Loading...
1/*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include "flow.h"
22#include "datapath.h"
23#include <linux/uaccess.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/if_ether.h>
27#include <linux/if_vlan.h>
28#include <net/llc_pdu.h>
29#include <linux/kernel.h>
30#include <linux/jhash.h>
31#include <linux/jiffies.h>
32#include <linux/llc.h>
33#include <linux/module.h>
34#include <linux/in.h>
35#include <linux/rcupdate.h>
36#include <linux/if_arp.h>
37#include <linux/ip.h>
38#include <linux/ipv6.h>
39#include <linux/sctp.h>
40#include <linux/tcp.h>
41#include <linux/udp.h>
42#include <linux/icmp.h>
43#include <linux/icmpv6.h>
44#include <linux/rculist.h>
45#include <net/geneve.h>
46#include <net/ip.h>
47#include <net/ipv6.h>
48#include <net/ndisc.h>
49#include <net/mpls.h>
50#include <net/vxlan.h>
51
52#include "flow_netlink.h"
53
54struct ovs_len_tbl {
55 int len;
56 const struct ovs_len_tbl *next;
57};
58
59#define OVS_ATTR_NESTED -1
60#define OVS_ATTR_VARIABLE -2
61
62static void update_range(struct sw_flow_match *match,
63 size_t offset, size_t size, bool is_mask)
64{
65 struct sw_flow_key_range *range;
66 size_t start = rounddown(offset, sizeof(long));
67 size_t end = roundup(offset + size, sizeof(long));
68
69 if (!is_mask)
70 range = &match->range;
71 else
72 range = &match->mask->range;
73
74 if (range->start == range->end) {
75 range->start = start;
76 range->end = end;
77 return;
78 }
79
80 if (range->start > start)
81 range->start = start;
82
83 if (range->end < end)
84 range->end = end;
85}
86
87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 do { \
89 update_range(match, offsetof(struct sw_flow_key, field), \
90 sizeof((match)->key->field), is_mask); \
91 if (is_mask) \
92 (match)->mask->key.field = value; \
93 else \
94 (match)->key->field = value; \
95 } while (0)
96
97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
98 do { \
99 update_range(match, offset, len, is_mask); \
100 if (is_mask) \
101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 len); \
103 else \
104 memcpy((u8 *)(match)->key + offset, value_p, len); \
105 } while (0)
106
107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 value_p, len, is_mask)
110
111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
112 do { \
113 update_range(match, offsetof(struct sw_flow_key, field), \
114 sizeof((match)->key->field), is_mask); \
115 if (is_mask) \
116 memset((u8 *)&(match)->mask->key.field, value, \
117 sizeof((match)->mask->key.field)); \
118 else \
119 memset((u8 *)&(match)->key->field, value, \
120 sizeof((match)->key->field)); \
121 } while (0)
122
123static bool match_validate(const struct sw_flow_match *match,
124 u64 key_attrs, u64 mask_attrs, bool log)
125{
126 u64 key_expected = 0;
127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
128
129 /* The following mask attributes allowed only if they
130 * pass the validation tests. */
131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 | (1 << OVS_KEY_ATTR_IPV6)
133 | (1 << OVS_KEY_ATTR_TCP)
134 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
135 | (1 << OVS_KEY_ATTR_UDP)
136 | (1 << OVS_KEY_ATTR_SCTP)
137 | (1 << OVS_KEY_ATTR_ICMP)
138 | (1 << OVS_KEY_ATTR_ICMPV6)
139 | (1 << OVS_KEY_ATTR_ARP)
140 | (1 << OVS_KEY_ATTR_ND)
141 | (1 << OVS_KEY_ATTR_MPLS));
142
143 /* Always allowed mask fields. */
144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145 | (1 << OVS_KEY_ATTR_IN_PORT)
146 | (1 << OVS_KEY_ATTR_ETHERTYPE));
147
148 /* Check key attributes. */
149 if (match->key->eth.type == htons(ETH_P_ARP)
150 || match->key->eth.type == htons(ETH_P_RARP)) {
151 key_expected |= 1 << OVS_KEY_ATTR_ARP;
152 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154 }
155
156 if (eth_p_mpls(match->key->eth.type)) {
157 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160 }
161
162 if (match->key->eth.type == htons(ETH_P_IP)) {
163 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166
167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168 if (match->key->ip.proto == IPPROTO_UDP) {
169 key_expected |= 1 << OVS_KEY_ATTR_UDP;
170 if (match->mask && (match->mask->key.ip.proto == 0xff))
171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172 }
173
174 if (match->key->ip.proto == IPPROTO_SCTP) {
175 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176 if (match->mask && (match->mask->key.ip.proto == 0xff))
177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178 }
179
180 if (match->key->ip.proto == IPPROTO_TCP) {
181 key_expected |= 1 << OVS_KEY_ATTR_TCP;
182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186 }
187 }
188
189 if (match->key->ip.proto == IPPROTO_ICMP) {
190 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191 if (match->mask && (match->mask->key.ip.proto == 0xff))
192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193 }
194 }
195 }
196
197 if (match->key->eth.type == htons(ETH_P_IPV6)) {
198 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201
202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203 if (match->key->ip.proto == IPPROTO_UDP) {
204 key_expected |= 1 << OVS_KEY_ATTR_UDP;
205 if (match->mask && (match->mask->key.ip.proto == 0xff))
206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207 }
208
209 if (match->key->ip.proto == IPPROTO_SCTP) {
210 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211 if (match->mask && (match->mask->key.ip.proto == 0xff))
212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213 }
214
215 if (match->key->ip.proto == IPPROTO_TCP) {
216 key_expected |= 1 << OVS_KEY_ATTR_TCP;
217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221 }
222 }
223
224 if (match->key->ip.proto == IPPROTO_ICMPV6) {
225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226 if (match->mask && (match->mask->key.ip.proto == 0xff))
227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228
229 if (match->key->tp.src ==
230 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232 key_expected |= 1 << OVS_KEY_ATTR_ND;
233 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235 }
236 }
237 }
238 }
239
240 if ((key_attrs & key_expected) != key_expected) {
241 /* Key attributes check failed. */
242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243 (unsigned long long)key_attrs,
244 (unsigned long long)key_expected);
245 return false;
246 }
247
248 if ((mask_attrs & mask_allowed) != mask_attrs) {
249 /* Mask attributes check failed. */
250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251 (unsigned long long)mask_attrs,
252 (unsigned long long)mask_allowed);
253 return false;
254 }
255
256 return true;
257}
258
259size_t ovs_tun_key_attr_size(void)
260{
261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262 * updating this function.
263 */
264 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
265 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275 */
276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278}
279
280size_t ovs_key_attr_size(void)
281{
282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
283 * updating this function.
284 */
285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286
287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
289 + ovs_tun_key_attr_size()
290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
306}
307
308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
310};
311
312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
325 .next = ovs_vxlan_ext_key_lens },
326 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
327 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
328};
329
330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
333 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
334 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
335 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
336 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
337 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
338 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
340 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
341 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
342 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
344 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
345 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
346 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
347 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
348 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
349 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
351 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
352 .next = ovs_tunnel_key_lens, },
353 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
354 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
355 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
356 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
357 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
358};
359
360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
361{
362 return expected_len == attr_len ||
363 expected_len == OVS_ATTR_NESTED ||
364 expected_len == OVS_ATTR_VARIABLE;
365}
366
367static bool is_all_zero(const u8 *fp, size_t size)
368{
369 int i;
370
371 if (!fp)
372 return false;
373
374 for (i = 0; i < size; i++)
375 if (fp[i])
376 return false;
377
378 return true;
379}
380
381static int __parse_flow_nlattrs(const struct nlattr *attr,
382 const struct nlattr *a[],
383 u64 *attrsp, bool log, bool nz)
384{
385 const struct nlattr *nla;
386 u64 attrs;
387 int rem;
388
389 attrs = *attrsp;
390 nla_for_each_nested(nla, attr, rem) {
391 u16 type = nla_type(nla);
392 int expected_len;
393
394 if (type > OVS_KEY_ATTR_MAX) {
395 OVS_NLERR(log, "Key type %d is out of range max %d",
396 type, OVS_KEY_ATTR_MAX);
397 return -EINVAL;
398 }
399
400 if (attrs & (1 << type)) {
401 OVS_NLERR(log, "Duplicate key (type %d).", type);
402 return -EINVAL;
403 }
404
405 expected_len = ovs_key_lens[type].len;
406 if (!check_attr_len(nla_len(nla), expected_len)) {
407 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408 type, nla_len(nla), expected_len);
409 return -EINVAL;
410 }
411
412 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413 attrs |= 1 << type;
414 a[type] = nla;
415 }
416 }
417 if (rem) {
418 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419 return -EINVAL;
420 }
421
422 *attrsp = attrs;
423 return 0;
424}
425
426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427 const struct nlattr *a[], u64 *attrsp,
428 bool log)
429{
430 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
431}
432
433static int parse_flow_nlattrs(const struct nlattr *attr,
434 const struct nlattr *a[], u64 *attrsp,
435 bool log)
436{
437 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
438}
439
440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441 struct sw_flow_match *match, bool is_mask,
442 bool log)
443{
444 unsigned long opt_key_offset;
445
446 if (nla_len(a) > sizeof(match->key->tun_opts)) {
447 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448 nla_len(a), sizeof(match->key->tun_opts));
449 return -EINVAL;
450 }
451
452 if (nla_len(a) % 4 != 0) {
453 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454 nla_len(a));
455 return -EINVAL;
456 }
457
458 /* We need to record the length of the options passed
459 * down, otherwise packets with the same format but
460 * additional options will be silently matched.
461 */
462 if (!is_mask) {
463 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464 false);
465 } else {
466 /* This is somewhat unusual because it looks at
467 * both the key and mask while parsing the
468 * attributes (and by extension assumes the key
469 * is parsed first). Normally, we would verify
470 * that each is the correct length and that the
471 * attributes line up in the validate function.
472 * However, that is difficult because this is
473 * variable length and we won't have the
474 * information later.
475 */
476 if (match->key->tun_opts_len != nla_len(a)) {
477 OVS_NLERR(log, "Geneve option len %d != mask len %d",
478 match->key->tun_opts_len, nla_len(a));
479 return -EINVAL;
480 }
481
482 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
483 }
484
485 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487 nla_len(a), is_mask);
488 return 0;
489}
490
491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492 struct sw_flow_match *match, bool is_mask,
493 bool log)
494{
495 struct nlattr *a;
496 int rem;
497 unsigned long opt_key_offset;
498 struct vxlan_metadata opts;
499
500 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
501
502 memset(&opts, 0, sizeof(opts));
503 nla_for_each_nested(a, attr, rem) {
504 int type = nla_type(a);
505
506 if (type > OVS_VXLAN_EXT_MAX) {
507 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508 type, OVS_VXLAN_EXT_MAX);
509 return -EINVAL;
510 }
511
512 if (!check_attr_len(nla_len(a),
513 ovs_vxlan_ext_key_lens[type].len)) {
514 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515 type, nla_len(a),
516 ovs_vxlan_ext_key_lens[type].len);
517 return -EINVAL;
518 }
519
520 switch (type) {
521 case OVS_VXLAN_EXT_GBP:
522 opts.gbp = nla_get_u32(a);
523 break;
524 default:
525 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526 type);
527 return -EINVAL;
528 }
529 }
530 if (rem) {
531 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532 rem);
533 return -EINVAL;
534 }
535
536 if (!is_mask)
537 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538 else
539 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
540
541 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543 is_mask);
544 return 0;
545}
546
547static int ip_tun_from_nlattr(const struct nlattr *attr,
548 struct sw_flow_match *match, bool is_mask,
549 bool log)
550{
551 bool ttl = false, ipv4 = false, ipv6 = false;
552 __be16 tun_flags = 0;
553 int opts_type = 0;
554 struct nlattr *a;
555 int rem;
556
557 nla_for_each_nested(a, attr, rem) {
558 int type = nla_type(a);
559 int err;
560
561 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563 type, OVS_TUNNEL_KEY_ATTR_MAX);
564 return -EINVAL;
565 }
566
567 if (!check_attr_len(nla_len(a),
568 ovs_tunnel_key_lens[type].len)) {
569 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570 type, nla_len(a), ovs_tunnel_key_lens[type].len);
571 return -EINVAL;
572 }
573
574 switch (type) {
575 case OVS_TUNNEL_KEY_ATTR_ID:
576 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577 nla_get_be64(a), is_mask);
578 tun_flags |= TUNNEL_KEY;
579 break;
580 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582 nla_get_in_addr(a), is_mask);
583 ipv4 = true;
584 break;
585 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587 nla_get_in_addr(a), is_mask);
588 ipv4 = true;
589 break;
590 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
592 nla_get_in6_addr(a), is_mask);
593 ipv6 = true;
594 break;
595 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597 nla_get_in6_addr(a), is_mask);
598 ipv6 = true;
599 break;
600 case OVS_TUNNEL_KEY_ATTR_TOS:
601 SW_FLOW_KEY_PUT(match, tun_key.tos,
602 nla_get_u8(a), is_mask);
603 break;
604 case OVS_TUNNEL_KEY_ATTR_TTL:
605 SW_FLOW_KEY_PUT(match, tun_key.ttl,
606 nla_get_u8(a), is_mask);
607 ttl = true;
608 break;
609 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610 tun_flags |= TUNNEL_DONT_FRAGMENT;
611 break;
612 case OVS_TUNNEL_KEY_ATTR_CSUM:
613 tun_flags |= TUNNEL_CSUM;
614 break;
615 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617 nla_get_be16(a), is_mask);
618 break;
619 case OVS_TUNNEL_KEY_ATTR_TP_DST:
620 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621 nla_get_be16(a), is_mask);
622 break;
623 case OVS_TUNNEL_KEY_ATTR_OAM:
624 tun_flags |= TUNNEL_OAM;
625 break;
626 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627 if (opts_type) {
628 OVS_NLERR(log, "Multiple metadata blocks provided");
629 return -EINVAL;
630 }
631
632 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633 if (err)
634 return err;
635
636 tun_flags |= TUNNEL_GENEVE_OPT;
637 opts_type = type;
638 break;
639 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640 if (opts_type) {
641 OVS_NLERR(log, "Multiple metadata blocks provided");
642 return -EINVAL;
643 }
644
645 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646 if (err)
647 return err;
648
649 tun_flags |= TUNNEL_VXLAN_OPT;
650 opts_type = type;
651 break;
652 case OVS_TUNNEL_KEY_ATTR_PAD:
653 break;
654 default:
655 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
656 type);
657 return -EINVAL;
658 }
659 }
660
661 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
662 if (is_mask)
663 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
664 else
665 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
666 false);
667
668 if (rem > 0) {
669 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
670 rem);
671 return -EINVAL;
672 }
673
674 if (ipv4 && ipv6) {
675 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
676 return -EINVAL;
677 }
678
679 if (!is_mask) {
680 if (!ipv4 && !ipv6) {
681 OVS_NLERR(log, "IP tunnel dst address not specified");
682 return -EINVAL;
683 }
684 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
685 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
686 return -EINVAL;
687 }
688 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
689 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
690 return -EINVAL;
691 }
692
693 if (!ttl) {
694 OVS_NLERR(log, "IP tunnel TTL not specified.");
695 return -EINVAL;
696 }
697 }
698
699 return opts_type;
700}
701
702static int vxlan_opt_to_nlattr(struct sk_buff *skb,
703 const void *tun_opts, int swkey_tun_opts_len)
704{
705 const struct vxlan_metadata *opts = tun_opts;
706 struct nlattr *nla;
707
708 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
709 if (!nla)
710 return -EMSGSIZE;
711
712 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
713 return -EMSGSIZE;
714
715 nla_nest_end(skb, nla);
716 return 0;
717}
718
719static int __ip_tun_to_nlattr(struct sk_buff *skb,
720 const struct ip_tunnel_key *output,
721 const void *tun_opts, int swkey_tun_opts_len,
722 unsigned short tun_proto)
723{
724 if (output->tun_flags & TUNNEL_KEY &&
725 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
726 OVS_TUNNEL_KEY_ATTR_PAD))
727 return -EMSGSIZE;
728 switch (tun_proto) {
729 case AF_INET:
730 if (output->u.ipv4.src &&
731 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
732 output->u.ipv4.src))
733 return -EMSGSIZE;
734 if (output->u.ipv4.dst &&
735 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
736 output->u.ipv4.dst))
737 return -EMSGSIZE;
738 break;
739 case AF_INET6:
740 if (!ipv6_addr_any(&output->u.ipv6.src) &&
741 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
742 &output->u.ipv6.src))
743 return -EMSGSIZE;
744 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
745 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
746 &output->u.ipv6.dst))
747 return -EMSGSIZE;
748 break;
749 }
750 if (output->tos &&
751 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
752 return -EMSGSIZE;
753 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
754 return -EMSGSIZE;
755 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
756 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
757 return -EMSGSIZE;
758 if ((output->tun_flags & TUNNEL_CSUM) &&
759 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
760 return -EMSGSIZE;
761 if (output->tp_src &&
762 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
763 return -EMSGSIZE;
764 if (output->tp_dst &&
765 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
766 return -EMSGSIZE;
767 if ((output->tun_flags & TUNNEL_OAM) &&
768 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
769 return -EMSGSIZE;
770 if (swkey_tun_opts_len) {
771 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
772 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
773 swkey_tun_opts_len, tun_opts))
774 return -EMSGSIZE;
775 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
776 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
777 return -EMSGSIZE;
778 }
779
780 return 0;
781}
782
783static int ip_tun_to_nlattr(struct sk_buff *skb,
784 const struct ip_tunnel_key *output,
785 const void *tun_opts, int swkey_tun_opts_len,
786 unsigned short tun_proto)
787{
788 struct nlattr *nla;
789 int err;
790
791 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
792 if (!nla)
793 return -EMSGSIZE;
794
795 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
796 tun_proto);
797 if (err)
798 return err;
799
800 nla_nest_end(skb, nla);
801 return 0;
802}
803
804int ovs_nla_put_tunnel_info(struct sk_buff *skb,
805 struct ip_tunnel_info *tun_info)
806{
807 return __ip_tun_to_nlattr(skb, &tun_info->key,
808 ip_tunnel_info_opts(tun_info),
809 tun_info->options_len,
810 ip_tunnel_info_af(tun_info));
811}
812
813static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
814 const struct nlattr *a[],
815 bool is_mask, bool inner)
816{
817 __be16 tci = 0;
818 __be16 tpid = 0;
819
820 if (a[OVS_KEY_ATTR_VLAN])
821 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
822
823 if (a[OVS_KEY_ATTR_ETHERTYPE])
824 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
825
826 if (likely(!inner)) {
827 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
828 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
829 } else {
830 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
831 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
832 }
833 return 0;
834}
835
836static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
837 u64 key_attrs, bool inner,
838 const struct nlattr **a, bool log)
839{
840 __be16 tci = 0;
841
842 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
843 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
844 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
845 /* Not a VLAN. */
846 return 0;
847 }
848
849 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
850 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
851 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
852 return -EINVAL;
853 }
854
855 if (a[OVS_KEY_ATTR_VLAN])
856 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
857
858 if (!(tci & htons(VLAN_TAG_PRESENT))) {
859 if (tci) {
860 OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
861 (inner) ? "C-VLAN" : "VLAN");
862 return -EINVAL;
863 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
864 /* Corner case for truncated VLAN header. */
865 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
866 (inner) ? "C-VLAN" : "VLAN");
867 return -EINVAL;
868 }
869 }
870
871 return 1;
872}
873
874static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
875 u64 key_attrs, bool inner,
876 const struct nlattr **a, bool log)
877{
878 __be16 tci = 0;
879 __be16 tpid = 0;
880 bool encap_valid = !!(match->key->eth.vlan.tci &
881 htons(VLAN_TAG_PRESENT));
882 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
883 htons(VLAN_TAG_PRESENT));
884
885 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
886 /* Not a VLAN. */
887 return 0;
888 }
889
890 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
891 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
892 (inner) ? "C-VLAN" : "VLAN");
893 return -EINVAL;
894 }
895
896 if (a[OVS_KEY_ATTR_VLAN])
897 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
898
899 if (a[OVS_KEY_ATTR_ETHERTYPE])
900 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
901
902 if (tpid != htons(0xffff)) {
903 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
904 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
905 return -EINVAL;
906 }
907 if (!(tci & htons(VLAN_TAG_PRESENT))) {
908 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
909 (inner) ? "C-VLAN" : "VLAN");
910 return -EINVAL;
911 }
912
913 return 1;
914}
915
916static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
917 u64 *key_attrs, bool inner,
918 const struct nlattr **a, bool is_mask,
919 bool log)
920{
921 int err;
922 const struct nlattr *encap;
923
924 if (!is_mask)
925 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
926 a, log);
927 else
928 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
929 a, log);
930 if (err <= 0)
931 return err;
932
933 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
934 if (err)
935 return err;
936
937 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
938 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
939 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
940
941 encap = a[OVS_KEY_ATTR_ENCAP];
942
943 if (!is_mask)
944 err = parse_flow_nlattrs(encap, a, key_attrs, log);
945 else
946 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
947
948 return err;
949}
950
951static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
952 u64 *key_attrs, const struct nlattr **a,
953 bool is_mask, bool log)
954{
955 int err;
956 bool encap_valid = false;
957
958 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
959 is_mask, log);
960 if (err)
961 return err;
962
963 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
964 if (encap_valid) {
965 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
966 is_mask, log);
967 if (err)
968 return err;
969 }
970
971 return 0;
972}
973
974static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
975 u64 *attrs, const struct nlattr **a,
976 bool is_mask, bool log)
977{
978 __be16 eth_type;
979
980 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
981 if (is_mask) {
982 /* Always exact match EtherType. */
983 eth_type = htons(0xffff);
984 } else if (!eth_proto_is_802_3(eth_type)) {
985 OVS_NLERR(log, "EtherType %x is less than min %x",
986 ntohs(eth_type), ETH_P_802_3_MIN);
987 return -EINVAL;
988 }
989
990 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
991 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
992 return 0;
993}
994
995static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
996 u64 *attrs, const struct nlattr **a,
997 bool is_mask, bool log)
998{
999 u8 mac_proto = MAC_PROTO_ETHERNET;
1000
1001 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1002 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1003
1004 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1005 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1006 }
1007
1008 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1009 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1010
1011 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1012 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1013 }
1014
1015 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1016 SW_FLOW_KEY_PUT(match, phy.priority,
1017 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1018 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1019 }
1020
1021 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1022 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1023
1024 if (is_mask) {
1025 in_port = 0xffffffff; /* Always exact match in_port. */
1026 } else if (in_port >= DP_MAX_PORTS) {
1027 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1028 in_port, DP_MAX_PORTS);
1029 return -EINVAL;
1030 }
1031
1032 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1033 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1034 } else if (!is_mask) {
1035 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1036 }
1037
1038 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1039 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1040
1041 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1042 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1043 }
1044 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1045 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1046 is_mask, log) < 0)
1047 return -EINVAL;
1048 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1049 }
1050
1051 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1052 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1053 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1054
1055 if (ct_state & ~CT_SUPPORTED_MASK) {
1056 OVS_NLERR(log, "ct_state flags %08x unsupported",
1057 ct_state);
1058 return -EINVAL;
1059 }
1060
1061 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
1062 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1063 }
1064 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1065 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1066 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1067
1068 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
1069 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1070 }
1071 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1072 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1073 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1074
1075 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1076 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1077 }
1078 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1079 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1080 const struct ovs_key_ct_labels *cl;
1081
1082 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1083 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1084 sizeof(*cl), is_mask);
1085 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1086 }
1087
1088 /* For layer 3 packets the Ethernet type is provided
1089 * and treated as metadata but no MAC addresses are provided.
1090 */
1091 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1092 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1093 mac_proto = MAC_PROTO_NONE;
1094
1095 /* Always exact match mac_proto */
1096 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1097
1098 if (mac_proto == MAC_PROTO_NONE)
1099 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1100 log);
1101
1102 return 0;
1103}
1104
1105static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1106 u64 attrs, const struct nlattr **a,
1107 bool is_mask, bool log)
1108{
1109 int err;
1110
1111 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1112 if (err)
1113 return err;
1114
1115 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1116 const struct ovs_key_ethernet *eth_key;
1117
1118 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1119 SW_FLOW_KEY_MEMCPY(match, eth.src,
1120 eth_key->eth_src, ETH_ALEN, is_mask);
1121 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1122 eth_key->eth_dst, ETH_ALEN, is_mask);
1123 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1124
1125 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1126 /* VLAN attribute is always parsed before getting here since it
1127 * may occur multiple times.
1128 */
1129 OVS_NLERR(log, "VLAN attribute unexpected.");
1130 return -EINVAL;
1131 }
1132
1133 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1134 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1135 log);
1136 if (err)
1137 return err;
1138 } else if (!is_mask) {
1139 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1140 }
1141 } else if (!match->key->eth.type) {
1142 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1143 return -EINVAL;
1144 }
1145
1146 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1147 const struct ovs_key_ipv4 *ipv4_key;
1148
1149 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1150 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1151 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1152 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1153 return -EINVAL;
1154 }
1155 SW_FLOW_KEY_PUT(match, ip.proto,
1156 ipv4_key->ipv4_proto, is_mask);
1157 SW_FLOW_KEY_PUT(match, ip.tos,
1158 ipv4_key->ipv4_tos, is_mask);
1159 SW_FLOW_KEY_PUT(match, ip.ttl,
1160 ipv4_key->ipv4_ttl, is_mask);
1161 SW_FLOW_KEY_PUT(match, ip.frag,
1162 ipv4_key->ipv4_frag, is_mask);
1163 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1164 ipv4_key->ipv4_src, is_mask);
1165 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1166 ipv4_key->ipv4_dst, is_mask);
1167 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1168 }
1169
1170 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1171 const struct ovs_key_ipv6 *ipv6_key;
1172
1173 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1174 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1175 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1176 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1177 return -EINVAL;
1178 }
1179
1180 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1181 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1182 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1183 return -EINVAL;
1184 }
1185
1186 SW_FLOW_KEY_PUT(match, ipv6.label,
1187 ipv6_key->ipv6_label, is_mask);
1188 SW_FLOW_KEY_PUT(match, ip.proto,
1189 ipv6_key->ipv6_proto, is_mask);
1190 SW_FLOW_KEY_PUT(match, ip.tos,
1191 ipv6_key->ipv6_tclass, is_mask);
1192 SW_FLOW_KEY_PUT(match, ip.ttl,
1193 ipv6_key->ipv6_hlimit, is_mask);
1194 SW_FLOW_KEY_PUT(match, ip.frag,
1195 ipv6_key->ipv6_frag, is_mask);
1196 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1197 ipv6_key->ipv6_src,
1198 sizeof(match->key->ipv6.addr.src),
1199 is_mask);
1200 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1201 ipv6_key->ipv6_dst,
1202 sizeof(match->key->ipv6.addr.dst),
1203 is_mask);
1204
1205 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1206 }
1207
1208 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1209 const struct ovs_key_arp *arp_key;
1210
1211 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1212 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1213 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1214 arp_key->arp_op);
1215 return -EINVAL;
1216 }
1217
1218 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1219 arp_key->arp_sip, is_mask);
1220 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1221 arp_key->arp_tip, is_mask);
1222 SW_FLOW_KEY_PUT(match, ip.proto,
1223 ntohs(arp_key->arp_op), is_mask);
1224 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1225 arp_key->arp_sha, ETH_ALEN, is_mask);
1226 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1227 arp_key->arp_tha, ETH_ALEN, is_mask);
1228
1229 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1230 }
1231
1232 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1233 const struct ovs_key_mpls *mpls_key;
1234
1235 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1236 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1237 mpls_key->mpls_lse, is_mask);
1238
1239 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1240 }
1241
1242 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1243 const struct ovs_key_tcp *tcp_key;
1244
1245 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1246 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1247 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1248 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1249 }
1250
1251 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1252 SW_FLOW_KEY_PUT(match, tp.flags,
1253 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1254 is_mask);
1255 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1256 }
1257
1258 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1259 const struct ovs_key_udp *udp_key;
1260
1261 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1262 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1263 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1264 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1265 }
1266
1267 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1268 const struct ovs_key_sctp *sctp_key;
1269
1270 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1271 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1272 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1273 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1274 }
1275
1276 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1277 const struct ovs_key_icmp *icmp_key;
1278
1279 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1280 SW_FLOW_KEY_PUT(match, tp.src,
1281 htons(icmp_key->icmp_type), is_mask);
1282 SW_FLOW_KEY_PUT(match, tp.dst,
1283 htons(icmp_key->icmp_code), is_mask);
1284 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1285 }
1286
1287 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1288 const struct ovs_key_icmpv6 *icmpv6_key;
1289
1290 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1291 SW_FLOW_KEY_PUT(match, tp.src,
1292 htons(icmpv6_key->icmpv6_type), is_mask);
1293 SW_FLOW_KEY_PUT(match, tp.dst,
1294 htons(icmpv6_key->icmpv6_code), is_mask);
1295 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1296 }
1297
1298 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1299 const struct ovs_key_nd *nd_key;
1300
1301 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1302 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1303 nd_key->nd_target,
1304 sizeof(match->key->ipv6.nd.target),
1305 is_mask);
1306 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1307 nd_key->nd_sll, ETH_ALEN, is_mask);
1308 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1309 nd_key->nd_tll, ETH_ALEN, is_mask);
1310 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1311 }
1312
1313 if (attrs != 0) {
1314 OVS_NLERR(log, "Unknown key attributes %llx",
1315 (unsigned long long)attrs);
1316 return -EINVAL;
1317 }
1318
1319 return 0;
1320}
1321
1322static void nlattr_set(struct nlattr *attr, u8 val,
1323 const struct ovs_len_tbl *tbl)
1324{
1325 struct nlattr *nla;
1326 int rem;
1327
1328 /* The nlattr stream should already have been validated */
1329 nla_for_each_nested(nla, attr, rem) {
1330 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1331 if (tbl[nla_type(nla)].next)
1332 tbl = tbl[nla_type(nla)].next;
1333 nlattr_set(nla, val, tbl);
1334 } else {
1335 memset(nla_data(nla), val, nla_len(nla));
1336 }
1337
1338 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1339 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1340 }
1341}
1342
1343static void mask_set_nlattr(struct nlattr *attr, u8 val)
1344{
1345 nlattr_set(attr, val, ovs_key_lens);
1346}
1347
1348/**
1349 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1350 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1351 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1352 * does not include any don't care bit.
1353 * @net: Used to determine per-namespace field support.
1354 * @match: receives the extracted flow match information.
1355 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1356 * sequence. The fields should of the packet that triggered the creation
1357 * of this flow.
1358 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1359 * attribute specifies the mask field of the wildcarded flow.
1360 * @log: Boolean to allow kernel error logging. Normally true, but when
1361 * probing for feature compatibility this should be passed in as false to
1362 * suppress unnecessary error logging.
1363 */
1364int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1365 const struct nlattr *nla_key,
1366 const struct nlattr *nla_mask,
1367 bool log)
1368{
1369 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1370 struct nlattr *newmask = NULL;
1371 u64 key_attrs = 0;
1372 u64 mask_attrs = 0;
1373 int err;
1374
1375 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1376 if (err)
1377 return err;
1378
1379 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1380 if (err)
1381 return err;
1382
1383 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1384 if (err)
1385 return err;
1386
1387 if (match->mask) {
1388 if (!nla_mask) {
1389 /* Create an exact match mask. We need to set to 0xff
1390 * all the 'match->mask' fields that have been touched
1391 * in 'match->key'. We cannot simply memset
1392 * 'match->mask', because padding bytes and fields not
1393 * specified in 'match->key' should be left to 0.
1394 * Instead, we use a stream of netlink attributes,
1395 * copied from 'key' and set to 0xff.
1396 * ovs_key_from_nlattrs() will take care of filling
1397 * 'match->mask' appropriately.
1398 */
1399 newmask = kmemdup(nla_key,
1400 nla_total_size(nla_len(nla_key)),
1401 GFP_KERNEL);
1402 if (!newmask)
1403 return -ENOMEM;
1404
1405 mask_set_nlattr(newmask, 0xff);
1406
1407 /* The userspace does not send tunnel attributes that
1408 * are 0, but we should not wildcard them nonetheless.
1409 */
1410 if (match->key->tun_proto)
1411 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1412 0xff, true);
1413
1414 nla_mask = newmask;
1415 }
1416
1417 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1418 if (err)
1419 goto free_newmask;
1420
1421 /* Always match on tci. */
1422 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1423 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1424
1425 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1426 if (err)
1427 goto free_newmask;
1428
1429 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1430 log);
1431 if (err)
1432 goto free_newmask;
1433 }
1434
1435 if (!match_validate(match, key_attrs, mask_attrs, log))
1436 err = -EINVAL;
1437
1438free_newmask:
1439 kfree(newmask);
1440 return err;
1441}
1442
1443static size_t get_ufid_len(const struct nlattr *attr, bool log)
1444{
1445 size_t len;
1446
1447 if (!attr)
1448 return 0;
1449
1450 len = nla_len(attr);
1451 if (len < 1 || len > MAX_UFID_LENGTH) {
1452 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1453 nla_len(attr), MAX_UFID_LENGTH);
1454 return 0;
1455 }
1456
1457 return len;
1458}
1459
1460/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1461 * or false otherwise.
1462 */
1463bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1464 bool log)
1465{
1466 sfid->ufid_len = get_ufid_len(attr, log);
1467 if (sfid->ufid_len)
1468 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1469
1470 return sfid->ufid_len;
1471}
1472
1473int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1474 const struct sw_flow_key *key, bool log)
1475{
1476 struct sw_flow_key *new_key;
1477
1478 if (ovs_nla_get_ufid(sfid, ufid, log))
1479 return 0;
1480
1481 /* If UFID was not provided, use unmasked key. */
1482 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1483 if (!new_key)
1484 return -ENOMEM;
1485 memcpy(new_key, key, sizeof(*key));
1486 sfid->unmasked_key = new_key;
1487
1488 return 0;
1489}
1490
1491u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1492{
1493 return attr ? nla_get_u32(attr) : 0;
1494}
1495
1496/**
1497 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1498 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1499 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1500 * sequence.
1501 * @log: Boolean to allow kernel error logging. Normally true, but when
1502 * probing for feature compatibility this should be passed in as false to
1503 * suppress unnecessary error logging.
1504 *
1505 * This parses a series of Netlink attributes that form a flow key, which must
1506 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1507 * get the metadata, that is, the parts of the flow key that cannot be
1508 * extracted from the packet itself.
1509 */
1510
1511int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1512 struct sw_flow_key *key,
1513 bool log)
1514{
1515 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1516 struct sw_flow_match match;
1517 u64 attrs = 0;
1518 int err;
1519
1520 err = parse_flow_nlattrs(attr, a, &attrs, log);
1521 if (err)
1522 return -EINVAL;
1523
1524 memset(&match, 0, sizeof(match));
1525 match.key = key;
1526
1527 memset(&key->ct, 0, sizeof(key->ct));
1528 key->phy.in_port = DP_MAX_PORTS;
1529
1530 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1531}
1532
1533static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1534 bool is_mask)
1535{
1536 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1537
1538 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1539 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1540 return -EMSGSIZE;
1541 return 0;
1542}
1543
1544static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1545 const struct sw_flow_key *output, bool is_mask,
1546 struct sk_buff *skb)
1547{
1548 struct ovs_key_ethernet *eth_key;
1549 struct nlattr *nla;
1550 struct nlattr *encap = NULL;
1551 struct nlattr *in_encap = NULL;
1552
1553 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1554 goto nla_put_failure;
1555
1556 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1557 goto nla_put_failure;
1558
1559 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1560 goto nla_put_failure;
1561
1562 if ((swkey->tun_proto || is_mask)) {
1563 const void *opts = NULL;
1564
1565 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1566 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1567
1568 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1569 swkey->tun_opts_len, swkey->tun_proto))
1570 goto nla_put_failure;
1571 }
1572
1573 if (swkey->phy.in_port == DP_MAX_PORTS) {
1574 if (is_mask && (output->phy.in_port == 0xffff))
1575 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1576 goto nla_put_failure;
1577 } else {
1578 u16 upper_u16;
1579 upper_u16 = !is_mask ? 0 : 0xffff;
1580
1581 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1582 (upper_u16 << 16) | output->phy.in_port))
1583 goto nla_put_failure;
1584 }
1585
1586 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1587 goto nla_put_failure;
1588
1589 if (ovs_ct_put_key(output, skb))
1590 goto nla_put_failure;
1591
1592 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1593 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1594 if (!nla)
1595 goto nla_put_failure;
1596
1597 eth_key = nla_data(nla);
1598 ether_addr_copy(eth_key->eth_src, output->eth.src);
1599 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1600
1601 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1602 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1603 goto nla_put_failure;
1604 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1605 if (!swkey->eth.vlan.tci)
1606 goto unencap;
1607
1608 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1609 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1610 goto nla_put_failure;
1611 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1612 if (!swkey->eth.cvlan.tci)
1613 goto unencap;
1614 }
1615 }
1616
1617 if (swkey->eth.type == htons(ETH_P_802_2)) {
1618 /*
1619 * Ethertype 802.2 is represented in the netlink with omitted
1620 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1621 * 0xffff in the mask attribute. Ethertype can also
1622 * be wildcarded.
1623 */
1624 if (is_mask && output->eth.type)
1625 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1626 output->eth.type))
1627 goto nla_put_failure;
1628 goto unencap;
1629 }
1630 }
1631
1632 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1633 goto nla_put_failure;
1634
1635 if (eth_type_vlan(swkey->eth.type)) {
1636 /* There are 3 VLAN tags, we don't know anything about the rest
1637 * of the packet, so truncate here.
1638 */
1639 WARN_ON_ONCE(!(encap && in_encap));
1640 goto unencap;
1641 }
1642
1643 if (swkey->eth.type == htons(ETH_P_IP)) {
1644 struct ovs_key_ipv4 *ipv4_key;
1645
1646 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1647 if (!nla)
1648 goto nla_put_failure;
1649 ipv4_key = nla_data(nla);
1650 ipv4_key->ipv4_src = output->ipv4.addr.src;
1651 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1652 ipv4_key->ipv4_proto = output->ip.proto;
1653 ipv4_key->ipv4_tos = output->ip.tos;
1654 ipv4_key->ipv4_ttl = output->ip.ttl;
1655 ipv4_key->ipv4_frag = output->ip.frag;
1656 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1657 struct ovs_key_ipv6 *ipv6_key;
1658
1659 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1660 if (!nla)
1661 goto nla_put_failure;
1662 ipv6_key = nla_data(nla);
1663 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1664 sizeof(ipv6_key->ipv6_src));
1665 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1666 sizeof(ipv6_key->ipv6_dst));
1667 ipv6_key->ipv6_label = output->ipv6.label;
1668 ipv6_key->ipv6_proto = output->ip.proto;
1669 ipv6_key->ipv6_tclass = output->ip.tos;
1670 ipv6_key->ipv6_hlimit = output->ip.ttl;
1671 ipv6_key->ipv6_frag = output->ip.frag;
1672 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1673 swkey->eth.type == htons(ETH_P_RARP)) {
1674 struct ovs_key_arp *arp_key;
1675
1676 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1677 if (!nla)
1678 goto nla_put_failure;
1679 arp_key = nla_data(nla);
1680 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1681 arp_key->arp_sip = output->ipv4.addr.src;
1682 arp_key->arp_tip = output->ipv4.addr.dst;
1683 arp_key->arp_op = htons(output->ip.proto);
1684 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1685 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1686 } else if (eth_p_mpls(swkey->eth.type)) {
1687 struct ovs_key_mpls *mpls_key;
1688
1689 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1690 if (!nla)
1691 goto nla_put_failure;
1692 mpls_key = nla_data(nla);
1693 mpls_key->mpls_lse = output->mpls.top_lse;
1694 }
1695
1696 if ((swkey->eth.type == htons(ETH_P_IP) ||
1697 swkey->eth.type == htons(ETH_P_IPV6)) &&
1698 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1699
1700 if (swkey->ip.proto == IPPROTO_TCP) {
1701 struct ovs_key_tcp *tcp_key;
1702
1703 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1704 if (!nla)
1705 goto nla_put_failure;
1706 tcp_key = nla_data(nla);
1707 tcp_key->tcp_src = output->tp.src;
1708 tcp_key->tcp_dst = output->tp.dst;
1709 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1710 output->tp.flags))
1711 goto nla_put_failure;
1712 } else if (swkey->ip.proto == IPPROTO_UDP) {
1713 struct ovs_key_udp *udp_key;
1714
1715 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1716 if (!nla)
1717 goto nla_put_failure;
1718 udp_key = nla_data(nla);
1719 udp_key->udp_src = output->tp.src;
1720 udp_key->udp_dst = output->tp.dst;
1721 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1722 struct ovs_key_sctp *sctp_key;
1723
1724 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1725 if (!nla)
1726 goto nla_put_failure;
1727 sctp_key = nla_data(nla);
1728 sctp_key->sctp_src = output->tp.src;
1729 sctp_key->sctp_dst = output->tp.dst;
1730 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1731 swkey->ip.proto == IPPROTO_ICMP) {
1732 struct ovs_key_icmp *icmp_key;
1733
1734 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1735 if (!nla)
1736 goto nla_put_failure;
1737 icmp_key = nla_data(nla);
1738 icmp_key->icmp_type = ntohs(output->tp.src);
1739 icmp_key->icmp_code = ntohs(output->tp.dst);
1740 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1741 swkey->ip.proto == IPPROTO_ICMPV6) {
1742 struct ovs_key_icmpv6 *icmpv6_key;
1743
1744 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1745 sizeof(*icmpv6_key));
1746 if (!nla)
1747 goto nla_put_failure;
1748 icmpv6_key = nla_data(nla);
1749 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1750 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1751
1752 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1753 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1754 struct ovs_key_nd *nd_key;
1755
1756 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1757 if (!nla)
1758 goto nla_put_failure;
1759 nd_key = nla_data(nla);
1760 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1761 sizeof(nd_key->nd_target));
1762 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1763 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1764 }
1765 }
1766 }
1767
1768unencap:
1769 if (in_encap)
1770 nla_nest_end(skb, in_encap);
1771 if (encap)
1772 nla_nest_end(skb, encap);
1773
1774 return 0;
1775
1776nla_put_failure:
1777 return -EMSGSIZE;
1778}
1779
1780int ovs_nla_put_key(const struct sw_flow_key *swkey,
1781 const struct sw_flow_key *output, int attr, bool is_mask,
1782 struct sk_buff *skb)
1783{
1784 int err;
1785 struct nlattr *nla;
1786
1787 nla = nla_nest_start(skb, attr);
1788 if (!nla)
1789 return -EMSGSIZE;
1790 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1791 if (err)
1792 return err;
1793 nla_nest_end(skb, nla);
1794
1795 return 0;
1796}
1797
1798/* Called with ovs_mutex or RCU read lock. */
1799int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1800{
1801 if (ovs_identifier_is_ufid(&flow->id))
1802 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1803 flow->id.ufid);
1804
1805 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1806 OVS_FLOW_ATTR_KEY, false, skb);
1807}
1808
1809/* Called with ovs_mutex or RCU read lock. */
1810int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1811{
1812 return ovs_nla_put_key(&flow->key, &flow->key,
1813 OVS_FLOW_ATTR_KEY, false, skb);
1814}
1815
1816/* Called with ovs_mutex or RCU read lock. */
1817int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1818{
1819 return ovs_nla_put_key(&flow->key, &flow->mask->key,
1820 OVS_FLOW_ATTR_MASK, true, skb);
1821}
1822
1823#define MAX_ACTIONS_BUFSIZE (32 * 1024)
1824
1825static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1826{
1827 struct sw_flow_actions *sfa;
1828
1829 if (size > MAX_ACTIONS_BUFSIZE) {
1830 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1831 return ERR_PTR(-EINVAL);
1832 }
1833
1834 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1835 if (!sfa)
1836 return ERR_PTR(-ENOMEM);
1837
1838 sfa->actions_len = 0;
1839 return sfa;
1840}
1841
1842static void ovs_nla_free_set_action(const struct nlattr *a)
1843{
1844 const struct nlattr *ovs_key = nla_data(a);
1845 struct ovs_tunnel_info *ovs_tun;
1846
1847 switch (nla_type(ovs_key)) {
1848 case OVS_KEY_ATTR_TUNNEL_INFO:
1849 ovs_tun = nla_data(ovs_key);
1850 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1851 break;
1852 }
1853}
1854
1855void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1856{
1857 const struct nlattr *a;
1858 int rem;
1859
1860 if (!sf_acts)
1861 return;
1862
1863 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1864 switch (nla_type(a)) {
1865 case OVS_ACTION_ATTR_SET:
1866 ovs_nla_free_set_action(a);
1867 break;
1868 case OVS_ACTION_ATTR_CT:
1869 ovs_ct_free_action(a);
1870 break;
1871 }
1872 }
1873
1874 kfree(sf_acts);
1875}
1876
1877static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1878{
1879 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1880}
1881
1882/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1883 * The caller must hold rcu_read_lock for this to be sensible. */
1884void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1885{
1886 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1887}
1888
1889static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1890 int attr_len, bool log)
1891{
1892
1893 struct sw_flow_actions *acts;
1894 int new_acts_size;
1895 int req_size = NLA_ALIGN(attr_len);
1896 int next_offset = offsetof(struct sw_flow_actions, actions) +
1897 (*sfa)->actions_len;
1898
1899 if (req_size <= (ksize(*sfa) - next_offset))
1900 goto out;
1901
1902 new_acts_size = ksize(*sfa) * 2;
1903
1904 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1905 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1906 return ERR_PTR(-EMSGSIZE);
1907 new_acts_size = MAX_ACTIONS_BUFSIZE;
1908 }
1909
1910 acts = nla_alloc_flow_actions(new_acts_size, log);
1911 if (IS_ERR(acts))
1912 return (void *)acts;
1913
1914 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1915 acts->actions_len = (*sfa)->actions_len;
1916 acts->orig_len = (*sfa)->orig_len;
1917 kfree(*sfa);
1918 *sfa = acts;
1919
1920out:
1921 (*sfa)->actions_len += req_size;
1922 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1923}
1924
1925static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1926 int attrtype, void *data, int len, bool log)
1927{
1928 struct nlattr *a;
1929
1930 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1931 if (IS_ERR(a))
1932 return a;
1933
1934 a->nla_type = attrtype;
1935 a->nla_len = nla_attr_size(len);
1936
1937 if (data)
1938 memcpy(nla_data(a), data, len);
1939 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1940
1941 return a;
1942}
1943
1944int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1945 int len, bool log)
1946{
1947 struct nlattr *a;
1948
1949 a = __add_action(sfa, attrtype, data, len, log);
1950
1951 return PTR_ERR_OR_ZERO(a);
1952}
1953
1954static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1955 int attrtype, bool log)
1956{
1957 int used = (*sfa)->actions_len;
1958 int err;
1959
1960 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1961 if (err)
1962 return err;
1963
1964 return used;
1965}
1966
1967static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1968 int st_offset)
1969{
1970 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1971 st_offset);
1972
1973 a->nla_len = sfa->actions_len - st_offset;
1974}
1975
1976static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1977 const struct sw_flow_key *key,
1978 int depth, struct sw_flow_actions **sfa,
1979 __be16 eth_type, __be16 vlan_tci, bool log);
1980
1981static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1982 const struct sw_flow_key *key, int depth,
1983 struct sw_flow_actions **sfa,
1984 __be16 eth_type, __be16 vlan_tci, bool log)
1985{
1986 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1987 const struct nlattr *probability, *actions;
1988 const struct nlattr *a;
1989 int rem, start, err, st_acts;
1990
1991 memset(attrs, 0, sizeof(attrs));
1992 nla_for_each_nested(a, attr, rem) {
1993 int type = nla_type(a);
1994 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1995 return -EINVAL;
1996 attrs[type] = a;
1997 }
1998 if (rem)
1999 return -EINVAL;
2000
2001 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2002 if (!probability || nla_len(probability) != sizeof(u32))
2003 return -EINVAL;
2004
2005 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2006 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2007 return -EINVAL;
2008
2009 /* validation done, copy sample action. */
2010 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2011 if (start < 0)
2012 return start;
2013 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
2014 nla_data(probability), sizeof(u32), log);
2015 if (err)
2016 return err;
2017 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
2018 if (st_acts < 0)
2019 return st_acts;
2020
2021 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
2022 eth_type, vlan_tci, log);
2023 if (err)
2024 return err;
2025
2026 add_nested_action_end(*sfa, st_acts);
2027 add_nested_action_end(*sfa, start);
2028
2029 return 0;
2030}
2031
2032void ovs_match_init(struct sw_flow_match *match,
2033 struct sw_flow_key *key,
2034 bool reset_key,
2035 struct sw_flow_mask *mask)
2036{
2037 memset(match, 0, sizeof(*match));
2038 match->key = key;
2039 match->mask = mask;
2040
2041 if (reset_key)
2042 memset(key, 0, sizeof(*key));
2043
2044 if (mask) {
2045 memset(&mask->key, 0, sizeof(mask->key));
2046 mask->range.start = mask->range.end = 0;
2047 }
2048}
2049
2050static int validate_geneve_opts(struct sw_flow_key *key)
2051{
2052 struct geneve_opt *option;
2053 int opts_len = key->tun_opts_len;
2054 bool crit_opt = false;
2055
2056 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2057 while (opts_len > 0) {
2058 int len;
2059
2060 if (opts_len < sizeof(*option))
2061 return -EINVAL;
2062
2063 len = sizeof(*option) + option->length * 4;
2064 if (len > opts_len)
2065 return -EINVAL;
2066
2067 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2068
2069 option = (struct geneve_opt *)((u8 *)option + len);
2070 opts_len -= len;
2071 };
2072
2073 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2074
2075 return 0;
2076}
2077
2078static int validate_and_copy_set_tun(const struct nlattr *attr,
2079 struct sw_flow_actions **sfa, bool log)
2080{
2081 struct sw_flow_match match;
2082 struct sw_flow_key key;
2083 struct metadata_dst *tun_dst;
2084 struct ip_tunnel_info *tun_info;
2085 struct ovs_tunnel_info *ovs_tun;
2086 struct nlattr *a;
2087 int err = 0, start, opts_type;
2088
2089 ovs_match_init(&match, &key, true, NULL);
2090 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2091 if (opts_type < 0)
2092 return opts_type;
2093
2094 if (key.tun_opts_len) {
2095 switch (opts_type) {
2096 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2097 err = validate_geneve_opts(&key);
2098 if (err < 0)
2099 return err;
2100 break;
2101 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2102 break;
2103 }
2104 };
2105
2106 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2107 if (start < 0)
2108 return start;
2109
2110 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
2111 if (!tun_dst)
2112 return -ENOMEM;
2113
2114 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2115 if (err) {
2116 dst_release((struct dst_entry *)tun_dst);
2117 return err;
2118 }
2119
2120 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2121 sizeof(*ovs_tun), log);
2122 if (IS_ERR(a)) {
2123 dst_release((struct dst_entry *)tun_dst);
2124 return PTR_ERR(a);
2125 }
2126
2127 ovs_tun = nla_data(a);
2128 ovs_tun->tun_dst = tun_dst;
2129
2130 tun_info = &tun_dst->u.tun_info;
2131 tun_info->mode = IP_TUNNEL_INFO_TX;
2132 if (key.tun_proto == AF_INET6)
2133 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2134 tun_info->key = key.tun_key;
2135
2136 /* We need to store the options in the action itself since
2137 * everything else will go away after flow setup. We can append
2138 * it to tun_info and then point there.
2139 */
2140 ip_tunnel_info_opts_set(tun_info,
2141 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2142 key.tun_opts_len);
2143 add_nested_action_end(*sfa, start);
2144
2145 return err;
2146}
2147
2148/* Return false if there are any non-masked bits set.
2149 * Mask follows data immediately, before any netlink padding.
2150 */
2151static bool validate_masked(u8 *data, int len)
2152{
2153 u8 *mask = data + len;
2154
2155 while (len--)
2156 if (*data++ & ~*mask++)
2157 return false;
2158
2159 return true;
2160}
2161
2162static int validate_set(const struct nlattr *a,
2163 const struct sw_flow_key *flow_key,
2164 struct sw_flow_actions **sfa, bool *skip_copy,
2165 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2166{
2167 const struct nlattr *ovs_key = nla_data(a);
2168 int key_type = nla_type(ovs_key);
2169 size_t key_len;
2170
2171 /* There can be only one key in a action */
2172 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2173 return -EINVAL;
2174
2175 key_len = nla_len(ovs_key);
2176 if (masked)
2177 key_len /= 2;
2178
2179 if (key_type > OVS_KEY_ATTR_MAX ||
2180 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2181 return -EINVAL;
2182
2183 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2184 return -EINVAL;
2185
2186 switch (key_type) {
2187 const struct ovs_key_ipv4 *ipv4_key;
2188 const struct ovs_key_ipv6 *ipv6_key;
2189 int err;
2190
2191 case OVS_KEY_ATTR_PRIORITY:
2192 case OVS_KEY_ATTR_SKB_MARK:
2193 case OVS_KEY_ATTR_CT_MARK:
2194 case OVS_KEY_ATTR_CT_LABELS:
2195 break;
2196
2197 case OVS_KEY_ATTR_ETHERNET:
2198 if (mac_proto != MAC_PROTO_ETHERNET)
2199 return -EINVAL;
2200 break;
2201
2202 case OVS_KEY_ATTR_TUNNEL:
2203 if (masked)
2204 return -EINVAL; /* Masked tunnel set not supported. */
2205
2206 *skip_copy = true;
2207 err = validate_and_copy_set_tun(a, sfa, log);
2208 if (err)
2209 return err;
2210 break;
2211
2212 case OVS_KEY_ATTR_IPV4:
2213 if (eth_type != htons(ETH_P_IP))
2214 return -EINVAL;
2215
2216 ipv4_key = nla_data(ovs_key);
2217
2218 if (masked) {
2219 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2220
2221 /* Non-writeable fields. */
2222 if (mask->ipv4_proto || mask->ipv4_frag)
2223 return -EINVAL;
2224 } else {
2225 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2226 return -EINVAL;
2227
2228 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2229 return -EINVAL;
2230 }
2231 break;
2232
2233 case OVS_KEY_ATTR_IPV6:
2234 if (eth_type != htons(ETH_P_IPV6))
2235 return -EINVAL;
2236
2237 ipv6_key = nla_data(ovs_key);
2238
2239 if (masked) {
2240 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2241
2242 /* Non-writeable fields. */
2243 if (mask->ipv6_proto || mask->ipv6_frag)
2244 return -EINVAL;
2245
2246 /* Invalid bits in the flow label mask? */
2247 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2248 return -EINVAL;
2249 } else {
2250 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2251 return -EINVAL;
2252
2253 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2254 return -EINVAL;
2255 }
2256 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2257 return -EINVAL;
2258
2259 break;
2260
2261 case OVS_KEY_ATTR_TCP:
2262 if ((eth_type != htons(ETH_P_IP) &&
2263 eth_type != htons(ETH_P_IPV6)) ||
2264 flow_key->ip.proto != IPPROTO_TCP)
2265 return -EINVAL;
2266
2267 break;
2268
2269 case OVS_KEY_ATTR_UDP:
2270 if ((eth_type != htons(ETH_P_IP) &&
2271 eth_type != htons(ETH_P_IPV6)) ||
2272 flow_key->ip.proto != IPPROTO_UDP)
2273 return -EINVAL;
2274
2275 break;
2276
2277 case OVS_KEY_ATTR_MPLS:
2278 if (!eth_p_mpls(eth_type))
2279 return -EINVAL;
2280 break;
2281
2282 case OVS_KEY_ATTR_SCTP:
2283 if ((eth_type != htons(ETH_P_IP) &&
2284 eth_type != htons(ETH_P_IPV6)) ||
2285 flow_key->ip.proto != IPPROTO_SCTP)
2286 return -EINVAL;
2287
2288 break;
2289
2290 default:
2291 return -EINVAL;
2292 }
2293
2294 /* Convert non-masked non-tunnel set actions to masked set actions. */
2295 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2296 int start, len = key_len * 2;
2297 struct nlattr *at;
2298
2299 *skip_copy = true;
2300
2301 start = add_nested_action_start(sfa,
2302 OVS_ACTION_ATTR_SET_TO_MASKED,
2303 log);
2304 if (start < 0)
2305 return start;
2306
2307 at = __add_action(sfa, key_type, NULL, len, log);
2308 if (IS_ERR(at))
2309 return PTR_ERR(at);
2310
2311 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2312 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2313 /* Clear non-writeable bits from otherwise writeable fields. */
2314 if (key_type == OVS_KEY_ATTR_IPV6) {
2315 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2316
2317 mask->ipv6_label &= htonl(0x000FFFFF);
2318 }
2319 add_nested_action_end(*sfa, start);
2320 }
2321
2322 return 0;
2323}
2324
2325static int validate_userspace(const struct nlattr *attr)
2326{
2327 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2328 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2329 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2330 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2331 };
2332 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2333 int error;
2334
2335 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2336 attr, userspace_policy);
2337 if (error)
2338 return error;
2339
2340 if (!a[OVS_USERSPACE_ATTR_PID] ||
2341 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2342 return -EINVAL;
2343
2344 return 0;
2345}
2346
2347static int copy_action(const struct nlattr *from,
2348 struct sw_flow_actions **sfa, bool log)
2349{
2350 int totlen = NLA_ALIGN(from->nla_len);
2351 struct nlattr *to;
2352
2353 to = reserve_sfa_size(sfa, from->nla_len, log);
2354 if (IS_ERR(to))
2355 return PTR_ERR(to);
2356
2357 memcpy(to, from, totlen);
2358 return 0;
2359}
2360
2361static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2362 const struct sw_flow_key *key,
2363 int depth, struct sw_flow_actions **sfa,
2364 __be16 eth_type, __be16 vlan_tci, bool log)
2365{
2366 u8 mac_proto = ovs_key_mac_proto(key);
2367 const struct nlattr *a;
2368 int rem, err;
2369
2370 if (depth >= SAMPLE_ACTION_DEPTH)
2371 return -EOVERFLOW;
2372
2373 nla_for_each_nested(a, attr, rem) {
2374 /* Expected argument lengths, (u32)-1 for variable length. */
2375 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2376 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2377 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2378 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2379 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2380 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2381 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2382 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2383 [OVS_ACTION_ATTR_SET] = (u32)-1,
2384 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2385 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2386 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2387 [OVS_ACTION_ATTR_CT] = (u32)-1,
2388 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2389 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2390 [OVS_ACTION_ATTR_POP_ETH] = 0,
2391 };
2392 const struct ovs_action_push_vlan *vlan;
2393 int type = nla_type(a);
2394 bool skip_copy;
2395
2396 if (type > OVS_ACTION_ATTR_MAX ||
2397 (action_lens[type] != nla_len(a) &&
2398 action_lens[type] != (u32)-1))
2399 return -EINVAL;
2400
2401 skip_copy = false;
2402 switch (type) {
2403 case OVS_ACTION_ATTR_UNSPEC:
2404 return -EINVAL;
2405
2406 case OVS_ACTION_ATTR_USERSPACE:
2407 err = validate_userspace(a);
2408 if (err)
2409 return err;
2410 break;
2411
2412 case OVS_ACTION_ATTR_OUTPUT:
2413 if (nla_get_u32(a) >= DP_MAX_PORTS)
2414 return -EINVAL;
2415 break;
2416
2417 case OVS_ACTION_ATTR_TRUNC: {
2418 const struct ovs_action_trunc *trunc = nla_data(a);
2419
2420 if (trunc->max_len < ETH_HLEN)
2421 return -EINVAL;
2422 break;
2423 }
2424
2425 case OVS_ACTION_ATTR_HASH: {
2426 const struct ovs_action_hash *act_hash = nla_data(a);
2427
2428 switch (act_hash->hash_alg) {
2429 case OVS_HASH_ALG_L4:
2430 break;
2431 default:
2432 return -EINVAL;
2433 }
2434
2435 break;
2436 }
2437
2438 case OVS_ACTION_ATTR_POP_VLAN:
2439 if (mac_proto != MAC_PROTO_ETHERNET)
2440 return -EINVAL;
2441 vlan_tci = htons(0);
2442 break;
2443
2444 case OVS_ACTION_ATTR_PUSH_VLAN:
2445 if (mac_proto != MAC_PROTO_ETHERNET)
2446 return -EINVAL;
2447 vlan = nla_data(a);
2448 if (!eth_type_vlan(vlan->vlan_tpid))
2449 return -EINVAL;
2450 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2451 return -EINVAL;
2452 vlan_tci = vlan->vlan_tci;
2453 break;
2454
2455 case OVS_ACTION_ATTR_RECIRC:
2456 break;
2457
2458 case OVS_ACTION_ATTR_PUSH_MPLS: {
2459 const struct ovs_action_push_mpls *mpls = nla_data(a);
2460
2461 if (!eth_p_mpls(mpls->mpls_ethertype))
2462 return -EINVAL;
2463 /* Prohibit push MPLS other than to a white list
2464 * for packets that have a known tag order.
2465 */
2466 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2467 (eth_type != htons(ETH_P_IP) &&
2468 eth_type != htons(ETH_P_IPV6) &&
2469 eth_type != htons(ETH_P_ARP) &&
2470 eth_type != htons(ETH_P_RARP) &&
2471 !eth_p_mpls(eth_type)))
2472 return -EINVAL;
2473 eth_type = mpls->mpls_ethertype;
2474 break;
2475 }
2476
2477 case OVS_ACTION_ATTR_POP_MPLS:
2478 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2479 !eth_p_mpls(eth_type))
2480 return -EINVAL;
2481
2482 /* Disallow subsequent L2.5+ set and mpls_pop actions
2483 * as there is no check here to ensure that the new
2484 * eth_type is valid and thus set actions could
2485 * write off the end of the packet or otherwise
2486 * corrupt it.
2487 *
2488 * Support for these actions is planned using packet
2489 * recirculation.
2490 */
2491 eth_type = htons(0);
2492 break;
2493
2494 case OVS_ACTION_ATTR_SET:
2495 err = validate_set(a, key, sfa,
2496 &skip_copy, mac_proto, eth_type,
2497 false, log);
2498 if (err)
2499 return err;
2500 break;
2501
2502 case OVS_ACTION_ATTR_SET_MASKED:
2503 err = validate_set(a, key, sfa,
2504 &skip_copy, mac_proto, eth_type,
2505 true, log);
2506 if (err)
2507 return err;
2508 break;
2509
2510 case OVS_ACTION_ATTR_SAMPLE:
2511 err = validate_and_copy_sample(net, a, key, depth, sfa,
2512 eth_type, vlan_tci, log);
2513 if (err)
2514 return err;
2515 skip_copy = true;
2516 break;
2517
2518 case OVS_ACTION_ATTR_CT:
2519 err = ovs_ct_copy_action(net, a, key, sfa, log);
2520 if (err)
2521 return err;
2522 skip_copy = true;
2523 break;
2524
2525 case OVS_ACTION_ATTR_PUSH_ETH:
2526 /* Disallow pushing an Ethernet header if one
2527 * is already present */
2528 if (mac_proto != MAC_PROTO_NONE)
2529 return -EINVAL;
2530 mac_proto = MAC_PROTO_NONE;
2531 break;
2532
2533 case OVS_ACTION_ATTR_POP_ETH:
2534 if (mac_proto != MAC_PROTO_ETHERNET)
2535 return -EINVAL;
2536 if (vlan_tci & htons(VLAN_TAG_PRESENT))
2537 return -EINVAL;
2538 mac_proto = MAC_PROTO_ETHERNET;
2539 break;
2540
2541 default:
2542 OVS_NLERR(log, "Unknown Action type %d", type);
2543 return -EINVAL;
2544 }
2545 if (!skip_copy) {
2546 err = copy_action(a, sfa, log);
2547 if (err)
2548 return err;
2549 }
2550 }
2551
2552 if (rem > 0)
2553 return -EINVAL;
2554
2555 return 0;
2556}
2557
2558/* 'key' must be the masked key. */
2559int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2560 const struct sw_flow_key *key,
2561 struct sw_flow_actions **sfa, bool log)
2562{
2563 int err;
2564
2565 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2566 if (IS_ERR(*sfa))
2567 return PTR_ERR(*sfa);
2568
2569 (*sfa)->orig_len = nla_len(attr);
2570 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2571 key->eth.vlan.tci, log);
2572 if (err)
2573 ovs_nla_free_flow_actions(*sfa);
2574
2575 return err;
2576}
2577
2578static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2579{
2580 const struct nlattr *a;
2581 struct nlattr *start;
2582 int err = 0, rem;
2583
2584 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2585 if (!start)
2586 return -EMSGSIZE;
2587
2588 nla_for_each_nested(a, attr, rem) {
2589 int type = nla_type(a);
2590 struct nlattr *st_sample;
2591
2592 switch (type) {
2593 case OVS_SAMPLE_ATTR_PROBABILITY:
2594 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2595 sizeof(u32), nla_data(a)))
2596 return -EMSGSIZE;
2597 break;
2598 case OVS_SAMPLE_ATTR_ACTIONS:
2599 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2600 if (!st_sample)
2601 return -EMSGSIZE;
2602 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2603 if (err)
2604 return err;
2605 nla_nest_end(skb, st_sample);
2606 break;
2607 }
2608 }
2609
2610 nla_nest_end(skb, start);
2611 return err;
2612}
2613
2614static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2615{
2616 const struct nlattr *ovs_key = nla_data(a);
2617 int key_type = nla_type(ovs_key);
2618 struct nlattr *start;
2619 int err;
2620
2621 switch (key_type) {
2622 case OVS_KEY_ATTR_TUNNEL_INFO: {
2623 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2624 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2625
2626 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2627 if (!start)
2628 return -EMSGSIZE;
2629
2630 err = ip_tun_to_nlattr(skb, &tun_info->key,
2631 ip_tunnel_info_opts(tun_info),
2632 tun_info->options_len,
2633 ip_tunnel_info_af(tun_info));
2634 if (err)
2635 return err;
2636 nla_nest_end(skb, start);
2637 break;
2638 }
2639 default:
2640 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2641 return -EMSGSIZE;
2642 break;
2643 }
2644
2645 return 0;
2646}
2647
2648static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2649 struct sk_buff *skb)
2650{
2651 const struct nlattr *ovs_key = nla_data(a);
2652 struct nlattr *nla;
2653 size_t key_len = nla_len(ovs_key) / 2;
2654
2655 /* Revert the conversion we did from a non-masked set action to
2656 * masked set action.
2657 */
2658 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2659 if (!nla)
2660 return -EMSGSIZE;
2661
2662 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2663 return -EMSGSIZE;
2664
2665 nla_nest_end(skb, nla);
2666 return 0;
2667}
2668
2669int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2670{
2671 const struct nlattr *a;
2672 int rem, err;
2673
2674 nla_for_each_attr(a, attr, len, rem) {
2675 int type = nla_type(a);
2676
2677 switch (type) {
2678 case OVS_ACTION_ATTR_SET:
2679 err = set_action_to_attr(a, skb);
2680 if (err)
2681 return err;
2682 break;
2683
2684 case OVS_ACTION_ATTR_SET_TO_MASKED:
2685 err = masked_set_action_to_set_action_attr(a, skb);
2686 if (err)
2687 return err;
2688 break;
2689
2690 case OVS_ACTION_ATTR_SAMPLE:
2691 err = sample_action_to_attr(a, skb);
2692 if (err)
2693 return err;
2694 break;
2695
2696 case OVS_ACTION_ATTR_CT:
2697 err = ovs_ct_action_to_attr(nla_data(a), skb);
2698 if (err)
2699 return err;
2700 break;
2701
2702 default:
2703 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2704 return -EMSGSIZE;
2705 break;
2706 }
2707 }
2708
2709 return 0;
2710}
1/*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21#include "flow.h"
22#include "datapath.h"
23#include <linux/uaccess.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/if_ether.h>
27#include <linux/if_vlan.h>
28#include <net/llc_pdu.h>
29#include <linux/kernel.h>
30#include <linux/jhash.h>
31#include <linux/jiffies.h>
32#include <linux/llc.h>
33#include <linux/module.h>
34#include <linux/in.h>
35#include <linux/rcupdate.h>
36#include <linux/if_arp.h>
37#include <linux/ip.h>
38#include <linux/ipv6.h>
39#include <linux/sctp.h>
40#include <linux/tcp.h>
41#include <linux/udp.h>
42#include <linux/icmp.h>
43#include <linux/icmpv6.h>
44#include <linux/rculist.h>
45#include <net/geneve.h>
46#include <net/ip.h>
47#include <net/ipv6.h>
48#include <net/ndisc.h>
49#include <net/mpls.h>
50#include <net/vxlan.h>
51
52#include "flow_netlink.h"
53
54struct ovs_len_tbl {
55 int len;
56 const struct ovs_len_tbl *next;
57};
58
59#define OVS_ATTR_NESTED -1
60#define OVS_ATTR_VARIABLE -2
61
62static void update_range(struct sw_flow_match *match,
63 size_t offset, size_t size, bool is_mask)
64{
65 struct sw_flow_key_range *range;
66 size_t start = rounddown(offset, sizeof(long));
67 size_t end = roundup(offset + size, sizeof(long));
68
69 if (!is_mask)
70 range = &match->range;
71 else
72 range = &match->mask->range;
73
74 if (range->start == range->end) {
75 range->start = start;
76 range->end = end;
77 return;
78 }
79
80 if (range->start > start)
81 range->start = start;
82
83 if (range->end < end)
84 range->end = end;
85}
86
87#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 do { \
89 update_range(match, offsetof(struct sw_flow_key, field), \
90 sizeof((match)->key->field), is_mask); \
91 if (is_mask) \
92 (match)->mask->key.field = value; \
93 else \
94 (match)->key->field = value; \
95 } while (0)
96
97#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
98 do { \
99 update_range(match, offset, len, is_mask); \
100 if (is_mask) \
101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 len); \
103 else \
104 memcpy((u8 *)(match)->key + offset, value_p, len); \
105 } while (0)
106
107#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 value_p, len, is_mask)
110
111#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
112 do { \
113 update_range(match, offsetof(struct sw_flow_key, field), \
114 sizeof((match)->key->field), is_mask); \
115 if (is_mask) \
116 memset((u8 *)&(match)->mask->key.field, value, \
117 sizeof((match)->mask->key.field)); \
118 else \
119 memset((u8 *)&(match)->key->field, value, \
120 sizeof((match)->key->field)); \
121 } while (0)
122
123static bool match_validate(const struct sw_flow_match *match,
124 u64 key_attrs, u64 mask_attrs, bool log)
125{
126 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
128
129 /* The following mask attributes allowed only if they
130 * pass the validation tests. */
131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 | (1 << OVS_KEY_ATTR_IPV6)
133 | (1 << OVS_KEY_ATTR_TCP)
134 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
135 | (1 << OVS_KEY_ATTR_UDP)
136 | (1 << OVS_KEY_ATTR_SCTP)
137 | (1 << OVS_KEY_ATTR_ICMP)
138 | (1 << OVS_KEY_ATTR_ICMPV6)
139 | (1 << OVS_KEY_ATTR_ARP)
140 | (1 << OVS_KEY_ATTR_ND)
141 | (1 << OVS_KEY_ATTR_MPLS));
142
143 /* Always allowed mask fields. */
144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145 | (1 << OVS_KEY_ATTR_IN_PORT)
146 | (1 << OVS_KEY_ATTR_ETHERTYPE));
147
148 /* Check key attributes. */
149 if (match->key->eth.type == htons(ETH_P_ARP)
150 || match->key->eth.type == htons(ETH_P_RARP)) {
151 key_expected |= 1 << OVS_KEY_ATTR_ARP;
152 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
154 }
155
156 if (eth_p_mpls(match->key->eth.type)) {
157 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
160 }
161
162 if (match->key->eth.type == htons(ETH_P_IP)) {
163 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
166
167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168 if (match->key->ip.proto == IPPROTO_UDP) {
169 key_expected |= 1 << OVS_KEY_ATTR_UDP;
170 if (match->mask && (match->mask->key.ip.proto == 0xff))
171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
172 }
173
174 if (match->key->ip.proto == IPPROTO_SCTP) {
175 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176 if (match->mask && (match->mask->key.ip.proto == 0xff))
177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
178 }
179
180 if (match->key->ip.proto == IPPROTO_TCP) {
181 key_expected |= 1 << OVS_KEY_ATTR_TCP;
182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
186 }
187 }
188
189 if (match->key->ip.proto == IPPROTO_ICMP) {
190 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191 if (match->mask && (match->mask->key.ip.proto == 0xff))
192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
193 }
194 }
195 }
196
197 if (match->key->eth.type == htons(ETH_P_IPV6)) {
198 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
201
202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203 if (match->key->ip.proto == IPPROTO_UDP) {
204 key_expected |= 1 << OVS_KEY_ATTR_UDP;
205 if (match->mask && (match->mask->key.ip.proto == 0xff))
206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
207 }
208
209 if (match->key->ip.proto == IPPROTO_SCTP) {
210 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211 if (match->mask && (match->mask->key.ip.proto == 0xff))
212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
213 }
214
215 if (match->key->ip.proto == IPPROTO_TCP) {
216 key_expected |= 1 << OVS_KEY_ATTR_TCP;
217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
221 }
222 }
223
224 if (match->key->ip.proto == IPPROTO_ICMPV6) {
225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226 if (match->mask && (match->mask->key.ip.proto == 0xff))
227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
228
229 if (match->key->tp.src ==
230 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232 key_expected |= 1 << OVS_KEY_ATTR_ND;
233 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
235 }
236 }
237 }
238 }
239
240 if ((key_attrs & key_expected) != key_expected) {
241 /* Key attributes check failed. */
242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243 (unsigned long long)key_attrs,
244 (unsigned long long)key_expected);
245 return false;
246 }
247
248 if ((mask_attrs & mask_allowed) != mask_attrs) {
249 /* Mask attributes check failed. */
250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251 (unsigned long long)mask_attrs,
252 (unsigned long long)mask_allowed);
253 return false;
254 }
255
256 return true;
257}
258
259size_t ovs_tun_key_attr_size(void)
260{
261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262 * updating this function.
263 */
264 return nla_total_size(8) /* OVS_TUNNEL_KEY_ATTR_ID */
265 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
275 */
276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
278}
279
280size_t ovs_key_attr_size(void)
281{
282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
283 * updating this function.
284 */
285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
286
287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
289 + ovs_tun_key_attr_size()
290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
306}
307
308static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
310};
311
312static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
325 .next = ovs_vxlan_ext_key_lens },
326 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
327 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
328};
329
330/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
331static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
333 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
334 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
335 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
336 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
337 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
338 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
340 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
341 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
342 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
344 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
345 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
346 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
347 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
348 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
349 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
351 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
352 .next = ovs_tunnel_key_lens, },
353 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
354 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
355 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
356 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
357 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
358};
359
360static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
361{
362 return expected_len == attr_len ||
363 expected_len == OVS_ATTR_NESTED ||
364 expected_len == OVS_ATTR_VARIABLE;
365}
366
367static bool is_all_zero(const u8 *fp, size_t size)
368{
369 int i;
370
371 if (!fp)
372 return false;
373
374 for (i = 0; i < size; i++)
375 if (fp[i])
376 return false;
377
378 return true;
379}
380
381static int __parse_flow_nlattrs(const struct nlattr *attr,
382 const struct nlattr *a[],
383 u64 *attrsp, bool log, bool nz)
384{
385 const struct nlattr *nla;
386 u64 attrs;
387 int rem;
388
389 attrs = *attrsp;
390 nla_for_each_nested(nla, attr, rem) {
391 u16 type = nla_type(nla);
392 int expected_len;
393
394 if (type > OVS_KEY_ATTR_MAX) {
395 OVS_NLERR(log, "Key type %d is out of range max %d",
396 type, OVS_KEY_ATTR_MAX);
397 return -EINVAL;
398 }
399
400 if (attrs & (1 << type)) {
401 OVS_NLERR(log, "Duplicate key (type %d).", type);
402 return -EINVAL;
403 }
404
405 expected_len = ovs_key_lens[type].len;
406 if (!check_attr_len(nla_len(nla), expected_len)) {
407 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408 type, nla_len(nla), expected_len);
409 return -EINVAL;
410 }
411
412 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413 attrs |= 1 << type;
414 a[type] = nla;
415 }
416 }
417 if (rem) {
418 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419 return -EINVAL;
420 }
421
422 *attrsp = attrs;
423 return 0;
424}
425
426static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427 const struct nlattr *a[], u64 *attrsp,
428 bool log)
429{
430 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
431}
432
433static int parse_flow_nlattrs(const struct nlattr *attr,
434 const struct nlattr *a[], u64 *attrsp,
435 bool log)
436{
437 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
438}
439
440static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441 struct sw_flow_match *match, bool is_mask,
442 bool log)
443{
444 unsigned long opt_key_offset;
445
446 if (nla_len(a) > sizeof(match->key->tun_opts)) {
447 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448 nla_len(a), sizeof(match->key->tun_opts));
449 return -EINVAL;
450 }
451
452 if (nla_len(a) % 4 != 0) {
453 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454 nla_len(a));
455 return -EINVAL;
456 }
457
458 /* We need to record the length of the options passed
459 * down, otherwise packets with the same format but
460 * additional options will be silently matched.
461 */
462 if (!is_mask) {
463 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464 false);
465 } else {
466 /* This is somewhat unusual because it looks at
467 * both the key and mask while parsing the
468 * attributes (and by extension assumes the key
469 * is parsed first). Normally, we would verify
470 * that each is the correct length and that the
471 * attributes line up in the validate function.
472 * However, that is difficult because this is
473 * variable length and we won't have the
474 * information later.
475 */
476 if (match->key->tun_opts_len != nla_len(a)) {
477 OVS_NLERR(log, "Geneve option len %d != mask len %d",
478 match->key->tun_opts_len, nla_len(a));
479 return -EINVAL;
480 }
481
482 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
483 }
484
485 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487 nla_len(a), is_mask);
488 return 0;
489}
490
491static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492 struct sw_flow_match *match, bool is_mask,
493 bool log)
494{
495 struct nlattr *a;
496 int rem;
497 unsigned long opt_key_offset;
498 struct vxlan_metadata opts;
499
500 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
501
502 memset(&opts, 0, sizeof(opts));
503 nla_for_each_nested(a, attr, rem) {
504 int type = nla_type(a);
505
506 if (type > OVS_VXLAN_EXT_MAX) {
507 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508 type, OVS_VXLAN_EXT_MAX);
509 return -EINVAL;
510 }
511
512 if (!check_attr_len(nla_len(a),
513 ovs_vxlan_ext_key_lens[type].len)) {
514 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515 type, nla_len(a),
516 ovs_vxlan_ext_key_lens[type].len);
517 return -EINVAL;
518 }
519
520 switch (type) {
521 case OVS_VXLAN_EXT_GBP:
522 opts.gbp = nla_get_u32(a);
523 break;
524 default:
525 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526 type);
527 return -EINVAL;
528 }
529 }
530 if (rem) {
531 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532 rem);
533 return -EINVAL;
534 }
535
536 if (!is_mask)
537 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538 else
539 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
540
541 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543 is_mask);
544 return 0;
545}
546
547static int ip_tun_from_nlattr(const struct nlattr *attr,
548 struct sw_flow_match *match, bool is_mask,
549 bool log)
550{
551 bool ttl = false, ipv4 = false, ipv6 = false;
552 __be16 tun_flags = 0;
553 int opts_type = 0;
554 struct nlattr *a;
555 int rem;
556
557 nla_for_each_nested(a, attr, rem) {
558 int type = nla_type(a);
559 int err;
560
561 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563 type, OVS_TUNNEL_KEY_ATTR_MAX);
564 return -EINVAL;
565 }
566
567 if (!check_attr_len(nla_len(a),
568 ovs_tunnel_key_lens[type].len)) {
569 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570 type, nla_len(a), ovs_tunnel_key_lens[type].len);
571 return -EINVAL;
572 }
573
574 switch (type) {
575 case OVS_TUNNEL_KEY_ATTR_ID:
576 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577 nla_get_be64(a), is_mask);
578 tun_flags |= TUNNEL_KEY;
579 break;
580 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582 nla_get_in_addr(a), is_mask);
583 ipv4 = true;
584 break;
585 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587 nla_get_in_addr(a), is_mask);
588 ipv4 = true;
589 break;
590 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
592 nla_get_in6_addr(a), is_mask);
593 ipv6 = true;
594 break;
595 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597 nla_get_in6_addr(a), is_mask);
598 ipv6 = true;
599 break;
600 case OVS_TUNNEL_KEY_ATTR_TOS:
601 SW_FLOW_KEY_PUT(match, tun_key.tos,
602 nla_get_u8(a), is_mask);
603 break;
604 case OVS_TUNNEL_KEY_ATTR_TTL:
605 SW_FLOW_KEY_PUT(match, tun_key.ttl,
606 nla_get_u8(a), is_mask);
607 ttl = true;
608 break;
609 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610 tun_flags |= TUNNEL_DONT_FRAGMENT;
611 break;
612 case OVS_TUNNEL_KEY_ATTR_CSUM:
613 tun_flags |= TUNNEL_CSUM;
614 break;
615 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617 nla_get_be16(a), is_mask);
618 break;
619 case OVS_TUNNEL_KEY_ATTR_TP_DST:
620 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621 nla_get_be16(a), is_mask);
622 break;
623 case OVS_TUNNEL_KEY_ATTR_OAM:
624 tun_flags |= TUNNEL_OAM;
625 break;
626 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627 if (opts_type) {
628 OVS_NLERR(log, "Multiple metadata blocks provided");
629 return -EINVAL;
630 }
631
632 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633 if (err)
634 return err;
635
636 tun_flags |= TUNNEL_GENEVE_OPT;
637 opts_type = type;
638 break;
639 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640 if (opts_type) {
641 OVS_NLERR(log, "Multiple metadata blocks provided");
642 return -EINVAL;
643 }
644
645 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646 if (err)
647 return err;
648
649 tun_flags |= TUNNEL_VXLAN_OPT;
650 opts_type = type;
651 break;
652 default:
653 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
654 type);
655 return -EINVAL;
656 }
657 }
658
659 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
660 if (is_mask)
661 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
662 else
663 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
664 false);
665
666 if (rem > 0) {
667 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
668 rem);
669 return -EINVAL;
670 }
671
672 if (ipv4 && ipv6) {
673 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
674 return -EINVAL;
675 }
676
677 if (!is_mask) {
678 if (!ipv4 && !ipv6) {
679 OVS_NLERR(log, "IP tunnel dst address not specified");
680 return -EINVAL;
681 }
682 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
683 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
684 return -EINVAL;
685 }
686 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
687 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
688 return -EINVAL;
689 }
690
691 if (!ttl) {
692 OVS_NLERR(log, "IP tunnel TTL not specified.");
693 return -EINVAL;
694 }
695 }
696
697 return opts_type;
698}
699
700static int vxlan_opt_to_nlattr(struct sk_buff *skb,
701 const void *tun_opts, int swkey_tun_opts_len)
702{
703 const struct vxlan_metadata *opts = tun_opts;
704 struct nlattr *nla;
705
706 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
707 if (!nla)
708 return -EMSGSIZE;
709
710 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
711 return -EMSGSIZE;
712
713 nla_nest_end(skb, nla);
714 return 0;
715}
716
717static int __ip_tun_to_nlattr(struct sk_buff *skb,
718 const struct ip_tunnel_key *output,
719 const void *tun_opts, int swkey_tun_opts_len,
720 unsigned short tun_proto)
721{
722 if (output->tun_flags & TUNNEL_KEY &&
723 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
724 return -EMSGSIZE;
725 switch (tun_proto) {
726 case AF_INET:
727 if (output->u.ipv4.src &&
728 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
729 output->u.ipv4.src))
730 return -EMSGSIZE;
731 if (output->u.ipv4.dst &&
732 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
733 output->u.ipv4.dst))
734 return -EMSGSIZE;
735 break;
736 case AF_INET6:
737 if (!ipv6_addr_any(&output->u.ipv6.src) &&
738 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
739 &output->u.ipv6.src))
740 return -EMSGSIZE;
741 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
742 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
743 &output->u.ipv6.dst))
744 return -EMSGSIZE;
745 break;
746 }
747 if (output->tos &&
748 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
749 return -EMSGSIZE;
750 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
751 return -EMSGSIZE;
752 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
753 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
754 return -EMSGSIZE;
755 if ((output->tun_flags & TUNNEL_CSUM) &&
756 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
757 return -EMSGSIZE;
758 if (output->tp_src &&
759 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
760 return -EMSGSIZE;
761 if (output->tp_dst &&
762 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
763 return -EMSGSIZE;
764 if ((output->tun_flags & TUNNEL_OAM) &&
765 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
766 return -EMSGSIZE;
767 if (swkey_tun_opts_len) {
768 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
769 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
770 swkey_tun_opts_len, tun_opts))
771 return -EMSGSIZE;
772 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
773 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
774 return -EMSGSIZE;
775 }
776
777 return 0;
778}
779
780static int ip_tun_to_nlattr(struct sk_buff *skb,
781 const struct ip_tunnel_key *output,
782 const void *tun_opts, int swkey_tun_opts_len,
783 unsigned short tun_proto)
784{
785 struct nlattr *nla;
786 int err;
787
788 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
789 if (!nla)
790 return -EMSGSIZE;
791
792 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
793 tun_proto);
794 if (err)
795 return err;
796
797 nla_nest_end(skb, nla);
798 return 0;
799}
800
801int ovs_nla_put_tunnel_info(struct sk_buff *skb,
802 struct ip_tunnel_info *tun_info)
803{
804 return __ip_tun_to_nlattr(skb, &tun_info->key,
805 ip_tunnel_info_opts(tun_info),
806 tun_info->options_len,
807 ip_tunnel_info_af(tun_info));
808}
809
810static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
811 u64 *attrs, const struct nlattr **a,
812 bool is_mask, bool log)
813{
814 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
815 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
816
817 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
818 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
819 }
820
821 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
822 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
823
824 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
825 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
826 }
827
828 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
829 SW_FLOW_KEY_PUT(match, phy.priority,
830 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
831 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
832 }
833
834 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
835 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
836
837 if (is_mask) {
838 in_port = 0xffffffff; /* Always exact match in_port. */
839 } else if (in_port >= DP_MAX_PORTS) {
840 OVS_NLERR(log, "Port %d exceeds max allowable %d",
841 in_port, DP_MAX_PORTS);
842 return -EINVAL;
843 }
844
845 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
846 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
847 } else if (!is_mask) {
848 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
849 }
850
851 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
852 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
853
854 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
855 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
856 }
857 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
858 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
859 is_mask, log) < 0)
860 return -EINVAL;
861 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
862 }
863
864 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
865 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
866 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
867
868 if (ct_state & ~CT_SUPPORTED_MASK) {
869 OVS_NLERR(log, "ct_state flags %08x unsupported",
870 ct_state);
871 return -EINVAL;
872 }
873
874 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
875 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
876 }
877 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
878 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
879 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
880
881 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
882 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
883 }
884 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
885 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
886 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
887
888 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
889 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
890 }
891 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
892 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
893 const struct ovs_key_ct_labels *cl;
894
895 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
896 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
897 sizeof(*cl), is_mask);
898 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
899 }
900 return 0;
901}
902
903static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
904 u64 attrs, const struct nlattr **a,
905 bool is_mask, bool log)
906{
907 int err;
908
909 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
910 if (err)
911 return err;
912
913 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
914 const struct ovs_key_ethernet *eth_key;
915
916 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
917 SW_FLOW_KEY_MEMCPY(match, eth.src,
918 eth_key->eth_src, ETH_ALEN, is_mask);
919 SW_FLOW_KEY_MEMCPY(match, eth.dst,
920 eth_key->eth_dst, ETH_ALEN, is_mask);
921 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
922 }
923
924 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
925 __be16 tci;
926
927 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
928 if (!(tci & htons(VLAN_TAG_PRESENT))) {
929 if (is_mask)
930 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
931 else
932 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
933
934 return -EINVAL;
935 }
936
937 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
938 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
939 }
940
941 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
942 __be16 eth_type;
943
944 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
945 if (is_mask) {
946 /* Always exact match EtherType. */
947 eth_type = htons(0xffff);
948 } else if (!eth_proto_is_802_3(eth_type)) {
949 OVS_NLERR(log, "EtherType %x is less than min %x",
950 ntohs(eth_type), ETH_P_802_3_MIN);
951 return -EINVAL;
952 }
953
954 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
955 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
956 } else if (!is_mask) {
957 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
958 }
959
960 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
961 const struct ovs_key_ipv4 *ipv4_key;
962
963 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
964 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
965 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
966 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
967 return -EINVAL;
968 }
969 SW_FLOW_KEY_PUT(match, ip.proto,
970 ipv4_key->ipv4_proto, is_mask);
971 SW_FLOW_KEY_PUT(match, ip.tos,
972 ipv4_key->ipv4_tos, is_mask);
973 SW_FLOW_KEY_PUT(match, ip.ttl,
974 ipv4_key->ipv4_ttl, is_mask);
975 SW_FLOW_KEY_PUT(match, ip.frag,
976 ipv4_key->ipv4_frag, is_mask);
977 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
978 ipv4_key->ipv4_src, is_mask);
979 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
980 ipv4_key->ipv4_dst, is_mask);
981 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
982 }
983
984 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
985 const struct ovs_key_ipv6 *ipv6_key;
986
987 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
988 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
989 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
990 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
991 return -EINVAL;
992 }
993
994 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
995 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
996 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
997 return -EINVAL;
998 }
999
1000 SW_FLOW_KEY_PUT(match, ipv6.label,
1001 ipv6_key->ipv6_label, is_mask);
1002 SW_FLOW_KEY_PUT(match, ip.proto,
1003 ipv6_key->ipv6_proto, is_mask);
1004 SW_FLOW_KEY_PUT(match, ip.tos,
1005 ipv6_key->ipv6_tclass, is_mask);
1006 SW_FLOW_KEY_PUT(match, ip.ttl,
1007 ipv6_key->ipv6_hlimit, is_mask);
1008 SW_FLOW_KEY_PUT(match, ip.frag,
1009 ipv6_key->ipv6_frag, is_mask);
1010 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1011 ipv6_key->ipv6_src,
1012 sizeof(match->key->ipv6.addr.src),
1013 is_mask);
1014 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1015 ipv6_key->ipv6_dst,
1016 sizeof(match->key->ipv6.addr.dst),
1017 is_mask);
1018
1019 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1020 }
1021
1022 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1023 const struct ovs_key_arp *arp_key;
1024
1025 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1026 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1027 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1028 arp_key->arp_op);
1029 return -EINVAL;
1030 }
1031
1032 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1033 arp_key->arp_sip, is_mask);
1034 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1035 arp_key->arp_tip, is_mask);
1036 SW_FLOW_KEY_PUT(match, ip.proto,
1037 ntohs(arp_key->arp_op), is_mask);
1038 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1039 arp_key->arp_sha, ETH_ALEN, is_mask);
1040 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1041 arp_key->arp_tha, ETH_ALEN, is_mask);
1042
1043 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1044 }
1045
1046 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1047 const struct ovs_key_mpls *mpls_key;
1048
1049 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1050 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1051 mpls_key->mpls_lse, is_mask);
1052
1053 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1054 }
1055
1056 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1057 const struct ovs_key_tcp *tcp_key;
1058
1059 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1060 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1061 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1062 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1063 }
1064
1065 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1066 SW_FLOW_KEY_PUT(match, tp.flags,
1067 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1068 is_mask);
1069 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1070 }
1071
1072 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1073 const struct ovs_key_udp *udp_key;
1074
1075 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1076 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1077 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1078 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1079 }
1080
1081 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1082 const struct ovs_key_sctp *sctp_key;
1083
1084 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1085 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1086 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1087 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1088 }
1089
1090 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1091 const struct ovs_key_icmp *icmp_key;
1092
1093 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1094 SW_FLOW_KEY_PUT(match, tp.src,
1095 htons(icmp_key->icmp_type), is_mask);
1096 SW_FLOW_KEY_PUT(match, tp.dst,
1097 htons(icmp_key->icmp_code), is_mask);
1098 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1099 }
1100
1101 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1102 const struct ovs_key_icmpv6 *icmpv6_key;
1103
1104 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1105 SW_FLOW_KEY_PUT(match, tp.src,
1106 htons(icmpv6_key->icmpv6_type), is_mask);
1107 SW_FLOW_KEY_PUT(match, tp.dst,
1108 htons(icmpv6_key->icmpv6_code), is_mask);
1109 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1110 }
1111
1112 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1113 const struct ovs_key_nd *nd_key;
1114
1115 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1116 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1117 nd_key->nd_target,
1118 sizeof(match->key->ipv6.nd.target),
1119 is_mask);
1120 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1121 nd_key->nd_sll, ETH_ALEN, is_mask);
1122 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1123 nd_key->nd_tll, ETH_ALEN, is_mask);
1124 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1125 }
1126
1127 if (attrs != 0) {
1128 OVS_NLERR(log, "Unknown key attributes %llx",
1129 (unsigned long long)attrs);
1130 return -EINVAL;
1131 }
1132
1133 return 0;
1134}
1135
1136static void nlattr_set(struct nlattr *attr, u8 val,
1137 const struct ovs_len_tbl *tbl)
1138{
1139 struct nlattr *nla;
1140 int rem;
1141
1142 /* The nlattr stream should already have been validated */
1143 nla_for_each_nested(nla, attr, rem) {
1144 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1145 if (tbl[nla_type(nla)].next)
1146 tbl = tbl[nla_type(nla)].next;
1147 nlattr_set(nla, val, tbl);
1148 } else {
1149 memset(nla_data(nla), val, nla_len(nla));
1150 }
1151
1152 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1153 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1154 }
1155}
1156
1157static void mask_set_nlattr(struct nlattr *attr, u8 val)
1158{
1159 nlattr_set(attr, val, ovs_key_lens);
1160}
1161
1162/**
1163 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1164 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1165 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1166 * does not include any don't care bit.
1167 * @net: Used to determine per-namespace field support.
1168 * @match: receives the extracted flow match information.
1169 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1170 * sequence. The fields should of the packet that triggered the creation
1171 * of this flow.
1172 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1173 * attribute specifies the mask field of the wildcarded flow.
1174 * @log: Boolean to allow kernel error logging. Normally true, but when
1175 * probing for feature compatibility this should be passed in as false to
1176 * suppress unnecessary error logging.
1177 */
1178int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1179 const struct nlattr *nla_key,
1180 const struct nlattr *nla_mask,
1181 bool log)
1182{
1183 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1184 const struct nlattr *encap;
1185 struct nlattr *newmask = NULL;
1186 u64 key_attrs = 0;
1187 u64 mask_attrs = 0;
1188 bool encap_valid = false;
1189 int err;
1190
1191 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1192 if (err)
1193 return err;
1194
1195 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1196 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1197 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1198 __be16 tci;
1199
1200 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1201 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1202 OVS_NLERR(log, "Invalid Vlan frame.");
1203 return -EINVAL;
1204 }
1205
1206 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1207 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1208 encap = a[OVS_KEY_ATTR_ENCAP];
1209 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1210 encap_valid = true;
1211
1212 if (tci & htons(VLAN_TAG_PRESENT)) {
1213 err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1214 if (err)
1215 return err;
1216 } else if (!tci) {
1217 /* Corner case for truncated 802.1Q header. */
1218 if (nla_len(encap)) {
1219 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1220 return -EINVAL;
1221 }
1222 } else {
1223 OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1224 return -EINVAL;
1225 }
1226 }
1227
1228 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1229 if (err)
1230 return err;
1231
1232 if (match->mask) {
1233 if (!nla_mask) {
1234 /* Create an exact match mask. We need to set to 0xff
1235 * all the 'match->mask' fields that have been touched
1236 * in 'match->key'. We cannot simply memset
1237 * 'match->mask', because padding bytes and fields not
1238 * specified in 'match->key' should be left to 0.
1239 * Instead, we use a stream of netlink attributes,
1240 * copied from 'key' and set to 0xff.
1241 * ovs_key_from_nlattrs() will take care of filling
1242 * 'match->mask' appropriately.
1243 */
1244 newmask = kmemdup(nla_key,
1245 nla_total_size(nla_len(nla_key)),
1246 GFP_KERNEL);
1247 if (!newmask)
1248 return -ENOMEM;
1249
1250 mask_set_nlattr(newmask, 0xff);
1251
1252 /* The userspace does not send tunnel attributes that
1253 * are 0, but we should not wildcard them nonetheless.
1254 */
1255 if (match->key->tun_proto)
1256 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1257 0xff, true);
1258
1259 nla_mask = newmask;
1260 }
1261
1262 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1263 if (err)
1264 goto free_newmask;
1265
1266 /* Always match on tci. */
1267 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1268
1269 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1270 __be16 eth_type = 0;
1271 __be16 tci = 0;
1272
1273 if (!encap_valid) {
1274 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1275 err = -EINVAL;
1276 goto free_newmask;
1277 }
1278
1279 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1280 if (a[OVS_KEY_ATTR_ETHERTYPE])
1281 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1282
1283 if (eth_type == htons(0xffff)) {
1284 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1285 encap = a[OVS_KEY_ATTR_ENCAP];
1286 err = parse_flow_mask_nlattrs(encap, a,
1287 &mask_attrs, log);
1288 if (err)
1289 goto free_newmask;
1290 } else {
1291 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1292 ntohs(eth_type));
1293 err = -EINVAL;
1294 goto free_newmask;
1295 }
1296
1297 if (a[OVS_KEY_ATTR_VLAN])
1298 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1299
1300 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1301 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1302 ntohs(tci));
1303 err = -EINVAL;
1304 goto free_newmask;
1305 }
1306 }
1307
1308 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1309 log);
1310 if (err)
1311 goto free_newmask;
1312 }
1313
1314 if (!match_validate(match, key_attrs, mask_attrs, log))
1315 err = -EINVAL;
1316
1317free_newmask:
1318 kfree(newmask);
1319 return err;
1320}
1321
1322static size_t get_ufid_len(const struct nlattr *attr, bool log)
1323{
1324 size_t len;
1325
1326 if (!attr)
1327 return 0;
1328
1329 len = nla_len(attr);
1330 if (len < 1 || len > MAX_UFID_LENGTH) {
1331 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1332 nla_len(attr), MAX_UFID_LENGTH);
1333 return 0;
1334 }
1335
1336 return len;
1337}
1338
1339/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1340 * or false otherwise.
1341 */
1342bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1343 bool log)
1344{
1345 sfid->ufid_len = get_ufid_len(attr, log);
1346 if (sfid->ufid_len)
1347 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1348
1349 return sfid->ufid_len;
1350}
1351
1352int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1353 const struct sw_flow_key *key, bool log)
1354{
1355 struct sw_flow_key *new_key;
1356
1357 if (ovs_nla_get_ufid(sfid, ufid, log))
1358 return 0;
1359
1360 /* If UFID was not provided, use unmasked key. */
1361 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1362 if (!new_key)
1363 return -ENOMEM;
1364 memcpy(new_key, key, sizeof(*key));
1365 sfid->unmasked_key = new_key;
1366
1367 return 0;
1368}
1369
1370u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1371{
1372 return attr ? nla_get_u32(attr) : 0;
1373}
1374
1375/**
1376 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1377 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1378 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1379 * sequence.
1380 * @log: Boolean to allow kernel error logging. Normally true, but when
1381 * probing for feature compatibility this should be passed in as false to
1382 * suppress unnecessary error logging.
1383 *
1384 * This parses a series of Netlink attributes that form a flow key, which must
1385 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1386 * get the metadata, that is, the parts of the flow key that cannot be
1387 * extracted from the packet itself.
1388 */
1389
1390int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1391 struct sw_flow_key *key,
1392 bool log)
1393{
1394 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1395 struct sw_flow_match match;
1396 u64 attrs = 0;
1397 int err;
1398
1399 err = parse_flow_nlattrs(attr, a, &attrs, log);
1400 if (err)
1401 return -EINVAL;
1402
1403 memset(&match, 0, sizeof(match));
1404 match.key = key;
1405
1406 memset(&key->ct, 0, sizeof(key->ct));
1407 key->phy.in_port = DP_MAX_PORTS;
1408
1409 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1410}
1411
1412static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1413 const struct sw_flow_key *output, bool is_mask,
1414 struct sk_buff *skb)
1415{
1416 struct ovs_key_ethernet *eth_key;
1417 struct nlattr *nla, *encap;
1418
1419 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1420 goto nla_put_failure;
1421
1422 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1423 goto nla_put_failure;
1424
1425 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1426 goto nla_put_failure;
1427
1428 if ((swkey->tun_proto || is_mask)) {
1429 const void *opts = NULL;
1430
1431 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1432 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1433
1434 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1435 swkey->tun_opts_len, swkey->tun_proto))
1436 goto nla_put_failure;
1437 }
1438
1439 if (swkey->phy.in_port == DP_MAX_PORTS) {
1440 if (is_mask && (output->phy.in_port == 0xffff))
1441 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1442 goto nla_put_failure;
1443 } else {
1444 u16 upper_u16;
1445 upper_u16 = !is_mask ? 0 : 0xffff;
1446
1447 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1448 (upper_u16 << 16) | output->phy.in_port))
1449 goto nla_put_failure;
1450 }
1451
1452 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1453 goto nla_put_failure;
1454
1455 if (ovs_ct_put_key(output, skb))
1456 goto nla_put_failure;
1457
1458 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1459 if (!nla)
1460 goto nla_put_failure;
1461
1462 eth_key = nla_data(nla);
1463 ether_addr_copy(eth_key->eth_src, output->eth.src);
1464 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1465
1466 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1467 __be16 eth_type;
1468 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1469 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1470 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1471 goto nla_put_failure;
1472 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1473 if (!swkey->eth.tci)
1474 goto unencap;
1475 } else
1476 encap = NULL;
1477
1478 if (swkey->eth.type == htons(ETH_P_802_2)) {
1479 /*
1480 * Ethertype 802.2 is represented in the netlink with omitted
1481 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1482 * 0xffff in the mask attribute. Ethertype can also
1483 * be wildcarded.
1484 */
1485 if (is_mask && output->eth.type)
1486 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1487 output->eth.type))
1488 goto nla_put_failure;
1489 goto unencap;
1490 }
1491
1492 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1493 goto nla_put_failure;
1494
1495 if (swkey->eth.type == htons(ETH_P_IP)) {
1496 struct ovs_key_ipv4 *ipv4_key;
1497
1498 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1499 if (!nla)
1500 goto nla_put_failure;
1501 ipv4_key = nla_data(nla);
1502 ipv4_key->ipv4_src = output->ipv4.addr.src;
1503 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1504 ipv4_key->ipv4_proto = output->ip.proto;
1505 ipv4_key->ipv4_tos = output->ip.tos;
1506 ipv4_key->ipv4_ttl = output->ip.ttl;
1507 ipv4_key->ipv4_frag = output->ip.frag;
1508 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1509 struct ovs_key_ipv6 *ipv6_key;
1510
1511 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1512 if (!nla)
1513 goto nla_put_failure;
1514 ipv6_key = nla_data(nla);
1515 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1516 sizeof(ipv6_key->ipv6_src));
1517 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1518 sizeof(ipv6_key->ipv6_dst));
1519 ipv6_key->ipv6_label = output->ipv6.label;
1520 ipv6_key->ipv6_proto = output->ip.proto;
1521 ipv6_key->ipv6_tclass = output->ip.tos;
1522 ipv6_key->ipv6_hlimit = output->ip.ttl;
1523 ipv6_key->ipv6_frag = output->ip.frag;
1524 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1525 swkey->eth.type == htons(ETH_P_RARP)) {
1526 struct ovs_key_arp *arp_key;
1527
1528 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1529 if (!nla)
1530 goto nla_put_failure;
1531 arp_key = nla_data(nla);
1532 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1533 arp_key->arp_sip = output->ipv4.addr.src;
1534 arp_key->arp_tip = output->ipv4.addr.dst;
1535 arp_key->arp_op = htons(output->ip.proto);
1536 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1537 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1538 } else if (eth_p_mpls(swkey->eth.type)) {
1539 struct ovs_key_mpls *mpls_key;
1540
1541 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1542 if (!nla)
1543 goto nla_put_failure;
1544 mpls_key = nla_data(nla);
1545 mpls_key->mpls_lse = output->mpls.top_lse;
1546 }
1547
1548 if ((swkey->eth.type == htons(ETH_P_IP) ||
1549 swkey->eth.type == htons(ETH_P_IPV6)) &&
1550 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1551
1552 if (swkey->ip.proto == IPPROTO_TCP) {
1553 struct ovs_key_tcp *tcp_key;
1554
1555 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1556 if (!nla)
1557 goto nla_put_failure;
1558 tcp_key = nla_data(nla);
1559 tcp_key->tcp_src = output->tp.src;
1560 tcp_key->tcp_dst = output->tp.dst;
1561 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1562 output->tp.flags))
1563 goto nla_put_failure;
1564 } else if (swkey->ip.proto == IPPROTO_UDP) {
1565 struct ovs_key_udp *udp_key;
1566
1567 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1568 if (!nla)
1569 goto nla_put_failure;
1570 udp_key = nla_data(nla);
1571 udp_key->udp_src = output->tp.src;
1572 udp_key->udp_dst = output->tp.dst;
1573 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1574 struct ovs_key_sctp *sctp_key;
1575
1576 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1577 if (!nla)
1578 goto nla_put_failure;
1579 sctp_key = nla_data(nla);
1580 sctp_key->sctp_src = output->tp.src;
1581 sctp_key->sctp_dst = output->tp.dst;
1582 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1583 swkey->ip.proto == IPPROTO_ICMP) {
1584 struct ovs_key_icmp *icmp_key;
1585
1586 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1587 if (!nla)
1588 goto nla_put_failure;
1589 icmp_key = nla_data(nla);
1590 icmp_key->icmp_type = ntohs(output->tp.src);
1591 icmp_key->icmp_code = ntohs(output->tp.dst);
1592 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1593 swkey->ip.proto == IPPROTO_ICMPV6) {
1594 struct ovs_key_icmpv6 *icmpv6_key;
1595
1596 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1597 sizeof(*icmpv6_key));
1598 if (!nla)
1599 goto nla_put_failure;
1600 icmpv6_key = nla_data(nla);
1601 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1602 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1603
1604 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1605 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1606 struct ovs_key_nd *nd_key;
1607
1608 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1609 if (!nla)
1610 goto nla_put_failure;
1611 nd_key = nla_data(nla);
1612 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1613 sizeof(nd_key->nd_target));
1614 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1615 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1616 }
1617 }
1618 }
1619
1620unencap:
1621 if (encap)
1622 nla_nest_end(skb, encap);
1623
1624 return 0;
1625
1626nla_put_failure:
1627 return -EMSGSIZE;
1628}
1629
1630int ovs_nla_put_key(const struct sw_flow_key *swkey,
1631 const struct sw_flow_key *output, int attr, bool is_mask,
1632 struct sk_buff *skb)
1633{
1634 int err;
1635 struct nlattr *nla;
1636
1637 nla = nla_nest_start(skb, attr);
1638 if (!nla)
1639 return -EMSGSIZE;
1640 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1641 if (err)
1642 return err;
1643 nla_nest_end(skb, nla);
1644
1645 return 0;
1646}
1647
1648/* Called with ovs_mutex or RCU read lock. */
1649int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1650{
1651 if (ovs_identifier_is_ufid(&flow->id))
1652 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1653 flow->id.ufid);
1654
1655 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1656 OVS_FLOW_ATTR_KEY, false, skb);
1657}
1658
1659/* Called with ovs_mutex or RCU read lock. */
1660int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1661{
1662 return ovs_nla_put_key(&flow->key, &flow->key,
1663 OVS_FLOW_ATTR_KEY, false, skb);
1664}
1665
1666/* Called with ovs_mutex or RCU read lock. */
1667int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1668{
1669 return ovs_nla_put_key(&flow->key, &flow->mask->key,
1670 OVS_FLOW_ATTR_MASK, true, skb);
1671}
1672
1673#define MAX_ACTIONS_BUFSIZE (32 * 1024)
1674
1675static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1676{
1677 struct sw_flow_actions *sfa;
1678
1679 if (size > MAX_ACTIONS_BUFSIZE) {
1680 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1681 return ERR_PTR(-EINVAL);
1682 }
1683
1684 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1685 if (!sfa)
1686 return ERR_PTR(-ENOMEM);
1687
1688 sfa->actions_len = 0;
1689 return sfa;
1690}
1691
1692static void ovs_nla_free_set_action(const struct nlattr *a)
1693{
1694 const struct nlattr *ovs_key = nla_data(a);
1695 struct ovs_tunnel_info *ovs_tun;
1696
1697 switch (nla_type(ovs_key)) {
1698 case OVS_KEY_ATTR_TUNNEL_INFO:
1699 ovs_tun = nla_data(ovs_key);
1700 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1701 break;
1702 }
1703}
1704
1705void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1706{
1707 const struct nlattr *a;
1708 int rem;
1709
1710 if (!sf_acts)
1711 return;
1712
1713 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1714 switch (nla_type(a)) {
1715 case OVS_ACTION_ATTR_SET:
1716 ovs_nla_free_set_action(a);
1717 break;
1718 case OVS_ACTION_ATTR_CT:
1719 ovs_ct_free_action(a);
1720 break;
1721 }
1722 }
1723
1724 kfree(sf_acts);
1725}
1726
1727static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1728{
1729 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1730}
1731
1732/* Schedules 'sf_acts' to be freed after the next RCU grace period.
1733 * The caller must hold rcu_read_lock for this to be sensible. */
1734void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1735{
1736 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1737}
1738
1739static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1740 int attr_len, bool log)
1741{
1742
1743 struct sw_flow_actions *acts;
1744 int new_acts_size;
1745 int req_size = NLA_ALIGN(attr_len);
1746 int next_offset = offsetof(struct sw_flow_actions, actions) +
1747 (*sfa)->actions_len;
1748
1749 if (req_size <= (ksize(*sfa) - next_offset))
1750 goto out;
1751
1752 new_acts_size = ksize(*sfa) * 2;
1753
1754 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1755 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1756 return ERR_PTR(-EMSGSIZE);
1757 new_acts_size = MAX_ACTIONS_BUFSIZE;
1758 }
1759
1760 acts = nla_alloc_flow_actions(new_acts_size, log);
1761 if (IS_ERR(acts))
1762 return (void *)acts;
1763
1764 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1765 acts->actions_len = (*sfa)->actions_len;
1766 acts->orig_len = (*sfa)->orig_len;
1767 kfree(*sfa);
1768 *sfa = acts;
1769
1770out:
1771 (*sfa)->actions_len += req_size;
1772 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1773}
1774
1775static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1776 int attrtype, void *data, int len, bool log)
1777{
1778 struct nlattr *a;
1779
1780 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1781 if (IS_ERR(a))
1782 return a;
1783
1784 a->nla_type = attrtype;
1785 a->nla_len = nla_attr_size(len);
1786
1787 if (data)
1788 memcpy(nla_data(a), data, len);
1789 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1790
1791 return a;
1792}
1793
1794int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1795 int len, bool log)
1796{
1797 struct nlattr *a;
1798
1799 a = __add_action(sfa, attrtype, data, len, log);
1800
1801 return PTR_ERR_OR_ZERO(a);
1802}
1803
1804static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1805 int attrtype, bool log)
1806{
1807 int used = (*sfa)->actions_len;
1808 int err;
1809
1810 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1811 if (err)
1812 return err;
1813
1814 return used;
1815}
1816
1817static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1818 int st_offset)
1819{
1820 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1821 st_offset);
1822
1823 a->nla_len = sfa->actions_len - st_offset;
1824}
1825
1826static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1827 const struct sw_flow_key *key,
1828 int depth, struct sw_flow_actions **sfa,
1829 __be16 eth_type, __be16 vlan_tci, bool log);
1830
1831static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1832 const struct sw_flow_key *key, int depth,
1833 struct sw_flow_actions **sfa,
1834 __be16 eth_type, __be16 vlan_tci, bool log)
1835{
1836 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1837 const struct nlattr *probability, *actions;
1838 const struct nlattr *a;
1839 int rem, start, err, st_acts;
1840
1841 memset(attrs, 0, sizeof(attrs));
1842 nla_for_each_nested(a, attr, rem) {
1843 int type = nla_type(a);
1844 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1845 return -EINVAL;
1846 attrs[type] = a;
1847 }
1848 if (rem)
1849 return -EINVAL;
1850
1851 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1852 if (!probability || nla_len(probability) != sizeof(u32))
1853 return -EINVAL;
1854
1855 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1856 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1857 return -EINVAL;
1858
1859 /* validation done, copy sample action. */
1860 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1861 if (start < 0)
1862 return start;
1863 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1864 nla_data(probability), sizeof(u32), log);
1865 if (err)
1866 return err;
1867 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1868 if (st_acts < 0)
1869 return st_acts;
1870
1871 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1872 eth_type, vlan_tci, log);
1873 if (err)
1874 return err;
1875
1876 add_nested_action_end(*sfa, st_acts);
1877 add_nested_action_end(*sfa, start);
1878
1879 return 0;
1880}
1881
1882void ovs_match_init(struct sw_flow_match *match,
1883 struct sw_flow_key *key,
1884 struct sw_flow_mask *mask)
1885{
1886 memset(match, 0, sizeof(*match));
1887 match->key = key;
1888 match->mask = mask;
1889
1890 memset(key, 0, sizeof(*key));
1891
1892 if (mask) {
1893 memset(&mask->key, 0, sizeof(mask->key));
1894 mask->range.start = mask->range.end = 0;
1895 }
1896}
1897
1898static int validate_geneve_opts(struct sw_flow_key *key)
1899{
1900 struct geneve_opt *option;
1901 int opts_len = key->tun_opts_len;
1902 bool crit_opt = false;
1903
1904 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1905 while (opts_len > 0) {
1906 int len;
1907
1908 if (opts_len < sizeof(*option))
1909 return -EINVAL;
1910
1911 len = sizeof(*option) + option->length * 4;
1912 if (len > opts_len)
1913 return -EINVAL;
1914
1915 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1916
1917 option = (struct geneve_opt *)((u8 *)option + len);
1918 opts_len -= len;
1919 };
1920
1921 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1922
1923 return 0;
1924}
1925
1926static int validate_and_copy_set_tun(const struct nlattr *attr,
1927 struct sw_flow_actions **sfa, bool log)
1928{
1929 struct sw_flow_match match;
1930 struct sw_flow_key key;
1931 struct metadata_dst *tun_dst;
1932 struct ip_tunnel_info *tun_info;
1933 struct ovs_tunnel_info *ovs_tun;
1934 struct nlattr *a;
1935 int err = 0, start, opts_type;
1936
1937 ovs_match_init(&match, &key, NULL);
1938 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
1939 if (opts_type < 0)
1940 return opts_type;
1941
1942 if (key.tun_opts_len) {
1943 switch (opts_type) {
1944 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1945 err = validate_geneve_opts(&key);
1946 if (err < 0)
1947 return err;
1948 break;
1949 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1950 break;
1951 }
1952 };
1953
1954 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1955 if (start < 0)
1956 return start;
1957
1958 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1959 if (!tun_dst)
1960 return -ENOMEM;
1961
1962 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
1963 if (err) {
1964 dst_release((struct dst_entry *)tun_dst);
1965 return err;
1966 }
1967
1968 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1969 sizeof(*ovs_tun), log);
1970 if (IS_ERR(a)) {
1971 dst_release((struct dst_entry *)tun_dst);
1972 return PTR_ERR(a);
1973 }
1974
1975 ovs_tun = nla_data(a);
1976 ovs_tun->tun_dst = tun_dst;
1977
1978 tun_info = &tun_dst->u.tun_info;
1979 tun_info->mode = IP_TUNNEL_INFO_TX;
1980 if (key.tun_proto == AF_INET6)
1981 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
1982 tun_info->key = key.tun_key;
1983
1984 /* We need to store the options in the action itself since
1985 * everything else will go away after flow setup. We can append
1986 * it to tun_info and then point there.
1987 */
1988 ip_tunnel_info_opts_set(tun_info,
1989 TUN_METADATA_OPTS(&key, key.tun_opts_len),
1990 key.tun_opts_len);
1991 add_nested_action_end(*sfa, start);
1992
1993 return err;
1994}
1995
1996/* Return false if there are any non-masked bits set.
1997 * Mask follows data immediately, before any netlink padding.
1998 */
1999static bool validate_masked(u8 *data, int len)
2000{
2001 u8 *mask = data + len;
2002
2003 while (len--)
2004 if (*data++ & ~*mask++)
2005 return false;
2006
2007 return true;
2008}
2009
2010static int validate_set(const struct nlattr *a,
2011 const struct sw_flow_key *flow_key,
2012 struct sw_flow_actions **sfa,
2013 bool *skip_copy, __be16 eth_type, bool masked, bool log)
2014{
2015 const struct nlattr *ovs_key = nla_data(a);
2016 int key_type = nla_type(ovs_key);
2017 size_t key_len;
2018
2019 /* There can be only one key in a action */
2020 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2021 return -EINVAL;
2022
2023 key_len = nla_len(ovs_key);
2024 if (masked)
2025 key_len /= 2;
2026
2027 if (key_type > OVS_KEY_ATTR_MAX ||
2028 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2029 return -EINVAL;
2030
2031 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2032 return -EINVAL;
2033
2034 switch (key_type) {
2035 const struct ovs_key_ipv4 *ipv4_key;
2036 const struct ovs_key_ipv6 *ipv6_key;
2037 int err;
2038
2039 case OVS_KEY_ATTR_PRIORITY:
2040 case OVS_KEY_ATTR_SKB_MARK:
2041 case OVS_KEY_ATTR_CT_MARK:
2042 case OVS_KEY_ATTR_CT_LABELS:
2043 case OVS_KEY_ATTR_ETHERNET:
2044 break;
2045
2046 case OVS_KEY_ATTR_TUNNEL:
2047 if (masked)
2048 return -EINVAL; /* Masked tunnel set not supported. */
2049
2050 *skip_copy = true;
2051 err = validate_and_copy_set_tun(a, sfa, log);
2052 if (err)
2053 return err;
2054 break;
2055
2056 case OVS_KEY_ATTR_IPV4:
2057 if (eth_type != htons(ETH_P_IP))
2058 return -EINVAL;
2059
2060 ipv4_key = nla_data(ovs_key);
2061
2062 if (masked) {
2063 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2064
2065 /* Non-writeable fields. */
2066 if (mask->ipv4_proto || mask->ipv4_frag)
2067 return -EINVAL;
2068 } else {
2069 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2070 return -EINVAL;
2071
2072 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2073 return -EINVAL;
2074 }
2075 break;
2076
2077 case OVS_KEY_ATTR_IPV6:
2078 if (eth_type != htons(ETH_P_IPV6))
2079 return -EINVAL;
2080
2081 ipv6_key = nla_data(ovs_key);
2082
2083 if (masked) {
2084 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2085
2086 /* Non-writeable fields. */
2087 if (mask->ipv6_proto || mask->ipv6_frag)
2088 return -EINVAL;
2089
2090 /* Invalid bits in the flow label mask? */
2091 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2092 return -EINVAL;
2093 } else {
2094 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2095 return -EINVAL;
2096
2097 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2098 return -EINVAL;
2099 }
2100 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2101 return -EINVAL;
2102
2103 break;
2104
2105 case OVS_KEY_ATTR_TCP:
2106 if ((eth_type != htons(ETH_P_IP) &&
2107 eth_type != htons(ETH_P_IPV6)) ||
2108 flow_key->ip.proto != IPPROTO_TCP)
2109 return -EINVAL;
2110
2111 break;
2112
2113 case OVS_KEY_ATTR_UDP:
2114 if ((eth_type != htons(ETH_P_IP) &&
2115 eth_type != htons(ETH_P_IPV6)) ||
2116 flow_key->ip.proto != IPPROTO_UDP)
2117 return -EINVAL;
2118
2119 break;
2120
2121 case OVS_KEY_ATTR_MPLS:
2122 if (!eth_p_mpls(eth_type))
2123 return -EINVAL;
2124 break;
2125
2126 case OVS_KEY_ATTR_SCTP:
2127 if ((eth_type != htons(ETH_P_IP) &&
2128 eth_type != htons(ETH_P_IPV6)) ||
2129 flow_key->ip.proto != IPPROTO_SCTP)
2130 return -EINVAL;
2131
2132 break;
2133
2134 default:
2135 return -EINVAL;
2136 }
2137
2138 /* Convert non-masked non-tunnel set actions to masked set actions. */
2139 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2140 int start, len = key_len * 2;
2141 struct nlattr *at;
2142
2143 *skip_copy = true;
2144
2145 start = add_nested_action_start(sfa,
2146 OVS_ACTION_ATTR_SET_TO_MASKED,
2147 log);
2148 if (start < 0)
2149 return start;
2150
2151 at = __add_action(sfa, key_type, NULL, len, log);
2152 if (IS_ERR(at))
2153 return PTR_ERR(at);
2154
2155 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2156 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2157 /* Clear non-writeable bits from otherwise writeable fields. */
2158 if (key_type == OVS_KEY_ATTR_IPV6) {
2159 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2160
2161 mask->ipv6_label &= htonl(0x000FFFFF);
2162 }
2163 add_nested_action_end(*sfa, start);
2164 }
2165
2166 return 0;
2167}
2168
2169static int validate_userspace(const struct nlattr *attr)
2170{
2171 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2172 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2173 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2174 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2175 };
2176 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2177 int error;
2178
2179 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2180 attr, userspace_policy);
2181 if (error)
2182 return error;
2183
2184 if (!a[OVS_USERSPACE_ATTR_PID] ||
2185 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2186 return -EINVAL;
2187
2188 return 0;
2189}
2190
2191static int copy_action(const struct nlattr *from,
2192 struct sw_flow_actions **sfa, bool log)
2193{
2194 int totlen = NLA_ALIGN(from->nla_len);
2195 struct nlattr *to;
2196
2197 to = reserve_sfa_size(sfa, from->nla_len, log);
2198 if (IS_ERR(to))
2199 return PTR_ERR(to);
2200
2201 memcpy(to, from, totlen);
2202 return 0;
2203}
2204
2205static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2206 const struct sw_flow_key *key,
2207 int depth, struct sw_flow_actions **sfa,
2208 __be16 eth_type, __be16 vlan_tci, bool log)
2209{
2210 const struct nlattr *a;
2211 int rem, err;
2212
2213 if (depth >= SAMPLE_ACTION_DEPTH)
2214 return -EOVERFLOW;
2215
2216 nla_for_each_nested(a, attr, rem) {
2217 /* Expected argument lengths, (u32)-1 for variable length. */
2218 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2219 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2220 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2221 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2222 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2223 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2224 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2225 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2226 [OVS_ACTION_ATTR_SET] = (u32)-1,
2227 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2228 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2229 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2230 [OVS_ACTION_ATTR_CT] = (u32)-1,
2231 };
2232 const struct ovs_action_push_vlan *vlan;
2233 int type = nla_type(a);
2234 bool skip_copy;
2235
2236 if (type > OVS_ACTION_ATTR_MAX ||
2237 (action_lens[type] != nla_len(a) &&
2238 action_lens[type] != (u32)-1))
2239 return -EINVAL;
2240
2241 skip_copy = false;
2242 switch (type) {
2243 case OVS_ACTION_ATTR_UNSPEC:
2244 return -EINVAL;
2245
2246 case OVS_ACTION_ATTR_USERSPACE:
2247 err = validate_userspace(a);
2248 if (err)
2249 return err;
2250 break;
2251
2252 case OVS_ACTION_ATTR_OUTPUT:
2253 if (nla_get_u32(a) >= DP_MAX_PORTS)
2254 return -EINVAL;
2255 break;
2256
2257 case OVS_ACTION_ATTR_HASH: {
2258 const struct ovs_action_hash *act_hash = nla_data(a);
2259
2260 switch (act_hash->hash_alg) {
2261 case OVS_HASH_ALG_L4:
2262 break;
2263 default:
2264 return -EINVAL;
2265 }
2266
2267 break;
2268 }
2269
2270 case OVS_ACTION_ATTR_POP_VLAN:
2271 vlan_tci = htons(0);
2272 break;
2273
2274 case OVS_ACTION_ATTR_PUSH_VLAN:
2275 vlan = nla_data(a);
2276 if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2277 return -EINVAL;
2278 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2279 return -EINVAL;
2280 vlan_tci = vlan->vlan_tci;
2281 break;
2282
2283 case OVS_ACTION_ATTR_RECIRC:
2284 break;
2285
2286 case OVS_ACTION_ATTR_PUSH_MPLS: {
2287 const struct ovs_action_push_mpls *mpls = nla_data(a);
2288
2289 if (!eth_p_mpls(mpls->mpls_ethertype))
2290 return -EINVAL;
2291 /* Prohibit push MPLS other than to a white list
2292 * for packets that have a known tag order.
2293 */
2294 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2295 (eth_type != htons(ETH_P_IP) &&
2296 eth_type != htons(ETH_P_IPV6) &&
2297 eth_type != htons(ETH_P_ARP) &&
2298 eth_type != htons(ETH_P_RARP) &&
2299 !eth_p_mpls(eth_type)))
2300 return -EINVAL;
2301 eth_type = mpls->mpls_ethertype;
2302 break;
2303 }
2304
2305 case OVS_ACTION_ATTR_POP_MPLS:
2306 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2307 !eth_p_mpls(eth_type))
2308 return -EINVAL;
2309
2310 /* Disallow subsequent L2.5+ set and mpls_pop actions
2311 * as there is no check here to ensure that the new
2312 * eth_type is valid and thus set actions could
2313 * write off the end of the packet or otherwise
2314 * corrupt it.
2315 *
2316 * Support for these actions is planned using packet
2317 * recirculation.
2318 */
2319 eth_type = htons(0);
2320 break;
2321
2322 case OVS_ACTION_ATTR_SET:
2323 err = validate_set(a, key, sfa,
2324 &skip_copy, eth_type, false, log);
2325 if (err)
2326 return err;
2327 break;
2328
2329 case OVS_ACTION_ATTR_SET_MASKED:
2330 err = validate_set(a, key, sfa,
2331 &skip_copy, eth_type, true, log);
2332 if (err)
2333 return err;
2334 break;
2335
2336 case OVS_ACTION_ATTR_SAMPLE:
2337 err = validate_and_copy_sample(net, a, key, depth, sfa,
2338 eth_type, vlan_tci, log);
2339 if (err)
2340 return err;
2341 skip_copy = true;
2342 break;
2343
2344 case OVS_ACTION_ATTR_CT:
2345 err = ovs_ct_copy_action(net, a, key, sfa, log);
2346 if (err)
2347 return err;
2348 skip_copy = true;
2349 break;
2350
2351 default:
2352 OVS_NLERR(log, "Unknown Action type %d", type);
2353 return -EINVAL;
2354 }
2355 if (!skip_copy) {
2356 err = copy_action(a, sfa, log);
2357 if (err)
2358 return err;
2359 }
2360 }
2361
2362 if (rem > 0)
2363 return -EINVAL;
2364
2365 return 0;
2366}
2367
2368/* 'key' must be the masked key. */
2369int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2370 const struct sw_flow_key *key,
2371 struct sw_flow_actions **sfa, bool log)
2372{
2373 int err;
2374
2375 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2376 if (IS_ERR(*sfa))
2377 return PTR_ERR(*sfa);
2378
2379 (*sfa)->orig_len = nla_len(attr);
2380 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2381 key->eth.tci, log);
2382 if (err)
2383 ovs_nla_free_flow_actions(*sfa);
2384
2385 return err;
2386}
2387
2388static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2389{
2390 const struct nlattr *a;
2391 struct nlattr *start;
2392 int err = 0, rem;
2393
2394 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2395 if (!start)
2396 return -EMSGSIZE;
2397
2398 nla_for_each_nested(a, attr, rem) {
2399 int type = nla_type(a);
2400 struct nlattr *st_sample;
2401
2402 switch (type) {
2403 case OVS_SAMPLE_ATTR_PROBABILITY:
2404 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2405 sizeof(u32), nla_data(a)))
2406 return -EMSGSIZE;
2407 break;
2408 case OVS_SAMPLE_ATTR_ACTIONS:
2409 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2410 if (!st_sample)
2411 return -EMSGSIZE;
2412 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2413 if (err)
2414 return err;
2415 nla_nest_end(skb, st_sample);
2416 break;
2417 }
2418 }
2419
2420 nla_nest_end(skb, start);
2421 return err;
2422}
2423
2424static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2425{
2426 const struct nlattr *ovs_key = nla_data(a);
2427 int key_type = nla_type(ovs_key);
2428 struct nlattr *start;
2429 int err;
2430
2431 switch (key_type) {
2432 case OVS_KEY_ATTR_TUNNEL_INFO: {
2433 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2434 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2435
2436 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2437 if (!start)
2438 return -EMSGSIZE;
2439
2440 err = ip_tun_to_nlattr(skb, &tun_info->key,
2441 ip_tunnel_info_opts(tun_info),
2442 tun_info->options_len,
2443 ip_tunnel_info_af(tun_info));
2444 if (err)
2445 return err;
2446 nla_nest_end(skb, start);
2447 break;
2448 }
2449 default:
2450 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2451 return -EMSGSIZE;
2452 break;
2453 }
2454
2455 return 0;
2456}
2457
2458static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2459 struct sk_buff *skb)
2460{
2461 const struct nlattr *ovs_key = nla_data(a);
2462 struct nlattr *nla;
2463 size_t key_len = nla_len(ovs_key) / 2;
2464
2465 /* Revert the conversion we did from a non-masked set action to
2466 * masked set action.
2467 */
2468 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2469 if (!nla)
2470 return -EMSGSIZE;
2471
2472 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2473 return -EMSGSIZE;
2474
2475 nla_nest_end(skb, nla);
2476 return 0;
2477}
2478
2479int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2480{
2481 const struct nlattr *a;
2482 int rem, err;
2483
2484 nla_for_each_attr(a, attr, len, rem) {
2485 int type = nla_type(a);
2486
2487 switch (type) {
2488 case OVS_ACTION_ATTR_SET:
2489 err = set_action_to_attr(a, skb);
2490 if (err)
2491 return err;
2492 break;
2493
2494 case OVS_ACTION_ATTR_SET_TO_MASKED:
2495 err = masked_set_action_to_set_action_attr(a, skb);
2496 if (err)
2497 return err;
2498 break;
2499
2500 case OVS_ACTION_ATTR_SAMPLE:
2501 err = sample_action_to_attr(a, skb);
2502 if (err)
2503 return err;
2504 break;
2505
2506 case OVS_ACTION_ATTR_CT:
2507 err = ovs_ct_action_to_attr(nla_data(a), skb);
2508 if (err)
2509 return err;
2510 break;
2511
2512 default:
2513 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2514 return -EMSGSIZE;
2515 break;
2516 }
2517 }
2518
2519 return 0;
2520}