Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include "flow.h"
  22#include "datapath.h"
  23#include <linux/uaccess.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/if_vlan.h>
  28#include <net/llc_pdu.h>
  29#include <linux/kernel.h>
  30#include <linux/jhash.h>
  31#include <linux/jiffies.h>
  32#include <linux/llc.h>
  33#include <linux/module.h>
  34#include <linux/in.h>
  35#include <linux/rcupdate.h>
  36#include <linux/if_arp.h>
  37#include <linux/ip.h>
  38#include <linux/ipv6.h>
  39#include <linux/sctp.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/icmpv6.h>
  44#include <linux/rculist.h>
  45#include <net/geneve.h>
  46#include <net/ip.h>
  47#include <net/ipv6.h>
  48#include <net/ndisc.h>
  49#include <net/mpls.h>
  50#include <net/vxlan.h>
 
 
  51
  52#include "flow_netlink.h"
  53
  54struct ovs_len_tbl {
  55	int len;
  56	const struct ovs_len_tbl *next;
  57};
  58
  59#define OVS_ATTR_NESTED -1
  60#define OVS_ATTR_VARIABLE -2
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62static void update_range(struct sw_flow_match *match,
  63			 size_t offset, size_t size, bool is_mask)
  64{
  65	struct sw_flow_key_range *range;
  66	size_t start = rounddown(offset, sizeof(long));
  67	size_t end = roundup(offset + size, sizeof(long));
  68
  69	if (!is_mask)
  70		range = &match->range;
  71	else
  72		range = &match->mask->range;
  73
  74	if (range->start == range->end) {
  75		range->start = start;
  76		range->end = end;
  77		return;
  78	}
  79
  80	if (range->start > start)
  81		range->start = start;
  82
  83	if (range->end < end)
  84		range->end = end;
  85}
  86
  87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  88	do { \
  89		update_range(match, offsetof(struct sw_flow_key, field),    \
  90			     sizeof((match)->key->field), is_mask);	    \
  91		if (is_mask)						    \
  92			(match)->mask->key.field = value;		    \
  93		else							    \
  94			(match)->key->field = value;		            \
  95	} while (0)
  96
  97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
  98	do {								    \
  99		update_range(match, offset, len, is_mask);		    \
 100		if (is_mask)						    \
 101			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 102			       len);					   \
 103		else							    \
 104			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 105	} while (0)
 106
 107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 108	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 109				  value_p, len, is_mask)
 110
 111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 112	do {								    \
 113		update_range(match, offsetof(struct sw_flow_key, field),    \
 114			     sizeof((match)->key->field), is_mask);	    \
 115		if (is_mask)						    \
 116			memset((u8 *)&(match)->mask->key.field, value,      \
 117			       sizeof((match)->mask->key.field));	    \
 118		else							    \
 119			memset((u8 *)&(match)->key->field, value,           \
 120			       sizeof((match)->key->field));                \
 121	} while (0)
 122
 123static bool match_validate(const struct sw_flow_match *match,
 124			   u64 key_attrs, u64 mask_attrs, bool log)
 125{
 126	u64 key_expected = 0;
 127	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 128
 129	/* The following mask attributes allowed only if they
 130	 * pass the validation tests. */
 131	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 
 132			| (1 << OVS_KEY_ATTR_IPV6)
 
 133			| (1 << OVS_KEY_ATTR_TCP)
 134			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 135			| (1 << OVS_KEY_ATTR_UDP)
 136			| (1 << OVS_KEY_ATTR_SCTP)
 137			| (1 << OVS_KEY_ATTR_ICMP)
 138			| (1 << OVS_KEY_ATTR_ICMPV6)
 139			| (1 << OVS_KEY_ATTR_ARP)
 140			| (1 << OVS_KEY_ATTR_ND)
 141			| (1 << OVS_KEY_ATTR_MPLS));
 
 142
 143	/* Always allowed mask fields. */
 144	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 145		       | (1 << OVS_KEY_ATTR_IN_PORT)
 146		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 147
 148	/* Check key attributes. */
 149	if (match->key->eth.type == htons(ETH_P_ARP)
 150			|| match->key->eth.type == htons(ETH_P_RARP)) {
 151		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 152		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 153			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 154	}
 155
 156	if (eth_p_mpls(match->key->eth.type)) {
 157		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 158		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 159			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 160	}
 161
 162	if (match->key->eth.type == htons(ETH_P_IP)) {
 163		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 164		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 165			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 
 
 166
 167		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 168			if (match->key->ip.proto == IPPROTO_UDP) {
 169				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 170				if (match->mask && (match->mask->key.ip.proto == 0xff))
 171					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 172			}
 173
 174			if (match->key->ip.proto == IPPROTO_SCTP) {
 175				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 176				if (match->mask && (match->mask->key.ip.proto == 0xff))
 177					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 178			}
 179
 180			if (match->key->ip.proto == IPPROTO_TCP) {
 181				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 182				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 183				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 184					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 185					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 186				}
 187			}
 188
 189			if (match->key->ip.proto == IPPROTO_ICMP) {
 190				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 191				if (match->mask && (match->mask->key.ip.proto == 0xff))
 192					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 193			}
 194		}
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 199		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 
 
 201
 202		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 203			if (match->key->ip.proto == IPPROTO_UDP) {
 204				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 205				if (match->mask && (match->mask->key.ip.proto == 0xff))
 206					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 207			}
 208
 209			if (match->key->ip.proto == IPPROTO_SCTP) {
 210				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 211				if (match->mask && (match->mask->key.ip.proto == 0xff))
 212					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 213			}
 214
 215			if (match->key->ip.proto == IPPROTO_TCP) {
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 217				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 220					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 221				}
 222			}
 223
 224			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 225				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 226				if (match->mask && (match->mask->key.ip.proto == 0xff))
 227					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 228
 229				if (match->key->tp.src ==
 230						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 231				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 232					key_expected |= 1 << OVS_KEY_ATTR_ND;
 
 
 
 
 
 
 233					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 234						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 235				}
 236			}
 237		}
 238	}
 239
 
 
 
 
 
 
 
 
 240	if ((key_attrs & key_expected) != key_expected) {
 241		/* Key attributes check failed. */
 242		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 243			  (unsigned long long)key_attrs,
 244			  (unsigned long long)key_expected);
 245		return false;
 246	}
 247
 248	if ((mask_attrs & mask_allowed) != mask_attrs) {
 249		/* Mask attributes check failed. */
 250		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 251			  (unsigned long long)mask_attrs,
 252			  (unsigned long long)mask_allowed);
 253		return false;
 254	}
 255
 256	return true;
 257}
 258
 259size_t ovs_tun_key_attr_size(void)
 260{
 261	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 262	 * updating this function.
 263	 */
 264	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 265		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 266		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 267		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 268		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 269		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 270		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 271		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 272		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 273		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 
 274		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 275		 */
 276		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 277		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 278}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 280size_t ovs_key_attr_size(void)
 281{
 282	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 283	 * updating this function.
 284	 */
 285	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
 286
 287	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 288		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 289		  + ovs_tun_key_attr_size()
 290		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 291		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 292		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 293		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 294		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 295		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 296		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 297		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 
 
 
 298		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 299		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 300		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 301		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 302		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 303		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 304		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 305		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 
 306}
 307
 308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 309	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 310};
 311
 312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 313	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 314	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 315	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 316	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 317	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 318	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 319	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 320	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 321	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 322	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 323	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 324	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 325						.next = ovs_vxlan_ext_key_lens },
 326	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 327	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 
 
 
 
 
 
 
 
 
 328};
 329
 330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 332	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 333	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 334	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 335	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 336	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 337	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 338	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 339	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 340	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 341	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 342	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 343	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 344	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 345	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 346	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 347	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 348	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 349	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 350	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 351	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 352				     .next = ovs_tunnel_key_lens, },
 353	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 354	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 355	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 356	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 357	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 
 
 
 
 
 
 
 
 358};
 359
 360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 361{
 362	return expected_len == attr_len ||
 363	       expected_len == OVS_ATTR_NESTED ||
 364	       expected_len == OVS_ATTR_VARIABLE;
 365}
 366
 367static bool is_all_zero(const u8 *fp, size_t size)
 368{
 369	int i;
 370
 371	if (!fp)
 372		return false;
 373
 374	for (i = 0; i < size; i++)
 375		if (fp[i])
 376			return false;
 377
 378	return true;
 379}
 380
 381static int __parse_flow_nlattrs(const struct nlattr *attr,
 382				const struct nlattr *a[],
 383				u64 *attrsp, bool log, bool nz)
 384{
 385	const struct nlattr *nla;
 386	u64 attrs;
 387	int rem;
 388
 389	attrs = *attrsp;
 390	nla_for_each_nested(nla, attr, rem) {
 391		u16 type = nla_type(nla);
 392		int expected_len;
 393
 394		if (type > OVS_KEY_ATTR_MAX) {
 395			OVS_NLERR(log, "Key type %d is out of range max %d",
 396				  type, OVS_KEY_ATTR_MAX);
 397			return -EINVAL;
 398		}
 399
 400		if (attrs & (1 << type)) {
 
 
 
 
 
 
 
 401			OVS_NLERR(log, "Duplicate key (type %d).", type);
 402			return -EINVAL;
 403		}
 404
 405		expected_len = ovs_key_lens[type].len;
 406		if (!check_attr_len(nla_len(nla), expected_len)) {
 407			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 408				  type, nla_len(nla), expected_len);
 409			return -EINVAL;
 410		}
 411
 412		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 413			attrs |= 1 << type;
 414			a[type] = nla;
 415		}
 416	}
 417	if (rem) {
 418		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 419		return -EINVAL;
 420	}
 421
 422	*attrsp = attrs;
 423	return 0;
 424}
 425
 426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 427				   const struct nlattr *a[], u64 *attrsp,
 428				   bool log)
 429{
 430	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 431}
 432
 433static int parse_flow_nlattrs(const struct nlattr *attr,
 434			      const struct nlattr *a[], u64 *attrsp,
 435			      bool log)
 436{
 437	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 438}
 439
 440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 441				     struct sw_flow_match *match, bool is_mask,
 442				     bool log)
 443{
 444	unsigned long opt_key_offset;
 445
 446	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 447		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 448			  nla_len(a), sizeof(match->key->tun_opts));
 449		return -EINVAL;
 450	}
 451
 452	if (nla_len(a) % 4 != 0) {
 453		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 454			  nla_len(a));
 455		return -EINVAL;
 456	}
 457
 458	/* We need to record the length of the options passed
 459	 * down, otherwise packets with the same format but
 460	 * additional options will be silently matched.
 461	 */
 462	if (!is_mask) {
 463		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 464				false);
 465	} else {
 466		/* This is somewhat unusual because it looks at
 467		 * both the key and mask while parsing the
 468		 * attributes (and by extension assumes the key
 469		 * is parsed first). Normally, we would verify
 470		 * that each is the correct length and that the
 471		 * attributes line up in the validate function.
 472		 * However, that is difficult because this is
 473		 * variable length and we won't have the
 474		 * information later.
 475		 */
 476		if (match->key->tun_opts_len != nla_len(a)) {
 477			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 478				  match->key->tun_opts_len, nla_len(a));
 479			return -EINVAL;
 480		}
 481
 482		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 483	}
 484
 485	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 486	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 487				  nla_len(a), is_mask);
 488	return 0;
 489}
 490
 491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 492				     struct sw_flow_match *match, bool is_mask,
 493				     bool log)
 494{
 495	struct nlattr *a;
 496	int rem;
 497	unsigned long opt_key_offset;
 498	struct vxlan_metadata opts;
 499
 500	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 501
 502	memset(&opts, 0, sizeof(opts));
 503	nla_for_each_nested(a, attr, rem) {
 504		int type = nla_type(a);
 505
 506		if (type > OVS_VXLAN_EXT_MAX) {
 507			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 508				  type, OVS_VXLAN_EXT_MAX);
 509			return -EINVAL;
 510		}
 511
 512		if (!check_attr_len(nla_len(a),
 513				    ovs_vxlan_ext_key_lens[type].len)) {
 514			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 515				  type, nla_len(a),
 516				  ovs_vxlan_ext_key_lens[type].len);
 517			return -EINVAL;
 518		}
 519
 520		switch (type) {
 521		case OVS_VXLAN_EXT_GBP:
 522			opts.gbp = nla_get_u32(a);
 523			break;
 524		default:
 525			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 526				  type);
 527			return -EINVAL;
 528		}
 529	}
 530	if (rem) {
 531		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 532			  rem);
 533		return -EINVAL;
 534	}
 535
 536	if (!is_mask)
 537		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 538	else
 539		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 540
 541	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 542	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 543				  is_mask);
 544	return 0;
 545}
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547static int ip_tun_from_nlattr(const struct nlattr *attr,
 548			      struct sw_flow_match *match, bool is_mask,
 549			      bool log)
 550{
 551	bool ttl = false, ipv4 = false, ipv6 = false;
 
 552	__be16 tun_flags = 0;
 553	int opts_type = 0;
 554	struct nlattr *a;
 555	int rem;
 556
 557	nla_for_each_nested(a, attr, rem) {
 558		int type = nla_type(a);
 559		int err;
 560
 561		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 562			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 563				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 564			return -EINVAL;
 565		}
 566
 567		if (!check_attr_len(nla_len(a),
 568				    ovs_tunnel_key_lens[type].len)) {
 569			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 570				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 571			return -EINVAL;
 572		}
 573
 574		switch (type) {
 575		case OVS_TUNNEL_KEY_ATTR_ID:
 576			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 577					nla_get_be64(a), is_mask);
 578			tun_flags |= TUNNEL_KEY;
 579			break;
 580		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 581			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 582					nla_get_in_addr(a), is_mask);
 583			ipv4 = true;
 584			break;
 585		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 586			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 587					nla_get_in_addr(a), is_mask);
 588			ipv4 = true;
 589			break;
 590		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 591			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 592					nla_get_in6_addr(a), is_mask);
 593			ipv6 = true;
 594			break;
 595		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 596			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 597					nla_get_in6_addr(a), is_mask);
 598			ipv6 = true;
 599			break;
 600		case OVS_TUNNEL_KEY_ATTR_TOS:
 601			SW_FLOW_KEY_PUT(match, tun_key.tos,
 602					nla_get_u8(a), is_mask);
 603			break;
 604		case OVS_TUNNEL_KEY_ATTR_TTL:
 605			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 606					nla_get_u8(a), is_mask);
 607			ttl = true;
 608			break;
 609		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 610			tun_flags |= TUNNEL_DONT_FRAGMENT;
 611			break;
 612		case OVS_TUNNEL_KEY_ATTR_CSUM:
 613			tun_flags |= TUNNEL_CSUM;
 614			break;
 615		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 616			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 617					nla_get_be16(a), is_mask);
 618			break;
 619		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 620			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 621					nla_get_be16(a), is_mask);
 622			break;
 623		case OVS_TUNNEL_KEY_ATTR_OAM:
 624			tun_flags |= TUNNEL_OAM;
 625			break;
 626		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 627			if (opts_type) {
 628				OVS_NLERR(log, "Multiple metadata blocks provided");
 629				return -EINVAL;
 630			}
 631
 632			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 633			if (err)
 634				return err;
 635
 636			tun_flags |= TUNNEL_GENEVE_OPT;
 637			opts_type = type;
 638			break;
 639		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 640			if (opts_type) {
 641				OVS_NLERR(log, "Multiple metadata blocks provided");
 642				return -EINVAL;
 643			}
 644
 645			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 646			if (err)
 647				return err;
 648
 649			tun_flags |= TUNNEL_VXLAN_OPT;
 650			opts_type = type;
 651			break;
 652		case OVS_TUNNEL_KEY_ATTR_PAD:
 653			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654		default:
 655			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 656				  type);
 657			return -EINVAL;
 658		}
 659	}
 660
 661	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 662	if (is_mask)
 663		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 664	else
 665		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 666				false);
 667
 668	if (rem > 0) {
 669		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 670			  rem);
 671		return -EINVAL;
 672	}
 673
 674	if (ipv4 && ipv6) {
 675		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 676		return -EINVAL;
 677	}
 678
 679	if (!is_mask) {
 680		if (!ipv4 && !ipv6) {
 681			OVS_NLERR(log, "IP tunnel dst address not specified");
 682			return -EINVAL;
 683		}
 684		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
 685			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 686			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 687		}
 688		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 689			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 690			return -EINVAL;
 691		}
 692
 693		if (!ttl) {
 694			OVS_NLERR(log, "IP tunnel TTL not specified.");
 695			return -EINVAL;
 696		}
 697	}
 698
 699	return opts_type;
 700}
 701
 702static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 703			       const void *tun_opts, int swkey_tun_opts_len)
 704{
 705	const struct vxlan_metadata *opts = tun_opts;
 706	struct nlattr *nla;
 707
 708	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 709	if (!nla)
 710		return -EMSGSIZE;
 711
 712	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 713		return -EMSGSIZE;
 714
 715	nla_nest_end(skb, nla);
 716	return 0;
 717}
 718
 719static int __ip_tun_to_nlattr(struct sk_buff *skb,
 720			      const struct ip_tunnel_key *output,
 721			      const void *tun_opts, int swkey_tun_opts_len,
 722			      unsigned short tun_proto)
 723{
 724	if (output->tun_flags & TUNNEL_KEY &&
 725	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 726			 OVS_TUNNEL_KEY_ATTR_PAD))
 727		return -EMSGSIZE;
 
 
 
 
 
 728	switch (tun_proto) {
 729	case AF_INET:
 730		if (output->u.ipv4.src &&
 731		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 732				    output->u.ipv4.src))
 733			return -EMSGSIZE;
 734		if (output->u.ipv4.dst &&
 735		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 736				    output->u.ipv4.dst))
 737			return -EMSGSIZE;
 738		break;
 739	case AF_INET6:
 740		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 741		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 742				     &output->u.ipv6.src))
 743			return -EMSGSIZE;
 744		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 745		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 746				     &output->u.ipv6.dst))
 747			return -EMSGSIZE;
 748		break;
 749	}
 750	if (output->tos &&
 751	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 752		return -EMSGSIZE;
 753	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 754		return -EMSGSIZE;
 755	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 756	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 757		return -EMSGSIZE;
 758	if ((output->tun_flags & TUNNEL_CSUM) &&
 759	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 760		return -EMSGSIZE;
 761	if (output->tp_src &&
 762	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 763		return -EMSGSIZE;
 764	if (output->tp_dst &&
 765	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 766		return -EMSGSIZE;
 767	if ((output->tun_flags & TUNNEL_OAM) &&
 768	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 769		return -EMSGSIZE;
 770	if (swkey_tun_opts_len) {
 771		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 772		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 773			    swkey_tun_opts_len, tun_opts))
 774			return -EMSGSIZE;
 775		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 776			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 777			return -EMSGSIZE;
 
 
 
 
 778	}
 779
 780	return 0;
 781}
 782
 783static int ip_tun_to_nlattr(struct sk_buff *skb,
 784			    const struct ip_tunnel_key *output,
 785			    const void *tun_opts, int swkey_tun_opts_len,
 786			    unsigned short tun_proto)
 787{
 788	struct nlattr *nla;
 789	int err;
 790
 791	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 792	if (!nla)
 793		return -EMSGSIZE;
 794
 795	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 796				 tun_proto);
 797	if (err)
 798		return err;
 799
 800	nla_nest_end(skb, nla);
 801	return 0;
 802}
 803
 804int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 805			    struct ip_tunnel_info *tun_info)
 806{
 807	return __ip_tun_to_nlattr(skb, &tun_info->key,
 808				  ip_tunnel_info_opts(tun_info),
 809				  tun_info->options_len,
 810				  ip_tunnel_info_af(tun_info));
 811}
 812
 813static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 814				    const struct nlattr *a[],
 815				    bool is_mask, bool inner)
 816{
 817	__be16 tci = 0;
 818	__be16 tpid = 0;
 819
 820	if (a[OVS_KEY_ATTR_VLAN])
 821		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 822
 823	if (a[OVS_KEY_ATTR_ETHERTYPE])
 824		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 825
 826	if (likely(!inner)) {
 827		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 828		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 829	} else {
 830		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 831		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 832	}
 833	return 0;
 834}
 835
 836static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 837				      u64 key_attrs, bool inner,
 838				      const struct nlattr **a, bool log)
 839{
 840	__be16 tci = 0;
 841
 842	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 843	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 844	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 845		/* Not a VLAN. */
 846		return 0;
 847	}
 848
 849	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 850	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 851		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
 852		return -EINVAL;
 853	}
 854
 855	if (a[OVS_KEY_ATTR_VLAN])
 856		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 857
 858	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 859		if (tci) {
 860			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
 861				  (inner) ? "C-VLAN" : "VLAN");
 862			return -EINVAL;
 863		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
 864			/* Corner case for truncated VLAN header. */
 865			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
 866				  (inner) ? "C-VLAN" : "VLAN");
 867			return -EINVAL;
 868		}
 869	}
 870
 871	return 1;
 872}
 873
 874static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
 875					   u64 key_attrs, bool inner,
 876					   const struct nlattr **a, bool log)
 877{
 878	__be16 tci = 0;
 879	__be16 tpid = 0;
 880	bool encap_valid = !!(match->key->eth.vlan.tci &
 881			      htons(VLAN_TAG_PRESENT));
 882	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
 883				htons(VLAN_TAG_PRESENT));
 884
 885	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
 886		/* Not a VLAN. */
 887		return 0;
 888	}
 889
 890	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
 891		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
 892			  (inner) ? "C-VLAN" : "VLAN");
 893		return -EINVAL;
 894	}
 895
 896	if (a[OVS_KEY_ATTR_VLAN])
 897		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 898
 899	if (a[OVS_KEY_ATTR_ETHERTYPE])
 900		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 901
 902	if (tpid != htons(0xffff)) {
 903		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
 904			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
 905		return -EINVAL;
 906	}
 907	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 908		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
 909			  (inner) ? "C-VLAN" : "VLAN");
 910		return -EINVAL;
 911	}
 912
 913	return 1;
 914}
 915
 916static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
 917				     u64 *key_attrs, bool inner,
 918				     const struct nlattr **a, bool is_mask,
 919				     bool log)
 920{
 921	int err;
 922	const struct nlattr *encap;
 923
 924	if (!is_mask)
 925		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
 926						 a, log);
 927	else
 928		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
 929						      a, log);
 930	if (err <= 0)
 931		return err;
 932
 933	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
 934	if (err)
 935		return err;
 936
 937	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 938	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 939	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 940
 941	encap = a[OVS_KEY_ATTR_ENCAP];
 942
 943	if (!is_mask)
 944		err = parse_flow_nlattrs(encap, a, key_attrs, log);
 945	else
 946		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
 947
 948	return err;
 949}
 950
 951static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
 952				   u64 *key_attrs, const struct nlattr **a,
 953				   bool is_mask, bool log)
 954{
 955	int err;
 956	bool encap_valid = false;
 957
 958	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
 959					is_mask, log);
 960	if (err)
 961		return err;
 962
 963	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
 964	if (encap_valid) {
 965		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
 966						is_mask, log);
 967		if (err)
 968			return err;
 969	}
 970
 971	return 0;
 972}
 973
 974static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
 975				       u64 *attrs, const struct nlattr **a,
 976				       bool is_mask, bool log)
 977{
 978	__be16 eth_type;
 979
 980	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 981	if (is_mask) {
 982		/* Always exact match EtherType. */
 983		eth_type = htons(0xffff);
 984	} else if (!eth_proto_is_802_3(eth_type)) {
 985		OVS_NLERR(log, "EtherType %x is less than min %x",
 986				ntohs(eth_type), ETH_P_802_3_MIN);
 987		return -EINVAL;
 988	}
 989
 990	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 991	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 992	return 0;
 993}
 994
 995static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
 996				 u64 *attrs, const struct nlattr **a,
 997				 bool is_mask, bool log)
 998{
 999	u8 mac_proto = MAC_PROTO_ETHERNET;
1000
1001	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1002		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1003
1004		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1005		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1006	}
1007
1008	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1009		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1010
1011		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1012		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1013	}
1014
1015	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1016		SW_FLOW_KEY_PUT(match, phy.priority,
1017			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1018		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1019	}
1020
1021	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1022		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1023
1024		if (is_mask) {
1025			in_port = 0xffffffff; /* Always exact match in_port. */
1026		} else if (in_port >= DP_MAX_PORTS) {
1027			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1028				  in_port, DP_MAX_PORTS);
1029			return -EINVAL;
1030		}
1031
1032		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1033		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1034	} else if (!is_mask) {
1035		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1036	}
1037
1038	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1039		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1040
1041		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1042		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1043	}
1044	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1045		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1046				       is_mask, log) < 0)
1047			return -EINVAL;
1048		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1049	}
1050
1051	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1052	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1053		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1054
1055		if (ct_state & ~CT_SUPPORTED_MASK) {
1056			OVS_NLERR(log, "ct_state flags %08x unsupported",
1057				  ct_state);
1058			return -EINVAL;
1059		}
1060
1061		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1062		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1063	}
1064	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1065	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1066		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1067
1068		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1069		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1070	}
1071	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1072	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1073		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1074
1075		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1076		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1077	}
1078	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1079	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1080		const struct ovs_key_ct_labels *cl;
1081
1082		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1083		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1084				   sizeof(*cl), is_mask);
1085		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1086	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088	/* For layer 3 packets the Ethernet type is provided
1089	 * and treated as metadata but no MAC addresses are provided.
1090	 */
1091	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1092	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1093		mac_proto = MAC_PROTO_NONE;
1094
1095	/* Always exact match mac_proto */
1096	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1097
1098	if (mac_proto == MAC_PROTO_NONE)
1099		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1100						   log);
1101
1102	return 0;
1103}
1104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1106				u64 attrs, const struct nlattr **a,
1107				bool is_mask, bool log)
1108{
1109	int err;
1110
1111	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1112	if (err)
1113		return err;
1114
1115	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1116		const struct ovs_key_ethernet *eth_key;
1117
1118		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1119		SW_FLOW_KEY_MEMCPY(match, eth.src,
1120				eth_key->eth_src, ETH_ALEN, is_mask);
1121		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1122				eth_key->eth_dst, ETH_ALEN, is_mask);
1123		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1124
1125		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1126			/* VLAN attribute is always parsed before getting here since it
1127			 * may occur multiple times.
1128			 */
1129			OVS_NLERR(log, "VLAN attribute unexpected.");
1130			return -EINVAL;
1131		}
1132
1133		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1134			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1135							  log);
1136			if (err)
1137				return err;
1138		} else if (!is_mask) {
1139			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1140		}
1141	} else if (!match->key->eth.type) {
1142		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1143		return -EINVAL;
1144	}
1145
1146	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1147		const struct ovs_key_ipv4 *ipv4_key;
1148
1149		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1150		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1151			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1152				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1153			return -EINVAL;
1154		}
1155		SW_FLOW_KEY_PUT(match, ip.proto,
1156				ipv4_key->ipv4_proto, is_mask);
1157		SW_FLOW_KEY_PUT(match, ip.tos,
1158				ipv4_key->ipv4_tos, is_mask);
1159		SW_FLOW_KEY_PUT(match, ip.ttl,
1160				ipv4_key->ipv4_ttl, is_mask);
1161		SW_FLOW_KEY_PUT(match, ip.frag,
1162				ipv4_key->ipv4_frag, is_mask);
1163		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1164				ipv4_key->ipv4_src, is_mask);
1165		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1166				ipv4_key->ipv4_dst, is_mask);
1167		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1168	}
1169
1170	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1171		const struct ovs_key_ipv6 *ipv6_key;
1172
1173		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1174		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1175			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1176				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1177			return -EINVAL;
1178		}
1179
1180		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1181			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1182				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1183			return -EINVAL;
1184		}
1185
1186		SW_FLOW_KEY_PUT(match, ipv6.label,
1187				ipv6_key->ipv6_label, is_mask);
1188		SW_FLOW_KEY_PUT(match, ip.proto,
1189				ipv6_key->ipv6_proto, is_mask);
1190		SW_FLOW_KEY_PUT(match, ip.tos,
1191				ipv6_key->ipv6_tclass, is_mask);
1192		SW_FLOW_KEY_PUT(match, ip.ttl,
1193				ipv6_key->ipv6_hlimit, is_mask);
1194		SW_FLOW_KEY_PUT(match, ip.frag,
1195				ipv6_key->ipv6_frag, is_mask);
1196		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1197				ipv6_key->ipv6_src,
1198				sizeof(match->key->ipv6.addr.src),
1199				is_mask);
1200		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1201				ipv6_key->ipv6_dst,
1202				sizeof(match->key->ipv6.addr.dst),
1203				is_mask);
1204
1205		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1206	}
1207
 
 
 
 
 
 
 
 
 
 
 
1208	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1209		const struct ovs_key_arp *arp_key;
1210
1211		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1212		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1213			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1214				  arp_key->arp_op);
1215			return -EINVAL;
1216		}
1217
1218		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1219				arp_key->arp_sip, is_mask);
1220		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1221			arp_key->arp_tip, is_mask);
1222		SW_FLOW_KEY_PUT(match, ip.proto,
1223				ntohs(arp_key->arp_op), is_mask);
1224		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1225				arp_key->arp_sha, ETH_ALEN, is_mask);
1226		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1227				arp_key->arp_tha, ETH_ALEN, is_mask);
1228
1229		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1230	}
1231
 
 
 
 
 
 
 
1232	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1233		const struct ovs_key_mpls *mpls_key;
 
 
1234
1235		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1236		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1237				mpls_key->mpls_lse, is_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
1238
1239		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1240	 }
1241
1242	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1243		const struct ovs_key_tcp *tcp_key;
1244
1245		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1246		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1247		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1248		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1249	}
1250
1251	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1252		SW_FLOW_KEY_PUT(match, tp.flags,
1253				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1254				is_mask);
1255		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1256	}
1257
1258	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1259		const struct ovs_key_udp *udp_key;
1260
1261		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1262		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1263		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1264		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1265	}
1266
1267	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1268		const struct ovs_key_sctp *sctp_key;
1269
1270		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1271		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1272		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1273		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1274	}
1275
1276	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1277		const struct ovs_key_icmp *icmp_key;
1278
1279		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1280		SW_FLOW_KEY_PUT(match, tp.src,
1281				htons(icmp_key->icmp_type), is_mask);
1282		SW_FLOW_KEY_PUT(match, tp.dst,
1283				htons(icmp_key->icmp_code), is_mask);
1284		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1285	}
1286
1287	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1288		const struct ovs_key_icmpv6 *icmpv6_key;
1289
1290		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1291		SW_FLOW_KEY_PUT(match, tp.src,
1292				htons(icmpv6_key->icmpv6_type), is_mask);
1293		SW_FLOW_KEY_PUT(match, tp.dst,
1294				htons(icmpv6_key->icmpv6_code), is_mask);
1295		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1296	}
1297
1298	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1299		const struct ovs_key_nd *nd_key;
1300
1301		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1302		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1303			nd_key->nd_target,
1304			sizeof(match->key->ipv6.nd.target),
1305			is_mask);
1306		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1307			nd_key->nd_sll, ETH_ALEN, is_mask);
1308		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1309				nd_key->nd_tll, ETH_ALEN, is_mask);
1310		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1311	}
1312
1313	if (attrs != 0) {
1314		OVS_NLERR(log, "Unknown key attributes %llx",
1315			  (unsigned long long)attrs);
1316		return -EINVAL;
1317	}
1318
1319	return 0;
1320}
1321
1322static void nlattr_set(struct nlattr *attr, u8 val,
1323		       const struct ovs_len_tbl *tbl)
1324{
1325	struct nlattr *nla;
1326	int rem;
1327
1328	/* The nlattr stream should already have been validated */
1329	nla_for_each_nested(nla, attr, rem) {
1330		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1331			if (tbl[nla_type(nla)].next)
1332				tbl = tbl[nla_type(nla)].next;
1333			nlattr_set(nla, val, tbl);
1334		} else {
1335			memset(nla_data(nla), val, nla_len(nla));
1336		}
1337
1338		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1339			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1340	}
1341}
1342
1343static void mask_set_nlattr(struct nlattr *attr, u8 val)
1344{
1345	nlattr_set(attr, val, ovs_key_lens);
1346}
1347
1348/**
1349 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1350 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1351 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1352 * does not include any don't care bit.
1353 * @net: Used to determine per-namespace field support.
1354 * @match: receives the extracted flow match information.
1355 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1356 * sequence. The fields should of the packet that triggered the creation
1357 * of this flow.
1358 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1359 * attribute specifies the mask field of the wildcarded flow.
1360 * @log: Boolean to allow kernel error logging.  Normally true, but when
1361 * probing for feature compatibility this should be passed in as false to
1362 * suppress unnecessary error logging.
1363 */
1364int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1365		      const struct nlattr *nla_key,
1366		      const struct nlattr *nla_mask,
1367		      bool log)
1368{
1369	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1370	struct nlattr *newmask = NULL;
1371	u64 key_attrs = 0;
1372	u64 mask_attrs = 0;
1373	int err;
1374
1375	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1376	if (err)
1377		return err;
1378
1379	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1380	if (err)
1381		return err;
1382
1383	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1384	if (err)
1385		return err;
1386
1387	if (match->mask) {
1388		if (!nla_mask) {
1389			/* Create an exact match mask. We need to set to 0xff
1390			 * all the 'match->mask' fields that have been touched
1391			 * in 'match->key'. We cannot simply memset
1392			 * 'match->mask', because padding bytes and fields not
1393			 * specified in 'match->key' should be left to 0.
1394			 * Instead, we use a stream of netlink attributes,
1395			 * copied from 'key' and set to 0xff.
1396			 * ovs_key_from_nlattrs() will take care of filling
1397			 * 'match->mask' appropriately.
1398			 */
1399			newmask = kmemdup(nla_key,
1400					  nla_total_size(nla_len(nla_key)),
1401					  GFP_KERNEL);
1402			if (!newmask)
1403				return -ENOMEM;
1404
1405			mask_set_nlattr(newmask, 0xff);
1406
1407			/* The userspace does not send tunnel attributes that
1408			 * are 0, but we should not wildcard them nonetheless.
1409			 */
1410			if (match->key->tun_proto)
1411				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1412							 0xff, true);
1413
1414			nla_mask = newmask;
1415		}
1416
1417		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1418		if (err)
1419			goto free_newmask;
1420
1421		/* Always match on tci. */
1422		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1423		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1424
1425		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1426		if (err)
1427			goto free_newmask;
1428
1429		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1430					   log);
1431		if (err)
1432			goto free_newmask;
1433	}
1434
1435	if (!match_validate(match, key_attrs, mask_attrs, log))
1436		err = -EINVAL;
1437
1438free_newmask:
1439	kfree(newmask);
1440	return err;
1441}
1442
1443static size_t get_ufid_len(const struct nlattr *attr, bool log)
1444{
1445	size_t len;
1446
1447	if (!attr)
1448		return 0;
1449
1450	len = nla_len(attr);
1451	if (len < 1 || len > MAX_UFID_LENGTH) {
1452		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1453			  nla_len(attr), MAX_UFID_LENGTH);
1454		return 0;
1455	}
1456
1457	return len;
1458}
1459
1460/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1461 * or false otherwise.
1462 */
1463bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1464		      bool log)
1465{
1466	sfid->ufid_len = get_ufid_len(attr, log);
1467	if (sfid->ufid_len)
1468		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1469
1470	return sfid->ufid_len;
1471}
1472
1473int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1474			   const struct sw_flow_key *key, bool log)
1475{
1476	struct sw_flow_key *new_key;
1477
1478	if (ovs_nla_get_ufid(sfid, ufid, log))
1479		return 0;
1480
1481	/* If UFID was not provided, use unmasked key. */
1482	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1483	if (!new_key)
1484		return -ENOMEM;
1485	memcpy(new_key, key, sizeof(*key));
1486	sfid->unmasked_key = new_key;
1487
1488	return 0;
1489}
1490
1491u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1492{
1493	return attr ? nla_get_u32(attr) : 0;
1494}
1495
1496/**
1497 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1498 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1499 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1500 * sequence.
 
 
 
1501 * @log: Boolean to allow kernel error logging.  Normally true, but when
1502 * probing for feature compatibility this should be passed in as false to
1503 * suppress unnecessary error logging.
1504 *
1505 * This parses a series of Netlink attributes that form a flow key, which must
1506 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1507 * get the metadata, that is, the parts of the flow key that cannot be
1508 * extracted from the packet itself.
 
 
1509 */
1510
1511int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1512			      struct sw_flow_key *key,
1513			      bool log)
1514{
1515	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1516	struct sw_flow_match match;
1517	u64 attrs = 0;
1518	int err;
1519
1520	err = parse_flow_nlattrs(attr, a, &attrs, log);
1521	if (err)
1522		return -EINVAL;
1523
1524	memset(&match, 0, sizeof(match));
1525	match.key = key;
1526
 
 
 
1527	memset(&key->ct, 0, sizeof(key->ct));
 
 
 
1528	key->phy.in_port = DP_MAX_PORTS;
1529
1530	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1531}
1532
1533static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1534			    bool is_mask)
1535{
1536	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1537
1538	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1539	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1540		return -EMSGSIZE;
1541	return 0;
1542}
1543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1545			     const struct sw_flow_key *output, bool is_mask,
1546			     struct sk_buff *skb)
1547{
1548	struct ovs_key_ethernet *eth_key;
1549	struct nlattr *nla;
1550	struct nlattr *encap = NULL;
1551	struct nlattr *in_encap = NULL;
1552
1553	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1554		goto nla_put_failure;
1555
1556	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1557		goto nla_put_failure;
1558
1559	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1560		goto nla_put_failure;
1561
1562	if ((swkey->tun_proto || is_mask)) {
1563		const void *opts = NULL;
1564
1565		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1566			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1567
1568		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1569				     swkey->tun_opts_len, swkey->tun_proto))
1570			goto nla_put_failure;
1571	}
1572
1573	if (swkey->phy.in_port == DP_MAX_PORTS) {
1574		if (is_mask && (output->phy.in_port == 0xffff))
1575			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1576				goto nla_put_failure;
1577	} else {
1578		u16 upper_u16;
1579		upper_u16 = !is_mask ? 0 : 0xffff;
1580
1581		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1582				(upper_u16 << 16) | output->phy.in_port))
1583			goto nla_put_failure;
1584	}
1585
1586	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1587		goto nla_put_failure;
1588
1589	if (ovs_ct_put_key(output, skb))
1590		goto nla_put_failure;
1591
1592	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1593		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1594		if (!nla)
1595			goto nla_put_failure;
1596
1597		eth_key = nla_data(nla);
1598		ether_addr_copy(eth_key->eth_src, output->eth.src);
1599		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1600
1601		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1602			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1603				goto nla_put_failure;
1604			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1605			if (!swkey->eth.vlan.tci)
1606				goto unencap;
1607
1608			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1609				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1610					goto nla_put_failure;
1611				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
 
1612				if (!swkey->eth.cvlan.tci)
1613					goto unencap;
1614			}
1615		}
1616
1617		if (swkey->eth.type == htons(ETH_P_802_2)) {
1618			/*
1619			* Ethertype 802.2 is represented in the netlink with omitted
1620			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1621			* 0xffff in the mask attribute.  Ethertype can also
1622			* be wildcarded.
1623			*/
1624			if (is_mask && output->eth.type)
1625				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1626							output->eth.type))
1627					goto nla_put_failure;
1628			goto unencap;
1629		}
1630	}
1631
1632	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1633		goto nla_put_failure;
1634
1635	if (eth_type_vlan(swkey->eth.type)) {
1636		/* There are 3 VLAN tags, we don't know anything about the rest
1637		 * of the packet, so truncate here.
1638		 */
1639		WARN_ON_ONCE(!(encap && in_encap));
1640		goto unencap;
1641	}
1642
1643	if (swkey->eth.type == htons(ETH_P_IP)) {
1644		struct ovs_key_ipv4 *ipv4_key;
1645
1646		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1647		if (!nla)
1648			goto nla_put_failure;
1649		ipv4_key = nla_data(nla);
1650		ipv4_key->ipv4_src = output->ipv4.addr.src;
1651		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1652		ipv4_key->ipv4_proto = output->ip.proto;
1653		ipv4_key->ipv4_tos = output->ip.tos;
1654		ipv4_key->ipv4_ttl = output->ip.ttl;
1655		ipv4_key->ipv4_frag = output->ip.frag;
1656	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1657		struct ovs_key_ipv6 *ipv6_key;
 
1658
1659		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1660		if (!nla)
1661			goto nla_put_failure;
1662		ipv6_key = nla_data(nla);
1663		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1664				sizeof(ipv6_key->ipv6_src));
1665		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1666				sizeof(ipv6_key->ipv6_dst));
1667		ipv6_key->ipv6_label = output->ipv6.label;
1668		ipv6_key->ipv6_proto = output->ip.proto;
1669		ipv6_key->ipv6_tclass = output->ip.tos;
1670		ipv6_key->ipv6_hlimit = output->ip.ttl;
1671		ipv6_key->ipv6_frag = output->ip.frag;
 
 
 
 
 
 
 
 
 
 
1672	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1673		   swkey->eth.type == htons(ETH_P_RARP)) {
1674		struct ovs_key_arp *arp_key;
1675
1676		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1677		if (!nla)
1678			goto nla_put_failure;
1679		arp_key = nla_data(nla);
1680		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1681		arp_key->arp_sip = output->ipv4.addr.src;
1682		arp_key->arp_tip = output->ipv4.addr.dst;
1683		arp_key->arp_op = htons(output->ip.proto);
1684		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1685		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1686	} else if (eth_p_mpls(swkey->eth.type)) {
 
1687		struct ovs_key_mpls *mpls_key;
1688
1689		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
 
 
1690		if (!nla)
1691			goto nla_put_failure;
 
1692		mpls_key = nla_data(nla);
1693		mpls_key->mpls_lse = output->mpls.top_lse;
 
1694	}
1695
1696	if ((swkey->eth.type == htons(ETH_P_IP) ||
1697	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1698	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1699
1700		if (swkey->ip.proto == IPPROTO_TCP) {
1701			struct ovs_key_tcp *tcp_key;
1702
1703			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1704			if (!nla)
1705				goto nla_put_failure;
1706			tcp_key = nla_data(nla);
1707			tcp_key->tcp_src = output->tp.src;
1708			tcp_key->tcp_dst = output->tp.dst;
1709			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1710					 output->tp.flags))
1711				goto nla_put_failure;
1712		} else if (swkey->ip.proto == IPPROTO_UDP) {
1713			struct ovs_key_udp *udp_key;
1714
1715			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1716			if (!nla)
1717				goto nla_put_failure;
1718			udp_key = nla_data(nla);
1719			udp_key->udp_src = output->tp.src;
1720			udp_key->udp_dst = output->tp.dst;
1721		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1722			struct ovs_key_sctp *sctp_key;
1723
1724			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1725			if (!nla)
1726				goto nla_put_failure;
1727			sctp_key = nla_data(nla);
1728			sctp_key->sctp_src = output->tp.src;
1729			sctp_key->sctp_dst = output->tp.dst;
1730		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1731			   swkey->ip.proto == IPPROTO_ICMP) {
1732			struct ovs_key_icmp *icmp_key;
1733
1734			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1735			if (!nla)
1736				goto nla_put_failure;
1737			icmp_key = nla_data(nla);
1738			icmp_key->icmp_type = ntohs(output->tp.src);
1739			icmp_key->icmp_code = ntohs(output->tp.dst);
1740		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1741			   swkey->ip.proto == IPPROTO_ICMPV6) {
1742			struct ovs_key_icmpv6 *icmpv6_key;
1743
1744			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1745						sizeof(*icmpv6_key));
1746			if (!nla)
1747				goto nla_put_failure;
1748			icmpv6_key = nla_data(nla);
1749			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1750			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1751
1752			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1753			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1754				struct ovs_key_nd *nd_key;
1755
1756				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1757				if (!nla)
1758					goto nla_put_failure;
1759				nd_key = nla_data(nla);
1760				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1761							sizeof(nd_key->nd_target));
1762				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1763				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1764			}
1765		}
1766	}
1767
1768unencap:
1769	if (in_encap)
1770		nla_nest_end(skb, in_encap);
1771	if (encap)
1772		nla_nest_end(skb, encap);
1773
1774	return 0;
1775
1776nla_put_failure:
1777	return -EMSGSIZE;
1778}
1779
1780int ovs_nla_put_key(const struct sw_flow_key *swkey,
1781		    const struct sw_flow_key *output, int attr, bool is_mask,
1782		    struct sk_buff *skb)
1783{
1784	int err;
1785	struct nlattr *nla;
1786
1787	nla = nla_nest_start(skb, attr);
1788	if (!nla)
1789		return -EMSGSIZE;
1790	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1791	if (err)
1792		return err;
1793	nla_nest_end(skb, nla);
1794
1795	return 0;
1796}
1797
1798/* Called with ovs_mutex or RCU read lock. */
1799int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1800{
1801	if (ovs_identifier_is_ufid(&flow->id))
1802		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1803			       flow->id.ufid);
1804
1805	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1806			       OVS_FLOW_ATTR_KEY, false, skb);
1807}
1808
1809/* Called with ovs_mutex or RCU read lock. */
1810int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1811{
1812	return ovs_nla_put_key(&flow->key, &flow->key,
1813				OVS_FLOW_ATTR_KEY, false, skb);
1814}
1815
1816/* Called with ovs_mutex or RCU read lock. */
1817int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1818{
1819	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1820				OVS_FLOW_ATTR_MASK, true, skb);
1821}
1822
1823#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1824
1825static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1826{
1827	struct sw_flow_actions *sfa;
1828
1829	if (size > MAX_ACTIONS_BUFSIZE) {
1830		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1831		return ERR_PTR(-EINVAL);
1832	}
1833
1834	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1835	if (!sfa)
1836		return ERR_PTR(-ENOMEM);
1837
1838	sfa->actions_len = 0;
1839	return sfa;
1840}
1841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842static void ovs_nla_free_set_action(const struct nlattr *a)
1843{
1844	const struct nlattr *ovs_key = nla_data(a);
1845	struct ovs_tunnel_info *ovs_tun;
1846
1847	switch (nla_type(ovs_key)) {
1848	case OVS_KEY_ATTR_TUNNEL_INFO:
1849		ovs_tun = nla_data(ovs_key);
1850		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1851		break;
1852	}
1853}
1854
1855void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1856{
1857	const struct nlattr *a;
1858	int rem;
1859
1860	if (!sf_acts)
 
 
 
 
 
1861		return;
1862
1863	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1864		switch (nla_type(a)) {
1865		case OVS_ACTION_ATTR_SET:
1866			ovs_nla_free_set_action(a);
1867			break;
 
 
 
 
 
1868		case OVS_ACTION_ATTR_CT:
1869			ovs_ct_free_action(a);
1870			break;
 
 
 
 
 
 
 
 
 
 
 
 
1871		}
1872	}
 
1873
 
 
 
 
 
 
1874	kfree(sf_acts);
1875}
1876
1877static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1878{
1879	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1880}
1881
1882/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1883 * The caller must hold rcu_read_lock for this to be sensible. */
1884void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1885{
1886	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1887}
1888
1889static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1890				       int attr_len, bool log)
1891{
1892
1893	struct sw_flow_actions *acts;
1894	int new_acts_size;
1895	int req_size = NLA_ALIGN(attr_len);
1896	int next_offset = offsetof(struct sw_flow_actions, actions) +
1897					(*sfa)->actions_len;
1898
1899	if (req_size <= (ksize(*sfa) - next_offset))
1900		goto out;
1901
1902	new_acts_size = ksize(*sfa) * 2;
1903
1904	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1905		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
 
 
1906			return ERR_PTR(-EMSGSIZE);
 
1907		new_acts_size = MAX_ACTIONS_BUFSIZE;
1908	}
1909
1910	acts = nla_alloc_flow_actions(new_acts_size, log);
1911	if (IS_ERR(acts))
1912		return (void *)acts;
1913
1914	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1915	acts->actions_len = (*sfa)->actions_len;
1916	acts->orig_len = (*sfa)->orig_len;
1917	kfree(*sfa);
1918	*sfa = acts;
1919
1920out:
1921	(*sfa)->actions_len += req_size;
1922	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1923}
1924
1925static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1926				   int attrtype, void *data, int len, bool log)
1927{
1928	struct nlattr *a;
1929
1930	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1931	if (IS_ERR(a))
1932		return a;
1933
1934	a->nla_type = attrtype;
1935	a->nla_len = nla_attr_size(len);
1936
1937	if (data)
1938		memcpy(nla_data(a), data, len);
1939	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1940
1941	return a;
1942}
1943
1944int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1945		       int len, bool log)
1946{
1947	struct nlattr *a;
1948
1949	a = __add_action(sfa, attrtype, data, len, log);
1950
1951	return PTR_ERR_OR_ZERO(a);
1952}
1953
1954static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1955					  int attrtype, bool log)
1956{
1957	int used = (*sfa)->actions_len;
1958	int err;
1959
1960	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1961	if (err)
1962		return err;
1963
1964	return used;
1965}
1966
1967static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1968					 int st_offset)
1969{
1970	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1971							       st_offset);
1972
1973	a->nla_len = sfa->actions_len - st_offset;
1974}
1975
1976static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1977				  const struct sw_flow_key *key,
1978				  int depth, struct sw_flow_actions **sfa,
1979				  __be16 eth_type, __be16 vlan_tci, bool log);
 
1980
1981static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1982				    const struct sw_flow_key *key, int depth,
1983				    struct sw_flow_actions **sfa,
1984				    __be16 eth_type, __be16 vlan_tci, bool log)
 
1985{
1986	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1987	const struct nlattr *probability, *actions;
1988	const struct nlattr *a;
1989	int rem, start, err, st_acts;
 
1990
1991	memset(attrs, 0, sizeof(attrs));
1992	nla_for_each_nested(a, attr, rem) {
1993		int type = nla_type(a);
1994		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1995			return -EINVAL;
1996		attrs[type] = a;
1997	}
1998	if (rem)
1999		return -EINVAL;
2000
2001	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2002	if (!probability || nla_len(probability) != sizeof(u32))
2003		return -EINVAL;
2004
2005	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2006	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2007		return -EINVAL;
2008
2009	/* validation done, copy sample action. */
2010	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2011	if (start < 0)
2012		return start;
2013	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2014				 nla_data(probability), sizeof(u32), log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015	if (err)
2016		return err;
2017	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2018	if (st_acts < 0)
2019		return st_acts;
2020
2021	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2022				     eth_type, vlan_tci, log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023	if (err)
2024		return err;
2025
2026	add_nested_action_end(*sfa, st_acts);
2027	add_nested_action_end(*sfa, start);
2028
2029	return 0;
2030}
2031
2032void ovs_match_init(struct sw_flow_match *match,
2033		    struct sw_flow_key *key,
2034		    bool reset_key,
2035		    struct sw_flow_mask *mask)
2036{
2037	memset(match, 0, sizeof(*match));
2038	match->key = key;
2039	match->mask = mask;
2040
2041	if (reset_key)
2042		memset(key, 0, sizeof(*key));
2043
2044	if (mask) {
2045		memset(&mask->key, 0, sizeof(mask->key));
2046		mask->range.start = mask->range.end = 0;
2047	}
2048}
2049
2050static int validate_geneve_opts(struct sw_flow_key *key)
2051{
2052	struct geneve_opt *option;
2053	int opts_len = key->tun_opts_len;
2054	bool crit_opt = false;
2055
2056	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2057	while (opts_len > 0) {
2058		int len;
2059
2060		if (opts_len < sizeof(*option))
2061			return -EINVAL;
2062
2063		len = sizeof(*option) + option->length * 4;
2064		if (len > opts_len)
2065			return -EINVAL;
2066
2067		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2068
2069		option = (struct geneve_opt *)((u8 *)option + len);
2070		opts_len -= len;
2071	};
2072
2073	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2074
2075	return 0;
2076}
2077
2078static int validate_and_copy_set_tun(const struct nlattr *attr,
2079				     struct sw_flow_actions **sfa, bool log)
2080{
2081	struct sw_flow_match match;
2082	struct sw_flow_key key;
2083	struct metadata_dst *tun_dst;
2084	struct ip_tunnel_info *tun_info;
2085	struct ovs_tunnel_info *ovs_tun;
2086	struct nlattr *a;
2087	int err = 0, start, opts_type;
 
2088
 
2089	ovs_match_init(&match, &key, true, NULL);
2090	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2091	if (opts_type < 0)
2092		return opts_type;
2093
2094	if (key.tun_opts_len) {
2095		switch (opts_type) {
2096		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2097			err = validate_geneve_opts(&key);
2098			if (err < 0)
2099				return err;
 
2100			break;
2101		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 
 
 
 
2102			break;
2103		}
2104	};
2105
2106	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2107	if (start < 0)
2108		return start;
2109
2110	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
 
 
2111	if (!tun_dst)
2112		return -ENOMEM;
2113
2114	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2115	if (err) {
2116		dst_release((struct dst_entry *)tun_dst);
2117		return err;
2118	}
2119
2120	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2121			 sizeof(*ovs_tun), log);
2122	if (IS_ERR(a)) {
2123		dst_release((struct dst_entry *)tun_dst);
2124		return PTR_ERR(a);
2125	}
2126
2127	ovs_tun = nla_data(a);
2128	ovs_tun->tun_dst = tun_dst;
2129
2130	tun_info = &tun_dst->u.tun_info;
2131	tun_info->mode = IP_TUNNEL_INFO_TX;
2132	if (key.tun_proto == AF_INET6)
2133		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
 
 
2134	tun_info->key = key.tun_key;
2135
2136	/* We need to store the options in the action itself since
2137	 * everything else will go away after flow setup. We can append
2138	 * it to tun_info and then point there.
2139	 */
2140	ip_tunnel_info_opts_set(tun_info,
2141				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2142				key.tun_opts_len);
2143	add_nested_action_end(*sfa, start);
2144
2145	return err;
2146}
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
2148/* Return false if there are any non-masked bits set.
2149 * Mask follows data immediately, before any netlink padding.
2150 */
2151static bool validate_masked(u8 *data, int len)
2152{
2153	u8 *mask = data + len;
2154
2155	while (len--)
2156		if (*data++ & ~*mask++)
2157			return false;
2158
2159	return true;
2160}
2161
2162static int validate_set(const struct nlattr *a,
2163			const struct sw_flow_key *flow_key,
2164			struct sw_flow_actions **sfa, bool *skip_copy,
2165			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2166{
2167	const struct nlattr *ovs_key = nla_data(a);
2168	int key_type = nla_type(ovs_key);
2169	size_t key_len;
2170
2171	/* There can be only one key in a action */
2172	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2173		return -EINVAL;
2174
2175	key_len = nla_len(ovs_key);
2176	if (masked)
2177		key_len /= 2;
2178
2179	if (key_type > OVS_KEY_ATTR_MAX ||
2180	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2181		return -EINVAL;
2182
2183	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2184		return -EINVAL;
2185
2186	switch (key_type) {
2187	const struct ovs_key_ipv4 *ipv4_key;
2188	const struct ovs_key_ipv6 *ipv6_key;
2189	int err;
2190
2191	case OVS_KEY_ATTR_PRIORITY:
2192	case OVS_KEY_ATTR_SKB_MARK:
2193	case OVS_KEY_ATTR_CT_MARK:
2194	case OVS_KEY_ATTR_CT_LABELS:
2195		break;
2196
2197	case OVS_KEY_ATTR_ETHERNET:
2198		if (mac_proto != MAC_PROTO_ETHERNET)
2199			return -EINVAL;
2200		break;
2201
2202	case OVS_KEY_ATTR_TUNNEL:
 
 
2203		if (masked)
2204			return -EINVAL; /* Masked tunnel set not supported. */
2205
2206		*skip_copy = true;
2207		err = validate_and_copy_set_tun(a, sfa, log);
2208		if (err)
2209			return err;
2210		break;
 
 
 
2211
2212	case OVS_KEY_ATTR_IPV4:
2213		if (eth_type != htons(ETH_P_IP))
2214			return -EINVAL;
2215
2216		ipv4_key = nla_data(ovs_key);
2217
2218		if (masked) {
2219			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2220
2221			/* Non-writeable fields. */
2222			if (mask->ipv4_proto || mask->ipv4_frag)
2223				return -EINVAL;
2224		} else {
2225			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2226				return -EINVAL;
2227
2228			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2229				return -EINVAL;
2230		}
2231		break;
 
 
 
2232
2233	case OVS_KEY_ATTR_IPV6:
2234		if (eth_type != htons(ETH_P_IPV6))
2235			return -EINVAL;
2236
2237		ipv6_key = nla_data(ovs_key);
2238
2239		if (masked) {
2240			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2241
2242			/* Non-writeable fields. */
2243			if (mask->ipv6_proto || mask->ipv6_frag)
2244				return -EINVAL;
2245
2246			/* Invalid bits in the flow label mask? */
2247			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2248				return -EINVAL;
2249		} else {
2250			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2251				return -EINVAL;
2252
2253			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2254				return -EINVAL;
2255		}
2256		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2257			return -EINVAL;
2258
2259		break;
2260
2261	case OVS_KEY_ATTR_TCP:
2262		if ((eth_type != htons(ETH_P_IP) &&
2263		     eth_type != htons(ETH_P_IPV6)) ||
2264		    flow_key->ip.proto != IPPROTO_TCP)
2265			return -EINVAL;
2266
2267		break;
2268
2269	case OVS_KEY_ATTR_UDP:
2270		if ((eth_type != htons(ETH_P_IP) &&
2271		     eth_type != htons(ETH_P_IPV6)) ||
2272		    flow_key->ip.proto != IPPROTO_UDP)
2273			return -EINVAL;
2274
2275		break;
2276
2277	case OVS_KEY_ATTR_MPLS:
2278		if (!eth_p_mpls(eth_type))
2279			return -EINVAL;
2280		break;
2281
2282	case OVS_KEY_ATTR_SCTP:
2283		if ((eth_type != htons(ETH_P_IP) &&
2284		     eth_type != htons(ETH_P_IPV6)) ||
2285		    flow_key->ip.proto != IPPROTO_SCTP)
2286			return -EINVAL;
2287
2288		break;
2289
 
 
 
 
 
 
 
2290	default:
2291		return -EINVAL;
2292	}
2293
2294	/* Convert non-masked non-tunnel set actions to masked set actions. */
2295	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2296		int start, len = key_len * 2;
2297		struct nlattr *at;
2298
2299		*skip_copy = true;
2300
2301		start = add_nested_action_start(sfa,
2302						OVS_ACTION_ATTR_SET_TO_MASKED,
2303						log);
2304		if (start < 0)
2305			return start;
2306
2307		at = __add_action(sfa, key_type, NULL, len, log);
2308		if (IS_ERR(at))
2309			return PTR_ERR(at);
2310
2311		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2312		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2313		/* Clear non-writeable bits from otherwise writeable fields. */
2314		if (key_type == OVS_KEY_ATTR_IPV6) {
2315			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2316
2317			mask->ipv6_label &= htonl(0x000FFFFF);
2318		}
2319		add_nested_action_end(*sfa, start);
2320	}
2321
2322	return 0;
2323}
2324
2325static int validate_userspace(const struct nlattr *attr)
2326{
2327	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2328		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2329		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2330		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2331	};
2332	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2333	int error;
2334
2335	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2336				 attr, userspace_policy);
2337	if (error)
2338		return error;
2339
2340	if (!a[OVS_USERSPACE_ATTR_PID] ||
2341	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2342		return -EINVAL;
2343
2344	return 0;
2345}
2346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347static int copy_action(const struct nlattr *from,
2348		       struct sw_flow_actions **sfa, bool log)
2349{
2350	int totlen = NLA_ALIGN(from->nla_len);
2351	struct nlattr *to;
2352
2353	to = reserve_sfa_size(sfa, from->nla_len, log);
2354	if (IS_ERR(to))
2355		return PTR_ERR(to);
2356
2357	memcpy(to, from, totlen);
2358	return 0;
2359}
2360
2361static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2362				  const struct sw_flow_key *key,
2363				  int depth, struct sw_flow_actions **sfa,
2364				  __be16 eth_type, __be16 vlan_tci, bool log)
 
2365{
2366	u8 mac_proto = ovs_key_mac_proto(key);
2367	const struct nlattr *a;
2368	int rem, err;
2369
2370	if (depth >= SAMPLE_ACTION_DEPTH)
2371		return -EOVERFLOW;
2372
2373	nla_for_each_nested(a, attr, rem) {
2374		/* Expected argument lengths, (u32)-1 for variable length. */
2375		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2376			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2377			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2378			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2379			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2380			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2381			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2382			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2383			[OVS_ACTION_ATTR_SET] = (u32)-1,
2384			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2385			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2386			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2387			[OVS_ACTION_ATTR_CT] = (u32)-1,
 
2388			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2389			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2390			[OVS_ACTION_ATTR_POP_ETH] = 0,
 
 
 
 
 
 
 
2391		};
2392		const struct ovs_action_push_vlan *vlan;
2393		int type = nla_type(a);
2394		bool skip_copy;
2395
2396		if (type > OVS_ACTION_ATTR_MAX ||
2397		    (action_lens[type] != nla_len(a) &&
2398		     action_lens[type] != (u32)-1))
2399			return -EINVAL;
2400
2401		skip_copy = false;
2402		switch (type) {
2403		case OVS_ACTION_ATTR_UNSPEC:
2404			return -EINVAL;
2405
2406		case OVS_ACTION_ATTR_USERSPACE:
2407			err = validate_userspace(a);
2408			if (err)
2409				return err;
2410			break;
2411
2412		case OVS_ACTION_ATTR_OUTPUT:
2413			if (nla_get_u32(a) >= DP_MAX_PORTS)
2414				return -EINVAL;
2415			break;
2416
2417		case OVS_ACTION_ATTR_TRUNC: {
2418			const struct ovs_action_trunc *trunc = nla_data(a);
2419
2420			if (trunc->max_len < ETH_HLEN)
2421				return -EINVAL;
2422			break;
2423		}
2424
2425		case OVS_ACTION_ATTR_HASH: {
2426			const struct ovs_action_hash *act_hash = nla_data(a);
2427
2428			switch (act_hash->hash_alg) {
2429			case OVS_HASH_ALG_L4:
2430				break;
2431			default:
2432				return  -EINVAL;
2433			}
2434
2435			break;
2436		}
2437
2438		case OVS_ACTION_ATTR_POP_VLAN:
2439			if (mac_proto != MAC_PROTO_ETHERNET)
2440				return -EINVAL;
2441			vlan_tci = htons(0);
2442			break;
2443
2444		case OVS_ACTION_ATTR_PUSH_VLAN:
2445			if (mac_proto != MAC_PROTO_ETHERNET)
2446				return -EINVAL;
2447			vlan = nla_data(a);
2448			if (!eth_type_vlan(vlan->vlan_tpid))
2449				return -EINVAL;
2450			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2451				return -EINVAL;
2452			vlan_tci = vlan->vlan_tci;
2453			break;
2454
2455		case OVS_ACTION_ATTR_RECIRC:
2456			break;
2457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458		case OVS_ACTION_ATTR_PUSH_MPLS: {
2459			const struct ovs_action_push_mpls *mpls = nla_data(a);
2460
2461			if (!eth_p_mpls(mpls->mpls_ethertype))
2462				return -EINVAL;
2463			/* Prohibit push MPLS other than to a white list
2464			 * for packets that have a known tag order.
2465			 */
2466			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2467			    (eth_type != htons(ETH_P_IP) &&
2468			     eth_type != htons(ETH_P_IPV6) &&
2469			     eth_type != htons(ETH_P_ARP) &&
2470			     eth_type != htons(ETH_P_RARP) &&
2471			     !eth_p_mpls(eth_type)))
2472				return -EINVAL;
2473			eth_type = mpls->mpls_ethertype;
 
2474			break;
2475		}
2476
2477		case OVS_ACTION_ATTR_POP_MPLS:
2478			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
 
2479			    !eth_p_mpls(eth_type))
2480				return -EINVAL;
2481
2482			/* Disallow subsequent L2.5+ set and mpls_pop actions
2483			 * as there is no check here to ensure that the new
2484			 * eth_type is valid and thus set actions could
2485			 * write off the end of the packet or otherwise
2486			 * corrupt it.
 
2487			 *
2488			 * Support for these actions is planned using packet
2489			 * recirculation.
2490			 */
2491			eth_type = htons(0);
 
 
 
 
 
 
 
 
 
 
 
 
2492			break;
 
2493
2494		case OVS_ACTION_ATTR_SET:
2495			err = validate_set(a, key, sfa,
2496					   &skip_copy, mac_proto, eth_type,
2497					   false, log);
2498			if (err)
2499				return err;
2500			break;
2501
2502		case OVS_ACTION_ATTR_SET_MASKED:
2503			err = validate_set(a, key, sfa,
2504					   &skip_copy, mac_proto, eth_type,
2505					   true, log);
2506			if (err)
2507				return err;
2508			break;
2509
2510		case OVS_ACTION_ATTR_SAMPLE:
2511			err = validate_and_copy_sample(net, a, key, depth, sfa,
2512						       eth_type, vlan_tci, log);
 
 
 
 
2513			if (err)
2514				return err;
2515			skip_copy = true;
2516			break;
 
2517
2518		case OVS_ACTION_ATTR_CT:
2519			err = ovs_ct_copy_action(net, a, key, sfa, log);
2520			if (err)
2521				return err;
2522			skip_copy = true;
2523			break;
2524
 
 
 
2525		case OVS_ACTION_ATTR_PUSH_ETH:
2526			/* Disallow pushing an Ethernet header if one
2527			 * is already present */
2528			if (mac_proto != MAC_PROTO_NONE)
2529				return -EINVAL;
2530			mac_proto = MAC_PROTO_NONE;
2531			break;
2532
2533		case OVS_ACTION_ATTR_POP_ETH:
2534			if (mac_proto != MAC_PROTO_ETHERNET)
2535				return -EINVAL;
2536			if (vlan_tci & htons(VLAN_TAG_PRESENT))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537				return -EINVAL;
2538			mac_proto = MAC_PROTO_ETHERNET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539			break;
2540
2541		default:
2542			OVS_NLERR(log, "Unknown Action type %d", type);
2543			return -EINVAL;
2544		}
2545		if (!skip_copy) {
2546			err = copy_action(a, sfa, log);
2547			if (err)
2548				return err;
2549		}
2550	}
2551
2552	if (rem > 0)
2553		return -EINVAL;
2554
2555	return 0;
2556}
2557
2558/* 'key' must be the masked key. */
2559int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2560			 const struct sw_flow_key *key,
2561			 struct sw_flow_actions **sfa, bool log)
2562{
2563	int err;
 
2564
2565	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2566	if (IS_ERR(*sfa))
2567		return PTR_ERR(*sfa);
2568
 
 
 
2569	(*sfa)->orig_len = nla_len(attr);
2570	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2571				     key->eth.vlan.tci, log);
2572	if (err)
2573		ovs_nla_free_flow_actions(*sfa);
2574
2575	return err;
2576}
2577
2578static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579{
2580	const struct nlattr *a;
2581	struct nlattr *start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582	int err = 0, rem;
2583
2584	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2585	if (!start)
2586		return -EMSGSIZE;
2587
2588	nla_for_each_nested(a, attr, rem) {
2589		int type = nla_type(a);
2590		struct nlattr *st_sample;
 
 
 
 
 
 
2591
2592		switch (type) {
2593		case OVS_SAMPLE_ATTR_PROBABILITY:
2594			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2595				    sizeof(u32), nla_data(a)))
2596				return -EMSGSIZE;
2597			break;
2598		case OVS_SAMPLE_ATTR_ACTIONS:
2599			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2600			if (!st_sample)
2601				return -EMSGSIZE;
2602			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2603			if (err)
2604				return err;
2605			nla_nest_end(skb, st_sample);
 
 
 
 
 
2606			break;
2607		}
2608	}
2609
2610	nla_nest_end(skb, start);
 
 
 
 
2611	return err;
2612}
2613
2614static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2615{
2616	const struct nlattr *ovs_key = nla_data(a);
2617	int key_type = nla_type(ovs_key);
2618	struct nlattr *start;
2619	int err;
2620
2621	switch (key_type) {
2622	case OVS_KEY_ATTR_TUNNEL_INFO: {
2623		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2624		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2625
2626		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2627		if (!start)
2628			return -EMSGSIZE;
2629
2630		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2631					ip_tunnel_info_opts(tun_info),
2632					tun_info->options_len,
2633					ip_tunnel_info_af(tun_info));
2634		if (err)
2635			return err;
2636		nla_nest_end(skb, start);
2637		break;
2638	}
2639	default:
2640		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2641			return -EMSGSIZE;
2642		break;
2643	}
2644
2645	return 0;
2646}
2647
2648static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2649						struct sk_buff *skb)
2650{
2651	const struct nlattr *ovs_key = nla_data(a);
2652	struct nlattr *nla;
2653	size_t key_len = nla_len(ovs_key) / 2;
2654
2655	/* Revert the conversion we did from a non-masked set action to
2656	 * masked set action.
2657	 */
2658	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2659	if (!nla)
2660		return -EMSGSIZE;
2661
2662	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2663		return -EMSGSIZE;
2664
2665	nla_nest_end(skb, nla);
2666	return 0;
2667}
2668
2669int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2670{
2671	const struct nlattr *a;
2672	int rem, err;
2673
2674	nla_for_each_attr(a, attr, len, rem) {
2675		int type = nla_type(a);
2676
2677		switch (type) {
2678		case OVS_ACTION_ATTR_SET:
2679			err = set_action_to_attr(a, skb);
2680			if (err)
2681				return err;
2682			break;
2683
2684		case OVS_ACTION_ATTR_SET_TO_MASKED:
2685			err = masked_set_action_to_set_action_attr(a, skb);
2686			if (err)
2687				return err;
2688			break;
2689
2690		case OVS_ACTION_ATTR_SAMPLE:
2691			err = sample_action_to_attr(a, skb);
2692			if (err)
2693				return err;
2694			break;
2695
2696		case OVS_ACTION_ATTR_CT:
2697			err = ovs_ct_action_to_attr(nla_data(a), skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698			if (err)
2699				return err;
2700			break;
2701
2702		default:
2703			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2704				return -EMSGSIZE;
2705			break;
2706		}
2707	}
2708
2709	return 0;
2710}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
  41#include "flow_netlink.h"
  42
  43struct ovs_len_tbl {
  44	int len;
  45	const struct ovs_len_tbl *next;
  46};
  47
  48#define OVS_ATTR_NESTED -1
  49#define OVS_ATTR_VARIABLE -2
  50
  51static bool actions_may_change_flow(const struct nlattr *actions)
  52{
  53	struct nlattr *nla;
  54	int rem;
  55
  56	nla_for_each_nested(nla, actions, rem) {
  57		u16 action = nla_type(nla);
  58
  59		switch (action) {
  60		case OVS_ACTION_ATTR_OUTPUT:
  61		case OVS_ACTION_ATTR_RECIRC:
  62		case OVS_ACTION_ATTR_TRUNC:
  63		case OVS_ACTION_ATTR_USERSPACE:
  64			break;
  65
  66		case OVS_ACTION_ATTR_CT:
  67		case OVS_ACTION_ATTR_CT_CLEAR:
  68		case OVS_ACTION_ATTR_HASH:
  69		case OVS_ACTION_ATTR_POP_ETH:
  70		case OVS_ACTION_ATTR_POP_MPLS:
  71		case OVS_ACTION_ATTR_POP_NSH:
  72		case OVS_ACTION_ATTR_POP_VLAN:
  73		case OVS_ACTION_ATTR_PUSH_ETH:
  74		case OVS_ACTION_ATTR_PUSH_MPLS:
  75		case OVS_ACTION_ATTR_PUSH_NSH:
  76		case OVS_ACTION_ATTR_PUSH_VLAN:
  77		case OVS_ACTION_ATTR_SAMPLE:
  78		case OVS_ACTION_ATTR_SET:
  79		case OVS_ACTION_ATTR_SET_MASKED:
  80		case OVS_ACTION_ATTR_METER:
  81		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  82		case OVS_ACTION_ATTR_ADD_MPLS:
  83		case OVS_ACTION_ATTR_DEC_TTL:
  84		default:
  85			return true;
  86		}
  87	}
  88	return false;
  89}
  90
  91static void update_range(struct sw_flow_match *match,
  92			 size_t offset, size_t size, bool is_mask)
  93{
  94	struct sw_flow_key_range *range;
  95	size_t start = rounddown(offset, sizeof(long));
  96	size_t end = roundup(offset + size, sizeof(long));
  97
  98	if (!is_mask)
  99		range = &match->range;
 100	else
 101		range = &match->mask->range;
 102
 103	if (range->start == range->end) {
 104		range->start = start;
 105		range->end = end;
 106		return;
 107	}
 108
 109	if (range->start > start)
 110		range->start = start;
 111
 112	if (range->end < end)
 113		range->end = end;
 114}
 115
 116#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 117	do { \
 118		update_range(match, offsetof(struct sw_flow_key, field),    \
 119			     sizeof((match)->key->field), is_mask);	    \
 120		if (is_mask)						    \
 121			(match)->mask->key.field = value;		    \
 122		else							    \
 123			(match)->key->field = value;		            \
 124	} while (0)
 125
 126#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 127	do {								    \
 128		update_range(match, offset, len, is_mask);		    \
 129		if (is_mask)						    \
 130			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 131			       len);					   \
 132		else							    \
 133			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 134	} while (0)
 135
 136#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 137	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 138				  value_p, len, is_mask)
 139
 140#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 141	do {								    \
 142		update_range(match, offsetof(struct sw_flow_key, field),    \
 143			     sizeof((match)->key->field), is_mask);	    \
 144		if (is_mask)						    \
 145			memset((u8 *)&(match)->mask->key.field, value,      \
 146			       sizeof((match)->mask->key.field));	    \
 147		else							    \
 148			memset((u8 *)&(match)->key->field, value,           \
 149			       sizeof((match)->key->field));                \
 150	} while (0)
 151
 152static bool match_validate(const struct sw_flow_match *match,
 153			   u64 key_attrs, u64 mask_attrs, bool log)
 154{
 155	u64 key_expected = 0;
 156	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 157
 158	/* The following mask attributes allowed only if they
 159	 * pass the validation tests. */
 160	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 161			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 162			| (1 << OVS_KEY_ATTR_IPV6)
 163			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 164			| (1 << OVS_KEY_ATTR_TCP)
 165			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 166			| (1 << OVS_KEY_ATTR_UDP)
 167			| (1 << OVS_KEY_ATTR_SCTP)
 168			| (1 << OVS_KEY_ATTR_ICMP)
 169			| (1 << OVS_KEY_ATTR_ICMPV6)
 170			| (1 << OVS_KEY_ATTR_ARP)
 171			| (1 << OVS_KEY_ATTR_ND)
 172			| (1 << OVS_KEY_ATTR_MPLS)
 173			| (1 << OVS_KEY_ATTR_NSH));
 174
 175	/* Always allowed mask fields. */
 176	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 177		       | (1 << OVS_KEY_ATTR_IN_PORT)
 178		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 179
 180	/* Check key attributes. */
 181	if (match->key->eth.type == htons(ETH_P_ARP)
 182			|| match->key->eth.type == htons(ETH_P_RARP)) {
 183		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 184		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 185			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 186	}
 187
 188	if (eth_p_mpls(match->key->eth.type)) {
 189		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 190		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 191			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 192	}
 193
 194	if (match->key->eth.type == htons(ETH_P_IP)) {
 195		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 196		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 197			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 198			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 199		}
 200
 201		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 202			if (match->key->ip.proto == IPPROTO_UDP) {
 203				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 204				if (match->mask && (match->mask->key.ip.proto == 0xff))
 205					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 206			}
 207
 208			if (match->key->ip.proto == IPPROTO_SCTP) {
 209				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 210				if (match->mask && (match->mask->key.ip.proto == 0xff))
 211					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 212			}
 213
 214			if (match->key->ip.proto == IPPROTO_TCP) {
 215				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 217				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 218					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 220				}
 221			}
 222
 223			if (match->key->ip.proto == IPPROTO_ICMP) {
 224				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 225				if (match->mask && (match->mask->key.ip.proto == 0xff))
 226					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 227			}
 228		}
 229	}
 230
 231	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 232		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 233		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 234			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 235			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 236		}
 237
 238		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 239			if (match->key->ip.proto == IPPROTO_UDP) {
 240				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 241				if (match->mask && (match->mask->key.ip.proto == 0xff))
 242					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 243			}
 244
 245			if (match->key->ip.proto == IPPROTO_SCTP) {
 246				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 247				if (match->mask && (match->mask->key.ip.proto == 0xff))
 248					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 249			}
 250
 251			if (match->key->ip.proto == IPPROTO_TCP) {
 252				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 253				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 254				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 255					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 256					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 257				}
 258			}
 259
 260			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 261				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 262				if (match->mask && (match->mask->key.ip.proto == 0xff))
 263					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 264
 265				if (match->key->tp.src ==
 266						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 267				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 268					key_expected |= 1 << OVS_KEY_ATTR_ND;
 269					/* Original direction conntrack tuple
 270					 * uses the same space as the ND fields
 271					 * in the key, so both are not allowed
 272					 * at the same time.
 273					 */
 274					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 275					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 276						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 277				}
 278			}
 279		}
 280	}
 281
 282	if (match->key->eth.type == htons(ETH_P_NSH)) {
 283		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 284		if (match->mask &&
 285		    match->mask->key.eth.type == htons(0xffff)) {
 286			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 287		}
 288	}
 289
 290	if ((key_attrs & key_expected) != key_expected) {
 291		/* Key attributes check failed. */
 292		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 293			  (unsigned long long)key_attrs,
 294			  (unsigned long long)key_expected);
 295		return false;
 296	}
 297
 298	if ((mask_attrs & mask_allowed) != mask_attrs) {
 299		/* Mask attributes check failed. */
 300		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 301			  (unsigned long long)mask_attrs,
 302			  (unsigned long long)mask_allowed);
 303		return false;
 304	}
 305
 306	return true;
 307}
 308
 309size_t ovs_tun_key_attr_size(void)
 310{
 311	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 312	 * updating this function.
 313	 */
 314	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 315		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 316		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 317		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 318		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 319		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 320		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 321		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 322		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 323		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 324		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 325		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 326		 */
 327		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 328		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 329}
 330
 331static size_t ovs_nsh_key_attr_size(void)
 332{
 333	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 334	 * updating this function.
 335	 */
 336	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 337		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 338		 * mutually exclusive, so the bigger one can cover
 339		 * the small one.
 340		 */
 341		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 342}
 343
 344size_t ovs_key_attr_size(void)
 345{
 346	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 347	 * updating this function.
 348	 */
 349	BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
 350
 351	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 352		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 353		  + ovs_tun_key_attr_size()
 354		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 355		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 356		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 357		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 358		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 359		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 360		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 361		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 362		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 363		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 364		  + ovs_nsh_key_attr_size()
 365		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 366		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 367		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 368		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 369		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 370		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 371		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 372		+ nla_total_size(28)  /* OVS_KEY_ATTR_ND */
 373		+ nla_total_size(2);  /* OVS_KEY_ATTR_IPV6_EXTHDRS */
 374}
 375
 376static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 377	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 378};
 379
 380static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 381	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 382	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 383	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 384	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 385	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 386	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 387	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 388	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 389	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 390	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 391	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 392	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 393						.next = ovs_vxlan_ext_key_lens },
 394	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 395	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 396	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 397	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 398};
 399
 400static const struct ovs_len_tbl
 401ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 402	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 403	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 404	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 405};
 406
 407/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 408static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 409	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 410	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 411	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 412	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 413	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 414	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 415	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 416	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 417	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 418	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 419	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 420	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 421	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 422	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 423	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 424	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 425	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 426	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 427	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 428	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 429				     .next = ovs_tunnel_key_lens, },
 430	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
 431	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 432	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 433	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 434	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 435	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 436		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 437	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 438		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 439	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 440				     .next = ovs_nsh_key_attr_lens, },
 441	[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
 442		.len = sizeof(struct ovs_key_ipv6_exthdrs) },
 443};
 444
 445static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 446{
 447	return expected_len == attr_len ||
 448	       expected_len == OVS_ATTR_NESTED ||
 449	       expected_len == OVS_ATTR_VARIABLE;
 450}
 451
 452static bool is_all_zero(const u8 *fp, size_t size)
 453{
 454	int i;
 455
 456	if (!fp)
 457		return false;
 458
 459	for (i = 0; i < size; i++)
 460		if (fp[i])
 461			return false;
 462
 463	return true;
 464}
 465
 466static int __parse_flow_nlattrs(const struct nlattr *attr,
 467				const struct nlattr *a[],
 468				u64 *attrsp, bool log, bool nz)
 469{
 470	const struct nlattr *nla;
 471	u64 attrs;
 472	int rem;
 473
 474	attrs = *attrsp;
 475	nla_for_each_nested(nla, attr, rem) {
 476		u16 type = nla_type(nla);
 477		int expected_len;
 478
 479		if (type > OVS_KEY_ATTR_MAX) {
 480			OVS_NLERR(log, "Key type %d is out of range max %d",
 481				  type, OVS_KEY_ATTR_MAX);
 482			return -EINVAL;
 483		}
 484
 485		if (type == OVS_KEY_ATTR_PACKET_TYPE ||
 486		    type == OVS_KEY_ATTR_ND_EXTENSIONS ||
 487		    type == OVS_KEY_ATTR_TUNNEL_INFO) {
 488			OVS_NLERR(log, "Key type %d is not supported", type);
 489			return -EINVAL;
 490		}
 491
 492		if (attrs & (1ULL << type)) {
 493			OVS_NLERR(log, "Duplicate key (type %d).", type);
 494			return -EINVAL;
 495		}
 496
 497		expected_len = ovs_key_lens[type].len;
 498		if (!check_attr_len(nla_len(nla), expected_len)) {
 499			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 500				  type, nla_len(nla), expected_len);
 501			return -EINVAL;
 502		}
 503
 504		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 505			attrs |= 1ULL << type;
 506			a[type] = nla;
 507		}
 508	}
 509	if (rem) {
 510		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 511		return -EINVAL;
 512	}
 513
 514	*attrsp = attrs;
 515	return 0;
 516}
 517
 518static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 519				   const struct nlattr *a[], u64 *attrsp,
 520				   bool log)
 521{
 522	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 523}
 524
 525int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 526		       u64 *attrsp, bool log)
 
 527{
 528	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 529}
 530
 531static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 532				     struct sw_flow_match *match, bool is_mask,
 533				     bool log)
 534{
 535	unsigned long opt_key_offset;
 536
 537	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 538		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 539			  nla_len(a), sizeof(match->key->tun_opts));
 540		return -EINVAL;
 541	}
 542
 543	if (nla_len(a) % 4 != 0) {
 544		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 545			  nla_len(a));
 546		return -EINVAL;
 547	}
 548
 549	/* We need to record the length of the options passed
 550	 * down, otherwise packets with the same format but
 551	 * additional options will be silently matched.
 552	 */
 553	if (!is_mask) {
 554		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 555				false);
 556	} else {
 557		/* This is somewhat unusual because it looks at
 558		 * both the key and mask while parsing the
 559		 * attributes (and by extension assumes the key
 560		 * is parsed first). Normally, we would verify
 561		 * that each is the correct length and that the
 562		 * attributes line up in the validate function.
 563		 * However, that is difficult because this is
 564		 * variable length and we won't have the
 565		 * information later.
 566		 */
 567		if (match->key->tun_opts_len != nla_len(a)) {
 568			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 569				  match->key->tun_opts_len, nla_len(a));
 570			return -EINVAL;
 571		}
 572
 573		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 574	}
 575
 576	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 577	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 578				  nla_len(a), is_mask);
 579	return 0;
 580}
 581
 582static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 583				     struct sw_flow_match *match, bool is_mask,
 584				     bool log)
 585{
 586	struct nlattr *a;
 587	int rem;
 588	unsigned long opt_key_offset;
 589	struct vxlan_metadata opts;
 590
 591	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 592
 593	memset(&opts, 0, sizeof(opts));
 594	nla_for_each_nested(a, attr, rem) {
 595		int type = nla_type(a);
 596
 597		if (type > OVS_VXLAN_EXT_MAX) {
 598			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 599				  type, OVS_VXLAN_EXT_MAX);
 600			return -EINVAL;
 601		}
 602
 603		if (!check_attr_len(nla_len(a),
 604				    ovs_vxlan_ext_key_lens[type].len)) {
 605			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 606				  type, nla_len(a),
 607				  ovs_vxlan_ext_key_lens[type].len);
 608			return -EINVAL;
 609		}
 610
 611		switch (type) {
 612		case OVS_VXLAN_EXT_GBP:
 613			opts.gbp = nla_get_u32(a);
 614			break;
 615		default:
 616			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 617				  type);
 618			return -EINVAL;
 619		}
 620	}
 621	if (rem) {
 622		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 623			  rem);
 624		return -EINVAL;
 625	}
 626
 627	if (!is_mask)
 628		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 629	else
 630		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 631
 632	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 633	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 634				  is_mask);
 635	return 0;
 636}
 637
 638static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 639				      struct sw_flow_match *match, bool is_mask,
 640				      bool log)
 641{
 642	unsigned long opt_key_offset;
 643
 644	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 645		     sizeof(match->key->tun_opts));
 646
 647	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 648		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 649			  nla_len(a), sizeof(match->key->tun_opts));
 650		return -EINVAL;
 651	}
 652
 653	if (!is_mask)
 654		SW_FLOW_KEY_PUT(match, tun_opts_len,
 655				sizeof(struct erspan_metadata), false);
 656	else
 657		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 658
 659	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 660	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 661				  nla_len(a), is_mask);
 662	return 0;
 663}
 664
 665static int ip_tun_from_nlattr(const struct nlattr *attr,
 666			      struct sw_flow_match *match, bool is_mask,
 667			      bool log)
 668{
 669	bool ttl = false, ipv4 = false, ipv6 = false;
 670	bool info_bridge_mode = false;
 671	__be16 tun_flags = 0;
 672	int opts_type = 0;
 673	struct nlattr *a;
 674	int rem;
 675
 676	nla_for_each_nested(a, attr, rem) {
 677		int type = nla_type(a);
 678		int err;
 679
 680		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 681			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 682				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 683			return -EINVAL;
 684		}
 685
 686		if (!check_attr_len(nla_len(a),
 687				    ovs_tunnel_key_lens[type].len)) {
 688			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 689				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 690			return -EINVAL;
 691		}
 692
 693		switch (type) {
 694		case OVS_TUNNEL_KEY_ATTR_ID:
 695			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 696					nla_get_be64(a), is_mask);
 697			tun_flags |= TUNNEL_KEY;
 698			break;
 699		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 700			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 701					nla_get_in_addr(a), is_mask);
 702			ipv4 = true;
 703			break;
 704		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 705			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 706					nla_get_in_addr(a), is_mask);
 707			ipv4 = true;
 708			break;
 709		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 710			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 711					nla_get_in6_addr(a), is_mask);
 712			ipv6 = true;
 713			break;
 714		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 715			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 716					nla_get_in6_addr(a), is_mask);
 717			ipv6 = true;
 718			break;
 719		case OVS_TUNNEL_KEY_ATTR_TOS:
 720			SW_FLOW_KEY_PUT(match, tun_key.tos,
 721					nla_get_u8(a), is_mask);
 722			break;
 723		case OVS_TUNNEL_KEY_ATTR_TTL:
 724			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 725					nla_get_u8(a), is_mask);
 726			ttl = true;
 727			break;
 728		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 729			tun_flags |= TUNNEL_DONT_FRAGMENT;
 730			break;
 731		case OVS_TUNNEL_KEY_ATTR_CSUM:
 732			tun_flags |= TUNNEL_CSUM;
 733			break;
 734		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 735			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 736					nla_get_be16(a), is_mask);
 737			break;
 738		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 739			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 740					nla_get_be16(a), is_mask);
 741			break;
 742		case OVS_TUNNEL_KEY_ATTR_OAM:
 743			tun_flags |= TUNNEL_OAM;
 744			break;
 745		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 746			if (opts_type) {
 747				OVS_NLERR(log, "Multiple metadata blocks provided");
 748				return -EINVAL;
 749			}
 750
 751			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 752			if (err)
 753				return err;
 754
 755			tun_flags |= TUNNEL_GENEVE_OPT;
 756			opts_type = type;
 757			break;
 758		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 759			if (opts_type) {
 760				OVS_NLERR(log, "Multiple metadata blocks provided");
 761				return -EINVAL;
 762			}
 763
 764			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 765			if (err)
 766				return err;
 767
 768			tun_flags |= TUNNEL_VXLAN_OPT;
 769			opts_type = type;
 770			break;
 771		case OVS_TUNNEL_KEY_ATTR_PAD:
 772			break;
 773		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 774			if (opts_type) {
 775				OVS_NLERR(log, "Multiple metadata blocks provided");
 776				return -EINVAL;
 777			}
 778
 779			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 780							 log);
 781			if (err)
 782				return err;
 783
 784			tun_flags |= TUNNEL_ERSPAN_OPT;
 785			opts_type = type;
 786			break;
 787		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 788			info_bridge_mode = true;
 789			ipv4 = true;
 790			break;
 791		default:
 792			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 793				  type);
 794			return -EINVAL;
 795		}
 796	}
 797
 798	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 799	if (is_mask)
 800		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 801	else
 802		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 803				false);
 804
 805	if (rem > 0) {
 806		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 807			  rem);
 808		return -EINVAL;
 809	}
 810
 811	if (ipv4 && ipv6) {
 812		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 813		return -EINVAL;
 814	}
 815
 816	if (!is_mask) {
 817		if (!ipv4 && !ipv6) {
 818			OVS_NLERR(log, "IP tunnel dst address not specified");
 819			return -EINVAL;
 820		}
 821		if (ipv4) {
 822			if (info_bridge_mode) {
 823				if (match->key->tun_key.u.ipv4.src ||
 824				    match->key->tun_key.u.ipv4.dst ||
 825				    match->key->tun_key.tp_src ||
 826				    match->key->tun_key.tp_dst ||
 827				    match->key->tun_key.ttl ||
 828				    match->key->tun_key.tos ||
 829				    tun_flags & ~TUNNEL_KEY) {
 830					OVS_NLERR(log, "IPv4 tun info is not correct");
 831					return -EINVAL;
 832				}
 833			} else if (!match->key->tun_key.u.ipv4.dst) {
 834				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 835				return -EINVAL;
 836			}
 837		}
 838		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 839			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 840			return -EINVAL;
 841		}
 842
 843		if (!ttl && !info_bridge_mode) {
 844			OVS_NLERR(log, "IP tunnel TTL not specified.");
 845			return -EINVAL;
 846		}
 847	}
 848
 849	return opts_type;
 850}
 851
 852static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 853			       const void *tun_opts, int swkey_tun_opts_len)
 854{
 855	const struct vxlan_metadata *opts = tun_opts;
 856	struct nlattr *nla;
 857
 858	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 859	if (!nla)
 860		return -EMSGSIZE;
 861
 862	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 863		return -EMSGSIZE;
 864
 865	nla_nest_end(skb, nla);
 866	return 0;
 867}
 868
 869static int __ip_tun_to_nlattr(struct sk_buff *skb,
 870			      const struct ip_tunnel_key *output,
 871			      const void *tun_opts, int swkey_tun_opts_len,
 872			      unsigned short tun_proto, u8 mode)
 873{
 874	if (output->tun_flags & TUNNEL_KEY &&
 875	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 876			 OVS_TUNNEL_KEY_ATTR_PAD))
 877		return -EMSGSIZE;
 878
 879	if (mode & IP_TUNNEL_INFO_BRIDGE)
 880		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 881		       ? -EMSGSIZE : 0;
 882
 883	switch (tun_proto) {
 884	case AF_INET:
 885		if (output->u.ipv4.src &&
 886		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 887				    output->u.ipv4.src))
 888			return -EMSGSIZE;
 889		if (output->u.ipv4.dst &&
 890		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 891				    output->u.ipv4.dst))
 892			return -EMSGSIZE;
 893		break;
 894	case AF_INET6:
 895		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 896		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 897				     &output->u.ipv6.src))
 898			return -EMSGSIZE;
 899		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 900		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 901				     &output->u.ipv6.dst))
 902			return -EMSGSIZE;
 903		break;
 904	}
 905	if (output->tos &&
 906	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 907		return -EMSGSIZE;
 908	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 909		return -EMSGSIZE;
 910	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 911	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 912		return -EMSGSIZE;
 913	if ((output->tun_flags & TUNNEL_CSUM) &&
 914	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 915		return -EMSGSIZE;
 916	if (output->tp_src &&
 917	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 918		return -EMSGSIZE;
 919	if (output->tp_dst &&
 920	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 921		return -EMSGSIZE;
 922	if ((output->tun_flags & TUNNEL_OAM) &&
 923	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 924		return -EMSGSIZE;
 925	if (swkey_tun_opts_len) {
 926		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 927		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 928			    swkey_tun_opts_len, tun_opts))
 929			return -EMSGSIZE;
 930		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 931			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 932			return -EMSGSIZE;
 933		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
 934			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 935				 swkey_tun_opts_len, tun_opts))
 936			return -EMSGSIZE;
 937	}
 938
 939	return 0;
 940}
 941
 942static int ip_tun_to_nlattr(struct sk_buff *skb,
 943			    const struct ip_tunnel_key *output,
 944			    const void *tun_opts, int swkey_tun_opts_len,
 945			    unsigned short tun_proto, u8 mode)
 946{
 947	struct nlattr *nla;
 948	int err;
 949
 950	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 951	if (!nla)
 952		return -EMSGSIZE;
 953
 954	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 955				 tun_proto, mode);
 956	if (err)
 957		return err;
 958
 959	nla_nest_end(skb, nla);
 960	return 0;
 961}
 962
 963int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 964			    struct ip_tunnel_info *tun_info)
 965{
 966	return __ip_tun_to_nlattr(skb, &tun_info->key,
 967				  ip_tunnel_info_opts(tun_info),
 968				  tun_info->options_len,
 969				  ip_tunnel_info_af(tun_info), tun_info->mode);
 970}
 971
 972static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 973				    const struct nlattr *a[],
 974				    bool is_mask, bool inner)
 975{
 976	__be16 tci = 0;
 977	__be16 tpid = 0;
 978
 979	if (a[OVS_KEY_ATTR_VLAN])
 980		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 981
 982	if (a[OVS_KEY_ATTR_ETHERTYPE])
 983		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 984
 985	if (likely(!inner)) {
 986		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 987		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 988	} else {
 989		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 990		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 991	}
 992	return 0;
 993}
 994
 995static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 996				      u64 key_attrs, bool inner,
 997				      const struct nlattr **a, bool log)
 998{
 999	__be16 tci = 0;
1000
1001	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1002	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1003	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1004		/* Not a VLAN. */
1005		return 0;
1006	}
1007
1008	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1009	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1010		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1011		return -EINVAL;
1012	}
1013
1014	if (a[OVS_KEY_ATTR_VLAN])
1015		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1016
1017	if (!(tci & htons(VLAN_CFI_MASK))) {
1018		if (tci) {
1019			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1020				  (inner) ? "C-VLAN" : "VLAN");
1021			return -EINVAL;
1022		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1023			/* Corner case for truncated VLAN header. */
1024			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1025				  (inner) ? "C-VLAN" : "VLAN");
1026			return -EINVAL;
1027		}
1028	}
1029
1030	return 1;
1031}
1032
1033static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1034					   u64 key_attrs, bool inner,
1035					   const struct nlattr **a, bool log)
1036{
1037	__be16 tci = 0;
1038	__be16 tpid = 0;
1039	bool encap_valid = !!(match->key->eth.vlan.tci &
1040			      htons(VLAN_CFI_MASK));
1041	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1042				htons(VLAN_CFI_MASK));
1043
1044	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1045		/* Not a VLAN. */
1046		return 0;
1047	}
1048
1049	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1050		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1051			  (inner) ? "C-VLAN" : "VLAN");
1052		return -EINVAL;
1053	}
1054
1055	if (a[OVS_KEY_ATTR_VLAN])
1056		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1057
1058	if (a[OVS_KEY_ATTR_ETHERTYPE])
1059		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1060
1061	if (tpid != htons(0xffff)) {
1062		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1063			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1064		return -EINVAL;
1065	}
1066	if (!(tci & htons(VLAN_CFI_MASK))) {
1067		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1068			  (inner) ? "C-VLAN" : "VLAN");
1069		return -EINVAL;
1070	}
1071
1072	return 1;
1073}
1074
1075static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1076				     u64 *key_attrs, bool inner,
1077				     const struct nlattr **a, bool is_mask,
1078				     bool log)
1079{
1080	int err;
1081	const struct nlattr *encap;
1082
1083	if (!is_mask)
1084		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1085						 a, log);
1086	else
1087		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1088						      a, log);
1089	if (err <= 0)
1090		return err;
1091
1092	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1093	if (err)
1094		return err;
1095
1096	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1097	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1098	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1099
1100	encap = a[OVS_KEY_ATTR_ENCAP];
1101
1102	if (!is_mask)
1103		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1104	else
1105		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1106
1107	return err;
1108}
1109
1110static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1111				   u64 *key_attrs, const struct nlattr **a,
1112				   bool is_mask, bool log)
1113{
1114	int err;
1115	bool encap_valid = false;
1116
1117	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1118					is_mask, log);
1119	if (err)
1120		return err;
1121
1122	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1123	if (encap_valid) {
1124		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1125						is_mask, log);
1126		if (err)
1127			return err;
1128	}
1129
1130	return 0;
1131}
1132
1133static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1134				       u64 *attrs, const struct nlattr **a,
1135				       bool is_mask, bool log)
1136{
1137	__be16 eth_type;
1138
1139	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1140	if (is_mask) {
1141		/* Always exact match EtherType. */
1142		eth_type = htons(0xffff);
1143	} else if (!eth_proto_is_802_3(eth_type)) {
1144		OVS_NLERR(log, "EtherType %x is less than min %x",
1145				ntohs(eth_type), ETH_P_802_3_MIN);
1146		return -EINVAL;
1147	}
1148
1149	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1150	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1151	return 0;
1152}
1153
1154static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1155				 u64 *attrs, const struct nlattr **a,
1156				 bool is_mask, bool log)
1157{
1158	u8 mac_proto = MAC_PROTO_ETHERNET;
1159
1160	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1161		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1162
1163		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1164		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1165	}
1166
1167	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1168		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1169
1170		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1171		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1172	}
1173
1174	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1175		SW_FLOW_KEY_PUT(match, phy.priority,
1176			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1177		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1178	}
1179
1180	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1181		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1182
1183		if (is_mask) {
1184			in_port = 0xffffffff; /* Always exact match in_port. */
1185		} else if (in_port >= DP_MAX_PORTS) {
1186			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1187				  in_port, DP_MAX_PORTS);
1188			return -EINVAL;
1189		}
1190
1191		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1192		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1193	} else if (!is_mask) {
1194		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1195	}
1196
1197	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1198		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1199
1200		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1201		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1202	}
1203	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1204		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1205				       is_mask, log) < 0)
1206			return -EINVAL;
1207		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1208	}
1209
1210	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1211	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1212		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1213
1214		if (ct_state & ~CT_SUPPORTED_MASK) {
1215			OVS_NLERR(log, "ct_state flags %08x unsupported",
1216				  ct_state);
1217			return -EINVAL;
1218		}
1219
1220		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1221		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1222	}
1223	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1224	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1225		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1226
1227		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1228		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1229	}
1230	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1231	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1232		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1233
1234		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1235		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1236	}
1237	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1238	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1239		const struct ovs_key_ct_labels *cl;
1240
1241		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1242		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1243				   sizeof(*cl), is_mask);
1244		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1245	}
1246	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1247		const struct ovs_key_ct_tuple_ipv4 *ct;
1248
1249		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1250
1251		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1252		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1253		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1254		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1255		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1256		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1257	}
1258	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1259		const struct ovs_key_ct_tuple_ipv6 *ct;
1260
1261		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1262
1263		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1264				   sizeof(match->key->ipv6.ct_orig.src),
1265				   is_mask);
1266		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1267				   sizeof(match->key->ipv6.ct_orig.dst),
1268				   is_mask);
1269		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1270		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1271		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1272		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1273	}
1274
1275	/* For layer 3 packets the Ethernet type is provided
1276	 * and treated as metadata but no MAC addresses are provided.
1277	 */
1278	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1279	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1280		mac_proto = MAC_PROTO_NONE;
1281
1282	/* Always exact match mac_proto */
1283	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1284
1285	if (mac_proto == MAC_PROTO_NONE)
1286		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1287						   log);
1288
1289	return 0;
1290}
1291
1292int nsh_hdr_from_nlattr(const struct nlattr *attr,
1293			struct nshhdr *nh, size_t size)
1294{
1295	struct nlattr *a;
1296	int rem;
1297	u8 flags = 0;
1298	u8 ttl = 0;
1299	int mdlen = 0;
1300
1301	/* validate_nsh has check this, so we needn't do duplicate check here
1302	 */
1303	if (size < NSH_BASE_HDR_LEN)
1304		return -ENOBUFS;
1305
1306	nla_for_each_nested(a, attr, rem) {
1307		int type = nla_type(a);
1308
1309		switch (type) {
1310		case OVS_NSH_KEY_ATTR_BASE: {
1311			const struct ovs_nsh_key_base *base = nla_data(a);
1312
1313			flags = base->flags;
1314			ttl = base->ttl;
1315			nh->np = base->np;
1316			nh->mdtype = base->mdtype;
1317			nh->path_hdr = base->path_hdr;
1318			break;
1319		}
1320		case OVS_NSH_KEY_ATTR_MD1:
1321			mdlen = nla_len(a);
1322			if (mdlen > size - NSH_BASE_HDR_LEN)
1323				return -ENOBUFS;
1324			memcpy(&nh->md1, nla_data(a), mdlen);
1325			break;
1326
1327		case OVS_NSH_KEY_ATTR_MD2:
1328			mdlen = nla_len(a);
1329			if (mdlen > size - NSH_BASE_HDR_LEN)
1330				return -ENOBUFS;
1331			memcpy(&nh->md2, nla_data(a), mdlen);
1332			break;
1333
1334		default:
1335			return -EINVAL;
1336		}
1337	}
1338
1339	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1340	nh->ver_flags_ttl_len = 0;
1341	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1342
1343	return 0;
1344}
1345
1346int nsh_key_from_nlattr(const struct nlattr *attr,
1347			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1348{
1349	struct nlattr *a;
1350	int rem;
1351
1352	/* validate_nsh has check this, so we needn't do duplicate check here
1353	 */
1354	nla_for_each_nested(a, attr, rem) {
1355		int type = nla_type(a);
1356
1357		switch (type) {
1358		case OVS_NSH_KEY_ATTR_BASE: {
1359			const struct ovs_nsh_key_base *base = nla_data(a);
1360			const struct ovs_nsh_key_base *base_mask = base + 1;
1361
1362			nsh->base = *base;
1363			nsh_mask->base = *base_mask;
1364			break;
1365		}
1366		case OVS_NSH_KEY_ATTR_MD1: {
1367			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1368			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1369
1370			memcpy(nsh->context, md1->context, sizeof(*md1));
1371			memcpy(nsh_mask->context, md1_mask->context,
1372			       sizeof(*md1_mask));
1373			break;
1374		}
1375		case OVS_NSH_KEY_ATTR_MD2:
1376			/* Not supported yet */
1377			return -ENOTSUPP;
1378		default:
1379			return -EINVAL;
1380		}
1381	}
1382
1383	return 0;
1384}
1385
1386static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1387				   struct sw_flow_match *match, bool is_mask,
1388				   bool is_push_nsh, bool log)
1389{
1390	struct nlattr *a;
1391	int rem;
1392	bool has_base = false;
1393	bool has_md1 = false;
1394	bool has_md2 = false;
1395	u8 mdtype = 0;
1396	int mdlen = 0;
1397
1398	if (WARN_ON(is_push_nsh && is_mask))
1399		return -EINVAL;
1400
1401	nla_for_each_nested(a, attr, rem) {
1402		int type = nla_type(a);
1403		int i;
1404
1405		if (type > OVS_NSH_KEY_ATTR_MAX) {
1406			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1407				  type, OVS_NSH_KEY_ATTR_MAX);
1408			return -EINVAL;
1409		}
1410
1411		if (!check_attr_len(nla_len(a),
1412				    ovs_nsh_key_attr_lens[type].len)) {
1413			OVS_NLERR(
1414			    log,
1415			    "nsh attr %d has unexpected len %d expected %d",
1416			    type,
1417			    nla_len(a),
1418			    ovs_nsh_key_attr_lens[type].len
1419			);
1420			return -EINVAL;
1421		}
1422
1423		switch (type) {
1424		case OVS_NSH_KEY_ATTR_BASE: {
1425			const struct ovs_nsh_key_base *base = nla_data(a);
1426
1427			has_base = true;
1428			mdtype = base->mdtype;
1429			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1430					base->flags, is_mask);
1431			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1432					base->ttl, is_mask);
1433			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1434					base->mdtype, is_mask);
1435			SW_FLOW_KEY_PUT(match, nsh.base.np,
1436					base->np, is_mask);
1437			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1438					base->path_hdr, is_mask);
1439			break;
1440		}
1441		case OVS_NSH_KEY_ATTR_MD1: {
1442			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1443
1444			has_md1 = true;
1445			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1446				SW_FLOW_KEY_PUT(match, nsh.context[i],
1447						md1->context[i], is_mask);
1448			break;
1449		}
1450		case OVS_NSH_KEY_ATTR_MD2:
1451			if (!is_push_nsh) /* Not supported MD type 2 yet */
1452				return -ENOTSUPP;
1453
1454			has_md2 = true;
1455			mdlen = nla_len(a);
1456			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1457				OVS_NLERR(
1458				    log,
1459				    "Invalid MD length %d for MD type %d",
1460				    mdlen,
1461				    mdtype
1462				);
1463				return -EINVAL;
1464			}
1465			break;
1466		default:
1467			OVS_NLERR(log, "Unknown nsh attribute %d",
1468				  type);
1469			return -EINVAL;
1470		}
1471	}
1472
1473	if (rem > 0) {
1474		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1475		return -EINVAL;
1476	}
1477
1478	if (has_md1 && has_md2) {
1479		OVS_NLERR(
1480		    1,
1481		    "invalid nsh attribute: md1 and md2 are exclusive."
1482		);
1483		return -EINVAL;
1484	}
1485
1486	if (!is_mask) {
1487		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1488		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1489			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1490				  mdtype);
1491			return -EINVAL;
1492		}
1493
1494		if (is_push_nsh &&
1495		    (!has_base || (!has_md1 && !has_md2))) {
1496			OVS_NLERR(
1497			    1,
1498			    "push_nsh: missing base or metadata attributes"
1499			);
1500			return -EINVAL;
1501		}
1502	}
1503
1504	return 0;
1505}
1506
1507static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1508				u64 attrs, const struct nlattr **a,
1509				bool is_mask, bool log)
1510{
1511	int err;
1512
1513	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1514	if (err)
1515		return err;
1516
1517	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1518		const struct ovs_key_ethernet *eth_key;
1519
1520		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1521		SW_FLOW_KEY_MEMCPY(match, eth.src,
1522				eth_key->eth_src, ETH_ALEN, is_mask);
1523		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1524				eth_key->eth_dst, ETH_ALEN, is_mask);
1525		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1526
1527		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1528			/* VLAN attribute is always parsed before getting here since it
1529			 * may occur multiple times.
1530			 */
1531			OVS_NLERR(log, "VLAN attribute unexpected.");
1532			return -EINVAL;
1533		}
1534
1535		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1536			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1537							  log);
1538			if (err)
1539				return err;
1540		} else if (!is_mask) {
1541			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1542		}
1543	} else if (!match->key->eth.type) {
1544		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1545		return -EINVAL;
1546	}
1547
1548	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1549		const struct ovs_key_ipv4 *ipv4_key;
1550
1551		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1552		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1553			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1554				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1555			return -EINVAL;
1556		}
1557		SW_FLOW_KEY_PUT(match, ip.proto,
1558				ipv4_key->ipv4_proto, is_mask);
1559		SW_FLOW_KEY_PUT(match, ip.tos,
1560				ipv4_key->ipv4_tos, is_mask);
1561		SW_FLOW_KEY_PUT(match, ip.ttl,
1562				ipv4_key->ipv4_ttl, is_mask);
1563		SW_FLOW_KEY_PUT(match, ip.frag,
1564				ipv4_key->ipv4_frag, is_mask);
1565		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1566				ipv4_key->ipv4_src, is_mask);
1567		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1568				ipv4_key->ipv4_dst, is_mask);
1569		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1570	}
1571
1572	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1573		const struct ovs_key_ipv6 *ipv6_key;
1574
1575		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1576		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1577			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1578				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1579			return -EINVAL;
1580		}
1581
1582		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1583			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1584				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1585			return -EINVAL;
1586		}
1587
1588		SW_FLOW_KEY_PUT(match, ipv6.label,
1589				ipv6_key->ipv6_label, is_mask);
1590		SW_FLOW_KEY_PUT(match, ip.proto,
1591				ipv6_key->ipv6_proto, is_mask);
1592		SW_FLOW_KEY_PUT(match, ip.tos,
1593				ipv6_key->ipv6_tclass, is_mask);
1594		SW_FLOW_KEY_PUT(match, ip.ttl,
1595				ipv6_key->ipv6_hlimit, is_mask);
1596		SW_FLOW_KEY_PUT(match, ip.frag,
1597				ipv6_key->ipv6_frag, is_mask);
1598		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1599				ipv6_key->ipv6_src,
1600				sizeof(match->key->ipv6.addr.src),
1601				is_mask);
1602		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1603				ipv6_key->ipv6_dst,
1604				sizeof(match->key->ipv6.addr.dst),
1605				is_mask);
1606
1607		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1608	}
1609
1610	if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1611		const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1612
1613		ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1614
1615		SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1616				ipv6_exthdrs_key->hdrs, is_mask);
1617
1618		attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1619	}
1620
1621	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1622		const struct ovs_key_arp *arp_key;
1623
1624		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1625		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1626			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1627				  arp_key->arp_op);
1628			return -EINVAL;
1629		}
1630
1631		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1632				arp_key->arp_sip, is_mask);
1633		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1634			arp_key->arp_tip, is_mask);
1635		SW_FLOW_KEY_PUT(match, ip.proto,
1636				ntohs(arp_key->arp_op), is_mask);
1637		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1638				arp_key->arp_sha, ETH_ALEN, is_mask);
1639		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1640				arp_key->arp_tha, ETH_ALEN, is_mask);
1641
1642		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1643	}
1644
1645	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1646		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1647					    is_mask, false, log) < 0)
1648			return -EINVAL;
1649		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1650	}
1651
1652	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1653		const struct ovs_key_mpls *mpls_key;
1654		u32 hdr_len;
1655		u32 label_count, label_count_mask, i;
1656
1657		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1658		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1659		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1660
1661		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1662		    hdr_len % sizeof(struct ovs_key_mpls))
1663			return -EINVAL;
1664
1665		label_count_mask =  GENMASK(label_count - 1, 0);
1666
1667		for (i = 0 ; i < label_count; i++)
1668			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1669					mpls_key[i].mpls_lse, is_mask);
1670
1671		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1672				label_count_mask, is_mask);
1673
1674		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1675	 }
1676
1677	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1678		const struct ovs_key_tcp *tcp_key;
1679
1680		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1681		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1682		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1683		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1684	}
1685
1686	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1687		SW_FLOW_KEY_PUT(match, tp.flags,
1688				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1689				is_mask);
1690		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1691	}
1692
1693	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1694		const struct ovs_key_udp *udp_key;
1695
1696		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1697		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1698		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1699		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1700	}
1701
1702	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1703		const struct ovs_key_sctp *sctp_key;
1704
1705		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1706		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1707		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1708		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1709	}
1710
1711	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1712		const struct ovs_key_icmp *icmp_key;
1713
1714		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1715		SW_FLOW_KEY_PUT(match, tp.src,
1716				htons(icmp_key->icmp_type), is_mask);
1717		SW_FLOW_KEY_PUT(match, tp.dst,
1718				htons(icmp_key->icmp_code), is_mask);
1719		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1720	}
1721
1722	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1723		const struct ovs_key_icmpv6 *icmpv6_key;
1724
1725		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1726		SW_FLOW_KEY_PUT(match, tp.src,
1727				htons(icmpv6_key->icmpv6_type), is_mask);
1728		SW_FLOW_KEY_PUT(match, tp.dst,
1729				htons(icmpv6_key->icmpv6_code), is_mask);
1730		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1731	}
1732
1733	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1734		const struct ovs_key_nd *nd_key;
1735
1736		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1737		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1738			nd_key->nd_target,
1739			sizeof(match->key->ipv6.nd.target),
1740			is_mask);
1741		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1742			nd_key->nd_sll, ETH_ALEN, is_mask);
1743		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1744				nd_key->nd_tll, ETH_ALEN, is_mask);
1745		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1746	}
1747
1748	if (attrs != 0) {
1749		OVS_NLERR(log, "Unknown key attributes %llx",
1750			  (unsigned long long)attrs);
1751		return -EINVAL;
1752	}
1753
1754	return 0;
1755}
1756
1757static void nlattr_set(struct nlattr *attr, u8 val,
1758		       const struct ovs_len_tbl *tbl)
1759{
1760	struct nlattr *nla;
1761	int rem;
1762
1763	/* The nlattr stream should already have been validated */
1764	nla_for_each_nested(nla, attr, rem) {
1765		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1766			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1767		else
 
 
1768			memset(nla_data(nla), val, nla_len(nla));
 
1769
1770		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1771			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1772	}
1773}
1774
1775static void mask_set_nlattr(struct nlattr *attr, u8 val)
1776{
1777	nlattr_set(attr, val, ovs_key_lens);
1778}
1779
1780/**
1781 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1782 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1783 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1784 * does not include any don't care bit.
1785 * @net: Used to determine per-namespace field support.
1786 * @match: receives the extracted flow match information.
1787 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1788 * sequence. The fields should of the packet that triggered the creation
1789 * of this flow.
1790 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1791 * Netlink attribute specifies the mask field of the wildcarded flow.
1792 * @log: Boolean to allow kernel error logging.  Normally true, but when
1793 * probing for feature compatibility this should be passed in as false to
1794 * suppress unnecessary error logging.
1795 */
1796int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1797		      const struct nlattr *nla_key,
1798		      const struct nlattr *nla_mask,
1799		      bool log)
1800{
1801	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1802	struct nlattr *newmask = NULL;
1803	u64 key_attrs = 0;
1804	u64 mask_attrs = 0;
1805	int err;
1806
1807	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1808	if (err)
1809		return err;
1810
1811	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1812	if (err)
1813		return err;
1814
1815	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1816	if (err)
1817		return err;
1818
1819	if (match->mask) {
1820		if (!nla_mask) {
1821			/* Create an exact match mask. We need to set to 0xff
1822			 * all the 'match->mask' fields that have been touched
1823			 * in 'match->key'. We cannot simply memset
1824			 * 'match->mask', because padding bytes and fields not
1825			 * specified in 'match->key' should be left to 0.
1826			 * Instead, we use a stream of netlink attributes,
1827			 * copied from 'key' and set to 0xff.
1828			 * ovs_key_from_nlattrs() will take care of filling
1829			 * 'match->mask' appropriately.
1830			 */
1831			newmask = kmemdup(nla_key,
1832					  nla_total_size(nla_len(nla_key)),
1833					  GFP_KERNEL);
1834			if (!newmask)
1835				return -ENOMEM;
1836
1837			mask_set_nlattr(newmask, 0xff);
1838
1839			/* The userspace does not send tunnel attributes that
1840			 * are 0, but we should not wildcard them nonetheless.
1841			 */
1842			if (match->key->tun_proto)
1843				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1844							 0xff, true);
1845
1846			nla_mask = newmask;
1847		}
1848
1849		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1850		if (err)
1851			goto free_newmask;
1852
1853		/* Always match on tci. */
1854		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1855		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1856
1857		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1858		if (err)
1859			goto free_newmask;
1860
1861		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1862					   log);
1863		if (err)
1864			goto free_newmask;
1865	}
1866
1867	if (!match_validate(match, key_attrs, mask_attrs, log))
1868		err = -EINVAL;
1869
1870free_newmask:
1871	kfree(newmask);
1872	return err;
1873}
1874
1875static size_t get_ufid_len(const struct nlattr *attr, bool log)
1876{
1877	size_t len;
1878
1879	if (!attr)
1880		return 0;
1881
1882	len = nla_len(attr);
1883	if (len < 1 || len > MAX_UFID_LENGTH) {
1884		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1885			  nla_len(attr), MAX_UFID_LENGTH);
1886		return 0;
1887	}
1888
1889	return len;
1890}
1891
1892/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1893 * or false otherwise.
1894 */
1895bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1896		      bool log)
1897{
1898	sfid->ufid_len = get_ufid_len(attr, log);
1899	if (sfid->ufid_len)
1900		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1901
1902	return sfid->ufid_len;
1903}
1904
1905int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1906			   const struct sw_flow_key *key, bool log)
1907{
1908	struct sw_flow_key *new_key;
1909
1910	if (ovs_nla_get_ufid(sfid, ufid, log))
1911		return 0;
1912
1913	/* If UFID was not provided, use unmasked key. */
1914	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1915	if (!new_key)
1916		return -ENOMEM;
1917	memcpy(new_key, key, sizeof(*key));
1918	sfid->unmasked_key = new_key;
1919
1920	return 0;
1921}
1922
1923u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1924{
1925	return attr ? nla_get_u32(attr) : 0;
1926}
1927
1928/**
1929 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1930 * @net: Network namespace.
1931 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1932 * metadata.
1933 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1934 * attributes.
1935 * @attrs: Bit mask for the netlink attributes included in @a.
1936 * @log: Boolean to allow kernel error logging.  Normally true, but when
1937 * probing for feature compatibility this should be passed in as false to
1938 * suppress unnecessary error logging.
1939 *
1940 * This parses a series of Netlink attributes that form a flow key, which must
1941 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1942 * get the metadata, that is, the parts of the flow key that cannot be
1943 * extracted from the packet itself.
1944 *
1945 * This must be called before the packet key fields are filled in 'key'.
1946 */
1947
1948int ovs_nla_get_flow_metadata(struct net *net,
1949			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1950			      u64 attrs, struct sw_flow_key *key, bool log)
1951{
 
1952	struct sw_flow_match match;
 
 
 
 
 
 
1953
1954	memset(&match, 0, sizeof(match));
1955	match.key = key;
1956
1957	key->ct_state = 0;
1958	key->ct_zone = 0;
1959	key->ct_orig_proto = 0;
1960	memset(&key->ct, 0, sizeof(key->ct));
1961	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1962	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1963
1964	key->phy.in_port = DP_MAX_PORTS;
1965
1966	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1967}
1968
1969static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1970			    bool is_mask)
1971{
1972	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1973
1974	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1975	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1976		return -EMSGSIZE;
1977	return 0;
1978}
1979
1980static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1981			     struct sk_buff *skb)
1982{
1983	struct nlattr *start;
1984
1985	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1986	if (!start)
1987		return -EMSGSIZE;
1988
1989	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1990		goto nla_put_failure;
1991
1992	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1993		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1994			    sizeof(nsh->context), nsh->context))
1995			goto nla_put_failure;
1996	}
1997
1998	/* Don't support MD type 2 yet */
1999
2000	nla_nest_end(skb, start);
2001
2002	return 0;
2003
2004nla_put_failure:
2005	return -EMSGSIZE;
2006}
2007
2008static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2009			     const struct sw_flow_key *output, bool is_mask,
2010			     struct sk_buff *skb)
2011{
2012	struct ovs_key_ethernet *eth_key;
2013	struct nlattr *nla;
2014	struct nlattr *encap = NULL;
2015	struct nlattr *in_encap = NULL;
2016
2017	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2018		goto nla_put_failure;
2019
2020	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2021		goto nla_put_failure;
2022
2023	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2024		goto nla_put_failure;
2025
2026	if ((swkey->tun_proto || is_mask)) {
2027		const void *opts = NULL;
2028
2029		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2030			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2031
2032		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2033				     swkey->tun_opts_len, swkey->tun_proto, 0))
2034			goto nla_put_failure;
2035	}
2036
2037	if (swkey->phy.in_port == DP_MAX_PORTS) {
2038		if (is_mask && (output->phy.in_port == 0xffff))
2039			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2040				goto nla_put_failure;
2041	} else {
2042		u16 upper_u16;
2043		upper_u16 = !is_mask ? 0 : 0xffff;
2044
2045		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2046				(upper_u16 << 16) | output->phy.in_port))
2047			goto nla_put_failure;
2048	}
2049
2050	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2051		goto nla_put_failure;
2052
2053	if (ovs_ct_put_key(swkey, output, skb))
2054		goto nla_put_failure;
2055
2056	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2057		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2058		if (!nla)
2059			goto nla_put_failure;
2060
2061		eth_key = nla_data(nla);
2062		ether_addr_copy(eth_key->eth_src, output->eth.src);
2063		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2064
2065		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2066			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2067				goto nla_put_failure;
2068			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2069			if (!swkey->eth.vlan.tci)
2070				goto unencap;
2071
2072			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2073				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2074					goto nla_put_failure;
2075				in_encap = nla_nest_start_noflag(skb,
2076								 OVS_KEY_ATTR_ENCAP);
2077				if (!swkey->eth.cvlan.tci)
2078					goto unencap;
2079			}
2080		}
2081
2082		if (swkey->eth.type == htons(ETH_P_802_2)) {
2083			/*
2084			* Ethertype 802.2 is represented in the netlink with omitted
2085			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2086			* 0xffff in the mask attribute.  Ethertype can also
2087			* be wildcarded.
2088			*/
2089			if (is_mask && output->eth.type)
2090				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2091							output->eth.type))
2092					goto nla_put_failure;
2093			goto unencap;
2094		}
2095	}
2096
2097	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2098		goto nla_put_failure;
2099
2100	if (eth_type_vlan(swkey->eth.type)) {
2101		/* There are 3 VLAN tags, we don't know anything about the rest
2102		 * of the packet, so truncate here.
2103		 */
2104		WARN_ON_ONCE(!(encap && in_encap));
2105		goto unencap;
2106	}
2107
2108	if (swkey->eth.type == htons(ETH_P_IP)) {
2109		struct ovs_key_ipv4 *ipv4_key;
2110
2111		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2112		if (!nla)
2113			goto nla_put_failure;
2114		ipv4_key = nla_data(nla);
2115		ipv4_key->ipv4_src = output->ipv4.addr.src;
2116		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2117		ipv4_key->ipv4_proto = output->ip.proto;
2118		ipv4_key->ipv4_tos = output->ip.tos;
2119		ipv4_key->ipv4_ttl = output->ip.ttl;
2120		ipv4_key->ipv4_frag = output->ip.frag;
2121	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2122		struct ovs_key_ipv6 *ipv6_key;
2123		struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2124
2125		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2126		if (!nla)
2127			goto nla_put_failure;
2128		ipv6_key = nla_data(nla);
2129		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2130				sizeof(ipv6_key->ipv6_src));
2131		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2132				sizeof(ipv6_key->ipv6_dst));
2133		ipv6_key->ipv6_label = output->ipv6.label;
2134		ipv6_key->ipv6_proto = output->ip.proto;
2135		ipv6_key->ipv6_tclass = output->ip.tos;
2136		ipv6_key->ipv6_hlimit = output->ip.ttl;
2137		ipv6_key->ipv6_frag = output->ip.frag;
2138
2139		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2140				  sizeof(*ipv6_exthdrs_key));
2141		if (!nla)
2142			goto nla_put_failure;
2143		ipv6_exthdrs_key = nla_data(nla);
2144		ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2145	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2146		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2147			goto nla_put_failure;
2148	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2149		   swkey->eth.type == htons(ETH_P_RARP)) {
2150		struct ovs_key_arp *arp_key;
2151
2152		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2153		if (!nla)
2154			goto nla_put_failure;
2155		arp_key = nla_data(nla);
2156		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2157		arp_key->arp_sip = output->ipv4.addr.src;
2158		arp_key->arp_tip = output->ipv4.addr.dst;
2159		arp_key->arp_op = htons(output->ip.proto);
2160		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2161		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2162	} else if (eth_p_mpls(swkey->eth.type)) {
2163		u8 i, num_labels;
2164		struct ovs_key_mpls *mpls_key;
2165
2166		num_labels = hweight_long(output->mpls.num_labels_mask);
2167		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2168				  num_labels * sizeof(*mpls_key));
2169		if (!nla)
2170			goto nla_put_failure;
2171
2172		mpls_key = nla_data(nla);
2173		for (i = 0; i < num_labels; i++)
2174			mpls_key[i].mpls_lse = output->mpls.lse[i];
2175	}
2176
2177	if ((swkey->eth.type == htons(ETH_P_IP) ||
2178	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2179	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2180
2181		if (swkey->ip.proto == IPPROTO_TCP) {
2182			struct ovs_key_tcp *tcp_key;
2183
2184			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2185			if (!nla)
2186				goto nla_put_failure;
2187			tcp_key = nla_data(nla);
2188			tcp_key->tcp_src = output->tp.src;
2189			tcp_key->tcp_dst = output->tp.dst;
2190			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2191					 output->tp.flags))
2192				goto nla_put_failure;
2193		} else if (swkey->ip.proto == IPPROTO_UDP) {
2194			struct ovs_key_udp *udp_key;
2195
2196			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2197			if (!nla)
2198				goto nla_put_failure;
2199			udp_key = nla_data(nla);
2200			udp_key->udp_src = output->tp.src;
2201			udp_key->udp_dst = output->tp.dst;
2202		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2203			struct ovs_key_sctp *sctp_key;
2204
2205			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2206			if (!nla)
2207				goto nla_put_failure;
2208			sctp_key = nla_data(nla);
2209			sctp_key->sctp_src = output->tp.src;
2210			sctp_key->sctp_dst = output->tp.dst;
2211		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2212			   swkey->ip.proto == IPPROTO_ICMP) {
2213			struct ovs_key_icmp *icmp_key;
2214
2215			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2216			if (!nla)
2217				goto nla_put_failure;
2218			icmp_key = nla_data(nla);
2219			icmp_key->icmp_type = ntohs(output->tp.src);
2220			icmp_key->icmp_code = ntohs(output->tp.dst);
2221		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2222			   swkey->ip.proto == IPPROTO_ICMPV6) {
2223			struct ovs_key_icmpv6 *icmpv6_key;
2224
2225			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2226						sizeof(*icmpv6_key));
2227			if (!nla)
2228				goto nla_put_failure;
2229			icmpv6_key = nla_data(nla);
2230			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2231			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2232
2233			if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2234			    swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2235				struct ovs_key_nd *nd_key;
2236
2237				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2238				if (!nla)
2239					goto nla_put_failure;
2240				nd_key = nla_data(nla);
2241				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2242							sizeof(nd_key->nd_target));
2243				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2244				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2245			}
2246		}
2247	}
2248
2249unencap:
2250	if (in_encap)
2251		nla_nest_end(skb, in_encap);
2252	if (encap)
2253		nla_nest_end(skb, encap);
2254
2255	return 0;
2256
2257nla_put_failure:
2258	return -EMSGSIZE;
2259}
2260
2261int ovs_nla_put_key(const struct sw_flow_key *swkey,
2262		    const struct sw_flow_key *output, int attr, bool is_mask,
2263		    struct sk_buff *skb)
2264{
2265	int err;
2266	struct nlattr *nla;
2267
2268	nla = nla_nest_start_noflag(skb, attr);
2269	if (!nla)
2270		return -EMSGSIZE;
2271	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2272	if (err)
2273		return err;
2274	nla_nest_end(skb, nla);
2275
2276	return 0;
2277}
2278
2279/* Called with ovs_mutex or RCU read lock. */
2280int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2281{
2282	if (ovs_identifier_is_ufid(&flow->id))
2283		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2284			       flow->id.ufid);
2285
2286	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2287			       OVS_FLOW_ATTR_KEY, false, skb);
2288}
2289
2290/* Called with ovs_mutex or RCU read lock. */
2291int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2292{
2293	return ovs_nla_put_key(&flow->key, &flow->key,
2294				OVS_FLOW_ATTR_KEY, false, skb);
2295}
2296
2297/* Called with ovs_mutex or RCU read lock. */
2298int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2299{
2300	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2301				OVS_FLOW_ATTR_MASK, true, skb);
2302}
2303
2304#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2305
2306static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2307{
2308	struct sw_flow_actions *sfa;
2309
2310	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
 
 
 
2311
2312	sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2313	if (!sfa)
2314		return ERR_PTR(-ENOMEM);
2315
2316	sfa->actions_len = 0;
2317	return sfa;
2318}
2319
2320static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2321
2322static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2323{
2324	const struct nlattr *a;
2325	int rem;
2326
2327	nla_for_each_nested(a, action, rem) {
2328		switch (nla_type(a)) {
2329		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2330		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2331			ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2332			break;
2333		}
2334	}
2335}
2336
2337static void ovs_nla_free_clone_action(const struct nlattr *action)
2338{
2339	const struct nlattr *a = nla_data(action);
2340	int rem = nla_len(action);
2341
2342	switch (nla_type(a)) {
2343	case OVS_CLONE_ATTR_EXEC:
2344		/* The real list of actions follows this attribute. */
2345		a = nla_next(a, &rem);
2346		ovs_nla_free_nested_actions(a, rem);
2347		break;
2348	}
2349}
2350
2351static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2352{
2353	const struct nlattr *a = nla_data(action);
2354
2355	switch (nla_type(a)) {
2356	case OVS_DEC_TTL_ATTR_ACTION:
2357		ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2358		break;
2359	}
2360}
2361
2362static void ovs_nla_free_sample_action(const struct nlattr *action)
2363{
2364	const struct nlattr *a = nla_data(action);
2365	int rem = nla_len(action);
2366
2367	switch (nla_type(a)) {
2368	case OVS_SAMPLE_ATTR_ARG:
2369		/* The real list of actions follows this attribute. */
2370		a = nla_next(a, &rem);
2371		ovs_nla_free_nested_actions(a, rem);
2372		break;
2373	}
2374}
2375
2376static void ovs_nla_free_set_action(const struct nlattr *a)
2377{
2378	const struct nlattr *ovs_key = nla_data(a);
2379	struct ovs_tunnel_info *ovs_tun;
2380
2381	switch (nla_type(ovs_key)) {
2382	case OVS_KEY_ATTR_TUNNEL_INFO:
2383		ovs_tun = nla_data(ovs_key);
2384		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2385		break;
2386	}
2387}
2388
2389static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2390{
2391	const struct nlattr *a;
2392	int rem;
2393
2394	/* Whenever new actions are added, the need to update this
2395	 * function should be considered.
2396	 */
2397	BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 23);
2398
2399	if (!actions)
2400		return;
2401
2402	nla_for_each_attr(a, actions, len, rem) {
2403		switch (nla_type(a)) {
2404		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2405			ovs_nla_free_check_pkt_len_action(a);
2406			break;
2407
2408		case OVS_ACTION_ATTR_CLONE:
2409			ovs_nla_free_clone_action(a);
2410			break;
2411
2412		case OVS_ACTION_ATTR_CT:
2413			ovs_ct_free_action(a);
2414			break;
2415
2416		case OVS_ACTION_ATTR_DEC_TTL:
2417			ovs_nla_free_dec_ttl_action(a);
2418			break;
2419
2420		case OVS_ACTION_ATTR_SAMPLE:
2421			ovs_nla_free_sample_action(a);
2422			break;
2423
2424		case OVS_ACTION_ATTR_SET:
2425			ovs_nla_free_set_action(a);
2426			break;
2427		}
2428	}
2429}
2430
2431void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2432{
2433	if (!sf_acts)
2434		return;
2435
2436	ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2437	kfree(sf_acts);
2438}
2439
2440static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2441{
2442	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2443}
2444
2445/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2446 * The caller must hold rcu_read_lock for this to be sensible. */
2447void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2448{
2449	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2450}
2451
2452static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2453				       int attr_len, bool log)
2454{
2455
2456	struct sw_flow_actions *acts;
2457	int new_acts_size;
2458	size_t req_size = NLA_ALIGN(attr_len);
2459	int next_offset = offsetof(struct sw_flow_actions, actions) +
2460					(*sfa)->actions_len;
2461
2462	if (req_size <= (ksize(*sfa) - next_offset))
2463		goto out;
2464
2465	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2466
2467	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2468		if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2469			OVS_NLERR(log, "Flow action size exceeds max %u",
2470				  MAX_ACTIONS_BUFSIZE);
2471			return ERR_PTR(-EMSGSIZE);
2472		}
2473		new_acts_size = MAX_ACTIONS_BUFSIZE;
2474	}
2475
2476	acts = nla_alloc_flow_actions(new_acts_size);
2477	if (IS_ERR(acts))
2478		return (void *)acts;
2479
2480	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2481	acts->actions_len = (*sfa)->actions_len;
2482	acts->orig_len = (*sfa)->orig_len;
2483	kfree(*sfa);
2484	*sfa = acts;
2485
2486out:
2487	(*sfa)->actions_len += req_size;
2488	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2489}
2490
2491static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2492				   int attrtype, void *data, int len, bool log)
2493{
2494	struct nlattr *a;
2495
2496	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2497	if (IS_ERR(a))
2498		return a;
2499
2500	a->nla_type = attrtype;
2501	a->nla_len = nla_attr_size(len);
2502
2503	if (data)
2504		memcpy(nla_data(a), data, len);
2505	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2506
2507	return a;
2508}
2509
2510int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2511		       int len, bool log)
2512{
2513	struct nlattr *a;
2514
2515	a = __add_action(sfa, attrtype, data, len, log);
2516
2517	return PTR_ERR_OR_ZERO(a);
2518}
2519
2520static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2521					  int attrtype, bool log)
2522{
2523	int used = (*sfa)->actions_len;
2524	int err;
2525
2526	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2527	if (err)
2528		return err;
2529
2530	return used;
2531}
2532
2533static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2534					 int st_offset)
2535{
2536	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2537							       st_offset);
2538
2539	a->nla_len = sfa->actions_len - st_offset;
2540}
2541
2542static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2543				  const struct sw_flow_key *key,
2544				  struct sw_flow_actions **sfa,
2545				  __be16 eth_type, __be16 vlan_tci,
2546				  u32 mpls_label_count, bool log);
2547
2548static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2549				    const struct sw_flow_key *key,
2550				    struct sw_flow_actions **sfa,
2551				    __be16 eth_type, __be16 vlan_tci,
2552				    u32 mpls_label_count, bool log, bool last)
2553{
2554	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2555	const struct nlattr *probability, *actions;
2556	const struct nlattr *a;
2557	int rem, start, err;
2558	struct sample_arg arg;
2559
2560	memset(attrs, 0, sizeof(attrs));
2561	nla_for_each_nested(a, attr, rem) {
2562		int type = nla_type(a);
2563		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2564			return -EINVAL;
2565		attrs[type] = a;
2566	}
2567	if (rem)
2568		return -EINVAL;
2569
2570	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2571	if (!probability || nla_len(probability) != sizeof(u32))
2572		return -EINVAL;
2573
2574	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2575	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2576		return -EINVAL;
2577
2578	/* validation done, copy sample action. */
2579	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2580	if (start < 0)
2581		return start;
2582
2583	/* When both skb and flow may be changed, put the sample
2584	 * into a deferred fifo. On the other hand, if only skb
2585	 * may be modified, the actions can be executed in place.
2586	 *
2587	 * Do this analysis at the flow installation time.
2588	 * Set 'clone_action->exec' to true if the actions can be
2589	 * executed without being deferred.
2590	 *
2591	 * If the sample is the last action, it can always be excuted
2592	 * rather than deferred.
2593	 */
2594	arg.exec = last || !actions_may_change_flow(actions);
2595	arg.probability = nla_get_u32(probability);
2596
2597	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2598				 log);
2599	if (err)
2600		return err;
 
 
 
2601
2602	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2603				     eth_type, vlan_tci, mpls_label_count, log);
2604
2605	if (err)
2606		return err;
2607
2608	add_nested_action_end(*sfa, start);
2609
2610	return 0;
2611}
2612
2613static int validate_and_copy_dec_ttl(struct net *net,
2614				     const struct nlattr *attr,
2615				     const struct sw_flow_key *key,
2616				     struct sw_flow_actions **sfa,
2617				     __be16 eth_type, __be16 vlan_tci,
2618				     u32 mpls_label_count, bool log)
2619{
2620	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2621	int start, action_start, err, rem;
2622	const struct nlattr *a, *actions;
2623
2624	memset(attrs, 0, sizeof(attrs));
2625	nla_for_each_nested(a, attr, rem) {
2626		int type = nla_type(a);
2627
2628		/* Ignore unknown attributes to be future proof. */
2629		if (type > OVS_DEC_TTL_ATTR_MAX)
2630			continue;
2631
2632		if (!type || attrs[type]) {
2633			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2634				  type);
2635			return -EINVAL;
2636		}
2637
2638		attrs[type] = a;
2639	}
2640
2641	if (rem) {
2642		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2643		return -EINVAL;
2644	}
2645
2646	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2647	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2648		OVS_NLERR(log, "Missing valid actions attribute.");
2649		return -EINVAL;
2650	}
2651
2652	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2653	if (start < 0)
2654		return start;
2655
2656	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2657	if (action_start < 0)
2658		return action_start;
2659
2660	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2661				     vlan_tci, mpls_label_count, log);
2662	if (err)
2663		return err;
2664
2665	add_nested_action_end(*sfa, action_start);
2666	add_nested_action_end(*sfa, start);
2667	return 0;
2668}
2669
2670static int validate_and_copy_clone(struct net *net,
2671				   const struct nlattr *attr,
2672				   const struct sw_flow_key *key,
2673				   struct sw_flow_actions **sfa,
2674				   __be16 eth_type, __be16 vlan_tci,
2675				   u32 mpls_label_count, bool log, bool last)
2676{
2677	int start, err;
2678	u32 exec;
2679
2680	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2681		return -EINVAL;
2682
2683	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2684	if (start < 0)
2685		return start;
2686
2687	exec = last || !actions_may_change_flow(attr);
2688
2689	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2690				 sizeof(exec), log);
2691	if (err)
2692		return err;
2693
2694	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2695				     eth_type, vlan_tci, mpls_label_count, log);
2696	if (err)
2697		return err;
2698
 
2699	add_nested_action_end(*sfa, start);
2700
2701	return 0;
2702}
2703
2704void ovs_match_init(struct sw_flow_match *match,
2705		    struct sw_flow_key *key,
2706		    bool reset_key,
2707		    struct sw_flow_mask *mask)
2708{
2709	memset(match, 0, sizeof(*match));
2710	match->key = key;
2711	match->mask = mask;
2712
2713	if (reset_key)
2714		memset(key, 0, sizeof(*key));
2715
2716	if (mask) {
2717		memset(&mask->key, 0, sizeof(mask->key));
2718		mask->range.start = mask->range.end = 0;
2719	}
2720}
2721
2722static int validate_geneve_opts(struct sw_flow_key *key)
2723{
2724	struct geneve_opt *option;
2725	int opts_len = key->tun_opts_len;
2726	bool crit_opt = false;
2727
2728	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2729	while (opts_len > 0) {
2730		int len;
2731
2732		if (opts_len < sizeof(*option))
2733			return -EINVAL;
2734
2735		len = sizeof(*option) + option->length * 4;
2736		if (len > opts_len)
2737			return -EINVAL;
2738
2739		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2740
2741		option = (struct geneve_opt *)((u8 *)option + len);
2742		opts_len -= len;
2743	}
2744
2745	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2746
2747	return 0;
2748}
2749
2750static int validate_and_copy_set_tun(const struct nlattr *attr,
2751				     struct sw_flow_actions **sfa, bool log)
2752{
2753	struct sw_flow_match match;
2754	struct sw_flow_key key;
2755	struct metadata_dst *tun_dst;
2756	struct ip_tunnel_info *tun_info;
2757	struct ovs_tunnel_info *ovs_tun;
2758	struct nlattr *a;
2759	int err = 0, start, opts_type;
2760	__be16 dst_opt_type;
2761
2762	dst_opt_type = 0;
2763	ovs_match_init(&match, &key, true, NULL);
2764	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2765	if (opts_type < 0)
2766		return opts_type;
2767
2768	if (key.tun_opts_len) {
2769		switch (opts_type) {
2770		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2771			err = validate_geneve_opts(&key);
2772			if (err < 0)
2773				return err;
2774			dst_opt_type = TUNNEL_GENEVE_OPT;
2775			break;
2776		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2777			dst_opt_type = TUNNEL_VXLAN_OPT;
2778			break;
2779		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2780			dst_opt_type = TUNNEL_ERSPAN_OPT;
2781			break;
2782		}
2783	}
2784
2785	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2786	if (start < 0)
2787		return start;
2788
2789	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2790				     GFP_KERNEL);
2791
2792	if (!tun_dst)
2793		return -ENOMEM;
2794
2795	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2796	if (err) {
2797		dst_release((struct dst_entry *)tun_dst);
2798		return err;
2799	}
2800
2801	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2802			 sizeof(*ovs_tun), log);
2803	if (IS_ERR(a)) {
2804		dst_release((struct dst_entry *)tun_dst);
2805		return PTR_ERR(a);
2806	}
2807
2808	ovs_tun = nla_data(a);
2809	ovs_tun->tun_dst = tun_dst;
2810
2811	tun_info = &tun_dst->u.tun_info;
2812	tun_info->mode = IP_TUNNEL_INFO_TX;
2813	if (key.tun_proto == AF_INET6)
2814		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2815	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2816		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2817	tun_info->key = key.tun_key;
2818
2819	/* We need to store the options in the action itself since
2820	 * everything else will go away after flow setup. We can append
2821	 * it to tun_info and then point there.
2822	 */
2823	ip_tunnel_info_opts_set(tun_info,
2824				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2825				key.tun_opts_len, dst_opt_type);
2826	add_nested_action_end(*sfa, start);
2827
2828	return err;
2829}
2830
2831static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2832			 bool is_push_nsh, bool log)
2833{
2834	struct sw_flow_match match;
2835	struct sw_flow_key key;
2836	int ret = 0;
2837
2838	ovs_match_init(&match, &key, true, NULL);
2839	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2840				      is_push_nsh, log);
2841	return !ret;
2842}
2843
2844/* Return false if there are any non-masked bits set.
2845 * Mask follows data immediately, before any netlink padding.
2846 */
2847static bool validate_masked(u8 *data, int len)
2848{
2849	u8 *mask = data + len;
2850
2851	while (len--)
2852		if (*data++ & ~*mask++)
2853			return false;
2854
2855	return true;
2856}
2857
2858static int validate_set(const struct nlattr *a,
2859			const struct sw_flow_key *flow_key,
2860			struct sw_flow_actions **sfa, bool *skip_copy,
2861			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2862{
2863	const struct nlattr *ovs_key = nla_data(a);
2864	int key_type = nla_type(ovs_key);
2865	size_t key_len;
2866
2867	/* There can be only one key in a action */
2868	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2869		return -EINVAL;
2870
2871	key_len = nla_len(ovs_key);
2872	if (masked)
2873		key_len /= 2;
2874
2875	if (key_type > OVS_KEY_ATTR_MAX ||
2876	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2877		return -EINVAL;
2878
2879	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2880		return -EINVAL;
2881
2882	switch (key_type) {
 
 
 
 
2883	case OVS_KEY_ATTR_PRIORITY:
2884	case OVS_KEY_ATTR_SKB_MARK:
2885	case OVS_KEY_ATTR_CT_MARK:
2886	case OVS_KEY_ATTR_CT_LABELS:
2887		break;
2888
2889	case OVS_KEY_ATTR_ETHERNET:
2890		if (mac_proto != MAC_PROTO_ETHERNET)
2891			return -EINVAL;
2892		break;
2893
2894	case OVS_KEY_ATTR_TUNNEL: {
2895		int err;
2896
2897		if (masked)
2898			return -EINVAL; /* Masked tunnel set not supported. */
2899
2900		*skip_copy = true;
2901		err = validate_and_copy_set_tun(a, sfa, log);
2902		if (err)
2903			return err;
2904		break;
2905	}
2906	case OVS_KEY_ATTR_IPV4: {
2907		const struct ovs_key_ipv4 *ipv4_key;
2908
 
2909		if (eth_type != htons(ETH_P_IP))
2910			return -EINVAL;
2911
2912		ipv4_key = nla_data(ovs_key);
2913
2914		if (masked) {
2915			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2916
2917			/* Non-writeable fields. */
2918			if (mask->ipv4_proto || mask->ipv4_frag)
2919				return -EINVAL;
2920		} else {
2921			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2922				return -EINVAL;
2923
2924			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2925				return -EINVAL;
2926		}
2927		break;
2928	}
2929	case OVS_KEY_ATTR_IPV6: {
2930		const struct ovs_key_ipv6 *ipv6_key;
2931
 
2932		if (eth_type != htons(ETH_P_IPV6))
2933			return -EINVAL;
2934
2935		ipv6_key = nla_data(ovs_key);
2936
2937		if (masked) {
2938			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2939
2940			/* Non-writeable fields. */
2941			if (mask->ipv6_proto || mask->ipv6_frag)
2942				return -EINVAL;
2943
2944			/* Invalid bits in the flow label mask? */
2945			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2946				return -EINVAL;
2947		} else {
2948			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2949				return -EINVAL;
2950
2951			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2952				return -EINVAL;
2953		}
2954		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2955			return -EINVAL;
2956
2957		break;
2958	}
2959	case OVS_KEY_ATTR_TCP:
2960		if ((eth_type != htons(ETH_P_IP) &&
2961		     eth_type != htons(ETH_P_IPV6)) ||
2962		    flow_key->ip.proto != IPPROTO_TCP)
2963			return -EINVAL;
2964
2965		break;
2966
2967	case OVS_KEY_ATTR_UDP:
2968		if ((eth_type != htons(ETH_P_IP) &&
2969		     eth_type != htons(ETH_P_IPV6)) ||
2970		    flow_key->ip.proto != IPPROTO_UDP)
2971			return -EINVAL;
2972
2973		break;
2974
2975	case OVS_KEY_ATTR_MPLS:
2976		if (!eth_p_mpls(eth_type))
2977			return -EINVAL;
2978		break;
2979
2980	case OVS_KEY_ATTR_SCTP:
2981		if ((eth_type != htons(ETH_P_IP) &&
2982		     eth_type != htons(ETH_P_IPV6)) ||
2983		    flow_key->ip.proto != IPPROTO_SCTP)
2984			return -EINVAL;
2985
2986		break;
2987
2988	case OVS_KEY_ATTR_NSH:
2989		if (eth_type != htons(ETH_P_NSH))
2990			return -EINVAL;
2991		if (!validate_nsh(nla_data(a), masked, false, log))
2992			return -EINVAL;
2993		break;
2994
2995	default:
2996		return -EINVAL;
2997	}
2998
2999	/* Convert non-masked non-tunnel set actions to masked set actions. */
3000	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3001		int start, len = key_len * 2;
3002		struct nlattr *at;
3003
3004		*skip_copy = true;
3005
3006		start = add_nested_action_start(sfa,
3007						OVS_ACTION_ATTR_SET_TO_MASKED,
3008						log);
3009		if (start < 0)
3010			return start;
3011
3012		at = __add_action(sfa, key_type, NULL, len, log);
3013		if (IS_ERR(at))
3014			return PTR_ERR(at);
3015
3016		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3017		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
3018		/* Clear non-writeable bits from otherwise writeable fields. */
3019		if (key_type == OVS_KEY_ATTR_IPV6) {
3020			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3021
3022			mask->ipv6_label &= htonl(0x000FFFFF);
3023		}
3024		add_nested_action_end(*sfa, start);
3025	}
3026
3027	return 0;
3028}
3029
3030static int validate_userspace(const struct nlattr *attr)
3031{
3032	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3033		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3034		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3035		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3036	};
3037	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3038	int error;
3039
3040	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3041					    userspace_policy, NULL);
3042	if (error)
3043		return error;
3044
3045	if (!a[OVS_USERSPACE_ATTR_PID] ||
3046	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3047		return -EINVAL;
3048
3049	return 0;
3050}
3051
3052static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3053	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3054	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3055	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3056};
3057
3058static int validate_and_copy_check_pkt_len(struct net *net,
3059					   const struct nlattr *attr,
3060					   const struct sw_flow_key *key,
3061					   struct sw_flow_actions **sfa,
3062					   __be16 eth_type, __be16 vlan_tci,
3063					   u32 mpls_label_count,
3064					   bool log, bool last)
3065{
3066	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3067	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3068	struct check_pkt_len_arg arg;
3069	int nested_acts_start;
3070	int start, err;
3071
3072	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3073					  nla_data(attr), nla_len(attr),
3074					  cpl_policy, NULL);
3075	if (err)
3076		return err;
3077
3078	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3079	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3080		return -EINVAL;
3081
3082	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3083	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3084
3085	/* Both the nested action should be present. */
3086	if (!acts_if_greater || !acts_if_lesser_eq)
3087		return -EINVAL;
3088
3089	/* validation done, copy the nested actions. */
3090	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3091					log);
3092	if (start < 0)
3093		return start;
3094
3095	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3096	arg.exec_for_lesser_equal =
3097		last || !actions_may_change_flow(acts_if_lesser_eq);
3098	arg.exec_for_greater =
3099		last || !actions_may_change_flow(acts_if_greater);
3100
3101	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3102				 sizeof(arg), log);
3103	if (err)
3104		return err;
3105
3106	nested_acts_start = add_nested_action_start(sfa,
3107		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3108	if (nested_acts_start < 0)
3109		return nested_acts_start;
3110
3111	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3112				     eth_type, vlan_tci, mpls_label_count, log);
3113
3114	if (err)
3115		return err;
3116
3117	add_nested_action_end(*sfa, nested_acts_start);
3118
3119	nested_acts_start = add_nested_action_start(sfa,
3120		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3121	if (nested_acts_start < 0)
3122		return nested_acts_start;
3123
3124	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3125				     eth_type, vlan_tci, mpls_label_count, log);
3126
3127	if (err)
3128		return err;
3129
3130	add_nested_action_end(*sfa, nested_acts_start);
3131	add_nested_action_end(*sfa, start);
3132	return 0;
3133}
3134
3135static int copy_action(const struct nlattr *from,
3136		       struct sw_flow_actions **sfa, bool log)
3137{
3138	int totlen = NLA_ALIGN(from->nla_len);
3139	struct nlattr *to;
3140
3141	to = reserve_sfa_size(sfa, from->nla_len, log);
3142	if (IS_ERR(to))
3143		return PTR_ERR(to);
3144
3145	memcpy(to, from, totlen);
3146	return 0;
3147}
3148
3149static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3150				  const struct sw_flow_key *key,
3151				  struct sw_flow_actions **sfa,
3152				  __be16 eth_type, __be16 vlan_tci,
3153				  u32 mpls_label_count, bool log)
3154{
3155	u8 mac_proto = ovs_key_mac_proto(key);
3156	const struct nlattr *a;
3157	int rem, err;
3158
 
 
 
3159	nla_for_each_nested(a, attr, rem) {
3160		/* Expected argument lengths, (u32)-1 for variable length. */
3161		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3162			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3163			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3164			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3165			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3166			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3167			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3168			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3169			[OVS_ACTION_ATTR_SET] = (u32)-1,
3170			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3171			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3172			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3173			[OVS_ACTION_ATTR_CT] = (u32)-1,
3174			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3175			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3176			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3177			[OVS_ACTION_ATTR_POP_ETH] = 0,
3178			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3179			[OVS_ACTION_ATTR_POP_NSH] = 0,
3180			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3181			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3182			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3183			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3184			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3185		};
3186		const struct ovs_action_push_vlan *vlan;
3187		int type = nla_type(a);
3188		bool skip_copy;
3189
3190		if (type > OVS_ACTION_ATTR_MAX ||
3191		    (action_lens[type] != nla_len(a) &&
3192		     action_lens[type] != (u32)-1))
3193			return -EINVAL;
3194
3195		skip_copy = false;
3196		switch (type) {
3197		case OVS_ACTION_ATTR_UNSPEC:
3198			return -EINVAL;
3199
3200		case OVS_ACTION_ATTR_USERSPACE:
3201			err = validate_userspace(a);
3202			if (err)
3203				return err;
3204			break;
3205
3206		case OVS_ACTION_ATTR_OUTPUT:
3207			if (nla_get_u32(a) >= DP_MAX_PORTS)
3208				return -EINVAL;
3209			break;
3210
3211		case OVS_ACTION_ATTR_TRUNC: {
3212			const struct ovs_action_trunc *trunc = nla_data(a);
3213
3214			if (trunc->max_len < ETH_HLEN)
3215				return -EINVAL;
3216			break;
3217		}
3218
3219		case OVS_ACTION_ATTR_HASH: {
3220			const struct ovs_action_hash *act_hash = nla_data(a);
3221
3222			switch (act_hash->hash_alg) {
3223			case OVS_HASH_ALG_L4:
3224				break;
3225			default:
3226				return  -EINVAL;
3227			}
3228
3229			break;
3230		}
3231
3232		case OVS_ACTION_ATTR_POP_VLAN:
3233			if (mac_proto != MAC_PROTO_ETHERNET)
3234				return -EINVAL;
3235			vlan_tci = htons(0);
3236			break;
3237
3238		case OVS_ACTION_ATTR_PUSH_VLAN:
3239			if (mac_proto != MAC_PROTO_ETHERNET)
3240				return -EINVAL;
3241			vlan = nla_data(a);
3242			if (!eth_type_vlan(vlan->vlan_tpid))
3243				return -EINVAL;
3244			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3245				return -EINVAL;
3246			vlan_tci = vlan->vlan_tci;
3247			break;
3248
3249		case OVS_ACTION_ATTR_RECIRC:
3250			break;
3251
3252		case OVS_ACTION_ATTR_ADD_MPLS: {
3253			const struct ovs_action_add_mpls *mpls = nla_data(a);
3254
3255			if (!eth_p_mpls(mpls->mpls_ethertype))
3256				return -EINVAL;
3257
3258			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3259				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3260				    (eth_type != htons(ETH_P_IP) &&
3261				     eth_type != htons(ETH_P_IPV6) &&
3262				     eth_type != htons(ETH_P_ARP) &&
3263				     eth_type != htons(ETH_P_RARP) &&
3264				     !eth_p_mpls(eth_type)))
3265					return -EINVAL;
3266				mpls_label_count++;
3267			} else {
3268				if (mac_proto == MAC_PROTO_ETHERNET) {
3269					mpls_label_count = 1;
3270					mac_proto = MAC_PROTO_NONE;
3271				} else {
3272					mpls_label_count++;
3273				}
3274			}
3275			eth_type = mpls->mpls_ethertype;
3276			break;
3277		}
3278
3279		case OVS_ACTION_ATTR_PUSH_MPLS: {
3280			const struct ovs_action_push_mpls *mpls = nla_data(a);
3281
3282			if (!eth_p_mpls(mpls->mpls_ethertype))
3283				return -EINVAL;
3284			/* Prohibit push MPLS other than to a white list
3285			 * for packets that have a known tag order.
3286			 */
3287			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3288			    (eth_type != htons(ETH_P_IP) &&
3289			     eth_type != htons(ETH_P_IPV6) &&
3290			     eth_type != htons(ETH_P_ARP) &&
3291			     eth_type != htons(ETH_P_RARP) &&
3292			     !eth_p_mpls(eth_type)))
3293				return -EINVAL;
3294			eth_type = mpls->mpls_ethertype;
3295			mpls_label_count++;
3296			break;
3297		}
3298
3299		case OVS_ACTION_ATTR_POP_MPLS: {
3300			__be16  proto;
3301			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3302			    !eth_p_mpls(eth_type))
3303				return -EINVAL;
3304
3305			/* Disallow subsequent L2.5+ set actions and mpls_pop
3306			 * actions once the last MPLS label in the packet is
3307			 * popped as there is no check here to ensure that
3308			 * the new eth type is valid and thus set actions could
3309			 * write off the end of the packet or otherwise corrupt
3310			 * it.
3311			 *
3312			 * Support for these actions is planned using packet
3313			 * recirculation.
3314			 */
3315			proto = nla_get_be16(a);
3316
3317			if (proto == htons(ETH_P_TEB) &&
3318			    mac_proto != MAC_PROTO_NONE)
3319				return -EINVAL;
3320
3321			mpls_label_count--;
3322
3323			if (!eth_p_mpls(proto) || !mpls_label_count)
3324				eth_type = htons(0);
3325			else
3326				eth_type =  proto;
3327
3328			break;
3329		}
3330
3331		case OVS_ACTION_ATTR_SET:
3332			err = validate_set(a, key, sfa,
3333					   &skip_copy, mac_proto, eth_type,
3334					   false, log);
3335			if (err)
3336				return err;
3337			break;
3338
3339		case OVS_ACTION_ATTR_SET_MASKED:
3340			err = validate_set(a, key, sfa,
3341					   &skip_copy, mac_proto, eth_type,
3342					   true, log);
3343			if (err)
3344				return err;
3345			break;
3346
3347		case OVS_ACTION_ATTR_SAMPLE: {
3348			bool last = nla_is_last(a, rem);
3349
3350			err = validate_and_copy_sample(net, a, key, sfa,
3351						       eth_type, vlan_tci,
3352						       mpls_label_count,
3353						       log, last);
3354			if (err)
3355				return err;
3356			skip_copy = true;
3357			break;
3358		}
3359
3360		case OVS_ACTION_ATTR_CT:
3361			err = ovs_ct_copy_action(net, a, key, sfa, log);
3362			if (err)
3363				return err;
3364			skip_copy = true;
3365			break;
3366
3367		case OVS_ACTION_ATTR_CT_CLEAR:
3368			break;
3369
3370		case OVS_ACTION_ATTR_PUSH_ETH:
3371			/* Disallow pushing an Ethernet header if one
3372			 * is already present */
3373			if (mac_proto != MAC_PROTO_NONE)
3374				return -EINVAL;
3375			mac_proto = MAC_PROTO_ETHERNET;
3376			break;
3377
3378		case OVS_ACTION_ATTR_POP_ETH:
3379			if (mac_proto != MAC_PROTO_ETHERNET)
3380				return -EINVAL;
3381			if (vlan_tci & htons(VLAN_CFI_MASK))
3382				return -EINVAL;
3383			mac_proto = MAC_PROTO_NONE;
3384			break;
3385
3386		case OVS_ACTION_ATTR_PUSH_NSH:
3387			if (mac_proto != MAC_PROTO_ETHERNET) {
3388				u8 next_proto;
3389
3390				next_proto = tun_p_from_eth_p(eth_type);
3391				if (!next_proto)
3392					return -EINVAL;
3393			}
3394			mac_proto = MAC_PROTO_NONE;
3395			if (!validate_nsh(nla_data(a), false, true, true))
3396				return -EINVAL;
3397			break;
3398
3399		case OVS_ACTION_ATTR_POP_NSH: {
3400			__be16 inner_proto;
3401
3402			if (eth_type != htons(ETH_P_NSH))
3403				return -EINVAL;
3404			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3405			if (!inner_proto)
3406				return -EINVAL;
3407			if (key->nsh.base.np == TUN_P_ETHERNET)
3408				mac_proto = MAC_PROTO_ETHERNET;
3409			else
3410				mac_proto = MAC_PROTO_NONE;
3411			break;
3412		}
3413
3414		case OVS_ACTION_ATTR_METER:
3415			/* Non-existent meters are simply ignored.  */
3416			break;
3417
3418		case OVS_ACTION_ATTR_CLONE: {
3419			bool last = nla_is_last(a, rem);
3420
3421			err = validate_and_copy_clone(net, a, key, sfa,
3422						      eth_type, vlan_tci,
3423						      mpls_label_count,
3424						      log, last);
3425			if (err)
3426				return err;
3427			skip_copy = true;
3428			break;
3429		}
3430
3431		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3432			bool last = nla_is_last(a, rem);
3433
3434			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3435							      eth_type,
3436							      vlan_tci,
3437							      mpls_label_count,
3438							      log, last);
3439			if (err)
3440				return err;
3441			skip_copy = true;
3442			break;
3443		}
3444
3445		case OVS_ACTION_ATTR_DEC_TTL:
3446			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3447							eth_type, vlan_tci,
3448							mpls_label_count, log);
3449			if (err)
3450				return err;
3451			skip_copy = true;
3452			break;
3453
3454		default:
3455			OVS_NLERR(log, "Unknown Action type %d", type);
3456			return -EINVAL;
3457		}
3458		if (!skip_copy) {
3459			err = copy_action(a, sfa, log);
3460			if (err)
3461				return err;
3462		}
3463	}
3464
3465	if (rem > 0)
3466		return -EINVAL;
3467
3468	return 0;
3469}
3470
3471/* 'key' must be the masked key. */
3472int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3473			 const struct sw_flow_key *key,
3474			 struct sw_flow_actions **sfa, bool log)
3475{
3476	int err;
3477	u32 mpls_label_count = 0;
3478
3479	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3480	if (IS_ERR(*sfa))
3481		return PTR_ERR(*sfa);
3482
3483	if (eth_p_mpls(key->eth.type))
3484		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3485
3486	(*sfa)->orig_len = nla_len(attr);
3487	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3488				     key->eth.vlan.tci, mpls_label_count, log);
3489	if (err)
3490		ovs_nla_free_flow_actions(*sfa);
3491
3492	return err;
3493}
3494
3495static int sample_action_to_attr(const struct nlattr *attr,
3496				 struct sk_buff *skb)
3497{
3498	struct nlattr *start, *ac_start = NULL, *sample_arg;
3499	int err = 0, rem = nla_len(attr);
3500	const struct sample_arg *arg;
3501	struct nlattr *actions;
3502
3503	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3504	if (!start)
3505		return -EMSGSIZE;
3506
3507	sample_arg = nla_data(attr);
3508	arg = nla_data(sample_arg);
3509	actions = nla_next(sample_arg, &rem);
3510
3511	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3512		err = -EMSGSIZE;
3513		goto out;
3514	}
3515
3516	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3517	if (!ac_start) {
3518		err = -EMSGSIZE;
3519		goto out;
3520	}
3521
3522	err = ovs_nla_put_actions(actions, rem, skb);
3523
3524out:
3525	if (err) {
3526		nla_nest_cancel(skb, ac_start);
3527		nla_nest_cancel(skb, start);
3528	} else {
3529		nla_nest_end(skb, ac_start);
3530		nla_nest_end(skb, start);
3531	}
3532
3533	return err;
3534}
3535
3536static int clone_action_to_attr(const struct nlattr *attr,
3537				struct sk_buff *skb)
3538{
 
3539	struct nlattr *start;
3540	int err = 0, rem = nla_len(attr);
3541
3542	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3543	if (!start)
3544		return -EMSGSIZE;
3545
3546	/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3547	attr = nla_next(nla_data(attr), &rem);
3548	err = ovs_nla_put_actions(attr, rem, skb);
3549
3550	if (err)
3551		nla_nest_cancel(skb, start);
3552	else
3553		nla_nest_end(skb, start);
3554
3555	return err;
3556}
3557
3558static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3559					struct sk_buff *skb)
3560{
3561	struct nlattr *start, *ac_start = NULL;
3562	const struct check_pkt_len_arg *arg;
3563	const struct nlattr *a, *cpl_arg;
3564	int err = 0, rem = nla_len(attr);
3565
3566	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3567	if (!start)
3568		return -EMSGSIZE;
3569
3570	/* The first nested attribute in 'attr' is always
3571	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3572	 */
3573	cpl_arg = nla_data(attr);
3574	arg = nla_data(cpl_arg);
3575
3576	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3577		err = -EMSGSIZE;
3578		goto out;
3579	}
3580
3581	/* Second nested attribute in 'attr' is always
3582	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3583	 */
3584	a = nla_next(cpl_arg, &rem);
3585	ac_start =  nla_nest_start_noflag(skb,
3586					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3587	if (!ac_start) {
3588		err = -EMSGSIZE;
3589		goto out;
3590	}
3591
3592	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3593	if (err) {
3594		nla_nest_cancel(skb, ac_start);
3595		goto out;
3596	} else {
3597		nla_nest_end(skb, ac_start);
3598	}
3599
3600	/* Third nested attribute in 'attr' is always
3601	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3602	 */
3603	a = nla_next(a, &rem);
3604	ac_start =  nla_nest_start_noflag(skb,
3605					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3606	if (!ac_start) {
3607		err = -EMSGSIZE;
3608		goto out;
3609	}
3610
3611	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3612	if (err) {
3613		nla_nest_cancel(skb, ac_start);
3614		goto out;
3615	} else {
3616		nla_nest_end(skb, ac_start);
3617	}
3618
3619	nla_nest_end(skb, start);
3620	return 0;
3621
3622out:
3623	nla_nest_cancel(skb, start);
3624	return err;
3625}
3626
3627static int dec_ttl_action_to_attr(const struct nlattr *attr,
3628				  struct sk_buff *skb)
3629{
3630	struct nlattr *start, *action_start;
3631	const struct nlattr *a;
3632	int err = 0, rem;
3633
3634	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3635	if (!start)
3636		return -EMSGSIZE;
3637
3638	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3639		switch (nla_type(a)) {
3640		case OVS_DEC_TTL_ATTR_ACTION:
3641
3642			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3643			if (!action_start) {
3644				err = -EMSGSIZE;
3645				goto out;
3646			}
3647
 
 
 
 
 
 
 
 
 
 
3648			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3649			if (err)
3650				goto out;
3651
3652			nla_nest_end(skb, action_start);
3653			break;
3654
3655		default:
3656			/* Ignore all other option to be future compatible */
3657			break;
3658		}
3659	}
3660
3661	nla_nest_end(skb, start);
3662	return 0;
3663
3664out:
3665	nla_nest_cancel(skb, start);
3666	return err;
3667}
3668
3669static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3670{
3671	const struct nlattr *ovs_key = nla_data(a);
3672	int key_type = nla_type(ovs_key);
3673	struct nlattr *start;
3674	int err;
3675
3676	switch (key_type) {
3677	case OVS_KEY_ATTR_TUNNEL_INFO: {
3678		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3679		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3680
3681		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3682		if (!start)
3683			return -EMSGSIZE;
3684
3685		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3686					ip_tunnel_info_opts(tun_info),
3687					tun_info->options_len,
3688					ip_tunnel_info_af(tun_info), tun_info->mode);
3689		if (err)
3690			return err;
3691		nla_nest_end(skb, start);
3692		break;
3693	}
3694	default:
3695		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3696			return -EMSGSIZE;
3697		break;
3698	}
3699
3700	return 0;
3701}
3702
3703static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3704						struct sk_buff *skb)
3705{
3706	const struct nlattr *ovs_key = nla_data(a);
3707	struct nlattr *nla;
3708	size_t key_len = nla_len(ovs_key) / 2;
3709
3710	/* Revert the conversion we did from a non-masked set action to
3711	 * masked set action.
3712	 */
3713	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3714	if (!nla)
3715		return -EMSGSIZE;
3716
3717	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3718		return -EMSGSIZE;
3719
3720	nla_nest_end(skb, nla);
3721	return 0;
3722}
3723
3724int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3725{
3726	const struct nlattr *a;
3727	int rem, err;
3728
3729	nla_for_each_attr(a, attr, len, rem) {
3730		int type = nla_type(a);
3731
3732		switch (type) {
3733		case OVS_ACTION_ATTR_SET:
3734			err = set_action_to_attr(a, skb);
3735			if (err)
3736				return err;
3737			break;
3738
3739		case OVS_ACTION_ATTR_SET_TO_MASKED:
3740			err = masked_set_action_to_set_action_attr(a, skb);
3741			if (err)
3742				return err;
3743			break;
3744
3745		case OVS_ACTION_ATTR_SAMPLE:
3746			err = sample_action_to_attr(a, skb);
3747			if (err)
3748				return err;
3749			break;
3750
3751		case OVS_ACTION_ATTR_CT:
3752			err = ovs_ct_action_to_attr(nla_data(a), skb);
3753			if (err)
3754				return err;
3755			break;
3756
3757		case OVS_ACTION_ATTR_CLONE:
3758			err = clone_action_to_attr(a, skb);
3759			if (err)
3760				return err;
3761			break;
3762
3763		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3764			err = check_pkt_len_action_to_attr(a, skb);
3765			if (err)
3766				return err;
3767			break;
3768
3769		case OVS_ACTION_ATTR_DEC_TTL:
3770			err = dec_ttl_action_to_attr(a, skb);
3771			if (err)
3772				return err;
3773			break;
3774
3775		default:
3776			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3777				return -EMSGSIZE;
3778			break;
3779		}
3780	}
3781
3782	return 0;
3783}