Loading...
1/*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22#include "trace.h"
23#include <trace/events/f2fs.h>
24
25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27static struct kmem_cache *nat_entry_slab;
28static struct kmem_cache *free_nid_slab;
29static struct kmem_cache *nat_entry_set_slab;
30
31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32{
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 sizeof(struct free_nid)) >> PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
64
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += (sbi->im[i].ino_num *
67 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 } else if (type == EXTENT_CACHE) {
70 mem_size = (atomic_read(&sbi->total_ext_tree) *
71 sizeof(struct extent_tree) +
72 atomic_read(&sbi->total_ext_node) *
73 sizeof(struct extent_node)) >> PAGE_SHIFT;
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else {
76 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 return true;
78 }
79 return res;
80}
81
82static void clear_node_page_dirty(struct page *page)
83{
84 struct address_space *mapping = page->mapping;
85 unsigned int long flags;
86
87 if (PageDirty(page)) {
88 spin_lock_irqsave(&mapping->tree_lock, flags);
89 radix_tree_tag_clear(&mapping->page_tree,
90 page_index(page),
91 PAGECACHE_TAG_DIRTY);
92 spin_unlock_irqrestore(&mapping->tree_lock, flags);
93
94 clear_page_dirty_for_io(page);
95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
96 }
97 ClearPageUptodate(page);
98}
99
100static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
101{
102 pgoff_t index = current_nat_addr(sbi, nid);
103 return get_meta_page(sbi, index);
104}
105
106static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107{
108 struct page *src_page;
109 struct page *dst_page;
110 pgoff_t src_off;
111 pgoff_t dst_off;
112 void *src_addr;
113 void *dst_addr;
114 struct f2fs_nm_info *nm_i = NM_I(sbi);
115
116 src_off = current_nat_addr(sbi, nid);
117 dst_off = next_nat_addr(sbi, src_off);
118
119 /* get current nat block page with lock */
120 src_page = get_meta_page(sbi, src_off);
121 dst_page = grab_meta_page(sbi, dst_off);
122 f2fs_bug_on(sbi, PageDirty(src_page));
123
124 src_addr = page_address(src_page);
125 dst_addr = page_address(dst_page);
126 memcpy(dst_addr, src_addr, PAGE_SIZE);
127 set_page_dirty(dst_page);
128 f2fs_put_page(src_page, 1);
129
130 set_to_next_nat(nm_i, nid);
131
132 return dst_page;
133}
134
135static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
136{
137 return radix_tree_lookup(&nm_i->nat_root, n);
138}
139
140static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 nid_t start, unsigned int nr, struct nat_entry **ep)
142{
143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144}
145
146static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
147{
148 list_del(&e->list);
149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 nm_i->nat_cnt--;
151 kmem_cache_free(nat_entry_slab, e);
152}
153
154static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 struct nat_entry *ne)
156{
157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 struct nat_entry_set *head;
159
160 if (get_nat_flag(ne, IS_DIRTY))
161 return;
162
163 head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 if (!head) {
165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
166
167 INIT_LIST_HEAD(&head->entry_list);
168 INIT_LIST_HEAD(&head->set_list);
169 head->set = set;
170 head->entry_cnt = 0;
171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172 }
173 list_move_tail(&ne->list, &head->entry_list);
174 nm_i->dirty_nat_cnt++;
175 head->entry_cnt++;
176 set_nat_flag(ne, IS_DIRTY, true);
177}
178
179static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 struct nat_entry *ne)
181{
182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 struct nat_entry_set *head;
184
185 head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 if (head) {
187 list_move_tail(&ne->list, &nm_i->nat_entries);
188 set_nat_flag(ne, IS_DIRTY, false);
189 head->entry_cnt--;
190 nm_i->dirty_nat_cnt--;
191 }
192}
193
194static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
196{
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
199}
200
201int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202{
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
206
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
213 }
214 up_read(&nm_i->nat_tree_lock);
215 return need;
216}
217
218bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219{
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
223
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
230}
231
232bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233{
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
237
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
246}
247
248static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
249{
250 struct nat_entry *new;
251
252 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
253 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
254 memset(new, 0, sizeof(struct nat_entry));
255 nat_set_nid(new, nid);
256 nat_reset_flag(new);
257 list_add_tail(&new->list, &nm_i->nat_entries);
258 nm_i->nat_cnt++;
259 return new;
260}
261
262static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
263 struct f2fs_nat_entry *ne)
264{
265 struct f2fs_nm_info *nm_i = NM_I(sbi);
266 struct nat_entry *e;
267
268 e = __lookup_nat_cache(nm_i, nid);
269 if (!e) {
270 e = grab_nat_entry(nm_i, nid);
271 node_info_from_raw_nat(&e->ni, ne);
272 } else {
273 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
274 nat_get_blkaddr(e) !=
275 le32_to_cpu(ne->block_addr) ||
276 nat_get_version(e) != ne->version);
277 }
278}
279
280static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
281 block_t new_blkaddr, bool fsync_done)
282{
283 struct f2fs_nm_info *nm_i = NM_I(sbi);
284 struct nat_entry *e;
285
286 down_write(&nm_i->nat_tree_lock);
287 e = __lookup_nat_cache(nm_i, ni->nid);
288 if (!e) {
289 e = grab_nat_entry(nm_i, ni->nid);
290 copy_node_info(&e->ni, ni);
291 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
292 } else if (new_blkaddr == NEW_ADDR) {
293 /*
294 * when nid is reallocated,
295 * previous nat entry can be remained in nat cache.
296 * So, reinitialize it with new information.
297 */
298 copy_node_info(&e->ni, ni);
299 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
300 }
301
302 /* sanity check */
303 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
304 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
305 new_blkaddr == NULL_ADDR);
306 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
307 new_blkaddr == NEW_ADDR);
308 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
309 nat_get_blkaddr(e) != NULL_ADDR &&
310 new_blkaddr == NEW_ADDR);
311
312 /* increment version no as node is removed */
313 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
314 unsigned char version = nat_get_version(e);
315 nat_set_version(e, inc_node_version(version));
316
317 /* in order to reuse the nid */
318 if (nm_i->next_scan_nid > ni->nid)
319 nm_i->next_scan_nid = ni->nid;
320 }
321
322 /* change address */
323 nat_set_blkaddr(e, new_blkaddr);
324 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
325 set_nat_flag(e, IS_CHECKPOINTED, false);
326 __set_nat_cache_dirty(nm_i, e);
327
328 /* update fsync_mark if its inode nat entry is still alive */
329 if (ni->nid != ni->ino)
330 e = __lookup_nat_cache(nm_i, ni->ino);
331 if (e) {
332 if (fsync_done && ni->nid == ni->ino)
333 set_nat_flag(e, HAS_FSYNCED_INODE, true);
334 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
335 }
336 up_write(&nm_i->nat_tree_lock);
337}
338
339int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
340{
341 struct f2fs_nm_info *nm_i = NM_I(sbi);
342 int nr = nr_shrink;
343
344 if (!down_write_trylock(&nm_i->nat_tree_lock))
345 return 0;
346
347 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
348 struct nat_entry *ne;
349 ne = list_first_entry(&nm_i->nat_entries,
350 struct nat_entry, list);
351 __del_from_nat_cache(nm_i, ne);
352 nr_shrink--;
353 }
354 up_write(&nm_i->nat_tree_lock);
355 return nr - nr_shrink;
356}
357
358/*
359 * This function always returns success
360 */
361void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
362{
363 struct f2fs_nm_info *nm_i = NM_I(sbi);
364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
365 struct f2fs_journal *journal = curseg->journal;
366 nid_t start_nid = START_NID(nid);
367 struct f2fs_nat_block *nat_blk;
368 struct page *page = NULL;
369 struct f2fs_nat_entry ne;
370 struct nat_entry *e;
371 int i;
372
373 ni->nid = nid;
374
375 /* Check nat cache */
376 down_read(&nm_i->nat_tree_lock);
377 e = __lookup_nat_cache(nm_i, nid);
378 if (e) {
379 ni->ino = nat_get_ino(e);
380 ni->blk_addr = nat_get_blkaddr(e);
381 ni->version = nat_get_version(e);
382 up_read(&nm_i->nat_tree_lock);
383 return;
384 }
385
386 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
387
388 /* Check current segment summary */
389 down_read(&curseg->journal_rwsem);
390 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
391 if (i >= 0) {
392 ne = nat_in_journal(journal, i);
393 node_info_from_raw_nat(ni, &ne);
394 }
395 up_read(&curseg->journal_rwsem);
396 if (i >= 0)
397 goto cache;
398
399 /* Fill node_info from nat page */
400 page = get_current_nat_page(sbi, start_nid);
401 nat_blk = (struct f2fs_nat_block *)page_address(page);
402 ne = nat_blk->entries[nid - start_nid];
403 node_info_from_raw_nat(ni, &ne);
404 f2fs_put_page(page, 1);
405cache:
406 up_read(&nm_i->nat_tree_lock);
407 /* cache nat entry */
408 down_write(&nm_i->nat_tree_lock);
409 cache_nat_entry(sbi, nid, &ne);
410 up_write(&nm_i->nat_tree_lock);
411}
412
413/*
414 * readahead MAX_RA_NODE number of node pages.
415 */
416static void ra_node_pages(struct page *parent, int start, int n)
417{
418 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
419 struct blk_plug plug;
420 int i, end;
421 nid_t nid;
422
423 blk_start_plug(&plug);
424
425 /* Then, try readahead for siblings of the desired node */
426 end = start + n;
427 end = min(end, NIDS_PER_BLOCK);
428 for (i = start; i < end; i++) {
429 nid = get_nid(parent, i, false);
430 ra_node_page(sbi, nid);
431 }
432
433 blk_finish_plug(&plug);
434}
435
436pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
437{
438 const long direct_index = ADDRS_PER_INODE(dn->inode);
439 const long direct_blks = ADDRS_PER_BLOCK;
440 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
441 unsigned int skipped_unit = ADDRS_PER_BLOCK;
442 int cur_level = dn->cur_level;
443 int max_level = dn->max_level;
444 pgoff_t base = 0;
445
446 if (!dn->max_level)
447 return pgofs + 1;
448
449 while (max_level-- > cur_level)
450 skipped_unit *= NIDS_PER_BLOCK;
451
452 switch (dn->max_level) {
453 case 3:
454 base += 2 * indirect_blks;
455 case 2:
456 base += 2 * direct_blks;
457 case 1:
458 base += direct_index;
459 break;
460 default:
461 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
462 }
463
464 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
465}
466
467/*
468 * The maximum depth is four.
469 * Offset[0] will have raw inode offset.
470 */
471static int get_node_path(struct inode *inode, long block,
472 int offset[4], unsigned int noffset[4])
473{
474 const long direct_index = ADDRS_PER_INODE(inode);
475 const long direct_blks = ADDRS_PER_BLOCK;
476 const long dptrs_per_blk = NIDS_PER_BLOCK;
477 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
478 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
479 int n = 0;
480 int level = 0;
481
482 noffset[0] = 0;
483
484 if (block < direct_index) {
485 offset[n] = block;
486 goto got;
487 }
488 block -= direct_index;
489 if (block < direct_blks) {
490 offset[n++] = NODE_DIR1_BLOCK;
491 noffset[n] = 1;
492 offset[n] = block;
493 level = 1;
494 goto got;
495 }
496 block -= direct_blks;
497 if (block < direct_blks) {
498 offset[n++] = NODE_DIR2_BLOCK;
499 noffset[n] = 2;
500 offset[n] = block;
501 level = 1;
502 goto got;
503 }
504 block -= direct_blks;
505 if (block < indirect_blks) {
506 offset[n++] = NODE_IND1_BLOCK;
507 noffset[n] = 3;
508 offset[n++] = block / direct_blks;
509 noffset[n] = 4 + offset[n - 1];
510 offset[n] = block % direct_blks;
511 level = 2;
512 goto got;
513 }
514 block -= indirect_blks;
515 if (block < indirect_blks) {
516 offset[n++] = NODE_IND2_BLOCK;
517 noffset[n] = 4 + dptrs_per_blk;
518 offset[n++] = block / direct_blks;
519 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
520 offset[n] = block % direct_blks;
521 level = 2;
522 goto got;
523 }
524 block -= indirect_blks;
525 if (block < dindirect_blks) {
526 offset[n++] = NODE_DIND_BLOCK;
527 noffset[n] = 5 + (dptrs_per_blk * 2);
528 offset[n++] = block / indirect_blks;
529 noffset[n] = 6 + (dptrs_per_blk * 2) +
530 offset[n - 1] * (dptrs_per_blk + 1);
531 offset[n++] = (block / direct_blks) % dptrs_per_blk;
532 noffset[n] = 7 + (dptrs_per_blk * 2) +
533 offset[n - 2] * (dptrs_per_blk + 1) +
534 offset[n - 1];
535 offset[n] = block % direct_blks;
536 level = 3;
537 goto got;
538 } else {
539 BUG();
540 }
541got:
542 return level;
543}
544
545/*
546 * Caller should call f2fs_put_dnode(dn).
547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
549 * In the case of RDONLY_NODE, we don't need to care about mutex.
550 */
551int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
552{
553 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
554 struct page *npage[4];
555 struct page *parent = NULL;
556 int offset[4];
557 unsigned int noffset[4];
558 nid_t nids[4];
559 int level, i = 0;
560 int err = 0;
561
562 level = get_node_path(dn->inode, index, offset, noffset);
563
564 nids[0] = dn->inode->i_ino;
565 npage[0] = dn->inode_page;
566
567 if (!npage[0]) {
568 npage[0] = get_node_page(sbi, nids[0]);
569 if (IS_ERR(npage[0]))
570 return PTR_ERR(npage[0]);
571 }
572
573 /* if inline_data is set, should not report any block indices */
574 if (f2fs_has_inline_data(dn->inode) && index) {
575 err = -ENOENT;
576 f2fs_put_page(npage[0], 1);
577 goto release_out;
578 }
579
580 parent = npage[0];
581 if (level != 0)
582 nids[1] = get_nid(parent, offset[0], true);
583 dn->inode_page = npage[0];
584 dn->inode_page_locked = true;
585
586 /* get indirect or direct nodes */
587 for (i = 1; i <= level; i++) {
588 bool done = false;
589
590 if (!nids[i] && mode == ALLOC_NODE) {
591 /* alloc new node */
592 if (!alloc_nid(sbi, &(nids[i]))) {
593 err = -ENOSPC;
594 goto release_pages;
595 }
596
597 dn->nid = nids[i];
598 npage[i] = new_node_page(dn, noffset[i], NULL);
599 if (IS_ERR(npage[i])) {
600 alloc_nid_failed(sbi, nids[i]);
601 err = PTR_ERR(npage[i]);
602 goto release_pages;
603 }
604
605 set_nid(parent, offset[i - 1], nids[i], i == 1);
606 alloc_nid_done(sbi, nids[i]);
607 done = true;
608 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
609 npage[i] = get_node_page_ra(parent, offset[i - 1]);
610 if (IS_ERR(npage[i])) {
611 err = PTR_ERR(npage[i]);
612 goto release_pages;
613 }
614 done = true;
615 }
616 if (i == 1) {
617 dn->inode_page_locked = false;
618 unlock_page(parent);
619 } else {
620 f2fs_put_page(parent, 1);
621 }
622
623 if (!done) {
624 npage[i] = get_node_page(sbi, nids[i]);
625 if (IS_ERR(npage[i])) {
626 err = PTR_ERR(npage[i]);
627 f2fs_put_page(npage[0], 0);
628 goto release_out;
629 }
630 }
631 if (i < level) {
632 parent = npage[i];
633 nids[i + 1] = get_nid(parent, offset[i], false);
634 }
635 }
636 dn->nid = nids[level];
637 dn->ofs_in_node = offset[level];
638 dn->node_page = npage[level];
639 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
640 return 0;
641
642release_pages:
643 f2fs_put_page(parent, 1);
644 if (i > 1)
645 f2fs_put_page(npage[0], 0);
646release_out:
647 dn->inode_page = NULL;
648 dn->node_page = NULL;
649 if (err == -ENOENT) {
650 dn->cur_level = i;
651 dn->max_level = level;
652 dn->ofs_in_node = offset[level];
653 }
654 return err;
655}
656
657static void truncate_node(struct dnode_of_data *dn)
658{
659 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
660 struct node_info ni;
661
662 get_node_info(sbi, dn->nid, &ni);
663 if (dn->inode->i_blocks == 0) {
664 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
665 goto invalidate;
666 }
667 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
668
669 /* Deallocate node address */
670 invalidate_blocks(sbi, ni.blk_addr);
671 dec_valid_node_count(sbi, dn->inode);
672 set_node_addr(sbi, &ni, NULL_ADDR, false);
673
674 if (dn->nid == dn->inode->i_ino) {
675 remove_orphan_inode(sbi, dn->nid);
676 dec_valid_inode_count(sbi);
677 f2fs_inode_synced(dn->inode);
678 }
679invalidate:
680 clear_node_page_dirty(dn->node_page);
681 set_sbi_flag(sbi, SBI_IS_DIRTY);
682
683 f2fs_put_page(dn->node_page, 1);
684
685 invalidate_mapping_pages(NODE_MAPPING(sbi),
686 dn->node_page->index, dn->node_page->index);
687
688 dn->node_page = NULL;
689 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
690}
691
692static int truncate_dnode(struct dnode_of_data *dn)
693{
694 struct page *page;
695
696 if (dn->nid == 0)
697 return 1;
698
699 /* get direct node */
700 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
701 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
702 return 1;
703 else if (IS_ERR(page))
704 return PTR_ERR(page);
705
706 /* Make dnode_of_data for parameter */
707 dn->node_page = page;
708 dn->ofs_in_node = 0;
709 truncate_data_blocks(dn);
710 truncate_node(dn);
711 return 1;
712}
713
714static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
715 int ofs, int depth)
716{
717 struct dnode_of_data rdn = *dn;
718 struct page *page;
719 struct f2fs_node *rn;
720 nid_t child_nid;
721 unsigned int child_nofs;
722 int freed = 0;
723 int i, ret;
724
725 if (dn->nid == 0)
726 return NIDS_PER_BLOCK + 1;
727
728 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
729
730 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
731 if (IS_ERR(page)) {
732 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
733 return PTR_ERR(page);
734 }
735
736 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
737
738 rn = F2FS_NODE(page);
739 if (depth < 3) {
740 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
741 child_nid = le32_to_cpu(rn->in.nid[i]);
742 if (child_nid == 0)
743 continue;
744 rdn.nid = child_nid;
745 ret = truncate_dnode(&rdn);
746 if (ret < 0)
747 goto out_err;
748 if (set_nid(page, i, 0, false))
749 dn->node_changed = true;
750 }
751 } else {
752 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
753 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
754 child_nid = le32_to_cpu(rn->in.nid[i]);
755 if (child_nid == 0) {
756 child_nofs += NIDS_PER_BLOCK + 1;
757 continue;
758 }
759 rdn.nid = child_nid;
760 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
761 if (ret == (NIDS_PER_BLOCK + 1)) {
762 if (set_nid(page, i, 0, false))
763 dn->node_changed = true;
764 child_nofs += ret;
765 } else if (ret < 0 && ret != -ENOENT) {
766 goto out_err;
767 }
768 }
769 freed = child_nofs;
770 }
771
772 if (!ofs) {
773 /* remove current indirect node */
774 dn->node_page = page;
775 truncate_node(dn);
776 freed++;
777 } else {
778 f2fs_put_page(page, 1);
779 }
780 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
781 return freed;
782
783out_err:
784 f2fs_put_page(page, 1);
785 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
786 return ret;
787}
788
789static int truncate_partial_nodes(struct dnode_of_data *dn,
790 struct f2fs_inode *ri, int *offset, int depth)
791{
792 struct page *pages[2];
793 nid_t nid[3];
794 nid_t child_nid;
795 int err = 0;
796 int i;
797 int idx = depth - 2;
798
799 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
800 if (!nid[0])
801 return 0;
802
803 /* get indirect nodes in the path */
804 for (i = 0; i < idx + 1; i++) {
805 /* reference count'll be increased */
806 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
807 if (IS_ERR(pages[i])) {
808 err = PTR_ERR(pages[i]);
809 idx = i - 1;
810 goto fail;
811 }
812 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
813 }
814
815 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
816
817 /* free direct nodes linked to a partial indirect node */
818 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
819 child_nid = get_nid(pages[idx], i, false);
820 if (!child_nid)
821 continue;
822 dn->nid = child_nid;
823 err = truncate_dnode(dn);
824 if (err < 0)
825 goto fail;
826 if (set_nid(pages[idx], i, 0, false))
827 dn->node_changed = true;
828 }
829
830 if (offset[idx + 1] == 0) {
831 dn->node_page = pages[idx];
832 dn->nid = nid[idx];
833 truncate_node(dn);
834 } else {
835 f2fs_put_page(pages[idx], 1);
836 }
837 offset[idx]++;
838 offset[idx + 1] = 0;
839 idx--;
840fail:
841 for (i = idx; i >= 0; i--)
842 f2fs_put_page(pages[i], 1);
843
844 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
845
846 return err;
847}
848
849/*
850 * All the block addresses of data and nodes should be nullified.
851 */
852int truncate_inode_blocks(struct inode *inode, pgoff_t from)
853{
854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 int err = 0, cont = 1;
856 int level, offset[4], noffset[4];
857 unsigned int nofs = 0;
858 struct f2fs_inode *ri;
859 struct dnode_of_data dn;
860 struct page *page;
861
862 trace_f2fs_truncate_inode_blocks_enter(inode, from);
863
864 level = get_node_path(inode, from, offset, noffset);
865
866 page = get_node_page(sbi, inode->i_ino);
867 if (IS_ERR(page)) {
868 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
869 return PTR_ERR(page);
870 }
871
872 set_new_dnode(&dn, inode, page, NULL, 0);
873 unlock_page(page);
874
875 ri = F2FS_INODE(page);
876 switch (level) {
877 case 0:
878 case 1:
879 nofs = noffset[1];
880 break;
881 case 2:
882 nofs = noffset[1];
883 if (!offset[level - 1])
884 goto skip_partial;
885 err = truncate_partial_nodes(&dn, ri, offset, level);
886 if (err < 0 && err != -ENOENT)
887 goto fail;
888 nofs += 1 + NIDS_PER_BLOCK;
889 break;
890 case 3:
891 nofs = 5 + 2 * NIDS_PER_BLOCK;
892 if (!offset[level - 1])
893 goto skip_partial;
894 err = truncate_partial_nodes(&dn, ri, offset, level);
895 if (err < 0 && err != -ENOENT)
896 goto fail;
897 break;
898 default:
899 BUG();
900 }
901
902skip_partial:
903 while (cont) {
904 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
905 switch (offset[0]) {
906 case NODE_DIR1_BLOCK:
907 case NODE_DIR2_BLOCK:
908 err = truncate_dnode(&dn);
909 break;
910
911 case NODE_IND1_BLOCK:
912 case NODE_IND2_BLOCK:
913 err = truncate_nodes(&dn, nofs, offset[1], 2);
914 break;
915
916 case NODE_DIND_BLOCK:
917 err = truncate_nodes(&dn, nofs, offset[1], 3);
918 cont = 0;
919 break;
920
921 default:
922 BUG();
923 }
924 if (err < 0 && err != -ENOENT)
925 goto fail;
926 if (offset[1] == 0 &&
927 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
928 lock_page(page);
929 BUG_ON(page->mapping != NODE_MAPPING(sbi));
930 f2fs_wait_on_page_writeback(page, NODE, true);
931 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
932 set_page_dirty(page);
933 unlock_page(page);
934 }
935 offset[1] = 0;
936 offset[0]++;
937 nofs += err;
938 }
939fail:
940 f2fs_put_page(page, 0);
941 trace_f2fs_truncate_inode_blocks_exit(inode, err);
942 return err > 0 ? 0 : err;
943}
944
945int truncate_xattr_node(struct inode *inode, struct page *page)
946{
947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948 nid_t nid = F2FS_I(inode)->i_xattr_nid;
949 struct dnode_of_data dn;
950 struct page *npage;
951
952 if (!nid)
953 return 0;
954
955 npage = get_node_page(sbi, nid);
956 if (IS_ERR(npage))
957 return PTR_ERR(npage);
958
959 f2fs_i_xnid_write(inode, 0);
960
961 /* need to do checkpoint during fsync */
962 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
963
964 set_new_dnode(&dn, inode, page, npage, nid);
965
966 if (page)
967 dn.inode_page_locked = true;
968 truncate_node(&dn);
969 return 0;
970}
971
972/*
973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
974 * f2fs_unlock_op().
975 */
976int remove_inode_page(struct inode *inode)
977{
978 struct dnode_of_data dn;
979 int err;
980
981 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
982 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
983 if (err)
984 return err;
985
986 err = truncate_xattr_node(inode, dn.inode_page);
987 if (err) {
988 f2fs_put_dnode(&dn);
989 return err;
990 }
991
992 /* remove potential inline_data blocks */
993 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
994 S_ISLNK(inode->i_mode))
995 truncate_data_blocks_range(&dn, 1);
996
997 /* 0 is possible, after f2fs_new_inode() has failed */
998 f2fs_bug_on(F2FS_I_SB(inode),
999 inode->i_blocks != 0 && inode->i_blocks != 1);
1000
1001 /* will put inode & node pages */
1002 truncate_node(&dn);
1003 return 0;
1004}
1005
1006struct page *new_inode_page(struct inode *inode)
1007{
1008 struct dnode_of_data dn;
1009
1010 /* allocate inode page for new inode */
1011 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1012
1013 /* caller should f2fs_put_page(page, 1); */
1014 return new_node_page(&dn, 0, NULL);
1015}
1016
1017struct page *new_node_page(struct dnode_of_data *dn,
1018 unsigned int ofs, struct page *ipage)
1019{
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021 struct node_info old_ni, new_ni;
1022 struct page *page;
1023 int err;
1024
1025 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026 return ERR_PTR(-EPERM);
1027
1028 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029 if (!page)
1030 return ERR_PTR(-ENOMEM);
1031
1032 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033 err = -ENOSPC;
1034 goto fail;
1035 }
1036
1037 get_node_info(sbi, dn->nid, &old_ni);
1038
1039 /* Reinitialize old_ni with new node page */
1040 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041 new_ni = old_ni;
1042 new_ni.ino = dn->inode->i_ino;
1043 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1044
1045 f2fs_wait_on_page_writeback(page, NODE, true);
1046 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047 set_cold_node(dn->inode, page);
1048 if (!PageUptodate(page))
1049 SetPageUptodate(page);
1050 if (set_page_dirty(page))
1051 dn->node_changed = true;
1052
1053 if (f2fs_has_xattr_block(ofs))
1054 f2fs_i_xnid_write(dn->inode, dn->nid);
1055
1056 if (ofs == 0)
1057 inc_valid_inode_count(sbi);
1058 return page;
1059
1060fail:
1061 clear_node_page_dirty(page);
1062 f2fs_put_page(page, 1);
1063 return ERR_PTR(err);
1064}
1065
1066/*
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070 */
1071static int read_node_page(struct page *page, int op_flags)
1072{
1073 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074 struct node_info ni;
1075 struct f2fs_io_info fio = {
1076 .sbi = sbi,
1077 .type = NODE,
1078 .op = REQ_OP_READ,
1079 .op_flags = op_flags,
1080 .page = page,
1081 .encrypted_page = NULL,
1082 };
1083
1084 if (PageUptodate(page))
1085 return LOCKED_PAGE;
1086
1087 get_node_info(sbi, page->index, &ni);
1088
1089 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090 ClearPageUptodate(page);
1091 return -ENOENT;
1092 }
1093
1094 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095 return f2fs_submit_page_bio(&fio);
1096}
1097
1098/*
1099 * Readahead a node page
1100 */
1101void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1102{
1103 struct page *apage;
1104 int err;
1105
1106 if (!nid)
1107 return;
1108 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1109
1110 rcu_read_lock();
1111 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112 rcu_read_unlock();
1113 if (apage)
1114 return;
1115
1116 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117 if (!apage)
1118 return;
1119
1120 err = read_node_page(apage, REQ_RAHEAD);
1121 f2fs_put_page(apage, err ? 1 : 0);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125 struct page *parent, int start)
1126{
1127 struct page *page;
1128 int err;
1129
1130 if (!nid)
1131 return ERR_PTR(-ENOENT);
1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133repeat:
1134 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135 if (!page)
1136 return ERR_PTR(-ENOMEM);
1137
1138 err = read_node_page(page, 0);
1139 if (err < 0) {
1140 f2fs_put_page(page, 1);
1141 return ERR_PTR(err);
1142 } else if (err == LOCKED_PAGE) {
1143 goto page_hit;
1144 }
1145
1146 if (parent)
1147 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1148
1149 lock_page(page);
1150
1151 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152 f2fs_put_page(page, 1);
1153 goto repeat;
1154 }
1155
1156 if (unlikely(!PageUptodate(page)))
1157 goto out_err;
1158page_hit:
1159 if(unlikely(nid != nid_of_node(page))) {
1160 f2fs_bug_on(sbi, 1);
1161 ClearPageUptodate(page);
1162out_err:
1163 f2fs_put_page(page, 1);
1164 return ERR_PTR(-EIO);
1165 }
1166 return page;
1167}
1168
1169struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1170{
1171 return __get_node_page(sbi, nid, NULL, 0);
1172}
1173
1174struct page *get_node_page_ra(struct page *parent, int start)
1175{
1176 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177 nid_t nid = get_nid(parent, start, false);
1178
1179 return __get_node_page(sbi, nid, parent, start);
1180}
1181
1182static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1183{
1184 struct inode *inode;
1185 struct page *page;
1186 int ret;
1187
1188 /* should flush inline_data before evict_inode */
1189 inode = ilookup(sbi->sb, ino);
1190 if (!inode)
1191 return;
1192
1193 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1194 if (!page)
1195 goto iput_out;
1196
1197 if (!PageUptodate(page))
1198 goto page_out;
1199
1200 if (!PageDirty(page))
1201 goto page_out;
1202
1203 if (!clear_page_dirty_for_io(page))
1204 goto page_out;
1205
1206 ret = f2fs_write_inline_data(inode, page);
1207 inode_dec_dirty_pages(inode);
1208 remove_dirty_inode(inode);
1209 if (ret)
1210 set_page_dirty(page);
1211page_out:
1212 f2fs_put_page(page, 1);
1213iput_out:
1214 iput(inode);
1215}
1216
1217void move_node_page(struct page *node_page, int gc_type)
1218{
1219 if (gc_type == FG_GC) {
1220 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1221 struct writeback_control wbc = {
1222 .sync_mode = WB_SYNC_ALL,
1223 .nr_to_write = 1,
1224 .for_reclaim = 0,
1225 };
1226
1227 set_page_dirty(node_page);
1228 f2fs_wait_on_page_writeback(node_page, NODE, true);
1229
1230 f2fs_bug_on(sbi, PageWriteback(node_page));
1231 if (!clear_page_dirty_for_io(node_page))
1232 goto out_page;
1233
1234 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1235 unlock_page(node_page);
1236 goto release_page;
1237 } else {
1238 /* set page dirty and write it */
1239 if (!PageWriteback(node_page))
1240 set_page_dirty(node_page);
1241 }
1242out_page:
1243 unlock_page(node_page);
1244release_page:
1245 f2fs_put_page(node_page, 0);
1246}
1247
1248static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250 pgoff_t index, end;
1251 struct pagevec pvec;
1252 struct page *last_page = NULL;
1253
1254 pagevec_init(&pvec, 0);
1255 index = 0;
1256 end = ULONG_MAX;
1257
1258 while (index <= end) {
1259 int i, nr_pages;
1260 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261 PAGECACHE_TAG_DIRTY,
1262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263 if (nr_pages == 0)
1264 break;
1265
1266 for (i = 0; i < nr_pages; i++) {
1267 struct page *page = pvec.pages[i];
1268
1269 if (unlikely(f2fs_cp_error(sbi))) {
1270 f2fs_put_page(last_page, 0);
1271 pagevec_release(&pvec);
1272 return ERR_PTR(-EIO);
1273 }
1274
1275 if (!IS_DNODE(page) || !is_cold_node(page))
1276 continue;
1277 if (ino_of_node(page) != ino)
1278 continue;
1279
1280 lock_page(page);
1281
1282 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1283continue_unlock:
1284 unlock_page(page);
1285 continue;
1286 }
1287 if (ino_of_node(page) != ino)
1288 goto continue_unlock;
1289
1290 if (!PageDirty(page)) {
1291 /* someone wrote it for us */
1292 goto continue_unlock;
1293 }
1294
1295 if (last_page)
1296 f2fs_put_page(last_page, 0);
1297
1298 get_page(page);
1299 last_page = page;
1300 unlock_page(page);
1301 }
1302 pagevec_release(&pvec);
1303 cond_resched();
1304 }
1305 return last_page;
1306}
1307
1308int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1309 struct writeback_control *wbc, bool atomic)
1310{
1311 pgoff_t index, end;
1312 struct pagevec pvec;
1313 int ret = 0;
1314 struct page *last_page = NULL;
1315 bool marked = false;
1316 nid_t ino = inode->i_ino;
1317 int nwritten = 0;
1318
1319 if (atomic) {
1320 last_page = last_fsync_dnode(sbi, ino);
1321 if (IS_ERR_OR_NULL(last_page))
1322 return PTR_ERR_OR_ZERO(last_page);
1323 }
1324retry:
1325 pagevec_init(&pvec, 0);
1326 index = 0;
1327 end = ULONG_MAX;
1328
1329 while (index <= end) {
1330 int i, nr_pages;
1331 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1332 PAGECACHE_TAG_DIRTY,
1333 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1334 if (nr_pages == 0)
1335 break;
1336
1337 for (i = 0; i < nr_pages; i++) {
1338 struct page *page = pvec.pages[i];
1339
1340 if (unlikely(f2fs_cp_error(sbi))) {
1341 f2fs_put_page(last_page, 0);
1342 pagevec_release(&pvec);
1343 ret = -EIO;
1344 goto out;
1345 }
1346
1347 if (!IS_DNODE(page) || !is_cold_node(page))
1348 continue;
1349 if (ino_of_node(page) != ino)
1350 continue;
1351
1352 lock_page(page);
1353
1354 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1355continue_unlock:
1356 unlock_page(page);
1357 continue;
1358 }
1359 if (ino_of_node(page) != ino)
1360 goto continue_unlock;
1361
1362 if (!PageDirty(page) && page != last_page) {
1363 /* someone wrote it for us */
1364 goto continue_unlock;
1365 }
1366
1367 f2fs_wait_on_page_writeback(page, NODE, true);
1368 BUG_ON(PageWriteback(page));
1369
1370 if (!atomic || page == last_page) {
1371 set_fsync_mark(page, 1);
1372 if (IS_INODE(page)) {
1373 if (is_inode_flag_set(inode,
1374 FI_DIRTY_INODE))
1375 update_inode(inode, page);
1376 set_dentry_mark(page,
1377 need_dentry_mark(sbi, ino));
1378 }
1379 /* may be written by other thread */
1380 if (!PageDirty(page))
1381 set_page_dirty(page);
1382 }
1383
1384 if (!clear_page_dirty_for_io(page))
1385 goto continue_unlock;
1386
1387 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1388 if (ret) {
1389 unlock_page(page);
1390 f2fs_put_page(last_page, 0);
1391 break;
1392 } else {
1393 nwritten++;
1394 }
1395
1396 if (page == last_page) {
1397 f2fs_put_page(page, 0);
1398 marked = true;
1399 break;
1400 }
1401 }
1402 pagevec_release(&pvec);
1403 cond_resched();
1404
1405 if (ret || marked)
1406 break;
1407 }
1408 if (!ret && atomic && !marked) {
1409 f2fs_msg(sbi->sb, KERN_DEBUG,
1410 "Retry to write fsync mark: ino=%u, idx=%lx",
1411 ino, last_page->index);
1412 lock_page(last_page);
1413 f2fs_wait_on_page_writeback(last_page, NODE, true);
1414 set_page_dirty(last_page);
1415 unlock_page(last_page);
1416 goto retry;
1417 }
1418out:
1419 if (nwritten)
1420 f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1421 return ret ? -EIO: 0;
1422}
1423
1424int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1425{
1426 pgoff_t index, end;
1427 struct pagevec pvec;
1428 int step = 0;
1429 int nwritten = 0;
1430 int ret = 0;
1431
1432 pagevec_init(&pvec, 0);
1433
1434next_step:
1435 index = 0;
1436 end = ULONG_MAX;
1437
1438 while (index <= end) {
1439 int i, nr_pages;
1440 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1441 PAGECACHE_TAG_DIRTY,
1442 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1443 if (nr_pages == 0)
1444 break;
1445
1446 for (i = 0; i < nr_pages; i++) {
1447 struct page *page = pvec.pages[i];
1448
1449 if (unlikely(f2fs_cp_error(sbi))) {
1450 pagevec_release(&pvec);
1451 ret = -EIO;
1452 goto out;
1453 }
1454
1455 /*
1456 * flushing sequence with step:
1457 * 0. indirect nodes
1458 * 1. dentry dnodes
1459 * 2. file dnodes
1460 */
1461 if (step == 0 && IS_DNODE(page))
1462 continue;
1463 if (step == 1 && (!IS_DNODE(page) ||
1464 is_cold_node(page)))
1465 continue;
1466 if (step == 2 && (!IS_DNODE(page) ||
1467 !is_cold_node(page)))
1468 continue;
1469lock_node:
1470 if (!trylock_page(page))
1471 continue;
1472
1473 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1474continue_unlock:
1475 unlock_page(page);
1476 continue;
1477 }
1478
1479 if (!PageDirty(page)) {
1480 /* someone wrote it for us */
1481 goto continue_unlock;
1482 }
1483
1484 /* flush inline_data */
1485 if (is_inline_node(page)) {
1486 clear_inline_node(page);
1487 unlock_page(page);
1488 flush_inline_data(sbi, ino_of_node(page));
1489 goto lock_node;
1490 }
1491
1492 f2fs_wait_on_page_writeback(page, NODE, true);
1493
1494 BUG_ON(PageWriteback(page));
1495 if (!clear_page_dirty_for_io(page))
1496 goto continue_unlock;
1497
1498 set_fsync_mark(page, 0);
1499 set_dentry_mark(page, 0);
1500
1501 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1502 unlock_page(page);
1503 else
1504 nwritten++;
1505
1506 if (--wbc->nr_to_write == 0)
1507 break;
1508 }
1509 pagevec_release(&pvec);
1510 cond_resched();
1511
1512 if (wbc->nr_to_write == 0) {
1513 step = 2;
1514 break;
1515 }
1516 }
1517
1518 if (step < 2) {
1519 step++;
1520 goto next_step;
1521 }
1522out:
1523 if (nwritten)
1524 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1525 return ret;
1526}
1527
1528int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1529{
1530 pgoff_t index = 0, end = ULONG_MAX;
1531 struct pagevec pvec;
1532 int ret2, ret = 0;
1533
1534 pagevec_init(&pvec, 0);
1535
1536 while (index <= end) {
1537 int i, nr_pages;
1538 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1539 PAGECACHE_TAG_WRITEBACK,
1540 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1541 if (nr_pages == 0)
1542 break;
1543
1544 for (i = 0; i < nr_pages; i++) {
1545 struct page *page = pvec.pages[i];
1546
1547 /* until radix tree lookup accepts end_index */
1548 if (unlikely(page->index > end))
1549 continue;
1550
1551 if (ino && ino_of_node(page) == ino) {
1552 f2fs_wait_on_page_writeback(page, NODE, true);
1553 if (TestClearPageError(page))
1554 ret = -EIO;
1555 }
1556 }
1557 pagevec_release(&pvec);
1558 cond_resched();
1559 }
1560
1561 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1562 if (!ret)
1563 ret = ret2;
1564 return ret;
1565}
1566
1567static int f2fs_write_node_page(struct page *page,
1568 struct writeback_control *wbc)
1569{
1570 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1571 nid_t nid;
1572 struct node_info ni;
1573 struct f2fs_io_info fio = {
1574 .sbi = sbi,
1575 .type = NODE,
1576 .op = REQ_OP_WRITE,
1577 .op_flags = wbc_to_write_flags(wbc),
1578 .page = page,
1579 .encrypted_page = NULL,
1580 };
1581
1582 trace_f2fs_writepage(page, NODE);
1583
1584 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1585 goto redirty_out;
1586 if (unlikely(f2fs_cp_error(sbi)))
1587 goto redirty_out;
1588
1589 /* get old block addr of this node page */
1590 nid = nid_of_node(page);
1591 f2fs_bug_on(sbi, page->index != nid);
1592
1593 if (wbc->for_reclaim) {
1594 if (!down_read_trylock(&sbi->node_write))
1595 goto redirty_out;
1596 } else {
1597 down_read(&sbi->node_write);
1598 }
1599
1600 get_node_info(sbi, nid, &ni);
1601
1602 /* This page is already truncated */
1603 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1604 ClearPageUptodate(page);
1605 dec_page_count(sbi, F2FS_DIRTY_NODES);
1606 up_read(&sbi->node_write);
1607 unlock_page(page);
1608 return 0;
1609 }
1610
1611 set_page_writeback(page);
1612 fio.old_blkaddr = ni.blk_addr;
1613 write_node_page(nid, &fio);
1614 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1615 dec_page_count(sbi, F2FS_DIRTY_NODES);
1616 up_read(&sbi->node_write);
1617
1618 if (wbc->for_reclaim)
1619 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1620
1621 unlock_page(page);
1622
1623 if (unlikely(f2fs_cp_error(sbi)))
1624 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1625
1626 return 0;
1627
1628redirty_out:
1629 redirty_page_for_writepage(wbc, page);
1630 return AOP_WRITEPAGE_ACTIVATE;
1631}
1632
1633static int f2fs_write_node_pages(struct address_space *mapping,
1634 struct writeback_control *wbc)
1635{
1636 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1637 struct blk_plug plug;
1638 long diff;
1639
1640 /* balancing f2fs's metadata in background */
1641 f2fs_balance_fs_bg(sbi);
1642
1643 /* collect a number of dirty node pages and write together */
1644 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1645 goto skip_write;
1646
1647 trace_f2fs_writepages(mapping->host, wbc, NODE);
1648
1649 diff = nr_pages_to_write(sbi, NODE, wbc);
1650 wbc->sync_mode = WB_SYNC_NONE;
1651 blk_start_plug(&plug);
1652 sync_node_pages(sbi, wbc);
1653 blk_finish_plug(&plug);
1654 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1655 return 0;
1656
1657skip_write:
1658 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1659 trace_f2fs_writepages(mapping->host, wbc, NODE);
1660 return 0;
1661}
1662
1663static int f2fs_set_node_page_dirty(struct page *page)
1664{
1665 trace_f2fs_set_page_dirty(page, NODE);
1666
1667 if (!PageUptodate(page))
1668 SetPageUptodate(page);
1669 if (!PageDirty(page)) {
1670 f2fs_set_page_dirty_nobuffers(page);
1671 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1672 SetPagePrivate(page);
1673 f2fs_trace_pid(page);
1674 return 1;
1675 }
1676 return 0;
1677}
1678
1679/*
1680 * Structure of the f2fs node operations
1681 */
1682const struct address_space_operations f2fs_node_aops = {
1683 .writepage = f2fs_write_node_page,
1684 .writepages = f2fs_write_node_pages,
1685 .set_page_dirty = f2fs_set_node_page_dirty,
1686 .invalidatepage = f2fs_invalidate_page,
1687 .releasepage = f2fs_release_page,
1688#ifdef CONFIG_MIGRATION
1689 .migratepage = f2fs_migrate_page,
1690#endif
1691};
1692
1693static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1694 nid_t n)
1695{
1696 return radix_tree_lookup(&nm_i->free_nid_root, n);
1697}
1698
1699static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1700 struct free_nid *i, enum nid_list list, bool new)
1701{
1702 struct f2fs_nm_info *nm_i = NM_I(sbi);
1703
1704 if (new) {
1705 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1706 if (err)
1707 return err;
1708 }
1709
1710 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1711 i->state != NID_ALLOC);
1712 nm_i->nid_cnt[list]++;
1713 list_add_tail(&i->list, &nm_i->nid_list[list]);
1714 return 0;
1715}
1716
1717static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1718 struct free_nid *i, enum nid_list list, bool reuse)
1719{
1720 struct f2fs_nm_info *nm_i = NM_I(sbi);
1721
1722 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1723 i->state != NID_ALLOC);
1724 nm_i->nid_cnt[list]--;
1725 list_del(&i->list);
1726 if (!reuse)
1727 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1728}
1729
1730static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1731{
1732 struct f2fs_nm_info *nm_i = NM_I(sbi);
1733 struct free_nid *i;
1734 struct nat_entry *ne;
1735 int err;
1736
1737 /* 0 nid should not be used */
1738 if (unlikely(nid == 0))
1739 return 0;
1740
1741 if (build) {
1742 /* do not add allocated nids */
1743 ne = __lookup_nat_cache(nm_i, nid);
1744 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1745 nat_get_blkaddr(ne) != NULL_ADDR))
1746 return 0;
1747 }
1748
1749 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1750 i->nid = nid;
1751 i->state = NID_NEW;
1752
1753 if (radix_tree_preload(GFP_NOFS)) {
1754 kmem_cache_free(free_nid_slab, i);
1755 return 0;
1756 }
1757
1758 spin_lock(&nm_i->nid_list_lock);
1759 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1760 spin_unlock(&nm_i->nid_list_lock);
1761 radix_tree_preload_end();
1762 if (err) {
1763 kmem_cache_free(free_nid_slab, i);
1764 return 0;
1765 }
1766 return 1;
1767}
1768
1769static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1770{
1771 struct f2fs_nm_info *nm_i = NM_I(sbi);
1772 struct free_nid *i;
1773 bool need_free = false;
1774
1775 spin_lock(&nm_i->nid_list_lock);
1776 i = __lookup_free_nid_list(nm_i, nid);
1777 if (i && i->state == NID_NEW) {
1778 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1779 need_free = true;
1780 }
1781 spin_unlock(&nm_i->nid_list_lock);
1782
1783 if (need_free)
1784 kmem_cache_free(free_nid_slab, i);
1785}
1786
1787static void scan_nat_page(struct f2fs_sb_info *sbi,
1788 struct page *nat_page, nid_t start_nid)
1789{
1790 struct f2fs_nm_info *nm_i = NM_I(sbi);
1791 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1792 block_t blk_addr;
1793 int i;
1794
1795 i = start_nid % NAT_ENTRY_PER_BLOCK;
1796
1797 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1798
1799 if (unlikely(start_nid >= nm_i->max_nid))
1800 break;
1801
1802 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1803 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1804 if (blk_addr == NULL_ADDR)
1805 add_free_nid(sbi, start_nid, true);
1806 }
1807}
1808
1809static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1810{
1811 struct f2fs_nm_info *nm_i = NM_I(sbi);
1812 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1813 struct f2fs_journal *journal = curseg->journal;
1814 int i = 0;
1815 nid_t nid = nm_i->next_scan_nid;
1816
1817 /* Enough entries */
1818 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1819 return;
1820
1821 if (!sync && !available_free_memory(sbi, FREE_NIDS))
1822 return;
1823
1824 /* readahead nat pages to be scanned */
1825 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1826 META_NAT, true);
1827
1828 down_read(&nm_i->nat_tree_lock);
1829
1830 while (1) {
1831 struct page *page = get_current_nat_page(sbi, nid);
1832
1833 scan_nat_page(sbi, page, nid);
1834 f2fs_put_page(page, 1);
1835
1836 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1837 if (unlikely(nid >= nm_i->max_nid))
1838 nid = 0;
1839
1840 if (++i >= FREE_NID_PAGES)
1841 break;
1842 }
1843
1844 /* go to the next free nat pages to find free nids abundantly */
1845 nm_i->next_scan_nid = nid;
1846
1847 /* find free nids from current sum_pages */
1848 down_read(&curseg->journal_rwsem);
1849 for (i = 0; i < nats_in_cursum(journal); i++) {
1850 block_t addr;
1851
1852 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1853 nid = le32_to_cpu(nid_in_journal(journal, i));
1854 if (addr == NULL_ADDR)
1855 add_free_nid(sbi, nid, true);
1856 else
1857 remove_free_nid(sbi, nid);
1858 }
1859 up_read(&curseg->journal_rwsem);
1860 up_read(&nm_i->nat_tree_lock);
1861
1862 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1863 nm_i->ra_nid_pages, META_NAT, false);
1864}
1865
1866void build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1867{
1868 mutex_lock(&NM_I(sbi)->build_lock);
1869 __build_free_nids(sbi, sync);
1870 mutex_unlock(&NM_I(sbi)->build_lock);
1871}
1872
1873/*
1874 * If this function returns success, caller can obtain a new nid
1875 * from second parameter of this function.
1876 * The returned nid could be used ino as well as nid when inode is created.
1877 */
1878bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1879{
1880 struct f2fs_nm_info *nm_i = NM_I(sbi);
1881 struct free_nid *i = NULL;
1882retry:
1883#ifdef CONFIG_F2FS_FAULT_INJECTION
1884 if (time_to_inject(sbi, FAULT_ALLOC_NID))
1885 return false;
1886#endif
1887 spin_lock(&nm_i->nid_list_lock);
1888
1889 if (unlikely(nm_i->available_nids == 0)) {
1890 spin_unlock(&nm_i->nid_list_lock);
1891 return false;
1892 }
1893
1894 /* We should not use stale free nids created by build_free_nids */
1895 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
1896 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
1897 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
1898 struct free_nid, list);
1899 *nid = i->nid;
1900
1901 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
1902 i->state = NID_ALLOC;
1903 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
1904 nm_i->available_nids--;
1905 spin_unlock(&nm_i->nid_list_lock);
1906 return true;
1907 }
1908 spin_unlock(&nm_i->nid_list_lock);
1909
1910 /* Let's scan nat pages and its caches to get free nids */
1911 build_free_nids(sbi, true);
1912 goto retry;
1913}
1914
1915/*
1916 * alloc_nid() should be called prior to this function.
1917 */
1918void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1919{
1920 struct f2fs_nm_info *nm_i = NM_I(sbi);
1921 struct free_nid *i;
1922
1923 spin_lock(&nm_i->nid_list_lock);
1924 i = __lookup_free_nid_list(nm_i, nid);
1925 f2fs_bug_on(sbi, !i);
1926 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1927 spin_unlock(&nm_i->nid_list_lock);
1928
1929 kmem_cache_free(free_nid_slab, i);
1930}
1931
1932/*
1933 * alloc_nid() should be called prior to this function.
1934 */
1935void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1936{
1937 struct f2fs_nm_info *nm_i = NM_I(sbi);
1938 struct free_nid *i;
1939 bool need_free = false;
1940
1941 if (!nid)
1942 return;
1943
1944 spin_lock(&nm_i->nid_list_lock);
1945 i = __lookup_free_nid_list(nm_i, nid);
1946 f2fs_bug_on(sbi, !i);
1947
1948 if (!available_free_memory(sbi, FREE_NIDS)) {
1949 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1950 need_free = true;
1951 } else {
1952 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
1953 i->state = NID_NEW;
1954 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
1955 }
1956
1957 nm_i->available_nids++;
1958
1959 spin_unlock(&nm_i->nid_list_lock);
1960
1961 if (need_free)
1962 kmem_cache_free(free_nid_slab, i);
1963}
1964
1965int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1966{
1967 struct f2fs_nm_info *nm_i = NM_I(sbi);
1968 struct free_nid *i, *next;
1969 int nr = nr_shrink;
1970
1971 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1972 return 0;
1973
1974 if (!mutex_trylock(&nm_i->build_lock))
1975 return 0;
1976
1977 spin_lock(&nm_i->nid_list_lock);
1978 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
1979 list) {
1980 if (nr_shrink <= 0 ||
1981 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1982 break;
1983
1984 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1985 kmem_cache_free(free_nid_slab, i);
1986 nr_shrink--;
1987 }
1988 spin_unlock(&nm_i->nid_list_lock);
1989 mutex_unlock(&nm_i->build_lock);
1990
1991 return nr - nr_shrink;
1992}
1993
1994void recover_inline_xattr(struct inode *inode, struct page *page)
1995{
1996 void *src_addr, *dst_addr;
1997 size_t inline_size;
1998 struct page *ipage;
1999 struct f2fs_inode *ri;
2000
2001 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2002 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2003
2004 ri = F2FS_INODE(page);
2005 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2006 clear_inode_flag(inode, FI_INLINE_XATTR);
2007 goto update_inode;
2008 }
2009
2010 dst_addr = inline_xattr_addr(ipage);
2011 src_addr = inline_xattr_addr(page);
2012 inline_size = inline_xattr_size(inode);
2013
2014 f2fs_wait_on_page_writeback(ipage, NODE, true);
2015 memcpy(dst_addr, src_addr, inline_size);
2016update_inode:
2017 update_inode(inode, ipage);
2018 f2fs_put_page(ipage, 1);
2019}
2020
2021void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2022{
2023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2024 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2025 nid_t new_xnid = nid_of_node(page);
2026 struct node_info ni;
2027
2028 /* 1: invalidate the previous xattr nid */
2029 if (!prev_xnid)
2030 goto recover_xnid;
2031
2032 /* Deallocate node address */
2033 get_node_info(sbi, prev_xnid, &ni);
2034 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2035 invalidate_blocks(sbi, ni.blk_addr);
2036 dec_valid_node_count(sbi, inode);
2037 set_node_addr(sbi, &ni, NULL_ADDR, false);
2038
2039recover_xnid:
2040 /* 2: allocate new xattr nid */
2041 if (unlikely(!inc_valid_node_count(sbi, inode)))
2042 f2fs_bug_on(sbi, 1);
2043
2044 remove_free_nid(sbi, new_xnid);
2045 get_node_info(sbi, new_xnid, &ni);
2046 ni.ino = inode->i_ino;
2047 set_node_addr(sbi, &ni, NEW_ADDR, false);
2048 f2fs_i_xnid_write(inode, new_xnid);
2049
2050 /* 3: update xattr blkaddr */
2051 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2052 set_node_addr(sbi, &ni, blkaddr, false);
2053}
2054
2055int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2056{
2057 struct f2fs_inode *src, *dst;
2058 nid_t ino = ino_of_node(page);
2059 struct node_info old_ni, new_ni;
2060 struct page *ipage;
2061
2062 get_node_info(sbi, ino, &old_ni);
2063
2064 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2065 return -EINVAL;
2066retry:
2067 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2068 if (!ipage) {
2069 congestion_wait(BLK_RW_ASYNC, HZ/50);
2070 goto retry;
2071 }
2072
2073 /* Should not use this inode from free nid list */
2074 remove_free_nid(sbi, ino);
2075
2076 if (!PageUptodate(ipage))
2077 SetPageUptodate(ipage);
2078 fill_node_footer(ipage, ino, ino, 0, true);
2079
2080 src = F2FS_INODE(page);
2081 dst = F2FS_INODE(ipage);
2082
2083 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2084 dst->i_size = 0;
2085 dst->i_blocks = cpu_to_le64(1);
2086 dst->i_links = cpu_to_le32(1);
2087 dst->i_xattr_nid = 0;
2088 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2089
2090 new_ni = old_ni;
2091 new_ni.ino = ino;
2092
2093 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2094 WARN_ON(1);
2095 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2096 inc_valid_inode_count(sbi);
2097 set_page_dirty(ipage);
2098 f2fs_put_page(ipage, 1);
2099 return 0;
2100}
2101
2102int restore_node_summary(struct f2fs_sb_info *sbi,
2103 unsigned int segno, struct f2fs_summary_block *sum)
2104{
2105 struct f2fs_node *rn;
2106 struct f2fs_summary *sum_entry;
2107 block_t addr;
2108 int i, idx, last_offset, nrpages;
2109
2110 /* scan the node segment */
2111 last_offset = sbi->blocks_per_seg;
2112 addr = START_BLOCK(sbi, segno);
2113 sum_entry = &sum->entries[0];
2114
2115 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2116 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2117
2118 /* readahead node pages */
2119 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2120
2121 for (idx = addr; idx < addr + nrpages; idx++) {
2122 struct page *page = get_tmp_page(sbi, idx);
2123
2124 rn = F2FS_NODE(page);
2125 sum_entry->nid = rn->footer.nid;
2126 sum_entry->version = 0;
2127 sum_entry->ofs_in_node = 0;
2128 sum_entry++;
2129 f2fs_put_page(page, 1);
2130 }
2131
2132 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2133 addr + nrpages);
2134 }
2135 return 0;
2136}
2137
2138static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2139{
2140 struct f2fs_nm_info *nm_i = NM_I(sbi);
2141 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2142 struct f2fs_journal *journal = curseg->journal;
2143 int i;
2144
2145 down_write(&curseg->journal_rwsem);
2146 for (i = 0; i < nats_in_cursum(journal); i++) {
2147 struct nat_entry *ne;
2148 struct f2fs_nat_entry raw_ne;
2149 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2150
2151 raw_ne = nat_in_journal(journal, i);
2152
2153 ne = __lookup_nat_cache(nm_i, nid);
2154 if (!ne) {
2155 ne = grab_nat_entry(nm_i, nid);
2156 node_info_from_raw_nat(&ne->ni, &raw_ne);
2157 }
2158
2159 /*
2160 * if a free nat in journal has not been used after last
2161 * checkpoint, we should remove it from available nids,
2162 * since later we will add it again.
2163 */
2164 if (!get_nat_flag(ne, IS_DIRTY) &&
2165 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2166 spin_lock(&nm_i->nid_list_lock);
2167 nm_i->available_nids--;
2168 spin_unlock(&nm_i->nid_list_lock);
2169 }
2170
2171 __set_nat_cache_dirty(nm_i, ne);
2172 }
2173 update_nats_in_cursum(journal, -i);
2174 up_write(&curseg->journal_rwsem);
2175}
2176
2177static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2178 struct list_head *head, int max)
2179{
2180 struct nat_entry_set *cur;
2181
2182 if (nes->entry_cnt >= max)
2183 goto add_out;
2184
2185 list_for_each_entry(cur, head, set_list) {
2186 if (cur->entry_cnt >= nes->entry_cnt) {
2187 list_add(&nes->set_list, cur->set_list.prev);
2188 return;
2189 }
2190 }
2191add_out:
2192 list_add_tail(&nes->set_list, head);
2193}
2194
2195static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2196 struct nat_entry_set *set)
2197{
2198 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2199 struct f2fs_journal *journal = curseg->journal;
2200 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2201 bool to_journal = true;
2202 struct f2fs_nat_block *nat_blk;
2203 struct nat_entry *ne, *cur;
2204 struct page *page = NULL;
2205
2206 /*
2207 * there are two steps to flush nat entries:
2208 * #1, flush nat entries to journal in current hot data summary block.
2209 * #2, flush nat entries to nat page.
2210 */
2211 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2212 to_journal = false;
2213
2214 if (to_journal) {
2215 down_write(&curseg->journal_rwsem);
2216 } else {
2217 page = get_next_nat_page(sbi, start_nid);
2218 nat_blk = page_address(page);
2219 f2fs_bug_on(sbi, !nat_blk);
2220 }
2221
2222 /* flush dirty nats in nat entry set */
2223 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2224 struct f2fs_nat_entry *raw_ne;
2225 nid_t nid = nat_get_nid(ne);
2226 int offset;
2227
2228 if (nat_get_blkaddr(ne) == NEW_ADDR)
2229 continue;
2230
2231 if (to_journal) {
2232 offset = lookup_journal_in_cursum(journal,
2233 NAT_JOURNAL, nid, 1);
2234 f2fs_bug_on(sbi, offset < 0);
2235 raw_ne = &nat_in_journal(journal, offset);
2236 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2237 } else {
2238 raw_ne = &nat_blk->entries[nid - start_nid];
2239 }
2240 raw_nat_from_node_info(raw_ne, &ne->ni);
2241 nat_reset_flag(ne);
2242 __clear_nat_cache_dirty(NM_I(sbi), ne);
2243 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2244 add_free_nid(sbi, nid, false);
2245 spin_lock(&NM_I(sbi)->nid_list_lock);
2246 NM_I(sbi)->available_nids++;
2247 spin_unlock(&NM_I(sbi)->nid_list_lock);
2248 }
2249 }
2250
2251 if (to_journal)
2252 up_write(&curseg->journal_rwsem);
2253 else
2254 f2fs_put_page(page, 1);
2255
2256 f2fs_bug_on(sbi, set->entry_cnt);
2257
2258 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2259 kmem_cache_free(nat_entry_set_slab, set);
2260}
2261
2262/*
2263 * This function is called during the checkpointing process.
2264 */
2265void flush_nat_entries(struct f2fs_sb_info *sbi)
2266{
2267 struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2269 struct f2fs_journal *journal = curseg->journal;
2270 struct nat_entry_set *setvec[SETVEC_SIZE];
2271 struct nat_entry_set *set, *tmp;
2272 unsigned int found;
2273 nid_t set_idx = 0;
2274 LIST_HEAD(sets);
2275
2276 if (!nm_i->dirty_nat_cnt)
2277 return;
2278
2279 down_write(&nm_i->nat_tree_lock);
2280
2281 /*
2282 * if there are no enough space in journal to store dirty nat
2283 * entries, remove all entries from journal and merge them
2284 * into nat entry set.
2285 */
2286 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2287 remove_nats_in_journal(sbi);
2288
2289 while ((found = __gang_lookup_nat_set(nm_i,
2290 set_idx, SETVEC_SIZE, setvec))) {
2291 unsigned idx;
2292 set_idx = setvec[found - 1]->set + 1;
2293 for (idx = 0; idx < found; idx++)
2294 __adjust_nat_entry_set(setvec[idx], &sets,
2295 MAX_NAT_JENTRIES(journal));
2296 }
2297
2298 /* flush dirty nats in nat entry set */
2299 list_for_each_entry_safe(set, tmp, &sets, set_list)
2300 __flush_nat_entry_set(sbi, set);
2301
2302 up_write(&nm_i->nat_tree_lock);
2303
2304 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2305}
2306
2307static int init_node_manager(struct f2fs_sb_info *sbi)
2308{
2309 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2310 struct f2fs_nm_info *nm_i = NM_I(sbi);
2311 unsigned char *version_bitmap;
2312 unsigned int nat_segs, nat_blocks;
2313
2314 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2315
2316 /* segment_count_nat includes pair segment so divide to 2. */
2317 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2318 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2319
2320 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2321
2322 /* not used nids: 0, node, meta, (and root counted as valid node) */
2323 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2324 F2FS_RESERVED_NODE_NUM;
2325 nm_i->nid_cnt[FREE_NID_LIST] = 0;
2326 nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2327 nm_i->nat_cnt = 0;
2328 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2329 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2330 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2331
2332 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2333 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2334 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2335 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2336 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2337 INIT_LIST_HEAD(&nm_i->nat_entries);
2338
2339 mutex_init(&nm_i->build_lock);
2340 spin_lock_init(&nm_i->nid_list_lock);
2341 init_rwsem(&nm_i->nat_tree_lock);
2342
2343 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2344 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2345 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2346 if (!version_bitmap)
2347 return -EFAULT;
2348
2349 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2350 GFP_KERNEL);
2351 if (!nm_i->nat_bitmap)
2352 return -ENOMEM;
2353 return 0;
2354}
2355
2356int build_node_manager(struct f2fs_sb_info *sbi)
2357{
2358 int err;
2359
2360 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2361 if (!sbi->nm_info)
2362 return -ENOMEM;
2363
2364 err = init_node_manager(sbi);
2365 if (err)
2366 return err;
2367
2368 build_free_nids(sbi, true);
2369 return 0;
2370}
2371
2372void destroy_node_manager(struct f2fs_sb_info *sbi)
2373{
2374 struct f2fs_nm_info *nm_i = NM_I(sbi);
2375 struct free_nid *i, *next_i;
2376 struct nat_entry *natvec[NATVEC_SIZE];
2377 struct nat_entry_set *setvec[SETVEC_SIZE];
2378 nid_t nid = 0;
2379 unsigned int found;
2380
2381 if (!nm_i)
2382 return;
2383
2384 /* destroy free nid list */
2385 spin_lock(&nm_i->nid_list_lock);
2386 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2387 list) {
2388 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2389 spin_unlock(&nm_i->nid_list_lock);
2390 kmem_cache_free(free_nid_slab, i);
2391 spin_lock(&nm_i->nid_list_lock);
2392 }
2393 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2394 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2395 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2396 spin_unlock(&nm_i->nid_list_lock);
2397
2398 /* destroy nat cache */
2399 down_write(&nm_i->nat_tree_lock);
2400 while ((found = __gang_lookup_nat_cache(nm_i,
2401 nid, NATVEC_SIZE, natvec))) {
2402 unsigned idx;
2403
2404 nid = nat_get_nid(natvec[found - 1]) + 1;
2405 for (idx = 0; idx < found; idx++)
2406 __del_from_nat_cache(nm_i, natvec[idx]);
2407 }
2408 f2fs_bug_on(sbi, nm_i->nat_cnt);
2409
2410 /* destroy nat set cache */
2411 nid = 0;
2412 while ((found = __gang_lookup_nat_set(nm_i,
2413 nid, SETVEC_SIZE, setvec))) {
2414 unsigned idx;
2415
2416 nid = setvec[found - 1]->set + 1;
2417 for (idx = 0; idx < found; idx++) {
2418 /* entry_cnt is not zero, when cp_error was occurred */
2419 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2420 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2421 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2422 }
2423 }
2424 up_write(&nm_i->nat_tree_lock);
2425
2426 kfree(nm_i->nat_bitmap);
2427 sbi->nm_info = NULL;
2428 kfree(nm_i);
2429}
2430
2431int __init create_node_manager_caches(void)
2432{
2433 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2434 sizeof(struct nat_entry));
2435 if (!nat_entry_slab)
2436 goto fail;
2437
2438 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2439 sizeof(struct free_nid));
2440 if (!free_nid_slab)
2441 goto destroy_nat_entry;
2442
2443 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2444 sizeof(struct nat_entry_set));
2445 if (!nat_entry_set_slab)
2446 goto destroy_free_nid;
2447 return 0;
2448
2449destroy_free_nid:
2450 kmem_cache_destroy(free_nid_slab);
2451destroy_nat_entry:
2452 kmem_cache_destroy(nat_entry_slab);
2453fail:
2454 return -ENOMEM;
2455}
2456
2457void destroy_node_manager_caches(void)
2458{
2459 kmem_cache_destroy(nat_entry_set_slab);
2460 kmem_cache_destroy(free_nid_slab);
2461 kmem_cache_destroy(nat_entry_slab);
2462}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "trace.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42}
43
44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45{
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98}
99
100static void clear_node_page_dirty(struct page *page)
101{
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108}
109
110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111{
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113}
114
115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116{
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142}
143
144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145{
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157}
158
159static void __free_nat_entry(struct nat_entry *e)
160{
161 kmem_cache_free(nat_entry_slab, e);
162}
163
164/* must be locked by nat_tree_lock */
165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167{
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt++;
181 return ne;
182}
183
184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185{
186 struct nat_entry *ne;
187
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196 }
197
198 return ne;
199}
200
201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
203{
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205}
206
207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208{
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
212}
213
214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
216{
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
219
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 }
230 return head;
231}
232
233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
235{
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
241
242 /*
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
246 */
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
250
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
255
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
265}
266
267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
269{
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
273
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
277}
278
279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281{
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
284}
285
286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287{
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
290}
291
292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293{
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
298}
299
300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
302{
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
306
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
312
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320 return seq_id;
321}
322
323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324{
325 struct fsync_node_entry *fn;
326 unsigned long flags;
327
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
337 }
338 }
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
341}
342
343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344{
345 unsigned long flags;
346
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350}
351
352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353{
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
357
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
364 }
365 up_read(&nm_i->nat_tree_lock);
366 return need;
367}
368
369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370{
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
374
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
381}
382
383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384{
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
388
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
397}
398
399/* must be locked by nat_tree_lock */
400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
402{
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
405
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
409
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
422}
423
424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
426{
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
438 /*
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
442 */
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 }
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
449
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
458
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
463 }
464
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
470
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 }
479 up_write(&nm_i->nat_tree_lock);
480}
481
482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483{
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
486
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
489
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
493
494 if (list_empty(&nm_i->nat_entries))
495 break;
496
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
501
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
504
505 spin_lock(&nm_i->nat_list_lock);
506 }
507 spin_unlock(&nm_i->nat_list_lock);
508
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
511}
512
513int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514 struct node_info *ni)
515{
516 struct f2fs_nm_info *nm_i = NM_I(sbi);
517 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518 struct f2fs_journal *journal = curseg->journal;
519 nid_t start_nid = START_NID(nid);
520 struct f2fs_nat_block *nat_blk;
521 struct page *page = NULL;
522 struct f2fs_nat_entry ne;
523 struct nat_entry *e;
524 pgoff_t index;
525 block_t blkaddr;
526 int i;
527
528 ni->nid = nid;
529
530 /* Check nat cache */
531 down_read(&nm_i->nat_tree_lock);
532 e = __lookup_nat_cache(nm_i, nid);
533 if (e) {
534 ni->ino = nat_get_ino(e);
535 ni->blk_addr = nat_get_blkaddr(e);
536 ni->version = nat_get_version(e);
537 up_read(&nm_i->nat_tree_lock);
538 return 0;
539 }
540
541 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
542
543 /* Check current segment summary */
544 down_read(&curseg->journal_rwsem);
545 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
546 if (i >= 0) {
547 ne = nat_in_journal(journal, i);
548 node_info_from_raw_nat(ni, &ne);
549 }
550 up_read(&curseg->journal_rwsem);
551 if (i >= 0) {
552 up_read(&nm_i->nat_tree_lock);
553 goto cache;
554 }
555
556 /* Fill node_info from nat page */
557 index = current_nat_addr(sbi, nid);
558 up_read(&nm_i->nat_tree_lock);
559
560 page = f2fs_get_meta_page(sbi, index);
561 if (IS_ERR(page))
562 return PTR_ERR(page);
563
564 nat_blk = (struct f2fs_nat_block *)page_address(page);
565 ne = nat_blk->entries[nid - start_nid];
566 node_info_from_raw_nat(ni, &ne);
567 f2fs_put_page(page, 1);
568cache:
569 blkaddr = le32_to_cpu(ne.block_addr);
570 if (__is_valid_data_blkaddr(blkaddr) &&
571 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
572 return -EFAULT;
573
574 /* cache nat entry */
575 cache_nat_entry(sbi, nid, &ne);
576 return 0;
577}
578
579/*
580 * readahead MAX_RA_NODE number of node pages.
581 */
582static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583{
584 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585 struct blk_plug plug;
586 int i, end;
587 nid_t nid;
588
589 blk_start_plug(&plug);
590
591 /* Then, try readahead for siblings of the desired node */
592 end = start + n;
593 end = min(end, NIDS_PER_BLOCK);
594 for (i = start; i < end; i++) {
595 nid = get_nid(parent, i, false);
596 f2fs_ra_node_page(sbi, nid);
597 }
598
599 blk_finish_plug(&plug);
600}
601
602pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603{
604 const long direct_index = ADDRS_PER_INODE(dn->inode);
605 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608 int cur_level = dn->cur_level;
609 int max_level = dn->max_level;
610 pgoff_t base = 0;
611
612 if (!dn->max_level)
613 return pgofs + 1;
614
615 while (max_level-- > cur_level)
616 skipped_unit *= NIDS_PER_BLOCK;
617
618 switch (dn->max_level) {
619 case 3:
620 base += 2 * indirect_blks;
621 fallthrough;
622 case 2:
623 base += 2 * direct_blks;
624 fallthrough;
625 case 1:
626 base += direct_index;
627 break;
628 default:
629 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
630 }
631
632 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633}
634
635/*
636 * The maximum depth is four.
637 * Offset[0] will have raw inode offset.
638 */
639static int get_node_path(struct inode *inode, long block,
640 int offset[4], unsigned int noffset[4])
641{
642 const long direct_index = ADDRS_PER_INODE(inode);
643 const long direct_blks = ADDRS_PER_BLOCK(inode);
644 const long dptrs_per_blk = NIDS_PER_BLOCK;
645 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
647 int n = 0;
648 int level = 0;
649
650 noffset[0] = 0;
651
652 if (block < direct_index) {
653 offset[n] = block;
654 goto got;
655 }
656 block -= direct_index;
657 if (block < direct_blks) {
658 offset[n++] = NODE_DIR1_BLOCK;
659 noffset[n] = 1;
660 offset[n] = block;
661 level = 1;
662 goto got;
663 }
664 block -= direct_blks;
665 if (block < direct_blks) {
666 offset[n++] = NODE_DIR2_BLOCK;
667 noffset[n] = 2;
668 offset[n] = block;
669 level = 1;
670 goto got;
671 }
672 block -= direct_blks;
673 if (block < indirect_blks) {
674 offset[n++] = NODE_IND1_BLOCK;
675 noffset[n] = 3;
676 offset[n++] = block / direct_blks;
677 noffset[n] = 4 + offset[n - 1];
678 offset[n] = block % direct_blks;
679 level = 2;
680 goto got;
681 }
682 block -= indirect_blks;
683 if (block < indirect_blks) {
684 offset[n++] = NODE_IND2_BLOCK;
685 noffset[n] = 4 + dptrs_per_blk;
686 offset[n++] = block / direct_blks;
687 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688 offset[n] = block % direct_blks;
689 level = 2;
690 goto got;
691 }
692 block -= indirect_blks;
693 if (block < dindirect_blks) {
694 offset[n++] = NODE_DIND_BLOCK;
695 noffset[n] = 5 + (dptrs_per_blk * 2);
696 offset[n++] = block / indirect_blks;
697 noffset[n] = 6 + (dptrs_per_blk * 2) +
698 offset[n - 1] * (dptrs_per_blk + 1);
699 offset[n++] = (block / direct_blks) % dptrs_per_blk;
700 noffset[n] = 7 + (dptrs_per_blk * 2) +
701 offset[n - 2] * (dptrs_per_blk + 1) +
702 offset[n - 1];
703 offset[n] = block % direct_blks;
704 level = 3;
705 goto got;
706 } else {
707 return -E2BIG;
708 }
709got:
710 return level;
711}
712
713/*
714 * Caller should call f2fs_put_dnode(dn).
715 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
717 */
718int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
719{
720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 struct page *npage[4];
722 struct page *parent = NULL;
723 int offset[4];
724 unsigned int noffset[4];
725 nid_t nids[4];
726 int level, i = 0;
727 int err = 0;
728
729 level = get_node_path(dn->inode, index, offset, noffset);
730 if (level < 0)
731 return level;
732
733 nids[0] = dn->inode->i_ino;
734 npage[0] = dn->inode_page;
735
736 if (!npage[0]) {
737 npage[0] = f2fs_get_node_page(sbi, nids[0]);
738 if (IS_ERR(npage[0]))
739 return PTR_ERR(npage[0]);
740 }
741
742 /* if inline_data is set, should not report any block indices */
743 if (f2fs_has_inline_data(dn->inode) && index) {
744 err = -ENOENT;
745 f2fs_put_page(npage[0], 1);
746 goto release_out;
747 }
748
749 parent = npage[0];
750 if (level != 0)
751 nids[1] = get_nid(parent, offset[0], true);
752 dn->inode_page = npage[0];
753 dn->inode_page_locked = true;
754
755 /* get indirect or direct nodes */
756 for (i = 1; i <= level; i++) {
757 bool done = false;
758
759 if (!nids[i] && mode == ALLOC_NODE) {
760 /* alloc new node */
761 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
762 err = -ENOSPC;
763 goto release_pages;
764 }
765
766 dn->nid = nids[i];
767 npage[i] = f2fs_new_node_page(dn, noffset[i]);
768 if (IS_ERR(npage[i])) {
769 f2fs_alloc_nid_failed(sbi, nids[i]);
770 err = PTR_ERR(npage[i]);
771 goto release_pages;
772 }
773
774 set_nid(parent, offset[i - 1], nids[i], i == 1);
775 f2fs_alloc_nid_done(sbi, nids[i]);
776 done = true;
777 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779 if (IS_ERR(npage[i])) {
780 err = PTR_ERR(npage[i]);
781 goto release_pages;
782 }
783 done = true;
784 }
785 if (i == 1) {
786 dn->inode_page_locked = false;
787 unlock_page(parent);
788 } else {
789 f2fs_put_page(parent, 1);
790 }
791
792 if (!done) {
793 npage[i] = f2fs_get_node_page(sbi, nids[i]);
794 if (IS_ERR(npage[i])) {
795 err = PTR_ERR(npage[i]);
796 f2fs_put_page(npage[0], 0);
797 goto release_out;
798 }
799 }
800 if (i < level) {
801 parent = npage[i];
802 nids[i + 1] = get_nid(parent, offset[i], false);
803 }
804 }
805 dn->nid = nids[level];
806 dn->ofs_in_node = offset[level];
807 dn->node_page = npage[level];
808 dn->data_blkaddr = f2fs_data_blkaddr(dn);
809 return 0;
810
811release_pages:
812 f2fs_put_page(parent, 1);
813 if (i > 1)
814 f2fs_put_page(npage[0], 0);
815release_out:
816 dn->inode_page = NULL;
817 dn->node_page = NULL;
818 if (err == -ENOENT) {
819 dn->cur_level = i;
820 dn->max_level = level;
821 dn->ofs_in_node = offset[level];
822 }
823 return err;
824}
825
826static int truncate_node(struct dnode_of_data *dn)
827{
828 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829 struct node_info ni;
830 int err;
831 pgoff_t index;
832
833 err = f2fs_get_node_info(sbi, dn->nid, &ni);
834 if (err)
835 return err;
836
837 /* Deallocate node address */
838 f2fs_invalidate_blocks(sbi, ni.blk_addr);
839 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840 set_node_addr(sbi, &ni, NULL_ADDR, false);
841
842 if (dn->nid == dn->inode->i_ino) {
843 f2fs_remove_orphan_inode(sbi, dn->nid);
844 dec_valid_inode_count(sbi);
845 f2fs_inode_synced(dn->inode);
846 }
847
848 clear_node_page_dirty(dn->node_page);
849 set_sbi_flag(sbi, SBI_IS_DIRTY);
850
851 index = dn->node_page->index;
852 f2fs_put_page(dn->node_page, 1);
853
854 invalidate_mapping_pages(NODE_MAPPING(sbi),
855 index, index);
856
857 dn->node_page = NULL;
858 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859
860 return 0;
861}
862
863static int truncate_dnode(struct dnode_of_data *dn)
864{
865 struct page *page;
866 int err;
867
868 if (dn->nid == 0)
869 return 1;
870
871 /* get direct node */
872 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873 if (PTR_ERR(page) == -ENOENT)
874 return 1;
875 else if (IS_ERR(page))
876 return PTR_ERR(page);
877
878 /* Make dnode_of_data for parameter */
879 dn->node_page = page;
880 dn->ofs_in_node = 0;
881 f2fs_truncate_data_blocks(dn);
882 err = truncate_node(dn);
883 if (err)
884 return err;
885
886 return 1;
887}
888
889static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890 int ofs, int depth)
891{
892 struct dnode_of_data rdn = *dn;
893 struct page *page;
894 struct f2fs_node *rn;
895 nid_t child_nid;
896 unsigned int child_nofs;
897 int freed = 0;
898 int i, ret;
899
900 if (dn->nid == 0)
901 return NIDS_PER_BLOCK + 1;
902
903 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904
905 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906 if (IS_ERR(page)) {
907 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908 return PTR_ERR(page);
909 }
910
911 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912
913 rn = F2FS_NODE(page);
914 if (depth < 3) {
915 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916 child_nid = le32_to_cpu(rn->in.nid[i]);
917 if (child_nid == 0)
918 continue;
919 rdn.nid = child_nid;
920 ret = truncate_dnode(&rdn);
921 if (ret < 0)
922 goto out_err;
923 if (set_nid(page, i, 0, false))
924 dn->node_changed = true;
925 }
926 } else {
927 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929 child_nid = le32_to_cpu(rn->in.nid[i]);
930 if (child_nid == 0) {
931 child_nofs += NIDS_PER_BLOCK + 1;
932 continue;
933 }
934 rdn.nid = child_nid;
935 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936 if (ret == (NIDS_PER_BLOCK + 1)) {
937 if (set_nid(page, i, 0, false))
938 dn->node_changed = true;
939 child_nofs += ret;
940 } else if (ret < 0 && ret != -ENOENT) {
941 goto out_err;
942 }
943 }
944 freed = child_nofs;
945 }
946
947 if (!ofs) {
948 /* remove current indirect node */
949 dn->node_page = page;
950 ret = truncate_node(dn);
951 if (ret)
952 goto out_err;
953 freed++;
954 } else {
955 f2fs_put_page(page, 1);
956 }
957 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958 return freed;
959
960out_err:
961 f2fs_put_page(page, 1);
962 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963 return ret;
964}
965
966static int truncate_partial_nodes(struct dnode_of_data *dn,
967 struct f2fs_inode *ri, int *offset, int depth)
968{
969 struct page *pages[2];
970 nid_t nid[3];
971 nid_t child_nid;
972 int err = 0;
973 int i;
974 int idx = depth - 2;
975
976 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977 if (!nid[0])
978 return 0;
979
980 /* get indirect nodes in the path */
981 for (i = 0; i < idx + 1; i++) {
982 /* reference count'll be increased */
983 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984 if (IS_ERR(pages[i])) {
985 err = PTR_ERR(pages[i]);
986 idx = i - 1;
987 goto fail;
988 }
989 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990 }
991
992 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993
994 /* free direct nodes linked to a partial indirect node */
995 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996 child_nid = get_nid(pages[idx], i, false);
997 if (!child_nid)
998 continue;
999 dn->nid = child_nid;
1000 err = truncate_dnode(dn);
1001 if (err < 0)
1002 goto fail;
1003 if (set_nid(pages[idx], i, 0, false))
1004 dn->node_changed = true;
1005 }
1006
1007 if (offset[idx + 1] == 0) {
1008 dn->node_page = pages[idx];
1009 dn->nid = nid[idx];
1010 err = truncate_node(dn);
1011 if (err)
1012 goto fail;
1013 } else {
1014 f2fs_put_page(pages[idx], 1);
1015 }
1016 offset[idx]++;
1017 offset[idx + 1] = 0;
1018 idx--;
1019fail:
1020 for (i = idx; i >= 0; i--)
1021 f2fs_put_page(pages[i], 1);
1022
1023 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024
1025 return err;
1026}
1027
1028/*
1029 * All the block addresses of data and nodes should be nullified.
1030 */
1031int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032{
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 int err = 0, cont = 1;
1035 int level, offset[4], noffset[4];
1036 unsigned int nofs = 0;
1037 struct f2fs_inode *ri;
1038 struct dnode_of_data dn;
1039 struct page *page;
1040
1041 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042
1043 level = get_node_path(inode, from, offset, noffset);
1044 if (level < 0) {
1045 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1046 return level;
1047 }
1048
1049 page = f2fs_get_node_page(sbi, inode->i_ino);
1050 if (IS_ERR(page)) {
1051 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1052 return PTR_ERR(page);
1053 }
1054
1055 set_new_dnode(&dn, inode, page, NULL, 0);
1056 unlock_page(page);
1057
1058 ri = F2FS_INODE(page);
1059 switch (level) {
1060 case 0:
1061 case 1:
1062 nofs = noffset[1];
1063 break;
1064 case 2:
1065 nofs = noffset[1];
1066 if (!offset[level - 1])
1067 goto skip_partial;
1068 err = truncate_partial_nodes(&dn, ri, offset, level);
1069 if (err < 0 && err != -ENOENT)
1070 goto fail;
1071 nofs += 1 + NIDS_PER_BLOCK;
1072 break;
1073 case 3:
1074 nofs = 5 + 2 * NIDS_PER_BLOCK;
1075 if (!offset[level - 1])
1076 goto skip_partial;
1077 err = truncate_partial_nodes(&dn, ri, offset, level);
1078 if (err < 0 && err != -ENOENT)
1079 goto fail;
1080 break;
1081 default:
1082 BUG();
1083 }
1084
1085skip_partial:
1086 while (cont) {
1087 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1088 switch (offset[0]) {
1089 case NODE_DIR1_BLOCK:
1090 case NODE_DIR2_BLOCK:
1091 err = truncate_dnode(&dn);
1092 break;
1093
1094 case NODE_IND1_BLOCK:
1095 case NODE_IND2_BLOCK:
1096 err = truncate_nodes(&dn, nofs, offset[1], 2);
1097 break;
1098
1099 case NODE_DIND_BLOCK:
1100 err = truncate_nodes(&dn, nofs, offset[1], 3);
1101 cont = 0;
1102 break;
1103
1104 default:
1105 BUG();
1106 }
1107 if (err < 0 && err != -ENOENT)
1108 goto fail;
1109 if (offset[1] == 0 &&
1110 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1111 lock_page(page);
1112 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1113 f2fs_wait_on_page_writeback(page, NODE, true, true);
1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1115 set_page_dirty(page);
1116 unlock_page(page);
1117 }
1118 offset[1] = 0;
1119 offset[0]++;
1120 nofs += err;
1121 }
1122fail:
1123 f2fs_put_page(page, 0);
1124 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1125 return err > 0 ? 0 : err;
1126}
1127
1128/* caller must lock inode page */
1129int f2fs_truncate_xattr_node(struct inode *inode)
1130{
1131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1132 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1133 struct dnode_of_data dn;
1134 struct page *npage;
1135 int err;
1136
1137 if (!nid)
1138 return 0;
1139
1140 npage = f2fs_get_node_page(sbi, nid);
1141 if (IS_ERR(npage))
1142 return PTR_ERR(npage);
1143
1144 set_new_dnode(&dn, inode, NULL, npage, nid);
1145 err = truncate_node(&dn);
1146 if (err) {
1147 f2fs_put_page(npage, 1);
1148 return err;
1149 }
1150
1151 f2fs_i_xnid_write(inode, 0);
1152
1153 return 0;
1154}
1155
1156/*
1157 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1158 * f2fs_unlock_op().
1159 */
1160int f2fs_remove_inode_page(struct inode *inode)
1161{
1162 struct dnode_of_data dn;
1163 int err;
1164
1165 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1166 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1167 if (err)
1168 return err;
1169
1170 err = f2fs_truncate_xattr_node(inode);
1171 if (err) {
1172 f2fs_put_dnode(&dn);
1173 return err;
1174 }
1175
1176 /* remove potential inline_data blocks */
1177 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178 S_ISLNK(inode->i_mode))
1179 f2fs_truncate_data_blocks_range(&dn, 1);
1180
1181 /* 0 is possible, after f2fs_new_inode() has failed */
1182 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1183 f2fs_put_dnode(&dn);
1184 return -EIO;
1185 }
1186
1187 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1188 f2fs_warn(F2FS_I_SB(inode),
1189 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1190 inode->i_ino, (unsigned long long)inode->i_blocks);
1191 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1192 }
1193
1194 /* will put inode & node pages */
1195 err = truncate_node(&dn);
1196 if (err) {
1197 f2fs_put_dnode(&dn);
1198 return err;
1199 }
1200 return 0;
1201}
1202
1203struct page *f2fs_new_inode_page(struct inode *inode)
1204{
1205 struct dnode_of_data dn;
1206
1207 /* allocate inode page for new inode */
1208 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1209
1210 /* caller should f2fs_put_page(page, 1); */
1211 return f2fs_new_node_page(&dn, 0);
1212}
1213
1214struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1215{
1216 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1217 struct node_info new_ni;
1218 struct page *page;
1219 int err;
1220
1221 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1222 return ERR_PTR(-EPERM);
1223
1224 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1225 if (!page)
1226 return ERR_PTR(-ENOMEM);
1227
1228 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1229 goto fail;
1230
1231#ifdef CONFIG_F2FS_CHECK_FS
1232 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1233 if (err) {
1234 dec_valid_node_count(sbi, dn->inode, !ofs);
1235 goto fail;
1236 }
1237 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1238#endif
1239 new_ni.nid = dn->nid;
1240 new_ni.ino = dn->inode->i_ino;
1241 new_ni.blk_addr = NULL_ADDR;
1242 new_ni.flag = 0;
1243 new_ni.version = 0;
1244 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1245
1246 f2fs_wait_on_page_writeback(page, NODE, true, true);
1247 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1248 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1249 if (!PageUptodate(page))
1250 SetPageUptodate(page);
1251 if (set_page_dirty(page))
1252 dn->node_changed = true;
1253
1254 if (f2fs_has_xattr_block(ofs))
1255 f2fs_i_xnid_write(dn->inode, dn->nid);
1256
1257 if (ofs == 0)
1258 inc_valid_inode_count(sbi);
1259 return page;
1260
1261fail:
1262 clear_node_page_dirty(page);
1263 f2fs_put_page(page, 1);
1264 return ERR_PTR(err);
1265}
1266
1267/*
1268 * Caller should do after getting the following values.
1269 * 0: f2fs_put_page(page, 0)
1270 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1271 */
1272static int read_node_page(struct page *page, int op_flags)
1273{
1274 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1275 struct node_info ni;
1276 struct f2fs_io_info fio = {
1277 .sbi = sbi,
1278 .type = NODE,
1279 .op = REQ_OP_READ,
1280 .op_flags = op_flags,
1281 .page = page,
1282 .encrypted_page = NULL,
1283 };
1284 int err;
1285
1286 if (PageUptodate(page)) {
1287 if (!f2fs_inode_chksum_verify(sbi, page)) {
1288 ClearPageUptodate(page);
1289 return -EFSBADCRC;
1290 }
1291 return LOCKED_PAGE;
1292 }
1293
1294 err = f2fs_get_node_info(sbi, page->index, &ni);
1295 if (err)
1296 return err;
1297
1298 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1299 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1300 ClearPageUptodate(page);
1301 return -ENOENT;
1302 }
1303
1304 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1305
1306 err = f2fs_submit_page_bio(&fio);
1307
1308 if (!err)
1309 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1310
1311 return err;
1312}
1313
1314/*
1315 * Readahead a node page
1316 */
1317void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1318{
1319 struct page *apage;
1320 int err;
1321
1322 if (!nid)
1323 return;
1324 if (f2fs_check_nid_range(sbi, nid))
1325 return;
1326
1327 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1328 if (apage)
1329 return;
1330
1331 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1332 if (!apage)
1333 return;
1334
1335 err = read_node_page(apage, REQ_RAHEAD);
1336 f2fs_put_page(apage, err ? 1 : 0);
1337}
1338
1339static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1340 struct page *parent, int start)
1341{
1342 struct page *page;
1343 int err;
1344
1345 if (!nid)
1346 return ERR_PTR(-ENOENT);
1347 if (f2fs_check_nid_range(sbi, nid))
1348 return ERR_PTR(-EINVAL);
1349repeat:
1350 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1351 if (!page)
1352 return ERR_PTR(-ENOMEM);
1353
1354 err = read_node_page(page, 0);
1355 if (err < 0) {
1356 f2fs_put_page(page, 1);
1357 return ERR_PTR(err);
1358 } else if (err == LOCKED_PAGE) {
1359 err = 0;
1360 goto page_hit;
1361 }
1362
1363 if (parent)
1364 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1365
1366 lock_page(page);
1367
1368 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1369 f2fs_put_page(page, 1);
1370 goto repeat;
1371 }
1372
1373 if (unlikely(!PageUptodate(page))) {
1374 err = -EIO;
1375 goto out_err;
1376 }
1377
1378 if (!f2fs_inode_chksum_verify(sbi, page)) {
1379 err = -EFSBADCRC;
1380 goto out_err;
1381 }
1382page_hit:
1383 if(unlikely(nid != nid_of_node(page))) {
1384 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1385 nid, nid_of_node(page), ino_of_node(page),
1386 ofs_of_node(page), cpver_of_node(page),
1387 next_blkaddr_of_node(page));
1388 err = -EINVAL;
1389out_err:
1390 ClearPageUptodate(page);
1391 f2fs_put_page(page, 1);
1392 return ERR_PTR(err);
1393 }
1394 return page;
1395}
1396
1397struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1398{
1399 return __get_node_page(sbi, nid, NULL, 0);
1400}
1401
1402struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1403{
1404 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1405 nid_t nid = get_nid(parent, start, false);
1406
1407 return __get_node_page(sbi, nid, parent, start);
1408}
1409
1410static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1411{
1412 struct inode *inode;
1413 struct page *page;
1414 int ret;
1415
1416 /* should flush inline_data before evict_inode */
1417 inode = ilookup(sbi->sb, ino);
1418 if (!inode)
1419 return;
1420
1421 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1422 FGP_LOCK|FGP_NOWAIT, 0);
1423 if (!page)
1424 goto iput_out;
1425
1426 if (!PageUptodate(page))
1427 goto page_out;
1428
1429 if (!PageDirty(page))
1430 goto page_out;
1431
1432 if (!clear_page_dirty_for_io(page))
1433 goto page_out;
1434
1435 ret = f2fs_write_inline_data(inode, page);
1436 inode_dec_dirty_pages(inode);
1437 f2fs_remove_dirty_inode(inode);
1438 if (ret)
1439 set_page_dirty(page);
1440page_out:
1441 f2fs_put_page(page, 1);
1442iput_out:
1443 iput(inode);
1444}
1445
1446static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1447{
1448 pgoff_t index;
1449 struct pagevec pvec;
1450 struct page *last_page = NULL;
1451 int nr_pages;
1452
1453 pagevec_init(&pvec);
1454 index = 0;
1455
1456 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1457 PAGECACHE_TAG_DIRTY))) {
1458 int i;
1459
1460 for (i = 0; i < nr_pages; i++) {
1461 struct page *page = pvec.pages[i];
1462
1463 if (unlikely(f2fs_cp_error(sbi))) {
1464 f2fs_put_page(last_page, 0);
1465 pagevec_release(&pvec);
1466 return ERR_PTR(-EIO);
1467 }
1468
1469 if (!IS_DNODE(page) || !is_cold_node(page))
1470 continue;
1471 if (ino_of_node(page) != ino)
1472 continue;
1473
1474 lock_page(page);
1475
1476 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1477continue_unlock:
1478 unlock_page(page);
1479 continue;
1480 }
1481 if (ino_of_node(page) != ino)
1482 goto continue_unlock;
1483
1484 if (!PageDirty(page)) {
1485 /* someone wrote it for us */
1486 goto continue_unlock;
1487 }
1488
1489 if (last_page)
1490 f2fs_put_page(last_page, 0);
1491
1492 get_page(page);
1493 last_page = page;
1494 unlock_page(page);
1495 }
1496 pagevec_release(&pvec);
1497 cond_resched();
1498 }
1499 return last_page;
1500}
1501
1502static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1503 struct writeback_control *wbc, bool do_balance,
1504 enum iostat_type io_type, unsigned int *seq_id)
1505{
1506 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1507 nid_t nid;
1508 struct node_info ni;
1509 struct f2fs_io_info fio = {
1510 .sbi = sbi,
1511 .ino = ino_of_node(page),
1512 .type = NODE,
1513 .op = REQ_OP_WRITE,
1514 .op_flags = wbc_to_write_flags(wbc),
1515 .page = page,
1516 .encrypted_page = NULL,
1517 .submitted = false,
1518 .io_type = io_type,
1519 .io_wbc = wbc,
1520 };
1521 unsigned int seq;
1522
1523 trace_f2fs_writepage(page, NODE);
1524
1525 if (unlikely(f2fs_cp_error(sbi))) {
1526 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1527 ClearPageUptodate(page);
1528 dec_page_count(sbi, F2FS_DIRTY_NODES);
1529 unlock_page(page);
1530 return 0;
1531 }
1532 goto redirty_out;
1533 }
1534
1535 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1536 goto redirty_out;
1537
1538 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1539 wbc->sync_mode == WB_SYNC_NONE &&
1540 IS_DNODE(page) && is_cold_node(page))
1541 goto redirty_out;
1542
1543 /* get old block addr of this node page */
1544 nid = nid_of_node(page);
1545 f2fs_bug_on(sbi, page->index != nid);
1546
1547 if (f2fs_get_node_info(sbi, nid, &ni))
1548 goto redirty_out;
1549
1550 if (wbc->for_reclaim) {
1551 if (!down_read_trylock(&sbi->node_write))
1552 goto redirty_out;
1553 } else {
1554 down_read(&sbi->node_write);
1555 }
1556
1557 /* This page is already truncated */
1558 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1559 ClearPageUptodate(page);
1560 dec_page_count(sbi, F2FS_DIRTY_NODES);
1561 up_read(&sbi->node_write);
1562 unlock_page(page);
1563 return 0;
1564 }
1565
1566 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1567 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1568 DATA_GENERIC_ENHANCE)) {
1569 up_read(&sbi->node_write);
1570 goto redirty_out;
1571 }
1572
1573 if (atomic && !test_opt(sbi, NOBARRIER))
1574 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1575
1576 /* should add to global list before clearing PAGECACHE status */
1577 if (f2fs_in_warm_node_list(sbi, page)) {
1578 seq = f2fs_add_fsync_node_entry(sbi, page);
1579 if (seq_id)
1580 *seq_id = seq;
1581 }
1582
1583 set_page_writeback(page);
1584 ClearPageError(page);
1585
1586 fio.old_blkaddr = ni.blk_addr;
1587 f2fs_do_write_node_page(nid, &fio);
1588 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1589 dec_page_count(sbi, F2FS_DIRTY_NODES);
1590 up_read(&sbi->node_write);
1591
1592 if (wbc->for_reclaim) {
1593 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1594 submitted = NULL;
1595 }
1596
1597 unlock_page(page);
1598
1599 if (unlikely(f2fs_cp_error(sbi))) {
1600 f2fs_submit_merged_write(sbi, NODE);
1601 submitted = NULL;
1602 }
1603 if (submitted)
1604 *submitted = fio.submitted;
1605
1606 if (do_balance)
1607 f2fs_balance_fs(sbi, false);
1608 return 0;
1609
1610redirty_out:
1611 redirty_page_for_writepage(wbc, page);
1612 return AOP_WRITEPAGE_ACTIVATE;
1613}
1614
1615int f2fs_move_node_page(struct page *node_page, int gc_type)
1616{
1617 int err = 0;
1618
1619 if (gc_type == FG_GC) {
1620 struct writeback_control wbc = {
1621 .sync_mode = WB_SYNC_ALL,
1622 .nr_to_write = 1,
1623 .for_reclaim = 0,
1624 };
1625
1626 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1627
1628 set_page_dirty(node_page);
1629
1630 if (!clear_page_dirty_for_io(node_page)) {
1631 err = -EAGAIN;
1632 goto out_page;
1633 }
1634
1635 if (__write_node_page(node_page, false, NULL,
1636 &wbc, false, FS_GC_NODE_IO, NULL)) {
1637 err = -EAGAIN;
1638 unlock_page(node_page);
1639 }
1640 goto release_page;
1641 } else {
1642 /* set page dirty and write it */
1643 if (!PageWriteback(node_page))
1644 set_page_dirty(node_page);
1645 }
1646out_page:
1647 unlock_page(node_page);
1648release_page:
1649 f2fs_put_page(node_page, 0);
1650 return err;
1651}
1652
1653static int f2fs_write_node_page(struct page *page,
1654 struct writeback_control *wbc)
1655{
1656 return __write_node_page(page, false, NULL, wbc, false,
1657 FS_NODE_IO, NULL);
1658}
1659
1660int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1661 struct writeback_control *wbc, bool atomic,
1662 unsigned int *seq_id)
1663{
1664 pgoff_t index;
1665 struct pagevec pvec;
1666 int ret = 0;
1667 struct page *last_page = NULL;
1668 bool marked = false;
1669 nid_t ino = inode->i_ino;
1670 int nr_pages;
1671 int nwritten = 0;
1672
1673 if (atomic) {
1674 last_page = last_fsync_dnode(sbi, ino);
1675 if (IS_ERR_OR_NULL(last_page))
1676 return PTR_ERR_OR_ZERO(last_page);
1677 }
1678retry:
1679 pagevec_init(&pvec);
1680 index = 0;
1681
1682 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1683 PAGECACHE_TAG_DIRTY))) {
1684 int i;
1685
1686 for (i = 0; i < nr_pages; i++) {
1687 struct page *page = pvec.pages[i];
1688 bool submitted = false;
1689
1690 if (unlikely(f2fs_cp_error(sbi))) {
1691 f2fs_put_page(last_page, 0);
1692 pagevec_release(&pvec);
1693 ret = -EIO;
1694 goto out;
1695 }
1696
1697 if (!IS_DNODE(page) || !is_cold_node(page))
1698 continue;
1699 if (ino_of_node(page) != ino)
1700 continue;
1701
1702 lock_page(page);
1703
1704 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1705continue_unlock:
1706 unlock_page(page);
1707 continue;
1708 }
1709 if (ino_of_node(page) != ino)
1710 goto continue_unlock;
1711
1712 if (!PageDirty(page) && page != last_page) {
1713 /* someone wrote it for us */
1714 goto continue_unlock;
1715 }
1716
1717 f2fs_wait_on_page_writeback(page, NODE, true, true);
1718
1719 set_fsync_mark(page, 0);
1720 set_dentry_mark(page, 0);
1721
1722 if (!atomic || page == last_page) {
1723 set_fsync_mark(page, 1);
1724 if (IS_INODE(page)) {
1725 if (is_inode_flag_set(inode,
1726 FI_DIRTY_INODE))
1727 f2fs_update_inode(inode, page);
1728 set_dentry_mark(page,
1729 f2fs_need_dentry_mark(sbi, ino));
1730 }
1731 /* may be written by other thread */
1732 if (!PageDirty(page))
1733 set_page_dirty(page);
1734 }
1735
1736 if (!clear_page_dirty_for_io(page))
1737 goto continue_unlock;
1738
1739 ret = __write_node_page(page, atomic &&
1740 page == last_page,
1741 &submitted, wbc, true,
1742 FS_NODE_IO, seq_id);
1743 if (ret) {
1744 unlock_page(page);
1745 f2fs_put_page(last_page, 0);
1746 break;
1747 } else if (submitted) {
1748 nwritten++;
1749 }
1750
1751 if (page == last_page) {
1752 f2fs_put_page(page, 0);
1753 marked = true;
1754 break;
1755 }
1756 }
1757 pagevec_release(&pvec);
1758 cond_resched();
1759
1760 if (ret || marked)
1761 break;
1762 }
1763 if (!ret && atomic && !marked) {
1764 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1765 ino, last_page->index);
1766 lock_page(last_page);
1767 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1768 set_page_dirty(last_page);
1769 unlock_page(last_page);
1770 goto retry;
1771 }
1772out:
1773 if (nwritten)
1774 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1775 return ret ? -EIO: 0;
1776}
1777
1778static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1779{
1780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781 bool clean;
1782
1783 if (inode->i_ino != ino)
1784 return 0;
1785
1786 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1787 return 0;
1788
1789 spin_lock(&sbi->inode_lock[DIRTY_META]);
1790 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1791 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1792
1793 if (clean)
1794 return 0;
1795
1796 inode = igrab(inode);
1797 if (!inode)
1798 return 0;
1799 return 1;
1800}
1801
1802static bool flush_dirty_inode(struct page *page)
1803{
1804 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1805 struct inode *inode;
1806 nid_t ino = ino_of_node(page);
1807
1808 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1809 if (!inode)
1810 return false;
1811
1812 f2fs_update_inode(inode, page);
1813 unlock_page(page);
1814
1815 iput(inode);
1816 return true;
1817}
1818
1819void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1820{
1821 pgoff_t index = 0;
1822 struct pagevec pvec;
1823 int nr_pages;
1824
1825 pagevec_init(&pvec);
1826
1827 while ((nr_pages = pagevec_lookup_tag(&pvec,
1828 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1829 int i;
1830
1831 for (i = 0; i < nr_pages; i++) {
1832 struct page *page = pvec.pages[i];
1833
1834 if (!IS_DNODE(page))
1835 continue;
1836
1837 lock_page(page);
1838
1839 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1840continue_unlock:
1841 unlock_page(page);
1842 continue;
1843 }
1844
1845 if (!PageDirty(page)) {
1846 /* someone wrote it for us */
1847 goto continue_unlock;
1848 }
1849
1850 /* flush inline_data, if it's async context. */
1851 if (is_inline_node(page)) {
1852 clear_inline_node(page);
1853 unlock_page(page);
1854 flush_inline_data(sbi, ino_of_node(page));
1855 continue;
1856 }
1857 unlock_page(page);
1858 }
1859 pagevec_release(&pvec);
1860 cond_resched();
1861 }
1862}
1863
1864int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1865 struct writeback_control *wbc,
1866 bool do_balance, enum iostat_type io_type)
1867{
1868 pgoff_t index;
1869 struct pagevec pvec;
1870 int step = 0;
1871 int nwritten = 0;
1872 int ret = 0;
1873 int nr_pages, done = 0;
1874
1875 pagevec_init(&pvec);
1876
1877next_step:
1878 index = 0;
1879
1880 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1881 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1882 int i;
1883
1884 for (i = 0; i < nr_pages; i++) {
1885 struct page *page = pvec.pages[i];
1886 bool submitted = false;
1887 bool may_dirty = true;
1888
1889 /* give a priority to WB_SYNC threads */
1890 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1891 wbc->sync_mode == WB_SYNC_NONE) {
1892 done = 1;
1893 break;
1894 }
1895
1896 /*
1897 * flushing sequence with step:
1898 * 0. indirect nodes
1899 * 1. dentry dnodes
1900 * 2. file dnodes
1901 */
1902 if (step == 0 && IS_DNODE(page))
1903 continue;
1904 if (step == 1 && (!IS_DNODE(page) ||
1905 is_cold_node(page)))
1906 continue;
1907 if (step == 2 && (!IS_DNODE(page) ||
1908 !is_cold_node(page)))
1909 continue;
1910lock_node:
1911 if (wbc->sync_mode == WB_SYNC_ALL)
1912 lock_page(page);
1913 else if (!trylock_page(page))
1914 continue;
1915
1916 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1917continue_unlock:
1918 unlock_page(page);
1919 continue;
1920 }
1921
1922 if (!PageDirty(page)) {
1923 /* someone wrote it for us */
1924 goto continue_unlock;
1925 }
1926
1927 /* flush inline_data/inode, if it's async context. */
1928 if (!do_balance)
1929 goto write_node;
1930
1931 /* flush inline_data */
1932 if (is_inline_node(page)) {
1933 clear_inline_node(page);
1934 unlock_page(page);
1935 flush_inline_data(sbi, ino_of_node(page));
1936 goto lock_node;
1937 }
1938
1939 /* flush dirty inode */
1940 if (IS_INODE(page) && may_dirty) {
1941 may_dirty = false;
1942 if (flush_dirty_inode(page))
1943 goto lock_node;
1944 }
1945write_node:
1946 f2fs_wait_on_page_writeback(page, NODE, true, true);
1947
1948 if (!clear_page_dirty_for_io(page))
1949 goto continue_unlock;
1950
1951 set_fsync_mark(page, 0);
1952 set_dentry_mark(page, 0);
1953
1954 ret = __write_node_page(page, false, &submitted,
1955 wbc, do_balance, io_type, NULL);
1956 if (ret)
1957 unlock_page(page);
1958 else if (submitted)
1959 nwritten++;
1960
1961 if (--wbc->nr_to_write == 0)
1962 break;
1963 }
1964 pagevec_release(&pvec);
1965 cond_resched();
1966
1967 if (wbc->nr_to_write == 0) {
1968 step = 2;
1969 break;
1970 }
1971 }
1972
1973 if (step < 2) {
1974 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1975 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1976 goto out;
1977 step++;
1978 goto next_step;
1979 }
1980out:
1981 if (nwritten)
1982 f2fs_submit_merged_write(sbi, NODE);
1983
1984 if (unlikely(f2fs_cp_error(sbi)))
1985 return -EIO;
1986 return ret;
1987}
1988
1989int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1990 unsigned int seq_id)
1991{
1992 struct fsync_node_entry *fn;
1993 struct page *page;
1994 struct list_head *head = &sbi->fsync_node_list;
1995 unsigned long flags;
1996 unsigned int cur_seq_id = 0;
1997 int ret2, ret = 0;
1998
1999 while (seq_id && cur_seq_id < seq_id) {
2000 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2001 if (list_empty(head)) {
2002 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2003 break;
2004 }
2005 fn = list_first_entry(head, struct fsync_node_entry, list);
2006 if (fn->seq_id > seq_id) {
2007 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2008 break;
2009 }
2010 cur_seq_id = fn->seq_id;
2011 page = fn->page;
2012 get_page(page);
2013 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014
2015 f2fs_wait_on_page_writeback(page, NODE, true, false);
2016 if (TestClearPageError(page))
2017 ret = -EIO;
2018
2019 put_page(page);
2020
2021 if (ret)
2022 break;
2023 }
2024
2025 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2026 if (!ret)
2027 ret = ret2;
2028
2029 return ret;
2030}
2031
2032static int f2fs_write_node_pages(struct address_space *mapping,
2033 struct writeback_control *wbc)
2034{
2035 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2036 struct blk_plug plug;
2037 long diff;
2038
2039 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2040 goto skip_write;
2041
2042 /* balancing f2fs's metadata in background */
2043 f2fs_balance_fs_bg(sbi, true);
2044
2045 /* collect a number of dirty node pages and write together */
2046 if (wbc->sync_mode != WB_SYNC_ALL &&
2047 get_pages(sbi, F2FS_DIRTY_NODES) <
2048 nr_pages_to_skip(sbi, NODE))
2049 goto skip_write;
2050
2051 if (wbc->sync_mode == WB_SYNC_ALL)
2052 atomic_inc(&sbi->wb_sync_req[NODE]);
2053 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2054 goto skip_write;
2055
2056 trace_f2fs_writepages(mapping->host, wbc, NODE);
2057
2058 diff = nr_pages_to_write(sbi, NODE, wbc);
2059 blk_start_plug(&plug);
2060 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2061 blk_finish_plug(&plug);
2062 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2063
2064 if (wbc->sync_mode == WB_SYNC_ALL)
2065 atomic_dec(&sbi->wb_sync_req[NODE]);
2066 return 0;
2067
2068skip_write:
2069 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2070 trace_f2fs_writepages(mapping->host, wbc, NODE);
2071 return 0;
2072}
2073
2074static int f2fs_set_node_page_dirty(struct page *page)
2075{
2076 trace_f2fs_set_page_dirty(page, NODE);
2077
2078 if (!PageUptodate(page))
2079 SetPageUptodate(page);
2080#ifdef CONFIG_F2FS_CHECK_FS
2081 if (IS_INODE(page))
2082 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2083#endif
2084 if (!PageDirty(page)) {
2085 __set_page_dirty_nobuffers(page);
2086 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2087 f2fs_set_page_private(page, 0);
2088 f2fs_trace_pid(page);
2089 return 1;
2090 }
2091 return 0;
2092}
2093
2094/*
2095 * Structure of the f2fs node operations
2096 */
2097const struct address_space_operations f2fs_node_aops = {
2098 .writepage = f2fs_write_node_page,
2099 .writepages = f2fs_write_node_pages,
2100 .set_page_dirty = f2fs_set_node_page_dirty,
2101 .invalidatepage = f2fs_invalidate_page,
2102 .releasepage = f2fs_release_page,
2103#ifdef CONFIG_MIGRATION
2104 .migratepage = f2fs_migrate_page,
2105#endif
2106};
2107
2108static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2109 nid_t n)
2110{
2111 return radix_tree_lookup(&nm_i->free_nid_root, n);
2112}
2113
2114static int __insert_free_nid(struct f2fs_sb_info *sbi,
2115 struct free_nid *i)
2116{
2117 struct f2fs_nm_info *nm_i = NM_I(sbi);
2118
2119 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2120 if (err)
2121 return err;
2122
2123 nm_i->nid_cnt[FREE_NID]++;
2124 list_add_tail(&i->list, &nm_i->free_nid_list);
2125 return 0;
2126}
2127
2128static void __remove_free_nid(struct f2fs_sb_info *sbi,
2129 struct free_nid *i, enum nid_state state)
2130{
2131 struct f2fs_nm_info *nm_i = NM_I(sbi);
2132
2133 f2fs_bug_on(sbi, state != i->state);
2134 nm_i->nid_cnt[state]--;
2135 if (state == FREE_NID)
2136 list_del(&i->list);
2137 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2138}
2139
2140static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2141 enum nid_state org_state, enum nid_state dst_state)
2142{
2143 struct f2fs_nm_info *nm_i = NM_I(sbi);
2144
2145 f2fs_bug_on(sbi, org_state != i->state);
2146 i->state = dst_state;
2147 nm_i->nid_cnt[org_state]--;
2148 nm_i->nid_cnt[dst_state]++;
2149
2150 switch (dst_state) {
2151 case PREALLOC_NID:
2152 list_del(&i->list);
2153 break;
2154 case FREE_NID:
2155 list_add_tail(&i->list, &nm_i->free_nid_list);
2156 break;
2157 default:
2158 BUG_ON(1);
2159 }
2160}
2161
2162static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2163 bool set, bool build)
2164{
2165 struct f2fs_nm_info *nm_i = NM_I(sbi);
2166 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2167 unsigned int nid_ofs = nid - START_NID(nid);
2168
2169 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2170 return;
2171
2172 if (set) {
2173 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2174 return;
2175 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2176 nm_i->free_nid_count[nat_ofs]++;
2177 } else {
2178 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2179 return;
2180 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2181 if (!build)
2182 nm_i->free_nid_count[nat_ofs]--;
2183 }
2184}
2185
2186/* return if the nid is recognized as free */
2187static bool add_free_nid(struct f2fs_sb_info *sbi,
2188 nid_t nid, bool build, bool update)
2189{
2190 struct f2fs_nm_info *nm_i = NM_I(sbi);
2191 struct free_nid *i, *e;
2192 struct nat_entry *ne;
2193 int err = -EINVAL;
2194 bool ret = false;
2195
2196 /* 0 nid should not be used */
2197 if (unlikely(nid == 0))
2198 return false;
2199
2200 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2201 return false;
2202
2203 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2204 i->nid = nid;
2205 i->state = FREE_NID;
2206
2207 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2208
2209 spin_lock(&nm_i->nid_list_lock);
2210
2211 if (build) {
2212 /*
2213 * Thread A Thread B
2214 * - f2fs_create
2215 * - f2fs_new_inode
2216 * - f2fs_alloc_nid
2217 * - __insert_nid_to_list(PREALLOC_NID)
2218 * - f2fs_balance_fs_bg
2219 * - f2fs_build_free_nids
2220 * - __f2fs_build_free_nids
2221 * - scan_nat_page
2222 * - add_free_nid
2223 * - __lookup_nat_cache
2224 * - f2fs_add_link
2225 * - f2fs_init_inode_metadata
2226 * - f2fs_new_inode_page
2227 * - f2fs_new_node_page
2228 * - set_node_addr
2229 * - f2fs_alloc_nid_done
2230 * - __remove_nid_from_list(PREALLOC_NID)
2231 * - __insert_nid_to_list(FREE_NID)
2232 */
2233 ne = __lookup_nat_cache(nm_i, nid);
2234 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2235 nat_get_blkaddr(ne) != NULL_ADDR))
2236 goto err_out;
2237
2238 e = __lookup_free_nid_list(nm_i, nid);
2239 if (e) {
2240 if (e->state == FREE_NID)
2241 ret = true;
2242 goto err_out;
2243 }
2244 }
2245 ret = true;
2246 err = __insert_free_nid(sbi, i);
2247err_out:
2248 if (update) {
2249 update_free_nid_bitmap(sbi, nid, ret, build);
2250 if (!build)
2251 nm_i->available_nids++;
2252 }
2253 spin_unlock(&nm_i->nid_list_lock);
2254 radix_tree_preload_end();
2255
2256 if (err)
2257 kmem_cache_free(free_nid_slab, i);
2258 return ret;
2259}
2260
2261static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2262{
2263 struct f2fs_nm_info *nm_i = NM_I(sbi);
2264 struct free_nid *i;
2265 bool need_free = false;
2266
2267 spin_lock(&nm_i->nid_list_lock);
2268 i = __lookup_free_nid_list(nm_i, nid);
2269 if (i && i->state == FREE_NID) {
2270 __remove_free_nid(sbi, i, FREE_NID);
2271 need_free = true;
2272 }
2273 spin_unlock(&nm_i->nid_list_lock);
2274
2275 if (need_free)
2276 kmem_cache_free(free_nid_slab, i);
2277}
2278
2279static int scan_nat_page(struct f2fs_sb_info *sbi,
2280 struct page *nat_page, nid_t start_nid)
2281{
2282 struct f2fs_nm_info *nm_i = NM_I(sbi);
2283 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2284 block_t blk_addr;
2285 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2286 int i;
2287
2288 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2289
2290 i = start_nid % NAT_ENTRY_PER_BLOCK;
2291
2292 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2293 if (unlikely(start_nid >= nm_i->max_nid))
2294 break;
2295
2296 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2297
2298 if (blk_addr == NEW_ADDR)
2299 return -EINVAL;
2300
2301 if (blk_addr == NULL_ADDR) {
2302 add_free_nid(sbi, start_nid, true, true);
2303 } else {
2304 spin_lock(&NM_I(sbi)->nid_list_lock);
2305 update_free_nid_bitmap(sbi, start_nid, false, true);
2306 spin_unlock(&NM_I(sbi)->nid_list_lock);
2307 }
2308 }
2309
2310 return 0;
2311}
2312
2313static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2314{
2315 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2316 struct f2fs_journal *journal = curseg->journal;
2317 int i;
2318
2319 down_read(&curseg->journal_rwsem);
2320 for (i = 0; i < nats_in_cursum(journal); i++) {
2321 block_t addr;
2322 nid_t nid;
2323
2324 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2325 nid = le32_to_cpu(nid_in_journal(journal, i));
2326 if (addr == NULL_ADDR)
2327 add_free_nid(sbi, nid, true, false);
2328 else
2329 remove_free_nid(sbi, nid);
2330 }
2331 up_read(&curseg->journal_rwsem);
2332}
2333
2334static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2335{
2336 struct f2fs_nm_info *nm_i = NM_I(sbi);
2337 unsigned int i, idx;
2338 nid_t nid;
2339
2340 down_read(&nm_i->nat_tree_lock);
2341
2342 for (i = 0; i < nm_i->nat_blocks; i++) {
2343 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2344 continue;
2345 if (!nm_i->free_nid_count[i])
2346 continue;
2347 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2348 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2349 NAT_ENTRY_PER_BLOCK, idx);
2350 if (idx >= NAT_ENTRY_PER_BLOCK)
2351 break;
2352
2353 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2354 add_free_nid(sbi, nid, true, false);
2355
2356 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2357 goto out;
2358 }
2359 }
2360out:
2361 scan_curseg_cache(sbi);
2362
2363 up_read(&nm_i->nat_tree_lock);
2364}
2365
2366static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2367 bool sync, bool mount)
2368{
2369 struct f2fs_nm_info *nm_i = NM_I(sbi);
2370 int i = 0, ret;
2371 nid_t nid = nm_i->next_scan_nid;
2372
2373 if (unlikely(nid >= nm_i->max_nid))
2374 nid = 0;
2375
2376 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2377 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2378
2379 /* Enough entries */
2380 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2381 return 0;
2382
2383 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2384 return 0;
2385
2386 if (!mount) {
2387 /* try to find free nids in free_nid_bitmap */
2388 scan_free_nid_bits(sbi);
2389
2390 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2391 return 0;
2392 }
2393
2394 /* readahead nat pages to be scanned */
2395 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2396 META_NAT, true);
2397
2398 down_read(&nm_i->nat_tree_lock);
2399
2400 while (1) {
2401 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2402 nm_i->nat_block_bitmap)) {
2403 struct page *page = get_current_nat_page(sbi, nid);
2404
2405 if (IS_ERR(page)) {
2406 ret = PTR_ERR(page);
2407 } else {
2408 ret = scan_nat_page(sbi, page, nid);
2409 f2fs_put_page(page, 1);
2410 }
2411
2412 if (ret) {
2413 up_read(&nm_i->nat_tree_lock);
2414 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2415 return ret;
2416 }
2417 }
2418
2419 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2420 if (unlikely(nid >= nm_i->max_nid))
2421 nid = 0;
2422
2423 if (++i >= FREE_NID_PAGES)
2424 break;
2425 }
2426
2427 /* go to the next free nat pages to find free nids abundantly */
2428 nm_i->next_scan_nid = nid;
2429
2430 /* find free nids from current sum_pages */
2431 scan_curseg_cache(sbi);
2432
2433 up_read(&nm_i->nat_tree_lock);
2434
2435 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2436 nm_i->ra_nid_pages, META_NAT, false);
2437
2438 return 0;
2439}
2440
2441int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2442{
2443 int ret;
2444
2445 mutex_lock(&NM_I(sbi)->build_lock);
2446 ret = __f2fs_build_free_nids(sbi, sync, mount);
2447 mutex_unlock(&NM_I(sbi)->build_lock);
2448
2449 return ret;
2450}
2451
2452/*
2453 * If this function returns success, caller can obtain a new nid
2454 * from second parameter of this function.
2455 * The returned nid could be used ino as well as nid when inode is created.
2456 */
2457bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2458{
2459 struct f2fs_nm_info *nm_i = NM_I(sbi);
2460 struct free_nid *i = NULL;
2461retry:
2462 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2463 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2464 return false;
2465 }
2466
2467 spin_lock(&nm_i->nid_list_lock);
2468
2469 if (unlikely(nm_i->available_nids == 0)) {
2470 spin_unlock(&nm_i->nid_list_lock);
2471 return false;
2472 }
2473
2474 /* We should not use stale free nids created by f2fs_build_free_nids */
2475 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2476 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2477 i = list_first_entry(&nm_i->free_nid_list,
2478 struct free_nid, list);
2479 *nid = i->nid;
2480
2481 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2482 nm_i->available_nids--;
2483
2484 update_free_nid_bitmap(sbi, *nid, false, false);
2485
2486 spin_unlock(&nm_i->nid_list_lock);
2487 return true;
2488 }
2489 spin_unlock(&nm_i->nid_list_lock);
2490
2491 /* Let's scan nat pages and its caches to get free nids */
2492 if (!f2fs_build_free_nids(sbi, true, false))
2493 goto retry;
2494 return false;
2495}
2496
2497/*
2498 * f2fs_alloc_nid() should be called prior to this function.
2499 */
2500void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2501{
2502 struct f2fs_nm_info *nm_i = NM_I(sbi);
2503 struct free_nid *i;
2504
2505 spin_lock(&nm_i->nid_list_lock);
2506 i = __lookup_free_nid_list(nm_i, nid);
2507 f2fs_bug_on(sbi, !i);
2508 __remove_free_nid(sbi, i, PREALLOC_NID);
2509 spin_unlock(&nm_i->nid_list_lock);
2510
2511 kmem_cache_free(free_nid_slab, i);
2512}
2513
2514/*
2515 * f2fs_alloc_nid() should be called prior to this function.
2516 */
2517void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2518{
2519 struct f2fs_nm_info *nm_i = NM_I(sbi);
2520 struct free_nid *i;
2521 bool need_free = false;
2522
2523 if (!nid)
2524 return;
2525
2526 spin_lock(&nm_i->nid_list_lock);
2527 i = __lookup_free_nid_list(nm_i, nid);
2528 f2fs_bug_on(sbi, !i);
2529
2530 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2531 __remove_free_nid(sbi, i, PREALLOC_NID);
2532 need_free = true;
2533 } else {
2534 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2535 }
2536
2537 nm_i->available_nids++;
2538
2539 update_free_nid_bitmap(sbi, nid, true, false);
2540
2541 spin_unlock(&nm_i->nid_list_lock);
2542
2543 if (need_free)
2544 kmem_cache_free(free_nid_slab, i);
2545}
2546
2547int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2548{
2549 struct f2fs_nm_info *nm_i = NM_I(sbi);
2550 int nr = nr_shrink;
2551
2552 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2553 return 0;
2554
2555 if (!mutex_trylock(&nm_i->build_lock))
2556 return 0;
2557
2558 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2559 struct free_nid *i, *next;
2560 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2561
2562 spin_lock(&nm_i->nid_list_lock);
2563 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2564 if (!nr_shrink || !batch ||
2565 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2566 break;
2567 __remove_free_nid(sbi, i, FREE_NID);
2568 kmem_cache_free(free_nid_slab, i);
2569 nr_shrink--;
2570 batch--;
2571 }
2572 spin_unlock(&nm_i->nid_list_lock);
2573 }
2574
2575 mutex_unlock(&nm_i->build_lock);
2576
2577 return nr - nr_shrink;
2578}
2579
2580int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2581{
2582 void *src_addr, *dst_addr;
2583 size_t inline_size;
2584 struct page *ipage;
2585 struct f2fs_inode *ri;
2586
2587 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2588 if (IS_ERR(ipage))
2589 return PTR_ERR(ipage);
2590
2591 ri = F2FS_INODE(page);
2592 if (ri->i_inline & F2FS_INLINE_XATTR) {
2593 set_inode_flag(inode, FI_INLINE_XATTR);
2594 } else {
2595 clear_inode_flag(inode, FI_INLINE_XATTR);
2596 goto update_inode;
2597 }
2598
2599 dst_addr = inline_xattr_addr(inode, ipage);
2600 src_addr = inline_xattr_addr(inode, page);
2601 inline_size = inline_xattr_size(inode);
2602
2603 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2604 memcpy(dst_addr, src_addr, inline_size);
2605update_inode:
2606 f2fs_update_inode(inode, ipage);
2607 f2fs_put_page(ipage, 1);
2608 return 0;
2609}
2610
2611int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2612{
2613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2614 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2615 nid_t new_xnid;
2616 struct dnode_of_data dn;
2617 struct node_info ni;
2618 struct page *xpage;
2619 int err;
2620
2621 if (!prev_xnid)
2622 goto recover_xnid;
2623
2624 /* 1: invalidate the previous xattr nid */
2625 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2626 if (err)
2627 return err;
2628
2629 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2630 dec_valid_node_count(sbi, inode, false);
2631 set_node_addr(sbi, &ni, NULL_ADDR, false);
2632
2633recover_xnid:
2634 /* 2: update xattr nid in inode */
2635 if (!f2fs_alloc_nid(sbi, &new_xnid))
2636 return -ENOSPC;
2637
2638 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2639 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2640 if (IS_ERR(xpage)) {
2641 f2fs_alloc_nid_failed(sbi, new_xnid);
2642 return PTR_ERR(xpage);
2643 }
2644
2645 f2fs_alloc_nid_done(sbi, new_xnid);
2646 f2fs_update_inode_page(inode);
2647
2648 /* 3: update and set xattr node page dirty */
2649 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2650
2651 set_page_dirty(xpage);
2652 f2fs_put_page(xpage, 1);
2653
2654 return 0;
2655}
2656
2657int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2658{
2659 struct f2fs_inode *src, *dst;
2660 nid_t ino = ino_of_node(page);
2661 struct node_info old_ni, new_ni;
2662 struct page *ipage;
2663 int err;
2664
2665 err = f2fs_get_node_info(sbi, ino, &old_ni);
2666 if (err)
2667 return err;
2668
2669 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2670 return -EINVAL;
2671retry:
2672 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2673 if (!ipage) {
2674 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2675 goto retry;
2676 }
2677
2678 /* Should not use this inode from free nid list */
2679 remove_free_nid(sbi, ino);
2680
2681 if (!PageUptodate(ipage))
2682 SetPageUptodate(ipage);
2683 fill_node_footer(ipage, ino, ino, 0, true);
2684 set_cold_node(ipage, false);
2685
2686 src = F2FS_INODE(page);
2687 dst = F2FS_INODE(ipage);
2688
2689 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2690 dst->i_size = 0;
2691 dst->i_blocks = cpu_to_le64(1);
2692 dst->i_links = cpu_to_le32(1);
2693 dst->i_xattr_nid = 0;
2694 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2695 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2696 dst->i_extra_isize = src->i_extra_isize;
2697
2698 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2699 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2700 i_inline_xattr_size))
2701 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2702
2703 if (f2fs_sb_has_project_quota(sbi) &&
2704 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2705 i_projid))
2706 dst->i_projid = src->i_projid;
2707
2708 if (f2fs_sb_has_inode_crtime(sbi) &&
2709 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2710 i_crtime_nsec)) {
2711 dst->i_crtime = src->i_crtime;
2712 dst->i_crtime_nsec = src->i_crtime_nsec;
2713 }
2714 }
2715
2716 new_ni = old_ni;
2717 new_ni.ino = ino;
2718
2719 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2720 WARN_ON(1);
2721 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2722 inc_valid_inode_count(sbi);
2723 set_page_dirty(ipage);
2724 f2fs_put_page(ipage, 1);
2725 return 0;
2726}
2727
2728int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2729 unsigned int segno, struct f2fs_summary_block *sum)
2730{
2731 struct f2fs_node *rn;
2732 struct f2fs_summary *sum_entry;
2733 block_t addr;
2734 int i, idx, last_offset, nrpages;
2735
2736 /* scan the node segment */
2737 last_offset = sbi->blocks_per_seg;
2738 addr = START_BLOCK(sbi, segno);
2739 sum_entry = &sum->entries[0];
2740
2741 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2742 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2743
2744 /* readahead node pages */
2745 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2746
2747 for (idx = addr; idx < addr + nrpages; idx++) {
2748 struct page *page = f2fs_get_tmp_page(sbi, idx);
2749
2750 if (IS_ERR(page))
2751 return PTR_ERR(page);
2752
2753 rn = F2FS_NODE(page);
2754 sum_entry->nid = rn->footer.nid;
2755 sum_entry->version = 0;
2756 sum_entry->ofs_in_node = 0;
2757 sum_entry++;
2758 f2fs_put_page(page, 1);
2759 }
2760
2761 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2762 addr + nrpages);
2763 }
2764 return 0;
2765}
2766
2767static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2768{
2769 struct f2fs_nm_info *nm_i = NM_I(sbi);
2770 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2771 struct f2fs_journal *journal = curseg->journal;
2772 int i;
2773
2774 down_write(&curseg->journal_rwsem);
2775 for (i = 0; i < nats_in_cursum(journal); i++) {
2776 struct nat_entry *ne;
2777 struct f2fs_nat_entry raw_ne;
2778 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2779
2780 raw_ne = nat_in_journal(journal, i);
2781
2782 ne = __lookup_nat_cache(nm_i, nid);
2783 if (!ne) {
2784 ne = __alloc_nat_entry(nid, true);
2785 __init_nat_entry(nm_i, ne, &raw_ne, true);
2786 }
2787
2788 /*
2789 * if a free nat in journal has not been used after last
2790 * checkpoint, we should remove it from available nids,
2791 * since later we will add it again.
2792 */
2793 if (!get_nat_flag(ne, IS_DIRTY) &&
2794 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2795 spin_lock(&nm_i->nid_list_lock);
2796 nm_i->available_nids--;
2797 spin_unlock(&nm_i->nid_list_lock);
2798 }
2799
2800 __set_nat_cache_dirty(nm_i, ne);
2801 }
2802 update_nats_in_cursum(journal, -i);
2803 up_write(&curseg->journal_rwsem);
2804}
2805
2806static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2807 struct list_head *head, int max)
2808{
2809 struct nat_entry_set *cur;
2810
2811 if (nes->entry_cnt >= max)
2812 goto add_out;
2813
2814 list_for_each_entry(cur, head, set_list) {
2815 if (cur->entry_cnt >= nes->entry_cnt) {
2816 list_add(&nes->set_list, cur->set_list.prev);
2817 return;
2818 }
2819 }
2820add_out:
2821 list_add_tail(&nes->set_list, head);
2822}
2823
2824static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2825 struct page *page)
2826{
2827 struct f2fs_nm_info *nm_i = NM_I(sbi);
2828 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2829 struct f2fs_nat_block *nat_blk = page_address(page);
2830 int valid = 0;
2831 int i = 0;
2832
2833 if (!enabled_nat_bits(sbi, NULL))
2834 return;
2835
2836 if (nat_index == 0) {
2837 valid = 1;
2838 i = 1;
2839 }
2840 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2841 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2842 valid++;
2843 }
2844 if (valid == 0) {
2845 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2846 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2847 return;
2848 }
2849
2850 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2851 if (valid == NAT_ENTRY_PER_BLOCK)
2852 __set_bit_le(nat_index, nm_i->full_nat_bits);
2853 else
2854 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2855}
2856
2857static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2858 struct nat_entry_set *set, struct cp_control *cpc)
2859{
2860 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2861 struct f2fs_journal *journal = curseg->journal;
2862 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2863 bool to_journal = true;
2864 struct f2fs_nat_block *nat_blk;
2865 struct nat_entry *ne, *cur;
2866 struct page *page = NULL;
2867
2868 /*
2869 * there are two steps to flush nat entries:
2870 * #1, flush nat entries to journal in current hot data summary block.
2871 * #2, flush nat entries to nat page.
2872 */
2873 if (enabled_nat_bits(sbi, cpc) ||
2874 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2875 to_journal = false;
2876
2877 if (to_journal) {
2878 down_write(&curseg->journal_rwsem);
2879 } else {
2880 page = get_next_nat_page(sbi, start_nid);
2881 if (IS_ERR(page))
2882 return PTR_ERR(page);
2883
2884 nat_blk = page_address(page);
2885 f2fs_bug_on(sbi, !nat_blk);
2886 }
2887
2888 /* flush dirty nats in nat entry set */
2889 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2890 struct f2fs_nat_entry *raw_ne;
2891 nid_t nid = nat_get_nid(ne);
2892 int offset;
2893
2894 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2895
2896 if (to_journal) {
2897 offset = f2fs_lookup_journal_in_cursum(journal,
2898 NAT_JOURNAL, nid, 1);
2899 f2fs_bug_on(sbi, offset < 0);
2900 raw_ne = &nat_in_journal(journal, offset);
2901 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2902 } else {
2903 raw_ne = &nat_blk->entries[nid - start_nid];
2904 }
2905 raw_nat_from_node_info(raw_ne, &ne->ni);
2906 nat_reset_flag(ne);
2907 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2908 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2909 add_free_nid(sbi, nid, false, true);
2910 } else {
2911 spin_lock(&NM_I(sbi)->nid_list_lock);
2912 update_free_nid_bitmap(sbi, nid, false, false);
2913 spin_unlock(&NM_I(sbi)->nid_list_lock);
2914 }
2915 }
2916
2917 if (to_journal) {
2918 up_write(&curseg->journal_rwsem);
2919 } else {
2920 __update_nat_bits(sbi, start_nid, page);
2921 f2fs_put_page(page, 1);
2922 }
2923
2924 /* Allow dirty nats by node block allocation in write_begin */
2925 if (!set->entry_cnt) {
2926 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2927 kmem_cache_free(nat_entry_set_slab, set);
2928 }
2929 return 0;
2930}
2931
2932/*
2933 * This function is called during the checkpointing process.
2934 */
2935int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2936{
2937 struct f2fs_nm_info *nm_i = NM_I(sbi);
2938 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2939 struct f2fs_journal *journal = curseg->journal;
2940 struct nat_entry_set *setvec[SETVEC_SIZE];
2941 struct nat_entry_set *set, *tmp;
2942 unsigned int found;
2943 nid_t set_idx = 0;
2944 LIST_HEAD(sets);
2945 int err = 0;
2946
2947 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2948 if (enabled_nat_bits(sbi, cpc)) {
2949 down_write(&nm_i->nat_tree_lock);
2950 remove_nats_in_journal(sbi);
2951 up_write(&nm_i->nat_tree_lock);
2952 }
2953
2954 if (!nm_i->dirty_nat_cnt)
2955 return 0;
2956
2957 down_write(&nm_i->nat_tree_lock);
2958
2959 /*
2960 * if there are no enough space in journal to store dirty nat
2961 * entries, remove all entries from journal and merge them
2962 * into nat entry set.
2963 */
2964 if (enabled_nat_bits(sbi, cpc) ||
2965 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2966 remove_nats_in_journal(sbi);
2967
2968 while ((found = __gang_lookup_nat_set(nm_i,
2969 set_idx, SETVEC_SIZE, setvec))) {
2970 unsigned idx;
2971 set_idx = setvec[found - 1]->set + 1;
2972 for (idx = 0; idx < found; idx++)
2973 __adjust_nat_entry_set(setvec[idx], &sets,
2974 MAX_NAT_JENTRIES(journal));
2975 }
2976
2977 /* flush dirty nats in nat entry set */
2978 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2979 err = __flush_nat_entry_set(sbi, set, cpc);
2980 if (err)
2981 break;
2982 }
2983
2984 up_write(&nm_i->nat_tree_lock);
2985 /* Allow dirty nats by node block allocation in write_begin */
2986
2987 return err;
2988}
2989
2990static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2991{
2992 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2993 struct f2fs_nm_info *nm_i = NM_I(sbi);
2994 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2995 unsigned int i;
2996 __u64 cp_ver = cur_cp_version(ckpt);
2997 block_t nat_bits_addr;
2998
2999 if (!enabled_nat_bits(sbi, NULL))
3000 return 0;
3001
3002 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3003 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3004 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3005 if (!nm_i->nat_bits)
3006 return -ENOMEM;
3007
3008 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3009 nm_i->nat_bits_blocks;
3010 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3011 struct page *page;
3012
3013 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3014 if (IS_ERR(page))
3015 return PTR_ERR(page);
3016
3017 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3018 page_address(page), F2FS_BLKSIZE);
3019 f2fs_put_page(page, 1);
3020 }
3021
3022 cp_ver |= (cur_cp_crc(ckpt) << 32);
3023 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3024 disable_nat_bits(sbi, true);
3025 return 0;
3026 }
3027
3028 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3029 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3030
3031 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3032 return 0;
3033}
3034
3035static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3036{
3037 struct f2fs_nm_info *nm_i = NM_I(sbi);
3038 unsigned int i = 0;
3039 nid_t nid, last_nid;
3040
3041 if (!enabled_nat_bits(sbi, NULL))
3042 return;
3043
3044 for (i = 0; i < nm_i->nat_blocks; i++) {
3045 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3046 if (i >= nm_i->nat_blocks)
3047 break;
3048
3049 __set_bit_le(i, nm_i->nat_block_bitmap);
3050
3051 nid = i * NAT_ENTRY_PER_BLOCK;
3052 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3053
3054 spin_lock(&NM_I(sbi)->nid_list_lock);
3055 for (; nid < last_nid; nid++)
3056 update_free_nid_bitmap(sbi, nid, true, true);
3057 spin_unlock(&NM_I(sbi)->nid_list_lock);
3058 }
3059
3060 for (i = 0; i < nm_i->nat_blocks; i++) {
3061 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3062 if (i >= nm_i->nat_blocks)
3063 break;
3064
3065 __set_bit_le(i, nm_i->nat_block_bitmap);
3066 }
3067}
3068
3069static int init_node_manager(struct f2fs_sb_info *sbi)
3070{
3071 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3072 struct f2fs_nm_info *nm_i = NM_I(sbi);
3073 unsigned char *version_bitmap;
3074 unsigned int nat_segs;
3075 int err;
3076
3077 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3078
3079 /* segment_count_nat includes pair segment so divide to 2. */
3080 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3081 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3082 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3083
3084 /* not used nids: 0, node, meta, (and root counted as valid node) */
3085 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3086 F2FS_RESERVED_NODE_NUM;
3087 nm_i->nid_cnt[FREE_NID] = 0;
3088 nm_i->nid_cnt[PREALLOC_NID] = 0;
3089 nm_i->nat_cnt = 0;
3090 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3091 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3092 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3093
3094 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3095 INIT_LIST_HEAD(&nm_i->free_nid_list);
3096 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3097 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3098 INIT_LIST_HEAD(&nm_i->nat_entries);
3099 spin_lock_init(&nm_i->nat_list_lock);
3100
3101 mutex_init(&nm_i->build_lock);
3102 spin_lock_init(&nm_i->nid_list_lock);
3103 init_rwsem(&nm_i->nat_tree_lock);
3104
3105 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3106 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3107 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3108 if (!version_bitmap)
3109 return -EFAULT;
3110
3111 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3112 GFP_KERNEL);
3113 if (!nm_i->nat_bitmap)
3114 return -ENOMEM;
3115
3116 err = __get_nat_bitmaps(sbi);
3117 if (err)
3118 return err;
3119
3120#ifdef CONFIG_F2FS_CHECK_FS
3121 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3122 GFP_KERNEL);
3123 if (!nm_i->nat_bitmap_mir)
3124 return -ENOMEM;
3125#endif
3126
3127 return 0;
3128}
3129
3130static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3131{
3132 struct f2fs_nm_info *nm_i = NM_I(sbi);
3133 int i;
3134
3135 nm_i->free_nid_bitmap =
3136 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3137 nm_i->nat_blocks),
3138 GFP_KERNEL);
3139 if (!nm_i->free_nid_bitmap)
3140 return -ENOMEM;
3141
3142 for (i = 0; i < nm_i->nat_blocks; i++) {
3143 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3144 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3145 if (!nm_i->free_nid_bitmap[i])
3146 return -ENOMEM;
3147 }
3148
3149 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3150 GFP_KERNEL);
3151 if (!nm_i->nat_block_bitmap)
3152 return -ENOMEM;
3153
3154 nm_i->free_nid_count =
3155 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3156 nm_i->nat_blocks),
3157 GFP_KERNEL);
3158 if (!nm_i->free_nid_count)
3159 return -ENOMEM;
3160 return 0;
3161}
3162
3163int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3164{
3165 int err;
3166
3167 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3168 GFP_KERNEL);
3169 if (!sbi->nm_info)
3170 return -ENOMEM;
3171
3172 err = init_node_manager(sbi);
3173 if (err)
3174 return err;
3175
3176 err = init_free_nid_cache(sbi);
3177 if (err)
3178 return err;
3179
3180 /* load free nid status from nat_bits table */
3181 load_free_nid_bitmap(sbi);
3182
3183 return f2fs_build_free_nids(sbi, true, true);
3184}
3185
3186void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3187{
3188 struct f2fs_nm_info *nm_i = NM_I(sbi);
3189 struct free_nid *i, *next_i;
3190 struct nat_entry *natvec[NATVEC_SIZE];
3191 struct nat_entry_set *setvec[SETVEC_SIZE];
3192 nid_t nid = 0;
3193 unsigned int found;
3194
3195 if (!nm_i)
3196 return;
3197
3198 /* destroy free nid list */
3199 spin_lock(&nm_i->nid_list_lock);
3200 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3201 __remove_free_nid(sbi, i, FREE_NID);
3202 spin_unlock(&nm_i->nid_list_lock);
3203 kmem_cache_free(free_nid_slab, i);
3204 spin_lock(&nm_i->nid_list_lock);
3205 }
3206 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3207 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3208 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3209 spin_unlock(&nm_i->nid_list_lock);
3210
3211 /* destroy nat cache */
3212 down_write(&nm_i->nat_tree_lock);
3213 while ((found = __gang_lookup_nat_cache(nm_i,
3214 nid, NATVEC_SIZE, natvec))) {
3215 unsigned idx;
3216
3217 nid = nat_get_nid(natvec[found - 1]) + 1;
3218 for (idx = 0; idx < found; idx++) {
3219 spin_lock(&nm_i->nat_list_lock);
3220 list_del(&natvec[idx]->list);
3221 spin_unlock(&nm_i->nat_list_lock);
3222
3223 __del_from_nat_cache(nm_i, natvec[idx]);
3224 }
3225 }
3226 f2fs_bug_on(sbi, nm_i->nat_cnt);
3227
3228 /* destroy nat set cache */
3229 nid = 0;
3230 while ((found = __gang_lookup_nat_set(nm_i,
3231 nid, SETVEC_SIZE, setvec))) {
3232 unsigned idx;
3233
3234 nid = setvec[found - 1]->set + 1;
3235 for (idx = 0; idx < found; idx++) {
3236 /* entry_cnt is not zero, when cp_error was occurred */
3237 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3238 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3239 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3240 }
3241 }
3242 up_write(&nm_i->nat_tree_lock);
3243
3244 kvfree(nm_i->nat_block_bitmap);
3245 if (nm_i->free_nid_bitmap) {
3246 int i;
3247
3248 for (i = 0; i < nm_i->nat_blocks; i++)
3249 kvfree(nm_i->free_nid_bitmap[i]);
3250 kvfree(nm_i->free_nid_bitmap);
3251 }
3252 kvfree(nm_i->free_nid_count);
3253
3254 kvfree(nm_i->nat_bitmap);
3255 kvfree(nm_i->nat_bits);
3256#ifdef CONFIG_F2FS_CHECK_FS
3257 kvfree(nm_i->nat_bitmap_mir);
3258#endif
3259 sbi->nm_info = NULL;
3260 kvfree(nm_i);
3261}
3262
3263int __init f2fs_create_node_manager_caches(void)
3264{
3265 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3266 sizeof(struct nat_entry));
3267 if (!nat_entry_slab)
3268 goto fail;
3269
3270 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3271 sizeof(struct free_nid));
3272 if (!free_nid_slab)
3273 goto destroy_nat_entry;
3274
3275 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3276 sizeof(struct nat_entry_set));
3277 if (!nat_entry_set_slab)
3278 goto destroy_free_nid;
3279
3280 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3281 sizeof(struct fsync_node_entry));
3282 if (!fsync_node_entry_slab)
3283 goto destroy_nat_entry_set;
3284 return 0;
3285
3286destroy_nat_entry_set:
3287 kmem_cache_destroy(nat_entry_set_slab);
3288destroy_free_nid:
3289 kmem_cache_destroy(free_nid_slab);
3290destroy_nat_entry:
3291 kmem_cache_destroy(nat_entry_slab);
3292fail:
3293 return -ENOMEM;
3294}
3295
3296void f2fs_destroy_node_manager_caches(void)
3297{
3298 kmem_cache_destroy(fsync_node_entry_slab);
3299 kmem_cache_destroy(nat_entry_set_slab);
3300 kmem_cache_destroy(free_nid_slab);
3301 kmem_cache_destroy(nat_entry_slab);
3302}