Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <trace/events/writeback.h>
  22#include "internal.h"
  23
  24/*
  25 * Inode locking rules:
  26 *
  27 * inode->i_lock protects:
  28 *   inode->i_state, inode->i_hash, __iget()
  29 * Inode LRU list locks protect:
  30 *   inode->i_sb->s_inode_lru, inode->i_lru
  31 * inode->i_sb->s_inode_list_lock protects:
  32 *   inode->i_sb->s_inodes, inode->i_sb_list
  33 * bdi->wb.list_lock protects:
  34 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  35 * inode_hash_lock protects:
  36 *   inode_hashtable, inode->i_hash
  37 *
  38 * Lock ordering:
  39 *
  40 * inode->i_sb->s_inode_list_lock
  41 *   inode->i_lock
  42 *     Inode LRU list locks
  43 *
  44 * bdi->wb.list_lock
  45 *   inode->i_lock
  46 *
  47 * inode_hash_lock
  48 *   inode->i_sb->s_inode_list_lock
  49 *   inode->i_lock
  50 *
  51 * iunique_lock
  52 *   inode_hash_lock
  53 */
  54
  55static unsigned int i_hash_mask __read_mostly;
  56static unsigned int i_hash_shift __read_mostly;
  57static struct hlist_head *inode_hashtable __read_mostly;
  58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  59
 
 
  60/*
  61 * Empty aops. Can be used for the cases where the user does not
  62 * define any of the address_space operations.
  63 */
  64const struct address_space_operations empty_aops = {
  65};
  66EXPORT_SYMBOL(empty_aops);
  67
  68/*
  69 * Statistics gathering..
  70 */
  71struct inodes_stat_t inodes_stat;
  72
  73static DEFINE_PER_CPU(unsigned long, nr_inodes);
  74static DEFINE_PER_CPU(unsigned long, nr_unused);
  75
  76static struct kmem_cache *inode_cachep __read_mostly;
  77
  78static long get_nr_inodes(void)
  79{
  80	int i;
  81	long sum = 0;
  82	for_each_possible_cpu(i)
  83		sum += per_cpu(nr_inodes, i);
  84	return sum < 0 ? 0 : sum;
  85}
  86
  87static inline long get_nr_inodes_unused(void)
  88{
  89	int i;
  90	long sum = 0;
  91	for_each_possible_cpu(i)
  92		sum += per_cpu(nr_unused, i);
  93	return sum < 0 ? 0 : sum;
  94}
  95
  96long get_nr_dirty_inodes(void)
  97{
  98	/* not actually dirty inodes, but a wild approximation */
  99	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 100	return nr_dirty > 0 ? nr_dirty : 0;
 101}
 102
 103/*
 104 * Handle nr_inode sysctl
 105 */
 106#ifdef CONFIG_SYSCTL
 107int proc_nr_inodes(struct ctl_table *table, int write,
 108		   void __user *buffer, size_t *lenp, loff_t *ppos)
 109{
 110	inodes_stat.nr_inodes = get_nr_inodes();
 111	inodes_stat.nr_unused = get_nr_inodes_unused();
 112	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 113}
 114#endif
 115
 116static int no_open(struct inode *inode, struct file *file)
 117{
 118	return -ENXIO;
 119}
 120
 121/**
 122 * inode_init_always - perform inode structure intialisation
 123 * @sb: superblock inode belongs to
 124 * @inode: inode to initialise
 125 *
 126 * These are initializations that need to be done on every inode
 127 * allocation as the fields are not initialised by slab allocation.
 128 */
 129int inode_init_always(struct super_block *sb, struct inode *inode)
 130{
 131	static const struct inode_operations empty_iops;
 132	static const struct file_operations no_open_fops = {.open = no_open};
 133	struct address_space *const mapping = &inode->i_data;
 134
 135	inode->i_sb = sb;
 136	inode->i_blkbits = sb->s_blocksize_bits;
 137	inode->i_flags = 0;
 138	atomic_set(&inode->i_count, 1);
 139	inode->i_op = &empty_iops;
 140	inode->i_fop = &no_open_fops;
 141	inode->__i_nlink = 1;
 142	inode->i_opflags = 0;
 143	if (sb->s_xattr)
 144		inode->i_opflags |= IOP_XATTR;
 145	i_uid_write(inode, 0);
 146	i_gid_write(inode, 0);
 147	atomic_set(&inode->i_writecount, 0);
 148	inode->i_size = 0;
 149	inode->i_blocks = 0;
 150	inode->i_bytes = 0;
 151	inode->i_generation = 0;
 
 
 
 152	inode->i_pipe = NULL;
 153	inode->i_bdev = NULL;
 154	inode->i_cdev = NULL;
 155	inode->i_link = NULL;
 156	inode->i_dir_seq = 0;
 157	inode->i_rdev = 0;
 158	inode->dirtied_when = 0;
 159
 160#ifdef CONFIG_CGROUP_WRITEBACK
 161	inode->i_wb_frn_winner = 0;
 162	inode->i_wb_frn_avg_time = 0;
 163	inode->i_wb_frn_history = 0;
 164#endif
 165
 166	if (security_inode_alloc(inode))
 167		goto out;
 168	spin_lock_init(&inode->i_lock);
 169	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 170
 171	init_rwsem(&inode->i_rwsem);
 172	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 173
 174	atomic_set(&inode->i_dio_count, 0);
 175
 176	mapping->a_ops = &empty_aops;
 177	mapping->host = inode;
 178	mapping->flags = 0;
 179	atomic_set(&mapping->i_mmap_writable, 0);
 180	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 181	mapping->private_data = NULL;
 
 182	mapping->writeback_index = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 183	inode->i_private = NULL;
 184	inode->i_mapping = mapping;
 185	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 186#ifdef CONFIG_FS_POSIX_ACL
 187	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 188#endif
 189
 190#ifdef CONFIG_FSNOTIFY
 191	inode->i_fsnotify_mask = 0;
 192#endif
 193	inode->i_flctx = NULL;
 194	this_cpu_inc(nr_inodes);
 195
 196	return 0;
 197out:
 198	return -ENOMEM;
 199}
 200EXPORT_SYMBOL(inode_init_always);
 201
 202static struct inode *alloc_inode(struct super_block *sb)
 203{
 204	struct inode *inode;
 205
 206	if (sb->s_op->alloc_inode)
 207		inode = sb->s_op->alloc_inode(sb);
 208	else
 209		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 210
 211	if (!inode)
 212		return NULL;
 213
 214	if (unlikely(inode_init_always(sb, inode))) {
 215		if (inode->i_sb->s_op->destroy_inode)
 216			inode->i_sb->s_op->destroy_inode(inode);
 217		else
 218			kmem_cache_free(inode_cachep, inode);
 219		return NULL;
 220	}
 221
 222	return inode;
 223}
 224
 225void free_inode_nonrcu(struct inode *inode)
 226{
 227	kmem_cache_free(inode_cachep, inode);
 228}
 229EXPORT_SYMBOL(free_inode_nonrcu);
 230
 231void __destroy_inode(struct inode *inode)
 232{
 233	BUG_ON(inode_has_buffers(inode));
 234	inode_detach_wb(inode);
 235	security_inode_free(inode);
 236	fsnotify_inode_delete(inode);
 237	locks_free_lock_context(inode);
 238	if (!inode->i_nlink) {
 239		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 240		atomic_long_dec(&inode->i_sb->s_remove_count);
 241	}
 242
 243#ifdef CONFIG_FS_POSIX_ACL
 244	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 245		posix_acl_release(inode->i_acl);
 246	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 247		posix_acl_release(inode->i_default_acl);
 248#endif
 249	this_cpu_dec(nr_inodes);
 250}
 251EXPORT_SYMBOL(__destroy_inode);
 252
 253static void i_callback(struct rcu_head *head)
 254{
 255	struct inode *inode = container_of(head, struct inode, i_rcu);
 256	kmem_cache_free(inode_cachep, inode);
 257}
 258
 259static void destroy_inode(struct inode *inode)
 260{
 261	BUG_ON(!list_empty(&inode->i_lru));
 262	__destroy_inode(inode);
 263	if (inode->i_sb->s_op->destroy_inode)
 264		inode->i_sb->s_op->destroy_inode(inode);
 265	else
 266		call_rcu(&inode->i_rcu, i_callback);
 267}
 268
 269/**
 270 * drop_nlink - directly drop an inode's link count
 271 * @inode: inode
 272 *
 273 * This is a low-level filesystem helper to replace any
 274 * direct filesystem manipulation of i_nlink.  In cases
 275 * where we are attempting to track writes to the
 276 * filesystem, a decrement to zero means an imminent
 277 * write when the file is truncated and actually unlinked
 278 * on the filesystem.
 279 */
 280void drop_nlink(struct inode *inode)
 281{
 282	WARN_ON(inode->i_nlink == 0);
 283	inode->__i_nlink--;
 284	if (!inode->i_nlink)
 285		atomic_long_inc(&inode->i_sb->s_remove_count);
 286}
 287EXPORT_SYMBOL(drop_nlink);
 288
 289/**
 290 * clear_nlink - directly zero an inode's link count
 291 * @inode: inode
 292 *
 293 * This is a low-level filesystem helper to replace any
 294 * direct filesystem manipulation of i_nlink.  See
 295 * drop_nlink() for why we care about i_nlink hitting zero.
 296 */
 297void clear_nlink(struct inode *inode)
 298{
 299	if (inode->i_nlink) {
 300		inode->__i_nlink = 0;
 301		atomic_long_inc(&inode->i_sb->s_remove_count);
 302	}
 303}
 304EXPORT_SYMBOL(clear_nlink);
 305
 306/**
 307 * set_nlink - directly set an inode's link count
 308 * @inode: inode
 309 * @nlink: new nlink (should be non-zero)
 310 *
 311 * This is a low-level filesystem helper to replace any
 312 * direct filesystem manipulation of i_nlink.
 313 */
 314void set_nlink(struct inode *inode, unsigned int nlink)
 315{
 316	if (!nlink) {
 317		clear_nlink(inode);
 318	} else {
 319		/* Yes, some filesystems do change nlink from zero to one */
 320		if (inode->i_nlink == 0)
 321			atomic_long_dec(&inode->i_sb->s_remove_count);
 322
 323		inode->__i_nlink = nlink;
 324	}
 325}
 326EXPORT_SYMBOL(set_nlink);
 327
 328/**
 329 * inc_nlink - directly increment an inode's link count
 330 * @inode: inode
 331 *
 332 * This is a low-level filesystem helper to replace any
 333 * direct filesystem manipulation of i_nlink.  Currently,
 334 * it is only here for parity with dec_nlink().
 335 */
 336void inc_nlink(struct inode *inode)
 337{
 338	if (unlikely(inode->i_nlink == 0)) {
 339		WARN_ON(!(inode->i_state & I_LINKABLE));
 340		atomic_long_dec(&inode->i_sb->s_remove_count);
 341	}
 342
 343	inode->__i_nlink++;
 344}
 345EXPORT_SYMBOL(inc_nlink);
 346
 347void address_space_init_once(struct address_space *mapping)
 348{
 349	memset(mapping, 0, sizeof(*mapping));
 350	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
 351	spin_lock_init(&mapping->tree_lock);
 352	init_rwsem(&mapping->i_mmap_rwsem);
 353	INIT_LIST_HEAD(&mapping->private_list);
 354	spin_lock_init(&mapping->private_lock);
 355	mapping->i_mmap = RB_ROOT;
 
 356}
 357EXPORT_SYMBOL(address_space_init_once);
 358
 359/*
 360 * These are initializations that only need to be done
 361 * once, because the fields are idempotent across use
 362 * of the inode, so let the slab aware of that.
 363 */
 364void inode_init_once(struct inode *inode)
 365{
 366	memset(inode, 0, sizeof(*inode));
 367	INIT_HLIST_NODE(&inode->i_hash);
 368	INIT_LIST_HEAD(&inode->i_devices);
 369	INIT_LIST_HEAD(&inode->i_io_list);
 370	INIT_LIST_HEAD(&inode->i_wb_list);
 371	INIT_LIST_HEAD(&inode->i_lru);
 372	address_space_init_once(&inode->i_data);
 373	i_size_ordered_init(inode);
 374#ifdef CONFIG_FSNOTIFY
 375	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 376#endif
 377}
 378EXPORT_SYMBOL(inode_init_once);
 379
 380static void init_once(void *foo)
 381{
 382	struct inode *inode = (struct inode *) foo;
 383
 384	inode_init_once(inode);
 385}
 386
 387/*
 388 * inode->i_lock must be held
 389 */
 390void __iget(struct inode *inode)
 391{
 392	atomic_inc(&inode->i_count);
 393}
 394
 395/*
 396 * get additional reference to inode; caller must already hold one.
 397 */
 398void ihold(struct inode *inode)
 399{
 400	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 401}
 402EXPORT_SYMBOL(ihold);
 403
 404static void inode_lru_list_add(struct inode *inode)
 405{
 406	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 
 
 407		this_cpu_inc(nr_unused);
 
 
 408}
 409
 410/*
 411 * Add inode to LRU if needed (inode is unused and clean).
 412 *
 413 * Needs inode->i_lock held.
 414 */
 415void inode_add_lru(struct inode *inode)
 416{
 417	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 418				I_FREEING | I_WILL_FREE)) &&
 419	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 420		inode_lru_list_add(inode);
 421}
 422
 423
 424static void inode_lru_list_del(struct inode *inode)
 425{
 426
 427	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 
 428		this_cpu_dec(nr_unused);
 
 
 429}
 430
 431/**
 432 * inode_sb_list_add - add inode to the superblock list of inodes
 433 * @inode: inode to add
 434 */
 435void inode_sb_list_add(struct inode *inode)
 436{
 437	spin_lock(&inode->i_sb->s_inode_list_lock);
 438	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 439	spin_unlock(&inode->i_sb->s_inode_list_lock);
 440}
 441EXPORT_SYMBOL_GPL(inode_sb_list_add);
 442
 443static inline void inode_sb_list_del(struct inode *inode)
 444{
 445	if (!list_empty(&inode->i_sb_list)) {
 446		spin_lock(&inode->i_sb->s_inode_list_lock);
 447		list_del_init(&inode->i_sb_list);
 448		spin_unlock(&inode->i_sb->s_inode_list_lock);
 449	}
 450}
 451
 452static unsigned long hash(struct super_block *sb, unsigned long hashval)
 453{
 454	unsigned long tmp;
 455
 456	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 457			L1_CACHE_BYTES;
 458	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 459	return tmp & i_hash_mask;
 460}
 461
 462/**
 463 *	__insert_inode_hash - hash an inode
 464 *	@inode: unhashed inode
 465 *	@hashval: unsigned long value used to locate this object in the
 466 *		inode_hashtable.
 467 *
 468 *	Add an inode to the inode hash for this superblock.
 469 */
 470void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 471{
 472	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 473
 474	spin_lock(&inode_hash_lock);
 475	spin_lock(&inode->i_lock);
 476	hlist_add_head(&inode->i_hash, b);
 477	spin_unlock(&inode->i_lock);
 478	spin_unlock(&inode_hash_lock);
 479}
 480EXPORT_SYMBOL(__insert_inode_hash);
 481
 482/**
 483 *	__remove_inode_hash - remove an inode from the hash
 484 *	@inode: inode to unhash
 485 *
 486 *	Remove an inode from the superblock.
 487 */
 488void __remove_inode_hash(struct inode *inode)
 489{
 490	spin_lock(&inode_hash_lock);
 491	spin_lock(&inode->i_lock);
 492	hlist_del_init(&inode->i_hash);
 493	spin_unlock(&inode->i_lock);
 494	spin_unlock(&inode_hash_lock);
 495}
 496EXPORT_SYMBOL(__remove_inode_hash);
 497
 498void clear_inode(struct inode *inode)
 499{
 500	might_sleep();
 501	/*
 502	 * We have to cycle tree_lock here because reclaim can be still in the
 503	 * process of removing the last page (in __delete_from_page_cache())
 504	 * and we must not free mapping under it.
 505	 */
 506	spin_lock_irq(&inode->i_data.tree_lock);
 507	BUG_ON(inode->i_data.nrpages);
 508	BUG_ON(inode->i_data.nrexceptional);
 509	spin_unlock_irq(&inode->i_data.tree_lock);
 510	BUG_ON(!list_empty(&inode->i_data.private_list));
 511	BUG_ON(!(inode->i_state & I_FREEING));
 512	BUG_ON(inode->i_state & I_CLEAR);
 513	BUG_ON(!list_empty(&inode->i_wb_list));
 514	/* don't need i_lock here, no concurrent mods to i_state */
 515	inode->i_state = I_FREEING | I_CLEAR;
 516}
 517EXPORT_SYMBOL(clear_inode);
 518
 519/*
 520 * Free the inode passed in, removing it from the lists it is still connected
 521 * to. We remove any pages still attached to the inode and wait for any IO that
 522 * is still in progress before finally destroying the inode.
 523 *
 524 * An inode must already be marked I_FREEING so that we avoid the inode being
 525 * moved back onto lists if we race with other code that manipulates the lists
 526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 527 *
 528 * An inode must already be removed from the LRU list before being evicted from
 529 * the cache. This should occur atomically with setting the I_FREEING state
 530 * flag, so no inodes here should ever be on the LRU when being evicted.
 531 */
 532static void evict(struct inode *inode)
 533{
 534	const struct super_operations *op = inode->i_sb->s_op;
 535
 536	BUG_ON(!(inode->i_state & I_FREEING));
 537	BUG_ON(!list_empty(&inode->i_lru));
 538
 539	if (!list_empty(&inode->i_io_list))
 540		inode_io_list_del(inode);
 541
 542	inode_sb_list_del(inode);
 543
 544	/*
 545	 * Wait for flusher thread to be done with the inode so that filesystem
 546	 * does not start destroying it while writeback is still running. Since
 547	 * the inode has I_FREEING set, flusher thread won't start new work on
 548	 * the inode.  We just have to wait for running writeback to finish.
 549	 */
 550	inode_wait_for_writeback(inode);
 551
 552	if (op->evict_inode) {
 553		op->evict_inode(inode);
 554	} else {
 555		truncate_inode_pages_final(&inode->i_data);
 
 556		clear_inode(inode);
 557	}
 558	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 559		bd_forget(inode);
 560	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 561		cd_forget(inode);
 562
 563	remove_inode_hash(inode);
 564
 565	spin_lock(&inode->i_lock);
 566	wake_up_bit(&inode->i_state, __I_NEW);
 567	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 568	spin_unlock(&inode->i_lock);
 569
 570	destroy_inode(inode);
 571}
 572
 573/*
 574 * dispose_list - dispose of the contents of a local list
 575 * @head: the head of the list to free
 576 *
 577 * Dispose-list gets a local list with local inodes in it, so it doesn't
 578 * need to worry about list corruption and SMP locks.
 579 */
 580static void dispose_list(struct list_head *head)
 581{
 582	while (!list_empty(head)) {
 583		struct inode *inode;
 584
 585		inode = list_first_entry(head, struct inode, i_lru);
 586		list_del_init(&inode->i_lru);
 587
 588		evict(inode);
 589		cond_resched();
 590	}
 591}
 592
 593/**
 594 * evict_inodes	- evict all evictable inodes for a superblock
 595 * @sb:		superblock to operate on
 596 *
 597 * Make sure that no inodes with zero refcount are retained.  This is
 598 * called by superblock shutdown after having MS_ACTIVE flag removed,
 599 * so any inode reaching zero refcount during or after that call will
 600 * be immediately evicted.
 601 */
 602void evict_inodes(struct super_block *sb)
 603{
 604	struct inode *inode, *next;
 605	LIST_HEAD(dispose);
 606
 607again:
 608	spin_lock(&sb->s_inode_list_lock);
 609	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 610		if (atomic_read(&inode->i_count))
 611			continue;
 612
 613		spin_lock(&inode->i_lock);
 614		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 615			spin_unlock(&inode->i_lock);
 616			continue;
 617		}
 618
 619		inode->i_state |= I_FREEING;
 620		inode_lru_list_del(inode);
 621		spin_unlock(&inode->i_lock);
 622		list_add(&inode->i_lru, &dispose);
 623
 624		/*
 625		 * We can have a ton of inodes to evict at unmount time given
 626		 * enough memory, check to see if we need to go to sleep for a
 627		 * bit so we don't livelock.
 628		 */
 629		if (need_resched()) {
 630			spin_unlock(&sb->s_inode_list_lock);
 631			cond_resched();
 632			dispose_list(&dispose);
 633			goto again;
 634		}
 635	}
 636	spin_unlock(&sb->s_inode_list_lock);
 637
 638	dispose_list(&dispose);
 639}
 640
 641/**
 642 * invalidate_inodes	- attempt to free all inodes on a superblock
 643 * @sb:		superblock to operate on
 644 * @kill_dirty: flag to guide handling of dirty inodes
 645 *
 646 * Attempts to free all inodes for a given superblock.  If there were any
 647 * busy inodes return a non-zero value, else zero.
 648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 649 * them as busy.
 650 */
 651int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 652{
 653	int busy = 0;
 654	struct inode *inode, *next;
 655	LIST_HEAD(dispose);
 656
 657	spin_lock(&sb->s_inode_list_lock);
 658	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 659		spin_lock(&inode->i_lock);
 660		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 661			spin_unlock(&inode->i_lock);
 662			continue;
 663		}
 664		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 665			spin_unlock(&inode->i_lock);
 666			busy = 1;
 667			continue;
 668		}
 669		if (atomic_read(&inode->i_count)) {
 670			spin_unlock(&inode->i_lock);
 671			busy = 1;
 672			continue;
 673		}
 674
 675		inode->i_state |= I_FREEING;
 676		inode_lru_list_del(inode);
 677		spin_unlock(&inode->i_lock);
 678		list_add(&inode->i_lru, &dispose);
 679	}
 680	spin_unlock(&sb->s_inode_list_lock);
 681
 682	dispose_list(&dispose);
 683
 684	return busy;
 685}
 686
 
 
 
 
 
 
 
 
 
 
 
 
 
 687/*
 688 * Isolate the inode from the LRU in preparation for freeing it.
 
 
 
 689 *
 690 * Any inodes which are pinned purely because of attached pagecache have their
 691 * pagecache removed.  If the inode has metadata buffers attached to
 692 * mapping->private_list then try to remove them.
 693 *
 694 * If the inode has the I_REFERENCED flag set, then it means that it has been
 695 * used recently - the flag is set in iput_final(). When we encounter such an
 696 * inode, clear the flag and move it to the back of the LRU so it gets another
 697 * pass through the LRU before it gets reclaimed. This is necessary because of
 698 * the fact we are doing lazy LRU updates to minimise lock contention so the
 699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 700 * with this flag set because they are the inodes that are out of order.
 701 */
 702static enum lru_status inode_lru_isolate(struct list_head *item,
 703		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 704{
 705	struct list_head *freeable = arg;
 706	struct inode	*inode = container_of(item, struct inode, i_lru);
 
 707
 708	/*
 709	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 710	 * If we fail to get the lock, just skip it.
 711	 */
 712	if (!spin_trylock(&inode->i_lock))
 713		return LRU_SKIP;
 714
 715	/*
 716	 * Referenced or dirty inodes are still in use. Give them another pass
 717	 * through the LRU as we canot reclaim them now.
 718	 */
 719	if (atomic_read(&inode->i_count) ||
 720	    (inode->i_state & ~I_REFERENCED)) {
 721		list_lru_isolate(lru, &inode->i_lru);
 722		spin_unlock(&inode->i_lock);
 723		this_cpu_dec(nr_unused);
 724		return LRU_REMOVED;
 725	}
 726
 727	/* recently referenced inodes get one more pass */
 728	if (inode->i_state & I_REFERENCED) {
 729		inode->i_state &= ~I_REFERENCED;
 730		spin_unlock(&inode->i_lock);
 731		return LRU_ROTATE;
 732	}
 733
 734	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 735		__iget(inode);
 736		spin_unlock(&inode->i_lock);
 737		spin_unlock(lru_lock);
 738		if (remove_inode_buffers(inode)) {
 739			unsigned long reap;
 740			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 741			if (current_is_kswapd())
 742				__count_vm_events(KSWAPD_INODESTEAL, reap);
 743			else
 744				__count_vm_events(PGINODESTEAL, reap);
 745			if (current->reclaim_state)
 746				current->reclaim_state->reclaimed_slab += reap;
 747		}
 748		iput(inode);
 749		spin_lock(lru_lock);
 750		return LRU_RETRY;
 751	}
 752
 753	WARN_ON(inode->i_state & I_NEW);
 754	inode->i_state |= I_FREEING;
 755	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 756	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 757
 758	this_cpu_dec(nr_unused);
 759	return LRU_REMOVED;
 760}
 
 
 
 
 
 
 
 
 
 
 
 
 
 761
 762/*
 763 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 764 * This is called from the superblock shrinker function with a number of inodes
 765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 766 * then are freed outside inode_lock by dispose_list().
 767 */
 768long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 769{
 770	LIST_HEAD(freeable);
 771	long freed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772
 773	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 774				     inode_lru_isolate, &freeable);
 775	dispose_list(&freeable);
 776	return freed;
 777}
 778
 779static void __wait_on_freeing_inode(struct inode *inode);
 780/*
 781 * Called with the inode lock held.
 782 */
 783static struct inode *find_inode(struct super_block *sb,
 784				struct hlist_head *head,
 785				int (*test)(struct inode *, void *),
 786				void *data)
 787{
 
 788	struct inode *inode = NULL;
 789
 790repeat:
 791	hlist_for_each_entry(inode, head, i_hash) {
 792		if (inode->i_sb != sb)
 
 
 793			continue;
 794		if (!test(inode, data))
 
 
 795			continue;
 796		spin_lock(&inode->i_lock);
 797		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 798			__wait_on_freeing_inode(inode);
 799			goto repeat;
 800		}
 801		__iget(inode);
 802		spin_unlock(&inode->i_lock);
 803		return inode;
 804	}
 805	return NULL;
 806}
 807
 808/*
 809 * find_inode_fast is the fast path version of find_inode, see the comment at
 810 * iget_locked for details.
 811 */
 812static struct inode *find_inode_fast(struct super_block *sb,
 813				struct hlist_head *head, unsigned long ino)
 814{
 
 815	struct inode *inode = NULL;
 816
 817repeat:
 818	hlist_for_each_entry(inode, head, i_hash) {
 819		if (inode->i_ino != ino)
 
 
 820			continue;
 821		if (inode->i_sb != sb)
 
 
 822			continue;
 823		spin_lock(&inode->i_lock);
 824		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 825			__wait_on_freeing_inode(inode);
 826			goto repeat;
 827		}
 828		__iget(inode);
 829		spin_unlock(&inode->i_lock);
 830		return inode;
 831	}
 832	return NULL;
 833}
 834
 835/*
 836 * Each cpu owns a range of LAST_INO_BATCH numbers.
 837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 838 * to renew the exhausted range.
 839 *
 840 * This does not significantly increase overflow rate because every CPU can
 841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 844 * overflow rate by 2x, which does not seem too significant.
 845 *
 846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 847 * error if st_ino won't fit in target struct field. Use 32bit counter
 848 * here to attempt to avoid that.
 849 */
 850#define LAST_INO_BATCH 1024
 851static DEFINE_PER_CPU(unsigned int, last_ino);
 852
 853unsigned int get_next_ino(void)
 854{
 855	unsigned int *p = &get_cpu_var(last_ino);
 856	unsigned int res = *p;
 857
 858#ifdef CONFIG_SMP
 859	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 860		static atomic_t shared_last_ino;
 861		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 862
 863		res = next - LAST_INO_BATCH;
 864	}
 865#endif
 866
 867	res++;
 868	/* get_next_ino should not provide a 0 inode number */
 869	if (unlikely(!res))
 870		res++;
 871	*p = res;
 872	put_cpu_var(last_ino);
 873	return res;
 874}
 875EXPORT_SYMBOL(get_next_ino);
 876
 877/**
 878 *	new_inode_pseudo 	- obtain an inode
 879 *	@sb: superblock
 880 *
 881 *	Allocates a new inode for given superblock.
 882 *	Inode wont be chained in superblock s_inodes list
 883 *	This means :
 884 *	- fs can't be unmount
 885 *	- quotas, fsnotify, writeback can't work
 886 */
 887struct inode *new_inode_pseudo(struct super_block *sb)
 888{
 889	struct inode *inode = alloc_inode(sb);
 890
 891	if (inode) {
 892		spin_lock(&inode->i_lock);
 893		inode->i_state = 0;
 894		spin_unlock(&inode->i_lock);
 895		INIT_LIST_HEAD(&inode->i_sb_list);
 896	}
 897	return inode;
 898}
 899
 900/**
 901 *	new_inode 	- obtain an inode
 902 *	@sb: superblock
 903 *
 904 *	Allocates a new inode for given superblock. The default gfp_mask
 905 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 906 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 907 *	for the page cache are not reclaimable or migratable,
 908 *	mapping_set_gfp_mask() must be called with suitable flags on the
 909 *	newly created inode's mapping
 910 *
 911 */
 912struct inode *new_inode(struct super_block *sb)
 913{
 914	struct inode *inode;
 915
 916	spin_lock_prefetch(&sb->s_inode_list_lock);
 917
 918	inode = new_inode_pseudo(sb);
 919	if (inode)
 920		inode_sb_list_add(inode);
 921	return inode;
 922}
 923EXPORT_SYMBOL(new_inode);
 924
 925#ifdef CONFIG_DEBUG_LOCK_ALLOC
 926void lockdep_annotate_inode_mutex_key(struct inode *inode)
 927{
 928	if (S_ISDIR(inode->i_mode)) {
 929		struct file_system_type *type = inode->i_sb->s_type;
 930
 931		/* Set new key only if filesystem hasn't already changed it */
 932		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 933			/*
 934			 * ensure nobody is actually holding i_mutex
 935			 */
 936			// mutex_destroy(&inode->i_mutex);
 937			init_rwsem(&inode->i_rwsem);
 938			lockdep_set_class(&inode->i_rwsem,
 939					  &type->i_mutex_dir_key);
 940		}
 941	}
 942}
 943EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 944#endif
 945
 946/**
 947 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 948 * @inode:	new inode to unlock
 949 *
 950 * Called when the inode is fully initialised to clear the new state of the
 951 * inode and wake up anyone waiting for the inode to finish initialisation.
 952 */
 953void unlock_new_inode(struct inode *inode)
 954{
 955	lockdep_annotate_inode_mutex_key(inode);
 956	spin_lock(&inode->i_lock);
 957	WARN_ON(!(inode->i_state & I_NEW));
 958	inode->i_state &= ~I_NEW;
 959	smp_mb();
 960	wake_up_bit(&inode->i_state, __I_NEW);
 961	spin_unlock(&inode->i_lock);
 962}
 963EXPORT_SYMBOL(unlock_new_inode);
 964
 965/**
 966 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 967 *
 968 * Lock any non-NULL argument that is not a directory.
 969 * Zero, one or two objects may be locked by this function.
 970 *
 971 * @inode1: first inode to lock
 972 * @inode2: second inode to lock
 973 */
 974void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 975{
 976	if (inode1 > inode2)
 977		swap(inode1, inode2);
 978
 979	if (inode1 && !S_ISDIR(inode1->i_mode))
 980		inode_lock(inode1);
 981	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 982		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
 983}
 984EXPORT_SYMBOL(lock_two_nondirectories);
 985
 986/**
 987 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 988 * @inode1: first inode to unlock
 989 * @inode2: second inode to unlock
 990 */
 991void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 992{
 993	if (inode1 && !S_ISDIR(inode1->i_mode))
 994		inode_unlock(inode1);
 995	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 996		inode_unlock(inode2);
 997}
 998EXPORT_SYMBOL(unlock_two_nondirectories);
 999
1000/**
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb:		super block of file system
1003 * @hashval:	hash value (usually inode number) to get
1004 * @test:	callback used for comparisons between inodes
1005 * @set:	callback used to initialize a new struct inode
1006 * @data:	opaque data pointer to pass to @test and @set
1007 *
1008 * Search for the inode specified by @hashval and @data in the inode cache,
1009 * and if present it is return it with an increased reference count. This is
1010 * a generalized version of iget_locked() for file systems where the inode
1011 * number is not sufficient for unique identification of an inode.
1012 *
1013 * If the inode is not in cache, allocate a new inode and return it locked,
1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015 * before unlocking it via unlock_new_inode().
1016 *
1017 * Note both @test and @set are called with the inode_hash_lock held, so can't
1018 * sleep.
1019 */
1020struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021		int (*test)(struct inode *, void *),
1022		int (*set)(struct inode *, void *), void *data)
1023{
1024	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025	struct inode *inode;
1026again:
1027	spin_lock(&inode_hash_lock);
1028	inode = find_inode(sb, head, test, data);
1029	spin_unlock(&inode_hash_lock);
1030
1031	if (inode) {
1032		wait_on_inode(inode);
1033		if (unlikely(inode_unhashed(inode))) {
1034			iput(inode);
1035			goto again;
1036		}
1037		return inode;
1038	}
1039
1040	inode = alloc_inode(sb);
1041	if (inode) {
1042		struct inode *old;
1043
1044		spin_lock(&inode_hash_lock);
1045		/* We released the lock, so.. */
1046		old = find_inode(sb, head, test, data);
1047		if (!old) {
1048			if (set(inode, data))
1049				goto set_failed;
1050
1051			spin_lock(&inode->i_lock);
1052			inode->i_state = I_NEW;
1053			hlist_add_head(&inode->i_hash, head);
1054			spin_unlock(&inode->i_lock);
1055			inode_sb_list_add(inode);
1056			spin_unlock(&inode_hash_lock);
1057
1058			/* Return the locked inode with I_NEW set, the
1059			 * caller is responsible for filling in the contents
1060			 */
1061			return inode;
1062		}
1063
1064		/*
1065		 * Uhhuh, somebody else created the same inode under
1066		 * us. Use the old inode instead of the one we just
1067		 * allocated.
1068		 */
1069		spin_unlock(&inode_hash_lock);
1070		destroy_inode(inode);
1071		inode = old;
1072		wait_on_inode(inode);
1073		if (unlikely(inode_unhashed(inode))) {
1074			iput(inode);
1075			goto again;
1076		}
1077	}
1078	return inode;
1079
1080set_failed:
1081	spin_unlock(&inode_hash_lock);
1082	destroy_inode(inode);
1083	return NULL;
1084}
1085EXPORT_SYMBOL(iget5_locked);
1086
1087/**
1088 * iget_locked - obtain an inode from a mounted file system
1089 * @sb:		super block of file system
1090 * @ino:	inode number to get
1091 *
1092 * Search for the inode specified by @ino in the inode cache and if present
1093 * return it with an increased reference count. This is for file systems
1094 * where the inode number is sufficient for unique identification of an inode.
1095 *
1096 * If the inode is not in cache, allocate a new inode and return it locked,
1097 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1098 * before unlocking it via unlock_new_inode().
1099 */
1100struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1101{
1102	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1103	struct inode *inode;
1104again:
1105	spin_lock(&inode_hash_lock);
1106	inode = find_inode_fast(sb, head, ino);
1107	spin_unlock(&inode_hash_lock);
1108	if (inode) {
1109		wait_on_inode(inode);
1110		if (unlikely(inode_unhashed(inode))) {
1111			iput(inode);
1112			goto again;
1113		}
1114		return inode;
1115	}
1116
1117	inode = alloc_inode(sb);
1118	if (inode) {
1119		struct inode *old;
1120
1121		spin_lock(&inode_hash_lock);
1122		/* We released the lock, so.. */
1123		old = find_inode_fast(sb, head, ino);
1124		if (!old) {
1125			inode->i_ino = ino;
1126			spin_lock(&inode->i_lock);
1127			inode->i_state = I_NEW;
1128			hlist_add_head(&inode->i_hash, head);
1129			spin_unlock(&inode->i_lock);
1130			inode_sb_list_add(inode);
1131			spin_unlock(&inode_hash_lock);
1132
1133			/* Return the locked inode with I_NEW set, the
1134			 * caller is responsible for filling in the contents
1135			 */
1136			return inode;
1137		}
1138
1139		/*
1140		 * Uhhuh, somebody else created the same inode under
1141		 * us. Use the old inode instead of the one we just
1142		 * allocated.
1143		 */
1144		spin_unlock(&inode_hash_lock);
1145		destroy_inode(inode);
1146		inode = old;
1147		wait_on_inode(inode);
1148		if (unlikely(inode_unhashed(inode))) {
1149			iput(inode);
1150			goto again;
1151		}
1152	}
1153	return inode;
1154}
1155EXPORT_SYMBOL(iget_locked);
1156
1157/*
1158 * search the inode cache for a matching inode number.
1159 * If we find one, then the inode number we are trying to
1160 * allocate is not unique and so we should not use it.
1161 *
1162 * Returns 1 if the inode number is unique, 0 if it is not.
1163 */
1164static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1165{
1166	struct hlist_head *b = inode_hashtable + hash(sb, ino);
 
1167	struct inode *inode;
1168
1169	spin_lock(&inode_hash_lock);
1170	hlist_for_each_entry(inode, b, i_hash) {
1171		if (inode->i_ino == ino && inode->i_sb == sb) {
1172			spin_unlock(&inode_hash_lock);
1173			return 0;
1174		}
1175	}
1176	spin_unlock(&inode_hash_lock);
1177
1178	return 1;
1179}
1180
1181/**
1182 *	iunique - get a unique inode number
1183 *	@sb: superblock
1184 *	@max_reserved: highest reserved inode number
1185 *
1186 *	Obtain an inode number that is unique on the system for a given
1187 *	superblock. This is used by file systems that have no natural
1188 *	permanent inode numbering system. An inode number is returned that
1189 *	is higher than the reserved limit but unique.
1190 *
1191 *	BUGS:
1192 *	With a large number of inodes live on the file system this function
1193 *	currently becomes quite slow.
1194 */
1195ino_t iunique(struct super_block *sb, ino_t max_reserved)
1196{
1197	/*
1198	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199	 * error if st_ino won't fit in target struct field. Use 32bit counter
1200	 * here to attempt to avoid that.
1201	 */
1202	static DEFINE_SPINLOCK(iunique_lock);
1203	static unsigned int counter;
1204	ino_t res;
1205
1206	spin_lock(&iunique_lock);
1207	do {
1208		if (counter <= max_reserved)
1209			counter = max_reserved + 1;
1210		res = counter++;
1211	} while (!test_inode_iunique(sb, res));
1212	spin_unlock(&iunique_lock);
1213
1214	return res;
1215}
1216EXPORT_SYMBOL(iunique);
1217
1218struct inode *igrab(struct inode *inode)
1219{
1220	spin_lock(&inode->i_lock);
1221	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1222		__iget(inode);
1223		spin_unlock(&inode->i_lock);
1224	} else {
1225		spin_unlock(&inode->i_lock);
1226		/*
1227		 * Handle the case where s_op->clear_inode is not been
1228		 * called yet, and somebody is calling igrab
1229		 * while the inode is getting freed.
1230		 */
1231		inode = NULL;
1232	}
1233	return inode;
1234}
1235EXPORT_SYMBOL(igrab);
1236
1237/**
1238 * ilookup5_nowait - search for an inode in the inode cache
1239 * @sb:		super block of file system to search
1240 * @hashval:	hash value (usually inode number) to search for
1241 * @test:	callback used for comparisons between inodes
1242 * @data:	opaque data pointer to pass to @test
1243 *
1244 * Search for the inode specified by @hashval and @data in the inode cache.
1245 * If the inode is in the cache, the inode is returned with an incremented
1246 * reference count.
1247 *
1248 * Note: I_NEW is not waited upon so you have to be very careful what you do
1249 * with the returned inode.  You probably should be using ilookup5() instead.
1250 *
1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1252 */
1253struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1254		int (*test)(struct inode *, void *), void *data)
1255{
1256	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1257	struct inode *inode;
1258
1259	spin_lock(&inode_hash_lock);
1260	inode = find_inode(sb, head, test, data);
1261	spin_unlock(&inode_hash_lock);
1262
1263	return inode;
1264}
1265EXPORT_SYMBOL(ilookup5_nowait);
1266
1267/**
1268 * ilookup5 - search for an inode in the inode cache
1269 * @sb:		super block of file system to search
1270 * @hashval:	hash value (usually inode number) to search for
1271 * @test:	callback used for comparisons between inodes
1272 * @data:	opaque data pointer to pass to @test
1273 *
1274 * Search for the inode specified by @hashval and @data in the inode cache,
1275 * and if the inode is in the cache, return the inode with an incremented
1276 * reference count.  Waits on I_NEW before returning the inode.
1277 * returned with an incremented reference count.
1278 *
1279 * This is a generalized version of ilookup() for file systems where the
1280 * inode number is not sufficient for unique identification of an inode.
1281 *
1282 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1283 */
1284struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1285		int (*test)(struct inode *, void *), void *data)
1286{
1287	struct inode *inode;
1288again:
1289	inode = ilookup5_nowait(sb, hashval, test, data);
1290	if (inode) {
1291		wait_on_inode(inode);
1292		if (unlikely(inode_unhashed(inode))) {
1293			iput(inode);
1294			goto again;
1295		}
1296	}
1297	return inode;
1298}
1299EXPORT_SYMBOL(ilookup5);
1300
1301/**
1302 * ilookup - search for an inode in the inode cache
1303 * @sb:		super block of file system to search
1304 * @ino:	inode number to search for
1305 *
1306 * Search for the inode @ino in the inode cache, and if the inode is in the
1307 * cache, the inode is returned with an incremented reference count.
1308 */
1309struct inode *ilookup(struct super_block *sb, unsigned long ino)
1310{
1311	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312	struct inode *inode;
1313again:
1314	spin_lock(&inode_hash_lock);
1315	inode = find_inode_fast(sb, head, ino);
1316	spin_unlock(&inode_hash_lock);
1317
1318	if (inode) {
1319		wait_on_inode(inode);
1320		if (unlikely(inode_unhashed(inode))) {
1321			iput(inode);
1322			goto again;
1323		}
1324	}
1325	return inode;
1326}
1327EXPORT_SYMBOL(ilookup);
1328
1329/**
1330 * find_inode_nowait - find an inode in the inode cache
1331 * @sb:		super block of file system to search
1332 * @hashval:	hash value (usually inode number) to search for
1333 * @match:	callback used for comparisons between inodes
1334 * @data:	opaque data pointer to pass to @match
1335 *
1336 * Search for the inode specified by @hashval and @data in the inode
1337 * cache, where the helper function @match will return 0 if the inode
1338 * does not match, 1 if the inode does match, and -1 if the search
1339 * should be stopped.  The @match function must be responsible for
1340 * taking the i_lock spin_lock and checking i_state for an inode being
1341 * freed or being initialized, and incrementing the reference count
1342 * before returning 1.  It also must not sleep, since it is called with
1343 * the inode_hash_lock spinlock held.
1344 *
1345 * This is a even more generalized version of ilookup5() when the
1346 * function must never block --- find_inode() can block in
1347 * __wait_on_freeing_inode() --- or when the caller can not increment
1348 * the reference count because the resulting iput() might cause an
1349 * inode eviction.  The tradeoff is that the @match funtion must be
1350 * very carefully implemented.
1351 */
1352struct inode *find_inode_nowait(struct super_block *sb,
1353				unsigned long hashval,
1354				int (*match)(struct inode *, unsigned long,
1355					     void *),
1356				void *data)
1357{
1358	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1359	struct inode *inode, *ret_inode = NULL;
1360	int mval;
1361
1362	spin_lock(&inode_hash_lock);
1363	hlist_for_each_entry(inode, head, i_hash) {
1364		if (inode->i_sb != sb)
1365			continue;
1366		mval = match(inode, hashval, data);
1367		if (mval == 0)
1368			continue;
1369		if (mval == 1)
1370			ret_inode = inode;
1371		goto out;
1372	}
1373out:
1374	spin_unlock(&inode_hash_lock);
1375	return ret_inode;
1376}
1377EXPORT_SYMBOL(find_inode_nowait);
1378
1379int insert_inode_locked(struct inode *inode)
1380{
1381	struct super_block *sb = inode->i_sb;
1382	ino_t ino = inode->i_ino;
1383	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1384
1385	while (1) {
 
1386		struct inode *old = NULL;
1387		spin_lock(&inode_hash_lock);
1388		hlist_for_each_entry(old, head, i_hash) {
1389			if (old->i_ino != ino)
1390				continue;
1391			if (old->i_sb != sb)
1392				continue;
1393			spin_lock(&old->i_lock);
1394			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1395				spin_unlock(&old->i_lock);
1396				continue;
1397			}
1398			break;
1399		}
1400		if (likely(!old)) {
1401			spin_lock(&inode->i_lock);
1402			inode->i_state |= I_NEW;
1403			hlist_add_head(&inode->i_hash, head);
1404			spin_unlock(&inode->i_lock);
1405			spin_unlock(&inode_hash_lock);
1406			return 0;
1407		}
1408		__iget(old);
1409		spin_unlock(&old->i_lock);
1410		spin_unlock(&inode_hash_lock);
1411		wait_on_inode(old);
1412		if (unlikely(!inode_unhashed(old))) {
1413			iput(old);
1414			return -EBUSY;
1415		}
1416		iput(old);
1417	}
1418}
1419EXPORT_SYMBOL(insert_inode_locked);
1420
1421int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1422		int (*test)(struct inode *, void *), void *data)
1423{
1424	struct super_block *sb = inode->i_sb;
1425	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426
1427	while (1) {
 
1428		struct inode *old = NULL;
1429
1430		spin_lock(&inode_hash_lock);
1431		hlist_for_each_entry(old, head, i_hash) {
1432			if (old->i_sb != sb)
1433				continue;
1434			if (!test(old, data))
1435				continue;
1436			spin_lock(&old->i_lock);
1437			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1438				spin_unlock(&old->i_lock);
1439				continue;
1440			}
1441			break;
1442		}
1443		if (likely(!old)) {
1444			spin_lock(&inode->i_lock);
1445			inode->i_state |= I_NEW;
1446			hlist_add_head(&inode->i_hash, head);
1447			spin_unlock(&inode->i_lock);
1448			spin_unlock(&inode_hash_lock);
1449			return 0;
1450		}
1451		__iget(old);
1452		spin_unlock(&old->i_lock);
1453		spin_unlock(&inode_hash_lock);
1454		wait_on_inode(old);
1455		if (unlikely(!inode_unhashed(old))) {
1456			iput(old);
1457			return -EBUSY;
1458		}
1459		iput(old);
1460	}
1461}
1462EXPORT_SYMBOL(insert_inode_locked4);
1463
1464
1465int generic_delete_inode(struct inode *inode)
1466{
1467	return 1;
1468}
1469EXPORT_SYMBOL(generic_delete_inode);
1470
1471/*
1472 * Called when we're dropping the last reference
1473 * to an inode.
1474 *
1475 * Call the FS "drop_inode()" function, defaulting to
1476 * the legacy UNIX filesystem behaviour.  If it tells
1477 * us to evict inode, do so.  Otherwise, retain inode
1478 * in cache if fs is alive, sync and evict if fs is
1479 * shutting down.
1480 */
1481static void iput_final(struct inode *inode)
1482{
1483	struct super_block *sb = inode->i_sb;
1484	const struct super_operations *op = inode->i_sb->s_op;
1485	int drop;
1486
1487	WARN_ON(inode->i_state & I_NEW);
1488
1489	if (op->drop_inode)
1490		drop = op->drop_inode(inode);
1491	else
1492		drop = generic_drop_inode(inode);
1493
1494	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1495		inode->i_state |= I_REFERENCED;
1496		inode_add_lru(inode);
 
1497		spin_unlock(&inode->i_lock);
1498		return;
1499	}
1500
1501	if (!drop) {
1502		inode->i_state |= I_WILL_FREE;
1503		spin_unlock(&inode->i_lock);
1504		write_inode_now(inode, 1);
1505		spin_lock(&inode->i_lock);
1506		WARN_ON(inode->i_state & I_NEW);
1507		inode->i_state &= ~I_WILL_FREE;
1508	}
1509
1510	inode->i_state |= I_FREEING;
1511	if (!list_empty(&inode->i_lru))
1512		inode_lru_list_del(inode);
1513	spin_unlock(&inode->i_lock);
1514
1515	evict(inode);
1516}
1517
1518/**
1519 *	iput	- put an inode
1520 *	@inode: inode to put
1521 *
1522 *	Puts an inode, dropping its usage count. If the inode use count hits
1523 *	zero, the inode is then freed and may also be destroyed.
1524 *
1525 *	Consequently, iput() can sleep.
1526 */
1527void iput(struct inode *inode)
1528{
1529	if (!inode)
1530		return;
1531	BUG_ON(inode->i_state & I_CLEAR);
1532retry:
1533	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1534		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1535			atomic_inc(&inode->i_count);
1536			inode->i_state &= ~I_DIRTY_TIME;
1537			spin_unlock(&inode->i_lock);
1538			trace_writeback_lazytime_iput(inode);
1539			mark_inode_dirty_sync(inode);
1540			goto retry;
1541		}
1542		iput_final(inode);
1543	}
1544}
1545EXPORT_SYMBOL(iput);
1546
1547/**
1548 *	bmap	- find a block number in a file
1549 *	@inode: inode of file
1550 *	@block: block to find
1551 *
1552 *	Returns the block number on the device holding the inode that
1553 *	is the disk block number for the block of the file requested.
1554 *	That is, asked for block 4 of inode 1 the function will return the
1555 *	disk block relative to the disk start that holds that block of the
1556 *	file.
1557 */
1558sector_t bmap(struct inode *inode, sector_t block)
1559{
1560	sector_t res = 0;
1561	if (inode->i_mapping->a_ops->bmap)
1562		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1563	return res;
1564}
1565EXPORT_SYMBOL(bmap);
1566
1567/*
1568 * Update times in overlayed inode from underlying real inode
1569 */
1570static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1571			       bool rcu)
1572{
1573	if (!rcu) {
1574		struct inode *realinode = d_real_inode(dentry);
1575
1576		if (unlikely(inode != realinode) &&
1577		    (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1578		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1579			inode->i_mtime = realinode->i_mtime;
1580			inode->i_ctime = realinode->i_ctime;
1581		}
1582	}
1583}
1584
1585/*
1586 * With relative atime, only update atime if the previous atime is
1587 * earlier than either the ctime or mtime or if at least a day has
1588 * passed since the last atime update.
1589 */
1590static int relatime_need_update(const struct path *path, struct inode *inode,
1591				struct timespec now, bool rcu)
1592{
1593
1594	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1595		return 1;
1596
1597	update_ovl_inode_times(path->dentry, inode, rcu);
1598	/*
1599	 * Is mtime younger than atime? If yes, update atime:
1600	 */
1601	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1602		return 1;
1603	/*
1604	 * Is ctime younger than atime? If yes, update atime:
1605	 */
1606	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1607		return 1;
1608
1609	/*
1610	 * Is the previous atime value older than a day? If yes,
1611	 * update atime:
1612	 */
1613	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1614		return 1;
1615	/*
1616	 * Good, we can skip the atime update:
1617	 */
1618	return 0;
1619}
1620
1621int generic_update_time(struct inode *inode, struct timespec *time, int flags)
 
 
 
 
1622{
1623	int iflags = I_DIRTY_TIME;
 
1624
1625	if (flags & S_ATIME)
1626		inode->i_atime = *time;
1627	if (flags & S_VERSION)
1628		inode_inc_iversion(inode);
1629	if (flags & S_CTIME)
1630		inode->i_ctime = *time;
1631	if (flags & S_MTIME)
1632		inode->i_mtime = *time;
1633
1634	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1635		iflags |= I_DIRTY_SYNC;
1636	__mark_inode_dirty(inode, iflags);
1637	return 0;
1638}
1639EXPORT_SYMBOL(generic_update_time);
1640
1641/*
1642 * This does the actual work of updating an inodes time or version.  Must have
1643 * had called mnt_want_write() before calling this.
1644 */
1645static int update_time(struct inode *inode, struct timespec *time, int flags)
1646{
1647	int (*update_time)(struct inode *, struct timespec *, int);
1648
1649	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1650		generic_update_time;
1651
1652	return update_time(inode, time, flags);
1653}
1654
1655/**
1656 *	touch_atime	-	update the access time
1657 *	@path: the &struct path to update
1658 *	@inode: inode to update
1659 *
1660 *	Update the accessed time on an inode and mark it for writeback.
1661 *	This function automatically handles read only file systems and media,
1662 *	as well as the "noatime" flag and inode specific "noatime" markers.
1663 */
1664bool __atime_needs_update(const struct path *path, struct inode *inode,
1665			  bool rcu)
1666{
1667	struct vfsmount *mnt = path->mnt;
 
1668	struct timespec now;
1669
1670	if (inode->i_flags & S_NOATIME)
1671		return false;
1672
1673	/* Atime updates will likely cause i_uid and i_gid to be written
1674	 * back improprely if their true value is unknown to the vfs.
1675	 */
1676	if (HAS_UNMAPPED_ID(inode))
1677		return false;
1678
1679	if (IS_NOATIME(inode))
1680		return false;
1681	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1682		return false;
1683
1684	if (mnt->mnt_flags & MNT_NOATIME)
1685		return false;
1686	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1687		return false;
1688
1689	now = current_time(inode);
1690
1691	if (!relatime_need_update(path, inode, now, rcu))
1692		return false;
1693
1694	if (timespec_equal(&inode->i_atime, &now))
1695		return false;
1696
1697	return true;
1698}
1699
1700void touch_atime(const struct path *path)
1701{
1702	struct vfsmount *mnt = path->mnt;
1703	struct inode *inode = d_inode(path->dentry);
1704	struct timespec now;
1705
1706	if (!__atime_needs_update(path, inode, false))
1707		return;
1708
1709	if (!sb_start_write_trylock(inode->i_sb))
1710		return;
1711
1712	if (__mnt_want_write(mnt) != 0)
1713		goto skip_update;
1714	/*
1715	 * File systems can error out when updating inodes if they need to
1716	 * allocate new space to modify an inode (such is the case for
1717	 * Btrfs), but since we touch atime while walking down the path we
1718	 * really don't care if we failed to update the atime of the file,
1719	 * so just ignore the return value.
1720	 * We may also fail on filesystems that have the ability to make parts
1721	 * of the fs read only, e.g. subvolumes in Btrfs.
1722	 */
1723	now = current_time(inode);
1724	update_time(inode, &now, S_ATIME);
1725	__mnt_drop_write(mnt);
1726skip_update:
1727	sb_end_write(inode->i_sb);
1728}
1729EXPORT_SYMBOL(touch_atime);
1730
1731/*
1732 * The logic we want is
1733 *
1734 *	if suid or (sgid and xgrp)
1735 *		remove privs
1736 */
1737int should_remove_suid(struct dentry *dentry)
1738{
1739	umode_t mode = d_inode(dentry)->i_mode;
1740	int kill = 0;
1741
1742	/* suid always must be killed */
1743	if (unlikely(mode & S_ISUID))
1744		kill = ATTR_KILL_SUID;
1745
1746	/*
1747	 * sgid without any exec bits is just a mandatory locking mark; leave
1748	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1749	 */
1750	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1751		kill |= ATTR_KILL_SGID;
1752
1753	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1754		return kill;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(should_remove_suid);
1759
1760/*
1761 * Return mask of changes for notify_change() that need to be done as a
1762 * response to write or truncate. Return 0 if nothing has to be changed.
1763 * Negative value on error (change should be denied).
1764 */
1765int dentry_needs_remove_privs(struct dentry *dentry)
1766{
1767	struct inode *inode = d_inode(dentry);
1768	int mask = 0;
1769	int ret;
1770
1771	if (IS_NOSEC(inode))
1772		return 0;
1773
1774	mask = should_remove_suid(dentry);
1775	ret = security_inode_need_killpriv(dentry);
1776	if (ret < 0)
1777		return ret;
1778	if (ret)
1779		mask |= ATTR_KILL_PRIV;
1780	return mask;
1781}
1782
1783static int __remove_privs(struct dentry *dentry, int kill)
1784{
1785	struct iattr newattrs;
1786
1787	newattrs.ia_valid = ATTR_FORCE | kill;
1788	/*
1789	 * Note we call this on write, so notify_change will not
1790	 * encounter any conflicting delegations:
1791	 */
1792	return notify_change(dentry, &newattrs, NULL);
1793}
1794
1795/*
1796 * Remove special file priviledges (suid, capabilities) when file is written
1797 * to or truncated.
1798 */
1799int file_remove_privs(struct file *file)
1800{
1801	struct dentry *dentry = file_dentry(file);
1802	struct inode *inode = file_inode(file);
1803	int kill;
 
1804	int error = 0;
1805
1806	/* Fast path for nothing security related */
1807	if (IS_NOSEC(inode))
1808		return 0;
1809
1810	kill = dentry_needs_remove_privs(dentry);
1811	if (kill < 0)
1812		return kill;
1813	if (kill)
1814		error = __remove_privs(dentry, kill);
1815	if (!error)
1816		inode_has_no_xattr(inode);
 
 
 
 
1817
1818	return error;
1819}
1820EXPORT_SYMBOL(file_remove_privs);
1821
1822/**
1823 *	file_update_time	-	update mtime and ctime time
1824 *	@file: file accessed
1825 *
1826 *	Update the mtime and ctime members of an inode and mark the inode
1827 *	for writeback.  Note that this function is meant exclusively for
1828 *	usage in the file write path of filesystems, and filesystems may
1829 *	choose to explicitly ignore update via this function with the
1830 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1831 *	timestamps are handled by the server.  This can return an error for
1832 *	file systems who need to allocate space in order to update an inode.
1833 */
1834
1835int file_update_time(struct file *file)
1836{
1837	struct inode *inode = file_inode(file);
1838	struct timespec now;
1839	int sync_it = 0;
1840	int ret;
1841
1842	/* First try to exhaust all avenues to not sync */
1843	if (IS_NOCMTIME(inode))
1844		return 0;
1845
1846	now = current_time(inode);
1847	if (!timespec_equal(&inode->i_mtime, &now))
1848		sync_it = S_MTIME;
1849
1850	if (!timespec_equal(&inode->i_ctime, &now))
1851		sync_it |= S_CTIME;
1852
1853	if (IS_I_VERSION(inode))
1854		sync_it |= S_VERSION;
1855
1856	if (!sync_it)
1857		return 0;
1858
1859	/* Finally allowed to write? Takes lock. */
1860	if (__mnt_want_write_file(file))
1861		return 0;
1862
1863	ret = update_time(inode, &now, sync_it);
1864	__mnt_drop_write_file(file);
1865
1866	return ret;
1867}
1868EXPORT_SYMBOL(file_update_time);
1869
1870int inode_needs_sync(struct inode *inode)
1871{
1872	if (IS_SYNC(inode))
1873		return 1;
1874	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1875		return 1;
1876	return 0;
1877}
1878EXPORT_SYMBOL(inode_needs_sync);
1879
 
 
 
 
 
 
 
1880/*
1881 * If we try to find an inode in the inode hash while it is being
1882 * deleted, we have to wait until the filesystem completes its
1883 * deletion before reporting that it isn't found.  This function waits
1884 * until the deletion _might_ have completed.  Callers are responsible
1885 * to recheck inode state.
1886 *
1887 * It doesn't matter if I_NEW is not set initially, a call to
1888 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1889 * will DTRT.
1890 */
1891static void __wait_on_freeing_inode(struct inode *inode)
1892{
1893	wait_queue_head_t *wq;
1894	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1895	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1896	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1897	spin_unlock(&inode->i_lock);
1898	spin_unlock(&inode_hash_lock);
1899	schedule();
1900	finish_wait(wq, &wait.wait);
1901	spin_lock(&inode_hash_lock);
1902}
1903
1904static __initdata unsigned long ihash_entries;
1905static int __init set_ihash_entries(char *str)
1906{
1907	if (!str)
1908		return 0;
1909	ihash_entries = simple_strtoul(str, &str, 0);
1910	return 1;
1911}
1912__setup("ihash_entries=", set_ihash_entries);
1913
1914/*
1915 * Initialize the waitqueues and inode hash table.
1916 */
1917void __init inode_init_early(void)
1918{
1919	unsigned int loop;
1920
1921	/* If hashes are distributed across NUMA nodes, defer
1922	 * hash allocation until vmalloc space is available.
1923	 */
1924	if (hashdist)
1925		return;
1926
1927	inode_hashtable =
1928		alloc_large_system_hash("Inode-cache",
1929					sizeof(struct hlist_head),
1930					ihash_entries,
1931					14,
1932					HASH_EARLY,
1933					&i_hash_shift,
1934					&i_hash_mask,
1935					0,
1936					0);
1937
1938	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1939		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1940}
1941
1942void __init inode_init(void)
1943{
1944	unsigned int loop;
1945
1946	/* inode slab cache */
1947	inode_cachep = kmem_cache_create("inode_cache",
1948					 sizeof(struct inode),
1949					 0,
1950					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1951					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1952					 init_once);
1953
1954	/* Hash may have been set up in inode_init_early */
1955	if (!hashdist)
1956		return;
1957
1958	inode_hashtable =
1959		alloc_large_system_hash("Inode-cache",
1960					sizeof(struct hlist_head),
1961					ihash_entries,
1962					14,
1963					0,
1964					&i_hash_shift,
1965					&i_hash_mask,
1966					0,
1967					0);
1968
1969	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1970		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1971}
1972
1973void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1974{
1975	inode->i_mode = mode;
1976	if (S_ISCHR(mode)) {
1977		inode->i_fop = &def_chr_fops;
1978		inode->i_rdev = rdev;
1979	} else if (S_ISBLK(mode)) {
1980		inode->i_fop = &def_blk_fops;
1981		inode->i_rdev = rdev;
1982	} else if (S_ISFIFO(mode))
1983		inode->i_fop = &pipefifo_fops;
1984	else if (S_ISSOCK(mode))
1985		;	/* leave it no_open_fops */
1986	else
1987		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1988				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1989				  inode->i_ino);
1990}
1991EXPORT_SYMBOL(init_special_inode);
1992
1993/**
1994 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1995 * @inode: New inode
1996 * @dir: Directory inode
1997 * @mode: mode of the new inode
1998 */
1999void inode_init_owner(struct inode *inode, const struct inode *dir,
2000			umode_t mode)
2001{
2002	inode->i_uid = current_fsuid();
2003	if (dir && dir->i_mode & S_ISGID) {
2004		inode->i_gid = dir->i_gid;
2005		if (S_ISDIR(mode))
2006			mode |= S_ISGID;
2007	} else
2008		inode->i_gid = current_fsgid();
2009	inode->i_mode = mode;
2010}
2011EXPORT_SYMBOL(inode_init_owner);
2012
2013/**
2014 * inode_owner_or_capable - check current task permissions to inode
2015 * @inode: inode being checked
2016 *
2017 * Return true if current either has CAP_FOWNER in a namespace with the
2018 * inode owner uid mapped, or owns the file.
2019 */
2020bool inode_owner_or_capable(const struct inode *inode)
2021{
2022	struct user_namespace *ns;
2023
2024	if (uid_eq(current_fsuid(), inode->i_uid))
2025		return true;
2026
2027	ns = current_user_ns();
2028	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2029		return true;
2030	return false;
2031}
2032EXPORT_SYMBOL(inode_owner_or_capable);
2033
2034/*
2035 * Direct i/o helper functions
2036 */
2037static void __inode_dio_wait(struct inode *inode)
2038{
2039	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2040	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2041
2042	do {
2043		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2044		if (atomic_read(&inode->i_dio_count))
2045			schedule();
2046	} while (atomic_read(&inode->i_dio_count));
2047	finish_wait(wq, &q.wait);
2048}
2049
2050/**
2051 * inode_dio_wait - wait for outstanding DIO requests to finish
2052 * @inode: inode to wait for
2053 *
2054 * Waits for all pending direct I/O requests to finish so that we can
2055 * proceed with a truncate or equivalent operation.
2056 *
2057 * Must be called under a lock that serializes taking new references
2058 * to i_dio_count, usually by inode->i_mutex.
2059 */
2060void inode_dio_wait(struct inode *inode)
2061{
2062	if (atomic_read(&inode->i_dio_count))
2063		__inode_dio_wait(inode);
2064}
2065EXPORT_SYMBOL(inode_dio_wait);
2066
2067/*
2068 * inode_set_flags - atomically set some inode flags
 
2069 *
2070 * Note: the caller should be holding i_mutex, or else be sure that
2071 * they have exclusive access to the inode structure (i.e., while the
2072 * inode is being instantiated).  The reason for the cmpxchg() loop
2073 * --- which wouldn't be necessary if all code paths which modify
2074 * i_flags actually followed this rule, is that there is at least one
2075 * code path which doesn't today so we use cmpxchg() out of an abundance
2076 * of caution.
2077 *
2078 * In the long run, i_mutex is overkill, and we should probably look
2079 * at using the i_lock spinlock to protect i_flags, and then make sure
2080 * it is so documented in include/linux/fs.h and that all code follows
2081 * the locking convention!!
2082 */
2083void inode_set_flags(struct inode *inode, unsigned int flags,
2084		     unsigned int mask)
2085{
2086	unsigned int old_flags, new_flags;
2087
2088	WARN_ON_ONCE(flags & ~mask);
2089	do {
2090		old_flags = ACCESS_ONCE(inode->i_flags);
2091		new_flags = (old_flags & ~mask) | flags;
2092	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2093				  new_flags) != old_flags));
2094}
2095EXPORT_SYMBOL(inode_set_flags);
2096
2097void inode_nohighmem(struct inode *inode)
2098{
2099	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2100}
2101EXPORT_SYMBOL(inode_nohighmem);
2102
2103/**
2104 * current_time - Return FS time
2105 * @inode: inode.
2106 *
2107 * Return the current time truncated to the time granularity supported by
2108 * the fs.
2109 *
2110 * Note that inode and inode->sb cannot be NULL.
2111 * Otherwise, the function warns and returns time without truncation.
2112 */
2113struct timespec current_time(struct inode *inode)
2114{
2115	struct timespec now = current_kernel_time();
2116
2117	if (unlikely(!inode->i_sb)) {
2118		WARN(1, "current_time() called with uninitialized super_block in the inode");
2119		return now;
2120	}
2121
2122	return timespec_trunc(now, inode->i_sb->s_time_gran);
2123}
2124EXPORT_SYMBOL(current_time);
v3.5.6
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
 
 
  20#include "internal.h"
  21
  22/*
  23 * Inode locking rules:
  24 *
  25 * inode->i_lock protects:
  26 *   inode->i_state, inode->i_hash, __iget()
  27 * inode->i_sb->s_inode_lru_lock protects:
  28 *   inode->i_sb->s_inode_lru, inode->i_lru
  29 * inode_sb_list_lock protects:
  30 *   sb->s_inodes, inode->i_sb_list
  31 * bdi->wb.list_lock protects:
  32 *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
  33 * inode_hash_lock protects:
  34 *   inode_hashtable, inode->i_hash
  35 *
  36 * Lock ordering:
  37 *
  38 * inode_sb_list_lock
  39 *   inode->i_lock
  40 *     inode->i_sb->s_inode_lru_lock
  41 *
  42 * bdi->wb.list_lock
  43 *   inode->i_lock
  44 *
  45 * inode_hash_lock
  46 *   inode_sb_list_lock
  47 *   inode->i_lock
  48 *
  49 * iunique_lock
  50 *   inode_hash_lock
  51 */
  52
  53static unsigned int i_hash_mask __read_mostly;
  54static unsigned int i_hash_shift __read_mostly;
  55static struct hlist_head *inode_hashtable __read_mostly;
  56static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  57
  58__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
  59
  60/*
  61 * Empty aops. Can be used for the cases where the user does not
  62 * define any of the address_space operations.
  63 */
  64const struct address_space_operations empty_aops = {
  65};
  66EXPORT_SYMBOL(empty_aops);
  67
  68/*
  69 * Statistics gathering..
  70 */
  71struct inodes_stat_t inodes_stat;
  72
  73static DEFINE_PER_CPU(unsigned int, nr_inodes);
  74static DEFINE_PER_CPU(unsigned int, nr_unused);
  75
  76static struct kmem_cache *inode_cachep __read_mostly;
  77
  78static int get_nr_inodes(void)
  79{
  80	int i;
  81	int sum = 0;
  82	for_each_possible_cpu(i)
  83		sum += per_cpu(nr_inodes, i);
  84	return sum < 0 ? 0 : sum;
  85}
  86
  87static inline int get_nr_inodes_unused(void)
  88{
  89	int i;
  90	int sum = 0;
  91	for_each_possible_cpu(i)
  92		sum += per_cpu(nr_unused, i);
  93	return sum < 0 ? 0 : sum;
  94}
  95
  96int get_nr_dirty_inodes(void)
  97{
  98	/* not actually dirty inodes, but a wild approximation */
  99	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 100	return nr_dirty > 0 ? nr_dirty : 0;
 101}
 102
 103/*
 104 * Handle nr_inode sysctl
 105 */
 106#ifdef CONFIG_SYSCTL
 107int proc_nr_inodes(ctl_table *table, int write,
 108		   void __user *buffer, size_t *lenp, loff_t *ppos)
 109{
 110	inodes_stat.nr_inodes = get_nr_inodes();
 111	inodes_stat.nr_unused = get_nr_inodes_unused();
 112	return proc_dointvec(table, write, buffer, lenp, ppos);
 113}
 114#endif
 115
 
 
 
 
 
 116/**
 117 * inode_init_always - perform inode structure intialisation
 118 * @sb: superblock inode belongs to
 119 * @inode: inode to initialise
 120 *
 121 * These are initializations that need to be done on every inode
 122 * allocation as the fields are not initialised by slab allocation.
 123 */
 124int inode_init_always(struct super_block *sb, struct inode *inode)
 125{
 126	static const struct inode_operations empty_iops;
 127	static const struct file_operations empty_fops;
 128	struct address_space *const mapping = &inode->i_data;
 129
 130	inode->i_sb = sb;
 131	inode->i_blkbits = sb->s_blocksize_bits;
 132	inode->i_flags = 0;
 133	atomic_set(&inode->i_count, 1);
 134	inode->i_op = &empty_iops;
 135	inode->i_fop = &empty_fops;
 136	inode->__i_nlink = 1;
 137	inode->i_opflags = 0;
 
 
 138	i_uid_write(inode, 0);
 139	i_gid_write(inode, 0);
 140	atomic_set(&inode->i_writecount, 0);
 141	inode->i_size = 0;
 142	inode->i_blocks = 0;
 143	inode->i_bytes = 0;
 144	inode->i_generation = 0;
 145#ifdef CONFIG_QUOTA
 146	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
 147#endif
 148	inode->i_pipe = NULL;
 149	inode->i_bdev = NULL;
 150	inode->i_cdev = NULL;
 
 
 151	inode->i_rdev = 0;
 152	inode->dirtied_when = 0;
 153
 
 
 
 
 
 
 154	if (security_inode_alloc(inode))
 155		goto out;
 156	spin_lock_init(&inode->i_lock);
 157	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 158
 159	mutex_init(&inode->i_mutex);
 160	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 161
 162	atomic_set(&inode->i_dio_count, 0);
 163
 164	mapping->a_ops = &empty_aops;
 165	mapping->host = inode;
 166	mapping->flags = 0;
 
 167	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 168	mapping->assoc_mapping = NULL;
 169	mapping->backing_dev_info = &default_backing_dev_info;
 170	mapping->writeback_index = 0;
 171
 172	/*
 173	 * If the block_device provides a backing_dev_info for client
 174	 * inodes then use that.  Otherwise the inode share the bdev's
 175	 * backing_dev_info.
 176	 */
 177	if (sb->s_bdev) {
 178		struct backing_dev_info *bdi;
 179
 180		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
 181		mapping->backing_dev_info = bdi;
 182	}
 183	inode->i_private = NULL;
 184	inode->i_mapping = mapping;
 185	INIT_LIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 186#ifdef CONFIG_FS_POSIX_ACL
 187	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 188#endif
 189
 190#ifdef CONFIG_FSNOTIFY
 191	inode->i_fsnotify_mask = 0;
 192#endif
 193
 194	this_cpu_inc(nr_inodes);
 195
 196	return 0;
 197out:
 198	return -ENOMEM;
 199}
 200EXPORT_SYMBOL(inode_init_always);
 201
 202static struct inode *alloc_inode(struct super_block *sb)
 203{
 204	struct inode *inode;
 205
 206	if (sb->s_op->alloc_inode)
 207		inode = sb->s_op->alloc_inode(sb);
 208	else
 209		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 210
 211	if (!inode)
 212		return NULL;
 213
 214	if (unlikely(inode_init_always(sb, inode))) {
 215		if (inode->i_sb->s_op->destroy_inode)
 216			inode->i_sb->s_op->destroy_inode(inode);
 217		else
 218			kmem_cache_free(inode_cachep, inode);
 219		return NULL;
 220	}
 221
 222	return inode;
 223}
 224
 225void free_inode_nonrcu(struct inode *inode)
 226{
 227	kmem_cache_free(inode_cachep, inode);
 228}
 229EXPORT_SYMBOL(free_inode_nonrcu);
 230
 231void __destroy_inode(struct inode *inode)
 232{
 233	BUG_ON(inode_has_buffers(inode));
 
 234	security_inode_free(inode);
 235	fsnotify_inode_delete(inode);
 
 236	if (!inode->i_nlink) {
 237		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 238		atomic_long_dec(&inode->i_sb->s_remove_count);
 239	}
 240
 241#ifdef CONFIG_FS_POSIX_ACL
 242	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 243		posix_acl_release(inode->i_acl);
 244	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 245		posix_acl_release(inode->i_default_acl);
 246#endif
 247	this_cpu_dec(nr_inodes);
 248}
 249EXPORT_SYMBOL(__destroy_inode);
 250
 251static void i_callback(struct rcu_head *head)
 252{
 253	struct inode *inode = container_of(head, struct inode, i_rcu);
 254	kmem_cache_free(inode_cachep, inode);
 255}
 256
 257static void destroy_inode(struct inode *inode)
 258{
 259	BUG_ON(!list_empty(&inode->i_lru));
 260	__destroy_inode(inode);
 261	if (inode->i_sb->s_op->destroy_inode)
 262		inode->i_sb->s_op->destroy_inode(inode);
 263	else
 264		call_rcu(&inode->i_rcu, i_callback);
 265}
 266
 267/**
 268 * drop_nlink - directly drop an inode's link count
 269 * @inode: inode
 270 *
 271 * This is a low-level filesystem helper to replace any
 272 * direct filesystem manipulation of i_nlink.  In cases
 273 * where we are attempting to track writes to the
 274 * filesystem, a decrement to zero means an imminent
 275 * write when the file is truncated and actually unlinked
 276 * on the filesystem.
 277 */
 278void drop_nlink(struct inode *inode)
 279{
 280	WARN_ON(inode->i_nlink == 0);
 281	inode->__i_nlink--;
 282	if (!inode->i_nlink)
 283		atomic_long_inc(&inode->i_sb->s_remove_count);
 284}
 285EXPORT_SYMBOL(drop_nlink);
 286
 287/**
 288 * clear_nlink - directly zero an inode's link count
 289 * @inode: inode
 290 *
 291 * This is a low-level filesystem helper to replace any
 292 * direct filesystem manipulation of i_nlink.  See
 293 * drop_nlink() for why we care about i_nlink hitting zero.
 294 */
 295void clear_nlink(struct inode *inode)
 296{
 297	if (inode->i_nlink) {
 298		inode->__i_nlink = 0;
 299		atomic_long_inc(&inode->i_sb->s_remove_count);
 300	}
 301}
 302EXPORT_SYMBOL(clear_nlink);
 303
 304/**
 305 * set_nlink - directly set an inode's link count
 306 * @inode: inode
 307 * @nlink: new nlink (should be non-zero)
 308 *
 309 * This is a low-level filesystem helper to replace any
 310 * direct filesystem manipulation of i_nlink.
 311 */
 312void set_nlink(struct inode *inode, unsigned int nlink)
 313{
 314	if (!nlink) {
 315		clear_nlink(inode);
 316	} else {
 317		/* Yes, some filesystems do change nlink from zero to one */
 318		if (inode->i_nlink == 0)
 319			atomic_long_dec(&inode->i_sb->s_remove_count);
 320
 321		inode->__i_nlink = nlink;
 322	}
 323}
 324EXPORT_SYMBOL(set_nlink);
 325
 326/**
 327 * inc_nlink - directly increment an inode's link count
 328 * @inode: inode
 329 *
 330 * This is a low-level filesystem helper to replace any
 331 * direct filesystem manipulation of i_nlink.  Currently,
 332 * it is only here for parity with dec_nlink().
 333 */
 334void inc_nlink(struct inode *inode)
 335{
 336	if (WARN_ON(inode->i_nlink == 0))
 
 337		atomic_long_dec(&inode->i_sb->s_remove_count);
 
 338
 339	inode->__i_nlink++;
 340}
 341EXPORT_SYMBOL(inc_nlink);
 342
 343void address_space_init_once(struct address_space *mapping)
 344{
 345	memset(mapping, 0, sizeof(*mapping));
 346	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 347	spin_lock_init(&mapping->tree_lock);
 348	mutex_init(&mapping->i_mmap_mutex);
 349	INIT_LIST_HEAD(&mapping->private_list);
 350	spin_lock_init(&mapping->private_lock);
 351	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
 352	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
 353}
 354EXPORT_SYMBOL(address_space_init_once);
 355
 356/*
 357 * These are initializations that only need to be done
 358 * once, because the fields are idempotent across use
 359 * of the inode, so let the slab aware of that.
 360 */
 361void inode_init_once(struct inode *inode)
 362{
 363	memset(inode, 0, sizeof(*inode));
 364	INIT_HLIST_NODE(&inode->i_hash);
 365	INIT_LIST_HEAD(&inode->i_devices);
 
 366	INIT_LIST_HEAD(&inode->i_wb_list);
 367	INIT_LIST_HEAD(&inode->i_lru);
 368	address_space_init_once(&inode->i_data);
 369	i_size_ordered_init(inode);
 370#ifdef CONFIG_FSNOTIFY
 371	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 372#endif
 373}
 374EXPORT_SYMBOL(inode_init_once);
 375
 376static void init_once(void *foo)
 377{
 378	struct inode *inode = (struct inode *) foo;
 379
 380	inode_init_once(inode);
 381}
 382
 383/*
 384 * inode->i_lock must be held
 385 */
 386void __iget(struct inode *inode)
 387{
 388	atomic_inc(&inode->i_count);
 389}
 390
 391/*
 392 * get additional reference to inode; caller must already hold one.
 393 */
 394void ihold(struct inode *inode)
 395{
 396	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 397}
 398EXPORT_SYMBOL(ihold);
 399
 400static void inode_lru_list_add(struct inode *inode)
 401{
 402	spin_lock(&inode->i_sb->s_inode_lru_lock);
 403	if (list_empty(&inode->i_lru)) {
 404		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
 405		inode->i_sb->s_nr_inodes_unused++;
 406		this_cpu_inc(nr_unused);
 407	}
 408	spin_unlock(&inode->i_sb->s_inode_lru_lock);
 409}
 410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411static void inode_lru_list_del(struct inode *inode)
 412{
 413	spin_lock(&inode->i_sb->s_inode_lru_lock);
 414	if (!list_empty(&inode->i_lru)) {
 415		list_del_init(&inode->i_lru);
 416		inode->i_sb->s_nr_inodes_unused--;
 417		this_cpu_dec(nr_unused);
 418	}
 419	spin_unlock(&inode->i_sb->s_inode_lru_lock);
 420}
 421
 422/**
 423 * inode_sb_list_add - add inode to the superblock list of inodes
 424 * @inode: inode to add
 425 */
 426void inode_sb_list_add(struct inode *inode)
 427{
 428	spin_lock(&inode_sb_list_lock);
 429	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 430	spin_unlock(&inode_sb_list_lock);
 431}
 432EXPORT_SYMBOL_GPL(inode_sb_list_add);
 433
 434static inline void inode_sb_list_del(struct inode *inode)
 435{
 436	if (!list_empty(&inode->i_sb_list)) {
 437		spin_lock(&inode_sb_list_lock);
 438		list_del_init(&inode->i_sb_list);
 439		spin_unlock(&inode_sb_list_lock);
 440	}
 441}
 442
 443static unsigned long hash(struct super_block *sb, unsigned long hashval)
 444{
 445	unsigned long tmp;
 446
 447	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 448			L1_CACHE_BYTES;
 449	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 450	return tmp & i_hash_mask;
 451}
 452
 453/**
 454 *	__insert_inode_hash - hash an inode
 455 *	@inode: unhashed inode
 456 *	@hashval: unsigned long value used to locate this object in the
 457 *		inode_hashtable.
 458 *
 459 *	Add an inode to the inode hash for this superblock.
 460 */
 461void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 462{
 463	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 464
 465	spin_lock(&inode_hash_lock);
 466	spin_lock(&inode->i_lock);
 467	hlist_add_head(&inode->i_hash, b);
 468	spin_unlock(&inode->i_lock);
 469	spin_unlock(&inode_hash_lock);
 470}
 471EXPORT_SYMBOL(__insert_inode_hash);
 472
 473/**
 474 *	__remove_inode_hash - remove an inode from the hash
 475 *	@inode: inode to unhash
 476 *
 477 *	Remove an inode from the superblock.
 478 */
 479void __remove_inode_hash(struct inode *inode)
 480{
 481	spin_lock(&inode_hash_lock);
 482	spin_lock(&inode->i_lock);
 483	hlist_del_init(&inode->i_hash);
 484	spin_unlock(&inode->i_lock);
 485	spin_unlock(&inode_hash_lock);
 486}
 487EXPORT_SYMBOL(__remove_inode_hash);
 488
 489void clear_inode(struct inode *inode)
 490{
 491	might_sleep();
 492	/*
 493	 * We have to cycle tree_lock here because reclaim can be still in the
 494	 * process of removing the last page (in __delete_from_page_cache())
 495	 * and we must not free mapping under it.
 496	 */
 497	spin_lock_irq(&inode->i_data.tree_lock);
 498	BUG_ON(inode->i_data.nrpages);
 
 499	spin_unlock_irq(&inode->i_data.tree_lock);
 500	BUG_ON(!list_empty(&inode->i_data.private_list));
 501	BUG_ON(!(inode->i_state & I_FREEING));
 502	BUG_ON(inode->i_state & I_CLEAR);
 
 503	/* don't need i_lock here, no concurrent mods to i_state */
 504	inode->i_state = I_FREEING | I_CLEAR;
 505}
 506EXPORT_SYMBOL(clear_inode);
 507
 508/*
 509 * Free the inode passed in, removing it from the lists it is still connected
 510 * to. We remove any pages still attached to the inode and wait for any IO that
 511 * is still in progress before finally destroying the inode.
 512 *
 513 * An inode must already be marked I_FREEING so that we avoid the inode being
 514 * moved back onto lists if we race with other code that manipulates the lists
 515 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 516 *
 517 * An inode must already be removed from the LRU list before being evicted from
 518 * the cache. This should occur atomically with setting the I_FREEING state
 519 * flag, so no inodes here should ever be on the LRU when being evicted.
 520 */
 521static void evict(struct inode *inode)
 522{
 523	const struct super_operations *op = inode->i_sb->s_op;
 524
 525	BUG_ON(!(inode->i_state & I_FREEING));
 526	BUG_ON(!list_empty(&inode->i_lru));
 527
 528	if (!list_empty(&inode->i_wb_list))
 529		inode_wb_list_del(inode);
 530
 531	inode_sb_list_del(inode);
 532
 533	/*
 534	 * Wait for flusher thread to be done with the inode so that filesystem
 535	 * does not start destroying it while writeback is still running. Since
 536	 * the inode has I_FREEING set, flusher thread won't start new work on
 537	 * the inode.  We just have to wait for running writeback to finish.
 538	 */
 539	inode_wait_for_writeback(inode);
 540
 541	if (op->evict_inode) {
 542		op->evict_inode(inode);
 543	} else {
 544		if (inode->i_data.nrpages)
 545			truncate_inode_pages(&inode->i_data, 0);
 546		clear_inode(inode);
 547	}
 548	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 549		bd_forget(inode);
 550	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 551		cd_forget(inode);
 552
 553	remove_inode_hash(inode);
 554
 555	spin_lock(&inode->i_lock);
 556	wake_up_bit(&inode->i_state, __I_NEW);
 557	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 558	spin_unlock(&inode->i_lock);
 559
 560	destroy_inode(inode);
 561}
 562
 563/*
 564 * dispose_list - dispose of the contents of a local list
 565 * @head: the head of the list to free
 566 *
 567 * Dispose-list gets a local list with local inodes in it, so it doesn't
 568 * need to worry about list corruption and SMP locks.
 569 */
 570static void dispose_list(struct list_head *head)
 571{
 572	while (!list_empty(head)) {
 573		struct inode *inode;
 574
 575		inode = list_first_entry(head, struct inode, i_lru);
 576		list_del_init(&inode->i_lru);
 577
 578		evict(inode);
 
 579	}
 580}
 581
 582/**
 583 * evict_inodes	- evict all evictable inodes for a superblock
 584 * @sb:		superblock to operate on
 585 *
 586 * Make sure that no inodes with zero refcount are retained.  This is
 587 * called by superblock shutdown after having MS_ACTIVE flag removed,
 588 * so any inode reaching zero refcount during or after that call will
 589 * be immediately evicted.
 590 */
 591void evict_inodes(struct super_block *sb)
 592{
 593	struct inode *inode, *next;
 594	LIST_HEAD(dispose);
 595
 596	spin_lock(&inode_sb_list_lock);
 
 597	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 598		if (atomic_read(&inode->i_count))
 599			continue;
 600
 601		spin_lock(&inode->i_lock);
 602		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 603			spin_unlock(&inode->i_lock);
 604			continue;
 605		}
 606
 607		inode->i_state |= I_FREEING;
 608		inode_lru_list_del(inode);
 609		spin_unlock(&inode->i_lock);
 610		list_add(&inode->i_lru, &dispose);
 
 
 
 
 
 
 
 
 
 
 
 
 611	}
 612	spin_unlock(&inode_sb_list_lock);
 613
 614	dispose_list(&dispose);
 615}
 616
 617/**
 618 * invalidate_inodes	- attempt to free all inodes on a superblock
 619 * @sb:		superblock to operate on
 620 * @kill_dirty: flag to guide handling of dirty inodes
 621 *
 622 * Attempts to free all inodes for a given superblock.  If there were any
 623 * busy inodes return a non-zero value, else zero.
 624 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 625 * them as busy.
 626 */
 627int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 628{
 629	int busy = 0;
 630	struct inode *inode, *next;
 631	LIST_HEAD(dispose);
 632
 633	spin_lock(&inode_sb_list_lock);
 634	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 635		spin_lock(&inode->i_lock);
 636		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 637			spin_unlock(&inode->i_lock);
 638			continue;
 639		}
 640		if (inode->i_state & I_DIRTY && !kill_dirty) {
 641			spin_unlock(&inode->i_lock);
 642			busy = 1;
 643			continue;
 644		}
 645		if (atomic_read(&inode->i_count)) {
 646			spin_unlock(&inode->i_lock);
 647			busy = 1;
 648			continue;
 649		}
 650
 651		inode->i_state |= I_FREEING;
 652		inode_lru_list_del(inode);
 653		spin_unlock(&inode->i_lock);
 654		list_add(&inode->i_lru, &dispose);
 655	}
 656	spin_unlock(&inode_sb_list_lock);
 657
 658	dispose_list(&dispose);
 659
 660	return busy;
 661}
 662
 663static int can_unuse(struct inode *inode)
 664{
 665	if (inode->i_state & ~I_REFERENCED)
 666		return 0;
 667	if (inode_has_buffers(inode))
 668		return 0;
 669	if (atomic_read(&inode->i_count))
 670		return 0;
 671	if (inode->i_data.nrpages)
 672		return 0;
 673	return 1;
 674}
 675
 676/*
 677 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 678 * This is called from the superblock shrinker function with a number of inodes
 679 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 680 * then are freed outside inode_lock by dispose_list().
 681 *
 682 * Any inodes which are pinned purely because of attached pagecache have their
 683 * pagecache removed.  If the inode has metadata buffers attached to
 684 * mapping->private_list then try to remove them.
 685 *
 686 * If the inode has the I_REFERENCED flag set, then it means that it has been
 687 * used recently - the flag is set in iput_final(). When we encounter such an
 688 * inode, clear the flag and move it to the back of the LRU so it gets another
 689 * pass through the LRU before it gets reclaimed. This is necessary because of
 690 * the fact we are doing lazy LRU updates to minimise lock contention so the
 691 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 692 * with this flag set because they are the inodes that are out of order.
 693 */
 694void prune_icache_sb(struct super_block *sb, int nr_to_scan)
 
 695{
 696	LIST_HEAD(freeable);
 697	int nr_scanned;
 698	unsigned long reap = 0;
 699
 700	spin_lock(&sb->s_inode_lru_lock);
 701	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
 702		struct inode *inode;
 
 
 
 703
 704		if (list_empty(&sb->s_inode_lru))
 705			break;
 
 
 
 
 
 
 
 
 
 706
 707		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
 
 
 
 
 
 708
 709		/*
 710		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
 711		 * so use a trylock. If we fail to get the lock, just move the
 712		 * inode to the back of the list so we don't spin on it.
 713		 */
 714		if (!spin_trylock(&inode->i_lock)) {
 715			list_move_tail(&inode->i_lru, &sb->s_inode_lru);
 716			continue;
 717		}
 
 
 
 
 
 
 
 
 
 718
 719		/*
 720		 * Referenced or dirty inodes are still in use. Give them
 721		 * another pass through the LRU as we canot reclaim them now.
 722		 */
 723		if (atomic_read(&inode->i_count) ||
 724		    (inode->i_state & ~I_REFERENCED)) {
 725			list_del_init(&inode->i_lru);
 726			spin_unlock(&inode->i_lock);
 727			sb->s_nr_inodes_unused--;
 728			this_cpu_dec(nr_unused);
 729			continue;
 730		}
 731
 732		/* recently referenced inodes get one more pass */
 733		if (inode->i_state & I_REFERENCED) {
 734			inode->i_state &= ~I_REFERENCED;
 735			list_move(&inode->i_lru, &sb->s_inode_lru);
 736			spin_unlock(&inode->i_lock);
 737			continue;
 738		}
 739		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 740			__iget(inode);
 741			spin_unlock(&inode->i_lock);
 742			spin_unlock(&sb->s_inode_lru_lock);
 743			if (remove_inode_buffers(inode))
 744				reap += invalidate_mapping_pages(&inode->i_data,
 745								0, -1);
 746			iput(inode);
 747			spin_lock(&sb->s_inode_lru_lock);
 748
 749			if (inode != list_entry(sb->s_inode_lru.next,
 750						struct inode, i_lru))
 751				continue;	/* wrong inode or list_empty */
 752			/* avoid lock inversions with trylock */
 753			if (!spin_trylock(&inode->i_lock))
 754				continue;
 755			if (!can_unuse(inode)) {
 756				spin_unlock(&inode->i_lock);
 757				continue;
 758			}
 759		}
 760		WARN_ON(inode->i_state & I_NEW);
 761		inode->i_state |= I_FREEING;
 762		spin_unlock(&inode->i_lock);
 763
 764		list_move(&inode->i_lru, &freeable);
 765		sb->s_nr_inodes_unused--;
 766		this_cpu_dec(nr_unused);
 767	}
 768	if (current_is_kswapd())
 769		__count_vm_events(KSWAPD_INODESTEAL, reap);
 770	else
 771		__count_vm_events(PGINODESTEAL, reap);
 772	spin_unlock(&sb->s_inode_lru_lock);
 773	if (current->reclaim_state)
 774		current->reclaim_state->reclaimed_slab += reap;
 775
 
 
 776	dispose_list(&freeable);
 
 777}
 778
 779static void __wait_on_freeing_inode(struct inode *inode);
 780/*
 781 * Called with the inode lock held.
 782 */
 783static struct inode *find_inode(struct super_block *sb,
 784				struct hlist_head *head,
 785				int (*test)(struct inode *, void *),
 786				void *data)
 787{
 788	struct hlist_node *node;
 789	struct inode *inode = NULL;
 790
 791repeat:
 792	hlist_for_each_entry(inode, node, head, i_hash) {
 793		spin_lock(&inode->i_lock);
 794		if (inode->i_sb != sb) {
 795			spin_unlock(&inode->i_lock);
 796			continue;
 797		}
 798		if (!test(inode, data)) {
 799			spin_unlock(&inode->i_lock);
 800			continue;
 801		}
 802		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 803			__wait_on_freeing_inode(inode);
 804			goto repeat;
 805		}
 806		__iget(inode);
 807		spin_unlock(&inode->i_lock);
 808		return inode;
 809	}
 810	return NULL;
 811}
 812
 813/*
 814 * find_inode_fast is the fast path version of find_inode, see the comment at
 815 * iget_locked for details.
 816 */
 817static struct inode *find_inode_fast(struct super_block *sb,
 818				struct hlist_head *head, unsigned long ino)
 819{
 820	struct hlist_node *node;
 821	struct inode *inode = NULL;
 822
 823repeat:
 824	hlist_for_each_entry(inode, node, head, i_hash) {
 825		spin_lock(&inode->i_lock);
 826		if (inode->i_ino != ino) {
 827			spin_unlock(&inode->i_lock);
 828			continue;
 829		}
 830		if (inode->i_sb != sb) {
 831			spin_unlock(&inode->i_lock);
 832			continue;
 833		}
 834		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 835			__wait_on_freeing_inode(inode);
 836			goto repeat;
 837		}
 838		__iget(inode);
 839		spin_unlock(&inode->i_lock);
 840		return inode;
 841	}
 842	return NULL;
 843}
 844
 845/*
 846 * Each cpu owns a range of LAST_INO_BATCH numbers.
 847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 848 * to renew the exhausted range.
 849 *
 850 * This does not significantly increase overflow rate because every CPU can
 851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 854 * overflow rate by 2x, which does not seem too significant.
 855 *
 856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 857 * error if st_ino won't fit in target struct field. Use 32bit counter
 858 * here to attempt to avoid that.
 859 */
 860#define LAST_INO_BATCH 1024
 861static DEFINE_PER_CPU(unsigned int, last_ino);
 862
 863unsigned int get_next_ino(void)
 864{
 865	unsigned int *p = &get_cpu_var(last_ino);
 866	unsigned int res = *p;
 867
 868#ifdef CONFIG_SMP
 869	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 870		static atomic_t shared_last_ino;
 871		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 872
 873		res = next - LAST_INO_BATCH;
 874	}
 875#endif
 876
 877	*p = ++res;
 
 
 
 
 878	put_cpu_var(last_ino);
 879	return res;
 880}
 881EXPORT_SYMBOL(get_next_ino);
 882
 883/**
 884 *	new_inode_pseudo 	- obtain an inode
 885 *	@sb: superblock
 886 *
 887 *	Allocates a new inode for given superblock.
 888 *	Inode wont be chained in superblock s_inodes list
 889 *	This means :
 890 *	- fs can't be unmount
 891 *	- quotas, fsnotify, writeback can't work
 892 */
 893struct inode *new_inode_pseudo(struct super_block *sb)
 894{
 895	struct inode *inode = alloc_inode(sb);
 896
 897	if (inode) {
 898		spin_lock(&inode->i_lock);
 899		inode->i_state = 0;
 900		spin_unlock(&inode->i_lock);
 901		INIT_LIST_HEAD(&inode->i_sb_list);
 902	}
 903	return inode;
 904}
 905
 906/**
 907 *	new_inode 	- obtain an inode
 908 *	@sb: superblock
 909 *
 910 *	Allocates a new inode for given superblock. The default gfp_mask
 911 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 912 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 913 *	for the page cache are not reclaimable or migratable,
 914 *	mapping_set_gfp_mask() must be called with suitable flags on the
 915 *	newly created inode's mapping
 916 *
 917 */
 918struct inode *new_inode(struct super_block *sb)
 919{
 920	struct inode *inode;
 921
 922	spin_lock_prefetch(&inode_sb_list_lock);
 923
 924	inode = new_inode_pseudo(sb);
 925	if (inode)
 926		inode_sb_list_add(inode);
 927	return inode;
 928}
 929EXPORT_SYMBOL(new_inode);
 930
 931#ifdef CONFIG_DEBUG_LOCK_ALLOC
 932void lockdep_annotate_inode_mutex_key(struct inode *inode)
 933{
 934	if (S_ISDIR(inode->i_mode)) {
 935		struct file_system_type *type = inode->i_sb->s_type;
 936
 937		/* Set new key only if filesystem hasn't already changed it */
 938		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
 939			/*
 940			 * ensure nobody is actually holding i_mutex
 941			 */
 942			mutex_destroy(&inode->i_mutex);
 943			mutex_init(&inode->i_mutex);
 944			lockdep_set_class(&inode->i_mutex,
 945					  &type->i_mutex_dir_key);
 946		}
 947	}
 948}
 949EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 950#endif
 951
 952/**
 953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 954 * @inode:	new inode to unlock
 955 *
 956 * Called when the inode is fully initialised to clear the new state of the
 957 * inode and wake up anyone waiting for the inode to finish initialisation.
 958 */
 959void unlock_new_inode(struct inode *inode)
 960{
 961	lockdep_annotate_inode_mutex_key(inode);
 962	spin_lock(&inode->i_lock);
 963	WARN_ON(!(inode->i_state & I_NEW));
 964	inode->i_state &= ~I_NEW;
 965	smp_mb();
 966	wake_up_bit(&inode->i_state, __I_NEW);
 967	spin_unlock(&inode->i_lock);
 968}
 969EXPORT_SYMBOL(unlock_new_inode);
 970
 971/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972 * iget5_locked - obtain an inode from a mounted file system
 973 * @sb:		super block of file system
 974 * @hashval:	hash value (usually inode number) to get
 975 * @test:	callback used for comparisons between inodes
 976 * @set:	callback used to initialize a new struct inode
 977 * @data:	opaque data pointer to pass to @test and @set
 978 *
 979 * Search for the inode specified by @hashval and @data in the inode cache,
 980 * and if present it is return it with an increased reference count. This is
 981 * a generalized version of iget_locked() for file systems where the inode
 982 * number is not sufficient for unique identification of an inode.
 983 *
 984 * If the inode is not in cache, allocate a new inode and return it locked,
 985 * hashed, and with the I_NEW flag set. The file system gets to fill it in
 986 * before unlocking it via unlock_new_inode().
 987 *
 988 * Note both @test and @set are called with the inode_hash_lock held, so can't
 989 * sleep.
 990 */
 991struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
 992		int (*test)(struct inode *, void *),
 993		int (*set)(struct inode *, void *), void *data)
 994{
 995	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
 996	struct inode *inode;
 997
 998	spin_lock(&inode_hash_lock);
 999	inode = find_inode(sb, head, test, data);
1000	spin_unlock(&inode_hash_lock);
1001
1002	if (inode) {
1003		wait_on_inode(inode);
 
 
 
 
1004		return inode;
1005	}
1006
1007	inode = alloc_inode(sb);
1008	if (inode) {
1009		struct inode *old;
1010
1011		spin_lock(&inode_hash_lock);
1012		/* We released the lock, so.. */
1013		old = find_inode(sb, head, test, data);
1014		if (!old) {
1015			if (set(inode, data))
1016				goto set_failed;
1017
1018			spin_lock(&inode->i_lock);
1019			inode->i_state = I_NEW;
1020			hlist_add_head(&inode->i_hash, head);
1021			spin_unlock(&inode->i_lock);
1022			inode_sb_list_add(inode);
1023			spin_unlock(&inode_hash_lock);
1024
1025			/* Return the locked inode with I_NEW set, the
1026			 * caller is responsible for filling in the contents
1027			 */
1028			return inode;
1029		}
1030
1031		/*
1032		 * Uhhuh, somebody else created the same inode under
1033		 * us. Use the old inode instead of the one we just
1034		 * allocated.
1035		 */
1036		spin_unlock(&inode_hash_lock);
1037		destroy_inode(inode);
1038		inode = old;
1039		wait_on_inode(inode);
 
 
 
 
1040	}
1041	return inode;
1042
1043set_failed:
1044	spin_unlock(&inode_hash_lock);
1045	destroy_inode(inode);
1046	return NULL;
1047}
1048EXPORT_SYMBOL(iget5_locked);
1049
1050/**
1051 * iget_locked - obtain an inode from a mounted file system
1052 * @sb:		super block of file system
1053 * @ino:	inode number to get
1054 *
1055 * Search for the inode specified by @ino in the inode cache and if present
1056 * return it with an increased reference count. This is for file systems
1057 * where the inode number is sufficient for unique identification of an inode.
1058 *
1059 * If the inode is not in cache, allocate a new inode and return it locked,
1060 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1061 * before unlocking it via unlock_new_inode().
1062 */
1063struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064{
1065	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066	struct inode *inode;
1067
1068	spin_lock(&inode_hash_lock);
1069	inode = find_inode_fast(sb, head, ino);
1070	spin_unlock(&inode_hash_lock);
1071	if (inode) {
1072		wait_on_inode(inode);
 
 
 
 
1073		return inode;
1074	}
1075
1076	inode = alloc_inode(sb);
1077	if (inode) {
1078		struct inode *old;
1079
1080		spin_lock(&inode_hash_lock);
1081		/* We released the lock, so.. */
1082		old = find_inode_fast(sb, head, ino);
1083		if (!old) {
1084			inode->i_ino = ino;
1085			spin_lock(&inode->i_lock);
1086			inode->i_state = I_NEW;
1087			hlist_add_head(&inode->i_hash, head);
1088			spin_unlock(&inode->i_lock);
1089			inode_sb_list_add(inode);
1090			spin_unlock(&inode_hash_lock);
1091
1092			/* Return the locked inode with I_NEW set, the
1093			 * caller is responsible for filling in the contents
1094			 */
1095			return inode;
1096		}
1097
1098		/*
1099		 * Uhhuh, somebody else created the same inode under
1100		 * us. Use the old inode instead of the one we just
1101		 * allocated.
1102		 */
1103		spin_unlock(&inode_hash_lock);
1104		destroy_inode(inode);
1105		inode = old;
1106		wait_on_inode(inode);
 
 
 
 
1107	}
1108	return inode;
1109}
1110EXPORT_SYMBOL(iget_locked);
1111
1112/*
1113 * search the inode cache for a matching inode number.
1114 * If we find one, then the inode number we are trying to
1115 * allocate is not unique and so we should not use it.
1116 *
1117 * Returns 1 if the inode number is unique, 0 if it is not.
1118 */
1119static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1120{
1121	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1122	struct hlist_node *node;
1123	struct inode *inode;
1124
1125	spin_lock(&inode_hash_lock);
1126	hlist_for_each_entry(inode, node, b, i_hash) {
1127		if (inode->i_ino == ino && inode->i_sb == sb) {
1128			spin_unlock(&inode_hash_lock);
1129			return 0;
1130		}
1131	}
1132	spin_unlock(&inode_hash_lock);
1133
1134	return 1;
1135}
1136
1137/**
1138 *	iunique - get a unique inode number
1139 *	@sb: superblock
1140 *	@max_reserved: highest reserved inode number
1141 *
1142 *	Obtain an inode number that is unique on the system for a given
1143 *	superblock. This is used by file systems that have no natural
1144 *	permanent inode numbering system. An inode number is returned that
1145 *	is higher than the reserved limit but unique.
1146 *
1147 *	BUGS:
1148 *	With a large number of inodes live on the file system this function
1149 *	currently becomes quite slow.
1150 */
1151ino_t iunique(struct super_block *sb, ino_t max_reserved)
1152{
1153	/*
1154	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155	 * error if st_ino won't fit in target struct field. Use 32bit counter
1156	 * here to attempt to avoid that.
1157	 */
1158	static DEFINE_SPINLOCK(iunique_lock);
1159	static unsigned int counter;
1160	ino_t res;
1161
1162	spin_lock(&iunique_lock);
1163	do {
1164		if (counter <= max_reserved)
1165			counter = max_reserved + 1;
1166		res = counter++;
1167	} while (!test_inode_iunique(sb, res));
1168	spin_unlock(&iunique_lock);
1169
1170	return res;
1171}
1172EXPORT_SYMBOL(iunique);
1173
1174struct inode *igrab(struct inode *inode)
1175{
1176	spin_lock(&inode->i_lock);
1177	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1178		__iget(inode);
1179		spin_unlock(&inode->i_lock);
1180	} else {
1181		spin_unlock(&inode->i_lock);
1182		/*
1183		 * Handle the case where s_op->clear_inode is not been
1184		 * called yet, and somebody is calling igrab
1185		 * while the inode is getting freed.
1186		 */
1187		inode = NULL;
1188	}
1189	return inode;
1190}
1191EXPORT_SYMBOL(igrab);
1192
1193/**
1194 * ilookup5_nowait - search for an inode in the inode cache
1195 * @sb:		super block of file system to search
1196 * @hashval:	hash value (usually inode number) to search for
1197 * @test:	callback used for comparisons between inodes
1198 * @data:	opaque data pointer to pass to @test
1199 *
1200 * Search for the inode specified by @hashval and @data in the inode cache.
1201 * If the inode is in the cache, the inode is returned with an incremented
1202 * reference count.
1203 *
1204 * Note: I_NEW is not waited upon so you have to be very careful what you do
1205 * with the returned inode.  You probably should be using ilookup5() instead.
1206 *
1207 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1208 */
1209struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1210		int (*test)(struct inode *, void *), void *data)
1211{
1212	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213	struct inode *inode;
1214
1215	spin_lock(&inode_hash_lock);
1216	inode = find_inode(sb, head, test, data);
1217	spin_unlock(&inode_hash_lock);
1218
1219	return inode;
1220}
1221EXPORT_SYMBOL(ilookup5_nowait);
1222
1223/**
1224 * ilookup5 - search for an inode in the inode cache
1225 * @sb:		super block of file system to search
1226 * @hashval:	hash value (usually inode number) to search for
1227 * @test:	callback used for comparisons between inodes
1228 * @data:	opaque data pointer to pass to @test
1229 *
1230 * Search for the inode specified by @hashval and @data in the inode cache,
1231 * and if the inode is in the cache, return the inode with an incremented
1232 * reference count.  Waits on I_NEW before returning the inode.
1233 * returned with an incremented reference count.
1234 *
1235 * This is a generalized version of ilookup() for file systems where the
1236 * inode number is not sufficient for unique identification of an inode.
1237 *
1238 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1239 */
1240struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1241		int (*test)(struct inode *, void *), void *data)
1242{
1243	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1244
1245	if (inode)
 
1246		wait_on_inode(inode);
 
 
 
 
 
1247	return inode;
1248}
1249EXPORT_SYMBOL(ilookup5);
1250
1251/**
1252 * ilookup - search for an inode in the inode cache
1253 * @sb:		super block of file system to search
1254 * @ino:	inode number to search for
1255 *
1256 * Search for the inode @ino in the inode cache, and if the inode is in the
1257 * cache, the inode is returned with an incremented reference count.
1258 */
1259struct inode *ilookup(struct super_block *sb, unsigned long ino)
1260{
1261	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262	struct inode *inode;
1263
1264	spin_lock(&inode_hash_lock);
1265	inode = find_inode_fast(sb, head, ino);
1266	spin_unlock(&inode_hash_lock);
1267
1268	if (inode)
1269		wait_on_inode(inode);
 
 
 
 
 
1270	return inode;
1271}
1272EXPORT_SYMBOL(ilookup);
1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274int insert_inode_locked(struct inode *inode)
1275{
1276	struct super_block *sb = inode->i_sb;
1277	ino_t ino = inode->i_ino;
1278	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1279
1280	while (1) {
1281		struct hlist_node *node;
1282		struct inode *old = NULL;
1283		spin_lock(&inode_hash_lock);
1284		hlist_for_each_entry(old, node, head, i_hash) {
1285			if (old->i_ino != ino)
1286				continue;
1287			if (old->i_sb != sb)
1288				continue;
1289			spin_lock(&old->i_lock);
1290			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1291				spin_unlock(&old->i_lock);
1292				continue;
1293			}
1294			break;
1295		}
1296		if (likely(!node)) {
1297			spin_lock(&inode->i_lock);
1298			inode->i_state |= I_NEW;
1299			hlist_add_head(&inode->i_hash, head);
1300			spin_unlock(&inode->i_lock);
1301			spin_unlock(&inode_hash_lock);
1302			return 0;
1303		}
1304		__iget(old);
1305		spin_unlock(&old->i_lock);
1306		spin_unlock(&inode_hash_lock);
1307		wait_on_inode(old);
1308		if (unlikely(!inode_unhashed(old))) {
1309			iput(old);
1310			return -EBUSY;
1311		}
1312		iput(old);
1313	}
1314}
1315EXPORT_SYMBOL(insert_inode_locked);
1316
1317int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1318		int (*test)(struct inode *, void *), void *data)
1319{
1320	struct super_block *sb = inode->i_sb;
1321	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1322
1323	while (1) {
1324		struct hlist_node *node;
1325		struct inode *old = NULL;
1326
1327		spin_lock(&inode_hash_lock);
1328		hlist_for_each_entry(old, node, head, i_hash) {
1329			if (old->i_sb != sb)
1330				continue;
1331			if (!test(old, data))
1332				continue;
1333			spin_lock(&old->i_lock);
1334			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1335				spin_unlock(&old->i_lock);
1336				continue;
1337			}
1338			break;
1339		}
1340		if (likely(!node)) {
1341			spin_lock(&inode->i_lock);
1342			inode->i_state |= I_NEW;
1343			hlist_add_head(&inode->i_hash, head);
1344			spin_unlock(&inode->i_lock);
1345			spin_unlock(&inode_hash_lock);
1346			return 0;
1347		}
1348		__iget(old);
1349		spin_unlock(&old->i_lock);
1350		spin_unlock(&inode_hash_lock);
1351		wait_on_inode(old);
1352		if (unlikely(!inode_unhashed(old))) {
1353			iput(old);
1354			return -EBUSY;
1355		}
1356		iput(old);
1357	}
1358}
1359EXPORT_SYMBOL(insert_inode_locked4);
1360
1361
1362int generic_delete_inode(struct inode *inode)
1363{
1364	return 1;
1365}
1366EXPORT_SYMBOL(generic_delete_inode);
1367
1368/*
1369 * Called when we're dropping the last reference
1370 * to an inode.
1371 *
1372 * Call the FS "drop_inode()" function, defaulting to
1373 * the legacy UNIX filesystem behaviour.  If it tells
1374 * us to evict inode, do so.  Otherwise, retain inode
1375 * in cache if fs is alive, sync and evict if fs is
1376 * shutting down.
1377 */
1378static void iput_final(struct inode *inode)
1379{
1380	struct super_block *sb = inode->i_sb;
1381	const struct super_operations *op = inode->i_sb->s_op;
1382	int drop;
1383
1384	WARN_ON(inode->i_state & I_NEW);
1385
1386	if (op->drop_inode)
1387		drop = op->drop_inode(inode);
1388	else
1389		drop = generic_drop_inode(inode);
1390
1391	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1392		inode->i_state |= I_REFERENCED;
1393		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1394			inode_lru_list_add(inode);
1395		spin_unlock(&inode->i_lock);
1396		return;
1397	}
1398
1399	if (!drop) {
1400		inode->i_state |= I_WILL_FREE;
1401		spin_unlock(&inode->i_lock);
1402		write_inode_now(inode, 1);
1403		spin_lock(&inode->i_lock);
1404		WARN_ON(inode->i_state & I_NEW);
1405		inode->i_state &= ~I_WILL_FREE;
1406	}
1407
1408	inode->i_state |= I_FREEING;
1409	if (!list_empty(&inode->i_lru))
1410		inode_lru_list_del(inode);
1411	spin_unlock(&inode->i_lock);
1412
1413	evict(inode);
1414}
1415
1416/**
1417 *	iput	- put an inode
1418 *	@inode: inode to put
1419 *
1420 *	Puts an inode, dropping its usage count. If the inode use count hits
1421 *	zero, the inode is then freed and may also be destroyed.
1422 *
1423 *	Consequently, iput() can sleep.
1424 */
1425void iput(struct inode *inode)
1426{
1427	if (inode) {
1428		BUG_ON(inode->i_state & I_CLEAR);
1429
1430		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1431			iput_final(inode);
 
 
 
 
 
 
 
 
 
1432	}
1433}
1434EXPORT_SYMBOL(iput);
1435
1436/**
1437 *	bmap	- find a block number in a file
1438 *	@inode: inode of file
1439 *	@block: block to find
1440 *
1441 *	Returns the block number on the device holding the inode that
1442 *	is the disk block number for the block of the file requested.
1443 *	That is, asked for block 4 of inode 1 the function will return the
1444 *	disk block relative to the disk start that holds that block of the
1445 *	file.
1446 */
1447sector_t bmap(struct inode *inode, sector_t block)
1448{
1449	sector_t res = 0;
1450	if (inode->i_mapping->a_ops->bmap)
1451		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1452	return res;
1453}
1454EXPORT_SYMBOL(bmap);
1455
1456/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457 * With relative atime, only update atime if the previous atime is
1458 * earlier than either the ctime or mtime or if at least a day has
1459 * passed since the last atime update.
1460 */
1461static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1462			     struct timespec now)
1463{
1464
1465	if (!(mnt->mnt_flags & MNT_RELATIME))
1466		return 1;
 
 
1467	/*
1468	 * Is mtime younger than atime? If yes, update atime:
1469	 */
1470	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1471		return 1;
1472	/*
1473	 * Is ctime younger than atime? If yes, update atime:
1474	 */
1475	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1476		return 1;
1477
1478	/*
1479	 * Is the previous atime value older than a day? If yes,
1480	 * update atime:
1481	 */
1482	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1483		return 1;
1484	/*
1485	 * Good, we can skip the atime update:
1486	 */
1487	return 0;
1488}
1489
1490/*
1491 * This does the actual work of updating an inodes time or version.  Must have
1492 * had called mnt_want_write() before calling this.
1493 */
1494static int update_time(struct inode *inode, struct timespec *time, int flags)
1495{
1496	if (inode->i_op->update_time)
1497		return inode->i_op->update_time(inode, time, flags);
1498
1499	if (flags & S_ATIME)
1500		inode->i_atime = *time;
1501	if (flags & S_VERSION)
1502		inode_inc_iversion(inode);
1503	if (flags & S_CTIME)
1504		inode->i_ctime = *time;
1505	if (flags & S_MTIME)
1506		inode->i_mtime = *time;
1507	mark_inode_dirty_sync(inode);
 
 
 
1508	return 0;
1509}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510
1511/**
1512 *	touch_atime	-	update the access time
1513 *	@path: the &struct path to update
 
1514 *
1515 *	Update the accessed time on an inode and mark it for writeback.
1516 *	This function automatically handles read only file systems and media,
1517 *	as well as the "noatime" flag and inode specific "noatime" markers.
1518 */
1519void touch_atime(struct path *path)
 
1520{
1521	struct vfsmount *mnt = path->mnt;
1522	struct inode *inode = path->dentry->d_inode;
1523	struct timespec now;
1524
1525	if (inode->i_flags & S_NOATIME)
1526		return;
 
 
 
 
 
 
 
1527	if (IS_NOATIME(inode))
1528		return;
1529	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1530		return;
1531
1532	if (mnt->mnt_flags & MNT_NOATIME)
1533		return;
1534	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1535		return;
1536
1537	now = current_fs_time(inode->i_sb);
1538
1539	if (!relatime_need_update(mnt, inode, now))
1540		return;
1541
1542	if (timespec_equal(&inode->i_atime, &now))
 
 
 
 
 
 
 
 
 
 
 
 
1543		return;
1544
1545	if (mnt_want_write(mnt))
1546		return;
1547
 
 
1548	/*
1549	 * File systems can error out when updating inodes if they need to
1550	 * allocate new space to modify an inode (such is the case for
1551	 * Btrfs), but since we touch atime while walking down the path we
1552	 * really don't care if we failed to update the atime of the file,
1553	 * so just ignore the return value.
 
 
1554	 */
 
1555	update_time(inode, &now, S_ATIME);
1556	mnt_drop_write(mnt);
 
 
1557}
1558EXPORT_SYMBOL(touch_atime);
1559
1560/*
1561 * The logic we want is
1562 *
1563 *	if suid or (sgid and xgrp)
1564 *		remove privs
1565 */
1566int should_remove_suid(struct dentry *dentry)
1567{
1568	umode_t mode = dentry->d_inode->i_mode;
1569	int kill = 0;
1570
1571	/* suid always must be killed */
1572	if (unlikely(mode & S_ISUID))
1573		kill = ATTR_KILL_SUID;
1574
1575	/*
1576	 * sgid without any exec bits is just a mandatory locking mark; leave
1577	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1578	 */
1579	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1580		kill |= ATTR_KILL_SGID;
1581
1582	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1583		return kill;
1584
1585	return 0;
1586}
1587EXPORT_SYMBOL(should_remove_suid);
1588
1589static int __remove_suid(struct dentry *dentry, int kill)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590{
1591	struct iattr newattrs;
1592
1593	newattrs.ia_valid = ATTR_FORCE | kill;
1594	return notify_change(dentry, &newattrs);
 
 
 
 
1595}
1596
1597int file_remove_suid(struct file *file)
 
 
 
 
1598{
1599	struct dentry *dentry = file->f_path.dentry;
1600	struct inode *inode = dentry->d_inode;
1601	int killsuid;
1602	int killpriv;
1603	int error = 0;
1604
1605	/* Fast path for nothing security related */
1606	if (IS_NOSEC(inode))
1607		return 0;
1608
1609	killsuid = should_remove_suid(dentry);
1610	killpriv = security_inode_need_killpriv(dentry);
1611
1612	if (killpriv < 0)
1613		return killpriv;
1614	if (killpriv)
1615		error = security_inode_killpriv(dentry);
1616	if (!error && killsuid)
1617		error = __remove_suid(dentry, killsuid);
1618	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1619		inode->i_flags |= S_NOSEC;
1620
1621	return error;
1622}
1623EXPORT_SYMBOL(file_remove_suid);
1624
1625/**
1626 *	file_update_time	-	update mtime and ctime time
1627 *	@file: file accessed
1628 *
1629 *	Update the mtime and ctime members of an inode and mark the inode
1630 *	for writeback.  Note that this function is meant exclusively for
1631 *	usage in the file write path of filesystems, and filesystems may
1632 *	choose to explicitly ignore update via this function with the
1633 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1634 *	timestamps are handled by the server.  This can return an error for
1635 *	file systems who need to allocate space in order to update an inode.
1636 */
1637
1638int file_update_time(struct file *file)
1639{
1640	struct inode *inode = file->f_path.dentry->d_inode;
1641	struct timespec now;
1642	int sync_it = 0;
1643	int ret;
1644
1645	/* First try to exhaust all avenues to not sync */
1646	if (IS_NOCMTIME(inode))
1647		return 0;
1648
1649	now = current_fs_time(inode->i_sb);
1650	if (!timespec_equal(&inode->i_mtime, &now))
1651		sync_it = S_MTIME;
1652
1653	if (!timespec_equal(&inode->i_ctime, &now))
1654		sync_it |= S_CTIME;
1655
1656	if (IS_I_VERSION(inode))
1657		sync_it |= S_VERSION;
1658
1659	if (!sync_it)
1660		return 0;
1661
1662	/* Finally allowed to write? Takes lock. */
1663	if (mnt_want_write_file(file))
1664		return 0;
1665
1666	ret = update_time(inode, &now, sync_it);
1667	mnt_drop_write_file(file);
1668
1669	return ret;
1670}
1671EXPORT_SYMBOL(file_update_time);
1672
1673int inode_needs_sync(struct inode *inode)
1674{
1675	if (IS_SYNC(inode))
1676		return 1;
1677	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1678		return 1;
1679	return 0;
1680}
1681EXPORT_SYMBOL(inode_needs_sync);
1682
1683int inode_wait(void *word)
1684{
1685	schedule();
1686	return 0;
1687}
1688EXPORT_SYMBOL(inode_wait);
1689
1690/*
1691 * If we try to find an inode in the inode hash while it is being
1692 * deleted, we have to wait until the filesystem completes its
1693 * deletion before reporting that it isn't found.  This function waits
1694 * until the deletion _might_ have completed.  Callers are responsible
1695 * to recheck inode state.
1696 *
1697 * It doesn't matter if I_NEW is not set initially, a call to
1698 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1699 * will DTRT.
1700 */
1701static void __wait_on_freeing_inode(struct inode *inode)
1702{
1703	wait_queue_head_t *wq;
1704	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1705	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1706	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1707	spin_unlock(&inode->i_lock);
1708	spin_unlock(&inode_hash_lock);
1709	schedule();
1710	finish_wait(wq, &wait.wait);
1711	spin_lock(&inode_hash_lock);
1712}
1713
1714static __initdata unsigned long ihash_entries;
1715static int __init set_ihash_entries(char *str)
1716{
1717	if (!str)
1718		return 0;
1719	ihash_entries = simple_strtoul(str, &str, 0);
1720	return 1;
1721}
1722__setup("ihash_entries=", set_ihash_entries);
1723
1724/*
1725 * Initialize the waitqueues and inode hash table.
1726 */
1727void __init inode_init_early(void)
1728{
1729	unsigned int loop;
1730
1731	/* If hashes are distributed across NUMA nodes, defer
1732	 * hash allocation until vmalloc space is available.
1733	 */
1734	if (hashdist)
1735		return;
1736
1737	inode_hashtable =
1738		alloc_large_system_hash("Inode-cache",
1739					sizeof(struct hlist_head),
1740					ihash_entries,
1741					14,
1742					HASH_EARLY,
1743					&i_hash_shift,
1744					&i_hash_mask,
1745					0,
1746					0);
1747
1748	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1749		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1750}
1751
1752void __init inode_init(void)
1753{
1754	unsigned int loop;
1755
1756	/* inode slab cache */
1757	inode_cachep = kmem_cache_create("inode_cache",
1758					 sizeof(struct inode),
1759					 0,
1760					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1761					 SLAB_MEM_SPREAD),
1762					 init_once);
1763
1764	/* Hash may have been set up in inode_init_early */
1765	if (!hashdist)
1766		return;
1767
1768	inode_hashtable =
1769		alloc_large_system_hash("Inode-cache",
1770					sizeof(struct hlist_head),
1771					ihash_entries,
1772					14,
1773					0,
1774					&i_hash_shift,
1775					&i_hash_mask,
1776					0,
1777					0);
1778
1779	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1780		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1781}
1782
1783void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1784{
1785	inode->i_mode = mode;
1786	if (S_ISCHR(mode)) {
1787		inode->i_fop = &def_chr_fops;
1788		inode->i_rdev = rdev;
1789	} else if (S_ISBLK(mode)) {
1790		inode->i_fop = &def_blk_fops;
1791		inode->i_rdev = rdev;
1792	} else if (S_ISFIFO(mode))
1793		inode->i_fop = &def_fifo_fops;
1794	else if (S_ISSOCK(mode))
1795		inode->i_fop = &bad_sock_fops;
1796	else
1797		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1798				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1799				  inode->i_ino);
1800}
1801EXPORT_SYMBOL(init_special_inode);
1802
1803/**
1804 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1805 * @inode: New inode
1806 * @dir: Directory inode
1807 * @mode: mode of the new inode
1808 */
1809void inode_init_owner(struct inode *inode, const struct inode *dir,
1810			umode_t mode)
1811{
1812	inode->i_uid = current_fsuid();
1813	if (dir && dir->i_mode & S_ISGID) {
1814		inode->i_gid = dir->i_gid;
1815		if (S_ISDIR(mode))
1816			mode |= S_ISGID;
1817	} else
1818		inode->i_gid = current_fsgid();
1819	inode->i_mode = mode;
1820}
1821EXPORT_SYMBOL(inode_init_owner);
1822
1823/**
1824 * inode_owner_or_capable - check current task permissions to inode
1825 * @inode: inode being checked
1826 *
1827 * Return true if current either has CAP_FOWNER to the inode, or
1828 * owns the file.
1829 */
1830bool inode_owner_or_capable(const struct inode *inode)
1831{
 
 
1832	if (uid_eq(current_fsuid(), inode->i_uid))
1833		return true;
1834	if (inode_capable(inode, CAP_FOWNER))
 
 
1835		return true;
1836	return false;
1837}
1838EXPORT_SYMBOL(inode_owner_or_capable);
1839
1840/*
1841 * Direct i/o helper functions
1842 */
1843static void __inode_dio_wait(struct inode *inode)
1844{
1845	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1846	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1847
1848	do {
1849		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1850		if (atomic_read(&inode->i_dio_count))
1851			schedule();
1852	} while (atomic_read(&inode->i_dio_count));
1853	finish_wait(wq, &q.wait);
1854}
1855
1856/**
1857 * inode_dio_wait - wait for outstanding DIO requests to finish
1858 * @inode: inode to wait for
1859 *
1860 * Waits for all pending direct I/O requests to finish so that we can
1861 * proceed with a truncate or equivalent operation.
1862 *
1863 * Must be called under a lock that serializes taking new references
1864 * to i_dio_count, usually by inode->i_mutex.
1865 */
1866void inode_dio_wait(struct inode *inode)
1867{
1868	if (atomic_read(&inode->i_dio_count))
1869		__inode_dio_wait(inode);
1870}
1871EXPORT_SYMBOL(inode_dio_wait);
1872
1873/*
1874 * inode_dio_done - signal finish of a direct I/O requests
1875 * @inode: inode the direct I/O happens on
1876 *
1877 * This is called once we've finished processing a direct I/O request,
1878 * and is used to wake up callers waiting for direct I/O to be quiesced.
 
 
 
 
 
 
 
 
 
 
1879 */
1880void inode_dio_done(struct inode *inode)
 
1881{
1882	if (atomic_dec_and_test(&inode->i_dio_count))
1883		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1884}
1885EXPORT_SYMBOL(inode_dio_done);