Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
 
  21#include <trace/events/writeback.h>
  22#include "internal.h"
  23
  24/*
  25 * Inode locking rules:
  26 *
  27 * inode->i_lock protects:
  28 *   inode->i_state, inode->i_hash, __iget()
  29 * Inode LRU list locks protect:
  30 *   inode->i_sb->s_inode_lru, inode->i_lru
  31 * inode->i_sb->s_inode_list_lock protects:
  32 *   inode->i_sb->s_inodes, inode->i_sb_list
  33 * bdi->wb.list_lock protects:
  34 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  35 * inode_hash_lock protects:
  36 *   inode_hashtable, inode->i_hash
  37 *
  38 * Lock ordering:
  39 *
  40 * inode->i_sb->s_inode_list_lock
  41 *   inode->i_lock
  42 *     Inode LRU list locks
  43 *
  44 * bdi->wb.list_lock
  45 *   inode->i_lock
  46 *
  47 * inode_hash_lock
  48 *   inode->i_sb->s_inode_list_lock
  49 *   inode->i_lock
  50 *
  51 * iunique_lock
  52 *   inode_hash_lock
  53 */
  54
  55static unsigned int i_hash_mask __read_mostly;
  56static unsigned int i_hash_shift __read_mostly;
  57static struct hlist_head *inode_hashtable __read_mostly;
  58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  59
  60/*
  61 * Empty aops. Can be used for the cases where the user does not
  62 * define any of the address_space operations.
  63 */
  64const struct address_space_operations empty_aops = {
  65};
  66EXPORT_SYMBOL(empty_aops);
  67
  68/*
  69 * Statistics gathering..
  70 */
  71struct inodes_stat_t inodes_stat;
  72
  73static DEFINE_PER_CPU(unsigned long, nr_inodes);
  74static DEFINE_PER_CPU(unsigned long, nr_unused);
  75
  76static struct kmem_cache *inode_cachep __read_mostly;
  77
  78static long get_nr_inodes(void)
  79{
  80	int i;
  81	long sum = 0;
  82	for_each_possible_cpu(i)
  83		sum += per_cpu(nr_inodes, i);
  84	return sum < 0 ? 0 : sum;
  85}
  86
  87static inline long get_nr_inodes_unused(void)
  88{
  89	int i;
  90	long sum = 0;
  91	for_each_possible_cpu(i)
  92		sum += per_cpu(nr_unused, i);
  93	return sum < 0 ? 0 : sum;
  94}
  95
  96long get_nr_dirty_inodes(void)
  97{
  98	/* not actually dirty inodes, but a wild approximation */
  99	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 100	return nr_dirty > 0 ? nr_dirty : 0;
 101}
 102
 103/*
 104 * Handle nr_inode sysctl
 105 */
 106#ifdef CONFIG_SYSCTL
 107int proc_nr_inodes(struct ctl_table *table, int write,
 108		   void __user *buffer, size_t *lenp, loff_t *ppos)
 109{
 110	inodes_stat.nr_inodes = get_nr_inodes();
 111	inodes_stat.nr_unused = get_nr_inodes_unused();
 112	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 113}
 114#endif
 115
 116static int no_open(struct inode *inode, struct file *file)
 117{
 118	return -ENXIO;
 119}
 120
 121/**
 122 * inode_init_always - perform inode structure intialisation
 123 * @sb: superblock inode belongs to
 124 * @inode: inode to initialise
 125 *
 126 * These are initializations that need to be done on every inode
 127 * allocation as the fields are not initialised by slab allocation.
 128 */
 129int inode_init_always(struct super_block *sb, struct inode *inode)
 130{
 131	static const struct inode_operations empty_iops;
 132	static const struct file_operations no_open_fops = {.open = no_open};
 133	struct address_space *const mapping = &inode->i_data;
 134
 135	inode->i_sb = sb;
 136	inode->i_blkbits = sb->s_blocksize_bits;
 137	inode->i_flags = 0;
 138	atomic_set(&inode->i_count, 1);
 139	inode->i_op = &empty_iops;
 140	inode->i_fop = &no_open_fops;
 141	inode->__i_nlink = 1;
 142	inode->i_opflags = 0;
 143	if (sb->s_xattr)
 144		inode->i_opflags |= IOP_XATTR;
 145	i_uid_write(inode, 0);
 146	i_gid_write(inode, 0);
 147	atomic_set(&inode->i_writecount, 0);
 148	inode->i_size = 0;
 
 149	inode->i_blocks = 0;
 150	inode->i_bytes = 0;
 151	inode->i_generation = 0;
 152	inode->i_pipe = NULL;
 153	inode->i_bdev = NULL;
 154	inode->i_cdev = NULL;
 155	inode->i_link = NULL;
 156	inode->i_dir_seq = 0;
 157	inode->i_rdev = 0;
 158	inode->dirtied_when = 0;
 159
 160#ifdef CONFIG_CGROUP_WRITEBACK
 161	inode->i_wb_frn_winner = 0;
 162	inode->i_wb_frn_avg_time = 0;
 163	inode->i_wb_frn_history = 0;
 164#endif
 165
 166	if (security_inode_alloc(inode))
 167		goto out;
 168	spin_lock_init(&inode->i_lock);
 169	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 170
 171	init_rwsem(&inode->i_rwsem);
 172	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 173
 174	atomic_set(&inode->i_dio_count, 0);
 175
 176	mapping->a_ops = &empty_aops;
 177	mapping->host = inode;
 178	mapping->flags = 0;
 
 179	atomic_set(&mapping->i_mmap_writable, 0);
 
 
 
 180	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 181	mapping->private_data = NULL;
 182	mapping->writeback_index = 0;
 183	inode->i_private = NULL;
 184	inode->i_mapping = mapping;
 185	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 186#ifdef CONFIG_FS_POSIX_ACL
 187	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 188#endif
 189
 190#ifdef CONFIG_FSNOTIFY
 191	inode->i_fsnotify_mask = 0;
 192#endif
 193	inode->i_flctx = NULL;
 194	this_cpu_inc(nr_inodes);
 195
 196	return 0;
 197out:
 198	return -ENOMEM;
 199}
 200EXPORT_SYMBOL(inode_init_always);
 201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202static struct inode *alloc_inode(struct super_block *sb)
 203{
 
 204	struct inode *inode;
 205
 206	if (sb->s_op->alloc_inode)
 207		inode = sb->s_op->alloc_inode(sb);
 208	else
 209		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 210
 211	if (!inode)
 212		return NULL;
 213
 214	if (unlikely(inode_init_always(sb, inode))) {
 215		if (inode->i_sb->s_op->destroy_inode)
 216			inode->i_sb->s_op->destroy_inode(inode);
 217		else
 218			kmem_cache_free(inode_cachep, inode);
 
 
 
 219		return NULL;
 220	}
 221
 222	return inode;
 223}
 224
 225void free_inode_nonrcu(struct inode *inode)
 226{
 227	kmem_cache_free(inode_cachep, inode);
 228}
 229EXPORT_SYMBOL(free_inode_nonrcu);
 230
 231void __destroy_inode(struct inode *inode)
 232{
 233	BUG_ON(inode_has_buffers(inode));
 234	inode_detach_wb(inode);
 235	security_inode_free(inode);
 236	fsnotify_inode_delete(inode);
 237	locks_free_lock_context(inode);
 238	if (!inode->i_nlink) {
 239		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 240		atomic_long_dec(&inode->i_sb->s_remove_count);
 241	}
 242
 243#ifdef CONFIG_FS_POSIX_ACL
 244	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 245		posix_acl_release(inode->i_acl);
 246	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 247		posix_acl_release(inode->i_default_acl);
 248#endif
 249	this_cpu_dec(nr_inodes);
 250}
 251EXPORT_SYMBOL(__destroy_inode);
 252
 253static void i_callback(struct rcu_head *head)
 254{
 255	struct inode *inode = container_of(head, struct inode, i_rcu);
 256	kmem_cache_free(inode_cachep, inode);
 257}
 258
 259static void destroy_inode(struct inode *inode)
 260{
 
 
 261	BUG_ON(!list_empty(&inode->i_lru));
 262	__destroy_inode(inode);
 263	if (inode->i_sb->s_op->destroy_inode)
 264		inode->i_sb->s_op->destroy_inode(inode);
 265	else
 266		call_rcu(&inode->i_rcu, i_callback);
 
 
 
 267}
 268
 269/**
 270 * drop_nlink - directly drop an inode's link count
 271 * @inode: inode
 272 *
 273 * This is a low-level filesystem helper to replace any
 274 * direct filesystem manipulation of i_nlink.  In cases
 275 * where we are attempting to track writes to the
 276 * filesystem, a decrement to zero means an imminent
 277 * write when the file is truncated and actually unlinked
 278 * on the filesystem.
 279 */
 280void drop_nlink(struct inode *inode)
 281{
 282	WARN_ON(inode->i_nlink == 0);
 283	inode->__i_nlink--;
 284	if (!inode->i_nlink)
 285		atomic_long_inc(&inode->i_sb->s_remove_count);
 286}
 287EXPORT_SYMBOL(drop_nlink);
 288
 289/**
 290 * clear_nlink - directly zero an inode's link count
 291 * @inode: inode
 292 *
 293 * This is a low-level filesystem helper to replace any
 294 * direct filesystem manipulation of i_nlink.  See
 295 * drop_nlink() for why we care about i_nlink hitting zero.
 296 */
 297void clear_nlink(struct inode *inode)
 298{
 299	if (inode->i_nlink) {
 300		inode->__i_nlink = 0;
 301		atomic_long_inc(&inode->i_sb->s_remove_count);
 302	}
 303}
 304EXPORT_SYMBOL(clear_nlink);
 305
 306/**
 307 * set_nlink - directly set an inode's link count
 308 * @inode: inode
 309 * @nlink: new nlink (should be non-zero)
 310 *
 311 * This is a low-level filesystem helper to replace any
 312 * direct filesystem manipulation of i_nlink.
 313 */
 314void set_nlink(struct inode *inode, unsigned int nlink)
 315{
 316	if (!nlink) {
 317		clear_nlink(inode);
 318	} else {
 319		/* Yes, some filesystems do change nlink from zero to one */
 320		if (inode->i_nlink == 0)
 321			atomic_long_dec(&inode->i_sb->s_remove_count);
 322
 323		inode->__i_nlink = nlink;
 324	}
 325}
 326EXPORT_SYMBOL(set_nlink);
 327
 328/**
 329 * inc_nlink - directly increment an inode's link count
 330 * @inode: inode
 331 *
 332 * This is a low-level filesystem helper to replace any
 333 * direct filesystem manipulation of i_nlink.  Currently,
 334 * it is only here for parity with dec_nlink().
 335 */
 336void inc_nlink(struct inode *inode)
 337{
 338	if (unlikely(inode->i_nlink == 0)) {
 339		WARN_ON(!(inode->i_state & I_LINKABLE));
 340		atomic_long_dec(&inode->i_sb->s_remove_count);
 341	}
 342
 343	inode->__i_nlink++;
 344}
 345EXPORT_SYMBOL(inc_nlink);
 346
 347void address_space_init_once(struct address_space *mapping)
 348{
 349	memset(mapping, 0, sizeof(*mapping));
 350	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
 351	spin_lock_init(&mapping->tree_lock);
 352	init_rwsem(&mapping->i_mmap_rwsem);
 353	INIT_LIST_HEAD(&mapping->private_list);
 354	spin_lock_init(&mapping->private_lock);
 355	mapping->i_mmap = RB_ROOT;
 
 
 
 
 
 
 356}
 357EXPORT_SYMBOL(address_space_init_once);
 358
 359/*
 360 * These are initializations that only need to be done
 361 * once, because the fields are idempotent across use
 362 * of the inode, so let the slab aware of that.
 363 */
 364void inode_init_once(struct inode *inode)
 365{
 366	memset(inode, 0, sizeof(*inode));
 367	INIT_HLIST_NODE(&inode->i_hash);
 368	INIT_LIST_HEAD(&inode->i_devices);
 369	INIT_LIST_HEAD(&inode->i_io_list);
 370	INIT_LIST_HEAD(&inode->i_wb_list);
 371	INIT_LIST_HEAD(&inode->i_lru);
 372	address_space_init_once(&inode->i_data);
 373	i_size_ordered_init(inode);
 374#ifdef CONFIG_FSNOTIFY
 375	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 376#endif
 377}
 378EXPORT_SYMBOL(inode_init_once);
 379
 380static void init_once(void *foo)
 381{
 382	struct inode *inode = (struct inode *) foo;
 383
 384	inode_init_once(inode);
 385}
 386
 387/*
 388 * inode->i_lock must be held
 389 */
 390void __iget(struct inode *inode)
 391{
 392	atomic_inc(&inode->i_count);
 393}
 394
 395/*
 396 * get additional reference to inode; caller must already hold one.
 397 */
 398void ihold(struct inode *inode)
 399{
 400	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 401}
 402EXPORT_SYMBOL(ihold);
 403
 404static void inode_lru_list_add(struct inode *inode)
 405{
 406	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 407		this_cpu_inc(nr_unused);
 
 
 408}
 409
 410/*
 411 * Add inode to LRU if needed (inode is unused and clean).
 412 *
 413 * Needs inode->i_lock held.
 414 */
 415void inode_add_lru(struct inode *inode)
 416{
 417	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 418				I_FREEING | I_WILL_FREE)) &&
 419	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 420		inode_lru_list_add(inode);
 421}
 422
 423
 424static void inode_lru_list_del(struct inode *inode)
 425{
 426
 427	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 428		this_cpu_dec(nr_unused);
 429}
 430
 431/**
 432 * inode_sb_list_add - add inode to the superblock list of inodes
 433 * @inode: inode to add
 434 */
 435void inode_sb_list_add(struct inode *inode)
 436{
 437	spin_lock(&inode->i_sb->s_inode_list_lock);
 438	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 439	spin_unlock(&inode->i_sb->s_inode_list_lock);
 440}
 441EXPORT_SYMBOL_GPL(inode_sb_list_add);
 442
 443static inline void inode_sb_list_del(struct inode *inode)
 444{
 445	if (!list_empty(&inode->i_sb_list)) {
 446		spin_lock(&inode->i_sb->s_inode_list_lock);
 447		list_del_init(&inode->i_sb_list);
 448		spin_unlock(&inode->i_sb->s_inode_list_lock);
 449	}
 450}
 451
 452static unsigned long hash(struct super_block *sb, unsigned long hashval)
 453{
 454	unsigned long tmp;
 455
 456	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 457			L1_CACHE_BYTES;
 458	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 459	return tmp & i_hash_mask;
 460}
 461
 462/**
 463 *	__insert_inode_hash - hash an inode
 464 *	@inode: unhashed inode
 465 *	@hashval: unsigned long value used to locate this object in the
 466 *		inode_hashtable.
 467 *
 468 *	Add an inode to the inode hash for this superblock.
 469 */
 470void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 471{
 472	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 473
 474	spin_lock(&inode_hash_lock);
 475	spin_lock(&inode->i_lock);
 476	hlist_add_head(&inode->i_hash, b);
 477	spin_unlock(&inode->i_lock);
 478	spin_unlock(&inode_hash_lock);
 479}
 480EXPORT_SYMBOL(__insert_inode_hash);
 481
 482/**
 483 *	__remove_inode_hash - remove an inode from the hash
 484 *	@inode: inode to unhash
 485 *
 486 *	Remove an inode from the superblock.
 487 */
 488void __remove_inode_hash(struct inode *inode)
 489{
 490	spin_lock(&inode_hash_lock);
 491	spin_lock(&inode->i_lock);
 492	hlist_del_init(&inode->i_hash);
 493	spin_unlock(&inode->i_lock);
 494	spin_unlock(&inode_hash_lock);
 495}
 496EXPORT_SYMBOL(__remove_inode_hash);
 497
 498void clear_inode(struct inode *inode)
 499{
 500	might_sleep();
 501	/*
 502	 * We have to cycle tree_lock here because reclaim can be still in the
 503	 * process of removing the last page (in __delete_from_page_cache())
 504	 * and we must not free mapping under it.
 505	 */
 506	spin_lock_irq(&inode->i_data.tree_lock);
 507	BUG_ON(inode->i_data.nrpages);
 508	BUG_ON(inode->i_data.nrexceptional);
 509	spin_unlock_irq(&inode->i_data.tree_lock);
 510	BUG_ON(!list_empty(&inode->i_data.private_list));
 511	BUG_ON(!(inode->i_state & I_FREEING));
 512	BUG_ON(inode->i_state & I_CLEAR);
 513	BUG_ON(!list_empty(&inode->i_wb_list));
 514	/* don't need i_lock here, no concurrent mods to i_state */
 515	inode->i_state = I_FREEING | I_CLEAR;
 516}
 517EXPORT_SYMBOL(clear_inode);
 518
 519/*
 520 * Free the inode passed in, removing it from the lists it is still connected
 521 * to. We remove any pages still attached to the inode and wait for any IO that
 522 * is still in progress before finally destroying the inode.
 523 *
 524 * An inode must already be marked I_FREEING so that we avoid the inode being
 525 * moved back onto lists if we race with other code that manipulates the lists
 526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 527 *
 528 * An inode must already be removed from the LRU list before being evicted from
 529 * the cache. This should occur atomically with setting the I_FREEING state
 530 * flag, so no inodes here should ever be on the LRU when being evicted.
 531 */
 532static void evict(struct inode *inode)
 533{
 534	const struct super_operations *op = inode->i_sb->s_op;
 535
 536	BUG_ON(!(inode->i_state & I_FREEING));
 537	BUG_ON(!list_empty(&inode->i_lru));
 538
 539	if (!list_empty(&inode->i_io_list))
 540		inode_io_list_del(inode);
 541
 542	inode_sb_list_del(inode);
 543
 544	/*
 545	 * Wait for flusher thread to be done with the inode so that filesystem
 546	 * does not start destroying it while writeback is still running. Since
 547	 * the inode has I_FREEING set, flusher thread won't start new work on
 548	 * the inode.  We just have to wait for running writeback to finish.
 549	 */
 550	inode_wait_for_writeback(inode);
 551
 552	if (op->evict_inode) {
 553		op->evict_inode(inode);
 554	} else {
 555		truncate_inode_pages_final(&inode->i_data);
 556		clear_inode(inode);
 557	}
 558	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 559		bd_forget(inode);
 560	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 561		cd_forget(inode);
 562
 563	remove_inode_hash(inode);
 564
 565	spin_lock(&inode->i_lock);
 566	wake_up_bit(&inode->i_state, __I_NEW);
 567	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 568	spin_unlock(&inode->i_lock);
 569
 570	destroy_inode(inode);
 571}
 572
 573/*
 574 * dispose_list - dispose of the contents of a local list
 575 * @head: the head of the list to free
 576 *
 577 * Dispose-list gets a local list with local inodes in it, so it doesn't
 578 * need to worry about list corruption and SMP locks.
 579 */
 580static void dispose_list(struct list_head *head)
 581{
 582	while (!list_empty(head)) {
 583		struct inode *inode;
 584
 585		inode = list_first_entry(head, struct inode, i_lru);
 586		list_del_init(&inode->i_lru);
 587
 588		evict(inode);
 589		cond_resched();
 590	}
 591}
 592
 593/**
 594 * evict_inodes	- evict all evictable inodes for a superblock
 595 * @sb:		superblock to operate on
 596 *
 597 * Make sure that no inodes with zero refcount are retained.  This is
 598 * called by superblock shutdown after having MS_ACTIVE flag removed,
 599 * so any inode reaching zero refcount during or after that call will
 600 * be immediately evicted.
 601 */
 602void evict_inodes(struct super_block *sb)
 603{
 604	struct inode *inode, *next;
 605	LIST_HEAD(dispose);
 606
 607again:
 608	spin_lock(&sb->s_inode_list_lock);
 609	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 610		if (atomic_read(&inode->i_count))
 611			continue;
 612
 613		spin_lock(&inode->i_lock);
 614		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 615			spin_unlock(&inode->i_lock);
 616			continue;
 617		}
 618
 619		inode->i_state |= I_FREEING;
 620		inode_lru_list_del(inode);
 621		spin_unlock(&inode->i_lock);
 622		list_add(&inode->i_lru, &dispose);
 623
 624		/*
 625		 * We can have a ton of inodes to evict at unmount time given
 626		 * enough memory, check to see if we need to go to sleep for a
 627		 * bit so we don't livelock.
 628		 */
 629		if (need_resched()) {
 630			spin_unlock(&sb->s_inode_list_lock);
 631			cond_resched();
 632			dispose_list(&dispose);
 633			goto again;
 634		}
 635	}
 636	spin_unlock(&sb->s_inode_list_lock);
 637
 638	dispose_list(&dispose);
 639}
 
 640
 641/**
 642 * invalidate_inodes	- attempt to free all inodes on a superblock
 643 * @sb:		superblock to operate on
 644 * @kill_dirty: flag to guide handling of dirty inodes
 645 *
 646 * Attempts to free all inodes for a given superblock.  If there were any
 647 * busy inodes return a non-zero value, else zero.
 648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 649 * them as busy.
 650 */
 651int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 652{
 653	int busy = 0;
 654	struct inode *inode, *next;
 655	LIST_HEAD(dispose);
 656
 657	spin_lock(&sb->s_inode_list_lock);
 658	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 659		spin_lock(&inode->i_lock);
 660		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 661			spin_unlock(&inode->i_lock);
 662			continue;
 663		}
 664		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 665			spin_unlock(&inode->i_lock);
 666			busy = 1;
 667			continue;
 668		}
 669		if (atomic_read(&inode->i_count)) {
 670			spin_unlock(&inode->i_lock);
 671			busy = 1;
 672			continue;
 673		}
 674
 675		inode->i_state |= I_FREEING;
 676		inode_lru_list_del(inode);
 677		spin_unlock(&inode->i_lock);
 678		list_add(&inode->i_lru, &dispose);
 679	}
 680	spin_unlock(&sb->s_inode_list_lock);
 681
 682	dispose_list(&dispose);
 683
 684	return busy;
 685}
 686
 687/*
 688 * Isolate the inode from the LRU in preparation for freeing it.
 689 *
 690 * Any inodes which are pinned purely because of attached pagecache have their
 691 * pagecache removed.  If the inode has metadata buffers attached to
 692 * mapping->private_list then try to remove them.
 693 *
 694 * If the inode has the I_REFERENCED flag set, then it means that it has been
 695 * used recently - the flag is set in iput_final(). When we encounter such an
 696 * inode, clear the flag and move it to the back of the LRU so it gets another
 697 * pass through the LRU before it gets reclaimed. This is necessary because of
 698 * the fact we are doing lazy LRU updates to minimise lock contention so the
 699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 700 * with this flag set because they are the inodes that are out of order.
 701 */
 702static enum lru_status inode_lru_isolate(struct list_head *item,
 703		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 704{
 705	struct list_head *freeable = arg;
 706	struct inode	*inode = container_of(item, struct inode, i_lru);
 707
 708	/*
 709	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 710	 * If we fail to get the lock, just skip it.
 711	 */
 712	if (!spin_trylock(&inode->i_lock))
 713		return LRU_SKIP;
 714
 715	/*
 716	 * Referenced or dirty inodes are still in use. Give them another pass
 717	 * through the LRU as we canot reclaim them now.
 718	 */
 719	if (atomic_read(&inode->i_count) ||
 720	    (inode->i_state & ~I_REFERENCED)) {
 721		list_lru_isolate(lru, &inode->i_lru);
 722		spin_unlock(&inode->i_lock);
 723		this_cpu_dec(nr_unused);
 724		return LRU_REMOVED;
 725	}
 726
 727	/* recently referenced inodes get one more pass */
 728	if (inode->i_state & I_REFERENCED) {
 729		inode->i_state &= ~I_REFERENCED;
 730		spin_unlock(&inode->i_lock);
 731		return LRU_ROTATE;
 732	}
 733
 734	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 735		__iget(inode);
 736		spin_unlock(&inode->i_lock);
 737		spin_unlock(lru_lock);
 738		if (remove_inode_buffers(inode)) {
 739			unsigned long reap;
 740			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 741			if (current_is_kswapd())
 742				__count_vm_events(KSWAPD_INODESTEAL, reap);
 743			else
 744				__count_vm_events(PGINODESTEAL, reap);
 745			if (current->reclaim_state)
 746				current->reclaim_state->reclaimed_slab += reap;
 747		}
 748		iput(inode);
 749		spin_lock(lru_lock);
 750		return LRU_RETRY;
 751	}
 752
 753	WARN_ON(inode->i_state & I_NEW);
 754	inode->i_state |= I_FREEING;
 755	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 756	spin_unlock(&inode->i_lock);
 757
 758	this_cpu_dec(nr_unused);
 759	return LRU_REMOVED;
 760}
 761
 762/*
 763 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 764 * This is called from the superblock shrinker function with a number of inodes
 765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 766 * then are freed outside inode_lock by dispose_list().
 767 */
 768long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 769{
 770	LIST_HEAD(freeable);
 771	long freed;
 772
 773	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 774				     inode_lru_isolate, &freeable);
 775	dispose_list(&freeable);
 776	return freed;
 777}
 778
 779static void __wait_on_freeing_inode(struct inode *inode);
 780/*
 781 * Called with the inode lock held.
 782 */
 783static struct inode *find_inode(struct super_block *sb,
 784				struct hlist_head *head,
 785				int (*test)(struct inode *, void *),
 786				void *data)
 787{
 788	struct inode *inode = NULL;
 789
 790repeat:
 791	hlist_for_each_entry(inode, head, i_hash) {
 792		if (inode->i_sb != sb)
 793			continue;
 794		if (!test(inode, data))
 795			continue;
 796		spin_lock(&inode->i_lock);
 797		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 798			__wait_on_freeing_inode(inode);
 799			goto repeat;
 800		}
 
 
 
 
 801		__iget(inode);
 802		spin_unlock(&inode->i_lock);
 803		return inode;
 804	}
 805	return NULL;
 806}
 807
 808/*
 809 * find_inode_fast is the fast path version of find_inode, see the comment at
 810 * iget_locked for details.
 811 */
 812static struct inode *find_inode_fast(struct super_block *sb,
 813				struct hlist_head *head, unsigned long ino)
 814{
 815	struct inode *inode = NULL;
 816
 817repeat:
 818	hlist_for_each_entry(inode, head, i_hash) {
 819		if (inode->i_ino != ino)
 820			continue;
 821		if (inode->i_sb != sb)
 822			continue;
 823		spin_lock(&inode->i_lock);
 824		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 825			__wait_on_freeing_inode(inode);
 826			goto repeat;
 827		}
 
 
 
 
 828		__iget(inode);
 829		spin_unlock(&inode->i_lock);
 830		return inode;
 831	}
 832	return NULL;
 833}
 834
 835/*
 836 * Each cpu owns a range of LAST_INO_BATCH numbers.
 837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 838 * to renew the exhausted range.
 839 *
 840 * This does not significantly increase overflow rate because every CPU can
 841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 844 * overflow rate by 2x, which does not seem too significant.
 845 *
 846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 847 * error if st_ino won't fit in target struct field. Use 32bit counter
 848 * here to attempt to avoid that.
 849 */
 850#define LAST_INO_BATCH 1024
 851static DEFINE_PER_CPU(unsigned int, last_ino);
 852
 853unsigned int get_next_ino(void)
 854{
 855	unsigned int *p = &get_cpu_var(last_ino);
 856	unsigned int res = *p;
 857
 858#ifdef CONFIG_SMP
 859	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 860		static atomic_t shared_last_ino;
 861		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 862
 863		res = next - LAST_INO_BATCH;
 864	}
 865#endif
 866
 867	res++;
 868	/* get_next_ino should not provide a 0 inode number */
 869	if (unlikely(!res))
 870		res++;
 871	*p = res;
 872	put_cpu_var(last_ino);
 873	return res;
 874}
 875EXPORT_SYMBOL(get_next_ino);
 876
 877/**
 878 *	new_inode_pseudo 	- obtain an inode
 879 *	@sb: superblock
 880 *
 881 *	Allocates a new inode for given superblock.
 882 *	Inode wont be chained in superblock s_inodes list
 883 *	This means :
 884 *	- fs can't be unmount
 885 *	- quotas, fsnotify, writeback can't work
 886 */
 887struct inode *new_inode_pseudo(struct super_block *sb)
 888{
 889	struct inode *inode = alloc_inode(sb);
 890
 891	if (inode) {
 892		spin_lock(&inode->i_lock);
 893		inode->i_state = 0;
 894		spin_unlock(&inode->i_lock);
 895		INIT_LIST_HEAD(&inode->i_sb_list);
 896	}
 897	return inode;
 898}
 899
 900/**
 901 *	new_inode 	- obtain an inode
 902 *	@sb: superblock
 903 *
 904 *	Allocates a new inode for given superblock. The default gfp_mask
 905 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 906 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 907 *	for the page cache are not reclaimable or migratable,
 908 *	mapping_set_gfp_mask() must be called with suitable flags on the
 909 *	newly created inode's mapping
 910 *
 911 */
 912struct inode *new_inode(struct super_block *sb)
 913{
 914	struct inode *inode;
 915
 916	spin_lock_prefetch(&sb->s_inode_list_lock);
 917
 918	inode = new_inode_pseudo(sb);
 919	if (inode)
 920		inode_sb_list_add(inode);
 921	return inode;
 922}
 923EXPORT_SYMBOL(new_inode);
 924
 925#ifdef CONFIG_DEBUG_LOCK_ALLOC
 926void lockdep_annotate_inode_mutex_key(struct inode *inode)
 927{
 928	if (S_ISDIR(inode->i_mode)) {
 929		struct file_system_type *type = inode->i_sb->s_type;
 930
 931		/* Set new key only if filesystem hasn't already changed it */
 932		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 933			/*
 934			 * ensure nobody is actually holding i_mutex
 935			 */
 936			// mutex_destroy(&inode->i_mutex);
 937			init_rwsem(&inode->i_rwsem);
 938			lockdep_set_class(&inode->i_rwsem,
 939					  &type->i_mutex_dir_key);
 940		}
 941	}
 942}
 943EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 944#endif
 945
 946/**
 947 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 948 * @inode:	new inode to unlock
 949 *
 950 * Called when the inode is fully initialised to clear the new state of the
 951 * inode and wake up anyone waiting for the inode to finish initialisation.
 952 */
 953void unlock_new_inode(struct inode *inode)
 954{
 955	lockdep_annotate_inode_mutex_key(inode);
 956	spin_lock(&inode->i_lock);
 957	WARN_ON(!(inode->i_state & I_NEW));
 958	inode->i_state &= ~I_NEW;
 959	smp_mb();
 960	wake_up_bit(&inode->i_state, __I_NEW);
 961	spin_unlock(&inode->i_lock);
 962}
 963EXPORT_SYMBOL(unlock_new_inode);
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 965/**
 966 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 967 *
 968 * Lock any non-NULL argument that is not a directory.
 969 * Zero, one or two objects may be locked by this function.
 970 *
 971 * @inode1: first inode to lock
 972 * @inode2: second inode to lock
 973 */
 974void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 975{
 976	if (inode1 > inode2)
 977		swap(inode1, inode2);
 978
 979	if (inode1 && !S_ISDIR(inode1->i_mode))
 980		inode_lock(inode1);
 981	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 982		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
 983}
 984EXPORT_SYMBOL(lock_two_nondirectories);
 985
 986/**
 987 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 988 * @inode1: first inode to unlock
 989 * @inode2: second inode to unlock
 990 */
 991void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 992{
 993	if (inode1 && !S_ISDIR(inode1->i_mode))
 994		inode_unlock(inode1);
 995	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 996		inode_unlock(inode2);
 997}
 998EXPORT_SYMBOL(unlock_two_nondirectories);
 999
1000/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb:		super block of file system
1003 * @hashval:	hash value (usually inode number) to get
1004 * @test:	callback used for comparisons between inodes
1005 * @set:	callback used to initialize a new struct inode
1006 * @data:	opaque data pointer to pass to @test and @set
1007 *
1008 * Search for the inode specified by @hashval and @data in the inode cache,
1009 * and if present it is return it with an increased reference count. This is
1010 * a generalized version of iget_locked() for file systems where the inode
1011 * number is not sufficient for unique identification of an inode.
1012 *
1013 * If the inode is not in cache, allocate a new inode and return it locked,
1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015 * before unlocking it via unlock_new_inode().
1016 *
1017 * Note both @test and @set are called with the inode_hash_lock held, so can't
1018 * sleep.
1019 */
1020struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021		int (*test)(struct inode *, void *),
1022		int (*set)(struct inode *, void *), void *data)
1023{
1024	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025	struct inode *inode;
1026again:
1027	spin_lock(&inode_hash_lock);
1028	inode = find_inode(sb, head, test, data);
1029	spin_unlock(&inode_hash_lock);
1030
1031	if (inode) {
1032		wait_on_inode(inode);
1033		if (unlikely(inode_unhashed(inode))) {
1034			iput(inode);
1035			goto again;
1036		}
1037		return inode;
1038	}
1039
1040	inode = alloc_inode(sb);
1041	if (inode) {
1042		struct inode *old;
1043
1044		spin_lock(&inode_hash_lock);
1045		/* We released the lock, so.. */
1046		old = find_inode(sb, head, test, data);
1047		if (!old) {
1048			if (set(inode, data))
1049				goto set_failed;
1050
1051			spin_lock(&inode->i_lock);
1052			inode->i_state = I_NEW;
1053			hlist_add_head(&inode->i_hash, head);
1054			spin_unlock(&inode->i_lock);
1055			inode_sb_list_add(inode);
1056			spin_unlock(&inode_hash_lock);
1057
1058			/* Return the locked inode with I_NEW set, the
1059			 * caller is responsible for filling in the contents
1060			 */
1061			return inode;
1062		}
1063
1064		/*
1065		 * Uhhuh, somebody else created the same inode under
1066		 * us. Use the old inode instead of the one we just
1067		 * allocated.
1068		 */
1069		spin_unlock(&inode_hash_lock);
1070		destroy_inode(inode);
1071		inode = old;
1072		wait_on_inode(inode);
1073		if (unlikely(inode_unhashed(inode))) {
1074			iput(inode);
1075			goto again;
1076		}
1077	}
1078	return inode;
1079
1080set_failed:
1081	spin_unlock(&inode_hash_lock);
1082	destroy_inode(inode);
1083	return NULL;
1084}
1085EXPORT_SYMBOL(iget5_locked);
1086
1087/**
1088 * iget_locked - obtain an inode from a mounted file system
1089 * @sb:		super block of file system
1090 * @ino:	inode number to get
1091 *
1092 * Search for the inode specified by @ino in the inode cache and if present
1093 * return it with an increased reference count. This is for file systems
1094 * where the inode number is sufficient for unique identification of an inode.
1095 *
1096 * If the inode is not in cache, allocate a new inode and return it locked,
1097 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1098 * before unlocking it via unlock_new_inode().
1099 */
1100struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1101{
1102	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1103	struct inode *inode;
1104again:
1105	spin_lock(&inode_hash_lock);
1106	inode = find_inode_fast(sb, head, ino);
1107	spin_unlock(&inode_hash_lock);
1108	if (inode) {
 
 
1109		wait_on_inode(inode);
1110		if (unlikely(inode_unhashed(inode))) {
1111			iput(inode);
1112			goto again;
1113		}
1114		return inode;
1115	}
1116
1117	inode = alloc_inode(sb);
1118	if (inode) {
1119		struct inode *old;
1120
1121		spin_lock(&inode_hash_lock);
1122		/* We released the lock, so.. */
1123		old = find_inode_fast(sb, head, ino);
1124		if (!old) {
1125			inode->i_ino = ino;
1126			spin_lock(&inode->i_lock);
1127			inode->i_state = I_NEW;
1128			hlist_add_head(&inode->i_hash, head);
1129			spin_unlock(&inode->i_lock);
1130			inode_sb_list_add(inode);
1131			spin_unlock(&inode_hash_lock);
1132
1133			/* Return the locked inode with I_NEW set, the
1134			 * caller is responsible for filling in the contents
1135			 */
1136			return inode;
1137		}
1138
1139		/*
1140		 * Uhhuh, somebody else created the same inode under
1141		 * us. Use the old inode instead of the one we just
1142		 * allocated.
1143		 */
1144		spin_unlock(&inode_hash_lock);
1145		destroy_inode(inode);
 
 
1146		inode = old;
1147		wait_on_inode(inode);
1148		if (unlikely(inode_unhashed(inode))) {
1149			iput(inode);
1150			goto again;
1151		}
1152	}
1153	return inode;
1154}
1155EXPORT_SYMBOL(iget_locked);
1156
1157/*
1158 * search the inode cache for a matching inode number.
1159 * If we find one, then the inode number we are trying to
1160 * allocate is not unique and so we should not use it.
1161 *
1162 * Returns 1 if the inode number is unique, 0 if it is not.
1163 */
1164static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1165{
1166	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1167	struct inode *inode;
1168
1169	spin_lock(&inode_hash_lock);
1170	hlist_for_each_entry(inode, b, i_hash) {
1171		if (inode->i_ino == ino && inode->i_sb == sb) {
1172			spin_unlock(&inode_hash_lock);
1173			return 0;
1174		}
1175	}
1176	spin_unlock(&inode_hash_lock);
1177
1178	return 1;
1179}
1180
1181/**
1182 *	iunique - get a unique inode number
1183 *	@sb: superblock
1184 *	@max_reserved: highest reserved inode number
1185 *
1186 *	Obtain an inode number that is unique on the system for a given
1187 *	superblock. This is used by file systems that have no natural
1188 *	permanent inode numbering system. An inode number is returned that
1189 *	is higher than the reserved limit but unique.
1190 *
1191 *	BUGS:
1192 *	With a large number of inodes live on the file system this function
1193 *	currently becomes quite slow.
1194 */
1195ino_t iunique(struct super_block *sb, ino_t max_reserved)
1196{
1197	/*
1198	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199	 * error if st_ino won't fit in target struct field. Use 32bit counter
1200	 * here to attempt to avoid that.
1201	 */
1202	static DEFINE_SPINLOCK(iunique_lock);
1203	static unsigned int counter;
1204	ino_t res;
1205
1206	spin_lock(&iunique_lock);
1207	do {
1208		if (counter <= max_reserved)
1209			counter = max_reserved + 1;
1210		res = counter++;
1211	} while (!test_inode_iunique(sb, res));
1212	spin_unlock(&iunique_lock);
1213
1214	return res;
1215}
1216EXPORT_SYMBOL(iunique);
1217
1218struct inode *igrab(struct inode *inode)
1219{
1220	spin_lock(&inode->i_lock);
1221	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1222		__iget(inode);
1223		spin_unlock(&inode->i_lock);
1224	} else {
1225		spin_unlock(&inode->i_lock);
1226		/*
1227		 * Handle the case where s_op->clear_inode is not been
1228		 * called yet, and somebody is calling igrab
1229		 * while the inode is getting freed.
1230		 */
1231		inode = NULL;
1232	}
1233	return inode;
1234}
1235EXPORT_SYMBOL(igrab);
1236
1237/**
1238 * ilookup5_nowait - search for an inode in the inode cache
1239 * @sb:		super block of file system to search
1240 * @hashval:	hash value (usually inode number) to search for
1241 * @test:	callback used for comparisons between inodes
1242 * @data:	opaque data pointer to pass to @test
1243 *
1244 * Search for the inode specified by @hashval and @data in the inode cache.
1245 * If the inode is in the cache, the inode is returned with an incremented
1246 * reference count.
1247 *
1248 * Note: I_NEW is not waited upon so you have to be very careful what you do
1249 * with the returned inode.  You probably should be using ilookup5() instead.
1250 *
1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1252 */
1253struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1254		int (*test)(struct inode *, void *), void *data)
1255{
1256	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1257	struct inode *inode;
1258
1259	spin_lock(&inode_hash_lock);
1260	inode = find_inode(sb, head, test, data);
1261	spin_unlock(&inode_hash_lock);
1262
1263	return inode;
1264}
1265EXPORT_SYMBOL(ilookup5_nowait);
1266
1267/**
1268 * ilookup5 - search for an inode in the inode cache
1269 * @sb:		super block of file system to search
1270 * @hashval:	hash value (usually inode number) to search for
1271 * @test:	callback used for comparisons between inodes
1272 * @data:	opaque data pointer to pass to @test
1273 *
1274 * Search for the inode specified by @hashval and @data in the inode cache,
1275 * and if the inode is in the cache, return the inode with an incremented
1276 * reference count.  Waits on I_NEW before returning the inode.
1277 * returned with an incremented reference count.
1278 *
1279 * This is a generalized version of ilookup() for file systems where the
1280 * inode number is not sufficient for unique identification of an inode.
1281 *
1282 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1283 */
1284struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1285		int (*test)(struct inode *, void *), void *data)
1286{
1287	struct inode *inode;
1288again:
1289	inode = ilookup5_nowait(sb, hashval, test, data);
1290	if (inode) {
1291		wait_on_inode(inode);
1292		if (unlikely(inode_unhashed(inode))) {
1293			iput(inode);
1294			goto again;
1295		}
1296	}
1297	return inode;
1298}
1299EXPORT_SYMBOL(ilookup5);
1300
1301/**
1302 * ilookup - search for an inode in the inode cache
1303 * @sb:		super block of file system to search
1304 * @ino:	inode number to search for
1305 *
1306 * Search for the inode @ino in the inode cache, and if the inode is in the
1307 * cache, the inode is returned with an incremented reference count.
1308 */
1309struct inode *ilookup(struct super_block *sb, unsigned long ino)
1310{
1311	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312	struct inode *inode;
1313again:
1314	spin_lock(&inode_hash_lock);
1315	inode = find_inode_fast(sb, head, ino);
1316	spin_unlock(&inode_hash_lock);
1317
1318	if (inode) {
 
 
1319		wait_on_inode(inode);
1320		if (unlikely(inode_unhashed(inode))) {
1321			iput(inode);
1322			goto again;
1323		}
1324	}
1325	return inode;
1326}
1327EXPORT_SYMBOL(ilookup);
1328
1329/**
1330 * find_inode_nowait - find an inode in the inode cache
1331 * @sb:		super block of file system to search
1332 * @hashval:	hash value (usually inode number) to search for
1333 * @match:	callback used for comparisons between inodes
1334 * @data:	opaque data pointer to pass to @match
1335 *
1336 * Search for the inode specified by @hashval and @data in the inode
1337 * cache, where the helper function @match will return 0 if the inode
1338 * does not match, 1 if the inode does match, and -1 if the search
1339 * should be stopped.  The @match function must be responsible for
1340 * taking the i_lock spin_lock and checking i_state for an inode being
1341 * freed or being initialized, and incrementing the reference count
1342 * before returning 1.  It also must not sleep, since it is called with
1343 * the inode_hash_lock spinlock held.
1344 *
1345 * This is a even more generalized version of ilookup5() when the
1346 * function must never block --- find_inode() can block in
1347 * __wait_on_freeing_inode() --- or when the caller can not increment
1348 * the reference count because the resulting iput() might cause an
1349 * inode eviction.  The tradeoff is that the @match funtion must be
1350 * very carefully implemented.
1351 */
1352struct inode *find_inode_nowait(struct super_block *sb,
1353				unsigned long hashval,
1354				int (*match)(struct inode *, unsigned long,
1355					     void *),
1356				void *data)
1357{
1358	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1359	struct inode *inode, *ret_inode = NULL;
1360	int mval;
1361
1362	spin_lock(&inode_hash_lock);
1363	hlist_for_each_entry(inode, head, i_hash) {
1364		if (inode->i_sb != sb)
1365			continue;
1366		mval = match(inode, hashval, data);
1367		if (mval == 0)
1368			continue;
1369		if (mval == 1)
1370			ret_inode = inode;
1371		goto out;
1372	}
1373out:
1374	spin_unlock(&inode_hash_lock);
1375	return ret_inode;
1376}
1377EXPORT_SYMBOL(find_inode_nowait);
1378
1379int insert_inode_locked(struct inode *inode)
1380{
1381	struct super_block *sb = inode->i_sb;
1382	ino_t ino = inode->i_ino;
1383	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1384
1385	while (1) {
1386		struct inode *old = NULL;
1387		spin_lock(&inode_hash_lock);
1388		hlist_for_each_entry(old, head, i_hash) {
1389			if (old->i_ino != ino)
1390				continue;
1391			if (old->i_sb != sb)
1392				continue;
1393			spin_lock(&old->i_lock);
1394			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1395				spin_unlock(&old->i_lock);
1396				continue;
1397			}
1398			break;
1399		}
1400		if (likely(!old)) {
1401			spin_lock(&inode->i_lock);
1402			inode->i_state |= I_NEW;
1403			hlist_add_head(&inode->i_hash, head);
1404			spin_unlock(&inode->i_lock);
1405			spin_unlock(&inode_hash_lock);
1406			return 0;
1407		}
 
 
 
 
 
1408		__iget(old);
1409		spin_unlock(&old->i_lock);
1410		spin_unlock(&inode_hash_lock);
1411		wait_on_inode(old);
1412		if (unlikely(!inode_unhashed(old))) {
1413			iput(old);
1414			return -EBUSY;
1415		}
1416		iput(old);
1417	}
1418}
1419EXPORT_SYMBOL(insert_inode_locked);
1420
1421int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1422		int (*test)(struct inode *, void *), void *data)
1423{
1424	struct super_block *sb = inode->i_sb;
1425	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426
1427	while (1) {
1428		struct inode *old = NULL;
1429
1430		spin_lock(&inode_hash_lock);
1431		hlist_for_each_entry(old, head, i_hash) {
1432			if (old->i_sb != sb)
1433				continue;
1434			if (!test(old, data))
1435				continue;
1436			spin_lock(&old->i_lock);
1437			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1438				spin_unlock(&old->i_lock);
1439				continue;
1440			}
1441			break;
1442		}
1443		if (likely(!old)) {
1444			spin_lock(&inode->i_lock);
1445			inode->i_state |= I_NEW;
1446			hlist_add_head(&inode->i_hash, head);
1447			spin_unlock(&inode->i_lock);
1448			spin_unlock(&inode_hash_lock);
1449			return 0;
1450		}
1451		__iget(old);
1452		spin_unlock(&old->i_lock);
1453		spin_unlock(&inode_hash_lock);
1454		wait_on_inode(old);
1455		if (unlikely(!inode_unhashed(old))) {
1456			iput(old);
1457			return -EBUSY;
1458		}
1459		iput(old);
 
1460	}
 
1461}
1462EXPORT_SYMBOL(insert_inode_locked4);
1463
1464
1465int generic_delete_inode(struct inode *inode)
1466{
1467	return 1;
1468}
1469EXPORT_SYMBOL(generic_delete_inode);
1470
1471/*
1472 * Called when we're dropping the last reference
1473 * to an inode.
1474 *
1475 * Call the FS "drop_inode()" function, defaulting to
1476 * the legacy UNIX filesystem behaviour.  If it tells
1477 * us to evict inode, do so.  Otherwise, retain inode
1478 * in cache if fs is alive, sync and evict if fs is
1479 * shutting down.
1480 */
1481static void iput_final(struct inode *inode)
1482{
1483	struct super_block *sb = inode->i_sb;
1484	const struct super_operations *op = inode->i_sb->s_op;
1485	int drop;
1486
1487	WARN_ON(inode->i_state & I_NEW);
1488
1489	if (op->drop_inode)
1490		drop = op->drop_inode(inode);
1491	else
1492		drop = generic_drop_inode(inode);
1493
1494	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1495		inode->i_state |= I_REFERENCED;
1496		inode_add_lru(inode);
1497		spin_unlock(&inode->i_lock);
1498		return;
1499	}
1500
1501	if (!drop) {
1502		inode->i_state |= I_WILL_FREE;
1503		spin_unlock(&inode->i_lock);
1504		write_inode_now(inode, 1);
1505		spin_lock(&inode->i_lock);
1506		WARN_ON(inode->i_state & I_NEW);
1507		inode->i_state &= ~I_WILL_FREE;
1508	}
1509
1510	inode->i_state |= I_FREEING;
1511	if (!list_empty(&inode->i_lru))
1512		inode_lru_list_del(inode);
1513	spin_unlock(&inode->i_lock);
1514
1515	evict(inode);
1516}
1517
1518/**
1519 *	iput	- put an inode
1520 *	@inode: inode to put
1521 *
1522 *	Puts an inode, dropping its usage count. If the inode use count hits
1523 *	zero, the inode is then freed and may also be destroyed.
1524 *
1525 *	Consequently, iput() can sleep.
1526 */
1527void iput(struct inode *inode)
1528{
1529	if (!inode)
1530		return;
1531	BUG_ON(inode->i_state & I_CLEAR);
1532retry:
1533	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1534		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1535			atomic_inc(&inode->i_count);
1536			inode->i_state &= ~I_DIRTY_TIME;
1537			spin_unlock(&inode->i_lock);
1538			trace_writeback_lazytime_iput(inode);
1539			mark_inode_dirty_sync(inode);
1540			goto retry;
1541		}
1542		iput_final(inode);
1543	}
1544}
1545EXPORT_SYMBOL(iput);
1546
1547/**
1548 *	bmap	- find a block number in a file
1549 *	@inode: inode of file
1550 *	@block: block to find
1551 *
1552 *	Returns the block number on the device holding the inode that
1553 *	is the disk block number for the block of the file requested.
1554 *	That is, asked for block 4 of inode 1 the function will return the
1555 *	disk block relative to the disk start that holds that block of the
1556 *	file.
1557 */
1558sector_t bmap(struct inode *inode, sector_t block)
1559{
1560	sector_t res = 0;
1561	if (inode->i_mapping->a_ops->bmap)
1562		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1563	return res;
1564}
1565EXPORT_SYMBOL(bmap);
1566
1567/*
1568 * Update times in overlayed inode from underlying real inode
1569 */
1570static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1571			       bool rcu)
1572{
1573	if (!rcu) {
1574		struct inode *realinode = d_real_inode(dentry);
1575
1576		if (unlikely(inode != realinode) &&
1577		    (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1578		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1579			inode->i_mtime = realinode->i_mtime;
1580			inode->i_ctime = realinode->i_ctime;
1581		}
1582	}
1583}
1584
1585/*
1586 * With relative atime, only update atime if the previous atime is
1587 * earlier than either the ctime or mtime or if at least a day has
1588 * passed since the last atime update.
1589 */
1590static int relatime_need_update(const struct path *path, struct inode *inode,
1591				struct timespec now, bool rcu)
1592{
1593
1594	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1595		return 1;
1596
1597	update_ovl_inode_times(path->dentry, inode, rcu);
1598	/*
1599	 * Is mtime younger than atime? If yes, update atime:
1600	 */
1601	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1602		return 1;
1603	/*
1604	 * Is ctime younger than atime? If yes, update atime:
1605	 */
1606	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1607		return 1;
1608
1609	/*
1610	 * Is the previous atime value older than a day? If yes,
1611	 * update atime:
1612	 */
1613	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1614		return 1;
1615	/*
1616	 * Good, we can skip the atime update:
1617	 */
1618	return 0;
1619}
1620
1621int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1622{
1623	int iflags = I_DIRTY_TIME;
 
1624
1625	if (flags & S_ATIME)
1626		inode->i_atime = *time;
1627	if (flags & S_VERSION)
1628		inode_inc_iversion(inode);
1629	if (flags & S_CTIME)
1630		inode->i_ctime = *time;
1631	if (flags & S_MTIME)
1632		inode->i_mtime = *time;
 
 
 
1633
1634	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1635		iflags |= I_DIRTY_SYNC;
1636	__mark_inode_dirty(inode, iflags);
1637	return 0;
1638}
1639EXPORT_SYMBOL(generic_update_time);
1640
1641/*
1642 * This does the actual work of updating an inodes time or version.  Must have
1643 * had called mnt_want_write() before calling this.
1644 */
1645static int update_time(struct inode *inode, struct timespec *time, int flags)
1646{
1647	int (*update_time)(struct inode *, struct timespec *, int);
1648
1649	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1650		generic_update_time;
1651
1652	return update_time(inode, time, flags);
1653}
1654
1655/**
1656 *	touch_atime	-	update the access time
1657 *	@path: the &struct path to update
1658 *	@inode: inode to update
1659 *
1660 *	Update the accessed time on an inode and mark it for writeback.
1661 *	This function automatically handles read only file systems and media,
1662 *	as well as the "noatime" flag and inode specific "noatime" markers.
1663 */
1664bool __atime_needs_update(const struct path *path, struct inode *inode,
1665			  bool rcu)
1666{
1667	struct vfsmount *mnt = path->mnt;
1668	struct timespec now;
1669
1670	if (inode->i_flags & S_NOATIME)
1671		return false;
1672
1673	/* Atime updates will likely cause i_uid and i_gid to be written
1674	 * back improprely if their true value is unknown to the vfs.
1675	 */
1676	if (HAS_UNMAPPED_ID(inode))
1677		return false;
1678
1679	if (IS_NOATIME(inode))
1680		return false;
1681	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1682		return false;
1683
1684	if (mnt->mnt_flags & MNT_NOATIME)
1685		return false;
1686	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1687		return false;
1688
1689	now = current_time(inode);
1690
1691	if (!relatime_need_update(path, inode, now, rcu))
1692		return false;
1693
1694	if (timespec_equal(&inode->i_atime, &now))
1695		return false;
1696
1697	return true;
1698}
1699
1700void touch_atime(const struct path *path)
1701{
1702	struct vfsmount *mnt = path->mnt;
1703	struct inode *inode = d_inode(path->dentry);
1704	struct timespec now;
1705
1706	if (!__atime_needs_update(path, inode, false))
1707		return;
1708
1709	if (!sb_start_write_trylock(inode->i_sb))
1710		return;
1711
1712	if (__mnt_want_write(mnt) != 0)
1713		goto skip_update;
1714	/*
1715	 * File systems can error out when updating inodes if they need to
1716	 * allocate new space to modify an inode (such is the case for
1717	 * Btrfs), but since we touch atime while walking down the path we
1718	 * really don't care if we failed to update the atime of the file,
1719	 * so just ignore the return value.
1720	 * We may also fail on filesystems that have the ability to make parts
1721	 * of the fs read only, e.g. subvolumes in Btrfs.
1722	 */
1723	now = current_time(inode);
1724	update_time(inode, &now, S_ATIME);
1725	__mnt_drop_write(mnt);
1726skip_update:
1727	sb_end_write(inode->i_sb);
1728}
1729EXPORT_SYMBOL(touch_atime);
1730
1731/*
1732 * The logic we want is
1733 *
1734 *	if suid or (sgid and xgrp)
1735 *		remove privs
1736 */
1737int should_remove_suid(struct dentry *dentry)
1738{
1739	umode_t mode = d_inode(dentry)->i_mode;
1740	int kill = 0;
1741
1742	/* suid always must be killed */
1743	if (unlikely(mode & S_ISUID))
1744		kill = ATTR_KILL_SUID;
1745
1746	/*
1747	 * sgid without any exec bits is just a mandatory locking mark; leave
1748	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1749	 */
1750	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1751		kill |= ATTR_KILL_SGID;
1752
1753	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1754		return kill;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(should_remove_suid);
1759
1760/*
1761 * Return mask of changes for notify_change() that need to be done as a
1762 * response to write or truncate. Return 0 if nothing has to be changed.
1763 * Negative value on error (change should be denied).
1764 */
1765int dentry_needs_remove_privs(struct dentry *dentry)
1766{
1767	struct inode *inode = d_inode(dentry);
1768	int mask = 0;
1769	int ret;
1770
1771	if (IS_NOSEC(inode))
1772		return 0;
1773
1774	mask = should_remove_suid(dentry);
1775	ret = security_inode_need_killpriv(dentry);
1776	if (ret < 0)
1777		return ret;
1778	if (ret)
1779		mask |= ATTR_KILL_PRIV;
1780	return mask;
1781}
1782
1783static int __remove_privs(struct dentry *dentry, int kill)
1784{
1785	struct iattr newattrs;
1786
1787	newattrs.ia_valid = ATTR_FORCE | kill;
1788	/*
1789	 * Note we call this on write, so notify_change will not
1790	 * encounter any conflicting delegations:
1791	 */
1792	return notify_change(dentry, &newattrs, NULL);
1793}
1794
1795/*
1796 * Remove special file priviledges (suid, capabilities) when file is written
1797 * to or truncated.
1798 */
1799int file_remove_privs(struct file *file)
1800{
1801	struct dentry *dentry = file_dentry(file);
1802	struct inode *inode = file_inode(file);
1803	int kill;
1804	int error = 0;
1805
1806	/* Fast path for nothing security related */
1807	if (IS_NOSEC(inode))
 
 
 
 
 
1808		return 0;
1809
1810	kill = dentry_needs_remove_privs(dentry);
1811	if (kill < 0)
1812		return kill;
1813	if (kill)
1814		error = __remove_privs(dentry, kill);
1815	if (!error)
1816		inode_has_no_xattr(inode);
1817
1818	return error;
1819}
1820EXPORT_SYMBOL(file_remove_privs);
1821
1822/**
1823 *	file_update_time	-	update mtime and ctime time
1824 *	@file: file accessed
1825 *
1826 *	Update the mtime and ctime members of an inode and mark the inode
1827 *	for writeback.  Note that this function is meant exclusively for
1828 *	usage in the file write path of filesystems, and filesystems may
1829 *	choose to explicitly ignore update via this function with the
1830 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1831 *	timestamps are handled by the server.  This can return an error for
1832 *	file systems who need to allocate space in order to update an inode.
1833 */
1834
1835int file_update_time(struct file *file)
1836{
1837	struct inode *inode = file_inode(file);
1838	struct timespec now;
1839	int sync_it = 0;
1840	int ret;
1841
1842	/* First try to exhaust all avenues to not sync */
1843	if (IS_NOCMTIME(inode))
1844		return 0;
1845
1846	now = current_time(inode);
1847	if (!timespec_equal(&inode->i_mtime, &now))
1848		sync_it = S_MTIME;
1849
1850	if (!timespec_equal(&inode->i_ctime, &now))
1851		sync_it |= S_CTIME;
1852
1853	if (IS_I_VERSION(inode))
1854		sync_it |= S_VERSION;
1855
1856	if (!sync_it)
1857		return 0;
1858
1859	/* Finally allowed to write? Takes lock. */
1860	if (__mnt_want_write_file(file))
1861		return 0;
1862
1863	ret = update_time(inode, &now, sync_it);
1864	__mnt_drop_write_file(file);
1865
1866	return ret;
1867}
1868EXPORT_SYMBOL(file_update_time);
1869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870int inode_needs_sync(struct inode *inode)
1871{
1872	if (IS_SYNC(inode))
1873		return 1;
1874	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1875		return 1;
1876	return 0;
1877}
1878EXPORT_SYMBOL(inode_needs_sync);
1879
1880/*
1881 * If we try to find an inode in the inode hash while it is being
1882 * deleted, we have to wait until the filesystem completes its
1883 * deletion before reporting that it isn't found.  This function waits
1884 * until the deletion _might_ have completed.  Callers are responsible
1885 * to recheck inode state.
1886 *
1887 * It doesn't matter if I_NEW is not set initially, a call to
1888 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1889 * will DTRT.
1890 */
1891static void __wait_on_freeing_inode(struct inode *inode)
1892{
1893	wait_queue_head_t *wq;
1894	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1895	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1896	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1897	spin_unlock(&inode->i_lock);
1898	spin_unlock(&inode_hash_lock);
1899	schedule();
1900	finish_wait(wq, &wait.wait);
1901	spin_lock(&inode_hash_lock);
1902}
1903
1904static __initdata unsigned long ihash_entries;
1905static int __init set_ihash_entries(char *str)
1906{
1907	if (!str)
1908		return 0;
1909	ihash_entries = simple_strtoul(str, &str, 0);
1910	return 1;
1911}
1912__setup("ihash_entries=", set_ihash_entries);
1913
1914/*
1915 * Initialize the waitqueues and inode hash table.
1916 */
1917void __init inode_init_early(void)
1918{
1919	unsigned int loop;
1920
1921	/* If hashes are distributed across NUMA nodes, defer
1922	 * hash allocation until vmalloc space is available.
1923	 */
1924	if (hashdist)
1925		return;
1926
1927	inode_hashtable =
1928		alloc_large_system_hash("Inode-cache",
1929					sizeof(struct hlist_head),
1930					ihash_entries,
1931					14,
1932					HASH_EARLY,
1933					&i_hash_shift,
1934					&i_hash_mask,
1935					0,
1936					0);
1937
1938	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1939		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1940}
1941
1942void __init inode_init(void)
1943{
1944	unsigned int loop;
1945
1946	/* inode slab cache */
1947	inode_cachep = kmem_cache_create("inode_cache",
1948					 sizeof(struct inode),
1949					 0,
1950					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1951					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1952					 init_once);
1953
1954	/* Hash may have been set up in inode_init_early */
1955	if (!hashdist)
1956		return;
1957
1958	inode_hashtable =
1959		alloc_large_system_hash("Inode-cache",
1960					sizeof(struct hlist_head),
1961					ihash_entries,
1962					14,
1963					0,
1964					&i_hash_shift,
1965					&i_hash_mask,
1966					0,
1967					0);
1968
1969	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1970		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1971}
1972
1973void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1974{
1975	inode->i_mode = mode;
1976	if (S_ISCHR(mode)) {
1977		inode->i_fop = &def_chr_fops;
1978		inode->i_rdev = rdev;
1979	} else if (S_ISBLK(mode)) {
1980		inode->i_fop = &def_blk_fops;
1981		inode->i_rdev = rdev;
1982	} else if (S_ISFIFO(mode))
1983		inode->i_fop = &pipefifo_fops;
1984	else if (S_ISSOCK(mode))
1985		;	/* leave it no_open_fops */
1986	else
1987		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1988				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1989				  inode->i_ino);
1990}
1991EXPORT_SYMBOL(init_special_inode);
1992
1993/**
1994 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1995 * @inode: New inode
1996 * @dir: Directory inode
1997 * @mode: mode of the new inode
1998 */
1999void inode_init_owner(struct inode *inode, const struct inode *dir,
2000			umode_t mode)
2001{
2002	inode->i_uid = current_fsuid();
2003	if (dir && dir->i_mode & S_ISGID) {
2004		inode->i_gid = dir->i_gid;
 
 
2005		if (S_ISDIR(mode))
2006			mode |= S_ISGID;
 
 
 
 
2007	} else
2008		inode->i_gid = current_fsgid();
2009	inode->i_mode = mode;
2010}
2011EXPORT_SYMBOL(inode_init_owner);
2012
2013/**
2014 * inode_owner_or_capable - check current task permissions to inode
2015 * @inode: inode being checked
2016 *
2017 * Return true if current either has CAP_FOWNER in a namespace with the
2018 * inode owner uid mapped, or owns the file.
2019 */
2020bool inode_owner_or_capable(const struct inode *inode)
2021{
2022	struct user_namespace *ns;
2023
2024	if (uid_eq(current_fsuid(), inode->i_uid))
2025		return true;
2026
2027	ns = current_user_ns();
2028	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2029		return true;
2030	return false;
2031}
2032EXPORT_SYMBOL(inode_owner_or_capable);
2033
2034/*
2035 * Direct i/o helper functions
2036 */
2037static void __inode_dio_wait(struct inode *inode)
2038{
2039	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2040	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2041
2042	do {
2043		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2044		if (atomic_read(&inode->i_dio_count))
2045			schedule();
2046	} while (atomic_read(&inode->i_dio_count));
2047	finish_wait(wq, &q.wait);
2048}
2049
2050/**
2051 * inode_dio_wait - wait for outstanding DIO requests to finish
2052 * @inode: inode to wait for
2053 *
2054 * Waits for all pending direct I/O requests to finish so that we can
2055 * proceed with a truncate or equivalent operation.
2056 *
2057 * Must be called under a lock that serializes taking new references
2058 * to i_dio_count, usually by inode->i_mutex.
2059 */
2060void inode_dio_wait(struct inode *inode)
2061{
2062	if (atomic_read(&inode->i_dio_count))
2063		__inode_dio_wait(inode);
2064}
2065EXPORT_SYMBOL(inode_dio_wait);
2066
2067/*
2068 * inode_set_flags - atomically set some inode flags
2069 *
2070 * Note: the caller should be holding i_mutex, or else be sure that
2071 * they have exclusive access to the inode structure (i.e., while the
2072 * inode is being instantiated).  The reason for the cmpxchg() loop
2073 * --- which wouldn't be necessary if all code paths which modify
2074 * i_flags actually followed this rule, is that there is at least one
2075 * code path which doesn't today so we use cmpxchg() out of an abundance
2076 * of caution.
2077 *
2078 * In the long run, i_mutex is overkill, and we should probably look
2079 * at using the i_lock spinlock to protect i_flags, and then make sure
2080 * it is so documented in include/linux/fs.h and that all code follows
2081 * the locking convention!!
2082 */
2083void inode_set_flags(struct inode *inode, unsigned int flags,
2084		     unsigned int mask)
2085{
2086	unsigned int old_flags, new_flags;
2087
2088	WARN_ON_ONCE(flags & ~mask);
2089	do {
2090		old_flags = ACCESS_ONCE(inode->i_flags);
2091		new_flags = (old_flags & ~mask) | flags;
2092	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2093				  new_flags) != old_flags));
2094}
2095EXPORT_SYMBOL(inode_set_flags);
2096
2097void inode_nohighmem(struct inode *inode)
2098{
2099	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2100}
2101EXPORT_SYMBOL(inode_nohighmem);
2102
2103/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104 * current_time - Return FS time
2105 * @inode: inode.
2106 *
2107 * Return the current time truncated to the time granularity supported by
2108 * the fs.
2109 *
2110 * Note that inode and inode->sb cannot be NULL.
2111 * Otherwise, the function warns and returns time without truncation.
2112 */
2113struct timespec current_time(struct inode *inode)
2114{
2115	struct timespec now = current_kernel_time();
 
 
2116
2117	if (unlikely(!inode->i_sb)) {
2118		WARN(1, "current_time() called with uninitialized super_block in the inode");
2119		return now;
2120	}
2121
2122	return timespec_trunc(now, inode->i_sb->s_time_gran);
2123}
2124EXPORT_SYMBOL(current_time);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fsnotify.h>
  16#include <linux/mount.h>
  17#include <linux/posix_acl.h>
  18#include <linux/prefetch.h>
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <trace/events/writeback.h>
  24#include "internal.h"
  25
  26/*
  27 * Inode locking rules:
  28 *
  29 * inode->i_lock protects:
  30 *   inode->i_state, inode->i_hash, __iget()
  31 * Inode LRU list locks protect:
  32 *   inode->i_sb->s_inode_lru, inode->i_lru
  33 * inode->i_sb->s_inode_list_lock protects:
  34 *   inode->i_sb->s_inodes, inode->i_sb_list
  35 * bdi->wb.list_lock protects:
  36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  37 * inode_hash_lock protects:
  38 *   inode_hashtable, inode->i_hash
  39 *
  40 * Lock ordering:
  41 *
  42 * inode->i_sb->s_inode_list_lock
  43 *   inode->i_lock
  44 *     Inode LRU list locks
  45 *
  46 * bdi->wb.list_lock
  47 *   inode->i_lock
  48 *
  49 * inode_hash_lock
  50 *   inode->i_sb->s_inode_list_lock
  51 *   inode->i_lock
  52 *
  53 * iunique_lock
  54 *   inode_hash_lock
  55 */
  56
  57static unsigned int i_hash_mask __read_mostly;
  58static unsigned int i_hash_shift __read_mostly;
  59static struct hlist_head *inode_hashtable __read_mostly;
  60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70/*
  71 * Statistics gathering..
  72 */
  73struct inodes_stat_t inodes_stat;
  74
  75static DEFINE_PER_CPU(unsigned long, nr_inodes);
  76static DEFINE_PER_CPU(unsigned long, nr_unused);
  77
  78static struct kmem_cache *inode_cachep __read_mostly;
  79
  80static long get_nr_inodes(void)
  81{
  82	int i;
  83	long sum = 0;
  84	for_each_possible_cpu(i)
  85		sum += per_cpu(nr_inodes, i);
  86	return sum < 0 ? 0 : sum;
  87}
  88
  89static inline long get_nr_inodes_unused(void)
  90{
  91	int i;
  92	long sum = 0;
  93	for_each_possible_cpu(i)
  94		sum += per_cpu(nr_unused, i);
  95	return sum < 0 ? 0 : sum;
  96}
  97
  98long get_nr_dirty_inodes(void)
  99{
 100	/* not actually dirty inodes, but a wild approximation */
 101	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 102	return nr_dirty > 0 ? nr_dirty : 0;
 103}
 104
 105/*
 106 * Handle nr_inode sysctl
 107 */
 108#ifdef CONFIG_SYSCTL
 109int proc_nr_inodes(struct ctl_table *table, int write,
 110		   void __user *buffer, size_t *lenp, loff_t *ppos)
 111{
 112	inodes_stat.nr_inodes = get_nr_inodes();
 113	inodes_stat.nr_unused = get_nr_inodes_unused();
 114	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116#endif
 117
 118static int no_open(struct inode *inode, struct file *file)
 119{
 120	return -ENXIO;
 121}
 122
 123/**
 124 * inode_init_always - perform inode structure initialisation
 125 * @sb: superblock inode belongs to
 126 * @inode: inode to initialise
 127 *
 128 * These are initializations that need to be done on every inode
 129 * allocation as the fields are not initialised by slab allocation.
 130 */
 131int inode_init_always(struct super_block *sb, struct inode *inode)
 132{
 133	static const struct inode_operations empty_iops;
 134	static const struct file_operations no_open_fops = {.open = no_open};
 135	struct address_space *const mapping = &inode->i_data;
 136
 137	inode->i_sb = sb;
 138	inode->i_blkbits = sb->s_blocksize_bits;
 139	inode->i_flags = 0;
 140	atomic_set(&inode->i_count, 1);
 141	inode->i_op = &empty_iops;
 142	inode->i_fop = &no_open_fops;
 143	inode->__i_nlink = 1;
 144	inode->i_opflags = 0;
 145	if (sb->s_xattr)
 146		inode->i_opflags |= IOP_XATTR;
 147	i_uid_write(inode, 0);
 148	i_gid_write(inode, 0);
 149	atomic_set(&inode->i_writecount, 0);
 150	inode->i_size = 0;
 151	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 152	inode->i_blocks = 0;
 153	inode->i_bytes = 0;
 154	inode->i_generation = 0;
 155	inode->i_pipe = NULL;
 156	inode->i_bdev = NULL;
 157	inode->i_cdev = NULL;
 158	inode->i_link = NULL;
 159	inode->i_dir_seq = 0;
 160	inode->i_rdev = 0;
 161	inode->dirtied_when = 0;
 162
 163#ifdef CONFIG_CGROUP_WRITEBACK
 164	inode->i_wb_frn_winner = 0;
 165	inode->i_wb_frn_avg_time = 0;
 166	inode->i_wb_frn_history = 0;
 167#endif
 168
 169	if (security_inode_alloc(inode))
 170		goto out;
 171	spin_lock_init(&inode->i_lock);
 172	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 173
 174	init_rwsem(&inode->i_rwsem);
 175	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 176
 177	atomic_set(&inode->i_dio_count, 0);
 178
 179	mapping->a_ops = &empty_aops;
 180	mapping->host = inode;
 181	mapping->flags = 0;
 182	mapping->wb_err = 0;
 183	atomic_set(&mapping->i_mmap_writable, 0);
 184#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 185	atomic_set(&mapping->nr_thps, 0);
 186#endif
 187	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 188	mapping->private_data = NULL;
 189	mapping->writeback_index = 0;
 190	inode->i_private = NULL;
 191	inode->i_mapping = mapping;
 192	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 193#ifdef CONFIG_FS_POSIX_ACL
 194	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 195#endif
 196
 197#ifdef CONFIG_FSNOTIFY
 198	inode->i_fsnotify_mask = 0;
 199#endif
 200	inode->i_flctx = NULL;
 201	this_cpu_inc(nr_inodes);
 202
 203	return 0;
 204out:
 205	return -ENOMEM;
 206}
 207EXPORT_SYMBOL(inode_init_always);
 208
 209void free_inode_nonrcu(struct inode *inode)
 210{
 211	kmem_cache_free(inode_cachep, inode);
 212}
 213EXPORT_SYMBOL(free_inode_nonrcu);
 214
 215static void i_callback(struct rcu_head *head)
 216{
 217	struct inode *inode = container_of(head, struct inode, i_rcu);
 218	if (inode->free_inode)
 219		inode->free_inode(inode);
 220	else
 221		free_inode_nonrcu(inode);
 222}
 223
 224static struct inode *alloc_inode(struct super_block *sb)
 225{
 226	const struct super_operations *ops = sb->s_op;
 227	struct inode *inode;
 228
 229	if (ops->alloc_inode)
 230		inode = ops->alloc_inode(sb);
 231	else
 232		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 233
 234	if (!inode)
 235		return NULL;
 236
 237	if (unlikely(inode_init_always(sb, inode))) {
 238		if (ops->destroy_inode) {
 239			ops->destroy_inode(inode);
 240			if (!ops->free_inode)
 241				return NULL;
 242		}
 243		inode->free_inode = ops->free_inode;
 244		i_callback(&inode->i_rcu);
 245		return NULL;
 246	}
 247
 248	return inode;
 249}
 250
 
 
 
 
 
 
 251void __destroy_inode(struct inode *inode)
 252{
 253	BUG_ON(inode_has_buffers(inode));
 254	inode_detach_wb(inode);
 255	security_inode_free(inode);
 256	fsnotify_inode_delete(inode);
 257	locks_free_lock_context(inode);
 258	if (!inode->i_nlink) {
 259		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 260		atomic_long_dec(&inode->i_sb->s_remove_count);
 261	}
 262
 263#ifdef CONFIG_FS_POSIX_ACL
 264	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 265		posix_acl_release(inode->i_acl);
 266	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 267		posix_acl_release(inode->i_default_acl);
 268#endif
 269	this_cpu_dec(nr_inodes);
 270}
 271EXPORT_SYMBOL(__destroy_inode);
 272
 
 
 
 
 
 
 273static void destroy_inode(struct inode *inode)
 274{
 275	const struct super_operations *ops = inode->i_sb->s_op;
 276
 277	BUG_ON(!list_empty(&inode->i_lru));
 278	__destroy_inode(inode);
 279	if (ops->destroy_inode) {
 280		ops->destroy_inode(inode);
 281		if (!ops->free_inode)
 282			return;
 283	}
 284	inode->free_inode = ops->free_inode;
 285	call_rcu(&inode->i_rcu, i_callback);
 286}
 287
 288/**
 289 * drop_nlink - directly drop an inode's link count
 290 * @inode: inode
 291 *
 292 * This is a low-level filesystem helper to replace any
 293 * direct filesystem manipulation of i_nlink.  In cases
 294 * where we are attempting to track writes to the
 295 * filesystem, a decrement to zero means an imminent
 296 * write when the file is truncated and actually unlinked
 297 * on the filesystem.
 298 */
 299void drop_nlink(struct inode *inode)
 300{
 301	WARN_ON(inode->i_nlink == 0);
 302	inode->__i_nlink--;
 303	if (!inode->i_nlink)
 304		atomic_long_inc(&inode->i_sb->s_remove_count);
 305}
 306EXPORT_SYMBOL(drop_nlink);
 307
 308/**
 309 * clear_nlink - directly zero an inode's link count
 310 * @inode: inode
 311 *
 312 * This is a low-level filesystem helper to replace any
 313 * direct filesystem manipulation of i_nlink.  See
 314 * drop_nlink() for why we care about i_nlink hitting zero.
 315 */
 316void clear_nlink(struct inode *inode)
 317{
 318	if (inode->i_nlink) {
 319		inode->__i_nlink = 0;
 320		atomic_long_inc(&inode->i_sb->s_remove_count);
 321	}
 322}
 323EXPORT_SYMBOL(clear_nlink);
 324
 325/**
 326 * set_nlink - directly set an inode's link count
 327 * @inode: inode
 328 * @nlink: new nlink (should be non-zero)
 329 *
 330 * This is a low-level filesystem helper to replace any
 331 * direct filesystem manipulation of i_nlink.
 332 */
 333void set_nlink(struct inode *inode, unsigned int nlink)
 334{
 335	if (!nlink) {
 336		clear_nlink(inode);
 337	} else {
 338		/* Yes, some filesystems do change nlink from zero to one */
 339		if (inode->i_nlink == 0)
 340			atomic_long_dec(&inode->i_sb->s_remove_count);
 341
 342		inode->__i_nlink = nlink;
 343	}
 344}
 345EXPORT_SYMBOL(set_nlink);
 346
 347/**
 348 * inc_nlink - directly increment an inode's link count
 349 * @inode: inode
 350 *
 351 * This is a low-level filesystem helper to replace any
 352 * direct filesystem manipulation of i_nlink.  Currently,
 353 * it is only here for parity with dec_nlink().
 354 */
 355void inc_nlink(struct inode *inode)
 356{
 357	if (unlikely(inode->i_nlink == 0)) {
 358		WARN_ON(!(inode->i_state & I_LINKABLE));
 359		atomic_long_dec(&inode->i_sb->s_remove_count);
 360	}
 361
 362	inode->__i_nlink++;
 363}
 364EXPORT_SYMBOL(inc_nlink);
 365
 366static void __address_space_init_once(struct address_space *mapping)
 367{
 368	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 
 
 369	init_rwsem(&mapping->i_mmap_rwsem);
 370	INIT_LIST_HEAD(&mapping->private_list);
 371	spin_lock_init(&mapping->private_lock);
 372	mapping->i_mmap = RB_ROOT_CACHED;
 373}
 374
 375void address_space_init_once(struct address_space *mapping)
 376{
 377	memset(mapping, 0, sizeof(*mapping));
 378	__address_space_init_once(mapping);
 379}
 380EXPORT_SYMBOL(address_space_init_once);
 381
 382/*
 383 * These are initializations that only need to be done
 384 * once, because the fields are idempotent across use
 385 * of the inode, so let the slab aware of that.
 386 */
 387void inode_init_once(struct inode *inode)
 388{
 389	memset(inode, 0, sizeof(*inode));
 390	INIT_HLIST_NODE(&inode->i_hash);
 391	INIT_LIST_HEAD(&inode->i_devices);
 392	INIT_LIST_HEAD(&inode->i_io_list);
 393	INIT_LIST_HEAD(&inode->i_wb_list);
 394	INIT_LIST_HEAD(&inode->i_lru);
 395	__address_space_init_once(&inode->i_data);
 396	i_size_ordered_init(inode);
 
 
 
 397}
 398EXPORT_SYMBOL(inode_init_once);
 399
 400static void init_once(void *foo)
 401{
 402	struct inode *inode = (struct inode *) foo;
 403
 404	inode_init_once(inode);
 405}
 406
 407/*
 408 * inode->i_lock must be held
 409 */
 410void __iget(struct inode *inode)
 411{
 412	atomic_inc(&inode->i_count);
 413}
 414
 415/*
 416 * get additional reference to inode; caller must already hold one.
 417 */
 418void ihold(struct inode *inode)
 419{
 420	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 421}
 422EXPORT_SYMBOL(ihold);
 423
 424static void inode_lru_list_add(struct inode *inode)
 425{
 426	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 427		this_cpu_inc(nr_unused);
 428	else
 429		inode->i_state |= I_REFERENCED;
 430}
 431
 432/*
 433 * Add inode to LRU if needed (inode is unused and clean).
 434 *
 435 * Needs inode->i_lock held.
 436 */
 437void inode_add_lru(struct inode *inode)
 438{
 439	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 440				I_FREEING | I_WILL_FREE)) &&
 441	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 442		inode_lru_list_add(inode);
 443}
 444
 445
 446static void inode_lru_list_del(struct inode *inode)
 447{
 448
 449	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 450		this_cpu_dec(nr_unused);
 451}
 452
 453/**
 454 * inode_sb_list_add - add inode to the superblock list of inodes
 455 * @inode: inode to add
 456 */
 457void inode_sb_list_add(struct inode *inode)
 458{
 459	spin_lock(&inode->i_sb->s_inode_list_lock);
 460	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 461	spin_unlock(&inode->i_sb->s_inode_list_lock);
 462}
 463EXPORT_SYMBOL_GPL(inode_sb_list_add);
 464
 465static inline void inode_sb_list_del(struct inode *inode)
 466{
 467	if (!list_empty(&inode->i_sb_list)) {
 468		spin_lock(&inode->i_sb->s_inode_list_lock);
 469		list_del_init(&inode->i_sb_list);
 470		spin_unlock(&inode->i_sb->s_inode_list_lock);
 471	}
 472}
 473
 474static unsigned long hash(struct super_block *sb, unsigned long hashval)
 475{
 476	unsigned long tmp;
 477
 478	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 479			L1_CACHE_BYTES;
 480	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 481	return tmp & i_hash_mask;
 482}
 483
 484/**
 485 *	__insert_inode_hash - hash an inode
 486 *	@inode: unhashed inode
 487 *	@hashval: unsigned long value used to locate this object in the
 488 *		inode_hashtable.
 489 *
 490 *	Add an inode to the inode hash for this superblock.
 491 */
 492void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 493{
 494	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 495
 496	spin_lock(&inode_hash_lock);
 497	spin_lock(&inode->i_lock);
 498	hlist_add_head(&inode->i_hash, b);
 499	spin_unlock(&inode->i_lock);
 500	spin_unlock(&inode_hash_lock);
 501}
 502EXPORT_SYMBOL(__insert_inode_hash);
 503
 504/**
 505 *	__remove_inode_hash - remove an inode from the hash
 506 *	@inode: inode to unhash
 507 *
 508 *	Remove an inode from the superblock.
 509 */
 510void __remove_inode_hash(struct inode *inode)
 511{
 512	spin_lock(&inode_hash_lock);
 513	spin_lock(&inode->i_lock);
 514	hlist_del_init(&inode->i_hash);
 515	spin_unlock(&inode->i_lock);
 516	spin_unlock(&inode_hash_lock);
 517}
 518EXPORT_SYMBOL(__remove_inode_hash);
 519
 520void clear_inode(struct inode *inode)
 521{
 
 522	/*
 523	 * We have to cycle the i_pages lock here because reclaim can be in the
 524	 * process of removing the last page (in __delete_from_page_cache())
 525	 * and we must not free the mapping under it.
 526	 */
 527	xa_lock_irq(&inode->i_data.i_pages);
 528	BUG_ON(inode->i_data.nrpages);
 529	BUG_ON(inode->i_data.nrexceptional);
 530	xa_unlock_irq(&inode->i_data.i_pages);
 531	BUG_ON(!list_empty(&inode->i_data.private_list));
 532	BUG_ON(!(inode->i_state & I_FREEING));
 533	BUG_ON(inode->i_state & I_CLEAR);
 534	BUG_ON(!list_empty(&inode->i_wb_list));
 535	/* don't need i_lock here, no concurrent mods to i_state */
 536	inode->i_state = I_FREEING | I_CLEAR;
 537}
 538EXPORT_SYMBOL(clear_inode);
 539
 540/*
 541 * Free the inode passed in, removing it from the lists it is still connected
 542 * to. We remove any pages still attached to the inode and wait for any IO that
 543 * is still in progress before finally destroying the inode.
 544 *
 545 * An inode must already be marked I_FREEING so that we avoid the inode being
 546 * moved back onto lists if we race with other code that manipulates the lists
 547 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 548 *
 549 * An inode must already be removed from the LRU list before being evicted from
 550 * the cache. This should occur atomically with setting the I_FREEING state
 551 * flag, so no inodes here should ever be on the LRU when being evicted.
 552 */
 553static void evict(struct inode *inode)
 554{
 555	const struct super_operations *op = inode->i_sb->s_op;
 556
 557	BUG_ON(!(inode->i_state & I_FREEING));
 558	BUG_ON(!list_empty(&inode->i_lru));
 559
 560	if (!list_empty(&inode->i_io_list))
 561		inode_io_list_del(inode);
 562
 563	inode_sb_list_del(inode);
 564
 565	/*
 566	 * Wait for flusher thread to be done with the inode so that filesystem
 567	 * does not start destroying it while writeback is still running. Since
 568	 * the inode has I_FREEING set, flusher thread won't start new work on
 569	 * the inode.  We just have to wait for running writeback to finish.
 570	 */
 571	inode_wait_for_writeback(inode);
 572
 573	if (op->evict_inode) {
 574		op->evict_inode(inode);
 575	} else {
 576		truncate_inode_pages_final(&inode->i_data);
 577		clear_inode(inode);
 578	}
 579	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 580		bd_forget(inode);
 581	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 582		cd_forget(inode);
 583
 584	remove_inode_hash(inode);
 585
 586	spin_lock(&inode->i_lock);
 587	wake_up_bit(&inode->i_state, __I_NEW);
 588	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 589	spin_unlock(&inode->i_lock);
 590
 591	destroy_inode(inode);
 592}
 593
 594/*
 595 * dispose_list - dispose of the contents of a local list
 596 * @head: the head of the list to free
 597 *
 598 * Dispose-list gets a local list with local inodes in it, so it doesn't
 599 * need to worry about list corruption and SMP locks.
 600 */
 601static void dispose_list(struct list_head *head)
 602{
 603	while (!list_empty(head)) {
 604		struct inode *inode;
 605
 606		inode = list_first_entry(head, struct inode, i_lru);
 607		list_del_init(&inode->i_lru);
 608
 609		evict(inode);
 610		cond_resched();
 611	}
 612}
 613
 614/**
 615 * evict_inodes	- evict all evictable inodes for a superblock
 616 * @sb:		superblock to operate on
 617 *
 618 * Make sure that no inodes with zero refcount are retained.  This is
 619 * called by superblock shutdown after having SB_ACTIVE flag removed,
 620 * so any inode reaching zero refcount during or after that call will
 621 * be immediately evicted.
 622 */
 623void evict_inodes(struct super_block *sb)
 624{
 625	struct inode *inode, *next;
 626	LIST_HEAD(dispose);
 627
 628again:
 629	spin_lock(&sb->s_inode_list_lock);
 630	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 631		if (atomic_read(&inode->i_count))
 632			continue;
 633
 634		spin_lock(&inode->i_lock);
 635		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 636			spin_unlock(&inode->i_lock);
 637			continue;
 638		}
 639
 640		inode->i_state |= I_FREEING;
 641		inode_lru_list_del(inode);
 642		spin_unlock(&inode->i_lock);
 643		list_add(&inode->i_lru, &dispose);
 644
 645		/*
 646		 * We can have a ton of inodes to evict at unmount time given
 647		 * enough memory, check to see if we need to go to sleep for a
 648		 * bit so we don't livelock.
 649		 */
 650		if (need_resched()) {
 651			spin_unlock(&sb->s_inode_list_lock);
 652			cond_resched();
 653			dispose_list(&dispose);
 654			goto again;
 655		}
 656	}
 657	spin_unlock(&sb->s_inode_list_lock);
 658
 659	dispose_list(&dispose);
 660}
 661EXPORT_SYMBOL_GPL(evict_inodes);
 662
 663/**
 664 * invalidate_inodes	- attempt to free all inodes on a superblock
 665 * @sb:		superblock to operate on
 666 * @kill_dirty: flag to guide handling of dirty inodes
 667 *
 668 * Attempts to free all inodes for a given superblock.  If there were any
 669 * busy inodes return a non-zero value, else zero.
 670 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 671 * them as busy.
 672 */
 673int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 674{
 675	int busy = 0;
 676	struct inode *inode, *next;
 677	LIST_HEAD(dispose);
 678
 679	spin_lock(&sb->s_inode_list_lock);
 680	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 681		spin_lock(&inode->i_lock);
 682		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 683			spin_unlock(&inode->i_lock);
 684			continue;
 685		}
 686		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 687			spin_unlock(&inode->i_lock);
 688			busy = 1;
 689			continue;
 690		}
 691		if (atomic_read(&inode->i_count)) {
 692			spin_unlock(&inode->i_lock);
 693			busy = 1;
 694			continue;
 695		}
 696
 697		inode->i_state |= I_FREEING;
 698		inode_lru_list_del(inode);
 699		spin_unlock(&inode->i_lock);
 700		list_add(&inode->i_lru, &dispose);
 701	}
 702	spin_unlock(&sb->s_inode_list_lock);
 703
 704	dispose_list(&dispose);
 705
 706	return busy;
 707}
 708
 709/*
 710 * Isolate the inode from the LRU in preparation for freeing it.
 711 *
 712 * Any inodes which are pinned purely because of attached pagecache have their
 713 * pagecache removed.  If the inode has metadata buffers attached to
 714 * mapping->private_list then try to remove them.
 715 *
 716 * If the inode has the I_REFERENCED flag set, then it means that it has been
 717 * used recently - the flag is set in iput_final(). When we encounter such an
 718 * inode, clear the flag and move it to the back of the LRU so it gets another
 719 * pass through the LRU before it gets reclaimed. This is necessary because of
 720 * the fact we are doing lazy LRU updates to minimise lock contention so the
 721 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 722 * with this flag set because they are the inodes that are out of order.
 723 */
 724static enum lru_status inode_lru_isolate(struct list_head *item,
 725		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 726{
 727	struct list_head *freeable = arg;
 728	struct inode	*inode = container_of(item, struct inode, i_lru);
 729
 730	/*
 731	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 732	 * If we fail to get the lock, just skip it.
 733	 */
 734	if (!spin_trylock(&inode->i_lock))
 735		return LRU_SKIP;
 736
 737	/*
 738	 * Referenced or dirty inodes are still in use. Give them another pass
 739	 * through the LRU as we canot reclaim them now.
 740	 */
 741	if (atomic_read(&inode->i_count) ||
 742	    (inode->i_state & ~I_REFERENCED)) {
 743		list_lru_isolate(lru, &inode->i_lru);
 744		spin_unlock(&inode->i_lock);
 745		this_cpu_dec(nr_unused);
 746		return LRU_REMOVED;
 747	}
 748
 749	/* recently referenced inodes get one more pass */
 750	if (inode->i_state & I_REFERENCED) {
 751		inode->i_state &= ~I_REFERENCED;
 752		spin_unlock(&inode->i_lock);
 753		return LRU_ROTATE;
 754	}
 755
 756	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 757		__iget(inode);
 758		spin_unlock(&inode->i_lock);
 759		spin_unlock(lru_lock);
 760		if (remove_inode_buffers(inode)) {
 761			unsigned long reap;
 762			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 763			if (current_is_kswapd())
 764				__count_vm_events(KSWAPD_INODESTEAL, reap);
 765			else
 766				__count_vm_events(PGINODESTEAL, reap);
 767			if (current->reclaim_state)
 768				current->reclaim_state->reclaimed_slab += reap;
 769		}
 770		iput(inode);
 771		spin_lock(lru_lock);
 772		return LRU_RETRY;
 773	}
 774
 775	WARN_ON(inode->i_state & I_NEW);
 776	inode->i_state |= I_FREEING;
 777	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 778	spin_unlock(&inode->i_lock);
 779
 780	this_cpu_dec(nr_unused);
 781	return LRU_REMOVED;
 782}
 783
 784/*
 785 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 786 * This is called from the superblock shrinker function with a number of inodes
 787 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 788 * then are freed outside inode_lock by dispose_list().
 789 */
 790long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 791{
 792	LIST_HEAD(freeable);
 793	long freed;
 794
 795	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 796				     inode_lru_isolate, &freeable);
 797	dispose_list(&freeable);
 798	return freed;
 799}
 800
 801static void __wait_on_freeing_inode(struct inode *inode);
 802/*
 803 * Called with the inode lock held.
 804 */
 805static struct inode *find_inode(struct super_block *sb,
 806				struct hlist_head *head,
 807				int (*test)(struct inode *, void *),
 808				void *data)
 809{
 810	struct inode *inode = NULL;
 811
 812repeat:
 813	hlist_for_each_entry(inode, head, i_hash) {
 814		if (inode->i_sb != sb)
 815			continue;
 816		if (!test(inode, data))
 817			continue;
 818		spin_lock(&inode->i_lock);
 819		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 820			__wait_on_freeing_inode(inode);
 821			goto repeat;
 822		}
 823		if (unlikely(inode->i_state & I_CREATING)) {
 824			spin_unlock(&inode->i_lock);
 825			return ERR_PTR(-ESTALE);
 826		}
 827		__iget(inode);
 828		spin_unlock(&inode->i_lock);
 829		return inode;
 830	}
 831	return NULL;
 832}
 833
 834/*
 835 * find_inode_fast is the fast path version of find_inode, see the comment at
 836 * iget_locked for details.
 837 */
 838static struct inode *find_inode_fast(struct super_block *sb,
 839				struct hlist_head *head, unsigned long ino)
 840{
 841	struct inode *inode = NULL;
 842
 843repeat:
 844	hlist_for_each_entry(inode, head, i_hash) {
 845		if (inode->i_ino != ino)
 846			continue;
 847		if (inode->i_sb != sb)
 848			continue;
 849		spin_lock(&inode->i_lock);
 850		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 851			__wait_on_freeing_inode(inode);
 852			goto repeat;
 853		}
 854		if (unlikely(inode->i_state & I_CREATING)) {
 855			spin_unlock(&inode->i_lock);
 856			return ERR_PTR(-ESTALE);
 857		}
 858		__iget(inode);
 859		spin_unlock(&inode->i_lock);
 860		return inode;
 861	}
 862	return NULL;
 863}
 864
 865/*
 866 * Each cpu owns a range of LAST_INO_BATCH numbers.
 867 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 868 * to renew the exhausted range.
 869 *
 870 * This does not significantly increase overflow rate because every CPU can
 871 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 872 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 873 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 874 * overflow rate by 2x, which does not seem too significant.
 875 *
 876 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 877 * error if st_ino won't fit in target struct field. Use 32bit counter
 878 * here to attempt to avoid that.
 879 */
 880#define LAST_INO_BATCH 1024
 881static DEFINE_PER_CPU(unsigned int, last_ino);
 882
 883unsigned int get_next_ino(void)
 884{
 885	unsigned int *p = &get_cpu_var(last_ino);
 886	unsigned int res = *p;
 887
 888#ifdef CONFIG_SMP
 889	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 890		static atomic_t shared_last_ino;
 891		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 892
 893		res = next - LAST_INO_BATCH;
 894	}
 895#endif
 896
 897	res++;
 898	/* get_next_ino should not provide a 0 inode number */
 899	if (unlikely(!res))
 900		res++;
 901	*p = res;
 902	put_cpu_var(last_ino);
 903	return res;
 904}
 905EXPORT_SYMBOL(get_next_ino);
 906
 907/**
 908 *	new_inode_pseudo 	- obtain an inode
 909 *	@sb: superblock
 910 *
 911 *	Allocates a new inode for given superblock.
 912 *	Inode wont be chained in superblock s_inodes list
 913 *	This means :
 914 *	- fs can't be unmount
 915 *	- quotas, fsnotify, writeback can't work
 916 */
 917struct inode *new_inode_pseudo(struct super_block *sb)
 918{
 919	struct inode *inode = alloc_inode(sb);
 920
 921	if (inode) {
 922		spin_lock(&inode->i_lock);
 923		inode->i_state = 0;
 924		spin_unlock(&inode->i_lock);
 925		INIT_LIST_HEAD(&inode->i_sb_list);
 926	}
 927	return inode;
 928}
 929
 930/**
 931 *	new_inode 	- obtain an inode
 932 *	@sb: superblock
 933 *
 934 *	Allocates a new inode for given superblock. The default gfp_mask
 935 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 936 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 937 *	for the page cache are not reclaimable or migratable,
 938 *	mapping_set_gfp_mask() must be called with suitable flags on the
 939 *	newly created inode's mapping
 940 *
 941 */
 942struct inode *new_inode(struct super_block *sb)
 943{
 944	struct inode *inode;
 945
 946	spin_lock_prefetch(&sb->s_inode_list_lock);
 947
 948	inode = new_inode_pseudo(sb);
 949	if (inode)
 950		inode_sb_list_add(inode);
 951	return inode;
 952}
 953EXPORT_SYMBOL(new_inode);
 954
 955#ifdef CONFIG_DEBUG_LOCK_ALLOC
 956void lockdep_annotate_inode_mutex_key(struct inode *inode)
 957{
 958	if (S_ISDIR(inode->i_mode)) {
 959		struct file_system_type *type = inode->i_sb->s_type;
 960
 961		/* Set new key only if filesystem hasn't already changed it */
 962		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 963			/*
 964			 * ensure nobody is actually holding i_mutex
 965			 */
 966			// mutex_destroy(&inode->i_mutex);
 967			init_rwsem(&inode->i_rwsem);
 968			lockdep_set_class(&inode->i_rwsem,
 969					  &type->i_mutex_dir_key);
 970		}
 971	}
 972}
 973EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 974#endif
 975
 976/**
 977 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 978 * @inode:	new inode to unlock
 979 *
 980 * Called when the inode is fully initialised to clear the new state of the
 981 * inode and wake up anyone waiting for the inode to finish initialisation.
 982 */
 983void unlock_new_inode(struct inode *inode)
 984{
 985	lockdep_annotate_inode_mutex_key(inode);
 986	spin_lock(&inode->i_lock);
 987	WARN_ON(!(inode->i_state & I_NEW));
 988	inode->i_state &= ~I_NEW & ~I_CREATING;
 989	smp_mb();
 990	wake_up_bit(&inode->i_state, __I_NEW);
 991	spin_unlock(&inode->i_lock);
 992}
 993EXPORT_SYMBOL(unlock_new_inode);
 994
 995void discard_new_inode(struct inode *inode)
 996{
 997	lockdep_annotate_inode_mutex_key(inode);
 998	spin_lock(&inode->i_lock);
 999	WARN_ON(!(inode->i_state & I_NEW));
1000	inode->i_state &= ~I_NEW;
1001	smp_mb();
1002	wake_up_bit(&inode->i_state, __I_NEW);
1003	spin_unlock(&inode->i_lock);
1004	iput(inode);
1005}
1006EXPORT_SYMBOL(discard_new_inode);
1007
1008/**
1009 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1010 *
1011 * Lock any non-NULL argument that is not a directory.
1012 * Zero, one or two objects may be locked by this function.
1013 *
1014 * @inode1: first inode to lock
1015 * @inode2: second inode to lock
1016 */
1017void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1018{
1019	if (inode1 > inode2)
1020		swap(inode1, inode2);
1021
1022	if (inode1 && !S_ISDIR(inode1->i_mode))
1023		inode_lock(inode1);
1024	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1025		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1026}
1027EXPORT_SYMBOL(lock_two_nondirectories);
1028
1029/**
1030 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1031 * @inode1: first inode to unlock
1032 * @inode2: second inode to unlock
1033 */
1034void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1035{
1036	if (inode1 && !S_ISDIR(inode1->i_mode))
1037		inode_unlock(inode1);
1038	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1039		inode_unlock(inode2);
1040}
1041EXPORT_SYMBOL(unlock_two_nondirectories);
1042
1043/**
1044 * inode_insert5 - obtain an inode from a mounted file system
1045 * @inode:	pre-allocated inode to use for insert to cache
1046 * @hashval:	hash value (usually inode number) to get
1047 * @test:	callback used for comparisons between inodes
1048 * @set:	callback used to initialize a new struct inode
1049 * @data:	opaque data pointer to pass to @test and @set
1050 *
1051 * Search for the inode specified by @hashval and @data in the inode cache,
1052 * and if present it is return it with an increased reference count. This is
1053 * a variant of iget5_locked() for callers that don't want to fail on memory
1054 * allocation of inode.
1055 *
1056 * If the inode is not in cache, insert the pre-allocated inode to cache and
1057 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1058 * to fill it in before unlocking it via unlock_new_inode().
1059 *
1060 * Note both @test and @set are called with the inode_hash_lock held, so can't
1061 * sleep.
1062 */
1063struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1064			    int (*test)(struct inode *, void *),
1065			    int (*set)(struct inode *, void *), void *data)
1066{
1067	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1068	struct inode *old;
1069	bool creating = inode->i_state & I_CREATING;
1070
1071again:
1072	spin_lock(&inode_hash_lock);
1073	old = find_inode(inode->i_sb, head, test, data);
1074	if (unlikely(old)) {
1075		/*
1076		 * Uhhuh, somebody else created the same inode under us.
1077		 * Use the old inode instead of the preallocated one.
1078		 */
1079		spin_unlock(&inode_hash_lock);
1080		if (IS_ERR(old))
1081			return NULL;
1082		wait_on_inode(old);
1083		if (unlikely(inode_unhashed(old))) {
1084			iput(old);
1085			goto again;
1086		}
1087		return old;
1088	}
1089
1090	if (set && unlikely(set(inode, data))) {
1091		inode = NULL;
1092		goto unlock;
1093	}
1094
1095	/*
1096	 * Return the locked inode with I_NEW set, the
1097	 * caller is responsible for filling in the contents
1098	 */
1099	spin_lock(&inode->i_lock);
1100	inode->i_state |= I_NEW;
1101	hlist_add_head(&inode->i_hash, head);
1102	spin_unlock(&inode->i_lock);
1103	if (!creating)
1104		inode_sb_list_add(inode);
1105unlock:
1106	spin_unlock(&inode_hash_lock);
1107
1108	return inode;
1109}
1110EXPORT_SYMBOL(inode_insert5);
1111
1112/**
1113 * iget5_locked - obtain an inode from a mounted file system
1114 * @sb:		super block of file system
1115 * @hashval:	hash value (usually inode number) to get
1116 * @test:	callback used for comparisons between inodes
1117 * @set:	callback used to initialize a new struct inode
1118 * @data:	opaque data pointer to pass to @test and @set
1119 *
1120 * Search for the inode specified by @hashval and @data in the inode cache,
1121 * and if present it is return it with an increased reference count. This is
1122 * a generalized version of iget_locked() for file systems where the inode
1123 * number is not sufficient for unique identification of an inode.
1124 *
1125 * If the inode is not in cache, allocate a new inode and return it locked,
1126 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1127 * before unlocking it via unlock_new_inode().
1128 *
1129 * Note both @test and @set are called with the inode_hash_lock held, so can't
1130 * sleep.
1131 */
1132struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1133		int (*test)(struct inode *, void *),
1134		int (*set)(struct inode *, void *), void *data)
1135{
1136	struct inode *inode = ilookup5(sb, hashval, test, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137
1138	if (!inode) {
1139		struct inode *new = alloc_inode(sb);
 
1140
1141		if (new) {
1142			new->i_state = 0;
1143			inode = inode_insert5(new, hashval, test, set, data);
1144			if (unlikely(inode != new))
1145				destroy_inode(new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146		}
1147	}
1148	return inode;
 
 
 
 
 
1149}
1150EXPORT_SYMBOL(iget5_locked);
1151
1152/**
1153 * iget_locked - obtain an inode from a mounted file system
1154 * @sb:		super block of file system
1155 * @ino:	inode number to get
1156 *
1157 * Search for the inode specified by @ino in the inode cache and if present
1158 * return it with an increased reference count. This is for file systems
1159 * where the inode number is sufficient for unique identification of an inode.
1160 *
1161 * If the inode is not in cache, allocate a new inode and return it locked,
1162 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1163 * before unlocking it via unlock_new_inode().
1164 */
1165struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1166{
1167	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1168	struct inode *inode;
1169again:
1170	spin_lock(&inode_hash_lock);
1171	inode = find_inode_fast(sb, head, ino);
1172	spin_unlock(&inode_hash_lock);
1173	if (inode) {
1174		if (IS_ERR(inode))
1175			return NULL;
1176		wait_on_inode(inode);
1177		if (unlikely(inode_unhashed(inode))) {
1178			iput(inode);
1179			goto again;
1180		}
1181		return inode;
1182	}
1183
1184	inode = alloc_inode(sb);
1185	if (inode) {
1186		struct inode *old;
1187
1188		spin_lock(&inode_hash_lock);
1189		/* We released the lock, so.. */
1190		old = find_inode_fast(sb, head, ino);
1191		if (!old) {
1192			inode->i_ino = ino;
1193			spin_lock(&inode->i_lock);
1194			inode->i_state = I_NEW;
1195			hlist_add_head(&inode->i_hash, head);
1196			spin_unlock(&inode->i_lock);
1197			inode_sb_list_add(inode);
1198			spin_unlock(&inode_hash_lock);
1199
1200			/* Return the locked inode with I_NEW set, the
1201			 * caller is responsible for filling in the contents
1202			 */
1203			return inode;
1204		}
1205
1206		/*
1207		 * Uhhuh, somebody else created the same inode under
1208		 * us. Use the old inode instead of the one we just
1209		 * allocated.
1210		 */
1211		spin_unlock(&inode_hash_lock);
1212		destroy_inode(inode);
1213		if (IS_ERR(old))
1214			return NULL;
1215		inode = old;
1216		wait_on_inode(inode);
1217		if (unlikely(inode_unhashed(inode))) {
1218			iput(inode);
1219			goto again;
1220		}
1221	}
1222	return inode;
1223}
1224EXPORT_SYMBOL(iget_locked);
1225
1226/*
1227 * search the inode cache for a matching inode number.
1228 * If we find one, then the inode number we are trying to
1229 * allocate is not unique and so we should not use it.
1230 *
1231 * Returns 1 if the inode number is unique, 0 if it is not.
1232 */
1233static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1234{
1235	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1236	struct inode *inode;
1237
1238	spin_lock(&inode_hash_lock);
1239	hlist_for_each_entry(inode, b, i_hash) {
1240		if (inode->i_ino == ino && inode->i_sb == sb) {
1241			spin_unlock(&inode_hash_lock);
1242			return 0;
1243		}
1244	}
1245	spin_unlock(&inode_hash_lock);
1246
1247	return 1;
1248}
1249
1250/**
1251 *	iunique - get a unique inode number
1252 *	@sb: superblock
1253 *	@max_reserved: highest reserved inode number
1254 *
1255 *	Obtain an inode number that is unique on the system for a given
1256 *	superblock. This is used by file systems that have no natural
1257 *	permanent inode numbering system. An inode number is returned that
1258 *	is higher than the reserved limit but unique.
1259 *
1260 *	BUGS:
1261 *	With a large number of inodes live on the file system this function
1262 *	currently becomes quite slow.
1263 */
1264ino_t iunique(struct super_block *sb, ino_t max_reserved)
1265{
1266	/*
1267	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1268	 * error if st_ino won't fit in target struct field. Use 32bit counter
1269	 * here to attempt to avoid that.
1270	 */
1271	static DEFINE_SPINLOCK(iunique_lock);
1272	static unsigned int counter;
1273	ino_t res;
1274
1275	spin_lock(&iunique_lock);
1276	do {
1277		if (counter <= max_reserved)
1278			counter = max_reserved + 1;
1279		res = counter++;
1280	} while (!test_inode_iunique(sb, res));
1281	spin_unlock(&iunique_lock);
1282
1283	return res;
1284}
1285EXPORT_SYMBOL(iunique);
1286
1287struct inode *igrab(struct inode *inode)
1288{
1289	spin_lock(&inode->i_lock);
1290	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1291		__iget(inode);
1292		spin_unlock(&inode->i_lock);
1293	} else {
1294		spin_unlock(&inode->i_lock);
1295		/*
1296		 * Handle the case where s_op->clear_inode is not been
1297		 * called yet, and somebody is calling igrab
1298		 * while the inode is getting freed.
1299		 */
1300		inode = NULL;
1301	}
1302	return inode;
1303}
1304EXPORT_SYMBOL(igrab);
1305
1306/**
1307 * ilookup5_nowait - search for an inode in the inode cache
1308 * @sb:		super block of file system to search
1309 * @hashval:	hash value (usually inode number) to search for
1310 * @test:	callback used for comparisons between inodes
1311 * @data:	opaque data pointer to pass to @test
1312 *
1313 * Search for the inode specified by @hashval and @data in the inode cache.
1314 * If the inode is in the cache, the inode is returned with an incremented
1315 * reference count.
1316 *
1317 * Note: I_NEW is not waited upon so you have to be very careful what you do
1318 * with the returned inode.  You probably should be using ilookup5() instead.
1319 *
1320 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1321 */
1322struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1323		int (*test)(struct inode *, void *), void *data)
1324{
1325	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1326	struct inode *inode;
1327
1328	spin_lock(&inode_hash_lock);
1329	inode = find_inode(sb, head, test, data);
1330	spin_unlock(&inode_hash_lock);
1331
1332	return IS_ERR(inode) ? NULL : inode;
1333}
1334EXPORT_SYMBOL(ilookup5_nowait);
1335
1336/**
1337 * ilookup5 - search for an inode in the inode cache
1338 * @sb:		super block of file system to search
1339 * @hashval:	hash value (usually inode number) to search for
1340 * @test:	callback used for comparisons between inodes
1341 * @data:	opaque data pointer to pass to @test
1342 *
1343 * Search for the inode specified by @hashval and @data in the inode cache,
1344 * and if the inode is in the cache, return the inode with an incremented
1345 * reference count.  Waits on I_NEW before returning the inode.
1346 * returned with an incremented reference count.
1347 *
1348 * This is a generalized version of ilookup() for file systems where the
1349 * inode number is not sufficient for unique identification of an inode.
1350 *
1351 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1352 */
1353struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1354		int (*test)(struct inode *, void *), void *data)
1355{
1356	struct inode *inode;
1357again:
1358	inode = ilookup5_nowait(sb, hashval, test, data);
1359	if (inode) {
1360		wait_on_inode(inode);
1361		if (unlikely(inode_unhashed(inode))) {
1362			iput(inode);
1363			goto again;
1364		}
1365	}
1366	return inode;
1367}
1368EXPORT_SYMBOL(ilookup5);
1369
1370/**
1371 * ilookup - search for an inode in the inode cache
1372 * @sb:		super block of file system to search
1373 * @ino:	inode number to search for
1374 *
1375 * Search for the inode @ino in the inode cache, and if the inode is in the
1376 * cache, the inode is returned with an incremented reference count.
1377 */
1378struct inode *ilookup(struct super_block *sb, unsigned long ino)
1379{
1380	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1381	struct inode *inode;
1382again:
1383	spin_lock(&inode_hash_lock);
1384	inode = find_inode_fast(sb, head, ino);
1385	spin_unlock(&inode_hash_lock);
1386
1387	if (inode) {
1388		if (IS_ERR(inode))
1389			return NULL;
1390		wait_on_inode(inode);
1391		if (unlikely(inode_unhashed(inode))) {
1392			iput(inode);
1393			goto again;
1394		}
1395	}
1396	return inode;
1397}
1398EXPORT_SYMBOL(ilookup);
1399
1400/**
1401 * find_inode_nowait - find an inode in the inode cache
1402 * @sb:		super block of file system to search
1403 * @hashval:	hash value (usually inode number) to search for
1404 * @match:	callback used for comparisons between inodes
1405 * @data:	opaque data pointer to pass to @match
1406 *
1407 * Search for the inode specified by @hashval and @data in the inode
1408 * cache, where the helper function @match will return 0 if the inode
1409 * does not match, 1 if the inode does match, and -1 if the search
1410 * should be stopped.  The @match function must be responsible for
1411 * taking the i_lock spin_lock and checking i_state for an inode being
1412 * freed or being initialized, and incrementing the reference count
1413 * before returning 1.  It also must not sleep, since it is called with
1414 * the inode_hash_lock spinlock held.
1415 *
1416 * This is a even more generalized version of ilookup5() when the
1417 * function must never block --- find_inode() can block in
1418 * __wait_on_freeing_inode() --- or when the caller can not increment
1419 * the reference count because the resulting iput() might cause an
1420 * inode eviction.  The tradeoff is that the @match funtion must be
1421 * very carefully implemented.
1422 */
1423struct inode *find_inode_nowait(struct super_block *sb,
1424				unsigned long hashval,
1425				int (*match)(struct inode *, unsigned long,
1426					     void *),
1427				void *data)
1428{
1429	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1430	struct inode *inode, *ret_inode = NULL;
1431	int mval;
1432
1433	spin_lock(&inode_hash_lock);
1434	hlist_for_each_entry(inode, head, i_hash) {
1435		if (inode->i_sb != sb)
1436			continue;
1437		mval = match(inode, hashval, data);
1438		if (mval == 0)
1439			continue;
1440		if (mval == 1)
1441			ret_inode = inode;
1442		goto out;
1443	}
1444out:
1445	spin_unlock(&inode_hash_lock);
1446	return ret_inode;
1447}
1448EXPORT_SYMBOL(find_inode_nowait);
1449
1450int insert_inode_locked(struct inode *inode)
1451{
1452	struct super_block *sb = inode->i_sb;
1453	ino_t ino = inode->i_ino;
1454	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1455
1456	while (1) {
1457		struct inode *old = NULL;
1458		spin_lock(&inode_hash_lock);
1459		hlist_for_each_entry(old, head, i_hash) {
1460			if (old->i_ino != ino)
1461				continue;
1462			if (old->i_sb != sb)
1463				continue;
1464			spin_lock(&old->i_lock);
1465			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1466				spin_unlock(&old->i_lock);
1467				continue;
1468			}
1469			break;
1470		}
1471		if (likely(!old)) {
1472			spin_lock(&inode->i_lock);
1473			inode->i_state |= I_NEW | I_CREATING;
1474			hlist_add_head(&inode->i_hash, head);
1475			spin_unlock(&inode->i_lock);
1476			spin_unlock(&inode_hash_lock);
1477			return 0;
1478		}
1479		if (unlikely(old->i_state & I_CREATING)) {
1480			spin_unlock(&old->i_lock);
1481			spin_unlock(&inode_hash_lock);
1482			return -EBUSY;
1483		}
1484		__iget(old);
1485		spin_unlock(&old->i_lock);
1486		spin_unlock(&inode_hash_lock);
1487		wait_on_inode(old);
1488		if (unlikely(!inode_unhashed(old))) {
1489			iput(old);
1490			return -EBUSY;
1491		}
1492		iput(old);
1493	}
1494}
1495EXPORT_SYMBOL(insert_inode_locked);
1496
1497int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1498		int (*test)(struct inode *, void *), void *data)
1499{
1500	struct inode *old;
 
1501
1502	inode->i_state |= I_CREATING;
1503	old = inode_insert5(inode, hashval, test, NULL, data);
1504
1505	if (old != inode) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1506		iput(old);
1507		return -EBUSY;
1508	}
1509	return 0;
1510}
1511EXPORT_SYMBOL(insert_inode_locked4);
1512
1513
1514int generic_delete_inode(struct inode *inode)
1515{
1516	return 1;
1517}
1518EXPORT_SYMBOL(generic_delete_inode);
1519
1520/*
1521 * Called when we're dropping the last reference
1522 * to an inode.
1523 *
1524 * Call the FS "drop_inode()" function, defaulting to
1525 * the legacy UNIX filesystem behaviour.  If it tells
1526 * us to evict inode, do so.  Otherwise, retain inode
1527 * in cache if fs is alive, sync and evict if fs is
1528 * shutting down.
1529 */
1530static void iput_final(struct inode *inode)
1531{
1532	struct super_block *sb = inode->i_sb;
1533	const struct super_operations *op = inode->i_sb->s_op;
1534	int drop;
1535
1536	WARN_ON(inode->i_state & I_NEW);
1537
1538	if (op->drop_inode)
1539		drop = op->drop_inode(inode);
1540	else
1541		drop = generic_drop_inode(inode);
1542
1543	if (!drop && (sb->s_flags & SB_ACTIVE)) {
 
1544		inode_add_lru(inode);
1545		spin_unlock(&inode->i_lock);
1546		return;
1547	}
1548
1549	if (!drop) {
1550		inode->i_state |= I_WILL_FREE;
1551		spin_unlock(&inode->i_lock);
1552		write_inode_now(inode, 1);
1553		spin_lock(&inode->i_lock);
1554		WARN_ON(inode->i_state & I_NEW);
1555		inode->i_state &= ~I_WILL_FREE;
1556	}
1557
1558	inode->i_state |= I_FREEING;
1559	if (!list_empty(&inode->i_lru))
1560		inode_lru_list_del(inode);
1561	spin_unlock(&inode->i_lock);
1562
1563	evict(inode);
1564}
1565
1566/**
1567 *	iput	- put an inode
1568 *	@inode: inode to put
1569 *
1570 *	Puts an inode, dropping its usage count. If the inode use count hits
1571 *	zero, the inode is then freed and may also be destroyed.
1572 *
1573 *	Consequently, iput() can sleep.
1574 */
1575void iput(struct inode *inode)
1576{
1577	if (!inode)
1578		return;
1579	BUG_ON(inode->i_state & I_CLEAR);
1580retry:
1581	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1582		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1583			atomic_inc(&inode->i_count);
 
1584			spin_unlock(&inode->i_lock);
1585			trace_writeback_lazytime_iput(inode);
1586			mark_inode_dirty_sync(inode);
1587			goto retry;
1588		}
1589		iput_final(inode);
1590	}
1591}
1592EXPORT_SYMBOL(iput);
1593
1594/**
1595 *	bmap	- find a block number in a file
1596 *	@inode: inode of file
1597 *	@block: block to find
1598 *
1599 *	Returns the block number on the device holding the inode that
1600 *	is the disk block number for the block of the file requested.
1601 *	That is, asked for block 4 of inode 1 the function will return the
1602 *	disk block relative to the disk start that holds that block of the
1603 *	file.
1604 */
1605sector_t bmap(struct inode *inode, sector_t block)
1606{
1607	sector_t res = 0;
1608	if (inode->i_mapping->a_ops->bmap)
1609		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1610	return res;
1611}
1612EXPORT_SYMBOL(bmap);
1613
1614/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615 * With relative atime, only update atime if the previous atime is
1616 * earlier than either the ctime or mtime or if at least a day has
1617 * passed since the last atime update.
1618 */
1619static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1620			     struct timespec64 now)
1621{
1622
1623	if (!(mnt->mnt_flags & MNT_RELATIME))
1624		return 1;
 
 
1625	/*
1626	 * Is mtime younger than atime? If yes, update atime:
1627	 */
1628	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1629		return 1;
1630	/*
1631	 * Is ctime younger than atime? If yes, update atime:
1632	 */
1633	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1634		return 1;
1635
1636	/*
1637	 * Is the previous atime value older than a day? If yes,
1638	 * update atime:
1639	 */
1640	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1641		return 1;
1642	/*
1643	 * Good, we can skip the atime update:
1644	 */
1645	return 0;
1646}
1647
1648int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1649{
1650	int iflags = I_DIRTY_TIME;
1651	bool dirty = false;
1652
1653	if (flags & S_ATIME)
1654		inode->i_atime = *time;
1655	if (flags & S_VERSION)
1656		dirty = inode_maybe_inc_iversion(inode, false);
1657	if (flags & S_CTIME)
1658		inode->i_ctime = *time;
1659	if (flags & S_MTIME)
1660		inode->i_mtime = *time;
1661	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1662	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1663		dirty = true;
1664
1665	if (dirty)
1666		iflags |= I_DIRTY_SYNC;
1667	__mark_inode_dirty(inode, iflags);
1668	return 0;
1669}
1670EXPORT_SYMBOL(generic_update_time);
1671
1672/*
1673 * This does the actual work of updating an inodes time or version.  Must have
1674 * had called mnt_want_write() before calling this.
1675 */
1676static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1677{
1678	int (*update_time)(struct inode *, struct timespec64 *, int);
1679
1680	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1681		generic_update_time;
1682
1683	return update_time(inode, time, flags);
1684}
1685
1686/**
1687 *	touch_atime	-	update the access time
1688 *	@path: the &struct path to update
1689 *	@inode: inode to update
1690 *
1691 *	Update the accessed time on an inode and mark it for writeback.
1692 *	This function automatically handles read only file systems and media,
1693 *	as well as the "noatime" flag and inode specific "noatime" markers.
1694 */
1695bool atime_needs_update(const struct path *path, struct inode *inode)
 
1696{
1697	struct vfsmount *mnt = path->mnt;
1698	struct timespec64 now;
1699
1700	if (inode->i_flags & S_NOATIME)
1701		return false;
1702
1703	/* Atime updates will likely cause i_uid and i_gid to be written
1704	 * back improprely if their true value is unknown to the vfs.
1705	 */
1706	if (HAS_UNMAPPED_ID(inode))
1707		return false;
1708
1709	if (IS_NOATIME(inode))
1710		return false;
1711	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1712		return false;
1713
1714	if (mnt->mnt_flags & MNT_NOATIME)
1715		return false;
1716	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1717		return false;
1718
1719	now = current_time(inode);
1720
1721	if (!relatime_need_update(mnt, inode, now))
1722		return false;
1723
1724	if (timespec64_equal(&inode->i_atime, &now))
1725		return false;
1726
1727	return true;
1728}
1729
1730void touch_atime(const struct path *path)
1731{
1732	struct vfsmount *mnt = path->mnt;
1733	struct inode *inode = d_inode(path->dentry);
1734	struct timespec64 now;
1735
1736	if (!atime_needs_update(path, inode))
1737		return;
1738
1739	if (!sb_start_write_trylock(inode->i_sb))
1740		return;
1741
1742	if (__mnt_want_write(mnt) != 0)
1743		goto skip_update;
1744	/*
1745	 * File systems can error out when updating inodes if they need to
1746	 * allocate new space to modify an inode (such is the case for
1747	 * Btrfs), but since we touch atime while walking down the path we
1748	 * really don't care if we failed to update the atime of the file,
1749	 * so just ignore the return value.
1750	 * We may also fail on filesystems that have the ability to make parts
1751	 * of the fs read only, e.g. subvolumes in Btrfs.
1752	 */
1753	now = current_time(inode);
1754	update_time(inode, &now, S_ATIME);
1755	__mnt_drop_write(mnt);
1756skip_update:
1757	sb_end_write(inode->i_sb);
1758}
1759EXPORT_SYMBOL(touch_atime);
1760
1761/*
1762 * The logic we want is
1763 *
1764 *	if suid or (sgid and xgrp)
1765 *		remove privs
1766 */
1767int should_remove_suid(struct dentry *dentry)
1768{
1769	umode_t mode = d_inode(dentry)->i_mode;
1770	int kill = 0;
1771
1772	/* suid always must be killed */
1773	if (unlikely(mode & S_ISUID))
1774		kill = ATTR_KILL_SUID;
1775
1776	/*
1777	 * sgid without any exec bits is just a mandatory locking mark; leave
1778	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1779	 */
1780	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1781		kill |= ATTR_KILL_SGID;
1782
1783	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1784		return kill;
1785
1786	return 0;
1787}
1788EXPORT_SYMBOL(should_remove_suid);
1789
1790/*
1791 * Return mask of changes for notify_change() that need to be done as a
1792 * response to write or truncate. Return 0 if nothing has to be changed.
1793 * Negative value on error (change should be denied).
1794 */
1795int dentry_needs_remove_privs(struct dentry *dentry)
1796{
1797	struct inode *inode = d_inode(dentry);
1798	int mask = 0;
1799	int ret;
1800
1801	if (IS_NOSEC(inode))
1802		return 0;
1803
1804	mask = should_remove_suid(dentry);
1805	ret = security_inode_need_killpriv(dentry);
1806	if (ret < 0)
1807		return ret;
1808	if (ret)
1809		mask |= ATTR_KILL_PRIV;
1810	return mask;
1811}
1812
1813static int __remove_privs(struct dentry *dentry, int kill)
1814{
1815	struct iattr newattrs;
1816
1817	newattrs.ia_valid = ATTR_FORCE | kill;
1818	/*
1819	 * Note we call this on write, so notify_change will not
1820	 * encounter any conflicting delegations:
1821	 */
1822	return notify_change(dentry, &newattrs, NULL);
1823}
1824
1825/*
1826 * Remove special file priviledges (suid, capabilities) when file is written
1827 * to or truncated.
1828 */
1829int file_remove_privs(struct file *file)
1830{
1831	struct dentry *dentry = file_dentry(file);
1832	struct inode *inode = file_inode(file);
1833	int kill;
1834	int error = 0;
1835
1836	/*
1837	 * Fast path for nothing security related.
1838	 * As well for non-regular files, e.g. blkdev inodes.
1839	 * For example, blkdev_write_iter() might get here
1840	 * trying to remove privs which it is not allowed to.
1841	 */
1842	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1843		return 0;
1844
1845	kill = dentry_needs_remove_privs(dentry);
1846	if (kill < 0)
1847		return kill;
1848	if (kill)
1849		error = __remove_privs(dentry, kill);
1850	if (!error)
1851		inode_has_no_xattr(inode);
1852
1853	return error;
1854}
1855EXPORT_SYMBOL(file_remove_privs);
1856
1857/**
1858 *	file_update_time	-	update mtime and ctime time
1859 *	@file: file accessed
1860 *
1861 *	Update the mtime and ctime members of an inode and mark the inode
1862 *	for writeback.  Note that this function is meant exclusively for
1863 *	usage in the file write path of filesystems, and filesystems may
1864 *	choose to explicitly ignore update via this function with the
1865 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1866 *	timestamps are handled by the server.  This can return an error for
1867 *	file systems who need to allocate space in order to update an inode.
1868 */
1869
1870int file_update_time(struct file *file)
1871{
1872	struct inode *inode = file_inode(file);
1873	struct timespec64 now;
1874	int sync_it = 0;
1875	int ret;
1876
1877	/* First try to exhaust all avenues to not sync */
1878	if (IS_NOCMTIME(inode))
1879		return 0;
1880
1881	now = current_time(inode);
1882	if (!timespec64_equal(&inode->i_mtime, &now))
1883		sync_it = S_MTIME;
1884
1885	if (!timespec64_equal(&inode->i_ctime, &now))
1886		sync_it |= S_CTIME;
1887
1888	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1889		sync_it |= S_VERSION;
1890
1891	if (!sync_it)
1892		return 0;
1893
1894	/* Finally allowed to write? Takes lock. */
1895	if (__mnt_want_write_file(file))
1896		return 0;
1897
1898	ret = update_time(inode, &now, sync_it);
1899	__mnt_drop_write_file(file);
1900
1901	return ret;
1902}
1903EXPORT_SYMBOL(file_update_time);
1904
1905/* Caller must hold the file's inode lock */
1906int file_modified(struct file *file)
1907{
1908	int err;
1909
1910	/*
1911	 * Clear the security bits if the process is not being run by root.
1912	 * This keeps people from modifying setuid and setgid binaries.
1913	 */
1914	err = file_remove_privs(file);
1915	if (err)
1916		return err;
1917
1918	if (unlikely(file->f_mode & FMODE_NOCMTIME))
1919		return 0;
1920
1921	return file_update_time(file);
1922}
1923EXPORT_SYMBOL(file_modified);
1924
1925int inode_needs_sync(struct inode *inode)
1926{
1927	if (IS_SYNC(inode))
1928		return 1;
1929	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1930		return 1;
1931	return 0;
1932}
1933EXPORT_SYMBOL(inode_needs_sync);
1934
1935/*
1936 * If we try to find an inode in the inode hash while it is being
1937 * deleted, we have to wait until the filesystem completes its
1938 * deletion before reporting that it isn't found.  This function waits
1939 * until the deletion _might_ have completed.  Callers are responsible
1940 * to recheck inode state.
1941 *
1942 * It doesn't matter if I_NEW is not set initially, a call to
1943 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1944 * will DTRT.
1945 */
1946static void __wait_on_freeing_inode(struct inode *inode)
1947{
1948	wait_queue_head_t *wq;
1949	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1950	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1951	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1952	spin_unlock(&inode->i_lock);
1953	spin_unlock(&inode_hash_lock);
1954	schedule();
1955	finish_wait(wq, &wait.wq_entry);
1956	spin_lock(&inode_hash_lock);
1957}
1958
1959static __initdata unsigned long ihash_entries;
1960static int __init set_ihash_entries(char *str)
1961{
1962	if (!str)
1963		return 0;
1964	ihash_entries = simple_strtoul(str, &str, 0);
1965	return 1;
1966}
1967__setup("ihash_entries=", set_ihash_entries);
1968
1969/*
1970 * Initialize the waitqueues and inode hash table.
1971 */
1972void __init inode_init_early(void)
1973{
 
 
1974	/* If hashes are distributed across NUMA nodes, defer
1975	 * hash allocation until vmalloc space is available.
1976	 */
1977	if (hashdist)
1978		return;
1979
1980	inode_hashtable =
1981		alloc_large_system_hash("Inode-cache",
1982					sizeof(struct hlist_head),
1983					ihash_entries,
1984					14,
1985					HASH_EARLY | HASH_ZERO,
1986					&i_hash_shift,
1987					&i_hash_mask,
1988					0,
1989					0);
 
 
 
1990}
1991
1992void __init inode_init(void)
1993{
 
 
1994	/* inode slab cache */
1995	inode_cachep = kmem_cache_create("inode_cache",
1996					 sizeof(struct inode),
1997					 0,
1998					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1999					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2000					 init_once);
2001
2002	/* Hash may have been set up in inode_init_early */
2003	if (!hashdist)
2004		return;
2005
2006	inode_hashtable =
2007		alloc_large_system_hash("Inode-cache",
2008					sizeof(struct hlist_head),
2009					ihash_entries,
2010					14,
2011					HASH_ZERO,
2012					&i_hash_shift,
2013					&i_hash_mask,
2014					0,
2015					0);
 
 
 
2016}
2017
2018void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2019{
2020	inode->i_mode = mode;
2021	if (S_ISCHR(mode)) {
2022		inode->i_fop = &def_chr_fops;
2023		inode->i_rdev = rdev;
2024	} else if (S_ISBLK(mode)) {
2025		inode->i_fop = &def_blk_fops;
2026		inode->i_rdev = rdev;
2027	} else if (S_ISFIFO(mode))
2028		inode->i_fop = &pipefifo_fops;
2029	else if (S_ISSOCK(mode))
2030		;	/* leave it no_open_fops */
2031	else
2032		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2033				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2034				  inode->i_ino);
2035}
2036EXPORT_SYMBOL(init_special_inode);
2037
2038/**
2039 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2040 * @inode: New inode
2041 * @dir: Directory inode
2042 * @mode: mode of the new inode
2043 */
2044void inode_init_owner(struct inode *inode, const struct inode *dir,
2045			umode_t mode)
2046{
2047	inode->i_uid = current_fsuid();
2048	if (dir && dir->i_mode & S_ISGID) {
2049		inode->i_gid = dir->i_gid;
2050
2051		/* Directories are special, and always inherit S_ISGID */
2052		if (S_ISDIR(mode))
2053			mode |= S_ISGID;
2054		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2055			 !in_group_p(inode->i_gid) &&
2056			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2057			mode &= ~S_ISGID;
2058	} else
2059		inode->i_gid = current_fsgid();
2060	inode->i_mode = mode;
2061}
2062EXPORT_SYMBOL(inode_init_owner);
2063
2064/**
2065 * inode_owner_or_capable - check current task permissions to inode
2066 * @inode: inode being checked
2067 *
2068 * Return true if current either has CAP_FOWNER in a namespace with the
2069 * inode owner uid mapped, or owns the file.
2070 */
2071bool inode_owner_or_capable(const struct inode *inode)
2072{
2073	struct user_namespace *ns;
2074
2075	if (uid_eq(current_fsuid(), inode->i_uid))
2076		return true;
2077
2078	ns = current_user_ns();
2079	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2080		return true;
2081	return false;
2082}
2083EXPORT_SYMBOL(inode_owner_or_capable);
2084
2085/*
2086 * Direct i/o helper functions
2087 */
2088static void __inode_dio_wait(struct inode *inode)
2089{
2090	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2091	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2092
2093	do {
2094		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2095		if (atomic_read(&inode->i_dio_count))
2096			schedule();
2097	} while (atomic_read(&inode->i_dio_count));
2098	finish_wait(wq, &q.wq_entry);
2099}
2100
2101/**
2102 * inode_dio_wait - wait for outstanding DIO requests to finish
2103 * @inode: inode to wait for
2104 *
2105 * Waits for all pending direct I/O requests to finish so that we can
2106 * proceed with a truncate or equivalent operation.
2107 *
2108 * Must be called under a lock that serializes taking new references
2109 * to i_dio_count, usually by inode->i_mutex.
2110 */
2111void inode_dio_wait(struct inode *inode)
2112{
2113	if (atomic_read(&inode->i_dio_count))
2114		__inode_dio_wait(inode);
2115}
2116EXPORT_SYMBOL(inode_dio_wait);
2117
2118/*
2119 * inode_set_flags - atomically set some inode flags
2120 *
2121 * Note: the caller should be holding i_mutex, or else be sure that
2122 * they have exclusive access to the inode structure (i.e., while the
2123 * inode is being instantiated).  The reason for the cmpxchg() loop
2124 * --- which wouldn't be necessary if all code paths which modify
2125 * i_flags actually followed this rule, is that there is at least one
2126 * code path which doesn't today so we use cmpxchg() out of an abundance
2127 * of caution.
2128 *
2129 * In the long run, i_mutex is overkill, and we should probably look
2130 * at using the i_lock spinlock to protect i_flags, and then make sure
2131 * it is so documented in include/linux/fs.h and that all code follows
2132 * the locking convention!!
2133 */
2134void inode_set_flags(struct inode *inode, unsigned int flags,
2135		     unsigned int mask)
2136{
 
 
2137	WARN_ON_ONCE(flags & ~mask);
2138	set_mask_bits(&inode->i_flags, mask, flags);
 
 
 
 
2139}
2140EXPORT_SYMBOL(inode_set_flags);
2141
2142void inode_nohighmem(struct inode *inode)
2143{
2144	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2145}
2146EXPORT_SYMBOL(inode_nohighmem);
2147
2148/**
2149 * timespec64_trunc - Truncate timespec64 to a granularity
2150 * @t: Timespec64
2151 * @gran: Granularity in ns.
2152 *
2153 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2154 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2155 */
2156struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2157{
2158	/* Avoid division in the common cases 1 ns and 1 s. */
2159	if (gran == 1) {
2160		/* nothing */
2161	} else if (gran == NSEC_PER_SEC) {
2162		t.tv_nsec = 0;
2163	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2164		t.tv_nsec -= t.tv_nsec % gran;
2165	} else {
2166		WARN(1, "illegal file time granularity: %u", gran);
2167	}
2168	return t;
2169}
2170EXPORT_SYMBOL(timespec64_trunc);
2171
2172/**
2173 * timestamp_truncate - Truncate timespec to a granularity
2174 * @t: Timespec
2175 * @inode: inode being updated
2176 *
2177 * Truncate a timespec to the granularity supported by the fs
2178 * containing the inode. Always rounds down. gran must
2179 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2180 */
2181struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2182{
2183	struct super_block *sb = inode->i_sb;
2184	unsigned int gran = sb->s_time_gran;
2185
2186	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2187	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2188		t.tv_nsec = 0;
2189
2190	/* Avoid division in the common cases 1 ns and 1 s. */
2191	if (gran == 1)
2192		; /* nothing */
2193	else if (gran == NSEC_PER_SEC)
2194		t.tv_nsec = 0;
2195	else if (gran > 1 && gran < NSEC_PER_SEC)
2196		t.tv_nsec -= t.tv_nsec % gran;
2197	else
2198		WARN(1, "invalid file time granularity: %u", gran);
2199	return t;
2200}
2201EXPORT_SYMBOL(timestamp_truncate);
2202
2203/**
2204 * current_time - Return FS time
2205 * @inode: inode.
2206 *
2207 * Return the current time truncated to the time granularity supported by
2208 * the fs.
2209 *
2210 * Note that inode and inode->sb cannot be NULL.
2211 * Otherwise, the function warns and returns time without truncation.
2212 */
2213struct timespec64 current_time(struct inode *inode)
2214{
2215	struct timespec64 now;
2216
2217	ktime_get_coarse_real_ts64(&now);
2218
2219	if (unlikely(!inode->i_sb)) {
2220		WARN(1, "current_time() called with uninitialized super_block in the inode");
2221		return now;
2222	}
2223
2224	return timestamp_truncate(now, inode);
2225}
2226EXPORT_SYMBOL(current_time);
2227
2228/*
2229 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2230 * configurations.
2231 *
2232 * Note: the caller should be holding i_mutex, or else be sure that they have
2233 * exclusive access to the inode structure.
2234 */
2235int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2236			     unsigned int flags)
2237{
2238	/*
2239	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2240	 * the relevant capability.
2241	 *
2242	 * This test looks nicer. Thanks to Pauline Middelink
2243	 */
2244	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2245	    !capable(CAP_LINUX_IMMUTABLE))
2246		return -EPERM;
2247
2248	return 0;
2249}
2250EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2251
2252/*
2253 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2254 * configurations.
2255 *
2256 * Note: the caller should be holding i_mutex, or else be sure that they have
2257 * exclusive access to the inode structure.
2258 */
2259int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2260			     struct fsxattr *fa)
2261{
2262	/*
2263	 * Can't modify an immutable/append-only file unless we have
2264	 * appropriate permission.
2265	 */
2266	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2267			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2268	    !capable(CAP_LINUX_IMMUTABLE))
2269		return -EPERM;
2270
2271	/*
2272	 * Project Quota ID state is only allowed to change from within the init
2273	 * namespace. Enforce that restriction only if we are trying to change
2274	 * the quota ID state. Everything else is allowed in user namespaces.
2275	 */
2276	if (current_user_ns() != &init_user_ns) {
2277		if (old_fa->fsx_projid != fa->fsx_projid)
2278			return -EINVAL;
2279		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2280				FS_XFLAG_PROJINHERIT)
2281			return -EINVAL;
2282	}
2283
2284	/* Check extent size hints. */
2285	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2286		return -EINVAL;
2287
2288	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2289			!S_ISDIR(inode->i_mode))
2290		return -EINVAL;
2291
2292	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2293	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2294		return -EINVAL;
2295
2296	/*
2297	 * It is only valid to set the DAX flag on regular files and
2298	 * directories on filesystems.
2299	 */
2300	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2301	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2302		return -EINVAL;
2303
2304	/* Extent size hints of zero turn off the flags. */
2305	if (fa->fsx_extsize == 0)
2306		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2307	if (fa->fsx_cowextsize == 0)
2308		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2309
2310	return 0;
2311}
2312EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);