Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include "flow.h"
  22#include "datapath.h"
  23#include <linux/uaccess.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/if_vlan.h>
  28#include <net/llc_pdu.h>
  29#include <linux/kernel.h>
  30#include <linux/jhash.h>
  31#include <linux/jiffies.h>
  32#include <linux/llc.h>
  33#include <linux/module.h>
  34#include <linux/in.h>
  35#include <linux/rcupdate.h>
  36#include <linux/if_arp.h>
  37#include <linux/ip.h>
  38#include <linux/ipv6.h>
  39#include <linux/sctp.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/icmpv6.h>
  44#include <linux/rculist.h>
  45#include <net/geneve.h>
  46#include <net/ip.h>
  47#include <net/ipv6.h>
  48#include <net/ndisc.h>
  49#include <net/mpls.h>
  50#include <net/vxlan.h>
  51
  52#include "flow_netlink.h"
  53
  54struct ovs_len_tbl {
  55	int len;
  56	const struct ovs_len_tbl *next;
  57};
  58
  59#define OVS_ATTR_NESTED -1
  60#define OVS_ATTR_VARIABLE -2
  61
  62static void update_range(struct sw_flow_match *match,
  63			 size_t offset, size_t size, bool is_mask)
  64{
  65	struct sw_flow_key_range *range;
  66	size_t start = rounddown(offset, sizeof(long));
  67	size_t end = roundup(offset + size, sizeof(long));
  68
  69	if (!is_mask)
  70		range = &match->range;
  71	else
  72		range = &match->mask->range;
  73
  74	if (range->start == range->end) {
  75		range->start = start;
  76		range->end = end;
  77		return;
  78	}
  79
  80	if (range->start > start)
  81		range->start = start;
  82
  83	if (range->end < end)
  84		range->end = end;
  85}
  86
  87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  88	do { \
  89		update_range(match, offsetof(struct sw_flow_key, field),    \
  90			     sizeof((match)->key->field), is_mask);	    \
  91		if (is_mask)						    \
  92			(match)->mask->key.field = value;		    \
  93		else							    \
  94			(match)->key->field = value;		            \
  95	} while (0)
  96
  97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
  98	do {								    \
  99		update_range(match, offset, len, is_mask);		    \
 100		if (is_mask)						    \
 101			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 102			       len);					   \
 103		else							    \
 104			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 105	} while (0)
 106
 107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 108	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 109				  value_p, len, is_mask)
 110
 111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 112	do {								    \
 113		update_range(match, offsetof(struct sw_flow_key, field),    \
 114			     sizeof((match)->key->field), is_mask);	    \
 115		if (is_mask)						    \
 116			memset((u8 *)&(match)->mask->key.field, value,      \
 117			       sizeof((match)->mask->key.field));	    \
 118		else							    \
 119			memset((u8 *)&(match)->key->field, value,           \
 120			       sizeof((match)->key->field));                \
 121	} while (0)
 122
 123static bool match_validate(const struct sw_flow_match *match,
 124			   u64 key_attrs, u64 mask_attrs, bool log)
 125{
 126	u64 key_expected = 0;
 127	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 128
 129	/* The following mask attributes allowed only if they
 130	 * pass the validation tests. */
 131	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 132			| (1 << OVS_KEY_ATTR_IPV6)
 133			| (1 << OVS_KEY_ATTR_TCP)
 134			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 135			| (1 << OVS_KEY_ATTR_UDP)
 136			| (1 << OVS_KEY_ATTR_SCTP)
 137			| (1 << OVS_KEY_ATTR_ICMP)
 138			| (1 << OVS_KEY_ATTR_ICMPV6)
 139			| (1 << OVS_KEY_ATTR_ARP)
 140			| (1 << OVS_KEY_ATTR_ND)
 141			| (1 << OVS_KEY_ATTR_MPLS));
 142
 143	/* Always allowed mask fields. */
 144	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 145		       | (1 << OVS_KEY_ATTR_IN_PORT)
 146		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 147
 148	/* Check key attributes. */
 149	if (match->key->eth.type == htons(ETH_P_ARP)
 150			|| match->key->eth.type == htons(ETH_P_RARP)) {
 151		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 152		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 153			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 154	}
 155
 156	if (eth_p_mpls(match->key->eth.type)) {
 157		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 158		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 159			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 160	}
 161
 162	if (match->key->eth.type == htons(ETH_P_IP)) {
 163		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 164		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 165			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 166
 167		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 168			if (match->key->ip.proto == IPPROTO_UDP) {
 169				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 170				if (match->mask && (match->mask->key.ip.proto == 0xff))
 171					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 172			}
 173
 174			if (match->key->ip.proto == IPPROTO_SCTP) {
 175				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 176				if (match->mask && (match->mask->key.ip.proto == 0xff))
 177					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 178			}
 179
 180			if (match->key->ip.proto == IPPROTO_TCP) {
 181				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 182				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 183				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 184					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 185					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 186				}
 187			}
 188
 189			if (match->key->ip.proto == IPPROTO_ICMP) {
 190				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 191				if (match->mask && (match->mask->key.ip.proto == 0xff))
 192					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 193			}
 194		}
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 199		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 201
 202		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 203			if (match->key->ip.proto == IPPROTO_UDP) {
 204				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 205				if (match->mask && (match->mask->key.ip.proto == 0xff))
 206					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 207			}
 208
 209			if (match->key->ip.proto == IPPROTO_SCTP) {
 210				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 211				if (match->mask && (match->mask->key.ip.proto == 0xff))
 212					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 213			}
 214
 215			if (match->key->ip.proto == IPPROTO_TCP) {
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 217				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 220					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 221				}
 222			}
 223
 224			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 225				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 226				if (match->mask && (match->mask->key.ip.proto == 0xff))
 227					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 228
 229				if (match->key->tp.src ==
 230						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 231				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 232					key_expected |= 1 << OVS_KEY_ATTR_ND;
 233					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 234						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 235				}
 236			}
 237		}
 238	}
 239
 240	if ((key_attrs & key_expected) != key_expected) {
 241		/* Key attributes check failed. */
 242		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 243			  (unsigned long long)key_attrs,
 244			  (unsigned long long)key_expected);
 245		return false;
 246	}
 247
 248	if ((mask_attrs & mask_allowed) != mask_attrs) {
 249		/* Mask attributes check failed. */
 250		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 251			  (unsigned long long)mask_attrs,
 252			  (unsigned long long)mask_allowed);
 253		return false;
 254	}
 255
 256	return true;
 257}
 258
 259size_t ovs_tun_key_attr_size(void)
 260{
 261	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 262	 * updating this function.
 263	 */
 264	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 265		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 266		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 267		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 268		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 269		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 270		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 271		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 272		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 273		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 274		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 275		 */
 276		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 277		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 278}
 279
 280size_t ovs_key_attr_size(void)
 281{
 282	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 283	 * updating this function.
 284	 */
 285	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
 286
 287	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 288		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 289		  + ovs_tun_key_attr_size()
 290		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 291		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 292		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 293		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 294		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 295		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 296		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 297		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 298		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 299		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 300		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 301		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 302		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 303		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 304		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 305		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 306}
 307
 308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 309	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 310};
 311
 312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 313	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 314	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 315	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 316	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 317	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 318	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 319	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 320	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 321	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 322	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 323	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 324	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 325						.next = ovs_vxlan_ext_key_lens },
 326	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 327	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 328};
 329
 330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 332	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 333	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 334	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 335	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 336	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 337	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 338	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 339	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 340	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 341	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 342	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 343	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 344	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 345	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 346	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 347	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 348	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 349	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 350	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 351	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 352				     .next = ovs_tunnel_key_lens, },
 353	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 354	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 355	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 356	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 357	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 358};
 359
 360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 361{
 362	return expected_len == attr_len ||
 363	       expected_len == OVS_ATTR_NESTED ||
 364	       expected_len == OVS_ATTR_VARIABLE;
 365}
 366
 367static bool is_all_zero(const u8 *fp, size_t size)
 368{
 369	int i;
 370
 371	if (!fp)
 372		return false;
 373
 374	for (i = 0; i < size; i++)
 375		if (fp[i])
 376			return false;
 377
 378	return true;
 379}
 380
 381static int __parse_flow_nlattrs(const struct nlattr *attr,
 382				const struct nlattr *a[],
 383				u64 *attrsp, bool log, bool nz)
 384{
 385	const struct nlattr *nla;
 386	u64 attrs;
 387	int rem;
 388
 389	attrs = *attrsp;
 390	nla_for_each_nested(nla, attr, rem) {
 391		u16 type = nla_type(nla);
 392		int expected_len;
 393
 394		if (type > OVS_KEY_ATTR_MAX) {
 395			OVS_NLERR(log, "Key type %d is out of range max %d",
 396				  type, OVS_KEY_ATTR_MAX);
 397			return -EINVAL;
 398		}
 399
 400		if (attrs & (1 << type)) {
 401			OVS_NLERR(log, "Duplicate key (type %d).", type);
 402			return -EINVAL;
 403		}
 404
 405		expected_len = ovs_key_lens[type].len;
 406		if (!check_attr_len(nla_len(nla), expected_len)) {
 407			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 408				  type, nla_len(nla), expected_len);
 409			return -EINVAL;
 410		}
 411
 412		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 413			attrs |= 1 << type;
 414			a[type] = nla;
 415		}
 416	}
 417	if (rem) {
 418		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 419		return -EINVAL;
 420	}
 421
 422	*attrsp = attrs;
 423	return 0;
 424}
 425
 426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 427				   const struct nlattr *a[], u64 *attrsp,
 428				   bool log)
 429{
 430	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 431}
 432
 433static int parse_flow_nlattrs(const struct nlattr *attr,
 434			      const struct nlattr *a[], u64 *attrsp,
 435			      bool log)
 436{
 437	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 438}
 439
 440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 441				     struct sw_flow_match *match, bool is_mask,
 442				     bool log)
 443{
 444	unsigned long opt_key_offset;
 445
 446	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 447		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 448			  nla_len(a), sizeof(match->key->tun_opts));
 449		return -EINVAL;
 450	}
 451
 452	if (nla_len(a) % 4 != 0) {
 453		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 454			  nla_len(a));
 455		return -EINVAL;
 456	}
 457
 458	/* We need to record the length of the options passed
 459	 * down, otherwise packets with the same format but
 460	 * additional options will be silently matched.
 461	 */
 462	if (!is_mask) {
 463		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 464				false);
 465	} else {
 466		/* This is somewhat unusual because it looks at
 467		 * both the key and mask while parsing the
 468		 * attributes (and by extension assumes the key
 469		 * is parsed first). Normally, we would verify
 470		 * that each is the correct length and that the
 471		 * attributes line up in the validate function.
 472		 * However, that is difficult because this is
 473		 * variable length and we won't have the
 474		 * information later.
 475		 */
 476		if (match->key->tun_opts_len != nla_len(a)) {
 477			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 478				  match->key->tun_opts_len, nla_len(a));
 479			return -EINVAL;
 480		}
 481
 482		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 483	}
 484
 485	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 486	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 487				  nla_len(a), is_mask);
 488	return 0;
 489}
 490
 491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 492				     struct sw_flow_match *match, bool is_mask,
 493				     bool log)
 494{
 495	struct nlattr *a;
 496	int rem;
 497	unsigned long opt_key_offset;
 498	struct vxlan_metadata opts;
 499
 500	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 501
 502	memset(&opts, 0, sizeof(opts));
 503	nla_for_each_nested(a, attr, rem) {
 504		int type = nla_type(a);
 505
 506		if (type > OVS_VXLAN_EXT_MAX) {
 507			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 508				  type, OVS_VXLAN_EXT_MAX);
 509			return -EINVAL;
 510		}
 511
 512		if (!check_attr_len(nla_len(a),
 513				    ovs_vxlan_ext_key_lens[type].len)) {
 514			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 515				  type, nla_len(a),
 516				  ovs_vxlan_ext_key_lens[type].len);
 517			return -EINVAL;
 518		}
 519
 520		switch (type) {
 521		case OVS_VXLAN_EXT_GBP:
 522			opts.gbp = nla_get_u32(a);
 523			break;
 524		default:
 525			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 526				  type);
 527			return -EINVAL;
 528		}
 529	}
 530	if (rem) {
 531		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 532			  rem);
 533		return -EINVAL;
 534	}
 535
 536	if (!is_mask)
 537		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 538	else
 539		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 540
 541	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 542	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 543				  is_mask);
 544	return 0;
 545}
 546
 547static int ip_tun_from_nlattr(const struct nlattr *attr,
 548			      struct sw_flow_match *match, bool is_mask,
 549			      bool log)
 550{
 551	bool ttl = false, ipv4 = false, ipv6 = false;
 552	__be16 tun_flags = 0;
 553	int opts_type = 0;
 554	struct nlattr *a;
 555	int rem;
 556
 557	nla_for_each_nested(a, attr, rem) {
 558		int type = nla_type(a);
 559		int err;
 560
 561		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 562			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 563				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 564			return -EINVAL;
 565		}
 566
 567		if (!check_attr_len(nla_len(a),
 568				    ovs_tunnel_key_lens[type].len)) {
 569			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 570				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 571			return -EINVAL;
 572		}
 573
 574		switch (type) {
 575		case OVS_TUNNEL_KEY_ATTR_ID:
 576			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 577					nla_get_be64(a), is_mask);
 578			tun_flags |= TUNNEL_KEY;
 579			break;
 580		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 581			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 582					nla_get_in_addr(a), is_mask);
 583			ipv4 = true;
 584			break;
 585		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 586			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 587					nla_get_in_addr(a), is_mask);
 588			ipv4 = true;
 589			break;
 590		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 591			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 592					nla_get_in6_addr(a), is_mask);
 593			ipv6 = true;
 594			break;
 595		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 596			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 597					nla_get_in6_addr(a), is_mask);
 598			ipv6 = true;
 599			break;
 600		case OVS_TUNNEL_KEY_ATTR_TOS:
 601			SW_FLOW_KEY_PUT(match, tun_key.tos,
 602					nla_get_u8(a), is_mask);
 603			break;
 604		case OVS_TUNNEL_KEY_ATTR_TTL:
 605			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 606					nla_get_u8(a), is_mask);
 607			ttl = true;
 608			break;
 609		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 610			tun_flags |= TUNNEL_DONT_FRAGMENT;
 611			break;
 612		case OVS_TUNNEL_KEY_ATTR_CSUM:
 613			tun_flags |= TUNNEL_CSUM;
 614			break;
 615		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 616			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 617					nla_get_be16(a), is_mask);
 618			break;
 619		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 620			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 621					nla_get_be16(a), is_mask);
 622			break;
 623		case OVS_TUNNEL_KEY_ATTR_OAM:
 624			tun_flags |= TUNNEL_OAM;
 625			break;
 626		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 627			if (opts_type) {
 628				OVS_NLERR(log, "Multiple metadata blocks provided");
 629				return -EINVAL;
 630			}
 631
 632			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 633			if (err)
 634				return err;
 635
 636			tun_flags |= TUNNEL_GENEVE_OPT;
 637			opts_type = type;
 638			break;
 639		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 640			if (opts_type) {
 641				OVS_NLERR(log, "Multiple metadata blocks provided");
 642				return -EINVAL;
 643			}
 644
 645			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 646			if (err)
 647				return err;
 648
 649			tun_flags |= TUNNEL_VXLAN_OPT;
 650			opts_type = type;
 651			break;
 652		case OVS_TUNNEL_KEY_ATTR_PAD:
 653			break;
 654		default:
 655			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 656				  type);
 657			return -EINVAL;
 658		}
 659	}
 660
 661	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 662	if (is_mask)
 663		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 664	else
 665		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 666				false);
 667
 668	if (rem > 0) {
 669		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 670			  rem);
 671		return -EINVAL;
 672	}
 673
 674	if (ipv4 && ipv6) {
 675		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 676		return -EINVAL;
 677	}
 678
 679	if (!is_mask) {
 680		if (!ipv4 && !ipv6) {
 681			OVS_NLERR(log, "IP tunnel dst address not specified");
 682			return -EINVAL;
 683		}
 684		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
 685			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 686			return -EINVAL;
 687		}
 688		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 689			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 690			return -EINVAL;
 691		}
 692
 693		if (!ttl) {
 694			OVS_NLERR(log, "IP tunnel TTL not specified.");
 695			return -EINVAL;
 696		}
 697	}
 698
 699	return opts_type;
 700}
 701
 702static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 703			       const void *tun_opts, int swkey_tun_opts_len)
 704{
 705	const struct vxlan_metadata *opts = tun_opts;
 706	struct nlattr *nla;
 707
 708	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 709	if (!nla)
 710		return -EMSGSIZE;
 711
 712	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 713		return -EMSGSIZE;
 714
 715	nla_nest_end(skb, nla);
 716	return 0;
 717}
 718
 719static int __ip_tun_to_nlattr(struct sk_buff *skb,
 720			      const struct ip_tunnel_key *output,
 721			      const void *tun_opts, int swkey_tun_opts_len,
 722			      unsigned short tun_proto)
 723{
 724	if (output->tun_flags & TUNNEL_KEY &&
 725	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 726			 OVS_TUNNEL_KEY_ATTR_PAD))
 727		return -EMSGSIZE;
 728	switch (tun_proto) {
 729	case AF_INET:
 730		if (output->u.ipv4.src &&
 731		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 732				    output->u.ipv4.src))
 733			return -EMSGSIZE;
 734		if (output->u.ipv4.dst &&
 735		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 736				    output->u.ipv4.dst))
 737			return -EMSGSIZE;
 738		break;
 739	case AF_INET6:
 740		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 741		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 742				     &output->u.ipv6.src))
 743			return -EMSGSIZE;
 744		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 745		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 746				     &output->u.ipv6.dst))
 747			return -EMSGSIZE;
 748		break;
 749	}
 750	if (output->tos &&
 751	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 752		return -EMSGSIZE;
 753	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 754		return -EMSGSIZE;
 755	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 756	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 757		return -EMSGSIZE;
 758	if ((output->tun_flags & TUNNEL_CSUM) &&
 759	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 760		return -EMSGSIZE;
 761	if (output->tp_src &&
 762	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 763		return -EMSGSIZE;
 764	if (output->tp_dst &&
 765	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 766		return -EMSGSIZE;
 767	if ((output->tun_flags & TUNNEL_OAM) &&
 768	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 769		return -EMSGSIZE;
 770	if (swkey_tun_opts_len) {
 771		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 772		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 773			    swkey_tun_opts_len, tun_opts))
 774			return -EMSGSIZE;
 775		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 776			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 777			return -EMSGSIZE;
 778	}
 779
 780	return 0;
 781}
 782
 783static int ip_tun_to_nlattr(struct sk_buff *skb,
 784			    const struct ip_tunnel_key *output,
 785			    const void *tun_opts, int swkey_tun_opts_len,
 786			    unsigned short tun_proto)
 787{
 788	struct nlattr *nla;
 789	int err;
 790
 791	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 792	if (!nla)
 793		return -EMSGSIZE;
 794
 795	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 796				 tun_proto);
 797	if (err)
 798		return err;
 799
 800	nla_nest_end(skb, nla);
 801	return 0;
 802}
 803
 804int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 805			    struct ip_tunnel_info *tun_info)
 806{
 807	return __ip_tun_to_nlattr(skb, &tun_info->key,
 808				  ip_tunnel_info_opts(tun_info),
 809				  tun_info->options_len,
 810				  ip_tunnel_info_af(tun_info));
 811}
 812
 813static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 814				    const struct nlattr *a[],
 815				    bool is_mask, bool inner)
 816{
 817	__be16 tci = 0;
 818	__be16 tpid = 0;
 819
 820	if (a[OVS_KEY_ATTR_VLAN])
 821		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 822
 823	if (a[OVS_KEY_ATTR_ETHERTYPE])
 824		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 825
 826	if (likely(!inner)) {
 827		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 828		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 829	} else {
 830		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 831		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 832	}
 833	return 0;
 834}
 835
 836static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 837				      u64 key_attrs, bool inner,
 838				      const struct nlattr **a, bool log)
 839{
 840	__be16 tci = 0;
 841
 842	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 843	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 844	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 845		/* Not a VLAN. */
 846		return 0;
 847	}
 848
 849	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 850	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 851		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
 852		return -EINVAL;
 853	}
 854
 855	if (a[OVS_KEY_ATTR_VLAN])
 856		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 857
 858	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 859		if (tci) {
 860			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
 861				  (inner) ? "C-VLAN" : "VLAN");
 862			return -EINVAL;
 863		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
 864			/* Corner case for truncated VLAN header. */
 865			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
 866				  (inner) ? "C-VLAN" : "VLAN");
 867			return -EINVAL;
 868		}
 869	}
 870
 871	return 1;
 872}
 873
 874static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
 875					   u64 key_attrs, bool inner,
 876					   const struct nlattr **a, bool log)
 877{
 878	__be16 tci = 0;
 879	__be16 tpid = 0;
 880	bool encap_valid = !!(match->key->eth.vlan.tci &
 881			      htons(VLAN_TAG_PRESENT));
 882	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
 883				htons(VLAN_TAG_PRESENT));
 884
 885	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
 886		/* Not a VLAN. */
 887		return 0;
 888	}
 889
 890	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
 891		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
 892			  (inner) ? "C-VLAN" : "VLAN");
 893		return -EINVAL;
 894	}
 895
 896	if (a[OVS_KEY_ATTR_VLAN])
 897		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 898
 899	if (a[OVS_KEY_ATTR_ETHERTYPE])
 900		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 901
 902	if (tpid != htons(0xffff)) {
 903		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
 904			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
 905		return -EINVAL;
 906	}
 907	if (!(tci & htons(VLAN_TAG_PRESENT))) {
 908		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
 909			  (inner) ? "C-VLAN" : "VLAN");
 910		return -EINVAL;
 911	}
 912
 913	return 1;
 914}
 915
 916static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
 917				     u64 *key_attrs, bool inner,
 918				     const struct nlattr **a, bool is_mask,
 919				     bool log)
 920{
 921	int err;
 922	const struct nlattr *encap;
 923
 924	if (!is_mask)
 925		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
 926						 a, log);
 927	else
 928		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
 929						      a, log);
 930	if (err <= 0)
 931		return err;
 932
 933	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
 934	if (err)
 935		return err;
 936
 937	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 938	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 939	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 940
 941	encap = a[OVS_KEY_ATTR_ENCAP];
 942
 943	if (!is_mask)
 944		err = parse_flow_nlattrs(encap, a, key_attrs, log);
 945	else
 946		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
 947
 948	return err;
 949}
 950
 951static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
 952				   u64 *key_attrs, const struct nlattr **a,
 953				   bool is_mask, bool log)
 954{
 955	int err;
 956	bool encap_valid = false;
 957
 958	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
 959					is_mask, log);
 960	if (err)
 961		return err;
 962
 963	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
 964	if (encap_valid) {
 965		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
 966						is_mask, log);
 967		if (err)
 968			return err;
 969	}
 970
 971	return 0;
 972}
 973
 974static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
 975				       u64 *attrs, const struct nlattr **a,
 976				       bool is_mask, bool log)
 977{
 978	__be16 eth_type;
 979
 980	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 981	if (is_mask) {
 982		/* Always exact match EtherType. */
 983		eth_type = htons(0xffff);
 984	} else if (!eth_proto_is_802_3(eth_type)) {
 985		OVS_NLERR(log, "EtherType %x is less than min %x",
 986				ntohs(eth_type), ETH_P_802_3_MIN);
 987		return -EINVAL;
 988	}
 989
 990	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 991	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 992	return 0;
 993}
 994
 995static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
 996				 u64 *attrs, const struct nlattr **a,
 997				 bool is_mask, bool log)
 998{
 999	u8 mac_proto = MAC_PROTO_ETHERNET;
1000
1001	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1002		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1003
1004		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1005		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1006	}
1007
1008	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1009		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1010
1011		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1012		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1013	}
1014
1015	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1016		SW_FLOW_KEY_PUT(match, phy.priority,
1017			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1018		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1019	}
1020
1021	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1022		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1023
1024		if (is_mask) {
1025			in_port = 0xffffffff; /* Always exact match in_port. */
1026		} else if (in_port >= DP_MAX_PORTS) {
1027			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1028				  in_port, DP_MAX_PORTS);
1029			return -EINVAL;
1030		}
1031
1032		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1033		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1034	} else if (!is_mask) {
1035		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1036	}
1037
1038	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1039		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1040
1041		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1042		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1043	}
1044	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1045		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1046				       is_mask, log) < 0)
1047			return -EINVAL;
1048		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1049	}
1050
1051	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1052	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1053		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1054
1055		if (ct_state & ~CT_SUPPORTED_MASK) {
1056			OVS_NLERR(log, "ct_state flags %08x unsupported",
1057				  ct_state);
1058			return -EINVAL;
1059		}
1060
1061		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1062		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1063	}
1064	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1065	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1066		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1067
1068		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1069		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1070	}
1071	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1072	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1073		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1074
1075		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1076		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1077	}
1078	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1079	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1080		const struct ovs_key_ct_labels *cl;
1081
1082		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1083		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1084				   sizeof(*cl), is_mask);
1085		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1086	}
1087
1088	/* For layer 3 packets the Ethernet type is provided
1089	 * and treated as metadata but no MAC addresses are provided.
1090	 */
1091	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1092	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1093		mac_proto = MAC_PROTO_NONE;
1094
1095	/* Always exact match mac_proto */
1096	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1097
1098	if (mac_proto == MAC_PROTO_NONE)
1099		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1100						   log);
1101
1102	return 0;
1103}
1104
1105static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1106				u64 attrs, const struct nlattr **a,
1107				bool is_mask, bool log)
1108{
1109	int err;
1110
1111	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1112	if (err)
1113		return err;
1114
1115	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1116		const struct ovs_key_ethernet *eth_key;
1117
1118		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1119		SW_FLOW_KEY_MEMCPY(match, eth.src,
1120				eth_key->eth_src, ETH_ALEN, is_mask);
1121		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1122				eth_key->eth_dst, ETH_ALEN, is_mask);
1123		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 
 
 
 
 
 
 
 
 
 
 
1124
1125		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1126			/* VLAN attribute is always parsed before getting here since it
1127			 * may occur multiple times.
1128			 */
1129			OVS_NLERR(log, "VLAN attribute unexpected.");
1130			return -EINVAL;
1131		}
1132
1133		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1134			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1135							  log);
1136			if (err)
1137				return err;
1138		} else if (!is_mask) {
1139			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 
 
 
 
 
 
 
 
1140		}
1141	} else if (!match->key->eth.type) {
1142		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1143		return -EINVAL;
 
 
1144	}
1145
1146	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1147		const struct ovs_key_ipv4 *ipv4_key;
1148
1149		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1150		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1151			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1152				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1153			return -EINVAL;
1154		}
1155		SW_FLOW_KEY_PUT(match, ip.proto,
1156				ipv4_key->ipv4_proto, is_mask);
1157		SW_FLOW_KEY_PUT(match, ip.tos,
1158				ipv4_key->ipv4_tos, is_mask);
1159		SW_FLOW_KEY_PUT(match, ip.ttl,
1160				ipv4_key->ipv4_ttl, is_mask);
1161		SW_FLOW_KEY_PUT(match, ip.frag,
1162				ipv4_key->ipv4_frag, is_mask);
1163		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1164				ipv4_key->ipv4_src, is_mask);
1165		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1166				ipv4_key->ipv4_dst, is_mask);
1167		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1168	}
1169
1170	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1171		const struct ovs_key_ipv6 *ipv6_key;
1172
1173		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1174		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1175			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1176				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1177			return -EINVAL;
1178		}
1179
1180		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1181			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1182				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1183			return -EINVAL;
1184		}
1185
1186		SW_FLOW_KEY_PUT(match, ipv6.label,
1187				ipv6_key->ipv6_label, is_mask);
1188		SW_FLOW_KEY_PUT(match, ip.proto,
1189				ipv6_key->ipv6_proto, is_mask);
1190		SW_FLOW_KEY_PUT(match, ip.tos,
1191				ipv6_key->ipv6_tclass, is_mask);
1192		SW_FLOW_KEY_PUT(match, ip.ttl,
1193				ipv6_key->ipv6_hlimit, is_mask);
1194		SW_FLOW_KEY_PUT(match, ip.frag,
1195				ipv6_key->ipv6_frag, is_mask);
1196		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1197				ipv6_key->ipv6_src,
1198				sizeof(match->key->ipv6.addr.src),
1199				is_mask);
1200		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1201				ipv6_key->ipv6_dst,
1202				sizeof(match->key->ipv6.addr.dst),
1203				is_mask);
1204
1205		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1206	}
1207
1208	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1209		const struct ovs_key_arp *arp_key;
1210
1211		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1212		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1213			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1214				  arp_key->arp_op);
1215			return -EINVAL;
1216		}
1217
1218		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1219				arp_key->arp_sip, is_mask);
1220		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1221			arp_key->arp_tip, is_mask);
1222		SW_FLOW_KEY_PUT(match, ip.proto,
1223				ntohs(arp_key->arp_op), is_mask);
1224		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1225				arp_key->arp_sha, ETH_ALEN, is_mask);
1226		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1227				arp_key->arp_tha, ETH_ALEN, is_mask);
1228
1229		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1230	}
1231
1232	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1233		const struct ovs_key_mpls *mpls_key;
1234
1235		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1236		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1237				mpls_key->mpls_lse, is_mask);
1238
1239		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1240	 }
1241
1242	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1243		const struct ovs_key_tcp *tcp_key;
1244
1245		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1246		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1247		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1248		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1249	}
1250
1251	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1252		SW_FLOW_KEY_PUT(match, tp.flags,
1253				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1254				is_mask);
1255		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1256	}
1257
1258	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1259		const struct ovs_key_udp *udp_key;
1260
1261		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1262		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1263		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1264		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1265	}
1266
1267	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1268		const struct ovs_key_sctp *sctp_key;
1269
1270		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1271		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1272		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1273		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1274	}
1275
1276	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1277		const struct ovs_key_icmp *icmp_key;
1278
1279		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1280		SW_FLOW_KEY_PUT(match, tp.src,
1281				htons(icmp_key->icmp_type), is_mask);
1282		SW_FLOW_KEY_PUT(match, tp.dst,
1283				htons(icmp_key->icmp_code), is_mask);
1284		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1285	}
1286
1287	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1288		const struct ovs_key_icmpv6 *icmpv6_key;
1289
1290		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1291		SW_FLOW_KEY_PUT(match, tp.src,
1292				htons(icmpv6_key->icmpv6_type), is_mask);
1293		SW_FLOW_KEY_PUT(match, tp.dst,
1294				htons(icmpv6_key->icmpv6_code), is_mask);
1295		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1296	}
1297
1298	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1299		const struct ovs_key_nd *nd_key;
1300
1301		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1302		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1303			nd_key->nd_target,
1304			sizeof(match->key->ipv6.nd.target),
1305			is_mask);
1306		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1307			nd_key->nd_sll, ETH_ALEN, is_mask);
1308		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1309				nd_key->nd_tll, ETH_ALEN, is_mask);
1310		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1311	}
1312
1313	if (attrs != 0) {
1314		OVS_NLERR(log, "Unknown key attributes %llx",
1315			  (unsigned long long)attrs);
1316		return -EINVAL;
1317	}
1318
1319	return 0;
1320}
1321
1322static void nlattr_set(struct nlattr *attr, u8 val,
1323		       const struct ovs_len_tbl *tbl)
1324{
1325	struct nlattr *nla;
1326	int rem;
1327
1328	/* The nlattr stream should already have been validated */
1329	nla_for_each_nested(nla, attr, rem) {
1330		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1331			if (tbl[nla_type(nla)].next)
1332				tbl = tbl[nla_type(nla)].next;
1333			nlattr_set(nla, val, tbl);
1334		} else {
1335			memset(nla_data(nla), val, nla_len(nla));
1336		}
1337
1338		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1339			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1340	}
1341}
1342
1343static void mask_set_nlattr(struct nlattr *attr, u8 val)
1344{
1345	nlattr_set(attr, val, ovs_key_lens);
1346}
1347
1348/**
1349 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1350 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1351 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1352 * does not include any don't care bit.
1353 * @net: Used to determine per-namespace field support.
1354 * @match: receives the extracted flow match information.
1355 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1356 * sequence. The fields should of the packet that triggered the creation
1357 * of this flow.
1358 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1359 * attribute specifies the mask field of the wildcarded flow.
1360 * @log: Boolean to allow kernel error logging.  Normally true, but when
1361 * probing for feature compatibility this should be passed in as false to
1362 * suppress unnecessary error logging.
1363 */
1364int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1365		      const struct nlattr *nla_key,
1366		      const struct nlattr *nla_mask,
1367		      bool log)
1368{
1369	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 
1370	struct nlattr *newmask = NULL;
1371	u64 key_attrs = 0;
1372	u64 mask_attrs = 0;
 
1373	int err;
1374
1375	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1376	if (err)
1377		return err;
1378
1379	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1380	if (err)
1381		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1384	if (err)
1385		return err;
1386
1387	if (match->mask) {
1388		if (!nla_mask) {
1389			/* Create an exact match mask. We need to set to 0xff
1390			 * all the 'match->mask' fields that have been touched
1391			 * in 'match->key'. We cannot simply memset
1392			 * 'match->mask', because padding bytes and fields not
1393			 * specified in 'match->key' should be left to 0.
1394			 * Instead, we use a stream of netlink attributes,
1395			 * copied from 'key' and set to 0xff.
1396			 * ovs_key_from_nlattrs() will take care of filling
1397			 * 'match->mask' appropriately.
1398			 */
1399			newmask = kmemdup(nla_key,
1400					  nla_total_size(nla_len(nla_key)),
1401					  GFP_KERNEL);
1402			if (!newmask)
1403				return -ENOMEM;
1404
1405			mask_set_nlattr(newmask, 0xff);
1406
1407			/* The userspace does not send tunnel attributes that
1408			 * are 0, but we should not wildcard them nonetheless.
1409			 */
1410			if (match->key->tun_proto)
1411				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1412							 0xff, true);
1413
1414			nla_mask = newmask;
1415		}
1416
1417		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1418		if (err)
1419			goto free_newmask;
1420
1421		/* Always match on tci. */
1422		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1423		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1424
1425		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1426		if (err)
1427			goto free_newmask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428
1429		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1430					   log);
1431		if (err)
1432			goto free_newmask;
1433	}
1434
1435	if (!match_validate(match, key_attrs, mask_attrs, log))
1436		err = -EINVAL;
1437
1438free_newmask:
1439	kfree(newmask);
1440	return err;
1441}
1442
1443static size_t get_ufid_len(const struct nlattr *attr, bool log)
1444{
1445	size_t len;
1446
1447	if (!attr)
1448		return 0;
1449
1450	len = nla_len(attr);
1451	if (len < 1 || len > MAX_UFID_LENGTH) {
1452		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1453			  nla_len(attr), MAX_UFID_LENGTH);
1454		return 0;
1455	}
1456
1457	return len;
1458}
1459
1460/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1461 * or false otherwise.
1462 */
1463bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1464		      bool log)
1465{
1466	sfid->ufid_len = get_ufid_len(attr, log);
1467	if (sfid->ufid_len)
1468		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1469
1470	return sfid->ufid_len;
1471}
1472
1473int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1474			   const struct sw_flow_key *key, bool log)
1475{
1476	struct sw_flow_key *new_key;
1477
1478	if (ovs_nla_get_ufid(sfid, ufid, log))
1479		return 0;
1480
1481	/* If UFID was not provided, use unmasked key. */
1482	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1483	if (!new_key)
1484		return -ENOMEM;
1485	memcpy(new_key, key, sizeof(*key));
1486	sfid->unmasked_key = new_key;
1487
1488	return 0;
1489}
1490
1491u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1492{
1493	return attr ? nla_get_u32(attr) : 0;
1494}
1495
1496/**
1497 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1498 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1499 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1500 * sequence.
1501 * @log: Boolean to allow kernel error logging.  Normally true, but when
1502 * probing for feature compatibility this should be passed in as false to
1503 * suppress unnecessary error logging.
1504 *
1505 * This parses a series of Netlink attributes that form a flow key, which must
1506 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1507 * get the metadata, that is, the parts of the flow key that cannot be
1508 * extracted from the packet itself.
1509 */
1510
1511int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1512			      struct sw_flow_key *key,
1513			      bool log)
1514{
1515	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1516	struct sw_flow_match match;
1517	u64 attrs = 0;
1518	int err;
1519
1520	err = parse_flow_nlattrs(attr, a, &attrs, log);
1521	if (err)
1522		return -EINVAL;
1523
1524	memset(&match, 0, sizeof(match));
1525	match.key = key;
1526
1527	memset(&key->ct, 0, sizeof(key->ct));
1528	key->phy.in_port = DP_MAX_PORTS;
1529
1530	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1531}
1532
1533static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1534			    bool is_mask)
1535{
1536	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1537
1538	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1539	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1540		return -EMSGSIZE;
1541	return 0;
1542}
1543
1544static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1545			     const struct sw_flow_key *output, bool is_mask,
1546			     struct sk_buff *skb)
1547{
1548	struct ovs_key_ethernet *eth_key;
1549	struct nlattr *nla;
1550	struct nlattr *encap = NULL;
1551	struct nlattr *in_encap = NULL;
1552
1553	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1554		goto nla_put_failure;
1555
1556	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1557		goto nla_put_failure;
1558
1559	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1560		goto nla_put_failure;
1561
1562	if ((swkey->tun_proto || is_mask)) {
1563		const void *opts = NULL;
1564
1565		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1566			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1567
1568		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1569				     swkey->tun_opts_len, swkey->tun_proto))
1570			goto nla_put_failure;
1571	}
1572
1573	if (swkey->phy.in_port == DP_MAX_PORTS) {
1574		if (is_mask && (output->phy.in_port == 0xffff))
1575			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1576				goto nla_put_failure;
1577	} else {
1578		u16 upper_u16;
1579		upper_u16 = !is_mask ? 0 : 0xffff;
1580
1581		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1582				(upper_u16 << 16) | output->phy.in_port))
1583			goto nla_put_failure;
1584	}
1585
1586	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1587		goto nla_put_failure;
1588
1589	if (ovs_ct_put_key(output, skb))
1590		goto nla_put_failure;
1591
1592	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1593		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1594		if (!nla)
1595			goto nla_put_failure;
1596
1597		eth_key = nla_data(nla);
1598		ether_addr_copy(eth_key->eth_src, output->eth.src);
1599		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
 
 
 
 
 
 
 
 
 
 
 
 
1600
1601		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1602			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
 
 
 
 
 
 
 
 
1603				goto nla_put_failure;
1604			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1605			if (!swkey->eth.vlan.tci)
1606				goto unencap;
1607
1608			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1609				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1610					goto nla_put_failure;
1611				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1612				if (!swkey->eth.cvlan.tci)
1613					goto unencap;
1614			}
1615		}
1616
1617		if (swkey->eth.type == htons(ETH_P_802_2)) {
1618			/*
1619			* Ethertype 802.2 is represented in the netlink with omitted
1620			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1621			* 0xffff in the mask attribute.  Ethertype can also
1622			* be wildcarded.
1623			*/
1624			if (is_mask && output->eth.type)
1625				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1626							output->eth.type))
1627					goto nla_put_failure;
1628			goto unencap;
1629		}
1630	}
1631
1632	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1633		goto nla_put_failure;
1634
1635	if (eth_type_vlan(swkey->eth.type)) {
1636		/* There are 3 VLAN tags, we don't know anything about the rest
1637		 * of the packet, so truncate here.
1638		 */
1639		WARN_ON_ONCE(!(encap && in_encap));
1640		goto unencap;
1641	}
1642
1643	if (swkey->eth.type == htons(ETH_P_IP)) {
1644		struct ovs_key_ipv4 *ipv4_key;
1645
1646		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1647		if (!nla)
1648			goto nla_put_failure;
1649		ipv4_key = nla_data(nla);
1650		ipv4_key->ipv4_src = output->ipv4.addr.src;
1651		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1652		ipv4_key->ipv4_proto = output->ip.proto;
1653		ipv4_key->ipv4_tos = output->ip.tos;
1654		ipv4_key->ipv4_ttl = output->ip.ttl;
1655		ipv4_key->ipv4_frag = output->ip.frag;
1656	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1657		struct ovs_key_ipv6 *ipv6_key;
1658
1659		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1660		if (!nla)
1661			goto nla_put_failure;
1662		ipv6_key = nla_data(nla);
1663		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1664				sizeof(ipv6_key->ipv6_src));
1665		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1666				sizeof(ipv6_key->ipv6_dst));
1667		ipv6_key->ipv6_label = output->ipv6.label;
1668		ipv6_key->ipv6_proto = output->ip.proto;
1669		ipv6_key->ipv6_tclass = output->ip.tos;
1670		ipv6_key->ipv6_hlimit = output->ip.ttl;
1671		ipv6_key->ipv6_frag = output->ip.frag;
1672	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1673		   swkey->eth.type == htons(ETH_P_RARP)) {
1674		struct ovs_key_arp *arp_key;
1675
1676		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1677		if (!nla)
1678			goto nla_put_failure;
1679		arp_key = nla_data(nla);
1680		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1681		arp_key->arp_sip = output->ipv4.addr.src;
1682		arp_key->arp_tip = output->ipv4.addr.dst;
1683		arp_key->arp_op = htons(output->ip.proto);
1684		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1685		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1686	} else if (eth_p_mpls(swkey->eth.type)) {
1687		struct ovs_key_mpls *mpls_key;
1688
1689		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1690		if (!nla)
1691			goto nla_put_failure;
1692		mpls_key = nla_data(nla);
1693		mpls_key->mpls_lse = output->mpls.top_lse;
1694	}
1695
1696	if ((swkey->eth.type == htons(ETH_P_IP) ||
1697	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1698	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1699
1700		if (swkey->ip.proto == IPPROTO_TCP) {
1701			struct ovs_key_tcp *tcp_key;
1702
1703			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1704			if (!nla)
1705				goto nla_put_failure;
1706			tcp_key = nla_data(nla);
1707			tcp_key->tcp_src = output->tp.src;
1708			tcp_key->tcp_dst = output->tp.dst;
1709			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1710					 output->tp.flags))
1711				goto nla_put_failure;
1712		} else if (swkey->ip.proto == IPPROTO_UDP) {
1713			struct ovs_key_udp *udp_key;
1714
1715			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1716			if (!nla)
1717				goto nla_put_failure;
1718			udp_key = nla_data(nla);
1719			udp_key->udp_src = output->tp.src;
1720			udp_key->udp_dst = output->tp.dst;
1721		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1722			struct ovs_key_sctp *sctp_key;
1723
1724			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1725			if (!nla)
1726				goto nla_put_failure;
1727			sctp_key = nla_data(nla);
1728			sctp_key->sctp_src = output->tp.src;
1729			sctp_key->sctp_dst = output->tp.dst;
1730		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1731			   swkey->ip.proto == IPPROTO_ICMP) {
1732			struct ovs_key_icmp *icmp_key;
1733
1734			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1735			if (!nla)
1736				goto nla_put_failure;
1737			icmp_key = nla_data(nla);
1738			icmp_key->icmp_type = ntohs(output->tp.src);
1739			icmp_key->icmp_code = ntohs(output->tp.dst);
1740		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1741			   swkey->ip.proto == IPPROTO_ICMPV6) {
1742			struct ovs_key_icmpv6 *icmpv6_key;
1743
1744			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1745						sizeof(*icmpv6_key));
1746			if (!nla)
1747				goto nla_put_failure;
1748			icmpv6_key = nla_data(nla);
1749			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1750			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1751
1752			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1753			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1754				struct ovs_key_nd *nd_key;
1755
1756				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1757				if (!nla)
1758					goto nla_put_failure;
1759				nd_key = nla_data(nla);
1760				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1761							sizeof(nd_key->nd_target));
1762				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1763				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1764			}
1765		}
1766	}
1767
1768unencap:
1769	if (in_encap)
1770		nla_nest_end(skb, in_encap);
1771	if (encap)
1772		nla_nest_end(skb, encap);
1773
1774	return 0;
1775
1776nla_put_failure:
1777	return -EMSGSIZE;
1778}
1779
1780int ovs_nla_put_key(const struct sw_flow_key *swkey,
1781		    const struct sw_flow_key *output, int attr, bool is_mask,
1782		    struct sk_buff *skb)
1783{
1784	int err;
1785	struct nlattr *nla;
1786
1787	nla = nla_nest_start(skb, attr);
1788	if (!nla)
1789		return -EMSGSIZE;
1790	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1791	if (err)
1792		return err;
1793	nla_nest_end(skb, nla);
1794
1795	return 0;
1796}
1797
1798/* Called with ovs_mutex or RCU read lock. */
1799int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1800{
1801	if (ovs_identifier_is_ufid(&flow->id))
1802		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1803			       flow->id.ufid);
1804
1805	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1806			       OVS_FLOW_ATTR_KEY, false, skb);
1807}
1808
1809/* Called with ovs_mutex or RCU read lock. */
1810int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1811{
1812	return ovs_nla_put_key(&flow->key, &flow->key,
1813				OVS_FLOW_ATTR_KEY, false, skb);
1814}
1815
1816/* Called with ovs_mutex or RCU read lock. */
1817int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1818{
1819	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1820				OVS_FLOW_ATTR_MASK, true, skb);
1821}
1822
1823#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1824
1825static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1826{
1827	struct sw_flow_actions *sfa;
1828
1829	if (size > MAX_ACTIONS_BUFSIZE) {
1830		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1831		return ERR_PTR(-EINVAL);
1832	}
1833
1834	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1835	if (!sfa)
1836		return ERR_PTR(-ENOMEM);
1837
1838	sfa->actions_len = 0;
1839	return sfa;
1840}
1841
1842static void ovs_nla_free_set_action(const struct nlattr *a)
1843{
1844	const struct nlattr *ovs_key = nla_data(a);
1845	struct ovs_tunnel_info *ovs_tun;
1846
1847	switch (nla_type(ovs_key)) {
1848	case OVS_KEY_ATTR_TUNNEL_INFO:
1849		ovs_tun = nla_data(ovs_key);
1850		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1851		break;
1852	}
1853}
1854
1855void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1856{
1857	const struct nlattr *a;
1858	int rem;
1859
1860	if (!sf_acts)
1861		return;
1862
1863	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1864		switch (nla_type(a)) {
1865		case OVS_ACTION_ATTR_SET:
1866			ovs_nla_free_set_action(a);
1867			break;
1868		case OVS_ACTION_ATTR_CT:
1869			ovs_ct_free_action(a);
1870			break;
1871		}
1872	}
1873
1874	kfree(sf_acts);
1875}
1876
1877static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1878{
1879	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1880}
1881
1882/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1883 * The caller must hold rcu_read_lock for this to be sensible. */
1884void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1885{
1886	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1887}
1888
1889static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1890				       int attr_len, bool log)
1891{
1892
1893	struct sw_flow_actions *acts;
1894	int new_acts_size;
1895	int req_size = NLA_ALIGN(attr_len);
1896	int next_offset = offsetof(struct sw_flow_actions, actions) +
1897					(*sfa)->actions_len;
1898
1899	if (req_size <= (ksize(*sfa) - next_offset))
1900		goto out;
1901
1902	new_acts_size = ksize(*sfa) * 2;
1903
1904	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1905		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1906			return ERR_PTR(-EMSGSIZE);
1907		new_acts_size = MAX_ACTIONS_BUFSIZE;
1908	}
1909
1910	acts = nla_alloc_flow_actions(new_acts_size, log);
1911	if (IS_ERR(acts))
1912		return (void *)acts;
1913
1914	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1915	acts->actions_len = (*sfa)->actions_len;
1916	acts->orig_len = (*sfa)->orig_len;
1917	kfree(*sfa);
1918	*sfa = acts;
1919
1920out:
1921	(*sfa)->actions_len += req_size;
1922	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1923}
1924
1925static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1926				   int attrtype, void *data, int len, bool log)
1927{
1928	struct nlattr *a;
1929
1930	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1931	if (IS_ERR(a))
1932		return a;
1933
1934	a->nla_type = attrtype;
1935	a->nla_len = nla_attr_size(len);
1936
1937	if (data)
1938		memcpy(nla_data(a), data, len);
1939	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1940
1941	return a;
1942}
1943
1944int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1945		       int len, bool log)
1946{
1947	struct nlattr *a;
1948
1949	a = __add_action(sfa, attrtype, data, len, log);
1950
1951	return PTR_ERR_OR_ZERO(a);
1952}
1953
1954static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1955					  int attrtype, bool log)
1956{
1957	int used = (*sfa)->actions_len;
1958	int err;
1959
1960	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1961	if (err)
1962		return err;
1963
1964	return used;
1965}
1966
1967static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1968					 int st_offset)
1969{
1970	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1971							       st_offset);
1972
1973	a->nla_len = sfa->actions_len - st_offset;
1974}
1975
1976static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1977				  const struct sw_flow_key *key,
1978				  int depth, struct sw_flow_actions **sfa,
1979				  __be16 eth_type, __be16 vlan_tci, bool log);
1980
1981static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1982				    const struct sw_flow_key *key, int depth,
1983				    struct sw_flow_actions **sfa,
1984				    __be16 eth_type, __be16 vlan_tci, bool log)
1985{
1986	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1987	const struct nlattr *probability, *actions;
1988	const struct nlattr *a;
1989	int rem, start, err, st_acts;
1990
1991	memset(attrs, 0, sizeof(attrs));
1992	nla_for_each_nested(a, attr, rem) {
1993		int type = nla_type(a);
1994		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1995			return -EINVAL;
1996		attrs[type] = a;
1997	}
1998	if (rem)
1999		return -EINVAL;
2000
2001	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2002	if (!probability || nla_len(probability) != sizeof(u32))
2003		return -EINVAL;
2004
2005	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2006	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2007		return -EINVAL;
2008
2009	/* validation done, copy sample action. */
2010	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2011	if (start < 0)
2012		return start;
2013	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2014				 nla_data(probability), sizeof(u32), log);
2015	if (err)
2016		return err;
2017	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2018	if (st_acts < 0)
2019		return st_acts;
2020
2021	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2022				     eth_type, vlan_tci, log);
2023	if (err)
2024		return err;
2025
2026	add_nested_action_end(*sfa, st_acts);
2027	add_nested_action_end(*sfa, start);
2028
2029	return 0;
2030}
2031
2032void ovs_match_init(struct sw_flow_match *match,
2033		    struct sw_flow_key *key,
2034		    bool reset_key,
2035		    struct sw_flow_mask *mask)
2036{
2037	memset(match, 0, sizeof(*match));
2038	match->key = key;
2039	match->mask = mask;
2040
2041	if (reset_key)
2042		memset(key, 0, sizeof(*key));
2043
2044	if (mask) {
2045		memset(&mask->key, 0, sizeof(mask->key));
2046		mask->range.start = mask->range.end = 0;
2047	}
2048}
2049
2050static int validate_geneve_opts(struct sw_flow_key *key)
2051{
2052	struct geneve_opt *option;
2053	int opts_len = key->tun_opts_len;
2054	bool crit_opt = false;
2055
2056	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2057	while (opts_len > 0) {
2058		int len;
2059
2060		if (opts_len < sizeof(*option))
2061			return -EINVAL;
2062
2063		len = sizeof(*option) + option->length * 4;
2064		if (len > opts_len)
2065			return -EINVAL;
2066
2067		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2068
2069		option = (struct geneve_opt *)((u8 *)option + len);
2070		opts_len -= len;
2071	};
2072
2073	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2074
2075	return 0;
2076}
2077
2078static int validate_and_copy_set_tun(const struct nlattr *attr,
2079				     struct sw_flow_actions **sfa, bool log)
2080{
2081	struct sw_flow_match match;
2082	struct sw_flow_key key;
2083	struct metadata_dst *tun_dst;
2084	struct ip_tunnel_info *tun_info;
2085	struct ovs_tunnel_info *ovs_tun;
2086	struct nlattr *a;
2087	int err = 0, start, opts_type;
2088
2089	ovs_match_init(&match, &key, true, NULL);
2090	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2091	if (opts_type < 0)
2092		return opts_type;
2093
2094	if (key.tun_opts_len) {
2095		switch (opts_type) {
2096		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2097			err = validate_geneve_opts(&key);
2098			if (err < 0)
2099				return err;
2100			break;
2101		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2102			break;
2103		}
2104	};
2105
2106	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2107	if (start < 0)
2108		return start;
2109
2110	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2111	if (!tun_dst)
2112		return -ENOMEM;
2113
2114	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2115	if (err) {
2116		dst_release((struct dst_entry *)tun_dst);
2117		return err;
2118	}
2119
2120	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2121			 sizeof(*ovs_tun), log);
2122	if (IS_ERR(a)) {
2123		dst_release((struct dst_entry *)tun_dst);
2124		return PTR_ERR(a);
2125	}
2126
2127	ovs_tun = nla_data(a);
2128	ovs_tun->tun_dst = tun_dst;
2129
2130	tun_info = &tun_dst->u.tun_info;
2131	tun_info->mode = IP_TUNNEL_INFO_TX;
2132	if (key.tun_proto == AF_INET6)
2133		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2134	tun_info->key = key.tun_key;
2135
2136	/* We need to store the options in the action itself since
2137	 * everything else will go away after flow setup. We can append
2138	 * it to tun_info and then point there.
2139	 */
2140	ip_tunnel_info_opts_set(tun_info,
2141				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2142				key.tun_opts_len);
2143	add_nested_action_end(*sfa, start);
2144
2145	return err;
2146}
2147
2148/* Return false if there are any non-masked bits set.
2149 * Mask follows data immediately, before any netlink padding.
2150 */
2151static bool validate_masked(u8 *data, int len)
2152{
2153	u8 *mask = data + len;
2154
2155	while (len--)
2156		if (*data++ & ~*mask++)
2157			return false;
2158
2159	return true;
2160}
2161
2162static int validate_set(const struct nlattr *a,
2163			const struct sw_flow_key *flow_key,
2164			struct sw_flow_actions **sfa, bool *skip_copy,
2165			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2166{
2167	const struct nlattr *ovs_key = nla_data(a);
2168	int key_type = nla_type(ovs_key);
2169	size_t key_len;
2170
2171	/* There can be only one key in a action */
2172	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2173		return -EINVAL;
2174
2175	key_len = nla_len(ovs_key);
2176	if (masked)
2177		key_len /= 2;
2178
2179	if (key_type > OVS_KEY_ATTR_MAX ||
2180	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2181		return -EINVAL;
2182
2183	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2184		return -EINVAL;
2185
2186	switch (key_type) {
2187	const struct ovs_key_ipv4 *ipv4_key;
2188	const struct ovs_key_ipv6 *ipv6_key;
2189	int err;
2190
2191	case OVS_KEY_ATTR_PRIORITY:
2192	case OVS_KEY_ATTR_SKB_MARK:
2193	case OVS_KEY_ATTR_CT_MARK:
2194	case OVS_KEY_ATTR_CT_LABELS:
2195		break;
2196
2197	case OVS_KEY_ATTR_ETHERNET:
2198		if (mac_proto != MAC_PROTO_ETHERNET)
2199			return -EINVAL;
2200		break;
2201
2202	case OVS_KEY_ATTR_TUNNEL:
2203		if (masked)
2204			return -EINVAL; /* Masked tunnel set not supported. */
2205
2206		*skip_copy = true;
2207		err = validate_and_copy_set_tun(a, sfa, log);
2208		if (err)
2209			return err;
2210		break;
2211
2212	case OVS_KEY_ATTR_IPV4:
2213		if (eth_type != htons(ETH_P_IP))
2214			return -EINVAL;
2215
2216		ipv4_key = nla_data(ovs_key);
2217
2218		if (masked) {
2219			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2220
2221			/* Non-writeable fields. */
2222			if (mask->ipv4_proto || mask->ipv4_frag)
2223				return -EINVAL;
2224		} else {
2225			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2226				return -EINVAL;
2227
2228			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2229				return -EINVAL;
2230		}
2231		break;
2232
2233	case OVS_KEY_ATTR_IPV6:
2234		if (eth_type != htons(ETH_P_IPV6))
2235			return -EINVAL;
2236
2237		ipv6_key = nla_data(ovs_key);
2238
2239		if (masked) {
2240			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2241
2242			/* Non-writeable fields. */
2243			if (mask->ipv6_proto || mask->ipv6_frag)
2244				return -EINVAL;
2245
2246			/* Invalid bits in the flow label mask? */
2247			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2248				return -EINVAL;
2249		} else {
2250			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2251				return -EINVAL;
2252
2253			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2254				return -EINVAL;
2255		}
2256		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2257			return -EINVAL;
2258
2259		break;
2260
2261	case OVS_KEY_ATTR_TCP:
2262		if ((eth_type != htons(ETH_P_IP) &&
2263		     eth_type != htons(ETH_P_IPV6)) ||
2264		    flow_key->ip.proto != IPPROTO_TCP)
2265			return -EINVAL;
2266
2267		break;
2268
2269	case OVS_KEY_ATTR_UDP:
2270		if ((eth_type != htons(ETH_P_IP) &&
2271		     eth_type != htons(ETH_P_IPV6)) ||
2272		    flow_key->ip.proto != IPPROTO_UDP)
2273			return -EINVAL;
2274
2275		break;
2276
2277	case OVS_KEY_ATTR_MPLS:
2278		if (!eth_p_mpls(eth_type))
2279			return -EINVAL;
2280		break;
2281
2282	case OVS_KEY_ATTR_SCTP:
2283		if ((eth_type != htons(ETH_P_IP) &&
2284		     eth_type != htons(ETH_P_IPV6)) ||
2285		    flow_key->ip.proto != IPPROTO_SCTP)
2286			return -EINVAL;
2287
2288		break;
2289
2290	default:
2291		return -EINVAL;
2292	}
2293
2294	/* Convert non-masked non-tunnel set actions to masked set actions. */
2295	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2296		int start, len = key_len * 2;
2297		struct nlattr *at;
2298
2299		*skip_copy = true;
2300
2301		start = add_nested_action_start(sfa,
2302						OVS_ACTION_ATTR_SET_TO_MASKED,
2303						log);
2304		if (start < 0)
2305			return start;
2306
2307		at = __add_action(sfa, key_type, NULL, len, log);
2308		if (IS_ERR(at))
2309			return PTR_ERR(at);
2310
2311		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2312		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2313		/* Clear non-writeable bits from otherwise writeable fields. */
2314		if (key_type == OVS_KEY_ATTR_IPV6) {
2315			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2316
2317			mask->ipv6_label &= htonl(0x000FFFFF);
2318		}
2319		add_nested_action_end(*sfa, start);
2320	}
2321
2322	return 0;
2323}
2324
2325static int validate_userspace(const struct nlattr *attr)
2326{
2327	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2328		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2329		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2330		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2331	};
2332	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2333	int error;
2334
2335	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2336				 attr, userspace_policy);
2337	if (error)
2338		return error;
2339
2340	if (!a[OVS_USERSPACE_ATTR_PID] ||
2341	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2342		return -EINVAL;
2343
2344	return 0;
2345}
2346
2347static int copy_action(const struct nlattr *from,
2348		       struct sw_flow_actions **sfa, bool log)
2349{
2350	int totlen = NLA_ALIGN(from->nla_len);
2351	struct nlattr *to;
2352
2353	to = reserve_sfa_size(sfa, from->nla_len, log);
2354	if (IS_ERR(to))
2355		return PTR_ERR(to);
2356
2357	memcpy(to, from, totlen);
2358	return 0;
2359}
2360
2361static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2362				  const struct sw_flow_key *key,
2363				  int depth, struct sw_flow_actions **sfa,
2364				  __be16 eth_type, __be16 vlan_tci, bool log)
2365{
2366	u8 mac_proto = ovs_key_mac_proto(key);
2367	const struct nlattr *a;
2368	int rem, err;
2369
2370	if (depth >= SAMPLE_ACTION_DEPTH)
2371		return -EOVERFLOW;
2372
2373	nla_for_each_nested(a, attr, rem) {
2374		/* Expected argument lengths, (u32)-1 for variable length. */
2375		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2376			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2377			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2378			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2379			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2380			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2381			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2382			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2383			[OVS_ACTION_ATTR_SET] = (u32)-1,
2384			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2385			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2386			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2387			[OVS_ACTION_ATTR_CT] = (u32)-1,
2388			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2389			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2390			[OVS_ACTION_ATTR_POP_ETH] = 0,
2391		};
2392		const struct ovs_action_push_vlan *vlan;
2393		int type = nla_type(a);
2394		bool skip_copy;
2395
2396		if (type > OVS_ACTION_ATTR_MAX ||
2397		    (action_lens[type] != nla_len(a) &&
2398		     action_lens[type] != (u32)-1))
2399			return -EINVAL;
2400
2401		skip_copy = false;
2402		switch (type) {
2403		case OVS_ACTION_ATTR_UNSPEC:
2404			return -EINVAL;
2405
2406		case OVS_ACTION_ATTR_USERSPACE:
2407			err = validate_userspace(a);
2408			if (err)
2409				return err;
2410			break;
2411
2412		case OVS_ACTION_ATTR_OUTPUT:
2413			if (nla_get_u32(a) >= DP_MAX_PORTS)
2414				return -EINVAL;
2415			break;
2416
2417		case OVS_ACTION_ATTR_TRUNC: {
2418			const struct ovs_action_trunc *trunc = nla_data(a);
2419
2420			if (trunc->max_len < ETH_HLEN)
2421				return -EINVAL;
2422			break;
2423		}
2424
2425		case OVS_ACTION_ATTR_HASH: {
2426			const struct ovs_action_hash *act_hash = nla_data(a);
2427
2428			switch (act_hash->hash_alg) {
2429			case OVS_HASH_ALG_L4:
2430				break;
2431			default:
2432				return  -EINVAL;
2433			}
2434
2435			break;
2436		}
2437
2438		case OVS_ACTION_ATTR_POP_VLAN:
2439			if (mac_proto != MAC_PROTO_ETHERNET)
2440				return -EINVAL;
2441			vlan_tci = htons(0);
2442			break;
2443
2444		case OVS_ACTION_ATTR_PUSH_VLAN:
2445			if (mac_proto != MAC_PROTO_ETHERNET)
2446				return -EINVAL;
2447			vlan = nla_data(a);
2448			if (!eth_type_vlan(vlan->vlan_tpid))
2449				return -EINVAL;
2450			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2451				return -EINVAL;
2452			vlan_tci = vlan->vlan_tci;
2453			break;
2454
2455		case OVS_ACTION_ATTR_RECIRC:
2456			break;
2457
2458		case OVS_ACTION_ATTR_PUSH_MPLS: {
2459			const struct ovs_action_push_mpls *mpls = nla_data(a);
2460
2461			if (!eth_p_mpls(mpls->mpls_ethertype))
2462				return -EINVAL;
2463			/* Prohibit push MPLS other than to a white list
2464			 * for packets that have a known tag order.
2465			 */
2466			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2467			    (eth_type != htons(ETH_P_IP) &&
2468			     eth_type != htons(ETH_P_IPV6) &&
2469			     eth_type != htons(ETH_P_ARP) &&
2470			     eth_type != htons(ETH_P_RARP) &&
2471			     !eth_p_mpls(eth_type)))
2472				return -EINVAL;
2473			eth_type = mpls->mpls_ethertype;
2474			break;
2475		}
2476
2477		case OVS_ACTION_ATTR_POP_MPLS:
2478			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2479			    !eth_p_mpls(eth_type))
2480				return -EINVAL;
2481
2482			/* Disallow subsequent L2.5+ set and mpls_pop actions
2483			 * as there is no check here to ensure that the new
2484			 * eth_type is valid and thus set actions could
2485			 * write off the end of the packet or otherwise
2486			 * corrupt it.
2487			 *
2488			 * Support for these actions is planned using packet
2489			 * recirculation.
2490			 */
2491			eth_type = htons(0);
2492			break;
2493
2494		case OVS_ACTION_ATTR_SET:
2495			err = validate_set(a, key, sfa,
2496					   &skip_copy, mac_proto, eth_type,
2497					   false, log);
2498			if (err)
2499				return err;
2500			break;
2501
2502		case OVS_ACTION_ATTR_SET_MASKED:
2503			err = validate_set(a, key, sfa,
2504					   &skip_copy, mac_proto, eth_type,
2505					   true, log);
2506			if (err)
2507				return err;
2508			break;
2509
2510		case OVS_ACTION_ATTR_SAMPLE:
2511			err = validate_and_copy_sample(net, a, key, depth, sfa,
2512						       eth_type, vlan_tci, log);
2513			if (err)
2514				return err;
2515			skip_copy = true;
2516			break;
2517
2518		case OVS_ACTION_ATTR_CT:
2519			err = ovs_ct_copy_action(net, a, key, sfa, log);
2520			if (err)
2521				return err;
2522			skip_copy = true;
2523			break;
2524
2525		case OVS_ACTION_ATTR_PUSH_ETH:
2526			/* Disallow pushing an Ethernet header if one
2527			 * is already present */
2528			if (mac_proto != MAC_PROTO_NONE)
2529				return -EINVAL;
2530			mac_proto = MAC_PROTO_NONE;
2531			break;
2532
2533		case OVS_ACTION_ATTR_POP_ETH:
2534			if (mac_proto != MAC_PROTO_ETHERNET)
2535				return -EINVAL;
2536			if (vlan_tci & htons(VLAN_TAG_PRESENT))
2537				return -EINVAL;
2538			mac_proto = MAC_PROTO_ETHERNET;
2539			break;
2540
2541		default:
2542			OVS_NLERR(log, "Unknown Action type %d", type);
2543			return -EINVAL;
2544		}
2545		if (!skip_copy) {
2546			err = copy_action(a, sfa, log);
2547			if (err)
2548				return err;
2549		}
2550	}
2551
2552	if (rem > 0)
2553		return -EINVAL;
2554
2555	return 0;
2556}
2557
2558/* 'key' must be the masked key. */
2559int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2560			 const struct sw_flow_key *key,
2561			 struct sw_flow_actions **sfa, bool log)
2562{
2563	int err;
2564
2565	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2566	if (IS_ERR(*sfa))
2567		return PTR_ERR(*sfa);
2568
2569	(*sfa)->orig_len = nla_len(attr);
2570	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2571				     key->eth.vlan.tci, log);
2572	if (err)
2573		ovs_nla_free_flow_actions(*sfa);
2574
2575	return err;
2576}
2577
2578static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2579{
2580	const struct nlattr *a;
2581	struct nlattr *start;
2582	int err = 0, rem;
2583
2584	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2585	if (!start)
2586		return -EMSGSIZE;
2587
2588	nla_for_each_nested(a, attr, rem) {
2589		int type = nla_type(a);
2590		struct nlattr *st_sample;
2591
2592		switch (type) {
2593		case OVS_SAMPLE_ATTR_PROBABILITY:
2594			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2595				    sizeof(u32), nla_data(a)))
2596				return -EMSGSIZE;
2597			break;
2598		case OVS_SAMPLE_ATTR_ACTIONS:
2599			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2600			if (!st_sample)
2601				return -EMSGSIZE;
2602			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2603			if (err)
2604				return err;
2605			nla_nest_end(skb, st_sample);
2606			break;
2607		}
2608	}
2609
2610	nla_nest_end(skb, start);
2611	return err;
2612}
2613
2614static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2615{
2616	const struct nlattr *ovs_key = nla_data(a);
2617	int key_type = nla_type(ovs_key);
2618	struct nlattr *start;
2619	int err;
2620
2621	switch (key_type) {
2622	case OVS_KEY_ATTR_TUNNEL_INFO: {
2623		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2624		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2625
2626		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2627		if (!start)
2628			return -EMSGSIZE;
2629
2630		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2631					ip_tunnel_info_opts(tun_info),
2632					tun_info->options_len,
2633					ip_tunnel_info_af(tun_info));
2634		if (err)
2635			return err;
2636		nla_nest_end(skb, start);
2637		break;
2638	}
2639	default:
2640		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2641			return -EMSGSIZE;
2642		break;
2643	}
2644
2645	return 0;
2646}
2647
2648static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2649						struct sk_buff *skb)
2650{
2651	const struct nlattr *ovs_key = nla_data(a);
2652	struct nlattr *nla;
2653	size_t key_len = nla_len(ovs_key) / 2;
2654
2655	/* Revert the conversion we did from a non-masked set action to
2656	 * masked set action.
2657	 */
2658	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2659	if (!nla)
2660		return -EMSGSIZE;
2661
2662	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2663		return -EMSGSIZE;
2664
2665	nla_nest_end(skb, nla);
2666	return 0;
2667}
2668
2669int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2670{
2671	const struct nlattr *a;
2672	int rem, err;
2673
2674	nla_for_each_attr(a, attr, len, rem) {
2675		int type = nla_type(a);
2676
2677		switch (type) {
2678		case OVS_ACTION_ATTR_SET:
2679			err = set_action_to_attr(a, skb);
2680			if (err)
2681				return err;
2682			break;
2683
2684		case OVS_ACTION_ATTR_SET_TO_MASKED:
2685			err = masked_set_action_to_set_action_attr(a, skb);
2686			if (err)
2687				return err;
2688			break;
2689
2690		case OVS_ACTION_ATTR_SAMPLE:
2691			err = sample_action_to_attr(a, skb);
2692			if (err)
2693				return err;
2694			break;
2695
2696		case OVS_ACTION_ATTR_CT:
2697			err = ovs_ct_action_to_attr(nla_data(a), skb);
2698			if (err)
2699				return err;
2700			break;
2701
2702		default:
2703			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2704				return -EMSGSIZE;
2705			break;
2706		}
2707	}
2708
2709	return 0;
2710}
v4.6
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include "flow.h"
  22#include "datapath.h"
  23#include <linux/uaccess.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/if_vlan.h>
  28#include <net/llc_pdu.h>
  29#include <linux/kernel.h>
  30#include <linux/jhash.h>
  31#include <linux/jiffies.h>
  32#include <linux/llc.h>
  33#include <linux/module.h>
  34#include <linux/in.h>
  35#include <linux/rcupdate.h>
  36#include <linux/if_arp.h>
  37#include <linux/ip.h>
  38#include <linux/ipv6.h>
  39#include <linux/sctp.h>
  40#include <linux/tcp.h>
  41#include <linux/udp.h>
  42#include <linux/icmp.h>
  43#include <linux/icmpv6.h>
  44#include <linux/rculist.h>
  45#include <net/geneve.h>
  46#include <net/ip.h>
  47#include <net/ipv6.h>
  48#include <net/ndisc.h>
  49#include <net/mpls.h>
  50#include <net/vxlan.h>
  51
  52#include "flow_netlink.h"
  53
  54struct ovs_len_tbl {
  55	int len;
  56	const struct ovs_len_tbl *next;
  57};
  58
  59#define OVS_ATTR_NESTED -1
  60#define OVS_ATTR_VARIABLE -2
  61
  62static void update_range(struct sw_flow_match *match,
  63			 size_t offset, size_t size, bool is_mask)
  64{
  65	struct sw_flow_key_range *range;
  66	size_t start = rounddown(offset, sizeof(long));
  67	size_t end = roundup(offset + size, sizeof(long));
  68
  69	if (!is_mask)
  70		range = &match->range;
  71	else
  72		range = &match->mask->range;
  73
  74	if (range->start == range->end) {
  75		range->start = start;
  76		range->end = end;
  77		return;
  78	}
  79
  80	if (range->start > start)
  81		range->start = start;
  82
  83	if (range->end < end)
  84		range->end = end;
  85}
  86
  87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
  88	do { \
  89		update_range(match, offsetof(struct sw_flow_key, field),    \
  90			     sizeof((match)->key->field), is_mask);	    \
  91		if (is_mask)						    \
  92			(match)->mask->key.field = value;		    \
  93		else							    \
  94			(match)->key->field = value;		            \
  95	} while (0)
  96
  97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
  98	do {								    \
  99		update_range(match, offset, len, is_mask);		    \
 100		if (is_mask)						    \
 101			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 102			       len);					   \
 103		else							    \
 104			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 105	} while (0)
 106
 107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 108	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 109				  value_p, len, is_mask)
 110
 111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 112	do {								    \
 113		update_range(match, offsetof(struct sw_flow_key, field),    \
 114			     sizeof((match)->key->field), is_mask);	    \
 115		if (is_mask)						    \
 116			memset((u8 *)&(match)->mask->key.field, value,      \
 117			       sizeof((match)->mask->key.field));	    \
 118		else							    \
 119			memset((u8 *)&(match)->key->field, value,           \
 120			       sizeof((match)->key->field));                \
 121	} while (0)
 122
 123static bool match_validate(const struct sw_flow_match *match,
 124			   u64 key_attrs, u64 mask_attrs, bool log)
 125{
 126	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
 127	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 128
 129	/* The following mask attributes allowed only if they
 130	 * pass the validation tests. */
 131	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 132			| (1 << OVS_KEY_ATTR_IPV6)
 133			| (1 << OVS_KEY_ATTR_TCP)
 134			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 135			| (1 << OVS_KEY_ATTR_UDP)
 136			| (1 << OVS_KEY_ATTR_SCTP)
 137			| (1 << OVS_KEY_ATTR_ICMP)
 138			| (1 << OVS_KEY_ATTR_ICMPV6)
 139			| (1 << OVS_KEY_ATTR_ARP)
 140			| (1 << OVS_KEY_ATTR_ND)
 141			| (1 << OVS_KEY_ATTR_MPLS));
 142
 143	/* Always allowed mask fields. */
 144	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 145		       | (1 << OVS_KEY_ATTR_IN_PORT)
 146		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 147
 148	/* Check key attributes. */
 149	if (match->key->eth.type == htons(ETH_P_ARP)
 150			|| match->key->eth.type == htons(ETH_P_RARP)) {
 151		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 152		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 153			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 154	}
 155
 156	if (eth_p_mpls(match->key->eth.type)) {
 157		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 158		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 159			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 160	}
 161
 162	if (match->key->eth.type == htons(ETH_P_IP)) {
 163		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 164		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 165			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 166
 167		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 168			if (match->key->ip.proto == IPPROTO_UDP) {
 169				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 170				if (match->mask && (match->mask->key.ip.proto == 0xff))
 171					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 172			}
 173
 174			if (match->key->ip.proto == IPPROTO_SCTP) {
 175				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 176				if (match->mask && (match->mask->key.ip.proto == 0xff))
 177					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 178			}
 179
 180			if (match->key->ip.proto == IPPROTO_TCP) {
 181				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 182				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 183				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 184					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 185					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 186				}
 187			}
 188
 189			if (match->key->ip.proto == IPPROTO_ICMP) {
 190				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 191				if (match->mask && (match->mask->key.ip.proto == 0xff))
 192					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 193			}
 194		}
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 199		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 201
 202		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 203			if (match->key->ip.proto == IPPROTO_UDP) {
 204				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 205				if (match->mask && (match->mask->key.ip.proto == 0xff))
 206					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 207			}
 208
 209			if (match->key->ip.proto == IPPROTO_SCTP) {
 210				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 211				if (match->mask && (match->mask->key.ip.proto == 0xff))
 212					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 213			}
 214
 215			if (match->key->ip.proto == IPPROTO_TCP) {
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 217				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 218				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 220					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 221				}
 222			}
 223
 224			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 225				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 226				if (match->mask && (match->mask->key.ip.proto == 0xff))
 227					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 228
 229				if (match->key->tp.src ==
 230						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 231				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 232					key_expected |= 1 << OVS_KEY_ATTR_ND;
 233					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 234						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 235				}
 236			}
 237		}
 238	}
 239
 240	if ((key_attrs & key_expected) != key_expected) {
 241		/* Key attributes check failed. */
 242		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 243			  (unsigned long long)key_attrs,
 244			  (unsigned long long)key_expected);
 245		return false;
 246	}
 247
 248	if ((mask_attrs & mask_allowed) != mask_attrs) {
 249		/* Mask attributes check failed. */
 250		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 251			  (unsigned long long)mask_attrs,
 252			  (unsigned long long)mask_allowed);
 253		return false;
 254	}
 255
 256	return true;
 257}
 258
 259size_t ovs_tun_key_attr_size(void)
 260{
 261	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 262	 * updating this function.
 263	 */
 264	return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
 265		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 266		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 267		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 268		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 269		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 270		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 271		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 272		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 273		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 274		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 275		 */
 276		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 277		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 278}
 279
 280size_t ovs_key_attr_size(void)
 281{
 282	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 283	 * updating this function.
 284	 */
 285	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
 286
 287	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 288		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 289		  + ovs_tun_key_attr_size()
 290		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 291		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 292		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 293		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 294		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 295		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 296		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 297		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 298		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 299		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 300		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 301		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 302		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 303		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 304		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 305		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 306}
 307
 308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 309	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 310};
 311
 312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 313	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 314	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 315	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 316	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 317	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 318	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 319	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 320	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 321	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 322	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 323	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 324	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 325						.next = ovs_vxlan_ext_key_lens },
 326	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 327	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 328};
 329
 330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 332	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 333	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 334	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 335	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 336	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 337	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 338	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 339	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 340	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 341	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 342	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 343	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 344	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 345	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 346	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 347	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 348	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 349	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 350	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 351	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 352				     .next = ovs_tunnel_key_lens, },
 353	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 354	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 355	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 356	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 357	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 358};
 359
 360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 361{
 362	return expected_len == attr_len ||
 363	       expected_len == OVS_ATTR_NESTED ||
 364	       expected_len == OVS_ATTR_VARIABLE;
 365}
 366
 367static bool is_all_zero(const u8 *fp, size_t size)
 368{
 369	int i;
 370
 371	if (!fp)
 372		return false;
 373
 374	for (i = 0; i < size; i++)
 375		if (fp[i])
 376			return false;
 377
 378	return true;
 379}
 380
 381static int __parse_flow_nlattrs(const struct nlattr *attr,
 382				const struct nlattr *a[],
 383				u64 *attrsp, bool log, bool nz)
 384{
 385	const struct nlattr *nla;
 386	u64 attrs;
 387	int rem;
 388
 389	attrs = *attrsp;
 390	nla_for_each_nested(nla, attr, rem) {
 391		u16 type = nla_type(nla);
 392		int expected_len;
 393
 394		if (type > OVS_KEY_ATTR_MAX) {
 395			OVS_NLERR(log, "Key type %d is out of range max %d",
 396				  type, OVS_KEY_ATTR_MAX);
 397			return -EINVAL;
 398		}
 399
 400		if (attrs & (1 << type)) {
 401			OVS_NLERR(log, "Duplicate key (type %d).", type);
 402			return -EINVAL;
 403		}
 404
 405		expected_len = ovs_key_lens[type].len;
 406		if (!check_attr_len(nla_len(nla), expected_len)) {
 407			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 408				  type, nla_len(nla), expected_len);
 409			return -EINVAL;
 410		}
 411
 412		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 413			attrs |= 1 << type;
 414			a[type] = nla;
 415		}
 416	}
 417	if (rem) {
 418		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 419		return -EINVAL;
 420	}
 421
 422	*attrsp = attrs;
 423	return 0;
 424}
 425
 426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 427				   const struct nlattr *a[], u64 *attrsp,
 428				   bool log)
 429{
 430	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 431}
 432
 433static int parse_flow_nlattrs(const struct nlattr *attr,
 434			      const struct nlattr *a[], u64 *attrsp,
 435			      bool log)
 436{
 437	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 438}
 439
 440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 441				     struct sw_flow_match *match, bool is_mask,
 442				     bool log)
 443{
 444	unsigned long opt_key_offset;
 445
 446	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 447		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 448			  nla_len(a), sizeof(match->key->tun_opts));
 449		return -EINVAL;
 450	}
 451
 452	if (nla_len(a) % 4 != 0) {
 453		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 454			  nla_len(a));
 455		return -EINVAL;
 456	}
 457
 458	/* We need to record the length of the options passed
 459	 * down, otherwise packets with the same format but
 460	 * additional options will be silently matched.
 461	 */
 462	if (!is_mask) {
 463		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 464				false);
 465	} else {
 466		/* This is somewhat unusual because it looks at
 467		 * both the key and mask while parsing the
 468		 * attributes (and by extension assumes the key
 469		 * is parsed first). Normally, we would verify
 470		 * that each is the correct length and that the
 471		 * attributes line up in the validate function.
 472		 * However, that is difficult because this is
 473		 * variable length and we won't have the
 474		 * information later.
 475		 */
 476		if (match->key->tun_opts_len != nla_len(a)) {
 477			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 478				  match->key->tun_opts_len, nla_len(a));
 479			return -EINVAL;
 480		}
 481
 482		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 483	}
 484
 485	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 486	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 487				  nla_len(a), is_mask);
 488	return 0;
 489}
 490
 491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 492				     struct sw_flow_match *match, bool is_mask,
 493				     bool log)
 494{
 495	struct nlattr *a;
 496	int rem;
 497	unsigned long opt_key_offset;
 498	struct vxlan_metadata opts;
 499
 500	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 501
 502	memset(&opts, 0, sizeof(opts));
 503	nla_for_each_nested(a, attr, rem) {
 504		int type = nla_type(a);
 505
 506		if (type > OVS_VXLAN_EXT_MAX) {
 507			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 508				  type, OVS_VXLAN_EXT_MAX);
 509			return -EINVAL;
 510		}
 511
 512		if (!check_attr_len(nla_len(a),
 513				    ovs_vxlan_ext_key_lens[type].len)) {
 514			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 515				  type, nla_len(a),
 516				  ovs_vxlan_ext_key_lens[type].len);
 517			return -EINVAL;
 518		}
 519
 520		switch (type) {
 521		case OVS_VXLAN_EXT_GBP:
 522			opts.gbp = nla_get_u32(a);
 523			break;
 524		default:
 525			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 526				  type);
 527			return -EINVAL;
 528		}
 529	}
 530	if (rem) {
 531		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 532			  rem);
 533		return -EINVAL;
 534	}
 535
 536	if (!is_mask)
 537		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 538	else
 539		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 540
 541	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 542	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 543				  is_mask);
 544	return 0;
 545}
 546
 547static int ip_tun_from_nlattr(const struct nlattr *attr,
 548			      struct sw_flow_match *match, bool is_mask,
 549			      bool log)
 550{
 551	bool ttl = false, ipv4 = false, ipv6 = false;
 552	__be16 tun_flags = 0;
 553	int opts_type = 0;
 554	struct nlattr *a;
 555	int rem;
 556
 557	nla_for_each_nested(a, attr, rem) {
 558		int type = nla_type(a);
 559		int err;
 560
 561		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 562			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 563				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 564			return -EINVAL;
 565		}
 566
 567		if (!check_attr_len(nla_len(a),
 568				    ovs_tunnel_key_lens[type].len)) {
 569			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 570				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 571			return -EINVAL;
 572		}
 573
 574		switch (type) {
 575		case OVS_TUNNEL_KEY_ATTR_ID:
 576			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 577					nla_get_be64(a), is_mask);
 578			tun_flags |= TUNNEL_KEY;
 579			break;
 580		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 581			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 582					nla_get_in_addr(a), is_mask);
 583			ipv4 = true;
 584			break;
 585		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 586			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 587					nla_get_in_addr(a), is_mask);
 588			ipv4 = true;
 589			break;
 590		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 591			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 592					nla_get_in6_addr(a), is_mask);
 593			ipv6 = true;
 594			break;
 595		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 596			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 597					nla_get_in6_addr(a), is_mask);
 598			ipv6 = true;
 599			break;
 600		case OVS_TUNNEL_KEY_ATTR_TOS:
 601			SW_FLOW_KEY_PUT(match, tun_key.tos,
 602					nla_get_u8(a), is_mask);
 603			break;
 604		case OVS_TUNNEL_KEY_ATTR_TTL:
 605			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 606					nla_get_u8(a), is_mask);
 607			ttl = true;
 608			break;
 609		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 610			tun_flags |= TUNNEL_DONT_FRAGMENT;
 611			break;
 612		case OVS_TUNNEL_KEY_ATTR_CSUM:
 613			tun_flags |= TUNNEL_CSUM;
 614			break;
 615		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 616			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 617					nla_get_be16(a), is_mask);
 618			break;
 619		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 620			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 621					nla_get_be16(a), is_mask);
 622			break;
 623		case OVS_TUNNEL_KEY_ATTR_OAM:
 624			tun_flags |= TUNNEL_OAM;
 625			break;
 626		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 627			if (opts_type) {
 628				OVS_NLERR(log, "Multiple metadata blocks provided");
 629				return -EINVAL;
 630			}
 631
 632			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 633			if (err)
 634				return err;
 635
 636			tun_flags |= TUNNEL_GENEVE_OPT;
 637			opts_type = type;
 638			break;
 639		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 640			if (opts_type) {
 641				OVS_NLERR(log, "Multiple metadata blocks provided");
 642				return -EINVAL;
 643			}
 644
 645			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 646			if (err)
 647				return err;
 648
 649			tun_flags |= TUNNEL_VXLAN_OPT;
 650			opts_type = type;
 651			break;
 
 
 652		default:
 653			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 654				  type);
 655			return -EINVAL;
 656		}
 657	}
 658
 659	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 660	if (is_mask)
 661		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 662	else
 663		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 664				false);
 665
 666	if (rem > 0) {
 667		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 668			  rem);
 669		return -EINVAL;
 670	}
 671
 672	if (ipv4 && ipv6) {
 673		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 674		return -EINVAL;
 675	}
 676
 677	if (!is_mask) {
 678		if (!ipv4 && !ipv6) {
 679			OVS_NLERR(log, "IP tunnel dst address not specified");
 680			return -EINVAL;
 681		}
 682		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
 683			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 684			return -EINVAL;
 685		}
 686		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 687			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 688			return -EINVAL;
 689		}
 690
 691		if (!ttl) {
 692			OVS_NLERR(log, "IP tunnel TTL not specified.");
 693			return -EINVAL;
 694		}
 695	}
 696
 697	return opts_type;
 698}
 699
 700static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 701			       const void *tun_opts, int swkey_tun_opts_len)
 702{
 703	const struct vxlan_metadata *opts = tun_opts;
 704	struct nlattr *nla;
 705
 706	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 707	if (!nla)
 708		return -EMSGSIZE;
 709
 710	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 711		return -EMSGSIZE;
 712
 713	nla_nest_end(skb, nla);
 714	return 0;
 715}
 716
 717static int __ip_tun_to_nlattr(struct sk_buff *skb,
 718			      const struct ip_tunnel_key *output,
 719			      const void *tun_opts, int swkey_tun_opts_len,
 720			      unsigned short tun_proto)
 721{
 722	if (output->tun_flags & TUNNEL_KEY &&
 723	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
 
 724		return -EMSGSIZE;
 725	switch (tun_proto) {
 726	case AF_INET:
 727		if (output->u.ipv4.src &&
 728		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 729				    output->u.ipv4.src))
 730			return -EMSGSIZE;
 731		if (output->u.ipv4.dst &&
 732		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 733				    output->u.ipv4.dst))
 734			return -EMSGSIZE;
 735		break;
 736	case AF_INET6:
 737		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 738		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 739				     &output->u.ipv6.src))
 740			return -EMSGSIZE;
 741		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 742		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 743				     &output->u.ipv6.dst))
 744			return -EMSGSIZE;
 745		break;
 746	}
 747	if (output->tos &&
 748	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 749		return -EMSGSIZE;
 750	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 751		return -EMSGSIZE;
 752	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 753	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 754		return -EMSGSIZE;
 755	if ((output->tun_flags & TUNNEL_CSUM) &&
 756	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 757		return -EMSGSIZE;
 758	if (output->tp_src &&
 759	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 760		return -EMSGSIZE;
 761	if (output->tp_dst &&
 762	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 763		return -EMSGSIZE;
 764	if ((output->tun_flags & TUNNEL_OAM) &&
 765	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 766		return -EMSGSIZE;
 767	if (swkey_tun_opts_len) {
 768		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 769		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 770			    swkey_tun_opts_len, tun_opts))
 771			return -EMSGSIZE;
 772		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 773			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 774			return -EMSGSIZE;
 775	}
 776
 777	return 0;
 778}
 779
 780static int ip_tun_to_nlattr(struct sk_buff *skb,
 781			    const struct ip_tunnel_key *output,
 782			    const void *tun_opts, int swkey_tun_opts_len,
 783			    unsigned short tun_proto)
 784{
 785	struct nlattr *nla;
 786	int err;
 787
 788	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 789	if (!nla)
 790		return -EMSGSIZE;
 791
 792	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 793				 tun_proto);
 794	if (err)
 795		return err;
 796
 797	nla_nest_end(skb, nla);
 798	return 0;
 799}
 800
 801int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 802			    struct ip_tunnel_info *tun_info)
 803{
 804	return __ip_tun_to_nlattr(skb, &tun_info->key,
 805				  ip_tunnel_info_opts(tun_info),
 806				  tun_info->options_len,
 807				  ip_tunnel_info_af(tun_info));
 808}
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
 811				 u64 *attrs, const struct nlattr **a,
 812				 bool is_mask, bool log)
 813{
 
 
 814	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
 815		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
 816
 817		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
 818		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
 819	}
 820
 821	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
 822		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
 823
 824		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
 825		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
 826	}
 827
 828	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
 829		SW_FLOW_KEY_PUT(match, phy.priority,
 830			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
 831		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
 832	}
 833
 834	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
 835		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
 836
 837		if (is_mask) {
 838			in_port = 0xffffffff; /* Always exact match in_port. */
 839		} else if (in_port >= DP_MAX_PORTS) {
 840			OVS_NLERR(log, "Port %d exceeds max allowable %d",
 841				  in_port, DP_MAX_PORTS);
 842			return -EINVAL;
 843		}
 844
 845		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
 846		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
 847	} else if (!is_mask) {
 848		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
 849	}
 850
 851	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
 852		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
 853
 854		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
 855		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
 856	}
 857	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
 858		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
 859				       is_mask, log) < 0)
 860			return -EINVAL;
 861		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
 862	}
 863
 864	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
 865	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
 866		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
 867
 868		if (ct_state & ~CT_SUPPORTED_MASK) {
 869			OVS_NLERR(log, "ct_state flags %08x unsupported",
 870				  ct_state);
 871			return -EINVAL;
 872		}
 873
 874		SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
 875		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
 876	}
 877	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
 878	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
 879		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
 880
 881		SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
 882		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
 883	}
 884	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
 885	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
 886		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
 887
 888		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
 889		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
 890	}
 891	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
 892	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
 893		const struct ovs_key_ct_labels *cl;
 894
 895		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
 896		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
 897				   sizeof(*cl), is_mask);
 898		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
 899	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900	return 0;
 901}
 902
 903static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
 904				u64 attrs, const struct nlattr **a,
 905				bool is_mask, bool log)
 906{
 907	int err;
 908
 909	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
 910	if (err)
 911		return err;
 912
 913	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
 914		const struct ovs_key_ethernet *eth_key;
 915
 916		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
 917		SW_FLOW_KEY_MEMCPY(match, eth.src,
 918				eth_key->eth_src, ETH_ALEN, is_mask);
 919		SW_FLOW_KEY_MEMCPY(match, eth.dst,
 920				eth_key->eth_dst, ETH_ALEN, is_mask);
 921		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 922	}
 923
 924	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
 925		__be16 tci;
 926
 927		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 928		if (!(tci & htons(VLAN_TAG_PRESENT))) {
 929			if (is_mask)
 930				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
 931			else
 932				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
 933
 
 
 
 
 
 934			return -EINVAL;
 935		}
 936
 937		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
 938		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 939	}
 940
 941	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
 942		__be16 eth_type;
 943
 944		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 945		if (is_mask) {
 946			/* Always exact match EtherType. */
 947			eth_type = htons(0xffff);
 948		} else if (!eth_proto_is_802_3(eth_type)) {
 949			OVS_NLERR(log, "EtherType %x is less than min %x",
 950				  ntohs(eth_type), ETH_P_802_3_MIN);
 951			return -EINVAL;
 952		}
 953
 954		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 955		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 956	} else if (!is_mask) {
 957		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 958	}
 959
 960	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 961		const struct ovs_key_ipv4 *ipv4_key;
 962
 963		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
 964		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
 965			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
 966				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
 967			return -EINVAL;
 968		}
 969		SW_FLOW_KEY_PUT(match, ip.proto,
 970				ipv4_key->ipv4_proto, is_mask);
 971		SW_FLOW_KEY_PUT(match, ip.tos,
 972				ipv4_key->ipv4_tos, is_mask);
 973		SW_FLOW_KEY_PUT(match, ip.ttl,
 974				ipv4_key->ipv4_ttl, is_mask);
 975		SW_FLOW_KEY_PUT(match, ip.frag,
 976				ipv4_key->ipv4_frag, is_mask);
 977		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 978				ipv4_key->ipv4_src, is_mask);
 979		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 980				ipv4_key->ipv4_dst, is_mask);
 981		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
 982	}
 983
 984	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
 985		const struct ovs_key_ipv6 *ipv6_key;
 986
 987		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
 988		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
 989			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
 990				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
 991			return -EINVAL;
 992		}
 993
 994		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
 995			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
 996				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
 997			return -EINVAL;
 998		}
 999
1000		SW_FLOW_KEY_PUT(match, ipv6.label,
1001				ipv6_key->ipv6_label, is_mask);
1002		SW_FLOW_KEY_PUT(match, ip.proto,
1003				ipv6_key->ipv6_proto, is_mask);
1004		SW_FLOW_KEY_PUT(match, ip.tos,
1005				ipv6_key->ipv6_tclass, is_mask);
1006		SW_FLOW_KEY_PUT(match, ip.ttl,
1007				ipv6_key->ipv6_hlimit, is_mask);
1008		SW_FLOW_KEY_PUT(match, ip.frag,
1009				ipv6_key->ipv6_frag, is_mask);
1010		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1011				ipv6_key->ipv6_src,
1012				sizeof(match->key->ipv6.addr.src),
1013				is_mask);
1014		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1015				ipv6_key->ipv6_dst,
1016				sizeof(match->key->ipv6.addr.dst),
1017				is_mask);
1018
1019		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1020	}
1021
1022	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1023		const struct ovs_key_arp *arp_key;
1024
1025		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1026		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1027			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1028				  arp_key->arp_op);
1029			return -EINVAL;
1030		}
1031
1032		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1033				arp_key->arp_sip, is_mask);
1034		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1035			arp_key->arp_tip, is_mask);
1036		SW_FLOW_KEY_PUT(match, ip.proto,
1037				ntohs(arp_key->arp_op), is_mask);
1038		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1039				arp_key->arp_sha, ETH_ALEN, is_mask);
1040		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1041				arp_key->arp_tha, ETH_ALEN, is_mask);
1042
1043		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1044	}
1045
1046	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1047		const struct ovs_key_mpls *mpls_key;
1048
1049		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1050		SW_FLOW_KEY_PUT(match, mpls.top_lse,
1051				mpls_key->mpls_lse, is_mask);
1052
1053		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1054	 }
1055
1056	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1057		const struct ovs_key_tcp *tcp_key;
1058
1059		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1060		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1061		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1062		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1063	}
1064
1065	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1066		SW_FLOW_KEY_PUT(match, tp.flags,
1067				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1068				is_mask);
1069		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1070	}
1071
1072	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1073		const struct ovs_key_udp *udp_key;
1074
1075		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1076		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1077		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1078		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1079	}
1080
1081	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1082		const struct ovs_key_sctp *sctp_key;
1083
1084		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1085		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1086		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1087		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1088	}
1089
1090	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1091		const struct ovs_key_icmp *icmp_key;
1092
1093		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1094		SW_FLOW_KEY_PUT(match, tp.src,
1095				htons(icmp_key->icmp_type), is_mask);
1096		SW_FLOW_KEY_PUT(match, tp.dst,
1097				htons(icmp_key->icmp_code), is_mask);
1098		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1099	}
1100
1101	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1102		const struct ovs_key_icmpv6 *icmpv6_key;
1103
1104		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1105		SW_FLOW_KEY_PUT(match, tp.src,
1106				htons(icmpv6_key->icmpv6_type), is_mask);
1107		SW_FLOW_KEY_PUT(match, tp.dst,
1108				htons(icmpv6_key->icmpv6_code), is_mask);
1109		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1110	}
1111
1112	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1113		const struct ovs_key_nd *nd_key;
1114
1115		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1116		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1117			nd_key->nd_target,
1118			sizeof(match->key->ipv6.nd.target),
1119			is_mask);
1120		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1121			nd_key->nd_sll, ETH_ALEN, is_mask);
1122		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1123				nd_key->nd_tll, ETH_ALEN, is_mask);
1124		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1125	}
1126
1127	if (attrs != 0) {
1128		OVS_NLERR(log, "Unknown key attributes %llx",
1129			  (unsigned long long)attrs);
1130		return -EINVAL;
1131	}
1132
1133	return 0;
1134}
1135
1136static void nlattr_set(struct nlattr *attr, u8 val,
1137		       const struct ovs_len_tbl *tbl)
1138{
1139	struct nlattr *nla;
1140	int rem;
1141
1142	/* The nlattr stream should already have been validated */
1143	nla_for_each_nested(nla, attr, rem) {
1144		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1145			if (tbl[nla_type(nla)].next)
1146				tbl = tbl[nla_type(nla)].next;
1147			nlattr_set(nla, val, tbl);
1148		} else {
1149			memset(nla_data(nla), val, nla_len(nla));
1150		}
1151
1152		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1153			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1154	}
1155}
1156
1157static void mask_set_nlattr(struct nlattr *attr, u8 val)
1158{
1159	nlattr_set(attr, val, ovs_key_lens);
1160}
1161
1162/**
1163 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1164 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1165 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1166 * does not include any don't care bit.
1167 * @net: Used to determine per-namespace field support.
1168 * @match: receives the extracted flow match information.
1169 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1170 * sequence. The fields should of the packet that triggered the creation
1171 * of this flow.
1172 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1173 * attribute specifies the mask field of the wildcarded flow.
1174 * @log: Boolean to allow kernel error logging.  Normally true, but when
1175 * probing for feature compatibility this should be passed in as false to
1176 * suppress unnecessary error logging.
1177 */
1178int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1179		      const struct nlattr *nla_key,
1180		      const struct nlattr *nla_mask,
1181		      bool log)
1182{
1183	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1184	const struct nlattr *encap;
1185	struct nlattr *newmask = NULL;
1186	u64 key_attrs = 0;
1187	u64 mask_attrs = 0;
1188	bool encap_valid = false;
1189	int err;
1190
1191	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1192	if (err)
1193		return err;
1194
1195	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1196	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1197	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1198		__be16 tci;
1199
1200		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1201		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1202			OVS_NLERR(log, "Invalid Vlan frame.");
1203			return -EINVAL;
1204		}
1205
1206		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1207		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1208		encap = a[OVS_KEY_ATTR_ENCAP];
1209		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1210		encap_valid = true;
1211
1212		if (tci & htons(VLAN_TAG_PRESENT)) {
1213			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1214			if (err)
1215				return err;
1216		} else if (!tci) {
1217			/* Corner case for truncated 802.1Q header. */
1218			if (nla_len(encap)) {
1219				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1220				return -EINVAL;
1221			}
1222		} else {
1223			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1224			return  -EINVAL;
1225		}
1226	}
1227
1228	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1229	if (err)
1230		return err;
1231
1232	if (match->mask) {
1233		if (!nla_mask) {
1234			/* Create an exact match mask. We need to set to 0xff
1235			 * all the 'match->mask' fields that have been touched
1236			 * in 'match->key'. We cannot simply memset
1237			 * 'match->mask', because padding bytes and fields not
1238			 * specified in 'match->key' should be left to 0.
1239			 * Instead, we use a stream of netlink attributes,
1240			 * copied from 'key' and set to 0xff.
1241			 * ovs_key_from_nlattrs() will take care of filling
1242			 * 'match->mask' appropriately.
1243			 */
1244			newmask = kmemdup(nla_key,
1245					  nla_total_size(nla_len(nla_key)),
1246					  GFP_KERNEL);
1247			if (!newmask)
1248				return -ENOMEM;
1249
1250			mask_set_nlattr(newmask, 0xff);
1251
1252			/* The userspace does not send tunnel attributes that
1253			 * are 0, but we should not wildcard them nonetheless.
1254			 */
1255			if (match->key->tun_proto)
1256				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1257							 0xff, true);
1258
1259			nla_mask = newmask;
1260		}
1261
1262		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1263		if (err)
1264			goto free_newmask;
1265
1266		/* Always match on tci. */
1267		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
 
1268
1269		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1270			__be16 eth_type = 0;
1271			__be16 tci = 0;
1272
1273			if (!encap_valid) {
1274				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1275				err = -EINVAL;
1276				goto free_newmask;
1277			}
1278
1279			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1280			if (a[OVS_KEY_ATTR_ETHERTYPE])
1281				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1282
1283			if (eth_type == htons(0xffff)) {
1284				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1285				encap = a[OVS_KEY_ATTR_ENCAP];
1286				err = parse_flow_mask_nlattrs(encap, a,
1287							      &mask_attrs, log);
1288				if (err)
1289					goto free_newmask;
1290			} else {
1291				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1292					  ntohs(eth_type));
1293				err = -EINVAL;
1294				goto free_newmask;
1295			}
1296
1297			if (a[OVS_KEY_ATTR_VLAN])
1298				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1299
1300			if (!(tci & htons(VLAN_TAG_PRESENT))) {
1301				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1302					  ntohs(tci));
1303				err = -EINVAL;
1304				goto free_newmask;
1305			}
1306		}
1307
1308		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1309					   log);
1310		if (err)
1311			goto free_newmask;
1312	}
1313
1314	if (!match_validate(match, key_attrs, mask_attrs, log))
1315		err = -EINVAL;
1316
1317free_newmask:
1318	kfree(newmask);
1319	return err;
1320}
1321
1322static size_t get_ufid_len(const struct nlattr *attr, bool log)
1323{
1324	size_t len;
1325
1326	if (!attr)
1327		return 0;
1328
1329	len = nla_len(attr);
1330	if (len < 1 || len > MAX_UFID_LENGTH) {
1331		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1332			  nla_len(attr), MAX_UFID_LENGTH);
1333		return 0;
1334	}
1335
1336	return len;
1337}
1338
1339/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1340 * or false otherwise.
1341 */
1342bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1343		      bool log)
1344{
1345	sfid->ufid_len = get_ufid_len(attr, log);
1346	if (sfid->ufid_len)
1347		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1348
1349	return sfid->ufid_len;
1350}
1351
1352int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1353			   const struct sw_flow_key *key, bool log)
1354{
1355	struct sw_flow_key *new_key;
1356
1357	if (ovs_nla_get_ufid(sfid, ufid, log))
1358		return 0;
1359
1360	/* If UFID was not provided, use unmasked key. */
1361	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1362	if (!new_key)
1363		return -ENOMEM;
1364	memcpy(new_key, key, sizeof(*key));
1365	sfid->unmasked_key = new_key;
1366
1367	return 0;
1368}
1369
1370u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1371{
1372	return attr ? nla_get_u32(attr) : 0;
1373}
1374
1375/**
1376 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1377 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1378 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1379 * sequence.
1380 * @log: Boolean to allow kernel error logging.  Normally true, but when
1381 * probing for feature compatibility this should be passed in as false to
1382 * suppress unnecessary error logging.
1383 *
1384 * This parses a series of Netlink attributes that form a flow key, which must
1385 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1386 * get the metadata, that is, the parts of the flow key that cannot be
1387 * extracted from the packet itself.
1388 */
1389
1390int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1391			      struct sw_flow_key *key,
1392			      bool log)
1393{
1394	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1395	struct sw_flow_match match;
1396	u64 attrs = 0;
1397	int err;
1398
1399	err = parse_flow_nlattrs(attr, a, &attrs, log);
1400	if (err)
1401		return -EINVAL;
1402
1403	memset(&match, 0, sizeof(match));
1404	match.key = key;
1405
1406	memset(&key->ct, 0, sizeof(key->ct));
1407	key->phy.in_port = DP_MAX_PORTS;
1408
1409	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1410}
1411
 
 
 
 
 
 
 
 
 
 
 
1412static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1413			     const struct sw_flow_key *output, bool is_mask,
1414			     struct sk_buff *skb)
1415{
1416	struct ovs_key_ethernet *eth_key;
1417	struct nlattr *nla, *encap;
 
 
1418
1419	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1420		goto nla_put_failure;
1421
1422	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1423		goto nla_put_failure;
1424
1425	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1426		goto nla_put_failure;
1427
1428	if ((swkey->tun_proto || is_mask)) {
1429		const void *opts = NULL;
1430
1431		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1432			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1433
1434		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1435				     swkey->tun_opts_len, swkey->tun_proto))
1436			goto nla_put_failure;
1437	}
1438
1439	if (swkey->phy.in_port == DP_MAX_PORTS) {
1440		if (is_mask && (output->phy.in_port == 0xffff))
1441			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1442				goto nla_put_failure;
1443	} else {
1444		u16 upper_u16;
1445		upper_u16 = !is_mask ? 0 : 0xffff;
1446
1447		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1448				(upper_u16 << 16) | output->phy.in_port))
1449			goto nla_put_failure;
1450	}
1451
1452	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1453		goto nla_put_failure;
1454
1455	if (ovs_ct_put_key(output, skb))
1456		goto nla_put_failure;
1457
1458	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1459	if (!nla)
1460		goto nla_put_failure;
 
1461
1462	eth_key = nla_data(nla);
1463	ether_addr_copy(eth_key->eth_src, output->eth.src);
1464	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1465
1466	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1467		__be16 eth_type;
1468		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1469		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1470		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1471			goto nla_put_failure;
1472		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1473		if (!swkey->eth.tci)
1474			goto unencap;
1475	} else
1476		encap = NULL;
1477
1478	if (swkey->eth.type == htons(ETH_P_802_2)) {
1479		/*
1480		 * Ethertype 802.2 is represented in the netlink with omitted
1481		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1482		 * 0xffff in the mask attribute.  Ethertype can also
1483		 * be wildcarded.
1484		 */
1485		if (is_mask && output->eth.type)
1486			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1487						output->eth.type))
1488				goto nla_put_failure;
1489		goto unencap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	}
1491
1492	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1493		goto nla_put_failure;
1494
 
 
 
 
 
 
 
 
1495	if (swkey->eth.type == htons(ETH_P_IP)) {
1496		struct ovs_key_ipv4 *ipv4_key;
1497
1498		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1499		if (!nla)
1500			goto nla_put_failure;
1501		ipv4_key = nla_data(nla);
1502		ipv4_key->ipv4_src = output->ipv4.addr.src;
1503		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1504		ipv4_key->ipv4_proto = output->ip.proto;
1505		ipv4_key->ipv4_tos = output->ip.tos;
1506		ipv4_key->ipv4_ttl = output->ip.ttl;
1507		ipv4_key->ipv4_frag = output->ip.frag;
1508	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1509		struct ovs_key_ipv6 *ipv6_key;
1510
1511		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1512		if (!nla)
1513			goto nla_put_failure;
1514		ipv6_key = nla_data(nla);
1515		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1516				sizeof(ipv6_key->ipv6_src));
1517		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1518				sizeof(ipv6_key->ipv6_dst));
1519		ipv6_key->ipv6_label = output->ipv6.label;
1520		ipv6_key->ipv6_proto = output->ip.proto;
1521		ipv6_key->ipv6_tclass = output->ip.tos;
1522		ipv6_key->ipv6_hlimit = output->ip.ttl;
1523		ipv6_key->ipv6_frag = output->ip.frag;
1524	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
1525		   swkey->eth.type == htons(ETH_P_RARP)) {
1526		struct ovs_key_arp *arp_key;
1527
1528		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1529		if (!nla)
1530			goto nla_put_failure;
1531		arp_key = nla_data(nla);
1532		memset(arp_key, 0, sizeof(struct ovs_key_arp));
1533		arp_key->arp_sip = output->ipv4.addr.src;
1534		arp_key->arp_tip = output->ipv4.addr.dst;
1535		arp_key->arp_op = htons(output->ip.proto);
1536		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1537		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1538	} else if (eth_p_mpls(swkey->eth.type)) {
1539		struct ovs_key_mpls *mpls_key;
1540
1541		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1542		if (!nla)
1543			goto nla_put_failure;
1544		mpls_key = nla_data(nla);
1545		mpls_key->mpls_lse = output->mpls.top_lse;
1546	}
1547
1548	if ((swkey->eth.type == htons(ETH_P_IP) ||
1549	     swkey->eth.type == htons(ETH_P_IPV6)) &&
1550	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1551
1552		if (swkey->ip.proto == IPPROTO_TCP) {
1553			struct ovs_key_tcp *tcp_key;
1554
1555			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1556			if (!nla)
1557				goto nla_put_failure;
1558			tcp_key = nla_data(nla);
1559			tcp_key->tcp_src = output->tp.src;
1560			tcp_key->tcp_dst = output->tp.dst;
1561			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1562					 output->tp.flags))
1563				goto nla_put_failure;
1564		} else if (swkey->ip.proto == IPPROTO_UDP) {
1565			struct ovs_key_udp *udp_key;
1566
1567			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1568			if (!nla)
1569				goto nla_put_failure;
1570			udp_key = nla_data(nla);
1571			udp_key->udp_src = output->tp.src;
1572			udp_key->udp_dst = output->tp.dst;
1573		} else if (swkey->ip.proto == IPPROTO_SCTP) {
1574			struct ovs_key_sctp *sctp_key;
1575
1576			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1577			if (!nla)
1578				goto nla_put_failure;
1579			sctp_key = nla_data(nla);
1580			sctp_key->sctp_src = output->tp.src;
1581			sctp_key->sctp_dst = output->tp.dst;
1582		} else if (swkey->eth.type == htons(ETH_P_IP) &&
1583			   swkey->ip.proto == IPPROTO_ICMP) {
1584			struct ovs_key_icmp *icmp_key;
1585
1586			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1587			if (!nla)
1588				goto nla_put_failure;
1589			icmp_key = nla_data(nla);
1590			icmp_key->icmp_type = ntohs(output->tp.src);
1591			icmp_key->icmp_code = ntohs(output->tp.dst);
1592		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1593			   swkey->ip.proto == IPPROTO_ICMPV6) {
1594			struct ovs_key_icmpv6 *icmpv6_key;
1595
1596			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1597						sizeof(*icmpv6_key));
1598			if (!nla)
1599				goto nla_put_failure;
1600			icmpv6_key = nla_data(nla);
1601			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1602			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1603
1604			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1605			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1606				struct ovs_key_nd *nd_key;
1607
1608				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1609				if (!nla)
1610					goto nla_put_failure;
1611				nd_key = nla_data(nla);
1612				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1613							sizeof(nd_key->nd_target));
1614				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1615				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1616			}
1617		}
1618	}
1619
1620unencap:
 
 
1621	if (encap)
1622		nla_nest_end(skb, encap);
1623
1624	return 0;
1625
1626nla_put_failure:
1627	return -EMSGSIZE;
1628}
1629
1630int ovs_nla_put_key(const struct sw_flow_key *swkey,
1631		    const struct sw_flow_key *output, int attr, bool is_mask,
1632		    struct sk_buff *skb)
1633{
1634	int err;
1635	struct nlattr *nla;
1636
1637	nla = nla_nest_start(skb, attr);
1638	if (!nla)
1639		return -EMSGSIZE;
1640	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1641	if (err)
1642		return err;
1643	nla_nest_end(skb, nla);
1644
1645	return 0;
1646}
1647
1648/* Called with ovs_mutex or RCU read lock. */
1649int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1650{
1651	if (ovs_identifier_is_ufid(&flow->id))
1652		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1653			       flow->id.ufid);
1654
1655	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1656			       OVS_FLOW_ATTR_KEY, false, skb);
1657}
1658
1659/* Called with ovs_mutex or RCU read lock. */
1660int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1661{
1662	return ovs_nla_put_key(&flow->key, &flow->key,
1663				OVS_FLOW_ATTR_KEY, false, skb);
1664}
1665
1666/* Called with ovs_mutex or RCU read lock. */
1667int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1668{
1669	return ovs_nla_put_key(&flow->key, &flow->mask->key,
1670				OVS_FLOW_ATTR_MASK, true, skb);
1671}
1672
1673#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
1674
1675static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1676{
1677	struct sw_flow_actions *sfa;
1678
1679	if (size > MAX_ACTIONS_BUFSIZE) {
1680		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1681		return ERR_PTR(-EINVAL);
1682	}
1683
1684	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1685	if (!sfa)
1686		return ERR_PTR(-ENOMEM);
1687
1688	sfa->actions_len = 0;
1689	return sfa;
1690}
1691
1692static void ovs_nla_free_set_action(const struct nlattr *a)
1693{
1694	const struct nlattr *ovs_key = nla_data(a);
1695	struct ovs_tunnel_info *ovs_tun;
1696
1697	switch (nla_type(ovs_key)) {
1698	case OVS_KEY_ATTR_TUNNEL_INFO:
1699		ovs_tun = nla_data(ovs_key);
1700		dst_release((struct dst_entry *)ovs_tun->tun_dst);
1701		break;
1702	}
1703}
1704
1705void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1706{
1707	const struct nlattr *a;
1708	int rem;
1709
1710	if (!sf_acts)
1711		return;
1712
1713	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1714		switch (nla_type(a)) {
1715		case OVS_ACTION_ATTR_SET:
1716			ovs_nla_free_set_action(a);
1717			break;
1718		case OVS_ACTION_ATTR_CT:
1719			ovs_ct_free_action(a);
1720			break;
1721		}
1722	}
1723
1724	kfree(sf_acts);
1725}
1726
1727static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1728{
1729	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1730}
1731
1732/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1733 * The caller must hold rcu_read_lock for this to be sensible. */
1734void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1735{
1736	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1737}
1738
1739static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1740				       int attr_len, bool log)
1741{
1742
1743	struct sw_flow_actions *acts;
1744	int new_acts_size;
1745	int req_size = NLA_ALIGN(attr_len);
1746	int next_offset = offsetof(struct sw_flow_actions, actions) +
1747					(*sfa)->actions_len;
1748
1749	if (req_size <= (ksize(*sfa) - next_offset))
1750		goto out;
1751
1752	new_acts_size = ksize(*sfa) * 2;
1753
1754	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1755		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1756			return ERR_PTR(-EMSGSIZE);
1757		new_acts_size = MAX_ACTIONS_BUFSIZE;
1758	}
1759
1760	acts = nla_alloc_flow_actions(new_acts_size, log);
1761	if (IS_ERR(acts))
1762		return (void *)acts;
1763
1764	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1765	acts->actions_len = (*sfa)->actions_len;
1766	acts->orig_len = (*sfa)->orig_len;
1767	kfree(*sfa);
1768	*sfa = acts;
1769
1770out:
1771	(*sfa)->actions_len += req_size;
1772	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1773}
1774
1775static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1776				   int attrtype, void *data, int len, bool log)
1777{
1778	struct nlattr *a;
1779
1780	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1781	if (IS_ERR(a))
1782		return a;
1783
1784	a->nla_type = attrtype;
1785	a->nla_len = nla_attr_size(len);
1786
1787	if (data)
1788		memcpy(nla_data(a), data, len);
1789	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1790
1791	return a;
1792}
1793
1794int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1795		       int len, bool log)
1796{
1797	struct nlattr *a;
1798
1799	a = __add_action(sfa, attrtype, data, len, log);
1800
1801	return PTR_ERR_OR_ZERO(a);
1802}
1803
1804static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1805					  int attrtype, bool log)
1806{
1807	int used = (*sfa)->actions_len;
1808	int err;
1809
1810	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1811	if (err)
1812		return err;
1813
1814	return used;
1815}
1816
1817static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1818					 int st_offset)
1819{
1820	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1821							       st_offset);
1822
1823	a->nla_len = sfa->actions_len - st_offset;
1824}
1825
1826static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1827				  const struct sw_flow_key *key,
1828				  int depth, struct sw_flow_actions **sfa,
1829				  __be16 eth_type, __be16 vlan_tci, bool log);
1830
1831static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1832				    const struct sw_flow_key *key, int depth,
1833				    struct sw_flow_actions **sfa,
1834				    __be16 eth_type, __be16 vlan_tci, bool log)
1835{
1836	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1837	const struct nlattr *probability, *actions;
1838	const struct nlattr *a;
1839	int rem, start, err, st_acts;
1840
1841	memset(attrs, 0, sizeof(attrs));
1842	nla_for_each_nested(a, attr, rem) {
1843		int type = nla_type(a);
1844		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1845			return -EINVAL;
1846		attrs[type] = a;
1847	}
1848	if (rem)
1849		return -EINVAL;
1850
1851	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1852	if (!probability || nla_len(probability) != sizeof(u32))
1853		return -EINVAL;
1854
1855	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1856	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1857		return -EINVAL;
1858
1859	/* validation done, copy sample action. */
1860	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1861	if (start < 0)
1862		return start;
1863	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1864				 nla_data(probability), sizeof(u32), log);
1865	if (err)
1866		return err;
1867	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1868	if (st_acts < 0)
1869		return st_acts;
1870
1871	err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1872				     eth_type, vlan_tci, log);
1873	if (err)
1874		return err;
1875
1876	add_nested_action_end(*sfa, st_acts);
1877	add_nested_action_end(*sfa, start);
1878
1879	return 0;
1880}
1881
1882void ovs_match_init(struct sw_flow_match *match,
1883		    struct sw_flow_key *key,
 
1884		    struct sw_flow_mask *mask)
1885{
1886	memset(match, 0, sizeof(*match));
1887	match->key = key;
1888	match->mask = mask;
1889
1890	memset(key, 0, sizeof(*key));
 
1891
1892	if (mask) {
1893		memset(&mask->key, 0, sizeof(mask->key));
1894		mask->range.start = mask->range.end = 0;
1895	}
1896}
1897
1898static int validate_geneve_opts(struct sw_flow_key *key)
1899{
1900	struct geneve_opt *option;
1901	int opts_len = key->tun_opts_len;
1902	bool crit_opt = false;
1903
1904	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1905	while (opts_len > 0) {
1906		int len;
1907
1908		if (opts_len < sizeof(*option))
1909			return -EINVAL;
1910
1911		len = sizeof(*option) + option->length * 4;
1912		if (len > opts_len)
1913			return -EINVAL;
1914
1915		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1916
1917		option = (struct geneve_opt *)((u8 *)option + len);
1918		opts_len -= len;
1919	};
1920
1921	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1922
1923	return 0;
1924}
1925
1926static int validate_and_copy_set_tun(const struct nlattr *attr,
1927				     struct sw_flow_actions **sfa, bool log)
1928{
1929	struct sw_flow_match match;
1930	struct sw_flow_key key;
1931	struct metadata_dst *tun_dst;
1932	struct ip_tunnel_info *tun_info;
1933	struct ovs_tunnel_info *ovs_tun;
1934	struct nlattr *a;
1935	int err = 0, start, opts_type;
1936
1937	ovs_match_init(&match, &key, NULL);
1938	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
1939	if (opts_type < 0)
1940		return opts_type;
1941
1942	if (key.tun_opts_len) {
1943		switch (opts_type) {
1944		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1945			err = validate_geneve_opts(&key);
1946			if (err < 0)
1947				return err;
1948			break;
1949		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1950			break;
1951		}
1952	};
1953
1954	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1955	if (start < 0)
1956		return start;
1957
1958	tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1959	if (!tun_dst)
1960		return -ENOMEM;
1961
1962	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
1963	if (err) {
1964		dst_release((struct dst_entry *)tun_dst);
1965		return err;
1966	}
1967
1968	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1969			 sizeof(*ovs_tun), log);
1970	if (IS_ERR(a)) {
1971		dst_release((struct dst_entry *)tun_dst);
1972		return PTR_ERR(a);
1973	}
1974
1975	ovs_tun = nla_data(a);
1976	ovs_tun->tun_dst = tun_dst;
1977
1978	tun_info = &tun_dst->u.tun_info;
1979	tun_info->mode = IP_TUNNEL_INFO_TX;
1980	if (key.tun_proto == AF_INET6)
1981		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
1982	tun_info->key = key.tun_key;
1983
1984	/* We need to store the options in the action itself since
1985	 * everything else will go away after flow setup. We can append
1986	 * it to tun_info and then point there.
1987	 */
1988	ip_tunnel_info_opts_set(tun_info,
1989				TUN_METADATA_OPTS(&key, key.tun_opts_len),
1990				key.tun_opts_len);
1991	add_nested_action_end(*sfa, start);
1992
1993	return err;
1994}
1995
1996/* Return false if there are any non-masked bits set.
1997 * Mask follows data immediately, before any netlink padding.
1998 */
1999static bool validate_masked(u8 *data, int len)
2000{
2001	u8 *mask = data + len;
2002
2003	while (len--)
2004		if (*data++ & ~*mask++)
2005			return false;
2006
2007	return true;
2008}
2009
2010static int validate_set(const struct nlattr *a,
2011			const struct sw_flow_key *flow_key,
2012			struct sw_flow_actions **sfa,
2013			bool *skip_copy, __be16 eth_type, bool masked, bool log)
2014{
2015	const struct nlattr *ovs_key = nla_data(a);
2016	int key_type = nla_type(ovs_key);
2017	size_t key_len;
2018
2019	/* There can be only one key in a action */
2020	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2021		return -EINVAL;
2022
2023	key_len = nla_len(ovs_key);
2024	if (masked)
2025		key_len /= 2;
2026
2027	if (key_type > OVS_KEY_ATTR_MAX ||
2028	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2029		return -EINVAL;
2030
2031	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2032		return -EINVAL;
2033
2034	switch (key_type) {
2035	const struct ovs_key_ipv4 *ipv4_key;
2036	const struct ovs_key_ipv6 *ipv6_key;
2037	int err;
2038
2039	case OVS_KEY_ATTR_PRIORITY:
2040	case OVS_KEY_ATTR_SKB_MARK:
2041	case OVS_KEY_ATTR_CT_MARK:
2042	case OVS_KEY_ATTR_CT_LABELS:
 
 
2043	case OVS_KEY_ATTR_ETHERNET:
 
 
2044		break;
2045
2046	case OVS_KEY_ATTR_TUNNEL:
2047		if (masked)
2048			return -EINVAL; /* Masked tunnel set not supported. */
2049
2050		*skip_copy = true;
2051		err = validate_and_copy_set_tun(a, sfa, log);
2052		if (err)
2053			return err;
2054		break;
2055
2056	case OVS_KEY_ATTR_IPV4:
2057		if (eth_type != htons(ETH_P_IP))
2058			return -EINVAL;
2059
2060		ipv4_key = nla_data(ovs_key);
2061
2062		if (masked) {
2063			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2064
2065			/* Non-writeable fields. */
2066			if (mask->ipv4_proto || mask->ipv4_frag)
2067				return -EINVAL;
2068		} else {
2069			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2070				return -EINVAL;
2071
2072			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2073				return -EINVAL;
2074		}
2075		break;
2076
2077	case OVS_KEY_ATTR_IPV6:
2078		if (eth_type != htons(ETH_P_IPV6))
2079			return -EINVAL;
2080
2081		ipv6_key = nla_data(ovs_key);
2082
2083		if (masked) {
2084			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2085
2086			/* Non-writeable fields. */
2087			if (mask->ipv6_proto || mask->ipv6_frag)
2088				return -EINVAL;
2089
2090			/* Invalid bits in the flow label mask? */
2091			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2092				return -EINVAL;
2093		} else {
2094			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2095				return -EINVAL;
2096
2097			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2098				return -EINVAL;
2099		}
2100		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2101			return -EINVAL;
2102
2103		break;
2104
2105	case OVS_KEY_ATTR_TCP:
2106		if ((eth_type != htons(ETH_P_IP) &&
2107		     eth_type != htons(ETH_P_IPV6)) ||
2108		    flow_key->ip.proto != IPPROTO_TCP)
2109			return -EINVAL;
2110
2111		break;
2112
2113	case OVS_KEY_ATTR_UDP:
2114		if ((eth_type != htons(ETH_P_IP) &&
2115		     eth_type != htons(ETH_P_IPV6)) ||
2116		    flow_key->ip.proto != IPPROTO_UDP)
2117			return -EINVAL;
2118
2119		break;
2120
2121	case OVS_KEY_ATTR_MPLS:
2122		if (!eth_p_mpls(eth_type))
2123			return -EINVAL;
2124		break;
2125
2126	case OVS_KEY_ATTR_SCTP:
2127		if ((eth_type != htons(ETH_P_IP) &&
2128		     eth_type != htons(ETH_P_IPV6)) ||
2129		    flow_key->ip.proto != IPPROTO_SCTP)
2130			return -EINVAL;
2131
2132		break;
2133
2134	default:
2135		return -EINVAL;
2136	}
2137
2138	/* Convert non-masked non-tunnel set actions to masked set actions. */
2139	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2140		int start, len = key_len * 2;
2141		struct nlattr *at;
2142
2143		*skip_copy = true;
2144
2145		start = add_nested_action_start(sfa,
2146						OVS_ACTION_ATTR_SET_TO_MASKED,
2147						log);
2148		if (start < 0)
2149			return start;
2150
2151		at = __add_action(sfa, key_type, NULL, len, log);
2152		if (IS_ERR(at))
2153			return PTR_ERR(at);
2154
2155		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2156		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2157		/* Clear non-writeable bits from otherwise writeable fields. */
2158		if (key_type == OVS_KEY_ATTR_IPV6) {
2159			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2160
2161			mask->ipv6_label &= htonl(0x000FFFFF);
2162		}
2163		add_nested_action_end(*sfa, start);
2164	}
2165
2166	return 0;
2167}
2168
2169static int validate_userspace(const struct nlattr *attr)
2170{
2171	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2172		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2173		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2174		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2175	};
2176	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2177	int error;
2178
2179	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2180				 attr, userspace_policy);
2181	if (error)
2182		return error;
2183
2184	if (!a[OVS_USERSPACE_ATTR_PID] ||
2185	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2186		return -EINVAL;
2187
2188	return 0;
2189}
2190
2191static int copy_action(const struct nlattr *from,
2192		       struct sw_flow_actions **sfa, bool log)
2193{
2194	int totlen = NLA_ALIGN(from->nla_len);
2195	struct nlattr *to;
2196
2197	to = reserve_sfa_size(sfa, from->nla_len, log);
2198	if (IS_ERR(to))
2199		return PTR_ERR(to);
2200
2201	memcpy(to, from, totlen);
2202	return 0;
2203}
2204
2205static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2206				  const struct sw_flow_key *key,
2207				  int depth, struct sw_flow_actions **sfa,
2208				  __be16 eth_type, __be16 vlan_tci, bool log)
2209{
 
2210	const struct nlattr *a;
2211	int rem, err;
2212
2213	if (depth >= SAMPLE_ACTION_DEPTH)
2214		return -EOVERFLOW;
2215
2216	nla_for_each_nested(a, attr, rem) {
2217		/* Expected argument lengths, (u32)-1 for variable length. */
2218		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2219			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2220			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2221			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2222			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2223			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2224			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2225			[OVS_ACTION_ATTR_POP_VLAN] = 0,
2226			[OVS_ACTION_ATTR_SET] = (u32)-1,
2227			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2228			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2229			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2230			[OVS_ACTION_ATTR_CT] = (u32)-1,
 
 
 
2231		};
2232		const struct ovs_action_push_vlan *vlan;
2233		int type = nla_type(a);
2234		bool skip_copy;
2235
2236		if (type > OVS_ACTION_ATTR_MAX ||
2237		    (action_lens[type] != nla_len(a) &&
2238		     action_lens[type] != (u32)-1))
2239			return -EINVAL;
2240
2241		skip_copy = false;
2242		switch (type) {
2243		case OVS_ACTION_ATTR_UNSPEC:
2244			return -EINVAL;
2245
2246		case OVS_ACTION_ATTR_USERSPACE:
2247			err = validate_userspace(a);
2248			if (err)
2249				return err;
2250			break;
2251
2252		case OVS_ACTION_ATTR_OUTPUT:
2253			if (nla_get_u32(a) >= DP_MAX_PORTS)
2254				return -EINVAL;
2255			break;
2256
 
 
 
 
 
 
 
 
2257		case OVS_ACTION_ATTR_HASH: {
2258			const struct ovs_action_hash *act_hash = nla_data(a);
2259
2260			switch (act_hash->hash_alg) {
2261			case OVS_HASH_ALG_L4:
2262				break;
2263			default:
2264				return  -EINVAL;
2265			}
2266
2267			break;
2268		}
2269
2270		case OVS_ACTION_ATTR_POP_VLAN:
 
 
2271			vlan_tci = htons(0);
2272			break;
2273
2274		case OVS_ACTION_ATTR_PUSH_VLAN:
 
 
2275			vlan = nla_data(a);
2276			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2277				return -EINVAL;
2278			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2279				return -EINVAL;
2280			vlan_tci = vlan->vlan_tci;
2281			break;
2282
2283		case OVS_ACTION_ATTR_RECIRC:
2284			break;
2285
2286		case OVS_ACTION_ATTR_PUSH_MPLS: {
2287			const struct ovs_action_push_mpls *mpls = nla_data(a);
2288
2289			if (!eth_p_mpls(mpls->mpls_ethertype))
2290				return -EINVAL;
2291			/* Prohibit push MPLS other than to a white list
2292			 * for packets that have a known tag order.
2293			 */
2294			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2295			    (eth_type != htons(ETH_P_IP) &&
2296			     eth_type != htons(ETH_P_IPV6) &&
2297			     eth_type != htons(ETH_P_ARP) &&
2298			     eth_type != htons(ETH_P_RARP) &&
2299			     !eth_p_mpls(eth_type)))
2300				return -EINVAL;
2301			eth_type = mpls->mpls_ethertype;
2302			break;
2303		}
2304
2305		case OVS_ACTION_ATTR_POP_MPLS:
2306			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2307			    !eth_p_mpls(eth_type))
2308				return -EINVAL;
2309
2310			/* Disallow subsequent L2.5+ set and mpls_pop actions
2311			 * as there is no check here to ensure that the new
2312			 * eth_type is valid and thus set actions could
2313			 * write off the end of the packet or otherwise
2314			 * corrupt it.
2315			 *
2316			 * Support for these actions is planned using packet
2317			 * recirculation.
2318			 */
2319			eth_type = htons(0);
2320			break;
2321
2322		case OVS_ACTION_ATTR_SET:
2323			err = validate_set(a, key, sfa,
2324					   &skip_copy, eth_type, false, log);
 
2325			if (err)
2326				return err;
2327			break;
2328
2329		case OVS_ACTION_ATTR_SET_MASKED:
2330			err = validate_set(a, key, sfa,
2331					   &skip_copy, eth_type, true, log);
 
2332			if (err)
2333				return err;
2334			break;
2335
2336		case OVS_ACTION_ATTR_SAMPLE:
2337			err = validate_and_copy_sample(net, a, key, depth, sfa,
2338						       eth_type, vlan_tci, log);
2339			if (err)
2340				return err;
2341			skip_copy = true;
2342			break;
2343
2344		case OVS_ACTION_ATTR_CT:
2345			err = ovs_ct_copy_action(net, a, key, sfa, log);
2346			if (err)
2347				return err;
2348			skip_copy = true;
2349			break;
2350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351		default:
2352			OVS_NLERR(log, "Unknown Action type %d", type);
2353			return -EINVAL;
2354		}
2355		if (!skip_copy) {
2356			err = copy_action(a, sfa, log);
2357			if (err)
2358				return err;
2359		}
2360	}
2361
2362	if (rem > 0)
2363		return -EINVAL;
2364
2365	return 0;
2366}
2367
2368/* 'key' must be the masked key. */
2369int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2370			 const struct sw_flow_key *key,
2371			 struct sw_flow_actions **sfa, bool log)
2372{
2373	int err;
2374
2375	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
2376	if (IS_ERR(*sfa))
2377		return PTR_ERR(*sfa);
2378
2379	(*sfa)->orig_len = nla_len(attr);
2380	err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2381				     key->eth.tci, log);
2382	if (err)
2383		ovs_nla_free_flow_actions(*sfa);
2384
2385	return err;
2386}
2387
2388static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2389{
2390	const struct nlattr *a;
2391	struct nlattr *start;
2392	int err = 0, rem;
2393
2394	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2395	if (!start)
2396		return -EMSGSIZE;
2397
2398	nla_for_each_nested(a, attr, rem) {
2399		int type = nla_type(a);
2400		struct nlattr *st_sample;
2401
2402		switch (type) {
2403		case OVS_SAMPLE_ATTR_PROBABILITY:
2404			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2405				    sizeof(u32), nla_data(a)))
2406				return -EMSGSIZE;
2407			break;
2408		case OVS_SAMPLE_ATTR_ACTIONS:
2409			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2410			if (!st_sample)
2411				return -EMSGSIZE;
2412			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2413			if (err)
2414				return err;
2415			nla_nest_end(skb, st_sample);
2416			break;
2417		}
2418	}
2419
2420	nla_nest_end(skb, start);
2421	return err;
2422}
2423
2424static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2425{
2426	const struct nlattr *ovs_key = nla_data(a);
2427	int key_type = nla_type(ovs_key);
2428	struct nlattr *start;
2429	int err;
2430
2431	switch (key_type) {
2432	case OVS_KEY_ATTR_TUNNEL_INFO: {
2433		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2434		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2435
2436		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2437		if (!start)
2438			return -EMSGSIZE;
2439
2440		err =  ip_tun_to_nlattr(skb, &tun_info->key,
2441					ip_tunnel_info_opts(tun_info),
2442					tun_info->options_len,
2443					ip_tunnel_info_af(tun_info));
2444		if (err)
2445			return err;
2446		nla_nest_end(skb, start);
2447		break;
2448	}
2449	default:
2450		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2451			return -EMSGSIZE;
2452		break;
2453	}
2454
2455	return 0;
2456}
2457
2458static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2459						struct sk_buff *skb)
2460{
2461	const struct nlattr *ovs_key = nla_data(a);
2462	struct nlattr *nla;
2463	size_t key_len = nla_len(ovs_key) / 2;
2464
2465	/* Revert the conversion we did from a non-masked set action to
2466	 * masked set action.
2467	 */
2468	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2469	if (!nla)
2470		return -EMSGSIZE;
2471
2472	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2473		return -EMSGSIZE;
2474
2475	nla_nest_end(skb, nla);
2476	return 0;
2477}
2478
2479int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2480{
2481	const struct nlattr *a;
2482	int rem, err;
2483
2484	nla_for_each_attr(a, attr, len, rem) {
2485		int type = nla_type(a);
2486
2487		switch (type) {
2488		case OVS_ACTION_ATTR_SET:
2489			err = set_action_to_attr(a, skb);
2490			if (err)
2491				return err;
2492			break;
2493
2494		case OVS_ACTION_ATTR_SET_TO_MASKED:
2495			err = masked_set_action_to_set_action_attr(a, skb);
2496			if (err)
2497				return err;
2498			break;
2499
2500		case OVS_ACTION_ATTR_SAMPLE:
2501			err = sample_action_to_attr(a, skb);
2502			if (err)
2503				return err;
2504			break;
2505
2506		case OVS_ACTION_ATTR_CT:
2507			err = ovs_ct_action_to_attr(nla_data(a), skb);
2508			if (err)
2509				return err;
2510			break;
2511
2512		default:
2513			if (nla_put(skb, type, nla_len(a), nla_data(a)))
2514				return -EMSGSIZE;
2515			break;
2516		}
2517	}
2518
2519	return 0;
2520}