Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * linux/fs/binfmt_elf.c
   3 *
   4 * These are the functions used to load ELF format executables as used
   5 * on SVr4 machines.  Information on the format may be found in the book
   6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
   7 * Tools".
   8 *
   9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/fs.h>
 
  15#include <linux/mm.h>
  16#include <linux/mman.h>
  17#include <linux/errno.h>
  18#include <linux/signal.h>
  19#include <linux/binfmts.h>
  20#include <linux/string.h>
  21#include <linux/file.h>
  22#include <linux/slab.h>
  23#include <linux/personality.h>
  24#include <linux/elfcore.h>
  25#include <linux/init.h>
  26#include <linux/highuid.h>
  27#include <linux/compiler.h>
  28#include <linux/highmem.h>
 
  29#include <linux/pagemap.h>
  30#include <linux/vmalloc.h>
  31#include <linux/security.h>
  32#include <linux/random.h>
  33#include <linux/elf.h>
  34#include <linux/elf-randomize.h>
  35#include <linux/utsname.h>
  36#include <linux/coredump.h>
  37#include <linux/sched.h>
 
 
 
 
 
 
  38#include <linux/dax.h>
  39#include <linux/uaccess.h>
 
  40#include <asm/param.h>
  41#include <asm/page.h>
  42
 
 
 
 
  43#ifndef user_long_t
  44#define user_long_t long
  45#endif
  46#ifndef user_siginfo_t
  47#define user_siginfo_t siginfo_t
  48#endif
  49
 
 
 
 
 
  50static int load_elf_binary(struct linux_binprm *bprm);
  51static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
  52				int, int, unsigned long);
  53
  54#ifdef CONFIG_USELIB
  55static int load_elf_library(struct file *);
  56#else
  57#define load_elf_library NULL
  58#endif
  59
  60/*
  61 * If we don't support core dumping, then supply a NULL so we
  62 * don't even try.
  63 */
  64#ifdef CONFIG_ELF_CORE
  65static int elf_core_dump(struct coredump_params *cprm);
  66#else
  67#define elf_core_dump	NULL
  68#endif
  69
  70#if ELF_EXEC_PAGESIZE > PAGE_SIZE
  71#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
  72#else
  73#define ELF_MIN_ALIGN	PAGE_SIZE
  74#endif
  75
  76#ifndef ELF_CORE_EFLAGS
  77#define ELF_CORE_EFLAGS	0
  78#endif
  79
  80#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
  81#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
  82#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
  83
  84static struct linux_binfmt elf_format = {
  85	.module		= THIS_MODULE,
  86	.load_binary	= load_elf_binary,
  87	.load_shlib	= load_elf_library,
 
  88	.core_dump	= elf_core_dump,
  89	.min_coredump	= ELF_EXEC_PAGESIZE,
 
  90};
  91
  92#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
  93
  94static int set_brk(unsigned long start, unsigned long end)
  95{
  96	start = ELF_PAGEALIGN(start);
  97	end = ELF_PAGEALIGN(end);
  98	if (end > start) {
  99		int error = vm_brk(start, end - start);
 100		if (error)
 101			return error;
 102	}
 103	current->mm->start_brk = current->mm->brk = end;
 104	return 0;
 105}
 106
 107/* We need to explicitly zero any fractional pages
 108   after the data section (i.e. bss).  This would
 109   contain the junk from the file that should not
 110   be in memory
 111 */
 112static int padzero(unsigned long elf_bss)
 113{
 114	unsigned long nbyte;
 115
 116	nbyte = ELF_PAGEOFFSET(elf_bss);
 117	if (nbyte) {
 118		nbyte = ELF_MIN_ALIGN - nbyte;
 119		if (clear_user((void __user *) elf_bss, nbyte))
 120			return -EFAULT;
 121	}
 122	return 0;
 123}
 124
 125/* Let's use some macros to make this stack manipulation a little clearer */
 126#ifdef CONFIG_STACK_GROWSUP
 127#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 128#define STACK_ROUND(sp, items) \
 129	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 130#define STACK_ALLOC(sp, len) ({ \
 131	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 132	old_sp; })
 133#else
 134#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 135#define STACK_ROUND(sp, items) \
 136	(((unsigned long) (sp - items)) &~ 15UL)
 137#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 138#endif
 139
 140#ifndef ELF_BASE_PLATFORM
 141/*
 142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 144 * will be copied to the user stack in the same manner as AT_PLATFORM.
 145 */
 146#define ELF_BASE_PLATFORM NULL
 147#endif
 148
 149static int
 150create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 151		unsigned long load_addr, unsigned long interp_load_addr)
 
 152{
 
 153	unsigned long p = bprm->p;
 154	int argc = bprm->argc;
 155	int envc = bprm->envc;
 156	elf_addr_t __user *argv;
 157	elf_addr_t __user *envp;
 158	elf_addr_t __user *sp;
 159	elf_addr_t __user *u_platform;
 160	elf_addr_t __user *u_base_platform;
 161	elf_addr_t __user *u_rand_bytes;
 162	const char *k_platform = ELF_PLATFORM;
 163	const char *k_base_platform = ELF_BASE_PLATFORM;
 164	unsigned char k_rand_bytes[16];
 165	int items;
 166	elf_addr_t *elf_info;
 167	int ei_index = 0;
 
 168	const struct cred *cred = current_cred();
 169	struct vm_area_struct *vma;
 170
 171	/*
 172	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 173	 * evictions by the processes running on the same package. One
 174	 * thing we can do is to shuffle the initial stack for them.
 175	 */
 176
 177	p = arch_align_stack(p);
 178
 179	/*
 180	 * If this architecture has a platform capability string, copy it
 181	 * to userspace.  In some cases (Sparc), this info is impossible
 182	 * for userspace to get any other way, in others (i386) it is
 183	 * merely difficult.
 184	 */
 185	u_platform = NULL;
 186	if (k_platform) {
 187		size_t len = strlen(k_platform) + 1;
 188
 189		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 190		if (__copy_to_user(u_platform, k_platform, len))
 191			return -EFAULT;
 192	}
 193
 194	/*
 195	 * If this architecture has a "base" platform capability
 196	 * string, copy it to userspace.
 197	 */
 198	u_base_platform = NULL;
 199	if (k_base_platform) {
 200		size_t len = strlen(k_base_platform) + 1;
 201
 202		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 203		if (__copy_to_user(u_base_platform, k_base_platform, len))
 204			return -EFAULT;
 205	}
 206
 207	/*
 208	 * Generate 16 random bytes for userspace PRNG seeding.
 209	 */
 210	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 211	u_rand_bytes = (elf_addr_t __user *)
 212		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 213	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 214		return -EFAULT;
 215
 216	/* Create the ELF interpreter info */
 217	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 218	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 219#define NEW_AUX_ENT(id, val) \
 220	do { \
 221		elf_info[ei_index++] = id; \
 222		elf_info[ei_index++] = val; \
 223	} while (0)
 224
 225#ifdef ARCH_DLINFO
 226	/* 
 227	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 228	 * AUXV.
 229	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 230	 * ARCH_DLINFO changes
 231	 */
 232	ARCH_DLINFO;
 233#endif
 234	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 235	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 236	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 237	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 238	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 239	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 240	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 241	NEW_AUX_ENT(AT_FLAGS, 0);
 242	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 
 
 243	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 244	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 245	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 246	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 247 	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 248	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 249#ifdef ELF_HWCAP2
 250	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 251#endif
 
 
 
 
 
 
 252	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 253	if (k_platform) {
 254		NEW_AUX_ENT(AT_PLATFORM,
 255			    (elf_addr_t)(unsigned long)u_platform);
 256	}
 257	if (k_base_platform) {
 258		NEW_AUX_ENT(AT_BASE_PLATFORM,
 259			    (elf_addr_t)(unsigned long)u_base_platform);
 260	}
 261	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 262		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 263	}
 
 
 
 
 264#undef NEW_AUX_ENT
 265	/* AT_NULL is zero; clear the rest too */
 266	memset(&elf_info[ei_index], 0,
 267	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 268
 269	/* And advance past the AT_NULL entry.  */
 270	ei_index += 2;
 271
 
 272	sp = STACK_ADD(p, ei_index);
 273
 274	items = (argc + 1) + (envc + 1) + 1;
 275	bprm->p = STACK_ROUND(sp, items);
 276
 277	/* Point sp at the lowest address on the stack */
 278#ifdef CONFIG_STACK_GROWSUP
 279	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 280	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 281#else
 282	sp = (elf_addr_t __user *)bprm->p;
 283#endif
 284
 285
 286	/*
 287	 * Grow the stack manually; some architectures have a limit on how
 288	 * far ahead a user-space access may be in order to grow the stack.
 289	 */
 290	vma = find_extend_vma(current->mm, bprm->p);
 
 
 
 291	if (!vma)
 292		return -EFAULT;
 293
 294	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 295	if (__put_user(argc, sp++))
 296		return -EFAULT;
 297	argv = sp;
 298	envp = argv + argc + 1;
 299
 300	/* Populate argv and envp */
 301	p = current->mm->arg_end = current->mm->arg_start;
 302	while (argc-- > 0) {
 303		size_t len;
 304		if (__put_user((elf_addr_t)p, argv++))
 305			return -EFAULT;
 306		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 307		if (!len || len > MAX_ARG_STRLEN)
 308			return -EINVAL;
 309		p += len;
 310	}
 311	if (__put_user(0, argv))
 312		return -EFAULT;
 313	current->mm->arg_end = current->mm->env_start = p;
 
 
 
 314	while (envc-- > 0) {
 315		size_t len;
 316		if (__put_user((elf_addr_t)p, envp++))
 317			return -EFAULT;
 318		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 319		if (!len || len > MAX_ARG_STRLEN)
 320			return -EINVAL;
 321		p += len;
 322	}
 323	if (__put_user(0, envp))
 324		return -EFAULT;
 325	current->mm->env_end = p;
 326
 327	/* Put the elf_info on the stack in the right place.  */
 328	sp = (elf_addr_t __user *)envp + 1;
 329	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 330		return -EFAULT;
 331	return 0;
 332}
 333
 334#ifndef elf_map
 335
 
 
 
 336static unsigned long elf_map(struct file *filep, unsigned long addr,
 337		struct elf_phdr *eppnt, int prot, int type,
 338		unsigned long total_size)
 339{
 340	unsigned long map_addr;
 341	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 342	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 343	addr = ELF_PAGESTART(addr);
 344	size = ELF_PAGEALIGN(size);
 345
 346	/* mmap() will return -EINVAL if given a zero size, but a
 347	 * segment with zero filesize is perfectly valid */
 348	if (!size)
 349		return addr;
 350
 351	/*
 352	* total_size is the size of the ELF (interpreter) image.
 353	* The _first_ mmap needs to know the full size, otherwise
 354	* randomization might put this image into an overlapping
 355	* position with the ELF binary image. (since size < total_size)
 356	* So we first map the 'big' image - and unmap the remainder at
 357	* the end. (which unmap is needed for ELF images with holes.)
 358	*/
 359	if (total_size) {
 360		total_size = ELF_PAGEALIGN(total_size);
 361		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 362		if (!BAD_ADDR(map_addr))
 363			vm_munmap(map_addr+size, total_size-size);
 364	} else
 365		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 366
 
 
 
 
 
 367	return(map_addr);
 368}
 369
 370#endif /* !elf_map */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371
 372static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 373{
 374	int i, first_idx = -1, last_idx = -1;
 
 375
 376	for (i = 0; i < nr; i++) {
 377		if (cmds[i].p_type == PT_LOAD) {
 378			last_idx = i;
 379			if (first_idx == -1)
 380				first_idx = i;
 
 
 
 381		}
 382	}
 383	if (first_idx == -1)
 384		return 0;
 385
 386	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 387				ELF_PAGESTART(cmds[first_idx].p_vaddr);
 388}
 389
 390/**
 391 * load_elf_phdrs() - load ELF program headers
 392 * @elf_ex:   ELF header of the binary whose program headers should be loaded
 393 * @elf_file: the opened ELF binary file
 394 *
 395 * Loads ELF program headers from the binary file elf_file, which has the ELF
 396 * header pointed to by elf_ex, into a newly allocated array. The caller is
 397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
 398 */
 399static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
 400				       struct file *elf_file)
 401{
 402	struct elf_phdr *elf_phdata = NULL;
 403	int retval, size, err = -1;
 
 404
 405	/*
 406	 * If the size of this structure has changed, then punt, since
 407	 * we will be doing the wrong thing.
 408	 */
 409	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 410		goto out;
 411
 412	/* Sanity check the number of program headers... */
 413	if (elf_ex->e_phnum < 1 ||
 414		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 415		goto out;
 416
 417	/* ...and their total size. */
 418	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 419	if (size > ELF_MIN_ALIGN)
 420		goto out;
 421
 422	elf_phdata = kmalloc(size, GFP_KERNEL);
 423	if (!elf_phdata)
 424		goto out;
 425
 426	/* Read in the program headers */
 427	retval = kernel_read(elf_file, elf_ex->e_phoff,
 428			     (char *)elf_phdata, size);
 429	if (retval != size) {
 430		err = (retval < 0) ? retval : -EIO;
 431		goto out;
 432	}
 433
 434	/* Success! */
 435	err = 0;
 436out:
 437	if (err) {
 438		kfree(elf_phdata);
 439		elf_phdata = NULL;
 440	}
 441	return elf_phdata;
 442}
 443
 444#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 445
 446/**
 447 * struct arch_elf_state - arch-specific ELF loading state
 448 *
 449 * This structure is used to preserve architecture specific data during
 450 * the loading of an ELF file, throughout the checking of architecture
 451 * specific ELF headers & through to the point where the ELF load is
 452 * known to be proceeding (ie. SET_PERSONALITY).
 453 *
 454 * This implementation is a dummy for architectures which require no
 455 * specific state.
 456 */
 457struct arch_elf_state {
 458};
 459
 460#define INIT_ARCH_ELF_STATE {}
 461
 462/**
 463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 464 * @ehdr:	The main ELF header
 465 * @phdr:	The program header to check
 466 * @elf:	The open ELF file
 467 * @is_interp:	True if the phdr is from the interpreter of the ELF being
 468 *		loaded, else false.
 469 * @state:	Architecture-specific state preserved throughout the process
 470 *		of loading the ELF.
 471 *
 472 * Inspects the program header phdr to validate its correctness and/or
 473 * suitability for the system. Called once per ELF program header in the
 474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 475 * interpreter.
 476 *
 477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 478 *         with that return code.
 479 */
 480static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 481				   struct elf_phdr *phdr,
 482				   struct file *elf, bool is_interp,
 483				   struct arch_elf_state *state)
 484{
 485	/* Dummy implementation, always proceed */
 486	return 0;
 487}
 488
 489/**
 490 * arch_check_elf() - check an ELF executable
 491 * @ehdr:	The main ELF header
 492 * @has_interp:	True if the ELF has an interpreter, else false.
 493 * @interp_ehdr: The interpreter's ELF header
 494 * @state:	Architecture-specific state preserved throughout the process
 495 *		of loading the ELF.
 496 *
 497 * Provides a final opportunity for architecture code to reject the loading
 498 * of the ELF & cause an exec syscall to return an error. This is called after
 499 * all program headers to be checked by arch_elf_pt_proc have been.
 500 *
 501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 502 *         with that return code.
 503 */
 504static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 505				 struct elfhdr *interp_ehdr,
 506				 struct arch_elf_state *state)
 507{
 508	/* Dummy implementation, always proceed */
 509	return 0;
 510}
 511
 512#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514/* This is much more generalized than the library routine read function,
 515   so we keep this separate.  Technically the library read function
 516   is only provided so that we can read a.out libraries that have
 517   an ELF header */
 518
 519static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 520		struct file *interpreter, unsigned long *interp_map_addr,
 521		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
 
 522{
 523	struct elf_phdr *eppnt;
 524	unsigned long load_addr = 0;
 525	int load_addr_set = 0;
 526	unsigned long last_bss = 0, elf_bss = 0;
 527	unsigned long error = ~0UL;
 528	unsigned long total_size;
 529	int i;
 530
 531	/* First of all, some simple consistency checks */
 532	if (interp_elf_ex->e_type != ET_EXEC &&
 533	    interp_elf_ex->e_type != ET_DYN)
 534		goto out;
 535	if (!elf_check_arch(interp_elf_ex))
 
 536		goto out;
 537	if (!interpreter->f_op->mmap)
 538		goto out;
 539
 540	total_size = total_mapping_size(interp_elf_phdata,
 541					interp_elf_ex->e_phnum);
 542	if (!total_size) {
 543		error = -EINVAL;
 544		goto out;
 545	}
 546
 547	eppnt = interp_elf_phdata;
 548	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 549		if (eppnt->p_type == PT_LOAD) {
 550			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 551			int elf_prot = 0;
 
 552			unsigned long vaddr = 0;
 553			unsigned long k, map_addr;
 554
 555			if (eppnt->p_flags & PF_R)
 556		    		elf_prot = PROT_READ;
 557			if (eppnt->p_flags & PF_W)
 558				elf_prot |= PROT_WRITE;
 559			if (eppnt->p_flags & PF_X)
 560				elf_prot |= PROT_EXEC;
 561			vaddr = eppnt->p_vaddr;
 562			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 563				elf_type |= MAP_FIXED;
 564			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 565				load_addr = -vaddr;
 566
 567			map_addr = elf_map(interpreter, load_addr + vaddr,
 568					eppnt, elf_prot, elf_type, total_size);
 569			total_size = 0;
 570			if (!*interp_map_addr)
 571				*interp_map_addr = map_addr;
 572			error = map_addr;
 573			if (BAD_ADDR(map_addr))
 574				goto out;
 575
 576			if (!load_addr_set &&
 577			    interp_elf_ex->e_type == ET_DYN) {
 578				load_addr = map_addr - ELF_PAGESTART(vaddr);
 579				load_addr_set = 1;
 580			}
 581
 582			/*
 583			 * Check to see if the section's size will overflow the
 584			 * allowed task size. Note that p_filesz must always be
 585			 * <= p_memsize so it's only necessary to check p_memsz.
 586			 */
 587			k = load_addr + eppnt->p_vaddr;
 588			if (BAD_ADDR(k) ||
 589			    eppnt->p_filesz > eppnt->p_memsz ||
 590			    eppnt->p_memsz > TASK_SIZE ||
 591			    TASK_SIZE - eppnt->p_memsz < k) {
 592				error = -ENOMEM;
 593				goto out;
 594			}
 595
 596			/*
 597			 * Find the end of the file mapping for this phdr, and
 598			 * keep track of the largest address we see for this.
 599			 */
 600			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 601			if (k > elf_bss)
 602				elf_bss = k;
 603
 604			/*
 605			 * Do the same thing for the memory mapping - between
 606			 * elf_bss and last_bss is the bss section.
 607			 */
 608			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
 609			if (k > last_bss)
 610				last_bss = k;
 611		}
 612	}
 613
 614	/*
 615	 * Now fill out the bss section: first pad the last page from
 616	 * the file up to the page boundary, and zero it from elf_bss
 617	 * up to the end of the page.
 618	 */
 619	if (padzero(elf_bss)) {
 620		error = -EFAULT;
 621		goto out;
 622	}
 623	/*
 624	 * Next, align both the file and mem bss up to the page size,
 625	 * since this is where elf_bss was just zeroed up to, and where
 626	 * last_bss will end after the vm_brk() below.
 627	 */
 628	elf_bss = ELF_PAGEALIGN(elf_bss);
 629	last_bss = ELF_PAGEALIGN(last_bss);
 630	/* Finally, if there is still more bss to allocate, do it. */
 631	if (last_bss > elf_bss) {
 632		error = vm_brk(elf_bss, last_bss - elf_bss);
 633		if (error)
 634			goto out;
 635	}
 636
 637	error = load_addr;
 638out:
 639	return error;
 640}
 641
 642/*
 643 * These are the functions used to load ELF style executables and shared
 644 * libraries.  There is no binary dependent code anywhere else.
 645 */
 646
 647#ifndef STACK_RND_MASK
 648#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
 649#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 650
 651static unsigned long randomize_stack_top(unsigned long stack_top)
 652{
 653	unsigned long random_variable = 0;
 
 654
 655	if ((current->flags & PF_RANDOMIZE) &&
 656		!(current->personality & ADDR_NO_RANDOMIZE)) {
 657		random_variable = get_random_long();
 658		random_variable &= STACK_RND_MASK;
 659		random_variable <<= PAGE_SHIFT;
 660	}
 661#ifdef CONFIG_STACK_GROWSUP
 662	return PAGE_ALIGN(stack_top) + random_variable;
 663#else
 664	return PAGE_ALIGN(stack_top) - random_variable;
 665#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667
 668static int load_elf_binary(struct linux_binprm *bprm)
 669{
 670	struct file *interpreter = NULL; /* to shut gcc up */
 671 	unsigned long load_addr = 0, load_bias = 0;
 672	int load_addr_set = 0;
 673	char * elf_interpreter = NULL;
 674	unsigned long error;
 675	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 676	unsigned long elf_bss, elf_brk;
 
 677	int retval, i;
 678	unsigned long elf_entry;
 
 679	unsigned long interp_load_addr = 0;
 680	unsigned long start_code, end_code, start_data, end_data;
 681	unsigned long reloc_func_desc __maybe_unused = 0;
 682	int executable_stack = EXSTACK_DEFAULT;
 683	struct pt_regs *regs = current_pt_regs();
 684	struct {
 685		struct elfhdr elf_ex;
 686		struct elfhdr interp_elf_ex;
 687	} *loc;
 688	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 689
 690	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 691	if (!loc) {
 692		retval = -ENOMEM;
 693		goto out_ret;
 694	}
 695	
 696	/* Get the exec-header */
 697	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 698
 699	retval = -ENOEXEC;
 700	/* First of all, some simple consistency checks */
 701	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 702		goto out;
 703
 704	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 705		goto out;
 706	if (!elf_check_arch(&loc->elf_ex))
 
 
 707		goto out;
 708	if (!bprm->file->f_op->mmap)
 709		goto out;
 710
 711	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
 712	if (!elf_phdata)
 713		goto out;
 714
 715	elf_ppnt = elf_phdata;
 716	elf_bss = 0;
 717	elf_brk = 0;
 718
 719	start_code = ~0UL;
 720	end_code = 0;
 721	start_data = 0;
 722	end_data = 0;
 723
 724	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 725		if (elf_ppnt->p_type == PT_INTERP) {
 726			/* This is the program interpreter used for
 727			 * shared libraries - for now assume that this
 728			 * is an a.out format binary
 729			 */
 730			retval = -ENOEXEC;
 731			if (elf_ppnt->p_filesz > PATH_MAX || 
 732			    elf_ppnt->p_filesz < 2)
 733				goto out_free_ph;
 734
 735			retval = -ENOMEM;
 736			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 737						  GFP_KERNEL);
 738			if (!elf_interpreter)
 739				goto out_free_ph;
 740
 741			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 742					     elf_interpreter,
 743					     elf_ppnt->p_filesz);
 744			if (retval != elf_ppnt->p_filesz) {
 745				if (retval >= 0)
 746					retval = -EIO;
 747				goto out_free_interp;
 748			}
 749			/* make sure path is NULL terminated */
 750			retval = -ENOEXEC;
 751			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 752				goto out_free_interp;
 753
 754			interpreter = open_exec(elf_interpreter);
 755			retval = PTR_ERR(interpreter);
 756			if (IS_ERR(interpreter))
 757				goto out_free_interp;
 758
 759			/*
 760			 * If the binary is not readable then enforce
 761			 * mm->dumpable = 0 regardless of the interpreter's
 762			 * permissions.
 763			 */
 764			would_dump(bprm, interpreter);
 765
 766			/* Get the exec headers */
 767			retval = kernel_read(interpreter, 0,
 768					     (void *)&loc->interp_elf_ex,
 769					     sizeof(loc->interp_elf_ex));
 770			if (retval != sizeof(loc->interp_elf_ex)) {
 771				if (retval >= 0)
 772					retval = -EIO;
 773				goto out_free_dentry;
 774			}
 775
 776			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777		}
 778		elf_ppnt++;
 
 
 
 
 
 
 
 
 
 
 
 779	}
 780
 781	elf_ppnt = elf_phdata;
 782	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 783		switch (elf_ppnt->p_type) {
 784		case PT_GNU_STACK:
 785			if (elf_ppnt->p_flags & PF_X)
 786				executable_stack = EXSTACK_ENABLE_X;
 787			else
 788				executable_stack = EXSTACK_DISABLE_X;
 789			break;
 790
 791		case PT_LOPROC ... PT_HIPROC:
 792			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
 793						  bprm->file, false,
 794						  &arch_state);
 795			if (retval)
 796				goto out_free_dentry;
 797			break;
 798		}
 799
 800	/* Some simple consistency checks for the interpreter */
 801	if (elf_interpreter) {
 802		retval = -ELIBBAD;
 803		/* Not an ELF interpreter */
 804		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 805			goto out_free_dentry;
 806		/* Verify the interpreter has a valid arch */
 807		if (!elf_check_arch(&loc->interp_elf_ex))
 
 808			goto out_free_dentry;
 809
 810		/* Load the interpreter program headers */
 811		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
 812						   interpreter);
 813		if (!interp_elf_phdata)
 814			goto out_free_dentry;
 815
 816		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 
 817		elf_ppnt = interp_elf_phdata;
 818		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
 819			switch (elf_ppnt->p_type) {
 
 
 
 
 820			case PT_LOPROC ... PT_HIPROC:
 821				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
 822							  elf_ppnt, interpreter,
 823							  true, &arch_state);
 824				if (retval)
 825					goto out_free_dentry;
 826				break;
 827			}
 828	}
 829
 
 
 
 
 
 830	/*
 831	 * Allow arch code to reject the ELF at this point, whilst it's
 832	 * still possible to return an error to the code that invoked
 833	 * the exec syscall.
 834	 */
 835	retval = arch_check_elf(&loc->elf_ex,
 836				!!interpreter, &loc->interp_elf_ex,
 837				&arch_state);
 838	if (retval)
 839		goto out_free_dentry;
 840
 841	/* Flush all traces of the currently running executable */
 842	retval = flush_old_exec(bprm);
 843	if (retval)
 844		goto out_free_dentry;
 845
 846	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 847	   may depend on the personality.  */
 848	SET_PERSONALITY2(loc->elf_ex, &arch_state);
 849	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 850		current->personality |= READ_IMPLIES_EXEC;
 851
 852	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 
 853		current->flags |= PF_RANDOMIZE;
 854
 855	setup_new_exec(bprm);
 856	install_exec_creds(bprm);
 857
 858	/* Do this so that we can load the interpreter, if need be.  We will
 859	   change some of these later */
 860	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 861				 executable_stack);
 862	if (retval < 0)
 863		goto out_free_dentry;
 864	
 865	current->mm->start_stack = bprm->p;
 
 
 
 
 
 866
 867	/* Now we do a little grungy work by mmapping the ELF image into
 868	   the correct location in memory. */
 869	for(i = 0, elf_ppnt = elf_phdata;
 870	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 871		int elf_prot = 0, elf_flags;
 872		unsigned long k, vaddr;
 873		unsigned long total_size = 0;
 
 874
 875		if (elf_ppnt->p_type != PT_LOAD)
 876			continue;
 877
 878		if (unlikely (elf_brk > elf_bss)) {
 879			unsigned long nbyte;
 880	            
 881			/* There was a PT_LOAD segment with p_memsz > p_filesz
 882			   before this one. Map anonymous pages, if needed,
 883			   and clear the area.  */
 884			retval = set_brk(elf_bss + load_bias,
 885					 elf_brk + load_bias);
 886			if (retval)
 887				goto out_free_dentry;
 888			nbyte = ELF_PAGEOFFSET(elf_bss);
 889			if (nbyte) {
 890				nbyte = ELF_MIN_ALIGN - nbyte;
 891				if (nbyte > elf_brk - elf_bss)
 892					nbyte = elf_brk - elf_bss;
 893				if (clear_user((void __user *)elf_bss +
 894							load_bias, nbyte)) {
 895					/*
 896					 * This bss-zeroing can fail if the ELF
 897					 * file specifies odd protections. So
 898					 * we don't check the return value
 899					 */
 900				}
 901			}
 902		}
 903
 904		if (elf_ppnt->p_flags & PF_R)
 905			elf_prot |= PROT_READ;
 906		if (elf_ppnt->p_flags & PF_W)
 907			elf_prot |= PROT_WRITE;
 908		if (elf_ppnt->p_flags & PF_X)
 909			elf_prot |= PROT_EXEC;
 910
 911		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 912
 913		vaddr = elf_ppnt->p_vaddr;
 914		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 
 
 
 
 
 
 915			elf_flags |= MAP_FIXED;
 916		} else if (loc->elf_ex.e_type == ET_DYN) {
 917			/* Try and get dynamic programs out of the way of the
 918			 * default mmap base, as well as whatever program they
 919			 * might try to exec.  This is because the brk will
 920			 * follow the loader, and is not movable.  */
 921			load_bias = ELF_ET_DYN_BASE - vaddr;
 922			if (current->flags & PF_RANDOMIZE)
 923				load_bias += arch_mmap_rnd();
 924			load_bias = ELF_PAGESTART(load_bias);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925			total_size = total_mapping_size(elf_phdata,
 926							loc->elf_ex.e_phnum);
 927			if (!total_size) {
 928				retval = -EINVAL;
 929				goto out_free_dentry;
 930			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931		}
 932
 933		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 934				elf_prot, elf_flags, total_size);
 935		if (BAD_ADDR(error)) {
 936			retval = IS_ERR((void *)error) ?
 937				PTR_ERR((void*)error) : -EINVAL;
 938			goto out_free_dentry;
 939		}
 940
 941		if (!load_addr_set) {
 942			load_addr_set = 1;
 943			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 944			if (loc->elf_ex.e_type == ET_DYN) {
 945				load_bias += error -
 946				             ELF_PAGESTART(load_bias + vaddr);
 947				load_addr += load_bias;
 948				reloc_func_desc = load_bias;
 949			}
 950		}
 
 
 
 
 
 
 
 
 
 
 
 951		k = elf_ppnt->p_vaddr;
 952		if (k < start_code)
 953			start_code = k;
 954		if (start_data < k)
 955			start_data = k;
 956
 957		/*
 958		 * Check to see if the section's size will overflow the
 959		 * allowed task size. Note that p_filesz must always be
 960		 * <= p_memsz so it is only necessary to check p_memsz.
 961		 */
 962		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 963		    elf_ppnt->p_memsz > TASK_SIZE ||
 964		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 965			/* set_brk can never work. Avoid overflows. */
 966			retval = -EINVAL;
 967			goto out_free_dentry;
 968		}
 969
 970		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 971
 972		if (k > elf_bss)
 973			elf_bss = k;
 974		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 975			end_code = k;
 976		if (end_data < k)
 977			end_data = k;
 978		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 979		if (k > elf_brk)
 980			elf_brk = k;
 981	}
 982
 983	loc->elf_ex.e_entry += load_bias;
 984	elf_bss += load_bias;
 985	elf_brk += load_bias;
 986	start_code += load_bias;
 987	end_code += load_bias;
 988	start_data += load_bias;
 989	end_data += load_bias;
 990
 991	/* Calling set_brk effectively mmaps the pages that we need
 992	 * for the bss and break sections.  We must do this before
 993	 * mapping in the interpreter, to make sure it doesn't wind
 994	 * up getting placed where the bss needs to go.
 995	 */
 996	retval = set_brk(elf_bss, elf_brk);
 997	if (retval)
 998		goto out_free_dentry;
 999	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1000		retval = -EFAULT; /* Nobody gets to see this, but.. */
1001		goto out_free_dentry;
1002	}
1003
1004	if (elf_interpreter) {
1005		unsigned long interp_map_addr = 0;
1006
1007		elf_entry = load_elf_interp(&loc->interp_elf_ex,
 
1008					    interpreter,
1009					    &interp_map_addr,
1010					    load_bias, interp_elf_phdata);
1011		if (!IS_ERR((void *)elf_entry)) {
1012			/*
1013			 * load_elf_interp() returns relocation
1014			 * adjustment
1015			 */
1016			interp_load_addr = elf_entry;
1017			elf_entry += loc->interp_elf_ex.e_entry;
1018		}
1019		if (BAD_ADDR(elf_entry)) {
1020			retval = IS_ERR((void *)elf_entry) ?
1021					(int)elf_entry : -EINVAL;
1022			goto out_free_dentry;
1023		}
1024		reloc_func_desc = interp_load_addr;
1025
1026		allow_write_access(interpreter);
1027		fput(interpreter);
1028		kfree(elf_interpreter);
 
 
1029	} else {
1030		elf_entry = loc->elf_ex.e_entry;
1031		if (BAD_ADDR(elf_entry)) {
1032			retval = -EINVAL;
1033			goto out_free_dentry;
1034		}
1035	}
1036
1037	kfree(interp_elf_phdata);
1038	kfree(elf_phdata);
1039
1040	set_binfmt(&elf_format);
1041
1042#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1044	if (retval < 0)
1045		goto out;
1046#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1047
1048	retval = create_elf_tables(bprm, &loc->elf_ex,
1049			  load_addr, interp_load_addr);
1050	if (retval < 0)
1051		goto out;
1052	/* N.B. passed_fileno might not be initialized? */
1053	current->mm->end_code = end_code;
1054	current->mm->start_code = start_code;
1055	current->mm->start_data = start_data;
1056	current->mm->end_data = end_data;
1057	current->mm->start_stack = bprm->p;
1058
1059	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1060		current->mm->brk = current->mm->start_brk =
1061			arch_randomize_brk(current->mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062#ifdef compat_brk_randomized
1063		current->brk_randomized = 1;
1064#endif
1065	}
1066
1067	if (current->personality & MMAP_PAGE_ZERO) {
1068		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1069		   and some applications "depend" upon this behavior.
1070		   Since we do not have the power to recompile these, we
1071		   emulate the SVr4 behavior. Sigh. */
1072		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1073				MAP_FIXED | MAP_PRIVATE, 0);
 
 
 
 
 
1074	}
1075
 
1076#ifdef ELF_PLAT_INIT
1077	/*
1078	 * The ABI may specify that certain registers be set up in special
1079	 * ways (on i386 %edx is the address of a DT_FINI function, for
1080	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1081	 * that the e_entry field is the address of the function descriptor
1082	 * for the startup routine, rather than the address of the startup
1083	 * routine itself.  This macro performs whatever initialization to
1084	 * the regs structure is required as well as any relocations to the
1085	 * function descriptor entries when executing dynamically links apps.
1086	 */
1087	ELF_PLAT_INIT(regs, reloc_func_desc);
1088#endif
1089
1090	start_thread(regs, elf_entry, bprm->p);
 
1091	retval = 0;
1092out:
1093	kfree(loc);
1094out_ret:
1095	return retval;
1096
1097	/* error cleanup */
1098out_free_dentry:
 
1099	kfree(interp_elf_phdata);
 
1100	allow_write_access(interpreter);
1101	if (interpreter)
1102		fput(interpreter);
1103out_free_interp:
1104	kfree(elf_interpreter);
1105out_free_ph:
1106	kfree(elf_phdata);
1107	goto out;
1108}
1109
1110#ifdef CONFIG_USELIB
1111/* This is really simpleminded and specialized - we are loading an
1112   a.out library that is given an ELF header. */
1113static int load_elf_library(struct file *file)
1114{
1115	struct elf_phdr *elf_phdata;
1116	struct elf_phdr *eppnt;
1117	unsigned long elf_bss, bss, len;
1118	int retval, error, i, j;
1119	struct elfhdr elf_ex;
1120
1121	error = -ENOEXEC;
1122	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1123	if (retval != sizeof(elf_ex))
1124		goto out;
1125
1126	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1127		goto out;
1128
1129	/* First of all, some simple consistency checks */
1130	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1131	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1132		goto out;
 
 
1133
1134	/* Now read in all of the header information */
1135
1136	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1137	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1138
1139	error = -ENOMEM;
1140	elf_phdata = kmalloc(j, GFP_KERNEL);
1141	if (!elf_phdata)
1142		goto out;
1143
1144	eppnt = elf_phdata;
1145	error = -ENOEXEC;
1146	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1147	if (retval != j)
1148		goto out_free_ph;
1149
1150	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1151		if ((eppnt + i)->p_type == PT_LOAD)
1152			j++;
1153	if (j != 1)
1154		goto out_free_ph;
1155
1156	while (eppnt->p_type != PT_LOAD)
1157		eppnt++;
1158
1159	/* Now use mmap to map the library into memory. */
1160	error = vm_mmap(file,
1161			ELF_PAGESTART(eppnt->p_vaddr),
1162			(eppnt->p_filesz +
1163			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1164			PROT_READ | PROT_WRITE | PROT_EXEC,
1165			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1166			(eppnt->p_offset -
1167			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1168	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1169		goto out_free_ph;
1170
1171	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1172	if (padzero(elf_bss)) {
1173		error = -EFAULT;
1174		goto out_free_ph;
1175	}
1176
1177	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1178			    ELF_MIN_ALIGN - 1);
1179	bss = eppnt->p_memsz + eppnt->p_vaddr;
1180	if (bss > len) {
1181		error = vm_brk(len, bss - len);
1182		if (error)
1183			goto out_free_ph;
1184	}
1185	error = 0;
1186
1187out_free_ph:
1188	kfree(elf_phdata);
1189out:
1190	return error;
1191}
1192#endif /* #ifdef CONFIG_USELIB */
1193
1194#ifdef CONFIG_ELF_CORE
1195/*
1196 * ELF core dumper
1197 *
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1200 */
1201
1202/*
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1209 */
1210static bool always_dump_vma(struct vm_area_struct *vma)
1211{
1212	/* Any vsyscall mappings? */
1213	if (vma == get_gate_vma(vma->vm_mm))
1214		return true;
1215
1216	/*
1217	 * Assume that all vmas with a .name op should always be dumped.
1218	 * If this changes, a new vm_ops field can easily be added.
1219	 */
1220	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1221		return true;
1222
1223	/*
1224	 * arch_vma_name() returns non-NULL for special architecture mappings,
1225	 * such as vDSO sections.
1226	 */
1227	if (arch_vma_name(vma))
1228		return true;
1229
1230	return false;
1231}
1232
1233/*
1234 * Decide what to dump of a segment, part, all or none.
1235 */
1236static unsigned long vma_dump_size(struct vm_area_struct *vma,
1237				   unsigned long mm_flags)
1238{
1239#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1240
1241	/* always dump the vdso and vsyscall sections */
1242	if (always_dump_vma(vma))
1243		goto whole;
1244
1245	if (vma->vm_flags & VM_DONTDUMP)
1246		return 0;
1247
1248	/* support for DAX */
1249	if (vma_is_dax(vma)) {
1250		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1251			goto whole;
1252		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1253			goto whole;
1254		return 0;
1255	}
1256
1257	/* Hugetlb memory check */
1258	if (vma->vm_flags & VM_HUGETLB) {
1259		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1260			goto whole;
1261		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1262			goto whole;
1263		return 0;
1264	}
1265
1266	/* Do not dump I/O mapped devices or special mappings */
1267	if (vma->vm_flags & VM_IO)
1268		return 0;
1269
1270	/* By default, dump shared memory if mapped from an anonymous file. */
1271	if (vma->vm_flags & VM_SHARED) {
1272		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1273		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1274			goto whole;
1275		return 0;
1276	}
1277
1278	/* Dump segments that have been written to.  */
1279	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1280		goto whole;
1281	if (vma->vm_file == NULL)
1282		return 0;
1283
1284	if (FILTER(MAPPED_PRIVATE))
1285		goto whole;
1286
1287	/*
1288	 * If this looks like the beginning of a DSO or executable mapping,
1289	 * check for an ELF header.  If we find one, dump the first page to
1290	 * aid in determining what was mapped here.
1291	 */
1292	if (FILTER(ELF_HEADERS) &&
1293	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1294		u32 __user *header = (u32 __user *) vma->vm_start;
1295		u32 word;
1296		mm_segment_t fs = get_fs();
1297		/*
1298		 * Doing it this way gets the constant folded by GCC.
1299		 */
1300		union {
1301			u32 cmp;
1302			char elfmag[SELFMAG];
1303		} magic;
1304		BUILD_BUG_ON(SELFMAG != sizeof word);
1305		magic.elfmag[EI_MAG0] = ELFMAG0;
1306		magic.elfmag[EI_MAG1] = ELFMAG1;
1307		magic.elfmag[EI_MAG2] = ELFMAG2;
1308		magic.elfmag[EI_MAG3] = ELFMAG3;
1309		/*
1310		 * Switch to the user "segment" for get_user(),
1311		 * then put back what elf_core_dump() had in place.
1312		 */
1313		set_fs(USER_DS);
1314		if (unlikely(get_user(word, header)))
1315			word = 0;
1316		set_fs(fs);
1317		if (word == magic.cmp)
1318			return PAGE_SIZE;
1319	}
1320
1321#undef	FILTER
1322
1323	return 0;
1324
1325whole:
1326	return vma->vm_end - vma->vm_start;
1327}
1328
1329/* An ELF note in memory */
1330struct memelfnote
1331{
1332	const char *name;
1333	int type;
1334	unsigned int datasz;
1335	void *data;
1336};
1337
1338static int notesize(struct memelfnote *en)
1339{
1340	int sz;
1341
1342	sz = sizeof(struct elf_note);
1343	sz += roundup(strlen(en->name) + 1, 4);
1344	sz += roundup(en->datasz, 4);
1345
1346	return sz;
1347}
1348
1349static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1350{
1351	struct elf_note en;
1352	en.n_namesz = strlen(men->name) + 1;
1353	en.n_descsz = men->datasz;
1354	en.n_type = men->type;
1355
1356	return dump_emit(cprm, &en, sizeof(en)) &&
1357	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1358	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1359}
1360
1361static void fill_elf_header(struct elfhdr *elf, int segs,
1362			    u16 machine, u32 flags)
1363{
1364	memset(elf, 0, sizeof(*elf));
1365
1366	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1367	elf->e_ident[EI_CLASS] = ELF_CLASS;
1368	elf->e_ident[EI_DATA] = ELF_DATA;
1369	elf->e_ident[EI_VERSION] = EV_CURRENT;
1370	elf->e_ident[EI_OSABI] = ELF_OSABI;
1371
1372	elf->e_type = ET_CORE;
1373	elf->e_machine = machine;
1374	elf->e_version = EV_CURRENT;
1375	elf->e_phoff = sizeof(struct elfhdr);
1376	elf->e_flags = flags;
1377	elf->e_ehsize = sizeof(struct elfhdr);
1378	elf->e_phentsize = sizeof(struct elf_phdr);
1379	elf->e_phnum = segs;
1380
1381	return;
1382}
1383
1384static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1385{
1386	phdr->p_type = PT_NOTE;
1387	phdr->p_offset = offset;
1388	phdr->p_vaddr = 0;
1389	phdr->p_paddr = 0;
1390	phdr->p_filesz = sz;
1391	phdr->p_memsz = 0;
1392	phdr->p_flags = 0;
1393	phdr->p_align = 0;
1394	return;
1395}
1396
1397static void fill_note(struct memelfnote *note, const char *name, int type, 
1398		unsigned int sz, void *data)
1399{
1400	note->name = name;
1401	note->type = type;
1402	note->datasz = sz;
1403	note->data = data;
1404	return;
1405}
1406
1407/*
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1410 */
1411static void fill_prstatus(struct elf_prstatus *prstatus,
1412		struct task_struct *p, long signr)
1413{
1414	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1415	prstatus->pr_sigpend = p->pending.signal.sig[0];
1416	prstatus->pr_sighold = p->blocked.sig[0];
1417	rcu_read_lock();
1418	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1419	rcu_read_unlock();
1420	prstatus->pr_pid = task_pid_vnr(p);
1421	prstatus->pr_pgrp = task_pgrp_vnr(p);
1422	prstatus->pr_sid = task_session_vnr(p);
1423	if (thread_group_leader(p)) {
1424		struct task_cputime cputime;
1425
1426		/*
1427		 * This is the record for the group leader.  It shows the
1428		 * group-wide total, not its individual thread total.
1429		 */
1430		thread_group_cputime(p, &cputime);
1431		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1432		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1433	} else {
1434		cputime_t utime, stime;
1435
1436		task_cputime(p, &utime, &stime);
1437		cputime_to_timeval(utime, &prstatus->pr_utime);
1438		cputime_to_timeval(stime, &prstatus->pr_stime);
1439	}
1440	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1441	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
 
1442}
1443
1444static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1445		       struct mm_struct *mm)
1446{
1447	const struct cred *cred;
1448	unsigned int i, len;
1449	
 
1450	/* first copy the parameters from user space */
1451	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1452
1453	len = mm->arg_end - mm->arg_start;
1454	if (len >= ELF_PRARGSZ)
1455		len = ELF_PRARGSZ-1;
1456	if (copy_from_user(&psinfo->pr_psargs,
1457		           (const char __user *)mm->arg_start, len))
1458		return -EFAULT;
1459	for(i = 0; i < len; i++)
1460		if (psinfo->pr_psargs[i] == 0)
1461			psinfo->pr_psargs[i] = ' ';
1462	psinfo->pr_psargs[len] = 0;
1463
1464	rcu_read_lock();
1465	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1466	rcu_read_unlock();
1467	psinfo->pr_pid = task_pid_vnr(p);
1468	psinfo->pr_pgrp = task_pgrp_vnr(p);
1469	psinfo->pr_sid = task_session_vnr(p);
1470
1471	i = p->state ? ffz(~p->state) + 1 : 0;
 
1472	psinfo->pr_state = i;
1473	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1474	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1475	psinfo->pr_nice = task_nice(p);
1476	psinfo->pr_flag = p->flags;
1477	rcu_read_lock();
1478	cred = __task_cred(p);
1479	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1480	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1481	rcu_read_unlock();
1482	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1483	
1484	return 0;
1485}
1486
1487static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1488{
1489	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1490	int i = 0;
1491	do
1492		i += 2;
1493	while (auxv[i - 2] != AT_NULL);
1494	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1495}
1496
1497static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1498		const siginfo_t *siginfo)
1499{
1500	mm_segment_t old_fs = get_fs();
1501	set_fs(KERNEL_DS);
1502	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1503	set_fs(old_fs);
1504	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1505}
1506
1507#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1508/*
1509 * Format of NT_FILE note:
1510 *
1511 * long count     -- how many files are mapped
1512 * long page_size -- units for file_ofs
1513 * array of [COUNT] elements of
1514 *   long start
1515 *   long end
1516 *   long file_ofs
1517 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1518 */
1519static int fill_files_note(struct memelfnote *note)
1520{
1521	struct vm_area_struct *vma;
1522	unsigned count, size, names_ofs, remaining, n;
1523	user_long_t *data;
1524	user_long_t *start_end_ofs;
1525	char *name_base, *name_curpos;
 
1526
1527	/* *Estimated* file count and total data size needed */
1528	count = current->mm->map_count;
 
 
1529	size = count * 64;
1530
1531	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1532 alloc:
1533	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
 
 
 
1534		return -EINVAL;
 
1535	size = round_up(size, PAGE_SIZE);
1536	data = vmalloc(size);
1537	if (!data)
 
 
 
 
1538		return -ENOMEM;
1539
1540	start_end_ofs = data + 2;
1541	name_base = name_curpos = ((char *)data) + names_ofs;
1542	remaining = size - names_ofs;
1543	count = 0;
1544	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
 
1545		struct file *file;
1546		const char *filename;
1547
1548		file = vma->vm_file;
1549		if (!file)
1550			continue;
1551		filename = file_path(file, name_curpos, remaining);
1552		if (IS_ERR(filename)) {
1553			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1554				vfree(data);
1555				size = size * 5 / 4;
1556				goto alloc;
1557			}
1558			continue;
1559		}
1560
1561		/* file_path() fills at the end, move name down */
1562		/* n = strlen(filename) + 1: */
1563		n = (name_curpos + remaining) - filename;
1564		remaining = filename - name_curpos;
1565		memmove(name_curpos, filename, n);
1566		name_curpos += n;
1567
1568		*start_end_ofs++ = vma->vm_start;
1569		*start_end_ofs++ = vma->vm_end;
1570		*start_end_ofs++ = vma->vm_pgoff;
1571		count++;
1572	}
1573
1574	/* Now we know exact count of files, can store it */
1575	data[0] = count;
1576	data[1] = PAGE_SIZE;
1577	/*
1578	 * Count usually is less than current->mm->map_count,
1579	 * we need to move filenames down.
1580	 */
1581	n = current->mm->map_count - count;
1582	if (n != 0) {
1583		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1584		memmove(name_base - shift_bytes, name_base,
1585			name_curpos - name_base);
1586		name_curpos -= shift_bytes;
1587	}
1588
1589	size = name_curpos - (char *)data;
1590	fill_note(note, "CORE", NT_FILE, size, data);
1591	return 0;
1592}
1593
1594#ifdef CORE_DUMP_USE_REGSET
1595#include <linux/regset.h>
1596
1597struct elf_thread_core_info {
1598	struct elf_thread_core_info *next;
1599	struct task_struct *task;
1600	struct elf_prstatus prstatus;
1601	struct memelfnote notes[0];
1602};
1603
1604struct elf_note_info {
1605	struct elf_thread_core_info *thread;
1606	struct memelfnote psinfo;
1607	struct memelfnote signote;
1608	struct memelfnote auxv;
1609	struct memelfnote files;
1610	user_siginfo_t csigdata;
1611	size_t size;
1612	int thread_notes;
1613};
1614
 
1615/*
1616 * When a regset has a writeback hook, we call it on each thread before
1617 * dumping user memory.  On register window machines, this makes sure the
1618 * user memory backing the register data is up to date before we read it.
1619 */
1620static void do_thread_regset_writeback(struct task_struct *task,
1621				       const struct user_regset *regset)
1622{
1623	if (regset->writeback)
1624		regset->writeback(task, regset, 1);
1625}
1626
1627#ifndef PRSTATUS_SIZE
1628#define PRSTATUS_SIZE(S, R) sizeof(S)
1629#endif
1630
1631#ifndef SET_PR_FPVALID
1632#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1633#endif
1634
1635static int fill_thread_core_info(struct elf_thread_core_info *t,
1636				 const struct user_regset_view *view,
1637				 long signr, size_t *total)
1638{
1639	unsigned int i;
1640	unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1641
1642	/*
1643	 * NT_PRSTATUS is the one special case, because the regset data
1644	 * goes into the pr_reg field inside the note contents, rather
1645	 * than being the whole note contents.  We fill the reset in here.
1646	 * We assume that regset 0 is NT_PRSTATUS.
1647	 */
1648	fill_prstatus(&t->prstatus, t->task, signr);
1649	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1650				    &t->prstatus.pr_reg, NULL);
1651
1652	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1653		  PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1654	*total += notesize(&t->notes[0]);
1655
1656	do_thread_regset_writeback(t->task, &view->regsets[0]);
1657
1658	/*
1659	 * Each other regset might generate a note too.  For each regset
1660	 * that has no core_note_type or is inactive, we leave t->notes[i]
1661	 * all zero and we'll know to skip writing it later.
1662	 */
1663	for (i = 1; i < view->n; ++i) {
1664		const struct user_regset *regset = &view->regsets[i];
 
 
 
 
 
 
1665		do_thread_regset_writeback(t->task, regset);
1666		if (regset->core_note_type && regset->get &&
1667		    (!regset->active || regset->active(t->task, regset))) {
1668			int ret;
1669			size_t size = regset->n * regset->size;
1670			void *data = kmalloc(size, GFP_KERNEL);
1671			if (unlikely(!data))
1672				return 0;
1673			ret = regset->get(t->task, regset,
1674					  0, size, data, NULL);
1675			if (unlikely(ret))
1676				kfree(data);
1677			else {
1678				if (regset->core_note_type != NT_PRFPREG)
1679					fill_note(&t->notes[i], "LINUX",
1680						  regset->core_note_type,
1681						  size, data);
1682				else {
1683					SET_PR_FPVALID(&t->prstatus,
1684							1, regset_size);
1685					fill_note(&t->notes[i], "CORE",
1686						  NT_PRFPREG, size, data);
1687				}
1688				*total += notesize(&t->notes[i]);
1689			}
1690		}
1691	}
1692
1693	return 1;
1694}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695
1696static int fill_note_info(struct elfhdr *elf, int phdrs,
1697			  struct elf_note_info *info,
1698			  const siginfo_t *siginfo, struct pt_regs *regs)
1699{
1700	struct task_struct *dump_task = current;
1701	const struct user_regset_view *view = task_user_regset_view(dump_task);
1702	struct elf_thread_core_info *t;
1703	struct elf_prpsinfo *psinfo;
1704	struct core_thread *ct;
1705	unsigned int i;
1706
1707	info->size = 0;
1708	info->thread = NULL;
1709
1710	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1711	if (psinfo == NULL) {
1712		info->psinfo.data = NULL; /* So we don't free this wrongly */
1713		return 0;
1714	}
1715
1716	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1717
 
 
 
1718	/*
1719	 * Figure out how many notes we're going to need for each thread.
1720	 */
1721	info->thread_notes = 0;
1722	for (i = 0; i < view->n; ++i)
1723		if (view->regsets[i].core_note_type != 0)
1724			++info->thread_notes;
1725
1726	/*
1727	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1728	 * since it is our one special case.
1729	 */
1730	if (unlikely(info->thread_notes == 0) ||
1731	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1732		WARN_ON(1);
1733		return 0;
1734	}
1735
1736	/*
1737	 * Initialize the ELF file header.
1738	 */
1739	fill_elf_header(elf, phdrs,
1740			view->e_machine, view->e_flags);
 
 
 
 
 
1741
1742	/*
1743	 * Allocate a structure for each thread.
1744	 */
1745	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
 
 
 
 
 
 
 
1746		t = kzalloc(offsetof(struct elf_thread_core_info,
1747				     notes[info->thread_notes]),
1748			    GFP_KERNEL);
1749		if (unlikely(!t))
1750			return 0;
1751
1752		t->task = ct->task;
1753		if (ct->task == dump_task || !info->thread) {
1754			t->next = info->thread;
1755			info->thread = t;
1756		} else {
1757			/*
1758			 * Make sure to keep the original task at
1759			 * the head of the list.
1760			 */
1761			t->next = info->thread->next;
1762			info->thread->next = t;
1763		}
1764	}
1765
1766	/*
1767	 * Now fill in each thread's information.
1768	 */
1769	for (t = info->thread; t != NULL; t = t->next)
1770		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1771			return 0;
1772
1773	/*
1774	 * Fill in the two process-wide notes.
1775	 */
1776	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1777	info->size += notesize(&info->psinfo);
1778
1779	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1780	info->size += notesize(&info->signote);
1781
1782	fill_auxv_note(&info->auxv, current->mm);
1783	info->size += notesize(&info->auxv);
1784
1785	if (fill_files_note(&info->files) == 0)
1786		info->size += notesize(&info->files);
1787
1788	return 1;
1789}
1790
1791static size_t get_note_info_size(struct elf_note_info *info)
1792{
1793	return info->size;
1794}
1795
1796/*
1797 * Write all the notes for each thread.  When writing the first thread, the
1798 * process-wide notes are interleaved after the first thread-specific note.
1799 */
1800static int write_note_info(struct elf_note_info *info,
1801			   struct coredump_params *cprm)
1802{
1803	bool first = true;
1804	struct elf_thread_core_info *t = info->thread;
1805
1806	do {
1807		int i;
1808
1809		if (!writenote(&t->notes[0], cprm))
1810			return 0;
1811
1812		if (first && !writenote(&info->psinfo, cprm))
1813			return 0;
1814		if (first && !writenote(&info->signote, cprm))
1815			return 0;
1816		if (first && !writenote(&info->auxv, cprm))
1817			return 0;
1818		if (first && info->files.data &&
1819				!writenote(&info->files, cprm))
1820			return 0;
1821
1822		for (i = 1; i < info->thread_notes; ++i)
1823			if (t->notes[i].data &&
1824			    !writenote(&t->notes[i], cprm))
1825				return 0;
1826
1827		first = false;
1828		t = t->next;
1829	} while (t);
1830
1831	return 1;
1832}
1833
1834static void free_note_info(struct elf_note_info *info)
1835{
1836	struct elf_thread_core_info *threads = info->thread;
1837	while (threads) {
1838		unsigned int i;
1839		struct elf_thread_core_info *t = threads;
1840		threads = t->next;
1841		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1842		for (i = 1; i < info->thread_notes; ++i)
1843			kfree(t->notes[i].data);
1844		kfree(t);
1845	}
1846	kfree(info->psinfo.data);
1847	vfree(info->files.data);
1848}
1849
1850#else
1851
1852/* Here is the structure in which status of each thread is captured. */
1853struct elf_thread_status
1854{
1855	struct list_head list;
1856	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1857	elf_fpregset_t fpu;		/* NT_PRFPREG */
1858	struct task_struct *thread;
1859#ifdef ELF_CORE_COPY_XFPREGS
1860	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1861#endif
1862	struct memelfnote notes[3];
1863	int num_notes;
1864};
1865
1866/*
1867 * In order to add the specific thread information for the elf file format,
1868 * we need to keep a linked list of every threads pr_status and then create
1869 * a single section for them in the final core file.
1870 */
1871static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1872{
1873	int sz = 0;
1874	struct task_struct *p = t->thread;
1875	t->num_notes = 0;
1876
1877	fill_prstatus(&t->prstatus, p, signr);
1878	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
1879	
1880	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1881		  &(t->prstatus));
1882	t->num_notes++;
1883	sz += notesize(&t->notes[0]);
1884
1885	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1886								&t->fpu))) {
1887		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1888			  &(t->fpu));
1889		t->num_notes++;
1890		sz += notesize(&t->notes[1]);
1891	}
1892
1893#ifdef ELF_CORE_COPY_XFPREGS
1894	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1895		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1896			  sizeof(t->xfpu), &t->xfpu);
1897		t->num_notes++;
1898		sz += notesize(&t->notes[2]);
1899	}
1900#endif	
1901	return sz;
1902}
1903
1904struct elf_note_info {
1905	struct memelfnote *notes;
1906	struct memelfnote *notes_files;
1907	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1908	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1909	struct list_head thread_list;
1910	elf_fpregset_t *fpu;
1911#ifdef ELF_CORE_COPY_XFPREGS
1912	elf_fpxregset_t *xfpu;
1913#endif
1914	user_siginfo_t csigdata;
1915	int thread_status_size;
1916	int numnote;
1917};
1918
1919static int elf_note_info_init(struct elf_note_info *info)
1920{
1921	memset(info, 0, sizeof(*info));
1922	INIT_LIST_HEAD(&info->thread_list);
1923
1924	/* Allocate space for ELF notes */
1925	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1926	if (!info->notes)
1927		return 0;
1928	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1929	if (!info->psinfo)
1930		return 0;
1931	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1932	if (!info->prstatus)
1933		return 0;
1934	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1935	if (!info->fpu)
1936		return 0;
1937#ifdef ELF_CORE_COPY_XFPREGS
1938	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1939	if (!info->xfpu)
1940		return 0;
1941#endif
1942	return 1;
1943}
1944
1945static int fill_note_info(struct elfhdr *elf, int phdrs,
1946			  struct elf_note_info *info,
1947			  const siginfo_t *siginfo, struct pt_regs *regs)
1948{
1949	struct list_head *t;
1950	struct core_thread *ct;
1951	struct elf_thread_status *ets;
1952
1953	if (!elf_note_info_init(info))
1954		return 0;
1955
1956	for (ct = current->mm->core_state->dumper.next;
1957					ct; ct = ct->next) {
1958		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1959		if (!ets)
1960			return 0;
1961
1962		ets->thread = ct->task;
1963		list_add(&ets->list, &info->thread_list);
1964	}
1965
1966	list_for_each(t, &info->thread_list) {
1967		int sz;
1968
1969		ets = list_entry(t, struct elf_thread_status, list);
1970		sz = elf_dump_thread_status(siginfo->si_signo, ets);
1971		info->thread_status_size += sz;
1972	}
1973	/* now collect the dump for the current */
1974	memset(info->prstatus, 0, sizeof(*info->prstatus));
1975	fill_prstatus(info->prstatus, current, siginfo->si_signo);
1976	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1977
1978	/* Set up header */
1979	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1980
1981	/*
1982	 * Set up the notes in similar form to SVR4 core dumps made
1983	 * with info from their /proc.
1984	 */
1985
1986	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1987		  sizeof(*info->prstatus), info->prstatus);
1988	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1989	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1990		  sizeof(*info->psinfo), info->psinfo);
1991
1992	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1993	fill_auxv_note(info->notes + 3, current->mm);
1994	info->numnote = 4;
1995
1996	if (fill_files_note(info->notes + info->numnote) == 0) {
1997		info->notes_files = info->notes + info->numnote;
1998		info->numnote++;
1999	}
2000
2001	/* Try to dump the FPU. */
2002	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2003							       info->fpu);
2004	if (info->prstatus->pr_fpvalid)
2005		fill_note(info->notes + info->numnote++,
2006			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2007#ifdef ELF_CORE_COPY_XFPREGS
2008	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2009		fill_note(info->notes + info->numnote++,
2010			  "LINUX", ELF_CORE_XFPREG_TYPE,
2011			  sizeof(*info->xfpu), info->xfpu);
2012#endif
2013
2014	return 1;
2015}
2016
2017static size_t get_note_info_size(struct elf_note_info *info)
2018{
2019	int sz = 0;
2020	int i;
2021
2022	for (i = 0; i < info->numnote; i++)
2023		sz += notesize(info->notes + i);
2024
2025	sz += info->thread_status_size;
2026
2027	return sz;
2028}
2029
2030static int write_note_info(struct elf_note_info *info,
2031			   struct coredump_params *cprm)
2032{
2033	int i;
2034	struct list_head *t;
2035
2036	for (i = 0; i < info->numnote; i++)
2037		if (!writenote(info->notes + i, cprm))
2038			return 0;
2039
2040	/* write out the thread status notes section */
2041	list_for_each(t, &info->thread_list) {
2042		struct elf_thread_status *tmp =
2043				list_entry(t, struct elf_thread_status, list);
2044
2045		for (i = 0; i < tmp->num_notes; i++)
2046			if (!writenote(&tmp->notes[i], cprm))
2047				return 0;
2048	}
2049
2050	return 1;
2051}
2052
2053static void free_note_info(struct elf_note_info *info)
2054{
2055	while (!list_empty(&info->thread_list)) {
2056		struct list_head *tmp = info->thread_list.next;
2057		list_del(tmp);
2058		kfree(list_entry(tmp, struct elf_thread_status, list));
2059	}
2060
2061	/* Free data possibly allocated by fill_files_note(): */
2062	if (info->notes_files)
2063		vfree(info->notes_files->data);
2064
2065	kfree(info->prstatus);
2066	kfree(info->psinfo);
2067	kfree(info->notes);
2068	kfree(info->fpu);
2069#ifdef ELF_CORE_COPY_XFPREGS
2070	kfree(info->xfpu);
2071#endif
2072}
2073
2074#endif
2075
2076static struct vm_area_struct *first_vma(struct task_struct *tsk,
2077					struct vm_area_struct *gate_vma)
2078{
2079	struct vm_area_struct *ret = tsk->mm->mmap;
2080
2081	if (ret)
2082		return ret;
2083	return gate_vma;
2084}
2085/*
2086 * Helper function for iterating across a vma list.  It ensures that the caller
2087 * will visit `gate_vma' prior to terminating the search.
2088 */
2089static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2090					struct vm_area_struct *gate_vma)
2091{
2092	struct vm_area_struct *ret;
2093
2094	ret = this_vma->vm_next;
2095	if (ret)
2096		return ret;
2097	if (this_vma == gate_vma)
2098		return NULL;
2099	return gate_vma;
2100}
2101
2102static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2103			     elf_addr_t e_shoff, int segs)
2104{
2105	elf->e_shoff = e_shoff;
2106	elf->e_shentsize = sizeof(*shdr4extnum);
2107	elf->e_shnum = 1;
2108	elf->e_shstrndx = SHN_UNDEF;
2109
2110	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2111
2112	shdr4extnum->sh_type = SHT_NULL;
2113	shdr4extnum->sh_size = elf->e_shnum;
2114	shdr4extnum->sh_link = elf->e_shstrndx;
2115	shdr4extnum->sh_info = segs;
2116}
2117
2118/*
2119 * Actual dumper
2120 *
2121 * This is a two-pass process; first we find the offsets of the bits,
2122 * and then they are actually written out.  If we run out of core limit
2123 * we just truncate.
2124 */
2125static int elf_core_dump(struct coredump_params *cprm)
2126{
2127	int has_dumped = 0;
2128	mm_segment_t fs;
2129	int segs, i;
2130	size_t vma_data_size = 0;
2131	struct vm_area_struct *vma, *gate_vma;
2132	struct elfhdr *elf = NULL;
2133	loff_t offset = 0, dataoff;
2134	struct elf_note_info info = { };
2135	struct elf_phdr *phdr4note = NULL;
2136	struct elf_shdr *shdr4extnum = NULL;
2137	Elf_Half e_phnum;
2138	elf_addr_t e_shoff;
2139	elf_addr_t *vma_filesz = NULL;
2140
2141	/*
2142	 * We no longer stop all VM operations.
2143	 * 
2144	 * This is because those proceses that could possibly change map_count
2145	 * or the mmap / vma pages are now blocked in do_exit on current
2146	 * finishing this core dump.
2147	 *
2148	 * Only ptrace can touch these memory addresses, but it doesn't change
2149	 * the map_count or the pages allocated. So no possibility of crashing
2150	 * exists while dumping the mm->vm_next areas to the core file.
2151	 */
2152  
2153	/* alloc memory for large data structures: too large to be on stack */
2154	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2155	if (!elf)
2156		goto out;
2157	/*
2158	 * The number of segs are recored into ELF header as 16bit value.
2159	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2160	 */
2161	segs = current->mm->map_count;
2162	segs += elf_core_extra_phdrs();
2163
2164	gate_vma = get_gate_vma(current->mm);
2165	if (gate_vma != NULL)
2166		segs++;
2167
2168	/* for notes section */
2169	segs++;
2170
2171	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2172	 * this, kernel supports extended numbering. Have a look at
2173	 * include/linux/elf.h for further information. */
2174	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2175
2176	/*
2177	 * Collect all the non-memory information about the process for the
2178	 * notes.  This also sets up the file header.
2179	 */
2180	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2181		goto cleanup;
2182
2183	has_dumped = 1;
2184
2185	fs = get_fs();
2186	set_fs(KERNEL_DS);
2187
2188	offset += sizeof(*elf);				/* Elf header */
2189	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2190
2191	/* Write notes phdr entry */
2192	{
2193		size_t sz = get_note_info_size(&info);
2194
 
2195		sz += elf_coredump_extra_notes_size();
2196
2197		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2198		if (!phdr4note)
2199			goto end_coredump;
2200
2201		fill_elf_note_phdr(phdr4note, sz, offset);
2202		offset += sz;
2203	}
2204
2205	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2206
2207	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2208		goto end_coredump;
2209	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2210	if (!vma_filesz)
2211		goto end_coredump;
2212
2213	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2214			vma = next_vma(vma, gate_vma)) {
2215		unsigned long dump_size;
2216
2217		dump_size = vma_dump_size(vma, cprm->mm_flags);
2218		vma_filesz[i++] = dump_size;
2219		vma_data_size += dump_size;
2220	}
2221
2222	offset += vma_data_size;
2223	offset += elf_core_extra_data_size();
2224	e_shoff = offset;
2225
2226	if (e_phnum == PN_XNUM) {
2227		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2228		if (!shdr4extnum)
2229			goto end_coredump;
2230		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2231	}
2232
2233	offset = dataoff;
2234
2235	if (!dump_emit(cprm, elf, sizeof(*elf)))
2236		goto end_coredump;
2237
2238	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2239		goto end_coredump;
2240
2241	/* Write program headers for segments dump */
2242	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2243			vma = next_vma(vma, gate_vma)) {
2244		struct elf_phdr phdr;
2245
2246		phdr.p_type = PT_LOAD;
2247		phdr.p_offset = offset;
2248		phdr.p_vaddr = vma->vm_start;
2249		phdr.p_paddr = 0;
2250		phdr.p_filesz = vma_filesz[i++];
2251		phdr.p_memsz = vma->vm_end - vma->vm_start;
2252		offset += phdr.p_filesz;
2253		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2254		if (vma->vm_flags & VM_WRITE)
 
 
2255			phdr.p_flags |= PF_W;
2256		if (vma->vm_flags & VM_EXEC)
2257			phdr.p_flags |= PF_X;
2258		phdr.p_align = ELF_EXEC_PAGESIZE;
2259
2260		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2261			goto end_coredump;
2262	}
2263
2264	if (!elf_core_write_extra_phdrs(cprm, offset))
2265		goto end_coredump;
2266
2267 	/* write out the notes section */
2268	if (!write_note_info(&info, cprm))
2269		goto end_coredump;
2270
 
2271	if (elf_coredump_extra_notes_write(cprm))
2272		goto end_coredump;
2273
2274	/* Align to page */
2275	if (!dump_skip(cprm, dataoff - cprm->pos))
2276		goto end_coredump;
2277
2278	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2279			vma = next_vma(vma, gate_vma)) {
2280		unsigned long addr;
2281		unsigned long end;
2282
2283		end = vma->vm_start + vma_filesz[i++];
2284
2285		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2286			struct page *page;
2287			int stop;
2288
2289			page = get_dump_page(addr);
2290			if (page) {
2291				void *kaddr = kmap(page);
2292				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2293				kunmap(page);
2294				put_page(page);
2295			} else
2296				stop = !dump_skip(cprm, PAGE_SIZE);
2297			if (stop)
2298				goto end_coredump;
2299		}
2300	}
2301	dump_truncate(cprm);
2302
2303	if (!elf_core_write_extra_data(cprm))
2304		goto end_coredump;
2305
2306	if (e_phnum == PN_XNUM) {
2307		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2308			goto end_coredump;
2309	}
2310
2311end_coredump:
2312	set_fs(fs);
2313
2314cleanup:
2315	free_note_info(&info);
2316	kfree(shdr4extnum);
2317	vfree(vma_filesz);
2318	kfree(phdr4note);
2319	kfree(elf);
2320out:
2321	return has_dumped;
2322}
2323
2324#endif		/* CONFIG_ELF_CORE */
2325
2326static int __init init_elf_binfmt(void)
2327{
2328	register_binfmt(&elf_format);
2329	return 0;
2330}
2331
2332static void __exit exit_elf_binfmt(void)
2333{
2334	/* Remove the COFF and ELF loaders. */
2335	unregister_binfmt(&elf_format);
2336}
2337
2338core_initcall(init_elf_binfmt);
2339module_exit(exit_elf_binfmt);
2340MODULE_LICENSE("GPL");
 
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/fs/binfmt_elf.c
   4 *
   5 * These are the functions used to load ELF format executables as used
   6 * on SVr4 machines.  Information on the format may be found in the book
   7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
   8 * Tools".
   9 *
  10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/fs.h>
  16#include <linux/log2.h>
  17#include <linux/mm.h>
  18#include <linux/mman.h>
  19#include <linux/errno.h>
  20#include <linux/signal.h>
  21#include <linux/binfmts.h>
  22#include <linux/string.h>
  23#include <linux/file.h>
  24#include <linux/slab.h>
  25#include <linux/personality.h>
  26#include <linux/elfcore.h>
  27#include <linux/init.h>
  28#include <linux/highuid.h>
  29#include <linux/compiler.h>
  30#include <linux/highmem.h>
  31#include <linux/hugetlb.h>
  32#include <linux/pagemap.h>
  33#include <linux/vmalloc.h>
  34#include <linux/security.h>
  35#include <linux/random.h>
  36#include <linux/elf.h>
  37#include <linux/elf-randomize.h>
  38#include <linux/utsname.h>
  39#include <linux/coredump.h>
  40#include <linux/sched.h>
  41#include <linux/sched/coredump.h>
  42#include <linux/sched/task_stack.h>
  43#include <linux/sched/cputime.h>
  44#include <linux/sizes.h>
  45#include <linux/types.h>
  46#include <linux/cred.h>
  47#include <linux/dax.h>
  48#include <linux/uaccess.h>
  49#include <linux/rseq.h>
  50#include <asm/param.h>
  51#include <asm/page.h>
  52
  53#ifndef ELF_COMPAT
  54#define ELF_COMPAT 0
  55#endif
  56
  57#ifndef user_long_t
  58#define user_long_t long
  59#endif
  60#ifndef user_siginfo_t
  61#define user_siginfo_t siginfo_t
  62#endif
  63
  64/* That's for binfmt_elf_fdpic to deal with */
  65#ifndef elf_check_fdpic
  66#define elf_check_fdpic(ex) false
  67#endif
  68
  69static int load_elf_binary(struct linux_binprm *bprm);
 
 
  70
  71#ifdef CONFIG_USELIB
  72static int load_elf_library(struct file *);
  73#else
  74#define load_elf_library NULL
  75#endif
  76
  77/*
  78 * If we don't support core dumping, then supply a NULL so we
  79 * don't even try.
  80 */
  81#ifdef CONFIG_ELF_CORE
  82static int elf_core_dump(struct coredump_params *cprm);
  83#else
  84#define elf_core_dump	NULL
  85#endif
  86
  87#if ELF_EXEC_PAGESIZE > PAGE_SIZE
  88#define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
  89#else
  90#define ELF_MIN_ALIGN	PAGE_SIZE
  91#endif
  92
  93#ifndef ELF_CORE_EFLAGS
  94#define ELF_CORE_EFLAGS	0
  95#endif
  96
  97#define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
  98#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
  99#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
 100
 101static struct linux_binfmt elf_format = {
 102	.module		= THIS_MODULE,
 103	.load_binary	= load_elf_binary,
 104	.load_shlib	= load_elf_library,
 105#ifdef CONFIG_COREDUMP
 106	.core_dump	= elf_core_dump,
 107	.min_coredump	= ELF_EXEC_PAGESIZE,
 108#endif
 109};
 110
 111#define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 112
 113/*
 114 * We need to explicitly zero any trailing portion of the page that follows
 115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this
 116 * memory will contain the junk from the file that should not be present.
 117 */
 118static int padzero(unsigned long address)
 119{
 120	unsigned long nbyte;
 121
 122	nbyte = ELF_PAGEOFFSET(address);
 123	if (nbyte) {
 124		nbyte = ELF_MIN_ALIGN - nbyte;
 125		if (clear_user((void __user *)address, nbyte))
 126			return -EFAULT;
 127	}
 128	return 0;
 129}
 130
 131/* Let's use some macros to make this stack manipulation a little clearer */
 132#ifdef CONFIG_STACK_GROWSUP
 133#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 134#define STACK_ROUND(sp, items) \
 135	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 136#define STACK_ALLOC(sp, len) ({ \
 137	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 138	old_sp; })
 139#else
 140#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 141#define STACK_ROUND(sp, items) \
 142	(((unsigned long) (sp - items)) &~ 15UL)
 143#define STACK_ALLOC(sp, len) (sp -= len)
 144#endif
 145
 146#ifndef ELF_BASE_PLATFORM
 147/*
 148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 150 * will be copied to the user stack in the same manner as AT_PLATFORM.
 151 */
 152#define ELF_BASE_PLATFORM NULL
 153#endif
 154
 155static int
 156create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
 157		unsigned long interp_load_addr,
 158		unsigned long e_entry, unsigned long phdr_addr)
 159{
 160	struct mm_struct *mm = current->mm;
 161	unsigned long p = bprm->p;
 162	int argc = bprm->argc;
 163	int envc = bprm->envc;
 
 
 164	elf_addr_t __user *sp;
 165	elf_addr_t __user *u_platform;
 166	elf_addr_t __user *u_base_platform;
 167	elf_addr_t __user *u_rand_bytes;
 168	const char *k_platform = ELF_PLATFORM;
 169	const char *k_base_platform = ELF_BASE_PLATFORM;
 170	unsigned char k_rand_bytes[16];
 171	int items;
 172	elf_addr_t *elf_info;
 173	elf_addr_t flags = 0;
 174	int ei_index;
 175	const struct cred *cred = current_cred();
 176	struct vm_area_struct *vma;
 177
 178	/*
 179	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 180	 * evictions by the processes running on the same package. One
 181	 * thing we can do is to shuffle the initial stack for them.
 182	 */
 183
 184	p = arch_align_stack(p);
 185
 186	/*
 187	 * If this architecture has a platform capability string, copy it
 188	 * to userspace.  In some cases (Sparc), this info is impossible
 189	 * for userspace to get any other way, in others (i386) it is
 190	 * merely difficult.
 191	 */
 192	u_platform = NULL;
 193	if (k_platform) {
 194		size_t len = strlen(k_platform) + 1;
 195
 196		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 197		if (copy_to_user(u_platform, k_platform, len))
 198			return -EFAULT;
 199	}
 200
 201	/*
 202	 * If this architecture has a "base" platform capability
 203	 * string, copy it to userspace.
 204	 */
 205	u_base_platform = NULL;
 206	if (k_base_platform) {
 207		size_t len = strlen(k_base_platform) + 1;
 208
 209		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 210		if (copy_to_user(u_base_platform, k_base_platform, len))
 211			return -EFAULT;
 212	}
 213
 214	/*
 215	 * Generate 16 random bytes for userspace PRNG seeding.
 216	 */
 217	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 218	u_rand_bytes = (elf_addr_t __user *)
 219		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 220	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 221		return -EFAULT;
 222
 223	/* Create the ELF interpreter info */
 224	elf_info = (elf_addr_t *)mm->saved_auxv;
 225	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 226#define NEW_AUX_ENT(id, val) \
 227	do { \
 228		*elf_info++ = id; \
 229		*elf_info++ = val; \
 230	} while (0)
 231
 232#ifdef ARCH_DLINFO
 233	/*
 234	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 235	 * AUXV.
 236	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 237	 * ARCH_DLINFO changes
 238	 */
 239	ARCH_DLINFO;
 240#endif
 241	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 242	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 243	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 244	NEW_AUX_ENT(AT_PHDR, phdr_addr);
 245	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 246	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 247	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 248	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
 249		flags |= AT_FLAGS_PRESERVE_ARGV0;
 250	NEW_AUX_ENT(AT_FLAGS, flags);
 251	NEW_AUX_ENT(AT_ENTRY, e_entry);
 252	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 253	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 254	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 255	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 256	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
 257	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 258#ifdef ELF_HWCAP2
 259	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 260#endif
 261#ifdef ELF_HWCAP3
 262	NEW_AUX_ENT(AT_HWCAP3, ELF_HWCAP3);
 263#endif
 264#ifdef ELF_HWCAP4
 265	NEW_AUX_ENT(AT_HWCAP4, ELF_HWCAP4);
 266#endif
 267	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 268	if (k_platform) {
 269		NEW_AUX_ENT(AT_PLATFORM,
 270			    (elf_addr_t)(unsigned long)u_platform);
 271	}
 272	if (k_base_platform) {
 273		NEW_AUX_ENT(AT_BASE_PLATFORM,
 274			    (elf_addr_t)(unsigned long)u_base_platform);
 275	}
 276	if (bprm->have_execfd) {
 277		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
 278	}
 279#ifdef CONFIG_RSEQ
 280	NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
 281	NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
 282#endif
 283#undef NEW_AUX_ENT
 284	/* AT_NULL is zero; clear the rest too */
 285	memset(elf_info, 0, (char *)mm->saved_auxv +
 286			sizeof(mm->saved_auxv) - (char *)elf_info);
 287
 288	/* And advance past the AT_NULL entry.  */
 289	elf_info += 2;
 290
 291	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
 292	sp = STACK_ADD(p, ei_index);
 293
 294	items = (argc + 1) + (envc + 1) + 1;
 295	bprm->p = STACK_ROUND(sp, items);
 296
 297	/* Point sp at the lowest address on the stack */
 298#ifdef CONFIG_STACK_GROWSUP
 299	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 300	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 301#else
 302	sp = (elf_addr_t __user *)bprm->p;
 303#endif
 304
 305
 306	/*
 307	 * Grow the stack manually; some architectures have a limit on how
 308	 * far ahead a user-space access may be in order to grow the stack.
 309	 */
 310	if (mmap_write_lock_killable(mm))
 311		return -EINTR;
 312	vma = find_extend_vma_locked(mm, bprm->p);
 313	mmap_write_unlock(mm);
 314	if (!vma)
 315		return -EFAULT;
 316
 317	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 318	if (put_user(argc, sp++))
 319		return -EFAULT;
 
 
 320
 321	/* Populate list of argv pointers back to argv strings. */
 322	p = mm->arg_end = mm->arg_start;
 323	while (argc-- > 0) {
 324		size_t len;
 325		if (put_user((elf_addr_t)p, sp++))
 326			return -EFAULT;
 327		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 328		if (!len || len > MAX_ARG_STRLEN)
 329			return -EINVAL;
 330		p += len;
 331	}
 332	if (put_user(0, sp++))
 333		return -EFAULT;
 334	mm->arg_end = p;
 335
 336	/* Populate list of envp pointers back to envp strings. */
 337	mm->env_end = mm->env_start = p;
 338	while (envc-- > 0) {
 339		size_t len;
 340		if (put_user((elf_addr_t)p, sp++))
 341			return -EFAULT;
 342		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 343		if (!len || len > MAX_ARG_STRLEN)
 344			return -EINVAL;
 345		p += len;
 346	}
 347	if (put_user(0, sp++))
 348		return -EFAULT;
 349	mm->env_end = p;
 350
 351	/* Put the elf_info on the stack in the right place.  */
 352	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
 
 353		return -EFAULT;
 354	return 0;
 355}
 356
 357/*
 358 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
 359 * into memory at "addr". (Note that p_filesz is rounded up to the
 360 * next page, so any extra bytes from the file must be wiped.)
 361 */
 362static unsigned long elf_map(struct file *filep, unsigned long addr,
 363		const struct elf_phdr *eppnt, int prot, int type,
 364		unsigned long total_size)
 365{
 366	unsigned long map_addr;
 367	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 368	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 369	addr = ELF_PAGESTART(addr);
 370	size = ELF_PAGEALIGN(size);
 371
 372	/* mmap() will return -EINVAL if given a zero size, but a
 373	 * segment with zero filesize is perfectly valid */
 374	if (!size)
 375		return addr;
 376
 377	/*
 378	* total_size is the size of the ELF (interpreter) image.
 379	* The _first_ mmap needs to know the full size, otherwise
 380	* randomization might put this image into an overlapping
 381	* position with the ELF binary image. (since size < total_size)
 382	* So we first map the 'big' image - and unmap the remainder at
 383	* the end. (which unmap is needed for ELF images with holes.)
 384	*/
 385	if (total_size) {
 386		total_size = ELF_PAGEALIGN(total_size);
 387		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 388		if (!BAD_ADDR(map_addr))
 389			vm_munmap(map_addr+size, total_size-size);
 390	} else
 391		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 392
 393	if ((type & MAP_FIXED_NOREPLACE) &&
 394	    PTR_ERR((void *)map_addr) == -EEXIST)
 395		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
 396			task_pid_nr(current), current->comm, (void *)addr);
 397
 398	return(map_addr);
 399}
 400
 401/*
 402 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
 403 * into memory at "addr". Memory from "p_filesz" through "p_memsz"
 404 * rounded up to the next page is zeroed.
 405 */
 406static unsigned long elf_load(struct file *filep, unsigned long addr,
 407		const struct elf_phdr *eppnt, int prot, int type,
 408		unsigned long total_size)
 409{
 410	unsigned long zero_start, zero_end;
 411	unsigned long map_addr;
 412
 413	if (eppnt->p_filesz) {
 414		map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
 415		if (BAD_ADDR(map_addr))
 416			return map_addr;
 417		if (eppnt->p_memsz > eppnt->p_filesz) {
 418			zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
 419				eppnt->p_filesz;
 420			zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
 421				eppnt->p_memsz;
 422
 423			/*
 424			 * Zero the end of the last mapped page but ignore
 425			 * any errors if the segment isn't writable.
 426			 */
 427			if (padzero(zero_start) && (prot & PROT_WRITE))
 428				return -EFAULT;
 429		}
 430	} else {
 431		map_addr = zero_start = ELF_PAGESTART(addr);
 432		zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
 433			eppnt->p_memsz;
 434	}
 435	if (eppnt->p_memsz > eppnt->p_filesz) {
 436		/*
 437		 * Map the last of the segment.
 438		 * If the header is requesting these pages to be
 439		 * executable, honour that (ppc32 needs this).
 440		 */
 441		int error;
 442
 443		zero_start = ELF_PAGEALIGN(zero_start);
 444		zero_end = ELF_PAGEALIGN(zero_end);
 445
 446		error = vm_brk_flags(zero_start, zero_end - zero_start,
 447				     prot & PROT_EXEC ? VM_EXEC : 0);
 448		if (error)
 449			map_addr = error;
 450	}
 451	return map_addr;
 452}
 453
 454
 455static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
 456{
 457	elf_addr_t min_addr = -1;
 458	elf_addr_t max_addr = 0;
 459	bool pt_load = false;
 460	int i;
 461
 462	for (i = 0; i < nr; i++) {
 463		if (phdr[i].p_type == PT_LOAD) {
 464			min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
 465			max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
 466			pt_load = true;
 467		}
 468	}
 469	return pt_load ? (max_addr - min_addr) : 0;
 470}
 471
 472static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
 473{
 474	ssize_t rv;
 475
 476	rv = kernel_read(file, buf, len, &pos);
 477	if (unlikely(rv != len)) {
 478		return (rv < 0) ? rv : -EIO;
 479	}
 480	return 0;
 481}
 482
 483static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
 484{
 485	unsigned long alignment = 0;
 486	int i;
 487
 488	for (i = 0; i < nr; i++) {
 489		if (cmds[i].p_type == PT_LOAD) {
 490			unsigned long p_align = cmds[i].p_align;
 491
 492			/* skip non-power of two alignments as invalid */
 493			if (!is_power_of_2(p_align))
 494				continue;
 495			alignment = max(alignment, p_align);
 496		}
 497	}
 
 
 498
 499	/* ensure we align to at least one page */
 500	return ELF_PAGEALIGN(alignment);
 501}
 502
 503/**
 504 * load_elf_phdrs() - load ELF program headers
 505 * @elf_ex:   ELF header of the binary whose program headers should be loaded
 506 * @elf_file: the opened ELF binary file
 507 *
 508 * Loads ELF program headers from the binary file elf_file, which has the ELF
 509 * header pointed to by elf_ex, into a newly allocated array. The caller is
 510 * responsible for freeing the allocated data. Returns NULL upon failure.
 511 */
 512static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
 513				       struct file *elf_file)
 514{
 515	struct elf_phdr *elf_phdata = NULL;
 516	int retval = -1;
 517	unsigned int size;
 518
 519	/*
 520	 * If the size of this structure has changed, then punt, since
 521	 * we will be doing the wrong thing.
 522	 */
 523	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 524		goto out;
 525
 526	/* Sanity check the number of program headers... */
 
 
 
 
 527	/* ...and their total size. */
 528	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 529	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
 530		goto out;
 531
 532	elf_phdata = kmalloc(size, GFP_KERNEL);
 533	if (!elf_phdata)
 534		goto out;
 535
 536	/* Read in the program headers */
 537	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
 
 
 
 
 
 538
 
 
 539out:
 540	if (retval) {
 541		kfree(elf_phdata);
 542		elf_phdata = NULL;
 543	}
 544	return elf_phdata;
 545}
 546
 547#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 548
 549/**
 550 * struct arch_elf_state - arch-specific ELF loading state
 551 *
 552 * This structure is used to preserve architecture specific data during
 553 * the loading of an ELF file, throughout the checking of architecture
 554 * specific ELF headers & through to the point where the ELF load is
 555 * known to be proceeding (ie. SET_PERSONALITY).
 556 *
 557 * This implementation is a dummy for architectures which require no
 558 * specific state.
 559 */
 560struct arch_elf_state {
 561};
 562
 563#define INIT_ARCH_ELF_STATE {}
 564
 565/**
 566 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 567 * @ehdr:	The main ELF header
 568 * @phdr:	The program header to check
 569 * @elf:	The open ELF file
 570 * @is_interp:	True if the phdr is from the interpreter of the ELF being
 571 *		loaded, else false.
 572 * @state:	Architecture-specific state preserved throughout the process
 573 *		of loading the ELF.
 574 *
 575 * Inspects the program header phdr to validate its correctness and/or
 576 * suitability for the system. Called once per ELF program header in the
 577 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 578 * interpreter.
 579 *
 580 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 581 *         with that return code.
 582 */
 583static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 584				   struct elf_phdr *phdr,
 585				   struct file *elf, bool is_interp,
 586				   struct arch_elf_state *state)
 587{
 588	/* Dummy implementation, always proceed */
 589	return 0;
 590}
 591
 592/**
 593 * arch_check_elf() - check an ELF executable
 594 * @ehdr:	The main ELF header
 595 * @has_interp:	True if the ELF has an interpreter, else false.
 596 * @interp_ehdr: The interpreter's ELF header
 597 * @state:	Architecture-specific state preserved throughout the process
 598 *		of loading the ELF.
 599 *
 600 * Provides a final opportunity for architecture code to reject the loading
 601 * of the ELF & cause an exec syscall to return an error. This is called after
 602 * all program headers to be checked by arch_elf_pt_proc have been.
 603 *
 604 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 605 *         with that return code.
 606 */
 607static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 608				 struct elfhdr *interp_ehdr,
 609				 struct arch_elf_state *state)
 610{
 611	/* Dummy implementation, always proceed */
 612	return 0;
 613}
 614
 615#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 616
 617static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
 618			    bool has_interp, bool is_interp)
 619{
 620	int prot = 0;
 621
 622	if (p_flags & PF_R)
 623		prot |= PROT_READ;
 624	if (p_flags & PF_W)
 625		prot |= PROT_WRITE;
 626	if (p_flags & PF_X)
 627		prot |= PROT_EXEC;
 628
 629	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
 630}
 631
 632/* This is much more generalized than the library routine read function,
 633   so we keep this separate.  Technically the library read function
 634   is only provided so that we can read a.out libraries that have
 635   an ELF header */
 636
 637static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 638		struct file *interpreter,
 639		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
 640		struct arch_elf_state *arch_state)
 641{
 642	struct elf_phdr *eppnt;
 643	unsigned long load_addr = 0;
 644	int load_addr_set = 0;
 
 645	unsigned long error = ~0UL;
 646	unsigned long total_size;
 647	int i;
 648
 649	/* First of all, some simple consistency checks */
 650	if (interp_elf_ex->e_type != ET_EXEC &&
 651	    interp_elf_ex->e_type != ET_DYN)
 652		goto out;
 653	if (!elf_check_arch(interp_elf_ex) ||
 654	    elf_check_fdpic(interp_elf_ex))
 655		goto out;
 656	if (!interpreter->f_op->mmap)
 657		goto out;
 658
 659	total_size = total_mapping_size(interp_elf_phdata,
 660					interp_elf_ex->e_phnum);
 661	if (!total_size) {
 662		error = -EINVAL;
 663		goto out;
 664	}
 665
 666	eppnt = interp_elf_phdata;
 667	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 668		if (eppnt->p_type == PT_LOAD) {
 669			int elf_type = MAP_PRIVATE;
 670			int elf_prot = make_prot(eppnt->p_flags, arch_state,
 671						 true, true);
 672			unsigned long vaddr = 0;
 673			unsigned long k, map_addr;
 674
 
 
 
 
 
 
 675			vaddr = eppnt->p_vaddr;
 676			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 677				elf_type |= MAP_FIXED;
 678			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 679				load_addr = -vaddr;
 680
 681			map_addr = elf_load(interpreter, load_addr + vaddr,
 682					eppnt, elf_prot, elf_type, total_size);
 683			total_size = 0;
 
 
 684			error = map_addr;
 685			if (BAD_ADDR(map_addr))
 686				goto out;
 687
 688			if (!load_addr_set &&
 689			    interp_elf_ex->e_type == ET_DYN) {
 690				load_addr = map_addr - ELF_PAGESTART(vaddr);
 691				load_addr_set = 1;
 692			}
 693
 694			/*
 695			 * Check to see if the section's size will overflow the
 696			 * allowed task size. Note that p_filesz must always be
 697			 * <= p_memsize so it's only necessary to check p_memsz.
 698			 */
 699			k = load_addr + eppnt->p_vaddr;
 700			if (BAD_ADDR(k) ||
 701			    eppnt->p_filesz > eppnt->p_memsz ||
 702			    eppnt->p_memsz > TASK_SIZE ||
 703			    TASK_SIZE - eppnt->p_memsz < k) {
 704				error = -ENOMEM;
 705				goto out;
 706			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707		}
 708	}
 709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	error = load_addr;
 711out:
 712	return error;
 713}
 714
 715/*
 716 * These are the functions used to load ELF style executables and shared
 717 * libraries.  There is no binary dependent code anywhere else.
 718 */
 719
 720static int parse_elf_property(const char *data, size_t *off, size_t datasz,
 721			      struct arch_elf_state *arch,
 722			      bool have_prev_type, u32 *prev_type)
 723{
 724	size_t o, step;
 725	const struct gnu_property *pr;
 726	int ret;
 727
 728	if (*off == datasz)
 729		return -ENOENT;
 730
 731	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
 732		return -EIO;
 733	o = *off;
 734	datasz -= *off;
 735
 736	if (datasz < sizeof(*pr))
 737		return -ENOEXEC;
 738	pr = (const struct gnu_property *)(data + o);
 739	o += sizeof(*pr);
 740	datasz -= sizeof(*pr);
 741
 742	if (pr->pr_datasz > datasz)
 743		return -ENOEXEC;
 744
 745	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
 746	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
 747	if (step > datasz)
 748		return -ENOEXEC;
 749
 750	/* Properties are supposed to be unique and sorted on pr_type: */
 751	if (have_prev_type && pr->pr_type <= *prev_type)
 752		return -ENOEXEC;
 753	*prev_type = pr->pr_type;
 754
 755	ret = arch_parse_elf_property(pr->pr_type, data + o,
 756				      pr->pr_datasz, ELF_COMPAT, arch);
 757	if (ret)
 758		return ret;
 759
 760	*off = o + step;
 761	return 0;
 762}
 763
 764#define NOTE_DATA_SZ SZ_1K
 765#define GNU_PROPERTY_TYPE_0_NAME "GNU"
 766#define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
 767
 768static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
 769				struct arch_elf_state *arch)
 770{
 771	union {
 772		struct elf_note nhdr;
 773		char data[NOTE_DATA_SZ];
 774	} note;
 775	loff_t pos;
 776	ssize_t n;
 777	size_t off, datasz;
 778	int ret;
 779	bool have_prev_type;
 780	u32 prev_type;
 781
 782	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
 783		return 0;
 784
 785	/* load_elf_binary() shouldn't call us unless this is true... */
 786	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
 787		return -ENOEXEC;
 788
 789	/* If the properties are crazy large, that's too bad (for now): */
 790	if (phdr->p_filesz > sizeof(note))
 791		return -ENOEXEC;
 792
 793	pos = phdr->p_offset;
 794	n = kernel_read(f, &note, phdr->p_filesz, &pos);
 795
 796	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
 797	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
 798		return -EIO;
 799
 800	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
 801	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
 802	    strncmp(note.data + sizeof(note.nhdr),
 803		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
 804		return -ENOEXEC;
 805
 806	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
 807		       ELF_GNU_PROPERTY_ALIGN);
 808	if (off > n)
 809		return -ENOEXEC;
 810
 811	if (note.nhdr.n_descsz > n - off)
 812		return -ENOEXEC;
 813	datasz = off + note.nhdr.n_descsz;
 814
 815	have_prev_type = false;
 816	do {
 817		ret = parse_elf_property(note.data, &off, datasz, arch,
 818					 have_prev_type, &prev_type);
 819		have_prev_type = true;
 820	} while (!ret);
 821
 822	return ret == -ENOENT ? 0 : ret;
 823}
 824
 825static int load_elf_binary(struct linux_binprm *bprm)
 826{
 827	struct file *interpreter = NULL; /* to shut gcc up */
 828	unsigned long load_bias = 0, phdr_addr = 0;
 829	int first_pt_load = 1;
 
 830	unsigned long error;
 831	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 832	struct elf_phdr *elf_property_phdata = NULL;
 833	unsigned long elf_brk;
 834	int retval, i;
 835	unsigned long elf_entry;
 836	unsigned long e_entry;
 837	unsigned long interp_load_addr = 0;
 838	unsigned long start_code, end_code, start_data, end_data;
 839	unsigned long reloc_func_desc __maybe_unused = 0;
 840	int executable_stack = EXSTACK_DEFAULT;
 841	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
 842	struct elfhdr *interp_elf_ex = NULL;
 
 
 
 843	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 844	struct mm_struct *mm;
 845	struct pt_regs *regs;
 
 
 
 
 
 
 
 846
 847	retval = -ENOEXEC;
 848	/* First of all, some simple consistency checks */
 849	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
 850		goto out;
 851
 852	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
 853		goto out;
 854	if (!elf_check_arch(elf_ex))
 855		goto out;
 856	if (elf_check_fdpic(elf_ex))
 857		goto out;
 858	if (!bprm->file->f_op->mmap)
 859		goto out;
 860
 861	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
 862	if (!elf_phdata)
 863		goto out;
 864
 865	elf_ppnt = elf_phdata;
 866	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
 867		char *elf_interpreter;
 868
 869		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
 870			elf_property_phdata = elf_ppnt;
 871			continue;
 872		}
 873
 874		if (elf_ppnt->p_type != PT_INTERP)
 875			continue;
 
 
 
 
 
 
 
 
 876
 877		/*
 878		 * This is the program interpreter used for shared libraries -
 879		 * for now assume that this is an a.out format binary.
 880		 */
 881		retval = -ENOEXEC;
 882		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
 883			goto out_free_ph;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885		retval = -ENOMEM;
 886		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
 887		if (!elf_interpreter)
 888			goto out_free_ph;
 
 
 889
 890		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
 891				  elf_ppnt->p_offset);
 892		if (retval < 0)
 893			goto out_free_interp;
 894		/* make sure path is NULL terminated */
 895		retval = -ENOEXEC;
 896		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 897			goto out_free_interp;
 
 898
 899		interpreter = open_exec(elf_interpreter);
 900		kfree(elf_interpreter);
 901		retval = PTR_ERR(interpreter);
 902		if (IS_ERR(interpreter))
 903			goto out_free_ph;
 904
 905		/*
 906		 * If the binary is not readable then enforce mm->dumpable = 0
 907		 * regardless of the interpreter's permissions.
 908		 */
 909		would_dump(bprm, interpreter);
 910
 911		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
 912		if (!interp_elf_ex) {
 913			retval = -ENOMEM;
 914			goto out_free_file;
 915		}
 916
 917		/* Get the exec headers */
 918		retval = elf_read(interpreter, interp_elf_ex,
 919				  sizeof(*interp_elf_ex), 0);
 920		if (retval < 0)
 921			goto out_free_dentry;
 922
 923		break;
 924
 925out_free_interp:
 926		kfree(elf_interpreter);
 927		goto out_free_ph;
 928	}
 929
 930	elf_ppnt = elf_phdata;
 931	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
 932		switch (elf_ppnt->p_type) {
 933		case PT_GNU_STACK:
 934			if (elf_ppnt->p_flags & PF_X)
 935				executable_stack = EXSTACK_ENABLE_X;
 936			else
 937				executable_stack = EXSTACK_DISABLE_X;
 938			break;
 939
 940		case PT_LOPROC ... PT_HIPROC:
 941			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
 942						  bprm->file, false,
 943						  &arch_state);
 944			if (retval)
 945				goto out_free_dentry;
 946			break;
 947		}
 948
 949	/* Some simple consistency checks for the interpreter */
 950	if (interpreter) {
 951		retval = -ELIBBAD;
 952		/* Not an ELF interpreter */
 953		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
 954			goto out_free_dentry;
 955		/* Verify the interpreter has a valid arch */
 956		if (!elf_check_arch(interp_elf_ex) ||
 957		    elf_check_fdpic(interp_elf_ex))
 958			goto out_free_dentry;
 959
 960		/* Load the interpreter program headers */
 961		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
 962						   interpreter);
 963		if (!interp_elf_phdata)
 964			goto out_free_dentry;
 965
 966		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 967		elf_property_phdata = NULL;
 968		elf_ppnt = interp_elf_phdata;
 969		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
 970			switch (elf_ppnt->p_type) {
 971			case PT_GNU_PROPERTY:
 972				elf_property_phdata = elf_ppnt;
 973				break;
 974
 975			case PT_LOPROC ... PT_HIPROC:
 976				retval = arch_elf_pt_proc(interp_elf_ex,
 977							  elf_ppnt, interpreter,
 978							  true, &arch_state);
 979				if (retval)
 980					goto out_free_dentry;
 981				break;
 982			}
 983	}
 984
 985	retval = parse_elf_properties(interpreter ?: bprm->file,
 986				      elf_property_phdata, &arch_state);
 987	if (retval)
 988		goto out_free_dentry;
 989
 990	/*
 991	 * Allow arch code to reject the ELF at this point, whilst it's
 992	 * still possible to return an error to the code that invoked
 993	 * the exec syscall.
 994	 */
 995	retval = arch_check_elf(elf_ex,
 996				!!interpreter, interp_elf_ex,
 997				&arch_state);
 998	if (retval)
 999		goto out_free_dentry;
1000
1001	/* Flush all traces of the currently running executable */
1002	retval = begin_new_exec(bprm);
1003	if (retval)
1004		goto out_free_dentry;
1005
1006	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1007	   may depend on the personality.  */
1008	SET_PERSONALITY2(*elf_ex, &arch_state);
1009	if (elf_read_implies_exec(*elf_ex, executable_stack))
1010		current->personality |= READ_IMPLIES_EXEC;
1011
1012	const int snapshot_randomize_va_space = READ_ONCE(randomize_va_space);
1013	if (!(current->personality & ADDR_NO_RANDOMIZE) && snapshot_randomize_va_space)
1014		current->flags |= PF_RANDOMIZE;
1015
1016	setup_new_exec(bprm);
 
1017
1018	/* Do this so that we can load the interpreter, if need be.  We will
1019	   change some of these later */
1020	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1021				 executable_stack);
1022	if (retval < 0)
1023		goto out_free_dentry;
1024
1025	elf_brk = 0;
1026
1027	start_code = ~0UL;
1028	end_code = 0;
1029	start_data = 0;
1030	end_data = 0;
1031
1032	/* Now we do a little grungy work by mmapping the ELF image into
1033	   the correct location in memory. */
1034	for(i = 0, elf_ppnt = elf_phdata;
1035	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1036		int elf_prot, elf_flags;
1037		unsigned long k, vaddr;
1038		unsigned long total_size = 0;
1039		unsigned long alignment;
1040
1041		if (elf_ppnt->p_type != PT_LOAD)
1042			continue;
1043
1044		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1045				     !!interpreter, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046
1047		elf_flags = MAP_PRIVATE;
1048
1049		vaddr = elf_ppnt->p_vaddr;
1050		/*
1051		 * The first time through the loop, first_pt_load is true:
1052		 * layout will be calculated. Once set, use MAP_FIXED since
1053		 * we know we've already safely mapped the entire region with
1054		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1055		 */
1056		if (!first_pt_load) {
1057			elf_flags |= MAP_FIXED;
1058		} else if (elf_ex->e_type == ET_EXEC) {
1059			/*
1060			 * This logic is run once for the first LOAD Program
1061			 * Header for ET_EXEC binaries. No special handling
1062			 * is needed.
1063			 */
1064			elf_flags |= MAP_FIXED_NOREPLACE;
1065		} else if (elf_ex->e_type == ET_DYN) {
1066			/*
1067			 * This logic is run once for the first LOAD Program
1068			 * Header for ET_DYN binaries to calculate the
1069			 * randomization (load_bias) for all the LOAD
1070			 * Program Headers.
1071			 */
1072
1073			/*
1074			 * Calculate the entire size of the ELF mapping
1075			 * (total_size), used for the initial mapping,
1076			 * due to load_addr_set which is set to true later
1077			 * once the initial mapping is performed.
1078			 *
1079			 * Note that this is only sensible when the LOAD
1080			 * segments are contiguous (or overlapping). If
1081			 * used for LOADs that are far apart, this would
1082			 * cause the holes between LOADs to be mapped,
1083			 * running the risk of having the mapping fail,
1084			 * as it would be larger than the ELF file itself.
1085			 *
1086			 * As a result, only ET_DYN does this, since
1087			 * some ET_EXEC (e.g. ia64) may have large virtual
1088			 * memory holes between LOADs.
1089			 *
1090			 */
1091			total_size = total_mapping_size(elf_phdata,
1092							elf_ex->e_phnum);
1093			if (!total_size) {
1094				retval = -EINVAL;
1095				goto out_free_dentry;
1096			}
1097
1098			/* Calculate any requested alignment. */
1099			alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1100
1101			/*
1102			 * There are effectively two types of ET_DYN
1103			 * binaries: programs (i.e. PIE: ET_DYN with PT_INTERP)
1104			 * and loaders (ET_DYN without PT_INTERP, since they
1105			 * _are_ the ELF interpreter). The loaders must
1106			 * be loaded away from programs since the program
1107			 * may otherwise collide with the loader (especially
1108			 * for ET_EXEC which does not have a randomized
1109			 * position). For example to handle invocations of
1110			 * "./ld.so someprog" to test out a new version of
1111			 * the loader, the subsequent program that the
1112			 * loader loads must avoid the loader itself, so
1113			 * they cannot share the same load range. Sufficient
1114			 * room for the brk must be allocated with the
1115			 * loader as well, since brk must be available with
1116			 * the loader.
1117			 *
1118			 * Therefore, programs are loaded offset from
1119			 * ELF_ET_DYN_BASE and loaders are loaded into the
1120			 * independently randomized mmap region (0 load_bias
1121			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1122			 */
1123			if (interpreter) {
1124				/* On ET_DYN with PT_INTERP, we do the ASLR. */
1125				load_bias = ELF_ET_DYN_BASE;
1126				if (current->flags & PF_RANDOMIZE)
1127					load_bias += arch_mmap_rnd();
1128				/* Adjust alignment as requested. */
1129				if (alignment)
1130					load_bias &= ~(alignment - 1);
1131				elf_flags |= MAP_FIXED_NOREPLACE;
1132			} else {
1133				/*
1134				 * For ET_DYN without PT_INTERP, we rely on
1135				 * the architectures's (potentially ASLR) mmap
1136				 * base address (via a load_bias of 0).
1137				 *
1138				 * When a large alignment is requested, we
1139				 * must do the allocation at address "0" right
1140				 * now to discover where things will load so
1141				 * that we can adjust the resulting alignment.
1142				 * In this case (load_bias != 0), we can use
1143				 * MAP_FIXED_NOREPLACE to make sure the mapping
1144				 * doesn't collide with anything.
1145				 */
1146				if (alignment > ELF_MIN_ALIGN) {
1147					load_bias = elf_load(bprm->file, 0, elf_ppnt,
1148							     elf_prot, elf_flags, total_size);
1149					if (BAD_ADDR(load_bias)) {
1150						retval = IS_ERR_VALUE(load_bias) ?
1151							 PTR_ERR((void*)load_bias) : -EINVAL;
1152						goto out_free_dentry;
1153					}
1154					vm_munmap(load_bias, total_size);
1155					/* Adjust alignment as requested. */
1156					if (alignment)
1157						load_bias &= ~(alignment - 1);
1158					elf_flags |= MAP_FIXED_NOREPLACE;
1159				} else
1160					load_bias = 0;
1161			}
1162
1163			/*
1164			 * Since load_bias is used for all subsequent loading
1165			 * calculations, we must lower it by the first vaddr
1166			 * so that the remaining calculations based on the
1167			 * ELF vaddrs will be correctly offset. The result
1168			 * is then page aligned.
1169			 */
1170			load_bias = ELF_PAGESTART(load_bias - vaddr);
1171		}
1172
1173		error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt,
1174				elf_prot, elf_flags, total_size);
1175		if (BAD_ADDR(error)) {
1176			retval = IS_ERR_VALUE(error) ?
1177				PTR_ERR((void*)error) : -EINVAL;
1178			goto out_free_dentry;
1179		}
1180
1181		if (first_pt_load) {
1182			first_pt_load = 0;
1183			if (elf_ex->e_type == ET_DYN) {
 
1184				load_bias += error -
1185				             ELF_PAGESTART(load_bias + vaddr);
 
1186				reloc_func_desc = load_bias;
1187			}
1188		}
1189
1190		/*
1191		 * Figure out which segment in the file contains the Program
1192		 * Header table, and map to the associated memory address.
1193		 */
1194		if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1195		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1196			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1197				    elf_ppnt->p_vaddr;
1198		}
1199
1200		k = elf_ppnt->p_vaddr;
1201		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1202			start_code = k;
1203		if (start_data < k)
1204			start_data = k;
1205
1206		/*
1207		 * Check to see if the section's size will overflow the
1208		 * allowed task size. Note that p_filesz must always be
1209		 * <= p_memsz so it is only necessary to check p_memsz.
1210		 */
1211		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1212		    elf_ppnt->p_memsz > TASK_SIZE ||
1213		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1214			/* set_brk can never work. Avoid overflows. */
1215			retval = -EINVAL;
1216			goto out_free_dentry;
1217		}
1218
1219		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1220
 
 
1221		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1222			end_code = k;
1223		if (end_data < k)
1224			end_data = k;
1225		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1226		if (k > elf_brk)
1227			elf_brk = k;
1228	}
1229
1230	e_entry = elf_ex->e_entry + load_bias;
1231	phdr_addr += load_bias;
1232	elf_brk += load_bias;
1233	start_code += load_bias;
1234	end_code += load_bias;
1235	start_data += load_bias;
1236	end_data += load_bias;
1237
1238	current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239
1240	if (interpreter) {
1241		elf_entry = load_elf_interp(interp_elf_ex,
1242					    interpreter,
1243					    load_bias, interp_elf_phdata,
1244					    &arch_state);
1245		if (!IS_ERR_VALUE(elf_entry)) {
1246			/*
1247			 * load_elf_interp() returns relocation
1248			 * adjustment
1249			 */
1250			interp_load_addr = elf_entry;
1251			elf_entry += interp_elf_ex->e_entry;
1252		}
1253		if (BAD_ADDR(elf_entry)) {
1254			retval = IS_ERR_VALUE(elf_entry) ?
1255					(int)elf_entry : -EINVAL;
1256			goto out_free_dentry;
1257		}
1258		reloc_func_desc = interp_load_addr;
1259
1260		allow_write_access(interpreter);
1261		fput(interpreter);
1262
1263		kfree(interp_elf_ex);
1264		kfree(interp_elf_phdata);
1265	} else {
1266		elf_entry = e_entry;
1267		if (BAD_ADDR(elf_entry)) {
1268			retval = -EINVAL;
1269			goto out_free_dentry;
1270		}
1271	}
1272
 
1273	kfree(elf_phdata);
1274
1275	set_binfmt(&elf_format);
1276
1277#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1278	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1279	if (retval < 0)
1280		goto out;
1281#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1282
1283	retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1284				   e_entry, phdr_addr);
1285	if (retval < 0)
1286		goto out;
1287
1288	mm = current->mm;
1289	mm->end_code = end_code;
1290	mm->start_code = start_code;
1291	mm->start_data = start_data;
1292	mm->end_data = end_data;
1293	mm->start_stack = bprm->p;
1294
1295	if ((current->flags & PF_RANDOMIZE) && (snapshot_randomize_va_space > 1)) {
1296		/*
1297		 * For architectures with ELF randomization, when executing
1298		 * a loader directly (i.e. no interpreter listed in ELF
1299		 * headers), move the brk area out of the mmap region
1300		 * (since it grows up, and may collide early with the stack
1301		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1302		 */
1303		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1304		    elf_ex->e_type == ET_DYN && !interpreter) {
1305			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1306		} else {
1307			/* Otherwise leave a gap between .bss and brk. */
1308			mm->brk = mm->start_brk = mm->brk + PAGE_SIZE;
1309		}
1310
1311		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1312#ifdef compat_brk_randomized
1313		current->brk_randomized = 1;
1314#endif
1315	}
1316
1317	if (current->personality & MMAP_PAGE_ZERO) {
1318		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1319		   and some applications "depend" upon this behavior.
1320		   Since we do not have the power to recompile these, we
1321		   emulate the SVr4 behavior. Sigh. */
1322		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1323				MAP_FIXED | MAP_PRIVATE, 0);
1324
1325		retval = do_mseal(0, PAGE_SIZE, 0);
1326		if (retval)
1327			pr_warn_ratelimited("pid=%d, couldn't seal address 0, ret=%d.\n",
1328					    task_pid_nr(current), retval);
1329	}
1330
1331	regs = current_pt_regs();
1332#ifdef ELF_PLAT_INIT
1333	/*
1334	 * The ABI may specify that certain registers be set up in special
1335	 * ways (on i386 %edx is the address of a DT_FINI function, for
1336	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1337	 * that the e_entry field is the address of the function descriptor
1338	 * for the startup routine, rather than the address of the startup
1339	 * routine itself.  This macro performs whatever initialization to
1340	 * the regs structure is required as well as any relocations to the
1341	 * function descriptor entries when executing dynamically links apps.
1342	 */
1343	ELF_PLAT_INIT(regs, reloc_func_desc);
1344#endif
1345
1346	finalize_exec(bprm);
1347	START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1348	retval = 0;
1349out:
 
 
1350	return retval;
1351
1352	/* error cleanup */
1353out_free_dentry:
1354	kfree(interp_elf_ex);
1355	kfree(interp_elf_phdata);
1356out_free_file:
1357	allow_write_access(interpreter);
1358	if (interpreter)
1359		fput(interpreter);
 
 
1360out_free_ph:
1361	kfree(elf_phdata);
1362	goto out;
1363}
1364
1365#ifdef CONFIG_USELIB
1366/* This is really simpleminded and specialized - we are loading an
1367   a.out library that is given an ELF header. */
1368static int load_elf_library(struct file *file)
1369{
1370	struct elf_phdr *elf_phdata;
1371	struct elf_phdr *eppnt;
 
1372	int retval, error, i, j;
1373	struct elfhdr elf_ex;
1374
1375	error = -ENOEXEC;
1376	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1377	if (retval < 0)
1378		goto out;
1379
1380	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1381		goto out;
1382
1383	/* First of all, some simple consistency checks */
1384	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1385	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1386		goto out;
1387	if (elf_check_fdpic(&elf_ex))
1388		goto out;
1389
1390	/* Now read in all of the header information */
1391
1392	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1393	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1394
1395	error = -ENOMEM;
1396	elf_phdata = kmalloc(j, GFP_KERNEL);
1397	if (!elf_phdata)
1398		goto out;
1399
1400	eppnt = elf_phdata;
1401	error = -ENOEXEC;
1402	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1403	if (retval < 0)
1404		goto out_free_ph;
1405
1406	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1407		if ((eppnt + i)->p_type == PT_LOAD)
1408			j++;
1409	if (j != 1)
1410		goto out_free_ph;
1411
1412	while (eppnt->p_type != PT_LOAD)
1413		eppnt++;
1414
1415	/* Now use mmap to map the library into memory. */
1416	error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr),
1417			eppnt,
 
 
1418			PROT_READ | PROT_WRITE | PROT_EXEC,
1419			MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1420			0);
 
 
 
1421
1422	if (error != ELF_PAGESTART(eppnt->p_vaddr))
 
 
1423		goto out_free_ph;
 
1424
 
 
 
 
 
 
 
 
1425	error = 0;
1426
1427out_free_ph:
1428	kfree(elf_phdata);
1429out:
1430	return error;
1431}
1432#endif /* #ifdef CONFIG_USELIB */
1433
1434#ifdef CONFIG_ELF_CORE
1435/*
1436 * ELF core dumper
1437 *
1438 * Modelled on fs/exec.c:aout_core_dump()
1439 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1440 */
1441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442/* An ELF note in memory */
1443struct memelfnote
1444{
1445	const char *name;
1446	int type;
1447	unsigned int datasz;
1448	void *data;
1449};
1450
1451static int notesize(struct memelfnote *en)
1452{
1453	int sz;
1454
1455	sz = sizeof(struct elf_note);
1456	sz += roundup(strlen(en->name) + 1, 4);
1457	sz += roundup(en->datasz, 4);
1458
1459	return sz;
1460}
1461
1462static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1463{
1464	struct elf_note en;
1465	en.n_namesz = strlen(men->name) + 1;
1466	en.n_descsz = men->datasz;
1467	en.n_type = men->type;
1468
1469	return dump_emit(cprm, &en, sizeof(en)) &&
1470	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1471	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1472}
1473
1474static void fill_elf_header(struct elfhdr *elf, int segs,
1475			    u16 machine, u32 flags)
1476{
1477	memset(elf, 0, sizeof(*elf));
1478
1479	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1480	elf->e_ident[EI_CLASS] = ELF_CLASS;
1481	elf->e_ident[EI_DATA] = ELF_DATA;
1482	elf->e_ident[EI_VERSION] = EV_CURRENT;
1483	elf->e_ident[EI_OSABI] = ELF_OSABI;
1484
1485	elf->e_type = ET_CORE;
1486	elf->e_machine = machine;
1487	elf->e_version = EV_CURRENT;
1488	elf->e_phoff = sizeof(struct elfhdr);
1489	elf->e_flags = flags;
1490	elf->e_ehsize = sizeof(struct elfhdr);
1491	elf->e_phentsize = sizeof(struct elf_phdr);
1492	elf->e_phnum = segs;
 
 
1493}
1494
1495static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1496{
1497	phdr->p_type = PT_NOTE;
1498	phdr->p_offset = offset;
1499	phdr->p_vaddr = 0;
1500	phdr->p_paddr = 0;
1501	phdr->p_filesz = sz;
1502	phdr->p_memsz = 0;
1503	phdr->p_flags = 0;
1504	phdr->p_align = 4;
 
1505}
1506
1507static void fill_note(struct memelfnote *note, const char *name, int type,
1508		unsigned int sz, void *data)
1509{
1510	note->name = name;
1511	note->type = type;
1512	note->datasz = sz;
1513	note->data = data;
 
1514}
1515
1516/*
1517 * fill up all the fields in prstatus from the given task struct, except
1518 * registers which need to be filled up separately.
1519 */
1520static void fill_prstatus(struct elf_prstatus_common *prstatus,
1521		struct task_struct *p, long signr)
1522{
1523	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1524	prstatus->pr_sigpend = p->pending.signal.sig[0];
1525	prstatus->pr_sighold = p->blocked.sig[0];
1526	rcu_read_lock();
1527	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1528	rcu_read_unlock();
1529	prstatus->pr_pid = task_pid_vnr(p);
1530	prstatus->pr_pgrp = task_pgrp_vnr(p);
1531	prstatus->pr_sid = task_session_vnr(p);
1532	if (thread_group_leader(p)) {
1533		struct task_cputime cputime;
1534
1535		/*
1536		 * This is the record for the group leader.  It shows the
1537		 * group-wide total, not its individual thread total.
1538		 */
1539		thread_group_cputime(p, &cputime);
1540		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1541		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1542	} else {
1543		u64 utime, stime;
1544
1545		task_cputime(p, &utime, &stime);
1546		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1547		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1548	}
1549
1550	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1551	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1552}
1553
1554static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1555		       struct mm_struct *mm)
1556{
1557	const struct cred *cred;
1558	unsigned int i, len;
1559	unsigned int state;
1560
1561	/* first copy the parameters from user space */
1562	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1563
1564	len = mm->arg_end - mm->arg_start;
1565	if (len >= ELF_PRARGSZ)
1566		len = ELF_PRARGSZ-1;
1567	if (copy_from_user(&psinfo->pr_psargs,
1568		           (const char __user *)mm->arg_start, len))
1569		return -EFAULT;
1570	for(i = 0; i < len; i++)
1571		if (psinfo->pr_psargs[i] == 0)
1572			psinfo->pr_psargs[i] = ' ';
1573	psinfo->pr_psargs[len] = 0;
1574
1575	rcu_read_lock();
1576	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1577	rcu_read_unlock();
1578	psinfo->pr_pid = task_pid_vnr(p);
1579	psinfo->pr_pgrp = task_pgrp_vnr(p);
1580	psinfo->pr_sid = task_session_vnr(p);
1581
1582	state = READ_ONCE(p->__state);
1583	i = state ? ffz(~state) + 1 : 0;
1584	psinfo->pr_state = i;
1585	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1586	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1587	psinfo->pr_nice = task_nice(p);
1588	psinfo->pr_flag = p->flags;
1589	rcu_read_lock();
1590	cred = __task_cred(p);
1591	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1592	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1593	rcu_read_unlock();
1594	get_task_comm(psinfo->pr_fname, p);
1595
1596	return 0;
1597}
1598
1599static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1600{
1601	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1602	int i = 0;
1603	do
1604		i += 2;
1605	while (auxv[i - 2] != AT_NULL);
1606	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1607}
1608
1609static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1610		const kernel_siginfo_t *siginfo)
1611{
1612	copy_siginfo_to_external(csigdata, siginfo);
 
 
 
1613	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1614}
1615
 
1616/*
1617 * Format of NT_FILE note:
1618 *
1619 * long count     -- how many files are mapped
1620 * long page_size -- units for file_ofs
1621 * array of [COUNT] elements of
1622 *   long start
1623 *   long end
1624 *   long file_ofs
1625 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1626 */
1627static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1628{
 
1629	unsigned count, size, names_ofs, remaining, n;
1630	user_long_t *data;
1631	user_long_t *start_end_ofs;
1632	char *name_base, *name_curpos;
1633	int i;
1634
1635	/* *Estimated* file count and total data size needed */
1636	count = cprm->vma_count;
1637	if (count > UINT_MAX / 64)
1638		return -EINVAL;
1639	size = count * 64;
1640
1641	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1642 alloc:
1643	/* paranoia check */
1644	if (size >= core_file_note_size_limit) {
1645		pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n",
1646			      size);
1647		return -EINVAL;
1648	}
1649	size = round_up(size, PAGE_SIZE);
1650	/*
1651	 * "size" can be 0 here legitimately.
1652	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1653	 */
1654	data = kvmalloc(size, GFP_KERNEL);
1655	if (ZERO_OR_NULL_PTR(data))
1656		return -ENOMEM;
1657
1658	start_end_ofs = data + 2;
1659	name_base = name_curpos = ((char *)data) + names_ofs;
1660	remaining = size - names_ofs;
1661	count = 0;
1662	for (i = 0; i < cprm->vma_count; i++) {
1663		struct core_vma_metadata *m = &cprm->vma_meta[i];
1664		struct file *file;
1665		const char *filename;
1666
1667		file = m->file;
1668		if (!file)
1669			continue;
1670		filename = file_path(file, name_curpos, remaining);
1671		if (IS_ERR(filename)) {
1672			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1673				kvfree(data);
1674				size = size * 5 / 4;
1675				goto alloc;
1676			}
1677			continue;
1678		}
1679
1680		/* file_path() fills at the end, move name down */
1681		/* n = strlen(filename) + 1: */
1682		n = (name_curpos + remaining) - filename;
1683		remaining = filename - name_curpos;
1684		memmove(name_curpos, filename, n);
1685		name_curpos += n;
1686
1687		*start_end_ofs++ = m->start;
1688		*start_end_ofs++ = m->end;
1689		*start_end_ofs++ = m->pgoff;
1690		count++;
1691	}
1692
1693	/* Now we know exact count of files, can store it */
1694	data[0] = count;
1695	data[1] = PAGE_SIZE;
1696	/*
1697	 * Count usually is less than mm->map_count,
1698	 * we need to move filenames down.
1699	 */
1700	n = cprm->vma_count - count;
1701	if (n != 0) {
1702		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1703		memmove(name_base - shift_bytes, name_base,
1704			name_curpos - name_base);
1705		name_curpos -= shift_bytes;
1706	}
1707
1708	size = name_curpos - (char *)data;
1709	fill_note(note, "CORE", NT_FILE, size, data);
1710	return 0;
1711}
1712
 
1713#include <linux/regset.h>
1714
1715struct elf_thread_core_info {
1716	struct elf_thread_core_info *next;
1717	struct task_struct *task;
1718	struct elf_prstatus prstatus;
1719	struct memelfnote notes[];
1720};
1721
1722struct elf_note_info {
1723	struct elf_thread_core_info *thread;
1724	struct memelfnote psinfo;
1725	struct memelfnote signote;
1726	struct memelfnote auxv;
1727	struct memelfnote files;
1728	user_siginfo_t csigdata;
1729	size_t size;
1730	int thread_notes;
1731};
1732
1733#ifdef CORE_DUMP_USE_REGSET
1734/*
1735 * When a regset has a writeback hook, we call it on each thread before
1736 * dumping user memory.  On register window machines, this makes sure the
1737 * user memory backing the register data is up to date before we read it.
1738 */
1739static void do_thread_regset_writeback(struct task_struct *task,
1740				       const struct user_regset *regset)
1741{
1742	if (regset->writeback)
1743		regset->writeback(task, regset, 1);
1744}
1745
1746#ifndef PRSTATUS_SIZE
1747#define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1748#endif
1749
1750#ifndef SET_PR_FPVALID
1751#define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1752#endif
1753
1754static int fill_thread_core_info(struct elf_thread_core_info *t,
1755				 const struct user_regset_view *view,
1756				 long signr, struct elf_note_info *info)
1757{
1758	unsigned int note_iter, view_iter;
 
1759
1760	/*
1761	 * NT_PRSTATUS is the one special case, because the regset data
1762	 * goes into the pr_reg field inside the note contents, rather
1763	 * than being the whole note contents.  We fill the regset in here.
1764	 * We assume that regset 0 is NT_PRSTATUS.
1765	 */
1766	fill_prstatus(&t->prstatus.common, t->task, signr);
1767	regset_get(t->task, &view->regsets[0],
1768		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1769
1770	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1771		  PRSTATUS_SIZE, &t->prstatus);
1772	info->size += notesize(&t->notes[0]);
1773
1774	do_thread_regset_writeback(t->task, &view->regsets[0]);
1775
1776	/*
1777	 * Each other regset might generate a note too.  For each regset
1778	 * that has no core_note_type or is inactive, skip it.
 
1779	 */
1780	note_iter = 1;
1781	for (view_iter = 1; view_iter < view->n; ++view_iter) {
1782		const struct user_regset *regset = &view->regsets[view_iter];
1783		int note_type = regset->core_note_type;
1784		bool is_fpreg = note_type == NT_PRFPREG;
1785		void *data;
1786		int ret;
1787
1788		do_thread_regset_writeback(t->task, regset);
1789		if (!note_type) // not for coredumps
1790			continue;
1791		if (regset->active && regset->active(t->task, regset) <= 0)
1792			continue;
1793
1794		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1795		if (ret < 0)
1796			continue;
1797
1798		if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1799			break;
1800
1801		if (is_fpreg)
1802			SET_PR_FPVALID(&t->prstatus);
1803
1804		fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1805			  note_type, ret, data);
1806
1807		info->size += notesize(&t->notes[note_iter]);
1808		note_iter++;
 
 
 
 
 
1809	}
1810
1811	return 1;
1812}
1813#else
1814static int fill_thread_core_info(struct elf_thread_core_info *t,
1815				 const struct user_regset_view *view,
1816				 long signr, struct elf_note_info *info)
1817{
1818	struct task_struct *p = t->task;
1819	elf_fpregset_t *fpu;
1820
1821	fill_prstatus(&t->prstatus.common, p, signr);
1822	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1823
1824	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1825		  &(t->prstatus));
1826	info->size += notesize(&t->notes[0]);
1827
1828	fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1829	if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1830		kfree(fpu);
1831		return 1;
1832	}
1833
1834	t->prstatus.pr_fpvalid = 1;
1835	fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1836	info->size += notesize(&t->notes[1]);
1837
1838	return 1;
1839}
1840#endif
1841
1842static int fill_note_info(struct elfhdr *elf, int phdrs,
1843			  struct elf_note_info *info,
1844			  struct coredump_params *cprm)
1845{
1846	struct task_struct *dump_task = current;
1847	const struct user_regset_view *view;
1848	struct elf_thread_core_info *t;
1849	struct elf_prpsinfo *psinfo;
1850	struct core_thread *ct;
 
 
 
 
1851
1852	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1853	if (!psinfo)
 
1854		return 0;
 
 
1855	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1856
1857#ifdef CORE_DUMP_USE_REGSET
1858	view = task_user_regset_view(dump_task);
1859
1860	/*
1861	 * Figure out how many notes we're going to need for each thread.
1862	 */
1863	info->thread_notes = 0;
1864	for (int i = 0; i < view->n; ++i)
1865		if (view->regsets[i].core_note_type != 0)
1866			++info->thread_notes;
1867
1868	/*
1869	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1870	 * since it is our one special case.
1871	 */
1872	if (unlikely(info->thread_notes == 0) ||
1873	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1874		WARN_ON(1);
1875		return 0;
1876	}
1877
1878	/*
1879	 * Initialize the ELF file header.
1880	 */
1881	fill_elf_header(elf, phdrs,
1882			view->e_machine, view->e_flags);
1883#else
1884	view = NULL;
1885	info->thread_notes = 2;
1886	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1887#endif
1888
1889	/*
1890	 * Allocate a structure for each thread.
1891	 */
1892	info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1893				     notes[info->thread_notes]),
1894			    GFP_KERNEL);
1895	if (unlikely(!info->thread))
1896		return 0;
1897
1898	info->thread->task = dump_task;
1899	for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1900		t = kzalloc(offsetof(struct elf_thread_core_info,
1901				     notes[info->thread_notes]),
1902			    GFP_KERNEL);
1903		if (unlikely(!t))
1904			return 0;
1905
1906		t->task = ct->task;
1907		t->next = info->thread->next;
1908		info->thread->next = t;
 
 
 
 
 
 
 
 
 
1909	}
1910
1911	/*
1912	 * Now fill in each thread's information.
1913	 */
1914	for (t = info->thread; t != NULL; t = t->next)
1915		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1916			return 0;
1917
1918	/*
1919	 * Fill in the two process-wide notes.
1920	 */
1921	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1922	info->size += notesize(&info->psinfo);
1923
1924	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1925	info->size += notesize(&info->signote);
1926
1927	fill_auxv_note(&info->auxv, current->mm);
1928	info->size += notesize(&info->auxv);
1929
1930	if (fill_files_note(&info->files, cprm) == 0)
1931		info->size += notesize(&info->files);
1932
1933	return 1;
1934}
1935
 
 
 
 
 
1936/*
1937 * Write all the notes for each thread.  When writing the first thread, the
1938 * process-wide notes are interleaved after the first thread-specific note.
1939 */
1940static int write_note_info(struct elf_note_info *info,
1941			   struct coredump_params *cprm)
1942{
1943	bool first = true;
1944	struct elf_thread_core_info *t = info->thread;
1945
1946	do {
1947		int i;
1948
1949		if (!writenote(&t->notes[0], cprm))
1950			return 0;
1951
1952		if (first && !writenote(&info->psinfo, cprm))
1953			return 0;
1954		if (first && !writenote(&info->signote, cprm))
1955			return 0;
1956		if (first && !writenote(&info->auxv, cprm))
1957			return 0;
1958		if (first && info->files.data &&
1959				!writenote(&info->files, cprm))
1960			return 0;
1961
1962		for (i = 1; i < info->thread_notes; ++i)
1963			if (t->notes[i].data &&
1964			    !writenote(&t->notes[i], cprm))
1965				return 0;
1966
1967		first = false;
1968		t = t->next;
1969	} while (t);
1970
1971	return 1;
1972}
1973
1974static void free_note_info(struct elf_note_info *info)
1975{
1976	struct elf_thread_core_info *threads = info->thread;
1977	while (threads) {
1978		unsigned int i;
1979		struct elf_thread_core_info *t = threads;
1980		threads = t->next;
1981		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1982		for (i = 1; i < info->thread_notes; ++i)
1983			kvfree(t->notes[i].data);
1984		kfree(t);
1985	}
1986	kfree(info->psinfo.data);
1987	kvfree(info->files.data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988}
1989
1990static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1991			     elf_addr_t e_shoff, int segs)
1992{
1993	elf->e_shoff = e_shoff;
1994	elf->e_shentsize = sizeof(*shdr4extnum);
1995	elf->e_shnum = 1;
1996	elf->e_shstrndx = SHN_UNDEF;
1997
1998	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1999
2000	shdr4extnum->sh_type = SHT_NULL;
2001	shdr4extnum->sh_size = elf->e_shnum;
2002	shdr4extnum->sh_link = elf->e_shstrndx;
2003	shdr4extnum->sh_info = segs;
2004}
2005
2006/*
2007 * Actual dumper
2008 *
2009 * This is a two-pass process; first we find the offsets of the bits,
2010 * and then they are actually written out.  If we run out of core limit
2011 * we just truncate.
2012 */
2013static int elf_core_dump(struct coredump_params *cprm)
2014{
2015	int has_dumped = 0;
 
2016	int segs, i;
2017	struct elfhdr elf;
 
 
2018	loff_t offset = 0, dataoff;
2019	struct elf_note_info info = { };
2020	struct elf_phdr *phdr4note = NULL;
2021	struct elf_shdr *shdr4extnum = NULL;
2022	Elf_Half e_phnum;
2023	elf_addr_t e_shoff;
 
2024
2025	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026	 * The number of segs are recored into ELF header as 16bit value.
2027	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2028	 */
2029	segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
 
 
 
 
 
2030
2031	/* for notes section */
2032	segs++;
2033
2034	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2035	 * this, kernel supports extended numbering. Have a look at
2036	 * include/linux/elf.h for further information. */
2037	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2038
2039	/*
2040	 * Collect all the non-memory information about the process for the
2041	 * notes.  This also sets up the file header.
2042	 */
2043	if (!fill_note_info(&elf, e_phnum, &info, cprm))
2044		goto end_coredump;
2045
2046	has_dumped = 1;
2047
2048	offset += sizeof(elf);				/* ELF header */
 
 
 
2049	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2050
2051	/* Write notes phdr entry */
2052	{
2053		size_t sz = info.size;
2054
2055		/* For cell spufs and x86 xstate */
2056		sz += elf_coredump_extra_notes_size();
2057
2058		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2059		if (!phdr4note)
2060			goto end_coredump;
2061
2062		fill_elf_note_phdr(phdr4note, sz, offset);
2063		offset += sz;
2064	}
2065
2066	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2067
2068	offset += cprm->vma_data_size;
2069	offset += elf_core_extra_data_size(cprm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070	e_shoff = offset;
2071
2072	if (e_phnum == PN_XNUM) {
2073		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2074		if (!shdr4extnum)
2075			goto end_coredump;
2076		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2077	}
2078
2079	offset = dataoff;
2080
2081	if (!dump_emit(cprm, &elf, sizeof(elf)))
2082		goto end_coredump;
2083
2084	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2085		goto end_coredump;
2086
2087	/* Write program headers for segments dump */
2088	for (i = 0; i < cprm->vma_count; i++) {
2089		struct core_vma_metadata *meta = cprm->vma_meta + i;
2090		struct elf_phdr phdr;
2091
2092		phdr.p_type = PT_LOAD;
2093		phdr.p_offset = offset;
2094		phdr.p_vaddr = meta->start;
2095		phdr.p_paddr = 0;
2096		phdr.p_filesz = meta->dump_size;
2097		phdr.p_memsz = meta->end - meta->start;
2098		offset += phdr.p_filesz;
2099		phdr.p_flags = 0;
2100		if (meta->flags & VM_READ)
2101			phdr.p_flags |= PF_R;
2102		if (meta->flags & VM_WRITE)
2103			phdr.p_flags |= PF_W;
2104		if (meta->flags & VM_EXEC)
2105			phdr.p_flags |= PF_X;
2106		phdr.p_align = ELF_EXEC_PAGESIZE;
2107
2108		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2109			goto end_coredump;
2110	}
2111
2112	if (!elf_core_write_extra_phdrs(cprm, offset))
2113		goto end_coredump;
2114
2115	/* write out the notes section */
2116	if (!write_note_info(&info, cprm))
2117		goto end_coredump;
2118
2119	/* For cell spufs and x86 xstate */
2120	if (elf_coredump_extra_notes_write(cprm))
2121		goto end_coredump;
2122
2123	/* Align to page */
2124	dump_skip_to(cprm, dataoff);
 
2125
2126	for (i = 0; i < cprm->vma_count; i++) {
2127		struct core_vma_metadata *meta = cprm->vma_meta + i;
2128
2129		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2130			goto end_coredump;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131	}
 
2132
2133	if (!elf_core_write_extra_data(cprm))
2134		goto end_coredump;
2135
2136	if (e_phnum == PN_XNUM) {
2137		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2138			goto end_coredump;
2139	}
2140
2141end_coredump:
 
 
 
2142	free_note_info(&info);
2143	kfree(shdr4extnum);
 
2144	kfree(phdr4note);
 
 
2145	return has_dumped;
2146}
2147
2148#endif		/* CONFIG_ELF_CORE */
2149
2150static int __init init_elf_binfmt(void)
2151{
2152	register_binfmt(&elf_format);
2153	return 0;
2154}
2155
2156static void __exit exit_elf_binfmt(void)
2157{
2158	/* Remove the COFF and ELF loaders. */
2159	unregister_binfmt(&elf_format);
2160}
2161
2162core_initcall(init_elf_binfmt);
2163module_exit(exit_elf_binfmt);
2164
2165#ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2166#include "tests/binfmt_elf_kunit.c"
2167#endif