Loading...
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include <trace/events/writeback.h>
22#include "internal.h"
23
24/*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55static unsigned int i_hash_mask __read_mostly;
56static unsigned int i_hash_shift __read_mostly;
57static struct hlist_head *inode_hashtable __read_mostly;
58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60/*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64const struct address_space_operations empty_aops = {
65};
66EXPORT_SYMBOL(empty_aops);
67
68/*
69 * Statistics gathering..
70 */
71struct inodes_stat_t inodes_stat;
72
73static DEFINE_PER_CPU(unsigned long, nr_inodes);
74static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76static struct kmem_cache *inode_cachep __read_mostly;
77
78static long get_nr_inodes(void)
79{
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85}
86
87static inline long get_nr_inodes_unused(void)
88{
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94}
95
96long get_nr_dirty_inodes(void)
97{
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101}
102
103/*
104 * Handle nr_inode sysctl
105 */
106#ifdef CONFIG_SYSCTL
107int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109{
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113}
114#endif
115
116static int no_open(struct inode *inode, struct file *file)
117{
118 return -ENXIO;
119}
120
121/**
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129int inode_init_always(struct super_block *sb, struct inode *inode)
130{
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 if (sb->s_xattr)
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_dir_seq = 0;
157 inode->i_rdev = 0;
158 inode->dirtied_when = 0;
159
160#ifdef CONFIG_CGROUP_WRITEBACK
161 inode->i_wb_frn_winner = 0;
162 inode->i_wb_frn_avg_time = 0;
163 inode->i_wb_frn_history = 0;
164#endif
165
166 if (security_inode_alloc(inode))
167 goto out;
168 spin_lock_init(&inode->i_lock);
169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
170
171 init_rwsem(&inode->i_rwsem);
172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
173
174 atomic_set(&inode->i_dio_count, 0);
175
176 mapping->a_ops = &empty_aops;
177 mapping->host = inode;
178 mapping->flags = 0;
179 atomic_set(&mapping->i_mmap_writable, 0);
180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 mapping->private_data = NULL;
182 mapping->writeback_index = 0;
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186#ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188#endif
189
190#ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192#endif
193 inode->i_flctx = NULL;
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197out:
198 return -ENOMEM;
199}
200EXPORT_SYMBOL(inode_init_always);
201
202static struct inode *alloc_inode(struct super_block *sb)
203{
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223}
224
225void free_inode_nonrcu(struct inode *inode)
226{
227 kmem_cache_free(inode_cachep, inode);
228}
229EXPORT_SYMBOL(free_inode_nonrcu);
230
231void __destroy_inode(struct inode *inode)
232{
233 BUG_ON(inode_has_buffers(inode));
234 inode_detach_wb(inode);
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 locks_free_lock_context(inode);
238 if (!inode->i_nlink) {
239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 atomic_long_dec(&inode->i_sb->s_remove_count);
241 }
242
243#ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 posix_acl_release(inode->i_default_acl);
248#endif
249 this_cpu_dec(nr_inodes);
250}
251EXPORT_SYMBOL(__destroy_inode);
252
253static void i_callback(struct rcu_head *head)
254{
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 kmem_cache_free(inode_cachep, inode);
257}
258
259static void destroy_inode(struct inode *inode)
260{
261 BUG_ON(!list_empty(&inode->i_lru));
262 __destroy_inode(inode);
263 if (inode->i_sb->s_op->destroy_inode)
264 inode->i_sb->s_op->destroy_inode(inode);
265 else
266 call_rcu(&inode->i_rcu, i_callback);
267}
268
269/**
270 * drop_nlink - directly drop an inode's link count
271 * @inode: inode
272 *
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
278 * on the filesystem.
279 */
280void drop_nlink(struct inode *inode)
281{
282 WARN_ON(inode->i_nlink == 0);
283 inode->__i_nlink--;
284 if (!inode->i_nlink)
285 atomic_long_inc(&inode->i_sb->s_remove_count);
286}
287EXPORT_SYMBOL(drop_nlink);
288
289/**
290 * clear_nlink - directly zero an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
296 */
297void clear_nlink(struct inode *inode)
298{
299 if (inode->i_nlink) {
300 inode->__i_nlink = 0;
301 atomic_long_inc(&inode->i_sb->s_remove_count);
302 }
303}
304EXPORT_SYMBOL(clear_nlink);
305
306/**
307 * set_nlink - directly set an inode's link count
308 * @inode: inode
309 * @nlink: new nlink (should be non-zero)
310 *
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
313 */
314void set_nlink(struct inode *inode, unsigned int nlink)
315{
316 if (!nlink) {
317 clear_nlink(inode);
318 } else {
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode->i_nlink == 0)
321 atomic_long_dec(&inode->i_sb->s_remove_count);
322
323 inode->__i_nlink = nlink;
324 }
325}
326EXPORT_SYMBOL(set_nlink);
327
328/**
329 * inc_nlink - directly increment an inode's link count
330 * @inode: inode
331 *
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
335 */
336void inc_nlink(struct inode *inode)
337{
338 if (unlikely(inode->i_nlink == 0)) {
339 WARN_ON(!(inode->i_state & I_LINKABLE));
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341 }
342
343 inode->__i_nlink++;
344}
345EXPORT_SYMBOL(inc_nlink);
346
347void address_space_init_once(struct address_space *mapping)
348{
349 memset(mapping, 0, sizeof(*mapping));
350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 spin_lock_init(&mapping->tree_lock);
352 init_rwsem(&mapping->i_mmap_rwsem);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT;
356}
357EXPORT_SYMBOL(address_space_init_once);
358
359/*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364void inode_init_once(struct inode *inode)
365{
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_io_list);
370 INIT_LIST_HEAD(&inode->i_wb_list);
371 INIT_LIST_HEAD(&inode->i_lru);
372 address_space_init_once(&inode->i_data);
373 i_size_ordered_init(inode);
374#ifdef CONFIG_FSNOTIFY
375 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
376#endif
377}
378EXPORT_SYMBOL(inode_init_once);
379
380static void init_once(void *foo)
381{
382 struct inode *inode = (struct inode *) foo;
383
384 inode_init_once(inode);
385}
386
387/*
388 * inode->i_lock must be held
389 */
390void __iget(struct inode *inode)
391{
392 atomic_inc(&inode->i_count);
393}
394
395/*
396 * get additional reference to inode; caller must already hold one.
397 */
398void ihold(struct inode *inode)
399{
400 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
401}
402EXPORT_SYMBOL(ihold);
403
404static void inode_lru_list_add(struct inode *inode)
405{
406 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
407 this_cpu_inc(nr_unused);
408}
409
410/*
411 * Add inode to LRU if needed (inode is unused and clean).
412 *
413 * Needs inode->i_lock held.
414 */
415void inode_add_lru(struct inode *inode)
416{
417 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
418 I_FREEING | I_WILL_FREE)) &&
419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 inode_lru_list_add(inode);
421}
422
423
424static void inode_lru_list_del(struct inode *inode)
425{
426
427 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_dec(nr_unused);
429}
430
431/**
432 * inode_sb_list_add - add inode to the superblock list of inodes
433 * @inode: inode to add
434 */
435void inode_sb_list_add(struct inode *inode)
436{
437 spin_lock(&inode->i_sb->s_inode_list_lock);
438 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
439 spin_unlock(&inode->i_sb->s_inode_list_lock);
440}
441EXPORT_SYMBOL_GPL(inode_sb_list_add);
442
443static inline void inode_sb_list_del(struct inode *inode)
444{
445 if (!list_empty(&inode->i_sb_list)) {
446 spin_lock(&inode->i_sb->s_inode_list_lock);
447 list_del_init(&inode->i_sb_list);
448 spin_unlock(&inode->i_sb->s_inode_list_lock);
449 }
450}
451
452static unsigned long hash(struct super_block *sb, unsigned long hashval)
453{
454 unsigned long tmp;
455
456 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
457 L1_CACHE_BYTES;
458 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
459 return tmp & i_hash_mask;
460}
461
462/**
463 * __insert_inode_hash - hash an inode
464 * @inode: unhashed inode
465 * @hashval: unsigned long value used to locate this object in the
466 * inode_hashtable.
467 *
468 * Add an inode to the inode hash for this superblock.
469 */
470void __insert_inode_hash(struct inode *inode, unsigned long hashval)
471{
472 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
473
474 spin_lock(&inode_hash_lock);
475 spin_lock(&inode->i_lock);
476 hlist_add_head(&inode->i_hash, b);
477 spin_unlock(&inode->i_lock);
478 spin_unlock(&inode_hash_lock);
479}
480EXPORT_SYMBOL(__insert_inode_hash);
481
482/**
483 * __remove_inode_hash - remove an inode from the hash
484 * @inode: inode to unhash
485 *
486 * Remove an inode from the superblock.
487 */
488void __remove_inode_hash(struct inode *inode)
489{
490 spin_lock(&inode_hash_lock);
491 spin_lock(&inode->i_lock);
492 hlist_del_init(&inode->i_hash);
493 spin_unlock(&inode->i_lock);
494 spin_unlock(&inode_hash_lock);
495}
496EXPORT_SYMBOL(__remove_inode_hash);
497
498void clear_inode(struct inode *inode)
499{
500 might_sleep();
501 /*
502 * We have to cycle tree_lock here because reclaim can be still in the
503 * process of removing the last page (in __delete_from_page_cache())
504 * and we must not free mapping under it.
505 */
506 spin_lock_irq(&inode->i_data.tree_lock);
507 BUG_ON(inode->i_data.nrpages);
508 BUG_ON(inode->i_data.nrexceptional);
509 spin_unlock_irq(&inode->i_data.tree_lock);
510 BUG_ON(!list_empty(&inode->i_data.private_list));
511 BUG_ON(!(inode->i_state & I_FREEING));
512 BUG_ON(inode->i_state & I_CLEAR);
513 BUG_ON(!list_empty(&inode->i_wb_list));
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
516}
517EXPORT_SYMBOL(clear_inode);
518
519/*
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
523 *
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
527 *
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
531 */
532static void evict(struct inode *inode)
533{
534 const struct super_operations *op = inode->i_sb->s_op;
535
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
538
539 if (!list_empty(&inode->i_io_list))
540 inode_io_list_del(inode);
541
542 inode_sb_list_del(inode);
543
544 /*
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
549 */
550 inode_wait_for_writeback(inode);
551
552 if (op->evict_inode) {
553 op->evict_inode(inode);
554 } else {
555 truncate_inode_pages_final(&inode->i_data);
556 clear_inode(inode);
557 }
558 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 bd_forget(inode);
560 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 cd_forget(inode);
562
563 remove_inode_hash(inode);
564
565 spin_lock(&inode->i_lock);
566 wake_up_bit(&inode->i_state, __I_NEW);
567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 spin_unlock(&inode->i_lock);
569
570 destroy_inode(inode);
571}
572
573/*
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
576 *
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
579 */
580static void dispose_list(struct list_head *head)
581{
582 while (!list_empty(head)) {
583 struct inode *inode;
584
585 inode = list_first_entry(head, struct inode, i_lru);
586 list_del_init(&inode->i_lru);
587
588 evict(inode);
589 cond_resched();
590 }
591}
592
593/**
594 * evict_inodes - evict all evictable inodes for a superblock
595 * @sb: superblock to operate on
596 *
597 * Make sure that no inodes with zero refcount are retained. This is
598 * called by superblock shutdown after having MS_ACTIVE flag removed,
599 * so any inode reaching zero refcount during or after that call will
600 * be immediately evicted.
601 */
602void evict_inodes(struct super_block *sb)
603{
604 struct inode *inode, *next;
605 LIST_HEAD(dispose);
606
607again:
608 spin_lock(&sb->s_inode_list_lock);
609 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
610 if (atomic_read(&inode->i_count))
611 continue;
612
613 spin_lock(&inode->i_lock);
614 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
615 spin_unlock(&inode->i_lock);
616 continue;
617 }
618
619 inode->i_state |= I_FREEING;
620 inode_lru_list_del(inode);
621 spin_unlock(&inode->i_lock);
622 list_add(&inode->i_lru, &dispose);
623
624 /*
625 * We can have a ton of inodes to evict at unmount time given
626 * enough memory, check to see if we need to go to sleep for a
627 * bit so we don't livelock.
628 */
629 if (need_resched()) {
630 spin_unlock(&sb->s_inode_list_lock);
631 cond_resched();
632 dispose_list(&dispose);
633 goto again;
634 }
635 }
636 spin_unlock(&sb->s_inode_list_lock);
637
638 dispose_list(&dispose);
639}
640
641/**
642 * invalidate_inodes - attempt to free all inodes on a superblock
643 * @sb: superblock to operate on
644 * @kill_dirty: flag to guide handling of dirty inodes
645 *
646 * Attempts to free all inodes for a given superblock. If there were any
647 * busy inodes return a non-zero value, else zero.
648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
649 * them as busy.
650 */
651int invalidate_inodes(struct super_block *sb, bool kill_dirty)
652{
653 int busy = 0;
654 struct inode *inode, *next;
655 LIST_HEAD(dispose);
656
657 spin_lock(&sb->s_inode_list_lock);
658 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
659 spin_lock(&inode->i_lock);
660 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
661 spin_unlock(&inode->i_lock);
662 continue;
663 }
664 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
665 spin_unlock(&inode->i_lock);
666 busy = 1;
667 continue;
668 }
669 if (atomic_read(&inode->i_count)) {
670 spin_unlock(&inode->i_lock);
671 busy = 1;
672 continue;
673 }
674
675 inode->i_state |= I_FREEING;
676 inode_lru_list_del(inode);
677 spin_unlock(&inode->i_lock);
678 list_add(&inode->i_lru, &dispose);
679 }
680 spin_unlock(&sb->s_inode_list_lock);
681
682 dispose_list(&dispose);
683
684 return busy;
685}
686
687/*
688 * Isolate the inode from the LRU in preparation for freeing it.
689 *
690 * Any inodes which are pinned purely because of attached pagecache have their
691 * pagecache removed. If the inode has metadata buffers attached to
692 * mapping->private_list then try to remove them.
693 *
694 * If the inode has the I_REFERENCED flag set, then it means that it has been
695 * used recently - the flag is set in iput_final(). When we encounter such an
696 * inode, clear the flag and move it to the back of the LRU so it gets another
697 * pass through the LRU before it gets reclaimed. This is necessary because of
698 * the fact we are doing lazy LRU updates to minimise lock contention so the
699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
700 * with this flag set because they are the inodes that are out of order.
701 */
702static enum lru_status inode_lru_isolate(struct list_head *item,
703 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
704{
705 struct list_head *freeable = arg;
706 struct inode *inode = container_of(item, struct inode, i_lru);
707
708 /*
709 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
710 * If we fail to get the lock, just skip it.
711 */
712 if (!spin_trylock(&inode->i_lock))
713 return LRU_SKIP;
714
715 /*
716 * Referenced or dirty inodes are still in use. Give them another pass
717 * through the LRU as we canot reclaim them now.
718 */
719 if (atomic_read(&inode->i_count) ||
720 (inode->i_state & ~I_REFERENCED)) {
721 list_lru_isolate(lru, &inode->i_lru);
722 spin_unlock(&inode->i_lock);
723 this_cpu_dec(nr_unused);
724 return LRU_REMOVED;
725 }
726
727 /* recently referenced inodes get one more pass */
728 if (inode->i_state & I_REFERENCED) {
729 inode->i_state &= ~I_REFERENCED;
730 spin_unlock(&inode->i_lock);
731 return LRU_ROTATE;
732 }
733
734 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
735 __iget(inode);
736 spin_unlock(&inode->i_lock);
737 spin_unlock(lru_lock);
738 if (remove_inode_buffers(inode)) {
739 unsigned long reap;
740 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
741 if (current_is_kswapd())
742 __count_vm_events(KSWAPD_INODESTEAL, reap);
743 else
744 __count_vm_events(PGINODESTEAL, reap);
745 if (current->reclaim_state)
746 current->reclaim_state->reclaimed_slab += reap;
747 }
748 iput(inode);
749 spin_lock(lru_lock);
750 return LRU_RETRY;
751 }
752
753 WARN_ON(inode->i_state & I_NEW);
754 inode->i_state |= I_FREEING;
755 list_lru_isolate_move(lru, &inode->i_lru, freeable);
756 spin_unlock(&inode->i_lock);
757
758 this_cpu_dec(nr_unused);
759 return LRU_REMOVED;
760}
761
762/*
763 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
764 * This is called from the superblock shrinker function with a number of inodes
765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
766 * then are freed outside inode_lock by dispose_list().
767 */
768long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
769{
770 LIST_HEAD(freeable);
771 long freed;
772
773 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
774 inode_lru_isolate, &freeable);
775 dispose_list(&freeable);
776 return freed;
777}
778
779static void __wait_on_freeing_inode(struct inode *inode);
780/*
781 * Called with the inode lock held.
782 */
783static struct inode *find_inode(struct super_block *sb,
784 struct hlist_head *head,
785 int (*test)(struct inode *, void *),
786 void *data)
787{
788 struct inode *inode = NULL;
789
790repeat:
791 hlist_for_each_entry(inode, head, i_hash) {
792 if (inode->i_sb != sb)
793 continue;
794 if (!test(inode, data))
795 continue;
796 spin_lock(&inode->i_lock);
797 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
798 __wait_on_freeing_inode(inode);
799 goto repeat;
800 }
801 __iget(inode);
802 spin_unlock(&inode->i_lock);
803 return inode;
804 }
805 return NULL;
806}
807
808/*
809 * find_inode_fast is the fast path version of find_inode, see the comment at
810 * iget_locked for details.
811 */
812static struct inode *find_inode_fast(struct super_block *sb,
813 struct hlist_head *head, unsigned long ino)
814{
815 struct inode *inode = NULL;
816
817repeat:
818 hlist_for_each_entry(inode, head, i_hash) {
819 if (inode->i_ino != ino)
820 continue;
821 if (inode->i_sb != sb)
822 continue;
823 spin_lock(&inode->i_lock);
824 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
825 __wait_on_freeing_inode(inode);
826 goto repeat;
827 }
828 __iget(inode);
829 spin_unlock(&inode->i_lock);
830 return inode;
831 }
832 return NULL;
833}
834
835/*
836 * Each cpu owns a range of LAST_INO_BATCH numbers.
837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
838 * to renew the exhausted range.
839 *
840 * This does not significantly increase overflow rate because every CPU can
841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
844 * overflow rate by 2x, which does not seem too significant.
845 *
846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
847 * error if st_ino won't fit in target struct field. Use 32bit counter
848 * here to attempt to avoid that.
849 */
850#define LAST_INO_BATCH 1024
851static DEFINE_PER_CPU(unsigned int, last_ino);
852
853unsigned int get_next_ino(void)
854{
855 unsigned int *p = &get_cpu_var(last_ino);
856 unsigned int res = *p;
857
858#ifdef CONFIG_SMP
859 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
860 static atomic_t shared_last_ino;
861 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
862
863 res = next - LAST_INO_BATCH;
864 }
865#endif
866
867 res++;
868 /* get_next_ino should not provide a 0 inode number */
869 if (unlikely(!res))
870 res++;
871 *p = res;
872 put_cpu_var(last_ino);
873 return res;
874}
875EXPORT_SYMBOL(get_next_ino);
876
877/**
878 * new_inode_pseudo - obtain an inode
879 * @sb: superblock
880 *
881 * Allocates a new inode for given superblock.
882 * Inode wont be chained in superblock s_inodes list
883 * This means :
884 * - fs can't be unmount
885 * - quotas, fsnotify, writeback can't work
886 */
887struct inode *new_inode_pseudo(struct super_block *sb)
888{
889 struct inode *inode = alloc_inode(sb);
890
891 if (inode) {
892 spin_lock(&inode->i_lock);
893 inode->i_state = 0;
894 spin_unlock(&inode->i_lock);
895 INIT_LIST_HEAD(&inode->i_sb_list);
896 }
897 return inode;
898}
899
900/**
901 * new_inode - obtain an inode
902 * @sb: superblock
903 *
904 * Allocates a new inode for given superblock. The default gfp_mask
905 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
906 * If HIGHMEM pages are unsuitable or it is known that pages allocated
907 * for the page cache are not reclaimable or migratable,
908 * mapping_set_gfp_mask() must be called with suitable flags on the
909 * newly created inode's mapping
910 *
911 */
912struct inode *new_inode(struct super_block *sb)
913{
914 struct inode *inode;
915
916 spin_lock_prefetch(&sb->s_inode_list_lock);
917
918 inode = new_inode_pseudo(sb);
919 if (inode)
920 inode_sb_list_add(inode);
921 return inode;
922}
923EXPORT_SYMBOL(new_inode);
924
925#ifdef CONFIG_DEBUG_LOCK_ALLOC
926void lockdep_annotate_inode_mutex_key(struct inode *inode)
927{
928 if (S_ISDIR(inode->i_mode)) {
929 struct file_system_type *type = inode->i_sb->s_type;
930
931 /* Set new key only if filesystem hasn't already changed it */
932 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
933 /*
934 * ensure nobody is actually holding i_mutex
935 */
936 // mutex_destroy(&inode->i_mutex);
937 init_rwsem(&inode->i_rwsem);
938 lockdep_set_class(&inode->i_rwsem,
939 &type->i_mutex_dir_key);
940 }
941 }
942}
943EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
944#endif
945
946/**
947 * unlock_new_inode - clear the I_NEW state and wake up any waiters
948 * @inode: new inode to unlock
949 *
950 * Called when the inode is fully initialised to clear the new state of the
951 * inode and wake up anyone waiting for the inode to finish initialisation.
952 */
953void unlock_new_inode(struct inode *inode)
954{
955 lockdep_annotate_inode_mutex_key(inode);
956 spin_lock(&inode->i_lock);
957 WARN_ON(!(inode->i_state & I_NEW));
958 inode->i_state &= ~I_NEW;
959 smp_mb();
960 wake_up_bit(&inode->i_state, __I_NEW);
961 spin_unlock(&inode->i_lock);
962}
963EXPORT_SYMBOL(unlock_new_inode);
964
965/**
966 * lock_two_nondirectories - take two i_mutexes on non-directory objects
967 *
968 * Lock any non-NULL argument that is not a directory.
969 * Zero, one or two objects may be locked by this function.
970 *
971 * @inode1: first inode to lock
972 * @inode2: second inode to lock
973 */
974void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
975{
976 if (inode1 > inode2)
977 swap(inode1, inode2);
978
979 if (inode1 && !S_ISDIR(inode1->i_mode))
980 inode_lock(inode1);
981 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
982 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
983}
984EXPORT_SYMBOL(lock_two_nondirectories);
985
986/**
987 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
988 * @inode1: first inode to unlock
989 * @inode2: second inode to unlock
990 */
991void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
992{
993 if (inode1 && !S_ISDIR(inode1->i_mode))
994 inode_unlock(inode1);
995 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
996 inode_unlock(inode2);
997}
998EXPORT_SYMBOL(unlock_two_nondirectories);
999
1000/**
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb: super block of file system
1003 * @hashval: hash value (usually inode number) to get
1004 * @test: callback used for comparisons between inodes
1005 * @set: callback used to initialize a new struct inode
1006 * @data: opaque data pointer to pass to @test and @set
1007 *
1008 * Search for the inode specified by @hashval and @data in the inode cache,
1009 * and if present it is return it with an increased reference count. This is
1010 * a generalized version of iget_locked() for file systems where the inode
1011 * number is not sufficient for unique identification of an inode.
1012 *
1013 * If the inode is not in cache, allocate a new inode and return it locked,
1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015 * before unlocking it via unlock_new_inode().
1016 *
1017 * Note both @test and @set are called with the inode_hash_lock held, so can't
1018 * sleep.
1019 */
1020struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021 int (*test)(struct inode *, void *),
1022 int (*set)(struct inode *, void *), void *data)
1023{
1024 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025 struct inode *inode;
1026again:
1027 spin_lock(&inode_hash_lock);
1028 inode = find_inode(sb, head, test, data);
1029 spin_unlock(&inode_hash_lock);
1030
1031 if (inode) {
1032 wait_on_inode(inode);
1033 if (unlikely(inode_unhashed(inode))) {
1034 iput(inode);
1035 goto again;
1036 }
1037 return inode;
1038 }
1039
1040 inode = alloc_inode(sb);
1041 if (inode) {
1042 struct inode *old;
1043
1044 spin_lock(&inode_hash_lock);
1045 /* We released the lock, so.. */
1046 old = find_inode(sb, head, test, data);
1047 if (!old) {
1048 if (set(inode, data))
1049 goto set_failed;
1050
1051 spin_lock(&inode->i_lock);
1052 inode->i_state = I_NEW;
1053 hlist_add_head(&inode->i_hash, head);
1054 spin_unlock(&inode->i_lock);
1055 inode_sb_list_add(inode);
1056 spin_unlock(&inode_hash_lock);
1057
1058 /* Return the locked inode with I_NEW set, the
1059 * caller is responsible for filling in the contents
1060 */
1061 return inode;
1062 }
1063
1064 /*
1065 * Uhhuh, somebody else created the same inode under
1066 * us. Use the old inode instead of the one we just
1067 * allocated.
1068 */
1069 spin_unlock(&inode_hash_lock);
1070 destroy_inode(inode);
1071 inode = old;
1072 wait_on_inode(inode);
1073 if (unlikely(inode_unhashed(inode))) {
1074 iput(inode);
1075 goto again;
1076 }
1077 }
1078 return inode;
1079
1080set_failed:
1081 spin_unlock(&inode_hash_lock);
1082 destroy_inode(inode);
1083 return NULL;
1084}
1085EXPORT_SYMBOL(iget5_locked);
1086
1087/**
1088 * iget_locked - obtain an inode from a mounted file system
1089 * @sb: super block of file system
1090 * @ino: inode number to get
1091 *
1092 * Search for the inode specified by @ino in the inode cache and if present
1093 * return it with an increased reference count. This is for file systems
1094 * where the inode number is sufficient for unique identification of an inode.
1095 *
1096 * If the inode is not in cache, allocate a new inode and return it locked,
1097 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1098 * before unlocking it via unlock_new_inode().
1099 */
1100struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1101{
1102 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1103 struct inode *inode;
1104again:
1105 spin_lock(&inode_hash_lock);
1106 inode = find_inode_fast(sb, head, ino);
1107 spin_unlock(&inode_hash_lock);
1108 if (inode) {
1109 wait_on_inode(inode);
1110 if (unlikely(inode_unhashed(inode))) {
1111 iput(inode);
1112 goto again;
1113 }
1114 return inode;
1115 }
1116
1117 inode = alloc_inode(sb);
1118 if (inode) {
1119 struct inode *old;
1120
1121 spin_lock(&inode_hash_lock);
1122 /* We released the lock, so.. */
1123 old = find_inode_fast(sb, head, ino);
1124 if (!old) {
1125 inode->i_ino = ino;
1126 spin_lock(&inode->i_lock);
1127 inode->i_state = I_NEW;
1128 hlist_add_head(&inode->i_hash, head);
1129 spin_unlock(&inode->i_lock);
1130 inode_sb_list_add(inode);
1131 spin_unlock(&inode_hash_lock);
1132
1133 /* Return the locked inode with I_NEW set, the
1134 * caller is responsible for filling in the contents
1135 */
1136 return inode;
1137 }
1138
1139 /*
1140 * Uhhuh, somebody else created the same inode under
1141 * us. Use the old inode instead of the one we just
1142 * allocated.
1143 */
1144 spin_unlock(&inode_hash_lock);
1145 destroy_inode(inode);
1146 inode = old;
1147 wait_on_inode(inode);
1148 if (unlikely(inode_unhashed(inode))) {
1149 iput(inode);
1150 goto again;
1151 }
1152 }
1153 return inode;
1154}
1155EXPORT_SYMBOL(iget_locked);
1156
1157/*
1158 * search the inode cache for a matching inode number.
1159 * If we find one, then the inode number we are trying to
1160 * allocate is not unique and so we should not use it.
1161 *
1162 * Returns 1 if the inode number is unique, 0 if it is not.
1163 */
1164static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1165{
1166 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1167 struct inode *inode;
1168
1169 spin_lock(&inode_hash_lock);
1170 hlist_for_each_entry(inode, b, i_hash) {
1171 if (inode->i_ino == ino && inode->i_sb == sb) {
1172 spin_unlock(&inode_hash_lock);
1173 return 0;
1174 }
1175 }
1176 spin_unlock(&inode_hash_lock);
1177
1178 return 1;
1179}
1180
1181/**
1182 * iunique - get a unique inode number
1183 * @sb: superblock
1184 * @max_reserved: highest reserved inode number
1185 *
1186 * Obtain an inode number that is unique on the system for a given
1187 * superblock. This is used by file systems that have no natural
1188 * permanent inode numbering system. An inode number is returned that
1189 * is higher than the reserved limit but unique.
1190 *
1191 * BUGS:
1192 * With a large number of inodes live on the file system this function
1193 * currently becomes quite slow.
1194 */
1195ino_t iunique(struct super_block *sb, ino_t max_reserved)
1196{
1197 /*
1198 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199 * error if st_ino won't fit in target struct field. Use 32bit counter
1200 * here to attempt to avoid that.
1201 */
1202 static DEFINE_SPINLOCK(iunique_lock);
1203 static unsigned int counter;
1204 ino_t res;
1205
1206 spin_lock(&iunique_lock);
1207 do {
1208 if (counter <= max_reserved)
1209 counter = max_reserved + 1;
1210 res = counter++;
1211 } while (!test_inode_iunique(sb, res));
1212 spin_unlock(&iunique_lock);
1213
1214 return res;
1215}
1216EXPORT_SYMBOL(iunique);
1217
1218struct inode *igrab(struct inode *inode)
1219{
1220 spin_lock(&inode->i_lock);
1221 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1222 __iget(inode);
1223 spin_unlock(&inode->i_lock);
1224 } else {
1225 spin_unlock(&inode->i_lock);
1226 /*
1227 * Handle the case where s_op->clear_inode is not been
1228 * called yet, and somebody is calling igrab
1229 * while the inode is getting freed.
1230 */
1231 inode = NULL;
1232 }
1233 return inode;
1234}
1235EXPORT_SYMBOL(igrab);
1236
1237/**
1238 * ilookup5_nowait - search for an inode in the inode cache
1239 * @sb: super block of file system to search
1240 * @hashval: hash value (usually inode number) to search for
1241 * @test: callback used for comparisons between inodes
1242 * @data: opaque data pointer to pass to @test
1243 *
1244 * Search for the inode specified by @hashval and @data in the inode cache.
1245 * If the inode is in the cache, the inode is returned with an incremented
1246 * reference count.
1247 *
1248 * Note: I_NEW is not waited upon so you have to be very careful what you do
1249 * with the returned inode. You probably should be using ilookup5() instead.
1250 *
1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1252 */
1253struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1254 int (*test)(struct inode *, void *), void *data)
1255{
1256 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1257 struct inode *inode;
1258
1259 spin_lock(&inode_hash_lock);
1260 inode = find_inode(sb, head, test, data);
1261 spin_unlock(&inode_hash_lock);
1262
1263 return inode;
1264}
1265EXPORT_SYMBOL(ilookup5_nowait);
1266
1267/**
1268 * ilookup5 - search for an inode in the inode cache
1269 * @sb: super block of file system to search
1270 * @hashval: hash value (usually inode number) to search for
1271 * @test: callback used for comparisons between inodes
1272 * @data: opaque data pointer to pass to @test
1273 *
1274 * Search for the inode specified by @hashval and @data in the inode cache,
1275 * and if the inode is in the cache, return the inode with an incremented
1276 * reference count. Waits on I_NEW before returning the inode.
1277 * returned with an incremented reference count.
1278 *
1279 * This is a generalized version of ilookup() for file systems where the
1280 * inode number is not sufficient for unique identification of an inode.
1281 *
1282 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1283 */
1284struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1285 int (*test)(struct inode *, void *), void *data)
1286{
1287 struct inode *inode;
1288again:
1289 inode = ilookup5_nowait(sb, hashval, test, data);
1290 if (inode) {
1291 wait_on_inode(inode);
1292 if (unlikely(inode_unhashed(inode))) {
1293 iput(inode);
1294 goto again;
1295 }
1296 }
1297 return inode;
1298}
1299EXPORT_SYMBOL(ilookup5);
1300
1301/**
1302 * ilookup - search for an inode in the inode cache
1303 * @sb: super block of file system to search
1304 * @ino: inode number to search for
1305 *
1306 * Search for the inode @ino in the inode cache, and if the inode is in the
1307 * cache, the inode is returned with an incremented reference count.
1308 */
1309struct inode *ilookup(struct super_block *sb, unsigned long ino)
1310{
1311 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312 struct inode *inode;
1313again:
1314 spin_lock(&inode_hash_lock);
1315 inode = find_inode_fast(sb, head, ino);
1316 spin_unlock(&inode_hash_lock);
1317
1318 if (inode) {
1319 wait_on_inode(inode);
1320 if (unlikely(inode_unhashed(inode))) {
1321 iput(inode);
1322 goto again;
1323 }
1324 }
1325 return inode;
1326}
1327EXPORT_SYMBOL(ilookup);
1328
1329/**
1330 * find_inode_nowait - find an inode in the inode cache
1331 * @sb: super block of file system to search
1332 * @hashval: hash value (usually inode number) to search for
1333 * @match: callback used for comparisons between inodes
1334 * @data: opaque data pointer to pass to @match
1335 *
1336 * Search for the inode specified by @hashval and @data in the inode
1337 * cache, where the helper function @match will return 0 if the inode
1338 * does not match, 1 if the inode does match, and -1 if the search
1339 * should be stopped. The @match function must be responsible for
1340 * taking the i_lock spin_lock and checking i_state for an inode being
1341 * freed or being initialized, and incrementing the reference count
1342 * before returning 1. It also must not sleep, since it is called with
1343 * the inode_hash_lock spinlock held.
1344 *
1345 * This is a even more generalized version of ilookup5() when the
1346 * function must never block --- find_inode() can block in
1347 * __wait_on_freeing_inode() --- or when the caller can not increment
1348 * the reference count because the resulting iput() might cause an
1349 * inode eviction. The tradeoff is that the @match funtion must be
1350 * very carefully implemented.
1351 */
1352struct inode *find_inode_nowait(struct super_block *sb,
1353 unsigned long hashval,
1354 int (*match)(struct inode *, unsigned long,
1355 void *),
1356 void *data)
1357{
1358 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1359 struct inode *inode, *ret_inode = NULL;
1360 int mval;
1361
1362 spin_lock(&inode_hash_lock);
1363 hlist_for_each_entry(inode, head, i_hash) {
1364 if (inode->i_sb != sb)
1365 continue;
1366 mval = match(inode, hashval, data);
1367 if (mval == 0)
1368 continue;
1369 if (mval == 1)
1370 ret_inode = inode;
1371 goto out;
1372 }
1373out:
1374 spin_unlock(&inode_hash_lock);
1375 return ret_inode;
1376}
1377EXPORT_SYMBOL(find_inode_nowait);
1378
1379int insert_inode_locked(struct inode *inode)
1380{
1381 struct super_block *sb = inode->i_sb;
1382 ino_t ino = inode->i_ino;
1383 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1384
1385 while (1) {
1386 struct inode *old = NULL;
1387 spin_lock(&inode_hash_lock);
1388 hlist_for_each_entry(old, head, i_hash) {
1389 if (old->i_ino != ino)
1390 continue;
1391 if (old->i_sb != sb)
1392 continue;
1393 spin_lock(&old->i_lock);
1394 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1395 spin_unlock(&old->i_lock);
1396 continue;
1397 }
1398 break;
1399 }
1400 if (likely(!old)) {
1401 spin_lock(&inode->i_lock);
1402 inode->i_state |= I_NEW;
1403 hlist_add_head(&inode->i_hash, head);
1404 spin_unlock(&inode->i_lock);
1405 spin_unlock(&inode_hash_lock);
1406 return 0;
1407 }
1408 __iget(old);
1409 spin_unlock(&old->i_lock);
1410 spin_unlock(&inode_hash_lock);
1411 wait_on_inode(old);
1412 if (unlikely(!inode_unhashed(old))) {
1413 iput(old);
1414 return -EBUSY;
1415 }
1416 iput(old);
1417 }
1418}
1419EXPORT_SYMBOL(insert_inode_locked);
1420
1421int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1422 int (*test)(struct inode *, void *), void *data)
1423{
1424 struct super_block *sb = inode->i_sb;
1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426
1427 while (1) {
1428 struct inode *old = NULL;
1429
1430 spin_lock(&inode_hash_lock);
1431 hlist_for_each_entry(old, head, i_hash) {
1432 if (old->i_sb != sb)
1433 continue;
1434 if (!test(old, data))
1435 continue;
1436 spin_lock(&old->i_lock);
1437 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1438 spin_unlock(&old->i_lock);
1439 continue;
1440 }
1441 break;
1442 }
1443 if (likely(!old)) {
1444 spin_lock(&inode->i_lock);
1445 inode->i_state |= I_NEW;
1446 hlist_add_head(&inode->i_hash, head);
1447 spin_unlock(&inode->i_lock);
1448 spin_unlock(&inode_hash_lock);
1449 return 0;
1450 }
1451 __iget(old);
1452 spin_unlock(&old->i_lock);
1453 spin_unlock(&inode_hash_lock);
1454 wait_on_inode(old);
1455 if (unlikely(!inode_unhashed(old))) {
1456 iput(old);
1457 return -EBUSY;
1458 }
1459 iput(old);
1460 }
1461}
1462EXPORT_SYMBOL(insert_inode_locked4);
1463
1464
1465int generic_delete_inode(struct inode *inode)
1466{
1467 return 1;
1468}
1469EXPORT_SYMBOL(generic_delete_inode);
1470
1471/*
1472 * Called when we're dropping the last reference
1473 * to an inode.
1474 *
1475 * Call the FS "drop_inode()" function, defaulting to
1476 * the legacy UNIX filesystem behaviour. If it tells
1477 * us to evict inode, do so. Otherwise, retain inode
1478 * in cache if fs is alive, sync and evict if fs is
1479 * shutting down.
1480 */
1481static void iput_final(struct inode *inode)
1482{
1483 struct super_block *sb = inode->i_sb;
1484 const struct super_operations *op = inode->i_sb->s_op;
1485 int drop;
1486
1487 WARN_ON(inode->i_state & I_NEW);
1488
1489 if (op->drop_inode)
1490 drop = op->drop_inode(inode);
1491 else
1492 drop = generic_drop_inode(inode);
1493
1494 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1495 inode->i_state |= I_REFERENCED;
1496 inode_add_lru(inode);
1497 spin_unlock(&inode->i_lock);
1498 return;
1499 }
1500
1501 if (!drop) {
1502 inode->i_state |= I_WILL_FREE;
1503 spin_unlock(&inode->i_lock);
1504 write_inode_now(inode, 1);
1505 spin_lock(&inode->i_lock);
1506 WARN_ON(inode->i_state & I_NEW);
1507 inode->i_state &= ~I_WILL_FREE;
1508 }
1509
1510 inode->i_state |= I_FREEING;
1511 if (!list_empty(&inode->i_lru))
1512 inode_lru_list_del(inode);
1513 spin_unlock(&inode->i_lock);
1514
1515 evict(inode);
1516}
1517
1518/**
1519 * iput - put an inode
1520 * @inode: inode to put
1521 *
1522 * Puts an inode, dropping its usage count. If the inode use count hits
1523 * zero, the inode is then freed and may also be destroyed.
1524 *
1525 * Consequently, iput() can sleep.
1526 */
1527void iput(struct inode *inode)
1528{
1529 if (!inode)
1530 return;
1531 BUG_ON(inode->i_state & I_CLEAR);
1532retry:
1533 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1534 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1535 atomic_inc(&inode->i_count);
1536 inode->i_state &= ~I_DIRTY_TIME;
1537 spin_unlock(&inode->i_lock);
1538 trace_writeback_lazytime_iput(inode);
1539 mark_inode_dirty_sync(inode);
1540 goto retry;
1541 }
1542 iput_final(inode);
1543 }
1544}
1545EXPORT_SYMBOL(iput);
1546
1547/**
1548 * bmap - find a block number in a file
1549 * @inode: inode of file
1550 * @block: block to find
1551 *
1552 * Returns the block number on the device holding the inode that
1553 * is the disk block number for the block of the file requested.
1554 * That is, asked for block 4 of inode 1 the function will return the
1555 * disk block relative to the disk start that holds that block of the
1556 * file.
1557 */
1558sector_t bmap(struct inode *inode, sector_t block)
1559{
1560 sector_t res = 0;
1561 if (inode->i_mapping->a_ops->bmap)
1562 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1563 return res;
1564}
1565EXPORT_SYMBOL(bmap);
1566
1567/*
1568 * Update times in overlayed inode from underlying real inode
1569 */
1570static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1571 bool rcu)
1572{
1573 if (!rcu) {
1574 struct inode *realinode = d_real_inode(dentry);
1575
1576 if (unlikely(inode != realinode) &&
1577 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1578 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1579 inode->i_mtime = realinode->i_mtime;
1580 inode->i_ctime = realinode->i_ctime;
1581 }
1582 }
1583}
1584
1585/*
1586 * With relative atime, only update atime if the previous atime is
1587 * earlier than either the ctime or mtime or if at least a day has
1588 * passed since the last atime update.
1589 */
1590static int relatime_need_update(const struct path *path, struct inode *inode,
1591 struct timespec now, bool rcu)
1592{
1593
1594 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1595 return 1;
1596
1597 update_ovl_inode_times(path->dentry, inode, rcu);
1598 /*
1599 * Is mtime younger than atime? If yes, update atime:
1600 */
1601 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1602 return 1;
1603 /*
1604 * Is ctime younger than atime? If yes, update atime:
1605 */
1606 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1607 return 1;
1608
1609 /*
1610 * Is the previous atime value older than a day? If yes,
1611 * update atime:
1612 */
1613 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1614 return 1;
1615 /*
1616 * Good, we can skip the atime update:
1617 */
1618 return 0;
1619}
1620
1621int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1622{
1623 int iflags = I_DIRTY_TIME;
1624
1625 if (flags & S_ATIME)
1626 inode->i_atime = *time;
1627 if (flags & S_VERSION)
1628 inode_inc_iversion(inode);
1629 if (flags & S_CTIME)
1630 inode->i_ctime = *time;
1631 if (flags & S_MTIME)
1632 inode->i_mtime = *time;
1633
1634 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1635 iflags |= I_DIRTY_SYNC;
1636 __mark_inode_dirty(inode, iflags);
1637 return 0;
1638}
1639EXPORT_SYMBOL(generic_update_time);
1640
1641/*
1642 * This does the actual work of updating an inodes time or version. Must have
1643 * had called mnt_want_write() before calling this.
1644 */
1645static int update_time(struct inode *inode, struct timespec *time, int flags)
1646{
1647 int (*update_time)(struct inode *, struct timespec *, int);
1648
1649 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1650 generic_update_time;
1651
1652 return update_time(inode, time, flags);
1653}
1654
1655/**
1656 * touch_atime - update the access time
1657 * @path: the &struct path to update
1658 * @inode: inode to update
1659 *
1660 * Update the accessed time on an inode and mark it for writeback.
1661 * This function automatically handles read only file systems and media,
1662 * as well as the "noatime" flag and inode specific "noatime" markers.
1663 */
1664bool __atime_needs_update(const struct path *path, struct inode *inode,
1665 bool rcu)
1666{
1667 struct vfsmount *mnt = path->mnt;
1668 struct timespec now;
1669
1670 if (inode->i_flags & S_NOATIME)
1671 return false;
1672
1673 /* Atime updates will likely cause i_uid and i_gid to be written
1674 * back improprely if their true value is unknown to the vfs.
1675 */
1676 if (HAS_UNMAPPED_ID(inode))
1677 return false;
1678
1679 if (IS_NOATIME(inode))
1680 return false;
1681 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1682 return false;
1683
1684 if (mnt->mnt_flags & MNT_NOATIME)
1685 return false;
1686 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1687 return false;
1688
1689 now = current_time(inode);
1690
1691 if (!relatime_need_update(path, inode, now, rcu))
1692 return false;
1693
1694 if (timespec_equal(&inode->i_atime, &now))
1695 return false;
1696
1697 return true;
1698}
1699
1700void touch_atime(const struct path *path)
1701{
1702 struct vfsmount *mnt = path->mnt;
1703 struct inode *inode = d_inode(path->dentry);
1704 struct timespec now;
1705
1706 if (!__atime_needs_update(path, inode, false))
1707 return;
1708
1709 if (!sb_start_write_trylock(inode->i_sb))
1710 return;
1711
1712 if (__mnt_want_write(mnt) != 0)
1713 goto skip_update;
1714 /*
1715 * File systems can error out when updating inodes if they need to
1716 * allocate new space to modify an inode (such is the case for
1717 * Btrfs), but since we touch atime while walking down the path we
1718 * really don't care if we failed to update the atime of the file,
1719 * so just ignore the return value.
1720 * We may also fail on filesystems that have the ability to make parts
1721 * of the fs read only, e.g. subvolumes in Btrfs.
1722 */
1723 now = current_time(inode);
1724 update_time(inode, &now, S_ATIME);
1725 __mnt_drop_write(mnt);
1726skip_update:
1727 sb_end_write(inode->i_sb);
1728}
1729EXPORT_SYMBOL(touch_atime);
1730
1731/*
1732 * The logic we want is
1733 *
1734 * if suid or (sgid and xgrp)
1735 * remove privs
1736 */
1737int should_remove_suid(struct dentry *dentry)
1738{
1739 umode_t mode = d_inode(dentry)->i_mode;
1740 int kill = 0;
1741
1742 /* suid always must be killed */
1743 if (unlikely(mode & S_ISUID))
1744 kill = ATTR_KILL_SUID;
1745
1746 /*
1747 * sgid without any exec bits is just a mandatory locking mark; leave
1748 * it alone. If some exec bits are set, it's a real sgid; kill it.
1749 */
1750 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1751 kill |= ATTR_KILL_SGID;
1752
1753 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1754 return kill;
1755
1756 return 0;
1757}
1758EXPORT_SYMBOL(should_remove_suid);
1759
1760/*
1761 * Return mask of changes for notify_change() that need to be done as a
1762 * response to write or truncate. Return 0 if nothing has to be changed.
1763 * Negative value on error (change should be denied).
1764 */
1765int dentry_needs_remove_privs(struct dentry *dentry)
1766{
1767 struct inode *inode = d_inode(dentry);
1768 int mask = 0;
1769 int ret;
1770
1771 if (IS_NOSEC(inode))
1772 return 0;
1773
1774 mask = should_remove_suid(dentry);
1775 ret = security_inode_need_killpriv(dentry);
1776 if (ret < 0)
1777 return ret;
1778 if (ret)
1779 mask |= ATTR_KILL_PRIV;
1780 return mask;
1781}
1782
1783static int __remove_privs(struct dentry *dentry, int kill)
1784{
1785 struct iattr newattrs;
1786
1787 newattrs.ia_valid = ATTR_FORCE | kill;
1788 /*
1789 * Note we call this on write, so notify_change will not
1790 * encounter any conflicting delegations:
1791 */
1792 return notify_change(dentry, &newattrs, NULL);
1793}
1794
1795/*
1796 * Remove special file priviledges (suid, capabilities) when file is written
1797 * to or truncated.
1798 */
1799int file_remove_privs(struct file *file)
1800{
1801 struct dentry *dentry = file_dentry(file);
1802 struct inode *inode = file_inode(file);
1803 int kill;
1804 int error = 0;
1805
1806 /* Fast path for nothing security related */
1807 if (IS_NOSEC(inode))
1808 return 0;
1809
1810 kill = dentry_needs_remove_privs(dentry);
1811 if (kill < 0)
1812 return kill;
1813 if (kill)
1814 error = __remove_privs(dentry, kill);
1815 if (!error)
1816 inode_has_no_xattr(inode);
1817
1818 return error;
1819}
1820EXPORT_SYMBOL(file_remove_privs);
1821
1822/**
1823 * file_update_time - update mtime and ctime time
1824 * @file: file accessed
1825 *
1826 * Update the mtime and ctime members of an inode and mark the inode
1827 * for writeback. Note that this function is meant exclusively for
1828 * usage in the file write path of filesystems, and filesystems may
1829 * choose to explicitly ignore update via this function with the
1830 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1831 * timestamps are handled by the server. This can return an error for
1832 * file systems who need to allocate space in order to update an inode.
1833 */
1834
1835int file_update_time(struct file *file)
1836{
1837 struct inode *inode = file_inode(file);
1838 struct timespec now;
1839 int sync_it = 0;
1840 int ret;
1841
1842 /* First try to exhaust all avenues to not sync */
1843 if (IS_NOCMTIME(inode))
1844 return 0;
1845
1846 now = current_time(inode);
1847 if (!timespec_equal(&inode->i_mtime, &now))
1848 sync_it = S_MTIME;
1849
1850 if (!timespec_equal(&inode->i_ctime, &now))
1851 sync_it |= S_CTIME;
1852
1853 if (IS_I_VERSION(inode))
1854 sync_it |= S_VERSION;
1855
1856 if (!sync_it)
1857 return 0;
1858
1859 /* Finally allowed to write? Takes lock. */
1860 if (__mnt_want_write_file(file))
1861 return 0;
1862
1863 ret = update_time(inode, &now, sync_it);
1864 __mnt_drop_write_file(file);
1865
1866 return ret;
1867}
1868EXPORT_SYMBOL(file_update_time);
1869
1870int inode_needs_sync(struct inode *inode)
1871{
1872 if (IS_SYNC(inode))
1873 return 1;
1874 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1875 return 1;
1876 return 0;
1877}
1878EXPORT_SYMBOL(inode_needs_sync);
1879
1880/*
1881 * If we try to find an inode in the inode hash while it is being
1882 * deleted, we have to wait until the filesystem completes its
1883 * deletion before reporting that it isn't found. This function waits
1884 * until the deletion _might_ have completed. Callers are responsible
1885 * to recheck inode state.
1886 *
1887 * It doesn't matter if I_NEW is not set initially, a call to
1888 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1889 * will DTRT.
1890 */
1891static void __wait_on_freeing_inode(struct inode *inode)
1892{
1893 wait_queue_head_t *wq;
1894 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1895 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1896 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1897 spin_unlock(&inode->i_lock);
1898 spin_unlock(&inode_hash_lock);
1899 schedule();
1900 finish_wait(wq, &wait.wait);
1901 spin_lock(&inode_hash_lock);
1902}
1903
1904static __initdata unsigned long ihash_entries;
1905static int __init set_ihash_entries(char *str)
1906{
1907 if (!str)
1908 return 0;
1909 ihash_entries = simple_strtoul(str, &str, 0);
1910 return 1;
1911}
1912__setup("ihash_entries=", set_ihash_entries);
1913
1914/*
1915 * Initialize the waitqueues and inode hash table.
1916 */
1917void __init inode_init_early(void)
1918{
1919 unsigned int loop;
1920
1921 /* If hashes are distributed across NUMA nodes, defer
1922 * hash allocation until vmalloc space is available.
1923 */
1924 if (hashdist)
1925 return;
1926
1927 inode_hashtable =
1928 alloc_large_system_hash("Inode-cache",
1929 sizeof(struct hlist_head),
1930 ihash_entries,
1931 14,
1932 HASH_EARLY,
1933 &i_hash_shift,
1934 &i_hash_mask,
1935 0,
1936 0);
1937
1938 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1939 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1940}
1941
1942void __init inode_init(void)
1943{
1944 unsigned int loop;
1945
1946 /* inode slab cache */
1947 inode_cachep = kmem_cache_create("inode_cache",
1948 sizeof(struct inode),
1949 0,
1950 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1951 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1952 init_once);
1953
1954 /* Hash may have been set up in inode_init_early */
1955 if (!hashdist)
1956 return;
1957
1958 inode_hashtable =
1959 alloc_large_system_hash("Inode-cache",
1960 sizeof(struct hlist_head),
1961 ihash_entries,
1962 14,
1963 0,
1964 &i_hash_shift,
1965 &i_hash_mask,
1966 0,
1967 0);
1968
1969 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1970 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1971}
1972
1973void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1974{
1975 inode->i_mode = mode;
1976 if (S_ISCHR(mode)) {
1977 inode->i_fop = &def_chr_fops;
1978 inode->i_rdev = rdev;
1979 } else if (S_ISBLK(mode)) {
1980 inode->i_fop = &def_blk_fops;
1981 inode->i_rdev = rdev;
1982 } else if (S_ISFIFO(mode))
1983 inode->i_fop = &pipefifo_fops;
1984 else if (S_ISSOCK(mode))
1985 ; /* leave it no_open_fops */
1986 else
1987 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1988 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1989 inode->i_ino);
1990}
1991EXPORT_SYMBOL(init_special_inode);
1992
1993/**
1994 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1995 * @inode: New inode
1996 * @dir: Directory inode
1997 * @mode: mode of the new inode
1998 */
1999void inode_init_owner(struct inode *inode, const struct inode *dir,
2000 umode_t mode)
2001{
2002 inode->i_uid = current_fsuid();
2003 if (dir && dir->i_mode & S_ISGID) {
2004 inode->i_gid = dir->i_gid;
2005 if (S_ISDIR(mode))
2006 mode |= S_ISGID;
2007 } else
2008 inode->i_gid = current_fsgid();
2009 inode->i_mode = mode;
2010}
2011EXPORT_SYMBOL(inode_init_owner);
2012
2013/**
2014 * inode_owner_or_capable - check current task permissions to inode
2015 * @inode: inode being checked
2016 *
2017 * Return true if current either has CAP_FOWNER in a namespace with the
2018 * inode owner uid mapped, or owns the file.
2019 */
2020bool inode_owner_or_capable(const struct inode *inode)
2021{
2022 struct user_namespace *ns;
2023
2024 if (uid_eq(current_fsuid(), inode->i_uid))
2025 return true;
2026
2027 ns = current_user_ns();
2028 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2029 return true;
2030 return false;
2031}
2032EXPORT_SYMBOL(inode_owner_or_capable);
2033
2034/*
2035 * Direct i/o helper functions
2036 */
2037static void __inode_dio_wait(struct inode *inode)
2038{
2039 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2040 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2041
2042 do {
2043 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2044 if (atomic_read(&inode->i_dio_count))
2045 schedule();
2046 } while (atomic_read(&inode->i_dio_count));
2047 finish_wait(wq, &q.wait);
2048}
2049
2050/**
2051 * inode_dio_wait - wait for outstanding DIO requests to finish
2052 * @inode: inode to wait for
2053 *
2054 * Waits for all pending direct I/O requests to finish so that we can
2055 * proceed with a truncate or equivalent operation.
2056 *
2057 * Must be called under a lock that serializes taking new references
2058 * to i_dio_count, usually by inode->i_mutex.
2059 */
2060void inode_dio_wait(struct inode *inode)
2061{
2062 if (atomic_read(&inode->i_dio_count))
2063 __inode_dio_wait(inode);
2064}
2065EXPORT_SYMBOL(inode_dio_wait);
2066
2067/*
2068 * inode_set_flags - atomically set some inode flags
2069 *
2070 * Note: the caller should be holding i_mutex, or else be sure that
2071 * they have exclusive access to the inode structure (i.e., while the
2072 * inode is being instantiated). The reason for the cmpxchg() loop
2073 * --- which wouldn't be necessary if all code paths which modify
2074 * i_flags actually followed this rule, is that there is at least one
2075 * code path which doesn't today so we use cmpxchg() out of an abundance
2076 * of caution.
2077 *
2078 * In the long run, i_mutex is overkill, and we should probably look
2079 * at using the i_lock spinlock to protect i_flags, and then make sure
2080 * it is so documented in include/linux/fs.h and that all code follows
2081 * the locking convention!!
2082 */
2083void inode_set_flags(struct inode *inode, unsigned int flags,
2084 unsigned int mask)
2085{
2086 unsigned int old_flags, new_flags;
2087
2088 WARN_ON_ONCE(flags & ~mask);
2089 do {
2090 old_flags = ACCESS_ONCE(inode->i_flags);
2091 new_flags = (old_flags & ~mask) | flags;
2092 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2093 new_flags) != old_flags));
2094}
2095EXPORT_SYMBOL(inode_set_flags);
2096
2097void inode_nohighmem(struct inode *inode)
2098{
2099 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2100}
2101EXPORT_SYMBOL(inode_nohighmem);
2102
2103/**
2104 * current_time - Return FS time
2105 * @inode: inode.
2106 *
2107 * Return the current time truncated to the time granularity supported by
2108 * the fs.
2109 *
2110 * Note that inode and inode->sb cannot be NULL.
2111 * Otherwise, the function warns and returns time without truncation.
2112 */
2113struct timespec current_time(struct inode *inode)
2114{
2115 struct timespec now = current_kernel_time();
2116
2117 if (unlikely(!inode->i_sb)) {
2118 WARN(1, "current_time() called with uninitialized super_block in the inode");
2119 return now;
2120 }
2121
2122 return timespec_trunc(now, inode->i_sb->s_time_gran);
2123}
2124EXPORT_SYMBOL(current_time);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
14#include <linux/memblock.h>
15#include <linux/fsnotify.h>
16#include <linux/mount.h>
17#include <linux/posix_acl.h>
18#include <linux/prefetch.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <trace/events/writeback.h>
24#include "internal.h"
25
26/*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57static unsigned int i_hash_mask __read_mostly;
58static unsigned int i_hash_shift __read_mostly;
59static struct hlist_head *inode_hashtable __read_mostly;
60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62/*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66const struct address_space_operations empty_aops = {
67};
68EXPORT_SYMBOL(empty_aops);
69
70static DEFINE_PER_CPU(unsigned long, nr_inodes);
71static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73static struct kmem_cache *inode_cachep __read_mostly;
74
75static long get_nr_inodes(void)
76{
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82}
83
84static inline long get_nr_inodes_unused(void)
85{
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91}
92
93long get_nr_dirty_inodes(void)
94{
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98}
99
100/*
101 * Handle nr_inode sysctl
102 */
103#ifdef CONFIG_SYSCTL
104/*
105 * Statistics gathering..
106 */
107static struct inodes_stat_t inodes_stat;
108
109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111{
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115}
116
117static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133};
134
135static int __init init_fs_inode_sysctls(void)
136{
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139}
140early_initcall(init_fs_inode_sysctls);
141#endif
142
143static int no_open(struct inode *inode, struct file *file)
144{
145 return -ENXIO;
146}
147
148/**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
156int inode_init_always(struct super_block *sb, struct inode *inode)
157{
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189#ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193#endif
194
195 spin_lock_init(&inode->i_lock);
196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198 init_rwsem(&inode->i_rwsem);
199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201 atomic_set(&inode->i_dio_count, 0);
202
203 mapping->a_ops = &empty_aops;
204 mapping->host = inode;
205 mapping->flags = 0;
206 mapping->wb_err = 0;
207 atomic_set(&mapping->i_mmap_writable, 0);
208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 atomic_set(&mapping->nr_thps, 0);
210#endif
211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 mapping->private_data = NULL;
213 mapping->writeback_index = 0;
214 init_rwsem(&mapping->invalidate_lock);
215 lockdep_set_class_and_name(&mapping->invalidate_lock,
216 &sb->s_type->invalidate_lock_key,
217 "mapping.invalidate_lock");
218 inode->i_private = NULL;
219 inode->i_mapping = mapping;
220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
221#ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223#endif
224
225#ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227#endif
228 inode->i_flctx = NULL;
229
230 if (unlikely(security_inode_alloc(inode)))
231 return -ENOMEM;
232 this_cpu_inc(nr_inodes);
233
234 return 0;
235}
236EXPORT_SYMBOL(inode_init_always);
237
238void free_inode_nonrcu(struct inode *inode)
239{
240 kmem_cache_free(inode_cachep, inode);
241}
242EXPORT_SYMBOL(free_inode_nonrcu);
243
244static void i_callback(struct rcu_head *head)
245{
246 struct inode *inode = container_of(head, struct inode, i_rcu);
247 if (inode->free_inode)
248 inode->free_inode(inode);
249 else
250 free_inode_nonrcu(inode);
251}
252
253static struct inode *alloc_inode(struct super_block *sb)
254{
255 const struct super_operations *ops = sb->s_op;
256 struct inode *inode;
257
258 if (ops->alloc_inode)
259 inode = ops->alloc_inode(sb);
260 else
261 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
262
263 if (!inode)
264 return NULL;
265
266 if (unlikely(inode_init_always(sb, inode))) {
267 if (ops->destroy_inode) {
268 ops->destroy_inode(inode);
269 if (!ops->free_inode)
270 return NULL;
271 }
272 inode->free_inode = ops->free_inode;
273 i_callback(&inode->i_rcu);
274 return NULL;
275 }
276
277 return inode;
278}
279
280void __destroy_inode(struct inode *inode)
281{
282 BUG_ON(inode_has_buffers(inode));
283 inode_detach_wb(inode);
284 security_inode_free(inode);
285 fsnotify_inode_delete(inode);
286 locks_free_lock_context(inode);
287 if (!inode->i_nlink) {
288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
289 atomic_long_dec(&inode->i_sb->s_remove_count);
290 }
291
292#ifdef CONFIG_FS_POSIX_ACL
293 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
294 posix_acl_release(inode->i_acl);
295 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
296 posix_acl_release(inode->i_default_acl);
297#endif
298 this_cpu_dec(nr_inodes);
299}
300EXPORT_SYMBOL(__destroy_inode);
301
302static void destroy_inode(struct inode *inode)
303{
304 const struct super_operations *ops = inode->i_sb->s_op;
305
306 BUG_ON(!list_empty(&inode->i_lru));
307 __destroy_inode(inode);
308 if (ops->destroy_inode) {
309 ops->destroy_inode(inode);
310 if (!ops->free_inode)
311 return;
312 }
313 inode->free_inode = ops->free_inode;
314 call_rcu(&inode->i_rcu, i_callback);
315}
316
317/**
318 * drop_nlink - directly drop an inode's link count
319 * @inode: inode
320 *
321 * This is a low-level filesystem helper to replace any
322 * direct filesystem manipulation of i_nlink. In cases
323 * where we are attempting to track writes to the
324 * filesystem, a decrement to zero means an imminent
325 * write when the file is truncated and actually unlinked
326 * on the filesystem.
327 */
328void drop_nlink(struct inode *inode)
329{
330 WARN_ON(inode->i_nlink == 0);
331 inode->__i_nlink--;
332 if (!inode->i_nlink)
333 atomic_long_inc(&inode->i_sb->s_remove_count);
334}
335EXPORT_SYMBOL(drop_nlink);
336
337/**
338 * clear_nlink - directly zero an inode's link count
339 * @inode: inode
340 *
341 * This is a low-level filesystem helper to replace any
342 * direct filesystem manipulation of i_nlink. See
343 * drop_nlink() for why we care about i_nlink hitting zero.
344 */
345void clear_nlink(struct inode *inode)
346{
347 if (inode->i_nlink) {
348 inode->__i_nlink = 0;
349 atomic_long_inc(&inode->i_sb->s_remove_count);
350 }
351}
352EXPORT_SYMBOL(clear_nlink);
353
354/**
355 * set_nlink - directly set an inode's link count
356 * @inode: inode
357 * @nlink: new nlink (should be non-zero)
358 *
359 * This is a low-level filesystem helper to replace any
360 * direct filesystem manipulation of i_nlink.
361 */
362void set_nlink(struct inode *inode, unsigned int nlink)
363{
364 if (!nlink) {
365 clear_nlink(inode);
366 } else {
367 /* Yes, some filesystems do change nlink from zero to one */
368 if (inode->i_nlink == 0)
369 atomic_long_dec(&inode->i_sb->s_remove_count);
370
371 inode->__i_nlink = nlink;
372 }
373}
374EXPORT_SYMBOL(set_nlink);
375
376/**
377 * inc_nlink - directly increment an inode's link count
378 * @inode: inode
379 *
380 * This is a low-level filesystem helper to replace any
381 * direct filesystem manipulation of i_nlink. Currently,
382 * it is only here for parity with dec_nlink().
383 */
384void inc_nlink(struct inode *inode)
385{
386 if (unlikely(inode->i_nlink == 0)) {
387 WARN_ON(!(inode->i_state & I_LINKABLE));
388 atomic_long_dec(&inode->i_sb->s_remove_count);
389 }
390
391 inode->__i_nlink++;
392}
393EXPORT_SYMBOL(inc_nlink);
394
395static void __address_space_init_once(struct address_space *mapping)
396{
397 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
398 init_rwsem(&mapping->i_mmap_rwsem);
399 INIT_LIST_HEAD(&mapping->private_list);
400 spin_lock_init(&mapping->private_lock);
401 mapping->i_mmap = RB_ROOT_CACHED;
402}
403
404void address_space_init_once(struct address_space *mapping)
405{
406 memset(mapping, 0, sizeof(*mapping));
407 __address_space_init_once(mapping);
408}
409EXPORT_SYMBOL(address_space_init_once);
410
411/*
412 * These are initializations that only need to be done
413 * once, because the fields are idempotent across use
414 * of the inode, so let the slab aware of that.
415 */
416void inode_init_once(struct inode *inode)
417{
418 memset(inode, 0, sizeof(*inode));
419 INIT_HLIST_NODE(&inode->i_hash);
420 INIT_LIST_HEAD(&inode->i_devices);
421 INIT_LIST_HEAD(&inode->i_io_list);
422 INIT_LIST_HEAD(&inode->i_wb_list);
423 INIT_LIST_HEAD(&inode->i_lru);
424 INIT_LIST_HEAD(&inode->i_sb_list);
425 __address_space_init_once(&inode->i_data);
426 i_size_ordered_init(inode);
427}
428EXPORT_SYMBOL(inode_init_once);
429
430static void init_once(void *foo)
431{
432 struct inode *inode = (struct inode *) foo;
433
434 inode_init_once(inode);
435}
436
437/*
438 * inode->i_lock must be held
439 */
440void __iget(struct inode *inode)
441{
442 atomic_inc(&inode->i_count);
443}
444
445/*
446 * get additional reference to inode; caller must already hold one.
447 */
448void ihold(struct inode *inode)
449{
450 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
451}
452EXPORT_SYMBOL(ihold);
453
454static void __inode_add_lru(struct inode *inode, bool rotate)
455{
456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
457 return;
458 if (atomic_read(&inode->i_count))
459 return;
460 if (!(inode->i_sb->s_flags & SB_ACTIVE))
461 return;
462 if (!mapping_shrinkable(&inode->i_data))
463 return;
464
465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
466 this_cpu_inc(nr_unused);
467 else if (rotate)
468 inode->i_state |= I_REFERENCED;
469}
470
471/*
472 * Add inode to LRU if needed (inode is unused and clean).
473 *
474 * Needs inode->i_lock held.
475 */
476void inode_add_lru(struct inode *inode)
477{
478 __inode_add_lru(inode, false);
479}
480
481static void inode_lru_list_del(struct inode *inode)
482{
483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
484 this_cpu_dec(nr_unused);
485}
486
487/**
488 * inode_sb_list_add - add inode to the superblock list of inodes
489 * @inode: inode to add
490 */
491void inode_sb_list_add(struct inode *inode)
492{
493 spin_lock(&inode->i_sb->s_inode_list_lock);
494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
495 spin_unlock(&inode->i_sb->s_inode_list_lock);
496}
497EXPORT_SYMBOL_GPL(inode_sb_list_add);
498
499static inline void inode_sb_list_del(struct inode *inode)
500{
501 if (!list_empty(&inode->i_sb_list)) {
502 spin_lock(&inode->i_sb->s_inode_list_lock);
503 list_del_init(&inode->i_sb_list);
504 spin_unlock(&inode->i_sb->s_inode_list_lock);
505 }
506}
507
508static unsigned long hash(struct super_block *sb, unsigned long hashval)
509{
510 unsigned long tmp;
511
512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 L1_CACHE_BYTES;
514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 return tmp & i_hash_mask;
516}
517
518/**
519 * __insert_inode_hash - hash an inode
520 * @inode: unhashed inode
521 * @hashval: unsigned long value used to locate this object in the
522 * inode_hashtable.
523 *
524 * Add an inode to the inode hash for this superblock.
525 */
526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527{
528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
529
530 spin_lock(&inode_hash_lock);
531 spin_lock(&inode->i_lock);
532 hlist_add_head_rcu(&inode->i_hash, b);
533 spin_unlock(&inode->i_lock);
534 spin_unlock(&inode_hash_lock);
535}
536EXPORT_SYMBOL(__insert_inode_hash);
537
538/**
539 * __remove_inode_hash - remove an inode from the hash
540 * @inode: inode to unhash
541 *
542 * Remove an inode from the superblock.
543 */
544void __remove_inode_hash(struct inode *inode)
545{
546 spin_lock(&inode_hash_lock);
547 spin_lock(&inode->i_lock);
548 hlist_del_init_rcu(&inode->i_hash);
549 spin_unlock(&inode->i_lock);
550 spin_unlock(&inode_hash_lock);
551}
552EXPORT_SYMBOL(__remove_inode_hash);
553
554void dump_mapping(const struct address_space *mapping)
555{
556 struct inode *host;
557 const struct address_space_operations *a_ops;
558 struct hlist_node *dentry_first;
559 struct dentry *dentry_ptr;
560 struct dentry dentry;
561 unsigned long ino;
562
563 /*
564 * If mapping is an invalid pointer, we don't want to crash
565 * accessing it, so probe everything depending on it carefully.
566 */
567 if (get_kernel_nofault(host, &mapping->host) ||
568 get_kernel_nofault(a_ops, &mapping->a_ops)) {
569 pr_warn("invalid mapping:%px\n", mapping);
570 return;
571 }
572
573 if (!host) {
574 pr_warn("aops:%ps\n", a_ops);
575 return;
576 }
577
578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
579 get_kernel_nofault(ino, &host->i_ino)) {
580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
581 return;
582 }
583
584 if (!dentry_first) {
585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
586 return;
587 }
588
589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
590 if (get_kernel_nofault(dentry, dentry_ptr)) {
591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
592 a_ops, ino, dentry_ptr);
593 return;
594 }
595
596 /*
597 * if dentry is corrupted, the %pd handler may still crash,
598 * but it's unlikely that we reach here with a corrupt mapping
599 */
600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
601}
602
603void clear_inode(struct inode *inode)
604{
605 /*
606 * We have to cycle the i_pages lock here because reclaim can be in the
607 * process of removing the last page (in __filemap_remove_folio())
608 * and we must not free the mapping under it.
609 */
610 xa_lock_irq(&inode->i_data.i_pages);
611 BUG_ON(inode->i_data.nrpages);
612 /*
613 * Almost always, mapping_empty(&inode->i_data) here; but there are
614 * two known and long-standing ways in which nodes may get left behind
615 * (when deep radix-tree node allocation failed partway; or when THP
616 * collapse_file() failed). Until those two known cases are cleaned up,
617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
618 * nor even WARN_ON(!mapping_empty).
619 */
620 xa_unlock_irq(&inode->i_data.i_pages);
621 BUG_ON(!list_empty(&inode->i_data.private_list));
622 BUG_ON(!(inode->i_state & I_FREEING));
623 BUG_ON(inode->i_state & I_CLEAR);
624 BUG_ON(!list_empty(&inode->i_wb_list));
625 /* don't need i_lock here, no concurrent mods to i_state */
626 inode->i_state = I_FREEING | I_CLEAR;
627}
628EXPORT_SYMBOL(clear_inode);
629
630/*
631 * Free the inode passed in, removing it from the lists it is still connected
632 * to. We remove any pages still attached to the inode and wait for any IO that
633 * is still in progress before finally destroying the inode.
634 *
635 * An inode must already be marked I_FREEING so that we avoid the inode being
636 * moved back onto lists if we race with other code that manipulates the lists
637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
638 *
639 * An inode must already be removed from the LRU list before being evicted from
640 * the cache. This should occur atomically with setting the I_FREEING state
641 * flag, so no inodes here should ever be on the LRU when being evicted.
642 */
643static void evict(struct inode *inode)
644{
645 const struct super_operations *op = inode->i_sb->s_op;
646
647 BUG_ON(!(inode->i_state & I_FREEING));
648 BUG_ON(!list_empty(&inode->i_lru));
649
650 if (!list_empty(&inode->i_io_list))
651 inode_io_list_del(inode);
652
653 inode_sb_list_del(inode);
654
655 /*
656 * Wait for flusher thread to be done with the inode so that filesystem
657 * does not start destroying it while writeback is still running. Since
658 * the inode has I_FREEING set, flusher thread won't start new work on
659 * the inode. We just have to wait for running writeback to finish.
660 */
661 inode_wait_for_writeback(inode);
662
663 if (op->evict_inode) {
664 op->evict_inode(inode);
665 } else {
666 truncate_inode_pages_final(&inode->i_data);
667 clear_inode(inode);
668 }
669 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
670 cd_forget(inode);
671
672 remove_inode_hash(inode);
673
674 spin_lock(&inode->i_lock);
675 wake_up_bit(&inode->i_state, __I_NEW);
676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
677 spin_unlock(&inode->i_lock);
678
679 destroy_inode(inode);
680}
681
682/*
683 * dispose_list - dispose of the contents of a local list
684 * @head: the head of the list to free
685 *
686 * Dispose-list gets a local list with local inodes in it, so it doesn't
687 * need to worry about list corruption and SMP locks.
688 */
689static void dispose_list(struct list_head *head)
690{
691 while (!list_empty(head)) {
692 struct inode *inode;
693
694 inode = list_first_entry(head, struct inode, i_lru);
695 list_del_init(&inode->i_lru);
696
697 evict(inode);
698 cond_resched();
699 }
700}
701
702/**
703 * evict_inodes - evict all evictable inodes for a superblock
704 * @sb: superblock to operate on
705 *
706 * Make sure that no inodes with zero refcount are retained. This is
707 * called by superblock shutdown after having SB_ACTIVE flag removed,
708 * so any inode reaching zero refcount during or after that call will
709 * be immediately evicted.
710 */
711void evict_inodes(struct super_block *sb)
712{
713 struct inode *inode, *next;
714 LIST_HEAD(dispose);
715
716again:
717 spin_lock(&sb->s_inode_list_lock);
718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
719 if (atomic_read(&inode->i_count))
720 continue;
721
722 spin_lock(&inode->i_lock);
723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 spin_unlock(&inode->i_lock);
725 continue;
726 }
727
728 inode->i_state |= I_FREEING;
729 inode_lru_list_del(inode);
730 spin_unlock(&inode->i_lock);
731 list_add(&inode->i_lru, &dispose);
732
733 /*
734 * We can have a ton of inodes to evict at unmount time given
735 * enough memory, check to see if we need to go to sleep for a
736 * bit so we don't livelock.
737 */
738 if (need_resched()) {
739 spin_unlock(&sb->s_inode_list_lock);
740 cond_resched();
741 dispose_list(&dispose);
742 goto again;
743 }
744 }
745 spin_unlock(&sb->s_inode_list_lock);
746
747 dispose_list(&dispose);
748}
749EXPORT_SYMBOL_GPL(evict_inodes);
750
751/**
752 * invalidate_inodes - attempt to free all inodes on a superblock
753 * @sb: superblock to operate on
754 * @kill_dirty: flag to guide handling of dirty inodes
755 *
756 * Attempts to free all inodes for a given superblock. If there were any
757 * busy inodes return a non-zero value, else zero.
758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
759 * them as busy.
760 */
761int invalidate_inodes(struct super_block *sb, bool kill_dirty)
762{
763 int busy = 0;
764 struct inode *inode, *next;
765 LIST_HEAD(dispose);
766
767again:
768 spin_lock(&sb->s_inode_list_lock);
769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
770 spin_lock(&inode->i_lock);
771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
772 spin_unlock(&inode->i_lock);
773 continue;
774 }
775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
776 spin_unlock(&inode->i_lock);
777 busy = 1;
778 continue;
779 }
780 if (atomic_read(&inode->i_count)) {
781 spin_unlock(&inode->i_lock);
782 busy = 1;
783 continue;
784 }
785
786 inode->i_state |= I_FREEING;
787 inode_lru_list_del(inode);
788 spin_unlock(&inode->i_lock);
789 list_add(&inode->i_lru, &dispose);
790 if (need_resched()) {
791 spin_unlock(&sb->s_inode_list_lock);
792 cond_resched();
793 dispose_list(&dispose);
794 goto again;
795 }
796 }
797 spin_unlock(&sb->s_inode_list_lock);
798
799 dispose_list(&dispose);
800
801 return busy;
802}
803
804/*
805 * Isolate the inode from the LRU in preparation for freeing it.
806 *
807 * If the inode has the I_REFERENCED flag set, then it means that it has been
808 * used recently - the flag is set in iput_final(). When we encounter such an
809 * inode, clear the flag and move it to the back of the LRU so it gets another
810 * pass through the LRU before it gets reclaimed. This is necessary because of
811 * the fact we are doing lazy LRU updates to minimise lock contention so the
812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
813 * with this flag set because they are the inodes that are out of order.
814 */
815static enum lru_status inode_lru_isolate(struct list_head *item,
816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
817{
818 struct list_head *freeable = arg;
819 struct inode *inode = container_of(item, struct inode, i_lru);
820
821 /*
822 * We are inverting the lru lock/inode->i_lock here, so use a
823 * trylock. If we fail to get the lock, just skip it.
824 */
825 if (!spin_trylock(&inode->i_lock))
826 return LRU_SKIP;
827
828 /*
829 * Inodes can get referenced, redirtied, or repopulated while
830 * they're already on the LRU, and this can make them
831 * unreclaimable for a while. Remove them lazily here; iput,
832 * sync, or the last page cache deletion will requeue them.
833 */
834 if (atomic_read(&inode->i_count) ||
835 (inode->i_state & ~I_REFERENCED) ||
836 !mapping_shrinkable(&inode->i_data)) {
837 list_lru_isolate(lru, &inode->i_lru);
838 spin_unlock(&inode->i_lock);
839 this_cpu_dec(nr_unused);
840 return LRU_REMOVED;
841 }
842
843 /* Recently referenced inodes get one more pass */
844 if (inode->i_state & I_REFERENCED) {
845 inode->i_state &= ~I_REFERENCED;
846 spin_unlock(&inode->i_lock);
847 return LRU_ROTATE;
848 }
849
850 /*
851 * On highmem systems, mapping_shrinkable() permits dropping
852 * page cache in order to free up struct inodes: lowmem might
853 * be under pressure before the cache inside the highmem zone.
854 */
855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
856 __iget(inode);
857 spin_unlock(&inode->i_lock);
858 spin_unlock(lru_lock);
859 if (remove_inode_buffers(inode)) {
860 unsigned long reap;
861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
862 if (current_is_kswapd())
863 __count_vm_events(KSWAPD_INODESTEAL, reap);
864 else
865 __count_vm_events(PGINODESTEAL, reap);
866 if (current->reclaim_state)
867 current->reclaim_state->reclaimed_slab += reap;
868 }
869 iput(inode);
870 spin_lock(lru_lock);
871 return LRU_RETRY;
872 }
873
874 WARN_ON(inode->i_state & I_NEW);
875 inode->i_state |= I_FREEING;
876 list_lru_isolate_move(lru, &inode->i_lru, freeable);
877 spin_unlock(&inode->i_lock);
878
879 this_cpu_dec(nr_unused);
880 return LRU_REMOVED;
881}
882
883/*
884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
885 * This is called from the superblock shrinker function with a number of inodes
886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
887 * then are freed outside inode_lock by dispose_list().
888 */
889long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
890{
891 LIST_HEAD(freeable);
892 long freed;
893
894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
895 inode_lru_isolate, &freeable);
896 dispose_list(&freeable);
897 return freed;
898}
899
900static void __wait_on_freeing_inode(struct inode *inode);
901/*
902 * Called with the inode lock held.
903 */
904static struct inode *find_inode(struct super_block *sb,
905 struct hlist_head *head,
906 int (*test)(struct inode *, void *),
907 void *data)
908{
909 struct inode *inode = NULL;
910
911repeat:
912 hlist_for_each_entry(inode, head, i_hash) {
913 if (inode->i_sb != sb)
914 continue;
915 if (!test(inode, data))
916 continue;
917 spin_lock(&inode->i_lock);
918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
919 __wait_on_freeing_inode(inode);
920 goto repeat;
921 }
922 if (unlikely(inode->i_state & I_CREATING)) {
923 spin_unlock(&inode->i_lock);
924 return ERR_PTR(-ESTALE);
925 }
926 __iget(inode);
927 spin_unlock(&inode->i_lock);
928 return inode;
929 }
930 return NULL;
931}
932
933/*
934 * find_inode_fast is the fast path version of find_inode, see the comment at
935 * iget_locked for details.
936 */
937static struct inode *find_inode_fast(struct super_block *sb,
938 struct hlist_head *head, unsigned long ino)
939{
940 struct inode *inode = NULL;
941
942repeat:
943 hlist_for_each_entry(inode, head, i_hash) {
944 if (inode->i_ino != ino)
945 continue;
946 if (inode->i_sb != sb)
947 continue;
948 spin_lock(&inode->i_lock);
949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 __wait_on_freeing_inode(inode);
951 goto repeat;
952 }
953 if (unlikely(inode->i_state & I_CREATING)) {
954 spin_unlock(&inode->i_lock);
955 return ERR_PTR(-ESTALE);
956 }
957 __iget(inode);
958 spin_unlock(&inode->i_lock);
959 return inode;
960 }
961 return NULL;
962}
963
964/*
965 * Each cpu owns a range of LAST_INO_BATCH numbers.
966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
967 * to renew the exhausted range.
968 *
969 * This does not significantly increase overflow rate because every CPU can
970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
973 * overflow rate by 2x, which does not seem too significant.
974 *
975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
976 * error if st_ino won't fit in target struct field. Use 32bit counter
977 * here to attempt to avoid that.
978 */
979#define LAST_INO_BATCH 1024
980static DEFINE_PER_CPU(unsigned int, last_ino);
981
982unsigned int get_next_ino(void)
983{
984 unsigned int *p = &get_cpu_var(last_ino);
985 unsigned int res = *p;
986
987#ifdef CONFIG_SMP
988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
989 static atomic_t shared_last_ino;
990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
991
992 res = next - LAST_INO_BATCH;
993 }
994#endif
995
996 res++;
997 /* get_next_ino should not provide a 0 inode number */
998 if (unlikely(!res))
999 res++;
1000 *p = res;
1001 put_cpu_var(last_ino);
1002 return res;
1003}
1004EXPORT_SYMBOL(get_next_ino);
1005
1006/**
1007 * new_inode_pseudo - obtain an inode
1008 * @sb: superblock
1009 *
1010 * Allocates a new inode for given superblock.
1011 * Inode wont be chained in superblock s_inodes list
1012 * This means :
1013 * - fs can't be unmount
1014 * - quotas, fsnotify, writeback can't work
1015 */
1016struct inode *new_inode_pseudo(struct super_block *sb)
1017{
1018 struct inode *inode = alloc_inode(sb);
1019
1020 if (inode) {
1021 spin_lock(&inode->i_lock);
1022 inode->i_state = 0;
1023 spin_unlock(&inode->i_lock);
1024 }
1025 return inode;
1026}
1027
1028/**
1029 * new_inode - obtain an inode
1030 * @sb: superblock
1031 *
1032 * Allocates a new inode for given superblock. The default gfp_mask
1033 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1035 * for the page cache are not reclaimable or migratable,
1036 * mapping_set_gfp_mask() must be called with suitable flags on the
1037 * newly created inode's mapping
1038 *
1039 */
1040struct inode *new_inode(struct super_block *sb)
1041{
1042 struct inode *inode;
1043
1044 spin_lock_prefetch(&sb->s_inode_list_lock);
1045
1046 inode = new_inode_pseudo(sb);
1047 if (inode)
1048 inode_sb_list_add(inode);
1049 return inode;
1050}
1051EXPORT_SYMBOL(new_inode);
1052
1053#ifdef CONFIG_DEBUG_LOCK_ALLOC
1054void lockdep_annotate_inode_mutex_key(struct inode *inode)
1055{
1056 if (S_ISDIR(inode->i_mode)) {
1057 struct file_system_type *type = inode->i_sb->s_type;
1058
1059 /* Set new key only if filesystem hasn't already changed it */
1060 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1061 /*
1062 * ensure nobody is actually holding i_mutex
1063 */
1064 // mutex_destroy(&inode->i_mutex);
1065 init_rwsem(&inode->i_rwsem);
1066 lockdep_set_class(&inode->i_rwsem,
1067 &type->i_mutex_dir_key);
1068 }
1069 }
1070}
1071EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1072#endif
1073
1074/**
1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076 * @inode: new inode to unlock
1077 *
1078 * Called when the inode is fully initialised to clear the new state of the
1079 * inode and wake up anyone waiting for the inode to finish initialisation.
1080 */
1081void unlock_new_inode(struct inode *inode)
1082{
1083 lockdep_annotate_inode_mutex_key(inode);
1084 spin_lock(&inode->i_lock);
1085 WARN_ON(!(inode->i_state & I_NEW));
1086 inode->i_state &= ~I_NEW & ~I_CREATING;
1087 smp_mb();
1088 wake_up_bit(&inode->i_state, __I_NEW);
1089 spin_unlock(&inode->i_lock);
1090}
1091EXPORT_SYMBOL(unlock_new_inode);
1092
1093void discard_new_inode(struct inode *inode)
1094{
1095 lockdep_annotate_inode_mutex_key(inode);
1096 spin_lock(&inode->i_lock);
1097 WARN_ON(!(inode->i_state & I_NEW));
1098 inode->i_state &= ~I_NEW;
1099 smp_mb();
1100 wake_up_bit(&inode->i_state, __I_NEW);
1101 spin_unlock(&inode->i_lock);
1102 iput(inode);
1103}
1104EXPORT_SYMBOL(discard_new_inode);
1105
1106/**
1107 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1108 *
1109 * Lock any non-NULL argument that is not a directory.
1110 * Zero, one or two objects may be locked by this function.
1111 *
1112 * @inode1: first inode to lock
1113 * @inode2: second inode to lock
1114 */
1115void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1116{
1117 if (inode1 > inode2)
1118 swap(inode1, inode2);
1119
1120 if (inode1 && !S_ISDIR(inode1->i_mode))
1121 inode_lock(inode1);
1122 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1123 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1124}
1125EXPORT_SYMBOL(lock_two_nondirectories);
1126
1127/**
1128 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1129 * @inode1: first inode to unlock
1130 * @inode2: second inode to unlock
1131 */
1132void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1133{
1134 if (inode1 && !S_ISDIR(inode1->i_mode))
1135 inode_unlock(inode1);
1136 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1137 inode_unlock(inode2);
1138}
1139EXPORT_SYMBOL(unlock_two_nondirectories);
1140
1141/**
1142 * inode_insert5 - obtain an inode from a mounted file system
1143 * @inode: pre-allocated inode to use for insert to cache
1144 * @hashval: hash value (usually inode number) to get
1145 * @test: callback used for comparisons between inodes
1146 * @set: callback used to initialize a new struct inode
1147 * @data: opaque data pointer to pass to @test and @set
1148 *
1149 * Search for the inode specified by @hashval and @data in the inode cache,
1150 * and if present it is return it with an increased reference count. This is
1151 * a variant of iget5_locked() for callers that don't want to fail on memory
1152 * allocation of inode.
1153 *
1154 * If the inode is not in cache, insert the pre-allocated inode to cache and
1155 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1156 * to fill it in before unlocking it via unlock_new_inode().
1157 *
1158 * Note both @test and @set are called with the inode_hash_lock held, so can't
1159 * sleep.
1160 */
1161struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1162 int (*test)(struct inode *, void *),
1163 int (*set)(struct inode *, void *), void *data)
1164{
1165 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166 struct inode *old;
1167
1168again:
1169 spin_lock(&inode_hash_lock);
1170 old = find_inode(inode->i_sb, head, test, data);
1171 if (unlikely(old)) {
1172 /*
1173 * Uhhuh, somebody else created the same inode under us.
1174 * Use the old inode instead of the preallocated one.
1175 */
1176 spin_unlock(&inode_hash_lock);
1177 if (IS_ERR(old))
1178 return NULL;
1179 wait_on_inode(old);
1180 if (unlikely(inode_unhashed(old))) {
1181 iput(old);
1182 goto again;
1183 }
1184 return old;
1185 }
1186
1187 if (set && unlikely(set(inode, data))) {
1188 inode = NULL;
1189 goto unlock;
1190 }
1191
1192 /*
1193 * Return the locked inode with I_NEW set, the
1194 * caller is responsible for filling in the contents
1195 */
1196 spin_lock(&inode->i_lock);
1197 inode->i_state |= I_NEW;
1198 hlist_add_head_rcu(&inode->i_hash, head);
1199 spin_unlock(&inode->i_lock);
1200
1201 /*
1202 * Add inode to the sb list if it's not already. It has I_NEW at this
1203 * point, so it should be safe to test i_sb_list locklessly.
1204 */
1205 if (list_empty(&inode->i_sb_list))
1206 inode_sb_list_add(inode);
1207unlock:
1208 spin_unlock(&inode_hash_lock);
1209
1210 return inode;
1211}
1212EXPORT_SYMBOL(inode_insert5);
1213
1214/**
1215 * iget5_locked - obtain an inode from a mounted file system
1216 * @sb: super block of file system
1217 * @hashval: hash value (usually inode number) to get
1218 * @test: callback used for comparisons between inodes
1219 * @set: callback used to initialize a new struct inode
1220 * @data: opaque data pointer to pass to @test and @set
1221 *
1222 * Search for the inode specified by @hashval and @data in the inode cache,
1223 * and if present it is return it with an increased reference count. This is
1224 * a generalized version of iget_locked() for file systems where the inode
1225 * number is not sufficient for unique identification of an inode.
1226 *
1227 * If the inode is not in cache, allocate a new inode and return it locked,
1228 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1229 * before unlocking it via unlock_new_inode().
1230 *
1231 * Note both @test and @set are called with the inode_hash_lock held, so can't
1232 * sleep.
1233 */
1234struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1235 int (*test)(struct inode *, void *),
1236 int (*set)(struct inode *, void *), void *data)
1237{
1238 struct inode *inode = ilookup5(sb, hashval, test, data);
1239
1240 if (!inode) {
1241 struct inode *new = alloc_inode(sb);
1242
1243 if (new) {
1244 new->i_state = 0;
1245 inode = inode_insert5(new, hashval, test, set, data);
1246 if (unlikely(inode != new))
1247 destroy_inode(new);
1248 }
1249 }
1250 return inode;
1251}
1252EXPORT_SYMBOL(iget5_locked);
1253
1254/**
1255 * iget_locked - obtain an inode from a mounted file system
1256 * @sb: super block of file system
1257 * @ino: inode number to get
1258 *
1259 * Search for the inode specified by @ino in the inode cache and if present
1260 * return it with an increased reference count. This is for file systems
1261 * where the inode number is sufficient for unique identification of an inode.
1262 *
1263 * If the inode is not in cache, allocate a new inode and return it locked,
1264 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1265 * before unlocking it via unlock_new_inode().
1266 */
1267struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1268{
1269 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270 struct inode *inode;
1271again:
1272 spin_lock(&inode_hash_lock);
1273 inode = find_inode_fast(sb, head, ino);
1274 spin_unlock(&inode_hash_lock);
1275 if (inode) {
1276 if (IS_ERR(inode))
1277 return NULL;
1278 wait_on_inode(inode);
1279 if (unlikely(inode_unhashed(inode))) {
1280 iput(inode);
1281 goto again;
1282 }
1283 return inode;
1284 }
1285
1286 inode = alloc_inode(sb);
1287 if (inode) {
1288 struct inode *old;
1289
1290 spin_lock(&inode_hash_lock);
1291 /* We released the lock, so.. */
1292 old = find_inode_fast(sb, head, ino);
1293 if (!old) {
1294 inode->i_ino = ino;
1295 spin_lock(&inode->i_lock);
1296 inode->i_state = I_NEW;
1297 hlist_add_head_rcu(&inode->i_hash, head);
1298 spin_unlock(&inode->i_lock);
1299 inode_sb_list_add(inode);
1300 spin_unlock(&inode_hash_lock);
1301
1302 /* Return the locked inode with I_NEW set, the
1303 * caller is responsible for filling in the contents
1304 */
1305 return inode;
1306 }
1307
1308 /*
1309 * Uhhuh, somebody else created the same inode under
1310 * us. Use the old inode instead of the one we just
1311 * allocated.
1312 */
1313 spin_unlock(&inode_hash_lock);
1314 destroy_inode(inode);
1315 if (IS_ERR(old))
1316 return NULL;
1317 inode = old;
1318 wait_on_inode(inode);
1319 if (unlikely(inode_unhashed(inode))) {
1320 iput(inode);
1321 goto again;
1322 }
1323 }
1324 return inode;
1325}
1326EXPORT_SYMBOL(iget_locked);
1327
1328/*
1329 * search the inode cache for a matching inode number.
1330 * If we find one, then the inode number we are trying to
1331 * allocate is not unique and so we should not use it.
1332 *
1333 * Returns 1 if the inode number is unique, 0 if it is not.
1334 */
1335static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1336{
1337 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1338 struct inode *inode;
1339
1340 hlist_for_each_entry_rcu(inode, b, i_hash) {
1341 if (inode->i_ino == ino && inode->i_sb == sb)
1342 return 0;
1343 }
1344 return 1;
1345}
1346
1347/**
1348 * iunique - get a unique inode number
1349 * @sb: superblock
1350 * @max_reserved: highest reserved inode number
1351 *
1352 * Obtain an inode number that is unique on the system for a given
1353 * superblock. This is used by file systems that have no natural
1354 * permanent inode numbering system. An inode number is returned that
1355 * is higher than the reserved limit but unique.
1356 *
1357 * BUGS:
1358 * With a large number of inodes live on the file system this function
1359 * currently becomes quite slow.
1360 */
1361ino_t iunique(struct super_block *sb, ino_t max_reserved)
1362{
1363 /*
1364 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1365 * error if st_ino won't fit in target struct field. Use 32bit counter
1366 * here to attempt to avoid that.
1367 */
1368 static DEFINE_SPINLOCK(iunique_lock);
1369 static unsigned int counter;
1370 ino_t res;
1371
1372 rcu_read_lock();
1373 spin_lock(&iunique_lock);
1374 do {
1375 if (counter <= max_reserved)
1376 counter = max_reserved + 1;
1377 res = counter++;
1378 } while (!test_inode_iunique(sb, res));
1379 spin_unlock(&iunique_lock);
1380 rcu_read_unlock();
1381
1382 return res;
1383}
1384EXPORT_SYMBOL(iunique);
1385
1386struct inode *igrab(struct inode *inode)
1387{
1388 spin_lock(&inode->i_lock);
1389 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1390 __iget(inode);
1391 spin_unlock(&inode->i_lock);
1392 } else {
1393 spin_unlock(&inode->i_lock);
1394 /*
1395 * Handle the case where s_op->clear_inode is not been
1396 * called yet, and somebody is calling igrab
1397 * while the inode is getting freed.
1398 */
1399 inode = NULL;
1400 }
1401 return inode;
1402}
1403EXPORT_SYMBOL(igrab);
1404
1405/**
1406 * ilookup5_nowait - search for an inode in the inode cache
1407 * @sb: super block of file system to search
1408 * @hashval: hash value (usually inode number) to search for
1409 * @test: callback used for comparisons between inodes
1410 * @data: opaque data pointer to pass to @test
1411 *
1412 * Search for the inode specified by @hashval and @data in the inode cache.
1413 * If the inode is in the cache, the inode is returned with an incremented
1414 * reference count.
1415 *
1416 * Note: I_NEW is not waited upon so you have to be very careful what you do
1417 * with the returned inode. You probably should be using ilookup5() instead.
1418 *
1419 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1420 */
1421struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1422 int (*test)(struct inode *, void *), void *data)
1423{
1424 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425 struct inode *inode;
1426
1427 spin_lock(&inode_hash_lock);
1428 inode = find_inode(sb, head, test, data);
1429 spin_unlock(&inode_hash_lock);
1430
1431 return IS_ERR(inode) ? NULL : inode;
1432}
1433EXPORT_SYMBOL(ilookup5_nowait);
1434
1435/**
1436 * ilookup5 - search for an inode in the inode cache
1437 * @sb: super block of file system to search
1438 * @hashval: hash value (usually inode number) to search for
1439 * @test: callback used for comparisons between inodes
1440 * @data: opaque data pointer to pass to @test
1441 *
1442 * Search for the inode specified by @hashval and @data in the inode cache,
1443 * and if the inode is in the cache, return the inode with an incremented
1444 * reference count. Waits on I_NEW before returning the inode.
1445 * returned with an incremented reference count.
1446 *
1447 * This is a generalized version of ilookup() for file systems where the
1448 * inode number is not sufficient for unique identification of an inode.
1449 *
1450 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1451 */
1452struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1453 int (*test)(struct inode *, void *), void *data)
1454{
1455 struct inode *inode;
1456again:
1457 inode = ilookup5_nowait(sb, hashval, test, data);
1458 if (inode) {
1459 wait_on_inode(inode);
1460 if (unlikely(inode_unhashed(inode))) {
1461 iput(inode);
1462 goto again;
1463 }
1464 }
1465 return inode;
1466}
1467EXPORT_SYMBOL(ilookup5);
1468
1469/**
1470 * ilookup - search for an inode in the inode cache
1471 * @sb: super block of file system to search
1472 * @ino: inode number to search for
1473 *
1474 * Search for the inode @ino in the inode cache, and if the inode is in the
1475 * cache, the inode is returned with an incremented reference count.
1476 */
1477struct inode *ilookup(struct super_block *sb, unsigned long ino)
1478{
1479 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1480 struct inode *inode;
1481again:
1482 spin_lock(&inode_hash_lock);
1483 inode = find_inode_fast(sb, head, ino);
1484 spin_unlock(&inode_hash_lock);
1485
1486 if (inode) {
1487 if (IS_ERR(inode))
1488 return NULL;
1489 wait_on_inode(inode);
1490 if (unlikely(inode_unhashed(inode))) {
1491 iput(inode);
1492 goto again;
1493 }
1494 }
1495 return inode;
1496}
1497EXPORT_SYMBOL(ilookup);
1498
1499/**
1500 * find_inode_nowait - find an inode in the inode cache
1501 * @sb: super block of file system to search
1502 * @hashval: hash value (usually inode number) to search for
1503 * @match: callback used for comparisons between inodes
1504 * @data: opaque data pointer to pass to @match
1505 *
1506 * Search for the inode specified by @hashval and @data in the inode
1507 * cache, where the helper function @match will return 0 if the inode
1508 * does not match, 1 if the inode does match, and -1 if the search
1509 * should be stopped. The @match function must be responsible for
1510 * taking the i_lock spin_lock and checking i_state for an inode being
1511 * freed or being initialized, and incrementing the reference count
1512 * before returning 1. It also must not sleep, since it is called with
1513 * the inode_hash_lock spinlock held.
1514 *
1515 * This is a even more generalized version of ilookup5() when the
1516 * function must never block --- find_inode() can block in
1517 * __wait_on_freeing_inode() --- or when the caller can not increment
1518 * the reference count because the resulting iput() might cause an
1519 * inode eviction. The tradeoff is that the @match funtion must be
1520 * very carefully implemented.
1521 */
1522struct inode *find_inode_nowait(struct super_block *sb,
1523 unsigned long hashval,
1524 int (*match)(struct inode *, unsigned long,
1525 void *),
1526 void *data)
1527{
1528 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1529 struct inode *inode, *ret_inode = NULL;
1530 int mval;
1531
1532 spin_lock(&inode_hash_lock);
1533 hlist_for_each_entry(inode, head, i_hash) {
1534 if (inode->i_sb != sb)
1535 continue;
1536 mval = match(inode, hashval, data);
1537 if (mval == 0)
1538 continue;
1539 if (mval == 1)
1540 ret_inode = inode;
1541 goto out;
1542 }
1543out:
1544 spin_unlock(&inode_hash_lock);
1545 return ret_inode;
1546}
1547EXPORT_SYMBOL(find_inode_nowait);
1548
1549/**
1550 * find_inode_rcu - find an inode in the inode cache
1551 * @sb: Super block of file system to search
1552 * @hashval: Key to hash
1553 * @test: Function to test match on an inode
1554 * @data: Data for test function
1555 *
1556 * Search for the inode specified by @hashval and @data in the inode cache,
1557 * where the helper function @test will return 0 if the inode does not match
1558 * and 1 if it does. The @test function must be responsible for taking the
1559 * i_lock spin_lock and checking i_state for an inode being freed or being
1560 * initialized.
1561 *
1562 * If successful, this will return the inode for which the @test function
1563 * returned 1 and NULL otherwise.
1564 *
1565 * The @test function is not permitted to take a ref on any inode presented.
1566 * It is also not permitted to sleep.
1567 *
1568 * The caller must hold the RCU read lock.
1569 */
1570struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1571 int (*test)(struct inode *, void *), void *data)
1572{
1573 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1574 struct inode *inode;
1575
1576 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1577 "suspicious find_inode_rcu() usage");
1578
1579 hlist_for_each_entry_rcu(inode, head, i_hash) {
1580 if (inode->i_sb == sb &&
1581 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1582 test(inode, data))
1583 return inode;
1584 }
1585 return NULL;
1586}
1587EXPORT_SYMBOL(find_inode_rcu);
1588
1589/**
1590 * find_inode_by_ino_rcu - Find an inode in the inode cache
1591 * @sb: Super block of file system to search
1592 * @ino: The inode number to match
1593 *
1594 * Search for the inode specified by @hashval and @data in the inode cache,
1595 * where the helper function @test will return 0 if the inode does not match
1596 * and 1 if it does. The @test function must be responsible for taking the
1597 * i_lock spin_lock and checking i_state for an inode being freed or being
1598 * initialized.
1599 *
1600 * If successful, this will return the inode for which the @test function
1601 * returned 1 and NULL otherwise.
1602 *
1603 * The @test function is not permitted to take a ref on any inode presented.
1604 * It is also not permitted to sleep.
1605 *
1606 * The caller must hold the RCU read lock.
1607 */
1608struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1609 unsigned long ino)
1610{
1611 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1612 struct inode *inode;
1613
1614 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1615 "suspicious find_inode_by_ino_rcu() usage");
1616
1617 hlist_for_each_entry_rcu(inode, head, i_hash) {
1618 if (inode->i_ino == ino &&
1619 inode->i_sb == sb &&
1620 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1621 return inode;
1622 }
1623 return NULL;
1624}
1625EXPORT_SYMBOL(find_inode_by_ino_rcu);
1626
1627int insert_inode_locked(struct inode *inode)
1628{
1629 struct super_block *sb = inode->i_sb;
1630 ino_t ino = inode->i_ino;
1631 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632
1633 while (1) {
1634 struct inode *old = NULL;
1635 spin_lock(&inode_hash_lock);
1636 hlist_for_each_entry(old, head, i_hash) {
1637 if (old->i_ino != ino)
1638 continue;
1639 if (old->i_sb != sb)
1640 continue;
1641 spin_lock(&old->i_lock);
1642 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1643 spin_unlock(&old->i_lock);
1644 continue;
1645 }
1646 break;
1647 }
1648 if (likely(!old)) {
1649 spin_lock(&inode->i_lock);
1650 inode->i_state |= I_NEW | I_CREATING;
1651 hlist_add_head_rcu(&inode->i_hash, head);
1652 spin_unlock(&inode->i_lock);
1653 spin_unlock(&inode_hash_lock);
1654 return 0;
1655 }
1656 if (unlikely(old->i_state & I_CREATING)) {
1657 spin_unlock(&old->i_lock);
1658 spin_unlock(&inode_hash_lock);
1659 return -EBUSY;
1660 }
1661 __iget(old);
1662 spin_unlock(&old->i_lock);
1663 spin_unlock(&inode_hash_lock);
1664 wait_on_inode(old);
1665 if (unlikely(!inode_unhashed(old))) {
1666 iput(old);
1667 return -EBUSY;
1668 }
1669 iput(old);
1670 }
1671}
1672EXPORT_SYMBOL(insert_inode_locked);
1673
1674int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1675 int (*test)(struct inode *, void *), void *data)
1676{
1677 struct inode *old;
1678
1679 inode->i_state |= I_CREATING;
1680 old = inode_insert5(inode, hashval, test, NULL, data);
1681
1682 if (old != inode) {
1683 iput(old);
1684 return -EBUSY;
1685 }
1686 return 0;
1687}
1688EXPORT_SYMBOL(insert_inode_locked4);
1689
1690
1691int generic_delete_inode(struct inode *inode)
1692{
1693 return 1;
1694}
1695EXPORT_SYMBOL(generic_delete_inode);
1696
1697/*
1698 * Called when we're dropping the last reference
1699 * to an inode.
1700 *
1701 * Call the FS "drop_inode()" function, defaulting to
1702 * the legacy UNIX filesystem behaviour. If it tells
1703 * us to evict inode, do so. Otherwise, retain inode
1704 * in cache if fs is alive, sync and evict if fs is
1705 * shutting down.
1706 */
1707static void iput_final(struct inode *inode)
1708{
1709 struct super_block *sb = inode->i_sb;
1710 const struct super_operations *op = inode->i_sb->s_op;
1711 unsigned long state;
1712 int drop;
1713
1714 WARN_ON(inode->i_state & I_NEW);
1715
1716 if (op->drop_inode)
1717 drop = op->drop_inode(inode);
1718 else
1719 drop = generic_drop_inode(inode);
1720
1721 if (!drop &&
1722 !(inode->i_state & I_DONTCACHE) &&
1723 (sb->s_flags & SB_ACTIVE)) {
1724 __inode_add_lru(inode, true);
1725 spin_unlock(&inode->i_lock);
1726 return;
1727 }
1728
1729 state = inode->i_state;
1730 if (!drop) {
1731 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1732 spin_unlock(&inode->i_lock);
1733
1734 write_inode_now(inode, 1);
1735
1736 spin_lock(&inode->i_lock);
1737 state = inode->i_state;
1738 WARN_ON(state & I_NEW);
1739 state &= ~I_WILL_FREE;
1740 }
1741
1742 WRITE_ONCE(inode->i_state, state | I_FREEING);
1743 if (!list_empty(&inode->i_lru))
1744 inode_lru_list_del(inode);
1745 spin_unlock(&inode->i_lock);
1746
1747 evict(inode);
1748}
1749
1750/**
1751 * iput - put an inode
1752 * @inode: inode to put
1753 *
1754 * Puts an inode, dropping its usage count. If the inode use count hits
1755 * zero, the inode is then freed and may also be destroyed.
1756 *
1757 * Consequently, iput() can sleep.
1758 */
1759void iput(struct inode *inode)
1760{
1761 if (!inode)
1762 return;
1763 BUG_ON(inode->i_state & I_CLEAR);
1764retry:
1765 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1766 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1767 atomic_inc(&inode->i_count);
1768 spin_unlock(&inode->i_lock);
1769 trace_writeback_lazytime_iput(inode);
1770 mark_inode_dirty_sync(inode);
1771 goto retry;
1772 }
1773 iput_final(inode);
1774 }
1775}
1776EXPORT_SYMBOL(iput);
1777
1778#ifdef CONFIG_BLOCK
1779/**
1780 * bmap - find a block number in a file
1781 * @inode: inode owning the block number being requested
1782 * @block: pointer containing the block to find
1783 *
1784 * Replaces the value in ``*block`` with the block number on the device holding
1785 * corresponding to the requested block number in the file.
1786 * That is, asked for block 4 of inode 1 the function will replace the
1787 * 4 in ``*block``, with disk block relative to the disk start that holds that
1788 * block of the file.
1789 *
1790 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1791 * hole, returns 0 and ``*block`` is also set to 0.
1792 */
1793int bmap(struct inode *inode, sector_t *block)
1794{
1795 if (!inode->i_mapping->a_ops->bmap)
1796 return -EINVAL;
1797
1798 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1799 return 0;
1800}
1801EXPORT_SYMBOL(bmap);
1802#endif
1803
1804/*
1805 * With relative atime, only update atime if the previous atime is
1806 * earlier than either the ctime or mtime or if at least a day has
1807 * passed since the last atime update.
1808 */
1809static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1810 struct timespec64 now)
1811{
1812
1813 if (!(mnt->mnt_flags & MNT_RELATIME))
1814 return 1;
1815 /*
1816 * Is mtime younger than atime? If yes, update atime:
1817 */
1818 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1819 return 1;
1820 /*
1821 * Is ctime younger than atime? If yes, update atime:
1822 */
1823 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1824 return 1;
1825
1826 /*
1827 * Is the previous atime value older than a day? If yes,
1828 * update atime:
1829 */
1830 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1831 return 1;
1832 /*
1833 * Good, we can skip the atime update:
1834 */
1835 return 0;
1836}
1837
1838int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1839{
1840 int dirty_flags = 0;
1841
1842 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1843 if (flags & S_ATIME)
1844 inode->i_atime = *time;
1845 if (flags & S_CTIME)
1846 inode->i_ctime = *time;
1847 if (flags & S_MTIME)
1848 inode->i_mtime = *time;
1849
1850 if (inode->i_sb->s_flags & SB_LAZYTIME)
1851 dirty_flags |= I_DIRTY_TIME;
1852 else
1853 dirty_flags |= I_DIRTY_SYNC;
1854 }
1855
1856 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1857 dirty_flags |= I_DIRTY_SYNC;
1858
1859 __mark_inode_dirty(inode, dirty_flags);
1860 return 0;
1861}
1862EXPORT_SYMBOL(generic_update_time);
1863
1864/*
1865 * This does the actual work of updating an inodes time or version. Must have
1866 * had called mnt_want_write() before calling this.
1867 */
1868int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1869{
1870 if (inode->i_op->update_time)
1871 return inode->i_op->update_time(inode, time, flags);
1872 return generic_update_time(inode, time, flags);
1873}
1874EXPORT_SYMBOL(inode_update_time);
1875
1876/**
1877 * atime_needs_update - update the access time
1878 * @path: the &struct path to update
1879 * @inode: inode to update
1880 *
1881 * Update the accessed time on an inode and mark it for writeback.
1882 * This function automatically handles read only file systems and media,
1883 * as well as the "noatime" flag and inode specific "noatime" markers.
1884 */
1885bool atime_needs_update(const struct path *path, struct inode *inode)
1886{
1887 struct vfsmount *mnt = path->mnt;
1888 struct timespec64 now;
1889
1890 if (inode->i_flags & S_NOATIME)
1891 return false;
1892
1893 /* Atime updates will likely cause i_uid and i_gid to be written
1894 * back improprely if their true value is unknown to the vfs.
1895 */
1896 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1897 return false;
1898
1899 if (IS_NOATIME(inode))
1900 return false;
1901 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1902 return false;
1903
1904 if (mnt->mnt_flags & MNT_NOATIME)
1905 return false;
1906 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1907 return false;
1908
1909 now = current_time(inode);
1910
1911 if (!relatime_need_update(mnt, inode, now))
1912 return false;
1913
1914 if (timespec64_equal(&inode->i_atime, &now))
1915 return false;
1916
1917 return true;
1918}
1919
1920void touch_atime(const struct path *path)
1921{
1922 struct vfsmount *mnt = path->mnt;
1923 struct inode *inode = d_inode(path->dentry);
1924 struct timespec64 now;
1925
1926 if (!atime_needs_update(path, inode))
1927 return;
1928
1929 if (!sb_start_write_trylock(inode->i_sb))
1930 return;
1931
1932 if (__mnt_want_write(mnt) != 0)
1933 goto skip_update;
1934 /*
1935 * File systems can error out when updating inodes if they need to
1936 * allocate new space to modify an inode (such is the case for
1937 * Btrfs), but since we touch atime while walking down the path we
1938 * really don't care if we failed to update the atime of the file,
1939 * so just ignore the return value.
1940 * We may also fail on filesystems that have the ability to make parts
1941 * of the fs read only, e.g. subvolumes in Btrfs.
1942 */
1943 now = current_time(inode);
1944 inode_update_time(inode, &now, S_ATIME);
1945 __mnt_drop_write(mnt);
1946skip_update:
1947 sb_end_write(inode->i_sb);
1948}
1949EXPORT_SYMBOL(touch_atime);
1950
1951/*
1952 * Return mask of changes for notify_change() that need to be done as a
1953 * response to write or truncate. Return 0 if nothing has to be changed.
1954 * Negative value on error (change should be denied).
1955 */
1956int dentry_needs_remove_privs(struct user_namespace *mnt_userns,
1957 struct dentry *dentry)
1958{
1959 struct inode *inode = d_inode(dentry);
1960 int mask = 0;
1961 int ret;
1962
1963 if (IS_NOSEC(inode))
1964 return 0;
1965
1966 mask = setattr_should_drop_suidgid(mnt_userns, inode);
1967 ret = security_inode_need_killpriv(dentry);
1968 if (ret < 0)
1969 return ret;
1970 if (ret)
1971 mask |= ATTR_KILL_PRIV;
1972 return mask;
1973}
1974
1975static int __remove_privs(struct user_namespace *mnt_userns,
1976 struct dentry *dentry, int kill)
1977{
1978 struct iattr newattrs;
1979
1980 newattrs.ia_valid = ATTR_FORCE | kill;
1981 /*
1982 * Note we call this on write, so notify_change will not
1983 * encounter any conflicting delegations:
1984 */
1985 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1986}
1987
1988static int __file_remove_privs(struct file *file, unsigned int flags)
1989{
1990 struct dentry *dentry = file_dentry(file);
1991 struct inode *inode = file_inode(file);
1992 int error = 0;
1993 int kill;
1994
1995 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1996 return 0;
1997
1998 kill = dentry_needs_remove_privs(file_mnt_user_ns(file), dentry);
1999 if (kill < 0)
2000 return kill;
2001
2002 if (kill) {
2003 if (flags & IOCB_NOWAIT)
2004 return -EAGAIN;
2005
2006 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2007 }
2008
2009 if (!error)
2010 inode_has_no_xattr(inode);
2011 return error;
2012}
2013
2014/**
2015 * file_remove_privs - remove special file privileges (suid, capabilities)
2016 * @file: file to remove privileges from
2017 *
2018 * When file is modified by a write or truncation ensure that special
2019 * file privileges are removed.
2020 *
2021 * Return: 0 on success, negative errno on failure.
2022 */
2023int file_remove_privs(struct file *file)
2024{
2025 return __file_remove_privs(file, 0);
2026}
2027EXPORT_SYMBOL(file_remove_privs);
2028
2029static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2030{
2031 int sync_it = 0;
2032
2033 /* First try to exhaust all avenues to not sync */
2034 if (IS_NOCMTIME(inode))
2035 return 0;
2036
2037 if (!timespec64_equal(&inode->i_mtime, now))
2038 sync_it = S_MTIME;
2039
2040 if (!timespec64_equal(&inode->i_ctime, now))
2041 sync_it |= S_CTIME;
2042
2043 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2044 sync_it |= S_VERSION;
2045
2046 return sync_it;
2047}
2048
2049static int __file_update_time(struct file *file, struct timespec64 *now,
2050 int sync_mode)
2051{
2052 int ret = 0;
2053 struct inode *inode = file_inode(file);
2054
2055 /* try to update time settings */
2056 if (!__mnt_want_write_file(file)) {
2057 ret = inode_update_time(inode, now, sync_mode);
2058 __mnt_drop_write_file(file);
2059 }
2060
2061 return ret;
2062}
2063
2064/**
2065 * file_update_time - update mtime and ctime time
2066 * @file: file accessed
2067 *
2068 * Update the mtime and ctime members of an inode and mark the inode for
2069 * writeback. Note that this function is meant exclusively for usage in
2070 * the file write path of filesystems, and filesystems may choose to
2071 * explicitly ignore updates via this function with the _NOCMTIME inode
2072 * flag, e.g. for network filesystem where these imestamps are handled
2073 * by the server. This can return an error for file systems who need to
2074 * allocate space in order to update an inode.
2075 *
2076 * Return: 0 on success, negative errno on failure.
2077 */
2078int file_update_time(struct file *file)
2079{
2080 int ret;
2081 struct inode *inode = file_inode(file);
2082 struct timespec64 now = current_time(inode);
2083
2084 ret = inode_needs_update_time(inode, &now);
2085 if (ret <= 0)
2086 return ret;
2087
2088 return __file_update_time(file, &now, ret);
2089}
2090EXPORT_SYMBOL(file_update_time);
2091
2092/**
2093 * file_modified_flags - handle mandated vfs changes when modifying a file
2094 * @file: file that was modified
2095 * @flags: kiocb flags
2096 *
2097 * When file has been modified ensure that special
2098 * file privileges are removed and time settings are updated.
2099 *
2100 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2101 * time settings will not be updated. It will return -EAGAIN.
2102 *
2103 * Context: Caller must hold the file's inode lock.
2104 *
2105 * Return: 0 on success, negative errno on failure.
2106 */
2107static int file_modified_flags(struct file *file, int flags)
2108{
2109 int ret;
2110 struct inode *inode = file_inode(file);
2111 struct timespec64 now = current_time(inode);
2112
2113 /*
2114 * Clear the security bits if the process is not being run by root.
2115 * This keeps people from modifying setuid and setgid binaries.
2116 */
2117 ret = __file_remove_privs(file, flags);
2118 if (ret)
2119 return ret;
2120
2121 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2122 return 0;
2123
2124 ret = inode_needs_update_time(inode, &now);
2125 if (ret <= 0)
2126 return ret;
2127 if (flags & IOCB_NOWAIT)
2128 return -EAGAIN;
2129
2130 return __file_update_time(file, &now, ret);
2131}
2132
2133/**
2134 * file_modified - handle mandated vfs changes when modifying a file
2135 * @file: file that was modified
2136 *
2137 * When file has been modified ensure that special
2138 * file privileges are removed and time settings are updated.
2139 *
2140 * Context: Caller must hold the file's inode lock.
2141 *
2142 * Return: 0 on success, negative errno on failure.
2143 */
2144int file_modified(struct file *file)
2145{
2146 return file_modified_flags(file, 0);
2147}
2148EXPORT_SYMBOL(file_modified);
2149
2150/**
2151 * kiocb_modified - handle mandated vfs changes when modifying a file
2152 * @iocb: iocb that was modified
2153 *
2154 * When file has been modified ensure that special
2155 * file privileges are removed and time settings are updated.
2156 *
2157 * Context: Caller must hold the file's inode lock.
2158 *
2159 * Return: 0 on success, negative errno on failure.
2160 */
2161int kiocb_modified(struct kiocb *iocb)
2162{
2163 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2164}
2165EXPORT_SYMBOL_GPL(kiocb_modified);
2166
2167int inode_needs_sync(struct inode *inode)
2168{
2169 if (IS_SYNC(inode))
2170 return 1;
2171 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2172 return 1;
2173 return 0;
2174}
2175EXPORT_SYMBOL(inode_needs_sync);
2176
2177/*
2178 * If we try to find an inode in the inode hash while it is being
2179 * deleted, we have to wait until the filesystem completes its
2180 * deletion before reporting that it isn't found. This function waits
2181 * until the deletion _might_ have completed. Callers are responsible
2182 * to recheck inode state.
2183 *
2184 * It doesn't matter if I_NEW is not set initially, a call to
2185 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2186 * will DTRT.
2187 */
2188static void __wait_on_freeing_inode(struct inode *inode)
2189{
2190 wait_queue_head_t *wq;
2191 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2192 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2193 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2194 spin_unlock(&inode->i_lock);
2195 spin_unlock(&inode_hash_lock);
2196 schedule();
2197 finish_wait(wq, &wait.wq_entry);
2198 spin_lock(&inode_hash_lock);
2199}
2200
2201static __initdata unsigned long ihash_entries;
2202static int __init set_ihash_entries(char *str)
2203{
2204 if (!str)
2205 return 0;
2206 ihash_entries = simple_strtoul(str, &str, 0);
2207 return 1;
2208}
2209__setup("ihash_entries=", set_ihash_entries);
2210
2211/*
2212 * Initialize the waitqueues and inode hash table.
2213 */
2214void __init inode_init_early(void)
2215{
2216 /* If hashes are distributed across NUMA nodes, defer
2217 * hash allocation until vmalloc space is available.
2218 */
2219 if (hashdist)
2220 return;
2221
2222 inode_hashtable =
2223 alloc_large_system_hash("Inode-cache",
2224 sizeof(struct hlist_head),
2225 ihash_entries,
2226 14,
2227 HASH_EARLY | HASH_ZERO,
2228 &i_hash_shift,
2229 &i_hash_mask,
2230 0,
2231 0);
2232}
2233
2234void __init inode_init(void)
2235{
2236 /* inode slab cache */
2237 inode_cachep = kmem_cache_create("inode_cache",
2238 sizeof(struct inode),
2239 0,
2240 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2241 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2242 init_once);
2243
2244 /* Hash may have been set up in inode_init_early */
2245 if (!hashdist)
2246 return;
2247
2248 inode_hashtable =
2249 alloc_large_system_hash("Inode-cache",
2250 sizeof(struct hlist_head),
2251 ihash_entries,
2252 14,
2253 HASH_ZERO,
2254 &i_hash_shift,
2255 &i_hash_mask,
2256 0,
2257 0);
2258}
2259
2260void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2261{
2262 inode->i_mode = mode;
2263 if (S_ISCHR(mode)) {
2264 inode->i_fop = &def_chr_fops;
2265 inode->i_rdev = rdev;
2266 } else if (S_ISBLK(mode)) {
2267 inode->i_fop = &def_blk_fops;
2268 inode->i_rdev = rdev;
2269 } else if (S_ISFIFO(mode))
2270 inode->i_fop = &pipefifo_fops;
2271 else if (S_ISSOCK(mode))
2272 ; /* leave it no_open_fops */
2273 else
2274 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2275 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2276 inode->i_ino);
2277}
2278EXPORT_SYMBOL(init_special_inode);
2279
2280/**
2281 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2282 * @mnt_userns: User namespace of the mount the inode was created from
2283 * @inode: New inode
2284 * @dir: Directory inode
2285 * @mode: mode of the new inode
2286 *
2287 * If the inode has been created through an idmapped mount the user namespace of
2288 * the vfsmount must be passed through @mnt_userns. This function will then take
2289 * care to map the inode according to @mnt_userns before checking permissions
2290 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2291 * checking is to be performed on the raw inode simply passs init_user_ns.
2292 */
2293void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2294 const struct inode *dir, umode_t mode)
2295{
2296 inode_fsuid_set(inode, mnt_userns);
2297 if (dir && dir->i_mode & S_ISGID) {
2298 inode->i_gid = dir->i_gid;
2299
2300 /* Directories are special, and always inherit S_ISGID */
2301 if (S_ISDIR(mode))
2302 mode |= S_ISGID;
2303 } else
2304 inode_fsgid_set(inode, mnt_userns);
2305 inode->i_mode = mode;
2306}
2307EXPORT_SYMBOL(inode_init_owner);
2308
2309/**
2310 * inode_owner_or_capable - check current task permissions to inode
2311 * @mnt_userns: user namespace of the mount the inode was found from
2312 * @inode: inode being checked
2313 *
2314 * Return true if current either has CAP_FOWNER in a namespace with the
2315 * inode owner uid mapped, or owns the file.
2316 *
2317 * If the inode has been found through an idmapped mount the user namespace of
2318 * the vfsmount must be passed through @mnt_userns. This function will then take
2319 * care to map the inode according to @mnt_userns before checking permissions.
2320 * On non-idmapped mounts or if permission checking is to be performed on the
2321 * raw inode simply passs init_user_ns.
2322 */
2323bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2324 const struct inode *inode)
2325{
2326 vfsuid_t vfsuid;
2327 struct user_namespace *ns;
2328
2329 vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
2330 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2331 return true;
2332
2333 ns = current_user_ns();
2334 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2335 return true;
2336 return false;
2337}
2338EXPORT_SYMBOL(inode_owner_or_capable);
2339
2340/*
2341 * Direct i/o helper functions
2342 */
2343static void __inode_dio_wait(struct inode *inode)
2344{
2345 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2346 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2347
2348 do {
2349 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2350 if (atomic_read(&inode->i_dio_count))
2351 schedule();
2352 } while (atomic_read(&inode->i_dio_count));
2353 finish_wait(wq, &q.wq_entry);
2354}
2355
2356/**
2357 * inode_dio_wait - wait for outstanding DIO requests to finish
2358 * @inode: inode to wait for
2359 *
2360 * Waits for all pending direct I/O requests to finish so that we can
2361 * proceed with a truncate or equivalent operation.
2362 *
2363 * Must be called under a lock that serializes taking new references
2364 * to i_dio_count, usually by inode->i_mutex.
2365 */
2366void inode_dio_wait(struct inode *inode)
2367{
2368 if (atomic_read(&inode->i_dio_count))
2369 __inode_dio_wait(inode);
2370}
2371EXPORT_SYMBOL(inode_dio_wait);
2372
2373/*
2374 * inode_set_flags - atomically set some inode flags
2375 *
2376 * Note: the caller should be holding i_mutex, or else be sure that
2377 * they have exclusive access to the inode structure (i.e., while the
2378 * inode is being instantiated). The reason for the cmpxchg() loop
2379 * --- which wouldn't be necessary if all code paths which modify
2380 * i_flags actually followed this rule, is that there is at least one
2381 * code path which doesn't today so we use cmpxchg() out of an abundance
2382 * of caution.
2383 *
2384 * In the long run, i_mutex is overkill, and we should probably look
2385 * at using the i_lock spinlock to protect i_flags, and then make sure
2386 * it is so documented in include/linux/fs.h and that all code follows
2387 * the locking convention!!
2388 */
2389void inode_set_flags(struct inode *inode, unsigned int flags,
2390 unsigned int mask)
2391{
2392 WARN_ON_ONCE(flags & ~mask);
2393 set_mask_bits(&inode->i_flags, mask, flags);
2394}
2395EXPORT_SYMBOL(inode_set_flags);
2396
2397void inode_nohighmem(struct inode *inode)
2398{
2399 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2400}
2401EXPORT_SYMBOL(inode_nohighmem);
2402
2403/**
2404 * timestamp_truncate - Truncate timespec to a granularity
2405 * @t: Timespec
2406 * @inode: inode being updated
2407 *
2408 * Truncate a timespec to the granularity supported by the fs
2409 * containing the inode. Always rounds down. gran must
2410 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2411 */
2412struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2413{
2414 struct super_block *sb = inode->i_sb;
2415 unsigned int gran = sb->s_time_gran;
2416
2417 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2418 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2419 t.tv_nsec = 0;
2420
2421 /* Avoid division in the common cases 1 ns and 1 s. */
2422 if (gran == 1)
2423 ; /* nothing */
2424 else if (gran == NSEC_PER_SEC)
2425 t.tv_nsec = 0;
2426 else if (gran > 1 && gran < NSEC_PER_SEC)
2427 t.tv_nsec -= t.tv_nsec % gran;
2428 else
2429 WARN(1, "invalid file time granularity: %u", gran);
2430 return t;
2431}
2432EXPORT_SYMBOL(timestamp_truncate);
2433
2434/**
2435 * current_time - Return FS time
2436 * @inode: inode.
2437 *
2438 * Return the current time truncated to the time granularity supported by
2439 * the fs.
2440 *
2441 * Note that inode and inode->sb cannot be NULL.
2442 * Otherwise, the function warns and returns time without truncation.
2443 */
2444struct timespec64 current_time(struct inode *inode)
2445{
2446 struct timespec64 now;
2447
2448 ktime_get_coarse_real_ts64(&now);
2449
2450 if (unlikely(!inode->i_sb)) {
2451 WARN(1, "current_time() called with uninitialized super_block in the inode");
2452 return now;
2453 }
2454
2455 return timestamp_truncate(now, inode);
2456}
2457EXPORT_SYMBOL(current_time);
2458
2459/**
2460 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2461 * @mnt_userns: user namespace of the mount @inode was found from
2462 * @inode: inode to check
2463 * @vfsgid: the new/current vfsgid of @inode
2464 *
2465 * Check wether @vfsgid is in the caller's group list or if the caller is
2466 * privileged with CAP_FSETID over @inode. This can be used to determine
2467 * whether the setgid bit can be kept or must be dropped.
2468 *
2469 * Return: true if the caller is sufficiently privileged, false if not.
2470 */
2471bool in_group_or_capable(struct user_namespace *mnt_userns,
2472 const struct inode *inode, vfsgid_t vfsgid)
2473{
2474 if (vfsgid_in_group_p(vfsgid))
2475 return true;
2476 if (capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
2477 return true;
2478 return false;
2479}
2480
2481/**
2482 * mode_strip_sgid - handle the sgid bit for non-directories
2483 * @mnt_userns: User namespace of the mount the inode was created from
2484 * @dir: parent directory inode
2485 * @mode: mode of the file to be created in @dir
2486 *
2487 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2488 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2489 * either in the group of the parent directory or they have CAP_FSETID
2490 * in their user namespace and are privileged over the parent directory.
2491 * In all other cases, strip the S_ISGID bit from @mode.
2492 *
2493 * Return: the new mode to use for the file
2494 */
2495umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2496 const struct inode *dir, umode_t mode)
2497{
2498 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2499 return mode;
2500 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2501 return mode;
2502 if (in_group_or_capable(mnt_userns, dir,
2503 i_gid_into_vfsgid(mnt_userns, dir)))
2504 return mode;
2505 return mode & ~S_ISGID;
2506}
2507EXPORT_SYMBOL(mode_strip_sgid);