Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
 
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
 
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
 
 
 
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
  49				sizeof(struct free_nid)) >> PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55		if (excess_cached_nats(sbi))
  56			res = false;
  57	} else if (type == DIRTY_DENTS) {
  58		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  59			return false;
  60		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  61		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  62	} else if (type == INO_ENTRIES) {
  63		int i;
  64
  65		for (i = 0; i <= UPDATE_INO; i++)
  66			mem_size += (sbi->im[i].ino_num *
  67				sizeof(struct ino_entry)) >> PAGE_SHIFT;
 
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  69	} else if (type == EXTENT_CACHE) {
  70		mem_size = (atomic_read(&sbi->total_ext_tree) *
 
 
 
 
  71				sizeof(struct extent_tree) +
  72				atomic_read(&sbi->total_ext_node) *
  73				sizeof(struct extent_node)) >> PAGE_SHIFT;
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75	} else {
  76		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return true;
  78	}
  79	return res;
  80}
  81
  82static void clear_node_page_dirty(struct page *page)
  83{
  84	struct address_space *mapping = page->mapping;
  85	unsigned int long flags;
  86
  87	if (PageDirty(page)) {
  88		spin_lock_irqsave(&mapping->tree_lock, flags);
  89		radix_tree_tag_clear(&mapping->page_tree,
  90				page_index(page),
  91				PAGECACHE_TAG_DIRTY);
  92		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  93
  94		clear_page_dirty_for_io(page);
  95		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  96	}
  97	ClearPageUptodate(page);
  98}
  99
 100static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 101{
 102	pgoff_t index = current_nat_addr(sbi, nid);
 103	return get_meta_page(sbi, index);
 104}
 105
 106static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	struct page *src_page;
 109	struct page *dst_page;
 110	pgoff_t src_off;
 111	pgoff_t dst_off;
 112	void *src_addr;
 113	void *dst_addr;
 114	struct f2fs_nm_info *nm_i = NM_I(sbi);
 115
 116	src_off = current_nat_addr(sbi, nid);
 117	dst_off = next_nat_addr(sbi, src_off);
 118
 119	/* get current nat block page with lock */
 120	src_page = get_meta_page(sbi, src_off);
 121	dst_page = grab_meta_page(sbi, dst_off);
 
 
 122	f2fs_bug_on(sbi, PageDirty(src_page));
 123
 124	src_addr = page_address(src_page);
 125	dst_addr = page_address(dst_page);
 126	memcpy(dst_addr, src_addr, PAGE_SIZE);
 127	set_page_dirty(dst_page);
 128	f2fs_put_page(src_page, 1);
 129
 130	set_to_next_nat(nm_i, nid);
 131
 132	return dst_page;
 133}
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 136{
 137	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 138}
 139
 140static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 141		nid_t start, unsigned int nr, struct nat_entry **ep)
 142{
 143	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 144}
 145
 146static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 147{
 148	list_del(&e->list);
 149	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 150	nm_i->nat_cnt--;
 151	kmem_cache_free(nat_entry_slab, e);
 
 152}
 153
 154static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 155						struct nat_entry *ne)
 156{
 157	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 158	struct nat_entry_set *head;
 159
 160	if (get_nat_flag(ne, IS_DIRTY))
 161		return;
 162
 163	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 164	if (!head) {
 165		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 
 166
 167		INIT_LIST_HEAD(&head->entry_list);
 168		INIT_LIST_HEAD(&head->set_list);
 169		head->set = set;
 170		head->entry_cnt = 0;
 171		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 172	}
 173	list_move_tail(&ne->list, &head->entry_list);
 174	nm_i->dirty_nat_cnt++;
 175	head->entry_cnt++;
 176	set_nat_flag(ne, IS_DIRTY, true);
 177}
 178
 179static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 180						struct nat_entry *ne)
 181{
 182	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 183	struct nat_entry_set *head;
 
 184
 185	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 186	if (head) {
 187		list_move_tail(&ne->list, &nm_i->nat_entries);
 188		set_nat_flag(ne, IS_DIRTY, false);
 189		head->entry_cnt--;
 190		nm_i->dirty_nat_cnt--;
 191	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192}
 193
 194static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 195		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 196{
 197	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 198							start, nr);
 199}
 200
 201int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202{
 203	struct f2fs_nm_info *nm_i = NM_I(sbi);
 204	struct nat_entry *e;
 205	bool need = false;
 206
 207	down_read(&nm_i->nat_tree_lock);
 208	e = __lookup_nat_cache(nm_i, nid);
 209	if (e) {
 210		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 211				!get_nat_flag(e, HAS_FSYNCED_INODE))
 212			need = true;
 213	}
 214	up_read(&nm_i->nat_tree_lock);
 215	return need;
 216}
 217
 218bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 219{
 220	struct f2fs_nm_info *nm_i = NM_I(sbi);
 221	struct nat_entry *e;
 222	bool is_cp = true;
 223
 224	down_read(&nm_i->nat_tree_lock);
 225	e = __lookup_nat_cache(nm_i, nid);
 226	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 227		is_cp = false;
 228	up_read(&nm_i->nat_tree_lock);
 229	return is_cp;
 230}
 231
 232bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 233{
 234	struct f2fs_nm_info *nm_i = NM_I(sbi);
 235	struct nat_entry *e;
 236	bool need_update = true;
 237
 238	down_read(&nm_i->nat_tree_lock);
 239	e = __lookup_nat_cache(nm_i, ino);
 240	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 241			(get_nat_flag(e, IS_CHECKPOINTED) ||
 242			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 243		need_update = false;
 244	up_read(&nm_i->nat_tree_lock);
 245	return need_update;
 246}
 247
 248static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 249{
 250	struct nat_entry *new;
 251
 252	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 253	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 254	memset(new, 0, sizeof(struct nat_entry));
 255	nat_set_nid(new, nid);
 256	nat_reset_flag(new);
 257	list_add_tail(&new->list, &nm_i->nat_entries);
 258	nm_i->nat_cnt++;
 259	return new;
 260}
 261
 262static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 263						struct f2fs_nat_entry *ne)
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 267
 
 
 
 
 
 
 
 
 
 268	e = __lookup_nat_cache(nm_i, nid);
 269	if (!e) {
 270		e = grab_nat_entry(nm_i, nid);
 271		node_info_from_raw_nat(&e->ni, ne);
 272	} else {
 273		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 274				nat_get_blkaddr(e) !=
 275					le32_to_cpu(ne->block_addr) ||
 276				nat_get_version(e) != ne->version);
 277	}
 
 
 278}
 279
 280static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 281			block_t new_blkaddr, bool fsync_done)
 282{
 283	struct f2fs_nm_info *nm_i = NM_I(sbi);
 284	struct nat_entry *e;
 
 285
 286	down_write(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, ni->nid);
 288	if (!e) {
 289		e = grab_nat_entry(nm_i, ni->nid);
 290		copy_node_info(&e->ni, ni);
 291		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 292	} else if (new_blkaddr == NEW_ADDR) {
 293		/*
 294		 * when nid is reallocated,
 295		 * previous nat entry can be remained in nat cache.
 296		 * So, reinitialize it with new information.
 297		 */
 298		copy_node_info(&e->ni, ni);
 299		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 300	}
 
 
 
 301
 302	/* sanity check */
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 304	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 305			new_blkaddr == NULL_ADDR);
 306	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 309			nat_get_blkaddr(e) != NULL_ADDR &&
 310			new_blkaddr == NEW_ADDR);
 311
 312	/* increment version no as node is removed */
 313	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 314		unsigned char version = nat_get_version(e);
 315		nat_set_version(e, inc_node_version(version));
 316
 317		/* in order to reuse the nid */
 318		if (nm_i->next_scan_nid > ni->nid)
 319			nm_i->next_scan_nid = ni->nid;
 320	}
 321
 322	/* change address */
 323	nat_set_blkaddr(e, new_blkaddr);
 324	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 325		set_nat_flag(e, IS_CHECKPOINTED, false);
 326	__set_nat_cache_dirty(nm_i, e);
 327
 328	/* update fsync_mark if its inode nat entry is still alive */
 329	if (ni->nid != ni->ino)
 330		e = __lookup_nat_cache(nm_i, ni->ino);
 331	if (e) {
 332		if (fsync_done && ni->nid == ni->ino)
 333			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 334		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 335	}
 336	up_write(&nm_i->nat_tree_lock);
 337}
 338
 339int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 340{
 341	struct f2fs_nm_info *nm_i = NM_I(sbi);
 342	int nr = nr_shrink;
 343
 344	if (!down_write_trylock(&nm_i->nat_tree_lock))
 345		return 0;
 346
 347	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 
 348		struct nat_entry *ne;
 
 
 
 
 349		ne = list_first_entry(&nm_i->nat_entries,
 350					struct nat_entry, list);
 
 
 
 351		__del_from_nat_cache(nm_i, ne);
 352		nr_shrink--;
 
 
 353	}
 354	up_write(&nm_i->nat_tree_lock);
 
 
 355	return nr - nr_shrink;
 356}
 357
 358/*
 359 * This function always returns success
 360 */
 361void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 362{
 363	struct f2fs_nm_info *nm_i = NM_I(sbi);
 364	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 365	struct f2fs_journal *journal = curseg->journal;
 366	nid_t start_nid = START_NID(nid);
 367	struct f2fs_nat_block *nat_blk;
 368	struct page *page = NULL;
 369	struct f2fs_nat_entry ne;
 370	struct nat_entry *e;
 
 
 371	int i;
 372
 373	ni->nid = nid;
 374
 375	/* Check nat cache */
 376	down_read(&nm_i->nat_tree_lock);
 377	e = __lookup_nat_cache(nm_i, nid);
 378	if (e) {
 379		ni->ino = nat_get_ino(e);
 380		ni->blk_addr = nat_get_blkaddr(e);
 381		ni->version = nat_get_version(e);
 382		up_read(&nm_i->nat_tree_lock);
 383		return;
 384	}
 385
 386	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 
 
 
 
 
 
 
 
 
 
 
 
 387
 388	/* Check current segment summary */
 389	down_read(&curseg->journal_rwsem);
 390	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 391	if (i >= 0) {
 392		ne = nat_in_journal(journal, i);
 393		node_info_from_raw_nat(ni, &ne);
 394	}
 395	up_read(&curseg->journal_rwsem);
 396	if (i >= 0)
 
 397		goto cache;
 
 398
 399	/* Fill node_info from nat page */
 400	page = get_current_nat_page(sbi, start_nid);
 
 
 
 
 
 
 401	nat_blk = (struct f2fs_nat_block *)page_address(page);
 402	ne = nat_blk->entries[nid - start_nid];
 403	node_info_from_raw_nat(ni, &ne);
 404	f2fs_put_page(page, 1);
 405cache:
 406	up_read(&nm_i->nat_tree_lock);
 
 
 
 
 407	/* cache nat entry */
 408	down_write(&nm_i->nat_tree_lock);
 409	cache_nat_entry(sbi, nid, &ne);
 410	up_write(&nm_i->nat_tree_lock);
 411}
 412
 413/*
 414 * readahead MAX_RA_NODE number of node pages.
 415 */
 416static void ra_node_pages(struct page *parent, int start, int n)
 417{
 418	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 419	struct blk_plug plug;
 420	int i, end;
 421	nid_t nid;
 422
 423	blk_start_plug(&plug);
 424
 425	/* Then, try readahead for siblings of the desired node */
 426	end = start + n;
 427	end = min(end, NIDS_PER_BLOCK);
 428	for (i = start; i < end; i++) {
 429		nid = get_nid(parent, i, false);
 430		ra_node_page(sbi, nid);
 431	}
 432
 433	blk_finish_plug(&plug);
 434}
 435
 436pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 437{
 438	const long direct_index = ADDRS_PER_INODE(dn->inode);
 439	const long direct_blks = ADDRS_PER_BLOCK;
 440	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 441	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 442	int cur_level = dn->cur_level;
 443	int max_level = dn->max_level;
 444	pgoff_t base = 0;
 445
 446	if (!dn->max_level)
 447		return pgofs + 1;
 448
 449	while (max_level-- > cur_level)
 450		skipped_unit *= NIDS_PER_BLOCK;
 451
 452	switch (dn->max_level) {
 453	case 3:
 454		base += 2 * indirect_blks;
 
 455	case 2:
 456		base += 2 * direct_blks;
 
 457	case 1:
 458		base += direct_index;
 459		break;
 460	default:
 461		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 462	}
 463
 464	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 465}
 466
 467/*
 468 * The maximum depth is four.
 469 * Offset[0] will have raw inode offset.
 470 */
 471static int get_node_path(struct inode *inode, long block,
 472				int offset[4], unsigned int noffset[4])
 473{
 474	const long direct_index = ADDRS_PER_INODE(inode);
 475	const long direct_blks = ADDRS_PER_BLOCK;
 476	const long dptrs_per_blk = NIDS_PER_BLOCK;
 477	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 478	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 479	int n = 0;
 480	int level = 0;
 481
 482	noffset[0] = 0;
 483
 484	if (block < direct_index) {
 485		offset[n] = block;
 486		goto got;
 487	}
 488	block -= direct_index;
 489	if (block < direct_blks) {
 490		offset[n++] = NODE_DIR1_BLOCK;
 491		noffset[n] = 1;
 492		offset[n] = block;
 493		level = 1;
 494		goto got;
 495	}
 496	block -= direct_blks;
 497	if (block < direct_blks) {
 498		offset[n++] = NODE_DIR2_BLOCK;
 499		noffset[n] = 2;
 500		offset[n] = block;
 501		level = 1;
 502		goto got;
 503	}
 504	block -= direct_blks;
 505	if (block < indirect_blks) {
 506		offset[n++] = NODE_IND1_BLOCK;
 507		noffset[n] = 3;
 508		offset[n++] = block / direct_blks;
 509		noffset[n] = 4 + offset[n - 1];
 510		offset[n] = block % direct_blks;
 511		level = 2;
 512		goto got;
 513	}
 514	block -= indirect_blks;
 515	if (block < indirect_blks) {
 516		offset[n++] = NODE_IND2_BLOCK;
 517		noffset[n] = 4 + dptrs_per_blk;
 518		offset[n++] = block / direct_blks;
 519		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 520		offset[n] = block % direct_blks;
 521		level = 2;
 522		goto got;
 523	}
 524	block -= indirect_blks;
 525	if (block < dindirect_blks) {
 526		offset[n++] = NODE_DIND_BLOCK;
 527		noffset[n] = 5 + (dptrs_per_blk * 2);
 528		offset[n++] = block / indirect_blks;
 529		noffset[n] = 6 + (dptrs_per_blk * 2) +
 530			      offset[n - 1] * (dptrs_per_blk + 1);
 531		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 532		noffset[n] = 7 + (dptrs_per_blk * 2) +
 533			      offset[n - 2] * (dptrs_per_blk + 1) +
 534			      offset[n - 1];
 535		offset[n] = block % direct_blks;
 536		level = 3;
 537		goto got;
 538	} else {
 539		BUG();
 540	}
 541got:
 542	return level;
 543}
 544
 545/*
 546 * Caller should call f2fs_put_dnode(dn).
 547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 549 * In the case of RDONLY_NODE, we don't need to care about mutex.
 550 */
 551int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 552{
 553	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 554	struct page *npage[4];
 555	struct page *parent = NULL;
 556	int offset[4];
 557	unsigned int noffset[4];
 558	nid_t nids[4];
 559	int level, i = 0;
 560	int err = 0;
 561
 562	level = get_node_path(dn->inode, index, offset, noffset);
 
 
 563
 564	nids[0] = dn->inode->i_ino;
 565	npage[0] = dn->inode_page;
 566
 567	if (!npage[0]) {
 568		npage[0] = get_node_page(sbi, nids[0]);
 569		if (IS_ERR(npage[0]))
 570			return PTR_ERR(npage[0]);
 571	}
 572
 573	/* if inline_data is set, should not report any block indices */
 574	if (f2fs_has_inline_data(dn->inode) && index) {
 575		err = -ENOENT;
 576		f2fs_put_page(npage[0], 1);
 577		goto release_out;
 578	}
 579
 580	parent = npage[0];
 581	if (level != 0)
 582		nids[1] = get_nid(parent, offset[0], true);
 583	dn->inode_page = npage[0];
 584	dn->inode_page_locked = true;
 585
 586	/* get indirect or direct nodes */
 587	for (i = 1; i <= level; i++) {
 588		bool done = false;
 589
 590		if (!nids[i] && mode == ALLOC_NODE) {
 591			/* alloc new node */
 592			if (!alloc_nid(sbi, &(nids[i]))) {
 593				err = -ENOSPC;
 594				goto release_pages;
 595			}
 596
 597			dn->nid = nids[i];
 598			npage[i] = new_node_page(dn, noffset[i], NULL);
 599			if (IS_ERR(npage[i])) {
 600				alloc_nid_failed(sbi, nids[i]);
 601				err = PTR_ERR(npage[i]);
 602				goto release_pages;
 603			}
 604
 605			set_nid(parent, offset[i - 1], nids[i], i == 1);
 606			alloc_nid_done(sbi, nids[i]);
 607			done = true;
 608		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 609			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 610			if (IS_ERR(npage[i])) {
 611				err = PTR_ERR(npage[i]);
 612				goto release_pages;
 613			}
 614			done = true;
 615		}
 616		if (i == 1) {
 617			dn->inode_page_locked = false;
 618			unlock_page(parent);
 619		} else {
 620			f2fs_put_page(parent, 1);
 621		}
 622
 623		if (!done) {
 624			npage[i] = get_node_page(sbi, nids[i]);
 625			if (IS_ERR(npage[i])) {
 626				err = PTR_ERR(npage[i]);
 627				f2fs_put_page(npage[0], 0);
 628				goto release_out;
 629			}
 630		}
 631		if (i < level) {
 632			parent = npage[i];
 633			nids[i + 1] = get_nid(parent, offset[i], false);
 634		}
 635	}
 636	dn->nid = nids[level];
 637	dn->ofs_in_node = offset[level];
 638	dn->node_page = npage[level];
 639	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640	return 0;
 641
 642release_pages:
 643	f2fs_put_page(parent, 1);
 644	if (i > 1)
 645		f2fs_put_page(npage[0], 0);
 646release_out:
 647	dn->inode_page = NULL;
 648	dn->node_page = NULL;
 649	if (err == -ENOENT) {
 650		dn->cur_level = i;
 651		dn->max_level = level;
 652		dn->ofs_in_node = offset[level];
 653	}
 654	return err;
 655}
 656
 657static void truncate_node(struct dnode_of_data *dn)
 658{
 659	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 660	struct node_info ni;
 
 
 661
 662	get_node_info(sbi, dn->nid, &ni);
 663	if (dn->inode->i_blocks == 0) {
 664		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 665		goto invalidate;
 666	}
 667	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 668
 669	/* Deallocate node address */
 670	invalidate_blocks(sbi, ni.blk_addr);
 671	dec_valid_node_count(sbi, dn->inode);
 672	set_node_addr(sbi, &ni, NULL_ADDR, false);
 673
 674	if (dn->nid == dn->inode->i_ino) {
 675		remove_orphan_inode(sbi, dn->nid);
 676		dec_valid_inode_count(sbi);
 677		f2fs_inode_synced(dn->inode);
 678	}
 679invalidate:
 680	clear_node_page_dirty(dn->node_page);
 681	set_sbi_flag(sbi, SBI_IS_DIRTY);
 682
 
 683	f2fs_put_page(dn->node_page, 1);
 684
 685	invalidate_mapping_pages(NODE_MAPPING(sbi),
 686			dn->node_page->index, dn->node_page->index);
 687
 688	dn->node_page = NULL;
 689	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 690}
 691
 692static int truncate_dnode(struct dnode_of_data *dn)
 693{
 
 694	struct page *page;
 
 695
 696	if (dn->nid == 0)
 697		return 1;
 698
 699	/* get direct node */
 700	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 701	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 702		return 1;
 703	else if (IS_ERR(page))
 704		return PTR_ERR(page);
 705
 
 
 
 
 
 
 
 
 
 706	/* Make dnode_of_data for parameter */
 707	dn->node_page = page;
 708	dn->ofs_in_node = 0;
 709	truncate_data_blocks(dn);
 710	truncate_node(dn);
 
 
 
 
 
 711	return 1;
 712}
 713
 714static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 715						int ofs, int depth)
 716{
 717	struct dnode_of_data rdn = *dn;
 718	struct page *page;
 719	struct f2fs_node *rn;
 720	nid_t child_nid;
 721	unsigned int child_nofs;
 722	int freed = 0;
 723	int i, ret;
 724
 725	if (dn->nid == 0)
 726		return NIDS_PER_BLOCK + 1;
 727
 728	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 729
 730	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 731	if (IS_ERR(page)) {
 732		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 733		return PTR_ERR(page);
 734	}
 735
 736	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 737
 738	rn = F2FS_NODE(page);
 739	if (depth < 3) {
 740		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 741			child_nid = le32_to_cpu(rn->in.nid[i]);
 742			if (child_nid == 0)
 743				continue;
 744			rdn.nid = child_nid;
 745			ret = truncate_dnode(&rdn);
 746			if (ret < 0)
 747				goto out_err;
 748			if (set_nid(page, i, 0, false))
 749				dn->node_changed = true;
 750		}
 751	} else {
 752		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 753		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 754			child_nid = le32_to_cpu(rn->in.nid[i]);
 755			if (child_nid == 0) {
 756				child_nofs += NIDS_PER_BLOCK + 1;
 757				continue;
 758			}
 759			rdn.nid = child_nid;
 760			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 761			if (ret == (NIDS_PER_BLOCK + 1)) {
 762				if (set_nid(page, i, 0, false))
 763					dn->node_changed = true;
 764				child_nofs += ret;
 765			} else if (ret < 0 && ret != -ENOENT) {
 766				goto out_err;
 767			}
 768		}
 769		freed = child_nofs;
 770	}
 771
 772	if (!ofs) {
 773		/* remove current indirect node */
 774		dn->node_page = page;
 775		truncate_node(dn);
 
 
 776		freed++;
 777	} else {
 778		f2fs_put_page(page, 1);
 779	}
 780	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 781	return freed;
 782
 783out_err:
 784	f2fs_put_page(page, 1);
 785	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 786	return ret;
 787}
 788
 789static int truncate_partial_nodes(struct dnode_of_data *dn,
 790			struct f2fs_inode *ri, int *offset, int depth)
 791{
 792	struct page *pages[2];
 793	nid_t nid[3];
 794	nid_t child_nid;
 795	int err = 0;
 796	int i;
 797	int idx = depth - 2;
 798
 799	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 800	if (!nid[0])
 801		return 0;
 802
 803	/* get indirect nodes in the path */
 804	for (i = 0; i < idx + 1; i++) {
 805		/* reference count'll be increased */
 806		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 807		if (IS_ERR(pages[i])) {
 808			err = PTR_ERR(pages[i]);
 809			idx = i - 1;
 810			goto fail;
 811		}
 812		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 813	}
 814
 815	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 816
 817	/* free direct nodes linked to a partial indirect node */
 818	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 819		child_nid = get_nid(pages[idx], i, false);
 820		if (!child_nid)
 821			continue;
 822		dn->nid = child_nid;
 823		err = truncate_dnode(dn);
 824		if (err < 0)
 825			goto fail;
 826		if (set_nid(pages[idx], i, 0, false))
 827			dn->node_changed = true;
 828	}
 829
 830	if (offset[idx + 1] == 0) {
 831		dn->node_page = pages[idx];
 832		dn->nid = nid[idx];
 833		truncate_node(dn);
 
 
 834	} else {
 835		f2fs_put_page(pages[idx], 1);
 836	}
 837	offset[idx]++;
 838	offset[idx + 1] = 0;
 839	idx--;
 840fail:
 841	for (i = idx; i >= 0; i--)
 842		f2fs_put_page(pages[i], 1);
 843
 844	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 845
 846	return err;
 847}
 848
 849/*
 850 * All the block addresses of data and nodes should be nullified.
 851 */
 852int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 853{
 854	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 855	int err = 0, cont = 1;
 856	int level, offset[4], noffset[4];
 857	unsigned int nofs = 0;
 858	struct f2fs_inode *ri;
 859	struct dnode_of_data dn;
 860	struct page *page;
 861
 862	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 863
 864	level = get_node_path(inode, from, offset, noffset);
 
 
 
 
 865
 866	page = get_node_page(sbi, inode->i_ino);
 867	if (IS_ERR(page)) {
 868		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 869		return PTR_ERR(page);
 870	}
 871
 872	set_new_dnode(&dn, inode, page, NULL, 0);
 873	unlock_page(page);
 874
 875	ri = F2FS_INODE(page);
 876	switch (level) {
 877	case 0:
 878	case 1:
 879		nofs = noffset[1];
 880		break;
 881	case 2:
 882		nofs = noffset[1];
 883		if (!offset[level - 1])
 884			goto skip_partial;
 885		err = truncate_partial_nodes(&dn, ri, offset, level);
 886		if (err < 0 && err != -ENOENT)
 887			goto fail;
 888		nofs += 1 + NIDS_PER_BLOCK;
 889		break;
 890	case 3:
 891		nofs = 5 + 2 * NIDS_PER_BLOCK;
 892		if (!offset[level - 1])
 893			goto skip_partial;
 894		err = truncate_partial_nodes(&dn, ri, offset, level);
 895		if (err < 0 && err != -ENOENT)
 896			goto fail;
 897		break;
 898	default:
 899		BUG();
 900	}
 901
 902skip_partial:
 903	while (cont) {
 904		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 905		switch (offset[0]) {
 906		case NODE_DIR1_BLOCK:
 907		case NODE_DIR2_BLOCK:
 908			err = truncate_dnode(&dn);
 909			break;
 910
 911		case NODE_IND1_BLOCK:
 912		case NODE_IND2_BLOCK:
 913			err = truncate_nodes(&dn, nofs, offset[1], 2);
 914			break;
 915
 916		case NODE_DIND_BLOCK:
 917			err = truncate_nodes(&dn, nofs, offset[1], 3);
 918			cont = 0;
 919			break;
 920
 921		default:
 922			BUG();
 923		}
 924		if (err < 0 && err != -ENOENT)
 925			goto fail;
 926		if (offset[1] == 0 &&
 927				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 928			lock_page(page);
 929			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 930			f2fs_wait_on_page_writeback(page, NODE, true);
 931			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 932			set_page_dirty(page);
 933			unlock_page(page);
 934		}
 935		offset[1] = 0;
 936		offset[0]++;
 937		nofs += err;
 938	}
 939fail:
 940	f2fs_put_page(page, 0);
 941	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 942	return err > 0 ? 0 : err;
 943}
 944
 945int truncate_xattr_node(struct inode *inode, struct page *page)
 
 946{
 947	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 948	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 949	struct dnode_of_data dn;
 950	struct page *npage;
 
 951
 952	if (!nid)
 953		return 0;
 954
 955	npage = get_node_page(sbi, nid);
 956	if (IS_ERR(npage))
 957		return PTR_ERR(npage);
 958
 959	f2fs_i_xnid_write(inode, 0);
 960
 961	/* need to do checkpoint during fsync */
 962	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 
 
 963
 964	set_new_dnode(&dn, inode, page, npage, nid);
 965
 966	if (page)
 967		dn.inode_page_locked = true;
 968	truncate_node(&dn);
 969	return 0;
 970}
 971
 972/*
 973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 974 * f2fs_unlock_op().
 975 */
 976int remove_inode_page(struct inode *inode)
 977{
 978	struct dnode_of_data dn;
 979	int err;
 980
 981	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 982	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 983	if (err)
 984		return err;
 985
 986	err = truncate_xattr_node(inode, dn.inode_page);
 987	if (err) {
 988		f2fs_put_dnode(&dn);
 989		return err;
 990	}
 991
 992	/* remove potential inline_data blocks */
 993	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 994				S_ISLNK(inode->i_mode))
 995		truncate_data_blocks_range(&dn, 1);
 996
 997	/* 0 is possible, after f2fs_new_inode() has failed */
 998	f2fs_bug_on(F2FS_I_SB(inode),
 999			inode->i_blocks != 0 && inode->i_blocks != 1);
 
 
 
 
 
 
 
 
 
1000
1001	/* will put inode & node pages */
1002	truncate_node(&dn);
 
 
 
 
1003	return 0;
1004}
1005
1006struct page *new_inode_page(struct inode *inode)
1007{
1008	struct dnode_of_data dn;
1009
1010	/* allocate inode page for new inode */
1011	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1012
1013	/* caller should f2fs_put_page(page, 1); */
1014	return new_node_page(&dn, 0, NULL);
1015}
1016
1017struct page *new_node_page(struct dnode_of_data *dn,
1018				unsigned int ofs, struct page *ipage)
1019{
1020	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021	struct node_info old_ni, new_ni;
1022	struct page *page;
1023	int err;
1024
1025	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026		return ERR_PTR(-EPERM);
1027
1028	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029	if (!page)
1030		return ERR_PTR(-ENOMEM);
1031
1032	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033		err = -ENOSPC;
1034		goto fail;
1035	}
1036
1037	get_node_info(sbi, dn->nid, &old_ni);
1038
1039	/* Reinitialize old_ni with new node page */
1040	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041	new_ni = old_ni;
 
 
 
 
 
 
 
 
 
 
 
 
1042	new_ni.ino = dn->inode->i_ino;
 
 
 
1043	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1044
1045	f2fs_wait_on_page_writeback(page, NODE, true);
1046	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047	set_cold_node(dn->inode, page);
1048	if (!PageUptodate(page))
1049		SetPageUptodate(page);
1050	if (set_page_dirty(page))
1051		dn->node_changed = true;
1052
1053	if (f2fs_has_xattr_block(ofs))
1054		f2fs_i_xnid_write(dn->inode, dn->nid);
1055
1056	if (ofs == 0)
1057		inc_valid_inode_count(sbi);
1058	return page;
1059
1060fail:
1061	clear_node_page_dirty(page);
1062	f2fs_put_page(page, 1);
1063	return ERR_PTR(err);
1064}
1065
1066/*
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070 */
1071static int read_node_page(struct page *page, int op_flags)
1072{
1073	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074	struct node_info ni;
1075	struct f2fs_io_info fio = {
1076		.sbi = sbi,
1077		.type = NODE,
1078		.op = REQ_OP_READ,
1079		.op_flags = op_flags,
1080		.page = page,
1081		.encrypted_page = NULL,
1082	};
 
1083
1084	if (PageUptodate(page))
 
 
 
 
1085		return LOCKED_PAGE;
 
1086
1087	get_node_info(sbi, page->index, &ni);
 
 
1088
1089	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 
1090		ClearPageUptodate(page);
1091		return -ENOENT;
1092	}
1093
1094	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095	return f2fs_submit_page_bio(&fio);
 
 
 
 
 
 
1096}
1097
1098/*
1099 * Readahead a node page
1100 */
1101void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1102{
1103	struct page *apage;
1104	int err;
1105
1106	if (!nid)
1107		return;
1108	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1109
1110	rcu_read_lock();
1111	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112	rcu_read_unlock();
1113	if (apage)
1114		return;
1115
1116	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117	if (!apage)
1118		return;
1119
1120	err = read_node_page(apage, REQ_RAHEAD);
1121	f2fs_put_page(apage, err ? 1 : 0);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1133repeat:
1134	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, 0);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
 
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1148
1149	lock_page(page);
1150
1151	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152		f2fs_put_page(page, 1);
1153		goto repeat;
1154	}
1155
1156	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
1157		goto out_err;
 
1158page_hit:
1159	if(unlikely(nid != nid_of_node(page))) {
1160		f2fs_bug_on(sbi, 1);
1161		ClearPageUptodate(page);
 
 
 
 
 
 
 
1162out_err:
1163		f2fs_put_page(page, 1);
1164		return ERR_PTR(-EIO);
1165	}
1166	return page;
 
 
 
1167}
1168
1169struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1170{
1171	return __get_node_page(sbi, nid, NULL, 0);
1172}
1173
1174struct page *get_node_page_ra(struct page *parent, int start)
1175{
1176	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177	nid_t nid = get_nid(parent, start, false);
1178
1179	return __get_node_page(sbi, nid, parent, start);
1180}
1181
1182static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1183{
1184	struct inode *inode;
1185	struct page *page;
1186	int ret;
1187
1188	/* should flush inline_data before evict_inode */
1189	inode = ilookup(sbi->sb, ino);
1190	if (!inode)
1191		return;
1192
1193	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
 
1194	if (!page)
1195		goto iput_out;
1196
1197	if (!PageUptodate(page))
1198		goto page_out;
1199
1200	if (!PageDirty(page))
1201		goto page_out;
1202
1203	if (!clear_page_dirty_for_io(page))
1204		goto page_out;
1205
1206	ret = f2fs_write_inline_data(inode, page);
1207	inode_dec_dirty_pages(inode);
1208	remove_dirty_inode(inode);
1209	if (ret)
1210		set_page_dirty(page);
1211page_out:
1212	f2fs_put_page(page, 1);
1213iput_out:
1214	iput(inode);
1215}
1216
1217void move_node_page(struct page *node_page, int gc_type)
1218{
1219	if (gc_type == FG_GC) {
1220		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1221		struct writeback_control wbc = {
1222			.sync_mode = WB_SYNC_ALL,
1223			.nr_to_write = 1,
1224			.for_reclaim = 0,
1225		};
1226
1227		set_page_dirty(node_page);
1228		f2fs_wait_on_page_writeback(node_page, NODE, true);
1229
1230		f2fs_bug_on(sbi, PageWriteback(node_page));
1231		if (!clear_page_dirty_for_io(node_page))
1232			goto out_page;
1233
1234		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1235			unlock_page(node_page);
1236		goto release_page;
1237	} else {
1238		/* set page dirty and write it */
1239		if (!PageWriteback(node_page))
1240			set_page_dirty(node_page);
1241	}
1242out_page:
1243	unlock_page(node_page);
1244release_page:
1245	f2fs_put_page(node_page, 0);
1246}
1247
1248static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	pgoff_t index, end;
1251	struct pagevec pvec;
1252	struct page *last_page = NULL;
 
1253
1254	pagevec_init(&pvec, 0);
1255	index = 0;
1256	end = ULONG_MAX;
1257
1258	while (index <= end) {
1259		int i, nr_pages;
1260		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261				PAGECACHE_TAG_DIRTY,
1262				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263		if (nr_pages == 0)
1264			break;
1265
1266		for (i = 0; i < nr_pages; i++) {
1267			struct page *page = pvec.pages[i];
1268
1269			if (unlikely(f2fs_cp_error(sbi))) {
1270				f2fs_put_page(last_page, 0);
1271				pagevec_release(&pvec);
1272				return ERR_PTR(-EIO);
1273			}
1274
1275			if (!IS_DNODE(page) || !is_cold_node(page))
1276				continue;
1277			if (ino_of_node(page) != ino)
1278				continue;
1279
1280			lock_page(page);
1281
1282			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1283continue_unlock:
1284				unlock_page(page);
1285				continue;
1286			}
1287			if (ino_of_node(page) != ino)
1288				goto continue_unlock;
1289
1290			if (!PageDirty(page)) {
1291				/* someone wrote it for us */
1292				goto continue_unlock;
1293			}
1294
1295			if (last_page)
1296				f2fs_put_page(last_page, 0);
1297
1298			get_page(page);
1299			last_page = page;
1300			unlock_page(page);
1301		}
1302		pagevec_release(&pvec);
1303		cond_resched();
1304	}
1305	return last_page;
1306}
1307
1308int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1309			struct writeback_control *wbc, bool atomic)
 
1310{
1311	pgoff_t index, end;
1312	struct pagevec pvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313	int ret = 0;
1314	struct page *last_page = NULL;
1315	bool marked = false;
1316	nid_t ino = inode->i_ino;
 
1317	int nwritten = 0;
1318
1319	if (atomic) {
1320		last_page = last_fsync_dnode(sbi, ino);
1321		if (IS_ERR_OR_NULL(last_page))
1322			return PTR_ERR_OR_ZERO(last_page);
1323	}
1324retry:
1325	pagevec_init(&pvec, 0);
1326	index = 0;
1327	end = ULONG_MAX;
1328
1329	while (index <= end) {
1330		int i, nr_pages;
1331		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1332				PAGECACHE_TAG_DIRTY,
1333				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1334		if (nr_pages == 0)
1335			break;
1336
1337		for (i = 0; i < nr_pages; i++) {
1338			struct page *page = pvec.pages[i];
 
1339
1340			if (unlikely(f2fs_cp_error(sbi))) {
1341				f2fs_put_page(last_page, 0);
1342				pagevec_release(&pvec);
1343				ret = -EIO;
1344				goto out;
1345			}
1346
1347			if (!IS_DNODE(page) || !is_cold_node(page))
1348				continue;
1349			if (ino_of_node(page) != ino)
1350				continue;
1351
1352			lock_page(page);
1353
1354			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1355continue_unlock:
1356				unlock_page(page);
1357				continue;
1358			}
1359			if (ino_of_node(page) != ino)
1360				goto continue_unlock;
1361
1362			if (!PageDirty(page) && page != last_page) {
1363				/* someone wrote it for us */
1364				goto continue_unlock;
1365			}
1366
1367			f2fs_wait_on_page_writeback(page, NODE, true);
1368			BUG_ON(PageWriteback(page));
 
 
1369
1370			if (!atomic || page == last_page) {
1371				set_fsync_mark(page, 1);
 
1372				if (IS_INODE(page)) {
1373					if (is_inode_flag_set(inode,
1374								FI_DIRTY_INODE))
1375						update_inode(inode, page);
1376					set_dentry_mark(page,
1377						need_dentry_mark(sbi, ino));
1378				}
1379				/*  may be written by other thread */
1380				if (!PageDirty(page))
1381					set_page_dirty(page);
1382			}
1383
1384			if (!clear_page_dirty_for_io(page))
1385				goto continue_unlock;
1386
1387			ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
 
 
 
1388			if (ret) {
1389				unlock_page(page);
1390				f2fs_put_page(last_page, 0);
1391				break;
1392			} else {
1393				nwritten++;
1394			}
1395
1396			if (page == last_page) {
1397				f2fs_put_page(page, 0);
1398				marked = true;
1399				break;
1400			}
1401		}
1402		pagevec_release(&pvec);
1403		cond_resched();
1404
1405		if (ret || marked)
1406			break;
1407	}
1408	if (!ret && atomic && !marked) {
1409		f2fs_msg(sbi->sb, KERN_DEBUG,
1410			"Retry to write fsync mark: ino=%u, idx=%lx",
1411					ino, last_page->index);
1412		lock_page(last_page);
1413		f2fs_wait_on_page_writeback(last_page, NODE, true);
1414		set_page_dirty(last_page);
1415		unlock_page(last_page);
1416		goto retry;
1417	}
1418out:
1419	if (nwritten)
1420		f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1421	return ret ? -EIO: 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422}
1423
1424int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
 
 
1425{
1426	pgoff_t index, end;
1427	struct pagevec pvec;
1428	int step = 0;
1429	int nwritten = 0;
1430	int ret = 0;
 
1431
1432	pagevec_init(&pvec, 0);
1433
1434next_step:
1435	index = 0;
1436	end = ULONG_MAX;
1437
1438	while (index <= end) {
1439		int i, nr_pages;
1440		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1441				PAGECACHE_TAG_DIRTY,
1442				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1443		if (nr_pages == 0)
1444			break;
1445
1446		for (i = 0; i < nr_pages; i++) {
1447			struct page *page = pvec.pages[i];
 
 
1448
1449			if (unlikely(f2fs_cp_error(sbi))) {
1450				pagevec_release(&pvec);
1451				ret = -EIO;
1452				goto out;
 
 
 
 
 
1453			}
1454
1455			/*
1456			 * flushing sequence with step:
1457			 * 0. indirect nodes
1458			 * 1. dentry dnodes
1459			 * 2. file dnodes
1460			 */
1461			if (step == 0 && IS_DNODE(page))
1462				continue;
1463			if (step == 1 && (!IS_DNODE(page) ||
1464						is_cold_node(page)))
1465				continue;
1466			if (step == 2 && (!IS_DNODE(page) ||
1467						!is_cold_node(page)))
1468				continue;
1469lock_node:
1470			if (!trylock_page(page))
 
 
1471				continue;
1472
1473			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1474continue_unlock:
1475				unlock_page(page);
1476				continue;
1477			}
1478
1479			if (!PageDirty(page)) {
1480				/* someone wrote it for us */
1481				goto continue_unlock;
1482			}
1483
 
 
 
 
1484			/* flush inline_data */
1485			if (is_inline_node(page)) {
1486				clear_inline_node(page);
1487				unlock_page(page);
1488				flush_inline_data(sbi, ino_of_node(page));
1489				goto lock_node;
1490			}
1491
1492			f2fs_wait_on_page_writeback(page, NODE, true);
 
 
 
 
1493
1494			BUG_ON(PageWriteback(page));
1495			if (!clear_page_dirty_for_io(page))
1496				goto continue_unlock;
1497
1498			set_fsync_mark(page, 0);
1499			set_dentry_mark(page, 0);
1500
1501			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
 
 
1502				unlock_page(page);
1503			else
1504				nwritten++;
1505
1506			if (--wbc->nr_to_write == 0)
1507				break;
1508		}
1509		pagevec_release(&pvec);
1510		cond_resched();
1511
1512		if (wbc->nr_to_write == 0) {
1513			step = 2;
1514			break;
1515		}
1516	}
1517
1518	if (step < 2) {
 
 
 
1519		step++;
1520		goto next_step;
1521	}
1522out:
1523	if (nwritten)
1524		f2fs_submit_merged_bio(sbi, NODE, WRITE);
 
 
 
1525	return ret;
1526}
1527
1528int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1529{
1530	pgoff_t index = 0, end = ULONG_MAX;
1531	struct pagevec pvec;
1532	int ret2, ret = 0;
1533
1534	pagevec_init(&pvec, 0);
1535
1536	while (index <= end) {
1537		int i, nr_pages;
1538		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1539				PAGECACHE_TAG_WRITEBACK,
1540				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1541		if (nr_pages == 0)
1542			break;
1543
1544		for (i = 0; i < nr_pages; i++) {
1545			struct page *page = pvec.pages[i];
1546
1547			/* until radix tree lookup accepts end_index */
1548			if (unlikely(page->index > end))
1549				continue;
1550
1551			if (ino && ino_of_node(page) == ino) {
1552				f2fs_wait_on_page_writeback(page, NODE, true);
1553				if (TestClearPageError(page))
1554					ret = -EIO;
1555			}
1556		}
1557		pagevec_release(&pvec);
1558		cond_resched();
1559	}
1560
1561	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1562	if (!ret)
1563		ret = ret2;
1564	return ret;
1565}
1566
1567static int f2fs_write_node_page(struct page *page,
1568				struct writeback_control *wbc)
1569{
1570	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1571	nid_t nid;
1572	struct node_info ni;
1573	struct f2fs_io_info fio = {
1574		.sbi = sbi,
1575		.type = NODE,
1576		.op = REQ_OP_WRITE,
1577		.op_flags = wbc_to_write_flags(wbc),
1578		.page = page,
1579		.encrypted_page = NULL,
1580	};
1581
1582	trace_f2fs_writepage(page, NODE);
1583
1584	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1585		goto redirty_out;
1586	if (unlikely(f2fs_cp_error(sbi)))
1587		goto redirty_out;
1588
1589	/* get old block addr of this node page */
1590	nid = nid_of_node(page);
1591	f2fs_bug_on(sbi, page->index != nid);
1592
1593	if (wbc->for_reclaim) {
1594		if (!down_read_trylock(&sbi->node_write))
1595			goto redirty_out;
1596	} else {
1597		down_read(&sbi->node_write);
1598	}
1599
1600	get_node_info(sbi, nid, &ni);
1601
1602	/* This page is already truncated */
1603	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1604		ClearPageUptodate(page);
1605		dec_page_count(sbi, F2FS_DIRTY_NODES);
1606		up_read(&sbi->node_write);
1607		unlock_page(page);
1608		return 0;
1609	}
1610
1611	set_page_writeback(page);
1612	fio.old_blkaddr = ni.blk_addr;
1613	write_node_page(nid, &fio);
1614	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1615	dec_page_count(sbi, F2FS_DIRTY_NODES);
1616	up_read(&sbi->node_write);
1617
1618	if (wbc->for_reclaim)
1619		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1620
1621	unlock_page(page);
1622
1623	if (unlikely(f2fs_cp_error(sbi)))
1624		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1625
1626	return 0;
1627
1628redirty_out:
1629	redirty_page_for_writepage(wbc, page);
1630	return AOP_WRITEPAGE_ACTIVATE;
1631}
1632
1633static int f2fs_write_node_pages(struct address_space *mapping,
1634			    struct writeback_control *wbc)
1635{
1636	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1637	struct blk_plug plug;
1638	long diff;
1639
 
 
 
1640	/* balancing f2fs's metadata in background */
1641	f2fs_balance_fs_bg(sbi);
1642
1643	/* collect a number of dirty node pages and write together */
1644	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
1645		goto skip_write;
1646
 
 
 
 
 
 
 
 
 
1647	trace_f2fs_writepages(mapping->host, wbc, NODE);
1648
1649	diff = nr_pages_to_write(sbi, NODE, wbc);
1650	wbc->sync_mode = WB_SYNC_NONE;
1651	blk_start_plug(&plug);
1652	sync_node_pages(sbi, wbc);
1653	blk_finish_plug(&plug);
1654	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1655	return 0;
1656
1657skip_write:
1658	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1659	trace_f2fs_writepages(mapping->host, wbc, NODE);
1660	return 0;
1661}
1662
1663static int f2fs_set_node_page_dirty(struct page *page)
 
1664{
1665	trace_f2fs_set_page_dirty(page, NODE);
1666
1667	if (!PageUptodate(page))
1668		SetPageUptodate(page);
1669	if (!PageDirty(page)) {
1670		f2fs_set_page_dirty_nobuffers(page);
1671		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1672		SetPagePrivate(page);
1673		f2fs_trace_pid(page);
1674		return 1;
 
 
1675	}
1676	return 0;
1677}
1678
1679/*
1680 * Structure of the f2fs node operations
1681 */
1682const struct address_space_operations f2fs_node_aops = {
1683	.writepage	= f2fs_write_node_page,
1684	.writepages	= f2fs_write_node_pages,
1685	.set_page_dirty	= f2fs_set_node_page_dirty,
1686	.invalidatepage	= f2fs_invalidate_page,
1687	.releasepage	= f2fs_release_page,
1688#ifdef CONFIG_MIGRATION
1689	.migratepage    = f2fs_migrate_page,
1690#endif
1691};
1692
1693static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1694						nid_t n)
1695{
1696	return radix_tree_lookup(&nm_i->free_nid_root, n);
1697}
1698
1699static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1700			struct free_nid *i, enum nid_list list, bool new)
1701{
1702	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
1703
1704	if (new) {
1705		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1706		if (err)
1707			return err;
1708	}
1709
1710	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1711						i->state != NID_ALLOC);
1712	nm_i->nid_cnt[list]++;
1713	list_add_tail(&i->list, &nm_i->nid_list[list]);
1714	return 0;
1715}
1716
1717static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1718			struct free_nid *i, enum nid_list list, bool reuse)
1719{
1720	struct f2fs_nm_info *nm_i = NM_I(sbi);
1721
1722	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1723						i->state != NID_ALLOC);
1724	nm_i->nid_cnt[list]--;
1725	list_del(&i->list);
1726	if (!reuse)
1727		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1728}
1729
1730static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
 
1731{
1732	struct f2fs_nm_info *nm_i = NM_I(sbi);
1733	struct free_nid *i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734	struct nat_entry *ne;
1735	int err;
 
1736
1737	/* 0 nid should not be used */
1738	if (unlikely(nid == 0))
1739		return 0;
 
 
 
 
 
 
 
 
 
 
 
1740
1741	if (build) {
1742		/* do not add allocated nids */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743		ne = __lookup_nat_cache(nm_i, nid);
1744		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1745				nat_get_blkaddr(ne) != NULL_ADDR))
1746			return 0;
1747	}
1748
1749	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1750	i->nid = nid;
1751	i->state = NID_NEW;
1752
1753	if (radix_tree_preload(GFP_NOFS)) {
1754		kmem_cache_free(free_nid_slab, i);
1755		return 0;
 
 
 
 
 
 
 
1756	}
1757
1758	spin_lock(&nm_i->nid_list_lock);
1759	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1760	spin_unlock(&nm_i->nid_list_lock);
1761	radix_tree_preload_end();
1762	if (err) {
 
1763		kmem_cache_free(free_nid_slab, i);
1764		return 0;
1765	}
1766	return 1;
1767}
1768
1769static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1770{
1771	struct f2fs_nm_info *nm_i = NM_I(sbi);
1772	struct free_nid *i;
1773	bool need_free = false;
1774
1775	spin_lock(&nm_i->nid_list_lock);
1776	i = __lookup_free_nid_list(nm_i, nid);
1777	if (i && i->state == NID_NEW) {
1778		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1779		need_free = true;
1780	}
1781	spin_unlock(&nm_i->nid_list_lock);
1782
1783	if (need_free)
1784		kmem_cache_free(free_nid_slab, i);
1785}
1786
1787static void scan_nat_page(struct f2fs_sb_info *sbi,
1788			struct page *nat_page, nid_t start_nid)
1789{
1790	struct f2fs_nm_info *nm_i = NM_I(sbi);
1791	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1792	block_t blk_addr;
 
1793	int i;
1794
 
 
1795	i = start_nid % NAT_ENTRY_PER_BLOCK;
1796
1797	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1798
1799		if (unlikely(start_nid >= nm_i->max_nid))
1800			break;
1801
1802		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1803		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1804		if (blk_addr == NULL_ADDR)
1805			add_free_nid(sbi, start_nid, true);
 
 
 
 
 
 
 
 
1806	}
 
 
1807}
1808
1809static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1810{
1811	struct f2fs_nm_info *nm_i = NM_I(sbi);
1812	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1813	struct f2fs_journal *journal = curseg->journal;
1814	int i = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815	nid_t nid = nm_i->next_scan_nid;
1816
 
 
 
 
 
 
1817	/* Enough entries */
1818	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1819		return;
1820
1821	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1822		return;
 
 
 
 
 
 
 
 
1823
1824	/* readahead nat pages to be scanned */
1825	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1826							META_NAT, true);
1827
1828	down_read(&nm_i->nat_tree_lock);
1829
1830	while (1) {
1831		struct page *page = get_current_nat_page(sbi, nid);
 
 
1832
1833		scan_nat_page(sbi, page, nid);
1834		f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835
1836		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1837		if (unlikely(nid >= nm_i->max_nid))
1838			nid = 0;
1839
1840		if (++i >= FREE_NID_PAGES)
1841			break;
1842	}
1843
1844	/* go to the next free nat pages to find free nids abundantly */
1845	nm_i->next_scan_nid = nid;
1846
1847	/* find free nids from current sum_pages */
1848	down_read(&curseg->journal_rwsem);
1849	for (i = 0; i < nats_in_cursum(journal); i++) {
1850		block_t addr;
1851
1852		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1853		nid = le32_to_cpu(nid_in_journal(journal, i));
1854		if (addr == NULL_ADDR)
1855			add_free_nid(sbi, nid, true);
1856		else
1857			remove_free_nid(sbi, nid);
1858	}
1859	up_read(&curseg->journal_rwsem);
1860	up_read(&nm_i->nat_tree_lock);
1861
1862	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1863					nm_i->ra_nid_pages, META_NAT, false);
 
 
1864}
1865
1866void build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1867{
 
 
1868	mutex_lock(&NM_I(sbi)->build_lock);
1869	__build_free_nids(sbi, sync);
1870	mutex_unlock(&NM_I(sbi)->build_lock);
 
 
1871}
1872
1873/*
1874 * If this function returns success, caller can obtain a new nid
1875 * from second parameter of this function.
1876 * The returned nid could be used ino as well as nid when inode is created.
1877 */
1878bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1879{
1880	struct f2fs_nm_info *nm_i = NM_I(sbi);
1881	struct free_nid *i = NULL;
1882retry:
1883#ifdef CONFIG_F2FS_FAULT_INJECTION
1884	if (time_to_inject(sbi, FAULT_ALLOC_NID))
1885		return false;
1886#endif
1887	spin_lock(&nm_i->nid_list_lock);
1888
1889	if (unlikely(nm_i->available_nids == 0)) {
1890		spin_unlock(&nm_i->nid_list_lock);
1891		return false;
1892	}
1893
1894	/* We should not use stale free nids created by build_free_nids */
1895	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
1896		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
1897		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
1898					struct free_nid, list);
1899		*nid = i->nid;
1900
1901		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
1902		i->state = NID_ALLOC;
1903		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
1904		nm_i->available_nids--;
 
 
 
1905		spin_unlock(&nm_i->nid_list_lock);
1906		return true;
1907	}
1908	spin_unlock(&nm_i->nid_list_lock);
1909
1910	/* Let's scan nat pages and its caches to get free nids */
1911	build_free_nids(sbi, true);
1912	goto retry;
 
1913}
1914
1915/*
1916 * alloc_nid() should be called prior to this function.
1917 */
1918void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct free_nid *i;
1922
1923	spin_lock(&nm_i->nid_list_lock);
1924	i = __lookup_free_nid_list(nm_i, nid);
1925	f2fs_bug_on(sbi, !i);
1926	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1927	spin_unlock(&nm_i->nid_list_lock);
1928
1929	kmem_cache_free(free_nid_slab, i);
1930}
1931
1932/*
1933 * alloc_nid() should be called prior to this function.
1934 */
1935void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1936{
1937	struct f2fs_nm_info *nm_i = NM_I(sbi);
1938	struct free_nid *i;
1939	bool need_free = false;
1940
1941	if (!nid)
1942		return;
1943
1944	spin_lock(&nm_i->nid_list_lock);
1945	i = __lookup_free_nid_list(nm_i, nid);
1946	f2fs_bug_on(sbi, !i);
1947
1948	if (!available_free_memory(sbi, FREE_NIDS)) {
1949		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1950		need_free = true;
1951	} else {
1952		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
1953		i->state = NID_NEW;
1954		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
1955	}
1956
1957	nm_i->available_nids++;
1958
 
 
1959	spin_unlock(&nm_i->nid_list_lock);
1960
1961	if (need_free)
1962		kmem_cache_free(free_nid_slab, i);
1963}
1964
1965int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1966{
1967	struct f2fs_nm_info *nm_i = NM_I(sbi);
1968	struct free_nid *i, *next;
1969	int nr = nr_shrink;
1970
1971	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1972		return 0;
1973
1974	if (!mutex_trylock(&nm_i->build_lock))
1975		return 0;
1976
1977	spin_lock(&nm_i->nid_list_lock);
1978	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
1979									list) {
1980		if (nr_shrink <= 0 ||
1981				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1982			break;
1983
1984		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1985		kmem_cache_free(free_nid_slab, i);
1986		nr_shrink--;
 
 
 
 
 
 
 
 
1987	}
1988	spin_unlock(&nm_i->nid_list_lock);
1989	mutex_unlock(&nm_i->build_lock);
1990
1991	return nr - nr_shrink;
1992}
1993
1994void recover_inline_xattr(struct inode *inode, struct page *page)
1995{
1996	void *src_addr, *dst_addr;
1997	size_t inline_size;
1998	struct page *ipage;
1999	struct f2fs_inode *ri;
2000
2001	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2002	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
 
2003
2004	ri = F2FS_INODE(page);
2005	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2006		clear_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
 
 
 
 
 
2007		goto update_inode;
2008	}
2009
2010	dst_addr = inline_xattr_addr(ipage);
2011	src_addr = inline_xattr_addr(page);
2012	inline_size = inline_xattr_size(inode);
2013
2014	f2fs_wait_on_page_writeback(ipage, NODE, true);
2015	memcpy(dst_addr, src_addr, inline_size);
2016update_inode:
2017	update_inode(inode, ipage);
2018	f2fs_put_page(ipage, 1);
 
2019}
2020
2021void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2022{
2023	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2024	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2025	nid_t new_xnid = nid_of_node(page);
 
2026	struct node_info ni;
 
 
2027
2028	/* 1: invalidate the previous xattr nid */
2029	if (!prev_xnid)
2030		goto recover_xnid;
2031
2032	/* Deallocate node address */
2033	get_node_info(sbi, prev_xnid, &ni);
2034	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2035	invalidate_blocks(sbi, ni.blk_addr);
2036	dec_valid_node_count(sbi, inode);
 
 
2037	set_node_addr(sbi, &ni, NULL_ADDR, false);
2038
2039recover_xnid:
2040	/* 2: allocate new xattr nid */
2041	if (unlikely(!inc_valid_node_count(sbi, inode)))
2042		f2fs_bug_on(sbi, 1);
2043
2044	remove_free_nid(sbi, new_xnid);
2045	get_node_info(sbi, new_xnid, &ni);
2046	ni.ino = inode->i_ino;
2047	set_node_addr(sbi, &ni, NEW_ADDR, false);
2048	f2fs_i_xnid_write(inode, new_xnid);
2049
2050	/* 3: update xattr blkaddr */
2051	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2052	set_node_addr(sbi, &ni, blkaddr, false);
 
 
 
 
 
 
 
 
 
 
2053}
2054
2055int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2056{
2057	struct f2fs_inode *src, *dst;
2058	nid_t ino = ino_of_node(page);
2059	struct node_info old_ni, new_ni;
2060	struct page *ipage;
 
2061
2062	get_node_info(sbi, ino, &old_ni);
 
 
2063
2064	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2065		return -EINVAL;
2066retry:
2067	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2068	if (!ipage) {
2069		congestion_wait(BLK_RW_ASYNC, HZ/50);
2070		goto retry;
2071	}
2072
2073	/* Should not use this inode from free nid list */
2074	remove_free_nid(sbi, ino);
2075
2076	if (!PageUptodate(ipage))
2077		SetPageUptodate(ipage);
2078	fill_node_footer(ipage, ino, ino, 0, true);
 
2079
2080	src = F2FS_INODE(page);
2081	dst = F2FS_INODE(ipage);
2082
2083	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2084	dst->i_size = 0;
2085	dst->i_blocks = cpu_to_le64(1);
2086	dst->i_links = cpu_to_le32(1);
2087	dst->i_xattr_nid = 0;
2088	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089
2090	new_ni = old_ni;
2091	new_ni.ino = ino;
2092
2093	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2094		WARN_ON(1);
2095	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2096	inc_valid_inode_count(sbi);
2097	set_page_dirty(ipage);
2098	f2fs_put_page(ipage, 1);
2099	return 0;
2100}
2101
2102int restore_node_summary(struct f2fs_sb_info *sbi,
2103			unsigned int segno, struct f2fs_summary_block *sum)
2104{
2105	struct f2fs_node *rn;
2106	struct f2fs_summary *sum_entry;
2107	block_t addr;
2108	int i, idx, last_offset, nrpages;
2109
2110	/* scan the node segment */
2111	last_offset = sbi->blocks_per_seg;
2112	addr = START_BLOCK(sbi, segno);
2113	sum_entry = &sum->entries[0];
2114
2115	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2116		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2117
2118		/* readahead node pages */
2119		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2120
2121		for (idx = addr; idx < addr + nrpages; idx++) {
2122			struct page *page = get_tmp_page(sbi, idx);
 
 
 
2123
2124			rn = F2FS_NODE(page);
2125			sum_entry->nid = rn->footer.nid;
2126			sum_entry->version = 0;
2127			sum_entry->ofs_in_node = 0;
2128			sum_entry++;
2129			f2fs_put_page(page, 1);
2130		}
2131
2132		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2133							addr + nrpages);
2134	}
2135	return 0;
2136}
2137
2138static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2139{
2140	struct f2fs_nm_info *nm_i = NM_I(sbi);
2141	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2142	struct f2fs_journal *journal = curseg->journal;
2143	int i;
2144
2145	down_write(&curseg->journal_rwsem);
2146	for (i = 0; i < nats_in_cursum(journal); i++) {
2147		struct nat_entry *ne;
2148		struct f2fs_nat_entry raw_ne;
2149		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2150
 
 
 
2151		raw_ne = nat_in_journal(journal, i);
2152
2153		ne = __lookup_nat_cache(nm_i, nid);
2154		if (!ne) {
2155			ne = grab_nat_entry(nm_i, nid);
2156			node_info_from_raw_nat(&ne->ni, &raw_ne);
2157		}
2158
2159		/*
2160		 * if a free nat in journal has not been used after last
2161		 * checkpoint, we should remove it from available nids,
2162		 * since later we will add it again.
2163		 */
2164		if (!get_nat_flag(ne, IS_DIRTY) &&
2165				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2166			spin_lock(&nm_i->nid_list_lock);
2167			nm_i->available_nids--;
2168			spin_unlock(&nm_i->nid_list_lock);
2169		}
2170
2171		__set_nat_cache_dirty(nm_i, ne);
2172	}
2173	update_nats_in_cursum(journal, -i);
2174	up_write(&curseg->journal_rwsem);
2175}
2176
2177static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2178						struct list_head *head, int max)
2179{
2180	struct nat_entry_set *cur;
2181
2182	if (nes->entry_cnt >= max)
2183		goto add_out;
2184
2185	list_for_each_entry(cur, head, set_list) {
2186		if (cur->entry_cnt >= nes->entry_cnt) {
2187			list_add(&nes->set_list, cur->set_list.prev);
2188			return;
2189		}
2190	}
2191add_out:
2192	list_add_tail(&nes->set_list, head);
2193}
2194
2195static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2196					struct nat_entry_set *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197{
2198	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2199	struct f2fs_journal *journal = curseg->journal;
2200	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2201	bool to_journal = true;
2202	struct f2fs_nat_block *nat_blk;
2203	struct nat_entry *ne, *cur;
2204	struct page *page = NULL;
2205
2206	/*
2207	 * there are two steps to flush nat entries:
2208	 * #1, flush nat entries to journal in current hot data summary block.
2209	 * #2, flush nat entries to nat page.
2210	 */
2211	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
 
2212		to_journal = false;
2213
2214	if (to_journal) {
2215		down_write(&curseg->journal_rwsem);
2216	} else {
2217		page = get_next_nat_page(sbi, start_nid);
 
 
 
2218		nat_blk = page_address(page);
2219		f2fs_bug_on(sbi, !nat_blk);
2220	}
2221
2222	/* flush dirty nats in nat entry set */
2223	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2224		struct f2fs_nat_entry *raw_ne;
2225		nid_t nid = nat_get_nid(ne);
2226		int offset;
2227
2228		if (nat_get_blkaddr(ne) == NEW_ADDR)
2229			continue;
2230
2231		if (to_journal) {
2232			offset = lookup_journal_in_cursum(journal,
2233							NAT_JOURNAL, nid, 1);
2234			f2fs_bug_on(sbi, offset < 0);
2235			raw_ne = &nat_in_journal(journal, offset);
2236			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2237		} else {
2238			raw_ne = &nat_blk->entries[nid - start_nid];
2239		}
2240		raw_nat_from_node_info(raw_ne, &ne->ni);
2241		nat_reset_flag(ne);
2242		__clear_nat_cache_dirty(NM_I(sbi), ne);
2243		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2244			add_free_nid(sbi, nid, false);
 
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			NM_I(sbi)->available_nids++;
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	if (to_journal)
2252		up_write(&curseg->journal_rwsem);
2253	else
 
2254		f2fs_put_page(page, 1);
 
2255
2256	f2fs_bug_on(sbi, set->entry_cnt);
2257
2258	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2259	kmem_cache_free(nat_entry_set_slab, set);
 
 
2260}
2261
2262/*
2263 * This function is called during the checkpointing process.
2264 */
2265void flush_nat_entries(struct f2fs_sb_info *sbi)
2266{
2267	struct f2fs_nm_info *nm_i = NM_I(sbi);
2268	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2269	struct f2fs_journal *journal = curseg->journal;
2270	struct nat_entry_set *setvec[SETVEC_SIZE];
2271	struct nat_entry_set *set, *tmp;
2272	unsigned int found;
2273	nid_t set_idx = 0;
2274	LIST_HEAD(sets);
 
2275
2276	if (!nm_i->dirty_nat_cnt)
2277		return;
 
 
 
 
 
 
 
 
 
 
2278
2279	down_write(&nm_i->nat_tree_lock);
2280
2281	/*
2282	 * if there are no enough space in journal to store dirty nat
2283	 * entries, remove all entries from journal and merge them
2284	 * into nat entry set.
2285	 */
2286	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
 
2287		remove_nats_in_journal(sbi);
2288
2289	while ((found = __gang_lookup_nat_set(nm_i,
2290					set_idx, SETVEC_SIZE, setvec))) {
2291		unsigned idx;
 
2292		set_idx = setvec[found - 1]->set + 1;
2293		for (idx = 0; idx < found; idx++)
2294			__adjust_nat_entry_set(setvec[idx], &sets,
2295						MAX_NAT_JENTRIES(journal));
2296	}
2297
2298	/* flush dirty nats in nat entry set */
2299	list_for_each_entry_safe(set, tmp, &sets, set_list)
2300		__flush_nat_entry_set(sbi, set);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302	up_write(&nm_i->nat_tree_lock);
 
 
 
2303
2304	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2305}
2306
2307static int init_node_manager(struct f2fs_sb_info *sbi)
2308{
2309	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	unsigned char *version_bitmap;
2312	unsigned int nat_segs, nat_blocks;
 
2313
2314	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2315
2316	/* segment_count_nat includes pair segment so divide to 2. */
2317	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2318	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2319
2320	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2321
2322	/* not used nids: 0, node, meta, (and root counted as valid node) */
2323	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2324							F2FS_RESERVED_NODE_NUM;
2325	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2326	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2327	nm_i->nat_cnt = 0;
2328	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2329	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2330	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
 
2331
2332	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2333	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2334	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2335	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2336	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2337	INIT_LIST_HEAD(&nm_i->nat_entries);
 
2338
2339	mutex_init(&nm_i->build_lock);
2340	spin_lock_init(&nm_i->nid_list_lock);
2341	init_rwsem(&nm_i->nat_tree_lock);
2342
2343	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2344	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2345	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2346	if (!version_bitmap)
2347		return -EFAULT;
2348
2349	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2350					GFP_KERNEL);
2351	if (!nm_i->nat_bitmap)
2352		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353	return 0;
2354}
2355
2356int build_node_manager(struct f2fs_sb_info *sbi)
2357{
2358	int err;
2359
2360	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 
2361	if (!sbi->nm_info)
2362		return -ENOMEM;
2363
2364	err = init_node_manager(sbi);
2365	if (err)
2366		return err;
2367
2368	build_free_nids(sbi, true);
2369	return 0;
 
 
 
 
 
 
2370}
2371
2372void destroy_node_manager(struct f2fs_sb_info *sbi)
2373{
2374	struct f2fs_nm_info *nm_i = NM_I(sbi);
2375	struct free_nid *i, *next_i;
2376	struct nat_entry *natvec[NATVEC_SIZE];
2377	struct nat_entry_set *setvec[SETVEC_SIZE];
 
2378	nid_t nid = 0;
2379	unsigned int found;
2380
2381	if (!nm_i)
2382		return;
2383
2384	/* destroy free nid list */
2385	spin_lock(&nm_i->nid_list_lock);
2386	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2387									list) {
2388		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2389		spin_unlock(&nm_i->nid_list_lock);
2390		kmem_cache_free(free_nid_slab, i);
2391		spin_lock(&nm_i->nid_list_lock);
2392	}
2393	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2394	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2395	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2396	spin_unlock(&nm_i->nid_list_lock);
2397
2398	/* destroy nat cache */
2399	down_write(&nm_i->nat_tree_lock);
2400	while ((found = __gang_lookup_nat_cache(nm_i,
2401					nid, NATVEC_SIZE, natvec))) {
2402		unsigned idx;
2403
2404		nid = nat_get_nid(natvec[found - 1]) + 1;
2405		for (idx = 0; idx < found; idx++)
 
 
 
 
2406			__del_from_nat_cache(nm_i, natvec[idx]);
 
2407	}
2408	f2fs_bug_on(sbi, nm_i->nat_cnt);
2409
2410	/* destroy nat set cache */
2411	nid = 0;
 
2412	while ((found = __gang_lookup_nat_set(nm_i,
2413					nid, SETVEC_SIZE, setvec))) {
2414		unsigned idx;
2415
2416		nid = setvec[found - 1]->set + 1;
2417		for (idx = 0; idx < found; idx++) {
2418			/* entry_cnt is not zero, when cp_error was occurred */
2419			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2420			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2421			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2422		}
2423	}
2424	up_write(&nm_i->nat_tree_lock);
 
 
 
 
2425
2426	kfree(nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
2427	sbi->nm_info = NULL;
2428	kfree(nm_i);
2429}
2430
2431int __init create_node_manager_caches(void)
2432{
2433	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2434			sizeof(struct nat_entry));
2435	if (!nat_entry_slab)
2436		goto fail;
2437
2438	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2439			sizeof(struct free_nid));
2440	if (!free_nid_slab)
2441		goto destroy_nat_entry;
2442
2443	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2444			sizeof(struct nat_entry_set));
2445	if (!nat_entry_set_slab)
2446		goto destroy_free_nid;
 
 
 
 
 
2447	return 0;
2448
 
 
2449destroy_free_nid:
2450	kmem_cache_destroy(free_nid_slab);
2451destroy_nat_entry:
2452	kmem_cache_destroy(nat_entry_slab);
2453fail:
2454	return -ENOMEM;
2455}
2456
2457void destroy_node_manager_caches(void)
2458{
 
2459	kmem_cache_destroy(nat_entry_set_slab);
2460	kmem_cache_destroy(free_nid_slab);
2461	kmem_cache_destroy(nat_entry_slab);
2462}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/sched/mm.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
  40		return -EFSCORRUPTED;
  41	}
  42	return 0;
  43}
  44
  45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  46{
  47	struct f2fs_nm_info *nm_i = NM_I(sbi);
  48	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  49	struct sysinfo val;
  50	unsigned long avail_ram;
  51	unsigned long mem_size = 0;
  52	bool res = false;
  53
  54	if (!nm_i)
  55		return true;
  56
  57	si_meminfo(&val);
  58
  59	/* only uses low memory */
  60	avail_ram = val.totalram - val.totalhigh;
  61
  62	/*
  63	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
  64	 */
  65	if (type == FREE_NIDS) {
  66		mem_size = (nm_i->nid_cnt[FREE_NID] *
  67				sizeof(struct free_nid)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  69	} else if (type == NAT_ENTRIES) {
  70		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  71				sizeof(struct nat_entry)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  73		if (excess_cached_nats(sbi))
  74			res = false;
  75	} else if (type == DIRTY_DENTS) {
  76		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return false;
  78		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  79		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  80	} else if (type == INO_ENTRIES) {
  81		int i;
  82
  83		for (i = 0; i < MAX_INO_ENTRY; i++)
  84			mem_size += sbi->im[i].ino_num *
  85						sizeof(struct ino_entry);
  86		mem_size >>= PAGE_SHIFT;
  87		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  88	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
  89		enum extent_type etype = type == READ_EXTENT_CACHE ?
  90						EX_READ : EX_BLOCK_AGE;
  91		struct extent_tree_info *eti = &sbi->extent_tree[etype];
  92
  93		mem_size = (atomic_read(&eti->total_ext_tree) *
  94				sizeof(struct extent_tree) +
  95				atomic_read(&eti->total_ext_node) *
  96				sizeof(struct extent_node)) >> PAGE_SHIFT;
  97		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  98	} else if (type == DISCARD_CACHE) {
  99		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
 100				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 101		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 102	} else if (type == COMPRESS_PAGE) {
 103#ifdef CONFIG_F2FS_FS_COMPRESSION
 104		unsigned long free_ram = val.freeram;
 105
 106		/*
 107		 * free memory is lower than watermark or cached page count
 108		 * exceed threshold, deny caching compress page.
 109		 */
 110		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 111			(COMPRESS_MAPPING(sbi)->nrpages <
 112			 free_ram * sbi->compress_percent / 100);
 113#else
 114		res = false;
 115#endif
 116	} else {
 117		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 118			return true;
 119	}
 120	return res;
 121}
 122
 123static void clear_node_page_dirty(struct page *page)
 124{
 
 
 
 125	if (PageDirty(page)) {
 126		f2fs_clear_page_cache_dirty_tag(page);
 
 
 
 
 
 127		clear_page_dirty_for_io(page);
 128		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 129	}
 130	ClearPageUptodate(page);
 131}
 132
 133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 134{
 135	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 
 136}
 137
 138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 139{
 140	struct page *src_page;
 141	struct page *dst_page;
 
 142	pgoff_t dst_off;
 143	void *src_addr;
 144	void *dst_addr;
 145	struct f2fs_nm_info *nm_i = NM_I(sbi);
 146
 147	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 148
 149	/* get current nat block page with lock */
 150	src_page = get_current_nat_page(sbi, nid);
 151	if (IS_ERR(src_page))
 152		return src_page;
 153	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 154	f2fs_bug_on(sbi, PageDirty(src_page));
 155
 156	src_addr = page_address(src_page);
 157	dst_addr = page_address(dst_page);
 158	memcpy(dst_addr, src_addr, PAGE_SIZE);
 159	set_page_dirty(dst_page);
 160	f2fs_put_page(src_page, 1);
 161
 162	set_to_next_nat(nm_i, nid);
 163
 164	return dst_page;
 165}
 166
 167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 168						nid_t nid, bool no_fail)
 169{
 170	struct nat_entry *new;
 171
 172	new = f2fs_kmem_cache_alloc(nat_entry_slab,
 173					GFP_F2FS_ZERO, no_fail, sbi);
 174	if (new) {
 175		nat_set_nid(new, nid);
 176		nat_reset_flag(new);
 177	}
 178	return new;
 179}
 180
 181static void __free_nat_entry(struct nat_entry *e)
 182{
 183	kmem_cache_free(nat_entry_slab, e);
 184}
 185
 186/* must be locked by nat_tree_lock */
 187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 188	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 189{
 190	if (no_fail)
 191		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 192	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 193		return NULL;
 194
 195	if (raw_ne)
 196		node_info_from_raw_nat(&ne->ni, raw_ne);
 197
 198	spin_lock(&nm_i->nat_list_lock);
 199	list_add_tail(&ne->list, &nm_i->nat_entries);
 200	spin_unlock(&nm_i->nat_list_lock);
 201
 202	nm_i->nat_cnt[TOTAL_NAT]++;
 203	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 204	return ne;
 205}
 206
 207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 208{
 209	struct nat_entry *ne;
 210
 211	ne = radix_tree_lookup(&nm_i->nat_root, n);
 212
 213	/* for recent accessed nat entry, move it to tail of lru list */
 214	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 215		spin_lock(&nm_i->nat_list_lock);
 216		if (!list_empty(&ne->list))
 217			list_move_tail(&ne->list, &nm_i->nat_entries);
 218		spin_unlock(&nm_i->nat_list_lock);
 219	}
 220
 221	return ne;
 222}
 223
 224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 225		nid_t start, unsigned int nr, struct nat_entry **ep)
 226{
 227	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 228}
 229
 230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 231{
 
 232	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 233	nm_i->nat_cnt[TOTAL_NAT]--;
 234	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 235	__free_nat_entry(e);
 236}
 237
 238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 239							struct nat_entry *ne)
 240{
 241	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 242	struct nat_entry_set *head;
 243
 
 
 
 244	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 245	if (!head) {
 246		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 247						GFP_NOFS, true, NULL);
 248
 249		INIT_LIST_HEAD(&head->entry_list);
 250		INIT_LIST_HEAD(&head->set_list);
 251		head->set = set;
 252		head->entry_cnt = 0;
 253		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 254	}
 255	return head;
 
 
 
 256}
 257
 258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 259						struct nat_entry *ne)
 260{
 
 261	struct nat_entry_set *head;
 262	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 263
 264	if (!new_ne)
 265		head = __grab_nat_entry_set(nm_i, ne);
 266
 267	/*
 268	 * update entry_cnt in below condition:
 269	 * 1. update NEW_ADDR to valid block address;
 270	 * 2. update old block address to new one;
 271	 */
 272	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 273				!get_nat_flag(ne, IS_DIRTY)))
 274		head->entry_cnt++;
 275
 276	set_nat_flag(ne, IS_PREALLOC, new_ne);
 277
 278	if (get_nat_flag(ne, IS_DIRTY))
 279		goto refresh_list;
 280
 281	nm_i->nat_cnt[DIRTY_NAT]++;
 282	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 283	set_nat_flag(ne, IS_DIRTY, true);
 284refresh_list:
 285	spin_lock(&nm_i->nat_list_lock);
 286	if (new_ne)
 287		list_del_init(&ne->list);
 288	else
 289		list_move_tail(&ne->list, &head->entry_list);
 290	spin_unlock(&nm_i->nat_list_lock);
 291}
 292
 293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 294		struct nat_entry_set *set, struct nat_entry *ne)
 295{
 296	spin_lock(&nm_i->nat_list_lock);
 297	list_move_tail(&ne->list, &nm_i->nat_entries);
 298	spin_unlock(&nm_i->nat_list_lock);
 299
 300	set_nat_flag(ne, IS_DIRTY, false);
 301	set->entry_cnt--;
 302	nm_i->nat_cnt[DIRTY_NAT]--;
 303	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 304}
 305
 306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 307		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 308{
 309	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 310							start, nr);
 311}
 312
 313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 314{
 315	return NODE_MAPPING(sbi) == page->mapping &&
 316			IS_DNODE(page) && is_cold_node(page);
 317}
 318
 319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 320{
 321	spin_lock_init(&sbi->fsync_node_lock);
 322	INIT_LIST_HEAD(&sbi->fsync_node_list);
 323	sbi->fsync_seg_id = 0;
 324	sbi->fsync_node_num = 0;
 325}
 326
 327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 328							struct page *page)
 329{
 330	struct fsync_node_entry *fn;
 331	unsigned long flags;
 332	unsigned int seq_id;
 333
 334	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 335					GFP_NOFS, true, NULL);
 336
 337	get_page(page);
 338	fn->page = page;
 339	INIT_LIST_HEAD(&fn->list);
 340
 341	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 342	list_add_tail(&fn->list, &sbi->fsync_node_list);
 343	fn->seq_id = sbi->fsync_seg_id++;
 344	seq_id = fn->seq_id;
 345	sbi->fsync_node_num++;
 346	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 347
 348	return seq_id;
 349}
 350
 351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 352{
 353	struct fsync_node_entry *fn;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 357	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 358		if (fn->page == page) {
 359			list_del(&fn->list);
 360			sbi->fsync_node_num--;
 361			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 362			kmem_cache_free(fsync_node_entry_slab, fn);
 363			put_page(page);
 364			return;
 365		}
 366	}
 367	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 368	f2fs_bug_on(sbi, 1);
 369}
 370
 371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 372{
 373	unsigned long flags;
 374
 375	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 376	sbi->fsync_seg_id = 0;
 377	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 378}
 379
 380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 381{
 382	struct f2fs_nm_info *nm_i = NM_I(sbi);
 383	struct nat_entry *e;
 384	bool need = false;
 385
 386	f2fs_down_read(&nm_i->nat_tree_lock);
 387	e = __lookup_nat_cache(nm_i, nid);
 388	if (e) {
 389		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 390				!get_nat_flag(e, HAS_FSYNCED_INODE))
 391			need = true;
 392	}
 393	f2fs_up_read(&nm_i->nat_tree_lock);
 394	return need;
 395}
 396
 397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 398{
 399	struct f2fs_nm_info *nm_i = NM_I(sbi);
 400	struct nat_entry *e;
 401	bool is_cp = true;
 402
 403	f2fs_down_read(&nm_i->nat_tree_lock);
 404	e = __lookup_nat_cache(nm_i, nid);
 405	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 406		is_cp = false;
 407	f2fs_up_read(&nm_i->nat_tree_lock);
 408	return is_cp;
 409}
 410
 411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 412{
 413	struct f2fs_nm_info *nm_i = NM_I(sbi);
 414	struct nat_entry *e;
 415	bool need_update = true;
 416
 417	f2fs_down_read(&nm_i->nat_tree_lock);
 418	e = __lookup_nat_cache(nm_i, ino);
 419	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 420			(get_nat_flag(e, IS_CHECKPOINTED) ||
 421			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 422		need_update = false;
 423	f2fs_up_read(&nm_i->nat_tree_lock);
 424	return need_update;
 425}
 426
 427/* must be locked by nat_tree_lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 429						struct f2fs_nat_entry *ne)
 430{
 431	struct f2fs_nm_info *nm_i = NM_I(sbi);
 432	struct nat_entry *new, *e;
 433
 434	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
 435	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
 436		return;
 437
 438	new = __alloc_nat_entry(sbi, nid, false);
 439	if (!new)
 440		return;
 441
 442	f2fs_down_write(&nm_i->nat_tree_lock);
 443	e = __lookup_nat_cache(nm_i, nid);
 444	if (!e)
 445		e = __init_nat_entry(nm_i, new, ne, false);
 446	else
 
 447		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 448				nat_get_blkaddr(e) !=
 449					le32_to_cpu(ne->block_addr) ||
 450				nat_get_version(e) != ne->version);
 451	f2fs_up_write(&nm_i->nat_tree_lock);
 452	if (e != new)
 453		__free_nat_entry(new);
 454}
 455
 456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 457			block_t new_blkaddr, bool fsync_done)
 458{
 459	struct f2fs_nm_info *nm_i = NM_I(sbi);
 460	struct nat_entry *e;
 461	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 462
 463	f2fs_down_write(&nm_i->nat_tree_lock);
 464	e = __lookup_nat_cache(nm_i, ni->nid);
 465	if (!e) {
 466		e = __init_nat_entry(nm_i, new, NULL, true);
 467		copy_node_info(&e->ni, ni);
 468		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 469	} else if (new_blkaddr == NEW_ADDR) {
 470		/*
 471		 * when nid is reallocated,
 472		 * previous nat entry can be remained in nat cache.
 473		 * So, reinitialize it with new information.
 474		 */
 475		copy_node_info(&e->ni, ni);
 476		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 477	}
 478	/* let's free early to reduce memory consumption */
 479	if (e != new)
 480		__free_nat_entry(new);
 481
 482	/* sanity check */
 483	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 484	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 485			new_blkaddr == NULL_ADDR);
 486	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 487			new_blkaddr == NEW_ADDR);
 488	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 489			new_blkaddr == NEW_ADDR);
 490
 491	/* increment version no as node is removed */
 492	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 493		unsigned char version = nat_get_version(e);
 
 494
 495		nat_set_version(e, inc_node_version(version));
 
 
 496	}
 497
 498	/* change address */
 499	nat_set_blkaddr(e, new_blkaddr);
 500	if (!__is_valid_data_blkaddr(new_blkaddr))
 501		set_nat_flag(e, IS_CHECKPOINTED, false);
 502	__set_nat_cache_dirty(nm_i, e);
 503
 504	/* update fsync_mark if its inode nat entry is still alive */
 505	if (ni->nid != ni->ino)
 506		e = __lookup_nat_cache(nm_i, ni->ino);
 507	if (e) {
 508		if (fsync_done && ni->nid == ni->ino)
 509			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 510		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 511	}
 512	f2fs_up_write(&nm_i->nat_tree_lock);
 513}
 514
 515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 516{
 517	struct f2fs_nm_info *nm_i = NM_I(sbi);
 518	int nr = nr_shrink;
 519
 520	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
 521		return 0;
 522
 523	spin_lock(&nm_i->nat_list_lock);
 524	while (nr_shrink) {
 525		struct nat_entry *ne;
 526
 527		if (list_empty(&nm_i->nat_entries))
 528			break;
 529
 530		ne = list_first_entry(&nm_i->nat_entries,
 531					struct nat_entry, list);
 532		list_del(&ne->list);
 533		spin_unlock(&nm_i->nat_list_lock);
 534
 535		__del_from_nat_cache(nm_i, ne);
 536		nr_shrink--;
 537
 538		spin_lock(&nm_i->nat_list_lock);
 539	}
 540	spin_unlock(&nm_i->nat_list_lock);
 541
 542	f2fs_up_write(&nm_i->nat_tree_lock);
 543	return nr - nr_shrink;
 544}
 545
 546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 547				struct node_info *ni, bool checkpoint_context)
 
 
 548{
 549	struct f2fs_nm_info *nm_i = NM_I(sbi);
 550	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 551	struct f2fs_journal *journal = curseg->journal;
 552	nid_t start_nid = START_NID(nid);
 553	struct f2fs_nat_block *nat_blk;
 554	struct page *page = NULL;
 555	struct f2fs_nat_entry ne;
 556	struct nat_entry *e;
 557	pgoff_t index;
 558	block_t blkaddr;
 559	int i;
 560
 561	ni->nid = nid;
 562retry:
 563	/* Check nat cache */
 564	f2fs_down_read(&nm_i->nat_tree_lock);
 565	e = __lookup_nat_cache(nm_i, nid);
 566	if (e) {
 567		ni->ino = nat_get_ino(e);
 568		ni->blk_addr = nat_get_blkaddr(e);
 569		ni->version = nat_get_version(e);
 570		f2fs_up_read(&nm_i->nat_tree_lock);
 571		return 0;
 572	}
 573
 574	/*
 575	 * Check current segment summary by trying to grab journal_rwsem first.
 576	 * This sem is on the critical path on the checkpoint requiring the above
 577	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 578	 * while not bothering checkpoint.
 579	 */
 580	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
 581		down_read(&curseg->journal_rwsem);
 582	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
 583				!down_read_trylock(&curseg->journal_rwsem)) {
 584		f2fs_up_read(&nm_i->nat_tree_lock);
 585		goto retry;
 586	}
 587
 588	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 
 
 589	if (i >= 0) {
 590		ne = nat_in_journal(journal, i);
 591		node_info_from_raw_nat(ni, &ne);
 592	}
 593	up_read(&curseg->journal_rwsem);
 594	if (i >= 0) {
 595		f2fs_up_read(&nm_i->nat_tree_lock);
 596		goto cache;
 597	}
 598
 599	/* Fill node_info from nat page */
 600	index = current_nat_addr(sbi, nid);
 601	f2fs_up_read(&nm_i->nat_tree_lock);
 602
 603	page = f2fs_get_meta_page(sbi, index);
 604	if (IS_ERR(page))
 605		return PTR_ERR(page);
 606
 607	nat_blk = (struct f2fs_nat_block *)page_address(page);
 608	ne = nat_blk->entries[nid - start_nid];
 609	node_info_from_raw_nat(ni, &ne);
 610	f2fs_put_page(page, 1);
 611cache:
 612	blkaddr = le32_to_cpu(ne.block_addr);
 613	if (__is_valid_data_blkaddr(blkaddr) &&
 614		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 615		return -EFAULT;
 616
 617	/* cache nat entry */
 
 618	cache_nat_entry(sbi, nid, &ne);
 619	return 0;
 620}
 621
 622/*
 623 * readahead MAX_RA_NODE number of node pages.
 624 */
 625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 626{
 627	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 628	struct blk_plug plug;
 629	int i, end;
 630	nid_t nid;
 631
 632	blk_start_plug(&plug);
 633
 634	/* Then, try readahead for siblings of the desired node */
 635	end = start + n;
 636	end = min(end, (int)NIDS_PER_BLOCK);
 637	for (i = start; i < end; i++) {
 638		nid = get_nid(parent, i, false);
 639		f2fs_ra_node_page(sbi, nid);
 640	}
 641
 642	blk_finish_plug(&plug);
 643}
 644
 645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 646{
 647	const long direct_index = ADDRS_PER_INODE(dn->inode);
 648	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 649	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 650	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 651	int cur_level = dn->cur_level;
 652	int max_level = dn->max_level;
 653	pgoff_t base = 0;
 654
 655	if (!dn->max_level)
 656		return pgofs + 1;
 657
 658	while (max_level-- > cur_level)
 659		skipped_unit *= NIDS_PER_BLOCK;
 660
 661	switch (dn->max_level) {
 662	case 3:
 663		base += 2 * indirect_blks;
 664		fallthrough;
 665	case 2:
 666		base += 2 * direct_blks;
 667		fallthrough;
 668	case 1:
 669		base += direct_index;
 670		break;
 671	default:
 672		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 673	}
 674
 675	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 676}
 677
 678/*
 679 * The maximum depth is four.
 680 * Offset[0] will have raw inode offset.
 681 */
 682static int get_node_path(struct inode *inode, long block,
 683				int offset[4], unsigned int noffset[4])
 684{
 685	const long direct_index = ADDRS_PER_INODE(inode);
 686	const long direct_blks = ADDRS_PER_BLOCK(inode);
 687	const long dptrs_per_blk = NIDS_PER_BLOCK;
 688	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 689	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 690	int n = 0;
 691	int level = 0;
 692
 693	noffset[0] = 0;
 694
 695	if (block < direct_index) {
 696		offset[n] = block;
 697		goto got;
 698	}
 699	block -= direct_index;
 700	if (block < direct_blks) {
 701		offset[n++] = NODE_DIR1_BLOCK;
 702		noffset[n] = 1;
 703		offset[n] = block;
 704		level = 1;
 705		goto got;
 706	}
 707	block -= direct_blks;
 708	if (block < direct_blks) {
 709		offset[n++] = NODE_DIR2_BLOCK;
 710		noffset[n] = 2;
 711		offset[n] = block;
 712		level = 1;
 713		goto got;
 714	}
 715	block -= direct_blks;
 716	if (block < indirect_blks) {
 717		offset[n++] = NODE_IND1_BLOCK;
 718		noffset[n] = 3;
 719		offset[n++] = block / direct_blks;
 720		noffset[n] = 4 + offset[n - 1];
 721		offset[n] = block % direct_blks;
 722		level = 2;
 723		goto got;
 724	}
 725	block -= indirect_blks;
 726	if (block < indirect_blks) {
 727		offset[n++] = NODE_IND2_BLOCK;
 728		noffset[n] = 4 + dptrs_per_blk;
 729		offset[n++] = block / direct_blks;
 730		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 731		offset[n] = block % direct_blks;
 732		level = 2;
 733		goto got;
 734	}
 735	block -= indirect_blks;
 736	if (block < dindirect_blks) {
 737		offset[n++] = NODE_DIND_BLOCK;
 738		noffset[n] = 5 + (dptrs_per_blk * 2);
 739		offset[n++] = block / indirect_blks;
 740		noffset[n] = 6 + (dptrs_per_blk * 2) +
 741			      offset[n - 1] * (dptrs_per_blk + 1);
 742		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 743		noffset[n] = 7 + (dptrs_per_blk * 2) +
 744			      offset[n - 2] * (dptrs_per_blk + 1) +
 745			      offset[n - 1];
 746		offset[n] = block % direct_blks;
 747		level = 3;
 748		goto got;
 749	} else {
 750		return -E2BIG;
 751	}
 752got:
 753	return level;
 754}
 755
 756/*
 757 * Caller should call f2fs_put_dnode(dn).
 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 
 760 */
 761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 762{
 763	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 764	struct page *npage[4];
 765	struct page *parent = NULL;
 766	int offset[4];
 767	unsigned int noffset[4];
 768	nid_t nids[4];
 769	int level, i = 0;
 770	int err = 0;
 771
 772	level = get_node_path(dn->inode, index, offset, noffset);
 773	if (level < 0)
 774		return level;
 775
 776	nids[0] = dn->inode->i_ino;
 777	npage[0] = dn->inode_page;
 778
 779	if (!npage[0]) {
 780		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 781		if (IS_ERR(npage[0]))
 782			return PTR_ERR(npage[0]);
 783	}
 784
 785	/* if inline_data is set, should not report any block indices */
 786	if (f2fs_has_inline_data(dn->inode) && index) {
 787		err = -ENOENT;
 788		f2fs_put_page(npage[0], 1);
 789		goto release_out;
 790	}
 791
 792	parent = npage[0];
 793	if (level != 0)
 794		nids[1] = get_nid(parent, offset[0], true);
 795	dn->inode_page = npage[0];
 796	dn->inode_page_locked = true;
 797
 798	/* get indirect or direct nodes */
 799	for (i = 1; i <= level; i++) {
 800		bool done = false;
 801
 802		if (!nids[i] && mode == ALLOC_NODE) {
 803			/* alloc new node */
 804			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 805				err = -ENOSPC;
 806				goto release_pages;
 807			}
 808
 809			dn->nid = nids[i];
 810			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 811			if (IS_ERR(npage[i])) {
 812				f2fs_alloc_nid_failed(sbi, nids[i]);
 813				err = PTR_ERR(npage[i]);
 814				goto release_pages;
 815			}
 816
 817			set_nid(parent, offset[i - 1], nids[i], i == 1);
 818			f2fs_alloc_nid_done(sbi, nids[i]);
 819			done = true;
 820		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 821			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 822			if (IS_ERR(npage[i])) {
 823				err = PTR_ERR(npage[i]);
 824				goto release_pages;
 825			}
 826			done = true;
 827		}
 828		if (i == 1) {
 829			dn->inode_page_locked = false;
 830			unlock_page(parent);
 831		} else {
 832			f2fs_put_page(parent, 1);
 833		}
 834
 835		if (!done) {
 836			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 837			if (IS_ERR(npage[i])) {
 838				err = PTR_ERR(npage[i]);
 839				f2fs_put_page(npage[0], 0);
 840				goto release_out;
 841			}
 842		}
 843		if (i < level) {
 844			parent = npage[i];
 845			nids[i + 1] = get_nid(parent, offset[i], false);
 846		}
 847	}
 848	dn->nid = nids[level];
 849	dn->ofs_in_node = offset[level];
 850	dn->node_page = npage[level];
 851	dn->data_blkaddr = f2fs_data_blkaddr(dn);
 852
 853	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 854					f2fs_sb_has_readonly(sbi)) {
 855		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
 856		unsigned int ofs_in_node = dn->ofs_in_node;
 857		pgoff_t fofs = index;
 858		unsigned int c_len;
 859		block_t blkaddr;
 860
 861		/* should align fofs and ofs_in_node to cluster_size */
 862		if (fofs % cluster_size) {
 863			fofs = round_down(fofs, cluster_size);
 864			ofs_in_node = round_down(ofs_in_node, cluster_size);
 865		}
 866
 867		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
 868		if (!c_len)
 869			goto out;
 870
 871		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
 872		if (blkaddr == COMPRESS_ADDR)
 873			blkaddr = data_blkaddr(dn->inode, dn->node_page,
 874						ofs_in_node + 1);
 875
 876		f2fs_update_read_extent_tree_range_compressed(dn->inode,
 877					fofs, blkaddr, cluster_size, c_len);
 878	}
 879out:
 880	return 0;
 881
 882release_pages:
 883	f2fs_put_page(parent, 1);
 884	if (i > 1)
 885		f2fs_put_page(npage[0], 0);
 886release_out:
 887	dn->inode_page = NULL;
 888	dn->node_page = NULL;
 889	if (err == -ENOENT) {
 890		dn->cur_level = i;
 891		dn->max_level = level;
 892		dn->ofs_in_node = offset[level];
 893	}
 894	return err;
 895}
 896
 897static int truncate_node(struct dnode_of_data *dn)
 898{
 899	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 900	struct node_info ni;
 901	int err;
 902	pgoff_t index;
 903
 904	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
 905	if (err)
 906		return err;
 
 
 
 907
 908	/* Deallocate node address */
 909	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 910	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 911	set_node_addr(sbi, &ni, NULL_ADDR, false);
 912
 913	if (dn->nid == dn->inode->i_ino) {
 914		f2fs_remove_orphan_inode(sbi, dn->nid);
 915		dec_valid_inode_count(sbi);
 916		f2fs_inode_synced(dn->inode);
 917	}
 918
 919	clear_node_page_dirty(dn->node_page);
 920	set_sbi_flag(sbi, SBI_IS_DIRTY);
 921
 922	index = dn->node_page->index;
 923	f2fs_put_page(dn->node_page, 1);
 924
 925	invalidate_mapping_pages(NODE_MAPPING(sbi),
 926			index, index);
 927
 928	dn->node_page = NULL;
 929	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 930
 931	return 0;
 932}
 933
 934static int truncate_dnode(struct dnode_of_data *dn)
 935{
 936	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 937	struct page *page;
 938	int err;
 939
 940	if (dn->nid == 0)
 941		return 1;
 942
 943	/* get direct node */
 944	page = f2fs_get_node_page(sbi, dn->nid);
 945	if (PTR_ERR(page) == -ENOENT)
 946		return 1;
 947	else if (IS_ERR(page))
 948		return PTR_ERR(page);
 949
 950	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
 951		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
 952				dn->inode->i_ino, dn->nid, ino_of_node(page));
 953		set_sbi_flag(sbi, SBI_NEED_FSCK);
 954		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
 955		f2fs_put_page(page, 1);
 956		return -EFSCORRUPTED;
 957	}
 958
 959	/* Make dnode_of_data for parameter */
 960	dn->node_page = page;
 961	dn->ofs_in_node = 0;
 962	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
 963	err = truncate_node(dn);
 964	if (err) {
 965		f2fs_put_page(page, 1);
 966		return err;
 967	}
 968
 969	return 1;
 970}
 971
 972static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 973						int ofs, int depth)
 974{
 975	struct dnode_of_data rdn = *dn;
 976	struct page *page;
 977	struct f2fs_node *rn;
 978	nid_t child_nid;
 979	unsigned int child_nofs;
 980	int freed = 0;
 981	int i, ret;
 982
 983	if (dn->nid == 0)
 984		return NIDS_PER_BLOCK + 1;
 985
 986	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 987
 988	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 989	if (IS_ERR(page)) {
 990		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 991		return PTR_ERR(page);
 992	}
 993
 994	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 995
 996	rn = F2FS_NODE(page);
 997	if (depth < 3) {
 998		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 999			child_nid = le32_to_cpu(rn->in.nid[i]);
1000			if (child_nid == 0)
1001				continue;
1002			rdn.nid = child_nid;
1003			ret = truncate_dnode(&rdn);
1004			if (ret < 0)
1005				goto out_err;
1006			if (set_nid(page, i, 0, false))
1007				dn->node_changed = true;
1008		}
1009	} else {
1010		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012			child_nid = le32_to_cpu(rn->in.nid[i]);
1013			if (child_nid == 0) {
1014				child_nofs += NIDS_PER_BLOCK + 1;
1015				continue;
1016			}
1017			rdn.nid = child_nid;
1018			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019			if (ret == (NIDS_PER_BLOCK + 1)) {
1020				if (set_nid(page, i, 0, false))
1021					dn->node_changed = true;
1022				child_nofs += ret;
1023			} else if (ret < 0 && ret != -ENOENT) {
1024				goto out_err;
1025			}
1026		}
1027		freed = child_nofs;
1028	}
1029
1030	if (!ofs) {
1031		/* remove current indirect node */
1032		dn->node_page = page;
1033		ret = truncate_node(dn);
1034		if (ret)
1035			goto out_err;
1036		freed++;
1037	} else {
1038		f2fs_put_page(page, 1);
1039	}
1040	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041	return freed;
1042
1043out_err:
1044	f2fs_put_page(page, 1);
1045	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046	return ret;
1047}
1048
1049static int truncate_partial_nodes(struct dnode_of_data *dn,
1050			struct f2fs_inode *ri, int *offset, int depth)
1051{
1052	struct page *pages[2];
1053	nid_t nid[3];
1054	nid_t child_nid;
1055	int err = 0;
1056	int i;
1057	int idx = depth - 2;
1058
1059	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060	if (!nid[0])
1061		return 0;
1062
1063	/* get indirect nodes in the path */
1064	for (i = 0; i < idx + 1; i++) {
1065		/* reference count'll be increased */
1066		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067		if (IS_ERR(pages[i])) {
1068			err = PTR_ERR(pages[i]);
1069			idx = i - 1;
1070			goto fail;
1071		}
1072		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073	}
1074
1075	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076
1077	/* free direct nodes linked to a partial indirect node */
1078	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079		child_nid = get_nid(pages[idx], i, false);
1080		if (!child_nid)
1081			continue;
1082		dn->nid = child_nid;
1083		err = truncate_dnode(dn);
1084		if (err < 0)
1085			goto fail;
1086		if (set_nid(pages[idx], i, 0, false))
1087			dn->node_changed = true;
1088	}
1089
1090	if (offset[idx + 1] == 0) {
1091		dn->node_page = pages[idx];
1092		dn->nid = nid[idx];
1093		err = truncate_node(dn);
1094		if (err)
1095			goto fail;
1096	} else {
1097		f2fs_put_page(pages[idx], 1);
1098	}
1099	offset[idx]++;
1100	offset[idx + 1] = 0;
1101	idx--;
1102fail:
1103	for (i = idx; i >= 0; i--)
1104		f2fs_put_page(pages[i], 1);
1105
1106	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107
1108	return err;
1109}
1110
1111/*
1112 * All the block addresses of data and nodes should be nullified.
1113 */
1114int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115{
1116	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117	int err = 0, cont = 1;
1118	int level, offset[4], noffset[4];
1119	unsigned int nofs = 0;
1120	struct f2fs_inode *ri;
1121	struct dnode_of_data dn;
1122	struct page *page;
1123
1124	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125
1126	level = get_node_path(inode, from, offset, noffset);
1127	if (level < 0) {
1128		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129		return level;
1130	}
1131
1132	page = f2fs_get_node_page(sbi, inode->i_ino);
1133	if (IS_ERR(page)) {
1134		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135		return PTR_ERR(page);
1136	}
1137
1138	set_new_dnode(&dn, inode, page, NULL, 0);
1139	unlock_page(page);
1140
1141	ri = F2FS_INODE(page);
1142	switch (level) {
1143	case 0:
1144	case 1:
1145		nofs = noffset[1];
1146		break;
1147	case 2:
1148		nofs = noffset[1];
1149		if (!offset[level - 1])
1150			goto skip_partial;
1151		err = truncate_partial_nodes(&dn, ri, offset, level);
1152		if (err < 0 && err != -ENOENT)
1153			goto fail;
1154		nofs += 1 + NIDS_PER_BLOCK;
1155		break;
1156	case 3:
1157		nofs = 5 + 2 * NIDS_PER_BLOCK;
1158		if (!offset[level - 1])
1159			goto skip_partial;
1160		err = truncate_partial_nodes(&dn, ri, offset, level);
1161		if (err < 0 && err != -ENOENT)
1162			goto fail;
1163		break;
1164	default:
1165		BUG();
1166	}
1167
1168skip_partial:
1169	while (cont) {
1170		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171		switch (offset[0]) {
1172		case NODE_DIR1_BLOCK:
1173		case NODE_DIR2_BLOCK:
1174			err = truncate_dnode(&dn);
1175			break;
1176
1177		case NODE_IND1_BLOCK:
1178		case NODE_IND2_BLOCK:
1179			err = truncate_nodes(&dn, nofs, offset[1], 2);
1180			break;
1181
1182		case NODE_DIND_BLOCK:
1183			err = truncate_nodes(&dn, nofs, offset[1], 3);
1184			cont = 0;
1185			break;
1186
1187		default:
1188			BUG();
1189		}
1190		if (err < 0 && err != -ENOENT)
1191			goto fail;
1192		if (offset[1] == 0 &&
1193				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1194			lock_page(page);
1195			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1196			f2fs_wait_on_page_writeback(page, NODE, true, true);
1197			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1198			set_page_dirty(page);
1199			unlock_page(page);
1200		}
1201		offset[1] = 0;
1202		offset[0]++;
1203		nofs += err;
1204	}
1205fail:
1206	f2fs_put_page(page, 0);
1207	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1208	return err > 0 ? 0 : err;
1209}
1210
1211/* caller must lock inode page */
1212int f2fs_truncate_xattr_node(struct inode *inode)
1213{
1214	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1216	struct dnode_of_data dn;
1217	struct page *npage;
1218	int err;
1219
1220	if (!nid)
1221		return 0;
1222
1223	npage = f2fs_get_node_page(sbi, nid);
1224	if (IS_ERR(npage))
1225		return PTR_ERR(npage);
1226
1227	set_new_dnode(&dn, inode, NULL, npage, nid);
1228	err = truncate_node(&dn);
1229	if (err) {
1230		f2fs_put_page(npage, 1);
1231		return err;
1232	}
1233
1234	f2fs_i_xnid_write(inode, 0);
1235
 
 
 
1236	return 0;
1237}
1238
1239/*
1240 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1241 * f2fs_unlock_op().
1242 */
1243int f2fs_remove_inode_page(struct inode *inode)
1244{
1245	struct dnode_of_data dn;
1246	int err;
1247
1248	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1249	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1250	if (err)
1251		return err;
1252
1253	err = f2fs_truncate_xattr_node(inode);
1254	if (err) {
1255		f2fs_put_dnode(&dn);
1256		return err;
1257	}
1258
1259	/* remove potential inline_data blocks */
1260	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1261				S_ISLNK(inode->i_mode))
1262		f2fs_truncate_data_blocks_range(&dn, 1);
1263
1264	/* 0 is possible, after f2fs_new_inode() has failed */
1265	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1266		f2fs_put_dnode(&dn);
1267		return -EIO;
1268	}
1269
1270	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1271		f2fs_warn(F2FS_I_SB(inode),
1272			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1273			inode->i_ino, (unsigned long long)inode->i_blocks);
1274		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1275	}
1276
1277	/* will put inode & node pages */
1278	err = truncate_node(&dn);
1279	if (err) {
1280		f2fs_put_dnode(&dn);
1281		return err;
1282	}
1283	return 0;
1284}
1285
1286struct page *f2fs_new_inode_page(struct inode *inode)
1287{
1288	struct dnode_of_data dn;
1289
1290	/* allocate inode page for new inode */
1291	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1292
1293	/* caller should f2fs_put_page(page, 1); */
1294	return f2fs_new_node_page(&dn, 0);
1295}
1296
1297struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
 
1298{
1299	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1300	struct node_info new_ni;
1301	struct page *page;
1302	int err;
1303
1304	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1305		return ERR_PTR(-EPERM);
1306
1307	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1308	if (!page)
1309		return ERR_PTR(-ENOMEM);
1310
1311	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
 
1312		goto fail;
 
 
 
1313
1314#ifdef CONFIG_F2FS_CHECK_FS
1315	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1316	if (err) {
1317		dec_valid_node_count(sbi, dn->inode, !ofs);
1318		goto fail;
1319	}
1320	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1321		err = -EFSCORRUPTED;
1322		dec_valid_node_count(sbi, dn->inode, !ofs);
1323		set_sbi_flag(sbi, SBI_NEED_FSCK);
1324		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1325		goto fail;
1326	}
1327#endif
1328	new_ni.nid = dn->nid;
1329	new_ni.ino = dn->inode->i_ino;
1330	new_ni.blk_addr = NULL_ADDR;
1331	new_ni.flag = 0;
1332	new_ni.version = 0;
1333	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1334
1335	f2fs_wait_on_page_writeback(page, NODE, true, true);
1336	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1337	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1338	if (!PageUptodate(page))
1339		SetPageUptodate(page);
1340	if (set_page_dirty(page))
1341		dn->node_changed = true;
1342
1343	if (f2fs_has_xattr_block(ofs))
1344		f2fs_i_xnid_write(dn->inode, dn->nid);
1345
1346	if (ofs == 0)
1347		inc_valid_inode_count(sbi);
1348	return page;
 
1349fail:
1350	clear_node_page_dirty(page);
1351	f2fs_put_page(page, 1);
1352	return ERR_PTR(err);
1353}
1354
1355/*
1356 * Caller should do after getting the following values.
1357 * 0: f2fs_put_page(page, 0)
1358 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1359 */
1360static int read_node_page(struct page *page, blk_opf_t op_flags)
1361{
1362	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1363	struct node_info ni;
1364	struct f2fs_io_info fio = {
1365		.sbi = sbi,
1366		.type = NODE,
1367		.op = REQ_OP_READ,
1368		.op_flags = op_flags,
1369		.page = page,
1370		.encrypted_page = NULL,
1371	};
1372	int err;
1373
1374	if (PageUptodate(page)) {
1375		if (!f2fs_inode_chksum_verify(sbi, page)) {
1376			ClearPageUptodate(page);
1377			return -EFSBADCRC;
1378		}
1379		return LOCKED_PAGE;
1380	}
1381
1382	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1383	if (err)
1384		return err;
1385
1386	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1387	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1388		ClearPageUptodate(page);
1389		return -ENOENT;
1390	}
1391
1392	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1393
1394	err = f2fs_submit_page_bio(&fio);
1395
1396	if (!err)
1397		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1398
1399	return err;
1400}
1401
1402/*
1403 * Readahead a node page
1404 */
1405void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1406{
1407	struct page *apage;
1408	int err;
1409
1410	if (!nid)
1411		return;
1412	if (f2fs_check_nid_range(sbi, nid))
1413		return;
1414
1415	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
 
 
1416	if (apage)
1417		return;
1418
1419	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1420	if (!apage)
1421		return;
1422
1423	err = read_node_page(apage, REQ_RAHEAD);
1424	f2fs_put_page(apage, err ? 1 : 0);
1425}
1426
1427static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1428					struct page *parent, int start)
1429{
1430	struct page *page;
1431	int err;
1432
1433	if (!nid)
1434		return ERR_PTR(-ENOENT);
1435	if (f2fs_check_nid_range(sbi, nid))
1436		return ERR_PTR(-EINVAL);
1437repeat:
1438	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1439	if (!page)
1440		return ERR_PTR(-ENOMEM);
1441
1442	err = read_node_page(page, 0);
1443	if (err < 0) {
1444		goto out_put_err;
 
1445	} else if (err == LOCKED_PAGE) {
1446		err = 0;
1447		goto page_hit;
1448	}
1449
1450	if (parent)
1451		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1452
1453	lock_page(page);
1454
1455	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1456		f2fs_put_page(page, 1);
1457		goto repeat;
1458	}
1459
1460	if (unlikely(!PageUptodate(page))) {
1461		err = -EIO;
1462		goto out_err;
1463	}
1464
1465	if (!f2fs_inode_chksum_verify(sbi, page)) {
1466		err = -EFSBADCRC;
1467		goto out_err;
1468	}
1469page_hit:
1470	if (likely(nid == nid_of_node(page)))
1471		return page;
1472
1473	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1474			  nid, nid_of_node(page), ino_of_node(page),
1475			  ofs_of_node(page), cpver_of_node(page),
1476			  next_blkaddr_of_node(page));
1477	set_sbi_flag(sbi, SBI_NEED_FSCK);
1478	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1479	err = -EFSCORRUPTED;
1480out_err:
1481	ClearPageUptodate(page);
1482out_put_err:
1483	/* ENOENT comes from read_node_page which is not an error. */
1484	if (err != -ENOENT)
1485		f2fs_handle_page_eio(sbi, page->index, NODE);
1486	f2fs_put_page(page, 1);
1487	return ERR_PTR(err);
1488}
1489
1490struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1491{
1492	return __get_node_page(sbi, nid, NULL, 0);
1493}
1494
1495struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1496{
1497	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1498	nid_t nid = get_nid(parent, start, false);
1499
1500	return __get_node_page(sbi, nid, parent, start);
1501}
1502
1503static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1504{
1505	struct inode *inode;
1506	struct page *page;
1507	int ret;
1508
1509	/* should flush inline_data before evict_inode */
1510	inode = ilookup(sbi->sb, ino);
1511	if (!inode)
1512		return;
1513
1514	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1515					FGP_LOCK|FGP_NOWAIT, 0);
1516	if (!page)
1517		goto iput_out;
1518
1519	if (!PageUptodate(page))
1520		goto page_out;
1521
1522	if (!PageDirty(page))
1523		goto page_out;
1524
1525	if (!clear_page_dirty_for_io(page))
1526		goto page_out;
1527
1528	ret = f2fs_write_inline_data(inode, page);
1529	inode_dec_dirty_pages(inode);
1530	f2fs_remove_dirty_inode(inode);
1531	if (ret)
1532		set_page_dirty(page);
1533page_out:
1534	f2fs_put_page(page, 1);
1535iput_out:
1536	iput(inode);
1537}
1538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1540{
1541	pgoff_t index;
1542	struct folio_batch fbatch;
1543	struct page *last_page = NULL;
1544	int nr_folios;
1545
1546	folio_batch_init(&fbatch);
1547	index = 0;
 
1548
1549	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1550					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1551					&fbatch))) {
1552		int i;
 
 
 
1553
1554		for (i = 0; i < nr_folios; i++) {
1555			struct page *page = &fbatch.folios[i]->page;
1556
1557			if (unlikely(f2fs_cp_error(sbi))) {
1558				f2fs_put_page(last_page, 0);
1559				folio_batch_release(&fbatch);
1560				return ERR_PTR(-EIO);
1561			}
1562
1563			if (!IS_DNODE(page) || !is_cold_node(page))
1564				continue;
1565			if (ino_of_node(page) != ino)
1566				continue;
1567
1568			lock_page(page);
1569
1570			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1571continue_unlock:
1572				unlock_page(page);
1573				continue;
1574			}
1575			if (ino_of_node(page) != ino)
1576				goto continue_unlock;
1577
1578			if (!PageDirty(page)) {
1579				/* someone wrote it for us */
1580				goto continue_unlock;
1581			}
1582
1583			if (last_page)
1584				f2fs_put_page(last_page, 0);
1585
1586			get_page(page);
1587			last_page = page;
1588			unlock_page(page);
1589		}
1590		folio_batch_release(&fbatch);
1591		cond_resched();
1592	}
1593	return last_page;
1594}
1595
1596static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1597				struct writeback_control *wbc, bool do_balance,
1598				enum iostat_type io_type, unsigned int *seq_id)
1599{
1600	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1601	nid_t nid;
1602	struct node_info ni;
1603	struct f2fs_io_info fio = {
1604		.sbi = sbi,
1605		.ino = ino_of_node(page),
1606		.type = NODE,
1607		.op = REQ_OP_WRITE,
1608		.op_flags = wbc_to_write_flags(wbc),
1609		.page = page,
1610		.encrypted_page = NULL,
1611		.submitted = 0,
1612		.io_type = io_type,
1613		.io_wbc = wbc,
1614	};
1615	unsigned int seq;
1616
1617	trace_f2fs_writepage(page, NODE);
1618
1619	if (unlikely(f2fs_cp_error(sbi))) {
1620		/* keep node pages in remount-ro mode */
1621		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1622			goto redirty_out;
1623		ClearPageUptodate(page);
1624		dec_page_count(sbi, F2FS_DIRTY_NODES);
1625		unlock_page(page);
1626		return 0;
1627	}
1628
1629	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1630		goto redirty_out;
1631
1632	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1633			wbc->sync_mode == WB_SYNC_NONE &&
1634			IS_DNODE(page) && is_cold_node(page))
1635		goto redirty_out;
1636
1637	/* get old block addr of this node page */
1638	nid = nid_of_node(page);
1639	f2fs_bug_on(sbi, page->index != nid);
1640
1641	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1642		goto redirty_out;
1643
1644	if (wbc->for_reclaim) {
1645		if (!f2fs_down_read_trylock(&sbi->node_write))
1646			goto redirty_out;
1647	} else {
1648		f2fs_down_read(&sbi->node_write);
1649	}
1650
1651	/* This page is already truncated */
1652	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1653		ClearPageUptodate(page);
1654		dec_page_count(sbi, F2FS_DIRTY_NODES);
1655		f2fs_up_read(&sbi->node_write);
1656		unlock_page(page);
1657		return 0;
1658	}
1659
1660	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1661		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1662					DATA_GENERIC_ENHANCE)) {
1663		f2fs_up_read(&sbi->node_write);
1664		goto redirty_out;
1665	}
1666
1667	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1668		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1669
1670	/* should add to global list before clearing PAGECACHE status */
1671	if (f2fs_in_warm_node_list(sbi, page)) {
1672		seq = f2fs_add_fsync_node_entry(sbi, page);
1673		if (seq_id)
1674			*seq_id = seq;
1675	}
1676
1677	set_page_writeback(page);
1678
1679	fio.old_blkaddr = ni.blk_addr;
1680	f2fs_do_write_node_page(nid, &fio);
1681	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1682	dec_page_count(sbi, F2FS_DIRTY_NODES);
1683	f2fs_up_read(&sbi->node_write);
1684
1685	if (wbc->for_reclaim) {
1686		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1687		submitted = NULL;
1688	}
1689
1690	unlock_page(page);
1691
1692	if (unlikely(f2fs_cp_error(sbi))) {
1693		f2fs_submit_merged_write(sbi, NODE);
1694		submitted = NULL;
1695	}
1696	if (submitted)
1697		*submitted = fio.submitted;
1698
1699	if (do_balance)
1700		f2fs_balance_fs(sbi, false);
1701	return 0;
1702
1703redirty_out:
1704	redirty_page_for_writepage(wbc, page);
1705	return AOP_WRITEPAGE_ACTIVATE;
1706}
1707
1708int f2fs_move_node_page(struct page *node_page, int gc_type)
1709{
1710	int err = 0;
1711
1712	if (gc_type == FG_GC) {
1713		struct writeback_control wbc = {
1714			.sync_mode = WB_SYNC_ALL,
1715			.nr_to_write = 1,
1716			.for_reclaim = 0,
1717		};
1718
1719		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1720
1721		set_page_dirty(node_page);
1722
1723		if (!clear_page_dirty_for_io(node_page)) {
1724			err = -EAGAIN;
1725			goto out_page;
1726		}
1727
1728		if (__write_node_page(node_page, false, NULL,
1729					&wbc, false, FS_GC_NODE_IO, NULL)) {
1730			err = -EAGAIN;
1731			unlock_page(node_page);
1732		}
1733		goto release_page;
1734	} else {
1735		/* set page dirty and write it */
1736		if (!PageWriteback(node_page))
1737			set_page_dirty(node_page);
1738	}
1739out_page:
1740	unlock_page(node_page);
1741release_page:
1742	f2fs_put_page(node_page, 0);
1743	return err;
1744}
1745
1746static int f2fs_write_node_page(struct page *page,
1747				struct writeback_control *wbc)
1748{
1749	return __write_node_page(page, false, NULL, wbc, false,
1750						FS_NODE_IO, NULL);
1751}
1752
1753int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1754			struct writeback_control *wbc, bool atomic,
1755			unsigned int *seq_id)
1756{
1757	pgoff_t index;
1758	struct folio_batch fbatch;
1759	int ret = 0;
1760	struct page *last_page = NULL;
1761	bool marked = false;
1762	nid_t ino = inode->i_ino;
1763	int nr_folios;
1764	int nwritten = 0;
1765
1766	if (atomic) {
1767		last_page = last_fsync_dnode(sbi, ino);
1768		if (IS_ERR_OR_NULL(last_page))
1769			return PTR_ERR_OR_ZERO(last_page);
1770	}
1771retry:
1772	folio_batch_init(&fbatch);
1773	index = 0;
 
1774
1775	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1776					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1777					&fbatch))) {
1778		int i;
 
 
 
1779
1780		for (i = 0; i < nr_folios; i++) {
1781			struct page *page = &fbatch.folios[i]->page;
1782			bool submitted = false;
1783
1784			if (unlikely(f2fs_cp_error(sbi))) {
1785				f2fs_put_page(last_page, 0);
1786				folio_batch_release(&fbatch);
1787				ret = -EIO;
1788				goto out;
1789			}
1790
1791			if (!IS_DNODE(page) || !is_cold_node(page))
1792				continue;
1793			if (ino_of_node(page) != ino)
1794				continue;
1795
1796			lock_page(page);
1797
1798			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1799continue_unlock:
1800				unlock_page(page);
1801				continue;
1802			}
1803			if (ino_of_node(page) != ino)
1804				goto continue_unlock;
1805
1806			if (!PageDirty(page) && page != last_page) {
1807				/* someone wrote it for us */
1808				goto continue_unlock;
1809			}
1810
1811			f2fs_wait_on_page_writeback(page, NODE, true, true);
1812
1813			set_fsync_mark(page, 0);
1814			set_dentry_mark(page, 0);
1815
1816			if (!atomic || page == last_page) {
1817				set_fsync_mark(page, 1);
1818				percpu_counter_inc(&sbi->rf_node_block_count);
1819				if (IS_INODE(page)) {
1820					if (is_inode_flag_set(inode,
1821								FI_DIRTY_INODE))
1822						f2fs_update_inode(inode, page);
1823					set_dentry_mark(page,
1824						f2fs_need_dentry_mark(sbi, ino));
1825				}
1826				/* may be written by other thread */
1827				if (!PageDirty(page))
1828					set_page_dirty(page);
1829			}
1830
1831			if (!clear_page_dirty_for_io(page))
1832				goto continue_unlock;
1833
1834			ret = __write_node_page(page, atomic &&
1835						page == last_page,
1836						&submitted, wbc, true,
1837						FS_NODE_IO, seq_id);
1838			if (ret) {
1839				unlock_page(page);
1840				f2fs_put_page(last_page, 0);
1841				break;
1842			} else if (submitted) {
1843				nwritten++;
1844			}
1845
1846			if (page == last_page) {
1847				f2fs_put_page(page, 0);
1848				marked = true;
1849				break;
1850			}
1851		}
1852		folio_batch_release(&fbatch);
1853		cond_resched();
1854
1855		if (ret || marked)
1856			break;
1857	}
1858	if (!ret && atomic && !marked) {
1859		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1860			   ino, last_page->index);
 
1861		lock_page(last_page);
1862		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1863		set_page_dirty(last_page);
1864		unlock_page(last_page);
1865		goto retry;
1866	}
1867out:
1868	if (nwritten)
1869		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1870	return ret ? -EIO : 0;
1871}
1872
1873static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1874{
1875	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1876	bool clean;
1877
1878	if (inode->i_ino != ino)
1879		return 0;
1880
1881	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1882		return 0;
1883
1884	spin_lock(&sbi->inode_lock[DIRTY_META]);
1885	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1886	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1887
1888	if (clean)
1889		return 0;
1890
1891	inode = igrab(inode);
1892	if (!inode)
1893		return 0;
1894	return 1;
1895}
1896
1897static bool flush_dirty_inode(struct page *page)
1898{
1899	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1900	struct inode *inode;
1901	nid_t ino = ino_of_node(page);
1902
1903	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1904	if (!inode)
1905		return false;
1906
1907	f2fs_update_inode(inode, page);
1908	unlock_page(page);
1909
1910	iput(inode);
1911	return true;
1912}
1913
1914void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1915{
1916	pgoff_t index = 0;
1917	struct folio_batch fbatch;
1918	int nr_folios;
1919
1920	folio_batch_init(&fbatch);
1921
1922	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1923					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1924					&fbatch))) {
1925		int i;
1926
1927		for (i = 0; i < nr_folios; i++) {
1928			struct page *page = &fbatch.folios[i]->page;
1929
1930			if (!IS_INODE(page))
1931				continue;
1932
1933			lock_page(page);
1934
1935			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1936continue_unlock:
1937				unlock_page(page);
1938				continue;
1939			}
1940
1941			if (!PageDirty(page)) {
1942				/* someone wrote it for us */
1943				goto continue_unlock;
1944			}
1945
1946			/* flush inline_data, if it's async context. */
1947			if (page_private_inline(page)) {
1948				clear_page_private_inline(page);
1949				unlock_page(page);
1950				flush_inline_data(sbi, ino_of_node(page));
1951				continue;
1952			}
1953			unlock_page(page);
1954		}
1955		folio_batch_release(&fbatch);
1956		cond_resched();
1957	}
1958}
1959
1960int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1961				struct writeback_control *wbc,
1962				bool do_balance, enum iostat_type io_type)
1963{
1964	pgoff_t index;
1965	struct folio_batch fbatch;
1966	int step = 0;
1967	int nwritten = 0;
1968	int ret = 0;
1969	int nr_folios, done = 0;
1970
1971	folio_batch_init(&fbatch);
1972
1973next_step:
1974	index = 0;
 
 
 
 
 
 
 
 
 
1975
1976	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1977				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1978				&fbatch))) {
1979		int i;
1980
1981		for (i = 0; i < nr_folios; i++) {
1982			struct page *page = &fbatch.folios[i]->page;
1983			bool submitted = false;
1984
1985			/* give a priority to WB_SYNC threads */
1986			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1987					wbc->sync_mode == WB_SYNC_NONE) {
1988				done = 1;
1989				break;
1990			}
1991
1992			/*
1993			 * flushing sequence with step:
1994			 * 0. indirect nodes
1995			 * 1. dentry dnodes
1996			 * 2. file dnodes
1997			 */
1998			if (step == 0 && IS_DNODE(page))
1999				continue;
2000			if (step == 1 && (!IS_DNODE(page) ||
2001						is_cold_node(page)))
2002				continue;
2003			if (step == 2 && (!IS_DNODE(page) ||
2004						!is_cold_node(page)))
2005				continue;
2006lock_node:
2007			if (wbc->sync_mode == WB_SYNC_ALL)
2008				lock_page(page);
2009			else if (!trylock_page(page))
2010				continue;
2011
2012			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2013continue_unlock:
2014				unlock_page(page);
2015				continue;
2016			}
2017
2018			if (!PageDirty(page)) {
2019				/* someone wrote it for us */
2020				goto continue_unlock;
2021			}
2022
2023			/* flush inline_data/inode, if it's async context. */
2024			if (!do_balance)
2025				goto write_node;
2026
2027			/* flush inline_data */
2028			if (page_private_inline(page)) {
2029				clear_page_private_inline(page);
2030				unlock_page(page);
2031				flush_inline_data(sbi, ino_of_node(page));
2032				goto lock_node;
2033			}
2034
2035			/* flush dirty inode */
2036			if (IS_INODE(page) && flush_dirty_inode(page))
2037				goto lock_node;
2038write_node:
2039			f2fs_wait_on_page_writeback(page, NODE, true, true);
2040
 
2041			if (!clear_page_dirty_for_io(page))
2042				goto continue_unlock;
2043
2044			set_fsync_mark(page, 0);
2045			set_dentry_mark(page, 0);
2046
2047			ret = __write_node_page(page, false, &submitted,
2048						wbc, do_balance, io_type, NULL);
2049			if (ret)
2050				unlock_page(page);
2051			else if (submitted)
2052				nwritten++;
2053
2054			if (--wbc->nr_to_write == 0)
2055				break;
2056		}
2057		folio_batch_release(&fbatch);
2058		cond_resched();
2059
2060		if (wbc->nr_to_write == 0) {
2061			step = 2;
2062			break;
2063		}
2064	}
2065
2066	if (step < 2) {
2067		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2068				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2069			goto out;
2070		step++;
2071		goto next_step;
2072	}
2073out:
2074	if (nwritten)
2075		f2fs_submit_merged_write(sbi, NODE);
2076
2077	if (unlikely(f2fs_cp_error(sbi)))
2078		return -EIO;
2079	return ret;
2080}
2081
2082int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2083						unsigned int seq_id)
2084{
2085	struct fsync_node_entry *fn;
2086	struct page *page;
2087	struct list_head *head = &sbi->fsync_node_list;
2088	unsigned long flags;
2089	unsigned int cur_seq_id = 0;
2090
2091	while (seq_id && cur_seq_id < seq_id) {
2092		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2093		if (list_empty(head)) {
2094			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 
 
2095			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2096		}
2097		fn = list_first_entry(head, struct fsync_node_entry, list);
2098		if (fn->seq_id > seq_id) {
2099			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2100			break;
2101		}
2102		cur_seq_id = fn->seq_id;
2103		page = fn->page;
2104		get_page(page);
2105		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106
2107		f2fs_wait_on_page_writeback(page, NODE, true, false);
2108
2109		put_page(page);
 
 
 
 
 
 
2110	}
2111
2112	return filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113}
2114
2115static int f2fs_write_node_pages(struct address_space *mapping,
2116			    struct writeback_control *wbc)
2117{
2118	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119	struct blk_plug plug;
2120	long diff;
2121
2122	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2123		goto skip_write;
2124
2125	/* balancing f2fs's metadata in background */
2126	f2fs_balance_fs_bg(sbi, true);
2127
2128	/* collect a number of dirty node pages and write together */
2129	if (wbc->sync_mode != WB_SYNC_ALL &&
2130			get_pages(sbi, F2FS_DIRTY_NODES) <
2131					nr_pages_to_skip(sbi, NODE))
2132		goto skip_write;
2133
2134	if (wbc->sync_mode == WB_SYNC_ALL)
2135		atomic_inc(&sbi->wb_sync_req[NODE]);
2136	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2137		/* to avoid potential deadlock */
2138		if (current->plug)
2139			blk_finish_plug(current->plug);
2140		goto skip_write;
2141	}
2142
2143	trace_f2fs_writepages(mapping->host, wbc, NODE);
2144
2145	diff = nr_pages_to_write(sbi, NODE, wbc);
 
2146	blk_start_plug(&plug);
2147	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2148	blk_finish_plug(&plug);
2149	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2150
2151	if (wbc->sync_mode == WB_SYNC_ALL)
2152		atomic_dec(&sbi->wb_sync_req[NODE]);
2153	return 0;
2154
2155skip_write:
2156	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2157	trace_f2fs_writepages(mapping->host, wbc, NODE);
2158	return 0;
2159}
2160
2161static bool f2fs_dirty_node_folio(struct address_space *mapping,
2162		struct folio *folio)
2163{
2164	trace_f2fs_set_page_dirty(&folio->page, NODE);
2165
2166	if (!folio_test_uptodate(folio))
2167		folio_mark_uptodate(folio);
2168#ifdef CONFIG_F2FS_CHECK_FS
2169	if (IS_INODE(&folio->page))
2170		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2171#endif
2172	if (filemap_dirty_folio(mapping, folio)) {
2173		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2174		set_page_private_reference(&folio->page);
2175		return true;
2176	}
2177	return false;
2178}
2179
2180/*
2181 * Structure of the f2fs node operations
2182 */
2183const struct address_space_operations f2fs_node_aops = {
2184	.writepage	= f2fs_write_node_page,
2185	.writepages	= f2fs_write_node_pages,
2186	.dirty_folio	= f2fs_dirty_node_folio,
2187	.invalidate_folio = f2fs_invalidate_folio,
2188	.release_folio	= f2fs_release_folio,
2189	.migrate_folio	= filemap_migrate_folio,
 
 
2190};
2191
2192static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2193						nid_t n)
2194{
2195	return radix_tree_lookup(&nm_i->free_nid_root, n);
2196}
2197
2198static int __insert_free_nid(struct f2fs_sb_info *sbi,
2199				struct free_nid *i)
2200{
2201	struct f2fs_nm_info *nm_i = NM_I(sbi);
2202	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2203
2204	if (err)
2205		return err;
 
 
 
2206
2207	nm_i->nid_cnt[FREE_NID]++;
2208	list_add_tail(&i->list, &nm_i->free_nid_list);
 
 
2209	return 0;
2210}
2211
2212static void __remove_free_nid(struct f2fs_sb_info *sbi,
2213			struct free_nid *i, enum nid_state state)
2214{
2215	struct f2fs_nm_info *nm_i = NM_I(sbi);
2216
2217	f2fs_bug_on(sbi, state != i->state);
2218	nm_i->nid_cnt[state]--;
2219	if (state == FREE_NID)
2220		list_del(&i->list);
2221	radix_tree_delete(&nm_i->free_nid_root, i->nid);
 
2222}
2223
2224static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2225			enum nid_state org_state, enum nid_state dst_state)
2226{
2227	struct f2fs_nm_info *nm_i = NM_I(sbi);
2228
2229	f2fs_bug_on(sbi, org_state != i->state);
2230	i->state = dst_state;
2231	nm_i->nid_cnt[org_state]--;
2232	nm_i->nid_cnt[dst_state]++;
2233
2234	switch (dst_state) {
2235	case PREALLOC_NID:
2236		list_del(&i->list);
2237		break;
2238	case FREE_NID:
2239		list_add_tail(&i->list, &nm_i->free_nid_list);
2240		break;
2241	default:
2242		BUG_ON(1);
2243	}
2244}
2245
2246bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2247{
2248	struct f2fs_nm_info *nm_i = NM_I(sbi);
2249	unsigned int i;
2250	bool ret = true;
2251
2252	f2fs_down_read(&nm_i->nat_tree_lock);
2253	for (i = 0; i < nm_i->nat_blocks; i++) {
2254		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2255			ret = false;
2256			break;
2257		}
2258	}
2259	f2fs_up_read(&nm_i->nat_tree_lock);
2260
2261	return ret;
2262}
2263
2264static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2265							bool set, bool build)
2266{
2267	struct f2fs_nm_info *nm_i = NM_I(sbi);
2268	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2269	unsigned int nid_ofs = nid - START_NID(nid);
2270
2271	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2272		return;
2273
2274	if (set) {
2275		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2276			return;
2277		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2278		nm_i->free_nid_count[nat_ofs]++;
2279	} else {
2280		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2281			return;
2282		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2283		if (!build)
2284			nm_i->free_nid_count[nat_ofs]--;
2285	}
2286}
2287
2288/* return if the nid is recognized as free */
2289static bool add_free_nid(struct f2fs_sb_info *sbi,
2290				nid_t nid, bool build, bool update)
2291{
2292	struct f2fs_nm_info *nm_i = NM_I(sbi);
2293	struct free_nid *i, *e;
2294	struct nat_entry *ne;
2295	int err = -EINVAL;
2296	bool ret = false;
2297
2298	/* 0 nid should not be used */
2299	if (unlikely(nid == 0))
2300		return false;
2301
2302	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2303		return false;
2304
2305	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2306	i->nid = nid;
2307	i->state = FREE_NID;
2308
2309	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2310
2311	spin_lock(&nm_i->nid_list_lock);
2312
2313	if (build) {
2314		/*
2315		 *   Thread A             Thread B
2316		 *  - f2fs_create
2317		 *   - f2fs_new_inode
2318		 *    - f2fs_alloc_nid
2319		 *     - __insert_nid_to_list(PREALLOC_NID)
2320		 *                     - f2fs_balance_fs_bg
2321		 *                      - f2fs_build_free_nids
2322		 *                       - __f2fs_build_free_nids
2323		 *                        - scan_nat_page
2324		 *                         - add_free_nid
2325		 *                          - __lookup_nat_cache
2326		 *  - f2fs_add_link
2327		 *   - f2fs_init_inode_metadata
2328		 *    - f2fs_new_inode_page
2329		 *     - f2fs_new_node_page
2330		 *      - set_node_addr
2331		 *  - f2fs_alloc_nid_done
2332		 *   - __remove_nid_from_list(PREALLOC_NID)
2333		 *                         - __insert_nid_to_list(FREE_NID)
2334		 */
2335		ne = __lookup_nat_cache(nm_i, nid);
2336		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2337				nat_get_blkaddr(ne) != NULL_ADDR))
2338			goto err_out;
 
2339
2340		e = __lookup_free_nid_list(nm_i, nid);
2341		if (e) {
2342			if (e->state == FREE_NID)
2343				ret = true;
2344			goto err_out;
2345		}
2346	}
2347	ret = true;
2348	err = __insert_free_nid(sbi, i);
2349err_out:
2350	if (update) {
2351		update_free_nid_bitmap(sbi, nid, ret, build);
2352		if (!build)
2353			nm_i->available_nids++;
2354	}
 
 
 
2355	spin_unlock(&nm_i->nid_list_lock);
2356	radix_tree_preload_end();
2357
2358	if (err)
2359		kmem_cache_free(free_nid_slab, i);
2360	return ret;
 
 
2361}
2362
2363static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2364{
2365	struct f2fs_nm_info *nm_i = NM_I(sbi);
2366	struct free_nid *i;
2367	bool need_free = false;
2368
2369	spin_lock(&nm_i->nid_list_lock);
2370	i = __lookup_free_nid_list(nm_i, nid);
2371	if (i && i->state == FREE_NID) {
2372		__remove_free_nid(sbi, i, FREE_NID);
2373		need_free = true;
2374	}
2375	spin_unlock(&nm_i->nid_list_lock);
2376
2377	if (need_free)
2378		kmem_cache_free(free_nid_slab, i);
2379}
2380
2381static int scan_nat_page(struct f2fs_sb_info *sbi,
2382			struct page *nat_page, nid_t start_nid)
2383{
2384	struct f2fs_nm_info *nm_i = NM_I(sbi);
2385	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2386	block_t blk_addr;
2387	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2388	int i;
2389
2390	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2391
2392	i = start_nid % NAT_ENTRY_PER_BLOCK;
2393
2394	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 
2395		if (unlikely(start_nid >= nm_i->max_nid))
2396			break;
2397
2398		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2399
2400		if (blk_addr == NEW_ADDR)
2401			return -EFSCORRUPTED;
2402
2403		if (blk_addr == NULL_ADDR) {
2404			add_free_nid(sbi, start_nid, true, true);
2405		} else {
2406			spin_lock(&NM_I(sbi)->nid_list_lock);
2407			update_free_nid_bitmap(sbi, start_nid, false, true);
2408			spin_unlock(&NM_I(sbi)->nid_list_lock);
2409		}
2410	}
2411
2412	return 0;
2413}
2414
2415static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2416{
 
2417	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2418	struct f2fs_journal *journal = curseg->journal;
2419	int i;
2420
2421	down_read(&curseg->journal_rwsem);
2422	for (i = 0; i < nats_in_cursum(journal); i++) {
2423		block_t addr;
2424		nid_t nid;
2425
2426		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2427		nid = le32_to_cpu(nid_in_journal(journal, i));
2428		if (addr == NULL_ADDR)
2429			add_free_nid(sbi, nid, true, false);
2430		else
2431			remove_free_nid(sbi, nid);
2432	}
2433	up_read(&curseg->journal_rwsem);
2434}
2435
2436static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2437{
2438	struct f2fs_nm_info *nm_i = NM_I(sbi);
2439	unsigned int i, idx;
2440	nid_t nid;
2441
2442	f2fs_down_read(&nm_i->nat_tree_lock);
2443
2444	for (i = 0; i < nm_i->nat_blocks; i++) {
2445		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2446			continue;
2447		if (!nm_i->free_nid_count[i])
2448			continue;
2449		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2450			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2451						NAT_ENTRY_PER_BLOCK, idx);
2452			if (idx >= NAT_ENTRY_PER_BLOCK)
2453				break;
2454
2455			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2456			add_free_nid(sbi, nid, true, false);
2457
2458			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2459				goto out;
2460		}
2461	}
2462out:
2463	scan_curseg_cache(sbi);
2464
2465	f2fs_up_read(&nm_i->nat_tree_lock);
2466}
2467
2468static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2469						bool sync, bool mount)
2470{
2471	struct f2fs_nm_info *nm_i = NM_I(sbi);
2472	int i = 0, ret;
2473	nid_t nid = nm_i->next_scan_nid;
2474
2475	if (unlikely(nid >= nm_i->max_nid))
2476		nid = 0;
2477
2478	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2479		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2480
2481	/* Enough entries */
2482	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2483		return 0;
2484
2485	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2486		return 0;
2487
2488	if (!mount) {
2489		/* try to find free nids in free_nid_bitmap */
2490		scan_free_nid_bits(sbi);
2491
2492		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2493			return 0;
2494	}
2495
2496	/* readahead nat pages to be scanned */
2497	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2498							META_NAT, true);
2499
2500	f2fs_down_read(&nm_i->nat_tree_lock);
2501
2502	while (1) {
2503		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2504						nm_i->nat_block_bitmap)) {
2505			struct page *page = get_current_nat_page(sbi, nid);
2506
2507			if (IS_ERR(page)) {
2508				ret = PTR_ERR(page);
2509			} else {
2510				ret = scan_nat_page(sbi, page, nid);
2511				f2fs_put_page(page, 1);
2512			}
2513
2514			if (ret) {
2515				f2fs_up_read(&nm_i->nat_tree_lock);
2516
2517				if (ret == -EFSCORRUPTED) {
2518					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2519					set_sbi_flag(sbi, SBI_NEED_FSCK);
2520					f2fs_handle_error(sbi,
2521						ERROR_INCONSISTENT_NAT);
2522				}
2523
2524				return ret;
2525			}
2526		}
2527
2528		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2529		if (unlikely(nid >= nm_i->max_nid))
2530			nid = 0;
2531
2532		if (++i >= FREE_NID_PAGES)
2533			break;
2534	}
2535
2536	/* go to the next free nat pages to find free nids abundantly */
2537	nm_i->next_scan_nid = nid;
2538
2539	/* find free nids from current sum_pages */
2540	scan_curseg_cache(sbi);
 
 
2541
2542	f2fs_up_read(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
2543
2544	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2545					nm_i->ra_nid_pages, META_NAT, false);
2546
2547	return 0;
2548}
2549
2550int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2551{
2552	int ret;
2553
2554	mutex_lock(&NM_I(sbi)->build_lock);
2555	ret = __f2fs_build_free_nids(sbi, sync, mount);
2556	mutex_unlock(&NM_I(sbi)->build_lock);
2557
2558	return ret;
2559}
2560
2561/*
2562 * If this function returns success, caller can obtain a new nid
2563 * from second parameter of this function.
2564 * The returned nid could be used ino as well as nid when inode is created.
2565 */
2566bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2567{
2568	struct f2fs_nm_info *nm_i = NM_I(sbi);
2569	struct free_nid *i = NULL;
2570retry:
 
2571	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2572		return false;
2573
2574	spin_lock(&nm_i->nid_list_lock);
2575
2576	if (unlikely(nm_i->available_nids == 0)) {
2577		spin_unlock(&nm_i->nid_list_lock);
2578		return false;
2579	}
2580
2581	/* We should not use stale free nids created by f2fs_build_free_nids */
2582	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2583		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2584		i = list_first_entry(&nm_i->free_nid_list,
2585					struct free_nid, list);
2586		*nid = i->nid;
2587
2588		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
 
 
2589		nm_i->available_nids--;
2590
2591		update_free_nid_bitmap(sbi, *nid, false, false);
2592
2593		spin_unlock(&nm_i->nid_list_lock);
2594		return true;
2595	}
2596	spin_unlock(&nm_i->nid_list_lock);
2597
2598	/* Let's scan nat pages and its caches to get free nids */
2599	if (!f2fs_build_free_nids(sbi, true, false))
2600		goto retry;
2601	return false;
2602}
2603
2604/*
2605 * f2fs_alloc_nid() should be called prior to this function.
2606 */
2607void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2608{
2609	struct f2fs_nm_info *nm_i = NM_I(sbi);
2610	struct free_nid *i;
2611
2612	spin_lock(&nm_i->nid_list_lock);
2613	i = __lookup_free_nid_list(nm_i, nid);
2614	f2fs_bug_on(sbi, !i);
2615	__remove_free_nid(sbi, i, PREALLOC_NID);
2616	spin_unlock(&nm_i->nid_list_lock);
2617
2618	kmem_cache_free(free_nid_slab, i);
2619}
2620
2621/*
2622 * f2fs_alloc_nid() should be called prior to this function.
2623 */
2624void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2625{
2626	struct f2fs_nm_info *nm_i = NM_I(sbi);
2627	struct free_nid *i;
2628	bool need_free = false;
2629
2630	if (!nid)
2631		return;
2632
2633	spin_lock(&nm_i->nid_list_lock);
2634	i = __lookup_free_nid_list(nm_i, nid);
2635	f2fs_bug_on(sbi, !i);
2636
2637	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2638		__remove_free_nid(sbi, i, PREALLOC_NID);
2639		need_free = true;
2640	} else {
2641		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
 
 
2642	}
2643
2644	nm_i->available_nids++;
2645
2646	update_free_nid_bitmap(sbi, nid, true, false);
2647
2648	spin_unlock(&nm_i->nid_list_lock);
2649
2650	if (need_free)
2651		kmem_cache_free(free_nid_slab, i);
2652}
2653
2654int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2655{
2656	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2657	int nr = nr_shrink;
2658
2659	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2660		return 0;
2661
2662	if (!mutex_trylock(&nm_i->build_lock))
2663		return 0;
2664
2665	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2666		struct free_nid *i, *next;
2667		unsigned int batch = SHRINK_NID_BATCH_SIZE;
 
 
 
2668
2669		spin_lock(&nm_i->nid_list_lock);
2670		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2671			if (!nr_shrink || !batch ||
2672				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2673				break;
2674			__remove_free_nid(sbi, i, FREE_NID);
2675			kmem_cache_free(free_nid_slab, i);
2676			nr_shrink--;
2677			batch--;
2678		}
2679		spin_unlock(&nm_i->nid_list_lock);
2680	}
2681
2682	mutex_unlock(&nm_i->build_lock);
2683
2684	return nr - nr_shrink;
2685}
2686
2687int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2688{
2689	void *src_addr, *dst_addr;
2690	size_t inline_size;
2691	struct page *ipage;
2692	struct f2fs_inode *ri;
2693
2694	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2695	if (IS_ERR(ipage))
2696		return PTR_ERR(ipage);
2697
2698	ri = F2FS_INODE(page);
2699	if (ri->i_inline & F2FS_INLINE_XATTR) {
2700		if (!f2fs_has_inline_xattr(inode)) {
2701			set_inode_flag(inode, FI_INLINE_XATTR);
2702			stat_inc_inline_xattr(inode);
2703		}
2704	} else {
2705		if (f2fs_has_inline_xattr(inode)) {
2706			stat_dec_inline_xattr(inode);
2707			clear_inode_flag(inode, FI_INLINE_XATTR);
2708		}
2709		goto update_inode;
2710	}
2711
2712	dst_addr = inline_xattr_addr(inode, ipage);
2713	src_addr = inline_xattr_addr(inode, page);
2714	inline_size = inline_xattr_size(inode);
2715
2716	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2717	memcpy(dst_addr, src_addr, inline_size);
2718update_inode:
2719	f2fs_update_inode(inode, ipage);
2720	f2fs_put_page(ipage, 1);
2721	return 0;
2722}
2723
2724int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2725{
2726	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2727	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2728	nid_t new_xnid;
2729	struct dnode_of_data dn;
2730	struct node_info ni;
2731	struct page *xpage;
2732	int err;
2733
 
2734	if (!prev_xnid)
2735		goto recover_xnid;
2736
2737	/* 1: invalidate the previous xattr nid */
2738	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2739	if (err)
2740		return err;
2741
2742	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2743	dec_valid_node_count(sbi, inode, false);
2744	set_node_addr(sbi, &ni, NULL_ADDR, false);
2745
2746recover_xnid:
2747	/* 2: update xattr nid in inode */
2748	if (!f2fs_alloc_nid(sbi, &new_xnid))
2749		return -ENOSPC;
2750
2751	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2752	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2753	if (IS_ERR(xpage)) {
2754		f2fs_alloc_nid_failed(sbi, new_xnid);
2755		return PTR_ERR(xpage);
2756	}
2757
2758	f2fs_alloc_nid_done(sbi, new_xnid);
2759	f2fs_update_inode_page(inode);
2760
2761	/* 3: update and set xattr node page dirty */
2762	if (page) {
2763		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2764				VALID_XATTR_BLOCK_SIZE);
2765		set_page_dirty(xpage);
2766	}
2767	f2fs_put_page(xpage, 1);
2768
2769	return 0;
2770}
2771
2772int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2773{
2774	struct f2fs_inode *src, *dst;
2775	nid_t ino = ino_of_node(page);
2776	struct node_info old_ni, new_ni;
2777	struct page *ipage;
2778	int err;
2779
2780	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2781	if (err)
2782		return err;
2783
2784	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2785		return -EINVAL;
2786retry:
2787	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2788	if (!ipage) {
2789		memalloc_retry_wait(GFP_NOFS);
2790		goto retry;
2791	}
2792
2793	/* Should not use this inode from free nid list */
2794	remove_free_nid(sbi, ino);
2795
2796	if (!PageUptodate(ipage))
2797		SetPageUptodate(ipage);
2798	fill_node_footer(ipage, ino, ino, 0, true);
2799	set_cold_node(ipage, false);
2800
2801	src = F2FS_INODE(page);
2802	dst = F2FS_INODE(ipage);
2803
2804	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2805	dst->i_size = 0;
2806	dst->i_blocks = cpu_to_le64(1);
2807	dst->i_links = cpu_to_le32(1);
2808	dst->i_xattr_nid = 0;
2809	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2810	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2811		dst->i_extra_isize = src->i_extra_isize;
2812
2813		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2814			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2815							i_inline_xattr_size))
2816			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2817
2818		if (f2fs_sb_has_project_quota(sbi) &&
2819			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2820								i_projid))
2821			dst->i_projid = src->i_projid;
2822
2823		if (f2fs_sb_has_inode_crtime(sbi) &&
2824			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825							i_crtime_nsec)) {
2826			dst->i_crtime = src->i_crtime;
2827			dst->i_crtime_nsec = src->i_crtime_nsec;
2828		}
2829	}
2830
2831	new_ni = old_ni;
2832	new_ni.ino = ino;
2833
2834	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2835		WARN_ON(1);
2836	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2837	inc_valid_inode_count(sbi);
2838	set_page_dirty(ipage);
2839	f2fs_put_page(ipage, 1);
2840	return 0;
2841}
2842
2843int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2844			unsigned int segno, struct f2fs_summary_block *sum)
2845{
2846	struct f2fs_node *rn;
2847	struct f2fs_summary *sum_entry;
2848	block_t addr;
2849	int i, idx, last_offset, nrpages;
2850
2851	/* scan the node segment */
2852	last_offset = BLKS_PER_SEG(sbi);
2853	addr = START_BLOCK(sbi, segno);
2854	sum_entry = &sum->entries[0];
2855
2856	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2857		nrpages = bio_max_segs(last_offset - i);
2858
2859		/* readahead node pages */
2860		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2861
2862		for (idx = addr; idx < addr + nrpages; idx++) {
2863			struct page *page = f2fs_get_tmp_page(sbi, idx);
2864
2865			if (IS_ERR(page))
2866				return PTR_ERR(page);
2867
2868			rn = F2FS_NODE(page);
2869			sum_entry->nid = rn->footer.nid;
2870			sum_entry->version = 0;
2871			sum_entry->ofs_in_node = 0;
2872			sum_entry++;
2873			f2fs_put_page(page, 1);
2874		}
2875
2876		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2877							addr + nrpages);
2878	}
2879	return 0;
2880}
2881
2882static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2883{
2884	struct f2fs_nm_info *nm_i = NM_I(sbi);
2885	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2886	struct f2fs_journal *journal = curseg->journal;
2887	int i;
2888
2889	down_write(&curseg->journal_rwsem);
2890	for (i = 0; i < nats_in_cursum(journal); i++) {
2891		struct nat_entry *ne;
2892		struct f2fs_nat_entry raw_ne;
2893		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2894
2895		if (f2fs_check_nid_range(sbi, nid))
2896			continue;
2897
2898		raw_ne = nat_in_journal(journal, i);
2899
2900		ne = __lookup_nat_cache(nm_i, nid);
2901		if (!ne) {
2902			ne = __alloc_nat_entry(sbi, nid, true);
2903			__init_nat_entry(nm_i, ne, &raw_ne, true);
2904		}
2905
2906		/*
2907		 * if a free nat in journal has not been used after last
2908		 * checkpoint, we should remove it from available nids,
2909		 * since later we will add it again.
2910		 */
2911		if (!get_nat_flag(ne, IS_DIRTY) &&
2912				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2913			spin_lock(&nm_i->nid_list_lock);
2914			nm_i->available_nids--;
2915			spin_unlock(&nm_i->nid_list_lock);
2916		}
2917
2918		__set_nat_cache_dirty(nm_i, ne);
2919	}
2920	update_nats_in_cursum(journal, -i);
2921	up_write(&curseg->journal_rwsem);
2922}
2923
2924static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2925						struct list_head *head, int max)
2926{
2927	struct nat_entry_set *cur;
2928
2929	if (nes->entry_cnt >= max)
2930		goto add_out;
2931
2932	list_for_each_entry(cur, head, set_list) {
2933		if (cur->entry_cnt >= nes->entry_cnt) {
2934			list_add(&nes->set_list, cur->set_list.prev);
2935			return;
2936		}
2937	}
2938add_out:
2939	list_add_tail(&nes->set_list, head);
2940}
2941
2942static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2943							unsigned int valid)
2944{
2945	if (valid == 0) {
2946		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2947		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2948		return;
2949	}
2950
2951	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2952	if (valid == NAT_ENTRY_PER_BLOCK)
2953		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2954	else
2955		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2956}
2957
2958static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2959						struct page *page)
2960{
2961	struct f2fs_nm_info *nm_i = NM_I(sbi);
2962	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2963	struct f2fs_nat_block *nat_blk = page_address(page);
2964	int valid = 0;
2965	int i = 0;
2966
2967	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2968		return;
2969
2970	if (nat_index == 0) {
2971		valid = 1;
2972		i = 1;
2973	}
2974	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2975		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2976			valid++;
2977	}
2978
2979	__update_nat_bits(nm_i, nat_index, valid);
2980}
2981
2982void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2983{
2984	struct f2fs_nm_info *nm_i = NM_I(sbi);
2985	unsigned int nat_ofs;
2986
2987	f2fs_down_read(&nm_i->nat_tree_lock);
2988
2989	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2990		unsigned int valid = 0, nid_ofs = 0;
2991
2992		/* handle nid zero due to it should never be used */
2993		if (unlikely(nat_ofs == 0)) {
2994			valid = 1;
2995			nid_ofs = 1;
2996		}
2997
2998		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2999			if (!test_bit_le(nid_ofs,
3000					nm_i->free_nid_bitmap[nat_ofs]))
3001				valid++;
3002		}
3003
3004		__update_nat_bits(nm_i, nat_ofs, valid);
3005	}
3006
3007	f2fs_up_read(&nm_i->nat_tree_lock);
3008}
3009
3010static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3011		struct nat_entry_set *set, struct cp_control *cpc)
3012{
3013	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3014	struct f2fs_journal *journal = curseg->journal;
3015	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3016	bool to_journal = true;
3017	struct f2fs_nat_block *nat_blk;
3018	struct nat_entry *ne, *cur;
3019	struct page *page = NULL;
3020
3021	/*
3022	 * there are two steps to flush nat entries:
3023	 * #1, flush nat entries to journal in current hot data summary block.
3024	 * #2, flush nat entries to nat page.
3025	 */
3026	if ((cpc->reason & CP_UMOUNT) ||
3027		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3028		to_journal = false;
3029
3030	if (to_journal) {
3031		down_write(&curseg->journal_rwsem);
3032	} else {
3033		page = get_next_nat_page(sbi, start_nid);
3034		if (IS_ERR(page))
3035			return PTR_ERR(page);
3036
3037		nat_blk = page_address(page);
3038		f2fs_bug_on(sbi, !nat_blk);
3039	}
3040
3041	/* flush dirty nats in nat entry set */
3042	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3043		struct f2fs_nat_entry *raw_ne;
3044		nid_t nid = nat_get_nid(ne);
3045		int offset;
3046
3047		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
 
3048
3049		if (to_journal) {
3050			offset = f2fs_lookup_journal_in_cursum(journal,
3051							NAT_JOURNAL, nid, 1);
3052			f2fs_bug_on(sbi, offset < 0);
3053			raw_ne = &nat_in_journal(journal, offset);
3054			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3055		} else {
3056			raw_ne = &nat_blk->entries[nid - start_nid];
3057		}
3058		raw_nat_from_node_info(raw_ne, &ne->ni);
3059		nat_reset_flag(ne);
3060		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3061		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3062			add_free_nid(sbi, nid, false, true);
3063		} else {
3064			spin_lock(&NM_I(sbi)->nid_list_lock);
3065			update_free_nid_bitmap(sbi, nid, false, false);
3066			spin_unlock(&NM_I(sbi)->nid_list_lock);
3067		}
3068	}
3069
3070	if (to_journal) {
3071		up_write(&curseg->journal_rwsem);
3072	} else {
3073		update_nat_bits(sbi, start_nid, page);
3074		f2fs_put_page(page, 1);
3075	}
3076
3077	/* Allow dirty nats by node block allocation in write_begin */
3078	if (!set->entry_cnt) {
3079		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3080		kmem_cache_free(nat_entry_set_slab, set);
3081	}
3082	return 0;
3083}
3084
3085/*
3086 * This function is called during the checkpointing process.
3087 */
3088int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3089{
3090	struct f2fs_nm_info *nm_i = NM_I(sbi);
3091	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3092	struct f2fs_journal *journal = curseg->journal;
3093	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3094	struct nat_entry_set *set, *tmp;
3095	unsigned int found;
3096	nid_t set_idx = 0;
3097	LIST_HEAD(sets);
3098	int err = 0;
3099
3100	/*
3101	 * during unmount, let's flush nat_bits before checking
3102	 * nat_cnt[DIRTY_NAT].
3103	 */
3104	if (cpc->reason & CP_UMOUNT) {
3105		f2fs_down_write(&nm_i->nat_tree_lock);
3106		remove_nats_in_journal(sbi);
3107		f2fs_up_write(&nm_i->nat_tree_lock);
3108	}
3109
3110	if (!nm_i->nat_cnt[DIRTY_NAT])
3111		return 0;
3112
3113	f2fs_down_write(&nm_i->nat_tree_lock);
3114
3115	/*
3116	 * if there are no enough space in journal to store dirty nat
3117	 * entries, remove all entries from journal and merge them
3118	 * into nat entry set.
3119	 */
3120	if (cpc->reason & CP_UMOUNT ||
3121		!__has_cursum_space(journal,
3122			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3123		remove_nats_in_journal(sbi);
3124
3125	while ((found = __gang_lookup_nat_set(nm_i,
3126					set_idx, NAT_VEC_SIZE, setvec))) {
3127		unsigned idx;
3128
3129		set_idx = setvec[found - 1]->set + 1;
3130		for (idx = 0; idx < found; idx++)
3131			__adjust_nat_entry_set(setvec[idx], &sets,
3132						MAX_NAT_JENTRIES(journal));
3133	}
3134
3135	/* flush dirty nats in nat entry set */
3136	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3137		err = __flush_nat_entry_set(sbi, set, cpc);
3138		if (err)
3139			break;
3140	}
3141
3142	f2fs_up_write(&nm_i->nat_tree_lock);
3143	/* Allow dirty nats by node block allocation in write_begin */
3144
3145	return err;
3146}
3147
3148static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3149{
3150	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3151	struct f2fs_nm_info *nm_i = NM_I(sbi);
3152	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3153	unsigned int i;
3154	__u64 cp_ver = cur_cp_version(ckpt);
3155	block_t nat_bits_addr;
3156
3157	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3158	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3159			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3160	if (!nm_i->nat_bits)
3161		return -ENOMEM;
3162
3163	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3164	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3165
3166	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3167		return 0;
3168
3169	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3170						nm_i->nat_bits_blocks;
3171	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3172		struct page *page;
3173
3174		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3175		if (IS_ERR(page))
3176			return PTR_ERR(page);
3177
3178		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3179					page_address(page), F2FS_BLKSIZE);
3180		f2fs_put_page(page, 1);
3181	}
3182
3183	cp_ver |= (cur_cp_crc(ckpt) << 32);
3184	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3185		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3186		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3187			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3188		return 0;
3189	}
3190
3191	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3192	return 0;
3193}
3194
3195static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3196{
3197	struct f2fs_nm_info *nm_i = NM_I(sbi);
3198	unsigned int i = 0;
3199	nid_t nid, last_nid;
3200
3201	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3202		return;
3203
3204	for (i = 0; i < nm_i->nat_blocks; i++) {
3205		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3206		if (i >= nm_i->nat_blocks)
3207			break;
3208
3209		__set_bit_le(i, nm_i->nat_block_bitmap);
3210
3211		nid = i * NAT_ENTRY_PER_BLOCK;
3212		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3213
3214		spin_lock(&NM_I(sbi)->nid_list_lock);
3215		for (; nid < last_nid; nid++)
3216			update_free_nid_bitmap(sbi, nid, true, true);
3217		spin_unlock(&NM_I(sbi)->nid_list_lock);
3218	}
3219
3220	for (i = 0; i < nm_i->nat_blocks; i++) {
3221		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3222		if (i >= nm_i->nat_blocks)
3223			break;
3224
3225		__set_bit_le(i, nm_i->nat_block_bitmap);
3226	}
3227}
3228
3229static int init_node_manager(struct f2fs_sb_info *sbi)
3230{
3231	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3232	struct f2fs_nm_info *nm_i = NM_I(sbi);
3233	unsigned char *version_bitmap;
3234	unsigned int nat_segs;
3235	int err;
3236
3237	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3238
3239	/* segment_count_nat includes pair segment so divide to 2. */
3240	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3241	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3242	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
 
3243
3244	/* not used nids: 0, node, meta, (and root counted as valid node) */
3245	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3246						F2FS_RESERVED_NODE_NUM;
3247	nm_i->nid_cnt[FREE_NID] = 0;
3248	nm_i->nid_cnt[PREALLOC_NID] = 0;
 
3249	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3250	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3251	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3252	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3253
3254	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3255	INIT_LIST_HEAD(&nm_i->free_nid_list);
 
3256	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3257	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3258	INIT_LIST_HEAD(&nm_i->nat_entries);
3259	spin_lock_init(&nm_i->nat_list_lock);
3260
3261	mutex_init(&nm_i->build_lock);
3262	spin_lock_init(&nm_i->nid_list_lock);
3263	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3264
3265	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3266	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3267	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 
 
 
3268	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3269					GFP_KERNEL);
3270	if (!nm_i->nat_bitmap)
3271		return -ENOMEM;
3272
3273	err = __get_nat_bitmaps(sbi);
3274	if (err)
3275		return err;
3276
3277#ifdef CONFIG_F2FS_CHECK_FS
3278	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3279					GFP_KERNEL);
3280	if (!nm_i->nat_bitmap_mir)
3281		return -ENOMEM;
3282#endif
3283
3284	return 0;
3285}
3286
3287static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3288{
3289	struct f2fs_nm_info *nm_i = NM_I(sbi);
3290	int i;
3291
3292	nm_i->free_nid_bitmap =
3293		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3294					      nm_i->nat_blocks),
3295			      GFP_KERNEL);
3296	if (!nm_i->free_nid_bitmap)
3297		return -ENOMEM;
3298
3299	for (i = 0; i < nm_i->nat_blocks; i++) {
3300		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3301			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3302		if (!nm_i->free_nid_bitmap[i])
3303			return -ENOMEM;
3304	}
3305
3306	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3307								GFP_KERNEL);
3308	if (!nm_i->nat_block_bitmap)
3309		return -ENOMEM;
3310
3311	nm_i->free_nid_count =
3312		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3313					      nm_i->nat_blocks),
3314			      GFP_KERNEL);
3315	if (!nm_i->free_nid_count)
3316		return -ENOMEM;
3317	return 0;
3318}
3319
3320int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3321{
3322	int err;
3323
3324	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3325							GFP_KERNEL);
3326	if (!sbi->nm_info)
3327		return -ENOMEM;
3328
3329	err = init_node_manager(sbi);
3330	if (err)
3331		return err;
3332
3333	err = init_free_nid_cache(sbi);
3334	if (err)
3335		return err;
3336
3337	/* load free nid status from nat_bits table */
3338	load_free_nid_bitmap(sbi);
3339
3340	return f2fs_build_free_nids(sbi, true, true);
3341}
3342
3343void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3344{
3345	struct f2fs_nm_info *nm_i = NM_I(sbi);
3346	struct free_nid *i, *next_i;
3347	void *vec[NAT_VEC_SIZE];
3348	struct nat_entry **natvec = (struct nat_entry **)vec;
3349	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3350	nid_t nid = 0;
3351	unsigned int found;
3352
3353	if (!nm_i)
3354		return;
3355
3356	/* destroy free nid list */
3357	spin_lock(&nm_i->nid_list_lock);
3358	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3359		__remove_free_nid(sbi, i, FREE_NID);
 
3360		spin_unlock(&nm_i->nid_list_lock);
3361		kmem_cache_free(free_nid_slab, i);
3362		spin_lock(&nm_i->nid_list_lock);
3363	}
3364	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3365	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3366	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3367	spin_unlock(&nm_i->nid_list_lock);
3368
3369	/* destroy nat cache */
3370	f2fs_down_write(&nm_i->nat_tree_lock);
3371	while ((found = __gang_lookup_nat_cache(nm_i,
3372					nid, NAT_VEC_SIZE, natvec))) {
3373		unsigned idx;
3374
3375		nid = nat_get_nid(natvec[found - 1]) + 1;
3376		for (idx = 0; idx < found; idx++) {
3377			spin_lock(&nm_i->nat_list_lock);
3378			list_del(&natvec[idx]->list);
3379			spin_unlock(&nm_i->nat_list_lock);
3380
3381			__del_from_nat_cache(nm_i, natvec[idx]);
3382		}
3383	}
3384	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3385
3386	/* destroy nat set cache */
3387	nid = 0;
3388	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3389	while ((found = __gang_lookup_nat_set(nm_i,
3390					nid, NAT_VEC_SIZE, setvec))) {
3391		unsigned idx;
3392
3393		nid = setvec[found - 1]->set + 1;
3394		for (idx = 0; idx < found; idx++) {
3395			/* entry_cnt is not zero, when cp_error was occurred */
3396			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3397			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3398			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3399		}
3400	}
3401	f2fs_up_write(&nm_i->nat_tree_lock);
3402
3403	kvfree(nm_i->nat_block_bitmap);
3404	if (nm_i->free_nid_bitmap) {
3405		int i;
3406
3407		for (i = 0; i < nm_i->nat_blocks; i++)
3408			kvfree(nm_i->free_nid_bitmap[i]);
3409		kvfree(nm_i->free_nid_bitmap);
3410	}
3411	kvfree(nm_i->free_nid_count);
3412
3413	kvfree(nm_i->nat_bitmap);
3414	kvfree(nm_i->nat_bits);
3415#ifdef CONFIG_F2FS_CHECK_FS
3416	kvfree(nm_i->nat_bitmap_mir);
3417#endif
3418	sbi->nm_info = NULL;
3419	kfree(nm_i);
3420}
3421
3422int __init f2fs_create_node_manager_caches(void)
3423{
3424	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3425			sizeof(struct nat_entry));
3426	if (!nat_entry_slab)
3427		goto fail;
3428
3429	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3430			sizeof(struct free_nid));
3431	if (!free_nid_slab)
3432		goto destroy_nat_entry;
3433
3434	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3435			sizeof(struct nat_entry_set));
3436	if (!nat_entry_set_slab)
3437		goto destroy_free_nid;
3438
3439	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3440			sizeof(struct fsync_node_entry));
3441	if (!fsync_node_entry_slab)
3442		goto destroy_nat_entry_set;
3443	return 0;
3444
3445destroy_nat_entry_set:
3446	kmem_cache_destroy(nat_entry_set_slab);
3447destroy_free_nid:
3448	kmem_cache_destroy(free_nid_slab);
3449destroy_nat_entry:
3450	kmem_cache_destroy(nat_entry_slab);
3451fail:
3452	return -ENOMEM;
3453}
3454
3455void f2fs_destroy_node_manager_caches(void)
3456{
3457	kmem_cache_destroy(fsync_node_entry_slab);
3458	kmem_cache_destroy(nat_entry_set_slab);
3459	kmem_cache_destroy(free_nid_slab);
3460	kmem_cache_destroy(nat_entry_slab);
3461}