751 /*
752 * Now delete all existing cums in the csum root that
753 * cover our range. We do this because we can have an
754 * extent that is completely referenced by one file
755 * extent item and partially referenced by another
756 * file extent item (like after using the clone or
757 * extent_same ioctls). In this case if we end up doing
758 * the replay of the one that partially references the
759 * extent first, and we do not do the csum deletion
760 * below, we can get 2 csum items in the csum tree that
761 * overlap each other. For example, imagine our log has
762 * the two following file extent items:
763 *
764 * key (257 EXTENT_DATA 409600)
765 * extent data disk byte 12845056 nr 102400
766 * extent data offset 20480 nr 20480 ram 102400
767 *
768 * key (257 EXTENT_DATA 819200)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 0 nr 102400 ram 102400
771 *
772 * Where the second one fully references the 100K extent
773 * that starts at disk byte 12845056, and the log tree
774 * has a single csum item that covers the entire range
775 * of the extent:
776 *
777 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 *
779 * After the first file extent item is replayed, the
780 * csum tree gets the following csum item:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 *
784 * Which covers the 20K sub-range starting at offset 20K
785 * of our extent. Now when we replay the second file
786 * extent item, if we do not delete existing csum items
787 * that cover any of its blocks, we end up getting two
788 * csum items in our csum tree that overlap each other:
789 *
790 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 *
793 * Which is a problem, because after this anyone trying
794 * to lookup up for the checksum of any block of our
795 * extent starting at an offset of 40K or higher, will
796 * end up looking at the second csum item only, which
797 * does not contain the checksum for any block starting
798 * at offset 40K or higher of our extent.
799 */
800 while (!list_empty(&ordered_sums)) {
801 struct btrfs_ordered_sum *sums;
802 sums = list_entry(ordered_sums.next,
803 struct btrfs_ordered_sum,
804 list);
805 if (!ret)
806 ret = btrfs_del_csums(trans, fs_info,
807 sums->bytenr,
808 sums->len);
809 if (!ret)
810 ret = btrfs_csum_file_blocks(trans,
811 fs_info->csum_root, sums);
812 list_del(&sums->list);
813 kfree(sums);
814 }
815 if (ret)
816 goto out;
817 } else {
818 btrfs_release_path(path);
819 }
820 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
821 /* inline extents are easy, we just overwrite them */
822 ret = overwrite_item(trans, root, path, eb, slot, key);
823 if (ret)
824 goto out;
825 }
826
827 inode_add_bytes(inode, nbytes);
828 ret = btrfs_update_inode(trans, root, inode);
829out:
830 if (inode)
831 iput(inode);
832 return ret;
833}
834
835/*
836 * when cleaning up conflicts between the directory names in the
837 * subvolume, directory names in the log and directory names in the
838 * inode back references, we may have to unlink inodes from directories.
839 *
840 * This is a helper function to do the unlink of a specific directory
841 * item
842 */
843static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct inode *dir,
847 struct btrfs_dir_item *di)
848{
849 struct btrfs_fs_info *fs_info = root->fs_info;
850 struct inode *inode;
851 char *name;
852 int name_len;
853 struct extent_buffer *leaf;
854 struct btrfs_key location;
855 int ret;
856
857 leaf = path->nodes[0];
858
859 btrfs_dir_item_key_to_cpu(leaf, di, &location);
860 name_len = btrfs_dir_name_len(leaf, di);
861 name = kmalloc(name_len, GFP_NOFS);
862 if (!name)
863 return -ENOMEM;
864
865 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
866 btrfs_release_path(path);
867
868 inode = read_one_inode(root, location.objectid);
869 if (!inode) {
870 ret = -EIO;
871 goto out;
872 }
873
874 ret = link_to_fixup_dir(trans, root, path, location.objectid);
875 if (ret)
876 goto out;
877
878 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
879 if (ret)
880 goto out;
881 else
882 ret = btrfs_run_delayed_items(trans, fs_info);
883out:
884 kfree(name);
885 iput(inode);
886 return ret;
887}
888
889/*
890 * helper function to see if a given name and sequence number found
891 * in an inode back reference are already in a directory and correctly
892 * point to this inode
893 */
894static noinline int inode_in_dir(struct btrfs_root *root,
895 struct btrfs_path *path,
896 u64 dirid, u64 objectid, u64 index,
897 const char *name, int name_len)
898{
899 struct btrfs_dir_item *di;
900 struct btrfs_key location;
901 int match = 0;
902
903 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
904 index, name, name_len, 0);
905 if (di && !IS_ERR(di)) {
906 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 if (location.objectid != objectid)
908 goto out;
909 } else
910 goto out;
911 btrfs_release_path(path);
912
913 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
920 match = 1;
921out:
922 btrfs_release_path(path);
923 return match;
924}
925
926/*
927 * helper function to check a log tree for a named back reference in
928 * an inode. This is used to decide if a back reference that is
929 * found in the subvolume conflicts with what we find in the log.
930 *
931 * inode backreferences may have multiple refs in a single item,
932 * during replay we process one reference at a time, and we don't
933 * want to delete valid links to a file from the subvolume if that
934 * link is also in the log.
935 */
936static noinline int backref_in_log(struct btrfs_root *log,
937 struct btrfs_key *key,
938 u64 ref_objectid,
939 const char *name, int namelen)
940{
941 struct btrfs_path *path;
942 struct btrfs_inode_ref *ref;
943 unsigned long ptr;
944 unsigned long ptr_end;
945 unsigned long name_ptr;
946 int found_name_len;
947 int item_size;
948 int ret;
949 int match = 0;
950
951 path = btrfs_alloc_path();
952 if (!path)
953 return -ENOMEM;
954
955 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
956 if (ret != 0)
957 goto out;
958
959 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
960
961 if (key->type == BTRFS_INODE_EXTREF_KEY) {
962 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
963 name, namelen, NULL))
964 match = 1;
965
966 goto out;
967 }
968
969 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
970 ptr_end = ptr + item_size;
971 while (ptr < ptr_end) {
972 ref = (struct btrfs_inode_ref *)ptr;
973 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
974 if (found_name_len == namelen) {
975 name_ptr = (unsigned long)(ref + 1);
976 ret = memcmp_extent_buffer(path->nodes[0], name,
977 name_ptr, namelen);
978 if (ret == 0) {
979 match = 1;
980 goto out;
981 }
982 }
983 ptr = (unsigned long)(ref + 1) + found_name_len;
984 }
985out:
986 btrfs_free_path(path);
987 return match;
988}
989
990static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
991 struct btrfs_root *root,
992 struct btrfs_path *path,
993 struct btrfs_root *log_root,
994 struct inode *dir, struct inode *inode,
995 struct extent_buffer *eb,
996 u64 inode_objectid, u64 parent_objectid,
997 u64 ref_index, char *name, int namelen,
998 int *search_done)
999{
1000 struct btrfs_fs_info *fs_info = root->fs_info;
1001 int ret;
1002 char *victim_name;
1003 int victim_name_len;
1004 struct extent_buffer *leaf;
1005 struct btrfs_dir_item *di;
1006 struct btrfs_key search_key;
1007 struct btrfs_inode_extref *extref;
1008
1009again:
1010 /* Search old style refs */
1011 search_key.objectid = inode_objectid;
1012 search_key.type = BTRFS_INODE_REF_KEY;
1013 search_key.offset = parent_objectid;
1014 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1015 if (ret == 0) {
1016 struct btrfs_inode_ref *victim_ref;
1017 unsigned long ptr;
1018 unsigned long ptr_end;
1019
1020 leaf = path->nodes[0];
1021
1022 /* are we trying to overwrite a back ref for the root directory
1023 * if so, just jump out, we're done
1024 */
1025 if (search_key.objectid == search_key.offset)
1026 return 1;
1027
1028 /* check all the names in this back reference to see
1029 * if they are in the log. if so, we allow them to stay
1030 * otherwise they must be unlinked as a conflict
1031 */
1032 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1033 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1034 while (ptr < ptr_end) {
1035 victim_ref = (struct btrfs_inode_ref *)ptr;
1036 victim_name_len = btrfs_inode_ref_name_len(leaf,
1037 victim_ref);
1038 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1039 if (!victim_name)
1040 return -ENOMEM;
1041
1042 read_extent_buffer(leaf, victim_name,
1043 (unsigned long)(victim_ref + 1),
1044 victim_name_len);
1045
1046 if (!backref_in_log(log_root, &search_key,
1047 parent_objectid,
1048 victim_name,
1049 victim_name_len)) {
1050 inc_nlink(inode);
1051 btrfs_release_path(path);
1052
1053 ret = btrfs_unlink_inode(trans, root, dir,
1054 inode, victim_name,
1055 victim_name_len);
1056 kfree(victim_name);
1057 if (ret)
1058 return ret;
1059 ret = btrfs_run_delayed_items(trans, fs_info);
1060 if (ret)
1061 return ret;
1062 *search_done = 1;
1063 goto again;
1064 }
1065 kfree(victim_name);
1066
1067 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1068 }
1069
1070 /*
1071 * NOTE: we have searched root tree and checked the
1072 * corresponding ref, it does not need to check again.
1073 */
1074 *search_done = 1;
1075 }
1076 btrfs_release_path(path);
1077
1078 /* Same search but for extended refs */
1079 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1080 inode_objectid, parent_objectid, 0,
1081 0);
1082 if (!IS_ERR_OR_NULL(extref)) {
1083 u32 item_size;
1084 u32 cur_offset = 0;
1085 unsigned long base;
1086 struct inode *victim_parent;
1087
1088 leaf = path->nodes[0];
1089
1090 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1091 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1092
1093 while (cur_offset < item_size) {
1094 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1095
1096 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1097
1098 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1099 goto next;
1100
1101 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1102 if (!victim_name)
1103 return -ENOMEM;
1104 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1105 victim_name_len);
1106
1107 search_key.objectid = inode_objectid;
1108 search_key.type = BTRFS_INODE_EXTREF_KEY;
1109 search_key.offset = btrfs_extref_hash(parent_objectid,
1110 victim_name,
1111 victim_name_len);
1112 ret = 0;
1113 if (!backref_in_log(log_root, &search_key,
1114 parent_objectid, victim_name,
1115 victim_name_len)) {
1116 ret = -ENOENT;
1117 victim_parent = read_one_inode(root,
1118 parent_objectid);
1119 if (victim_parent) {
1120 inc_nlink(inode);
1121 btrfs_release_path(path);
1122
1123 ret = btrfs_unlink_inode(trans, root,
1124 victim_parent,
1125 inode,
1126 victim_name,
1127 victim_name_len);
1128 if (!ret)
1129 ret = btrfs_run_delayed_items(
1130 trans,
1131 fs_info);
1132 }
1133 iput(victim_parent);
1134 kfree(victim_name);
1135 if (ret)
1136 return ret;
1137 *search_done = 1;
1138 goto again;
1139 }
1140 kfree(victim_name);
1141 if (ret)
1142 return ret;
1143next:
1144 cur_offset += victim_name_len + sizeof(*extref);
1145 }
1146 *search_done = 1;
1147 }
1148 btrfs_release_path(path);
1149
1150 /* look for a conflicting sequence number */
1151 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1152 ref_index, name, namelen, 0);
1153 if (di && !IS_ERR(di)) {
1154 ret = drop_one_dir_item(trans, root, path, dir, di);
1155 if (ret)
1156 return ret;
1157 }
1158 btrfs_release_path(path);
1159
1160 /* look for a conflicing name */
1161 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1162 name, namelen, 0);
1163 if (di && !IS_ERR(di)) {
1164 ret = drop_one_dir_item(trans, root, path, dir, di);
1165 if (ret)
1166 return ret;
1167 }
1168 btrfs_release_path(path);
1169
1170 return 0;
1171}
1172
1173static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1174 u32 *namelen, char **name, u64 *index,
1175 u64 *parent_objectid)
1176{
1177 struct btrfs_inode_extref *extref;
1178
1179 extref = (struct btrfs_inode_extref *)ref_ptr;
1180
1181 *namelen = btrfs_inode_extref_name_len(eb, extref);
1182 *name = kmalloc(*namelen, GFP_NOFS);
1183 if (*name == NULL)
1184 return -ENOMEM;
1185
1186 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1187 *namelen);
1188
1189 *index = btrfs_inode_extref_index(eb, extref);
1190 if (parent_objectid)
1191 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1192
1193 return 0;
1194}
1195
1196static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1197 u32 *namelen, char **name, u64 *index)
1198{
1199 struct btrfs_inode_ref *ref;
1200
1201 ref = (struct btrfs_inode_ref *)ref_ptr;
1202
1203 *namelen = btrfs_inode_ref_name_len(eb, ref);
1204 *name = kmalloc(*namelen, GFP_NOFS);
1205 if (*name == NULL)
1206 return -ENOMEM;
1207
1208 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1209
1210 *index = btrfs_inode_ref_index(eb, ref);
1211
1212 return 0;
1213}
1214
1215/*
1216 * replay one inode back reference item found in the log tree.
1217 * eb, slot and key refer to the buffer and key found in the log tree.
1218 * root is the destination we are replaying into, and path is for temp
1219 * use by this function. (it should be released on return).
1220 */
1221static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1222 struct btrfs_root *root,
1223 struct btrfs_root *log,
1224 struct btrfs_path *path,
1225 struct extent_buffer *eb, int slot,
1226 struct btrfs_key *key)
1227{
1228 struct inode *dir = NULL;
1229 struct inode *inode = NULL;
1230 unsigned long ref_ptr;
1231 unsigned long ref_end;
1232 char *name = NULL;
1233 int namelen;
1234 int ret;
1235 int search_done = 0;
1236 int log_ref_ver = 0;
1237 u64 parent_objectid;
1238 u64 inode_objectid;
1239 u64 ref_index = 0;
1240 int ref_struct_size;
1241
1242 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1243 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1244
1245 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1246 struct btrfs_inode_extref *r;
1247
1248 ref_struct_size = sizeof(struct btrfs_inode_extref);
1249 log_ref_ver = 1;
1250 r = (struct btrfs_inode_extref *)ref_ptr;
1251 parent_objectid = btrfs_inode_extref_parent(eb, r);
1252 } else {
1253 ref_struct_size = sizeof(struct btrfs_inode_ref);
1254 parent_objectid = key->offset;
1255 }
1256 inode_objectid = key->objectid;
1257
1258 /*
1259 * it is possible that we didn't log all the parent directories
1260 * for a given inode. If we don't find the dir, just don't
1261 * copy the back ref in. The link count fixup code will take
1262 * care of the rest
1263 */
1264 dir = read_one_inode(root, parent_objectid);
1265 if (!dir) {
1266 ret = -ENOENT;
1267 goto out;
1268 }
1269
1270 inode = read_one_inode(root, inode_objectid);
1271 if (!inode) {
1272 ret = -EIO;
1273 goto out;
1274 }
1275
1276 while (ref_ptr < ref_end) {
1277 if (log_ref_ver) {
1278 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1279 &ref_index, &parent_objectid);
1280 /*
1281 * parent object can change from one array
1282 * item to another.
1283 */
1284 if (!dir)
1285 dir = read_one_inode(root, parent_objectid);
1286 if (!dir) {
1287 ret = -ENOENT;
1288 goto out;
1289 }
1290 } else {
1291 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1292 &ref_index);
1293 }
1294 if (ret)
1295 goto out;
1296
1297 /* if we already have a perfect match, we're done */
1298 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1299 ref_index, name, namelen)) {
1300 /*
1301 * look for a conflicting back reference in the
1302 * metadata. if we find one we have to unlink that name
1303 * of the file before we add our new link. Later on, we
1304 * overwrite any existing back reference, and we don't
1305 * want to create dangling pointers in the directory.
1306 */
1307
1308 if (!search_done) {
1309 ret = __add_inode_ref(trans, root, path, log,
1310 dir, inode, eb,
1311 inode_objectid,
1312 parent_objectid,
1313 ref_index, name, namelen,
1314 &search_done);
1315 if (ret) {
1316 if (ret == 1)
1317 ret = 0;
1318 goto out;
1319 }
1320 }
1321
1322 /* insert our name */
1323 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1324 0, ref_index);
1325 if (ret)
1326 goto out;
1327
1328 btrfs_update_inode(trans, root, inode);
1329 }
1330
1331 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1332 kfree(name);
1333 name = NULL;
1334 if (log_ref_ver) {
1335 iput(dir);
1336 dir = NULL;
1337 }
1338 }
1339
1340 /* finally write the back reference in the inode */
1341 ret = overwrite_item(trans, root, path, eb, slot, key);
1342out:
1343 btrfs_release_path(path);
1344 kfree(name);
1345 iput(dir);
1346 iput(inode);
1347 return ret;
1348}
1349
1350static int insert_orphan_item(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root, u64 ino)
1352{
1353 int ret;
1354
1355 ret = btrfs_insert_orphan_item(trans, root, ino);
1356 if (ret == -EEXIST)
1357 ret = 0;
1358
1359 return ret;
1360}
1361
1362static int count_inode_extrefs(struct btrfs_root *root,
1363 struct inode *inode, struct btrfs_path *path)
1364{
1365 int ret = 0;
1366 int name_len;
1367 unsigned int nlink = 0;
1368 u32 item_size;
1369 u32 cur_offset = 0;
1370 u64 inode_objectid = btrfs_ino(inode);
1371 u64 offset = 0;
1372 unsigned long ptr;
1373 struct btrfs_inode_extref *extref;
1374 struct extent_buffer *leaf;
1375
1376 while (1) {
1377 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1378 &extref, &offset);
1379 if (ret)
1380 break;
1381
1382 leaf = path->nodes[0];
1383 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1384 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1385 cur_offset = 0;
1386
1387 while (cur_offset < item_size) {
1388 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1389 name_len = btrfs_inode_extref_name_len(leaf, extref);
1390
1391 nlink++;
1392
1393 cur_offset += name_len + sizeof(*extref);
1394 }
1395
1396 offset++;
1397 btrfs_release_path(path);
1398 }
1399 btrfs_release_path(path);
1400
1401 if (ret < 0 && ret != -ENOENT)
1402 return ret;
1403 return nlink;
1404}
1405
1406static int count_inode_refs(struct btrfs_root *root,
1407 struct inode *inode, struct btrfs_path *path)
1408{
1409 int ret;
1410 struct btrfs_key key;
1411 unsigned int nlink = 0;
1412 unsigned long ptr;
1413 unsigned long ptr_end;
1414 int name_len;
1415 u64 ino = btrfs_ino(inode);
1416
1417 key.objectid = ino;
1418 key.type = BTRFS_INODE_REF_KEY;
1419 key.offset = (u64)-1;
1420
1421 while (1) {
1422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423 if (ret < 0)
1424 break;
1425 if (ret > 0) {
1426 if (path->slots[0] == 0)
1427 break;
1428 path->slots[0]--;
1429 }
1430process_slot:
1431 btrfs_item_key_to_cpu(path->nodes[0], &key,
1432 path->slots[0]);
1433 if (key.objectid != ino ||
1434 key.type != BTRFS_INODE_REF_KEY)
1435 break;
1436 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1437 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1438 path->slots[0]);
1439 while (ptr < ptr_end) {
1440 struct btrfs_inode_ref *ref;
1441
1442 ref = (struct btrfs_inode_ref *)ptr;
1443 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1444 ref);
1445 ptr = (unsigned long)(ref + 1) + name_len;
1446 nlink++;
1447 }
1448
1449 if (key.offset == 0)
1450 break;
1451 if (path->slots[0] > 0) {
1452 path->slots[0]--;
1453 goto process_slot;
1454 }
1455 key.offset--;
1456 btrfs_release_path(path);
1457 }
1458 btrfs_release_path(path);
1459
1460 return nlink;
1461}
1462
1463/*
1464 * There are a few corners where the link count of the file can't
1465 * be properly maintained during replay. So, instead of adding
1466 * lots of complexity to the log code, we just scan the backrefs
1467 * for any file that has been through replay.
1468 *
1469 * The scan will update the link count on the inode to reflect the
1470 * number of back refs found. If it goes down to zero, the iput
1471 * will free the inode.
1472 */
1473static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1474 struct btrfs_root *root,
1475 struct inode *inode)
1476{
1477 struct btrfs_path *path;
1478 int ret;
1479 u64 nlink = 0;
1480 u64 ino = btrfs_ino(inode);
1481
1482 path = btrfs_alloc_path();
1483 if (!path)
1484 return -ENOMEM;
1485
1486 ret = count_inode_refs(root, inode, path);
1487 if (ret < 0)
1488 goto out;
1489
1490 nlink = ret;
1491
1492 ret = count_inode_extrefs(root, inode, path);
1493 if (ret < 0)
1494 goto out;
1495
1496 nlink += ret;
1497
1498 ret = 0;
1499
1500 if (nlink != inode->i_nlink) {
1501 set_nlink(inode, nlink);
1502 btrfs_update_inode(trans, root, inode);
1503 }
1504 BTRFS_I(inode)->index_cnt = (u64)-1;
1505
1506 if (inode->i_nlink == 0) {
1507 if (S_ISDIR(inode->i_mode)) {
1508 ret = replay_dir_deletes(trans, root, NULL, path,
1509 ino, 1);
1510 if (ret)
1511 goto out;
1512 }
1513 ret = insert_orphan_item(trans, root, ino);
1514 }
1515
1516out:
1517 btrfs_free_path(path);
1518 return ret;
1519}
1520
1521static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1522 struct btrfs_root *root,
1523 struct btrfs_path *path)
1524{
1525 int ret;
1526 struct btrfs_key key;
1527 struct inode *inode;
1528
1529 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1530 key.type = BTRFS_ORPHAN_ITEM_KEY;
1531 key.offset = (u64)-1;
1532 while (1) {
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret < 0)
1535 break;
1536
1537 if (ret == 1) {
1538 if (path->slots[0] == 0)
1539 break;
1540 path->slots[0]--;
1541 }
1542
1543 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1544 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1545 key.type != BTRFS_ORPHAN_ITEM_KEY)
1546 break;
1547
1548 ret = btrfs_del_item(trans, root, path);
1549 if (ret)
1550 goto out;
1551
1552 btrfs_release_path(path);
1553 inode = read_one_inode(root, key.offset);
1554 if (!inode)
1555 return -EIO;
1556
1557 ret = fixup_inode_link_count(trans, root, inode);
1558 iput(inode);
1559 if (ret)
1560 goto out;
1561
1562 /*
1563 * fixup on a directory may create new entries,
1564 * make sure we always look for the highset possible
1565 * offset
1566 */
1567 key.offset = (u64)-1;
1568 }
1569 ret = 0;
1570out:
1571 btrfs_release_path(path);
1572 return ret;
1573}
1574
1575
1576/*
1577 * record a given inode in the fixup dir so we can check its link
1578 * count when replay is done. The link count is incremented here
1579 * so the inode won't go away until we check it
1580 */
1581static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1582 struct btrfs_root *root,
1583 struct btrfs_path *path,
1584 u64 objectid)
1585{
1586 struct btrfs_key key;
1587 int ret = 0;
1588 struct inode *inode;
1589
1590 inode = read_one_inode(root, objectid);
1591 if (!inode)
1592 return -EIO;
1593
1594 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1595 key.type = BTRFS_ORPHAN_ITEM_KEY;
1596 key.offset = objectid;
1597
1598 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1599
1600 btrfs_release_path(path);
1601 if (ret == 0) {
1602 if (!inode->i_nlink)
1603 set_nlink(inode, 1);
1604 else
1605 inc_nlink(inode);
1606 ret = btrfs_update_inode(trans, root, inode);
1607 } else if (ret == -EEXIST) {
1608 ret = 0;
1609 } else {
1610 BUG(); /* Logic Error */
1611 }
1612 iput(inode);
1613
1614 return ret;
1615}
1616
1617/*
1618 * when replaying the log for a directory, we only insert names
1619 * for inodes that actually exist. This means an fsync on a directory
1620 * does not implicitly fsync all the new files in it
1621 */
1622static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1623 struct btrfs_root *root,
1624 u64 dirid, u64 index,
1625 char *name, int name_len,
1626 struct btrfs_key *location)
1627{
1628 struct inode *inode;
1629 struct inode *dir;
1630 int ret;
1631
1632 inode = read_one_inode(root, location->objectid);
1633 if (!inode)
1634 return -ENOENT;
1635
1636 dir = read_one_inode(root, dirid);
1637 if (!dir) {
1638 iput(inode);
1639 return -EIO;
1640 }
1641
1642 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1643
1644 /* FIXME, put inode into FIXUP list */
1645
1646 iput(inode);
1647 iput(dir);
1648 return ret;
1649}
1650
1651/*
1652 * Return true if an inode reference exists in the log for the given name,
1653 * inode and parent inode.
1654 */
1655static bool name_in_log_ref(struct btrfs_root *log_root,
1656 const char *name, const int name_len,
1657 const u64 dirid, const u64 ino)
1658{
1659 struct btrfs_key search_key;
1660
1661 search_key.objectid = ino;
1662 search_key.type = BTRFS_INODE_REF_KEY;
1663 search_key.offset = dirid;
1664 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1665 return true;
1666
1667 search_key.type = BTRFS_INODE_EXTREF_KEY;
1668 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1669 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1670 return true;
1671
1672 return false;
1673}
1674
1675/*
1676 * take a single entry in a log directory item and replay it into
1677 * the subvolume.
1678 *
1679 * if a conflicting item exists in the subdirectory already,
1680 * the inode it points to is unlinked and put into the link count
1681 * fix up tree.
1682 *
1683 * If a name from the log points to a file or directory that does
1684 * not exist in the FS, it is skipped. fsyncs on directories
1685 * do not force down inodes inside that directory, just changes to the
1686 * names or unlinks in a directory.
1687 *
1688 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1689 * non-existing inode) and 1 if the name was replayed.
1690 */
1691static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 struct btrfs_path *path,
1694 struct extent_buffer *eb,
1695 struct btrfs_dir_item *di,
1696 struct btrfs_key *key)
1697{
1698 char *name;
1699 int name_len;
1700 struct btrfs_dir_item *dst_di;
1701 struct btrfs_key found_key;
1702 struct btrfs_key log_key;
1703 struct inode *dir;
1704 u8 log_type;
1705 int exists;
1706 int ret = 0;
1707 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1708 bool name_added = false;
1709
1710 dir = read_one_inode(root, key->objectid);
1711 if (!dir)
1712 return -EIO;
1713
1714 name_len = btrfs_dir_name_len(eb, di);
1715 name = kmalloc(name_len, GFP_NOFS);
1716 if (!name) {
1717 ret = -ENOMEM;
1718 goto out;
1719 }
1720
1721 log_type = btrfs_dir_type(eb, di);
1722 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1723 name_len);
1724
1725 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1726 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1727 if (exists == 0)
1728 exists = 1;
1729 else
1730 exists = 0;
1731 btrfs_release_path(path);
1732
1733 if (key->type == BTRFS_DIR_ITEM_KEY) {
1734 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1735 name, name_len, 1);
1736 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1737 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1738 key->objectid,
1739 key->offset, name,
1740 name_len, 1);
1741 } else {
1742 /* Corruption */
1743 ret = -EINVAL;
1744 goto out;
1745 }
1746 if (IS_ERR_OR_NULL(dst_di)) {
1747 /* we need a sequence number to insert, so we only
1748 * do inserts for the BTRFS_DIR_INDEX_KEY types
1749 */
1750 if (key->type != BTRFS_DIR_INDEX_KEY)
1751 goto out;
1752 goto insert;
1753 }
1754
1755 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1756 /* the existing item matches the logged item */
1757 if (found_key.objectid == log_key.objectid &&
1758 found_key.type == log_key.type &&
1759 found_key.offset == log_key.offset &&
1760 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1761 update_size = false;
1762 goto out;
1763 }
1764
1765 /*
1766 * don't drop the conflicting directory entry if the inode
1767 * for the new entry doesn't exist
1768 */
1769 if (!exists)
1770 goto out;
1771
1772 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1773 if (ret)
1774 goto out;
1775
1776 if (key->type == BTRFS_DIR_INDEX_KEY)
1777 goto insert;
1778out:
1779 btrfs_release_path(path);
1780 if (!ret && update_size) {
1781 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1782 ret = btrfs_update_inode(trans, root, dir);
1783 }
1784 kfree(name);
1785 iput(dir);
1786 if (!ret && name_added)
1787 ret = 1;
1788 return ret;
1789
1790insert:
1791 if (name_in_log_ref(root->log_root, name, name_len,
1792 key->objectid, log_key.objectid)) {
1793 /* The dentry will be added later. */
1794 ret = 0;
1795 update_size = false;
1796 goto out;
1797 }
1798 btrfs_release_path(path);
1799 ret = insert_one_name(trans, root, key->objectid, key->offset,
1800 name, name_len, &log_key);
1801 if (ret && ret != -ENOENT && ret != -EEXIST)
1802 goto out;
1803 if (!ret)
1804 name_added = true;
1805 update_size = false;
1806 ret = 0;
1807 goto out;
1808}
1809
1810/*
1811 * find all the names in a directory item and reconcile them into
1812 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1813 * one name in a directory item, but the same code gets used for
1814 * both directory index types
1815 */
1816static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 struct extent_buffer *eb, int slot,
1820 struct btrfs_key *key)
1821{
1822 struct btrfs_fs_info *fs_info = root->fs_info;
1823 int ret = 0;
1824 u32 item_size = btrfs_item_size_nr(eb, slot);
1825 struct btrfs_dir_item *di;
1826 int name_len;
1827 unsigned long ptr;
1828 unsigned long ptr_end;
1829 struct btrfs_path *fixup_path = NULL;
1830
1831 ptr = btrfs_item_ptr_offset(eb, slot);
1832 ptr_end = ptr + item_size;
1833 while (ptr < ptr_end) {
1834 di = (struct btrfs_dir_item *)ptr;
1835 if (verify_dir_item(fs_info, eb, di))
1836 return -EIO;
1837 name_len = btrfs_dir_name_len(eb, di);
1838 ret = replay_one_name(trans, root, path, eb, di, key);
1839 if (ret < 0)
1840 break;
1841 ptr = (unsigned long)(di + 1);
1842 ptr += name_len;
1843
1844 /*
1845 * If this entry refers to a non-directory (directories can not
1846 * have a link count > 1) and it was added in the transaction
1847 * that was not committed, make sure we fixup the link count of
1848 * the inode it the entry points to. Otherwise something like
1849 * the following would result in a directory pointing to an
1850 * inode with a wrong link that does not account for this dir
1851 * entry:
1852 *
1853 * mkdir testdir
1854 * touch testdir/foo
1855 * touch testdir/bar
1856 * sync
1857 *
1858 * ln testdir/bar testdir/bar_link
1859 * ln testdir/foo testdir/foo_link
1860 * xfs_io -c "fsync" testdir/bar
1861 *
1862 * <power failure>
1863 *
1864 * mount fs, log replay happens
1865 *
1866 * File foo would remain with a link count of 1 when it has two
1867 * entries pointing to it in the directory testdir. This would
1868 * make it impossible to ever delete the parent directory has
1869 * it would result in stale dentries that can never be deleted.
1870 */
1871 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1872 struct btrfs_key di_key;
1873
1874 if (!fixup_path) {
1875 fixup_path = btrfs_alloc_path();
1876 if (!fixup_path) {
1877 ret = -ENOMEM;
1878 break;
1879 }
1880 }
1881
1882 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1883 ret = link_to_fixup_dir(trans, root, fixup_path,
1884 di_key.objectid);
1885 if (ret)
1886 break;
1887 }
1888 ret = 0;
1889 }
1890 btrfs_free_path(fixup_path);
1891 return ret;
1892}
1893
1894/*
1895 * directory replay has two parts. There are the standard directory
1896 * items in the log copied from the subvolume, and range items
1897 * created in the log while the subvolume was logged.
1898 *
1899 * The range items tell us which parts of the key space the log
1900 * is authoritative for. During replay, if a key in the subvolume
1901 * directory is in a logged range item, but not actually in the log
1902 * that means it was deleted from the directory before the fsync
1903 * and should be removed.
1904 */
1905static noinline int find_dir_range(struct btrfs_root *root,
1906 struct btrfs_path *path,
1907 u64 dirid, int key_type,
1908 u64 *start_ret, u64 *end_ret)
1909{
1910 struct btrfs_key key;
1911 u64 found_end;
1912 struct btrfs_dir_log_item *item;
1913 int ret;
1914 int nritems;
1915
1916 if (*start_ret == (u64)-1)
1917 return 1;
1918
1919 key.objectid = dirid;
1920 key.type = key_type;
1921 key.offset = *start_ret;
1922
1923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924 if (ret < 0)
1925 goto out;
1926 if (ret > 0) {
1927 if (path->slots[0] == 0)
1928 goto out;
1929 path->slots[0]--;
1930 }
1931 if (ret != 0)
1932 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933
1934 if (key.type != key_type || key.objectid != dirid) {
1935 ret = 1;
1936 goto next;
1937 }
1938 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939 struct btrfs_dir_log_item);
1940 found_end = btrfs_dir_log_end(path->nodes[0], item);
1941
1942 if (*start_ret >= key.offset && *start_ret <= found_end) {
1943 ret = 0;
1944 *start_ret = key.offset;
1945 *end_ret = found_end;
1946 goto out;
1947 }
1948 ret = 1;
1949next:
1950 /* check the next slot in the tree to see if it is a valid item */
1951 nritems = btrfs_header_nritems(path->nodes[0]);
1952 path->slots[0]++;
1953 if (path->slots[0] >= nritems) {
1954 ret = btrfs_next_leaf(root, path);
1955 if (ret)
1956 goto out;
1957 }
1958
1959 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1960
1961 if (key.type != key_type || key.objectid != dirid) {
1962 ret = 1;
1963 goto out;
1964 }
1965 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1966 struct btrfs_dir_log_item);
1967 found_end = btrfs_dir_log_end(path->nodes[0], item);
1968 *start_ret = key.offset;
1969 *end_ret = found_end;
1970 ret = 0;
1971out:
1972 btrfs_release_path(path);
1973 return ret;
1974}
1975
1976/*
1977 * this looks for a given directory item in the log. If the directory
1978 * item is not in the log, the item is removed and the inode it points
1979 * to is unlinked
1980 */
1981static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 struct btrfs_root *log,
1984 struct btrfs_path *path,
1985 struct btrfs_path *log_path,
1986 struct inode *dir,
1987 struct btrfs_key *dir_key)
1988{
1989 struct btrfs_fs_info *fs_info = root->fs_info;
1990 int ret;
1991 struct extent_buffer *eb;
1992 int slot;
1993 u32 item_size;
1994 struct btrfs_dir_item *di;
1995 struct btrfs_dir_item *log_di;
1996 int name_len;
1997 unsigned long ptr;
1998 unsigned long ptr_end;
1999 char *name;
2000 struct inode *inode;
2001 struct btrfs_key location;
2002
2003again:
2004 eb = path->nodes[0];
2005 slot = path->slots[0];
2006 item_size = btrfs_item_size_nr(eb, slot);
2007 ptr = btrfs_item_ptr_offset(eb, slot);
2008 ptr_end = ptr + item_size;
2009 while (ptr < ptr_end) {
2010 di = (struct btrfs_dir_item *)ptr;
2011 if (verify_dir_item(fs_info, eb, di)) {
2012 ret = -EIO;
2013 goto out;
2014 }
2015
2016 name_len = btrfs_dir_name_len(eb, di);
2017 name = kmalloc(name_len, GFP_NOFS);
2018 if (!name) {
2019 ret = -ENOMEM;
2020 goto out;
2021 }
2022 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023 name_len);
2024 log_di = NULL;
2025 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2026 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027 dir_key->objectid,
2028 name, name_len, 0);
2029 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2030 log_di = btrfs_lookup_dir_index_item(trans, log,
2031 log_path,
2032 dir_key->objectid,
2033 dir_key->offset,
2034 name, name_len, 0);
2035 }
2036 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2037 btrfs_dir_item_key_to_cpu(eb, di, &location);
2038 btrfs_release_path(path);
2039 btrfs_release_path(log_path);
2040 inode = read_one_inode(root, location.objectid);
2041 if (!inode) {
2042 kfree(name);
2043 return -EIO;
2044 }
2045
2046 ret = link_to_fixup_dir(trans, root,
2047 path, location.objectid);
2048 if (ret) {
2049 kfree(name);
2050 iput(inode);
2051 goto out;
2052 }
2053
2054 inc_nlink(inode);
2055 ret = btrfs_unlink_inode(trans, root, dir, inode,
2056 name, name_len);
2057 if (!ret)
2058 ret = btrfs_run_delayed_items(trans, fs_info);
2059 kfree(name);
2060 iput(inode);
2061 if (ret)
2062 goto out;
2063
2064 /* there might still be more names under this key
2065 * check and repeat if required
2066 */
2067 ret = btrfs_search_slot(NULL, root, dir_key, path,
2068 0, 0);
2069 if (ret == 0)
2070 goto again;
2071 ret = 0;
2072 goto out;
2073 } else if (IS_ERR(log_di)) {
2074 kfree(name);
2075 return PTR_ERR(log_di);
2076 }
2077 btrfs_release_path(log_path);
2078 kfree(name);
2079
2080 ptr = (unsigned long)(di + 1);
2081 ptr += name_len;
2082 }
2083 ret = 0;
2084out:
2085 btrfs_release_path(path);
2086 btrfs_release_path(log_path);
2087 return ret;
2088}
2089
2090static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 const u64 ino)
2095{
2096 struct btrfs_key search_key;
2097 struct btrfs_path *log_path;
2098 int i;
2099 int nritems;
2100 int ret;
2101
2102 log_path = btrfs_alloc_path();
2103 if (!log_path)
2104 return -ENOMEM;
2105
2106 search_key.objectid = ino;
2107 search_key.type = BTRFS_XATTR_ITEM_KEY;
2108 search_key.offset = 0;
2109again:
2110 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111 if (ret < 0)
2112 goto out;
2113process_leaf:
2114 nritems = btrfs_header_nritems(path->nodes[0]);
2115 for (i = path->slots[0]; i < nritems; i++) {
2116 struct btrfs_key key;
2117 struct btrfs_dir_item *di;
2118 struct btrfs_dir_item *log_di;
2119 u32 total_size;
2120 u32 cur;
2121
2122 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124 ret = 0;
2125 goto out;
2126 }
2127
2128 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129 total_size = btrfs_item_size_nr(path->nodes[0], i);
2130 cur = 0;
2131 while (cur < total_size) {
2132 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134 u32 this_len = sizeof(*di) + name_len + data_len;
2135 char *name;
2136
2137 name = kmalloc(name_len, GFP_NOFS);
2138 if (!name) {
2139 ret = -ENOMEM;
2140 goto out;
2141 }
2142 read_extent_buffer(path->nodes[0], name,
2143 (unsigned long)(di + 1), name_len);
2144
2145 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146 name, name_len, 0);
2147 btrfs_release_path(log_path);
2148 if (!log_di) {
2149 /* Doesn't exist in log tree, so delete it. */
2150 btrfs_release_path(path);
2151 di = btrfs_lookup_xattr(trans, root, path, ino,
2152 name, name_len, -1);
2153 kfree(name);
2154 if (IS_ERR(di)) {
2155 ret = PTR_ERR(di);
2156 goto out;
2157 }
2158 ASSERT(di);
2159 ret = btrfs_delete_one_dir_name(trans, root,
2160 path, di);
2161 if (ret)
2162 goto out;
2163 btrfs_release_path(path);
2164 search_key = key;
2165 goto again;
2166 }
2167 kfree(name);
2168 if (IS_ERR(log_di)) {
2169 ret = PTR_ERR(log_di);
2170 goto out;
2171 }
2172 cur += this_len;
2173 di = (struct btrfs_dir_item *)((char *)di + this_len);
2174 }
2175 }
2176 ret = btrfs_next_leaf(root, path);
2177 if (ret > 0)
2178 ret = 0;
2179 else if (ret == 0)
2180 goto process_leaf;
2181out:
2182 btrfs_free_path(log_path);
2183 btrfs_release_path(path);
2184 return ret;
2185}
2186
2187
2188/*
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes. It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2194 *
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2197 */
2198static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct btrfs_root *log,
2201 struct btrfs_path *path,
2202 u64 dirid, int del_all)
2203{
2204 u64 range_start;
2205 u64 range_end;
2206 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207 int ret = 0;
2208 struct btrfs_key dir_key;
2209 struct btrfs_key found_key;
2210 struct btrfs_path *log_path;
2211 struct inode *dir;
2212
2213 dir_key.objectid = dirid;
2214 dir_key.type = BTRFS_DIR_ITEM_KEY;
2215 log_path = btrfs_alloc_path();
2216 if (!log_path)
2217 return -ENOMEM;
2218
2219 dir = read_one_inode(root, dirid);
2220 /* it isn't an error if the inode isn't there, that can happen
2221 * because we replay the deletes before we copy in the inode item
2222 * from the log
2223 */
2224 if (!dir) {
2225 btrfs_free_path(log_path);
2226 return 0;
2227 }
2228again:
2229 range_start = 0;
2230 range_end = 0;
2231 while (1) {
2232 if (del_all)
2233 range_end = (u64)-1;
2234 else {
2235 ret = find_dir_range(log, path, dirid, key_type,
2236 &range_start, &range_end);
2237 if (ret != 0)
2238 break;
2239 }
2240
2241 dir_key.offset = range_start;
2242 while (1) {
2243 int nritems;
2244 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245 0, 0);
2246 if (ret < 0)
2247 goto out;
2248
2249 nritems = btrfs_header_nritems(path->nodes[0]);
2250 if (path->slots[0] >= nritems) {
2251 ret = btrfs_next_leaf(root, path);
2252 if (ret)
2253 break;
2254 }
2255 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256 path->slots[0]);
2257 if (found_key.objectid != dirid ||
2258 found_key.type != dir_key.type)
2259 goto next_type;
2260
2261 if (found_key.offset > range_end)
2262 break;
2263
2264 ret = check_item_in_log(trans, root, log, path,
2265 log_path, dir,
2266 &found_key);
2267 if (ret)
2268 goto out;
2269 if (found_key.offset == (u64)-1)
2270 break;
2271 dir_key.offset = found_key.offset + 1;
2272 }
2273 btrfs_release_path(path);
2274 if (range_end == (u64)-1)
2275 break;
2276 range_start = range_end + 1;
2277 }
2278
2279next_type:
2280 ret = 0;
2281 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283 dir_key.type = BTRFS_DIR_INDEX_KEY;
2284 btrfs_release_path(path);
2285 goto again;
2286 }
2287out:
2288 btrfs_release_path(path);
2289 btrfs_free_path(log_path);
2290 iput(dir);
2291 return ret;
2292}
2293
2294/*
2295 * the process_func used to replay items from the log tree. This
2296 * gets called in two different stages. The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2298 *
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume. The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2304 */
2305static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306 struct walk_control *wc, u64 gen)
2307{
2308 int nritems;
2309 struct btrfs_path *path;
2310 struct btrfs_root *root = wc->replay_dest;
2311 struct btrfs_key key;
2312 int level;
2313 int i;
2314 int ret;
2315
2316 ret = btrfs_read_buffer(eb, gen);
2317 if (ret)
2318 return ret;
2319
2320 level = btrfs_header_level(eb);
2321
2322 if (level != 0)
2323 return 0;
2324
2325 path = btrfs_alloc_path();
2326 if (!path)
2327 return -ENOMEM;
2328
2329 nritems = btrfs_header_nritems(eb);
2330 for (i = 0; i < nritems; i++) {
2331 btrfs_item_key_to_cpu(eb, &key, i);
2332
2333 /* inode keys are done during the first stage */
2334 if (key.type == BTRFS_INODE_ITEM_KEY &&
2335 wc->stage == LOG_WALK_REPLAY_INODES) {
2336 struct btrfs_inode_item *inode_item;
2337 u32 mode;
2338
2339 inode_item = btrfs_item_ptr(eb, i,
2340 struct btrfs_inode_item);
2341 ret = replay_xattr_deletes(wc->trans, root, log,
2342 path, key.objectid);
2343 if (ret)
2344 break;
2345 mode = btrfs_inode_mode(eb, inode_item);
2346 if (S_ISDIR(mode)) {
2347 ret = replay_dir_deletes(wc->trans,
2348 root, log, path, key.objectid, 0);
2349 if (ret)
2350 break;
2351 }
2352 ret = overwrite_item(wc->trans, root, path,
2353 eb, i, &key);
2354 if (ret)
2355 break;
2356
2357 /* for regular files, make sure corresponding
2358 * orphan item exist. extents past the new EOF
2359 * will be truncated later by orphan cleanup.
2360 */
2361 if (S_ISREG(mode)) {
2362 ret = insert_orphan_item(wc->trans, root,
2363 key.objectid);
2364 if (ret)
2365 break;
2366 }
2367
2368 ret = link_to_fixup_dir(wc->trans, root,
2369 path, key.objectid);
2370 if (ret)
2371 break;
2372 }
2373
2374 if (key.type == BTRFS_DIR_INDEX_KEY &&
2375 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376 ret = replay_one_dir_item(wc->trans, root, path,
2377 eb, i, &key);
2378 if (ret)
2379 break;
2380 }
2381
2382 if (wc->stage < LOG_WALK_REPLAY_ALL)
2383 continue;
2384
2385 /* these keys are simply copied */
2386 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387 ret = overwrite_item(wc->trans, root, path,
2388 eb, i, &key);
2389 if (ret)
2390 break;
2391 } else if (key.type == BTRFS_INODE_REF_KEY ||
2392 key.type == BTRFS_INODE_EXTREF_KEY) {
2393 ret = add_inode_ref(wc->trans, root, log, path,
2394 eb, i, &key);
2395 if (ret && ret != -ENOENT)
2396 break;
2397 ret = 0;
2398 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399 ret = replay_one_extent(wc->trans, root, path,
2400 eb, i, &key);
2401 if (ret)
2402 break;
2403 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2404 ret = replay_one_dir_item(wc->trans, root, path,
2405 eb, i, &key);
2406 if (ret)
2407 break;
2408 }
2409 }
2410 btrfs_free_path(path);
2411 return ret;
2412}
2413
2414static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2415 struct btrfs_root *root,
2416 struct btrfs_path *path, int *level,
2417 struct walk_control *wc)
2418{
2419 struct btrfs_fs_info *fs_info = root->fs_info;
2420 u64 root_owner;
2421 u64 bytenr;
2422 u64 ptr_gen;
2423 struct extent_buffer *next;
2424 struct extent_buffer *cur;
2425 struct extent_buffer *parent;
2426 u32 blocksize;
2427 int ret = 0;
2428
2429 WARN_ON(*level < 0);
2430 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2431
2432 while (*level > 0) {
2433 WARN_ON(*level < 0);
2434 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435 cur = path->nodes[*level];
2436
2437 WARN_ON(btrfs_header_level(cur) != *level);
2438
2439 if (path->slots[*level] >=
2440 btrfs_header_nritems(cur))
2441 break;
2442
2443 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2445 blocksize = fs_info->nodesize;
2446
2447 parent = path->nodes[*level];
2448 root_owner = btrfs_header_owner(parent);
2449
2450 next = btrfs_find_create_tree_block(fs_info, bytenr);
2451 if (IS_ERR(next))
2452 return PTR_ERR(next);
2453
2454 if (*level == 1) {
2455 ret = wc->process_func(root, next, wc, ptr_gen);
2456 if (ret) {
2457 free_extent_buffer(next);
2458 return ret;
2459 }
2460
2461 path->slots[*level]++;
2462 if (wc->free) {
2463 ret = btrfs_read_buffer(next, ptr_gen);
2464 if (ret) {
2465 free_extent_buffer(next);
2466 return ret;
2467 }
2468
2469 if (trans) {
2470 btrfs_tree_lock(next);
2471 btrfs_set_lock_blocking(next);
2472 clean_tree_block(trans, fs_info, next);
2473 btrfs_wait_tree_block_writeback(next);
2474 btrfs_tree_unlock(next);
2475 }
2476
2477 WARN_ON(root_owner !=
2478 BTRFS_TREE_LOG_OBJECTID);
2479 ret = btrfs_free_and_pin_reserved_extent(
2480 fs_info, bytenr,
2481 blocksize);
2482 if (ret) {
2483 free_extent_buffer(next);
2484 return ret;
2485 }
2486 }
2487 free_extent_buffer(next);
2488 continue;
2489 }
2490 ret = btrfs_read_buffer(next, ptr_gen);
2491 if (ret) {
2492 free_extent_buffer(next);
2493 return ret;
2494 }
2495
2496 WARN_ON(*level <= 0);
2497 if (path->nodes[*level-1])
2498 free_extent_buffer(path->nodes[*level-1]);
2499 path->nodes[*level-1] = next;
2500 *level = btrfs_header_level(next);
2501 path->slots[*level] = 0;
2502 cond_resched();
2503 }
2504 WARN_ON(*level < 0);
2505 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2506
2507 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2508
2509 cond_resched();
2510 return 0;
2511}
2512
2513static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2514 struct btrfs_root *root,
2515 struct btrfs_path *path, int *level,
2516 struct walk_control *wc)
2517{
2518 struct btrfs_fs_info *fs_info = root->fs_info;
2519 u64 root_owner;
2520 int i;
2521 int slot;
2522 int ret;
2523
2524 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2525 slot = path->slots[i];
2526 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2527 path->slots[i]++;
2528 *level = i;
2529 WARN_ON(*level == 0);
2530 return 0;
2531 } else {
2532 struct extent_buffer *parent;
2533 if (path->nodes[*level] == root->node)
2534 parent = path->nodes[*level];
2535 else
2536 parent = path->nodes[*level + 1];
2537
2538 root_owner = btrfs_header_owner(parent);
2539 ret = wc->process_func(root, path->nodes[*level], wc,
2540 btrfs_header_generation(path->nodes[*level]));
2541 if (ret)
2542 return ret;
2543
2544 if (wc->free) {
2545 struct extent_buffer *next;
2546
2547 next = path->nodes[*level];
2548
2549 if (trans) {
2550 btrfs_tree_lock(next);
2551 btrfs_set_lock_blocking(next);
2552 clean_tree_block(trans, fs_info, next);
2553 btrfs_wait_tree_block_writeback(next);
2554 btrfs_tree_unlock(next);
2555 }
2556
2557 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2558 ret = btrfs_free_and_pin_reserved_extent(
2559 fs_info,
2560 path->nodes[*level]->start,
2561 path->nodes[*level]->len);
2562 if (ret)
2563 return ret;
2564 }
2565 free_extent_buffer(path->nodes[*level]);
2566 path->nodes[*level] = NULL;
2567 *level = i + 1;
2568 }
2569 }
2570 return 1;
2571}
2572
2573/*
2574 * drop the reference count on the tree rooted at 'snap'. This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2576 * decremented.
2577 */
2578static int walk_log_tree(struct btrfs_trans_handle *trans,
2579 struct btrfs_root *log, struct walk_control *wc)
2580{
2581 struct btrfs_fs_info *fs_info = log->fs_info;
2582 int ret = 0;
2583 int wret;
2584 int level;
2585 struct btrfs_path *path;
2586 int orig_level;
2587
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2591
2592 level = btrfs_header_level(log->node);
2593 orig_level = level;
2594 path->nodes[level] = log->node;
2595 extent_buffer_get(log->node);
2596 path->slots[level] = 0;
2597
2598 while (1) {
2599 wret = walk_down_log_tree(trans, log, path, &level, wc);
2600 if (wret > 0)
2601 break;
2602 if (wret < 0) {
2603 ret = wret;
2604 goto out;
2605 }
2606
2607 wret = walk_up_log_tree(trans, log, path, &level, wc);
2608 if (wret > 0)
2609 break;
2610 if (wret < 0) {
2611 ret = wret;
2612 goto out;
2613 }
2614 }
2615
2616 /* was the root node processed? if not, catch it here */
2617 if (path->nodes[orig_level]) {
2618 ret = wc->process_func(log, path->nodes[orig_level], wc,
2619 btrfs_header_generation(path->nodes[orig_level]));
2620 if (ret)
2621 goto out;
2622 if (wc->free) {
2623 struct extent_buffer *next;
2624
2625 next = path->nodes[orig_level];
2626
2627 if (trans) {
2628 btrfs_tree_lock(next);
2629 btrfs_set_lock_blocking(next);
2630 clean_tree_block(trans, fs_info, next);
2631 btrfs_wait_tree_block_writeback(next);
2632 btrfs_tree_unlock(next);
2633 }
2634
2635 WARN_ON(log->root_key.objectid !=
2636 BTRFS_TREE_LOG_OBJECTID);
2637 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2638 next->start, next->len);
2639 if (ret)
2640 goto out;
2641 }
2642 }
2643
2644out:
2645 btrfs_free_path(path);
2646 return ret;
2647}
2648
2649/*
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2652 */
2653static int update_log_root(struct btrfs_trans_handle *trans,
2654 struct btrfs_root *log)
2655{
2656 struct btrfs_fs_info *fs_info = log->fs_info;
2657 int ret;
2658
2659 if (log->log_transid == 1) {
2660 /* insert root item on the first sync */
2661 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2662 &log->root_key, &log->root_item);
2663 } else {
2664 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2665 &log->root_key, &log->root_item);
2666 }
2667 return ret;
2668}
2669
2670static void wait_log_commit(struct btrfs_root *root, int transid)
2671{
2672 DEFINE_WAIT(wait);
2673 int index = transid % 2;
2674
2675 /*
2676 * we only allow two pending log transactions at a time,
2677 * so we know that if ours is more than 2 older than the
2678 * current transaction, we're done
2679 */
2680 do {
2681 prepare_to_wait(&root->log_commit_wait[index],
2682 &wait, TASK_UNINTERRUPTIBLE);
2683 mutex_unlock(&root->log_mutex);
2684
2685 if (root->log_transid_committed < transid &&
2686 atomic_read(&root->log_commit[index]))
2687 schedule();
2688
2689 finish_wait(&root->log_commit_wait[index], &wait);
2690 mutex_lock(&root->log_mutex);
2691 } while (root->log_transid_committed < transid &&
2692 atomic_read(&root->log_commit[index]));
2693}
2694
2695static void wait_for_writer(struct btrfs_root *root)
2696{
2697 DEFINE_WAIT(wait);
2698
2699 while (atomic_read(&root->log_writers)) {
2700 prepare_to_wait(&root->log_writer_wait,
2701 &wait, TASK_UNINTERRUPTIBLE);
2702 mutex_unlock(&root->log_mutex);
2703 if (atomic_read(&root->log_writers))
2704 schedule();
2705 finish_wait(&root->log_writer_wait, &wait);
2706 mutex_lock(&root->log_mutex);
2707 }
2708}
2709
2710static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2711 struct btrfs_log_ctx *ctx)
2712{
2713 if (!ctx)
2714 return;
2715
2716 mutex_lock(&root->log_mutex);
2717 list_del_init(&ctx->list);
2718 mutex_unlock(&root->log_mutex);
2719}
2720
2721/*
2722 * Invoked in log mutex context, or be sure there is no other task which
2723 * can access the list.
2724 */
2725static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2726 int index, int error)
2727{
2728 struct btrfs_log_ctx *ctx;
2729 struct btrfs_log_ctx *safe;
2730
2731 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2732 list_del_init(&ctx->list);
2733 ctx->log_ret = error;
2734 }
2735
2736 INIT_LIST_HEAD(&root->log_ctxs[index]);
2737}
2738
2739/*
2740 * btrfs_sync_log does sends a given tree log down to the disk and
2741 * updates the super blocks to record it. When this call is done,
2742 * you know that any inodes previously logged are safely on disk only
2743 * if it returns 0.
2744 *
2745 * Any other return value means you need to call btrfs_commit_transaction.
2746 * Some of the edge cases for fsyncing directories that have had unlinks
2747 * or renames done in the past mean that sometimes the only safe
2748 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2749 * that has happened.
2750 */
2751int btrfs_sync_log(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2753{
2754 int index1;
2755 int index2;
2756 int mark;
2757 int ret;
2758 struct btrfs_fs_info *fs_info = root->fs_info;
2759 struct btrfs_root *log = root->log_root;
2760 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2761 int log_transid = 0;
2762 struct btrfs_log_ctx root_log_ctx;
2763 struct blk_plug plug;
2764
2765 mutex_lock(&root->log_mutex);
2766 log_transid = ctx->log_transid;
2767 if (root->log_transid_committed >= log_transid) {
2768 mutex_unlock(&root->log_mutex);
2769 return ctx->log_ret;
2770 }
2771
2772 index1 = log_transid % 2;
2773 if (atomic_read(&root->log_commit[index1])) {
2774 wait_log_commit(root, log_transid);
2775 mutex_unlock(&root->log_mutex);
2776 return ctx->log_ret;
2777 }
2778 ASSERT(log_transid == root->log_transid);
2779 atomic_set(&root->log_commit[index1], 1);
2780
2781 /* wait for previous tree log sync to complete */
2782 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2783 wait_log_commit(root, log_transid - 1);
2784
2785 while (1) {
2786 int batch = atomic_read(&root->log_batch);
2787 /* when we're on an ssd, just kick the log commit out */
2788 if (!btrfs_test_opt(fs_info, SSD) &&
2789 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2790 mutex_unlock(&root->log_mutex);
2791 schedule_timeout_uninterruptible(1);
2792 mutex_lock(&root->log_mutex);
2793 }
2794 wait_for_writer(root);
2795 if (batch == atomic_read(&root->log_batch))
2796 break;
2797 }
2798
2799 /* bail out if we need to do a full commit */
2800 if (btrfs_need_log_full_commit(fs_info, trans)) {
2801 ret = -EAGAIN;
2802 btrfs_free_logged_extents(log, log_transid);
2803 mutex_unlock(&root->log_mutex);
2804 goto out;
2805 }
2806
2807 if (log_transid % 2 == 0)
2808 mark = EXTENT_DIRTY;
2809 else
2810 mark = EXTENT_NEW;
2811
2812 /* we start IO on all the marked extents here, but we don't actually
2813 * wait for them until later.
2814 */
2815 blk_start_plug(&plug);
2816 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2817 if (ret) {
2818 blk_finish_plug(&plug);
2819 btrfs_abort_transaction(trans, ret);
2820 btrfs_free_logged_extents(log, log_transid);
2821 btrfs_set_log_full_commit(fs_info, trans);
2822 mutex_unlock(&root->log_mutex);
2823 goto out;
2824 }
2825
2826 btrfs_set_root_node(&log->root_item, log->node);
2827
2828 root->log_transid++;
2829 log->log_transid = root->log_transid;
2830 root->log_start_pid = 0;
2831 /*
2832 * IO has been started, blocks of the log tree have WRITTEN flag set
2833 * in their headers. new modifications of the log will be written to
2834 * new positions. so it's safe to allow log writers to go in.
2835 */
2836 mutex_unlock(&root->log_mutex);
2837
2838 btrfs_init_log_ctx(&root_log_ctx, NULL);
2839
2840 mutex_lock(&log_root_tree->log_mutex);
2841 atomic_inc(&log_root_tree->log_batch);
2842 atomic_inc(&log_root_tree->log_writers);
2843
2844 index2 = log_root_tree->log_transid % 2;
2845 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2846 root_log_ctx.log_transid = log_root_tree->log_transid;
2847
2848 mutex_unlock(&log_root_tree->log_mutex);
2849
2850 ret = update_log_root(trans, log);
2851
2852 mutex_lock(&log_root_tree->log_mutex);
2853 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2854 /*
2855 * Implicit memory barrier after atomic_dec_and_test
2856 */
2857 if (waitqueue_active(&log_root_tree->log_writer_wait))
2858 wake_up(&log_root_tree->log_writer_wait);
2859 }
2860
2861 if (ret) {
2862 if (!list_empty(&root_log_ctx.list))
2863 list_del_init(&root_log_ctx.list);
2864
2865 blk_finish_plug(&plug);
2866 btrfs_set_log_full_commit(fs_info, trans);
2867
2868 if (ret != -ENOSPC) {
2869 btrfs_abort_transaction(trans, ret);
2870 mutex_unlock(&log_root_tree->log_mutex);
2871 goto out;
2872 }
2873 btrfs_wait_tree_log_extents(log, mark);
2874 btrfs_free_logged_extents(log, log_transid);
2875 mutex_unlock(&log_root_tree->log_mutex);
2876 ret = -EAGAIN;
2877 goto out;
2878 }
2879
2880 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2881 blk_finish_plug(&plug);
2882 list_del_init(&root_log_ctx.list);
2883 mutex_unlock(&log_root_tree->log_mutex);
2884 ret = root_log_ctx.log_ret;
2885 goto out;
2886 }
2887
2888 index2 = root_log_ctx.log_transid % 2;
2889 if (atomic_read(&log_root_tree->log_commit[index2])) {
2890 blk_finish_plug(&plug);
2891 ret = btrfs_wait_tree_log_extents(log, mark);
2892 btrfs_wait_logged_extents(trans, log, log_transid);
2893 wait_log_commit(log_root_tree,
2894 root_log_ctx.log_transid);
2895 mutex_unlock(&log_root_tree->log_mutex);
2896 if (!ret)
2897 ret = root_log_ctx.log_ret;
2898 goto out;
2899 }
2900 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2901 atomic_set(&log_root_tree->log_commit[index2], 1);
2902
2903 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2904 wait_log_commit(log_root_tree,
2905 root_log_ctx.log_transid - 1);
2906 }
2907
2908 wait_for_writer(log_root_tree);
2909
2910 /*
2911 * now that we've moved on to the tree of log tree roots,
2912 * check the full commit flag again
2913 */
2914 if (btrfs_need_log_full_commit(fs_info, trans)) {
2915 blk_finish_plug(&plug);
2916 btrfs_wait_tree_log_extents(log, mark);
2917 btrfs_free_logged_extents(log, log_transid);
2918 mutex_unlock(&log_root_tree->log_mutex);
2919 ret = -EAGAIN;
2920 goto out_wake_log_root;
2921 }
2922
2923 ret = btrfs_write_marked_extents(fs_info,
2924 &log_root_tree->dirty_log_pages,
2925 EXTENT_DIRTY | EXTENT_NEW);
2926 blk_finish_plug(&plug);
2927 if (ret) {
2928 btrfs_set_log_full_commit(fs_info, trans);
2929 btrfs_abort_transaction(trans, ret);
2930 btrfs_free_logged_extents(log, log_transid);
2931 mutex_unlock(&log_root_tree->log_mutex);
2932 goto out_wake_log_root;
2933 }
2934 ret = btrfs_wait_tree_log_extents(log, mark);
2935 if (!ret)
2936 ret = btrfs_wait_tree_log_extents(log_root_tree,
2937 EXTENT_NEW | EXTENT_DIRTY);
2938 if (ret) {
2939 btrfs_set_log_full_commit(fs_info, trans);
2940 btrfs_free_logged_extents(log, log_transid);
2941 mutex_unlock(&log_root_tree->log_mutex);
2942 goto out_wake_log_root;
2943 }
2944 btrfs_wait_logged_extents(trans, log, log_transid);
2945
2946 btrfs_set_super_log_root(fs_info->super_for_commit,
2947 log_root_tree->node->start);
2948 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2949 btrfs_header_level(log_root_tree->node));
2950
2951 log_root_tree->log_transid++;
2952 mutex_unlock(&log_root_tree->log_mutex);
2953
2954 /*
2955 * nobody else is going to jump in and write the the ctree
2956 * super here because the log_commit atomic below is protecting
2957 * us. We must be called with a transaction handle pinning
2958 * the running transaction open, so a full commit can't hop
2959 * in and cause problems either.
2960 */
2961 ret = write_ctree_super(trans, fs_info, 1);
2962 if (ret) {
2963 btrfs_set_log_full_commit(fs_info, trans);
2964 btrfs_abort_transaction(trans, ret);
2965 goto out_wake_log_root;
2966 }
2967
2968 mutex_lock(&root->log_mutex);
2969 if (root->last_log_commit < log_transid)
2970 root->last_log_commit = log_transid;
2971 mutex_unlock(&root->log_mutex);
2972
2973out_wake_log_root:
2974 mutex_lock(&log_root_tree->log_mutex);
2975 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2976
2977 log_root_tree->log_transid_committed++;
2978 atomic_set(&log_root_tree->log_commit[index2], 0);
2979 mutex_unlock(&log_root_tree->log_mutex);
2980
2981 /*
2982 * The barrier before waitqueue_active is implied by mutex_unlock
2983 */
2984 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2985 wake_up(&log_root_tree->log_commit_wait[index2]);
2986out:
2987 mutex_lock(&root->log_mutex);
2988 btrfs_remove_all_log_ctxs(root, index1, ret);
2989 root->log_transid_committed++;
2990 atomic_set(&root->log_commit[index1], 0);
2991 mutex_unlock(&root->log_mutex);
2992
2993 /*
2994 * The barrier before waitqueue_active is implied by mutex_unlock
2995 */
2996 if (waitqueue_active(&root->log_commit_wait[index1]))
2997 wake_up(&root->log_commit_wait[index1]);
2998 return ret;
2999}
3000
3001static void free_log_tree(struct btrfs_trans_handle *trans,
3002 struct btrfs_root *log)
3003{
3004 int ret;
3005 u64 start;
3006 u64 end;
3007 struct walk_control wc = {
3008 .free = 1,
3009 .process_func = process_one_buffer
3010 };
3011
3012 ret = walk_log_tree(trans, log, &wc);
3013 /* I don't think this can happen but just in case */
3014 if (ret)
3015 btrfs_abort_transaction(trans, ret);
3016
3017 while (1) {
3018 ret = find_first_extent_bit(&log->dirty_log_pages,
3019 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3020 NULL);
3021 if (ret)
3022 break;
3023
3024 clear_extent_bits(&log->dirty_log_pages, start, end,
3025 EXTENT_DIRTY | EXTENT_NEW);
3026 }
3027
3028 /*
3029 * We may have short-circuited the log tree with the full commit logic
3030 * and left ordered extents on our list, so clear these out to keep us
3031 * from leaking inodes and memory.
3032 */
3033 btrfs_free_logged_extents(log, 0);
3034 btrfs_free_logged_extents(log, 1);
3035
3036 free_extent_buffer(log->node);
3037 kfree(log);
3038}
3039
3040/*
3041 * free all the extents used by the tree log. This should be called
3042 * at commit time of the full transaction
3043 */
3044int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3045{
3046 if (root->log_root) {
3047 free_log_tree(trans, root->log_root);
3048 root->log_root = NULL;
3049 }
3050 return 0;
3051}
3052
3053int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3054 struct btrfs_fs_info *fs_info)
3055{
3056 if (fs_info->log_root_tree) {
3057 free_log_tree(trans, fs_info->log_root_tree);
3058 fs_info->log_root_tree = NULL;
3059 }
3060 return 0;
3061}
3062
3063/*
3064 * If both a file and directory are logged, and unlinks or renames are
3065 * mixed in, we have a few interesting corners:
3066 *
3067 * create file X in dir Y
3068 * link file X to X.link in dir Y
3069 * fsync file X
3070 * unlink file X but leave X.link
3071 * fsync dir Y
3072 *
3073 * After a crash we would expect only X.link to exist. But file X
3074 * didn't get fsync'd again so the log has back refs for X and X.link.
3075 *
3076 * We solve this by removing directory entries and inode backrefs from the
3077 * log when a file that was logged in the current transaction is
3078 * unlinked. Any later fsync will include the updated log entries, and
3079 * we'll be able to reconstruct the proper directory items from backrefs.
3080 *
3081 * This optimizations allows us to avoid relogging the entire inode
3082 * or the entire directory.
3083 */
3084int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 const char *name, int name_len,
3087 struct inode *dir, u64 index)
3088{
3089 struct btrfs_root *log;
3090 struct btrfs_dir_item *di;
3091 struct btrfs_path *path;
3092 int ret;
3093 int err = 0;
3094 int bytes_del = 0;
3095 u64 dir_ino = btrfs_ino(dir);
3096
3097 if (BTRFS_I(dir)->logged_trans < trans->transid)
3098 return 0;
3099
3100 ret = join_running_log_trans(root);
3101 if (ret)
3102 return 0;
3103
3104 mutex_lock(&BTRFS_I(dir)->log_mutex);
3105
3106 log = root->log_root;
3107 path = btrfs_alloc_path();
3108 if (!path) {
3109 err = -ENOMEM;
3110 goto out_unlock;
3111 }
3112
3113 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3114 name, name_len, -1);
3115 if (IS_ERR(di)) {
3116 err = PTR_ERR(di);
3117 goto fail;
3118 }
3119 if (di) {
3120 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3121 bytes_del += name_len;
3122 if (ret) {
3123 err = ret;
3124 goto fail;
3125 }
3126 }
3127 btrfs_release_path(path);
3128 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3129 index, name, name_len, -1);
3130 if (IS_ERR(di)) {
3131 err = PTR_ERR(di);
3132 goto fail;
3133 }
3134 if (di) {
3135 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3136 bytes_del += name_len;
3137 if (ret) {
3138 err = ret;
3139 goto fail;
3140 }
3141 }
3142
3143 /* update the directory size in the log to reflect the names
3144 * we have removed
3145 */
3146 if (bytes_del) {
3147 struct btrfs_key key;
3148
3149 key.objectid = dir_ino;
3150 key.offset = 0;
3151 key.type = BTRFS_INODE_ITEM_KEY;
3152 btrfs_release_path(path);
3153
3154 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3155 if (ret < 0) {
3156 err = ret;
3157 goto fail;
3158 }
3159 if (ret == 0) {
3160 struct btrfs_inode_item *item;
3161 u64 i_size;
3162
3163 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3164 struct btrfs_inode_item);
3165 i_size = btrfs_inode_size(path->nodes[0], item);
3166 if (i_size > bytes_del)
3167 i_size -= bytes_del;
3168 else
3169 i_size = 0;
3170 btrfs_set_inode_size(path->nodes[0], item, i_size);
3171 btrfs_mark_buffer_dirty(path->nodes[0]);
3172 } else
3173 ret = 0;
3174 btrfs_release_path(path);
3175 }
3176fail:
3177 btrfs_free_path(path);
3178out_unlock:
3179 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3180 if (ret == -ENOSPC) {
3181 btrfs_set_log_full_commit(root->fs_info, trans);
3182 ret = 0;
3183 } else if (ret < 0)
3184 btrfs_abort_transaction(trans, ret);
3185
3186 btrfs_end_log_trans(root);
3187
3188 return err;
3189}
3190
3191/* see comments for btrfs_del_dir_entries_in_log */
3192int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3193 struct btrfs_root *root,
3194 const char *name, int name_len,
3195 struct inode *inode, u64 dirid)
3196{
3197 struct btrfs_fs_info *fs_info = root->fs_info;
3198 struct btrfs_root *log;
3199 u64 index;
3200 int ret;
3201
3202 if (BTRFS_I(inode)->logged_trans < trans->transid)
3203 return 0;
3204
3205 ret = join_running_log_trans(root);
3206 if (ret)
3207 return 0;
3208 log = root->log_root;
3209 mutex_lock(&BTRFS_I(inode)->log_mutex);
3210
3211 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3212 dirid, &index);
3213 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3214 if (ret == -ENOSPC) {
3215 btrfs_set_log_full_commit(fs_info, trans);
3216 ret = 0;
3217 } else if (ret < 0 && ret != -ENOENT)
3218 btrfs_abort_transaction(trans, ret);
3219 btrfs_end_log_trans(root);
3220
3221 return ret;
3222}
3223
3224/*
3225 * creates a range item in the log for 'dirid'. first_offset and
3226 * last_offset tell us which parts of the key space the log should
3227 * be considered authoritative for.
3228 */
3229static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3230 struct btrfs_root *log,
3231 struct btrfs_path *path,
3232 int key_type, u64 dirid,
3233 u64 first_offset, u64 last_offset)
3234{
3235 int ret;
3236 struct btrfs_key key;
3237 struct btrfs_dir_log_item *item;
3238
3239 key.objectid = dirid;
3240 key.offset = first_offset;
3241 if (key_type == BTRFS_DIR_ITEM_KEY)
3242 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3243 else
3244 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3245 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3246 if (ret)
3247 return ret;
3248
3249 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3250 struct btrfs_dir_log_item);
3251 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3252 btrfs_mark_buffer_dirty(path->nodes[0]);
3253 btrfs_release_path(path);
3254 return 0;
3255}
3256
3257/*
3258 * log all the items included in the current transaction for a given
3259 * directory. This also creates the range items in the log tree required
3260 * to replay anything deleted before the fsync
3261 */
3262static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root, struct inode *inode,
3264 struct btrfs_path *path,
3265 struct btrfs_path *dst_path, int key_type,
3266 struct btrfs_log_ctx *ctx,
3267 u64 min_offset, u64 *last_offset_ret)
3268{
3269 struct btrfs_key min_key;
3270 struct btrfs_root *log = root->log_root;
3271 struct extent_buffer *src;
3272 int err = 0;
3273 int ret;
3274 int i;
3275 int nritems;
3276 u64 first_offset = min_offset;
3277 u64 last_offset = (u64)-1;
3278 u64 ino = btrfs_ino(inode);
3279
3280 log = root->log_root;
3281
3282 min_key.objectid = ino;
3283 min_key.type = key_type;
3284 min_key.offset = min_offset;
3285
3286 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3287
3288 /*
3289 * we didn't find anything from this transaction, see if there
3290 * is anything at all
3291 */
3292 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3293 min_key.objectid = ino;
3294 min_key.type = key_type;
3295 min_key.offset = (u64)-1;
3296 btrfs_release_path(path);
3297 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3298 if (ret < 0) {
3299 btrfs_release_path(path);
3300 return ret;
3301 }
3302 ret = btrfs_previous_item(root, path, ino, key_type);
3303
3304 /* if ret == 0 there are items for this type,
3305 * create a range to tell us the last key of this type.
3306 * otherwise, there are no items in this directory after
3307 * *min_offset, and we create a range to indicate that.
3308 */
3309 if (ret == 0) {
3310 struct btrfs_key tmp;
3311 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3312 path->slots[0]);
3313 if (key_type == tmp.type)
3314 first_offset = max(min_offset, tmp.offset) + 1;
3315 }
3316 goto done;
3317 }
3318
3319 /* go backward to find any previous key */
3320 ret = btrfs_previous_item(root, path, ino, key_type);
3321 if (ret == 0) {
3322 struct btrfs_key tmp;
3323 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3324 if (key_type == tmp.type) {
3325 first_offset = tmp.offset;
3326 ret = overwrite_item(trans, log, dst_path,
3327 path->nodes[0], path->slots[0],
3328 &tmp);
3329 if (ret) {
3330 err = ret;
3331 goto done;
3332 }
3333 }
3334 }
3335 btrfs_release_path(path);
3336
3337 /* find the first key from this transaction again */
3338 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3339 if (WARN_ON(ret != 0))
3340 goto done;
3341
3342 /*
3343 * we have a block from this transaction, log every item in it
3344 * from our directory
3345 */
3346 while (1) {
3347 struct btrfs_key tmp;
3348 src = path->nodes[0];
3349 nritems = btrfs_header_nritems(src);
3350 for (i = path->slots[0]; i < nritems; i++) {
3351 struct btrfs_dir_item *di;
3352
3353 btrfs_item_key_to_cpu(src, &min_key, i);
3354
3355 if (min_key.objectid != ino || min_key.type != key_type)
3356 goto done;
3357 ret = overwrite_item(trans, log, dst_path, src, i,
3358 &min_key);
3359 if (ret) {
3360 err = ret;
3361 goto done;
3362 }
3363
3364 /*
3365 * We must make sure that when we log a directory entry,
3366 * the corresponding inode, after log replay, has a
3367 * matching link count. For example:
3368 *
3369 * touch foo
3370 * mkdir mydir
3371 * sync
3372 * ln foo mydir/bar
3373 * xfs_io -c "fsync" mydir
3374 * <crash>
3375 * <mount fs and log replay>
3376 *
3377 * Would result in a fsync log that when replayed, our
3378 * file inode would have a link count of 1, but we get
3379 * two directory entries pointing to the same inode.
3380 * After removing one of the names, it would not be
3381 * possible to remove the other name, which resulted
3382 * always in stale file handle errors, and would not
3383 * be possible to rmdir the parent directory, since
3384 * its i_size could never decrement to the value
3385 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3386 */
3387 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3388 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389 if (ctx &&
3390 (btrfs_dir_transid(src, di) == trans->transid ||
3391 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3392 tmp.type != BTRFS_ROOT_ITEM_KEY)
3393 ctx->log_new_dentries = true;
3394 }
3395 path->slots[0] = nritems;
3396
3397 /*
3398 * look ahead to the next item and see if it is also
3399 * from this directory and from this transaction
3400 */
3401 ret = btrfs_next_leaf(root, path);
3402 if (ret == 1) {
3403 last_offset = (u64)-1;
3404 goto done;
3405 }
3406 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3407 if (tmp.objectid != ino || tmp.type != key_type) {
3408 last_offset = (u64)-1;
3409 goto done;
3410 }
3411 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3412 ret = overwrite_item(trans, log, dst_path,
3413 path->nodes[0], path->slots[0],
3414 &tmp);
3415 if (ret)
3416 err = ret;
3417 else
3418 last_offset = tmp.offset;
3419 goto done;
3420 }
3421 }
3422done:
3423 btrfs_release_path(path);
3424 btrfs_release_path(dst_path);
3425
3426 if (err == 0) {
3427 *last_offset_ret = last_offset;
3428 /*
3429 * insert the log range keys to indicate where the log
3430 * is valid
3431 */
3432 ret = insert_dir_log_key(trans, log, path, key_type,
3433 ino, first_offset, last_offset);
3434 if (ret)
3435 err = ret;
3436 }
3437 return err;
3438}
3439
3440/*
3441 * logging directories is very similar to logging inodes, We find all the items
3442 * from the current transaction and write them to the log.
3443 *
3444 * The recovery code scans the directory in the subvolume, and if it finds a
3445 * key in the range logged that is not present in the log tree, then it means
3446 * that dir entry was unlinked during the transaction.
3447 *
3448 * In order for that scan to work, we must include one key smaller than
3449 * the smallest logged by this transaction and one key larger than the largest
3450 * key logged by this transaction.
3451 */
3452static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3453 struct btrfs_root *root, struct inode *inode,
3454 struct btrfs_path *path,
3455 struct btrfs_path *dst_path,
3456 struct btrfs_log_ctx *ctx)
3457{
3458 u64 min_key;
3459 u64 max_key;
3460 int ret;
3461 int key_type = BTRFS_DIR_ITEM_KEY;
3462
3463again:
3464 min_key = 0;
3465 max_key = 0;
3466 while (1) {
3467 ret = log_dir_items(trans, root, inode, path,
3468 dst_path, key_type, ctx, min_key,
3469 &max_key);
3470 if (ret)
3471 return ret;
3472 if (max_key == (u64)-1)
3473 break;
3474 min_key = max_key + 1;
3475 }
3476
3477 if (key_type == BTRFS_DIR_ITEM_KEY) {
3478 key_type = BTRFS_DIR_INDEX_KEY;
3479 goto again;
3480 }
3481 return 0;
3482}
3483
3484/*
3485 * a helper function to drop items from the log before we relog an
3486 * inode. max_key_type indicates the highest item type to remove.
3487 * This cannot be run for file data extents because it does not
3488 * free the extents they point to.
3489 */
3490static int drop_objectid_items(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *log,
3492 struct btrfs_path *path,
3493 u64 objectid, int max_key_type)
3494{
3495 int ret;
3496 struct btrfs_key key;
3497 struct btrfs_key found_key;
3498 int start_slot;
3499
3500 key.objectid = objectid;
3501 key.type = max_key_type;
3502 key.offset = (u64)-1;
3503
3504 while (1) {
3505 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3506 BUG_ON(ret == 0); /* Logic error */
3507 if (ret < 0)
3508 break;
3509
3510 if (path->slots[0] == 0)
3511 break;
3512
3513 path->slots[0]--;
3514 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3515 path->slots[0]);
3516
3517 if (found_key.objectid != objectid)
3518 break;
3519
3520 found_key.offset = 0;
3521 found_key.type = 0;
3522 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3523 &start_slot);
3524
3525 ret = btrfs_del_items(trans, log, path, start_slot,
3526 path->slots[0] - start_slot + 1);
3527 /*
3528 * If start slot isn't 0 then we don't need to re-search, we've
3529 * found the last guy with the objectid in this tree.
3530 */
3531 if (ret || start_slot != 0)
3532 break;
3533 btrfs_release_path(path);
3534 }
3535 btrfs_release_path(path);
3536 if (ret > 0)
3537 ret = 0;
3538 return ret;
3539}
3540
3541static void fill_inode_item(struct btrfs_trans_handle *trans,
3542 struct extent_buffer *leaf,
3543 struct btrfs_inode_item *item,
3544 struct inode *inode, int log_inode_only,
3545 u64 logged_isize)
3546{
3547 struct btrfs_map_token token;
3548
3549 btrfs_init_map_token(&token);
3550
3551 if (log_inode_only) {
3552 /* set the generation to zero so the recover code
3553 * can tell the difference between an logging
3554 * just to say 'this inode exists' and a logging
3555 * to say 'update this inode with these values'
3556 */
3557 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3558 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3559 } else {
3560 btrfs_set_token_inode_generation(leaf, item,
3561 BTRFS_I(inode)->generation,
3562 &token);
3563 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3564 }
3565
3566 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3567 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3568 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3569 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3570
3571 btrfs_set_token_timespec_sec(leaf, &item->atime,
3572 inode->i_atime.tv_sec, &token);
3573 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3574 inode->i_atime.tv_nsec, &token);
3575
3576 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3577 inode->i_mtime.tv_sec, &token);
3578 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3579 inode->i_mtime.tv_nsec, &token);
3580
3581 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3582 inode->i_ctime.tv_sec, &token);
3583 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3584 inode->i_ctime.tv_nsec, &token);
3585
3586 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3587 &token);
3588
3589 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3590 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3591 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3592 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3593 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3594}
3595
3596static int log_inode_item(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *log, struct btrfs_path *path,
3598 struct inode *inode)
3599{
3600 struct btrfs_inode_item *inode_item;
3601 int ret;
3602
3603 ret = btrfs_insert_empty_item(trans, log, path,
3604 &BTRFS_I(inode)->location,
3605 sizeof(*inode_item));
3606 if (ret && ret != -EEXIST)
3607 return ret;
3608 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3609 struct btrfs_inode_item);
3610 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3611 btrfs_release_path(path);
3612 return 0;
3613}
3614
3615static noinline int copy_items(struct btrfs_trans_handle *trans,
3616 struct inode *inode,
3617 struct btrfs_path *dst_path,
3618 struct btrfs_path *src_path, u64 *last_extent,
3619 int start_slot, int nr, int inode_only,
3620 u64 logged_isize)
3621{
3622 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3623 unsigned long src_offset;
3624 unsigned long dst_offset;
3625 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3626 struct btrfs_file_extent_item *extent;
3627 struct btrfs_inode_item *inode_item;
3628 struct extent_buffer *src = src_path->nodes[0];
3629 struct btrfs_key first_key, last_key, key;
3630 int ret;
3631 struct btrfs_key *ins_keys;
3632 u32 *ins_sizes;
3633 char *ins_data;
3634 int i;
3635 struct list_head ordered_sums;
3636 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3637 bool has_extents = false;
3638 bool need_find_last_extent = true;
3639 bool done = false;
3640
3641 INIT_LIST_HEAD(&ordered_sums);
3642
3643 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3644 nr * sizeof(u32), GFP_NOFS);
3645 if (!ins_data)
3646 return -ENOMEM;
3647
3648 first_key.objectid = (u64)-1;
3649
3650 ins_sizes = (u32 *)ins_data;
3651 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3652
3653 for (i = 0; i < nr; i++) {
3654 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3655 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3656 }
3657 ret = btrfs_insert_empty_items(trans, log, dst_path,
3658 ins_keys, ins_sizes, nr);
3659 if (ret) {
3660 kfree(ins_data);
3661 return ret;
3662 }
3663
3664 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3665 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3666 dst_path->slots[0]);
3667
3668 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3669
3670 if ((i == (nr - 1)))
3671 last_key = ins_keys[i];
3672
3673 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3674 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3675 dst_path->slots[0],
3676 struct btrfs_inode_item);
3677 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3678 inode, inode_only == LOG_INODE_EXISTS,
3679 logged_isize);
3680 } else {
3681 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3682 src_offset, ins_sizes[i]);
3683 }
3684
3685 /*
3686 * We set need_find_last_extent here in case we know we were
3687 * processing other items and then walk into the first extent in
3688 * the inode. If we don't hit an extent then nothing changes,
3689 * we'll do the last search the next time around.
3690 */
3691 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3692 has_extents = true;
3693 if (first_key.objectid == (u64)-1)
3694 first_key = ins_keys[i];
3695 } else {
3696 need_find_last_extent = false;
3697 }
3698
3699 /* take a reference on file data extents so that truncates
3700 * or deletes of this inode don't have to relog the inode
3701 * again
3702 */
3703 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3704 !skip_csum) {
3705 int found_type;
3706 extent = btrfs_item_ptr(src, start_slot + i,
3707 struct btrfs_file_extent_item);
3708
3709 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3710 continue;
3711
3712 found_type = btrfs_file_extent_type(src, extent);
3713 if (found_type == BTRFS_FILE_EXTENT_REG) {
3714 u64 ds, dl, cs, cl;
3715 ds = btrfs_file_extent_disk_bytenr(src,
3716 extent);
3717 /* ds == 0 is a hole */
3718 if (ds == 0)
3719 continue;
3720
3721 dl = btrfs_file_extent_disk_num_bytes(src,
3722 extent);
3723 cs = btrfs_file_extent_offset(src, extent);
3724 cl = btrfs_file_extent_num_bytes(src,
3725 extent);
3726 if (btrfs_file_extent_compression(src,
3727 extent)) {
3728 cs = 0;
3729 cl = dl;
3730 }
3731
3732 ret = btrfs_lookup_csums_range(
3733 fs_info->csum_root,
3734 ds + cs, ds + cs + cl - 1,
3735 &ordered_sums, 0);
3736 if (ret) {
3737 btrfs_release_path(dst_path);
3738 kfree(ins_data);
3739 return ret;
3740 }
3741 }
3742 }
3743 }
3744
3745 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3746 btrfs_release_path(dst_path);
3747 kfree(ins_data);
3748
3749 /*
3750 * we have to do this after the loop above to avoid changing the
3751 * log tree while trying to change the log tree.
3752 */
3753 ret = 0;
3754 while (!list_empty(&ordered_sums)) {
3755 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3756 struct btrfs_ordered_sum,
3757 list);
3758 if (!ret)
3759 ret = btrfs_csum_file_blocks(trans, log, sums);
3760 list_del(&sums->list);
3761 kfree(sums);
3762 }
3763
3764 if (!has_extents)
3765 return ret;
3766
3767 if (need_find_last_extent && *last_extent == first_key.offset) {
3768 /*
3769 * We don't have any leafs between our current one and the one
3770 * we processed before that can have file extent items for our
3771 * inode (and have a generation number smaller than our current
3772 * transaction id).
3773 */
3774 need_find_last_extent = false;
3775 }
3776
3777 /*
3778 * Because we use btrfs_search_forward we could skip leaves that were
3779 * not modified and then assume *last_extent is valid when it really
3780 * isn't. So back up to the previous leaf and read the end of the last
3781 * extent before we go and fill in holes.
3782 */
3783 if (need_find_last_extent) {
3784 u64 len;
3785
3786 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3787 if (ret < 0)
3788 return ret;
3789 if (ret)
3790 goto fill_holes;
3791 if (src_path->slots[0])
3792 src_path->slots[0]--;
3793 src = src_path->nodes[0];
3794 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3795 if (key.objectid != btrfs_ino(inode) ||
3796 key.type != BTRFS_EXTENT_DATA_KEY)
3797 goto fill_holes;
3798 extent = btrfs_item_ptr(src, src_path->slots[0],
3799 struct btrfs_file_extent_item);
3800 if (btrfs_file_extent_type(src, extent) ==
3801 BTRFS_FILE_EXTENT_INLINE) {
3802 len = btrfs_file_extent_inline_len(src,
3803 src_path->slots[0],
3804 extent);
3805 *last_extent = ALIGN(key.offset + len,
3806 fs_info->sectorsize);
3807 } else {
3808 len = btrfs_file_extent_num_bytes(src, extent);
3809 *last_extent = key.offset + len;
3810 }
3811 }
3812fill_holes:
3813 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3814 * things could have happened
3815 *
3816 * 1) A merge could have happened, so we could currently be on a leaf
3817 * that holds what we were copying in the first place.
3818 * 2) A split could have happened, and now not all of the items we want
3819 * are on the same leaf.
3820 *
3821 * So we need to adjust how we search for holes, we need to drop the
3822 * path and re-search for the first extent key we found, and then walk
3823 * forward until we hit the last one we copied.
3824 */
3825 if (need_find_last_extent) {
3826 /* btrfs_prev_leaf could return 1 without releasing the path */
3827 btrfs_release_path(src_path);
3828 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3829 src_path, 0, 0);
3830 if (ret < 0)
3831 return ret;
3832 ASSERT(ret == 0);
3833 src = src_path->nodes[0];
3834 i = src_path->slots[0];
3835 } else {
3836 i = start_slot;
3837 }
3838
3839 /*
3840 * Ok so here we need to go through and fill in any holes we may have
3841 * to make sure that holes are punched for those areas in case they had
3842 * extents previously.
3843 */
3844 while (!done) {
3845 u64 offset, len;
3846 u64 extent_end;
3847
3848 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3849 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3850 if (ret < 0)
3851 return ret;
3852 ASSERT(ret == 0);
3853 src = src_path->nodes[0];
3854 i = 0;
3855 }
3856
3857 btrfs_item_key_to_cpu(src, &key, i);
3858 if (!btrfs_comp_cpu_keys(&key, &last_key))
3859 done = true;
3860 if (key.objectid != btrfs_ino(inode) ||
3861 key.type != BTRFS_EXTENT_DATA_KEY) {
3862 i++;
3863 continue;
3864 }
3865 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3866 if (btrfs_file_extent_type(src, extent) ==
3867 BTRFS_FILE_EXTENT_INLINE) {
3868 len = btrfs_file_extent_inline_len(src, i, extent);
3869 extent_end = ALIGN(key.offset + len,
3870 fs_info->sectorsize);
3871 } else {
3872 len = btrfs_file_extent_num_bytes(src, extent);
3873 extent_end = key.offset + len;
3874 }
3875 i++;
3876
3877 if (*last_extent == key.offset) {
3878 *last_extent = extent_end;
3879 continue;
3880 }
3881 offset = *last_extent;
3882 len = key.offset - *last_extent;
3883 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3884 offset, 0, 0, len, 0, len, 0,
3885 0, 0);
3886 if (ret)
3887 break;
3888 *last_extent = extent_end;
3889 }
3890 /*
3891 * Need to let the callers know we dropped the path so they should
3892 * re-search.
3893 */
3894 if (!ret && need_find_last_extent)
3895 ret = 1;
3896 return ret;
3897}
3898
3899static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3900{
3901 struct extent_map *em1, *em2;
3902
3903 em1 = list_entry(a, struct extent_map, list);
3904 em2 = list_entry(b, struct extent_map, list);
3905
3906 if (em1->start < em2->start)
3907 return -1;
3908 else if (em1->start > em2->start)
3909 return 1;
3910 return 0;
3911}
3912
3913static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3914 struct inode *inode,
3915 struct btrfs_root *root,
3916 const struct extent_map *em,
3917 const struct list_head *logged_list,
3918 bool *ordered_io_error)
3919{
3920 struct btrfs_fs_info *fs_info = root->fs_info;
3921 struct btrfs_ordered_extent *ordered;
3922 struct btrfs_root *log = root->log_root;
3923 u64 mod_start = em->mod_start;
3924 u64 mod_len = em->mod_len;
3925 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3926 u64 csum_offset;
3927 u64 csum_len;
3928 LIST_HEAD(ordered_sums);
3929 int ret = 0;
3930
3931 *ordered_io_error = false;
3932
3933 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3934 em->block_start == EXTENT_MAP_HOLE)
3935 return 0;
3936
3937 /*
3938 * Wait far any ordered extent that covers our extent map. If it
3939 * finishes without an error, first check and see if our csums are on
3940 * our outstanding ordered extents.
3941 */
3942 list_for_each_entry(ordered, logged_list, log_list) {
3943 struct btrfs_ordered_sum *sum;
3944
3945 if (!mod_len)
3946 break;
3947
3948 if (ordered->file_offset + ordered->len <= mod_start ||
3949 mod_start + mod_len <= ordered->file_offset)
3950 continue;
3951
3952 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3953 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3954 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3955 const u64 start = ordered->file_offset;
3956 const u64 end = ordered->file_offset + ordered->len - 1;
3957
3958 WARN_ON(ordered->inode != inode);
3959 filemap_fdatawrite_range(inode->i_mapping, start, end);
3960 }
3961
3962 wait_event(ordered->wait,
3963 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3964 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3965
3966 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3967 /*
3968 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3969 * i_mapping flags, so that the next fsync won't get
3970 * an outdated io error too.
3971 */
3972 filemap_check_errors(inode->i_mapping);
3973 *ordered_io_error = true;
3974 break;
3975 }
3976 /*
3977 * We are going to copy all the csums on this ordered extent, so
3978 * go ahead and adjust mod_start and mod_len in case this
3979 * ordered extent has already been logged.
3980 */
3981 if (ordered->file_offset > mod_start) {
3982 if (ordered->file_offset + ordered->len >=
3983 mod_start + mod_len)
3984 mod_len = ordered->file_offset - mod_start;
3985 /*
3986 * If we have this case
3987 *
3988 * |--------- logged extent ---------|
3989 * |----- ordered extent ----|
3990 *
3991 * Just don't mess with mod_start and mod_len, we'll
3992 * just end up logging more csums than we need and it
3993 * will be ok.
3994 */
3995 } else {
3996 if (ordered->file_offset + ordered->len <
3997 mod_start + mod_len) {
3998 mod_len = (mod_start + mod_len) -
3999 (ordered->file_offset + ordered->len);
4000 mod_start = ordered->file_offset +
4001 ordered->len;
4002 } else {
4003 mod_len = 0;
4004 }
4005 }
4006
4007 if (skip_csum)
4008 continue;
4009
4010 /*
4011 * To keep us from looping for the above case of an ordered
4012 * extent that falls inside of the logged extent.
4013 */
4014 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4015 &ordered->flags))
4016 continue;
4017
4018 list_for_each_entry(sum, &ordered->list, list) {
4019 ret = btrfs_csum_file_blocks(trans, log, sum);
4020 if (ret)
4021 break;
4022 }
4023 }
4024
4025 if (*ordered_io_error || !mod_len || ret || skip_csum)
4026 return ret;
4027
4028 if (em->compress_type) {
4029 csum_offset = 0;
4030 csum_len = max(em->block_len, em->orig_block_len);
4031 } else {
4032 csum_offset = mod_start - em->start;
4033 csum_len = mod_len;
4034 }
4035
4036 /* block start is already adjusted for the file extent offset. */
4037 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4038 em->block_start + csum_offset,
4039 em->block_start + csum_offset +
4040 csum_len - 1, &ordered_sums, 0);
4041 if (ret)
4042 return ret;
4043
4044 while (!list_empty(&ordered_sums)) {
4045 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4046 struct btrfs_ordered_sum,
4047 list);
4048 if (!ret)
4049 ret = btrfs_csum_file_blocks(trans, log, sums);
4050 list_del(&sums->list);
4051 kfree(sums);
4052 }
4053
4054 return ret;
4055}
4056
4057static int log_one_extent(struct btrfs_trans_handle *trans,
4058 struct inode *inode, struct btrfs_root *root,
4059 const struct extent_map *em,
4060 struct btrfs_path *path,
4061 const struct list_head *logged_list,
4062 struct btrfs_log_ctx *ctx)
4063{
4064 struct btrfs_root *log = root->log_root;
4065 struct btrfs_file_extent_item *fi;
4066 struct extent_buffer *leaf;
4067 struct btrfs_map_token token;
4068 struct btrfs_key key;
4069 u64 extent_offset = em->start - em->orig_start;
4070 u64 block_len;
4071 int ret;
4072 int extent_inserted = 0;
4073 bool ordered_io_err = false;
4074
4075 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4076 &ordered_io_err);
4077 if (ret)
4078 return ret;
4079
4080 if (ordered_io_err) {
4081 ctx->io_err = -EIO;
4082 return 0;
4083 }
4084
4085 btrfs_init_map_token(&token);
4086
4087 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4088 em->start + em->len, NULL, 0, 1,
4089 sizeof(*fi), &extent_inserted);
4090 if (ret)
4091 return ret;
4092
4093 if (!extent_inserted) {
4094 key.objectid = btrfs_ino(inode);
4095 key.type = BTRFS_EXTENT_DATA_KEY;
4096 key.offset = em->start;
4097
4098 ret = btrfs_insert_empty_item(trans, log, path, &key,
4099 sizeof(*fi));
4100 if (ret)
4101 return ret;
4102 }
4103 leaf = path->nodes[0];
4104 fi = btrfs_item_ptr(leaf, path->slots[0],
4105 struct btrfs_file_extent_item);
4106
4107 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4108 &token);
4109 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4110 btrfs_set_token_file_extent_type(leaf, fi,
4111 BTRFS_FILE_EXTENT_PREALLOC,
4112 &token);
4113 else
4114 btrfs_set_token_file_extent_type(leaf, fi,
4115 BTRFS_FILE_EXTENT_REG,
4116 &token);
4117
4118 block_len = max(em->block_len, em->orig_block_len);
4119 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4120 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4121 em->block_start,
4122 &token);
4123 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4124 &token);
4125 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4126 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4127 em->block_start -
4128 extent_offset, &token);
4129 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4130 &token);
4131 } else {
4132 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4133 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4134 &token);
4135 }
4136
4137 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4138 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4139 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4140 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4141 &token);
4142 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4143 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4144 btrfs_mark_buffer_dirty(leaf);
4145
4146 btrfs_release_path(path);
4147
4148 return ret;
4149}
4150
4151static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4152 struct btrfs_root *root,
4153 struct inode *inode,
4154 struct btrfs_path *path,
4155 struct list_head *logged_list,
4156 struct btrfs_log_ctx *ctx,
4157 const u64 start,
4158 const u64 end)
4159{
4160 struct extent_map *em, *n;
4161 struct list_head extents;
4162 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4163 u64 test_gen;
4164 int ret = 0;
4165 int num = 0;
4166
4167 INIT_LIST_HEAD(&extents);
4168
4169 down_write(&BTRFS_I(inode)->dio_sem);
4170 write_lock(&tree->lock);
4171 test_gen = root->fs_info->last_trans_committed;
4172
4173 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4174 list_del_init(&em->list);
4175
4176 /*
4177 * Just an arbitrary number, this can be really CPU intensive
4178 * once we start getting a lot of extents, and really once we
4179 * have a bunch of extents we just want to commit since it will
4180 * be faster.
4181 */
4182 if (++num > 32768) {
4183 list_del_init(&tree->modified_extents);
4184 ret = -EFBIG;
4185 goto process;
4186 }
4187
4188 if (em->generation <= test_gen)
4189 continue;
4190 /* Need a ref to keep it from getting evicted from cache */
4191 atomic_inc(&em->refs);
4192 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4193 list_add_tail(&em->list, &extents);
4194 num++;
4195 }
4196
4197 list_sort(NULL, &extents, extent_cmp);
4198 btrfs_get_logged_extents(inode, logged_list, start, end);
4199 /*
4200 * Some ordered extents started by fsync might have completed
4201 * before we could collect them into the list logged_list, which
4202 * means they're gone, not in our logged_list nor in the inode's
4203 * ordered tree. We want the application/user space to know an
4204 * error happened while attempting to persist file data so that
4205 * it can take proper action. If such error happened, we leave
4206 * without writing to the log tree and the fsync must report the
4207 * file data write error and not commit the current transaction.
4208 */
4209 ret = filemap_check_errors(inode->i_mapping);
4210 if (ret)
4211 ctx->io_err = ret;
4212process:
4213 while (!list_empty(&extents)) {
4214 em = list_entry(extents.next, struct extent_map, list);
4215
4216 list_del_init(&em->list);
4217
4218 /*
4219 * If we had an error we just need to delete everybody from our
4220 * private list.
4221 */
4222 if (ret) {
4223 clear_em_logging(tree, em);
4224 free_extent_map(em);
4225 continue;
4226 }
4227
4228 write_unlock(&tree->lock);
4229
4230 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4231 ctx);
4232 write_lock(&tree->lock);
4233 clear_em_logging(tree, em);
4234 free_extent_map(em);
4235 }
4236 WARN_ON(!list_empty(&extents));
4237 write_unlock(&tree->lock);
4238 up_write(&BTRFS_I(inode)->dio_sem);
4239
4240 btrfs_release_path(path);
4241 return ret;
4242}
4243
4244static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4245 struct btrfs_path *path, u64 *size_ret)
4246{
4247 struct btrfs_key key;
4248 int ret;
4249
4250 key.objectid = btrfs_ino(inode);
4251 key.type = BTRFS_INODE_ITEM_KEY;
4252 key.offset = 0;
4253
4254 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4255 if (ret < 0) {
4256 return ret;
4257 } else if (ret > 0) {
4258 *size_ret = 0;
4259 } else {
4260 struct btrfs_inode_item *item;
4261
4262 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4263 struct btrfs_inode_item);
4264 *size_ret = btrfs_inode_size(path->nodes[0], item);
4265 }
4266
4267 btrfs_release_path(path);
4268 return 0;
4269}
4270
4271/*
4272 * At the moment we always log all xattrs. This is to figure out at log replay
4273 * time which xattrs must have their deletion replayed. If a xattr is missing
4274 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4275 * because if a xattr is deleted, the inode is fsynced and a power failure
4276 * happens, causing the log to be replayed the next time the fs is mounted,
4277 * we want the xattr to not exist anymore (same behaviour as other filesystems
4278 * with a journal, ext3/4, xfs, f2fs, etc).
4279 */
4280static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4281 struct btrfs_root *root,
4282 struct inode *inode,
4283 struct btrfs_path *path,
4284 struct btrfs_path *dst_path)
4285{
4286 int ret;
4287 struct btrfs_key key;
4288 const u64 ino = btrfs_ino(inode);
4289 int ins_nr = 0;
4290 int start_slot = 0;
4291
4292 key.objectid = ino;
4293 key.type = BTRFS_XATTR_ITEM_KEY;
4294 key.offset = 0;
4295
4296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4297 if (ret < 0)
4298 return ret;
4299
4300 while (true) {
4301 int slot = path->slots[0];
4302 struct extent_buffer *leaf = path->nodes[0];
4303 int nritems = btrfs_header_nritems(leaf);
4304
4305 if (slot >= nritems) {
4306 if (ins_nr > 0) {
4307 u64 last_extent = 0;
4308
4309 ret = copy_items(trans, inode, dst_path, path,
4310 &last_extent, start_slot,
4311 ins_nr, 1, 0);
4312 /* can't be 1, extent items aren't processed */
4313 ASSERT(ret <= 0);
4314 if (ret < 0)
4315 return ret;
4316 ins_nr = 0;
4317 }
4318 ret = btrfs_next_leaf(root, path);
4319 if (ret < 0)
4320 return ret;
4321 else if (ret > 0)
4322 break;
4323 continue;
4324 }
4325
4326 btrfs_item_key_to_cpu(leaf, &key, slot);
4327 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4328 break;
4329
4330 if (ins_nr == 0)
4331 start_slot = slot;
4332 ins_nr++;
4333 path->slots[0]++;
4334 cond_resched();
4335 }
4336 if (ins_nr > 0) {
4337 u64 last_extent = 0;
4338
4339 ret = copy_items(trans, inode, dst_path, path,
4340 &last_extent, start_slot,
4341 ins_nr, 1, 0);
4342 /* can't be 1, extent items aren't processed */
4343 ASSERT(ret <= 0);
4344 if (ret < 0)
4345 return ret;
4346 }
4347
4348 return 0;
4349}
4350
4351/*
4352 * If the no holes feature is enabled we need to make sure any hole between the
4353 * last extent and the i_size of our inode is explicitly marked in the log. This
4354 * is to make sure that doing something like:
4355 *
4356 * 1) create file with 128Kb of data
4357 * 2) truncate file to 64Kb
4358 * 3) truncate file to 256Kb
4359 * 4) fsync file
4360 * 5) <crash/power failure>
4361 * 6) mount fs and trigger log replay
4362 *
4363 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4364 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4365 * file correspond to a hole. The presence of explicit holes in a log tree is
4366 * what guarantees that log replay will remove/adjust file extent items in the
4367 * fs/subvol tree.
4368 *
4369 * Here we do not need to care about holes between extents, that is already done
4370 * by copy_items(). We also only need to do this in the full sync path, where we
4371 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4372 * lookup the list of modified extent maps and if any represents a hole, we
4373 * insert a corresponding extent representing a hole in the log tree.
4374 */
4375static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root,
4377 struct inode *inode,
4378 struct btrfs_path *path)
4379{
4380 struct btrfs_fs_info *fs_info = root->fs_info;
4381 int ret;
4382 struct btrfs_key key;
4383 u64 hole_start;
4384 u64 hole_size;
4385 struct extent_buffer *leaf;
4386 struct btrfs_root *log = root->log_root;
4387 const u64 ino = btrfs_ino(inode);
4388 const u64 i_size = i_size_read(inode);
4389
4390 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4391 return 0;
4392
4393 key.objectid = ino;
4394 key.type = BTRFS_EXTENT_DATA_KEY;
4395 key.offset = (u64)-1;
4396
4397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398 ASSERT(ret != 0);
4399 if (ret < 0)
4400 return ret;
4401
4402 ASSERT(path->slots[0] > 0);
4403 path->slots[0]--;
4404 leaf = path->nodes[0];
4405 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4406
4407 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4408 /* inode does not have any extents */
4409 hole_start = 0;
4410 hole_size = i_size;
4411 } else {
4412 struct btrfs_file_extent_item *extent;
4413 u64 len;
4414
4415 /*
4416 * If there's an extent beyond i_size, an explicit hole was
4417 * already inserted by copy_items().
4418 */
4419 if (key.offset >= i_size)
4420 return 0;
4421
4422 extent = btrfs_item_ptr(leaf, path->slots[0],
4423 struct btrfs_file_extent_item);
4424
4425 if (btrfs_file_extent_type(leaf, extent) ==
4426 BTRFS_FILE_EXTENT_INLINE) {
4427 len = btrfs_file_extent_inline_len(leaf,
4428 path->slots[0],
4429 extent);
4430 ASSERT(len == i_size);
4431 return 0;
4432 }
4433
4434 len = btrfs_file_extent_num_bytes(leaf, extent);
4435 /* Last extent goes beyond i_size, no need to log a hole. */
4436 if (key.offset + len > i_size)
4437 return 0;
4438 hole_start = key.offset + len;
4439 hole_size = i_size - hole_start;
4440 }
4441 btrfs_release_path(path);
4442
4443 /* Last extent ends at i_size. */
4444 if (hole_size == 0)
4445 return 0;
4446
4447 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4448 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4449 hole_size, 0, hole_size, 0, 0, 0);
4450 return ret;
4451}
4452
4453/*
4454 * When we are logging a new inode X, check if it doesn't have a reference that
4455 * matches the reference from some other inode Y created in a past transaction
4456 * and that was renamed in the current transaction. If we don't do this, then at
4457 * log replay time we can lose inode Y (and all its files if it's a directory):
4458 *
4459 * mkdir /mnt/x
4460 * echo "hello world" > /mnt/x/foobar
4461 * sync
4462 * mv /mnt/x /mnt/y
4463 * mkdir /mnt/x # or touch /mnt/x
4464 * xfs_io -c fsync /mnt/x
4465 * <power fail>
4466 * mount fs, trigger log replay
4467 *
4468 * After the log replay procedure, we would lose the first directory and all its
4469 * files (file foobar).
4470 * For the case where inode Y is not a directory we simply end up losing it:
4471 *
4472 * echo "123" > /mnt/foo
4473 * sync
4474 * mv /mnt/foo /mnt/bar
4475 * echo "abc" > /mnt/foo
4476 * xfs_io -c fsync /mnt/foo
4477 * <power fail>
4478 *
4479 * We also need this for cases where a snapshot entry is replaced by some other
4480 * entry (file or directory) otherwise we end up with an unreplayable log due to
4481 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4482 * if it were a regular entry:
4483 *
4484 * mkdir /mnt/x
4485 * btrfs subvolume snapshot /mnt /mnt/x/snap
4486 * btrfs subvolume delete /mnt/x/snap
4487 * rmdir /mnt/x
4488 * mkdir /mnt/x
4489 * fsync /mnt/x or fsync some new file inside it
4490 * <power fail>
4491 *
4492 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4493 * the same transaction.
4494 */
4495static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4496 const int slot,
4497 const struct btrfs_key *key,
4498 struct inode *inode,
4499 u64 *other_ino)
4500{
4501 int ret;
4502 struct btrfs_path *search_path;
4503 char *name = NULL;
4504 u32 name_len = 0;
4505 u32 item_size = btrfs_item_size_nr(eb, slot);
4506 u32 cur_offset = 0;
4507 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4508
4509 search_path = btrfs_alloc_path();
4510 if (!search_path)
4511 return -ENOMEM;
4512 search_path->search_commit_root = 1;
4513 search_path->skip_locking = 1;
4514
4515 while (cur_offset < item_size) {
4516 u64 parent;
4517 u32 this_name_len;
4518 u32 this_len;
4519 unsigned long name_ptr;
4520 struct btrfs_dir_item *di;
4521
4522 if (key->type == BTRFS_INODE_REF_KEY) {
4523 struct btrfs_inode_ref *iref;
4524
4525 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4526 parent = key->offset;
4527 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4528 name_ptr = (unsigned long)(iref + 1);
4529 this_len = sizeof(*iref) + this_name_len;
4530 } else {
4531 struct btrfs_inode_extref *extref;
4532
4533 extref = (struct btrfs_inode_extref *)(ptr +
4534 cur_offset);
4535 parent = btrfs_inode_extref_parent(eb, extref);
4536 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4537 name_ptr = (unsigned long)&extref->name;
4538 this_len = sizeof(*extref) + this_name_len;
4539 }
4540
4541 if (this_name_len > name_len) {
4542 char *new_name;
4543
4544 new_name = krealloc(name, this_name_len, GFP_NOFS);
4545 if (!new_name) {
4546 ret = -ENOMEM;
4547 goto out;
4548 }
4549 name_len = this_name_len;
4550 name = new_name;
4551 }
4552
4553 read_extent_buffer(eb, name, name_ptr, this_name_len);
4554 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4555 search_path, parent,
4556 name, this_name_len, 0);
4557 if (di && !IS_ERR(di)) {
4558 struct btrfs_key di_key;
4559
4560 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4561 di, &di_key);
4562 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4563 ret = 1;
4564 *other_ino = di_key.objectid;
4565 } else {
4566 ret = -EAGAIN;
4567 }
4568 goto out;
4569 } else if (IS_ERR(di)) {
4570 ret = PTR_ERR(di);
4571 goto out;
4572 }
4573 btrfs_release_path(search_path);
4574
4575 cur_offset += this_len;
4576 }
4577 ret = 0;
4578out:
4579 btrfs_free_path(search_path);
4580 kfree(name);
4581 return ret;
4582}
4583
4584/* log a single inode in the tree log.
4585 * At least one parent directory for this inode must exist in the tree
4586 * or be logged already.
4587 *
4588 * Any items from this inode changed by the current transaction are copied
4589 * to the log tree. An extra reference is taken on any extents in this
4590 * file, allowing us to avoid a whole pile of corner cases around logging
4591 * blocks that have been removed from the tree.
4592 *
4593 * See LOG_INODE_ALL and related defines for a description of what inode_only
4594 * does.
4595 *
4596 * This handles both files and directories.
4597 */
4598static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4599 struct btrfs_root *root, struct inode *inode,
4600 int inode_only,
4601 const loff_t start,
4602 const loff_t end,
4603 struct btrfs_log_ctx *ctx)
4604{
4605 struct btrfs_fs_info *fs_info = root->fs_info;
4606 struct btrfs_path *path;
4607 struct btrfs_path *dst_path;
4608 struct btrfs_key min_key;
4609 struct btrfs_key max_key;
4610 struct btrfs_root *log = root->log_root;
4611 struct extent_buffer *src = NULL;
4612 LIST_HEAD(logged_list);
4613 u64 last_extent = 0;
4614 int err = 0;
4615 int ret;
4616 int nritems;
4617 int ins_start_slot = 0;
4618 int ins_nr;
4619 bool fast_search = false;
4620 u64 ino = btrfs_ino(inode);
4621 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4622 u64 logged_isize = 0;
4623 bool need_log_inode_item = true;
4624
4625 path = btrfs_alloc_path();
4626 if (!path)
4627 return -ENOMEM;
4628 dst_path = btrfs_alloc_path();
4629 if (!dst_path) {
4630 btrfs_free_path(path);
4631 return -ENOMEM;
4632 }
4633
4634 min_key.objectid = ino;
4635 min_key.type = BTRFS_INODE_ITEM_KEY;
4636 min_key.offset = 0;
4637
4638 max_key.objectid = ino;
4639
4640
4641 /* today the code can only do partial logging of directories */
4642 if (S_ISDIR(inode->i_mode) ||
4643 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4644 &BTRFS_I(inode)->runtime_flags) &&
4645 inode_only >= LOG_INODE_EXISTS))
4646 max_key.type = BTRFS_XATTR_ITEM_KEY;
4647 else
4648 max_key.type = (u8)-1;
4649 max_key.offset = (u64)-1;
4650
4651 /*
4652 * Only run delayed items if we are a dir or a new file.
4653 * Otherwise commit the delayed inode only, which is needed in
4654 * order for the log replay code to mark inodes for link count
4655 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4656 */
4657 if (S_ISDIR(inode->i_mode) ||
4658 BTRFS_I(inode)->generation > fs_info->last_trans_committed)
4659 ret = btrfs_commit_inode_delayed_items(trans, inode);
4660 else
4661 ret = btrfs_commit_inode_delayed_inode(inode);
4662
4663 if (ret) {
4664 btrfs_free_path(path);
4665 btrfs_free_path(dst_path);
4666 return ret;
4667 }
4668
4669 if (inode_only == LOG_OTHER_INODE) {
4670 inode_only = LOG_INODE_EXISTS;
4671 mutex_lock_nested(&BTRFS_I(inode)->log_mutex,
4672 SINGLE_DEPTH_NESTING);
4673 } else {
4674 mutex_lock(&BTRFS_I(inode)->log_mutex);
4675 }
4676
4677 /*
4678 * a brute force approach to making sure we get the most uptodate
4679 * copies of everything.
4680 */
4681 if (S_ISDIR(inode->i_mode)) {
4682 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4683
4684 if (inode_only == LOG_INODE_EXISTS)
4685 max_key_type = BTRFS_XATTR_ITEM_KEY;
4686 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4687 } else {
4688 if (inode_only == LOG_INODE_EXISTS) {
4689 /*
4690 * Make sure the new inode item we write to the log has
4691 * the same isize as the current one (if it exists).
4692 * This is necessary to prevent data loss after log
4693 * replay, and also to prevent doing a wrong expanding
4694 * truncate - for e.g. create file, write 4K into offset
4695 * 0, fsync, write 4K into offset 4096, add hard link,
4696 * fsync some other file (to sync log), power fail - if
4697 * we use the inode's current i_size, after log replay
4698 * we get a 8Kb file, with the last 4Kb extent as a hole
4699 * (zeroes), as if an expanding truncate happened,
4700 * instead of getting a file of 4Kb only.
4701 */
4702 err = logged_inode_size(log, inode, path,
4703 &logged_isize);
4704 if (err)
4705 goto out_unlock;
4706 }
4707 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4708 &BTRFS_I(inode)->runtime_flags)) {
4709 if (inode_only == LOG_INODE_EXISTS) {
4710 max_key.type = BTRFS_XATTR_ITEM_KEY;
4711 ret = drop_objectid_items(trans, log, path, ino,
4712 max_key.type);
4713 } else {
4714 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4715 &BTRFS_I(inode)->runtime_flags);
4716 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4717 &BTRFS_I(inode)->runtime_flags);
4718 while(1) {
4719 ret = btrfs_truncate_inode_items(trans,
4720 log, inode, 0, 0);
4721 if (ret != -EAGAIN)
4722 break;
4723 }
4724 }
4725 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4726 &BTRFS_I(inode)->runtime_flags) ||
4727 inode_only == LOG_INODE_EXISTS) {
4728 if (inode_only == LOG_INODE_ALL)
4729 fast_search = true;
4730 max_key.type = BTRFS_XATTR_ITEM_KEY;
4731 ret = drop_objectid_items(trans, log, path, ino,
4732 max_key.type);
4733 } else {
4734 if (inode_only == LOG_INODE_ALL)
4735 fast_search = true;
4736 goto log_extents;
4737 }
4738
4739 }
4740 if (ret) {
4741 err = ret;
4742 goto out_unlock;
4743 }
4744
4745 while (1) {
4746 ins_nr = 0;
4747 ret = btrfs_search_forward(root, &min_key,
4748 path, trans->transid);
4749 if (ret < 0) {
4750 err = ret;
4751 goto out_unlock;
4752 }
4753 if (ret != 0)
4754 break;
4755again:
4756 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4757 if (min_key.objectid != ino)
4758 break;
4759 if (min_key.type > max_key.type)
4760 break;
4761
4762 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4763 need_log_inode_item = false;
4764
4765 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4766 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4767 BTRFS_I(inode)->generation == trans->transid) {
4768 u64 other_ino = 0;
4769
4770 ret = btrfs_check_ref_name_override(path->nodes[0],
4771 path->slots[0],
4772 &min_key, inode,
4773 &other_ino);
4774 if (ret < 0) {
4775 err = ret;
4776 goto out_unlock;
4777 } else if (ret > 0 && ctx &&
4778 other_ino != btrfs_ino(ctx->inode)) {
4779 struct btrfs_key inode_key;
4780 struct inode *other_inode;
4781
4782 if (ins_nr > 0) {
4783 ins_nr++;
4784 } else {
4785 ins_nr = 1;
4786 ins_start_slot = path->slots[0];
4787 }
4788 ret = copy_items(trans, inode, dst_path, path,
4789 &last_extent, ins_start_slot,
4790 ins_nr, inode_only,
4791 logged_isize);
4792 if (ret < 0) {
4793 err = ret;
4794 goto out_unlock;
4795 }
4796 ins_nr = 0;
4797 btrfs_release_path(path);
4798 inode_key.objectid = other_ino;
4799 inode_key.type = BTRFS_INODE_ITEM_KEY;
4800 inode_key.offset = 0;
4801 other_inode = btrfs_iget(fs_info->sb,
4802 &inode_key, root,
4803 NULL);
4804 /*
4805 * If the other inode that had a conflicting dir
4806 * entry was deleted in the current transaction,
4807 * we don't need to do more work nor fallback to
4808 * a transaction commit.
4809 */
4810 if (IS_ERR(other_inode) &&
4811 PTR_ERR(other_inode) == -ENOENT) {
4812 goto next_key;
4813 } else if (IS_ERR(other_inode)) {
4814 err = PTR_ERR(other_inode);
4815 goto out_unlock;
4816 }
4817 /*
4818 * We are safe logging the other inode without
4819 * acquiring its i_mutex as long as we log with
4820 * the LOG_INODE_EXISTS mode. We're safe against
4821 * concurrent renames of the other inode as well
4822 * because during a rename we pin the log and
4823 * update the log with the new name before we
4824 * unpin it.
4825 */
4826 err = btrfs_log_inode(trans, root, other_inode,
4827 LOG_OTHER_INODE,
4828 0, LLONG_MAX, ctx);
4829 iput(other_inode);
4830 if (err)
4831 goto out_unlock;
4832 else
4833 goto next_key;
4834 }
4835 }
4836
4837 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4838 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4839 if (ins_nr == 0)
4840 goto next_slot;
4841 ret = copy_items(trans, inode, dst_path, path,
4842 &last_extent, ins_start_slot,
4843 ins_nr, inode_only, logged_isize);
4844 if (ret < 0) {
4845 err = ret;
4846 goto out_unlock;
4847 }
4848 ins_nr = 0;
4849 if (ret) {
4850 btrfs_release_path(path);
4851 continue;
4852 }
4853 goto next_slot;
4854 }
4855
4856 src = path->nodes[0];
4857 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4858 ins_nr++;
4859 goto next_slot;
4860 } else if (!ins_nr) {
4861 ins_start_slot = path->slots[0];
4862 ins_nr = 1;
4863 goto next_slot;
4864 }
4865
4866 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4867 ins_start_slot, ins_nr, inode_only,
4868 logged_isize);
4869 if (ret < 0) {
4870 err = ret;
4871 goto out_unlock;
4872 }
4873 if (ret) {
4874 ins_nr = 0;
4875 btrfs_release_path(path);
4876 continue;
4877 }
4878 ins_nr = 1;
4879 ins_start_slot = path->slots[0];
4880next_slot:
4881
4882 nritems = btrfs_header_nritems(path->nodes[0]);
4883 path->slots[0]++;
4884 if (path->slots[0] < nritems) {
4885 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4886 path->slots[0]);
4887 goto again;
4888 }
4889 if (ins_nr) {
4890 ret = copy_items(trans, inode, dst_path, path,
4891 &last_extent, ins_start_slot,
4892 ins_nr, inode_only, logged_isize);
4893 if (ret < 0) {
4894 err = ret;
4895 goto out_unlock;
4896 }
4897 ret = 0;
4898 ins_nr = 0;
4899 }
4900 btrfs_release_path(path);
4901next_key:
4902 if (min_key.offset < (u64)-1) {
4903 min_key.offset++;
4904 } else if (min_key.type < max_key.type) {
4905 min_key.type++;
4906 min_key.offset = 0;
4907 } else {
4908 break;
4909 }
4910 }
4911 if (ins_nr) {
4912 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4913 ins_start_slot, ins_nr, inode_only,
4914 logged_isize);
4915 if (ret < 0) {
4916 err = ret;
4917 goto out_unlock;
4918 }
4919 ret = 0;
4920 ins_nr = 0;
4921 }
4922
4923 btrfs_release_path(path);
4924 btrfs_release_path(dst_path);
4925 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4926 if (err)
4927 goto out_unlock;
4928 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4929 btrfs_release_path(path);
4930 btrfs_release_path(dst_path);
4931 err = btrfs_log_trailing_hole(trans, root, inode, path);
4932 if (err)
4933 goto out_unlock;
4934 }
4935log_extents:
4936 btrfs_release_path(path);
4937 btrfs_release_path(dst_path);
4938 if (need_log_inode_item) {
4939 err = log_inode_item(trans, log, dst_path, inode);
4940 if (err)
4941 goto out_unlock;
4942 }
4943 if (fast_search) {
4944 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4945 &logged_list, ctx, start, end);
4946 if (ret) {
4947 err = ret;
4948 goto out_unlock;
4949 }
4950 } else if (inode_only == LOG_INODE_ALL) {
4951 struct extent_map *em, *n;
4952
4953 write_lock(&em_tree->lock);
4954 /*
4955 * We can't just remove every em if we're called for a ranged
4956 * fsync - that is, one that doesn't cover the whole possible
4957 * file range (0 to LLONG_MAX). This is because we can have
4958 * em's that fall outside the range we're logging and therefore
4959 * their ordered operations haven't completed yet
4960 * (btrfs_finish_ordered_io() not invoked yet). This means we
4961 * didn't get their respective file extent item in the fs/subvol
4962 * tree yet, and need to let the next fast fsync (one which
4963 * consults the list of modified extent maps) find the em so
4964 * that it logs a matching file extent item and waits for the
4965 * respective ordered operation to complete (if it's still
4966 * running).
4967 *
4968 * Removing every em outside the range we're logging would make
4969 * the next fast fsync not log their matching file extent items,
4970 * therefore making us lose data after a log replay.
4971 */
4972 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4973 list) {
4974 const u64 mod_end = em->mod_start + em->mod_len - 1;
4975
4976 if (em->mod_start >= start && mod_end <= end)
4977 list_del_init(&em->list);
4978 }
4979 write_unlock(&em_tree->lock);
4980 }
4981
4982 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4983 ret = log_directory_changes(trans, root, inode, path, dst_path,
4984 ctx);
4985 if (ret) {
4986 err = ret;
4987 goto out_unlock;
4988 }
4989 }
4990
4991 spin_lock(&BTRFS_I(inode)->lock);
4992 BTRFS_I(inode)->logged_trans = trans->transid;
4993 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4994 spin_unlock(&BTRFS_I(inode)->lock);
4995out_unlock:
4996 if (unlikely(err))
4997 btrfs_put_logged_extents(&logged_list);
4998 else
4999 btrfs_submit_logged_extents(&logged_list, log);
5000 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5001
5002 btrfs_free_path(path);
5003 btrfs_free_path(dst_path);
5004 return err;
5005}
5006
5007/*
5008 * Check if we must fallback to a transaction commit when logging an inode.
5009 * This must be called after logging the inode and is used only in the context
5010 * when fsyncing an inode requires the need to log some other inode - in which
5011 * case we can't lock the i_mutex of each other inode we need to log as that
5012 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5013 * log inodes up or down in the hierarchy) or rename operations for example. So
5014 * we take the log_mutex of the inode after we have logged it and then check for
5015 * its last_unlink_trans value - this is safe because any task setting
5016 * last_unlink_trans must take the log_mutex and it must do this before it does
5017 * the actual unlink operation, so if we do this check before a concurrent task
5018 * sets last_unlink_trans it means we've logged a consistent version/state of
5019 * all the inode items, otherwise we are not sure and must do a transaction
5020 * commit (the concurrent task might have only updated last_unlink_trans before
5021 * we logged the inode or it might have also done the unlink).
5022 */
5023static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5024 struct inode *inode)
5025{
5026 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5027 bool ret = false;
5028
5029 mutex_lock(&BTRFS_I(inode)->log_mutex);
5030 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5031 /*
5032 * Make sure any commits to the log are forced to be full
5033 * commits.
5034 */
5035 btrfs_set_log_full_commit(fs_info, trans);
5036 ret = true;
5037 }
5038 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5039
5040 return ret;
5041}
5042
5043/*
5044 * follow the dentry parent pointers up the chain and see if any
5045 * of the directories in it require a full commit before they can
5046 * be logged. Returns zero if nothing special needs to be done or 1 if
5047 * a full commit is required.
5048 */
5049static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5050 struct inode *inode,
5051 struct dentry *parent,
5052 struct super_block *sb,
5053 u64 last_committed)
5054{
5055 int ret = 0;
5056 struct dentry *old_parent = NULL;
5057 struct inode *orig_inode = inode;
5058
5059 /*
5060 * for regular files, if its inode is already on disk, we don't
5061 * have to worry about the parents at all. This is because
5062 * we can use the last_unlink_trans field to record renames
5063 * and other fun in this file.
5064 */
5065 if (S_ISREG(inode->i_mode) &&
5066 BTRFS_I(inode)->generation <= last_committed &&
5067 BTRFS_I(inode)->last_unlink_trans <= last_committed)
5068 goto out;
5069
5070 if (!S_ISDIR(inode->i_mode)) {
5071 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5072 goto out;
5073 inode = d_inode(parent);
5074 }
5075
5076 while (1) {
5077 /*
5078 * If we are logging a directory then we start with our inode,
5079 * not our parent's inode, so we need to skip setting the
5080 * logged_trans so that further down in the log code we don't
5081 * think this inode has already been logged.
5082 */
5083 if (inode != orig_inode)
5084 BTRFS_I(inode)->logged_trans = trans->transid;
5085 smp_mb();
5086
5087 if (btrfs_must_commit_transaction(trans, inode)) {
5088 ret = 1;
5089 break;
5090 }
5091
5092 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5093 break;
5094
5095 if (IS_ROOT(parent)) {
5096 inode = d_inode(parent);
5097 if (btrfs_must_commit_transaction(trans, inode))
5098 ret = 1;
5099 break;
5100 }
5101
5102 parent = dget_parent(parent);
5103 dput(old_parent);
5104 old_parent = parent;
5105 inode = d_inode(parent);
5106
5107 }
5108 dput(old_parent);
5109out:
5110 return ret;
5111}
5112
5113struct btrfs_dir_list {
5114 u64 ino;
5115 struct list_head list;
5116};
5117
5118/*
5119 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5120 * details about the why it is needed.
5121 * This is a recursive operation - if an existing dentry corresponds to a
5122 * directory, that directory's new entries are logged too (same behaviour as
5123 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5124 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5125 * complains about the following circular lock dependency / possible deadlock:
5126 *
5127 * CPU0 CPU1
5128 * ---- ----
5129 * lock(&type->i_mutex_dir_key#3/2);
5130 * lock(sb_internal#2);
5131 * lock(&type->i_mutex_dir_key#3/2);
5132 * lock(&sb->s_type->i_mutex_key#14);
5133 *
5134 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5135 * sb_start_intwrite() in btrfs_start_transaction().
5136 * Not locking i_mutex of the inodes is still safe because:
5137 *
5138 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5139 * that while logging the inode new references (names) are added or removed
5140 * from the inode, leaving the logged inode item with a link count that does
5141 * not match the number of logged inode reference items. This is fine because
5142 * at log replay time we compute the real number of links and correct the
5143 * link count in the inode item (see replay_one_buffer() and
5144 * link_to_fixup_dir());
5145 *
5146 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5147 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5148 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5149 * has a size that doesn't match the sum of the lengths of all the logged
5150 * names. This does not result in a problem because if a dir_item key is
5151 * logged but its matching dir_index key is not logged, at log replay time we
5152 * don't use it to replay the respective name (see replay_one_name()). On the
5153 * other hand if only the dir_index key ends up being logged, the respective
5154 * name is added to the fs/subvol tree with both the dir_item and dir_index
5155 * keys created (see replay_one_name()).
5156 * The directory's inode item with a wrong i_size is not a problem as well,
5157 * since we don't use it at log replay time to set the i_size in the inode
5158 * item of the fs/subvol tree (see overwrite_item()).
5159 */
5160static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5161 struct btrfs_root *root,
5162 struct inode *start_inode,
5163 struct btrfs_log_ctx *ctx)
5164{
5165 struct btrfs_fs_info *fs_info = root->fs_info;
5166 struct btrfs_root *log = root->log_root;
5167 struct btrfs_path *path;
5168 LIST_HEAD(dir_list);
5169 struct btrfs_dir_list *dir_elem;
5170 int ret = 0;
5171
5172 path = btrfs_alloc_path();
5173 if (!path)
5174 return -ENOMEM;
5175
5176 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5177 if (!dir_elem) {
5178 btrfs_free_path(path);
5179 return -ENOMEM;
5180 }
5181 dir_elem->ino = btrfs_ino(start_inode);
5182 list_add_tail(&dir_elem->list, &dir_list);
5183
5184 while (!list_empty(&dir_list)) {
5185 struct extent_buffer *leaf;
5186 struct btrfs_key min_key;
5187 int nritems;
5188 int i;
5189
5190 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5191 list);
5192 if (ret)
5193 goto next_dir_inode;
5194
5195 min_key.objectid = dir_elem->ino;
5196 min_key.type = BTRFS_DIR_ITEM_KEY;
5197 min_key.offset = 0;
5198again:
5199 btrfs_release_path(path);
5200 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5201 if (ret < 0) {
5202 goto next_dir_inode;
5203 } else if (ret > 0) {
5204 ret = 0;
5205 goto next_dir_inode;
5206 }
5207
5208process_leaf:
5209 leaf = path->nodes[0];
5210 nritems = btrfs_header_nritems(leaf);
5211 for (i = path->slots[0]; i < nritems; i++) {
5212 struct btrfs_dir_item *di;
5213 struct btrfs_key di_key;
5214 struct inode *di_inode;
5215 struct btrfs_dir_list *new_dir_elem;
5216 int log_mode = LOG_INODE_EXISTS;
5217 int type;
5218
5219 btrfs_item_key_to_cpu(leaf, &min_key, i);
5220 if (min_key.objectid != dir_elem->ino ||
5221 min_key.type != BTRFS_DIR_ITEM_KEY)
5222 goto next_dir_inode;
5223
5224 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5225 type = btrfs_dir_type(leaf, di);
5226 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5227 type != BTRFS_FT_DIR)
5228 continue;
5229 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5230 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5231 continue;
5232
5233 btrfs_release_path(path);
5234 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5235 if (IS_ERR(di_inode)) {
5236 ret = PTR_ERR(di_inode);
5237 goto next_dir_inode;
5238 }
5239
5240 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5241 iput(di_inode);
5242 break;
5243 }
5244
5245 ctx->log_new_dentries = false;
5246 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5247 log_mode = LOG_INODE_ALL;
5248 ret = btrfs_log_inode(trans, root, di_inode,
5249 log_mode, 0, LLONG_MAX, ctx);
5250 if (!ret &&
5251 btrfs_must_commit_transaction(trans, di_inode))
5252 ret = 1;
5253 iput(di_inode);
5254 if (ret)
5255 goto next_dir_inode;
5256 if (ctx->log_new_dentries) {
5257 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5258 GFP_NOFS);
5259 if (!new_dir_elem) {
5260 ret = -ENOMEM;
5261 goto next_dir_inode;
5262 }
5263 new_dir_elem->ino = di_key.objectid;
5264 list_add_tail(&new_dir_elem->list, &dir_list);
5265 }
5266 break;
5267 }
5268 if (i == nritems) {
5269 ret = btrfs_next_leaf(log, path);
5270 if (ret < 0) {
5271 goto next_dir_inode;
5272 } else if (ret > 0) {
5273 ret = 0;
5274 goto next_dir_inode;
5275 }
5276 goto process_leaf;
5277 }
5278 if (min_key.offset < (u64)-1) {
5279 min_key.offset++;
5280 goto again;
5281 }
5282next_dir_inode:
5283 list_del(&dir_elem->list);
5284 kfree(dir_elem);
5285 }
5286
5287 btrfs_free_path(path);
5288 return ret;
5289}
5290
5291static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5292 struct inode *inode,
5293 struct btrfs_log_ctx *ctx)
5294{
5295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5296 int ret;
5297 struct btrfs_path *path;
5298 struct btrfs_key key;
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 const u64 ino = btrfs_ino(inode);
5301
5302 path = btrfs_alloc_path();
5303 if (!path)
5304 return -ENOMEM;
5305 path->skip_locking = 1;
5306 path->search_commit_root = 1;
5307
5308 key.objectid = ino;
5309 key.type = BTRFS_INODE_REF_KEY;
5310 key.offset = 0;
5311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5312 if (ret < 0)
5313 goto out;
5314
5315 while (true) {
5316 struct extent_buffer *leaf = path->nodes[0];
5317 int slot = path->slots[0];
5318 u32 cur_offset = 0;
5319 u32 item_size;
5320 unsigned long ptr;
5321
5322 if (slot >= btrfs_header_nritems(leaf)) {
5323 ret = btrfs_next_leaf(root, path);
5324 if (ret < 0)
5325 goto out;
5326 else if (ret > 0)
5327 break;
5328 continue;
5329 }
5330
5331 btrfs_item_key_to_cpu(leaf, &key, slot);
5332 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5333 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5334 break;
5335
5336 item_size = btrfs_item_size_nr(leaf, slot);
5337 ptr = btrfs_item_ptr_offset(leaf, slot);
5338 while (cur_offset < item_size) {
5339 struct btrfs_key inode_key;
5340 struct inode *dir_inode;
5341
5342 inode_key.type = BTRFS_INODE_ITEM_KEY;
5343 inode_key.offset = 0;
5344
5345 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5346 struct btrfs_inode_extref *extref;
5347
5348 extref = (struct btrfs_inode_extref *)
5349 (ptr + cur_offset);
5350 inode_key.objectid = btrfs_inode_extref_parent(
5351 leaf, extref);
5352 cur_offset += sizeof(*extref);
5353 cur_offset += btrfs_inode_extref_name_len(leaf,
5354 extref);
5355 } else {
5356 inode_key.objectid = key.offset;
5357 cur_offset = item_size;
5358 }
5359
5360 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5361 root, NULL);
5362 /* If parent inode was deleted, skip it. */
5363 if (IS_ERR(dir_inode))
5364 continue;
5365
5366 if (ctx)
5367 ctx->log_new_dentries = false;
5368 ret = btrfs_log_inode(trans, root, dir_inode,
5369 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5370 if (!ret &&
5371 btrfs_must_commit_transaction(trans, dir_inode))
5372 ret = 1;
5373 if (!ret && ctx && ctx->log_new_dentries)
5374 ret = log_new_dir_dentries(trans, root,
5375 dir_inode, ctx);
5376 iput(dir_inode);
5377 if (ret)
5378 goto out;
5379 }
5380 path->slots[0]++;
5381 }
5382 ret = 0;
5383out:
5384 btrfs_free_path(path);
5385 return ret;
5386}
5387
5388/*
5389 * helper function around btrfs_log_inode to make sure newly created
5390 * parent directories also end up in the log. A minimal inode and backref
5391 * only logging is done of any parent directories that are older than
5392 * the last committed transaction
5393 */
5394static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5395 struct btrfs_root *root, struct inode *inode,
5396 struct dentry *parent,
5397 const loff_t start,
5398 const loff_t end,
5399 int exists_only,
5400 struct btrfs_log_ctx *ctx)
5401{
5402 struct btrfs_fs_info *fs_info = root->fs_info;
5403 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5404 struct super_block *sb;
5405 struct dentry *old_parent = NULL;
5406 int ret = 0;
5407 u64 last_committed = fs_info->last_trans_committed;
5408 bool log_dentries = false;
5409 struct inode *orig_inode = inode;
5410
5411 sb = inode->i_sb;
5412
5413 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5414 ret = 1;
5415 goto end_no_trans;
5416 }
5417
5418 /*
5419 * The prev transaction commit doesn't complete, we need do
5420 * full commit by ourselves.
5421 */
5422 if (fs_info->last_trans_log_full_commit >
5423 fs_info->last_trans_committed) {
5424 ret = 1;
5425 goto end_no_trans;
5426 }
5427
5428 if (root != BTRFS_I(inode)->root ||
5429 btrfs_root_refs(&root->root_item) == 0) {
5430 ret = 1;
5431 goto end_no_trans;
5432 }
5433
5434 ret = check_parent_dirs_for_sync(trans, inode, parent,
5435 sb, last_committed);
5436 if (ret)
5437 goto end_no_trans;
5438
5439 if (btrfs_inode_in_log(inode, trans->transid)) {
5440 ret = BTRFS_NO_LOG_SYNC;
5441 goto end_no_trans;
5442 }
5443
5444 ret = start_log_trans(trans, root, ctx);
5445 if (ret)
5446 goto end_no_trans;
5447
5448 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5449 if (ret)
5450 goto end_trans;
5451
5452 /*
5453 * for regular files, if its inode is already on disk, we don't
5454 * have to worry about the parents at all. This is because
5455 * we can use the last_unlink_trans field to record renames
5456 * and other fun in this file.
5457 */
5458 if (S_ISREG(inode->i_mode) &&
5459 BTRFS_I(inode)->generation <= last_committed &&
5460 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5461 ret = 0;
5462 goto end_trans;
5463 }
5464
5465 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5466 log_dentries = true;
5467
5468 /*
5469 * On unlink we must make sure all our current and old parent directory
5470 * inodes are fully logged. This is to prevent leaving dangling
5471 * directory index entries in directories that were our parents but are
5472 * not anymore. Not doing this results in old parent directory being
5473 * impossible to delete after log replay (rmdir will always fail with
5474 * error -ENOTEMPTY).
5475 *
5476 * Example 1:
5477 *
5478 * mkdir testdir
5479 * touch testdir/foo
5480 * ln testdir/foo testdir/bar
5481 * sync
5482 * unlink testdir/bar
5483 * xfs_io -c fsync testdir/foo
5484 * <power failure>
5485 * mount fs, triggers log replay
5486 *
5487 * If we don't log the parent directory (testdir), after log replay the
5488 * directory still has an entry pointing to the file inode using the bar
5489 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5490 * the file inode has a link count of 1.
5491 *
5492 * Example 2:
5493 *
5494 * mkdir testdir
5495 * touch foo
5496 * ln foo testdir/foo2
5497 * ln foo testdir/foo3
5498 * sync
5499 * unlink testdir/foo3
5500 * xfs_io -c fsync foo
5501 * <power failure>
5502 * mount fs, triggers log replay
5503 *
5504 * Similar as the first example, after log replay the parent directory
5505 * testdir still has an entry pointing to the inode file with name foo3
5506 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5507 * and has a link count of 2.
5508 */
5509 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5510 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5511 if (ret)
5512 goto end_trans;
5513 }
5514
5515 while (1) {
5516 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5517 break;
5518
5519 inode = d_inode(parent);
5520 if (root != BTRFS_I(inode)->root)
5521 break;
5522
5523 if (BTRFS_I(inode)->generation > last_committed) {
5524 ret = btrfs_log_inode(trans, root, inode,
5525 LOG_INODE_EXISTS,
5526 0, LLONG_MAX, ctx);
5527 if (ret)
5528 goto end_trans;
5529 }
5530 if (IS_ROOT(parent))
5531 break;
5532
5533 parent = dget_parent(parent);
5534 dput(old_parent);
5535 old_parent = parent;
5536 }
5537 if (log_dentries)
5538 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5539 else
5540 ret = 0;
5541end_trans:
5542 dput(old_parent);
5543 if (ret < 0) {
5544 btrfs_set_log_full_commit(fs_info, trans);
5545 ret = 1;
5546 }
5547
5548 if (ret)
5549 btrfs_remove_log_ctx(root, ctx);
5550 btrfs_end_log_trans(root);
5551end_no_trans:
5552 return ret;
5553}
5554
5555/*
5556 * it is not safe to log dentry if the chunk root has added new
5557 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5558 * If this returns 1, you must commit the transaction to safely get your
5559 * data on disk.
5560 */
5561int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5562 struct btrfs_root *root, struct dentry *dentry,
5563 const loff_t start,
5564 const loff_t end,
5565 struct btrfs_log_ctx *ctx)
5566{
5567 struct dentry *parent = dget_parent(dentry);
5568 int ret;
5569
5570 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5571 start, end, 0, ctx);
5572 dput(parent);
5573
5574 return ret;
5575}
5576
5577/*
5578 * should be called during mount to recover any replay any log trees
5579 * from the FS
5580 */
5581int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5582{
5583 int ret;
5584 struct btrfs_path *path;
5585 struct btrfs_trans_handle *trans;
5586 struct btrfs_key key;
5587 struct btrfs_key found_key;
5588 struct btrfs_key tmp_key;
5589 struct btrfs_root *log;
5590 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5591 struct walk_control wc = {
5592 .process_func = process_one_buffer,
5593 .stage = 0,
5594 };
5595
5596 path = btrfs_alloc_path();
5597 if (!path)
5598 return -ENOMEM;
5599
5600 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5601
5602 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5603 if (IS_ERR(trans)) {
5604 ret = PTR_ERR(trans);
5605 goto error;
5606 }
5607
5608 wc.trans = trans;
5609 wc.pin = 1;
5610
5611 ret = walk_log_tree(trans, log_root_tree, &wc);
5612 if (ret) {
5613 btrfs_handle_fs_error(fs_info, ret,
5614 "Failed to pin buffers while recovering log root tree.");
5615 goto error;
5616 }
5617
5618again:
5619 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5620 key.offset = (u64)-1;
5621 key.type = BTRFS_ROOT_ITEM_KEY;
5622
5623 while (1) {
5624 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5625
5626 if (ret < 0) {
5627 btrfs_handle_fs_error(fs_info, ret,
5628 "Couldn't find tree log root.");
5629 goto error;
5630 }
5631 if (ret > 0) {
5632 if (path->slots[0] == 0)
5633 break;
5634 path->slots[0]--;
5635 }
5636 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5637 path->slots[0]);
5638 btrfs_release_path(path);
5639 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5640 break;
5641
5642 log = btrfs_read_fs_root(log_root_tree, &found_key);
5643 if (IS_ERR(log)) {
5644 ret = PTR_ERR(log);
5645 btrfs_handle_fs_error(fs_info, ret,
5646 "Couldn't read tree log root.");
5647 goto error;
5648 }
5649
5650 tmp_key.objectid = found_key.offset;
5651 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5652 tmp_key.offset = (u64)-1;
5653
5654 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5655 if (IS_ERR(wc.replay_dest)) {
5656 ret = PTR_ERR(wc.replay_dest);
5657 free_extent_buffer(log->node);
5658 free_extent_buffer(log->commit_root);
5659 kfree(log);
5660 btrfs_handle_fs_error(fs_info, ret,
5661 "Couldn't read target root for tree log recovery.");
5662 goto error;
5663 }
5664
5665 wc.replay_dest->log_root = log;
5666 btrfs_record_root_in_trans(trans, wc.replay_dest);
5667 ret = walk_log_tree(trans, log, &wc);
5668
5669 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5670 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5671 path);
5672 }
5673
5674 key.offset = found_key.offset - 1;
5675 wc.replay_dest->log_root = NULL;
5676 free_extent_buffer(log->node);
5677 free_extent_buffer(log->commit_root);
5678 kfree(log);
5679
5680 if (ret)
5681 goto error;
5682
5683 if (found_key.offset == 0)
5684 break;
5685 }
5686 btrfs_release_path(path);
5687
5688 /* step one is to pin it all, step two is to replay just inodes */
5689 if (wc.pin) {
5690 wc.pin = 0;
5691 wc.process_func = replay_one_buffer;
5692 wc.stage = LOG_WALK_REPLAY_INODES;
5693 goto again;
5694 }
5695 /* step three is to replay everything */
5696 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5697 wc.stage++;
5698 goto again;
5699 }
5700
5701 btrfs_free_path(path);
5702
5703 /* step 4: commit the transaction, which also unpins the blocks */
5704 ret = btrfs_commit_transaction(trans);
5705 if (ret)
5706 return ret;
5707
5708 free_extent_buffer(log_root_tree->node);
5709 log_root_tree->log_root = NULL;
5710 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5711 kfree(log_root_tree);
5712
5713 return 0;
5714error:
5715 if (wc.trans)
5716 btrfs_end_transaction(wc.trans);
5717 btrfs_free_path(path);
5718 return ret;
5719}
5720
5721/*
5722 * there are some corner cases where we want to force a full
5723 * commit instead of allowing a directory to be logged.
5724 *
5725 * They revolve around files there were unlinked from the directory, and
5726 * this function updates the parent directory so that a full commit is
5727 * properly done if it is fsync'd later after the unlinks are done.
5728 *
5729 * Must be called before the unlink operations (updates to the subvolume tree,
5730 * inodes, etc) are done.
5731 */
5732void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5733 struct inode *dir, struct inode *inode,
5734 int for_rename)
5735{
5736 /*
5737 * when we're logging a file, if it hasn't been renamed
5738 * or unlinked, and its inode is fully committed on disk,
5739 * we don't have to worry about walking up the directory chain
5740 * to log its parents.
5741 *
5742 * So, we use the last_unlink_trans field to put this transid
5743 * into the file. When the file is logged we check it and
5744 * don't log the parents if the file is fully on disk.
5745 */
5746 mutex_lock(&BTRFS_I(inode)->log_mutex);
5747 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5748 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5749
5750 /*
5751 * if this directory was already logged any new
5752 * names for this file/dir will get recorded
5753 */
5754 smp_mb();
5755 if (BTRFS_I(dir)->logged_trans == trans->transid)
5756 return;
5757
5758 /*
5759 * if the inode we're about to unlink was logged,
5760 * the log will be properly updated for any new names
5761 */
5762 if (BTRFS_I(inode)->logged_trans == trans->transid)
5763 return;
5764
5765 /*
5766 * when renaming files across directories, if the directory
5767 * there we're unlinking from gets fsync'd later on, there's
5768 * no way to find the destination directory later and fsync it
5769 * properly. So, we have to be conservative and force commits
5770 * so the new name gets discovered.
5771 */
5772 if (for_rename)
5773 goto record;
5774
5775 /* we can safely do the unlink without any special recording */
5776 return;
5777
5778record:
5779 mutex_lock(&BTRFS_I(dir)->log_mutex);
5780 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5781 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5782}
5783
5784/*
5785 * Make sure that if someone attempts to fsync the parent directory of a deleted
5786 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5787 * that after replaying the log tree of the parent directory's root we will not
5788 * see the snapshot anymore and at log replay time we will not see any log tree
5789 * corresponding to the deleted snapshot's root, which could lead to replaying
5790 * it after replaying the log tree of the parent directory (which would replay
5791 * the snapshot delete operation).
5792 *
5793 * Must be called before the actual snapshot destroy operation (updates to the
5794 * parent root and tree of tree roots trees, etc) are done.
5795 */
5796void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5797 struct inode *dir)
5798{
5799 mutex_lock(&BTRFS_I(dir)->log_mutex);
5800 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5801 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5802}
5803
5804/*
5805 * Call this after adding a new name for a file and it will properly
5806 * update the log to reflect the new name.
5807 *
5808 * It will return zero if all goes well, and it will return 1 if a
5809 * full transaction commit is required.
5810 */
5811int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5812 struct inode *inode, struct inode *old_dir,
5813 struct dentry *parent)
5814{
5815 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5816 struct btrfs_root * root = BTRFS_I(inode)->root;
5817
5818 /*
5819 * this will force the logging code to walk the dentry chain
5820 * up for the file
5821 */
5822 if (S_ISREG(inode->i_mode))
5823 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5824
5825 /*
5826 * if this inode hasn't been logged and directory we're renaming it
5827 * from hasn't been logged, we don't need to log it
5828 */
5829 if (BTRFS_I(inode)->logged_trans <=
5830 fs_info->last_trans_committed &&
5831 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5832 fs_info->last_trans_committed))
5833 return 0;
5834
5835 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5836 LLONG_MAX, 1, NULL);
5837}
5838
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "ctree.h"
12#include "tree-log.h"
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "inode-map.h"
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
29#define LOG_OTHER_INODE 2
30
31/*
32 * directory trouble cases
33 *
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
38 *
39 * mkdir foo/some_dir
40 * normal commit
41 * rename foo/some_dir foo2/some_dir
42 * mkdir foo/some_dir
43 * fsync foo/some_dir/some_file
44 *
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
48 *
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
51 *
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
55 *
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
58 *
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
61 *
62 * mkdir f1/foo
63 * normal commit
64 * rm -rf f1/foo
65 * fsync(f1)
66 *
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
71 * ugly details.
72 */
73
74/*
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
79 *
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
82 */
83#define LOG_WALK_PIN_ONLY 0
84#define LOG_WALK_REPLAY_INODES 1
85#define LOG_WALK_REPLAY_DIR_INDEX 2
86#define LOG_WALK_REPLAY_ALL 3
87
88static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
90 int inode_only,
91 const loff_t start,
92 const loff_t end,
93 struct btrfs_log_ctx *ctx);
94static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
102
103/*
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
106 *
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
110 *
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
116 *
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
120 *
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
124 */
125
126/*
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
130 */
131static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
134{
135 struct btrfs_fs_info *fs_info = root->fs_info;
136 int ret = 0;
137
138 mutex_lock(&root->log_mutex);
139
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
142 ret = -EAGAIN;
143 goto out;
144 }
145
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 }
152 } else {
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
157 if (ret)
158 goto out;
159
160 ret = btrfs_add_log_tree(trans, root);
161 if (ret)
162 goto out;
163
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
166 }
167
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
170 if (ctx) {
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
174 }
175
176out:
177 mutex_unlock(&root->log_mutex);
178 return ret;
179}
180
181/*
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
184 * in progress
185 */
186static int join_running_log_trans(struct btrfs_root *root)
187{
188 int ret = -ENOENT;
189
190 smp_mb();
191 if (!root->log_root)
192 return -ENOENT;
193
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
196 ret = 0;
197 atomic_inc(&root->log_writers);
198 }
199 mutex_unlock(&root->log_mutex);
200 return ret;
201}
202
203/*
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
207 */
208int btrfs_pin_log_trans(struct btrfs_root *root)
209{
210 int ret = -ENOENT;
211
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
215 return ret;
216}
217
218/*
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
221 */
222void btrfs_end_log_trans(struct btrfs_root *root)
223{
224 if (atomic_dec_and_test(&root->log_writers)) {
225 /*
226 * Implicit memory barrier after atomic_dec_and_test
227 */
228 if (waitqueue_active(&root->log_writer_wait))
229 wake_up(&root->log_writer_wait);
230 }
231}
232
233
234/*
235 * the walk control struct is used to pass state down the chain when
236 * processing the log tree. The stage field tells us which part
237 * of the log tree processing we are currently doing. The others
238 * are state fields used for that specific part
239 */
240struct walk_control {
241 /* should we free the extent on disk when done? This is used
242 * at transaction commit time while freeing a log tree
243 */
244 int free;
245
246 /* should we write out the extent buffer? This is used
247 * while flushing the log tree to disk during a sync
248 */
249 int write;
250
251 /* should we wait for the extent buffer io to finish? Also used
252 * while flushing the log tree to disk for a sync
253 */
254 int wait;
255
256 /* pin only walk, we record which extents on disk belong to the
257 * log trees
258 */
259 int pin;
260
261 /* what stage of the replay code we're currently in */
262 int stage;
263
264 /* the root we are currently replaying */
265 struct btrfs_root *replay_dest;
266
267 /* the trans handle for the current replay */
268 struct btrfs_trans_handle *trans;
269
270 /* the function that gets used to process blocks we find in the
271 * tree. Note the extent_buffer might not be up to date when it is
272 * passed in, and it must be checked or read if you need the data
273 * inside it
274 */
275 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen, int level);
277};
278
279/*
280 * process_func used to pin down extents, write them or wait on them
281 */
282static int process_one_buffer(struct btrfs_root *log,
283 struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen, int level)
285{
286 struct btrfs_fs_info *fs_info = log->fs_info;
287 int ret = 0;
288
289 /*
290 * If this fs is mixed then we need to be able to process the leaves to
291 * pin down any logged extents, so we have to read the block.
292 */
293 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
294 ret = btrfs_read_buffer(eb, gen, level, NULL);
295 if (ret)
296 return ret;
297 }
298
299 if (wc->pin)
300 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
301 eb->len);
302
303 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
304 if (wc->pin && btrfs_header_level(eb) == 0)
305 ret = btrfs_exclude_logged_extents(fs_info, eb);
306 if (wc->write)
307 btrfs_write_tree_block(eb);
308 if (wc->wait)
309 btrfs_wait_tree_block_writeback(eb);
310 }
311 return ret;
312}
313
314/*
315 * Item overwrite used by replay and tree logging. eb, slot and key all refer
316 * to the src data we are copying out.
317 *
318 * root is the tree we are copying into, and path is a scratch
319 * path for use in this function (it should be released on entry and
320 * will be released on exit).
321 *
322 * If the key is already in the destination tree the existing item is
323 * overwritten. If the existing item isn't big enough, it is extended.
324 * If it is too large, it is truncated.
325 *
326 * If the key isn't in the destination yet, a new item is inserted.
327 */
328static noinline int overwrite_item(struct btrfs_trans_handle *trans,
329 struct btrfs_root *root,
330 struct btrfs_path *path,
331 struct extent_buffer *eb, int slot,
332 struct btrfs_key *key)
333{
334 struct btrfs_fs_info *fs_info = root->fs_info;
335 int ret;
336 u32 item_size;
337 u64 saved_i_size = 0;
338 int save_old_i_size = 0;
339 unsigned long src_ptr;
340 unsigned long dst_ptr;
341 int overwrite_root = 0;
342 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
343
344 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
345 overwrite_root = 1;
346
347 item_size = btrfs_item_size_nr(eb, slot);
348 src_ptr = btrfs_item_ptr_offset(eb, slot);
349
350 /* look for the key in the destination tree */
351 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
352 if (ret < 0)
353 return ret;
354
355 if (ret == 0) {
356 char *src_copy;
357 char *dst_copy;
358 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
359 path->slots[0]);
360 if (dst_size != item_size)
361 goto insert;
362
363 if (item_size == 0) {
364 btrfs_release_path(path);
365 return 0;
366 }
367 dst_copy = kmalloc(item_size, GFP_NOFS);
368 src_copy = kmalloc(item_size, GFP_NOFS);
369 if (!dst_copy || !src_copy) {
370 btrfs_release_path(path);
371 kfree(dst_copy);
372 kfree(src_copy);
373 return -ENOMEM;
374 }
375
376 read_extent_buffer(eb, src_copy, src_ptr, item_size);
377
378 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
379 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
380 item_size);
381 ret = memcmp(dst_copy, src_copy, item_size);
382
383 kfree(dst_copy);
384 kfree(src_copy);
385 /*
386 * they have the same contents, just return, this saves
387 * us from cowing blocks in the destination tree and doing
388 * extra writes that may not have been done by a previous
389 * sync
390 */
391 if (ret == 0) {
392 btrfs_release_path(path);
393 return 0;
394 }
395
396 /*
397 * We need to load the old nbytes into the inode so when we
398 * replay the extents we've logged we get the right nbytes.
399 */
400 if (inode_item) {
401 struct btrfs_inode_item *item;
402 u64 nbytes;
403 u32 mode;
404
405 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
406 struct btrfs_inode_item);
407 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
408 item = btrfs_item_ptr(eb, slot,
409 struct btrfs_inode_item);
410 btrfs_set_inode_nbytes(eb, item, nbytes);
411
412 /*
413 * If this is a directory we need to reset the i_size to
414 * 0 so that we can set it up properly when replaying
415 * the rest of the items in this log.
416 */
417 mode = btrfs_inode_mode(eb, item);
418 if (S_ISDIR(mode))
419 btrfs_set_inode_size(eb, item, 0);
420 }
421 } else if (inode_item) {
422 struct btrfs_inode_item *item;
423 u32 mode;
424
425 /*
426 * New inode, set nbytes to 0 so that the nbytes comes out
427 * properly when we replay the extents.
428 */
429 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
430 btrfs_set_inode_nbytes(eb, item, 0);
431
432 /*
433 * If this is a directory we need to reset the i_size to 0 so
434 * that we can set it up properly when replaying the rest of
435 * the items in this log.
436 */
437 mode = btrfs_inode_mode(eb, item);
438 if (S_ISDIR(mode))
439 btrfs_set_inode_size(eb, item, 0);
440 }
441insert:
442 btrfs_release_path(path);
443 /* try to insert the key into the destination tree */
444 path->skip_release_on_error = 1;
445 ret = btrfs_insert_empty_item(trans, root, path,
446 key, item_size);
447 path->skip_release_on_error = 0;
448
449 /* make sure any existing item is the correct size */
450 if (ret == -EEXIST || ret == -EOVERFLOW) {
451 u32 found_size;
452 found_size = btrfs_item_size_nr(path->nodes[0],
453 path->slots[0]);
454 if (found_size > item_size)
455 btrfs_truncate_item(fs_info, path, item_size, 1);
456 else if (found_size < item_size)
457 btrfs_extend_item(fs_info, path,
458 item_size - found_size);
459 } else if (ret) {
460 return ret;
461 }
462 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
463 path->slots[0]);
464
465 /* don't overwrite an existing inode if the generation number
466 * was logged as zero. This is done when the tree logging code
467 * is just logging an inode to make sure it exists after recovery.
468 *
469 * Also, don't overwrite i_size on directories during replay.
470 * log replay inserts and removes directory items based on the
471 * state of the tree found in the subvolume, and i_size is modified
472 * as it goes
473 */
474 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
475 struct btrfs_inode_item *src_item;
476 struct btrfs_inode_item *dst_item;
477
478 src_item = (struct btrfs_inode_item *)src_ptr;
479 dst_item = (struct btrfs_inode_item *)dst_ptr;
480
481 if (btrfs_inode_generation(eb, src_item) == 0) {
482 struct extent_buffer *dst_eb = path->nodes[0];
483 const u64 ino_size = btrfs_inode_size(eb, src_item);
484
485 /*
486 * For regular files an ino_size == 0 is used only when
487 * logging that an inode exists, as part of a directory
488 * fsync, and the inode wasn't fsynced before. In this
489 * case don't set the size of the inode in the fs/subvol
490 * tree, otherwise we would be throwing valid data away.
491 */
492 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
493 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
494 ino_size != 0) {
495 struct btrfs_map_token token;
496
497 btrfs_init_map_token(&token);
498 btrfs_set_token_inode_size(dst_eb, dst_item,
499 ino_size, &token);
500 }
501 goto no_copy;
502 }
503
504 if (overwrite_root &&
505 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
506 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
507 save_old_i_size = 1;
508 saved_i_size = btrfs_inode_size(path->nodes[0],
509 dst_item);
510 }
511 }
512
513 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
514 src_ptr, item_size);
515
516 if (save_old_i_size) {
517 struct btrfs_inode_item *dst_item;
518 dst_item = (struct btrfs_inode_item *)dst_ptr;
519 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
520 }
521
522 /* make sure the generation is filled in */
523 if (key->type == BTRFS_INODE_ITEM_KEY) {
524 struct btrfs_inode_item *dst_item;
525 dst_item = (struct btrfs_inode_item *)dst_ptr;
526 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
527 btrfs_set_inode_generation(path->nodes[0], dst_item,
528 trans->transid);
529 }
530 }
531no_copy:
532 btrfs_mark_buffer_dirty(path->nodes[0]);
533 btrfs_release_path(path);
534 return 0;
535}
536
537/*
538 * simple helper to read an inode off the disk from a given root
539 * This can only be called for subvolume roots and not for the log
540 */
541static noinline struct inode *read_one_inode(struct btrfs_root *root,
542 u64 objectid)
543{
544 struct btrfs_key key;
545 struct inode *inode;
546
547 key.objectid = objectid;
548 key.type = BTRFS_INODE_ITEM_KEY;
549 key.offset = 0;
550 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
551 if (IS_ERR(inode)) {
552 inode = NULL;
553 } else if (is_bad_inode(inode)) {
554 iput(inode);
555 inode = NULL;
556 }
557 return inode;
558}
559
560/* replays a single extent in 'eb' at 'slot' with 'key' into the
561 * subvolume 'root'. path is released on entry and should be released
562 * on exit.
563 *
564 * extents in the log tree have not been allocated out of the extent
565 * tree yet. So, this completes the allocation, taking a reference
566 * as required if the extent already exists or creating a new extent
567 * if it isn't in the extent allocation tree yet.
568 *
569 * The extent is inserted into the file, dropping any existing extents
570 * from the file that overlap the new one.
571 */
572static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 struct btrfs_root *root,
574 struct btrfs_path *path,
575 struct extent_buffer *eb, int slot,
576 struct btrfs_key *key)
577{
578 struct btrfs_fs_info *fs_info = root->fs_info;
579 int found_type;
580 u64 extent_end;
581 u64 start = key->offset;
582 u64 nbytes = 0;
583 struct btrfs_file_extent_item *item;
584 struct inode *inode = NULL;
585 unsigned long size;
586 int ret = 0;
587
588 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 found_type = btrfs_file_extent_type(eb, item);
590
591 if (found_type == BTRFS_FILE_EXTENT_REG ||
592 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 nbytes = btrfs_file_extent_num_bytes(eb, item);
594 extent_end = start + nbytes;
595
596 /*
597 * We don't add to the inodes nbytes if we are prealloc or a
598 * hole.
599 */
600 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
601 nbytes = 0;
602 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603 size = btrfs_file_extent_inline_len(eb, slot, item);
604 nbytes = btrfs_file_extent_ram_bytes(eb, item);
605 extent_end = ALIGN(start + size,
606 fs_info->sectorsize);
607 } else {
608 ret = 0;
609 goto out;
610 }
611
612 inode = read_one_inode(root, key->objectid);
613 if (!inode) {
614 ret = -EIO;
615 goto out;
616 }
617
618 /*
619 * first check to see if we already have this extent in the
620 * file. This must be done before the btrfs_drop_extents run
621 * so we don't try to drop this extent.
622 */
623 ret = btrfs_lookup_file_extent(trans, root, path,
624 btrfs_ino(BTRFS_I(inode)), start, 0);
625
626 if (ret == 0 &&
627 (found_type == BTRFS_FILE_EXTENT_REG ||
628 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 struct btrfs_file_extent_item cmp1;
630 struct btrfs_file_extent_item cmp2;
631 struct btrfs_file_extent_item *existing;
632 struct extent_buffer *leaf;
633
634 leaf = path->nodes[0];
635 existing = btrfs_item_ptr(leaf, path->slots[0],
636 struct btrfs_file_extent_item);
637
638 read_extent_buffer(eb, &cmp1, (unsigned long)item,
639 sizeof(cmp1));
640 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 sizeof(cmp2));
642
643 /*
644 * we already have a pointer to this exact extent,
645 * we don't have to do anything
646 */
647 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648 btrfs_release_path(path);
649 goto out;
650 }
651 }
652 btrfs_release_path(path);
653
654 /* drop any overlapping extents */
655 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 if (ret)
657 goto out;
658
659 if (found_type == BTRFS_FILE_EXTENT_REG ||
660 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661 u64 offset;
662 unsigned long dest_offset;
663 struct btrfs_key ins;
664
665 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 btrfs_fs_incompat(fs_info, NO_HOLES))
667 goto update_inode;
668
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
682
683 /*
684 * Manually record dirty extent, as here we did a shallow
685 * file extent item copy and skip normal backref update,
686 * but modifying extent tree all by ourselves.
687 * So need to manually record dirty extent for qgroup,
688 * as the owner of the file extent changed from log tree
689 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
690 */
691 ret = btrfs_qgroup_trace_extent(trans, fs_info,
692 btrfs_file_extent_disk_bytenr(eb, item),
693 btrfs_file_extent_disk_num_bytes(eb, item),
694 GFP_NOFS);
695 if (ret < 0)
696 goto out;
697
698 if (ins.objectid > 0) {
699 u64 csum_start;
700 u64 csum_end;
701 LIST_HEAD(ordered_sums);
702 /*
703 * is this extent already allocated in the extent
704 * allocation tree? If so, just add a reference
705 */
706 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
707 ins.offset);
708 if (ret == 0) {
709 ret = btrfs_inc_extent_ref(trans, root,
710 ins.objectid, ins.offset,
711 0, root->root_key.objectid,
712 key->objectid, offset);
713 if (ret)
714 goto out;
715 } else {
716 /*
717 * insert the extent pointer in the extent
718 * allocation tree
719 */
720 ret = btrfs_alloc_logged_file_extent(trans,
721 fs_info,
722 root->root_key.objectid,
723 key->objectid, offset, &ins);
724 if (ret)
725 goto out;
726 }
727 btrfs_release_path(path);
728
729 if (btrfs_file_extent_compression(eb, item)) {
730 csum_start = ins.objectid;
731 csum_end = csum_start + ins.offset;
732 } else {
733 csum_start = ins.objectid +
734 btrfs_file_extent_offset(eb, item);
735 csum_end = csum_start +
736 btrfs_file_extent_num_bytes(eb, item);
737 }
738
739 ret = btrfs_lookup_csums_range(root->log_root,
740 csum_start, csum_end - 1,
741 &ordered_sums, 0);
742 if (ret)
743 goto out;
744 /*
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
756 *
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
760 *
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
764 *
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
768 * of the extent:
769 *
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
771 *
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
774 *
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
776 *
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
782 *
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
792 */
793 while (!list_empty(&ordered_sums)) {
794 struct btrfs_ordered_sum *sums;
795 sums = list_entry(ordered_sums.next,
796 struct btrfs_ordered_sum,
797 list);
798 if (!ret)
799 ret = btrfs_del_csums(trans, fs_info,
800 sums->bytenr,
801 sums->len);
802 if (!ret)
803 ret = btrfs_csum_file_blocks(trans,
804 fs_info->csum_root, sums);
805 list_del(&sums->list);
806 kfree(sums);
807 }
808 if (ret)
809 goto out;
810 } else {
811 btrfs_release_path(path);
812 }
813 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 /* inline extents are easy, we just overwrite them */
815 ret = overwrite_item(trans, root, path, eb, slot, key);
816 if (ret)
817 goto out;
818 }
819
820 inode_add_bytes(inode, nbytes);
821update_inode:
822 ret = btrfs_update_inode(trans, root, inode);
823out:
824 if (inode)
825 iput(inode);
826 return ret;
827}
828
829/*
830 * when cleaning up conflicts between the directory names in the
831 * subvolume, directory names in the log and directory names in the
832 * inode back references, we may have to unlink inodes from directories.
833 *
834 * This is a helper function to do the unlink of a specific directory
835 * item
836 */
837static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct btrfs_path *path,
840 struct btrfs_inode *dir,
841 struct btrfs_dir_item *di)
842{
843 struct inode *inode;
844 char *name;
845 int name_len;
846 struct extent_buffer *leaf;
847 struct btrfs_key location;
848 int ret;
849
850 leaf = path->nodes[0];
851
852 btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 name_len = btrfs_dir_name_len(leaf, di);
854 name = kmalloc(name_len, GFP_NOFS);
855 if (!name)
856 return -ENOMEM;
857
858 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
859 btrfs_release_path(path);
860
861 inode = read_one_inode(root, location.objectid);
862 if (!inode) {
863 ret = -EIO;
864 goto out;
865 }
866
867 ret = link_to_fixup_dir(trans, root, path, location.objectid);
868 if (ret)
869 goto out;
870
871 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 name_len);
873 if (ret)
874 goto out;
875 else
876 ret = btrfs_run_delayed_items(trans);
877out:
878 kfree(name);
879 iput(inode);
880 return ret;
881}
882
883/*
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
887 */
888static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
892{
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
895 int match = 0;
896
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
902 goto out;
903 } else
904 goto out;
905 btrfs_release_path(path);
906
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
911 goto out;
912 } else
913 goto out;
914 match = 1;
915out:
916 btrfs_release_path(path);
917 return match;
918}
919
920/*
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
924 *
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
929 */
930static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
932 u64 ref_objectid,
933 const char *name, int namelen)
934{
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
937 unsigned long ptr;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
940 int found_name_len;
941 int item_size;
942 int ret;
943 int match = 0;
944
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
948
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 if (ret != 0)
951 goto out;
952
953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
954
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 if (btrfs_find_name_in_ext_backref(path->nodes[0],
957 path->slots[0],
958 ref_objectid,
959 name, namelen, NULL))
960 match = 1;
961
962 goto out;
963 }
964
965 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
966 ptr_end = ptr + item_size;
967 while (ptr < ptr_end) {
968 ref = (struct btrfs_inode_ref *)ptr;
969 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 if (found_name_len == namelen) {
971 name_ptr = (unsigned long)(ref + 1);
972 ret = memcmp_extent_buffer(path->nodes[0], name,
973 name_ptr, namelen);
974 if (ret == 0) {
975 match = 1;
976 goto out;
977 }
978 }
979 ptr = (unsigned long)(ref + 1) + found_name_len;
980 }
981out:
982 btrfs_free_path(path);
983 return match;
984}
985
986static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root,
988 struct btrfs_path *path,
989 struct btrfs_root *log_root,
990 struct btrfs_inode *dir,
991 struct btrfs_inode *inode,
992 u64 inode_objectid, u64 parent_objectid,
993 u64 ref_index, char *name, int namelen,
994 int *search_done)
995{
996 int ret;
997 char *victim_name;
998 int victim_name_len;
999 struct extent_buffer *leaf;
1000 struct btrfs_dir_item *di;
1001 struct btrfs_key search_key;
1002 struct btrfs_inode_extref *extref;
1003
1004again:
1005 /* Search old style refs */
1006 search_key.objectid = inode_objectid;
1007 search_key.type = BTRFS_INODE_REF_KEY;
1008 search_key.offset = parent_objectid;
1009 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1010 if (ret == 0) {
1011 struct btrfs_inode_ref *victim_ref;
1012 unsigned long ptr;
1013 unsigned long ptr_end;
1014
1015 leaf = path->nodes[0];
1016
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1019 */
1020 if (search_key.objectid == search_key.offset)
1021 return 1;
1022
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1026 */
1027 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1029 while (ptr < ptr_end) {
1030 victim_ref = (struct btrfs_inode_ref *)ptr;
1031 victim_name_len = btrfs_inode_ref_name_len(leaf,
1032 victim_ref);
1033 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1034 if (!victim_name)
1035 return -ENOMEM;
1036
1037 read_extent_buffer(leaf, victim_name,
1038 (unsigned long)(victim_ref + 1),
1039 victim_name_len);
1040
1041 if (!backref_in_log(log_root, &search_key,
1042 parent_objectid,
1043 victim_name,
1044 victim_name_len)) {
1045 inc_nlink(&inode->vfs_inode);
1046 btrfs_release_path(path);
1047
1048 ret = btrfs_unlink_inode(trans, root, dir, inode,
1049 victim_name, victim_name_len);
1050 kfree(victim_name);
1051 if (ret)
1052 return ret;
1053 ret = btrfs_run_delayed_items(trans);
1054 if (ret)
1055 return ret;
1056 *search_done = 1;
1057 goto again;
1058 }
1059 kfree(victim_name);
1060
1061 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062 }
1063
1064 /*
1065 * NOTE: we have searched root tree and checked the
1066 * corresponding ref, it does not need to check again.
1067 */
1068 *search_done = 1;
1069 }
1070 btrfs_release_path(path);
1071
1072 /* Same search but for extended refs */
1073 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074 inode_objectid, parent_objectid, 0,
1075 0);
1076 if (!IS_ERR_OR_NULL(extref)) {
1077 u32 item_size;
1078 u32 cur_offset = 0;
1079 unsigned long base;
1080 struct inode *victim_parent;
1081
1082 leaf = path->nodes[0];
1083
1084 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086
1087 while (cur_offset < item_size) {
1088 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1089
1090 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091
1092 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1093 goto next;
1094
1095 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1096 if (!victim_name)
1097 return -ENOMEM;
1098 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1099 victim_name_len);
1100
1101 search_key.objectid = inode_objectid;
1102 search_key.type = BTRFS_INODE_EXTREF_KEY;
1103 search_key.offset = btrfs_extref_hash(parent_objectid,
1104 victim_name,
1105 victim_name_len);
1106 ret = 0;
1107 if (!backref_in_log(log_root, &search_key,
1108 parent_objectid, victim_name,
1109 victim_name_len)) {
1110 ret = -ENOENT;
1111 victim_parent = read_one_inode(root,
1112 parent_objectid);
1113 if (victim_parent) {
1114 inc_nlink(&inode->vfs_inode);
1115 btrfs_release_path(path);
1116
1117 ret = btrfs_unlink_inode(trans, root,
1118 BTRFS_I(victim_parent),
1119 inode,
1120 victim_name,
1121 victim_name_len);
1122 if (!ret)
1123 ret = btrfs_run_delayed_items(
1124 trans);
1125 }
1126 iput(victim_parent);
1127 kfree(victim_name);
1128 if (ret)
1129 return ret;
1130 *search_done = 1;
1131 goto again;
1132 }
1133 kfree(victim_name);
1134next:
1135 cur_offset += victim_name_len + sizeof(*extref);
1136 }
1137 *search_done = 1;
1138 }
1139 btrfs_release_path(path);
1140
1141 /* look for a conflicting sequence number */
1142 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1143 ref_index, name, namelen, 0);
1144 if (di && !IS_ERR(di)) {
1145 ret = drop_one_dir_item(trans, root, path, dir, di);
1146 if (ret)
1147 return ret;
1148 }
1149 btrfs_release_path(path);
1150
1151 /* look for a conflicing name */
1152 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1153 name, namelen, 0);
1154 if (di && !IS_ERR(di)) {
1155 ret = drop_one_dir_item(trans, root, path, dir, di);
1156 if (ret)
1157 return ret;
1158 }
1159 btrfs_release_path(path);
1160
1161 return 0;
1162}
1163
1164static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165 u32 *namelen, char **name, u64 *index,
1166 u64 *parent_objectid)
1167{
1168 struct btrfs_inode_extref *extref;
1169
1170 extref = (struct btrfs_inode_extref *)ref_ptr;
1171
1172 *namelen = btrfs_inode_extref_name_len(eb, extref);
1173 *name = kmalloc(*namelen, GFP_NOFS);
1174 if (*name == NULL)
1175 return -ENOMEM;
1176
1177 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178 *namelen);
1179
1180 if (index)
1181 *index = btrfs_inode_extref_index(eb, extref);
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184
1185 return 0;
1186}
1187
1188static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
1190{
1191 struct btrfs_inode_ref *ref;
1192
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1194
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1197 if (*name == NULL)
1198 return -ENOMEM;
1199
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201
1202 if (index)
1203 *index = btrfs_inode_ref_index(eb, ref);
1204
1205 return 0;
1206}
1207
1208/*
1209 * Take an inode reference item from the log tree and iterate all names from the
1210 * inode reference item in the subvolume tree with the same key (if it exists).
1211 * For any name that is not in the inode reference item from the log tree, do a
1212 * proper unlink of that name (that is, remove its entry from the inode
1213 * reference item and both dir index keys).
1214 */
1215static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path,
1218 struct btrfs_inode *inode,
1219 struct extent_buffer *log_eb,
1220 int log_slot,
1221 struct btrfs_key *key)
1222{
1223 int ret;
1224 unsigned long ref_ptr;
1225 unsigned long ref_end;
1226 struct extent_buffer *eb;
1227
1228again:
1229 btrfs_release_path(path);
1230 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1231 if (ret > 0) {
1232 ret = 0;
1233 goto out;
1234 }
1235 if (ret < 0)
1236 goto out;
1237
1238 eb = path->nodes[0];
1239 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241 while (ref_ptr < ref_end) {
1242 char *name = NULL;
1243 int namelen;
1244 u64 parent_id;
1245
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL, &parent_id);
1249 } else {
1250 parent_id = key->offset;
1251 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1252 NULL);
1253 }
1254 if (ret)
1255 goto out;
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY)
1258 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259 parent_id, name,
1260 namelen, NULL);
1261 else
1262 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1263 namelen, NULL);
1264
1265 if (!ret) {
1266 struct inode *dir;
1267
1268 btrfs_release_path(path);
1269 dir = read_one_inode(root, parent_id);
1270 if (!dir) {
1271 ret = -ENOENT;
1272 kfree(name);
1273 goto out;
1274 }
1275 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276 inode, name, namelen);
1277 kfree(name);
1278 iput(dir);
1279 if (ret)
1280 goto out;
1281 goto again;
1282 }
1283
1284 kfree(name);
1285 ref_ptr += namelen;
1286 if (key->type == BTRFS_INODE_EXTREF_KEY)
1287 ref_ptr += sizeof(struct btrfs_inode_extref);
1288 else
1289 ref_ptr += sizeof(struct btrfs_inode_ref);
1290 }
1291 ret = 0;
1292 out:
1293 btrfs_release_path(path);
1294 return ret;
1295}
1296
1297/*
1298 * replay one inode back reference item found in the log tree.
1299 * eb, slot and key refer to the buffer and key found in the log tree.
1300 * root is the destination we are replaying into, and path is for temp
1301 * use by this function. (it should be released on return).
1302 */
1303static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *root,
1305 struct btrfs_root *log,
1306 struct btrfs_path *path,
1307 struct extent_buffer *eb, int slot,
1308 struct btrfs_key *key)
1309{
1310 struct inode *dir = NULL;
1311 struct inode *inode = NULL;
1312 unsigned long ref_ptr;
1313 unsigned long ref_end;
1314 char *name = NULL;
1315 int namelen;
1316 int ret;
1317 int search_done = 0;
1318 int log_ref_ver = 0;
1319 u64 parent_objectid;
1320 u64 inode_objectid;
1321 u64 ref_index = 0;
1322 int ref_struct_size;
1323
1324 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1325 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1326
1327 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1328 struct btrfs_inode_extref *r;
1329
1330 ref_struct_size = sizeof(struct btrfs_inode_extref);
1331 log_ref_ver = 1;
1332 r = (struct btrfs_inode_extref *)ref_ptr;
1333 parent_objectid = btrfs_inode_extref_parent(eb, r);
1334 } else {
1335 ref_struct_size = sizeof(struct btrfs_inode_ref);
1336 parent_objectid = key->offset;
1337 }
1338 inode_objectid = key->objectid;
1339
1340 /*
1341 * it is possible that we didn't log all the parent directories
1342 * for a given inode. If we don't find the dir, just don't
1343 * copy the back ref in. The link count fixup code will take
1344 * care of the rest
1345 */
1346 dir = read_one_inode(root, parent_objectid);
1347 if (!dir) {
1348 ret = -ENOENT;
1349 goto out;
1350 }
1351
1352 inode = read_one_inode(root, inode_objectid);
1353 if (!inode) {
1354 ret = -EIO;
1355 goto out;
1356 }
1357
1358 while (ref_ptr < ref_end) {
1359 if (log_ref_ver) {
1360 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1361 &ref_index, &parent_objectid);
1362 /*
1363 * parent object can change from one array
1364 * item to another.
1365 */
1366 if (!dir)
1367 dir = read_one_inode(root, parent_objectid);
1368 if (!dir) {
1369 ret = -ENOENT;
1370 goto out;
1371 }
1372 } else {
1373 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1374 &ref_index);
1375 }
1376 if (ret)
1377 goto out;
1378
1379 /* if we already have a perfect match, we're done */
1380 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1381 btrfs_ino(BTRFS_I(inode)), ref_index,
1382 name, namelen)) {
1383 /*
1384 * look for a conflicting back reference in the
1385 * metadata. if we find one we have to unlink that name
1386 * of the file before we add our new link. Later on, we
1387 * overwrite any existing back reference, and we don't
1388 * want to create dangling pointers in the directory.
1389 */
1390
1391 if (!search_done) {
1392 ret = __add_inode_ref(trans, root, path, log,
1393 BTRFS_I(dir),
1394 BTRFS_I(inode),
1395 inode_objectid,
1396 parent_objectid,
1397 ref_index, name, namelen,
1398 &search_done);
1399 if (ret) {
1400 if (ret == 1)
1401 ret = 0;
1402 goto out;
1403 }
1404 }
1405
1406 /* insert our name */
1407 ret = btrfs_add_link(trans, BTRFS_I(dir),
1408 BTRFS_I(inode),
1409 name, namelen, 0, ref_index);
1410 if (ret)
1411 goto out;
1412
1413 btrfs_update_inode(trans, root, inode);
1414 }
1415
1416 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1417 kfree(name);
1418 name = NULL;
1419 if (log_ref_ver) {
1420 iput(dir);
1421 dir = NULL;
1422 }
1423 }
1424
1425 /*
1426 * Before we overwrite the inode reference item in the subvolume tree
1427 * with the item from the log tree, we must unlink all names from the
1428 * parent directory that are in the subvolume's tree inode reference
1429 * item, otherwise we end up with an inconsistent subvolume tree where
1430 * dir index entries exist for a name but there is no inode reference
1431 * item with the same name.
1432 */
1433 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1434 key);
1435 if (ret)
1436 goto out;
1437
1438 /* finally write the back reference in the inode */
1439 ret = overwrite_item(trans, root, path, eb, slot, key);
1440out:
1441 btrfs_release_path(path);
1442 kfree(name);
1443 iput(dir);
1444 iput(inode);
1445 return ret;
1446}
1447
1448static int insert_orphan_item(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root, u64 ino)
1450{
1451 int ret;
1452
1453 ret = btrfs_insert_orphan_item(trans, root, ino);
1454 if (ret == -EEXIST)
1455 ret = 0;
1456
1457 return ret;
1458}
1459
1460static int count_inode_extrefs(struct btrfs_root *root,
1461 struct btrfs_inode *inode, struct btrfs_path *path)
1462{
1463 int ret = 0;
1464 int name_len;
1465 unsigned int nlink = 0;
1466 u32 item_size;
1467 u32 cur_offset = 0;
1468 u64 inode_objectid = btrfs_ino(inode);
1469 u64 offset = 0;
1470 unsigned long ptr;
1471 struct btrfs_inode_extref *extref;
1472 struct extent_buffer *leaf;
1473
1474 while (1) {
1475 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1476 &extref, &offset);
1477 if (ret)
1478 break;
1479
1480 leaf = path->nodes[0];
1481 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1482 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1483 cur_offset = 0;
1484
1485 while (cur_offset < item_size) {
1486 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1487 name_len = btrfs_inode_extref_name_len(leaf, extref);
1488
1489 nlink++;
1490
1491 cur_offset += name_len + sizeof(*extref);
1492 }
1493
1494 offset++;
1495 btrfs_release_path(path);
1496 }
1497 btrfs_release_path(path);
1498
1499 if (ret < 0 && ret != -ENOENT)
1500 return ret;
1501 return nlink;
1502}
1503
1504static int count_inode_refs(struct btrfs_root *root,
1505 struct btrfs_inode *inode, struct btrfs_path *path)
1506{
1507 int ret;
1508 struct btrfs_key key;
1509 unsigned int nlink = 0;
1510 unsigned long ptr;
1511 unsigned long ptr_end;
1512 int name_len;
1513 u64 ino = btrfs_ino(inode);
1514
1515 key.objectid = ino;
1516 key.type = BTRFS_INODE_REF_KEY;
1517 key.offset = (u64)-1;
1518
1519 while (1) {
1520 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521 if (ret < 0)
1522 break;
1523 if (ret > 0) {
1524 if (path->slots[0] == 0)
1525 break;
1526 path->slots[0]--;
1527 }
1528process_slot:
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid != ino ||
1532 key.type != BTRFS_INODE_REF_KEY)
1533 break;
1534 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1535 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1536 path->slots[0]);
1537 while (ptr < ptr_end) {
1538 struct btrfs_inode_ref *ref;
1539
1540 ref = (struct btrfs_inode_ref *)ptr;
1541 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1542 ref);
1543 ptr = (unsigned long)(ref + 1) + name_len;
1544 nlink++;
1545 }
1546
1547 if (key.offset == 0)
1548 break;
1549 if (path->slots[0] > 0) {
1550 path->slots[0]--;
1551 goto process_slot;
1552 }
1553 key.offset--;
1554 btrfs_release_path(path);
1555 }
1556 btrfs_release_path(path);
1557
1558 return nlink;
1559}
1560
1561/*
1562 * There are a few corners where the link count of the file can't
1563 * be properly maintained during replay. So, instead of adding
1564 * lots of complexity to the log code, we just scan the backrefs
1565 * for any file that has been through replay.
1566 *
1567 * The scan will update the link count on the inode to reflect the
1568 * number of back refs found. If it goes down to zero, the iput
1569 * will free the inode.
1570 */
1571static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root,
1573 struct inode *inode)
1574{
1575 struct btrfs_path *path;
1576 int ret;
1577 u64 nlink = 0;
1578 u64 ino = btrfs_ino(BTRFS_I(inode));
1579
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
1584 ret = count_inode_refs(root, BTRFS_I(inode), path);
1585 if (ret < 0)
1586 goto out;
1587
1588 nlink = ret;
1589
1590 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1591 if (ret < 0)
1592 goto out;
1593
1594 nlink += ret;
1595
1596 ret = 0;
1597
1598 if (nlink != inode->i_nlink) {
1599 set_nlink(inode, nlink);
1600 btrfs_update_inode(trans, root, inode);
1601 }
1602 BTRFS_I(inode)->index_cnt = (u64)-1;
1603
1604 if (inode->i_nlink == 0) {
1605 if (S_ISDIR(inode->i_mode)) {
1606 ret = replay_dir_deletes(trans, root, NULL, path,
1607 ino, 1);
1608 if (ret)
1609 goto out;
1610 }
1611 ret = insert_orphan_item(trans, root, ino);
1612 }
1613
1614out:
1615 btrfs_free_path(path);
1616 return ret;
1617}
1618
1619static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root,
1621 struct btrfs_path *path)
1622{
1623 int ret;
1624 struct btrfs_key key;
1625 struct inode *inode;
1626
1627 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1628 key.type = BTRFS_ORPHAN_ITEM_KEY;
1629 key.offset = (u64)-1;
1630 while (1) {
1631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1632 if (ret < 0)
1633 break;
1634
1635 if (ret == 1) {
1636 if (path->slots[0] == 0)
1637 break;
1638 path->slots[0]--;
1639 }
1640
1641 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1642 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1643 key.type != BTRFS_ORPHAN_ITEM_KEY)
1644 break;
1645
1646 ret = btrfs_del_item(trans, root, path);
1647 if (ret)
1648 goto out;
1649
1650 btrfs_release_path(path);
1651 inode = read_one_inode(root, key.offset);
1652 if (!inode)
1653 return -EIO;
1654
1655 ret = fixup_inode_link_count(trans, root, inode);
1656 iput(inode);
1657 if (ret)
1658 goto out;
1659
1660 /*
1661 * fixup on a directory may create new entries,
1662 * make sure we always look for the highset possible
1663 * offset
1664 */
1665 key.offset = (u64)-1;
1666 }
1667 ret = 0;
1668out:
1669 btrfs_release_path(path);
1670 return ret;
1671}
1672
1673
1674/*
1675 * record a given inode in the fixup dir so we can check its link
1676 * count when replay is done. The link count is incremented here
1677 * so the inode won't go away until we check it
1678 */
1679static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1680 struct btrfs_root *root,
1681 struct btrfs_path *path,
1682 u64 objectid)
1683{
1684 struct btrfs_key key;
1685 int ret = 0;
1686 struct inode *inode;
1687
1688 inode = read_one_inode(root, objectid);
1689 if (!inode)
1690 return -EIO;
1691
1692 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1693 key.type = BTRFS_ORPHAN_ITEM_KEY;
1694 key.offset = objectid;
1695
1696 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1697
1698 btrfs_release_path(path);
1699 if (ret == 0) {
1700 if (!inode->i_nlink)
1701 set_nlink(inode, 1);
1702 else
1703 inc_nlink(inode);
1704 ret = btrfs_update_inode(trans, root, inode);
1705 } else if (ret == -EEXIST) {
1706 ret = 0;
1707 } else {
1708 BUG(); /* Logic Error */
1709 }
1710 iput(inode);
1711
1712 return ret;
1713}
1714
1715/*
1716 * when replaying the log for a directory, we only insert names
1717 * for inodes that actually exist. This means an fsync on a directory
1718 * does not implicitly fsync all the new files in it
1719 */
1720static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1721 struct btrfs_root *root,
1722 u64 dirid, u64 index,
1723 char *name, int name_len,
1724 struct btrfs_key *location)
1725{
1726 struct inode *inode;
1727 struct inode *dir;
1728 int ret;
1729
1730 inode = read_one_inode(root, location->objectid);
1731 if (!inode)
1732 return -ENOENT;
1733
1734 dir = read_one_inode(root, dirid);
1735 if (!dir) {
1736 iput(inode);
1737 return -EIO;
1738 }
1739
1740 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1741 name_len, 1, index);
1742
1743 /* FIXME, put inode into FIXUP list */
1744
1745 iput(inode);
1746 iput(dir);
1747 return ret;
1748}
1749
1750/*
1751 * Return true if an inode reference exists in the log for the given name,
1752 * inode and parent inode.
1753 */
1754static bool name_in_log_ref(struct btrfs_root *log_root,
1755 const char *name, const int name_len,
1756 const u64 dirid, const u64 ino)
1757{
1758 struct btrfs_key search_key;
1759
1760 search_key.objectid = ino;
1761 search_key.type = BTRFS_INODE_REF_KEY;
1762 search_key.offset = dirid;
1763 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1764 return true;
1765
1766 search_key.type = BTRFS_INODE_EXTREF_KEY;
1767 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1768 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1769 return true;
1770
1771 return false;
1772}
1773
1774/*
1775 * take a single entry in a log directory item and replay it into
1776 * the subvolume.
1777 *
1778 * if a conflicting item exists in the subdirectory already,
1779 * the inode it points to is unlinked and put into the link count
1780 * fix up tree.
1781 *
1782 * If a name from the log points to a file or directory that does
1783 * not exist in the FS, it is skipped. fsyncs on directories
1784 * do not force down inodes inside that directory, just changes to the
1785 * names or unlinks in a directory.
1786 *
1787 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1788 * non-existing inode) and 1 if the name was replayed.
1789 */
1790static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1791 struct btrfs_root *root,
1792 struct btrfs_path *path,
1793 struct extent_buffer *eb,
1794 struct btrfs_dir_item *di,
1795 struct btrfs_key *key)
1796{
1797 char *name;
1798 int name_len;
1799 struct btrfs_dir_item *dst_di;
1800 struct btrfs_key found_key;
1801 struct btrfs_key log_key;
1802 struct inode *dir;
1803 u8 log_type;
1804 int exists;
1805 int ret = 0;
1806 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1807 bool name_added = false;
1808
1809 dir = read_one_inode(root, key->objectid);
1810 if (!dir)
1811 return -EIO;
1812
1813 name_len = btrfs_dir_name_len(eb, di);
1814 name = kmalloc(name_len, GFP_NOFS);
1815 if (!name) {
1816 ret = -ENOMEM;
1817 goto out;
1818 }
1819
1820 log_type = btrfs_dir_type(eb, di);
1821 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822 name_len);
1823
1824 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1825 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1826 if (exists == 0)
1827 exists = 1;
1828 else
1829 exists = 0;
1830 btrfs_release_path(path);
1831
1832 if (key->type == BTRFS_DIR_ITEM_KEY) {
1833 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1834 name, name_len, 1);
1835 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1836 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1837 key->objectid,
1838 key->offset, name,
1839 name_len, 1);
1840 } else {
1841 /* Corruption */
1842 ret = -EINVAL;
1843 goto out;
1844 }
1845 if (IS_ERR_OR_NULL(dst_di)) {
1846 /* we need a sequence number to insert, so we only
1847 * do inserts for the BTRFS_DIR_INDEX_KEY types
1848 */
1849 if (key->type != BTRFS_DIR_INDEX_KEY)
1850 goto out;
1851 goto insert;
1852 }
1853
1854 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1855 /* the existing item matches the logged item */
1856 if (found_key.objectid == log_key.objectid &&
1857 found_key.type == log_key.type &&
1858 found_key.offset == log_key.offset &&
1859 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1860 update_size = false;
1861 goto out;
1862 }
1863
1864 /*
1865 * don't drop the conflicting directory entry if the inode
1866 * for the new entry doesn't exist
1867 */
1868 if (!exists)
1869 goto out;
1870
1871 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1872 if (ret)
1873 goto out;
1874
1875 if (key->type == BTRFS_DIR_INDEX_KEY)
1876 goto insert;
1877out:
1878 btrfs_release_path(path);
1879 if (!ret && update_size) {
1880 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1881 ret = btrfs_update_inode(trans, root, dir);
1882 }
1883 kfree(name);
1884 iput(dir);
1885 if (!ret && name_added)
1886 ret = 1;
1887 return ret;
1888
1889insert:
1890 if (name_in_log_ref(root->log_root, name, name_len,
1891 key->objectid, log_key.objectid)) {
1892 /* The dentry will be added later. */
1893 ret = 0;
1894 update_size = false;
1895 goto out;
1896 }
1897 btrfs_release_path(path);
1898 ret = insert_one_name(trans, root, key->objectid, key->offset,
1899 name, name_len, &log_key);
1900 if (ret && ret != -ENOENT && ret != -EEXIST)
1901 goto out;
1902 if (!ret)
1903 name_added = true;
1904 update_size = false;
1905 ret = 0;
1906 goto out;
1907}
1908
1909/*
1910 * find all the names in a directory item and reconcile them into
1911 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1912 * one name in a directory item, but the same code gets used for
1913 * both directory index types
1914 */
1915static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root,
1917 struct btrfs_path *path,
1918 struct extent_buffer *eb, int slot,
1919 struct btrfs_key *key)
1920{
1921 int ret = 0;
1922 u32 item_size = btrfs_item_size_nr(eb, slot);
1923 struct btrfs_dir_item *di;
1924 int name_len;
1925 unsigned long ptr;
1926 unsigned long ptr_end;
1927 struct btrfs_path *fixup_path = NULL;
1928
1929 ptr = btrfs_item_ptr_offset(eb, slot);
1930 ptr_end = ptr + item_size;
1931 while (ptr < ptr_end) {
1932 di = (struct btrfs_dir_item *)ptr;
1933 name_len = btrfs_dir_name_len(eb, di);
1934 ret = replay_one_name(trans, root, path, eb, di, key);
1935 if (ret < 0)
1936 break;
1937 ptr = (unsigned long)(di + 1);
1938 ptr += name_len;
1939
1940 /*
1941 * If this entry refers to a non-directory (directories can not
1942 * have a link count > 1) and it was added in the transaction
1943 * that was not committed, make sure we fixup the link count of
1944 * the inode it the entry points to. Otherwise something like
1945 * the following would result in a directory pointing to an
1946 * inode with a wrong link that does not account for this dir
1947 * entry:
1948 *
1949 * mkdir testdir
1950 * touch testdir/foo
1951 * touch testdir/bar
1952 * sync
1953 *
1954 * ln testdir/bar testdir/bar_link
1955 * ln testdir/foo testdir/foo_link
1956 * xfs_io -c "fsync" testdir/bar
1957 *
1958 * <power failure>
1959 *
1960 * mount fs, log replay happens
1961 *
1962 * File foo would remain with a link count of 1 when it has two
1963 * entries pointing to it in the directory testdir. This would
1964 * make it impossible to ever delete the parent directory has
1965 * it would result in stale dentries that can never be deleted.
1966 */
1967 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1968 struct btrfs_key di_key;
1969
1970 if (!fixup_path) {
1971 fixup_path = btrfs_alloc_path();
1972 if (!fixup_path) {
1973 ret = -ENOMEM;
1974 break;
1975 }
1976 }
1977
1978 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1979 ret = link_to_fixup_dir(trans, root, fixup_path,
1980 di_key.objectid);
1981 if (ret)
1982 break;
1983 }
1984 ret = 0;
1985 }
1986 btrfs_free_path(fixup_path);
1987 return ret;
1988}
1989
1990/*
1991 * directory replay has two parts. There are the standard directory
1992 * items in the log copied from the subvolume, and range items
1993 * created in the log while the subvolume was logged.
1994 *
1995 * The range items tell us which parts of the key space the log
1996 * is authoritative for. During replay, if a key in the subvolume
1997 * directory is in a logged range item, but not actually in the log
1998 * that means it was deleted from the directory before the fsync
1999 * and should be removed.
2000 */
2001static noinline int find_dir_range(struct btrfs_root *root,
2002 struct btrfs_path *path,
2003 u64 dirid, int key_type,
2004 u64 *start_ret, u64 *end_ret)
2005{
2006 struct btrfs_key key;
2007 u64 found_end;
2008 struct btrfs_dir_log_item *item;
2009 int ret;
2010 int nritems;
2011
2012 if (*start_ret == (u64)-1)
2013 return 1;
2014
2015 key.objectid = dirid;
2016 key.type = key_type;
2017 key.offset = *start_ret;
2018
2019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2020 if (ret < 0)
2021 goto out;
2022 if (ret > 0) {
2023 if (path->slots[0] == 0)
2024 goto out;
2025 path->slots[0]--;
2026 }
2027 if (ret != 0)
2028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2029
2030 if (key.type != key_type || key.objectid != dirid) {
2031 ret = 1;
2032 goto next;
2033 }
2034 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2035 struct btrfs_dir_log_item);
2036 found_end = btrfs_dir_log_end(path->nodes[0], item);
2037
2038 if (*start_ret >= key.offset && *start_ret <= found_end) {
2039 ret = 0;
2040 *start_ret = key.offset;
2041 *end_ret = found_end;
2042 goto out;
2043 }
2044 ret = 1;
2045next:
2046 /* check the next slot in the tree to see if it is a valid item */
2047 nritems = btrfs_header_nritems(path->nodes[0]);
2048 path->slots[0]++;
2049 if (path->slots[0] >= nritems) {
2050 ret = btrfs_next_leaf(root, path);
2051 if (ret)
2052 goto out;
2053 }
2054
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057 if (key.type != key_type || key.objectid != dirid) {
2058 ret = 1;
2059 goto out;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064 *start_ret = key.offset;
2065 *end_ret = found_end;
2066 ret = 0;
2067out:
2068 btrfs_release_path(path);
2069 return ret;
2070}
2071
2072/*
2073 * this looks for a given directory item in the log. If the directory
2074 * item is not in the log, the item is removed and the inode it points
2075 * to is unlinked
2076 */
2077static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2078 struct btrfs_root *root,
2079 struct btrfs_root *log,
2080 struct btrfs_path *path,
2081 struct btrfs_path *log_path,
2082 struct inode *dir,
2083 struct btrfs_key *dir_key)
2084{
2085 int ret;
2086 struct extent_buffer *eb;
2087 int slot;
2088 u32 item_size;
2089 struct btrfs_dir_item *di;
2090 struct btrfs_dir_item *log_di;
2091 int name_len;
2092 unsigned long ptr;
2093 unsigned long ptr_end;
2094 char *name;
2095 struct inode *inode;
2096 struct btrfs_key location;
2097
2098again:
2099 eb = path->nodes[0];
2100 slot = path->slots[0];
2101 item_size = btrfs_item_size_nr(eb, slot);
2102 ptr = btrfs_item_ptr_offset(eb, slot);
2103 ptr_end = ptr + item_size;
2104 while (ptr < ptr_end) {
2105 di = (struct btrfs_dir_item *)ptr;
2106 name_len = btrfs_dir_name_len(eb, di);
2107 name = kmalloc(name_len, GFP_NOFS);
2108 if (!name) {
2109 ret = -ENOMEM;
2110 goto out;
2111 }
2112 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2113 name_len);
2114 log_di = NULL;
2115 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2116 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2117 dir_key->objectid,
2118 name, name_len, 0);
2119 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2120 log_di = btrfs_lookup_dir_index_item(trans, log,
2121 log_path,
2122 dir_key->objectid,
2123 dir_key->offset,
2124 name, name_len, 0);
2125 }
2126 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2127 btrfs_dir_item_key_to_cpu(eb, di, &location);
2128 btrfs_release_path(path);
2129 btrfs_release_path(log_path);
2130 inode = read_one_inode(root, location.objectid);
2131 if (!inode) {
2132 kfree(name);
2133 return -EIO;
2134 }
2135
2136 ret = link_to_fixup_dir(trans, root,
2137 path, location.objectid);
2138 if (ret) {
2139 kfree(name);
2140 iput(inode);
2141 goto out;
2142 }
2143
2144 inc_nlink(inode);
2145 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2146 BTRFS_I(inode), name, name_len);
2147 if (!ret)
2148 ret = btrfs_run_delayed_items(trans);
2149 kfree(name);
2150 iput(inode);
2151 if (ret)
2152 goto out;
2153
2154 /* there might still be more names under this key
2155 * check and repeat if required
2156 */
2157 ret = btrfs_search_slot(NULL, root, dir_key, path,
2158 0, 0);
2159 if (ret == 0)
2160 goto again;
2161 ret = 0;
2162 goto out;
2163 } else if (IS_ERR(log_di)) {
2164 kfree(name);
2165 return PTR_ERR(log_di);
2166 }
2167 btrfs_release_path(log_path);
2168 kfree(name);
2169
2170 ptr = (unsigned long)(di + 1);
2171 ptr += name_len;
2172 }
2173 ret = 0;
2174out:
2175 btrfs_release_path(path);
2176 btrfs_release_path(log_path);
2177 return ret;
2178}
2179
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size_nr(path->nodes[0], i);
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
2292 u64 dirid, int del_all)
2293{
2294 u64 range_start;
2295 u64 range_end;
2296 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2297 int ret = 0;
2298 struct btrfs_key dir_key;
2299 struct btrfs_key found_key;
2300 struct btrfs_path *log_path;
2301 struct inode *dir;
2302
2303 dir_key.objectid = dirid;
2304 dir_key.type = BTRFS_DIR_ITEM_KEY;
2305 log_path = btrfs_alloc_path();
2306 if (!log_path)
2307 return -ENOMEM;
2308
2309 dir = read_one_inode(root, dirid);
2310 /* it isn't an error if the inode isn't there, that can happen
2311 * because we replay the deletes before we copy in the inode item
2312 * from the log
2313 */
2314 if (!dir) {
2315 btrfs_free_path(log_path);
2316 return 0;
2317 }
2318again:
2319 range_start = 0;
2320 range_end = 0;
2321 while (1) {
2322 if (del_all)
2323 range_end = (u64)-1;
2324 else {
2325 ret = find_dir_range(log, path, dirid, key_type,
2326 &range_start, &range_end);
2327 if (ret != 0)
2328 break;
2329 }
2330
2331 dir_key.offset = range_start;
2332 while (1) {
2333 int nritems;
2334 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2335 0, 0);
2336 if (ret < 0)
2337 goto out;
2338
2339 nritems = btrfs_header_nritems(path->nodes[0]);
2340 if (path->slots[0] >= nritems) {
2341 ret = btrfs_next_leaf(root, path);
2342 if (ret == 1)
2343 break;
2344 else if (ret < 0)
2345 goto out;
2346 }
2347 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2348 path->slots[0]);
2349 if (found_key.objectid != dirid ||
2350 found_key.type != dir_key.type)
2351 goto next_type;
2352
2353 if (found_key.offset > range_end)
2354 break;
2355
2356 ret = check_item_in_log(trans, root, log, path,
2357 log_path, dir,
2358 &found_key);
2359 if (ret)
2360 goto out;
2361 if (found_key.offset == (u64)-1)
2362 break;
2363 dir_key.offset = found_key.offset + 1;
2364 }
2365 btrfs_release_path(path);
2366 if (range_end == (u64)-1)
2367 break;
2368 range_start = range_end + 1;
2369 }
2370
2371next_type:
2372 ret = 0;
2373 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2374 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2375 dir_key.type = BTRFS_DIR_INDEX_KEY;
2376 btrfs_release_path(path);
2377 goto again;
2378 }
2379out:
2380 btrfs_release_path(path);
2381 btrfs_free_path(log_path);
2382 iput(dir);
2383 return ret;
2384}
2385
2386/*
2387 * the process_func used to replay items from the log tree. This
2388 * gets called in two different stages. The first stage just looks
2389 * for inodes and makes sure they are all copied into the subvolume.
2390 *
2391 * The second stage copies all the other item types from the log into
2392 * the subvolume. The two stage approach is slower, but gets rid of
2393 * lots of complexity around inodes referencing other inodes that exist
2394 * only in the log (references come from either directory items or inode
2395 * back refs).
2396 */
2397static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2398 struct walk_control *wc, u64 gen, int level)
2399{
2400 int nritems;
2401 struct btrfs_path *path;
2402 struct btrfs_root *root = wc->replay_dest;
2403 struct btrfs_key key;
2404 int i;
2405 int ret;
2406
2407 ret = btrfs_read_buffer(eb, gen, level, NULL);
2408 if (ret)
2409 return ret;
2410
2411 level = btrfs_header_level(eb);
2412
2413 if (level != 0)
2414 return 0;
2415
2416 path = btrfs_alloc_path();
2417 if (!path)
2418 return -ENOMEM;
2419
2420 nritems = btrfs_header_nritems(eb);
2421 for (i = 0; i < nritems; i++) {
2422 btrfs_item_key_to_cpu(eb, &key, i);
2423
2424 /* inode keys are done during the first stage */
2425 if (key.type == BTRFS_INODE_ITEM_KEY &&
2426 wc->stage == LOG_WALK_REPLAY_INODES) {
2427 struct btrfs_inode_item *inode_item;
2428 u32 mode;
2429
2430 inode_item = btrfs_item_ptr(eb, i,
2431 struct btrfs_inode_item);
2432 ret = replay_xattr_deletes(wc->trans, root, log,
2433 path, key.objectid);
2434 if (ret)
2435 break;
2436 mode = btrfs_inode_mode(eb, inode_item);
2437 if (S_ISDIR(mode)) {
2438 ret = replay_dir_deletes(wc->trans,
2439 root, log, path, key.objectid, 0);
2440 if (ret)
2441 break;
2442 }
2443 ret = overwrite_item(wc->trans, root, path,
2444 eb, i, &key);
2445 if (ret)
2446 break;
2447
2448 /*
2449 * Before replaying extents, truncate the inode to its
2450 * size. We need to do it now and not after log replay
2451 * because before an fsync we can have prealloc extents
2452 * added beyond the inode's i_size. If we did it after,
2453 * through orphan cleanup for example, we would drop
2454 * those prealloc extents just after replaying them.
2455 */
2456 if (S_ISREG(mode)) {
2457 struct inode *inode;
2458 u64 from;
2459
2460 inode = read_one_inode(root, key.objectid);
2461 if (!inode) {
2462 ret = -EIO;
2463 break;
2464 }
2465 from = ALIGN(i_size_read(inode),
2466 root->fs_info->sectorsize);
2467 ret = btrfs_drop_extents(wc->trans, root, inode,
2468 from, (u64)-1, 1);
2469 /*
2470 * If the nlink count is zero here, the iput
2471 * will free the inode. We bump it to make
2472 * sure it doesn't get freed until the link
2473 * count fixup is done.
2474 */
2475 if (!ret) {
2476 if (inode->i_nlink == 0)
2477 inc_nlink(inode);
2478 /* Update link count and nbytes. */
2479 ret = btrfs_update_inode(wc->trans,
2480 root, inode);
2481 }
2482 iput(inode);
2483 if (ret)
2484 break;
2485 }
2486
2487 ret = link_to_fixup_dir(wc->trans, root,
2488 path, key.objectid);
2489 if (ret)
2490 break;
2491 }
2492
2493 if (key.type == BTRFS_DIR_INDEX_KEY &&
2494 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2495 ret = replay_one_dir_item(wc->trans, root, path,
2496 eb, i, &key);
2497 if (ret)
2498 break;
2499 }
2500
2501 if (wc->stage < LOG_WALK_REPLAY_ALL)
2502 continue;
2503
2504 /* these keys are simply copied */
2505 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2506 ret = overwrite_item(wc->trans, root, path,
2507 eb, i, &key);
2508 if (ret)
2509 break;
2510 } else if (key.type == BTRFS_INODE_REF_KEY ||
2511 key.type == BTRFS_INODE_EXTREF_KEY) {
2512 ret = add_inode_ref(wc->trans, root, log, path,
2513 eb, i, &key);
2514 if (ret && ret != -ENOENT)
2515 break;
2516 ret = 0;
2517 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2518 ret = replay_one_extent(wc->trans, root, path,
2519 eb, i, &key);
2520 if (ret)
2521 break;
2522 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2523 ret = replay_one_dir_item(wc->trans, root, path,
2524 eb, i, &key);
2525 if (ret)
2526 break;
2527 }
2528 }
2529 btrfs_free_path(path);
2530 return ret;
2531}
2532
2533static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2534 struct btrfs_root *root,
2535 struct btrfs_path *path, int *level,
2536 struct walk_control *wc)
2537{
2538 struct btrfs_fs_info *fs_info = root->fs_info;
2539 u64 root_owner;
2540 u64 bytenr;
2541 u64 ptr_gen;
2542 struct extent_buffer *next;
2543 struct extent_buffer *cur;
2544 struct extent_buffer *parent;
2545 u32 blocksize;
2546 int ret = 0;
2547
2548 WARN_ON(*level < 0);
2549 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2550
2551 while (*level > 0) {
2552 struct btrfs_key first_key;
2553
2554 WARN_ON(*level < 0);
2555 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2556 cur = path->nodes[*level];
2557
2558 WARN_ON(btrfs_header_level(cur) != *level);
2559
2560 if (path->slots[*level] >=
2561 btrfs_header_nritems(cur))
2562 break;
2563
2564 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2565 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2566 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2567 blocksize = fs_info->nodesize;
2568
2569 parent = path->nodes[*level];
2570 root_owner = btrfs_header_owner(parent);
2571
2572 next = btrfs_find_create_tree_block(fs_info, bytenr);
2573 if (IS_ERR(next))
2574 return PTR_ERR(next);
2575
2576 if (*level == 1) {
2577 ret = wc->process_func(root, next, wc, ptr_gen,
2578 *level - 1);
2579 if (ret) {
2580 free_extent_buffer(next);
2581 return ret;
2582 }
2583
2584 path->slots[*level]++;
2585 if (wc->free) {
2586 ret = btrfs_read_buffer(next, ptr_gen,
2587 *level - 1, &first_key);
2588 if (ret) {
2589 free_extent_buffer(next);
2590 return ret;
2591 }
2592
2593 if (trans) {
2594 btrfs_tree_lock(next);
2595 btrfs_set_lock_blocking(next);
2596 clean_tree_block(fs_info, next);
2597 btrfs_wait_tree_block_writeback(next);
2598 btrfs_tree_unlock(next);
2599 } else {
2600 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2601 clear_extent_buffer_dirty(next);
2602 }
2603
2604 WARN_ON(root_owner !=
2605 BTRFS_TREE_LOG_OBJECTID);
2606 ret = btrfs_free_and_pin_reserved_extent(
2607 fs_info, bytenr,
2608 blocksize);
2609 if (ret) {
2610 free_extent_buffer(next);
2611 return ret;
2612 }
2613 }
2614 free_extent_buffer(next);
2615 continue;
2616 }
2617 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2618 if (ret) {
2619 free_extent_buffer(next);
2620 return ret;
2621 }
2622
2623 WARN_ON(*level <= 0);
2624 if (path->nodes[*level-1])
2625 free_extent_buffer(path->nodes[*level-1]);
2626 path->nodes[*level-1] = next;
2627 *level = btrfs_header_level(next);
2628 path->slots[*level] = 0;
2629 cond_resched();
2630 }
2631 WARN_ON(*level < 0);
2632 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2633
2634 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2635
2636 cond_resched();
2637 return 0;
2638}
2639
2640static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct btrfs_path *path, int *level,
2643 struct walk_control *wc)
2644{
2645 struct btrfs_fs_info *fs_info = root->fs_info;
2646 u64 root_owner;
2647 int i;
2648 int slot;
2649 int ret;
2650
2651 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2652 slot = path->slots[i];
2653 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2654 path->slots[i]++;
2655 *level = i;
2656 WARN_ON(*level == 0);
2657 return 0;
2658 } else {
2659 struct extent_buffer *parent;
2660 if (path->nodes[*level] == root->node)
2661 parent = path->nodes[*level];
2662 else
2663 parent = path->nodes[*level + 1];
2664
2665 root_owner = btrfs_header_owner(parent);
2666 ret = wc->process_func(root, path->nodes[*level], wc,
2667 btrfs_header_generation(path->nodes[*level]),
2668 *level);
2669 if (ret)
2670 return ret;
2671
2672 if (wc->free) {
2673 struct extent_buffer *next;
2674
2675 next = path->nodes[*level];
2676
2677 if (trans) {
2678 btrfs_tree_lock(next);
2679 btrfs_set_lock_blocking(next);
2680 clean_tree_block(fs_info, next);
2681 btrfs_wait_tree_block_writeback(next);
2682 btrfs_tree_unlock(next);
2683 } else {
2684 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2685 clear_extent_buffer_dirty(next);
2686 }
2687
2688 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2689 ret = btrfs_free_and_pin_reserved_extent(
2690 fs_info,
2691 path->nodes[*level]->start,
2692 path->nodes[*level]->len);
2693 if (ret)
2694 return ret;
2695 }
2696 free_extent_buffer(path->nodes[*level]);
2697 path->nodes[*level] = NULL;
2698 *level = i + 1;
2699 }
2700 }
2701 return 1;
2702}
2703
2704/*
2705 * drop the reference count on the tree rooted at 'snap'. This traverses
2706 * the tree freeing any blocks that have a ref count of zero after being
2707 * decremented.
2708 */
2709static int walk_log_tree(struct btrfs_trans_handle *trans,
2710 struct btrfs_root *log, struct walk_control *wc)
2711{
2712 struct btrfs_fs_info *fs_info = log->fs_info;
2713 int ret = 0;
2714 int wret;
2715 int level;
2716 struct btrfs_path *path;
2717 int orig_level;
2718
2719 path = btrfs_alloc_path();
2720 if (!path)
2721 return -ENOMEM;
2722
2723 level = btrfs_header_level(log->node);
2724 orig_level = level;
2725 path->nodes[level] = log->node;
2726 extent_buffer_get(log->node);
2727 path->slots[level] = 0;
2728
2729 while (1) {
2730 wret = walk_down_log_tree(trans, log, path, &level, wc);
2731 if (wret > 0)
2732 break;
2733 if (wret < 0) {
2734 ret = wret;
2735 goto out;
2736 }
2737
2738 wret = walk_up_log_tree(trans, log, path, &level, wc);
2739 if (wret > 0)
2740 break;
2741 if (wret < 0) {
2742 ret = wret;
2743 goto out;
2744 }
2745 }
2746
2747 /* was the root node processed? if not, catch it here */
2748 if (path->nodes[orig_level]) {
2749 ret = wc->process_func(log, path->nodes[orig_level], wc,
2750 btrfs_header_generation(path->nodes[orig_level]),
2751 orig_level);
2752 if (ret)
2753 goto out;
2754 if (wc->free) {
2755 struct extent_buffer *next;
2756
2757 next = path->nodes[orig_level];
2758
2759 if (trans) {
2760 btrfs_tree_lock(next);
2761 btrfs_set_lock_blocking(next);
2762 clean_tree_block(fs_info, next);
2763 btrfs_wait_tree_block_writeback(next);
2764 btrfs_tree_unlock(next);
2765 } else {
2766 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2767 clear_extent_buffer_dirty(next);
2768 }
2769
2770 WARN_ON(log->root_key.objectid !=
2771 BTRFS_TREE_LOG_OBJECTID);
2772 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2773 next->start, next->len);
2774 if (ret)
2775 goto out;
2776 }
2777 }
2778
2779out:
2780 btrfs_free_path(path);
2781 return ret;
2782}
2783
2784/*
2785 * helper function to update the item for a given subvolumes log root
2786 * in the tree of log roots
2787 */
2788static int update_log_root(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *log)
2790{
2791 struct btrfs_fs_info *fs_info = log->fs_info;
2792 int ret;
2793
2794 if (log->log_transid == 1) {
2795 /* insert root item on the first sync */
2796 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2797 &log->root_key, &log->root_item);
2798 } else {
2799 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2800 &log->root_key, &log->root_item);
2801 }
2802 return ret;
2803}
2804
2805static void wait_log_commit(struct btrfs_root *root, int transid)
2806{
2807 DEFINE_WAIT(wait);
2808 int index = transid % 2;
2809
2810 /*
2811 * we only allow two pending log transactions at a time,
2812 * so we know that if ours is more than 2 older than the
2813 * current transaction, we're done
2814 */
2815 for (;;) {
2816 prepare_to_wait(&root->log_commit_wait[index],
2817 &wait, TASK_UNINTERRUPTIBLE);
2818
2819 if (!(root->log_transid_committed < transid &&
2820 atomic_read(&root->log_commit[index])))
2821 break;
2822
2823 mutex_unlock(&root->log_mutex);
2824 schedule();
2825 mutex_lock(&root->log_mutex);
2826 }
2827 finish_wait(&root->log_commit_wait[index], &wait);
2828}
2829
2830static void wait_for_writer(struct btrfs_root *root)
2831{
2832 DEFINE_WAIT(wait);
2833
2834 for (;;) {
2835 prepare_to_wait(&root->log_writer_wait, &wait,
2836 TASK_UNINTERRUPTIBLE);
2837 if (!atomic_read(&root->log_writers))
2838 break;
2839
2840 mutex_unlock(&root->log_mutex);
2841 schedule();
2842 mutex_lock(&root->log_mutex);
2843 }
2844 finish_wait(&root->log_writer_wait, &wait);
2845}
2846
2847static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848 struct btrfs_log_ctx *ctx)
2849{
2850 if (!ctx)
2851 return;
2852
2853 mutex_lock(&root->log_mutex);
2854 list_del_init(&ctx->list);
2855 mutex_unlock(&root->log_mutex);
2856}
2857
2858/*
2859 * Invoked in log mutex context, or be sure there is no other task which
2860 * can access the list.
2861 */
2862static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2863 int index, int error)
2864{
2865 struct btrfs_log_ctx *ctx;
2866 struct btrfs_log_ctx *safe;
2867
2868 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2869 list_del_init(&ctx->list);
2870 ctx->log_ret = error;
2871 }
2872
2873 INIT_LIST_HEAD(&root->log_ctxs[index]);
2874}
2875
2876/*
2877 * btrfs_sync_log does sends a given tree log down to the disk and
2878 * updates the super blocks to record it. When this call is done,
2879 * you know that any inodes previously logged are safely on disk only
2880 * if it returns 0.
2881 *
2882 * Any other return value means you need to call btrfs_commit_transaction.
2883 * Some of the edge cases for fsyncing directories that have had unlinks
2884 * or renames done in the past mean that sometimes the only safe
2885 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2886 * that has happened.
2887 */
2888int btrfs_sync_log(struct btrfs_trans_handle *trans,
2889 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2890{
2891 int index1;
2892 int index2;
2893 int mark;
2894 int ret;
2895 struct btrfs_fs_info *fs_info = root->fs_info;
2896 struct btrfs_root *log = root->log_root;
2897 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2898 int log_transid = 0;
2899 struct btrfs_log_ctx root_log_ctx;
2900 struct blk_plug plug;
2901
2902 mutex_lock(&root->log_mutex);
2903 log_transid = ctx->log_transid;
2904 if (root->log_transid_committed >= log_transid) {
2905 mutex_unlock(&root->log_mutex);
2906 return ctx->log_ret;
2907 }
2908
2909 index1 = log_transid % 2;
2910 if (atomic_read(&root->log_commit[index1])) {
2911 wait_log_commit(root, log_transid);
2912 mutex_unlock(&root->log_mutex);
2913 return ctx->log_ret;
2914 }
2915 ASSERT(log_transid == root->log_transid);
2916 atomic_set(&root->log_commit[index1], 1);
2917
2918 /* wait for previous tree log sync to complete */
2919 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2920 wait_log_commit(root, log_transid - 1);
2921
2922 while (1) {
2923 int batch = atomic_read(&root->log_batch);
2924 /* when we're on an ssd, just kick the log commit out */
2925 if (!btrfs_test_opt(fs_info, SSD) &&
2926 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2927 mutex_unlock(&root->log_mutex);
2928 schedule_timeout_uninterruptible(1);
2929 mutex_lock(&root->log_mutex);
2930 }
2931 wait_for_writer(root);
2932 if (batch == atomic_read(&root->log_batch))
2933 break;
2934 }
2935
2936 /* bail out if we need to do a full commit */
2937 if (btrfs_need_log_full_commit(fs_info, trans)) {
2938 ret = -EAGAIN;
2939 btrfs_free_logged_extents(log, log_transid);
2940 mutex_unlock(&root->log_mutex);
2941 goto out;
2942 }
2943
2944 if (log_transid % 2 == 0)
2945 mark = EXTENT_DIRTY;
2946 else
2947 mark = EXTENT_NEW;
2948
2949 /* we start IO on all the marked extents here, but we don't actually
2950 * wait for them until later.
2951 */
2952 blk_start_plug(&plug);
2953 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2954 if (ret) {
2955 blk_finish_plug(&plug);
2956 btrfs_abort_transaction(trans, ret);
2957 btrfs_free_logged_extents(log, log_transid);
2958 btrfs_set_log_full_commit(fs_info, trans);
2959 mutex_unlock(&root->log_mutex);
2960 goto out;
2961 }
2962
2963 btrfs_set_root_node(&log->root_item, log->node);
2964
2965 root->log_transid++;
2966 log->log_transid = root->log_transid;
2967 root->log_start_pid = 0;
2968 /*
2969 * IO has been started, blocks of the log tree have WRITTEN flag set
2970 * in their headers. new modifications of the log will be written to
2971 * new positions. so it's safe to allow log writers to go in.
2972 */
2973 mutex_unlock(&root->log_mutex);
2974
2975 btrfs_init_log_ctx(&root_log_ctx, NULL);
2976
2977 mutex_lock(&log_root_tree->log_mutex);
2978 atomic_inc(&log_root_tree->log_batch);
2979 atomic_inc(&log_root_tree->log_writers);
2980
2981 index2 = log_root_tree->log_transid % 2;
2982 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2983 root_log_ctx.log_transid = log_root_tree->log_transid;
2984
2985 mutex_unlock(&log_root_tree->log_mutex);
2986
2987 ret = update_log_root(trans, log);
2988
2989 mutex_lock(&log_root_tree->log_mutex);
2990 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2991 /*
2992 * Implicit memory barrier after atomic_dec_and_test
2993 */
2994 if (waitqueue_active(&log_root_tree->log_writer_wait))
2995 wake_up(&log_root_tree->log_writer_wait);
2996 }
2997
2998 if (ret) {
2999 if (!list_empty(&root_log_ctx.list))
3000 list_del_init(&root_log_ctx.list);
3001
3002 blk_finish_plug(&plug);
3003 btrfs_set_log_full_commit(fs_info, trans);
3004
3005 if (ret != -ENOSPC) {
3006 btrfs_abort_transaction(trans, ret);
3007 mutex_unlock(&log_root_tree->log_mutex);
3008 goto out;
3009 }
3010 btrfs_wait_tree_log_extents(log, mark);
3011 btrfs_free_logged_extents(log, log_transid);
3012 mutex_unlock(&log_root_tree->log_mutex);
3013 ret = -EAGAIN;
3014 goto out;
3015 }
3016
3017 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3018 blk_finish_plug(&plug);
3019 list_del_init(&root_log_ctx.list);
3020 mutex_unlock(&log_root_tree->log_mutex);
3021 ret = root_log_ctx.log_ret;
3022 goto out;
3023 }
3024
3025 index2 = root_log_ctx.log_transid % 2;
3026 if (atomic_read(&log_root_tree->log_commit[index2])) {
3027 blk_finish_plug(&plug);
3028 ret = btrfs_wait_tree_log_extents(log, mark);
3029 btrfs_wait_logged_extents(trans, log, log_transid);
3030 wait_log_commit(log_root_tree,
3031 root_log_ctx.log_transid);
3032 mutex_unlock(&log_root_tree->log_mutex);
3033 if (!ret)
3034 ret = root_log_ctx.log_ret;
3035 goto out;
3036 }
3037 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3038 atomic_set(&log_root_tree->log_commit[index2], 1);
3039
3040 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3041 wait_log_commit(log_root_tree,
3042 root_log_ctx.log_transid - 1);
3043 }
3044
3045 wait_for_writer(log_root_tree);
3046
3047 /*
3048 * now that we've moved on to the tree of log tree roots,
3049 * check the full commit flag again
3050 */
3051 if (btrfs_need_log_full_commit(fs_info, trans)) {
3052 blk_finish_plug(&plug);
3053 btrfs_wait_tree_log_extents(log, mark);
3054 btrfs_free_logged_extents(log, log_transid);
3055 mutex_unlock(&log_root_tree->log_mutex);
3056 ret = -EAGAIN;
3057 goto out_wake_log_root;
3058 }
3059
3060 ret = btrfs_write_marked_extents(fs_info,
3061 &log_root_tree->dirty_log_pages,
3062 EXTENT_DIRTY | EXTENT_NEW);
3063 blk_finish_plug(&plug);
3064 if (ret) {
3065 btrfs_set_log_full_commit(fs_info, trans);
3066 btrfs_abort_transaction(trans, ret);
3067 btrfs_free_logged_extents(log, log_transid);
3068 mutex_unlock(&log_root_tree->log_mutex);
3069 goto out_wake_log_root;
3070 }
3071 ret = btrfs_wait_tree_log_extents(log, mark);
3072 if (!ret)
3073 ret = btrfs_wait_tree_log_extents(log_root_tree,
3074 EXTENT_NEW | EXTENT_DIRTY);
3075 if (ret) {
3076 btrfs_set_log_full_commit(fs_info, trans);
3077 btrfs_free_logged_extents(log, log_transid);
3078 mutex_unlock(&log_root_tree->log_mutex);
3079 goto out_wake_log_root;
3080 }
3081 btrfs_wait_logged_extents(trans, log, log_transid);
3082
3083 btrfs_set_super_log_root(fs_info->super_for_commit,
3084 log_root_tree->node->start);
3085 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3086 btrfs_header_level(log_root_tree->node));
3087
3088 log_root_tree->log_transid++;
3089 mutex_unlock(&log_root_tree->log_mutex);
3090
3091 /*
3092 * nobody else is going to jump in and write the the ctree
3093 * super here because the log_commit atomic below is protecting
3094 * us. We must be called with a transaction handle pinning
3095 * the running transaction open, so a full commit can't hop
3096 * in and cause problems either.
3097 */
3098 ret = write_all_supers(fs_info, 1);
3099 if (ret) {
3100 btrfs_set_log_full_commit(fs_info, trans);
3101 btrfs_abort_transaction(trans, ret);
3102 goto out_wake_log_root;
3103 }
3104
3105 mutex_lock(&root->log_mutex);
3106 if (root->last_log_commit < log_transid)
3107 root->last_log_commit = log_transid;
3108 mutex_unlock(&root->log_mutex);
3109
3110out_wake_log_root:
3111 mutex_lock(&log_root_tree->log_mutex);
3112 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3113
3114 log_root_tree->log_transid_committed++;
3115 atomic_set(&log_root_tree->log_commit[index2], 0);
3116 mutex_unlock(&log_root_tree->log_mutex);
3117
3118 /*
3119 * The barrier before waitqueue_active is implied by mutex_unlock
3120 */
3121 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3122 wake_up(&log_root_tree->log_commit_wait[index2]);
3123out:
3124 mutex_lock(&root->log_mutex);
3125 btrfs_remove_all_log_ctxs(root, index1, ret);
3126 root->log_transid_committed++;
3127 atomic_set(&root->log_commit[index1], 0);
3128 mutex_unlock(&root->log_mutex);
3129
3130 /*
3131 * The barrier before waitqueue_active is implied by mutex_unlock
3132 */
3133 if (waitqueue_active(&root->log_commit_wait[index1]))
3134 wake_up(&root->log_commit_wait[index1]);
3135 return ret;
3136}
3137
3138static void free_log_tree(struct btrfs_trans_handle *trans,
3139 struct btrfs_root *log)
3140{
3141 int ret;
3142 u64 start;
3143 u64 end;
3144 struct walk_control wc = {
3145 .free = 1,
3146 .process_func = process_one_buffer
3147 };
3148
3149 ret = walk_log_tree(trans, log, &wc);
3150 /* I don't think this can happen but just in case */
3151 if (ret)
3152 btrfs_abort_transaction(trans, ret);
3153
3154 while (1) {
3155 ret = find_first_extent_bit(&log->dirty_log_pages,
3156 0, &start, &end,
3157 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3158 NULL);
3159 if (ret)
3160 break;
3161
3162 clear_extent_bits(&log->dirty_log_pages, start, end,
3163 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3164 }
3165
3166 /*
3167 * We may have short-circuited the log tree with the full commit logic
3168 * and left ordered extents on our list, so clear these out to keep us
3169 * from leaking inodes and memory.
3170 */
3171 btrfs_free_logged_extents(log, 0);
3172 btrfs_free_logged_extents(log, 1);
3173
3174 free_extent_buffer(log->node);
3175 kfree(log);
3176}
3177
3178/*
3179 * free all the extents used by the tree log. This should be called
3180 * at commit time of the full transaction
3181 */
3182int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3183{
3184 if (root->log_root) {
3185 free_log_tree(trans, root->log_root);
3186 root->log_root = NULL;
3187 }
3188 return 0;
3189}
3190
3191int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3192 struct btrfs_fs_info *fs_info)
3193{
3194 if (fs_info->log_root_tree) {
3195 free_log_tree(trans, fs_info->log_root_tree);
3196 fs_info->log_root_tree = NULL;
3197 }
3198 return 0;
3199}
3200
3201/*
3202 * If both a file and directory are logged, and unlinks or renames are
3203 * mixed in, we have a few interesting corners:
3204 *
3205 * create file X in dir Y
3206 * link file X to X.link in dir Y
3207 * fsync file X
3208 * unlink file X but leave X.link
3209 * fsync dir Y
3210 *
3211 * After a crash we would expect only X.link to exist. But file X
3212 * didn't get fsync'd again so the log has back refs for X and X.link.
3213 *
3214 * We solve this by removing directory entries and inode backrefs from the
3215 * log when a file that was logged in the current transaction is
3216 * unlinked. Any later fsync will include the updated log entries, and
3217 * we'll be able to reconstruct the proper directory items from backrefs.
3218 *
3219 * This optimizations allows us to avoid relogging the entire inode
3220 * or the entire directory.
3221 */
3222int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 const char *name, int name_len,
3225 struct btrfs_inode *dir, u64 index)
3226{
3227 struct btrfs_root *log;
3228 struct btrfs_dir_item *di;
3229 struct btrfs_path *path;
3230 int ret;
3231 int err = 0;
3232 int bytes_del = 0;
3233 u64 dir_ino = btrfs_ino(dir);
3234
3235 if (dir->logged_trans < trans->transid)
3236 return 0;
3237
3238 ret = join_running_log_trans(root);
3239 if (ret)
3240 return 0;
3241
3242 mutex_lock(&dir->log_mutex);
3243
3244 log = root->log_root;
3245 path = btrfs_alloc_path();
3246 if (!path) {
3247 err = -ENOMEM;
3248 goto out_unlock;
3249 }
3250
3251 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3252 name, name_len, -1);
3253 if (IS_ERR(di)) {
3254 err = PTR_ERR(di);
3255 goto fail;
3256 }
3257 if (di) {
3258 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3259 bytes_del += name_len;
3260 if (ret) {
3261 err = ret;
3262 goto fail;
3263 }
3264 }
3265 btrfs_release_path(path);
3266 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3267 index, name, name_len, -1);
3268 if (IS_ERR(di)) {
3269 err = PTR_ERR(di);
3270 goto fail;
3271 }
3272 if (di) {
3273 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3274 bytes_del += name_len;
3275 if (ret) {
3276 err = ret;
3277 goto fail;
3278 }
3279 }
3280
3281 /* update the directory size in the log to reflect the names
3282 * we have removed
3283 */
3284 if (bytes_del) {
3285 struct btrfs_key key;
3286
3287 key.objectid = dir_ino;
3288 key.offset = 0;
3289 key.type = BTRFS_INODE_ITEM_KEY;
3290 btrfs_release_path(path);
3291
3292 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3293 if (ret < 0) {
3294 err = ret;
3295 goto fail;
3296 }
3297 if (ret == 0) {
3298 struct btrfs_inode_item *item;
3299 u64 i_size;
3300
3301 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302 struct btrfs_inode_item);
3303 i_size = btrfs_inode_size(path->nodes[0], item);
3304 if (i_size > bytes_del)
3305 i_size -= bytes_del;
3306 else
3307 i_size = 0;
3308 btrfs_set_inode_size(path->nodes[0], item, i_size);
3309 btrfs_mark_buffer_dirty(path->nodes[0]);
3310 } else
3311 ret = 0;
3312 btrfs_release_path(path);
3313 }
3314fail:
3315 btrfs_free_path(path);
3316out_unlock:
3317 mutex_unlock(&dir->log_mutex);
3318 if (ret == -ENOSPC) {
3319 btrfs_set_log_full_commit(root->fs_info, trans);
3320 ret = 0;
3321 } else if (ret < 0)
3322 btrfs_abort_transaction(trans, ret);
3323
3324 btrfs_end_log_trans(root);
3325
3326 return err;
3327}
3328
3329/* see comments for btrfs_del_dir_entries_in_log */
3330int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3331 struct btrfs_root *root,
3332 const char *name, int name_len,
3333 struct btrfs_inode *inode, u64 dirid)
3334{
3335 struct btrfs_fs_info *fs_info = root->fs_info;
3336 struct btrfs_root *log;
3337 u64 index;
3338 int ret;
3339
3340 if (inode->logged_trans < trans->transid)
3341 return 0;
3342
3343 ret = join_running_log_trans(root);
3344 if (ret)
3345 return 0;
3346 log = root->log_root;
3347 mutex_lock(&inode->log_mutex);
3348
3349 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3350 dirid, &index);
3351 mutex_unlock(&inode->log_mutex);
3352 if (ret == -ENOSPC) {
3353 btrfs_set_log_full_commit(fs_info, trans);
3354 ret = 0;
3355 } else if (ret < 0 && ret != -ENOENT)
3356 btrfs_abort_transaction(trans, ret);
3357 btrfs_end_log_trans(root);
3358
3359 return ret;
3360}
3361
3362/*
3363 * creates a range item in the log for 'dirid'. first_offset and
3364 * last_offset tell us which parts of the key space the log should
3365 * be considered authoritative for.
3366 */
3367static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3368 struct btrfs_root *log,
3369 struct btrfs_path *path,
3370 int key_type, u64 dirid,
3371 u64 first_offset, u64 last_offset)
3372{
3373 int ret;
3374 struct btrfs_key key;
3375 struct btrfs_dir_log_item *item;
3376
3377 key.objectid = dirid;
3378 key.offset = first_offset;
3379 if (key_type == BTRFS_DIR_ITEM_KEY)
3380 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3381 else
3382 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3383 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3384 if (ret)
3385 return ret;
3386
3387 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3388 struct btrfs_dir_log_item);
3389 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3390 btrfs_mark_buffer_dirty(path->nodes[0]);
3391 btrfs_release_path(path);
3392 return 0;
3393}
3394
3395/*
3396 * log all the items included in the current transaction for a given
3397 * directory. This also creates the range items in the log tree required
3398 * to replay anything deleted before the fsync
3399 */
3400static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3401 struct btrfs_root *root, struct btrfs_inode *inode,
3402 struct btrfs_path *path,
3403 struct btrfs_path *dst_path, int key_type,
3404 struct btrfs_log_ctx *ctx,
3405 u64 min_offset, u64 *last_offset_ret)
3406{
3407 struct btrfs_key min_key;
3408 struct btrfs_root *log = root->log_root;
3409 struct extent_buffer *src;
3410 int err = 0;
3411 int ret;
3412 int i;
3413 int nritems;
3414 u64 first_offset = min_offset;
3415 u64 last_offset = (u64)-1;
3416 u64 ino = btrfs_ino(inode);
3417
3418 log = root->log_root;
3419
3420 min_key.objectid = ino;
3421 min_key.type = key_type;
3422 min_key.offset = min_offset;
3423
3424 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3425
3426 /*
3427 * we didn't find anything from this transaction, see if there
3428 * is anything at all
3429 */
3430 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3431 min_key.objectid = ino;
3432 min_key.type = key_type;
3433 min_key.offset = (u64)-1;
3434 btrfs_release_path(path);
3435 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3436 if (ret < 0) {
3437 btrfs_release_path(path);
3438 return ret;
3439 }
3440 ret = btrfs_previous_item(root, path, ino, key_type);
3441
3442 /* if ret == 0 there are items for this type,
3443 * create a range to tell us the last key of this type.
3444 * otherwise, there are no items in this directory after
3445 * *min_offset, and we create a range to indicate that.
3446 */
3447 if (ret == 0) {
3448 struct btrfs_key tmp;
3449 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3450 path->slots[0]);
3451 if (key_type == tmp.type)
3452 first_offset = max(min_offset, tmp.offset) + 1;
3453 }
3454 goto done;
3455 }
3456
3457 /* go backward to find any previous key */
3458 ret = btrfs_previous_item(root, path, ino, key_type);
3459 if (ret == 0) {
3460 struct btrfs_key tmp;
3461 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3462 if (key_type == tmp.type) {
3463 first_offset = tmp.offset;
3464 ret = overwrite_item(trans, log, dst_path,
3465 path->nodes[0], path->slots[0],
3466 &tmp);
3467 if (ret) {
3468 err = ret;
3469 goto done;
3470 }
3471 }
3472 }
3473 btrfs_release_path(path);
3474
3475 /* find the first key from this transaction again */
3476 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3477 if (WARN_ON(ret != 0))
3478 goto done;
3479
3480 /*
3481 * we have a block from this transaction, log every item in it
3482 * from our directory
3483 */
3484 while (1) {
3485 struct btrfs_key tmp;
3486 src = path->nodes[0];
3487 nritems = btrfs_header_nritems(src);
3488 for (i = path->slots[0]; i < nritems; i++) {
3489 struct btrfs_dir_item *di;
3490
3491 btrfs_item_key_to_cpu(src, &min_key, i);
3492
3493 if (min_key.objectid != ino || min_key.type != key_type)
3494 goto done;
3495 ret = overwrite_item(trans, log, dst_path, src, i,
3496 &min_key);
3497 if (ret) {
3498 err = ret;
3499 goto done;
3500 }
3501
3502 /*
3503 * We must make sure that when we log a directory entry,
3504 * the corresponding inode, after log replay, has a
3505 * matching link count. For example:
3506 *
3507 * touch foo
3508 * mkdir mydir
3509 * sync
3510 * ln foo mydir/bar
3511 * xfs_io -c "fsync" mydir
3512 * <crash>
3513 * <mount fs and log replay>
3514 *
3515 * Would result in a fsync log that when replayed, our
3516 * file inode would have a link count of 1, but we get
3517 * two directory entries pointing to the same inode.
3518 * After removing one of the names, it would not be
3519 * possible to remove the other name, which resulted
3520 * always in stale file handle errors, and would not
3521 * be possible to rmdir the parent directory, since
3522 * its i_size could never decrement to the value
3523 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3524 */
3525 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3526 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3527 if (ctx &&
3528 (btrfs_dir_transid(src, di) == trans->transid ||
3529 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3530 tmp.type != BTRFS_ROOT_ITEM_KEY)
3531 ctx->log_new_dentries = true;
3532 }
3533 path->slots[0] = nritems;
3534
3535 /*
3536 * look ahead to the next item and see if it is also
3537 * from this directory and from this transaction
3538 */
3539 ret = btrfs_next_leaf(root, path);
3540 if (ret) {
3541 if (ret == 1)
3542 last_offset = (u64)-1;
3543 else
3544 err = ret;
3545 goto done;
3546 }
3547 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3548 if (tmp.objectid != ino || tmp.type != key_type) {
3549 last_offset = (u64)-1;
3550 goto done;
3551 }
3552 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3553 ret = overwrite_item(trans, log, dst_path,
3554 path->nodes[0], path->slots[0],
3555 &tmp);
3556 if (ret)
3557 err = ret;
3558 else
3559 last_offset = tmp.offset;
3560 goto done;
3561 }
3562 }
3563done:
3564 btrfs_release_path(path);
3565 btrfs_release_path(dst_path);
3566
3567 if (err == 0) {
3568 *last_offset_ret = last_offset;
3569 /*
3570 * insert the log range keys to indicate where the log
3571 * is valid
3572 */
3573 ret = insert_dir_log_key(trans, log, path, key_type,
3574 ino, first_offset, last_offset);
3575 if (ret)
3576 err = ret;
3577 }
3578 return err;
3579}
3580
3581/*
3582 * logging directories is very similar to logging inodes, We find all the items
3583 * from the current transaction and write them to the log.
3584 *
3585 * The recovery code scans the directory in the subvolume, and if it finds a
3586 * key in the range logged that is not present in the log tree, then it means
3587 * that dir entry was unlinked during the transaction.
3588 *
3589 * In order for that scan to work, we must include one key smaller than
3590 * the smallest logged by this transaction and one key larger than the largest
3591 * key logged by this transaction.
3592 */
3593static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3594 struct btrfs_root *root, struct btrfs_inode *inode,
3595 struct btrfs_path *path,
3596 struct btrfs_path *dst_path,
3597 struct btrfs_log_ctx *ctx)
3598{
3599 u64 min_key;
3600 u64 max_key;
3601 int ret;
3602 int key_type = BTRFS_DIR_ITEM_KEY;
3603
3604again:
3605 min_key = 0;
3606 max_key = 0;
3607 while (1) {
3608 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3609 ctx, min_key, &max_key);
3610 if (ret)
3611 return ret;
3612 if (max_key == (u64)-1)
3613 break;
3614 min_key = max_key + 1;
3615 }
3616
3617 if (key_type == BTRFS_DIR_ITEM_KEY) {
3618 key_type = BTRFS_DIR_INDEX_KEY;
3619 goto again;
3620 }
3621 return 0;
3622}
3623
3624/*
3625 * a helper function to drop items from the log before we relog an
3626 * inode. max_key_type indicates the highest item type to remove.
3627 * This cannot be run for file data extents because it does not
3628 * free the extents they point to.
3629 */
3630static int drop_objectid_items(struct btrfs_trans_handle *trans,
3631 struct btrfs_root *log,
3632 struct btrfs_path *path,
3633 u64 objectid, int max_key_type)
3634{
3635 int ret;
3636 struct btrfs_key key;
3637 struct btrfs_key found_key;
3638 int start_slot;
3639
3640 key.objectid = objectid;
3641 key.type = max_key_type;
3642 key.offset = (u64)-1;
3643
3644 while (1) {
3645 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3646 BUG_ON(ret == 0); /* Logic error */
3647 if (ret < 0)
3648 break;
3649
3650 if (path->slots[0] == 0)
3651 break;
3652
3653 path->slots[0]--;
3654 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3655 path->slots[0]);
3656
3657 if (found_key.objectid != objectid)
3658 break;
3659
3660 found_key.offset = 0;
3661 found_key.type = 0;
3662 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3663 &start_slot);
3664
3665 ret = btrfs_del_items(trans, log, path, start_slot,
3666 path->slots[0] - start_slot + 1);
3667 /*
3668 * If start slot isn't 0 then we don't need to re-search, we've
3669 * found the last guy with the objectid in this tree.
3670 */
3671 if (ret || start_slot != 0)
3672 break;
3673 btrfs_release_path(path);
3674 }
3675 btrfs_release_path(path);
3676 if (ret > 0)
3677 ret = 0;
3678 return ret;
3679}
3680
3681static void fill_inode_item(struct btrfs_trans_handle *trans,
3682 struct extent_buffer *leaf,
3683 struct btrfs_inode_item *item,
3684 struct inode *inode, int log_inode_only,
3685 u64 logged_isize)
3686{
3687 struct btrfs_map_token token;
3688
3689 btrfs_init_map_token(&token);
3690
3691 if (log_inode_only) {
3692 /* set the generation to zero so the recover code
3693 * can tell the difference between an logging
3694 * just to say 'this inode exists' and a logging
3695 * to say 'update this inode with these values'
3696 */
3697 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3698 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3699 } else {
3700 btrfs_set_token_inode_generation(leaf, item,
3701 BTRFS_I(inode)->generation,
3702 &token);
3703 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3704 }
3705
3706 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3707 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3708 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3709 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3710
3711 btrfs_set_token_timespec_sec(leaf, &item->atime,
3712 inode->i_atime.tv_sec, &token);
3713 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3714 inode->i_atime.tv_nsec, &token);
3715
3716 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3717 inode->i_mtime.tv_sec, &token);
3718 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3719 inode->i_mtime.tv_nsec, &token);
3720
3721 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3722 inode->i_ctime.tv_sec, &token);
3723 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3724 inode->i_ctime.tv_nsec, &token);
3725
3726 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3727 &token);
3728
3729 btrfs_set_token_inode_sequence(leaf, item,
3730 inode_peek_iversion(inode), &token);
3731 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3732 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3733 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3734 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3735}
3736
3737static int log_inode_item(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *log, struct btrfs_path *path,
3739 struct btrfs_inode *inode)
3740{
3741 struct btrfs_inode_item *inode_item;
3742 int ret;
3743
3744 ret = btrfs_insert_empty_item(trans, log, path,
3745 &inode->location, sizeof(*inode_item));
3746 if (ret && ret != -EEXIST)
3747 return ret;
3748 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749 struct btrfs_inode_item);
3750 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3751 0, 0);
3752 btrfs_release_path(path);
3753 return 0;
3754}
3755
3756static noinline int copy_items(struct btrfs_trans_handle *trans,
3757 struct btrfs_inode *inode,
3758 struct btrfs_path *dst_path,
3759 struct btrfs_path *src_path, u64 *last_extent,
3760 int start_slot, int nr, int inode_only,
3761 u64 logged_isize)
3762{
3763 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3764 unsigned long src_offset;
3765 unsigned long dst_offset;
3766 struct btrfs_root *log = inode->root->log_root;
3767 struct btrfs_file_extent_item *extent;
3768 struct btrfs_inode_item *inode_item;
3769 struct extent_buffer *src = src_path->nodes[0];
3770 struct btrfs_key first_key, last_key, key;
3771 int ret;
3772 struct btrfs_key *ins_keys;
3773 u32 *ins_sizes;
3774 char *ins_data;
3775 int i;
3776 struct list_head ordered_sums;
3777 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3778 bool has_extents = false;
3779 bool need_find_last_extent = true;
3780 bool done = false;
3781
3782 INIT_LIST_HEAD(&ordered_sums);
3783
3784 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3785 nr * sizeof(u32), GFP_NOFS);
3786 if (!ins_data)
3787 return -ENOMEM;
3788
3789 first_key.objectid = (u64)-1;
3790
3791 ins_sizes = (u32 *)ins_data;
3792 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3793
3794 for (i = 0; i < nr; i++) {
3795 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3796 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3797 }
3798 ret = btrfs_insert_empty_items(trans, log, dst_path,
3799 ins_keys, ins_sizes, nr);
3800 if (ret) {
3801 kfree(ins_data);
3802 return ret;
3803 }
3804
3805 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3806 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3807 dst_path->slots[0]);
3808
3809 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3810
3811 if (i == nr - 1)
3812 last_key = ins_keys[i];
3813
3814 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3815 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3816 dst_path->slots[0],
3817 struct btrfs_inode_item);
3818 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3819 &inode->vfs_inode,
3820 inode_only == LOG_INODE_EXISTS,
3821 logged_isize);
3822 } else {
3823 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3824 src_offset, ins_sizes[i]);
3825 }
3826
3827 /*
3828 * We set need_find_last_extent here in case we know we were
3829 * processing other items and then walk into the first extent in
3830 * the inode. If we don't hit an extent then nothing changes,
3831 * we'll do the last search the next time around.
3832 */
3833 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3834 has_extents = true;
3835 if (first_key.objectid == (u64)-1)
3836 first_key = ins_keys[i];
3837 } else {
3838 need_find_last_extent = false;
3839 }
3840
3841 /* take a reference on file data extents so that truncates
3842 * or deletes of this inode don't have to relog the inode
3843 * again
3844 */
3845 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3846 !skip_csum) {
3847 int found_type;
3848 extent = btrfs_item_ptr(src, start_slot + i,
3849 struct btrfs_file_extent_item);
3850
3851 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3852 continue;
3853
3854 found_type = btrfs_file_extent_type(src, extent);
3855 if (found_type == BTRFS_FILE_EXTENT_REG) {
3856 u64 ds, dl, cs, cl;
3857 ds = btrfs_file_extent_disk_bytenr(src,
3858 extent);
3859 /* ds == 0 is a hole */
3860 if (ds == 0)
3861 continue;
3862
3863 dl = btrfs_file_extent_disk_num_bytes(src,
3864 extent);
3865 cs = btrfs_file_extent_offset(src, extent);
3866 cl = btrfs_file_extent_num_bytes(src,
3867 extent);
3868 if (btrfs_file_extent_compression(src,
3869 extent)) {
3870 cs = 0;
3871 cl = dl;
3872 }
3873
3874 ret = btrfs_lookup_csums_range(
3875 fs_info->csum_root,
3876 ds + cs, ds + cs + cl - 1,
3877 &ordered_sums, 0);
3878 if (ret) {
3879 btrfs_release_path(dst_path);
3880 kfree(ins_data);
3881 return ret;
3882 }
3883 }
3884 }
3885 }
3886
3887 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3888 btrfs_release_path(dst_path);
3889 kfree(ins_data);
3890
3891 /*
3892 * we have to do this after the loop above to avoid changing the
3893 * log tree while trying to change the log tree.
3894 */
3895 ret = 0;
3896 while (!list_empty(&ordered_sums)) {
3897 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3898 struct btrfs_ordered_sum,
3899 list);
3900 if (!ret)
3901 ret = btrfs_csum_file_blocks(trans, log, sums);
3902 list_del(&sums->list);
3903 kfree(sums);
3904 }
3905
3906 if (!has_extents)
3907 return ret;
3908
3909 if (need_find_last_extent && *last_extent == first_key.offset) {
3910 /*
3911 * We don't have any leafs between our current one and the one
3912 * we processed before that can have file extent items for our
3913 * inode (and have a generation number smaller than our current
3914 * transaction id).
3915 */
3916 need_find_last_extent = false;
3917 }
3918
3919 /*
3920 * Because we use btrfs_search_forward we could skip leaves that were
3921 * not modified and then assume *last_extent is valid when it really
3922 * isn't. So back up to the previous leaf and read the end of the last
3923 * extent before we go and fill in holes.
3924 */
3925 if (need_find_last_extent) {
3926 u64 len;
3927
3928 ret = btrfs_prev_leaf(inode->root, src_path);
3929 if (ret < 0)
3930 return ret;
3931 if (ret)
3932 goto fill_holes;
3933 if (src_path->slots[0])
3934 src_path->slots[0]--;
3935 src = src_path->nodes[0];
3936 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3937 if (key.objectid != btrfs_ino(inode) ||
3938 key.type != BTRFS_EXTENT_DATA_KEY)
3939 goto fill_holes;
3940 extent = btrfs_item_ptr(src, src_path->slots[0],
3941 struct btrfs_file_extent_item);
3942 if (btrfs_file_extent_type(src, extent) ==
3943 BTRFS_FILE_EXTENT_INLINE) {
3944 len = btrfs_file_extent_inline_len(src,
3945 src_path->slots[0],
3946 extent);
3947 *last_extent = ALIGN(key.offset + len,
3948 fs_info->sectorsize);
3949 } else {
3950 len = btrfs_file_extent_num_bytes(src, extent);
3951 *last_extent = key.offset + len;
3952 }
3953 }
3954fill_holes:
3955 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3956 * things could have happened
3957 *
3958 * 1) A merge could have happened, so we could currently be on a leaf
3959 * that holds what we were copying in the first place.
3960 * 2) A split could have happened, and now not all of the items we want
3961 * are on the same leaf.
3962 *
3963 * So we need to adjust how we search for holes, we need to drop the
3964 * path and re-search for the first extent key we found, and then walk
3965 * forward until we hit the last one we copied.
3966 */
3967 if (need_find_last_extent) {
3968 /* btrfs_prev_leaf could return 1 without releasing the path */
3969 btrfs_release_path(src_path);
3970 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3971 src_path, 0, 0);
3972 if (ret < 0)
3973 return ret;
3974 ASSERT(ret == 0);
3975 src = src_path->nodes[0];
3976 i = src_path->slots[0];
3977 } else {
3978 i = start_slot;
3979 }
3980
3981 /*
3982 * Ok so here we need to go through and fill in any holes we may have
3983 * to make sure that holes are punched for those areas in case they had
3984 * extents previously.
3985 */
3986 while (!done) {
3987 u64 offset, len;
3988 u64 extent_end;
3989
3990 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3991 ret = btrfs_next_leaf(inode->root, src_path);
3992 if (ret < 0)
3993 return ret;
3994 ASSERT(ret == 0);
3995 src = src_path->nodes[0];
3996 i = 0;
3997 need_find_last_extent = true;
3998 }
3999
4000 btrfs_item_key_to_cpu(src, &key, i);
4001 if (!btrfs_comp_cpu_keys(&key, &last_key))
4002 done = true;
4003 if (key.objectid != btrfs_ino(inode) ||
4004 key.type != BTRFS_EXTENT_DATA_KEY) {
4005 i++;
4006 continue;
4007 }
4008 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4009 if (btrfs_file_extent_type(src, extent) ==
4010 BTRFS_FILE_EXTENT_INLINE) {
4011 len = btrfs_file_extent_inline_len(src, i, extent);
4012 extent_end = ALIGN(key.offset + len,
4013 fs_info->sectorsize);
4014 } else {
4015 len = btrfs_file_extent_num_bytes(src, extent);
4016 extent_end = key.offset + len;
4017 }
4018 i++;
4019
4020 if (*last_extent == key.offset) {
4021 *last_extent = extent_end;
4022 continue;
4023 }
4024 offset = *last_extent;
4025 len = key.offset - *last_extent;
4026 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4027 offset, 0, 0, len, 0, len, 0, 0, 0);
4028 if (ret)
4029 break;
4030 *last_extent = extent_end;
4031 }
4032
4033 /*
4034 * Check if there is a hole between the last extent found in our leaf
4035 * and the first extent in the next leaf. If there is one, we need to
4036 * log an explicit hole so that at replay time we can punch the hole.
4037 */
4038 if (ret == 0 &&
4039 key.objectid == btrfs_ino(inode) &&
4040 key.type == BTRFS_EXTENT_DATA_KEY &&
4041 i == btrfs_header_nritems(src_path->nodes[0])) {
4042 ret = btrfs_next_leaf(inode->root, src_path);
4043 need_find_last_extent = true;
4044 if (ret > 0) {
4045 ret = 0;
4046 } else if (ret == 0) {
4047 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4048 src_path->slots[0]);
4049 if (key.objectid == btrfs_ino(inode) &&
4050 key.type == BTRFS_EXTENT_DATA_KEY &&
4051 *last_extent < key.offset) {
4052 const u64 len = key.offset - *last_extent;
4053
4054 ret = btrfs_insert_file_extent(trans, log,
4055 btrfs_ino(inode),
4056 *last_extent, 0,
4057 0, len, 0, len,
4058 0, 0, 0);
4059 }
4060 }
4061 }
4062 /*
4063 * Need to let the callers know we dropped the path so they should
4064 * re-search.
4065 */
4066 if (!ret && need_find_last_extent)
4067 ret = 1;
4068 return ret;
4069}
4070
4071static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4072{
4073 struct extent_map *em1, *em2;
4074
4075 em1 = list_entry(a, struct extent_map, list);
4076 em2 = list_entry(b, struct extent_map, list);
4077
4078 if (em1->start < em2->start)
4079 return -1;
4080 else if (em1->start > em2->start)
4081 return 1;
4082 return 0;
4083}
4084
4085static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4086 struct inode *inode,
4087 struct btrfs_root *root,
4088 const struct extent_map *em,
4089 const struct list_head *logged_list,
4090 bool *ordered_io_error)
4091{
4092 struct btrfs_fs_info *fs_info = root->fs_info;
4093 struct btrfs_ordered_extent *ordered;
4094 struct btrfs_root *log = root->log_root;
4095 u64 mod_start = em->mod_start;
4096 u64 mod_len = em->mod_len;
4097 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4098 u64 csum_offset;
4099 u64 csum_len;
4100 LIST_HEAD(ordered_sums);
4101 int ret = 0;
4102
4103 *ordered_io_error = false;
4104
4105 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4106 em->block_start == EXTENT_MAP_HOLE)
4107 return 0;
4108
4109 /*
4110 * Wait far any ordered extent that covers our extent map. If it
4111 * finishes without an error, first check and see if our csums are on
4112 * our outstanding ordered extents.
4113 */
4114 list_for_each_entry(ordered, logged_list, log_list) {
4115 struct btrfs_ordered_sum *sum;
4116
4117 if (!mod_len)
4118 break;
4119
4120 if (ordered->file_offset + ordered->len <= mod_start ||
4121 mod_start + mod_len <= ordered->file_offset)
4122 continue;
4123
4124 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4125 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4126 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4127 const u64 start = ordered->file_offset;
4128 const u64 end = ordered->file_offset + ordered->len - 1;
4129
4130 WARN_ON(ordered->inode != inode);
4131 filemap_fdatawrite_range(inode->i_mapping, start, end);
4132 }
4133
4134 wait_event(ordered->wait,
4135 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4136 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4137
4138 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4139 /*
4140 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4141 * i_mapping flags, so that the next fsync won't get
4142 * an outdated io error too.
4143 */
4144 filemap_check_errors(inode->i_mapping);
4145 *ordered_io_error = true;
4146 break;
4147 }
4148 /*
4149 * We are going to copy all the csums on this ordered extent, so
4150 * go ahead and adjust mod_start and mod_len in case this
4151 * ordered extent has already been logged.
4152 */
4153 if (ordered->file_offset > mod_start) {
4154 if (ordered->file_offset + ordered->len >=
4155 mod_start + mod_len)
4156 mod_len = ordered->file_offset - mod_start;
4157 /*
4158 * If we have this case
4159 *
4160 * |--------- logged extent ---------|
4161 * |----- ordered extent ----|
4162 *
4163 * Just don't mess with mod_start and mod_len, we'll
4164 * just end up logging more csums than we need and it
4165 * will be ok.
4166 */
4167 } else {
4168 if (ordered->file_offset + ordered->len <
4169 mod_start + mod_len) {
4170 mod_len = (mod_start + mod_len) -
4171 (ordered->file_offset + ordered->len);
4172 mod_start = ordered->file_offset +
4173 ordered->len;
4174 } else {
4175 mod_len = 0;
4176 }
4177 }
4178
4179 if (skip_csum)
4180 continue;
4181
4182 /*
4183 * To keep us from looping for the above case of an ordered
4184 * extent that falls inside of the logged extent.
4185 */
4186 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4187 &ordered->flags))
4188 continue;
4189
4190 list_for_each_entry(sum, &ordered->list, list) {
4191 ret = btrfs_csum_file_blocks(trans, log, sum);
4192 if (ret)
4193 break;
4194 }
4195 }
4196
4197 if (*ordered_io_error || !mod_len || ret || skip_csum)
4198 return ret;
4199
4200 if (em->compress_type) {
4201 csum_offset = 0;
4202 csum_len = max(em->block_len, em->orig_block_len);
4203 } else {
4204 csum_offset = mod_start - em->start;
4205 csum_len = mod_len;
4206 }
4207
4208 /* block start is already adjusted for the file extent offset. */
4209 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4210 em->block_start + csum_offset,
4211 em->block_start + csum_offset +
4212 csum_len - 1, &ordered_sums, 0);
4213 if (ret)
4214 return ret;
4215
4216 while (!list_empty(&ordered_sums)) {
4217 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4218 struct btrfs_ordered_sum,
4219 list);
4220 if (!ret)
4221 ret = btrfs_csum_file_blocks(trans, log, sums);
4222 list_del(&sums->list);
4223 kfree(sums);
4224 }
4225
4226 return ret;
4227}
4228
4229static int log_one_extent(struct btrfs_trans_handle *trans,
4230 struct btrfs_inode *inode, struct btrfs_root *root,
4231 const struct extent_map *em,
4232 struct btrfs_path *path,
4233 const struct list_head *logged_list,
4234 struct btrfs_log_ctx *ctx)
4235{
4236 struct btrfs_root *log = root->log_root;
4237 struct btrfs_file_extent_item *fi;
4238 struct extent_buffer *leaf;
4239 struct btrfs_map_token token;
4240 struct btrfs_key key;
4241 u64 extent_offset = em->start - em->orig_start;
4242 u64 block_len;
4243 int ret;
4244 int extent_inserted = 0;
4245 bool ordered_io_err = false;
4246
4247 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4248 logged_list, &ordered_io_err);
4249 if (ret)
4250 return ret;
4251
4252 if (ordered_io_err) {
4253 ctx->io_err = -EIO;
4254 return ctx->io_err;
4255 }
4256
4257 btrfs_init_map_token(&token);
4258
4259 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4260 em->start + em->len, NULL, 0, 1,
4261 sizeof(*fi), &extent_inserted);
4262 if (ret)
4263 return ret;
4264
4265 if (!extent_inserted) {
4266 key.objectid = btrfs_ino(inode);
4267 key.type = BTRFS_EXTENT_DATA_KEY;
4268 key.offset = em->start;
4269
4270 ret = btrfs_insert_empty_item(trans, log, path, &key,
4271 sizeof(*fi));
4272 if (ret)
4273 return ret;
4274 }
4275 leaf = path->nodes[0];
4276 fi = btrfs_item_ptr(leaf, path->slots[0],
4277 struct btrfs_file_extent_item);
4278
4279 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4280 &token);
4281 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4282 btrfs_set_token_file_extent_type(leaf, fi,
4283 BTRFS_FILE_EXTENT_PREALLOC,
4284 &token);
4285 else
4286 btrfs_set_token_file_extent_type(leaf, fi,
4287 BTRFS_FILE_EXTENT_REG,
4288 &token);
4289
4290 block_len = max(em->block_len, em->orig_block_len);
4291 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4292 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4293 em->block_start,
4294 &token);
4295 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4296 &token);
4297 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4298 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4299 em->block_start -
4300 extent_offset, &token);
4301 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4302 &token);
4303 } else {
4304 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4305 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4306 &token);
4307 }
4308
4309 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4310 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4311 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4312 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4313 &token);
4314 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4315 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4316 btrfs_mark_buffer_dirty(leaf);
4317
4318 btrfs_release_path(path);
4319
4320 return ret;
4321}
4322
4323/*
4324 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4325 * lose them after doing a fast fsync and replaying the log. We scan the
4326 * subvolume's root instead of iterating the inode's extent map tree because
4327 * otherwise we can log incorrect extent items based on extent map conversion.
4328 * That can happen due to the fact that extent maps are merged when they
4329 * are not in the extent map tree's list of modified extents.
4330 */
4331static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4332 struct btrfs_inode *inode,
4333 struct btrfs_path *path)
4334{
4335 struct btrfs_root *root = inode->root;
4336 struct btrfs_key key;
4337 const u64 i_size = i_size_read(&inode->vfs_inode);
4338 const u64 ino = btrfs_ino(inode);
4339 struct btrfs_path *dst_path = NULL;
4340 u64 last_extent = (u64)-1;
4341 int ins_nr = 0;
4342 int start_slot;
4343 int ret;
4344
4345 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4346 return 0;
4347
4348 key.objectid = ino;
4349 key.type = BTRFS_EXTENT_DATA_KEY;
4350 key.offset = i_size;
4351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4352 if (ret < 0)
4353 goto out;
4354
4355 while (true) {
4356 struct extent_buffer *leaf = path->nodes[0];
4357 int slot = path->slots[0];
4358
4359 if (slot >= btrfs_header_nritems(leaf)) {
4360 if (ins_nr > 0) {
4361 ret = copy_items(trans, inode, dst_path, path,
4362 &last_extent, start_slot,
4363 ins_nr, 1, 0);
4364 if (ret < 0)
4365 goto out;
4366 ins_nr = 0;
4367 }
4368 ret = btrfs_next_leaf(root, path);
4369 if (ret < 0)
4370 goto out;
4371 if (ret > 0) {
4372 ret = 0;
4373 break;
4374 }
4375 continue;
4376 }
4377
4378 btrfs_item_key_to_cpu(leaf, &key, slot);
4379 if (key.objectid > ino)
4380 break;
4381 if (WARN_ON_ONCE(key.objectid < ino) ||
4382 key.type < BTRFS_EXTENT_DATA_KEY ||
4383 key.offset < i_size) {
4384 path->slots[0]++;
4385 continue;
4386 }
4387 if (last_extent == (u64)-1) {
4388 last_extent = key.offset;
4389 /*
4390 * Avoid logging extent items logged in past fsync calls
4391 * and leading to duplicate keys in the log tree.
4392 */
4393 do {
4394 ret = btrfs_truncate_inode_items(trans,
4395 root->log_root,
4396 &inode->vfs_inode,
4397 i_size,
4398 BTRFS_EXTENT_DATA_KEY);
4399 } while (ret == -EAGAIN);
4400 if (ret)
4401 goto out;
4402 }
4403 if (ins_nr == 0)
4404 start_slot = slot;
4405 ins_nr++;
4406 path->slots[0]++;
4407 if (!dst_path) {
4408 dst_path = btrfs_alloc_path();
4409 if (!dst_path) {
4410 ret = -ENOMEM;
4411 goto out;
4412 }
4413 }
4414 }
4415 if (ins_nr > 0) {
4416 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4417 start_slot, ins_nr, 1, 0);
4418 if (ret > 0)
4419 ret = 0;
4420 }
4421out:
4422 btrfs_release_path(path);
4423 btrfs_free_path(dst_path);
4424 return ret;
4425}
4426
4427static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4428 struct btrfs_root *root,
4429 struct btrfs_inode *inode,
4430 struct btrfs_path *path,
4431 struct list_head *logged_list,
4432 struct btrfs_log_ctx *ctx,
4433 const u64 start,
4434 const u64 end)
4435{
4436 struct extent_map *em, *n;
4437 struct list_head extents;
4438 struct extent_map_tree *tree = &inode->extent_tree;
4439 u64 logged_start, logged_end;
4440 u64 test_gen;
4441 int ret = 0;
4442 int num = 0;
4443
4444 INIT_LIST_HEAD(&extents);
4445
4446 down_write(&inode->dio_sem);
4447 write_lock(&tree->lock);
4448 test_gen = root->fs_info->last_trans_committed;
4449 logged_start = start;
4450 logged_end = end;
4451
4452 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4453 list_del_init(&em->list);
4454 /*
4455 * Just an arbitrary number, this can be really CPU intensive
4456 * once we start getting a lot of extents, and really once we
4457 * have a bunch of extents we just want to commit since it will
4458 * be faster.
4459 */
4460 if (++num > 32768) {
4461 list_del_init(&tree->modified_extents);
4462 ret = -EFBIG;
4463 goto process;
4464 }
4465
4466 if (em->generation <= test_gen)
4467 continue;
4468
4469 /* We log prealloc extents beyond eof later. */
4470 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4471 em->start >= i_size_read(&inode->vfs_inode))
4472 continue;
4473
4474 if (em->start < logged_start)
4475 logged_start = em->start;
4476 if ((em->start + em->len - 1) > logged_end)
4477 logged_end = em->start + em->len - 1;
4478
4479 /* Need a ref to keep it from getting evicted from cache */
4480 refcount_inc(&em->refs);
4481 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4482 list_add_tail(&em->list, &extents);
4483 num++;
4484 }
4485
4486 list_sort(NULL, &extents, extent_cmp);
4487 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4488 /*
4489 * Some ordered extents started by fsync might have completed
4490 * before we could collect them into the list logged_list, which
4491 * means they're gone, not in our logged_list nor in the inode's
4492 * ordered tree. We want the application/user space to know an
4493 * error happened while attempting to persist file data so that
4494 * it can take proper action. If such error happened, we leave
4495 * without writing to the log tree and the fsync must report the
4496 * file data write error and not commit the current transaction.
4497 */
4498 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4499 if (ret)
4500 ctx->io_err = ret;
4501process:
4502 while (!list_empty(&extents)) {
4503 em = list_entry(extents.next, struct extent_map, list);
4504
4505 list_del_init(&em->list);
4506
4507 /*
4508 * If we had an error we just need to delete everybody from our
4509 * private list.
4510 */
4511 if (ret) {
4512 clear_em_logging(tree, em);
4513 free_extent_map(em);
4514 continue;
4515 }
4516
4517 write_unlock(&tree->lock);
4518
4519 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4520 ctx);
4521 write_lock(&tree->lock);
4522 clear_em_logging(tree, em);
4523 free_extent_map(em);
4524 }
4525 WARN_ON(!list_empty(&extents));
4526 write_unlock(&tree->lock);
4527 up_write(&inode->dio_sem);
4528
4529 btrfs_release_path(path);
4530 if (!ret)
4531 ret = btrfs_log_prealloc_extents(trans, inode, path);
4532
4533 return ret;
4534}
4535
4536static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4537 struct btrfs_path *path, u64 *size_ret)
4538{
4539 struct btrfs_key key;
4540 int ret;
4541
4542 key.objectid = btrfs_ino(inode);
4543 key.type = BTRFS_INODE_ITEM_KEY;
4544 key.offset = 0;
4545
4546 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4547 if (ret < 0) {
4548 return ret;
4549 } else if (ret > 0) {
4550 *size_ret = 0;
4551 } else {
4552 struct btrfs_inode_item *item;
4553
4554 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4555 struct btrfs_inode_item);
4556 *size_ret = btrfs_inode_size(path->nodes[0], item);
4557 }
4558
4559 btrfs_release_path(path);
4560 return 0;
4561}
4562
4563/*
4564 * At the moment we always log all xattrs. This is to figure out at log replay
4565 * time which xattrs must have their deletion replayed. If a xattr is missing
4566 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4567 * because if a xattr is deleted, the inode is fsynced and a power failure
4568 * happens, causing the log to be replayed the next time the fs is mounted,
4569 * we want the xattr to not exist anymore (same behaviour as other filesystems
4570 * with a journal, ext3/4, xfs, f2fs, etc).
4571 */
4572static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4573 struct btrfs_root *root,
4574 struct btrfs_inode *inode,
4575 struct btrfs_path *path,
4576 struct btrfs_path *dst_path)
4577{
4578 int ret;
4579 struct btrfs_key key;
4580 const u64 ino = btrfs_ino(inode);
4581 int ins_nr = 0;
4582 int start_slot = 0;
4583
4584 key.objectid = ino;
4585 key.type = BTRFS_XATTR_ITEM_KEY;
4586 key.offset = 0;
4587
4588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4589 if (ret < 0)
4590 return ret;
4591
4592 while (true) {
4593 int slot = path->slots[0];
4594 struct extent_buffer *leaf = path->nodes[0];
4595 int nritems = btrfs_header_nritems(leaf);
4596
4597 if (slot >= nritems) {
4598 if (ins_nr > 0) {
4599 u64 last_extent = 0;
4600
4601 ret = copy_items(trans, inode, dst_path, path,
4602 &last_extent, start_slot,
4603 ins_nr, 1, 0);
4604 /* can't be 1, extent items aren't processed */
4605 ASSERT(ret <= 0);
4606 if (ret < 0)
4607 return ret;
4608 ins_nr = 0;
4609 }
4610 ret = btrfs_next_leaf(root, path);
4611 if (ret < 0)
4612 return ret;
4613 else if (ret > 0)
4614 break;
4615 continue;
4616 }
4617
4618 btrfs_item_key_to_cpu(leaf, &key, slot);
4619 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4620 break;
4621
4622 if (ins_nr == 0)
4623 start_slot = slot;
4624 ins_nr++;
4625 path->slots[0]++;
4626 cond_resched();
4627 }
4628 if (ins_nr > 0) {
4629 u64 last_extent = 0;
4630
4631 ret = copy_items(trans, inode, dst_path, path,
4632 &last_extent, start_slot,
4633 ins_nr, 1, 0);
4634 /* can't be 1, extent items aren't processed */
4635 ASSERT(ret <= 0);
4636 if (ret < 0)
4637 return ret;
4638 }
4639
4640 return 0;
4641}
4642
4643/*
4644 * If the no holes feature is enabled we need to make sure any hole between the
4645 * last extent and the i_size of our inode is explicitly marked in the log. This
4646 * is to make sure that doing something like:
4647 *
4648 * 1) create file with 128Kb of data
4649 * 2) truncate file to 64Kb
4650 * 3) truncate file to 256Kb
4651 * 4) fsync file
4652 * 5) <crash/power failure>
4653 * 6) mount fs and trigger log replay
4654 *
4655 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4656 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4657 * file correspond to a hole. The presence of explicit holes in a log tree is
4658 * what guarantees that log replay will remove/adjust file extent items in the
4659 * fs/subvol tree.
4660 *
4661 * Here we do not need to care about holes between extents, that is already done
4662 * by copy_items(). We also only need to do this in the full sync path, where we
4663 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4664 * lookup the list of modified extent maps and if any represents a hole, we
4665 * insert a corresponding extent representing a hole in the log tree.
4666 */
4667static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4668 struct btrfs_root *root,
4669 struct btrfs_inode *inode,
4670 struct btrfs_path *path)
4671{
4672 struct btrfs_fs_info *fs_info = root->fs_info;
4673 int ret;
4674 struct btrfs_key key;
4675 u64 hole_start;
4676 u64 hole_size;
4677 struct extent_buffer *leaf;
4678 struct btrfs_root *log = root->log_root;
4679 const u64 ino = btrfs_ino(inode);
4680 const u64 i_size = i_size_read(&inode->vfs_inode);
4681
4682 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4683 return 0;
4684
4685 key.objectid = ino;
4686 key.type = BTRFS_EXTENT_DATA_KEY;
4687 key.offset = (u64)-1;
4688
4689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4690 ASSERT(ret != 0);
4691 if (ret < 0)
4692 return ret;
4693
4694 ASSERT(path->slots[0] > 0);
4695 path->slots[0]--;
4696 leaf = path->nodes[0];
4697 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4698
4699 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4700 /* inode does not have any extents */
4701 hole_start = 0;
4702 hole_size = i_size;
4703 } else {
4704 struct btrfs_file_extent_item *extent;
4705 u64 len;
4706
4707 /*
4708 * If there's an extent beyond i_size, an explicit hole was
4709 * already inserted by copy_items().
4710 */
4711 if (key.offset >= i_size)
4712 return 0;
4713
4714 extent = btrfs_item_ptr(leaf, path->slots[0],
4715 struct btrfs_file_extent_item);
4716
4717 if (btrfs_file_extent_type(leaf, extent) ==
4718 BTRFS_FILE_EXTENT_INLINE) {
4719 len = btrfs_file_extent_inline_len(leaf,
4720 path->slots[0],
4721 extent);
4722 ASSERT(len == i_size ||
4723 (len == fs_info->sectorsize &&
4724 btrfs_file_extent_compression(leaf, extent) !=
4725 BTRFS_COMPRESS_NONE));
4726 return 0;
4727 }
4728
4729 len = btrfs_file_extent_num_bytes(leaf, extent);
4730 /* Last extent goes beyond i_size, no need to log a hole. */
4731 if (key.offset + len > i_size)
4732 return 0;
4733 hole_start = key.offset + len;
4734 hole_size = i_size - hole_start;
4735 }
4736 btrfs_release_path(path);
4737
4738 /* Last extent ends at i_size. */
4739 if (hole_size == 0)
4740 return 0;
4741
4742 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4743 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4744 hole_size, 0, hole_size, 0, 0, 0);
4745 return ret;
4746}
4747
4748/*
4749 * When we are logging a new inode X, check if it doesn't have a reference that
4750 * matches the reference from some other inode Y created in a past transaction
4751 * and that was renamed in the current transaction. If we don't do this, then at
4752 * log replay time we can lose inode Y (and all its files if it's a directory):
4753 *
4754 * mkdir /mnt/x
4755 * echo "hello world" > /mnt/x/foobar
4756 * sync
4757 * mv /mnt/x /mnt/y
4758 * mkdir /mnt/x # or touch /mnt/x
4759 * xfs_io -c fsync /mnt/x
4760 * <power fail>
4761 * mount fs, trigger log replay
4762 *
4763 * After the log replay procedure, we would lose the first directory and all its
4764 * files (file foobar).
4765 * For the case where inode Y is not a directory we simply end up losing it:
4766 *
4767 * echo "123" > /mnt/foo
4768 * sync
4769 * mv /mnt/foo /mnt/bar
4770 * echo "abc" > /mnt/foo
4771 * xfs_io -c fsync /mnt/foo
4772 * <power fail>
4773 *
4774 * We also need this for cases where a snapshot entry is replaced by some other
4775 * entry (file or directory) otherwise we end up with an unreplayable log due to
4776 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4777 * if it were a regular entry:
4778 *
4779 * mkdir /mnt/x
4780 * btrfs subvolume snapshot /mnt /mnt/x/snap
4781 * btrfs subvolume delete /mnt/x/snap
4782 * rmdir /mnt/x
4783 * mkdir /mnt/x
4784 * fsync /mnt/x or fsync some new file inside it
4785 * <power fail>
4786 *
4787 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4788 * the same transaction.
4789 */
4790static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4791 const int slot,
4792 const struct btrfs_key *key,
4793 struct btrfs_inode *inode,
4794 u64 *other_ino)
4795{
4796 int ret;
4797 struct btrfs_path *search_path;
4798 char *name = NULL;
4799 u32 name_len = 0;
4800 u32 item_size = btrfs_item_size_nr(eb, slot);
4801 u32 cur_offset = 0;
4802 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4803
4804 search_path = btrfs_alloc_path();
4805 if (!search_path)
4806 return -ENOMEM;
4807 search_path->search_commit_root = 1;
4808 search_path->skip_locking = 1;
4809
4810 while (cur_offset < item_size) {
4811 u64 parent;
4812 u32 this_name_len;
4813 u32 this_len;
4814 unsigned long name_ptr;
4815 struct btrfs_dir_item *di;
4816
4817 if (key->type == BTRFS_INODE_REF_KEY) {
4818 struct btrfs_inode_ref *iref;
4819
4820 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4821 parent = key->offset;
4822 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4823 name_ptr = (unsigned long)(iref + 1);
4824 this_len = sizeof(*iref) + this_name_len;
4825 } else {
4826 struct btrfs_inode_extref *extref;
4827
4828 extref = (struct btrfs_inode_extref *)(ptr +
4829 cur_offset);
4830 parent = btrfs_inode_extref_parent(eb, extref);
4831 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4832 name_ptr = (unsigned long)&extref->name;
4833 this_len = sizeof(*extref) + this_name_len;
4834 }
4835
4836 if (this_name_len > name_len) {
4837 char *new_name;
4838
4839 new_name = krealloc(name, this_name_len, GFP_NOFS);
4840 if (!new_name) {
4841 ret = -ENOMEM;
4842 goto out;
4843 }
4844 name_len = this_name_len;
4845 name = new_name;
4846 }
4847
4848 read_extent_buffer(eb, name, name_ptr, this_name_len);
4849 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4850 parent, name, this_name_len, 0);
4851 if (di && !IS_ERR(di)) {
4852 struct btrfs_key di_key;
4853
4854 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4855 di, &di_key);
4856 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4857 ret = 1;
4858 *other_ino = di_key.objectid;
4859 } else {
4860 ret = -EAGAIN;
4861 }
4862 goto out;
4863 } else if (IS_ERR(di)) {
4864 ret = PTR_ERR(di);
4865 goto out;
4866 }
4867 btrfs_release_path(search_path);
4868
4869 cur_offset += this_len;
4870 }
4871 ret = 0;
4872out:
4873 btrfs_free_path(search_path);
4874 kfree(name);
4875 return ret;
4876}
4877
4878/* log a single inode in the tree log.
4879 * At least one parent directory for this inode must exist in the tree
4880 * or be logged already.
4881 *
4882 * Any items from this inode changed by the current transaction are copied
4883 * to the log tree. An extra reference is taken on any extents in this
4884 * file, allowing us to avoid a whole pile of corner cases around logging
4885 * blocks that have been removed from the tree.
4886 *
4887 * See LOG_INODE_ALL and related defines for a description of what inode_only
4888 * does.
4889 *
4890 * This handles both files and directories.
4891 */
4892static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4893 struct btrfs_root *root, struct btrfs_inode *inode,
4894 int inode_only,
4895 const loff_t start,
4896 const loff_t end,
4897 struct btrfs_log_ctx *ctx)
4898{
4899 struct btrfs_fs_info *fs_info = root->fs_info;
4900 struct btrfs_path *path;
4901 struct btrfs_path *dst_path;
4902 struct btrfs_key min_key;
4903 struct btrfs_key max_key;
4904 struct btrfs_root *log = root->log_root;
4905 LIST_HEAD(logged_list);
4906 u64 last_extent = 0;
4907 int err = 0;
4908 int ret;
4909 int nritems;
4910 int ins_start_slot = 0;
4911 int ins_nr;
4912 bool fast_search = false;
4913 u64 ino = btrfs_ino(inode);
4914 struct extent_map_tree *em_tree = &inode->extent_tree;
4915 u64 logged_isize = 0;
4916 bool need_log_inode_item = true;
4917 bool xattrs_logged = false;
4918
4919 path = btrfs_alloc_path();
4920 if (!path)
4921 return -ENOMEM;
4922 dst_path = btrfs_alloc_path();
4923 if (!dst_path) {
4924 btrfs_free_path(path);
4925 return -ENOMEM;
4926 }
4927
4928 min_key.objectid = ino;
4929 min_key.type = BTRFS_INODE_ITEM_KEY;
4930 min_key.offset = 0;
4931
4932 max_key.objectid = ino;
4933
4934
4935 /* today the code can only do partial logging of directories */
4936 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4937 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4938 &inode->runtime_flags) &&
4939 inode_only >= LOG_INODE_EXISTS))
4940 max_key.type = BTRFS_XATTR_ITEM_KEY;
4941 else
4942 max_key.type = (u8)-1;
4943 max_key.offset = (u64)-1;
4944
4945 /*
4946 * Only run delayed items if we are a dir or a new file.
4947 * Otherwise commit the delayed inode only, which is needed in
4948 * order for the log replay code to mark inodes for link count
4949 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4950 */
4951 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4952 inode->generation > fs_info->last_trans_committed)
4953 ret = btrfs_commit_inode_delayed_items(trans, inode);
4954 else
4955 ret = btrfs_commit_inode_delayed_inode(inode);
4956
4957 if (ret) {
4958 btrfs_free_path(path);
4959 btrfs_free_path(dst_path);
4960 return ret;
4961 }
4962
4963 if (inode_only == LOG_OTHER_INODE) {
4964 inode_only = LOG_INODE_EXISTS;
4965 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4966 } else {
4967 mutex_lock(&inode->log_mutex);
4968 }
4969
4970 /*
4971 * a brute force approach to making sure we get the most uptodate
4972 * copies of everything.
4973 */
4974 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4975 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4976
4977 if (inode_only == LOG_INODE_EXISTS)
4978 max_key_type = BTRFS_XATTR_ITEM_KEY;
4979 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4980 } else {
4981 if (inode_only == LOG_INODE_EXISTS) {
4982 /*
4983 * Make sure the new inode item we write to the log has
4984 * the same isize as the current one (if it exists).
4985 * This is necessary to prevent data loss after log
4986 * replay, and also to prevent doing a wrong expanding
4987 * truncate - for e.g. create file, write 4K into offset
4988 * 0, fsync, write 4K into offset 4096, add hard link,
4989 * fsync some other file (to sync log), power fail - if
4990 * we use the inode's current i_size, after log replay
4991 * we get a 8Kb file, with the last 4Kb extent as a hole
4992 * (zeroes), as if an expanding truncate happened,
4993 * instead of getting a file of 4Kb only.
4994 */
4995 err = logged_inode_size(log, inode, path, &logged_isize);
4996 if (err)
4997 goto out_unlock;
4998 }
4999 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5000 &inode->runtime_flags)) {
5001 if (inode_only == LOG_INODE_EXISTS) {
5002 max_key.type = BTRFS_XATTR_ITEM_KEY;
5003 ret = drop_objectid_items(trans, log, path, ino,
5004 max_key.type);
5005 } else {
5006 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5007 &inode->runtime_flags);
5008 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5009 &inode->runtime_flags);
5010 while(1) {
5011 ret = btrfs_truncate_inode_items(trans,
5012 log, &inode->vfs_inode, 0, 0);
5013 if (ret != -EAGAIN)
5014 break;
5015 }
5016 }
5017 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5018 &inode->runtime_flags) ||
5019 inode_only == LOG_INODE_EXISTS) {
5020 if (inode_only == LOG_INODE_ALL)
5021 fast_search = true;
5022 max_key.type = BTRFS_XATTR_ITEM_KEY;
5023 ret = drop_objectid_items(trans, log, path, ino,
5024 max_key.type);
5025 } else {
5026 if (inode_only == LOG_INODE_ALL)
5027 fast_search = true;
5028 goto log_extents;
5029 }
5030
5031 }
5032 if (ret) {
5033 err = ret;
5034 goto out_unlock;
5035 }
5036
5037 while (1) {
5038 ins_nr = 0;
5039 ret = btrfs_search_forward(root, &min_key,
5040 path, trans->transid);
5041 if (ret < 0) {
5042 err = ret;
5043 goto out_unlock;
5044 }
5045 if (ret != 0)
5046 break;
5047again:
5048 /* note, ins_nr might be > 0 here, cleanup outside the loop */
5049 if (min_key.objectid != ino)
5050 break;
5051 if (min_key.type > max_key.type)
5052 break;
5053
5054 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5055 need_log_inode_item = false;
5056
5057 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5058 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5059 inode->generation == trans->transid) {
5060 u64 other_ino = 0;
5061
5062 ret = btrfs_check_ref_name_override(path->nodes[0],
5063 path->slots[0], &min_key, inode,
5064 &other_ino);
5065 if (ret < 0) {
5066 err = ret;
5067 goto out_unlock;
5068 } else if (ret > 0 && ctx &&
5069 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5070 struct btrfs_key inode_key;
5071 struct inode *other_inode;
5072
5073 if (ins_nr > 0) {
5074 ins_nr++;
5075 } else {
5076 ins_nr = 1;
5077 ins_start_slot = path->slots[0];
5078 }
5079 ret = copy_items(trans, inode, dst_path, path,
5080 &last_extent, ins_start_slot,
5081 ins_nr, inode_only,
5082 logged_isize);
5083 if (ret < 0) {
5084 err = ret;
5085 goto out_unlock;
5086 }
5087 ins_nr = 0;
5088 btrfs_release_path(path);
5089 inode_key.objectid = other_ino;
5090 inode_key.type = BTRFS_INODE_ITEM_KEY;
5091 inode_key.offset = 0;
5092 other_inode = btrfs_iget(fs_info->sb,
5093 &inode_key, root,
5094 NULL);
5095 /*
5096 * If the other inode that had a conflicting dir
5097 * entry was deleted in the current transaction,
5098 * we don't need to do more work nor fallback to
5099 * a transaction commit.
5100 */
5101 if (IS_ERR(other_inode) &&
5102 PTR_ERR(other_inode) == -ENOENT) {
5103 goto next_key;
5104 } else if (IS_ERR(other_inode)) {
5105 err = PTR_ERR(other_inode);
5106 goto out_unlock;
5107 }
5108 /*
5109 * We are safe logging the other inode without
5110 * acquiring its i_mutex as long as we log with
5111 * the LOG_INODE_EXISTS mode. We're safe against
5112 * concurrent renames of the other inode as well
5113 * because during a rename we pin the log and
5114 * update the log with the new name before we
5115 * unpin it.
5116 */
5117 err = btrfs_log_inode(trans, root,
5118 BTRFS_I(other_inode),
5119 LOG_OTHER_INODE, 0, LLONG_MAX,
5120 ctx);
5121 iput(other_inode);
5122 if (err)
5123 goto out_unlock;
5124 else
5125 goto next_key;
5126 }
5127 }
5128
5129 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5130 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5131 if (ins_nr == 0)
5132 goto next_slot;
5133 ret = copy_items(trans, inode, dst_path, path,
5134 &last_extent, ins_start_slot,
5135 ins_nr, inode_only, logged_isize);
5136 if (ret < 0) {
5137 err = ret;
5138 goto out_unlock;
5139 }
5140 ins_nr = 0;
5141 if (ret) {
5142 btrfs_release_path(path);
5143 continue;
5144 }
5145 goto next_slot;
5146 }
5147
5148 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5149 ins_nr++;
5150 goto next_slot;
5151 } else if (!ins_nr) {
5152 ins_start_slot = path->slots[0];
5153 ins_nr = 1;
5154 goto next_slot;
5155 }
5156
5157 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5158 ins_start_slot, ins_nr, inode_only,
5159 logged_isize);
5160 if (ret < 0) {
5161 err = ret;
5162 goto out_unlock;
5163 }
5164 if (ret) {
5165 ins_nr = 0;
5166 btrfs_release_path(path);
5167 continue;
5168 }
5169 ins_nr = 1;
5170 ins_start_slot = path->slots[0];
5171next_slot:
5172
5173 nritems = btrfs_header_nritems(path->nodes[0]);
5174 path->slots[0]++;
5175 if (path->slots[0] < nritems) {
5176 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5177 path->slots[0]);
5178 goto again;
5179 }
5180 if (ins_nr) {
5181 ret = copy_items(trans, inode, dst_path, path,
5182 &last_extent, ins_start_slot,
5183 ins_nr, inode_only, logged_isize);
5184 if (ret < 0) {
5185 err = ret;
5186 goto out_unlock;
5187 }
5188 ret = 0;
5189 ins_nr = 0;
5190 }
5191 btrfs_release_path(path);
5192next_key:
5193 if (min_key.offset < (u64)-1) {
5194 min_key.offset++;
5195 } else if (min_key.type < max_key.type) {
5196 min_key.type++;
5197 min_key.offset = 0;
5198 } else {
5199 break;
5200 }
5201 }
5202 if (ins_nr) {
5203 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5204 ins_start_slot, ins_nr, inode_only,
5205 logged_isize);
5206 if (ret < 0) {
5207 err = ret;
5208 goto out_unlock;
5209 }
5210 ret = 0;
5211 ins_nr = 0;
5212 }
5213
5214 btrfs_release_path(path);
5215 btrfs_release_path(dst_path);
5216 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5217 if (err)
5218 goto out_unlock;
5219 xattrs_logged = true;
5220 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5221 btrfs_release_path(path);
5222 btrfs_release_path(dst_path);
5223 err = btrfs_log_trailing_hole(trans, root, inode, path);
5224 if (err)
5225 goto out_unlock;
5226 }
5227log_extents:
5228 btrfs_release_path(path);
5229 btrfs_release_path(dst_path);
5230 if (need_log_inode_item) {
5231 err = log_inode_item(trans, log, dst_path, inode);
5232 if (!err && !xattrs_logged) {
5233 err = btrfs_log_all_xattrs(trans, root, inode, path,
5234 dst_path);
5235 btrfs_release_path(path);
5236 }
5237 if (err)
5238 goto out_unlock;
5239 }
5240 if (fast_search) {
5241 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5242 &logged_list, ctx, start, end);
5243 if (ret) {
5244 err = ret;
5245 goto out_unlock;
5246 }
5247 } else if (inode_only == LOG_INODE_ALL) {
5248 struct extent_map *em, *n;
5249
5250 write_lock(&em_tree->lock);
5251 /*
5252 * We can't just remove every em if we're called for a ranged
5253 * fsync - that is, one that doesn't cover the whole possible
5254 * file range (0 to LLONG_MAX). This is because we can have
5255 * em's that fall outside the range we're logging and therefore
5256 * their ordered operations haven't completed yet
5257 * (btrfs_finish_ordered_io() not invoked yet). This means we
5258 * didn't get their respective file extent item in the fs/subvol
5259 * tree yet, and need to let the next fast fsync (one which
5260 * consults the list of modified extent maps) find the em so
5261 * that it logs a matching file extent item and waits for the
5262 * respective ordered operation to complete (if it's still
5263 * running).
5264 *
5265 * Removing every em outside the range we're logging would make
5266 * the next fast fsync not log their matching file extent items,
5267 * therefore making us lose data after a log replay.
5268 */
5269 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5270 list) {
5271 const u64 mod_end = em->mod_start + em->mod_len - 1;
5272
5273 if (em->mod_start >= start && mod_end <= end)
5274 list_del_init(&em->list);
5275 }
5276 write_unlock(&em_tree->lock);
5277 }
5278
5279 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5280 ret = log_directory_changes(trans, root, inode, path, dst_path,
5281 ctx);
5282 if (ret) {
5283 err = ret;
5284 goto out_unlock;
5285 }
5286 }
5287
5288 spin_lock(&inode->lock);
5289 inode->logged_trans = trans->transid;
5290 inode->last_log_commit = inode->last_sub_trans;
5291 spin_unlock(&inode->lock);
5292out_unlock:
5293 if (unlikely(err))
5294 btrfs_put_logged_extents(&logged_list);
5295 else
5296 btrfs_submit_logged_extents(&logged_list, log);
5297 mutex_unlock(&inode->log_mutex);
5298
5299 btrfs_free_path(path);
5300 btrfs_free_path(dst_path);
5301 return err;
5302}
5303
5304/*
5305 * Check if we must fallback to a transaction commit when logging an inode.
5306 * This must be called after logging the inode and is used only in the context
5307 * when fsyncing an inode requires the need to log some other inode - in which
5308 * case we can't lock the i_mutex of each other inode we need to log as that
5309 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5310 * log inodes up or down in the hierarchy) or rename operations for example. So
5311 * we take the log_mutex of the inode after we have logged it and then check for
5312 * its last_unlink_trans value - this is safe because any task setting
5313 * last_unlink_trans must take the log_mutex and it must do this before it does
5314 * the actual unlink operation, so if we do this check before a concurrent task
5315 * sets last_unlink_trans it means we've logged a consistent version/state of
5316 * all the inode items, otherwise we are not sure and must do a transaction
5317 * commit (the concurrent task might have only updated last_unlink_trans before
5318 * we logged the inode or it might have also done the unlink).
5319 */
5320static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5321 struct btrfs_inode *inode)
5322{
5323 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5324 bool ret = false;
5325
5326 mutex_lock(&inode->log_mutex);
5327 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5328 /*
5329 * Make sure any commits to the log are forced to be full
5330 * commits.
5331 */
5332 btrfs_set_log_full_commit(fs_info, trans);
5333 ret = true;
5334 }
5335 mutex_unlock(&inode->log_mutex);
5336
5337 return ret;
5338}
5339
5340/*
5341 * follow the dentry parent pointers up the chain and see if any
5342 * of the directories in it require a full commit before they can
5343 * be logged. Returns zero if nothing special needs to be done or 1 if
5344 * a full commit is required.
5345 */
5346static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5347 struct btrfs_inode *inode,
5348 struct dentry *parent,
5349 struct super_block *sb,
5350 u64 last_committed)
5351{
5352 int ret = 0;
5353 struct dentry *old_parent = NULL;
5354 struct btrfs_inode *orig_inode = inode;
5355
5356 /*
5357 * for regular files, if its inode is already on disk, we don't
5358 * have to worry about the parents at all. This is because
5359 * we can use the last_unlink_trans field to record renames
5360 * and other fun in this file.
5361 */
5362 if (S_ISREG(inode->vfs_inode.i_mode) &&
5363 inode->generation <= last_committed &&
5364 inode->last_unlink_trans <= last_committed)
5365 goto out;
5366
5367 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5368 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5369 goto out;
5370 inode = BTRFS_I(d_inode(parent));
5371 }
5372
5373 while (1) {
5374 /*
5375 * If we are logging a directory then we start with our inode,
5376 * not our parent's inode, so we need to skip setting the
5377 * logged_trans so that further down in the log code we don't
5378 * think this inode has already been logged.
5379 */
5380 if (inode != orig_inode)
5381 inode->logged_trans = trans->transid;
5382 smp_mb();
5383
5384 if (btrfs_must_commit_transaction(trans, inode)) {
5385 ret = 1;
5386 break;
5387 }
5388
5389 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5390 break;
5391
5392 if (IS_ROOT(parent)) {
5393 inode = BTRFS_I(d_inode(parent));
5394 if (btrfs_must_commit_transaction(trans, inode))
5395 ret = 1;
5396 break;
5397 }
5398
5399 parent = dget_parent(parent);
5400 dput(old_parent);
5401 old_parent = parent;
5402 inode = BTRFS_I(d_inode(parent));
5403
5404 }
5405 dput(old_parent);
5406out:
5407 return ret;
5408}
5409
5410struct btrfs_dir_list {
5411 u64 ino;
5412 struct list_head list;
5413};
5414
5415/*
5416 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5417 * details about the why it is needed.
5418 * This is a recursive operation - if an existing dentry corresponds to a
5419 * directory, that directory's new entries are logged too (same behaviour as
5420 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5421 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5422 * complains about the following circular lock dependency / possible deadlock:
5423 *
5424 * CPU0 CPU1
5425 * ---- ----
5426 * lock(&type->i_mutex_dir_key#3/2);
5427 * lock(sb_internal#2);
5428 * lock(&type->i_mutex_dir_key#3/2);
5429 * lock(&sb->s_type->i_mutex_key#14);
5430 *
5431 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5432 * sb_start_intwrite() in btrfs_start_transaction().
5433 * Not locking i_mutex of the inodes is still safe because:
5434 *
5435 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5436 * that while logging the inode new references (names) are added or removed
5437 * from the inode, leaving the logged inode item with a link count that does
5438 * not match the number of logged inode reference items. This is fine because
5439 * at log replay time we compute the real number of links and correct the
5440 * link count in the inode item (see replay_one_buffer() and
5441 * link_to_fixup_dir());
5442 *
5443 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5444 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5445 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5446 * has a size that doesn't match the sum of the lengths of all the logged
5447 * names. This does not result in a problem because if a dir_item key is
5448 * logged but its matching dir_index key is not logged, at log replay time we
5449 * don't use it to replay the respective name (see replay_one_name()). On the
5450 * other hand if only the dir_index key ends up being logged, the respective
5451 * name is added to the fs/subvol tree with both the dir_item and dir_index
5452 * keys created (see replay_one_name()).
5453 * The directory's inode item with a wrong i_size is not a problem as well,
5454 * since we don't use it at log replay time to set the i_size in the inode
5455 * item of the fs/subvol tree (see overwrite_item()).
5456 */
5457static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5458 struct btrfs_root *root,
5459 struct btrfs_inode *start_inode,
5460 struct btrfs_log_ctx *ctx)
5461{
5462 struct btrfs_fs_info *fs_info = root->fs_info;
5463 struct btrfs_root *log = root->log_root;
5464 struct btrfs_path *path;
5465 LIST_HEAD(dir_list);
5466 struct btrfs_dir_list *dir_elem;
5467 int ret = 0;
5468
5469 path = btrfs_alloc_path();
5470 if (!path)
5471 return -ENOMEM;
5472
5473 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5474 if (!dir_elem) {
5475 btrfs_free_path(path);
5476 return -ENOMEM;
5477 }
5478 dir_elem->ino = btrfs_ino(start_inode);
5479 list_add_tail(&dir_elem->list, &dir_list);
5480
5481 while (!list_empty(&dir_list)) {
5482 struct extent_buffer *leaf;
5483 struct btrfs_key min_key;
5484 int nritems;
5485 int i;
5486
5487 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5488 list);
5489 if (ret)
5490 goto next_dir_inode;
5491
5492 min_key.objectid = dir_elem->ino;
5493 min_key.type = BTRFS_DIR_ITEM_KEY;
5494 min_key.offset = 0;
5495again:
5496 btrfs_release_path(path);
5497 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5498 if (ret < 0) {
5499 goto next_dir_inode;
5500 } else if (ret > 0) {
5501 ret = 0;
5502 goto next_dir_inode;
5503 }
5504
5505process_leaf:
5506 leaf = path->nodes[0];
5507 nritems = btrfs_header_nritems(leaf);
5508 for (i = path->slots[0]; i < nritems; i++) {
5509 struct btrfs_dir_item *di;
5510 struct btrfs_key di_key;
5511 struct inode *di_inode;
5512 struct btrfs_dir_list *new_dir_elem;
5513 int log_mode = LOG_INODE_EXISTS;
5514 int type;
5515
5516 btrfs_item_key_to_cpu(leaf, &min_key, i);
5517 if (min_key.objectid != dir_elem->ino ||
5518 min_key.type != BTRFS_DIR_ITEM_KEY)
5519 goto next_dir_inode;
5520
5521 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5522 type = btrfs_dir_type(leaf, di);
5523 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5524 type != BTRFS_FT_DIR)
5525 continue;
5526 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5527 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5528 continue;
5529
5530 btrfs_release_path(path);
5531 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5532 if (IS_ERR(di_inode)) {
5533 ret = PTR_ERR(di_inode);
5534 goto next_dir_inode;
5535 }
5536
5537 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5538 iput(di_inode);
5539 break;
5540 }
5541
5542 ctx->log_new_dentries = false;
5543 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5544 log_mode = LOG_INODE_ALL;
5545 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5546 log_mode, 0, LLONG_MAX, ctx);
5547 if (!ret &&
5548 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5549 ret = 1;
5550 iput(di_inode);
5551 if (ret)
5552 goto next_dir_inode;
5553 if (ctx->log_new_dentries) {
5554 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5555 GFP_NOFS);
5556 if (!new_dir_elem) {
5557 ret = -ENOMEM;
5558 goto next_dir_inode;
5559 }
5560 new_dir_elem->ino = di_key.objectid;
5561 list_add_tail(&new_dir_elem->list, &dir_list);
5562 }
5563 break;
5564 }
5565 if (i == nritems) {
5566 ret = btrfs_next_leaf(log, path);
5567 if (ret < 0) {
5568 goto next_dir_inode;
5569 } else if (ret > 0) {
5570 ret = 0;
5571 goto next_dir_inode;
5572 }
5573 goto process_leaf;
5574 }
5575 if (min_key.offset < (u64)-1) {
5576 min_key.offset++;
5577 goto again;
5578 }
5579next_dir_inode:
5580 list_del(&dir_elem->list);
5581 kfree(dir_elem);
5582 }
5583
5584 btrfs_free_path(path);
5585 return ret;
5586}
5587
5588static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5589 struct btrfs_inode *inode,
5590 struct btrfs_log_ctx *ctx)
5591{
5592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5593 int ret;
5594 struct btrfs_path *path;
5595 struct btrfs_key key;
5596 struct btrfs_root *root = inode->root;
5597 const u64 ino = btrfs_ino(inode);
5598
5599 path = btrfs_alloc_path();
5600 if (!path)
5601 return -ENOMEM;
5602 path->skip_locking = 1;
5603 path->search_commit_root = 1;
5604
5605 key.objectid = ino;
5606 key.type = BTRFS_INODE_REF_KEY;
5607 key.offset = 0;
5608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5609 if (ret < 0)
5610 goto out;
5611
5612 while (true) {
5613 struct extent_buffer *leaf = path->nodes[0];
5614 int slot = path->slots[0];
5615 u32 cur_offset = 0;
5616 u32 item_size;
5617 unsigned long ptr;
5618
5619 if (slot >= btrfs_header_nritems(leaf)) {
5620 ret = btrfs_next_leaf(root, path);
5621 if (ret < 0)
5622 goto out;
5623 else if (ret > 0)
5624 break;
5625 continue;
5626 }
5627
5628 btrfs_item_key_to_cpu(leaf, &key, slot);
5629 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5630 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5631 break;
5632
5633 item_size = btrfs_item_size_nr(leaf, slot);
5634 ptr = btrfs_item_ptr_offset(leaf, slot);
5635 while (cur_offset < item_size) {
5636 struct btrfs_key inode_key;
5637 struct inode *dir_inode;
5638
5639 inode_key.type = BTRFS_INODE_ITEM_KEY;
5640 inode_key.offset = 0;
5641
5642 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5643 struct btrfs_inode_extref *extref;
5644
5645 extref = (struct btrfs_inode_extref *)
5646 (ptr + cur_offset);
5647 inode_key.objectid = btrfs_inode_extref_parent(
5648 leaf, extref);
5649 cur_offset += sizeof(*extref);
5650 cur_offset += btrfs_inode_extref_name_len(leaf,
5651 extref);
5652 } else {
5653 inode_key.objectid = key.offset;
5654 cur_offset = item_size;
5655 }
5656
5657 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5658 root, NULL);
5659 /* If parent inode was deleted, skip it. */
5660 if (IS_ERR(dir_inode))
5661 continue;
5662
5663 if (ctx)
5664 ctx->log_new_dentries = false;
5665 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5666 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5667 if (!ret &&
5668 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5669 ret = 1;
5670 if (!ret && ctx && ctx->log_new_dentries)
5671 ret = log_new_dir_dentries(trans, root,
5672 BTRFS_I(dir_inode), ctx);
5673 iput(dir_inode);
5674 if (ret)
5675 goto out;
5676 }
5677 path->slots[0]++;
5678 }
5679 ret = 0;
5680out:
5681 btrfs_free_path(path);
5682 return ret;
5683}
5684
5685/*
5686 * helper function around btrfs_log_inode to make sure newly created
5687 * parent directories also end up in the log. A minimal inode and backref
5688 * only logging is done of any parent directories that are older than
5689 * the last committed transaction
5690 */
5691static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5692 struct btrfs_inode *inode,
5693 struct dentry *parent,
5694 const loff_t start,
5695 const loff_t end,
5696 int inode_only,
5697 struct btrfs_log_ctx *ctx)
5698{
5699 struct btrfs_root *root = inode->root;
5700 struct btrfs_fs_info *fs_info = root->fs_info;
5701 struct super_block *sb;
5702 struct dentry *old_parent = NULL;
5703 int ret = 0;
5704 u64 last_committed = fs_info->last_trans_committed;
5705 bool log_dentries = false;
5706 struct btrfs_inode *orig_inode = inode;
5707
5708 sb = inode->vfs_inode.i_sb;
5709
5710 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5711 ret = 1;
5712 goto end_no_trans;
5713 }
5714
5715 /*
5716 * The prev transaction commit doesn't complete, we need do
5717 * full commit by ourselves.
5718 */
5719 if (fs_info->last_trans_log_full_commit >
5720 fs_info->last_trans_committed) {
5721 ret = 1;
5722 goto end_no_trans;
5723 }
5724
5725 if (btrfs_root_refs(&root->root_item) == 0) {
5726 ret = 1;
5727 goto end_no_trans;
5728 }
5729
5730 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5731 last_committed);
5732 if (ret)
5733 goto end_no_trans;
5734
5735 if (btrfs_inode_in_log(inode, trans->transid)) {
5736 ret = BTRFS_NO_LOG_SYNC;
5737 goto end_no_trans;
5738 }
5739
5740 ret = start_log_trans(trans, root, ctx);
5741 if (ret)
5742 goto end_no_trans;
5743
5744 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5745 if (ret)
5746 goto end_trans;
5747
5748 /*
5749 * for regular files, if its inode is already on disk, we don't
5750 * have to worry about the parents at all. This is because
5751 * we can use the last_unlink_trans field to record renames
5752 * and other fun in this file.
5753 */
5754 if (S_ISREG(inode->vfs_inode.i_mode) &&
5755 inode->generation <= last_committed &&
5756 inode->last_unlink_trans <= last_committed) {
5757 ret = 0;
5758 goto end_trans;
5759 }
5760
5761 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5762 log_dentries = true;
5763
5764 /*
5765 * On unlink we must make sure all our current and old parent directory
5766 * inodes are fully logged. This is to prevent leaving dangling
5767 * directory index entries in directories that were our parents but are
5768 * not anymore. Not doing this results in old parent directory being
5769 * impossible to delete after log replay (rmdir will always fail with
5770 * error -ENOTEMPTY).
5771 *
5772 * Example 1:
5773 *
5774 * mkdir testdir
5775 * touch testdir/foo
5776 * ln testdir/foo testdir/bar
5777 * sync
5778 * unlink testdir/bar
5779 * xfs_io -c fsync testdir/foo
5780 * <power failure>
5781 * mount fs, triggers log replay
5782 *
5783 * If we don't log the parent directory (testdir), after log replay the
5784 * directory still has an entry pointing to the file inode using the bar
5785 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5786 * the file inode has a link count of 1.
5787 *
5788 * Example 2:
5789 *
5790 * mkdir testdir
5791 * touch foo
5792 * ln foo testdir/foo2
5793 * ln foo testdir/foo3
5794 * sync
5795 * unlink testdir/foo3
5796 * xfs_io -c fsync foo
5797 * <power failure>
5798 * mount fs, triggers log replay
5799 *
5800 * Similar as the first example, after log replay the parent directory
5801 * testdir still has an entry pointing to the inode file with name foo3
5802 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5803 * and has a link count of 2.
5804 */
5805 if (inode->last_unlink_trans > last_committed) {
5806 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5807 if (ret)
5808 goto end_trans;
5809 }
5810
5811 while (1) {
5812 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5813 break;
5814
5815 inode = BTRFS_I(d_inode(parent));
5816 if (root != inode->root)
5817 break;
5818
5819 if (inode->generation > last_committed) {
5820 ret = btrfs_log_inode(trans, root, inode,
5821 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5822 if (ret)
5823 goto end_trans;
5824 }
5825 if (IS_ROOT(parent))
5826 break;
5827
5828 parent = dget_parent(parent);
5829 dput(old_parent);
5830 old_parent = parent;
5831 }
5832 if (log_dentries)
5833 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5834 else
5835 ret = 0;
5836end_trans:
5837 dput(old_parent);
5838 if (ret < 0) {
5839 btrfs_set_log_full_commit(fs_info, trans);
5840 ret = 1;
5841 }
5842
5843 if (ret)
5844 btrfs_remove_log_ctx(root, ctx);
5845 btrfs_end_log_trans(root);
5846end_no_trans:
5847 return ret;
5848}
5849
5850/*
5851 * it is not safe to log dentry if the chunk root has added new
5852 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5853 * If this returns 1, you must commit the transaction to safely get your
5854 * data on disk.
5855 */
5856int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5857 struct dentry *dentry,
5858 const loff_t start,
5859 const loff_t end,
5860 struct btrfs_log_ctx *ctx)
5861{
5862 struct dentry *parent = dget_parent(dentry);
5863 int ret;
5864
5865 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5866 start, end, LOG_INODE_ALL, ctx);
5867 dput(parent);
5868
5869 return ret;
5870}
5871
5872/*
5873 * should be called during mount to recover any replay any log trees
5874 * from the FS
5875 */
5876int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5877{
5878 int ret;
5879 struct btrfs_path *path;
5880 struct btrfs_trans_handle *trans;
5881 struct btrfs_key key;
5882 struct btrfs_key found_key;
5883 struct btrfs_key tmp_key;
5884 struct btrfs_root *log;
5885 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5886 struct walk_control wc = {
5887 .process_func = process_one_buffer,
5888 .stage = 0,
5889 };
5890
5891 path = btrfs_alloc_path();
5892 if (!path)
5893 return -ENOMEM;
5894
5895 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5896
5897 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5898 if (IS_ERR(trans)) {
5899 ret = PTR_ERR(trans);
5900 goto error;
5901 }
5902
5903 wc.trans = trans;
5904 wc.pin = 1;
5905
5906 ret = walk_log_tree(trans, log_root_tree, &wc);
5907 if (ret) {
5908 btrfs_handle_fs_error(fs_info, ret,
5909 "Failed to pin buffers while recovering log root tree.");
5910 goto error;
5911 }
5912
5913again:
5914 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5915 key.offset = (u64)-1;
5916 key.type = BTRFS_ROOT_ITEM_KEY;
5917
5918 while (1) {
5919 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5920
5921 if (ret < 0) {
5922 btrfs_handle_fs_error(fs_info, ret,
5923 "Couldn't find tree log root.");
5924 goto error;
5925 }
5926 if (ret > 0) {
5927 if (path->slots[0] == 0)
5928 break;
5929 path->slots[0]--;
5930 }
5931 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5932 path->slots[0]);
5933 btrfs_release_path(path);
5934 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5935 break;
5936
5937 log = btrfs_read_fs_root(log_root_tree, &found_key);
5938 if (IS_ERR(log)) {
5939 ret = PTR_ERR(log);
5940 btrfs_handle_fs_error(fs_info, ret,
5941 "Couldn't read tree log root.");
5942 goto error;
5943 }
5944
5945 tmp_key.objectid = found_key.offset;
5946 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5947 tmp_key.offset = (u64)-1;
5948
5949 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5950 if (IS_ERR(wc.replay_dest)) {
5951 ret = PTR_ERR(wc.replay_dest);
5952 free_extent_buffer(log->node);
5953 free_extent_buffer(log->commit_root);
5954 kfree(log);
5955 btrfs_handle_fs_error(fs_info, ret,
5956 "Couldn't read target root for tree log recovery.");
5957 goto error;
5958 }
5959
5960 wc.replay_dest->log_root = log;
5961 btrfs_record_root_in_trans(trans, wc.replay_dest);
5962 ret = walk_log_tree(trans, log, &wc);
5963
5964 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5965 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5966 path);
5967 }
5968
5969 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5970 struct btrfs_root *root = wc.replay_dest;
5971
5972 btrfs_release_path(path);
5973
5974 /*
5975 * We have just replayed everything, and the highest
5976 * objectid of fs roots probably has changed in case
5977 * some inode_item's got replayed.
5978 *
5979 * root->objectid_mutex is not acquired as log replay
5980 * could only happen during mount.
5981 */
5982 ret = btrfs_find_highest_objectid(root,
5983 &root->highest_objectid);
5984 }
5985
5986 key.offset = found_key.offset - 1;
5987 wc.replay_dest->log_root = NULL;
5988 free_extent_buffer(log->node);
5989 free_extent_buffer(log->commit_root);
5990 kfree(log);
5991
5992 if (ret)
5993 goto error;
5994
5995 if (found_key.offset == 0)
5996 break;
5997 }
5998 btrfs_release_path(path);
5999
6000 /* step one is to pin it all, step two is to replay just inodes */
6001 if (wc.pin) {
6002 wc.pin = 0;
6003 wc.process_func = replay_one_buffer;
6004 wc.stage = LOG_WALK_REPLAY_INODES;
6005 goto again;
6006 }
6007 /* step three is to replay everything */
6008 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6009 wc.stage++;
6010 goto again;
6011 }
6012
6013 btrfs_free_path(path);
6014
6015 /* step 4: commit the transaction, which also unpins the blocks */
6016 ret = btrfs_commit_transaction(trans);
6017 if (ret)
6018 return ret;
6019
6020 free_extent_buffer(log_root_tree->node);
6021 log_root_tree->log_root = NULL;
6022 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6023 kfree(log_root_tree);
6024
6025 return 0;
6026error:
6027 if (wc.trans)
6028 btrfs_end_transaction(wc.trans);
6029 btrfs_free_path(path);
6030 return ret;
6031}
6032
6033/*
6034 * there are some corner cases where we want to force a full
6035 * commit instead of allowing a directory to be logged.
6036 *
6037 * They revolve around files there were unlinked from the directory, and
6038 * this function updates the parent directory so that a full commit is
6039 * properly done if it is fsync'd later after the unlinks are done.
6040 *
6041 * Must be called before the unlink operations (updates to the subvolume tree,
6042 * inodes, etc) are done.
6043 */
6044void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6045 struct btrfs_inode *dir, struct btrfs_inode *inode,
6046 int for_rename)
6047{
6048 /*
6049 * when we're logging a file, if it hasn't been renamed
6050 * or unlinked, and its inode is fully committed on disk,
6051 * we don't have to worry about walking up the directory chain
6052 * to log its parents.
6053 *
6054 * So, we use the last_unlink_trans field to put this transid
6055 * into the file. When the file is logged we check it and
6056 * don't log the parents if the file is fully on disk.
6057 */
6058 mutex_lock(&inode->log_mutex);
6059 inode->last_unlink_trans = trans->transid;
6060 mutex_unlock(&inode->log_mutex);
6061
6062 /*
6063 * if this directory was already logged any new
6064 * names for this file/dir will get recorded
6065 */
6066 smp_mb();
6067 if (dir->logged_trans == trans->transid)
6068 return;
6069
6070 /*
6071 * if the inode we're about to unlink was logged,
6072 * the log will be properly updated for any new names
6073 */
6074 if (inode->logged_trans == trans->transid)
6075 return;
6076
6077 /*
6078 * when renaming files across directories, if the directory
6079 * there we're unlinking from gets fsync'd later on, there's
6080 * no way to find the destination directory later and fsync it
6081 * properly. So, we have to be conservative and force commits
6082 * so the new name gets discovered.
6083 */
6084 if (for_rename)
6085 goto record;
6086
6087 /* we can safely do the unlink without any special recording */
6088 return;
6089
6090record:
6091 mutex_lock(&dir->log_mutex);
6092 dir->last_unlink_trans = trans->transid;
6093 mutex_unlock(&dir->log_mutex);
6094}
6095
6096/*
6097 * Make sure that if someone attempts to fsync the parent directory of a deleted
6098 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6099 * that after replaying the log tree of the parent directory's root we will not
6100 * see the snapshot anymore and at log replay time we will not see any log tree
6101 * corresponding to the deleted snapshot's root, which could lead to replaying
6102 * it after replaying the log tree of the parent directory (which would replay
6103 * the snapshot delete operation).
6104 *
6105 * Must be called before the actual snapshot destroy operation (updates to the
6106 * parent root and tree of tree roots trees, etc) are done.
6107 */
6108void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6109 struct btrfs_inode *dir)
6110{
6111 mutex_lock(&dir->log_mutex);
6112 dir->last_unlink_trans = trans->transid;
6113 mutex_unlock(&dir->log_mutex);
6114}
6115
6116/*
6117 * Call this after adding a new name for a file and it will properly
6118 * update the log to reflect the new name.
6119 *
6120 * It will return zero if all goes well, and it will return 1 if a
6121 * full transaction commit is required.
6122 */
6123int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6124 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6125 struct dentry *parent)
6126{
6127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6128
6129 /*
6130 * this will force the logging code to walk the dentry chain
6131 * up for the file
6132 */
6133 if (!S_ISDIR(inode->vfs_inode.i_mode))
6134 inode->last_unlink_trans = trans->transid;
6135
6136 /*
6137 * if this inode hasn't been logged and directory we're renaming it
6138 * from hasn't been logged, we don't need to log it
6139 */
6140 if (inode->logged_trans <= fs_info->last_trans_committed &&
6141 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6142 return 0;
6143
6144 return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6145 LOG_INODE_EXISTS, NULL);
6146}
6147