Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * linux/fs/binfmt_elf.c
   3 *
   4 * These are the functions used to load ELF format executables as used
   5 * on SVr4 machines.  Information on the format may be found in the book
   6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
   7 * Tools".
   8 *
   9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/fs.h>
  15#include <linux/mm.h>
  16#include <linux/mman.h>
  17#include <linux/errno.h>
  18#include <linux/signal.h>
  19#include <linux/binfmts.h>
  20#include <linux/string.h>
  21#include <linux/file.h>
  22#include <linux/slab.h>
  23#include <linux/personality.h>
  24#include <linux/elfcore.h>
  25#include <linux/init.h>
  26#include <linux/highuid.h>
  27#include <linux/compiler.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/vmalloc.h>
  31#include <linux/security.h>
  32#include <linux/random.h>
  33#include <linux/elf.h>
  34#include <linux/elf-randomize.h>
  35#include <linux/utsname.h>
  36#include <linux/coredump.h>
  37#include <linux/sched.h>
 
 
 
 
  38#include <linux/dax.h>
  39#include <linux/uaccess.h>
  40#include <asm/param.h>
  41#include <asm/page.h>
  42
  43#ifndef user_long_t
  44#define user_long_t long
  45#endif
  46#ifndef user_siginfo_t
  47#define user_siginfo_t siginfo_t
  48#endif
  49
 
 
 
 
 
  50static int load_elf_binary(struct linux_binprm *bprm);
  51static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
  52				int, int, unsigned long);
  53
  54#ifdef CONFIG_USELIB
  55static int load_elf_library(struct file *);
  56#else
  57#define load_elf_library NULL
  58#endif
  59
  60/*
  61 * If we don't support core dumping, then supply a NULL so we
  62 * don't even try.
  63 */
  64#ifdef CONFIG_ELF_CORE
  65static int elf_core_dump(struct coredump_params *cprm);
  66#else
  67#define elf_core_dump	NULL
  68#endif
  69
  70#if ELF_EXEC_PAGESIZE > PAGE_SIZE
  71#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
  72#else
  73#define ELF_MIN_ALIGN	PAGE_SIZE
  74#endif
  75
  76#ifndef ELF_CORE_EFLAGS
  77#define ELF_CORE_EFLAGS	0
  78#endif
  79
  80#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
  81#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
  82#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
  83
  84static struct linux_binfmt elf_format = {
  85	.module		= THIS_MODULE,
  86	.load_binary	= load_elf_binary,
  87	.load_shlib	= load_elf_library,
  88	.core_dump	= elf_core_dump,
  89	.min_coredump	= ELF_EXEC_PAGESIZE,
  90};
  91
  92#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
  93
  94static int set_brk(unsigned long start, unsigned long end)
  95{
  96	start = ELF_PAGEALIGN(start);
  97	end = ELF_PAGEALIGN(end);
  98	if (end > start) {
  99		int error = vm_brk(start, end - start);
 
 
 
 
 
 
 100		if (error)
 101			return error;
 102	}
 103	current->mm->start_brk = current->mm->brk = end;
 104	return 0;
 105}
 106
 107/* We need to explicitly zero any fractional pages
 108   after the data section (i.e. bss).  This would
 109   contain the junk from the file that should not
 110   be in memory
 111 */
 112static int padzero(unsigned long elf_bss)
 113{
 114	unsigned long nbyte;
 115
 116	nbyte = ELF_PAGEOFFSET(elf_bss);
 117	if (nbyte) {
 118		nbyte = ELF_MIN_ALIGN - nbyte;
 119		if (clear_user((void __user *) elf_bss, nbyte))
 120			return -EFAULT;
 121	}
 122	return 0;
 123}
 124
 125/* Let's use some macros to make this stack manipulation a little clearer */
 126#ifdef CONFIG_STACK_GROWSUP
 127#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 128#define STACK_ROUND(sp, items) \
 129	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 130#define STACK_ALLOC(sp, len) ({ \
 131	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 132	old_sp; })
 133#else
 134#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 135#define STACK_ROUND(sp, items) \
 136	(((unsigned long) (sp - items)) &~ 15UL)
 137#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 138#endif
 139
 140#ifndef ELF_BASE_PLATFORM
 141/*
 142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 144 * will be copied to the user stack in the same manner as AT_PLATFORM.
 145 */
 146#define ELF_BASE_PLATFORM NULL
 147#endif
 148
 149static int
 150create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 151		unsigned long load_addr, unsigned long interp_load_addr)
 152{
 153	unsigned long p = bprm->p;
 154	int argc = bprm->argc;
 155	int envc = bprm->envc;
 156	elf_addr_t __user *argv;
 157	elf_addr_t __user *envp;
 158	elf_addr_t __user *sp;
 159	elf_addr_t __user *u_platform;
 160	elf_addr_t __user *u_base_platform;
 161	elf_addr_t __user *u_rand_bytes;
 162	const char *k_platform = ELF_PLATFORM;
 163	const char *k_base_platform = ELF_BASE_PLATFORM;
 164	unsigned char k_rand_bytes[16];
 165	int items;
 166	elf_addr_t *elf_info;
 167	int ei_index = 0;
 168	const struct cred *cred = current_cred();
 169	struct vm_area_struct *vma;
 170
 171	/*
 172	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 173	 * evictions by the processes running on the same package. One
 174	 * thing we can do is to shuffle the initial stack for them.
 175	 */
 176
 177	p = arch_align_stack(p);
 178
 179	/*
 180	 * If this architecture has a platform capability string, copy it
 181	 * to userspace.  In some cases (Sparc), this info is impossible
 182	 * for userspace to get any other way, in others (i386) it is
 183	 * merely difficult.
 184	 */
 185	u_platform = NULL;
 186	if (k_platform) {
 187		size_t len = strlen(k_platform) + 1;
 188
 189		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 190		if (__copy_to_user(u_platform, k_platform, len))
 191			return -EFAULT;
 192	}
 193
 194	/*
 195	 * If this architecture has a "base" platform capability
 196	 * string, copy it to userspace.
 197	 */
 198	u_base_platform = NULL;
 199	if (k_base_platform) {
 200		size_t len = strlen(k_base_platform) + 1;
 201
 202		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 203		if (__copy_to_user(u_base_platform, k_base_platform, len))
 204			return -EFAULT;
 205	}
 206
 207	/*
 208	 * Generate 16 random bytes for userspace PRNG seeding.
 209	 */
 210	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 211	u_rand_bytes = (elf_addr_t __user *)
 212		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 213	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 214		return -EFAULT;
 215
 216	/* Create the ELF interpreter info */
 217	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 218	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 219#define NEW_AUX_ENT(id, val) \
 220	do { \
 221		elf_info[ei_index++] = id; \
 222		elf_info[ei_index++] = val; \
 223	} while (0)
 224
 225#ifdef ARCH_DLINFO
 226	/* 
 227	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 228	 * AUXV.
 229	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 230	 * ARCH_DLINFO changes
 231	 */
 232	ARCH_DLINFO;
 233#endif
 234	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 235	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 236	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 237	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 238	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 239	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 240	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 241	NEW_AUX_ENT(AT_FLAGS, 0);
 242	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 243	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 244	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 245	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 246	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 247 	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 248	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 249#ifdef ELF_HWCAP2
 250	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 251#endif
 252	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 253	if (k_platform) {
 254		NEW_AUX_ENT(AT_PLATFORM,
 255			    (elf_addr_t)(unsigned long)u_platform);
 256	}
 257	if (k_base_platform) {
 258		NEW_AUX_ENT(AT_BASE_PLATFORM,
 259			    (elf_addr_t)(unsigned long)u_base_platform);
 260	}
 261	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 262		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 263	}
 264#undef NEW_AUX_ENT
 265	/* AT_NULL is zero; clear the rest too */
 266	memset(&elf_info[ei_index], 0,
 267	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 268
 269	/* And advance past the AT_NULL entry.  */
 270	ei_index += 2;
 271
 272	sp = STACK_ADD(p, ei_index);
 273
 274	items = (argc + 1) + (envc + 1) + 1;
 275	bprm->p = STACK_ROUND(sp, items);
 276
 277	/* Point sp at the lowest address on the stack */
 278#ifdef CONFIG_STACK_GROWSUP
 279	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 280	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 281#else
 282	sp = (elf_addr_t __user *)bprm->p;
 283#endif
 284
 285
 286	/*
 287	 * Grow the stack manually; some architectures have a limit on how
 288	 * far ahead a user-space access may be in order to grow the stack.
 289	 */
 290	vma = find_extend_vma(current->mm, bprm->p);
 291	if (!vma)
 292		return -EFAULT;
 293
 294	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 295	if (__put_user(argc, sp++))
 296		return -EFAULT;
 297	argv = sp;
 298	envp = argv + argc + 1;
 299
 300	/* Populate argv and envp */
 301	p = current->mm->arg_end = current->mm->arg_start;
 302	while (argc-- > 0) {
 303		size_t len;
 304		if (__put_user((elf_addr_t)p, argv++))
 305			return -EFAULT;
 306		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 307		if (!len || len > MAX_ARG_STRLEN)
 308			return -EINVAL;
 309		p += len;
 310	}
 311	if (__put_user(0, argv))
 312		return -EFAULT;
 313	current->mm->arg_end = current->mm->env_start = p;
 
 
 
 314	while (envc-- > 0) {
 315		size_t len;
 316		if (__put_user((elf_addr_t)p, envp++))
 317			return -EFAULT;
 318		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 319		if (!len || len > MAX_ARG_STRLEN)
 320			return -EINVAL;
 321		p += len;
 322	}
 323	if (__put_user(0, envp))
 324		return -EFAULT;
 325	current->mm->env_end = p;
 326
 327	/* Put the elf_info on the stack in the right place.  */
 328	sp = (elf_addr_t __user *)envp + 1;
 329	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 330		return -EFAULT;
 331	return 0;
 332}
 333
 334#ifndef elf_map
 335
 336static unsigned long elf_map(struct file *filep, unsigned long addr,
 337		struct elf_phdr *eppnt, int prot, int type,
 338		unsigned long total_size)
 339{
 340	unsigned long map_addr;
 341	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 342	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 343	addr = ELF_PAGESTART(addr);
 344	size = ELF_PAGEALIGN(size);
 345
 346	/* mmap() will return -EINVAL if given a zero size, but a
 347	 * segment with zero filesize is perfectly valid */
 348	if (!size)
 349		return addr;
 350
 351	/*
 352	* total_size is the size of the ELF (interpreter) image.
 353	* The _first_ mmap needs to know the full size, otherwise
 354	* randomization might put this image into an overlapping
 355	* position with the ELF binary image. (since size < total_size)
 356	* So we first map the 'big' image - and unmap the remainder at
 357	* the end. (which unmap is needed for ELF images with holes.)
 358	*/
 359	if (total_size) {
 360		total_size = ELF_PAGEALIGN(total_size);
 361		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 362		if (!BAD_ADDR(map_addr))
 363			vm_munmap(map_addr+size, total_size-size);
 364	} else
 365		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 366
 
 
 
 
 
 367	return(map_addr);
 368}
 369
 370#endif /* !elf_map */
 371
 372static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 373{
 374	int i, first_idx = -1, last_idx = -1;
 375
 376	for (i = 0; i < nr; i++) {
 377		if (cmds[i].p_type == PT_LOAD) {
 378			last_idx = i;
 379			if (first_idx == -1)
 380				first_idx = i;
 381		}
 382	}
 383	if (first_idx == -1)
 384		return 0;
 385
 386	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 387				ELF_PAGESTART(cmds[first_idx].p_vaddr);
 388}
 389
 390/**
 391 * load_elf_phdrs() - load ELF program headers
 392 * @elf_ex:   ELF header of the binary whose program headers should be loaded
 393 * @elf_file: the opened ELF binary file
 394 *
 395 * Loads ELF program headers from the binary file elf_file, which has the ELF
 396 * header pointed to by elf_ex, into a newly allocated array. The caller is
 397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
 398 */
 399static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
 400				       struct file *elf_file)
 401{
 402	struct elf_phdr *elf_phdata = NULL;
 403	int retval, size, err = -1;
 
 404
 405	/*
 406	 * If the size of this structure has changed, then punt, since
 407	 * we will be doing the wrong thing.
 408	 */
 409	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 410		goto out;
 411
 412	/* Sanity check the number of program headers... */
 413	if (elf_ex->e_phnum < 1 ||
 414		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 415		goto out;
 416
 417	/* ...and their total size. */
 418	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 419	if (size > ELF_MIN_ALIGN)
 420		goto out;
 421
 422	elf_phdata = kmalloc(size, GFP_KERNEL);
 423	if (!elf_phdata)
 424		goto out;
 425
 426	/* Read in the program headers */
 427	retval = kernel_read(elf_file, elf_ex->e_phoff,
 428			     (char *)elf_phdata, size);
 429	if (retval != size) {
 430		err = (retval < 0) ? retval : -EIO;
 431		goto out;
 432	}
 433
 434	/* Success! */
 435	err = 0;
 436out:
 437	if (err) {
 438		kfree(elf_phdata);
 439		elf_phdata = NULL;
 440	}
 441	return elf_phdata;
 442}
 443
 444#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 445
 446/**
 447 * struct arch_elf_state - arch-specific ELF loading state
 448 *
 449 * This structure is used to preserve architecture specific data during
 450 * the loading of an ELF file, throughout the checking of architecture
 451 * specific ELF headers & through to the point where the ELF load is
 452 * known to be proceeding (ie. SET_PERSONALITY).
 453 *
 454 * This implementation is a dummy for architectures which require no
 455 * specific state.
 456 */
 457struct arch_elf_state {
 458};
 459
 460#define INIT_ARCH_ELF_STATE {}
 461
 462/**
 463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 464 * @ehdr:	The main ELF header
 465 * @phdr:	The program header to check
 466 * @elf:	The open ELF file
 467 * @is_interp:	True if the phdr is from the interpreter of the ELF being
 468 *		loaded, else false.
 469 * @state:	Architecture-specific state preserved throughout the process
 470 *		of loading the ELF.
 471 *
 472 * Inspects the program header phdr to validate its correctness and/or
 473 * suitability for the system. Called once per ELF program header in the
 474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 475 * interpreter.
 476 *
 477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 478 *         with that return code.
 479 */
 480static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 481				   struct elf_phdr *phdr,
 482				   struct file *elf, bool is_interp,
 483				   struct arch_elf_state *state)
 484{
 485	/* Dummy implementation, always proceed */
 486	return 0;
 487}
 488
 489/**
 490 * arch_check_elf() - check an ELF executable
 491 * @ehdr:	The main ELF header
 492 * @has_interp:	True if the ELF has an interpreter, else false.
 493 * @interp_ehdr: The interpreter's ELF header
 494 * @state:	Architecture-specific state preserved throughout the process
 495 *		of loading the ELF.
 496 *
 497 * Provides a final opportunity for architecture code to reject the loading
 498 * of the ELF & cause an exec syscall to return an error. This is called after
 499 * all program headers to be checked by arch_elf_pt_proc have been.
 500 *
 501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 502 *         with that return code.
 503 */
 504static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 505				 struct elfhdr *interp_ehdr,
 506				 struct arch_elf_state *state)
 507{
 508	/* Dummy implementation, always proceed */
 509	return 0;
 510}
 511
 512#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 513
 514/* This is much more generalized than the library routine read function,
 515   so we keep this separate.  Technically the library read function
 516   is only provided so that we can read a.out libraries that have
 517   an ELF header */
 518
 519static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 520		struct file *interpreter, unsigned long *interp_map_addr,
 521		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
 522{
 523	struct elf_phdr *eppnt;
 524	unsigned long load_addr = 0;
 525	int load_addr_set = 0;
 526	unsigned long last_bss = 0, elf_bss = 0;
 
 527	unsigned long error = ~0UL;
 528	unsigned long total_size;
 529	int i;
 530
 531	/* First of all, some simple consistency checks */
 532	if (interp_elf_ex->e_type != ET_EXEC &&
 533	    interp_elf_ex->e_type != ET_DYN)
 534		goto out;
 535	if (!elf_check_arch(interp_elf_ex))
 
 536		goto out;
 537	if (!interpreter->f_op->mmap)
 538		goto out;
 539
 540	total_size = total_mapping_size(interp_elf_phdata,
 541					interp_elf_ex->e_phnum);
 542	if (!total_size) {
 543		error = -EINVAL;
 544		goto out;
 545	}
 546
 547	eppnt = interp_elf_phdata;
 548	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 549		if (eppnt->p_type == PT_LOAD) {
 550			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 551			int elf_prot = 0;
 552			unsigned long vaddr = 0;
 553			unsigned long k, map_addr;
 554
 555			if (eppnt->p_flags & PF_R)
 556		    		elf_prot = PROT_READ;
 557			if (eppnt->p_flags & PF_W)
 558				elf_prot |= PROT_WRITE;
 559			if (eppnt->p_flags & PF_X)
 560				elf_prot |= PROT_EXEC;
 561			vaddr = eppnt->p_vaddr;
 562			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 563				elf_type |= MAP_FIXED;
 564			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 565				load_addr = -vaddr;
 566
 567			map_addr = elf_map(interpreter, load_addr + vaddr,
 568					eppnt, elf_prot, elf_type, total_size);
 569			total_size = 0;
 570			if (!*interp_map_addr)
 571				*interp_map_addr = map_addr;
 572			error = map_addr;
 573			if (BAD_ADDR(map_addr))
 574				goto out;
 575
 576			if (!load_addr_set &&
 577			    interp_elf_ex->e_type == ET_DYN) {
 578				load_addr = map_addr - ELF_PAGESTART(vaddr);
 579				load_addr_set = 1;
 580			}
 581
 582			/*
 583			 * Check to see if the section's size will overflow the
 584			 * allowed task size. Note that p_filesz must always be
 585			 * <= p_memsize so it's only necessary to check p_memsz.
 586			 */
 587			k = load_addr + eppnt->p_vaddr;
 588			if (BAD_ADDR(k) ||
 589			    eppnt->p_filesz > eppnt->p_memsz ||
 590			    eppnt->p_memsz > TASK_SIZE ||
 591			    TASK_SIZE - eppnt->p_memsz < k) {
 592				error = -ENOMEM;
 593				goto out;
 594			}
 595
 596			/*
 597			 * Find the end of the file mapping for this phdr, and
 598			 * keep track of the largest address we see for this.
 599			 */
 600			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 601			if (k > elf_bss)
 602				elf_bss = k;
 603
 604			/*
 605			 * Do the same thing for the memory mapping - between
 606			 * elf_bss and last_bss is the bss section.
 607			 */
 608			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
 609			if (k > last_bss)
 610				last_bss = k;
 
 
 611		}
 612	}
 613
 614	/*
 615	 * Now fill out the bss section: first pad the last page from
 616	 * the file up to the page boundary, and zero it from elf_bss
 617	 * up to the end of the page.
 618	 */
 619	if (padzero(elf_bss)) {
 620		error = -EFAULT;
 621		goto out;
 622	}
 623	/*
 624	 * Next, align both the file and mem bss up to the page size,
 625	 * since this is where elf_bss was just zeroed up to, and where
 626	 * last_bss will end after the vm_brk() below.
 627	 */
 628	elf_bss = ELF_PAGEALIGN(elf_bss);
 629	last_bss = ELF_PAGEALIGN(last_bss);
 630	/* Finally, if there is still more bss to allocate, do it. */
 631	if (last_bss > elf_bss) {
 632		error = vm_brk(elf_bss, last_bss - elf_bss);
 
 633		if (error)
 634			goto out;
 635	}
 636
 637	error = load_addr;
 638out:
 639	return error;
 640}
 641
 642/*
 643 * These are the functions used to load ELF style executables and shared
 644 * libraries.  There is no binary dependent code anywhere else.
 645 */
 646
 647#ifndef STACK_RND_MASK
 648#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
 649#endif
 650
 651static unsigned long randomize_stack_top(unsigned long stack_top)
 652{
 653	unsigned long random_variable = 0;
 654
 655	if ((current->flags & PF_RANDOMIZE) &&
 656		!(current->personality & ADDR_NO_RANDOMIZE)) {
 657		random_variable = get_random_long();
 658		random_variable &= STACK_RND_MASK;
 659		random_variable <<= PAGE_SHIFT;
 660	}
 661#ifdef CONFIG_STACK_GROWSUP
 662	return PAGE_ALIGN(stack_top) + random_variable;
 663#else
 664	return PAGE_ALIGN(stack_top) - random_variable;
 665#endif
 666}
 667
 668static int load_elf_binary(struct linux_binprm *bprm)
 669{
 670	struct file *interpreter = NULL; /* to shut gcc up */
 671 	unsigned long load_addr = 0, load_bias = 0;
 672	int load_addr_set = 0;
 673	char * elf_interpreter = NULL;
 674	unsigned long error;
 675	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 676	unsigned long elf_bss, elf_brk;
 
 677	int retval, i;
 678	unsigned long elf_entry;
 679	unsigned long interp_load_addr = 0;
 680	unsigned long start_code, end_code, start_data, end_data;
 681	unsigned long reloc_func_desc __maybe_unused = 0;
 682	int executable_stack = EXSTACK_DEFAULT;
 683	struct pt_regs *regs = current_pt_regs();
 684	struct {
 685		struct elfhdr elf_ex;
 686		struct elfhdr interp_elf_ex;
 687	} *loc;
 688	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 
 689
 690	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 691	if (!loc) {
 692		retval = -ENOMEM;
 693		goto out_ret;
 694	}
 695	
 696	/* Get the exec-header */
 697	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 698
 699	retval = -ENOEXEC;
 700	/* First of all, some simple consistency checks */
 701	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 702		goto out;
 703
 704	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 705		goto out;
 706	if (!elf_check_arch(&loc->elf_ex))
 707		goto out;
 
 
 708	if (!bprm->file->f_op->mmap)
 709		goto out;
 710
 711	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
 712	if (!elf_phdata)
 713		goto out;
 714
 715	elf_ppnt = elf_phdata;
 716	elf_bss = 0;
 717	elf_brk = 0;
 718
 719	start_code = ~0UL;
 720	end_code = 0;
 721	start_data = 0;
 722	end_data = 0;
 723
 724	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 725		if (elf_ppnt->p_type == PT_INTERP) {
 726			/* This is the program interpreter used for
 727			 * shared libraries - for now assume that this
 728			 * is an a.out format binary
 729			 */
 730			retval = -ENOEXEC;
 731			if (elf_ppnt->p_filesz > PATH_MAX || 
 732			    elf_ppnt->p_filesz < 2)
 733				goto out_free_ph;
 734
 735			retval = -ENOMEM;
 736			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 737						  GFP_KERNEL);
 738			if (!elf_interpreter)
 739				goto out_free_ph;
 740
 741			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 742					     elf_interpreter,
 743					     elf_ppnt->p_filesz);
 744			if (retval != elf_ppnt->p_filesz) {
 745				if (retval >= 0)
 746					retval = -EIO;
 747				goto out_free_interp;
 748			}
 749			/* make sure path is NULL terminated */
 750			retval = -ENOEXEC;
 751			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 752				goto out_free_interp;
 753
 754			interpreter = open_exec(elf_interpreter);
 755			retval = PTR_ERR(interpreter);
 756			if (IS_ERR(interpreter))
 757				goto out_free_interp;
 758
 759			/*
 760			 * If the binary is not readable then enforce
 761			 * mm->dumpable = 0 regardless of the interpreter's
 762			 * permissions.
 763			 */
 764			would_dump(bprm, interpreter);
 765
 766			/* Get the exec headers */
 767			retval = kernel_read(interpreter, 0,
 768					     (void *)&loc->interp_elf_ex,
 769					     sizeof(loc->interp_elf_ex));
 770			if (retval != sizeof(loc->interp_elf_ex)) {
 771				if (retval >= 0)
 772					retval = -EIO;
 773				goto out_free_dentry;
 774			}
 775
 776			break;
 777		}
 778		elf_ppnt++;
 779	}
 780
 781	elf_ppnt = elf_phdata;
 782	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 783		switch (elf_ppnt->p_type) {
 784		case PT_GNU_STACK:
 785			if (elf_ppnt->p_flags & PF_X)
 786				executable_stack = EXSTACK_ENABLE_X;
 787			else
 788				executable_stack = EXSTACK_DISABLE_X;
 789			break;
 790
 791		case PT_LOPROC ... PT_HIPROC:
 792			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
 793						  bprm->file, false,
 794						  &arch_state);
 795			if (retval)
 796				goto out_free_dentry;
 797			break;
 798		}
 799
 800	/* Some simple consistency checks for the interpreter */
 801	if (elf_interpreter) {
 802		retval = -ELIBBAD;
 803		/* Not an ELF interpreter */
 804		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 805			goto out_free_dentry;
 806		/* Verify the interpreter has a valid arch */
 807		if (!elf_check_arch(&loc->interp_elf_ex))
 
 808			goto out_free_dentry;
 809
 810		/* Load the interpreter program headers */
 811		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
 812						   interpreter);
 813		if (!interp_elf_phdata)
 814			goto out_free_dentry;
 815
 816		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 817		elf_ppnt = interp_elf_phdata;
 818		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
 819			switch (elf_ppnt->p_type) {
 820			case PT_LOPROC ... PT_HIPROC:
 821				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
 822							  elf_ppnt, interpreter,
 823							  true, &arch_state);
 824				if (retval)
 825					goto out_free_dentry;
 826				break;
 827			}
 828	}
 829
 830	/*
 831	 * Allow arch code to reject the ELF at this point, whilst it's
 832	 * still possible to return an error to the code that invoked
 833	 * the exec syscall.
 834	 */
 835	retval = arch_check_elf(&loc->elf_ex,
 836				!!interpreter, &loc->interp_elf_ex,
 837				&arch_state);
 838	if (retval)
 839		goto out_free_dentry;
 840
 841	/* Flush all traces of the currently running executable */
 842	retval = flush_old_exec(bprm);
 843	if (retval)
 844		goto out_free_dentry;
 845
 846	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 847	   may depend on the personality.  */
 848	SET_PERSONALITY2(loc->elf_ex, &arch_state);
 849	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 850		current->personality |= READ_IMPLIES_EXEC;
 851
 852	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 853		current->flags |= PF_RANDOMIZE;
 854
 855	setup_new_exec(bprm);
 856	install_exec_creds(bprm);
 857
 858	/* Do this so that we can load the interpreter, if need be.  We will
 859	   change some of these later */
 860	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 861				 executable_stack);
 862	if (retval < 0)
 863		goto out_free_dentry;
 864	
 865	current->mm->start_stack = bprm->p;
 866
 867	/* Now we do a little grungy work by mmapping the ELF image into
 868	   the correct location in memory. */
 869	for(i = 0, elf_ppnt = elf_phdata;
 870	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 871		int elf_prot = 0, elf_flags;
 872		unsigned long k, vaddr;
 873		unsigned long total_size = 0;
 874
 875		if (elf_ppnt->p_type != PT_LOAD)
 876			continue;
 877
 878		if (unlikely (elf_brk > elf_bss)) {
 879			unsigned long nbyte;
 880	            
 881			/* There was a PT_LOAD segment with p_memsz > p_filesz
 882			   before this one. Map anonymous pages, if needed,
 883			   and clear the area.  */
 884			retval = set_brk(elf_bss + load_bias,
 885					 elf_brk + load_bias);
 
 886			if (retval)
 887				goto out_free_dentry;
 888			nbyte = ELF_PAGEOFFSET(elf_bss);
 889			if (nbyte) {
 890				nbyte = ELF_MIN_ALIGN - nbyte;
 891				if (nbyte > elf_brk - elf_bss)
 892					nbyte = elf_brk - elf_bss;
 893				if (clear_user((void __user *)elf_bss +
 894							load_bias, nbyte)) {
 895					/*
 896					 * This bss-zeroing can fail if the ELF
 897					 * file specifies odd protections. So
 898					 * we don't check the return value
 899					 */
 900				}
 901			}
 
 
 
 
 
 
 
 902		}
 903
 904		if (elf_ppnt->p_flags & PF_R)
 905			elf_prot |= PROT_READ;
 906		if (elf_ppnt->p_flags & PF_W)
 907			elf_prot |= PROT_WRITE;
 908		if (elf_ppnt->p_flags & PF_X)
 909			elf_prot |= PROT_EXEC;
 910
 911		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 912
 913		vaddr = elf_ppnt->p_vaddr;
 
 
 
 
 914		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 915			elf_flags |= MAP_FIXED;
 916		} else if (loc->elf_ex.e_type == ET_DYN) {
 917			/* Try and get dynamic programs out of the way of the
 918			 * default mmap base, as well as whatever program they
 919			 * might try to exec.  This is because the brk will
 920			 * follow the loader, and is not movable.  */
 921			load_bias = ELF_ET_DYN_BASE - vaddr;
 922			if (current->flags & PF_RANDOMIZE)
 923				load_bias += arch_mmap_rnd();
 924			load_bias = ELF_PAGESTART(load_bias);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925			total_size = total_mapping_size(elf_phdata,
 926							loc->elf_ex.e_phnum);
 927			if (!total_size) {
 928				retval = -EINVAL;
 929				goto out_free_dentry;
 930			}
 931		}
 932
 933		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 934				elf_prot, elf_flags, total_size);
 935		if (BAD_ADDR(error)) {
 936			retval = IS_ERR((void *)error) ?
 937				PTR_ERR((void*)error) : -EINVAL;
 938			goto out_free_dentry;
 939		}
 940
 941		if (!load_addr_set) {
 942			load_addr_set = 1;
 943			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 944			if (loc->elf_ex.e_type == ET_DYN) {
 945				load_bias += error -
 946				             ELF_PAGESTART(load_bias + vaddr);
 947				load_addr += load_bias;
 948				reloc_func_desc = load_bias;
 949			}
 950		}
 951		k = elf_ppnt->p_vaddr;
 952		if (k < start_code)
 953			start_code = k;
 954		if (start_data < k)
 955			start_data = k;
 956
 957		/*
 958		 * Check to see if the section's size will overflow the
 959		 * allowed task size. Note that p_filesz must always be
 960		 * <= p_memsz so it is only necessary to check p_memsz.
 961		 */
 962		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 963		    elf_ppnt->p_memsz > TASK_SIZE ||
 964		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 965			/* set_brk can never work. Avoid overflows. */
 966			retval = -EINVAL;
 967			goto out_free_dentry;
 968		}
 969
 970		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 971
 972		if (k > elf_bss)
 973			elf_bss = k;
 974		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 975			end_code = k;
 976		if (end_data < k)
 977			end_data = k;
 978		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 979		if (k > elf_brk)
 
 980			elf_brk = k;
 
 981	}
 982
 983	loc->elf_ex.e_entry += load_bias;
 984	elf_bss += load_bias;
 985	elf_brk += load_bias;
 986	start_code += load_bias;
 987	end_code += load_bias;
 988	start_data += load_bias;
 989	end_data += load_bias;
 990
 991	/* Calling set_brk effectively mmaps the pages that we need
 992	 * for the bss and break sections.  We must do this before
 993	 * mapping in the interpreter, to make sure it doesn't wind
 994	 * up getting placed where the bss needs to go.
 995	 */
 996	retval = set_brk(elf_bss, elf_brk);
 997	if (retval)
 998		goto out_free_dentry;
 999	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1000		retval = -EFAULT; /* Nobody gets to see this, but.. */
1001		goto out_free_dentry;
1002	}
1003
1004	if (elf_interpreter) {
1005		unsigned long interp_map_addr = 0;
1006
1007		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1008					    interpreter,
1009					    &interp_map_addr,
1010					    load_bias, interp_elf_phdata);
1011		if (!IS_ERR((void *)elf_entry)) {
1012			/*
1013			 * load_elf_interp() returns relocation
1014			 * adjustment
1015			 */
1016			interp_load_addr = elf_entry;
1017			elf_entry += loc->interp_elf_ex.e_entry;
1018		}
1019		if (BAD_ADDR(elf_entry)) {
1020			retval = IS_ERR((void *)elf_entry) ?
1021					(int)elf_entry : -EINVAL;
1022			goto out_free_dentry;
1023		}
1024		reloc_func_desc = interp_load_addr;
1025
1026		allow_write_access(interpreter);
1027		fput(interpreter);
1028		kfree(elf_interpreter);
1029	} else {
1030		elf_entry = loc->elf_ex.e_entry;
1031		if (BAD_ADDR(elf_entry)) {
1032			retval = -EINVAL;
1033			goto out_free_dentry;
1034		}
1035	}
1036
1037	kfree(interp_elf_phdata);
1038	kfree(elf_phdata);
1039
1040	set_binfmt(&elf_format);
1041
1042#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1044	if (retval < 0)
1045		goto out;
1046#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1047
1048	retval = create_elf_tables(bprm, &loc->elf_ex,
1049			  load_addr, interp_load_addr);
1050	if (retval < 0)
1051		goto out;
1052	/* N.B. passed_fileno might not be initialized? */
1053	current->mm->end_code = end_code;
1054	current->mm->start_code = start_code;
1055	current->mm->start_data = start_data;
1056	current->mm->end_data = end_data;
1057	current->mm->start_stack = bprm->p;
1058
1059	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1060		current->mm->brk = current->mm->start_brk =
1061			arch_randomize_brk(current->mm);
1062#ifdef compat_brk_randomized
1063		current->brk_randomized = 1;
1064#endif
1065	}
1066
1067	if (current->personality & MMAP_PAGE_ZERO) {
1068		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1069		   and some applications "depend" upon this behavior.
1070		   Since we do not have the power to recompile these, we
1071		   emulate the SVr4 behavior. Sigh. */
1072		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1073				MAP_FIXED | MAP_PRIVATE, 0);
1074	}
1075
1076#ifdef ELF_PLAT_INIT
1077	/*
1078	 * The ABI may specify that certain registers be set up in special
1079	 * ways (on i386 %edx is the address of a DT_FINI function, for
1080	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1081	 * that the e_entry field is the address of the function descriptor
1082	 * for the startup routine, rather than the address of the startup
1083	 * routine itself.  This macro performs whatever initialization to
1084	 * the regs structure is required as well as any relocations to the
1085	 * function descriptor entries when executing dynamically links apps.
1086	 */
1087	ELF_PLAT_INIT(regs, reloc_func_desc);
1088#endif
1089
 
1090	start_thread(regs, elf_entry, bprm->p);
1091	retval = 0;
1092out:
1093	kfree(loc);
1094out_ret:
1095	return retval;
1096
1097	/* error cleanup */
1098out_free_dentry:
1099	kfree(interp_elf_phdata);
1100	allow_write_access(interpreter);
1101	if (interpreter)
1102		fput(interpreter);
1103out_free_interp:
1104	kfree(elf_interpreter);
1105out_free_ph:
1106	kfree(elf_phdata);
1107	goto out;
1108}
1109
1110#ifdef CONFIG_USELIB
1111/* This is really simpleminded and specialized - we are loading an
1112   a.out library that is given an ELF header. */
1113static int load_elf_library(struct file *file)
1114{
1115	struct elf_phdr *elf_phdata;
1116	struct elf_phdr *eppnt;
1117	unsigned long elf_bss, bss, len;
1118	int retval, error, i, j;
1119	struct elfhdr elf_ex;
 
1120
1121	error = -ENOEXEC;
1122	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1123	if (retval != sizeof(elf_ex))
1124		goto out;
1125
1126	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1127		goto out;
1128
1129	/* First of all, some simple consistency checks */
1130	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1131	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1132		goto out;
 
 
1133
1134	/* Now read in all of the header information */
1135
1136	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1137	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1138
1139	error = -ENOMEM;
1140	elf_phdata = kmalloc(j, GFP_KERNEL);
1141	if (!elf_phdata)
1142		goto out;
1143
1144	eppnt = elf_phdata;
1145	error = -ENOEXEC;
1146	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
 
1147	if (retval != j)
1148		goto out_free_ph;
1149
1150	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1151		if ((eppnt + i)->p_type == PT_LOAD)
1152			j++;
1153	if (j != 1)
1154		goto out_free_ph;
1155
1156	while (eppnt->p_type != PT_LOAD)
1157		eppnt++;
1158
1159	/* Now use mmap to map the library into memory. */
1160	error = vm_mmap(file,
1161			ELF_PAGESTART(eppnt->p_vaddr),
1162			(eppnt->p_filesz +
1163			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1164			PROT_READ | PROT_WRITE | PROT_EXEC,
1165			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1166			(eppnt->p_offset -
1167			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1168	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1169		goto out_free_ph;
1170
1171	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1172	if (padzero(elf_bss)) {
1173		error = -EFAULT;
1174		goto out_free_ph;
1175	}
1176
1177	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1178			    ELF_MIN_ALIGN - 1);
1179	bss = eppnt->p_memsz + eppnt->p_vaddr;
1180	if (bss > len) {
1181		error = vm_brk(len, bss - len);
1182		if (error)
1183			goto out_free_ph;
1184	}
1185	error = 0;
1186
1187out_free_ph:
1188	kfree(elf_phdata);
1189out:
1190	return error;
1191}
1192#endif /* #ifdef CONFIG_USELIB */
1193
1194#ifdef CONFIG_ELF_CORE
1195/*
1196 * ELF core dumper
1197 *
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1200 */
1201
1202/*
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1209 */
1210static bool always_dump_vma(struct vm_area_struct *vma)
1211{
1212	/* Any vsyscall mappings? */
1213	if (vma == get_gate_vma(vma->vm_mm))
1214		return true;
1215
1216	/*
1217	 * Assume that all vmas with a .name op should always be dumped.
1218	 * If this changes, a new vm_ops field can easily be added.
1219	 */
1220	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1221		return true;
1222
1223	/*
1224	 * arch_vma_name() returns non-NULL for special architecture mappings,
1225	 * such as vDSO sections.
1226	 */
1227	if (arch_vma_name(vma))
1228		return true;
1229
1230	return false;
1231}
1232
1233/*
1234 * Decide what to dump of a segment, part, all or none.
1235 */
1236static unsigned long vma_dump_size(struct vm_area_struct *vma,
1237				   unsigned long mm_flags)
1238{
1239#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1240
1241	/* always dump the vdso and vsyscall sections */
1242	if (always_dump_vma(vma))
1243		goto whole;
1244
1245	if (vma->vm_flags & VM_DONTDUMP)
1246		return 0;
1247
1248	/* support for DAX */
1249	if (vma_is_dax(vma)) {
1250		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1251			goto whole;
1252		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1253			goto whole;
1254		return 0;
1255	}
1256
1257	/* Hugetlb memory check */
1258	if (vma->vm_flags & VM_HUGETLB) {
1259		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1260			goto whole;
1261		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1262			goto whole;
1263		return 0;
1264	}
1265
1266	/* Do not dump I/O mapped devices or special mappings */
1267	if (vma->vm_flags & VM_IO)
1268		return 0;
1269
1270	/* By default, dump shared memory if mapped from an anonymous file. */
1271	if (vma->vm_flags & VM_SHARED) {
1272		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1273		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1274			goto whole;
1275		return 0;
1276	}
1277
1278	/* Dump segments that have been written to.  */
1279	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1280		goto whole;
1281	if (vma->vm_file == NULL)
1282		return 0;
1283
1284	if (FILTER(MAPPED_PRIVATE))
1285		goto whole;
1286
1287	/*
1288	 * If this looks like the beginning of a DSO or executable mapping,
1289	 * check for an ELF header.  If we find one, dump the first page to
1290	 * aid in determining what was mapped here.
1291	 */
1292	if (FILTER(ELF_HEADERS) &&
1293	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1294		u32 __user *header = (u32 __user *) vma->vm_start;
1295		u32 word;
1296		mm_segment_t fs = get_fs();
1297		/*
1298		 * Doing it this way gets the constant folded by GCC.
1299		 */
1300		union {
1301			u32 cmp;
1302			char elfmag[SELFMAG];
1303		} magic;
1304		BUILD_BUG_ON(SELFMAG != sizeof word);
1305		magic.elfmag[EI_MAG0] = ELFMAG0;
1306		magic.elfmag[EI_MAG1] = ELFMAG1;
1307		magic.elfmag[EI_MAG2] = ELFMAG2;
1308		magic.elfmag[EI_MAG3] = ELFMAG3;
1309		/*
1310		 * Switch to the user "segment" for get_user(),
1311		 * then put back what elf_core_dump() had in place.
1312		 */
1313		set_fs(USER_DS);
1314		if (unlikely(get_user(word, header)))
1315			word = 0;
1316		set_fs(fs);
1317		if (word == magic.cmp)
1318			return PAGE_SIZE;
1319	}
1320
1321#undef	FILTER
1322
1323	return 0;
1324
1325whole:
1326	return vma->vm_end - vma->vm_start;
1327}
1328
1329/* An ELF note in memory */
1330struct memelfnote
1331{
1332	const char *name;
1333	int type;
1334	unsigned int datasz;
1335	void *data;
1336};
1337
1338static int notesize(struct memelfnote *en)
1339{
1340	int sz;
1341
1342	sz = sizeof(struct elf_note);
1343	sz += roundup(strlen(en->name) + 1, 4);
1344	sz += roundup(en->datasz, 4);
1345
1346	return sz;
1347}
1348
1349static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1350{
1351	struct elf_note en;
1352	en.n_namesz = strlen(men->name) + 1;
1353	en.n_descsz = men->datasz;
1354	en.n_type = men->type;
1355
1356	return dump_emit(cprm, &en, sizeof(en)) &&
1357	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1358	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1359}
1360
1361static void fill_elf_header(struct elfhdr *elf, int segs,
1362			    u16 machine, u32 flags)
1363{
1364	memset(elf, 0, sizeof(*elf));
1365
1366	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1367	elf->e_ident[EI_CLASS] = ELF_CLASS;
1368	elf->e_ident[EI_DATA] = ELF_DATA;
1369	elf->e_ident[EI_VERSION] = EV_CURRENT;
1370	elf->e_ident[EI_OSABI] = ELF_OSABI;
1371
1372	elf->e_type = ET_CORE;
1373	elf->e_machine = machine;
1374	elf->e_version = EV_CURRENT;
1375	elf->e_phoff = sizeof(struct elfhdr);
1376	elf->e_flags = flags;
1377	elf->e_ehsize = sizeof(struct elfhdr);
1378	elf->e_phentsize = sizeof(struct elf_phdr);
1379	elf->e_phnum = segs;
1380
1381	return;
1382}
1383
1384static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1385{
1386	phdr->p_type = PT_NOTE;
1387	phdr->p_offset = offset;
1388	phdr->p_vaddr = 0;
1389	phdr->p_paddr = 0;
1390	phdr->p_filesz = sz;
1391	phdr->p_memsz = 0;
1392	phdr->p_flags = 0;
1393	phdr->p_align = 0;
1394	return;
1395}
1396
1397static void fill_note(struct memelfnote *note, const char *name, int type, 
1398		unsigned int sz, void *data)
1399{
1400	note->name = name;
1401	note->type = type;
1402	note->datasz = sz;
1403	note->data = data;
1404	return;
1405}
1406
1407/*
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1410 */
1411static void fill_prstatus(struct elf_prstatus *prstatus,
1412		struct task_struct *p, long signr)
1413{
1414	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1415	prstatus->pr_sigpend = p->pending.signal.sig[0];
1416	prstatus->pr_sighold = p->blocked.sig[0];
1417	rcu_read_lock();
1418	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1419	rcu_read_unlock();
1420	prstatus->pr_pid = task_pid_vnr(p);
1421	prstatus->pr_pgrp = task_pgrp_vnr(p);
1422	prstatus->pr_sid = task_session_vnr(p);
1423	if (thread_group_leader(p)) {
1424		struct task_cputime cputime;
1425
1426		/*
1427		 * This is the record for the group leader.  It shows the
1428		 * group-wide total, not its individual thread total.
1429		 */
1430		thread_group_cputime(p, &cputime);
1431		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1432		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1433	} else {
1434		cputime_t utime, stime;
1435
1436		task_cputime(p, &utime, &stime);
1437		cputime_to_timeval(utime, &prstatus->pr_utime);
1438		cputime_to_timeval(stime, &prstatus->pr_stime);
1439	}
1440	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1441	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
 
1442}
1443
1444static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1445		       struct mm_struct *mm)
1446{
1447	const struct cred *cred;
1448	unsigned int i, len;
1449	
1450	/* first copy the parameters from user space */
1451	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1452
1453	len = mm->arg_end - mm->arg_start;
1454	if (len >= ELF_PRARGSZ)
1455		len = ELF_PRARGSZ-1;
1456	if (copy_from_user(&psinfo->pr_psargs,
1457		           (const char __user *)mm->arg_start, len))
1458		return -EFAULT;
1459	for(i = 0; i < len; i++)
1460		if (psinfo->pr_psargs[i] == 0)
1461			psinfo->pr_psargs[i] = ' ';
1462	psinfo->pr_psargs[len] = 0;
1463
1464	rcu_read_lock();
1465	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1466	rcu_read_unlock();
1467	psinfo->pr_pid = task_pid_vnr(p);
1468	psinfo->pr_pgrp = task_pgrp_vnr(p);
1469	psinfo->pr_sid = task_session_vnr(p);
1470
1471	i = p->state ? ffz(~p->state) + 1 : 0;
1472	psinfo->pr_state = i;
1473	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1474	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1475	psinfo->pr_nice = task_nice(p);
1476	psinfo->pr_flag = p->flags;
1477	rcu_read_lock();
1478	cred = __task_cred(p);
1479	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1480	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1481	rcu_read_unlock();
1482	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1483	
1484	return 0;
1485}
1486
1487static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1488{
1489	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1490	int i = 0;
1491	do
1492		i += 2;
1493	while (auxv[i - 2] != AT_NULL);
1494	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1495}
1496
1497static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1498		const siginfo_t *siginfo)
1499{
1500	mm_segment_t old_fs = get_fs();
1501	set_fs(KERNEL_DS);
1502	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1503	set_fs(old_fs);
1504	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1505}
1506
1507#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1508/*
1509 * Format of NT_FILE note:
1510 *
1511 * long count     -- how many files are mapped
1512 * long page_size -- units for file_ofs
1513 * array of [COUNT] elements of
1514 *   long start
1515 *   long end
1516 *   long file_ofs
1517 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1518 */
1519static int fill_files_note(struct memelfnote *note)
1520{
1521	struct vm_area_struct *vma;
1522	unsigned count, size, names_ofs, remaining, n;
1523	user_long_t *data;
1524	user_long_t *start_end_ofs;
1525	char *name_base, *name_curpos;
1526
1527	/* *Estimated* file count and total data size needed */
1528	count = current->mm->map_count;
 
 
1529	size = count * 64;
1530
1531	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1532 alloc:
1533	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1534		return -EINVAL;
1535	size = round_up(size, PAGE_SIZE);
1536	data = vmalloc(size);
1537	if (!data)
1538		return -ENOMEM;
1539
1540	start_end_ofs = data + 2;
1541	name_base = name_curpos = ((char *)data) + names_ofs;
1542	remaining = size - names_ofs;
1543	count = 0;
1544	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1545		struct file *file;
1546		const char *filename;
1547
1548		file = vma->vm_file;
1549		if (!file)
1550			continue;
1551		filename = file_path(file, name_curpos, remaining);
1552		if (IS_ERR(filename)) {
1553			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1554				vfree(data);
1555				size = size * 5 / 4;
1556				goto alloc;
1557			}
1558			continue;
1559		}
1560
1561		/* file_path() fills at the end, move name down */
1562		/* n = strlen(filename) + 1: */
1563		n = (name_curpos + remaining) - filename;
1564		remaining = filename - name_curpos;
1565		memmove(name_curpos, filename, n);
1566		name_curpos += n;
1567
1568		*start_end_ofs++ = vma->vm_start;
1569		*start_end_ofs++ = vma->vm_end;
1570		*start_end_ofs++ = vma->vm_pgoff;
1571		count++;
1572	}
1573
1574	/* Now we know exact count of files, can store it */
1575	data[0] = count;
1576	data[1] = PAGE_SIZE;
1577	/*
1578	 * Count usually is less than current->mm->map_count,
1579	 * we need to move filenames down.
1580	 */
1581	n = current->mm->map_count - count;
1582	if (n != 0) {
1583		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1584		memmove(name_base - shift_bytes, name_base,
1585			name_curpos - name_base);
1586		name_curpos -= shift_bytes;
1587	}
1588
1589	size = name_curpos - (char *)data;
1590	fill_note(note, "CORE", NT_FILE, size, data);
1591	return 0;
1592}
1593
1594#ifdef CORE_DUMP_USE_REGSET
1595#include <linux/regset.h>
1596
1597struct elf_thread_core_info {
1598	struct elf_thread_core_info *next;
1599	struct task_struct *task;
1600	struct elf_prstatus prstatus;
1601	struct memelfnote notes[0];
1602};
1603
1604struct elf_note_info {
1605	struct elf_thread_core_info *thread;
1606	struct memelfnote psinfo;
1607	struct memelfnote signote;
1608	struct memelfnote auxv;
1609	struct memelfnote files;
1610	user_siginfo_t csigdata;
1611	size_t size;
1612	int thread_notes;
1613};
1614
1615/*
1616 * When a regset has a writeback hook, we call it on each thread before
1617 * dumping user memory.  On register window machines, this makes sure the
1618 * user memory backing the register data is up to date before we read it.
1619 */
1620static void do_thread_regset_writeback(struct task_struct *task,
1621				       const struct user_regset *regset)
1622{
1623	if (regset->writeback)
1624		regset->writeback(task, regset, 1);
1625}
1626
1627#ifndef PRSTATUS_SIZE
1628#define PRSTATUS_SIZE(S, R) sizeof(S)
1629#endif
1630
1631#ifndef SET_PR_FPVALID
1632#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1633#endif
1634
1635static int fill_thread_core_info(struct elf_thread_core_info *t,
1636				 const struct user_regset_view *view,
1637				 long signr, size_t *total)
1638{
1639	unsigned int i;
1640	unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1641
1642	/*
1643	 * NT_PRSTATUS is the one special case, because the regset data
1644	 * goes into the pr_reg field inside the note contents, rather
1645	 * than being the whole note contents.  We fill the reset in here.
1646	 * We assume that regset 0 is NT_PRSTATUS.
1647	 */
1648	fill_prstatus(&t->prstatus, t->task, signr);
1649	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1650				    &t->prstatus.pr_reg, NULL);
1651
1652	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1653		  PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1654	*total += notesize(&t->notes[0]);
1655
1656	do_thread_regset_writeback(t->task, &view->regsets[0]);
1657
1658	/*
1659	 * Each other regset might generate a note too.  For each regset
1660	 * that has no core_note_type or is inactive, we leave t->notes[i]
1661	 * all zero and we'll know to skip writing it later.
1662	 */
1663	for (i = 1; i < view->n; ++i) {
1664		const struct user_regset *regset = &view->regsets[i];
1665		do_thread_regset_writeback(t->task, regset);
1666		if (regset->core_note_type && regset->get &&
1667		    (!regset->active || regset->active(t->task, regset))) {
1668			int ret;
1669			size_t size = regset->n * regset->size;
1670			void *data = kmalloc(size, GFP_KERNEL);
1671			if (unlikely(!data))
1672				return 0;
1673			ret = regset->get(t->task, regset,
1674					  0, size, data, NULL);
1675			if (unlikely(ret))
1676				kfree(data);
1677			else {
1678				if (regset->core_note_type != NT_PRFPREG)
1679					fill_note(&t->notes[i], "LINUX",
1680						  regset->core_note_type,
1681						  size, data);
1682				else {
1683					SET_PR_FPVALID(&t->prstatus,
1684							1, regset_size);
1685					fill_note(&t->notes[i], "CORE",
1686						  NT_PRFPREG, size, data);
1687				}
1688				*total += notesize(&t->notes[i]);
1689			}
1690		}
1691	}
1692
1693	return 1;
1694}
1695
1696static int fill_note_info(struct elfhdr *elf, int phdrs,
1697			  struct elf_note_info *info,
1698			  const siginfo_t *siginfo, struct pt_regs *regs)
1699{
1700	struct task_struct *dump_task = current;
1701	const struct user_regset_view *view = task_user_regset_view(dump_task);
1702	struct elf_thread_core_info *t;
1703	struct elf_prpsinfo *psinfo;
1704	struct core_thread *ct;
1705	unsigned int i;
1706
1707	info->size = 0;
1708	info->thread = NULL;
1709
1710	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1711	if (psinfo == NULL) {
1712		info->psinfo.data = NULL; /* So we don't free this wrongly */
1713		return 0;
1714	}
1715
1716	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1717
1718	/*
1719	 * Figure out how many notes we're going to need for each thread.
1720	 */
1721	info->thread_notes = 0;
1722	for (i = 0; i < view->n; ++i)
1723		if (view->regsets[i].core_note_type != 0)
1724			++info->thread_notes;
1725
1726	/*
1727	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1728	 * since it is our one special case.
1729	 */
1730	if (unlikely(info->thread_notes == 0) ||
1731	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1732		WARN_ON(1);
1733		return 0;
1734	}
1735
1736	/*
1737	 * Initialize the ELF file header.
1738	 */
1739	fill_elf_header(elf, phdrs,
1740			view->e_machine, view->e_flags);
1741
1742	/*
1743	 * Allocate a structure for each thread.
1744	 */
1745	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1746		t = kzalloc(offsetof(struct elf_thread_core_info,
1747				     notes[info->thread_notes]),
1748			    GFP_KERNEL);
1749		if (unlikely(!t))
1750			return 0;
1751
1752		t->task = ct->task;
1753		if (ct->task == dump_task || !info->thread) {
1754			t->next = info->thread;
1755			info->thread = t;
1756		} else {
1757			/*
1758			 * Make sure to keep the original task at
1759			 * the head of the list.
1760			 */
1761			t->next = info->thread->next;
1762			info->thread->next = t;
1763		}
1764	}
1765
1766	/*
1767	 * Now fill in each thread's information.
1768	 */
1769	for (t = info->thread; t != NULL; t = t->next)
1770		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1771			return 0;
1772
1773	/*
1774	 * Fill in the two process-wide notes.
1775	 */
1776	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1777	info->size += notesize(&info->psinfo);
1778
1779	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1780	info->size += notesize(&info->signote);
1781
1782	fill_auxv_note(&info->auxv, current->mm);
1783	info->size += notesize(&info->auxv);
1784
1785	if (fill_files_note(&info->files) == 0)
1786		info->size += notesize(&info->files);
1787
1788	return 1;
1789}
1790
1791static size_t get_note_info_size(struct elf_note_info *info)
1792{
1793	return info->size;
1794}
1795
1796/*
1797 * Write all the notes for each thread.  When writing the first thread, the
1798 * process-wide notes are interleaved after the first thread-specific note.
1799 */
1800static int write_note_info(struct elf_note_info *info,
1801			   struct coredump_params *cprm)
1802{
1803	bool first = true;
1804	struct elf_thread_core_info *t = info->thread;
1805
1806	do {
1807		int i;
1808
1809		if (!writenote(&t->notes[0], cprm))
1810			return 0;
1811
1812		if (first && !writenote(&info->psinfo, cprm))
1813			return 0;
1814		if (first && !writenote(&info->signote, cprm))
1815			return 0;
1816		if (first && !writenote(&info->auxv, cprm))
1817			return 0;
1818		if (first && info->files.data &&
1819				!writenote(&info->files, cprm))
1820			return 0;
1821
1822		for (i = 1; i < info->thread_notes; ++i)
1823			if (t->notes[i].data &&
1824			    !writenote(&t->notes[i], cprm))
1825				return 0;
1826
1827		first = false;
1828		t = t->next;
1829	} while (t);
1830
1831	return 1;
1832}
1833
1834static void free_note_info(struct elf_note_info *info)
1835{
1836	struct elf_thread_core_info *threads = info->thread;
1837	while (threads) {
1838		unsigned int i;
1839		struct elf_thread_core_info *t = threads;
1840		threads = t->next;
1841		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1842		for (i = 1; i < info->thread_notes; ++i)
1843			kfree(t->notes[i].data);
1844		kfree(t);
1845	}
1846	kfree(info->psinfo.data);
1847	vfree(info->files.data);
1848}
1849
1850#else
1851
1852/* Here is the structure in which status of each thread is captured. */
1853struct elf_thread_status
1854{
1855	struct list_head list;
1856	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1857	elf_fpregset_t fpu;		/* NT_PRFPREG */
1858	struct task_struct *thread;
1859#ifdef ELF_CORE_COPY_XFPREGS
1860	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1861#endif
1862	struct memelfnote notes[3];
1863	int num_notes;
1864};
1865
1866/*
1867 * In order to add the specific thread information for the elf file format,
1868 * we need to keep a linked list of every threads pr_status and then create
1869 * a single section for them in the final core file.
1870 */
1871static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1872{
1873	int sz = 0;
1874	struct task_struct *p = t->thread;
1875	t->num_notes = 0;
1876
1877	fill_prstatus(&t->prstatus, p, signr);
1878	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
1879	
1880	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1881		  &(t->prstatus));
1882	t->num_notes++;
1883	sz += notesize(&t->notes[0]);
1884
1885	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1886								&t->fpu))) {
1887		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1888			  &(t->fpu));
1889		t->num_notes++;
1890		sz += notesize(&t->notes[1]);
1891	}
1892
1893#ifdef ELF_CORE_COPY_XFPREGS
1894	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1895		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1896			  sizeof(t->xfpu), &t->xfpu);
1897		t->num_notes++;
1898		sz += notesize(&t->notes[2]);
1899	}
1900#endif	
1901	return sz;
1902}
1903
1904struct elf_note_info {
1905	struct memelfnote *notes;
1906	struct memelfnote *notes_files;
1907	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1908	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1909	struct list_head thread_list;
1910	elf_fpregset_t *fpu;
1911#ifdef ELF_CORE_COPY_XFPREGS
1912	elf_fpxregset_t *xfpu;
1913#endif
1914	user_siginfo_t csigdata;
1915	int thread_status_size;
1916	int numnote;
1917};
1918
1919static int elf_note_info_init(struct elf_note_info *info)
1920{
1921	memset(info, 0, sizeof(*info));
1922	INIT_LIST_HEAD(&info->thread_list);
1923
1924	/* Allocate space for ELF notes */
1925	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1926	if (!info->notes)
1927		return 0;
1928	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1929	if (!info->psinfo)
1930		return 0;
1931	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1932	if (!info->prstatus)
1933		return 0;
1934	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1935	if (!info->fpu)
1936		return 0;
1937#ifdef ELF_CORE_COPY_XFPREGS
1938	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1939	if (!info->xfpu)
1940		return 0;
1941#endif
1942	return 1;
1943}
1944
1945static int fill_note_info(struct elfhdr *elf, int phdrs,
1946			  struct elf_note_info *info,
1947			  const siginfo_t *siginfo, struct pt_regs *regs)
1948{
1949	struct list_head *t;
1950	struct core_thread *ct;
1951	struct elf_thread_status *ets;
1952
1953	if (!elf_note_info_init(info))
1954		return 0;
1955
1956	for (ct = current->mm->core_state->dumper.next;
1957					ct; ct = ct->next) {
1958		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1959		if (!ets)
1960			return 0;
1961
1962		ets->thread = ct->task;
1963		list_add(&ets->list, &info->thread_list);
1964	}
1965
1966	list_for_each(t, &info->thread_list) {
1967		int sz;
1968
1969		ets = list_entry(t, struct elf_thread_status, list);
1970		sz = elf_dump_thread_status(siginfo->si_signo, ets);
1971		info->thread_status_size += sz;
1972	}
1973	/* now collect the dump for the current */
1974	memset(info->prstatus, 0, sizeof(*info->prstatus));
1975	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1976	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1977
1978	/* Set up header */
1979	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1980
1981	/*
1982	 * Set up the notes in similar form to SVR4 core dumps made
1983	 * with info from their /proc.
1984	 */
1985
1986	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1987		  sizeof(*info->prstatus), info->prstatus);
1988	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1989	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1990		  sizeof(*info->psinfo), info->psinfo);
1991
1992	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1993	fill_auxv_note(info->notes + 3, current->mm);
1994	info->numnote = 4;
1995
1996	if (fill_files_note(info->notes + info->numnote) == 0) {
1997		info->notes_files = info->notes + info->numnote;
1998		info->numnote++;
1999	}
2000
2001	/* Try to dump the FPU. */
2002	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2003							       info->fpu);
2004	if (info->prstatus->pr_fpvalid)
2005		fill_note(info->notes + info->numnote++,
2006			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2007#ifdef ELF_CORE_COPY_XFPREGS
2008	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2009		fill_note(info->notes + info->numnote++,
2010			  "LINUX", ELF_CORE_XFPREG_TYPE,
2011			  sizeof(*info->xfpu), info->xfpu);
2012#endif
2013
2014	return 1;
2015}
2016
2017static size_t get_note_info_size(struct elf_note_info *info)
2018{
2019	int sz = 0;
2020	int i;
2021
2022	for (i = 0; i < info->numnote; i++)
2023		sz += notesize(info->notes + i);
2024
2025	sz += info->thread_status_size;
2026
2027	return sz;
2028}
2029
2030static int write_note_info(struct elf_note_info *info,
2031			   struct coredump_params *cprm)
2032{
2033	int i;
2034	struct list_head *t;
2035
2036	for (i = 0; i < info->numnote; i++)
2037		if (!writenote(info->notes + i, cprm))
2038			return 0;
2039
2040	/* write out the thread status notes section */
2041	list_for_each(t, &info->thread_list) {
2042		struct elf_thread_status *tmp =
2043				list_entry(t, struct elf_thread_status, list);
2044
2045		for (i = 0; i < tmp->num_notes; i++)
2046			if (!writenote(&tmp->notes[i], cprm))
2047				return 0;
2048	}
2049
2050	return 1;
2051}
2052
2053static void free_note_info(struct elf_note_info *info)
2054{
2055	while (!list_empty(&info->thread_list)) {
2056		struct list_head *tmp = info->thread_list.next;
2057		list_del(tmp);
2058		kfree(list_entry(tmp, struct elf_thread_status, list));
2059	}
2060
2061	/* Free data possibly allocated by fill_files_note(): */
2062	if (info->notes_files)
2063		vfree(info->notes_files->data);
2064
2065	kfree(info->prstatus);
2066	kfree(info->psinfo);
2067	kfree(info->notes);
2068	kfree(info->fpu);
2069#ifdef ELF_CORE_COPY_XFPREGS
2070	kfree(info->xfpu);
2071#endif
2072}
2073
2074#endif
2075
2076static struct vm_area_struct *first_vma(struct task_struct *tsk,
2077					struct vm_area_struct *gate_vma)
2078{
2079	struct vm_area_struct *ret = tsk->mm->mmap;
2080
2081	if (ret)
2082		return ret;
2083	return gate_vma;
2084}
2085/*
2086 * Helper function for iterating across a vma list.  It ensures that the caller
2087 * will visit `gate_vma' prior to terminating the search.
2088 */
2089static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2090					struct vm_area_struct *gate_vma)
2091{
2092	struct vm_area_struct *ret;
2093
2094	ret = this_vma->vm_next;
2095	if (ret)
2096		return ret;
2097	if (this_vma == gate_vma)
2098		return NULL;
2099	return gate_vma;
2100}
2101
2102static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2103			     elf_addr_t e_shoff, int segs)
2104{
2105	elf->e_shoff = e_shoff;
2106	elf->e_shentsize = sizeof(*shdr4extnum);
2107	elf->e_shnum = 1;
2108	elf->e_shstrndx = SHN_UNDEF;
2109
2110	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2111
2112	shdr4extnum->sh_type = SHT_NULL;
2113	shdr4extnum->sh_size = elf->e_shnum;
2114	shdr4extnum->sh_link = elf->e_shstrndx;
2115	shdr4extnum->sh_info = segs;
2116}
2117
2118/*
2119 * Actual dumper
2120 *
2121 * This is a two-pass process; first we find the offsets of the bits,
2122 * and then they are actually written out.  If we run out of core limit
2123 * we just truncate.
2124 */
2125static int elf_core_dump(struct coredump_params *cprm)
2126{
2127	int has_dumped = 0;
2128	mm_segment_t fs;
2129	int segs, i;
2130	size_t vma_data_size = 0;
2131	struct vm_area_struct *vma, *gate_vma;
2132	struct elfhdr *elf = NULL;
2133	loff_t offset = 0, dataoff;
2134	struct elf_note_info info = { };
2135	struct elf_phdr *phdr4note = NULL;
2136	struct elf_shdr *shdr4extnum = NULL;
2137	Elf_Half e_phnum;
2138	elf_addr_t e_shoff;
2139	elf_addr_t *vma_filesz = NULL;
2140
2141	/*
2142	 * We no longer stop all VM operations.
2143	 * 
2144	 * This is because those proceses that could possibly change map_count
2145	 * or the mmap / vma pages are now blocked in do_exit on current
2146	 * finishing this core dump.
2147	 *
2148	 * Only ptrace can touch these memory addresses, but it doesn't change
2149	 * the map_count or the pages allocated. So no possibility of crashing
2150	 * exists while dumping the mm->vm_next areas to the core file.
2151	 */
2152  
2153	/* alloc memory for large data structures: too large to be on stack */
2154	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2155	if (!elf)
2156		goto out;
2157	/*
2158	 * The number of segs are recored into ELF header as 16bit value.
2159	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2160	 */
2161	segs = current->mm->map_count;
2162	segs += elf_core_extra_phdrs();
2163
2164	gate_vma = get_gate_vma(current->mm);
2165	if (gate_vma != NULL)
2166		segs++;
2167
2168	/* for notes section */
2169	segs++;
2170
2171	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2172	 * this, kernel supports extended numbering. Have a look at
2173	 * include/linux/elf.h for further information. */
2174	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2175
2176	/*
2177	 * Collect all the non-memory information about the process for the
2178	 * notes.  This also sets up the file header.
2179	 */
2180	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2181		goto cleanup;
2182
2183	has_dumped = 1;
2184
2185	fs = get_fs();
2186	set_fs(KERNEL_DS);
2187
2188	offset += sizeof(*elf);				/* Elf header */
2189	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2190
2191	/* Write notes phdr entry */
2192	{
2193		size_t sz = get_note_info_size(&info);
2194
2195		sz += elf_coredump_extra_notes_size();
2196
2197		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2198		if (!phdr4note)
2199			goto end_coredump;
2200
2201		fill_elf_note_phdr(phdr4note, sz, offset);
2202		offset += sz;
2203	}
2204
2205	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2206
2207	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2208		goto end_coredump;
2209	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2210	if (!vma_filesz)
2211		goto end_coredump;
2212
2213	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2214			vma = next_vma(vma, gate_vma)) {
2215		unsigned long dump_size;
2216
2217		dump_size = vma_dump_size(vma, cprm->mm_flags);
2218		vma_filesz[i++] = dump_size;
2219		vma_data_size += dump_size;
2220	}
2221
2222	offset += vma_data_size;
2223	offset += elf_core_extra_data_size();
2224	e_shoff = offset;
2225
2226	if (e_phnum == PN_XNUM) {
2227		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2228		if (!shdr4extnum)
2229			goto end_coredump;
2230		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2231	}
2232
2233	offset = dataoff;
2234
2235	if (!dump_emit(cprm, elf, sizeof(*elf)))
2236		goto end_coredump;
2237
2238	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2239		goto end_coredump;
2240
2241	/* Write program headers for segments dump */
2242	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2243			vma = next_vma(vma, gate_vma)) {
2244		struct elf_phdr phdr;
2245
2246		phdr.p_type = PT_LOAD;
2247		phdr.p_offset = offset;
2248		phdr.p_vaddr = vma->vm_start;
2249		phdr.p_paddr = 0;
2250		phdr.p_filesz = vma_filesz[i++];
2251		phdr.p_memsz = vma->vm_end - vma->vm_start;
2252		offset += phdr.p_filesz;
2253		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2254		if (vma->vm_flags & VM_WRITE)
2255			phdr.p_flags |= PF_W;
2256		if (vma->vm_flags & VM_EXEC)
2257			phdr.p_flags |= PF_X;
2258		phdr.p_align = ELF_EXEC_PAGESIZE;
2259
2260		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2261			goto end_coredump;
2262	}
2263
2264	if (!elf_core_write_extra_phdrs(cprm, offset))
2265		goto end_coredump;
2266
2267 	/* write out the notes section */
2268	if (!write_note_info(&info, cprm))
2269		goto end_coredump;
2270
2271	if (elf_coredump_extra_notes_write(cprm))
2272		goto end_coredump;
2273
2274	/* Align to page */
2275	if (!dump_skip(cprm, dataoff - cprm->pos))
2276		goto end_coredump;
2277
2278	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2279			vma = next_vma(vma, gate_vma)) {
2280		unsigned long addr;
2281		unsigned long end;
2282
2283		end = vma->vm_start + vma_filesz[i++];
2284
2285		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2286			struct page *page;
2287			int stop;
2288
2289			page = get_dump_page(addr);
2290			if (page) {
2291				void *kaddr = kmap(page);
2292				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2293				kunmap(page);
2294				put_page(page);
2295			} else
2296				stop = !dump_skip(cprm, PAGE_SIZE);
2297			if (stop)
2298				goto end_coredump;
2299		}
2300	}
2301	dump_truncate(cprm);
2302
2303	if (!elf_core_write_extra_data(cprm))
2304		goto end_coredump;
2305
2306	if (e_phnum == PN_XNUM) {
2307		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2308			goto end_coredump;
2309	}
2310
2311end_coredump:
2312	set_fs(fs);
2313
2314cleanup:
2315	free_note_info(&info);
2316	kfree(shdr4extnum);
2317	vfree(vma_filesz);
2318	kfree(phdr4note);
2319	kfree(elf);
2320out:
2321	return has_dumped;
2322}
2323
2324#endif		/* CONFIG_ELF_CORE */
2325
2326static int __init init_elf_binfmt(void)
2327{
2328	register_binfmt(&elf_format);
2329	return 0;
2330}
2331
2332static void __exit exit_elf_binfmt(void)
2333{
2334	/* Remove the COFF and ELF loaders. */
2335	unregister_binfmt(&elf_format);
2336}
2337
2338core_initcall(init_elf_binfmt);
2339module_exit(exit_elf_binfmt);
2340MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * linux/fs/binfmt_elf.c
   3 *
   4 * These are the functions used to load ELF format executables as used
   5 * on SVr4 machines.  Information on the format may be found in the book
   6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
   7 * Tools".
   8 *
   9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/fs.h>
  15#include <linux/mm.h>
  16#include <linux/mman.h>
  17#include <linux/errno.h>
  18#include <linux/signal.h>
  19#include <linux/binfmts.h>
  20#include <linux/string.h>
  21#include <linux/file.h>
  22#include <linux/slab.h>
  23#include <linux/personality.h>
  24#include <linux/elfcore.h>
  25#include <linux/init.h>
  26#include <linux/highuid.h>
  27#include <linux/compiler.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/vmalloc.h>
  31#include <linux/security.h>
  32#include <linux/random.h>
  33#include <linux/elf.h>
  34#include <linux/elf-randomize.h>
  35#include <linux/utsname.h>
  36#include <linux/coredump.h>
  37#include <linux/sched.h>
  38#include <linux/sched/coredump.h>
  39#include <linux/sched/task_stack.h>
  40#include <linux/sched/cputime.h>
  41#include <linux/cred.h>
  42#include <linux/dax.h>
  43#include <linux/uaccess.h>
  44#include <asm/param.h>
  45#include <asm/page.h>
  46
  47#ifndef user_long_t
  48#define user_long_t long
  49#endif
  50#ifndef user_siginfo_t
  51#define user_siginfo_t siginfo_t
  52#endif
  53
  54/* That's for binfmt_elf_fdpic to deal with */
  55#ifndef elf_check_fdpic
  56#define elf_check_fdpic(ex) false
  57#endif
  58
  59static int load_elf_binary(struct linux_binprm *bprm);
  60static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
  61				int, int, unsigned long);
  62
  63#ifdef CONFIG_USELIB
  64static int load_elf_library(struct file *);
  65#else
  66#define load_elf_library NULL
  67#endif
  68
  69/*
  70 * If we don't support core dumping, then supply a NULL so we
  71 * don't even try.
  72 */
  73#ifdef CONFIG_ELF_CORE
  74static int elf_core_dump(struct coredump_params *cprm);
  75#else
  76#define elf_core_dump	NULL
  77#endif
  78
  79#if ELF_EXEC_PAGESIZE > PAGE_SIZE
  80#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
  81#else
  82#define ELF_MIN_ALIGN	PAGE_SIZE
  83#endif
  84
  85#ifndef ELF_CORE_EFLAGS
  86#define ELF_CORE_EFLAGS	0
  87#endif
  88
  89#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
  90#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
  91#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
  92
  93static struct linux_binfmt elf_format = {
  94	.module		= THIS_MODULE,
  95	.load_binary	= load_elf_binary,
  96	.load_shlib	= load_elf_library,
  97	.core_dump	= elf_core_dump,
  98	.min_coredump	= ELF_EXEC_PAGESIZE,
  99};
 100
 101#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
 102
 103static int set_brk(unsigned long start, unsigned long end, int prot)
 104{
 105	start = ELF_PAGEALIGN(start);
 106	end = ELF_PAGEALIGN(end);
 107	if (end > start) {
 108		/*
 109		 * Map the last of the bss segment.
 110		 * If the header is requesting these pages to be
 111		 * executable, honour that (ppc32 needs this).
 112		 */
 113		int error = vm_brk_flags(start, end - start,
 114				prot & PROT_EXEC ? VM_EXEC : 0);
 115		if (error)
 116			return error;
 117	}
 118	current->mm->start_brk = current->mm->brk = end;
 119	return 0;
 120}
 121
 122/* We need to explicitly zero any fractional pages
 123   after the data section (i.e. bss).  This would
 124   contain the junk from the file that should not
 125   be in memory
 126 */
 127static int padzero(unsigned long elf_bss)
 128{
 129	unsigned long nbyte;
 130
 131	nbyte = ELF_PAGEOFFSET(elf_bss);
 132	if (nbyte) {
 133		nbyte = ELF_MIN_ALIGN - nbyte;
 134		if (clear_user((void __user *) elf_bss, nbyte))
 135			return -EFAULT;
 136	}
 137	return 0;
 138}
 139
 140/* Let's use some macros to make this stack manipulation a little clearer */
 141#ifdef CONFIG_STACK_GROWSUP
 142#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 143#define STACK_ROUND(sp, items) \
 144	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 145#define STACK_ALLOC(sp, len) ({ \
 146	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 147	old_sp; })
 148#else
 149#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 150#define STACK_ROUND(sp, items) \
 151	(((unsigned long) (sp - items)) &~ 15UL)
 152#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 153#endif
 154
 155#ifndef ELF_BASE_PLATFORM
 156/*
 157 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 158 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 159 * will be copied to the user stack in the same manner as AT_PLATFORM.
 160 */
 161#define ELF_BASE_PLATFORM NULL
 162#endif
 163
 164static int
 165create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 166		unsigned long load_addr, unsigned long interp_load_addr)
 167{
 168	unsigned long p = bprm->p;
 169	int argc = bprm->argc;
 170	int envc = bprm->envc;
 
 
 171	elf_addr_t __user *sp;
 172	elf_addr_t __user *u_platform;
 173	elf_addr_t __user *u_base_platform;
 174	elf_addr_t __user *u_rand_bytes;
 175	const char *k_platform = ELF_PLATFORM;
 176	const char *k_base_platform = ELF_BASE_PLATFORM;
 177	unsigned char k_rand_bytes[16];
 178	int items;
 179	elf_addr_t *elf_info;
 180	int ei_index = 0;
 181	const struct cred *cred = current_cred();
 182	struct vm_area_struct *vma;
 183
 184	/*
 185	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 186	 * evictions by the processes running on the same package. One
 187	 * thing we can do is to shuffle the initial stack for them.
 188	 */
 189
 190	p = arch_align_stack(p);
 191
 192	/*
 193	 * If this architecture has a platform capability string, copy it
 194	 * to userspace.  In some cases (Sparc), this info is impossible
 195	 * for userspace to get any other way, in others (i386) it is
 196	 * merely difficult.
 197	 */
 198	u_platform = NULL;
 199	if (k_platform) {
 200		size_t len = strlen(k_platform) + 1;
 201
 202		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 203		if (__copy_to_user(u_platform, k_platform, len))
 204			return -EFAULT;
 205	}
 206
 207	/*
 208	 * If this architecture has a "base" platform capability
 209	 * string, copy it to userspace.
 210	 */
 211	u_base_platform = NULL;
 212	if (k_base_platform) {
 213		size_t len = strlen(k_base_platform) + 1;
 214
 215		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 216		if (__copy_to_user(u_base_platform, k_base_platform, len))
 217			return -EFAULT;
 218	}
 219
 220	/*
 221	 * Generate 16 random bytes for userspace PRNG seeding.
 222	 */
 223	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 224	u_rand_bytes = (elf_addr_t __user *)
 225		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 226	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 227		return -EFAULT;
 228
 229	/* Create the ELF interpreter info */
 230	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 231	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 232#define NEW_AUX_ENT(id, val) \
 233	do { \
 234		elf_info[ei_index++] = id; \
 235		elf_info[ei_index++] = val; \
 236	} while (0)
 237
 238#ifdef ARCH_DLINFO
 239	/* 
 240	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 241	 * AUXV.
 242	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 243	 * ARCH_DLINFO changes
 244	 */
 245	ARCH_DLINFO;
 246#endif
 247	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 248	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 249	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 250	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 251	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 252	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 253	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 254	NEW_AUX_ENT(AT_FLAGS, 0);
 255	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 256	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 257	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 258	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 259	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 260	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
 261	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 262#ifdef ELF_HWCAP2
 263	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 264#endif
 265	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 266	if (k_platform) {
 267		NEW_AUX_ENT(AT_PLATFORM,
 268			    (elf_addr_t)(unsigned long)u_platform);
 269	}
 270	if (k_base_platform) {
 271		NEW_AUX_ENT(AT_BASE_PLATFORM,
 272			    (elf_addr_t)(unsigned long)u_base_platform);
 273	}
 274	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 275		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 276	}
 277#undef NEW_AUX_ENT
 278	/* AT_NULL is zero; clear the rest too */
 279	memset(&elf_info[ei_index], 0,
 280	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 281
 282	/* And advance past the AT_NULL entry.  */
 283	ei_index += 2;
 284
 285	sp = STACK_ADD(p, ei_index);
 286
 287	items = (argc + 1) + (envc + 1) + 1;
 288	bprm->p = STACK_ROUND(sp, items);
 289
 290	/* Point sp at the lowest address on the stack */
 291#ifdef CONFIG_STACK_GROWSUP
 292	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 293	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 294#else
 295	sp = (elf_addr_t __user *)bprm->p;
 296#endif
 297
 298
 299	/*
 300	 * Grow the stack manually; some architectures have a limit on how
 301	 * far ahead a user-space access may be in order to grow the stack.
 302	 */
 303	vma = find_extend_vma(current->mm, bprm->p);
 304	if (!vma)
 305		return -EFAULT;
 306
 307	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 308	if (__put_user(argc, sp++))
 309		return -EFAULT;
 
 
 310
 311	/* Populate list of argv pointers back to argv strings. */
 312	p = current->mm->arg_end = current->mm->arg_start;
 313	while (argc-- > 0) {
 314		size_t len;
 315		if (__put_user((elf_addr_t)p, sp++))
 316			return -EFAULT;
 317		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 318		if (!len || len > MAX_ARG_STRLEN)
 319			return -EINVAL;
 320		p += len;
 321	}
 322	if (__put_user(0, sp++))
 323		return -EFAULT;
 324	current->mm->arg_end = p;
 325
 326	/* Populate list of envp pointers back to envp strings. */
 327	current->mm->env_end = current->mm->env_start = p;
 328	while (envc-- > 0) {
 329		size_t len;
 330		if (__put_user((elf_addr_t)p, sp++))
 331			return -EFAULT;
 332		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 333		if (!len || len > MAX_ARG_STRLEN)
 334			return -EINVAL;
 335		p += len;
 336	}
 337	if (__put_user(0, sp++))
 338		return -EFAULT;
 339	current->mm->env_end = p;
 340
 341	/* Put the elf_info on the stack in the right place.  */
 
 342	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 343		return -EFAULT;
 344	return 0;
 345}
 346
 347#ifndef elf_map
 348
 349static unsigned long elf_map(struct file *filep, unsigned long addr,
 350		struct elf_phdr *eppnt, int prot, int type,
 351		unsigned long total_size)
 352{
 353	unsigned long map_addr;
 354	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 355	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 356	addr = ELF_PAGESTART(addr);
 357	size = ELF_PAGEALIGN(size);
 358
 359	/* mmap() will return -EINVAL if given a zero size, but a
 360	 * segment with zero filesize is perfectly valid */
 361	if (!size)
 362		return addr;
 363
 364	/*
 365	* total_size is the size of the ELF (interpreter) image.
 366	* The _first_ mmap needs to know the full size, otherwise
 367	* randomization might put this image into an overlapping
 368	* position with the ELF binary image. (since size < total_size)
 369	* So we first map the 'big' image - and unmap the remainder at
 370	* the end. (which unmap is needed for ELF images with holes.)
 371	*/
 372	if (total_size) {
 373		total_size = ELF_PAGEALIGN(total_size);
 374		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 375		if (!BAD_ADDR(map_addr))
 376			vm_munmap(map_addr+size, total_size-size);
 377	} else
 378		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 379
 380	if ((type & MAP_FIXED_NOREPLACE) &&
 381	    PTR_ERR((void *)map_addr) == -EEXIST)
 382		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
 383			task_pid_nr(current), current->comm, (void *)addr);
 384
 385	return(map_addr);
 386}
 387
 388#endif /* !elf_map */
 389
 390static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 391{
 392	int i, first_idx = -1, last_idx = -1;
 393
 394	for (i = 0; i < nr; i++) {
 395		if (cmds[i].p_type == PT_LOAD) {
 396			last_idx = i;
 397			if (first_idx == -1)
 398				first_idx = i;
 399		}
 400	}
 401	if (first_idx == -1)
 402		return 0;
 403
 404	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 405				ELF_PAGESTART(cmds[first_idx].p_vaddr);
 406}
 407
 408/**
 409 * load_elf_phdrs() - load ELF program headers
 410 * @elf_ex:   ELF header of the binary whose program headers should be loaded
 411 * @elf_file: the opened ELF binary file
 412 *
 413 * Loads ELF program headers from the binary file elf_file, which has the ELF
 414 * header pointed to by elf_ex, into a newly allocated array. The caller is
 415 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
 416 */
 417static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
 418				       struct file *elf_file)
 419{
 420	struct elf_phdr *elf_phdata = NULL;
 421	int retval, size, err = -1;
 422	loff_t pos = elf_ex->e_phoff;
 423
 424	/*
 425	 * If the size of this structure has changed, then punt, since
 426	 * we will be doing the wrong thing.
 427	 */
 428	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 429		goto out;
 430
 431	/* Sanity check the number of program headers... */
 432	if (elf_ex->e_phnum < 1 ||
 433		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 434		goto out;
 435
 436	/* ...and their total size. */
 437	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 438	if (size > ELF_MIN_ALIGN)
 439		goto out;
 440
 441	elf_phdata = kmalloc(size, GFP_KERNEL);
 442	if (!elf_phdata)
 443		goto out;
 444
 445	/* Read in the program headers */
 446	retval = kernel_read(elf_file, elf_phdata, size, &pos);
 
 447	if (retval != size) {
 448		err = (retval < 0) ? retval : -EIO;
 449		goto out;
 450	}
 451
 452	/* Success! */
 453	err = 0;
 454out:
 455	if (err) {
 456		kfree(elf_phdata);
 457		elf_phdata = NULL;
 458	}
 459	return elf_phdata;
 460}
 461
 462#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 463
 464/**
 465 * struct arch_elf_state - arch-specific ELF loading state
 466 *
 467 * This structure is used to preserve architecture specific data during
 468 * the loading of an ELF file, throughout the checking of architecture
 469 * specific ELF headers & through to the point where the ELF load is
 470 * known to be proceeding (ie. SET_PERSONALITY).
 471 *
 472 * This implementation is a dummy for architectures which require no
 473 * specific state.
 474 */
 475struct arch_elf_state {
 476};
 477
 478#define INIT_ARCH_ELF_STATE {}
 479
 480/**
 481 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 482 * @ehdr:	The main ELF header
 483 * @phdr:	The program header to check
 484 * @elf:	The open ELF file
 485 * @is_interp:	True if the phdr is from the interpreter of the ELF being
 486 *		loaded, else false.
 487 * @state:	Architecture-specific state preserved throughout the process
 488 *		of loading the ELF.
 489 *
 490 * Inspects the program header phdr to validate its correctness and/or
 491 * suitability for the system. Called once per ELF program header in the
 492 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 493 * interpreter.
 494 *
 495 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 496 *         with that return code.
 497 */
 498static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 499				   struct elf_phdr *phdr,
 500				   struct file *elf, bool is_interp,
 501				   struct arch_elf_state *state)
 502{
 503	/* Dummy implementation, always proceed */
 504	return 0;
 505}
 506
 507/**
 508 * arch_check_elf() - check an ELF executable
 509 * @ehdr:	The main ELF header
 510 * @has_interp:	True if the ELF has an interpreter, else false.
 511 * @interp_ehdr: The interpreter's ELF header
 512 * @state:	Architecture-specific state preserved throughout the process
 513 *		of loading the ELF.
 514 *
 515 * Provides a final opportunity for architecture code to reject the loading
 516 * of the ELF & cause an exec syscall to return an error. This is called after
 517 * all program headers to be checked by arch_elf_pt_proc have been.
 518 *
 519 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 520 *         with that return code.
 521 */
 522static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 523				 struct elfhdr *interp_ehdr,
 524				 struct arch_elf_state *state)
 525{
 526	/* Dummy implementation, always proceed */
 527	return 0;
 528}
 529
 530#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 531
 532/* This is much more generalized than the library routine read function,
 533   so we keep this separate.  Technically the library read function
 534   is only provided so that we can read a.out libraries that have
 535   an ELF header */
 536
 537static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 538		struct file *interpreter, unsigned long *interp_map_addr,
 539		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
 540{
 541	struct elf_phdr *eppnt;
 542	unsigned long load_addr = 0;
 543	int load_addr_set = 0;
 544	unsigned long last_bss = 0, elf_bss = 0;
 545	int bss_prot = 0;
 546	unsigned long error = ~0UL;
 547	unsigned long total_size;
 548	int i;
 549
 550	/* First of all, some simple consistency checks */
 551	if (interp_elf_ex->e_type != ET_EXEC &&
 552	    interp_elf_ex->e_type != ET_DYN)
 553		goto out;
 554	if (!elf_check_arch(interp_elf_ex) ||
 555	    elf_check_fdpic(interp_elf_ex))
 556		goto out;
 557	if (!interpreter->f_op->mmap)
 558		goto out;
 559
 560	total_size = total_mapping_size(interp_elf_phdata,
 561					interp_elf_ex->e_phnum);
 562	if (!total_size) {
 563		error = -EINVAL;
 564		goto out;
 565	}
 566
 567	eppnt = interp_elf_phdata;
 568	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 569		if (eppnt->p_type == PT_LOAD) {
 570			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 571			int elf_prot = 0;
 572			unsigned long vaddr = 0;
 573			unsigned long k, map_addr;
 574
 575			if (eppnt->p_flags & PF_R)
 576		    		elf_prot = PROT_READ;
 577			if (eppnt->p_flags & PF_W)
 578				elf_prot |= PROT_WRITE;
 579			if (eppnt->p_flags & PF_X)
 580				elf_prot |= PROT_EXEC;
 581			vaddr = eppnt->p_vaddr;
 582			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 583				elf_type |= MAP_FIXED_NOREPLACE;
 584			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 585				load_addr = -vaddr;
 586
 587			map_addr = elf_map(interpreter, load_addr + vaddr,
 588					eppnt, elf_prot, elf_type, total_size);
 589			total_size = 0;
 590			if (!*interp_map_addr)
 591				*interp_map_addr = map_addr;
 592			error = map_addr;
 593			if (BAD_ADDR(map_addr))
 594				goto out;
 595
 596			if (!load_addr_set &&
 597			    interp_elf_ex->e_type == ET_DYN) {
 598				load_addr = map_addr - ELF_PAGESTART(vaddr);
 599				load_addr_set = 1;
 600			}
 601
 602			/*
 603			 * Check to see if the section's size will overflow the
 604			 * allowed task size. Note that p_filesz must always be
 605			 * <= p_memsize so it's only necessary to check p_memsz.
 606			 */
 607			k = load_addr + eppnt->p_vaddr;
 608			if (BAD_ADDR(k) ||
 609			    eppnt->p_filesz > eppnt->p_memsz ||
 610			    eppnt->p_memsz > TASK_SIZE ||
 611			    TASK_SIZE - eppnt->p_memsz < k) {
 612				error = -ENOMEM;
 613				goto out;
 614			}
 615
 616			/*
 617			 * Find the end of the file mapping for this phdr, and
 618			 * keep track of the largest address we see for this.
 619			 */
 620			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 621			if (k > elf_bss)
 622				elf_bss = k;
 623
 624			/*
 625			 * Do the same thing for the memory mapping - between
 626			 * elf_bss and last_bss is the bss section.
 627			 */
 628			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
 629			if (k > last_bss) {
 630				last_bss = k;
 631				bss_prot = elf_prot;
 632			}
 633		}
 634	}
 635
 636	/*
 637	 * Now fill out the bss section: first pad the last page from
 638	 * the file up to the page boundary, and zero it from elf_bss
 639	 * up to the end of the page.
 640	 */
 641	if (padzero(elf_bss)) {
 642		error = -EFAULT;
 643		goto out;
 644	}
 645	/*
 646	 * Next, align both the file and mem bss up to the page size,
 647	 * since this is where elf_bss was just zeroed up to, and where
 648	 * last_bss will end after the vm_brk_flags() below.
 649	 */
 650	elf_bss = ELF_PAGEALIGN(elf_bss);
 651	last_bss = ELF_PAGEALIGN(last_bss);
 652	/* Finally, if there is still more bss to allocate, do it. */
 653	if (last_bss > elf_bss) {
 654		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
 655				bss_prot & PROT_EXEC ? VM_EXEC : 0);
 656		if (error)
 657			goto out;
 658	}
 659
 660	error = load_addr;
 661out:
 662	return error;
 663}
 664
 665/*
 666 * These are the functions used to load ELF style executables and shared
 667 * libraries.  There is no binary dependent code anywhere else.
 668 */
 669
 670#ifndef STACK_RND_MASK
 671#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
 672#endif
 673
 674static unsigned long randomize_stack_top(unsigned long stack_top)
 675{
 676	unsigned long random_variable = 0;
 677
 678	if (current->flags & PF_RANDOMIZE) {
 
 679		random_variable = get_random_long();
 680		random_variable &= STACK_RND_MASK;
 681		random_variable <<= PAGE_SHIFT;
 682	}
 683#ifdef CONFIG_STACK_GROWSUP
 684	return PAGE_ALIGN(stack_top) + random_variable;
 685#else
 686	return PAGE_ALIGN(stack_top) - random_variable;
 687#endif
 688}
 689
 690static int load_elf_binary(struct linux_binprm *bprm)
 691{
 692	struct file *interpreter = NULL; /* to shut gcc up */
 693 	unsigned long load_addr = 0, load_bias = 0;
 694	int load_addr_set = 0;
 695	char * elf_interpreter = NULL;
 696	unsigned long error;
 697	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 698	unsigned long elf_bss, elf_brk;
 699	int bss_prot = 0;
 700	int retval, i;
 701	unsigned long elf_entry;
 702	unsigned long interp_load_addr = 0;
 703	unsigned long start_code, end_code, start_data, end_data;
 704	unsigned long reloc_func_desc __maybe_unused = 0;
 705	int executable_stack = EXSTACK_DEFAULT;
 706	struct pt_regs *regs = current_pt_regs();
 707	struct {
 708		struct elfhdr elf_ex;
 709		struct elfhdr interp_elf_ex;
 710	} *loc;
 711	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 712	loff_t pos;
 713
 714	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 715	if (!loc) {
 716		retval = -ENOMEM;
 717		goto out_ret;
 718	}
 719	
 720	/* Get the exec-header */
 721	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 722
 723	retval = -ENOEXEC;
 724	/* First of all, some simple consistency checks */
 725	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 726		goto out;
 727
 728	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 729		goto out;
 730	if (!elf_check_arch(&loc->elf_ex))
 731		goto out;
 732	if (elf_check_fdpic(&loc->elf_ex))
 733		goto out;
 734	if (!bprm->file->f_op->mmap)
 735		goto out;
 736
 737	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
 738	if (!elf_phdata)
 739		goto out;
 740
 741	elf_ppnt = elf_phdata;
 742	elf_bss = 0;
 743	elf_brk = 0;
 744
 745	start_code = ~0UL;
 746	end_code = 0;
 747	start_data = 0;
 748	end_data = 0;
 749
 750	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 751		if (elf_ppnt->p_type == PT_INTERP) {
 752			/* This is the program interpreter used for
 753			 * shared libraries - for now assume that this
 754			 * is an a.out format binary
 755			 */
 756			retval = -ENOEXEC;
 757			if (elf_ppnt->p_filesz > PATH_MAX || 
 758			    elf_ppnt->p_filesz < 2)
 759				goto out_free_ph;
 760
 761			retval = -ENOMEM;
 762			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 763						  GFP_KERNEL);
 764			if (!elf_interpreter)
 765				goto out_free_ph;
 766
 767			pos = elf_ppnt->p_offset;
 768			retval = kernel_read(bprm->file, elf_interpreter,
 769					     elf_ppnt->p_filesz, &pos);
 770			if (retval != elf_ppnt->p_filesz) {
 771				if (retval >= 0)
 772					retval = -EIO;
 773				goto out_free_interp;
 774			}
 775			/* make sure path is NULL terminated */
 776			retval = -ENOEXEC;
 777			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 778				goto out_free_interp;
 779
 780			interpreter = open_exec(elf_interpreter);
 781			retval = PTR_ERR(interpreter);
 782			if (IS_ERR(interpreter))
 783				goto out_free_interp;
 784
 785			/*
 786			 * If the binary is not readable then enforce
 787			 * mm->dumpable = 0 regardless of the interpreter's
 788			 * permissions.
 789			 */
 790			would_dump(bprm, interpreter);
 791
 792			/* Get the exec headers */
 793			pos = 0;
 794			retval = kernel_read(interpreter, &loc->interp_elf_ex,
 795					     sizeof(loc->interp_elf_ex), &pos);
 796			if (retval != sizeof(loc->interp_elf_ex)) {
 797				if (retval >= 0)
 798					retval = -EIO;
 799				goto out_free_dentry;
 800			}
 801
 802			break;
 803		}
 804		elf_ppnt++;
 805	}
 806
 807	elf_ppnt = elf_phdata;
 808	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 809		switch (elf_ppnt->p_type) {
 810		case PT_GNU_STACK:
 811			if (elf_ppnt->p_flags & PF_X)
 812				executable_stack = EXSTACK_ENABLE_X;
 813			else
 814				executable_stack = EXSTACK_DISABLE_X;
 815			break;
 816
 817		case PT_LOPROC ... PT_HIPROC:
 818			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
 819						  bprm->file, false,
 820						  &arch_state);
 821			if (retval)
 822				goto out_free_dentry;
 823			break;
 824		}
 825
 826	/* Some simple consistency checks for the interpreter */
 827	if (elf_interpreter) {
 828		retval = -ELIBBAD;
 829		/* Not an ELF interpreter */
 830		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 831			goto out_free_dentry;
 832		/* Verify the interpreter has a valid arch */
 833		if (!elf_check_arch(&loc->interp_elf_ex) ||
 834		    elf_check_fdpic(&loc->interp_elf_ex))
 835			goto out_free_dentry;
 836
 837		/* Load the interpreter program headers */
 838		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
 839						   interpreter);
 840		if (!interp_elf_phdata)
 841			goto out_free_dentry;
 842
 843		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 844		elf_ppnt = interp_elf_phdata;
 845		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
 846			switch (elf_ppnt->p_type) {
 847			case PT_LOPROC ... PT_HIPROC:
 848				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
 849							  elf_ppnt, interpreter,
 850							  true, &arch_state);
 851				if (retval)
 852					goto out_free_dentry;
 853				break;
 854			}
 855	}
 856
 857	/*
 858	 * Allow arch code to reject the ELF at this point, whilst it's
 859	 * still possible to return an error to the code that invoked
 860	 * the exec syscall.
 861	 */
 862	retval = arch_check_elf(&loc->elf_ex,
 863				!!interpreter, &loc->interp_elf_ex,
 864				&arch_state);
 865	if (retval)
 866		goto out_free_dentry;
 867
 868	/* Flush all traces of the currently running executable */
 869	retval = flush_old_exec(bprm);
 870	if (retval)
 871		goto out_free_dentry;
 872
 873	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 874	   may depend on the personality.  */
 875	SET_PERSONALITY2(loc->elf_ex, &arch_state);
 876	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 877		current->personality |= READ_IMPLIES_EXEC;
 878
 879	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 880		current->flags |= PF_RANDOMIZE;
 881
 882	setup_new_exec(bprm);
 883	install_exec_creds(bprm);
 884
 885	/* Do this so that we can load the interpreter, if need be.  We will
 886	   change some of these later */
 887	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 888				 executable_stack);
 889	if (retval < 0)
 890		goto out_free_dentry;
 891	
 892	current->mm->start_stack = bprm->p;
 893
 894	/* Now we do a little grungy work by mmapping the ELF image into
 895	   the correct location in memory. */
 896	for(i = 0, elf_ppnt = elf_phdata;
 897	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 898		int elf_prot = 0, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
 899		unsigned long k, vaddr;
 900		unsigned long total_size = 0;
 901
 902		if (elf_ppnt->p_type != PT_LOAD)
 903			continue;
 904
 905		if (unlikely (elf_brk > elf_bss)) {
 906			unsigned long nbyte;
 907	            
 908			/* There was a PT_LOAD segment with p_memsz > p_filesz
 909			   before this one. Map anonymous pages, if needed,
 910			   and clear the area.  */
 911			retval = set_brk(elf_bss + load_bias,
 912					 elf_brk + load_bias,
 913					 bss_prot);
 914			if (retval)
 915				goto out_free_dentry;
 916			nbyte = ELF_PAGEOFFSET(elf_bss);
 917			if (nbyte) {
 918				nbyte = ELF_MIN_ALIGN - nbyte;
 919				if (nbyte > elf_brk - elf_bss)
 920					nbyte = elf_brk - elf_bss;
 921				if (clear_user((void __user *)elf_bss +
 922							load_bias, nbyte)) {
 923					/*
 924					 * This bss-zeroing can fail if the ELF
 925					 * file specifies odd protections. So
 926					 * we don't check the return value
 927					 */
 928				}
 929			}
 930
 931			/*
 932			 * Some binaries have overlapping elf segments and then
 933			 * we have to forcefully map over an existing mapping
 934			 * e.g. over this newly established brk mapping.
 935			 */
 936			elf_fixed = MAP_FIXED;
 937		}
 938
 939		if (elf_ppnt->p_flags & PF_R)
 940			elf_prot |= PROT_READ;
 941		if (elf_ppnt->p_flags & PF_W)
 942			elf_prot |= PROT_WRITE;
 943		if (elf_ppnt->p_flags & PF_X)
 944			elf_prot |= PROT_EXEC;
 945
 946		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 947
 948		vaddr = elf_ppnt->p_vaddr;
 949		/*
 950		 * If we are loading ET_EXEC or we have already performed
 951		 * the ET_DYN load_addr calculations, proceed normally.
 952		 */
 953		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 954			elf_flags |= elf_fixed;
 955		} else if (loc->elf_ex.e_type == ET_DYN) {
 956			/*
 957			 * This logic is run once for the first LOAD Program
 958			 * Header for ET_DYN binaries to calculate the
 959			 * randomization (load_bias) for all the LOAD
 960			 * Program Headers, and to calculate the entire
 961			 * size of the ELF mapping (total_size). (Note that
 962			 * load_addr_set is set to true later once the
 963			 * initial mapping is performed.)
 964			 *
 965			 * There are effectively two types of ET_DYN
 966			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
 967			 * and loaders (ET_DYN without INTERP, since they
 968			 * _are_ the ELF interpreter). The loaders must
 969			 * be loaded away from programs since the program
 970			 * may otherwise collide with the loader (especially
 971			 * for ET_EXEC which does not have a randomized
 972			 * position). For example to handle invocations of
 973			 * "./ld.so someprog" to test out a new version of
 974			 * the loader, the subsequent program that the
 975			 * loader loads must avoid the loader itself, so
 976			 * they cannot share the same load range. Sufficient
 977			 * room for the brk must be allocated with the
 978			 * loader as well, since brk must be available with
 979			 * the loader.
 980			 *
 981			 * Therefore, programs are loaded offset from
 982			 * ELF_ET_DYN_BASE and loaders are loaded into the
 983			 * independently randomized mmap region (0 load_bias
 984			 * without MAP_FIXED).
 985			 */
 986			if (elf_interpreter) {
 987				load_bias = ELF_ET_DYN_BASE;
 988				if (current->flags & PF_RANDOMIZE)
 989					load_bias += arch_mmap_rnd();
 990				elf_flags |= elf_fixed;
 991			} else
 992				load_bias = 0;
 993
 994			/*
 995			 * Since load_bias is used for all subsequent loading
 996			 * calculations, we must lower it by the first vaddr
 997			 * so that the remaining calculations based on the
 998			 * ELF vaddrs will be correctly offset. The result
 999			 * is then page aligned.
1000			 */
1001			load_bias = ELF_PAGESTART(load_bias - vaddr);
1002
1003			total_size = total_mapping_size(elf_phdata,
1004							loc->elf_ex.e_phnum);
1005			if (!total_size) {
1006				retval = -EINVAL;
1007				goto out_free_dentry;
1008			}
1009		}
1010
1011		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1012				elf_prot, elf_flags, total_size);
1013		if (BAD_ADDR(error)) {
1014			retval = IS_ERR((void *)error) ?
1015				PTR_ERR((void*)error) : -EINVAL;
1016			goto out_free_dentry;
1017		}
1018
1019		if (!load_addr_set) {
1020			load_addr_set = 1;
1021			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1022			if (loc->elf_ex.e_type == ET_DYN) {
1023				load_bias += error -
1024				             ELF_PAGESTART(load_bias + vaddr);
1025				load_addr += load_bias;
1026				reloc_func_desc = load_bias;
1027			}
1028		}
1029		k = elf_ppnt->p_vaddr;
1030		if (k < start_code)
1031			start_code = k;
1032		if (start_data < k)
1033			start_data = k;
1034
1035		/*
1036		 * Check to see if the section's size will overflow the
1037		 * allowed task size. Note that p_filesz must always be
1038		 * <= p_memsz so it is only necessary to check p_memsz.
1039		 */
1040		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1041		    elf_ppnt->p_memsz > TASK_SIZE ||
1042		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1043			/* set_brk can never work. Avoid overflows. */
1044			retval = -EINVAL;
1045			goto out_free_dentry;
1046		}
1047
1048		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1049
1050		if (k > elf_bss)
1051			elf_bss = k;
1052		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1053			end_code = k;
1054		if (end_data < k)
1055			end_data = k;
1056		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1057		if (k > elf_brk) {
1058			bss_prot = elf_prot;
1059			elf_brk = k;
1060		}
1061	}
1062
1063	loc->elf_ex.e_entry += load_bias;
1064	elf_bss += load_bias;
1065	elf_brk += load_bias;
1066	start_code += load_bias;
1067	end_code += load_bias;
1068	start_data += load_bias;
1069	end_data += load_bias;
1070
1071	/* Calling set_brk effectively mmaps the pages that we need
1072	 * for the bss and break sections.  We must do this before
1073	 * mapping in the interpreter, to make sure it doesn't wind
1074	 * up getting placed where the bss needs to go.
1075	 */
1076	retval = set_brk(elf_bss, elf_brk, bss_prot);
1077	if (retval)
1078		goto out_free_dentry;
1079	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1080		retval = -EFAULT; /* Nobody gets to see this, but.. */
1081		goto out_free_dentry;
1082	}
1083
1084	if (elf_interpreter) {
1085		unsigned long interp_map_addr = 0;
1086
1087		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1088					    interpreter,
1089					    &interp_map_addr,
1090					    load_bias, interp_elf_phdata);
1091		if (!IS_ERR((void *)elf_entry)) {
1092			/*
1093			 * load_elf_interp() returns relocation
1094			 * adjustment
1095			 */
1096			interp_load_addr = elf_entry;
1097			elf_entry += loc->interp_elf_ex.e_entry;
1098		}
1099		if (BAD_ADDR(elf_entry)) {
1100			retval = IS_ERR((void *)elf_entry) ?
1101					(int)elf_entry : -EINVAL;
1102			goto out_free_dentry;
1103		}
1104		reloc_func_desc = interp_load_addr;
1105
1106		allow_write_access(interpreter);
1107		fput(interpreter);
1108		kfree(elf_interpreter);
1109	} else {
1110		elf_entry = loc->elf_ex.e_entry;
1111		if (BAD_ADDR(elf_entry)) {
1112			retval = -EINVAL;
1113			goto out_free_dentry;
1114		}
1115	}
1116
1117	kfree(interp_elf_phdata);
1118	kfree(elf_phdata);
1119
1120	set_binfmt(&elf_format);
1121
1122#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1123	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1124	if (retval < 0)
1125		goto out;
1126#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1127
1128	retval = create_elf_tables(bprm, &loc->elf_ex,
1129			  load_addr, interp_load_addr);
1130	if (retval < 0)
1131		goto out;
1132	/* N.B. passed_fileno might not be initialized? */
1133	current->mm->end_code = end_code;
1134	current->mm->start_code = start_code;
1135	current->mm->start_data = start_data;
1136	current->mm->end_data = end_data;
1137	current->mm->start_stack = bprm->p;
1138
1139	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1140		current->mm->brk = current->mm->start_brk =
1141			arch_randomize_brk(current->mm);
1142#ifdef compat_brk_randomized
1143		current->brk_randomized = 1;
1144#endif
1145	}
1146
1147	if (current->personality & MMAP_PAGE_ZERO) {
1148		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1149		   and some applications "depend" upon this behavior.
1150		   Since we do not have the power to recompile these, we
1151		   emulate the SVr4 behavior. Sigh. */
1152		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1153				MAP_FIXED | MAP_PRIVATE, 0);
1154	}
1155
1156#ifdef ELF_PLAT_INIT
1157	/*
1158	 * The ABI may specify that certain registers be set up in special
1159	 * ways (on i386 %edx is the address of a DT_FINI function, for
1160	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1161	 * that the e_entry field is the address of the function descriptor
1162	 * for the startup routine, rather than the address of the startup
1163	 * routine itself.  This macro performs whatever initialization to
1164	 * the regs structure is required as well as any relocations to the
1165	 * function descriptor entries when executing dynamically links apps.
1166	 */
1167	ELF_PLAT_INIT(regs, reloc_func_desc);
1168#endif
1169
1170	finalize_exec(bprm);
1171	start_thread(regs, elf_entry, bprm->p);
1172	retval = 0;
1173out:
1174	kfree(loc);
1175out_ret:
1176	return retval;
1177
1178	/* error cleanup */
1179out_free_dentry:
1180	kfree(interp_elf_phdata);
1181	allow_write_access(interpreter);
1182	if (interpreter)
1183		fput(interpreter);
1184out_free_interp:
1185	kfree(elf_interpreter);
1186out_free_ph:
1187	kfree(elf_phdata);
1188	goto out;
1189}
1190
1191#ifdef CONFIG_USELIB
1192/* This is really simpleminded and specialized - we are loading an
1193   a.out library that is given an ELF header. */
1194static int load_elf_library(struct file *file)
1195{
1196	struct elf_phdr *elf_phdata;
1197	struct elf_phdr *eppnt;
1198	unsigned long elf_bss, bss, len;
1199	int retval, error, i, j;
1200	struct elfhdr elf_ex;
1201	loff_t pos = 0;
1202
1203	error = -ENOEXEC;
1204	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1205	if (retval != sizeof(elf_ex))
1206		goto out;
1207
1208	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1209		goto out;
1210
1211	/* First of all, some simple consistency checks */
1212	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1213	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1214		goto out;
1215	if (elf_check_fdpic(&elf_ex))
1216		goto out;
1217
1218	/* Now read in all of the header information */
1219
1220	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1221	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1222
1223	error = -ENOMEM;
1224	elf_phdata = kmalloc(j, GFP_KERNEL);
1225	if (!elf_phdata)
1226		goto out;
1227
1228	eppnt = elf_phdata;
1229	error = -ENOEXEC;
1230	pos =  elf_ex.e_phoff;
1231	retval = kernel_read(file, eppnt, j, &pos);
1232	if (retval != j)
1233		goto out_free_ph;
1234
1235	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1236		if ((eppnt + i)->p_type == PT_LOAD)
1237			j++;
1238	if (j != 1)
1239		goto out_free_ph;
1240
1241	while (eppnt->p_type != PT_LOAD)
1242		eppnt++;
1243
1244	/* Now use mmap to map the library into memory. */
1245	error = vm_mmap(file,
1246			ELF_PAGESTART(eppnt->p_vaddr),
1247			(eppnt->p_filesz +
1248			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1249			PROT_READ | PROT_WRITE | PROT_EXEC,
1250			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1251			(eppnt->p_offset -
1252			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1253	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1254		goto out_free_ph;
1255
1256	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1257	if (padzero(elf_bss)) {
1258		error = -EFAULT;
1259		goto out_free_ph;
1260	}
1261
1262	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1263			    ELF_MIN_ALIGN - 1);
1264	bss = eppnt->p_memsz + eppnt->p_vaddr;
1265	if (bss > len) {
1266		error = vm_brk(len, bss - len);
1267		if (error)
1268			goto out_free_ph;
1269	}
1270	error = 0;
1271
1272out_free_ph:
1273	kfree(elf_phdata);
1274out:
1275	return error;
1276}
1277#endif /* #ifdef CONFIG_USELIB */
1278
1279#ifdef CONFIG_ELF_CORE
1280/*
1281 * ELF core dumper
1282 *
1283 * Modelled on fs/exec.c:aout_core_dump()
1284 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1285 */
1286
1287/*
1288 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1289 * that are useful for post-mortem analysis are included in every core dump.
1290 * In that way we ensure that the core dump is fully interpretable later
1291 * without matching up the same kernel and hardware config to see what PC values
1292 * meant. These special mappings include - vDSO, vsyscall, and other
1293 * architecture specific mappings
1294 */
1295static bool always_dump_vma(struct vm_area_struct *vma)
1296{
1297	/* Any vsyscall mappings? */
1298	if (vma == get_gate_vma(vma->vm_mm))
1299		return true;
1300
1301	/*
1302	 * Assume that all vmas with a .name op should always be dumped.
1303	 * If this changes, a new vm_ops field can easily be added.
1304	 */
1305	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1306		return true;
1307
1308	/*
1309	 * arch_vma_name() returns non-NULL for special architecture mappings,
1310	 * such as vDSO sections.
1311	 */
1312	if (arch_vma_name(vma))
1313		return true;
1314
1315	return false;
1316}
1317
1318/*
1319 * Decide what to dump of a segment, part, all or none.
1320 */
1321static unsigned long vma_dump_size(struct vm_area_struct *vma,
1322				   unsigned long mm_flags)
1323{
1324#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1325
1326	/* always dump the vdso and vsyscall sections */
1327	if (always_dump_vma(vma))
1328		goto whole;
1329
1330	if (vma->vm_flags & VM_DONTDUMP)
1331		return 0;
1332
1333	/* support for DAX */
1334	if (vma_is_dax(vma)) {
1335		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1336			goto whole;
1337		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1338			goto whole;
1339		return 0;
1340	}
1341
1342	/* Hugetlb memory check */
1343	if (vma->vm_flags & VM_HUGETLB) {
1344		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1345			goto whole;
1346		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1347			goto whole;
1348		return 0;
1349	}
1350
1351	/* Do not dump I/O mapped devices or special mappings */
1352	if (vma->vm_flags & VM_IO)
1353		return 0;
1354
1355	/* By default, dump shared memory if mapped from an anonymous file. */
1356	if (vma->vm_flags & VM_SHARED) {
1357		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1358		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1359			goto whole;
1360		return 0;
1361	}
1362
1363	/* Dump segments that have been written to.  */
1364	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1365		goto whole;
1366	if (vma->vm_file == NULL)
1367		return 0;
1368
1369	if (FILTER(MAPPED_PRIVATE))
1370		goto whole;
1371
1372	/*
1373	 * If this looks like the beginning of a DSO or executable mapping,
1374	 * check for an ELF header.  If we find one, dump the first page to
1375	 * aid in determining what was mapped here.
1376	 */
1377	if (FILTER(ELF_HEADERS) &&
1378	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1379		u32 __user *header = (u32 __user *) vma->vm_start;
1380		u32 word;
1381		mm_segment_t fs = get_fs();
1382		/*
1383		 * Doing it this way gets the constant folded by GCC.
1384		 */
1385		union {
1386			u32 cmp;
1387			char elfmag[SELFMAG];
1388		} magic;
1389		BUILD_BUG_ON(SELFMAG != sizeof word);
1390		magic.elfmag[EI_MAG0] = ELFMAG0;
1391		magic.elfmag[EI_MAG1] = ELFMAG1;
1392		magic.elfmag[EI_MAG2] = ELFMAG2;
1393		magic.elfmag[EI_MAG3] = ELFMAG3;
1394		/*
1395		 * Switch to the user "segment" for get_user(),
1396		 * then put back what elf_core_dump() had in place.
1397		 */
1398		set_fs(USER_DS);
1399		if (unlikely(get_user(word, header)))
1400			word = 0;
1401		set_fs(fs);
1402		if (word == magic.cmp)
1403			return PAGE_SIZE;
1404	}
1405
1406#undef	FILTER
1407
1408	return 0;
1409
1410whole:
1411	return vma->vm_end - vma->vm_start;
1412}
1413
1414/* An ELF note in memory */
1415struct memelfnote
1416{
1417	const char *name;
1418	int type;
1419	unsigned int datasz;
1420	void *data;
1421};
1422
1423static int notesize(struct memelfnote *en)
1424{
1425	int sz;
1426
1427	sz = sizeof(struct elf_note);
1428	sz += roundup(strlen(en->name) + 1, 4);
1429	sz += roundup(en->datasz, 4);
1430
1431	return sz;
1432}
1433
1434static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1435{
1436	struct elf_note en;
1437	en.n_namesz = strlen(men->name) + 1;
1438	en.n_descsz = men->datasz;
1439	en.n_type = men->type;
1440
1441	return dump_emit(cprm, &en, sizeof(en)) &&
1442	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1443	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1444}
1445
1446static void fill_elf_header(struct elfhdr *elf, int segs,
1447			    u16 machine, u32 flags)
1448{
1449	memset(elf, 0, sizeof(*elf));
1450
1451	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1452	elf->e_ident[EI_CLASS] = ELF_CLASS;
1453	elf->e_ident[EI_DATA] = ELF_DATA;
1454	elf->e_ident[EI_VERSION] = EV_CURRENT;
1455	elf->e_ident[EI_OSABI] = ELF_OSABI;
1456
1457	elf->e_type = ET_CORE;
1458	elf->e_machine = machine;
1459	elf->e_version = EV_CURRENT;
1460	elf->e_phoff = sizeof(struct elfhdr);
1461	elf->e_flags = flags;
1462	elf->e_ehsize = sizeof(struct elfhdr);
1463	elf->e_phentsize = sizeof(struct elf_phdr);
1464	elf->e_phnum = segs;
1465
1466	return;
1467}
1468
1469static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1470{
1471	phdr->p_type = PT_NOTE;
1472	phdr->p_offset = offset;
1473	phdr->p_vaddr = 0;
1474	phdr->p_paddr = 0;
1475	phdr->p_filesz = sz;
1476	phdr->p_memsz = 0;
1477	phdr->p_flags = 0;
1478	phdr->p_align = 0;
1479	return;
1480}
1481
1482static void fill_note(struct memelfnote *note, const char *name, int type, 
1483		unsigned int sz, void *data)
1484{
1485	note->name = name;
1486	note->type = type;
1487	note->datasz = sz;
1488	note->data = data;
1489	return;
1490}
1491
1492/*
1493 * fill up all the fields in prstatus from the given task struct, except
1494 * registers which need to be filled up separately.
1495 */
1496static void fill_prstatus(struct elf_prstatus *prstatus,
1497		struct task_struct *p, long signr)
1498{
1499	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1500	prstatus->pr_sigpend = p->pending.signal.sig[0];
1501	prstatus->pr_sighold = p->blocked.sig[0];
1502	rcu_read_lock();
1503	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1504	rcu_read_unlock();
1505	prstatus->pr_pid = task_pid_vnr(p);
1506	prstatus->pr_pgrp = task_pgrp_vnr(p);
1507	prstatus->pr_sid = task_session_vnr(p);
1508	if (thread_group_leader(p)) {
1509		struct task_cputime cputime;
1510
1511		/*
1512		 * This is the record for the group leader.  It shows the
1513		 * group-wide total, not its individual thread total.
1514		 */
1515		thread_group_cputime(p, &cputime);
1516		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1517		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1518	} else {
1519		u64 utime, stime;
1520
1521		task_cputime(p, &utime, &stime);
1522		prstatus->pr_utime = ns_to_timeval(utime);
1523		prstatus->pr_stime = ns_to_timeval(stime);
1524	}
1525
1526	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1527	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1528}
1529
1530static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1531		       struct mm_struct *mm)
1532{
1533	const struct cred *cred;
1534	unsigned int i, len;
1535	
1536	/* first copy the parameters from user space */
1537	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1538
1539	len = mm->arg_end - mm->arg_start;
1540	if (len >= ELF_PRARGSZ)
1541		len = ELF_PRARGSZ-1;
1542	if (copy_from_user(&psinfo->pr_psargs,
1543		           (const char __user *)mm->arg_start, len))
1544		return -EFAULT;
1545	for(i = 0; i < len; i++)
1546		if (psinfo->pr_psargs[i] == 0)
1547			psinfo->pr_psargs[i] = ' ';
1548	psinfo->pr_psargs[len] = 0;
1549
1550	rcu_read_lock();
1551	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1552	rcu_read_unlock();
1553	psinfo->pr_pid = task_pid_vnr(p);
1554	psinfo->pr_pgrp = task_pgrp_vnr(p);
1555	psinfo->pr_sid = task_session_vnr(p);
1556
1557	i = p->state ? ffz(~p->state) + 1 : 0;
1558	psinfo->pr_state = i;
1559	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1560	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1561	psinfo->pr_nice = task_nice(p);
1562	psinfo->pr_flag = p->flags;
1563	rcu_read_lock();
1564	cred = __task_cred(p);
1565	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1566	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1567	rcu_read_unlock();
1568	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1569	
1570	return 0;
1571}
1572
1573static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1574{
1575	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1576	int i = 0;
1577	do
1578		i += 2;
1579	while (auxv[i - 2] != AT_NULL);
1580	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1581}
1582
1583static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1584		const siginfo_t *siginfo)
1585{
1586	mm_segment_t old_fs = get_fs();
1587	set_fs(KERNEL_DS);
1588	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1589	set_fs(old_fs);
1590	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1591}
1592
1593#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1594/*
1595 * Format of NT_FILE note:
1596 *
1597 * long count     -- how many files are mapped
1598 * long page_size -- units for file_ofs
1599 * array of [COUNT] elements of
1600 *   long start
1601 *   long end
1602 *   long file_ofs
1603 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1604 */
1605static int fill_files_note(struct memelfnote *note)
1606{
1607	struct vm_area_struct *vma;
1608	unsigned count, size, names_ofs, remaining, n;
1609	user_long_t *data;
1610	user_long_t *start_end_ofs;
1611	char *name_base, *name_curpos;
1612
1613	/* *Estimated* file count and total data size needed */
1614	count = current->mm->map_count;
1615	if (count > UINT_MAX / 64)
1616		return -EINVAL;
1617	size = count * 64;
1618
1619	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1620 alloc:
1621	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1622		return -EINVAL;
1623	size = round_up(size, PAGE_SIZE);
1624	data = vmalloc(size);
1625	if (!data)
1626		return -ENOMEM;
1627
1628	start_end_ofs = data + 2;
1629	name_base = name_curpos = ((char *)data) + names_ofs;
1630	remaining = size - names_ofs;
1631	count = 0;
1632	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1633		struct file *file;
1634		const char *filename;
1635
1636		file = vma->vm_file;
1637		if (!file)
1638			continue;
1639		filename = file_path(file, name_curpos, remaining);
1640		if (IS_ERR(filename)) {
1641			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1642				vfree(data);
1643				size = size * 5 / 4;
1644				goto alloc;
1645			}
1646			continue;
1647		}
1648
1649		/* file_path() fills at the end, move name down */
1650		/* n = strlen(filename) + 1: */
1651		n = (name_curpos + remaining) - filename;
1652		remaining = filename - name_curpos;
1653		memmove(name_curpos, filename, n);
1654		name_curpos += n;
1655
1656		*start_end_ofs++ = vma->vm_start;
1657		*start_end_ofs++ = vma->vm_end;
1658		*start_end_ofs++ = vma->vm_pgoff;
1659		count++;
1660	}
1661
1662	/* Now we know exact count of files, can store it */
1663	data[0] = count;
1664	data[1] = PAGE_SIZE;
1665	/*
1666	 * Count usually is less than current->mm->map_count,
1667	 * we need to move filenames down.
1668	 */
1669	n = current->mm->map_count - count;
1670	if (n != 0) {
1671		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1672		memmove(name_base - shift_bytes, name_base,
1673			name_curpos - name_base);
1674		name_curpos -= shift_bytes;
1675	}
1676
1677	size = name_curpos - (char *)data;
1678	fill_note(note, "CORE", NT_FILE, size, data);
1679	return 0;
1680}
1681
1682#ifdef CORE_DUMP_USE_REGSET
1683#include <linux/regset.h>
1684
1685struct elf_thread_core_info {
1686	struct elf_thread_core_info *next;
1687	struct task_struct *task;
1688	struct elf_prstatus prstatus;
1689	struct memelfnote notes[0];
1690};
1691
1692struct elf_note_info {
1693	struct elf_thread_core_info *thread;
1694	struct memelfnote psinfo;
1695	struct memelfnote signote;
1696	struct memelfnote auxv;
1697	struct memelfnote files;
1698	user_siginfo_t csigdata;
1699	size_t size;
1700	int thread_notes;
1701};
1702
1703/*
1704 * When a regset has a writeback hook, we call it on each thread before
1705 * dumping user memory.  On register window machines, this makes sure the
1706 * user memory backing the register data is up to date before we read it.
1707 */
1708static void do_thread_regset_writeback(struct task_struct *task,
1709				       const struct user_regset *regset)
1710{
1711	if (regset->writeback)
1712		regset->writeback(task, regset, 1);
1713}
1714
1715#ifndef PRSTATUS_SIZE
1716#define PRSTATUS_SIZE(S, R) sizeof(S)
1717#endif
1718
1719#ifndef SET_PR_FPVALID
1720#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1721#endif
1722
1723static int fill_thread_core_info(struct elf_thread_core_info *t,
1724				 const struct user_regset_view *view,
1725				 long signr, size_t *total)
1726{
1727	unsigned int i;
1728	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1729
1730	/*
1731	 * NT_PRSTATUS is the one special case, because the regset data
1732	 * goes into the pr_reg field inside the note contents, rather
1733	 * than being the whole note contents.  We fill the reset in here.
1734	 * We assume that regset 0 is NT_PRSTATUS.
1735	 */
1736	fill_prstatus(&t->prstatus, t->task, signr);
1737	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1738				    &t->prstatus.pr_reg, NULL);
1739
1740	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1741		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1742	*total += notesize(&t->notes[0]);
1743
1744	do_thread_regset_writeback(t->task, &view->regsets[0]);
1745
1746	/*
1747	 * Each other regset might generate a note too.  For each regset
1748	 * that has no core_note_type or is inactive, we leave t->notes[i]
1749	 * all zero and we'll know to skip writing it later.
1750	 */
1751	for (i = 1; i < view->n; ++i) {
1752		const struct user_regset *regset = &view->regsets[i];
1753		do_thread_regset_writeback(t->task, regset);
1754		if (regset->core_note_type && regset->get &&
1755		    (!regset->active || regset->active(t->task, regset))) {
1756			int ret;
1757			size_t size = regset_size(t->task, regset);
1758			void *data = kmalloc(size, GFP_KERNEL);
1759			if (unlikely(!data))
1760				return 0;
1761			ret = regset->get(t->task, regset,
1762					  0, size, data, NULL);
1763			if (unlikely(ret))
1764				kfree(data);
1765			else {
1766				if (regset->core_note_type != NT_PRFPREG)
1767					fill_note(&t->notes[i], "LINUX",
1768						  regset->core_note_type,
1769						  size, data);
1770				else {
1771					SET_PR_FPVALID(&t->prstatus,
1772							1, regset0_size);
1773					fill_note(&t->notes[i], "CORE",
1774						  NT_PRFPREG, size, data);
1775				}
1776				*total += notesize(&t->notes[i]);
1777			}
1778		}
1779	}
1780
1781	return 1;
1782}
1783
1784static int fill_note_info(struct elfhdr *elf, int phdrs,
1785			  struct elf_note_info *info,
1786			  const siginfo_t *siginfo, struct pt_regs *regs)
1787{
1788	struct task_struct *dump_task = current;
1789	const struct user_regset_view *view = task_user_regset_view(dump_task);
1790	struct elf_thread_core_info *t;
1791	struct elf_prpsinfo *psinfo;
1792	struct core_thread *ct;
1793	unsigned int i;
1794
1795	info->size = 0;
1796	info->thread = NULL;
1797
1798	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1799	if (psinfo == NULL) {
1800		info->psinfo.data = NULL; /* So we don't free this wrongly */
1801		return 0;
1802	}
1803
1804	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1805
1806	/*
1807	 * Figure out how many notes we're going to need for each thread.
1808	 */
1809	info->thread_notes = 0;
1810	for (i = 0; i < view->n; ++i)
1811		if (view->regsets[i].core_note_type != 0)
1812			++info->thread_notes;
1813
1814	/*
1815	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1816	 * since it is our one special case.
1817	 */
1818	if (unlikely(info->thread_notes == 0) ||
1819	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1820		WARN_ON(1);
1821		return 0;
1822	}
1823
1824	/*
1825	 * Initialize the ELF file header.
1826	 */
1827	fill_elf_header(elf, phdrs,
1828			view->e_machine, view->e_flags);
1829
1830	/*
1831	 * Allocate a structure for each thread.
1832	 */
1833	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1834		t = kzalloc(offsetof(struct elf_thread_core_info,
1835				     notes[info->thread_notes]),
1836			    GFP_KERNEL);
1837		if (unlikely(!t))
1838			return 0;
1839
1840		t->task = ct->task;
1841		if (ct->task == dump_task || !info->thread) {
1842			t->next = info->thread;
1843			info->thread = t;
1844		} else {
1845			/*
1846			 * Make sure to keep the original task at
1847			 * the head of the list.
1848			 */
1849			t->next = info->thread->next;
1850			info->thread->next = t;
1851		}
1852	}
1853
1854	/*
1855	 * Now fill in each thread's information.
1856	 */
1857	for (t = info->thread; t != NULL; t = t->next)
1858		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1859			return 0;
1860
1861	/*
1862	 * Fill in the two process-wide notes.
1863	 */
1864	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1865	info->size += notesize(&info->psinfo);
1866
1867	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1868	info->size += notesize(&info->signote);
1869
1870	fill_auxv_note(&info->auxv, current->mm);
1871	info->size += notesize(&info->auxv);
1872
1873	if (fill_files_note(&info->files) == 0)
1874		info->size += notesize(&info->files);
1875
1876	return 1;
1877}
1878
1879static size_t get_note_info_size(struct elf_note_info *info)
1880{
1881	return info->size;
1882}
1883
1884/*
1885 * Write all the notes for each thread.  When writing the first thread, the
1886 * process-wide notes are interleaved after the first thread-specific note.
1887 */
1888static int write_note_info(struct elf_note_info *info,
1889			   struct coredump_params *cprm)
1890{
1891	bool first = true;
1892	struct elf_thread_core_info *t = info->thread;
1893
1894	do {
1895		int i;
1896
1897		if (!writenote(&t->notes[0], cprm))
1898			return 0;
1899
1900		if (first && !writenote(&info->psinfo, cprm))
1901			return 0;
1902		if (first && !writenote(&info->signote, cprm))
1903			return 0;
1904		if (first && !writenote(&info->auxv, cprm))
1905			return 0;
1906		if (first && info->files.data &&
1907				!writenote(&info->files, cprm))
1908			return 0;
1909
1910		for (i = 1; i < info->thread_notes; ++i)
1911			if (t->notes[i].data &&
1912			    !writenote(&t->notes[i], cprm))
1913				return 0;
1914
1915		first = false;
1916		t = t->next;
1917	} while (t);
1918
1919	return 1;
1920}
1921
1922static void free_note_info(struct elf_note_info *info)
1923{
1924	struct elf_thread_core_info *threads = info->thread;
1925	while (threads) {
1926		unsigned int i;
1927		struct elf_thread_core_info *t = threads;
1928		threads = t->next;
1929		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1930		for (i = 1; i < info->thread_notes; ++i)
1931			kfree(t->notes[i].data);
1932		kfree(t);
1933	}
1934	kfree(info->psinfo.data);
1935	vfree(info->files.data);
1936}
1937
1938#else
1939
1940/* Here is the structure in which status of each thread is captured. */
1941struct elf_thread_status
1942{
1943	struct list_head list;
1944	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1945	elf_fpregset_t fpu;		/* NT_PRFPREG */
1946	struct task_struct *thread;
1947#ifdef ELF_CORE_COPY_XFPREGS
1948	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1949#endif
1950	struct memelfnote notes[3];
1951	int num_notes;
1952};
1953
1954/*
1955 * In order to add the specific thread information for the elf file format,
1956 * we need to keep a linked list of every threads pr_status and then create
1957 * a single section for them in the final core file.
1958 */
1959static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1960{
1961	int sz = 0;
1962	struct task_struct *p = t->thread;
1963	t->num_notes = 0;
1964
1965	fill_prstatus(&t->prstatus, p, signr);
1966	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
1967	
1968	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1969		  &(t->prstatus));
1970	t->num_notes++;
1971	sz += notesize(&t->notes[0]);
1972
1973	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1974								&t->fpu))) {
1975		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1976			  &(t->fpu));
1977		t->num_notes++;
1978		sz += notesize(&t->notes[1]);
1979	}
1980
1981#ifdef ELF_CORE_COPY_XFPREGS
1982	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1983		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1984			  sizeof(t->xfpu), &t->xfpu);
1985		t->num_notes++;
1986		sz += notesize(&t->notes[2]);
1987	}
1988#endif	
1989	return sz;
1990}
1991
1992struct elf_note_info {
1993	struct memelfnote *notes;
1994	struct memelfnote *notes_files;
1995	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1996	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1997	struct list_head thread_list;
1998	elf_fpregset_t *fpu;
1999#ifdef ELF_CORE_COPY_XFPREGS
2000	elf_fpxregset_t *xfpu;
2001#endif
2002	user_siginfo_t csigdata;
2003	int thread_status_size;
2004	int numnote;
2005};
2006
2007static int elf_note_info_init(struct elf_note_info *info)
2008{
2009	memset(info, 0, sizeof(*info));
2010	INIT_LIST_HEAD(&info->thread_list);
2011
2012	/* Allocate space for ELF notes */
2013	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
2014	if (!info->notes)
2015		return 0;
2016	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2017	if (!info->psinfo)
2018		return 0;
2019	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2020	if (!info->prstatus)
2021		return 0;
2022	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2023	if (!info->fpu)
2024		return 0;
2025#ifdef ELF_CORE_COPY_XFPREGS
2026	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2027	if (!info->xfpu)
2028		return 0;
2029#endif
2030	return 1;
2031}
2032
2033static int fill_note_info(struct elfhdr *elf, int phdrs,
2034			  struct elf_note_info *info,
2035			  const siginfo_t *siginfo, struct pt_regs *regs)
2036{
2037	struct list_head *t;
2038	struct core_thread *ct;
2039	struct elf_thread_status *ets;
2040
2041	if (!elf_note_info_init(info))
2042		return 0;
2043
2044	for (ct = current->mm->core_state->dumper.next;
2045					ct; ct = ct->next) {
2046		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2047		if (!ets)
2048			return 0;
2049
2050		ets->thread = ct->task;
2051		list_add(&ets->list, &info->thread_list);
2052	}
2053
2054	list_for_each(t, &info->thread_list) {
2055		int sz;
2056
2057		ets = list_entry(t, struct elf_thread_status, list);
2058		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2059		info->thread_status_size += sz;
2060	}
2061	/* now collect the dump for the current */
2062	memset(info->prstatus, 0, sizeof(*info->prstatus));
2063	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2064	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2065
2066	/* Set up header */
2067	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2068
2069	/*
2070	 * Set up the notes in similar form to SVR4 core dumps made
2071	 * with info from their /proc.
2072	 */
2073
2074	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2075		  sizeof(*info->prstatus), info->prstatus);
2076	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2077	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2078		  sizeof(*info->psinfo), info->psinfo);
2079
2080	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2081	fill_auxv_note(info->notes + 3, current->mm);
2082	info->numnote = 4;
2083
2084	if (fill_files_note(info->notes + info->numnote) == 0) {
2085		info->notes_files = info->notes + info->numnote;
2086		info->numnote++;
2087	}
2088
2089	/* Try to dump the FPU. */
2090	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2091							       info->fpu);
2092	if (info->prstatus->pr_fpvalid)
2093		fill_note(info->notes + info->numnote++,
2094			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2095#ifdef ELF_CORE_COPY_XFPREGS
2096	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2097		fill_note(info->notes + info->numnote++,
2098			  "LINUX", ELF_CORE_XFPREG_TYPE,
2099			  sizeof(*info->xfpu), info->xfpu);
2100#endif
2101
2102	return 1;
2103}
2104
2105static size_t get_note_info_size(struct elf_note_info *info)
2106{
2107	int sz = 0;
2108	int i;
2109
2110	for (i = 0; i < info->numnote; i++)
2111		sz += notesize(info->notes + i);
2112
2113	sz += info->thread_status_size;
2114
2115	return sz;
2116}
2117
2118static int write_note_info(struct elf_note_info *info,
2119			   struct coredump_params *cprm)
2120{
2121	int i;
2122	struct list_head *t;
2123
2124	for (i = 0; i < info->numnote; i++)
2125		if (!writenote(info->notes + i, cprm))
2126			return 0;
2127
2128	/* write out the thread status notes section */
2129	list_for_each(t, &info->thread_list) {
2130		struct elf_thread_status *tmp =
2131				list_entry(t, struct elf_thread_status, list);
2132
2133		for (i = 0; i < tmp->num_notes; i++)
2134			if (!writenote(&tmp->notes[i], cprm))
2135				return 0;
2136	}
2137
2138	return 1;
2139}
2140
2141static void free_note_info(struct elf_note_info *info)
2142{
2143	while (!list_empty(&info->thread_list)) {
2144		struct list_head *tmp = info->thread_list.next;
2145		list_del(tmp);
2146		kfree(list_entry(tmp, struct elf_thread_status, list));
2147	}
2148
2149	/* Free data possibly allocated by fill_files_note(): */
2150	if (info->notes_files)
2151		vfree(info->notes_files->data);
2152
2153	kfree(info->prstatus);
2154	kfree(info->psinfo);
2155	kfree(info->notes);
2156	kfree(info->fpu);
2157#ifdef ELF_CORE_COPY_XFPREGS
2158	kfree(info->xfpu);
2159#endif
2160}
2161
2162#endif
2163
2164static struct vm_area_struct *first_vma(struct task_struct *tsk,
2165					struct vm_area_struct *gate_vma)
2166{
2167	struct vm_area_struct *ret = tsk->mm->mmap;
2168
2169	if (ret)
2170		return ret;
2171	return gate_vma;
2172}
2173/*
2174 * Helper function for iterating across a vma list.  It ensures that the caller
2175 * will visit `gate_vma' prior to terminating the search.
2176 */
2177static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2178					struct vm_area_struct *gate_vma)
2179{
2180	struct vm_area_struct *ret;
2181
2182	ret = this_vma->vm_next;
2183	if (ret)
2184		return ret;
2185	if (this_vma == gate_vma)
2186		return NULL;
2187	return gate_vma;
2188}
2189
2190static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2191			     elf_addr_t e_shoff, int segs)
2192{
2193	elf->e_shoff = e_shoff;
2194	elf->e_shentsize = sizeof(*shdr4extnum);
2195	elf->e_shnum = 1;
2196	elf->e_shstrndx = SHN_UNDEF;
2197
2198	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2199
2200	shdr4extnum->sh_type = SHT_NULL;
2201	shdr4extnum->sh_size = elf->e_shnum;
2202	shdr4extnum->sh_link = elf->e_shstrndx;
2203	shdr4extnum->sh_info = segs;
2204}
2205
2206/*
2207 * Actual dumper
2208 *
2209 * This is a two-pass process; first we find the offsets of the bits,
2210 * and then they are actually written out.  If we run out of core limit
2211 * we just truncate.
2212 */
2213static int elf_core_dump(struct coredump_params *cprm)
2214{
2215	int has_dumped = 0;
2216	mm_segment_t fs;
2217	int segs, i;
2218	size_t vma_data_size = 0;
2219	struct vm_area_struct *vma, *gate_vma;
2220	struct elfhdr *elf = NULL;
2221	loff_t offset = 0, dataoff;
2222	struct elf_note_info info = { };
2223	struct elf_phdr *phdr4note = NULL;
2224	struct elf_shdr *shdr4extnum = NULL;
2225	Elf_Half e_phnum;
2226	elf_addr_t e_shoff;
2227	elf_addr_t *vma_filesz = NULL;
2228
2229	/*
2230	 * We no longer stop all VM operations.
2231	 * 
2232	 * This is because those proceses that could possibly change map_count
2233	 * or the mmap / vma pages are now blocked in do_exit on current
2234	 * finishing this core dump.
2235	 *
2236	 * Only ptrace can touch these memory addresses, but it doesn't change
2237	 * the map_count or the pages allocated. So no possibility of crashing
2238	 * exists while dumping the mm->vm_next areas to the core file.
2239	 */
2240  
2241	/* alloc memory for large data structures: too large to be on stack */
2242	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2243	if (!elf)
2244		goto out;
2245	/*
2246	 * The number of segs are recored into ELF header as 16bit value.
2247	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2248	 */
2249	segs = current->mm->map_count;
2250	segs += elf_core_extra_phdrs();
2251
2252	gate_vma = get_gate_vma(current->mm);
2253	if (gate_vma != NULL)
2254		segs++;
2255
2256	/* for notes section */
2257	segs++;
2258
2259	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2260	 * this, kernel supports extended numbering. Have a look at
2261	 * include/linux/elf.h for further information. */
2262	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2263
2264	/*
2265	 * Collect all the non-memory information about the process for the
2266	 * notes.  This also sets up the file header.
2267	 */
2268	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2269		goto cleanup;
2270
2271	has_dumped = 1;
2272
2273	fs = get_fs();
2274	set_fs(KERNEL_DS);
2275
2276	offset += sizeof(*elf);				/* Elf header */
2277	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2278
2279	/* Write notes phdr entry */
2280	{
2281		size_t sz = get_note_info_size(&info);
2282
2283		sz += elf_coredump_extra_notes_size();
2284
2285		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2286		if (!phdr4note)
2287			goto end_coredump;
2288
2289		fill_elf_note_phdr(phdr4note, sz, offset);
2290		offset += sz;
2291	}
2292
2293	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2294
2295	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2296		goto end_coredump;
2297	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2298	if (!vma_filesz)
2299		goto end_coredump;
2300
2301	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2302			vma = next_vma(vma, gate_vma)) {
2303		unsigned long dump_size;
2304
2305		dump_size = vma_dump_size(vma, cprm->mm_flags);
2306		vma_filesz[i++] = dump_size;
2307		vma_data_size += dump_size;
2308	}
2309
2310	offset += vma_data_size;
2311	offset += elf_core_extra_data_size();
2312	e_shoff = offset;
2313
2314	if (e_phnum == PN_XNUM) {
2315		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2316		if (!shdr4extnum)
2317			goto end_coredump;
2318		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2319	}
2320
2321	offset = dataoff;
2322
2323	if (!dump_emit(cprm, elf, sizeof(*elf)))
2324		goto end_coredump;
2325
2326	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2327		goto end_coredump;
2328
2329	/* Write program headers for segments dump */
2330	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2331			vma = next_vma(vma, gate_vma)) {
2332		struct elf_phdr phdr;
2333
2334		phdr.p_type = PT_LOAD;
2335		phdr.p_offset = offset;
2336		phdr.p_vaddr = vma->vm_start;
2337		phdr.p_paddr = 0;
2338		phdr.p_filesz = vma_filesz[i++];
2339		phdr.p_memsz = vma->vm_end - vma->vm_start;
2340		offset += phdr.p_filesz;
2341		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2342		if (vma->vm_flags & VM_WRITE)
2343			phdr.p_flags |= PF_W;
2344		if (vma->vm_flags & VM_EXEC)
2345			phdr.p_flags |= PF_X;
2346		phdr.p_align = ELF_EXEC_PAGESIZE;
2347
2348		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2349			goto end_coredump;
2350	}
2351
2352	if (!elf_core_write_extra_phdrs(cprm, offset))
2353		goto end_coredump;
2354
2355 	/* write out the notes section */
2356	if (!write_note_info(&info, cprm))
2357		goto end_coredump;
2358
2359	if (elf_coredump_extra_notes_write(cprm))
2360		goto end_coredump;
2361
2362	/* Align to page */
2363	if (!dump_skip(cprm, dataoff - cprm->pos))
2364		goto end_coredump;
2365
2366	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2367			vma = next_vma(vma, gate_vma)) {
2368		unsigned long addr;
2369		unsigned long end;
2370
2371		end = vma->vm_start + vma_filesz[i++];
2372
2373		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2374			struct page *page;
2375			int stop;
2376
2377			page = get_dump_page(addr);
2378			if (page) {
2379				void *kaddr = kmap(page);
2380				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2381				kunmap(page);
2382				put_page(page);
2383			} else
2384				stop = !dump_skip(cprm, PAGE_SIZE);
2385			if (stop)
2386				goto end_coredump;
2387		}
2388	}
2389	dump_truncate(cprm);
2390
2391	if (!elf_core_write_extra_data(cprm))
2392		goto end_coredump;
2393
2394	if (e_phnum == PN_XNUM) {
2395		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2396			goto end_coredump;
2397	}
2398
2399end_coredump:
2400	set_fs(fs);
2401
2402cleanup:
2403	free_note_info(&info);
2404	kfree(shdr4extnum);
2405	vfree(vma_filesz);
2406	kfree(phdr4note);
2407	kfree(elf);
2408out:
2409	return has_dumped;
2410}
2411
2412#endif		/* CONFIG_ELF_CORE */
2413
2414static int __init init_elf_binfmt(void)
2415{
2416	register_binfmt(&elf_format);
2417	return 0;
2418}
2419
2420static void __exit exit_elf_binfmt(void)
2421{
2422	/* Remove the COFF and ELF loaders. */
2423	unregister_binfmt(&elf_format);
2424}
2425
2426core_initcall(init_elf_binfmt);
2427module_exit(exit_elf_binfmt);
2428MODULE_LICENSE("GPL");