Loading...
1/*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/fs.h>
15#include <linux/mm.h>
16#include <linux/mman.h>
17#include <linux/errno.h>
18#include <linux/signal.h>
19#include <linux/binfmts.h>
20#include <linux/string.h>
21#include <linux/file.h>
22#include <linux/slab.h>
23#include <linux/personality.h>
24#include <linux/elfcore.h>
25#include <linux/init.h>
26#include <linux/highuid.h>
27#include <linux/compiler.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
30#include <linux/vmalloc.h>
31#include <linux/security.h>
32#include <linux/random.h>
33#include <linux/elf.h>
34#include <linux/elf-randomize.h>
35#include <linux/utsname.h>
36#include <linux/coredump.h>
37#include <linux/sched.h>
38#include <linux/dax.h>
39#include <linux/uaccess.h>
40#include <asm/param.h>
41#include <asm/page.h>
42
43#ifndef user_long_t
44#define user_long_t long
45#endif
46#ifndef user_siginfo_t
47#define user_siginfo_t siginfo_t
48#endif
49
50static int load_elf_binary(struct linux_binprm *bprm);
51static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
52 int, int, unsigned long);
53
54#ifdef CONFIG_USELIB
55static int load_elf_library(struct file *);
56#else
57#define load_elf_library NULL
58#endif
59
60/*
61 * If we don't support core dumping, then supply a NULL so we
62 * don't even try.
63 */
64#ifdef CONFIG_ELF_CORE
65static int elf_core_dump(struct coredump_params *cprm);
66#else
67#define elf_core_dump NULL
68#endif
69
70#if ELF_EXEC_PAGESIZE > PAGE_SIZE
71#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
72#else
73#define ELF_MIN_ALIGN PAGE_SIZE
74#endif
75
76#ifndef ELF_CORE_EFLAGS
77#define ELF_CORE_EFLAGS 0
78#endif
79
80#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
83
84static struct linux_binfmt elf_format = {
85 .module = THIS_MODULE,
86 .load_binary = load_elf_binary,
87 .load_shlib = load_elf_library,
88 .core_dump = elf_core_dump,
89 .min_coredump = ELF_EXEC_PAGESIZE,
90};
91
92#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
93
94static int set_brk(unsigned long start, unsigned long end)
95{
96 start = ELF_PAGEALIGN(start);
97 end = ELF_PAGEALIGN(end);
98 if (end > start) {
99 int error = vm_brk(start, end - start);
100 if (error)
101 return error;
102 }
103 current->mm->start_brk = current->mm->brk = end;
104 return 0;
105}
106
107/* We need to explicitly zero any fractional pages
108 after the data section (i.e. bss). This would
109 contain the junk from the file that should not
110 be in memory
111 */
112static int padzero(unsigned long elf_bss)
113{
114 unsigned long nbyte;
115
116 nbyte = ELF_PAGEOFFSET(elf_bss);
117 if (nbyte) {
118 nbyte = ELF_MIN_ALIGN - nbyte;
119 if (clear_user((void __user *) elf_bss, nbyte))
120 return -EFAULT;
121 }
122 return 0;
123}
124
125/* Let's use some macros to make this stack manipulation a little clearer */
126#ifdef CONFIG_STACK_GROWSUP
127#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128#define STACK_ROUND(sp, items) \
129 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
130#define STACK_ALLOC(sp, len) ({ \
131 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
132 old_sp; })
133#else
134#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135#define STACK_ROUND(sp, items) \
136 (((unsigned long) (sp - items)) &~ 15UL)
137#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
138#endif
139
140#ifndef ELF_BASE_PLATFORM
141/*
142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 */
146#define ELF_BASE_PLATFORM NULL
147#endif
148
149static int
150create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
151 unsigned long load_addr, unsigned long interp_load_addr)
152{
153 unsigned long p = bprm->p;
154 int argc = bprm->argc;
155 int envc = bprm->envc;
156 elf_addr_t __user *argv;
157 elf_addr_t __user *envp;
158 elf_addr_t __user *sp;
159 elf_addr_t __user *u_platform;
160 elf_addr_t __user *u_base_platform;
161 elf_addr_t __user *u_rand_bytes;
162 const char *k_platform = ELF_PLATFORM;
163 const char *k_base_platform = ELF_BASE_PLATFORM;
164 unsigned char k_rand_bytes[16];
165 int items;
166 elf_addr_t *elf_info;
167 int ei_index = 0;
168 const struct cred *cred = current_cred();
169 struct vm_area_struct *vma;
170
171 /*
172 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 * evictions by the processes running on the same package. One
174 * thing we can do is to shuffle the initial stack for them.
175 */
176
177 p = arch_align_stack(p);
178
179 /*
180 * If this architecture has a platform capability string, copy it
181 * to userspace. In some cases (Sparc), this info is impossible
182 * for userspace to get any other way, in others (i386) it is
183 * merely difficult.
184 */
185 u_platform = NULL;
186 if (k_platform) {
187 size_t len = strlen(k_platform) + 1;
188
189 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 if (__copy_to_user(u_platform, k_platform, len))
191 return -EFAULT;
192 }
193
194 /*
195 * If this architecture has a "base" platform capability
196 * string, copy it to userspace.
197 */
198 u_base_platform = NULL;
199 if (k_base_platform) {
200 size_t len = strlen(k_base_platform) + 1;
201
202 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_base_platform, k_base_platform, len))
204 return -EFAULT;
205 }
206
207 /*
208 * Generate 16 random bytes for userspace PRNG seeding.
209 */
210 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
211 u_rand_bytes = (elf_addr_t __user *)
212 STACK_ALLOC(p, sizeof(k_rand_bytes));
213 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
214 return -EFAULT;
215
216 /* Create the ELF interpreter info */
217 elf_info = (elf_addr_t *)current->mm->saved_auxv;
218 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
219#define NEW_AUX_ENT(id, val) \
220 do { \
221 elf_info[ei_index++] = id; \
222 elf_info[ei_index++] = val; \
223 } while (0)
224
225#ifdef ARCH_DLINFO
226 /*
227 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * AUXV.
229 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 * ARCH_DLINFO changes
231 */
232 ARCH_DLINFO;
233#endif
234 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
235 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
236 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
237 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
238 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
239 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
240 NEW_AUX_ENT(AT_BASE, interp_load_addr);
241 NEW_AUX_ENT(AT_FLAGS, 0);
242 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
243 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
244 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
245 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
246 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
247 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
248 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
249#ifdef ELF_HWCAP2
250 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
251#endif
252 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
253 if (k_platform) {
254 NEW_AUX_ENT(AT_PLATFORM,
255 (elf_addr_t)(unsigned long)u_platform);
256 }
257 if (k_base_platform) {
258 NEW_AUX_ENT(AT_BASE_PLATFORM,
259 (elf_addr_t)(unsigned long)u_base_platform);
260 }
261 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
262 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
263 }
264#undef NEW_AUX_ENT
265 /* AT_NULL is zero; clear the rest too */
266 memset(&elf_info[ei_index], 0,
267 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
268
269 /* And advance past the AT_NULL entry. */
270 ei_index += 2;
271
272 sp = STACK_ADD(p, ei_index);
273
274 items = (argc + 1) + (envc + 1) + 1;
275 bprm->p = STACK_ROUND(sp, items);
276
277 /* Point sp at the lowest address on the stack */
278#ifdef CONFIG_STACK_GROWSUP
279 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
280 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
281#else
282 sp = (elf_addr_t __user *)bprm->p;
283#endif
284
285
286 /*
287 * Grow the stack manually; some architectures have a limit on how
288 * far ahead a user-space access may be in order to grow the stack.
289 */
290 vma = find_extend_vma(current->mm, bprm->p);
291 if (!vma)
292 return -EFAULT;
293
294 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 if (__put_user(argc, sp++))
296 return -EFAULT;
297 argv = sp;
298 envp = argv + argc + 1;
299
300 /* Populate argv and envp */
301 p = current->mm->arg_end = current->mm->arg_start;
302 while (argc-- > 0) {
303 size_t len;
304 if (__put_user((elf_addr_t)p, argv++))
305 return -EFAULT;
306 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
307 if (!len || len > MAX_ARG_STRLEN)
308 return -EINVAL;
309 p += len;
310 }
311 if (__put_user(0, argv))
312 return -EFAULT;
313 current->mm->arg_end = current->mm->env_start = p;
314 while (envc-- > 0) {
315 size_t len;
316 if (__put_user((elf_addr_t)p, envp++))
317 return -EFAULT;
318 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
319 if (!len || len > MAX_ARG_STRLEN)
320 return -EINVAL;
321 p += len;
322 }
323 if (__put_user(0, envp))
324 return -EFAULT;
325 current->mm->env_end = p;
326
327 /* Put the elf_info on the stack in the right place. */
328 sp = (elf_addr_t __user *)envp + 1;
329 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
330 return -EFAULT;
331 return 0;
332}
333
334#ifndef elf_map
335
336static unsigned long elf_map(struct file *filep, unsigned long addr,
337 struct elf_phdr *eppnt, int prot, int type,
338 unsigned long total_size)
339{
340 unsigned long map_addr;
341 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
342 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
343 addr = ELF_PAGESTART(addr);
344 size = ELF_PAGEALIGN(size);
345
346 /* mmap() will return -EINVAL if given a zero size, but a
347 * segment with zero filesize is perfectly valid */
348 if (!size)
349 return addr;
350
351 /*
352 * total_size is the size of the ELF (interpreter) image.
353 * The _first_ mmap needs to know the full size, otherwise
354 * randomization might put this image into an overlapping
355 * position with the ELF binary image. (since size < total_size)
356 * So we first map the 'big' image - and unmap the remainder at
357 * the end. (which unmap is needed for ELF images with holes.)
358 */
359 if (total_size) {
360 total_size = ELF_PAGEALIGN(total_size);
361 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
362 if (!BAD_ADDR(map_addr))
363 vm_munmap(map_addr+size, total_size-size);
364 } else
365 map_addr = vm_mmap(filep, addr, size, prot, type, off);
366
367 return(map_addr);
368}
369
370#endif /* !elf_map */
371
372static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
373{
374 int i, first_idx = -1, last_idx = -1;
375
376 for (i = 0; i < nr; i++) {
377 if (cmds[i].p_type == PT_LOAD) {
378 last_idx = i;
379 if (first_idx == -1)
380 first_idx = i;
381 }
382 }
383 if (first_idx == -1)
384 return 0;
385
386 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
387 ELF_PAGESTART(cmds[first_idx].p_vaddr);
388}
389
390/**
391 * load_elf_phdrs() - load ELF program headers
392 * @elf_ex: ELF header of the binary whose program headers should be loaded
393 * @elf_file: the opened ELF binary file
394 *
395 * Loads ELF program headers from the binary file elf_file, which has the ELF
396 * header pointed to by elf_ex, into a newly allocated array. The caller is
397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
398 */
399static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
400 struct file *elf_file)
401{
402 struct elf_phdr *elf_phdata = NULL;
403 int retval, size, err = -1;
404
405 /*
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
408 */
409 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
410 goto out;
411
412 /* Sanity check the number of program headers... */
413 if (elf_ex->e_phnum < 1 ||
414 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
415 goto out;
416
417 /* ...and their total size. */
418 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
419 if (size > ELF_MIN_ALIGN)
420 goto out;
421
422 elf_phdata = kmalloc(size, GFP_KERNEL);
423 if (!elf_phdata)
424 goto out;
425
426 /* Read in the program headers */
427 retval = kernel_read(elf_file, elf_ex->e_phoff,
428 (char *)elf_phdata, size);
429 if (retval != size) {
430 err = (retval < 0) ? retval : -EIO;
431 goto out;
432 }
433
434 /* Success! */
435 err = 0;
436out:
437 if (err) {
438 kfree(elf_phdata);
439 elf_phdata = NULL;
440 }
441 return elf_phdata;
442}
443
444#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
445
446/**
447 * struct arch_elf_state - arch-specific ELF loading state
448 *
449 * This structure is used to preserve architecture specific data during
450 * the loading of an ELF file, throughout the checking of architecture
451 * specific ELF headers & through to the point where the ELF load is
452 * known to be proceeding (ie. SET_PERSONALITY).
453 *
454 * This implementation is a dummy for architectures which require no
455 * specific state.
456 */
457struct arch_elf_state {
458};
459
460#define INIT_ARCH_ELF_STATE {}
461
462/**
463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464 * @ehdr: The main ELF header
465 * @phdr: The program header to check
466 * @elf: The open ELF file
467 * @is_interp: True if the phdr is from the interpreter of the ELF being
468 * loaded, else false.
469 * @state: Architecture-specific state preserved throughout the process
470 * of loading the ELF.
471 *
472 * Inspects the program header phdr to validate its correctness and/or
473 * suitability for the system. Called once per ELF program header in the
474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
475 * interpreter.
476 *
477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478 * with that return code.
479 */
480static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
481 struct elf_phdr *phdr,
482 struct file *elf, bool is_interp,
483 struct arch_elf_state *state)
484{
485 /* Dummy implementation, always proceed */
486 return 0;
487}
488
489/**
490 * arch_check_elf() - check an ELF executable
491 * @ehdr: The main ELF header
492 * @has_interp: True if the ELF has an interpreter, else false.
493 * @interp_ehdr: The interpreter's ELF header
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
496 *
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
500 *
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
503 */
504static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
505 struct elfhdr *interp_ehdr,
506 struct arch_elf_state *state)
507{
508 /* Dummy implementation, always proceed */
509 return 0;
510}
511
512#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
513
514/* This is much more generalized than the library routine read function,
515 so we keep this separate. Technically the library read function
516 is only provided so that we can read a.out libraries that have
517 an ELF header */
518
519static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
520 struct file *interpreter, unsigned long *interp_map_addr,
521 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
522{
523 struct elf_phdr *eppnt;
524 unsigned long load_addr = 0;
525 int load_addr_set = 0;
526 unsigned long last_bss = 0, elf_bss = 0;
527 unsigned long error = ~0UL;
528 unsigned long total_size;
529 int i;
530
531 /* First of all, some simple consistency checks */
532 if (interp_elf_ex->e_type != ET_EXEC &&
533 interp_elf_ex->e_type != ET_DYN)
534 goto out;
535 if (!elf_check_arch(interp_elf_ex))
536 goto out;
537 if (!interpreter->f_op->mmap)
538 goto out;
539
540 total_size = total_mapping_size(interp_elf_phdata,
541 interp_elf_ex->e_phnum);
542 if (!total_size) {
543 error = -EINVAL;
544 goto out;
545 }
546
547 eppnt = interp_elf_phdata;
548 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
549 if (eppnt->p_type == PT_LOAD) {
550 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
551 int elf_prot = 0;
552 unsigned long vaddr = 0;
553 unsigned long k, map_addr;
554
555 if (eppnt->p_flags & PF_R)
556 elf_prot = PROT_READ;
557 if (eppnt->p_flags & PF_W)
558 elf_prot |= PROT_WRITE;
559 if (eppnt->p_flags & PF_X)
560 elf_prot |= PROT_EXEC;
561 vaddr = eppnt->p_vaddr;
562 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
563 elf_type |= MAP_FIXED;
564 else if (no_base && interp_elf_ex->e_type == ET_DYN)
565 load_addr = -vaddr;
566
567 map_addr = elf_map(interpreter, load_addr + vaddr,
568 eppnt, elf_prot, elf_type, total_size);
569 total_size = 0;
570 if (!*interp_map_addr)
571 *interp_map_addr = map_addr;
572 error = map_addr;
573 if (BAD_ADDR(map_addr))
574 goto out;
575
576 if (!load_addr_set &&
577 interp_elf_ex->e_type == ET_DYN) {
578 load_addr = map_addr - ELF_PAGESTART(vaddr);
579 load_addr_set = 1;
580 }
581
582 /*
583 * Check to see if the section's size will overflow the
584 * allowed task size. Note that p_filesz must always be
585 * <= p_memsize so it's only necessary to check p_memsz.
586 */
587 k = load_addr + eppnt->p_vaddr;
588 if (BAD_ADDR(k) ||
589 eppnt->p_filesz > eppnt->p_memsz ||
590 eppnt->p_memsz > TASK_SIZE ||
591 TASK_SIZE - eppnt->p_memsz < k) {
592 error = -ENOMEM;
593 goto out;
594 }
595
596 /*
597 * Find the end of the file mapping for this phdr, and
598 * keep track of the largest address we see for this.
599 */
600 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
601 if (k > elf_bss)
602 elf_bss = k;
603
604 /*
605 * Do the same thing for the memory mapping - between
606 * elf_bss and last_bss is the bss section.
607 */
608 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
609 if (k > last_bss)
610 last_bss = k;
611 }
612 }
613
614 /*
615 * Now fill out the bss section: first pad the last page from
616 * the file up to the page boundary, and zero it from elf_bss
617 * up to the end of the page.
618 */
619 if (padzero(elf_bss)) {
620 error = -EFAULT;
621 goto out;
622 }
623 /*
624 * Next, align both the file and mem bss up to the page size,
625 * since this is where elf_bss was just zeroed up to, and where
626 * last_bss will end after the vm_brk() below.
627 */
628 elf_bss = ELF_PAGEALIGN(elf_bss);
629 last_bss = ELF_PAGEALIGN(last_bss);
630 /* Finally, if there is still more bss to allocate, do it. */
631 if (last_bss > elf_bss) {
632 error = vm_brk(elf_bss, last_bss - elf_bss);
633 if (error)
634 goto out;
635 }
636
637 error = load_addr;
638out:
639 return error;
640}
641
642/*
643 * These are the functions used to load ELF style executables and shared
644 * libraries. There is no binary dependent code anywhere else.
645 */
646
647#ifndef STACK_RND_MASK
648#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
649#endif
650
651static unsigned long randomize_stack_top(unsigned long stack_top)
652{
653 unsigned long random_variable = 0;
654
655 if ((current->flags & PF_RANDOMIZE) &&
656 !(current->personality & ADDR_NO_RANDOMIZE)) {
657 random_variable = get_random_long();
658 random_variable &= STACK_RND_MASK;
659 random_variable <<= PAGE_SHIFT;
660 }
661#ifdef CONFIG_STACK_GROWSUP
662 return PAGE_ALIGN(stack_top) + random_variable;
663#else
664 return PAGE_ALIGN(stack_top) - random_variable;
665#endif
666}
667
668static int load_elf_binary(struct linux_binprm *bprm)
669{
670 struct file *interpreter = NULL; /* to shut gcc up */
671 unsigned long load_addr = 0, load_bias = 0;
672 int load_addr_set = 0;
673 char * elf_interpreter = NULL;
674 unsigned long error;
675 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
676 unsigned long elf_bss, elf_brk;
677 int retval, i;
678 unsigned long elf_entry;
679 unsigned long interp_load_addr = 0;
680 unsigned long start_code, end_code, start_data, end_data;
681 unsigned long reloc_func_desc __maybe_unused = 0;
682 int executable_stack = EXSTACK_DEFAULT;
683 struct pt_regs *regs = current_pt_regs();
684 struct {
685 struct elfhdr elf_ex;
686 struct elfhdr interp_elf_ex;
687 } *loc;
688 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
689
690 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
691 if (!loc) {
692 retval = -ENOMEM;
693 goto out_ret;
694 }
695
696 /* Get the exec-header */
697 loc->elf_ex = *((struct elfhdr *)bprm->buf);
698
699 retval = -ENOEXEC;
700 /* First of all, some simple consistency checks */
701 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
702 goto out;
703
704 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
705 goto out;
706 if (!elf_check_arch(&loc->elf_ex))
707 goto out;
708 if (!bprm->file->f_op->mmap)
709 goto out;
710
711 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
712 if (!elf_phdata)
713 goto out;
714
715 elf_ppnt = elf_phdata;
716 elf_bss = 0;
717 elf_brk = 0;
718
719 start_code = ~0UL;
720 end_code = 0;
721 start_data = 0;
722 end_data = 0;
723
724 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
725 if (elf_ppnt->p_type == PT_INTERP) {
726 /* This is the program interpreter used for
727 * shared libraries - for now assume that this
728 * is an a.out format binary
729 */
730 retval = -ENOEXEC;
731 if (elf_ppnt->p_filesz > PATH_MAX ||
732 elf_ppnt->p_filesz < 2)
733 goto out_free_ph;
734
735 retval = -ENOMEM;
736 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
737 GFP_KERNEL);
738 if (!elf_interpreter)
739 goto out_free_ph;
740
741 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
742 elf_interpreter,
743 elf_ppnt->p_filesz);
744 if (retval != elf_ppnt->p_filesz) {
745 if (retval >= 0)
746 retval = -EIO;
747 goto out_free_interp;
748 }
749 /* make sure path is NULL terminated */
750 retval = -ENOEXEC;
751 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
752 goto out_free_interp;
753
754 interpreter = open_exec(elf_interpreter);
755 retval = PTR_ERR(interpreter);
756 if (IS_ERR(interpreter))
757 goto out_free_interp;
758
759 /*
760 * If the binary is not readable then enforce
761 * mm->dumpable = 0 regardless of the interpreter's
762 * permissions.
763 */
764 would_dump(bprm, interpreter);
765
766 /* Get the exec headers */
767 retval = kernel_read(interpreter, 0,
768 (void *)&loc->interp_elf_ex,
769 sizeof(loc->interp_elf_ex));
770 if (retval != sizeof(loc->interp_elf_ex)) {
771 if (retval >= 0)
772 retval = -EIO;
773 goto out_free_dentry;
774 }
775
776 break;
777 }
778 elf_ppnt++;
779 }
780
781 elf_ppnt = elf_phdata;
782 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
783 switch (elf_ppnt->p_type) {
784 case PT_GNU_STACK:
785 if (elf_ppnt->p_flags & PF_X)
786 executable_stack = EXSTACK_ENABLE_X;
787 else
788 executable_stack = EXSTACK_DISABLE_X;
789 break;
790
791 case PT_LOPROC ... PT_HIPROC:
792 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
793 bprm->file, false,
794 &arch_state);
795 if (retval)
796 goto out_free_dentry;
797 break;
798 }
799
800 /* Some simple consistency checks for the interpreter */
801 if (elf_interpreter) {
802 retval = -ELIBBAD;
803 /* Not an ELF interpreter */
804 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
805 goto out_free_dentry;
806 /* Verify the interpreter has a valid arch */
807 if (!elf_check_arch(&loc->interp_elf_ex))
808 goto out_free_dentry;
809
810 /* Load the interpreter program headers */
811 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
812 interpreter);
813 if (!interp_elf_phdata)
814 goto out_free_dentry;
815
816 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
817 elf_ppnt = interp_elf_phdata;
818 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
819 switch (elf_ppnt->p_type) {
820 case PT_LOPROC ... PT_HIPROC:
821 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
822 elf_ppnt, interpreter,
823 true, &arch_state);
824 if (retval)
825 goto out_free_dentry;
826 break;
827 }
828 }
829
830 /*
831 * Allow arch code to reject the ELF at this point, whilst it's
832 * still possible to return an error to the code that invoked
833 * the exec syscall.
834 */
835 retval = arch_check_elf(&loc->elf_ex,
836 !!interpreter, &loc->interp_elf_ex,
837 &arch_state);
838 if (retval)
839 goto out_free_dentry;
840
841 /* Flush all traces of the currently running executable */
842 retval = flush_old_exec(bprm);
843 if (retval)
844 goto out_free_dentry;
845
846 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
847 may depend on the personality. */
848 SET_PERSONALITY2(loc->elf_ex, &arch_state);
849 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
850 current->personality |= READ_IMPLIES_EXEC;
851
852 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
853 current->flags |= PF_RANDOMIZE;
854
855 setup_new_exec(bprm);
856 install_exec_creds(bprm);
857
858 /* Do this so that we can load the interpreter, if need be. We will
859 change some of these later */
860 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
861 executable_stack);
862 if (retval < 0)
863 goto out_free_dentry;
864
865 current->mm->start_stack = bprm->p;
866
867 /* Now we do a little grungy work by mmapping the ELF image into
868 the correct location in memory. */
869 for(i = 0, elf_ppnt = elf_phdata;
870 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
871 int elf_prot = 0, elf_flags;
872 unsigned long k, vaddr;
873 unsigned long total_size = 0;
874
875 if (elf_ppnt->p_type != PT_LOAD)
876 continue;
877
878 if (unlikely (elf_brk > elf_bss)) {
879 unsigned long nbyte;
880
881 /* There was a PT_LOAD segment with p_memsz > p_filesz
882 before this one. Map anonymous pages, if needed,
883 and clear the area. */
884 retval = set_brk(elf_bss + load_bias,
885 elf_brk + load_bias);
886 if (retval)
887 goto out_free_dentry;
888 nbyte = ELF_PAGEOFFSET(elf_bss);
889 if (nbyte) {
890 nbyte = ELF_MIN_ALIGN - nbyte;
891 if (nbyte > elf_brk - elf_bss)
892 nbyte = elf_brk - elf_bss;
893 if (clear_user((void __user *)elf_bss +
894 load_bias, nbyte)) {
895 /*
896 * This bss-zeroing can fail if the ELF
897 * file specifies odd protections. So
898 * we don't check the return value
899 */
900 }
901 }
902 }
903
904 if (elf_ppnt->p_flags & PF_R)
905 elf_prot |= PROT_READ;
906 if (elf_ppnt->p_flags & PF_W)
907 elf_prot |= PROT_WRITE;
908 if (elf_ppnt->p_flags & PF_X)
909 elf_prot |= PROT_EXEC;
910
911 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
912
913 vaddr = elf_ppnt->p_vaddr;
914 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
915 elf_flags |= MAP_FIXED;
916 } else if (loc->elf_ex.e_type == ET_DYN) {
917 /* Try and get dynamic programs out of the way of the
918 * default mmap base, as well as whatever program they
919 * might try to exec. This is because the brk will
920 * follow the loader, and is not movable. */
921 load_bias = ELF_ET_DYN_BASE - vaddr;
922 if (current->flags & PF_RANDOMIZE)
923 load_bias += arch_mmap_rnd();
924 load_bias = ELF_PAGESTART(load_bias);
925 total_size = total_mapping_size(elf_phdata,
926 loc->elf_ex.e_phnum);
927 if (!total_size) {
928 retval = -EINVAL;
929 goto out_free_dentry;
930 }
931 }
932
933 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
934 elf_prot, elf_flags, total_size);
935 if (BAD_ADDR(error)) {
936 retval = IS_ERR((void *)error) ?
937 PTR_ERR((void*)error) : -EINVAL;
938 goto out_free_dentry;
939 }
940
941 if (!load_addr_set) {
942 load_addr_set = 1;
943 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
944 if (loc->elf_ex.e_type == ET_DYN) {
945 load_bias += error -
946 ELF_PAGESTART(load_bias + vaddr);
947 load_addr += load_bias;
948 reloc_func_desc = load_bias;
949 }
950 }
951 k = elf_ppnt->p_vaddr;
952 if (k < start_code)
953 start_code = k;
954 if (start_data < k)
955 start_data = k;
956
957 /*
958 * Check to see if the section's size will overflow the
959 * allowed task size. Note that p_filesz must always be
960 * <= p_memsz so it is only necessary to check p_memsz.
961 */
962 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
963 elf_ppnt->p_memsz > TASK_SIZE ||
964 TASK_SIZE - elf_ppnt->p_memsz < k) {
965 /* set_brk can never work. Avoid overflows. */
966 retval = -EINVAL;
967 goto out_free_dentry;
968 }
969
970 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
971
972 if (k > elf_bss)
973 elf_bss = k;
974 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
975 end_code = k;
976 if (end_data < k)
977 end_data = k;
978 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
979 if (k > elf_brk)
980 elf_brk = k;
981 }
982
983 loc->elf_ex.e_entry += load_bias;
984 elf_bss += load_bias;
985 elf_brk += load_bias;
986 start_code += load_bias;
987 end_code += load_bias;
988 start_data += load_bias;
989 end_data += load_bias;
990
991 /* Calling set_brk effectively mmaps the pages that we need
992 * for the bss and break sections. We must do this before
993 * mapping in the interpreter, to make sure it doesn't wind
994 * up getting placed where the bss needs to go.
995 */
996 retval = set_brk(elf_bss, elf_brk);
997 if (retval)
998 goto out_free_dentry;
999 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1000 retval = -EFAULT; /* Nobody gets to see this, but.. */
1001 goto out_free_dentry;
1002 }
1003
1004 if (elf_interpreter) {
1005 unsigned long interp_map_addr = 0;
1006
1007 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1008 interpreter,
1009 &interp_map_addr,
1010 load_bias, interp_elf_phdata);
1011 if (!IS_ERR((void *)elf_entry)) {
1012 /*
1013 * load_elf_interp() returns relocation
1014 * adjustment
1015 */
1016 interp_load_addr = elf_entry;
1017 elf_entry += loc->interp_elf_ex.e_entry;
1018 }
1019 if (BAD_ADDR(elf_entry)) {
1020 retval = IS_ERR((void *)elf_entry) ?
1021 (int)elf_entry : -EINVAL;
1022 goto out_free_dentry;
1023 }
1024 reloc_func_desc = interp_load_addr;
1025
1026 allow_write_access(interpreter);
1027 fput(interpreter);
1028 kfree(elf_interpreter);
1029 } else {
1030 elf_entry = loc->elf_ex.e_entry;
1031 if (BAD_ADDR(elf_entry)) {
1032 retval = -EINVAL;
1033 goto out_free_dentry;
1034 }
1035 }
1036
1037 kfree(interp_elf_phdata);
1038 kfree(elf_phdata);
1039
1040 set_binfmt(&elf_format);
1041
1042#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1044 if (retval < 0)
1045 goto out;
1046#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1047
1048 retval = create_elf_tables(bprm, &loc->elf_ex,
1049 load_addr, interp_load_addr);
1050 if (retval < 0)
1051 goto out;
1052 /* N.B. passed_fileno might not be initialized? */
1053 current->mm->end_code = end_code;
1054 current->mm->start_code = start_code;
1055 current->mm->start_data = start_data;
1056 current->mm->end_data = end_data;
1057 current->mm->start_stack = bprm->p;
1058
1059 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1060 current->mm->brk = current->mm->start_brk =
1061 arch_randomize_brk(current->mm);
1062#ifdef compat_brk_randomized
1063 current->brk_randomized = 1;
1064#endif
1065 }
1066
1067 if (current->personality & MMAP_PAGE_ZERO) {
1068 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1069 and some applications "depend" upon this behavior.
1070 Since we do not have the power to recompile these, we
1071 emulate the SVr4 behavior. Sigh. */
1072 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1073 MAP_FIXED | MAP_PRIVATE, 0);
1074 }
1075
1076#ifdef ELF_PLAT_INIT
1077 /*
1078 * The ABI may specify that certain registers be set up in special
1079 * ways (on i386 %edx is the address of a DT_FINI function, for
1080 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1081 * that the e_entry field is the address of the function descriptor
1082 * for the startup routine, rather than the address of the startup
1083 * routine itself. This macro performs whatever initialization to
1084 * the regs structure is required as well as any relocations to the
1085 * function descriptor entries when executing dynamically links apps.
1086 */
1087 ELF_PLAT_INIT(regs, reloc_func_desc);
1088#endif
1089
1090 start_thread(regs, elf_entry, bprm->p);
1091 retval = 0;
1092out:
1093 kfree(loc);
1094out_ret:
1095 return retval;
1096
1097 /* error cleanup */
1098out_free_dentry:
1099 kfree(interp_elf_phdata);
1100 allow_write_access(interpreter);
1101 if (interpreter)
1102 fput(interpreter);
1103out_free_interp:
1104 kfree(elf_interpreter);
1105out_free_ph:
1106 kfree(elf_phdata);
1107 goto out;
1108}
1109
1110#ifdef CONFIG_USELIB
1111/* This is really simpleminded and specialized - we are loading an
1112 a.out library that is given an ELF header. */
1113static int load_elf_library(struct file *file)
1114{
1115 struct elf_phdr *elf_phdata;
1116 struct elf_phdr *eppnt;
1117 unsigned long elf_bss, bss, len;
1118 int retval, error, i, j;
1119 struct elfhdr elf_ex;
1120
1121 error = -ENOEXEC;
1122 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1123 if (retval != sizeof(elf_ex))
1124 goto out;
1125
1126 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1127 goto out;
1128
1129 /* First of all, some simple consistency checks */
1130 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1131 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1132 goto out;
1133
1134 /* Now read in all of the header information */
1135
1136 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1137 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1138
1139 error = -ENOMEM;
1140 elf_phdata = kmalloc(j, GFP_KERNEL);
1141 if (!elf_phdata)
1142 goto out;
1143
1144 eppnt = elf_phdata;
1145 error = -ENOEXEC;
1146 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1147 if (retval != j)
1148 goto out_free_ph;
1149
1150 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1151 if ((eppnt + i)->p_type == PT_LOAD)
1152 j++;
1153 if (j != 1)
1154 goto out_free_ph;
1155
1156 while (eppnt->p_type != PT_LOAD)
1157 eppnt++;
1158
1159 /* Now use mmap to map the library into memory. */
1160 error = vm_mmap(file,
1161 ELF_PAGESTART(eppnt->p_vaddr),
1162 (eppnt->p_filesz +
1163 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1164 PROT_READ | PROT_WRITE | PROT_EXEC,
1165 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1166 (eppnt->p_offset -
1167 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1168 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1169 goto out_free_ph;
1170
1171 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1172 if (padzero(elf_bss)) {
1173 error = -EFAULT;
1174 goto out_free_ph;
1175 }
1176
1177 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1178 ELF_MIN_ALIGN - 1);
1179 bss = eppnt->p_memsz + eppnt->p_vaddr;
1180 if (bss > len) {
1181 error = vm_brk(len, bss - len);
1182 if (error)
1183 goto out_free_ph;
1184 }
1185 error = 0;
1186
1187out_free_ph:
1188 kfree(elf_phdata);
1189out:
1190 return error;
1191}
1192#endif /* #ifdef CONFIG_USELIB */
1193
1194#ifdef CONFIG_ELF_CORE
1195/*
1196 * ELF core dumper
1197 *
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1200 */
1201
1202/*
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1209 */
1210static bool always_dump_vma(struct vm_area_struct *vma)
1211{
1212 /* Any vsyscall mappings? */
1213 if (vma == get_gate_vma(vma->vm_mm))
1214 return true;
1215
1216 /*
1217 * Assume that all vmas with a .name op should always be dumped.
1218 * If this changes, a new vm_ops field can easily be added.
1219 */
1220 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1221 return true;
1222
1223 /*
1224 * arch_vma_name() returns non-NULL for special architecture mappings,
1225 * such as vDSO sections.
1226 */
1227 if (arch_vma_name(vma))
1228 return true;
1229
1230 return false;
1231}
1232
1233/*
1234 * Decide what to dump of a segment, part, all or none.
1235 */
1236static unsigned long vma_dump_size(struct vm_area_struct *vma,
1237 unsigned long mm_flags)
1238{
1239#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1240
1241 /* always dump the vdso and vsyscall sections */
1242 if (always_dump_vma(vma))
1243 goto whole;
1244
1245 if (vma->vm_flags & VM_DONTDUMP)
1246 return 0;
1247
1248 /* support for DAX */
1249 if (vma_is_dax(vma)) {
1250 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1251 goto whole;
1252 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1253 goto whole;
1254 return 0;
1255 }
1256
1257 /* Hugetlb memory check */
1258 if (vma->vm_flags & VM_HUGETLB) {
1259 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1260 goto whole;
1261 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1262 goto whole;
1263 return 0;
1264 }
1265
1266 /* Do not dump I/O mapped devices or special mappings */
1267 if (vma->vm_flags & VM_IO)
1268 return 0;
1269
1270 /* By default, dump shared memory if mapped from an anonymous file. */
1271 if (vma->vm_flags & VM_SHARED) {
1272 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1273 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1274 goto whole;
1275 return 0;
1276 }
1277
1278 /* Dump segments that have been written to. */
1279 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1280 goto whole;
1281 if (vma->vm_file == NULL)
1282 return 0;
1283
1284 if (FILTER(MAPPED_PRIVATE))
1285 goto whole;
1286
1287 /*
1288 * If this looks like the beginning of a DSO or executable mapping,
1289 * check for an ELF header. If we find one, dump the first page to
1290 * aid in determining what was mapped here.
1291 */
1292 if (FILTER(ELF_HEADERS) &&
1293 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1294 u32 __user *header = (u32 __user *) vma->vm_start;
1295 u32 word;
1296 mm_segment_t fs = get_fs();
1297 /*
1298 * Doing it this way gets the constant folded by GCC.
1299 */
1300 union {
1301 u32 cmp;
1302 char elfmag[SELFMAG];
1303 } magic;
1304 BUILD_BUG_ON(SELFMAG != sizeof word);
1305 magic.elfmag[EI_MAG0] = ELFMAG0;
1306 magic.elfmag[EI_MAG1] = ELFMAG1;
1307 magic.elfmag[EI_MAG2] = ELFMAG2;
1308 magic.elfmag[EI_MAG3] = ELFMAG3;
1309 /*
1310 * Switch to the user "segment" for get_user(),
1311 * then put back what elf_core_dump() had in place.
1312 */
1313 set_fs(USER_DS);
1314 if (unlikely(get_user(word, header)))
1315 word = 0;
1316 set_fs(fs);
1317 if (word == magic.cmp)
1318 return PAGE_SIZE;
1319 }
1320
1321#undef FILTER
1322
1323 return 0;
1324
1325whole:
1326 return vma->vm_end - vma->vm_start;
1327}
1328
1329/* An ELF note in memory */
1330struct memelfnote
1331{
1332 const char *name;
1333 int type;
1334 unsigned int datasz;
1335 void *data;
1336};
1337
1338static int notesize(struct memelfnote *en)
1339{
1340 int sz;
1341
1342 sz = sizeof(struct elf_note);
1343 sz += roundup(strlen(en->name) + 1, 4);
1344 sz += roundup(en->datasz, 4);
1345
1346 return sz;
1347}
1348
1349static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1350{
1351 struct elf_note en;
1352 en.n_namesz = strlen(men->name) + 1;
1353 en.n_descsz = men->datasz;
1354 en.n_type = men->type;
1355
1356 return dump_emit(cprm, &en, sizeof(en)) &&
1357 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1358 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1359}
1360
1361static void fill_elf_header(struct elfhdr *elf, int segs,
1362 u16 machine, u32 flags)
1363{
1364 memset(elf, 0, sizeof(*elf));
1365
1366 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1367 elf->e_ident[EI_CLASS] = ELF_CLASS;
1368 elf->e_ident[EI_DATA] = ELF_DATA;
1369 elf->e_ident[EI_VERSION] = EV_CURRENT;
1370 elf->e_ident[EI_OSABI] = ELF_OSABI;
1371
1372 elf->e_type = ET_CORE;
1373 elf->e_machine = machine;
1374 elf->e_version = EV_CURRENT;
1375 elf->e_phoff = sizeof(struct elfhdr);
1376 elf->e_flags = flags;
1377 elf->e_ehsize = sizeof(struct elfhdr);
1378 elf->e_phentsize = sizeof(struct elf_phdr);
1379 elf->e_phnum = segs;
1380
1381 return;
1382}
1383
1384static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1385{
1386 phdr->p_type = PT_NOTE;
1387 phdr->p_offset = offset;
1388 phdr->p_vaddr = 0;
1389 phdr->p_paddr = 0;
1390 phdr->p_filesz = sz;
1391 phdr->p_memsz = 0;
1392 phdr->p_flags = 0;
1393 phdr->p_align = 0;
1394 return;
1395}
1396
1397static void fill_note(struct memelfnote *note, const char *name, int type,
1398 unsigned int sz, void *data)
1399{
1400 note->name = name;
1401 note->type = type;
1402 note->datasz = sz;
1403 note->data = data;
1404 return;
1405}
1406
1407/*
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1410 */
1411static void fill_prstatus(struct elf_prstatus *prstatus,
1412 struct task_struct *p, long signr)
1413{
1414 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1415 prstatus->pr_sigpend = p->pending.signal.sig[0];
1416 prstatus->pr_sighold = p->blocked.sig[0];
1417 rcu_read_lock();
1418 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1419 rcu_read_unlock();
1420 prstatus->pr_pid = task_pid_vnr(p);
1421 prstatus->pr_pgrp = task_pgrp_vnr(p);
1422 prstatus->pr_sid = task_session_vnr(p);
1423 if (thread_group_leader(p)) {
1424 struct task_cputime cputime;
1425
1426 /*
1427 * This is the record for the group leader. It shows the
1428 * group-wide total, not its individual thread total.
1429 */
1430 thread_group_cputime(p, &cputime);
1431 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1432 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1433 } else {
1434 cputime_t utime, stime;
1435
1436 task_cputime(p, &utime, &stime);
1437 cputime_to_timeval(utime, &prstatus->pr_utime);
1438 cputime_to_timeval(stime, &prstatus->pr_stime);
1439 }
1440 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1441 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1442}
1443
1444static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1445 struct mm_struct *mm)
1446{
1447 const struct cred *cred;
1448 unsigned int i, len;
1449
1450 /* first copy the parameters from user space */
1451 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1452
1453 len = mm->arg_end - mm->arg_start;
1454 if (len >= ELF_PRARGSZ)
1455 len = ELF_PRARGSZ-1;
1456 if (copy_from_user(&psinfo->pr_psargs,
1457 (const char __user *)mm->arg_start, len))
1458 return -EFAULT;
1459 for(i = 0; i < len; i++)
1460 if (psinfo->pr_psargs[i] == 0)
1461 psinfo->pr_psargs[i] = ' ';
1462 psinfo->pr_psargs[len] = 0;
1463
1464 rcu_read_lock();
1465 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1466 rcu_read_unlock();
1467 psinfo->pr_pid = task_pid_vnr(p);
1468 psinfo->pr_pgrp = task_pgrp_vnr(p);
1469 psinfo->pr_sid = task_session_vnr(p);
1470
1471 i = p->state ? ffz(~p->state) + 1 : 0;
1472 psinfo->pr_state = i;
1473 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1474 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1475 psinfo->pr_nice = task_nice(p);
1476 psinfo->pr_flag = p->flags;
1477 rcu_read_lock();
1478 cred = __task_cred(p);
1479 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1480 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1481 rcu_read_unlock();
1482 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1483
1484 return 0;
1485}
1486
1487static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1488{
1489 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1490 int i = 0;
1491 do
1492 i += 2;
1493 while (auxv[i - 2] != AT_NULL);
1494 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1495}
1496
1497static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1498 const siginfo_t *siginfo)
1499{
1500 mm_segment_t old_fs = get_fs();
1501 set_fs(KERNEL_DS);
1502 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1503 set_fs(old_fs);
1504 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1505}
1506
1507#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1508/*
1509 * Format of NT_FILE note:
1510 *
1511 * long count -- how many files are mapped
1512 * long page_size -- units for file_ofs
1513 * array of [COUNT] elements of
1514 * long start
1515 * long end
1516 * long file_ofs
1517 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1518 */
1519static int fill_files_note(struct memelfnote *note)
1520{
1521 struct vm_area_struct *vma;
1522 unsigned count, size, names_ofs, remaining, n;
1523 user_long_t *data;
1524 user_long_t *start_end_ofs;
1525 char *name_base, *name_curpos;
1526
1527 /* *Estimated* file count and total data size needed */
1528 count = current->mm->map_count;
1529 size = count * 64;
1530
1531 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1532 alloc:
1533 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1534 return -EINVAL;
1535 size = round_up(size, PAGE_SIZE);
1536 data = vmalloc(size);
1537 if (!data)
1538 return -ENOMEM;
1539
1540 start_end_ofs = data + 2;
1541 name_base = name_curpos = ((char *)data) + names_ofs;
1542 remaining = size - names_ofs;
1543 count = 0;
1544 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1545 struct file *file;
1546 const char *filename;
1547
1548 file = vma->vm_file;
1549 if (!file)
1550 continue;
1551 filename = file_path(file, name_curpos, remaining);
1552 if (IS_ERR(filename)) {
1553 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1554 vfree(data);
1555 size = size * 5 / 4;
1556 goto alloc;
1557 }
1558 continue;
1559 }
1560
1561 /* file_path() fills at the end, move name down */
1562 /* n = strlen(filename) + 1: */
1563 n = (name_curpos + remaining) - filename;
1564 remaining = filename - name_curpos;
1565 memmove(name_curpos, filename, n);
1566 name_curpos += n;
1567
1568 *start_end_ofs++ = vma->vm_start;
1569 *start_end_ofs++ = vma->vm_end;
1570 *start_end_ofs++ = vma->vm_pgoff;
1571 count++;
1572 }
1573
1574 /* Now we know exact count of files, can store it */
1575 data[0] = count;
1576 data[1] = PAGE_SIZE;
1577 /*
1578 * Count usually is less than current->mm->map_count,
1579 * we need to move filenames down.
1580 */
1581 n = current->mm->map_count - count;
1582 if (n != 0) {
1583 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1584 memmove(name_base - shift_bytes, name_base,
1585 name_curpos - name_base);
1586 name_curpos -= shift_bytes;
1587 }
1588
1589 size = name_curpos - (char *)data;
1590 fill_note(note, "CORE", NT_FILE, size, data);
1591 return 0;
1592}
1593
1594#ifdef CORE_DUMP_USE_REGSET
1595#include <linux/regset.h>
1596
1597struct elf_thread_core_info {
1598 struct elf_thread_core_info *next;
1599 struct task_struct *task;
1600 struct elf_prstatus prstatus;
1601 struct memelfnote notes[0];
1602};
1603
1604struct elf_note_info {
1605 struct elf_thread_core_info *thread;
1606 struct memelfnote psinfo;
1607 struct memelfnote signote;
1608 struct memelfnote auxv;
1609 struct memelfnote files;
1610 user_siginfo_t csigdata;
1611 size_t size;
1612 int thread_notes;
1613};
1614
1615/*
1616 * When a regset has a writeback hook, we call it on each thread before
1617 * dumping user memory. On register window machines, this makes sure the
1618 * user memory backing the register data is up to date before we read it.
1619 */
1620static void do_thread_regset_writeback(struct task_struct *task,
1621 const struct user_regset *regset)
1622{
1623 if (regset->writeback)
1624 regset->writeback(task, regset, 1);
1625}
1626
1627#ifndef PRSTATUS_SIZE
1628#define PRSTATUS_SIZE(S, R) sizeof(S)
1629#endif
1630
1631#ifndef SET_PR_FPVALID
1632#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1633#endif
1634
1635static int fill_thread_core_info(struct elf_thread_core_info *t,
1636 const struct user_regset_view *view,
1637 long signr, size_t *total)
1638{
1639 unsigned int i;
1640 unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1641
1642 /*
1643 * NT_PRSTATUS is the one special case, because the regset data
1644 * goes into the pr_reg field inside the note contents, rather
1645 * than being the whole note contents. We fill the reset in here.
1646 * We assume that regset 0 is NT_PRSTATUS.
1647 */
1648 fill_prstatus(&t->prstatus, t->task, signr);
1649 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1650 &t->prstatus.pr_reg, NULL);
1651
1652 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1653 PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1654 *total += notesize(&t->notes[0]);
1655
1656 do_thread_regset_writeback(t->task, &view->regsets[0]);
1657
1658 /*
1659 * Each other regset might generate a note too. For each regset
1660 * that has no core_note_type or is inactive, we leave t->notes[i]
1661 * all zero and we'll know to skip writing it later.
1662 */
1663 for (i = 1; i < view->n; ++i) {
1664 const struct user_regset *regset = &view->regsets[i];
1665 do_thread_regset_writeback(t->task, regset);
1666 if (regset->core_note_type && regset->get &&
1667 (!regset->active || regset->active(t->task, regset))) {
1668 int ret;
1669 size_t size = regset->n * regset->size;
1670 void *data = kmalloc(size, GFP_KERNEL);
1671 if (unlikely(!data))
1672 return 0;
1673 ret = regset->get(t->task, regset,
1674 0, size, data, NULL);
1675 if (unlikely(ret))
1676 kfree(data);
1677 else {
1678 if (regset->core_note_type != NT_PRFPREG)
1679 fill_note(&t->notes[i], "LINUX",
1680 regset->core_note_type,
1681 size, data);
1682 else {
1683 SET_PR_FPVALID(&t->prstatus,
1684 1, regset_size);
1685 fill_note(&t->notes[i], "CORE",
1686 NT_PRFPREG, size, data);
1687 }
1688 *total += notesize(&t->notes[i]);
1689 }
1690 }
1691 }
1692
1693 return 1;
1694}
1695
1696static int fill_note_info(struct elfhdr *elf, int phdrs,
1697 struct elf_note_info *info,
1698 const siginfo_t *siginfo, struct pt_regs *regs)
1699{
1700 struct task_struct *dump_task = current;
1701 const struct user_regset_view *view = task_user_regset_view(dump_task);
1702 struct elf_thread_core_info *t;
1703 struct elf_prpsinfo *psinfo;
1704 struct core_thread *ct;
1705 unsigned int i;
1706
1707 info->size = 0;
1708 info->thread = NULL;
1709
1710 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1711 if (psinfo == NULL) {
1712 info->psinfo.data = NULL; /* So we don't free this wrongly */
1713 return 0;
1714 }
1715
1716 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1717
1718 /*
1719 * Figure out how many notes we're going to need for each thread.
1720 */
1721 info->thread_notes = 0;
1722 for (i = 0; i < view->n; ++i)
1723 if (view->regsets[i].core_note_type != 0)
1724 ++info->thread_notes;
1725
1726 /*
1727 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1728 * since it is our one special case.
1729 */
1730 if (unlikely(info->thread_notes == 0) ||
1731 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1732 WARN_ON(1);
1733 return 0;
1734 }
1735
1736 /*
1737 * Initialize the ELF file header.
1738 */
1739 fill_elf_header(elf, phdrs,
1740 view->e_machine, view->e_flags);
1741
1742 /*
1743 * Allocate a structure for each thread.
1744 */
1745 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1746 t = kzalloc(offsetof(struct elf_thread_core_info,
1747 notes[info->thread_notes]),
1748 GFP_KERNEL);
1749 if (unlikely(!t))
1750 return 0;
1751
1752 t->task = ct->task;
1753 if (ct->task == dump_task || !info->thread) {
1754 t->next = info->thread;
1755 info->thread = t;
1756 } else {
1757 /*
1758 * Make sure to keep the original task at
1759 * the head of the list.
1760 */
1761 t->next = info->thread->next;
1762 info->thread->next = t;
1763 }
1764 }
1765
1766 /*
1767 * Now fill in each thread's information.
1768 */
1769 for (t = info->thread; t != NULL; t = t->next)
1770 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1771 return 0;
1772
1773 /*
1774 * Fill in the two process-wide notes.
1775 */
1776 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1777 info->size += notesize(&info->psinfo);
1778
1779 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1780 info->size += notesize(&info->signote);
1781
1782 fill_auxv_note(&info->auxv, current->mm);
1783 info->size += notesize(&info->auxv);
1784
1785 if (fill_files_note(&info->files) == 0)
1786 info->size += notesize(&info->files);
1787
1788 return 1;
1789}
1790
1791static size_t get_note_info_size(struct elf_note_info *info)
1792{
1793 return info->size;
1794}
1795
1796/*
1797 * Write all the notes for each thread. When writing the first thread, the
1798 * process-wide notes are interleaved after the first thread-specific note.
1799 */
1800static int write_note_info(struct elf_note_info *info,
1801 struct coredump_params *cprm)
1802{
1803 bool first = true;
1804 struct elf_thread_core_info *t = info->thread;
1805
1806 do {
1807 int i;
1808
1809 if (!writenote(&t->notes[0], cprm))
1810 return 0;
1811
1812 if (first && !writenote(&info->psinfo, cprm))
1813 return 0;
1814 if (first && !writenote(&info->signote, cprm))
1815 return 0;
1816 if (first && !writenote(&info->auxv, cprm))
1817 return 0;
1818 if (first && info->files.data &&
1819 !writenote(&info->files, cprm))
1820 return 0;
1821
1822 for (i = 1; i < info->thread_notes; ++i)
1823 if (t->notes[i].data &&
1824 !writenote(&t->notes[i], cprm))
1825 return 0;
1826
1827 first = false;
1828 t = t->next;
1829 } while (t);
1830
1831 return 1;
1832}
1833
1834static void free_note_info(struct elf_note_info *info)
1835{
1836 struct elf_thread_core_info *threads = info->thread;
1837 while (threads) {
1838 unsigned int i;
1839 struct elf_thread_core_info *t = threads;
1840 threads = t->next;
1841 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1842 for (i = 1; i < info->thread_notes; ++i)
1843 kfree(t->notes[i].data);
1844 kfree(t);
1845 }
1846 kfree(info->psinfo.data);
1847 vfree(info->files.data);
1848}
1849
1850#else
1851
1852/* Here is the structure in which status of each thread is captured. */
1853struct elf_thread_status
1854{
1855 struct list_head list;
1856 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1857 elf_fpregset_t fpu; /* NT_PRFPREG */
1858 struct task_struct *thread;
1859#ifdef ELF_CORE_COPY_XFPREGS
1860 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1861#endif
1862 struct memelfnote notes[3];
1863 int num_notes;
1864};
1865
1866/*
1867 * In order to add the specific thread information for the elf file format,
1868 * we need to keep a linked list of every threads pr_status and then create
1869 * a single section for them in the final core file.
1870 */
1871static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1872{
1873 int sz = 0;
1874 struct task_struct *p = t->thread;
1875 t->num_notes = 0;
1876
1877 fill_prstatus(&t->prstatus, p, signr);
1878 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1879
1880 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1881 &(t->prstatus));
1882 t->num_notes++;
1883 sz += notesize(&t->notes[0]);
1884
1885 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1886 &t->fpu))) {
1887 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1888 &(t->fpu));
1889 t->num_notes++;
1890 sz += notesize(&t->notes[1]);
1891 }
1892
1893#ifdef ELF_CORE_COPY_XFPREGS
1894 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1895 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1896 sizeof(t->xfpu), &t->xfpu);
1897 t->num_notes++;
1898 sz += notesize(&t->notes[2]);
1899 }
1900#endif
1901 return sz;
1902}
1903
1904struct elf_note_info {
1905 struct memelfnote *notes;
1906 struct memelfnote *notes_files;
1907 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1908 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1909 struct list_head thread_list;
1910 elf_fpregset_t *fpu;
1911#ifdef ELF_CORE_COPY_XFPREGS
1912 elf_fpxregset_t *xfpu;
1913#endif
1914 user_siginfo_t csigdata;
1915 int thread_status_size;
1916 int numnote;
1917};
1918
1919static int elf_note_info_init(struct elf_note_info *info)
1920{
1921 memset(info, 0, sizeof(*info));
1922 INIT_LIST_HEAD(&info->thread_list);
1923
1924 /* Allocate space for ELF notes */
1925 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1926 if (!info->notes)
1927 return 0;
1928 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1929 if (!info->psinfo)
1930 return 0;
1931 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1932 if (!info->prstatus)
1933 return 0;
1934 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1935 if (!info->fpu)
1936 return 0;
1937#ifdef ELF_CORE_COPY_XFPREGS
1938 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1939 if (!info->xfpu)
1940 return 0;
1941#endif
1942 return 1;
1943}
1944
1945static int fill_note_info(struct elfhdr *elf, int phdrs,
1946 struct elf_note_info *info,
1947 const siginfo_t *siginfo, struct pt_regs *regs)
1948{
1949 struct list_head *t;
1950 struct core_thread *ct;
1951 struct elf_thread_status *ets;
1952
1953 if (!elf_note_info_init(info))
1954 return 0;
1955
1956 for (ct = current->mm->core_state->dumper.next;
1957 ct; ct = ct->next) {
1958 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1959 if (!ets)
1960 return 0;
1961
1962 ets->thread = ct->task;
1963 list_add(&ets->list, &info->thread_list);
1964 }
1965
1966 list_for_each(t, &info->thread_list) {
1967 int sz;
1968
1969 ets = list_entry(t, struct elf_thread_status, list);
1970 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1971 info->thread_status_size += sz;
1972 }
1973 /* now collect the dump for the current */
1974 memset(info->prstatus, 0, sizeof(*info->prstatus));
1975 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1976 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1977
1978 /* Set up header */
1979 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1980
1981 /*
1982 * Set up the notes in similar form to SVR4 core dumps made
1983 * with info from their /proc.
1984 */
1985
1986 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1987 sizeof(*info->prstatus), info->prstatus);
1988 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1989 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1990 sizeof(*info->psinfo), info->psinfo);
1991
1992 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1993 fill_auxv_note(info->notes + 3, current->mm);
1994 info->numnote = 4;
1995
1996 if (fill_files_note(info->notes + info->numnote) == 0) {
1997 info->notes_files = info->notes + info->numnote;
1998 info->numnote++;
1999 }
2000
2001 /* Try to dump the FPU. */
2002 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2003 info->fpu);
2004 if (info->prstatus->pr_fpvalid)
2005 fill_note(info->notes + info->numnote++,
2006 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2007#ifdef ELF_CORE_COPY_XFPREGS
2008 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2009 fill_note(info->notes + info->numnote++,
2010 "LINUX", ELF_CORE_XFPREG_TYPE,
2011 sizeof(*info->xfpu), info->xfpu);
2012#endif
2013
2014 return 1;
2015}
2016
2017static size_t get_note_info_size(struct elf_note_info *info)
2018{
2019 int sz = 0;
2020 int i;
2021
2022 for (i = 0; i < info->numnote; i++)
2023 sz += notesize(info->notes + i);
2024
2025 sz += info->thread_status_size;
2026
2027 return sz;
2028}
2029
2030static int write_note_info(struct elf_note_info *info,
2031 struct coredump_params *cprm)
2032{
2033 int i;
2034 struct list_head *t;
2035
2036 for (i = 0; i < info->numnote; i++)
2037 if (!writenote(info->notes + i, cprm))
2038 return 0;
2039
2040 /* write out the thread status notes section */
2041 list_for_each(t, &info->thread_list) {
2042 struct elf_thread_status *tmp =
2043 list_entry(t, struct elf_thread_status, list);
2044
2045 for (i = 0; i < tmp->num_notes; i++)
2046 if (!writenote(&tmp->notes[i], cprm))
2047 return 0;
2048 }
2049
2050 return 1;
2051}
2052
2053static void free_note_info(struct elf_note_info *info)
2054{
2055 while (!list_empty(&info->thread_list)) {
2056 struct list_head *tmp = info->thread_list.next;
2057 list_del(tmp);
2058 kfree(list_entry(tmp, struct elf_thread_status, list));
2059 }
2060
2061 /* Free data possibly allocated by fill_files_note(): */
2062 if (info->notes_files)
2063 vfree(info->notes_files->data);
2064
2065 kfree(info->prstatus);
2066 kfree(info->psinfo);
2067 kfree(info->notes);
2068 kfree(info->fpu);
2069#ifdef ELF_CORE_COPY_XFPREGS
2070 kfree(info->xfpu);
2071#endif
2072}
2073
2074#endif
2075
2076static struct vm_area_struct *first_vma(struct task_struct *tsk,
2077 struct vm_area_struct *gate_vma)
2078{
2079 struct vm_area_struct *ret = tsk->mm->mmap;
2080
2081 if (ret)
2082 return ret;
2083 return gate_vma;
2084}
2085/*
2086 * Helper function for iterating across a vma list. It ensures that the caller
2087 * will visit `gate_vma' prior to terminating the search.
2088 */
2089static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2090 struct vm_area_struct *gate_vma)
2091{
2092 struct vm_area_struct *ret;
2093
2094 ret = this_vma->vm_next;
2095 if (ret)
2096 return ret;
2097 if (this_vma == gate_vma)
2098 return NULL;
2099 return gate_vma;
2100}
2101
2102static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2103 elf_addr_t e_shoff, int segs)
2104{
2105 elf->e_shoff = e_shoff;
2106 elf->e_shentsize = sizeof(*shdr4extnum);
2107 elf->e_shnum = 1;
2108 elf->e_shstrndx = SHN_UNDEF;
2109
2110 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2111
2112 shdr4extnum->sh_type = SHT_NULL;
2113 shdr4extnum->sh_size = elf->e_shnum;
2114 shdr4extnum->sh_link = elf->e_shstrndx;
2115 shdr4extnum->sh_info = segs;
2116}
2117
2118/*
2119 * Actual dumper
2120 *
2121 * This is a two-pass process; first we find the offsets of the bits,
2122 * and then they are actually written out. If we run out of core limit
2123 * we just truncate.
2124 */
2125static int elf_core_dump(struct coredump_params *cprm)
2126{
2127 int has_dumped = 0;
2128 mm_segment_t fs;
2129 int segs, i;
2130 size_t vma_data_size = 0;
2131 struct vm_area_struct *vma, *gate_vma;
2132 struct elfhdr *elf = NULL;
2133 loff_t offset = 0, dataoff;
2134 struct elf_note_info info = { };
2135 struct elf_phdr *phdr4note = NULL;
2136 struct elf_shdr *shdr4extnum = NULL;
2137 Elf_Half e_phnum;
2138 elf_addr_t e_shoff;
2139 elf_addr_t *vma_filesz = NULL;
2140
2141 /*
2142 * We no longer stop all VM operations.
2143 *
2144 * This is because those proceses that could possibly change map_count
2145 * or the mmap / vma pages are now blocked in do_exit on current
2146 * finishing this core dump.
2147 *
2148 * Only ptrace can touch these memory addresses, but it doesn't change
2149 * the map_count or the pages allocated. So no possibility of crashing
2150 * exists while dumping the mm->vm_next areas to the core file.
2151 */
2152
2153 /* alloc memory for large data structures: too large to be on stack */
2154 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2155 if (!elf)
2156 goto out;
2157 /*
2158 * The number of segs are recored into ELF header as 16bit value.
2159 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2160 */
2161 segs = current->mm->map_count;
2162 segs += elf_core_extra_phdrs();
2163
2164 gate_vma = get_gate_vma(current->mm);
2165 if (gate_vma != NULL)
2166 segs++;
2167
2168 /* for notes section */
2169 segs++;
2170
2171 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2172 * this, kernel supports extended numbering. Have a look at
2173 * include/linux/elf.h for further information. */
2174 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2175
2176 /*
2177 * Collect all the non-memory information about the process for the
2178 * notes. This also sets up the file header.
2179 */
2180 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2181 goto cleanup;
2182
2183 has_dumped = 1;
2184
2185 fs = get_fs();
2186 set_fs(KERNEL_DS);
2187
2188 offset += sizeof(*elf); /* Elf header */
2189 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2190
2191 /* Write notes phdr entry */
2192 {
2193 size_t sz = get_note_info_size(&info);
2194
2195 sz += elf_coredump_extra_notes_size();
2196
2197 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2198 if (!phdr4note)
2199 goto end_coredump;
2200
2201 fill_elf_note_phdr(phdr4note, sz, offset);
2202 offset += sz;
2203 }
2204
2205 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2206
2207 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2208 goto end_coredump;
2209 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2210 if (!vma_filesz)
2211 goto end_coredump;
2212
2213 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2214 vma = next_vma(vma, gate_vma)) {
2215 unsigned long dump_size;
2216
2217 dump_size = vma_dump_size(vma, cprm->mm_flags);
2218 vma_filesz[i++] = dump_size;
2219 vma_data_size += dump_size;
2220 }
2221
2222 offset += vma_data_size;
2223 offset += elf_core_extra_data_size();
2224 e_shoff = offset;
2225
2226 if (e_phnum == PN_XNUM) {
2227 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2228 if (!shdr4extnum)
2229 goto end_coredump;
2230 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2231 }
2232
2233 offset = dataoff;
2234
2235 if (!dump_emit(cprm, elf, sizeof(*elf)))
2236 goto end_coredump;
2237
2238 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2239 goto end_coredump;
2240
2241 /* Write program headers for segments dump */
2242 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2243 vma = next_vma(vma, gate_vma)) {
2244 struct elf_phdr phdr;
2245
2246 phdr.p_type = PT_LOAD;
2247 phdr.p_offset = offset;
2248 phdr.p_vaddr = vma->vm_start;
2249 phdr.p_paddr = 0;
2250 phdr.p_filesz = vma_filesz[i++];
2251 phdr.p_memsz = vma->vm_end - vma->vm_start;
2252 offset += phdr.p_filesz;
2253 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2254 if (vma->vm_flags & VM_WRITE)
2255 phdr.p_flags |= PF_W;
2256 if (vma->vm_flags & VM_EXEC)
2257 phdr.p_flags |= PF_X;
2258 phdr.p_align = ELF_EXEC_PAGESIZE;
2259
2260 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2261 goto end_coredump;
2262 }
2263
2264 if (!elf_core_write_extra_phdrs(cprm, offset))
2265 goto end_coredump;
2266
2267 /* write out the notes section */
2268 if (!write_note_info(&info, cprm))
2269 goto end_coredump;
2270
2271 if (elf_coredump_extra_notes_write(cprm))
2272 goto end_coredump;
2273
2274 /* Align to page */
2275 if (!dump_skip(cprm, dataoff - cprm->pos))
2276 goto end_coredump;
2277
2278 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2279 vma = next_vma(vma, gate_vma)) {
2280 unsigned long addr;
2281 unsigned long end;
2282
2283 end = vma->vm_start + vma_filesz[i++];
2284
2285 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2286 struct page *page;
2287 int stop;
2288
2289 page = get_dump_page(addr);
2290 if (page) {
2291 void *kaddr = kmap(page);
2292 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2293 kunmap(page);
2294 put_page(page);
2295 } else
2296 stop = !dump_skip(cprm, PAGE_SIZE);
2297 if (stop)
2298 goto end_coredump;
2299 }
2300 }
2301 dump_truncate(cprm);
2302
2303 if (!elf_core_write_extra_data(cprm))
2304 goto end_coredump;
2305
2306 if (e_phnum == PN_XNUM) {
2307 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2308 goto end_coredump;
2309 }
2310
2311end_coredump:
2312 set_fs(fs);
2313
2314cleanup:
2315 free_note_info(&info);
2316 kfree(shdr4extnum);
2317 vfree(vma_filesz);
2318 kfree(phdr4note);
2319 kfree(elf);
2320out:
2321 return has_dumped;
2322}
2323
2324#endif /* CONFIG_ELF_CORE */
2325
2326static int __init init_elf_binfmt(void)
2327{
2328 register_binfmt(&elf_format);
2329 return 0;
2330}
2331
2332static void __exit exit_elf_binfmt(void)
2333{
2334 /* Remove the COFF and ELF loaders. */
2335 unregister_binfmt(&elf_format);
2336}
2337
2338core_initcall(init_elf_binfmt);
2339module_exit(exit_elf_binfmt);
2340MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/fs.h>
16#include <linux/log2.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/errno.h>
20#include <linux/signal.h>
21#include <linux/binfmts.h>
22#include <linux/string.h>
23#include <linux/file.h>
24#include <linux/slab.h>
25#include <linux/personality.h>
26#include <linux/elfcore.h>
27#include <linux/init.h>
28#include <linux/highuid.h>
29#include <linux/compiler.h>
30#include <linux/highmem.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vmalloc.h>
34#include <linux/security.h>
35#include <linux/random.h>
36#include <linux/elf.h>
37#include <linux/elf-randomize.h>
38#include <linux/utsname.h>
39#include <linux/coredump.h>
40#include <linux/sched.h>
41#include <linux/sched/coredump.h>
42#include <linux/sched/task_stack.h>
43#include <linux/sched/cputime.h>
44#include <linux/sizes.h>
45#include <linux/types.h>
46#include <linux/cred.h>
47#include <linux/dax.h>
48#include <linux/uaccess.h>
49#include <asm/param.h>
50#include <asm/page.h>
51
52#ifndef ELF_COMPAT
53#define ELF_COMPAT 0
54#endif
55
56#ifndef user_long_t
57#define user_long_t long
58#endif
59#ifndef user_siginfo_t
60#define user_siginfo_t siginfo_t
61#endif
62
63/* That's for binfmt_elf_fdpic to deal with */
64#ifndef elf_check_fdpic
65#define elf_check_fdpic(ex) false
66#endif
67
68static int load_elf_binary(struct linux_binprm *bprm);
69
70#ifdef CONFIG_USELIB
71static int load_elf_library(struct file *);
72#else
73#define load_elf_library NULL
74#endif
75
76/*
77 * If we don't support core dumping, then supply a NULL so we
78 * don't even try.
79 */
80#ifdef CONFIG_ELF_CORE
81static int elf_core_dump(struct coredump_params *cprm);
82#else
83#define elf_core_dump NULL
84#endif
85
86#if ELF_EXEC_PAGESIZE > PAGE_SIZE
87#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
88#else
89#define ELF_MIN_ALIGN PAGE_SIZE
90#endif
91
92#ifndef ELF_CORE_EFLAGS
93#define ELF_CORE_EFLAGS 0
94#endif
95
96#define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
97#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99
100static struct linux_binfmt elf_format = {
101 .module = THIS_MODULE,
102 .load_binary = load_elf_binary,
103 .load_shlib = load_elf_library,
104#ifdef CONFIG_COREDUMP
105 .core_dump = elf_core_dump,
106 .min_coredump = ELF_EXEC_PAGESIZE,
107#endif
108};
109
110#define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
111
112static int set_brk(unsigned long start, unsigned long end, int prot)
113{
114 start = ELF_PAGEALIGN(start);
115 end = ELF_PAGEALIGN(end);
116 if (end > start) {
117 /*
118 * Map the last of the bss segment.
119 * If the header is requesting these pages to be
120 * executable, honour that (ppc32 needs this).
121 */
122 int error = vm_brk_flags(start, end - start,
123 prot & PROT_EXEC ? VM_EXEC : 0);
124 if (error)
125 return error;
126 }
127 current->mm->start_brk = current->mm->brk = end;
128 return 0;
129}
130
131/* We need to explicitly zero any fractional pages
132 after the data section (i.e. bss). This would
133 contain the junk from the file that should not
134 be in memory
135 */
136static int padzero(unsigned long elf_bss)
137{
138 unsigned long nbyte;
139
140 nbyte = ELF_PAGEOFFSET(elf_bss);
141 if (nbyte) {
142 nbyte = ELF_MIN_ALIGN - nbyte;
143 if (clear_user((void __user *) elf_bss, nbyte))
144 return -EFAULT;
145 }
146 return 0;
147}
148
149/* Let's use some macros to make this stack manipulation a little clearer */
150#ifdef CONFIG_STACK_GROWSUP
151#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
152#define STACK_ROUND(sp, items) \
153 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
154#define STACK_ALLOC(sp, len) ({ \
155 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
156 old_sp; })
157#else
158#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
159#define STACK_ROUND(sp, items) \
160 (((unsigned long) (sp - items)) &~ 15UL)
161#define STACK_ALLOC(sp, len) (sp -= len)
162#endif
163
164#ifndef ELF_BASE_PLATFORM
165/*
166 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
167 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
168 * will be copied to the user stack in the same manner as AT_PLATFORM.
169 */
170#define ELF_BASE_PLATFORM NULL
171#endif
172
173static int
174create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
175 unsigned long interp_load_addr,
176 unsigned long e_entry, unsigned long phdr_addr)
177{
178 struct mm_struct *mm = current->mm;
179 unsigned long p = bprm->p;
180 int argc = bprm->argc;
181 int envc = bprm->envc;
182 elf_addr_t __user *sp;
183 elf_addr_t __user *u_platform;
184 elf_addr_t __user *u_base_platform;
185 elf_addr_t __user *u_rand_bytes;
186 const char *k_platform = ELF_PLATFORM;
187 const char *k_base_platform = ELF_BASE_PLATFORM;
188 unsigned char k_rand_bytes[16];
189 int items;
190 elf_addr_t *elf_info;
191 elf_addr_t flags = 0;
192 int ei_index;
193 const struct cred *cred = current_cred();
194 struct vm_area_struct *vma;
195
196 /*
197 * In some cases (e.g. Hyper-Threading), we want to avoid L1
198 * evictions by the processes running on the same package. One
199 * thing we can do is to shuffle the initial stack for them.
200 */
201
202 p = arch_align_stack(p);
203
204 /*
205 * If this architecture has a platform capability string, copy it
206 * to userspace. In some cases (Sparc), this info is impossible
207 * for userspace to get any other way, in others (i386) it is
208 * merely difficult.
209 */
210 u_platform = NULL;
211 if (k_platform) {
212 size_t len = strlen(k_platform) + 1;
213
214 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 if (copy_to_user(u_platform, k_platform, len))
216 return -EFAULT;
217 }
218
219 /*
220 * If this architecture has a "base" platform capability
221 * string, copy it to userspace.
222 */
223 u_base_platform = NULL;
224 if (k_base_platform) {
225 size_t len = strlen(k_base_platform) + 1;
226
227 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
228 if (copy_to_user(u_base_platform, k_base_platform, len))
229 return -EFAULT;
230 }
231
232 /*
233 * Generate 16 random bytes for userspace PRNG seeding.
234 */
235 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
236 u_rand_bytes = (elf_addr_t __user *)
237 STACK_ALLOC(p, sizeof(k_rand_bytes));
238 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
239 return -EFAULT;
240
241 /* Create the ELF interpreter info */
242 elf_info = (elf_addr_t *)mm->saved_auxv;
243 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
244#define NEW_AUX_ENT(id, val) \
245 do { \
246 *elf_info++ = id; \
247 *elf_info++ = val; \
248 } while (0)
249
250#ifdef ARCH_DLINFO
251 /*
252 * ARCH_DLINFO must come first so PPC can do its special alignment of
253 * AUXV.
254 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
255 * ARCH_DLINFO changes
256 */
257 ARCH_DLINFO;
258#endif
259 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
260 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
261 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
262 NEW_AUX_ENT(AT_PHDR, phdr_addr);
263 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
264 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
265 NEW_AUX_ENT(AT_BASE, interp_load_addr);
266 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
267 flags |= AT_FLAGS_PRESERVE_ARGV0;
268 NEW_AUX_ENT(AT_FLAGS, flags);
269 NEW_AUX_ENT(AT_ENTRY, e_entry);
270 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
271 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
272 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
273 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
274 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
275 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
276#ifdef ELF_HWCAP2
277 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
278#endif
279 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
280 if (k_platform) {
281 NEW_AUX_ENT(AT_PLATFORM,
282 (elf_addr_t)(unsigned long)u_platform);
283 }
284 if (k_base_platform) {
285 NEW_AUX_ENT(AT_BASE_PLATFORM,
286 (elf_addr_t)(unsigned long)u_base_platform);
287 }
288 if (bprm->have_execfd) {
289 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
290 }
291#undef NEW_AUX_ENT
292 /* AT_NULL is zero; clear the rest too */
293 memset(elf_info, 0, (char *)mm->saved_auxv +
294 sizeof(mm->saved_auxv) - (char *)elf_info);
295
296 /* And advance past the AT_NULL entry. */
297 elf_info += 2;
298
299 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
300 sp = STACK_ADD(p, ei_index);
301
302 items = (argc + 1) + (envc + 1) + 1;
303 bprm->p = STACK_ROUND(sp, items);
304
305 /* Point sp at the lowest address on the stack */
306#ifdef CONFIG_STACK_GROWSUP
307 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
308 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
309#else
310 sp = (elf_addr_t __user *)bprm->p;
311#endif
312
313
314 /*
315 * Grow the stack manually; some architectures have a limit on how
316 * far ahead a user-space access may be in order to grow the stack.
317 */
318 if (mmap_read_lock_killable(mm))
319 return -EINTR;
320 vma = find_extend_vma(mm, bprm->p);
321 mmap_read_unlock(mm);
322 if (!vma)
323 return -EFAULT;
324
325 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
326 if (put_user(argc, sp++))
327 return -EFAULT;
328
329 /* Populate list of argv pointers back to argv strings. */
330 p = mm->arg_end = mm->arg_start;
331 while (argc-- > 0) {
332 size_t len;
333 if (put_user((elf_addr_t)p, sp++))
334 return -EFAULT;
335 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
336 if (!len || len > MAX_ARG_STRLEN)
337 return -EINVAL;
338 p += len;
339 }
340 if (put_user(0, sp++))
341 return -EFAULT;
342 mm->arg_end = p;
343
344 /* Populate list of envp pointers back to envp strings. */
345 mm->env_end = mm->env_start = p;
346 while (envc-- > 0) {
347 size_t len;
348 if (put_user((elf_addr_t)p, sp++))
349 return -EFAULT;
350 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
351 if (!len || len > MAX_ARG_STRLEN)
352 return -EINVAL;
353 p += len;
354 }
355 if (put_user(0, sp++))
356 return -EFAULT;
357 mm->env_end = p;
358
359 /* Put the elf_info on the stack in the right place. */
360 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
361 return -EFAULT;
362 return 0;
363}
364
365static unsigned long elf_map(struct file *filep, unsigned long addr,
366 const struct elf_phdr *eppnt, int prot, int type,
367 unsigned long total_size)
368{
369 unsigned long map_addr;
370 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
371 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
372 addr = ELF_PAGESTART(addr);
373 size = ELF_PAGEALIGN(size);
374
375 /* mmap() will return -EINVAL if given a zero size, but a
376 * segment with zero filesize is perfectly valid */
377 if (!size)
378 return addr;
379
380 /*
381 * total_size is the size of the ELF (interpreter) image.
382 * The _first_ mmap needs to know the full size, otherwise
383 * randomization might put this image into an overlapping
384 * position with the ELF binary image. (since size < total_size)
385 * So we first map the 'big' image - and unmap the remainder at
386 * the end. (which unmap is needed for ELF images with holes.)
387 */
388 if (total_size) {
389 total_size = ELF_PAGEALIGN(total_size);
390 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
391 if (!BAD_ADDR(map_addr))
392 vm_munmap(map_addr+size, total_size-size);
393 } else
394 map_addr = vm_mmap(filep, addr, size, prot, type, off);
395
396 if ((type & MAP_FIXED_NOREPLACE) &&
397 PTR_ERR((void *)map_addr) == -EEXIST)
398 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
399 task_pid_nr(current), current->comm, (void *)addr);
400
401 return(map_addr);
402}
403
404static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
405{
406 elf_addr_t min_addr = -1;
407 elf_addr_t max_addr = 0;
408 bool pt_load = false;
409 int i;
410
411 for (i = 0; i < nr; i++) {
412 if (phdr[i].p_type == PT_LOAD) {
413 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
414 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
415 pt_load = true;
416 }
417 }
418 return pt_load ? (max_addr - min_addr) : 0;
419}
420
421static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
422{
423 ssize_t rv;
424
425 rv = kernel_read(file, buf, len, &pos);
426 if (unlikely(rv != len)) {
427 return (rv < 0) ? rv : -EIO;
428 }
429 return 0;
430}
431
432static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
433{
434 unsigned long alignment = 0;
435 int i;
436
437 for (i = 0; i < nr; i++) {
438 if (cmds[i].p_type == PT_LOAD) {
439 unsigned long p_align = cmds[i].p_align;
440
441 /* skip non-power of two alignments as invalid */
442 if (!is_power_of_2(p_align))
443 continue;
444 alignment = max(alignment, p_align);
445 }
446 }
447
448 /* ensure we align to at least one page */
449 return ELF_PAGEALIGN(alignment);
450}
451
452/**
453 * load_elf_phdrs() - load ELF program headers
454 * @elf_ex: ELF header of the binary whose program headers should be loaded
455 * @elf_file: the opened ELF binary file
456 *
457 * Loads ELF program headers from the binary file elf_file, which has the ELF
458 * header pointed to by elf_ex, into a newly allocated array. The caller is
459 * responsible for freeing the allocated data. Returns NULL upon failure.
460 */
461static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
462 struct file *elf_file)
463{
464 struct elf_phdr *elf_phdata = NULL;
465 int retval = -1;
466 unsigned int size;
467
468 /*
469 * If the size of this structure has changed, then punt, since
470 * we will be doing the wrong thing.
471 */
472 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
473 goto out;
474
475 /* Sanity check the number of program headers... */
476 /* ...and their total size. */
477 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
478 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
479 goto out;
480
481 elf_phdata = kmalloc(size, GFP_KERNEL);
482 if (!elf_phdata)
483 goto out;
484
485 /* Read in the program headers */
486 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
487
488out:
489 if (retval) {
490 kfree(elf_phdata);
491 elf_phdata = NULL;
492 }
493 return elf_phdata;
494}
495
496#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
497
498/**
499 * struct arch_elf_state - arch-specific ELF loading state
500 *
501 * This structure is used to preserve architecture specific data during
502 * the loading of an ELF file, throughout the checking of architecture
503 * specific ELF headers & through to the point where the ELF load is
504 * known to be proceeding (ie. SET_PERSONALITY).
505 *
506 * This implementation is a dummy for architectures which require no
507 * specific state.
508 */
509struct arch_elf_state {
510};
511
512#define INIT_ARCH_ELF_STATE {}
513
514/**
515 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
516 * @ehdr: The main ELF header
517 * @phdr: The program header to check
518 * @elf: The open ELF file
519 * @is_interp: True if the phdr is from the interpreter of the ELF being
520 * loaded, else false.
521 * @state: Architecture-specific state preserved throughout the process
522 * of loading the ELF.
523 *
524 * Inspects the program header phdr to validate its correctness and/or
525 * suitability for the system. Called once per ELF program header in the
526 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
527 * interpreter.
528 *
529 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
530 * with that return code.
531 */
532static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
533 struct elf_phdr *phdr,
534 struct file *elf, bool is_interp,
535 struct arch_elf_state *state)
536{
537 /* Dummy implementation, always proceed */
538 return 0;
539}
540
541/**
542 * arch_check_elf() - check an ELF executable
543 * @ehdr: The main ELF header
544 * @has_interp: True if the ELF has an interpreter, else false.
545 * @interp_ehdr: The interpreter's ELF header
546 * @state: Architecture-specific state preserved throughout the process
547 * of loading the ELF.
548 *
549 * Provides a final opportunity for architecture code to reject the loading
550 * of the ELF & cause an exec syscall to return an error. This is called after
551 * all program headers to be checked by arch_elf_pt_proc have been.
552 *
553 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
554 * with that return code.
555 */
556static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
557 struct elfhdr *interp_ehdr,
558 struct arch_elf_state *state)
559{
560 /* Dummy implementation, always proceed */
561 return 0;
562}
563
564#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
565
566static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
567 bool has_interp, bool is_interp)
568{
569 int prot = 0;
570
571 if (p_flags & PF_R)
572 prot |= PROT_READ;
573 if (p_flags & PF_W)
574 prot |= PROT_WRITE;
575 if (p_flags & PF_X)
576 prot |= PROT_EXEC;
577
578 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
579}
580
581/* This is much more generalized than the library routine read function,
582 so we keep this separate. Technically the library read function
583 is only provided so that we can read a.out libraries that have
584 an ELF header */
585
586static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
587 struct file *interpreter,
588 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
589 struct arch_elf_state *arch_state)
590{
591 struct elf_phdr *eppnt;
592 unsigned long load_addr = 0;
593 int load_addr_set = 0;
594 unsigned long last_bss = 0, elf_bss = 0;
595 int bss_prot = 0;
596 unsigned long error = ~0UL;
597 unsigned long total_size;
598 int i;
599
600 /* First of all, some simple consistency checks */
601 if (interp_elf_ex->e_type != ET_EXEC &&
602 interp_elf_ex->e_type != ET_DYN)
603 goto out;
604 if (!elf_check_arch(interp_elf_ex) ||
605 elf_check_fdpic(interp_elf_ex))
606 goto out;
607 if (!interpreter->f_op->mmap)
608 goto out;
609
610 total_size = total_mapping_size(interp_elf_phdata,
611 interp_elf_ex->e_phnum);
612 if (!total_size) {
613 error = -EINVAL;
614 goto out;
615 }
616
617 eppnt = interp_elf_phdata;
618 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
619 if (eppnt->p_type == PT_LOAD) {
620 int elf_type = MAP_PRIVATE;
621 int elf_prot = make_prot(eppnt->p_flags, arch_state,
622 true, true);
623 unsigned long vaddr = 0;
624 unsigned long k, map_addr;
625
626 vaddr = eppnt->p_vaddr;
627 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
628 elf_type |= MAP_FIXED;
629 else if (no_base && interp_elf_ex->e_type == ET_DYN)
630 load_addr = -vaddr;
631
632 map_addr = elf_map(interpreter, load_addr + vaddr,
633 eppnt, elf_prot, elf_type, total_size);
634 total_size = 0;
635 error = map_addr;
636 if (BAD_ADDR(map_addr))
637 goto out;
638
639 if (!load_addr_set &&
640 interp_elf_ex->e_type == ET_DYN) {
641 load_addr = map_addr - ELF_PAGESTART(vaddr);
642 load_addr_set = 1;
643 }
644
645 /*
646 * Check to see if the section's size will overflow the
647 * allowed task size. Note that p_filesz must always be
648 * <= p_memsize so it's only necessary to check p_memsz.
649 */
650 k = load_addr + eppnt->p_vaddr;
651 if (BAD_ADDR(k) ||
652 eppnt->p_filesz > eppnt->p_memsz ||
653 eppnt->p_memsz > TASK_SIZE ||
654 TASK_SIZE - eppnt->p_memsz < k) {
655 error = -ENOMEM;
656 goto out;
657 }
658
659 /*
660 * Find the end of the file mapping for this phdr, and
661 * keep track of the largest address we see for this.
662 */
663 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
664 if (k > elf_bss)
665 elf_bss = k;
666
667 /*
668 * Do the same thing for the memory mapping - between
669 * elf_bss and last_bss is the bss section.
670 */
671 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
672 if (k > last_bss) {
673 last_bss = k;
674 bss_prot = elf_prot;
675 }
676 }
677 }
678
679 /*
680 * Now fill out the bss section: first pad the last page from
681 * the file up to the page boundary, and zero it from elf_bss
682 * up to the end of the page.
683 */
684 if (padzero(elf_bss)) {
685 error = -EFAULT;
686 goto out;
687 }
688 /*
689 * Next, align both the file and mem bss up to the page size,
690 * since this is where elf_bss was just zeroed up to, and where
691 * last_bss will end after the vm_brk_flags() below.
692 */
693 elf_bss = ELF_PAGEALIGN(elf_bss);
694 last_bss = ELF_PAGEALIGN(last_bss);
695 /* Finally, if there is still more bss to allocate, do it. */
696 if (last_bss > elf_bss) {
697 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
698 bss_prot & PROT_EXEC ? VM_EXEC : 0);
699 if (error)
700 goto out;
701 }
702
703 error = load_addr;
704out:
705 return error;
706}
707
708/*
709 * These are the functions used to load ELF style executables and shared
710 * libraries. There is no binary dependent code anywhere else.
711 */
712
713static int parse_elf_property(const char *data, size_t *off, size_t datasz,
714 struct arch_elf_state *arch,
715 bool have_prev_type, u32 *prev_type)
716{
717 size_t o, step;
718 const struct gnu_property *pr;
719 int ret;
720
721 if (*off == datasz)
722 return -ENOENT;
723
724 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
725 return -EIO;
726 o = *off;
727 datasz -= *off;
728
729 if (datasz < sizeof(*pr))
730 return -ENOEXEC;
731 pr = (const struct gnu_property *)(data + o);
732 o += sizeof(*pr);
733 datasz -= sizeof(*pr);
734
735 if (pr->pr_datasz > datasz)
736 return -ENOEXEC;
737
738 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
739 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
740 if (step > datasz)
741 return -ENOEXEC;
742
743 /* Properties are supposed to be unique and sorted on pr_type: */
744 if (have_prev_type && pr->pr_type <= *prev_type)
745 return -ENOEXEC;
746 *prev_type = pr->pr_type;
747
748 ret = arch_parse_elf_property(pr->pr_type, data + o,
749 pr->pr_datasz, ELF_COMPAT, arch);
750 if (ret)
751 return ret;
752
753 *off = o + step;
754 return 0;
755}
756
757#define NOTE_DATA_SZ SZ_1K
758#define GNU_PROPERTY_TYPE_0_NAME "GNU"
759#define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
760
761static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
762 struct arch_elf_state *arch)
763{
764 union {
765 struct elf_note nhdr;
766 char data[NOTE_DATA_SZ];
767 } note;
768 loff_t pos;
769 ssize_t n;
770 size_t off, datasz;
771 int ret;
772 bool have_prev_type;
773 u32 prev_type;
774
775 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
776 return 0;
777
778 /* load_elf_binary() shouldn't call us unless this is true... */
779 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
780 return -ENOEXEC;
781
782 /* If the properties are crazy large, that's too bad (for now): */
783 if (phdr->p_filesz > sizeof(note))
784 return -ENOEXEC;
785
786 pos = phdr->p_offset;
787 n = kernel_read(f, ¬e, phdr->p_filesz, &pos);
788
789 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
790 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
791 return -EIO;
792
793 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
794 note.nhdr.n_namesz != NOTE_NAME_SZ ||
795 strncmp(note.data + sizeof(note.nhdr),
796 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
797 return -ENOEXEC;
798
799 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
800 ELF_GNU_PROPERTY_ALIGN);
801 if (off > n)
802 return -ENOEXEC;
803
804 if (note.nhdr.n_descsz > n - off)
805 return -ENOEXEC;
806 datasz = off + note.nhdr.n_descsz;
807
808 have_prev_type = false;
809 do {
810 ret = parse_elf_property(note.data, &off, datasz, arch,
811 have_prev_type, &prev_type);
812 have_prev_type = true;
813 } while (!ret);
814
815 return ret == -ENOENT ? 0 : ret;
816}
817
818static int load_elf_binary(struct linux_binprm *bprm)
819{
820 struct file *interpreter = NULL; /* to shut gcc up */
821 unsigned long load_bias = 0, phdr_addr = 0;
822 int first_pt_load = 1;
823 unsigned long error;
824 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
825 struct elf_phdr *elf_property_phdata = NULL;
826 unsigned long elf_bss, elf_brk;
827 int bss_prot = 0;
828 int retval, i;
829 unsigned long elf_entry;
830 unsigned long e_entry;
831 unsigned long interp_load_addr = 0;
832 unsigned long start_code, end_code, start_data, end_data;
833 unsigned long reloc_func_desc __maybe_unused = 0;
834 int executable_stack = EXSTACK_DEFAULT;
835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836 struct elfhdr *interp_elf_ex = NULL;
837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838 struct mm_struct *mm;
839 struct pt_regs *regs;
840
841 retval = -ENOEXEC;
842 /* First of all, some simple consistency checks */
843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
844 goto out;
845
846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
847 goto out;
848 if (!elf_check_arch(elf_ex))
849 goto out;
850 if (elf_check_fdpic(elf_ex))
851 goto out;
852 if (!bprm->file->f_op->mmap)
853 goto out;
854
855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
856 if (!elf_phdata)
857 goto out;
858
859 elf_ppnt = elf_phdata;
860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861 char *elf_interpreter;
862
863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864 elf_property_phdata = elf_ppnt;
865 continue;
866 }
867
868 if (elf_ppnt->p_type != PT_INTERP)
869 continue;
870
871 /*
872 * This is the program interpreter used for shared libraries -
873 * for now assume that this is an a.out format binary.
874 */
875 retval = -ENOEXEC;
876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
877 goto out_free_ph;
878
879 retval = -ENOMEM;
880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
881 if (!elf_interpreter)
882 goto out_free_ph;
883
884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
885 elf_ppnt->p_offset);
886 if (retval < 0)
887 goto out_free_interp;
888 /* make sure path is NULL terminated */
889 retval = -ENOEXEC;
890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891 goto out_free_interp;
892
893 interpreter = open_exec(elf_interpreter);
894 kfree(elf_interpreter);
895 retval = PTR_ERR(interpreter);
896 if (IS_ERR(interpreter))
897 goto out_free_ph;
898
899 /*
900 * If the binary is not readable then enforce mm->dumpable = 0
901 * regardless of the interpreter's permissions.
902 */
903 would_dump(bprm, interpreter);
904
905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
906 if (!interp_elf_ex) {
907 retval = -ENOMEM;
908 goto out_free_file;
909 }
910
911 /* Get the exec headers */
912 retval = elf_read(interpreter, interp_elf_ex,
913 sizeof(*interp_elf_ex), 0);
914 if (retval < 0)
915 goto out_free_dentry;
916
917 break;
918
919out_free_interp:
920 kfree(elf_interpreter);
921 goto out_free_ph;
922 }
923
924 elf_ppnt = elf_phdata;
925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926 switch (elf_ppnt->p_type) {
927 case PT_GNU_STACK:
928 if (elf_ppnt->p_flags & PF_X)
929 executable_stack = EXSTACK_ENABLE_X;
930 else
931 executable_stack = EXSTACK_DISABLE_X;
932 break;
933
934 case PT_LOPROC ... PT_HIPROC:
935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
936 bprm->file, false,
937 &arch_state);
938 if (retval)
939 goto out_free_dentry;
940 break;
941 }
942
943 /* Some simple consistency checks for the interpreter */
944 if (interpreter) {
945 retval = -ELIBBAD;
946 /* Not an ELF interpreter */
947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948 goto out_free_dentry;
949 /* Verify the interpreter has a valid arch */
950 if (!elf_check_arch(interp_elf_ex) ||
951 elf_check_fdpic(interp_elf_ex))
952 goto out_free_dentry;
953
954 /* Load the interpreter program headers */
955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
956 interpreter);
957 if (!interp_elf_phdata)
958 goto out_free_dentry;
959
960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961 elf_property_phdata = NULL;
962 elf_ppnt = interp_elf_phdata;
963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964 switch (elf_ppnt->p_type) {
965 case PT_GNU_PROPERTY:
966 elf_property_phdata = elf_ppnt;
967 break;
968
969 case PT_LOPROC ... PT_HIPROC:
970 retval = arch_elf_pt_proc(interp_elf_ex,
971 elf_ppnt, interpreter,
972 true, &arch_state);
973 if (retval)
974 goto out_free_dentry;
975 break;
976 }
977 }
978
979 retval = parse_elf_properties(interpreter ?: bprm->file,
980 elf_property_phdata, &arch_state);
981 if (retval)
982 goto out_free_dentry;
983
984 /*
985 * Allow arch code to reject the ELF at this point, whilst it's
986 * still possible to return an error to the code that invoked
987 * the exec syscall.
988 */
989 retval = arch_check_elf(elf_ex,
990 !!interpreter, interp_elf_ex,
991 &arch_state);
992 if (retval)
993 goto out_free_dentry;
994
995 /* Flush all traces of the currently running executable */
996 retval = begin_new_exec(bprm);
997 if (retval)
998 goto out_free_dentry;
999
1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001 may depend on the personality. */
1002 SET_PERSONALITY2(*elf_ex, &arch_state);
1003 if (elf_read_implies_exec(*elf_ex, executable_stack))
1004 current->personality |= READ_IMPLIES_EXEC;
1005
1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1007 current->flags |= PF_RANDOMIZE;
1008
1009 setup_new_exec(bprm);
1010
1011 /* Do this so that we can load the interpreter, if need be. We will
1012 change some of these later */
1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1014 executable_stack);
1015 if (retval < 0)
1016 goto out_free_dentry;
1017
1018 elf_bss = 0;
1019 elf_brk = 0;
1020
1021 start_code = ~0UL;
1022 end_code = 0;
1023 start_data = 0;
1024 end_data = 0;
1025
1026 /* Now we do a little grungy work by mmapping the ELF image into
1027 the correct location in memory. */
1028 for(i = 0, elf_ppnt = elf_phdata;
1029 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1030 int elf_prot, elf_flags;
1031 unsigned long k, vaddr;
1032 unsigned long total_size = 0;
1033 unsigned long alignment;
1034
1035 if (elf_ppnt->p_type != PT_LOAD)
1036 continue;
1037
1038 if (unlikely (elf_brk > elf_bss)) {
1039 unsigned long nbyte;
1040
1041 /* There was a PT_LOAD segment with p_memsz > p_filesz
1042 before this one. Map anonymous pages, if needed,
1043 and clear the area. */
1044 retval = set_brk(elf_bss + load_bias,
1045 elf_brk + load_bias,
1046 bss_prot);
1047 if (retval)
1048 goto out_free_dentry;
1049 nbyte = ELF_PAGEOFFSET(elf_bss);
1050 if (nbyte) {
1051 nbyte = ELF_MIN_ALIGN - nbyte;
1052 if (nbyte > elf_brk - elf_bss)
1053 nbyte = elf_brk - elf_bss;
1054 if (clear_user((void __user *)elf_bss +
1055 load_bias, nbyte)) {
1056 /*
1057 * This bss-zeroing can fail if the ELF
1058 * file specifies odd protections. So
1059 * we don't check the return value
1060 */
1061 }
1062 }
1063 }
1064
1065 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1066 !!interpreter, false);
1067
1068 elf_flags = MAP_PRIVATE;
1069
1070 vaddr = elf_ppnt->p_vaddr;
1071 /*
1072 * The first time through the loop, first_pt_load is true:
1073 * layout will be calculated. Once set, use MAP_FIXED since
1074 * we know we've already safely mapped the entire region with
1075 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1076 */
1077 if (!first_pt_load) {
1078 elf_flags |= MAP_FIXED;
1079 } else if (elf_ex->e_type == ET_EXEC) {
1080 /*
1081 * This logic is run once for the first LOAD Program
1082 * Header for ET_EXEC binaries. No special handling
1083 * is needed.
1084 */
1085 elf_flags |= MAP_FIXED_NOREPLACE;
1086 } else if (elf_ex->e_type == ET_DYN) {
1087 /*
1088 * This logic is run once for the first LOAD Program
1089 * Header for ET_DYN binaries to calculate the
1090 * randomization (load_bias) for all the LOAD
1091 * Program Headers.
1092 *
1093 * There are effectively two types of ET_DYN
1094 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1095 * and loaders (ET_DYN without INTERP, since they
1096 * _are_ the ELF interpreter). The loaders must
1097 * be loaded away from programs since the program
1098 * may otherwise collide with the loader (especially
1099 * for ET_EXEC which does not have a randomized
1100 * position). For example to handle invocations of
1101 * "./ld.so someprog" to test out a new version of
1102 * the loader, the subsequent program that the
1103 * loader loads must avoid the loader itself, so
1104 * they cannot share the same load range. Sufficient
1105 * room for the brk must be allocated with the
1106 * loader as well, since brk must be available with
1107 * the loader.
1108 *
1109 * Therefore, programs are loaded offset from
1110 * ELF_ET_DYN_BASE and loaders are loaded into the
1111 * independently randomized mmap region (0 load_bias
1112 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1113 */
1114 if (interpreter) {
1115 load_bias = ELF_ET_DYN_BASE;
1116 if (current->flags & PF_RANDOMIZE)
1117 load_bias += arch_mmap_rnd();
1118 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1119 if (alignment)
1120 load_bias &= ~(alignment - 1);
1121 elf_flags |= MAP_FIXED_NOREPLACE;
1122 } else
1123 load_bias = 0;
1124
1125 /*
1126 * Since load_bias is used for all subsequent loading
1127 * calculations, we must lower it by the first vaddr
1128 * so that the remaining calculations based on the
1129 * ELF vaddrs will be correctly offset. The result
1130 * is then page aligned.
1131 */
1132 load_bias = ELF_PAGESTART(load_bias - vaddr);
1133
1134 /*
1135 * Calculate the entire size of the ELF mapping
1136 * (total_size), used for the initial mapping,
1137 * due to load_addr_set which is set to true later
1138 * once the initial mapping is performed.
1139 *
1140 * Note that this is only sensible when the LOAD
1141 * segments are contiguous (or overlapping). If
1142 * used for LOADs that are far apart, this would
1143 * cause the holes between LOADs to be mapped,
1144 * running the risk of having the mapping fail,
1145 * as it would be larger than the ELF file itself.
1146 *
1147 * As a result, only ET_DYN does this, since
1148 * some ET_EXEC (e.g. ia64) may have large virtual
1149 * memory holes between LOADs.
1150 *
1151 */
1152 total_size = total_mapping_size(elf_phdata,
1153 elf_ex->e_phnum);
1154 if (!total_size) {
1155 retval = -EINVAL;
1156 goto out_free_dentry;
1157 }
1158 }
1159
1160 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1161 elf_prot, elf_flags, total_size);
1162 if (BAD_ADDR(error)) {
1163 retval = IS_ERR_VALUE(error) ?
1164 PTR_ERR((void*)error) : -EINVAL;
1165 goto out_free_dentry;
1166 }
1167
1168 if (first_pt_load) {
1169 first_pt_load = 0;
1170 if (elf_ex->e_type == ET_DYN) {
1171 load_bias += error -
1172 ELF_PAGESTART(load_bias + vaddr);
1173 reloc_func_desc = load_bias;
1174 }
1175 }
1176
1177 /*
1178 * Figure out which segment in the file contains the Program
1179 * Header table, and map to the associated memory address.
1180 */
1181 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1182 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1183 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1184 elf_ppnt->p_vaddr;
1185 }
1186
1187 k = elf_ppnt->p_vaddr;
1188 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1189 start_code = k;
1190 if (start_data < k)
1191 start_data = k;
1192
1193 /*
1194 * Check to see if the section's size will overflow the
1195 * allowed task size. Note that p_filesz must always be
1196 * <= p_memsz so it is only necessary to check p_memsz.
1197 */
1198 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1199 elf_ppnt->p_memsz > TASK_SIZE ||
1200 TASK_SIZE - elf_ppnt->p_memsz < k) {
1201 /* set_brk can never work. Avoid overflows. */
1202 retval = -EINVAL;
1203 goto out_free_dentry;
1204 }
1205
1206 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1207
1208 if (k > elf_bss)
1209 elf_bss = k;
1210 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1211 end_code = k;
1212 if (end_data < k)
1213 end_data = k;
1214 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1215 if (k > elf_brk) {
1216 bss_prot = elf_prot;
1217 elf_brk = k;
1218 }
1219 }
1220
1221 e_entry = elf_ex->e_entry + load_bias;
1222 phdr_addr += load_bias;
1223 elf_bss += load_bias;
1224 elf_brk += load_bias;
1225 start_code += load_bias;
1226 end_code += load_bias;
1227 start_data += load_bias;
1228 end_data += load_bias;
1229
1230 /* Calling set_brk effectively mmaps the pages that we need
1231 * for the bss and break sections. We must do this before
1232 * mapping in the interpreter, to make sure it doesn't wind
1233 * up getting placed where the bss needs to go.
1234 */
1235 retval = set_brk(elf_bss, elf_brk, bss_prot);
1236 if (retval)
1237 goto out_free_dentry;
1238 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1239 retval = -EFAULT; /* Nobody gets to see this, but.. */
1240 goto out_free_dentry;
1241 }
1242
1243 if (interpreter) {
1244 elf_entry = load_elf_interp(interp_elf_ex,
1245 interpreter,
1246 load_bias, interp_elf_phdata,
1247 &arch_state);
1248 if (!IS_ERR_VALUE(elf_entry)) {
1249 /*
1250 * load_elf_interp() returns relocation
1251 * adjustment
1252 */
1253 interp_load_addr = elf_entry;
1254 elf_entry += interp_elf_ex->e_entry;
1255 }
1256 if (BAD_ADDR(elf_entry)) {
1257 retval = IS_ERR_VALUE(elf_entry) ?
1258 (int)elf_entry : -EINVAL;
1259 goto out_free_dentry;
1260 }
1261 reloc_func_desc = interp_load_addr;
1262
1263 allow_write_access(interpreter);
1264 fput(interpreter);
1265
1266 kfree(interp_elf_ex);
1267 kfree(interp_elf_phdata);
1268 } else {
1269 elf_entry = e_entry;
1270 if (BAD_ADDR(elf_entry)) {
1271 retval = -EINVAL;
1272 goto out_free_dentry;
1273 }
1274 }
1275
1276 kfree(elf_phdata);
1277
1278 set_binfmt(&elf_format);
1279
1280#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1281 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1282 if (retval < 0)
1283 goto out;
1284#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1285
1286 retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1287 e_entry, phdr_addr);
1288 if (retval < 0)
1289 goto out;
1290
1291 mm = current->mm;
1292 mm->end_code = end_code;
1293 mm->start_code = start_code;
1294 mm->start_data = start_data;
1295 mm->end_data = end_data;
1296 mm->start_stack = bprm->p;
1297
1298 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1299 /*
1300 * For architectures with ELF randomization, when executing
1301 * a loader directly (i.e. no interpreter listed in ELF
1302 * headers), move the brk area out of the mmap region
1303 * (since it grows up, and may collide early with the stack
1304 * growing down), and into the unused ELF_ET_DYN_BASE region.
1305 */
1306 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1307 elf_ex->e_type == ET_DYN && !interpreter) {
1308 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1309 }
1310
1311 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1312#ifdef compat_brk_randomized
1313 current->brk_randomized = 1;
1314#endif
1315 }
1316
1317 if (current->personality & MMAP_PAGE_ZERO) {
1318 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1319 and some applications "depend" upon this behavior.
1320 Since we do not have the power to recompile these, we
1321 emulate the SVr4 behavior. Sigh. */
1322 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1323 MAP_FIXED | MAP_PRIVATE, 0);
1324 }
1325
1326 regs = current_pt_regs();
1327#ifdef ELF_PLAT_INIT
1328 /*
1329 * The ABI may specify that certain registers be set up in special
1330 * ways (on i386 %edx is the address of a DT_FINI function, for
1331 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1332 * that the e_entry field is the address of the function descriptor
1333 * for the startup routine, rather than the address of the startup
1334 * routine itself. This macro performs whatever initialization to
1335 * the regs structure is required as well as any relocations to the
1336 * function descriptor entries when executing dynamically links apps.
1337 */
1338 ELF_PLAT_INIT(regs, reloc_func_desc);
1339#endif
1340
1341 finalize_exec(bprm);
1342 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1343 retval = 0;
1344out:
1345 return retval;
1346
1347 /* error cleanup */
1348out_free_dentry:
1349 kfree(interp_elf_ex);
1350 kfree(interp_elf_phdata);
1351out_free_file:
1352 allow_write_access(interpreter);
1353 if (interpreter)
1354 fput(interpreter);
1355out_free_ph:
1356 kfree(elf_phdata);
1357 goto out;
1358}
1359
1360#ifdef CONFIG_USELIB
1361/* This is really simpleminded and specialized - we are loading an
1362 a.out library that is given an ELF header. */
1363static int load_elf_library(struct file *file)
1364{
1365 struct elf_phdr *elf_phdata;
1366 struct elf_phdr *eppnt;
1367 unsigned long elf_bss, bss, len;
1368 int retval, error, i, j;
1369 struct elfhdr elf_ex;
1370
1371 error = -ENOEXEC;
1372 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1373 if (retval < 0)
1374 goto out;
1375
1376 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1377 goto out;
1378
1379 /* First of all, some simple consistency checks */
1380 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1381 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1382 goto out;
1383 if (elf_check_fdpic(&elf_ex))
1384 goto out;
1385
1386 /* Now read in all of the header information */
1387
1388 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1389 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1390
1391 error = -ENOMEM;
1392 elf_phdata = kmalloc(j, GFP_KERNEL);
1393 if (!elf_phdata)
1394 goto out;
1395
1396 eppnt = elf_phdata;
1397 error = -ENOEXEC;
1398 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1399 if (retval < 0)
1400 goto out_free_ph;
1401
1402 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1403 if ((eppnt + i)->p_type == PT_LOAD)
1404 j++;
1405 if (j != 1)
1406 goto out_free_ph;
1407
1408 while (eppnt->p_type != PT_LOAD)
1409 eppnt++;
1410
1411 /* Now use mmap to map the library into memory. */
1412 error = vm_mmap(file,
1413 ELF_PAGESTART(eppnt->p_vaddr),
1414 (eppnt->p_filesz +
1415 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1416 PROT_READ | PROT_WRITE | PROT_EXEC,
1417 MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1418 (eppnt->p_offset -
1419 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1420 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1421 goto out_free_ph;
1422
1423 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1424 if (padzero(elf_bss)) {
1425 error = -EFAULT;
1426 goto out_free_ph;
1427 }
1428
1429 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1430 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1431 if (bss > len) {
1432 error = vm_brk(len, bss - len);
1433 if (error)
1434 goto out_free_ph;
1435 }
1436 error = 0;
1437
1438out_free_ph:
1439 kfree(elf_phdata);
1440out:
1441 return error;
1442}
1443#endif /* #ifdef CONFIG_USELIB */
1444
1445#ifdef CONFIG_ELF_CORE
1446/*
1447 * ELF core dumper
1448 *
1449 * Modelled on fs/exec.c:aout_core_dump()
1450 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1451 */
1452
1453/* An ELF note in memory */
1454struct memelfnote
1455{
1456 const char *name;
1457 int type;
1458 unsigned int datasz;
1459 void *data;
1460};
1461
1462static int notesize(struct memelfnote *en)
1463{
1464 int sz;
1465
1466 sz = sizeof(struct elf_note);
1467 sz += roundup(strlen(en->name) + 1, 4);
1468 sz += roundup(en->datasz, 4);
1469
1470 return sz;
1471}
1472
1473static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1474{
1475 struct elf_note en;
1476 en.n_namesz = strlen(men->name) + 1;
1477 en.n_descsz = men->datasz;
1478 en.n_type = men->type;
1479
1480 return dump_emit(cprm, &en, sizeof(en)) &&
1481 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1482 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1483}
1484
1485static void fill_elf_header(struct elfhdr *elf, int segs,
1486 u16 machine, u32 flags)
1487{
1488 memset(elf, 0, sizeof(*elf));
1489
1490 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1491 elf->e_ident[EI_CLASS] = ELF_CLASS;
1492 elf->e_ident[EI_DATA] = ELF_DATA;
1493 elf->e_ident[EI_VERSION] = EV_CURRENT;
1494 elf->e_ident[EI_OSABI] = ELF_OSABI;
1495
1496 elf->e_type = ET_CORE;
1497 elf->e_machine = machine;
1498 elf->e_version = EV_CURRENT;
1499 elf->e_phoff = sizeof(struct elfhdr);
1500 elf->e_flags = flags;
1501 elf->e_ehsize = sizeof(struct elfhdr);
1502 elf->e_phentsize = sizeof(struct elf_phdr);
1503 elf->e_phnum = segs;
1504}
1505
1506static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1507{
1508 phdr->p_type = PT_NOTE;
1509 phdr->p_offset = offset;
1510 phdr->p_vaddr = 0;
1511 phdr->p_paddr = 0;
1512 phdr->p_filesz = sz;
1513 phdr->p_memsz = 0;
1514 phdr->p_flags = 0;
1515 phdr->p_align = 0;
1516}
1517
1518static void fill_note(struct memelfnote *note, const char *name, int type,
1519 unsigned int sz, void *data)
1520{
1521 note->name = name;
1522 note->type = type;
1523 note->datasz = sz;
1524 note->data = data;
1525}
1526
1527/*
1528 * fill up all the fields in prstatus from the given task struct, except
1529 * registers which need to be filled up separately.
1530 */
1531static void fill_prstatus(struct elf_prstatus_common *prstatus,
1532 struct task_struct *p, long signr)
1533{
1534 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1535 prstatus->pr_sigpend = p->pending.signal.sig[0];
1536 prstatus->pr_sighold = p->blocked.sig[0];
1537 rcu_read_lock();
1538 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1539 rcu_read_unlock();
1540 prstatus->pr_pid = task_pid_vnr(p);
1541 prstatus->pr_pgrp = task_pgrp_vnr(p);
1542 prstatus->pr_sid = task_session_vnr(p);
1543 if (thread_group_leader(p)) {
1544 struct task_cputime cputime;
1545
1546 /*
1547 * This is the record for the group leader. It shows the
1548 * group-wide total, not its individual thread total.
1549 */
1550 thread_group_cputime(p, &cputime);
1551 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1552 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1553 } else {
1554 u64 utime, stime;
1555
1556 task_cputime(p, &utime, &stime);
1557 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1558 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1559 }
1560
1561 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1562 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1563}
1564
1565static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1566 struct mm_struct *mm)
1567{
1568 const struct cred *cred;
1569 unsigned int i, len;
1570 unsigned int state;
1571
1572 /* first copy the parameters from user space */
1573 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1574
1575 len = mm->arg_end - mm->arg_start;
1576 if (len >= ELF_PRARGSZ)
1577 len = ELF_PRARGSZ-1;
1578 if (copy_from_user(&psinfo->pr_psargs,
1579 (const char __user *)mm->arg_start, len))
1580 return -EFAULT;
1581 for(i = 0; i < len; i++)
1582 if (psinfo->pr_psargs[i] == 0)
1583 psinfo->pr_psargs[i] = ' ';
1584 psinfo->pr_psargs[len] = 0;
1585
1586 rcu_read_lock();
1587 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1588 rcu_read_unlock();
1589 psinfo->pr_pid = task_pid_vnr(p);
1590 psinfo->pr_pgrp = task_pgrp_vnr(p);
1591 psinfo->pr_sid = task_session_vnr(p);
1592
1593 state = READ_ONCE(p->__state);
1594 i = state ? ffz(~state) + 1 : 0;
1595 psinfo->pr_state = i;
1596 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1597 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1598 psinfo->pr_nice = task_nice(p);
1599 psinfo->pr_flag = p->flags;
1600 rcu_read_lock();
1601 cred = __task_cred(p);
1602 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1603 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1604 rcu_read_unlock();
1605 get_task_comm(psinfo->pr_fname, p);
1606
1607 return 0;
1608}
1609
1610static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1611{
1612 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1613 int i = 0;
1614 do
1615 i += 2;
1616 while (auxv[i - 2] != AT_NULL);
1617 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1618}
1619
1620static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1621 const kernel_siginfo_t *siginfo)
1622{
1623 copy_siginfo_to_external(csigdata, siginfo);
1624 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1625}
1626
1627#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1628/*
1629 * Format of NT_FILE note:
1630 *
1631 * long count -- how many files are mapped
1632 * long page_size -- units for file_ofs
1633 * array of [COUNT] elements of
1634 * long start
1635 * long end
1636 * long file_ofs
1637 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1638 */
1639static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1640{
1641 unsigned count, size, names_ofs, remaining, n;
1642 user_long_t *data;
1643 user_long_t *start_end_ofs;
1644 char *name_base, *name_curpos;
1645 int i;
1646
1647 /* *Estimated* file count and total data size needed */
1648 count = cprm->vma_count;
1649 if (count > UINT_MAX / 64)
1650 return -EINVAL;
1651 size = count * 64;
1652
1653 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1654 alloc:
1655 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1656 return -EINVAL;
1657 size = round_up(size, PAGE_SIZE);
1658 /*
1659 * "size" can be 0 here legitimately.
1660 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1661 */
1662 data = kvmalloc(size, GFP_KERNEL);
1663 if (ZERO_OR_NULL_PTR(data))
1664 return -ENOMEM;
1665
1666 start_end_ofs = data + 2;
1667 name_base = name_curpos = ((char *)data) + names_ofs;
1668 remaining = size - names_ofs;
1669 count = 0;
1670 for (i = 0; i < cprm->vma_count; i++) {
1671 struct core_vma_metadata *m = &cprm->vma_meta[i];
1672 struct file *file;
1673 const char *filename;
1674
1675 file = m->file;
1676 if (!file)
1677 continue;
1678 filename = file_path(file, name_curpos, remaining);
1679 if (IS_ERR(filename)) {
1680 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1681 kvfree(data);
1682 size = size * 5 / 4;
1683 goto alloc;
1684 }
1685 continue;
1686 }
1687
1688 /* file_path() fills at the end, move name down */
1689 /* n = strlen(filename) + 1: */
1690 n = (name_curpos + remaining) - filename;
1691 remaining = filename - name_curpos;
1692 memmove(name_curpos, filename, n);
1693 name_curpos += n;
1694
1695 *start_end_ofs++ = m->start;
1696 *start_end_ofs++ = m->end;
1697 *start_end_ofs++ = m->pgoff;
1698 count++;
1699 }
1700
1701 /* Now we know exact count of files, can store it */
1702 data[0] = count;
1703 data[1] = PAGE_SIZE;
1704 /*
1705 * Count usually is less than mm->map_count,
1706 * we need to move filenames down.
1707 */
1708 n = cprm->vma_count - count;
1709 if (n != 0) {
1710 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1711 memmove(name_base - shift_bytes, name_base,
1712 name_curpos - name_base);
1713 name_curpos -= shift_bytes;
1714 }
1715
1716 size = name_curpos - (char *)data;
1717 fill_note(note, "CORE", NT_FILE, size, data);
1718 return 0;
1719}
1720
1721#include <linux/regset.h>
1722
1723struct elf_thread_core_info {
1724 struct elf_thread_core_info *next;
1725 struct task_struct *task;
1726 struct elf_prstatus prstatus;
1727 struct memelfnote notes[];
1728};
1729
1730struct elf_note_info {
1731 struct elf_thread_core_info *thread;
1732 struct memelfnote psinfo;
1733 struct memelfnote signote;
1734 struct memelfnote auxv;
1735 struct memelfnote files;
1736 user_siginfo_t csigdata;
1737 size_t size;
1738 int thread_notes;
1739};
1740
1741#ifdef CORE_DUMP_USE_REGSET
1742/*
1743 * When a regset has a writeback hook, we call it on each thread before
1744 * dumping user memory. On register window machines, this makes sure the
1745 * user memory backing the register data is up to date before we read it.
1746 */
1747static void do_thread_regset_writeback(struct task_struct *task,
1748 const struct user_regset *regset)
1749{
1750 if (regset->writeback)
1751 regset->writeback(task, regset, 1);
1752}
1753
1754#ifndef PRSTATUS_SIZE
1755#define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1756#endif
1757
1758#ifndef SET_PR_FPVALID
1759#define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1760#endif
1761
1762static int fill_thread_core_info(struct elf_thread_core_info *t,
1763 const struct user_regset_view *view,
1764 long signr, struct elf_note_info *info)
1765{
1766 unsigned int note_iter, view_iter;
1767
1768 /*
1769 * NT_PRSTATUS is the one special case, because the regset data
1770 * goes into the pr_reg field inside the note contents, rather
1771 * than being the whole note contents. We fill the reset in here.
1772 * We assume that regset 0 is NT_PRSTATUS.
1773 */
1774 fill_prstatus(&t->prstatus.common, t->task, signr);
1775 regset_get(t->task, &view->regsets[0],
1776 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1777
1778 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1779 PRSTATUS_SIZE, &t->prstatus);
1780 info->size += notesize(&t->notes[0]);
1781
1782 do_thread_regset_writeback(t->task, &view->regsets[0]);
1783
1784 /*
1785 * Each other regset might generate a note too. For each regset
1786 * that has no core_note_type or is inactive, skip it.
1787 */
1788 note_iter = 1;
1789 for (view_iter = 1; view_iter < view->n; ++view_iter) {
1790 const struct user_regset *regset = &view->regsets[view_iter];
1791 int note_type = regset->core_note_type;
1792 bool is_fpreg = note_type == NT_PRFPREG;
1793 void *data;
1794 int ret;
1795
1796 do_thread_regset_writeback(t->task, regset);
1797 if (!note_type) // not for coredumps
1798 continue;
1799 if (regset->active && regset->active(t->task, regset) <= 0)
1800 continue;
1801
1802 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1803 if (ret < 0)
1804 continue;
1805
1806 if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1807 break;
1808
1809 if (is_fpreg)
1810 SET_PR_FPVALID(&t->prstatus);
1811
1812 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1813 note_type, ret, data);
1814
1815 info->size += notesize(&t->notes[note_iter]);
1816 note_iter++;
1817 }
1818
1819 return 1;
1820}
1821#else
1822static int fill_thread_core_info(struct elf_thread_core_info *t,
1823 const struct user_regset_view *view,
1824 long signr, struct elf_note_info *info)
1825{
1826 struct task_struct *p = t->task;
1827 elf_fpregset_t *fpu;
1828
1829 fill_prstatus(&t->prstatus.common, p, signr);
1830 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1831
1832 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1833 &(t->prstatus));
1834 info->size += notesize(&t->notes[0]);
1835
1836 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1837 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1838 kfree(fpu);
1839 return 1;
1840 }
1841
1842 t->prstatus.pr_fpvalid = 1;
1843 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1844 info->size += notesize(&t->notes[1]);
1845
1846 return 1;
1847}
1848#endif
1849
1850static int fill_note_info(struct elfhdr *elf, int phdrs,
1851 struct elf_note_info *info,
1852 struct coredump_params *cprm)
1853{
1854 struct task_struct *dump_task = current;
1855 const struct user_regset_view *view;
1856 struct elf_thread_core_info *t;
1857 struct elf_prpsinfo *psinfo;
1858 struct core_thread *ct;
1859
1860 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1861 if (!psinfo)
1862 return 0;
1863 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1864
1865#ifdef CORE_DUMP_USE_REGSET
1866 view = task_user_regset_view(dump_task);
1867
1868 /*
1869 * Figure out how many notes we're going to need for each thread.
1870 */
1871 info->thread_notes = 0;
1872 for (int i = 0; i < view->n; ++i)
1873 if (view->regsets[i].core_note_type != 0)
1874 ++info->thread_notes;
1875
1876 /*
1877 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1878 * since it is our one special case.
1879 */
1880 if (unlikely(info->thread_notes == 0) ||
1881 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1882 WARN_ON(1);
1883 return 0;
1884 }
1885
1886 /*
1887 * Initialize the ELF file header.
1888 */
1889 fill_elf_header(elf, phdrs,
1890 view->e_machine, view->e_flags);
1891#else
1892 view = NULL;
1893 info->thread_notes = 2;
1894 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1895#endif
1896
1897 /*
1898 * Allocate a structure for each thread.
1899 */
1900 info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1901 notes[info->thread_notes]),
1902 GFP_KERNEL);
1903 if (unlikely(!info->thread))
1904 return 0;
1905
1906 info->thread->task = dump_task;
1907 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1908 t = kzalloc(offsetof(struct elf_thread_core_info,
1909 notes[info->thread_notes]),
1910 GFP_KERNEL);
1911 if (unlikely(!t))
1912 return 0;
1913
1914 t->task = ct->task;
1915 t->next = info->thread->next;
1916 info->thread->next = t;
1917 }
1918
1919 /*
1920 * Now fill in each thread's information.
1921 */
1922 for (t = info->thread; t != NULL; t = t->next)
1923 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1924 return 0;
1925
1926 /*
1927 * Fill in the two process-wide notes.
1928 */
1929 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1930 info->size += notesize(&info->psinfo);
1931
1932 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1933 info->size += notesize(&info->signote);
1934
1935 fill_auxv_note(&info->auxv, current->mm);
1936 info->size += notesize(&info->auxv);
1937
1938 if (fill_files_note(&info->files, cprm) == 0)
1939 info->size += notesize(&info->files);
1940
1941 return 1;
1942}
1943
1944/*
1945 * Write all the notes for each thread. When writing the first thread, the
1946 * process-wide notes are interleaved after the first thread-specific note.
1947 */
1948static int write_note_info(struct elf_note_info *info,
1949 struct coredump_params *cprm)
1950{
1951 bool first = true;
1952 struct elf_thread_core_info *t = info->thread;
1953
1954 do {
1955 int i;
1956
1957 if (!writenote(&t->notes[0], cprm))
1958 return 0;
1959
1960 if (first && !writenote(&info->psinfo, cprm))
1961 return 0;
1962 if (first && !writenote(&info->signote, cprm))
1963 return 0;
1964 if (first && !writenote(&info->auxv, cprm))
1965 return 0;
1966 if (first && info->files.data &&
1967 !writenote(&info->files, cprm))
1968 return 0;
1969
1970 for (i = 1; i < info->thread_notes; ++i)
1971 if (t->notes[i].data &&
1972 !writenote(&t->notes[i], cprm))
1973 return 0;
1974
1975 first = false;
1976 t = t->next;
1977 } while (t);
1978
1979 return 1;
1980}
1981
1982static void free_note_info(struct elf_note_info *info)
1983{
1984 struct elf_thread_core_info *threads = info->thread;
1985 while (threads) {
1986 unsigned int i;
1987 struct elf_thread_core_info *t = threads;
1988 threads = t->next;
1989 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1990 for (i = 1; i < info->thread_notes; ++i)
1991 kfree(t->notes[i].data);
1992 kfree(t);
1993 }
1994 kfree(info->psinfo.data);
1995 kvfree(info->files.data);
1996}
1997
1998static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1999 elf_addr_t e_shoff, int segs)
2000{
2001 elf->e_shoff = e_shoff;
2002 elf->e_shentsize = sizeof(*shdr4extnum);
2003 elf->e_shnum = 1;
2004 elf->e_shstrndx = SHN_UNDEF;
2005
2006 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2007
2008 shdr4extnum->sh_type = SHT_NULL;
2009 shdr4extnum->sh_size = elf->e_shnum;
2010 shdr4extnum->sh_link = elf->e_shstrndx;
2011 shdr4extnum->sh_info = segs;
2012}
2013
2014/*
2015 * Actual dumper
2016 *
2017 * This is a two-pass process; first we find the offsets of the bits,
2018 * and then they are actually written out. If we run out of core limit
2019 * we just truncate.
2020 */
2021static int elf_core_dump(struct coredump_params *cprm)
2022{
2023 int has_dumped = 0;
2024 int segs, i;
2025 struct elfhdr elf;
2026 loff_t offset = 0, dataoff;
2027 struct elf_note_info info = { };
2028 struct elf_phdr *phdr4note = NULL;
2029 struct elf_shdr *shdr4extnum = NULL;
2030 Elf_Half e_phnum;
2031 elf_addr_t e_shoff;
2032
2033 /*
2034 * The number of segs are recored into ELF header as 16bit value.
2035 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2036 */
2037 segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
2038
2039 /* for notes section */
2040 segs++;
2041
2042 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2043 * this, kernel supports extended numbering. Have a look at
2044 * include/linux/elf.h for further information. */
2045 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2046
2047 /*
2048 * Collect all the non-memory information about the process for the
2049 * notes. This also sets up the file header.
2050 */
2051 if (!fill_note_info(&elf, e_phnum, &info, cprm))
2052 goto end_coredump;
2053
2054 has_dumped = 1;
2055
2056 offset += sizeof(elf); /* Elf header */
2057 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2058
2059 /* Write notes phdr entry */
2060 {
2061 size_t sz = info.size;
2062
2063 /* For cell spufs */
2064 sz += elf_coredump_extra_notes_size();
2065
2066 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2067 if (!phdr4note)
2068 goto end_coredump;
2069
2070 fill_elf_note_phdr(phdr4note, sz, offset);
2071 offset += sz;
2072 }
2073
2074 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2075
2076 offset += cprm->vma_data_size;
2077 offset += elf_core_extra_data_size(cprm);
2078 e_shoff = offset;
2079
2080 if (e_phnum == PN_XNUM) {
2081 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2082 if (!shdr4extnum)
2083 goto end_coredump;
2084 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2085 }
2086
2087 offset = dataoff;
2088
2089 if (!dump_emit(cprm, &elf, sizeof(elf)))
2090 goto end_coredump;
2091
2092 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2093 goto end_coredump;
2094
2095 /* Write program headers for segments dump */
2096 for (i = 0; i < cprm->vma_count; i++) {
2097 struct core_vma_metadata *meta = cprm->vma_meta + i;
2098 struct elf_phdr phdr;
2099
2100 phdr.p_type = PT_LOAD;
2101 phdr.p_offset = offset;
2102 phdr.p_vaddr = meta->start;
2103 phdr.p_paddr = 0;
2104 phdr.p_filesz = meta->dump_size;
2105 phdr.p_memsz = meta->end - meta->start;
2106 offset += phdr.p_filesz;
2107 phdr.p_flags = 0;
2108 if (meta->flags & VM_READ)
2109 phdr.p_flags |= PF_R;
2110 if (meta->flags & VM_WRITE)
2111 phdr.p_flags |= PF_W;
2112 if (meta->flags & VM_EXEC)
2113 phdr.p_flags |= PF_X;
2114 phdr.p_align = ELF_EXEC_PAGESIZE;
2115
2116 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2117 goto end_coredump;
2118 }
2119
2120 if (!elf_core_write_extra_phdrs(cprm, offset))
2121 goto end_coredump;
2122
2123 /* write out the notes section */
2124 if (!write_note_info(&info, cprm))
2125 goto end_coredump;
2126
2127 /* For cell spufs */
2128 if (elf_coredump_extra_notes_write(cprm))
2129 goto end_coredump;
2130
2131 /* Align to page */
2132 dump_skip_to(cprm, dataoff);
2133
2134 for (i = 0; i < cprm->vma_count; i++) {
2135 struct core_vma_metadata *meta = cprm->vma_meta + i;
2136
2137 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2138 goto end_coredump;
2139 }
2140
2141 if (!elf_core_write_extra_data(cprm))
2142 goto end_coredump;
2143
2144 if (e_phnum == PN_XNUM) {
2145 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2146 goto end_coredump;
2147 }
2148
2149end_coredump:
2150 free_note_info(&info);
2151 kfree(shdr4extnum);
2152 kfree(phdr4note);
2153 return has_dumped;
2154}
2155
2156#endif /* CONFIG_ELF_CORE */
2157
2158static int __init init_elf_binfmt(void)
2159{
2160 register_binfmt(&elf_format);
2161 return 0;
2162}
2163
2164static void __exit exit_elf_binfmt(void)
2165{
2166 /* Remove the COFF and ELF loaders. */
2167 unregister_binfmt(&elf_format);
2168}
2169
2170core_initcall(init_elf_binfmt);
2171module_exit(exit_elf_binfmt);
2172MODULE_LICENSE("GPL");
2173
2174#ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2175#include "binfmt_elf_test.c"
2176#endif