Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
  21#include <trace/events/writeback.h>
  22#include "internal.h"
  23
  24/*
  25 * Inode locking rules:
  26 *
  27 * inode->i_lock protects:
  28 *   inode->i_state, inode->i_hash, __iget()
  29 * Inode LRU list locks protect:
  30 *   inode->i_sb->s_inode_lru, inode->i_lru
  31 * inode->i_sb->s_inode_list_lock protects:
  32 *   inode->i_sb->s_inodes, inode->i_sb_list
  33 * bdi->wb.list_lock protects:
  34 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  35 * inode_hash_lock protects:
  36 *   inode_hashtable, inode->i_hash
  37 *
  38 * Lock ordering:
  39 *
  40 * inode->i_sb->s_inode_list_lock
  41 *   inode->i_lock
  42 *     Inode LRU list locks
  43 *
  44 * bdi->wb.list_lock
  45 *   inode->i_lock
  46 *
  47 * inode_hash_lock
  48 *   inode->i_sb->s_inode_list_lock
  49 *   inode->i_lock
  50 *
  51 * iunique_lock
  52 *   inode_hash_lock
  53 */
  54
  55static unsigned int i_hash_mask __read_mostly;
  56static unsigned int i_hash_shift __read_mostly;
  57static struct hlist_head *inode_hashtable __read_mostly;
  58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  59
 
 
  60/*
  61 * Empty aops. Can be used for the cases where the user does not
  62 * define any of the address_space operations.
  63 */
  64const struct address_space_operations empty_aops = {
  65};
  66EXPORT_SYMBOL(empty_aops);
  67
  68/*
  69 * Statistics gathering..
  70 */
  71struct inodes_stat_t inodes_stat;
  72
  73static DEFINE_PER_CPU(unsigned long, nr_inodes);
  74static DEFINE_PER_CPU(unsigned long, nr_unused);
  75
  76static struct kmem_cache *inode_cachep __read_mostly;
  77
  78static long get_nr_inodes(void)
  79{
  80	int i;
  81	long sum = 0;
  82	for_each_possible_cpu(i)
  83		sum += per_cpu(nr_inodes, i);
  84	return sum < 0 ? 0 : sum;
  85}
  86
  87static inline long get_nr_inodes_unused(void)
  88{
  89	int i;
  90	long sum = 0;
  91	for_each_possible_cpu(i)
  92		sum += per_cpu(nr_unused, i);
  93	return sum < 0 ? 0 : sum;
  94}
  95
  96long get_nr_dirty_inodes(void)
  97{
  98	/* not actually dirty inodes, but a wild approximation */
  99	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 100	return nr_dirty > 0 ? nr_dirty : 0;
 101}
 102
 103/*
 104 * Handle nr_inode sysctl
 105 */
 106#ifdef CONFIG_SYSCTL
 107int proc_nr_inodes(struct ctl_table *table, int write,
 108		   void __user *buffer, size_t *lenp, loff_t *ppos)
 109{
 110	inodes_stat.nr_inodes = get_nr_inodes();
 111	inodes_stat.nr_unused = get_nr_inodes_unused();
 112	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 113}
 114#endif
 115
 116static int no_open(struct inode *inode, struct file *file)
 117{
 118	return -ENXIO;
 119}
 120
 121/**
 122 * inode_init_always - perform inode structure intialisation
 123 * @sb: superblock inode belongs to
 124 * @inode: inode to initialise
 125 *
 126 * These are initializations that need to be done on every inode
 127 * allocation as the fields are not initialised by slab allocation.
 128 */
 129int inode_init_always(struct super_block *sb, struct inode *inode)
 130{
 131	static const struct inode_operations empty_iops;
 132	static const struct file_operations no_open_fops = {.open = no_open};
 133	struct address_space *const mapping = &inode->i_data;
 134
 135	inode->i_sb = sb;
 136	inode->i_blkbits = sb->s_blocksize_bits;
 137	inode->i_flags = 0;
 138	atomic_set(&inode->i_count, 1);
 139	inode->i_op = &empty_iops;
 140	inode->i_fop = &no_open_fops;
 141	inode->__i_nlink = 1;
 142	inode->i_opflags = 0;
 143	if (sb->s_xattr)
 144		inode->i_opflags |= IOP_XATTR;
 145	i_uid_write(inode, 0);
 146	i_gid_write(inode, 0);
 147	atomic_set(&inode->i_writecount, 0);
 148	inode->i_size = 0;
 149	inode->i_blocks = 0;
 150	inode->i_bytes = 0;
 151	inode->i_generation = 0;
 
 
 
 152	inode->i_pipe = NULL;
 153	inode->i_bdev = NULL;
 154	inode->i_cdev = NULL;
 155	inode->i_link = NULL;
 156	inode->i_dir_seq = 0;
 157	inode->i_rdev = 0;
 158	inode->dirtied_when = 0;
 159
 160#ifdef CONFIG_CGROUP_WRITEBACK
 161	inode->i_wb_frn_winner = 0;
 162	inode->i_wb_frn_avg_time = 0;
 163	inode->i_wb_frn_history = 0;
 164#endif
 165
 166	if (security_inode_alloc(inode))
 167		goto out;
 168	spin_lock_init(&inode->i_lock);
 169	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 170
 171	init_rwsem(&inode->i_rwsem);
 172	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 173
 174	atomic_set(&inode->i_dio_count, 0);
 175
 176	mapping->a_ops = &empty_aops;
 177	mapping->host = inode;
 178	mapping->flags = 0;
 179	atomic_set(&mapping->i_mmap_writable, 0);
 180	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 181	mapping->private_data = NULL;
 
 182	mapping->writeback_index = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 183	inode->i_private = NULL;
 184	inode->i_mapping = mapping;
 185	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 186#ifdef CONFIG_FS_POSIX_ACL
 187	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 188#endif
 189
 190#ifdef CONFIG_FSNOTIFY
 191	inode->i_fsnotify_mask = 0;
 192#endif
 193	inode->i_flctx = NULL;
 194	this_cpu_inc(nr_inodes);
 195
 196	return 0;
 197out:
 198	return -ENOMEM;
 199}
 200EXPORT_SYMBOL(inode_init_always);
 201
 202static struct inode *alloc_inode(struct super_block *sb)
 203{
 204	struct inode *inode;
 205
 206	if (sb->s_op->alloc_inode)
 207		inode = sb->s_op->alloc_inode(sb);
 208	else
 209		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 210
 211	if (!inode)
 212		return NULL;
 213
 214	if (unlikely(inode_init_always(sb, inode))) {
 215		if (inode->i_sb->s_op->destroy_inode)
 216			inode->i_sb->s_op->destroy_inode(inode);
 217		else
 218			kmem_cache_free(inode_cachep, inode);
 219		return NULL;
 220	}
 221
 222	return inode;
 223}
 224
 225void free_inode_nonrcu(struct inode *inode)
 226{
 227	kmem_cache_free(inode_cachep, inode);
 228}
 229EXPORT_SYMBOL(free_inode_nonrcu);
 230
 231void __destroy_inode(struct inode *inode)
 232{
 233	BUG_ON(inode_has_buffers(inode));
 234	inode_detach_wb(inode);
 235	security_inode_free(inode);
 236	fsnotify_inode_delete(inode);
 237	locks_free_lock_context(inode);
 238	if (!inode->i_nlink) {
 239		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 240		atomic_long_dec(&inode->i_sb->s_remove_count);
 241	}
 242
 243#ifdef CONFIG_FS_POSIX_ACL
 244	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 245		posix_acl_release(inode->i_acl);
 246	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 247		posix_acl_release(inode->i_default_acl);
 248#endif
 249	this_cpu_dec(nr_inodes);
 250}
 251EXPORT_SYMBOL(__destroy_inode);
 252
 253static void i_callback(struct rcu_head *head)
 254{
 255	struct inode *inode = container_of(head, struct inode, i_rcu);
 256	kmem_cache_free(inode_cachep, inode);
 257}
 258
 259static void destroy_inode(struct inode *inode)
 260{
 261	BUG_ON(!list_empty(&inode->i_lru));
 262	__destroy_inode(inode);
 263	if (inode->i_sb->s_op->destroy_inode)
 264		inode->i_sb->s_op->destroy_inode(inode);
 265	else
 266		call_rcu(&inode->i_rcu, i_callback);
 267}
 268
 269/**
 270 * drop_nlink - directly drop an inode's link count
 271 * @inode: inode
 272 *
 273 * This is a low-level filesystem helper to replace any
 274 * direct filesystem manipulation of i_nlink.  In cases
 275 * where we are attempting to track writes to the
 276 * filesystem, a decrement to zero means an imminent
 277 * write when the file is truncated and actually unlinked
 278 * on the filesystem.
 279 */
 280void drop_nlink(struct inode *inode)
 281{
 282	WARN_ON(inode->i_nlink == 0);
 283	inode->__i_nlink--;
 284	if (!inode->i_nlink)
 285		atomic_long_inc(&inode->i_sb->s_remove_count);
 286}
 287EXPORT_SYMBOL(drop_nlink);
 288
 289/**
 290 * clear_nlink - directly zero an inode's link count
 291 * @inode: inode
 292 *
 293 * This is a low-level filesystem helper to replace any
 294 * direct filesystem manipulation of i_nlink.  See
 295 * drop_nlink() for why we care about i_nlink hitting zero.
 296 */
 297void clear_nlink(struct inode *inode)
 298{
 299	if (inode->i_nlink) {
 300		inode->__i_nlink = 0;
 301		atomic_long_inc(&inode->i_sb->s_remove_count);
 302	}
 303}
 304EXPORT_SYMBOL(clear_nlink);
 305
 306/**
 307 * set_nlink - directly set an inode's link count
 308 * @inode: inode
 309 * @nlink: new nlink (should be non-zero)
 310 *
 311 * This is a low-level filesystem helper to replace any
 312 * direct filesystem manipulation of i_nlink.
 313 */
 314void set_nlink(struct inode *inode, unsigned int nlink)
 315{
 316	if (!nlink) {
 317		clear_nlink(inode);
 318	} else {
 319		/* Yes, some filesystems do change nlink from zero to one */
 320		if (inode->i_nlink == 0)
 321			atomic_long_dec(&inode->i_sb->s_remove_count);
 322
 323		inode->__i_nlink = nlink;
 324	}
 325}
 326EXPORT_SYMBOL(set_nlink);
 327
 328/**
 329 * inc_nlink - directly increment an inode's link count
 330 * @inode: inode
 331 *
 332 * This is a low-level filesystem helper to replace any
 333 * direct filesystem manipulation of i_nlink.  Currently,
 334 * it is only here for parity with dec_nlink().
 335 */
 336void inc_nlink(struct inode *inode)
 337{
 338	if (unlikely(inode->i_nlink == 0)) {
 339		WARN_ON(!(inode->i_state & I_LINKABLE));
 340		atomic_long_dec(&inode->i_sb->s_remove_count);
 341	}
 342
 343	inode->__i_nlink++;
 344}
 345EXPORT_SYMBOL(inc_nlink);
 346
 347void address_space_init_once(struct address_space *mapping)
 348{
 349	memset(mapping, 0, sizeof(*mapping));
 350	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
 351	spin_lock_init(&mapping->tree_lock);
 352	init_rwsem(&mapping->i_mmap_rwsem);
 353	INIT_LIST_HEAD(&mapping->private_list);
 354	spin_lock_init(&mapping->private_lock);
 355	mapping->i_mmap = RB_ROOT;
 
 356}
 357EXPORT_SYMBOL(address_space_init_once);
 358
 359/*
 360 * These are initializations that only need to be done
 361 * once, because the fields are idempotent across use
 362 * of the inode, so let the slab aware of that.
 363 */
 364void inode_init_once(struct inode *inode)
 365{
 366	memset(inode, 0, sizeof(*inode));
 367	INIT_HLIST_NODE(&inode->i_hash);
 368	INIT_LIST_HEAD(&inode->i_devices);
 369	INIT_LIST_HEAD(&inode->i_io_list);
 370	INIT_LIST_HEAD(&inode->i_wb_list);
 371	INIT_LIST_HEAD(&inode->i_lru);
 372	address_space_init_once(&inode->i_data);
 373	i_size_ordered_init(inode);
 374#ifdef CONFIG_FSNOTIFY
 375	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 376#endif
 377}
 378EXPORT_SYMBOL(inode_init_once);
 379
 380static void init_once(void *foo)
 381{
 382	struct inode *inode = (struct inode *) foo;
 383
 384	inode_init_once(inode);
 385}
 386
 387/*
 388 * inode->i_lock must be held
 389 */
 390void __iget(struct inode *inode)
 391{
 392	atomic_inc(&inode->i_count);
 393}
 394
 395/*
 396 * get additional reference to inode; caller must already hold one.
 397 */
 398void ihold(struct inode *inode)
 399{
 400	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 401}
 402EXPORT_SYMBOL(ihold);
 403
 404static void inode_lru_list_add(struct inode *inode)
 405{
 406	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 407		this_cpu_inc(nr_unused);
 408}
 409
 410/*
 411 * Add inode to LRU if needed (inode is unused and clean).
 412 *
 413 * Needs inode->i_lock held.
 414 */
 415void inode_add_lru(struct inode *inode)
 416{
 417	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 418				I_FREEING | I_WILL_FREE)) &&
 419	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 420		inode_lru_list_add(inode);
 421}
 422
 423
 424static void inode_lru_list_del(struct inode *inode)
 425{
 426
 427	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 428		this_cpu_dec(nr_unused);
 429}
 430
 431/**
 432 * inode_sb_list_add - add inode to the superblock list of inodes
 433 * @inode: inode to add
 434 */
 435void inode_sb_list_add(struct inode *inode)
 436{
 437	spin_lock(&inode->i_sb->s_inode_list_lock);
 438	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 439	spin_unlock(&inode->i_sb->s_inode_list_lock);
 440}
 441EXPORT_SYMBOL_GPL(inode_sb_list_add);
 442
 443static inline void inode_sb_list_del(struct inode *inode)
 444{
 445	if (!list_empty(&inode->i_sb_list)) {
 446		spin_lock(&inode->i_sb->s_inode_list_lock);
 447		list_del_init(&inode->i_sb_list);
 448		spin_unlock(&inode->i_sb->s_inode_list_lock);
 449	}
 450}
 451
 452static unsigned long hash(struct super_block *sb, unsigned long hashval)
 453{
 454	unsigned long tmp;
 455
 456	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 457			L1_CACHE_BYTES;
 458	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 459	return tmp & i_hash_mask;
 460}
 461
 462/**
 463 *	__insert_inode_hash - hash an inode
 464 *	@inode: unhashed inode
 465 *	@hashval: unsigned long value used to locate this object in the
 466 *		inode_hashtable.
 467 *
 468 *	Add an inode to the inode hash for this superblock.
 469 */
 470void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 471{
 472	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 473
 474	spin_lock(&inode_hash_lock);
 475	spin_lock(&inode->i_lock);
 476	hlist_add_head(&inode->i_hash, b);
 477	spin_unlock(&inode->i_lock);
 478	spin_unlock(&inode_hash_lock);
 479}
 480EXPORT_SYMBOL(__insert_inode_hash);
 481
 482/**
 483 *	__remove_inode_hash - remove an inode from the hash
 484 *	@inode: inode to unhash
 485 *
 486 *	Remove an inode from the superblock.
 487 */
 488void __remove_inode_hash(struct inode *inode)
 489{
 490	spin_lock(&inode_hash_lock);
 491	spin_lock(&inode->i_lock);
 492	hlist_del_init(&inode->i_hash);
 493	spin_unlock(&inode->i_lock);
 494	spin_unlock(&inode_hash_lock);
 495}
 496EXPORT_SYMBOL(__remove_inode_hash);
 497
 498void clear_inode(struct inode *inode)
 499{
 500	might_sleep();
 501	/*
 502	 * We have to cycle tree_lock here because reclaim can be still in the
 503	 * process of removing the last page (in __delete_from_page_cache())
 504	 * and we must not free mapping under it.
 505	 */
 506	spin_lock_irq(&inode->i_data.tree_lock);
 507	BUG_ON(inode->i_data.nrpages);
 508	BUG_ON(inode->i_data.nrexceptional);
 509	spin_unlock_irq(&inode->i_data.tree_lock);
 510	BUG_ON(!list_empty(&inode->i_data.private_list));
 511	BUG_ON(!(inode->i_state & I_FREEING));
 512	BUG_ON(inode->i_state & I_CLEAR);
 513	BUG_ON(!list_empty(&inode->i_wb_list));
 514	/* don't need i_lock here, no concurrent mods to i_state */
 515	inode->i_state = I_FREEING | I_CLEAR;
 516}
 517EXPORT_SYMBOL(clear_inode);
 518
 519/*
 520 * Free the inode passed in, removing it from the lists it is still connected
 521 * to. We remove any pages still attached to the inode and wait for any IO that
 522 * is still in progress before finally destroying the inode.
 523 *
 524 * An inode must already be marked I_FREEING so that we avoid the inode being
 525 * moved back onto lists if we race with other code that manipulates the lists
 526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 527 *
 528 * An inode must already be removed from the LRU list before being evicted from
 529 * the cache. This should occur atomically with setting the I_FREEING state
 530 * flag, so no inodes here should ever be on the LRU when being evicted.
 531 */
 532static void evict(struct inode *inode)
 533{
 534	const struct super_operations *op = inode->i_sb->s_op;
 535
 536	BUG_ON(!(inode->i_state & I_FREEING));
 537	BUG_ON(!list_empty(&inode->i_lru));
 538
 539	if (!list_empty(&inode->i_io_list))
 540		inode_io_list_del(inode);
 541
 542	inode_sb_list_del(inode);
 543
 544	/*
 545	 * Wait for flusher thread to be done with the inode so that filesystem
 546	 * does not start destroying it while writeback is still running. Since
 547	 * the inode has I_FREEING set, flusher thread won't start new work on
 548	 * the inode.  We just have to wait for running writeback to finish.
 549	 */
 550	inode_wait_for_writeback(inode);
 551
 552	if (op->evict_inode) {
 553		op->evict_inode(inode);
 554	} else {
 555		truncate_inode_pages_final(&inode->i_data);
 556		clear_inode(inode);
 557	}
 558	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 559		bd_forget(inode);
 560	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 561		cd_forget(inode);
 562
 563	remove_inode_hash(inode);
 564
 565	spin_lock(&inode->i_lock);
 566	wake_up_bit(&inode->i_state, __I_NEW);
 567	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 568	spin_unlock(&inode->i_lock);
 569
 570	destroy_inode(inode);
 571}
 572
 573/*
 574 * dispose_list - dispose of the contents of a local list
 575 * @head: the head of the list to free
 576 *
 577 * Dispose-list gets a local list with local inodes in it, so it doesn't
 578 * need to worry about list corruption and SMP locks.
 579 */
 580static void dispose_list(struct list_head *head)
 581{
 582	while (!list_empty(head)) {
 583		struct inode *inode;
 584
 585		inode = list_first_entry(head, struct inode, i_lru);
 586		list_del_init(&inode->i_lru);
 587
 588		evict(inode);
 589		cond_resched();
 590	}
 591}
 592
 593/**
 594 * evict_inodes	- evict all evictable inodes for a superblock
 595 * @sb:		superblock to operate on
 596 *
 597 * Make sure that no inodes with zero refcount are retained.  This is
 598 * called by superblock shutdown after having MS_ACTIVE flag removed,
 599 * so any inode reaching zero refcount during or after that call will
 600 * be immediately evicted.
 601 */
 602void evict_inodes(struct super_block *sb)
 603{
 604	struct inode *inode, *next;
 605	LIST_HEAD(dispose);
 606
 607again:
 608	spin_lock(&sb->s_inode_list_lock);
 609	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 610		if (atomic_read(&inode->i_count))
 611			continue;
 612
 613		spin_lock(&inode->i_lock);
 614		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 615			spin_unlock(&inode->i_lock);
 616			continue;
 617		}
 618
 619		inode->i_state |= I_FREEING;
 620		inode_lru_list_del(inode);
 621		spin_unlock(&inode->i_lock);
 622		list_add(&inode->i_lru, &dispose);
 623
 624		/*
 625		 * We can have a ton of inodes to evict at unmount time given
 626		 * enough memory, check to see if we need to go to sleep for a
 627		 * bit so we don't livelock.
 628		 */
 629		if (need_resched()) {
 630			spin_unlock(&sb->s_inode_list_lock);
 631			cond_resched();
 632			dispose_list(&dispose);
 633			goto again;
 634		}
 635	}
 636	spin_unlock(&sb->s_inode_list_lock);
 637
 638	dispose_list(&dispose);
 639}
 640
 641/**
 642 * invalidate_inodes	- attempt to free all inodes on a superblock
 643 * @sb:		superblock to operate on
 644 * @kill_dirty: flag to guide handling of dirty inodes
 645 *
 646 * Attempts to free all inodes for a given superblock.  If there were any
 647 * busy inodes return a non-zero value, else zero.
 648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 649 * them as busy.
 650 */
 651int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 652{
 653	int busy = 0;
 654	struct inode *inode, *next;
 655	LIST_HEAD(dispose);
 656
 657	spin_lock(&sb->s_inode_list_lock);
 658	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 659		spin_lock(&inode->i_lock);
 660		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 661			spin_unlock(&inode->i_lock);
 662			continue;
 663		}
 664		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 665			spin_unlock(&inode->i_lock);
 666			busy = 1;
 667			continue;
 668		}
 669		if (atomic_read(&inode->i_count)) {
 670			spin_unlock(&inode->i_lock);
 671			busy = 1;
 672			continue;
 673		}
 674
 675		inode->i_state |= I_FREEING;
 676		inode_lru_list_del(inode);
 677		spin_unlock(&inode->i_lock);
 678		list_add(&inode->i_lru, &dispose);
 679	}
 680	spin_unlock(&sb->s_inode_list_lock);
 681
 682	dispose_list(&dispose);
 683
 684	return busy;
 685}
 686
 687/*
 688 * Isolate the inode from the LRU in preparation for freeing it.
 689 *
 690 * Any inodes which are pinned purely because of attached pagecache have their
 691 * pagecache removed.  If the inode has metadata buffers attached to
 692 * mapping->private_list then try to remove them.
 693 *
 694 * If the inode has the I_REFERENCED flag set, then it means that it has been
 695 * used recently - the flag is set in iput_final(). When we encounter such an
 696 * inode, clear the flag and move it to the back of the LRU so it gets another
 697 * pass through the LRU before it gets reclaimed. This is necessary because of
 698 * the fact we are doing lazy LRU updates to minimise lock contention so the
 699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 700 * with this flag set because they are the inodes that are out of order.
 701 */
 702static enum lru_status inode_lru_isolate(struct list_head *item,
 703		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 704{
 705	struct list_head *freeable = arg;
 706	struct inode	*inode = container_of(item, struct inode, i_lru);
 707
 708	/*
 709	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 710	 * If we fail to get the lock, just skip it.
 711	 */
 712	if (!spin_trylock(&inode->i_lock))
 713		return LRU_SKIP;
 714
 715	/*
 716	 * Referenced or dirty inodes are still in use. Give them another pass
 717	 * through the LRU as we canot reclaim them now.
 718	 */
 719	if (atomic_read(&inode->i_count) ||
 720	    (inode->i_state & ~I_REFERENCED)) {
 721		list_lru_isolate(lru, &inode->i_lru);
 722		spin_unlock(&inode->i_lock);
 723		this_cpu_dec(nr_unused);
 724		return LRU_REMOVED;
 725	}
 726
 727	/* recently referenced inodes get one more pass */
 728	if (inode->i_state & I_REFERENCED) {
 729		inode->i_state &= ~I_REFERENCED;
 730		spin_unlock(&inode->i_lock);
 731		return LRU_ROTATE;
 732	}
 733
 734	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 735		__iget(inode);
 736		spin_unlock(&inode->i_lock);
 737		spin_unlock(lru_lock);
 738		if (remove_inode_buffers(inode)) {
 739			unsigned long reap;
 740			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 741			if (current_is_kswapd())
 742				__count_vm_events(KSWAPD_INODESTEAL, reap);
 743			else
 744				__count_vm_events(PGINODESTEAL, reap);
 745			if (current->reclaim_state)
 746				current->reclaim_state->reclaimed_slab += reap;
 747		}
 748		iput(inode);
 749		spin_lock(lru_lock);
 750		return LRU_RETRY;
 751	}
 752
 753	WARN_ON(inode->i_state & I_NEW);
 754	inode->i_state |= I_FREEING;
 755	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 756	spin_unlock(&inode->i_lock);
 757
 758	this_cpu_dec(nr_unused);
 759	return LRU_REMOVED;
 760}
 761
 762/*
 763 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 764 * This is called from the superblock shrinker function with a number of inodes
 765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 766 * then are freed outside inode_lock by dispose_list().
 767 */
 768long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 
 769{
 770	LIST_HEAD(freeable);
 771	long freed;
 772
 773	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 774				     inode_lru_isolate, &freeable);
 775	dispose_list(&freeable);
 776	return freed;
 777}
 778
 779static void __wait_on_freeing_inode(struct inode *inode);
 780/*
 781 * Called with the inode lock held.
 782 */
 783static struct inode *find_inode(struct super_block *sb,
 784				struct hlist_head *head,
 785				int (*test)(struct inode *, void *),
 786				void *data)
 787{
 788	struct inode *inode = NULL;
 789
 790repeat:
 791	hlist_for_each_entry(inode, head, i_hash) {
 792		if (inode->i_sb != sb)
 793			continue;
 794		if (!test(inode, data))
 795			continue;
 796		spin_lock(&inode->i_lock);
 797		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 798			__wait_on_freeing_inode(inode);
 799			goto repeat;
 800		}
 801		__iget(inode);
 802		spin_unlock(&inode->i_lock);
 803		return inode;
 804	}
 805	return NULL;
 806}
 807
 808/*
 809 * find_inode_fast is the fast path version of find_inode, see the comment at
 810 * iget_locked for details.
 811 */
 812static struct inode *find_inode_fast(struct super_block *sb,
 813				struct hlist_head *head, unsigned long ino)
 814{
 815	struct inode *inode = NULL;
 816
 817repeat:
 818	hlist_for_each_entry(inode, head, i_hash) {
 819		if (inode->i_ino != ino)
 820			continue;
 821		if (inode->i_sb != sb)
 822			continue;
 823		spin_lock(&inode->i_lock);
 824		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 825			__wait_on_freeing_inode(inode);
 826			goto repeat;
 827		}
 828		__iget(inode);
 829		spin_unlock(&inode->i_lock);
 830		return inode;
 831	}
 832	return NULL;
 833}
 834
 835/*
 836 * Each cpu owns a range of LAST_INO_BATCH numbers.
 837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 838 * to renew the exhausted range.
 839 *
 840 * This does not significantly increase overflow rate because every CPU can
 841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 844 * overflow rate by 2x, which does not seem too significant.
 845 *
 846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 847 * error if st_ino won't fit in target struct field. Use 32bit counter
 848 * here to attempt to avoid that.
 849 */
 850#define LAST_INO_BATCH 1024
 851static DEFINE_PER_CPU(unsigned int, last_ino);
 852
 853unsigned int get_next_ino(void)
 854{
 855	unsigned int *p = &get_cpu_var(last_ino);
 856	unsigned int res = *p;
 857
 858#ifdef CONFIG_SMP
 859	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 860		static atomic_t shared_last_ino;
 861		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 862
 863		res = next - LAST_INO_BATCH;
 864	}
 865#endif
 866
 867	res++;
 868	/* get_next_ino should not provide a 0 inode number */
 869	if (unlikely(!res))
 870		res++;
 871	*p = res;
 872	put_cpu_var(last_ino);
 873	return res;
 874}
 875EXPORT_SYMBOL(get_next_ino);
 876
 877/**
 878 *	new_inode_pseudo 	- obtain an inode
 879 *	@sb: superblock
 880 *
 881 *	Allocates a new inode for given superblock.
 882 *	Inode wont be chained in superblock s_inodes list
 883 *	This means :
 884 *	- fs can't be unmount
 885 *	- quotas, fsnotify, writeback can't work
 886 */
 887struct inode *new_inode_pseudo(struct super_block *sb)
 888{
 889	struct inode *inode = alloc_inode(sb);
 890
 891	if (inode) {
 892		spin_lock(&inode->i_lock);
 893		inode->i_state = 0;
 894		spin_unlock(&inode->i_lock);
 895		INIT_LIST_HEAD(&inode->i_sb_list);
 896	}
 897	return inode;
 898}
 899
 900/**
 901 *	new_inode 	- obtain an inode
 902 *	@sb: superblock
 903 *
 904 *	Allocates a new inode for given superblock. The default gfp_mask
 905 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 906 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 907 *	for the page cache are not reclaimable or migratable,
 908 *	mapping_set_gfp_mask() must be called with suitable flags on the
 909 *	newly created inode's mapping
 910 *
 911 */
 912struct inode *new_inode(struct super_block *sb)
 913{
 914	struct inode *inode;
 915
 916	spin_lock_prefetch(&sb->s_inode_list_lock);
 917
 918	inode = new_inode_pseudo(sb);
 919	if (inode)
 920		inode_sb_list_add(inode);
 921	return inode;
 922}
 923EXPORT_SYMBOL(new_inode);
 924
 925#ifdef CONFIG_DEBUG_LOCK_ALLOC
 926void lockdep_annotate_inode_mutex_key(struct inode *inode)
 927{
 928	if (S_ISDIR(inode->i_mode)) {
 929		struct file_system_type *type = inode->i_sb->s_type;
 930
 931		/* Set new key only if filesystem hasn't already changed it */
 932		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 933			/*
 934			 * ensure nobody is actually holding i_mutex
 935			 */
 936			// mutex_destroy(&inode->i_mutex);
 937			init_rwsem(&inode->i_rwsem);
 938			lockdep_set_class(&inode->i_rwsem,
 939					  &type->i_mutex_dir_key);
 940		}
 941	}
 942}
 943EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 944#endif
 945
 946/**
 947 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 948 * @inode:	new inode to unlock
 949 *
 950 * Called when the inode is fully initialised to clear the new state of the
 951 * inode and wake up anyone waiting for the inode to finish initialisation.
 952 */
 953void unlock_new_inode(struct inode *inode)
 954{
 955	lockdep_annotate_inode_mutex_key(inode);
 956	spin_lock(&inode->i_lock);
 957	WARN_ON(!(inode->i_state & I_NEW));
 958	inode->i_state &= ~I_NEW;
 959	smp_mb();
 960	wake_up_bit(&inode->i_state, __I_NEW);
 961	spin_unlock(&inode->i_lock);
 962}
 963EXPORT_SYMBOL(unlock_new_inode);
 964
 965/**
 966 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 967 *
 968 * Lock any non-NULL argument that is not a directory.
 969 * Zero, one or two objects may be locked by this function.
 970 *
 971 * @inode1: first inode to lock
 972 * @inode2: second inode to lock
 973 */
 974void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 975{
 976	if (inode1 > inode2)
 977		swap(inode1, inode2);
 978
 979	if (inode1 && !S_ISDIR(inode1->i_mode))
 980		inode_lock(inode1);
 981	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 982		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
 983}
 984EXPORT_SYMBOL(lock_two_nondirectories);
 985
 986/**
 987 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 988 * @inode1: first inode to unlock
 989 * @inode2: second inode to unlock
 990 */
 991void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 992{
 993	if (inode1 && !S_ISDIR(inode1->i_mode))
 994		inode_unlock(inode1);
 995	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 996		inode_unlock(inode2);
 997}
 998EXPORT_SYMBOL(unlock_two_nondirectories);
 999
1000/**
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb:		super block of file system
1003 * @hashval:	hash value (usually inode number) to get
1004 * @test:	callback used for comparisons between inodes
1005 * @set:	callback used to initialize a new struct inode
1006 * @data:	opaque data pointer to pass to @test and @set
1007 *
1008 * Search for the inode specified by @hashval and @data in the inode cache,
1009 * and if present it is return it with an increased reference count. This is
1010 * a generalized version of iget_locked() for file systems where the inode
1011 * number is not sufficient for unique identification of an inode.
1012 *
1013 * If the inode is not in cache, allocate a new inode and return it locked,
1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015 * before unlocking it via unlock_new_inode().
1016 *
1017 * Note both @test and @set are called with the inode_hash_lock held, so can't
1018 * sleep.
1019 */
1020struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021		int (*test)(struct inode *, void *),
1022		int (*set)(struct inode *, void *), void *data)
1023{
1024	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025	struct inode *inode;
1026again:
1027	spin_lock(&inode_hash_lock);
1028	inode = find_inode(sb, head, test, data);
1029	spin_unlock(&inode_hash_lock);
1030
1031	if (inode) {
1032		wait_on_inode(inode);
1033		if (unlikely(inode_unhashed(inode))) {
1034			iput(inode);
1035			goto again;
1036		}
1037		return inode;
1038	}
1039
1040	inode = alloc_inode(sb);
1041	if (inode) {
1042		struct inode *old;
1043
1044		spin_lock(&inode_hash_lock);
1045		/* We released the lock, so.. */
1046		old = find_inode(sb, head, test, data);
1047		if (!old) {
1048			if (set(inode, data))
1049				goto set_failed;
1050
1051			spin_lock(&inode->i_lock);
1052			inode->i_state = I_NEW;
1053			hlist_add_head(&inode->i_hash, head);
1054			spin_unlock(&inode->i_lock);
1055			inode_sb_list_add(inode);
1056			spin_unlock(&inode_hash_lock);
1057
1058			/* Return the locked inode with I_NEW set, the
1059			 * caller is responsible for filling in the contents
1060			 */
1061			return inode;
1062		}
1063
1064		/*
1065		 * Uhhuh, somebody else created the same inode under
1066		 * us. Use the old inode instead of the one we just
1067		 * allocated.
1068		 */
1069		spin_unlock(&inode_hash_lock);
1070		destroy_inode(inode);
1071		inode = old;
1072		wait_on_inode(inode);
1073		if (unlikely(inode_unhashed(inode))) {
1074			iput(inode);
1075			goto again;
1076		}
1077	}
1078	return inode;
1079
1080set_failed:
1081	spin_unlock(&inode_hash_lock);
1082	destroy_inode(inode);
1083	return NULL;
1084}
1085EXPORT_SYMBOL(iget5_locked);
1086
1087/**
1088 * iget_locked - obtain an inode from a mounted file system
1089 * @sb:		super block of file system
1090 * @ino:	inode number to get
1091 *
1092 * Search for the inode specified by @ino in the inode cache and if present
1093 * return it with an increased reference count. This is for file systems
1094 * where the inode number is sufficient for unique identification of an inode.
1095 *
1096 * If the inode is not in cache, allocate a new inode and return it locked,
1097 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1098 * before unlocking it via unlock_new_inode().
1099 */
1100struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1101{
1102	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1103	struct inode *inode;
1104again:
1105	spin_lock(&inode_hash_lock);
1106	inode = find_inode_fast(sb, head, ino);
1107	spin_unlock(&inode_hash_lock);
1108	if (inode) {
1109		wait_on_inode(inode);
1110		if (unlikely(inode_unhashed(inode))) {
1111			iput(inode);
1112			goto again;
1113		}
1114		return inode;
1115	}
1116
1117	inode = alloc_inode(sb);
1118	if (inode) {
1119		struct inode *old;
1120
1121		spin_lock(&inode_hash_lock);
1122		/* We released the lock, so.. */
1123		old = find_inode_fast(sb, head, ino);
1124		if (!old) {
1125			inode->i_ino = ino;
1126			spin_lock(&inode->i_lock);
1127			inode->i_state = I_NEW;
1128			hlist_add_head(&inode->i_hash, head);
1129			spin_unlock(&inode->i_lock);
1130			inode_sb_list_add(inode);
1131			spin_unlock(&inode_hash_lock);
1132
1133			/* Return the locked inode with I_NEW set, the
1134			 * caller is responsible for filling in the contents
1135			 */
1136			return inode;
1137		}
1138
1139		/*
1140		 * Uhhuh, somebody else created the same inode under
1141		 * us. Use the old inode instead of the one we just
1142		 * allocated.
1143		 */
1144		spin_unlock(&inode_hash_lock);
1145		destroy_inode(inode);
1146		inode = old;
1147		wait_on_inode(inode);
1148		if (unlikely(inode_unhashed(inode))) {
1149			iput(inode);
1150			goto again;
1151		}
1152	}
1153	return inode;
1154}
1155EXPORT_SYMBOL(iget_locked);
1156
1157/*
1158 * search the inode cache for a matching inode number.
1159 * If we find one, then the inode number we are trying to
1160 * allocate is not unique and so we should not use it.
1161 *
1162 * Returns 1 if the inode number is unique, 0 if it is not.
1163 */
1164static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1165{
1166	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1167	struct inode *inode;
1168
1169	spin_lock(&inode_hash_lock);
1170	hlist_for_each_entry(inode, b, i_hash) {
1171		if (inode->i_ino == ino && inode->i_sb == sb) {
1172			spin_unlock(&inode_hash_lock);
1173			return 0;
1174		}
1175	}
1176	spin_unlock(&inode_hash_lock);
1177
1178	return 1;
1179}
1180
1181/**
1182 *	iunique - get a unique inode number
1183 *	@sb: superblock
1184 *	@max_reserved: highest reserved inode number
1185 *
1186 *	Obtain an inode number that is unique on the system for a given
1187 *	superblock. This is used by file systems that have no natural
1188 *	permanent inode numbering system. An inode number is returned that
1189 *	is higher than the reserved limit but unique.
1190 *
1191 *	BUGS:
1192 *	With a large number of inodes live on the file system this function
1193 *	currently becomes quite slow.
1194 */
1195ino_t iunique(struct super_block *sb, ino_t max_reserved)
1196{
1197	/*
1198	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199	 * error if st_ino won't fit in target struct field. Use 32bit counter
1200	 * here to attempt to avoid that.
1201	 */
1202	static DEFINE_SPINLOCK(iunique_lock);
1203	static unsigned int counter;
1204	ino_t res;
1205
1206	spin_lock(&iunique_lock);
1207	do {
1208		if (counter <= max_reserved)
1209			counter = max_reserved + 1;
1210		res = counter++;
1211	} while (!test_inode_iunique(sb, res));
1212	spin_unlock(&iunique_lock);
1213
1214	return res;
1215}
1216EXPORT_SYMBOL(iunique);
1217
1218struct inode *igrab(struct inode *inode)
1219{
1220	spin_lock(&inode->i_lock);
1221	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1222		__iget(inode);
1223		spin_unlock(&inode->i_lock);
1224	} else {
1225		spin_unlock(&inode->i_lock);
1226		/*
1227		 * Handle the case where s_op->clear_inode is not been
1228		 * called yet, and somebody is calling igrab
1229		 * while the inode is getting freed.
1230		 */
1231		inode = NULL;
1232	}
1233	return inode;
1234}
1235EXPORT_SYMBOL(igrab);
1236
1237/**
1238 * ilookup5_nowait - search for an inode in the inode cache
1239 * @sb:		super block of file system to search
1240 * @hashval:	hash value (usually inode number) to search for
1241 * @test:	callback used for comparisons between inodes
1242 * @data:	opaque data pointer to pass to @test
1243 *
1244 * Search for the inode specified by @hashval and @data in the inode cache.
1245 * If the inode is in the cache, the inode is returned with an incremented
1246 * reference count.
1247 *
1248 * Note: I_NEW is not waited upon so you have to be very careful what you do
1249 * with the returned inode.  You probably should be using ilookup5() instead.
1250 *
1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1252 */
1253struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1254		int (*test)(struct inode *, void *), void *data)
1255{
1256	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1257	struct inode *inode;
1258
1259	spin_lock(&inode_hash_lock);
1260	inode = find_inode(sb, head, test, data);
1261	spin_unlock(&inode_hash_lock);
1262
1263	return inode;
1264}
1265EXPORT_SYMBOL(ilookup5_nowait);
1266
1267/**
1268 * ilookup5 - search for an inode in the inode cache
1269 * @sb:		super block of file system to search
1270 * @hashval:	hash value (usually inode number) to search for
1271 * @test:	callback used for comparisons between inodes
1272 * @data:	opaque data pointer to pass to @test
1273 *
1274 * Search for the inode specified by @hashval and @data in the inode cache,
1275 * and if the inode is in the cache, return the inode with an incremented
1276 * reference count.  Waits on I_NEW before returning the inode.
1277 * returned with an incremented reference count.
1278 *
1279 * This is a generalized version of ilookup() for file systems where the
1280 * inode number is not sufficient for unique identification of an inode.
1281 *
1282 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1283 */
1284struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1285		int (*test)(struct inode *, void *), void *data)
1286{
1287	struct inode *inode;
1288again:
1289	inode = ilookup5_nowait(sb, hashval, test, data);
1290	if (inode) {
1291		wait_on_inode(inode);
1292		if (unlikely(inode_unhashed(inode))) {
1293			iput(inode);
1294			goto again;
1295		}
1296	}
1297	return inode;
1298}
1299EXPORT_SYMBOL(ilookup5);
1300
1301/**
1302 * ilookup - search for an inode in the inode cache
1303 * @sb:		super block of file system to search
1304 * @ino:	inode number to search for
1305 *
1306 * Search for the inode @ino in the inode cache, and if the inode is in the
1307 * cache, the inode is returned with an incremented reference count.
1308 */
1309struct inode *ilookup(struct super_block *sb, unsigned long ino)
1310{
1311	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312	struct inode *inode;
1313again:
1314	spin_lock(&inode_hash_lock);
1315	inode = find_inode_fast(sb, head, ino);
1316	spin_unlock(&inode_hash_lock);
1317
1318	if (inode) {
1319		wait_on_inode(inode);
1320		if (unlikely(inode_unhashed(inode))) {
1321			iput(inode);
1322			goto again;
1323		}
1324	}
1325	return inode;
1326}
1327EXPORT_SYMBOL(ilookup);
1328
1329/**
1330 * find_inode_nowait - find an inode in the inode cache
1331 * @sb:		super block of file system to search
1332 * @hashval:	hash value (usually inode number) to search for
1333 * @match:	callback used for comparisons between inodes
1334 * @data:	opaque data pointer to pass to @match
1335 *
1336 * Search for the inode specified by @hashval and @data in the inode
1337 * cache, where the helper function @match will return 0 if the inode
1338 * does not match, 1 if the inode does match, and -1 if the search
1339 * should be stopped.  The @match function must be responsible for
1340 * taking the i_lock spin_lock and checking i_state for an inode being
1341 * freed or being initialized, and incrementing the reference count
1342 * before returning 1.  It also must not sleep, since it is called with
1343 * the inode_hash_lock spinlock held.
1344 *
1345 * This is a even more generalized version of ilookup5() when the
1346 * function must never block --- find_inode() can block in
1347 * __wait_on_freeing_inode() --- or when the caller can not increment
1348 * the reference count because the resulting iput() might cause an
1349 * inode eviction.  The tradeoff is that the @match funtion must be
1350 * very carefully implemented.
1351 */
1352struct inode *find_inode_nowait(struct super_block *sb,
1353				unsigned long hashval,
1354				int (*match)(struct inode *, unsigned long,
1355					     void *),
1356				void *data)
1357{
1358	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1359	struct inode *inode, *ret_inode = NULL;
1360	int mval;
1361
1362	spin_lock(&inode_hash_lock);
1363	hlist_for_each_entry(inode, head, i_hash) {
1364		if (inode->i_sb != sb)
1365			continue;
1366		mval = match(inode, hashval, data);
1367		if (mval == 0)
1368			continue;
1369		if (mval == 1)
1370			ret_inode = inode;
1371		goto out;
1372	}
1373out:
1374	spin_unlock(&inode_hash_lock);
1375	return ret_inode;
1376}
1377EXPORT_SYMBOL(find_inode_nowait);
1378
1379int insert_inode_locked(struct inode *inode)
1380{
1381	struct super_block *sb = inode->i_sb;
1382	ino_t ino = inode->i_ino;
1383	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1384
1385	while (1) {
1386		struct inode *old = NULL;
1387		spin_lock(&inode_hash_lock);
1388		hlist_for_each_entry(old, head, i_hash) {
1389			if (old->i_ino != ino)
1390				continue;
1391			if (old->i_sb != sb)
1392				continue;
1393			spin_lock(&old->i_lock);
1394			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1395				spin_unlock(&old->i_lock);
1396				continue;
1397			}
1398			break;
1399		}
1400		if (likely(!old)) {
1401			spin_lock(&inode->i_lock);
1402			inode->i_state |= I_NEW;
1403			hlist_add_head(&inode->i_hash, head);
1404			spin_unlock(&inode->i_lock);
1405			spin_unlock(&inode_hash_lock);
1406			return 0;
1407		}
1408		__iget(old);
1409		spin_unlock(&old->i_lock);
1410		spin_unlock(&inode_hash_lock);
1411		wait_on_inode(old);
1412		if (unlikely(!inode_unhashed(old))) {
1413			iput(old);
1414			return -EBUSY;
1415		}
1416		iput(old);
1417	}
1418}
1419EXPORT_SYMBOL(insert_inode_locked);
1420
1421int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1422		int (*test)(struct inode *, void *), void *data)
1423{
1424	struct super_block *sb = inode->i_sb;
1425	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426
1427	while (1) {
1428		struct inode *old = NULL;
1429
1430		spin_lock(&inode_hash_lock);
1431		hlist_for_each_entry(old, head, i_hash) {
1432			if (old->i_sb != sb)
1433				continue;
1434			if (!test(old, data))
1435				continue;
1436			spin_lock(&old->i_lock);
1437			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1438				spin_unlock(&old->i_lock);
1439				continue;
1440			}
1441			break;
1442		}
1443		if (likely(!old)) {
1444			spin_lock(&inode->i_lock);
1445			inode->i_state |= I_NEW;
1446			hlist_add_head(&inode->i_hash, head);
1447			spin_unlock(&inode->i_lock);
1448			spin_unlock(&inode_hash_lock);
1449			return 0;
1450		}
1451		__iget(old);
1452		spin_unlock(&old->i_lock);
1453		spin_unlock(&inode_hash_lock);
1454		wait_on_inode(old);
1455		if (unlikely(!inode_unhashed(old))) {
1456			iput(old);
1457			return -EBUSY;
1458		}
1459		iput(old);
1460	}
1461}
1462EXPORT_SYMBOL(insert_inode_locked4);
1463
1464
1465int generic_delete_inode(struct inode *inode)
1466{
1467	return 1;
1468}
1469EXPORT_SYMBOL(generic_delete_inode);
1470
1471/*
1472 * Called when we're dropping the last reference
1473 * to an inode.
1474 *
1475 * Call the FS "drop_inode()" function, defaulting to
1476 * the legacy UNIX filesystem behaviour.  If it tells
1477 * us to evict inode, do so.  Otherwise, retain inode
1478 * in cache if fs is alive, sync and evict if fs is
1479 * shutting down.
1480 */
1481static void iput_final(struct inode *inode)
1482{
1483	struct super_block *sb = inode->i_sb;
1484	const struct super_operations *op = inode->i_sb->s_op;
1485	int drop;
1486
1487	WARN_ON(inode->i_state & I_NEW);
1488
1489	if (op->drop_inode)
1490		drop = op->drop_inode(inode);
1491	else
1492		drop = generic_drop_inode(inode);
1493
1494	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1495		inode->i_state |= I_REFERENCED;
1496		inode_add_lru(inode);
1497		spin_unlock(&inode->i_lock);
1498		return;
1499	}
1500
1501	if (!drop) {
1502		inode->i_state |= I_WILL_FREE;
1503		spin_unlock(&inode->i_lock);
1504		write_inode_now(inode, 1);
1505		spin_lock(&inode->i_lock);
1506		WARN_ON(inode->i_state & I_NEW);
1507		inode->i_state &= ~I_WILL_FREE;
1508	}
1509
1510	inode->i_state |= I_FREEING;
1511	if (!list_empty(&inode->i_lru))
1512		inode_lru_list_del(inode);
1513	spin_unlock(&inode->i_lock);
1514
1515	evict(inode);
1516}
1517
1518/**
1519 *	iput	- put an inode
1520 *	@inode: inode to put
1521 *
1522 *	Puts an inode, dropping its usage count. If the inode use count hits
1523 *	zero, the inode is then freed and may also be destroyed.
1524 *
1525 *	Consequently, iput() can sleep.
1526 */
1527void iput(struct inode *inode)
1528{
1529	if (!inode)
1530		return;
1531	BUG_ON(inode->i_state & I_CLEAR);
1532retry:
1533	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1534		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1535			atomic_inc(&inode->i_count);
1536			inode->i_state &= ~I_DIRTY_TIME;
1537			spin_unlock(&inode->i_lock);
1538			trace_writeback_lazytime_iput(inode);
1539			mark_inode_dirty_sync(inode);
1540			goto retry;
1541		}
1542		iput_final(inode);
1543	}
1544}
1545EXPORT_SYMBOL(iput);
1546
1547/**
1548 *	bmap	- find a block number in a file
1549 *	@inode: inode of file
1550 *	@block: block to find
1551 *
1552 *	Returns the block number on the device holding the inode that
1553 *	is the disk block number for the block of the file requested.
1554 *	That is, asked for block 4 of inode 1 the function will return the
1555 *	disk block relative to the disk start that holds that block of the
1556 *	file.
1557 */
1558sector_t bmap(struct inode *inode, sector_t block)
1559{
1560	sector_t res = 0;
1561	if (inode->i_mapping->a_ops->bmap)
1562		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1563	return res;
1564}
1565EXPORT_SYMBOL(bmap);
1566
1567/*
1568 * Update times in overlayed inode from underlying real inode
1569 */
1570static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1571			       bool rcu)
1572{
1573	if (!rcu) {
1574		struct inode *realinode = d_real_inode(dentry);
1575
1576		if (unlikely(inode != realinode) &&
1577		    (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1578		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1579			inode->i_mtime = realinode->i_mtime;
1580			inode->i_ctime = realinode->i_ctime;
1581		}
1582	}
1583}
1584
1585/*
1586 * With relative atime, only update atime if the previous atime is
1587 * earlier than either the ctime or mtime or if at least a day has
1588 * passed since the last atime update.
1589 */
1590static int relatime_need_update(const struct path *path, struct inode *inode,
1591				struct timespec now, bool rcu)
1592{
1593
1594	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1595		return 1;
1596
1597	update_ovl_inode_times(path->dentry, inode, rcu);
1598	/*
1599	 * Is mtime younger than atime? If yes, update atime:
1600	 */
1601	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1602		return 1;
1603	/*
1604	 * Is ctime younger than atime? If yes, update atime:
1605	 */
1606	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1607		return 1;
1608
1609	/*
1610	 * Is the previous atime value older than a day? If yes,
1611	 * update atime:
1612	 */
1613	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1614		return 1;
1615	/*
1616	 * Good, we can skip the atime update:
1617	 */
1618	return 0;
1619}
1620
1621int generic_update_time(struct inode *inode, struct timespec *time, int flags)
 
 
 
 
1622{
1623	int iflags = I_DIRTY_TIME;
 
1624
1625	if (flags & S_ATIME)
1626		inode->i_atime = *time;
1627	if (flags & S_VERSION)
1628		inode_inc_iversion(inode);
1629	if (flags & S_CTIME)
1630		inode->i_ctime = *time;
1631	if (flags & S_MTIME)
1632		inode->i_mtime = *time;
1633
1634	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1635		iflags |= I_DIRTY_SYNC;
1636	__mark_inode_dirty(inode, iflags);
1637	return 0;
1638}
1639EXPORT_SYMBOL(generic_update_time);
1640
1641/*
1642 * This does the actual work of updating an inodes time or version.  Must have
1643 * had called mnt_want_write() before calling this.
1644 */
1645static int update_time(struct inode *inode, struct timespec *time, int flags)
1646{
1647	int (*update_time)(struct inode *, struct timespec *, int);
1648
1649	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1650		generic_update_time;
1651
1652	return update_time(inode, time, flags);
1653}
1654
1655/**
1656 *	touch_atime	-	update the access time
1657 *	@path: the &struct path to update
1658 *	@inode: inode to update
1659 *
1660 *	Update the accessed time on an inode and mark it for writeback.
1661 *	This function automatically handles read only file systems and media,
1662 *	as well as the "noatime" flag and inode specific "noatime" markers.
1663 */
1664bool __atime_needs_update(const struct path *path, struct inode *inode,
1665			  bool rcu)
1666{
1667	struct vfsmount *mnt = path->mnt;
 
1668	struct timespec now;
1669
1670	if (inode->i_flags & S_NOATIME)
1671		return false;
1672
1673	/* Atime updates will likely cause i_uid and i_gid to be written
1674	 * back improprely if their true value is unknown to the vfs.
1675	 */
1676	if (HAS_UNMAPPED_ID(inode))
1677		return false;
1678
1679	if (IS_NOATIME(inode))
1680		return false;
1681	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1682		return false;
1683
1684	if (mnt->mnt_flags & MNT_NOATIME)
1685		return false;
1686	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1687		return false;
1688
1689	now = current_time(inode);
1690
1691	if (!relatime_need_update(path, inode, now, rcu))
1692		return false;
1693
1694	if (timespec_equal(&inode->i_atime, &now))
1695		return false;
1696
1697	return true;
1698}
1699
1700void touch_atime(const struct path *path)
1701{
1702	struct vfsmount *mnt = path->mnt;
1703	struct inode *inode = d_inode(path->dentry);
1704	struct timespec now;
1705
1706	if (!__atime_needs_update(path, inode, false))
1707		return;
1708
1709	if (!sb_start_write_trylock(inode->i_sb))
1710		return;
1711
1712	if (__mnt_want_write(mnt) != 0)
1713		goto skip_update;
1714	/*
1715	 * File systems can error out when updating inodes if they need to
1716	 * allocate new space to modify an inode (such is the case for
1717	 * Btrfs), but since we touch atime while walking down the path we
1718	 * really don't care if we failed to update the atime of the file,
1719	 * so just ignore the return value.
1720	 * We may also fail on filesystems that have the ability to make parts
1721	 * of the fs read only, e.g. subvolumes in Btrfs.
1722	 */
1723	now = current_time(inode);
1724	update_time(inode, &now, S_ATIME);
1725	__mnt_drop_write(mnt);
1726skip_update:
1727	sb_end_write(inode->i_sb);
1728}
1729EXPORT_SYMBOL(touch_atime);
1730
1731/*
1732 * The logic we want is
1733 *
1734 *	if suid or (sgid and xgrp)
1735 *		remove privs
1736 */
1737int should_remove_suid(struct dentry *dentry)
1738{
1739	umode_t mode = d_inode(dentry)->i_mode;
1740	int kill = 0;
1741
1742	/* suid always must be killed */
1743	if (unlikely(mode & S_ISUID))
1744		kill = ATTR_KILL_SUID;
1745
1746	/*
1747	 * sgid without any exec bits is just a mandatory locking mark; leave
1748	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1749	 */
1750	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1751		kill |= ATTR_KILL_SGID;
1752
1753	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1754		return kill;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(should_remove_suid);
1759
1760/*
1761 * Return mask of changes for notify_change() that need to be done as a
1762 * response to write or truncate. Return 0 if nothing has to be changed.
1763 * Negative value on error (change should be denied).
1764 */
1765int dentry_needs_remove_privs(struct dentry *dentry)
1766{
1767	struct inode *inode = d_inode(dentry);
1768	int mask = 0;
1769	int ret;
1770
1771	if (IS_NOSEC(inode))
1772		return 0;
1773
1774	mask = should_remove_suid(dentry);
1775	ret = security_inode_need_killpriv(dentry);
1776	if (ret < 0)
1777		return ret;
1778	if (ret)
1779		mask |= ATTR_KILL_PRIV;
1780	return mask;
1781}
1782
1783static int __remove_privs(struct dentry *dentry, int kill)
1784{
1785	struct iattr newattrs;
1786
1787	newattrs.ia_valid = ATTR_FORCE | kill;
1788	/*
1789	 * Note we call this on write, so notify_change will not
1790	 * encounter any conflicting delegations:
1791	 */
1792	return notify_change(dentry, &newattrs, NULL);
1793}
1794
1795/*
1796 * Remove special file priviledges (suid, capabilities) when file is written
1797 * to or truncated.
1798 */
1799int file_remove_privs(struct file *file)
1800{
1801	struct dentry *dentry = file_dentry(file);
1802	struct inode *inode = file_inode(file);
1803	int kill;
 
1804	int error = 0;
1805
1806	/* Fast path for nothing security related */
1807	if (IS_NOSEC(inode))
1808		return 0;
1809
1810	kill = dentry_needs_remove_privs(dentry);
1811	if (kill < 0)
1812		return kill;
1813	if (kill)
1814		error = __remove_privs(dentry, kill);
1815	if (!error)
1816		inode_has_no_xattr(inode);
 
 
 
 
1817
1818	return error;
1819}
1820EXPORT_SYMBOL(file_remove_privs);
1821
1822/**
1823 *	file_update_time	-	update mtime and ctime time
1824 *	@file: file accessed
1825 *
1826 *	Update the mtime and ctime members of an inode and mark the inode
1827 *	for writeback.  Note that this function is meant exclusively for
1828 *	usage in the file write path of filesystems, and filesystems may
1829 *	choose to explicitly ignore update via this function with the
1830 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1831 *	timestamps are handled by the server.  This can return an error for
1832 *	file systems who need to allocate space in order to update an inode.
1833 */
1834
1835int file_update_time(struct file *file)
1836{
1837	struct inode *inode = file_inode(file);
1838	struct timespec now;
1839	int sync_it = 0;
1840	int ret;
1841
1842	/* First try to exhaust all avenues to not sync */
1843	if (IS_NOCMTIME(inode))
1844		return 0;
1845
1846	now = current_time(inode);
1847	if (!timespec_equal(&inode->i_mtime, &now))
1848		sync_it = S_MTIME;
1849
1850	if (!timespec_equal(&inode->i_ctime, &now))
1851		sync_it |= S_CTIME;
1852
1853	if (IS_I_VERSION(inode))
1854		sync_it |= S_VERSION;
1855
1856	if (!sync_it)
1857		return 0;
1858
1859	/* Finally allowed to write? Takes lock. */
1860	if (__mnt_want_write_file(file))
1861		return 0;
1862
1863	ret = update_time(inode, &now, sync_it);
1864	__mnt_drop_write_file(file);
1865
1866	return ret;
1867}
1868EXPORT_SYMBOL(file_update_time);
1869
1870int inode_needs_sync(struct inode *inode)
1871{
1872	if (IS_SYNC(inode))
1873		return 1;
1874	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1875		return 1;
1876	return 0;
1877}
1878EXPORT_SYMBOL(inode_needs_sync);
1879
 
 
 
 
 
 
 
1880/*
1881 * If we try to find an inode in the inode hash while it is being
1882 * deleted, we have to wait until the filesystem completes its
1883 * deletion before reporting that it isn't found.  This function waits
1884 * until the deletion _might_ have completed.  Callers are responsible
1885 * to recheck inode state.
1886 *
1887 * It doesn't matter if I_NEW is not set initially, a call to
1888 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1889 * will DTRT.
1890 */
1891static void __wait_on_freeing_inode(struct inode *inode)
1892{
1893	wait_queue_head_t *wq;
1894	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1895	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1896	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1897	spin_unlock(&inode->i_lock);
1898	spin_unlock(&inode_hash_lock);
1899	schedule();
1900	finish_wait(wq, &wait.wait);
1901	spin_lock(&inode_hash_lock);
1902}
1903
1904static __initdata unsigned long ihash_entries;
1905static int __init set_ihash_entries(char *str)
1906{
1907	if (!str)
1908		return 0;
1909	ihash_entries = simple_strtoul(str, &str, 0);
1910	return 1;
1911}
1912__setup("ihash_entries=", set_ihash_entries);
1913
1914/*
1915 * Initialize the waitqueues and inode hash table.
1916 */
1917void __init inode_init_early(void)
1918{
1919	unsigned int loop;
1920
1921	/* If hashes are distributed across NUMA nodes, defer
1922	 * hash allocation until vmalloc space is available.
1923	 */
1924	if (hashdist)
1925		return;
1926
1927	inode_hashtable =
1928		alloc_large_system_hash("Inode-cache",
1929					sizeof(struct hlist_head),
1930					ihash_entries,
1931					14,
1932					HASH_EARLY,
1933					&i_hash_shift,
1934					&i_hash_mask,
1935					0,
1936					0);
1937
1938	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1939		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1940}
1941
1942void __init inode_init(void)
1943{
1944	unsigned int loop;
1945
1946	/* inode slab cache */
1947	inode_cachep = kmem_cache_create("inode_cache",
1948					 sizeof(struct inode),
1949					 0,
1950					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1951					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1952					 init_once);
1953
1954	/* Hash may have been set up in inode_init_early */
1955	if (!hashdist)
1956		return;
1957
1958	inode_hashtable =
1959		alloc_large_system_hash("Inode-cache",
1960					sizeof(struct hlist_head),
1961					ihash_entries,
1962					14,
1963					0,
1964					&i_hash_shift,
1965					&i_hash_mask,
1966					0,
1967					0);
1968
1969	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1970		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1971}
1972
1973void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1974{
1975	inode->i_mode = mode;
1976	if (S_ISCHR(mode)) {
1977		inode->i_fop = &def_chr_fops;
1978		inode->i_rdev = rdev;
1979	} else if (S_ISBLK(mode)) {
1980		inode->i_fop = &def_blk_fops;
1981		inode->i_rdev = rdev;
1982	} else if (S_ISFIFO(mode))
1983		inode->i_fop = &pipefifo_fops;
1984	else if (S_ISSOCK(mode))
1985		;	/* leave it no_open_fops */
1986	else
1987		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1988				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1989				  inode->i_ino);
1990}
1991EXPORT_SYMBOL(init_special_inode);
1992
1993/**
1994 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1995 * @inode: New inode
1996 * @dir: Directory inode
1997 * @mode: mode of the new inode
1998 */
1999void inode_init_owner(struct inode *inode, const struct inode *dir,
2000			umode_t mode)
2001{
2002	inode->i_uid = current_fsuid();
2003	if (dir && dir->i_mode & S_ISGID) {
2004		inode->i_gid = dir->i_gid;
2005		if (S_ISDIR(mode))
2006			mode |= S_ISGID;
2007	} else
2008		inode->i_gid = current_fsgid();
2009	inode->i_mode = mode;
2010}
2011EXPORT_SYMBOL(inode_init_owner);
2012
2013/**
2014 * inode_owner_or_capable - check current task permissions to inode
2015 * @inode: inode being checked
2016 *
2017 * Return true if current either has CAP_FOWNER in a namespace with the
2018 * inode owner uid mapped, or owns the file.
2019 */
2020bool inode_owner_or_capable(const struct inode *inode)
2021{
2022	struct user_namespace *ns;
2023
2024	if (uid_eq(current_fsuid(), inode->i_uid))
2025		return true;
2026
2027	ns = current_user_ns();
2028	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2029		return true;
2030	return false;
2031}
2032EXPORT_SYMBOL(inode_owner_or_capable);
2033
2034/*
2035 * Direct i/o helper functions
2036 */
2037static void __inode_dio_wait(struct inode *inode)
2038{
2039	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2040	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2041
2042	do {
2043		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2044		if (atomic_read(&inode->i_dio_count))
2045			schedule();
2046	} while (atomic_read(&inode->i_dio_count));
2047	finish_wait(wq, &q.wait);
2048}
2049
2050/**
2051 * inode_dio_wait - wait for outstanding DIO requests to finish
2052 * @inode: inode to wait for
2053 *
2054 * Waits for all pending direct I/O requests to finish so that we can
2055 * proceed with a truncate or equivalent operation.
2056 *
2057 * Must be called under a lock that serializes taking new references
2058 * to i_dio_count, usually by inode->i_mutex.
2059 */
2060void inode_dio_wait(struct inode *inode)
2061{
2062	if (atomic_read(&inode->i_dio_count))
2063		__inode_dio_wait(inode);
2064}
2065EXPORT_SYMBOL(inode_dio_wait);
2066
2067/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068 * inode_set_flags - atomically set some inode flags
2069 *
2070 * Note: the caller should be holding i_mutex, or else be sure that
2071 * they have exclusive access to the inode structure (i.e., while the
2072 * inode is being instantiated).  The reason for the cmpxchg() loop
2073 * --- which wouldn't be necessary if all code paths which modify
2074 * i_flags actually followed this rule, is that there is at least one
2075 * code path which doesn't today so we use cmpxchg() out of an abundance
2076 * of caution.
 
2077 *
2078 * In the long run, i_mutex is overkill, and we should probably look
2079 * at using the i_lock spinlock to protect i_flags, and then make sure
2080 * it is so documented in include/linux/fs.h and that all code follows
2081 * the locking convention!!
2082 */
2083void inode_set_flags(struct inode *inode, unsigned int flags,
2084		     unsigned int mask)
2085{
2086	unsigned int old_flags, new_flags;
2087
2088	WARN_ON_ONCE(flags & ~mask);
2089	do {
2090		old_flags = ACCESS_ONCE(inode->i_flags);
2091		new_flags = (old_flags & ~mask) | flags;
2092	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2093				  new_flags) != old_flags));
2094}
2095EXPORT_SYMBOL(inode_set_flags);
2096
2097void inode_nohighmem(struct inode *inode)
2098{
2099	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2100}
2101EXPORT_SYMBOL(inode_nohighmem);
2102
2103/**
2104 * current_time - Return FS time
2105 * @inode: inode.
2106 *
2107 * Return the current time truncated to the time granularity supported by
2108 * the fs.
2109 *
2110 * Note that inode and inode->sb cannot be NULL.
2111 * Otherwise, the function warns and returns time without truncation.
2112 */
2113struct timespec current_time(struct inode *inode)
2114{
2115	struct timespec now = current_kernel_time();
2116
2117	if (unlikely(!inode->i_sb)) {
2118		WARN(1, "current_time() called with uninitialized super_block in the inode");
2119		return now;
2120	}
2121
2122	return timespec_trunc(now, inode->i_sb->s_time_gran);
2123}
2124EXPORT_SYMBOL(current_time);
v3.15
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
  20#include <linux/list_lru.h>
 
  21#include "internal.h"
  22
  23/*
  24 * Inode locking rules:
  25 *
  26 * inode->i_lock protects:
  27 *   inode->i_state, inode->i_hash, __iget()
  28 * Inode LRU list locks protect:
  29 *   inode->i_sb->s_inode_lru, inode->i_lru
  30 * inode_sb_list_lock protects:
  31 *   sb->s_inodes, inode->i_sb_list
  32 * bdi->wb.list_lock protects:
  33 *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
  34 * inode_hash_lock protects:
  35 *   inode_hashtable, inode->i_hash
  36 *
  37 * Lock ordering:
  38 *
  39 * inode_sb_list_lock
  40 *   inode->i_lock
  41 *     Inode LRU list locks
  42 *
  43 * bdi->wb.list_lock
  44 *   inode->i_lock
  45 *
  46 * inode_hash_lock
  47 *   inode_sb_list_lock
  48 *   inode->i_lock
  49 *
  50 * iunique_lock
  51 *   inode_hash_lock
  52 */
  53
  54static unsigned int i_hash_mask __read_mostly;
  55static unsigned int i_hash_shift __read_mostly;
  56static struct hlist_head *inode_hashtable __read_mostly;
  57static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  58
  59__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
  60
  61/*
  62 * Empty aops. Can be used for the cases where the user does not
  63 * define any of the address_space operations.
  64 */
  65const struct address_space_operations empty_aops = {
  66};
  67EXPORT_SYMBOL(empty_aops);
  68
  69/*
  70 * Statistics gathering..
  71 */
  72struct inodes_stat_t inodes_stat;
  73
  74static DEFINE_PER_CPU(unsigned long, nr_inodes);
  75static DEFINE_PER_CPU(unsigned long, nr_unused);
  76
  77static struct kmem_cache *inode_cachep __read_mostly;
  78
  79static long get_nr_inodes(void)
  80{
  81	int i;
  82	long sum = 0;
  83	for_each_possible_cpu(i)
  84		sum += per_cpu(nr_inodes, i);
  85	return sum < 0 ? 0 : sum;
  86}
  87
  88static inline long get_nr_inodes_unused(void)
  89{
  90	int i;
  91	long sum = 0;
  92	for_each_possible_cpu(i)
  93		sum += per_cpu(nr_unused, i);
  94	return sum < 0 ? 0 : sum;
  95}
  96
  97long get_nr_dirty_inodes(void)
  98{
  99	/* not actually dirty inodes, but a wild approximation */
 100	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 101	return nr_dirty > 0 ? nr_dirty : 0;
 102}
 103
 104/*
 105 * Handle nr_inode sysctl
 106 */
 107#ifdef CONFIG_SYSCTL
 108int proc_nr_inodes(ctl_table *table, int write,
 109		   void __user *buffer, size_t *lenp, loff_t *ppos)
 110{
 111	inodes_stat.nr_inodes = get_nr_inodes();
 112	inodes_stat.nr_unused = get_nr_inodes_unused();
 113	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 114}
 115#endif
 116
 
 
 
 
 
 117/**
 118 * inode_init_always - perform inode structure intialisation
 119 * @sb: superblock inode belongs to
 120 * @inode: inode to initialise
 121 *
 122 * These are initializations that need to be done on every inode
 123 * allocation as the fields are not initialised by slab allocation.
 124 */
 125int inode_init_always(struct super_block *sb, struct inode *inode)
 126{
 127	static const struct inode_operations empty_iops;
 128	static const struct file_operations empty_fops;
 129	struct address_space *const mapping = &inode->i_data;
 130
 131	inode->i_sb = sb;
 132	inode->i_blkbits = sb->s_blocksize_bits;
 133	inode->i_flags = 0;
 134	atomic_set(&inode->i_count, 1);
 135	inode->i_op = &empty_iops;
 136	inode->i_fop = &empty_fops;
 137	inode->__i_nlink = 1;
 138	inode->i_opflags = 0;
 
 
 139	i_uid_write(inode, 0);
 140	i_gid_write(inode, 0);
 141	atomic_set(&inode->i_writecount, 0);
 142	inode->i_size = 0;
 143	inode->i_blocks = 0;
 144	inode->i_bytes = 0;
 145	inode->i_generation = 0;
 146#ifdef CONFIG_QUOTA
 147	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
 148#endif
 149	inode->i_pipe = NULL;
 150	inode->i_bdev = NULL;
 151	inode->i_cdev = NULL;
 
 
 152	inode->i_rdev = 0;
 153	inode->dirtied_when = 0;
 154
 
 
 
 
 
 
 155	if (security_inode_alloc(inode))
 156		goto out;
 157	spin_lock_init(&inode->i_lock);
 158	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 159
 160	mutex_init(&inode->i_mutex);
 161	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 162
 163	atomic_set(&inode->i_dio_count, 0);
 164
 165	mapping->a_ops = &empty_aops;
 166	mapping->host = inode;
 167	mapping->flags = 0;
 
 168	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 169	mapping->private_data = NULL;
 170	mapping->backing_dev_info = &default_backing_dev_info;
 171	mapping->writeback_index = 0;
 172
 173	/*
 174	 * If the block_device provides a backing_dev_info for client
 175	 * inodes then use that.  Otherwise the inode share the bdev's
 176	 * backing_dev_info.
 177	 */
 178	if (sb->s_bdev) {
 179		struct backing_dev_info *bdi;
 180
 181		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
 182		mapping->backing_dev_info = bdi;
 183	}
 184	inode->i_private = NULL;
 185	inode->i_mapping = mapping;
 186	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 187#ifdef CONFIG_FS_POSIX_ACL
 188	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 189#endif
 190
 191#ifdef CONFIG_FSNOTIFY
 192	inode->i_fsnotify_mask = 0;
 193#endif
 194
 195	this_cpu_inc(nr_inodes);
 196
 197	return 0;
 198out:
 199	return -ENOMEM;
 200}
 201EXPORT_SYMBOL(inode_init_always);
 202
 203static struct inode *alloc_inode(struct super_block *sb)
 204{
 205	struct inode *inode;
 206
 207	if (sb->s_op->alloc_inode)
 208		inode = sb->s_op->alloc_inode(sb);
 209	else
 210		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 211
 212	if (!inode)
 213		return NULL;
 214
 215	if (unlikely(inode_init_always(sb, inode))) {
 216		if (inode->i_sb->s_op->destroy_inode)
 217			inode->i_sb->s_op->destroy_inode(inode);
 218		else
 219			kmem_cache_free(inode_cachep, inode);
 220		return NULL;
 221	}
 222
 223	return inode;
 224}
 225
 226void free_inode_nonrcu(struct inode *inode)
 227{
 228	kmem_cache_free(inode_cachep, inode);
 229}
 230EXPORT_SYMBOL(free_inode_nonrcu);
 231
 232void __destroy_inode(struct inode *inode)
 233{
 234	BUG_ON(inode_has_buffers(inode));
 
 235	security_inode_free(inode);
 236	fsnotify_inode_delete(inode);
 
 237	if (!inode->i_nlink) {
 238		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 239		atomic_long_dec(&inode->i_sb->s_remove_count);
 240	}
 241
 242#ifdef CONFIG_FS_POSIX_ACL
 243	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 244		posix_acl_release(inode->i_acl);
 245	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 246		posix_acl_release(inode->i_default_acl);
 247#endif
 248	this_cpu_dec(nr_inodes);
 249}
 250EXPORT_SYMBOL(__destroy_inode);
 251
 252static void i_callback(struct rcu_head *head)
 253{
 254	struct inode *inode = container_of(head, struct inode, i_rcu);
 255	kmem_cache_free(inode_cachep, inode);
 256}
 257
 258static void destroy_inode(struct inode *inode)
 259{
 260	BUG_ON(!list_empty(&inode->i_lru));
 261	__destroy_inode(inode);
 262	if (inode->i_sb->s_op->destroy_inode)
 263		inode->i_sb->s_op->destroy_inode(inode);
 264	else
 265		call_rcu(&inode->i_rcu, i_callback);
 266}
 267
 268/**
 269 * drop_nlink - directly drop an inode's link count
 270 * @inode: inode
 271 *
 272 * This is a low-level filesystem helper to replace any
 273 * direct filesystem manipulation of i_nlink.  In cases
 274 * where we are attempting to track writes to the
 275 * filesystem, a decrement to zero means an imminent
 276 * write when the file is truncated and actually unlinked
 277 * on the filesystem.
 278 */
 279void drop_nlink(struct inode *inode)
 280{
 281	WARN_ON(inode->i_nlink == 0);
 282	inode->__i_nlink--;
 283	if (!inode->i_nlink)
 284		atomic_long_inc(&inode->i_sb->s_remove_count);
 285}
 286EXPORT_SYMBOL(drop_nlink);
 287
 288/**
 289 * clear_nlink - directly zero an inode's link count
 290 * @inode: inode
 291 *
 292 * This is a low-level filesystem helper to replace any
 293 * direct filesystem manipulation of i_nlink.  See
 294 * drop_nlink() for why we care about i_nlink hitting zero.
 295 */
 296void clear_nlink(struct inode *inode)
 297{
 298	if (inode->i_nlink) {
 299		inode->__i_nlink = 0;
 300		atomic_long_inc(&inode->i_sb->s_remove_count);
 301	}
 302}
 303EXPORT_SYMBOL(clear_nlink);
 304
 305/**
 306 * set_nlink - directly set an inode's link count
 307 * @inode: inode
 308 * @nlink: new nlink (should be non-zero)
 309 *
 310 * This is a low-level filesystem helper to replace any
 311 * direct filesystem manipulation of i_nlink.
 312 */
 313void set_nlink(struct inode *inode, unsigned int nlink)
 314{
 315	if (!nlink) {
 316		clear_nlink(inode);
 317	} else {
 318		/* Yes, some filesystems do change nlink from zero to one */
 319		if (inode->i_nlink == 0)
 320			atomic_long_dec(&inode->i_sb->s_remove_count);
 321
 322		inode->__i_nlink = nlink;
 323	}
 324}
 325EXPORT_SYMBOL(set_nlink);
 326
 327/**
 328 * inc_nlink - directly increment an inode's link count
 329 * @inode: inode
 330 *
 331 * This is a low-level filesystem helper to replace any
 332 * direct filesystem manipulation of i_nlink.  Currently,
 333 * it is only here for parity with dec_nlink().
 334 */
 335void inc_nlink(struct inode *inode)
 336{
 337	if (unlikely(inode->i_nlink == 0)) {
 338		WARN_ON(!(inode->i_state & I_LINKABLE));
 339		atomic_long_dec(&inode->i_sb->s_remove_count);
 340	}
 341
 342	inode->__i_nlink++;
 343}
 344EXPORT_SYMBOL(inc_nlink);
 345
 346void address_space_init_once(struct address_space *mapping)
 347{
 348	memset(mapping, 0, sizeof(*mapping));
 349	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 350	spin_lock_init(&mapping->tree_lock);
 351	mutex_init(&mapping->i_mmap_mutex);
 352	INIT_LIST_HEAD(&mapping->private_list);
 353	spin_lock_init(&mapping->private_lock);
 354	mapping->i_mmap = RB_ROOT;
 355	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
 356}
 357EXPORT_SYMBOL(address_space_init_once);
 358
 359/*
 360 * These are initializations that only need to be done
 361 * once, because the fields are idempotent across use
 362 * of the inode, so let the slab aware of that.
 363 */
 364void inode_init_once(struct inode *inode)
 365{
 366	memset(inode, 0, sizeof(*inode));
 367	INIT_HLIST_NODE(&inode->i_hash);
 368	INIT_LIST_HEAD(&inode->i_devices);
 
 369	INIT_LIST_HEAD(&inode->i_wb_list);
 370	INIT_LIST_HEAD(&inode->i_lru);
 371	address_space_init_once(&inode->i_data);
 372	i_size_ordered_init(inode);
 373#ifdef CONFIG_FSNOTIFY
 374	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 375#endif
 376}
 377EXPORT_SYMBOL(inode_init_once);
 378
 379static void init_once(void *foo)
 380{
 381	struct inode *inode = (struct inode *) foo;
 382
 383	inode_init_once(inode);
 384}
 385
 386/*
 387 * inode->i_lock must be held
 388 */
 389void __iget(struct inode *inode)
 390{
 391	atomic_inc(&inode->i_count);
 392}
 393
 394/*
 395 * get additional reference to inode; caller must already hold one.
 396 */
 397void ihold(struct inode *inode)
 398{
 399	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 400}
 401EXPORT_SYMBOL(ihold);
 402
 403static void inode_lru_list_add(struct inode *inode)
 404{
 405	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 406		this_cpu_inc(nr_unused);
 407}
 408
 409/*
 410 * Add inode to LRU if needed (inode is unused and clean).
 411 *
 412 * Needs inode->i_lock held.
 413 */
 414void inode_add_lru(struct inode *inode)
 415{
 416	if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
 
 417	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
 418		inode_lru_list_add(inode);
 419}
 420
 421
 422static void inode_lru_list_del(struct inode *inode)
 423{
 424
 425	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 426		this_cpu_dec(nr_unused);
 427}
 428
 429/**
 430 * inode_sb_list_add - add inode to the superblock list of inodes
 431 * @inode: inode to add
 432 */
 433void inode_sb_list_add(struct inode *inode)
 434{
 435	spin_lock(&inode_sb_list_lock);
 436	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 437	spin_unlock(&inode_sb_list_lock);
 438}
 439EXPORT_SYMBOL_GPL(inode_sb_list_add);
 440
 441static inline void inode_sb_list_del(struct inode *inode)
 442{
 443	if (!list_empty(&inode->i_sb_list)) {
 444		spin_lock(&inode_sb_list_lock);
 445		list_del_init(&inode->i_sb_list);
 446		spin_unlock(&inode_sb_list_lock);
 447	}
 448}
 449
 450static unsigned long hash(struct super_block *sb, unsigned long hashval)
 451{
 452	unsigned long tmp;
 453
 454	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 455			L1_CACHE_BYTES;
 456	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 457	return tmp & i_hash_mask;
 458}
 459
 460/**
 461 *	__insert_inode_hash - hash an inode
 462 *	@inode: unhashed inode
 463 *	@hashval: unsigned long value used to locate this object in the
 464 *		inode_hashtable.
 465 *
 466 *	Add an inode to the inode hash for this superblock.
 467 */
 468void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 469{
 470	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 471
 472	spin_lock(&inode_hash_lock);
 473	spin_lock(&inode->i_lock);
 474	hlist_add_head(&inode->i_hash, b);
 475	spin_unlock(&inode->i_lock);
 476	spin_unlock(&inode_hash_lock);
 477}
 478EXPORT_SYMBOL(__insert_inode_hash);
 479
 480/**
 481 *	__remove_inode_hash - remove an inode from the hash
 482 *	@inode: inode to unhash
 483 *
 484 *	Remove an inode from the superblock.
 485 */
 486void __remove_inode_hash(struct inode *inode)
 487{
 488	spin_lock(&inode_hash_lock);
 489	spin_lock(&inode->i_lock);
 490	hlist_del_init(&inode->i_hash);
 491	spin_unlock(&inode->i_lock);
 492	spin_unlock(&inode_hash_lock);
 493}
 494EXPORT_SYMBOL(__remove_inode_hash);
 495
 496void clear_inode(struct inode *inode)
 497{
 498	might_sleep();
 499	/*
 500	 * We have to cycle tree_lock here because reclaim can be still in the
 501	 * process of removing the last page (in __delete_from_page_cache())
 502	 * and we must not free mapping under it.
 503	 */
 504	spin_lock_irq(&inode->i_data.tree_lock);
 505	BUG_ON(inode->i_data.nrpages);
 506	BUG_ON(inode->i_data.nrshadows);
 507	spin_unlock_irq(&inode->i_data.tree_lock);
 508	BUG_ON(!list_empty(&inode->i_data.private_list));
 509	BUG_ON(!(inode->i_state & I_FREEING));
 510	BUG_ON(inode->i_state & I_CLEAR);
 
 511	/* don't need i_lock here, no concurrent mods to i_state */
 512	inode->i_state = I_FREEING | I_CLEAR;
 513}
 514EXPORT_SYMBOL(clear_inode);
 515
 516/*
 517 * Free the inode passed in, removing it from the lists it is still connected
 518 * to. We remove any pages still attached to the inode and wait for any IO that
 519 * is still in progress before finally destroying the inode.
 520 *
 521 * An inode must already be marked I_FREEING so that we avoid the inode being
 522 * moved back onto lists if we race with other code that manipulates the lists
 523 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 524 *
 525 * An inode must already be removed from the LRU list before being evicted from
 526 * the cache. This should occur atomically with setting the I_FREEING state
 527 * flag, so no inodes here should ever be on the LRU when being evicted.
 528 */
 529static void evict(struct inode *inode)
 530{
 531	const struct super_operations *op = inode->i_sb->s_op;
 532
 533	BUG_ON(!(inode->i_state & I_FREEING));
 534	BUG_ON(!list_empty(&inode->i_lru));
 535
 536	if (!list_empty(&inode->i_wb_list))
 537		inode_wb_list_del(inode);
 538
 539	inode_sb_list_del(inode);
 540
 541	/*
 542	 * Wait for flusher thread to be done with the inode so that filesystem
 543	 * does not start destroying it while writeback is still running. Since
 544	 * the inode has I_FREEING set, flusher thread won't start new work on
 545	 * the inode.  We just have to wait for running writeback to finish.
 546	 */
 547	inode_wait_for_writeback(inode);
 548
 549	if (op->evict_inode) {
 550		op->evict_inode(inode);
 551	} else {
 552		truncate_inode_pages_final(&inode->i_data);
 553		clear_inode(inode);
 554	}
 555	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 556		bd_forget(inode);
 557	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 558		cd_forget(inode);
 559
 560	remove_inode_hash(inode);
 561
 562	spin_lock(&inode->i_lock);
 563	wake_up_bit(&inode->i_state, __I_NEW);
 564	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 565	spin_unlock(&inode->i_lock);
 566
 567	destroy_inode(inode);
 568}
 569
 570/*
 571 * dispose_list - dispose of the contents of a local list
 572 * @head: the head of the list to free
 573 *
 574 * Dispose-list gets a local list with local inodes in it, so it doesn't
 575 * need to worry about list corruption and SMP locks.
 576 */
 577static void dispose_list(struct list_head *head)
 578{
 579	while (!list_empty(head)) {
 580		struct inode *inode;
 581
 582		inode = list_first_entry(head, struct inode, i_lru);
 583		list_del_init(&inode->i_lru);
 584
 585		evict(inode);
 
 586	}
 587}
 588
 589/**
 590 * evict_inodes	- evict all evictable inodes for a superblock
 591 * @sb:		superblock to operate on
 592 *
 593 * Make sure that no inodes with zero refcount are retained.  This is
 594 * called by superblock shutdown after having MS_ACTIVE flag removed,
 595 * so any inode reaching zero refcount during or after that call will
 596 * be immediately evicted.
 597 */
 598void evict_inodes(struct super_block *sb)
 599{
 600	struct inode *inode, *next;
 601	LIST_HEAD(dispose);
 602
 603	spin_lock(&inode_sb_list_lock);
 
 604	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 605		if (atomic_read(&inode->i_count))
 606			continue;
 607
 608		spin_lock(&inode->i_lock);
 609		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 610			spin_unlock(&inode->i_lock);
 611			continue;
 612		}
 613
 614		inode->i_state |= I_FREEING;
 615		inode_lru_list_del(inode);
 616		spin_unlock(&inode->i_lock);
 617		list_add(&inode->i_lru, &dispose);
 
 
 
 
 
 
 
 
 
 
 
 
 618	}
 619	spin_unlock(&inode_sb_list_lock);
 620
 621	dispose_list(&dispose);
 622}
 623
 624/**
 625 * invalidate_inodes	- attempt to free all inodes on a superblock
 626 * @sb:		superblock to operate on
 627 * @kill_dirty: flag to guide handling of dirty inodes
 628 *
 629 * Attempts to free all inodes for a given superblock.  If there were any
 630 * busy inodes return a non-zero value, else zero.
 631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 632 * them as busy.
 633 */
 634int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 635{
 636	int busy = 0;
 637	struct inode *inode, *next;
 638	LIST_HEAD(dispose);
 639
 640	spin_lock(&inode_sb_list_lock);
 641	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 642		spin_lock(&inode->i_lock);
 643		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 644			spin_unlock(&inode->i_lock);
 645			continue;
 646		}
 647		if (inode->i_state & I_DIRTY && !kill_dirty) {
 648			spin_unlock(&inode->i_lock);
 649			busy = 1;
 650			continue;
 651		}
 652		if (atomic_read(&inode->i_count)) {
 653			spin_unlock(&inode->i_lock);
 654			busy = 1;
 655			continue;
 656		}
 657
 658		inode->i_state |= I_FREEING;
 659		inode_lru_list_del(inode);
 660		spin_unlock(&inode->i_lock);
 661		list_add(&inode->i_lru, &dispose);
 662	}
 663	spin_unlock(&inode_sb_list_lock);
 664
 665	dispose_list(&dispose);
 666
 667	return busy;
 668}
 669
 670/*
 671 * Isolate the inode from the LRU in preparation for freeing it.
 672 *
 673 * Any inodes which are pinned purely because of attached pagecache have their
 674 * pagecache removed.  If the inode has metadata buffers attached to
 675 * mapping->private_list then try to remove them.
 676 *
 677 * If the inode has the I_REFERENCED flag set, then it means that it has been
 678 * used recently - the flag is set in iput_final(). When we encounter such an
 679 * inode, clear the flag and move it to the back of the LRU so it gets another
 680 * pass through the LRU before it gets reclaimed. This is necessary because of
 681 * the fact we are doing lazy LRU updates to minimise lock contention so the
 682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 683 * with this flag set because they are the inodes that are out of order.
 684 */
 685static enum lru_status
 686inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
 687{
 688	struct list_head *freeable = arg;
 689	struct inode	*inode = container_of(item, struct inode, i_lru);
 690
 691	/*
 692	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 693	 * If we fail to get the lock, just skip it.
 694	 */
 695	if (!spin_trylock(&inode->i_lock))
 696		return LRU_SKIP;
 697
 698	/*
 699	 * Referenced or dirty inodes are still in use. Give them another pass
 700	 * through the LRU as we canot reclaim them now.
 701	 */
 702	if (atomic_read(&inode->i_count) ||
 703	    (inode->i_state & ~I_REFERENCED)) {
 704		list_del_init(&inode->i_lru);
 705		spin_unlock(&inode->i_lock);
 706		this_cpu_dec(nr_unused);
 707		return LRU_REMOVED;
 708	}
 709
 710	/* recently referenced inodes get one more pass */
 711	if (inode->i_state & I_REFERENCED) {
 712		inode->i_state &= ~I_REFERENCED;
 713		spin_unlock(&inode->i_lock);
 714		return LRU_ROTATE;
 715	}
 716
 717	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 718		__iget(inode);
 719		spin_unlock(&inode->i_lock);
 720		spin_unlock(lru_lock);
 721		if (remove_inode_buffers(inode)) {
 722			unsigned long reap;
 723			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 724			if (current_is_kswapd())
 725				__count_vm_events(KSWAPD_INODESTEAL, reap);
 726			else
 727				__count_vm_events(PGINODESTEAL, reap);
 728			if (current->reclaim_state)
 729				current->reclaim_state->reclaimed_slab += reap;
 730		}
 731		iput(inode);
 732		spin_lock(lru_lock);
 733		return LRU_RETRY;
 734	}
 735
 736	WARN_ON(inode->i_state & I_NEW);
 737	inode->i_state |= I_FREEING;
 738	list_move(&inode->i_lru, freeable);
 739	spin_unlock(&inode->i_lock);
 740
 741	this_cpu_dec(nr_unused);
 742	return LRU_REMOVED;
 743}
 744
 745/*
 746 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 747 * This is called from the superblock shrinker function with a number of inodes
 748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 749 * then are freed outside inode_lock by dispose_list().
 750 */
 751long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
 752		     int nid)
 753{
 754	LIST_HEAD(freeable);
 755	long freed;
 756
 757	freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
 758				       &freeable, &nr_to_scan);
 759	dispose_list(&freeable);
 760	return freed;
 761}
 762
 763static void __wait_on_freeing_inode(struct inode *inode);
 764/*
 765 * Called with the inode lock held.
 766 */
 767static struct inode *find_inode(struct super_block *sb,
 768				struct hlist_head *head,
 769				int (*test)(struct inode *, void *),
 770				void *data)
 771{
 772	struct inode *inode = NULL;
 773
 774repeat:
 775	hlist_for_each_entry(inode, head, i_hash) {
 776		if (inode->i_sb != sb)
 777			continue;
 778		if (!test(inode, data))
 779			continue;
 780		spin_lock(&inode->i_lock);
 781		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 782			__wait_on_freeing_inode(inode);
 783			goto repeat;
 784		}
 785		__iget(inode);
 786		spin_unlock(&inode->i_lock);
 787		return inode;
 788	}
 789	return NULL;
 790}
 791
 792/*
 793 * find_inode_fast is the fast path version of find_inode, see the comment at
 794 * iget_locked for details.
 795 */
 796static struct inode *find_inode_fast(struct super_block *sb,
 797				struct hlist_head *head, unsigned long ino)
 798{
 799	struct inode *inode = NULL;
 800
 801repeat:
 802	hlist_for_each_entry(inode, head, i_hash) {
 803		if (inode->i_ino != ino)
 804			continue;
 805		if (inode->i_sb != sb)
 806			continue;
 807		spin_lock(&inode->i_lock);
 808		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 809			__wait_on_freeing_inode(inode);
 810			goto repeat;
 811		}
 812		__iget(inode);
 813		spin_unlock(&inode->i_lock);
 814		return inode;
 815	}
 816	return NULL;
 817}
 818
 819/*
 820 * Each cpu owns a range of LAST_INO_BATCH numbers.
 821 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 822 * to renew the exhausted range.
 823 *
 824 * This does not significantly increase overflow rate because every CPU can
 825 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 826 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 827 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 828 * overflow rate by 2x, which does not seem too significant.
 829 *
 830 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 831 * error if st_ino won't fit in target struct field. Use 32bit counter
 832 * here to attempt to avoid that.
 833 */
 834#define LAST_INO_BATCH 1024
 835static DEFINE_PER_CPU(unsigned int, last_ino);
 836
 837unsigned int get_next_ino(void)
 838{
 839	unsigned int *p = &get_cpu_var(last_ino);
 840	unsigned int res = *p;
 841
 842#ifdef CONFIG_SMP
 843	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 844		static atomic_t shared_last_ino;
 845		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 846
 847		res = next - LAST_INO_BATCH;
 848	}
 849#endif
 850
 851	*p = ++res;
 
 
 
 
 852	put_cpu_var(last_ino);
 853	return res;
 854}
 855EXPORT_SYMBOL(get_next_ino);
 856
 857/**
 858 *	new_inode_pseudo 	- obtain an inode
 859 *	@sb: superblock
 860 *
 861 *	Allocates a new inode for given superblock.
 862 *	Inode wont be chained in superblock s_inodes list
 863 *	This means :
 864 *	- fs can't be unmount
 865 *	- quotas, fsnotify, writeback can't work
 866 */
 867struct inode *new_inode_pseudo(struct super_block *sb)
 868{
 869	struct inode *inode = alloc_inode(sb);
 870
 871	if (inode) {
 872		spin_lock(&inode->i_lock);
 873		inode->i_state = 0;
 874		spin_unlock(&inode->i_lock);
 875		INIT_LIST_HEAD(&inode->i_sb_list);
 876	}
 877	return inode;
 878}
 879
 880/**
 881 *	new_inode 	- obtain an inode
 882 *	@sb: superblock
 883 *
 884 *	Allocates a new inode for given superblock. The default gfp_mask
 885 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 886 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 887 *	for the page cache are not reclaimable or migratable,
 888 *	mapping_set_gfp_mask() must be called with suitable flags on the
 889 *	newly created inode's mapping
 890 *
 891 */
 892struct inode *new_inode(struct super_block *sb)
 893{
 894	struct inode *inode;
 895
 896	spin_lock_prefetch(&inode_sb_list_lock);
 897
 898	inode = new_inode_pseudo(sb);
 899	if (inode)
 900		inode_sb_list_add(inode);
 901	return inode;
 902}
 903EXPORT_SYMBOL(new_inode);
 904
 905#ifdef CONFIG_DEBUG_LOCK_ALLOC
 906void lockdep_annotate_inode_mutex_key(struct inode *inode)
 907{
 908	if (S_ISDIR(inode->i_mode)) {
 909		struct file_system_type *type = inode->i_sb->s_type;
 910
 911		/* Set new key only if filesystem hasn't already changed it */
 912		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
 913			/*
 914			 * ensure nobody is actually holding i_mutex
 915			 */
 916			mutex_destroy(&inode->i_mutex);
 917			mutex_init(&inode->i_mutex);
 918			lockdep_set_class(&inode->i_mutex,
 919					  &type->i_mutex_dir_key);
 920		}
 921	}
 922}
 923EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 924#endif
 925
 926/**
 927 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 928 * @inode:	new inode to unlock
 929 *
 930 * Called when the inode is fully initialised to clear the new state of the
 931 * inode and wake up anyone waiting for the inode to finish initialisation.
 932 */
 933void unlock_new_inode(struct inode *inode)
 934{
 935	lockdep_annotate_inode_mutex_key(inode);
 936	spin_lock(&inode->i_lock);
 937	WARN_ON(!(inode->i_state & I_NEW));
 938	inode->i_state &= ~I_NEW;
 939	smp_mb();
 940	wake_up_bit(&inode->i_state, __I_NEW);
 941	spin_unlock(&inode->i_lock);
 942}
 943EXPORT_SYMBOL(unlock_new_inode);
 944
 945/**
 946 * lock_two_nondirectories - take two i_mutexes on non-directory objects
 947 *
 948 * Lock any non-NULL argument that is not a directory.
 949 * Zero, one or two objects may be locked by this function.
 950 *
 951 * @inode1: first inode to lock
 952 * @inode2: second inode to lock
 953 */
 954void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 955{
 956	if (inode1 > inode2)
 957		swap(inode1, inode2);
 958
 959	if (inode1 && !S_ISDIR(inode1->i_mode))
 960		mutex_lock(&inode1->i_mutex);
 961	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 962		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
 963}
 964EXPORT_SYMBOL(lock_two_nondirectories);
 965
 966/**
 967 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
 968 * @inode1: first inode to unlock
 969 * @inode2: second inode to unlock
 970 */
 971void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
 972{
 973	if (inode1 && !S_ISDIR(inode1->i_mode))
 974		mutex_unlock(&inode1->i_mutex);
 975	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 976		mutex_unlock(&inode2->i_mutex);
 977}
 978EXPORT_SYMBOL(unlock_two_nondirectories);
 979
 980/**
 981 * iget5_locked - obtain an inode from a mounted file system
 982 * @sb:		super block of file system
 983 * @hashval:	hash value (usually inode number) to get
 984 * @test:	callback used for comparisons between inodes
 985 * @set:	callback used to initialize a new struct inode
 986 * @data:	opaque data pointer to pass to @test and @set
 987 *
 988 * Search for the inode specified by @hashval and @data in the inode cache,
 989 * and if present it is return it with an increased reference count. This is
 990 * a generalized version of iget_locked() for file systems where the inode
 991 * number is not sufficient for unique identification of an inode.
 992 *
 993 * If the inode is not in cache, allocate a new inode and return it locked,
 994 * hashed, and with the I_NEW flag set. The file system gets to fill it in
 995 * before unlocking it via unlock_new_inode().
 996 *
 997 * Note both @test and @set are called with the inode_hash_lock held, so can't
 998 * sleep.
 999 */
1000struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1001		int (*test)(struct inode *, void *),
1002		int (*set)(struct inode *, void *), void *data)
1003{
1004	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005	struct inode *inode;
1006
1007	spin_lock(&inode_hash_lock);
1008	inode = find_inode(sb, head, test, data);
1009	spin_unlock(&inode_hash_lock);
1010
1011	if (inode) {
1012		wait_on_inode(inode);
 
 
 
 
1013		return inode;
1014	}
1015
1016	inode = alloc_inode(sb);
1017	if (inode) {
1018		struct inode *old;
1019
1020		spin_lock(&inode_hash_lock);
1021		/* We released the lock, so.. */
1022		old = find_inode(sb, head, test, data);
1023		if (!old) {
1024			if (set(inode, data))
1025				goto set_failed;
1026
1027			spin_lock(&inode->i_lock);
1028			inode->i_state = I_NEW;
1029			hlist_add_head(&inode->i_hash, head);
1030			spin_unlock(&inode->i_lock);
1031			inode_sb_list_add(inode);
1032			spin_unlock(&inode_hash_lock);
1033
1034			/* Return the locked inode with I_NEW set, the
1035			 * caller is responsible for filling in the contents
1036			 */
1037			return inode;
1038		}
1039
1040		/*
1041		 * Uhhuh, somebody else created the same inode under
1042		 * us. Use the old inode instead of the one we just
1043		 * allocated.
1044		 */
1045		spin_unlock(&inode_hash_lock);
1046		destroy_inode(inode);
1047		inode = old;
1048		wait_on_inode(inode);
 
 
 
 
1049	}
1050	return inode;
1051
1052set_failed:
1053	spin_unlock(&inode_hash_lock);
1054	destroy_inode(inode);
1055	return NULL;
1056}
1057EXPORT_SYMBOL(iget5_locked);
1058
1059/**
1060 * iget_locked - obtain an inode from a mounted file system
1061 * @sb:		super block of file system
1062 * @ino:	inode number to get
1063 *
1064 * Search for the inode specified by @ino in the inode cache and if present
1065 * return it with an increased reference count. This is for file systems
1066 * where the inode number is sufficient for unique identification of an inode.
1067 *
1068 * If the inode is not in cache, allocate a new inode and return it locked,
1069 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1070 * before unlocking it via unlock_new_inode().
1071 */
1072struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1073{
1074	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1075	struct inode *inode;
1076
1077	spin_lock(&inode_hash_lock);
1078	inode = find_inode_fast(sb, head, ino);
1079	spin_unlock(&inode_hash_lock);
1080	if (inode) {
1081		wait_on_inode(inode);
 
 
 
 
1082		return inode;
1083	}
1084
1085	inode = alloc_inode(sb);
1086	if (inode) {
1087		struct inode *old;
1088
1089		spin_lock(&inode_hash_lock);
1090		/* We released the lock, so.. */
1091		old = find_inode_fast(sb, head, ino);
1092		if (!old) {
1093			inode->i_ino = ino;
1094			spin_lock(&inode->i_lock);
1095			inode->i_state = I_NEW;
1096			hlist_add_head(&inode->i_hash, head);
1097			spin_unlock(&inode->i_lock);
1098			inode_sb_list_add(inode);
1099			spin_unlock(&inode_hash_lock);
1100
1101			/* Return the locked inode with I_NEW set, the
1102			 * caller is responsible for filling in the contents
1103			 */
1104			return inode;
1105		}
1106
1107		/*
1108		 * Uhhuh, somebody else created the same inode under
1109		 * us. Use the old inode instead of the one we just
1110		 * allocated.
1111		 */
1112		spin_unlock(&inode_hash_lock);
1113		destroy_inode(inode);
1114		inode = old;
1115		wait_on_inode(inode);
 
 
 
 
1116	}
1117	return inode;
1118}
1119EXPORT_SYMBOL(iget_locked);
1120
1121/*
1122 * search the inode cache for a matching inode number.
1123 * If we find one, then the inode number we are trying to
1124 * allocate is not unique and so we should not use it.
1125 *
1126 * Returns 1 if the inode number is unique, 0 if it is not.
1127 */
1128static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1129{
1130	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1131	struct inode *inode;
1132
1133	spin_lock(&inode_hash_lock);
1134	hlist_for_each_entry(inode, b, i_hash) {
1135		if (inode->i_ino == ino && inode->i_sb == sb) {
1136			spin_unlock(&inode_hash_lock);
1137			return 0;
1138		}
1139	}
1140	spin_unlock(&inode_hash_lock);
1141
1142	return 1;
1143}
1144
1145/**
1146 *	iunique - get a unique inode number
1147 *	@sb: superblock
1148 *	@max_reserved: highest reserved inode number
1149 *
1150 *	Obtain an inode number that is unique on the system for a given
1151 *	superblock. This is used by file systems that have no natural
1152 *	permanent inode numbering system. An inode number is returned that
1153 *	is higher than the reserved limit but unique.
1154 *
1155 *	BUGS:
1156 *	With a large number of inodes live on the file system this function
1157 *	currently becomes quite slow.
1158 */
1159ino_t iunique(struct super_block *sb, ino_t max_reserved)
1160{
1161	/*
1162	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1163	 * error if st_ino won't fit in target struct field. Use 32bit counter
1164	 * here to attempt to avoid that.
1165	 */
1166	static DEFINE_SPINLOCK(iunique_lock);
1167	static unsigned int counter;
1168	ino_t res;
1169
1170	spin_lock(&iunique_lock);
1171	do {
1172		if (counter <= max_reserved)
1173			counter = max_reserved + 1;
1174		res = counter++;
1175	} while (!test_inode_iunique(sb, res));
1176	spin_unlock(&iunique_lock);
1177
1178	return res;
1179}
1180EXPORT_SYMBOL(iunique);
1181
1182struct inode *igrab(struct inode *inode)
1183{
1184	spin_lock(&inode->i_lock);
1185	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1186		__iget(inode);
1187		spin_unlock(&inode->i_lock);
1188	} else {
1189		spin_unlock(&inode->i_lock);
1190		/*
1191		 * Handle the case where s_op->clear_inode is not been
1192		 * called yet, and somebody is calling igrab
1193		 * while the inode is getting freed.
1194		 */
1195		inode = NULL;
1196	}
1197	return inode;
1198}
1199EXPORT_SYMBOL(igrab);
1200
1201/**
1202 * ilookup5_nowait - search for an inode in the inode cache
1203 * @sb:		super block of file system to search
1204 * @hashval:	hash value (usually inode number) to search for
1205 * @test:	callback used for comparisons between inodes
1206 * @data:	opaque data pointer to pass to @test
1207 *
1208 * Search for the inode specified by @hashval and @data in the inode cache.
1209 * If the inode is in the cache, the inode is returned with an incremented
1210 * reference count.
1211 *
1212 * Note: I_NEW is not waited upon so you have to be very careful what you do
1213 * with the returned inode.  You probably should be using ilookup5() instead.
1214 *
1215 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1216 */
1217struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1218		int (*test)(struct inode *, void *), void *data)
1219{
1220	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1221	struct inode *inode;
1222
1223	spin_lock(&inode_hash_lock);
1224	inode = find_inode(sb, head, test, data);
1225	spin_unlock(&inode_hash_lock);
1226
1227	return inode;
1228}
1229EXPORT_SYMBOL(ilookup5_nowait);
1230
1231/**
1232 * ilookup5 - search for an inode in the inode cache
1233 * @sb:		super block of file system to search
1234 * @hashval:	hash value (usually inode number) to search for
1235 * @test:	callback used for comparisons between inodes
1236 * @data:	opaque data pointer to pass to @test
1237 *
1238 * Search for the inode specified by @hashval and @data in the inode cache,
1239 * and if the inode is in the cache, return the inode with an incremented
1240 * reference count.  Waits on I_NEW before returning the inode.
1241 * returned with an incremented reference count.
1242 *
1243 * This is a generalized version of ilookup() for file systems where the
1244 * inode number is not sufficient for unique identification of an inode.
1245 *
1246 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1247 */
1248struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1249		int (*test)(struct inode *, void *), void *data)
1250{
1251	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1252
1253	if (inode)
 
1254		wait_on_inode(inode);
 
 
 
 
 
1255	return inode;
1256}
1257EXPORT_SYMBOL(ilookup5);
1258
1259/**
1260 * ilookup - search for an inode in the inode cache
1261 * @sb:		super block of file system to search
1262 * @ino:	inode number to search for
1263 *
1264 * Search for the inode @ino in the inode cache, and if the inode is in the
1265 * cache, the inode is returned with an incremented reference count.
1266 */
1267struct inode *ilookup(struct super_block *sb, unsigned long ino)
1268{
1269	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270	struct inode *inode;
1271
1272	spin_lock(&inode_hash_lock);
1273	inode = find_inode_fast(sb, head, ino);
1274	spin_unlock(&inode_hash_lock);
1275
1276	if (inode)
1277		wait_on_inode(inode);
 
 
 
 
 
1278	return inode;
1279}
1280EXPORT_SYMBOL(ilookup);
1281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282int insert_inode_locked(struct inode *inode)
1283{
1284	struct super_block *sb = inode->i_sb;
1285	ino_t ino = inode->i_ino;
1286	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1287
1288	while (1) {
1289		struct inode *old = NULL;
1290		spin_lock(&inode_hash_lock);
1291		hlist_for_each_entry(old, head, i_hash) {
1292			if (old->i_ino != ino)
1293				continue;
1294			if (old->i_sb != sb)
1295				continue;
1296			spin_lock(&old->i_lock);
1297			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1298				spin_unlock(&old->i_lock);
1299				continue;
1300			}
1301			break;
1302		}
1303		if (likely(!old)) {
1304			spin_lock(&inode->i_lock);
1305			inode->i_state |= I_NEW;
1306			hlist_add_head(&inode->i_hash, head);
1307			spin_unlock(&inode->i_lock);
1308			spin_unlock(&inode_hash_lock);
1309			return 0;
1310		}
1311		__iget(old);
1312		spin_unlock(&old->i_lock);
1313		spin_unlock(&inode_hash_lock);
1314		wait_on_inode(old);
1315		if (unlikely(!inode_unhashed(old))) {
1316			iput(old);
1317			return -EBUSY;
1318		}
1319		iput(old);
1320	}
1321}
1322EXPORT_SYMBOL(insert_inode_locked);
1323
1324int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1325		int (*test)(struct inode *, void *), void *data)
1326{
1327	struct super_block *sb = inode->i_sb;
1328	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1329
1330	while (1) {
1331		struct inode *old = NULL;
1332
1333		spin_lock(&inode_hash_lock);
1334		hlist_for_each_entry(old, head, i_hash) {
1335			if (old->i_sb != sb)
1336				continue;
1337			if (!test(old, data))
1338				continue;
1339			spin_lock(&old->i_lock);
1340			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341				spin_unlock(&old->i_lock);
1342				continue;
1343			}
1344			break;
1345		}
1346		if (likely(!old)) {
1347			spin_lock(&inode->i_lock);
1348			inode->i_state |= I_NEW;
1349			hlist_add_head(&inode->i_hash, head);
1350			spin_unlock(&inode->i_lock);
1351			spin_unlock(&inode_hash_lock);
1352			return 0;
1353		}
1354		__iget(old);
1355		spin_unlock(&old->i_lock);
1356		spin_unlock(&inode_hash_lock);
1357		wait_on_inode(old);
1358		if (unlikely(!inode_unhashed(old))) {
1359			iput(old);
1360			return -EBUSY;
1361		}
1362		iput(old);
1363	}
1364}
1365EXPORT_SYMBOL(insert_inode_locked4);
1366
1367
1368int generic_delete_inode(struct inode *inode)
1369{
1370	return 1;
1371}
1372EXPORT_SYMBOL(generic_delete_inode);
1373
1374/*
1375 * Called when we're dropping the last reference
1376 * to an inode.
1377 *
1378 * Call the FS "drop_inode()" function, defaulting to
1379 * the legacy UNIX filesystem behaviour.  If it tells
1380 * us to evict inode, do so.  Otherwise, retain inode
1381 * in cache if fs is alive, sync and evict if fs is
1382 * shutting down.
1383 */
1384static void iput_final(struct inode *inode)
1385{
1386	struct super_block *sb = inode->i_sb;
1387	const struct super_operations *op = inode->i_sb->s_op;
1388	int drop;
1389
1390	WARN_ON(inode->i_state & I_NEW);
1391
1392	if (op->drop_inode)
1393		drop = op->drop_inode(inode);
1394	else
1395		drop = generic_drop_inode(inode);
1396
1397	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1398		inode->i_state |= I_REFERENCED;
1399		inode_add_lru(inode);
1400		spin_unlock(&inode->i_lock);
1401		return;
1402	}
1403
1404	if (!drop) {
1405		inode->i_state |= I_WILL_FREE;
1406		spin_unlock(&inode->i_lock);
1407		write_inode_now(inode, 1);
1408		spin_lock(&inode->i_lock);
1409		WARN_ON(inode->i_state & I_NEW);
1410		inode->i_state &= ~I_WILL_FREE;
1411	}
1412
1413	inode->i_state |= I_FREEING;
1414	if (!list_empty(&inode->i_lru))
1415		inode_lru_list_del(inode);
1416	spin_unlock(&inode->i_lock);
1417
1418	evict(inode);
1419}
1420
1421/**
1422 *	iput	- put an inode
1423 *	@inode: inode to put
1424 *
1425 *	Puts an inode, dropping its usage count. If the inode use count hits
1426 *	zero, the inode is then freed and may also be destroyed.
1427 *
1428 *	Consequently, iput() can sleep.
1429 */
1430void iput(struct inode *inode)
1431{
1432	if (inode) {
1433		BUG_ON(inode->i_state & I_CLEAR);
1434
1435		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1436			iput_final(inode);
 
 
 
 
 
 
 
 
 
1437	}
1438}
1439EXPORT_SYMBOL(iput);
1440
1441/**
1442 *	bmap	- find a block number in a file
1443 *	@inode: inode of file
1444 *	@block: block to find
1445 *
1446 *	Returns the block number on the device holding the inode that
1447 *	is the disk block number for the block of the file requested.
1448 *	That is, asked for block 4 of inode 1 the function will return the
1449 *	disk block relative to the disk start that holds that block of the
1450 *	file.
1451 */
1452sector_t bmap(struct inode *inode, sector_t block)
1453{
1454	sector_t res = 0;
1455	if (inode->i_mapping->a_ops->bmap)
1456		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1457	return res;
1458}
1459EXPORT_SYMBOL(bmap);
1460
1461/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462 * With relative atime, only update atime if the previous atime is
1463 * earlier than either the ctime or mtime or if at least a day has
1464 * passed since the last atime update.
1465 */
1466static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1467			     struct timespec now)
1468{
1469
1470	if (!(mnt->mnt_flags & MNT_RELATIME))
1471		return 1;
 
 
1472	/*
1473	 * Is mtime younger than atime? If yes, update atime:
1474	 */
1475	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1476		return 1;
1477	/*
1478	 * Is ctime younger than atime? If yes, update atime:
1479	 */
1480	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1481		return 1;
1482
1483	/*
1484	 * Is the previous atime value older than a day? If yes,
1485	 * update atime:
1486	 */
1487	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1488		return 1;
1489	/*
1490	 * Good, we can skip the atime update:
1491	 */
1492	return 0;
1493}
1494
1495/*
1496 * This does the actual work of updating an inodes time or version.  Must have
1497 * had called mnt_want_write() before calling this.
1498 */
1499static int update_time(struct inode *inode, struct timespec *time, int flags)
1500{
1501	if (inode->i_op->update_time)
1502		return inode->i_op->update_time(inode, time, flags);
1503
1504	if (flags & S_ATIME)
1505		inode->i_atime = *time;
1506	if (flags & S_VERSION)
1507		inode_inc_iversion(inode);
1508	if (flags & S_CTIME)
1509		inode->i_ctime = *time;
1510	if (flags & S_MTIME)
1511		inode->i_mtime = *time;
1512	mark_inode_dirty_sync(inode);
 
 
 
1513	return 0;
1514}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515
1516/**
1517 *	touch_atime	-	update the access time
1518 *	@path: the &struct path to update
 
1519 *
1520 *	Update the accessed time on an inode and mark it for writeback.
1521 *	This function automatically handles read only file systems and media,
1522 *	as well as the "noatime" flag and inode specific "noatime" markers.
1523 */
1524void touch_atime(const struct path *path)
 
1525{
1526	struct vfsmount *mnt = path->mnt;
1527	struct inode *inode = path->dentry->d_inode;
1528	struct timespec now;
1529
1530	if (inode->i_flags & S_NOATIME)
1531		return;
 
 
 
 
 
 
 
1532	if (IS_NOATIME(inode))
1533		return;
1534	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1535		return;
1536
1537	if (mnt->mnt_flags & MNT_NOATIME)
1538		return;
1539	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1540		return;
1541
1542	now = current_fs_time(inode->i_sb);
1543
1544	if (!relatime_need_update(mnt, inode, now))
1545		return;
1546
1547	if (timespec_equal(&inode->i_atime, &now))
 
 
 
 
 
 
 
 
 
 
 
 
1548		return;
1549
1550	if (!sb_start_write_trylock(inode->i_sb))
1551		return;
1552
1553	if (__mnt_want_write(mnt))
1554		goto skip_update;
1555	/*
1556	 * File systems can error out when updating inodes if they need to
1557	 * allocate new space to modify an inode (such is the case for
1558	 * Btrfs), but since we touch atime while walking down the path we
1559	 * really don't care if we failed to update the atime of the file,
1560	 * so just ignore the return value.
1561	 * We may also fail on filesystems that have the ability to make parts
1562	 * of the fs read only, e.g. subvolumes in Btrfs.
1563	 */
 
1564	update_time(inode, &now, S_ATIME);
1565	__mnt_drop_write(mnt);
1566skip_update:
1567	sb_end_write(inode->i_sb);
1568}
1569EXPORT_SYMBOL(touch_atime);
1570
1571/*
1572 * The logic we want is
1573 *
1574 *	if suid or (sgid and xgrp)
1575 *		remove privs
1576 */
1577int should_remove_suid(struct dentry *dentry)
1578{
1579	umode_t mode = dentry->d_inode->i_mode;
1580	int kill = 0;
1581
1582	/* suid always must be killed */
1583	if (unlikely(mode & S_ISUID))
1584		kill = ATTR_KILL_SUID;
1585
1586	/*
1587	 * sgid without any exec bits is just a mandatory locking mark; leave
1588	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1589	 */
1590	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1591		kill |= ATTR_KILL_SGID;
1592
1593	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1594		return kill;
1595
1596	return 0;
1597}
1598EXPORT_SYMBOL(should_remove_suid);
1599
1600static int __remove_suid(struct dentry *dentry, int kill)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601{
1602	struct iattr newattrs;
1603
1604	newattrs.ia_valid = ATTR_FORCE | kill;
1605	/*
1606	 * Note we call this on write, so notify_change will not
1607	 * encounter any conflicting delegations:
1608	 */
1609	return notify_change(dentry, &newattrs, NULL);
1610}
1611
1612int file_remove_suid(struct file *file)
 
 
 
 
1613{
1614	struct dentry *dentry = file->f_path.dentry;
1615	struct inode *inode = dentry->d_inode;
1616	int killsuid;
1617	int killpriv;
1618	int error = 0;
1619
1620	/* Fast path for nothing security related */
1621	if (IS_NOSEC(inode))
1622		return 0;
1623
1624	killsuid = should_remove_suid(dentry);
1625	killpriv = security_inode_need_killpriv(dentry);
1626
1627	if (killpriv < 0)
1628		return killpriv;
1629	if (killpriv)
1630		error = security_inode_killpriv(dentry);
1631	if (!error && killsuid)
1632		error = __remove_suid(dentry, killsuid);
1633	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1634		inode->i_flags |= S_NOSEC;
1635
1636	return error;
1637}
1638EXPORT_SYMBOL(file_remove_suid);
1639
1640/**
1641 *	file_update_time	-	update mtime and ctime time
1642 *	@file: file accessed
1643 *
1644 *	Update the mtime and ctime members of an inode and mark the inode
1645 *	for writeback.  Note that this function is meant exclusively for
1646 *	usage in the file write path of filesystems, and filesystems may
1647 *	choose to explicitly ignore update via this function with the
1648 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1649 *	timestamps are handled by the server.  This can return an error for
1650 *	file systems who need to allocate space in order to update an inode.
1651 */
1652
1653int file_update_time(struct file *file)
1654{
1655	struct inode *inode = file_inode(file);
1656	struct timespec now;
1657	int sync_it = 0;
1658	int ret;
1659
1660	/* First try to exhaust all avenues to not sync */
1661	if (IS_NOCMTIME(inode))
1662		return 0;
1663
1664	now = current_fs_time(inode->i_sb);
1665	if (!timespec_equal(&inode->i_mtime, &now))
1666		sync_it = S_MTIME;
1667
1668	if (!timespec_equal(&inode->i_ctime, &now))
1669		sync_it |= S_CTIME;
1670
1671	if (IS_I_VERSION(inode))
1672		sync_it |= S_VERSION;
1673
1674	if (!sync_it)
1675		return 0;
1676
1677	/* Finally allowed to write? Takes lock. */
1678	if (__mnt_want_write_file(file))
1679		return 0;
1680
1681	ret = update_time(inode, &now, sync_it);
1682	__mnt_drop_write_file(file);
1683
1684	return ret;
1685}
1686EXPORT_SYMBOL(file_update_time);
1687
1688int inode_needs_sync(struct inode *inode)
1689{
1690	if (IS_SYNC(inode))
1691		return 1;
1692	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1693		return 1;
1694	return 0;
1695}
1696EXPORT_SYMBOL(inode_needs_sync);
1697
1698int inode_wait(void *word)
1699{
1700	schedule();
1701	return 0;
1702}
1703EXPORT_SYMBOL(inode_wait);
1704
1705/*
1706 * If we try to find an inode in the inode hash while it is being
1707 * deleted, we have to wait until the filesystem completes its
1708 * deletion before reporting that it isn't found.  This function waits
1709 * until the deletion _might_ have completed.  Callers are responsible
1710 * to recheck inode state.
1711 *
1712 * It doesn't matter if I_NEW is not set initially, a call to
1713 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1714 * will DTRT.
1715 */
1716static void __wait_on_freeing_inode(struct inode *inode)
1717{
1718	wait_queue_head_t *wq;
1719	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1720	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1721	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1722	spin_unlock(&inode->i_lock);
1723	spin_unlock(&inode_hash_lock);
1724	schedule();
1725	finish_wait(wq, &wait.wait);
1726	spin_lock(&inode_hash_lock);
1727}
1728
1729static __initdata unsigned long ihash_entries;
1730static int __init set_ihash_entries(char *str)
1731{
1732	if (!str)
1733		return 0;
1734	ihash_entries = simple_strtoul(str, &str, 0);
1735	return 1;
1736}
1737__setup("ihash_entries=", set_ihash_entries);
1738
1739/*
1740 * Initialize the waitqueues and inode hash table.
1741 */
1742void __init inode_init_early(void)
1743{
1744	unsigned int loop;
1745
1746	/* If hashes are distributed across NUMA nodes, defer
1747	 * hash allocation until vmalloc space is available.
1748	 */
1749	if (hashdist)
1750		return;
1751
1752	inode_hashtable =
1753		alloc_large_system_hash("Inode-cache",
1754					sizeof(struct hlist_head),
1755					ihash_entries,
1756					14,
1757					HASH_EARLY,
1758					&i_hash_shift,
1759					&i_hash_mask,
1760					0,
1761					0);
1762
1763	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1764		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1765}
1766
1767void __init inode_init(void)
1768{
1769	unsigned int loop;
1770
1771	/* inode slab cache */
1772	inode_cachep = kmem_cache_create("inode_cache",
1773					 sizeof(struct inode),
1774					 0,
1775					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1776					 SLAB_MEM_SPREAD),
1777					 init_once);
1778
1779	/* Hash may have been set up in inode_init_early */
1780	if (!hashdist)
1781		return;
1782
1783	inode_hashtable =
1784		alloc_large_system_hash("Inode-cache",
1785					sizeof(struct hlist_head),
1786					ihash_entries,
1787					14,
1788					0,
1789					&i_hash_shift,
1790					&i_hash_mask,
1791					0,
1792					0);
1793
1794	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1795		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1796}
1797
1798void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1799{
1800	inode->i_mode = mode;
1801	if (S_ISCHR(mode)) {
1802		inode->i_fop = &def_chr_fops;
1803		inode->i_rdev = rdev;
1804	} else if (S_ISBLK(mode)) {
1805		inode->i_fop = &def_blk_fops;
1806		inode->i_rdev = rdev;
1807	} else if (S_ISFIFO(mode))
1808		inode->i_fop = &pipefifo_fops;
1809	else if (S_ISSOCK(mode))
1810		inode->i_fop = &bad_sock_fops;
1811	else
1812		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1813				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1814				  inode->i_ino);
1815}
1816EXPORT_SYMBOL(init_special_inode);
1817
1818/**
1819 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1820 * @inode: New inode
1821 * @dir: Directory inode
1822 * @mode: mode of the new inode
1823 */
1824void inode_init_owner(struct inode *inode, const struct inode *dir,
1825			umode_t mode)
1826{
1827	inode->i_uid = current_fsuid();
1828	if (dir && dir->i_mode & S_ISGID) {
1829		inode->i_gid = dir->i_gid;
1830		if (S_ISDIR(mode))
1831			mode |= S_ISGID;
1832	} else
1833		inode->i_gid = current_fsgid();
1834	inode->i_mode = mode;
1835}
1836EXPORT_SYMBOL(inode_init_owner);
1837
1838/**
1839 * inode_owner_or_capable - check current task permissions to inode
1840 * @inode: inode being checked
1841 *
1842 * Return true if current either has CAP_FOWNER to the inode, or
1843 * owns the file.
1844 */
1845bool inode_owner_or_capable(const struct inode *inode)
1846{
 
 
1847	if (uid_eq(current_fsuid(), inode->i_uid))
1848		return true;
1849	if (inode_capable(inode, CAP_FOWNER))
 
 
1850		return true;
1851	return false;
1852}
1853EXPORT_SYMBOL(inode_owner_or_capable);
1854
1855/*
1856 * Direct i/o helper functions
1857 */
1858static void __inode_dio_wait(struct inode *inode)
1859{
1860	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1861	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1862
1863	do {
1864		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1865		if (atomic_read(&inode->i_dio_count))
1866			schedule();
1867	} while (atomic_read(&inode->i_dio_count));
1868	finish_wait(wq, &q.wait);
1869}
1870
1871/**
1872 * inode_dio_wait - wait for outstanding DIO requests to finish
1873 * @inode: inode to wait for
1874 *
1875 * Waits for all pending direct I/O requests to finish so that we can
1876 * proceed with a truncate or equivalent operation.
1877 *
1878 * Must be called under a lock that serializes taking new references
1879 * to i_dio_count, usually by inode->i_mutex.
1880 */
1881void inode_dio_wait(struct inode *inode)
1882{
1883	if (atomic_read(&inode->i_dio_count))
1884		__inode_dio_wait(inode);
1885}
1886EXPORT_SYMBOL(inode_dio_wait);
1887
1888/*
1889 * inode_dio_done - signal finish of a direct I/O requests
1890 * @inode: inode the direct I/O happens on
1891 *
1892 * This is called once we've finished processing a direct I/O request,
1893 * and is used to wake up callers waiting for direct I/O to be quiesced.
1894 */
1895void inode_dio_done(struct inode *inode)
1896{
1897	if (atomic_dec_and_test(&inode->i_dio_count))
1898		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1899}
1900EXPORT_SYMBOL(inode_dio_done);
1901
1902/*
1903 * inode_set_flags - atomically set some inode flags
1904 *
1905 * Note: the caller should be holding i_mutex, or else be sure that
1906 * they have exclusive access to the inode structure (i.e., while the
1907 * inode is being instantiated).  The reason for the cmpxchg() loop
1908 * --- which wouldn't be necessary if all code paths which modify
1909 * i_flags actually followed this rule, is that there is at least one
1910 * code path which doesn't today --- for example,
1911 * __generic_file_aio_write() calls file_remove_suid() without holding
1912 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1913 *
1914 * In the long run, i_mutex is overkill, and we should probably look
1915 * at using the i_lock spinlock to protect i_flags, and then make sure
1916 * it is so documented in include/linux/fs.h and that all code follows
1917 * the locking convention!!
1918 */
1919void inode_set_flags(struct inode *inode, unsigned int flags,
1920		     unsigned int mask)
1921{
1922	unsigned int old_flags, new_flags;
1923
1924	WARN_ON_ONCE(flags & ~mask);
1925	do {
1926		old_flags = ACCESS_ONCE(inode->i_flags);
1927		new_flags = (old_flags & ~mask) | flags;
1928	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1929				  new_flags) != old_flags));
1930}
1931EXPORT_SYMBOL(inode_set_flags);