Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include "flow.h"
  22#include "datapath.h"
  23#include <linux/uaccess.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/if_vlan.h>
  28#include <net/llc_pdu.h>
  29#include <linux/kernel.h>
  30#include <linux/jhash.h>
  31#include <linux/jiffies.h>
  32#include <linux/llc.h>
  33#include <linux/module.h>
  34#include <linux/in.h>
  35#include <linux/rcupdate.h>
  36#include <linux/if_arp.h>
  37#include <linux/ip.h>
  38#include <linux/ipv6.h>
  39#include <linux/sctp.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/icmpv6.h>
  44#include <linux/rculist.h>
  45#include <net/geneve.h>
  46#include <net/ip.h>
  47#include <net/ipv6.h>
  48#include <net/ndisc.h>
  49#include <net/mpls.h>
  50#include <net/vxlan.h>
 
 
  51
 
  52#include "flow_netlink.h"
  53
  54struct ovs_len_tbl {
  55	int len;
  56	const struct ovs_len_tbl *next;
  57};
  58
  59#define OVS_ATTR_NESTED -1
  60#define OVS_ATTR_VARIABLE -2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62static void update_range(struct sw_flow_match *match,
  63			 size_t offset, size_t size, bool is_mask)
  64{
  65	struct sw_flow_key_range *range;
  66	size_t start = rounddown(offset, sizeof(long));
  67	size_t end = roundup(offset + size, sizeof(long));
  68
  69	if (!is_mask)
  70		range = &match->range;
  71	else
  72		range = &match->mask->range;
  73
  74	if (range->start == range->end) {
  75		range->start = start;
  76		range->end = end;
  77		return;
  78	}
  79
  80	if (range->start > start)
  81		range->start = start;
  82
  83	if (range->end < end)
  84		range->end = end;
  85}
  86
  87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  88	do { \
  89		update_range(match, offsetof(struct sw_flow_key, field),    \
  90			     sizeof((match)->key->field), is_mask);	    \
  91		if (is_mask)						    \
  92			(match)->mask->key.field = value;		    \
  93		else							    \
  94			(match)->key->field = value;		            \
  95	} while (0)
  96
  97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
  98	do {								    \
  99		update_range(match, offset, len, is_mask);		    \
 100		if (is_mask)						    \
 101			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 102			       len);					   \
 103		else							    \
 104			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 105	} while (0)
 106
 107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 108	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 109				  value_p, len, is_mask)
 110
 111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 112	do {								    \
 113		update_range(match, offsetof(struct sw_flow_key, field),    \
 114			     sizeof((match)->key->field), is_mask);	    \
 115		if (is_mask)						    \
 116			memset((u8 *)&(match)->mask->key.field, value,      \
 117			       sizeof((match)->mask->key.field));	    \
 118		else							    \
 119			memset((u8 *)&(match)->key->field, value,           \
 120			       sizeof((match)->key->field));                \
 121	} while (0)
 122
 
 
 
 
 
 
 
 123static bool match_validate(const struct sw_flow_match *match,
 124			   u64 key_attrs, u64 mask_attrs, bool log)
 125{
 126	u64 key_expected = 0;
 127	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 128
 129	/* The following mask attributes allowed only if they
 130	 * pass the validation tests. */
 131	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 
 132			| (1 << OVS_KEY_ATTR_IPV6)
 
 133			| (1 << OVS_KEY_ATTR_TCP)
 134			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 135			| (1 << OVS_KEY_ATTR_UDP)
 136			| (1 << OVS_KEY_ATTR_SCTP)
 137			| (1 << OVS_KEY_ATTR_ICMP)
 138			| (1 << OVS_KEY_ATTR_ICMPV6)
 139			| (1 << OVS_KEY_ATTR_ARP)
 140			| (1 << OVS_KEY_ATTR_ND)
 141			| (1 << OVS_KEY_ATTR_MPLS));
 
 142
 143	/* Always allowed mask fields. */
 144	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 145		       | (1 << OVS_KEY_ATTR_IN_PORT)
 146		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 147
 148	/* Check key attributes. */
 149	if (match->key->eth.type == htons(ETH_P_ARP)
 150			|| match->key->eth.type == htons(ETH_P_RARP)) {
 151		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 152		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 153			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 154	}
 155
 156	if (eth_p_mpls(match->key->eth.type)) {
 157		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 158		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 159			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 160	}
 161
 162	if (match->key->eth.type == htons(ETH_P_IP)) {
 163		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 164		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 165			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 
 
 166
 167		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 168			if (match->key->ip.proto == IPPROTO_UDP) {
 169				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 170				if (match->mask && (match->mask->key.ip.proto == 0xff))
 171					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 172			}
 173
 174			if (match->key->ip.proto == IPPROTO_SCTP) {
 175				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 176				if (match->mask && (match->mask->key.ip.proto == 0xff))
 177					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 178			}
 179
 180			if (match->key->ip.proto == IPPROTO_TCP) {
 181				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 182				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 183				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 184					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 185					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 186				}
 187			}
 188
 189			if (match->key->ip.proto == IPPROTO_ICMP) {
 190				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 191				if (match->mask && (match->mask->key.ip.proto == 0xff))
 192					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 193			}
 194		}
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 199		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 
 
 201
 202		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 203			if (match->key->ip.proto == IPPROTO_UDP) {
 204				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 205				if (match->mask && (match->mask->key.ip.proto == 0xff))
 206					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 207			}
 208
 209			if (match->key->ip.proto == IPPROTO_SCTP) {
 210				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 211				if (match->mask && (match->mask->key.ip.proto == 0xff))
 212					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 213			}
 214
 215			if (match->key->ip.proto == IPPROTO_TCP) {
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 217				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 220					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 221				}
 222			}
 223
 224			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 225				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 226				if (match->mask && (match->mask->key.ip.proto == 0xff))
 227					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 228
 229				if (match->key->tp.src ==
 230						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 231				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 232					key_expected |= 1 << OVS_KEY_ATTR_ND;
 
 
 
 
 
 
 233					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 234						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 235				}
 236			}
 237		}
 238	}
 239
 
 
 
 
 
 
 
 
 240	if ((key_attrs & key_expected) != key_expected) {
 241		/* Key attributes check failed. */
 242		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 243			  (unsigned long long)key_attrs,
 244			  (unsigned long long)key_expected);
 245		return false;
 246	}
 247
 248	if ((mask_attrs & mask_allowed) != mask_attrs) {
 249		/* Mask attributes check failed. */
 250		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 251			  (unsigned long long)mask_attrs,
 252			  (unsigned long long)mask_allowed);
 253		return false;
 254	}
 255
 256	return true;
 257}
 258
 259size_t ovs_tun_key_attr_size(void)
 260{
 261	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 262	 * updating this function.
 263	 */
 264	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 265		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 266		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 267		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 268		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 269		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 270		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 271		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 272		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 273		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 
 274		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 275		 */
 276		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 277		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 278}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 280size_t ovs_key_attr_size(void)
 281{
 282	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 283	 * updating this function.
 284	 */
 285	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
 286
 287	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 288		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 289		  + ovs_tun_key_attr_size()
 290		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 291		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 292		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 293		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 294		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 295		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 296		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 297		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 
 
 
 298		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 299		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 300		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 301		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 302		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 303		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 304		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 305		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 
 306}
 307
 308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 309	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 310};
 311
 312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 313	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 314	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 315	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 316	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 317	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 318	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 319	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 320	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 321	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 322	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 323	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 324	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 325						.next = ovs_vxlan_ext_key_lens },
 326	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 327	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 
 
 
 
 
 
 
 
 
 328};
 329
 330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 332	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 333	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 334	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 335	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 336	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 337	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 338	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 339	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 340	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 341	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 342	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 343	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 344	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 345	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 346	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 347	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 348	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 349	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 350	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 351	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 352				     .next = ovs_tunnel_key_lens, },
 353	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 354	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 355	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 356	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 357	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 
 
 
 
 
 
 
 
 358};
 359
 360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 361{
 362	return expected_len == attr_len ||
 363	       expected_len == OVS_ATTR_NESTED ||
 364	       expected_len == OVS_ATTR_VARIABLE;
 365}
 366
 367static bool is_all_zero(const u8 *fp, size_t size)
 368{
 369	int i;
 370
 371	if (!fp)
 372		return false;
 373
 374	for (i = 0; i < size; i++)
 375		if (fp[i])
 376			return false;
 377
 378	return true;
 379}
 380
 381static int __parse_flow_nlattrs(const struct nlattr *attr,
 382				const struct nlattr *a[],
 383				u64 *attrsp, bool log, bool nz)
 384{
 385	const struct nlattr *nla;
 386	u64 attrs;
 387	int rem;
 388
 389	attrs = *attrsp;
 390	nla_for_each_nested(nla, attr, rem) {
 391		u16 type = nla_type(nla);
 392		int expected_len;
 393
 394		if (type > OVS_KEY_ATTR_MAX) {
 395			OVS_NLERR(log, "Key type %d is out of range max %d",
 396				  type, OVS_KEY_ATTR_MAX);
 397			return -EINVAL;
 398		}
 399
 400		if (attrs & (1 << type)) {
 
 
 
 
 
 
 
 401			OVS_NLERR(log, "Duplicate key (type %d).", type);
 402			return -EINVAL;
 403		}
 404
 405		expected_len = ovs_key_lens[type].len;
 406		if (!check_attr_len(nla_len(nla), expected_len)) {
 407			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 408				  type, nla_len(nla), expected_len);
 409			return -EINVAL;
 410		}
 411
 412		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 413			attrs |= 1 << type;
 414			a[type] = nla;
 415		}
 416	}
 417	if (rem) {
 418		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 419		return -EINVAL;
 420	}
 421
 422	*attrsp = attrs;
 423	return 0;
 424}
 425
 426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 427				   const struct nlattr *a[], u64 *attrsp,
 428				   bool log)
 429{
 430	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 431}
 432
 433static int parse_flow_nlattrs(const struct nlattr *attr,
 434			      const struct nlattr *a[], u64 *attrsp,
 435			      bool log)
 436{
 437	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 438}
 439
 440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 441				     struct sw_flow_match *match, bool is_mask,
 442				     bool log)
 443{
 444	unsigned long opt_key_offset;
 445
 446	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 447		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 448			  nla_len(a), sizeof(match->key->tun_opts));
 449		return -EINVAL;
 450	}
 451
 452	if (nla_len(a) % 4 != 0) {
 453		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 454			  nla_len(a));
 455		return -EINVAL;
 456	}
 457
 458	/* We need to record the length of the options passed
 459	 * down, otherwise packets with the same format but
 460	 * additional options will be silently matched.
 461	 */
 462	if (!is_mask) {
 463		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 464				false);
 465	} else {
 466		/* This is somewhat unusual because it looks at
 467		 * both the key and mask while parsing the
 468		 * attributes (and by extension assumes the key
 469		 * is parsed first). Normally, we would verify
 470		 * that each is the correct length and that the
 471		 * attributes line up in the validate function.
 472		 * However, that is difficult because this is
 473		 * variable length and we won't have the
 474		 * information later.
 475		 */
 476		if (match->key->tun_opts_len != nla_len(a)) {
 477			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 478				  match->key->tun_opts_len, nla_len(a));
 479			return -EINVAL;
 480		}
 481
 482		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 483	}
 484
 485	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 486	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 487				  nla_len(a), is_mask);
 488	return 0;
 489}
 490
 491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 492				     struct sw_flow_match *match, bool is_mask,
 493				     bool log)
 494{
 495	struct nlattr *a;
 496	int rem;
 497	unsigned long opt_key_offset;
 498	struct vxlan_metadata opts;
 499
 500	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 501
 502	memset(&opts, 0, sizeof(opts));
 503	nla_for_each_nested(a, attr, rem) {
 504		int type = nla_type(a);
 505
 506		if (type > OVS_VXLAN_EXT_MAX) {
 507			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 508				  type, OVS_VXLAN_EXT_MAX);
 509			return -EINVAL;
 510		}
 511
 512		if (!check_attr_len(nla_len(a),
 513				    ovs_vxlan_ext_key_lens[type].len)) {
 514			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 515				  type, nla_len(a),
 516				  ovs_vxlan_ext_key_lens[type].len);
 517			return -EINVAL;
 518		}
 519
 520		switch (type) {
 521		case OVS_VXLAN_EXT_GBP:
 522			opts.gbp = nla_get_u32(a);
 523			break;
 524		default:
 525			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 526				  type);
 527			return -EINVAL;
 528		}
 529	}
 530	if (rem) {
 531		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 532			  rem);
 533		return -EINVAL;
 534	}
 535
 536	if (!is_mask)
 537		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 538	else
 539		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 540
 541	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 542	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 543				  is_mask);
 544	return 0;
 545}
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547static int ip_tun_from_nlattr(const struct nlattr *attr,
 548			      struct sw_flow_match *match, bool is_mask,
 549			      bool log)
 550{
 551	bool ttl = false, ipv4 = false, ipv6 = false;
 552	__be16 tun_flags = 0;
 
 553	int opts_type = 0;
 554	struct nlattr *a;
 555	int rem;
 556
 557	nla_for_each_nested(a, attr, rem) {
 558		int type = nla_type(a);
 559		int err;
 560
 561		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 562			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 563				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 564			return -EINVAL;
 565		}
 566
 567		if (!check_attr_len(nla_len(a),
 568				    ovs_tunnel_key_lens[type].len)) {
 569			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 570				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 571			return -EINVAL;
 572		}
 573
 574		switch (type) {
 575		case OVS_TUNNEL_KEY_ATTR_ID:
 576			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 577					nla_get_be64(a), is_mask);
 578			tun_flags |= TUNNEL_KEY;
 579			break;
 580		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 581			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 582					nla_get_in_addr(a), is_mask);
 583			ipv4 = true;
 584			break;
 585		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 586			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 587					nla_get_in_addr(a), is_mask);
 588			ipv4 = true;
 589			break;
 590		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 591			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 592					nla_get_in6_addr(a), is_mask);
 593			ipv6 = true;
 594			break;
 595		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 596			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 597					nla_get_in6_addr(a), is_mask);
 598			ipv6 = true;
 599			break;
 600		case OVS_TUNNEL_KEY_ATTR_TOS:
 601			SW_FLOW_KEY_PUT(match, tun_key.tos,
 602					nla_get_u8(a), is_mask);
 603			break;
 604		case OVS_TUNNEL_KEY_ATTR_TTL:
 605			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 606					nla_get_u8(a), is_mask);
 607			ttl = true;
 608			break;
 609		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 610			tun_flags |= TUNNEL_DONT_FRAGMENT;
 611			break;
 612		case OVS_TUNNEL_KEY_ATTR_CSUM:
 613			tun_flags |= TUNNEL_CSUM;
 614			break;
 615		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 616			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 617					nla_get_be16(a), is_mask);
 618			break;
 619		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 620			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 621					nla_get_be16(a), is_mask);
 622			break;
 623		case OVS_TUNNEL_KEY_ATTR_OAM:
 624			tun_flags |= TUNNEL_OAM;
 625			break;
 626		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 627			if (opts_type) {
 628				OVS_NLERR(log, "Multiple metadata blocks provided");
 629				return -EINVAL;
 630			}
 631
 632			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 633			if (err)
 634				return err;
 635
 636			tun_flags |= TUNNEL_GENEVE_OPT;
 637			opts_type = type;
 638			break;
 639		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 640			if (opts_type) {
 641				OVS_NLERR(log, "Multiple metadata blocks provided");
 642				return -EINVAL;
 643			}
 644
 645			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 646			if (err)
 647				return err;
 648
 649			tun_flags |= TUNNEL_VXLAN_OPT;
 650			opts_type = type;
 651			break;
 652		case OVS_TUNNEL_KEY_ATTR_PAD:
 653			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654		default:
 655			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 656				  type);
 657			return -EINVAL;
 658		}
 659	}
 660
 661	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 
 662	if (is_mask)
 663		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 664	else
 665		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 666				false);
 667
 668	if (rem > 0) {
 669		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 670			  rem);
 671		return -EINVAL;
 672	}
 673
 674	if (ipv4 && ipv6) {
 675		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 676		return -EINVAL;
 677	}
 678
 679	if (!is_mask) {
 680		if (!ipv4 && !ipv6) {
 681			OVS_NLERR(log, "IP tunnel dst address not specified");
 682			return -EINVAL;
 683		}
 684		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
 685			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 686			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687		}
 688		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 689			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 690			return -EINVAL;
 691		}
 692
 693		if (!ttl) {
 694			OVS_NLERR(log, "IP tunnel TTL not specified.");
 695			return -EINVAL;
 696		}
 697	}
 698
 699	return opts_type;
 700}
 701
 702static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 703			       const void *tun_opts, int swkey_tun_opts_len)
 704{
 705	const struct vxlan_metadata *opts = tun_opts;
 706	struct nlattr *nla;
 707
 708	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 709	if (!nla)
 710		return -EMSGSIZE;
 711
 712	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 713		return -EMSGSIZE;
 714
 715	nla_nest_end(skb, nla);
 716	return 0;
 717}
 718
 719static int __ip_tun_to_nlattr(struct sk_buff *skb,
 720			      const struct ip_tunnel_key *output,
 721			      const void *tun_opts, int swkey_tun_opts_len,
 722			      unsigned short tun_proto)
 723{
 724	if (output->tun_flags & TUNNEL_KEY &&
 725	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 726			 OVS_TUNNEL_KEY_ATTR_PAD))
 727		return -EMSGSIZE;
 
 
 
 
 
 728	switch (tun_proto) {
 729	case AF_INET:
 730		if (output->u.ipv4.src &&
 731		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 732				    output->u.ipv4.src))
 733			return -EMSGSIZE;
 734		if (output->u.ipv4.dst &&
 735		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 736				    output->u.ipv4.dst))
 737			return -EMSGSIZE;
 738		break;
 739	case AF_INET6:
 740		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 741		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 742				     &output->u.ipv6.src))
 743			return -EMSGSIZE;
 744		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 745		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 746				     &output->u.ipv6.dst))
 747			return -EMSGSIZE;
 748		break;
 749	}
 750	if (output->tos &&
 751	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 752		return -EMSGSIZE;
 753	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 754		return -EMSGSIZE;
 755	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 756	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 757		return -EMSGSIZE;
 758	if ((output->tun_flags & TUNNEL_CSUM) &&
 759	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 760		return -EMSGSIZE;
 761	if (output->tp_src &&
 762	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 763		return -EMSGSIZE;
 764	if (output->tp_dst &&
 765	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 766		return -EMSGSIZE;
 767	if ((output->tun_flags & TUNNEL_OAM) &&
 768	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 769		return -EMSGSIZE;
 770	if (swkey_tun_opts_len) {
 771		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 772		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 773			    swkey_tun_opts_len, tun_opts))
 774			return -EMSGSIZE;
 775		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 
 776			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 777			return -EMSGSIZE;
 
 
 
 
 
 778	}
 779
 780	return 0;
 781}
 782
 783static int ip_tun_to_nlattr(struct sk_buff *skb,
 784			    const struct ip_tunnel_key *output,
 785			    const void *tun_opts, int swkey_tun_opts_len,
 786			    unsigned short tun_proto)
 787{
 788	struct nlattr *nla;
 789	int err;
 790
 791	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 792	if (!nla)
 793		return -EMSGSIZE;
 794
 795	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 796				 tun_proto);
 797	if (err)
 798		return err;
 799
 800	nla_nest_end(skb, nla);
 801	return 0;
 802}
 803
 804int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 805			    struct ip_tunnel_info *tun_info)
 806{
 807	return __ip_tun_to_nlattr(skb, &tun_info->key,
 808				  ip_tunnel_info_opts(tun_info),
 809				  tun_info->options_len,
 810				  ip_tunnel_info_af(tun_info));
 811}
 812
 813static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 814				    const struct nlattr *a[],
 815				    bool is_mask, bool inner)
 816{
 817	__be16 tci = 0;
 818	__be16 tpid = 0;
 819
 820	if (a[OVS_KEY_ATTR_VLAN])
 821		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 822
 823	if (a[OVS_KEY_ATTR_ETHERTYPE])
 824		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 825
 826	if (likely(!inner)) {
 827		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 828		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 829	} else {
 830		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 831		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 832	}
 833	return 0;
 834}
 835
 836static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 837				      u64 key_attrs, bool inner,
 838				      const struct nlattr **a, bool log)
 839{
 840	__be16 tci = 0;
 841
 842	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 843	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 844	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 845		/* Not a VLAN. */
 846		return 0;
 847	}
 848
 849	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 850	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 851		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
 852		return -EINVAL;
 853	}
 854
 855	if (a[OVS_KEY_ATTR_VLAN])
 856		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 857
 858	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 859		if (tci) {
 860			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
 861				  (inner) ? "C-VLAN" : "VLAN");
 862			return -EINVAL;
 863		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
 864			/* Corner case for truncated VLAN header. */
 865			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
 866				  (inner) ? "C-VLAN" : "VLAN");
 867			return -EINVAL;
 868		}
 869	}
 870
 871	return 1;
 872}
 873
 874static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
 875					   u64 key_attrs, bool inner,
 876					   const struct nlattr **a, bool log)
 877{
 878	__be16 tci = 0;
 879	__be16 tpid = 0;
 880	bool encap_valid = !!(match->key->eth.vlan.tci &
 881			      htons(VLAN_TAG_PRESENT));
 882	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
 883				htons(VLAN_TAG_PRESENT));
 884
 885	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
 886		/* Not a VLAN. */
 887		return 0;
 888	}
 889
 890	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
 891		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
 892			  (inner) ? "C-VLAN" : "VLAN");
 893		return -EINVAL;
 894	}
 895
 896	if (a[OVS_KEY_ATTR_VLAN])
 897		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 898
 899	if (a[OVS_KEY_ATTR_ETHERTYPE])
 900		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 901
 902	if (tpid != htons(0xffff)) {
 903		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
 904			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
 905		return -EINVAL;
 906	}
 907	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 908		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
 909			  (inner) ? "C-VLAN" : "VLAN");
 910		return -EINVAL;
 911	}
 912
 913	return 1;
 914}
 915
 916static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
 917				     u64 *key_attrs, bool inner,
 918				     const struct nlattr **a, bool is_mask,
 919				     bool log)
 920{
 921	int err;
 922	const struct nlattr *encap;
 923
 924	if (!is_mask)
 925		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
 926						 a, log);
 927	else
 928		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
 929						      a, log);
 930	if (err <= 0)
 931		return err;
 932
 933	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
 934	if (err)
 935		return err;
 936
 937	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 938	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 939	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 940
 941	encap = a[OVS_KEY_ATTR_ENCAP];
 942
 943	if (!is_mask)
 944		err = parse_flow_nlattrs(encap, a, key_attrs, log);
 945	else
 946		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
 947
 948	return err;
 949}
 950
 951static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
 952				   u64 *key_attrs, const struct nlattr **a,
 953				   bool is_mask, bool log)
 954{
 955	int err;
 956	bool encap_valid = false;
 957
 958	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
 959					is_mask, log);
 960	if (err)
 961		return err;
 962
 963	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
 964	if (encap_valid) {
 965		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
 966						is_mask, log);
 967		if (err)
 968			return err;
 969	}
 970
 971	return 0;
 972}
 973
 974static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
 975				       u64 *attrs, const struct nlattr **a,
 976				       bool is_mask, bool log)
 977{
 978	__be16 eth_type;
 979
 980	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 981	if (is_mask) {
 982		/* Always exact match EtherType. */
 983		eth_type = htons(0xffff);
 984	} else if (!eth_proto_is_802_3(eth_type)) {
 985		OVS_NLERR(log, "EtherType %x is less than min %x",
 986				ntohs(eth_type), ETH_P_802_3_MIN);
 987		return -EINVAL;
 988	}
 989
 990	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 991	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 992	return 0;
 993}
 994
 995static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
 996				 u64 *attrs, const struct nlattr **a,
 997				 bool is_mask, bool log)
 998{
 999	u8 mac_proto = MAC_PROTO_ETHERNET;
1000
1001	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1002		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1003
1004		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1005		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1006	}
1007
1008	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1009		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1010
1011		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1012		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1013	}
1014
1015	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1016		SW_FLOW_KEY_PUT(match, phy.priority,
1017			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1018		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1019	}
1020
1021	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1022		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1023
1024		if (is_mask) {
1025			in_port = 0xffffffff; /* Always exact match in_port. */
1026		} else if (in_port >= DP_MAX_PORTS) {
1027			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1028				  in_port, DP_MAX_PORTS);
1029			return -EINVAL;
1030		}
1031
1032		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1033		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1034	} else if (!is_mask) {
1035		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1036	}
1037
1038	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1039		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1040
1041		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1042		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1043	}
1044	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1045		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1046				       is_mask, log) < 0)
1047			return -EINVAL;
1048		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1049	}
1050
1051	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1052	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1053		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1054
1055		if (ct_state & ~CT_SUPPORTED_MASK) {
1056			OVS_NLERR(log, "ct_state flags %08x unsupported",
1057				  ct_state);
1058			return -EINVAL;
1059		}
1060
1061		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1062		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1063	}
1064	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1065	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1066		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1067
1068		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1069		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1070	}
1071	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1072	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1073		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1074
1075		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1076		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1077	}
1078	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1079	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1080		const struct ovs_key_ct_labels *cl;
1081
1082		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1083		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1084				   sizeof(*cl), is_mask);
1085		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1086	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088	/* For layer 3 packets the Ethernet type is provided
1089	 * and treated as metadata but no MAC addresses are provided.
1090	 */
1091	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1092	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1093		mac_proto = MAC_PROTO_NONE;
1094
1095	/* Always exact match mac_proto */
1096	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1097
1098	if (mac_proto == MAC_PROTO_NONE)
1099		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1100						   log);
1101
1102	return 0;
1103}
1104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1106				u64 attrs, const struct nlattr **a,
1107				bool is_mask, bool log)
1108{
1109	int err;
1110
1111	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1112	if (err)
1113		return err;
1114
1115	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1116		const struct ovs_key_ethernet *eth_key;
1117
1118		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1119		SW_FLOW_KEY_MEMCPY(match, eth.src,
1120				eth_key->eth_src, ETH_ALEN, is_mask);
1121		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1122				eth_key->eth_dst, ETH_ALEN, is_mask);
1123		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1124
1125		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1126			/* VLAN attribute is always parsed before getting here since it
1127			 * may occur multiple times.
1128			 */
1129			OVS_NLERR(log, "VLAN attribute unexpected.");
1130			return -EINVAL;
1131		}
1132
1133		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1134			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1135							  log);
1136			if (err)
1137				return err;
1138		} else if (!is_mask) {
1139			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1140		}
1141	} else if (!match->key->eth.type) {
1142		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1143		return -EINVAL;
1144	}
1145
1146	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1147		const struct ovs_key_ipv4 *ipv4_key;
1148
1149		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1150		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1151			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1152				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1153			return -EINVAL;
1154		}
1155		SW_FLOW_KEY_PUT(match, ip.proto,
1156				ipv4_key->ipv4_proto, is_mask);
1157		SW_FLOW_KEY_PUT(match, ip.tos,
1158				ipv4_key->ipv4_tos, is_mask);
1159		SW_FLOW_KEY_PUT(match, ip.ttl,
1160				ipv4_key->ipv4_ttl, is_mask);
1161		SW_FLOW_KEY_PUT(match, ip.frag,
1162				ipv4_key->ipv4_frag, is_mask);
1163		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1164				ipv4_key->ipv4_src, is_mask);
1165		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1166				ipv4_key->ipv4_dst, is_mask);
1167		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1168	}
1169
1170	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1171		const struct ovs_key_ipv6 *ipv6_key;
1172
1173		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1174		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1175			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1176				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1177			return -EINVAL;
1178		}
1179
1180		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1181			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1182				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1183			return -EINVAL;
1184		}
1185
1186		SW_FLOW_KEY_PUT(match, ipv6.label,
1187				ipv6_key->ipv6_label, is_mask);
1188		SW_FLOW_KEY_PUT(match, ip.proto,
1189				ipv6_key->ipv6_proto, is_mask);
1190		SW_FLOW_KEY_PUT(match, ip.tos,
1191				ipv6_key->ipv6_tclass, is_mask);
1192		SW_FLOW_KEY_PUT(match, ip.ttl,
1193				ipv6_key->ipv6_hlimit, is_mask);
1194		SW_FLOW_KEY_PUT(match, ip.frag,
1195				ipv6_key->ipv6_frag, is_mask);
1196		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1197				ipv6_key->ipv6_src,
1198				sizeof(match->key->ipv6.addr.src),
1199				is_mask);
1200		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1201				ipv6_key->ipv6_dst,
1202				sizeof(match->key->ipv6.addr.dst),
1203				is_mask);
1204
1205		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1206	}
1207
 
 
 
 
 
 
 
 
 
 
 
1208	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1209		const struct ovs_key_arp *arp_key;
1210
1211		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1212		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1213			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1214				  arp_key->arp_op);
1215			return -EINVAL;
1216		}
1217
1218		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1219				arp_key->arp_sip, is_mask);
1220		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1221			arp_key->arp_tip, is_mask);
1222		SW_FLOW_KEY_PUT(match, ip.proto,
1223				ntohs(arp_key->arp_op), is_mask);
1224		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1225				arp_key->arp_sha, ETH_ALEN, is_mask);
1226		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1227				arp_key->arp_tha, ETH_ALEN, is_mask);
1228
1229		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1230	}
1231
 
 
 
 
 
 
 
1232	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1233		const struct ovs_key_mpls *mpls_key;
 
 
1234
1235		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1236		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1237				mpls_key->mpls_lse, is_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
1238
1239		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1240	 }
1241
1242	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1243		const struct ovs_key_tcp *tcp_key;
1244
1245		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1246		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1247		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1248		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1249	}
1250
1251	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1252		SW_FLOW_KEY_PUT(match, tp.flags,
1253				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1254				is_mask);
1255		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1256	}
1257
1258	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1259		const struct ovs_key_udp *udp_key;
1260
1261		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1262		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1263		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1264		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1265	}
1266
1267	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1268		const struct ovs_key_sctp *sctp_key;
1269
1270		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1271		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1272		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1273		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1274	}
1275
1276	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1277		const struct ovs_key_icmp *icmp_key;
1278
1279		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1280		SW_FLOW_KEY_PUT(match, tp.src,
1281				htons(icmp_key->icmp_type), is_mask);
1282		SW_FLOW_KEY_PUT(match, tp.dst,
1283				htons(icmp_key->icmp_code), is_mask);
1284		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1285	}
1286
1287	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1288		const struct ovs_key_icmpv6 *icmpv6_key;
1289
1290		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1291		SW_FLOW_KEY_PUT(match, tp.src,
1292				htons(icmpv6_key->icmpv6_type), is_mask);
1293		SW_FLOW_KEY_PUT(match, tp.dst,
1294				htons(icmpv6_key->icmpv6_code), is_mask);
1295		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1296	}
1297
1298	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1299		const struct ovs_key_nd *nd_key;
1300
1301		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1302		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1303			nd_key->nd_target,
1304			sizeof(match->key->ipv6.nd.target),
1305			is_mask);
1306		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1307			nd_key->nd_sll, ETH_ALEN, is_mask);
1308		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1309				nd_key->nd_tll, ETH_ALEN, is_mask);
1310		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1311	}
1312
1313	if (attrs != 0) {
1314		OVS_NLERR(log, "Unknown key attributes %llx",
1315			  (unsigned long long)attrs);
1316		return -EINVAL;
1317	}
1318
1319	return 0;
1320}
1321
1322static void nlattr_set(struct nlattr *attr, u8 val,
1323		       const struct ovs_len_tbl *tbl)
1324{
1325	struct nlattr *nla;
1326	int rem;
1327
1328	/* The nlattr stream should already have been validated */
1329	nla_for_each_nested(nla, attr, rem) {
1330		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1331			if (tbl[nla_type(nla)].next)
1332				tbl = tbl[nla_type(nla)].next;
1333			nlattr_set(nla, val, tbl);
1334		} else {
1335			memset(nla_data(nla), val, nla_len(nla));
1336		}
1337
1338		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1339			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1340	}
1341}
1342
1343static void mask_set_nlattr(struct nlattr *attr, u8 val)
1344{
1345	nlattr_set(attr, val, ovs_key_lens);
1346}
1347
1348/**
1349 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1350 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1351 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1352 * does not include any don't care bit.
1353 * @net: Used to determine per-namespace field support.
1354 * @match: receives the extracted flow match information.
1355 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1356 * sequence. The fields should of the packet that triggered the creation
1357 * of this flow.
1358 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1359 * attribute specifies the mask field of the wildcarded flow.
1360 * @log: Boolean to allow kernel error logging.  Normally true, but when
1361 * probing for feature compatibility this should be passed in as false to
1362 * suppress unnecessary error logging.
1363 */
1364int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1365		      const struct nlattr *nla_key,
1366		      const struct nlattr *nla_mask,
1367		      bool log)
1368{
1369	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1370	struct nlattr *newmask = NULL;
1371	u64 key_attrs = 0;
1372	u64 mask_attrs = 0;
1373	int err;
1374
1375	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1376	if (err)
1377		return err;
1378
1379	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1380	if (err)
1381		return err;
1382
1383	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1384	if (err)
1385		return err;
1386
1387	if (match->mask) {
1388		if (!nla_mask) {
1389			/* Create an exact match mask. We need to set to 0xff
1390			 * all the 'match->mask' fields that have been touched
1391			 * in 'match->key'. We cannot simply memset
1392			 * 'match->mask', because padding bytes and fields not
1393			 * specified in 'match->key' should be left to 0.
1394			 * Instead, we use a stream of netlink attributes,
1395			 * copied from 'key' and set to 0xff.
1396			 * ovs_key_from_nlattrs() will take care of filling
1397			 * 'match->mask' appropriately.
1398			 */
1399			newmask = kmemdup(nla_key,
1400					  nla_total_size(nla_len(nla_key)),
1401					  GFP_KERNEL);
1402			if (!newmask)
1403				return -ENOMEM;
1404
1405			mask_set_nlattr(newmask, 0xff);
1406
1407			/* The userspace does not send tunnel attributes that
1408			 * are 0, but we should not wildcard them nonetheless.
1409			 */
1410			if (match->key->tun_proto)
1411				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1412							 0xff, true);
1413
1414			nla_mask = newmask;
1415		}
1416
1417		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1418		if (err)
1419			goto free_newmask;
1420
1421		/* Always match on tci. */
1422		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1423		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1424
1425		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1426		if (err)
1427			goto free_newmask;
1428
1429		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1430					   log);
1431		if (err)
1432			goto free_newmask;
1433	}
1434
1435	if (!match_validate(match, key_attrs, mask_attrs, log))
1436		err = -EINVAL;
1437
1438free_newmask:
1439	kfree(newmask);
1440	return err;
1441}
1442
1443static size_t get_ufid_len(const struct nlattr *attr, bool log)
1444{
1445	size_t len;
1446
1447	if (!attr)
1448		return 0;
1449
1450	len = nla_len(attr);
1451	if (len < 1 || len > MAX_UFID_LENGTH) {
1452		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1453			  nla_len(attr), MAX_UFID_LENGTH);
1454		return 0;
1455	}
1456
1457	return len;
1458}
1459
1460/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1461 * or false otherwise.
1462 */
1463bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1464		      bool log)
1465{
1466	sfid->ufid_len = get_ufid_len(attr, log);
1467	if (sfid->ufid_len)
1468		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1469
1470	return sfid->ufid_len;
1471}
1472
1473int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1474			   const struct sw_flow_key *key, bool log)
1475{
1476	struct sw_flow_key *new_key;
1477
1478	if (ovs_nla_get_ufid(sfid, ufid, log))
1479		return 0;
1480
1481	/* If UFID was not provided, use unmasked key. */
1482	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1483	if (!new_key)
1484		return -ENOMEM;
1485	memcpy(new_key, key, sizeof(*key));
1486	sfid->unmasked_key = new_key;
1487
1488	return 0;
1489}
1490
1491u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1492{
1493	return attr ? nla_get_u32(attr) : 0;
1494}
1495
1496/**
1497 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1498 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1499 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1500 * sequence.
 
 
 
1501 * @log: Boolean to allow kernel error logging.  Normally true, but when
1502 * probing for feature compatibility this should be passed in as false to
1503 * suppress unnecessary error logging.
1504 *
1505 * This parses a series of Netlink attributes that form a flow key, which must
1506 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1507 * get the metadata, that is, the parts of the flow key that cannot be
1508 * extracted from the packet itself.
 
 
1509 */
1510
1511int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1512			      struct sw_flow_key *key,
1513			      bool log)
1514{
1515	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1516	struct sw_flow_match match;
1517	u64 attrs = 0;
1518	int err;
1519
1520	err = parse_flow_nlattrs(attr, a, &attrs, log);
1521	if (err)
1522		return -EINVAL;
1523
1524	memset(&match, 0, sizeof(match));
1525	match.key = key;
1526
 
 
 
1527	memset(&key->ct, 0, sizeof(key->ct));
 
 
 
1528	key->phy.in_port = DP_MAX_PORTS;
1529
1530	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1531}
1532
1533static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1534			    bool is_mask)
1535{
1536	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1537
1538	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1539	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1540		return -EMSGSIZE;
1541	return 0;
1542}
1543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1545			     const struct sw_flow_key *output, bool is_mask,
1546			     struct sk_buff *skb)
1547{
1548	struct ovs_key_ethernet *eth_key;
1549	struct nlattr *nla;
1550	struct nlattr *encap = NULL;
1551	struct nlattr *in_encap = NULL;
1552
1553	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1554		goto nla_put_failure;
1555
1556	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1557		goto nla_put_failure;
1558
1559	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1560		goto nla_put_failure;
1561
1562	if ((swkey->tun_proto || is_mask)) {
1563		const void *opts = NULL;
1564
1565		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1566			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1567
1568		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1569				     swkey->tun_opts_len, swkey->tun_proto))
1570			goto nla_put_failure;
1571	}
1572
1573	if (swkey->phy.in_port == DP_MAX_PORTS) {
1574		if (is_mask && (output->phy.in_port == 0xffff))
1575			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1576				goto nla_put_failure;
1577	} else {
1578		u16 upper_u16;
1579		upper_u16 = !is_mask ? 0 : 0xffff;
1580
1581		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1582				(upper_u16 << 16) | output->phy.in_port))
1583			goto nla_put_failure;
1584	}
1585
1586	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1587		goto nla_put_failure;
1588
1589	if (ovs_ct_put_key(output, skb))
1590		goto nla_put_failure;
1591
1592	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1593		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1594		if (!nla)
1595			goto nla_put_failure;
1596
1597		eth_key = nla_data(nla);
1598		ether_addr_copy(eth_key->eth_src, output->eth.src);
1599		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1600
1601		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1602			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1603				goto nla_put_failure;
1604			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1605			if (!swkey->eth.vlan.tci)
1606				goto unencap;
1607
1608			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1609				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1610					goto nla_put_failure;
1611				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
 
1612				if (!swkey->eth.cvlan.tci)
1613					goto unencap;
1614			}
1615		}
1616
1617		if (swkey->eth.type == htons(ETH_P_802_2)) {
1618			/*
1619			* Ethertype 802.2 is represented in the netlink with omitted
1620			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1621			* 0xffff in the mask attribute.  Ethertype can also
1622			* be wildcarded.
1623			*/
1624			if (is_mask && output->eth.type)
1625				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1626							output->eth.type))
1627					goto nla_put_failure;
1628			goto unencap;
1629		}
1630	}
1631
1632	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1633		goto nla_put_failure;
1634
1635	if (eth_type_vlan(swkey->eth.type)) {
1636		/* There are 3 VLAN tags, we don't know anything about the rest
1637		 * of the packet, so truncate here.
1638		 */
1639		WARN_ON_ONCE(!(encap && in_encap));
1640		goto unencap;
1641	}
1642
1643	if (swkey->eth.type == htons(ETH_P_IP)) {
1644		struct ovs_key_ipv4 *ipv4_key;
1645
1646		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1647		if (!nla)
1648			goto nla_put_failure;
1649		ipv4_key = nla_data(nla);
1650		ipv4_key->ipv4_src = output->ipv4.addr.src;
1651		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1652		ipv4_key->ipv4_proto = output->ip.proto;
1653		ipv4_key->ipv4_tos = output->ip.tos;
1654		ipv4_key->ipv4_ttl = output->ip.ttl;
1655		ipv4_key->ipv4_frag = output->ip.frag;
1656	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1657		struct ovs_key_ipv6 *ipv6_key;
 
1658
1659		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1660		if (!nla)
1661			goto nla_put_failure;
1662		ipv6_key = nla_data(nla);
1663		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1664				sizeof(ipv6_key->ipv6_src));
1665		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1666				sizeof(ipv6_key->ipv6_dst));
1667		ipv6_key->ipv6_label = output->ipv6.label;
1668		ipv6_key->ipv6_proto = output->ip.proto;
1669		ipv6_key->ipv6_tclass = output->ip.tos;
1670		ipv6_key->ipv6_hlimit = output->ip.ttl;
1671		ipv6_key->ipv6_frag = output->ip.frag;
 
 
 
 
 
 
 
 
 
 
1672	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1673		   swkey->eth.type == htons(ETH_P_RARP)) {
1674		struct ovs_key_arp *arp_key;
1675
1676		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1677		if (!nla)
1678			goto nla_put_failure;
1679		arp_key = nla_data(nla);
1680		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1681		arp_key->arp_sip = output->ipv4.addr.src;
1682		arp_key->arp_tip = output->ipv4.addr.dst;
1683		arp_key->arp_op = htons(output->ip.proto);
1684		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1685		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1686	} else if (eth_p_mpls(swkey->eth.type)) {
 
1687		struct ovs_key_mpls *mpls_key;
1688
1689		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
 
 
1690		if (!nla)
1691			goto nla_put_failure;
 
1692		mpls_key = nla_data(nla);
1693		mpls_key->mpls_lse = output->mpls.top_lse;
 
1694	}
1695
1696	if ((swkey->eth.type == htons(ETH_P_IP) ||
1697	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1698	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1699
1700		if (swkey->ip.proto == IPPROTO_TCP) {
1701			struct ovs_key_tcp *tcp_key;
1702
1703			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1704			if (!nla)
1705				goto nla_put_failure;
1706			tcp_key = nla_data(nla);
1707			tcp_key->tcp_src = output->tp.src;
1708			tcp_key->tcp_dst = output->tp.dst;
1709			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1710					 output->tp.flags))
1711				goto nla_put_failure;
1712		} else if (swkey->ip.proto == IPPROTO_UDP) {
1713			struct ovs_key_udp *udp_key;
1714
1715			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1716			if (!nla)
1717				goto nla_put_failure;
1718			udp_key = nla_data(nla);
1719			udp_key->udp_src = output->tp.src;
1720			udp_key->udp_dst = output->tp.dst;
1721		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1722			struct ovs_key_sctp *sctp_key;
1723
1724			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1725			if (!nla)
1726				goto nla_put_failure;
1727			sctp_key = nla_data(nla);
1728			sctp_key->sctp_src = output->tp.src;
1729			sctp_key->sctp_dst = output->tp.dst;
1730		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1731			   swkey->ip.proto == IPPROTO_ICMP) {
1732			struct ovs_key_icmp *icmp_key;
1733
1734			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1735			if (!nla)
1736				goto nla_put_failure;
1737			icmp_key = nla_data(nla);
1738			icmp_key->icmp_type = ntohs(output->tp.src);
1739			icmp_key->icmp_code = ntohs(output->tp.dst);
1740		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1741			   swkey->ip.proto == IPPROTO_ICMPV6) {
1742			struct ovs_key_icmpv6 *icmpv6_key;
1743
1744			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1745						sizeof(*icmpv6_key));
1746			if (!nla)
1747				goto nla_put_failure;
1748			icmpv6_key = nla_data(nla);
1749			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1750			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1751
1752			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1753			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1754				struct ovs_key_nd *nd_key;
1755
1756				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1757				if (!nla)
1758					goto nla_put_failure;
1759				nd_key = nla_data(nla);
1760				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1761							sizeof(nd_key->nd_target));
1762				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1763				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1764			}
1765		}
1766	}
1767
1768unencap:
1769	if (in_encap)
1770		nla_nest_end(skb, in_encap);
1771	if (encap)
1772		nla_nest_end(skb, encap);
1773
1774	return 0;
1775
1776nla_put_failure:
1777	return -EMSGSIZE;
1778}
1779
1780int ovs_nla_put_key(const struct sw_flow_key *swkey,
1781		    const struct sw_flow_key *output, int attr, bool is_mask,
1782		    struct sk_buff *skb)
1783{
1784	int err;
1785	struct nlattr *nla;
1786
1787	nla = nla_nest_start(skb, attr);
1788	if (!nla)
1789		return -EMSGSIZE;
1790	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1791	if (err)
1792		return err;
1793	nla_nest_end(skb, nla);
1794
1795	return 0;
1796}
1797
1798/* Called with ovs_mutex or RCU read lock. */
1799int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1800{
1801	if (ovs_identifier_is_ufid(&flow->id))
1802		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1803			       flow->id.ufid);
1804
1805	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1806			       OVS_FLOW_ATTR_KEY, false, skb);
1807}
1808
1809/* Called with ovs_mutex or RCU read lock. */
1810int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1811{
1812	return ovs_nla_put_key(&flow->key, &flow->key,
1813				OVS_FLOW_ATTR_KEY, false, skb);
1814}
1815
1816/* Called with ovs_mutex or RCU read lock. */
1817int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1818{
1819	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1820				OVS_FLOW_ATTR_MASK, true, skb);
1821}
1822
1823#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1824
1825static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1826{
1827	struct sw_flow_actions *sfa;
1828
1829	if (size > MAX_ACTIONS_BUFSIZE) {
1830		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1831		return ERR_PTR(-EINVAL);
1832	}
1833
1834	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1835	if (!sfa)
1836		return ERR_PTR(-ENOMEM);
1837
1838	sfa->actions_len = 0;
1839	return sfa;
1840}
1841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842static void ovs_nla_free_set_action(const struct nlattr *a)
1843{
1844	const struct nlattr *ovs_key = nla_data(a);
1845	struct ovs_tunnel_info *ovs_tun;
1846
1847	switch (nla_type(ovs_key)) {
1848	case OVS_KEY_ATTR_TUNNEL_INFO:
1849		ovs_tun = nla_data(ovs_key);
1850		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1851		break;
1852	}
1853}
1854
1855void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1856{
1857	const struct nlattr *a;
1858	int rem;
1859
1860	if (!sf_acts)
 
 
 
 
 
1861		return;
1862
1863	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1864		switch (nla_type(a)) {
1865		case OVS_ACTION_ATTR_SET:
1866			ovs_nla_free_set_action(a);
1867			break;
 
 
 
 
 
1868		case OVS_ACTION_ATTR_CT:
1869			ovs_ct_free_action(a);
1870			break;
 
 
 
 
 
 
 
 
 
 
 
 
1871		}
1872	}
 
1873
 
 
 
 
 
 
1874	kfree(sf_acts);
1875}
1876
1877static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1878{
1879	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1880}
1881
1882/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1883 * The caller must hold rcu_read_lock for this to be sensible. */
1884void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1885{
1886	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1887}
1888
1889static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1890				       int attr_len, bool log)
1891{
1892
1893	struct sw_flow_actions *acts;
1894	int new_acts_size;
1895	int req_size = NLA_ALIGN(attr_len);
1896	int next_offset = offsetof(struct sw_flow_actions, actions) +
1897					(*sfa)->actions_len;
1898
1899	if (req_size <= (ksize(*sfa) - next_offset))
1900		goto out;
1901
1902	new_acts_size = ksize(*sfa) * 2;
1903
1904	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1905		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
 
 
1906			return ERR_PTR(-EMSGSIZE);
 
1907		new_acts_size = MAX_ACTIONS_BUFSIZE;
1908	}
1909
1910	acts = nla_alloc_flow_actions(new_acts_size, log);
1911	if (IS_ERR(acts))
1912		return (void *)acts;
1913
1914	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1915	acts->actions_len = (*sfa)->actions_len;
1916	acts->orig_len = (*sfa)->orig_len;
1917	kfree(*sfa);
1918	*sfa = acts;
1919
1920out:
1921	(*sfa)->actions_len += req_size;
1922	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1923}
1924
1925static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1926				   int attrtype, void *data, int len, bool log)
1927{
1928	struct nlattr *a;
1929
1930	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1931	if (IS_ERR(a))
1932		return a;
1933
1934	a->nla_type = attrtype;
1935	a->nla_len = nla_attr_size(len);
1936
1937	if (data)
1938		memcpy(nla_data(a), data, len);
1939	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1940
1941	return a;
1942}
1943
1944int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1945		       int len, bool log)
1946{
1947	struct nlattr *a;
1948
1949	a = __add_action(sfa, attrtype, data, len, log);
1950
1951	return PTR_ERR_OR_ZERO(a);
1952}
1953
1954static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1955					  int attrtype, bool log)
1956{
1957	int used = (*sfa)->actions_len;
1958	int err;
1959
1960	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1961	if (err)
1962		return err;
1963
1964	return used;
1965}
1966
1967static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1968					 int st_offset)
1969{
1970	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1971							       st_offset);
1972
1973	a->nla_len = sfa->actions_len - st_offset;
1974}
1975
1976static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1977				  const struct sw_flow_key *key,
1978				  int depth, struct sw_flow_actions **sfa,
1979				  __be16 eth_type, __be16 vlan_tci, bool log);
 
 
1980
1981static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1982				    const struct sw_flow_key *key, int depth,
1983				    struct sw_flow_actions **sfa,
1984				    __be16 eth_type, __be16 vlan_tci, bool log)
 
 
1985{
1986	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1987	const struct nlattr *probability, *actions;
1988	const struct nlattr *a;
1989	int rem, start, err, st_acts;
 
1990
1991	memset(attrs, 0, sizeof(attrs));
1992	nla_for_each_nested(a, attr, rem) {
1993		int type = nla_type(a);
1994		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1995			return -EINVAL;
1996		attrs[type] = a;
1997	}
1998	if (rem)
1999		return -EINVAL;
2000
2001	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2002	if (!probability || nla_len(probability) != sizeof(u32))
2003		return -EINVAL;
2004
2005	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2006	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2007		return -EINVAL;
2008
2009	/* validation done, copy sample action. */
2010	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2011	if (start < 0)
2012		return start;
2013	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2014				 nla_data(probability), sizeof(u32), log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015	if (err)
2016		return err;
2017	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2018	if (st_acts < 0)
2019		return st_acts;
2020
2021	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2022				     eth_type, vlan_tci, log);
 
2023	if (err)
2024		return err;
2025
2026	add_nested_action_end(*sfa, st_acts);
2027	add_nested_action_end(*sfa, start);
2028
2029	return 0;
2030}
2031
2032void ovs_match_init(struct sw_flow_match *match,
2033		    struct sw_flow_key *key,
2034		    bool reset_key,
2035		    struct sw_flow_mask *mask)
2036{
2037	memset(match, 0, sizeof(*match));
2038	match->key = key;
2039	match->mask = mask;
2040
2041	if (reset_key)
2042		memset(key, 0, sizeof(*key));
2043
2044	if (mask) {
2045		memset(&mask->key, 0, sizeof(mask->key));
2046		mask->range.start = mask->range.end = 0;
2047	}
2048}
2049
2050static int validate_geneve_opts(struct sw_flow_key *key)
2051{
2052	struct geneve_opt *option;
2053	int opts_len = key->tun_opts_len;
2054	bool crit_opt = false;
2055
2056	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2057	while (opts_len > 0) {
2058		int len;
2059
2060		if (opts_len < sizeof(*option))
2061			return -EINVAL;
2062
2063		len = sizeof(*option) + option->length * 4;
2064		if (len > opts_len)
2065			return -EINVAL;
2066
2067		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2068
2069		option = (struct geneve_opt *)((u8 *)option + len);
2070		opts_len -= len;
2071	};
2072
2073	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
 
2074
2075	return 0;
2076}
2077
2078static int validate_and_copy_set_tun(const struct nlattr *attr,
2079				     struct sw_flow_actions **sfa, bool log)
2080{
 
2081	struct sw_flow_match match;
2082	struct sw_flow_key key;
2083	struct metadata_dst *tun_dst;
2084	struct ip_tunnel_info *tun_info;
2085	struct ovs_tunnel_info *ovs_tun;
2086	struct nlattr *a;
2087	int err = 0, start, opts_type;
2088
2089	ovs_match_init(&match, &key, true, NULL);
2090	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2091	if (opts_type < 0)
2092		return opts_type;
2093
2094	if (key.tun_opts_len) {
2095		switch (opts_type) {
2096		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2097			err = validate_geneve_opts(&key);
2098			if (err < 0)
2099				return err;
 
 
2100			break;
2101		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 
 
 
 
2102			break;
2103		}
2104	};
2105
2106	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2107	if (start < 0)
2108		return start;
2109
2110	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
 
 
2111	if (!tun_dst)
2112		return -ENOMEM;
2113
2114	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2115	if (err) {
2116		dst_release((struct dst_entry *)tun_dst);
2117		return err;
2118	}
2119
2120	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2121			 sizeof(*ovs_tun), log);
2122	if (IS_ERR(a)) {
2123		dst_release((struct dst_entry *)tun_dst);
2124		return PTR_ERR(a);
2125	}
2126
2127	ovs_tun = nla_data(a);
2128	ovs_tun->tun_dst = tun_dst;
2129
2130	tun_info = &tun_dst->u.tun_info;
2131	tun_info->mode = IP_TUNNEL_INFO_TX;
2132	if (key.tun_proto == AF_INET6)
2133		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
 
 
2134	tun_info->key = key.tun_key;
2135
2136	/* We need to store the options in the action itself since
2137	 * everything else will go away after flow setup. We can append
2138	 * it to tun_info and then point there.
2139	 */
2140	ip_tunnel_info_opts_set(tun_info,
2141				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2142				key.tun_opts_len);
2143	add_nested_action_end(*sfa, start);
2144
2145	return err;
2146}
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
2148/* Return false if there are any non-masked bits set.
2149 * Mask follows data immediately, before any netlink padding.
2150 */
2151static bool validate_masked(u8 *data, int len)
2152{
2153	u8 *mask = data + len;
2154
2155	while (len--)
2156		if (*data++ & ~*mask++)
2157			return false;
2158
2159	return true;
2160}
2161
2162static int validate_set(const struct nlattr *a,
2163			const struct sw_flow_key *flow_key,
2164			struct sw_flow_actions **sfa, bool *skip_copy,
2165			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2166{
2167	const struct nlattr *ovs_key = nla_data(a);
2168	int key_type = nla_type(ovs_key);
2169	size_t key_len;
2170
2171	/* There can be only one key in a action */
2172	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2173		return -EINVAL;
2174
2175	key_len = nla_len(ovs_key);
2176	if (masked)
2177		key_len /= 2;
2178
2179	if (key_type > OVS_KEY_ATTR_MAX ||
2180	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2181		return -EINVAL;
2182
2183	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2184		return -EINVAL;
2185
2186	switch (key_type) {
2187	const struct ovs_key_ipv4 *ipv4_key;
2188	const struct ovs_key_ipv6 *ipv6_key;
2189	int err;
2190
2191	case OVS_KEY_ATTR_PRIORITY:
2192	case OVS_KEY_ATTR_SKB_MARK:
2193	case OVS_KEY_ATTR_CT_MARK:
2194	case OVS_KEY_ATTR_CT_LABELS:
2195		break;
2196
2197	case OVS_KEY_ATTR_ETHERNET:
2198		if (mac_proto != MAC_PROTO_ETHERNET)
2199			return -EINVAL;
2200		break;
2201
2202	case OVS_KEY_ATTR_TUNNEL:
 
 
2203		if (masked)
2204			return -EINVAL; /* Masked tunnel set not supported. */
2205
2206		*skip_copy = true;
2207		err = validate_and_copy_set_tun(a, sfa, log);
2208		if (err)
2209			return err;
2210		break;
 
 
 
2211
2212	case OVS_KEY_ATTR_IPV4:
2213		if (eth_type != htons(ETH_P_IP))
2214			return -EINVAL;
2215
2216		ipv4_key = nla_data(ovs_key);
2217
2218		if (masked) {
2219			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2220
2221			/* Non-writeable fields. */
2222			if (mask->ipv4_proto || mask->ipv4_frag)
2223				return -EINVAL;
2224		} else {
2225			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2226				return -EINVAL;
2227
2228			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2229				return -EINVAL;
2230		}
2231		break;
 
 
 
2232
2233	case OVS_KEY_ATTR_IPV6:
2234		if (eth_type != htons(ETH_P_IPV6))
2235			return -EINVAL;
2236
2237		ipv6_key = nla_data(ovs_key);
2238
2239		if (masked) {
2240			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2241
2242			/* Non-writeable fields. */
2243			if (mask->ipv6_proto || mask->ipv6_frag)
2244				return -EINVAL;
2245
2246			/* Invalid bits in the flow label mask? */
2247			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2248				return -EINVAL;
2249		} else {
2250			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2251				return -EINVAL;
2252
2253			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2254				return -EINVAL;
2255		}
2256		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2257			return -EINVAL;
2258
2259		break;
2260
2261	case OVS_KEY_ATTR_TCP:
2262		if ((eth_type != htons(ETH_P_IP) &&
2263		     eth_type != htons(ETH_P_IPV6)) ||
2264		    flow_key->ip.proto != IPPROTO_TCP)
2265			return -EINVAL;
2266
2267		break;
2268
2269	case OVS_KEY_ATTR_UDP:
2270		if ((eth_type != htons(ETH_P_IP) &&
2271		     eth_type != htons(ETH_P_IPV6)) ||
2272		    flow_key->ip.proto != IPPROTO_UDP)
2273			return -EINVAL;
2274
2275		break;
2276
2277	case OVS_KEY_ATTR_MPLS:
2278		if (!eth_p_mpls(eth_type))
2279			return -EINVAL;
2280		break;
2281
2282	case OVS_KEY_ATTR_SCTP:
2283		if ((eth_type != htons(ETH_P_IP) &&
2284		     eth_type != htons(ETH_P_IPV6)) ||
2285		    flow_key->ip.proto != IPPROTO_SCTP)
2286			return -EINVAL;
2287
2288		break;
2289
 
 
 
 
 
 
 
2290	default:
2291		return -EINVAL;
2292	}
2293
2294	/* Convert non-masked non-tunnel set actions to masked set actions. */
2295	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2296		int start, len = key_len * 2;
2297		struct nlattr *at;
2298
2299		*skip_copy = true;
2300
2301		start = add_nested_action_start(sfa,
2302						OVS_ACTION_ATTR_SET_TO_MASKED,
2303						log);
2304		if (start < 0)
2305			return start;
2306
2307		at = __add_action(sfa, key_type, NULL, len, log);
2308		if (IS_ERR(at))
2309			return PTR_ERR(at);
2310
2311		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2312		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2313		/* Clear non-writeable bits from otherwise writeable fields. */
2314		if (key_type == OVS_KEY_ATTR_IPV6) {
2315			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2316
2317			mask->ipv6_label &= htonl(0x000FFFFF);
2318		}
2319		add_nested_action_end(*sfa, start);
2320	}
2321
2322	return 0;
2323}
2324
2325static int validate_userspace(const struct nlattr *attr)
2326{
2327	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2328		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2329		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2330		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2331	};
2332	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2333	int error;
2334
2335	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2336				 attr, userspace_policy);
2337	if (error)
2338		return error;
2339
2340	if (!a[OVS_USERSPACE_ATTR_PID] ||
2341	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2342		return -EINVAL;
2343
2344	return 0;
2345}
2346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347static int copy_action(const struct nlattr *from,
2348		       struct sw_flow_actions **sfa, bool log)
2349{
2350	int totlen = NLA_ALIGN(from->nla_len);
2351	struct nlattr *to;
2352
2353	to = reserve_sfa_size(sfa, from->nla_len, log);
2354	if (IS_ERR(to))
2355		return PTR_ERR(to);
2356
2357	memcpy(to, from, totlen);
2358	return 0;
2359}
2360
2361static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2362				  const struct sw_flow_key *key,
2363				  int depth, struct sw_flow_actions **sfa,
2364				  __be16 eth_type, __be16 vlan_tci, bool log)
 
 
2365{
2366	u8 mac_proto = ovs_key_mac_proto(key);
2367	const struct nlattr *a;
2368	int rem, err;
2369
2370	if (depth >= SAMPLE_ACTION_DEPTH)
2371		return -EOVERFLOW;
2372
2373	nla_for_each_nested(a, attr, rem) {
2374		/* Expected argument lengths, (u32)-1 for variable length. */
2375		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2376			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2377			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2378			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2379			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2380			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2381			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2382			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2383			[OVS_ACTION_ATTR_SET] = (u32)-1,
2384			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2385			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2386			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2387			[OVS_ACTION_ATTR_CT] = (u32)-1,
 
2388			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2389			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2390			[OVS_ACTION_ATTR_POP_ETH] = 0,
 
 
 
 
 
 
 
 
 
2391		};
2392		const struct ovs_action_push_vlan *vlan;
2393		int type = nla_type(a);
2394		bool skip_copy;
2395
2396		if (type > OVS_ACTION_ATTR_MAX ||
2397		    (action_lens[type] != nla_len(a) &&
2398		     action_lens[type] != (u32)-1))
2399			return -EINVAL;
2400
2401		skip_copy = false;
2402		switch (type) {
2403		case OVS_ACTION_ATTR_UNSPEC:
2404			return -EINVAL;
2405
2406		case OVS_ACTION_ATTR_USERSPACE:
2407			err = validate_userspace(a);
2408			if (err)
2409				return err;
2410			break;
2411
2412		case OVS_ACTION_ATTR_OUTPUT:
2413			if (nla_get_u32(a) >= DP_MAX_PORTS)
2414				return -EINVAL;
2415			break;
2416
2417		case OVS_ACTION_ATTR_TRUNC: {
2418			const struct ovs_action_trunc *trunc = nla_data(a);
2419
2420			if (trunc->max_len < ETH_HLEN)
2421				return -EINVAL;
2422			break;
2423		}
2424
2425		case OVS_ACTION_ATTR_HASH: {
2426			const struct ovs_action_hash *act_hash = nla_data(a);
2427
2428			switch (act_hash->hash_alg) {
2429			case OVS_HASH_ALG_L4:
 
 
2430				break;
2431			default:
2432				return  -EINVAL;
2433			}
2434
2435			break;
2436		}
2437
2438		case OVS_ACTION_ATTR_POP_VLAN:
2439			if (mac_proto != MAC_PROTO_ETHERNET)
2440				return -EINVAL;
2441			vlan_tci = htons(0);
2442			break;
2443
2444		case OVS_ACTION_ATTR_PUSH_VLAN:
2445			if (mac_proto != MAC_PROTO_ETHERNET)
2446				return -EINVAL;
2447			vlan = nla_data(a);
2448			if (!eth_type_vlan(vlan->vlan_tpid))
2449				return -EINVAL;
2450			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2451				return -EINVAL;
2452			vlan_tci = vlan->vlan_tci;
2453			break;
2454
2455		case OVS_ACTION_ATTR_RECIRC:
2456			break;
2457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458		case OVS_ACTION_ATTR_PUSH_MPLS: {
2459			const struct ovs_action_push_mpls *mpls = nla_data(a);
2460
2461			if (!eth_p_mpls(mpls->mpls_ethertype))
2462				return -EINVAL;
2463			/* Prohibit push MPLS other than to a white list
2464			 * for packets that have a known tag order.
2465			 */
2466			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2467			    (eth_type != htons(ETH_P_IP) &&
2468			     eth_type != htons(ETH_P_IPV6) &&
2469			     eth_type != htons(ETH_P_ARP) &&
2470			     eth_type != htons(ETH_P_RARP) &&
2471			     !eth_p_mpls(eth_type)))
2472				return -EINVAL;
2473			eth_type = mpls->mpls_ethertype;
 
2474			break;
2475		}
2476
2477		case OVS_ACTION_ATTR_POP_MPLS:
2478			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
 
2479			    !eth_p_mpls(eth_type))
2480				return -EINVAL;
2481
2482			/* Disallow subsequent L2.5+ set and mpls_pop actions
2483			 * as there is no check here to ensure that the new
2484			 * eth_type is valid and thus set actions could
2485			 * write off the end of the packet or otherwise
2486			 * corrupt it.
 
2487			 *
2488			 * Support for these actions is planned using packet
2489			 * recirculation.
2490			 */
2491			eth_type = htons(0);
 
 
 
 
 
 
 
 
 
 
 
 
2492			break;
 
2493
2494		case OVS_ACTION_ATTR_SET:
2495			err = validate_set(a, key, sfa,
2496					   &skip_copy, mac_proto, eth_type,
2497					   false, log);
2498			if (err)
2499				return err;
2500			break;
2501
2502		case OVS_ACTION_ATTR_SET_MASKED:
2503			err = validate_set(a, key, sfa,
2504					   &skip_copy, mac_proto, eth_type,
2505					   true, log);
2506			if (err)
2507				return err;
2508			break;
2509
2510		case OVS_ACTION_ATTR_SAMPLE:
2511			err = validate_and_copy_sample(net, a, key, depth, sfa,
2512						       eth_type, vlan_tci, log);
 
 
 
 
2513			if (err)
2514				return err;
2515			skip_copy = true;
2516			break;
 
2517
2518		case OVS_ACTION_ATTR_CT:
2519			err = ovs_ct_copy_action(net, a, key, sfa, log);
2520			if (err)
2521				return err;
2522			skip_copy = true;
2523			break;
2524
 
 
 
2525		case OVS_ACTION_ATTR_PUSH_ETH:
2526			/* Disallow pushing an Ethernet header if one
2527			 * is already present */
2528			if (mac_proto != MAC_PROTO_NONE)
2529				return -EINVAL;
2530			mac_proto = MAC_PROTO_NONE;
2531			break;
2532
2533		case OVS_ACTION_ATTR_POP_ETH:
2534			if (mac_proto != MAC_PROTO_ETHERNET)
2535				return -EINVAL;
2536			if (vlan_tci & htons(VLAN_TAG_PRESENT))
2537				return -EINVAL;
2538			mac_proto = MAC_PROTO_ETHERNET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539			break;
2540
2541		default:
2542			OVS_NLERR(log, "Unknown Action type %d", type);
2543			return -EINVAL;
2544		}
2545		if (!skip_copy) {
2546			err = copy_action(a, sfa, log);
2547			if (err)
2548				return err;
2549		}
2550	}
2551
2552	if (rem > 0)
2553		return -EINVAL;
2554
2555	return 0;
2556}
2557
2558/* 'key' must be the masked key. */
2559int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2560			 const struct sw_flow_key *key,
2561			 struct sw_flow_actions **sfa, bool log)
2562{
2563	int err;
 
2564
2565	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2566	if (IS_ERR(*sfa))
2567		return PTR_ERR(*sfa);
2568
 
 
 
2569	(*sfa)->orig_len = nla_len(attr);
2570	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2571				     key->eth.vlan.tci, log);
 
2572	if (err)
2573		ovs_nla_free_flow_actions(*sfa);
2574
2575	return err;
2576}
2577
2578static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579{
2580	const struct nlattr *a;
2581	struct nlattr *start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582	int err = 0, rem;
2583
2584	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2585	if (!start)
2586		return -EMSGSIZE;
2587
2588	nla_for_each_nested(a, attr, rem) {
2589		int type = nla_type(a);
2590		struct nlattr *st_sample;
 
 
 
 
 
 
2591
2592		switch (type) {
2593		case OVS_SAMPLE_ATTR_PROBABILITY:
2594			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2595				    sizeof(u32), nla_data(a)))
2596				return -EMSGSIZE;
2597			break;
2598		case OVS_SAMPLE_ATTR_ACTIONS:
2599			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2600			if (!st_sample)
2601				return -EMSGSIZE;
2602			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2603			if (err)
2604				return err;
2605			nla_nest_end(skb, st_sample);
 
 
 
 
 
2606			break;
2607		}
2608	}
2609
2610	nla_nest_end(skb, start);
 
 
 
 
2611	return err;
2612}
2613
2614static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2615{
2616	const struct nlattr *ovs_key = nla_data(a);
2617	int key_type = nla_type(ovs_key);
2618	struct nlattr *start;
2619	int err;
2620
2621	switch (key_type) {
2622	case OVS_KEY_ATTR_TUNNEL_INFO: {
2623		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2624		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2625
2626		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2627		if (!start)
2628			return -EMSGSIZE;
2629
2630		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2631					ip_tunnel_info_opts(tun_info),
2632					tun_info->options_len,
2633					ip_tunnel_info_af(tun_info));
2634		if (err)
2635			return err;
2636		nla_nest_end(skb, start);
2637		break;
2638	}
2639	default:
2640		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2641			return -EMSGSIZE;
2642		break;
2643	}
2644
2645	return 0;
2646}
2647
2648static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2649						struct sk_buff *skb)
2650{
2651	const struct nlattr *ovs_key = nla_data(a);
2652	struct nlattr *nla;
2653	size_t key_len = nla_len(ovs_key) / 2;
2654
2655	/* Revert the conversion we did from a non-masked set action to
2656	 * masked set action.
2657	 */
2658	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2659	if (!nla)
2660		return -EMSGSIZE;
2661
2662	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2663		return -EMSGSIZE;
2664
2665	nla_nest_end(skb, nla);
2666	return 0;
2667}
2668
2669int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2670{
2671	const struct nlattr *a;
2672	int rem, err;
2673
2674	nla_for_each_attr(a, attr, len, rem) {
2675		int type = nla_type(a);
2676
2677		switch (type) {
2678		case OVS_ACTION_ATTR_SET:
2679			err = set_action_to_attr(a, skb);
2680			if (err)
2681				return err;
2682			break;
2683
2684		case OVS_ACTION_ATTR_SET_TO_MASKED:
2685			err = masked_set_action_to_set_action_attr(a, skb);
2686			if (err)
2687				return err;
2688			break;
2689
2690		case OVS_ACTION_ATTR_SAMPLE:
2691			err = sample_action_to_attr(a, skb);
2692			if (err)
2693				return err;
2694			break;
2695
2696		case OVS_ACTION_ATTR_CT:
2697			err = ovs_ct_action_to_attr(nla_data(a), skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698			if (err)
2699				return err;
2700			break;
2701
2702		default:
2703			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2704				return -EMSGSIZE;
2705			break;
2706		}
2707	}
2708
2709	return 0;
2710}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
  41#include "drop.h"
  42#include "flow_netlink.h"
  43
  44struct ovs_len_tbl {
  45	int len;
  46	const struct ovs_len_tbl *next;
  47};
  48
  49#define OVS_ATTR_NESTED -1
  50#define OVS_ATTR_VARIABLE -2
  51#define OVS_COPY_ACTIONS_MAX_DEPTH 16
  52
  53static bool actions_may_change_flow(const struct nlattr *actions)
  54{
  55	struct nlattr *nla;
  56	int rem;
  57
  58	nla_for_each_nested(nla, actions, rem) {
  59		u16 action = nla_type(nla);
  60
  61		switch (action) {
  62		case OVS_ACTION_ATTR_OUTPUT:
  63		case OVS_ACTION_ATTR_RECIRC:
  64		case OVS_ACTION_ATTR_TRUNC:
  65		case OVS_ACTION_ATTR_USERSPACE:
  66		case OVS_ACTION_ATTR_DROP:
  67		case OVS_ACTION_ATTR_PSAMPLE:
  68			break;
  69
  70		case OVS_ACTION_ATTR_CT:
  71		case OVS_ACTION_ATTR_CT_CLEAR:
  72		case OVS_ACTION_ATTR_HASH:
  73		case OVS_ACTION_ATTR_POP_ETH:
  74		case OVS_ACTION_ATTR_POP_MPLS:
  75		case OVS_ACTION_ATTR_POP_NSH:
  76		case OVS_ACTION_ATTR_POP_VLAN:
  77		case OVS_ACTION_ATTR_PUSH_ETH:
  78		case OVS_ACTION_ATTR_PUSH_MPLS:
  79		case OVS_ACTION_ATTR_PUSH_NSH:
  80		case OVS_ACTION_ATTR_PUSH_VLAN:
  81		case OVS_ACTION_ATTR_SAMPLE:
  82		case OVS_ACTION_ATTR_SET:
  83		case OVS_ACTION_ATTR_SET_MASKED:
  84		case OVS_ACTION_ATTR_METER:
  85		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  86		case OVS_ACTION_ATTR_ADD_MPLS:
  87		case OVS_ACTION_ATTR_DEC_TTL:
  88		default:
  89			return true;
  90		}
  91	}
  92	return false;
  93}
  94
  95static void update_range(struct sw_flow_match *match,
  96			 size_t offset, size_t size, bool is_mask)
  97{
  98	struct sw_flow_key_range *range;
  99	size_t start = rounddown(offset, sizeof(long));
 100	size_t end = roundup(offset + size, sizeof(long));
 101
 102	if (!is_mask)
 103		range = &match->range;
 104	else
 105		range = &match->mask->range;
 106
 107	if (range->start == range->end) {
 108		range->start = start;
 109		range->end = end;
 110		return;
 111	}
 112
 113	if (range->start > start)
 114		range->start = start;
 115
 116	if (range->end < end)
 117		range->end = end;
 118}
 119
 120#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 121	do { \
 122		update_range(match, offsetof(struct sw_flow_key, field),    \
 123			     sizeof((match)->key->field), is_mask);	    \
 124		if (is_mask)						    \
 125			(match)->mask->key.field = value;		    \
 126		else							    \
 127			(match)->key->field = value;		            \
 128	} while (0)
 129
 130#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 131	do {								    \
 132		update_range(match, offset, len, is_mask);		    \
 133		if (is_mask)						    \
 134			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 135			       len);					   \
 136		else							    \
 137			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 138	} while (0)
 139
 140#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 141	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 142				  value_p, len, is_mask)
 143
 144#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 145	do {								    \
 146		update_range(match, offsetof(struct sw_flow_key, field),    \
 147			     sizeof((match)->key->field), is_mask);	    \
 148		if (is_mask)						    \
 149			memset((u8 *)&(match)->mask->key.field, value,      \
 150			       sizeof((match)->mask->key.field));	    \
 151		else							    \
 152			memset((u8 *)&(match)->key->field, value,           \
 153			       sizeof((match)->key->field));                \
 154	} while (0)
 155
 156#define SW_FLOW_KEY_BITMAP_COPY(match, field, value_p, nbits, is_mask) ({     \
 157	update_range(match, offsetof(struct sw_flow_key, field),	      \
 158		     bitmap_size(nbits), is_mask);			      \
 159	bitmap_copy(is_mask ? (match)->mask->key.field : (match)->key->field, \
 160		    value_p, nbits);					      \
 161})
 162
 163static bool match_validate(const struct sw_flow_match *match,
 164			   u64 key_attrs, u64 mask_attrs, bool log)
 165{
 166	u64 key_expected = 0;
 167	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 168
 169	/* The following mask attributes allowed only if they
 170	 * pass the validation tests. */
 171	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 172			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 173			| (1 << OVS_KEY_ATTR_IPV6)
 174			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 175			| (1 << OVS_KEY_ATTR_TCP)
 176			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 177			| (1 << OVS_KEY_ATTR_UDP)
 178			| (1 << OVS_KEY_ATTR_SCTP)
 179			| (1 << OVS_KEY_ATTR_ICMP)
 180			| (1 << OVS_KEY_ATTR_ICMPV6)
 181			| (1 << OVS_KEY_ATTR_ARP)
 182			| (1 << OVS_KEY_ATTR_ND)
 183			| (1 << OVS_KEY_ATTR_MPLS)
 184			| (1 << OVS_KEY_ATTR_NSH));
 185
 186	/* Always allowed mask fields. */
 187	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 188		       | (1 << OVS_KEY_ATTR_IN_PORT)
 189		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 190
 191	/* Check key attributes. */
 192	if (match->key->eth.type == htons(ETH_P_ARP)
 193			|| match->key->eth.type == htons(ETH_P_RARP)) {
 194		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 195		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 196			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 197	}
 198
 199	if (eth_p_mpls(match->key->eth.type)) {
 200		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 201		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 202			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 203	}
 204
 205	if (match->key->eth.type == htons(ETH_P_IP)) {
 206		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 207		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 208			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 209			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 210		}
 211
 212		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 213			if (match->key->ip.proto == IPPROTO_UDP) {
 214				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 215				if (match->mask && (match->mask->key.ip.proto == 0xff))
 216					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 217			}
 218
 219			if (match->key->ip.proto == IPPROTO_SCTP) {
 220				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 221				if (match->mask && (match->mask->key.ip.proto == 0xff))
 222					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 223			}
 224
 225			if (match->key->ip.proto == IPPROTO_TCP) {
 226				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 227				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 228				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 229					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 230					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 231				}
 232			}
 233
 234			if (match->key->ip.proto == IPPROTO_ICMP) {
 235				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 236				if (match->mask && (match->mask->key.ip.proto == 0xff))
 237					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 238			}
 239		}
 240	}
 241
 242	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 243		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 244		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 245			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 246			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 247		}
 248
 249		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 250			if (match->key->ip.proto == IPPROTO_UDP) {
 251				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 252				if (match->mask && (match->mask->key.ip.proto == 0xff))
 253					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 254			}
 255
 256			if (match->key->ip.proto == IPPROTO_SCTP) {
 257				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 258				if (match->mask && (match->mask->key.ip.proto == 0xff))
 259					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 260			}
 261
 262			if (match->key->ip.proto == IPPROTO_TCP) {
 263				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 264				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 265				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 266					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 267					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 268				}
 269			}
 270
 271			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 272				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 273				if (match->mask && (match->mask->key.ip.proto == 0xff))
 274					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 275
 276				if (match->key->tp.src ==
 277						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 278				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 279					key_expected |= 1 << OVS_KEY_ATTR_ND;
 280					/* Original direction conntrack tuple
 281					 * uses the same space as the ND fields
 282					 * in the key, so both are not allowed
 283					 * at the same time.
 284					 */
 285					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 286					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 287						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 288				}
 289			}
 290		}
 291	}
 292
 293	if (match->key->eth.type == htons(ETH_P_NSH)) {
 294		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 295		if (match->mask &&
 296		    match->mask->key.eth.type == htons(0xffff)) {
 297			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 298		}
 299	}
 300
 301	if ((key_attrs & key_expected) != key_expected) {
 302		/* Key attributes check failed. */
 303		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 304			  (unsigned long long)key_attrs,
 305			  (unsigned long long)key_expected);
 306		return false;
 307	}
 308
 309	if ((mask_attrs & mask_allowed) != mask_attrs) {
 310		/* Mask attributes check failed. */
 311		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 312			  (unsigned long long)mask_attrs,
 313			  (unsigned long long)mask_allowed);
 314		return false;
 315	}
 316
 317	return true;
 318}
 319
 320size_t ovs_tun_key_attr_size(void)
 321{
 322	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 323	 * updating this function.
 324	 */
 325	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 326		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 327		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 328		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 329		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 330		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 331		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 332		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 333		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 334		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 335		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 336		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 337		 */
 338		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 339		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 340}
 341
 342static size_t ovs_nsh_key_attr_size(void)
 343{
 344	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 345	 * updating this function.
 346	 */
 347	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 348		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 349		 * mutually exclusive, so the bigger one can cover
 350		 * the small one.
 351		 */
 352		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 353}
 354
 355size_t ovs_key_attr_size(void)
 356{
 357	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 358	 * updating this function.
 359	 */
 360	BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
 361
 362	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 363		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 364		  + ovs_tun_key_attr_size()
 365		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 366		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 367		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 368		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 369		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 370		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 371		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 372		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 373		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 374		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 375		  + ovs_nsh_key_attr_size()
 376		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 377		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 378		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 379		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 380		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 381		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 382		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 383		+ nla_total_size(28)  /* OVS_KEY_ATTR_ND */
 384		+ nla_total_size(2);  /* OVS_KEY_ATTR_IPV6_EXTHDRS */
 385}
 386
 387static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 388	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 389};
 390
 391static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 392	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 393	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 394	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 395	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 396	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 397	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 398	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 399	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 400	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 401	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 402	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 403	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 404						.next = ovs_vxlan_ext_key_lens },
 405	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 406	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 407	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 408	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 409};
 410
 411static const struct ovs_len_tbl
 412ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 413	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 414	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 415	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 416};
 417
 418/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 419static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 420	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 421	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 422	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 423	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 424	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 425	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 426	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 427	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 428	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 429	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 430	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 431	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 432	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 433	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 434	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 435	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 436	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 437	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 438	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 439	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 440				     .next = ovs_tunnel_key_lens, },
 441	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
 442	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 443	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 444	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 445	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 446	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 447		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 448	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 449		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 450	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 451				     .next = ovs_nsh_key_attr_lens, },
 452	[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
 453		.len = sizeof(struct ovs_key_ipv6_exthdrs) },
 454};
 455
 456static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 457{
 458	return expected_len == attr_len ||
 459	       expected_len == OVS_ATTR_NESTED ||
 460	       expected_len == OVS_ATTR_VARIABLE;
 461}
 462
 463static bool is_all_zero(const u8 *fp, size_t size)
 464{
 465	int i;
 466
 467	if (!fp)
 468		return false;
 469
 470	for (i = 0; i < size; i++)
 471		if (fp[i])
 472			return false;
 473
 474	return true;
 475}
 476
 477static int __parse_flow_nlattrs(const struct nlattr *attr,
 478				const struct nlattr *a[],
 479				u64 *attrsp, bool log, bool nz)
 480{
 481	const struct nlattr *nla;
 482	u64 attrs;
 483	int rem;
 484
 485	attrs = *attrsp;
 486	nla_for_each_nested(nla, attr, rem) {
 487		u16 type = nla_type(nla);
 488		int expected_len;
 489
 490		if (type > OVS_KEY_ATTR_MAX) {
 491			OVS_NLERR(log, "Key type %d is out of range max %d",
 492				  type, OVS_KEY_ATTR_MAX);
 493			return -EINVAL;
 494		}
 495
 496		if (type == OVS_KEY_ATTR_PACKET_TYPE ||
 497		    type == OVS_KEY_ATTR_ND_EXTENSIONS ||
 498		    type == OVS_KEY_ATTR_TUNNEL_INFO) {
 499			OVS_NLERR(log, "Key type %d is not supported", type);
 500			return -EINVAL;
 501		}
 502
 503		if (attrs & (1ULL << type)) {
 504			OVS_NLERR(log, "Duplicate key (type %d).", type);
 505			return -EINVAL;
 506		}
 507
 508		expected_len = ovs_key_lens[type].len;
 509		if (!check_attr_len(nla_len(nla), expected_len)) {
 510			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 511				  type, nla_len(nla), expected_len);
 512			return -EINVAL;
 513		}
 514
 515		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 516			attrs |= 1ULL << type;
 517			a[type] = nla;
 518		}
 519	}
 520	if (rem) {
 521		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 522		return -EINVAL;
 523	}
 524
 525	*attrsp = attrs;
 526	return 0;
 527}
 528
 529static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 530				   const struct nlattr *a[], u64 *attrsp,
 531				   bool log)
 532{
 533	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 534}
 535
 536int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 537		       u64 *attrsp, bool log)
 
 538{
 539	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 540}
 541
 542static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 543				     struct sw_flow_match *match, bool is_mask,
 544				     bool log)
 545{
 546	unsigned long opt_key_offset;
 547
 548	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 549		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 550			  nla_len(a), sizeof(match->key->tun_opts));
 551		return -EINVAL;
 552	}
 553
 554	if (nla_len(a) % 4 != 0) {
 555		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 556			  nla_len(a));
 557		return -EINVAL;
 558	}
 559
 560	/* We need to record the length of the options passed
 561	 * down, otherwise packets with the same format but
 562	 * additional options will be silently matched.
 563	 */
 564	if (!is_mask) {
 565		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 566				false);
 567	} else {
 568		/* This is somewhat unusual because it looks at
 569		 * both the key and mask while parsing the
 570		 * attributes (and by extension assumes the key
 571		 * is parsed first). Normally, we would verify
 572		 * that each is the correct length and that the
 573		 * attributes line up in the validate function.
 574		 * However, that is difficult because this is
 575		 * variable length and we won't have the
 576		 * information later.
 577		 */
 578		if (match->key->tun_opts_len != nla_len(a)) {
 579			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 580				  match->key->tun_opts_len, nla_len(a));
 581			return -EINVAL;
 582		}
 583
 584		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 585	}
 586
 587	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 588	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 589				  nla_len(a), is_mask);
 590	return 0;
 591}
 592
 593static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 594				     struct sw_flow_match *match, bool is_mask,
 595				     bool log)
 596{
 597	struct nlattr *a;
 598	int rem;
 599	unsigned long opt_key_offset;
 600	struct vxlan_metadata opts;
 601
 602	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 603
 604	memset(&opts, 0, sizeof(opts));
 605	nla_for_each_nested(a, attr, rem) {
 606		int type = nla_type(a);
 607
 608		if (type > OVS_VXLAN_EXT_MAX) {
 609			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 610				  type, OVS_VXLAN_EXT_MAX);
 611			return -EINVAL;
 612		}
 613
 614		if (!check_attr_len(nla_len(a),
 615				    ovs_vxlan_ext_key_lens[type].len)) {
 616			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 617				  type, nla_len(a),
 618				  ovs_vxlan_ext_key_lens[type].len);
 619			return -EINVAL;
 620		}
 621
 622		switch (type) {
 623		case OVS_VXLAN_EXT_GBP:
 624			opts.gbp = nla_get_u32(a);
 625			break;
 626		default:
 627			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 628				  type);
 629			return -EINVAL;
 630		}
 631	}
 632	if (rem) {
 633		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 634			  rem);
 635		return -EINVAL;
 636	}
 637
 638	if (!is_mask)
 639		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 640	else
 641		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 642
 643	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 644	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 645				  is_mask);
 646	return 0;
 647}
 648
 649static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 650				      struct sw_flow_match *match, bool is_mask,
 651				      bool log)
 652{
 653	unsigned long opt_key_offset;
 654
 655	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 656		     sizeof(match->key->tun_opts));
 657
 658	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 659		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 660			  nla_len(a), sizeof(match->key->tun_opts));
 661		return -EINVAL;
 662	}
 663
 664	if (!is_mask)
 665		SW_FLOW_KEY_PUT(match, tun_opts_len,
 666				sizeof(struct erspan_metadata), false);
 667	else
 668		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 669
 670	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 671	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 672				  nla_len(a), is_mask);
 673	return 0;
 674}
 675
 676static int ip_tun_from_nlattr(const struct nlattr *attr,
 677			      struct sw_flow_match *match, bool is_mask,
 678			      bool log)
 679{
 680	bool ttl = false, ipv4 = false, ipv6 = false;
 681	IP_TUNNEL_DECLARE_FLAGS(tun_flags) = { };
 682	bool info_bridge_mode = false;
 683	int opts_type = 0;
 684	struct nlattr *a;
 685	int rem;
 686
 687	nla_for_each_nested(a, attr, rem) {
 688		int type = nla_type(a);
 689		int err;
 690
 691		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 692			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 693				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 694			return -EINVAL;
 695		}
 696
 697		if (!check_attr_len(nla_len(a),
 698				    ovs_tunnel_key_lens[type].len)) {
 699			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 700				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 701			return -EINVAL;
 702		}
 703
 704		switch (type) {
 705		case OVS_TUNNEL_KEY_ATTR_ID:
 706			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 707					nla_get_be64(a), is_mask);
 708			__set_bit(IP_TUNNEL_KEY_BIT, tun_flags);
 709			break;
 710		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 711			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 712					nla_get_in_addr(a), is_mask);
 713			ipv4 = true;
 714			break;
 715		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 716			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 717					nla_get_in_addr(a), is_mask);
 718			ipv4 = true;
 719			break;
 720		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 721			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 722					nla_get_in6_addr(a), is_mask);
 723			ipv6 = true;
 724			break;
 725		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 726			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 727					nla_get_in6_addr(a), is_mask);
 728			ipv6 = true;
 729			break;
 730		case OVS_TUNNEL_KEY_ATTR_TOS:
 731			SW_FLOW_KEY_PUT(match, tun_key.tos,
 732					nla_get_u8(a), is_mask);
 733			break;
 734		case OVS_TUNNEL_KEY_ATTR_TTL:
 735			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 736					nla_get_u8(a), is_mask);
 737			ttl = true;
 738			break;
 739		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 740			__set_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, tun_flags);
 741			break;
 742		case OVS_TUNNEL_KEY_ATTR_CSUM:
 743			__set_bit(IP_TUNNEL_CSUM_BIT, tun_flags);
 744			break;
 745		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 746			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 747					nla_get_be16(a), is_mask);
 748			break;
 749		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 750			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 751					nla_get_be16(a), is_mask);
 752			break;
 753		case OVS_TUNNEL_KEY_ATTR_OAM:
 754			__set_bit(IP_TUNNEL_OAM_BIT, tun_flags);
 755			break;
 756		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 757			if (opts_type) {
 758				OVS_NLERR(log, "Multiple metadata blocks provided");
 759				return -EINVAL;
 760			}
 761
 762			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 763			if (err)
 764				return err;
 765
 766			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, tun_flags);
 767			opts_type = type;
 768			break;
 769		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 770			if (opts_type) {
 771				OVS_NLERR(log, "Multiple metadata blocks provided");
 772				return -EINVAL;
 773			}
 774
 775			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 776			if (err)
 777				return err;
 778
 779			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, tun_flags);
 780			opts_type = type;
 781			break;
 782		case OVS_TUNNEL_KEY_ATTR_PAD:
 783			break;
 784		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 785			if (opts_type) {
 786				OVS_NLERR(log, "Multiple metadata blocks provided");
 787				return -EINVAL;
 788			}
 789
 790			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 791							 log);
 792			if (err)
 793				return err;
 794
 795			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, tun_flags);
 796			opts_type = type;
 797			break;
 798		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 799			info_bridge_mode = true;
 800			ipv4 = true;
 801			break;
 802		default:
 803			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 804				  type);
 805			return -EINVAL;
 806		}
 807	}
 808
 809	SW_FLOW_KEY_BITMAP_COPY(match, tun_key.tun_flags, tun_flags,
 810				__IP_TUNNEL_FLAG_NUM, is_mask);
 811	if (is_mask)
 812		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 813	else
 814		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 815				false);
 816
 817	if (rem > 0) {
 818		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 819			  rem);
 820		return -EINVAL;
 821	}
 822
 823	if (ipv4 && ipv6) {
 824		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 825		return -EINVAL;
 826	}
 827
 828	if (!is_mask) {
 829		if (!ipv4 && !ipv6) {
 830			OVS_NLERR(log, "IP tunnel dst address not specified");
 831			return -EINVAL;
 832		}
 833		if (ipv4) {
 834			if (info_bridge_mode) {
 835				__clear_bit(IP_TUNNEL_KEY_BIT, tun_flags);
 836
 837				if (match->key->tun_key.u.ipv4.src ||
 838				    match->key->tun_key.u.ipv4.dst ||
 839				    match->key->tun_key.tp_src ||
 840				    match->key->tun_key.tp_dst ||
 841				    match->key->tun_key.ttl ||
 842				    match->key->tun_key.tos ||
 843				    !ip_tunnel_flags_empty(tun_flags)) {
 844					OVS_NLERR(log, "IPv4 tun info is not correct");
 845					return -EINVAL;
 846				}
 847			} else if (!match->key->tun_key.u.ipv4.dst) {
 848				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 849				return -EINVAL;
 850			}
 851		}
 852		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 853			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 854			return -EINVAL;
 855		}
 856
 857		if (!ttl && !info_bridge_mode) {
 858			OVS_NLERR(log, "IP tunnel TTL not specified.");
 859			return -EINVAL;
 860		}
 861	}
 862
 863	return opts_type;
 864}
 865
 866static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 867			       const void *tun_opts, int swkey_tun_opts_len)
 868{
 869	const struct vxlan_metadata *opts = tun_opts;
 870	struct nlattr *nla;
 871
 872	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 873	if (!nla)
 874		return -EMSGSIZE;
 875
 876	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 877		return -EMSGSIZE;
 878
 879	nla_nest_end(skb, nla);
 880	return 0;
 881}
 882
 883static int __ip_tun_to_nlattr(struct sk_buff *skb,
 884			      const struct ip_tunnel_key *output,
 885			      const void *tun_opts, int swkey_tun_opts_len,
 886			      unsigned short tun_proto, u8 mode)
 887{
 888	if (test_bit(IP_TUNNEL_KEY_BIT, output->tun_flags) &&
 889	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 890			 OVS_TUNNEL_KEY_ATTR_PAD))
 891		return -EMSGSIZE;
 892
 893	if (mode & IP_TUNNEL_INFO_BRIDGE)
 894		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 895		       ? -EMSGSIZE : 0;
 896
 897	switch (tun_proto) {
 898	case AF_INET:
 899		if (output->u.ipv4.src &&
 900		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 901				    output->u.ipv4.src))
 902			return -EMSGSIZE;
 903		if (output->u.ipv4.dst &&
 904		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 905				    output->u.ipv4.dst))
 906			return -EMSGSIZE;
 907		break;
 908	case AF_INET6:
 909		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 910		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 911				     &output->u.ipv6.src))
 912			return -EMSGSIZE;
 913		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 914		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 915				     &output->u.ipv6.dst))
 916			return -EMSGSIZE;
 917		break;
 918	}
 919	if (output->tos &&
 920	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 921		return -EMSGSIZE;
 922	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 923		return -EMSGSIZE;
 924	if (test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, output->tun_flags) &&
 925	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 926		return -EMSGSIZE;
 927	if (test_bit(IP_TUNNEL_CSUM_BIT, output->tun_flags) &&
 928	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 929		return -EMSGSIZE;
 930	if (output->tp_src &&
 931	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 932		return -EMSGSIZE;
 933	if (output->tp_dst &&
 934	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 935		return -EMSGSIZE;
 936	if (test_bit(IP_TUNNEL_OAM_BIT, output->tun_flags) &&
 937	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 938		return -EMSGSIZE;
 939	if (swkey_tun_opts_len) {
 940		if (test_bit(IP_TUNNEL_GENEVE_OPT_BIT, output->tun_flags) &&
 941		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 942			    swkey_tun_opts_len, tun_opts))
 943			return -EMSGSIZE;
 944		else if (test_bit(IP_TUNNEL_VXLAN_OPT_BIT,
 945				  output->tun_flags) &&
 946			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 947			return -EMSGSIZE;
 948		else if (test_bit(IP_TUNNEL_ERSPAN_OPT_BIT,
 949				  output->tun_flags) &&
 950			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 951				 swkey_tun_opts_len, tun_opts))
 952			return -EMSGSIZE;
 953	}
 954
 955	return 0;
 956}
 957
 958static int ip_tun_to_nlattr(struct sk_buff *skb,
 959			    const struct ip_tunnel_key *output,
 960			    const void *tun_opts, int swkey_tun_opts_len,
 961			    unsigned short tun_proto, u8 mode)
 962{
 963	struct nlattr *nla;
 964	int err;
 965
 966	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 967	if (!nla)
 968		return -EMSGSIZE;
 969
 970	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 971				 tun_proto, mode);
 972	if (err)
 973		return err;
 974
 975	nla_nest_end(skb, nla);
 976	return 0;
 977}
 978
 979int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 980			    struct ip_tunnel_info *tun_info)
 981{
 982	return __ip_tun_to_nlattr(skb, &tun_info->key,
 983				  ip_tunnel_info_opts(tun_info),
 984				  tun_info->options_len,
 985				  ip_tunnel_info_af(tun_info), tun_info->mode);
 986}
 987
 988static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 989				    const struct nlattr *a[],
 990				    bool is_mask, bool inner)
 991{
 992	__be16 tci = 0;
 993	__be16 tpid = 0;
 994
 995	if (a[OVS_KEY_ATTR_VLAN])
 996		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 997
 998	if (a[OVS_KEY_ATTR_ETHERTYPE])
 999		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1000
1001	if (likely(!inner)) {
1002		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
1003		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
1004	} else {
1005		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
1006		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
1007	}
1008	return 0;
1009}
1010
1011static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
1012				      u64 key_attrs, bool inner,
1013				      const struct nlattr **a, bool log)
1014{
1015	__be16 tci = 0;
1016
1017	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1018	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1019	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1020		/* Not a VLAN. */
1021		return 0;
1022	}
1023
1024	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1025	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1026		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1027		return -EINVAL;
1028	}
1029
1030	if (a[OVS_KEY_ATTR_VLAN])
1031		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1032
1033	if (!(tci & htons(VLAN_CFI_MASK))) {
1034		if (tci) {
1035			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1036				  (inner) ? "C-VLAN" : "VLAN");
1037			return -EINVAL;
1038		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1039			/* Corner case for truncated VLAN header. */
1040			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1041				  (inner) ? "C-VLAN" : "VLAN");
1042			return -EINVAL;
1043		}
1044	}
1045
1046	return 1;
1047}
1048
1049static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1050					   u64 key_attrs, bool inner,
1051					   const struct nlattr **a, bool log)
1052{
1053	__be16 tci = 0;
1054	__be16 tpid = 0;
1055	bool encap_valid = !!(match->key->eth.vlan.tci &
1056			      htons(VLAN_CFI_MASK));
1057	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1058				htons(VLAN_CFI_MASK));
1059
1060	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1061		/* Not a VLAN. */
1062		return 0;
1063	}
1064
1065	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1066		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1067			  (inner) ? "C-VLAN" : "VLAN");
1068		return -EINVAL;
1069	}
1070
1071	if (a[OVS_KEY_ATTR_VLAN])
1072		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1073
1074	if (a[OVS_KEY_ATTR_ETHERTYPE])
1075		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1076
1077	if (tpid != htons(0xffff)) {
1078		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1079			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1080		return -EINVAL;
1081	}
1082	if (!(tci & htons(VLAN_CFI_MASK))) {
1083		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1084			  (inner) ? "C-VLAN" : "VLAN");
1085		return -EINVAL;
1086	}
1087
1088	return 1;
1089}
1090
1091static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1092				     u64 *key_attrs, bool inner,
1093				     const struct nlattr **a, bool is_mask,
1094				     bool log)
1095{
1096	int err;
1097	const struct nlattr *encap;
1098
1099	if (!is_mask)
1100		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1101						 a, log);
1102	else
1103		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1104						      a, log);
1105	if (err <= 0)
1106		return err;
1107
1108	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1109	if (err)
1110		return err;
1111
1112	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1113	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1114	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1115
1116	encap = a[OVS_KEY_ATTR_ENCAP];
1117
1118	if (!is_mask)
1119		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1120	else
1121		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1122
1123	return err;
1124}
1125
1126static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1127				   u64 *key_attrs, const struct nlattr **a,
1128				   bool is_mask, bool log)
1129{
1130	int err;
1131	bool encap_valid = false;
1132
1133	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1134					is_mask, log);
1135	if (err)
1136		return err;
1137
1138	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1139	if (encap_valid) {
1140		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1141						is_mask, log);
1142		if (err)
1143			return err;
1144	}
1145
1146	return 0;
1147}
1148
1149static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1150				       u64 *attrs, const struct nlattr **a,
1151				       bool is_mask, bool log)
1152{
1153	__be16 eth_type;
1154
1155	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1156	if (is_mask) {
1157		/* Always exact match EtherType. */
1158		eth_type = htons(0xffff);
1159	} else if (!eth_proto_is_802_3(eth_type)) {
1160		OVS_NLERR(log, "EtherType %x is less than min %x",
1161				ntohs(eth_type), ETH_P_802_3_MIN);
1162		return -EINVAL;
1163	}
1164
1165	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1166	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1167	return 0;
1168}
1169
1170static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1171				 u64 *attrs, const struct nlattr **a,
1172				 bool is_mask, bool log)
1173{
1174	u8 mac_proto = MAC_PROTO_ETHERNET;
1175
1176	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1177		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1178
1179		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1180		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1181	}
1182
1183	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1184		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1185
1186		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1187		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1188	}
1189
1190	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1191		SW_FLOW_KEY_PUT(match, phy.priority,
1192			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1193		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1194	}
1195
1196	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1197		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1198
1199		if (is_mask) {
1200			in_port = 0xffffffff; /* Always exact match in_port. */
1201		} else if (in_port >= DP_MAX_PORTS) {
1202			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1203				  in_port, DP_MAX_PORTS);
1204			return -EINVAL;
1205		}
1206
1207		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1208		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1209	} else if (!is_mask) {
1210		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1211	}
1212
1213	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1214		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1215
1216		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1217		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1218	}
1219	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1220		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1221				       is_mask, log) < 0)
1222			return -EINVAL;
1223		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1224	}
1225
1226	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1227	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1228		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1229
1230		if (ct_state & ~CT_SUPPORTED_MASK) {
1231			OVS_NLERR(log, "ct_state flags %08x unsupported",
1232				  ct_state);
1233			return -EINVAL;
1234		}
1235
1236		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1237		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1238	}
1239	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1240	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1241		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1242
1243		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1244		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1245	}
1246	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1247	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1248		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1249
1250		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1251		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1252	}
1253	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1254	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1255		const struct ovs_key_ct_labels *cl;
1256
1257		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1258		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1259				   sizeof(*cl), is_mask);
1260		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1261	}
1262	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1263		const struct ovs_key_ct_tuple_ipv4 *ct;
1264
1265		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1266
1267		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1268		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1269		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1270		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1271		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1272		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1273	}
1274	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1275		const struct ovs_key_ct_tuple_ipv6 *ct;
1276
1277		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1278
1279		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1280				   sizeof(match->key->ipv6.ct_orig.src),
1281				   is_mask);
1282		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1283				   sizeof(match->key->ipv6.ct_orig.dst),
1284				   is_mask);
1285		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1286		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1287		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1288		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1289	}
1290
1291	/* For layer 3 packets the Ethernet type is provided
1292	 * and treated as metadata but no MAC addresses are provided.
1293	 */
1294	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1295	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1296		mac_proto = MAC_PROTO_NONE;
1297
1298	/* Always exact match mac_proto */
1299	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1300
1301	if (mac_proto == MAC_PROTO_NONE)
1302		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1303						   log);
1304
1305	return 0;
1306}
1307
1308int nsh_hdr_from_nlattr(const struct nlattr *attr,
1309			struct nshhdr *nh, size_t size)
1310{
1311	struct nlattr *a;
1312	int rem;
1313	u8 flags = 0;
1314	u8 ttl = 0;
1315	int mdlen = 0;
1316
1317	/* validate_nsh has check this, so we needn't do duplicate check here
1318	 */
1319	if (size < NSH_BASE_HDR_LEN)
1320		return -ENOBUFS;
1321
1322	nla_for_each_nested(a, attr, rem) {
1323		int type = nla_type(a);
1324
1325		switch (type) {
1326		case OVS_NSH_KEY_ATTR_BASE: {
1327			const struct ovs_nsh_key_base *base = nla_data(a);
1328
1329			flags = base->flags;
1330			ttl = base->ttl;
1331			nh->np = base->np;
1332			nh->mdtype = base->mdtype;
1333			nh->path_hdr = base->path_hdr;
1334			break;
1335		}
1336		case OVS_NSH_KEY_ATTR_MD1:
1337			mdlen = nla_len(a);
1338			if (mdlen > size - NSH_BASE_HDR_LEN)
1339				return -ENOBUFS;
1340			memcpy(&nh->md1, nla_data(a), mdlen);
1341			break;
1342
1343		case OVS_NSH_KEY_ATTR_MD2:
1344			mdlen = nla_len(a);
1345			if (mdlen > size - NSH_BASE_HDR_LEN)
1346				return -ENOBUFS;
1347			memcpy(&nh->md2, nla_data(a), mdlen);
1348			break;
1349
1350		default:
1351			return -EINVAL;
1352		}
1353	}
1354
1355	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1356	nh->ver_flags_ttl_len = 0;
1357	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1358
1359	return 0;
1360}
1361
1362int nsh_key_from_nlattr(const struct nlattr *attr,
1363			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1364{
1365	struct nlattr *a;
1366	int rem;
1367
1368	/* validate_nsh has check this, so we needn't do duplicate check here
1369	 */
1370	nla_for_each_nested(a, attr, rem) {
1371		int type = nla_type(a);
1372
1373		switch (type) {
1374		case OVS_NSH_KEY_ATTR_BASE: {
1375			const struct ovs_nsh_key_base *base = nla_data(a);
1376			const struct ovs_nsh_key_base *base_mask = base + 1;
1377
1378			nsh->base = *base;
1379			nsh_mask->base = *base_mask;
1380			break;
1381		}
1382		case OVS_NSH_KEY_ATTR_MD1: {
1383			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1384			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1385
1386			memcpy(nsh->context, md1->context, sizeof(*md1));
1387			memcpy(nsh_mask->context, md1_mask->context,
1388			       sizeof(*md1_mask));
1389			break;
1390		}
1391		case OVS_NSH_KEY_ATTR_MD2:
1392			/* Not supported yet */
1393			return -ENOTSUPP;
1394		default:
1395			return -EINVAL;
1396		}
1397	}
1398
1399	return 0;
1400}
1401
1402static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1403				   struct sw_flow_match *match, bool is_mask,
1404				   bool is_push_nsh, bool log)
1405{
1406	struct nlattr *a;
1407	int rem;
1408	bool has_base = false;
1409	bool has_md1 = false;
1410	bool has_md2 = false;
1411	u8 mdtype = 0;
1412	int mdlen = 0;
1413
1414	if (WARN_ON(is_push_nsh && is_mask))
1415		return -EINVAL;
1416
1417	nla_for_each_nested(a, attr, rem) {
1418		int type = nla_type(a);
1419		int i;
1420
1421		if (type > OVS_NSH_KEY_ATTR_MAX) {
1422			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1423				  type, OVS_NSH_KEY_ATTR_MAX);
1424			return -EINVAL;
1425		}
1426
1427		if (!check_attr_len(nla_len(a),
1428				    ovs_nsh_key_attr_lens[type].len)) {
1429			OVS_NLERR(
1430			    log,
1431			    "nsh attr %d has unexpected len %d expected %d",
1432			    type,
1433			    nla_len(a),
1434			    ovs_nsh_key_attr_lens[type].len
1435			);
1436			return -EINVAL;
1437		}
1438
1439		switch (type) {
1440		case OVS_NSH_KEY_ATTR_BASE: {
1441			const struct ovs_nsh_key_base *base = nla_data(a);
1442
1443			has_base = true;
1444			mdtype = base->mdtype;
1445			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1446					base->flags, is_mask);
1447			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1448					base->ttl, is_mask);
1449			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1450					base->mdtype, is_mask);
1451			SW_FLOW_KEY_PUT(match, nsh.base.np,
1452					base->np, is_mask);
1453			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1454					base->path_hdr, is_mask);
1455			break;
1456		}
1457		case OVS_NSH_KEY_ATTR_MD1: {
1458			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1459
1460			has_md1 = true;
1461			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1462				SW_FLOW_KEY_PUT(match, nsh.context[i],
1463						md1->context[i], is_mask);
1464			break;
1465		}
1466		case OVS_NSH_KEY_ATTR_MD2:
1467			if (!is_push_nsh) /* Not supported MD type 2 yet */
1468				return -ENOTSUPP;
1469
1470			has_md2 = true;
1471			mdlen = nla_len(a);
1472			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1473				OVS_NLERR(
1474				    log,
1475				    "Invalid MD length %d for MD type %d",
1476				    mdlen,
1477				    mdtype
1478				);
1479				return -EINVAL;
1480			}
1481			break;
1482		default:
1483			OVS_NLERR(log, "Unknown nsh attribute %d",
1484				  type);
1485			return -EINVAL;
1486		}
1487	}
1488
1489	if (rem > 0) {
1490		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1491		return -EINVAL;
1492	}
1493
1494	if (has_md1 && has_md2) {
1495		OVS_NLERR(
1496		    1,
1497		    "invalid nsh attribute: md1 and md2 are exclusive."
1498		);
1499		return -EINVAL;
1500	}
1501
1502	if (!is_mask) {
1503		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1504		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1505			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1506				  mdtype);
1507			return -EINVAL;
1508		}
1509
1510		if (is_push_nsh &&
1511		    (!has_base || (!has_md1 && !has_md2))) {
1512			OVS_NLERR(
1513			    1,
1514			    "push_nsh: missing base or metadata attributes"
1515			);
1516			return -EINVAL;
1517		}
1518	}
1519
1520	return 0;
1521}
1522
1523static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1524				u64 attrs, const struct nlattr **a,
1525				bool is_mask, bool log)
1526{
1527	int err;
1528
1529	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1530	if (err)
1531		return err;
1532
1533	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1534		const struct ovs_key_ethernet *eth_key;
1535
1536		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1537		SW_FLOW_KEY_MEMCPY(match, eth.src,
1538				eth_key->eth_src, ETH_ALEN, is_mask);
1539		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1540				eth_key->eth_dst, ETH_ALEN, is_mask);
1541		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1542
1543		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1544			/* VLAN attribute is always parsed before getting here since it
1545			 * may occur multiple times.
1546			 */
1547			OVS_NLERR(log, "VLAN attribute unexpected.");
1548			return -EINVAL;
1549		}
1550
1551		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1552			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1553							  log);
1554			if (err)
1555				return err;
1556		} else if (!is_mask) {
1557			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1558		}
1559	} else if (!match->key->eth.type) {
1560		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1561		return -EINVAL;
1562	}
1563
1564	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1565		const struct ovs_key_ipv4 *ipv4_key;
1566
1567		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1568		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1569			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1570				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1571			return -EINVAL;
1572		}
1573		SW_FLOW_KEY_PUT(match, ip.proto,
1574				ipv4_key->ipv4_proto, is_mask);
1575		SW_FLOW_KEY_PUT(match, ip.tos,
1576				ipv4_key->ipv4_tos, is_mask);
1577		SW_FLOW_KEY_PUT(match, ip.ttl,
1578				ipv4_key->ipv4_ttl, is_mask);
1579		SW_FLOW_KEY_PUT(match, ip.frag,
1580				ipv4_key->ipv4_frag, is_mask);
1581		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1582				ipv4_key->ipv4_src, is_mask);
1583		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1584				ipv4_key->ipv4_dst, is_mask);
1585		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1586	}
1587
1588	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1589		const struct ovs_key_ipv6 *ipv6_key;
1590
1591		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1592		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1593			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1594				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1595			return -EINVAL;
1596		}
1597
1598		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1599			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1600				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1601			return -EINVAL;
1602		}
1603
1604		SW_FLOW_KEY_PUT(match, ipv6.label,
1605				ipv6_key->ipv6_label, is_mask);
1606		SW_FLOW_KEY_PUT(match, ip.proto,
1607				ipv6_key->ipv6_proto, is_mask);
1608		SW_FLOW_KEY_PUT(match, ip.tos,
1609				ipv6_key->ipv6_tclass, is_mask);
1610		SW_FLOW_KEY_PUT(match, ip.ttl,
1611				ipv6_key->ipv6_hlimit, is_mask);
1612		SW_FLOW_KEY_PUT(match, ip.frag,
1613				ipv6_key->ipv6_frag, is_mask);
1614		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1615				ipv6_key->ipv6_src,
1616				sizeof(match->key->ipv6.addr.src),
1617				is_mask);
1618		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1619				ipv6_key->ipv6_dst,
1620				sizeof(match->key->ipv6.addr.dst),
1621				is_mask);
1622
1623		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1624	}
1625
1626	if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1627		const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1628
1629		ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1630
1631		SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1632				ipv6_exthdrs_key->hdrs, is_mask);
1633
1634		attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1635	}
1636
1637	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1638		const struct ovs_key_arp *arp_key;
1639
1640		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1641		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1642			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1643				  arp_key->arp_op);
1644			return -EINVAL;
1645		}
1646
1647		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1648				arp_key->arp_sip, is_mask);
1649		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1650			arp_key->arp_tip, is_mask);
1651		SW_FLOW_KEY_PUT(match, ip.proto,
1652				ntohs(arp_key->arp_op), is_mask);
1653		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1654				arp_key->arp_sha, ETH_ALEN, is_mask);
1655		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1656				arp_key->arp_tha, ETH_ALEN, is_mask);
1657
1658		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1659	}
1660
1661	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1662		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1663					    is_mask, false, log) < 0)
1664			return -EINVAL;
1665		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1666	}
1667
1668	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1669		const struct ovs_key_mpls *mpls_key;
1670		u32 hdr_len;
1671		u32 label_count, label_count_mask, i;
1672
1673		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1674		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1675		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1676
1677		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1678		    hdr_len % sizeof(struct ovs_key_mpls))
1679			return -EINVAL;
1680
1681		label_count_mask =  GENMASK(label_count - 1, 0);
1682
1683		for (i = 0 ; i < label_count; i++)
1684			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1685					mpls_key[i].mpls_lse, is_mask);
1686
1687		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1688				label_count_mask, is_mask);
1689
1690		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1691	 }
1692
1693	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1694		const struct ovs_key_tcp *tcp_key;
1695
1696		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1697		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1698		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1699		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1700	}
1701
1702	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1703		SW_FLOW_KEY_PUT(match, tp.flags,
1704				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1705				is_mask);
1706		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1707	}
1708
1709	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1710		const struct ovs_key_udp *udp_key;
1711
1712		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1713		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1714		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1715		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1716	}
1717
1718	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1719		const struct ovs_key_sctp *sctp_key;
1720
1721		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1722		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1723		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1724		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1725	}
1726
1727	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1728		const struct ovs_key_icmp *icmp_key;
1729
1730		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1731		SW_FLOW_KEY_PUT(match, tp.src,
1732				htons(icmp_key->icmp_type), is_mask);
1733		SW_FLOW_KEY_PUT(match, tp.dst,
1734				htons(icmp_key->icmp_code), is_mask);
1735		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1736	}
1737
1738	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1739		const struct ovs_key_icmpv6 *icmpv6_key;
1740
1741		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1742		SW_FLOW_KEY_PUT(match, tp.src,
1743				htons(icmpv6_key->icmpv6_type), is_mask);
1744		SW_FLOW_KEY_PUT(match, tp.dst,
1745				htons(icmpv6_key->icmpv6_code), is_mask);
1746		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1747	}
1748
1749	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1750		const struct ovs_key_nd *nd_key;
1751
1752		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1753		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1754			nd_key->nd_target,
1755			sizeof(match->key->ipv6.nd.target),
1756			is_mask);
1757		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1758			nd_key->nd_sll, ETH_ALEN, is_mask);
1759		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1760				nd_key->nd_tll, ETH_ALEN, is_mask);
1761		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1762	}
1763
1764	if (attrs != 0) {
1765		OVS_NLERR(log, "Unknown key attributes %llx",
1766			  (unsigned long long)attrs);
1767		return -EINVAL;
1768	}
1769
1770	return 0;
1771}
1772
1773static void nlattr_set(struct nlattr *attr, u8 val,
1774		       const struct ovs_len_tbl *tbl)
1775{
1776	struct nlattr *nla;
1777	int rem;
1778
1779	/* The nlattr stream should already have been validated */
1780	nla_for_each_nested(nla, attr, rem) {
1781		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1782			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1783		else
 
 
1784			memset(nla_data(nla), val, nla_len(nla));
 
1785
1786		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1787			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1788	}
1789}
1790
1791static void mask_set_nlattr(struct nlattr *attr, u8 val)
1792{
1793	nlattr_set(attr, val, ovs_key_lens);
1794}
1795
1796/**
1797 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1798 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1799 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1800 * does not include any don't care bit.
1801 * @net: Used to determine per-namespace field support.
1802 * @match: receives the extracted flow match information.
1803 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1804 * sequence. The fields should of the packet that triggered the creation
1805 * of this flow.
1806 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1807 * Netlink attribute specifies the mask field of the wildcarded flow.
1808 * @log: Boolean to allow kernel error logging.  Normally true, but when
1809 * probing for feature compatibility this should be passed in as false to
1810 * suppress unnecessary error logging.
1811 */
1812int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1813		      const struct nlattr *nla_key,
1814		      const struct nlattr *nla_mask,
1815		      bool log)
1816{
1817	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1818	struct nlattr *newmask = NULL;
1819	u64 key_attrs = 0;
1820	u64 mask_attrs = 0;
1821	int err;
1822
1823	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1824	if (err)
1825		return err;
1826
1827	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1828	if (err)
1829		return err;
1830
1831	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1832	if (err)
1833		return err;
1834
1835	if (match->mask) {
1836		if (!nla_mask) {
1837			/* Create an exact match mask. We need to set to 0xff
1838			 * all the 'match->mask' fields that have been touched
1839			 * in 'match->key'. We cannot simply memset
1840			 * 'match->mask', because padding bytes and fields not
1841			 * specified in 'match->key' should be left to 0.
1842			 * Instead, we use a stream of netlink attributes,
1843			 * copied from 'key' and set to 0xff.
1844			 * ovs_key_from_nlattrs() will take care of filling
1845			 * 'match->mask' appropriately.
1846			 */
1847			newmask = kmemdup(nla_key,
1848					  nla_total_size(nla_len(nla_key)),
1849					  GFP_KERNEL);
1850			if (!newmask)
1851				return -ENOMEM;
1852
1853			mask_set_nlattr(newmask, 0xff);
1854
1855			/* The userspace does not send tunnel attributes that
1856			 * are 0, but we should not wildcard them nonetheless.
1857			 */
1858			if (match->key->tun_proto)
1859				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1860							 0xff, true);
1861
1862			nla_mask = newmask;
1863		}
1864
1865		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1866		if (err)
1867			goto free_newmask;
1868
1869		/* Always match on tci. */
1870		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1871		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1872
1873		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1874		if (err)
1875			goto free_newmask;
1876
1877		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1878					   log);
1879		if (err)
1880			goto free_newmask;
1881	}
1882
1883	if (!match_validate(match, key_attrs, mask_attrs, log))
1884		err = -EINVAL;
1885
1886free_newmask:
1887	kfree(newmask);
1888	return err;
1889}
1890
1891static size_t get_ufid_len(const struct nlattr *attr, bool log)
1892{
1893	size_t len;
1894
1895	if (!attr)
1896		return 0;
1897
1898	len = nla_len(attr);
1899	if (len < 1 || len > MAX_UFID_LENGTH) {
1900		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1901			  nla_len(attr), MAX_UFID_LENGTH);
1902		return 0;
1903	}
1904
1905	return len;
1906}
1907
1908/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1909 * or false otherwise.
1910 */
1911bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1912		      bool log)
1913{
1914	sfid->ufid_len = get_ufid_len(attr, log);
1915	if (sfid->ufid_len)
1916		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1917
1918	return sfid->ufid_len;
1919}
1920
1921int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1922			   const struct sw_flow_key *key, bool log)
1923{
1924	struct sw_flow_key *new_key;
1925
1926	if (ovs_nla_get_ufid(sfid, ufid, log))
1927		return 0;
1928
1929	/* If UFID was not provided, use unmasked key. */
1930	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1931	if (!new_key)
1932		return -ENOMEM;
1933	memcpy(new_key, key, sizeof(*key));
1934	sfid->unmasked_key = new_key;
1935
1936	return 0;
1937}
1938
1939u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1940{
1941	return nla_get_u32_default(attr, 0);
1942}
1943
1944/**
1945 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1946 * @net: Network namespace.
1947 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1948 * metadata.
1949 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1950 * attributes.
1951 * @attrs: Bit mask for the netlink attributes included in @a.
1952 * @log: Boolean to allow kernel error logging.  Normally true, but when
1953 * probing for feature compatibility this should be passed in as false to
1954 * suppress unnecessary error logging.
1955 *
1956 * This parses a series of Netlink attributes that form a flow key, which must
1957 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1958 * get the metadata, that is, the parts of the flow key that cannot be
1959 * extracted from the packet itself.
1960 *
1961 * This must be called before the packet key fields are filled in 'key'.
1962 */
1963
1964int ovs_nla_get_flow_metadata(struct net *net,
1965			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1966			      u64 attrs, struct sw_flow_key *key, bool log)
1967{
 
1968	struct sw_flow_match match;
 
 
 
 
 
 
1969
1970	memset(&match, 0, sizeof(match));
1971	match.key = key;
1972
1973	key->ct_state = 0;
1974	key->ct_zone = 0;
1975	key->ct_orig_proto = 0;
1976	memset(&key->ct, 0, sizeof(key->ct));
1977	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1978	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1979
1980	key->phy.in_port = DP_MAX_PORTS;
1981
1982	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1983}
1984
1985static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1986			    bool is_mask)
1987{
1988	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1989
1990	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1991	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1992		return -EMSGSIZE;
1993	return 0;
1994}
1995
1996static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1997			     struct sk_buff *skb)
1998{
1999	struct nlattr *start;
2000
2001	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
2002	if (!start)
2003		return -EMSGSIZE;
2004
2005	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
2006		goto nla_put_failure;
2007
2008	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
2009		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
2010			    sizeof(nsh->context), nsh->context))
2011			goto nla_put_failure;
2012	}
2013
2014	/* Don't support MD type 2 yet */
2015
2016	nla_nest_end(skb, start);
2017
2018	return 0;
2019
2020nla_put_failure:
2021	return -EMSGSIZE;
2022}
2023
2024static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2025			     const struct sw_flow_key *output, bool is_mask,
2026			     struct sk_buff *skb)
2027{
2028	struct ovs_key_ethernet *eth_key;
2029	struct nlattr *nla;
2030	struct nlattr *encap = NULL;
2031	struct nlattr *in_encap = NULL;
2032
2033	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2034		goto nla_put_failure;
2035
2036	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2037		goto nla_put_failure;
2038
2039	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2040		goto nla_put_failure;
2041
2042	if ((swkey->tun_proto || is_mask)) {
2043		const void *opts = NULL;
2044
2045		if (ip_tunnel_is_options_present(output->tun_key.tun_flags))
2046			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2047
2048		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2049				     swkey->tun_opts_len, swkey->tun_proto, 0))
2050			goto nla_put_failure;
2051	}
2052
2053	if (swkey->phy.in_port == DP_MAX_PORTS) {
2054		if (is_mask && (output->phy.in_port == 0xffff))
2055			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2056				goto nla_put_failure;
2057	} else {
2058		u16 upper_u16;
2059		upper_u16 = !is_mask ? 0 : 0xffff;
2060
2061		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2062				(upper_u16 << 16) | output->phy.in_port))
2063			goto nla_put_failure;
2064	}
2065
2066	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2067		goto nla_put_failure;
2068
2069	if (ovs_ct_put_key(swkey, output, skb))
2070		goto nla_put_failure;
2071
2072	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2073		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2074		if (!nla)
2075			goto nla_put_failure;
2076
2077		eth_key = nla_data(nla);
2078		ether_addr_copy(eth_key->eth_src, output->eth.src);
2079		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2080
2081		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2082			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2083				goto nla_put_failure;
2084			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2085			if (!swkey->eth.vlan.tci)
2086				goto unencap;
2087
2088			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2089				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2090					goto nla_put_failure;
2091				in_encap = nla_nest_start_noflag(skb,
2092								 OVS_KEY_ATTR_ENCAP);
2093				if (!swkey->eth.cvlan.tci)
2094					goto unencap;
2095			}
2096		}
2097
2098		if (swkey->eth.type == htons(ETH_P_802_2)) {
2099			/*
2100			* Ethertype 802.2 is represented in the netlink with omitted
2101			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2102			* 0xffff in the mask attribute.  Ethertype can also
2103			* be wildcarded.
2104			*/
2105			if (is_mask && output->eth.type)
2106				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2107							output->eth.type))
2108					goto nla_put_failure;
2109			goto unencap;
2110		}
2111	}
2112
2113	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2114		goto nla_put_failure;
2115
2116	if (eth_type_vlan(swkey->eth.type)) {
2117		/* There are 3 VLAN tags, we don't know anything about the rest
2118		 * of the packet, so truncate here.
2119		 */
2120		WARN_ON_ONCE(!(encap && in_encap));
2121		goto unencap;
2122	}
2123
2124	if (swkey->eth.type == htons(ETH_P_IP)) {
2125		struct ovs_key_ipv4 *ipv4_key;
2126
2127		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2128		if (!nla)
2129			goto nla_put_failure;
2130		ipv4_key = nla_data(nla);
2131		ipv4_key->ipv4_src = output->ipv4.addr.src;
2132		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2133		ipv4_key->ipv4_proto = output->ip.proto;
2134		ipv4_key->ipv4_tos = output->ip.tos;
2135		ipv4_key->ipv4_ttl = output->ip.ttl;
2136		ipv4_key->ipv4_frag = output->ip.frag;
2137	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2138		struct ovs_key_ipv6 *ipv6_key;
2139		struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2140
2141		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2142		if (!nla)
2143			goto nla_put_failure;
2144		ipv6_key = nla_data(nla);
2145		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2146				sizeof(ipv6_key->ipv6_src));
2147		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2148				sizeof(ipv6_key->ipv6_dst));
2149		ipv6_key->ipv6_label = output->ipv6.label;
2150		ipv6_key->ipv6_proto = output->ip.proto;
2151		ipv6_key->ipv6_tclass = output->ip.tos;
2152		ipv6_key->ipv6_hlimit = output->ip.ttl;
2153		ipv6_key->ipv6_frag = output->ip.frag;
2154
2155		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2156				  sizeof(*ipv6_exthdrs_key));
2157		if (!nla)
2158			goto nla_put_failure;
2159		ipv6_exthdrs_key = nla_data(nla);
2160		ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2161	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2162		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2163			goto nla_put_failure;
2164	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2165		   swkey->eth.type == htons(ETH_P_RARP)) {
2166		struct ovs_key_arp *arp_key;
2167
2168		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2169		if (!nla)
2170			goto nla_put_failure;
2171		arp_key = nla_data(nla);
2172		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2173		arp_key->arp_sip = output->ipv4.addr.src;
2174		arp_key->arp_tip = output->ipv4.addr.dst;
2175		arp_key->arp_op = htons(output->ip.proto);
2176		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2177		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2178	} else if (eth_p_mpls(swkey->eth.type)) {
2179		u8 i, num_labels;
2180		struct ovs_key_mpls *mpls_key;
2181
2182		num_labels = hweight_long(output->mpls.num_labels_mask);
2183		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2184				  num_labels * sizeof(*mpls_key));
2185		if (!nla)
2186			goto nla_put_failure;
2187
2188		mpls_key = nla_data(nla);
2189		for (i = 0; i < num_labels; i++)
2190			mpls_key[i].mpls_lse = output->mpls.lse[i];
2191	}
2192
2193	if ((swkey->eth.type == htons(ETH_P_IP) ||
2194	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2195	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2196
2197		if (swkey->ip.proto == IPPROTO_TCP) {
2198			struct ovs_key_tcp *tcp_key;
2199
2200			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2201			if (!nla)
2202				goto nla_put_failure;
2203			tcp_key = nla_data(nla);
2204			tcp_key->tcp_src = output->tp.src;
2205			tcp_key->tcp_dst = output->tp.dst;
2206			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2207					 output->tp.flags))
2208				goto nla_put_failure;
2209		} else if (swkey->ip.proto == IPPROTO_UDP) {
2210			struct ovs_key_udp *udp_key;
2211
2212			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2213			if (!nla)
2214				goto nla_put_failure;
2215			udp_key = nla_data(nla);
2216			udp_key->udp_src = output->tp.src;
2217			udp_key->udp_dst = output->tp.dst;
2218		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2219			struct ovs_key_sctp *sctp_key;
2220
2221			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2222			if (!nla)
2223				goto nla_put_failure;
2224			sctp_key = nla_data(nla);
2225			sctp_key->sctp_src = output->tp.src;
2226			sctp_key->sctp_dst = output->tp.dst;
2227		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2228			   swkey->ip.proto == IPPROTO_ICMP) {
2229			struct ovs_key_icmp *icmp_key;
2230
2231			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2232			if (!nla)
2233				goto nla_put_failure;
2234			icmp_key = nla_data(nla);
2235			icmp_key->icmp_type = ntohs(output->tp.src);
2236			icmp_key->icmp_code = ntohs(output->tp.dst);
2237		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2238			   swkey->ip.proto == IPPROTO_ICMPV6) {
2239			struct ovs_key_icmpv6 *icmpv6_key;
2240
2241			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2242						sizeof(*icmpv6_key));
2243			if (!nla)
2244				goto nla_put_failure;
2245			icmpv6_key = nla_data(nla);
2246			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2247			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2248
2249			if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2250			    swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2251				struct ovs_key_nd *nd_key;
2252
2253				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2254				if (!nla)
2255					goto nla_put_failure;
2256				nd_key = nla_data(nla);
2257				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2258							sizeof(nd_key->nd_target));
2259				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2260				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2261			}
2262		}
2263	}
2264
2265unencap:
2266	if (in_encap)
2267		nla_nest_end(skb, in_encap);
2268	if (encap)
2269		nla_nest_end(skb, encap);
2270
2271	return 0;
2272
2273nla_put_failure:
2274	return -EMSGSIZE;
2275}
2276
2277int ovs_nla_put_key(const struct sw_flow_key *swkey,
2278		    const struct sw_flow_key *output, int attr, bool is_mask,
2279		    struct sk_buff *skb)
2280{
2281	int err;
2282	struct nlattr *nla;
2283
2284	nla = nla_nest_start_noflag(skb, attr);
2285	if (!nla)
2286		return -EMSGSIZE;
2287	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2288	if (err)
2289		return err;
2290	nla_nest_end(skb, nla);
2291
2292	return 0;
2293}
2294
2295/* Called with ovs_mutex or RCU read lock. */
2296int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2297{
2298	if (ovs_identifier_is_ufid(&flow->id))
2299		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2300			       flow->id.ufid);
2301
2302	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2303			       OVS_FLOW_ATTR_KEY, false, skb);
2304}
2305
2306/* Called with ovs_mutex or RCU read lock. */
2307int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2308{
2309	return ovs_nla_put_key(&flow->key, &flow->key,
2310				OVS_FLOW_ATTR_KEY, false, skb);
2311}
2312
2313/* Called with ovs_mutex or RCU read lock. */
2314int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2315{
2316	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2317				OVS_FLOW_ATTR_MASK, true, skb);
2318}
2319
2320#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2321
2322static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2323{
2324	struct sw_flow_actions *sfa;
2325
2326	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
 
 
 
2327
2328	sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2329	if (!sfa)
2330		return ERR_PTR(-ENOMEM);
2331
2332	sfa->actions_len = 0;
2333	return sfa;
2334}
2335
2336static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2337
2338static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2339{
2340	const struct nlattr *a;
2341	int rem;
2342
2343	nla_for_each_nested(a, action, rem) {
2344		switch (nla_type(a)) {
2345		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2346		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2347			ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2348			break;
2349		}
2350	}
2351}
2352
2353static void ovs_nla_free_clone_action(const struct nlattr *action)
2354{
2355	const struct nlattr *a = nla_data(action);
2356	int rem = nla_len(action);
2357
2358	switch (nla_type(a)) {
2359	case OVS_CLONE_ATTR_EXEC:
2360		/* The real list of actions follows this attribute. */
2361		a = nla_next(a, &rem);
2362		ovs_nla_free_nested_actions(a, rem);
2363		break;
2364	}
2365}
2366
2367static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2368{
2369	const struct nlattr *a = nla_data(action);
2370
2371	switch (nla_type(a)) {
2372	case OVS_DEC_TTL_ATTR_ACTION:
2373		ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2374		break;
2375	}
2376}
2377
2378static void ovs_nla_free_sample_action(const struct nlattr *action)
2379{
2380	const struct nlattr *a = nla_data(action);
2381	int rem = nla_len(action);
2382
2383	switch (nla_type(a)) {
2384	case OVS_SAMPLE_ATTR_ARG:
2385		/* The real list of actions follows this attribute. */
2386		a = nla_next(a, &rem);
2387		ovs_nla_free_nested_actions(a, rem);
2388		break;
2389	}
2390}
2391
2392static void ovs_nla_free_set_action(const struct nlattr *a)
2393{
2394	const struct nlattr *ovs_key = nla_data(a);
2395	struct ovs_tunnel_info *ovs_tun;
2396
2397	switch (nla_type(ovs_key)) {
2398	case OVS_KEY_ATTR_TUNNEL_INFO:
2399		ovs_tun = nla_data(ovs_key);
2400		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2401		break;
2402	}
2403}
2404
2405static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2406{
2407	const struct nlattr *a;
2408	int rem;
2409
2410	/* Whenever new actions are added, the need to update this
2411	 * function should be considered.
2412	 */
2413	BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 25);
2414
2415	if (!actions)
2416		return;
2417
2418	nla_for_each_attr(a, actions, len, rem) {
2419		switch (nla_type(a)) {
2420		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2421			ovs_nla_free_check_pkt_len_action(a);
2422			break;
2423
2424		case OVS_ACTION_ATTR_CLONE:
2425			ovs_nla_free_clone_action(a);
2426			break;
2427
2428		case OVS_ACTION_ATTR_CT:
2429			ovs_ct_free_action(a);
2430			break;
2431
2432		case OVS_ACTION_ATTR_DEC_TTL:
2433			ovs_nla_free_dec_ttl_action(a);
2434			break;
2435
2436		case OVS_ACTION_ATTR_SAMPLE:
2437			ovs_nla_free_sample_action(a);
2438			break;
2439
2440		case OVS_ACTION_ATTR_SET:
2441			ovs_nla_free_set_action(a);
2442			break;
2443		}
2444	}
2445}
2446
2447void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2448{
2449	if (!sf_acts)
2450		return;
2451
2452	ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2453	kfree(sf_acts);
2454}
2455
2456static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2457{
2458	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2459}
2460
2461/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2462 * The caller must hold rcu_read_lock for this to be sensible. */
2463void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2464{
2465	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2466}
2467
2468static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2469				       int attr_len, bool log)
2470{
2471
2472	struct sw_flow_actions *acts;
2473	int new_acts_size;
2474	size_t req_size = NLA_ALIGN(attr_len);
2475	int next_offset = offsetof(struct sw_flow_actions, actions) +
2476					(*sfa)->actions_len;
2477
2478	if (req_size <= (ksize(*sfa) - next_offset))
2479		goto out;
2480
2481	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2482
2483	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2484		if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2485			OVS_NLERR(log, "Flow action size exceeds max %u",
2486				  MAX_ACTIONS_BUFSIZE);
2487			return ERR_PTR(-EMSGSIZE);
2488		}
2489		new_acts_size = MAX_ACTIONS_BUFSIZE;
2490	}
2491
2492	acts = nla_alloc_flow_actions(new_acts_size);
2493	if (IS_ERR(acts))
2494		return ERR_CAST(acts);
2495
2496	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2497	acts->actions_len = (*sfa)->actions_len;
2498	acts->orig_len = (*sfa)->orig_len;
2499	kfree(*sfa);
2500	*sfa = acts;
2501
2502out:
2503	(*sfa)->actions_len += req_size;
2504	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2505}
2506
2507static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2508				   int attrtype, void *data, int len, bool log)
2509{
2510	struct nlattr *a;
2511
2512	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2513	if (IS_ERR(a))
2514		return a;
2515
2516	a->nla_type = attrtype;
2517	a->nla_len = nla_attr_size(len);
2518
2519	if (data)
2520		memcpy(nla_data(a), data, len);
2521	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2522
2523	return a;
2524}
2525
2526int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2527		       int len, bool log)
2528{
2529	struct nlattr *a;
2530
2531	a = __add_action(sfa, attrtype, data, len, log);
2532
2533	return PTR_ERR_OR_ZERO(a);
2534}
2535
2536static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2537					  int attrtype, bool log)
2538{
2539	int used = (*sfa)->actions_len;
2540	int err;
2541
2542	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2543	if (err)
2544		return err;
2545
2546	return used;
2547}
2548
2549static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2550					 int st_offset)
2551{
2552	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2553							       st_offset);
2554
2555	a->nla_len = sfa->actions_len - st_offset;
2556}
2557
2558static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2559				  const struct sw_flow_key *key,
2560				  struct sw_flow_actions **sfa,
2561				  __be16 eth_type, __be16 vlan_tci,
2562				  u32 mpls_label_count, bool log,
2563				  u32 depth);
2564
2565static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2566				    const struct sw_flow_key *key,
2567				    struct sw_flow_actions **sfa,
2568				    __be16 eth_type, __be16 vlan_tci,
2569				    u32 mpls_label_count, bool log, bool last,
2570				    u32 depth)
2571{
2572	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2573	const struct nlattr *probability, *actions;
2574	const struct nlattr *a;
2575	int rem, start, err;
2576	struct sample_arg arg;
2577
2578	memset(attrs, 0, sizeof(attrs));
2579	nla_for_each_nested(a, attr, rem) {
2580		int type = nla_type(a);
2581		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2582			return -EINVAL;
2583		attrs[type] = a;
2584	}
2585	if (rem)
2586		return -EINVAL;
2587
2588	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2589	if (!probability || nla_len(probability) != sizeof(u32))
2590		return -EINVAL;
2591
2592	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2593	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2594		return -EINVAL;
2595
2596	/* validation done, copy sample action. */
2597	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2598	if (start < 0)
2599		return start;
2600
2601	/* When both skb and flow may be changed, put the sample
2602	 * into a deferred fifo. On the other hand, if only skb
2603	 * may be modified, the actions can be executed in place.
2604	 *
2605	 * Do this analysis at the flow installation time.
2606	 * Set 'clone_action->exec' to true if the actions can be
2607	 * executed without being deferred.
2608	 *
2609	 * If the sample is the last action, it can always be excuted
2610	 * rather than deferred.
2611	 */
2612	arg.exec = last || !actions_may_change_flow(actions);
2613	arg.probability = nla_get_u32(probability);
2614
2615	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2616				 log);
2617	if (err)
2618		return err;
2619
2620	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2621				     eth_type, vlan_tci, mpls_label_count, log,
2622				     depth + 1);
2623
2624	if (err)
2625		return err;
2626
2627	add_nested_action_end(*sfa, start);
2628
2629	return 0;
2630}
2631
2632static int validate_and_copy_dec_ttl(struct net *net,
2633				     const struct nlattr *attr,
2634				     const struct sw_flow_key *key,
2635				     struct sw_flow_actions **sfa,
2636				     __be16 eth_type, __be16 vlan_tci,
2637				     u32 mpls_label_count, bool log,
2638				     u32 depth)
2639{
2640	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2641	int start, action_start, err, rem;
2642	const struct nlattr *a, *actions;
2643
2644	memset(attrs, 0, sizeof(attrs));
2645	nla_for_each_nested(a, attr, rem) {
2646		int type = nla_type(a);
2647
2648		/* Ignore unknown attributes to be future proof. */
2649		if (type > OVS_DEC_TTL_ATTR_MAX)
2650			continue;
2651
2652		if (!type || attrs[type]) {
2653			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2654				  type);
2655			return -EINVAL;
2656		}
2657
2658		attrs[type] = a;
2659	}
2660
2661	if (rem) {
2662		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2663		return -EINVAL;
2664	}
2665
2666	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2667	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2668		OVS_NLERR(log, "Missing valid actions attribute.");
2669		return -EINVAL;
2670	}
2671
2672	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2673	if (start < 0)
2674		return start;
2675
2676	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2677	if (action_start < 0)
2678		return action_start;
2679
2680	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2681				     vlan_tci, mpls_label_count, log,
2682				     depth + 1);
2683	if (err)
2684		return err;
2685
2686	add_nested_action_end(*sfa, action_start);
2687	add_nested_action_end(*sfa, start);
2688	return 0;
2689}
2690
2691static int validate_and_copy_clone(struct net *net,
2692				   const struct nlattr *attr,
2693				   const struct sw_flow_key *key,
2694				   struct sw_flow_actions **sfa,
2695				   __be16 eth_type, __be16 vlan_tci,
2696				   u32 mpls_label_count, bool log, bool last,
2697				   u32 depth)
2698{
2699	int start, err;
2700	u32 exec;
2701
2702	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2703		return -EINVAL;
2704
2705	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2706	if (start < 0)
2707		return start;
2708
2709	exec = last || !actions_may_change_flow(attr);
2710
2711	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2712				 sizeof(exec), log);
2713	if (err)
2714		return err;
 
 
 
2715
2716	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2717				     eth_type, vlan_tci, mpls_label_count, log,
2718				     depth + 1);
2719	if (err)
2720		return err;
2721
 
2722	add_nested_action_end(*sfa, start);
2723
2724	return 0;
2725}
2726
2727void ovs_match_init(struct sw_flow_match *match,
2728		    struct sw_flow_key *key,
2729		    bool reset_key,
2730		    struct sw_flow_mask *mask)
2731{
2732	memset(match, 0, sizeof(*match));
2733	match->key = key;
2734	match->mask = mask;
2735
2736	if (reset_key)
2737		memset(key, 0, sizeof(*key));
2738
2739	if (mask) {
2740		memset(&mask->key, 0, sizeof(mask->key));
2741		mask->range.start = mask->range.end = 0;
2742	}
2743}
2744
2745static int validate_geneve_opts(struct sw_flow_key *key)
2746{
2747	struct geneve_opt *option;
2748	int opts_len = key->tun_opts_len;
2749	bool crit_opt = false;
2750
2751	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2752	while (opts_len > 0) {
2753		int len;
2754
2755		if (opts_len < sizeof(*option))
2756			return -EINVAL;
2757
2758		len = sizeof(*option) + option->length * 4;
2759		if (len > opts_len)
2760			return -EINVAL;
2761
2762		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2763
2764		option = (struct geneve_opt *)((u8 *)option + len);
2765		opts_len -= len;
2766	}
2767
2768	if (crit_opt)
2769		__set_bit(IP_TUNNEL_CRIT_OPT_BIT, key->tun_key.tun_flags);
2770
2771	return 0;
2772}
2773
2774static int validate_and_copy_set_tun(const struct nlattr *attr,
2775				     struct sw_flow_actions **sfa, bool log)
2776{
2777	IP_TUNNEL_DECLARE_FLAGS(dst_opt_type) = { };
2778	struct sw_flow_match match;
2779	struct sw_flow_key key;
2780	struct metadata_dst *tun_dst;
2781	struct ip_tunnel_info *tun_info;
2782	struct ovs_tunnel_info *ovs_tun;
2783	struct nlattr *a;
2784	int err = 0, start, opts_type;
2785
2786	ovs_match_init(&match, &key, true, NULL);
2787	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2788	if (opts_type < 0)
2789		return opts_type;
2790
2791	if (key.tun_opts_len) {
2792		switch (opts_type) {
2793		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2794			err = validate_geneve_opts(&key);
2795			if (err < 0)
2796				return err;
2797
2798			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, dst_opt_type);
2799			break;
2800		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2801			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, dst_opt_type);
2802			break;
2803		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2804			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, dst_opt_type);
2805			break;
2806		}
2807	}
2808
2809	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2810	if (start < 0)
2811		return start;
2812
2813	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2814				     GFP_KERNEL);
2815
2816	if (!tun_dst)
2817		return -ENOMEM;
2818
2819	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2820	if (err) {
2821		dst_release((struct dst_entry *)tun_dst);
2822		return err;
2823	}
2824
2825	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2826			 sizeof(*ovs_tun), log);
2827	if (IS_ERR(a)) {
2828		dst_release((struct dst_entry *)tun_dst);
2829		return PTR_ERR(a);
2830	}
2831
2832	ovs_tun = nla_data(a);
2833	ovs_tun->tun_dst = tun_dst;
2834
2835	tun_info = &tun_dst->u.tun_info;
2836	tun_info->mode = IP_TUNNEL_INFO_TX;
2837	if (key.tun_proto == AF_INET6)
2838		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2839	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2840		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2841	tun_info->key = key.tun_key;
2842
2843	/* We need to store the options in the action itself since
2844	 * everything else will go away after flow setup. We can append
2845	 * it to tun_info and then point there.
2846	 */
2847	ip_tunnel_info_opts_set(tun_info,
2848				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2849				key.tun_opts_len, dst_opt_type);
2850	add_nested_action_end(*sfa, start);
2851
2852	return err;
2853}
2854
2855static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2856			 bool is_push_nsh, bool log)
2857{
2858	struct sw_flow_match match;
2859	struct sw_flow_key key;
2860	int ret = 0;
2861
2862	ovs_match_init(&match, &key, true, NULL);
2863	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2864				      is_push_nsh, log);
2865	return !ret;
2866}
2867
2868/* Return false if there are any non-masked bits set.
2869 * Mask follows data immediately, before any netlink padding.
2870 */
2871static bool validate_masked(u8 *data, int len)
2872{
2873	u8 *mask = data + len;
2874
2875	while (len--)
2876		if (*data++ & ~*mask++)
2877			return false;
2878
2879	return true;
2880}
2881
2882static int validate_set(const struct nlattr *a,
2883			const struct sw_flow_key *flow_key,
2884			struct sw_flow_actions **sfa, bool *skip_copy,
2885			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2886{
2887	const struct nlattr *ovs_key = nla_data(a);
2888	int key_type = nla_type(ovs_key);
2889	size_t key_len;
2890
2891	/* There can be only one key in a action */
2892	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2893		return -EINVAL;
2894
2895	key_len = nla_len(ovs_key);
2896	if (masked)
2897		key_len /= 2;
2898
2899	if (key_type > OVS_KEY_ATTR_MAX ||
2900	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2901		return -EINVAL;
2902
2903	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2904		return -EINVAL;
2905
2906	switch (key_type) {
 
 
 
 
2907	case OVS_KEY_ATTR_PRIORITY:
2908	case OVS_KEY_ATTR_SKB_MARK:
2909	case OVS_KEY_ATTR_CT_MARK:
2910	case OVS_KEY_ATTR_CT_LABELS:
2911		break;
2912
2913	case OVS_KEY_ATTR_ETHERNET:
2914		if (mac_proto != MAC_PROTO_ETHERNET)
2915			return -EINVAL;
2916		break;
2917
2918	case OVS_KEY_ATTR_TUNNEL: {
2919		int err;
2920
2921		if (masked)
2922			return -EINVAL; /* Masked tunnel set not supported. */
2923
2924		*skip_copy = true;
2925		err = validate_and_copy_set_tun(a, sfa, log);
2926		if (err)
2927			return err;
2928		break;
2929	}
2930	case OVS_KEY_ATTR_IPV4: {
2931		const struct ovs_key_ipv4 *ipv4_key;
2932
 
2933		if (eth_type != htons(ETH_P_IP))
2934			return -EINVAL;
2935
2936		ipv4_key = nla_data(ovs_key);
2937
2938		if (masked) {
2939			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2940
2941			/* Non-writeable fields. */
2942			if (mask->ipv4_proto || mask->ipv4_frag)
2943				return -EINVAL;
2944		} else {
2945			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2946				return -EINVAL;
2947
2948			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2949				return -EINVAL;
2950		}
2951		break;
2952	}
2953	case OVS_KEY_ATTR_IPV6: {
2954		const struct ovs_key_ipv6 *ipv6_key;
2955
 
2956		if (eth_type != htons(ETH_P_IPV6))
2957			return -EINVAL;
2958
2959		ipv6_key = nla_data(ovs_key);
2960
2961		if (masked) {
2962			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2963
2964			/* Non-writeable fields. */
2965			if (mask->ipv6_proto || mask->ipv6_frag)
2966				return -EINVAL;
2967
2968			/* Invalid bits in the flow label mask? */
2969			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2970				return -EINVAL;
2971		} else {
2972			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2973				return -EINVAL;
2974
2975			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2976				return -EINVAL;
2977		}
2978		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2979			return -EINVAL;
2980
2981		break;
2982	}
2983	case OVS_KEY_ATTR_TCP:
2984		if ((eth_type != htons(ETH_P_IP) &&
2985		     eth_type != htons(ETH_P_IPV6)) ||
2986		    flow_key->ip.proto != IPPROTO_TCP)
2987			return -EINVAL;
2988
2989		break;
2990
2991	case OVS_KEY_ATTR_UDP:
2992		if ((eth_type != htons(ETH_P_IP) &&
2993		     eth_type != htons(ETH_P_IPV6)) ||
2994		    flow_key->ip.proto != IPPROTO_UDP)
2995			return -EINVAL;
2996
2997		break;
2998
2999	case OVS_KEY_ATTR_MPLS:
3000		if (!eth_p_mpls(eth_type))
3001			return -EINVAL;
3002		break;
3003
3004	case OVS_KEY_ATTR_SCTP:
3005		if ((eth_type != htons(ETH_P_IP) &&
3006		     eth_type != htons(ETH_P_IPV6)) ||
3007		    flow_key->ip.proto != IPPROTO_SCTP)
3008			return -EINVAL;
3009
3010		break;
3011
3012	case OVS_KEY_ATTR_NSH:
3013		if (eth_type != htons(ETH_P_NSH))
3014			return -EINVAL;
3015		if (!validate_nsh(nla_data(a), masked, false, log))
3016			return -EINVAL;
3017		break;
3018
3019	default:
3020		return -EINVAL;
3021	}
3022
3023	/* Convert non-masked non-tunnel set actions to masked set actions. */
3024	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3025		int start, len = key_len * 2;
3026		struct nlattr *at;
3027
3028		*skip_copy = true;
3029
3030		start = add_nested_action_start(sfa,
3031						OVS_ACTION_ATTR_SET_TO_MASKED,
3032						log);
3033		if (start < 0)
3034			return start;
3035
3036		at = __add_action(sfa, key_type, NULL, len, log);
3037		if (IS_ERR(at))
3038			return PTR_ERR(at);
3039
3040		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3041		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
3042		/* Clear non-writeable bits from otherwise writeable fields. */
3043		if (key_type == OVS_KEY_ATTR_IPV6) {
3044			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3045
3046			mask->ipv6_label &= htonl(0x000FFFFF);
3047		}
3048		add_nested_action_end(*sfa, start);
3049	}
3050
3051	return 0;
3052}
3053
3054static int validate_userspace(const struct nlattr *attr)
3055{
3056	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3057		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3058		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3059		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3060	};
3061	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3062	int error;
3063
3064	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3065					    userspace_policy, NULL);
3066	if (error)
3067		return error;
3068
3069	if (!a[OVS_USERSPACE_ATTR_PID] ||
3070	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3071		return -EINVAL;
3072
3073	return 0;
3074}
3075
3076static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3077	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3078	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3079	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3080};
3081
3082static int validate_and_copy_check_pkt_len(struct net *net,
3083					   const struct nlattr *attr,
3084					   const struct sw_flow_key *key,
3085					   struct sw_flow_actions **sfa,
3086					   __be16 eth_type, __be16 vlan_tci,
3087					   u32 mpls_label_count,
3088					   bool log, bool last, u32 depth)
3089{
3090	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3091	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3092	struct check_pkt_len_arg arg;
3093	int nested_acts_start;
3094	int start, err;
3095
3096	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3097					  nla_data(attr), nla_len(attr),
3098					  cpl_policy, NULL);
3099	if (err)
3100		return err;
3101
3102	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3103	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3104		return -EINVAL;
3105
3106	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3107	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3108
3109	/* Both the nested action should be present. */
3110	if (!acts_if_greater || !acts_if_lesser_eq)
3111		return -EINVAL;
3112
3113	/* validation done, copy the nested actions. */
3114	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3115					log);
3116	if (start < 0)
3117		return start;
3118
3119	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3120	arg.exec_for_lesser_equal =
3121		last || !actions_may_change_flow(acts_if_lesser_eq);
3122	arg.exec_for_greater =
3123		last || !actions_may_change_flow(acts_if_greater);
3124
3125	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3126				 sizeof(arg), log);
3127	if (err)
3128		return err;
3129
3130	nested_acts_start = add_nested_action_start(sfa,
3131		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3132	if (nested_acts_start < 0)
3133		return nested_acts_start;
3134
3135	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3136				     eth_type, vlan_tci, mpls_label_count, log,
3137				     depth + 1);
3138
3139	if (err)
3140		return err;
3141
3142	add_nested_action_end(*sfa, nested_acts_start);
3143
3144	nested_acts_start = add_nested_action_start(sfa,
3145		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3146	if (nested_acts_start < 0)
3147		return nested_acts_start;
3148
3149	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3150				     eth_type, vlan_tci, mpls_label_count, log,
3151				     depth + 1);
3152
3153	if (err)
3154		return err;
3155
3156	add_nested_action_end(*sfa, nested_acts_start);
3157	add_nested_action_end(*sfa, start);
3158	return 0;
3159}
3160
3161static int validate_psample(const struct nlattr *attr)
3162{
3163	static const struct nla_policy policy[OVS_PSAMPLE_ATTR_MAX + 1] = {
3164		[OVS_PSAMPLE_ATTR_GROUP] = { .type = NLA_U32 },
3165		[OVS_PSAMPLE_ATTR_COOKIE] = {
3166			.type = NLA_BINARY,
3167			.len = OVS_PSAMPLE_COOKIE_MAX_SIZE,
3168		},
3169	};
3170	struct nlattr *a[OVS_PSAMPLE_ATTR_MAX + 1];
3171	int err;
3172
3173	if (!IS_ENABLED(CONFIG_PSAMPLE))
3174		return -EOPNOTSUPP;
3175
3176	err = nla_parse_nested(a, OVS_PSAMPLE_ATTR_MAX, attr, policy, NULL);
3177	if (err)
3178		return err;
3179
3180	return a[OVS_PSAMPLE_ATTR_GROUP] ? 0 : -EINVAL;
3181}
3182
3183static int copy_action(const struct nlattr *from,
3184		       struct sw_flow_actions **sfa, bool log)
3185{
3186	int totlen = NLA_ALIGN(from->nla_len);
3187	struct nlattr *to;
3188
3189	to = reserve_sfa_size(sfa, from->nla_len, log);
3190	if (IS_ERR(to))
3191		return PTR_ERR(to);
3192
3193	memcpy(to, from, totlen);
3194	return 0;
3195}
3196
3197static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3198				  const struct sw_flow_key *key,
3199				  struct sw_flow_actions **sfa,
3200				  __be16 eth_type, __be16 vlan_tci,
3201				  u32 mpls_label_count, bool log,
3202				  u32 depth)
3203{
3204	u8 mac_proto = ovs_key_mac_proto(key);
3205	const struct nlattr *a;
3206	int rem, err;
3207
3208	if (depth > OVS_COPY_ACTIONS_MAX_DEPTH)
3209		return -EOVERFLOW;
3210
3211	nla_for_each_nested(a, attr, rem) {
3212		/* Expected argument lengths, (u32)-1 for variable length. */
3213		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3214			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3215			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3216			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3217			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3218			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3219			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3220			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3221			[OVS_ACTION_ATTR_SET] = (u32)-1,
3222			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3223			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3224			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3225			[OVS_ACTION_ATTR_CT] = (u32)-1,
3226			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3227			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3228			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3229			[OVS_ACTION_ATTR_POP_ETH] = 0,
3230			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3231			[OVS_ACTION_ATTR_POP_NSH] = 0,
3232			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3233			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3234			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3235			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3236			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3237			[OVS_ACTION_ATTR_DROP] = sizeof(u32),
3238			[OVS_ACTION_ATTR_PSAMPLE] = (u32)-1,
3239		};
3240		const struct ovs_action_push_vlan *vlan;
3241		int type = nla_type(a);
3242		bool skip_copy;
3243
3244		if (type > OVS_ACTION_ATTR_MAX ||
3245		    (action_lens[type] != nla_len(a) &&
3246		     action_lens[type] != (u32)-1))
3247			return -EINVAL;
3248
3249		skip_copy = false;
3250		switch (type) {
3251		case OVS_ACTION_ATTR_UNSPEC:
3252			return -EINVAL;
3253
3254		case OVS_ACTION_ATTR_USERSPACE:
3255			err = validate_userspace(a);
3256			if (err)
3257				return err;
3258			break;
3259
3260		case OVS_ACTION_ATTR_OUTPUT:
3261			if (nla_get_u32(a) >= DP_MAX_PORTS)
3262				return -EINVAL;
3263			break;
3264
3265		case OVS_ACTION_ATTR_TRUNC: {
3266			const struct ovs_action_trunc *trunc = nla_data(a);
3267
3268			if (trunc->max_len < ETH_HLEN)
3269				return -EINVAL;
3270			break;
3271		}
3272
3273		case OVS_ACTION_ATTR_HASH: {
3274			const struct ovs_action_hash *act_hash = nla_data(a);
3275
3276			switch (act_hash->hash_alg) {
3277			case OVS_HASH_ALG_L4:
3278				fallthrough;
3279			case OVS_HASH_ALG_SYM_L4:
3280				break;
3281			default:
3282				return  -EINVAL;
3283			}
3284
3285			break;
3286		}
3287
3288		case OVS_ACTION_ATTR_POP_VLAN:
3289			if (mac_proto != MAC_PROTO_ETHERNET)
3290				return -EINVAL;
3291			vlan_tci = htons(0);
3292			break;
3293
3294		case OVS_ACTION_ATTR_PUSH_VLAN:
3295			if (mac_proto != MAC_PROTO_ETHERNET)
3296				return -EINVAL;
3297			vlan = nla_data(a);
3298			if (!eth_type_vlan(vlan->vlan_tpid))
3299				return -EINVAL;
3300			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3301				return -EINVAL;
3302			vlan_tci = vlan->vlan_tci;
3303			break;
3304
3305		case OVS_ACTION_ATTR_RECIRC:
3306			break;
3307
3308		case OVS_ACTION_ATTR_ADD_MPLS: {
3309			const struct ovs_action_add_mpls *mpls = nla_data(a);
3310
3311			if (!eth_p_mpls(mpls->mpls_ethertype))
3312				return -EINVAL;
3313
3314			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3315				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3316				    (eth_type != htons(ETH_P_IP) &&
3317				     eth_type != htons(ETH_P_IPV6) &&
3318				     eth_type != htons(ETH_P_ARP) &&
3319				     eth_type != htons(ETH_P_RARP) &&
3320				     !eth_p_mpls(eth_type)))
3321					return -EINVAL;
3322				mpls_label_count++;
3323			} else {
3324				if (mac_proto == MAC_PROTO_ETHERNET) {
3325					mpls_label_count = 1;
3326					mac_proto = MAC_PROTO_NONE;
3327				} else {
3328					mpls_label_count++;
3329				}
3330			}
3331			eth_type = mpls->mpls_ethertype;
3332			break;
3333		}
3334
3335		case OVS_ACTION_ATTR_PUSH_MPLS: {
3336			const struct ovs_action_push_mpls *mpls = nla_data(a);
3337
3338			if (!eth_p_mpls(mpls->mpls_ethertype))
3339				return -EINVAL;
3340			/* Prohibit push MPLS other than to a white list
3341			 * for packets that have a known tag order.
3342			 */
3343			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3344			    (eth_type != htons(ETH_P_IP) &&
3345			     eth_type != htons(ETH_P_IPV6) &&
3346			     eth_type != htons(ETH_P_ARP) &&
3347			     eth_type != htons(ETH_P_RARP) &&
3348			     !eth_p_mpls(eth_type)))
3349				return -EINVAL;
3350			eth_type = mpls->mpls_ethertype;
3351			mpls_label_count++;
3352			break;
3353		}
3354
3355		case OVS_ACTION_ATTR_POP_MPLS: {
3356			__be16  proto;
3357			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3358			    !eth_p_mpls(eth_type))
3359				return -EINVAL;
3360
3361			/* Disallow subsequent L2.5+ set actions and mpls_pop
3362			 * actions once the last MPLS label in the packet is
3363			 * popped as there is no check here to ensure that
3364			 * the new eth type is valid and thus set actions could
3365			 * write off the end of the packet or otherwise corrupt
3366			 * it.
3367			 *
3368			 * Support for these actions is planned using packet
3369			 * recirculation.
3370			 */
3371			proto = nla_get_be16(a);
3372
3373			if (proto == htons(ETH_P_TEB) &&
3374			    mac_proto != MAC_PROTO_NONE)
3375				return -EINVAL;
3376
3377			mpls_label_count--;
3378
3379			if (!eth_p_mpls(proto) || !mpls_label_count)
3380				eth_type = htons(0);
3381			else
3382				eth_type =  proto;
3383
3384			break;
3385		}
3386
3387		case OVS_ACTION_ATTR_SET:
3388			err = validate_set(a, key, sfa,
3389					   &skip_copy, mac_proto, eth_type,
3390					   false, log);
3391			if (err)
3392				return err;
3393			break;
3394
3395		case OVS_ACTION_ATTR_SET_MASKED:
3396			err = validate_set(a, key, sfa,
3397					   &skip_copy, mac_proto, eth_type,
3398					   true, log);
3399			if (err)
3400				return err;
3401			break;
3402
3403		case OVS_ACTION_ATTR_SAMPLE: {
3404			bool last = nla_is_last(a, rem);
3405
3406			err = validate_and_copy_sample(net, a, key, sfa,
3407						       eth_type, vlan_tci,
3408						       mpls_label_count,
3409						       log, last, depth);
3410			if (err)
3411				return err;
3412			skip_copy = true;
3413			break;
3414		}
3415
3416		case OVS_ACTION_ATTR_CT:
3417			err = ovs_ct_copy_action(net, a, key, sfa, log);
3418			if (err)
3419				return err;
3420			skip_copy = true;
3421			break;
3422
3423		case OVS_ACTION_ATTR_CT_CLEAR:
3424			break;
3425
3426		case OVS_ACTION_ATTR_PUSH_ETH:
3427			/* Disallow pushing an Ethernet header if one
3428			 * is already present */
3429			if (mac_proto != MAC_PROTO_NONE)
3430				return -EINVAL;
3431			mac_proto = MAC_PROTO_ETHERNET;
3432			break;
3433
3434		case OVS_ACTION_ATTR_POP_ETH:
3435			if (mac_proto != MAC_PROTO_ETHERNET)
3436				return -EINVAL;
3437			if (vlan_tci & htons(VLAN_CFI_MASK))
3438				return -EINVAL;
3439			mac_proto = MAC_PROTO_NONE;
3440			break;
3441
3442		case OVS_ACTION_ATTR_PUSH_NSH:
3443			if (mac_proto != MAC_PROTO_ETHERNET) {
3444				u8 next_proto;
3445
3446				next_proto = tun_p_from_eth_p(eth_type);
3447				if (!next_proto)
3448					return -EINVAL;
3449			}
3450			mac_proto = MAC_PROTO_NONE;
3451			if (!validate_nsh(nla_data(a), false, true, true))
3452				return -EINVAL;
3453			break;
3454
3455		case OVS_ACTION_ATTR_POP_NSH: {
3456			__be16 inner_proto;
3457
3458			if (eth_type != htons(ETH_P_NSH))
3459				return -EINVAL;
3460			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3461			if (!inner_proto)
3462				return -EINVAL;
3463			if (key->nsh.base.np == TUN_P_ETHERNET)
3464				mac_proto = MAC_PROTO_ETHERNET;
3465			else
3466				mac_proto = MAC_PROTO_NONE;
3467			break;
3468		}
3469
3470		case OVS_ACTION_ATTR_METER:
3471			/* Non-existent meters are simply ignored.  */
3472			break;
3473
3474		case OVS_ACTION_ATTR_CLONE: {
3475			bool last = nla_is_last(a, rem);
3476
3477			err = validate_and_copy_clone(net, a, key, sfa,
3478						      eth_type, vlan_tci,
3479						      mpls_label_count,
3480						      log, last, depth);
3481			if (err)
3482				return err;
3483			skip_copy = true;
3484			break;
3485		}
3486
3487		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3488			bool last = nla_is_last(a, rem);
3489
3490			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3491							      eth_type,
3492							      vlan_tci,
3493							      mpls_label_count,
3494							      log, last,
3495							      depth);
3496			if (err)
3497				return err;
3498			skip_copy = true;
3499			break;
3500		}
3501
3502		case OVS_ACTION_ATTR_DEC_TTL:
3503			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3504							eth_type, vlan_tci,
3505							mpls_label_count, log,
3506							depth);
3507			if (err)
3508				return err;
3509			skip_copy = true;
3510			break;
3511
3512		case OVS_ACTION_ATTR_DROP:
3513			if (!nla_is_last(a, rem))
3514				return -EINVAL;
3515			break;
3516
3517		case OVS_ACTION_ATTR_PSAMPLE:
3518			err = validate_psample(a);
3519			if (err)
3520				return err;
3521			break;
3522
3523		default:
3524			OVS_NLERR(log, "Unknown Action type %d", type);
3525			return -EINVAL;
3526		}
3527		if (!skip_copy) {
3528			err = copy_action(a, sfa, log);
3529			if (err)
3530				return err;
3531		}
3532	}
3533
3534	if (rem > 0)
3535		return -EINVAL;
3536
3537	return 0;
3538}
3539
3540/* 'key' must be the masked key. */
3541int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3542			 const struct sw_flow_key *key,
3543			 struct sw_flow_actions **sfa, bool log)
3544{
3545	int err;
3546	u32 mpls_label_count = 0;
3547
3548	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3549	if (IS_ERR(*sfa))
3550		return PTR_ERR(*sfa);
3551
3552	if (eth_p_mpls(key->eth.type))
3553		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3554
3555	(*sfa)->orig_len = nla_len(attr);
3556	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3557				     key->eth.vlan.tci, mpls_label_count, log,
3558				     0);
3559	if (err)
3560		ovs_nla_free_flow_actions(*sfa);
3561
3562	return err;
3563}
3564
3565static int sample_action_to_attr(const struct nlattr *attr,
3566				 struct sk_buff *skb)
3567{
3568	struct nlattr *start, *ac_start = NULL, *sample_arg;
3569	int err = 0, rem = nla_len(attr);
3570	const struct sample_arg *arg;
3571	struct nlattr *actions;
3572
3573	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3574	if (!start)
3575		return -EMSGSIZE;
3576
3577	sample_arg = nla_data(attr);
3578	arg = nla_data(sample_arg);
3579	actions = nla_next(sample_arg, &rem);
3580
3581	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3582		err = -EMSGSIZE;
3583		goto out;
3584	}
3585
3586	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3587	if (!ac_start) {
3588		err = -EMSGSIZE;
3589		goto out;
3590	}
3591
3592	err = ovs_nla_put_actions(actions, rem, skb);
3593
3594out:
3595	if (err) {
3596		nla_nest_cancel(skb, ac_start);
3597		nla_nest_cancel(skb, start);
3598	} else {
3599		nla_nest_end(skb, ac_start);
3600		nla_nest_end(skb, start);
3601	}
3602
3603	return err;
3604}
3605
3606static int clone_action_to_attr(const struct nlattr *attr,
3607				struct sk_buff *skb)
3608{
 
3609	struct nlattr *start;
3610	int err = 0, rem = nla_len(attr);
3611
3612	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3613	if (!start)
3614		return -EMSGSIZE;
3615
3616	/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3617	attr = nla_next(nla_data(attr), &rem);
3618	err = ovs_nla_put_actions(attr, rem, skb);
3619
3620	if (err)
3621		nla_nest_cancel(skb, start);
3622	else
3623		nla_nest_end(skb, start);
3624
3625	return err;
3626}
3627
3628static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3629					struct sk_buff *skb)
3630{
3631	struct nlattr *start, *ac_start = NULL;
3632	const struct check_pkt_len_arg *arg;
3633	const struct nlattr *a, *cpl_arg;
3634	int err = 0, rem = nla_len(attr);
3635
3636	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3637	if (!start)
3638		return -EMSGSIZE;
3639
3640	/* The first nested attribute in 'attr' is always
3641	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3642	 */
3643	cpl_arg = nla_data(attr);
3644	arg = nla_data(cpl_arg);
3645
3646	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3647		err = -EMSGSIZE;
3648		goto out;
3649	}
3650
3651	/* Second nested attribute in 'attr' is always
3652	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3653	 */
3654	a = nla_next(cpl_arg, &rem);
3655	ac_start =  nla_nest_start_noflag(skb,
3656					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3657	if (!ac_start) {
3658		err = -EMSGSIZE;
3659		goto out;
3660	}
3661
3662	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3663	if (err) {
3664		nla_nest_cancel(skb, ac_start);
3665		goto out;
3666	} else {
3667		nla_nest_end(skb, ac_start);
3668	}
3669
3670	/* Third nested attribute in 'attr' is always
3671	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3672	 */
3673	a = nla_next(a, &rem);
3674	ac_start =  nla_nest_start_noflag(skb,
3675					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3676	if (!ac_start) {
3677		err = -EMSGSIZE;
3678		goto out;
3679	}
3680
3681	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3682	if (err) {
3683		nla_nest_cancel(skb, ac_start);
3684		goto out;
3685	} else {
3686		nla_nest_end(skb, ac_start);
3687	}
3688
3689	nla_nest_end(skb, start);
3690	return 0;
3691
3692out:
3693	nla_nest_cancel(skb, start);
3694	return err;
3695}
3696
3697static int dec_ttl_action_to_attr(const struct nlattr *attr,
3698				  struct sk_buff *skb)
3699{
3700	struct nlattr *start, *action_start;
3701	const struct nlattr *a;
3702	int err = 0, rem;
3703
3704	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3705	if (!start)
3706		return -EMSGSIZE;
3707
3708	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3709		switch (nla_type(a)) {
3710		case OVS_DEC_TTL_ATTR_ACTION:
3711
3712			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3713			if (!action_start) {
3714				err = -EMSGSIZE;
3715				goto out;
3716			}
3717
 
 
 
 
 
 
 
 
 
 
3718			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3719			if (err)
3720				goto out;
3721
3722			nla_nest_end(skb, action_start);
3723			break;
3724
3725		default:
3726			/* Ignore all other option to be future compatible */
3727			break;
3728		}
3729	}
3730
3731	nla_nest_end(skb, start);
3732	return 0;
3733
3734out:
3735	nla_nest_cancel(skb, start);
3736	return err;
3737}
3738
3739static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3740{
3741	const struct nlattr *ovs_key = nla_data(a);
3742	int key_type = nla_type(ovs_key);
3743	struct nlattr *start;
3744	int err;
3745
3746	switch (key_type) {
3747	case OVS_KEY_ATTR_TUNNEL_INFO: {
3748		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3749		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3750
3751		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3752		if (!start)
3753			return -EMSGSIZE;
3754
3755		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3756					ip_tunnel_info_opts(tun_info),
3757					tun_info->options_len,
3758					ip_tunnel_info_af(tun_info), tun_info->mode);
3759		if (err)
3760			return err;
3761		nla_nest_end(skb, start);
3762		break;
3763	}
3764	default:
3765		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3766			return -EMSGSIZE;
3767		break;
3768	}
3769
3770	return 0;
3771}
3772
3773static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3774						struct sk_buff *skb)
3775{
3776	const struct nlattr *ovs_key = nla_data(a);
3777	struct nlattr *nla;
3778	size_t key_len = nla_len(ovs_key) / 2;
3779
3780	/* Revert the conversion we did from a non-masked set action to
3781	 * masked set action.
3782	 */
3783	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3784	if (!nla)
3785		return -EMSGSIZE;
3786
3787	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3788		return -EMSGSIZE;
3789
3790	nla_nest_end(skb, nla);
3791	return 0;
3792}
3793
3794int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3795{
3796	const struct nlattr *a;
3797	int rem, err;
3798
3799	nla_for_each_attr(a, attr, len, rem) {
3800		int type = nla_type(a);
3801
3802		switch (type) {
3803		case OVS_ACTION_ATTR_SET:
3804			err = set_action_to_attr(a, skb);
3805			if (err)
3806				return err;
3807			break;
3808
3809		case OVS_ACTION_ATTR_SET_TO_MASKED:
3810			err = masked_set_action_to_set_action_attr(a, skb);
3811			if (err)
3812				return err;
3813			break;
3814
3815		case OVS_ACTION_ATTR_SAMPLE:
3816			err = sample_action_to_attr(a, skb);
3817			if (err)
3818				return err;
3819			break;
3820
3821		case OVS_ACTION_ATTR_CT:
3822			err = ovs_ct_action_to_attr(nla_data(a), skb);
3823			if (err)
3824				return err;
3825			break;
3826
3827		case OVS_ACTION_ATTR_CLONE:
3828			err = clone_action_to_attr(a, skb);
3829			if (err)
3830				return err;
3831			break;
3832
3833		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3834			err = check_pkt_len_action_to_attr(a, skb);
3835			if (err)
3836				return err;
3837			break;
3838
3839		case OVS_ACTION_ATTR_DEC_TTL:
3840			err = dec_ttl_action_to_attr(a, skb);
3841			if (err)
3842				return err;
3843			break;
3844
3845		default:
3846			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3847				return -EMSGSIZE;
3848			break;
3849		}
3850	}
3851
3852	return 0;
3853}