Loading...
1/*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/fs.h>
15#include <linux/mm.h>
16#include <linux/mman.h>
17#include <linux/errno.h>
18#include <linux/signal.h>
19#include <linux/binfmts.h>
20#include <linux/string.h>
21#include <linux/file.h>
22#include <linux/slab.h>
23#include <linux/personality.h>
24#include <linux/elfcore.h>
25#include <linux/init.h>
26#include <linux/highuid.h>
27#include <linux/compiler.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
30#include <linux/vmalloc.h>
31#include <linux/security.h>
32#include <linux/random.h>
33#include <linux/elf.h>
34#include <linux/elf-randomize.h>
35#include <linux/utsname.h>
36#include <linux/coredump.h>
37#include <linux/sched.h>
38#include <linux/dax.h>
39#include <linux/uaccess.h>
40#include <asm/param.h>
41#include <asm/page.h>
42
43#ifndef user_long_t
44#define user_long_t long
45#endif
46#ifndef user_siginfo_t
47#define user_siginfo_t siginfo_t
48#endif
49
50static int load_elf_binary(struct linux_binprm *bprm);
51static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
52 int, int, unsigned long);
53
54#ifdef CONFIG_USELIB
55static int load_elf_library(struct file *);
56#else
57#define load_elf_library NULL
58#endif
59
60/*
61 * If we don't support core dumping, then supply a NULL so we
62 * don't even try.
63 */
64#ifdef CONFIG_ELF_CORE
65static int elf_core_dump(struct coredump_params *cprm);
66#else
67#define elf_core_dump NULL
68#endif
69
70#if ELF_EXEC_PAGESIZE > PAGE_SIZE
71#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
72#else
73#define ELF_MIN_ALIGN PAGE_SIZE
74#endif
75
76#ifndef ELF_CORE_EFLAGS
77#define ELF_CORE_EFLAGS 0
78#endif
79
80#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
83
84static struct linux_binfmt elf_format = {
85 .module = THIS_MODULE,
86 .load_binary = load_elf_binary,
87 .load_shlib = load_elf_library,
88 .core_dump = elf_core_dump,
89 .min_coredump = ELF_EXEC_PAGESIZE,
90};
91
92#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
93
94static int set_brk(unsigned long start, unsigned long end)
95{
96 start = ELF_PAGEALIGN(start);
97 end = ELF_PAGEALIGN(end);
98 if (end > start) {
99 int error = vm_brk(start, end - start);
100 if (error)
101 return error;
102 }
103 current->mm->start_brk = current->mm->brk = end;
104 return 0;
105}
106
107/* We need to explicitly zero any fractional pages
108 after the data section (i.e. bss). This would
109 contain the junk from the file that should not
110 be in memory
111 */
112static int padzero(unsigned long elf_bss)
113{
114 unsigned long nbyte;
115
116 nbyte = ELF_PAGEOFFSET(elf_bss);
117 if (nbyte) {
118 nbyte = ELF_MIN_ALIGN - nbyte;
119 if (clear_user((void __user *) elf_bss, nbyte))
120 return -EFAULT;
121 }
122 return 0;
123}
124
125/* Let's use some macros to make this stack manipulation a little clearer */
126#ifdef CONFIG_STACK_GROWSUP
127#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128#define STACK_ROUND(sp, items) \
129 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
130#define STACK_ALLOC(sp, len) ({ \
131 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
132 old_sp; })
133#else
134#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135#define STACK_ROUND(sp, items) \
136 (((unsigned long) (sp - items)) &~ 15UL)
137#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
138#endif
139
140#ifndef ELF_BASE_PLATFORM
141/*
142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 */
146#define ELF_BASE_PLATFORM NULL
147#endif
148
149static int
150create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
151 unsigned long load_addr, unsigned long interp_load_addr)
152{
153 unsigned long p = bprm->p;
154 int argc = bprm->argc;
155 int envc = bprm->envc;
156 elf_addr_t __user *argv;
157 elf_addr_t __user *envp;
158 elf_addr_t __user *sp;
159 elf_addr_t __user *u_platform;
160 elf_addr_t __user *u_base_platform;
161 elf_addr_t __user *u_rand_bytes;
162 const char *k_platform = ELF_PLATFORM;
163 const char *k_base_platform = ELF_BASE_PLATFORM;
164 unsigned char k_rand_bytes[16];
165 int items;
166 elf_addr_t *elf_info;
167 int ei_index = 0;
168 const struct cred *cred = current_cred();
169 struct vm_area_struct *vma;
170
171 /*
172 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 * evictions by the processes running on the same package. One
174 * thing we can do is to shuffle the initial stack for them.
175 */
176
177 p = arch_align_stack(p);
178
179 /*
180 * If this architecture has a platform capability string, copy it
181 * to userspace. In some cases (Sparc), this info is impossible
182 * for userspace to get any other way, in others (i386) it is
183 * merely difficult.
184 */
185 u_platform = NULL;
186 if (k_platform) {
187 size_t len = strlen(k_platform) + 1;
188
189 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 if (__copy_to_user(u_platform, k_platform, len))
191 return -EFAULT;
192 }
193
194 /*
195 * If this architecture has a "base" platform capability
196 * string, copy it to userspace.
197 */
198 u_base_platform = NULL;
199 if (k_base_platform) {
200 size_t len = strlen(k_base_platform) + 1;
201
202 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_base_platform, k_base_platform, len))
204 return -EFAULT;
205 }
206
207 /*
208 * Generate 16 random bytes for userspace PRNG seeding.
209 */
210 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
211 u_rand_bytes = (elf_addr_t __user *)
212 STACK_ALLOC(p, sizeof(k_rand_bytes));
213 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
214 return -EFAULT;
215
216 /* Create the ELF interpreter info */
217 elf_info = (elf_addr_t *)current->mm->saved_auxv;
218 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
219#define NEW_AUX_ENT(id, val) \
220 do { \
221 elf_info[ei_index++] = id; \
222 elf_info[ei_index++] = val; \
223 } while (0)
224
225#ifdef ARCH_DLINFO
226 /*
227 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * AUXV.
229 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 * ARCH_DLINFO changes
231 */
232 ARCH_DLINFO;
233#endif
234 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
235 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
236 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
237 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
238 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
239 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
240 NEW_AUX_ENT(AT_BASE, interp_load_addr);
241 NEW_AUX_ENT(AT_FLAGS, 0);
242 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
243 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
244 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
245 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
246 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
247 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
248 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
249#ifdef ELF_HWCAP2
250 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
251#endif
252 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
253 if (k_platform) {
254 NEW_AUX_ENT(AT_PLATFORM,
255 (elf_addr_t)(unsigned long)u_platform);
256 }
257 if (k_base_platform) {
258 NEW_AUX_ENT(AT_BASE_PLATFORM,
259 (elf_addr_t)(unsigned long)u_base_platform);
260 }
261 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
262 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
263 }
264#undef NEW_AUX_ENT
265 /* AT_NULL is zero; clear the rest too */
266 memset(&elf_info[ei_index], 0,
267 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
268
269 /* And advance past the AT_NULL entry. */
270 ei_index += 2;
271
272 sp = STACK_ADD(p, ei_index);
273
274 items = (argc + 1) + (envc + 1) + 1;
275 bprm->p = STACK_ROUND(sp, items);
276
277 /* Point sp at the lowest address on the stack */
278#ifdef CONFIG_STACK_GROWSUP
279 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
280 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
281#else
282 sp = (elf_addr_t __user *)bprm->p;
283#endif
284
285
286 /*
287 * Grow the stack manually; some architectures have a limit on how
288 * far ahead a user-space access may be in order to grow the stack.
289 */
290 vma = find_extend_vma(current->mm, bprm->p);
291 if (!vma)
292 return -EFAULT;
293
294 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 if (__put_user(argc, sp++))
296 return -EFAULT;
297 argv = sp;
298 envp = argv + argc + 1;
299
300 /* Populate argv and envp */
301 p = current->mm->arg_end = current->mm->arg_start;
302 while (argc-- > 0) {
303 size_t len;
304 if (__put_user((elf_addr_t)p, argv++))
305 return -EFAULT;
306 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
307 if (!len || len > MAX_ARG_STRLEN)
308 return -EINVAL;
309 p += len;
310 }
311 if (__put_user(0, argv))
312 return -EFAULT;
313 current->mm->arg_end = current->mm->env_start = p;
314 while (envc-- > 0) {
315 size_t len;
316 if (__put_user((elf_addr_t)p, envp++))
317 return -EFAULT;
318 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
319 if (!len || len > MAX_ARG_STRLEN)
320 return -EINVAL;
321 p += len;
322 }
323 if (__put_user(0, envp))
324 return -EFAULT;
325 current->mm->env_end = p;
326
327 /* Put the elf_info on the stack in the right place. */
328 sp = (elf_addr_t __user *)envp + 1;
329 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
330 return -EFAULT;
331 return 0;
332}
333
334#ifndef elf_map
335
336static unsigned long elf_map(struct file *filep, unsigned long addr,
337 struct elf_phdr *eppnt, int prot, int type,
338 unsigned long total_size)
339{
340 unsigned long map_addr;
341 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
342 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
343 addr = ELF_PAGESTART(addr);
344 size = ELF_PAGEALIGN(size);
345
346 /* mmap() will return -EINVAL if given a zero size, but a
347 * segment with zero filesize is perfectly valid */
348 if (!size)
349 return addr;
350
351 /*
352 * total_size is the size of the ELF (interpreter) image.
353 * The _first_ mmap needs to know the full size, otherwise
354 * randomization might put this image into an overlapping
355 * position with the ELF binary image. (since size < total_size)
356 * So we first map the 'big' image - and unmap the remainder at
357 * the end. (which unmap is needed for ELF images with holes.)
358 */
359 if (total_size) {
360 total_size = ELF_PAGEALIGN(total_size);
361 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
362 if (!BAD_ADDR(map_addr))
363 vm_munmap(map_addr+size, total_size-size);
364 } else
365 map_addr = vm_mmap(filep, addr, size, prot, type, off);
366
367 return(map_addr);
368}
369
370#endif /* !elf_map */
371
372static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
373{
374 int i, first_idx = -1, last_idx = -1;
375
376 for (i = 0; i < nr; i++) {
377 if (cmds[i].p_type == PT_LOAD) {
378 last_idx = i;
379 if (first_idx == -1)
380 first_idx = i;
381 }
382 }
383 if (first_idx == -1)
384 return 0;
385
386 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
387 ELF_PAGESTART(cmds[first_idx].p_vaddr);
388}
389
390/**
391 * load_elf_phdrs() - load ELF program headers
392 * @elf_ex: ELF header of the binary whose program headers should be loaded
393 * @elf_file: the opened ELF binary file
394 *
395 * Loads ELF program headers from the binary file elf_file, which has the ELF
396 * header pointed to by elf_ex, into a newly allocated array. The caller is
397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
398 */
399static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
400 struct file *elf_file)
401{
402 struct elf_phdr *elf_phdata = NULL;
403 int retval, size, err = -1;
404
405 /*
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
408 */
409 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
410 goto out;
411
412 /* Sanity check the number of program headers... */
413 if (elf_ex->e_phnum < 1 ||
414 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
415 goto out;
416
417 /* ...and their total size. */
418 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
419 if (size > ELF_MIN_ALIGN)
420 goto out;
421
422 elf_phdata = kmalloc(size, GFP_KERNEL);
423 if (!elf_phdata)
424 goto out;
425
426 /* Read in the program headers */
427 retval = kernel_read(elf_file, elf_ex->e_phoff,
428 (char *)elf_phdata, size);
429 if (retval != size) {
430 err = (retval < 0) ? retval : -EIO;
431 goto out;
432 }
433
434 /* Success! */
435 err = 0;
436out:
437 if (err) {
438 kfree(elf_phdata);
439 elf_phdata = NULL;
440 }
441 return elf_phdata;
442}
443
444#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
445
446/**
447 * struct arch_elf_state - arch-specific ELF loading state
448 *
449 * This structure is used to preserve architecture specific data during
450 * the loading of an ELF file, throughout the checking of architecture
451 * specific ELF headers & through to the point where the ELF load is
452 * known to be proceeding (ie. SET_PERSONALITY).
453 *
454 * This implementation is a dummy for architectures which require no
455 * specific state.
456 */
457struct arch_elf_state {
458};
459
460#define INIT_ARCH_ELF_STATE {}
461
462/**
463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464 * @ehdr: The main ELF header
465 * @phdr: The program header to check
466 * @elf: The open ELF file
467 * @is_interp: True if the phdr is from the interpreter of the ELF being
468 * loaded, else false.
469 * @state: Architecture-specific state preserved throughout the process
470 * of loading the ELF.
471 *
472 * Inspects the program header phdr to validate its correctness and/or
473 * suitability for the system. Called once per ELF program header in the
474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
475 * interpreter.
476 *
477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478 * with that return code.
479 */
480static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
481 struct elf_phdr *phdr,
482 struct file *elf, bool is_interp,
483 struct arch_elf_state *state)
484{
485 /* Dummy implementation, always proceed */
486 return 0;
487}
488
489/**
490 * arch_check_elf() - check an ELF executable
491 * @ehdr: The main ELF header
492 * @has_interp: True if the ELF has an interpreter, else false.
493 * @interp_ehdr: The interpreter's ELF header
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
496 *
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
500 *
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
503 */
504static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
505 struct elfhdr *interp_ehdr,
506 struct arch_elf_state *state)
507{
508 /* Dummy implementation, always proceed */
509 return 0;
510}
511
512#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
513
514/* This is much more generalized than the library routine read function,
515 so we keep this separate. Technically the library read function
516 is only provided so that we can read a.out libraries that have
517 an ELF header */
518
519static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
520 struct file *interpreter, unsigned long *interp_map_addr,
521 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
522{
523 struct elf_phdr *eppnt;
524 unsigned long load_addr = 0;
525 int load_addr_set = 0;
526 unsigned long last_bss = 0, elf_bss = 0;
527 unsigned long error = ~0UL;
528 unsigned long total_size;
529 int i;
530
531 /* First of all, some simple consistency checks */
532 if (interp_elf_ex->e_type != ET_EXEC &&
533 interp_elf_ex->e_type != ET_DYN)
534 goto out;
535 if (!elf_check_arch(interp_elf_ex))
536 goto out;
537 if (!interpreter->f_op->mmap)
538 goto out;
539
540 total_size = total_mapping_size(interp_elf_phdata,
541 interp_elf_ex->e_phnum);
542 if (!total_size) {
543 error = -EINVAL;
544 goto out;
545 }
546
547 eppnt = interp_elf_phdata;
548 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
549 if (eppnt->p_type == PT_LOAD) {
550 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
551 int elf_prot = 0;
552 unsigned long vaddr = 0;
553 unsigned long k, map_addr;
554
555 if (eppnt->p_flags & PF_R)
556 elf_prot = PROT_READ;
557 if (eppnt->p_flags & PF_W)
558 elf_prot |= PROT_WRITE;
559 if (eppnt->p_flags & PF_X)
560 elf_prot |= PROT_EXEC;
561 vaddr = eppnt->p_vaddr;
562 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
563 elf_type |= MAP_FIXED;
564 else if (no_base && interp_elf_ex->e_type == ET_DYN)
565 load_addr = -vaddr;
566
567 map_addr = elf_map(interpreter, load_addr + vaddr,
568 eppnt, elf_prot, elf_type, total_size);
569 total_size = 0;
570 if (!*interp_map_addr)
571 *interp_map_addr = map_addr;
572 error = map_addr;
573 if (BAD_ADDR(map_addr))
574 goto out;
575
576 if (!load_addr_set &&
577 interp_elf_ex->e_type == ET_DYN) {
578 load_addr = map_addr - ELF_PAGESTART(vaddr);
579 load_addr_set = 1;
580 }
581
582 /*
583 * Check to see if the section's size will overflow the
584 * allowed task size. Note that p_filesz must always be
585 * <= p_memsize so it's only necessary to check p_memsz.
586 */
587 k = load_addr + eppnt->p_vaddr;
588 if (BAD_ADDR(k) ||
589 eppnt->p_filesz > eppnt->p_memsz ||
590 eppnt->p_memsz > TASK_SIZE ||
591 TASK_SIZE - eppnt->p_memsz < k) {
592 error = -ENOMEM;
593 goto out;
594 }
595
596 /*
597 * Find the end of the file mapping for this phdr, and
598 * keep track of the largest address we see for this.
599 */
600 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
601 if (k > elf_bss)
602 elf_bss = k;
603
604 /*
605 * Do the same thing for the memory mapping - between
606 * elf_bss and last_bss is the bss section.
607 */
608 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
609 if (k > last_bss)
610 last_bss = k;
611 }
612 }
613
614 /*
615 * Now fill out the bss section: first pad the last page from
616 * the file up to the page boundary, and zero it from elf_bss
617 * up to the end of the page.
618 */
619 if (padzero(elf_bss)) {
620 error = -EFAULT;
621 goto out;
622 }
623 /*
624 * Next, align both the file and mem bss up to the page size,
625 * since this is where elf_bss was just zeroed up to, and where
626 * last_bss will end after the vm_brk() below.
627 */
628 elf_bss = ELF_PAGEALIGN(elf_bss);
629 last_bss = ELF_PAGEALIGN(last_bss);
630 /* Finally, if there is still more bss to allocate, do it. */
631 if (last_bss > elf_bss) {
632 error = vm_brk(elf_bss, last_bss - elf_bss);
633 if (error)
634 goto out;
635 }
636
637 error = load_addr;
638out:
639 return error;
640}
641
642/*
643 * These are the functions used to load ELF style executables and shared
644 * libraries. There is no binary dependent code anywhere else.
645 */
646
647#ifndef STACK_RND_MASK
648#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
649#endif
650
651static unsigned long randomize_stack_top(unsigned long stack_top)
652{
653 unsigned long random_variable = 0;
654
655 if ((current->flags & PF_RANDOMIZE) &&
656 !(current->personality & ADDR_NO_RANDOMIZE)) {
657 random_variable = get_random_long();
658 random_variable &= STACK_RND_MASK;
659 random_variable <<= PAGE_SHIFT;
660 }
661#ifdef CONFIG_STACK_GROWSUP
662 return PAGE_ALIGN(stack_top) + random_variable;
663#else
664 return PAGE_ALIGN(stack_top) - random_variable;
665#endif
666}
667
668static int load_elf_binary(struct linux_binprm *bprm)
669{
670 struct file *interpreter = NULL; /* to shut gcc up */
671 unsigned long load_addr = 0, load_bias = 0;
672 int load_addr_set = 0;
673 char * elf_interpreter = NULL;
674 unsigned long error;
675 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
676 unsigned long elf_bss, elf_brk;
677 int retval, i;
678 unsigned long elf_entry;
679 unsigned long interp_load_addr = 0;
680 unsigned long start_code, end_code, start_data, end_data;
681 unsigned long reloc_func_desc __maybe_unused = 0;
682 int executable_stack = EXSTACK_DEFAULT;
683 struct pt_regs *regs = current_pt_regs();
684 struct {
685 struct elfhdr elf_ex;
686 struct elfhdr interp_elf_ex;
687 } *loc;
688 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
689
690 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
691 if (!loc) {
692 retval = -ENOMEM;
693 goto out_ret;
694 }
695
696 /* Get the exec-header */
697 loc->elf_ex = *((struct elfhdr *)bprm->buf);
698
699 retval = -ENOEXEC;
700 /* First of all, some simple consistency checks */
701 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
702 goto out;
703
704 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
705 goto out;
706 if (!elf_check_arch(&loc->elf_ex))
707 goto out;
708 if (!bprm->file->f_op->mmap)
709 goto out;
710
711 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
712 if (!elf_phdata)
713 goto out;
714
715 elf_ppnt = elf_phdata;
716 elf_bss = 0;
717 elf_brk = 0;
718
719 start_code = ~0UL;
720 end_code = 0;
721 start_data = 0;
722 end_data = 0;
723
724 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
725 if (elf_ppnt->p_type == PT_INTERP) {
726 /* This is the program interpreter used for
727 * shared libraries - for now assume that this
728 * is an a.out format binary
729 */
730 retval = -ENOEXEC;
731 if (elf_ppnt->p_filesz > PATH_MAX ||
732 elf_ppnt->p_filesz < 2)
733 goto out_free_ph;
734
735 retval = -ENOMEM;
736 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
737 GFP_KERNEL);
738 if (!elf_interpreter)
739 goto out_free_ph;
740
741 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
742 elf_interpreter,
743 elf_ppnt->p_filesz);
744 if (retval != elf_ppnt->p_filesz) {
745 if (retval >= 0)
746 retval = -EIO;
747 goto out_free_interp;
748 }
749 /* make sure path is NULL terminated */
750 retval = -ENOEXEC;
751 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
752 goto out_free_interp;
753
754 interpreter = open_exec(elf_interpreter);
755 retval = PTR_ERR(interpreter);
756 if (IS_ERR(interpreter))
757 goto out_free_interp;
758
759 /*
760 * If the binary is not readable then enforce
761 * mm->dumpable = 0 regardless of the interpreter's
762 * permissions.
763 */
764 would_dump(bprm, interpreter);
765
766 /* Get the exec headers */
767 retval = kernel_read(interpreter, 0,
768 (void *)&loc->interp_elf_ex,
769 sizeof(loc->interp_elf_ex));
770 if (retval != sizeof(loc->interp_elf_ex)) {
771 if (retval >= 0)
772 retval = -EIO;
773 goto out_free_dentry;
774 }
775
776 break;
777 }
778 elf_ppnt++;
779 }
780
781 elf_ppnt = elf_phdata;
782 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
783 switch (elf_ppnt->p_type) {
784 case PT_GNU_STACK:
785 if (elf_ppnt->p_flags & PF_X)
786 executable_stack = EXSTACK_ENABLE_X;
787 else
788 executable_stack = EXSTACK_DISABLE_X;
789 break;
790
791 case PT_LOPROC ... PT_HIPROC:
792 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
793 bprm->file, false,
794 &arch_state);
795 if (retval)
796 goto out_free_dentry;
797 break;
798 }
799
800 /* Some simple consistency checks for the interpreter */
801 if (elf_interpreter) {
802 retval = -ELIBBAD;
803 /* Not an ELF interpreter */
804 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
805 goto out_free_dentry;
806 /* Verify the interpreter has a valid arch */
807 if (!elf_check_arch(&loc->interp_elf_ex))
808 goto out_free_dentry;
809
810 /* Load the interpreter program headers */
811 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
812 interpreter);
813 if (!interp_elf_phdata)
814 goto out_free_dentry;
815
816 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
817 elf_ppnt = interp_elf_phdata;
818 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
819 switch (elf_ppnt->p_type) {
820 case PT_LOPROC ... PT_HIPROC:
821 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
822 elf_ppnt, interpreter,
823 true, &arch_state);
824 if (retval)
825 goto out_free_dentry;
826 break;
827 }
828 }
829
830 /*
831 * Allow arch code to reject the ELF at this point, whilst it's
832 * still possible to return an error to the code that invoked
833 * the exec syscall.
834 */
835 retval = arch_check_elf(&loc->elf_ex,
836 !!interpreter, &loc->interp_elf_ex,
837 &arch_state);
838 if (retval)
839 goto out_free_dentry;
840
841 /* Flush all traces of the currently running executable */
842 retval = flush_old_exec(bprm);
843 if (retval)
844 goto out_free_dentry;
845
846 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
847 may depend on the personality. */
848 SET_PERSONALITY2(loc->elf_ex, &arch_state);
849 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
850 current->personality |= READ_IMPLIES_EXEC;
851
852 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
853 current->flags |= PF_RANDOMIZE;
854
855 setup_new_exec(bprm);
856 install_exec_creds(bprm);
857
858 /* Do this so that we can load the interpreter, if need be. We will
859 change some of these later */
860 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
861 executable_stack);
862 if (retval < 0)
863 goto out_free_dentry;
864
865 current->mm->start_stack = bprm->p;
866
867 /* Now we do a little grungy work by mmapping the ELF image into
868 the correct location in memory. */
869 for(i = 0, elf_ppnt = elf_phdata;
870 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
871 int elf_prot = 0, elf_flags;
872 unsigned long k, vaddr;
873 unsigned long total_size = 0;
874
875 if (elf_ppnt->p_type != PT_LOAD)
876 continue;
877
878 if (unlikely (elf_brk > elf_bss)) {
879 unsigned long nbyte;
880
881 /* There was a PT_LOAD segment with p_memsz > p_filesz
882 before this one. Map anonymous pages, if needed,
883 and clear the area. */
884 retval = set_brk(elf_bss + load_bias,
885 elf_brk + load_bias);
886 if (retval)
887 goto out_free_dentry;
888 nbyte = ELF_PAGEOFFSET(elf_bss);
889 if (nbyte) {
890 nbyte = ELF_MIN_ALIGN - nbyte;
891 if (nbyte > elf_brk - elf_bss)
892 nbyte = elf_brk - elf_bss;
893 if (clear_user((void __user *)elf_bss +
894 load_bias, nbyte)) {
895 /*
896 * This bss-zeroing can fail if the ELF
897 * file specifies odd protections. So
898 * we don't check the return value
899 */
900 }
901 }
902 }
903
904 if (elf_ppnt->p_flags & PF_R)
905 elf_prot |= PROT_READ;
906 if (elf_ppnt->p_flags & PF_W)
907 elf_prot |= PROT_WRITE;
908 if (elf_ppnt->p_flags & PF_X)
909 elf_prot |= PROT_EXEC;
910
911 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
912
913 vaddr = elf_ppnt->p_vaddr;
914 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
915 elf_flags |= MAP_FIXED;
916 } else if (loc->elf_ex.e_type == ET_DYN) {
917 /* Try and get dynamic programs out of the way of the
918 * default mmap base, as well as whatever program they
919 * might try to exec. This is because the brk will
920 * follow the loader, and is not movable. */
921 load_bias = ELF_ET_DYN_BASE - vaddr;
922 if (current->flags & PF_RANDOMIZE)
923 load_bias += arch_mmap_rnd();
924 load_bias = ELF_PAGESTART(load_bias);
925 total_size = total_mapping_size(elf_phdata,
926 loc->elf_ex.e_phnum);
927 if (!total_size) {
928 retval = -EINVAL;
929 goto out_free_dentry;
930 }
931 }
932
933 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
934 elf_prot, elf_flags, total_size);
935 if (BAD_ADDR(error)) {
936 retval = IS_ERR((void *)error) ?
937 PTR_ERR((void*)error) : -EINVAL;
938 goto out_free_dentry;
939 }
940
941 if (!load_addr_set) {
942 load_addr_set = 1;
943 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
944 if (loc->elf_ex.e_type == ET_DYN) {
945 load_bias += error -
946 ELF_PAGESTART(load_bias + vaddr);
947 load_addr += load_bias;
948 reloc_func_desc = load_bias;
949 }
950 }
951 k = elf_ppnt->p_vaddr;
952 if (k < start_code)
953 start_code = k;
954 if (start_data < k)
955 start_data = k;
956
957 /*
958 * Check to see if the section's size will overflow the
959 * allowed task size. Note that p_filesz must always be
960 * <= p_memsz so it is only necessary to check p_memsz.
961 */
962 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
963 elf_ppnt->p_memsz > TASK_SIZE ||
964 TASK_SIZE - elf_ppnt->p_memsz < k) {
965 /* set_brk can never work. Avoid overflows. */
966 retval = -EINVAL;
967 goto out_free_dentry;
968 }
969
970 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
971
972 if (k > elf_bss)
973 elf_bss = k;
974 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
975 end_code = k;
976 if (end_data < k)
977 end_data = k;
978 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
979 if (k > elf_brk)
980 elf_brk = k;
981 }
982
983 loc->elf_ex.e_entry += load_bias;
984 elf_bss += load_bias;
985 elf_brk += load_bias;
986 start_code += load_bias;
987 end_code += load_bias;
988 start_data += load_bias;
989 end_data += load_bias;
990
991 /* Calling set_brk effectively mmaps the pages that we need
992 * for the bss and break sections. We must do this before
993 * mapping in the interpreter, to make sure it doesn't wind
994 * up getting placed where the bss needs to go.
995 */
996 retval = set_brk(elf_bss, elf_brk);
997 if (retval)
998 goto out_free_dentry;
999 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1000 retval = -EFAULT; /* Nobody gets to see this, but.. */
1001 goto out_free_dentry;
1002 }
1003
1004 if (elf_interpreter) {
1005 unsigned long interp_map_addr = 0;
1006
1007 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1008 interpreter,
1009 &interp_map_addr,
1010 load_bias, interp_elf_phdata);
1011 if (!IS_ERR((void *)elf_entry)) {
1012 /*
1013 * load_elf_interp() returns relocation
1014 * adjustment
1015 */
1016 interp_load_addr = elf_entry;
1017 elf_entry += loc->interp_elf_ex.e_entry;
1018 }
1019 if (BAD_ADDR(elf_entry)) {
1020 retval = IS_ERR((void *)elf_entry) ?
1021 (int)elf_entry : -EINVAL;
1022 goto out_free_dentry;
1023 }
1024 reloc_func_desc = interp_load_addr;
1025
1026 allow_write_access(interpreter);
1027 fput(interpreter);
1028 kfree(elf_interpreter);
1029 } else {
1030 elf_entry = loc->elf_ex.e_entry;
1031 if (BAD_ADDR(elf_entry)) {
1032 retval = -EINVAL;
1033 goto out_free_dentry;
1034 }
1035 }
1036
1037 kfree(interp_elf_phdata);
1038 kfree(elf_phdata);
1039
1040 set_binfmt(&elf_format);
1041
1042#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1044 if (retval < 0)
1045 goto out;
1046#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1047
1048 retval = create_elf_tables(bprm, &loc->elf_ex,
1049 load_addr, interp_load_addr);
1050 if (retval < 0)
1051 goto out;
1052 /* N.B. passed_fileno might not be initialized? */
1053 current->mm->end_code = end_code;
1054 current->mm->start_code = start_code;
1055 current->mm->start_data = start_data;
1056 current->mm->end_data = end_data;
1057 current->mm->start_stack = bprm->p;
1058
1059 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1060 current->mm->brk = current->mm->start_brk =
1061 arch_randomize_brk(current->mm);
1062#ifdef compat_brk_randomized
1063 current->brk_randomized = 1;
1064#endif
1065 }
1066
1067 if (current->personality & MMAP_PAGE_ZERO) {
1068 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1069 and some applications "depend" upon this behavior.
1070 Since we do not have the power to recompile these, we
1071 emulate the SVr4 behavior. Sigh. */
1072 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1073 MAP_FIXED | MAP_PRIVATE, 0);
1074 }
1075
1076#ifdef ELF_PLAT_INIT
1077 /*
1078 * The ABI may specify that certain registers be set up in special
1079 * ways (on i386 %edx is the address of a DT_FINI function, for
1080 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1081 * that the e_entry field is the address of the function descriptor
1082 * for the startup routine, rather than the address of the startup
1083 * routine itself. This macro performs whatever initialization to
1084 * the regs structure is required as well as any relocations to the
1085 * function descriptor entries when executing dynamically links apps.
1086 */
1087 ELF_PLAT_INIT(regs, reloc_func_desc);
1088#endif
1089
1090 start_thread(regs, elf_entry, bprm->p);
1091 retval = 0;
1092out:
1093 kfree(loc);
1094out_ret:
1095 return retval;
1096
1097 /* error cleanup */
1098out_free_dentry:
1099 kfree(interp_elf_phdata);
1100 allow_write_access(interpreter);
1101 if (interpreter)
1102 fput(interpreter);
1103out_free_interp:
1104 kfree(elf_interpreter);
1105out_free_ph:
1106 kfree(elf_phdata);
1107 goto out;
1108}
1109
1110#ifdef CONFIG_USELIB
1111/* This is really simpleminded and specialized - we are loading an
1112 a.out library that is given an ELF header. */
1113static int load_elf_library(struct file *file)
1114{
1115 struct elf_phdr *elf_phdata;
1116 struct elf_phdr *eppnt;
1117 unsigned long elf_bss, bss, len;
1118 int retval, error, i, j;
1119 struct elfhdr elf_ex;
1120
1121 error = -ENOEXEC;
1122 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1123 if (retval != sizeof(elf_ex))
1124 goto out;
1125
1126 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1127 goto out;
1128
1129 /* First of all, some simple consistency checks */
1130 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1131 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1132 goto out;
1133
1134 /* Now read in all of the header information */
1135
1136 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1137 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1138
1139 error = -ENOMEM;
1140 elf_phdata = kmalloc(j, GFP_KERNEL);
1141 if (!elf_phdata)
1142 goto out;
1143
1144 eppnt = elf_phdata;
1145 error = -ENOEXEC;
1146 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1147 if (retval != j)
1148 goto out_free_ph;
1149
1150 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1151 if ((eppnt + i)->p_type == PT_LOAD)
1152 j++;
1153 if (j != 1)
1154 goto out_free_ph;
1155
1156 while (eppnt->p_type != PT_LOAD)
1157 eppnt++;
1158
1159 /* Now use mmap to map the library into memory. */
1160 error = vm_mmap(file,
1161 ELF_PAGESTART(eppnt->p_vaddr),
1162 (eppnt->p_filesz +
1163 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1164 PROT_READ | PROT_WRITE | PROT_EXEC,
1165 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1166 (eppnt->p_offset -
1167 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1168 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1169 goto out_free_ph;
1170
1171 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1172 if (padzero(elf_bss)) {
1173 error = -EFAULT;
1174 goto out_free_ph;
1175 }
1176
1177 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1178 ELF_MIN_ALIGN - 1);
1179 bss = eppnt->p_memsz + eppnt->p_vaddr;
1180 if (bss > len) {
1181 error = vm_brk(len, bss - len);
1182 if (error)
1183 goto out_free_ph;
1184 }
1185 error = 0;
1186
1187out_free_ph:
1188 kfree(elf_phdata);
1189out:
1190 return error;
1191}
1192#endif /* #ifdef CONFIG_USELIB */
1193
1194#ifdef CONFIG_ELF_CORE
1195/*
1196 * ELF core dumper
1197 *
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1200 */
1201
1202/*
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1209 */
1210static bool always_dump_vma(struct vm_area_struct *vma)
1211{
1212 /* Any vsyscall mappings? */
1213 if (vma == get_gate_vma(vma->vm_mm))
1214 return true;
1215
1216 /*
1217 * Assume that all vmas with a .name op should always be dumped.
1218 * If this changes, a new vm_ops field can easily be added.
1219 */
1220 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1221 return true;
1222
1223 /*
1224 * arch_vma_name() returns non-NULL for special architecture mappings,
1225 * such as vDSO sections.
1226 */
1227 if (arch_vma_name(vma))
1228 return true;
1229
1230 return false;
1231}
1232
1233/*
1234 * Decide what to dump of a segment, part, all or none.
1235 */
1236static unsigned long vma_dump_size(struct vm_area_struct *vma,
1237 unsigned long mm_flags)
1238{
1239#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1240
1241 /* always dump the vdso and vsyscall sections */
1242 if (always_dump_vma(vma))
1243 goto whole;
1244
1245 if (vma->vm_flags & VM_DONTDUMP)
1246 return 0;
1247
1248 /* support for DAX */
1249 if (vma_is_dax(vma)) {
1250 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1251 goto whole;
1252 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1253 goto whole;
1254 return 0;
1255 }
1256
1257 /* Hugetlb memory check */
1258 if (vma->vm_flags & VM_HUGETLB) {
1259 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1260 goto whole;
1261 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1262 goto whole;
1263 return 0;
1264 }
1265
1266 /* Do not dump I/O mapped devices or special mappings */
1267 if (vma->vm_flags & VM_IO)
1268 return 0;
1269
1270 /* By default, dump shared memory if mapped from an anonymous file. */
1271 if (vma->vm_flags & VM_SHARED) {
1272 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1273 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1274 goto whole;
1275 return 0;
1276 }
1277
1278 /* Dump segments that have been written to. */
1279 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1280 goto whole;
1281 if (vma->vm_file == NULL)
1282 return 0;
1283
1284 if (FILTER(MAPPED_PRIVATE))
1285 goto whole;
1286
1287 /*
1288 * If this looks like the beginning of a DSO or executable mapping,
1289 * check for an ELF header. If we find one, dump the first page to
1290 * aid in determining what was mapped here.
1291 */
1292 if (FILTER(ELF_HEADERS) &&
1293 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1294 u32 __user *header = (u32 __user *) vma->vm_start;
1295 u32 word;
1296 mm_segment_t fs = get_fs();
1297 /*
1298 * Doing it this way gets the constant folded by GCC.
1299 */
1300 union {
1301 u32 cmp;
1302 char elfmag[SELFMAG];
1303 } magic;
1304 BUILD_BUG_ON(SELFMAG != sizeof word);
1305 magic.elfmag[EI_MAG0] = ELFMAG0;
1306 magic.elfmag[EI_MAG1] = ELFMAG1;
1307 magic.elfmag[EI_MAG2] = ELFMAG2;
1308 magic.elfmag[EI_MAG3] = ELFMAG3;
1309 /*
1310 * Switch to the user "segment" for get_user(),
1311 * then put back what elf_core_dump() had in place.
1312 */
1313 set_fs(USER_DS);
1314 if (unlikely(get_user(word, header)))
1315 word = 0;
1316 set_fs(fs);
1317 if (word == magic.cmp)
1318 return PAGE_SIZE;
1319 }
1320
1321#undef FILTER
1322
1323 return 0;
1324
1325whole:
1326 return vma->vm_end - vma->vm_start;
1327}
1328
1329/* An ELF note in memory */
1330struct memelfnote
1331{
1332 const char *name;
1333 int type;
1334 unsigned int datasz;
1335 void *data;
1336};
1337
1338static int notesize(struct memelfnote *en)
1339{
1340 int sz;
1341
1342 sz = sizeof(struct elf_note);
1343 sz += roundup(strlen(en->name) + 1, 4);
1344 sz += roundup(en->datasz, 4);
1345
1346 return sz;
1347}
1348
1349static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1350{
1351 struct elf_note en;
1352 en.n_namesz = strlen(men->name) + 1;
1353 en.n_descsz = men->datasz;
1354 en.n_type = men->type;
1355
1356 return dump_emit(cprm, &en, sizeof(en)) &&
1357 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1358 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1359}
1360
1361static void fill_elf_header(struct elfhdr *elf, int segs,
1362 u16 machine, u32 flags)
1363{
1364 memset(elf, 0, sizeof(*elf));
1365
1366 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1367 elf->e_ident[EI_CLASS] = ELF_CLASS;
1368 elf->e_ident[EI_DATA] = ELF_DATA;
1369 elf->e_ident[EI_VERSION] = EV_CURRENT;
1370 elf->e_ident[EI_OSABI] = ELF_OSABI;
1371
1372 elf->e_type = ET_CORE;
1373 elf->e_machine = machine;
1374 elf->e_version = EV_CURRENT;
1375 elf->e_phoff = sizeof(struct elfhdr);
1376 elf->e_flags = flags;
1377 elf->e_ehsize = sizeof(struct elfhdr);
1378 elf->e_phentsize = sizeof(struct elf_phdr);
1379 elf->e_phnum = segs;
1380
1381 return;
1382}
1383
1384static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1385{
1386 phdr->p_type = PT_NOTE;
1387 phdr->p_offset = offset;
1388 phdr->p_vaddr = 0;
1389 phdr->p_paddr = 0;
1390 phdr->p_filesz = sz;
1391 phdr->p_memsz = 0;
1392 phdr->p_flags = 0;
1393 phdr->p_align = 0;
1394 return;
1395}
1396
1397static void fill_note(struct memelfnote *note, const char *name, int type,
1398 unsigned int sz, void *data)
1399{
1400 note->name = name;
1401 note->type = type;
1402 note->datasz = sz;
1403 note->data = data;
1404 return;
1405}
1406
1407/*
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1410 */
1411static void fill_prstatus(struct elf_prstatus *prstatus,
1412 struct task_struct *p, long signr)
1413{
1414 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1415 prstatus->pr_sigpend = p->pending.signal.sig[0];
1416 prstatus->pr_sighold = p->blocked.sig[0];
1417 rcu_read_lock();
1418 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1419 rcu_read_unlock();
1420 prstatus->pr_pid = task_pid_vnr(p);
1421 prstatus->pr_pgrp = task_pgrp_vnr(p);
1422 prstatus->pr_sid = task_session_vnr(p);
1423 if (thread_group_leader(p)) {
1424 struct task_cputime cputime;
1425
1426 /*
1427 * This is the record for the group leader. It shows the
1428 * group-wide total, not its individual thread total.
1429 */
1430 thread_group_cputime(p, &cputime);
1431 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1432 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1433 } else {
1434 cputime_t utime, stime;
1435
1436 task_cputime(p, &utime, &stime);
1437 cputime_to_timeval(utime, &prstatus->pr_utime);
1438 cputime_to_timeval(stime, &prstatus->pr_stime);
1439 }
1440 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1441 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1442}
1443
1444static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1445 struct mm_struct *mm)
1446{
1447 const struct cred *cred;
1448 unsigned int i, len;
1449
1450 /* first copy the parameters from user space */
1451 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1452
1453 len = mm->arg_end - mm->arg_start;
1454 if (len >= ELF_PRARGSZ)
1455 len = ELF_PRARGSZ-1;
1456 if (copy_from_user(&psinfo->pr_psargs,
1457 (const char __user *)mm->arg_start, len))
1458 return -EFAULT;
1459 for(i = 0; i < len; i++)
1460 if (psinfo->pr_psargs[i] == 0)
1461 psinfo->pr_psargs[i] = ' ';
1462 psinfo->pr_psargs[len] = 0;
1463
1464 rcu_read_lock();
1465 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1466 rcu_read_unlock();
1467 psinfo->pr_pid = task_pid_vnr(p);
1468 psinfo->pr_pgrp = task_pgrp_vnr(p);
1469 psinfo->pr_sid = task_session_vnr(p);
1470
1471 i = p->state ? ffz(~p->state) + 1 : 0;
1472 psinfo->pr_state = i;
1473 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1474 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1475 psinfo->pr_nice = task_nice(p);
1476 psinfo->pr_flag = p->flags;
1477 rcu_read_lock();
1478 cred = __task_cred(p);
1479 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1480 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1481 rcu_read_unlock();
1482 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1483
1484 return 0;
1485}
1486
1487static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1488{
1489 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1490 int i = 0;
1491 do
1492 i += 2;
1493 while (auxv[i - 2] != AT_NULL);
1494 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1495}
1496
1497static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1498 const siginfo_t *siginfo)
1499{
1500 mm_segment_t old_fs = get_fs();
1501 set_fs(KERNEL_DS);
1502 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1503 set_fs(old_fs);
1504 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1505}
1506
1507#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1508/*
1509 * Format of NT_FILE note:
1510 *
1511 * long count -- how many files are mapped
1512 * long page_size -- units for file_ofs
1513 * array of [COUNT] elements of
1514 * long start
1515 * long end
1516 * long file_ofs
1517 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1518 */
1519static int fill_files_note(struct memelfnote *note)
1520{
1521 struct vm_area_struct *vma;
1522 unsigned count, size, names_ofs, remaining, n;
1523 user_long_t *data;
1524 user_long_t *start_end_ofs;
1525 char *name_base, *name_curpos;
1526
1527 /* *Estimated* file count and total data size needed */
1528 count = current->mm->map_count;
1529 size = count * 64;
1530
1531 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1532 alloc:
1533 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1534 return -EINVAL;
1535 size = round_up(size, PAGE_SIZE);
1536 data = vmalloc(size);
1537 if (!data)
1538 return -ENOMEM;
1539
1540 start_end_ofs = data + 2;
1541 name_base = name_curpos = ((char *)data) + names_ofs;
1542 remaining = size - names_ofs;
1543 count = 0;
1544 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1545 struct file *file;
1546 const char *filename;
1547
1548 file = vma->vm_file;
1549 if (!file)
1550 continue;
1551 filename = file_path(file, name_curpos, remaining);
1552 if (IS_ERR(filename)) {
1553 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1554 vfree(data);
1555 size = size * 5 / 4;
1556 goto alloc;
1557 }
1558 continue;
1559 }
1560
1561 /* file_path() fills at the end, move name down */
1562 /* n = strlen(filename) + 1: */
1563 n = (name_curpos + remaining) - filename;
1564 remaining = filename - name_curpos;
1565 memmove(name_curpos, filename, n);
1566 name_curpos += n;
1567
1568 *start_end_ofs++ = vma->vm_start;
1569 *start_end_ofs++ = vma->vm_end;
1570 *start_end_ofs++ = vma->vm_pgoff;
1571 count++;
1572 }
1573
1574 /* Now we know exact count of files, can store it */
1575 data[0] = count;
1576 data[1] = PAGE_SIZE;
1577 /*
1578 * Count usually is less than current->mm->map_count,
1579 * we need to move filenames down.
1580 */
1581 n = current->mm->map_count - count;
1582 if (n != 0) {
1583 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1584 memmove(name_base - shift_bytes, name_base,
1585 name_curpos - name_base);
1586 name_curpos -= shift_bytes;
1587 }
1588
1589 size = name_curpos - (char *)data;
1590 fill_note(note, "CORE", NT_FILE, size, data);
1591 return 0;
1592}
1593
1594#ifdef CORE_DUMP_USE_REGSET
1595#include <linux/regset.h>
1596
1597struct elf_thread_core_info {
1598 struct elf_thread_core_info *next;
1599 struct task_struct *task;
1600 struct elf_prstatus prstatus;
1601 struct memelfnote notes[0];
1602};
1603
1604struct elf_note_info {
1605 struct elf_thread_core_info *thread;
1606 struct memelfnote psinfo;
1607 struct memelfnote signote;
1608 struct memelfnote auxv;
1609 struct memelfnote files;
1610 user_siginfo_t csigdata;
1611 size_t size;
1612 int thread_notes;
1613};
1614
1615/*
1616 * When a regset has a writeback hook, we call it on each thread before
1617 * dumping user memory. On register window machines, this makes sure the
1618 * user memory backing the register data is up to date before we read it.
1619 */
1620static void do_thread_regset_writeback(struct task_struct *task,
1621 const struct user_regset *regset)
1622{
1623 if (regset->writeback)
1624 regset->writeback(task, regset, 1);
1625}
1626
1627#ifndef PRSTATUS_SIZE
1628#define PRSTATUS_SIZE(S, R) sizeof(S)
1629#endif
1630
1631#ifndef SET_PR_FPVALID
1632#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1633#endif
1634
1635static int fill_thread_core_info(struct elf_thread_core_info *t,
1636 const struct user_regset_view *view,
1637 long signr, size_t *total)
1638{
1639 unsigned int i;
1640 unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1641
1642 /*
1643 * NT_PRSTATUS is the one special case, because the regset data
1644 * goes into the pr_reg field inside the note contents, rather
1645 * than being the whole note contents. We fill the reset in here.
1646 * We assume that regset 0 is NT_PRSTATUS.
1647 */
1648 fill_prstatus(&t->prstatus, t->task, signr);
1649 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1650 &t->prstatus.pr_reg, NULL);
1651
1652 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1653 PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1654 *total += notesize(&t->notes[0]);
1655
1656 do_thread_regset_writeback(t->task, &view->regsets[0]);
1657
1658 /*
1659 * Each other regset might generate a note too. For each regset
1660 * that has no core_note_type or is inactive, we leave t->notes[i]
1661 * all zero and we'll know to skip writing it later.
1662 */
1663 for (i = 1; i < view->n; ++i) {
1664 const struct user_regset *regset = &view->regsets[i];
1665 do_thread_regset_writeback(t->task, regset);
1666 if (regset->core_note_type && regset->get &&
1667 (!regset->active || regset->active(t->task, regset))) {
1668 int ret;
1669 size_t size = regset->n * regset->size;
1670 void *data = kmalloc(size, GFP_KERNEL);
1671 if (unlikely(!data))
1672 return 0;
1673 ret = regset->get(t->task, regset,
1674 0, size, data, NULL);
1675 if (unlikely(ret))
1676 kfree(data);
1677 else {
1678 if (regset->core_note_type != NT_PRFPREG)
1679 fill_note(&t->notes[i], "LINUX",
1680 regset->core_note_type,
1681 size, data);
1682 else {
1683 SET_PR_FPVALID(&t->prstatus,
1684 1, regset_size);
1685 fill_note(&t->notes[i], "CORE",
1686 NT_PRFPREG, size, data);
1687 }
1688 *total += notesize(&t->notes[i]);
1689 }
1690 }
1691 }
1692
1693 return 1;
1694}
1695
1696static int fill_note_info(struct elfhdr *elf, int phdrs,
1697 struct elf_note_info *info,
1698 const siginfo_t *siginfo, struct pt_regs *regs)
1699{
1700 struct task_struct *dump_task = current;
1701 const struct user_regset_view *view = task_user_regset_view(dump_task);
1702 struct elf_thread_core_info *t;
1703 struct elf_prpsinfo *psinfo;
1704 struct core_thread *ct;
1705 unsigned int i;
1706
1707 info->size = 0;
1708 info->thread = NULL;
1709
1710 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1711 if (psinfo == NULL) {
1712 info->psinfo.data = NULL; /* So we don't free this wrongly */
1713 return 0;
1714 }
1715
1716 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1717
1718 /*
1719 * Figure out how many notes we're going to need for each thread.
1720 */
1721 info->thread_notes = 0;
1722 for (i = 0; i < view->n; ++i)
1723 if (view->regsets[i].core_note_type != 0)
1724 ++info->thread_notes;
1725
1726 /*
1727 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1728 * since it is our one special case.
1729 */
1730 if (unlikely(info->thread_notes == 0) ||
1731 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1732 WARN_ON(1);
1733 return 0;
1734 }
1735
1736 /*
1737 * Initialize the ELF file header.
1738 */
1739 fill_elf_header(elf, phdrs,
1740 view->e_machine, view->e_flags);
1741
1742 /*
1743 * Allocate a structure for each thread.
1744 */
1745 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1746 t = kzalloc(offsetof(struct elf_thread_core_info,
1747 notes[info->thread_notes]),
1748 GFP_KERNEL);
1749 if (unlikely(!t))
1750 return 0;
1751
1752 t->task = ct->task;
1753 if (ct->task == dump_task || !info->thread) {
1754 t->next = info->thread;
1755 info->thread = t;
1756 } else {
1757 /*
1758 * Make sure to keep the original task at
1759 * the head of the list.
1760 */
1761 t->next = info->thread->next;
1762 info->thread->next = t;
1763 }
1764 }
1765
1766 /*
1767 * Now fill in each thread's information.
1768 */
1769 for (t = info->thread; t != NULL; t = t->next)
1770 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1771 return 0;
1772
1773 /*
1774 * Fill in the two process-wide notes.
1775 */
1776 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1777 info->size += notesize(&info->psinfo);
1778
1779 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1780 info->size += notesize(&info->signote);
1781
1782 fill_auxv_note(&info->auxv, current->mm);
1783 info->size += notesize(&info->auxv);
1784
1785 if (fill_files_note(&info->files) == 0)
1786 info->size += notesize(&info->files);
1787
1788 return 1;
1789}
1790
1791static size_t get_note_info_size(struct elf_note_info *info)
1792{
1793 return info->size;
1794}
1795
1796/*
1797 * Write all the notes for each thread. When writing the first thread, the
1798 * process-wide notes are interleaved after the first thread-specific note.
1799 */
1800static int write_note_info(struct elf_note_info *info,
1801 struct coredump_params *cprm)
1802{
1803 bool first = true;
1804 struct elf_thread_core_info *t = info->thread;
1805
1806 do {
1807 int i;
1808
1809 if (!writenote(&t->notes[0], cprm))
1810 return 0;
1811
1812 if (first && !writenote(&info->psinfo, cprm))
1813 return 0;
1814 if (first && !writenote(&info->signote, cprm))
1815 return 0;
1816 if (first && !writenote(&info->auxv, cprm))
1817 return 0;
1818 if (first && info->files.data &&
1819 !writenote(&info->files, cprm))
1820 return 0;
1821
1822 for (i = 1; i < info->thread_notes; ++i)
1823 if (t->notes[i].data &&
1824 !writenote(&t->notes[i], cprm))
1825 return 0;
1826
1827 first = false;
1828 t = t->next;
1829 } while (t);
1830
1831 return 1;
1832}
1833
1834static void free_note_info(struct elf_note_info *info)
1835{
1836 struct elf_thread_core_info *threads = info->thread;
1837 while (threads) {
1838 unsigned int i;
1839 struct elf_thread_core_info *t = threads;
1840 threads = t->next;
1841 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1842 for (i = 1; i < info->thread_notes; ++i)
1843 kfree(t->notes[i].data);
1844 kfree(t);
1845 }
1846 kfree(info->psinfo.data);
1847 vfree(info->files.data);
1848}
1849
1850#else
1851
1852/* Here is the structure in which status of each thread is captured. */
1853struct elf_thread_status
1854{
1855 struct list_head list;
1856 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1857 elf_fpregset_t fpu; /* NT_PRFPREG */
1858 struct task_struct *thread;
1859#ifdef ELF_CORE_COPY_XFPREGS
1860 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1861#endif
1862 struct memelfnote notes[3];
1863 int num_notes;
1864};
1865
1866/*
1867 * In order to add the specific thread information for the elf file format,
1868 * we need to keep a linked list of every threads pr_status and then create
1869 * a single section for them in the final core file.
1870 */
1871static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1872{
1873 int sz = 0;
1874 struct task_struct *p = t->thread;
1875 t->num_notes = 0;
1876
1877 fill_prstatus(&t->prstatus, p, signr);
1878 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1879
1880 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1881 &(t->prstatus));
1882 t->num_notes++;
1883 sz += notesize(&t->notes[0]);
1884
1885 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1886 &t->fpu))) {
1887 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1888 &(t->fpu));
1889 t->num_notes++;
1890 sz += notesize(&t->notes[1]);
1891 }
1892
1893#ifdef ELF_CORE_COPY_XFPREGS
1894 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1895 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1896 sizeof(t->xfpu), &t->xfpu);
1897 t->num_notes++;
1898 sz += notesize(&t->notes[2]);
1899 }
1900#endif
1901 return sz;
1902}
1903
1904struct elf_note_info {
1905 struct memelfnote *notes;
1906 struct memelfnote *notes_files;
1907 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1908 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1909 struct list_head thread_list;
1910 elf_fpregset_t *fpu;
1911#ifdef ELF_CORE_COPY_XFPREGS
1912 elf_fpxregset_t *xfpu;
1913#endif
1914 user_siginfo_t csigdata;
1915 int thread_status_size;
1916 int numnote;
1917};
1918
1919static int elf_note_info_init(struct elf_note_info *info)
1920{
1921 memset(info, 0, sizeof(*info));
1922 INIT_LIST_HEAD(&info->thread_list);
1923
1924 /* Allocate space for ELF notes */
1925 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1926 if (!info->notes)
1927 return 0;
1928 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1929 if (!info->psinfo)
1930 return 0;
1931 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1932 if (!info->prstatus)
1933 return 0;
1934 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1935 if (!info->fpu)
1936 return 0;
1937#ifdef ELF_CORE_COPY_XFPREGS
1938 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1939 if (!info->xfpu)
1940 return 0;
1941#endif
1942 return 1;
1943}
1944
1945static int fill_note_info(struct elfhdr *elf, int phdrs,
1946 struct elf_note_info *info,
1947 const siginfo_t *siginfo, struct pt_regs *regs)
1948{
1949 struct list_head *t;
1950 struct core_thread *ct;
1951 struct elf_thread_status *ets;
1952
1953 if (!elf_note_info_init(info))
1954 return 0;
1955
1956 for (ct = current->mm->core_state->dumper.next;
1957 ct; ct = ct->next) {
1958 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1959 if (!ets)
1960 return 0;
1961
1962 ets->thread = ct->task;
1963 list_add(&ets->list, &info->thread_list);
1964 }
1965
1966 list_for_each(t, &info->thread_list) {
1967 int sz;
1968
1969 ets = list_entry(t, struct elf_thread_status, list);
1970 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1971 info->thread_status_size += sz;
1972 }
1973 /* now collect the dump for the current */
1974 memset(info->prstatus, 0, sizeof(*info->prstatus));
1975 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1976 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1977
1978 /* Set up header */
1979 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1980
1981 /*
1982 * Set up the notes in similar form to SVR4 core dumps made
1983 * with info from their /proc.
1984 */
1985
1986 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1987 sizeof(*info->prstatus), info->prstatus);
1988 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1989 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1990 sizeof(*info->psinfo), info->psinfo);
1991
1992 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1993 fill_auxv_note(info->notes + 3, current->mm);
1994 info->numnote = 4;
1995
1996 if (fill_files_note(info->notes + info->numnote) == 0) {
1997 info->notes_files = info->notes + info->numnote;
1998 info->numnote++;
1999 }
2000
2001 /* Try to dump the FPU. */
2002 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2003 info->fpu);
2004 if (info->prstatus->pr_fpvalid)
2005 fill_note(info->notes + info->numnote++,
2006 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2007#ifdef ELF_CORE_COPY_XFPREGS
2008 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2009 fill_note(info->notes + info->numnote++,
2010 "LINUX", ELF_CORE_XFPREG_TYPE,
2011 sizeof(*info->xfpu), info->xfpu);
2012#endif
2013
2014 return 1;
2015}
2016
2017static size_t get_note_info_size(struct elf_note_info *info)
2018{
2019 int sz = 0;
2020 int i;
2021
2022 for (i = 0; i < info->numnote; i++)
2023 sz += notesize(info->notes + i);
2024
2025 sz += info->thread_status_size;
2026
2027 return sz;
2028}
2029
2030static int write_note_info(struct elf_note_info *info,
2031 struct coredump_params *cprm)
2032{
2033 int i;
2034 struct list_head *t;
2035
2036 for (i = 0; i < info->numnote; i++)
2037 if (!writenote(info->notes + i, cprm))
2038 return 0;
2039
2040 /* write out the thread status notes section */
2041 list_for_each(t, &info->thread_list) {
2042 struct elf_thread_status *tmp =
2043 list_entry(t, struct elf_thread_status, list);
2044
2045 for (i = 0; i < tmp->num_notes; i++)
2046 if (!writenote(&tmp->notes[i], cprm))
2047 return 0;
2048 }
2049
2050 return 1;
2051}
2052
2053static void free_note_info(struct elf_note_info *info)
2054{
2055 while (!list_empty(&info->thread_list)) {
2056 struct list_head *tmp = info->thread_list.next;
2057 list_del(tmp);
2058 kfree(list_entry(tmp, struct elf_thread_status, list));
2059 }
2060
2061 /* Free data possibly allocated by fill_files_note(): */
2062 if (info->notes_files)
2063 vfree(info->notes_files->data);
2064
2065 kfree(info->prstatus);
2066 kfree(info->psinfo);
2067 kfree(info->notes);
2068 kfree(info->fpu);
2069#ifdef ELF_CORE_COPY_XFPREGS
2070 kfree(info->xfpu);
2071#endif
2072}
2073
2074#endif
2075
2076static struct vm_area_struct *first_vma(struct task_struct *tsk,
2077 struct vm_area_struct *gate_vma)
2078{
2079 struct vm_area_struct *ret = tsk->mm->mmap;
2080
2081 if (ret)
2082 return ret;
2083 return gate_vma;
2084}
2085/*
2086 * Helper function for iterating across a vma list. It ensures that the caller
2087 * will visit `gate_vma' prior to terminating the search.
2088 */
2089static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2090 struct vm_area_struct *gate_vma)
2091{
2092 struct vm_area_struct *ret;
2093
2094 ret = this_vma->vm_next;
2095 if (ret)
2096 return ret;
2097 if (this_vma == gate_vma)
2098 return NULL;
2099 return gate_vma;
2100}
2101
2102static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2103 elf_addr_t e_shoff, int segs)
2104{
2105 elf->e_shoff = e_shoff;
2106 elf->e_shentsize = sizeof(*shdr4extnum);
2107 elf->e_shnum = 1;
2108 elf->e_shstrndx = SHN_UNDEF;
2109
2110 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2111
2112 shdr4extnum->sh_type = SHT_NULL;
2113 shdr4extnum->sh_size = elf->e_shnum;
2114 shdr4extnum->sh_link = elf->e_shstrndx;
2115 shdr4extnum->sh_info = segs;
2116}
2117
2118/*
2119 * Actual dumper
2120 *
2121 * This is a two-pass process; first we find the offsets of the bits,
2122 * and then they are actually written out. If we run out of core limit
2123 * we just truncate.
2124 */
2125static int elf_core_dump(struct coredump_params *cprm)
2126{
2127 int has_dumped = 0;
2128 mm_segment_t fs;
2129 int segs, i;
2130 size_t vma_data_size = 0;
2131 struct vm_area_struct *vma, *gate_vma;
2132 struct elfhdr *elf = NULL;
2133 loff_t offset = 0, dataoff;
2134 struct elf_note_info info = { };
2135 struct elf_phdr *phdr4note = NULL;
2136 struct elf_shdr *shdr4extnum = NULL;
2137 Elf_Half e_phnum;
2138 elf_addr_t e_shoff;
2139 elf_addr_t *vma_filesz = NULL;
2140
2141 /*
2142 * We no longer stop all VM operations.
2143 *
2144 * This is because those proceses that could possibly change map_count
2145 * or the mmap / vma pages are now blocked in do_exit on current
2146 * finishing this core dump.
2147 *
2148 * Only ptrace can touch these memory addresses, but it doesn't change
2149 * the map_count or the pages allocated. So no possibility of crashing
2150 * exists while dumping the mm->vm_next areas to the core file.
2151 */
2152
2153 /* alloc memory for large data structures: too large to be on stack */
2154 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2155 if (!elf)
2156 goto out;
2157 /*
2158 * The number of segs are recored into ELF header as 16bit value.
2159 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2160 */
2161 segs = current->mm->map_count;
2162 segs += elf_core_extra_phdrs();
2163
2164 gate_vma = get_gate_vma(current->mm);
2165 if (gate_vma != NULL)
2166 segs++;
2167
2168 /* for notes section */
2169 segs++;
2170
2171 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2172 * this, kernel supports extended numbering. Have a look at
2173 * include/linux/elf.h for further information. */
2174 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2175
2176 /*
2177 * Collect all the non-memory information about the process for the
2178 * notes. This also sets up the file header.
2179 */
2180 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2181 goto cleanup;
2182
2183 has_dumped = 1;
2184
2185 fs = get_fs();
2186 set_fs(KERNEL_DS);
2187
2188 offset += sizeof(*elf); /* Elf header */
2189 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2190
2191 /* Write notes phdr entry */
2192 {
2193 size_t sz = get_note_info_size(&info);
2194
2195 sz += elf_coredump_extra_notes_size();
2196
2197 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2198 if (!phdr4note)
2199 goto end_coredump;
2200
2201 fill_elf_note_phdr(phdr4note, sz, offset);
2202 offset += sz;
2203 }
2204
2205 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2206
2207 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2208 goto end_coredump;
2209 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2210 if (!vma_filesz)
2211 goto end_coredump;
2212
2213 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2214 vma = next_vma(vma, gate_vma)) {
2215 unsigned long dump_size;
2216
2217 dump_size = vma_dump_size(vma, cprm->mm_flags);
2218 vma_filesz[i++] = dump_size;
2219 vma_data_size += dump_size;
2220 }
2221
2222 offset += vma_data_size;
2223 offset += elf_core_extra_data_size();
2224 e_shoff = offset;
2225
2226 if (e_phnum == PN_XNUM) {
2227 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2228 if (!shdr4extnum)
2229 goto end_coredump;
2230 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2231 }
2232
2233 offset = dataoff;
2234
2235 if (!dump_emit(cprm, elf, sizeof(*elf)))
2236 goto end_coredump;
2237
2238 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2239 goto end_coredump;
2240
2241 /* Write program headers for segments dump */
2242 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2243 vma = next_vma(vma, gate_vma)) {
2244 struct elf_phdr phdr;
2245
2246 phdr.p_type = PT_LOAD;
2247 phdr.p_offset = offset;
2248 phdr.p_vaddr = vma->vm_start;
2249 phdr.p_paddr = 0;
2250 phdr.p_filesz = vma_filesz[i++];
2251 phdr.p_memsz = vma->vm_end - vma->vm_start;
2252 offset += phdr.p_filesz;
2253 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2254 if (vma->vm_flags & VM_WRITE)
2255 phdr.p_flags |= PF_W;
2256 if (vma->vm_flags & VM_EXEC)
2257 phdr.p_flags |= PF_X;
2258 phdr.p_align = ELF_EXEC_PAGESIZE;
2259
2260 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2261 goto end_coredump;
2262 }
2263
2264 if (!elf_core_write_extra_phdrs(cprm, offset))
2265 goto end_coredump;
2266
2267 /* write out the notes section */
2268 if (!write_note_info(&info, cprm))
2269 goto end_coredump;
2270
2271 if (elf_coredump_extra_notes_write(cprm))
2272 goto end_coredump;
2273
2274 /* Align to page */
2275 if (!dump_skip(cprm, dataoff - cprm->pos))
2276 goto end_coredump;
2277
2278 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2279 vma = next_vma(vma, gate_vma)) {
2280 unsigned long addr;
2281 unsigned long end;
2282
2283 end = vma->vm_start + vma_filesz[i++];
2284
2285 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2286 struct page *page;
2287 int stop;
2288
2289 page = get_dump_page(addr);
2290 if (page) {
2291 void *kaddr = kmap(page);
2292 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2293 kunmap(page);
2294 put_page(page);
2295 } else
2296 stop = !dump_skip(cprm, PAGE_SIZE);
2297 if (stop)
2298 goto end_coredump;
2299 }
2300 }
2301 dump_truncate(cprm);
2302
2303 if (!elf_core_write_extra_data(cprm))
2304 goto end_coredump;
2305
2306 if (e_phnum == PN_XNUM) {
2307 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2308 goto end_coredump;
2309 }
2310
2311end_coredump:
2312 set_fs(fs);
2313
2314cleanup:
2315 free_note_info(&info);
2316 kfree(shdr4extnum);
2317 vfree(vma_filesz);
2318 kfree(phdr4note);
2319 kfree(elf);
2320out:
2321 return has_dumped;
2322}
2323
2324#endif /* CONFIG_ELF_CORE */
2325
2326static int __init init_elf_binfmt(void)
2327{
2328 register_binfmt(&elf_format);
2329 return 0;
2330}
2331
2332static void __exit exit_elf_binfmt(void)
2333{
2334 /* Remove the COFF and ELF loaders. */
2335 unregister_binfmt(&elf_format);
2336}
2337
2338core_initcall(init_elf_binfmt);
2339module_exit(exit_elf_binfmt);
2340MODULE_LICENSE("GPL");
1/*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/fs.h>
15#include <linux/mm.h>
16#include <linux/mman.h>
17#include <linux/errno.h>
18#include <linux/signal.h>
19#include <linux/binfmts.h>
20#include <linux/string.h>
21#include <linux/file.h>
22#include <linux/slab.h>
23#include <linux/personality.h>
24#include <linux/elfcore.h>
25#include <linux/init.h>
26#include <linux/highuid.h>
27#include <linux/compiler.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
30#include <linux/vmalloc.h>
31#include <linux/security.h>
32#include <linux/random.h>
33#include <linux/elf.h>
34#include <linux/elf-randomize.h>
35#include <linux/utsname.h>
36#include <linux/coredump.h>
37#include <linux/sched.h>
38#include <linux/sched/coredump.h>
39#include <linux/sched/task_stack.h>
40#include <linux/sched/cputime.h>
41#include <linux/cred.h>
42#include <linux/dax.h>
43#include <linux/uaccess.h>
44#include <asm/param.h>
45#include <asm/page.h>
46
47#ifndef user_long_t
48#define user_long_t long
49#endif
50#ifndef user_siginfo_t
51#define user_siginfo_t siginfo_t
52#endif
53
54/* That's for binfmt_elf_fdpic to deal with */
55#ifndef elf_check_fdpic
56#define elf_check_fdpic(ex) false
57#endif
58
59static int load_elf_binary(struct linux_binprm *bprm);
60static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 int, int, unsigned long);
62
63#ifdef CONFIG_USELIB
64static int load_elf_library(struct file *);
65#else
66#define load_elf_library NULL
67#endif
68
69/*
70 * If we don't support core dumping, then supply a NULL so we
71 * don't even try.
72 */
73#ifdef CONFIG_ELF_CORE
74static int elf_core_dump(struct coredump_params *cprm);
75#else
76#define elf_core_dump NULL
77#endif
78
79#if ELF_EXEC_PAGESIZE > PAGE_SIZE
80#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81#else
82#define ELF_MIN_ALIGN PAGE_SIZE
83#endif
84
85#ifndef ELF_CORE_EFLAGS
86#define ELF_CORE_EFLAGS 0
87#endif
88
89#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92
93static struct linux_binfmt elf_format = {
94 .module = THIS_MODULE,
95 .load_binary = load_elf_binary,
96 .load_shlib = load_elf_library,
97 .core_dump = elf_core_dump,
98 .min_coredump = ELF_EXEC_PAGESIZE,
99};
100
101#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102
103static int set_brk(unsigned long start, unsigned long end, int prot)
104{
105 start = ELF_PAGEALIGN(start);
106 end = ELF_PAGEALIGN(end);
107 if (end > start) {
108 /*
109 * Map the last of the bss segment.
110 * If the header is requesting these pages to be
111 * executable, honour that (ppc32 needs this).
112 */
113 int error = vm_brk_flags(start, end - start,
114 prot & PROT_EXEC ? VM_EXEC : 0);
115 if (error)
116 return error;
117 }
118 current->mm->start_brk = current->mm->brk = end;
119 return 0;
120}
121
122/* We need to explicitly zero any fractional pages
123 after the data section (i.e. bss). This would
124 contain the junk from the file that should not
125 be in memory
126 */
127static int padzero(unsigned long elf_bss)
128{
129 unsigned long nbyte;
130
131 nbyte = ELF_PAGEOFFSET(elf_bss);
132 if (nbyte) {
133 nbyte = ELF_MIN_ALIGN - nbyte;
134 if (clear_user((void __user *) elf_bss, nbyte))
135 return -EFAULT;
136 }
137 return 0;
138}
139
140/* Let's use some macros to make this stack manipulation a little clearer */
141#ifdef CONFIG_STACK_GROWSUP
142#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143#define STACK_ROUND(sp, items) \
144 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145#define STACK_ALLOC(sp, len) ({ \
146 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 old_sp; })
148#else
149#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150#define STACK_ROUND(sp, items) \
151 (((unsigned long) (sp - items)) &~ 15UL)
152#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153#endif
154
155#ifndef ELF_BASE_PLATFORM
156/*
157 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159 * will be copied to the user stack in the same manner as AT_PLATFORM.
160 */
161#define ELF_BASE_PLATFORM NULL
162#endif
163
164static int
165create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 unsigned long load_addr, unsigned long interp_load_addr)
167{
168 unsigned long p = bprm->p;
169 int argc = bprm->argc;
170 int envc = bprm->envc;
171 elf_addr_t __user *sp;
172 elf_addr_t __user *u_platform;
173 elf_addr_t __user *u_base_platform;
174 elf_addr_t __user *u_rand_bytes;
175 const char *k_platform = ELF_PLATFORM;
176 const char *k_base_platform = ELF_BASE_PLATFORM;
177 unsigned char k_rand_bytes[16];
178 int items;
179 elf_addr_t *elf_info;
180 int ei_index = 0;
181 const struct cred *cred = current_cred();
182 struct vm_area_struct *vma;
183
184 /*
185 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 * evictions by the processes running on the same package. One
187 * thing we can do is to shuffle the initial stack for them.
188 */
189
190 p = arch_align_stack(p);
191
192 /*
193 * If this architecture has a platform capability string, copy it
194 * to userspace. In some cases (Sparc), this info is impossible
195 * for userspace to get any other way, in others (i386) it is
196 * merely difficult.
197 */
198 u_platform = NULL;
199 if (k_platform) {
200 size_t len = strlen(k_platform) + 1;
201
202 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_platform, k_platform, len))
204 return -EFAULT;
205 }
206
207 /*
208 * If this architecture has a "base" platform capability
209 * string, copy it to userspace.
210 */
211 u_base_platform = NULL;
212 if (k_base_platform) {
213 size_t len = strlen(k_base_platform) + 1;
214
215 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 if (__copy_to_user(u_base_platform, k_base_platform, len))
217 return -EFAULT;
218 }
219
220 /*
221 * Generate 16 random bytes for userspace PRNG seeding.
222 */
223 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 u_rand_bytes = (elf_addr_t __user *)
225 STACK_ALLOC(p, sizeof(k_rand_bytes));
226 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 return -EFAULT;
228
229 /* Create the ELF interpreter info */
230 elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232#define NEW_AUX_ENT(id, val) \
233 do { \
234 elf_info[ei_index++] = id; \
235 elf_info[ei_index++] = val; \
236 } while (0)
237
238#ifdef ARCH_DLINFO
239 /*
240 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * AUXV.
242 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 * ARCH_DLINFO changes
244 */
245 ARCH_DLINFO;
246#endif
247 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 NEW_AUX_ENT(AT_FLAGS, 0);
255 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262#ifdef ELF_HWCAP2
263 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264#endif
265 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 if (k_platform) {
267 NEW_AUX_ENT(AT_PLATFORM,
268 (elf_addr_t)(unsigned long)u_platform);
269 }
270 if (k_base_platform) {
271 NEW_AUX_ENT(AT_BASE_PLATFORM,
272 (elf_addr_t)(unsigned long)u_base_platform);
273 }
274 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
276 }
277#undef NEW_AUX_ENT
278 /* AT_NULL is zero; clear the rest too */
279 memset(&elf_info[ei_index], 0,
280 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281
282 /* And advance past the AT_NULL entry. */
283 ei_index += 2;
284
285 sp = STACK_ADD(p, ei_index);
286
287 items = (argc + 1) + (envc + 1) + 1;
288 bprm->p = STACK_ROUND(sp, items);
289
290 /* Point sp at the lowest address on the stack */
291#ifdef CONFIG_STACK_GROWSUP
292 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294#else
295 sp = (elf_addr_t __user *)bprm->p;
296#endif
297
298
299 /*
300 * Grow the stack manually; some architectures have a limit on how
301 * far ahead a user-space access may be in order to grow the stack.
302 */
303 vma = find_extend_vma(current->mm, bprm->p);
304 if (!vma)
305 return -EFAULT;
306
307 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 if (__put_user(argc, sp++))
309 return -EFAULT;
310
311 /* Populate list of argv pointers back to argv strings. */
312 p = current->mm->arg_end = current->mm->arg_start;
313 while (argc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, sp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
321 }
322 if (__put_user(0, sp++))
323 return -EFAULT;
324 current->mm->arg_end = p;
325
326 /* Populate list of envp pointers back to envp strings. */
327 current->mm->env_end = current->mm->env_start = p;
328 while (envc-- > 0) {
329 size_t len;
330 if (__put_user((elf_addr_t)p, sp++))
331 return -EFAULT;
332 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 if (!len || len > MAX_ARG_STRLEN)
334 return -EINVAL;
335 p += len;
336 }
337 if (__put_user(0, sp++))
338 return -EFAULT;
339 current->mm->env_end = p;
340
341 /* Put the elf_info on the stack in the right place. */
342 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 return -EFAULT;
344 return 0;
345}
346
347#ifndef elf_map
348
349static unsigned long elf_map(struct file *filep, unsigned long addr,
350 struct elf_phdr *eppnt, int prot, int type,
351 unsigned long total_size)
352{
353 unsigned long map_addr;
354 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 addr = ELF_PAGESTART(addr);
357 size = ELF_PAGEALIGN(size);
358
359 /* mmap() will return -EINVAL if given a zero size, but a
360 * segment with zero filesize is perfectly valid */
361 if (!size)
362 return addr;
363
364 /*
365 * total_size is the size of the ELF (interpreter) image.
366 * The _first_ mmap needs to know the full size, otherwise
367 * randomization might put this image into an overlapping
368 * position with the ELF binary image. (since size < total_size)
369 * So we first map the 'big' image - and unmap the remainder at
370 * the end. (which unmap is needed for ELF images with holes.)
371 */
372 if (total_size) {
373 total_size = ELF_PAGEALIGN(total_size);
374 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 if (!BAD_ADDR(map_addr))
376 vm_munmap(map_addr+size, total_size-size);
377 } else
378 map_addr = vm_mmap(filep, addr, size, prot, type, off);
379
380 if ((type & MAP_FIXED_NOREPLACE) &&
381 PTR_ERR((void *)map_addr) == -EEXIST)
382 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
383 task_pid_nr(current), current->comm, (void *)addr);
384
385 return(map_addr);
386}
387
388#endif /* !elf_map */
389
390static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
391{
392 int i, first_idx = -1, last_idx = -1;
393
394 for (i = 0; i < nr; i++) {
395 if (cmds[i].p_type == PT_LOAD) {
396 last_idx = i;
397 if (first_idx == -1)
398 first_idx = i;
399 }
400 }
401 if (first_idx == -1)
402 return 0;
403
404 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
405 ELF_PAGESTART(cmds[first_idx].p_vaddr);
406}
407
408/**
409 * load_elf_phdrs() - load ELF program headers
410 * @elf_ex: ELF header of the binary whose program headers should be loaded
411 * @elf_file: the opened ELF binary file
412 *
413 * Loads ELF program headers from the binary file elf_file, which has the ELF
414 * header pointed to by elf_ex, into a newly allocated array. The caller is
415 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
416 */
417static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
418 struct file *elf_file)
419{
420 struct elf_phdr *elf_phdata = NULL;
421 int retval, size, err = -1;
422 loff_t pos = elf_ex->e_phoff;
423
424 /*
425 * If the size of this structure has changed, then punt, since
426 * we will be doing the wrong thing.
427 */
428 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 goto out;
430
431 /* Sanity check the number of program headers... */
432 if (elf_ex->e_phnum < 1 ||
433 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
434 goto out;
435
436 /* ...and their total size. */
437 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
438 if (size > ELF_MIN_ALIGN)
439 goto out;
440
441 elf_phdata = kmalloc(size, GFP_KERNEL);
442 if (!elf_phdata)
443 goto out;
444
445 /* Read in the program headers */
446 retval = kernel_read(elf_file, elf_phdata, size, &pos);
447 if (retval != size) {
448 err = (retval < 0) ? retval : -EIO;
449 goto out;
450 }
451
452 /* Success! */
453 err = 0;
454out:
455 if (err) {
456 kfree(elf_phdata);
457 elf_phdata = NULL;
458 }
459 return elf_phdata;
460}
461
462#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
463
464/**
465 * struct arch_elf_state - arch-specific ELF loading state
466 *
467 * This structure is used to preserve architecture specific data during
468 * the loading of an ELF file, throughout the checking of architecture
469 * specific ELF headers & through to the point where the ELF load is
470 * known to be proceeding (ie. SET_PERSONALITY).
471 *
472 * This implementation is a dummy for architectures which require no
473 * specific state.
474 */
475struct arch_elf_state {
476};
477
478#define INIT_ARCH_ELF_STATE {}
479
480/**
481 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
482 * @ehdr: The main ELF header
483 * @phdr: The program header to check
484 * @elf: The open ELF file
485 * @is_interp: True if the phdr is from the interpreter of the ELF being
486 * loaded, else false.
487 * @state: Architecture-specific state preserved throughout the process
488 * of loading the ELF.
489 *
490 * Inspects the program header phdr to validate its correctness and/or
491 * suitability for the system. Called once per ELF program header in the
492 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
493 * interpreter.
494 *
495 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
496 * with that return code.
497 */
498static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
499 struct elf_phdr *phdr,
500 struct file *elf, bool is_interp,
501 struct arch_elf_state *state)
502{
503 /* Dummy implementation, always proceed */
504 return 0;
505}
506
507/**
508 * arch_check_elf() - check an ELF executable
509 * @ehdr: The main ELF header
510 * @has_interp: True if the ELF has an interpreter, else false.
511 * @interp_ehdr: The interpreter's ELF header
512 * @state: Architecture-specific state preserved throughout the process
513 * of loading the ELF.
514 *
515 * Provides a final opportunity for architecture code to reject the loading
516 * of the ELF & cause an exec syscall to return an error. This is called after
517 * all program headers to be checked by arch_elf_pt_proc have been.
518 *
519 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
520 * with that return code.
521 */
522static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
523 struct elfhdr *interp_ehdr,
524 struct arch_elf_state *state)
525{
526 /* Dummy implementation, always proceed */
527 return 0;
528}
529
530#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
531
532/* This is much more generalized than the library routine read function,
533 so we keep this separate. Technically the library read function
534 is only provided so that we can read a.out libraries that have
535 an ELF header */
536
537static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
538 struct file *interpreter, unsigned long *interp_map_addr,
539 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
540{
541 struct elf_phdr *eppnt;
542 unsigned long load_addr = 0;
543 int load_addr_set = 0;
544 unsigned long last_bss = 0, elf_bss = 0;
545 int bss_prot = 0;
546 unsigned long error = ~0UL;
547 unsigned long total_size;
548 int i;
549
550 /* First of all, some simple consistency checks */
551 if (interp_elf_ex->e_type != ET_EXEC &&
552 interp_elf_ex->e_type != ET_DYN)
553 goto out;
554 if (!elf_check_arch(interp_elf_ex) ||
555 elf_check_fdpic(interp_elf_ex))
556 goto out;
557 if (!interpreter->f_op->mmap)
558 goto out;
559
560 total_size = total_mapping_size(interp_elf_phdata,
561 interp_elf_ex->e_phnum);
562 if (!total_size) {
563 error = -EINVAL;
564 goto out;
565 }
566
567 eppnt = interp_elf_phdata;
568 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
569 if (eppnt->p_type == PT_LOAD) {
570 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
571 int elf_prot = 0;
572 unsigned long vaddr = 0;
573 unsigned long k, map_addr;
574
575 if (eppnt->p_flags & PF_R)
576 elf_prot = PROT_READ;
577 if (eppnt->p_flags & PF_W)
578 elf_prot |= PROT_WRITE;
579 if (eppnt->p_flags & PF_X)
580 elf_prot |= PROT_EXEC;
581 vaddr = eppnt->p_vaddr;
582 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
583 elf_type |= MAP_FIXED_NOREPLACE;
584 else if (no_base && interp_elf_ex->e_type == ET_DYN)
585 load_addr = -vaddr;
586
587 map_addr = elf_map(interpreter, load_addr + vaddr,
588 eppnt, elf_prot, elf_type, total_size);
589 total_size = 0;
590 if (!*interp_map_addr)
591 *interp_map_addr = map_addr;
592 error = map_addr;
593 if (BAD_ADDR(map_addr))
594 goto out;
595
596 if (!load_addr_set &&
597 interp_elf_ex->e_type == ET_DYN) {
598 load_addr = map_addr - ELF_PAGESTART(vaddr);
599 load_addr_set = 1;
600 }
601
602 /*
603 * Check to see if the section's size will overflow the
604 * allowed task size. Note that p_filesz must always be
605 * <= p_memsize so it's only necessary to check p_memsz.
606 */
607 k = load_addr + eppnt->p_vaddr;
608 if (BAD_ADDR(k) ||
609 eppnt->p_filesz > eppnt->p_memsz ||
610 eppnt->p_memsz > TASK_SIZE ||
611 TASK_SIZE - eppnt->p_memsz < k) {
612 error = -ENOMEM;
613 goto out;
614 }
615
616 /*
617 * Find the end of the file mapping for this phdr, and
618 * keep track of the largest address we see for this.
619 */
620 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
621 if (k > elf_bss)
622 elf_bss = k;
623
624 /*
625 * Do the same thing for the memory mapping - between
626 * elf_bss and last_bss is the bss section.
627 */
628 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
629 if (k > last_bss) {
630 last_bss = k;
631 bss_prot = elf_prot;
632 }
633 }
634 }
635
636 /*
637 * Now fill out the bss section: first pad the last page from
638 * the file up to the page boundary, and zero it from elf_bss
639 * up to the end of the page.
640 */
641 if (padzero(elf_bss)) {
642 error = -EFAULT;
643 goto out;
644 }
645 /*
646 * Next, align both the file and mem bss up to the page size,
647 * since this is where elf_bss was just zeroed up to, and where
648 * last_bss will end after the vm_brk_flags() below.
649 */
650 elf_bss = ELF_PAGEALIGN(elf_bss);
651 last_bss = ELF_PAGEALIGN(last_bss);
652 /* Finally, if there is still more bss to allocate, do it. */
653 if (last_bss > elf_bss) {
654 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
655 bss_prot & PROT_EXEC ? VM_EXEC : 0);
656 if (error)
657 goto out;
658 }
659
660 error = load_addr;
661out:
662 return error;
663}
664
665/*
666 * These are the functions used to load ELF style executables and shared
667 * libraries. There is no binary dependent code anywhere else.
668 */
669
670#ifndef STACK_RND_MASK
671#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
672#endif
673
674static unsigned long randomize_stack_top(unsigned long stack_top)
675{
676 unsigned long random_variable = 0;
677
678 if (current->flags & PF_RANDOMIZE) {
679 random_variable = get_random_long();
680 random_variable &= STACK_RND_MASK;
681 random_variable <<= PAGE_SHIFT;
682 }
683#ifdef CONFIG_STACK_GROWSUP
684 return PAGE_ALIGN(stack_top) + random_variable;
685#else
686 return PAGE_ALIGN(stack_top) - random_variable;
687#endif
688}
689
690static int load_elf_binary(struct linux_binprm *bprm)
691{
692 struct file *interpreter = NULL; /* to shut gcc up */
693 unsigned long load_addr = 0, load_bias = 0;
694 int load_addr_set = 0;
695 char * elf_interpreter = NULL;
696 unsigned long error;
697 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
698 unsigned long elf_bss, elf_brk;
699 int bss_prot = 0;
700 int retval, i;
701 unsigned long elf_entry;
702 unsigned long interp_load_addr = 0;
703 unsigned long start_code, end_code, start_data, end_data;
704 unsigned long reloc_func_desc __maybe_unused = 0;
705 int executable_stack = EXSTACK_DEFAULT;
706 struct pt_regs *regs = current_pt_regs();
707 struct {
708 struct elfhdr elf_ex;
709 struct elfhdr interp_elf_ex;
710 } *loc;
711 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
712 loff_t pos;
713
714 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
715 if (!loc) {
716 retval = -ENOMEM;
717 goto out_ret;
718 }
719
720 /* Get the exec-header */
721 loc->elf_ex = *((struct elfhdr *)bprm->buf);
722
723 retval = -ENOEXEC;
724 /* First of all, some simple consistency checks */
725 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
726 goto out;
727
728 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
729 goto out;
730 if (!elf_check_arch(&loc->elf_ex))
731 goto out;
732 if (elf_check_fdpic(&loc->elf_ex))
733 goto out;
734 if (!bprm->file->f_op->mmap)
735 goto out;
736
737 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
738 if (!elf_phdata)
739 goto out;
740
741 elf_ppnt = elf_phdata;
742 elf_bss = 0;
743 elf_brk = 0;
744
745 start_code = ~0UL;
746 end_code = 0;
747 start_data = 0;
748 end_data = 0;
749
750 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
751 if (elf_ppnt->p_type == PT_INTERP) {
752 /* This is the program interpreter used for
753 * shared libraries - for now assume that this
754 * is an a.out format binary
755 */
756 retval = -ENOEXEC;
757 if (elf_ppnt->p_filesz > PATH_MAX ||
758 elf_ppnt->p_filesz < 2)
759 goto out_free_ph;
760
761 retval = -ENOMEM;
762 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
763 GFP_KERNEL);
764 if (!elf_interpreter)
765 goto out_free_ph;
766
767 pos = elf_ppnt->p_offset;
768 retval = kernel_read(bprm->file, elf_interpreter,
769 elf_ppnt->p_filesz, &pos);
770 if (retval != elf_ppnt->p_filesz) {
771 if (retval >= 0)
772 retval = -EIO;
773 goto out_free_interp;
774 }
775 /* make sure path is NULL terminated */
776 retval = -ENOEXEC;
777 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
778 goto out_free_interp;
779
780 interpreter = open_exec(elf_interpreter);
781 retval = PTR_ERR(interpreter);
782 if (IS_ERR(interpreter))
783 goto out_free_interp;
784
785 /*
786 * If the binary is not readable then enforce
787 * mm->dumpable = 0 regardless of the interpreter's
788 * permissions.
789 */
790 would_dump(bprm, interpreter);
791
792 /* Get the exec headers */
793 pos = 0;
794 retval = kernel_read(interpreter, &loc->interp_elf_ex,
795 sizeof(loc->interp_elf_ex), &pos);
796 if (retval != sizeof(loc->interp_elf_ex)) {
797 if (retval >= 0)
798 retval = -EIO;
799 goto out_free_dentry;
800 }
801
802 break;
803 }
804 elf_ppnt++;
805 }
806
807 elf_ppnt = elf_phdata;
808 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
809 switch (elf_ppnt->p_type) {
810 case PT_GNU_STACK:
811 if (elf_ppnt->p_flags & PF_X)
812 executable_stack = EXSTACK_ENABLE_X;
813 else
814 executable_stack = EXSTACK_DISABLE_X;
815 break;
816
817 case PT_LOPROC ... PT_HIPROC:
818 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
819 bprm->file, false,
820 &arch_state);
821 if (retval)
822 goto out_free_dentry;
823 break;
824 }
825
826 /* Some simple consistency checks for the interpreter */
827 if (elf_interpreter) {
828 retval = -ELIBBAD;
829 /* Not an ELF interpreter */
830 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
831 goto out_free_dentry;
832 /* Verify the interpreter has a valid arch */
833 if (!elf_check_arch(&loc->interp_elf_ex) ||
834 elf_check_fdpic(&loc->interp_elf_ex))
835 goto out_free_dentry;
836
837 /* Load the interpreter program headers */
838 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
839 interpreter);
840 if (!interp_elf_phdata)
841 goto out_free_dentry;
842
843 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
844 elf_ppnt = interp_elf_phdata;
845 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
846 switch (elf_ppnt->p_type) {
847 case PT_LOPROC ... PT_HIPROC:
848 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
849 elf_ppnt, interpreter,
850 true, &arch_state);
851 if (retval)
852 goto out_free_dentry;
853 break;
854 }
855 }
856
857 /*
858 * Allow arch code to reject the ELF at this point, whilst it's
859 * still possible to return an error to the code that invoked
860 * the exec syscall.
861 */
862 retval = arch_check_elf(&loc->elf_ex,
863 !!interpreter, &loc->interp_elf_ex,
864 &arch_state);
865 if (retval)
866 goto out_free_dentry;
867
868 /* Flush all traces of the currently running executable */
869 retval = flush_old_exec(bprm);
870 if (retval)
871 goto out_free_dentry;
872
873 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
874 may depend on the personality. */
875 SET_PERSONALITY2(loc->elf_ex, &arch_state);
876 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
877 current->personality |= READ_IMPLIES_EXEC;
878
879 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
880 current->flags |= PF_RANDOMIZE;
881
882 setup_new_exec(bprm);
883 install_exec_creds(bprm);
884
885 /* Do this so that we can load the interpreter, if need be. We will
886 change some of these later */
887 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
888 executable_stack);
889 if (retval < 0)
890 goto out_free_dentry;
891
892 current->mm->start_stack = bprm->p;
893
894 /* Now we do a little grungy work by mmapping the ELF image into
895 the correct location in memory. */
896 for(i = 0, elf_ppnt = elf_phdata;
897 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
898 int elf_prot = 0, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
899 unsigned long k, vaddr;
900 unsigned long total_size = 0;
901
902 if (elf_ppnt->p_type != PT_LOAD)
903 continue;
904
905 if (unlikely (elf_brk > elf_bss)) {
906 unsigned long nbyte;
907
908 /* There was a PT_LOAD segment with p_memsz > p_filesz
909 before this one. Map anonymous pages, if needed,
910 and clear the area. */
911 retval = set_brk(elf_bss + load_bias,
912 elf_brk + load_bias,
913 bss_prot);
914 if (retval)
915 goto out_free_dentry;
916 nbyte = ELF_PAGEOFFSET(elf_bss);
917 if (nbyte) {
918 nbyte = ELF_MIN_ALIGN - nbyte;
919 if (nbyte > elf_brk - elf_bss)
920 nbyte = elf_brk - elf_bss;
921 if (clear_user((void __user *)elf_bss +
922 load_bias, nbyte)) {
923 /*
924 * This bss-zeroing can fail if the ELF
925 * file specifies odd protections. So
926 * we don't check the return value
927 */
928 }
929 }
930
931 /*
932 * Some binaries have overlapping elf segments and then
933 * we have to forcefully map over an existing mapping
934 * e.g. over this newly established brk mapping.
935 */
936 elf_fixed = MAP_FIXED;
937 }
938
939 if (elf_ppnt->p_flags & PF_R)
940 elf_prot |= PROT_READ;
941 if (elf_ppnt->p_flags & PF_W)
942 elf_prot |= PROT_WRITE;
943 if (elf_ppnt->p_flags & PF_X)
944 elf_prot |= PROT_EXEC;
945
946 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
947
948 vaddr = elf_ppnt->p_vaddr;
949 /*
950 * If we are loading ET_EXEC or we have already performed
951 * the ET_DYN load_addr calculations, proceed normally.
952 */
953 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
954 elf_flags |= elf_fixed;
955 } else if (loc->elf_ex.e_type == ET_DYN) {
956 /*
957 * This logic is run once for the first LOAD Program
958 * Header for ET_DYN binaries to calculate the
959 * randomization (load_bias) for all the LOAD
960 * Program Headers, and to calculate the entire
961 * size of the ELF mapping (total_size). (Note that
962 * load_addr_set is set to true later once the
963 * initial mapping is performed.)
964 *
965 * There are effectively two types of ET_DYN
966 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
967 * and loaders (ET_DYN without INTERP, since they
968 * _are_ the ELF interpreter). The loaders must
969 * be loaded away from programs since the program
970 * may otherwise collide with the loader (especially
971 * for ET_EXEC which does not have a randomized
972 * position). For example to handle invocations of
973 * "./ld.so someprog" to test out a new version of
974 * the loader, the subsequent program that the
975 * loader loads must avoid the loader itself, so
976 * they cannot share the same load range. Sufficient
977 * room for the brk must be allocated with the
978 * loader as well, since brk must be available with
979 * the loader.
980 *
981 * Therefore, programs are loaded offset from
982 * ELF_ET_DYN_BASE and loaders are loaded into the
983 * independently randomized mmap region (0 load_bias
984 * without MAP_FIXED).
985 */
986 if (elf_interpreter) {
987 load_bias = ELF_ET_DYN_BASE;
988 if (current->flags & PF_RANDOMIZE)
989 load_bias += arch_mmap_rnd();
990 elf_flags |= elf_fixed;
991 } else
992 load_bias = 0;
993
994 /*
995 * Since load_bias is used for all subsequent loading
996 * calculations, we must lower it by the first vaddr
997 * so that the remaining calculations based on the
998 * ELF vaddrs will be correctly offset. The result
999 * is then page aligned.
1000 */
1001 load_bias = ELF_PAGESTART(load_bias - vaddr);
1002
1003 total_size = total_mapping_size(elf_phdata,
1004 loc->elf_ex.e_phnum);
1005 if (!total_size) {
1006 retval = -EINVAL;
1007 goto out_free_dentry;
1008 }
1009 }
1010
1011 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1012 elf_prot, elf_flags, total_size);
1013 if (BAD_ADDR(error)) {
1014 retval = IS_ERR((void *)error) ?
1015 PTR_ERR((void*)error) : -EINVAL;
1016 goto out_free_dentry;
1017 }
1018
1019 if (!load_addr_set) {
1020 load_addr_set = 1;
1021 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1022 if (loc->elf_ex.e_type == ET_DYN) {
1023 load_bias += error -
1024 ELF_PAGESTART(load_bias + vaddr);
1025 load_addr += load_bias;
1026 reloc_func_desc = load_bias;
1027 }
1028 }
1029 k = elf_ppnt->p_vaddr;
1030 if (k < start_code)
1031 start_code = k;
1032 if (start_data < k)
1033 start_data = k;
1034
1035 /*
1036 * Check to see if the section's size will overflow the
1037 * allowed task size. Note that p_filesz must always be
1038 * <= p_memsz so it is only necessary to check p_memsz.
1039 */
1040 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1041 elf_ppnt->p_memsz > TASK_SIZE ||
1042 TASK_SIZE - elf_ppnt->p_memsz < k) {
1043 /* set_brk can never work. Avoid overflows. */
1044 retval = -EINVAL;
1045 goto out_free_dentry;
1046 }
1047
1048 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1049
1050 if (k > elf_bss)
1051 elf_bss = k;
1052 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1053 end_code = k;
1054 if (end_data < k)
1055 end_data = k;
1056 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1057 if (k > elf_brk) {
1058 bss_prot = elf_prot;
1059 elf_brk = k;
1060 }
1061 }
1062
1063 loc->elf_ex.e_entry += load_bias;
1064 elf_bss += load_bias;
1065 elf_brk += load_bias;
1066 start_code += load_bias;
1067 end_code += load_bias;
1068 start_data += load_bias;
1069 end_data += load_bias;
1070
1071 /* Calling set_brk effectively mmaps the pages that we need
1072 * for the bss and break sections. We must do this before
1073 * mapping in the interpreter, to make sure it doesn't wind
1074 * up getting placed where the bss needs to go.
1075 */
1076 retval = set_brk(elf_bss, elf_brk, bss_prot);
1077 if (retval)
1078 goto out_free_dentry;
1079 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1080 retval = -EFAULT; /* Nobody gets to see this, but.. */
1081 goto out_free_dentry;
1082 }
1083
1084 if (elf_interpreter) {
1085 unsigned long interp_map_addr = 0;
1086
1087 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1088 interpreter,
1089 &interp_map_addr,
1090 load_bias, interp_elf_phdata);
1091 if (!IS_ERR((void *)elf_entry)) {
1092 /*
1093 * load_elf_interp() returns relocation
1094 * adjustment
1095 */
1096 interp_load_addr = elf_entry;
1097 elf_entry += loc->interp_elf_ex.e_entry;
1098 }
1099 if (BAD_ADDR(elf_entry)) {
1100 retval = IS_ERR((void *)elf_entry) ?
1101 (int)elf_entry : -EINVAL;
1102 goto out_free_dentry;
1103 }
1104 reloc_func_desc = interp_load_addr;
1105
1106 allow_write_access(interpreter);
1107 fput(interpreter);
1108 kfree(elf_interpreter);
1109 } else {
1110 elf_entry = loc->elf_ex.e_entry;
1111 if (BAD_ADDR(elf_entry)) {
1112 retval = -EINVAL;
1113 goto out_free_dentry;
1114 }
1115 }
1116
1117 kfree(interp_elf_phdata);
1118 kfree(elf_phdata);
1119
1120 set_binfmt(&elf_format);
1121
1122#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1123 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1124 if (retval < 0)
1125 goto out;
1126#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1127
1128 retval = create_elf_tables(bprm, &loc->elf_ex,
1129 load_addr, interp_load_addr);
1130 if (retval < 0)
1131 goto out;
1132 /* N.B. passed_fileno might not be initialized? */
1133 current->mm->end_code = end_code;
1134 current->mm->start_code = start_code;
1135 current->mm->start_data = start_data;
1136 current->mm->end_data = end_data;
1137 current->mm->start_stack = bprm->p;
1138
1139 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1140 current->mm->brk = current->mm->start_brk =
1141 arch_randomize_brk(current->mm);
1142#ifdef compat_brk_randomized
1143 current->brk_randomized = 1;
1144#endif
1145 }
1146
1147 if (current->personality & MMAP_PAGE_ZERO) {
1148 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1149 and some applications "depend" upon this behavior.
1150 Since we do not have the power to recompile these, we
1151 emulate the SVr4 behavior. Sigh. */
1152 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1153 MAP_FIXED | MAP_PRIVATE, 0);
1154 }
1155
1156#ifdef ELF_PLAT_INIT
1157 /*
1158 * The ABI may specify that certain registers be set up in special
1159 * ways (on i386 %edx is the address of a DT_FINI function, for
1160 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1161 * that the e_entry field is the address of the function descriptor
1162 * for the startup routine, rather than the address of the startup
1163 * routine itself. This macro performs whatever initialization to
1164 * the regs structure is required as well as any relocations to the
1165 * function descriptor entries when executing dynamically links apps.
1166 */
1167 ELF_PLAT_INIT(regs, reloc_func_desc);
1168#endif
1169
1170 finalize_exec(bprm);
1171 start_thread(regs, elf_entry, bprm->p);
1172 retval = 0;
1173out:
1174 kfree(loc);
1175out_ret:
1176 return retval;
1177
1178 /* error cleanup */
1179out_free_dentry:
1180 kfree(interp_elf_phdata);
1181 allow_write_access(interpreter);
1182 if (interpreter)
1183 fput(interpreter);
1184out_free_interp:
1185 kfree(elf_interpreter);
1186out_free_ph:
1187 kfree(elf_phdata);
1188 goto out;
1189}
1190
1191#ifdef CONFIG_USELIB
1192/* This is really simpleminded and specialized - we are loading an
1193 a.out library that is given an ELF header. */
1194static int load_elf_library(struct file *file)
1195{
1196 struct elf_phdr *elf_phdata;
1197 struct elf_phdr *eppnt;
1198 unsigned long elf_bss, bss, len;
1199 int retval, error, i, j;
1200 struct elfhdr elf_ex;
1201 loff_t pos = 0;
1202
1203 error = -ENOEXEC;
1204 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1205 if (retval != sizeof(elf_ex))
1206 goto out;
1207
1208 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1209 goto out;
1210
1211 /* First of all, some simple consistency checks */
1212 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1213 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1214 goto out;
1215 if (elf_check_fdpic(&elf_ex))
1216 goto out;
1217
1218 /* Now read in all of the header information */
1219
1220 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1221 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1222
1223 error = -ENOMEM;
1224 elf_phdata = kmalloc(j, GFP_KERNEL);
1225 if (!elf_phdata)
1226 goto out;
1227
1228 eppnt = elf_phdata;
1229 error = -ENOEXEC;
1230 pos = elf_ex.e_phoff;
1231 retval = kernel_read(file, eppnt, j, &pos);
1232 if (retval != j)
1233 goto out_free_ph;
1234
1235 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1236 if ((eppnt + i)->p_type == PT_LOAD)
1237 j++;
1238 if (j != 1)
1239 goto out_free_ph;
1240
1241 while (eppnt->p_type != PT_LOAD)
1242 eppnt++;
1243
1244 /* Now use mmap to map the library into memory. */
1245 error = vm_mmap(file,
1246 ELF_PAGESTART(eppnt->p_vaddr),
1247 (eppnt->p_filesz +
1248 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1249 PROT_READ | PROT_WRITE | PROT_EXEC,
1250 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1251 (eppnt->p_offset -
1252 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1253 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1254 goto out_free_ph;
1255
1256 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1257 if (padzero(elf_bss)) {
1258 error = -EFAULT;
1259 goto out_free_ph;
1260 }
1261
1262 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1263 ELF_MIN_ALIGN - 1);
1264 bss = eppnt->p_memsz + eppnt->p_vaddr;
1265 if (bss > len) {
1266 error = vm_brk(len, bss - len);
1267 if (error)
1268 goto out_free_ph;
1269 }
1270 error = 0;
1271
1272out_free_ph:
1273 kfree(elf_phdata);
1274out:
1275 return error;
1276}
1277#endif /* #ifdef CONFIG_USELIB */
1278
1279#ifdef CONFIG_ELF_CORE
1280/*
1281 * ELF core dumper
1282 *
1283 * Modelled on fs/exec.c:aout_core_dump()
1284 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1285 */
1286
1287/*
1288 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1289 * that are useful for post-mortem analysis are included in every core dump.
1290 * In that way we ensure that the core dump is fully interpretable later
1291 * without matching up the same kernel and hardware config to see what PC values
1292 * meant. These special mappings include - vDSO, vsyscall, and other
1293 * architecture specific mappings
1294 */
1295static bool always_dump_vma(struct vm_area_struct *vma)
1296{
1297 /* Any vsyscall mappings? */
1298 if (vma == get_gate_vma(vma->vm_mm))
1299 return true;
1300
1301 /*
1302 * Assume that all vmas with a .name op should always be dumped.
1303 * If this changes, a new vm_ops field can easily be added.
1304 */
1305 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1306 return true;
1307
1308 /*
1309 * arch_vma_name() returns non-NULL for special architecture mappings,
1310 * such as vDSO sections.
1311 */
1312 if (arch_vma_name(vma))
1313 return true;
1314
1315 return false;
1316}
1317
1318/*
1319 * Decide what to dump of a segment, part, all or none.
1320 */
1321static unsigned long vma_dump_size(struct vm_area_struct *vma,
1322 unsigned long mm_flags)
1323{
1324#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1325
1326 /* always dump the vdso and vsyscall sections */
1327 if (always_dump_vma(vma))
1328 goto whole;
1329
1330 if (vma->vm_flags & VM_DONTDUMP)
1331 return 0;
1332
1333 /* support for DAX */
1334 if (vma_is_dax(vma)) {
1335 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1336 goto whole;
1337 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1338 goto whole;
1339 return 0;
1340 }
1341
1342 /* Hugetlb memory check */
1343 if (vma->vm_flags & VM_HUGETLB) {
1344 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1345 goto whole;
1346 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1347 goto whole;
1348 return 0;
1349 }
1350
1351 /* Do not dump I/O mapped devices or special mappings */
1352 if (vma->vm_flags & VM_IO)
1353 return 0;
1354
1355 /* By default, dump shared memory if mapped from an anonymous file. */
1356 if (vma->vm_flags & VM_SHARED) {
1357 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1358 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1359 goto whole;
1360 return 0;
1361 }
1362
1363 /* Dump segments that have been written to. */
1364 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1365 goto whole;
1366 if (vma->vm_file == NULL)
1367 return 0;
1368
1369 if (FILTER(MAPPED_PRIVATE))
1370 goto whole;
1371
1372 /*
1373 * If this looks like the beginning of a DSO or executable mapping,
1374 * check for an ELF header. If we find one, dump the first page to
1375 * aid in determining what was mapped here.
1376 */
1377 if (FILTER(ELF_HEADERS) &&
1378 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1379 u32 __user *header = (u32 __user *) vma->vm_start;
1380 u32 word;
1381 mm_segment_t fs = get_fs();
1382 /*
1383 * Doing it this way gets the constant folded by GCC.
1384 */
1385 union {
1386 u32 cmp;
1387 char elfmag[SELFMAG];
1388 } magic;
1389 BUILD_BUG_ON(SELFMAG != sizeof word);
1390 magic.elfmag[EI_MAG0] = ELFMAG0;
1391 magic.elfmag[EI_MAG1] = ELFMAG1;
1392 magic.elfmag[EI_MAG2] = ELFMAG2;
1393 magic.elfmag[EI_MAG3] = ELFMAG3;
1394 /*
1395 * Switch to the user "segment" for get_user(),
1396 * then put back what elf_core_dump() had in place.
1397 */
1398 set_fs(USER_DS);
1399 if (unlikely(get_user(word, header)))
1400 word = 0;
1401 set_fs(fs);
1402 if (word == magic.cmp)
1403 return PAGE_SIZE;
1404 }
1405
1406#undef FILTER
1407
1408 return 0;
1409
1410whole:
1411 return vma->vm_end - vma->vm_start;
1412}
1413
1414/* An ELF note in memory */
1415struct memelfnote
1416{
1417 const char *name;
1418 int type;
1419 unsigned int datasz;
1420 void *data;
1421};
1422
1423static int notesize(struct memelfnote *en)
1424{
1425 int sz;
1426
1427 sz = sizeof(struct elf_note);
1428 sz += roundup(strlen(en->name) + 1, 4);
1429 sz += roundup(en->datasz, 4);
1430
1431 return sz;
1432}
1433
1434static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1435{
1436 struct elf_note en;
1437 en.n_namesz = strlen(men->name) + 1;
1438 en.n_descsz = men->datasz;
1439 en.n_type = men->type;
1440
1441 return dump_emit(cprm, &en, sizeof(en)) &&
1442 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1443 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1444}
1445
1446static void fill_elf_header(struct elfhdr *elf, int segs,
1447 u16 machine, u32 flags)
1448{
1449 memset(elf, 0, sizeof(*elf));
1450
1451 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1452 elf->e_ident[EI_CLASS] = ELF_CLASS;
1453 elf->e_ident[EI_DATA] = ELF_DATA;
1454 elf->e_ident[EI_VERSION] = EV_CURRENT;
1455 elf->e_ident[EI_OSABI] = ELF_OSABI;
1456
1457 elf->e_type = ET_CORE;
1458 elf->e_machine = machine;
1459 elf->e_version = EV_CURRENT;
1460 elf->e_phoff = sizeof(struct elfhdr);
1461 elf->e_flags = flags;
1462 elf->e_ehsize = sizeof(struct elfhdr);
1463 elf->e_phentsize = sizeof(struct elf_phdr);
1464 elf->e_phnum = segs;
1465
1466 return;
1467}
1468
1469static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1470{
1471 phdr->p_type = PT_NOTE;
1472 phdr->p_offset = offset;
1473 phdr->p_vaddr = 0;
1474 phdr->p_paddr = 0;
1475 phdr->p_filesz = sz;
1476 phdr->p_memsz = 0;
1477 phdr->p_flags = 0;
1478 phdr->p_align = 0;
1479 return;
1480}
1481
1482static void fill_note(struct memelfnote *note, const char *name, int type,
1483 unsigned int sz, void *data)
1484{
1485 note->name = name;
1486 note->type = type;
1487 note->datasz = sz;
1488 note->data = data;
1489 return;
1490}
1491
1492/*
1493 * fill up all the fields in prstatus from the given task struct, except
1494 * registers which need to be filled up separately.
1495 */
1496static void fill_prstatus(struct elf_prstatus *prstatus,
1497 struct task_struct *p, long signr)
1498{
1499 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1500 prstatus->pr_sigpend = p->pending.signal.sig[0];
1501 prstatus->pr_sighold = p->blocked.sig[0];
1502 rcu_read_lock();
1503 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1504 rcu_read_unlock();
1505 prstatus->pr_pid = task_pid_vnr(p);
1506 prstatus->pr_pgrp = task_pgrp_vnr(p);
1507 prstatus->pr_sid = task_session_vnr(p);
1508 if (thread_group_leader(p)) {
1509 struct task_cputime cputime;
1510
1511 /*
1512 * This is the record for the group leader. It shows the
1513 * group-wide total, not its individual thread total.
1514 */
1515 thread_group_cputime(p, &cputime);
1516 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1517 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1518 } else {
1519 u64 utime, stime;
1520
1521 task_cputime(p, &utime, &stime);
1522 prstatus->pr_utime = ns_to_timeval(utime);
1523 prstatus->pr_stime = ns_to_timeval(stime);
1524 }
1525
1526 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1527 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1528}
1529
1530static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1531 struct mm_struct *mm)
1532{
1533 const struct cred *cred;
1534 unsigned int i, len;
1535
1536 /* first copy the parameters from user space */
1537 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1538
1539 len = mm->arg_end - mm->arg_start;
1540 if (len >= ELF_PRARGSZ)
1541 len = ELF_PRARGSZ-1;
1542 if (copy_from_user(&psinfo->pr_psargs,
1543 (const char __user *)mm->arg_start, len))
1544 return -EFAULT;
1545 for(i = 0; i < len; i++)
1546 if (psinfo->pr_psargs[i] == 0)
1547 psinfo->pr_psargs[i] = ' ';
1548 psinfo->pr_psargs[len] = 0;
1549
1550 rcu_read_lock();
1551 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1552 rcu_read_unlock();
1553 psinfo->pr_pid = task_pid_vnr(p);
1554 psinfo->pr_pgrp = task_pgrp_vnr(p);
1555 psinfo->pr_sid = task_session_vnr(p);
1556
1557 i = p->state ? ffz(~p->state) + 1 : 0;
1558 psinfo->pr_state = i;
1559 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1560 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1561 psinfo->pr_nice = task_nice(p);
1562 psinfo->pr_flag = p->flags;
1563 rcu_read_lock();
1564 cred = __task_cred(p);
1565 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1566 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1567 rcu_read_unlock();
1568 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1569
1570 return 0;
1571}
1572
1573static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1574{
1575 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1576 int i = 0;
1577 do
1578 i += 2;
1579 while (auxv[i - 2] != AT_NULL);
1580 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1581}
1582
1583static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1584 const siginfo_t *siginfo)
1585{
1586 mm_segment_t old_fs = get_fs();
1587 set_fs(KERNEL_DS);
1588 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1589 set_fs(old_fs);
1590 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1591}
1592
1593#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1594/*
1595 * Format of NT_FILE note:
1596 *
1597 * long count -- how many files are mapped
1598 * long page_size -- units for file_ofs
1599 * array of [COUNT] elements of
1600 * long start
1601 * long end
1602 * long file_ofs
1603 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1604 */
1605static int fill_files_note(struct memelfnote *note)
1606{
1607 struct vm_area_struct *vma;
1608 unsigned count, size, names_ofs, remaining, n;
1609 user_long_t *data;
1610 user_long_t *start_end_ofs;
1611 char *name_base, *name_curpos;
1612
1613 /* *Estimated* file count and total data size needed */
1614 count = current->mm->map_count;
1615 if (count > UINT_MAX / 64)
1616 return -EINVAL;
1617 size = count * 64;
1618
1619 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1620 alloc:
1621 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1622 return -EINVAL;
1623 size = round_up(size, PAGE_SIZE);
1624 data = vmalloc(size);
1625 if (!data)
1626 return -ENOMEM;
1627
1628 start_end_ofs = data + 2;
1629 name_base = name_curpos = ((char *)data) + names_ofs;
1630 remaining = size - names_ofs;
1631 count = 0;
1632 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1633 struct file *file;
1634 const char *filename;
1635
1636 file = vma->vm_file;
1637 if (!file)
1638 continue;
1639 filename = file_path(file, name_curpos, remaining);
1640 if (IS_ERR(filename)) {
1641 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1642 vfree(data);
1643 size = size * 5 / 4;
1644 goto alloc;
1645 }
1646 continue;
1647 }
1648
1649 /* file_path() fills at the end, move name down */
1650 /* n = strlen(filename) + 1: */
1651 n = (name_curpos + remaining) - filename;
1652 remaining = filename - name_curpos;
1653 memmove(name_curpos, filename, n);
1654 name_curpos += n;
1655
1656 *start_end_ofs++ = vma->vm_start;
1657 *start_end_ofs++ = vma->vm_end;
1658 *start_end_ofs++ = vma->vm_pgoff;
1659 count++;
1660 }
1661
1662 /* Now we know exact count of files, can store it */
1663 data[0] = count;
1664 data[1] = PAGE_SIZE;
1665 /*
1666 * Count usually is less than current->mm->map_count,
1667 * we need to move filenames down.
1668 */
1669 n = current->mm->map_count - count;
1670 if (n != 0) {
1671 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1672 memmove(name_base - shift_bytes, name_base,
1673 name_curpos - name_base);
1674 name_curpos -= shift_bytes;
1675 }
1676
1677 size = name_curpos - (char *)data;
1678 fill_note(note, "CORE", NT_FILE, size, data);
1679 return 0;
1680}
1681
1682#ifdef CORE_DUMP_USE_REGSET
1683#include <linux/regset.h>
1684
1685struct elf_thread_core_info {
1686 struct elf_thread_core_info *next;
1687 struct task_struct *task;
1688 struct elf_prstatus prstatus;
1689 struct memelfnote notes[0];
1690};
1691
1692struct elf_note_info {
1693 struct elf_thread_core_info *thread;
1694 struct memelfnote psinfo;
1695 struct memelfnote signote;
1696 struct memelfnote auxv;
1697 struct memelfnote files;
1698 user_siginfo_t csigdata;
1699 size_t size;
1700 int thread_notes;
1701};
1702
1703/*
1704 * When a regset has a writeback hook, we call it on each thread before
1705 * dumping user memory. On register window machines, this makes sure the
1706 * user memory backing the register data is up to date before we read it.
1707 */
1708static void do_thread_regset_writeback(struct task_struct *task,
1709 const struct user_regset *regset)
1710{
1711 if (regset->writeback)
1712 regset->writeback(task, regset, 1);
1713}
1714
1715#ifndef PRSTATUS_SIZE
1716#define PRSTATUS_SIZE(S, R) sizeof(S)
1717#endif
1718
1719#ifndef SET_PR_FPVALID
1720#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1721#endif
1722
1723static int fill_thread_core_info(struct elf_thread_core_info *t,
1724 const struct user_regset_view *view,
1725 long signr, size_t *total)
1726{
1727 unsigned int i;
1728 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1729
1730 /*
1731 * NT_PRSTATUS is the one special case, because the regset data
1732 * goes into the pr_reg field inside the note contents, rather
1733 * than being the whole note contents. We fill the reset in here.
1734 * We assume that regset 0 is NT_PRSTATUS.
1735 */
1736 fill_prstatus(&t->prstatus, t->task, signr);
1737 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1738 &t->prstatus.pr_reg, NULL);
1739
1740 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1741 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1742 *total += notesize(&t->notes[0]);
1743
1744 do_thread_regset_writeback(t->task, &view->regsets[0]);
1745
1746 /*
1747 * Each other regset might generate a note too. For each regset
1748 * that has no core_note_type or is inactive, we leave t->notes[i]
1749 * all zero and we'll know to skip writing it later.
1750 */
1751 for (i = 1; i < view->n; ++i) {
1752 const struct user_regset *regset = &view->regsets[i];
1753 do_thread_regset_writeback(t->task, regset);
1754 if (regset->core_note_type && regset->get &&
1755 (!regset->active || regset->active(t->task, regset))) {
1756 int ret;
1757 size_t size = regset_size(t->task, regset);
1758 void *data = kmalloc(size, GFP_KERNEL);
1759 if (unlikely(!data))
1760 return 0;
1761 ret = regset->get(t->task, regset,
1762 0, size, data, NULL);
1763 if (unlikely(ret))
1764 kfree(data);
1765 else {
1766 if (regset->core_note_type != NT_PRFPREG)
1767 fill_note(&t->notes[i], "LINUX",
1768 regset->core_note_type,
1769 size, data);
1770 else {
1771 SET_PR_FPVALID(&t->prstatus,
1772 1, regset0_size);
1773 fill_note(&t->notes[i], "CORE",
1774 NT_PRFPREG, size, data);
1775 }
1776 *total += notesize(&t->notes[i]);
1777 }
1778 }
1779 }
1780
1781 return 1;
1782}
1783
1784static int fill_note_info(struct elfhdr *elf, int phdrs,
1785 struct elf_note_info *info,
1786 const siginfo_t *siginfo, struct pt_regs *regs)
1787{
1788 struct task_struct *dump_task = current;
1789 const struct user_regset_view *view = task_user_regset_view(dump_task);
1790 struct elf_thread_core_info *t;
1791 struct elf_prpsinfo *psinfo;
1792 struct core_thread *ct;
1793 unsigned int i;
1794
1795 info->size = 0;
1796 info->thread = NULL;
1797
1798 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1799 if (psinfo == NULL) {
1800 info->psinfo.data = NULL; /* So we don't free this wrongly */
1801 return 0;
1802 }
1803
1804 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1805
1806 /*
1807 * Figure out how many notes we're going to need for each thread.
1808 */
1809 info->thread_notes = 0;
1810 for (i = 0; i < view->n; ++i)
1811 if (view->regsets[i].core_note_type != 0)
1812 ++info->thread_notes;
1813
1814 /*
1815 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1816 * since it is our one special case.
1817 */
1818 if (unlikely(info->thread_notes == 0) ||
1819 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1820 WARN_ON(1);
1821 return 0;
1822 }
1823
1824 /*
1825 * Initialize the ELF file header.
1826 */
1827 fill_elf_header(elf, phdrs,
1828 view->e_machine, view->e_flags);
1829
1830 /*
1831 * Allocate a structure for each thread.
1832 */
1833 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1834 t = kzalloc(offsetof(struct elf_thread_core_info,
1835 notes[info->thread_notes]),
1836 GFP_KERNEL);
1837 if (unlikely(!t))
1838 return 0;
1839
1840 t->task = ct->task;
1841 if (ct->task == dump_task || !info->thread) {
1842 t->next = info->thread;
1843 info->thread = t;
1844 } else {
1845 /*
1846 * Make sure to keep the original task at
1847 * the head of the list.
1848 */
1849 t->next = info->thread->next;
1850 info->thread->next = t;
1851 }
1852 }
1853
1854 /*
1855 * Now fill in each thread's information.
1856 */
1857 for (t = info->thread; t != NULL; t = t->next)
1858 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1859 return 0;
1860
1861 /*
1862 * Fill in the two process-wide notes.
1863 */
1864 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1865 info->size += notesize(&info->psinfo);
1866
1867 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1868 info->size += notesize(&info->signote);
1869
1870 fill_auxv_note(&info->auxv, current->mm);
1871 info->size += notesize(&info->auxv);
1872
1873 if (fill_files_note(&info->files) == 0)
1874 info->size += notesize(&info->files);
1875
1876 return 1;
1877}
1878
1879static size_t get_note_info_size(struct elf_note_info *info)
1880{
1881 return info->size;
1882}
1883
1884/*
1885 * Write all the notes for each thread. When writing the first thread, the
1886 * process-wide notes are interleaved after the first thread-specific note.
1887 */
1888static int write_note_info(struct elf_note_info *info,
1889 struct coredump_params *cprm)
1890{
1891 bool first = true;
1892 struct elf_thread_core_info *t = info->thread;
1893
1894 do {
1895 int i;
1896
1897 if (!writenote(&t->notes[0], cprm))
1898 return 0;
1899
1900 if (first && !writenote(&info->psinfo, cprm))
1901 return 0;
1902 if (first && !writenote(&info->signote, cprm))
1903 return 0;
1904 if (first && !writenote(&info->auxv, cprm))
1905 return 0;
1906 if (first && info->files.data &&
1907 !writenote(&info->files, cprm))
1908 return 0;
1909
1910 for (i = 1; i < info->thread_notes; ++i)
1911 if (t->notes[i].data &&
1912 !writenote(&t->notes[i], cprm))
1913 return 0;
1914
1915 first = false;
1916 t = t->next;
1917 } while (t);
1918
1919 return 1;
1920}
1921
1922static void free_note_info(struct elf_note_info *info)
1923{
1924 struct elf_thread_core_info *threads = info->thread;
1925 while (threads) {
1926 unsigned int i;
1927 struct elf_thread_core_info *t = threads;
1928 threads = t->next;
1929 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1930 for (i = 1; i < info->thread_notes; ++i)
1931 kfree(t->notes[i].data);
1932 kfree(t);
1933 }
1934 kfree(info->psinfo.data);
1935 vfree(info->files.data);
1936}
1937
1938#else
1939
1940/* Here is the structure in which status of each thread is captured. */
1941struct elf_thread_status
1942{
1943 struct list_head list;
1944 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1945 elf_fpregset_t fpu; /* NT_PRFPREG */
1946 struct task_struct *thread;
1947#ifdef ELF_CORE_COPY_XFPREGS
1948 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1949#endif
1950 struct memelfnote notes[3];
1951 int num_notes;
1952};
1953
1954/*
1955 * In order to add the specific thread information for the elf file format,
1956 * we need to keep a linked list of every threads pr_status and then create
1957 * a single section for them in the final core file.
1958 */
1959static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1960{
1961 int sz = 0;
1962 struct task_struct *p = t->thread;
1963 t->num_notes = 0;
1964
1965 fill_prstatus(&t->prstatus, p, signr);
1966 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1967
1968 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1969 &(t->prstatus));
1970 t->num_notes++;
1971 sz += notesize(&t->notes[0]);
1972
1973 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1974 &t->fpu))) {
1975 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1976 &(t->fpu));
1977 t->num_notes++;
1978 sz += notesize(&t->notes[1]);
1979 }
1980
1981#ifdef ELF_CORE_COPY_XFPREGS
1982 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1983 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1984 sizeof(t->xfpu), &t->xfpu);
1985 t->num_notes++;
1986 sz += notesize(&t->notes[2]);
1987 }
1988#endif
1989 return sz;
1990}
1991
1992struct elf_note_info {
1993 struct memelfnote *notes;
1994 struct memelfnote *notes_files;
1995 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1996 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1997 struct list_head thread_list;
1998 elf_fpregset_t *fpu;
1999#ifdef ELF_CORE_COPY_XFPREGS
2000 elf_fpxregset_t *xfpu;
2001#endif
2002 user_siginfo_t csigdata;
2003 int thread_status_size;
2004 int numnote;
2005};
2006
2007static int elf_note_info_init(struct elf_note_info *info)
2008{
2009 memset(info, 0, sizeof(*info));
2010 INIT_LIST_HEAD(&info->thread_list);
2011
2012 /* Allocate space for ELF notes */
2013 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
2014 if (!info->notes)
2015 return 0;
2016 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2017 if (!info->psinfo)
2018 return 0;
2019 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2020 if (!info->prstatus)
2021 return 0;
2022 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2023 if (!info->fpu)
2024 return 0;
2025#ifdef ELF_CORE_COPY_XFPREGS
2026 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2027 if (!info->xfpu)
2028 return 0;
2029#endif
2030 return 1;
2031}
2032
2033static int fill_note_info(struct elfhdr *elf, int phdrs,
2034 struct elf_note_info *info,
2035 const siginfo_t *siginfo, struct pt_regs *regs)
2036{
2037 struct list_head *t;
2038 struct core_thread *ct;
2039 struct elf_thread_status *ets;
2040
2041 if (!elf_note_info_init(info))
2042 return 0;
2043
2044 for (ct = current->mm->core_state->dumper.next;
2045 ct; ct = ct->next) {
2046 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2047 if (!ets)
2048 return 0;
2049
2050 ets->thread = ct->task;
2051 list_add(&ets->list, &info->thread_list);
2052 }
2053
2054 list_for_each(t, &info->thread_list) {
2055 int sz;
2056
2057 ets = list_entry(t, struct elf_thread_status, list);
2058 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2059 info->thread_status_size += sz;
2060 }
2061 /* now collect the dump for the current */
2062 memset(info->prstatus, 0, sizeof(*info->prstatus));
2063 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2064 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2065
2066 /* Set up header */
2067 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2068
2069 /*
2070 * Set up the notes in similar form to SVR4 core dumps made
2071 * with info from their /proc.
2072 */
2073
2074 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2075 sizeof(*info->prstatus), info->prstatus);
2076 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2077 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2078 sizeof(*info->psinfo), info->psinfo);
2079
2080 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2081 fill_auxv_note(info->notes + 3, current->mm);
2082 info->numnote = 4;
2083
2084 if (fill_files_note(info->notes + info->numnote) == 0) {
2085 info->notes_files = info->notes + info->numnote;
2086 info->numnote++;
2087 }
2088
2089 /* Try to dump the FPU. */
2090 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2091 info->fpu);
2092 if (info->prstatus->pr_fpvalid)
2093 fill_note(info->notes + info->numnote++,
2094 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2095#ifdef ELF_CORE_COPY_XFPREGS
2096 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2097 fill_note(info->notes + info->numnote++,
2098 "LINUX", ELF_CORE_XFPREG_TYPE,
2099 sizeof(*info->xfpu), info->xfpu);
2100#endif
2101
2102 return 1;
2103}
2104
2105static size_t get_note_info_size(struct elf_note_info *info)
2106{
2107 int sz = 0;
2108 int i;
2109
2110 for (i = 0; i < info->numnote; i++)
2111 sz += notesize(info->notes + i);
2112
2113 sz += info->thread_status_size;
2114
2115 return sz;
2116}
2117
2118static int write_note_info(struct elf_note_info *info,
2119 struct coredump_params *cprm)
2120{
2121 int i;
2122 struct list_head *t;
2123
2124 for (i = 0; i < info->numnote; i++)
2125 if (!writenote(info->notes + i, cprm))
2126 return 0;
2127
2128 /* write out the thread status notes section */
2129 list_for_each(t, &info->thread_list) {
2130 struct elf_thread_status *tmp =
2131 list_entry(t, struct elf_thread_status, list);
2132
2133 for (i = 0; i < tmp->num_notes; i++)
2134 if (!writenote(&tmp->notes[i], cprm))
2135 return 0;
2136 }
2137
2138 return 1;
2139}
2140
2141static void free_note_info(struct elf_note_info *info)
2142{
2143 while (!list_empty(&info->thread_list)) {
2144 struct list_head *tmp = info->thread_list.next;
2145 list_del(tmp);
2146 kfree(list_entry(tmp, struct elf_thread_status, list));
2147 }
2148
2149 /* Free data possibly allocated by fill_files_note(): */
2150 if (info->notes_files)
2151 vfree(info->notes_files->data);
2152
2153 kfree(info->prstatus);
2154 kfree(info->psinfo);
2155 kfree(info->notes);
2156 kfree(info->fpu);
2157#ifdef ELF_CORE_COPY_XFPREGS
2158 kfree(info->xfpu);
2159#endif
2160}
2161
2162#endif
2163
2164static struct vm_area_struct *first_vma(struct task_struct *tsk,
2165 struct vm_area_struct *gate_vma)
2166{
2167 struct vm_area_struct *ret = tsk->mm->mmap;
2168
2169 if (ret)
2170 return ret;
2171 return gate_vma;
2172}
2173/*
2174 * Helper function for iterating across a vma list. It ensures that the caller
2175 * will visit `gate_vma' prior to terminating the search.
2176 */
2177static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2178 struct vm_area_struct *gate_vma)
2179{
2180 struct vm_area_struct *ret;
2181
2182 ret = this_vma->vm_next;
2183 if (ret)
2184 return ret;
2185 if (this_vma == gate_vma)
2186 return NULL;
2187 return gate_vma;
2188}
2189
2190static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2191 elf_addr_t e_shoff, int segs)
2192{
2193 elf->e_shoff = e_shoff;
2194 elf->e_shentsize = sizeof(*shdr4extnum);
2195 elf->e_shnum = 1;
2196 elf->e_shstrndx = SHN_UNDEF;
2197
2198 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2199
2200 shdr4extnum->sh_type = SHT_NULL;
2201 shdr4extnum->sh_size = elf->e_shnum;
2202 shdr4extnum->sh_link = elf->e_shstrndx;
2203 shdr4extnum->sh_info = segs;
2204}
2205
2206/*
2207 * Actual dumper
2208 *
2209 * This is a two-pass process; first we find the offsets of the bits,
2210 * and then they are actually written out. If we run out of core limit
2211 * we just truncate.
2212 */
2213static int elf_core_dump(struct coredump_params *cprm)
2214{
2215 int has_dumped = 0;
2216 mm_segment_t fs;
2217 int segs, i;
2218 size_t vma_data_size = 0;
2219 struct vm_area_struct *vma, *gate_vma;
2220 struct elfhdr *elf = NULL;
2221 loff_t offset = 0, dataoff;
2222 struct elf_note_info info = { };
2223 struct elf_phdr *phdr4note = NULL;
2224 struct elf_shdr *shdr4extnum = NULL;
2225 Elf_Half e_phnum;
2226 elf_addr_t e_shoff;
2227 elf_addr_t *vma_filesz = NULL;
2228
2229 /*
2230 * We no longer stop all VM operations.
2231 *
2232 * This is because those proceses that could possibly change map_count
2233 * or the mmap / vma pages are now blocked in do_exit on current
2234 * finishing this core dump.
2235 *
2236 * Only ptrace can touch these memory addresses, but it doesn't change
2237 * the map_count or the pages allocated. So no possibility of crashing
2238 * exists while dumping the mm->vm_next areas to the core file.
2239 */
2240
2241 /* alloc memory for large data structures: too large to be on stack */
2242 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2243 if (!elf)
2244 goto out;
2245 /*
2246 * The number of segs are recored into ELF header as 16bit value.
2247 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2248 */
2249 segs = current->mm->map_count;
2250 segs += elf_core_extra_phdrs();
2251
2252 gate_vma = get_gate_vma(current->mm);
2253 if (gate_vma != NULL)
2254 segs++;
2255
2256 /* for notes section */
2257 segs++;
2258
2259 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2260 * this, kernel supports extended numbering. Have a look at
2261 * include/linux/elf.h for further information. */
2262 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2263
2264 /*
2265 * Collect all the non-memory information about the process for the
2266 * notes. This also sets up the file header.
2267 */
2268 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2269 goto cleanup;
2270
2271 has_dumped = 1;
2272
2273 fs = get_fs();
2274 set_fs(KERNEL_DS);
2275
2276 offset += sizeof(*elf); /* Elf header */
2277 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2278
2279 /* Write notes phdr entry */
2280 {
2281 size_t sz = get_note_info_size(&info);
2282
2283 sz += elf_coredump_extra_notes_size();
2284
2285 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2286 if (!phdr4note)
2287 goto end_coredump;
2288
2289 fill_elf_note_phdr(phdr4note, sz, offset);
2290 offset += sz;
2291 }
2292
2293 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2294
2295 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2296 goto end_coredump;
2297 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2298 if (!vma_filesz)
2299 goto end_coredump;
2300
2301 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2302 vma = next_vma(vma, gate_vma)) {
2303 unsigned long dump_size;
2304
2305 dump_size = vma_dump_size(vma, cprm->mm_flags);
2306 vma_filesz[i++] = dump_size;
2307 vma_data_size += dump_size;
2308 }
2309
2310 offset += vma_data_size;
2311 offset += elf_core_extra_data_size();
2312 e_shoff = offset;
2313
2314 if (e_phnum == PN_XNUM) {
2315 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2316 if (!shdr4extnum)
2317 goto end_coredump;
2318 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2319 }
2320
2321 offset = dataoff;
2322
2323 if (!dump_emit(cprm, elf, sizeof(*elf)))
2324 goto end_coredump;
2325
2326 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2327 goto end_coredump;
2328
2329 /* Write program headers for segments dump */
2330 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2331 vma = next_vma(vma, gate_vma)) {
2332 struct elf_phdr phdr;
2333
2334 phdr.p_type = PT_LOAD;
2335 phdr.p_offset = offset;
2336 phdr.p_vaddr = vma->vm_start;
2337 phdr.p_paddr = 0;
2338 phdr.p_filesz = vma_filesz[i++];
2339 phdr.p_memsz = vma->vm_end - vma->vm_start;
2340 offset += phdr.p_filesz;
2341 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2342 if (vma->vm_flags & VM_WRITE)
2343 phdr.p_flags |= PF_W;
2344 if (vma->vm_flags & VM_EXEC)
2345 phdr.p_flags |= PF_X;
2346 phdr.p_align = ELF_EXEC_PAGESIZE;
2347
2348 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2349 goto end_coredump;
2350 }
2351
2352 if (!elf_core_write_extra_phdrs(cprm, offset))
2353 goto end_coredump;
2354
2355 /* write out the notes section */
2356 if (!write_note_info(&info, cprm))
2357 goto end_coredump;
2358
2359 if (elf_coredump_extra_notes_write(cprm))
2360 goto end_coredump;
2361
2362 /* Align to page */
2363 if (!dump_skip(cprm, dataoff - cprm->pos))
2364 goto end_coredump;
2365
2366 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2367 vma = next_vma(vma, gate_vma)) {
2368 unsigned long addr;
2369 unsigned long end;
2370
2371 end = vma->vm_start + vma_filesz[i++];
2372
2373 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2374 struct page *page;
2375 int stop;
2376
2377 page = get_dump_page(addr);
2378 if (page) {
2379 void *kaddr = kmap(page);
2380 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2381 kunmap(page);
2382 put_page(page);
2383 } else
2384 stop = !dump_skip(cprm, PAGE_SIZE);
2385 if (stop)
2386 goto end_coredump;
2387 }
2388 }
2389 dump_truncate(cprm);
2390
2391 if (!elf_core_write_extra_data(cprm))
2392 goto end_coredump;
2393
2394 if (e_phnum == PN_XNUM) {
2395 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2396 goto end_coredump;
2397 }
2398
2399end_coredump:
2400 set_fs(fs);
2401
2402cleanup:
2403 free_note_info(&info);
2404 kfree(shdr4extnum);
2405 vfree(vma_filesz);
2406 kfree(phdr4note);
2407 kfree(elf);
2408out:
2409 return has_dumped;
2410}
2411
2412#endif /* CONFIG_ELF_CORE */
2413
2414static int __init init_elf_binfmt(void)
2415{
2416 register_binfmt(&elf_format);
2417 return 0;
2418}
2419
2420static void __exit exit_elf_binfmt(void)
2421{
2422 /* Remove the COFF and ELF loaders. */
2423 unregister_binfmt(&elf_format);
2424}
2425
2426core_initcall(init_elf_binfmt);
2427module_exit(exit_elf_binfmt);
2428MODULE_LICENSE("GPL");