Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include "flow.h"
  22#include "datapath.h"
  23#include <linux/uaccess.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/if_vlan.h>
  28#include <net/llc_pdu.h>
  29#include <linux/kernel.h>
  30#include <linux/jhash.h>
  31#include <linux/jiffies.h>
  32#include <linux/llc.h>
  33#include <linux/module.h>
  34#include <linux/in.h>
  35#include <linux/rcupdate.h>
  36#include <linux/if_arp.h>
  37#include <linux/ip.h>
  38#include <linux/ipv6.h>
  39#include <linux/sctp.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/icmpv6.h>
  44#include <linux/rculist.h>
  45#include <net/geneve.h>
  46#include <net/ip.h>
  47#include <net/ipv6.h>
  48#include <net/ndisc.h>
  49#include <net/mpls.h>
  50#include <net/vxlan.h>
  51
  52#include "flow_netlink.h"
  53
  54struct ovs_len_tbl {
  55	int len;
  56	const struct ovs_len_tbl *next;
  57};
  58
  59#define OVS_ATTR_NESTED -1
  60#define OVS_ATTR_VARIABLE -2
  61
  62static void update_range(struct sw_flow_match *match,
  63			 size_t offset, size_t size, bool is_mask)
  64{
  65	struct sw_flow_key_range *range;
  66	size_t start = rounddown(offset, sizeof(long));
  67	size_t end = roundup(offset + size, sizeof(long));
  68
  69	if (!is_mask)
  70		range = &match->range;
  71	else
  72		range = &match->mask->range;
  73
 
 
 
  74	if (range->start == range->end) {
  75		range->start = start;
  76		range->end = end;
  77		return;
  78	}
  79
  80	if (range->start > start)
  81		range->start = start;
  82
  83	if (range->end < end)
  84		range->end = end;
  85}
  86
  87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  88	do { \
  89		update_range(match, offsetof(struct sw_flow_key, field),    \
  90			     sizeof((match)->key->field), is_mask);	    \
  91		if (is_mask)						    \
  92			(match)->mask->key.field = value;		    \
  93		else							    \
 
  94			(match)->key->field = value;		            \
 
  95	} while (0)
  96
  97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
  98	do {								    \
  99		update_range(match, offset, len, is_mask);		    \
 100		if (is_mask)						    \
 101			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 102			       len);					   \
 103		else							    \
 104			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 
 
 105	} while (0)
 106
 107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 108	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 109				  value_p, len, is_mask)
 110
 111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 112	do {								    \
 113		update_range(match, offsetof(struct sw_flow_key, field),    \
 114			     sizeof((match)->key->field), is_mask);	    \
 115		if (is_mask)						    \
 116			memset((u8 *)&(match)->mask->key.field, value,      \
 117			       sizeof((match)->mask->key.field));	    \
 118		else							    \
 119			memset((u8 *)&(match)->key->field, value,           \
 120			       sizeof((match)->key->field));                \
 121	} while (0)
 122
 123static bool match_validate(const struct sw_flow_match *match,
 124			   u64 key_attrs, u64 mask_attrs, bool log)
 125{
 126	u64 key_expected = 0;
 127	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 128
 129	/* The following mask attributes allowed only if they
 130	 * pass the validation tests. */
 131	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 132			| (1 << OVS_KEY_ATTR_IPV6)
 133			| (1 << OVS_KEY_ATTR_TCP)
 134			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 135			| (1 << OVS_KEY_ATTR_UDP)
 136			| (1 << OVS_KEY_ATTR_SCTP)
 137			| (1 << OVS_KEY_ATTR_ICMP)
 138			| (1 << OVS_KEY_ATTR_ICMPV6)
 139			| (1 << OVS_KEY_ATTR_ARP)
 140			| (1 << OVS_KEY_ATTR_ND)
 141			| (1 << OVS_KEY_ATTR_MPLS));
 142
 143	/* Always allowed mask fields. */
 144	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 145		       | (1 << OVS_KEY_ATTR_IN_PORT)
 146		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 147
 148	/* Check key attributes. */
 149	if (match->key->eth.type == htons(ETH_P_ARP)
 150			|| match->key->eth.type == htons(ETH_P_RARP)) {
 151		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 152		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 153			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 154	}
 155
 156	if (eth_p_mpls(match->key->eth.type)) {
 157		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 158		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 159			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 160	}
 161
 162	if (match->key->eth.type == htons(ETH_P_IP)) {
 163		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 164		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 165			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 166
 167		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 168			if (match->key->ip.proto == IPPROTO_UDP) {
 169				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 170				if (match->mask && (match->mask->key.ip.proto == 0xff))
 171					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 172			}
 173
 174			if (match->key->ip.proto == IPPROTO_SCTP) {
 175				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 176				if (match->mask && (match->mask->key.ip.proto == 0xff))
 177					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 178			}
 179
 180			if (match->key->ip.proto == IPPROTO_TCP) {
 181				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 182				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 183				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 184					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 185					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 186				}
 187			}
 188
 189			if (match->key->ip.proto == IPPROTO_ICMP) {
 190				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 191				if (match->mask && (match->mask->key.ip.proto == 0xff))
 192					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 193			}
 194		}
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 199		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 201
 202		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 203			if (match->key->ip.proto == IPPROTO_UDP) {
 204				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 205				if (match->mask && (match->mask->key.ip.proto == 0xff))
 206					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 207			}
 208
 209			if (match->key->ip.proto == IPPROTO_SCTP) {
 210				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 211				if (match->mask && (match->mask->key.ip.proto == 0xff))
 212					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 213			}
 214
 215			if (match->key->ip.proto == IPPROTO_TCP) {
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 217				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 220					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 221				}
 222			}
 223
 224			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 225				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 226				if (match->mask && (match->mask->key.ip.proto == 0xff))
 227					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 228
 229				if (match->key->tp.src ==
 230						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 231				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 232					key_expected |= 1 << OVS_KEY_ATTR_ND;
 233					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 234						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 235				}
 236			}
 237		}
 238	}
 239
 240	if ((key_attrs & key_expected) != key_expected) {
 241		/* Key attributes check failed. */
 242		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 243			  (unsigned long long)key_attrs,
 244			  (unsigned long long)key_expected);
 245		return false;
 246	}
 247
 248	if ((mask_attrs & mask_allowed) != mask_attrs) {
 249		/* Mask attributes check failed. */
 250		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 251			  (unsigned long long)mask_attrs,
 252			  (unsigned long long)mask_allowed);
 253		return false;
 254	}
 255
 256	return true;
 257}
 258
 259size_t ovs_tun_key_attr_size(void)
 260{
 261	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 262	 * updating this function.
 263	 */
 264	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 265		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 266		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 267		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 268		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 269		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 270		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 271		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 272		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 273		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 274		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 275		 */
 276		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 277		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 278}
 
 279
 280size_t ovs_key_attr_size(void)
 281{
 282	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 283	 * updating this function.
 284	 */
 285	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
 286
 287	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 288		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 289		  + ovs_tun_key_attr_size()
 290		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 291		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 292		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 293		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 294		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 295		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 296		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 297		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 298		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 299		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 300		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 301		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 302		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 303		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 304		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 305		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 306}
 307
 308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 309	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 310};
 311
 312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 313	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 314	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 315	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 316	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 317	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 318	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 319	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 320	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 321	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 322	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 323	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 324	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 325						.next = ovs_vxlan_ext_key_lens },
 326	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 327	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 328};
 329
 330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 332	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 333	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 334	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 335	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 336	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 337	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 338	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 339	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 340	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 341	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 342	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 343	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 344	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 345	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 346	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 347	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 348	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 349	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 350	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 351	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 352				     .next = ovs_tunnel_key_lens, },
 353	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 354	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 355	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 356	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 357	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 358};
 359
 360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 361{
 362	return expected_len == attr_len ||
 363	       expected_len == OVS_ATTR_NESTED ||
 364	       expected_len == OVS_ATTR_VARIABLE;
 365}
 366
 367static bool is_all_zero(const u8 *fp, size_t size)
 368{
 369	int i;
 370
 371	if (!fp)
 372		return false;
 373
 374	for (i = 0; i < size; i++)
 375		if (fp[i])
 376			return false;
 377
 378	return true;
 379}
 380
 381static int __parse_flow_nlattrs(const struct nlattr *attr,
 382				const struct nlattr *a[],
 383				u64 *attrsp, bool log, bool nz)
 384{
 385	const struct nlattr *nla;
 386	u64 attrs;
 387	int rem;
 388
 389	attrs = *attrsp;
 390	nla_for_each_nested(nla, attr, rem) {
 391		u16 type = nla_type(nla);
 392		int expected_len;
 393
 394		if (type > OVS_KEY_ATTR_MAX) {
 395			OVS_NLERR(log, "Key type %d is out of range max %d",
 396				  type, OVS_KEY_ATTR_MAX);
 397			return -EINVAL;
 398		}
 399
 400		if (attrs & (1 << type)) {
 401			OVS_NLERR(log, "Duplicate key (type %d).", type);
 402			return -EINVAL;
 403		}
 404
 405		expected_len = ovs_key_lens[type].len;
 406		if (!check_attr_len(nla_len(nla), expected_len)) {
 407			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 408				  type, nla_len(nla), expected_len);
 
 409			return -EINVAL;
 410		}
 411
 412		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 413			attrs |= 1 << type;
 414			a[type] = nla;
 415		}
 416	}
 417	if (rem) {
 418		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 419		return -EINVAL;
 420	}
 421
 422	*attrsp = attrs;
 423	return 0;
 424}
 425
 426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 427				   const struct nlattr *a[], u64 *attrsp,
 428				   bool log)
 429{
 430	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 431}
 432
 433static int parse_flow_nlattrs(const struct nlattr *attr,
 434			      const struct nlattr *a[], u64 *attrsp,
 435			      bool log)
 436{
 437	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 438}
 439
 440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 441				     struct sw_flow_match *match, bool is_mask,
 442				     bool log)
 443{
 444	unsigned long opt_key_offset;
 445
 446	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 447		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 448			  nla_len(a), sizeof(match->key->tun_opts));
 449		return -EINVAL;
 450	}
 451
 452	if (nla_len(a) % 4 != 0) {
 453		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 454			  nla_len(a));
 455		return -EINVAL;
 456	}
 457
 458	/* We need to record the length of the options passed
 459	 * down, otherwise packets with the same format but
 460	 * additional options will be silently matched.
 461	 */
 462	if (!is_mask) {
 463		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 464				false);
 465	} else {
 466		/* This is somewhat unusual because it looks at
 467		 * both the key and mask while parsing the
 468		 * attributes (and by extension assumes the key
 469		 * is parsed first). Normally, we would verify
 470		 * that each is the correct length and that the
 471		 * attributes line up in the validate function.
 472		 * However, that is difficult because this is
 473		 * variable length and we won't have the
 474		 * information later.
 475		 */
 476		if (match->key->tun_opts_len != nla_len(a)) {
 477			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 478				  match->key->tun_opts_len, nla_len(a));
 479			return -EINVAL;
 480		}
 481
 482		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 483	}
 484
 485	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 486	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 487				  nla_len(a), is_mask);
 488	return 0;
 489}
 490
 491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 492				     struct sw_flow_match *match, bool is_mask,
 493				     bool log)
 494{
 495	struct nlattr *a;
 496	int rem;
 497	unsigned long opt_key_offset;
 498	struct vxlan_metadata opts;
 499
 500	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 501
 502	memset(&opts, 0, sizeof(opts));
 503	nla_for_each_nested(a, attr, rem) {
 504		int type = nla_type(a);
 505
 506		if (type > OVS_VXLAN_EXT_MAX) {
 507			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 508				  type, OVS_VXLAN_EXT_MAX);
 509			return -EINVAL;
 510		}
 511
 512		if (!check_attr_len(nla_len(a),
 513				    ovs_vxlan_ext_key_lens[type].len)) {
 514			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 515				  type, nla_len(a),
 516				  ovs_vxlan_ext_key_lens[type].len);
 517			return -EINVAL;
 518		}
 519
 520		switch (type) {
 521		case OVS_VXLAN_EXT_GBP:
 522			opts.gbp = nla_get_u32(a);
 523			break;
 524		default:
 525			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 526				  type);
 527			return -EINVAL;
 528		}
 529	}
 530	if (rem) {
 531		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 532			  rem);
 533		return -EINVAL;
 534	}
 535
 536	if (!is_mask)
 537		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 538	else
 539		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 540
 541	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 542	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 543				  is_mask);
 544	return 0;
 545}
 546
 547static int ip_tun_from_nlattr(const struct nlattr *attr,
 548			      struct sw_flow_match *match, bool is_mask,
 549			      bool log)
 550{
 551	bool ttl = false, ipv4 = false, ipv6 = false;
 552	__be16 tun_flags = 0;
 553	int opts_type = 0;
 554	struct nlattr *a;
 555	int rem;
 556
 557	nla_for_each_nested(a, attr, rem) {
 558		int type = nla_type(a);
 559		int err;
 
 
 
 
 
 
 
 
 560
 561		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 562			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 563				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 564			return -EINVAL;
 565		}
 566
 567		if (!check_attr_len(nla_len(a),
 568				    ovs_tunnel_key_lens[type].len)) {
 569			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 570				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 571			return -EINVAL;
 572		}
 573
 574		switch (type) {
 575		case OVS_TUNNEL_KEY_ATTR_ID:
 576			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 577					nla_get_be64(a), is_mask);
 578			tun_flags |= TUNNEL_KEY;
 579			break;
 580		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 581			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 582					nla_get_in_addr(a), is_mask);
 583			ipv4 = true;
 584			break;
 585		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 586			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 587					nla_get_in_addr(a), is_mask);
 588			ipv4 = true;
 589			break;
 590		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 591			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 592					nla_get_in6_addr(a), is_mask);
 593			ipv6 = true;
 594			break;
 595		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 596			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 597					nla_get_in6_addr(a), is_mask);
 598			ipv6 = true;
 599			break;
 600		case OVS_TUNNEL_KEY_ATTR_TOS:
 601			SW_FLOW_KEY_PUT(match, tun_key.tos,
 602					nla_get_u8(a), is_mask);
 603			break;
 604		case OVS_TUNNEL_KEY_ATTR_TTL:
 605			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 606					nla_get_u8(a), is_mask);
 607			ttl = true;
 608			break;
 609		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 610			tun_flags |= TUNNEL_DONT_FRAGMENT;
 611			break;
 612		case OVS_TUNNEL_KEY_ATTR_CSUM:
 613			tun_flags |= TUNNEL_CSUM;
 614			break;
 615		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 616			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 617					nla_get_be16(a), is_mask);
 618			break;
 619		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 620			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 621					nla_get_be16(a), is_mask);
 622			break;
 623		case OVS_TUNNEL_KEY_ATTR_OAM:
 624			tun_flags |= TUNNEL_OAM;
 625			break;
 626		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 627			if (opts_type) {
 628				OVS_NLERR(log, "Multiple metadata blocks provided");
 629				return -EINVAL;
 630			}
 631
 632			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 633			if (err)
 634				return err;
 635
 636			tun_flags |= TUNNEL_GENEVE_OPT;
 637			opts_type = type;
 638			break;
 639		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 640			if (opts_type) {
 641				OVS_NLERR(log, "Multiple metadata blocks provided");
 642				return -EINVAL;
 643			}
 644
 645			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 646			if (err)
 647				return err;
 648
 649			tun_flags |= TUNNEL_VXLAN_OPT;
 650			opts_type = type;
 651			break;
 652		case OVS_TUNNEL_KEY_ATTR_PAD:
 653			break;
 654		default:
 655			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 656				  type);
 657			return -EINVAL;
 658		}
 659	}
 660
 661	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 662	if (is_mask)
 663		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 664	else
 665		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 666				false);
 667
 668	if (rem > 0) {
 669		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 670			  rem);
 671		return -EINVAL;
 672	}
 673
 674	if (ipv4 && ipv6) {
 675		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 676		return -EINVAL;
 677	}
 678
 679	if (!is_mask) {
 680		if (!ipv4 && !ipv6) {
 681			OVS_NLERR(log, "IP tunnel dst address not specified");
 682			return -EINVAL;
 683		}
 684		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
 685			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 686			return -EINVAL;
 687		}
 688		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 689			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 690			return -EINVAL;
 691		}
 692
 693		if (!ttl) {
 694			OVS_NLERR(log, "IP tunnel TTL not specified.");
 695			return -EINVAL;
 696		}
 697	}
 698
 699	return opts_type;
 700}
 701
 702static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 703			       const void *tun_opts, int swkey_tun_opts_len)
 
 704{
 705	const struct vxlan_metadata *opts = tun_opts;
 706	struct nlattr *nla;
 707
 708	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 709	if (!nla)
 710		return -EMSGSIZE;
 711
 712	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 713		return -EMSGSIZE;
 714
 715	nla_nest_end(skb, nla);
 716	return 0;
 717}
 718
 719static int __ip_tun_to_nlattr(struct sk_buff *skb,
 720			      const struct ip_tunnel_key *output,
 721			      const void *tun_opts, int swkey_tun_opts_len,
 722			      unsigned short tun_proto)
 723{
 724	if (output->tun_flags & TUNNEL_KEY &&
 725	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 726			 OVS_TUNNEL_KEY_ATTR_PAD))
 727		return -EMSGSIZE;
 728	switch (tun_proto) {
 729	case AF_INET:
 730		if (output->u.ipv4.src &&
 731		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 732				    output->u.ipv4.src))
 733			return -EMSGSIZE;
 734		if (output->u.ipv4.dst &&
 735		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 736				    output->u.ipv4.dst))
 737			return -EMSGSIZE;
 738		break;
 739	case AF_INET6:
 740		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 741		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 742				     &output->u.ipv6.src))
 743			return -EMSGSIZE;
 744		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 745		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 746				     &output->u.ipv6.dst))
 747			return -EMSGSIZE;
 748		break;
 749	}
 750	if (output->tos &&
 751	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 752		return -EMSGSIZE;
 753	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 754		return -EMSGSIZE;
 755	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 756	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 757		return -EMSGSIZE;
 758	if ((output->tun_flags & TUNNEL_CSUM) &&
 759	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 760		return -EMSGSIZE;
 761	if (output->tp_src &&
 762	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 763		return -EMSGSIZE;
 764	if (output->tp_dst &&
 765	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 766		return -EMSGSIZE;
 767	if ((output->tun_flags & TUNNEL_OAM) &&
 768	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 769		return -EMSGSIZE;
 770	if (swkey_tun_opts_len) {
 771		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 772		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 773			    swkey_tun_opts_len, tun_opts))
 774			return -EMSGSIZE;
 775		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 776			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 777			return -EMSGSIZE;
 778	}
 779
 780	return 0;
 781}
 782
 783static int ip_tun_to_nlattr(struct sk_buff *skb,
 784			    const struct ip_tunnel_key *output,
 785			    const void *tun_opts, int swkey_tun_opts_len,
 786			    unsigned short tun_proto)
 787{
 788	struct nlattr *nla;
 789	int err;
 790
 791	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 792	if (!nla)
 793		return -EMSGSIZE;
 794
 795	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 796				 tun_proto);
 797	if (err)
 798		return err;
 799
 800	nla_nest_end(skb, nla);
 801	return 0;
 802}
 803
 804int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 805			    struct ip_tunnel_info *tun_info)
 806{
 807	return __ip_tun_to_nlattr(skb, &tun_info->key,
 808				  ip_tunnel_info_opts(tun_info),
 809				  tun_info->options_len,
 810				  ip_tunnel_info_af(tun_info));
 811}
 812
 813static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 814				    const struct nlattr *a[],
 815				    bool is_mask, bool inner)
 816{
 817	__be16 tci = 0;
 818	__be16 tpid = 0;
 819
 820	if (a[OVS_KEY_ATTR_VLAN])
 821		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 822
 823	if (a[OVS_KEY_ATTR_ETHERTYPE])
 824		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 825
 826	if (likely(!inner)) {
 827		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 828		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 829	} else {
 830		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 831		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 832	}
 833	return 0;
 834}
 835
 836static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 837				      u64 key_attrs, bool inner,
 838				      const struct nlattr **a, bool log)
 839{
 840	__be16 tci = 0;
 841
 842	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 843	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 844	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 845		/* Not a VLAN. */
 846		return 0;
 847	}
 848
 849	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 850	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 851		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
 852		return -EINVAL;
 853	}
 854
 855	if (a[OVS_KEY_ATTR_VLAN])
 856		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 857
 858	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 859		if (tci) {
 860			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
 861				  (inner) ? "C-VLAN" : "VLAN");
 862			return -EINVAL;
 863		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
 864			/* Corner case for truncated VLAN header. */
 865			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
 866				  (inner) ? "C-VLAN" : "VLAN");
 867			return -EINVAL;
 868		}
 869	}
 870
 871	return 1;
 872}
 873
 874static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
 875					   u64 key_attrs, bool inner,
 876					   const struct nlattr **a, bool log)
 877{
 878	__be16 tci = 0;
 879	__be16 tpid = 0;
 880	bool encap_valid = !!(match->key->eth.vlan.tci &
 881			      htons(VLAN_TAG_PRESENT));
 882	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
 883				htons(VLAN_TAG_PRESENT));
 884
 885	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
 886		/* Not a VLAN. */
 887		return 0;
 888	}
 889
 890	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
 891		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
 892			  (inner) ? "C-VLAN" : "VLAN");
 893		return -EINVAL;
 894	}
 895
 896	if (a[OVS_KEY_ATTR_VLAN])
 897		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 898
 899	if (a[OVS_KEY_ATTR_ETHERTYPE])
 900		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 901
 902	if (tpid != htons(0xffff)) {
 903		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
 904			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
 905		return -EINVAL;
 906	}
 907	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 908		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
 909			  (inner) ? "C-VLAN" : "VLAN");
 910		return -EINVAL;
 911	}
 912
 913	return 1;
 914}
 915
 916static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
 917				     u64 *key_attrs, bool inner,
 918				     const struct nlattr **a, bool is_mask,
 919				     bool log)
 920{
 921	int err;
 922	const struct nlattr *encap;
 923
 924	if (!is_mask)
 925		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
 926						 a, log);
 927	else
 928		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
 929						      a, log);
 930	if (err <= 0)
 931		return err;
 932
 933	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
 934	if (err)
 935		return err;
 936
 937	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 938	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 939	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 940
 941	encap = a[OVS_KEY_ATTR_ENCAP];
 942
 943	if (!is_mask)
 944		err = parse_flow_nlattrs(encap, a, key_attrs, log);
 945	else
 946		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
 947
 948	return err;
 949}
 950
 951static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
 952				   u64 *key_attrs, const struct nlattr **a,
 953				   bool is_mask, bool log)
 954{
 955	int err;
 956	bool encap_valid = false;
 957
 958	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
 959					is_mask, log);
 960	if (err)
 961		return err;
 962
 963	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
 964	if (encap_valid) {
 965		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
 966						is_mask, log);
 967		if (err)
 968			return err;
 969	}
 970
 971	return 0;
 972}
 973
 974static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
 975				       u64 *attrs, const struct nlattr **a,
 976				       bool is_mask, bool log)
 977{
 978	__be16 eth_type;
 979
 980	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 981	if (is_mask) {
 982		/* Always exact match EtherType. */
 983		eth_type = htons(0xffff);
 984	} else if (!eth_proto_is_802_3(eth_type)) {
 985		OVS_NLERR(log, "EtherType %x is less than min %x",
 986				ntohs(eth_type), ETH_P_802_3_MIN);
 987		return -EINVAL;
 988	}
 989
 990	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 991	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 992	return 0;
 993}
 994
 995static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
 996				 u64 *attrs, const struct nlattr **a,
 997				 bool is_mask, bool log)
 998{
 999	u8 mac_proto = MAC_PROTO_ETHERNET;
1000
1001	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1002		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1003
1004		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1005		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1006	}
1007
1008	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1009		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1010
1011		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1012		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1013	}
1014
1015	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1016		SW_FLOW_KEY_PUT(match, phy.priority,
1017			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1018		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1019	}
1020
1021	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1022		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1023
1024		if (is_mask) {
1025			in_port = 0xffffffff; /* Always exact match in_port. */
1026		} else if (in_port >= DP_MAX_PORTS) {
1027			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1028				  in_port, DP_MAX_PORTS);
1029			return -EINVAL;
1030		}
1031
1032		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1033		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1034	} else if (!is_mask) {
1035		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1036	}
1037
1038	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1039		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1040
1041		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1042		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1043	}
1044	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1045		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1046				       is_mask, log) < 0)
1047			return -EINVAL;
1048		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1049	}
1050
1051	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1052	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1053		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1054
1055		if (ct_state & ~CT_SUPPORTED_MASK) {
1056			OVS_NLERR(log, "ct_state flags %08x unsupported",
1057				  ct_state);
1058			return -EINVAL;
1059		}
1060
1061		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1062		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1063	}
1064	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1065	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1066		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1067
1068		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1069		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1070	}
1071	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1072	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1073		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1074
1075		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1076		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1077	}
1078	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1079	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1080		const struct ovs_key_ct_labels *cl;
1081
1082		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1083		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1084				   sizeof(*cl), is_mask);
1085		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1086	}
1087
1088	/* For layer 3 packets the Ethernet type is provided
1089	 * and treated as metadata but no MAC addresses are provided.
1090	 */
1091	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1092	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1093		mac_proto = MAC_PROTO_NONE;
1094
1095	/* Always exact match mac_proto */
1096	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1097
1098	if (mac_proto == MAC_PROTO_NONE)
1099		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1100						   log);
1101
1102	return 0;
1103}
1104
1105static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1106				u64 attrs, const struct nlattr **a,
1107				bool is_mask, bool log)
1108{
1109	int err;
 
1110
1111	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1112	if (err)
1113		return err;
1114
1115	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1116		const struct ovs_key_ethernet *eth_key;
1117
1118		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1119		SW_FLOW_KEY_MEMCPY(match, eth.src,
1120				eth_key->eth_src, ETH_ALEN, is_mask);
1121		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1122				eth_key->eth_dst, ETH_ALEN, is_mask);
1123		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 
 
 
 
 
 
 
 
 
 
 
1124
1125		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1126			/* VLAN attribute is always parsed before getting here since it
1127			 * may occur multiple times.
1128			 */
1129			OVS_NLERR(log, "VLAN attribute unexpected.");
1130			return -EINVAL;
1131		}
1132
1133		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1134			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1135							  log);
1136			if (err)
1137				return err;
1138		} else if (!is_mask) {
1139			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 
 
 
 
 
 
 
 
 
1140		}
1141	} else if (!match->key->eth.type) {
1142		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1143		return -EINVAL;
 
 
 
 
 
 
 
1144	}
1145
1146	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1147		const struct ovs_key_ipv4 *ipv4_key;
1148
1149		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1150		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1151			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1152				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1153			return -EINVAL;
1154		}
1155		SW_FLOW_KEY_PUT(match, ip.proto,
1156				ipv4_key->ipv4_proto, is_mask);
1157		SW_FLOW_KEY_PUT(match, ip.tos,
1158				ipv4_key->ipv4_tos, is_mask);
1159		SW_FLOW_KEY_PUT(match, ip.ttl,
1160				ipv4_key->ipv4_ttl, is_mask);
1161		SW_FLOW_KEY_PUT(match, ip.frag,
1162				ipv4_key->ipv4_frag, is_mask);
1163		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1164				ipv4_key->ipv4_src, is_mask);
1165		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1166				ipv4_key->ipv4_dst, is_mask);
1167		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
 
 
 
 
 
 
 
1168	}
1169
1170	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1171		const struct ovs_key_ipv6 *ipv6_key;
1172
1173		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1174		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1175			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1176				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1177			return -EINVAL;
1178		}
1179
1180		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1181			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1182				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1183			return -EINVAL;
1184		}
1185
1186		SW_FLOW_KEY_PUT(match, ipv6.label,
1187				ipv6_key->ipv6_label, is_mask);
1188		SW_FLOW_KEY_PUT(match, ip.proto,
1189				ipv6_key->ipv6_proto, is_mask);
1190		SW_FLOW_KEY_PUT(match, ip.tos,
1191				ipv6_key->ipv6_tclass, is_mask);
1192		SW_FLOW_KEY_PUT(match, ip.ttl,
1193				ipv6_key->ipv6_hlimit, is_mask);
1194		SW_FLOW_KEY_PUT(match, ip.frag,
1195				ipv6_key->ipv6_frag, is_mask);
1196		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1197				ipv6_key->ipv6_src,
1198				sizeof(match->key->ipv6.addr.src),
1199				is_mask);
1200		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1201				ipv6_key->ipv6_dst,
1202				sizeof(match->key->ipv6.addr.dst),
1203				is_mask);
1204
1205		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
 
 
 
 
 
 
 
1206	}
1207
1208	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1209		const struct ovs_key_arp *arp_key;
1210
1211		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1212		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1213			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1214				  arp_key->arp_op);
1215			return -EINVAL;
1216		}
1217
1218		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1219				arp_key->arp_sip, is_mask);
1220		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1221			arp_key->arp_tip, is_mask);
1222		SW_FLOW_KEY_PUT(match, ip.proto,
1223				ntohs(arp_key->arp_op), is_mask);
1224		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1225				arp_key->arp_sha, ETH_ALEN, is_mask);
1226		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1227				arp_key->arp_tha, ETH_ALEN, is_mask);
1228
1229		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1230	}
1231
1232	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1233		const struct ovs_key_mpls *mpls_key;
1234
1235		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1236		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1237				mpls_key->mpls_lse, is_mask);
1238
1239		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1240	 }
1241
1242	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1243		const struct ovs_key_tcp *tcp_key;
1244
1245		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1246		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1247		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
 
 
 
 
 
 
 
 
 
1248		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 
 
 
 
 
1249	}
1250
1251	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1252		SW_FLOW_KEY_PUT(match, tp.flags,
1253				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1254				is_mask);
 
 
 
 
 
 
1255		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1256	}
1257
1258	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1259		const struct ovs_key_udp *udp_key;
1260
1261		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1262		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1263		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
 
 
 
 
 
 
 
 
 
1264		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 
 
 
 
 
1265	}
1266
1267	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1268		const struct ovs_key_sctp *sctp_key;
1269
1270		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1271		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1272		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
 
 
 
 
 
 
 
 
 
1273		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1274	}
1275
1276	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1277		const struct ovs_key_icmp *icmp_key;
1278
1279		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1280		SW_FLOW_KEY_PUT(match, tp.src,
1281				htons(icmp_key->icmp_type), is_mask);
1282		SW_FLOW_KEY_PUT(match, tp.dst,
1283				htons(icmp_key->icmp_code), is_mask);
1284		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1285	}
1286
1287	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1288		const struct ovs_key_icmpv6 *icmpv6_key;
1289
1290		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1291		SW_FLOW_KEY_PUT(match, tp.src,
1292				htons(icmpv6_key->icmpv6_type), is_mask);
1293		SW_FLOW_KEY_PUT(match, tp.dst,
1294				htons(icmpv6_key->icmpv6_code), is_mask);
1295		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1296	}
1297
1298	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1299		const struct ovs_key_nd *nd_key;
1300
1301		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1302		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1303			nd_key->nd_target,
1304			sizeof(match->key->ipv6.nd.target),
1305			is_mask);
1306		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1307			nd_key->nd_sll, ETH_ALEN, is_mask);
1308		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1309				nd_key->nd_tll, ETH_ALEN, is_mask);
1310		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1311	}
1312
1313	if (attrs != 0) {
1314		OVS_NLERR(log, "Unknown key attributes %llx",
1315			  (unsigned long long)attrs);
1316		return -EINVAL;
1317	}
1318
1319	return 0;
1320}
1321
1322static void nlattr_set(struct nlattr *attr, u8 val,
1323		       const struct ovs_len_tbl *tbl)
1324{
1325	struct nlattr *nla;
1326	int rem;
1327
1328	/* The nlattr stream should already have been validated */
1329	nla_for_each_nested(nla, attr, rem) {
1330		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1331			if (tbl[nla_type(nla)].next)
1332				tbl = tbl[nla_type(nla)].next;
1333			nlattr_set(nla, val, tbl);
1334		} else {
1335			memset(nla_data(nla), val, nla_len(nla));
1336		}
1337
1338		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1339			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1340	}
1341}
1342
1343static void mask_set_nlattr(struct nlattr *attr, u8 val)
1344{
1345	nlattr_set(attr, val, ovs_key_lens);
1346}
1347
1348/**
1349 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1350 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1351 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1352 * does not include any don't care bit.
1353 * @net: Used to determine per-namespace field support.
1354 * @match: receives the extracted flow match information.
1355 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1356 * sequence. The fields should of the packet that triggered the creation
1357 * of this flow.
1358 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1359 * attribute specifies the mask field of the wildcarded flow.
1360 * @log: Boolean to allow kernel error logging.  Normally true, but when
1361 * probing for feature compatibility this should be passed in as false to
1362 * suppress unnecessary error logging.
1363 */
1364int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1365		      const struct nlattr *nla_key,
1366		      const struct nlattr *nla_mask,
1367		      bool log)
1368{
1369	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1370	struct nlattr *newmask = NULL;
1371	u64 key_attrs = 0;
1372	u64 mask_attrs = 0;
 
1373	int err;
1374
1375	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1376	if (err)
1377		return err;
1378
1379	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1380	if (err)
1381		return err;
 
1382
1383	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1384	if (err)
1385		return err;
 
 
1386
1387	if (match->mask) {
1388		if (!nla_mask) {
1389			/* Create an exact match mask. We need to set to 0xff
1390			 * all the 'match->mask' fields that have been touched
1391			 * in 'match->key'. We cannot simply memset
1392			 * 'match->mask', because padding bytes and fields not
1393			 * specified in 'match->key' should be left to 0.
1394			 * Instead, we use a stream of netlink attributes,
1395			 * copied from 'key' and set to 0xff.
1396			 * ovs_key_from_nlattrs() will take care of filling
1397			 * 'match->mask' appropriately.
1398			 */
1399			newmask = kmemdup(nla_key,
1400					  nla_total_size(nla_len(nla_key)),
1401					  GFP_KERNEL);
1402			if (!newmask)
1403				return -ENOMEM;
1404
1405			mask_set_nlattr(newmask, 0xff);
1406
1407			/* The userspace does not send tunnel attributes that
1408			 * are 0, but we should not wildcard them nonetheless.
1409			 */
1410			if (match->key->tun_proto)
1411				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1412							 0xff, true);
1413
1414			nla_mask = newmask;
 
 
 
 
 
 
 
 
 
 
 
 
1415		}
 
1416
1417		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1418		if (err)
1419			goto free_newmask;
1420
1421		/* Always match on tci. */
1422		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1423		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1424
1425		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
 
1426		if (err)
1427			goto free_newmask;
1428
1429		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1430					   log);
1431		if (err)
1432			goto free_newmask;
1433	}
1434
1435	if (!match_validate(match, key_attrs, mask_attrs, log))
1436		err = -EINVAL;
 
 
1437
1438free_newmask:
1439	kfree(newmask);
1440	return err;
1441}
 
 
 
 
 
 
 
 
 
1442
1443static size_t get_ufid_len(const struct nlattr *attr, bool log)
1444{
1445	size_t len;
1446
1447	if (!attr)
1448		return 0;
 
 
 
1449
1450	len = nla_len(attr);
1451	if (len < 1 || len > MAX_UFID_LENGTH) {
1452		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1453			  nla_len(attr), MAX_UFID_LENGTH);
1454		return 0;
 
 
1455	}
1456
1457	return len;
1458}
1459
1460/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1461 * or false otherwise.
1462 */
1463bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1464		      bool log)
1465{
1466	sfid->ufid_len = get_ufid_len(attr, log);
1467	if (sfid->ufid_len)
1468		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1469
1470	return sfid->ufid_len;
1471}
1472
1473int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1474			   const struct sw_flow_key *key, bool log)
1475{
1476	struct sw_flow_key *new_key;
1477
1478	if (ovs_nla_get_ufid(sfid, ufid, log))
1479		return 0;
1480
1481	/* If UFID was not provided, use unmasked key. */
1482	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1483	if (!new_key)
1484		return -ENOMEM;
1485	memcpy(new_key, key, sizeof(*key));
1486	sfid->unmasked_key = new_key;
1487
1488	return 0;
1489}
1490
1491u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1492{
1493	return attr ? nla_get_u32(attr) : 0;
1494}
1495
1496/**
1497 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1498 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1499 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1500 * sequence.
1501 * @log: Boolean to allow kernel error logging.  Normally true, but when
1502 * probing for feature compatibility this should be passed in as false to
1503 * suppress unnecessary error logging.
1504 *
1505 * This parses a series of Netlink attributes that form a flow key, which must
1506 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1507 * get the metadata, that is, the parts of the flow key that cannot be
1508 * extracted from the packet itself.
1509 */
1510
1511int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1512			      struct sw_flow_key *key,
1513			      bool log)
1514{
 
1515	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1516	struct sw_flow_match match;
1517	u64 attrs = 0;
1518	int err;
 
 
 
 
 
 
1519
1520	err = parse_flow_nlattrs(attr, a, &attrs, log);
1521	if (err)
1522		return -EINVAL;
1523
1524	memset(&match, 0, sizeof(match));
1525	match.key = key;
1526
1527	memset(&key->ct, 0, sizeof(key->ct));
1528	key->phy.in_port = DP_MAX_PORTS;
1529
1530	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1531}
1532
1533static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1534			    bool is_mask)
1535{
1536	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1537
1538	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1539	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1540		return -EMSGSIZE;
1541	return 0;
1542}
1543
1544static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1545			     const struct sw_flow_key *output, bool is_mask,
1546			     struct sk_buff *skb)
1547{
1548	struct ovs_key_ethernet *eth_key;
1549	struct nlattr *nla;
1550	struct nlattr *encap = NULL;
1551	struct nlattr *in_encap = NULL;
1552
1553	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1554		goto nla_put_failure;
1555
1556	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1557		goto nla_put_failure;
1558
1559	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1560		goto nla_put_failure;
1561
1562	if ((swkey->tun_proto || is_mask)) {
1563		const void *opts = NULL;
1564
1565		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1566			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1567
1568		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1569				     swkey->tun_opts_len, swkey->tun_proto))
1570			goto nla_put_failure;
1571	}
1572
1573	if (swkey->phy.in_port == DP_MAX_PORTS) {
1574		if (is_mask && (output->phy.in_port == 0xffff))
1575			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1576				goto nla_put_failure;
1577	} else {
1578		u16 upper_u16;
1579		upper_u16 = !is_mask ? 0 : 0xffff;
1580
1581		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1582				(upper_u16 << 16) | output->phy.in_port))
1583			goto nla_put_failure;
1584	}
1585
1586	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1587		goto nla_put_failure;
1588
1589	if (ovs_ct_put_key(output, skb))
 
1590		goto nla_put_failure;
1591
1592	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1593		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1594		if (!nla)
 
 
 
 
 
 
1595			goto nla_put_failure;
 
 
 
 
 
1596
1597		eth_key = nla_data(nla);
1598		ether_addr_copy(eth_key->eth_src, output->eth.src);
1599		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1600
1601		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1602			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
 
 
 
 
1603				goto nla_put_failure;
1604			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1605			if (!swkey->eth.vlan.tci)
1606				goto unencap;
1607
1608			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1609				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1610					goto nla_put_failure;
1611				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1612				if (!swkey->eth.cvlan.tci)
1613					goto unencap;
1614			}
1615		}
1616
1617		if (swkey->eth.type == htons(ETH_P_802_2)) {
1618			/*
1619			* Ethertype 802.2 is represented in the netlink with omitted
1620			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1621			* 0xffff in the mask attribute.  Ethertype can also
1622			* be wildcarded.
1623			*/
1624			if (is_mask && output->eth.type)
1625				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1626							output->eth.type))
1627					goto nla_put_failure;
1628			goto unencap;
1629		}
1630	}
1631
1632	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1633		goto nla_put_failure;
1634
1635	if (eth_type_vlan(swkey->eth.type)) {
1636		/* There are 3 VLAN tags, we don't know anything about the rest
1637		 * of the packet, so truncate here.
1638		 */
1639		WARN_ON_ONCE(!(encap && in_encap));
1640		goto unencap;
1641	}
1642
1643	if (swkey->eth.type == htons(ETH_P_IP)) {
1644		struct ovs_key_ipv4 *ipv4_key;
1645
1646		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1647		if (!nla)
1648			goto nla_put_failure;
1649		ipv4_key = nla_data(nla);
1650		ipv4_key->ipv4_src = output->ipv4.addr.src;
1651		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1652		ipv4_key->ipv4_proto = output->ip.proto;
1653		ipv4_key->ipv4_tos = output->ip.tos;
1654		ipv4_key->ipv4_ttl = output->ip.ttl;
1655		ipv4_key->ipv4_frag = output->ip.frag;
1656	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1657		struct ovs_key_ipv6 *ipv6_key;
1658
1659		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1660		if (!nla)
1661			goto nla_put_failure;
1662		ipv6_key = nla_data(nla);
1663		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1664				sizeof(ipv6_key->ipv6_src));
1665		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1666				sizeof(ipv6_key->ipv6_dst));
1667		ipv6_key->ipv6_label = output->ipv6.label;
1668		ipv6_key->ipv6_proto = output->ip.proto;
1669		ipv6_key->ipv6_tclass = output->ip.tos;
1670		ipv6_key->ipv6_hlimit = output->ip.ttl;
1671		ipv6_key->ipv6_frag = output->ip.frag;
1672	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1673		   swkey->eth.type == htons(ETH_P_RARP)) {
1674		struct ovs_key_arp *arp_key;
1675
1676		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1677		if (!nla)
1678			goto nla_put_failure;
1679		arp_key = nla_data(nla);
1680		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1681		arp_key->arp_sip = output->ipv4.addr.src;
1682		arp_key->arp_tip = output->ipv4.addr.dst;
1683		arp_key->arp_op = htons(output->ip.proto);
1684		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1685		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1686	} else if (eth_p_mpls(swkey->eth.type)) {
1687		struct ovs_key_mpls *mpls_key;
1688
1689		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1690		if (!nla)
1691			goto nla_put_failure;
1692		mpls_key = nla_data(nla);
1693		mpls_key->mpls_lse = output->mpls.top_lse;
1694	}
1695
1696	if ((swkey->eth.type == htons(ETH_P_IP) ||
1697	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1698	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1699
1700		if (swkey->ip.proto == IPPROTO_TCP) {
1701			struct ovs_key_tcp *tcp_key;
1702
1703			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1704			if (!nla)
1705				goto nla_put_failure;
1706			tcp_key = nla_data(nla);
1707			tcp_key->tcp_src = output->tp.src;
1708			tcp_key->tcp_dst = output->tp.dst;
1709			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1710					 output->tp.flags))
1711				goto nla_put_failure;
 
 
 
 
 
 
 
 
1712		} else if (swkey->ip.proto == IPPROTO_UDP) {
1713			struct ovs_key_udp *udp_key;
1714
1715			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1716			if (!nla)
1717				goto nla_put_failure;
1718			udp_key = nla_data(nla);
1719			udp_key->udp_src = output->tp.src;
1720			udp_key->udp_dst = output->tp.dst;
 
 
 
 
 
1721		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1722			struct ovs_key_sctp *sctp_key;
1723
1724			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1725			if (!nla)
1726				goto nla_put_failure;
1727			sctp_key = nla_data(nla);
1728			sctp_key->sctp_src = output->tp.src;
1729			sctp_key->sctp_dst = output->tp.dst;
 
 
 
 
 
1730		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1731			   swkey->ip.proto == IPPROTO_ICMP) {
1732			struct ovs_key_icmp *icmp_key;
1733
1734			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1735			if (!nla)
1736				goto nla_put_failure;
1737			icmp_key = nla_data(nla);
1738			icmp_key->icmp_type = ntohs(output->tp.src);
1739			icmp_key->icmp_code = ntohs(output->tp.dst);
1740		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1741			   swkey->ip.proto == IPPROTO_ICMPV6) {
1742			struct ovs_key_icmpv6 *icmpv6_key;
1743
1744			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1745						sizeof(*icmpv6_key));
1746			if (!nla)
1747				goto nla_put_failure;
1748			icmpv6_key = nla_data(nla);
1749			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1750			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1751
1752			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1753			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1754				struct ovs_key_nd *nd_key;
1755
1756				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1757				if (!nla)
1758					goto nla_put_failure;
1759				nd_key = nla_data(nla);
1760				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1761							sizeof(nd_key->nd_target));
1762				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1763				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1764			}
1765		}
1766	}
1767
1768unencap:
1769	if (in_encap)
1770		nla_nest_end(skb, in_encap);
1771	if (encap)
1772		nla_nest_end(skb, encap);
1773
1774	return 0;
1775
1776nla_put_failure:
1777	return -EMSGSIZE;
1778}
1779
1780int ovs_nla_put_key(const struct sw_flow_key *swkey,
1781		    const struct sw_flow_key *output, int attr, bool is_mask,
1782		    struct sk_buff *skb)
1783{
1784	int err;
1785	struct nlattr *nla;
1786
1787	nla = nla_nest_start(skb, attr);
1788	if (!nla)
1789		return -EMSGSIZE;
1790	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1791	if (err)
1792		return err;
1793	nla_nest_end(skb, nla);
1794
1795	return 0;
1796}
1797
1798/* Called with ovs_mutex or RCU read lock. */
1799int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1800{
1801	if (ovs_identifier_is_ufid(&flow->id))
1802		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1803			       flow->id.ufid);
1804
1805	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1806			       OVS_FLOW_ATTR_KEY, false, skb);
1807}
1808
1809/* Called with ovs_mutex or RCU read lock. */
1810int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1811{
1812	return ovs_nla_put_key(&flow->key, &flow->key,
1813				OVS_FLOW_ATTR_KEY, false, skb);
1814}
1815
1816/* Called with ovs_mutex or RCU read lock. */
1817int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1818{
1819	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1820				OVS_FLOW_ATTR_MASK, true, skb);
1821}
1822
1823#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1824
1825static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1826{
1827	struct sw_flow_actions *sfa;
1828
1829	if (size > MAX_ACTIONS_BUFSIZE) {
1830		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1831		return ERR_PTR(-EINVAL);
1832	}
1833
1834	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1835	if (!sfa)
1836		return ERR_PTR(-ENOMEM);
1837
1838	sfa->actions_len = 0;
1839	return sfa;
1840}
1841
1842static void ovs_nla_free_set_action(const struct nlattr *a)
1843{
1844	const struct nlattr *ovs_key = nla_data(a);
1845	struct ovs_tunnel_info *ovs_tun;
1846
1847	switch (nla_type(ovs_key)) {
1848	case OVS_KEY_ATTR_TUNNEL_INFO:
1849		ovs_tun = nla_data(ovs_key);
1850		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1851		break;
1852	}
1853}
1854
1855void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1856{
1857	const struct nlattr *a;
1858	int rem;
1859
1860	if (!sf_acts)
1861		return;
1862
1863	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1864		switch (nla_type(a)) {
1865		case OVS_ACTION_ATTR_SET:
1866			ovs_nla_free_set_action(a);
1867			break;
1868		case OVS_ACTION_ATTR_CT:
1869			ovs_ct_free_action(a);
1870			break;
1871		}
1872	}
1873
1874	kfree(sf_acts);
1875}
1876
1877static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1878{
1879	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1880}
1881
1882/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1883 * The caller must hold rcu_read_lock for this to be sensible. */
1884void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1885{
1886	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1887}
1888
1889static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1890				       int attr_len, bool log)
1891{
1892
1893	struct sw_flow_actions *acts;
1894	int new_acts_size;
1895	int req_size = NLA_ALIGN(attr_len);
1896	int next_offset = offsetof(struct sw_flow_actions, actions) +
1897					(*sfa)->actions_len;
1898
1899	if (req_size <= (ksize(*sfa) - next_offset))
1900		goto out;
1901
1902	new_acts_size = ksize(*sfa) * 2;
1903
1904	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1905		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1906			return ERR_PTR(-EMSGSIZE);
1907		new_acts_size = MAX_ACTIONS_BUFSIZE;
1908	}
1909
1910	acts = nla_alloc_flow_actions(new_acts_size, log);
1911	if (IS_ERR(acts))
1912		return (void *)acts;
1913
1914	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1915	acts->actions_len = (*sfa)->actions_len;
1916	acts->orig_len = (*sfa)->orig_len;
1917	kfree(*sfa);
1918	*sfa = acts;
1919
1920out:
1921	(*sfa)->actions_len += req_size;
1922	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1923}
1924
1925static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1926				   int attrtype, void *data, int len, bool log)
1927{
1928	struct nlattr *a;
1929
1930	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1931	if (IS_ERR(a))
1932		return a;
1933
1934	a->nla_type = attrtype;
1935	a->nla_len = nla_attr_size(len);
1936
1937	if (data)
1938		memcpy(nla_data(a), data, len);
1939	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1940
1941	return a;
1942}
1943
1944int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1945		       int len, bool log)
1946{
1947	struct nlattr *a;
1948
1949	a = __add_action(sfa, attrtype, data, len, log);
1950
1951	return PTR_ERR_OR_ZERO(a);
1952}
1953
1954static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1955					  int attrtype, bool log)
1956{
1957	int used = (*sfa)->actions_len;
1958	int err;
1959
1960	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1961	if (err)
1962		return err;
1963
1964	return used;
1965}
1966
1967static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1968					 int st_offset)
1969{
1970	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1971							       st_offset);
1972
1973	a->nla_len = sfa->actions_len - st_offset;
1974}
1975
1976static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1977				  const struct sw_flow_key *key,
1978				  int depth, struct sw_flow_actions **sfa,
1979				  __be16 eth_type, __be16 vlan_tci, bool log);
1980
1981static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1982				    const struct sw_flow_key *key, int depth,
1983				    struct sw_flow_actions **sfa,
1984				    __be16 eth_type, __be16 vlan_tci, bool log)
1985{
1986	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1987	const struct nlattr *probability, *actions;
1988	const struct nlattr *a;
1989	int rem, start, err, st_acts;
1990
1991	memset(attrs, 0, sizeof(attrs));
1992	nla_for_each_nested(a, attr, rem) {
1993		int type = nla_type(a);
1994		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1995			return -EINVAL;
1996		attrs[type] = a;
1997	}
1998	if (rem)
1999		return -EINVAL;
2000
2001	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2002	if (!probability || nla_len(probability) != sizeof(u32))
2003		return -EINVAL;
2004
2005	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2006	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2007		return -EINVAL;
2008
2009	/* validation done, copy sample action. */
2010	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2011	if (start < 0)
2012		return start;
2013	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2014				 nla_data(probability), sizeof(u32), log);
2015	if (err)
2016		return err;
2017	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2018	if (st_acts < 0)
2019		return st_acts;
2020
2021	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2022				     eth_type, vlan_tci, log);
2023	if (err)
2024		return err;
2025
2026	add_nested_action_end(*sfa, st_acts);
2027	add_nested_action_end(*sfa, start);
2028
2029	return 0;
2030}
2031
 
 
 
 
 
 
 
 
 
 
 
 
 
2032void ovs_match_init(struct sw_flow_match *match,
2033		    struct sw_flow_key *key,
2034		    bool reset_key,
2035		    struct sw_flow_mask *mask)
2036{
2037	memset(match, 0, sizeof(*match));
2038	match->key = key;
2039	match->mask = mask;
2040
2041	if (reset_key)
2042		memset(key, 0, sizeof(*key));
2043
2044	if (mask) {
2045		memset(&mask->key, 0, sizeof(mask->key));
2046		mask->range.start = mask->range.end = 0;
2047	}
2048}
2049
2050static int validate_geneve_opts(struct sw_flow_key *key)
2051{
2052	struct geneve_opt *option;
2053	int opts_len = key->tun_opts_len;
2054	bool crit_opt = false;
2055
2056	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2057	while (opts_len > 0) {
2058		int len;
2059
2060		if (opts_len < sizeof(*option))
2061			return -EINVAL;
2062
2063		len = sizeof(*option) + option->length * 4;
2064		if (len > opts_len)
2065			return -EINVAL;
2066
2067		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2068
2069		option = (struct geneve_opt *)((u8 *)option + len);
2070		opts_len -= len;
2071	};
2072
2073	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2074
2075	return 0;
2076}
2077
2078static int validate_and_copy_set_tun(const struct nlattr *attr,
2079				     struct sw_flow_actions **sfa, bool log)
2080{
2081	struct sw_flow_match match;
2082	struct sw_flow_key key;
2083	struct metadata_dst *tun_dst;
2084	struct ip_tunnel_info *tun_info;
2085	struct ovs_tunnel_info *ovs_tun;
2086	struct nlattr *a;
2087	int err = 0, start, opts_type;
2088
2089	ovs_match_init(&match, &key, true, NULL);
2090	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2091	if (opts_type < 0)
2092		return opts_type;
2093
2094	if (key.tun_opts_len) {
2095		switch (opts_type) {
2096		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2097			err = validate_geneve_opts(&key);
2098			if (err < 0)
2099				return err;
2100			break;
2101		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2102			break;
2103		}
2104	};
2105
2106	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2107	if (start < 0)
2108		return start;
2109
2110	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2111	if (!tun_dst)
2112		return -ENOMEM;
2113
2114	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2115	if (err) {
2116		dst_release((struct dst_entry *)tun_dst);
2117		return err;
2118	}
2119
2120	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2121			 sizeof(*ovs_tun), log);
2122	if (IS_ERR(a)) {
2123		dst_release((struct dst_entry *)tun_dst);
2124		return PTR_ERR(a);
2125	}
2126
2127	ovs_tun = nla_data(a);
2128	ovs_tun->tun_dst = tun_dst;
2129
2130	tun_info = &tun_dst->u.tun_info;
2131	tun_info->mode = IP_TUNNEL_INFO_TX;
2132	if (key.tun_proto == AF_INET6)
2133		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2134	tun_info->key = key.tun_key;
2135
2136	/* We need to store the options in the action itself since
2137	 * everything else will go away after flow setup. We can append
2138	 * it to tun_info and then point there.
2139	 */
2140	ip_tunnel_info_opts_set(tun_info,
2141				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2142				key.tun_opts_len);
2143	add_nested_action_end(*sfa, start);
2144
2145	return err;
2146}
2147
2148/* Return false if there are any non-masked bits set.
2149 * Mask follows data immediately, before any netlink padding.
2150 */
2151static bool validate_masked(u8 *data, int len)
2152{
2153	u8 *mask = data + len;
2154
2155	while (len--)
2156		if (*data++ & ~*mask++)
2157			return false;
2158
2159	return true;
2160}
2161
2162static int validate_set(const struct nlattr *a,
2163			const struct sw_flow_key *flow_key,
2164			struct sw_flow_actions **sfa, bool *skip_copy,
2165			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2166{
2167	const struct nlattr *ovs_key = nla_data(a);
2168	int key_type = nla_type(ovs_key);
2169	size_t key_len;
2170
2171	/* There can be only one key in a action */
2172	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2173		return -EINVAL;
2174
2175	key_len = nla_len(ovs_key);
2176	if (masked)
2177		key_len /= 2;
2178
2179	if (key_type > OVS_KEY_ATTR_MAX ||
2180	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2181		return -EINVAL;
2182
2183	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2184		return -EINVAL;
2185
2186	switch (key_type) {
2187	const struct ovs_key_ipv4 *ipv4_key;
2188	const struct ovs_key_ipv6 *ipv6_key;
2189	int err;
2190
2191	case OVS_KEY_ATTR_PRIORITY:
2192	case OVS_KEY_ATTR_SKB_MARK:
2193	case OVS_KEY_ATTR_CT_MARK:
2194	case OVS_KEY_ATTR_CT_LABELS:
2195		break;
2196
2197	case OVS_KEY_ATTR_ETHERNET:
2198		if (mac_proto != MAC_PROTO_ETHERNET)
2199			return -EINVAL;
2200		break;
2201
2202	case OVS_KEY_ATTR_TUNNEL:
2203		if (masked)
2204			return -EINVAL; /* Masked tunnel set not supported. */
2205
2206		*skip_copy = true;
2207		err = validate_and_copy_set_tun(a, sfa, log);
2208		if (err)
2209			return err;
2210		break;
2211
2212	case OVS_KEY_ATTR_IPV4:
2213		if (eth_type != htons(ETH_P_IP))
2214			return -EINVAL;
2215
2216		ipv4_key = nla_data(ovs_key);
 
2217
2218		if (masked) {
2219			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
 
2220
2221			/* Non-writeable fields. */
2222			if (mask->ipv4_proto || mask->ipv4_frag)
2223				return -EINVAL;
2224		} else {
2225			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2226				return -EINVAL;
2227
2228			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2229				return -EINVAL;
2230		}
2231		break;
2232
2233	case OVS_KEY_ATTR_IPV6:
2234		if (eth_type != htons(ETH_P_IPV6))
2235			return -EINVAL;
2236
2237		ipv6_key = nla_data(ovs_key);
2238
2239		if (masked) {
2240			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2241
2242			/* Non-writeable fields. */
2243			if (mask->ipv6_proto || mask->ipv6_frag)
2244				return -EINVAL;
2245
2246			/* Invalid bits in the flow label mask? */
2247			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2248				return -EINVAL;
2249		} else {
2250			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2251				return -EINVAL;
2252
2253			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2254				return -EINVAL;
2255		}
2256		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2257			return -EINVAL;
2258
2259		break;
2260
2261	case OVS_KEY_ATTR_TCP:
2262		if ((eth_type != htons(ETH_P_IP) &&
2263		     eth_type != htons(ETH_P_IPV6)) ||
2264		    flow_key->ip.proto != IPPROTO_TCP)
2265			return -EINVAL;
2266
2267		break;
2268
2269	case OVS_KEY_ATTR_UDP:
2270		if ((eth_type != htons(ETH_P_IP) &&
2271		     eth_type != htons(ETH_P_IPV6)) ||
2272		    flow_key->ip.proto != IPPROTO_UDP)
2273			return -EINVAL;
2274
2275		break;
2276
2277	case OVS_KEY_ATTR_MPLS:
2278		if (!eth_p_mpls(eth_type))
2279			return -EINVAL;
2280		break;
2281
2282	case OVS_KEY_ATTR_SCTP:
2283		if ((eth_type != htons(ETH_P_IP) &&
2284		     eth_type != htons(ETH_P_IPV6)) ||
2285		    flow_key->ip.proto != IPPROTO_SCTP)
2286			return -EINVAL;
2287
2288		break;
2289
2290	default:
2291		return -EINVAL;
2292	}
2293
2294	/* Convert non-masked non-tunnel set actions to masked set actions. */
2295	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2296		int start, len = key_len * 2;
2297		struct nlattr *at;
2298
2299		*skip_copy = true;
2300
2301		start = add_nested_action_start(sfa,
2302						OVS_ACTION_ATTR_SET_TO_MASKED,
2303						log);
2304		if (start < 0)
2305			return start;
2306
2307		at = __add_action(sfa, key_type, NULL, len, log);
2308		if (IS_ERR(at))
2309			return PTR_ERR(at);
2310
2311		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2312		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2313		/* Clear non-writeable bits from otherwise writeable fields. */
2314		if (key_type == OVS_KEY_ATTR_IPV6) {
2315			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2316
2317			mask->ipv6_label &= htonl(0x000FFFFF);
2318		}
2319		add_nested_action_end(*sfa, start);
2320	}
2321
2322	return 0;
2323}
2324
2325static int validate_userspace(const struct nlattr *attr)
2326{
2327	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2328		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2329		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2330		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2331	};
2332	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2333	int error;
2334
2335	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2336				 attr, userspace_policy);
2337	if (error)
2338		return error;
2339
2340	if (!a[OVS_USERSPACE_ATTR_PID] ||
2341	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2342		return -EINVAL;
2343
2344	return 0;
2345}
2346
2347static int copy_action(const struct nlattr *from,
2348		       struct sw_flow_actions **sfa, bool log)
2349{
2350	int totlen = NLA_ALIGN(from->nla_len);
2351	struct nlattr *to;
2352
2353	to = reserve_sfa_size(sfa, from->nla_len, log);
2354	if (IS_ERR(to))
2355		return PTR_ERR(to);
2356
2357	memcpy(to, from, totlen);
2358	return 0;
2359}
2360
2361static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2362				  const struct sw_flow_key *key,
2363				  int depth, struct sw_flow_actions **sfa,
2364				  __be16 eth_type, __be16 vlan_tci, bool log)
2365{
2366	u8 mac_proto = ovs_key_mac_proto(key);
2367	const struct nlattr *a;
2368	int rem, err;
2369
2370	if (depth >= SAMPLE_ACTION_DEPTH)
2371		return -EOVERFLOW;
2372
2373	nla_for_each_nested(a, attr, rem) {
2374		/* Expected argument lengths, (u32)-1 for variable length. */
2375		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2376			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2377			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2378			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2379			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2380			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2381			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2382			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2383			[OVS_ACTION_ATTR_SET] = (u32)-1,
2384			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2385			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2386			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2387			[OVS_ACTION_ATTR_CT] = (u32)-1,
2388			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2389			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2390			[OVS_ACTION_ATTR_POP_ETH] = 0,
2391		};
2392		const struct ovs_action_push_vlan *vlan;
2393		int type = nla_type(a);
2394		bool skip_copy;
2395
2396		if (type > OVS_ACTION_ATTR_MAX ||
2397		    (action_lens[type] != nla_len(a) &&
2398		     action_lens[type] != (u32)-1))
2399			return -EINVAL;
2400
2401		skip_copy = false;
2402		switch (type) {
2403		case OVS_ACTION_ATTR_UNSPEC:
2404			return -EINVAL;
2405
2406		case OVS_ACTION_ATTR_USERSPACE:
2407			err = validate_userspace(a);
2408			if (err)
2409				return err;
2410			break;
2411
2412		case OVS_ACTION_ATTR_OUTPUT:
2413			if (nla_get_u32(a) >= DP_MAX_PORTS)
2414				return -EINVAL;
2415			break;
2416
2417		case OVS_ACTION_ATTR_TRUNC: {
2418			const struct ovs_action_trunc *trunc = nla_data(a);
2419
2420			if (trunc->max_len < ETH_HLEN)
2421				return -EINVAL;
2422			break;
2423		}
2424
2425		case OVS_ACTION_ATTR_HASH: {
2426			const struct ovs_action_hash *act_hash = nla_data(a);
2427
2428			switch (act_hash->hash_alg) {
2429			case OVS_HASH_ALG_L4:
2430				break;
2431			default:
2432				return  -EINVAL;
2433			}
2434
2435			break;
2436		}
2437
2438		case OVS_ACTION_ATTR_POP_VLAN:
2439			if (mac_proto != MAC_PROTO_ETHERNET)
2440				return -EINVAL;
2441			vlan_tci = htons(0);
2442			break;
2443
2444		case OVS_ACTION_ATTR_PUSH_VLAN:
2445			if (mac_proto != MAC_PROTO_ETHERNET)
2446				return -EINVAL;
2447			vlan = nla_data(a);
2448			if (!eth_type_vlan(vlan->vlan_tpid))
2449				return -EINVAL;
2450			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2451				return -EINVAL;
2452			vlan_tci = vlan->vlan_tci;
2453			break;
2454
2455		case OVS_ACTION_ATTR_RECIRC:
2456			break;
2457
2458		case OVS_ACTION_ATTR_PUSH_MPLS: {
2459			const struct ovs_action_push_mpls *mpls = nla_data(a);
2460
2461			if (!eth_p_mpls(mpls->mpls_ethertype))
2462				return -EINVAL;
2463			/* Prohibit push MPLS other than to a white list
2464			 * for packets that have a known tag order.
2465			 */
2466			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2467			    (eth_type != htons(ETH_P_IP) &&
2468			     eth_type != htons(ETH_P_IPV6) &&
2469			     eth_type != htons(ETH_P_ARP) &&
2470			     eth_type != htons(ETH_P_RARP) &&
2471			     !eth_p_mpls(eth_type)))
2472				return -EINVAL;
2473			eth_type = mpls->mpls_ethertype;
2474			break;
2475		}
2476
2477		case OVS_ACTION_ATTR_POP_MPLS:
2478			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2479			    !eth_p_mpls(eth_type))
2480				return -EINVAL;
2481
2482			/* Disallow subsequent L2.5+ set and mpls_pop actions
2483			 * as there is no check here to ensure that the new
2484			 * eth_type is valid and thus set actions could
2485			 * write off the end of the packet or otherwise
2486			 * corrupt it.
2487			 *
2488			 * Support for these actions is planned using packet
2489			 * recirculation.
2490			 */
2491			eth_type = htons(0);
2492			break;
2493
2494		case OVS_ACTION_ATTR_SET:
2495			err = validate_set(a, key, sfa,
2496					   &skip_copy, mac_proto, eth_type,
2497					   false, log);
2498			if (err)
2499				return err;
2500			break;
2501
2502		case OVS_ACTION_ATTR_SET_MASKED:
2503			err = validate_set(a, key, sfa,
2504					   &skip_copy, mac_proto, eth_type,
2505					   true, log);
2506			if (err)
2507				return err;
2508			break;
2509
2510		case OVS_ACTION_ATTR_SAMPLE:
2511			err = validate_and_copy_sample(net, a, key, depth, sfa,
2512						       eth_type, vlan_tci, log);
2513			if (err)
2514				return err;
2515			skip_copy = true;
2516			break;
2517
2518		case OVS_ACTION_ATTR_CT:
2519			err = ovs_ct_copy_action(net, a, key, sfa, log);
2520			if (err)
2521				return err;
2522			skip_copy = true;
2523			break;
2524
2525		case OVS_ACTION_ATTR_PUSH_ETH:
2526			/* Disallow pushing an Ethernet header if one
2527			 * is already present */
2528			if (mac_proto != MAC_PROTO_NONE)
2529				return -EINVAL;
2530			mac_proto = MAC_PROTO_NONE;
2531			break;
2532
2533		case OVS_ACTION_ATTR_POP_ETH:
2534			if (mac_proto != MAC_PROTO_ETHERNET)
2535				return -EINVAL;
2536			if (vlan_tci & htons(VLAN_TAG_PRESENT))
2537				return -EINVAL;
2538			mac_proto = MAC_PROTO_ETHERNET;
2539			break;
2540
2541		default:
2542			OVS_NLERR(log, "Unknown Action type %d", type);
2543			return -EINVAL;
2544		}
2545		if (!skip_copy) {
2546			err = copy_action(a, sfa, log);
2547			if (err)
2548				return err;
2549		}
2550	}
2551
2552	if (rem > 0)
2553		return -EINVAL;
2554
2555	return 0;
2556}
2557
2558/* 'key' must be the masked key. */
2559int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2560			 const struct sw_flow_key *key,
2561			 struct sw_flow_actions **sfa, bool log)
2562{
2563	int err;
2564
2565	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2566	if (IS_ERR(*sfa))
2567		return PTR_ERR(*sfa);
2568
2569	(*sfa)->orig_len = nla_len(attr);
2570	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2571				     key->eth.vlan.tci, log);
2572	if (err)
2573		ovs_nla_free_flow_actions(*sfa);
2574
2575	return err;
2576}
2577
2578static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2579{
2580	const struct nlattr *a;
2581	struct nlattr *start;
2582	int err = 0, rem;
2583
2584	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2585	if (!start)
2586		return -EMSGSIZE;
2587
2588	nla_for_each_nested(a, attr, rem) {
2589		int type = nla_type(a);
2590		struct nlattr *st_sample;
2591
2592		switch (type) {
2593		case OVS_SAMPLE_ATTR_PROBABILITY:
2594			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2595				    sizeof(u32), nla_data(a)))
2596				return -EMSGSIZE;
2597			break;
2598		case OVS_SAMPLE_ATTR_ACTIONS:
2599			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2600			if (!st_sample)
2601				return -EMSGSIZE;
2602			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2603			if (err)
2604				return err;
2605			nla_nest_end(skb, st_sample);
2606			break;
2607		}
2608	}
2609
2610	nla_nest_end(skb, start);
2611	return err;
2612}
2613
2614static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2615{
2616	const struct nlattr *ovs_key = nla_data(a);
2617	int key_type = nla_type(ovs_key);
2618	struct nlattr *start;
2619	int err;
2620
2621	switch (key_type) {
2622	case OVS_KEY_ATTR_TUNNEL_INFO: {
2623		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2624		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2625
2626		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2627		if (!start)
2628			return -EMSGSIZE;
2629
2630		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2631					ip_tunnel_info_opts(tun_info),
2632					tun_info->options_len,
2633					ip_tunnel_info_af(tun_info));
2634		if (err)
2635			return err;
2636		nla_nest_end(skb, start);
2637		break;
2638	}
2639	default:
2640		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2641			return -EMSGSIZE;
2642		break;
2643	}
2644
2645	return 0;
2646}
2647
2648static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2649						struct sk_buff *skb)
2650{
2651	const struct nlattr *ovs_key = nla_data(a);
2652	struct nlattr *nla;
2653	size_t key_len = nla_len(ovs_key) / 2;
2654
2655	/* Revert the conversion we did from a non-masked set action to
2656	 * masked set action.
2657	 */
2658	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2659	if (!nla)
2660		return -EMSGSIZE;
2661
2662	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2663		return -EMSGSIZE;
2664
2665	nla_nest_end(skb, nla);
2666	return 0;
2667}
2668
2669int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2670{
2671	const struct nlattr *a;
2672	int rem, err;
2673
2674	nla_for_each_attr(a, attr, len, rem) {
2675		int type = nla_type(a);
2676
2677		switch (type) {
2678		case OVS_ACTION_ATTR_SET:
2679			err = set_action_to_attr(a, skb);
2680			if (err)
2681				return err;
2682			break;
2683
2684		case OVS_ACTION_ATTR_SET_TO_MASKED:
2685			err = masked_set_action_to_set_action_attr(a, skb);
2686			if (err)
2687				return err;
2688			break;
2689
2690		case OVS_ACTION_ATTR_SAMPLE:
2691			err = sample_action_to_attr(a, skb);
2692			if (err)
2693				return err;
2694			break;
2695
2696		case OVS_ACTION_ATTR_CT:
2697			err = ovs_ct_action_to_attr(nla_data(a), skb);
2698			if (err)
2699				return err;
2700			break;
2701
2702		default:
2703			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2704				return -EMSGSIZE;
2705			break;
2706		}
2707	}
2708
2709	return 0;
2710}
v3.15
   1/*
   2 * Copyright (c) 2007-2013 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
 
 
  19#include "flow.h"
  20#include "datapath.h"
  21#include <linux/uaccess.h>
  22#include <linux/netdevice.h>
  23#include <linux/etherdevice.h>
  24#include <linux/if_ether.h>
  25#include <linux/if_vlan.h>
  26#include <net/llc_pdu.h>
  27#include <linux/kernel.h>
  28#include <linux/jhash.h>
  29#include <linux/jiffies.h>
  30#include <linux/llc.h>
  31#include <linux/module.h>
  32#include <linux/in.h>
  33#include <linux/rcupdate.h>
  34#include <linux/if_arp.h>
  35#include <linux/ip.h>
  36#include <linux/ipv6.h>
  37#include <linux/sctp.h>
  38#include <linux/tcp.h>
  39#include <linux/udp.h>
  40#include <linux/icmp.h>
  41#include <linux/icmpv6.h>
  42#include <linux/rculist.h>
 
  43#include <net/ip.h>
  44#include <net/ipv6.h>
  45#include <net/ndisc.h>
 
 
  46
  47#include "flow_netlink.h"
  48
  49static void update_range__(struct sw_flow_match *match,
  50			   size_t offset, size_t size, bool is_mask)
 
 
 
 
 
 
 
 
  51{
  52	struct sw_flow_key_range *range = NULL;
  53	size_t start = rounddown(offset, sizeof(long));
  54	size_t end = roundup(offset + size, sizeof(long));
  55
  56	if (!is_mask)
  57		range = &match->range;
  58	else if (match->mask)
  59		range = &match->mask->range;
  60
  61	if (!range)
  62		return;
  63
  64	if (range->start == range->end) {
  65		range->start = start;
  66		range->end = end;
  67		return;
  68	}
  69
  70	if (range->start > start)
  71		range->start = start;
  72
  73	if (range->end < end)
  74		range->end = end;
  75}
  76
  77#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  78	do { \
  79		update_range__(match, offsetof(struct sw_flow_key, field),  \
  80				     sizeof((match)->key->field), is_mask); \
  81		if (is_mask) {						    \
  82			if ((match)->mask)				    \
  83				(match)->mask->key.field = value;	    \
  84		} else {                                                    \
  85			(match)->key->field = value;		            \
  86		}                                                           \
  87	} while (0)
  88
  89#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
  90	do { \
  91		update_range__(match, offsetof(struct sw_flow_key, field),  \
  92				len, is_mask);                              \
  93		if (is_mask) {						    \
  94			if ((match)->mask)				    \
  95				memcpy(&(match)->mask->key.field, value_p, len);\
  96		} else {                                                    \
  97			memcpy(&(match)->key->field, value_p, len);         \
  98		}                                                           \
  99	} while (0)
 100
 101static u16 range_n_bytes(const struct sw_flow_key_range *range)
 102{
 103	return range->end - range->start;
 104}
 
 
 
 
 
 
 
 
 
 
 
 105
 106static bool match_validate(const struct sw_flow_match *match,
 107			   u64 key_attrs, u64 mask_attrs)
 108{
 109	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
 110	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 111
 112	/* The following mask attributes allowed only if they
 113	 * pass the validation tests. */
 114	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 115			| (1 << OVS_KEY_ATTR_IPV6)
 116			| (1 << OVS_KEY_ATTR_TCP)
 117			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 118			| (1 << OVS_KEY_ATTR_UDP)
 119			| (1 << OVS_KEY_ATTR_SCTP)
 120			| (1 << OVS_KEY_ATTR_ICMP)
 121			| (1 << OVS_KEY_ATTR_ICMPV6)
 122			| (1 << OVS_KEY_ATTR_ARP)
 123			| (1 << OVS_KEY_ATTR_ND));
 
 124
 125	/* Always allowed mask fields. */
 126	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 127		       | (1 << OVS_KEY_ATTR_IN_PORT)
 128		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 129
 130	/* Check key attributes. */
 131	if (match->key->eth.type == htons(ETH_P_ARP)
 132			|| match->key->eth.type == htons(ETH_P_RARP)) {
 133		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 134		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 135			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 136	}
 137
 
 
 
 
 
 
 138	if (match->key->eth.type == htons(ETH_P_IP)) {
 139		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 140		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 141			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 142
 143		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 144			if (match->key->ip.proto == IPPROTO_UDP) {
 145				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 146				if (match->mask && (match->mask->key.ip.proto == 0xff))
 147					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 148			}
 149
 150			if (match->key->ip.proto == IPPROTO_SCTP) {
 151				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 152				if (match->mask && (match->mask->key.ip.proto == 0xff))
 153					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 154			}
 155
 156			if (match->key->ip.proto == IPPROTO_TCP) {
 157				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 158				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 159				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 160					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 161					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 162				}
 163			}
 164
 165			if (match->key->ip.proto == IPPROTO_ICMP) {
 166				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 167				if (match->mask && (match->mask->key.ip.proto == 0xff))
 168					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 169			}
 170		}
 171	}
 172
 173	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 174		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 175		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 176			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 177
 178		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 179			if (match->key->ip.proto == IPPROTO_UDP) {
 180				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 181				if (match->mask && (match->mask->key.ip.proto == 0xff))
 182					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 183			}
 184
 185			if (match->key->ip.proto == IPPROTO_SCTP) {
 186				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 187				if (match->mask && (match->mask->key.ip.proto == 0xff))
 188					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 189			}
 190
 191			if (match->key->ip.proto == IPPROTO_TCP) {
 192				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 193				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 194				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 195					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 196					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 197				}
 198			}
 199
 200			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 201				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 202				if (match->mask && (match->mask->key.ip.proto == 0xff))
 203					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 204
 205				if (match->key->ipv6.tp.src ==
 206						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 207				    match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 208					key_expected |= 1 << OVS_KEY_ATTR_ND;
 209					if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
 210						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 211				}
 212			}
 213		}
 214	}
 215
 216	if ((key_attrs & key_expected) != key_expected) {
 217		/* Key attributes check failed. */
 218		OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
 219				key_attrs, key_expected);
 
 220		return false;
 221	}
 222
 223	if ((mask_attrs & mask_allowed) != mask_attrs) {
 224		/* Mask attributes check failed. */
 225		OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
 226				mask_attrs, mask_allowed);
 
 227		return false;
 228	}
 229
 230	return true;
 231}
 232
 233/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 234static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 235	[OVS_KEY_ATTR_ENCAP] = -1,
 236	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
 237	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
 238	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
 239	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
 240	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
 241	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
 242	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
 243	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
 244	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
 245	[OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
 246	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
 247	[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
 248	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
 249	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
 250	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
 251	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
 252	[OVS_KEY_ATTR_TUNNEL] = -1,
 253};
 254
 255static bool is_all_zero(const u8 *fp, size_t size)
 256{
 257	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259	if (!fp)
 260		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261
 262	for (i = 0; i < size; i++)
 263		if (fp[i])
 264			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265
 266	return true;
 
 
 
 
 267}
 268
 269static bool is_all_set(const u8 *fp, size_t size)
 270{
 271	int i;
 272
 273	if (!fp)
 274		return false;
 275
 276	for (i = 0; i < size; i++)
 277		if (fp[i] != 0xff)
 278			return false;
 279
 280	return true;
 281}
 282
 283static int __parse_flow_nlattrs(const struct nlattr *attr,
 284				const struct nlattr *a[],
 285				u64 *attrsp, bool nz)
 286{
 287	const struct nlattr *nla;
 288	u64 attrs;
 289	int rem;
 290
 291	attrs = *attrsp;
 292	nla_for_each_nested(nla, attr, rem) {
 293		u16 type = nla_type(nla);
 294		int expected_len;
 295
 296		if (type > OVS_KEY_ATTR_MAX) {
 297			OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
 298				  type, OVS_KEY_ATTR_MAX);
 299			return -EINVAL;
 300		}
 301
 302		if (attrs & (1 << type)) {
 303			OVS_NLERR("Duplicate key attribute (type %d).\n", type);
 304			return -EINVAL;
 305		}
 306
 307		expected_len = ovs_key_lens[type];
 308		if (nla_len(nla) != expected_len && expected_len != -1) {
 309			OVS_NLERR("Key attribute has unexpected length (type=%d"
 310				  ", length=%d, expected=%d).\n", type,
 311				  nla_len(nla), expected_len);
 312			return -EINVAL;
 313		}
 314
 315		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 316			attrs |= 1 << type;
 317			a[type] = nla;
 318		}
 319	}
 320	if (rem) {
 321		OVS_NLERR("Message has %d unknown bytes.\n", rem);
 322		return -EINVAL;
 323	}
 324
 325	*attrsp = attrs;
 326	return 0;
 327}
 328
 329static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 330				   const struct nlattr *a[], u64 *attrsp)
 
 331{
 332	return __parse_flow_nlattrs(attr, a, attrsp, true);
 333}
 334
 335static int parse_flow_nlattrs(const struct nlattr *attr,
 336			      const struct nlattr *a[], u64 *attrsp)
 
 337{
 338	return __parse_flow_nlattrs(attr, a, attrsp, false);
 339}
 340
 341static int ipv4_tun_from_nlattr(const struct nlattr *attr,
 342				struct sw_flow_match *match, bool is_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343{
 344	struct nlattr *a;
 345	int rem;
 346	bool ttl = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347	__be16 tun_flags = 0;
 
 
 
 348
 349	nla_for_each_nested(a, attr, rem) {
 350		int type = nla_type(a);
 351		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 352			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
 353			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
 354			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
 355			[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
 356			[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
 357			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
 358			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
 359		};
 360
 361		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 362			OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
 363			type, OVS_TUNNEL_KEY_ATTR_MAX);
 364			return -EINVAL;
 365		}
 366
 367		if (ovs_tunnel_key_lens[type] != nla_len(a)) {
 368			OVS_NLERR("IPv4 tunnel attribute type has unexpected "
 369				  " length (type=%d, length=%d, expected=%d).\n",
 370				  type, nla_len(a), ovs_tunnel_key_lens[type]);
 371			return -EINVAL;
 372		}
 373
 374		switch (type) {
 375		case OVS_TUNNEL_KEY_ATTR_ID:
 376			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 377					nla_get_be64(a), is_mask);
 378			tun_flags |= TUNNEL_KEY;
 379			break;
 380		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 381			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
 382					nla_get_be32(a), is_mask);
 
 383			break;
 384		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 385			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
 386					nla_get_be32(a), is_mask);
 
 
 
 
 
 
 
 
 
 
 
 387			break;
 388		case OVS_TUNNEL_KEY_ATTR_TOS:
 389			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
 390					nla_get_u8(a), is_mask);
 391			break;
 392		case OVS_TUNNEL_KEY_ATTR_TTL:
 393			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
 394					nla_get_u8(a), is_mask);
 395			ttl = true;
 396			break;
 397		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 398			tun_flags |= TUNNEL_DONT_FRAGMENT;
 399			break;
 400		case OVS_TUNNEL_KEY_ATTR_CSUM:
 401			tun_flags |= TUNNEL_CSUM;
 402			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403		default:
 
 
 404			return -EINVAL;
 405		}
 406	}
 407
 408	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 
 
 
 
 
 409
 410	if (rem > 0) {
 411		OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
 
 
 
 
 
 
 412		return -EINVAL;
 413	}
 414
 415	if (!is_mask) {
 416		if (!match->key->tun_key.ipv4_dst) {
 417			OVS_NLERR("IPv4 tunnel destination address is zero.\n");
 
 
 
 
 
 
 
 
 418			return -EINVAL;
 419		}
 420
 421		if (!ttl) {
 422			OVS_NLERR("IPv4 tunnel TTL not specified.\n");
 423			return -EINVAL;
 424		}
 425	}
 426
 427	return 0;
 428}
 429
 430static int ipv4_tun_to_nlattr(struct sk_buff *skb,
 431			      const struct ovs_key_ipv4_tunnel *tun_key,
 432			      const struct ovs_key_ipv4_tunnel *output)
 433{
 
 434	struct nlattr *nla;
 435
 436	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 437	if (!nla)
 438		return -EMSGSIZE;
 439
 
 
 
 
 
 
 
 
 
 
 
 
 440	if (output->tun_flags & TUNNEL_KEY &&
 441	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
 
 442		return -EMSGSIZE;
 443	if (output->ipv4_src &&
 444		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445		return -EMSGSIZE;
 446	if (output->ipv4_dst &&
 447		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
 
 
 
 448		return -EMSGSIZE;
 449	if (output->ipv4_tos &&
 450		nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
 451		return -EMSGSIZE;
 452	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
 
 453		return -EMSGSIZE;
 454	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 455		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 456		return -EMSGSIZE;
 457	if ((output->tun_flags & TUNNEL_CSUM) &&
 458		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459		return -EMSGSIZE;
 460
 
 
 
 
 
 461	nla_nest_end(skb, nla);
 462	return 0;
 463}
 464
 
 
 
 
 
 
 
 
 465
 466static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
 467				 const struct nlattr **a, bool is_mask)
 
 468{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
 470		SW_FLOW_KEY_PUT(match, phy.priority,
 471			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
 472		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
 473	}
 474
 475	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
 476		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
 477
 478		if (is_mask)
 479			in_port = 0xffffffff; /* Always exact match in_port. */
 480		else if (in_port >= DP_MAX_PORTS)
 
 
 481			return -EINVAL;
 
 482
 483		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
 484		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
 485	} else if (!is_mask) {
 486		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
 487	}
 488
 489	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
 490		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
 491
 492		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
 493		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
 494	}
 495	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
 496		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
 497					 is_mask))
 498			return -EINVAL;
 499		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
 500	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501	return 0;
 502}
 503
 504static int ovs_key_from_nlattrs(struct sw_flow_match *match,  bool *exact_5tuple,
 505				u64 attrs, const struct nlattr **a,
 506				bool is_mask)
 507{
 508	int err;
 509	u64 orig_attrs = attrs;
 510
 511	err = metadata_from_nlattrs(match, &attrs, a, is_mask);
 512	if (err)
 513		return err;
 514
 515	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
 516		const struct ovs_key_ethernet *eth_key;
 517
 518		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
 519		SW_FLOW_KEY_MEMCPY(match, eth.src,
 520				eth_key->eth_src, ETH_ALEN, is_mask);
 521		SW_FLOW_KEY_MEMCPY(match, eth.dst,
 522				eth_key->eth_dst, ETH_ALEN, is_mask);
 523		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 524	}
 525
 526	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
 527		__be16 tci;
 528
 529		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 530		if (!(tci & htons(VLAN_TAG_PRESENT))) {
 531			if (is_mask)
 532				OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
 533			else
 534				OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
 535
 
 
 
 
 
 536			return -EINVAL;
 537		}
 538
 539		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
 540		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 541	} else if (!is_mask)
 542		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
 543
 544	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
 545		__be16 eth_type;
 546
 547		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 548		if (is_mask) {
 549			/* Always exact match EtherType. */
 550			eth_type = htons(0xffff);
 551		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
 552			OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
 553					ntohs(eth_type), ETH_P_802_3_MIN);
 554			return -EINVAL;
 555		}
 556
 557		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 558		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 559	} else if (!is_mask) {
 560		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 561	}
 562
 563	if (is_mask && exact_5tuple) {
 564		if (match->mask->key.eth.type != htons(0xffff))
 565			*exact_5tuple = false;
 566	}
 567
 568	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 569		const struct ovs_key_ipv4 *ipv4_key;
 570
 571		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
 572		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
 573			OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
 574				ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
 575			return -EINVAL;
 576		}
 577		SW_FLOW_KEY_PUT(match, ip.proto,
 578				ipv4_key->ipv4_proto, is_mask);
 579		SW_FLOW_KEY_PUT(match, ip.tos,
 580				ipv4_key->ipv4_tos, is_mask);
 581		SW_FLOW_KEY_PUT(match, ip.ttl,
 582				ipv4_key->ipv4_ttl, is_mask);
 583		SW_FLOW_KEY_PUT(match, ip.frag,
 584				ipv4_key->ipv4_frag, is_mask);
 585		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 586				ipv4_key->ipv4_src, is_mask);
 587		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 588				ipv4_key->ipv4_dst, is_mask);
 589		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
 590
 591		if (is_mask && exact_5tuple && *exact_5tuple) {
 592			if (ipv4_key->ipv4_proto != 0xff ||
 593			    ipv4_key->ipv4_src != htonl(0xffffffff) ||
 594			    ipv4_key->ipv4_dst != htonl(0xffffffff))
 595				*exact_5tuple = false;
 596		}
 597	}
 598
 599	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
 600		const struct ovs_key_ipv6 *ipv6_key;
 601
 602		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
 603		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
 604			OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
 605				ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
 606			return -EINVAL;
 607		}
 
 
 
 
 
 
 
 608		SW_FLOW_KEY_PUT(match, ipv6.label,
 609				ipv6_key->ipv6_label, is_mask);
 610		SW_FLOW_KEY_PUT(match, ip.proto,
 611				ipv6_key->ipv6_proto, is_mask);
 612		SW_FLOW_KEY_PUT(match, ip.tos,
 613				ipv6_key->ipv6_tclass, is_mask);
 614		SW_FLOW_KEY_PUT(match, ip.ttl,
 615				ipv6_key->ipv6_hlimit, is_mask);
 616		SW_FLOW_KEY_PUT(match, ip.frag,
 617				ipv6_key->ipv6_frag, is_mask);
 618		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
 619				ipv6_key->ipv6_src,
 620				sizeof(match->key->ipv6.addr.src),
 621				is_mask);
 622		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
 623				ipv6_key->ipv6_dst,
 624				sizeof(match->key->ipv6.addr.dst),
 625				is_mask);
 626
 627		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
 628
 629		if (is_mask && exact_5tuple && *exact_5tuple) {
 630			if (ipv6_key->ipv6_proto != 0xff ||
 631			    !is_all_set((u8 *)ipv6_key->ipv6_src, sizeof(match->key->ipv6.addr.src)) ||
 632			    !is_all_set((u8 *)ipv6_key->ipv6_dst, sizeof(match->key->ipv6.addr.dst)))
 633				*exact_5tuple = false;
 634		}
 635	}
 636
 637	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
 638		const struct ovs_key_arp *arp_key;
 639
 640		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
 641		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
 642			OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
 643				  arp_key->arp_op);
 644			return -EINVAL;
 645		}
 646
 647		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 648				arp_key->arp_sip, is_mask);
 649		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 650			arp_key->arp_tip, is_mask);
 651		SW_FLOW_KEY_PUT(match, ip.proto,
 652				ntohs(arp_key->arp_op), is_mask);
 653		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
 654				arp_key->arp_sha, ETH_ALEN, is_mask);
 655		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
 656				arp_key->arp_tha, ETH_ALEN, is_mask);
 657
 658		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
 659	}
 660
 
 
 
 
 
 
 
 
 
 
 661	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
 662		const struct ovs_key_tcp *tcp_key;
 663
 664		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
 665		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 666			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
 667					tcp_key->tcp_src, is_mask);
 668			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
 669					tcp_key->tcp_dst, is_mask);
 670		} else {
 671			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
 672					tcp_key->tcp_src, is_mask);
 673			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
 674					tcp_key->tcp_dst, is_mask);
 675		}
 676		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 677
 678		if (is_mask && exact_5tuple && *exact_5tuple &&
 679		    (tcp_key->tcp_src != htons(0xffff) ||
 680		     tcp_key->tcp_dst != htons(0xffff)))
 681			*exact_5tuple = false;
 682	}
 683
 684	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
 685		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 686			SW_FLOW_KEY_PUT(match, ipv4.tp.flags,
 687					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
 688					is_mask);
 689		} else {
 690			SW_FLOW_KEY_PUT(match, ipv6.tp.flags,
 691					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
 692					is_mask);
 693		}
 694		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
 695	}
 696
 697	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
 698		const struct ovs_key_udp *udp_key;
 699
 700		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
 701		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 702			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
 703					udp_key->udp_src, is_mask);
 704			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
 705					udp_key->udp_dst, is_mask);
 706		} else {
 707			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
 708					udp_key->udp_src, is_mask);
 709			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
 710					udp_key->udp_dst, is_mask);
 711		}
 712		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 713
 714		if (is_mask && exact_5tuple && *exact_5tuple &&
 715		    (udp_key->udp_src != htons(0xffff) ||
 716		     udp_key->udp_dst != htons(0xffff)))
 717			*exact_5tuple = false;
 718	}
 719
 720	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
 721		const struct ovs_key_sctp *sctp_key;
 722
 723		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
 724		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 725			SW_FLOW_KEY_PUT(match, ipv4.tp.src,
 726					sctp_key->sctp_src, is_mask);
 727			SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
 728					sctp_key->sctp_dst, is_mask);
 729		} else {
 730			SW_FLOW_KEY_PUT(match, ipv6.tp.src,
 731					sctp_key->sctp_src, is_mask);
 732			SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
 733					sctp_key->sctp_dst, is_mask);
 734		}
 735		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
 736	}
 737
 738	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
 739		const struct ovs_key_icmp *icmp_key;
 740
 741		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
 742		SW_FLOW_KEY_PUT(match, ipv4.tp.src,
 743				htons(icmp_key->icmp_type), is_mask);
 744		SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
 745				htons(icmp_key->icmp_code), is_mask);
 746		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
 747	}
 748
 749	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
 750		const struct ovs_key_icmpv6 *icmpv6_key;
 751
 752		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
 753		SW_FLOW_KEY_PUT(match, ipv6.tp.src,
 754				htons(icmpv6_key->icmpv6_type), is_mask);
 755		SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
 756				htons(icmpv6_key->icmpv6_code), is_mask);
 757		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
 758	}
 759
 760	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
 761		const struct ovs_key_nd *nd_key;
 762
 763		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
 764		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
 765			nd_key->nd_target,
 766			sizeof(match->key->ipv6.nd.target),
 767			is_mask);
 768		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
 769			nd_key->nd_sll, ETH_ALEN, is_mask);
 770		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
 771				nd_key->nd_tll, ETH_ALEN, is_mask);
 772		attrs &= ~(1 << OVS_KEY_ATTR_ND);
 773	}
 774
 775	if (attrs != 0)
 
 
 776		return -EINVAL;
 
 777
 778	return 0;
 779}
 780
 781static void sw_flow_mask_set(struct sw_flow_mask *mask,
 782			     struct sw_flow_key_range *range, u8 val)
 783{
 784	u8 *m = (u8 *)&mask->key + range->start;
 
 785
 786	mask->range = *range;
 787	memset(m, val, range_n_bytes(range));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790/**
 791 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 792 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 793 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 794 * does not include any don't care bit.
 
 795 * @match: receives the extracted flow match information.
 796 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 797 * sequence. The fields should of the packet that triggered the creation
 798 * of this flow.
 799 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 800 * attribute specifies the mask field of the wildcarded flow.
 
 
 
 801 */
 802int ovs_nla_get_match(struct sw_flow_match *match,
 803		      bool *exact_5tuple,
 804		      const struct nlattr *key,
 805		      const struct nlattr *mask)
 806{
 807	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 808	const struct nlattr *encap;
 809	u64 key_attrs = 0;
 810	u64 mask_attrs = 0;
 811	bool encap_valid = false;
 812	int err;
 813
 814	err = parse_flow_nlattrs(key, a, &key_attrs);
 815	if (err)
 816		return err;
 817
 818	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 819	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 820	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
 821		__be16 tci;
 822
 823		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 824		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 825			OVS_NLERR("Invalid Vlan frame.\n");
 826			return -EINVAL;
 827		}
 828
 829		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 830		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 831		encap = a[OVS_KEY_ATTR_ENCAP];
 832		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 833		encap_valid = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834
 835		if (tci & htons(VLAN_TAG_PRESENT)) {
 836			err = parse_flow_nlattrs(encap, a, &key_attrs);
 837			if (err)
 838				return err;
 839		} else if (!tci) {
 840			/* Corner case for truncated 802.1Q header. */
 841			if (nla_len(encap)) {
 842				OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
 843				return -EINVAL;
 844			}
 845		} else {
 846			OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
 847			return  -EINVAL;
 848		}
 849	}
 850
 851	err = ovs_key_from_nlattrs(match, NULL, key_attrs, a, false);
 852	if (err)
 853		return err;
 854
 855	if (exact_5tuple)
 856		*exact_5tuple = true;
 
 857
 858	if (mask) {
 859		err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
 860		if (err)
 861			return err;
 862
 863		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP)  {
 864			__be16 eth_type = 0;
 865			__be16 tci = 0;
 
 
 866
 867			if (!encap_valid) {
 868				OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
 869				return  -EINVAL;
 870			}
 871
 872			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 873			if (a[OVS_KEY_ATTR_ETHERTYPE])
 874				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 875
 876			if (eth_type == htons(0xffff)) {
 877				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 878				encap = a[OVS_KEY_ATTR_ENCAP];
 879				err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
 880			} else {
 881				OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
 882						ntohs(eth_type));
 883				return -EINVAL;
 884			}
 885
 886			if (a[OVS_KEY_ATTR_VLAN])
 887				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 
 888
 889			if (!(tci & htons(VLAN_TAG_PRESENT))) {
 890				OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
 891				return -EINVAL;
 892			}
 893		}
 894
 895		err = ovs_key_from_nlattrs(match, exact_5tuple, mask_attrs, a, true);
 896		if (err)
 897			return err;
 898	} else {
 899		/* Populate exact match flow's key mask. */
 900		if (match->mask)
 901			sw_flow_mask_set(match->mask, &match->range, 0xff);
 902	}
 903
 904	if (!match_validate(match, key_attrs, mask_attrs))
 905		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906
 907	return 0;
 908}
 909
 
 
 
 
 
 910/**
 911 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
 912 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
 913 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 914 * sequence.
 
 
 
 915 *
 916 * This parses a series of Netlink attributes that form a flow key, which must
 917 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 918 * get the metadata, that is, the parts of the flow key that cannot be
 919 * extracted from the packet itself.
 920 */
 921
 922int ovs_nla_get_flow_metadata(struct sw_flow *flow,
 923			      const struct nlattr *attr)
 
 924{
 925	struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
 926	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 
 927	u64 attrs = 0;
 928	int err;
 929	struct sw_flow_match match;
 930
 931	flow->key.phy.in_port = DP_MAX_PORTS;
 932	flow->key.phy.priority = 0;
 933	flow->key.phy.skb_mark = 0;
 934	memset(tun_key, 0, sizeof(flow->key.tun_key));
 935
 936	err = parse_flow_nlattrs(attr, a, &attrs);
 937	if (err)
 938		return -EINVAL;
 939
 940	memset(&match, 0, sizeof(match));
 941	match.key = &flow->key;
 
 
 
 
 
 
 942
 943	err = metadata_from_nlattrs(&match, &attrs, a, false);
 944	if (err)
 945		return err;
 
 946
 
 
 
 947	return 0;
 948}
 949
 950int ovs_nla_put_flow(const struct sw_flow_key *swkey,
 951		     const struct sw_flow_key *output, struct sk_buff *skb)
 
 952{
 953	struct ovs_key_ethernet *eth_key;
 954	struct nlattr *nla, *encap;
 955	bool is_mask = (swkey != output);
 
 
 
 
 
 
 
 956
 957	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
 958		goto nla_put_failure;
 959
 960	if ((swkey->tun_key.ipv4_dst || is_mask) &&
 961	    ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
 962		goto nla_put_failure;
 
 
 
 
 
 
 
 963
 964	if (swkey->phy.in_port == DP_MAX_PORTS) {
 965		if (is_mask && (output->phy.in_port == 0xffff))
 966			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
 967				goto nla_put_failure;
 968	} else {
 969		u16 upper_u16;
 970		upper_u16 = !is_mask ? 0 : 0xffff;
 971
 972		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
 973				(upper_u16 << 16) | output->phy.in_port))
 974			goto nla_put_failure;
 975	}
 976
 977	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
 978		goto nla_put_failure;
 979
 980	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
 981	if (!nla)
 982		goto nla_put_failure;
 983
 984	eth_key = nla_data(nla);
 985	memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
 986	memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
 987
 988	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
 989		__be16 eth_type;
 990		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
 991		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
 992		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
 993			goto nla_put_failure;
 994		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
 995		if (!swkey->eth.tci)
 996			goto unencap;
 997	} else
 998		encap = NULL;
 999
1000	if (swkey->eth.type == htons(ETH_P_802_2)) {
1001		/*
1002		 * Ethertype 802.2 is represented in the netlink with omitted
1003		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1004		 * 0xffff in the mask attribute.  Ethertype can also
1005		 * be wildcarded.
1006		 */
1007		if (is_mask && output->eth.type)
1008			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1009						output->eth.type))
1010				goto nla_put_failure;
1011		goto unencap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012	}
1013
1014	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1015		goto nla_put_failure;
1016
 
 
 
 
 
 
 
 
1017	if (swkey->eth.type == htons(ETH_P_IP)) {
1018		struct ovs_key_ipv4 *ipv4_key;
1019
1020		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1021		if (!nla)
1022			goto nla_put_failure;
1023		ipv4_key = nla_data(nla);
1024		ipv4_key->ipv4_src = output->ipv4.addr.src;
1025		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1026		ipv4_key->ipv4_proto = output->ip.proto;
1027		ipv4_key->ipv4_tos = output->ip.tos;
1028		ipv4_key->ipv4_ttl = output->ip.ttl;
1029		ipv4_key->ipv4_frag = output->ip.frag;
1030	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1031		struct ovs_key_ipv6 *ipv6_key;
1032
1033		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1034		if (!nla)
1035			goto nla_put_failure;
1036		ipv6_key = nla_data(nla);
1037		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1038				sizeof(ipv6_key->ipv6_src));
1039		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1040				sizeof(ipv6_key->ipv6_dst));
1041		ipv6_key->ipv6_label = output->ipv6.label;
1042		ipv6_key->ipv6_proto = output->ip.proto;
1043		ipv6_key->ipv6_tclass = output->ip.tos;
1044		ipv6_key->ipv6_hlimit = output->ip.ttl;
1045		ipv6_key->ipv6_frag = output->ip.frag;
1046	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1047		   swkey->eth.type == htons(ETH_P_RARP)) {
1048		struct ovs_key_arp *arp_key;
1049
1050		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1051		if (!nla)
1052			goto nla_put_failure;
1053		arp_key = nla_data(nla);
1054		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1055		arp_key->arp_sip = output->ipv4.addr.src;
1056		arp_key->arp_tip = output->ipv4.addr.dst;
1057		arp_key->arp_op = htons(output->ip.proto);
1058		memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
1059		memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
 
 
 
 
 
 
 
 
1060	}
1061
1062	if ((swkey->eth.type == htons(ETH_P_IP) ||
1063	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1064	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1065
1066		if (swkey->ip.proto == IPPROTO_TCP) {
1067			struct ovs_key_tcp *tcp_key;
1068
1069			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1070			if (!nla)
1071				goto nla_put_failure;
1072			tcp_key = nla_data(nla);
1073			if (swkey->eth.type == htons(ETH_P_IP)) {
1074				tcp_key->tcp_src = output->ipv4.tp.src;
1075				tcp_key->tcp_dst = output->ipv4.tp.dst;
1076				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1077						 output->ipv4.tp.flags))
1078					goto nla_put_failure;
1079			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1080				tcp_key->tcp_src = output->ipv6.tp.src;
1081				tcp_key->tcp_dst = output->ipv6.tp.dst;
1082				if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1083						 output->ipv6.tp.flags))
1084					goto nla_put_failure;
1085			}
1086		} else if (swkey->ip.proto == IPPROTO_UDP) {
1087			struct ovs_key_udp *udp_key;
1088
1089			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1090			if (!nla)
1091				goto nla_put_failure;
1092			udp_key = nla_data(nla);
1093			if (swkey->eth.type == htons(ETH_P_IP)) {
1094				udp_key->udp_src = output->ipv4.tp.src;
1095				udp_key->udp_dst = output->ipv4.tp.dst;
1096			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1097				udp_key->udp_src = output->ipv6.tp.src;
1098				udp_key->udp_dst = output->ipv6.tp.dst;
1099			}
1100		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1101			struct ovs_key_sctp *sctp_key;
1102
1103			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1104			if (!nla)
1105				goto nla_put_failure;
1106			sctp_key = nla_data(nla);
1107			if (swkey->eth.type == htons(ETH_P_IP)) {
1108				sctp_key->sctp_src = swkey->ipv4.tp.src;
1109				sctp_key->sctp_dst = swkey->ipv4.tp.dst;
1110			} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1111				sctp_key->sctp_src = swkey->ipv6.tp.src;
1112				sctp_key->sctp_dst = swkey->ipv6.tp.dst;
1113			}
1114		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1115			   swkey->ip.proto == IPPROTO_ICMP) {
1116			struct ovs_key_icmp *icmp_key;
1117
1118			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1119			if (!nla)
1120				goto nla_put_failure;
1121			icmp_key = nla_data(nla);
1122			icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
1123			icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
1124		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1125			   swkey->ip.proto == IPPROTO_ICMPV6) {
1126			struct ovs_key_icmpv6 *icmpv6_key;
1127
1128			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1129						sizeof(*icmpv6_key));
1130			if (!nla)
1131				goto nla_put_failure;
1132			icmpv6_key = nla_data(nla);
1133			icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
1134			icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
1135
1136			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1137			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1138				struct ovs_key_nd *nd_key;
1139
1140				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1141				if (!nla)
1142					goto nla_put_failure;
1143				nd_key = nla_data(nla);
1144				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1145							sizeof(nd_key->nd_target));
1146				memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
1147				memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
1148			}
1149		}
1150	}
1151
1152unencap:
 
 
1153	if (encap)
1154		nla_nest_end(skb, encap);
1155
1156	return 0;
1157
1158nla_put_failure:
1159	return -EMSGSIZE;
1160}
1161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1163
1164struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
1165{
1166	struct sw_flow_actions *sfa;
1167
1168	if (size > MAX_ACTIONS_BUFSIZE)
 
1169		return ERR_PTR(-EINVAL);
 
1170
1171	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1172	if (!sfa)
1173		return ERR_PTR(-ENOMEM);
1174
1175	sfa->actions_len = 0;
1176	return sfa;
1177}
1178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1180 * The caller must hold rcu_read_lock for this to be sensible. */
1181void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1182{
1183	kfree_rcu(sf_acts, rcu);
1184}
1185
1186static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1187				       int attr_len)
1188{
1189
1190	struct sw_flow_actions *acts;
1191	int new_acts_size;
1192	int req_size = NLA_ALIGN(attr_len);
1193	int next_offset = offsetof(struct sw_flow_actions, actions) +
1194					(*sfa)->actions_len;
1195
1196	if (req_size <= (ksize(*sfa) - next_offset))
1197		goto out;
1198
1199	new_acts_size = ksize(*sfa) * 2;
1200
1201	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1202		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1203			return ERR_PTR(-EMSGSIZE);
1204		new_acts_size = MAX_ACTIONS_BUFSIZE;
1205	}
1206
1207	acts = ovs_nla_alloc_flow_actions(new_acts_size);
1208	if (IS_ERR(acts))
1209		return (void *)acts;
1210
1211	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1212	acts->actions_len = (*sfa)->actions_len;
 
1213	kfree(*sfa);
1214	*sfa = acts;
1215
1216out:
1217	(*sfa)->actions_len += req_size;
1218	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1219}
1220
1221static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
 
1222{
1223	struct nlattr *a;
1224
1225	a = reserve_sfa_size(sfa, nla_attr_size(len));
1226	if (IS_ERR(a))
1227		return PTR_ERR(a);
1228
1229	a->nla_type = attrtype;
1230	a->nla_len = nla_attr_size(len);
1231
1232	if (data)
1233		memcpy(nla_data(a), data, len);
1234	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1235
1236	return 0;
 
 
 
 
 
 
 
 
 
 
1237}
1238
1239static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1240					  int attrtype)
1241{
1242	int used = (*sfa)->actions_len;
1243	int err;
1244
1245	err = add_action(sfa, attrtype, NULL, 0);
1246	if (err)
1247		return err;
1248
1249	return used;
1250}
1251
1252static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1253					 int st_offset)
1254{
1255	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1256							       st_offset);
1257
1258	a->nla_len = sfa->actions_len - st_offset;
1259}
1260
1261static int validate_and_copy_sample(const struct nlattr *attr,
 
 
 
 
 
1262				    const struct sw_flow_key *key, int depth,
1263				    struct sw_flow_actions **sfa)
 
1264{
1265	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1266	const struct nlattr *probability, *actions;
1267	const struct nlattr *a;
1268	int rem, start, err, st_acts;
1269
1270	memset(attrs, 0, sizeof(attrs));
1271	nla_for_each_nested(a, attr, rem) {
1272		int type = nla_type(a);
1273		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1274			return -EINVAL;
1275		attrs[type] = a;
1276	}
1277	if (rem)
1278		return -EINVAL;
1279
1280	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1281	if (!probability || nla_len(probability) != sizeof(u32))
1282		return -EINVAL;
1283
1284	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1285	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1286		return -EINVAL;
1287
1288	/* validation done, copy sample action. */
1289	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
1290	if (start < 0)
1291		return start;
1292	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1293			 nla_data(probability), sizeof(u32));
1294	if (err)
1295		return err;
1296	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
1297	if (st_acts < 0)
1298		return st_acts;
1299
1300	err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
 
1301	if (err)
1302		return err;
1303
1304	add_nested_action_end(*sfa, st_acts);
1305	add_nested_action_end(*sfa, start);
1306
1307	return 0;
1308}
1309
1310static int validate_tp_port(const struct sw_flow_key *flow_key)
1311{
1312	if (flow_key->eth.type == htons(ETH_P_IP)) {
1313		if (flow_key->ipv4.tp.src || flow_key->ipv4.tp.dst)
1314			return 0;
1315	} else if (flow_key->eth.type == htons(ETH_P_IPV6)) {
1316		if (flow_key->ipv6.tp.src || flow_key->ipv6.tp.dst)
1317			return 0;
1318	}
1319
1320	return -EINVAL;
1321}
1322
1323void ovs_match_init(struct sw_flow_match *match,
1324		    struct sw_flow_key *key,
 
1325		    struct sw_flow_mask *mask)
1326{
1327	memset(match, 0, sizeof(*match));
1328	match->key = key;
1329	match->mask = mask;
1330
1331	memset(key, 0, sizeof(*key));
 
1332
1333	if (mask) {
1334		memset(&mask->key, 0, sizeof(mask->key));
1335		mask->range.start = mask->range.end = 0;
1336	}
1337}
1338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339static int validate_and_copy_set_tun(const struct nlattr *attr,
1340				     struct sw_flow_actions **sfa)
1341{
1342	struct sw_flow_match match;
1343	struct sw_flow_key key;
1344	int err, start;
 
 
 
 
1345
1346	ovs_match_init(&match, &key, NULL);
1347	err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
1348	if (err)
1349		return err;
 
 
 
 
 
 
 
 
 
 
 
 
1350
1351	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
1352	if (start < 0)
1353		return start;
1354
1355	err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
1356			sizeof(match.key->tun_key));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357	add_nested_action_end(*sfa, start);
1358
1359	return err;
1360}
1361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362static int validate_set(const struct nlattr *a,
1363			const struct sw_flow_key *flow_key,
1364			struct sw_flow_actions **sfa,
1365			bool *set_tun)
1366{
1367	const struct nlattr *ovs_key = nla_data(a);
1368	int key_type = nla_type(ovs_key);
 
1369
1370	/* There can be only one key in a action */
1371	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1372		return -EINVAL;
1373
 
 
 
 
1374	if (key_type > OVS_KEY_ATTR_MAX ||
1375	    (ovs_key_lens[key_type] != nla_len(ovs_key) &&
1376	     ovs_key_lens[key_type] != -1))
 
 
1377		return -EINVAL;
1378
1379	switch (key_type) {
1380	const struct ovs_key_ipv4 *ipv4_key;
1381	const struct ovs_key_ipv6 *ipv6_key;
1382	int err;
1383
1384	case OVS_KEY_ATTR_PRIORITY:
1385	case OVS_KEY_ATTR_SKB_MARK:
 
 
 
 
1386	case OVS_KEY_ATTR_ETHERNET:
 
 
1387		break;
1388
1389	case OVS_KEY_ATTR_TUNNEL:
1390		*set_tun = true;
1391		err = validate_and_copy_set_tun(a, sfa);
 
 
 
1392		if (err)
1393			return err;
1394		break;
1395
1396	case OVS_KEY_ATTR_IPV4:
1397		if (flow_key->eth.type != htons(ETH_P_IP))
1398			return -EINVAL;
1399
1400		if (!flow_key->ip.proto)
1401			return -EINVAL;
1402
1403		ipv4_key = nla_data(ovs_key);
1404		if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1405			return -EINVAL;
1406
1407		if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1408			return -EINVAL;
 
 
 
 
1409
 
 
 
1410		break;
1411
1412	case OVS_KEY_ATTR_IPV6:
1413		if (flow_key->eth.type != htons(ETH_P_IPV6))
1414			return -EINVAL;
1415
1416		if (!flow_key->ip.proto)
1417			return -EINVAL;
 
 
1418
1419		ipv6_key = nla_data(ovs_key);
1420		if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1421			return -EINVAL;
1422
1423		if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1424			return -EINVAL;
 
 
 
 
1425
 
 
 
1426		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1427			return -EINVAL;
1428
1429		break;
1430
1431	case OVS_KEY_ATTR_TCP:
1432		if (flow_key->ip.proto != IPPROTO_TCP)
 
 
1433			return -EINVAL;
1434
1435		return validate_tp_port(flow_key);
1436
1437	case OVS_KEY_ATTR_UDP:
1438		if (flow_key->ip.proto != IPPROTO_UDP)
 
 
1439			return -EINVAL;
1440
1441		return validate_tp_port(flow_key);
 
 
 
 
 
1442
1443	case OVS_KEY_ATTR_SCTP:
1444		if (flow_key->ip.proto != IPPROTO_SCTP)
 
 
1445			return -EINVAL;
1446
1447		return validate_tp_port(flow_key);
1448
1449	default:
1450		return -EINVAL;
1451	}
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453	return 0;
1454}
1455
1456static int validate_userspace(const struct nlattr *attr)
1457{
1458	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1459		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1460		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
 
1461	};
1462	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1463	int error;
1464
1465	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1466				 attr, userspace_policy);
1467	if (error)
1468		return error;
1469
1470	if (!a[OVS_USERSPACE_ATTR_PID] ||
1471	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1472		return -EINVAL;
1473
1474	return 0;
1475}
1476
1477static int copy_action(const struct nlattr *from,
1478		       struct sw_flow_actions **sfa)
1479{
1480	int totlen = NLA_ALIGN(from->nla_len);
1481	struct nlattr *to;
1482
1483	to = reserve_sfa_size(sfa, from->nla_len);
1484	if (IS_ERR(to))
1485		return PTR_ERR(to);
1486
1487	memcpy(to, from, totlen);
1488	return 0;
1489}
1490
1491int ovs_nla_copy_actions(const struct nlattr *attr,
1492			 const struct sw_flow_key *key,
1493			 int depth,
1494			 struct sw_flow_actions **sfa)
1495{
 
1496	const struct nlattr *a;
1497	int rem, err;
1498
1499	if (depth >= SAMPLE_ACTION_DEPTH)
1500		return -EOVERFLOW;
1501
1502	nla_for_each_nested(a, attr, rem) {
1503		/* Expected argument lengths, (u32)-1 for variable length. */
1504		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
1505			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
 
1506			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
 
 
1507			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
1508			[OVS_ACTION_ATTR_POP_VLAN] = 0,
1509			[OVS_ACTION_ATTR_SET] = (u32)-1,
1510			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1
 
 
 
 
 
 
1511		};
1512		const struct ovs_action_push_vlan *vlan;
1513		int type = nla_type(a);
1514		bool skip_copy;
1515
1516		if (type > OVS_ACTION_ATTR_MAX ||
1517		    (action_lens[type] != nla_len(a) &&
1518		     action_lens[type] != (u32)-1))
1519			return -EINVAL;
1520
1521		skip_copy = false;
1522		switch (type) {
1523		case OVS_ACTION_ATTR_UNSPEC:
1524			return -EINVAL;
1525
1526		case OVS_ACTION_ATTR_USERSPACE:
1527			err = validate_userspace(a);
1528			if (err)
1529				return err;
1530			break;
1531
1532		case OVS_ACTION_ATTR_OUTPUT:
1533			if (nla_get_u32(a) >= DP_MAX_PORTS)
1534				return -EINVAL;
1535			break;
1536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538		case OVS_ACTION_ATTR_POP_VLAN:
 
 
 
1539			break;
1540
1541		case OVS_ACTION_ATTR_PUSH_VLAN:
 
 
1542			vlan = nla_data(a);
1543			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
1544				return -EINVAL;
1545			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
1546				return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547			break;
1548
1549		case OVS_ACTION_ATTR_SET:
1550			err = validate_set(a, key, sfa, &skip_copy);
 
 
 
 
 
 
 
 
 
 
1551			if (err)
1552				return err;
1553			break;
1554
1555		case OVS_ACTION_ATTR_SAMPLE:
1556			err = validate_and_copy_sample(a, key, depth, sfa);
 
1557			if (err)
1558				return err;
1559			skip_copy = true;
1560			break;
1561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562		default:
 
1563			return -EINVAL;
1564		}
1565		if (!skip_copy) {
1566			err = copy_action(a, sfa);
1567			if (err)
1568				return err;
1569		}
1570	}
1571
1572	if (rem > 0)
1573		return -EINVAL;
1574
1575	return 0;
1576}
1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
1579{
1580	const struct nlattr *a;
1581	struct nlattr *start;
1582	int err = 0, rem;
1583
1584	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
1585	if (!start)
1586		return -EMSGSIZE;
1587
1588	nla_for_each_nested(a, attr, rem) {
1589		int type = nla_type(a);
1590		struct nlattr *st_sample;
1591
1592		switch (type) {
1593		case OVS_SAMPLE_ATTR_PROBABILITY:
1594			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
1595				    sizeof(u32), nla_data(a)))
1596				return -EMSGSIZE;
1597			break;
1598		case OVS_SAMPLE_ATTR_ACTIONS:
1599			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
1600			if (!st_sample)
1601				return -EMSGSIZE;
1602			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
1603			if (err)
1604				return err;
1605			nla_nest_end(skb, st_sample);
1606			break;
1607		}
1608	}
1609
1610	nla_nest_end(skb, start);
1611	return err;
1612}
1613
1614static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
1615{
1616	const struct nlattr *ovs_key = nla_data(a);
1617	int key_type = nla_type(ovs_key);
1618	struct nlattr *start;
1619	int err;
1620
1621	switch (key_type) {
1622	case OVS_KEY_ATTR_IPV4_TUNNEL:
 
 
 
1623		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
1624		if (!start)
1625			return -EMSGSIZE;
1626
1627		err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
1628					     nla_data(ovs_key));
 
 
1629		if (err)
1630			return err;
1631		nla_nest_end(skb, start);
1632		break;
 
1633	default:
1634		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
1635			return -EMSGSIZE;
1636		break;
1637	}
1638
1639	return 0;
1640}
1641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
1643{
1644	const struct nlattr *a;
1645	int rem, err;
1646
1647	nla_for_each_attr(a, attr, len, rem) {
1648		int type = nla_type(a);
1649
1650		switch (type) {
1651		case OVS_ACTION_ATTR_SET:
1652			err = set_action_to_attr(a, skb);
1653			if (err)
1654				return err;
1655			break;
1656
 
 
 
 
 
 
1657		case OVS_ACTION_ATTR_SAMPLE:
1658			err = sample_action_to_attr(a, skb);
1659			if (err)
1660				return err;
1661			break;
 
 
 
 
 
 
 
1662		default:
1663			if (nla_put(skb, type, nla_len(a), nla_data(a)))
1664				return -EMSGSIZE;
1665			break;
1666		}
1667	}
1668
1669	return 0;
1670}