Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include "flow.h"
  22#include "datapath.h"
  23#include <linux/uaccess.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/if_vlan.h>
  28#include <net/llc_pdu.h>
  29#include <linux/kernel.h>
  30#include <linux/jhash.h>
  31#include <linux/jiffies.h>
  32#include <linux/llc.h>
  33#include <linux/module.h>
  34#include <linux/in.h>
  35#include <linux/rcupdate.h>
  36#include <linux/if_arp.h>
  37#include <linux/ip.h>
  38#include <linux/ipv6.h>
  39#include <linux/sctp.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/icmpv6.h>
  44#include <linux/rculist.h>
  45#include <net/geneve.h>
  46#include <net/ip.h>
  47#include <net/ipv6.h>
  48#include <net/ndisc.h>
  49#include <net/mpls.h>
  50#include <net/vxlan.h>
 
 
  51
  52#include "flow_netlink.h"
  53
  54struct ovs_len_tbl {
  55	int len;
  56	const struct ovs_len_tbl *next;
  57};
  58
  59#define OVS_ATTR_NESTED -1
  60#define OVS_ATTR_VARIABLE -2
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62static void update_range(struct sw_flow_match *match,
  63			 size_t offset, size_t size, bool is_mask)
  64{
  65	struct sw_flow_key_range *range;
  66	size_t start = rounddown(offset, sizeof(long));
  67	size_t end = roundup(offset + size, sizeof(long));
  68
  69	if (!is_mask)
  70		range = &match->range;
  71	else
  72		range = &match->mask->range;
  73
  74	if (range->start == range->end) {
  75		range->start = start;
  76		range->end = end;
  77		return;
  78	}
  79
  80	if (range->start > start)
  81		range->start = start;
  82
  83	if (range->end < end)
  84		range->end = end;
  85}
  86
  87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  88	do { \
  89		update_range(match, offsetof(struct sw_flow_key, field),    \
  90			     sizeof((match)->key->field), is_mask);	    \
  91		if (is_mask)						    \
  92			(match)->mask->key.field = value;		    \
  93		else							    \
  94			(match)->key->field = value;		            \
  95	} while (0)
  96
  97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
  98	do {								    \
  99		update_range(match, offset, len, is_mask);		    \
 100		if (is_mask)						    \
 101			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 102			       len);					   \
 103		else							    \
 104			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 105	} while (0)
 106
 107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 108	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 109				  value_p, len, is_mask)
 110
 111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 112	do {								    \
 113		update_range(match, offsetof(struct sw_flow_key, field),    \
 114			     sizeof((match)->key->field), is_mask);	    \
 115		if (is_mask)						    \
 116			memset((u8 *)&(match)->mask->key.field, value,      \
 117			       sizeof((match)->mask->key.field));	    \
 118		else							    \
 119			memset((u8 *)&(match)->key->field, value,           \
 120			       sizeof((match)->key->field));                \
 121	} while (0)
 122
 123static bool match_validate(const struct sw_flow_match *match,
 124			   u64 key_attrs, u64 mask_attrs, bool log)
 125{
 126	u64 key_expected = 0;
 127	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 128
 129	/* The following mask attributes allowed only if they
 130	 * pass the validation tests. */
 131	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 
 132			| (1 << OVS_KEY_ATTR_IPV6)
 
 133			| (1 << OVS_KEY_ATTR_TCP)
 134			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 135			| (1 << OVS_KEY_ATTR_UDP)
 136			| (1 << OVS_KEY_ATTR_SCTP)
 137			| (1 << OVS_KEY_ATTR_ICMP)
 138			| (1 << OVS_KEY_ATTR_ICMPV6)
 139			| (1 << OVS_KEY_ATTR_ARP)
 140			| (1 << OVS_KEY_ATTR_ND)
 141			| (1 << OVS_KEY_ATTR_MPLS));
 
 142
 143	/* Always allowed mask fields. */
 144	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 145		       | (1 << OVS_KEY_ATTR_IN_PORT)
 146		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 147
 148	/* Check key attributes. */
 149	if (match->key->eth.type == htons(ETH_P_ARP)
 150			|| match->key->eth.type == htons(ETH_P_RARP)) {
 151		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 152		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 153			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 154	}
 155
 156	if (eth_p_mpls(match->key->eth.type)) {
 157		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 158		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 159			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 160	}
 161
 162	if (match->key->eth.type == htons(ETH_P_IP)) {
 163		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 164		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 165			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 
 
 166
 167		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 168			if (match->key->ip.proto == IPPROTO_UDP) {
 169				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 170				if (match->mask && (match->mask->key.ip.proto == 0xff))
 171					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 172			}
 173
 174			if (match->key->ip.proto == IPPROTO_SCTP) {
 175				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 176				if (match->mask && (match->mask->key.ip.proto == 0xff))
 177					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 178			}
 179
 180			if (match->key->ip.proto == IPPROTO_TCP) {
 181				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 182				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 183				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 184					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 185					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 186				}
 187			}
 188
 189			if (match->key->ip.proto == IPPROTO_ICMP) {
 190				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 191				if (match->mask && (match->mask->key.ip.proto == 0xff))
 192					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 193			}
 194		}
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 199		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 
 
 201
 202		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 203			if (match->key->ip.proto == IPPROTO_UDP) {
 204				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 205				if (match->mask && (match->mask->key.ip.proto == 0xff))
 206					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 207			}
 208
 209			if (match->key->ip.proto == IPPROTO_SCTP) {
 210				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 211				if (match->mask && (match->mask->key.ip.proto == 0xff))
 212					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 213			}
 214
 215			if (match->key->ip.proto == IPPROTO_TCP) {
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 217				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 220					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 221				}
 222			}
 223
 224			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 225				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 226				if (match->mask && (match->mask->key.ip.proto == 0xff))
 227					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 228
 229				if (match->key->tp.src ==
 230						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 231				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 232					key_expected |= 1 << OVS_KEY_ATTR_ND;
 
 
 
 
 
 
 233					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 234						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 235				}
 236			}
 237		}
 238	}
 239
 
 
 
 
 
 
 
 
 240	if ((key_attrs & key_expected) != key_expected) {
 241		/* Key attributes check failed. */
 242		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 243			  (unsigned long long)key_attrs,
 244			  (unsigned long long)key_expected);
 245		return false;
 246	}
 247
 248	if ((mask_attrs & mask_allowed) != mask_attrs) {
 249		/* Mask attributes check failed. */
 250		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 251			  (unsigned long long)mask_attrs,
 252			  (unsigned long long)mask_allowed);
 253		return false;
 254	}
 255
 256	return true;
 257}
 258
 259size_t ovs_tun_key_attr_size(void)
 260{
 261	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 262	 * updating this function.
 263	 */
 264	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 265		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 266		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 267		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 268		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 269		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 270		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 271		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 272		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 273		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 
 274		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 275		 */
 276		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 277		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 278}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 280size_t ovs_key_attr_size(void)
 281{
 282	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 283	 * updating this function.
 284	 */
 285	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
 286
 287	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 288		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 289		  + ovs_tun_key_attr_size()
 290		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 291		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 292		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 293		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 294		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 295		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 296		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 297		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 
 
 
 298		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 299		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 300		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 301		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 302		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 303		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 304		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 305		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 306}
 307
 308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 309	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 310};
 311
 312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 313	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 314	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 315	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 316	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 317	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 318	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 319	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 320	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 321	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 322	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 323	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 324	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 325						.next = ovs_vxlan_ext_key_lens },
 326	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 327	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 
 
 
 
 
 
 
 
 
 328};
 329
 330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 332	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 333	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 334	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 335	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 336	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 337	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 338	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 339	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 340	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 341	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 342	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 343	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 344	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 345	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 346	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 347	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 348	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 349	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 350	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 351	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 352				     .next = ovs_tunnel_key_lens, },
 353	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 354	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 355	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 356	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 357	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 
 
 
 
 
 
 358};
 359
 360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 361{
 362	return expected_len == attr_len ||
 363	       expected_len == OVS_ATTR_NESTED ||
 364	       expected_len == OVS_ATTR_VARIABLE;
 365}
 366
 367static bool is_all_zero(const u8 *fp, size_t size)
 368{
 369	int i;
 370
 371	if (!fp)
 372		return false;
 373
 374	for (i = 0; i < size; i++)
 375		if (fp[i])
 376			return false;
 377
 378	return true;
 379}
 380
 381static int __parse_flow_nlattrs(const struct nlattr *attr,
 382				const struct nlattr *a[],
 383				u64 *attrsp, bool log, bool nz)
 384{
 385	const struct nlattr *nla;
 386	u64 attrs;
 387	int rem;
 388
 389	attrs = *attrsp;
 390	nla_for_each_nested(nla, attr, rem) {
 391		u16 type = nla_type(nla);
 392		int expected_len;
 393
 394		if (type > OVS_KEY_ATTR_MAX) {
 395			OVS_NLERR(log, "Key type %d is out of range max %d",
 396				  type, OVS_KEY_ATTR_MAX);
 397			return -EINVAL;
 398		}
 399
 400		if (attrs & (1 << type)) {
 401			OVS_NLERR(log, "Duplicate key (type %d).", type);
 402			return -EINVAL;
 403		}
 404
 405		expected_len = ovs_key_lens[type].len;
 406		if (!check_attr_len(nla_len(nla), expected_len)) {
 407			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 408				  type, nla_len(nla), expected_len);
 409			return -EINVAL;
 410		}
 411
 412		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 413			attrs |= 1 << type;
 414			a[type] = nla;
 415		}
 416	}
 417	if (rem) {
 418		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 419		return -EINVAL;
 420	}
 421
 422	*attrsp = attrs;
 423	return 0;
 424}
 425
 426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 427				   const struct nlattr *a[], u64 *attrsp,
 428				   bool log)
 429{
 430	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 431}
 432
 433static int parse_flow_nlattrs(const struct nlattr *attr,
 434			      const struct nlattr *a[], u64 *attrsp,
 435			      bool log)
 436{
 437	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 438}
 439
 440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 441				     struct sw_flow_match *match, bool is_mask,
 442				     bool log)
 443{
 444	unsigned long opt_key_offset;
 445
 446	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 447		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 448			  nla_len(a), sizeof(match->key->tun_opts));
 449		return -EINVAL;
 450	}
 451
 452	if (nla_len(a) % 4 != 0) {
 453		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 454			  nla_len(a));
 455		return -EINVAL;
 456	}
 457
 458	/* We need to record the length of the options passed
 459	 * down, otherwise packets with the same format but
 460	 * additional options will be silently matched.
 461	 */
 462	if (!is_mask) {
 463		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 464				false);
 465	} else {
 466		/* This is somewhat unusual because it looks at
 467		 * both the key and mask while parsing the
 468		 * attributes (and by extension assumes the key
 469		 * is parsed first). Normally, we would verify
 470		 * that each is the correct length and that the
 471		 * attributes line up in the validate function.
 472		 * However, that is difficult because this is
 473		 * variable length and we won't have the
 474		 * information later.
 475		 */
 476		if (match->key->tun_opts_len != nla_len(a)) {
 477			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 478				  match->key->tun_opts_len, nla_len(a));
 479			return -EINVAL;
 480		}
 481
 482		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 483	}
 484
 485	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 486	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 487				  nla_len(a), is_mask);
 488	return 0;
 489}
 490
 491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 492				     struct sw_flow_match *match, bool is_mask,
 493				     bool log)
 494{
 495	struct nlattr *a;
 496	int rem;
 497	unsigned long opt_key_offset;
 498	struct vxlan_metadata opts;
 499
 500	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 501
 502	memset(&opts, 0, sizeof(opts));
 503	nla_for_each_nested(a, attr, rem) {
 504		int type = nla_type(a);
 505
 506		if (type > OVS_VXLAN_EXT_MAX) {
 507			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 508				  type, OVS_VXLAN_EXT_MAX);
 509			return -EINVAL;
 510		}
 511
 512		if (!check_attr_len(nla_len(a),
 513				    ovs_vxlan_ext_key_lens[type].len)) {
 514			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 515				  type, nla_len(a),
 516				  ovs_vxlan_ext_key_lens[type].len);
 517			return -EINVAL;
 518		}
 519
 520		switch (type) {
 521		case OVS_VXLAN_EXT_GBP:
 522			opts.gbp = nla_get_u32(a);
 523			break;
 524		default:
 525			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 526				  type);
 527			return -EINVAL;
 528		}
 529	}
 530	if (rem) {
 531		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 532			  rem);
 533		return -EINVAL;
 534	}
 535
 536	if (!is_mask)
 537		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 538	else
 539		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 540
 541	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 542	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 543				  is_mask);
 544	return 0;
 545}
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547static int ip_tun_from_nlattr(const struct nlattr *attr,
 548			      struct sw_flow_match *match, bool is_mask,
 549			      bool log)
 550{
 551	bool ttl = false, ipv4 = false, ipv6 = false;
 
 552	__be16 tun_flags = 0;
 553	int opts_type = 0;
 554	struct nlattr *a;
 555	int rem;
 556
 557	nla_for_each_nested(a, attr, rem) {
 558		int type = nla_type(a);
 559		int err;
 560
 561		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 562			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 563				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 564			return -EINVAL;
 565		}
 566
 567		if (!check_attr_len(nla_len(a),
 568				    ovs_tunnel_key_lens[type].len)) {
 569			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 570				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 571			return -EINVAL;
 572		}
 573
 574		switch (type) {
 575		case OVS_TUNNEL_KEY_ATTR_ID:
 576			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 577					nla_get_be64(a), is_mask);
 578			tun_flags |= TUNNEL_KEY;
 579			break;
 580		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 581			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 582					nla_get_in_addr(a), is_mask);
 583			ipv4 = true;
 584			break;
 585		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 586			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 587					nla_get_in_addr(a), is_mask);
 588			ipv4 = true;
 589			break;
 590		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 591			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 592					nla_get_in6_addr(a), is_mask);
 593			ipv6 = true;
 594			break;
 595		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 596			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 597					nla_get_in6_addr(a), is_mask);
 598			ipv6 = true;
 599			break;
 600		case OVS_TUNNEL_KEY_ATTR_TOS:
 601			SW_FLOW_KEY_PUT(match, tun_key.tos,
 602					nla_get_u8(a), is_mask);
 603			break;
 604		case OVS_TUNNEL_KEY_ATTR_TTL:
 605			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 606					nla_get_u8(a), is_mask);
 607			ttl = true;
 608			break;
 609		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 610			tun_flags |= TUNNEL_DONT_FRAGMENT;
 611			break;
 612		case OVS_TUNNEL_KEY_ATTR_CSUM:
 613			tun_flags |= TUNNEL_CSUM;
 614			break;
 615		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 616			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 617					nla_get_be16(a), is_mask);
 618			break;
 619		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 620			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 621					nla_get_be16(a), is_mask);
 622			break;
 623		case OVS_TUNNEL_KEY_ATTR_OAM:
 624			tun_flags |= TUNNEL_OAM;
 625			break;
 626		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 627			if (opts_type) {
 628				OVS_NLERR(log, "Multiple metadata blocks provided");
 629				return -EINVAL;
 630			}
 631
 632			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 633			if (err)
 634				return err;
 635
 636			tun_flags |= TUNNEL_GENEVE_OPT;
 637			opts_type = type;
 638			break;
 639		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 640			if (opts_type) {
 641				OVS_NLERR(log, "Multiple metadata blocks provided");
 642				return -EINVAL;
 643			}
 644
 645			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 646			if (err)
 647				return err;
 648
 649			tun_flags |= TUNNEL_VXLAN_OPT;
 650			opts_type = type;
 651			break;
 652		case OVS_TUNNEL_KEY_ATTR_PAD:
 653			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654		default:
 655			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 656				  type);
 657			return -EINVAL;
 658		}
 659	}
 660
 661	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 662	if (is_mask)
 663		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 664	else
 665		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 666				false);
 667
 668	if (rem > 0) {
 669		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 670			  rem);
 671		return -EINVAL;
 672	}
 673
 674	if (ipv4 && ipv6) {
 675		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 676		return -EINVAL;
 677	}
 678
 679	if (!is_mask) {
 680		if (!ipv4 && !ipv6) {
 681			OVS_NLERR(log, "IP tunnel dst address not specified");
 682			return -EINVAL;
 683		}
 684		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
 685			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 686			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 687		}
 688		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 689			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 690			return -EINVAL;
 691		}
 692
 693		if (!ttl) {
 694			OVS_NLERR(log, "IP tunnel TTL not specified.");
 695			return -EINVAL;
 696		}
 697	}
 698
 699	return opts_type;
 700}
 701
 702static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 703			       const void *tun_opts, int swkey_tun_opts_len)
 704{
 705	const struct vxlan_metadata *opts = tun_opts;
 706	struct nlattr *nla;
 707
 708	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 709	if (!nla)
 710		return -EMSGSIZE;
 711
 712	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 713		return -EMSGSIZE;
 714
 715	nla_nest_end(skb, nla);
 716	return 0;
 717}
 718
 719static int __ip_tun_to_nlattr(struct sk_buff *skb,
 720			      const struct ip_tunnel_key *output,
 721			      const void *tun_opts, int swkey_tun_opts_len,
 722			      unsigned short tun_proto)
 723{
 724	if (output->tun_flags & TUNNEL_KEY &&
 725	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 726			 OVS_TUNNEL_KEY_ATTR_PAD))
 727		return -EMSGSIZE;
 
 
 
 
 
 728	switch (tun_proto) {
 729	case AF_INET:
 730		if (output->u.ipv4.src &&
 731		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 732				    output->u.ipv4.src))
 733			return -EMSGSIZE;
 734		if (output->u.ipv4.dst &&
 735		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 736				    output->u.ipv4.dst))
 737			return -EMSGSIZE;
 738		break;
 739	case AF_INET6:
 740		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 741		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 742				     &output->u.ipv6.src))
 743			return -EMSGSIZE;
 744		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 745		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 746				     &output->u.ipv6.dst))
 747			return -EMSGSIZE;
 748		break;
 749	}
 750	if (output->tos &&
 751	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 752		return -EMSGSIZE;
 753	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 754		return -EMSGSIZE;
 755	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 756	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 757		return -EMSGSIZE;
 758	if ((output->tun_flags & TUNNEL_CSUM) &&
 759	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 760		return -EMSGSIZE;
 761	if (output->tp_src &&
 762	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 763		return -EMSGSIZE;
 764	if (output->tp_dst &&
 765	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 766		return -EMSGSIZE;
 767	if ((output->tun_flags & TUNNEL_OAM) &&
 768	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 769		return -EMSGSIZE;
 770	if (swkey_tun_opts_len) {
 771		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 772		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 773			    swkey_tun_opts_len, tun_opts))
 774			return -EMSGSIZE;
 775		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 776			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 777			return -EMSGSIZE;
 
 
 
 
 778	}
 779
 780	return 0;
 781}
 782
 783static int ip_tun_to_nlattr(struct sk_buff *skb,
 784			    const struct ip_tunnel_key *output,
 785			    const void *tun_opts, int swkey_tun_opts_len,
 786			    unsigned short tun_proto)
 787{
 788	struct nlattr *nla;
 789	int err;
 790
 791	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 792	if (!nla)
 793		return -EMSGSIZE;
 794
 795	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 796				 tun_proto);
 797	if (err)
 798		return err;
 799
 800	nla_nest_end(skb, nla);
 801	return 0;
 802}
 803
 804int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 805			    struct ip_tunnel_info *tun_info)
 806{
 807	return __ip_tun_to_nlattr(skb, &tun_info->key,
 808				  ip_tunnel_info_opts(tun_info),
 809				  tun_info->options_len,
 810				  ip_tunnel_info_af(tun_info));
 811}
 812
 813static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 814				    const struct nlattr *a[],
 815				    bool is_mask, bool inner)
 816{
 817	__be16 tci = 0;
 818	__be16 tpid = 0;
 819
 820	if (a[OVS_KEY_ATTR_VLAN])
 821		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 822
 823	if (a[OVS_KEY_ATTR_ETHERTYPE])
 824		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 825
 826	if (likely(!inner)) {
 827		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 828		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 829	} else {
 830		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 831		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 832	}
 833	return 0;
 834}
 835
 836static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 837				      u64 key_attrs, bool inner,
 838				      const struct nlattr **a, bool log)
 839{
 840	__be16 tci = 0;
 841
 842	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 843	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 844	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 845		/* Not a VLAN. */
 846		return 0;
 847	}
 848
 849	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 850	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 851		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
 852		return -EINVAL;
 853	}
 854
 855	if (a[OVS_KEY_ATTR_VLAN])
 856		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 857
 858	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 859		if (tci) {
 860			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
 861				  (inner) ? "C-VLAN" : "VLAN");
 862			return -EINVAL;
 863		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
 864			/* Corner case for truncated VLAN header. */
 865			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
 866				  (inner) ? "C-VLAN" : "VLAN");
 867			return -EINVAL;
 868		}
 869	}
 870
 871	return 1;
 872}
 873
 874static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
 875					   u64 key_attrs, bool inner,
 876					   const struct nlattr **a, bool log)
 877{
 878	__be16 tci = 0;
 879	__be16 tpid = 0;
 880	bool encap_valid = !!(match->key->eth.vlan.tci &
 881			      htons(VLAN_TAG_PRESENT));
 882	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
 883				htons(VLAN_TAG_PRESENT));
 884
 885	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
 886		/* Not a VLAN. */
 887		return 0;
 888	}
 889
 890	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
 891		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
 892			  (inner) ? "C-VLAN" : "VLAN");
 893		return -EINVAL;
 894	}
 895
 896	if (a[OVS_KEY_ATTR_VLAN])
 897		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 898
 899	if (a[OVS_KEY_ATTR_ETHERTYPE])
 900		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 901
 902	if (tpid != htons(0xffff)) {
 903		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
 904			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
 905		return -EINVAL;
 906	}
 907	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 908		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
 909			  (inner) ? "C-VLAN" : "VLAN");
 910		return -EINVAL;
 911	}
 912
 913	return 1;
 914}
 915
 916static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
 917				     u64 *key_attrs, bool inner,
 918				     const struct nlattr **a, bool is_mask,
 919				     bool log)
 920{
 921	int err;
 922	const struct nlattr *encap;
 923
 924	if (!is_mask)
 925		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
 926						 a, log);
 927	else
 928		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
 929						      a, log);
 930	if (err <= 0)
 931		return err;
 932
 933	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
 934	if (err)
 935		return err;
 936
 937	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 938	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 939	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 940
 941	encap = a[OVS_KEY_ATTR_ENCAP];
 942
 943	if (!is_mask)
 944		err = parse_flow_nlattrs(encap, a, key_attrs, log);
 945	else
 946		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
 947
 948	return err;
 949}
 950
 951static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
 952				   u64 *key_attrs, const struct nlattr **a,
 953				   bool is_mask, bool log)
 954{
 955	int err;
 956	bool encap_valid = false;
 957
 958	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
 959					is_mask, log);
 960	if (err)
 961		return err;
 962
 963	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
 964	if (encap_valid) {
 965		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
 966						is_mask, log);
 967		if (err)
 968			return err;
 969	}
 970
 971	return 0;
 972}
 973
 974static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
 975				       u64 *attrs, const struct nlattr **a,
 976				       bool is_mask, bool log)
 977{
 978	__be16 eth_type;
 979
 980	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 981	if (is_mask) {
 982		/* Always exact match EtherType. */
 983		eth_type = htons(0xffff);
 984	} else if (!eth_proto_is_802_3(eth_type)) {
 985		OVS_NLERR(log, "EtherType %x is less than min %x",
 986				ntohs(eth_type), ETH_P_802_3_MIN);
 987		return -EINVAL;
 988	}
 989
 990	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 991	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 992	return 0;
 993}
 994
 995static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
 996				 u64 *attrs, const struct nlattr **a,
 997				 bool is_mask, bool log)
 998{
 999	u8 mac_proto = MAC_PROTO_ETHERNET;
1000
1001	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1002		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1003
1004		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1005		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1006	}
1007
1008	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1009		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1010
1011		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1012		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1013	}
1014
1015	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1016		SW_FLOW_KEY_PUT(match, phy.priority,
1017			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1018		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1019	}
1020
1021	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1022		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1023
1024		if (is_mask) {
1025			in_port = 0xffffffff; /* Always exact match in_port. */
1026		} else if (in_port >= DP_MAX_PORTS) {
1027			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1028				  in_port, DP_MAX_PORTS);
1029			return -EINVAL;
1030		}
1031
1032		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1033		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1034	} else if (!is_mask) {
1035		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1036	}
1037
1038	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1039		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1040
1041		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1042		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1043	}
1044	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1045		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1046				       is_mask, log) < 0)
1047			return -EINVAL;
1048		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1049	}
1050
1051	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1052	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1053		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1054
1055		if (ct_state & ~CT_SUPPORTED_MASK) {
1056			OVS_NLERR(log, "ct_state flags %08x unsupported",
1057				  ct_state);
1058			return -EINVAL;
1059		}
1060
1061		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1062		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1063	}
1064	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1065	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1066		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1067
1068		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1069		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1070	}
1071	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1072	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1073		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1074
1075		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1076		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1077	}
1078	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1079	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1080		const struct ovs_key_ct_labels *cl;
1081
1082		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1083		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1084				   sizeof(*cl), is_mask);
1085		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1086	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088	/* For layer 3 packets the Ethernet type is provided
1089	 * and treated as metadata but no MAC addresses are provided.
1090	 */
1091	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1092	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1093		mac_proto = MAC_PROTO_NONE;
1094
1095	/* Always exact match mac_proto */
1096	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1097
1098	if (mac_proto == MAC_PROTO_NONE)
1099		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1100						   log);
1101
1102	return 0;
1103}
1104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1106				u64 attrs, const struct nlattr **a,
1107				bool is_mask, bool log)
1108{
1109	int err;
1110
1111	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1112	if (err)
1113		return err;
1114
1115	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1116		const struct ovs_key_ethernet *eth_key;
1117
1118		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1119		SW_FLOW_KEY_MEMCPY(match, eth.src,
1120				eth_key->eth_src, ETH_ALEN, is_mask);
1121		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1122				eth_key->eth_dst, ETH_ALEN, is_mask);
1123		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1124
1125		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1126			/* VLAN attribute is always parsed before getting here since it
1127			 * may occur multiple times.
1128			 */
1129			OVS_NLERR(log, "VLAN attribute unexpected.");
1130			return -EINVAL;
1131		}
1132
1133		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1134			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1135							  log);
1136			if (err)
1137				return err;
1138		} else if (!is_mask) {
1139			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1140		}
1141	} else if (!match->key->eth.type) {
1142		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1143		return -EINVAL;
1144	}
1145
1146	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1147		const struct ovs_key_ipv4 *ipv4_key;
1148
1149		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1150		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1151			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1152				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1153			return -EINVAL;
1154		}
1155		SW_FLOW_KEY_PUT(match, ip.proto,
1156				ipv4_key->ipv4_proto, is_mask);
1157		SW_FLOW_KEY_PUT(match, ip.tos,
1158				ipv4_key->ipv4_tos, is_mask);
1159		SW_FLOW_KEY_PUT(match, ip.ttl,
1160				ipv4_key->ipv4_ttl, is_mask);
1161		SW_FLOW_KEY_PUT(match, ip.frag,
1162				ipv4_key->ipv4_frag, is_mask);
1163		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1164				ipv4_key->ipv4_src, is_mask);
1165		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1166				ipv4_key->ipv4_dst, is_mask);
1167		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1168	}
1169
1170	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1171		const struct ovs_key_ipv6 *ipv6_key;
1172
1173		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1174		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1175			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1176				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1177			return -EINVAL;
1178		}
1179
1180		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1181			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1182				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1183			return -EINVAL;
1184		}
1185
1186		SW_FLOW_KEY_PUT(match, ipv6.label,
1187				ipv6_key->ipv6_label, is_mask);
1188		SW_FLOW_KEY_PUT(match, ip.proto,
1189				ipv6_key->ipv6_proto, is_mask);
1190		SW_FLOW_KEY_PUT(match, ip.tos,
1191				ipv6_key->ipv6_tclass, is_mask);
1192		SW_FLOW_KEY_PUT(match, ip.ttl,
1193				ipv6_key->ipv6_hlimit, is_mask);
1194		SW_FLOW_KEY_PUT(match, ip.frag,
1195				ipv6_key->ipv6_frag, is_mask);
1196		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1197				ipv6_key->ipv6_src,
1198				sizeof(match->key->ipv6.addr.src),
1199				is_mask);
1200		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1201				ipv6_key->ipv6_dst,
1202				sizeof(match->key->ipv6.addr.dst),
1203				is_mask);
1204
1205		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1206	}
1207
1208	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1209		const struct ovs_key_arp *arp_key;
1210
1211		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1212		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1213			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1214				  arp_key->arp_op);
1215			return -EINVAL;
1216		}
1217
1218		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1219				arp_key->arp_sip, is_mask);
1220		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1221			arp_key->arp_tip, is_mask);
1222		SW_FLOW_KEY_PUT(match, ip.proto,
1223				ntohs(arp_key->arp_op), is_mask);
1224		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1225				arp_key->arp_sha, ETH_ALEN, is_mask);
1226		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1227				arp_key->arp_tha, ETH_ALEN, is_mask);
1228
1229		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1230	}
1231
 
 
 
 
 
 
 
1232	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1233		const struct ovs_key_mpls *mpls_key;
 
 
1234
1235		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1236		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1237				mpls_key->mpls_lse, is_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
1238
1239		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1240	 }
1241
1242	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1243		const struct ovs_key_tcp *tcp_key;
1244
1245		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1246		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1247		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1248		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1249	}
1250
1251	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1252		SW_FLOW_KEY_PUT(match, tp.flags,
1253				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1254				is_mask);
1255		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1256	}
1257
1258	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1259		const struct ovs_key_udp *udp_key;
1260
1261		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1262		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1263		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1264		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1265	}
1266
1267	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1268		const struct ovs_key_sctp *sctp_key;
1269
1270		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1271		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1272		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1273		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1274	}
1275
1276	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1277		const struct ovs_key_icmp *icmp_key;
1278
1279		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1280		SW_FLOW_KEY_PUT(match, tp.src,
1281				htons(icmp_key->icmp_type), is_mask);
1282		SW_FLOW_KEY_PUT(match, tp.dst,
1283				htons(icmp_key->icmp_code), is_mask);
1284		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1285	}
1286
1287	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1288		const struct ovs_key_icmpv6 *icmpv6_key;
1289
1290		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1291		SW_FLOW_KEY_PUT(match, tp.src,
1292				htons(icmpv6_key->icmpv6_type), is_mask);
1293		SW_FLOW_KEY_PUT(match, tp.dst,
1294				htons(icmpv6_key->icmpv6_code), is_mask);
1295		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1296	}
1297
1298	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1299		const struct ovs_key_nd *nd_key;
1300
1301		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1302		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1303			nd_key->nd_target,
1304			sizeof(match->key->ipv6.nd.target),
1305			is_mask);
1306		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1307			nd_key->nd_sll, ETH_ALEN, is_mask);
1308		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1309				nd_key->nd_tll, ETH_ALEN, is_mask);
1310		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1311	}
1312
1313	if (attrs != 0) {
1314		OVS_NLERR(log, "Unknown key attributes %llx",
1315			  (unsigned long long)attrs);
1316		return -EINVAL;
1317	}
1318
1319	return 0;
1320}
1321
1322static void nlattr_set(struct nlattr *attr, u8 val,
1323		       const struct ovs_len_tbl *tbl)
1324{
1325	struct nlattr *nla;
1326	int rem;
1327
1328	/* The nlattr stream should already have been validated */
1329	nla_for_each_nested(nla, attr, rem) {
1330		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1331			if (tbl[nla_type(nla)].next)
1332				tbl = tbl[nla_type(nla)].next;
1333			nlattr_set(nla, val, tbl);
1334		} else {
1335			memset(nla_data(nla), val, nla_len(nla));
1336		}
1337
1338		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1339			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1340	}
1341}
1342
1343static void mask_set_nlattr(struct nlattr *attr, u8 val)
1344{
1345	nlattr_set(attr, val, ovs_key_lens);
1346}
1347
1348/**
1349 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1350 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1351 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1352 * does not include any don't care bit.
1353 * @net: Used to determine per-namespace field support.
1354 * @match: receives the extracted flow match information.
1355 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1356 * sequence. The fields should of the packet that triggered the creation
1357 * of this flow.
1358 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1359 * attribute specifies the mask field of the wildcarded flow.
1360 * @log: Boolean to allow kernel error logging.  Normally true, but when
1361 * probing for feature compatibility this should be passed in as false to
1362 * suppress unnecessary error logging.
1363 */
1364int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1365		      const struct nlattr *nla_key,
1366		      const struct nlattr *nla_mask,
1367		      bool log)
1368{
1369	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1370	struct nlattr *newmask = NULL;
1371	u64 key_attrs = 0;
1372	u64 mask_attrs = 0;
1373	int err;
1374
1375	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1376	if (err)
1377		return err;
1378
1379	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1380	if (err)
1381		return err;
1382
1383	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1384	if (err)
1385		return err;
1386
1387	if (match->mask) {
1388		if (!nla_mask) {
1389			/* Create an exact match mask. We need to set to 0xff
1390			 * all the 'match->mask' fields that have been touched
1391			 * in 'match->key'. We cannot simply memset
1392			 * 'match->mask', because padding bytes and fields not
1393			 * specified in 'match->key' should be left to 0.
1394			 * Instead, we use a stream of netlink attributes,
1395			 * copied from 'key' and set to 0xff.
1396			 * ovs_key_from_nlattrs() will take care of filling
1397			 * 'match->mask' appropriately.
1398			 */
1399			newmask = kmemdup(nla_key,
1400					  nla_total_size(nla_len(nla_key)),
1401					  GFP_KERNEL);
1402			if (!newmask)
1403				return -ENOMEM;
1404
1405			mask_set_nlattr(newmask, 0xff);
1406
1407			/* The userspace does not send tunnel attributes that
1408			 * are 0, but we should not wildcard them nonetheless.
1409			 */
1410			if (match->key->tun_proto)
1411				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1412							 0xff, true);
1413
1414			nla_mask = newmask;
1415		}
1416
1417		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1418		if (err)
1419			goto free_newmask;
1420
1421		/* Always match on tci. */
1422		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1423		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1424
1425		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1426		if (err)
1427			goto free_newmask;
1428
1429		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1430					   log);
1431		if (err)
1432			goto free_newmask;
1433	}
1434
1435	if (!match_validate(match, key_attrs, mask_attrs, log))
1436		err = -EINVAL;
1437
1438free_newmask:
1439	kfree(newmask);
1440	return err;
1441}
1442
1443static size_t get_ufid_len(const struct nlattr *attr, bool log)
1444{
1445	size_t len;
1446
1447	if (!attr)
1448		return 0;
1449
1450	len = nla_len(attr);
1451	if (len < 1 || len > MAX_UFID_LENGTH) {
1452		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1453			  nla_len(attr), MAX_UFID_LENGTH);
1454		return 0;
1455	}
1456
1457	return len;
1458}
1459
1460/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1461 * or false otherwise.
1462 */
1463bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1464		      bool log)
1465{
1466	sfid->ufid_len = get_ufid_len(attr, log);
1467	if (sfid->ufid_len)
1468		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1469
1470	return sfid->ufid_len;
1471}
1472
1473int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1474			   const struct sw_flow_key *key, bool log)
1475{
1476	struct sw_flow_key *new_key;
1477
1478	if (ovs_nla_get_ufid(sfid, ufid, log))
1479		return 0;
1480
1481	/* If UFID was not provided, use unmasked key. */
1482	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1483	if (!new_key)
1484		return -ENOMEM;
1485	memcpy(new_key, key, sizeof(*key));
1486	sfid->unmasked_key = new_key;
1487
1488	return 0;
1489}
1490
1491u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1492{
1493	return attr ? nla_get_u32(attr) : 0;
1494}
1495
1496/**
1497 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1498 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1499 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1500 * sequence.
 
 
 
1501 * @log: Boolean to allow kernel error logging.  Normally true, but when
1502 * probing for feature compatibility this should be passed in as false to
1503 * suppress unnecessary error logging.
1504 *
1505 * This parses a series of Netlink attributes that form a flow key, which must
1506 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1507 * get the metadata, that is, the parts of the flow key that cannot be
1508 * extracted from the packet itself.
 
 
1509 */
1510
1511int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1512			      struct sw_flow_key *key,
1513			      bool log)
1514{
1515	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1516	struct sw_flow_match match;
1517	u64 attrs = 0;
1518	int err;
1519
1520	err = parse_flow_nlattrs(attr, a, &attrs, log);
1521	if (err)
1522		return -EINVAL;
1523
1524	memset(&match, 0, sizeof(match));
1525	match.key = key;
1526
 
 
 
1527	memset(&key->ct, 0, sizeof(key->ct));
 
 
 
1528	key->phy.in_port = DP_MAX_PORTS;
1529
1530	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1531}
1532
1533static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1534			    bool is_mask)
1535{
1536	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1537
1538	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1539	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1540		return -EMSGSIZE;
1541	return 0;
1542}
1543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1545			     const struct sw_flow_key *output, bool is_mask,
1546			     struct sk_buff *skb)
1547{
1548	struct ovs_key_ethernet *eth_key;
1549	struct nlattr *nla;
1550	struct nlattr *encap = NULL;
1551	struct nlattr *in_encap = NULL;
1552
1553	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1554		goto nla_put_failure;
1555
1556	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1557		goto nla_put_failure;
1558
1559	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1560		goto nla_put_failure;
1561
1562	if ((swkey->tun_proto || is_mask)) {
1563		const void *opts = NULL;
1564
1565		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1566			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1567
1568		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1569				     swkey->tun_opts_len, swkey->tun_proto))
1570			goto nla_put_failure;
1571	}
1572
1573	if (swkey->phy.in_port == DP_MAX_PORTS) {
1574		if (is_mask && (output->phy.in_port == 0xffff))
1575			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1576				goto nla_put_failure;
1577	} else {
1578		u16 upper_u16;
1579		upper_u16 = !is_mask ? 0 : 0xffff;
1580
1581		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1582				(upper_u16 << 16) | output->phy.in_port))
1583			goto nla_put_failure;
1584	}
1585
1586	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1587		goto nla_put_failure;
1588
1589	if (ovs_ct_put_key(output, skb))
1590		goto nla_put_failure;
1591
1592	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1593		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1594		if (!nla)
1595			goto nla_put_failure;
1596
1597		eth_key = nla_data(nla);
1598		ether_addr_copy(eth_key->eth_src, output->eth.src);
1599		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1600
1601		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1602			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1603				goto nla_put_failure;
1604			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1605			if (!swkey->eth.vlan.tci)
1606				goto unencap;
1607
1608			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1609				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1610					goto nla_put_failure;
1611				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
 
1612				if (!swkey->eth.cvlan.tci)
1613					goto unencap;
1614			}
1615		}
1616
1617		if (swkey->eth.type == htons(ETH_P_802_2)) {
1618			/*
1619			* Ethertype 802.2 is represented in the netlink with omitted
1620			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1621			* 0xffff in the mask attribute.  Ethertype can also
1622			* be wildcarded.
1623			*/
1624			if (is_mask && output->eth.type)
1625				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1626							output->eth.type))
1627					goto nla_put_failure;
1628			goto unencap;
1629		}
1630	}
1631
1632	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1633		goto nla_put_failure;
1634
1635	if (eth_type_vlan(swkey->eth.type)) {
1636		/* There are 3 VLAN tags, we don't know anything about the rest
1637		 * of the packet, so truncate here.
1638		 */
1639		WARN_ON_ONCE(!(encap && in_encap));
1640		goto unencap;
1641	}
1642
1643	if (swkey->eth.type == htons(ETH_P_IP)) {
1644		struct ovs_key_ipv4 *ipv4_key;
1645
1646		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1647		if (!nla)
1648			goto nla_put_failure;
1649		ipv4_key = nla_data(nla);
1650		ipv4_key->ipv4_src = output->ipv4.addr.src;
1651		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1652		ipv4_key->ipv4_proto = output->ip.proto;
1653		ipv4_key->ipv4_tos = output->ip.tos;
1654		ipv4_key->ipv4_ttl = output->ip.ttl;
1655		ipv4_key->ipv4_frag = output->ip.frag;
1656	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1657		struct ovs_key_ipv6 *ipv6_key;
1658
1659		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1660		if (!nla)
1661			goto nla_put_failure;
1662		ipv6_key = nla_data(nla);
1663		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1664				sizeof(ipv6_key->ipv6_src));
1665		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1666				sizeof(ipv6_key->ipv6_dst));
1667		ipv6_key->ipv6_label = output->ipv6.label;
1668		ipv6_key->ipv6_proto = output->ip.proto;
1669		ipv6_key->ipv6_tclass = output->ip.tos;
1670		ipv6_key->ipv6_hlimit = output->ip.ttl;
1671		ipv6_key->ipv6_frag = output->ip.frag;
 
 
 
1672	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1673		   swkey->eth.type == htons(ETH_P_RARP)) {
1674		struct ovs_key_arp *arp_key;
1675
1676		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1677		if (!nla)
1678			goto nla_put_failure;
1679		arp_key = nla_data(nla);
1680		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1681		arp_key->arp_sip = output->ipv4.addr.src;
1682		arp_key->arp_tip = output->ipv4.addr.dst;
1683		arp_key->arp_op = htons(output->ip.proto);
1684		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1685		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1686	} else if (eth_p_mpls(swkey->eth.type)) {
 
1687		struct ovs_key_mpls *mpls_key;
1688
1689		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
 
 
1690		if (!nla)
1691			goto nla_put_failure;
 
1692		mpls_key = nla_data(nla);
1693		mpls_key->mpls_lse = output->mpls.top_lse;
 
1694	}
1695
1696	if ((swkey->eth.type == htons(ETH_P_IP) ||
1697	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1698	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1699
1700		if (swkey->ip.proto == IPPROTO_TCP) {
1701			struct ovs_key_tcp *tcp_key;
1702
1703			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1704			if (!nla)
1705				goto nla_put_failure;
1706			tcp_key = nla_data(nla);
1707			tcp_key->tcp_src = output->tp.src;
1708			tcp_key->tcp_dst = output->tp.dst;
1709			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1710					 output->tp.flags))
1711				goto nla_put_failure;
1712		} else if (swkey->ip.proto == IPPROTO_UDP) {
1713			struct ovs_key_udp *udp_key;
1714
1715			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1716			if (!nla)
1717				goto nla_put_failure;
1718			udp_key = nla_data(nla);
1719			udp_key->udp_src = output->tp.src;
1720			udp_key->udp_dst = output->tp.dst;
1721		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1722			struct ovs_key_sctp *sctp_key;
1723
1724			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1725			if (!nla)
1726				goto nla_put_failure;
1727			sctp_key = nla_data(nla);
1728			sctp_key->sctp_src = output->tp.src;
1729			sctp_key->sctp_dst = output->tp.dst;
1730		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1731			   swkey->ip.proto == IPPROTO_ICMP) {
1732			struct ovs_key_icmp *icmp_key;
1733
1734			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1735			if (!nla)
1736				goto nla_put_failure;
1737			icmp_key = nla_data(nla);
1738			icmp_key->icmp_type = ntohs(output->tp.src);
1739			icmp_key->icmp_code = ntohs(output->tp.dst);
1740		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1741			   swkey->ip.proto == IPPROTO_ICMPV6) {
1742			struct ovs_key_icmpv6 *icmpv6_key;
1743
1744			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1745						sizeof(*icmpv6_key));
1746			if (!nla)
1747				goto nla_put_failure;
1748			icmpv6_key = nla_data(nla);
1749			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1750			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1751
1752			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1753			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1754				struct ovs_key_nd *nd_key;
1755
1756				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1757				if (!nla)
1758					goto nla_put_failure;
1759				nd_key = nla_data(nla);
1760				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1761							sizeof(nd_key->nd_target));
1762				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1763				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1764			}
1765		}
1766	}
1767
1768unencap:
1769	if (in_encap)
1770		nla_nest_end(skb, in_encap);
1771	if (encap)
1772		nla_nest_end(skb, encap);
1773
1774	return 0;
1775
1776nla_put_failure:
1777	return -EMSGSIZE;
1778}
1779
1780int ovs_nla_put_key(const struct sw_flow_key *swkey,
1781		    const struct sw_flow_key *output, int attr, bool is_mask,
1782		    struct sk_buff *skb)
1783{
1784	int err;
1785	struct nlattr *nla;
1786
1787	nla = nla_nest_start(skb, attr);
1788	if (!nla)
1789		return -EMSGSIZE;
1790	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1791	if (err)
1792		return err;
1793	nla_nest_end(skb, nla);
1794
1795	return 0;
1796}
1797
1798/* Called with ovs_mutex or RCU read lock. */
1799int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1800{
1801	if (ovs_identifier_is_ufid(&flow->id))
1802		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1803			       flow->id.ufid);
1804
1805	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1806			       OVS_FLOW_ATTR_KEY, false, skb);
1807}
1808
1809/* Called with ovs_mutex or RCU read lock. */
1810int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1811{
1812	return ovs_nla_put_key(&flow->key, &flow->key,
1813				OVS_FLOW_ATTR_KEY, false, skb);
1814}
1815
1816/* Called with ovs_mutex or RCU read lock. */
1817int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1818{
1819	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1820				OVS_FLOW_ATTR_MASK, true, skb);
1821}
1822
1823#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1824
1825static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1826{
1827	struct sw_flow_actions *sfa;
1828
1829	if (size > MAX_ACTIONS_BUFSIZE) {
1830		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1831		return ERR_PTR(-EINVAL);
1832	}
1833
1834	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1835	if (!sfa)
1836		return ERR_PTR(-ENOMEM);
1837
1838	sfa->actions_len = 0;
1839	return sfa;
1840}
1841
1842static void ovs_nla_free_set_action(const struct nlattr *a)
1843{
1844	const struct nlattr *ovs_key = nla_data(a);
1845	struct ovs_tunnel_info *ovs_tun;
1846
1847	switch (nla_type(ovs_key)) {
1848	case OVS_KEY_ATTR_TUNNEL_INFO:
1849		ovs_tun = nla_data(ovs_key);
1850		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1851		break;
1852	}
1853}
1854
1855void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1856{
1857	const struct nlattr *a;
1858	int rem;
1859
1860	if (!sf_acts)
1861		return;
1862
1863	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1864		switch (nla_type(a)) {
1865		case OVS_ACTION_ATTR_SET:
1866			ovs_nla_free_set_action(a);
1867			break;
1868		case OVS_ACTION_ATTR_CT:
1869			ovs_ct_free_action(a);
1870			break;
1871		}
1872	}
1873
1874	kfree(sf_acts);
1875}
1876
1877static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1878{
1879	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1880}
1881
1882/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1883 * The caller must hold rcu_read_lock for this to be sensible. */
1884void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1885{
1886	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1887}
1888
1889static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1890				       int attr_len, bool log)
1891{
1892
1893	struct sw_flow_actions *acts;
1894	int new_acts_size;
1895	int req_size = NLA_ALIGN(attr_len);
1896	int next_offset = offsetof(struct sw_flow_actions, actions) +
1897					(*sfa)->actions_len;
1898
1899	if (req_size <= (ksize(*sfa) - next_offset))
1900		goto out;
1901
1902	new_acts_size = ksize(*sfa) * 2;
1903
1904	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1905		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
 
 
1906			return ERR_PTR(-EMSGSIZE);
 
1907		new_acts_size = MAX_ACTIONS_BUFSIZE;
1908	}
1909
1910	acts = nla_alloc_flow_actions(new_acts_size, log);
1911	if (IS_ERR(acts))
1912		return (void *)acts;
1913
1914	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1915	acts->actions_len = (*sfa)->actions_len;
1916	acts->orig_len = (*sfa)->orig_len;
1917	kfree(*sfa);
1918	*sfa = acts;
1919
1920out:
1921	(*sfa)->actions_len += req_size;
1922	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1923}
1924
1925static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1926				   int attrtype, void *data, int len, bool log)
1927{
1928	struct nlattr *a;
1929
1930	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1931	if (IS_ERR(a))
1932		return a;
1933
1934	a->nla_type = attrtype;
1935	a->nla_len = nla_attr_size(len);
1936
1937	if (data)
1938		memcpy(nla_data(a), data, len);
1939	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1940
1941	return a;
1942}
1943
1944int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1945		       int len, bool log)
1946{
1947	struct nlattr *a;
1948
1949	a = __add_action(sfa, attrtype, data, len, log);
1950
1951	return PTR_ERR_OR_ZERO(a);
1952}
1953
1954static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1955					  int attrtype, bool log)
1956{
1957	int used = (*sfa)->actions_len;
1958	int err;
1959
1960	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1961	if (err)
1962		return err;
1963
1964	return used;
1965}
1966
1967static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1968					 int st_offset)
1969{
1970	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1971							       st_offset);
1972
1973	a->nla_len = sfa->actions_len - st_offset;
1974}
1975
1976static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1977				  const struct sw_flow_key *key,
1978				  int depth, struct sw_flow_actions **sfa,
1979				  __be16 eth_type, __be16 vlan_tci, bool log);
 
1980
1981static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1982				    const struct sw_flow_key *key, int depth,
1983				    struct sw_flow_actions **sfa,
1984				    __be16 eth_type, __be16 vlan_tci, bool log)
 
1985{
1986	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1987	const struct nlattr *probability, *actions;
1988	const struct nlattr *a;
1989	int rem, start, err, st_acts;
 
1990
1991	memset(attrs, 0, sizeof(attrs));
1992	nla_for_each_nested(a, attr, rem) {
1993		int type = nla_type(a);
1994		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1995			return -EINVAL;
1996		attrs[type] = a;
1997	}
1998	if (rem)
1999		return -EINVAL;
2000
2001	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2002	if (!probability || nla_len(probability) != sizeof(u32))
2003		return -EINVAL;
2004
2005	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2006	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2007		return -EINVAL;
2008
2009	/* validation done, copy sample action. */
2010	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2011	if (start < 0)
2012		return start;
2013	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2014				 nla_data(probability), sizeof(u32), log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015	if (err)
2016		return err;
2017	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2018	if (st_acts < 0)
2019		return st_acts;
2020
2021	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2022				     eth_type, vlan_tci, log);
2023	if (err)
2024		return err;
2025
2026	add_nested_action_end(*sfa, st_acts);
2027	add_nested_action_end(*sfa, start);
2028
2029	return 0;
2030}
2031
2032void ovs_match_init(struct sw_flow_match *match,
2033		    struct sw_flow_key *key,
2034		    bool reset_key,
2035		    struct sw_flow_mask *mask)
2036{
2037	memset(match, 0, sizeof(*match));
2038	match->key = key;
2039	match->mask = mask;
2040
2041	if (reset_key)
2042		memset(key, 0, sizeof(*key));
2043
2044	if (mask) {
2045		memset(&mask->key, 0, sizeof(mask->key));
2046		mask->range.start = mask->range.end = 0;
2047	}
2048}
2049
2050static int validate_geneve_opts(struct sw_flow_key *key)
2051{
2052	struct geneve_opt *option;
2053	int opts_len = key->tun_opts_len;
2054	bool crit_opt = false;
2055
2056	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2057	while (opts_len > 0) {
2058		int len;
2059
2060		if (opts_len < sizeof(*option))
2061			return -EINVAL;
2062
2063		len = sizeof(*option) + option->length * 4;
2064		if (len > opts_len)
2065			return -EINVAL;
2066
2067		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2068
2069		option = (struct geneve_opt *)((u8 *)option + len);
2070		opts_len -= len;
2071	};
2072
2073	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2074
2075	return 0;
2076}
2077
2078static int validate_and_copy_set_tun(const struct nlattr *attr,
2079				     struct sw_flow_actions **sfa, bool log)
2080{
2081	struct sw_flow_match match;
2082	struct sw_flow_key key;
2083	struct metadata_dst *tun_dst;
2084	struct ip_tunnel_info *tun_info;
2085	struct ovs_tunnel_info *ovs_tun;
2086	struct nlattr *a;
2087	int err = 0, start, opts_type;
 
2088
 
2089	ovs_match_init(&match, &key, true, NULL);
2090	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2091	if (opts_type < 0)
2092		return opts_type;
2093
2094	if (key.tun_opts_len) {
2095		switch (opts_type) {
2096		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2097			err = validate_geneve_opts(&key);
2098			if (err < 0)
2099				return err;
 
2100			break;
2101		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 
 
 
 
2102			break;
2103		}
2104	};
2105
2106	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2107	if (start < 0)
2108		return start;
2109
2110	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
 
 
2111	if (!tun_dst)
2112		return -ENOMEM;
2113
2114	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2115	if (err) {
2116		dst_release((struct dst_entry *)tun_dst);
2117		return err;
2118	}
2119
2120	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2121			 sizeof(*ovs_tun), log);
2122	if (IS_ERR(a)) {
2123		dst_release((struct dst_entry *)tun_dst);
2124		return PTR_ERR(a);
2125	}
2126
2127	ovs_tun = nla_data(a);
2128	ovs_tun->tun_dst = tun_dst;
2129
2130	tun_info = &tun_dst->u.tun_info;
2131	tun_info->mode = IP_TUNNEL_INFO_TX;
2132	if (key.tun_proto == AF_INET6)
2133		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
 
 
2134	tun_info->key = key.tun_key;
2135
2136	/* We need to store the options in the action itself since
2137	 * everything else will go away after flow setup. We can append
2138	 * it to tun_info and then point there.
2139	 */
2140	ip_tunnel_info_opts_set(tun_info,
2141				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2142				key.tun_opts_len);
2143	add_nested_action_end(*sfa, start);
2144
2145	return err;
2146}
2147
 
 
 
 
 
 
 
 
 
 
 
 
 
2148/* Return false if there are any non-masked bits set.
2149 * Mask follows data immediately, before any netlink padding.
2150 */
2151static bool validate_masked(u8 *data, int len)
2152{
2153	u8 *mask = data + len;
2154
2155	while (len--)
2156		if (*data++ & ~*mask++)
2157			return false;
2158
2159	return true;
2160}
2161
2162static int validate_set(const struct nlattr *a,
2163			const struct sw_flow_key *flow_key,
2164			struct sw_flow_actions **sfa, bool *skip_copy,
2165			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2166{
2167	const struct nlattr *ovs_key = nla_data(a);
2168	int key_type = nla_type(ovs_key);
2169	size_t key_len;
2170
2171	/* There can be only one key in a action */
2172	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2173		return -EINVAL;
2174
2175	key_len = nla_len(ovs_key);
2176	if (masked)
2177		key_len /= 2;
2178
2179	if (key_type > OVS_KEY_ATTR_MAX ||
2180	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2181		return -EINVAL;
2182
2183	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2184		return -EINVAL;
2185
2186	switch (key_type) {
2187	const struct ovs_key_ipv4 *ipv4_key;
2188	const struct ovs_key_ipv6 *ipv6_key;
2189	int err;
2190
2191	case OVS_KEY_ATTR_PRIORITY:
2192	case OVS_KEY_ATTR_SKB_MARK:
2193	case OVS_KEY_ATTR_CT_MARK:
2194	case OVS_KEY_ATTR_CT_LABELS:
2195		break;
2196
2197	case OVS_KEY_ATTR_ETHERNET:
2198		if (mac_proto != MAC_PROTO_ETHERNET)
2199			return -EINVAL;
2200		break;
2201
2202	case OVS_KEY_ATTR_TUNNEL:
 
 
2203		if (masked)
2204			return -EINVAL; /* Masked tunnel set not supported. */
2205
2206		*skip_copy = true;
2207		err = validate_and_copy_set_tun(a, sfa, log);
2208		if (err)
2209			return err;
2210		break;
 
 
 
2211
2212	case OVS_KEY_ATTR_IPV4:
2213		if (eth_type != htons(ETH_P_IP))
2214			return -EINVAL;
2215
2216		ipv4_key = nla_data(ovs_key);
2217
2218		if (masked) {
2219			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2220
2221			/* Non-writeable fields. */
2222			if (mask->ipv4_proto || mask->ipv4_frag)
2223				return -EINVAL;
2224		} else {
2225			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2226				return -EINVAL;
2227
2228			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2229				return -EINVAL;
2230		}
2231		break;
 
 
 
2232
2233	case OVS_KEY_ATTR_IPV6:
2234		if (eth_type != htons(ETH_P_IPV6))
2235			return -EINVAL;
2236
2237		ipv6_key = nla_data(ovs_key);
2238
2239		if (masked) {
2240			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2241
2242			/* Non-writeable fields. */
2243			if (mask->ipv6_proto || mask->ipv6_frag)
2244				return -EINVAL;
2245
2246			/* Invalid bits in the flow label mask? */
2247			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2248				return -EINVAL;
2249		} else {
2250			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2251				return -EINVAL;
2252
2253			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2254				return -EINVAL;
2255		}
2256		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2257			return -EINVAL;
2258
2259		break;
2260
2261	case OVS_KEY_ATTR_TCP:
2262		if ((eth_type != htons(ETH_P_IP) &&
2263		     eth_type != htons(ETH_P_IPV6)) ||
2264		    flow_key->ip.proto != IPPROTO_TCP)
2265			return -EINVAL;
2266
2267		break;
2268
2269	case OVS_KEY_ATTR_UDP:
2270		if ((eth_type != htons(ETH_P_IP) &&
2271		     eth_type != htons(ETH_P_IPV6)) ||
2272		    flow_key->ip.proto != IPPROTO_UDP)
2273			return -EINVAL;
2274
2275		break;
2276
2277	case OVS_KEY_ATTR_MPLS:
2278		if (!eth_p_mpls(eth_type))
2279			return -EINVAL;
2280		break;
2281
2282	case OVS_KEY_ATTR_SCTP:
2283		if ((eth_type != htons(ETH_P_IP) &&
2284		     eth_type != htons(ETH_P_IPV6)) ||
2285		    flow_key->ip.proto != IPPROTO_SCTP)
2286			return -EINVAL;
2287
2288		break;
2289
 
 
 
 
 
 
 
2290	default:
2291		return -EINVAL;
2292	}
2293
2294	/* Convert non-masked non-tunnel set actions to masked set actions. */
2295	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2296		int start, len = key_len * 2;
2297		struct nlattr *at;
2298
2299		*skip_copy = true;
2300
2301		start = add_nested_action_start(sfa,
2302						OVS_ACTION_ATTR_SET_TO_MASKED,
2303						log);
2304		if (start < 0)
2305			return start;
2306
2307		at = __add_action(sfa, key_type, NULL, len, log);
2308		if (IS_ERR(at))
2309			return PTR_ERR(at);
2310
2311		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2312		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2313		/* Clear non-writeable bits from otherwise writeable fields. */
2314		if (key_type == OVS_KEY_ATTR_IPV6) {
2315			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2316
2317			mask->ipv6_label &= htonl(0x000FFFFF);
2318		}
2319		add_nested_action_end(*sfa, start);
2320	}
2321
2322	return 0;
2323}
2324
2325static int validate_userspace(const struct nlattr *attr)
2326{
2327	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2328		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2329		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2330		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2331	};
2332	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2333	int error;
2334
2335	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2336				 attr, userspace_policy);
2337	if (error)
2338		return error;
2339
2340	if (!a[OVS_USERSPACE_ATTR_PID] ||
2341	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2342		return -EINVAL;
2343
2344	return 0;
2345}
2346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347static int copy_action(const struct nlattr *from,
2348		       struct sw_flow_actions **sfa, bool log)
2349{
2350	int totlen = NLA_ALIGN(from->nla_len);
2351	struct nlattr *to;
2352
2353	to = reserve_sfa_size(sfa, from->nla_len, log);
2354	if (IS_ERR(to))
2355		return PTR_ERR(to);
2356
2357	memcpy(to, from, totlen);
2358	return 0;
2359}
2360
2361static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2362				  const struct sw_flow_key *key,
2363				  int depth, struct sw_flow_actions **sfa,
2364				  __be16 eth_type, __be16 vlan_tci, bool log)
 
2365{
2366	u8 mac_proto = ovs_key_mac_proto(key);
2367	const struct nlattr *a;
2368	int rem, err;
2369
2370	if (depth >= SAMPLE_ACTION_DEPTH)
2371		return -EOVERFLOW;
2372
2373	nla_for_each_nested(a, attr, rem) {
2374		/* Expected argument lengths, (u32)-1 for variable length. */
2375		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2376			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2377			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2378			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2379			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2380			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2381			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2382			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2383			[OVS_ACTION_ATTR_SET] = (u32)-1,
2384			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2385			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2386			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2387			[OVS_ACTION_ATTR_CT] = (u32)-1,
 
2388			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2389			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2390			[OVS_ACTION_ATTR_POP_ETH] = 0,
 
 
 
 
 
 
 
2391		};
2392		const struct ovs_action_push_vlan *vlan;
2393		int type = nla_type(a);
2394		bool skip_copy;
2395
2396		if (type > OVS_ACTION_ATTR_MAX ||
2397		    (action_lens[type] != nla_len(a) &&
2398		     action_lens[type] != (u32)-1))
2399			return -EINVAL;
2400
2401		skip_copy = false;
2402		switch (type) {
2403		case OVS_ACTION_ATTR_UNSPEC:
2404			return -EINVAL;
2405
2406		case OVS_ACTION_ATTR_USERSPACE:
2407			err = validate_userspace(a);
2408			if (err)
2409				return err;
2410			break;
2411
2412		case OVS_ACTION_ATTR_OUTPUT:
2413			if (nla_get_u32(a) >= DP_MAX_PORTS)
2414				return -EINVAL;
2415			break;
2416
2417		case OVS_ACTION_ATTR_TRUNC: {
2418			const struct ovs_action_trunc *trunc = nla_data(a);
2419
2420			if (trunc->max_len < ETH_HLEN)
2421				return -EINVAL;
2422			break;
2423		}
2424
2425		case OVS_ACTION_ATTR_HASH: {
2426			const struct ovs_action_hash *act_hash = nla_data(a);
2427
2428			switch (act_hash->hash_alg) {
2429			case OVS_HASH_ALG_L4:
2430				break;
2431			default:
2432				return  -EINVAL;
2433			}
2434
2435			break;
2436		}
2437
2438		case OVS_ACTION_ATTR_POP_VLAN:
2439			if (mac_proto != MAC_PROTO_ETHERNET)
2440				return -EINVAL;
2441			vlan_tci = htons(0);
2442			break;
2443
2444		case OVS_ACTION_ATTR_PUSH_VLAN:
2445			if (mac_proto != MAC_PROTO_ETHERNET)
2446				return -EINVAL;
2447			vlan = nla_data(a);
2448			if (!eth_type_vlan(vlan->vlan_tpid))
2449				return -EINVAL;
2450			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2451				return -EINVAL;
2452			vlan_tci = vlan->vlan_tci;
2453			break;
2454
2455		case OVS_ACTION_ATTR_RECIRC:
2456			break;
2457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458		case OVS_ACTION_ATTR_PUSH_MPLS: {
2459			const struct ovs_action_push_mpls *mpls = nla_data(a);
2460
2461			if (!eth_p_mpls(mpls->mpls_ethertype))
2462				return -EINVAL;
2463			/* Prohibit push MPLS other than to a white list
2464			 * for packets that have a known tag order.
2465			 */
2466			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2467			    (eth_type != htons(ETH_P_IP) &&
2468			     eth_type != htons(ETH_P_IPV6) &&
2469			     eth_type != htons(ETH_P_ARP) &&
2470			     eth_type != htons(ETH_P_RARP) &&
2471			     !eth_p_mpls(eth_type)))
2472				return -EINVAL;
2473			eth_type = mpls->mpls_ethertype;
 
2474			break;
2475		}
2476
2477		case OVS_ACTION_ATTR_POP_MPLS:
2478			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
 
2479			    !eth_p_mpls(eth_type))
2480				return -EINVAL;
2481
2482			/* Disallow subsequent L2.5+ set and mpls_pop actions
2483			 * as there is no check here to ensure that the new
2484			 * eth_type is valid and thus set actions could
2485			 * write off the end of the packet or otherwise
2486			 * corrupt it.
 
2487			 *
2488			 * Support for these actions is planned using packet
2489			 * recirculation.
2490			 */
2491			eth_type = htons(0);
 
 
 
 
 
 
 
 
 
 
 
 
2492			break;
 
2493
2494		case OVS_ACTION_ATTR_SET:
2495			err = validate_set(a, key, sfa,
2496					   &skip_copy, mac_proto, eth_type,
2497					   false, log);
2498			if (err)
2499				return err;
2500			break;
2501
2502		case OVS_ACTION_ATTR_SET_MASKED:
2503			err = validate_set(a, key, sfa,
2504					   &skip_copy, mac_proto, eth_type,
2505					   true, log);
2506			if (err)
2507				return err;
2508			break;
2509
2510		case OVS_ACTION_ATTR_SAMPLE:
2511			err = validate_and_copy_sample(net, a, key, depth, sfa,
2512						       eth_type, vlan_tci, log);
 
 
 
 
2513			if (err)
2514				return err;
2515			skip_copy = true;
2516			break;
 
2517
2518		case OVS_ACTION_ATTR_CT:
2519			err = ovs_ct_copy_action(net, a, key, sfa, log);
2520			if (err)
2521				return err;
2522			skip_copy = true;
2523			break;
2524
 
 
 
2525		case OVS_ACTION_ATTR_PUSH_ETH:
2526			/* Disallow pushing an Ethernet header if one
2527			 * is already present */
2528			if (mac_proto != MAC_PROTO_NONE)
2529				return -EINVAL;
2530			mac_proto = MAC_PROTO_NONE;
2531			break;
2532
2533		case OVS_ACTION_ATTR_POP_ETH:
2534			if (mac_proto != MAC_PROTO_ETHERNET)
2535				return -EINVAL;
2536			if (vlan_tci & htons(VLAN_TAG_PRESENT))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537				return -EINVAL;
2538			mac_proto = MAC_PROTO_ETHERNET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539			break;
2540
2541		default:
2542			OVS_NLERR(log, "Unknown Action type %d", type);
2543			return -EINVAL;
2544		}
2545		if (!skip_copy) {
2546			err = copy_action(a, sfa, log);
2547			if (err)
2548				return err;
2549		}
2550	}
2551
2552	if (rem > 0)
2553		return -EINVAL;
2554
2555	return 0;
2556}
2557
2558/* 'key' must be the masked key. */
2559int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2560			 const struct sw_flow_key *key,
2561			 struct sw_flow_actions **sfa, bool log)
2562{
2563	int err;
 
2564
2565	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2566	if (IS_ERR(*sfa))
2567		return PTR_ERR(*sfa);
2568
 
 
 
2569	(*sfa)->orig_len = nla_len(attr);
2570	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2571				     key->eth.vlan.tci, log);
2572	if (err)
2573		ovs_nla_free_flow_actions(*sfa);
2574
2575	return err;
2576}
2577
2578static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579{
2580	const struct nlattr *a;
2581	struct nlattr *start;
2582	int err = 0, rem;
2583
2584	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2585	if (!start)
2586		return -EMSGSIZE;
2587
2588	nla_for_each_nested(a, attr, rem) {
2589		int type = nla_type(a);
2590		struct nlattr *st_sample;
2591
2592		switch (type) {
2593		case OVS_SAMPLE_ATTR_PROBABILITY:
2594			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2595				    sizeof(u32), nla_data(a)))
2596				return -EMSGSIZE;
2597			break;
2598		case OVS_SAMPLE_ATTR_ACTIONS:
2599			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2600			if (!st_sample)
2601				return -EMSGSIZE;
2602			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2603			if (err)
2604				return err;
2605			nla_nest_end(skb, st_sample);
2606			break;
2607		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608	}
2609
2610	nla_nest_end(skb, start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2611	return err;
2612}
2613
2614static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2615{
2616	const struct nlattr *ovs_key = nla_data(a);
2617	int key_type = nla_type(ovs_key);
2618	struct nlattr *start;
2619	int err;
2620
2621	switch (key_type) {
2622	case OVS_KEY_ATTR_TUNNEL_INFO: {
2623		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2624		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2625
2626		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2627		if (!start)
2628			return -EMSGSIZE;
2629
2630		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2631					ip_tunnel_info_opts(tun_info),
2632					tun_info->options_len,
2633					ip_tunnel_info_af(tun_info));
2634		if (err)
2635			return err;
2636		nla_nest_end(skb, start);
2637		break;
2638	}
2639	default:
2640		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2641			return -EMSGSIZE;
2642		break;
2643	}
2644
2645	return 0;
2646}
2647
2648static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2649						struct sk_buff *skb)
2650{
2651	const struct nlattr *ovs_key = nla_data(a);
2652	struct nlattr *nla;
2653	size_t key_len = nla_len(ovs_key) / 2;
2654
2655	/* Revert the conversion we did from a non-masked set action to
2656	 * masked set action.
2657	 */
2658	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2659	if (!nla)
2660		return -EMSGSIZE;
2661
2662	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2663		return -EMSGSIZE;
2664
2665	nla_nest_end(skb, nla);
2666	return 0;
2667}
2668
2669int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2670{
2671	const struct nlattr *a;
2672	int rem, err;
2673
2674	nla_for_each_attr(a, attr, len, rem) {
2675		int type = nla_type(a);
2676
2677		switch (type) {
2678		case OVS_ACTION_ATTR_SET:
2679			err = set_action_to_attr(a, skb);
2680			if (err)
2681				return err;
2682			break;
2683
2684		case OVS_ACTION_ATTR_SET_TO_MASKED:
2685			err = masked_set_action_to_set_action_attr(a, skb);
2686			if (err)
2687				return err;
2688			break;
2689
2690		case OVS_ACTION_ATTR_SAMPLE:
2691			err = sample_action_to_attr(a, skb);
2692			if (err)
2693				return err;
2694			break;
2695
2696		case OVS_ACTION_ATTR_CT:
2697			err = ovs_ct_action_to_attr(nla_data(a), skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698			if (err)
2699				return err;
2700			break;
2701
2702		default:
2703			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2704				return -EMSGSIZE;
2705			break;
2706		}
2707	}
2708
2709	return 0;
2710}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
  41#include "flow_netlink.h"
  42
  43struct ovs_len_tbl {
  44	int len;
  45	const struct ovs_len_tbl *next;
  46};
  47
  48#define OVS_ATTR_NESTED -1
  49#define OVS_ATTR_VARIABLE -2
  50
  51static bool actions_may_change_flow(const struct nlattr *actions)
  52{
  53	struct nlattr *nla;
  54	int rem;
  55
  56	nla_for_each_nested(nla, actions, rem) {
  57		u16 action = nla_type(nla);
  58
  59		switch (action) {
  60		case OVS_ACTION_ATTR_OUTPUT:
  61		case OVS_ACTION_ATTR_RECIRC:
  62		case OVS_ACTION_ATTR_TRUNC:
  63		case OVS_ACTION_ATTR_USERSPACE:
  64			break;
  65
  66		case OVS_ACTION_ATTR_CT:
  67		case OVS_ACTION_ATTR_CT_CLEAR:
  68		case OVS_ACTION_ATTR_HASH:
  69		case OVS_ACTION_ATTR_POP_ETH:
  70		case OVS_ACTION_ATTR_POP_MPLS:
  71		case OVS_ACTION_ATTR_POP_NSH:
  72		case OVS_ACTION_ATTR_POP_VLAN:
  73		case OVS_ACTION_ATTR_PUSH_ETH:
  74		case OVS_ACTION_ATTR_PUSH_MPLS:
  75		case OVS_ACTION_ATTR_PUSH_NSH:
  76		case OVS_ACTION_ATTR_PUSH_VLAN:
  77		case OVS_ACTION_ATTR_SAMPLE:
  78		case OVS_ACTION_ATTR_SET:
  79		case OVS_ACTION_ATTR_SET_MASKED:
  80		case OVS_ACTION_ATTR_METER:
  81		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  82		case OVS_ACTION_ATTR_ADD_MPLS:
  83		case OVS_ACTION_ATTR_DEC_TTL:
  84		default:
  85			return true;
  86		}
  87	}
  88	return false;
  89}
  90
  91static void update_range(struct sw_flow_match *match,
  92			 size_t offset, size_t size, bool is_mask)
  93{
  94	struct sw_flow_key_range *range;
  95	size_t start = rounddown(offset, sizeof(long));
  96	size_t end = roundup(offset + size, sizeof(long));
  97
  98	if (!is_mask)
  99		range = &match->range;
 100	else
 101		range = &match->mask->range;
 102
 103	if (range->start == range->end) {
 104		range->start = start;
 105		range->end = end;
 106		return;
 107	}
 108
 109	if (range->start > start)
 110		range->start = start;
 111
 112	if (range->end < end)
 113		range->end = end;
 114}
 115
 116#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 117	do { \
 118		update_range(match, offsetof(struct sw_flow_key, field),    \
 119			     sizeof((match)->key->field), is_mask);	    \
 120		if (is_mask)						    \
 121			(match)->mask->key.field = value;		    \
 122		else							    \
 123			(match)->key->field = value;		            \
 124	} while (0)
 125
 126#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 127	do {								    \
 128		update_range(match, offset, len, is_mask);		    \
 129		if (is_mask)						    \
 130			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 131			       len);					   \
 132		else							    \
 133			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 134	} while (0)
 135
 136#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 137	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 138				  value_p, len, is_mask)
 139
 140#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 141	do {								    \
 142		update_range(match, offsetof(struct sw_flow_key, field),    \
 143			     sizeof((match)->key->field), is_mask);	    \
 144		if (is_mask)						    \
 145			memset((u8 *)&(match)->mask->key.field, value,      \
 146			       sizeof((match)->mask->key.field));	    \
 147		else							    \
 148			memset((u8 *)&(match)->key->field, value,           \
 149			       sizeof((match)->key->field));                \
 150	} while (0)
 151
 152static bool match_validate(const struct sw_flow_match *match,
 153			   u64 key_attrs, u64 mask_attrs, bool log)
 154{
 155	u64 key_expected = 0;
 156	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 157
 158	/* The following mask attributes allowed only if they
 159	 * pass the validation tests. */
 160	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 161			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 162			| (1 << OVS_KEY_ATTR_IPV6)
 163			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 164			| (1 << OVS_KEY_ATTR_TCP)
 165			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 166			| (1 << OVS_KEY_ATTR_UDP)
 167			| (1 << OVS_KEY_ATTR_SCTP)
 168			| (1 << OVS_KEY_ATTR_ICMP)
 169			| (1 << OVS_KEY_ATTR_ICMPV6)
 170			| (1 << OVS_KEY_ATTR_ARP)
 171			| (1 << OVS_KEY_ATTR_ND)
 172			| (1 << OVS_KEY_ATTR_MPLS)
 173			| (1 << OVS_KEY_ATTR_NSH));
 174
 175	/* Always allowed mask fields. */
 176	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 177		       | (1 << OVS_KEY_ATTR_IN_PORT)
 178		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 179
 180	/* Check key attributes. */
 181	if (match->key->eth.type == htons(ETH_P_ARP)
 182			|| match->key->eth.type == htons(ETH_P_RARP)) {
 183		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 184		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 185			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 186	}
 187
 188	if (eth_p_mpls(match->key->eth.type)) {
 189		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 190		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 191			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 192	}
 193
 194	if (match->key->eth.type == htons(ETH_P_IP)) {
 195		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 196		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 197			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 198			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 199		}
 200
 201		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 202			if (match->key->ip.proto == IPPROTO_UDP) {
 203				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 204				if (match->mask && (match->mask->key.ip.proto == 0xff))
 205					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 206			}
 207
 208			if (match->key->ip.proto == IPPROTO_SCTP) {
 209				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 210				if (match->mask && (match->mask->key.ip.proto == 0xff))
 211					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 212			}
 213
 214			if (match->key->ip.proto == IPPROTO_TCP) {
 215				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 217				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 218					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 220				}
 221			}
 222
 223			if (match->key->ip.proto == IPPROTO_ICMP) {
 224				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 225				if (match->mask && (match->mask->key.ip.proto == 0xff))
 226					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 227			}
 228		}
 229	}
 230
 231	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 232		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 233		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 234			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 235			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 236		}
 237
 238		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 239			if (match->key->ip.proto == IPPROTO_UDP) {
 240				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 241				if (match->mask && (match->mask->key.ip.proto == 0xff))
 242					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 243			}
 244
 245			if (match->key->ip.proto == IPPROTO_SCTP) {
 246				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 247				if (match->mask && (match->mask->key.ip.proto == 0xff))
 248					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 249			}
 250
 251			if (match->key->ip.proto == IPPROTO_TCP) {
 252				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 253				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 254				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 255					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 256					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 257				}
 258			}
 259
 260			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 261				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 262				if (match->mask && (match->mask->key.ip.proto == 0xff))
 263					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 264
 265				if (match->key->tp.src ==
 266						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 267				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 268					key_expected |= 1 << OVS_KEY_ATTR_ND;
 269					/* Original direction conntrack tuple
 270					 * uses the same space as the ND fields
 271					 * in the key, so both are not allowed
 272					 * at the same time.
 273					 */
 274					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 275					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 276						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 277				}
 278			}
 279		}
 280	}
 281
 282	if (match->key->eth.type == htons(ETH_P_NSH)) {
 283		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 284		if (match->mask &&
 285		    match->mask->key.eth.type == htons(0xffff)) {
 286			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 287		}
 288	}
 289
 290	if ((key_attrs & key_expected) != key_expected) {
 291		/* Key attributes check failed. */
 292		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 293			  (unsigned long long)key_attrs,
 294			  (unsigned long long)key_expected);
 295		return false;
 296	}
 297
 298	if ((mask_attrs & mask_allowed) != mask_attrs) {
 299		/* Mask attributes check failed. */
 300		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 301			  (unsigned long long)mask_attrs,
 302			  (unsigned long long)mask_allowed);
 303		return false;
 304	}
 305
 306	return true;
 307}
 308
 309size_t ovs_tun_key_attr_size(void)
 310{
 311	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 312	 * updating this function.
 313	 */
 314	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 315		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 316		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 317		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 318		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 319		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 320		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 321		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 322		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 323		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 324		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 325		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 326		 */
 327		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 328		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 329}
 330
 331static size_t ovs_nsh_key_attr_size(void)
 332{
 333	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 334	 * updating this function.
 335	 */
 336	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 337		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 338		 * mutually exclusive, so the bigger one can cover
 339		 * the small one.
 340		 */
 341		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 342}
 343
 344size_t ovs_key_attr_size(void)
 345{
 346	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 347	 * updating this function.
 348	 */
 349	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
 350
 351	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 352		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 353		  + ovs_tun_key_attr_size()
 354		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 355		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 356		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 357		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 358		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 359		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 360		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 361		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 362		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 363		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 364		  + ovs_nsh_key_attr_size()
 365		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 366		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 367		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 368		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 369		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 370		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 371		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 372		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 373}
 374
 375static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 376	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 377};
 378
 379static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 380	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 381	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 382	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 383	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 384	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 385	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 386	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 387	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 388	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 389	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 390	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 391	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 392						.next = ovs_vxlan_ext_key_lens },
 393	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 394	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 395	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 396	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 397};
 398
 399static const struct ovs_len_tbl
 400ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 401	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 402	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 403	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 404};
 405
 406/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 407static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 408	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 409	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 410	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 411	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 412	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 413	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 414	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 415	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 416	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 417	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 418	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 419	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 420	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 421	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 422	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 423	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 424	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 425	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 426	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 427	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 428				     .next = ovs_tunnel_key_lens, },
 429	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
 430	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 431	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 432	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 433	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 434	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 435		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 436	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 437		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 438	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 439				     .next = ovs_nsh_key_attr_lens, },
 440};
 441
 442static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 443{
 444	return expected_len == attr_len ||
 445	       expected_len == OVS_ATTR_NESTED ||
 446	       expected_len == OVS_ATTR_VARIABLE;
 447}
 448
 449static bool is_all_zero(const u8 *fp, size_t size)
 450{
 451	int i;
 452
 453	if (!fp)
 454		return false;
 455
 456	for (i = 0; i < size; i++)
 457		if (fp[i])
 458			return false;
 459
 460	return true;
 461}
 462
 463static int __parse_flow_nlattrs(const struct nlattr *attr,
 464				const struct nlattr *a[],
 465				u64 *attrsp, bool log, bool nz)
 466{
 467	const struct nlattr *nla;
 468	u64 attrs;
 469	int rem;
 470
 471	attrs = *attrsp;
 472	nla_for_each_nested(nla, attr, rem) {
 473		u16 type = nla_type(nla);
 474		int expected_len;
 475
 476		if (type > OVS_KEY_ATTR_MAX) {
 477			OVS_NLERR(log, "Key type %d is out of range max %d",
 478				  type, OVS_KEY_ATTR_MAX);
 479			return -EINVAL;
 480		}
 481
 482		if (attrs & (1 << type)) {
 483			OVS_NLERR(log, "Duplicate key (type %d).", type);
 484			return -EINVAL;
 485		}
 486
 487		expected_len = ovs_key_lens[type].len;
 488		if (!check_attr_len(nla_len(nla), expected_len)) {
 489			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 490				  type, nla_len(nla), expected_len);
 491			return -EINVAL;
 492		}
 493
 494		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 495			attrs |= 1 << type;
 496			a[type] = nla;
 497		}
 498	}
 499	if (rem) {
 500		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 501		return -EINVAL;
 502	}
 503
 504	*attrsp = attrs;
 505	return 0;
 506}
 507
 508static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 509				   const struct nlattr *a[], u64 *attrsp,
 510				   bool log)
 511{
 512	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 513}
 514
 515int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 516		       u64 *attrsp, bool log)
 
 517{
 518	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 519}
 520
 521static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 522				     struct sw_flow_match *match, bool is_mask,
 523				     bool log)
 524{
 525	unsigned long opt_key_offset;
 526
 527	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 528		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 529			  nla_len(a), sizeof(match->key->tun_opts));
 530		return -EINVAL;
 531	}
 532
 533	if (nla_len(a) % 4 != 0) {
 534		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 535			  nla_len(a));
 536		return -EINVAL;
 537	}
 538
 539	/* We need to record the length of the options passed
 540	 * down, otherwise packets with the same format but
 541	 * additional options will be silently matched.
 542	 */
 543	if (!is_mask) {
 544		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 545				false);
 546	} else {
 547		/* This is somewhat unusual because it looks at
 548		 * both the key and mask while parsing the
 549		 * attributes (and by extension assumes the key
 550		 * is parsed first). Normally, we would verify
 551		 * that each is the correct length and that the
 552		 * attributes line up in the validate function.
 553		 * However, that is difficult because this is
 554		 * variable length and we won't have the
 555		 * information later.
 556		 */
 557		if (match->key->tun_opts_len != nla_len(a)) {
 558			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 559				  match->key->tun_opts_len, nla_len(a));
 560			return -EINVAL;
 561		}
 562
 563		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 564	}
 565
 566	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 567	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 568				  nla_len(a), is_mask);
 569	return 0;
 570}
 571
 572static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 573				     struct sw_flow_match *match, bool is_mask,
 574				     bool log)
 575{
 576	struct nlattr *a;
 577	int rem;
 578	unsigned long opt_key_offset;
 579	struct vxlan_metadata opts;
 580
 581	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 582
 583	memset(&opts, 0, sizeof(opts));
 584	nla_for_each_nested(a, attr, rem) {
 585		int type = nla_type(a);
 586
 587		if (type > OVS_VXLAN_EXT_MAX) {
 588			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 589				  type, OVS_VXLAN_EXT_MAX);
 590			return -EINVAL;
 591		}
 592
 593		if (!check_attr_len(nla_len(a),
 594				    ovs_vxlan_ext_key_lens[type].len)) {
 595			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 596				  type, nla_len(a),
 597				  ovs_vxlan_ext_key_lens[type].len);
 598			return -EINVAL;
 599		}
 600
 601		switch (type) {
 602		case OVS_VXLAN_EXT_GBP:
 603			opts.gbp = nla_get_u32(a);
 604			break;
 605		default:
 606			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 607				  type);
 608			return -EINVAL;
 609		}
 610	}
 611	if (rem) {
 612		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 613			  rem);
 614		return -EINVAL;
 615	}
 616
 617	if (!is_mask)
 618		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 619	else
 620		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 621
 622	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 623	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 624				  is_mask);
 625	return 0;
 626}
 627
 628static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 629				      struct sw_flow_match *match, bool is_mask,
 630				      bool log)
 631{
 632	unsigned long opt_key_offset;
 633
 634	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 635		     sizeof(match->key->tun_opts));
 636
 637	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 638		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 639			  nla_len(a), sizeof(match->key->tun_opts));
 640		return -EINVAL;
 641	}
 642
 643	if (!is_mask)
 644		SW_FLOW_KEY_PUT(match, tun_opts_len,
 645				sizeof(struct erspan_metadata), false);
 646	else
 647		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 648
 649	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 650	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 651				  nla_len(a), is_mask);
 652	return 0;
 653}
 654
 655static int ip_tun_from_nlattr(const struct nlattr *attr,
 656			      struct sw_flow_match *match, bool is_mask,
 657			      bool log)
 658{
 659	bool ttl = false, ipv4 = false, ipv6 = false;
 660	bool info_bridge_mode = false;
 661	__be16 tun_flags = 0;
 662	int opts_type = 0;
 663	struct nlattr *a;
 664	int rem;
 665
 666	nla_for_each_nested(a, attr, rem) {
 667		int type = nla_type(a);
 668		int err;
 669
 670		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 671			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 672				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 673			return -EINVAL;
 674		}
 675
 676		if (!check_attr_len(nla_len(a),
 677				    ovs_tunnel_key_lens[type].len)) {
 678			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 679				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 680			return -EINVAL;
 681		}
 682
 683		switch (type) {
 684		case OVS_TUNNEL_KEY_ATTR_ID:
 685			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 686					nla_get_be64(a), is_mask);
 687			tun_flags |= TUNNEL_KEY;
 688			break;
 689		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 690			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 691					nla_get_in_addr(a), is_mask);
 692			ipv4 = true;
 693			break;
 694		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 695			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 696					nla_get_in_addr(a), is_mask);
 697			ipv4 = true;
 698			break;
 699		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 700			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 701					nla_get_in6_addr(a), is_mask);
 702			ipv6 = true;
 703			break;
 704		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 705			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 706					nla_get_in6_addr(a), is_mask);
 707			ipv6 = true;
 708			break;
 709		case OVS_TUNNEL_KEY_ATTR_TOS:
 710			SW_FLOW_KEY_PUT(match, tun_key.tos,
 711					nla_get_u8(a), is_mask);
 712			break;
 713		case OVS_TUNNEL_KEY_ATTR_TTL:
 714			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 715					nla_get_u8(a), is_mask);
 716			ttl = true;
 717			break;
 718		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 719			tun_flags |= TUNNEL_DONT_FRAGMENT;
 720			break;
 721		case OVS_TUNNEL_KEY_ATTR_CSUM:
 722			tun_flags |= TUNNEL_CSUM;
 723			break;
 724		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 725			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 726					nla_get_be16(a), is_mask);
 727			break;
 728		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 729			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 730					nla_get_be16(a), is_mask);
 731			break;
 732		case OVS_TUNNEL_KEY_ATTR_OAM:
 733			tun_flags |= TUNNEL_OAM;
 734			break;
 735		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 736			if (opts_type) {
 737				OVS_NLERR(log, "Multiple metadata blocks provided");
 738				return -EINVAL;
 739			}
 740
 741			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 742			if (err)
 743				return err;
 744
 745			tun_flags |= TUNNEL_GENEVE_OPT;
 746			opts_type = type;
 747			break;
 748		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 749			if (opts_type) {
 750				OVS_NLERR(log, "Multiple metadata blocks provided");
 751				return -EINVAL;
 752			}
 753
 754			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 755			if (err)
 756				return err;
 757
 758			tun_flags |= TUNNEL_VXLAN_OPT;
 759			opts_type = type;
 760			break;
 761		case OVS_TUNNEL_KEY_ATTR_PAD:
 762			break;
 763		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 764			if (opts_type) {
 765				OVS_NLERR(log, "Multiple metadata blocks provided");
 766				return -EINVAL;
 767			}
 768
 769			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 770							 log);
 771			if (err)
 772				return err;
 773
 774			tun_flags |= TUNNEL_ERSPAN_OPT;
 775			opts_type = type;
 776			break;
 777		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 778			info_bridge_mode = true;
 779			ipv4 = true;
 780			break;
 781		default:
 782			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 783				  type);
 784			return -EINVAL;
 785		}
 786	}
 787
 788	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 789	if (is_mask)
 790		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 791	else
 792		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 793				false);
 794
 795	if (rem > 0) {
 796		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 797			  rem);
 798		return -EINVAL;
 799	}
 800
 801	if (ipv4 && ipv6) {
 802		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 803		return -EINVAL;
 804	}
 805
 806	if (!is_mask) {
 807		if (!ipv4 && !ipv6) {
 808			OVS_NLERR(log, "IP tunnel dst address not specified");
 809			return -EINVAL;
 810		}
 811		if (ipv4) {
 812			if (info_bridge_mode) {
 813				if (match->key->tun_key.u.ipv4.src ||
 814				    match->key->tun_key.u.ipv4.dst ||
 815				    match->key->tun_key.tp_src ||
 816				    match->key->tun_key.tp_dst ||
 817				    match->key->tun_key.ttl ||
 818				    match->key->tun_key.tos ||
 819				    tun_flags & ~TUNNEL_KEY) {
 820					OVS_NLERR(log, "IPv4 tun info is not correct");
 821					return -EINVAL;
 822				}
 823			} else if (!match->key->tun_key.u.ipv4.dst) {
 824				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 825				return -EINVAL;
 826			}
 827		}
 828		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 829			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 830			return -EINVAL;
 831		}
 832
 833		if (!ttl && !info_bridge_mode) {
 834			OVS_NLERR(log, "IP tunnel TTL not specified.");
 835			return -EINVAL;
 836		}
 837	}
 838
 839	return opts_type;
 840}
 841
 842static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 843			       const void *tun_opts, int swkey_tun_opts_len)
 844{
 845	const struct vxlan_metadata *opts = tun_opts;
 846	struct nlattr *nla;
 847
 848	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 849	if (!nla)
 850		return -EMSGSIZE;
 851
 852	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 853		return -EMSGSIZE;
 854
 855	nla_nest_end(skb, nla);
 856	return 0;
 857}
 858
 859static int __ip_tun_to_nlattr(struct sk_buff *skb,
 860			      const struct ip_tunnel_key *output,
 861			      const void *tun_opts, int swkey_tun_opts_len,
 862			      unsigned short tun_proto, u8 mode)
 863{
 864	if (output->tun_flags & TUNNEL_KEY &&
 865	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 866			 OVS_TUNNEL_KEY_ATTR_PAD))
 867		return -EMSGSIZE;
 868
 869	if (mode & IP_TUNNEL_INFO_BRIDGE)
 870		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 871		       ? -EMSGSIZE : 0;
 872
 873	switch (tun_proto) {
 874	case AF_INET:
 875		if (output->u.ipv4.src &&
 876		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 877				    output->u.ipv4.src))
 878			return -EMSGSIZE;
 879		if (output->u.ipv4.dst &&
 880		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 881				    output->u.ipv4.dst))
 882			return -EMSGSIZE;
 883		break;
 884	case AF_INET6:
 885		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 886		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 887				     &output->u.ipv6.src))
 888			return -EMSGSIZE;
 889		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 890		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 891				     &output->u.ipv6.dst))
 892			return -EMSGSIZE;
 893		break;
 894	}
 895	if (output->tos &&
 896	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 897		return -EMSGSIZE;
 898	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 899		return -EMSGSIZE;
 900	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 901	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 902		return -EMSGSIZE;
 903	if ((output->tun_flags & TUNNEL_CSUM) &&
 904	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 905		return -EMSGSIZE;
 906	if (output->tp_src &&
 907	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 908		return -EMSGSIZE;
 909	if (output->tp_dst &&
 910	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 911		return -EMSGSIZE;
 912	if ((output->tun_flags & TUNNEL_OAM) &&
 913	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 914		return -EMSGSIZE;
 915	if (swkey_tun_opts_len) {
 916		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 917		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 918			    swkey_tun_opts_len, tun_opts))
 919			return -EMSGSIZE;
 920		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 921			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 922			return -EMSGSIZE;
 923		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
 924			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 925				 swkey_tun_opts_len, tun_opts))
 926			return -EMSGSIZE;
 927	}
 928
 929	return 0;
 930}
 931
 932static int ip_tun_to_nlattr(struct sk_buff *skb,
 933			    const struct ip_tunnel_key *output,
 934			    const void *tun_opts, int swkey_tun_opts_len,
 935			    unsigned short tun_proto, u8 mode)
 936{
 937	struct nlattr *nla;
 938	int err;
 939
 940	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 941	if (!nla)
 942		return -EMSGSIZE;
 943
 944	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 945				 tun_proto, mode);
 946	if (err)
 947		return err;
 948
 949	nla_nest_end(skb, nla);
 950	return 0;
 951}
 952
 953int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 954			    struct ip_tunnel_info *tun_info)
 955{
 956	return __ip_tun_to_nlattr(skb, &tun_info->key,
 957				  ip_tunnel_info_opts(tun_info),
 958				  tun_info->options_len,
 959				  ip_tunnel_info_af(tun_info), tun_info->mode);
 960}
 961
 962static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 963				    const struct nlattr *a[],
 964				    bool is_mask, bool inner)
 965{
 966	__be16 tci = 0;
 967	__be16 tpid = 0;
 968
 969	if (a[OVS_KEY_ATTR_VLAN])
 970		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 971
 972	if (a[OVS_KEY_ATTR_ETHERTYPE])
 973		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 974
 975	if (likely(!inner)) {
 976		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 977		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 978	} else {
 979		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 980		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 981	}
 982	return 0;
 983}
 984
 985static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 986				      u64 key_attrs, bool inner,
 987				      const struct nlattr **a, bool log)
 988{
 989	__be16 tci = 0;
 990
 991	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 992	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 993	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 994		/* Not a VLAN. */
 995		return 0;
 996	}
 997
 998	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 999	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1000		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1001		return -EINVAL;
1002	}
1003
1004	if (a[OVS_KEY_ATTR_VLAN])
1005		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1006
1007	if (!(tci & htons(VLAN_CFI_MASK))) {
1008		if (tci) {
1009			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1010				  (inner) ? "C-VLAN" : "VLAN");
1011			return -EINVAL;
1012		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1013			/* Corner case for truncated VLAN header. */
1014			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1015				  (inner) ? "C-VLAN" : "VLAN");
1016			return -EINVAL;
1017		}
1018	}
1019
1020	return 1;
1021}
1022
1023static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1024					   u64 key_attrs, bool inner,
1025					   const struct nlattr **a, bool log)
1026{
1027	__be16 tci = 0;
1028	__be16 tpid = 0;
1029	bool encap_valid = !!(match->key->eth.vlan.tci &
1030			      htons(VLAN_CFI_MASK));
1031	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1032				htons(VLAN_CFI_MASK));
1033
1034	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1035		/* Not a VLAN. */
1036		return 0;
1037	}
1038
1039	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1040		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1041			  (inner) ? "C-VLAN" : "VLAN");
1042		return -EINVAL;
1043	}
1044
1045	if (a[OVS_KEY_ATTR_VLAN])
1046		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1047
1048	if (a[OVS_KEY_ATTR_ETHERTYPE])
1049		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1050
1051	if (tpid != htons(0xffff)) {
1052		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1053			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1054		return -EINVAL;
1055	}
1056	if (!(tci & htons(VLAN_CFI_MASK))) {
1057		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1058			  (inner) ? "C-VLAN" : "VLAN");
1059		return -EINVAL;
1060	}
1061
1062	return 1;
1063}
1064
1065static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1066				     u64 *key_attrs, bool inner,
1067				     const struct nlattr **a, bool is_mask,
1068				     bool log)
1069{
1070	int err;
1071	const struct nlattr *encap;
1072
1073	if (!is_mask)
1074		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1075						 a, log);
1076	else
1077		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1078						      a, log);
1079	if (err <= 0)
1080		return err;
1081
1082	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1083	if (err)
1084		return err;
1085
1086	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1087	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1088	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1089
1090	encap = a[OVS_KEY_ATTR_ENCAP];
1091
1092	if (!is_mask)
1093		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1094	else
1095		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1096
1097	return err;
1098}
1099
1100static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1101				   u64 *key_attrs, const struct nlattr **a,
1102				   bool is_mask, bool log)
1103{
1104	int err;
1105	bool encap_valid = false;
1106
1107	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1108					is_mask, log);
1109	if (err)
1110		return err;
1111
1112	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1113	if (encap_valid) {
1114		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1115						is_mask, log);
1116		if (err)
1117			return err;
1118	}
1119
1120	return 0;
1121}
1122
1123static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1124				       u64 *attrs, const struct nlattr **a,
1125				       bool is_mask, bool log)
1126{
1127	__be16 eth_type;
1128
1129	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1130	if (is_mask) {
1131		/* Always exact match EtherType. */
1132		eth_type = htons(0xffff);
1133	} else if (!eth_proto_is_802_3(eth_type)) {
1134		OVS_NLERR(log, "EtherType %x is less than min %x",
1135				ntohs(eth_type), ETH_P_802_3_MIN);
1136		return -EINVAL;
1137	}
1138
1139	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1140	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1141	return 0;
1142}
1143
1144static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1145				 u64 *attrs, const struct nlattr **a,
1146				 bool is_mask, bool log)
1147{
1148	u8 mac_proto = MAC_PROTO_ETHERNET;
1149
1150	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1151		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1152
1153		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1154		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1155	}
1156
1157	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1158		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1159
1160		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1161		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1162	}
1163
1164	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1165		SW_FLOW_KEY_PUT(match, phy.priority,
1166			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1167		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1168	}
1169
1170	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1171		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1172
1173		if (is_mask) {
1174			in_port = 0xffffffff; /* Always exact match in_port. */
1175		} else if (in_port >= DP_MAX_PORTS) {
1176			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1177				  in_port, DP_MAX_PORTS);
1178			return -EINVAL;
1179		}
1180
1181		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1182		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1183	} else if (!is_mask) {
1184		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1185	}
1186
1187	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1188		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1189
1190		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1191		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1192	}
1193	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1194		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1195				       is_mask, log) < 0)
1196			return -EINVAL;
1197		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1198	}
1199
1200	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1201	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1202		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1203
1204		if (ct_state & ~CT_SUPPORTED_MASK) {
1205			OVS_NLERR(log, "ct_state flags %08x unsupported",
1206				  ct_state);
1207			return -EINVAL;
1208		}
1209
1210		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1211		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1212	}
1213	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1214	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1215		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1216
1217		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1218		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1219	}
1220	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1221	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1222		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1223
1224		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1225		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1226	}
1227	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1228	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1229		const struct ovs_key_ct_labels *cl;
1230
1231		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1232		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1233				   sizeof(*cl), is_mask);
1234		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1235	}
1236	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1237		const struct ovs_key_ct_tuple_ipv4 *ct;
1238
1239		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1240
1241		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1242		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1243		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1244		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1245		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1246		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1247	}
1248	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1249		const struct ovs_key_ct_tuple_ipv6 *ct;
1250
1251		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1252
1253		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1254				   sizeof(match->key->ipv6.ct_orig.src),
1255				   is_mask);
1256		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1257				   sizeof(match->key->ipv6.ct_orig.dst),
1258				   is_mask);
1259		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1260		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1261		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1262		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1263	}
1264
1265	/* For layer 3 packets the Ethernet type is provided
1266	 * and treated as metadata but no MAC addresses are provided.
1267	 */
1268	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1269	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1270		mac_proto = MAC_PROTO_NONE;
1271
1272	/* Always exact match mac_proto */
1273	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1274
1275	if (mac_proto == MAC_PROTO_NONE)
1276		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1277						   log);
1278
1279	return 0;
1280}
1281
1282int nsh_hdr_from_nlattr(const struct nlattr *attr,
1283			struct nshhdr *nh, size_t size)
1284{
1285	struct nlattr *a;
1286	int rem;
1287	u8 flags = 0;
1288	u8 ttl = 0;
1289	int mdlen = 0;
1290
1291	/* validate_nsh has check this, so we needn't do duplicate check here
1292	 */
1293	if (size < NSH_BASE_HDR_LEN)
1294		return -ENOBUFS;
1295
1296	nla_for_each_nested(a, attr, rem) {
1297		int type = nla_type(a);
1298
1299		switch (type) {
1300		case OVS_NSH_KEY_ATTR_BASE: {
1301			const struct ovs_nsh_key_base *base = nla_data(a);
1302
1303			flags = base->flags;
1304			ttl = base->ttl;
1305			nh->np = base->np;
1306			nh->mdtype = base->mdtype;
1307			nh->path_hdr = base->path_hdr;
1308			break;
1309		}
1310		case OVS_NSH_KEY_ATTR_MD1:
1311			mdlen = nla_len(a);
1312			if (mdlen > size - NSH_BASE_HDR_LEN)
1313				return -ENOBUFS;
1314			memcpy(&nh->md1, nla_data(a), mdlen);
1315			break;
1316
1317		case OVS_NSH_KEY_ATTR_MD2:
1318			mdlen = nla_len(a);
1319			if (mdlen > size - NSH_BASE_HDR_LEN)
1320				return -ENOBUFS;
1321			memcpy(&nh->md2, nla_data(a), mdlen);
1322			break;
1323
1324		default:
1325			return -EINVAL;
1326		}
1327	}
1328
1329	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1330	nh->ver_flags_ttl_len = 0;
1331	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1332
1333	return 0;
1334}
1335
1336int nsh_key_from_nlattr(const struct nlattr *attr,
1337			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1338{
1339	struct nlattr *a;
1340	int rem;
1341
1342	/* validate_nsh has check this, so we needn't do duplicate check here
1343	 */
1344	nla_for_each_nested(a, attr, rem) {
1345		int type = nla_type(a);
1346
1347		switch (type) {
1348		case OVS_NSH_KEY_ATTR_BASE: {
1349			const struct ovs_nsh_key_base *base = nla_data(a);
1350			const struct ovs_nsh_key_base *base_mask = base + 1;
1351
1352			nsh->base = *base;
1353			nsh_mask->base = *base_mask;
1354			break;
1355		}
1356		case OVS_NSH_KEY_ATTR_MD1: {
1357			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1358			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1359
1360			memcpy(nsh->context, md1->context, sizeof(*md1));
1361			memcpy(nsh_mask->context, md1_mask->context,
1362			       sizeof(*md1_mask));
1363			break;
1364		}
1365		case OVS_NSH_KEY_ATTR_MD2:
1366			/* Not supported yet */
1367			return -ENOTSUPP;
1368		default:
1369			return -EINVAL;
1370		}
1371	}
1372
1373	return 0;
1374}
1375
1376static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1377				   struct sw_flow_match *match, bool is_mask,
1378				   bool is_push_nsh, bool log)
1379{
1380	struct nlattr *a;
1381	int rem;
1382	bool has_base = false;
1383	bool has_md1 = false;
1384	bool has_md2 = false;
1385	u8 mdtype = 0;
1386	int mdlen = 0;
1387
1388	if (WARN_ON(is_push_nsh && is_mask))
1389		return -EINVAL;
1390
1391	nla_for_each_nested(a, attr, rem) {
1392		int type = nla_type(a);
1393		int i;
1394
1395		if (type > OVS_NSH_KEY_ATTR_MAX) {
1396			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1397				  type, OVS_NSH_KEY_ATTR_MAX);
1398			return -EINVAL;
1399		}
1400
1401		if (!check_attr_len(nla_len(a),
1402				    ovs_nsh_key_attr_lens[type].len)) {
1403			OVS_NLERR(
1404			    log,
1405			    "nsh attr %d has unexpected len %d expected %d",
1406			    type,
1407			    nla_len(a),
1408			    ovs_nsh_key_attr_lens[type].len
1409			);
1410			return -EINVAL;
1411		}
1412
1413		switch (type) {
1414		case OVS_NSH_KEY_ATTR_BASE: {
1415			const struct ovs_nsh_key_base *base = nla_data(a);
1416
1417			has_base = true;
1418			mdtype = base->mdtype;
1419			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1420					base->flags, is_mask);
1421			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1422					base->ttl, is_mask);
1423			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1424					base->mdtype, is_mask);
1425			SW_FLOW_KEY_PUT(match, nsh.base.np,
1426					base->np, is_mask);
1427			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1428					base->path_hdr, is_mask);
1429			break;
1430		}
1431		case OVS_NSH_KEY_ATTR_MD1: {
1432			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1433
1434			has_md1 = true;
1435			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1436				SW_FLOW_KEY_PUT(match, nsh.context[i],
1437						md1->context[i], is_mask);
1438			break;
1439		}
1440		case OVS_NSH_KEY_ATTR_MD2:
1441			if (!is_push_nsh) /* Not supported MD type 2 yet */
1442				return -ENOTSUPP;
1443
1444			has_md2 = true;
1445			mdlen = nla_len(a);
1446			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1447				OVS_NLERR(
1448				    log,
1449				    "Invalid MD length %d for MD type %d",
1450				    mdlen,
1451				    mdtype
1452				);
1453				return -EINVAL;
1454			}
1455			break;
1456		default:
1457			OVS_NLERR(log, "Unknown nsh attribute %d",
1458				  type);
1459			return -EINVAL;
1460		}
1461	}
1462
1463	if (rem > 0) {
1464		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1465		return -EINVAL;
1466	}
1467
1468	if (has_md1 && has_md2) {
1469		OVS_NLERR(
1470		    1,
1471		    "invalid nsh attribute: md1 and md2 are exclusive."
1472		);
1473		return -EINVAL;
1474	}
1475
1476	if (!is_mask) {
1477		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1478		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1479			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1480				  mdtype);
1481			return -EINVAL;
1482		}
1483
1484		if (is_push_nsh &&
1485		    (!has_base || (!has_md1 && !has_md2))) {
1486			OVS_NLERR(
1487			    1,
1488			    "push_nsh: missing base or metadata attributes"
1489			);
1490			return -EINVAL;
1491		}
1492	}
1493
1494	return 0;
1495}
1496
1497static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1498				u64 attrs, const struct nlattr **a,
1499				bool is_mask, bool log)
1500{
1501	int err;
1502
1503	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1504	if (err)
1505		return err;
1506
1507	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1508		const struct ovs_key_ethernet *eth_key;
1509
1510		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1511		SW_FLOW_KEY_MEMCPY(match, eth.src,
1512				eth_key->eth_src, ETH_ALEN, is_mask);
1513		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1514				eth_key->eth_dst, ETH_ALEN, is_mask);
1515		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1516
1517		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1518			/* VLAN attribute is always parsed before getting here since it
1519			 * may occur multiple times.
1520			 */
1521			OVS_NLERR(log, "VLAN attribute unexpected.");
1522			return -EINVAL;
1523		}
1524
1525		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1526			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1527							  log);
1528			if (err)
1529				return err;
1530		} else if (!is_mask) {
1531			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1532		}
1533	} else if (!match->key->eth.type) {
1534		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1535		return -EINVAL;
1536	}
1537
1538	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1539		const struct ovs_key_ipv4 *ipv4_key;
1540
1541		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1542		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1543			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1544				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1545			return -EINVAL;
1546		}
1547		SW_FLOW_KEY_PUT(match, ip.proto,
1548				ipv4_key->ipv4_proto, is_mask);
1549		SW_FLOW_KEY_PUT(match, ip.tos,
1550				ipv4_key->ipv4_tos, is_mask);
1551		SW_FLOW_KEY_PUT(match, ip.ttl,
1552				ipv4_key->ipv4_ttl, is_mask);
1553		SW_FLOW_KEY_PUT(match, ip.frag,
1554				ipv4_key->ipv4_frag, is_mask);
1555		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1556				ipv4_key->ipv4_src, is_mask);
1557		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1558				ipv4_key->ipv4_dst, is_mask);
1559		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1560	}
1561
1562	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1563		const struct ovs_key_ipv6 *ipv6_key;
1564
1565		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1566		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1567			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1568				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1569			return -EINVAL;
1570		}
1571
1572		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1573			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1574				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1575			return -EINVAL;
1576		}
1577
1578		SW_FLOW_KEY_PUT(match, ipv6.label,
1579				ipv6_key->ipv6_label, is_mask);
1580		SW_FLOW_KEY_PUT(match, ip.proto,
1581				ipv6_key->ipv6_proto, is_mask);
1582		SW_FLOW_KEY_PUT(match, ip.tos,
1583				ipv6_key->ipv6_tclass, is_mask);
1584		SW_FLOW_KEY_PUT(match, ip.ttl,
1585				ipv6_key->ipv6_hlimit, is_mask);
1586		SW_FLOW_KEY_PUT(match, ip.frag,
1587				ipv6_key->ipv6_frag, is_mask);
1588		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1589				ipv6_key->ipv6_src,
1590				sizeof(match->key->ipv6.addr.src),
1591				is_mask);
1592		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1593				ipv6_key->ipv6_dst,
1594				sizeof(match->key->ipv6.addr.dst),
1595				is_mask);
1596
1597		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1598	}
1599
1600	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1601		const struct ovs_key_arp *arp_key;
1602
1603		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1604		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1605			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1606				  arp_key->arp_op);
1607			return -EINVAL;
1608		}
1609
1610		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1611				arp_key->arp_sip, is_mask);
1612		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1613			arp_key->arp_tip, is_mask);
1614		SW_FLOW_KEY_PUT(match, ip.proto,
1615				ntohs(arp_key->arp_op), is_mask);
1616		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1617				arp_key->arp_sha, ETH_ALEN, is_mask);
1618		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1619				arp_key->arp_tha, ETH_ALEN, is_mask);
1620
1621		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1622	}
1623
1624	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1625		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1626					    is_mask, false, log) < 0)
1627			return -EINVAL;
1628		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1629	}
1630
1631	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1632		const struct ovs_key_mpls *mpls_key;
1633		u32 hdr_len;
1634		u32 label_count, label_count_mask, i;
1635
1636		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1637		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1638		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1639
1640		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1641		    hdr_len % sizeof(struct ovs_key_mpls))
1642			return -EINVAL;
1643
1644		label_count_mask =  GENMASK(label_count - 1, 0);
1645
1646		for (i = 0 ; i < label_count; i++)
1647			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1648					mpls_key[i].mpls_lse, is_mask);
1649
1650		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1651				label_count_mask, is_mask);
1652
1653		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1654	 }
1655
1656	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1657		const struct ovs_key_tcp *tcp_key;
1658
1659		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1660		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1661		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1662		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1663	}
1664
1665	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1666		SW_FLOW_KEY_PUT(match, tp.flags,
1667				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1668				is_mask);
1669		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1670	}
1671
1672	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1673		const struct ovs_key_udp *udp_key;
1674
1675		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1676		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1677		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1678		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1679	}
1680
1681	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1682		const struct ovs_key_sctp *sctp_key;
1683
1684		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1685		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1686		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1687		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1688	}
1689
1690	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1691		const struct ovs_key_icmp *icmp_key;
1692
1693		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1694		SW_FLOW_KEY_PUT(match, tp.src,
1695				htons(icmp_key->icmp_type), is_mask);
1696		SW_FLOW_KEY_PUT(match, tp.dst,
1697				htons(icmp_key->icmp_code), is_mask);
1698		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1699	}
1700
1701	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1702		const struct ovs_key_icmpv6 *icmpv6_key;
1703
1704		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1705		SW_FLOW_KEY_PUT(match, tp.src,
1706				htons(icmpv6_key->icmpv6_type), is_mask);
1707		SW_FLOW_KEY_PUT(match, tp.dst,
1708				htons(icmpv6_key->icmpv6_code), is_mask);
1709		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1710	}
1711
1712	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1713		const struct ovs_key_nd *nd_key;
1714
1715		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1716		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1717			nd_key->nd_target,
1718			sizeof(match->key->ipv6.nd.target),
1719			is_mask);
1720		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1721			nd_key->nd_sll, ETH_ALEN, is_mask);
1722		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1723				nd_key->nd_tll, ETH_ALEN, is_mask);
1724		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1725	}
1726
1727	if (attrs != 0) {
1728		OVS_NLERR(log, "Unknown key attributes %llx",
1729			  (unsigned long long)attrs);
1730		return -EINVAL;
1731	}
1732
1733	return 0;
1734}
1735
1736static void nlattr_set(struct nlattr *attr, u8 val,
1737		       const struct ovs_len_tbl *tbl)
1738{
1739	struct nlattr *nla;
1740	int rem;
1741
1742	/* The nlattr stream should already have been validated */
1743	nla_for_each_nested(nla, attr, rem) {
1744		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1745			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1746		else
 
 
1747			memset(nla_data(nla), val, nla_len(nla));
 
1748
1749		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1750			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1751	}
1752}
1753
1754static void mask_set_nlattr(struct nlattr *attr, u8 val)
1755{
1756	nlattr_set(attr, val, ovs_key_lens);
1757}
1758
1759/**
1760 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1761 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1762 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1763 * does not include any don't care bit.
1764 * @net: Used to determine per-namespace field support.
1765 * @match: receives the extracted flow match information.
1766 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1767 * sequence. The fields should of the packet that triggered the creation
1768 * of this flow.
1769 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1770 * Netlink attribute specifies the mask field of the wildcarded flow.
1771 * @log: Boolean to allow kernel error logging.  Normally true, but when
1772 * probing for feature compatibility this should be passed in as false to
1773 * suppress unnecessary error logging.
1774 */
1775int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1776		      const struct nlattr *nla_key,
1777		      const struct nlattr *nla_mask,
1778		      bool log)
1779{
1780	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1781	struct nlattr *newmask = NULL;
1782	u64 key_attrs = 0;
1783	u64 mask_attrs = 0;
1784	int err;
1785
1786	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1787	if (err)
1788		return err;
1789
1790	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1791	if (err)
1792		return err;
1793
1794	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1795	if (err)
1796		return err;
1797
1798	if (match->mask) {
1799		if (!nla_mask) {
1800			/* Create an exact match mask. We need to set to 0xff
1801			 * all the 'match->mask' fields that have been touched
1802			 * in 'match->key'. We cannot simply memset
1803			 * 'match->mask', because padding bytes and fields not
1804			 * specified in 'match->key' should be left to 0.
1805			 * Instead, we use a stream of netlink attributes,
1806			 * copied from 'key' and set to 0xff.
1807			 * ovs_key_from_nlattrs() will take care of filling
1808			 * 'match->mask' appropriately.
1809			 */
1810			newmask = kmemdup(nla_key,
1811					  nla_total_size(nla_len(nla_key)),
1812					  GFP_KERNEL);
1813			if (!newmask)
1814				return -ENOMEM;
1815
1816			mask_set_nlattr(newmask, 0xff);
1817
1818			/* The userspace does not send tunnel attributes that
1819			 * are 0, but we should not wildcard them nonetheless.
1820			 */
1821			if (match->key->tun_proto)
1822				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1823							 0xff, true);
1824
1825			nla_mask = newmask;
1826		}
1827
1828		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1829		if (err)
1830			goto free_newmask;
1831
1832		/* Always match on tci. */
1833		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1834		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1835
1836		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1837		if (err)
1838			goto free_newmask;
1839
1840		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1841					   log);
1842		if (err)
1843			goto free_newmask;
1844	}
1845
1846	if (!match_validate(match, key_attrs, mask_attrs, log))
1847		err = -EINVAL;
1848
1849free_newmask:
1850	kfree(newmask);
1851	return err;
1852}
1853
1854static size_t get_ufid_len(const struct nlattr *attr, bool log)
1855{
1856	size_t len;
1857
1858	if (!attr)
1859		return 0;
1860
1861	len = nla_len(attr);
1862	if (len < 1 || len > MAX_UFID_LENGTH) {
1863		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1864			  nla_len(attr), MAX_UFID_LENGTH);
1865		return 0;
1866	}
1867
1868	return len;
1869}
1870
1871/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1872 * or false otherwise.
1873 */
1874bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1875		      bool log)
1876{
1877	sfid->ufid_len = get_ufid_len(attr, log);
1878	if (sfid->ufid_len)
1879		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1880
1881	return sfid->ufid_len;
1882}
1883
1884int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1885			   const struct sw_flow_key *key, bool log)
1886{
1887	struct sw_flow_key *new_key;
1888
1889	if (ovs_nla_get_ufid(sfid, ufid, log))
1890		return 0;
1891
1892	/* If UFID was not provided, use unmasked key. */
1893	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1894	if (!new_key)
1895		return -ENOMEM;
1896	memcpy(new_key, key, sizeof(*key));
1897	sfid->unmasked_key = new_key;
1898
1899	return 0;
1900}
1901
1902u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1903{
1904	return attr ? nla_get_u32(attr) : 0;
1905}
1906
1907/**
1908 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1909 * @net: Network namespace.
1910 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1911 * metadata.
1912 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1913 * attributes.
1914 * @attrs: Bit mask for the netlink attributes included in @a.
1915 * @log: Boolean to allow kernel error logging.  Normally true, but when
1916 * probing for feature compatibility this should be passed in as false to
1917 * suppress unnecessary error logging.
1918 *
1919 * This parses a series of Netlink attributes that form a flow key, which must
1920 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1921 * get the metadata, that is, the parts of the flow key that cannot be
1922 * extracted from the packet itself.
1923 *
1924 * This must be called before the packet key fields are filled in 'key'.
1925 */
1926
1927int ovs_nla_get_flow_metadata(struct net *net,
1928			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1929			      u64 attrs, struct sw_flow_key *key, bool log)
1930{
 
1931	struct sw_flow_match match;
 
 
 
 
 
 
1932
1933	memset(&match, 0, sizeof(match));
1934	match.key = key;
1935
1936	key->ct_state = 0;
1937	key->ct_zone = 0;
1938	key->ct_orig_proto = 0;
1939	memset(&key->ct, 0, sizeof(key->ct));
1940	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1941	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1942
1943	key->phy.in_port = DP_MAX_PORTS;
1944
1945	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1946}
1947
1948static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1949			    bool is_mask)
1950{
1951	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1952
1953	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1954	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1955		return -EMSGSIZE;
1956	return 0;
1957}
1958
1959static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1960			     struct sk_buff *skb)
1961{
1962	struct nlattr *start;
1963
1964	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1965	if (!start)
1966		return -EMSGSIZE;
1967
1968	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1969		goto nla_put_failure;
1970
1971	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1972		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1973			    sizeof(nsh->context), nsh->context))
1974			goto nla_put_failure;
1975	}
1976
1977	/* Don't support MD type 2 yet */
1978
1979	nla_nest_end(skb, start);
1980
1981	return 0;
1982
1983nla_put_failure:
1984	return -EMSGSIZE;
1985}
1986
1987static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1988			     const struct sw_flow_key *output, bool is_mask,
1989			     struct sk_buff *skb)
1990{
1991	struct ovs_key_ethernet *eth_key;
1992	struct nlattr *nla;
1993	struct nlattr *encap = NULL;
1994	struct nlattr *in_encap = NULL;
1995
1996	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1997		goto nla_put_failure;
1998
1999	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2000		goto nla_put_failure;
2001
2002	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2003		goto nla_put_failure;
2004
2005	if ((swkey->tun_proto || is_mask)) {
2006		const void *opts = NULL;
2007
2008		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2009			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2010
2011		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2012				     swkey->tun_opts_len, swkey->tun_proto, 0))
2013			goto nla_put_failure;
2014	}
2015
2016	if (swkey->phy.in_port == DP_MAX_PORTS) {
2017		if (is_mask && (output->phy.in_port == 0xffff))
2018			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2019				goto nla_put_failure;
2020	} else {
2021		u16 upper_u16;
2022		upper_u16 = !is_mask ? 0 : 0xffff;
2023
2024		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2025				(upper_u16 << 16) | output->phy.in_port))
2026			goto nla_put_failure;
2027	}
2028
2029	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2030		goto nla_put_failure;
2031
2032	if (ovs_ct_put_key(swkey, output, skb))
2033		goto nla_put_failure;
2034
2035	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2036		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2037		if (!nla)
2038			goto nla_put_failure;
2039
2040		eth_key = nla_data(nla);
2041		ether_addr_copy(eth_key->eth_src, output->eth.src);
2042		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2043
2044		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2045			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2046				goto nla_put_failure;
2047			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2048			if (!swkey->eth.vlan.tci)
2049				goto unencap;
2050
2051			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2052				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2053					goto nla_put_failure;
2054				in_encap = nla_nest_start_noflag(skb,
2055								 OVS_KEY_ATTR_ENCAP);
2056				if (!swkey->eth.cvlan.tci)
2057					goto unencap;
2058			}
2059		}
2060
2061		if (swkey->eth.type == htons(ETH_P_802_2)) {
2062			/*
2063			* Ethertype 802.2 is represented in the netlink with omitted
2064			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2065			* 0xffff in the mask attribute.  Ethertype can also
2066			* be wildcarded.
2067			*/
2068			if (is_mask && output->eth.type)
2069				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2070							output->eth.type))
2071					goto nla_put_failure;
2072			goto unencap;
2073		}
2074	}
2075
2076	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2077		goto nla_put_failure;
2078
2079	if (eth_type_vlan(swkey->eth.type)) {
2080		/* There are 3 VLAN tags, we don't know anything about the rest
2081		 * of the packet, so truncate here.
2082		 */
2083		WARN_ON_ONCE(!(encap && in_encap));
2084		goto unencap;
2085	}
2086
2087	if (swkey->eth.type == htons(ETH_P_IP)) {
2088		struct ovs_key_ipv4 *ipv4_key;
2089
2090		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2091		if (!nla)
2092			goto nla_put_failure;
2093		ipv4_key = nla_data(nla);
2094		ipv4_key->ipv4_src = output->ipv4.addr.src;
2095		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2096		ipv4_key->ipv4_proto = output->ip.proto;
2097		ipv4_key->ipv4_tos = output->ip.tos;
2098		ipv4_key->ipv4_ttl = output->ip.ttl;
2099		ipv4_key->ipv4_frag = output->ip.frag;
2100	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2101		struct ovs_key_ipv6 *ipv6_key;
2102
2103		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2104		if (!nla)
2105			goto nla_put_failure;
2106		ipv6_key = nla_data(nla);
2107		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2108				sizeof(ipv6_key->ipv6_src));
2109		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2110				sizeof(ipv6_key->ipv6_dst));
2111		ipv6_key->ipv6_label = output->ipv6.label;
2112		ipv6_key->ipv6_proto = output->ip.proto;
2113		ipv6_key->ipv6_tclass = output->ip.tos;
2114		ipv6_key->ipv6_hlimit = output->ip.ttl;
2115		ipv6_key->ipv6_frag = output->ip.frag;
2116	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2117		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2118			goto nla_put_failure;
2119	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2120		   swkey->eth.type == htons(ETH_P_RARP)) {
2121		struct ovs_key_arp *arp_key;
2122
2123		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2124		if (!nla)
2125			goto nla_put_failure;
2126		arp_key = nla_data(nla);
2127		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2128		arp_key->arp_sip = output->ipv4.addr.src;
2129		arp_key->arp_tip = output->ipv4.addr.dst;
2130		arp_key->arp_op = htons(output->ip.proto);
2131		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2132		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2133	} else if (eth_p_mpls(swkey->eth.type)) {
2134		u8 i, num_labels;
2135		struct ovs_key_mpls *mpls_key;
2136
2137		num_labels = hweight_long(output->mpls.num_labels_mask);
2138		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2139				  num_labels * sizeof(*mpls_key));
2140		if (!nla)
2141			goto nla_put_failure;
2142
2143		mpls_key = nla_data(nla);
2144		for (i = 0; i < num_labels; i++)
2145			mpls_key[i].mpls_lse = output->mpls.lse[i];
2146	}
2147
2148	if ((swkey->eth.type == htons(ETH_P_IP) ||
2149	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2150	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2151
2152		if (swkey->ip.proto == IPPROTO_TCP) {
2153			struct ovs_key_tcp *tcp_key;
2154
2155			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2156			if (!nla)
2157				goto nla_put_failure;
2158			tcp_key = nla_data(nla);
2159			tcp_key->tcp_src = output->tp.src;
2160			tcp_key->tcp_dst = output->tp.dst;
2161			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2162					 output->tp.flags))
2163				goto nla_put_failure;
2164		} else if (swkey->ip.proto == IPPROTO_UDP) {
2165			struct ovs_key_udp *udp_key;
2166
2167			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2168			if (!nla)
2169				goto nla_put_failure;
2170			udp_key = nla_data(nla);
2171			udp_key->udp_src = output->tp.src;
2172			udp_key->udp_dst = output->tp.dst;
2173		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2174			struct ovs_key_sctp *sctp_key;
2175
2176			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2177			if (!nla)
2178				goto nla_put_failure;
2179			sctp_key = nla_data(nla);
2180			sctp_key->sctp_src = output->tp.src;
2181			sctp_key->sctp_dst = output->tp.dst;
2182		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2183			   swkey->ip.proto == IPPROTO_ICMP) {
2184			struct ovs_key_icmp *icmp_key;
2185
2186			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2187			if (!nla)
2188				goto nla_put_failure;
2189			icmp_key = nla_data(nla);
2190			icmp_key->icmp_type = ntohs(output->tp.src);
2191			icmp_key->icmp_code = ntohs(output->tp.dst);
2192		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2193			   swkey->ip.proto == IPPROTO_ICMPV6) {
2194			struct ovs_key_icmpv6 *icmpv6_key;
2195
2196			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2197						sizeof(*icmpv6_key));
2198			if (!nla)
2199				goto nla_put_failure;
2200			icmpv6_key = nla_data(nla);
2201			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2202			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2203
2204			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2205			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2206				struct ovs_key_nd *nd_key;
2207
2208				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2209				if (!nla)
2210					goto nla_put_failure;
2211				nd_key = nla_data(nla);
2212				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2213							sizeof(nd_key->nd_target));
2214				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2215				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2216			}
2217		}
2218	}
2219
2220unencap:
2221	if (in_encap)
2222		nla_nest_end(skb, in_encap);
2223	if (encap)
2224		nla_nest_end(skb, encap);
2225
2226	return 0;
2227
2228nla_put_failure:
2229	return -EMSGSIZE;
2230}
2231
2232int ovs_nla_put_key(const struct sw_flow_key *swkey,
2233		    const struct sw_flow_key *output, int attr, bool is_mask,
2234		    struct sk_buff *skb)
2235{
2236	int err;
2237	struct nlattr *nla;
2238
2239	nla = nla_nest_start_noflag(skb, attr);
2240	if (!nla)
2241		return -EMSGSIZE;
2242	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2243	if (err)
2244		return err;
2245	nla_nest_end(skb, nla);
2246
2247	return 0;
2248}
2249
2250/* Called with ovs_mutex or RCU read lock. */
2251int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2252{
2253	if (ovs_identifier_is_ufid(&flow->id))
2254		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2255			       flow->id.ufid);
2256
2257	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2258			       OVS_FLOW_ATTR_KEY, false, skb);
2259}
2260
2261/* Called with ovs_mutex or RCU read lock. */
2262int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2263{
2264	return ovs_nla_put_key(&flow->key, &flow->key,
2265				OVS_FLOW_ATTR_KEY, false, skb);
2266}
2267
2268/* Called with ovs_mutex or RCU read lock. */
2269int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2270{
2271	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2272				OVS_FLOW_ATTR_MASK, true, skb);
2273}
2274
2275#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2276
2277static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2278{
2279	struct sw_flow_actions *sfa;
2280
2281	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
 
 
 
2282
2283	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2284	if (!sfa)
2285		return ERR_PTR(-ENOMEM);
2286
2287	sfa->actions_len = 0;
2288	return sfa;
2289}
2290
2291static void ovs_nla_free_set_action(const struct nlattr *a)
2292{
2293	const struct nlattr *ovs_key = nla_data(a);
2294	struct ovs_tunnel_info *ovs_tun;
2295
2296	switch (nla_type(ovs_key)) {
2297	case OVS_KEY_ATTR_TUNNEL_INFO:
2298		ovs_tun = nla_data(ovs_key);
2299		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2300		break;
2301	}
2302}
2303
2304void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2305{
2306	const struct nlattr *a;
2307	int rem;
2308
2309	if (!sf_acts)
2310		return;
2311
2312	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2313		switch (nla_type(a)) {
2314		case OVS_ACTION_ATTR_SET:
2315			ovs_nla_free_set_action(a);
2316			break;
2317		case OVS_ACTION_ATTR_CT:
2318			ovs_ct_free_action(a);
2319			break;
2320		}
2321	}
2322
2323	kfree(sf_acts);
2324}
2325
2326static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2327{
2328	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2329}
2330
2331/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2332 * The caller must hold rcu_read_lock for this to be sensible. */
2333void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2334{
2335	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2336}
2337
2338static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2339				       int attr_len, bool log)
2340{
2341
2342	struct sw_flow_actions *acts;
2343	int new_acts_size;
2344	size_t req_size = NLA_ALIGN(attr_len);
2345	int next_offset = offsetof(struct sw_flow_actions, actions) +
2346					(*sfa)->actions_len;
2347
2348	if (req_size <= (ksize(*sfa) - next_offset))
2349		goto out;
2350
2351	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2352
2353	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2354		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2355			OVS_NLERR(log, "Flow action size exceeds max %u",
2356				  MAX_ACTIONS_BUFSIZE);
2357			return ERR_PTR(-EMSGSIZE);
2358		}
2359		new_acts_size = MAX_ACTIONS_BUFSIZE;
2360	}
2361
2362	acts = nla_alloc_flow_actions(new_acts_size);
2363	if (IS_ERR(acts))
2364		return (void *)acts;
2365
2366	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2367	acts->actions_len = (*sfa)->actions_len;
2368	acts->orig_len = (*sfa)->orig_len;
2369	kfree(*sfa);
2370	*sfa = acts;
2371
2372out:
2373	(*sfa)->actions_len += req_size;
2374	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2375}
2376
2377static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2378				   int attrtype, void *data, int len, bool log)
2379{
2380	struct nlattr *a;
2381
2382	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2383	if (IS_ERR(a))
2384		return a;
2385
2386	a->nla_type = attrtype;
2387	a->nla_len = nla_attr_size(len);
2388
2389	if (data)
2390		memcpy(nla_data(a), data, len);
2391	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2392
2393	return a;
2394}
2395
2396int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2397		       int len, bool log)
2398{
2399	struct nlattr *a;
2400
2401	a = __add_action(sfa, attrtype, data, len, log);
2402
2403	return PTR_ERR_OR_ZERO(a);
2404}
2405
2406static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2407					  int attrtype, bool log)
2408{
2409	int used = (*sfa)->actions_len;
2410	int err;
2411
2412	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2413	if (err)
2414		return err;
2415
2416	return used;
2417}
2418
2419static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2420					 int st_offset)
2421{
2422	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2423							       st_offset);
2424
2425	a->nla_len = sfa->actions_len - st_offset;
2426}
2427
2428static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2429				  const struct sw_flow_key *key,
2430				  struct sw_flow_actions **sfa,
2431				  __be16 eth_type, __be16 vlan_tci,
2432				  u32 mpls_label_count, bool log);
2433
2434static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2435				    const struct sw_flow_key *key,
2436				    struct sw_flow_actions **sfa,
2437				    __be16 eth_type, __be16 vlan_tci,
2438				    u32 mpls_label_count, bool log, bool last)
2439{
2440	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2441	const struct nlattr *probability, *actions;
2442	const struct nlattr *a;
2443	int rem, start, err;
2444	struct sample_arg arg;
2445
2446	memset(attrs, 0, sizeof(attrs));
2447	nla_for_each_nested(a, attr, rem) {
2448		int type = nla_type(a);
2449		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2450			return -EINVAL;
2451		attrs[type] = a;
2452	}
2453	if (rem)
2454		return -EINVAL;
2455
2456	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2457	if (!probability || nla_len(probability) != sizeof(u32))
2458		return -EINVAL;
2459
2460	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2461	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2462		return -EINVAL;
2463
2464	/* validation done, copy sample action. */
2465	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2466	if (start < 0)
2467		return start;
2468
2469	/* When both skb and flow may be changed, put the sample
2470	 * into a deferred fifo. On the other hand, if only skb
2471	 * may be modified, the actions can be executed in place.
2472	 *
2473	 * Do this analysis at the flow installation time.
2474	 * Set 'clone_action->exec' to true if the actions can be
2475	 * executed without being deferred.
2476	 *
2477	 * If the sample is the last action, it can always be excuted
2478	 * rather than deferred.
2479	 */
2480	arg.exec = last || !actions_may_change_flow(actions);
2481	arg.probability = nla_get_u32(probability);
2482
2483	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2484				 log);
2485	if (err)
2486		return err;
2487
2488	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2489				     eth_type, vlan_tci, mpls_label_count, log);
2490
2491	if (err)
2492		return err;
2493
2494	add_nested_action_end(*sfa, start);
2495
2496	return 0;
2497}
2498
2499static int validate_and_copy_dec_ttl(struct net *net,
2500				     const struct nlattr *attr,
2501				     const struct sw_flow_key *key,
2502				     struct sw_flow_actions **sfa,
2503				     __be16 eth_type, __be16 vlan_tci,
2504				     u32 mpls_label_count, bool log)
2505{
2506	int start, err;
2507	u32 nested = true;
2508
2509	if (!nla_len(attr))
2510		return ovs_nla_add_action(sfa, OVS_ACTION_ATTR_DEC_TTL,
2511					  NULL, 0, log);
2512
2513	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2514	if (start < 0)
2515		return start;
2516
2517	err = ovs_nla_add_action(sfa, OVS_DEC_TTL_ATTR_ACTION, &nested,
2518				 sizeof(nested), log);
2519
2520	if (err)
2521		return err;
2522
2523	err = __ovs_nla_copy_actions(net, attr, key, sfa, eth_type,
2524				     vlan_tci, mpls_label_count, log);
2525	if (err)
2526		return err;
2527
2528	add_nested_action_end(*sfa, start);
2529	return 0;
2530}
2531
2532static int validate_and_copy_clone(struct net *net,
2533				   const struct nlattr *attr,
2534				   const struct sw_flow_key *key,
2535				   struct sw_flow_actions **sfa,
2536				   __be16 eth_type, __be16 vlan_tci,
2537				   u32 mpls_label_count, bool log, bool last)
2538{
2539	int start, err;
2540	u32 exec;
2541
2542	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2543		return -EINVAL;
2544
2545	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2546	if (start < 0)
2547		return start;
2548
2549	exec = last || !actions_may_change_flow(attr);
2550
2551	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2552				 sizeof(exec), log);
2553	if (err)
2554		return err;
 
 
 
2555
2556	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2557				     eth_type, vlan_tci, mpls_label_count, log);
2558	if (err)
2559		return err;
2560
 
2561	add_nested_action_end(*sfa, start);
2562
2563	return 0;
2564}
2565
2566void ovs_match_init(struct sw_flow_match *match,
2567		    struct sw_flow_key *key,
2568		    bool reset_key,
2569		    struct sw_flow_mask *mask)
2570{
2571	memset(match, 0, sizeof(*match));
2572	match->key = key;
2573	match->mask = mask;
2574
2575	if (reset_key)
2576		memset(key, 0, sizeof(*key));
2577
2578	if (mask) {
2579		memset(&mask->key, 0, sizeof(mask->key));
2580		mask->range.start = mask->range.end = 0;
2581	}
2582}
2583
2584static int validate_geneve_opts(struct sw_flow_key *key)
2585{
2586	struct geneve_opt *option;
2587	int opts_len = key->tun_opts_len;
2588	bool crit_opt = false;
2589
2590	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2591	while (opts_len > 0) {
2592		int len;
2593
2594		if (opts_len < sizeof(*option))
2595			return -EINVAL;
2596
2597		len = sizeof(*option) + option->length * 4;
2598		if (len > opts_len)
2599			return -EINVAL;
2600
2601		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2602
2603		option = (struct geneve_opt *)((u8 *)option + len);
2604		opts_len -= len;
2605	}
2606
2607	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2608
2609	return 0;
2610}
2611
2612static int validate_and_copy_set_tun(const struct nlattr *attr,
2613				     struct sw_flow_actions **sfa, bool log)
2614{
2615	struct sw_flow_match match;
2616	struct sw_flow_key key;
2617	struct metadata_dst *tun_dst;
2618	struct ip_tunnel_info *tun_info;
2619	struct ovs_tunnel_info *ovs_tun;
2620	struct nlattr *a;
2621	int err = 0, start, opts_type;
2622	__be16 dst_opt_type;
2623
2624	dst_opt_type = 0;
2625	ovs_match_init(&match, &key, true, NULL);
2626	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2627	if (opts_type < 0)
2628		return opts_type;
2629
2630	if (key.tun_opts_len) {
2631		switch (opts_type) {
2632		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2633			err = validate_geneve_opts(&key);
2634			if (err < 0)
2635				return err;
2636			dst_opt_type = TUNNEL_GENEVE_OPT;
2637			break;
2638		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2639			dst_opt_type = TUNNEL_VXLAN_OPT;
2640			break;
2641		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2642			dst_opt_type = TUNNEL_ERSPAN_OPT;
2643			break;
2644		}
2645	}
2646
2647	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2648	if (start < 0)
2649		return start;
2650
2651	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2652				     GFP_KERNEL);
2653
2654	if (!tun_dst)
2655		return -ENOMEM;
2656
2657	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2658	if (err) {
2659		dst_release((struct dst_entry *)tun_dst);
2660		return err;
2661	}
2662
2663	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2664			 sizeof(*ovs_tun), log);
2665	if (IS_ERR(a)) {
2666		dst_release((struct dst_entry *)tun_dst);
2667		return PTR_ERR(a);
2668	}
2669
2670	ovs_tun = nla_data(a);
2671	ovs_tun->tun_dst = tun_dst;
2672
2673	tun_info = &tun_dst->u.tun_info;
2674	tun_info->mode = IP_TUNNEL_INFO_TX;
2675	if (key.tun_proto == AF_INET6)
2676		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2677	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2678		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2679	tun_info->key = key.tun_key;
2680
2681	/* We need to store the options in the action itself since
2682	 * everything else will go away after flow setup. We can append
2683	 * it to tun_info and then point there.
2684	 */
2685	ip_tunnel_info_opts_set(tun_info,
2686				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2687				key.tun_opts_len, dst_opt_type);
2688	add_nested_action_end(*sfa, start);
2689
2690	return err;
2691}
2692
2693static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2694			 bool is_push_nsh, bool log)
2695{
2696	struct sw_flow_match match;
2697	struct sw_flow_key key;
2698	int ret = 0;
2699
2700	ovs_match_init(&match, &key, true, NULL);
2701	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2702				      is_push_nsh, log);
2703	return !ret;
2704}
2705
2706/* Return false if there are any non-masked bits set.
2707 * Mask follows data immediately, before any netlink padding.
2708 */
2709static bool validate_masked(u8 *data, int len)
2710{
2711	u8 *mask = data + len;
2712
2713	while (len--)
2714		if (*data++ & ~*mask++)
2715			return false;
2716
2717	return true;
2718}
2719
2720static int validate_set(const struct nlattr *a,
2721			const struct sw_flow_key *flow_key,
2722			struct sw_flow_actions **sfa, bool *skip_copy,
2723			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2724{
2725	const struct nlattr *ovs_key = nla_data(a);
2726	int key_type = nla_type(ovs_key);
2727	size_t key_len;
2728
2729	/* There can be only one key in a action */
2730	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2731		return -EINVAL;
2732
2733	key_len = nla_len(ovs_key);
2734	if (masked)
2735		key_len /= 2;
2736
2737	if (key_type > OVS_KEY_ATTR_MAX ||
2738	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2739		return -EINVAL;
2740
2741	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2742		return -EINVAL;
2743
2744	switch (key_type) {
 
 
 
 
2745	case OVS_KEY_ATTR_PRIORITY:
2746	case OVS_KEY_ATTR_SKB_MARK:
2747	case OVS_KEY_ATTR_CT_MARK:
2748	case OVS_KEY_ATTR_CT_LABELS:
2749		break;
2750
2751	case OVS_KEY_ATTR_ETHERNET:
2752		if (mac_proto != MAC_PROTO_ETHERNET)
2753			return -EINVAL;
2754		break;
2755
2756	case OVS_KEY_ATTR_TUNNEL: {
2757		int err;
2758
2759		if (masked)
2760			return -EINVAL; /* Masked tunnel set not supported. */
2761
2762		*skip_copy = true;
2763		err = validate_and_copy_set_tun(a, sfa, log);
2764		if (err)
2765			return err;
2766		break;
2767	}
2768	case OVS_KEY_ATTR_IPV4: {
2769		const struct ovs_key_ipv4 *ipv4_key;
2770
 
2771		if (eth_type != htons(ETH_P_IP))
2772			return -EINVAL;
2773
2774		ipv4_key = nla_data(ovs_key);
2775
2776		if (masked) {
2777			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2778
2779			/* Non-writeable fields. */
2780			if (mask->ipv4_proto || mask->ipv4_frag)
2781				return -EINVAL;
2782		} else {
2783			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2784				return -EINVAL;
2785
2786			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2787				return -EINVAL;
2788		}
2789		break;
2790	}
2791	case OVS_KEY_ATTR_IPV6: {
2792		const struct ovs_key_ipv6 *ipv6_key;
2793
 
2794		if (eth_type != htons(ETH_P_IPV6))
2795			return -EINVAL;
2796
2797		ipv6_key = nla_data(ovs_key);
2798
2799		if (masked) {
2800			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2801
2802			/* Non-writeable fields. */
2803			if (mask->ipv6_proto || mask->ipv6_frag)
2804				return -EINVAL;
2805
2806			/* Invalid bits in the flow label mask? */
2807			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2808				return -EINVAL;
2809		} else {
2810			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2811				return -EINVAL;
2812
2813			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2814				return -EINVAL;
2815		}
2816		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2817			return -EINVAL;
2818
2819		break;
2820	}
2821	case OVS_KEY_ATTR_TCP:
2822		if ((eth_type != htons(ETH_P_IP) &&
2823		     eth_type != htons(ETH_P_IPV6)) ||
2824		    flow_key->ip.proto != IPPROTO_TCP)
2825			return -EINVAL;
2826
2827		break;
2828
2829	case OVS_KEY_ATTR_UDP:
2830		if ((eth_type != htons(ETH_P_IP) &&
2831		     eth_type != htons(ETH_P_IPV6)) ||
2832		    flow_key->ip.proto != IPPROTO_UDP)
2833			return -EINVAL;
2834
2835		break;
2836
2837	case OVS_KEY_ATTR_MPLS:
2838		if (!eth_p_mpls(eth_type))
2839			return -EINVAL;
2840		break;
2841
2842	case OVS_KEY_ATTR_SCTP:
2843		if ((eth_type != htons(ETH_P_IP) &&
2844		     eth_type != htons(ETH_P_IPV6)) ||
2845		    flow_key->ip.proto != IPPROTO_SCTP)
2846			return -EINVAL;
2847
2848		break;
2849
2850	case OVS_KEY_ATTR_NSH:
2851		if (eth_type != htons(ETH_P_NSH))
2852			return -EINVAL;
2853		if (!validate_nsh(nla_data(a), masked, false, log))
2854			return -EINVAL;
2855		break;
2856
2857	default:
2858		return -EINVAL;
2859	}
2860
2861	/* Convert non-masked non-tunnel set actions to masked set actions. */
2862	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2863		int start, len = key_len * 2;
2864		struct nlattr *at;
2865
2866		*skip_copy = true;
2867
2868		start = add_nested_action_start(sfa,
2869						OVS_ACTION_ATTR_SET_TO_MASKED,
2870						log);
2871		if (start < 0)
2872			return start;
2873
2874		at = __add_action(sfa, key_type, NULL, len, log);
2875		if (IS_ERR(at))
2876			return PTR_ERR(at);
2877
2878		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2879		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2880		/* Clear non-writeable bits from otherwise writeable fields. */
2881		if (key_type == OVS_KEY_ATTR_IPV6) {
2882			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2883
2884			mask->ipv6_label &= htonl(0x000FFFFF);
2885		}
2886		add_nested_action_end(*sfa, start);
2887	}
2888
2889	return 0;
2890}
2891
2892static int validate_userspace(const struct nlattr *attr)
2893{
2894	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2895		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2896		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2897		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2898	};
2899	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2900	int error;
2901
2902	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2903					    userspace_policy, NULL);
2904	if (error)
2905		return error;
2906
2907	if (!a[OVS_USERSPACE_ATTR_PID] ||
2908	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2909		return -EINVAL;
2910
2911	return 0;
2912}
2913
2914static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2915	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2916	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2917	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2918};
2919
2920static int validate_and_copy_check_pkt_len(struct net *net,
2921					   const struct nlattr *attr,
2922					   const struct sw_flow_key *key,
2923					   struct sw_flow_actions **sfa,
2924					   __be16 eth_type, __be16 vlan_tci,
2925					   u32 mpls_label_count,
2926					   bool log, bool last)
2927{
2928	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2929	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2930	struct check_pkt_len_arg arg;
2931	int nested_acts_start;
2932	int start, err;
2933
2934	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2935					  nla_data(attr), nla_len(attr),
2936					  cpl_policy, NULL);
2937	if (err)
2938		return err;
2939
2940	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2941	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2942		return -EINVAL;
2943
2944	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2945	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2946
2947	/* Both the nested action should be present. */
2948	if (!acts_if_greater || !acts_if_lesser_eq)
2949		return -EINVAL;
2950
2951	/* validation done, copy the nested actions. */
2952	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2953					log);
2954	if (start < 0)
2955		return start;
2956
2957	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2958	arg.exec_for_lesser_equal =
2959		last || !actions_may_change_flow(acts_if_lesser_eq);
2960	arg.exec_for_greater =
2961		last || !actions_may_change_flow(acts_if_greater);
2962
2963	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2964				 sizeof(arg), log);
2965	if (err)
2966		return err;
2967
2968	nested_acts_start = add_nested_action_start(sfa,
2969		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2970	if (nested_acts_start < 0)
2971		return nested_acts_start;
2972
2973	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2974				     eth_type, vlan_tci, mpls_label_count, log);
2975
2976	if (err)
2977		return err;
2978
2979	add_nested_action_end(*sfa, nested_acts_start);
2980
2981	nested_acts_start = add_nested_action_start(sfa,
2982		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
2983	if (nested_acts_start < 0)
2984		return nested_acts_start;
2985
2986	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
2987				     eth_type, vlan_tci, mpls_label_count, log);
2988
2989	if (err)
2990		return err;
2991
2992	add_nested_action_end(*sfa, nested_acts_start);
2993	add_nested_action_end(*sfa, start);
2994	return 0;
2995}
2996
2997static int copy_action(const struct nlattr *from,
2998		       struct sw_flow_actions **sfa, bool log)
2999{
3000	int totlen = NLA_ALIGN(from->nla_len);
3001	struct nlattr *to;
3002
3003	to = reserve_sfa_size(sfa, from->nla_len, log);
3004	if (IS_ERR(to))
3005		return PTR_ERR(to);
3006
3007	memcpy(to, from, totlen);
3008	return 0;
3009}
3010
3011static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3012				  const struct sw_flow_key *key,
3013				  struct sw_flow_actions **sfa,
3014				  __be16 eth_type, __be16 vlan_tci,
3015				  u32 mpls_label_count, bool log)
3016{
3017	u8 mac_proto = ovs_key_mac_proto(key);
3018	const struct nlattr *a;
3019	int rem, err;
3020
 
 
 
3021	nla_for_each_nested(a, attr, rem) {
3022		/* Expected argument lengths, (u32)-1 for variable length. */
3023		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3024			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3025			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3026			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3027			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3028			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3029			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3030			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3031			[OVS_ACTION_ATTR_SET] = (u32)-1,
3032			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3033			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3034			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3035			[OVS_ACTION_ATTR_CT] = (u32)-1,
3036			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3037			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3038			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3039			[OVS_ACTION_ATTR_POP_ETH] = 0,
3040			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3041			[OVS_ACTION_ATTR_POP_NSH] = 0,
3042			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3043			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3044			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3045			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3046			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3047		};
3048		const struct ovs_action_push_vlan *vlan;
3049		int type = nla_type(a);
3050		bool skip_copy;
3051
3052		if (type > OVS_ACTION_ATTR_MAX ||
3053		    (action_lens[type] != nla_len(a) &&
3054		     action_lens[type] != (u32)-1))
3055			return -EINVAL;
3056
3057		skip_copy = false;
3058		switch (type) {
3059		case OVS_ACTION_ATTR_UNSPEC:
3060			return -EINVAL;
3061
3062		case OVS_ACTION_ATTR_USERSPACE:
3063			err = validate_userspace(a);
3064			if (err)
3065				return err;
3066			break;
3067
3068		case OVS_ACTION_ATTR_OUTPUT:
3069			if (nla_get_u32(a) >= DP_MAX_PORTS)
3070				return -EINVAL;
3071			break;
3072
3073		case OVS_ACTION_ATTR_TRUNC: {
3074			const struct ovs_action_trunc *trunc = nla_data(a);
3075
3076			if (trunc->max_len < ETH_HLEN)
3077				return -EINVAL;
3078			break;
3079		}
3080
3081		case OVS_ACTION_ATTR_HASH: {
3082			const struct ovs_action_hash *act_hash = nla_data(a);
3083
3084			switch (act_hash->hash_alg) {
3085			case OVS_HASH_ALG_L4:
3086				break;
3087			default:
3088				return  -EINVAL;
3089			}
3090
3091			break;
3092		}
3093
3094		case OVS_ACTION_ATTR_POP_VLAN:
3095			if (mac_proto != MAC_PROTO_ETHERNET)
3096				return -EINVAL;
3097			vlan_tci = htons(0);
3098			break;
3099
3100		case OVS_ACTION_ATTR_PUSH_VLAN:
3101			if (mac_proto != MAC_PROTO_ETHERNET)
3102				return -EINVAL;
3103			vlan = nla_data(a);
3104			if (!eth_type_vlan(vlan->vlan_tpid))
3105				return -EINVAL;
3106			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3107				return -EINVAL;
3108			vlan_tci = vlan->vlan_tci;
3109			break;
3110
3111		case OVS_ACTION_ATTR_RECIRC:
3112			break;
3113
3114		case OVS_ACTION_ATTR_ADD_MPLS: {
3115			const struct ovs_action_add_mpls *mpls = nla_data(a);
3116
3117			if (!eth_p_mpls(mpls->mpls_ethertype))
3118				return -EINVAL;
3119
3120			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3121				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3122				    (eth_type != htons(ETH_P_IP) &&
3123				     eth_type != htons(ETH_P_IPV6) &&
3124				     eth_type != htons(ETH_P_ARP) &&
3125				     eth_type != htons(ETH_P_RARP) &&
3126				     !eth_p_mpls(eth_type)))
3127					return -EINVAL;
3128				mpls_label_count++;
3129			} else {
3130				if (mac_proto == MAC_PROTO_ETHERNET) {
3131					mpls_label_count = 1;
3132					mac_proto = MAC_PROTO_NONE;
3133				} else {
3134					mpls_label_count++;
3135				}
3136			}
3137			eth_type = mpls->mpls_ethertype;
3138			break;
3139		}
3140
3141		case OVS_ACTION_ATTR_PUSH_MPLS: {
3142			const struct ovs_action_push_mpls *mpls = nla_data(a);
3143
3144			if (!eth_p_mpls(mpls->mpls_ethertype))
3145				return -EINVAL;
3146			/* Prohibit push MPLS other than to a white list
3147			 * for packets that have a known tag order.
3148			 */
3149			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3150			    (eth_type != htons(ETH_P_IP) &&
3151			     eth_type != htons(ETH_P_IPV6) &&
3152			     eth_type != htons(ETH_P_ARP) &&
3153			     eth_type != htons(ETH_P_RARP) &&
3154			     !eth_p_mpls(eth_type)))
3155				return -EINVAL;
3156			eth_type = mpls->mpls_ethertype;
3157			mpls_label_count++;
3158			break;
3159		}
3160
3161		case OVS_ACTION_ATTR_POP_MPLS: {
3162			__be16  proto;
3163			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3164			    !eth_p_mpls(eth_type))
3165				return -EINVAL;
3166
3167			/* Disallow subsequent L2.5+ set actions and mpls_pop
3168			 * actions once the last MPLS label in the packet is
3169			 * is popped as there is no check here to ensure that
3170			 * the new eth type is valid and thus set actions could
3171			 * write off the end of the packet or otherwise corrupt
3172			 * it.
3173			 *
3174			 * Support for these actions is planned using packet
3175			 * recirculation.
3176			 */
3177			proto = nla_get_be16(a);
3178
3179			if (proto == htons(ETH_P_TEB) &&
3180			    mac_proto != MAC_PROTO_NONE)
3181				return -EINVAL;
3182
3183			mpls_label_count--;
3184
3185			if (!eth_p_mpls(proto) || !mpls_label_count)
3186				eth_type = htons(0);
3187			else
3188				eth_type =  proto;
3189
3190			break;
3191		}
3192
3193		case OVS_ACTION_ATTR_SET:
3194			err = validate_set(a, key, sfa,
3195					   &skip_copy, mac_proto, eth_type,
3196					   false, log);
3197			if (err)
3198				return err;
3199			break;
3200
3201		case OVS_ACTION_ATTR_SET_MASKED:
3202			err = validate_set(a, key, sfa,
3203					   &skip_copy, mac_proto, eth_type,
3204					   true, log);
3205			if (err)
3206				return err;
3207			break;
3208
3209		case OVS_ACTION_ATTR_SAMPLE: {
3210			bool last = nla_is_last(a, rem);
3211
3212			err = validate_and_copy_sample(net, a, key, sfa,
3213						       eth_type, vlan_tci,
3214						       mpls_label_count,
3215						       log, last);
3216			if (err)
3217				return err;
3218			skip_copy = true;
3219			break;
3220		}
3221
3222		case OVS_ACTION_ATTR_CT:
3223			err = ovs_ct_copy_action(net, a, key, sfa, log);
3224			if (err)
3225				return err;
3226			skip_copy = true;
3227			break;
3228
3229		case OVS_ACTION_ATTR_CT_CLEAR:
3230			break;
3231
3232		case OVS_ACTION_ATTR_PUSH_ETH:
3233			/* Disallow pushing an Ethernet header if one
3234			 * is already present */
3235			if (mac_proto != MAC_PROTO_NONE)
3236				return -EINVAL;
3237			mac_proto = MAC_PROTO_ETHERNET;
3238			break;
3239
3240		case OVS_ACTION_ATTR_POP_ETH:
3241			if (mac_proto != MAC_PROTO_ETHERNET)
3242				return -EINVAL;
3243			if (vlan_tci & htons(VLAN_CFI_MASK))
3244				return -EINVAL;
3245			mac_proto = MAC_PROTO_NONE;
3246			break;
3247
3248		case OVS_ACTION_ATTR_PUSH_NSH:
3249			if (mac_proto != MAC_PROTO_ETHERNET) {
3250				u8 next_proto;
3251
3252				next_proto = tun_p_from_eth_p(eth_type);
3253				if (!next_proto)
3254					return -EINVAL;
3255			}
3256			mac_proto = MAC_PROTO_NONE;
3257			if (!validate_nsh(nla_data(a), false, true, true))
3258				return -EINVAL;
3259			break;
3260
3261		case OVS_ACTION_ATTR_POP_NSH: {
3262			__be16 inner_proto;
3263
3264			if (eth_type != htons(ETH_P_NSH))
3265				return -EINVAL;
3266			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3267			if (!inner_proto)
3268				return -EINVAL;
3269			if (key->nsh.base.np == TUN_P_ETHERNET)
3270				mac_proto = MAC_PROTO_ETHERNET;
3271			else
3272				mac_proto = MAC_PROTO_NONE;
3273			break;
3274		}
3275
3276		case OVS_ACTION_ATTR_METER:
3277			/* Non-existent meters are simply ignored.  */
3278			break;
3279
3280		case OVS_ACTION_ATTR_CLONE: {
3281			bool last = nla_is_last(a, rem);
3282
3283			err = validate_and_copy_clone(net, a, key, sfa,
3284						      eth_type, vlan_tci,
3285						      mpls_label_count,
3286						      log, last);
3287			if (err)
3288				return err;
3289			skip_copy = true;
3290			break;
3291		}
3292
3293		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3294			bool last = nla_is_last(a, rem);
3295
3296			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3297							      eth_type,
3298							      vlan_tci,
3299							      mpls_label_count,
3300							      log, last);
3301			if (err)
3302				return err;
3303			skip_copy = true;
3304			break;
3305		}
3306
3307		case OVS_ACTION_ATTR_DEC_TTL:
3308			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3309							eth_type, vlan_tci,
3310							mpls_label_count, log);
3311			if (err)
3312				return err;
3313			skip_copy = true;
3314			break;
3315
3316		default:
3317			OVS_NLERR(log, "Unknown Action type %d", type);
3318			return -EINVAL;
3319		}
3320		if (!skip_copy) {
3321			err = copy_action(a, sfa, log);
3322			if (err)
3323				return err;
3324		}
3325	}
3326
3327	if (rem > 0)
3328		return -EINVAL;
3329
3330	return 0;
3331}
3332
3333/* 'key' must be the masked key. */
3334int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3335			 const struct sw_flow_key *key,
3336			 struct sw_flow_actions **sfa, bool log)
3337{
3338	int err;
3339	u32 mpls_label_count = 0;
3340
3341	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3342	if (IS_ERR(*sfa))
3343		return PTR_ERR(*sfa);
3344
3345	if (eth_p_mpls(key->eth.type))
3346		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3347
3348	(*sfa)->orig_len = nla_len(attr);
3349	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3350				     key->eth.vlan.tci, mpls_label_count, log);
3351	if (err)
3352		ovs_nla_free_flow_actions(*sfa);
3353
3354	return err;
3355}
3356
3357static int sample_action_to_attr(const struct nlattr *attr,
3358				 struct sk_buff *skb)
3359{
3360	struct nlattr *start, *ac_start = NULL, *sample_arg;
3361	int err = 0, rem = nla_len(attr);
3362	const struct sample_arg *arg;
3363	struct nlattr *actions;
3364
3365	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3366	if (!start)
3367		return -EMSGSIZE;
3368
3369	sample_arg = nla_data(attr);
3370	arg = nla_data(sample_arg);
3371	actions = nla_next(sample_arg, &rem);
3372
3373	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3374		err = -EMSGSIZE;
3375		goto out;
3376	}
3377
3378	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3379	if (!ac_start) {
3380		err = -EMSGSIZE;
3381		goto out;
3382	}
3383
3384	err = ovs_nla_put_actions(actions, rem, skb);
3385
3386out:
3387	if (err) {
3388		nla_nest_cancel(skb, ac_start);
3389		nla_nest_cancel(skb, start);
3390	} else {
3391		nla_nest_end(skb, ac_start);
3392		nla_nest_end(skb, start);
3393	}
3394
3395	return err;
3396}
3397
3398static int clone_action_to_attr(const struct nlattr *attr,
3399				struct sk_buff *skb)
3400{
 
3401	struct nlattr *start;
3402	int err = 0, rem = nla_len(attr);
3403
3404	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3405	if (!start)
3406		return -EMSGSIZE;
3407
3408	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
 
 
3409
3410	if (err)
3411		nla_nest_cancel(skb, start);
3412	else
3413		nla_nest_end(skb, start);
3414
3415	return err;
3416}
3417
3418static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3419					struct sk_buff *skb)
3420{
3421	struct nlattr *start, *ac_start = NULL;
3422	const struct check_pkt_len_arg *arg;
3423	const struct nlattr *a, *cpl_arg;
3424	int err = 0, rem = nla_len(attr);
3425
3426	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3427	if (!start)
3428		return -EMSGSIZE;
3429
3430	/* The first nested attribute in 'attr' is always
3431	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3432	 */
3433	cpl_arg = nla_data(attr);
3434	arg = nla_data(cpl_arg);
3435
3436	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3437		err = -EMSGSIZE;
3438		goto out;
3439	}
3440
3441	/* Second nested attribute in 'attr' is always
3442	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3443	 */
3444	a = nla_next(cpl_arg, &rem);
3445	ac_start =  nla_nest_start_noflag(skb,
3446					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3447	if (!ac_start) {
3448		err = -EMSGSIZE;
3449		goto out;
3450	}
3451
3452	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3453	if (err) {
3454		nla_nest_cancel(skb, ac_start);
3455		goto out;
3456	} else {
3457		nla_nest_end(skb, ac_start);
3458	}
3459
3460	/* Third nested attribute in 'attr' is always
3461	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3462	 */
3463	a = nla_next(a, &rem);
3464	ac_start =  nla_nest_start_noflag(skb,
3465					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3466	if (!ac_start) {
3467		err = -EMSGSIZE;
3468		goto out;
3469	}
3470
3471	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3472	if (err) {
3473		nla_nest_cancel(skb, ac_start);
3474		goto out;
3475	} else {
3476		nla_nest_end(skb, ac_start);
3477	}
3478
3479	nla_nest_end(skb, start);
3480	return 0;
3481
3482out:
3483	nla_nest_cancel(skb, start);
3484	return err;
3485}
3486
3487static int dec_ttl_action_to_attr(const struct nlattr *attr,
3488				  struct sk_buff *skb)
3489{
3490	int err = 0, rem = nla_len(attr);
3491	struct nlattr *start;
3492
3493	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3494
3495	if (!start)
3496		return -EMSGSIZE;
3497
3498	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
3499	if (err)
3500		nla_nest_cancel(skb, start);
3501	else
3502		nla_nest_end(skb, start);
3503
3504	return err;
3505}
3506
3507static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3508{
3509	const struct nlattr *ovs_key = nla_data(a);
3510	int key_type = nla_type(ovs_key);
3511	struct nlattr *start;
3512	int err;
3513
3514	switch (key_type) {
3515	case OVS_KEY_ATTR_TUNNEL_INFO: {
3516		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3517		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3518
3519		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3520		if (!start)
3521			return -EMSGSIZE;
3522
3523		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3524					ip_tunnel_info_opts(tun_info),
3525					tun_info->options_len,
3526					ip_tunnel_info_af(tun_info), tun_info->mode);
3527		if (err)
3528			return err;
3529		nla_nest_end(skb, start);
3530		break;
3531	}
3532	default:
3533		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3534			return -EMSGSIZE;
3535		break;
3536	}
3537
3538	return 0;
3539}
3540
3541static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3542						struct sk_buff *skb)
3543{
3544	const struct nlattr *ovs_key = nla_data(a);
3545	struct nlattr *nla;
3546	size_t key_len = nla_len(ovs_key) / 2;
3547
3548	/* Revert the conversion we did from a non-masked set action to
3549	 * masked set action.
3550	 */
3551	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3552	if (!nla)
3553		return -EMSGSIZE;
3554
3555	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3556		return -EMSGSIZE;
3557
3558	nla_nest_end(skb, nla);
3559	return 0;
3560}
3561
3562int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3563{
3564	const struct nlattr *a;
3565	int rem, err;
3566
3567	nla_for_each_attr(a, attr, len, rem) {
3568		int type = nla_type(a);
3569
3570		switch (type) {
3571		case OVS_ACTION_ATTR_SET:
3572			err = set_action_to_attr(a, skb);
3573			if (err)
3574				return err;
3575			break;
3576
3577		case OVS_ACTION_ATTR_SET_TO_MASKED:
3578			err = masked_set_action_to_set_action_attr(a, skb);
3579			if (err)
3580				return err;
3581			break;
3582
3583		case OVS_ACTION_ATTR_SAMPLE:
3584			err = sample_action_to_attr(a, skb);
3585			if (err)
3586				return err;
3587			break;
3588
3589		case OVS_ACTION_ATTR_CT:
3590			err = ovs_ct_action_to_attr(nla_data(a), skb);
3591			if (err)
3592				return err;
3593			break;
3594
3595		case OVS_ACTION_ATTR_CLONE:
3596			err = clone_action_to_attr(a, skb);
3597			if (err)
3598				return err;
3599			break;
3600
3601		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3602			err = check_pkt_len_action_to_attr(a, skb);
3603			if (err)
3604				return err;
3605			break;
3606
3607		case OVS_ACTION_ATTR_DEC_TTL:
3608			err = dec_ttl_action_to_attr(a, skb);
3609			if (err)
3610				return err;
3611			break;
3612
3613		default:
3614			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3615				return -EMSGSIZE;
3616			break;
3617		}
3618	}
3619
3620	return 0;
3621}