Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34#include "qgroup.h"
35
36#define BTRFS_ROOT_TRANS_TAG 0
37
38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59};
60
61void btrfs_put_transaction(struct btrfs_transaction *transaction)
62{
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kmem_cache_free(btrfs_transaction_cachep, transaction);
97 }
98}
99
100static void clear_btree_io_tree(struct extent_io_tree *tree)
101{
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127}
128
129static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131{
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157}
158
159static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161{
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164}
165
166static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168{
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171}
172
173static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175{
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177}
178
179static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180{
181 return atomic_read(&trans->num_extwriters);
182}
183
184/*
185 * either allocate a new transaction or hop into the existing one
186 */
187static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
189{
190 struct btrfs_transaction *cur_trans;
191
192 spin_lock(&fs_info->trans_lock);
193loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 atomic_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 atomic_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305}
306
307/*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316{
317 struct btrfs_fs_info *fs_info = root->fs_info;
318
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
323
324 /*
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
328 */
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
333 */
334 smp_wmb();
335
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
340 }
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
346
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
351 *
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
354 *
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
360 *
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
365 */
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 }
370 return 0;
371}
372
373
374void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376{
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
379
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
384
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
391}
392
393int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
395{
396 struct btrfs_fs_info *fs_info = root->fs_info;
397
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
400
401 /*
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
404 */
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
409
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
413
414 return 0;
415}
416
417static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418{
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
422}
423
424/* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
427 */
428static void wait_current_trans(struct btrfs_fs_info *fs_info)
429{
430 struct btrfs_transaction *cur_trans;
431
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 atomic_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
437
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
444 }
445}
446
447static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448{
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
451
452 if (type == TRANS_USERSPACE)
453 return 1;
454
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
458
459 return 0;
460}
461
462static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463{
464 struct btrfs_fs_info *fs_info = root->fs_info;
465
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
471
472 return true;
473}
474
475static struct btrfs_trans_handle *
476start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush)
478{
479 struct btrfs_fs_info *fs_info = root->fs_info;
480
481 struct btrfs_trans_handle *h;
482 struct btrfs_transaction *cur_trans;
483 u64 num_bytes = 0;
484 u64 qgroup_reserved = 0;
485 bool reloc_reserved = false;
486 int ret;
487
488 /* Send isn't supposed to start transactions. */
489 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
490
491 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
492 return ERR_PTR(-EROFS);
493
494 if (current->journal_info) {
495 WARN_ON(type & TRANS_EXTWRITERS);
496 h = current->journal_info;
497 h->use_count++;
498 WARN_ON(h->use_count > 2);
499 h->orig_rsv = h->block_rsv;
500 h->block_rsv = NULL;
501 goto got_it;
502 }
503
504 /*
505 * Do the reservation before we join the transaction so we can do all
506 * the appropriate flushing if need be.
507 */
508 if (num_items > 0 && root != fs_info->chunk_root) {
509 qgroup_reserved = num_items * fs_info->nodesize;
510 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
511 if (ret)
512 return ERR_PTR(ret);
513
514 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
515 /*
516 * Do the reservation for the relocation root creation
517 */
518 if (need_reserve_reloc_root(root)) {
519 num_bytes += fs_info->nodesize;
520 reloc_reserved = true;
521 }
522
523 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
524 num_bytes, flush);
525 if (ret)
526 goto reserve_fail;
527 }
528again:
529 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
530 if (!h) {
531 ret = -ENOMEM;
532 goto alloc_fail;
533 }
534
535 /*
536 * If we are JOIN_NOLOCK we're already committing a transaction and
537 * waiting on this guy, so we don't need to do the sb_start_intwrite
538 * because we're already holding a ref. We need this because we could
539 * have raced in and did an fsync() on a file which can kick a commit
540 * and then we deadlock with somebody doing a freeze.
541 *
542 * If we are ATTACH, it means we just want to catch the current
543 * transaction and commit it, so we needn't do sb_start_intwrite().
544 */
545 if (type & __TRANS_FREEZABLE)
546 sb_start_intwrite(fs_info->sb);
547
548 if (may_wait_transaction(fs_info, type))
549 wait_current_trans(fs_info);
550
551 do {
552 ret = join_transaction(fs_info, type);
553 if (ret == -EBUSY) {
554 wait_current_trans(fs_info);
555 if (unlikely(type == TRANS_ATTACH))
556 ret = -ENOENT;
557 }
558 } while (ret == -EBUSY);
559
560 if (ret < 0)
561 goto join_fail;
562
563 cur_trans = fs_info->running_transaction;
564
565 h->transid = cur_trans->transid;
566 h->transaction = cur_trans;
567 h->root = root;
568 h->use_count = 1;
569 h->fs_info = root->fs_info;
570
571 h->type = type;
572 h->can_flush_pending_bgs = true;
573 INIT_LIST_HEAD(&h->qgroup_ref_list);
574 INIT_LIST_HEAD(&h->new_bgs);
575
576 smp_mb();
577 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
578 may_wait_transaction(fs_info, type)) {
579 current->journal_info = h;
580 btrfs_commit_transaction(h);
581 goto again;
582 }
583
584 if (num_bytes) {
585 trace_btrfs_space_reservation(fs_info, "transaction",
586 h->transid, num_bytes, 1);
587 h->block_rsv = &fs_info->trans_block_rsv;
588 h->bytes_reserved = num_bytes;
589 h->reloc_reserved = reloc_reserved;
590 }
591
592got_it:
593 btrfs_record_root_in_trans(h, root);
594
595 if (!current->journal_info && type != TRANS_USERSPACE)
596 current->journal_info = h;
597 return h;
598
599join_fail:
600 if (type & __TRANS_FREEZABLE)
601 sb_end_intwrite(fs_info->sb);
602 kmem_cache_free(btrfs_trans_handle_cachep, h);
603alloc_fail:
604 if (num_bytes)
605 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
606 num_bytes);
607reserve_fail:
608 btrfs_qgroup_free_meta(root, qgroup_reserved);
609 return ERR_PTR(ret);
610}
611
612struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
613 unsigned int num_items)
614{
615 return start_transaction(root, num_items, TRANS_START,
616 BTRFS_RESERVE_FLUSH_ALL);
617}
618struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
619 struct btrfs_root *root,
620 unsigned int num_items,
621 int min_factor)
622{
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 struct btrfs_trans_handle *trans;
625 u64 num_bytes;
626 int ret;
627
628 trans = btrfs_start_transaction(root, num_items);
629 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
630 return trans;
631
632 trans = btrfs_start_transaction(root, 0);
633 if (IS_ERR(trans))
634 return trans;
635
636 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
637 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
638 num_bytes, min_factor);
639 if (ret) {
640 btrfs_end_transaction(trans);
641 return ERR_PTR(ret);
642 }
643
644 trans->block_rsv = &fs_info->trans_block_rsv;
645 trans->bytes_reserved = num_bytes;
646 trace_btrfs_space_reservation(fs_info, "transaction",
647 trans->transid, num_bytes, 1);
648
649 return trans;
650}
651
652struct btrfs_trans_handle *btrfs_start_transaction_lflush(
653 struct btrfs_root *root,
654 unsigned int num_items)
655{
656 return start_transaction(root, num_items, TRANS_START,
657 BTRFS_RESERVE_FLUSH_LIMIT);
658}
659
660struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
661{
662 return start_transaction(root, 0, TRANS_JOIN,
663 BTRFS_RESERVE_NO_FLUSH);
664}
665
666struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
667{
668 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
669 BTRFS_RESERVE_NO_FLUSH);
670}
671
672struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
673{
674 return start_transaction(root, 0, TRANS_USERSPACE,
675 BTRFS_RESERVE_NO_FLUSH);
676}
677
678/*
679 * btrfs_attach_transaction() - catch the running transaction
680 *
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
683 *
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
688 * invoke
689 * btrfs_attach_transaction_barrier()
690 */
691struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
692{
693 return start_transaction(root, 0, TRANS_ATTACH,
694 BTRFS_RESERVE_NO_FLUSH);
695}
696
697/*
698 * btrfs_attach_transaction_barrier() - catch the running transaction
699 *
700 * It is similar to the above function, the differentia is this one
701 * will wait for all the inactive transactions until they fully
702 * complete.
703 */
704struct btrfs_trans_handle *
705btrfs_attach_transaction_barrier(struct btrfs_root *root)
706{
707 struct btrfs_trans_handle *trans;
708
709 trans = start_transaction(root, 0, TRANS_ATTACH,
710 BTRFS_RESERVE_NO_FLUSH);
711 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
712 btrfs_wait_for_commit(root->fs_info, 0);
713
714 return trans;
715}
716
717/* wait for a transaction commit to be fully complete */
718static noinline void wait_for_commit(struct btrfs_transaction *commit)
719{
720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
721}
722
723int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
724{
725 struct btrfs_transaction *cur_trans = NULL, *t;
726 int ret = 0;
727
728 if (transid) {
729 if (transid <= fs_info->last_trans_committed)
730 goto out;
731
732 /* find specified transaction */
733 spin_lock(&fs_info->trans_lock);
734 list_for_each_entry(t, &fs_info->trans_list, list) {
735 if (t->transid == transid) {
736 cur_trans = t;
737 atomic_inc(&cur_trans->use_count);
738 ret = 0;
739 break;
740 }
741 if (t->transid > transid) {
742 ret = 0;
743 break;
744 }
745 }
746 spin_unlock(&fs_info->trans_lock);
747
748 /*
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
751 */
752 if (!cur_trans) {
753 if (transid > fs_info->last_trans_committed)
754 ret = -EINVAL;
755 goto out;
756 }
757 } else {
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info->trans_lock);
760 list_for_each_entry_reverse(t, &fs_info->trans_list,
761 list) {
762 if (t->state >= TRANS_STATE_COMMIT_START) {
763 if (t->state == TRANS_STATE_COMPLETED)
764 break;
765 cur_trans = t;
766 atomic_inc(&cur_trans->use_count);
767 break;
768 }
769 }
770 spin_unlock(&fs_info->trans_lock);
771 if (!cur_trans)
772 goto out; /* nothing committing|committed */
773 }
774
775 wait_for_commit(cur_trans);
776 btrfs_put_transaction(cur_trans);
777out:
778 return ret;
779}
780
781void btrfs_throttle(struct btrfs_fs_info *fs_info)
782{
783 if (!atomic_read(&fs_info->open_ioctl_trans))
784 wait_current_trans(fs_info);
785}
786
787static int should_end_transaction(struct btrfs_trans_handle *trans)
788{
789 struct btrfs_fs_info *fs_info = trans->fs_info;
790
791 if (fs_info->global_block_rsv.space_info->full &&
792 btrfs_check_space_for_delayed_refs(trans, fs_info))
793 return 1;
794
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796}
797
798int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
799{
800 struct btrfs_transaction *cur_trans = trans->transaction;
801 struct btrfs_fs_info *fs_info = trans->fs_info;
802 int updates;
803 int err;
804
805 smp_mb();
806 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
807 cur_trans->delayed_refs.flushing)
808 return 1;
809
810 updates = trans->delayed_ref_updates;
811 trans->delayed_ref_updates = 0;
812 if (updates) {
813 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
814 if (err) /* Error code will also eval true */
815 return err;
816 }
817
818 return should_end_transaction(trans);
819}
820
821static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
822 int throttle)
823{
824 struct btrfs_fs_info *info = trans->fs_info;
825 struct btrfs_transaction *cur_trans = trans->transaction;
826 u64 transid = trans->transid;
827 unsigned long cur = trans->delayed_ref_updates;
828 int lock = (trans->type != TRANS_JOIN_NOLOCK);
829 int err = 0;
830 int must_run_delayed_refs = 0;
831
832 if (trans->use_count > 1) {
833 trans->use_count--;
834 trans->block_rsv = trans->orig_rsv;
835 return 0;
836 }
837
838 btrfs_trans_release_metadata(trans, info);
839 trans->block_rsv = NULL;
840
841 if (!list_empty(&trans->new_bgs))
842 btrfs_create_pending_block_groups(trans, info);
843
844 trans->delayed_ref_updates = 0;
845 if (!trans->sync) {
846 must_run_delayed_refs =
847 btrfs_should_throttle_delayed_refs(trans, info);
848 cur = max_t(unsigned long, cur, 32);
849
850 /*
851 * don't make the caller wait if they are from a NOLOCK
852 * or ATTACH transaction, it will deadlock with commit
853 */
854 if (must_run_delayed_refs == 1 &&
855 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
856 must_run_delayed_refs = 2;
857 }
858
859 btrfs_trans_release_metadata(trans, info);
860 trans->block_rsv = NULL;
861
862 if (!list_empty(&trans->new_bgs))
863 btrfs_create_pending_block_groups(trans, info);
864
865 btrfs_trans_release_chunk_metadata(trans);
866
867 if (lock && !atomic_read(&info->open_ioctl_trans) &&
868 should_end_transaction(trans) &&
869 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
870 spin_lock(&info->trans_lock);
871 if (cur_trans->state == TRANS_STATE_RUNNING)
872 cur_trans->state = TRANS_STATE_BLOCKED;
873 spin_unlock(&info->trans_lock);
874 }
875
876 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
877 if (throttle)
878 return btrfs_commit_transaction(trans);
879 else
880 wake_up_process(info->transaction_kthread);
881 }
882
883 if (trans->type & __TRANS_FREEZABLE)
884 sb_end_intwrite(info->sb);
885
886 WARN_ON(cur_trans != info->running_transaction);
887 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
888 atomic_dec(&cur_trans->num_writers);
889 extwriter_counter_dec(cur_trans, trans->type);
890
891 /*
892 * Make sure counter is updated before we wake up waiters.
893 */
894 smp_mb();
895 if (waitqueue_active(&cur_trans->writer_wait))
896 wake_up(&cur_trans->writer_wait);
897 btrfs_put_transaction(cur_trans);
898
899 if (current->journal_info == trans)
900 current->journal_info = NULL;
901
902 if (throttle)
903 btrfs_run_delayed_iputs(info);
904
905 if (trans->aborted ||
906 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
907 wake_up_process(info->transaction_kthread);
908 err = -EIO;
909 }
910 assert_qgroups_uptodate(trans);
911
912 kmem_cache_free(btrfs_trans_handle_cachep, trans);
913 if (must_run_delayed_refs) {
914 btrfs_async_run_delayed_refs(info, cur, transid,
915 must_run_delayed_refs == 1);
916 }
917 return err;
918}
919
920int btrfs_end_transaction(struct btrfs_trans_handle *trans)
921{
922 return __btrfs_end_transaction(trans, 0);
923}
924
925int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
926{
927 return __btrfs_end_transaction(trans, 1);
928}
929
930/*
931 * when btree blocks are allocated, they have some corresponding bits set for
932 * them in one of two extent_io trees. This is used to make sure all of
933 * those extents are sent to disk but does not wait on them
934 */
935int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
936 struct extent_io_tree *dirty_pages, int mark)
937{
938 int err = 0;
939 int werr = 0;
940 struct address_space *mapping = fs_info->btree_inode->i_mapping;
941 struct extent_state *cached_state = NULL;
942 u64 start = 0;
943 u64 end;
944
945 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
946 mark, &cached_state)) {
947 bool wait_writeback = false;
948
949 err = convert_extent_bit(dirty_pages, start, end,
950 EXTENT_NEED_WAIT,
951 mark, &cached_state);
952 /*
953 * convert_extent_bit can return -ENOMEM, which is most of the
954 * time a temporary error. So when it happens, ignore the error
955 * and wait for writeback of this range to finish - because we
956 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
957 * to __btrfs_wait_marked_extents() would not know that
958 * writeback for this range started and therefore wouldn't
959 * wait for it to finish - we don't want to commit a
960 * superblock that points to btree nodes/leafs for which
961 * writeback hasn't finished yet (and without errors).
962 * We cleanup any entries left in the io tree when committing
963 * the transaction (through clear_btree_io_tree()).
964 */
965 if (err == -ENOMEM) {
966 err = 0;
967 wait_writeback = true;
968 }
969 if (!err)
970 err = filemap_fdatawrite_range(mapping, start, end);
971 if (err)
972 werr = err;
973 else if (wait_writeback)
974 werr = filemap_fdatawait_range(mapping, start, end);
975 free_extent_state(cached_state);
976 cached_state = NULL;
977 cond_resched();
978 start = end + 1;
979 }
980 return werr;
981}
982
983/*
984 * when btree blocks are allocated, they have some corresponding bits set for
985 * them in one of two extent_io trees. This is used to make sure all of
986 * those extents are on disk for transaction or log commit. We wait
987 * on all the pages and clear them from the dirty pages state tree
988 */
989static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
990 struct extent_io_tree *dirty_pages)
991{
992 int err = 0;
993 int werr = 0;
994 struct address_space *mapping = fs_info->btree_inode->i_mapping;
995 struct extent_state *cached_state = NULL;
996 u64 start = 0;
997 u64 end;
998
999 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1000 EXTENT_NEED_WAIT, &cached_state)) {
1001 /*
1002 * Ignore -ENOMEM errors returned by clear_extent_bit().
1003 * When committing the transaction, we'll remove any entries
1004 * left in the io tree. For a log commit, we don't remove them
1005 * after committing the log because the tree can be accessed
1006 * concurrently - we do it only at transaction commit time when
1007 * it's safe to do it (through clear_btree_io_tree()).
1008 */
1009 err = clear_extent_bit(dirty_pages, start, end,
1010 EXTENT_NEED_WAIT,
1011 0, 0, &cached_state, GFP_NOFS);
1012 if (err == -ENOMEM)
1013 err = 0;
1014 if (!err)
1015 err = filemap_fdatawait_range(mapping, start, end);
1016 if (err)
1017 werr = err;
1018 free_extent_state(cached_state);
1019 cached_state = NULL;
1020 cond_resched();
1021 start = end + 1;
1022 }
1023 if (err)
1024 werr = err;
1025 return werr;
1026}
1027
1028int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1029 struct extent_io_tree *dirty_pages)
1030{
1031 bool errors = false;
1032 int err;
1033
1034 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1035 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1036 errors = true;
1037
1038 if (errors && !err)
1039 err = -EIO;
1040 return err;
1041}
1042
1043int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1044{
1045 struct btrfs_fs_info *fs_info = log_root->fs_info;
1046 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1047 bool errors = false;
1048 int err;
1049
1050 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1051
1052 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1053 if ((mark & EXTENT_DIRTY) &&
1054 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1055 errors = true;
1056
1057 if ((mark & EXTENT_NEW) &&
1058 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1059 errors = true;
1060
1061 if (errors && !err)
1062 err = -EIO;
1063 return err;
1064}
1065
1066/*
1067 * when btree blocks are allocated, they have some corresponding bits set for
1068 * them in one of two extent_io trees. This is used to make sure all of
1069 * those extents are on disk for transaction or log commit
1070 */
1071static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1072 struct extent_io_tree *dirty_pages, int mark)
1073{
1074 int ret;
1075 int ret2;
1076 struct blk_plug plug;
1077
1078 blk_start_plug(&plug);
1079 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1080 blk_finish_plug(&plug);
1081 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1082
1083 if (ret)
1084 return ret;
1085 if (ret2)
1086 return ret2;
1087 return 0;
1088}
1089
1090static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1091 struct btrfs_fs_info *fs_info)
1092{
1093 int ret;
1094
1095 ret = btrfs_write_and_wait_marked_extents(fs_info,
1096 &trans->transaction->dirty_pages,
1097 EXTENT_DIRTY);
1098 clear_btree_io_tree(&trans->transaction->dirty_pages);
1099
1100 return ret;
1101}
1102
1103/*
1104 * this is used to update the root pointer in the tree of tree roots.
1105 *
1106 * But, in the case of the extent allocation tree, updating the root
1107 * pointer may allocate blocks which may change the root of the extent
1108 * allocation tree.
1109 *
1110 * So, this loops and repeats and makes sure the cowonly root didn't
1111 * change while the root pointer was being updated in the metadata.
1112 */
1113static int update_cowonly_root(struct btrfs_trans_handle *trans,
1114 struct btrfs_root *root)
1115{
1116 int ret;
1117 u64 old_root_bytenr;
1118 u64 old_root_used;
1119 struct btrfs_fs_info *fs_info = root->fs_info;
1120 struct btrfs_root *tree_root = fs_info->tree_root;
1121
1122 old_root_used = btrfs_root_used(&root->root_item);
1123
1124 while (1) {
1125 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1126 if (old_root_bytenr == root->node->start &&
1127 old_root_used == btrfs_root_used(&root->root_item))
1128 break;
1129
1130 btrfs_set_root_node(&root->root_item, root->node);
1131 ret = btrfs_update_root(trans, tree_root,
1132 &root->root_key,
1133 &root->root_item);
1134 if (ret)
1135 return ret;
1136
1137 old_root_used = btrfs_root_used(&root->root_item);
1138 }
1139
1140 return 0;
1141}
1142
1143/*
1144 * update all the cowonly tree roots on disk
1145 *
1146 * The error handling in this function may not be obvious. Any of the
1147 * failures will cause the file system to go offline. We still need
1148 * to clean up the delayed refs.
1149 */
1150static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1151 struct btrfs_fs_info *fs_info)
1152{
1153 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1154 struct list_head *io_bgs = &trans->transaction->io_bgs;
1155 struct list_head *next;
1156 struct extent_buffer *eb;
1157 int ret;
1158
1159 eb = btrfs_lock_root_node(fs_info->tree_root);
1160 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1161 0, &eb);
1162 btrfs_tree_unlock(eb);
1163 free_extent_buffer(eb);
1164
1165 if (ret)
1166 return ret;
1167
1168 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1169 if (ret)
1170 return ret;
1171
1172 ret = btrfs_run_dev_stats(trans, fs_info);
1173 if (ret)
1174 return ret;
1175 ret = btrfs_run_dev_replace(trans, fs_info);
1176 if (ret)
1177 return ret;
1178 ret = btrfs_run_qgroups(trans, fs_info);
1179 if (ret)
1180 return ret;
1181
1182 ret = btrfs_setup_space_cache(trans, fs_info);
1183 if (ret)
1184 return ret;
1185
1186 /* run_qgroups might have added some more refs */
1187 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1188 if (ret)
1189 return ret;
1190again:
1191 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1192 struct btrfs_root *root;
1193 next = fs_info->dirty_cowonly_roots.next;
1194 list_del_init(next);
1195 root = list_entry(next, struct btrfs_root, dirty_list);
1196 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1197
1198 if (root != fs_info->extent_root)
1199 list_add_tail(&root->dirty_list,
1200 &trans->transaction->switch_commits);
1201 ret = update_cowonly_root(trans, root);
1202 if (ret)
1203 return ret;
1204 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1205 if (ret)
1206 return ret;
1207 }
1208
1209 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1210 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1211 if (ret)
1212 return ret;
1213 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1214 if (ret)
1215 return ret;
1216 }
1217
1218 if (!list_empty(&fs_info->dirty_cowonly_roots))
1219 goto again;
1220
1221 list_add_tail(&fs_info->extent_root->dirty_list,
1222 &trans->transaction->switch_commits);
1223 btrfs_after_dev_replace_commit(fs_info);
1224
1225 return 0;
1226}
1227
1228/*
1229 * dead roots are old snapshots that need to be deleted. This allocates
1230 * a dirty root struct and adds it into the list of dead roots that need to
1231 * be deleted
1232 */
1233void btrfs_add_dead_root(struct btrfs_root *root)
1234{
1235 struct btrfs_fs_info *fs_info = root->fs_info;
1236
1237 spin_lock(&fs_info->trans_lock);
1238 if (list_empty(&root->root_list))
1239 list_add_tail(&root->root_list, &fs_info->dead_roots);
1240 spin_unlock(&fs_info->trans_lock);
1241}
1242
1243/*
1244 * update all the cowonly tree roots on disk
1245 */
1246static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1247 struct btrfs_fs_info *fs_info)
1248{
1249 struct btrfs_root *gang[8];
1250 int i;
1251 int ret;
1252 int err = 0;
1253
1254 spin_lock(&fs_info->fs_roots_radix_lock);
1255 while (1) {
1256 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1257 (void **)gang, 0,
1258 ARRAY_SIZE(gang),
1259 BTRFS_ROOT_TRANS_TAG);
1260 if (ret == 0)
1261 break;
1262 for (i = 0; i < ret; i++) {
1263 struct btrfs_root *root = gang[i];
1264 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1265 (unsigned long)root->root_key.objectid,
1266 BTRFS_ROOT_TRANS_TAG);
1267 spin_unlock(&fs_info->fs_roots_radix_lock);
1268
1269 btrfs_free_log(trans, root);
1270 btrfs_update_reloc_root(trans, root);
1271 btrfs_orphan_commit_root(trans, root);
1272
1273 btrfs_save_ino_cache(root, trans);
1274
1275 /* see comments in should_cow_block() */
1276 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1277 smp_mb__after_atomic();
1278
1279 if (root->commit_root != root->node) {
1280 list_add_tail(&root->dirty_list,
1281 &trans->transaction->switch_commits);
1282 btrfs_set_root_node(&root->root_item,
1283 root->node);
1284 }
1285
1286 err = btrfs_update_root(trans, fs_info->tree_root,
1287 &root->root_key,
1288 &root->root_item);
1289 spin_lock(&fs_info->fs_roots_radix_lock);
1290 if (err)
1291 break;
1292 btrfs_qgroup_free_meta_all(root);
1293 }
1294 }
1295 spin_unlock(&fs_info->fs_roots_radix_lock);
1296 return err;
1297}
1298
1299/*
1300 * defrag a given btree.
1301 * Every leaf in the btree is read and defragged.
1302 */
1303int btrfs_defrag_root(struct btrfs_root *root)
1304{
1305 struct btrfs_fs_info *info = root->fs_info;
1306 struct btrfs_trans_handle *trans;
1307 int ret;
1308
1309 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1310 return 0;
1311
1312 while (1) {
1313 trans = btrfs_start_transaction(root, 0);
1314 if (IS_ERR(trans))
1315 return PTR_ERR(trans);
1316
1317 ret = btrfs_defrag_leaves(trans, root);
1318
1319 btrfs_end_transaction(trans);
1320 btrfs_btree_balance_dirty(info);
1321 cond_resched();
1322
1323 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1324 break;
1325
1326 if (btrfs_defrag_cancelled(info)) {
1327 btrfs_debug(info, "defrag_root cancelled");
1328 ret = -EAGAIN;
1329 break;
1330 }
1331 }
1332 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1333 return ret;
1334}
1335
1336/*
1337 * Do all special snapshot related qgroup dirty hack.
1338 *
1339 * Will do all needed qgroup inherit and dirty hack like switch commit
1340 * roots inside one transaction and write all btree into disk, to make
1341 * qgroup works.
1342 */
1343static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1344 struct btrfs_root *src,
1345 struct btrfs_root *parent,
1346 struct btrfs_qgroup_inherit *inherit,
1347 u64 dst_objectid)
1348{
1349 struct btrfs_fs_info *fs_info = src->fs_info;
1350 int ret;
1351
1352 /*
1353 * Save some performance in the case that qgroups are not
1354 * enabled. If this check races with the ioctl, rescan will
1355 * kick in anyway.
1356 */
1357 mutex_lock(&fs_info->qgroup_ioctl_lock);
1358 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1359 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1360 return 0;
1361 }
1362 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1363
1364 /*
1365 * We are going to commit transaction, see btrfs_commit_transaction()
1366 * comment for reason locking tree_log_mutex
1367 */
1368 mutex_lock(&fs_info->tree_log_mutex);
1369
1370 ret = commit_fs_roots(trans, fs_info);
1371 if (ret)
1372 goto out;
1373 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1374 if (ret < 0)
1375 goto out;
1376 ret = btrfs_qgroup_account_extents(trans, fs_info);
1377 if (ret < 0)
1378 goto out;
1379
1380 /* Now qgroup are all updated, we can inherit it to new qgroups */
1381 ret = btrfs_qgroup_inherit(trans, fs_info,
1382 src->root_key.objectid, dst_objectid,
1383 inherit);
1384 if (ret < 0)
1385 goto out;
1386
1387 /*
1388 * Now we do a simplified commit transaction, which will:
1389 * 1) commit all subvolume and extent tree
1390 * To ensure all subvolume and extent tree have a valid
1391 * commit_root to accounting later insert_dir_item()
1392 * 2) write all btree blocks onto disk
1393 * This is to make sure later btree modification will be cowed
1394 * Or commit_root can be populated and cause wrong qgroup numbers
1395 * In this simplified commit, we don't really care about other trees
1396 * like chunk and root tree, as they won't affect qgroup.
1397 * And we don't write super to avoid half committed status.
1398 */
1399 ret = commit_cowonly_roots(trans, fs_info);
1400 if (ret)
1401 goto out;
1402 switch_commit_roots(trans->transaction, fs_info);
1403 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1404 if (ret)
1405 btrfs_handle_fs_error(fs_info, ret,
1406 "Error while writing out transaction for qgroup");
1407
1408out:
1409 mutex_unlock(&fs_info->tree_log_mutex);
1410
1411 /*
1412 * Force parent root to be updated, as we recorded it before so its
1413 * last_trans == cur_transid.
1414 * Or it won't be committed again onto disk after later
1415 * insert_dir_item()
1416 */
1417 if (!ret)
1418 record_root_in_trans(trans, parent, 1);
1419 return ret;
1420}
1421
1422/*
1423 * new snapshots need to be created at a very specific time in the
1424 * transaction commit. This does the actual creation.
1425 *
1426 * Note:
1427 * If the error which may affect the commitment of the current transaction
1428 * happens, we should return the error number. If the error which just affect
1429 * the creation of the pending snapshots, just return 0.
1430 */
1431static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1432 struct btrfs_fs_info *fs_info,
1433 struct btrfs_pending_snapshot *pending)
1434{
1435 struct btrfs_key key;
1436 struct btrfs_root_item *new_root_item;
1437 struct btrfs_root *tree_root = fs_info->tree_root;
1438 struct btrfs_root *root = pending->root;
1439 struct btrfs_root *parent_root;
1440 struct btrfs_block_rsv *rsv;
1441 struct inode *parent_inode;
1442 struct btrfs_path *path;
1443 struct btrfs_dir_item *dir_item;
1444 struct dentry *dentry;
1445 struct extent_buffer *tmp;
1446 struct extent_buffer *old;
1447 struct timespec cur_time;
1448 int ret = 0;
1449 u64 to_reserve = 0;
1450 u64 index = 0;
1451 u64 objectid;
1452 u64 root_flags;
1453 uuid_le new_uuid;
1454
1455 ASSERT(pending->path);
1456 path = pending->path;
1457
1458 ASSERT(pending->root_item);
1459 new_root_item = pending->root_item;
1460
1461 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1462 if (pending->error)
1463 goto no_free_objectid;
1464
1465 /*
1466 * Make qgroup to skip current new snapshot's qgroupid, as it is
1467 * accounted by later btrfs_qgroup_inherit().
1468 */
1469 btrfs_set_skip_qgroup(trans, objectid);
1470
1471 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1472
1473 if (to_reserve > 0) {
1474 pending->error = btrfs_block_rsv_add(root,
1475 &pending->block_rsv,
1476 to_reserve,
1477 BTRFS_RESERVE_NO_FLUSH);
1478 if (pending->error)
1479 goto clear_skip_qgroup;
1480 }
1481
1482 key.objectid = objectid;
1483 key.offset = (u64)-1;
1484 key.type = BTRFS_ROOT_ITEM_KEY;
1485
1486 rsv = trans->block_rsv;
1487 trans->block_rsv = &pending->block_rsv;
1488 trans->bytes_reserved = trans->block_rsv->reserved;
1489 trace_btrfs_space_reservation(fs_info, "transaction",
1490 trans->transid,
1491 trans->bytes_reserved, 1);
1492 dentry = pending->dentry;
1493 parent_inode = pending->dir;
1494 parent_root = BTRFS_I(parent_inode)->root;
1495 record_root_in_trans(trans, parent_root, 0);
1496
1497 cur_time = current_time(parent_inode);
1498
1499 /*
1500 * insert the directory item
1501 */
1502 ret = btrfs_set_inode_index(parent_inode, &index);
1503 BUG_ON(ret); /* -ENOMEM */
1504
1505 /* check if there is a file/dir which has the same name. */
1506 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1507 btrfs_ino(parent_inode),
1508 dentry->d_name.name,
1509 dentry->d_name.len, 0);
1510 if (dir_item != NULL && !IS_ERR(dir_item)) {
1511 pending->error = -EEXIST;
1512 goto dir_item_existed;
1513 } else if (IS_ERR(dir_item)) {
1514 ret = PTR_ERR(dir_item);
1515 btrfs_abort_transaction(trans, ret);
1516 goto fail;
1517 }
1518 btrfs_release_path(path);
1519
1520 /*
1521 * pull in the delayed directory update
1522 * and the delayed inode item
1523 * otherwise we corrupt the FS during
1524 * snapshot
1525 */
1526 ret = btrfs_run_delayed_items(trans, fs_info);
1527 if (ret) { /* Transaction aborted */
1528 btrfs_abort_transaction(trans, ret);
1529 goto fail;
1530 }
1531
1532 record_root_in_trans(trans, root, 0);
1533 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1534 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1535 btrfs_check_and_init_root_item(new_root_item);
1536
1537 root_flags = btrfs_root_flags(new_root_item);
1538 if (pending->readonly)
1539 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1540 else
1541 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1542 btrfs_set_root_flags(new_root_item, root_flags);
1543
1544 btrfs_set_root_generation_v2(new_root_item,
1545 trans->transid);
1546 uuid_le_gen(&new_uuid);
1547 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1548 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1549 BTRFS_UUID_SIZE);
1550 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1551 memset(new_root_item->received_uuid, 0,
1552 sizeof(new_root_item->received_uuid));
1553 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1554 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1555 btrfs_set_root_stransid(new_root_item, 0);
1556 btrfs_set_root_rtransid(new_root_item, 0);
1557 }
1558 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1559 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1560 btrfs_set_root_otransid(new_root_item, trans->transid);
1561
1562 old = btrfs_lock_root_node(root);
1563 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1564 if (ret) {
1565 btrfs_tree_unlock(old);
1566 free_extent_buffer(old);
1567 btrfs_abort_transaction(trans, ret);
1568 goto fail;
1569 }
1570
1571 btrfs_set_lock_blocking(old);
1572
1573 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1574 /* clean up in any case */
1575 btrfs_tree_unlock(old);
1576 free_extent_buffer(old);
1577 if (ret) {
1578 btrfs_abort_transaction(trans, ret);
1579 goto fail;
1580 }
1581 /* see comments in should_cow_block() */
1582 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1583 smp_wmb();
1584
1585 btrfs_set_root_node(new_root_item, tmp);
1586 /* record when the snapshot was created in key.offset */
1587 key.offset = trans->transid;
1588 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1589 btrfs_tree_unlock(tmp);
1590 free_extent_buffer(tmp);
1591 if (ret) {
1592 btrfs_abort_transaction(trans, ret);
1593 goto fail;
1594 }
1595
1596 /*
1597 * insert root back/forward references
1598 */
1599 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1600 parent_root->root_key.objectid,
1601 btrfs_ino(parent_inode), index,
1602 dentry->d_name.name, dentry->d_name.len);
1603 if (ret) {
1604 btrfs_abort_transaction(trans, ret);
1605 goto fail;
1606 }
1607
1608 key.offset = (u64)-1;
1609 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1610 if (IS_ERR(pending->snap)) {
1611 ret = PTR_ERR(pending->snap);
1612 btrfs_abort_transaction(trans, ret);
1613 goto fail;
1614 }
1615
1616 ret = btrfs_reloc_post_snapshot(trans, pending);
1617 if (ret) {
1618 btrfs_abort_transaction(trans, ret);
1619 goto fail;
1620 }
1621
1622 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1623 if (ret) {
1624 btrfs_abort_transaction(trans, ret);
1625 goto fail;
1626 }
1627
1628 /*
1629 * Do special qgroup accounting for snapshot, as we do some qgroup
1630 * snapshot hack to do fast snapshot.
1631 * To co-operate with that hack, we do hack again.
1632 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1633 */
1634 ret = qgroup_account_snapshot(trans, root, parent_root,
1635 pending->inherit, objectid);
1636 if (ret < 0)
1637 goto fail;
1638
1639 ret = btrfs_insert_dir_item(trans, parent_root,
1640 dentry->d_name.name, dentry->d_name.len,
1641 parent_inode, &key,
1642 BTRFS_FT_DIR, index);
1643 /* We have check then name at the beginning, so it is impossible. */
1644 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649
1650 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1651 dentry->d_name.len * 2);
1652 parent_inode->i_mtime = parent_inode->i_ctime =
1653 current_time(parent_inode);
1654 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1655 if (ret) {
1656 btrfs_abort_transaction(trans, ret);
1657 goto fail;
1658 }
1659 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1660 BTRFS_UUID_KEY_SUBVOL, objectid);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1664 }
1665 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1666 ret = btrfs_uuid_tree_add(trans, fs_info,
1667 new_root_item->received_uuid,
1668 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1669 objectid);
1670 if (ret && ret != -EEXIST) {
1671 btrfs_abort_transaction(trans, ret);
1672 goto fail;
1673 }
1674 }
1675
1676 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1677 if (ret) {
1678 btrfs_abort_transaction(trans, ret);
1679 goto fail;
1680 }
1681
1682fail:
1683 pending->error = ret;
1684dir_item_existed:
1685 trans->block_rsv = rsv;
1686 trans->bytes_reserved = 0;
1687clear_skip_qgroup:
1688 btrfs_clear_skip_qgroup(trans);
1689no_free_objectid:
1690 kfree(new_root_item);
1691 pending->root_item = NULL;
1692 btrfs_free_path(path);
1693 pending->path = NULL;
1694
1695 return ret;
1696}
1697
1698/*
1699 * create all the snapshots we've scheduled for creation
1700 */
1701static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1702 struct btrfs_fs_info *fs_info)
1703{
1704 struct btrfs_pending_snapshot *pending, *next;
1705 struct list_head *head = &trans->transaction->pending_snapshots;
1706 int ret = 0;
1707
1708 list_for_each_entry_safe(pending, next, head, list) {
1709 list_del(&pending->list);
1710 ret = create_pending_snapshot(trans, fs_info, pending);
1711 if (ret)
1712 break;
1713 }
1714 return ret;
1715}
1716
1717static void update_super_roots(struct btrfs_fs_info *fs_info)
1718{
1719 struct btrfs_root_item *root_item;
1720 struct btrfs_super_block *super;
1721
1722 super = fs_info->super_copy;
1723
1724 root_item = &fs_info->chunk_root->root_item;
1725 super->chunk_root = root_item->bytenr;
1726 super->chunk_root_generation = root_item->generation;
1727 super->chunk_root_level = root_item->level;
1728
1729 root_item = &fs_info->tree_root->root_item;
1730 super->root = root_item->bytenr;
1731 super->generation = root_item->generation;
1732 super->root_level = root_item->level;
1733 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1734 super->cache_generation = root_item->generation;
1735 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1736 super->uuid_tree_generation = root_item->generation;
1737}
1738
1739int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1740{
1741 struct btrfs_transaction *trans;
1742 int ret = 0;
1743
1744 spin_lock(&info->trans_lock);
1745 trans = info->running_transaction;
1746 if (trans)
1747 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1748 spin_unlock(&info->trans_lock);
1749 return ret;
1750}
1751
1752int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1753{
1754 struct btrfs_transaction *trans;
1755 int ret = 0;
1756
1757 spin_lock(&info->trans_lock);
1758 trans = info->running_transaction;
1759 if (trans)
1760 ret = is_transaction_blocked(trans);
1761 spin_unlock(&info->trans_lock);
1762 return ret;
1763}
1764
1765/*
1766 * wait for the current transaction commit to start and block subsequent
1767 * transaction joins
1768 */
1769static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1770 struct btrfs_transaction *trans)
1771{
1772 wait_event(fs_info->transaction_blocked_wait,
1773 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1774}
1775
1776/*
1777 * wait for the current transaction to start and then become unblocked.
1778 * caller holds ref.
1779 */
1780static void wait_current_trans_commit_start_and_unblock(
1781 struct btrfs_fs_info *fs_info,
1782 struct btrfs_transaction *trans)
1783{
1784 wait_event(fs_info->transaction_wait,
1785 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1786}
1787
1788/*
1789 * commit transactions asynchronously. once btrfs_commit_transaction_async
1790 * returns, any subsequent transaction will not be allowed to join.
1791 */
1792struct btrfs_async_commit {
1793 struct btrfs_trans_handle *newtrans;
1794 struct work_struct work;
1795};
1796
1797static void do_async_commit(struct work_struct *work)
1798{
1799 struct btrfs_async_commit *ac =
1800 container_of(work, struct btrfs_async_commit, work);
1801
1802 /*
1803 * We've got freeze protection passed with the transaction.
1804 * Tell lockdep about it.
1805 */
1806 if (ac->newtrans->type & __TRANS_FREEZABLE)
1807 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1808
1809 current->journal_info = ac->newtrans;
1810
1811 btrfs_commit_transaction(ac->newtrans);
1812 kfree(ac);
1813}
1814
1815int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1816 int wait_for_unblock)
1817{
1818 struct btrfs_fs_info *fs_info = trans->fs_info;
1819 struct btrfs_async_commit *ac;
1820 struct btrfs_transaction *cur_trans;
1821
1822 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1823 if (!ac)
1824 return -ENOMEM;
1825
1826 INIT_WORK(&ac->work, do_async_commit);
1827 ac->newtrans = btrfs_join_transaction(trans->root);
1828 if (IS_ERR(ac->newtrans)) {
1829 int err = PTR_ERR(ac->newtrans);
1830 kfree(ac);
1831 return err;
1832 }
1833
1834 /* take transaction reference */
1835 cur_trans = trans->transaction;
1836 atomic_inc(&cur_trans->use_count);
1837
1838 btrfs_end_transaction(trans);
1839
1840 /*
1841 * Tell lockdep we've released the freeze rwsem, since the
1842 * async commit thread will be the one to unlock it.
1843 */
1844 if (ac->newtrans->type & __TRANS_FREEZABLE)
1845 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1846
1847 schedule_work(&ac->work);
1848
1849 /* wait for transaction to start and unblock */
1850 if (wait_for_unblock)
1851 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1852 else
1853 wait_current_trans_commit_start(fs_info, cur_trans);
1854
1855 if (current->journal_info == trans)
1856 current->journal_info = NULL;
1857
1858 btrfs_put_transaction(cur_trans);
1859 return 0;
1860}
1861
1862
1863static void cleanup_transaction(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root, int err)
1865{
1866 struct btrfs_fs_info *fs_info = root->fs_info;
1867 struct btrfs_transaction *cur_trans = trans->transaction;
1868 DEFINE_WAIT(wait);
1869
1870 WARN_ON(trans->use_count > 1);
1871
1872 btrfs_abort_transaction(trans, err);
1873
1874 spin_lock(&fs_info->trans_lock);
1875
1876 /*
1877 * If the transaction is removed from the list, it means this
1878 * transaction has been committed successfully, so it is impossible
1879 * to call the cleanup function.
1880 */
1881 BUG_ON(list_empty(&cur_trans->list));
1882
1883 list_del_init(&cur_trans->list);
1884 if (cur_trans == fs_info->running_transaction) {
1885 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1886 spin_unlock(&fs_info->trans_lock);
1887 wait_event(cur_trans->writer_wait,
1888 atomic_read(&cur_trans->num_writers) == 1);
1889
1890 spin_lock(&fs_info->trans_lock);
1891 }
1892 spin_unlock(&fs_info->trans_lock);
1893
1894 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1895
1896 spin_lock(&fs_info->trans_lock);
1897 if (cur_trans == fs_info->running_transaction)
1898 fs_info->running_transaction = NULL;
1899 spin_unlock(&fs_info->trans_lock);
1900
1901 if (trans->type & __TRANS_FREEZABLE)
1902 sb_end_intwrite(fs_info->sb);
1903 btrfs_put_transaction(cur_trans);
1904 btrfs_put_transaction(cur_trans);
1905
1906 trace_btrfs_transaction_commit(root);
1907
1908 if (current->journal_info == trans)
1909 current->journal_info = NULL;
1910 btrfs_scrub_cancel(fs_info);
1911
1912 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1913}
1914
1915static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1916{
1917 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1918 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1919 return 0;
1920}
1921
1922static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1923{
1924 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1925 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1926}
1927
1928static inline void
1929btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1930{
1931 wait_event(cur_trans->pending_wait,
1932 atomic_read(&cur_trans->pending_ordered) == 0);
1933}
1934
1935int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1936{
1937 struct btrfs_fs_info *fs_info = trans->fs_info;
1938 struct btrfs_transaction *cur_trans = trans->transaction;
1939 struct btrfs_transaction *prev_trans = NULL;
1940 int ret;
1941
1942 /* Stop the commit early if ->aborted is set */
1943 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1944 ret = cur_trans->aborted;
1945 btrfs_end_transaction(trans);
1946 return ret;
1947 }
1948
1949 /* make a pass through all the delayed refs we have so far
1950 * any runnings procs may add more while we are here
1951 */
1952 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1953 if (ret) {
1954 btrfs_end_transaction(trans);
1955 return ret;
1956 }
1957
1958 btrfs_trans_release_metadata(trans, fs_info);
1959 trans->block_rsv = NULL;
1960
1961 cur_trans = trans->transaction;
1962
1963 /*
1964 * set the flushing flag so procs in this transaction have to
1965 * start sending their work down.
1966 */
1967 cur_trans->delayed_refs.flushing = 1;
1968 smp_wmb();
1969
1970 if (!list_empty(&trans->new_bgs))
1971 btrfs_create_pending_block_groups(trans, fs_info);
1972
1973 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1974 if (ret) {
1975 btrfs_end_transaction(trans);
1976 return ret;
1977 }
1978
1979 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1980 int run_it = 0;
1981
1982 /* this mutex is also taken before trying to set
1983 * block groups readonly. We need to make sure
1984 * that nobody has set a block group readonly
1985 * after a extents from that block group have been
1986 * allocated for cache files. btrfs_set_block_group_ro
1987 * will wait for the transaction to commit if it
1988 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1989 *
1990 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1991 * only one process starts all the block group IO. It wouldn't
1992 * hurt to have more than one go through, but there's no
1993 * real advantage to it either.
1994 */
1995 mutex_lock(&fs_info->ro_block_group_mutex);
1996 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1997 &cur_trans->flags))
1998 run_it = 1;
1999 mutex_unlock(&fs_info->ro_block_group_mutex);
2000
2001 if (run_it)
2002 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2003 }
2004 if (ret) {
2005 btrfs_end_transaction(trans);
2006 return ret;
2007 }
2008
2009 spin_lock(&fs_info->trans_lock);
2010 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2011 spin_unlock(&fs_info->trans_lock);
2012 atomic_inc(&cur_trans->use_count);
2013 ret = btrfs_end_transaction(trans);
2014
2015 wait_for_commit(cur_trans);
2016
2017 if (unlikely(cur_trans->aborted))
2018 ret = cur_trans->aborted;
2019
2020 btrfs_put_transaction(cur_trans);
2021
2022 return ret;
2023 }
2024
2025 cur_trans->state = TRANS_STATE_COMMIT_START;
2026 wake_up(&fs_info->transaction_blocked_wait);
2027
2028 if (cur_trans->list.prev != &fs_info->trans_list) {
2029 prev_trans = list_entry(cur_trans->list.prev,
2030 struct btrfs_transaction, list);
2031 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2032 atomic_inc(&prev_trans->use_count);
2033 spin_unlock(&fs_info->trans_lock);
2034
2035 wait_for_commit(prev_trans);
2036 ret = prev_trans->aborted;
2037
2038 btrfs_put_transaction(prev_trans);
2039 if (ret)
2040 goto cleanup_transaction;
2041 } else {
2042 spin_unlock(&fs_info->trans_lock);
2043 }
2044 } else {
2045 spin_unlock(&fs_info->trans_lock);
2046 }
2047
2048 extwriter_counter_dec(cur_trans, trans->type);
2049
2050 ret = btrfs_start_delalloc_flush(fs_info);
2051 if (ret)
2052 goto cleanup_transaction;
2053
2054 ret = btrfs_run_delayed_items(trans, fs_info);
2055 if (ret)
2056 goto cleanup_transaction;
2057
2058 wait_event(cur_trans->writer_wait,
2059 extwriter_counter_read(cur_trans) == 0);
2060
2061 /* some pending stuffs might be added after the previous flush. */
2062 ret = btrfs_run_delayed_items(trans, fs_info);
2063 if (ret)
2064 goto cleanup_transaction;
2065
2066 btrfs_wait_delalloc_flush(fs_info);
2067
2068 btrfs_wait_pending_ordered(cur_trans);
2069
2070 btrfs_scrub_pause(fs_info);
2071 /*
2072 * Ok now we need to make sure to block out any other joins while we
2073 * commit the transaction. We could have started a join before setting
2074 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2075 */
2076 spin_lock(&fs_info->trans_lock);
2077 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2078 spin_unlock(&fs_info->trans_lock);
2079 wait_event(cur_trans->writer_wait,
2080 atomic_read(&cur_trans->num_writers) == 1);
2081
2082 /* ->aborted might be set after the previous check, so check it */
2083 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2084 ret = cur_trans->aborted;
2085 goto scrub_continue;
2086 }
2087 /*
2088 * the reloc mutex makes sure that we stop
2089 * the balancing code from coming in and moving
2090 * extents around in the middle of the commit
2091 */
2092 mutex_lock(&fs_info->reloc_mutex);
2093
2094 /*
2095 * We needn't worry about the delayed items because we will
2096 * deal with them in create_pending_snapshot(), which is the
2097 * core function of the snapshot creation.
2098 */
2099 ret = create_pending_snapshots(trans, fs_info);
2100 if (ret) {
2101 mutex_unlock(&fs_info->reloc_mutex);
2102 goto scrub_continue;
2103 }
2104
2105 /*
2106 * We insert the dir indexes of the snapshots and update the inode
2107 * of the snapshots' parents after the snapshot creation, so there
2108 * are some delayed items which are not dealt with. Now deal with
2109 * them.
2110 *
2111 * We needn't worry that this operation will corrupt the snapshots,
2112 * because all the tree which are snapshoted will be forced to COW
2113 * the nodes and leaves.
2114 */
2115 ret = btrfs_run_delayed_items(trans, fs_info);
2116 if (ret) {
2117 mutex_unlock(&fs_info->reloc_mutex);
2118 goto scrub_continue;
2119 }
2120
2121 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2122 if (ret) {
2123 mutex_unlock(&fs_info->reloc_mutex);
2124 goto scrub_continue;
2125 }
2126
2127 /* Reocrd old roots for later qgroup accounting */
2128 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2129 if (ret) {
2130 mutex_unlock(&fs_info->reloc_mutex);
2131 goto scrub_continue;
2132 }
2133
2134 /*
2135 * make sure none of the code above managed to slip in a
2136 * delayed item
2137 */
2138 btrfs_assert_delayed_root_empty(fs_info);
2139
2140 WARN_ON(cur_trans != trans->transaction);
2141
2142 /* btrfs_commit_tree_roots is responsible for getting the
2143 * various roots consistent with each other. Every pointer
2144 * in the tree of tree roots has to point to the most up to date
2145 * root for every subvolume and other tree. So, we have to keep
2146 * the tree logging code from jumping in and changing any
2147 * of the trees.
2148 *
2149 * At this point in the commit, there can't be any tree-log
2150 * writers, but a little lower down we drop the trans mutex
2151 * and let new people in. By holding the tree_log_mutex
2152 * from now until after the super is written, we avoid races
2153 * with the tree-log code.
2154 */
2155 mutex_lock(&fs_info->tree_log_mutex);
2156
2157 ret = commit_fs_roots(trans, fs_info);
2158 if (ret) {
2159 mutex_unlock(&fs_info->tree_log_mutex);
2160 mutex_unlock(&fs_info->reloc_mutex);
2161 goto scrub_continue;
2162 }
2163
2164 /*
2165 * Since the transaction is done, we can apply the pending changes
2166 * before the next transaction.
2167 */
2168 btrfs_apply_pending_changes(fs_info);
2169
2170 /* commit_fs_roots gets rid of all the tree log roots, it is now
2171 * safe to free the root of tree log roots
2172 */
2173 btrfs_free_log_root_tree(trans, fs_info);
2174
2175 /*
2176 * Since fs roots are all committed, we can get a quite accurate
2177 * new_roots. So let's do quota accounting.
2178 */
2179 ret = btrfs_qgroup_account_extents(trans, fs_info);
2180 if (ret < 0) {
2181 mutex_unlock(&fs_info->tree_log_mutex);
2182 mutex_unlock(&fs_info->reloc_mutex);
2183 goto scrub_continue;
2184 }
2185
2186 ret = commit_cowonly_roots(trans, fs_info);
2187 if (ret) {
2188 mutex_unlock(&fs_info->tree_log_mutex);
2189 mutex_unlock(&fs_info->reloc_mutex);
2190 goto scrub_continue;
2191 }
2192
2193 /*
2194 * The tasks which save the space cache and inode cache may also
2195 * update ->aborted, check it.
2196 */
2197 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2198 ret = cur_trans->aborted;
2199 mutex_unlock(&fs_info->tree_log_mutex);
2200 mutex_unlock(&fs_info->reloc_mutex);
2201 goto scrub_continue;
2202 }
2203
2204 btrfs_prepare_extent_commit(trans, fs_info);
2205
2206 cur_trans = fs_info->running_transaction;
2207
2208 btrfs_set_root_node(&fs_info->tree_root->root_item,
2209 fs_info->tree_root->node);
2210 list_add_tail(&fs_info->tree_root->dirty_list,
2211 &cur_trans->switch_commits);
2212
2213 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2214 fs_info->chunk_root->node);
2215 list_add_tail(&fs_info->chunk_root->dirty_list,
2216 &cur_trans->switch_commits);
2217
2218 switch_commit_roots(cur_trans, fs_info);
2219
2220 assert_qgroups_uptodate(trans);
2221 ASSERT(list_empty(&cur_trans->dirty_bgs));
2222 ASSERT(list_empty(&cur_trans->io_bgs));
2223 update_super_roots(fs_info);
2224
2225 btrfs_set_super_log_root(fs_info->super_copy, 0);
2226 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2227 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2228 sizeof(*fs_info->super_copy));
2229
2230 btrfs_update_commit_device_size(fs_info);
2231 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2232
2233 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2234 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2235
2236 btrfs_trans_release_chunk_metadata(trans);
2237
2238 spin_lock(&fs_info->trans_lock);
2239 cur_trans->state = TRANS_STATE_UNBLOCKED;
2240 fs_info->running_transaction = NULL;
2241 spin_unlock(&fs_info->trans_lock);
2242 mutex_unlock(&fs_info->reloc_mutex);
2243
2244 wake_up(&fs_info->transaction_wait);
2245
2246 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2247 if (ret) {
2248 btrfs_handle_fs_error(fs_info, ret,
2249 "Error while writing out transaction");
2250 mutex_unlock(&fs_info->tree_log_mutex);
2251 goto scrub_continue;
2252 }
2253
2254 ret = write_ctree_super(trans, fs_info, 0);
2255 if (ret) {
2256 mutex_unlock(&fs_info->tree_log_mutex);
2257 goto scrub_continue;
2258 }
2259
2260 /*
2261 * the super is written, we can safely allow the tree-loggers
2262 * to go about their business
2263 */
2264 mutex_unlock(&fs_info->tree_log_mutex);
2265
2266 btrfs_finish_extent_commit(trans, fs_info);
2267
2268 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2269 btrfs_clear_space_info_full(fs_info);
2270
2271 fs_info->last_trans_committed = cur_trans->transid;
2272 /*
2273 * We needn't acquire the lock here because there is no other task
2274 * which can change it.
2275 */
2276 cur_trans->state = TRANS_STATE_COMPLETED;
2277 wake_up(&cur_trans->commit_wait);
2278
2279 spin_lock(&fs_info->trans_lock);
2280 list_del_init(&cur_trans->list);
2281 spin_unlock(&fs_info->trans_lock);
2282
2283 btrfs_put_transaction(cur_trans);
2284 btrfs_put_transaction(cur_trans);
2285
2286 if (trans->type & __TRANS_FREEZABLE)
2287 sb_end_intwrite(fs_info->sb);
2288
2289 trace_btrfs_transaction_commit(trans->root);
2290
2291 btrfs_scrub_continue(fs_info);
2292
2293 if (current->journal_info == trans)
2294 current->journal_info = NULL;
2295
2296 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2297
2298 /*
2299 * If fs has been frozen, we can not handle delayed iputs, otherwise
2300 * it'll result in deadlock about SB_FREEZE_FS.
2301 */
2302 if (current != fs_info->transaction_kthread &&
2303 current != fs_info->cleaner_kthread && !fs_info->fs_frozen)
2304 btrfs_run_delayed_iputs(fs_info);
2305
2306 return ret;
2307
2308scrub_continue:
2309 btrfs_scrub_continue(fs_info);
2310cleanup_transaction:
2311 btrfs_trans_release_metadata(trans, fs_info);
2312 btrfs_trans_release_chunk_metadata(trans);
2313 trans->block_rsv = NULL;
2314 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2315 if (current->journal_info == trans)
2316 current->journal_info = NULL;
2317 cleanup_transaction(trans, trans->root, ret);
2318
2319 return ret;
2320}
2321
2322/*
2323 * return < 0 if error
2324 * 0 if there are no more dead_roots at the time of call
2325 * 1 there are more to be processed, call me again
2326 *
2327 * The return value indicates there are certainly more snapshots to delete, but
2328 * if there comes a new one during processing, it may return 0. We don't mind,
2329 * because btrfs_commit_super will poke cleaner thread and it will process it a
2330 * few seconds later.
2331 */
2332int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2333{
2334 int ret;
2335 struct btrfs_fs_info *fs_info = root->fs_info;
2336
2337 spin_lock(&fs_info->trans_lock);
2338 if (list_empty(&fs_info->dead_roots)) {
2339 spin_unlock(&fs_info->trans_lock);
2340 return 0;
2341 }
2342 root = list_first_entry(&fs_info->dead_roots,
2343 struct btrfs_root, root_list);
2344 list_del_init(&root->root_list);
2345 spin_unlock(&fs_info->trans_lock);
2346
2347 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2348
2349 btrfs_kill_all_delayed_nodes(root);
2350
2351 if (btrfs_header_backref_rev(root->node) <
2352 BTRFS_MIXED_BACKREF_REV)
2353 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2354 else
2355 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2356
2357 return (ret < 0) ? 0 : 1;
2358}
2359
2360void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2361{
2362 unsigned long prev;
2363 unsigned long bit;
2364
2365 prev = xchg(&fs_info->pending_changes, 0);
2366 if (!prev)
2367 return;
2368
2369 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2370 if (prev & bit)
2371 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2372 prev &= ~bit;
2373
2374 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2375 if (prev & bit)
2376 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2377 prev &= ~bit;
2378
2379 bit = 1 << BTRFS_PENDING_COMMIT;
2380 if (prev & bit)
2381 btrfs_debug(fs_info, "pending commit done");
2382 prev &= ~bit;
2383
2384 if (prev)
2385 btrfs_warn(fs_info,
2386 "unknown pending changes left 0x%lx, ignoring", prev);
2387}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "inode-map.h"
31
32#define BTRFS_ROOT_TRANS_TAG 0
33
34static noinline void put_transaction(struct btrfs_transaction *transaction)
35{
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 BUG_ON(!list_empty(&transaction->list));
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
41 }
42}
43
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
48}
49
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
53static noinline int join_transaction(struct btrfs_root *root, int nofail)
54{
55 struct btrfs_transaction *cur_trans;
56
57 spin_lock(&root->fs_info->trans_lock);
58 if (root->fs_info->trans_no_join) {
59 if (!nofail) {
60 spin_unlock(&root->fs_info->trans_lock);
61 return -EBUSY;
62 }
63 }
64
65 cur_trans = root->fs_info->running_transaction;
66 if (cur_trans) {
67 atomic_inc(&cur_trans->use_count);
68 atomic_inc(&cur_trans->num_writers);
69 cur_trans->num_joined++;
70 spin_unlock(&root->fs_info->trans_lock);
71 return 0;
72 }
73 spin_unlock(&root->fs_info->trans_lock);
74
75 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 if (!cur_trans)
77 return -ENOMEM;
78 spin_lock(&root->fs_info->trans_lock);
79 if (root->fs_info->running_transaction) {
80 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 cur_trans = root->fs_info->running_transaction;
82 atomic_inc(&cur_trans->use_count);
83 atomic_inc(&cur_trans->num_writers);
84 cur_trans->num_joined++;
85 spin_unlock(&root->fs_info->trans_lock);
86 return 0;
87 }
88 atomic_set(&cur_trans->num_writers, 1);
89 cur_trans->num_joined = 0;
90 init_waitqueue_head(&cur_trans->writer_wait);
91 init_waitqueue_head(&cur_trans->commit_wait);
92 cur_trans->in_commit = 0;
93 cur_trans->blocked = 0;
94 /*
95 * One for this trans handle, one so it will live on until we
96 * commit the transaction.
97 */
98 atomic_set(&cur_trans->use_count, 2);
99 cur_trans->commit_done = 0;
100 cur_trans->start_time = get_seconds();
101
102 cur_trans->delayed_refs.root = RB_ROOT;
103 cur_trans->delayed_refs.num_entries = 0;
104 cur_trans->delayed_refs.num_heads_ready = 0;
105 cur_trans->delayed_refs.num_heads = 0;
106 cur_trans->delayed_refs.flushing = 0;
107 cur_trans->delayed_refs.run_delayed_start = 0;
108 spin_lock_init(&cur_trans->commit_lock);
109 spin_lock_init(&cur_trans->delayed_refs.lock);
110
111 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 extent_io_tree_init(&cur_trans->dirty_pages,
114 root->fs_info->btree_inode->i_mapping);
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
119
120 return 0;
121}
122
123/*
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
128 */
129static int record_root_in_trans(struct btrfs_trans_handle *trans,
130 struct btrfs_root *root)
131{
132 if (root->ref_cows && root->last_trans < trans->transid) {
133 WARN_ON(root == root->fs_info->extent_root);
134 WARN_ON(root->commit_root != root->node);
135
136 /*
137 * see below for in_trans_setup usage rules
138 * we have the reloc mutex held now, so there
139 * is only one writer in this function
140 */
141 root->in_trans_setup = 1;
142
143 /* make sure readers find in_trans_setup before
144 * they find our root->last_trans update
145 */
146 smp_wmb();
147
148 spin_lock(&root->fs_info->fs_roots_radix_lock);
149 if (root->last_trans == trans->transid) {
150 spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 return 0;
152 }
153 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 (unsigned long)root->root_key.objectid,
155 BTRFS_ROOT_TRANS_TAG);
156 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157 root->last_trans = trans->transid;
158
159 /* this is pretty tricky. We don't want to
160 * take the relocation lock in btrfs_record_root_in_trans
161 * unless we're really doing the first setup for this root in
162 * this transaction.
163 *
164 * Normally we'd use root->last_trans as a flag to decide
165 * if we want to take the expensive mutex.
166 *
167 * But, we have to set root->last_trans before we
168 * init the relocation root, otherwise, we trip over warnings
169 * in ctree.c. The solution used here is to flag ourselves
170 * with root->in_trans_setup. When this is 1, we're still
171 * fixing up the reloc trees and everyone must wait.
172 *
173 * When this is zero, they can trust root->last_trans and fly
174 * through btrfs_record_root_in_trans without having to take the
175 * lock. smp_wmb() makes sure that all the writes above are
176 * done before we pop in the zero below
177 */
178 btrfs_init_reloc_root(trans, root);
179 smp_wmb();
180 root->in_trans_setup = 0;
181 }
182 return 0;
183}
184
185
186int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 struct btrfs_root *root)
188{
189 if (!root->ref_cows)
190 return 0;
191
192 /*
193 * see record_root_in_trans for comments about in_trans_setup usage
194 * and barriers
195 */
196 smp_rmb();
197 if (root->last_trans == trans->transid &&
198 !root->in_trans_setup)
199 return 0;
200
201 mutex_lock(&root->fs_info->reloc_mutex);
202 record_root_in_trans(trans, root);
203 mutex_unlock(&root->fs_info->reloc_mutex);
204
205 return 0;
206}
207
208/* wait for commit against the current transaction to become unblocked
209 * when this is done, it is safe to start a new transaction, but the current
210 * transaction might not be fully on disk.
211 */
212static void wait_current_trans(struct btrfs_root *root)
213{
214 struct btrfs_transaction *cur_trans;
215
216 spin_lock(&root->fs_info->trans_lock);
217 cur_trans = root->fs_info->running_transaction;
218 if (cur_trans && cur_trans->blocked) {
219 atomic_inc(&cur_trans->use_count);
220 spin_unlock(&root->fs_info->trans_lock);
221
222 wait_event(root->fs_info->transaction_wait,
223 !cur_trans->blocked);
224 put_transaction(cur_trans);
225 } else {
226 spin_unlock(&root->fs_info->trans_lock);
227 }
228}
229
230enum btrfs_trans_type {
231 TRANS_START,
232 TRANS_JOIN,
233 TRANS_USERSPACE,
234 TRANS_JOIN_NOLOCK,
235};
236
237static int may_wait_transaction(struct btrfs_root *root, int type)
238{
239 if (root->fs_info->log_root_recovering)
240 return 0;
241
242 if (type == TRANS_USERSPACE)
243 return 1;
244
245 if (type == TRANS_START &&
246 !atomic_read(&root->fs_info->open_ioctl_trans))
247 return 1;
248
249 return 0;
250}
251
252static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253 u64 num_items, int type)
254{
255 struct btrfs_trans_handle *h;
256 struct btrfs_transaction *cur_trans;
257 u64 num_bytes = 0;
258 int ret;
259
260 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261 return ERR_PTR(-EROFS);
262
263 if (current->journal_info) {
264 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265 h = current->journal_info;
266 h->use_count++;
267 h->orig_rsv = h->block_rsv;
268 h->block_rsv = NULL;
269 goto got_it;
270 }
271
272 /*
273 * Do the reservation before we join the transaction so we can do all
274 * the appropriate flushing if need be.
275 */
276 if (num_items > 0 && root != root->fs_info->chunk_root) {
277 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278 ret = btrfs_block_rsv_add(NULL, root,
279 &root->fs_info->trans_block_rsv,
280 num_bytes);
281 if (ret)
282 return ERR_PTR(ret);
283 }
284again:
285 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286 if (!h)
287 return ERR_PTR(-ENOMEM);
288
289 if (may_wait_transaction(root, type))
290 wait_current_trans(root);
291
292 do {
293 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294 if (ret == -EBUSY)
295 wait_current_trans(root);
296 } while (ret == -EBUSY);
297
298 if (ret < 0) {
299 kmem_cache_free(btrfs_trans_handle_cachep, h);
300 return ERR_PTR(ret);
301 }
302
303 cur_trans = root->fs_info->running_transaction;
304
305 h->transid = cur_trans->transid;
306 h->transaction = cur_trans;
307 h->blocks_used = 0;
308 h->bytes_reserved = 0;
309 h->delayed_ref_updates = 0;
310 h->use_count = 1;
311 h->block_rsv = NULL;
312 h->orig_rsv = NULL;
313
314 smp_mb();
315 if (cur_trans->blocked && may_wait_transaction(root, type)) {
316 btrfs_commit_transaction(h, root);
317 goto again;
318 }
319
320 if (num_bytes) {
321 h->block_rsv = &root->fs_info->trans_block_rsv;
322 h->bytes_reserved = num_bytes;
323 }
324
325got_it:
326 btrfs_record_root_in_trans(h, root);
327
328 if (!current->journal_info && type != TRANS_USERSPACE)
329 current->journal_info = h;
330 return h;
331}
332
333struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334 int num_items)
335{
336 return start_transaction(root, num_items, TRANS_START);
337}
338struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339{
340 return start_transaction(root, 0, TRANS_JOIN);
341}
342
343struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344{
345 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346}
347
348struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349{
350 return start_transaction(root, 0, TRANS_USERSPACE);
351}
352
353/* wait for a transaction commit to be fully complete */
354static noinline void wait_for_commit(struct btrfs_root *root,
355 struct btrfs_transaction *commit)
356{
357 wait_event(commit->commit_wait, commit->commit_done);
358}
359
360int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361{
362 struct btrfs_transaction *cur_trans = NULL, *t;
363 int ret;
364
365 ret = 0;
366 if (transid) {
367 if (transid <= root->fs_info->last_trans_committed)
368 goto out;
369
370 /* find specified transaction */
371 spin_lock(&root->fs_info->trans_lock);
372 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373 if (t->transid == transid) {
374 cur_trans = t;
375 atomic_inc(&cur_trans->use_count);
376 break;
377 }
378 if (t->transid > transid)
379 break;
380 }
381 spin_unlock(&root->fs_info->trans_lock);
382 ret = -EINVAL;
383 if (!cur_trans)
384 goto out; /* bad transid */
385 } else {
386 /* find newest transaction that is committing | committed */
387 spin_lock(&root->fs_info->trans_lock);
388 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389 list) {
390 if (t->in_commit) {
391 if (t->commit_done)
392 break;
393 cur_trans = t;
394 atomic_inc(&cur_trans->use_count);
395 break;
396 }
397 }
398 spin_unlock(&root->fs_info->trans_lock);
399 if (!cur_trans)
400 goto out; /* nothing committing|committed */
401 }
402
403 wait_for_commit(root, cur_trans);
404
405 put_transaction(cur_trans);
406 ret = 0;
407out:
408 return ret;
409}
410
411void btrfs_throttle(struct btrfs_root *root)
412{
413 if (!atomic_read(&root->fs_info->open_ioctl_trans))
414 wait_current_trans(root);
415}
416
417static int should_end_transaction(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root)
419{
420 int ret;
421 ret = btrfs_block_rsv_check(trans, root,
422 &root->fs_info->global_block_rsv, 0, 5);
423 return ret ? 1 : 0;
424}
425
426int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427 struct btrfs_root *root)
428{
429 struct btrfs_transaction *cur_trans = trans->transaction;
430 int updates;
431
432 smp_mb();
433 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
434 return 1;
435
436 updates = trans->delayed_ref_updates;
437 trans->delayed_ref_updates = 0;
438 if (updates)
439 btrfs_run_delayed_refs(trans, root, updates);
440
441 return should_end_transaction(trans, root);
442}
443
444static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
445 struct btrfs_root *root, int throttle, int lock)
446{
447 struct btrfs_transaction *cur_trans = trans->transaction;
448 struct btrfs_fs_info *info = root->fs_info;
449 int count = 0;
450
451 if (--trans->use_count) {
452 trans->block_rsv = trans->orig_rsv;
453 return 0;
454 }
455
456 while (count < 4) {
457 unsigned long cur = trans->delayed_ref_updates;
458 trans->delayed_ref_updates = 0;
459 if (cur &&
460 trans->transaction->delayed_refs.num_heads_ready > 64) {
461 trans->delayed_ref_updates = 0;
462
463 /*
464 * do a full flush if the transaction is trying
465 * to close
466 */
467 if (trans->transaction->delayed_refs.flushing)
468 cur = 0;
469 btrfs_run_delayed_refs(trans, root, cur);
470 } else {
471 break;
472 }
473 count++;
474 }
475
476 btrfs_trans_release_metadata(trans, root);
477
478 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
479 should_end_transaction(trans, root)) {
480 trans->transaction->blocked = 1;
481 smp_wmb();
482 }
483
484 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
485 if (throttle) {
486 /*
487 * We may race with somebody else here so end up having
488 * to call end_transaction on ourselves again, so inc
489 * our use_count.
490 */
491 trans->use_count++;
492 return btrfs_commit_transaction(trans, root);
493 } else {
494 wake_up_process(info->transaction_kthread);
495 }
496 }
497
498 WARN_ON(cur_trans != info->running_transaction);
499 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
500 atomic_dec(&cur_trans->num_writers);
501
502 smp_mb();
503 if (waitqueue_active(&cur_trans->writer_wait))
504 wake_up(&cur_trans->writer_wait);
505 put_transaction(cur_trans);
506
507 if (current->journal_info == trans)
508 current->journal_info = NULL;
509 memset(trans, 0, sizeof(*trans));
510 kmem_cache_free(btrfs_trans_handle_cachep, trans);
511
512 if (throttle)
513 btrfs_run_delayed_iputs(root);
514
515 return 0;
516}
517
518int btrfs_end_transaction(struct btrfs_trans_handle *trans,
519 struct btrfs_root *root)
520{
521 int ret;
522
523 ret = __btrfs_end_transaction(trans, root, 0, 1);
524 if (ret)
525 return ret;
526 return 0;
527}
528
529int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
530 struct btrfs_root *root)
531{
532 int ret;
533
534 ret = __btrfs_end_transaction(trans, root, 1, 1);
535 if (ret)
536 return ret;
537 return 0;
538}
539
540int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
541 struct btrfs_root *root)
542{
543 int ret;
544
545 ret = __btrfs_end_transaction(trans, root, 0, 0);
546 if (ret)
547 return ret;
548 return 0;
549}
550
551int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
552 struct btrfs_root *root)
553{
554 return __btrfs_end_transaction(trans, root, 1, 1);
555}
556
557/*
558 * when btree blocks are allocated, they have some corresponding bits set for
559 * them in one of two extent_io trees. This is used to make sure all of
560 * those extents are sent to disk but does not wait on them
561 */
562int btrfs_write_marked_extents(struct btrfs_root *root,
563 struct extent_io_tree *dirty_pages, int mark)
564{
565 int ret;
566 int err = 0;
567 int werr = 0;
568 struct page *page;
569 struct inode *btree_inode = root->fs_info->btree_inode;
570 u64 start = 0;
571 u64 end;
572 unsigned long index;
573
574 while (1) {
575 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
576 mark);
577 if (ret)
578 break;
579 while (start <= end) {
580 cond_resched();
581
582 index = start >> PAGE_CACHE_SHIFT;
583 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
584 page = find_get_page(btree_inode->i_mapping, index);
585 if (!page)
586 continue;
587
588 btree_lock_page_hook(page);
589 if (!page->mapping) {
590 unlock_page(page);
591 page_cache_release(page);
592 continue;
593 }
594
595 if (PageWriteback(page)) {
596 if (PageDirty(page))
597 wait_on_page_writeback(page);
598 else {
599 unlock_page(page);
600 page_cache_release(page);
601 continue;
602 }
603 }
604 err = write_one_page(page, 0);
605 if (err)
606 werr = err;
607 page_cache_release(page);
608 }
609 }
610 if (err)
611 werr = err;
612 return werr;
613}
614
615/*
616 * when btree blocks are allocated, they have some corresponding bits set for
617 * them in one of two extent_io trees. This is used to make sure all of
618 * those extents are on disk for transaction or log commit. We wait
619 * on all the pages and clear them from the dirty pages state tree
620 */
621int btrfs_wait_marked_extents(struct btrfs_root *root,
622 struct extent_io_tree *dirty_pages, int mark)
623{
624 int ret;
625 int err = 0;
626 int werr = 0;
627 struct page *page;
628 struct inode *btree_inode = root->fs_info->btree_inode;
629 u64 start = 0;
630 u64 end;
631 unsigned long index;
632
633 while (1) {
634 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
635 mark);
636 if (ret)
637 break;
638
639 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
640 while (start <= end) {
641 index = start >> PAGE_CACHE_SHIFT;
642 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
643 page = find_get_page(btree_inode->i_mapping, index);
644 if (!page)
645 continue;
646 if (PageDirty(page)) {
647 btree_lock_page_hook(page);
648 wait_on_page_writeback(page);
649 err = write_one_page(page, 0);
650 if (err)
651 werr = err;
652 }
653 wait_on_page_writeback(page);
654 page_cache_release(page);
655 cond_resched();
656 }
657 }
658 if (err)
659 werr = err;
660 return werr;
661}
662
663/*
664 * when btree blocks are allocated, they have some corresponding bits set for
665 * them in one of two extent_io trees. This is used to make sure all of
666 * those extents are on disk for transaction or log commit
667 */
668int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
669 struct extent_io_tree *dirty_pages, int mark)
670{
671 int ret;
672 int ret2;
673
674 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
675 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
676 return ret || ret2;
677}
678
679int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root)
681{
682 if (!trans || !trans->transaction) {
683 struct inode *btree_inode;
684 btree_inode = root->fs_info->btree_inode;
685 return filemap_write_and_wait(btree_inode->i_mapping);
686 }
687 return btrfs_write_and_wait_marked_extents(root,
688 &trans->transaction->dirty_pages,
689 EXTENT_DIRTY);
690}
691
692/*
693 * this is used to update the root pointer in the tree of tree roots.
694 *
695 * But, in the case of the extent allocation tree, updating the root
696 * pointer may allocate blocks which may change the root of the extent
697 * allocation tree.
698 *
699 * So, this loops and repeats and makes sure the cowonly root didn't
700 * change while the root pointer was being updated in the metadata.
701 */
702static int update_cowonly_root(struct btrfs_trans_handle *trans,
703 struct btrfs_root *root)
704{
705 int ret;
706 u64 old_root_bytenr;
707 u64 old_root_used;
708 struct btrfs_root *tree_root = root->fs_info->tree_root;
709
710 old_root_used = btrfs_root_used(&root->root_item);
711 btrfs_write_dirty_block_groups(trans, root);
712
713 while (1) {
714 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
715 if (old_root_bytenr == root->node->start &&
716 old_root_used == btrfs_root_used(&root->root_item))
717 break;
718
719 btrfs_set_root_node(&root->root_item, root->node);
720 ret = btrfs_update_root(trans, tree_root,
721 &root->root_key,
722 &root->root_item);
723 BUG_ON(ret);
724
725 old_root_used = btrfs_root_used(&root->root_item);
726 ret = btrfs_write_dirty_block_groups(trans, root);
727 BUG_ON(ret);
728 }
729
730 if (root != root->fs_info->extent_root)
731 switch_commit_root(root);
732
733 return 0;
734}
735
736/*
737 * update all the cowonly tree roots on disk
738 */
739static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
740 struct btrfs_root *root)
741{
742 struct btrfs_fs_info *fs_info = root->fs_info;
743 struct list_head *next;
744 struct extent_buffer *eb;
745 int ret;
746
747 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
748 BUG_ON(ret);
749
750 eb = btrfs_lock_root_node(fs_info->tree_root);
751 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
752 btrfs_tree_unlock(eb);
753 free_extent_buffer(eb);
754
755 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
756 BUG_ON(ret);
757
758 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
759 next = fs_info->dirty_cowonly_roots.next;
760 list_del_init(next);
761 root = list_entry(next, struct btrfs_root, dirty_list);
762
763 update_cowonly_root(trans, root);
764 }
765
766 down_write(&fs_info->extent_commit_sem);
767 switch_commit_root(fs_info->extent_root);
768 up_write(&fs_info->extent_commit_sem);
769
770 return 0;
771}
772
773/*
774 * dead roots are old snapshots that need to be deleted. This allocates
775 * a dirty root struct and adds it into the list of dead roots that need to
776 * be deleted
777 */
778int btrfs_add_dead_root(struct btrfs_root *root)
779{
780 spin_lock(&root->fs_info->trans_lock);
781 list_add(&root->root_list, &root->fs_info->dead_roots);
782 spin_unlock(&root->fs_info->trans_lock);
783 return 0;
784}
785
786/*
787 * update all the cowonly tree roots on disk
788 */
789static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
790 struct btrfs_root *root)
791{
792 struct btrfs_root *gang[8];
793 struct btrfs_fs_info *fs_info = root->fs_info;
794 int i;
795 int ret;
796 int err = 0;
797
798 spin_lock(&fs_info->fs_roots_radix_lock);
799 while (1) {
800 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
801 (void **)gang, 0,
802 ARRAY_SIZE(gang),
803 BTRFS_ROOT_TRANS_TAG);
804 if (ret == 0)
805 break;
806 for (i = 0; i < ret; i++) {
807 root = gang[i];
808 radix_tree_tag_clear(&fs_info->fs_roots_radix,
809 (unsigned long)root->root_key.objectid,
810 BTRFS_ROOT_TRANS_TAG);
811 spin_unlock(&fs_info->fs_roots_radix_lock);
812
813 btrfs_free_log(trans, root);
814 btrfs_update_reloc_root(trans, root);
815 btrfs_orphan_commit_root(trans, root);
816
817 btrfs_save_ino_cache(root, trans);
818
819 if (root->commit_root != root->node) {
820 mutex_lock(&root->fs_commit_mutex);
821 switch_commit_root(root);
822 btrfs_unpin_free_ino(root);
823 mutex_unlock(&root->fs_commit_mutex);
824
825 btrfs_set_root_node(&root->root_item,
826 root->node);
827 }
828
829 err = btrfs_update_root(trans, fs_info->tree_root,
830 &root->root_key,
831 &root->root_item);
832 spin_lock(&fs_info->fs_roots_radix_lock);
833 if (err)
834 break;
835 }
836 }
837 spin_unlock(&fs_info->fs_roots_radix_lock);
838 return err;
839}
840
841/*
842 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
843 * otherwise every leaf in the btree is read and defragged.
844 */
845int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
846{
847 struct btrfs_fs_info *info = root->fs_info;
848 struct btrfs_trans_handle *trans;
849 int ret;
850 unsigned long nr;
851
852 if (xchg(&root->defrag_running, 1))
853 return 0;
854
855 while (1) {
856 trans = btrfs_start_transaction(root, 0);
857 if (IS_ERR(trans))
858 return PTR_ERR(trans);
859
860 ret = btrfs_defrag_leaves(trans, root, cacheonly);
861
862 nr = trans->blocks_used;
863 btrfs_end_transaction(trans, root);
864 btrfs_btree_balance_dirty(info->tree_root, nr);
865 cond_resched();
866
867 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
868 break;
869 }
870 root->defrag_running = 0;
871 return ret;
872}
873
874/*
875 * new snapshots need to be created at a very specific time in the
876 * transaction commit. This does the actual creation
877 */
878static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
879 struct btrfs_fs_info *fs_info,
880 struct btrfs_pending_snapshot *pending)
881{
882 struct btrfs_key key;
883 struct btrfs_root_item *new_root_item;
884 struct btrfs_root *tree_root = fs_info->tree_root;
885 struct btrfs_root *root = pending->root;
886 struct btrfs_root *parent_root;
887 struct btrfs_block_rsv *rsv;
888 struct inode *parent_inode;
889 struct dentry *parent;
890 struct dentry *dentry;
891 struct extent_buffer *tmp;
892 struct extent_buffer *old;
893 int ret;
894 u64 to_reserve = 0;
895 u64 index = 0;
896 u64 objectid;
897 u64 root_flags;
898
899 rsv = trans->block_rsv;
900
901 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
902 if (!new_root_item) {
903 pending->error = -ENOMEM;
904 goto fail;
905 }
906
907 ret = btrfs_find_free_objectid(tree_root, &objectid);
908 if (ret) {
909 pending->error = ret;
910 goto fail;
911 }
912
913 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
914 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
915
916 if (to_reserve > 0) {
917 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
918 to_reserve);
919 if (ret) {
920 pending->error = ret;
921 goto fail;
922 }
923 }
924
925 key.objectid = objectid;
926 key.offset = (u64)-1;
927 key.type = BTRFS_ROOT_ITEM_KEY;
928
929 trans->block_rsv = &pending->block_rsv;
930
931 dentry = pending->dentry;
932 parent = dget_parent(dentry);
933 parent_inode = parent->d_inode;
934 parent_root = BTRFS_I(parent_inode)->root;
935 record_root_in_trans(trans, parent_root);
936
937 /*
938 * insert the directory item
939 */
940 ret = btrfs_set_inode_index(parent_inode, &index);
941 BUG_ON(ret);
942 ret = btrfs_insert_dir_item(trans, parent_root,
943 dentry->d_name.name, dentry->d_name.len,
944 parent_inode, &key,
945 BTRFS_FT_DIR, index);
946 BUG_ON(ret);
947
948 btrfs_i_size_write(parent_inode, parent_inode->i_size +
949 dentry->d_name.len * 2);
950 ret = btrfs_update_inode(trans, parent_root, parent_inode);
951 BUG_ON(ret);
952
953 /*
954 * pull in the delayed directory update
955 * and the delayed inode item
956 * otherwise we corrupt the FS during
957 * snapshot
958 */
959 ret = btrfs_run_delayed_items(trans, root);
960 BUG_ON(ret);
961
962 record_root_in_trans(trans, root);
963 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
964 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
965 btrfs_check_and_init_root_item(new_root_item);
966
967 root_flags = btrfs_root_flags(new_root_item);
968 if (pending->readonly)
969 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
970 else
971 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
972 btrfs_set_root_flags(new_root_item, root_flags);
973
974 old = btrfs_lock_root_node(root);
975 btrfs_cow_block(trans, root, old, NULL, 0, &old);
976 btrfs_set_lock_blocking(old);
977
978 btrfs_copy_root(trans, root, old, &tmp, objectid);
979 btrfs_tree_unlock(old);
980 free_extent_buffer(old);
981
982 btrfs_set_root_node(new_root_item, tmp);
983 /* record when the snapshot was created in key.offset */
984 key.offset = trans->transid;
985 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
986 btrfs_tree_unlock(tmp);
987 free_extent_buffer(tmp);
988 BUG_ON(ret);
989
990 /*
991 * insert root back/forward references
992 */
993 ret = btrfs_add_root_ref(trans, tree_root, objectid,
994 parent_root->root_key.objectid,
995 btrfs_ino(parent_inode), index,
996 dentry->d_name.name, dentry->d_name.len);
997 BUG_ON(ret);
998 dput(parent);
999
1000 key.offset = (u64)-1;
1001 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1002 BUG_ON(IS_ERR(pending->snap));
1003
1004 btrfs_reloc_post_snapshot(trans, pending);
1005 btrfs_orphan_post_snapshot(trans, pending);
1006fail:
1007 kfree(new_root_item);
1008 trans->block_rsv = rsv;
1009 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1010 return 0;
1011}
1012
1013/*
1014 * create all the snapshots we've scheduled for creation
1015 */
1016static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1017 struct btrfs_fs_info *fs_info)
1018{
1019 struct btrfs_pending_snapshot *pending;
1020 struct list_head *head = &trans->transaction->pending_snapshots;
1021 int ret;
1022
1023 list_for_each_entry(pending, head, list) {
1024 ret = create_pending_snapshot(trans, fs_info, pending);
1025 BUG_ON(ret);
1026 }
1027 return 0;
1028}
1029
1030static void update_super_roots(struct btrfs_root *root)
1031{
1032 struct btrfs_root_item *root_item;
1033 struct btrfs_super_block *super;
1034
1035 super = &root->fs_info->super_copy;
1036
1037 root_item = &root->fs_info->chunk_root->root_item;
1038 super->chunk_root = root_item->bytenr;
1039 super->chunk_root_generation = root_item->generation;
1040 super->chunk_root_level = root_item->level;
1041
1042 root_item = &root->fs_info->tree_root->root_item;
1043 super->root = root_item->bytenr;
1044 super->generation = root_item->generation;
1045 super->root_level = root_item->level;
1046 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1047 super->cache_generation = root_item->generation;
1048}
1049
1050int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1051{
1052 int ret = 0;
1053 spin_lock(&info->trans_lock);
1054 if (info->running_transaction)
1055 ret = info->running_transaction->in_commit;
1056 spin_unlock(&info->trans_lock);
1057 return ret;
1058}
1059
1060int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1061{
1062 int ret = 0;
1063 spin_lock(&info->trans_lock);
1064 if (info->running_transaction)
1065 ret = info->running_transaction->blocked;
1066 spin_unlock(&info->trans_lock);
1067 return ret;
1068}
1069
1070/*
1071 * wait for the current transaction commit to start and block subsequent
1072 * transaction joins
1073 */
1074static void wait_current_trans_commit_start(struct btrfs_root *root,
1075 struct btrfs_transaction *trans)
1076{
1077 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1078}
1079
1080/*
1081 * wait for the current transaction to start and then become unblocked.
1082 * caller holds ref.
1083 */
1084static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1085 struct btrfs_transaction *trans)
1086{
1087 wait_event(root->fs_info->transaction_wait,
1088 trans->commit_done || (trans->in_commit && !trans->blocked));
1089}
1090
1091/*
1092 * commit transactions asynchronously. once btrfs_commit_transaction_async
1093 * returns, any subsequent transaction will not be allowed to join.
1094 */
1095struct btrfs_async_commit {
1096 struct btrfs_trans_handle *newtrans;
1097 struct btrfs_root *root;
1098 struct delayed_work work;
1099};
1100
1101static void do_async_commit(struct work_struct *work)
1102{
1103 struct btrfs_async_commit *ac =
1104 container_of(work, struct btrfs_async_commit, work.work);
1105
1106 btrfs_commit_transaction(ac->newtrans, ac->root);
1107 kfree(ac);
1108}
1109
1110int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1111 struct btrfs_root *root,
1112 int wait_for_unblock)
1113{
1114 struct btrfs_async_commit *ac;
1115 struct btrfs_transaction *cur_trans;
1116
1117 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1118 if (!ac)
1119 return -ENOMEM;
1120
1121 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1122 ac->root = root;
1123 ac->newtrans = btrfs_join_transaction(root);
1124 if (IS_ERR(ac->newtrans)) {
1125 int err = PTR_ERR(ac->newtrans);
1126 kfree(ac);
1127 return err;
1128 }
1129
1130 /* take transaction reference */
1131 cur_trans = trans->transaction;
1132 atomic_inc(&cur_trans->use_count);
1133
1134 btrfs_end_transaction(trans, root);
1135 schedule_delayed_work(&ac->work, 0);
1136
1137 /* wait for transaction to start and unblock */
1138 if (wait_for_unblock)
1139 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1140 else
1141 wait_current_trans_commit_start(root, cur_trans);
1142
1143 if (current->journal_info == trans)
1144 current->journal_info = NULL;
1145
1146 put_transaction(cur_trans);
1147 return 0;
1148}
1149
1150/*
1151 * btrfs_transaction state sequence:
1152 * in_commit = 0, blocked = 0 (initial)
1153 * in_commit = 1, blocked = 1
1154 * blocked = 0
1155 * commit_done = 1
1156 */
1157int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root)
1159{
1160 unsigned long joined = 0;
1161 struct btrfs_transaction *cur_trans;
1162 struct btrfs_transaction *prev_trans = NULL;
1163 DEFINE_WAIT(wait);
1164 int ret;
1165 int should_grow = 0;
1166 unsigned long now = get_seconds();
1167 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1168
1169 btrfs_run_ordered_operations(root, 0);
1170
1171 /* make a pass through all the delayed refs we have so far
1172 * any runnings procs may add more while we are here
1173 */
1174 ret = btrfs_run_delayed_refs(trans, root, 0);
1175 BUG_ON(ret);
1176
1177 btrfs_trans_release_metadata(trans, root);
1178
1179 cur_trans = trans->transaction;
1180 /*
1181 * set the flushing flag so procs in this transaction have to
1182 * start sending their work down.
1183 */
1184 cur_trans->delayed_refs.flushing = 1;
1185
1186 ret = btrfs_run_delayed_refs(trans, root, 0);
1187 BUG_ON(ret);
1188
1189 spin_lock(&cur_trans->commit_lock);
1190 if (cur_trans->in_commit) {
1191 spin_unlock(&cur_trans->commit_lock);
1192 atomic_inc(&cur_trans->use_count);
1193 btrfs_end_transaction(trans, root);
1194
1195 wait_for_commit(root, cur_trans);
1196
1197 put_transaction(cur_trans);
1198
1199 return 0;
1200 }
1201
1202 trans->transaction->in_commit = 1;
1203 trans->transaction->blocked = 1;
1204 spin_unlock(&cur_trans->commit_lock);
1205 wake_up(&root->fs_info->transaction_blocked_wait);
1206
1207 spin_lock(&root->fs_info->trans_lock);
1208 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1209 prev_trans = list_entry(cur_trans->list.prev,
1210 struct btrfs_transaction, list);
1211 if (!prev_trans->commit_done) {
1212 atomic_inc(&prev_trans->use_count);
1213 spin_unlock(&root->fs_info->trans_lock);
1214
1215 wait_for_commit(root, prev_trans);
1216
1217 put_transaction(prev_trans);
1218 } else {
1219 spin_unlock(&root->fs_info->trans_lock);
1220 }
1221 } else {
1222 spin_unlock(&root->fs_info->trans_lock);
1223 }
1224
1225 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1226 should_grow = 1;
1227
1228 do {
1229 int snap_pending = 0;
1230
1231 joined = cur_trans->num_joined;
1232 if (!list_empty(&trans->transaction->pending_snapshots))
1233 snap_pending = 1;
1234
1235 WARN_ON(cur_trans != trans->transaction);
1236
1237 if (flush_on_commit || snap_pending) {
1238 btrfs_start_delalloc_inodes(root, 1);
1239 ret = btrfs_wait_ordered_extents(root, 0, 1);
1240 BUG_ON(ret);
1241 }
1242
1243 ret = btrfs_run_delayed_items(trans, root);
1244 BUG_ON(ret);
1245
1246 /*
1247 * rename don't use btrfs_join_transaction, so, once we
1248 * set the transaction to blocked above, we aren't going
1249 * to get any new ordered operations. We can safely run
1250 * it here and no for sure that nothing new will be added
1251 * to the list
1252 */
1253 btrfs_run_ordered_operations(root, 1);
1254
1255 prepare_to_wait(&cur_trans->writer_wait, &wait,
1256 TASK_UNINTERRUPTIBLE);
1257
1258 if (atomic_read(&cur_trans->num_writers) > 1)
1259 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1260 else if (should_grow)
1261 schedule_timeout(1);
1262
1263 finish_wait(&cur_trans->writer_wait, &wait);
1264 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1265 (should_grow && cur_trans->num_joined != joined));
1266
1267 /*
1268 * Ok now we need to make sure to block out any other joins while we
1269 * commit the transaction. We could have started a join before setting
1270 * no_join so make sure to wait for num_writers to == 1 again.
1271 */
1272 spin_lock(&root->fs_info->trans_lock);
1273 root->fs_info->trans_no_join = 1;
1274 spin_unlock(&root->fs_info->trans_lock);
1275 wait_event(cur_trans->writer_wait,
1276 atomic_read(&cur_trans->num_writers) == 1);
1277
1278 /*
1279 * the reloc mutex makes sure that we stop
1280 * the balancing code from coming in and moving
1281 * extents around in the middle of the commit
1282 */
1283 mutex_lock(&root->fs_info->reloc_mutex);
1284
1285 ret = btrfs_run_delayed_items(trans, root);
1286 BUG_ON(ret);
1287
1288 ret = create_pending_snapshots(trans, root->fs_info);
1289 BUG_ON(ret);
1290
1291 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1292 BUG_ON(ret);
1293
1294 /*
1295 * make sure none of the code above managed to slip in a
1296 * delayed item
1297 */
1298 btrfs_assert_delayed_root_empty(root);
1299
1300 WARN_ON(cur_trans != trans->transaction);
1301
1302 btrfs_scrub_pause(root);
1303 /* btrfs_commit_tree_roots is responsible for getting the
1304 * various roots consistent with each other. Every pointer
1305 * in the tree of tree roots has to point to the most up to date
1306 * root for every subvolume and other tree. So, we have to keep
1307 * the tree logging code from jumping in and changing any
1308 * of the trees.
1309 *
1310 * At this point in the commit, there can't be any tree-log
1311 * writers, but a little lower down we drop the trans mutex
1312 * and let new people in. By holding the tree_log_mutex
1313 * from now until after the super is written, we avoid races
1314 * with the tree-log code.
1315 */
1316 mutex_lock(&root->fs_info->tree_log_mutex);
1317
1318 ret = commit_fs_roots(trans, root);
1319 BUG_ON(ret);
1320
1321 /* commit_fs_roots gets rid of all the tree log roots, it is now
1322 * safe to free the root of tree log roots
1323 */
1324 btrfs_free_log_root_tree(trans, root->fs_info);
1325
1326 ret = commit_cowonly_roots(trans, root);
1327 BUG_ON(ret);
1328
1329 btrfs_prepare_extent_commit(trans, root);
1330
1331 cur_trans = root->fs_info->running_transaction;
1332
1333 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1334 root->fs_info->tree_root->node);
1335 switch_commit_root(root->fs_info->tree_root);
1336
1337 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1338 root->fs_info->chunk_root->node);
1339 switch_commit_root(root->fs_info->chunk_root);
1340
1341 update_super_roots(root);
1342
1343 if (!root->fs_info->log_root_recovering) {
1344 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1345 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1346 }
1347
1348 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1349 sizeof(root->fs_info->super_copy));
1350
1351 trans->transaction->blocked = 0;
1352 spin_lock(&root->fs_info->trans_lock);
1353 root->fs_info->running_transaction = NULL;
1354 root->fs_info->trans_no_join = 0;
1355 spin_unlock(&root->fs_info->trans_lock);
1356 mutex_unlock(&root->fs_info->reloc_mutex);
1357
1358 wake_up(&root->fs_info->transaction_wait);
1359
1360 ret = btrfs_write_and_wait_transaction(trans, root);
1361 BUG_ON(ret);
1362 write_ctree_super(trans, root, 0);
1363
1364 /*
1365 * the super is written, we can safely allow the tree-loggers
1366 * to go about their business
1367 */
1368 mutex_unlock(&root->fs_info->tree_log_mutex);
1369
1370 btrfs_finish_extent_commit(trans, root);
1371
1372 cur_trans->commit_done = 1;
1373
1374 root->fs_info->last_trans_committed = cur_trans->transid;
1375
1376 wake_up(&cur_trans->commit_wait);
1377
1378 spin_lock(&root->fs_info->trans_lock);
1379 list_del_init(&cur_trans->list);
1380 spin_unlock(&root->fs_info->trans_lock);
1381
1382 put_transaction(cur_trans);
1383 put_transaction(cur_trans);
1384
1385 trace_btrfs_transaction_commit(root);
1386
1387 btrfs_scrub_continue(root);
1388
1389 if (current->journal_info == trans)
1390 current->journal_info = NULL;
1391
1392 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1393
1394 if (current != root->fs_info->transaction_kthread)
1395 btrfs_run_delayed_iputs(root);
1396
1397 return ret;
1398}
1399
1400/*
1401 * interface function to delete all the snapshots we have scheduled for deletion
1402 */
1403int btrfs_clean_old_snapshots(struct btrfs_root *root)
1404{
1405 LIST_HEAD(list);
1406 struct btrfs_fs_info *fs_info = root->fs_info;
1407
1408 spin_lock(&fs_info->trans_lock);
1409 list_splice_init(&fs_info->dead_roots, &list);
1410 spin_unlock(&fs_info->trans_lock);
1411
1412 while (!list_empty(&list)) {
1413 root = list_entry(list.next, struct btrfs_root, root_list);
1414 list_del(&root->root_list);
1415
1416 btrfs_kill_all_delayed_nodes(root);
1417
1418 if (btrfs_header_backref_rev(root->node) <
1419 BTRFS_MIXED_BACKREF_REV)
1420 btrfs_drop_snapshot(root, NULL, 0);
1421 else
1422 btrfs_drop_snapshot(root, NULL, 1);
1423 }
1424 return 0;
1425}