Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
  49				sizeof(struct free_nid)) >> PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55		if (excess_cached_nats(sbi))
  56			res = false;
  57	} else if (type == DIRTY_DENTS) {
  58		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  59			return false;
  60		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  61		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  62	} else if (type == INO_ENTRIES) {
  63		int i;
  64
  65		for (i = 0; i <= UPDATE_INO; i++)
  66			mem_size += (sbi->im[i].ino_num *
  67				sizeof(struct ino_entry)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  69	} else if (type == EXTENT_CACHE) {
  70		mem_size = (atomic_read(&sbi->total_ext_tree) *
  71				sizeof(struct extent_tree) +
  72				atomic_read(&sbi->total_ext_node) *
  73				sizeof(struct extent_node)) >> PAGE_SHIFT;
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  75	} else {
  76		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return true;
  78	}
  79	return res;
  80}
  81
  82static void clear_node_page_dirty(struct page *page)
  83{
  84	struct address_space *mapping = page->mapping;
  85	unsigned int long flags;
  86
  87	if (PageDirty(page)) {
  88		spin_lock_irqsave(&mapping->tree_lock, flags);
  89		radix_tree_tag_clear(&mapping->page_tree,
  90				page_index(page),
  91				PAGECACHE_TAG_DIRTY);
  92		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  93
  94		clear_page_dirty_for_io(page);
  95		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  96	}
  97	ClearPageUptodate(page);
  98}
  99
 100static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 101{
 102	pgoff_t index = current_nat_addr(sbi, nid);
 103	return get_meta_page(sbi, index);
 104}
 105
 106static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	struct page *src_page;
 109	struct page *dst_page;
 110	pgoff_t src_off;
 111	pgoff_t dst_off;
 112	void *src_addr;
 113	void *dst_addr;
 114	struct f2fs_nm_info *nm_i = NM_I(sbi);
 115
 116	src_off = current_nat_addr(sbi, nid);
 117	dst_off = next_nat_addr(sbi, src_off);
 118
 119	/* get current nat block page with lock */
 120	src_page = get_meta_page(sbi, src_off);
 121	dst_page = grab_meta_page(sbi, dst_off);
 122	f2fs_bug_on(sbi, PageDirty(src_page));
 123
 124	src_addr = page_address(src_page);
 125	dst_addr = page_address(dst_page);
 126	memcpy(dst_addr, src_addr, PAGE_SIZE);
 127	set_page_dirty(dst_page);
 128	f2fs_put_page(src_page, 1);
 129
 130	set_to_next_nat(nm_i, nid);
 131
 132	return dst_page;
 133}
 134
 135static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 136{
 137	return radix_tree_lookup(&nm_i->nat_root, n);
 138}
 139
 140static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 141		nid_t start, unsigned int nr, struct nat_entry **ep)
 142{
 143	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 144}
 145
 146static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 147{
 148	list_del(&e->list);
 149	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 150	nm_i->nat_cnt--;
 151	kmem_cache_free(nat_entry_slab, e);
 152}
 153
 154static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 155						struct nat_entry *ne)
 156{
 157	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 158	struct nat_entry_set *head;
 159
 160	if (get_nat_flag(ne, IS_DIRTY))
 161		return;
 162
 163	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 164	if (!head) {
 165		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 166
 167		INIT_LIST_HEAD(&head->entry_list);
 168		INIT_LIST_HEAD(&head->set_list);
 169		head->set = set;
 170		head->entry_cnt = 0;
 171		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 172	}
 173	list_move_tail(&ne->list, &head->entry_list);
 174	nm_i->dirty_nat_cnt++;
 175	head->entry_cnt++;
 176	set_nat_flag(ne, IS_DIRTY, true);
 177}
 178
 179static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 180						struct nat_entry *ne)
 181{
 182	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 183	struct nat_entry_set *head;
 184
 185	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 186	if (head) {
 187		list_move_tail(&ne->list, &nm_i->nat_entries);
 188		set_nat_flag(ne, IS_DIRTY, false);
 189		head->entry_cnt--;
 190		nm_i->dirty_nat_cnt--;
 191	}
 192}
 193
 194static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 195		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 196{
 197	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 198							start, nr);
 199}
 200
 201int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 202{
 203	struct f2fs_nm_info *nm_i = NM_I(sbi);
 204	struct nat_entry *e;
 205	bool need = false;
 206
 207	down_read(&nm_i->nat_tree_lock);
 208	e = __lookup_nat_cache(nm_i, nid);
 209	if (e) {
 210		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 211				!get_nat_flag(e, HAS_FSYNCED_INODE))
 212			need = true;
 213	}
 214	up_read(&nm_i->nat_tree_lock);
 215	return need;
 216}
 217
 218bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 219{
 220	struct f2fs_nm_info *nm_i = NM_I(sbi);
 221	struct nat_entry *e;
 222	bool is_cp = true;
 223
 224	down_read(&nm_i->nat_tree_lock);
 225	e = __lookup_nat_cache(nm_i, nid);
 226	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 227		is_cp = false;
 228	up_read(&nm_i->nat_tree_lock);
 229	return is_cp;
 230}
 231
 232bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 233{
 234	struct f2fs_nm_info *nm_i = NM_I(sbi);
 235	struct nat_entry *e;
 236	bool need_update = true;
 237
 238	down_read(&nm_i->nat_tree_lock);
 239	e = __lookup_nat_cache(nm_i, ino);
 240	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 241			(get_nat_flag(e, IS_CHECKPOINTED) ||
 242			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 243		need_update = false;
 244	up_read(&nm_i->nat_tree_lock);
 245	return need_update;
 246}
 247
 248static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 249{
 250	struct nat_entry *new;
 251
 252	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 253	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 254	memset(new, 0, sizeof(struct nat_entry));
 255	nat_set_nid(new, nid);
 256	nat_reset_flag(new);
 257	list_add_tail(&new->list, &nm_i->nat_entries);
 258	nm_i->nat_cnt++;
 259	return new;
 260}
 261
 262static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 263						struct f2fs_nat_entry *ne)
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 267
 268	e = __lookup_nat_cache(nm_i, nid);
 269	if (!e) {
 270		e = grab_nat_entry(nm_i, nid);
 271		node_info_from_raw_nat(&e->ni, ne);
 272	} else {
 273		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 274				nat_get_blkaddr(e) !=
 275					le32_to_cpu(ne->block_addr) ||
 276				nat_get_version(e) != ne->version);
 277	}
 278}
 279
 280static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 281			block_t new_blkaddr, bool fsync_done)
 282{
 283	struct f2fs_nm_info *nm_i = NM_I(sbi);
 284	struct nat_entry *e;
 285
 286	down_write(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, ni->nid);
 288	if (!e) {
 289		e = grab_nat_entry(nm_i, ni->nid);
 290		copy_node_info(&e->ni, ni);
 291		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 292	} else if (new_blkaddr == NEW_ADDR) {
 293		/*
 294		 * when nid is reallocated,
 295		 * previous nat entry can be remained in nat cache.
 296		 * So, reinitialize it with new information.
 297		 */
 298		copy_node_info(&e->ni, ni);
 299		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 300	}
 301
 302	/* sanity check */
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 304	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 305			new_blkaddr == NULL_ADDR);
 306	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 309			nat_get_blkaddr(e) != NULL_ADDR &&
 310			new_blkaddr == NEW_ADDR);
 311
 312	/* increment version no as node is removed */
 313	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 314		unsigned char version = nat_get_version(e);
 315		nat_set_version(e, inc_node_version(version));
 316
 317		/* in order to reuse the nid */
 318		if (nm_i->next_scan_nid > ni->nid)
 319			nm_i->next_scan_nid = ni->nid;
 320	}
 321
 322	/* change address */
 323	nat_set_blkaddr(e, new_blkaddr);
 324	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 325		set_nat_flag(e, IS_CHECKPOINTED, false);
 326	__set_nat_cache_dirty(nm_i, e);
 327
 328	/* update fsync_mark if its inode nat entry is still alive */
 329	if (ni->nid != ni->ino)
 330		e = __lookup_nat_cache(nm_i, ni->ino);
 331	if (e) {
 332		if (fsync_done && ni->nid == ni->ino)
 333			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 334		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 335	}
 336	up_write(&nm_i->nat_tree_lock);
 337}
 338
 339int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 340{
 341	struct f2fs_nm_info *nm_i = NM_I(sbi);
 342	int nr = nr_shrink;
 343
 344	if (!down_write_trylock(&nm_i->nat_tree_lock))
 345		return 0;
 346
 347	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 348		struct nat_entry *ne;
 349		ne = list_first_entry(&nm_i->nat_entries,
 350					struct nat_entry, list);
 351		__del_from_nat_cache(nm_i, ne);
 352		nr_shrink--;
 353	}
 354	up_write(&nm_i->nat_tree_lock);
 355	return nr - nr_shrink;
 356}
 357
 358/*
 359 * This function always returns success
 360 */
 361void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 362{
 363	struct f2fs_nm_info *nm_i = NM_I(sbi);
 364	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 365	struct f2fs_journal *journal = curseg->journal;
 366	nid_t start_nid = START_NID(nid);
 367	struct f2fs_nat_block *nat_blk;
 368	struct page *page = NULL;
 369	struct f2fs_nat_entry ne;
 370	struct nat_entry *e;
 371	int i;
 372
 373	ni->nid = nid;
 374
 375	/* Check nat cache */
 376	down_read(&nm_i->nat_tree_lock);
 377	e = __lookup_nat_cache(nm_i, nid);
 378	if (e) {
 379		ni->ino = nat_get_ino(e);
 380		ni->blk_addr = nat_get_blkaddr(e);
 381		ni->version = nat_get_version(e);
 382		up_read(&nm_i->nat_tree_lock);
 383		return;
 384	}
 385
 386	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 387
 388	/* Check current segment summary */
 389	down_read(&curseg->journal_rwsem);
 390	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 391	if (i >= 0) {
 392		ne = nat_in_journal(journal, i);
 393		node_info_from_raw_nat(ni, &ne);
 394	}
 395	up_read(&curseg->journal_rwsem);
 396	if (i >= 0)
 397		goto cache;
 398
 399	/* Fill node_info from nat page */
 400	page = get_current_nat_page(sbi, start_nid);
 401	nat_blk = (struct f2fs_nat_block *)page_address(page);
 402	ne = nat_blk->entries[nid - start_nid];
 403	node_info_from_raw_nat(ni, &ne);
 404	f2fs_put_page(page, 1);
 405cache:
 406	up_read(&nm_i->nat_tree_lock);
 407	/* cache nat entry */
 408	down_write(&nm_i->nat_tree_lock);
 409	cache_nat_entry(sbi, nid, &ne);
 410	up_write(&nm_i->nat_tree_lock);
 411}
 412
 413/*
 414 * readahead MAX_RA_NODE number of node pages.
 415 */
 416static void ra_node_pages(struct page *parent, int start, int n)
 417{
 418	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 419	struct blk_plug plug;
 420	int i, end;
 421	nid_t nid;
 422
 423	blk_start_plug(&plug);
 424
 425	/* Then, try readahead for siblings of the desired node */
 426	end = start + n;
 427	end = min(end, NIDS_PER_BLOCK);
 428	for (i = start; i < end; i++) {
 429		nid = get_nid(parent, i, false);
 430		ra_node_page(sbi, nid);
 431	}
 432
 433	blk_finish_plug(&plug);
 434}
 435
 436pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 437{
 438	const long direct_index = ADDRS_PER_INODE(dn->inode);
 439	const long direct_blks = ADDRS_PER_BLOCK;
 440	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 441	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 442	int cur_level = dn->cur_level;
 443	int max_level = dn->max_level;
 444	pgoff_t base = 0;
 445
 446	if (!dn->max_level)
 447		return pgofs + 1;
 448
 449	while (max_level-- > cur_level)
 450		skipped_unit *= NIDS_PER_BLOCK;
 451
 452	switch (dn->max_level) {
 453	case 3:
 454		base += 2 * indirect_blks;
 455	case 2:
 456		base += 2 * direct_blks;
 457	case 1:
 458		base += direct_index;
 459		break;
 460	default:
 461		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 462	}
 463
 464	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 465}
 466
 467/*
 468 * The maximum depth is four.
 469 * Offset[0] will have raw inode offset.
 470 */
 471static int get_node_path(struct inode *inode, long block,
 472				int offset[4], unsigned int noffset[4])
 473{
 474	const long direct_index = ADDRS_PER_INODE(inode);
 475	const long direct_blks = ADDRS_PER_BLOCK;
 476	const long dptrs_per_blk = NIDS_PER_BLOCK;
 477	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 478	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 479	int n = 0;
 480	int level = 0;
 481
 482	noffset[0] = 0;
 483
 484	if (block < direct_index) {
 485		offset[n] = block;
 486		goto got;
 487	}
 488	block -= direct_index;
 489	if (block < direct_blks) {
 490		offset[n++] = NODE_DIR1_BLOCK;
 491		noffset[n] = 1;
 492		offset[n] = block;
 493		level = 1;
 494		goto got;
 495	}
 496	block -= direct_blks;
 497	if (block < direct_blks) {
 498		offset[n++] = NODE_DIR2_BLOCK;
 499		noffset[n] = 2;
 500		offset[n] = block;
 501		level = 1;
 502		goto got;
 503	}
 504	block -= direct_blks;
 505	if (block < indirect_blks) {
 506		offset[n++] = NODE_IND1_BLOCK;
 507		noffset[n] = 3;
 508		offset[n++] = block / direct_blks;
 509		noffset[n] = 4 + offset[n - 1];
 510		offset[n] = block % direct_blks;
 511		level = 2;
 512		goto got;
 513	}
 514	block -= indirect_blks;
 515	if (block < indirect_blks) {
 516		offset[n++] = NODE_IND2_BLOCK;
 517		noffset[n] = 4 + dptrs_per_blk;
 518		offset[n++] = block / direct_blks;
 519		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 520		offset[n] = block % direct_blks;
 521		level = 2;
 522		goto got;
 523	}
 524	block -= indirect_blks;
 525	if (block < dindirect_blks) {
 526		offset[n++] = NODE_DIND_BLOCK;
 527		noffset[n] = 5 + (dptrs_per_blk * 2);
 528		offset[n++] = block / indirect_blks;
 529		noffset[n] = 6 + (dptrs_per_blk * 2) +
 530			      offset[n - 1] * (dptrs_per_blk + 1);
 531		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 532		noffset[n] = 7 + (dptrs_per_blk * 2) +
 533			      offset[n - 2] * (dptrs_per_blk + 1) +
 534			      offset[n - 1];
 535		offset[n] = block % direct_blks;
 536		level = 3;
 537		goto got;
 538	} else {
 539		BUG();
 540	}
 541got:
 542	return level;
 543}
 544
 545/*
 546 * Caller should call f2fs_put_dnode(dn).
 547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 549 * In the case of RDONLY_NODE, we don't need to care about mutex.
 550 */
 551int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 552{
 553	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 554	struct page *npage[4];
 555	struct page *parent = NULL;
 556	int offset[4];
 557	unsigned int noffset[4];
 558	nid_t nids[4];
 559	int level, i = 0;
 560	int err = 0;
 561
 562	level = get_node_path(dn->inode, index, offset, noffset);
 563
 564	nids[0] = dn->inode->i_ino;
 565	npage[0] = dn->inode_page;
 566
 567	if (!npage[0]) {
 568		npage[0] = get_node_page(sbi, nids[0]);
 569		if (IS_ERR(npage[0]))
 570			return PTR_ERR(npage[0]);
 571	}
 572
 573	/* if inline_data is set, should not report any block indices */
 574	if (f2fs_has_inline_data(dn->inode) && index) {
 575		err = -ENOENT;
 576		f2fs_put_page(npage[0], 1);
 577		goto release_out;
 578	}
 579
 580	parent = npage[0];
 581	if (level != 0)
 582		nids[1] = get_nid(parent, offset[0], true);
 583	dn->inode_page = npage[0];
 584	dn->inode_page_locked = true;
 585
 586	/* get indirect or direct nodes */
 587	for (i = 1; i <= level; i++) {
 588		bool done = false;
 589
 590		if (!nids[i] && mode == ALLOC_NODE) {
 591			/* alloc new node */
 592			if (!alloc_nid(sbi, &(nids[i]))) {
 593				err = -ENOSPC;
 594				goto release_pages;
 595			}
 596
 597			dn->nid = nids[i];
 598			npage[i] = new_node_page(dn, noffset[i], NULL);
 599			if (IS_ERR(npage[i])) {
 600				alloc_nid_failed(sbi, nids[i]);
 601				err = PTR_ERR(npage[i]);
 602				goto release_pages;
 603			}
 604
 605			set_nid(parent, offset[i - 1], nids[i], i == 1);
 606			alloc_nid_done(sbi, nids[i]);
 607			done = true;
 608		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 609			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 610			if (IS_ERR(npage[i])) {
 611				err = PTR_ERR(npage[i]);
 612				goto release_pages;
 613			}
 614			done = true;
 615		}
 616		if (i == 1) {
 617			dn->inode_page_locked = false;
 618			unlock_page(parent);
 619		} else {
 620			f2fs_put_page(parent, 1);
 621		}
 622
 623		if (!done) {
 624			npage[i] = get_node_page(sbi, nids[i]);
 625			if (IS_ERR(npage[i])) {
 626				err = PTR_ERR(npage[i]);
 627				f2fs_put_page(npage[0], 0);
 628				goto release_out;
 629			}
 630		}
 631		if (i < level) {
 632			parent = npage[i];
 633			nids[i + 1] = get_nid(parent, offset[i], false);
 634		}
 635	}
 636	dn->nid = nids[level];
 637	dn->ofs_in_node = offset[level];
 638	dn->node_page = npage[level];
 639	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 640	return 0;
 641
 642release_pages:
 643	f2fs_put_page(parent, 1);
 644	if (i > 1)
 645		f2fs_put_page(npage[0], 0);
 646release_out:
 647	dn->inode_page = NULL;
 648	dn->node_page = NULL;
 649	if (err == -ENOENT) {
 650		dn->cur_level = i;
 651		dn->max_level = level;
 652		dn->ofs_in_node = offset[level];
 653	}
 654	return err;
 655}
 656
 657static void truncate_node(struct dnode_of_data *dn)
 658{
 659	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 660	struct node_info ni;
 661
 662	get_node_info(sbi, dn->nid, &ni);
 663	if (dn->inode->i_blocks == 0) {
 664		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 665		goto invalidate;
 666	}
 667	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 668
 669	/* Deallocate node address */
 670	invalidate_blocks(sbi, ni.blk_addr);
 671	dec_valid_node_count(sbi, dn->inode);
 672	set_node_addr(sbi, &ni, NULL_ADDR, false);
 673
 674	if (dn->nid == dn->inode->i_ino) {
 675		remove_orphan_inode(sbi, dn->nid);
 676		dec_valid_inode_count(sbi);
 677		f2fs_inode_synced(dn->inode);
 
 678	}
 679invalidate:
 680	clear_node_page_dirty(dn->node_page);
 681	set_sbi_flag(sbi, SBI_IS_DIRTY);
 682
 683	f2fs_put_page(dn->node_page, 1);
 684
 685	invalidate_mapping_pages(NODE_MAPPING(sbi),
 686			dn->node_page->index, dn->node_page->index);
 687
 688	dn->node_page = NULL;
 689	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 690}
 691
 692static int truncate_dnode(struct dnode_of_data *dn)
 693{
 694	struct page *page;
 695
 696	if (dn->nid == 0)
 697		return 1;
 698
 699	/* get direct node */
 700	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 701	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 702		return 1;
 703	else if (IS_ERR(page))
 704		return PTR_ERR(page);
 705
 706	/* Make dnode_of_data for parameter */
 707	dn->node_page = page;
 708	dn->ofs_in_node = 0;
 709	truncate_data_blocks(dn);
 710	truncate_node(dn);
 711	return 1;
 712}
 713
 714static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 715						int ofs, int depth)
 716{
 717	struct dnode_of_data rdn = *dn;
 718	struct page *page;
 719	struct f2fs_node *rn;
 720	nid_t child_nid;
 721	unsigned int child_nofs;
 722	int freed = 0;
 723	int i, ret;
 724
 725	if (dn->nid == 0)
 726		return NIDS_PER_BLOCK + 1;
 727
 728	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 729
 730	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 731	if (IS_ERR(page)) {
 732		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 733		return PTR_ERR(page);
 734	}
 735
 736	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 737
 738	rn = F2FS_NODE(page);
 739	if (depth < 3) {
 740		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 741			child_nid = le32_to_cpu(rn->in.nid[i]);
 742			if (child_nid == 0)
 743				continue;
 744			rdn.nid = child_nid;
 745			ret = truncate_dnode(&rdn);
 746			if (ret < 0)
 747				goto out_err;
 748			if (set_nid(page, i, 0, false))
 749				dn->node_changed = true;
 750		}
 751	} else {
 752		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 753		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 754			child_nid = le32_to_cpu(rn->in.nid[i]);
 755			if (child_nid == 0) {
 756				child_nofs += NIDS_PER_BLOCK + 1;
 757				continue;
 758			}
 759			rdn.nid = child_nid;
 760			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 761			if (ret == (NIDS_PER_BLOCK + 1)) {
 762				if (set_nid(page, i, 0, false))
 763					dn->node_changed = true;
 764				child_nofs += ret;
 765			} else if (ret < 0 && ret != -ENOENT) {
 766				goto out_err;
 767			}
 768		}
 769		freed = child_nofs;
 770	}
 771
 772	if (!ofs) {
 773		/* remove current indirect node */
 774		dn->node_page = page;
 775		truncate_node(dn);
 776		freed++;
 777	} else {
 778		f2fs_put_page(page, 1);
 779	}
 780	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 781	return freed;
 782
 783out_err:
 784	f2fs_put_page(page, 1);
 785	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 786	return ret;
 787}
 788
 789static int truncate_partial_nodes(struct dnode_of_data *dn,
 790			struct f2fs_inode *ri, int *offset, int depth)
 791{
 792	struct page *pages[2];
 793	nid_t nid[3];
 794	nid_t child_nid;
 795	int err = 0;
 796	int i;
 797	int idx = depth - 2;
 798
 799	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 800	if (!nid[0])
 801		return 0;
 802
 803	/* get indirect nodes in the path */
 804	for (i = 0; i < idx + 1; i++) {
 805		/* reference count'll be increased */
 806		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 807		if (IS_ERR(pages[i])) {
 808			err = PTR_ERR(pages[i]);
 809			idx = i - 1;
 810			goto fail;
 811		}
 812		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 813	}
 814
 815	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 816
 817	/* free direct nodes linked to a partial indirect node */
 818	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 819		child_nid = get_nid(pages[idx], i, false);
 820		if (!child_nid)
 821			continue;
 822		dn->nid = child_nid;
 823		err = truncate_dnode(dn);
 824		if (err < 0)
 825			goto fail;
 826		if (set_nid(pages[idx], i, 0, false))
 827			dn->node_changed = true;
 828	}
 829
 830	if (offset[idx + 1] == 0) {
 831		dn->node_page = pages[idx];
 832		dn->nid = nid[idx];
 833		truncate_node(dn);
 834	} else {
 835		f2fs_put_page(pages[idx], 1);
 836	}
 837	offset[idx]++;
 838	offset[idx + 1] = 0;
 839	idx--;
 840fail:
 841	for (i = idx; i >= 0; i--)
 842		f2fs_put_page(pages[i], 1);
 843
 844	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 845
 846	return err;
 847}
 848
 849/*
 850 * All the block addresses of data and nodes should be nullified.
 851 */
 852int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 853{
 854	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 855	int err = 0, cont = 1;
 856	int level, offset[4], noffset[4];
 857	unsigned int nofs = 0;
 858	struct f2fs_inode *ri;
 859	struct dnode_of_data dn;
 860	struct page *page;
 861
 862	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 863
 864	level = get_node_path(inode, from, offset, noffset);
 865
 866	page = get_node_page(sbi, inode->i_ino);
 867	if (IS_ERR(page)) {
 868		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 869		return PTR_ERR(page);
 870	}
 871
 872	set_new_dnode(&dn, inode, page, NULL, 0);
 873	unlock_page(page);
 874
 875	ri = F2FS_INODE(page);
 876	switch (level) {
 877	case 0:
 878	case 1:
 879		nofs = noffset[1];
 880		break;
 881	case 2:
 882		nofs = noffset[1];
 883		if (!offset[level - 1])
 884			goto skip_partial;
 885		err = truncate_partial_nodes(&dn, ri, offset, level);
 886		if (err < 0 && err != -ENOENT)
 887			goto fail;
 888		nofs += 1 + NIDS_PER_BLOCK;
 889		break;
 890	case 3:
 891		nofs = 5 + 2 * NIDS_PER_BLOCK;
 892		if (!offset[level - 1])
 893			goto skip_partial;
 894		err = truncate_partial_nodes(&dn, ri, offset, level);
 895		if (err < 0 && err != -ENOENT)
 896			goto fail;
 897		break;
 898	default:
 899		BUG();
 900	}
 901
 902skip_partial:
 903	while (cont) {
 904		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 905		switch (offset[0]) {
 906		case NODE_DIR1_BLOCK:
 907		case NODE_DIR2_BLOCK:
 908			err = truncate_dnode(&dn);
 909			break;
 910
 911		case NODE_IND1_BLOCK:
 912		case NODE_IND2_BLOCK:
 913			err = truncate_nodes(&dn, nofs, offset[1], 2);
 914			break;
 915
 916		case NODE_DIND_BLOCK:
 917			err = truncate_nodes(&dn, nofs, offset[1], 3);
 918			cont = 0;
 919			break;
 920
 921		default:
 922			BUG();
 923		}
 924		if (err < 0 && err != -ENOENT)
 925			goto fail;
 926		if (offset[1] == 0 &&
 927				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 928			lock_page(page);
 929			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 
 
 
 930			f2fs_wait_on_page_writeback(page, NODE, true);
 931			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 932			set_page_dirty(page);
 933			unlock_page(page);
 934		}
 935		offset[1] = 0;
 936		offset[0]++;
 937		nofs += err;
 938	}
 939fail:
 940	f2fs_put_page(page, 0);
 941	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 942	return err > 0 ? 0 : err;
 943}
 944
 945int truncate_xattr_node(struct inode *inode, struct page *page)
 946{
 947	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 948	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 949	struct dnode_of_data dn;
 950	struct page *npage;
 951
 952	if (!nid)
 953		return 0;
 954
 955	npage = get_node_page(sbi, nid);
 956	if (IS_ERR(npage))
 957		return PTR_ERR(npage);
 958
 959	f2fs_i_xnid_write(inode, 0);
 960
 961	/* need to do checkpoint during fsync */
 962	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 963
 964	set_new_dnode(&dn, inode, page, npage, nid);
 965
 966	if (page)
 967		dn.inode_page_locked = true;
 968	truncate_node(&dn);
 969	return 0;
 970}
 971
 972/*
 973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 974 * f2fs_unlock_op().
 975 */
 976int remove_inode_page(struct inode *inode)
 977{
 978	struct dnode_of_data dn;
 979	int err;
 980
 981	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 982	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 983	if (err)
 984		return err;
 985
 986	err = truncate_xattr_node(inode, dn.inode_page);
 987	if (err) {
 988		f2fs_put_dnode(&dn);
 989		return err;
 990	}
 991
 992	/* remove potential inline_data blocks */
 993	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 994				S_ISLNK(inode->i_mode))
 995		truncate_data_blocks_range(&dn, 1);
 996
 997	/* 0 is possible, after f2fs_new_inode() has failed */
 998	f2fs_bug_on(F2FS_I_SB(inode),
 999			inode->i_blocks != 0 && inode->i_blocks != 1);
1000
1001	/* will put inode & node pages */
1002	truncate_node(&dn);
1003	return 0;
1004}
1005
1006struct page *new_inode_page(struct inode *inode)
1007{
1008	struct dnode_of_data dn;
1009
1010	/* allocate inode page for new inode */
1011	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1012
1013	/* caller should f2fs_put_page(page, 1); */
1014	return new_node_page(&dn, 0, NULL);
1015}
1016
1017struct page *new_node_page(struct dnode_of_data *dn,
1018				unsigned int ofs, struct page *ipage)
1019{
1020	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021	struct node_info old_ni, new_ni;
1022	struct page *page;
1023	int err;
1024
1025	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026		return ERR_PTR(-EPERM);
1027
1028	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029	if (!page)
1030		return ERR_PTR(-ENOMEM);
1031
1032	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033		err = -ENOSPC;
1034		goto fail;
1035	}
1036
1037	get_node_info(sbi, dn->nid, &old_ni);
1038
1039	/* Reinitialize old_ni with new node page */
1040	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041	new_ni = old_ni;
1042	new_ni.ino = dn->inode->i_ino;
1043	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1044
1045	f2fs_wait_on_page_writeback(page, NODE, true);
1046	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047	set_cold_node(dn->inode, page);
1048	if (!PageUptodate(page))
1049		SetPageUptodate(page);
1050	if (set_page_dirty(page))
1051		dn->node_changed = true;
1052
1053	if (f2fs_has_xattr_block(ofs))
1054		f2fs_i_xnid_write(dn->inode, dn->nid);
1055
 
 
 
 
 
1056	if (ofs == 0)
1057		inc_valid_inode_count(sbi);
 
1058	return page;
1059
1060fail:
1061	clear_node_page_dirty(page);
1062	f2fs_put_page(page, 1);
1063	return ERR_PTR(err);
1064}
1065
1066/*
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070 */
1071static int read_node_page(struct page *page, int op_flags)
1072{
1073	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074	struct node_info ni;
1075	struct f2fs_io_info fio = {
1076		.sbi = sbi,
1077		.type = NODE,
1078		.op = REQ_OP_READ,
1079		.op_flags = op_flags,
1080		.page = page,
1081		.encrypted_page = NULL,
1082	};
1083
1084	if (PageUptodate(page))
1085		return LOCKED_PAGE;
1086
1087	get_node_info(sbi, page->index, &ni);
1088
1089	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090		ClearPageUptodate(page);
1091		return -ENOENT;
1092	}
1093
 
 
 
1094	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095	return f2fs_submit_page_bio(&fio);
1096}
1097
1098/*
1099 * Readahead a node page
1100 */
1101void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1102{
1103	struct page *apage;
1104	int err;
1105
1106	if (!nid)
1107		return;
1108	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1109
1110	rcu_read_lock();
1111	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112	rcu_read_unlock();
1113	if (apage)
1114		return;
1115
1116	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117	if (!apage)
1118		return;
1119
1120	err = read_node_page(apage, REQ_RAHEAD);
1121	f2fs_put_page(apage, err ? 1 : 0);
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133repeat:
1134	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, 0);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1148
1149	lock_page(page);
1150
 
 
 
 
1151	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152		f2fs_put_page(page, 1);
1153		goto repeat;
1154	}
1155
1156	if (unlikely(!PageUptodate(page)))
1157		goto out_err;
1158page_hit:
1159	if(unlikely(nid != nid_of_node(page))) {
1160		f2fs_bug_on(sbi, 1);
1161		ClearPageUptodate(page);
1162out_err:
1163		f2fs_put_page(page, 1);
1164		return ERR_PTR(-EIO);
1165	}
1166	return page;
1167}
1168
1169struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1170{
1171	return __get_node_page(sbi, nid, NULL, 0);
1172}
1173
1174struct page *get_node_page_ra(struct page *parent, int start)
1175{
1176	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177	nid_t nid = get_nid(parent, start, false);
1178
1179	return __get_node_page(sbi, nid, parent, start);
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1183{
1184	struct inode *inode;
1185	struct page *page;
1186	int ret;
1187
1188	/* should flush inline_data before evict_inode */
1189	inode = ilookup(sbi->sb, ino);
1190	if (!inode)
1191		return;
1192
1193	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1194	if (!page)
1195		goto iput_out;
1196
 
 
 
1197	if (!PageUptodate(page))
1198		goto page_out;
1199
1200	if (!PageDirty(page))
1201		goto page_out;
1202
1203	if (!clear_page_dirty_for_io(page))
1204		goto page_out;
1205
1206	ret = f2fs_write_inline_data(inode, page);
1207	inode_dec_dirty_pages(inode);
1208	remove_dirty_inode(inode);
1209	if (ret)
1210		set_page_dirty(page);
1211page_out:
1212	f2fs_put_page(page, 1);
 
 
1213iput_out:
1214	iput(inode);
1215}
1216
1217void move_node_page(struct page *node_page, int gc_type)
1218{
1219	if (gc_type == FG_GC) {
1220		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1221		struct writeback_control wbc = {
1222			.sync_mode = WB_SYNC_ALL,
1223			.nr_to_write = 1,
1224			.for_reclaim = 0,
1225		};
1226
1227		set_page_dirty(node_page);
1228		f2fs_wait_on_page_writeback(node_page, NODE, true);
1229
1230		f2fs_bug_on(sbi, PageWriteback(node_page));
1231		if (!clear_page_dirty_for_io(node_page))
1232			goto out_page;
1233
1234		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1235			unlock_page(node_page);
1236		goto release_page;
1237	} else {
1238		/* set page dirty and write it */
1239		if (!PageWriteback(node_page))
1240			set_page_dirty(node_page);
1241	}
1242out_page:
1243	unlock_page(node_page);
1244release_page:
1245	f2fs_put_page(node_page, 0);
1246}
1247
1248static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	pgoff_t index, end;
1251	struct pagevec pvec;
1252	struct page *last_page = NULL;
1253
1254	pagevec_init(&pvec, 0);
1255	index = 0;
1256	end = ULONG_MAX;
1257
1258	while (index <= end) {
1259		int i, nr_pages;
1260		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261				PAGECACHE_TAG_DIRTY,
1262				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263		if (nr_pages == 0)
1264			break;
1265
1266		for (i = 0; i < nr_pages; i++) {
1267			struct page *page = pvec.pages[i];
1268
1269			if (unlikely(f2fs_cp_error(sbi))) {
1270				f2fs_put_page(last_page, 0);
1271				pagevec_release(&pvec);
1272				return ERR_PTR(-EIO);
1273			}
1274
1275			if (!IS_DNODE(page) || !is_cold_node(page))
1276				continue;
1277			if (ino_of_node(page) != ino)
1278				continue;
1279
1280			lock_page(page);
1281
1282			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1283continue_unlock:
1284				unlock_page(page);
1285				continue;
1286			}
1287			if (ino_of_node(page) != ino)
1288				goto continue_unlock;
1289
1290			if (!PageDirty(page)) {
1291				/* someone wrote it for us */
1292				goto continue_unlock;
1293			}
1294
1295			if (last_page)
1296				f2fs_put_page(last_page, 0);
1297
1298			get_page(page);
1299			last_page = page;
1300			unlock_page(page);
1301		}
1302		pagevec_release(&pvec);
1303		cond_resched();
1304	}
1305	return last_page;
1306}
1307
1308int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1309			struct writeback_control *wbc, bool atomic)
1310{
1311	pgoff_t index, end;
1312	struct pagevec pvec;
1313	int ret = 0;
1314	struct page *last_page = NULL;
1315	bool marked = false;
1316	nid_t ino = inode->i_ino;
1317	int nwritten = 0;
1318
1319	if (atomic) {
1320		last_page = last_fsync_dnode(sbi, ino);
1321		if (IS_ERR_OR_NULL(last_page))
1322			return PTR_ERR_OR_ZERO(last_page);
1323	}
1324retry:
1325	pagevec_init(&pvec, 0);
1326	index = 0;
1327	end = ULONG_MAX;
1328
1329	while (index <= end) {
1330		int i, nr_pages;
1331		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1332				PAGECACHE_TAG_DIRTY,
1333				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1334		if (nr_pages == 0)
1335			break;
1336
1337		for (i = 0; i < nr_pages; i++) {
1338			struct page *page = pvec.pages[i];
1339
1340			if (unlikely(f2fs_cp_error(sbi))) {
1341				f2fs_put_page(last_page, 0);
1342				pagevec_release(&pvec);
1343				ret = -EIO;
1344				goto out;
1345			}
1346
1347			if (!IS_DNODE(page) || !is_cold_node(page))
1348				continue;
1349			if (ino_of_node(page) != ino)
1350				continue;
1351
1352			lock_page(page);
1353
1354			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1355continue_unlock:
1356				unlock_page(page);
1357				continue;
1358			}
1359			if (ino_of_node(page) != ino)
1360				goto continue_unlock;
1361
1362			if (!PageDirty(page) && page != last_page) {
1363				/* someone wrote it for us */
1364				goto continue_unlock;
1365			}
1366
1367			f2fs_wait_on_page_writeback(page, NODE, true);
1368			BUG_ON(PageWriteback(page));
1369
1370			if (!atomic || page == last_page) {
1371				set_fsync_mark(page, 1);
1372				if (IS_INODE(page)) {
1373					if (is_inode_flag_set(inode,
1374								FI_DIRTY_INODE))
1375						update_inode(inode, page);
1376					set_dentry_mark(page,
1377						need_dentry_mark(sbi, ino));
1378				}
1379				/*  may be written by other thread */
1380				if (!PageDirty(page))
1381					set_page_dirty(page);
1382			}
1383
1384			if (!clear_page_dirty_for_io(page))
1385				goto continue_unlock;
1386
1387			ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1388			if (ret) {
1389				unlock_page(page);
1390				f2fs_put_page(last_page, 0);
1391				break;
1392			} else {
1393				nwritten++;
1394			}
1395
1396			if (page == last_page) {
1397				f2fs_put_page(page, 0);
1398				marked = true;
1399				break;
1400			}
1401		}
1402		pagevec_release(&pvec);
1403		cond_resched();
1404
1405		if (ret || marked)
1406			break;
1407	}
1408	if (!ret && atomic && !marked) {
1409		f2fs_msg(sbi->sb, KERN_DEBUG,
1410			"Retry to write fsync mark: ino=%u, idx=%lx",
1411					ino, last_page->index);
1412		lock_page(last_page);
1413		f2fs_wait_on_page_writeback(last_page, NODE, true);
1414		set_page_dirty(last_page);
1415		unlock_page(last_page);
1416		goto retry;
1417	}
1418out:
1419	if (nwritten)
1420		f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1421	return ret ? -EIO: 0;
1422}
1423
1424int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1425{
1426	pgoff_t index, end;
1427	struct pagevec pvec;
1428	int step = 0;
1429	int nwritten = 0;
1430	int ret = 0;
1431
1432	pagevec_init(&pvec, 0);
1433
1434next_step:
1435	index = 0;
1436	end = ULONG_MAX;
1437
1438	while (index <= end) {
1439		int i, nr_pages;
1440		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1441				PAGECACHE_TAG_DIRTY,
1442				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1443		if (nr_pages == 0)
1444			break;
1445
1446		for (i = 0; i < nr_pages; i++) {
1447			struct page *page = pvec.pages[i];
1448
1449			if (unlikely(f2fs_cp_error(sbi))) {
1450				pagevec_release(&pvec);
1451				ret = -EIO;
1452				goto out;
1453			}
1454
1455			/*
1456			 * flushing sequence with step:
1457			 * 0. indirect nodes
1458			 * 1. dentry dnodes
1459			 * 2. file dnodes
1460			 */
1461			if (step == 0 && IS_DNODE(page))
1462				continue;
1463			if (step == 1 && (!IS_DNODE(page) ||
1464						is_cold_node(page)))
1465				continue;
1466			if (step == 2 && (!IS_DNODE(page) ||
1467						!is_cold_node(page)))
1468				continue;
 
 
 
 
 
1469lock_node:
1470			if (!trylock_page(page))
 
 
1471				continue;
1472
1473			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1474continue_unlock:
1475				unlock_page(page);
1476				continue;
1477			}
 
 
1478
1479			if (!PageDirty(page)) {
1480				/* someone wrote it for us */
1481				goto continue_unlock;
1482			}
1483
1484			/* flush inline_data */
1485			if (is_inline_node(page)) {
1486				clear_inline_node(page);
1487				unlock_page(page);
1488				flush_inline_data(sbi, ino_of_node(page));
1489				goto lock_node;
1490			}
1491
1492			f2fs_wait_on_page_writeback(page, NODE, true);
1493
1494			BUG_ON(PageWriteback(page));
1495			if (!clear_page_dirty_for_io(page))
1496				goto continue_unlock;
1497
1498			set_fsync_mark(page, 0);
1499			set_dentry_mark(page, 0);
 
 
 
 
 
 
 
 
 
1500
1501			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1502				unlock_page(page);
1503			else
1504				nwritten++;
1505
1506			if (--wbc->nr_to_write == 0)
1507				break;
1508		}
1509		pagevec_release(&pvec);
1510		cond_resched();
1511
1512		if (wbc->nr_to_write == 0) {
1513			step = 2;
1514			break;
1515		}
1516	}
1517
1518	if (step < 2) {
1519		step++;
1520		goto next_step;
1521	}
1522out:
1523	if (nwritten)
1524		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1525	return ret;
1526}
1527
1528int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1529{
1530	pgoff_t index = 0, end = ULONG_MAX;
1531	struct pagevec pvec;
1532	int ret2, ret = 0;
1533
1534	pagevec_init(&pvec, 0);
1535
1536	while (index <= end) {
1537		int i, nr_pages;
1538		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1539				PAGECACHE_TAG_WRITEBACK,
1540				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1541		if (nr_pages == 0)
1542			break;
1543
1544		for (i = 0; i < nr_pages; i++) {
1545			struct page *page = pvec.pages[i];
1546
1547			/* until radix tree lookup accepts end_index */
1548			if (unlikely(page->index > end))
1549				continue;
1550
1551			if (ino && ino_of_node(page) == ino) {
1552				f2fs_wait_on_page_writeback(page, NODE, true);
1553				if (TestClearPageError(page))
1554					ret = -EIO;
1555			}
1556		}
1557		pagevec_release(&pvec);
1558		cond_resched();
1559	}
1560
1561	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
1562	if (!ret)
1563		ret = ret2;
1564	return ret;
1565}
1566
1567static int f2fs_write_node_page(struct page *page,
1568				struct writeback_control *wbc)
1569{
1570	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1571	nid_t nid;
1572	struct node_info ni;
1573	struct f2fs_io_info fio = {
1574		.sbi = sbi,
1575		.type = NODE,
1576		.op = REQ_OP_WRITE,
1577		.op_flags = wbc_to_write_flags(wbc),
1578		.page = page,
1579		.encrypted_page = NULL,
1580	};
1581
1582	trace_f2fs_writepage(page, NODE);
1583
1584	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1585		goto redirty_out;
1586	if (unlikely(f2fs_cp_error(sbi)))
1587		goto redirty_out;
1588
1589	/* get old block addr of this node page */
1590	nid = nid_of_node(page);
1591	f2fs_bug_on(sbi, page->index != nid);
1592
1593	if (wbc->for_reclaim) {
1594		if (!down_read_trylock(&sbi->node_write))
1595			goto redirty_out;
1596	} else {
1597		down_read(&sbi->node_write);
1598	}
1599
1600	get_node_info(sbi, nid, &ni);
1601
1602	/* This page is already truncated */
1603	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1604		ClearPageUptodate(page);
1605		dec_page_count(sbi, F2FS_DIRTY_NODES);
1606		up_read(&sbi->node_write);
1607		unlock_page(page);
1608		return 0;
1609	}
1610
1611	set_page_writeback(page);
1612	fio.old_blkaddr = ni.blk_addr;
1613	write_node_page(nid, &fio);
1614	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1615	dec_page_count(sbi, F2FS_DIRTY_NODES);
1616	up_read(&sbi->node_write);
1617
1618	if (wbc->for_reclaim)
1619		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1620
1621	unlock_page(page);
1622
1623	if (unlikely(f2fs_cp_error(sbi)))
1624		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1625
1626	return 0;
1627
1628redirty_out:
1629	redirty_page_for_writepage(wbc, page);
1630	return AOP_WRITEPAGE_ACTIVATE;
1631}
1632
1633static int f2fs_write_node_pages(struct address_space *mapping,
1634			    struct writeback_control *wbc)
1635{
1636	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1637	struct blk_plug plug;
1638	long diff;
1639
1640	/* balancing f2fs's metadata in background */
1641	f2fs_balance_fs_bg(sbi);
1642
1643	/* collect a number of dirty node pages and write together */
1644	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1645		goto skip_write;
1646
1647	trace_f2fs_writepages(mapping->host, wbc, NODE);
1648
1649	diff = nr_pages_to_write(sbi, NODE, wbc);
1650	wbc->sync_mode = WB_SYNC_NONE;
1651	blk_start_plug(&plug);
1652	sync_node_pages(sbi, wbc);
1653	blk_finish_plug(&plug);
1654	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1655	return 0;
1656
1657skip_write:
1658	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1659	trace_f2fs_writepages(mapping->host, wbc, NODE);
1660	return 0;
1661}
1662
1663static int f2fs_set_node_page_dirty(struct page *page)
1664{
1665	trace_f2fs_set_page_dirty(page, NODE);
1666
1667	if (!PageUptodate(page))
1668		SetPageUptodate(page);
1669	if (!PageDirty(page)) {
1670		f2fs_set_page_dirty_nobuffers(page);
1671		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1672		SetPagePrivate(page);
1673		f2fs_trace_pid(page);
1674		return 1;
1675	}
1676	return 0;
1677}
1678
1679/*
1680 * Structure of the f2fs node operations
1681 */
1682const struct address_space_operations f2fs_node_aops = {
1683	.writepage	= f2fs_write_node_page,
1684	.writepages	= f2fs_write_node_pages,
1685	.set_page_dirty	= f2fs_set_node_page_dirty,
1686	.invalidatepage	= f2fs_invalidate_page,
1687	.releasepage	= f2fs_release_page,
1688#ifdef CONFIG_MIGRATION
1689	.migratepage    = f2fs_migrate_page,
1690#endif
1691};
1692
1693static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1694						nid_t n)
1695{
1696	return radix_tree_lookup(&nm_i->free_nid_root, n);
1697}
1698
1699static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1700			struct free_nid *i, enum nid_list list, bool new)
1701{
1702	struct f2fs_nm_info *nm_i = NM_I(sbi);
1703
1704	if (new) {
1705		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1706		if (err)
1707			return err;
1708	}
1709
1710	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1711						i->state != NID_ALLOC);
1712	nm_i->nid_cnt[list]++;
1713	list_add_tail(&i->list, &nm_i->nid_list[list]);
1714	return 0;
1715}
1716
1717static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1718			struct free_nid *i, enum nid_list list, bool reuse)
1719{
1720	struct f2fs_nm_info *nm_i = NM_I(sbi);
1721
1722	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1723						i->state != NID_ALLOC);
1724	nm_i->nid_cnt[list]--;
1725	list_del(&i->list);
1726	if (!reuse)
1727		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1728}
1729
1730static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1731{
1732	struct f2fs_nm_info *nm_i = NM_I(sbi);
1733	struct free_nid *i;
1734	struct nat_entry *ne;
1735	int err;
 
 
 
1736
1737	/* 0 nid should not be used */
1738	if (unlikely(nid == 0))
1739		return 0;
1740
1741	if (build) {
1742		/* do not add allocated nids */
1743		ne = __lookup_nat_cache(nm_i, nid);
1744		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1745				nat_get_blkaddr(ne) != NULL_ADDR))
 
 
1746			return 0;
1747	}
1748
1749	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1750	i->nid = nid;
1751	i->state = NID_NEW;
1752
1753	if (radix_tree_preload(GFP_NOFS)) {
1754		kmem_cache_free(free_nid_slab, i);
1755		return 0;
1756	}
1757
1758	spin_lock(&nm_i->nid_list_lock);
1759	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1760	spin_unlock(&nm_i->nid_list_lock);
1761	radix_tree_preload_end();
1762	if (err) {
1763		kmem_cache_free(free_nid_slab, i);
1764		return 0;
1765	}
 
 
 
 
1766	return 1;
1767}
1768
1769static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1770{
1771	struct f2fs_nm_info *nm_i = NM_I(sbi);
1772	struct free_nid *i;
1773	bool need_free = false;
1774
1775	spin_lock(&nm_i->nid_list_lock);
1776	i = __lookup_free_nid_list(nm_i, nid);
1777	if (i && i->state == NID_NEW) {
1778		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
 
1779		need_free = true;
1780	}
1781	spin_unlock(&nm_i->nid_list_lock);
1782
1783	if (need_free)
1784		kmem_cache_free(free_nid_slab, i);
1785}
1786
1787static void scan_nat_page(struct f2fs_sb_info *sbi,
1788			struct page *nat_page, nid_t start_nid)
1789{
1790	struct f2fs_nm_info *nm_i = NM_I(sbi);
1791	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1792	block_t blk_addr;
1793	int i;
1794
1795	i = start_nid % NAT_ENTRY_PER_BLOCK;
1796
1797	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1798
1799		if (unlikely(start_nid >= nm_i->max_nid))
1800			break;
1801
1802		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1803		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1804		if (blk_addr == NULL_ADDR)
1805			add_free_nid(sbi, start_nid, true);
 
 
1806	}
1807}
1808
1809static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1810{
1811	struct f2fs_nm_info *nm_i = NM_I(sbi);
1812	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1813	struct f2fs_journal *journal = curseg->journal;
1814	int i = 0;
1815	nid_t nid = nm_i->next_scan_nid;
1816
1817	/* Enough entries */
1818	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1819		return;
1820
1821	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1822		return;
1823
1824	/* readahead nat pages to be scanned */
1825	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1826							META_NAT, true);
1827
1828	down_read(&nm_i->nat_tree_lock);
1829
1830	while (1) {
1831		struct page *page = get_current_nat_page(sbi, nid);
1832
1833		scan_nat_page(sbi, page, nid);
1834		f2fs_put_page(page, 1);
1835
1836		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1837		if (unlikely(nid >= nm_i->max_nid))
1838			nid = 0;
1839
1840		if (++i >= FREE_NID_PAGES)
1841			break;
1842	}
1843
1844	/* go to the next free nat pages to find free nids abundantly */
1845	nm_i->next_scan_nid = nid;
1846
1847	/* find free nids from current sum_pages */
1848	down_read(&curseg->journal_rwsem);
1849	for (i = 0; i < nats_in_cursum(journal); i++) {
1850		block_t addr;
1851
1852		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1853		nid = le32_to_cpu(nid_in_journal(journal, i));
1854		if (addr == NULL_ADDR)
1855			add_free_nid(sbi, nid, true);
1856		else
1857			remove_free_nid(sbi, nid);
1858	}
1859	up_read(&curseg->journal_rwsem);
1860	up_read(&nm_i->nat_tree_lock);
1861
1862	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1863					nm_i->ra_nid_pages, META_NAT, false);
1864}
1865
1866void build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1867{
1868	mutex_lock(&NM_I(sbi)->build_lock);
1869	__build_free_nids(sbi, sync);
1870	mutex_unlock(&NM_I(sbi)->build_lock);
1871}
1872
1873/*
1874 * If this function returns success, caller can obtain a new nid
1875 * from second parameter of this function.
1876 * The returned nid could be used ino as well as nid when inode is created.
1877 */
1878bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1879{
1880	struct f2fs_nm_info *nm_i = NM_I(sbi);
1881	struct free_nid *i = NULL;
1882retry:
1883#ifdef CONFIG_F2FS_FAULT_INJECTION
1884	if (time_to_inject(sbi, FAULT_ALLOC_NID))
1885		return false;
1886#endif
1887	spin_lock(&nm_i->nid_list_lock);
1888
1889	if (unlikely(nm_i->available_nids == 0)) {
1890		spin_unlock(&nm_i->nid_list_lock);
1891		return false;
1892	}
1893
1894	/* We should not use stale free nids created by build_free_nids */
1895	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
1896		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
1897		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
1898					struct free_nid, list);
1899		*nid = i->nid;
1900
1901		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
 
1902		i->state = NID_ALLOC;
1903		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
1904		nm_i->available_nids--;
1905		spin_unlock(&nm_i->nid_list_lock);
1906		return true;
1907	}
1908	spin_unlock(&nm_i->nid_list_lock);
1909
1910	/* Let's scan nat pages and its caches to get free nids */
1911	build_free_nids(sbi, true);
 
 
1912	goto retry;
1913}
1914
1915/*
1916 * alloc_nid() should be called prior to this function.
1917 */
1918void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct free_nid *i;
1922
1923	spin_lock(&nm_i->nid_list_lock);
1924	i = __lookup_free_nid_list(nm_i, nid);
1925	f2fs_bug_on(sbi, !i);
1926	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1927	spin_unlock(&nm_i->nid_list_lock);
1928
1929	kmem_cache_free(free_nid_slab, i);
1930}
1931
1932/*
1933 * alloc_nid() should be called prior to this function.
1934 */
1935void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1936{
1937	struct f2fs_nm_info *nm_i = NM_I(sbi);
1938	struct free_nid *i;
1939	bool need_free = false;
1940
1941	if (!nid)
1942		return;
1943
1944	spin_lock(&nm_i->nid_list_lock);
1945	i = __lookup_free_nid_list(nm_i, nid);
1946	f2fs_bug_on(sbi, !i);
1947
1948	if (!available_free_memory(sbi, FREE_NIDS)) {
1949		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1950		need_free = true;
1951	} else {
1952		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
1953		i->state = NID_NEW;
1954		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
1955	}
1956
1957	nm_i->available_nids++;
1958
1959	spin_unlock(&nm_i->nid_list_lock);
1960
1961	if (need_free)
1962		kmem_cache_free(free_nid_slab, i);
1963}
1964
1965int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1966{
1967	struct f2fs_nm_info *nm_i = NM_I(sbi);
1968	struct free_nid *i, *next;
1969	int nr = nr_shrink;
1970
1971	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1972		return 0;
1973
1974	if (!mutex_trylock(&nm_i->build_lock))
1975		return 0;
1976
1977	spin_lock(&nm_i->nid_list_lock);
1978	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
1979									list) {
1980		if (nr_shrink <= 0 ||
1981				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1982			break;
1983
1984		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
 
1985		kmem_cache_free(free_nid_slab, i);
 
1986		nr_shrink--;
1987	}
1988	spin_unlock(&nm_i->nid_list_lock);
1989	mutex_unlock(&nm_i->build_lock);
1990
1991	return nr - nr_shrink;
1992}
1993
1994void recover_inline_xattr(struct inode *inode, struct page *page)
1995{
1996	void *src_addr, *dst_addr;
1997	size_t inline_size;
1998	struct page *ipage;
1999	struct f2fs_inode *ri;
2000
2001	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2002	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2003
2004	ri = F2FS_INODE(page);
2005	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2006		clear_inode_flag(inode, FI_INLINE_XATTR);
2007		goto update_inode;
2008	}
2009
2010	dst_addr = inline_xattr_addr(ipage);
2011	src_addr = inline_xattr_addr(page);
2012	inline_size = inline_xattr_size(inode);
2013
2014	f2fs_wait_on_page_writeback(ipage, NODE, true);
2015	memcpy(dst_addr, src_addr, inline_size);
2016update_inode:
2017	update_inode(inode, ipage);
2018	f2fs_put_page(ipage, 1);
2019}
2020
2021void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2022{
2023	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2024	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2025	nid_t new_xnid = nid_of_node(page);
2026	struct node_info ni;
2027
2028	/* 1: invalidate the previous xattr nid */
2029	if (!prev_xnid)
2030		goto recover_xnid;
2031
2032	/* Deallocate node address */
2033	get_node_info(sbi, prev_xnid, &ni);
2034	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2035	invalidate_blocks(sbi, ni.blk_addr);
2036	dec_valid_node_count(sbi, inode);
2037	set_node_addr(sbi, &ni, NULL_ADDR, false);
2038
2039recover_xnid:
2040	/* 2: allocate new xattr nid */
2041	if (unlikely(!inc_valid_node_count(sbi, inode)))
2042		f2fs_bug_on(sbi, 1);
2043
2044	remove_free_nid(sbi, new_xnid);
2045	get_node_info(sbi, new_xnid, &ni);
2046	ni.ino = inode->i_ino;
2047	set_node_addr(sbi, &ni, NEW_ADDR, false);
2048	f2fs_i_xnid_write(inode, new_xnid);
2049
2050	/* 3: update xattr blkaddr */
2051	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2052	set_node_addr(sbi, &ni, blkaddr, false);
 
 
2053}
2054
2055int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2056{
2057	struct f2fs_inode *src, *dst;
2058	nid_t ino = ino_of_node(page);
2059	struct node_info old_ni, new_ni;
2060	struct page *ipage;
2061
2062	get_node_info(sbi, ino, &old_ni);
2063
2064	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2065		return -EINVAL;
2066retry:
2067	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2068	if (!ipage) {
2069		congestion_wait(BLK_RW_ASYNC, HZ/50);
2070		goto retry;
2071	}
2072
2073	/* Should not use this inode from free nid list */
2074	remove_free_nid(sbi, ino);
2075
2076	if (!PageUptodate(ipage))
2077		SetPageUptodate(ipage);
2078	fill_node_footer(ipage, ino, ino, 0, true);
2079
2080	src = F2FS_INODE(page);
2081	dst = F2FS_INODE(ipage);
2082
2083	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2084	dst->i_size = 0;
2085	dst->i_blocks = cpu_to_le64(1);
2086	dst->i_links = cpu_to_le32(1);
2087	dst->i_xattr_nid = 0;
2088	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2089
2090	new_ni = old_ni;
2091	new_ni.ino = ino;
2092
2093	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2094		WARN_ON(1);
2095	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2096	inc_valid_inode_count(sbi);
2097	set_page_dirty(ipage);
2098	f2fs_put_page(ipage, 1);
2099	return 0;
2100}
2101
2102int restore_node_summary(struct f2fs_sb_info *sbi,
2103			unsigned int segno, struct f2fs_summary_block *sum)
2104{
2105	struct f2fs_node *rn;
2106	struct f2fs_summary *sum_entry;
2107	block_t addr;
 
2108	int i, idx, last_offset, nrpages;
2109
2110	/* scan the node segment */
2111	last_offset = sbi->blocks_per_seg;
2112	addr = START_BLOCK(sbi, segno);
2113	sum_entry = &sum->entries[0];
2114
2115	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2116		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2117
2118		/* readahead node pages */
2119		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2120
2121		for (idx = addr; idx < addr + nrpages; idx++) {
2122			struct page *page = get_tmp_page(sbi, idx);
2123
2124			rn = F2FS_NODE(page);
2125			sum_entry->nid = rn->footer.nid;
2126			sum_entry->version = 0;
2127			sum_entry->ofs_in_node = 0;
2128			sum_entry++;
2129			f2fs_put_page(page, 1);
2130		}
2131
2132		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2133							addr + nrpages);
2134	}
2135	return 0;
2136}
2137
2138static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2139{
2140	struct f2fs_nm_info *nm_i = NM_I(sbi);
2141	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2142	struct f2fs_journal *journal = curseg->journal;
2143	int i;
2144
2145	down_write(&curseg->journal_rwsem);
2146	for (i = 0; i < nats_in_cursum(journal); i++) {
2147		struct nat_entry *ne;
2148		struct f2fs_nat_entry raw_ne;
2149		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2150
2151		raw_ne = nat_in_journal(journal, i);
2152
2153		ne = __lookup_nat_cache(nm_i, nid);
2154		if (!ne) {
2155			ne = grab_nat_entry(nm_i, nid);
2156			node_info_from_raw_nat(&ne->ni, &raw_ne);
2157		}
2158
2159		/*
2160		 * if a free nat in journal has not been used after last
2161		 * checkpoint, we should remove it from available nids,
2162		 * since later we will add it again.
2163		 */
2164		if (!get_nat_flag(ne, IS_DIRTY) &&
2165				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2166			spin_lock(&nm_i->nid_list_lock);
2167			nm_i->available_nids--;
2168			spin_unlock(&nm_i->nid_list_lock);
2169		}
2170
2171		__set_nat_cache_dirty(nm_i, ne);
2172	}
2173	update_nats_in_cursum(journal, -i);
2174	up_write(&curseg->journal_rwsem);
2175}
2176
2177static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2178						struct list_head *head, int max)
2179{
2180	struct nat_entry_set *cur;
2181
2182	if (nes->entry_cnt >= max)
2183		goto add_out;
2184
2185	list_for_each_entry(cur, head, set_list) {
2186		if (cur->entry_cnt >= nes->entry_cnt) {
2187			list_add(&nes->set_list, cur->set_list.prev);
2188			return;
2189		}
2190	}
2191add_out:
2192	list_add_tail(&nes->set_list, head);
2193}
2194
2195static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2196					struct nat_entry_set *set)
2197{
2198	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2199	struct f2fs_journal *journal = curseg->journal;
2200	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2201	bool to_journal = true;
2202	struct f2fs_nat_block *nat_blk;
2203	struct nat_entry *ne, *cur;
2204	struct page *page = NULL;
2205
2206	/*
2207	 * there are two steps to flush nat entries:
2208	 * #1, flush nat entries to journal in current hot data summary block.
2209	 * #2, flush nat entries to nat page.
2210	 */
2211	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2212		to_journal = false;
2213
2214	if (to_journal) {
2215		down_write(&curseg->journal_rwsem);
2216	} else {
2217		page = get_next_nat_page(sbi, start_nid);
2218		nat_blk = page_address(page);
2219		f2fs_bug_on(sbi, !nat_blk);
2220	}
2221
2222	/* flush dirty nats in nat entry set */
2223	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2224		struct f2fs_nat_entry *raw_ne;
2225		nid_t nid = nat_get_nid(ne);
2226		int offset;
2227
2228		if (nat_get_blkaddr(ne) == NEW_ADDR)
2229			continue;
2230
2231		if (to_journal) {
2232			offset = lookup_journal_in_cursum(journal,
2233							NAT_JOURNAL, nid, 1);
2234			f2fs_bug_on(sbi, offset < 0);
2235			raw_ne = &nat_in_journal(journal, offset);
2236			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2237		} else {
2238			raw_ne = &nat_blk->entries[nid - start_nid];
2239		}
2240		raw_nat_from_node_info(raw_ne, &ne->ni);
2241		nat_reset_flag(ne);
2242		__clear_nat_cache_dirty(NM_I(sbi), ne);
2243		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2244			add_free_nid(sbi, nid, false);
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			NM_I(sbi)->available_nids++;
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	if (to_journal)
2252		up_write(&curseg->journal_rwsem);
2253	else
2254		f2fs_put_page(page, 1);
2255
2256	f2fs_bug_on(sbi, set->entry_cnt);
2257
2258	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2259	kmem_cache_free(nat_entry_set_slab, set);
2260}
2261
2262/*
2263 * This function is called during the checkpointing process.
2264 */
2265void flush_nat_entries(struct f2fs_sb_info *sbi)
2266{
2267	struct f2fs_nm_info *nm_i = NM_I(sbi);
2268	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2269	struct f2fs_journal *journal = curseg->journal;
2270	struct nat_entry_set *setvec[SETVEC_SIZE];
2271	struct nat_entry_set *set, *tmp;
2272	unsigned int found;
2273	nid_t set_idx = 0;
2274	LIST_HEAD(sets);
2275
2276	if (!nm_i->dirty_nat_cnt)
2277		return;
2278
2279	down_write(&nm_i->nat_tree_lock);
2280
2281	/*
2282	 * if there are no enough space in journal to store dirty nat
2283	 * entries, remove all entries from journal and merge them
2284	 * into nat entry set.
2285	 */
2286	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2287		remove_nats_in_journal(sbi);
2288
2289	while ((found = __gang_lookup_nat_set(nm_i,
2290					set_idx, SETVEC_SIZE, setvec))) {
2291		unsigned idx;
2292		set_idx = setvec[found - 1]->set + 1;
2293		for (idx = 0; idx < found; idx++)
2294			__adjust_nat_entry_set(setvec[idx], &sets,
2295						MAX_NAT_JENTRIES(journal));
2296	}
2297
2298	/* flush dirty nats in nat entry set */
2299	list_for_each_entry_safe(set, tmp, &sets, set_list)
2300		__flush_nat_entry_set(sbi, set);
2301
2302	up_write(&nm_i->nat_tree_lock);
2303
2304	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2305}
2306
2307static int init_node_manager(struct f2fs_sb_info *sbi)
2308{
2309	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	unsigned char *version_bitmap;
2312	unsigned int nat_segs, nat_blocks;
2313
2314	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2315
2316	/* segment_count_nat includes pair segment so divide to 2. */
2317	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2318	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2319
2320	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2321
2322	/* not used nids: 0, node, meta, (and root counted as valid node) */
2323	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2324							F2FS_RESERVED_NODE_NUM;
2325	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2326	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2327	nm_i->nat_cnt = 0;
2328	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2329	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2330	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2331
2332	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2333	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2334	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2335	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2336	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2337	INIT_LIST_HEAD(&nm_i->nat_entries);
2338
2339	mutex_init(&nm_i->build_lock);
2340	spin_lock_init(&nm_i->nid_list_lock);
2341	init_rwsem(&nm_i->nat_tree_lock);
2342
2343	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2344	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2345	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2346	if (!version_bitmap)
2347		return -EFAULT;
2348
2349	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2350					GFP_KERNEL);
2351	if (!nm_i->nat_bitmap)
2352		return -ENOMEM;
2353	return 0;
2354}
2355
2356int build_node_manager(struct f2fs_sb_info *sbi)
2357{
2358	int err;
2359
2360	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2361	if (!sbi->nm_info)
2362		return -ENOMEM;
2363
2364	err = init_node_manager(sbi);
2365	if (err)
2366		return err;
2367
2368	build_free_nids(sbi, true);
2369	return 0;
2370}
2371
2372void destroy_node_manager(struct f2fs_sb_info *sbi)
2373{
2374	struct f2fs_nm_info *nm_i = NM_I(sbi);
2375	struct free_nid *i, *next_i;
2376	struct nat_entry *natvec[NATVEC_SIZE];
2377	struct nat_entry_set *setvec[SETVEC_SIZE];
2378	nid_t nid = 0;
2379	unsigned int found;
2380
2381	if (!nm_i)
2382		return;
2383
2384	/* destroy free nid list */
2385	spin_lock(&nm_i->nid_list_lock);
2386	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2387									list) {
2388		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2389		spin_unlock(&nm_i->nid_list_lock);
 
2390		kmem_cache_free(free_nid_slab, i);
2391		spin_lock(&nm_i->nid_list_lock);
2392	}
2393	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2394	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2395	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2396	spin_unlock(&nm_i->nid_list_lock);
2397
2398	/* destroy nat cache */
2399	down_write(&nm_i->nat_tree_lock);
2400	while ((found = __gang_lookup_nat_cache(nm_i,
2401					nid, NATVEC_SIZE, natvec))) {
2402		unsigned idx;
2403
2404		nid = nat_get_nid(natvec[found - 1]) + 1;
2405		for (idx = 0; idx < found; idx++)
2406			__del_from_nat_cache(nm_i, natvec[idx]);
2407	}
2408	f2fs_bug_on(sbi, nm_i->nat_cnt);
2409
2410	/* destroy nat set cache */
2411	nid = 0;
2412	while ((found = __gang_lookup_nat_set(nm_i,
2413					nid, SETVEC_SIZE, setvec))) {
2414		unsigned idx;
2415
2416		nid = setvec[found - 1]->set + 1;
2417		for (idx = 0; idx < found; idx++) {
2418			/* entry_cnt is not zero, when cp_error was occurred */
2419			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2420			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2421			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2422		}
2423	}
2424	up_write(&nm_i->nat_tree_lock);
2425
2426	kfree(nm_i->nat_bitmap);
2427	sbi->nm_info = NULL;
2428	kfree(nm_i);
2429}
2430
2431int __init create_node_manager_caches(void)
2432{
2433	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2434			sizeof(struct nat_entry));
2435	if (!nat_entry_slab)
2436		goto fail;
2437
2438	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2439			sizeof(struct free_nid));
2440	if (!free_nid_slab)
2441		goto destroy_nat_entry;
2442
2443	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2444			sizeof(struct nat_entry_set));
2445	if (!nat_entry_set_slab)
2446		goto destroy_free_nid;
2447	return 0;
2448
2449destroy_free_nid:
2450	kmem_cache_destroy(free_nid_slab);
2451destroy_nat_entry:
2452	kmem_cache_destroy(nat_entry_slab);
2453fail:
2454	return -ENOMEM;
2455}
2456
2457void destroy_node_manager_caches(void)
2458{
2459	kmem_cache_destroy(nat_entry_set_slab);
2460	kmem_cache_destroy(free_nid_slab);
2461	kmem_cache_destroy(nat_entry_slab);
2462}
v4.6
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49							PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 
 
  55	} else if (type == DIRTY_DENTS) {
  56		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  57			return false;
  58		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  59		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  60	} else if (type == INO_ENTRIES) {
  61		int i;
  62
  63		for (i = 0; i <= UPDATE_INO; i++)
  64			mem_size += (sbi->im[i].ino_num *
  65				sizeof(struct ino_entry)) >> PAGE_SHIFT;
  66		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  67	} else if (type == EXTENT_CACHE) {
  68		mem_size = (atomic_read(&sbi->total_ext_tree) *
  69				sizeof(struct extent_tree) +
  70				atomic_read(&sbi->total_ext_node) *
  71				sizeof(struct extent_node)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  73	} else {
  74		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75			return true;
  76	}
  77	return res;
  78}
  79
  80static void clear_node_page_dirty(struct page *page)
  81{
  82	struct address_space *mapping = page->mapping;
  83	unsigned int long flags;
  84
  85	if (PageDirty(page)) {
  86		spin_lock_irqsave(&mapping->tree_lock, flags);
  87		radix_tree_tag_clear(&mapping->page_tree,
  88				page_index(page),
  89				PAGECACHE_TAG_DIRTY);
  90		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  91
  92		clear_page_dirty_for_io(page);
  93		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  94	}
  95	ClearPageUptodate(page);
  96}
  97
  98static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  99{
 100	pgoff_t index = current_nat_addr(sbi, nid);
 101	return get_meta_page(sbi, index);
 102}
 103
 104static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 105{
 106	struct page *src_page;
 107	struct page *dst_page;
 108	pgoff_t src_off;
 109	pgoff_t dst_off;
 110	void *src_addr;
 111	void *dst_addr;
 112	struct f2fs_nm_info *nm_i = NM_I(sbi);
 113
 114	src_off = current_nat_addr(sbi, nid);
 115	dst_off = next_nat_addr(sbi, src_off);
 116
 117	/* get current nat block page with lock */
 118	src_page = get_meta_page(sbi, src_off);
 119	dst_page = grab_meta_page(sbi, dst_off);
 120	f2fs_bug_on(sbi, PageDirty(src_page));
 121
 122	src_addr = page_address(src_page);
 123	dst_addr = page_address(dst_page);
 124	memcpy(dst_addr, src_addr, PAGE_SIZE);
 125	set_page_dirty(dst_page);
 126	f2fs_put_page(src_page, 1);
 127
 128	set_to_next_nat(nm_i, nid);
 129
 130	return dst_page;
 131}
 132
 133static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 134{
 135	return radix_tree_lookup(&nm_i->nat_root, n);
 136}
 137
 138static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 139		nid_t start, unsigned int nr, struct nat_entry **ep)
 140{
 141	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 142}
 143
 144static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 145{
 146	list_del(&e->list);
 147	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 148	nm_i->nat_cnt--;
 149	kmem_cache_free(nat_entry_slab, e);
 150}
 151
 152static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 153						struct nat_entry *ne)
 154{
 155	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 156	struct nat_entry_set *head;
 157
 158	if (get_nat_flag(ne, IS_DIRTY))
 159		return;
 160
 161	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 162	if (!head) {
 163		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 164
 165		INIT_LIST_HEAD(&head->entry_list);
 166		INIT_LIST_HEAD(&head->set_list);
 167		head->set = set;
 168		head->entry_cnt = 0;
 169		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 170	}
 171	list_move_tail(&ne->list, &head->entry_list);
 172	nm_i->dirty_nat_cnt++;
 173	head->entry_cnt++;
 174	set_nat_flag(ne, IS_DIRTY, true);
 175}
 176
 177static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 178						struct nat_entry *ne)
 179{
 180	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 181	struct nat_entry_set *head;
 182
 183	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 184	if (head) {
 185		list_move_tail(&ne->list, &nm_i->nat_entries);
 186		set_nat_flag(ne, IS_DIRTY, false);
 187		head->entry_cnt--;
 188		nm_i->dirty_nat_cnt--;
 189	}
 190}
 191
 192static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 193		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 194{
 195	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 196							start, nr);
 197}
 198
 199int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 200{
 201	struct f2fs_nm_info *nm_i = NM_I(sbi);
 202	struct nat_entry *e;
 203	bool need = false;
 204
 205	down_read(&nm_i->nat_tree_lock);
 206	e = __lookup_nat_cache(nm_i, nid);
 207	if (e) {
 208		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 209				!get_nat_flag(e, HAS_FSYNCED_INODE))
 210			need = true;
 211	}
 212	up_read(&nm_i->nat_tree_lock);
 213	return need;
 214}
 215
 216bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 217{
 218	struct f2fs_nm_info *nm_i = NM_I(sbi);
 219	struct nat_entry *e;
 220	bool is_cp = true;
 221
 222	down_read(&nm_i->nat_tree_lock);
 223	e = __lookup_nat_cache(nm_i, nid);
 224	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 225		is_cp = false;
 226	up_read(&nm_i->nat_tree_lock);
 227	return is_cp;
 228}
 229
 230bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 231{
 232	struct f2fs_nm_info *nm_i = NM_I(sbi);
 233	struct nat_entry *e;
 234	bool need_update = true;
 235
 236	down_read(&nm_i->nat_tree_lock);
 237	e = __lookup_nat_cache(nm_i, ino);
 238	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 239			(get_nat_flag(e, IS_CHECKPOINTED) ||
 240			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 241		need_update = false;
 242	up_read(&nm_i->nat_tree_lock);
 243	return need_update;
 244}
 245
 246static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 247{
 248	struct nat_entry *new;
 249
 250	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 251	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 252	memset(new, 0, sizeof(struct nat_entry));
 253	nat_set_nid(new, nid);
 254	nat_reset_flag(new);
 255	list_add_tail(&new->list, &nm_i->nat_entries);
 256	nm_i->nat_cnt++;
 257	return new;
 258}
 259
 260static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 261						struct f2fs_nat_entry *ne)
 262{
 263	struct f2fs_nm_info *nm_i = NM_I(sbi);
 264	struct nat_entry *e;
 265
 266	e = __lookup_nat_cache(nm_i, nid);
 267	if (!e) {
 268		e = grab_nat_entry(nm_i, nid);
 269		node_info_from_raw_nat(&e->ni, ne);
 270	} else {
 271		f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
 272				nat_get_blkaddr(e) != ne->block_addr ||
 
 273				nat_get_version(e) != ne->version);
 274	}
 275}
 276
 277static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 278			block_t new_blkaddr, bool fsync_done)
 279{
 280	struct f2fs_nm_info *nm_i = NM_I(sbi);
 281	struct nat_entry *e;
 282
 283	down_write(&nm_i->nat_tree_lock);
 284	e = __lookup_nat_cache(nm_i, ni->nid);
 285	if (!e) {
 286		e = grab_nat_entry(nm_i, ni->nid);
 287		copy_node_info(&e->ni, ni);
 288		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 289	} else if (new_blkaddr == NEW_ADDR) {
 290		/*
 291		 * when nid is reallocated,
 292		 * previous nat entry can be remained in nat cache.
 293		 * So, reinitialize it with new information.
 294		 */
 295		copy_node_info(&e->ni, ni);
 296		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 297	}
 298
 299	/* sanity check */
 300	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 301	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 302			new_blkaddr == NULL_ADDR);
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 304			new_blkaddr == NEW_ADDR);
 305	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 306			nat_get_blkaddr(e) != NULL_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308
 309	/* increment version no as node is removed */
 310	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 311		unsigned char version = nat_get_version(e);
 312		nat_set_version(e, inc_node_version(version));
 313
 314		/* in order to reuse the nid */
 315		if (nm_i->next_scan_nid > ni->nid)
 316			nm_i->next_scan_nid = ni->nid;
 317	}
 318
 319	/* change address */
 320	nat_set_blkaddr(e, new_blkaddr);
 321	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 322		set_nat_flag(e, IS_CHECKPOINTED, false);
 323	__set_nat_cache_dirty(nm_i, e);
 324
 325	/* update fsync_mark if its inode nat entry is still alive */
 326	if (ni->nid != ni->ino)
 327		e = __lookup_nat_cache(nm_i, ni->ino);
 328	if (e) {
 329		if (fsync_done && ni->nid == ni->ino)
 330			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 331		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 332	}
 333	up_write(&nm_i->nat_tree_lock);
 334}
 335
 336int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	int nr = nr_shrink;
 340
 341	if (!down_write_trylock(&nm_i->nat_tree_lock))
 342		return 0;
 343
 344	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 345		struct nat_entry *ne;
 346		ne = list_first_entry(&nm_i->nat_entries,
 347					struct nat_entry, list);
 348		__del_from_nat_cache(nm_i, ne);
 349		nr_shrink--;
 350	}
 351	up_write(&nm_i->nat_tree_lock);
 352	return nr - nr_shrink;
 353}
 354
 355/*
 356 * This function always returns success
 357 */
 358void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 359{
 360	struct f2fs_nm_info *nm_i = NM_I(sbi);
 361	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 362	struct f2fs_journal *journal = curseg->journal;
 363	nid_t start_nid = START_NID(nid);
 364	struct f2fs_nat_block *nat_blk;
 365	struct page *page = NULL;
 366	struct f2fs_nat_entry ne;
 367	struct nat_entry *e;
 368	int i;
 369
 370	ni->nid = nid;
 371
 372	/* Check nat cache */
 373	down_read(&nm_i->nat_tree_lock);
 374	e = __lookup_nat_cache(nm_i, nid);
 375	if (e) {
 376		ni->ino = nat_get_ino(e);
 377		ni->blk_addr = nat_get_blkaddr(e);
 378		ni->version = nat_get_version(e);
 379		up_read(&nm_i->nat_tree_lock);
 380		return;
 381	}
 382
 383	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 384
 385	/* Check current segment summary */
 386	down_read(&curseg->journal_rwsem);
 387	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 388	if (i >= 0) {
 389		ne = nat_in_journal(journal, i);
 390		node_info_from_raw_nat(ni, &ne);
 391	}
 392	up_read(&curseg->journal_rwsem);
 393	if (i >= 0)
 394		goto cache;
 395
 396	/* Fill node_info from nat page */
 397	page = get_current_nat_page(sbi, start_nid);
 398	nat_blk = (struct f2fs_nat_block *)page_address(page);
 399	ne = nat_blk->entries[nid - start_nid];
 400	node_info_from_raw_nat(ni, &ne);
 401	f2fs_put_page(page, 1);
 402cache:
 403	up_read(&nm_i->nat_tree_lock);
 404	/* cache nat entry */
 405	down_write(&nm_i->nat_tree_lock);
 406	cache_nat_entry(sbi, nid, &ne);
 407	up_write(&nm_i->nat_tree_lock);
 408}
 409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 411{
 412	const long direct_index = ADDRS_PER_INODE(dn->inode);
 413	const long direct_blks = ADDRS_PER_BLOCK;
 414	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 415	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 416	int cur_level = dn->cur_level;
 417	int max_level = dn->max_level;
 418	pgoff_t base = 0;
 419
 420	if (!dn->max_level)
 421		return pgofs + 1;
 422
 423	while (max_level-- > cur_level)
 424		skipped_unit *= NIDS_PER_BLOCK;
 425
 426	switch (dn->max_level) {
 427	case 3:
 428		base += 2 * indirect_blks;
 429	case 2:
 430		base += 2 * direct_blks;
 431	case 1:
 432		base += direct_index;
 433		break;
 434	default:
 435		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 436	}
 437
 438	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 439}
 440
 441/*
 442 * The maximum depth is four.
 443 * Offset[0] will have raw inode offset.
 444 */
 445static int get_node_path(struct inode *inode, long block,
 446				int offset[4], unsigned int noffset[4])
 447{
 448	const long direct_index = ADDRS_PER_INODE(inode);
 449	const long direct_blks = ADDRS_PER_BLOCK;
 450	const long dptrs_per_blk = NIDS_PER_BLOCK;
 451	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 452	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 453	int n = 0;
 454	int level = 0;
 455
 456	noffset[0] = 0;
 457
 458	if (block < direct_index) {
 459		offset[n] = block;
 460		goto got;
 461	}
 462	block -= direct_index;
 463	if (block < direct_blks) {
 464		offset[n++] = NODE_DIR1_BLOCK;
 465		noffset[n] = 1;
 466		offset[n] = block;
 467		level = 1;
 468		goto got;
 469	}
 470	block -= direct_blks;
 471	if (block < direct_blks) {
 472		offset[n++] = NODE_DIR2_BLOCK;
 473		noffset[n] = 2;
 474		offset[n] = block;
 475		level = 1;
 476		goto got;
 477	}
 478	block -= direct_blks;
 479	if (block < indirect_blks) {
 480		offset[n++] = NODE_IND1_BLOCK;
 481		noffset[n] = 3;
 482		offset[n++] = block / direct_blks;
 483		noffset[n] = 4 + offset[n - 1];
 484		offset[n] = block % direct_blks;
 485		level = 2;
 486		goto got;
 487	}
 488	block -= indirect_blks;
 489	if (block < indirect_blks) {
 490		offset[n++] = NODE_IND2_BLOCK;
 491		noffset[n] = 4 + dptrs_per_blk;
 492		offset[n++] = block / direct_blks;
 493		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 494		offset[n] = block % direct_blks;
 495		level = 2;
 496		goto got;
 497	}
 498	block -= indirect_blks;
 499	if (block < dindirect_blks) {
 500		offset[n++] = NODE_DIND_BLOCK;
 501		noffset[n] = 5 + (dptrs_per_blk * 2);
 502		offset[n++] = block / indirect_blks;
 503		noffset[n] = 6 + (dptrs_per_blk * 2) +
 504			      offset[n - 1] * (dptrs_per_blk + 1);
 505		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 506		noffset[n] = 7 + (dptrs_per_blk * 2) +
 507			      offset[n - 2] * (dptrs_per_blk + 1) +
 508			      offset[n - 1];
 509		offset[n] = block % direct_blks;
 510		level = 3;
 511		goto got;
 512	} else {
 513		BUG();
 514	}
 515got:
 516	return level;
 517}
 518
 519/*
 520 * Caller should call f2fs_put_dnode(dn).
 521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 523 * In the case of RDONLY_NODE, we don't need to care about mutex.
 524 */
 525int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 526{
 527	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 528	struct page *npage[4];
 529	struct page *parent = NULL;
 530	int offset[4];
 531	unsigned int noffset[4];
 532	nid_t nids[4];
 533	int level, i = 0;
 534	int err = 0;
 535
 536	level = get_node_path(dn->inode, index, offset, noffset);
 537
 538	nids[0] = dn->inode->i_ino;
 539	npage[0] = dn->inode_page;
 540
 541	if (!npage[0]) {
 542		npage[0] = get_node_page(sbi, nids[0]);
 543		if (IS_ERR(npage[0]))
 544			return PTR_ERR(npage[0]);
 545	}
 546
 547	/* if inline_data is set, should not report any block indices */
 548	if (f2fs_has_inline_data(dn->inode) && index) {
 549		err = -ENOENT;
 550		f2fs_put_page(npage[0], 1);
 551		goto release_out;
 552	}
 553
 554	parent = npage[0];
 555	if (level != 0)
 556		nids[1] = get_nid(parent, offset[0], true);
 557	dn->inode_page = npage[0];
 558	dn->inode_page_locked = true;
 559
 560	/* get indirect or direct nodes */
 561	for (i = 1; i <= level; i++) {
 562		bool done = false;
 563
 564		if (!nids[i] && mode == ALLOC_NODE) {
 565			/* alloc new node */
 566			if (!alloc_nid(sbi, &(nids[i]))) {
 567				err = -ENOSPC;
 568				goto release_pages;
 569			}
 570
 571			dn->nid = nids[i];
 572			npage[i] = new_node_page(dn, noffset[i], NULL);
 573			if (IS_ERR(npage[i])) {
 574				alloc_nid_failed(sbi, nids[i]);
 575				err = PTR_ERR(npage[i]);
 576				goto release_pages;
 577			}
 578
 579			set_nid(parent, offset[i - 1], nids[i], i == 1);
 580			alloc_nid_done(sbi, nids[i]);
 581			done = true;
 582		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 583			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 584			if (IS_ERR(npage[i])) {
 585				err = PTR_ERR(npage[i]);
 586				goto release_pages;
 587			}
 588			done = true;
 589		}
 590		if (i == 1) {
 591			dn->inode_page_locked = false;
 592			unlock_page(parent);
 593		} else {
 594			f2fs_put_page(parent, 1);
 595		}
 596
 597		if (!done) {
 598			npage[i] = get_node_page(sbi, nids[i]);
 599			if (IS_ERR(npage[i])) {
 600				err = PTR_ERR(npage[i]);
 601				f2fs_put_page(npage[0], 0);
 602				goto release_out;
 603			}
 604		}
 605		if (i < level) {
 606			parent = npage[i];
 607			nids[i + 1] = get_nid(parent, offset[i], false);
 608		}
 609	}
 610	dn->nid = nids[level];
 611	dn->ofs_in_node = offset[level];
 612	dn->node_page = npage[level];
 613	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 614	return 0;
 615
 616release_pages:
 617	f2fs_put_page(parent, 1);
 618	if (i > 1)
 619		f2fs_put_page(npage[0], 0);
 620release_out:
 621	dn->inode_page = NULL;
 622	dn->node_page = NULL;
 623	if (err == -ENOENT) {
 624		dn->cur_level = i;
 625		dn->max_level = level;
 
 626	}
 627	return err;
 628}
 629
 630static void truncate_node(struct dnode_of_data *dn)
 631{
 632	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 633	struct node_info ni;
 634
 635	get_node_info(sbi, dn->nid, &ni);
 636	if (dn->inode->i_blocks == 0) {
 637		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 638		goto invalidate;
 639	}
 640	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 641
 642	/* Deallocate node address */
 643	invalidate_blocks(sbi, ni.blk_addr);
 644	dec_valid_node_count(sbi, dn->inode);
 645	set_node_addr(sbi, &ni, NULL_ADDR, false);
 646
 647	if (dn->nid == dn->inode->i_ino) {
 648		remove_orphan_inode(sbi, dn->nid);
 649		dec_valid_inode_count(sbi);
 650	} else {
 651		sync_inode_page(dn);
 652	}
 653invalidate:
 654	clear_node_page_dirty(dn->node_page);
 655	set_sbi_flag(sbi, SBI_IS_DIRTY);
 656
 657	f2fs_put_page(dn->node_page, 1);
 658
 659	invalidate_mapping_pages(NODE_MAPPING(sbi),
 660			dn->node_page->index, dn->node_page->index);
 661
 662	dn->node_page = NULL;
 663	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 664}
 665
 666static int truncate_dnode(struct dnode_of_data *dn)
 667{
 668	struct page *page;
 669
 670	if (dn->nid == 0)
 671		return 1;
 672
 673	/* get direct node */
 674	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 675	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 676		return 1;
 677	else if (IS_ERR(page))
 678		return PTR_ERR(page);
 679
 680	/* Make dnode_of_data for parameter */
 681	dn->node_page = page;
 682	dn->ofs_in_node = 0;
 683	truncate_data_blocks(dn);
 684	truncate_node(dn);
 685	return 1;
 686}
 687
 688static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 689						int ofs, int depth)
 690{
 691	struct dnode_of_data rdn = *dn;
 692	struct page *page;
 693	struct f2fs_node *rn;
 694	nid_t child_nid;
 695	unsigned int child_nofs;
 696	int freed = 0;
 697	int i, ret;
 698
 699	if (dn->nid == 0)
 700		return NIDS_PER_BLOCK + 1;
 701
 702	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 703
 704	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 705	if (IS_ERR(page)) {
 706		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 707		return PTR_ERR(page);
 708	}
 709
 
 
 710	rn = F2FS_NODE(page);
 711	if (depth < 3) {
 712		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 713			child_nid = le32_to_cpu(rn->in.nid[i]);
 714			if (child_nid == 0)
 715				continue;
 716			rdn.nid = child_nid;
 717			ret = truncate_dnode(&rdn);
 718			if (ret < 0)
 719				goto out_err;
 720			if (set_nid(page, i, 0, false))
 721				dn->node_changed = true;
 722		}
 723	} else {
 724		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 725		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 726			child_nid = le32_to_cpu(rn->in.nid[i]);
 727			if (child_nid == 0) {
 728				child_nofs += NIDS_PER_BLOCK + 1;
 729				continue;
 730			}
 731			rdn.nid = child_nid;
 732			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 733			if (ret == (NIDS_PER_BLOCK + 1)) {
 734				if (set_nid(page, i, 0, false))
 735					dn->node_changed = true;
 736				child_nofs += ret;
 737			} else if (ret < 0 && ret != -ENOENT) {
 738				goto out_err;
 739			}
 740		}
 741		freed = child_nofs;
 742	}
 743
 744	if (!ofs) {
 745		/* remove current indirect node */
 746		dn->node_page = page;
 747		truncate_node(dn);
 748		freed++;
 749	} else {
 750		f2fs_put_page(page, 1);
 751	}
 752	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 753	return freed;
 754
 755out_err:
 756	f2fs_put_page(page, 1);
 757	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 758	return ret;
 759}
 760
 761static int truncate_partial_nodes(struct dnode_of_data *dn,
 762			struct f2fs_inode *ri, int *offset, int depth)
 763{
 764	struct page *pages[2];
 765	nid_t nid[3];
 766	nid_t child_nid;
 767	int err = 0;
 768	int i;
 769	int idx = depth - 2;
 770
 771	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 772	if (!nid[0])
 773		return 0;
 774
 775	/* get indirect nodes in the path */
 776	for (i = 0; i < idx + 1; i++) {
 777		/* reference count'll be increased */
 778		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 779		if (IS_ERR(pages[i])) {
 780			err = PTR_ERR(pages[i]);
 781			idx = i - 1;
 782			goto fail;
 783		}
 784		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 785	}
 786
 
 
 787	/* free direct nodes linked to a partial indirect node */
 788	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 789		child_nid = get_nid(pages[idx], i, false);
 790		if (!child_nid)
 791			continue;
 792		dn->nid = child_nid;
 793		err = truncate_dnode(dn);
 794		if (err < 0)
 795			goto fail;
 796		if (set_nid(pages[idx], i, 0, false))
 797			dn->node_changed = true;
 798	}
 799
 800	if (offset[idx + 1] == 0) {
 801		dn->node_page = pages[idx];
 802		dn->nid = nid[idx];
 803		truncate_node(dn);
 804	} else {
 805		f2fs_put_page(pages[idx], 1);
 806	}
 807	offset[idx]++;
 808	offset[idx + 1] = 0;
 809	idx--;
 810fail:
 811	for (i = idx; i >= 0; i--)
 812		f2fs_put_page(pages[i], 1);
 813
 814	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 815
 816	return err;
 817}
 818
 819/*
 820 * All the block addresses of data and nodes should be nullified.
 821 */
 822int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 823{
 824	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 825	int err = 0, cont = 1;
 826	int level, offset[4], noffset[4];
 827	unsigned int nofs = 0;
 828	struct f2fs_inode *ri;
 829	struct dnode_of_data dn;
 830	struct page *page;
 831
 832	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 833
 834	level = get_node_path(inode, from, offset, noffset);
 835restart:
 836	page = get_node_page(sbi, inode->i_ino);
 837	if (IS_ERR(page)) {
 838		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 839		return PTR_ERR(page);
 840	}
 841
 842	set_new_dnode(&dn, inode, page, NULL, 0);
 843	unlock_page(page);
 844
 845	ri = F2FS_INODE(page);
 846	switch (level) {
 847	case 0:
 848	case 1:
 849		nofs = noffset[1];
 850		break;
 851	case 2:
 852		nofs = noffset[1];
 853		if (!offset[level - 1])
 854			goto skip_partial;
 855		err = truncate_partial_nodes(&dn, ri, offset, level);
 856		if (err < 0 && err != -ENOENT)
 857			goto fail;
 858		nofs += 1 + NIDS_PER_BLOCK;
 859		break;
 860	case 3:
 861		nofs = 5 + 2 * NIDS_PER_BLOCK;
 862		if (!offset[level - 1])
 863			goto skip_partial;
 864		err = truncate_partial_nodes(&dn, ri, offset, level);
 865		if (err < 0 && err != -ENOENT)
 866			goto fail;
 867		break;
 868	default:
 869		BUG();
 870	}
 871
 872skip_partial:
 873	while (cont) {
 874		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 875		switch (offset[0]) {
 876		case NODE_DIR1_BLOCK:
 877		case NODE_DIR2_BLOCK:
 878			err = truncate_dnode(&dn);
 879			break;
 880
 881		case NODE_IND1_BLOCK:
 882		case NODE_IND2_BLOCK:
 883			err = truncate_nodes(&dn, nofs, offset[1], 2);
 884			break;
 885
 886		case NODE_DIND_BLOCK:
 887			err = truncate_nodes(&dn, nofs, offset[1], 3);
 888			cont = 0;
 889			break;
 890
 891		default:
 892			BUG();
 893		}
 894		if (err < 0 && err != -ENOENT)
 895			goto fail;
 896		if (offset[1] == 0 &&
 897				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 898			lock_page(page);
 899			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 900				f2fs_put_page(page, 1);
 901				goto restart;
 902			}
 903			f2fs_wait_on_page_writeback(page, NODE, true);
 904			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 905			set_page_dirty(page);
 906			unlock_page(page);
 907		}
 908		offset[1] = 0;
 909		offset[0]++;
 910		nofs += err;
 911	}
 912fail:
 913	f2fs_put_page(page, 0);
 914	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 915	return err > 0 ? 0 : err;
 916}
 917
 918int truncate_xattr_node(struct inode *inode, struct page *page)
 919{
 920	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 921	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 922	struct dnode_of_data dn;
 923	struct page *npage;
 924
 925	if (!nid)
 926		return 0;
 927
 928	npage = get_node_page(sbi, nid);
 929	if (IS_ERR(npage))
 930		return PTR_ERR(npage);
 931
 932	F2FS_I(inode)->i_xattr_nid = 0;
 933
 934	/* need to do checkpoint during fsync */
 935	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 936
 937	set_new_dnode(&dn, inode, page, npage, nid);
 938
 939	if (page)
 940		dn.inode_page_locked = true;
 941	truncate_node(&dn);
 942	return 0;
 943}
 944
 945/*
 946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 947 * f2fs_unlock_op().
 948 */
 949int remove_inode_page(struct inode *inode)
 950{
 951	struct dnode_of_data dn;
 952	int err;
 953
 954	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 955	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 956	if (err)
 957		return err;
 958
 959	err = truncate_xattr_node(inode, dn.inode_page);
 960	if (err) {
 961		f2fs_put_dnode(&dn);
 962		return err;
 963	}
 964
 965	/* remove potential inline_data blocks */
 966	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 967				S_ISLNK(inode->i_mode))
 968		truncate_data_blocks_range(&dn, 1);
 969
 970	/* 0 is possible, after f2fs_new_inode() has failed */
 971	f2fs_bug_on(F2FS_I_SB(inode),
 972			inode->i_blocks != 0 && inode->i_blocks != 1);
 973
 974	/* will put inode & node pages */
 975	truncate_node(&dn);
 976	return 0;
 977}
 978
 979struct page *new_inode_page(struct inode *inode)
 980{
 981	struct dnode_of_data dn;
 982
 983	/* allocate inode page for new inode */
 984	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 985
 986	/* caller should f2fs_put_page(page, 1); */
 987	return new_node_page(&dn, 0, NULL);
 988}
 989
 990struct page *new_node_page(struct dnode_of_data *dn,
 991				unsigned int ofs, struct page *ipage)
 992{
 993	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 994	struct node_info old_ni, new_ni;
 995	struct page *page;
 996	int err;
 997
 998	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 999		return ERR_PTR(-EPERM);
1000
1001	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002	if (!page)
1003		return ERR_PTR(-ENOMEM);
1004
1005	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006		err = -ENOSPC;
1007		goto fail;
1008	}
1009
1010	get_node_info(sbi, dn->nid, &old_ni);
1011
1012	/* Reinitialize old_ni with new node page */
1013	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014	new_ni = old_ni;
1015	new_ni.ino = dn->inode->i_ino;
1016	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018	f2fs_wait_on_page_writeback(page, NODE, true);
1019	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020	set_cold_node(dn->inode, page);
1021	SetPageUptodate(page);
 
1022	if (set_page_dirty(page))
1023		dn->node_changed = true;
1024
1025	if (f2fs_has_xattr_block(ofs))
1026		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028	dn->node_page = page;
1029	if (ipage)
1030		update_inode(dn->inode, ipage);
1031	else
1032		sync_inode_page(dn);
1033	if (ofs == 0)
1034		inc_valid_inode_count(sbi);
1035
1036	return page;
1037
1038fail:
1039	clear_node_page_dirty(page);
1040	f2fs_put_page(page, 1);
1041	return ERR_PTR(err);
1042}
1043
1044/*
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048 */
1049static int read_node_page(struct page *page, int rw)
1050{
1051	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052	struct node_info ni;
1053	struct f2fs_io_info fio = {
1054		.sbi = sbi,
1055		.type = NODE,
1056		.rw = rw,
 
1057		.page = page,
1058		.encrypted_page = NULL,
1059	};
1060
 
 
 
1061	get_node_info(sbi, page->index, &ni);
1062
1063	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1064		ClearPageUptodate(page);
1065		return -ENOENT;
1066	}
1067
1068	if (PageUptodate(page))
1069		return LOCKED_PAGE;
1070
1071	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072	return f2fs_submit_page_bio(&fio);
1073}
1074
1075/*
1076 * Readahead a node page
1077 */
1078void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079{
1080	struct page *apage;
1081	int err;
1082
1083	if (!nid)
1084		return;
1085	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1086
1087	rcu_read_lock();
1088	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1089	rcu_read_unlock();
1090	if (apage)
1091		return;
1092
1093	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1094	if (!apage)
1095		return;
1096
1097	err = read_node_page(apage, READA);
1098	f2fs_put_page(apage, err ? 1 : 0);
1099}
1100
1101/*
1102 * readahead MAX_RA_NODE number of node pages.
1103 */
1104static void ra_node_pages(struct page *parent, int start)
1105{
1106	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1107	struct blk_plug plug;
1108	int i, end;
1109	nid_t nid;
1110
1111	blk_start_plug(&plug);
1112
1113	/* Then, try readahead for siblings of the desired node */
1114	end = start + MAX_RA_NODE;
1115	end = min(end, NIDS_PER_BLOCK);
1116	for (i = start; i < end; i++) {
1117		nid = get_nid(parent, i, false);
1118		ra_node_page(sbi, nid);
1119	}
1120
1121	blk_finish_plug(&plug);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133repeat:
1134	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, READ_SYNC);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1);
1148
1149	lock_page(page);
1150
1151	if (unlikely(!PageUptodate(page))) {
1152		f2fs_put_page(page, 1);
1153		return ERR_PTR(-EIO);
1154	}
1155	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1156		f2fs_put_page(page, 1);
1157		goto repeat;
1158	}
 
 
 
1159page_hit:
1160	f2fs_bug_on(sbi, nid != nid_of_node(page));
 
 
 
 
 
 
1161	return page;
1162}
1163
1164struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1165{
1166	return __get_node_page(sbi, nid, NULL, 0);
1167}
1168
1169struct page *get_node_page_ra(struct page *parent, int start)
1170{
1171	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1172	nid_t nid = get_nid(parent, start, false);
1173
1174	return __get_node_page(sbi, nid, parent, start);
1175}
1176
1177void sync_inode_page(struct dnode_of_data *dn)
1178{
1179	int ret = 0;
1180
1181	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1182		ret = update_inode(dn->inode, dn->node_page);
1183	} else if (dn->inode_page) {
1184		if (!dn->inode_page_locked)
1185			lock_page(dn->inode_page);
1186		ret = update_inode(dn->inode, dn->inode_page);
1187		if (!dn->inode_page_locked)
1188			unlock_page(dn->inode_page);
1189	} else {
1190		ret = update_inode_page(dn->inode);
1191	}
1192	dn->node_changed = ret ? true: false;
1193}
1194
1195static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196{
1197	struct inode *inode;
1198	struct page *page;
 
1199
1200	/* should flush inline_data before evict_inode */
1201	inode = ilookup(sbi->sb, ino);
1202	if (!inode)
1203		return;
1204
1205	page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
1206	if (!page)
1207		goto iput_out;
1208
1209	if (!trylock_page(page))
1210		goto release_out;
1211
1212	if (!PageUptodate(page))
1213		goto page_out;
1214
1215	if (!PageDirty(page))
1216		goto page_out;
1217
1218	if (!clear_page_dirty_for_io(page))
1219		goto page_out;
1220
1221	if (!f2fs_write_inline_data(inode, page))
1222		inode_dec_dirty_pages(inode);
1223	else
 
1224		set_page_dirty(page);
1225page_out:
1226	unlock_page(page);
1227release_out:
1228	f2fs_put_page(page, 0);
1229iput_out:
1230	iput(inode);
1231}
1232
1233int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1234					struct writeback_control *wbc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235{
1236	pgoff_t index, end;
1237	struct pagevec pvec;
1238	int step = ino ? 2 : 0;
 
 
 
1239	int nwritten = 0;
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241	pagevec_init(&pvec, 0);
1242
1243next_step:
1244	index = 0;
1245	end = ULONG_MAX;
1246
1247	while (index <= end) {
1248		int i, nr_pages;
1249		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1250				PAGECACHE_TAG_DIRTY,
1251				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1252		if (nr_pages == 0)
1253			break;
1254
1255		for (i = 0; i < nr_pages; i++) {
1256			struct page *page = pvec.pages[i];
1257
1258			if (unlikely(f2fs_cp_error(sbi))) {
1259				pagevec_release(&pvec);
1260				return -EIO;
 
1261			}
1262
1263			/*
1264			 * flushing sequence with step:
1265			 * 0. indirect nodes
1266			 * 1. dentry dnodes
1267			 * 2. file dnodes
1268			 */
1269			if (step == 0 && IS_DNODE(page))
1270				continue;
1271			if (step == 1 && (!IS_DNODE(page) ||
1272						is_cold_node(page)))
1273				continue;
1274			if (step == 2 && (!IS_DNODE(page) ||
1275						!is_cold_node(page)))
1276				continue;
1277
1278			/*
1279			 * If an fsync mode,
1280			 * we should not skip writing node pages.
1281			 */
1282lock_node:
1283			if (ino && ino_of_node(page) == ino)
1284				lock_page(page);
1285			else if (!trylock_page(page))
1286				continue;
1287
1288			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1289continue_unlock:
1290				unlock_page(page);
1291				continue;
1292			}
1293			if (ino && ino_of_node(page) != ino)
1294				goto continue_unlock;
1295
1296			if (!PageDirty(page)) {
1297				/* someone wrote it for us */
1298				goto continue_unlock;
1299			}
1300
1301			/* flush inline_data */
1302			if (!ino && is_inline_node(page)) {
1303				clear_inline_node(page);
1304				unlock_page(page);
1305				flush_inline_data(sbi, ino_of_node(page));
1306				goto lock_node;
1307			}
1308
1309			f2fs_wait_on_page_writeback(page, NODE, true);
1310
1311			BUG_ON(PageWriteback(page));
1312			if (!clear_page_dirty_for_io(page))
1313				goto continue_unlock;
1314
1315			/* called by fsync() */
1316			if (ino && IS_DNODE(page)) {
1317				set_fsync_mark(page, 1);
1318				if (IS_INODE(page))
1319					set_dentry_mark(page,
1320						need_dentry_mark(sbi, ino));
1321				nwritten++;
1322			} else {
1323				set_fsync_mark(page, 0);
1324				set_dentry_mark(page, 0);
1325			}
1326
1327			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1328				unlock_page(page);
 
 
1329
1330			if (--wbc->nr_to_write == 0)
1331				break;
1332		}
1333		pagevec_release(&pvec);
1334		cond_resched();
1335
1336		if (wbc->nr_to_write == 0) {
1337			step = 2;
1338			break;
1339		}
1340	}
1341
1342	if (step < 2) {
1343		step++;
1344		goto next_step;
1345	}
1346	return nwritten;
 
 
 
1347}
1348
1349int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1350{
1351	pgoff_t index = 0, end = ULONG_MAX;
1352	struct pagevec pvec;
1353	int ret2 = 0, ret = 0;
1354
1355	pagevec_init(&pvec, 0);
1356
1357	while (index <= end) {
1358		int i, nr_pages;
1359		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1360				PAGECACHE_TAG_WRITEBACK,
1361				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1362		if (nr_pages == 0)
1363			break;
1364
1365		for (i = 0; i < nr_pages; i++) {
1366			struct page *page = pvec.pages[i];
1367
1368			/* until radix tree lookup accepts end_index */
1369			if (unlikely(page->index > end))
1370				continue;
1371
1372			if (ino && ino_of_node(page) == ino) {
1373				f2fs_wait_on_page_writeback(page, NODE, true);
1374				if (TestClearPageError(page))
1375					ret = -EIO;
1376			}
1377		}
1378		pagevec_release(&pvec);
1379		cond_resched();
1380	}
1381
1382	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1383		ret2 = -ENOSPC;
1384	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1385		ret2 = -EIO;
1386	if (!ret)
1387		ret = ret2;
1388	return ret;
1389}
1390
1391static int f2fs_write_node_page(struct page *page,
1392				struct writeback_control *wbc)
1393{
1394	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395	nid_t nid;
1396	struct node_info ni;
1397	struct f2fs_io_info fio = {
1398		.sbi = sbi,
1399		.type = NODE,
1400		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
 
1401		.page = page,
1402		.encrypted_page = NULL,
1403	};
1404
1405	trace_f2fs_writepage(page, NODE);
1406
1407	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1408		goto redirty_out;
1409	if (unlikely(f2fs_cp_error(sbi)))
1410		goto redirty_out;
1411
1412	/* get old block addr of this node page */
1413	nid = nid_of_node(page);
1414	f2fs_bug_on(sbi, page->index != nid);
1415
1416	if (wbc->for_reclaim) {
1417		if (!down_read_trylock(&sbi->node_write))
1418			goto redirty_out;
1419	} else {
1420		down_read(&sbi->node_write);
1421	}
1422
1423	get_node_info(sbi, nid, &ni);
1424
1425	/* This page is already truncated */
1426	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1427		ClearPageUptodate(page);
1428		dec_page_count(sbi, F2FS_DIRTY_NODES);
1429		up_read(&sbi->node_write);
1430		unlock_page(page);
1431		return 0;
1432	}
1433
1434	set_page_writeback(page);
1435	fio.old_blkaddr = ni.blk_addr;
1436	write_node_page(nid, &fio);
1437	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1438	dec_page_count(sbi, F2FS_DIRTY_NODES);
1439	up_read(&sbi->node_write);
1440
1441	if (wbc->for_reclaim)
1442		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1443
1444	unlock_page(page);
1445
1446	if (unlikely(f2fs_cp_error(sbi)))
1447		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1448
1449	return 0;
1450
1451redirty_out:
1452	redirty_page_for_writepage(wbc, page);
1453	return AOP_WRITEPAGE_ACTIVATE;
1454}
1455
1456static int f2fs_write_node_pages(struct address_space *mapping,
1457			    struct writeback_control *wbc)
1458{
1459	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 
1460	long diff;
1461
1462	/* balancing f2fs's metadata in background */
1463	f2fs_balance_fs_bg(sbi);
1464
1465	/* collect a number of dirty node pages and write together */
1466	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1467		goto skip_write;
1468
1469	trace_f2fs_writepages(mapping->host, wbc, NODE);
1470
1471	diff = nr_pages_to_write(sbi, NODE, wbc);
1472	wbc->sync_mode = WB_SYNC_NONE;
1473	sync_node_pages(sbi, 0, wbc);
 
 
1474	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1475	return 0;
1476
1477skip_write:
1478	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1479	trace_f2fs_writepages(mapping->host, wbc, NODE);
1480	return 0;
1481}
1482
1483static int f2fs_set_node_page_dirty(struct page *page)
1484{
1485	trace_f2fs_set_page_dirty(page, NODE);
1486
1487	SetPageUptodate(page);
 
1488	if (!PageDirty(page)) {
1489		__set_page_dirty_nobuffers(page);
1490		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1491		SetPagePrivate(page);
1492		f2fs_trace_pid(page);
1493		return 1;
1494	}
1495	return 0;
1496}
1497
1498/*
1499 * Structure of the f2fs node operations
1500 */
1501const struct address_space_operations f2fs_node_aops = {
1502	.writepage	= f2fs_write_node_page,
1503	.writepages	= f2fs_write_node_pages,
1504	.set_page_dirty	= f2fs_set_node_page_dirty,
1505	.invalidatepage	= f2fs_invalidate_page,
1506	.releasepage	= f2fs_release_page,
 
 
 
1507};
1508
1509static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1510						nid_t n)
1511{
1512	return radix_tree_lookup(&nm_i->free_nid_root, n);
1513}
1514
1515static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1516						struct free_nid *i)
1517{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518	list_del(&i->list);
1519	radix_tree_delete(&nm_i->free_nid_root, i->nid);
 
1520}
1521
1522static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1523{
1524	struct f2fs_nm_info *nm_i = NM_I(sbi);
1525	struct free_nid *i;
1526	struct nat_entry *ne;
1527	bool allocated = false;
1528
1529	if (!available_free_memory(sbi, FREE_NIDS))
1530		return -1;
1531
1532	/* 0 nid should not be used */
1533	if (unlikely(nid == 0))
1534		return 0;
1535
1536	if (build) {
1537		/* do not add allocated nids */
1538		ne = __lookup_nat_cache(nm_i, nid);
1539		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1540				nat_get_blkaddr(ne) != NULL_ADDR))
1541			allocated = true;
1542		if (allocated)
1543			return 0;
1544	}
1545
1546	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1547	i->nid = nid;
1548	i->state = NID_NEW;
1549
1550	if (radix_tree_preload(GFP_NOFS)) {
1551		kmem_cache_free(free_nid_slab, i);
1552		return 0;
1553	}
1554
1555	spin_lock(&nm_i->free_nid_list_lock);
1556	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1557		spin_unlock(&nm_i->free_nid_list_lock);
1558		radix_tree_preload_end();
 
1559		kmem_cache_free(free_nid_slab, i);
1560		return 0;
1561	}
1562	list_add_tail(&i->list, &nm_i->free_nid_list);
1563	nm_i->fcnt++;
1564	spin_unlock(&nm_i->free_nid_list_lock);
1565	radix_tree_preload_end();
1566	return 1;
1567}
1568
1569static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1570{
 
1571	struct free_nid *i;
1572	bool need_free = false;
1573
1574	spin_lock(&nm_i->free_nid_list_lock);
1575	i = __lookup_free_nid_list(nm_i, nid);
1576	if (i && i->state == NID_NEW) {
1577		__del_from_free_nid_list(nm_i, i);
1578		nm_i->fcnt--;
1579		need_free = true;
1580	}
1581	spin_unlock(&nm_i->free_nid_list_lock);
1582
1583	if (need_free)
1584		kmem_cache_free(free_nid_slab, i);
1585}
1586
1587static void scan_nat_page(struct f2fs_sb_info *sbi,
1588			struct page *nat_page, nid_t start_nid)
1589{
1590	struct f2fs_nm_info *nm_i = NM_I(sbi);
1591	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1592	block_t blk_addr;
1593	int i;
1594
1595	i = start_nid % NAT_ENTRY_PER_BLOCK;
1596
1597	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1598
1599		if (unlikely(start_nid >= nm_i->max_nid))
1600			break;
1601
1602		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1603		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1604		if (blk_addr == NULL_ADDR) {
1605			if (add_free_nid(sbi, start_nid, true) < 0)
1606				break;
1607		}
1608	}
1609}
1610
1611static void build_free_nids(struct f2fs_sb_info *sbi)
1612{
1613	struct f2fs_nm_info *nm_i = NM_I(sbi);
1614	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1615	struct f2fs_journal *journal = curseg->journal;
1616	int i = 0;
1617	nid_t nid = nm_i->next_scan_nid;
1618
1619	/* Enough entries */
1620	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
 
 
 
1621		return;
1622
1623	/* readahead nat pages to be scanned */
1624	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1625							META_NAT, true);
1626
1627	down_read(&nm_i->nat_tree_lock);
1628
1629	while (1) {
1630		struct page *page = get_current_nat_page(sbi, nid);
1631
1632		scan_nat_page(sbi, page, nid);
1633		f2fs_put_page(page, 1);
1634
1635		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1636		if (unlikely(nid >= nm_i->max_nid))
1637			nid = 0;
1638
1639		if (++i >= FREE_NID_PAGES)
1640			break;
1641	}
1642
1643	/* go to the next free nat pages to find free nids abundantly */
1644	nm_i->next_scan_nid = nid;
1645
1646	/* find free nids from current sum_pages */
1647	down_read(&curseg->journal_rwsem);
1648	for (i = 0; i < nats_in_cursum(journal); i++) {
1649		block_t addr;
1650
1651		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1652		nid = le32_to_cpu(nid_in_journal(journal, i));
1653		if (addr == NULL_ADDR)
1654			add_free_nid(sbi, nid, true);
1655		else
1656			remove_free_nid(nm_i, nid);
1657	}
1658	up_read(&curseg->journal_rwsem);
1659	up_read(&nm_i->nat_tree_lock);
1660
1661	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1662					nm_i->ra_nid_pages, META_NAT, false);
1663}
1664
 
 
 
 
 
 
 
1665/*
1666 * If this function returns success, caller can obtain a new nid
1667 * from second parameter of this function.
1668 * The returned nid could be used ino as well as nid when inode is created.
1669 */
1670bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1671{
1672	struct f2fs_nm_info *nm_i = NM_I(sbi);
1673	struct free_nid *i = NULL;
1674retry:
1675	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
 
1676		return false;
 
 
1677
1678	spin_lock(&nm_i->free_nid_list_lock);
 
 
 
1679
1680	/* We should not use stale free nids created by build_free_nids */
1681	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1682		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1683		list_for_each_entry(i, &nm_i->free_nid_list, list)
1684			if (i->state == NID_NEW)
1685				break;
1686
1687		f2fs_bug_on(sbi, i->state != NID_NEW);
1688		*nid = i->nid;
1689		i->state = NID_ALLOC;
1690		nm_i->fcnt--;
1691		spin_unlock(&nm_i->free_nid_list_lock);
 
1692		return true;
1693	}
1694	spin_unlock(&nm_i->free_nid_list_lock);
1695
1696	/* Let's scan nat pages and its caches to get free nids */
1697	mutex_lock(&nm_i->build_lock);
1698	build_free_nids(sbi);
1699	mutex_unlock(&nm_i->build_lock);
1700	goto retry;
1701}
1702
1703/*
1704 * alloc_nid() should be called prior to this function.
1705 */
1706void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1707{
1708	struct f2fs_nm_info *nm_i = NM_I(sbi);
1709	struct free_nid *i;
1710
1711	spin_lock(&nm_i->free_nid_list_lock);
1712	i = __lookup_free_nid_list(nm_i, nid);
1713	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1714	__del_from_free_nid_list(nm_i, i);
1715	spin_unlock(&nm_i->free_nid_list_lock);
1716
1717	kmem_cache_free(free_nid_slab, i);
1718}
1719
1720/*
1721 * alloc_nid() should be called prior to this function.
1722 */
1723void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1724{
1725	struct f2fs_nm_info *nm_i = NM_I(sbi);
1726	struct free_nid *i;
1727	bool need_free = false;
1728
1729	if (!nid)
1730		return;
1731
1732	spin_lock(&nm_i->free_nid_list_lock);
1733	i = __lookup_free_nid_list(nm_i, nid);
1734	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
 
1735	if (!available_free_memory(sbi, FREE_NIDS)) {
1736		__del_from_free_nid_list(nm_i, i);
1737		need_free = true;
1738	} else {
 
1739		i->state = NID_NEW;
1740		nm_i->fcnt++;
1741	}
1742	spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
1743
1744	if (need_free)
1745		kmem_cache_free(free_nid_slab, i);
1746}
1747
1748int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1749{
1750	struct f2fs_nm_info *nm_i = NM_I(sbi);
1751	struct free_nid *i, *next;
1752	int nr = nr_shrink;
1753
 
 
 
1754	if (!mutex_trylock(&nm_i->build_lock))
1755		return 0;
1756
1757	spin_lock(&nm_i->free_nid_list_lock);
1758	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1759		if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
 
 
1760			break;
1761		if (i->state == NID_ALLOC)
1762			continue;
1763		__del_from_free_nid_list(nm_i, i);
1764		kmem_cache_free(free_nid_slab, i);
1765		nm_i->fcnt--;
1766		nr_shrink--;
1767	}
1768	spin_unlock(&nm_i->free_nid_list_lock);
1769	mutex_unlock(&nm_i->build_lock);
1770
1771	return nr - nr_shrink;
1772}
1773
1774void recover_inline_xattr(struct inode *inode, struct page *page)
1775{
1776	void *src_addr, *dst_addr;
1777	size_t inline_size;
1778	struct page *ipage;
1779	struct f2fs_inode *ri;
1780
1781	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1782	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1783
1784	ri = F2FS_INODE(page);
1785	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1786		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1787		goto update_inode;
1788	}
1789
1790	dst_addr = inline_xattr_addr(ipage);
1791	src_addr = inline_xattr_addr(page);
1792	inline_size = inline_xattr_size(inode);
1793
1794	f2fs_wait_on_page_writeback(ipage, NODE, true);
1795	memcpy(dst_addr, src_addr, inline_size);
1796update_inode:
1797	update_inode(inode, ipage);
1798	f2fs_put_page(ipage, 1);
1799}
1800
1801void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1802{
1803	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1805	nid_t new_xnid = nid_of_node(page);
1806	struct node_info ni;
1807
1808	/* 1: invalidate the previous xattr nid */
1809	if (!prev_xnid)
1810		goto recover_xnid;
1811
1812	/* Deallocate node address */
1813	get_node_info(sbi, prev_xnid, &ni);
1814	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1815	invalidate_blocks(sbi, ni.blk_addr);
1816	dec_valid_node_count(sbi, inode);
1817	set_node_addr(sbi, &ni, NULL_ADDR, false);
1818
1819recover_xnid:
1820	/* 2: allocate new xattr nid */
1821	if (unlikely(!inc_valid_node_count(sbi, inode)))
1822		f2fs_bug_on(sbi, 1);
1823
1824	remove_free_nid(NM_I(sbi), new_xnid);
1825	get_node_info(sbi, new_xnid, &ni);
1826	ni.ino = inode->i_ino;
1827	set_node_addr(sbi, &ni, NEW_ADDR, false);
1828	F2FS_I(inode)->i_xattr_nid = new_xnid;
1829
1830	/* 3: update xattr blkaddr */
1831	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1832	set_node_addr(sbi, &ni, blkaddr, false);
1833
1834	update_inode_page(inode);
1835}
1836
1837int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1838{
1839	struct f2fs_inode *src, *dst;
1840	nid_t ino = ino_of_node(page);
1841	struct node_info old_ni, new_ni;
1842	struct page *ipage;
1843
1844	get_node_info(sbi, ino, &old_ni);
1845
1846	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1847		return -EINVAL;
1848
1849	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1850	if (!ipage)
1851		return -ENOMEM;
 
 
1852
1853	/* Should not use this inode from free nid list */
1854	remove_free_nid(NM_I(sbi), ino);
1855
1856	SetPageUptodate(ipage);
 
1857	fill_node_footer(ipage, ino, ino, 0, true);
1858
1859	src = F2FS_INODE(page);
1860	dst = F2FS_INODE(ipage);
1861
1862	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1863	dst->i_size = 0;
1864	dst->i_blocks = cpu_to_le64(1);
1865	dst->i_links = cpu_to_le32(1);
1866	dst->i_xattr_nid = 0;
1867	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1868
1869	new_ni = old_ni;
1870	new_ni.ino = ino;
1871
1872	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1873		WARN_ON(1);
1874	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1875	inc_valid_inode_count(sbi);
1876	set_page_dirty(ipage);
1877	f2fs_put_page(ipage, 1);
1878	return 0;
1879}
1880
1881int restore_node_summary(struct f2fs_sb_info *sbi,
1882			unsigned int segno, struct f2fs_summary_block *sum)
1883{
1884	struct f2fs_node *rn;
1885	struct f2fs_summary *sum_entry;
1886	block_t addr;
1887	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1888	int i, idx, last_offset, nrpages;
1889
1890	/* scan the node segment */
1891	last_offset = sbi->blocks_per_seg;
1892	addr = START_BLOCK(sbi, segno);
1893	sum_entry = &sum->entries[0];
1894
1895	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1896		nrpages = min(last_offset - i, bio_blocks);
1897
1898		/* readahead node pages */
1899		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1900
1901		for (idx = addr; idx < addr + nrpages; idx++) {
1902			struct page *page = get_tmp_page(sbi, idx);
1903
1904			rn = F2FS_NODE(page);
1905			sum_entry->nid = rn->footer.nid;
1906			sum_entry->version = 0;
1907			sum_entry->ofs_in_node = 0;
1908			sum_entry++;
1909			f2fs_put_page(page, 1);
1910		}
1911
1912		invalidate_mapping_pages(META_MAPPING(sbi), addr,
1913							addr + nrpages);
1914	}
1915	return 0;
1916}
1917
1918static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1922	struct f2fs_journal *journal = curseg->journal;
1923	int i;
1924
1925	down_write(&curseg->journal_rwsem);
1926	for (i = 0; i < nats_in_cursum(journal); i++) {
1927		struct nat_entry *ne;
1928		struct f2fs_nat_entry raw_ne;
1929		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1930
1931		raw_ne = nat_in_journal(journal, i);
1932
1933		ne = __lookup_nat_cache(nm_i, nid);
1934		if (!ne) {
1935			ne = grab_nat_entry(nm_i, nid);
1936			node_info_from_raw_nat(&ne->ni, &raw_ne);
1937		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1938		__set_nat_cache_dirty(nm_i, ne);
1939	}
1940	update_nats_in_cursum(journal, -i);
1941	up_write(&curseg->journal_rwsem);
1942}
1943
1944static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1945						struct list_head *head, int max)
1946{
1947	struct nat_entry_set *cur;
1948
1949	if (nes->entry_cnt >= max)
1950		goto add_out;
1951
1952	list_for_each_entry(cur, head, set_list) {
1953		if (cur->entry_cnt >= nes->entry_cnt) {
1954			list_add(&nes->set_list, cur->set_list.prev);
1955			return;
1956		}
1957	}
1958add_out:
1959	list_add_tail(&nes->set_list, head);
1960}
1961
1962static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1963					struct nat_entry_set *set)
1964{
1965	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966	struct f2fs_journal *journal = curseg->journal;
1967	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1968	bool to_journal = true;
1969	struct f2fs_nat_block *nat_blk;
1970	struct nat_entry *ne, *cur;
1971	struct page *page = NULL;
1972
1973	/*
1974	 * there are two steps to flush nat entries:
1975	 * #1, flush nat entries to journal in current hot data summary block.
1976	 * #2, flush nat entries to nat page.
1977	 */
1978	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
1979		to_journal = false;
1980
1981	if (to_journal) {
1982		down_write(&curseg->journal_rwsem);
1983	} else {
1984		page = get_next_nat_page(sbi, start_nid);
1985		nat_blk = page_address(page);
1986		f2fs_bug_on(sbi, !nat_blk);
1987	}
1988
1989	/* flush dirty nats in nat entry set */
1990	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1991		struct f2fs_nat_entry *raw_ne;
1992		nid_t nid = nat_get_nid(ne);
1993		int offset;
1994
1995		if (nat_get_blkaddr(ne) == NEW_ADDR)
1996			continue;
1997
1998		if (to_journal) {
1999			offset = lookup_journal_in_cursum(journal,
2000							NAT_JOURNAL, nid, 1);
2001			f2fs_bug_on(sbi, offset < 0);
2002			raw_ne = &nat_in_journal(journal, offset);
2003			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2004		} else {
2005			raw_ne = &nat_blk->entries[nid - start_nid];
2006		}
2007		raw_nat_from_node_info(raw_ne, &ne->ni);
2008		nat_reset_flag(ne);
2009		__clear_nat_cache_dirty(NM_I(sbi), ne);
2010		if (nat_get_blkaddr(ne) == NULL_ADDR)
2011			add_free_nid(sbi, nid, false);
 
 
 
 
2012	}
2013
2014	if (to_journal)
2015		up_write(&curseg->journal_rwsem);
2016	else
2017		f2fs_put_page(page, 1);
2018
2019	f2fs_bug_on(sbi, set->entry_cnt);
2020
2021	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2022	kmem_cache_free(nat_entry_set_slab, set);
2023}
2024
2025/*
2026 * This function is called during the checkpointing process.
2027 */
2028void flush_nat_entries(struct f2fs_sb_info *sbi)
2029{
2030	struct f2fs_nm_info *nm_i = NM_I(sbi);
2031	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2032	struct f2fs_journal *journal = curseg->journal;
2033	struct nat_entry_set *setvec[SETVEC_SIZE];
2034	struct nat_entry_set *set, *tmp;
2035	unsigned int found;
2036	nid_t set_idx = 0;
2037	LIST_HEAD(sets);
2038
2039	if (!nm_i->dirty_nat_cnt)
2040		return;
2041
2042	down_write(&nm_i->nat_tree_lock);
2043
2044	/*
2045	 * if there are no enough space in journal to store dirty nat
2046	 * entries, remove all entries from journal and merge them
2047	 * into nat entry set.
2048	 */
2049	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2050		remove_nats_in_journal(sbi);
2051
2052	while ((found = __gang_lookup_nat_set(nm_i,
2053					set_idx, SETVEC_SIZE, setvec))) {
2054		unsigned idx;
2055		set_idx = setvec[found - 1]->set + 1;
2056		for (idx = 0; idx < found; idx++)
2057			__adjust_nat_entry_set(setvec[idx], &sets,
2058						MAX_NAT_JENTRIES(journal));
2059	}
2060
2061	/* flush dirty nats in nat entry set */
2062	list_for_each_entry_safe(set, tmp, &sets, set_list)
2063		__flush_nat_entry_set(sbi, set);
2064
2065	up_write(&nm_i->nat_tree_lock);
2066
2067	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2068}
2069
2070static int init_node_manager(struct f2fs_sb_info *sbi)
2071{
2072	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2073	struct f2fs_nm_info *nm_i = NM_I(sbi);
2074	unsigned char *version_bitmap;
2075	unsigned int nat_segs, nat_blocks;
2076
2077	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2078
2079	/* segment_count_nat includes pair segment so divide to 2. */
2080	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2081	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2082
2083	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2084
2085	/* not used nids: 0, node, meta, (and root counted as valid node) */
2086	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2087	nm_i->fcnt = 0;
 
 
2088	nm_i->nat_cnt = 0;
2089	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2090	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2091	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2092
2093	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2094	INIT_LIST_HEAD(&nm_i->free_nid_list);
 
2095	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2096	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2097	INIT_LIST_HEAD(&nm_i->nat_entries);
2098
2099	mutex_init(&nm_i->build_lock);
2100	spin_lock_init(&nm_i->free_nid_list_lock);
2101	init_rwsem(&nm_i->nat_tree_lock);
2102
2103	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2104	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2105	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2106	if (!version_bitmap)
2107		return -EFAULT;
2108
2109	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2110					GFP_KERNEL);
2111	if (!nm_i->nat_bitmap)
2112		return -ENOMEM;
2113	return 0;
2114}
2115
2116int build_node_manager(struct f2fs_sb_info *sbi)
2117{
2118	int err;
2119
2120	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2121	if (!sbi->nm_info)
2122		return -ENOMEM;
2123
2124	err = init_node_manager(sbi);
2125	if (err)
2126		return err;
2127
2128	build_free_nids(sbi);
2129	return 0;
2130}
2131
2132void destroy_node_manager(struct f2fs_sb_info *sbi)
2133{
2134	struct f2fs_nm_info *nm_i = NM_I(sbi);
2135	struct free_nid *i, *next_i;
2136	struct nat_entry *natvec[NATVEC_SIZE];
2137	struct nat_entry_set *setvec[SETVEC_SIZE];
2138	nid_t nid = 0;
2139	unsigned int found;
2140
2141	if (!nm_i)
2142		return;
2143
2144	/* destroy free nid list */
2145	spin_lock(&nm_i->free_nid_list_lock);
2146	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2147		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2148		__del_from_free_nid_list(nm_i, i);
2149		nm_i->fcnt--;
2150		spin_unlock(&nm_i->free_nid_list_lock);
2151		kmem_cache_free(free_nid_slab, i);
2152		spin_lock(&nm_i->free_nid_list_lock);
2153	}
2154	f2fs_bug_on(sbi, nm_i->fcnt);
2155	spin_unlock(&nm_i->free_nid_list_lock);
 
 
2156
2157	/* destroy nat cache */
2158	down_write(&nm_i->nat_tree_lock);
2159	while ((found = __gang_lookup_nat_cache(nm_i,
2160					nid, NATVEC_SIZE, natvec))) {
2161		unsigned idx;
2162
2163		nid = nat_get_nid(natvec[found - 1]) + 1;
2164		for (idx = 0; idx < found; idx++)
2165			__del_from_nat_cache(nm_i, natvec[idx]);
2166	}
2167	f2fs_bug_on(sbi, nm_i->nat_cnt);
2168
2169	/* destroy nat set cache */
2170	nid = 0;
2171	while ((found = __gang_lookup_nat_set(nm_i,
2172					nid, SETVEC_SIZE, setvec))) {
2173		unsigned idx;
2174
2175		nid = setvec[found - 1]->set + 1;
2176		for (idx = 0; idx < found; idx++) {
2177			/* entry_cnt is not zero, when cp_error was occurred */
2178			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2179			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2180			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2181		}
2182	}
2183	up_write(&nm_i->nat_tree_lock);
2184
2185	kfree(nm_i->nat_bitmap);
2186	sbi->nm_info = NULL;
2187	kfree(nm_i);
2188}
2189
2190int __init create_node_manager_caches(void)
2191{
2192	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2193			sizeof(struct nat_entry));
2194	if (!nat_entry_slab)
2195		goto fail;
2196
2197	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2198			sizeof(struct free_nid));
2199	if (!free_nid_slab)
2200		goto destroy_nat_entry;
2201
2202	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2203			sizeof(struct nat_entry_set));
2204	if (!nat_entry_set_slab)
2205		goto destroy_free_nid;
2206	return 0;
2207
2208destroy_free_nid:
2209	kmem_cache_destroy(free_nid_slab);
2210destroy_nat_entry:
2211	kmem_cache_destroy(nat_entry_slab);
2212fail:
2213	return -ENOMEM;
2214}
2215
2216void destroy_node_manager_caches(void)
2217{
2218	kmem_cache_destroy(nat_entry_set_slab);
2219	kmem_cache_destroy(free_nid_slab);
2220	kmem_cache_destroy(nat_entry_slab);
2221}