Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.10.11
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
 
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
 
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
 
 
 
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
  49				sizeof(struct free_nid)) >> PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55		if (excess_cached_nats(sbi))
  56			res = false;
  57	} else if (type == DIRTY_DENTS) {
  58		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  59			return false;
  60		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  61		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  62	} else if (type == INO_ENTRIES) {
  63		int i;
  64
  65		for (i = 0; i <= UPDATE_INO; i++)
  66			mem_size += (sbi->im[i].ino_num *
  67				sizeof(struct ino_entry)) >> PAGE_SHIFT;
 
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  69	} else if (type == EXTENT_CACHE) {
  70		mem_size = (atomic_read(&sbi->total_ext_tree) *
 
 
 
 
  71				sizeof(struct extent_tree) +
  72				atomic_read(&sbi->total_ext_node) *
  73				sizeof(struct extent_node)) >> PAGE_SHIFT;
  74		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75	} else {
  76		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return true;
  78	}
  79	return res;
  80}
  81
  82static void clear_node_page_dirty(struct page *page)
  83{
  84	struct address_space *mapping = page->mapping;
  85	unsigned int long flags;
  86
  87	if (PageDirty(page)) {
  88		spin_lock_irqsave(&mapping->tree_lock, flags);
  89		radix_tree_tag_clear(&mapping->page_tree,
  90				page_index(page),
  91				PAGECACHE_TAG_DIRTY);
  92		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  93
  94		clear_page_dirty_for_io(page);
  95		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  96	}
  97	ClearPageUptodate(page);
  98}
  99
 100static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 101{
 102	pgoff_t index = current_nat_addr(sbi, nid);
 103	return get_meta_page(sbi, index);
 104}
 105
 106static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 107{
 108	struct page *src_page;
 109	struct page *dst_page;
 110	pgoff_t src_off;
 111	pgoff_t dst_off;
 112	void *src_addr;
 113	void *dst_addr;
 114	struct f2fs_nm_info *nm_i = NM_I(sbi);
 115
 116	src_off = current_nat_addr(sbi, nid);
 117	dst_off = next_nat_addr(sbi, src_off);
 118
 119	/* get current nat block page with lock */
 120	src_page = get_meta_page(sbi, src_off);
 121	dst_page = grab_meta_page(sbi, dst_off);
 
 
 122	f2fs_bug_on(sbi, PageDirty(src_page));
 123
 124	src_addr = page_address(src_page);
 125	dst_addr = page_address(dst_page);
 126	memcpy(dst_addr, src_addr, PAGE_SIZE);
 127	set_page_dirty(dst_page);
 128	f2fs_put_page(src_page, 1);
 129
 130	set_to_next_nat(nm_i, nid);
 131
 132	return dst_page;
 133}
 134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 136{
 137	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 138}
 139
 140static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 141		nid_t start, unsigned int nr, struct nat_entry **ep)
 142{
 143	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 144}
 145
 146static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 147{
 148	list_del(&e->list);
 149	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 150	nm_i->nat_cnt--;
 151	kmem_cache_free(nat_entry_slab, e);
 
 152}
 153
 154static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 155						struct nat_entry *ne)
 156{
 157	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 158	struct nat_entry_set *head;
 159
 160	if (get_nat_flag(ne, IS_DIRTY))
 161		return;
 162
 163	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 164	if (!head) {
 165		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 
 166
 167		INIT_LIST_HEAD(&head->entry_list);
 168		INIT_LIST_HEAD(&head->set_list);
 169		head->set = set;
 170		head->entry_cnt = 0;
 171		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 172	}
 173	list_move_tail(&ne->list, &head->entry_list);
 174	nm_i->dirty_nat_cnt++;
 175	head->entry_cnt++;
 176	set_nat_flag(ne, IS_DIRTY, true);
 177}
 178
 179static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 180						struct nat_entry *ne)
 181{
 182	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 183	struct nat_entry_set *head;
 
 184
 185	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 186	if (head) {
 187		list_move_tail(&ne->list, &nm_i->nat_entries);
 188		set_nat_flag(ne, IS_DIRTY, false);
 189		head->entry_cnt--;
 190		nm_i->dirty_nat_cnt--;
 191	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192}
 193
 194static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 195		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 196{
 197	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 198							start, nr);
 199}
 200
 201int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202{
 203	struct f2fs_nm_info *nm_i = NM_I(sbi);
 204	struct nat_entry *e;
 205	bool need = false;
 206
 207	down_read(&nm_i->nat_tree_lock);
 208	e = __lookup_nat_cache(nm_i, nid);
 209	if (e) {
 210		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 211				!get_nat_flag(e, HAS_FSYNCED_INODE))
 212			need = true;
 213	}
 214	up_read(&nm_i->nat_tree_lock);
 215	return need;
 216}
 217
 218bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 219{
 220	struct f2fs_nm_info *nm_i = NM_I(sbi);
 221	struct nat_entry *e;
 222	bool is_cp = true;
 223
 224	down_read(&nm_i->nat_tree_lock);
 225	e = __lookup_nat_cache(nm_i, nid);
 226	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 227		is_cp = false;
 228	up_read(&nm_i->nat_tree_lock);
 229	return is_cp;
 230}
 231
 232bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 233{
 234	struct f2fs_nm_info *nm_i = NM_I(sbi);
 235	struct nat_entry *e;
 236	bool need_update = true;
 237
 238	down_read(&nm_i->nat_tree_lock);
 239	e = __lookup_nat_cache(nm_i, ino);
 240	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 241			(get_nat_flag(e, IS_CHECKPOINTED) ||
 242			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 243		need_update = false;
 244	up_read(&nm_i->nat_tree_lock);
 245	return need_update;
 246}
 247
 248static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 249{
 250	struct nat_entry *new;
 251
 252	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 253	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 254	memset(new, 0, sizeof(struct nat_entry));
 255	nat_set_nid(new, nid);
 256	nat_reset_flag(new);
 257	list_add_tail(&new->list, &nm_i->nat_entries);
 258	nm_i->nat_cnt++;
 259	return new;
 260}
 261
 262static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 263						struct f2fs_nat_entry *ne)
 264{
 265	struct f2fs_nm_info *nm_i = NM_I(sbi);
 266	struct nat_entry *e;
 
 
 
 
 
 
 
 
 267
 
 268	e = __lookup_nat_cache(nm_i, nid);
 269	if (!e) {
 270		e = grab_nat_entry(nm_i, nid);
 271		node_info_from_raw_nat(&e->ni, ne);
 272	} else {
 273		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 274				nat_get_blkaddr(e) !=
 275					le32_to_cpu(ne->block_addr) ||
 276				nat_get_version(e) != ne->version);
 277	}
 
 
 278}
 279
 280static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 281			block_t new_blkaddr, bool fsync_done)
 282{
 283	struct f2fs_nm_info *nm_i = NM_I(sbi);
 284	struct nat_entry *e;
 
 285
 286	down_write(&nm_i->nat_tree_lock);
 287	e = __lookup_nat_cache(nm_i, ni->nid);
 288	if (!e) {
 289		e = grab_nat_entry(nm_i, ni->nid);
 290		copy_node_info(&e->ni, ni);
 291		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 292	} else if (new_blkaddr == NEW_ADDR) {
 293		/*
 294		 * when nid is reallocated,
 295		 * previous nat entry can be remained in nat cache.
 296		 * So, reinitialize it with new information.
 297		 */
 298		copy_node_info(&e->ni, ni);
 299		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 300	}
 
 
 
 301
 302	/* sanity check */
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 304	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 305			new_blkaddr == NULL_ADDR);
 306	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 309			nat_get_blkaddr(e) != NULL_ADDR &&
 310			new_blkaddr == NEW_ADDR);
 311
 312	/* increment version no as node is removed */
 313	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 314		unsigned char version = nat_get_version(e);
 315		nat_set_version(e, inc_node_version(version));
 316
 317		/* in order to reuse the nid */
 318		if (nm_i->next_scan_nid > ni->nid)
 319			nm_i->next_scan_nid = ni->nid;
 320	}
 321
 322	/* change address */
 323	nat_set_blkaddr(e, new_blkaddr);
 324	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 325		set_nat_flag(e, IS_CHECKPOINTED, false);
 326	__set_nat_cache_dirty(nm_i, e);
 327
 328	/* update fsync_mark if its inode nat entry is still alive */
 329	if (ni->nid != ni->ino)
 330		e = __lookup_nat_cache(nm_i, ni->ino);
 331	if (e) {
 332		if (fsync_done && ni->nid == ni->ino)
 333			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 334		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 335	}
 336	up_write(&nm_i->nat_tree_lock);
 337}
 338
 339int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 340{
 341	struct f2fs_nm_info *nm_i = NM_I(sbi);
 342	int nr = nr_shrink;
 343
 344	if (!down_write_trylock(&nm_i->nat_tree_lock))
 345		return 0;
 346
 347	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 
 348		struct nat_entry *ne;
 
 
 
 
 349		ne = list_first_entry(&nm_i->nat_entries,
 350					struct nat_entry, list);
 
 
 
 351		__del_from_nat_cache(nm_i, ne);
 352		nr_shrink--;
 
 
 353	}
 354	up_write(&nm_i->nat_tree_lock);
 
 
 355	return nr - nr_shrink;
 356}
 357
 358/*
 359 * This function always returns success
 360 */
 361void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 362{
 363	struct f2fs_nm_info *nm_i = NM_I(sbi);
 364	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 365	struct f2fs_journal *journal = curseg->journal;
 366	nid_t start_nid = START_NID(nid);
 367	struct f2fs_nat_block *nat_blk;
 368	struct page *page = NULL;
 369	struct f2fs_nat_entry ne;
 370	struct nat_entry *e;
 
 
 371	int i;
 372
 373	ni->nid = nid;
 374
 375	/* Check nat cache */
 376	down_read(&nm_i->nat_tree_lock);
 377	e = __lookup_nat_cache(nm_i, nid);
 378	if (e) {
 379		ni->ino = nat_get_ino(e);
 380		ni->blk_addr = nat_get_blkaddr(e);
 381		ni->version = nat_get_version(e);
 382		up_read(&nm_i->nat_tree_lock);
 383		return;
 384	}
 385
 386	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 
 
 
 
 
 
 
 
 
 
 
 
 387
 388	/* Check current segment summary */
 389	down_read(&curseg->journal_rwsem);
 390	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 391	if (i >= 0) {
 392		ne = nat_in_journal(journal, i);
 393		node_info_from_raw_nat(ni, &ne);
 394	}
 395	up_read(&curseg->journal_rwsem);
 396	if (i >= 0)
 
 397		goto cache;
 
 398
 399	/* Fill node_info from nat page */
 400	page = get_current_nat_page(sbi, start_nid);
 
 
 
 
 
 
 401	nat_blk = (struct f2fs_nat_block *)page_address(page);
 402	ne = nat_blk->entries[nid - start_nid];
 403	node_info_from_raw_nat(ni, &ne);
 404	f2fs_put_page(page, 1);
 405cache:
 406	up_read(&nm_i->nat_tree_lock);
 
 
 
 
 407	/* cache nat entry */
 408	down_write(&nm_i->nat_tree_lock);
 409	cache_nat_entry(sbi, nid, &ne);
 410	up_write(&nm_i->nat_tree_lock);
 411}
 412
 413/*
 414 * readahead MAX_RA_NODE number of node pages.
 415 */
 416static void ra_node_pages(struct page *parent, int start, int n)
 417{
 418	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 419	struct blk_plug plug;
 420	int i, end;
 421	nid_t nid;
 422
 423	blk_start_plug(&plug);
 424
 425	/* Then, try readahead for siblings of the desired node */
 426	end = start + n;
 427	end = min(end, NIDS_PER_BLOCK);
 428	for (i = start; i < end; i++) {
 429		nid = get_nid(parent, i, false);
 430		ra_node_page(sbi, nid);
 431	}
 432
 433	blk_finish_plug(&plug);
 434}
 435
 436pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 437{
 438	const long direct_index = ADDRS_PER_INODE(dn->inode);
 439	const long direct_blks = ADDRS_PER_BLOCK;
 440	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 441	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 442	int cur_level = dn->cur_level;
 443	int max_level = dn->max_level;
 444	pgoff_t base = 0;
 445
 446	if (!dn->max_level)
 447		return pgofs + 1;
 448
 449	while (max_level-- > cur_level)
 450		skipped_unit *= NIDS_PER_BLOCK;
 451
 452	switch (dn->max_level) {
 453	case 3:
 454		base += 2 * indirect_blks;
 
 455	case 2:
 456		base += 2 * direct_blks;
 
 457	case 1:
 458		base += direct_index;
 459		break;
 460	default:
 461		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 462	}
 463
 464	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 465}
 466
 467/*
 468 * The maximum depth is four.
 469 * Offset[0] will have raw inode offset.
 470 */
 471static int get_node_path(struct inode *inode, long block,
 472				int offset[4], unsigned int noffset[4])
 473{
 474	const long direct_index = ADDRS_PER_INODE(inode);
 475	const long direct_blks = ADDRS_PER_BLOCK;
 476	const long dptrs_per_blk = NIDS_PER_BLOCK;
 477	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 478	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 479	int n = 0;
 480	int level = 0;
 481
 482	noffset[0] = 0;
 483
 484	if (block < direct_index) {
 485		offset[n] = block;
 486		goto got;
 487	}
 488	block -= direct_index;
 489	if (block < direct_blks) {
 490		offset[n++] = NODE_DIR1_BLOCK;
 491		noffset[n] = 1;
 492		offset[n] = block;
 493		level = 1;
 494		goto got;
 495	}
 496	block -= direct_blks;
 497	if (block < direct_blks) {
 498		offset[n++] = NODE_DIR2_BLOCK;
 499		noffset[n] = 2;
 500		offset[n] = block;
 501		level = 1;
 502		goto got;
 503	}
 504	block -= direct_blks;
 505	if (block < indirect_blks) {
 506		offset[n++] = NODE_IND1_BLOCK;
 507		noffset[n] = 3;
 508		offset[n++] = block / direct_blks;
 509		noffset[n] = 4 + offset[n - 1];
 510		offset[n] = block % direct_blks;
 511		level = 2;
 512		goto got;
 513	}
 514	block -= indirect_blks;
 515	if (block < indirect_blks) {
 516		offset[n++] = NODE_IND2_BLOCK;
 517		noffset[n] = 4 + dptrs_per_blk;
 518		offset[n++] = block / direct_blks;
 519		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 520		offset[n] = block % direct_blks;
 521		level = 2;
 522		goto got;
 523	}
 524	block -= indirect_blks;
 525	if (block < dindirect_blks) {
 526		offset[n++] = NODE_DIND_BLOCK;
 527		noffset[n] = 5 + (dptrs_per_blk * 2);
 528		offset[n++] = block / indirect_blks;
 529		noffset[n] = 6 + (dptrs_per_blk * 2) +
 530			      offset[n - 1] * (dptrs_per_blk + 1);
 531		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 532		noffset[n] = 7 + (dptrs_per_blk * 2) +
 533			      offset[n - 2] * (dptrs_per_blk + 1) +
 534			      offset[n - 1];
 535		offset[n] = block % direct_blks;
 536		level = 3;
 537		goto got;
 538	} else {
 539		BUG();
 540	}
 541got:
 542	return level;
 543}
 544
 545/*
 546 * Caller should call f2fs_put_dnode(dn).
 547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 549 * In the case of RDONLY_NODE, we don't need to care about mutex.
 550 */
 551int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 552{
 553	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 554	struct page *npage[4];
 555	struct page *parent = NULL;
 556	int offset[4];
 557	unsigned int noffset[4];
 558	nid_t nids[4];
 559	int level, i = 0;
 560	int err = 0;
 561
 562	level = get_node_path(dn->inode, index, offset, noffset);
 
 
 563
 564	nids[0] = dn->inode->i_ino;
 565	npage[0] = dn->inode_page;
 566
 567	if (!npage[0]) {
 568		npage[0] = get_node_page(sbi, nids[0]);
 569		if (IS_ERR(npage[0]))
 570			return PTR_ERR(npage[0]);
 571	}
 572
 573	/* if inline_data is set, should not report any block indices */
 574	if (f2fs_has_inline_data(dn->inode) && index) {
 575		err = -ENOENT;
 576		f2fs_put_page(npage[0], 1);
 577		goto release_out;
 578	}
 579
 580	parent = npage[0];
 581	if (level != 0)
 582		nids[1] = get_nid(parent, offset[0], true);
 583	dn->inode_page = npage[0];
 584	dn->inode_page_locked = true;
 585
 586	/* get indirect or direct nodes */
 587	for (i = 1; i <= level; i++) {
 588		bool done = false;
 589
 590		if (!nids[i] && mode == ALLOC_NODE) {
 591			/* alloc new node */
 592			if (!alloc_nid(sbi, &(nids[i]))) {
 593				err = -ENOSPC;
 594				goto release_pages;
 595			}
 596
 597			dn->nid = nids[i];
 598			npage[i] = new_node_page(dn, noffset[i], NULL);
 599			if (IS_ERR(npage[i])) {
 600				alloc_nid_failed(sbi, nids[i]);
 601				err = PTR_ERR(npage[i]);
 602				goto release_pages;
 603			}
 604
 605			set_nid(parent, offset[i - 1], nids[i], i == 1);
 606			alloc_nid_done(sbi, nids[i]);
 607			done = true;
 608		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 609			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 610			if (IS_ERR(npage[i])) {
 611				err = PTR_ERR(npage[i]);
 612				goto release_pages;
 613			}
 614			done = true;
 615		}
 616		if (i == 1) {
 617			dn->inode_page_locked = false;
 618			unlock_page(parent);
 619		} else {
 620			f2fs_put_page(parent, 1);
 621		}
 622
 623		if (!done) {
 624			npage[i] = get_node_page(sbi, nids[i]);
 625			if (IS_ERR(npage[i])) {
 626				err = PTR_ERR(npage[i]);
 627				f2fs_put_page(npage[0], 0);
 628				goto release_out;
 629			}
 630		}
 631		if (i < level) {
 632			parent = npage[i];
 633			nids[i + 1] = get_nid(parent, offset[i], false);
 634		}
 635	}
 636	dn->nid = nids[level];
 637	dn->ofs_in_node = offset[level];
 638	dn->node_page = npage[level];
 639	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640	return 0;
 641
 642release_pages:
 643	f2fs_put_page(parent, 1);
 644	if (i > 1)
 645		f2fs_put_page(npage[0], 0);
 646release_out:
 647	dn->inode_page = NULL;
 648	dn->node_page = NULL;
 649	if (err == -ENOENT) {
 650		dn->cur_level = i;
 651		dn->max_level = level;
 652		dn->ofs_in_node = offset[level];
 653	}
 654	return err;
 655}
 656
 657static void truncate_node(struct dnode_of_data *dn)
 658{
 659	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 660	struct node_info ni;
 
 
 661
 662	get_node_info(sbi, dn->nid, &ni);
 663	if (dn->inode->i_blocks == 0) {
 664		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 665		goto invalidate;
 
 
 
 
 
 
 
 
 666	}
 667	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 668
 669	/* Deallocate node address */
 670	invalidate_blocks(sbi, ni.blk_addr);
 671	dec_valid_node_count(sbi, dn->inode);
 672	set_node_addr(sbi, &ni, NULL_ADDR, false);
 673
 674	if (dn->nid == dn->inode->i_ino) {
 675		remove_orphan_inode(sbi, dn->nid);
 676		dec_valid_inode_count(sbi);
 677		f2fs_inode_synced(dn->inode);
 678	}
 679invalidate:
 680	clear_node_page_dirty(dn->node_page);
 681	set_sbi_flag(sbi, SBI_IS_DIRTY);
 682
 
 683	f2fs_put_page(dn->node_page, 1);
 684
 685	invalidate_mapping_pages(NODE_MAPPING(sbi),
 686			dn->node_page->index, dn->node_page->index);
 687
 688	dn->node_page = NULL;
 689	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 690}
 691
 692static int truncate_dnode(struct dnode_of_data *dn)
 693{
 
 694	struct page *page;
 
 695
 696	if (dn->nid == 0)
 697		return 1;
 698
 699	/* get direct node */
 700	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 701	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 702		return 1;
 703	else if (IS_ERR(page))
 704		return PTR_ERR(page);
 705
 
 
 
 
 
 
 
 
 
 706	/* Make dnode_of_data for parameter */
 707	dn->node_page = page;
 708	dn->ofs_in_node = 0;
 709	truncate_data_blocks(dn);
 710	truncate_node(dn);
 
 
 
 
 
 711	return 1;
 712}
 713
 714static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 715						int ofs, int depth)
 716{
 717	struct dnode_of_data rdn = *dn;
 718	struct page *page;
 719	struct f2fs_node *rn;
 720	nid_t child_nid;
 721	unsigned int child_nofs;
 722	int freed = 0;
 723	int i, ret;
 724
 725	if (dn->nid == 0)
 726		return NIDS_PER_BLOCK + 1;
 727
 728	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 729
 730	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 731	if (IS_ERR(page)) {
 732		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 733		return PTR_ERR(page);
 734	}
 735
 736	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 737
 738	rn = F2FS_NODE(page);
 739	if (depth < 3) {
 740		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 741			child_nid = le32_to_cpu(rn->in.nid[i]);
 742			if (child_nid == 0)
 743				continue;
 744			rdn.nid = child_nid;
 745			ret = truncate_dnode(&rdn);
 746			if (ret < 0)
 747				goto out_err;
 748			if (set_nid(page, i, 0, false))
 749				dn->node_changed = true;
 750		}
 751	} else {
 752		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 753		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 754			child_nid = le32_to_cpu(rn->in.nid[i]);
 755			if (child_nid == 0) {
 756				child_nofs += NIDS_PER_BLOCK + 1;
 757				continue;
 758			}
 759			rdn.nid = child_nid;
 760			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 761			if (ret == (NIDS_PER_BLOCK + 1)) {
 762				if (set_nid(page, i, 0, false))
 763					dn->node_changed = true;
 764				child_nofs += ret;
 765			} else if (ret < 0 && ret != -ENOENT) {
 766				goto out_err;
 767			}
 768		}
 769		freed = child_nofs;
 770	}
 771
 772	if (!ofs) {
 773		/* remove current indirect node */
 774		dn->node_page = page;
 775		truncate_node(dn);
 
 
 776		freed++;
 777	} else {
 778		f2fs_put_page(page, 1);
 779	}
 780	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 781	return freed;
 782
 783out_err:
 784	f2fs_put_page(page, 1);
 785	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 786	return ret;
 787}
 788
 789static int truncate_partial_nodes(struct dnode_of_data *dn,
 790			struct f2fs_inode *ri, int *offset, int depth)
 791{
 792	struct page *pages[2];
 793	nid_t nid[3];
 794	nid_t child_nid;
 795	int err = 0;
 796	int i;
 797	int idx = depth - 2;
 798
 799	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 800	if (!nid[0])
 801		return 0;
 802
 803	/* get indirect nodes in the path */
 804	for (i = 0; i < idx + 1; i++) {
 805		/* reference count'll be increased */
 806		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 807		if (IS_ERR(pages[i])) {
 808			err = PTR_ERR(pages[i]);
 809			idx = i - 1;
 810			goto fail;
 811		}
 812		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 813	}
 814
 815	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
 816
 817	/* free direct nodes linked to a partial indirect node */
 818	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 819		child_nid = get_nid(pages[idx], i, false);
 820		if (!child_nid)
 821			continue;
 822		dn->nid = child_nid;
 823		err = truncate_dnode(dn);
 824		if (err < 0)
 825			goto fail;
 826		if (set_nid(pages[idx], i, 0, false))
 827			dn->node_changed = true;
 828	}
 829
 830	if (offset[idx + 1] == 0) {
 831		dn->node_page = pages[idx];
 832		dn->nid = nid[idx];
 833		truncate_node(dn);
 
 
 834	} else {
 835		f2fs_put_page(pages[idx], 1);
 836	}
 837	offset[idx]++;
 838	offset[idx + 1] = 0;
 839	idx--;
 840fail:
 841	for (i = idx; i >= 0; i--)
 842		f2fs_put_page(pages[i], 1);
 843
 844	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 845
 846	return err;
 847}
 848
 849/*
 850 * All the block addresses of data and nodes should be nullified.
 851 */
 852int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 853{
 854	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 855	int err = 0, cont = 1;
 856	int level, offset[4], noffset[4];
 857	unsigned int nofs = 0;
 858	struct f2fs_inode *ri;
 859	struct dnode_of_data dn;
 860	struct page *page;
 861
 862	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 863
 864	level = get_node_path(inode, from, offset, noffset);
 
 
 
 
 865
 866	page = get_node_page(sbi, inode->i_ino);
 867	if (IS_ERR(page)) {
 868		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 869		return PTR_ERR(page);
 870	}
 871
 872	set_new_dnode(&dn, inode, page, NULL, 0);
 873	unlock_page(page);
 874
 875	ri = F2FS_INODE(page);
 876	switch (level) {
 877	case 0:
 878	case 1:
 879		nofs = noffset[1];
 880		break;
 881	case 2:
 882		nofs = noffset[1];
 883		if (!offset[level - 1])
 884			goto skip_partial;
 885		err = truncate_partial_nodes(&dn, ri, offset, level);
 886		if (err < 0 && err != -ENOENT)
 887			goto fail;
 888		nofs += 1 + NIDS_PER_BLOCK;
 889		break;
 890	case 3:
 891		nofs = 5 + 2 * NIDS_PER_BLOCK;
 892		if (!offset[level - 1])
 893			goto skip_partial;
 894		err = truncate_partial_nodes(&dn, ri, offset, level);
 895		if (err < 0 && err != -ENOENT)
 896			goto fail;
 897		break;
 898	default:
 899		BUG();
 900	}
 901
 902skip_partial:
 903	while (cont) {
 904		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 905		switch (offset[0]) {
 906		case NODE_DIR1_BLOCK:
 907		case NODE_DIR2_BLOCK:
 908			err = truncate_dnode(&dn);
 909			break;
 910
 911		case NODE_IND1_BLOCK:
 912		case NODE_IND2_BLOCK:
 913			err = truncate_nodes(&dn, nofs, offset[1], 2);
 914			break;
 915
 916		case NODE_DIND_BLOCK:
 917			err = truncate_nodes(&dn, nofs, offset[1], 3);
 918			cont = 0;
 919			break;
 920
 921		default:
 922			BUG();
 923		}
 924		if (err < 0 && err != -ENOENT)
 
 
 
 
 
 
 
 
 
 
 925			goto fail;
 926		if (offset[1] == 0 &&
 927				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 928			lock_page(page);
 929			BUG_ON(page->mapping != NODE_MAPPING(sbi));
 930			f2fs_wait_on_page_writeback(page, NODE, true);
 931			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 932			set_page_dirty(page);
 933			unlock_page(page);
 934		}
 935		offset[1] = 0;
 936		offset[0]++;
 937		nofs += err;
 938	}
 939fail:
 940	f2fs_put_page(page, 0);
 941	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 942	return err > 0 ? 0 : err;
 943}
 944
 945int truncate_xattr_node(struct inode *inode, struct page *page)
 
 946{
 947	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 948	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 949	struct dnode_of_data dn;
 950	struct page *npage;
 
 951
 952	if (!nid)
 953		return 0;
 954
 955	npage = get_node_page(sbi, nid);
 956	if (IS_ERR(npage))
 957		return PTR_ERR(npage);
 958
 959	f2fs_i_xnid_write(inode, 0);
 960
 961	/* need to do checkpoint during fsync */
 962	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 
 
 963
 964	set_new_dnode(&dn, inode, page, npage, nid);
 965
 966	if (page)
 967		dn.inode_page_locked = true;
 968	truncate_node(&dn);
 969	return 0;
 970}
 971
 972/*
 973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 974 * f2fs_unlock_op().
 975 */
 976int remove_inode_page(struct inode *inode)
 977{
 978	struct dnode_of_data dn;
 979	int err;
 980
 981	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 982	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 983	if (err)
 984		return err;
 985
 986	err = truncate_xattr_node(inode, dn.inode_page);
 987	if (err) {
 988		f2fs_put_dnode(&dn);
 989		return err;
 990	}
 991
 992	/* remove potential inline_data blocks */
 993	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 994				S_ISLNK(inode->i_mode))
 995		truncate_data_blocks_range(&dn, 1);
 996
 997	/* 0 is possible, after f2fs_new_inode() has failed */
 998	f2fs_bug_on(F2FS_I_SB(inode),
 999			inode->i_blocks != 0 && inode->i_blocks != 1);
 
 
 
 
 
 
 
 
 
1000
1001	/* will put inode & node pages */
1002	truncate_node(&dn);
 
 
 
 
1003	return 0;
1004}
1005
1006struct page *new_inode_page(struct inode *inode)
1007{
1008	struct dnode_of_data dn;
1009
1010	/* allocate inode page for new inode */
1011	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1012
1013	/* caller should f2fs_put_page(page, 1); */
1014	return new_node_page(&dn, 0, NULL);
1015}
1016
1017struct page *new_node_page(struct dnode_of_data *dn,
1018				unsigned int ofs, struct page *ipage)
1019{
1020	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021	struct node_info old_ni, new_ni;
1022	struct page *page;
1023	int err;
1024
1025	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026		return ERR_PTR(-EPERM);
1027
1028	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029	if (!page)
1030		return ERR_PTR(-ENOMEM);
1031
1032	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033		err = -ENOSPC;
1034		goto fail;
1035	}
1036
1037	get_node_info(sbi, dn->nid, &old_ni);
1038
1039	/* Reinitialize old_ni with new node page */
1040	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041	new_ni = old_ni;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042	new_ni.ino = dn->inode->i_ino;
 
 
 
1043	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1044
1045	f2fs_wait_on_page_writeback(page, NODE, true);
1046	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047	set_cold_node(dn->inode, page);
1048	if (!PageUptodate(page))
1049		SetPageUptodate(page);
1050	if (set_page_dirty(page))
1051		dn->node_changed = true;
1052
1053	if (f2fs_has_xattr_block(ofs))
1054		f2fs_i_xnid_write(dn->inode, dn->nid);
1055
1056	if (ofs == 0)
1057		inc_valid_inode_count(sbi);
1058	return page;
1059
1060fail:
1061	clear_node_page_dirty(page);
1062	f2fs_put_page(page, 1);
1063	return ERR_PTR(err);
1064}
1065
1066/*
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070 */
1071static int read_node_page(struct page *page, int op_flags)
1072{
 
1073	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074	struct node_info ni;
1075	struct f2fs_io_info fio = {
1076		.sbi = sbi,
1077		.type = NODE,
1078		.op = REQ_OP_READ,
1079		.op_flags = op_flags,
1080		.page = page,
1081		.encrypted_page = NULL,
1082	};
 
1083
1084	if (PageUptodate(page))
 
 
 
 
1085		return LOCKED_PAGE;
 
1086
1087	get_node_info(sbi, page->index, &ni);
 
 
1088
1089	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090		ClearPageUptodate(page);
 
1091		return -ENOENT;
1092	}
1093
1094	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095	return f2fs_submit_page_bio(&fio);
 
 
 
 
 
 
1096}
1097
1098/*
1099 * Readahead a node page
1100 */
1101void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1102{
1103	struct page *apage;
1104	int err;
1105
1106	if (!nid)
1107		return;
1108	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1109
1110	rcu_read_lock();
1111	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112	rcu_read_unlock();
1113	if (apage)
1114		return;
1115
1116	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117	if (!apage)
1118		return;
1119
1120	err = read_node_page(apage, REQ_RAHEAD);
1121	f2fs_put_page(apage, err ? 1 : 0);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1133repeat:
1134	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, 0);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
 
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1148
1149	lock_page(page);
1150
1151	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152		f2fs_put_page(page, 1);
1153		goto repeat;
1154	}
1155
1156	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
1157		goto out_err;
 
1158page_hit:
1159	if(unlikely(nid != nid_of_node(page))) {
1160		f2fs_bug_on(sbi, 1);
1161		ClearPageUptodate(page);
 
 
 
 
 
 
 
1162out_err:
1163		f2fs_put_page(page, 1);
1164		return ERR_PTR(-EIO);
1165	}
1166	return page;
 
 
 
1167}
1168
1169struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1170{
1171	return __get_node_page(sbi, nid, NULL, 0);
1172}
1173
1174struct page *get_node_page_ra(struct page *parent, int start)
1175{
1176	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177	nid_t nid = get_nid(parent, start, false);
1178
1179	return __get_node_page(sbi, nid, parent, start);
1180}
1181
1182static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1183{
1184	struct inode *inode;
1185	struct page *page;
1186	int ret;
1187
1188	/* should flush inline_data before evict_inode */
1189	inode = ilookup(sbi->sb, ino);
1190	if (!inode)
1191		return;
1192
1193	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
 
1194	if (!page)
1195		goto iput_out;
1196
1197	if (!PageUptodate(page))
1198		goto page_out;
1199
1200	if (!PageDirty(page))
1201		goto page_out;
1202
1203	if (!clear_page_dirty_for_io(page))
1204		goto page_out;
1205
1206	ret = f2fs_write_inline_data(inode, page);
1207	inode_dec_dirty_pages(inode);
1208	remove_dirty_inode(inode);
1209	if (ret)
1210		set_page_dirty(page);
1211page_out:
1212	f2fs_put_page(page, 1);
1213iput_out:
1214	iput(inode);
1215}
1216
1217void move_node_page(struct page *node_page, int gc_type)
1218{
1219	if (gc_type == FG_GC) {
1220		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1221		struct writeback_control wbc = {
1222			.sync_mode = WB_SYNC_ALL,
1223			.nr_to_write = 1,
1224			.for_reclaim = 0,
1225		};
1226
1227		set_page_dirty(node_page);
1228		f2fs_wait_on_page_writeback(node_page, NODE, true);
1229
1230		f2fs_bug_on(sbi, PageWriteback(node_page));
1231		if (!clear_page_dirty_for_io(node_page))
1232			goto out_page;
1233
1234		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1235			unlock_page(node_page);
1236		goto release_page;
1237	} else {
1238		/* set page dirty and write it */
1239		if (!PageWriteback(node_page))
1240			set_page_dirty(node_page);
1241	}
1242out_page:
1243	unlock_page(node_page);
1244release_page:
1245	f2fs_put_page(node_page, 0);
1246}
1247
1248static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250	pgoff_t index, end;
1251	struct pagevec pvec;
1252	struct page *last_page = NULL;
 
1253
1254	pagevec_init(&pvec, 0);
1255	index = 0;
1256	end = ULONG_MAX;
1257
1258	while (index <= end) {
1259		int i, nr_pages;
1260		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261				PAGECACHE_TAG_DIRTY,
1262				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263		if (nr_pages == 0)
1264			break;
1265
1266		for (i = 0; i < nr_pages; i++) {
1267			struct page *page = pvec.pages[i];
1268
1269			if (unlikely(f2fs_cp_error(sbi))) {
1270				f2fs_put_page(last_page, 0);
1271				pagevec_release(&pvec);
1272				return ERR_PTR(-EIO);
1273			}
1274
1275			if (!IS_DNODE(page) || !is_cold_node(page))
1276				continue;
1277			if (ino_of_node(page) != ino)
1278				continue;
1279
1280			lock_page(page);
1281
1282			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1283continue_unlock:
1284				unlock_page(page);
1285				continue;
1286			}
1287			if (ino_of_node(page) != ino)
1288				goto continue_unlock;
1289
1290			if (!PageDirty(page)) {
1291				/* someone wrote it for us */
1292				goto continue_unlock;
1293			}
1294
1295			if (last_page)
1296				f2fs_put_page(last_page, 0);
1297
1298			get_page(page);
1299			last_page = page;
1300			unlock_page(page);
1301		}
1302		pagevec_release(&pvec);
1303		cond_resched();
1304	}
1305	return last_page;
1306}
1307
1308int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1309			struct writeback_control *wbc, bool atomic)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310{
1311	pgoff_t index, end;
1312	struct pagevec pvec;
 
 
 
 
 
 
 
 
1313	int ret = 0;
1314	struct page *last_page = NULL;
1315	bool marked = false;
1316	nid_t ino = inode->i_ino;
 
1317	int nwritten = 0;
1318
1319	if (atomic) {
1320		last_page = last_fsync_dnode(sbi, ino);
1321		if (IS_ERR_OR_NULL(last_page))
1322			return PTR_ERR_OR_ZERO(last_page);
1323	}
1324retry:
1325	pagevec_init(&pvec, 0);
1326	index = 0;
1327	end = ULONG_MAX;
1328
1329	while (index <= end) {
1330		int i, nr_pages;
1331		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1332				PAGECACHE_TAG_DIRTY,
1333				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1334		if (nr_pages == 0)
1335			break;
1336
1337		for (i = 0; i < nr_pages; i++) {
1338			struct page *page = pvec.pages[i];
 
1339
1340			if (unlikely(f2fs_cp_error(sbi))) {
1341				f2fs_put_page(last_page, 0);
1342				pagevec_release(&pvec);
1343				ret = -EIO;
1344				goto out;
1345			}
1346
1347			if (!IS_DNODE(page) || !is_cold_node(page))
1348				continue;
1349			if (ino_of_node(page) != ino)
1350				continue;
1351
1352			lock_page(page);
1353
1354			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1355continue_unlock:
1356				unlock_page(page);
1357				continue;
1358			}
1359			if (ino_of_node(page) != ino)
1360				goto continue_unlock;
1361
1362			if (!PageDirty(page) && page != last_page) {
1363				/* someone wrote it for us */
1364				goto continue_unlock;
1365			}
1366
1367			f2fs_wait_on_page_writeback(page, NODE, true);
1368			BUG_ON(PageWriteback(page));
 
 
1369
1370			if (!atomic || page == last_page) {
1371				set_fsync_mark(page, 1);
 
1372				if (IS_INODE(page)) {
1373					if (is_inode_flag_set(inode,
1374								FI_DIRTY_INODE))
1375						update_inode(inode, page);
1376					set_dentry_mark(page,
1377						need_dentry_mark(sbi, ino));
1378				}
1379				/*  may be written by other thread */
1380				if (!PageDirty(page))
1381					set_page_dirty(page);
1382			}
1383
1384			if (!clear_page_dirty_for_io(page))
1385				goto continue_unlock;
1386
1387			ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
 
 
 
1388			if (ret) {
1389				unlock_page(page);
1390				f2fs_put_page(last_page, 0);
1391				break;
1392			} else {
1393				nwritten++;
1394			}
1395
1396			if (page == last_page) {
1397				f2fs_put_page(page, 0);
1398				marked = true;
1399				break;
1400			}
1401		}
1402		pagevec_release(&pvec);
1403		cond_resched();
1404
1405		if (ret || marked)
1406			break;
1407	}
1408	if (!ret && atomic && !marked) {
1409		f2fs_msg(sbi->sb, KERN_DEBUG,
1410			"Retry to write fsync mark: ino=%u, idx=%lx",
1411					ino, last_page->index);
1412		lock_page(last_page);
1413		f2fs_wait_on_page_writeback(last_page, NODE, true);
1414		set_page_dirty(last_page);
1415		unlock_page(last_page);
1416		goto retry;
1417	}
1418out:
1419	if (nwritten)
1420		f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1421	return ret ? -EIO: 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422}
1423
1424int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
 
 
1425{
1426	pgoff_t index, end;
1427	struct pagevec pvec;
1428	int step = 0;
1429	int nwritten = 0;
1430	int ret = 0;
 
1431
1432	pagevec_init(&pvec, 0);
1433
1434next_step:
1435	index = 0;
1436	end = ULONG_MAX;
1437
1438	while (index <= end) {
1439		int i, nr_pages;
1440		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1441				PAGECACHE_TAG_DIRTY,
1442				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1443		if (nr_pages == 0)
1444			break;
1445
1446		for (i = 0; i < nr_pages; i++) {
1447			struct page *page = pvec.pages[i];
1448
1449			if (unlikely(f2fs_cp_error(sbi))) {
1450				pagevec_release(&pvec);
1451				ret = -EIO;
1452				goto out;
 
 
 
 
 
1453			}
1454
1455			/*
1456			 * flushing sequence with step:
1457			 * 0. indirect nodes
1458			 * 1. dentry dnodes
1459			 * 2. file dnodes
1460			 */
1461			if (step == 0 && IS_DNODE(page))
1462				continue;
1463			if (step == 1 && (!IS_DNODE(page) ||
1464						is_cold_node(page)))
1465				continue;
1466			if (step == 2 && (!IS_DNODE(page) ||
1467						!is_cold_node(page)))
1468				continue;
1469lock_node:
1470			if (!trylock_page(page))
 
 
1471				continue;
1472
1473			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1474continue_unlock:
1475				unlock_page(page);
1476				continue;
1477			}
1478
1479			if (!PageDirty(page)) {
1480				/* someone wrote it for us */
1481				goto continue_unlock;
1482			}
1483
 
 
 
 
1484			/* flush inline_data */
1485			if (is_inline_node(page)) {
1486				clear_inline_node(page);
1487				unlock_page(page);
1488				flush_inline_data(sbi, ino_of_node(page));
1489				goto lock_node;
1490			}
1491
1492			f2fs_wait_on_page_writeback(page, NODE, true);
 
 
 
 
1493
1494			BUG_ON(PageWriteback(page));
1495			if (!clear_page_dirty_for_io(page))
1496				goto continue_unlock;
1497
1498			set_fsync_mark(page, 0);
1499			set_dentry_mark(page, 0);
1500
1501			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
 
 
1502				unlock_page(page);
1503			else
1504				nwritten++;
1505
1506			if (--wbc->nr_to_write == 0)
1507				break;
1508		}
1509		pagevec_release(&pvec);
1510		cond_resched();
1511
1512		if (wbc->nr_to_write == 0) {
1513			step = 2;
1514			break;
1515		}
1516	}
1517
1518	if (step < 2) {
 
 
 
1519		step++;
1520		goto next_step;
1521	}
1522out:
1523	if (nwritten)
1524		f2fs_submit_merged_bio(sbi, NODE, WRITE);
 
 
 
1525	return ret;
1526}
1527
1528int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1529{
1530	pgoff_t index = 0, end = ULONG_MAX;
1531	struct pagevec pvec;
1532	int ret2, ret = 0;
1533
1534	pagevec_init(&pvec, 0);
1535
1536	while (index <= end) {
1537		int i, nr_pages;
1538		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1539				PAGECACHE_TAG_WRITEBACK,
1540				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1541		if (nr_pages == 0)
1542			break;
1543
1544		for (i = 0; i < nr_pages; i++) {
1545			struct page *page = pvec.pages[i];
1546
1547			/* until radix tree lookup accepts end_index */
1548			if (unlikely(page->index > end))
1549				continue;
1550
1551			if (ino && ino_of_node(page) == ino) {
1552				f2fs_wait_on_page_writeback(page, NODE, true);
1553				if (TestClearPageError(page))
1554					ret = -EIO;
1555			}
1556		}
1557		pagevec_release(&pvec);
1558		cond_resched();
1559	}
1560
1561	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1562	if (!ret)
1563		ret = ret2;
1564	return ret;
1565}
1566
1567static int f2fs_write_node_page(struct page *page,
1568				struct writeback_control *wbc)
1569{
1570	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1571	nid_t nid;
1572	struct node_info ni;
1573	struct f2fs_io_info fio = {
1574		.sbi = sbi,
1575		.type = NODE,
1576		.op = REQ_OP_WRITE,
1577		.op_flags = wbc_to_write_flags(wbc),
1578		.page = page,
1579		.encrypted_page = NULL,
1580	};
1581
1582	trace_f2fs_writepage(page, NODE);
1583
1584	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1585		goto redirty_out;
1586	if (unlikely(f2fs_cp_error(sbi)))
1587		goto redirty_out;
1588
1589	/* get old block addr of this node page */
1590	nid = nid_of_node(page);
1591	f2fs_bug_on(sbi, page->index != nid);
1592
1593	if (wbc->for_reclaim) {
1594		if (!down_read_trylock(&sbi->node_write))
1595			goto redirty_out;
1596	} else {
1597		down_read(&sbi->node_write);
1598	}
1599
1600	get_node_info(sbi, nid, &ni);
1601
1602	/* This page is already truncated */
1603	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1604		ClearPageUptodate(page);
1605		dec_page_count(sbi, F2FS_DIRTY_NODES);
1606		up_read(&sbi->node_write);
1607		unlock_page(page);
1608		return 0;
1609	}
1610
1611	set_page_writeback(page);
1612	fio.old_blkaddr = ni.blk_addr;
1613	write_node_page(nid, &fio);
1614	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1615	dec_page_count(sbi, F2FS_DIRTY_NODES);
1616	up_read(&sbi->node_write);
1617
1618	if (wbc->for_reclaim)
1619		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1620
1621	unlock_page(page);
1622
1623	if (unlikely(f2fs_cp_error(sbi)))
1624		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1625
1626	return 0;
1627
1628redirty_out:
1629	redirty_page_for_writepage(wbc, page);
1630	return AOP_WRITEPAGE_ACTIVATE;
1631}
1632
1633static int f2fs_write_node_pages(struct address_space *mapping,
1634			    struct writeback_control *wbc)
1635{
1636	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1637	struct blk_plug plug;
1638	long diff;
1639
 
 
 
1640	/* balancing f2fs's metadata in background */
1641	f2fs_balance_fs_bg(sbi);
1642
1643	/* collect a number of dirty node pages and write together */
1644	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
1645		goto skip_write;
1646
 
 
 
 
 
 
 
 
 
1647	trace_f2fs_writepages(mapping->host, wbc, NODE);
1648
1649	diff = nr_pages_to_write(sbi, NODE, wbc);
1650	wbc->sync_mode = WB_SYNC_NONE;
1651	blk_start_plug(&plug);
1652	sync_node_pages(sbi, wbc);
1653	blk_finish_plug(&plug);
1654	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1655	return 0;
1656
1657skip_write:
1658	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1659	trace_f2fs_writepages(mapping->host, wbc, NODE);
1660	return 0;
1661}
1662
1663static int f2fs_set_node_page_dirty(struct page *page)
 
1664{
1665	trace_f2fs_set_page_dirty(page, NODE);
1666
1667	if (!PageUptodate(page))
1668		SetPageUptodate(page);
1669	if (!PageDirty(page)) {
1670		f2fs_set_page_dirty_nobuffers(page);
1671		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1672		SetPagePrivate(page);
1673		f2fs_trace_pid(page);
1674		return 1;
 
 
1675	}
1676	return 0;
1677}
1678
1679/*
1680 * Structure of the f2fs node operations
1681 */
1682const struct address_space_operations f2fs_node_aops = {
1683	.writepage	= f2fs_write_node_page,
1684	.writepages	= f2fs_write_node_pages,
1685	.set_page_dirty	= f2fs_set_node_page_dirty,
1686	.invalidatepage	= f2fs_invalidate_page,
1687	.releasepage	= f2fs_release_page,
1688#ifdef CONFIG_MIGRATION
1689	.migratepage    = f2fs_migrate_page,
1690#endif
1691};
1692
1693static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1694						nid_t n)
1695{
1696	return radix_tree_lookup(&nm_i->free_nid_root, n);
1697}
1698
1699static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1700			struct free_nid *i, enum nid_list list, bool new)
1701{
1702	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
1703
1704	if (new) {
1705		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1706		if (err)
1707			return err;
1708	}
1709
1710	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1711						i->state != NID_ALLOC);
1712	nm_i->nid_cnt[list]++;
1713	list_add_tail(&i->list, &nm_i->nid_list[list]);
1714	return 0;
1715}
1716
1717static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1718			struct free_nid *i, enum nid_list list, bool reuse)
1719{
1720	struct f2fs_nm_info *nm_i = NM_I(sbi);
1721
1722	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1723						i->state != NID_ALLOC);
1724	nm_i->nid_cnt[list]--;
1725	list_del(&i->list);
1726	if (!reuse)
1727		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1728}
1729
1730static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
 
1731{
1732	struct f2fs_nm_info *nm_i = NM_I(sbi);
1733	struct free_nid *i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734	struct nat_entry *ne;
1735	int err;
 
1736
1737	/* 0 nid should not be used */
1738	if (unlikely(nid == 0))
1739		return 0;
 
 
 
 
 
 
 
 
 
 
 
1740
1741	if (build) {
1742		/* do not add allocated nids */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743		ne = __lookup_nat_cache(nm_i, nid);
1744		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1745				nat_get_blkaddr(ne) != NULL_ADDR))
1746			return 0;
1747	}
1748
1749	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1750	i->nid = nid;
1751	i->state = NID_NEW;
1752
1753	if (radix_tree_preload(GFP_NOFS)) {
1754		kmem_cache_free(free_nid_slab, i);
1755		return 0;
 
 
 
 
 
 
 
 
 
 
 
1756	}
1757
1758	spin_lock(&nm_i->nid_list_lock);
1759	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1760	spin_unlock(&nm_i->nid_list_lock);
1761	radix_tree_preload_end();
1762	if (err) {
 
1763		kmem_cache_free(free_nid_slab, i);
1764		return 0;
1765	}
1766	return 1;
1767}
1768
1769static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1770{
1771	struct f2fs_nm_info *nm_i = NM_I(sbi);
1772	struct free_nid *i;
1773	bool need_free = false;
1774
1775	spin_lock(&nm_i->nid_list_lock);
1776	i = __lookup_free_nid_list(nm_i, nid);
1777	if (i && i->state == NID_NEW) {
1778		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1779		need_free = true;
1780	}
1781	spin_unlock(&nm_i->nid_list_lock);
1782
1783	if (need_free)
1784		kmem_cache_free(free_nid_slab, i);
1785}
1786
1787static void scan_nat_page(struct f2fs_sb_info *sbi,
1788			struct page *nat_page, nid_t start_nid)
1789{
1790	struct f2fs_nm_info *nm_i = NM_I(sbi);
1791	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1792	block_t blk_addr;
 
1793	int i;
1794
 
 
1795	i = start_nid % NAT_ENTRY_PER_BLOCK;
1796
1797	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1798
1799		if (unlikely(start_nid >= nm_i->max_nid))
1800			break;
1801
1802		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1803		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1804		if (blk_addr == NULL_ADDR)
1805			add_free_nid(sbi, start_nid, true);
 
 
 
 
 
 
 
 
1806	}
 
 
1807}
1808
1809static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1810{
1811	struct f2fs_nm_info *nm_i = NM_I(sbi);
1812	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1813	struct f2fs_journal *journal = curseg->journal;
1814	int i = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815	nid_t nid = nm_i->next_scan_nid;
1816
 
 
 
 
 
 
1817	/* Enough entries */
1818	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1819		return;
1820
1821	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1822		return;
 
 
 
 
 
 
 
 
1823
1824	/* readahead nat pages to be scanned */
1825	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1826							META_NAT, true);
1827
1828	down_read(&nm_i->nat_tree_lock);
1829
1830	while (1) {
1831		struct page *page = get_current_nat_page(sbi, nid);
 
 
1832
1833		scan_nat_page(sbi, page, nid);
1834		f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835
1836		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1837		if (unlikely(nid >= nm_i->max_nid))
1838			nid = 0;
1839
1840		if (++i >= FREE_NID_PAGES)
1841			break;
1842	}
1843
1844	/* go to the next free nat pages to find free nids abundantly */
1845	nm_i->next_scan_nid = nid;
1846
1847	/* find free nids from current sum_pages */
1848	down_read(&curseg->journal_rwsem);
1849	for (i = 0; i < nats_in_cursum(journal); i++) {
1850		block_t addr;
1851
1852		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1853		nid = le32_to_cpu(nid_in_journal(journal, i));
1854		if (addr == NULL_ADDR)
1855			add_free_nid(sbi, nid, true);
1856		else
1857			remove_free_nid(sbi, nid);
1858	}
1859	up_read(&curseg->journal_rwsem);
1860	up_read(&nm_i->nat_tree_lock);
1861
1862	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1863					nm_i->ra_nid_pages, META_NAT, false);
 
 
1864}
1865
1866void build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1867{
 
 
1868	mutex_lock(&NM_I(sbi)->build_lock);
1869	__build_free_nids(sbi, sync);
1870	mutex_unlock(&NM_I(sbi)->build_lock);
 
 
1871}
1872
1873/*
1874 * If this function returns success, caller can obtain a new nid
1875 * from second parameter of this function.
1876 * The returned nid could be used ino as well as nid when inode is created.
1877 */
1878bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1879{
1880	struct f2fs_nm_info *nm_i = NM_I(sbi);
1881	struct free_nid *i = NULL;
1882retry:
1883#ifdef CONFIG_F2FS_FAULT_INJECTION
1884	if (time_to_inject(sbi, FAULT_ALLOC_NID))
1885		return false;
1886#endif
1887	spin_lock(&nm_i->nid_list_lock);
1888
1889	if (unlikely(nm_i->available_nids == 0)) {
1890		spin_unlock(&nm_i->nid_list_lock);
1891		return false;
1892	}
1893
1894	/* We should not use stale free nids created by build_free_nids */
1895	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
1896		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
1897		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
1898					struct free_nid, list);
1899		*nid = i->nid;
1900
1901		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
1902		i->state = NID_ALLOC;
1903		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
1904		nm_i->available_nids--;
 
 
 
1905		spin_unlock(&nm_i->nid_list_lock);
1906		return true;
1907	}
1908	spin_unlock(&nm_i->nid_list_lock);
1909
1910	/* Let's scan nat pages and its caches to get free nids */
1911	build_free_nids(sbi, true);
1912	goto retry;
 
1913}
1914
1915/*
1916 * alloc_nid() should be called prior to this function.
1917 */
1918void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct free_nid *i;
1922
1923	spin_lock(&nm_i->nid_list_lock);
1924	i = __lookup_free_nid_list(nm_i, nid);
1925	f2fs_bug_on(sbi, !i);
1926	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1927	spin_unlock(&nm_i->nid_list_lock);
1928
1929	kmem_cache_free(free_nid_slab, i);
1930}
1931
1932/*
1933 * alloc_nid() should be called prior to this function.
1934 */
1935void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1936{
1937	struct f2fs_nm_info *nm_i = NM_I(sbi);
1938	struct free_nid *i;
1939	bool need_free = false;
1940
1941	if (!nid)
1942		return;
1943
1944	spin_lock(&nm_i->nid_list_lock);
1945	i = __lookup_free_nid_list(nm_i, nid);
1946	f2fs_bug_on(sbi, !i);
1947
1948	if (!available_free_memory(sbi, FREE_NIDS)) {
1949		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1950		need_free = true;
1951	} else {
1952		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
1953		i->state = NID_NEW;
1954		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
1955	}
1956
1957	nm_i->available_nids++;
1958
 
 
1959	spin_unlock(&nm_i->nid_list_lock);
1960
1961	if (need_free)
1962		kmem_cache_free(free_nid_slab, i);
1963}
1964
1965int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1966{
1967	struct f2fs_nm_info *nm_i = NM_I(sbi);
1968	struct free_nid *i, *next;
1969	int nr = nr_shrink;
1970
1971	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1972		return 0;
1973
1974	if (!mutex_trylock(&nm_i->build_lock))
1975		return 0;
1976
1977	spin_lock(&nm_i->nid_list_lock);
1978	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
1979									list) {
1980		if (nr_shrink <= 0 ||
1981				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1982			break;
1983
1984		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1985		kmem_cache_free(free_nid_slab, i);
1986		nr_shrink--;
 
 
 
 
 
 
 
 
1987	}
1988	spin_unlock(&nm_i->nid_list_lock);
1989	mutex_unlock(&nm_i->build_lock);
1990
1991	return nr - nr_shrink;
1992}
1993
1994void recover_inline_xattr(struct inode *inode, struct page *page)
1995{
1996	void *src_addr, *dst_addr;
1997	size_t inline_size;
1998	struct page *ipage;
1999	struct f2fs_inode *ri;
2000
2001	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2002	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
 
2003
2004	ri = F2FS_INODE(page);
2005	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2006		clear_inode_flag(inode, FI_INLINE_XATTR);
 
 
 
 
 
 
 
 
2007		goto update_inode;
2008	}
2009
2010	dst_addr = inline_xattr_addr(ipage);
2011	src_addr = inline_xattr_addr(page);
2012	inline_size = inline_xattr_size(inode);
2013
2014	f2fs_wait_on_page_writeback(ipage, NODE, true);
2015	memcpy(dst_addr, src_addr, inline_size);
2016update_inode:
2017	update_inode(inode, ipage);
2018	f2fs_put_page(ipage, 1);
 
2019}
2020
2021void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2022{
2023	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2024	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2025	nid_t new_xnid = nid_of_node(page);
 
2026	struct node_info ni;
 
 
2027
2028	/* 1: invalidate the previous xattr nid */
2029	if (!prev_xnid)
2030		goto recover_xnid;
2031
2032	/* Deallocate node address */
2033	get_node_info(sbi, prev_xnid, &ni);
2034	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2035	invalidate_blocks(sbi, ni.blk_addr);
2036	dec_valid_node_count(sbi, inode);
 
 
2037	set_node_addr(sbi, &ni, NULL_ADDR, false);
2038
2039recover_xnid:
2040	/* 2: allocate new xattr nid */
2041	if (unlikely(!inc_valid_node_count(sbi, inode)))
2042		f2fs_bug_on(sbi, 1);
2043
2044	remove_free_nid(sbi, new_xnid);
2045	get_node_info(sbi, new_xnid, &ni);
2046	ni.ino = inode->i_ino;
2047	set_node_addr(sbi, &ni, NEW_ADDR, false);
2048	f2fs_i_xnid_write(inode, new_xnid);
2049
2050	/* 3: update xattr blkaddr */
2051	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2052	set_node_addr(sbi, &ni, blkaddr, false);
 
 
 
 
 
 
 
 
 
 
2053}
2054
2055int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2056{
2057	struct f2fs_inode *src, *dst;
2058	nid_t ino = ino_of_node(page);
2059	struct node_info old_ni, new_ni;
2060	struct page *ipage;
 
2061
2062	get_node_info(sbi, ino, &old_ni);
 
 
2063
2064	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2065		return -EINVAL;
2066retry:
2067	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2068	if (!ipage) {
2069		congestion_wait(BLK_RW_ASYNC, HZ/50);
2070		goto retry;
2071	}
2072
2073	/* Should not use this inode from free nid list */
2074	remove_free_nid(sbi, ino);
2075
2076	if (!PageUptodate(ipage))
2077		SetPageUptodate(ipage);
2078	fill_node_footer(ipage, ino, ino, 0, true);
 
2079
2080	src = F2FS_INODE(page);
2081	dst = F2FS_INODE(ipage);
2082
2083	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2084	dst->i_size = 0;
2085	dst->i_blocks = cpu_to_le64(1);
2086	dst->i_links = cpu_to_le32(1);
2087	dst->i_xattr_nid = 0;
2088	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089
2090	new_ni = old_ni;
2091	new_ni.ino = ino;
2092
2093	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2094		WARN_ON(1);
2095	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2096	inc_valid_inode_count(sbi);
2097	set_page_dirty(ipage);
2098	f2fs_put_page(ipage, 1);
2099	return 0;
2100}
2101
2102int restore_node_summary(struct f2fs_sb_info *sbi,
2103			unsigned int segno, struct f2fs_summary_block *sum)
2104{
2105	struct f2fs_node *rn;
2106	struct f2fs_summary *sum_entry;
2107	block_t addr;
2108	int i, idx, last_offset, nrpages;
2109
2110	/* scan the node segment */
2111	last_offset = sbi->blocks_per_seg;
2112	addr = START_BLOCK(sbi, segno);
2113	sum_entry = &sum->entries[0];
2114
2115	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2116		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2117
2118		/* readahead node pages */
2119		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2120
2121		for (idx = addr; idx < addr + nrpages; idx++) {
2122			struct page *page = get_tmp_page(sbi, idx);
 
 
 
2123
2124			rn = F2FS_NODE(page);
2125			sum_entry->nid = rn->footer.nid;
2126			sum_entry->version = 0;
2127			sum_entry->ofs_in_node = 0;
2128			sum_entry++;
2129			f2fs_put_page(page, 1);
2130		}
2131
2132		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2133							addr + nrpages);
2134	}
2135	return 0;
2136}
2137
2138static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2139{
2140	struct f2fs_nm_info *nm_i = NM_I(sbi);
2141	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2142	struct f2fs_journal *journal = curseg->journal;
2143	int i;
2144
2145	down_write(&curseg->journal_rwsem);
2146	for (i = 0; i < nats_in_cursum(journal); i++) {
2147		struct nat_entry *ne;
2148		struct f2fs_nat_entry raw_ne;
2149		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2150
 
 
 
2151		raw_ne = nat_in_journal(journal, i);
2152
2153		ne = __lookup_nat_cache(nm_i, nid);
2154		if (!ne) {
2155			ne = grab_nat_entry(nm_i, nid);
2156			node_info_from_raw_nat(&ne->ni, &raw_ne);
2157		}
2158
2159		/*
2160		 * if a free nat in journal has not been used after last
2161		 * checkpoint, we should remove it from available nids,
2162		 * since later we will add it again.
2163		 */
2164		if (!get_nat_flag(ne, IS_DIRTY) &&
2165				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2166			spin_lock(&nm_i->nid_list_lock);
2167			nm_i->available_nids--;
2168			spin_unlock(&nm_i->nid_list_lock);
2169		}
2170
2171		__set_nat_cache_dirty(nm_i, ne);
2172	}
2173	update_nats_in_cursum(journal, -i);
2174	up_write(&curseg->journal_rwsem);
2175}
2176
2177static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2178						struct list_head *head, int max)
2179{
2180	struct nat_entry_set *cur;
2181
2182	if (nes->entry_cnt >= max)
2183		goto add_out;
2184
2185	list_for_each_entry(cur, head, set_list) {
2186		if (cur->entry_cnt >= nes->entry_cnt) {
2187			list_add(&nes->set_list, cur->set_list.prev);
2188			return;
2189		}
2190	}
2191add_out:
2192	list_add_tail(&nes->set_list, head);
2193}
2194
2195static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2196					struct nat_entry_set *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197{
2198	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2199	struct f2fs_journal *journal = curseg->journal;
2200	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2201	bool to_journal = true;
2202	struct f2fs_nat_block *nat_blk;
2203	struct nat_entry *ne, *cur;
2204	struct page *page = NULL;
2205
2206	/*
2207	 * there are two steps to flush nat entries:
2208	 * #1, flush nat entries to journal in current hot data summary block.
2209	 * #2, flush nat entries to nat page.
2210	 */
2211	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
 
2212		to_journal = false;
2213
2214	if (to_journal) {
2215		down_write(&curseg->journal_rwsem);
2216	} else {
2217		page = get_next_nat_page(sbi, start_nid);
 
 
 
2218		nat_blk = page_address(page);
2219		f2fs_bug_on(sbi, !nat_blk);
2220	}
2221
2222	/* flush dirty nats in nat entry set */
2223	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2224		struct f2fs_nat_entry *raw_ne;
2225		nid_t nid = nat_get_nid(ne);
2226		int offset;
2227
2228		if (nat_get_blkaddr(ne) == NEW_ADDR)
2229			continue;
2230
2231		if (to_journal) {
2232			offset = lookup_journal_in_cursum(journal,
2233							NAT_JOURNAL, nid, 1);
2234			f2fs_bug_on(sbi, offset < 0);
2235			raw_ne = &nat_in_journal(journal, offset);
2236			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2237		} else {
2238			raw_ne = &nat_blk->entries[nid - start_nid];
2239		}
2240		raw_nat_from_node_info(raw_ne, &ne->ni);
2241		nat_reset_flag(ne);
2242		__clear_nat_cache_dirty(NM_I(sbi), ne);
2243		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2244			add_free_nid(sbi, nid, false);
 
2245			spin_lock(&NM_I(sbi)->nid_list_lock);
2246			NM_I(sbi)->available_nids++;
2247			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248		}
2249	}
2250
2251	if (to_journal)
2252		up_write(&curseg->journal_rwsem);
2253	else
 
2254		f2fs_put_page(page, 1);
 
2255
2256	f2fs_bug_on(sbi, set->entry_cnt);
2257
2258	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2259	kmem_cache_free(nat_entry_set_slab, set);
 
 
2260}
2261
2262/*
2263 * This function is called during the checkpointing process.
2264 */
2265void flush_nat_entries(struct f2fs_sb_info *sbi)
2266{
2267	struct f2fs_nm_info *nm_i = NM_I(sbi);
2268	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2269	struct f2fs_journal *journal = curseg->journal;
2270	struct nat_entry_set *setvec[SETVEC_SIZE];
2271	struct nat_entry_set *set, *tmp;
2272	unsigned int found;
2273	nid_t set_idx = 0;
2274	LIST_HEAD(sets);
 
2275
2276	if (!nm_i->dirty_nat_cnt)
2277		return;
 
 
 
 
 
 
 
2278
2279	down_write(&nm_i->nat_tree_lock);
 
 
 
2280
2281	/*
2282	 * if there are no enough space in journal to store dirty nat
2283	 * entries, remove all entries from journal and merge them
2284	 * into nat entry set.
2285	 */
2286	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
 
2287		remove_nats_in_journal(sbi);
2288
2289	while ((found = __gang_lookup_nat_set(nm_i,
2290					set_idx, SETVEC_SIZE, setvec))) {
2291		unsigned idx;
 
2292		set_idx = setvec[found - 1]->set + 1;
2293		for (idx = 0; idx < found; idx++)
2294			__adjust_nat_entry_set(setvec[idx], &sets,
2295						MAX_NAT_JENTRIES(journal));
2296	}
2297
2298	/* flush dirty nats in nat entry set */
2299	list_for_each_entry_safe(set, tmp, &sets, set_list)
2300		__flush_nat_entry_set(sbi, set);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302	up_write(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2303
2304	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
 
 
 
 
 
 
2305}
2306
2307static int init_node_manager(struct f2fs_sb_info *sbi)
2308{
2309	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2310	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311	unsigned char *version_bitmap;
2312	unsigned int nat_segs, nat_blocks;
 
2313
2314	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2315
2316	/* segment_count_nat includes pair segment so divide to 2. */
2317	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2318	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2319
2320	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2321
2322	/* not used nids: 0, node, meta, (and root counted as valid node) */
2323	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2324							F2FS_RESERVED_NODE_NUM;
2325	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2326	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2327	nm_i->nat_cnt = 0;
2328	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2329	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2330	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
 
2331
2332	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2333	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2334	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2335	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2336	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2337	INIT_LIST_HEAD(&nm_i->nat_entries);
 
2338
2339	mutex_init(&nm_i->build_lock);
2340	spin_lock_init(&nm_i->nid_list_lock);
2341	init_rwsem(&nm_i->nat_tree_lock);
2342
2343	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2344	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2345	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2346	if (!version_bitmap)
2347		return -EFAULT;
2348
2349	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2350					GFP_KERNEL);
2351	if (!nm_i->nat_bitmap)
2352		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
2353	return 0;
2354}
2355
2356int build_node_manager(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357{
2358	int err;
2359
2360	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 
2361	if (!sbi->nm_info)
2362		return -ENOMEM;
2363
2364	err = init_node_manager(sbi);
2365	if (err)
2366		return err;
2367
2368	build_free_nids(sbi, true);
2369	return 0;
 
 
 
 
 
 
2370}
2371
2372void destroy_node_manager(struct f2fs_sb_info *sbi)
2373{
2374	struct f2fs_nm_info *nm_i = NM_I(sbi);
2375	struct free_nid *i, *next_i;
2376	struct nat_entry *natvec[NATVEC_SIZE];
2377	struct nat_entry_set *setvec[SETVEC_SIZE];
 
2378	nid_t nid = 0;
2379	unsigned int found;
2380
2381	if (!nm_i)
2382		return;
2383
2384	/* destroy free nid list */
2385	spin_lock(&nm_i->nid_list_lock);
2386	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2387									list) {
2388		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2389		spin_unlock(&nm_i->nid_list_lock);
2390		kmem_cache_free(free_nid_slab, i);
2391		spin_lock(&nm_i->nid_list_lock);
2392	}
2393	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2394	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2395	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2396	spin_unlock(&nm_i->nid_list_lock);
2397
2398	/* destroy nat cache */
2399	down_write(&nm_i->nat_tree_lock);
2400	while ((found = __gang_lookup_nat_cache(nm_i,
2401					nid, NATVEC_SIZE, natvec))) {
2402		unsigned idx;
2403
2404		nid = nat_get_nid(natvec[found - 1]) + 1;
2405		for (idx = 0; idx < found; idx++)
 
 
 
 
2406			__del_from_nat_cache(nm_i, natvec[idx]);
 
2407	}
2408	f2fs_bug_on(sbi, nm_i->nat_cnt);
2409
2410	/* destroy nat set cache */
2411	nid = 0;
 
2412	while ((found = __gang_lookup_nat_set(nm_i,
2413					nid, SETVEC_SIZE, setvec))) {
2414		unsigned idx;
2415
2416		nid = setvec[found - 1]->set + 1;
2417		for (idx = 0; idx < found; idx++) {
2418			/* entry_cnt is not zero, when cp_error was occurred */
2419			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2420			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2421			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2422		}
2423	}
2424	up_write(&nm_i->nat_tree_lock);
 
 
 
 
2425
2426	kfree(nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
2427	sbi->nm_info = NULL;
2428	kfree(nm_i);
2429}
2430
2431int __init create_node_manager_caches(void)
2432{
2433	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2434			sizeof(struct nat_entry));
2435	if (!nat_entry_slab)
2436		goto fail;
2437
2438	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2439			sizeof(struct free_nid));
2440	if (!free_nid_slab)
2441		goto destroy_nat_entry;
2442
2443	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2444			sizeof(struct nat_entry_set));
2445	if (!nat_entry_set_slab)
2446		goto destroy_free_nid;
 
 
 
 
 
2447	return 0;
2448
 
 
2449destroy_free_nid:
2450	kmem_cache_destroy(free_nid_slab);
2451destroy_nat_entry:
2452	kmem_cache_destroy(nat_entry_slab);
2453fail:
2454	return -ENOMEM;
2455}
2456
2457void destroy_node_manager_caches(void)
2458{
 
2459	kmem_cache_destroy(nat_entry_set_slab);
2460	kmem_cache_destroy(free_nid_slab);
2461	kmem_cache_destroy(nat_entry_slab);
2462}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/sched/mm.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
  40		return -EFSCORRUPTED;
  41	}
  42	return 0;
  43}
  44
  45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  46{
  47	struct f2fs_nm_info *nm_i = NM_I(sbi);
  48	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  49	struct sysinfo val;
  50	unsigned long avail_ram;
  51	unsigned long mem_size = 0;
  52	bool res = false;
  53
  54	if (!nm_i)
  55		return true;
  56
  57	si_meminfo(&val);
  58
  59	/* only uses low memory */
  60	avail_ram = val.totalram - val.totalhigh;
  61
  62	/*
  63	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
  64	 */
  65	if (type == FREE_NIDS) {
  66		mem_size = (nm_i->nid_cnt[FREE_NID] *
  67				sizeof(struct free_nid)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  69	} else if (type == NAT_ENTRIES) {
  70		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  71				sizeof(struct nat_entry)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  73		if (excess_cached_nats(sbi))
  74			res = false;
  75	} else if (type == DIRTY_DENTS) {
  76		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return false;
  78		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  79		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  80	} else if (type == INO_ENTRIES) {
  81		int i;
  82
  83		for (i = 0; i < MAX_INO_ENTRY; i++)
  84			mem_size += sbi->im[i].ino_num *
  85						sizeof(struct ino_entry);
  86		mem_size >>= PAGE_SHIFT;
  87		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  88	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
  89		enum extent_type etype = type == READ_EXTENT_CACHE ?
  90						EX_READ : EX_BLOCK_AGE;
  91		struct extent_tree_info *eti = &sbi->extent_tree[etype];
  92
  93		mem_size = (atomic_read(&eti->total_ext_tree) *
  94				sizeof(struct extent_tree) +
  95				atomic_read(&eti->total_ext_node) *
  96				sizeof(struct extent_node)) >> PAGE_SHIFT;
  97		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  98	} else if (type == DISCARD_CACHE) {
  99		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
 100				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 101		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 102	} else if (type == COMPRESS_PAGE) {
 103#ifdef CONFIG_F2FS_FS_COMPRESSION
 104		unsigned long free_ram = val.freeram;
 105
 106		/*
 107		 * free memory is lower than watermark or cached page count
 108		 * exceed threshold, deny caching compress page.
 109		 */
 110		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 111			(COMPRESS_MAPPING(sbi)->nrpages <
 112			 free_ram * sbi->compress_percent / 100);
 113#else
 114		res = false;
 115#endif
 116	} else {
 117		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 118			return true;
 119	}
 120	return res;
 121}
 122
 123static void clear_node_page_dirty(struct page *page)
 124{
 
 
 
 125	if (PageDirty(page)) {
 126		f2fs_clear_page_cache_dirty_tag(page_folio(page));
 
 
 
 
 
 127		clear_page_dirty_for_io(page);
 128		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 129	}
 130	ClearPageUptodate(page);
 131}
 132
 133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 134{
 135	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 
 136}
 137
 138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 139{
 140	struct page *src_page;
 141	struct page *dst_page;
 
 142	pgoff_t dst_off;
 143	void *src_addr;
 144	void *dst_addr;
 145	struct f2fs_nm_info *nm_i = NM_I(sbi);
 146
 147	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 148
 149	/* get current nat block page with lock */
 150	src_page = get_current_nat_page(sbi, nid);
 151	if (IS_ERR(src_page))
 152		return src_page;
 153	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 154	f2fs_bug_on(sbi, PageDirty(src_page));
 155
 156	src_addr = page_address(src_page);
 157	dst_addr = page_address(dst_page);
 158	memcpy(dst_addr, src_addr, PAGE_SIZE);
 159	set_page_dirty(dst_page);
 160	f2fs_put_page(src_page, 1);
 161
 162	set_to_next_nat(nm_i, nid);
 163
 164	return dst_page;
 165}
 166
 167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 168						nid_t nid, bool no_fail)
 169{
 170	struct nat_entry *new;
 171
 172	new = f2fs_kmem_cache_alloc(nat_entry_slab,
 173					GFP_F2FS_ZERO, no_fail, sbi);
 174	if (new) {
 175		nat_set_nid(new, nid);
 176		nat_reset_flag(new);
 177	}
 178	return new;
 179}
 180
 181static void __free_nat_entry(struct nat_entry *e)
 182{
 183	kmem_cache_free(nat_entry_slab, e);
 184}
 185
 186/* must be locked by nat_tree_lock */
 187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 188	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 189{
 190	if (no_fail)
 191		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 192	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 193		return NULL;
 194
 195	if (raw_ne)
 196		node_info_from_raw_nat(&ne->ni, raw_ne);
 197
 198	spin_lock(&nm_i->nat_list_lock);
 199	list_add_tail(&ne->list, &nm_i->nat_entries);
 200	spin_unlock(&nm_i->nat_list_lock);
 201
 202	nm_i->nat_cnt[TOTAL_NAT]++;
 203	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 204	return ne;
 205}
 206
 207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 208{
 209	struct nat_entry *ne;
 210
 211	ne = radix_tree_lookup(&nm_i->nat_root, n);
 212
 213	/* for recent accessed nat entry, move it to tail of lru list */
 214	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 215		spin_lock(&nm_i->nat_list_lock);
 216		if (!list_empty(&ne->list))
 217			list_move_tail(&ne->list, &nm_i->nat_entries);
 218		spin_unlock(&nm_i->nat_list_lock);
 219	}
 220
 221	return ne;
 222}
 223
 224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 225		nid_t start, unsigned int nr, struct nat_entry **ep)
 226{
 227	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 228}
 229
 230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 231{
 
 232	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 233	nm_i->nat_cnt[TOTAL_NAT]--;
 234	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 235	__free_nat_entry(e);
 236}
 237
 238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 239							struct nat_entry *ne)
 240{
 241	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 242	struct nat_entry_set *head;
 243
 
 
 
 244	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 245	if (!head) {
 246		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 247						GFP_NOFS, true, NULL);
 248
 249		INIT_LIST_HEAD(&head->entry_list);
 250		INIT_LIST_HEAD(&head->set_list);
 251		head->set = set;
 252		head->entry_cnt = 0;
 253		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 254	}
 255	return head;
 
 
 
 256}
 257
 258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 259						struct nat_entry *ne)
 260{
 
 261	struct nat_entry_set *head;
 262	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 263
 264	if (!new_ne)
 265		head = __grab_nat_entry_set(nm_i, ne);
 266
 267	/*
 268	 * update entry_cnt in below condition:
 269	 * 1. update NEW_ADDR to valid block address;
 270	 * 2. update old block address to new one;
 271	 */
 272	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 273				!get_nat_flag(ne, IS_DIRTY)))
 274		head->entry_cnt++;
 275
 276	set_nat_flag(ne, IS_PREALLOC, new_ne);
 277
 278	if (get_nat_flag(ne, IS_DIRTY))
 279		goto refresh_list;
 280
 281	nm_i->nat_cnt[DIRTY_NAT]++;
 282	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 283	set_nat_flag(ne, IS_DIRTY, true);
 284refresh_list:
 285	spin_lock(&nm_i->nat_list_lock);
 286	if (new_ne)
 287		list_del_init(&ne->list);
 288	else
 289		list_move_tail(&ne->list, &head->entry_list);
 290	spin_unlock(&nm_i->nat_list_lock);
 291}
 292
 293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 294		struct nat_entry_set *set, struct nat_entry *ne)
 295{
 296	spin_lock(&nm_i->nat_list_lock);
 297	list_move_tail(&ne->list, &nm_i->nat_entries);
 298	spin_unlock(&nm_i->nat_list_lock);
 299
 300	set_nat_flag(ne, IS_DIRTY, false);
 301	set->entry_cnt--;
 302	nm_i->nat_cnt[DIRTY_NAT]--;
 303	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 304}
 305
 306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 307		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 308{
 309	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 310							start, nr);
 311}
 312
 313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 314{
 315	return NODE_MAPPING(sbi) == page->mapping &&
 316			IS_DNODE(page) && is_cold_node(page);
 317}
 318
 319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 320{
 321	spin_lock_init(&sbi->fsync_node_lock);
 322	INIT_LIST_HEAD(&sbi->fsync_node_list);
 323	sbi->fsync_seg_id = 0;
 324	sbi->fsync_node_num = 0;
 325}
 326
 327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 328							struct page *page)
 329{
 330	struct fsync_node_entry *fn;
 331	unsigned long flags;
 332	unsigned int seq_id;
 333
 334	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 335					GFP_NOFS, true, NULL);
 336
 337	get_page(page);
 338	fn->page = page;
 339	INIT_LIST_HEAD(&fn->list);
 340
 341	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 342	list_add_tail(&fn->list, &sbi->fsync_node_list);
 343	fn->seq_id = sbi->fsync_seg_id++;
 344	seq_id = fn->seq_id;
 345	sbi->fsync_node_num++;
 346	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 347
 348	return seq_id;
 349}
 350
 351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 352{
 353	struct fsync_node_entry *fn;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 357	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 358		if (fn->page == page) {
 359			list_del(&fn->list);
 360			sbi->fsync_node_num--;
 361			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 362			kmem_cache_free(fsync_node_entry_slab, fn);
 363			put_page(page);
 364			return;
 365		}
 366	}
 367	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 368	f2fs_bug_on(sbi, 1);
 369}
 370
 371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 372{
 373	unsigned long flags;
 374
 375	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 376	sbi->fsync_seg_id = 0;
 377	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 378}
 379
 380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 381{
 382	struct f2fs_nm_info *nm_i = NM_I(sbi);
 383	struct nat_entry *e;
 384	bool need = false;
 385
 386	f2fs_down_read(&nm_i->nat_tree_lock);
 387	e = __lookup_nat_cache(nm_i, nid);
 388	if (e) {
 389		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 390				!get_nat_flag(e, HAS_FSYNCED_INODE))
 391			need = true;
 392	}
 393	f2fs_up_read(&nm_i->nat_tree_lock);
 394	return need;
 395}
 396
 397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 398{
 399	struct f2fs_nm_info *nm_i = NM_I(sbi);
 400	struct nat_entry *e;
 401	bool is_cp = true;
 402
 403	f2fs_down_read(&nm_i->nat_tree_lock);
 404	e = __lookup_nat_cache(nm_i, nid);
 405	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 406		is_cp = false;
 407	f2fs_up_read(&nm_i->nat_tree_lock);
 408	return is_cp;
 409}
 410
 411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 412{
 413	struct f2fs_nm_info *nm_i = NM_I(sbi);
 414	struct nat_entry *e;
 415	bool need_update = true;
 416
 417	f2fs_down_read(&nm_i->nat_tree_lock);
 418	e = __lookup_nat_cache(nm_i, ino);
 419	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 420			(get_nat_flag(e, IS_CHECKPOINTED) ||
 421			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 422		need_update = false;
 423	f2fs_up_read(&nm_i->nat_tree_lock);
 424	return need_update;
 425}
 426
 427/* must be locked by nat_tree_lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 429						struct f2fs_nat_entry *ne)
 430{
 431	struct f2fs_nm_info *nm_i = NM_I(sbi);
 432	struct nat_entry *new, *e;
 433
 434	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
 435	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
 436		return;
 437
 438	new = __alloc_nat_entry(sbi, nid, false);
 439	if (!new)
 440		return;
 441
 442	f2fs_down_write(&nm_i->nat_tree_lock);
 443	e = __lookup_nat_cache(nm_i, nid);
 444	if (!e)
 445		e = __init_nat_entry(nm_i, new, ne, false);
 446	else
 
 447		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 448				nat_get_blkaddr(e) !=
 449					le32_to_cpu(ne->block_addr) ||
 450				nat_get_version(e) != ne->version);
 451	f2fs_up_write(&nm_i->nat_tree_lock);
 452	if (e != new)
 453		__free_nat_entry(new);
 454}
 455
 456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 457			block_t new_blkaddr, bool fsync_done)
 458{
 459	struct f2fs_nm_info *nm_i = NM_I(sbi);
 460	struct nat_entry *e;
 461	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 462
 463	f2fs_down_write(&nm_i->nat_tree_lock);
 464	e = __lookup_nat_cache(nm_i, ni->nid);
 465	if (!e) {
 466		e = __init_nat_entry(nm_i, new, NULL, true);
 467		copy_node_info(&e->ni, ni);
 468		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 469	} else if (new_blkaddr == NEW_ADDR) {
 470		/*
 471		 * when nid is reallocated,
 472		 * previous nat entry can be remained in nat cache.
 473		 * So, reinitialize it with new information.
 474		 */
 475		copy_node_info(&e->ni, ni);
 476		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 477	}
 478	/* let's free early to reduce memory consumption */
 479	if (e != new)
 480		__free_nat_entry(new);
 481
 482	/* sanity check */
 483	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 484	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 485			new_blkaddr == NULL_ADDR);
 486	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 487			new_blkaddr == NEW_ADDR);
 488	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 489			new_blkaddr == NEW_ADDR);
 490
 491	/* increment version no as node is removed */
 492	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 493		unsigned char version = nat_get_version(e);
 
 494
 495		nat_set_version(e, inc_node_version(version));
 
 
 496	}
 497
 498	/* change address */
 499	nat_set_blkaddr(e, new_blkaddr);
 500	if (!__is_valid_data_blkaddr(new_blkaddr))
 501		set_nat_flag(e, IS_CHECKPOINTED, false);
 502	__set_nat_cache_dirty(nm_i, e);
 503
 504	/* update fsync_mark if its inode nat entry is still alive */
 505	if (ni->nid != ni->ino)
 506		e = __lookup_nat_cache(nm_i, ni->ino);
 507	if (e) {
 508		if (fsync_done && ni->nid == ni->ino)
 509			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 510		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 511	}
 512	f2fs_up_write(&nm_i->nat_tree_lock);
 513}
 514
 515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 516{
 517	struct f2fs_nm_info *nm_i = NM_I(sbi);
 518	int nr = nr_shrink;
 519
 520	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
 521		return 0;
 522
 523	spin_lock(&nm_i->nat_list_lock);
 524	while (nr_shrink) {
 525		struct nat_entry *ne;
 526
 527		if (list_empty(&nm_i->nat_entries))
 528			break;
 529
 530		ne = list_first_entry(&nm_i->nat_entries,
 531					struct nat_entry, list);
 532		list_del(&ne->list);
 533		spin_unlock(&nm_i->nat_list_lock);
 534
 535		__del_from_nat_cache(nm_i, ne);
 536		nr_shrink--;
 537
 538		spin_lock(&nm_i->nat_list_lock);
 539	}
 540	spin_unlock(&nm_i->nat_list_lock);
 541
 542	f2fs_up_write(&nm_i->nat_tree_lock);
 543	return nr - nr_shrink;
 544}
 545
 546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 547				struct node_info *ni, bool checkpoint_context)
 
 
 548{
 549	struct f2fs_nm_info *nm_i = NM_I(sbi);
 550	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 551	struct f2fs_journal *journal = curseg->journal;
 552	nid_t start_nid = START_NID(nid);
 553	struct f2fs_nat_block *nat_blk;
 554	struct page *page = NULL;
 555	struct f2fs_nat_entry ne;
 556	struct nat_entry *e;
 557	pgoff_t index;
 558	block_t blkaddr;
 559	int i;
 560
 561	ni->nid = nid;
 562retry:
 563	/* Check nat cache */
 564	f2fs_down_read(&nm_i->nat_tree_lock);
 565	e = __lookup_nat_cache(nm_i, nid);
 566	if (e) {
 567		ni->ino = nat_get_ino(e);
 568		ni->blk_addr = nat_get_blkaddr(e);
 569		ni->version = nat_get_version(e);
 570		f2fs_up_read(&nm_i->nat_tree_lock);
 571		return 0;
 572	}
 573
 574	/*
 575	 * Check current segment summary by trying to grab journal_rwsem first.
 576	 * This sem is on the critical path on the checkpoint requiring the above
 577	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 578	 * while not bothering checkpoint.
 579	 */
 580	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
 581		down_read(&curseg->journal_rwsem);
 582	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
 583				!down_read_trylock(&curseg->journal_rwsem)) {
 584		f2fs_up_read(&nm_i->nat_tree_lock);
 585		goto retry;
 586	}
 587
 588	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 
 
 589	if (i >= 0) {
 590		ne = nat_in_journal(journal, i);
 591		node_info_from_raw_nat(ni, &ne);
 592	}
 593	up_read(&curseg->journal_rwsem);
 594	if (i >= 0) {
 595		f2fs_up_read(&nm_i->nat_tree_lock);
 596		goto cache;
 597	}
 598
 599	/* Fill node_info from nat page */
 600	index = current_nat_addr(sbi, nid);
 601	f2fs_up_read(&nm_i->nat_tree_lock);
 602
 603	page = f2fs_get_meta_page(sbi, index);
 604	if (IS_ERR(page))
 605		return PTR_ERR(page);
 606
 607	nat_blk = (struct f2fs_nat_block *)page_address(page);
 608	ne = nat_blk->entries[nid - start_nid];
 609	node_info_from_raw_nat(ni, &ne);
 610	f2fs_put_page(page, 1);
 611cache:
 612	blkaddr = le32_to_cpu(ne.block_addr);
 613	if (__is_valid_data_blkaddr(blkaddr) &&
 614		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 615		return -EFAULT;
 616
 617	/* cache nat entry */
 
 618	cache_nat_entry(sbi, nid, &ne);
 619	return 0;
 620}
 621
 622/*
 623 * readahead MAX_RA_NODE number of node pages.
 624 */
 625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 626{
 627	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 628	struct blk_plug plug;
 629	int i, end;
 630	nid_t nid;
 631
 632	blk_start_plug(&plug);
 633
 634	/* Then, try readahead for siblings of the desired node */
 635	end = start + n;
 636	end = min(end, (int)NIDS_PER_BLOCK);
 637	for (i = start; i < end; i++) {
 638		nid = get_nid(parent, i, false);
 639		f2fs_ra_node_page(sbi, nid);
 640	}
 641
 642	blk_finish_plug(&plug);
 643}
 644
 645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 646{
 647	const long direct_index = ADDRS_PER_INODE(dn->inode);
 648	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 649	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 650	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 651	int cur_level = dn->cur_level;
 652	int max_level = dn->max_level;
 653	pgoff_t base = 0;
 654
 655	if (!dn->max_level)
 656		return pgofs + 1;
 657
 658	while (max_level-- > cur_level)
 659		skipped_unit *= NIDS_PER_BLOCK;
 660
 661	switch (dn->max_level) {
 662	case 3:
 663		base += 2 * indirect_blks;
 664		fallthrough;
 665	case 2:
 666		base += 2 * direct_blks;
 667		fallthrough;
 668	case 1:
 669		base += direct_index;
 670		break;
 671	default:
 672		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 673	}
 674
 675	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 676}
 677
 678/*
 679 * The maximum depth is four.
 680 * Offset[0] will have raw inode offset.
 681 */
 682static int get_node_path(struct inode *inode, long block,
 683				int offset[4], unsigned int noffset[4])
 684{
 685	const long direct_index = ADDRS_PER_INODE(inode);
 686	const long direct_blks = ADDRS_PER_BLOCK(inode);
 687	const long dptrs_per_blk = NIDS_PER_BLOCK;
 688	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 689	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 690	int n = 0;
 691	int level = 0;
 692
 693	noffset[0] = 0;
 694
 695	if (block < direct_index) {
 696		offset[n] = block;
 697		goto got;
 698	}
 699	block -= direct_index;
 700	if (block < direct_blks) {
 701		offset[n++] = NODE_DIR1_BLOCK;
 702		noffset[n] = 1;
 703		offset[n] = block;
 704		level = 1;
 705		goto got;
 706	}
 707	block -= direct_blks;
 708	if (block < direct_blks) {
 709		offset[n++] = NODE_DIR2_BLOCK;
 710		noffset[n] = 2;
 711		offset[n] = block;
 712		level = 1;
 713		goto got;
 714	}
 715	block -= direct_blks;
 716	if (block < indirect_blks) {
 717		offset[n++] = NODE_IND1_BLOCK;
 718		noffset[n] = 3;
 719		offset[n++] = block / direct_blks;
 720		noffset[n] = 4 + offset[n - 1];
 721		offset[n] = block % direct_blks;
 722		level = 2;
 723		goto got;
 724	}
 725	block -= indirect_blks;
 726	if (block < indirect_blks) {
 727		offset[n++] = NODE_IND2_BLOCK;
 728		noffset[n] = 4 + dptrs_per_blk;
 729		offset[n++] = block / direct_blks;
 730		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 731		offset[n] = block % direct_blks;
 732		level = 2;
 733		goto got;
 734	}
 735	block -= indirect_blks;
 736	if (block < dindirect_blks) {
 737		offset[n++] = NODE_DIND_BLOCK;
 738		noffset[n] = 5 + (dptrs_per_blk * 2);
 739		offset[n++] = block / indirect_blks;
 740		noffset[n] = 6 + (dptrs_per_blk * 2) +
 741			      offset[n - 1] * (dptrs_per_blk + 1);
 742		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 743		noffset[n] = 7 + (dptrs_per_blk * 2) +
 744			      offset[n - 2] * (dptrs_per_blk + 1) +
 745			      offset[n - 1];
 746		offset[n] = block % direct_blks;
 747		level = 3;
 748		goto got;
 749	} else {
 750		return -E2BIG;
 751	}
 752got:
 753	return level;
 754}
 755
 756/*
 757 * Caller should call f2fs_put_dnode(dn).
 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 
 760 */
 761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 762{
 763	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 764	struct page *npage[4];
 765	struct page *parent = NULL;
 766	int offset[4];
 767	unsigned int noffset[4];
 768	nid_t nids[4];
 769	int level, i = 0;
 770	int err = 0;
 771
 772	level = get_node_path(dn->inode, index, offset, noffset);
 773	if (level < 0)
 774		return level;
 775
 776	nids[0] = dn->inode->i_ino;
 777	npage[0] = dn->inode_page;
 778
 779	if (!npage[0]) {
 780		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 781		if (IS_ERR(npage[0]))
 782			return PTR_ERR(npage[0]);
 783	}
 784
 785	/* if inline_data is set, should not report any block indices */
 786	if (f2fs_has_inline_data(dn->inode) && index) {
 787		err = -ENOENT;
 788		f2fs_put_page(npage[0], 1);
 789		goto release_out;
 790	}
 791
 792	parent = npage[0];
 793	if (level != 0)
 794		nids[1] = get_nid(parent, offset[0], true);
 795	dn->inode_page = npage[0];
 796	dn->inode_page_locked = true;
 797
 798	/* get indirect or direct nodes */
 799	for (i = 1; i <= level; i++) {
 800		bool done = false;
 801
 802		if (!nids[i] && mode == ALLOC_NODE) {
 803			/* alloc new node */
 804			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 805				err = -ENOSPC;
 806				goto release_pages;
 807			}
 808
 809			dn->nid = nids[i];
 810			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 811			if (IS_ERR(npage[i])) {
 812				f2fs_alloc_nid_failed(sbi, nids[i]);
 813				err = PTR_ERR(npage[i]);
 814				goto release_pages;
 815			}
 816
 817			set_nid(parent, offset[i - 1], nids[i], i == 1);
 818			f2fs_alloc_nid_done(sbi, nids[i]);
 819			done = true;
 820		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 821			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 822			if (IS_ERR(npage[i])) {
 823				err = PTR_ERR(npage[i]);
 824				goto release_pages;
 825			}
 826			done = true;
 827		}
 828		if (i == 1) {
 829			dn->inode_page_locked = false;
 830			unlock_page(parent);
 831		} else {
 832			f2fs_put_page(parent, 1);
 833		}
 834
 835		if (!done) {
 836			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 837			if (IS_ERR(npage[i])) {
 838				err = PTR_ERR(npage[i]);
 839				f2fs_put_page(npage[0], 0);
 840				goto release_out;
 841			}
 842		}
 843		if (i < level) {
 844			parent = npage[i];
 845			nids[i + 1] = get_nid(parent, offset[i], false);
 846		}
 847	}
 848	dn->nid = nids[level];
 849	dn->ofs_in_node = offset[level];
 850	dn->node_page = npage[level];
 851	dn->data_blkaddr = f2fs_data_blkaddr(dn);
 852
 853	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 854					f2fs_sb_has_readonly(sbi)) {
 855		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
 856		unsigned int ofs_in_node = dn->ofs_in_node;
 857		pgoff_t fofs = index;
 858		unsigned int c_len;
 859		block_t blkaddr;
 860
 861		/* should align fofs and ofs_in_node to cluster_size */
 862		if (fofs % cluster_size) {
 863			fofs = round_down(fofs, cluster_size);
 864			ofs_in_node = round_down(ofs_in_node, cluster_size);
 865		}
 866
 867		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
 868		if (!c_len)
 869			goto out;
 870
 871		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
 872		if (blkaddr == COMPRESS_ADDR)
 873			blkaddr = data_blkaddr(dn->inode, dn->node_page,
 874						ofs_in_node + 1);
 875
 876		f2fs_update_read_extent_tree_range_compressed(dn->inode,
 877					fofs, blkaddr, cluster_size, c_len);
 878	}
 879out:
 880	return 0;
 881
 882release_pages:
 883	f2fs_put_page(parent, 1);
 884	if (i > 1)
 885		f2fs_put_page(npage[0], 0);
 886release_out:
 887	dn->inode_page = NULL;
 888	dn->node_page = NULL;
 889	if (err == -ENOENT) {
 890		dn->cur_level = i;
 891		dn->max_level = level;
 892		dn->ofs_in_node = offset[level];
 893	}
 894	return err;
 895}
 896
 897static int truncate_node(struct dnode_of_data *dn)
 898{
 899	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 900	struct node_info ni;
 901	int err;
 902	pgoff_t index;
 903
 904	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
 905	if (err)
 906		return err;
 907
 908	if (ni.blk_addr != NEW_ADDR &&
 909		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
 910		f2fs_err_ratelimited(sbi,
 911			"nat entry is corrupted, run fsck to fix it, ino:%u, "
 912			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
 913		set_sbi_flag(sbi, SBI_NEED_FSCK);
 914		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
 915		return -EFSCORRUPTED;
 916	}
 
 917
 918	/* Deallocate node address */
 919	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 920	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 921	set_node_addr(sbi, &ni, NULL_ADDR, false);
 922
 923	if (dn->nid == dn->inode->i_ino) {
 924		f2fs_remove_orphan_inode(sbi, dn->nid);
 925		dec_valid_inode_count(sbi);
 926		f2fs_inode_synced(dn->inode);
 927	}
 928
 929	clear_node_page_dirty(dn->node_page);
 930	set_sbi_flag(sbi, SBI_IS_DIRTY);
 931
 932	index = page_folio(dn->node_page)->index;
 933	f2fs_put_page(dn->node_page, 1);
 934
 935	invalidate_mapping_pages(NODE_MAPPING(sbi),
 936			index, index);
 937
 938	dn->node_page = NULL;
 939	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 940
 941	return 0;
 942}
 943
 944static int truncate_dnode(struct dnode_of_data *dn)
 945{
 946	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 947	struct page *page;
 948	int err;
 949
 950	if (dn->nid == 0)
 951		return 1;
 952
 953	/* get direct node */
 954	page = f2fs_get_node_page(sbi, dn->nid);
 955	if (PTR_ERR(page) == -ENOENT)
 956		return 1;
 957	else if (IS_ERR(page))
 958		return PTR_ERR(page);
 959
 960	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
 961		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
 962				dn->inode->i_ino, dn->nid, ino_of_node(page));
 963		set_sbi_flag(sbi, SBI_NEED_FSCK);
 964		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
 965		f2fs_put_page(page, 1);
 966		return -EFSCORRUPTED;
 967	}
 968
 969	/* Make dnode_of_data for parameter */
 970	dn->node_page = page;
 971	dn->ofs_in_node = 0;
 972	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
 973	err = truncate_node(dn);
 974	if (err) {
 975		f2fs_put_page(page, 1);
 976		return err;
 977	}
 978
 979	return 1;
 980}
 981
 982static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 983						int ofs, int depth)
 984{
 985	struct dnode_of_data rdn = *dn;
 986	struct page *page;
 987	struct f2fs_node *rn;
 988	nid_t child_nid;
 989	unsigned int child_nofs;
 990	int freed = 0;
 991	int i, ret;
 992
 993	if (dn->nid == 0)
 994		return NIDS_PER_BLOCK + 1;
 995
 996	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 997
 998	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 999	if (IS_ERR(page)) {
1000		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1001		return PTR_ERR(page);
1002	}
1003
1004	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1005
1006	rn = F2FS_NODE(page);
1007	if (depth < 3) {
1008		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1009			child_nid = le32_to_cpu(rn->in.nid[i]);
1010			if (child_nid == 0)
1011				continue;
1012			rdn.nid = child_nid;
1013			ret = truncate_dnode(&rdn);
1014			if (ret < 0)
1015				goto out_err;
1016			if (set_nid(page, i, 0, false))
1017				dn->node_changed = true;
1018		}
1019	} else {
1020		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1021		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1022			child_nid = le32_to_cpu(rn->in.nid[i]);
1023			if (child_nid == 0) {
1024				child_nofs += NIDS_PER_BLOCK + 1;
1025				continue;
1026			}
1027			rdn.nid = child_nid;
1028			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1029			if (ret == (NIDS_PER_BLOCK + 1)) {
1030				if (set_nid(page, i, 0, false))
1031					dn->node_changed = true;
1032				child_nofs += ret;
1033			} else if (ret < 0 && ret != -ENOENT) {
1034				goto out_err;
1035			}
1036		}
1037		freed = child_nofs;
1038	}
1039
1040	if (!ofs) {
1041		/* remove current indirect node */
1042		dn->node_page = page;
1043		ret = truncate_node(dn);
1044		if (ret)
1045			goto out_err;
1046		freed++;
1047	} else {
1048		f2fs_put_page(page, 1);
1049	}
1050	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1051	return freed;
1052
1053out_err:
1054	f2fs_put_page(page, 1);
1055	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1056	return ret;
1057}
1058
1059static int truncate_partial_nodes(struct dnode_of_data *dn,
1060			struct f2fs_inode *ri, int *offset, int depth)
1061{
1062	struct page *pages[2];
1063	nid_t nid[3];
1064	nid_t child_nid;
1065	int err = 0;
1066	int i;
1067	int idx = depth - 2;
1068
1069	nid[0] = get_nid(dn->inode_page, offset[0], true);
1070	if (!nid[0])
1071		return 0;
1072
1073	/* get indirect nodes in the path */
1074	for (i = 0; i < idx + 1; i++) {
1075		/* reference count'll be increased */
1076		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1077		if (IS_ERR(pages[i])) {
1078			err = PTR_ERR(pages[i]);
1079			idx = i - 1;
1080			goto fail;
1081		}
1082		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1083	}
1084
1085	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1086
1087	/* free direct nodes linked to a partial indirect node */
1088	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1089		child_nid = get_nid(pages[idx], i, false);
1090		if (!child_nid)
1091			continue;
1092		dn->nid = child_nid;
1093		err = truncate_dnode(dn);
1094		if (err < 0)
1095			goto fail;
1096		if (set_nid(pages[idx], i, 0, false))
1097			dn->node_changed = true;
1098	}
1099
1100	if (offset[idx + 1] == 0) {
1101		dn->node_page = pages[idx];
1102		dn->nid = nid[idx];
1103		err = truncate_node(dn);
1104		if (err)
1105			goto fail;
1106	} else {
1107		f2fs_put_page(pages[idx], 1);
1108	}
1109	offset[idx]++;
1110	offset[idx + 1] = 0;
1111	idx--;
1112fail:
1113	for (i = idx; i >= 0; i--)
1114		f2fs_put_page(pages[i], 1);
1115
1116	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1117
1118	return err;
1119}
1120
1121/*
1122 * All the block addresses of data and nodes should be nullified.
1123 */
1124int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1125{
1126	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127	int err = 0, cont = 1;
1128	int level, offset[4], noffset[4];
1129	unsigned int nofs = 0;
1130	struct f2fs_inode *ri;
1131	struct dnode_of_data dn;
1132	struct page *page;
1133
1134	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1135
1136	level = get_node_path(inode, from, offset, noffset);
1137	if (level < 0) {
1138		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1139		return level;
1140	}
1141
1142	page = f2fs_get_node_page(sbi, inode->i_ino);
1143	if (IS_ERR(page)) {
1144		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1145		return PTR_ERR(page);
1146	}
1147
1148	set_new_dnode(&dn, inode, page, NULL, 0);
1149	unlock_page(page);
1150
1151	ri = F2FS_INODE(page);
1152	switch (level) {
1153	case 0:
1154	case 1:
1155		nofs = noffset[1];
1156		break;
1157	case 2:
1158		nofs = noffset[1];
1159		if (!offset[level - 1])
1160			goto skip_partial;
1161		err = truncate_partial_nodes(&dn, ri, offset, level);
1162		if (err < 0 && err != -ENOENT)
1163			goto fail;
1164		nofs += 1 + NIDS_PER_BLOCK;
1165		break;
1166	case 3:
1167		nofs = 5 + 2 * NIDS_PER_BLOCK;
1168		if (!offset[level - 1])
1169			goto skip_partial;
1170		err = truncate_partial_nodes(&dn, ri, offset, level);
1171		if (err < 0 && err != -ENOENT)
1172			goto fail;
1173		break;
1174	default:
1175		BUG();
1176	}
1177
1178skip_partial:
1179	while (cont) {
1180		dn.nid = get_nid(page, offset[0], true);
1181		switch (offset[0]) {
1182		case NODE_DIR1_BLOCK:
1183		case NODE_DIR2_BLOCK:
1184			err = truncate_dnode(&dn);
1185			break;
1186
1187		case NODE_IND1_BLOCK:
1188		case NODE_IND2_BLOCK:
1189			err = truncate_nodes(&dn, nofs, offset[1], 2);
1190			break;
1191
1192		case NODE_DIND_BLOCK:
1193			err = truncate_nodes(&dn, nofs, offset[1], 3);
1194			cont = 0;
1195			break;
1196
1197		default:
1198			BUG();
1199		}
1200		if (err == -ENOENT) {
1201			set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1202			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1203			f2fs_err_ratelimited(sbi,
1204				"truncate node fail, ino:%lu, nid:%u, "
1205				"offset[0]:%d, offset[1]:%d, nofs:%d",
1206				inode->i_ino, dn.nid, offset[0],
1207				offset[1], nofs);
1208			err = 0;
1209		}
1210		if (err < 0)
1211			goto fail;
1212		if (offset[1] == 0 && get_nid(page, offset[0], true)) {
 
1213			lock_page(page);
1214			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1215			set_nid(page, offset[0], 0, true);
 
 
1216			unlock_page(page);
1217		}
1218		offset[1] = 0;
1219		offset[0]++;
1220		nofs += err;
1221	}
1222fail:
1223	f2fs_put_page(page, 0);
1224	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1225	return err > 0 ? 0 : err;
1226}
1227
1228/* caller must lock inode page */
1229int f2fs_truncate_xattr_node(struct inode *inode)
1230{
1231	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1233	struct dnode_of_data dn;
1234	struct page *npage;
1235	int err;
1236
1237	if (!nid)
1238		return 0;
1239
1240	npage = f2fs_get_node_page(sbi, nid);
1241	if (IS_ERR(npage))
1242		return PTR_ERR(npage);
1243
1244	set_new_dnode(&dn, inode, NULL, npage, nid);
1245	err = truncate_node(&dn);
1246	if (err) {
1247		f2fs_put_page(npage, 1);
1248		return err;
1249	}
1250
1251	f2fs_i_xnid_write(inode, 0);
1252
 
 
 
1253	return 0;
1254}
1255
1256/*
1257 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1258 * f2fs_unlock_op().
1259 */
1260int f2fs_remove_inode_page(struct inode *inode)
1261{
1262	struct dnode_of_data dn;
1263	int err;
1264
1265	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1267	if (err)
1268		return err;
1269
1270	err = f2fs_truncate_xattr_node(inode);
1271	if (err) {
1272		f2fs_put_dnode(&dn);
1273		return err;
1274	}
1275
1276	/* remove potential inline_data blocks */
1277	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1278				S_ISLNK(inode->i_mode))
1279		f2fs_truncate_data_blocks_range(&dn, 1);
1280
1281	/* 0 is possible, after f2fs_new_inode() has failed */
1282	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1283		f2fs_put_dnode(&dn);
1284		return -EIO;
1285	}
1286
1287	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1288		f2fs_warn(F2FS_I_SB(inode),
1289			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1290			inode->i_ino, (unsigned long long)inode->i_blocks);
1291		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1292	}
1293
1294	/* will put inode & node pages */
1295	err = truncate_node(&dn);
1296	if (err) {
1297		f2fs_put_dnode(&dn);
1298		return err;
1299	}
1300	return 0;
1301}
1302
1303struct page *f2fs_new_inode_page(struct inode *inode)
1304{
1305	struct dnode_of_data dn;
1306
1307	/* allocate inode page for new inode */
1308	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1309
1310	/* caller should f2fs_put_page(page, 1); */
1311	return f2fs_new_node_page(&dn, 0);
1312}
1313
1314struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
 
1315{
1316	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1317	struct node_info new_ni;
1318	struct page *page;
1319	int err;
1320
1321	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1322		return ERR_PTR(-EPERM);
1323
1324	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1325	if (!page)
1326		return ERR_PTR(-ENOMEM);
1327
1328	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
 
1329		goto fail;
 
 
 
1330
1331#ifdef CONFIG_F2FS_CHECK_FS
1332	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1333	if (err) {
1334		dec_valid_node_count(sbi, dn->inode, !ofs);
1335		goto fail;
1336	}
1337	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1338		err = -EFSCORRUPTED;
1339		dec_valid_node_count(sbi, dn->inode, !ofs);
1340		set_sbi_flag(sbi, SBI_NEED_FSCK);
1341		f2fs_warn_ratelimited(sbi,
1342			"f2fs_new_node_page: inconsistent nat entry, "
1343			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1344			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1345			new_ni.version, new_ni.flag);
1346		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1347		goto fail;
1348	}
1349#endif
1350	new_ni.nid = dn->nid;
1351	new_ni.ino = dn->inode->i_ino;
1352	new_ni.blk_addr = NULL_ADDR;
1353	new_ni.flag = 0;
1354	new_ni.version = 0;
1355	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1356
1357	f2fs_wait_on_page_writeback(page, NODE, true, true);
1358	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1359	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1360	if (!PageUptodate(page))
1361		SetPageUptodate(page);
1362	if (set_page_dirty(page))
1363		dn->node_changed = true;
1364
1365	if (f2fs_has_xattr_block(ofs))
1366		f2fs_i_xnid_write(dn->inode, dn->nid);
1367
1368	if (ofs == 0)
1369		inc_valid_inode_count(sbi);
1370	return page;
 
1371fail:
1372	clear_node_page_dirty(page);
1373	f2fs_put_page(page, 1);
1374	return ERR_PTR(err);
1375}
1376
1377/*
1378 * Caller should do after getting the following values.
1379 * 0: f2fs_put_page(page, 0)
1380 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1381 */
1382static int read_node_page(struct page *page, blk_opf_t op_flags)
1383{
1384	struct folio *folio = page_folio(page);
1385	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1386	struct node_info ni;
1387	struct f2fs_io_info fio = {
1388		.sbi = sbi,
1389		.type = NODE,
1390		.op = REQ_OP_READ,
1391		.op_flags = op_flags,
1392		.page = page,
1393		.encrypted_page = NULL,
1394	};
1395	int err;
1396
1397	if (folio_test_uptodate(folio)) {
1398		if (!f2fs_inode_chksum_verify(sbi, page)) {
1399			folio_clear_uptodate(folio);
1400			return -EFSBADCRC;
1401		}
1402		return LOCKED_PAGE;
1403	}
1404
1405	err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1406	if (err)
1407		return err;
1408
1409	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1410	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1411		folio_clear_uptodate(folio);
1412		return -ENOENT;
1413	}
1414
1415	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1416
1417	err = f2fs_submit_page_bio(&fio);
1418
1419	if (!err)
1420		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1421
1422	return err;
1423}
1424
1425/*
1426 * Readahead a node page
1427 */
1428void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1429{
1430	struct page *apage;
1431	int err;
1432
1433	if (!nid)
1434		return;
1435	if (f2fs_check_nid_range(sbi, nid))
1436		return;
1437
1438	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
 
 
1439	if (apage)
1440		return;
1441
1442	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1443	if (!apage)
1444		return;
1445
1446	err = read_node_page(apage, REQ_RAHEAD);
1447	f2fs_put_page(apage, err ? 1 : 0);
1448}
1449
1450static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1451					struct page *parent, int start)
1452{
1453	struct page *page;
1454	int err;
1455
1456	if (!nid)
1457		return ERR_PTR(-ENOENT);
1458	if (f2fs_check_nid_range(sbi, nid))
1459		return ERR_PTR(-EINVAL);
1460repeat:
1461	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1462	if (!page)
1463		return ERR_PTR(-ENOMEM);
1464
1465	err = read_node_page(page, 0);
1466	if (err < 0) {
1467		goto out_put_err;
 
1468	} else if (err == LOCKED_PAGE) {
1469		err = 0;
1470		goto page_hit;
1471	}
1472
1473	if (parent)
1474		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1475
1476	lock_page(page);
1477
1478	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1479		f2fs_put_page(page, 1);
1480		goto repeat;
1481	}
1482
1483	if (unlikely(!PageUptodate(page))) {
1484		err = -EIO;
1485		goto out_err;
1486	}
1487
1488	if (!f2fs_inode_chksum_verify(sbi, page)) {
1489		err = -EFSBADCRC;
1490		goto out_err;
1491	}
1492page_hit:
1493	if (likely(nid == nid_of_node(page)))
1494		return page;
1495
1496	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1497			  nid, nid_of_node(page), ino_of_node(page),
1498			  ofs_of_node(page), cpver_of_node(page),
1499			  next_blkaddr_of_node(page));
1500	set_sbi_flag(sbi, SBI_NEED_FSCK);
1501	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1502	err = -EFSCORRUPTED;
1503out_err:
1504	ClearPageUptodate(page);
1505out_put_err:
1506	/* ENOENT comes from read_node_page which is not an error. */
1507	if (err != -ENOENT)
1508		f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1509	f2fs_put_page(page, 1);
1510	return ERR_PTR(err);
1511}
1512
1513struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1514{
1515	return __get_node_page(sbi, nid, NULL, 0);
1516}
1517
1518struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1519{
1520	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1521	nid_t nid = get_nid(parent, start, false);
1522
1523	return __get_node_page(sbi, nid, parent, start);
1524}
1525
1526static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1527{
1528	struct inode *inode;
1529	struct page *page;
1530	int ret;
1531
1532	/* should flush inline_data before evict_inode */
1533	inode = ilookup(sbi->sb, ino);
1534	if (!inode)
1535		return;
1536
1537	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1538					FGP_LOCK|FGP_NOWAIT, 0);
1539	if (!page)
1540		goto iput_out;
1541
1542	if (!PageUptodate(page))
1543		goto page_out;
1544
1545	if (!PageDirty(page))
1546		goto page_out;
1547
1548	if (!clear_page_dirty_for_io(page))
1549		goto page_out;
1550
1551	ret = f2fs_write_inline_data(inode, page_folio(page));
1552	inode_dec_dirty_pages(inode);
1553	f2fs_remove_dirty_inode(inode);
1554	if (ret)
1555		set_page_dirty(page);
1556page_out:
1557	f2fs_put_page(page, 1);
1558iput_out:
1559	iput(inode);
1560}
1561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1563{
1564	pgoff_t index;
1565	struct folio_batch fbatch;
1566	struct page *last_page = NULL;
1567	int nr_folios;
1568
1569	folio_batch_init(&fbatch);
1570	index = 0;
 
1571
1572	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1573					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1574					&fbatch))) {
1575		int i;
 
 
 
1576
1577		for (i = 0; i < nr_folios; i++) {
1578			struct page *page = &fbatch.folios[i]->page;
1579
1580			if (unlikely(f2fs_cp_error(sbi))) {
1581				f2fs_put_page(last_page, 0);
1582				folio_batch_release(&fbatch);
1583				return ERR_PTR(-EIO);
1584			}
1585
1586			if (!IS_DNODE(page) || !is_cold_node(page))
1587				continue;
1588			if (ino_of_node(page) != ino)
1589				continue;
1590
1591			lock_page(page);
1592
1593			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1594continue_unlock:
1595				unlock_page(page);
1596				continue;
1597			}
1598			if (ino_of_node(page) != ino)
1599				goto continue_unlock;
1600
1601			if (!PageDirty(page)) {
1602				/* someone wrote it for us */
1603				goto continue_unlock;
1604			}
1605
1606			if (last_page)
1607				f2fs_put_page(last_page, 0);
1608
1609			get_page(page);
1610			last_page = page;
1611			unlock_page(page);
1612		}
1613		folio_batch_release(&fbatch);
1614		cond_resched();
1615	}
1616	return last_page;
1617}
1618
1619static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1620				struct writeback_control *wbc, bool do_balance,
1621				enum iostat_type io_type, unsigned int *seq_id)
1622{
1623	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1624	struct folio *folio = page_folio(page);
1625	nid_t nid;
1626	struct node_info ni;
1627	struct f2fs_io_info fio = {
1628		.sbi = sbi,
1629		.ino = ino_of_node(page),
1630		.type = NODE,
1631		.op = REQ_OP_WRITE,
1632		.op_flags = wbc_to_write_flags(wbc),
1633		.page = page,
1634		.encrypted_page = NULL,
1635		.submitted = 0,
1636		.io_type = io_type,
1637		.io_wbc = wbc,
1638	};
1639	unsigned int seq;
1640
1641	trace_f2fs_writepage(folio, NODE);
1642
1643	if (unlikely(f2fs_cp_error(sbi))) {
1644		/* keep node pages in remount-ro mode */
1645		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1646			goto redirty_out;
1647		folio_clear_uptodate(folio);
1648		dec_page_count(sbi, F2FS_DIRTY_NODES);
1649		folio_unlock(folio);
1650		return 0;
1651	}
1652
1653	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1654		goto redirty_out;
1655
1656	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1657			wbc->sync_mode == WB_SYNC_NONE &&
1658			IS_DNODE(page) && is_cold_node(page))
1659		goto redirty_out;
1660
1661	/* get old block addr of this node page */
1662	nid = nid_of_node(page);
1663	f2fs_bug_on(sbi, folio->index != nid);
1664
1665	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1666		goto redirty_out;
1667
1668	if (wbc->for_reclaim) {
1669		if (!f2fs_down_read_trylock(&sbi->node_write))
1670			goto redirty_out;
1671	} else {
1672		f2fs_down_read(&sbi->node_write);
1673	}
1674
1675	/* This page is already truncated */
1676	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1677		folio_clear_uptodate(folio);
1678		dec_page_count(sbi, F2FS_DIRTY_NODES);
1679		f2fs_up_read(&sbi->node_write);
1680		folio_unlock(folio);
1681		return 0;
1682	}
1683
1684	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1685		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1686					DATA_GENERIC_ENHANCE)) {
1687		f2fs_up_read(&sbi->node_write);
1688		goto redirty_out;
1689	}
1690
1691	if (atomic && !test_opt(sbi, NOBARRIER))
1692		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1693
1694	/* should add to global list before clearing PAGECACHE status */
1695	if (f2fs_in_warm_node_list(sbi, page)) {
1696		seq = f2fs_add_fsync_node_entry(sbi, page);
1697		if (seq_id)
1698			*seq_id = seq;
1699	}
1700
1701	folio_start_writeback(folio);
1702
1703	fio.old_blkaddr = ni.blk_addr;
1704	f2fs_do_write_node_page(nid, &fio);
1705	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1706	dec_page_count(sbi, F2FS_DIRTY_NODES);
1707	f2fs_up_read(&sbi->node_write);
1708
1709	if (wbc->for_reclaim) {
1710		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1711		submitted = NULL;
1712	}
1713
1714	folio_unlock(folio);
1715
1716	if (unlikely(f2fs_cp_error(sbi))) {
1717		f2fs_submit_merged_write(sbi, NODE);
1718		submitted = NULL;
1719	}
1720	if (submitted)
1721		*submitted = fio.submitted;
1722
1723	if (do_balance)
1724		f2fs_balance_fs(sbi, false);
1725	return 0;
1726
1727redirty_out:
1728	folio_redirty_for_writepage(wbc, folio);
1729	return AOP_WRITEPAGE_ACTIVATE;
1730}
1731
1732int f2fs_move_node_page(struct page *node_page, int gc_type)
1733{
1734	int err = 0;
1735
1736	if (gc_type == FG_GC) {
1737		struct writeback_control wbc = {
1738			.sync_mode = WB_SYNC_ALL,
1739			.nr_to_write = 1,
1740			.for_reclaim = 0,
1741		};
1742
1743		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1744
1745		set_page_dirty(node_page);
1746
1747		if (!clear_page_dirty_for_io(node_page)) {
1748			err = -EAGAIN;
1749			goto out_page;
1750		}
1751
1752		if (__write_node_page(node_page, false, NULL,
1753					&wbc, false, FS_GC_NODE_IO, NULL)) {
1754			err = -EAGAIN;
1755			unlock_page(node_page);
1756		}
1757		goto release_page;
1758	} else {
1759		/* set page dirty and write it */
1760		if (!folio_test_writeback(page_folio(node_page)))
1761			set_page_dirty(node_page);
1762	}
1763out_page:
1764	unlock_page(node_page);
1765release_page:
1766	f2fs_put_page(node_page, 0);
1767	return err;
1768}
1769
1770static int f2fs_write_node_page(struct page *page,
1771				struct writeback_control *wbc)
1772{
1773	return __write_node_page(page, false, NULL, wbc, false,
1774						FS_NODE_IO, NULL);
1775}
1776
1777int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1778			struct writeback_control *wbc, bool atomic,
1779			unsigned int *seq_id)
1780{
1781	pgoff_t index;
1782	struct folio_batch fbatch;
1783	int ret = 0;
1784	struct page *last_page = NULL;
1785	bool marked = false;
1786	nid_t ino = inode->i_ino;
1787	int nr_folios;
1788	int nwritten = 0;
1789
1790	if (atomic) {
1791		last_page = last_fsync_dnode(sbi, ino);
1792		if (IS_ERR_OR_NULL(last_page))
1793			return PTR_ERR_OR_ZERO(last_page);
1794	}
1795retry:
1796	folio_batch_init(&fbatch);
1797	index = 0;
 
1798
1799	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1800					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1801					&fbatch))) {
1802		int i;
 
 
 
1803
1804		for (i = 0; i < nr_folios; i++) {
1805			struct page *page = &fbatch.folios[i]->page;
1806			bool submitted = false;
1807
1808			if (unlikely(f2fs_cp_error(sbi))) {
1809				f2fs_put_page(last_page, 0);
1810				folio_batch_release(&fbatch);
1811				ret = -EIO;
1812				goto out;
1813			}
1814
1815			if (!IS_DNODE(page) || !is_cold_node(page))
1816				continue;
1817			if (ino_of_node(page) != ino)
1818				continue;
1819
1820			lock_page(page);
1821
1822			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1823continue_unlock:
1824				unlock_page(page);
1825				continue;
1826			}
1827			if (ino_of_node(page) != ino)
1828				goto continue_unlock;
1829
1830			if (!PageDirty(page) && page != last_page) {
1831				/* someone wrote it for us */
1832				goto continue_unlock;
1833			}
1834
1835			f2fs_wait_on_page_writeback(page, NODE, true, true);
1836
1837			set_fsync_mark(page, 0);
1838			set_dentry_mark(page, 0);
1839
1840			if (!atomic || page == last_page) {
1841				set_fsync_mark(page, 1);
1842				percpu_counter_inc(&sbi->rf_node_block_count);
1843				if (IS_INODE(page)) {
1844					if (is_inode_flag_set(inode,
1845								FI_DIRTY_INODE))
1846						f2fs_update_inode(inode, page);
1847					set_dentry_mark(page,
1848						f2fs_need_dentry_mark(sbi, ino));
1849				}
1850				/* may be written by other thread */
1851				if (!PageDirty(page))
1852					set_page_dirty(page);
1853			}
1854
1855			if (!clear_page_dirty_for_io(page))
1856				goto continue_unlock;
1857
1858			ret = __write_node_page(page, atomic &&
1859						page == last_page,
1860						&submitted, wbc, true,
1861						FS_NODE_IO, seq_id);
1862			if (ret) {
1863				unlock_page(page);
1864				f2fs_put_page(last_page, 0);
1865				break;
1866			} else if (submitted) {
1867				nwritten++;
1868			}
1869
1870			if (page == last_page) {
1871				f2fs_put_page(page, 0);
1872				marked = true;
1873				break;
1874			}
1875		}
1876		folio_batch_release(&fbatch);
1877		cond_resched();
1878
1879		if (ret || marked)
1880			break;
1881	}
1882	if (!ret && atomic && !marked) {
1883		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1884			   ino, page_folio(last_page)->index);
 
1885		lock_page(last_page);
1886		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1887		set_page_dirty(last_page);
1888		unlock_page(last_page);
1889		goto retry;
1890	}
1891out:
1892	if (nwritten)
1893		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1894	return ret ? -EIO : 0;
1895}
1896
1897static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1898{
1899	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1900	bool clean;
1901
1902	if (inode->i_ino != ino)
1903		return 0;
1904
1905	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1906		return 0;
1907
1908	spin_lock(&sbi->inode_lock[DIRTY_META]);
1909	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1910	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1911
1912	if (clean)
1913		return 0;
1914
1915	inode = igrab(inode);
1916	if (!inode)
1917		return 0;
1918	return 1;
1919}
1920
1921static bool flush_dirty_inode(struct page *page)
1922{
1923	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1924	struct inode *inode;
1925	nid_t ino = ino_of_node(page);
1926
1927	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1928	if (!inode)
1929		return false;
1930
1931	f2fs_update_inode(inode, page);
1932	unlock_page(page);
1933
1934	iput(inode);
1935	return true;
1936}
1937
1938void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1939{
1940	pgoff_t index = 0;
1941	struct folio_batch fbatch;
1942	int nr_folios;
1943
1944	folio_batch_init(&fbatch);
1945
1946	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1947					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1948					&fbatch))) {
1949		int i;
1950
1951		for (i = 0; i < nr_folios; i++) {
1952			struct page *page = &fbatch.folios[i]->page;
1953
1954			if (!IS_INODE(page))
1955				continue;
1956
1957			lock_page(page);
1958
1959			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1960continue_unlock:
1961				unlock_page(page);
1962				continue;
1963			}
1964
1965			if (!PageDirty(page)) {
1966				/* someone wrote it for us */
1967				goto continue_unlock;
1968			}
1969
1970			/* flush inline_data, if it's async context. */
1971			if (page_private_inline(page)) {
1972				clear_page_private_inline(page);
1973				unlock_page(page);
1974				flush_inline_data(sbi, ino_of_node(page));
1975				continue;
1976			}
1977			unlock_page(page);
1978		}
1979		folio_batch_release(&fbatch);
1980		cond_resched();
1981	}
1982}
1983
1984int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1985				struct writeback_control *wbc,
1986				bool do_balance, enum iostat_type io_type)
1987{
1988	pgoff_t index;
1989	struct folio_batch fbatch;
1990	int step = 0;
1991	int nwritten = 0;
1992	int ret = 0;
1993	int nr_folios, done = 0;
1994
1995	folio_batch_init(&fbatch);
1996
1997next_step:
1998	index = 0;
 
1999
2000	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2001				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2002				&fbatch))) {
2003		int i;
 
 
 
 
 
 
2004
2005		for (i = 0; i < nr_folios; i++) {
2006			struct page *page = &fbatch.folios[i]->page;
2007			bool submitted = false;
2008
2009			/* give a priority to WB_SYNC threads */
2010			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2011					wbc->sync_mode == WB_SYNC_NONE) {
2012				done = 1;
2013				break;
2014			}
2015
2016			/*
2017			 * flushing sequence with step:
2018			 * 0. indirect nodes
2019			 * 1. dentry dnodes
2020			 * 2. file dnodes
2021			 */
2022			if (step == 0 && IS_DNODE(page))
2023				continue;
2024			if (step == 1 && (!IS_DNODE(page) ||
2025						is_cold_node(page)))
2026				continue;
2027			if (step == 2 && (!IS_DNODE(page) ||
2028						!is_cold_node(page)))
2029				continue;
2030lock_node:
2031			if (wbc->sync_mode == WB_SYNC_ALL)
2032				lock_page(page);
2033			else if (!trylock_page(page))
2034				continue;
2035
2036			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2037continue_unlock:
2038				unlock_page(page);
2039				continue;
2040			}
2041
2042			if (!PageDirty(page)) {
2043				/* someone wrote it for us */
2044				goto continue_unlock;
2045			}
2046
2047			/* flush inline_data/inode, if it's async context. */
2048			if (!do_balance)
2049				goto write_node;
2050
2051			/* flush inline_data */
2052			if (page_private_inline(page)) {
2053				clear_page_private_inline(page);
2054				unlock_page(page);
2055				flush_inline_data(sbi, ino_of_node(page));
2056				goto lock_node;
2057			}
2058
2059			/* flush dirty inode */
2060			if (IS_INODE(page) && flush_dirty_inode(page))
2061				goto lock_node;
2062write_node:
2063			f2fs_wait_on_page_writeback(page, NODE, true, true);
2064
 
2065			if (!clear_page_dirty_for_io(page))
2066				goto continue_unlock;
2067
2068			set_fsync_mark(page, 0);
2069			set_dentry_mark(page, 0);
2070
2071			ret = __write_node_page(page, false, &submitted,
2072						wbc, do_balance, io_type, NULL);
2073			if (ret)
2074				unlock_page(page);
2075			else if (submitted)
2076				nwritten++;
2077
2078			if (--wbc->nr_to_write == 0)
2079				break;
2080		}
2081		folio_batch_release(&fbatch);
2082		cond_resched();
2083
2084		if (wbc->nr_to_write == 0) {
2085			step = 2;
2086			break;
2087		}
2088	}
2089
2090	if (step < 2) {
2091		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2092				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2093			goto out;
2094		step++;
2095		goto next_step;
2096	}
2097out:
2098	if (nwritten)
2099		f2fs_submit_merged_write(sbi, NODE);
2100
2101	if (unlikely(f2fs_cp_error(sbi)))
2102		return -EIO;
2103	return ret;
2104}
2105
2106int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2107						unsigned int seq_id)
2108{
2109	struct fsync_node_entry *fn;
2110	struct page *page;
2111	struct list_head *head = &sbi->fsync_node_list;
2112	unsigned long flags;
2113	unsigned int cur_seq_id = 0;
2114
2115	while (seq_id && cur_seq_id < seq_id) {
2116		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2117		if (list_empty(head)) {
2118			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 
 
2119			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2120		}
2121		fn = list_first_entry(head, struct fsync_node_entry, list);
2122		if (fn->seq_id > seq_id) {
2123			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2124			break;
2125		}
2126		cur_seq_id = fn->seq_id;
2127		page = fn->page;
2128		get_page(page);
2129		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130
2131		f2fs_wait_on_page_writeback(page, NODE, true, false);
2132
2133		put_page(page);
 
 
 
 
 
 
2134	}
2135
2136	return filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137}
2138
2139static int f2fs_write_node_pages(struct address_space *mapping,
2140			    struct writeback_control *wbc)
2141{
2142	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2143	struct blk_plug plug;
2144	long diff;
2145
2146	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2147		goto skip_write;
2148
2149	/* balancing f2fs's metadata in background */
2150	f2fs_balance_fs_bg(sbi, true);
2151
2152	/* collect a number of dirty node pages and write together */
2153	if (wbc->sync_mode != WB_SYNC_ALL &&
2154			get_pages(sbi, F2FS_DIRTY_NODES) <
2155					nr_pages_to_skip(sbi, NODE))
2156		goto skip_write;
2157
2158	if (wbc->sync_mode == WB_SYNC_ALL)
2159		atomic_inc(&sbi->wb_sync_req[NODE]);
2160	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2161		/* to avoid potential deadlock */
2162		if (current->plug)
2163			blk_finish_plug(current->plug);
2164		goto skip_write;
2165	}
2166
2167	trace_f2fs_writepages(mapping->host, wbc, NODE);
2168
2169	diff = nr_pages_to_write(sbi, NODE, wbc);
 
2170	blk_start_plug(&plug);
2171	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2172	blk_finish_plug(&plug);
2173	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2174
2175	if (wbc->sync_mode == WB_SYNC_ALL)
2176		atomic_dec(&sbi->wb_sync_req[NODE]);
2177	return 0;
2178
2179skip_write:
2180	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2181	trace_f2fs_writepages(mapping->host, wbc, NODE);
2182	return 0;
2183}
2184
2185static bool f2fs_dirty_node_folio(struct address_space *mapping,
2186		struct folio *folio)
2187{
2188	trace_f2fs_set_page_dirty(folio, NODE);
2189
2190	if (!folio_test_uptodate(folio))
2191		folio_mark_uptodate(folio);
2192#ifdef CONFIG_F2FS_CHECK_FS
2193	if (IS_INODE(&folio->page))
2194		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2195#endif
2196	if (filemap_dirty_folio(mapping, folio)) {
2197		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2198		set_page_private_reference(&folio->page);
2199		return true;
2200	}
2201	return false;
2202}
2203
2204/*
2205 * Structure of the f2fs node operations
2206 */
2207const struct address_space_operations f2fs_node_aops = {
2208	.writepage	= f2fs_write_node_page,
2209	.writepages	= f2fs_write_node_pages,
2210	.dirty_folio	= f2fs_dirty_node_folio,
2211	.invalidate_folio = f2fs_invalidate_folio,
2212	.release_folio	= f2fs_release_folio,
2213	.migrate_folio	= filemap_migrate_folio,
 
 
2214};
2215
2216static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2217						nid_t n)
2218{
2219	return radix_tree_lookup(&nm_i->free_nid_root, n);
2220}
2221
2222static int __insert_free_nid(struct f2fs_sb_info *sbi,
2223				struct free_nid *i)
2224{
2225	struct f2fs_nm_info *nm_i = NM_I(sbi);
2226	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2227
2228	if (err)
2229		return err;
 
 
 
2230
2231	nm_i->nid_cnt[FREE_NID]++;
2232	list_add_tail(&i->list, &nm_i->free_nid_list);
 
 
2233	return 0;
2234}
2235
2236static void __remove_free_nid(struct f2fs_sb_info *sbi,
2237			struct free_nid *i, enum nid_state state)
2238{
2239	struct f2fs_nm_info *nm_i = NM_I(sbi);
2240
2241	f2fs_bug_on(sbi, state != i->state);
2242	nm_i->nid_cnt[state]--;
2243	if (state == FREE_NID)
2244		list_del(&i->list);
2245	radix_tree_delete(&nm_i->free_nid_root, i->nid);
 
2246}
2247
2248static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2249			enum nid_state org_state, enum nid_state dst_state)
2250{
2251	struct f2fs_nm_info *nm_i = NM_I(sbi);
2252
2253	f2fs_bug_on(sbi, org_state != i->state);
2254	i->state = dst_state;
2255	nm_i->nid_cnt[org_state]--;
2256	nm_i->nid_cnt[dst_state]++;
2257
2258	switch (dst_state) {
2259	case PREALLOC_NID:
2260		list_del(&i->list);
2261		break;
2262	case FREE_NID:
2263		list_add_tail(&i->list, &nm_i->free_nid_list);
2264		break;
2265	default:
2266		BUG_ON(1);
2267	}
2268}
2269
2270bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2271{
2272	struct f2fs_nm_info *nm_i = NM_I(sbi);
2273	unsigned int i;
2274	bool ret = true;
2275
2276	f2fs_down_read(&nm_i->nat_tree_lock);
2277	for (i = 0; i < nm_i->nat_blocks; i++) {
2278		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2279			ret = false;
2280			break;
2281		}
2282	}
2283	f2fs_up_read(&nm_i->nat_tree_lock);
2284
2285	return ret;
2286}
2287
2288static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2289							bool set, bool build)
2290{
2291	struct f2fs_nm_info *nm_i = NM_I(sbi);
2292	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2293	unsigned int nid_ofs = nid - START_NID(nid);
2294
2295	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2296		return;
2297
2298	if (set) {
2299		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2300			return;
2301		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2302		nm_i->free_nid_count[nat_ofs]++;
2303	} else {
2304		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2305			return;
2306		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2307		if (!build)
2308			nm_i->free_nid_count[nat_ofs]--;
2309	}
2310}
2311
2312/* return if the nid is recognized as free */
2313static bool add_free_nid(struct f2fs_sb_info *sbi,
2314				nid_t nid, bool build, bool update)
2315{
2316	struct f2fs_nm_info *nm_i = NM_I(sbi);
2317	struct free_nid *i, *e;
2318	struct nat_entry *ne;
2319	int err = -EINVAL;
2320	bool ret = false;
2321
2322	/* 0 nid should not be used */
2323	if (unlikely(nid == 0))
2324		return false;
2325
2326	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2327		return false;
2328
2329	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2330	i->nid = nid;
2331	i->state = FREE_NID;
2332
2333	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2334
2335	spin_lock(&nm_i->nid_list_lock);
2336
2337	if (build) {
2338		/*
2339		 *   Thread A             Thread B
2340		 *  - f2fs_create
2341		 *   - f2fs_new_inode
2342		 *    - f2fs_alloc_nid
2343		 *     - __insert_nid_to_list(PREALLOC_NID)
2344		 *                     - f2fs_balance_fs_bg
2345		 *                      - f2fs_build_free_nids
2346		 *                       - __f2fs_build_free_nids
2347		 *                        - scan_nat_page
2348		 *                         - add_free_nid
2349		 *                          - __lookup_nat_cache
2350		 *  - f2fs_add_link
2351		 *   - f2fs_init_inode_metadata
2352		 *    - f2fs_new_inode_page
2353		 *     - f2fs_new_node_page
2354		 *      - set_node_addr
2355		 *  - f2fs_alloc_nid_done
2356		 *   - __remove_nid_from_list(PREALLOC_NID)
2357		 *                         - __insert_nid_to_list(FREE_NID)
2358		 */
2359		ne = __lookup_nat_cache(nm_i, nid);
2360		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2361				nat_get_blkaddr(ne) != NULL_ADDR))
2362			goto err_out;
 
 
 
 
 
2363
2364		e = __lookup_free_nid_list(nm_i, nid);
2365		if (e) {
2366			if (e->state == FREE_NID)
2367				ret = true;
2368			goto err_out;
2369		}
2370	}
2371	ret = true;
2372	err = __insert_free_nid(sbi, i);
2373err_out:
2374	if (update) {
2375		update_free_nid_bitmap(sbi, nid, ret, build);
2376		if (!build)
2377			nm_i->available_nids++;
2378	}
 
 
 
2379	spin_unlock(&nm_i->nid_list_lock);
2380	radix_tree_preload_end();
2381
2382	if (err)
2383		kmem_cache_free(free_nid_slab, i);
2384	return ret;
 
 
2385}
2386
2387static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2388{
2389	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390	struct free_nid *i;
2391	bool need_free = false;
2392
2393	spin_lock(&nm_i->nid_list_lock);
2394	i = __lookup_free_nid_list(nm_i, nid);
2395	if (i && i->state == FREE_NID) {
2396		__remove_free_nid(sbi, i, FREE_NID);
2397		need_free = true;
2398	}
2399	spin_unlock(&nm_i->nid_list_lock);
2400
2401	if (need_free)
2402		kmem_cache_free(free_nid_slab, i);
2403}
2404
2405static int scan_nat_page(struct f2fs_sb_info *sbi,
2406			struct page *nat_page, nid_t start_nid)
2407{
2408	struct f2fs_nm_info *nm_i = NM_I(sbi);
2409	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2410	block_t blk_addr;
2411	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2412	int i;
2413
2414	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2415
2416	i = start_nid % NAT_ENTRY_PER_BLOCK;
2417
2418	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 
2419		if (unlikely(start_nid >= nm_i->max_nid))
2420			break;
2421
2422		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2423
2424		if (blk_addr == NEW_ADDR)
2425			return -EFSCORRUPTED;
2426
2427		if (blk_addr == NULL_ADDR) {
2428			add_free_nid(sbi, start_nid, true, true);
2429		} else {
2430			spin_lock(&NM_I(sbi)->nid_list_lock);
2431			update_free_nid_bitmap(sbi, start_nid, false, true);
2432			spin_unlock(&NM_I(sbi)->nid_list_lock);
2433		}
2434	}
2435
2436	return 0;
2437}
2438
2439static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2440{
 
2441	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2442	struct f2fs_journal *journal = curseg->journal;
2443	int i;
2444
2445	down_read(&curseg->journal_rwsem);
2446	for (i = 0; i < nats_in_cursum(journal); i++) {
2447		block_t addr;
2448		nid_t nid;
2449
2450		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2451		nid = le32_to_cpu(nid_in_journal(journal, i));
2452		if (addr == NULL_ADDR)
2453			add_free_nid(sbi, nid, true, false);
2454		else
2455			remove_free_nid(sbi, nid);
2456	}
2457	up_read(&curseg->journal_rwsem);
2458}
2459
2460static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2461{
2462	struct f2fs_nm_info *nm_i = NM_I(sbi);
2463	unsigned int i, idx;
2464	nid_t nid;
2465
2466	f2fs_down_read(&nm_i->nat_tree_lock);
2467
2468	for (i = 0; i < nm_i->nat_blocks; i++) {
2469		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2470			continue;
2471		if (!nm_i->free_nid_count[i])
2472			continue;
2473		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2474			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2475						NAT_ENTRY_PER_BLOCK, idx);
2476			if (idx >= NAT_ENTRY_PER_BLOCK)
2477				break;
2478
2479			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2480			add_free_nid(sbi, nid, true, false);
2481
2482			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2483				goto out;
2484		}
2485	}
2486out:
2487	scan_curseg_cache(sbi);
2488
2489	f2fs_up_read(&nm_i->nat_tree_lock);
2490}
2491
2492static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2493						bool sync, bool mount)
2494{
2495	struct f2fs_nm_info *nm_i = NM_I(sbi);
2496	int i = 0, ret;
2497	nid_t nid = nm_i->next_scan_nid;
2498
2499	if (unlikely(nid >= nm_i->max_nid))
2500		nid = 0;
2501
2502	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2503		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2504
2505	/* Enough entries */
2506	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2507		return 0;
2508
2509	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2510		return 0;
2511
2512	if (!mount) {
2513		/* try to find free nids in free_nid_bitmap */
2514		scan_free_nid_bits(sbi);
2515
2516		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2517			return 0;
2518	}
2519
2520	/* readahead nat pages to be scanned */
2521	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2522							META_NAT, true);
2523
2524	f2fs_down_read(&nm_i->nat_tree_lock);
2525
2526	while (1) {
2527		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2528						nm_i->nat_block_bitmap)) {
2529			struct page *page = get_current_nat_page(sbi, nid);
2530
2531			if (IS_ERR(page)) {
2532				ret = PTR_ERR(page);
2533			} else {
2534				ret = scan_nat_page(sbi, page, nid);
2535				f2fs_put_page(page, 1);
2536			}
2537
2538			if (ret) {
2539				f2fs_up_read(&nm_i->nat_tree_lock);
2540
2541				if (ret == -EFSCORRUPTED) {
2542					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2543					set_sbi_flag(sbi, SBI_NEED_FSCK);
2544					f2fs_handle_error(sbi,
2545						ERROR_INCONSISTENT_NAT);
2546				}
2547
2548				return ret;
2549			}
2550		}
2551
2552		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2553		if (unlikely(nid >= nm_i->max_nid))
2554			nid = 0;
2555
2556		if (++i >= FREE_NID_PAGES)
2557			break;
2558	}
2559
2560	/* go to the next free nat pages to find free nids abundantly */
2561	nm_i->next_scan_nid = nid;
2562
2563	/* find free nids from current sum_pages */
2564	scan_curseg_cache(sbi);
 
 
2565
2566	f2fs_up_read(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
2567
2568	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2569					nm_i->ra_nid_pages, META_NAT, false);
2570
2571	return 0;
2572}
2573
2574int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2575{
2576	int ret;
2577
2578	mutex_lock(&NM_I(sbi)->build_lock);
2579	ret = __f2fs_build_free_nids(sbi, sync, mount);
2580	mutex_unlock(&NM_I(sbi)->build_lock);
2581
2582	return ret;
2583}
2584
2585/*
2586 * If this function returns success, caller can obtain a new nid
2587 * from second parameter of this function.
2588 * The returned nid could be used ino as well as nid when inode is created.
2589 */
2590bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2591{
2592	struct f2fs_nm_info *nm_i = NM_I(sbi);
2593	struct free_nid *i = NULL;
2594retry:
 
2595	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2596		return false;
2597
2598	spin_lock(&nm_i->nid_list_lock);
2599
2600	if (unlikely(nm_i->available_nids == 0)) {
2601		spin_unlock(&nm_i->nid_list_lock);
2602		return false;
2603	}
2604
2605	/* We should not use stale free nids created by f2fs_build_free_nids */
2606	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2607		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2608		i = list_first_entry(&nm_i->free_nid_list,
2609					struct free_nid, list);
2610		*nid = i->nid;
2611
2612		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
 
 
2613		nm_i->available_nids--;
2614
2615		update_free_nid_bitmap(sbi, *nid, false, false);
2616
2617		spin_unlock(&nm_i->nid_list_lock);
2618		return true;
2619	}
2620	spin_unlock(&nm_i->nid_list_lock);
2621
2622	/* Let's scan nat pages and its caches to get free nids */
2623	if (!f2fs_build_free_nids(sbi, true, false))
2624		goto retry;
2625	return false;
2626}
2627
2628/*
2629 * f2fs_alloc_nid() should be called prior to this function.
2630 */
2631void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2632{
2633	struct f2fs_nm_info *nm_i = NM_I(sbi);
2634	struct free_nid *i;
2635
2636	spin_lock(&nm_i->nid_list_lock);
2637	i = __lookup_free_nid_list(nm_i, nid);
2638	f2fs_bug_on(sbi, !i);
2639	__remove_free_nid(sbi, i, PREALLOC_NID);
2640	spin_unlock(&nm_i->nid_list_lock);
2641
2642	kmem_cache_free(free_nid_slab, i);
2643}
2644
2645/*
2646 * f2fs_alloc_nid() should be called prior to this function.
2647 */
2648void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2649{
2650	struct f2fs_nm_info *nm_i = NM_I(sbi);
2651	struct free_nid *i;
2652	bool need_free = false;
2653
2654	if (!nid)
2655		return;
2656
2657	spin_lock(&nm_i->nid_list_lock);
2658	i = __lookup_free_nid_list(nm_i, nid);
2659	f2fs_bug_on(sbi, !i);
2660
2661	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2662		__remove_free_nid(sbi, i, PREALLOC_NID);
2663		need_free = true;
2664	} else {
2665		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
 
 
2666	}
2667
2668	nm_i->available_nids++;
2669
2670	update_free_nid_bitmap(sbi, nid, true, false);
2671
2672	spin_unlock(&nm_i->nid_list_lock);
2673
2674	if (need_free)
2675		kmem_cache_free(free_nid_slab, i);
2676}
2677
2678int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2679{
2680	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2681	int nr = nr_shrink;
2682
2683	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2684		return 0;
2685
2686	if (!mutex_trylock(&nm_i->build_lock))
2687		return 0;
2688
2689	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2690		struct free_nid *i, *next;
2691		unsigned int batch = SHRINK_NID_BATCH_SIZE;
 
 
 
2692
2693		spin_lock(&nm_i->nid_list_lock);
2694		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2695			if (!nr_shrink || !batch ||
2696				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2697				break;
2698			__remove_free_nid(sbi, i, FREE_NID);
2699			kmem_cache_free(free_nid_slab, i);
2700			nr_shrink--;
2701			batch--;
2702		}
2703		spin_unlock(&nm_i->nid_list_lock);
2704	}
2705
2706	mutex_unlock(&nm_i->build_lock);
2707
2708	return nr - nr_shrink;
2709}
2710
2711int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2712{
2713	void *src_addr, *dst_addr;
2714	size_t inline_size;
2715	struct page *ipage;
2716	struct f2fs_inode *ri;
2717
2718	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2719	if (IS_ERR(ipage))
2720		return PTR_ERR(ipage);
2721
2722	ri = F2FS_INODE(page);
2723	if (ri->i_inline & F2FS_INLINE_XATTR) {
2724		if (!f2fs_has_inline_xattr(inode)) {
2725			set_inode_flag(inode, FI_INLINE_XATTR);
2726			stat_inc_inline_xattr(inode);
2727		}
2728	} else {
2729		if (f2fs_has_inline_xattr(inode)) {
2730			stat_dec_inline_xattr(inode);
2731			clear_inode_flag(inode, FI_INLINE_XATTR);
2732		}
2733		goto update_inode;
2734	}
2735
2736	dst_addr = inline_xattr_addr(inode, ipage);
2737	src_addr = inline_xattr_addr(inode, page);
2738	inline_size = inline_xattr_size(inode);
2739
2740	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2741	memcpy(dst_addr, src_addr, inline_size);
2742update_inode:
2743	f2fs_update_inode(inode, ipage);
2744	f2fs_put_page(ipage, 1);
2745	return 0;
2746}
2747
2748int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2749{
2750	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2751	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2752	nid_t new_xnid;
2753	struct dnode_of_data dn;
2754	struct node_info ni;
2755	struct page *xpage;
2756	int err;
2757
 
2758	if (!prev_xnid)
2759		goto recover_xnid;
2760
2761	/* 1: invalidate the previous xattr nid */
2762	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2763	if (err)
2764		return err;
2765
2766	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2767	dec_valid_node_count(sbi, inode, false);
2768	set_node_addr(sbi, &ni, NULL_ADDR, false);
2769
2770recover_xnid:
2771	/* 2: update xattr nid in inode */
2772	if (!f2fs_alloc_nid(sbi, &new_xnid))
2773		return -ENOSPC;
2774
2775	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2776	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2777	if (IS_ERR(xpage)) {
2778		f2fs_alloc_nid_failed(sbi, new_xnid);
2779		return PTR_ERR(xpage);
2780	}
2781
2782	f2fs_alloc_nid_done(sbi, new_xnid);
2783	f2fs_update_inode_page(inode);
2784
2785	/* 3: update and set xattr node page dirty */
2786	if (page) {
2787		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2788				VALID_XATTR_BLOCK_SIZE);
2789		set_page_dirty(xpage);
2790	}
2791	f2fs_put_page(xpage, 1);
2792
2793	return 0;
2794}
2795
2796int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2797{
2798	struct f2fs_inode *src, *dst;
2799	nid_t ino = ino_of_node(page);
2800	struct node_info old_ni, new_ni;
2801	struct page *ipage;
2802	int err;
2803
2804	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2805	if (err)
2806		return err;
2807
2808	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2809		return -EINVAL;
2810retry:
2811	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2812	if (!ipage) {
2813		memalloc_retry_wait(GFP_NOFS);
2814		goto retry;
2815	}
2816
2817	/* Should not use this inode from free nid list */
2818	remove_free_nid(sbi, ino);
2819
2820	if (!PageUptodate(ipage))
2821		SetPageUptodate(ipage);
2822	fill_node_footer(ipage, ino, ino, 0, true);
2823	set_cold_node(ipage, false);
2824
2825	src = F2FS_INODE(page);
2826	dst = F2FS_INODE(ipage);
2827
2828	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2829	dst->i_size = 0;
2830	dst->i_blocks = cpu_to_le64(1);
2831	dst->i_links = cpu_to_le32(1);
2832	dst->i_xattr_nid = 0;
2833	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2834	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2835		dst->i_extra_isize = src->i_extra_isize;
2836
2837		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2838			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2839							i_inline_xattr_size))
2840			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2841
2842		if (f2fs_sb_has_project_quota(sbi) &&
2843			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2844								i_projid))
2845			dst->i_projid = src->i_projid;
2846
2847		if (f2fs_sb_has_inode_crtime(sbi) &&
2848			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2849							i_crtime_nsec)) {
2850			dst->i_crtime = src->i_crtime;
2851			dst->i_crtime_nsec = src->i_crtime_nsec;
2852		}
2853	}
2854
2855	new_ni = old_ni;
2856	new_ni.ino = ino;
2857
2858	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2859		WARN_ON(1);
2860	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2861	inc_valid_inode_count(sbi);
2862	set_page_dirty(ipage);
2863	f2fs_put_page(ipage, 1);
2864	return 0;
2865}
2866
2867int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2868			unsigned int segno, struct f2fs_summary_block *sum)
2869{
2870	struct f2fs_node *rn;
2871	struct f2fs_summary *sum_entry;
2872	block_t addr;
2873	int i, idx, last_offset, nrpages;
2874
2875	/* scan the node segment */
2876	last_offset = BLKS_PER_SEG(sbi);
2877	addr = START_BLOCK(sbi, segno);
2878	sum_entry = &sum->entries[0];
2879
2880	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2881		nrpages = bio_max_segs(last_offset - i);
2882
2883		/* readahead node pages */
2884		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2885
2886		for (idx = addr; idx < addr + nrpages; idx++) {
2887			struct page *page = f2fs_get_tmp_page(sbi, idx);
2888
2889			if (IS_ERR(page))
2890				return PTR_ERR(page);
2891
2892			rn = F2FS_NODE(page);
2893			sum_entry->nid = rn->footer.nid;
2894			sum_entry->version = 0;
2895			sum_entry->ofs_in_node = 0;
2896			sum_entry++;
2897			f2fs_put_page(page, 1);
2898		}
2899
2900		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2901							addr + nrpages);
2902	}
2903	return 0;
2904}
2905
2906static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2907{
2908	struct f2fs_nm_info *nm_i = NM_I(sbi);
2909	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2910	struct f2fs_journal *journal = curseg->journal;
2911	int i;
2912
2913	down_write(&curseg->journal_rwsem);
2914	for (i = 0; i < nats_in_cursum(journal); i++) {
2915		struct nat_entry *ne;
2916		struct f2fs_nat_entry raw_ne;
2917		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2918
2919		if (f2fs_check_nid_range(sbi, nid))
2920			continue;
2921
2922		raw_ne = nat_in_journal(journal, i);
2923
2924		ne = __lookup_nat_cache(nm_i, nid);
2925		if (!ne) {
2926			ne = __alloc_nat_entry(sbi, nid, true);
2927			__init_nat_entry(nm_i, ne, &raw_ne, true);
2928		}
2929
2930		/*
2931		 * if a free nat in journal has not been used after last
2932		 * checkpoint, we should remove it from available nids,
2933		 * since later we will add it again.
2934		 */
2935		if (!get_nat_flag(ne, IS_DIRTY) &&
2936				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2937			spin_lock(&nm_i->nid_list_lock);
2938			nm_i->available_nids--;
2939			spin_unlock(&nm_i->nid_list_lock);
2940		}
2941
2942		__set_nat_cache_dirty(nm_i, ne);
2943	}
2944	update_nats_in_cursum(journal, -i);
2945	up_write(&curseg->journal_rwsem);
2946}
2947
2948static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2949						struct list_head *head, int max)
2950{
2951	struct nat_entry_set *cur;
2952
2953	if (nes->entry_cnt >= max)
2954		goto add_out;
2955
2956	list_for_each_entry(cur, head, set_list) {
2957		if (cur->entry_cnt >= nes->entry_cnt) {
2958			list_add(&nes->set_list, cur->set_list.prev);
2959			return;
2960		}
2961	}
2962add_out:
2963	list_add_tail(&nes->set_list, head);
2964}
2965
2966static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2967							unsigned int valid)
2968{
2969	if (valid == 0) {
2970		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2971		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2972		return;
2973	}
2974
2975	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2976	if (valid == NAT_ENTRY_PER_BLOCK)
2977		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2978	else
2979		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2980}
2981
2982static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2983						struct page *page)
2984{
2985	struct f2fs_nm_info *nm_i = NM_I(sbi);
2986	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2987	struct f2fs_nat_block *nat_blk = page_address(page);
2988	int valid = 0;
2989	int i = 0;
2990
2991	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2992		return;
2993
2994	if (nat_index == 0) {
2995		valid = 1;
2996		i = 1;
2997	}
2998	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2999		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3000			valid++;
3001	}
3002
3003	__update_nat_bits(nm_i, nat_index, valid);
3004}
3005
3006void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3007{
3008	struct f2fs_nm_info *nm_i = NM_I(sbi);
3009	unsigned int nat_ofs;
3010
3011	f2fs_down_read(&nm_i->nat_tree_lock);
3012
3013	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3014		unsigned int valid = 0, nid_ofs = 0;
3015
3016		/* handle nid zero due to it should never be used */
3017		if (unlikely(nat_ofs == 0)) {
3018			valid = 1;
3019			nid_ofs = 1;
3020		}
3021
3022		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3023			if (!test_bit_le(nid_ofs,
3024					nm_i->free_nid_bitmap[nat_ofs]))
3025				valid++;
3026		}
3027
3028		__update_nat_bits(nm_i, nat_ofs, valid);
3029	}
3030
3031	f2fs_up_read(&nm_i->nat_tree_lock);
3032}
3033
3034static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3035		struct nat_entry_set *set, struct cp_control *cpc)
3036{
3037	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3038	struct f2fs_journal *journal = curseg->journal;
3039	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3040	bool to_journal = true;
3041	struct f2fs_nat_block *nat_blk;
3042	struct nat_entry *ne, *cur;
3043	struct page *page = NULL;
3044
3045	/*
3046	 * there are two steps to flush nat entries:
3047	 * #1, flush nat entries to journal in current hot data summary block.
3048	 * #2, flush nat entries to nat page.
3049	 */
3050	if ((cpc->reason & CP_UMOUNT) ||
3051		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3052		to_journal = false;
3053
3054	if (to_journal) {
3055		down_write(&curseg->journal_rwsem);
3056	} else {
3057		page = get_next_nat_page(sbi, start_nid);
3058		if (IS_ERR(page))
3059			return PTR_ERR(page);
3060
3061		nat_blk = page_address(page);
3062		f2fs_bug_on(sbi, !nat_blk);
3063	}
3064
3065	/* flush dirty nats in nat entry set */
3066	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3067		struct f2fs_nat_entry *raw_ne;
3068		nid_t nid = nat_get_nid(ne);
3069		int offset;
3070
3071		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
 
3072
3073		if (to_journal) {
3074			offset = f2fs_lookup_journal_in_cursum(journal,
3075							NAT_JOURNAL, nid, 1);
3076			f2fs_bug_on(sbi, offset < 0);
3077			raw_ne = &nat_in_journal(journal, offset);
3078			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3079		} else {
3080			raw_ne = &nat_blk->entries[nid - start_nid];
3081		}
3082		raw_nat_from_node_info(raw_ne, &ne->ni);
3083		nat_reset_flag(ne);
3084		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3085		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3086			add_free_nid(sbi, nid, false, true);
3087		} else {
3088			spin_lock(&NM_I(sbi)->nid_list_lock);
3089			update_free_nid_bitmap(sbi, nid, false, false);
3090			spin_unlock(&NM_I(sbi)->nid_list_lock);
3091		}
3092	}
3093
3094	if (to_journal) {
3095		up_write(&curseg->journal_rwsem);
3096	} else {
3097		update_nat_bits(sbi, start_nid, page);
3098		f2fs_put_page(page, 1);
3099	}
3100
3101	/* Allow dirty nats by node block allocation in write_begin */
3102	if (!set->entry_cnt) {
3103		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3104		kmem_cache_free(nat_entry_set_slab, set);
3105	}
3106	return 0;
3107}
3108
3109/*
3110 * This function is called during the checkpointing process.
3111 */
3112int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3113{
3114	struct f2fs_nm_info *nm_i = NM_I(sbi);
3115	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3116	struct f2fs_journal *journal = curseg->journal;
3117	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3118	struct nat_entry_set *set, *tmp;
3119	unsigned int found;
3120	nid_t set_idx = 0;
3121	LIST_HEAD(sets);
3122	int err = 0;
3123
3124	/*
3125	 * during unmount, let's flush nat_bits before checking
3126	 * nat_cnt[DIRTY_NAT].
3127	 */
3128	if (cpc->reason & CP_UMOUNT) {
3129		f2fs_down_write(&nm_i->nat_tree_lock);
3130		remove_nats_in_journal(sbi);
3131		f2fs_up_write(&nm_i->nat_tree_lock);
3132	}
3133
3134	if (!nm_i->nat_cnt[DIRTY_NAT])
3135		return 0;
3136
3137	f2fs_down_write(&nm_i->nat_tree_lock);
3138
3139	/*
3140	 * if there are no enough space in journal to store dirty nat
3141	 * entries, remove all entries from journal and merge them
3142	 * into nat entry set.
3143	 */
3144	if (cpc->reason & CP_UMOUNT ||
3145		!__has_cursum_space(journal,
3146			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3147		remove_nats_in_journal(sbi);
3148
3149	while ((found = __gang_lookup_nat_set(nm_i,
3150					set_idx, NAT_VEC_SIZE, setvec))) {
3151		unsigned idx;
3152
3153		set_idx = setvec[found - 1]->set + 1;
3154		for (idx = 0; idx < found; idx++)
3155			__adjust_nat_entry_set(setvec[idx], &sets,
3156						MAX_NAT_JENTRIES(journal));
3157	}
3158
3159	/* flush dirty nats in nat entry set */
3160	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3161		err = __flush_nat_entry_set(sbi, set, cpc);
3162		if (err)
3163			break;
3164	}
3165
3166	f2fs_up_write(&nm_i->nat_tree_lock);
3167	/* Allow dirty nats by node block allocation in write_begin */
3168
3169	return err;
3170}
3171
3172static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3173{
3174	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3175	struct f2fs_nm_info *nm_i = NM_I(sbi);
3176	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3177	unsigned int i;
3178	__u64 cp_ver = cur_cp_version(ckpt);
3179	block_t nat_bits_addr;
3180
3181	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3182	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3183			F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3184	if (!nm_i->nat_bits)
3185		return -ENOMEM;
3186
3187	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3188	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3189
3190	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3191		return 0;
3192
3193	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3194						nm_i->nat_bits_blocks;
3195	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3196		struct page *page;
3197
3198		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3199		if (IS_ERR(page))
3200			return PTR_ERR(page);
3201
3202		memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3203					page_address(page), F2FS_BLKSIZE);
3204		f2fs_put_page(page, 1);
3205	}
3206
3207	cp_ver |= (cur_cp_crc(ckpt) << 32);
3208	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3209		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3210		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3211			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3212		return 0;
3213	}
3214
3215	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3216	return 0;
3217}
3218
3219static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3220{
3221	struct f2fs_nm_info *nm_i = NM_I(sbi);
3222	unsigned int i = 0;
3223	nid_t nid, last_nid;
3224
3225	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3226		return;
3227
3228	for (i = 0; i < nm_i->nat_blocks; i++) {
3229		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3230		if (i >= nm_i->nat_blocks)
3231			break;
3232
3233		__set_bit_le(i, nm_i->nat_block_bitmap);
3234
3235		nid = i * NAT_ENTRY_PER_BLOCK;
3236		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3237
3238		spin_lock(&NM_I(sbi)->nid_list_lock);
3239		for (; nid < last_nid; nid++)
3240			update_free_nid_bitmap(sbi, nid, true, true);
3241		spin_unlock(&NM_I(sbi)->nid_list_lock);
3242	}
3243
3244	for (i = 0; i < nm_i->nat_blocks; i++) {
3245		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3246		if (i >= nm_i->nat_blocks)
3247			break;
3248
3249		__set_bit_le(i, nm_i->nat_block_bitmap);
3250	}
3251}
3252
3253static int init_node_manager(struct f2fs_sb_info *sbi)
3254{
3255	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3256	struct f2fs_nm_info *nm_i = NM_I(sbi);
3257	unsigned char *version_bitmap;
3258	unsigned int nat_segs;
3259	int err;
3260
3261	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3262
3263	/* segment_count_nat includes pair segment so divide to 2. */
3264	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3265	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3266	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
 
3267
3268	/* not used nids: 0, node, meta, (and root counted as valid node) */
3269	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3270						F2FS_RESERVED_NODE_NUM;
3271	nm_i->nid_cnt[FREE_NID] = 0;
3272	nm_i->nid_cnt[PREALLOC_NID] = 0;
 
3273	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3274	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3275	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3276	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3277
3278	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3279	INIT_LIST_HEAD(&nm_i->free_nid_list);
 
3280	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3281	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3282	INIT_LIST_HEAD(&nm_i->nat_entries);
3283	spin_lock_init(&nm_i->nat_list_lock);
3284
3285	mutex_init(&nm_i->build_lock);
3286	spin_lock_init(&nm_i->nid_list_lock);
3287	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3288
3289	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3290	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3291	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 
 
 
3292	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3293					GFP_KERNEL);
3294	if (!nm_i->nat_bitmap)
3295		return -ENOMEM;
3296
3297	err = __get_nat_bitmaps(sbi);
3298	if (err)
3299		return err;
3300
3301#ifdef CONFIG_F2FS_CHECK_FS
3302	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3303					GFP_KERNEL);
3304	if (!nm_i->nat_bitmap_mir)
3305		return -ENOMEM;
3306#endif
3307
3308	return 0;
3309}
3310
3311static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3312{
3313	struct f2fs_nm_info *nm_i = NM_I(sbi);
3314	int i;
3315
3316	nm_i->free_nid_bitmap =
3317		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3318					      nm_i->nat_blocks),
3319			      GFP_KERNEL);
3320	if (!nm_i->free_nid_bitmap)
3321		return -ENOMEM;
3322
3323	for (i = 0; i < nm_i->nat_blocks; i++) {
3324		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3325			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3326		if (!nm_i->free_nid_bitmap[i])
3327			return -ENOMEM;
3328	}
3329
3330	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3331								GFP_KERNEL);
3332	if (!nm_i->nat_block_bitmap)
3333		return -ENOMEM;
3334
3335	nm_i->free_nid_count =
3336		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3337					      nm_i->nat_blocks),
3338			      GFP_KERNEL);
3339	if (!nm_i->free_nid_count)
3340		return -ENOMEM;
3341	return 0;
3342}
3343
3344int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3345{
3346	int err;
3347
3348	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3349							GFP_KERNEL);
3350	if (!sbi->nm_info)
3351		return -ENOMEM;
3352
3353	err = init_node_manager(sbi);
3354	if (err)
3355		return err;
3356
3357	err = init_free_nid_cache(sbi);
3358	if (err)
3359		return err;
3360
3361	/* load free nid status from nat_bits table */
3362	load_free_nid_bitmap(sbi);
3363
3364	return f2fs_build_free_nids(sbi, true, true);
3365}
3366
3367void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3368{
3369	struct f2fs_nm_info *nm_i = NM_I(sbi);
3370	struct free_nid *i, *next_i;
3371	void *vec[NAT_VEC_SIZE];
3372	struct nat_entry **natvec = (struct nat_entry **)vec;
3373	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3374	nid_t nid = 0;
3375	unsigned int found;
3376
3377	if (!nm_i)
3378		return;
3379
3380	/* destroy free nid list */
3381	spin_lock(&nm_i->nid_list_lock);
3382	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3383		__remove_free_nid(sbi, i, FREE_NID);
 
3384		spin_unlock(&nm_i->nid_list_lock);
3385		kmem_cache_free(free_nid_slab, i);
3386		spin_lock(&nm_i->nid_list_lock);
3387	}
3388	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3389	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3390	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3391	spin_unlock(&nm_i->nid_list_lock);
3392
3393	/* destroy nat cache */
3394	f2fs_down_write(&nm_i->nat_tree_lock);
3395	while ((found = __gang_lookup_nat_cache(nm_i,
3396					nid, NAT_VEC_SIZE, natvec))) {
3397		unsigned idx;
3398
3399		nid = nat_get_nid(natvec[found - 1]) + 1;
3400		for (idx = 0; idx < found; idx++) {
3401			spin_lock(&nm_i->nat_list_lock);
3402			list_del(&natvec[idx]->list);
3403			spin_unlock(&nm_i->nat_list_lock);
3404
3405			__del_from_nat_cache(nm_i, natvec[idx]);
3406		}
3407	}
3408	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3409
3410	/* destroy nat set cache */
3411	nid = 0;
3412	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3413	while ((found = __gang_lookup_nat_set(nm_i,
3414					nid, NAT_VEC_SIZE, setvec))) {
3415		unsigned idx;
3416
3417		nid = setvec[found - 1]->set + 1;
3418		for (idx = 0; idx < found; idx++) {
3419			/* entry_cnt is not zero, when cp_error was occurred */
3420			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3421			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3422			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3423		}
3424	}
3425	f2fs_up_write(&nm_i->nat_tree_lock);
3426
3427	kvfree(nm_i->nat_block_bitmap);
3428	if (nm_i->free_nid_bitmap) {
3429		int i;
3430
3431		for (i = 0; i < nm_i->nat_blocks; i++)
3432			kvfree(nm_i->free_nid_bitmap[i]);
3433		kvfree(nm_i->free_nid_bitmap);
3434	}
3435	kvfree(nm_i->free_nid_count);
3436
3437	kvfree(nm_i->nat_bitmap);
3438	kvfree(nm_i->nat_bits);
3439#ifdef CONFIG_F2FS_CHECK_FS
3440	kvfree(nm_i->nat_bitmap_mir);
3441#endif
3442	sbi->nm_info = NULL;
3443	kfree(nm_i);
3444}
3445
3446int __init f2fs_create_node_manager_caches(void)
3447{
3448	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3449			sizeof(struct nat_entry));
3450	if (!nat_entry_slab)
3451		goto fail;
3452
3453	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3454			sizeof(struct free_nid));
3455	if (!free_nid_slab)
3456		goto destroy_nat_entry;
3457
3458	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3459			sizeof(struct nat_entry_set));
3460	if (!nat_entry_set_slab)
3461		goto destroy_free_nid;
3462
3463	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3464			sizeof(struct fsync_node_entry));
3465	if (!fsync_node_entry_slab)
3466		goto destroy_nat_entry_set;
3467	return 0;
3468
3469destroy_nat_entry_set:
3470	kmem_cache_destroy(nat_entry_set_slab);
3471destroy_free_nid:
3472	kmem_cache_destroy(free_nid_slab);
3473destroy_nat_entry:
3474	kmem_cache_destroy(nat_entry_slab);
3475fail:
3476	return -ENOMEM;
3477}
3478
3479void f2fs_destroy_node_manager_caches(void)
3480{
3481	kmem_cache_destroy(fsync_node_entry_slab);
3482	kmem_cache_destroy(nat_entry_set_slab);
3483	kmem_cache_destroy(free_nid_slab);
3484	kmem_cache_destroy(nat_entry_slab);
3485}