Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * linux/fs/binfmt_elf.c
   3 *
   4 * These are the functions used to load ELF format executables as used
   5 * on SVr4 machines.  Information on the format may be found in the book
   6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
   7 * Tools".
   8 *
   9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/fs.h>
  15#include <linux/mm.h>
  16#include <linux/mman.h>
  17#include <linux/errno.h>
  18#include <linux/signal.h>
  19#include <linux/binfmts.h>
  20#include <linux/string.h>
  21#include <linux/file.h>
  22#include <linux/slab.h>
  23#include <linux/personality.h>
  24#include <linux/elfcore.h>
  25#include <linux/init.h>
  26#include <linux/highuid.h>
  27#include <linux/compiler.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/vmalloc.h>
  31#include <linux/security.h>
  32#include <linux/random.h>
  33#include <linux/elf.h>
  34#include <linux/elf-randomize.h>
  35#include <linux/utsname.h>
  36#include <linux/coredump.h>
  37#include <linux/sched.h>
  38#include <linux/dax.h>
  39#include <linux/uaccess.h>
  40#include <asm/param.h>
  41#include <asm/page.h>
  42
  43#ifndef user_long_t
  44#define user_long_t long
  45#endif
  46#ifndef user_siginfo_t
  47#define user_siginfo_t siginfo_t
  48#endif
  49
  50static int load_elf_binary(struct linux_binprm *bprm);
  51static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
  52				int, int, unsigned long);
  53
  54#ifdef CONFIG_USELIB
  55static int load_elf_library(struct file *);
  56#else
  57#define load_elf_library NULL
  58#endif
  59
  60/*
  61 * If we don't support core dumping, then supply a NULL so we
  62 * don't even try.
  63 */
  64#ifdef CONFIG_ELF_CORE
  65static int elf_core_dump(struct coredump_params *cprm);
  66#else
  67#define elf_core_dump	NULL
  68#endif
  69
  70#if ELF_EXEC_PAGESIZE > PAGE_SIZE
  71#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
  72#else
  73#define ELF_MIN_ALIGN	PAGE_SIZE
  74#endif
  75
  76#ifndef ELF_CORE_EFLAGS
  77#define ELF_CORE_EFLAGS	0
  78#endif
  79
  80#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
  81#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
  82#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
  83
  84static struct linux_binfmt elf_format = {
  85	.module		= THIS_MODULE,
  86	.load_binary	= load_elf_binary,
  87	.load_shlib	= load_elf_library,
  88	.core_dump	= elf_core_dump,
  89	.min_coredump	= ELF_EXEC_PAGESIZE,
  90};
  91
  92#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
  93
  94static int set_brk(unsigned long start, unsigned long end)
  95{
  96	start = ELF_PAGEALIGN(start);
  97	end = ELF_PAGEALIGN(end);
  98	if (end > start) {
  99		int error = vm_brk(start, end - start);
 100		if (error)
 101			return error;
 
 102	}
 103	current->mm->start_brk = current->mm->brk = end;
 104	return 0;
 105}
 106
 107/* We need to explicitly zero any fractional pages
 108   after the data section (i.e. bss).  This would
 109   contain the junk from the file that should not
 110   be in memory
 111 */
 112static int padzero(unsigned long elf_bss)
 113{
 114	unsigned long nbyte;
 115
 116	nbyte = ELF_PAGEOFFSET(elf_bss);
 117	if (nbyte) {
 118		nbyte = ELF_MIN_ALIGN - nbyte;
 119		if (clear_user((void __user *) elf_bss, nbyte))
 120			return -EFAULT;
 121	}
 122	return 0;
 123}
 124
 125/* Let's use some macros to make this stack manipulation a little clearer */
 126#ifdef CONFIG_STACK_GROWSUP
 127#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 128#define STACK_ROUND(sp, items) \
 129	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 130#define STACK_ALLOC(sp, len) ({ \
 131	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 132	old_sp; })
 133#else
 134#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 135#define STACK_ROUND(sp, items) \
 136	(((unsigned long) (sp - items)) &~ 15UL)
 137#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 138#endif
 139
 140#ifndef ELF_BASE_PLATFORM
 141/*
 142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 144 * will be copied to the user stack in the same manner as AT_PLATFORM.
 145 */
 146#define ELF_BASE_PLATFORM NULL
 147#endif
 148
 149static int
 150create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 151		unsigned long load_addr, unsigned long interp_load_addr)
 152{
 153	unsigned long p = bprm->p;
 154	int argc = bprm->argc;
 155	int envc = bprm->envc;
 156	elf_addr_t __user *argv;
 157	elf_addr_t __user *envp;
 158	elf_addr_t __user *sp;
 159	elf_addr_t __user *u_platform;
 160	elf_addr_t __user *u_base_platform;
 161	elf_addr_t __user *u_rand_bytes;
 162	const char *k_platform = ELF_PLATFORM;
 163	const char *k_base_platform = ELF_BASE_PLATFORM;
 164	unsigned char k_rand_bytes[16];
 165	int items;
 166	elf_addr_t *elf_info;
 167	int ei_index = 0;
 168	const struct cred *cred = current_cred();
 169	struct vm_area_struct *vma;
 170
 171	/*
 172	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 173	 * evictions by the processes running on the same package. One
 174	 * thing we can do is to shuffle the initial stack for them.
 175	 */
 176
 177	p = arch_align_stack(p);
 178
 179	/*
 180	 * If this architecture has a platform capability string, copy it
 181	 * to userspace.  In some cases (Sparc), this info is impossible
 182	 * for userspace to get any other way, in others (i386) it is
 183	 * merely difficult.
 184	 */
 185	u_platform = NULL;
 186	if (k_platform) {
 187		size_t len = strlen(k_platform) + 1;
 188
 189		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 190		if (__copy_to_user(u_platform, k_platform, len))
 191			return -EFAULT;
 192	}
 193
 194	/*
 195	 * If this architecture has a "base" platform capability
 196	 * string, copy it to userspace.
 197	 */
 198	u_base_platform = NULL;
 199	if (k_base_platform) {
 200		size_t len = strlen(k_base_platform) + 1;
 201
 202		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 203		if (__copy_to_user(u_base_platform, k_base_platform, len))
 204			return -EFAULT;
 205	}
 206
 207	/*
 208	 * Generate 16 random bytes for userspace PRNG seeding.
 209	 */
 210	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 211	u_rand_bytes = (elf_addr_t __user *)
 212		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 213	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 214		return -EFAULT;
 215
 216	/* Create the ELF interpreter info */
 217	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 218	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 219#define NEW_AUX_ENT(id, val) \
 220	do { \
 221		elf_info[ei_index++] = id; \
 222		elf_info[ei_index++] = val; \
 223	} while (0)
 224
 225#ifdef ARCH_DLINFO
 226	/* 
 227	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 228	 * AUXV.
 229	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 230	 * ARCH_DLINFO changes
 231	 */
 232	ARCH_DLINFO;
 233#endif
 234	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 235	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 236	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 237	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 238	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 239	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 240	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 241	NEW_AUX_ENT(AT_FLAGS, 0);
 242	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 243	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 244	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 245	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 246	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 247 	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 248	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 249#ifdef ELF_HWCAP2
 250	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 251#endif
 252	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 253	if (k_platform) {
 254		NEW_AUX_ENT(AT_PLATFORM,
 255			    (elf_addr_t)(unsigned long)u_platform);
 256	}
 257	if (k_base_platform) {
 258		NEW_AUX_ENT(AT_BASE_PLATFORM,
 259			    (elf_addr_t)(unsigned long)u_base_platform);
 260	}
 261	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 262		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 263	}
 264#undef NEW_AUX_ENT
 265	/* AT_NULL is zero; clear the rest too */
 266	memset(&elf_info[ei_index], 0,
 267	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 268
 269	/* And advance past the AT_NULL entry.  */
 270	ei_index += 2;
 271
 272	sp = STACK_ADD(p, ei_index);
 273
 274	items = (argc + 1) + (envc + 1) + 1;
 275	bprm->p = STACK_ROUND(sp, items);
 276
 277	/* Point sp at the lowest address on the stack */
 278#ifdef CONFIG_STACK_GROWSUP
 279	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 280	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 281#else
 282	sp = (elf_addr_t __user *)bprm->p;
 283#endif
 284
 285
 286	/*
 287	 * Grow the stack manually; some architectures have a limit on how
 288	 * far ahead a user-space access may be in order to grow the stack.
 289	 */
 290	vma = find_extend_vma(current->mm, bprm->p);
 291	if (!vma)
 292		return -EFAULT;
 293
 294	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 295	if (__put_user(argc, sp++))
 296		return -EFAULT;
 297	argv = sp;
 298	envp = argv + argc + 1;
 299
 300	/* Populate argv and envp */
 301	p = current->mm->arg_end = current->mm->arg_start;
 302	while (argc-- > 0) {
 303		size_t len;
 304		if (__put_user((elf_addr_t)p, argv++))
 305			return -EFAULT;
 306		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 307		if (!len || len > MAX_ARG_STRLEN)
 308			return -EINVAL;
 309		p += len;
 310	}
 311	if (__put_user(0, argv))
 312		return -EFAULT;
 313	current->mm->arg_end = current->mm->env_start = p;
 314	while (envc-- > 0) {
 315		size_t len;
 316		if (__put_user((elf_addr_t)p, envp++))
 317			return -EFAULT;
 318		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 319		if (!len || len > MAX_ARG_STRLEN)
 320			return -EINVAL;
 321		p += len;
 322	}
 323	if (__put_user(0, envp))
 324		return -EFAULT;
 325	current->mm->env_end = p;
 326
 327	/* Put the elf_info on the stack in the right place.  */
 328	sp = (elf_addr_t __user *)envp + 1;
 329	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 330		return -EFAULT;
 331	return 0;
 332}
 333
 334#ifndef elf_map
 335
 336static unsigned long elf_map(struct file *filep, unsigned long addr,
 337		struct elf_phdr *eppnt, int prot, int type,
 338		unsigned long total_size)
 339{
 340	unsigned long map_addr;
 341	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 342	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 343	addr = ELF_PAGESTART(addr);
 344	size = ELF_PAGEALIGN(size);
 345
 346	/* mmap() will return -EINVAL if given a zero size, but a
 347	 * segment with zero filesize is perfectly valid */
 348	if (!size)
 349		return addr;
 350
 351	/*
 352	* total_size is the size of the ELF (interpreter) image.
 353	* The _first_ mmap needs to know the full size, otherwise
 354	* randomization might put this image into an overlapping
 355	* position with the ELF binary image. (since size < total_size)
 356	* So we first map the 'big' image - and unmap the remainder at
 357	* the end. (which unmap is needed for ELF images with holes.)
 358	*/
 359	if (total_size) {
 360		total_size = ELF_PAGEALIGN(total_size);
 361		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 362		if (!BAD_ADDR(map_addr))
 363			vm_munmap(map_addr+size, total_size-size);
 364	} else
 365		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 366
 367	return(map_addr);
 368}
 369
 370#endif /* !elf_map */
 371
 372static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 373{
 374	int i, first_idx = -1, last_idx = -1;
 375
 376	for (i = 0; i < nr; i++) {
 377		if (cmds[i].p_type == PT_LOAD) {
 378			last_idx = i;
 379			if (first_idx == -1)
 380				first_idx = i;
 381		}
 382	}
 383	if (first_idx == -1)
 384		return 0;
 385
 386	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 387				ELF_PAGESTART(cmds[first_idx].p_vaddr);
 388}
 389
 390/**
 391 * load_elf_phdrs() - load ELF program headers
 392 * @elf_ex:   ELF header of the binary whose program headers should be loaded
 393 * @elf_file: the opened ELF binary file
 394 *
 395 * Loads ELF program headers from the binary file elf_file, which has the ELF
 396 * header pointed to by elf_ex, into a newly allocated array. The caller is
 397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
 398 */
 399static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
 400				       struct file *elf_file)
 401{
 402	struct elf_phdr *elf_phdata = NULL;
 403	int retval, size, err = -1;
 404
 405	/*
 406	 * If the size of this structure has changed, then punt, since
 407	 * we will be doing the wrong thing.
 408	 */
 409	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 410		goto out;
 411
 412	/* Sanity check the number of program headers... */
 413	if (elf_ex->e_phnum < 1 ||
 414		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 415		goto out;
 416
 417	/* ...and their total size. */
 418	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 419	if (size > ELF_MIN_ALIGN)
 420		goto out;
 421
 422	elf_phdata = kmalloc(size, GFP_KERNEL);
 423	if (!elf_phdata)
 424		goto out;
 425
 426	/* Read in the program headers */
 427	retval = kernel_read(elf_file, elf_ex->e_phoff,
 428			     (char *)elf_phdata, size);
 429	if (retval != size) {
 430		err = (retval < 0) ? retval : -EIO;
 431		goto out;
 432	}
 433
 434	/* Success! */
 435	err = 0;
 436out:
 437	if (err) {
 438		kfree(elf_phdata);
 439		elf_phdata = NULL;
 440	}
 441	return elf_phdata;
 442}
 443
 444#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 445
 446/**
 447 * struct arch_elf_state - arch-specific ELF loading state
 448 *
 449 * This structure is used to preserve architecture specific data during
 450 * the loading of an ELF file, throughout the checking of architecture
 451 * specific ELF headers & through to the point where the ELF load is
 452 * known to be proceeding (ie. SET_PERSONALITY).
 453 *
 454 * This implementation is a dummy for architectures which require no
 455 * specific state.
 456 */
 457struct arch_elf_state {
 458};
 459
 460#define INIT_ARCH_ELF_STATE {}
 461
 462/**
 463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 464 * @ehdr:	The main ELF header
 465 * @phdr:	The program header to check
 466 * @elf:	The open ELF file
 467 * @is_interp:	True if the phdr is from the interpreter of the ELF being
 468 *		loaded, else false.
 469 * @state:	Architecture-specific state preserved throughout the process
 470 *		of loading the ELF.
 471 *
 472 * Inspects the program header phdr to validate its correctness and/or
 473 * suitability for the system. Called once per ELF program header in the
 474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 475 * interpreter.
 476 *
 477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 478 *         with that return code.
 479 */
 480static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 481				   struct elf_phdr *phdr,
 482				   struct file *elf, bool is_interp,
 483				   struct arch_elf_state *state)
 484{
 485	/* Dummy implementation, always proceed */
 486	return 0;
 487}
 488
 489/**
 490 * arch_check_elf() - check an ELF executable
 491 * @ehdr:	The main ELF header
 492 * @has_interp:	True if the ELF has an interpreter, else false.
 493 * @interp_ehdr: The interpreter's ELF header
 494 * @state:	Architecture-specific state preserved throughout the process
 495 *		of loading the ELF.
 496 *
 497 * Provides a final opportunity for architecture code to reject the loading
 498 * of the ELF & cause an exec syscall to return an error. This is called after
 499 * all program headers to be checked by arch_elf_pt_proc have been.
 500 *
 501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 502 *         with that return code.
 503 */
 504static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 505				 struct elfhdr *interp_ehdr,
 506				 struct arch_elf_state *state)
 507{
 508	/* Dummy implementation, always proceed */
 509	return 0;
 510}
 511
 512#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 513
 514/* This is much more generalized than the library routine read function,
 515   so we keep this separate.  Technically the library read function
 516   is only provided so that we can read a.out libraries that have
 517   an ELF header */
 518
 519static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 520		struct file *interpreter, unsigned long *interp_map_addr,
 521		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
 522{
 
 523	struct elf_phdr *eppnt;
 524	unsigned long load_addr = 0;
 525	int load_addr_set = 0;
 526	unsigned long last_bss = 0, elf_bss = 0;
 527	unsigned long error = ~0UL;
 528	unsigned long total_size;
 529	int i;
 530
 531	/* First of all, some simple consistency checks */
 532	if (interp_elf_ex->e_type != ET_EXEC &&
 533	    interp_elf_ex->e_type != ET_DYN)
 534		goto out;
 535	if (!elf_check_arch(interp_elf_ex))
 536		goto out;
 537	if (!interpreter->f_op->mmap)
 538		goto out;
 539
 540	total_size = total_mapping_size(interp_elf_phdata,
 541					interp_elf_ex->e_phnum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542	if (!total_size) {
 543		error = -EINVAL;
 544		goto out;
 545	}
 546
 547	eppnt = interp_elf_phdata;
 548	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 549		if (eppnt->p_type == PT_LOAD) {
 550			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 551			int elf_prot = 0;
 552			unsigned long vaddr = 0;
 553			unsigned long k, map_addr;
 554
 555			if (eppnt->p_flags & PF_R)
 556		    		elf_prot = PROT_READ;
 557			if (eppnt->p_flags & PF_W)
 558				elf_prot |= PROT_WRITE;
 559			if (eppnt->p_flags & PF_X)
 560				elf_prot |= PROT_EXEC;
 561			vaddr = eppnt->p_vaddr;
 562			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 563				elf_type |= MAP_FIXED;
 564			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 565				load_addr = -vaddr;
 566
 567			map_addr = elf_map(interpreter, load_addr + vaddr,
 568					eppnt, elf_prot, elf_type, total_size);
 569			total_size = 0;
 570			if (!*interp_map_addr)
 571				*interp_map_addr = map_addr;
 572			error = map_addr;
 573			if (BAD_ADDR(map_addr))
 574				goto out;
 575
 576			if (!load_addr_set &&
 577			    interp_elf_ex->e_type == ET_DYN) {
 578				load_addr = map_addr - ELF_PAGESTART(vaddr);
 579				load_addr_set = 1;
 580			}
 581
 582			/*
 583			 * Check to see if the section's size will overflow the
 584			 * allowed task size. Note that p_filesz must always be
 585			 * <= p_memsize so it's only necessary to check p_memsz.
 586			 */
 587			k = load_addr + eppnt->p_vaddr;
 588			if (BAD_ADDR(k) ||
 589			    eppnt->p_filesz > eppnt->p_memsz ||
 590			    eppnt->p_memsz > TASK_SIZE ||
 591			    TASK_SIZE - eppnt->p_memsz < k) {
 592				error = -ENOMEM;
 593				goto out;
 594			}
 595
 596			/*
 597			 * Find the end of the file mapping for this phdr, and
 598			 * keep track of the largest address we see for this.
 599			 */
 600			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 601			if (k > elf_bss)
 602				elf_bss = k;
 603
 604			/*
 605			 * Do the same thing for the memory mapping - between
 606			 * elf_bss and last_bss is the bss section.
 607			 */
 608			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
 609			if (k > last_bss)
 610				last_bss = k;
 611		}
 612	}
 613
 614	/*
 615	 * Now fill out the bss section: first pad the last page from
 616	 * the file up to the page boundary, and zero it from elf_bss
 617	 * up to the end of the page.
 618	 */
 619	if (padzero(elf_bss)) {
 620		error = -EFAULT;
 621		goto out;
 622	}
 623	/*
 624	 * Next, align both the file and mem bss up to the page size,
 625	 * since this is where elf_bss was just zeroed up to, and where
 626	 * last_bss will end after the vm_brk() below.
 627	 */
 628	elf_bss = ELF_PAGEALIGN(elf_bss);
 629	last_bss = ELF_PAGEALIGN(last_bss);
 630	/* Finally, if there is still more bss to allocate, do it. */
 631	if (last_bss > elf_bss) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		error = vm_brk(elf_bss, last_bss - elf_bss);
 633		if (error)
 634			goto out;
 635	}
 636
 637	error = load_addr;
 
 
 
 638out:
 639	return error;
 640}
 641
 642/*
 643 * These are the functions used to load ELF style executables and shared
 644 * libraries.  There is no binary dependent code anywhere else.
 645 */
 646
 647#ifndef STACK_RND_MASK
 648#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
 649#endif
 650
 651static unsigned long randomize_stack_top(unsigned long stack_top)
 652{
 653	unsigned long random_variable = 0;
 654
 655	if ((current->flags & PF_RANDOMIZE) &&
 656		!(current->personality & ADDR_NO_RANDOMIZE)) {
 657		random_variable = get_random_long();
 658		random_variable &= STACK_RND_MASK;
 659		random_variable <<= PAGE_SHIFT;
 660	}
 661#ifdef CONFIG_STACK_GROWSUP
 662	return PAGE_ALIGN(stack_top) + random_variable;
 663#else
 664	return PAGE_ALIGN(stack_top) - random_variable;
 665#endif
 666}
 667
 668static int load_elf_binary(struct linux_binprm *bprm)
 669{
 670	struct file *interpreter = NULL; /* to shut gcc up */
 671 	unsigned long load_addr = 0, load_bias = 0;
 672	int load_addr_set = 0;
 673	char * elf_interpreter = NULL;
 674	unsigned long error;
 675	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 676	unsigned long elf_bss, elf_brk;
 677	int retval, i;
 
 678	unsigned long elf_entry;
 679	unsigned long interp_load_addr = 0;
 680	unsigned long start_code, end_code, start_data, end_data;
 681	unsigned long reloc_func_desc __maybe_unused = 0;
 682	int executable_stack = EXSTACK_DEFAULT;
 683	struct pt_regs *regs = current_pt_regs();
 684	struct {
 685		struct elfhdr elf_ex;
 686		struct elfhdr interp_elf_ex;
 687	} *loc;
 688	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 689
 690	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 691	if (!loc) {
 692		retval = -ENOMEM;
 693		goto out_ret;
 694	}
 695	
 696	/* Get the exec-header */
 697	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 698
 699	retval = -ENOEXEC;
 700	/* First of all, some simple consistency checks */
 701	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 702		goto out;
 703
 704	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 705		goto out;
 706	if (!elf_check_arch(&loc->elf_ex))
 707		goto out;
 708	if (!bprm->file->f_op->mmap)
 709		goto out;
 710
 711	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
 
 
 
 
 
 
 
 
 712	if (!elf_phdata)
 713		goto out;
 714
 
 
 
 
 
 
 
 
 715	elf_ppnt = elf_phdata;
 716	elf_bss = 0;
 717	elf_brk = 0;
 718
 719	start_code = ~0UL;
 720	end_code = 0;
 721	start_data = 0;
 722	end_data = 0;
 723
 724	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 725		if (elf_ppnt->p_type == PT_INTERP) {
 726			/* This is the program interpreter used for
 727			 * shared libraries - for now assume that this
 728			 * is an a.out format binary
 729			 */
 730			retval = -ENOEXEC;
 731			if (elf_ppnt->p_filesz > PATH_MAX || 
 732			    elf_ppnt->p_filesz < 2)
 733				goto out_free_ph;
 734
 735			retval = -ENOMEM;
 736			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 737						  GFP_KERNEL);
 738			if (!elf_interpreter)
 739				goto out_free_ph;
 740
 741			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 742					     elf_interpreter,
 743					     elf_ppnt->p_filesz);
 744			if (retval != elf_ppnt->p_filesz) {
 745				if (retval >= 0)
 746					retval = -EIO;
 747				goto out_free_interp;
 748			}
 749			/* make sure path is NULL terminated */
 750			retval = -ENOEXEC;
 751			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 752				goto out_free_interp;
 753
 754			interpreter = open_exec(elf_interpreter);
 755			retval = PTR_ERR(interpreter);
 756			if (IS_ERR(interpreter))
 757				goto out_free_interp;
 758
 759			/*
 760			 * If the binary is not readable then enforce
 761			 * mm->dumpable = 0 regardless of the interpreter's
 762			 * permissions.
 763			 */
 764			would_dump(bprm, interpreter);
 765
 766			/* Get the exec headers */
 767			retval = kernel_read(interpreter, 0,
 768					     (void *)&loc->interp_elf_ex,
 769					     sizeof(loc->interp_elf_ex));
 770			if (retval != sizeof(loc->interp_elf_ex)) {
 771				if (retval >= 0)
 772					retval = -EIO;
 773				goto out_free_dentry;
 774			}
 775
 
 
 776			break;
 777		}
 778		elf_ppnt++;
 779	}
 780
 781	elf_ppnt = elf_phdata;
 782	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 783		switch (elf_ppnt->p_type) {
 784		case PT_GNU_STACK:
 785			if (elf_ppnt->p_flags & PF_X)
 786				executable_stack = EXSTACK_ENABLE_X;
 787			else
 788				executable_stack = EXSTACK_DISABLE_X;
 789			break;
 790
 791		case PT_LOPROC ... PT_HIPROC:
 792			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
 793						  bprm->file, false,
 794						  &arch_state);
 795			if (retval)
 796				goto out_free_dentry;
 797			break;
 798		}
 799
 800	/* Some simple consistency checks for the interpreter */
 801	if (elf_interpreter) {
 802		retval = -ELIBBAD;
 803		/* Not an ELF interpreter */
 804		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 805			goto out_free_dentry;
 806		/* Verify the interpreter has a valid arch */
 807		if (!elf_check_arch(&loc->interp_elf_ex))
 808			goto out_free_dentry;
 809
 810		/* Load the interpreter program headers */
 811		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
 812						   interpreter);
 813		if (!interp_elf_phdata)
 814			goto out_free_dentry;
 815
 816		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 817		elf_ppnt = interp_elf_phdata;
 818		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
 819			switch (elf_ppnt->p_type) {
 820			case PT_LOPROC ... PT_HIPROC:
 821				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
 822							  elf_ppnt, interpreter,
 823							  true, &arch_state);
 824				if (retval)
 825					goto out_free_dentry;
 826				break;
 827			}
 828	}
 829
 830	/*
 831	 * Allow arch code to reject the ELF at this point, whilst it's
 832	 * still possible to return an error to the code that invoked
 833	 * the exec syscall.
 834	 */
 835	retval = arch_check_elf(&loc->elf_ex,
 836				!!interpreter, &loc->interp_elf_ex,
 837				&arch_state);
 838	if (retval)
 839		goto out_free_dentry;
 840
 841	/* Flush all traces of the currently running executable */
 842	retval = flush_old_exec(bprm);
 843	if (retval)
 844		goto out_free_dentry;
 845
 846	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 847	   may depend on the personality.  */
 848	SET_PERSONALITY2(loc->elf_ex, &arch_state);
 849	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 850		current->personality |= READ_IMPLIES_EXEC;
 851
 852	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 853		current->flags |= PF_RANDOMIZE;
 854
 855	setup_new_exec(bprm);
 856	install_exec_creds(bprm);
 857
 858	/* Do this so that we can load the interpreter, if need be.  We will
 859	   change some of these later */
 860	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 861				 executable_stack);
 862	if (retval < 0)
 
 863		goto out_free_dentry;
 
 864	
 865	current->mm->start_stack = bprm->p;
 866
 867	/* Now we do a little grungy work by mmapping the ELF image into
 868	   the correct location in memory. */
 869	for(i = 0, elf_ppnt = elf_phdata;
 870	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 871		int elf_prot = 0, elf_flags;
 872		unsigned long k, vaddr;
 873		unsigned long total_size = 0;
 874
 875		if (elf_ppnt->p_type != PT_LOAD)
 876			continue;
 877
 878		if (unlikely (elf_brk > elf_bss)) {
 879			unsigned long nbyte;
 880	            
 881			/* There was a PT_LOAD segment with p_memsz > p_filesz
 882			   before this one. Map anonymous pages, if needed,
 883			   and clear the area.  */
 884			retval = set_brk(elf_bss + load_bias,
 885					 elf_brk + load_bias);
 886			if (retval)
 
 887				goto out_free_dentry;
 
 888			nbyte = ELF_PAGEOFFSET(elf_bss);
 889			if (nbyte) {
 890				nbyte = ELF_MIN_ALIGN - nbyte;
 891				if (nbyte > elf_brk - elf_bss)
 892					nbyte = elf_brk - elf_bss;
 893				if (clear_user((void __user *)elf_bss +
 894							load_bias, nbyte)) {
 895					/*
 896					 * This bss-zeroing can fail if the ELF
 897					 * file specifies odd protections. So
 898					 * we don't check the return value
 899					 */
 900				}
 901			}
 902		}
 903
 904		if (elf_ppnt->p_flags & PF_R)
 905			elf_prot |= PROT_READ;
 906		if (elf_ppnt->p_flags & PF_W)
 907			elf_prot |= PROT_WRITE;
 908		if (elf_ppnt->p_flags & PF_X)
 909			elf_prot |= PROT_EXEC;
 910
 911		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 912
 913		vaddr = elf_ppnt->p_vaddr;
 914		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 915			elf_flags |= MAP_FIXED;
 916		} else if (loc->elf_ex.e_type == ET_DYN) {
 917			/* Try and get dynamic programs out of the way of the
 918			 * default mmap base, as well as whatever program they
 919			 * might try to exec.  This is because the brk will
 920			 * follow the loader, and is not movable.  */
 921			load_bias = ELF_ET_DYN_BASE - vaddr;
 
 
 
 
 
 
 
 922			if (current->flags & PF_RANDOMIZE)
 923				load_bias += arch_mmap_rnd();
 924			load_bias = ELF_PAGESTART(load_bias);
 925			total_size = total_mapping_size(elf_phdata,
 926							loc->elf_ex.e_phnum);
 927			if (!total_size) {
 928				retval = -EINVAL;
 929				goto out_free_dentry;
 930			}
 931		}
 932
 933		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 934				elf_prot, elf_flags, total_size);
 935		if (BAD_ADDR(error)) {
 
 936			retval = IS_ERR((void *)error) ?
 937				PTR_ERR((void*)error) : -EINVAL;
 938			goto out_free_dentry;
 939		}
 940
 941		if (!load_addr_set) {
 942			load_addr_set = 1;
 943			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 944			if (loc->elf_ex.e_type == ET_DYN) {
 945				load_bias += error -
 946				             ELF_PAGESTART(load_bias + vaddr);
 947				load_addr += load_bias;
 948				reloc_func_desc = load_bias;
 949			}
 950		}
 951		k = elf_ppnt->p_vaddr;
 952		if (k < start_code)
 953			start_code = k;
 954		if (start_data < k)
 955			start_data = k;
 956
 957		/*
 958		 * Check to see if the section's size will overflow the
 959		 * allowed task size. Note that p_filesz must always be
 960		 * <= p_memsz so it is only necessary to check p_memsz.
 961		 */
 962		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 963		    elf_ppnt->p_memsz > TASK_SIZE ||
 964		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 965			/* set_brk can never work. Avoid overflows. */
 
 966			retval = -EINVAL;
 967			goto out_free_dentry;
 968		}
 969
 970		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 971
 972		if (k > elf_bss)
 973			elf_bss = k;
 974		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 975			end_code = k;
 976		if (end_data < k)
 977			end_data = k;
 978		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 979		if (k > elf_brk)
 980			elf_brk = k;
 981	}
 982
 983	loc->elf_ex.e_entry += load_bias;
 984	elf_bss += load_bias;
 985	elf_brk += load_bias;
 986	start_code += load_bias;
 987	end_code += load_bias;
 988	start_data += load_bias;
 989	end_data += load_bias;
 990
 991	/* Calling set_brk effectively mmaps the pages that we need
 992	 * for the bss and break sections.  We must do this before
 993	 * mapping in the interpreter, to make sure it doesn't wind
 994	 * up getting placed where the bss needs to go.
 995	 */
 996	retval = set_brk(elf_bss, elf_brk);
 997	if (retval)
 
 998		goto out_free_dentry;
 
 999	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
 
1000		retval = -EFAULT; /* Nobody gets to see this, but.. */
1001		goto out_free_dentry;
1002	}
1003
1004	if (elf_interpreter) {
1005		unsigned long interp_map_addr = 0;
1006
1007		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1008					    interpreter,
1009					    &interp_map_addr,
1010					    load_bias, interp_elf_phdata);
1011		if (!IS_ERR((void *)elf_entry)) {
1012			/*
1013			 * load_elf_interp() returns relocation
1014			 * adjustment
1015			 */
1016			interp_load_addr = elf_entry;
1017			elf_entry += loc->interp_elf_ex.e_entry;
1018		}
1019		if (BAD_ADDR(elf_entry)) {
 
1020			retval = IS_ERR((void *)elf_entry) ?
1021					(int)elf_entry : -EINVAL;
1022			goto out_free_dentry;
1023		}
1024		reloc_func_desc = interp_load_addr;
1025
1026		allow_write_access(interpreter);
1027		fput(interpreter);
1028		kfree(elf_interpreter);
1029	} else {
1030		elf_entry = loc->elf_ex.e_entry;
1031		if (BAD_ADDR(elf_entry)) {
 
1032			retval = -EINVAL;
1033			goto out_free_dentry;
1034		}
1035	}
1036
1037	kfree(interp_elf_phdata);
1038	kfree(elf_phdata);
1039
1040	set_binfmt(&elf_format);
1041
1042#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1044	if (retval < 0)
 
1045		goto out;
 
1046#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1047
 
1048	retval = create_elf_tables(bprm, &loc->elf_ex,
1049			  load_addr, interp_load_addr);
1050	if (retval < 0)
 
1051		goto out;
 
1052	/* N.B. passed_fileno might not be initialized? */
1053	current->mm->end_code = end_code;
1054	current->mm->start_code = start_code;
1055	current->mm->start_data = start_data;
1056	current->mm->end_data = end_data;
1057	current->mm->start_stack = bprm->p;
1058
 
1059	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1060		current->mm->brk = current->mm->start_brk =
1061			arch_randomize_brk(current->mm);
1062#ifdef compat_brk_randomized
1063		current->brk_randomized = 1;
1064#endif
1065	}
 
1066
1067	if (current->personality & MMAP_PAGE_ZERO) {
1068		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1069		   and some applications "depend" upon this behavior.
1070		   Since we do not have the power to recompile these, we
1071		   emulate the SVr4 behavior. Sigh. */
1072		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1073				MAP_FIXED | MAP_PRIVATE, 0);
1074	}
1075
1076#ifdef ELF_PLAT_INIT
1077	/*
1078	 * The ABI may specify that certain registers be set up in special
1079	 * ways (on i386 %edx is the address of a DT_FINI function, for
1080	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1081	 * that the e_entry field is the address of the function descriptor
1082	 * for the startup routine, rather than the address of the startup
1083	 * routine itself.  This macro performs whatever initialization to
1084	 * the regs structure is required as well as any relocations to the
1085	 * function descriptor entries when executing dynamically links apps.
1086	 */
1087	ELF_PLAT_INIT(regs, reloc_func_desc);
1088#endif
1089
1090	start_thread(regs, elf_entry, bprm->p);
1091	retval = 0;
1092out:
1093	kfree(loc);
1094out_ret:
1095	return retval;
1096
1097	/* error cleanup */
1098out_free_dentry:
1099	kfree(interp_elf_phdata);
1100	allow_write_access(interpreter);
1101	if (interpreter)
1102		fput(interpreter);
1103out_free_interp:
1104	kfree(elf_interpreter);
1105out_free_ph:
1106	kfree(elf_phdata);
1107	goto out;
1108}
1109
1110#ifdef CONFIG_USELIB
1111/* This is really simpleminded and specialized - we are loading an
1112   a.out library that is given an ELF header. */
1113static int load_elf_library(struct file *file)
1114{
1115	struct elf_phdr *elf_phdata;
1116	struct elf_phdr *eppnt;
1117	unsigned long elf_bss, bss, len;
1118	int retval, error, i, j;
1119	struct elfhdr elf_ex;
1120
1121	error = -ENOEXEC;
1122	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1123	if (retval != sizeof(elf_ex))
1124		goto out;
1125
1126	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1127		goto out;
1128
1129	/* First of all, some simple consistency checks */
1130	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1131	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1132		goto out;
1133
1134	/* Now read in all of the header information */
1135
1136	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1137	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1138
1139	error = -ENOMEM;
1140	elf_phdata = kmalloc(j, GFP_KERNEL);
1141	if (!elf_phdata)
1142		goto out;
1143
1144	eppnt = elf_phdata;
1145	error = -ENOEXEC;
1146	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1147	if (retval != j)
1148		goto out_free_ph;
1149
1150	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1151		if ((eppnt + i)->p_type == PT_LOAD)
1152			j++;
1153	if (j != 1)
1154		goto out_free_ph;
1155
1156	while (eppnt->p_type != PT_LOAD)
1157		eppnt++;
1158
1159	/* Now use mmap to map the library into memory. */
1160	error = vm_mmap(file,
1161			ELF_PAGESTART(eppnt->p_vaddr),
1162			(eppnt->p_filesz +
1163			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1164			PROT_READ | PROT_WRITE | PROT_EXEC,
1165			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1166			(eppnt->p_offset -
1167			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1168	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1169		goto out_free_ph;
1170
1171	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1172	if (padzero(elf_bss)) {
1173		error = -EFAULT;
1174		goto out_free_ph;
1175	}
1176
1177	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1178			    ELF_MIN_ALIGN - 1);
1179	bss = eppnt->p_memsz + eppnt->p_vaddr;
1180	if (bss > len) {
1181		error = vm_brk(len, bss - len);
1182		if (error)
1183			goto out_free_ph;
1184	}
1185	error = 0;
1186
1187out_free_ph:
1188	kfree(elf_phdata);
1189out:
1190	return error;
1191}
1192#endif /* #ifdef CONFIG_USELIB */
1193
1194#ifdef CONFIG_ELF_CORE
1195/*
1196 * ELF core dumper
1197 *
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1200 */
1201
1202/*
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1209 */
1210static bool always_dump_vma(struct vm_area_struct *vma)
1211{
1212	/* Any vsyscall mappings? */
1213	if (vma == get_gate_vma(vma->vm_mm))
1214		return true;
1215
1216	/*
1217	 * Assume that all vmas with a .name op should always be dumped.
1218	 * If this changes, a new vm_ops field can easily be added.
1219	 */
1220	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1221		return true;
1222
1223	/*
1224	 * arch_vma_name() returns non-NULL for special architecture mappings,
1225	 * such as vDSO sections.
1226	 */
1227	if (arch_vma_name(vma))
1228		return true;
1229
1230	return false;
1231}
1232
1233/*
1234 * Decide what to dump of a segment, part, all or none.
1235 */
1236static unsigned long vma_dump_size(struct vm_area_struct *vma,
1237				   unsigned long mm_flags)
1238{
1239#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1240
1241	/* always dump the vdso and vsyscall sections */
1242	if (always_dump_vma(vma))
1243		goto whole;
1244
1245	if (vma->vm_flags & VM_DONTDUMP)
1246		return 0;
1247
1248	/* support for DAX */
1249	if (vma_is_dax(vma)) {
1250		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1251			goto whole;
1252		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1253			goto whole;
1254		return 0;
1255	}
1256
1257	/* Hugetlb memory check */
1258	if (vma->vm_flags & VM_HUGETLB) {
1259		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1260			goto whole;
1261		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1262			goto whole;
1263		return 0;
1264	}
1265
1266	/* Do not dump I/O mapped devices or special mappings */
1267	if (vma->vm_flags & VM_IO)
1268		return 0;
1269
1270	/* By default, dump shared memory if mapped from an anonymous file. */
1271	if (vma->vm_flags & VM_SHARED) {
1272		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1273		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1274			goto whole;
1275		return 0;
1276	}
1277
1278	/* Dump segments that have been written to.  */
1279	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1280		goto whole;
1281	if (vma->vm_file == NULL)
1282		return 0;
1283
1284	if (FILTER(MAPPED_PRIVATE))
1285		goto whole;
1286
1287	/*
1288	 * If this looks like the beginning of a DSO or executable mapping,
1289	 * check for an ELF header.  If we find one, dump the first page to
1290	 * aid in determining what was mapped here.
1291	 */
1292	if (FILTER(ELF_HEADERS) &&
1293	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1294		u32 __user *header = (u32 __user *) vma->vm_start;
1295		u32 word;
1296		mm_segment_t fs = get_fs();
1297		/*
1298		 * Doing it this way gets the constant folded by GCC.
1299		 */
1300		union {
1301			u32 cmp;
1302			char elfmag[SELFMAG];
1303		} magic;
1304		BUILD_BUG_ON(SELFMAG != sizeof word);
1305		magic.elfmag[EI_MAG0] = ELFMAG0;
1306		magic.elfmag[EI_MAG1] = ELFMAG1;
1307		magic.elfmag[EI_MAG2] = ELFMAG2;
1308		magic.elfmag[EI_MAG3] = ELFMAG3;
1309		/*
1310		 * Switch to the user "segment" for get_user(),
1311		 * then put back what elf_core_dump() had in place.
1312		 */
1313		set_fs(USER_DS);
1314		if (unlikely(get_user(word, header)))
1315			word = 0;
1316		set_fs(fs);
1317		if (word == magic.cmp)
1318			return PAGE_SIZE;
1319	}
1320
1321#undef	FILTER
1322
1323	return 0;
1324
1325whole:
1326	return vma->vm_end - vma->vm_start;
1327}
1328
1329/* An ELF note in memory */
1330struct memelfnote
1331{
1332	const char *name;
1333	int type;
1334	unsigned int datasz;
1335	void *data;
1336};
1337
1338static int notesize(struct memelfnote *en)
1339{
1340	int sz;
1341
1342	sz = sizeof(struct elf_note);
1343	sz += roundup(strlen(en->name) + 1, 4);
1344	sz += roundup(en->datasz, 4);
1345
1346	return sz;
1347}
1348
1349static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1350{
1351	struct elf_note en;
1352	en.n_namesz = strlen(men->name) + 1;
1353	en.n_descsz = men->datasz;
1354	en.n_type = men->type;
1355
1356	return dump_emit(cprm, &en, sizeof(en)) &&
1357	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1358	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1359}
1360
1361static void fill_elf_header(struct elfhdr *elf, int segs,
1362			    u16 machine, u32 flags)
1363{
1364	memset(elf, 0, sizeof(*elf));
1365
1366	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1367	elf->e_ident[EI_CLASS] = ELF_CLASS;
1368	elf->e_ident[EI_DATA] = ELF_DATA;
1369	elf->e_ident[EI_VERSION] = EV_CURRENT;
1370	elf->e_ident[EI_OSABI] = ELF_OSABI;
1371
1372	elf->e_type = ET_CORE;
1373	elf->e_machine = machine;
1374	elf->e_version = EV_CURRENT;
1375	elf->e_phoff = sizeof(struct elfhdr);
1376	elf->e_flags = flags;
1377	elf->e_ehsize = sizeof(struct elfhdr);
1378	elf->e_phentsize = sizeof(struct elf_phdr);
1379	elf->e_phnum = segs;
1380
1381	return;
1382}
1383
1384static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1385{
1386	phdr->p_type = PT_NOTE;
1387	phdr->p_offset = offset;
1388	phdr->p_vaddr = 0;
1389	phdr->p_paddr = 0;
1390	phdr->p_filesz = sz;
1391	phdr->p_memsz = 0;
1392	phdr->p_flags = 0;
1393	phdr->p_align = 0;
1394	return;
1395}
1396
1397static void fill_note(struct memelfnote *note, const char *name, int type, 
1398		unsigned int sz, void *data)
1399{
1400	note->name = name;
1401	note->type = type;
1402	note->datasz = sz;
1403	note->data = data;
1404	return;
1405}
1406
1407/*
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1410 */
1411static void fill_prstatus(struct elf_prstatus *prstatus,
1412		struct task_struct *p, long signr)
1413{
1414	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1415	prstatus->pr_sigpend = p->pending.signal.sig[0];
1416	prstatus->pr_sighold = p->blocked.sig[0];
1417	rcu_read_lock();
1418	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1419	rcu_read_unlock();
1420	prstatus->pr_pid = task_pid_vnr(p);
1421	prstatus->pr_pgrp = task_pgrp_vnr(p);
1422	prstatus->pr_sid = task_session_vnr(p);
1423	if (thread_group_leader(p)) {
1424		struct task_cputime cputime;
1425
1426		/*
1427		 * This is the record for the group leader.  It shows the
1428		 * group-wide total, not its individual thread total.
1429		 */
1430		thread_group_cputime(p, &cputime);
1431		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1432		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1433	} else {
1434		cputime_t utime, stime;
1435
1436		task_cputime(p, &utime, &stime);
1437		cputime_to_timeval(utime, &prstatus->pr_utime);
1438		cputime_to_timeval(stime, &prstatus->pr_stime);
1439	}
1440	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1441	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1442}
1443
1444static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1445		       struct mm_struct *mm)
1446{
1447	const struct cred *cred;
1448	unsigned int i, len;
1449	
1450	/* first copy the parameters from user space */
1451	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1452
1453	len = mm->arg_end - mm->arg_start;
1454	if (len >= ELF_PRARGSZ)
1455		len = ELF_PRARGSZ-1;
1456	if (copy_from_user(&psinfo->pr_psargs,
1457		           (const char __user *)mm->arg_start, len))
1458		return -EFAULT;
1459	for(i = 0; i < len; i++)
1460		if (psinfo->pr_psargs[i] == 0)
1461			psinfo->pr_psargs[i] = ' ';
1462	psinfo->pr_psargs[len] = 0;
1463
1464	rcu_read_lock();
1465	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1466	rcu_read_unlock();
1467	psinfo->pr_pid = task_pid_vnr(p);
1468	psinfo->pr_pgrp = task_pgrp_vnr(p);
1469	psinfo->pr_sid = task_session_vnr(p);
1470
1471	i = p->state ? ffz(~p->state) + 1 : 0;
1472	psinfo->pr_state = i;
1473	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1474	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1475	psinfo->pr_nice = task_nice(p);
1476	psinfo->pr_flag = p->flags;
1477	rcu_read_lock();
1478	cred = __task_cred(p);
1479	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1480	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1481	rcu_read_unlock();
1482	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1483	
1484	return 0;
1485}
1486
1487static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1488{
1489	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1490	int i = 0;
1491	do
1492		i += 2;
1493	while (auxv[i - 2] != AT_NULL);
1494	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1495}
1496
1497static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1498		const siginfo_t *siginfo)
1499{
1500	mm_segment_t old_fs = get_fs();
1501	set_fs(KERNEL_DS);
1502	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1503	set_fs(old_fs);
1504	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1505}
1506
1507#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1508/*
1509 * Format of NT_FILE note:
1510 *
1511 * long count     -- how many files are mapped
1512 * long page_size -- units for file_ofs
1513 * array of [COUNT] elements of
1514 *   long start
1515 *   long end
1516 *   long file_ofs
1517 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1518 */
1519static int fill_files_note(struct memelfnote *note)
1520{
1521	struct vm_area_struct *vma;
1522	unsigned count, size, names_ofs, remaining, n;
1523	user_long_t *data;
1524	user_long_t *start_end_ofs;
1525	char *name_base, *name_curpos;
1526
1527	/* *Estimated* file count and total data size needed */
1528	count = current->mm->map_count;
1529	size = count * 64;
1530
1531	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1532 alloc:
1533	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1534		return -EINVAL;
1535	size = round_up(size, PAGE_SIZE);
1536	data = vmalloc(size);
1537	if (!data)
1538		return -ENOMEM;
1539
1540	start_end_ofs = data + 2;
1541	name_base = name_curpos = ((char *)data) + names_ofs;
1542	remaining = size - names_ofs;
1543	count = 0;
1544	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1545		struct file *file;
1546		const char *filename;
1547
1548		file = vma->vm_file;
1549		if (!file)
1550			continue;
1551		filename = file_path(file, name_curpos, remaining);
1552		if (IS_ERR(filename)) {
1553			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1554				vfree(data);
1555				size = size * 5 / 4;
1556				goto alloc;
1557			}
1558			continue;
1559		}
1560
1561		/* file_path() fills at the end, move name down */
1562		/* n = strlen(filename) + 1: */
1563		n = (name_curpos + remaining) - filename;
1564		remaining = filename - name_curpos;
1565		memmove(name_curpos, filename, n);
1566		name_curpos += n;
1567
1568		*start_end_ofs++ = vma->vm_start;
1569		*start_end_ofs++ = vma->vm_end;
1570		*start_end_ofs++ = vma->vm_pgoff;
1571		count++;
1572	}
1573
1574	/* Now we know exact count of files, can store it */
1575	data[0] = count;
1576	data[1] = PAGE_SIZE;
1577	/*
1578	 * Count usually is less than current->mm->map_count,
1579	 * we need to move filenames down.
1580	 */
1581	n = current->mm->map_count - count;
1582	if (n != 0) {
1583		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1584		memmove(name_base - shift_bytes, name_base,
1585			name_curpos - name_base);
1586		name_curpos -= shift_bytes;
1587	}
1588
1589	size = name_curpos - (char *)data;
1590	fill_note(note, "CORE", NT_FILE, size, data);
1591	return 0;
1592}
1593
1594#ifdef CORE_DUMP_USE_REGSET
1595#include <linux/regset.h>
1596
1597struct elf_thread_core_info {
1598	struct elf_thread_core_info *next;
1599	struct task_struct *task;
1600	struct elf_prstatus prstatus;
1601	struct memelfnote notes[0];
1602};
1603
1604struct elf_note_info {
1605	struct elf_thread_core_info *thread;
1606	struct memelfnote psinfo;
1607	struct memelfnote signote;
1608	struct memelfnote auxv;
1609	struct memelfnote files;
1610	user_siginfo_t csigdata;
1611	size_t size;
1612	int thread_notes;
1613};
1614
1615/*
1616 * When a regset has a writeback hook, we call it on each thread before
1617 * dumping user memory.  On register window machines, this makes sure the
1618 * user memory backing the register data is up to date before we read it.
1619 */
1620static void do_thread_regset_writeback(struct task_struct *task,
1621				       const struct user_regset *regset)
1622{
1623	if (regset->writeback)
1624		regset->writeback(task, regset, 1);
1625}
1626
 
 
 
 
1627#ifndef PRSTATUS_SIZE
1628#define PRSTATUS_SIZE(S, R) sizeof(S)
 
 
 
 
1629#endif
1630
1631#ifndef SET_PR_FPVALID
1632#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1633#endif
1634
1635static int fill_thread_core_info(struct elf_thread_core_info *t,
1636				 const struct user_regset_view *view,
1637				 long signr, size_t *total)
1638{
1639	unsigned int i;
1640	unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1641
1642	/*
1643	 * NT_PRSTATUS is the one special case, because the regset data
1644	 * goes into the pr_reg field inside the note contents, rather
1645	 * than being the whole note contents.  We fill the reset in here.
1646	 * We assume that regset 0 is NT_PRSTATUS.
1647	 */
1648	fill_prstatus(&t->prstatus, t->task, signr);
1649	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1650				    &t->prstatus.pr_reg, NULL);
 
1651
1652	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1653		  PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1654	*total += notesize(&t->notes[0]);
1655
1656	do_thread_regset_writeback(t->task, &view->regsets[0]);
1657
1658	/*
1659	 * Each other regset might generate a note too.  For each regset
1660	 * that has no core_note_type or is inactive, we leave t->notes[i]
1661	 * all zero and we'll know to skip writing it later.
1662	 */
1663	for (i = 1; i < view->n; ++i) {
1664		const struct user_regset *regset = &view->regsets[i];
1665		do_thread_regset_writeback(t->task, regset);
1666		if (regset->core_note_type && regset->get &&
1667		    (!regset->active || regset->active(t->task, regset))) {
1668			int ret;
1669			size_t size = regset->n * regset->size;
1670			void *data = kmalloc(size, GFP_KERNEL);
1671			if (unlikely(!data))
1672				return 0;
1673			ret = regset->get(t->task, regset,
1674					  0, size, data, NULL);
1675			if (unlikely(ret))
1676				kfree(data);
1677			else {
1678				if (regset->core_note_type != NT_PRFPREG)
1679					fill_note(&t->notes[i], "LINUX",
1680						  regset->core_note_type,
1681						  size, data);
1682				else {
1683					SET_PR_FPVALID(&t->prstatus,
1684							1, regset_size);
1685					fill_note(&t->notes[i], "CORE",
1686						  NT_PRFPREG, size, data);
1687				}
1688				*total += notesize(&t->notes[i]);
1689			}
1690		}
1691	}
1692
1693	return 1;
1694}
1695
1696static int fill_note_info(struct elfhdr *elf, int phdrs,
1697			  struct elf_note_info *info,
1698			  const siginfo_t *siginfo, struct pt_regs *regs)
1699{
1700	struct task_struct *dump_task = current;
1701	const struct user_regset_view *view = task_user_regset_view(dump_task);
1702	struct elf_thread_core_info *t;
1703	struct elf_prpsinfo *psinfo;
1704	struct core_thread *ct;
1705	unsigned int i;
1706
1707	info->size = 0;
1708	info->thread = NULL;
1709
1710	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1711	if (psinfo == NULL) {
1712		info->psinfo.data = NULL; /* So we don't free this wrongly */
1713		return 0;
1714	}
1715
1716	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1717
1718	/*
1719	 * Figure out how many notes we're going to need for each thread.
1720	 */
1721	info->thread_notes = 0;
1722	for (i = 0; i < view->n; ++i)
1723		if (view->regsets[i].core_note_type != 0)
1724			++info->thread_notes;
1725
1726	/*
1727	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1728	 * since it is our one special case.
1729	 */
1730	if (unlikely(info->thread_notes == 0) ||
1731	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1732		WARN_ON(1);
1733		return 0;
1734	}
1735
1736	/*
1737	 * Initialize the ELF file header.
1738	 */
1739	fill_elf_header(elf, phdrs,
1740			view->e_machine, view->e_flags);
1741
1742	/*
1743	 * Allocate a structure for each thread.
1744	 */
1745	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1746		t = kzalloc(offsetof(struct elf_thread_core_info,
1747				     notes[info->thread_notes]),
1748			    GFP_KERNEL);
1749		if (unlikely(!t))
1750			return 0;
1751
1752		t->task = ct->task;
1753		if (ct->task == dump_task || !info->thread) {
1754			t->next = info->thread;
1755			info->thread = t;
1756		} else {
1757			/*
1758			 * Make sure to keep the original task at
1759			 * the head of the list.
1760			 */
1761			t->next = info->thread->next;
1762			info->thread->next = t;
1763		}
1764	}
1765
1766	/*
1767	 * Now fill in each thread's information.
1768	 */
1769	for (t = info->thread; t != NULL; t = t->next)
1770		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1771			return 0;
1772
1773	/*
1774	 * Fill in the two process-wide notes.
1775	 */
1776	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1777	info->size += notesize(&info->psinfo);
1778
1779	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1780	info->size += notesize(&info->signote);
1781
1782	fill_auxv_note(&info->auxv, current->mm);
1783	info->size += notesize(&info->auxv);
1784
1785	if (fill_files_note(&info->files) == 0)
1786		info->size += notesize(&info->files);
1787
1788	return 1;
1789}
1790
1791static size_t get_note_info_size(struct elf_note_info *info)
1792{
1793	return info->size;
1794}
1795
1796/*
1797 * Write all the notes for each thread.  When writing the first thread, the
1798 * process-wide notes are interleaved after the first thread-specific note.
1799 */
1800static int write_note_info(struct elf_note_info *info,
1801			   struct coredump_params *cprm)
1802{
1803	bool first = true;
1804	struct elf_thread_core_info *t = info->thread;
1805
1806	do {
1807		int i;
1808
1809		if (!writenote(&t->notes[0], cprm))
1810			return 0;
1811
1812		if (first && !writenote(&info->psinfo, cprm))
1813			return 0;
1814		if (first && !writenote(&info->signote, cprm))
1815			return 0;
1816		if (first && !writenote(&info->auxv, cprm))
1817			return 0;
1818		if (first && info->files.data &&
1819				!writenote(&info->files, cprm))
1820			return 0;
1821
1822		for (i = 1; i < info->thread_notes; ++i)
1823			if (t->notes[i].data &&
1824			    !writenote(&t->notes[i], cprm))
1825				return 0;
1826
1827		first = false;
1828		t = t->next;
1829	} while (t);
1830
1831	return 1;
1832}
1833
1834static void free_note_info(struct elf_note_info *info)
1835{
1836	struct elf_thread_core_info *threads = info->thread;
1837	while (threads) {
1838		unsigned int i;
1839		struct elf_thread_core_info *t = threads;
1840		threads = t->next;
1841		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1842		for (i = 1; i < info->thread_notes; ++i)
1843			kfree(t->notes[i].data);
1844		kfree(t);
1845	}
1846	kfree(info->psinfo.data);
1847	vfree(info->files.data);
1848}
1849
1850#else
1851
1852/* Here is the structure in which status of each thread is captured. */
1853struct elf_thread_status
1854{
1855	struct list_head list;
1856	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1857	elf_fpregset_t fpu;		/* NT_PRFPREG */
1858	struct task_struct *thread;
1859#ifdef ELF_CORE_COPY_XFPREGS
1860	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1861#endif
1862	struct memelfnote notes[3];
1863	int num_notes;
1864};
1865
1866/*
1867 * In order to add the specific thread information for the elf file format,
1868 * we need to keep a linked list of every threads pr_status and then create
1869 * a single section for them in the final core file.
1870 */
1871static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1872{
1873	int sz = 0;
1874	struct task_struct *p = t->thread;
1875	t->num_notes = 0;
1876
1877	fill_prstatus(&t->prstatus, p, signr);
1878	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
1879	
1880	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1881		  &(t->prstatus));
1882	t->num_notes++;
1883	sz += notesize(&t->notes[0]);
1884
1885	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1886								&t->fpu))) {
1887		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1888			  &(t->fpu));
1889		t->num_notes++;
1890		sz += notesize(&t->notes[1]);
1891	}
1892
1893#ifdef ELF_CORE_COPY_XFPREGS
1894	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1895		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1896			  sizeof(t->xfpu), &t->xfpu);
1897		t->num_notes++;
1898		sz += notesize(&t->notes[2]);
1899	}
1900#endif	
1901	return sz;
1902}
1903
1904struct elf_note_info {
1905	struct memelfnote *notes;
1906	struct memelfnote *notes_files;
1907	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1908	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1909	struct list_head thread_list;
1910	elf_fpregset_t *fpu;
1911#ifdef ELF_CORE_COPY_XFPREGS
1912	elf_fpxregset_t *xfpu;
1913#endif
1914	user_siginfo_t csigdata;
1915	int thread_status_size;
1916	int numnote;
1917};
1918
1919static int elf_note_info_init(struct elf_note_info *info)
1920{
1921	memset(info, 0, sizeof(*info));
1922	INIT_LIST_HEAD(&info->thread_list);
1923
1924	/* Allocate space for ELF notes */
1925	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1926	if (!info->notes)
1927		return 0;
1928	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1929	if (!info->psinfo)
1930		return 0;
1931	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1932	if (!info->prstatus)
1933		return 0;
1934	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1935	if (!info->fpu)
1936		return 0;
1937#ifdef ELF_CORE_COPY_XFPREGS
1938	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1939	if (!info->xfpu)
1940		return 0;
1941#endif
1942	return 1;
1943}
1944
1945static int fill_note_info(struct elfhdr *elf, int phdrs,
1946			  struct elf_note_info *info,
1947			  const siginfo_t *siginfo, struct pt_regs *regs)
1948{
1949	struct list_head *t;
1950	struct core_thread *ct;
1951	struct elf_thread_status *ets;
1952
1953	if (!elf_note_info_init(info))
1954		return 0;
1955
1956	for (ct = current->mm->core_state->dumper.next;
1957					ct; ct = ct->next) {
1958		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1959		if (!ets)
1960			return 0;
1961
1962		ets->thread = ct->task;
1963		list_add(&ets->list, &info->thread_list);
1964	}
1965
1966	list_for_each(t, &info->thread_list) {
1967		int sz;
1968
1969		ets = list_entry(t, struct elf_thread_status, list);
1970		sz = elf_dump_thread_status(siginfo->si_signo, ets);
1971		info->thread_status_size += sz;
1972	}
1973	/* now collect the dump for the current */
1974	memset(info->prstatus, 0, sizeof(*info->prstatus));
1975	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1976	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1977
1978	/* Set up header */
1979	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1980
1981	/*
1982	 * Set up the notes in similar form to SVR4 core dumps made
1983	 * with info from their /proc.
1984	 */
1985
1986	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1987		  sizeof(*info->prstatus), info->prstatus);
1988	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1989	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1990		  sizeof(*info->psinfo), info->psinfo);
1991
1992	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1993	fill_auxv_note(info->notes + 3, current->mm);
1994	info->numnote = 4;
1995
1996	if (fill_files_note(info->notes + info->numnote) == 0) {
1997		info->notes_files = info->notes + info->numnote;
1998		info->numnote++;
1999	}
2000
2001	/* Try to dump the FPU. */
2002	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2003							       info->fpu);
2004	if (info->prstatus->pr_fpvalid)
2005		fill_note(info->notes + info->numnote++,
2006			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2007#ifdef ELF_CORE_COPY_XFPREGS
2008	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2009		fill_note(info->notes + info->numnote++,
2010			  "LINUX", ELF_CORE_XFPREG_TYPE,
2011			  sizeof(*info->xfpu), info->xfpu);
2012#endif
2013
2014	return 1;
2015}
2016
2017static size_t get_note_info_size(struct elf_note_info *info)
2018{
2019	int sz = 0;
2020	int i;
2021
2022	for (i = 0; i < info->numnote; i++)
2023		sz += notesize(info->notes + i);
2024
2025	sz += info->thread_status_size;
2026
2027	return sz;
2028}
2029
2030static int write_note_info(struct elf_note_info *info,
2031			   struct coredump_params *cprm)
2032{
2033	int i;
2034	struct list_head *t;
2035
2036	for (i = 0; i < info->numnote; i++)
2037		if (!writenote(info->notes + i, cprm))
2038			return 0;
2039
2040	/* write out the thread status notes section */
2041	list_for_each(t, &info->thread_list) {
2042		struct elf_thread_status *tmp =
2043				list_entry(t, struct elf_thread_status, list);
2044
2045		for (i = 0; i < tmp->num_notes; i++)
2046			if (!writenote(&tmp->notes[i], cprm))
2047				return 0;
2048	}
2049
2050	return 1;
2051}
2052
2053static void free_note_info(struct elf_note_info *info)
2054{
2055	while (!list_empty(&info->thread_list)) {
2056		struct list_head *tmp = info->thread_list.next;
2057		list_del(tmp);
2058		kfree(list_entry(tmp, struct elf_thread_status, list));
2059	}
2060
2061	/* Free data possibly allocated by fill_files_note(): */
2062	if (info->notes_files)
2063		vfree(info->notes_files->data);
2064
2065	kfree(info->prstatus);
2066	kfree(info->psinfo);
2067	kfree(info->notes);
2068	kfree(info->fpu);
2069#ifdef ELF_CORE_COPY_XFPREGS
2070	kfree(info->xfpu);
2071#endif
2072}
2073
2074#endif
2075
2076static struct vm_area_struct *first_vma(struct task_struct *tsk,
2077					struct vm_area_struct *gate_vma)
2078{
2079	struct vm_area_struct *ret = tsk->mm->mmap;
2080
2081	if (ret)
2082		return ret;
2083	return gate_vma;
2084}
2085/*
2086 * Helper function for iterating across a vma list.  It ensures that the caller
2087 * will visit `gate_vma' prior to terminating the search.
2088 */
2089static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2090					struct vm_area_struct *gate_vma)
2091{
2092	struct vm_area_struct *ret;
2093
2094	ret = this_vma->vm_next;
2095	if (ret)
2096		return ret;
2097	if (this_vma == gate_vma)
2098		return NULL;
2099	return gate_vma;
2100}
2101
2102static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2103			     elf_addr_t e_shoff, int segs)
2104{
2105	elf->e_shoff = e_shoff;
2106	elf->e_shentsize = sizeof(*shdr4extnum);
2107	elf->e_shnum = 1;
2108	elf->e_shstrndx = SHN_UNDEF;
2109
2110	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2111
2112	shdr4extnum->sh_type = SHT_NULL;
2113	shdr4extnum->sh_size = elf->e_shnum;
2114	shdr4extnum->sh_link = elf->e_shstrndx;
2115	shdr4extnum->sh_info = segs;
2116}
2117
 
 
 
 
 
 
 
 
 
 
 
 
2118/*
2119 * Actual dumper
2120 *
2121 * This is a two-pass process; first we find the offsets of the bits,
2122 * and then they are actually written out.  If we run out of core limit
2123 * we just truncate.
2124 */
2125static int elf_core_dump(struct coredump_params *cprm)
2126{
2127	int has_dumped = 0;
2128	mm_segment_t fs;
2129	int segs, i;
2130	size_t vma_data_size = 0;
2131	struct vm_area_struct *vma, *gate_vma;
2132	struct elfhdr *elf = NULL;
2133	loff_t offset = 0, dataoff;
2134	struct elf_note_info info = { };
2135	struct elf_phdr *phdr4note = NULL;
2136	struct elf_shdr *shdr4extnum = NULL;
2137	Elf_Half e_phnum;
2138	elf_addr_t e_shoff;
2139	elf_addr_t *vma_filesz = NULL;
2140
2141	/*
2142	 * We no longer stop all VM operations.
2143	 * 
2144	 * This is because those proceses that could possibly change map_count
2145	 * or the mmap / vma pages are now blocked in do_exit on current
2146	 * finishing this core dump.
2147	 *
2148	 * Only ptrace can touch these memory addresses, but it doesn't change
2149	 * the map_count or the pages allocated. So no possibility of crashing
2150	 * exists while dumping the mm->vm_next areas to the core file.
2151	 */
2152  
2153	/* alloc memory for large data structures: too large to be on stack */
2154	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2155	if (!elf)
2156		goto out;
2157	/*
2158	 * The number of segs are recored into ELF header as 16bit value.
2159	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2160	 */
2161	segs = current->mm->map_count;
2162	segs += elf_core_extra_phdrs();
2163
2164	gate_vma = get_gate_vma(current->mm);
2165	if (gate_vma != NULL)
2166		segs++;
2167
2168	/* for notes section */
2169	segs++;
2170
2171	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2172	 * this, kernel supports extended numbering. Have a look at
2173	 * include/linux/elf.h for further information. */
2174	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2175
2176	/*
2177	 * Collect all the non-memory information about the process for the
2178	 * notes.  This also sets up the file header.
2179	 */
2180	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2181		goto cleanup;
2182
2183	has_dumped = 1;
2184
2185	fs = get_fs();
2186	set_fs(KERNEL_DS);
2187
2188	offset += sizeof(*elf);				/* Elf header */
2189	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2190
2191	/* Write notes phdr entry */
2192	{
2193		size_t sz = get_note_info_size(&info);
2194
2195		sz += elf_coredump_extra_notes_size();
2196
2197		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2198		if (!phdr4note)
2199			goto end_coredump;
2200
2201		fill_elf_note_phdr(phdr4note, sz, offset);
2202		offset += sz;
2203	}
2204
2205	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2206
2207	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2208		goto end_coredump;
2209	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2210	if (!vma_filesz)
2211		goto end_coredump;
2212
2213	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2214			vma = next_vma(vma, gate_vma)) {
2215		unsigned long dump_size;
2216
2217		dump_size = vma_dump_size(vma, cprm->mm_flags);
2218		vma_filesz[i++] = dump_size;
2219		vma_data_size += dump_size;
2220	}
2221
2222	offset += vma_data_size;
2223	offset += elf_core_extra_data_size();
2224	e_shoff = offset;
2225
2226	if (e_phnum == PN_XNUM) {
2227		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2228		if (!shdr4extnum)
2229			goto end_coredump;
2230		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2231	}
2232
2233	offset = dataoff;
2234
2235	if (!dump_emit(cprm, elf, sizeof(*elf)))
2236		goto end_coredump;
2237
2238	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2239		goto end_coredump;
2240
2241	/* Write program headers for segments dump */
2242	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2243			vma = next_vma(vma, gate_vma)) {
2244		struct elf_phdr phdr;
2245
2246		phdr.p_type = PT_LOAD;
2247		phdr.p_offset = offset;
2248		phdr.p_vaddr = vma->vm_start;
2249		phdr.p_paddr = 0;
2250		phdr.p_filesz = vma_filesz[i++];
2251		phdr.p_memsz = vma->vm_end - vma->vm_start;
2252		offset += phdr.p_filesz;
2253		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2254		if (vma->vm_flags & VM_WRITE)
2255			phdr.p_flags |= PF_W;
2256		if (vma->vm_flags & VM_EXEC)
2257			phdr.p_flags |= PF_X;
2258		phdr.p_align = ELF_EXEC_PAGESIZE;
2259
2260		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2261			goto end_coredump;
2262	}
2263
2264	if (!elf_core_write_extra_phdrs(cprm, offset))
2265		goto end_coredump;
2266
2267 	/* write out the notes section */
2268	if (!write_note_info(&info, cprm))
2269		goto end_coredump;
2270
2271	if (elf_coredump_extra_notes_write(cprm))
2272		goto end_coredump;
2273
2274	/* Align to page */
2275	if (!dump_skip(cprm, dataoff - cprm->pos))
2276		goto end_coredump;
2277
2278	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2279			vma = next_vma(vma, gate_vma)) {
2280		unsigned long addr;
2281		unsigned long end;
2282
2283		end = vma->vm_start + vma_filesz[i++];
2284
2285		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2286			struct page *page;
2287			int stop;
2288
2289			page = get_dump_page(addr);
2290			if (page) {
2291				void *kaddr = kmap(page);
2292				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2293				kunmap(page);
2294				put_page(page);
2295			} else
2296				stop = !dump_skip(cprm, PAGE_SIZE);
2297			if (stop)
2298				goto end_coredump;
2299		}
2300	}
2301	dump_truncate(cprm);
2302
2303	if (!elf_core_write_extra_data(cprm))
2304		goto end_coredump;
2305
2306	if (e_phnum == PN_XNUM) {
2307		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2308			goto end_coredump;
2309	}
2310
2311end_coredump:
2312	set_fs(fs);
2313
2314cleanup:
2315	free_note_info(&info);
2316	kfree(shdr4extnum);
2317	vfree(vma_filesz);
2318	kfree(phdr4note);
2319	kfree(elf);
2320out:
2321	return has_dumped;
2322}
2323
2324#endif		/* CONFIG_ELF_CORE */
2325
2326static int __init init_elf_binfmt(void)
2327{
2328	register_binfmt(&elf_format);
2329	return 0;
2330}
2331
2332static void __exit exit_elf_binfmt(void)
2333{
2334	/* Remove the COFF and ELF loaders. */
2335	unregister_binfmt(&elf_format);
2336}
2337
2338core_initcall(init_elf_binfmt);
2339module_exit(exit_elf_binfmt);
2340MODULE_LICENSE("GPL");
v3.15
   1/*
   2 * linux/fs/binfmt_elf.c
   3 *
   4 * These are the functions used to load ELF format executables as used
   5 * on SVr4 machines.  Information on the format may be found in the book
   6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
   7 * Tools".
   8 *
   9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/fs.h>
  15#include <linux/mm.h>
  16#include <linux/mman.h>
  17#include <linux/errno.h>
  18#include <linux/signal.h>
  19#include <linux/binfmts.h>
  20#include <linux/string.h>
  21#include <linux/file.h>
  22#include <linux/slab.h>
  23#include <linux/personality.h>
  24#include <linux/elfcore.h>
  25#include <linux/init.h>
  26#include <linux/highuid.h>
  27#include <linux/compiler.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/vmalloc.h>
  31#include <linux/security.h>
  32#include <linux/random.h>
  33#include <linux/elf.h>
 
  34#include <linux/utsname.h>
  35#include <linux/coredump.h>
  36#include <linux/sched.h>
  37#include <asm/uaccess.h>
 
  38#include <asm/param.h>
  39#include <asm/page.h>
  40
  41#ifndef user_long_t
  42#define user_long_t long
  43#endif
  44#ifndef user_siginfo_t
  45#define user_siginfo_t siginfo_t
  46#endif
  47
  48static int load_elf_binary(struct linux_binprm *bprm);
  49static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
  50				int, int, unsigned long);
  51
  52#ifdef CONFIG_USELIB
  53static int load_elf_library(struct file *);
  54#else
  55#define load_elf_library NULL
  56#endif
  57
  58/*
  59 * If we don't support core dumping, then supply a NULL so we
  60 * don't even try.
  61 */
  62#ifdef CONFIG_ELF_CORE
  63static int elf_core_dump(struct coredump_params *cprm);
  64#else
  65#define elf_core_dump	NULL
  66#endif
  67
  68#if ELF_EXEC_PAGESIZE > PAGE_SIZE
  69#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
  70#else
  71#define ELF_MIN_ALIGN	PAGE_SIZE
  72#endif
  73
  74#ifndef ELF_CORE_EFLAGS
  75#define ELF_CORE_EFLAGS	0
  76#endif
  77
  78#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
  79#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
  80#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
  81
  82static struct linux_binfmt elf_format = {
  83	.module		= THIS_MODULE,
  84	.load_binary	= load_elf_binary,
  85	.load_shlib	= load_elf_library,
  86	.core_dump	= elf_core_dump,
  87	.min_coredump	= ELF_EXEC_PAGESIZE,
  88};
  89
  90#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
  91
  92static int set_brk(unsigned long start, unsigned long end)
  93{
  94	start = ELF_PAGEALIGN(start);
  95	end = ELF_PAGEALIGN(end);
  96	if (end > start) {
  97		unsigned long addr;
  98		addr = vm_brk(start, end - start);
  99		if (BAD_ADDR(addr))
 100			return addr;
 101	}
 102	current->mm->start_brk = current->mm->brk = end;
 103	return 0;
 104}
 105
 106/* We need to explicitly zero any fractional pages
 107   after the data section (i.e. bss).  This would
 108   contain the junk from the file that should not
 109   be in memory
 110 */
 111static int padzero(unsigned long elf_bss)
 112{
 113	unsigned long nbyte;
 114
 115	nbyte = ELF_PAGEOFFSET(elf_bss);
 116	if (nbyte) {
 117		nbyte = ELF_MIN_ALIGN - nbyte;
 118		if (clear_user((void __user *) elf_bss, nbyte))
 119			return -EFAULT;
 120	}
 121	return 0;
 122}
 123
 124/* Let's use some macros to make this stack manipulation a little clearer */
 125#ifdef CONFIG_STACK_GROWSUP
 126#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 127#define STACK_ROUND(sp, items) \
 128	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 129#define STACK_ALLOC(sp, len) ({ \
 130	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 131	old_sp; })
 132#else
 133#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 134#define STACK_ROUND(sp, items) \
 135	(((unsigned long) (sp - items)) &~ 15UL)
 136#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 137#endif
 138
 139#ifndef ELF_BASE_PLATFORM
 140/*
 141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 143 * will be copied to the user stack in the same manner as AT_PLATFORM.
 144 */
 145#define ELF_BASE_PLATFORM NULL
 146#endif
 147
 148static int
 149create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 150		unsigned long load_addr, unsigned long interp_load_addr)
 151{
 152	unsigned long p = bprm->p;
 153	int argc = bprm->argc;
 154	int envc = bprm->envc;
 155	elf_addr_t __user *argv;
 156	elf_addr_t __user *envp;
 157	elf_addr_t __user *sp;
 158	elf_addr_t __user *u_platform;
 159	elf_addr_t __user *u_base_platform;
 160	elf_addr_t __user *u_rand_bytes;
 161	const char *k_platform = ELF_PLATFORM;
 162	const char *k_base_platform = ELF_BASE_PLATFORM;
 163	unsigned char k_rand_bytes[16];
 164	int items;
 165	elf_addr_t *elf_info;
 166	int ei_index = 0;
 167	const struct cred *cred = current_cred();
 168	struct vm_area_struct *vma;
 169
 170	/*
 171	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 172	 * evictions by the processes running on the same package. One
 173	 * thing we can do is to shuffle the initial stack for them.
 174	 */
 175
 176	p = arch_align_stack(p);
 177
 178	/*
 179	 * If this architecture has a platform capability string, copy it
 180	 * to userspace.  In some cases (Sparc), this info is impossible
 181	 * for userspace to get any other way, in others (i386) it is
 182	 * merely difficult.
 183	 */
 184	u_platform = NULL;
 185	if (k_platform) {
 186		size_t len = strlen(k_platform) + 1;
 187
 188		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 189		if (__copy_to_user(u_platform, k_platform, len))
 190			return -EFAULT;
 191	}
 192
 193	/*
 194	 * If this architecture has a "base" platform capability
 195	 * string, copy it to userspace.
 196	 */
 197	u_base_platform = NULL;
 198	if (k_base_platform) {
 199		size_t len = strlen(k_base_platform) + 1;
 200
 201		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 202		if (__copy_to_user(u_base_platform, k_base_platform, len))
 203			return -EFAULT;
 204	}
 205
 206	/*
 207	 * Generate 16 random bytes for userspace PRNG seeding.
 208	 */
 209	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 210	u_rand_bytes = (elf_addr_t __user *)
 211		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 212	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 213		return -EFAULT;
 214
 215	/* Create the ELF interpreter info */
 216	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 217	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 218#define NEW_AUX_ENT(id, val) \
 219	do { \
 220		elf_info[ei_index++] = id; \
 221		elf_info[ei_index++] = val; \
 222	} while (0)
 223
 224#ifdef ARCH_DLINFO
 225	/* 
 226	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 227	 * AUXV.
 228	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 229	 * ARCH_DLINFO changes
 230	 */
 231	ARCH_DLINFO;
 232#endif
 233	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 234	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 235	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 236	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 237	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 238	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 239	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 240	NEW_AUX_ENT(AT_FLAGS, 0);
 241	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 242	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 243	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 244	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 245	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 246 	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 247	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 248#ifdef ELF_HWCAP2
 249	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 250#endif
 251	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 252	if (k_platform) {
 253		NEW_AUX_ENT(AT_PLATFORM,
 254			    (elf_addr_t)(unsigned long)u_platform);
 255	}
 256	if (k_base_platform) {
 257		NEW_AUX_ENT(AT_BASE_PLATFORM,
 258			    (elf_addr_t)(unsigned long)u_base_platform);
 259	}
 260	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 261		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 262	}
 263#undef NEW_AUX_ENT
 264	/* AT_NULL is zero; clear the rest too */
 265	memset(&elf_info[ei_index], 0,
 266	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 267
 268	/* And advance past the AT_NULL entry.  */
 269	ei_index += 2;
 270
 271	sp = STACK_ADD(p, ei_index);
 272
 273	items = (argc + 1) + (envc + 1) + 1;
 274	bprm->p = STACK_ROUND(sp, items);
 275
 276	/* Point sp at the lowest address on the stack */
 277#ifdef CONFIG_STACK_GROWSUP
 278	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 279	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 280#else
 281	sp = (elf_addr_t __user *)bprm->p;
 282#endif
 283
 284
 285	/*
 286	 * Grow the stack manually; some architectures have a limit on how
 287	 * far ahead a user-space access may be in order to grow the stack.
 288	 */
 289	vma = find_extend_vma(current->mm, bprm->p);
 290	if (!vma)
 291		return -EFAULT;
 292
 293	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 294	if (__put_user(argc, sp++))
 295		return -EFAULT;
 296	argv = sp;
 297	envp = argv + argc + 1;
 298
 299	/* Populate argv and envp */
 300	p = current->mm->arg_end = current->mm->arg_start;
 301	while (argc-- > 0) {
 302		size_t len;
 303		if (__put_user((elf_addr_t)p, argv++))
 304			return -EFAULT;
 305		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 306		if (!len || len > MAX_ARG_STRLEN)
 307			return -EINVAL;
 308		p += len;
 309	}
 310	if (__put_user(0, argv))
 311		return -EFAULT;
 312	current->mm->arg_end = current->mm->env_start = p;
 313	while (envc-- > 0) {
 314		size_t len;
 315		if (__put_user((elf_addr_t)p, envp++))
 316			return -EFAULT;
 317		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 318		if (!len || len > MAX_ARG_STRLEN)
 319			return -EINVAL;
 320		p += len;
 321	}
 322	if (__put_user(0, envp))
 323		return -EFAULT;
 324	current->mm->env_end = p;
 325
 326	/* Put the elf_info on the stack in the right place.  */
 327	sp = (elf_addr_t __user *)envp + 1;
 328	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 329		return -EFAULT;
 330	return 0;
 331}
 332
 333#ifndef elf_map
 334
 335static unsigned long elf_map(struct file *filep, unsigned long addr,
 336		struct elf_phdr *eppnt, int prot, int type,
 337		unsigned long total_size)
 338{
 339	unsigned long map_addr;
 340	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 341	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 342	addr = ELF_PAGESTART(addr);
 343	size = ELF_PAGEALIGN(size);
 344
 345	/* mmap() will return -EINVAL if given a zero size, but a
 346	 * segment with zero filesize is perfectly valid */
 347	if (!size)
 348		return addr;
 349
 350	/*
 351	* total_size is the size of the ELF (interpreter) image.
 352	* The _first_ mmap needs to know the full size, otherwise
 353	* randomization might put this image into an overlapping
 354	* position with the ELF binary image. (since size < total_size)
 355	* So we first map the 'big' image - and unmap the remainder at
 356	* the end. (which unmap is needed for ELF images with holes.)
 357	*/
 358	if (total_size) {
 359		total_size = ELF_PAGEALIGN(total_size);
 360		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 361		if (!BAD_ADDR(map_addr))
 362			vm_munmap(map_addr+size, total_size-size);
 363	} else
 364		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 365
 366	return(map_addr);
 367}
 368
 369#endif /* !elf_map */
 370
 371static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 372{
 373	int i, first_idx = -1, last_idx = -1;
 374
 375	for (i = 0; i < nr; i++) {
 376		if (cmds[i].p_type == PT_LOAD) {
 377			last_idx = i;
 378			if (first_idx == -1)
 379				first_idx = i;
 380		}
 381	}
 382	if (first_idx == -1)
 383		return 0;
 384
 385	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 386				ELF_PAGESTART(cmds[first_idx].p_vaddr);
 387}
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390/* This is much more generalized than the library routine read function,
 391   so we keep this separate.  Technically the library read function
 392   is only provided so that we can read a.out libraries that have
 393   an ELF header */
 394
 395static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 396		struct file *interpreter, unsigned long *interp_map_addr,
 397		unsigned long no_base)
 398{
 399	struct elf_phdr *elf_phdata;
 400	struct elf_phdr *eppnt;
 401	unsigned long load_addr = 0;
 402	int load_addr_set = 0;
 403	unsigned long last_bss = 0, elf_bss = 0;
 404	unsigned long error = ~0UL;
 405	unsigned long total_size;
 406	int retval, i, size;
 407
 408	/* First of all, some simple consistency checks */
 409	if (interp_elf_ex->e_type != ET_EXEC &&
 410	    interp_elf_ex->e_type != ET_DYN)
 411		goto out;
 412	if (!elf_check_arch(interp_elf_ex))
 413		goto out;
 414	if (!interpreter->f_op->mmap)
 415		goto out;
 416
 417	/*
 418	 * If the size of this structure has changed, then punt, since
 419	 * we will be doing the wrong thing.
 420	 */
 421	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
 422		goto out;
 423	if (interp_elf_ex->e_phnum < 1 ||
 424		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 425		goto out;
 426
 427	/* Now read in all of the header information */
 428	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
 429	if (size > ELF_MIN_ALIGN)
 430		goto out;
 431	elf_phdata = kmalloc(size, GFP_KERNEL);
 432	if (!elf_phdata)
 433		goto out;
 434
 435	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
 436			     (char *)elf_phdata, size);
 437	error = -EIO;
 438	if (retval != size) {
 439		if (retval < 0)
 440			error = retval;	
 441		goto out_close;
 442	}
 443
 444	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
 445	if (!total_size) {
 446		error = -EINVAL;
 447		goto out_close;
 448	}
 449
 450	eppnt = elf_phdata;
 451	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 452		if (eppnt->p_type == PT_LOAD) {
 453			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 454			int elf_prot = 0;
 455			unsigned long vaddr = 0;
 456			unsigned long k, map_addr;
 457
 458			if (eppnt->p_flags & PF_R)
 459		    		elf_prot = PROT_READ;
 460			if (eppnt->p_flags & PF_W)
 461				elf_prot |= PROT_WRITE;
 462			if (eppnt->p_flags & PF_X)
 463				elf_prot |= PROT_EXEC;
 464			vaddr = eppnt->p_vaddr;
 465			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 466				elf_type |= MAP_FIXED;
 467			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 468				load_addr = -vaddr;
 469
 470			map_addr = elf_map(interpreter, load_addr + vaddr,
 471					eppnt, elf_prot, elf_type, total_size);
 472			total_size = 0;
 473			if (!*interp_map_addr)
 474				*interp_map_addr = map_addr;
 475			error = map_addr;
 476			if (BAD_ADDR(map_addr))
 477				goto out_close;
 478
 479			if (!load_addr_set &&
 480			    interp_elf_ex->e_type == ET_DYN) {
 481				load_addr = map_addr - ELF_PAGESTART(vaddr);
 482				load_addr_set = 1;
 483			}
 484
 485			/*
 486			 * Check to see if the section's size will overflow the
 487			 * allowed task size. Note that p_filesz must always be
 488			 * <= p_memsize so it's only necessary to check p_memsz.
 489			 */
 490			k = load_addr + eppnt->p_vaddr;
 491			if (BAD_ADDR(k) ||
 492			    eppnt->p_filesz > eppnt->p_memsz ||
 493			    eppnt->p_memsz > TASK_SIZE ||
 494			    TASK_SIZE - eppnt->p_memsz < k) {
 495				error = -ENOMEM;
 496				goto out_close;
 497			}
 498
 499			/*
 500			 * Find the end of the file mapping for this phdr, and
 501			 * keep track of the largest address we see for this.
 502			 */
 503			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 504			if (k > elf_bss)
 505				elf_bss = k;
 506
 507			/*
 508			 * Do the same thing for the memory mapping - between
 509			 * elf_bss and last_bss is the bss section.
 510			 */
 511			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
 512			if (k > last_bss)
 513				last_bss = k;
 514		}
 515	}
 516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517	if (last_bss > elf_bss) {
 518		/*
 519		 * Now fill out the bss section.  First pad the last page up
 520		 * to the page boundary, and then perform a mmap to make sure
 521		 * that there are zero-mapped pages up to and including the
 522		 * last bss page.
 523		 */
 524		if (padzero(elf_bss)) {
 525			error = -EFAULT;
 526			goto out_close;
 527		}
 528
 529		/* What we have mapped so far */
 530		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
 531
 532		/* Map the last of the bss segment */
 533		error = vm_brk(elf_bss, last_bss - elf_bss);
 534		if (BAD_ADDR(error))
 535			goto out_close;
 536	}
 537
 538	error = load_addr;
 539
 540out_close:
 541	kfree(elf_phdata);
 542out:
 543	return error;
 544}
 545
 546/*
 547 * These are the functions used to load ELF style executables and shared
 548 * libraries.  There is no binary dependent code anywhere else.
 549 */
 550
 551#ifndef STACK_RND_MASK
 552#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
 553#endif
 554
 555static unsigned long randomize_stack_top(unsigned long stack_top)
 556{
 557	unsigned int random_variable = 0;
 558
 559	if ((current->flags & PF_RANDOMIZE) &&
 560		!(current->personality & ADDR_NO_RANDOMIZE)) {
 561		random_variable = get_random_int() & STACK_RND_MASK;
 
 562		random_variable <<= PAGE_SHIFT;
 563	}
 564#ifdef CONFIG_STACK_GROWSUP
 565	return PAGE_ALIGN(stack_top) + random_variable;
 566#else
 567	return PAGE_ALIGN(stack_top) - random_variable;
 568#endif
 569}
 570
 571static int load_elf_binary(struct linux_binprm *bprm)
 572{
 573	struct file *interpreter = NULL; /* to shut gcc up */
 574 	unsigned long load_addr = 0, load_bias = 0;
 575	int load_addr_set = 0;
 576	char * elf_interpreter = NULL;
 577	unsigned long error;
 578	struct elf_phdr *elf_ppnt, *elf_phdata;
 579	unsigned long elf_bss, elf_brk;
 580	int retval, i;
 581	unsigned int size;
 582	unsigned long elf_entry;
 583	unsigned long interp_load_addr = 0;
 584	unsigned long start_code, end_code, start_data, end_data;
 585	unsigned long reloc_func_desc __maybe_unused = 0;
 586	int executable_stack = EXSTACK_DEFAULT;
 587	struct pt_regs *regs = current_pt_regs();
 588	struct {
 589		struct elfhdr elf_ex;
 590		struct elfhdr interp_elf_ex;
 591	} *loc;
 
 592
 593	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 594	if (!loc) {
 595		retval = -ENOMEM;
 596		goto out_ret;
 597	}
 598	
 599	/* Get the exec-header */
 600	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 601
 602	retval = -ENOEXEC;
 603	/* First of all, some simple consistency checks */
 604	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 605		goto out;
 606
 607	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 608		goto out;
 609	if (!elf_check_arch(&loc->elf_ex))
 610		goto out;
 611	if (!bprm->file->f_op->mmap)
 612		goto out;
 613
 614	/* Now read in all of the header information */
 615	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
 616		goto out;
 617	if (loc->elf_ex.e_phnum < 1 ||
 618	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
 619		goto out;
 620	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
 621	retval = -ENOMEM;
 622	elf_phdata = kmalloc(size, GFP_KERNEL);
 623	if (!elf_phdata)
 624		goto out;
 625
 626	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
 627			     (char *)elf_phdata, size);
 628	if (retval != size) {
 629		if (retval >= 0)
 630			retval = -EIO;
 631		goto out_free_ph;
 632	}
 633
 634	elf_ppnt = elf_phdata;
 635	elf_bss = 0;
 636	elf_brk = 0;
 637
 638	start_code = ~0UL;
 639	end_code = 0;
 640	start_data = 0;
 641	end_data = 0;
 642
 643	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 644		if (elf_ppnt->p_type == PT_INTERP) {
 645			/* This is the program interpreter used for
 646			 * shared libraries - for now assume that this
 647			 * is an a.out format binary
 648			 */
 649			retval = -ENOEXEC;
 650			if (elf_ppnt->p_filesz > PATH_MAX || 
 651			    elf_ppnt->p_filesz < 2)
 652				goto out_free_ph;
 653
 654			retval = -ENOMEM;
 655			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 656						  GFP_KERNEL);
 657			if (!elf_interpreter)
 658				goto out_free_ph;
 659
 660			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 661					     elf_interpreter,
 662					     elf_ppnt->p_filesz);
 663			if (retval != elf_ppnt->p_filesz) {
 664				if (retval >= 0)
 665					retval = -EIO;
 666				goto out_free_interp;
 667			}
 668			/* make sure path is NULL terminated */
 669			retval = -ENOEXEC;
 670			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 671				goto out_free_interp;
 672
 673			interpreter = open_exec(elf_interpreter);
 674			retval = PTR_ERR(interpreter);
 675			if (IS_ERR(interpreter))
 676				goto out_free_interp;
 677
 678			/*
 679			 * If the binary is not readable then enforce
 680			 * mm->dumpable = 0 regardless of the interpreter's
 681			 * permissions.
 682			 */
 683			would_dump(bprm, interpreter);
 684
 685			retval = kernel_read(interpreter, 0, bprm->buf,
 686					     BINPRM_BUF_SIZE);
 687			if (retval != BINPRM_BUF_SIZE) {
 
 
 688				if (retval >= 0)
 689					retval = -EIO;
 690				goto out_free_dentry;
 691			}
 692
 693			/* Get the exec headers */
 694			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
 695			break;
 696		}
 697		elf_ppnt++;
 698	}
 699
 700	elf_ppnt = elf_phdata;
 701	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 702		if (elf_ppnt->p_type == PT_GNU_STACK) {
 
 703			if (elf_ppnt->p_flags & PF_X)
 704				executable_stack = EXSTACK_ENABLE_X;
 705			else
 706				executable_stack = EXSTACK_DISABLE_X;
 707			break;
 
 
 
 
 
 
 
 
 708		}
 709
 710	/* Some simple consistency checks for the interpreter */
 711	if (elf_interpreter) {
 712		retval = -ELIBBAD;
 713		/* Not an ELF interpreter */
 714		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 715			goto out_free_dentry;
 716		/* Verify the interpreter has a valid arch */
 717		if (!elf_check_arch(&loc->interp_elf_ex))
 718			goto out_free_dentry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	}
 720
 
 
 
 
 
 
 
 
 
 
 
 721	/* Flush all traces of the currently running executable */
 722	retval = flush_old_exec(bprm);
 723	if (retval)
 724		goto out_free_dentry;
 725
 726	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 727	   may depend on the personality.  */
 728	SET_PERSONALITY(loc->elf_ex);
 729	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 730		current->personality |= READ_IMPLIES_EXEC;
 731
 732	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 733		current->flags |= PF_RANDOMIZE;
 734
 735	setup_new_exec(bprm);
 
 736
 737	/* Do this so that we can load the interpreter, if need be.  We will
 738	   change some of these later */
 739	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 740				 executable_stack);
 741	if (retval < 0) {
 742		send_sig(SIGKILL, current, 0);
 743		goto out_free_dentry;
 744	}
 745	
 746	current->mm->start_stack = bprm->p;
 747
 748	/* Now we do a little grungy work by mmapping the ELF image into
 749	   the correct location in memory. */
 750	for(i = 0, elf_ppnt = elf_phdata;
 751	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 752		int elf_prot = 0, elf_flags;
 753		unsigned long k, vaddr;
 
 754
 755		if (elf_ppnt->p_type != PT_LOAD)
 756			continue;
 757
 758		if (unlikely (elf_brk > elf_bss)) {
 759			unsigned long nbyte;
 760	            
 761			/* There was a PT_LOAD segment with p_memsz > p_filesz
 762			   before this one. Map anonymous pages, if needed,
 763			   and clear the area.  */
 764			retval = set_brk(elf_bss + load_bias,
 765					 elf_brk + load_bias);
 766			if (retval) {
 767				send_sig(SIGKILL, current, 0);
 768				goto out_free_dentry;
 769			}
 770			nbyte = ELF_PAGEOFFSET(elf_bss);
 771			if (nbyte) {
 772				nbyte = ELF_MIN_ALIGN - nbyte;
 773				if (nbyte > elf_brk - elf_bss)
 774					nbyte = elf_brk - elf_bss;
 775				if (clear_user((void __user *)elf_bss +
 776							load_bias, nbyte)) {
 777					/*
 778					 * This bss-zeroing can fail if the ELF
 779					 * file specifies odd protections. So
 780					 * we don't check the return value
 781					 */
 782				}
 783			}
 784		}
 785
 786		if (elf_ppnt->p_flags & PF_R)
 787			elf_prot |= PROT_READ;
 788		if (elf_ppnt->p_flags & PF_W)
 789			elf_prot |= PROT_WRITE;
 790		if (elf_ppnt->p_flags & PF_X)
 791			elf_prot |= PROT_EXEC;
 792
 793		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 794
 795		vaddr = elf_ppnt->p_vaddr;
 796		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 797			elf_flags |= MAP_FIXED;
 798		} else if (loc->elf_ex.e_type == ET_DYN) {
 799			/* Try and get dynamic programs out of the way of the
 800			 * default mmap base, as well as whatever program they
 801			 * might try to exec.  This is because the brk will
 802			 * follow the loader, and is not movable.  */
 803#ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
 804			/* Memory randomization might have been switched off
 805			 * in runtime via sysctl or explicit setting of
 806			 * personality flags.
 807			 * If that is the case, retain the original non-zero
 808			 * load_bias value in order to establish proper
 809			 * non-randomized mappings.
 810			 */
 811			if (current->flags & PF_RANDOMIZE)
 812				load_bias = 0;
 813			else
 814				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
 815#else
 816			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
 817#endif
 
 
 818		}
 819
 820		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 821				elf_prot, elf_flags, 0);
 822		if (BAD_ADDR(error)) {
 823			send_sig(SIGKILL, current, 0);
 824			retval = IS_ERR((void *)error) ?
 825				PTR_ERR((void*)error) : -EINVAL;
 826			goto out_free_dentry;
 827		}
 828
 829		if (!load_addr_set) {
 830			load_addr_set = 1;
 831			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 832			if (loc->elf_ex.e_type == ET_DYN) {
 833				load_bias += error -
 834				             ELF_PAGESTART(load_bias + vaddr);
 835				load_addr += load_bias;
 836				reloc_func_desc = load_bias;
 837			}
 838		}
 839		k = elf_ppnt->p_vaddr;
 840		if (k < start_code)
 841			start_code = k;
 842		if (start_data < k)
 843			start_data = k;
 844
 845		/*
 846		 * Check to see if the section's size will overflow the
 847		 * allowed task size. Note that p_filesz must always be
 848		 * <= p_memsz so it is only necessary to check p_memsz.
 849		 */
 850		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 851		    elf_ppnt->p_memsz > TASK_SIZE ||
 852		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 853			/* set_brk can never work. Avoid overflows. */
 854			send_sig(SIGKILL, current, 0);
 855			retval = -EINVAL;
 856			goto out_free_dentry;
 857		}
 858
 859		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 860
 861		if (k > elf_bss)
 862			elf_bss = k;
 863		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 864			end_code = k;
 865		if (end_data < k)
 866			end_data = k;
 867		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 868		if (k > elf_brk)
 869			elf_brk = k;
 870	}
 871
 872	loc->elf_ex.e_entry += load_bias;
 873	elf_bss += load_bias;
 874	elf_brk += load_bias;
 875	start_code += load_bias;
 876	end_code += load_bias;
 877	start_data += load_bias;
 878	end_data += load_bias;
 879
 880	/* Calling set_brk effectively mmaps the pages that we need
 881	 * for the bss and break sections.  We must do this before
 882	 * mapping in the interpreter, to make sure it doesn't wind
 883	 * up getting placed where the bss needs to go.
 884	 */
 885	retval = set_brk(elf_bss, elf_brk);
 886	if (retval) {
 887		send_sig(SIGKILL, current, 0);
 888		goto out_free_dentry;
 889	}
 890	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
 891		send_sig(SIGSEGV, current, 0);
 892		retval = -EFAULT; /* Nobody gets to see this, but.. */
 893		goto out_free_dentry;
 894	}
 895
 896	if (elf_interpreter) {
 897		unsigned long interp_map_addr = 0;
 898
 899		elf_entry = load_elf_interp(&loc->interp_elf_ex,
 900					    interpreter,
 901					    &interp_map_addr,
 902					    load_bias);
 903		if (!IS_ERR((void *)elf_entry)) {
 904			/*
 905			 * load_elf_interp() returns relocation
 906			 * adjustment
 907			 */
 908			interp_load_addr = elf_entry;
 909			elf_entry += loc->interp_elf_ex.e_entry;
 910		}
 911		if (BAD_ADDR(elf_entry)) {
 912			force_sig(SIGSEGV, current);
 913			retval = IS_ERR((void *)elf_entry) ?
 914					(int)elf_entry : -EINVAL;
 915			goto out_free_dentry;
 916		}
 917		reloc_func_desc = interp_load_addr;
 918
 919		allow_write_access(interpreter);
 920		fput(interpreter);
 921		kfree(elf_interpreter);
 922	} else {
 923		elf_entry = loc->elf_ex.e_entry;
 924		if (BAD_ADDR(elf_entry)) {
 925			force_sig(SIGSEGV, current);
 926			retval = -EINVAL;
 927			goto out_free_dentry;
 928		}
 929	}
 930
 
 931	kfree(elf_phdata);
 932
 933	set_binfmt(&elf_format);
 934
 935#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
 936	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
 937	if (retval < 0) {
 938		send_sig(SIGKILL, current, 0);
 939		goto out;
 940	}
 941#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
 942
 943	install_exec_creds(bprm);
 944	retval = create_elf_tables(bprm, &loc->elf_ex,
 945			  load_addr, interp_load_addr);
 946	if (retval < 0) {
 947		send_sig(SIGKILL, current, 0);
 948		goto out;
 949	}
 950	/* N.B. passed_fileno might not be initialized? */
 951	current->mm->end_code = end_code;
 952	current->mm->start_code = start_code;
 953	current->mm->start_data = start_data;
 954	current->mm->end_data = end_data;
 955	current->mm->start_stack = bprm->p;
 956
 957#ifdef arch_randomize_brk
 958	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
 959		current->mm->brk = current->mm->start_brk =
 960			arch_randomize_brk(current->mm);
 961#ifdef CONFIG_COMPAT_BRK
 962		current->brk_randomized = 1;
 963#endif
 964	}
 965#endif
 966
 967	if (current->personality & MMAP_PAGE_ZERO) {
 968		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 969		   and some applications "depend" upon this behavior.
 970		   Since we do not have the power to recompile these, we
 971		   emulate the SVr4 behavior. Sigh. */
 972		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
 973				MAP_FIXED | MAP_PRIVATE, 0);
 974	}
 975
 976#ifdef ELF_PLAT_INIT
 977	/*
 978	 * The ABI may specify that certain registers be set up in special
 979	 * ways (on i386 %edx is the address of a DT_FINI function, for
 980	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
 981	 * that the e_entry field is the address of the function descriptor
 982	 * for the startup routine, rather than the address of the startup
 983	 * routine itself.  This macro performs whatever initialization to
 984	 * the regs structure is required as well as any relocations to the
 985	 * function descriptor entries when executing dynamically links apps.
 986	 */
 987	ELF_PLAT_INIT(regs, reloc_func_desc);
 988#endif
 989
 990	start_thread(regs, elf_entry, bprm->p);
 991	retval = 0;
 992out:
 993	kfree(loc);
 994out_ret:
 995	return retval;
 996
 997	/* error cleanup */
 998out_free_dentry:
 
 999	allow_write_access(interpreter);
1000	if (interpreter)
1001		fput(interpreter);
1002out_free_interp:
1003	kfree(elf_interpreter);
1004out_free_ph:
1005	kfree(elf_phdata);
1006	goto out;
1007}
1008
1009#ifdef CONFIG_USELIB
1010/* This is really simpleminded and specialized - we are loading an
1011   a.out library that is given an ELF header. */
1012static int load_elf_library(struct file *file)
1013{
1014	struct elf_phdr *elf_phdata;
1015	struct elf_phdr *eppnt;
1016	unsigned long elf_bss, bss, len;
1017	int retval, error, i, j;
1018	struct elfhdr elf_ex;
1019
1020	error = -ENOEXEC;
1021	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1022	if (retval != sizeof(elf_ex))
1023		goto out;
1024
1025	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1026		goto out;
1027
1028	/* First of all, some simple consistency checks */
1029	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1030	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1031		goto out;
1032
1033	/* Now read in all of the header information */
1034
1035	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1036	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1037
1038	error = -ENOMEM;
1039	elf_phdata = kmalloc(j, GFP_KERNEL);
1040	if (!elf_phdata)
1041		goto out;
1042
1043	eppnt = elf_phdata;
1044	error = -ENOEXEC;
1045	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1046	if (retval != j)
1047		goto out_free_ph;
1048
1049	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1050		if ((eppnt + i)->p_type == PT_LOAD)
1051			j++;
1052	if (j != 1)
1053		goto out_free_ph;
1054
1055	while (eppnt->p_type != PT_LOAD)
1056		eppnt++;
1057
1058	/* Now use mmap to map the library into memory. */
1059	error = vm_mmap(file,
1060			ELF_PAGESTART(eppnt->p_vaddr),
1061			(eppnt->p_filesz +
1062			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1063			PROT_READ | PROT_WRITE | PROT_EXEC,
1064			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1065			(eppnt->p_offset -
1066			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1067	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1068		goto out_free_ph;
1069
1070	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1071	if (padzero(elf_bss)) {
1072		error = -EFAULT;
1073		goto out_free_ph;
1074	}
1075
1076	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1077			    ELF_MIN_ALIGN - 1);
1078	bss = eppnt->p_memsz + eppnt->p_vaddr;
1079	if (bss > len)
1080		vm_brk(len, bss - len);
 
 
 
1081	error = 0;
1082
1083out_free_ph:
1084	kfree(elf_phdata);
1085out:
1086	return error;
1087}
1088#endif /* #ifdef CONFIG_USELIB */
1089
1090#ifdef CONFIG_ELF_CORE
1091/*
1092 * ELF core dumper
1093 *
1094 * Modelled on fs/exec.c:aout_core_dump()
1095 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1096 */
1097
1098/*
1099 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1100 * that are useful for post-mortem analysis are included in every core dump.
1101 * In that way we ensure that the core dump is fully interpretable later
1102 * without matching up the same kernel and hardware config to see what PC values
1103 * meant. These special mappings include - vDSO, vsyscall, and other
1104 * architecture specific mappings
1105 */
1106static bool always_dump_vma(struct vm_area_struct *vma)
1107{
1108	/* Any vsyscall mappings? */
1109	if (vma == get_gate_vma(vma->vm_mm))
1110		return true;
 
 
 
 
 
 
 
 
1111	/*
1112	 * arch_vma_name() returns non-NULL for special architecture mappings,
1113	 * such as vDSO sections.
1114	 */
1115	if (arch_vma_name(vma))
1116		return true;
1117
1118	return false;
1119}
1120
1121/*
1122 * Decide what to dump of a segment, part, all or none.
1123 */
1124static unsigned long vma_dump_size(struct vm_area_struct *vma,
1125				   unsigned long mm_flags)
1126{
1127#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1128
1129	/* always dump the vdso and vsyscall sections */
1130	if (always_dump_vma(vma))
1131		goto whole;
1132
1133	if (vma->vm_flags & VM_DONTDUMP)
1134		return 0;
1135
 
 
 
 
 
 
 
 
 
1136	/* Hugetlb memory check */
1137	if (vma->vm_flags & VM_HUGETLB) {
1138		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1139			goto whole;
1140		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1141			goto whole;
1142		return 0;
1143	}
1144
1145	/* Do not dump I/O mapped devices or special mappings */
1146	if (vma->vm_flags & VM_IO)
1147		return 0;
1148
1149	/* By default, dump shared memory if mapped from an anonymous file. */
1150	if (vma->vm_flags & VM_SHARED) {
1151		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1152		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1153			goto whole;
1154		return 0;
1155	}
1156
1157	/* Dump segments that have been written to.  */
1158	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1159		goto whole;
1160	if (vma->vm_file == NULL)
1161		return 0;
1162
1163	if (FILTER(MAPPED_PRIVATE))
1164		goto whole;
1165
1166	/*
1167	 * If this looks like the beginning of a DSO or executable mapping,
1168	 * check for an ELF header.  If we find one, dump the first page to
1169	 * aid in determining what was mapped here.
1170	 */
1171	if (FILTER(ELF_HEADERS) &&
1172	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1173		u32 __user *header = (u32 __user *) vma->vm_start;
1174		u32 word;
1175		mm_segment_t fs = get_fs();
1176		/*
1177		 * Doing it this way gets the constant folded by GCC.
1178		 */
1179		union {
1180			u32 cmp;
1181			char elfmag[SELFMAG];
1182		} magic;
1183		BUILD_BUG_ON(SELFMAG != sizeof word);
1184		magic.elfmag[EI_MAG0] = ELFMAG0;
1185		magic.elfmag[EI_MAG1] = ELFMAG1;
1186		magic.elfmag[EI_MAG2] = ELFMAG2;
1187		magic.elfmag[EI_MAG3] = ELFMAG3;
1188		/*
1189		 * Switch to the user "segment" for get_user(),
1190		 * then put back what elf_core_dump() had in place.
1191		 */
1192		set_fs(USER_DS);
1193		if (unlikely(get_user(word, header)))
1194			word = 0;
1195		set_fs(fs);
1196		if (word == magic.cmp)
1197			return PAGE_SIZE;
1198	}
1199
1200#undef	FILTER
1201
1202	return 0;
1203
1204whole:
1205	return vma->vm_end - vma->vm_start;
1206}
1207
1208/* An ELF note in memory */
1209struct memelfnote
1210{
1211	const char *name;
1212	int type;
1213	unsigned int datasz;
1214	void *data;
1215};
1216
1217static int notesize(struct memelfnote *en)
1218{
1219	int sz;
1220
1221	sz = sizeof(struct elf_note);
1222	sz += roundup(strlen(en->name) + 1, 4);
1223	sz += roundup(en->datasz, 4);
1224
1225	return sz;
1226}
1227
1228static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1229{
1230	struct elf_note en;
1231	en.n_namesz = strlen(men->name) + 1;
1232	en.n_descsz = men->datasz;
1233	en.n_type = men->type;
1234
1235	return dump_emit(cprm, &en, sizeof(en)) &&
1236	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1237	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1238}
1239
1240static void fill_elf_header(struct elfhdr *elf, int segs,
1241			    u16 machine, u32 flags)
1242{
1243	memset(elf, 0, sizeof(*elf));
1244
1245	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1246	elf->e_ident[EI_CLASS] = ELF_CLASS;
1247	elf->e_ident[EI_DATA] = ELF_DATA;
1248	elf->e_ident[EI_VERSION] = EV_CURRENT;
1249	elf->e_ident[EI_OSABI] = ELF_OSABI;
1250
1251	elf->e_type = ET_CORE;
1252	elf->e_machine = machine;
1253	elf->e_version = EV_CURRENT;
1254	elf->e_phoff = sizeof(struct elfhdr);
1255	elf->e_flags = flags;
1256	elf->e_ehsize = sizeof(struct elfhdr);
1257	elf->e_phentsize = sizeof(struct elf_phdr);
1258	elf->e_phnum = segs;
1259
1260	return;
1261}
1262
1263static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1264{
1265	phdr->p_type = PT_NOTE;
1266	phdr->p_offset = offset;
1267	phdr->p_vaddr = 0;
1268	phdr->p_paddr = 0;
1269	phdr->p_filesz = sz;
1270	phdr->p_memsz = 0;
1271	phdr->p_flags = 0;
1272	phdr->p_align = 0;
1273	return;
1274}
1275
1276static void fill_note(struct memelfnote *note, const char *name, int type, 
1277		unsigned int sz, void *data)
1278{
1279	note->name = name;
1280	note->type = type;
1281	note->datasz = sz;
1282	note->data = data;
1283	return;
1284}
1285
1286/*
1287 * fill up all the fields in prstatus from the given task struct, except
1288 * registers which need to be filled up separately.
1289 */
1290static void fill_prstatus(struct elf_prstatus *prstatus,
1291		struct task_struct *p, long signr)
1292{
1293	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1294	prstatus->pr_sigpend = p->pending.signal.sig[0];
1295	prstatus->pr_sighold = p->blocked.sig[0];
1296	rcu_read_lock();
1297	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1298	rcu_read_unlock();
1299	prstatus->pr_pid = task_pid_vnr(p);
1300	prstatus->pr_pgrp = task_pgrp_vnr(p);
1301	prstatus->pr_sid = task_session_vnr(p);
1302	if (thread_group_leader(p)) {
1303		struct task_cputime cputime;
1304
1305		/*
1306		 * This is the record for the group leader.  It shows the
1307		 * group-wide total, not its individual thread total.
1308		 */
1309		thread_group_cputime(p, &cputime);
1310		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1311		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1312	} else {
1313		cputime_t utime, stime;
1314
1315		task_cputime(p, &utime, &stime);
1316		cputime_to_timeval(utime, &prstatus->pr_utime);
1317		cputime_to_timeval(stime, &prstatus->pr_stime);
1318	}
1319	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1320	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1321}
1322
1323static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1324		       struct mm_struct *mm)
1325{
1326	const struct cred *cred;
1327	unsigned int i, len;
1328	
1329	/* first copy the parameters from user space */
1330	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1331
1332	len = mm->arg_end - mm->arg_start;
1333	if (len >= ELF_PRARGSZ)
1334		len = ELF_PRARGSZ-1;
1335	if (copy_from_user(&psinfo->pr_psargs,
1336		           (const char __user *)mm->arg_start, len))
1337		return -EFAULT;
1338	for(i = 0; i < len; i++)
1339		if (psinfo->pr_psargs[i] == 0)
1340			psinfo->pr_psargs[i] = ' ';
1341	psinfo->pr_psargs[len] = 0;
1342
1343	rcu_read_lock();
1344	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1345	rcu_read_unlock();
1346	psinfo->pr_pid = task_pid_vnr(p);
1347	psinfo->pr_pgrp = task_pgrp_vnr(p);
1348	psinfo->pr_sid = task_session_vnr(p);
1349
1350	i = p->state ? ffz(~p->state) + 1 : 0;
1351	psinfo->pr_state = i;
1352	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1353	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1354	psinfo->pr_nice = task_nice(p);
1355	psinfo->pr_flag = p->flags;
1356	rcu_read_lock();
1357	cred = __task_cred(p);
1358	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1359	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1360	rcu_read_unlock();
1361	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1362	
1363	return 0;
1364}
1365
1366static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1367{
1368	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1369	int i = 0;
1370	do
1371		i += 2;
1372	while (auxv[i - 2] != AT_NULL);
1373	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1374}
1375
1376static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1377		const siginfo_t *siginfo)
1378{
1379	mm_segment_t old_fs = get_fs();
1380	set_fs(KERNEL_DS);
1381	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1382	set_fs(old_fs);
1383	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1384}
1385
1386#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1387/*
1388 * Format of NT_FILE note:
1389 *
1390 * long count     -- how many files are mapped
1391 * long page_size -- units for file_ofs
1392 * array of [COUNT] elements of
1393 *   long start
1394 *   long end
1395 *   long file_ofs
1396 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1397 */
1398static int fill_files_note(struct memelfnote *note)
1399{
1400	struct vm_area_struct *vma;
1401	unsigned count, size, names_ofs, remaining, n;
1402	user_long_t *data;
1403	user_long_t *start_end_ofs;
1404	char *name_base, *name_curpos;
1405
1406	/* *Estimated* file count and total data size needed */
1407	count = current->mm->map_count;
1408	size = count * 64;
1409
1410	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1411 alloc:
1412	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1413		return -EINVAL;
1414	size = round_up(size, PAGE_SIZE);
1415	data = vmalloc(size);
1416	if (!data)
1417		return -ENOMEM;
1418
1419	start_end_ofs = data + 2;
1420	name_base = name_curpos = ((char *)data) + names_ofs;
1421	remaining = size - names_ofs;
1422	count = 0;
1423	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1424		struct file *file;
1425		const char *filename;
1426
1427		file = vma->vm_file;
1428		if (!file)
1429			continue;
1430		filename = d_path(&file->f_path, name_curpos, remaining);
1431		if (IS_ERR(filename)) {
1432			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1433				vfree(data);
1434				size = size * 5 / 4;
1435				goto alloc;
1436			}
1437			continue;
1438		}
1439
1440		/* d_path() fills at the end, move name down */
1441		/* n = strlen(filename) + 1: */
1442		n = (name_curpos + remaining) - filename;
1443		remaining = filename - name_curpos;
1444		memmove(name_curpos, filename, n);
1445		name_curpos += n;
1446
1447		*start_end_ofs++ = vma->vm_start;
1448		*start_end_ofs++ = vma->vm_end;
1449		*start_end_ofs++ = vma->vm_pgoff;
1450		count++;
1451	}
1452
1453	/* Now we know exact count of files, can store it */
1454	data[0] = count;
1455	data[1] = PAGE_SIZE;
1456	/*
1457	 * Count usually is less than current->mm->map_count,
1458	 * we need to move filenames down.
1459	 */
1460	n = current->mm->map_count - count;
1461	if (n != 0) {
1462		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1463		memmove(name_base - shift_bytes, name_base,
1464			name_curpos - name_base);
1465		name_curpos -= shift_bytes;
1466	}
1467
1468	size = name_curpos - (char *)data;
1469	fill_note(note, "CORE", NT_FILE, size, data);
1470	return 0;
1471}
1472
1473#ifdef CORE_DUMP_USE_REGSET
1474#include <linux/regset.h>
1475
1476struct elf_thread_core_info {
1477	struct elf_thread_core_info *next;
1478	struct task_struct *task;
1479	struct elf_prstatus prstatus;
1480	struct memelfnote notes[0];
1481};
1482
1483struct elf_note_info {
1484	struct elf_thread_core_info *thread;
1485	struct memelfnote psinfo;
1486	struct memelfnote signote;
1487	struct memelfnote auxv;
1488	struct memelfnote files;
1489	user_siginfo_t csigdata;
1490	size_t size;
1491	int thread_notes;
1492};
1493
1494/*
1495 * When a regset has a writeback hook, we call it on each thread before
1496 * dumping user memory.  On register window machines, this makes sure the
1497 * user memory backing the register data is up to date before we read it.
1498 */
1499static void do_thread_regset_writeback(struct task_struct *task,
1500				       const struct user_regset *regset)
1501{
1502	if (regset->writeback)
1503		regset->writeback(task, regset, 1);
1504}
1505
1506#ifndef PR_REG_SIZE
1507#define PR_REG_SIZE(S) sizeof(S)
1508#endif
1509
1510#ifndef PRSTATUS_SIZE
1511#define PRSTATUS_SIZE(S) sizeof(S)
1512#endif
1513
1514#ifndef PR_REG_PTR
1515#define PR_REG_PTR(S) (&((S)->pr_reg))
1516#endif
1517
1518#ifndef SET_PR_FPVALID
1519#define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1520#endif
1521
1522static int fill_thread_core_info(struct elf_thread_core_info *t,
1523				 const struct user_regset_view *view,
1524				 long signr, size_t *total)
1525{
1526	unsigned int i;
 
1527
1528	/*
1529	 * NT_PRSTATUS is the one special case, because the regset data
1530	 * goes into the pr_reg field inside the note contents, rather
1531	 * than being the whole note contents.  We fill the reset in here.
1532	 * We assume that regset 0 is NT_PRSTATUS.
1533	 */
1534	fill_prstatus(&t->prstatus, t->task, signr);
1535	(void) view->regsets[0].get(t->task, &view->regsets[0],
1536				    0, PR_REG_SIZE(t->prstatus.pr_reg),
1537				    PR_REG_PTR(&t->prstatus), NULL);
1538
1539	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1540		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1541	*total += notesize(&t->notes[0]);
1542
1543	do_thread_regset_writeback(t->task, &view->regsets[0]);
1544
1545	/*
1546	 * Each other regset might generate a note too.  For each regset
1547	 * that has no core_note_type or is inactive, we leave t->notes[i]
1548	 * all zero and we'll know to skip writing it later.
1549	 */
1550	for (i = 1; i < view->n; ++i) {
1551		const struct user_regset *regset = &view->regsets[i];
1552		do_thread_regset_writeback(t->task, regset);
1553		if (regset->core_note_type && regset->get &&
1554		    (!regset->active || regset->active(t->task, regset))) {
1555			int ret;
1556			size_t size = regset->n * regset->size;
1557			void *data = kmalloc(size, GFP_KERNEL);
1558			if (unlikely(!data))
1559				return 0;
1560			ret = regset->get(t->task, regset,
1561					  0, size, data, NULL);
1562			if (unlikely(ret))
1563				kfree(data);
1564			else {
1565				if (regset->core_note_type != NT_PRFPREG)
1566					fill_note(&t->notes[i], "LINUX",
1567						  regset->core_note_type,
1568						  size, data);
1569				else {
1570					SET_PR_FPVALID(&t->prstatus, 1);
 
1571					fill_note(&t->notes[i], "CORE",
1572						  NT_PRFPREG, size, data);
1573				}
1574				*total += notesize(&t->notes[i]);
1575			}
1576		}
1577	}
1578
1579	return 1;
1580}
1581
1582static int fill_note_info(struct elfhdr *elf, int phdrs,
1583			  struct elf_note_info *info,
1584			  const siginfo_t *siginfo, struct pt_regs *regs)
1585{
1586	struct task_struct *dump_task = current;
1587	const struct user_regset_view *view = task_user_regset_view(dump_task);
1588	struct elf_thread_core_info *t;
1589	struct elf_prpsinfo *psinfo;
1590	struct core_thread *ct;
1591	unsigned int i;
1592
1593	info->size = 0;
1594	info->thread = NULL;
1595
1596	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1597	if (psinfo == NULL) {
1598		info->psinfo.data = NULL; /* So we don't free this wrongly */
1599		return 0;
1600	}
1601
1602	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1603
1604	/*
1605	 * Figure out how many notes we're going to need for each thread.
1606	 */
1607	info->thread_notes = 0;
1608	for (i = 0; i < view->n; ++i)
1609		if (view->regsets[i].core_note_type != 0)
1610			++info->thread_notes;
1611
1612	/*
1613	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1614	 * since it is our one special case.
1615	 */
1616	if (unlikely(info->thread_notes == 0) ||
1617	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1618		WARN_ON(1);
1619		return 0;
1620	}
1621
1622	/*
1623	 * Initialize the ELF file header.
1624	 */
1625	fill_elf_header(elf, phdrs,
1626			view->e_machine, view->e_flags);
1627
1628	/*
1629	 * Allocate a structure for each thread.
1630	 */
1631	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1632		t = kzalloc(offsetof(struct elf_thread_core_info,
1633				     notes[info->thread_notes]),
1634			    GFP_KERNEL);
1635		if (unlikely(!t))
1636			return 0;
1637
1638		t->task = ct->task;
1639		if (ct->task == dump_task || !info->thread) {
1640			t->next = info->thread;
1641			info->thread = t;
1642		} else {
1643			/*
1644			 * Make sure to keep the original task at
1645			 * the head of the list.
1646			 */
1647			t->next = info->thread->next;
1648			info->thread->next = t;
1649		}
1650	}
1651
1652	/*
1653	 * Now fill in each thread's information.
1654	 */
1655	for (t = info->thread; t != NULL; t = t->next)
1656		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1657			return 0;
1658
1659	/*
1660	 * Fill in the two process-wide notes.
1661	 */
1662	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1663	info->size += notesize(&info->psinfo);
1664
1665	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1666	info->size += notesize(&info->signote);
1667
1668	fill_auxv_note(&info->auxv, current->mm);
1669	info->size += notesize(&info->auxv);
1670
1671	if (fill_files_note(&info->files) == 0)
1672		info->size += notesize(&info->files);
1673
1674	return 1;
1675}
1676
1677static size_t get_note_info_size(struct elf_note_info *info)
1678{
1679	return info->size;
1680}
1681
1682/*
1683 * Write all the notes for each thread.  When writing the first thread, the
1684 * process-wide notes are interleaved after the first thread-specific note.
1685 */
1686static int write_note_info(struct elf_note_info *info,
1687			   struct coredump_params *cprm)
1688{
1689	bool first = 1;
1690	struct elf_thread_core_info *t = info->thread;
1691
1692	do {
1693		int i;
1694
1695		if (!writenote(&t->notes[0], cprm))
1696			return 0;
1697
1698		if (first && !writenote(&info->psinfo, cprm))
1699			return 0;
1700		if (first && !writenote(&info->signote, cprm))
1701			return 0;
1702		if (first && !writenote(&info->auxv, cprm))
1703			return 0;
1704		if (first && info->files.data &&
1705				!writenote(&info->files, cprm))
1706			return 0;
1707
1708		for (i = 1; i < info->thread_notes; ++i)
1709			if (t->notes[i].data &&
1710			    !writenote(&t->notes[i], cprm))
1711				return 0;
1712
1713		first = 0;
1714		t = t->next;
1715	} while (t);
1716
1717	return 1;
1718}
1719
1720static void free_note_info(struct elf_note_info *info)
1721{
1722	struct elf_thread_core_info *threads = info->thread;
1723	while (threads) {
1724		unsigned int i;
1725		struct elf_thread_core_info *t = threads;
1726		threads = t->next;
1727		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1728		for (i = 1; i < info->thread_notes; ++i)
1729			kfree(t->notes[i].data);
1730		kfree(t);
1731	}
1732	kfree(info->psinfo.data);
1733	vfree(info->files.data);
1734}
1735
1736#else
1737
1738/* Here is the structure in which status of each thread is captured. */
1739struct elf_thread_status
1740{
1741	struct list_head list;
1742	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1743	elf_fpregset_t fpu;		/* NT_PRFPREG */
1744	struct task_struct *thread;
1745#ifdef ELF_CORE_COPY_XFPREGS
1746	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1747#endif
1748	struct memelfnote notes[3];
1749	int num_notes;
1750};
1751
1752/*
1753 * In order to add the specific thread information for the elf file format,
1754 * we need to keep a linked list of every threads pr_status and then create
1755 * a single section for them in the final core file.
1756 */
1757static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1758{
1759	int sz = 0;
1760	struct task_struct *p = t->thread;
1761	t->num_notes = 0;
1762
1763	fill_prstatus(&t->prstatus, p, signr);
1764	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
1765	
1766	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1767		  &(t->prstatus));
1768	t->num_notes++;
1769	sz += notesize(&t->notes[0]);
1770
1771	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1772								&t->fpu))) {
1773		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1774			  &(t->fpu));
1775		t->num_notes++;
1776		sz += notesize(&t->notes[1]);
1777	}
1778
1779#ifdef ELF_CORE_COPY_XFPREGS
1780	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1781		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1782			  sizeof(t->xfpu), &t->xfpu);
1783		t->num_notes++;
1784		sz += notesize(&t->notes[2]);
1785	}
1786#endif	
1787	return sz;
1788}
1789
1790struct elf_note_info {
1791	struct memelfnote *notes;
1792	struct memelfnote *notes_files;
1793	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1794	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1795	struct list_head thread_list;
1796	elf_fpregset_t *fpu;
1797#ifdef ELF_CORE_COPY_XFPREGS
1798	elf_fpxregset_t *xfpu;
1799#endif
1800	user_siginfo_t csigdata;
1801	int thread_status_size;
1802	int numnote;
1803};
1804
1805static int elf_note_info_init(struct elf_note_info *info)
1806{
1807	memset(info, 0, sizeof(*info));
1808	INIT_LIST_HEAD(&info->thread_list);
1809
1810	/* Allocate space for ELF notes */
1811	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1812	if (!info->notes)
1813		return 0;
1814	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1815	if (!info->psinfo)
1816		return 0;
1817	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1818	if (!info->prstatus)
1819		return 0;
1820	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1821	if (!info->fpu)
1822		return 0;
1823#ifdef ELF_CORE_COPY_XFPREGS
1824	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1825	if (!info->xfpu)
1826		return 0;
1827#endif
1828	return 1;
1829}
1830
1831static int fill_note_info(struct elfhdr *elf, int phdrs,
1832			  struct elf_note_info *info,
1833			  const siginfo_t *siginfo, struct pt_regs *regs)
1834{
1835	struct list_head *t;
1836	struct core_thread *ct;
1837	struct elf_thread_status *ets;
1838
1839	if (!elf_note_info_init(info))
1840		return 0;
1841
1842	for (ct = current->mm->core_state->dumper.next;
1843					ct; ct = ct->next) {
1844		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1845		if (!ets)
1846			return 0;
1847
1848		ets->thread = ct->task;
1849		list_add(&ets->list, &info->thread_list);
1850	}
1851
1852	list_for_each(t, &info->thread_list) {
1853		int sz;
1854
1855		ets = list_entry(t, struct elf_thread_status, list);
1856		sz = elf_dump_thread_status(siginfo->si_signo, ets);
1857		info->thread_status_size += sz;
1858	}
1859	/* now collect the dump for the current */
1860	memset(info->prstatus, 0, sizeof(*info->prstatus));
1861	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1862	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1863
1864	/* Set up header */
1865	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1866
1867	/*
1868	 * Set up the notes in similar form to SVR4 core dumps made
1869	 * with info from their /proc.
1870	 */
1871
1872	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1873		  sizeof(*info->prstatus), info->prstatus);
1874	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1875	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1876		  sizeof(*info->psinfo), info->psinfo);
1877
1878	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1879	fill_auxv_note(info->notes + 3, current->mm);
1880	info->numnote = 4;
1881
1882	if (fill_files_note(info->notes + info->numnote) == 0) {
1883		info->notes_files = info->notes + info->numnote;
1884		info->numnote++;
1885	}
1886
1887	/* Try to dump the FPU. */
1888	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1889							       info->fpu);
1890	if (info->prstatus->pr_fpvalid)
1891		fill_note(info->notes + info->numnote++,
1892			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1893#ifdef ELF_CORE_COPY_XFPREGS
1894	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1895		fill_note(info->notes + info->numnote++,
1896			  "LINUX", ELF_CORE_XFPREG_TYPE,
1897			  sizeof(*info->xfpu), info->xfpu);
1898#endif
1899
1900	return 1;
1901}
1902
1903static size_t get_note_info_size(struct elf_note_info *info)
1904{
1905	int sz = 0;
1906	int i;
1907
1908	for (i = 0; i < info->numnote; i++)
1909		sz += notesize(info->notes + i);
1910
1911	sz += info->thread_status_size;
1912
1913	return sz;
1914}
1915
1916static int write_note_info(struct elf_note_info *info,
1917			   struct coredump_params *cprm)
1918{
1919	int i;
1920	struct list_head *t;
1921
1922	for (i = 0; i < info->numnote; i++)
1923		if (!writenote(info->notes + i, cprm))
1924			return 0;
1925
1926	/* write out the thread status notes section */
1927	list_for_each(t, &info->thread_list) {
1928		struct elf_thread_status *tmp =
1929				list_entry(t, struct elf_thread_status, list);
1930
1931		for (i = 0; i < tmp->num_notes; i++)
1932			if (!writenote(&tmp->notes[i], cprm))
1933				return 0;
1934	}
1935
1936	return 1;
1937}
1938
1939static void free_note_info(struct elf_note_info *info)
1940{
1941	while (!list_empty(&info->thread_list)) {
1942		struct list_head *tmp = info->thread_list.next;
1943		list_del(tmp);
1944		kfree(list_entry(tmp, struct elf_thread_status, list));
1945	}
1946
1947	/* Free data possibly allocated by fill_files_note(): */
1948	if (info->notes_files)
1949		vfree(info->notes_files->data);
1950
1951	kfree(info->prstatus);
1952	kfree(info->psinfo);
1953	kfree(info->notes);
1954	kfree(info->fpu);
1955#ifdef ELF_CORE_COPY_XFPREGS
1956	kfree(info->xfpu);
1957#endif
1958}
1959
1960#endif
1961
1962static struct vm_area_struct *first_vma(struct task_struct *tsk,
1963					struct vm_area_struct *gate_vma)
1964{
1965	struct vm_area_struct *ret = tsk->mm->mmap;
1966
1967	if (ret)
1968		return ret;
1969	return gate_vma;
1970}
1971/*
1972 * Helper function for iterating across a vma list.  It ensures that the caller
1973 * will visit `gate_vma' prior to terminating the search.
1974 */
1975static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1976					struct vm_area_struct *gate_vma)
1977{
1978	struct vm_area_struct *ret;
1979
1980	ret = this_vma->vm_next;
1981	if (ret)
1982		return ret;
1983	if (this_vma == gate_vma)
1984		return NULL;
1985	return gate_vma;
1986}
1987
1988static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1989			     elf_addr_t e_shoff, int segs)
1990{
1991	elf->e_shoff = e_shoff;
1992	elf->e_shentsize = sizeof(*shdr4extnum);
1993	elf->e_shnum = 1;
1994	elf->e_shstrndx = SHN_UNDEF;
1995
1996	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1997
1998	shdr4extnum->sh_type = SHT_NULL;
1999	shdr4extnum->sh_size = elf->e_shnum;
2000	shdr4extnum->sh_link = elf->e_shstrndx;
2001	shdr4extnum->sh_info = segs;
2002}
2003
2004static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2005				     unsigned long mm_flags)
2006{
2007	struct vm_area_struct *vma;
2008	size_t size = 0;
2009
2010	for (vma = first_vma(current, gate_vma); vma != NULL;
2011	     vma = next_vma(vma, gate_vma))
2012		size += vma_dump_size(vma, mm_flags);
2013	return size;
2014}
2015
2016/*
2017 * Actual dumper
2018 *
2019 * This is a two-pass process; first we find the offsets of the bits,
2020 * and then they are actually written out.  If we run out of core limit
2021 * we just truncate.
2022 */
2023static int elf_core_dump(struct coredump_params *cprm)
2024{
2025	int has_dumped = 0;
2026	mm_segment_t fs;
2027	int segs;
 
2028	struct vm_area_struct *vma, *gate_vma;
2029	struct elfhdr *elf = NULL;
2030	loff_t offset = 0, dataoff;
2031	struct elf_note_info info = { };
2032	struct elf_phdr *phdr4note = NULL;
2033	struct elf_shdr *shdr4extnum = NULL;
2034	Elf_Half e_phnum;
2035	elf_addr_t e_shoff;
 
2036
2037	/*
2038	 * We no longer stop all VM operations.
2039	 * 
2040	 * This is because those proceses that could possibly change map_count
2041	 * or the mmap / vma pages are now blocked in do_exit on current
2042	 * finishing this core dump.
2043	 *
2044	 * Only ptrace can touch these memory addresses, but it doesn't change
2045	 * the map_count or the pages allocated. So no possibility of crashing
2046	 * exists while dumping the mm->vm_next areas to the core file.
2047	 */
2048  
2049	/* alloc memory for large data structures: too large to be on stack */
2050	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2051	if (!elf)
2052		goto out;
2053	/*
2054	 * The number of segs are recored into ELF header as 16bit value.
2055	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2056	 */
2057	segs = current->mm->map_count;
2058	segs += elf_core_extra_phdrs();
2059
2060	gate_vma = get_gate_vma(current->mm);
2061	if (gate_vma != NULL)
2062		segs++;
2063
2064	/* for notes section */
2065	segs++;
2066
2067	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2068	 * this, kernel supports extended numbering. Have a look at
2069	 * include/linux/elf.h for further information. */
2070	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2071
2072	/*
2073	 * Collect all the non-memory information about the process for the
2074	 * notes.  This also sets up the file header.
2075	 */
2076	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2077		goto cleanup;
2078
2079	has_dumped = 1;
2080
2081	fs = get_fs();
2082	set_fs(KERNEL_DS);
2083
2084	offset += sizeof(*elf);				/* Elf header */
2085	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2086
2087	/* Write notes phdr entry */
2088	{
2089		size_t sz = get_note_info_size(&info);
2090
2091		sz += elf_coredump_extra_notes_size();
2092
2093		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2094		if (!phdr4note)
2095			goto end_coredump;
2096
2097		fill_elf_note_phdr(phdr4note, sz, offset);
2098		offset += sz;
2099	}
2100
2101	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2102
2103	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104	offset += elf_core_extra_data_size();
2105	e_shoff = offset;
2106
2107	if (e_phnum == PN_XNUM) {
2108		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2109		if (!shdr4extnum)
2110			goto end_coredump;
2111		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2112	}
2113
2114	offset = dataoff;
2115
2116	if (!dump_emit(cprm, elf, sizeof(*elf)))
2117		goto end_coredump;
2118
2119	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2120		goto end_coredump;
2121
2122	/* Write program headers for segments dump */
2123	for (vma = first_vma(current, gate_vma); vma != NULL;
2124			vma = next_vma(vma, gate_vma)) {
2125		struct elf_phdr phdr;
2126
2127		phdr.p_type = PT_LOAD;
2128		phdr.p_offset = offset;
2129		phdr.p_vaddr = vma->vm_start;
2130		phdr.p_paddr = 0;
2131		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2132		phdr.p_memsz = vma->vm_end - vma->vm_start;
2133		offset += phdr.p_filesz;
2134		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2135		if (vma->vm_flags & VM_WRITE)
2136			phdr.p_flags |= PF_W;
2137		if (vma->vm_flags & VM_EXEC)
2138			phdr.p_flags |= PF_X;
2139		phdr.p_align = ELF_EXEC_PAGESIZE;
2140
2141		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2142			goto end_coredump;
2143	}
2144
2145	if (!elf_core_write_extra_phdrs(cprm, offset))
2146		goto end_coredump;
2147
2148 	/* write out the notes section */
2149	if (!write_note_info(&info, cprm))
2150		goto end_coredump;
2151
2152	if (elf_coredump_extra_notes_write(cprm))
2153		goto end_coredump;
2154
2155	/* Align to page */
2156	if (!dump_skip(cprm, dataoff - cprm->written))
2157		goto end_coredump;
2158
2159	for (vma = first_vma(current, gate_vma); vma != NULL;
2160			vma = next_vma(vma, gate_vma)) {
2161		unsigned long addr;
2162		unsigned long end;
2163
2164		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2165
2166		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2167			struct page *page;
2168			int stop;
2169
2170			page = get_dump_page(addr);
2171			if (page) {
2172				void *kaddr = kmap(page);
2173				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2174				kunmap(page);
2175				page_cache_release(page);
2176			} else
2177				stop = !dump_skip(cprm, PAGE_SIZE);
2178			if (stop)
2179				goto end_coredump;
2180		}
2181	}
 
2182
2183	if (!elf_core_write_extra_data(cprm))
2184		goto end_coredump;
2185
2186	if (e_phnum == PN_XNUM) {
2187		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2188			goto end_coredump;
2189	}
2190
2191end_coredump:
2192	set_fs(fs);
2193
2194cleanup:
2195	free_note_info(&info);
2196	kfree(shdr4extnum);
 
2197	kfree(phdr4note);
2198	kfree(elf);
2199out:
2200	return has_dumped;
2201}
2202
2203#endif		/* CONFIG_ELF_CORE */
2204
2205static int __init init_elf_binfmt(void)
2206{
2207	register_binfmt(&elf_format);
2208	return 0;
2209}
2210
2211static void __exit exit_elf_binfmt(void)
2212{
2213	/* Remove the COFF and ELF loaders. */
2214	unregister_binfmt(&elf_format);
2215}
2216
2217core_initcall(init_elf_binfmt);
2218module_exit(exit_elf_binfmt);
2219MODULE_LICENSE("GPL");