Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34#include "qgroup.h"
35
36#define BTRFS_ROOT_TRANS_TAG 0
37
38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59};
60
61void btrfs_put_transaction(struct btrfs_transaction *transaction)
62{
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kmem_cache_free(btrfs_transaction_cachep, transaction);
97 }
98}
99
100static void clear_btree_io_tree(struct extent_io_tree *tree)
101{
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127}
128
129static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131{
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157}
158
159static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161{
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164}
165
166static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168{
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171}
172
173static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175{
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177}
178
179static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180{
181 return atomic_read(&trans->num_extwriters);
182}
183
184/*
185 * either allocate a new transaction or hop into the existing one
186 */
187static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
189{
190 struct btrfs_transaction *cur_trans;
191
192 spin_lock(&fs_info->trans_lock);
193loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 atomic_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 atomic_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305}
306
307/*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316{
317 struct btrfs_fs_info *fs_info = root->fs_info;
318
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
323
324 /*
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
328 */
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
333 */
334 smp_wmb();
335
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
340 }
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
346
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
351 *
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
354 *
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
360 *
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
365 */
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 }
370 return 0;
371}
372
373
374void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376{
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
379
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
384
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
391}
392
393int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
395{
396 struct btrfs_fs_info *fs_info = root->fs_info;
397
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
400
401 /*
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
404 */
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
409
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
413
414 return 0;
415}
416
417static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418{
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
422}
423
424/* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
427 */
428static void wait_current_trans(struct btrfs_fs_info *fs_info)
429{
430 struct btrfs_transaction *cur_trans;
431
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 atomic_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
437
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
444 }
445}
446
447static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448{
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
451
452 if (type == TRANS_USERSPACE)
453 return 1;
454
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
458
459 return 0;
460}
461
462static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463{
464 struct btrfs_fs_info *fs_info = root->fs_info;
465
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
471
472 return true;
473}
474
475static struct btrfs_trans_handle *
476start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush)
478{
479 struct btrfs_fs_info *fs_info = root->fs_info;
480
481 struct btrfs_trans_handle *h;
482 struct btrfs_transaction *cur_trans;
483 u64 num_bytes = 0;
484 u64 qgroup_reserved = 0;
485 bool reloc_reserved = false;
486 int ret;
487
488 /* Send isn't supposed to start transactions. */
489 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
490
491 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
492 return ERR_PTR(-EROFS);
493
494 if (current->journal_info) {
495 WARN_ON(type & TRANS_EXTWRITERS);
496 h = current->journal_info;
497 h->use_count++;
498 WARN_ON(h->use_count > 2);
499 h->orig_rsv = h->block_rsv;
500 h->block_rsv = NULL;
501 goto got_it;
502 }
503
504 /*
505 * Do the reservation before we join the transaction so we can do all
506 * the appropriate flushing if need be.
507 */
508 if (num_items > 0 && root != fs_info->chunk_root) {
509 qgroup_reserved = num_items * fs_info->nodesize;
510 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
511 if (ret)
512 return ERR_PTR(ret);
513
514 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
515 /*
516 * Do the reservation for the relocation root creation
517 */
518 if (need_reserve_reloc_root(root)) {
519 num_bytes += fs_info->nodesize;
520 reloc_reserved = true;
521 }
522
523 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
524 num_bytes, flush);
525 if (ret)
526 goto reserve_fail;
527 }
528again:
529 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
530 if (!h) {
531 ret = -ENOMEM;
532 goto alloc_fail;
533 }
534
535 /*
536 * If we are JOIN_NOLOCK we're already committing a transaction and
537 * waiting on this guy, so we don't need to do the sb_start_intwrite
538 * because we're already holding a ref. We need this because we could
539 * have raced in and did an fsync() on a file which can kick a commit
540 * and then we deadlock with somebody doing a freeze.
541 *
542 * If we are ATTACH, it means we just want to catch the current
543 * transaction and commit it, so we needn't do sb_start_intwrite().
544 */
545 if (type & __TRANS_FREEZABLE)
546 sb_start_intwrite(fs_info->sb);
547
548 if (may_wait_transaction(fs_info, type))
549 wait_current_trans(fs_info);
550
551 do {
552 ret = join_transaction(fs_info, type);
553 if (ret == -EBUSY) {
554 wait_current_trans(fs_info);
555 if (unlikely(type == TRANS_ATTACH))
556 ret = -ENOENT;
557 }
558 } while (ret == -EBUSY);
559
560 if (ret < 0)
561 goto join_fail;
562
563 cur_trans = fs_info->running_transaction;
564
565 h->transid = cur_trans->transid;
566 h->transaction = cur_trans;
567 h->root = root;
568 h->use_count = 1;
569 h->fs_info = root->fs_info;
570
571 h->type = type;
572 h->can_flush_pending_bgs = true;
573 INIT_LIST_HEAD(&h->qgroup_ref_list);
574 INIT_LIST_HEAD(&h->new_bgs);
575
576 smp_mb();
577 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
578 may_wait_transaction(fs_info, type)) {
579 current->journal_info = h;
580 btrfs_commit_transaction(h);
581 goto again;
582 }
583
584 if (num_bytes) {
585 trace_btrfs_space_reservation(fs_info, "transaction",
586 h->transid, num_bytes, 1);
587 h->block_rsv = &fs_info->trans_block_rsv;
588 h->bytes_reserved = num_bytes;
589 h->reloc_reserved = reloc_reserved;
590 }
591
592got_it:
593 btrfs_record_root_in_trans(h, root);
594
595 if (!current->journal_info && type != TRANS_USERSPACE)
596 current->journal_info = h;
597 return h;
598
599join_fail:
600 if (type & __TRANS_FREEZABLE)
601 sb_end_intwrite(fs_info->sb);
602 kmem_cache_free(btrfs_trans_handle_cachep, h);
603alloc_fail:
604 if (num_bytes)
605 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
606 num_bytes);
607reserve_fail:
608 btrfs_qgroup_free_meta(root, qgroup_reserved);
609 return ERR_PTR(ret);
610}
611
612struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
613 unsigned int num_items)
614{
615 return start_transaction(root, num_items, TRANS_START,
616 BTRFS_RESERVE_FLUSH_ALL);
617}
618struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
619 struct btrfs_root *root,
620 unsigned int num_items,
621 int min_factor)
622{
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 struct btrfs_trans_handle *trans;
625 u64 num_bytes;
626 int ret;
627
628 trans = btrfs_start_transaction(root, num_items);
629 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
630 return trans;
631
632 trans = btrfs_start_transaction(root, 0);
633 if (IS_ERR(trans))
634 return trans;
635
636 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
637 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
638 num_bytes, min_factor);
639 if (ret) {
640 btrfs_end_transaction(trans);
641 return ERR_PTR(ret);
642 }
643
644 trans->block_rsv = &fs_info->trans_block_rsv;
645 trans->bytes_reserved = num_bytes;
646 trace_btrfs_space_reservation(fs_info, "transaction",
647 trans->transid, num_bytes, 1);
648
649 return trans;
650}
651
652struct btrfs_trans_handle *btrfs_start_transaction_lflush(
653 struct btrfs_root *root,
654 unsigned int num_items)
655{
656 return start_transaction(root, num_items, TRANS_START,
657 BTRFS_RESERVE_FLUSH_LIMIT);
658}
659
660struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
661{
662 return start_transaction(root, 0, TRANS_JOIN,
663 BTRFS_RESERVE_NO_FLUSH);
664}
665
666struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
667{
668 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
669 BTRFS_RESERVE_NO_FLUSH);
670}
671
672struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
673{
674 return start_transaction(root, 0, TRANS_USERSPACE,
675 BTRFS_RESERVE_NO_FLUSH);
676}
677
678/*
679 * btrfs_attach_transaction() - catch the running transaction
680 *
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
683 *
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
688 * invoke
689 * btrfs_attach_transaction_barrier()
690 */
691struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
692{
693 return start_transaction(root, 0, TRANS_ATTACH,
694 BTRFS_RESERVE_NO_FLUSH);
695}
696
697/*
698 * btrfs_attach_transaction_barrier() - catch the running transaction
699 *
700 * It is similar to the above function, the differentia is this one
701 * will wait for all the inactive transactions until they fully
702 * complete.
703 */
704struct btrfs_trans_handle *
705btrfs_attach_transaction_barrier(struct btrfs_root *root)
706{
707 struct btrfs_trans_handle *trans;
708
709 trans = start_transaction(root, 0, TRANS_ATTACH,
710 BTRFS_RESERVE_NO_FLUSH);
711 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
712 btrfs_wait_for_commit(root->fs_info, 0);
713
714 return trans;
715}
716
717/* wait for a transaction commit to be fully complete */
718static noinline void wait_for_commit(struct btrfs_transaction *commit)
719{
720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
721}
722
723int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
724{
725 struct btrfs_transaction *cur_trans = NULL, *t;
726 int ret = 0;
727
728 if (transid) {
729 if (transid <= fs_info->last_trans_committed)
730 goto out;
731
732 /* find specified transaction */
733 spin_lock(&fs_info->trans_lock);
734 list_for_each_entry(t, &fs_info->trans_list, list) {
735 if (t->transid == transid) {
736 cur_trans = t;
737 atomic_inc(&cur_trans->use_count);
738 ret = 0;
739 break;
740 }
741 if (t->transid > transid) {
742 ret = 0;
743 break;
744 }
745 }
746 spin_unlock(&fs_info->trans_lock);
747
748 /*
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
751 */
752 if (!cur_trans) {
753 if (transid > fs_info->last_trans_committed)
754 ret = -EINVAL;
755 goto out;
756 }
757 } else {
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info->trans_lock);
760 list_for_each_entry_reverse(t, &fs_info->trans_list,
761 list) {
762 if (t->state >= TRANS_STATE_COMMIT_START) {
763 if (t->state == TRANS_STATE_COMPLETED)
764 break;
765 cur_trans = t;
766 atomic_inc(&cur_trans->use_count);
767 break;
768 }
769 }
770 spin_unlock(&fs_info->trans_lock);
771 if (!cur_trans)
772 goto out; /* nothing committing|committed */
773 }
774
775 wait_for_commit(cur_trans);
776 btrfs_put_transaction(cur_trans);
777out:
778 return ret;
779}
780
781void btrfs_throttle(struct btrfs_fs_info *fs_info)
782{
783 if (!atomic_read(&fs_info->open_ioctl_trans))
784 wait_current_trans(fs_info);
785}
786
787static int should_end_transaction(struct btrfs_trans_handle *trans)
788{
789 struct btrfs_fs_info *fs_info = trans->fs_info;
790
791 if (fs_info->global_block_rsv.space_info->full &&
792 btrfs_check_space_for_delayed_refs(trans, fs_info))
793 return 1;
794
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796}
797
798int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
799{
800 struct btrfs_transaction *cur_trans = trans->transaction;
801 struct btrfs_fs_info *fs_info = trans->fs_info;
802 int updates;
803 int err;
804
805 smp_mb();
806 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
807 cur_trans->delayed_refs.flushing)
808 return 1;
809
810 updates = trans->delayed_ref_updates;
811 trans->delayed_ref_updates = 0;
812 if (updates) {
813 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
814 if (err) /* Error code will also eval true */
815 return err;
816 }
817
818 return should_end_transaction(trans);
819}
820
821static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
822 int throttle)
823{
824 struct btrfs_fs_info *info = trans->fs_info;
825 struct btrfs_transaction *cur_trans = trans->transaction;
826 u64 transid = trans->transid;
827 unsigned long cur = trans->delayed_ref_updates;
828 int lock = (trans->type != TRANS_JOIN_NOLOCK);
829 int err = 0;
830 int must_run_delayed_refs = 0;
831
832 if (trans->use_count > 1) {
833 trans->use_count--;
834 trans->block_rsv = trans->orig_rsv;
835 return 0;
836 }
837
838 btrfs_trans_release_metadata(trans, info);
839 trans->block_rsv = NULL;
840
841 if (!list_empty(&trans->new_bgs))
842 btrfs_create_pending_block_groups(trans, info);
843
844 trans->delayed_ref_updates = 0;
845 if (!trans->sync) {
846 must_run_delayed_refs =
847 btrfs_should_throttle_delayed_refs(trans, info);
848 cur = max_t(unsigned long, cur, 32);
849
850 /*
851 * don't make the caller wait if they are from a NOLOCK
852 * or ATTACH transaction, it will deadlock with commit
853 */
854 if (must_run_delayed_refs == 1 &&
855 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
856 must_run_delayed_refs = 2;
857 }
858
859 btrfs_trans_release_metadata(trans, info);
860 trans->block_rsv = NULL;
861
862 if (!list_empty(&trans->new_bgs))
863 btrfs_create_pending_block_groups(trans, info);
864
865 btrfs_trans_release_chunk_metadata(trans);
866
867 if (lock && !atomic_read(&info->open_ioctl_trans) &&
868 should_end_transaction(trans) &&
869 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
870 spin_lock(&info->trans_lock);
871 if (cur_trans->state == TRANS_STATE_RUNNING)
872 cur_trans->state = TRANS_STATE_BLOCKED;
873 spin_unlock(&info->trans_lock);
874 }
875
876 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
877 if (throttle)
878 return btrfs_commit_transaction(trans);
879 else
880 wake_up_process(info->transaction_kthread);
881 }
882
883 if (trans->type & __TRANS_FREEZABLE)
884 sb_end_intwrite(info->sb);
885
886 WARN_ON(cur_trans != info->running_transaction);
887 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
888 atomic_dec(&cur_trans->num_writers);
889 extwriter_counter_dec(cur_trans, trans->type);
890
891 /*
892 * Make sure counter is updated before we wake up waiters.
893 */
894 smp_mb();
895 if (waitqueue_active(&cur_trans->writer_wait))
896 wake_up(&cur_trans->writer_wait);
897 btrfs_put_transaction(cur_trans);
898
899 if (current->journal_info == trans)
900 current->journal_info = NULL;
901
902 if (throttle)
903 btrfs_run_delayed_iputs(info);
904
905 if (trans->aborted ||
906 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
907 wake_up_process(info->transaction_kthread);
908 err = -EIO;
909 }
910 assert_qgroups_uptodate(trans);
911
912 kmem_cache_free(btrfs_trans_handle_cachep, trans);
913 if (must_run_delayed_refs) {
914 btrfs_async_run_delayed_refs(info, cur, transid,
915 must_run_delayed_refs == 1);
916 }
917 return err;
918}
919
920int btrfs_end_transaction(struct btrfs_trans_handle *trans)
921{
922 return __btrfs_end_transaction(trans, 0);
923}
924
925int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
926{
927 return __btrfs_end_transaction(trans, 1);
928}
929
930/*
931 * when btree blocks are allocated, they have some corresponding bits set for
932 * them in one of two extent_io trees. This is used to make sure all of
933 * those extents are sent to disk but does not wait on them
934 */
935int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
936 struct extent_io_tree *dirty_pages, int mark)
937{
938 int err = 0;
939 int werr = 0;
940 struct address_space *mapping = fs_info->btree_inode->i_mapping;
941 struct extent_state *cached_state = NULL;
942 u64 start = 0;
943 u64 end;
944
945 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
946 mark, &cached_state)) {
947 bool wait_writeback = false;
948
949 err = convert_extent_bit(dirty_pages, start, end,
950 EXTENT_NEED_WAIT,
951 mark, &cached_state);
952 /*
953 * convert_extent_bit can return -ENOMEM, which is most of the
954 * time a temporary error. So when it happens, ignore the error
955 * and wait for writeback of this range to finish - because we
956 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
957 * to __btrfs_wait_marked_extents() would not know that
958 * writeback for this range started and therefore wouldn't
959 * wait for it to finish - we don't want to commit a
960 * superblock that points to btree nodes/leafs for which
961 * writeback hasn't finished yet (and without errors).
962 * We cleanup any entries left in the io tree when committing
963 * the transaction (through clear_btree_io_tree()).
964 */
965 if (err == -ENOMEM) {
966 err = 0;
967 wait_writeback = true;
968 }
969 if (!err)
970 err = filemap_fdatawrite_range(mapping, start, end);
971 if (err)
972 werr = err;
973 else if (wait_writeback)
974 werr = filemap_fdatawait_range(mapping, start, end);
975 free_extent_state(cached_state);
976 cached_state = NULL;
977 cond_resched();
978 start = end + 1;
979 }
980 return werr;
981}
982
983/*
984 * when btree blocks are allocated, they have some corresponding bits set for
985 * them in one of two extent_io trees. This is used to make sure all of
986 * those extents are on disk for transaction or log commit. We wait
987 * on all the pages and clear them from the dirty pages state tree
988 */
989static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
990 struct extent_io_tree *dirty_pages)
991{
992 int err = 0;
993 int werr = 0;
994 struct address_space *mapping = fs_info->btree_inode->i_mapping;
995 struct extent_state *cached_state = NULL;
996 u64 start = 0;
997 u64 end;
998
999 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1000 EXTENT_NEED_WAIT, &cached_state)) {
1001 /*
1002 * Ignore -ENOMEM errors returned by clear_extent_bit().
1003 * When committing the transaction, we'll remove any entries
1004 * left in the io tree. For a log commit, we don't remove them
1005 * after committing the log because the tree can be accessed
1006 * concurrently - we do it only at transaction commit time when
1007 * it's safe to do it (through clear_btree_io_tree()).
1008 */
1009 err = clear_extent_bit(dirty_pages, start, end,
1010 EXTENT_NEED_WAIT,
1011 0, 0, &cached_state, GFP_NOFS);
1012 if (err == -ENOMEM)
1013 err = 0;
1014 if (!err)
1015 err = filemap_fdatawait_range(mapping, start, end);
1016 if (err)
1017 werr = err;
1018 free_extent_state(cached_state);
1019 cached_state = NULL;
1020 cond_resched();
1021 start = end + 1;
1022 }
1023 if (err)
1024 werr = err;
1025 return werr;
1026}
1027
1028int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1029 struct extent_io_tree *dirty_pages)
1030{
1031 bool errors = false;
1032 int err;
1033
1034 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1035 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1036 errors = true;
1037
1038 if (errors && !err)
1039 err = -EIO;
1040 return err;
1041}
1042
1043int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1044{
1045 struct btrfs_fs_info *fs_info = log_root->fs_info;
1046 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1047 bool errors = false;
1048 int err;
1049
1050 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1051
1052 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1053 if ((mark & EXTENT_DIRTY) &&
1054 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1055 errors = true;
1056
1057 if ((mark & EXTENT_NEW) &&
1058 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1059 errors = true;
1060
1061 if (errors && !err)
1062 err = -EIO;
1063 return err;
1064}
1065
1066/*
1067 * when btree blocks are allocated, they have some corresponding bits set for
1068 * them in one of two extent_io trees. This is used to make sure all of
1069 * those extents are on disk for transaction or log commit
1070 */
1071static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1072 struct extent_io_tree *dirty_pages, int mark)
1073{
1074 int ret;
1075 int ret2;
1076 struct blk_plug plug;
1077
1078 blk_start_plug(&plug);
1079 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1080 blk_finish_plug(&plug);
1081 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1082
1083 if (ret)
1084 return ret;
1085 if (ret2)
1086 return ret2;
1087 return 0;
1088}
1089
1090static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1091 struct btrfs_fs_info *fs_info)
1092{
1093 int ret;
1094
1095 ret = btrfs_write_and_wait_marked_extents(fs_info,
1096 &trans->transaction->dirty_pages,
1097 EXTENT_DIRTY);
1098 clear_btree_io_tree(&trans->transaction->dirty_pages);
1099
1100 return ret;
1101}
1102
1103/*
1104 * this is used to update the root pointer in the tree of tree roots.
1105 *
1106 * But, in the case of the extent allocation tree, updating the root
1107 * pointer may allocate blocks which may change the root of the extent
1108 * allocation tree.
1109 *
1110 * So, this loops and repeats and makes sure the cowonly root didn't
1111 * change while the root pointer was being updated in the metadata.
1112 */
1113static int update_cowonly_root(struct btrfs_trans_handle *trans,
1114 struct btrfs_root *root)
1115{
1116 int ret;
1117 u64 old_root_bytenr;
1118 u64 old_root_used;
1119 struct btrfs_fs_info *fs_info = root->fs_info;
1120 struct btrfs_root *tree_root = fs_info->tree_root;
1121
1122 old_root_used = btrfs_root_used(&root->root_item);
1123
1124 while (1) {
1125 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1126 if (old_root_bytenr == root->node->start &&
1127 old_root_used == btrfs_root_used(&root->root_item))
1128 break;
1129
1130 btrfs_set_root_node(&root->root_item, root->node);
1131 ret = btrfs_update_root(trans, tree_root,
1132 &root->root_key,
1133 &root->root_item);
1134 if (ret)
1135 return ret;
1136
1137 old_root_used = btrfs_root_used(&root->root_item);
1138 }
1139
1140 return 0;
1141}
1142
1143/*
1144 * update all the cowonly tree roots on disk
1145 *
1146 * The error handling in this function may not be obvious. Any of the
1147 * failures will cause the file system to go offline. We still need
1148 * to clean up the delayed refs.
1149 */
1150static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1151 struct btrfs_fs_info *fs_info)
1152{
1153 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1154 struct list_head *io_bgs = &trans->transaction->io_bgs;
1155 struct list_head *next;
1156 struct extent_buffer *eb;
1157 int ret;
1158
1159 eb = btrfs_lock_root_node(fs_info->tree_root);
1160 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1161 0, &eb);
1162 btrfs_tree_unlock(eb);
1163 free_extent_buffer(eb);
1164
1165 if (ret)
1166 return ret;
1167
1168 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1169 if (ret)
1170 return ret;
1171
1172 ret = btrfs_run_dev_stats(trans, fs_info);
1173 if (ret)
1174 return ret;
1175 ret = btrfs_run_dev_replace(trans, fs_info);
1176 if (ret)
1177 return ret;
1178 ret = btrfs_run_qgroups(trans, fs_info);
1179 if (ret)
1180 return ret;
1181
1182 ret = btrfs_setup_space_cache(trans, fs_info);
1183 if (ret)
1184 return ret;
1185
1186 /* run_qgroups might have added some more refs */
1187 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1188 if (ret)
1189 return ret;
1190again:
1191 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1192 struct btrfs_root *root;
1193 next = fs_info->dirty_cowonly_roots.next;
1194 list_del_init(next);
1195 root = list_entry(next, struct btrfs_root, dirty_list);
1196 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1197
1198 if (root != fs_info->extent_root)
1199 list_add_tail(&root->dirty_list,
1200 &trans->transaction->switch_commits);
1201 ret = update_cowonly_root(trans, root);
1202 if (ret)
1203 return ret;
1204 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1205 if (ret)
1206 return ret;
1207 }
1208
1209 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1210 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1211 if (ret)
1212 return ret;
1213 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1214 if (ret)
1215 return ret;
1216 }
1217
1218 if (!list_empty(&fs_info->dirty_cowonly_roots))
1219 goto again;
1220
1221 list_add_tail(&fs_info->extent_root->dirty_list,
1222 &trans->transaction->switch_commits);
1223 btrfs_after_dev_replace_commit(fs_info);
1224
1225 return 0;
1226}
1227
1228/*
1229 * dead roots are old snapshots that need to be deleted. This allocates
1230 * a dirty root struct and adds it into the list of dead roots that need to
1231 * be deleted
1232 */
1233void btrfs_add_dead_root(struct btrfs_root *root)
1234{
1235 struct btrfs_fs_info *fs_info = root->fs_info;
1236
1237 spin_lock(&fs_info->trans_lock);
1238 if (list_empty(&root->root_list))
1239 list_add_tail(&root->root_list, &fs_info->dead_roots);
1240 spin_unlock(&fs_info->trans_lock);
1241}
1242
1243/*
1244 * update all the cowonly tree roots on disk
1245 */
1246static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1247 struct btrfs_fs_info *fs_info)
1248{
1249 struct btrfs_root *gang[8];
1250 int i;
1251 int ret;
1252 int err = 0;
1253
1254 spin_lock(&fs_info->fs_roots_radix_lock);
1255 while (1) {
1256 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1257 (void **)gang, 0,
1258 ARRAY_SIZE(gang),
1259 BTRFS_ROOT_TRANS_TAG);
1260 if (ret == 0)
1261 break;
1262 for (i = 0; i < ret; i++) {
1263 struct btrfs_root *root = gang[i];
1264 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1265 (unsigned long)root->root_key.objectid,
1266 BTRFS_ROOT_TRANS_TAG);
1267 spin_unlock(&fs_info->fs_roots_radix_lock);
1268
1269 btrfs_free_log(trans, root);
1270 btrfs_update_reloc_root(trans, root);
1271 btrfs_orphan_commit_root(trans, root);
1272
1273 btrfs_save_ino_cache(root, trans);
1274
1275 /* see comments in should_cow_block() */
1276 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1277 smp_mb__after_atomic();
1278
1279 if (root->commit_root != root->node) {
1280 list_add_tail(&root->dirty_list,
1281 &trans->transaction->switch_commits);
1282 btrfs_set_root_node(&root->root_item,
1283 root->node);
1284 }
1285
1286 err = btrfs_update_root(trans, fs_info->tree_root,
1287 &root->root_key,
1288 &root->root_item);
1289 spin_lock(&fs_info->fs_roots_radix_lock);
1290 if (err)
1291 break;
1292 btrfs_qgroup_free_meta_all(root);
1293 }
1294 }
1295 spin_unlock(&fs_info->fs_roots_radix_lock);
1296 return err;
1297}
1298
1299/*
1300 * defrag a given btree.
1301 * Every leaf in the btree is read and defragged.
1302 */
1303int btrfs_defrag_root(struct btrfs_root *root)
1304{
1305 struct btrfs_fs_info *info = root->fs_info;
1306 struct btrfs_trans_handle *trans;
1307 int ret;
1308
1309 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1310 return 0;
1311
1312 while (1) {
1313 trans = btrfs_start_transaction(root, 0);
1314 if (IS_ERR(trans))
1315 return PTR_ERR(trans);
1316
1317 ret = btrfs_defrag_leaves(trans, root);
1318
1319 btrfs_end_transaction(trans);
1320 btrfs_btree_balance_dirty(info);
1321 cond_resched();
1322
1323 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1324 break;
1325
1326 if (btrfs_defrag_cancelled(info)) {
1327 btrfs_debug(info, "defrag_root cancelled");
1328 ret = -EAGAIN;
1329 break;
1330 }
1331 }
1332 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1333 return ret;
1334}
1335
1336/*
1337 * Do all special snapshot related qgroup dirty hack.
1338 *
1339 * Will do all needed qgroup inherit and dirty hack like switch commit
1340 * roots inside one transaction and write all btree into disk, to make
1341 * qgroup works.
1342 */
1343static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1344 struct btrfs_root *src,
1345 struct btrfs_root *parent,
1346 struct btrfs_qgroup_inherit *inherit,
1347 u64 dst_objectid)
1348{
1349 struct btrfs_fs_info *fs_info = src->fs_info;
1350 int ret;
1351
1352 /*
1353 * Save some performance in the case that qgroups are not
1354 * enabled. If this check races with the ioctl, rescan will
1355 * kick in anyway.
1356 */
1357 mutex_lock(&fs_info->qgroup_ioctl_lock);
1358 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1359 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1360 return 0;
1361 }
1362 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1363
1364 /*
1365 * We are going to commit transaction, see btrfs_commit_transaction()
1366 * comment for reason locking tree_log_mutex
1367 */
1368 mutex_lock(&fs_info->tree_log_mutex);
1369
1370 ret = commit_fs_roots(trans, fs_info);
1371 if (ret)
1372 goto out;
1373 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1374 if (ret < 0)
1375 goto out;
1376 ret = btrfs_qgroup_account_extents(trans, fs_info);
1377 if (ret < 0)
1378 goto out;
1379
1380 /* Now qgroup are all updated, we can inherit it to new qgroups */
1381 ret = btrfs_qgroup_inherit(trans, fs_info,
1382 src->root_key.objectid, dst_objectid,
1383 inherit);
1384 if (ret < 0)
1385 goto out;
1386
1387 /*
1388 * Now we do a simplified commit transaction, which will:
1389 * 1) commit all subvolume and extent tree
1390 * To ensure all subvolume and extent tree have a valid
1391 * commit_root to accounting later insert_dir_item()
1392 * 2) write all btree blocks onto disk
1393 * This is to make sure later btree modification will be cowed
1394 * Or commit_root can be populated and cause wrong qgroup numbers
1395 * In this simplified commit, we don't really care about other trees
1396 * like chunk and root tree, as they won't affect qgroup.
1397 * And we don't write super to avoid half committed status.
1398 */
1399 ret = commit_cowonly_roots(trans, fs_info);
1400 if (ret)
1401 goto out;
1402 switch_commit_roots(trans->transaction, fs_info);
1403 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1404 if (ret)
1405 btrfs_handle_fs_error(fs_info, ret,
1406 "Error while writing out transaction for qgroup");
1407
1408out:
1409 mutex_unlock(&fs_info->tree_log_mutex);
1410
1411 /*
1412 * Force parent root to be updated, as we recorded it before so its
1413 * last_trans == cur_transid.
1414 * Or it won't be committed again onto disk after later
1415 * insert_dir_item()
1416 */
1417 if (!ret)
1418 record_root_in_trans(trans, parent, 1);
1419 return ret;
1420}
1421
1422/*
1423 * new snapshots need to be created at a very specific time in the
1424 * transaction commit. This does the actual creation.
1425 *
1426 * Note:
1427 * If the error which may affect the commitment of the current transaction
1428 * happens, we should return the error number. If the error which just affect
1429 * the creation of the pending snapshots, just return 0.
1430 */
1431static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1432 struct btrfs_fs_info *fs_info,
1433 struct btrfs_pending_snapshot *pending)
1434{
1435 struct btrfs_key key;
1436 struct btrfs_root_item *new_root_item;
1437 struct btrfs_root *tree_root = fs_info->tree_root;
1438 struct btrfs_root *root = pending->root;
1439 struct btrfs_root *parent_root;
1440 struct btrfs_block_rsv *rsv;
1441 struct inode *parent_inode;
1442 struct btrfs_path *path;
1443 struct btrfs_dir_item *dir_item;
1444 struct dentry *dentry;
1445 struct extent_buffer *tmp;
1446 struct extent_buffer *old;
1447 struct timespec cur_time;
1448 int ret = 0;
1449 u64 to_reserve = 0;
1450 u64 index = 0;
1451 u64 objectid;
1452 u64 root_flags;
1453 uuid_le new_uuid;
1454
1455 ASSERT(pending->path);
1456 path = pending->path;
1457
1458 ASSERT(pending->root_item);
1459 new_root_item = pending->root_item;
1460
1461 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1462 if (pending->error)
1463 goto no_free_objectid;
1464
1465 /*
1466 * Make qgroup to skip current new snapshot's qgroupid, as it is
1467 * accounted by later btrfs_qgroup_inherit().
1468 */
1469 btrfs_set_skip_qgroup(trans, objectid);
1470
1471 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1472
1473 if (to_reserve > 0) {
1474 pending->error = btrfs_block_rsv_add(root,
1475 &pending->block_rsv,
1476 to_reserve,
1477 BTRFS_RESERVE_NO_FLUSH);
1478 if (pending->error)
1479 goto clear_skip_qgroup;
1480 }
1481
1482 key.objectid = objectid;
1483 key.offset = (u64)-1;
1484 key.type = BTRFS_ROOT_ITEM_KEY;
1485
1486 rsv = trans->block_rsv;
1487 trans->block_rsv = &pending->block_rsv;
1488 trans->bytes_reserved = trans->block_rsv->reserved;
1489 trace_btrfs_space_reservation(fs_info, "transaction",
1490 trans->transid,
1491 trans->bytes_reserved, 1);
1492 dentry = pending->dentry;
1493 parent_inode = pending->dir;
1494 parent_root = BTRFS_I(parent_inode)->root;
1495 record_root_in_trans(trans, parent_root, 0);
1496
1497 cur_time = current_time(parent_inode);
1498
1499 /*
1500 * insert the directory item
1501 */
1502 ret = btrfs_set_inode_index(parent_inode, &index);
1503 BUG_ON(ret); /* -ENOMEM */
1504
1505 /* check if there is a file/dir which has the same name. */
1506 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1507 btrfs_ino(parent_inode),
1508 dentry->d_name.name,
1509 dentry->d_name.len, 0);
1510 if (dir_item != NULL && !IS_ERR(dir_item)) {
1511 pending->error = -EEXIST;
1512 goto dir_item_existed;
1513 } else if (IS_ERR(dir_item)) {
1514 ret = PTR_ERR(dir_item);
1515 btrfs_abort_transaction(trans, ret);
1516 goto fail;
1517 }
1518 btrfs_release_path(path);
1519
1520 /*
1521 * pull in the delayed directory update
1522 * and the delayed inode item
1523 * otherwise we corrupt the FS during
1524 * snapshot
1525 */
1526 ret = btrfs_run_delayed_items(trans, fs_info);
1527 if (ret) { /* Transaction aborted */
1528 btrfs_abort_transaction(trans, ret);
1529 goto fail;
1530 }
1531
1532 record_root_in_trans(trans, root, 0);
1533 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1534 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1535 btrfs_check_and_init_root_item(new_root_item);
1536
1537 root_flags = btrfs_root_flags(new_root_item);
1538 if (pending->readonly)
1539 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1540 else
1541 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1542 btrfs_set_root_flags(new_root_item, root_flags);
1543
1544 btrfs_set_root_generation_v2(new_root_item,
1545 trans->transid);
1546 uuid_le_gen(&new_uuid);
1547 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1548 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1549 BTRFS_UUID_SIZE);
1550 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1551 memset(new_root_item->received_uuid, 0,
1552 sizeof(new_root_item->received_uuid));
1553 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1554 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1555 btrfs_set_root_stransid(new_root_item, 0);
1556 btrfs_set_root_rtransid(new_root_item, 0);
1557 }
1558 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1559 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1560 btrfs_set_root_otransid(new_root_item, trans->transid);
1561
1562 old = btrfs_lock_root_node(root);
1563 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1564 if (ret) {
1565 btrfs_tree_unlock(old);
1566 free_extent_buffer(old);
1567 btrfs_abort_transaction(trans, ret);
1568 goto fail;
1569 }
1570
1571 btrfs_set_lock_blocking(old);
1572
1573 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1574 /* clean up in any case */
1575 btrfs_tree_unlock(old);
1576 free_extent_buffer(old);
1577 if (ret) {
1578 btrfs_abort_transaction(trans, ret);
1579 goto fail;
1580 }
1581 /* see comments in should_cow_block() */
1582 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1583 smp_wmb();
1584
1585 btrfs_set_root_node(new_root_item, tmp);
1586 /* record when the snapshot was created in key.offset */
1587 key.offset = trans->transid;
1588 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1589 btrfs_tree_unlock(tmp);
1590 free_extent_buffer(tmp);
1591 if (ret) {
1592 btrfs_abort_transaction(trans, ret);
1593 goto fail;
1594 }
1595
1596 /*
1597 * insert root back/forward references
1598 */
1599 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1600 parent_root->root_key.objectid,
1601 btrfs_ino(parent_inode), index,
1602 dentry->d_name.name, dentry->d_name.len);
1603 if (ret) {
1604 btrfs_abort_transaction(trans, ret);
1605 goto fail;
1606 }
1607
1608 key.offset = (u64)-1;
1609 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1610 if (IS_ERR(pending->snap)) {
1611 ret = PTR_ERR(pending->snap);
1612 btrfs_abort_transaction(trans, ret);
1613 goto fail;
1614 }
1615
1616 ret = btrfs_reloc_post_snapshot(trans, pending);
1617 if (ret) {
1618 btrfs_abort_transaction(trans, ret);
1619 goto fail;
1620 }
1621
1622 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1623 if (ret) {
1624 btrfs_abort_transaction(trans, ret);
1625 goto fail;
1626 }
1627
1628 /*
1629 * Do special qgroup accounting for snapshot, as we do some qgroup
1630 * snapshot hack to do fast snapshot.
1631 * To co-operate with that hack, we do hack again.
1632 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1633 */
1634 ret = qgroup_account_snapshot(trans, root, parent_root,
1635 pending->inherit, objectid);
1636 if (ret < 0)
1637 goto fail;
1638
1639 ret = btrfs_insert_dir_item(trans, parent_root,
1640 dentry->d_name.name, dentry->d_name.len,
1641 parent_inode, &key,
1642 BTRFS_FT_DIR, index);
1643 /* We have check then name at the beginning, so it is impossible. */
1644 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649
1650 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1651 dentry->d_name.len * 2);
1652 parent_inode->i_mtime = parent_inode->i_ctime =
1653 current_time(parent_inode);
1654 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1655 if (ret) {
1656 btrfs_abort_transaction(trans, ret);
1657 goto fail;
1658 }
1659 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1660 BTRFS_UUID_KEY_SUBVOL, objectid);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1664 }
1665 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1666 ret = btrfs_uuid_tree_add(trans, fs_info,
1667 new_root_item->received_uuid,
1668 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1669 objectid);
1670 if (ret && ret != -EEXIST) {
1671 btrfs_abort_transaction(trans, ret);
1672 goto fail;
1673 }
1674 }
1675
1676 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1677 if (ret) {
1678 btrfs_abort_transaction(trans, ret);
1679 goto fail;
1680 }
1681
1682fail:
1683 pending->error = ret;
1684dir_item_existed:
1685 trans->block_rsv = rsv;
1686 trans->bytes_reserved = 0;
1687clear_skip_qgroup:
1688 btrfs_clear_skip_qgroup(trans);
1689no_free_objectid:
1690 kfree(new_root_item);
1691 pending->root_item = NULL;
1692 btrfs_free_path(path);
1693 pending->path = NULL;
1694
1695 return ret;
1696}
1697
1698/*
1699 * create all the snapshots we've scheduled for creation
1700 */
1701static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1702 struct btrfs_fs_info *fs_info)
1703{
1704 struct btrfs_pending_snapshot *pending, *next;
1705 struct list_head *head = &trans->transaction->pending_snapshots;
1706 int ret = 0;
1707
1708 list_for_each_entry_safe(pending, next, head, list) {
1709 list_del(&pending->list);
1710 ret = create_pending_snapshot(trans, fs_info, pending);
1711 if (ret)
1712 break;
1713 }
1714 return ret;
1715}
1716
1717static void update_super_roots(struct btrfs_fs_info *fs_info)
1718{
1719 struct btrfs_root_item *root_item;
1720 struct btrfs_super_block *super;
1721
1722 super = fs_info->super_copy;
1723
1724 root_item = &fs_info->chunk_root->root_item;
1725 super->chunk_root = root_item->bytenr;
1726 super->chunk_root_generation = root_item->generation;
1727 super->chunk_root_level = root_item->level;
1728
1729 root_item = &fs_info->tree_root->root_item;
1730 super->root = root_item->bytenr;
1731 super->generation = root_item->generation;
1732 super->root_level = root_item->level;
1733 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1734 super->cache_generation = root_item->generation;
1735 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1736 super->uuid_tree_generation = root_item->generation;
1737}
1738
1739int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1740{
1741 struct btrfs_transaction *trans;
1742 int ret = 0;
1743
1744 spin_lock(&info->trans_lock);
1745 trans = info->running_transaction;
1746 if (trans)
1747 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1748 spin_unlock(&info->trans_lock);
1749 return ret;
1750}
1751
1752int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1753{
1754 struct btrfs_transaction *trans;
1755 int ret = 0;
1756
1757 spin_lock(&info->trans_lock);
1758 trans = info->running_transaction;
1759 if (trans)
1760 ret = is_transaction_blocked(trans);
1761 spin_unlock(&info->trans_lock);
1762 return ret;
1763}
1764
1765/*
1766 * wait for the current transaction commit to start and block subsequent
1767 * transaction joins
1768 */
1769static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1770 struct btrfs_transaction *trans)
1771{
1772 wait_event(fs_info->transaction_blocked_wait,
1773 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1774}
1775
1776/*
1777 * wait for the current transaction to start and then become unblocked.
1778 * caller holds ref.
1779 */
1780static void wait_current_trans_commit_start_and_unblock(
1781 struct btrfs_fs_info *fs_info,
1782 struct btrfs_transaction *trans)
1783{
1784 wait_event(fs_info->transaction_wait,
1785 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1786}
1787
1788/*
1789 * commit transactions asynchronously. once btrfs_commit_transaction_async
1790 * returns, any subsequent transaction will not be allowed to join.
1791 */
1792struct btrfs_async_commit {
1793 struct btrfs_trans_handle *newtrans;
1794 struct work_struct work;
1795};
1796
1797static void do_async_commit(struct work_struct *work)
1798{
1799 struct btrfs_async_commit *ac =
1800 container_of(work, struct btrfs_async_commit, work);
1801
1802 /*
1803 * We've got freeze protection passed with the transaction.
1804 * Tell lockdep about it.
1805 */
1806 if (ac->newtrans->type & __TRANS_FREEZABLE)
1807 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1808
1809 current->journal_info = ac->newtrans;
1810
1811 btrfs_commit_transaction(ac->newtrans);
1812 kfree(ac);
1813}
1814
1815int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1816 int wait_for_unblock)
1817{
1818 struct btrfs_fs_info *fs_info = trans->fs_info;
1819 struct btrfs_async_commit *ac;
1820 struct btrfs_transaction *cur_trans;
1821
1822 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1823 if (!ac)
1824 return -ENOMEM;
1825
1826 INIT_WORK(&ac->work, do_async_commit);
1827 ac->newtrans = btrfs_join_transaction(trans->root);
1828 if (IS_ERR(ac->newtrans)) {
1829 int err = PTR_ERR(ac->newtrans);
1830 kfree(ac);
1831 return err;
1832 }
1833
1834 /* take transaction reference */
1835 cur_trans = trans->transaction;
1836 atomic_inc(&cur_trans->use_count);
1837
1838 btrfs_end_transaction(trans);
1839
1840 /*
1841 * Tell lockdep we've released the freeze rwsem, since the
1842 * async commit thread will be the one to unlock it.
1843 */
1844 if (ac->newtrans->type & __TRANS_FREEZABLE)
1845 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1846
1847 schedule_work(&ac->work);
1848
1849 /* wait for transaction to start and unblock */
1850 if (wait_for_unblock)
1851 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1852 else
1853 wait_current_trans_commit_start(fs_info, cur_trans);
1854
1855 if (current->journal_info == trans)
1856 current->journal_info = NULL;
1857
1858 btrfs_put_transaction(cur_trans);
1859 return 0;
1860}
1861
1862
1863static void cleanup_transaction(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root, int err)
1865{
1866 struct btrfs_fs_info *fs_info = root->fs_info;
1867 struct btrfs_transaction *cur_trans = trans->transaction;
1868 DEFINE_WAIT(wait);
1869
1870 WARN_ON(trans->use_count > 1);
1871
1872 btrfs_abort_transaction(trans, err);
1873
1874 spin_lock(&fs_info->trans_lock);
1875
1876 /*
1877 * If the transaction is removed from the list, it means this
1878 * transaction has been committed successfully, so it is impossible
1879 * to call the cleanup function.
1880 */
1881 BUG_ON(list_empty(&cur_trans->list));
1882
1883 list_del_init(&cur_trans->list);
1884 if (cur_trans == fs_info->running_transaction) {
1885 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1886 spin_unlock(&fs_info->trans_lock);
1887 wait_event(cur_trans->writer_wait,
1888 atomic_read(&cur_trans->num_writers) == 1);
1889
1890 spin_lock(&fs_info->trans_lock);
1891 }
1892 spin_unlock(&fs_info->trans_lock);
1893
1894 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1895
1896 spin_lock(&fs_info->trans_lock);
1897 if (cur_trans == fs_info->running_transaction)
1898 fs_info->running_transaction = NULL;
1899 spin_unlock(&fs_info->trans_lock);
1900
1901 if (trans->type & __TRANS_FREEZABLE)
1902 sb_end_intwrite(fs_info->sb);
1903 btrfs_put_transaction(cur_trans);
1904 btrfs_put_transaction(cur_trans);
1905
1906 trace_btrfs_transaction_commit(root);
1907
1908 if (current->journal_info == trans)
1909 current->journal_info = NULL;
1910 btrfs_scrub_cancel(fs_info);
1911
1912 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1913}
1914
1915static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1916{
1917 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1918 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1919 return 0;
1920}
1921
1922static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1923{
1924 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1925 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1926}
1927
1928static inline void
1929btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1930{
1931 wait_event(cur_trans->pending_wait,
1932 atomic_read(&cur_trans->pending_ordered) == 0);
1933}
1934
1935int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1936{
1937 struct btrfs_fs_info *fs_info = trans->fs_info;
1938 struct btrfs_transaction *cur_trans = trans->transaction;
1939 struct btrfs_transaction *prev_trans = NULL;
1940 int ret;
1941
1942 /* Stop the commit early if ->aborted is set */
1943 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1944 ret = cur_trans->aborted;
1945 btrfs_end_transaction(trans);
1946 return ret;
1947 }
1948
1949 /* make a pass through all the delayed refs we have so far
1950 * any runnings procs may add more while we are here
1951 */
1952 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1953 if (ret) {
1954 btrfs_end_transaction(trans);
1955 return ret;
1956 }
1957
1958 btrfs_trans_release_metadata(trans, fs_info);
1959 trans->block_rsv = NULL;
1960
1961 cur_trans = trans->transaction;
1962
1963 /*
1964 * set the flushing flag so procs in this transaction have to
1965 * start sending their work down.
1966 */
1967 cur_trans->delayed_refs.flushing = 1;
1968 smp_wmb();
1969
1970 if (!list_empty(&trans->new_bgs))
1971 btrfs_create_pending_block_groups(trans, fs_info);
1972
1973 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1974 if (ret) {
1975 btrfs_end_transaction(trans);
1976 return ret;
1977 }
1978
1979 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1980 int run_it = 0;
1981
1982 /* this mutex is also taken before trying to set
1983 * block groups readonly. We need to make sure
1984 * that nobody has set a block group readonly
1985 * after a extents from that block group have been
1986 * allocated for cache files. btrfs_set_block_group_ro
1987 * will wait for the transaction to commit if it
1988 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1989 *
1990 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1991 * only one process starts all the block group IO. It wouldn't
1992 * hurt to have more than one go through, but there's no
1993 * real advantage to it either.
1994 */
1995 mutex_lock(&fs_info->ro_block_group_mutex);
1996 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1997 &cur_trans->flags))
1998 run_it = 1;
1999 mutex_unlock(&fs_info->ro_block_group_mutex);
2000
2001 if (run_it)
2002 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2003 }
2004 if (ret) {
2005 btrfs_end_transaction(trans);
2006 return ret;
2007 }
2008
2009 spin_lock(&fs_info->trans_lock);
2010 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2011 spin_unlock(&fs_info->trans_lock);
2012 atomic_inc(&cur_trans->use_count);
2013 ret = btrfs_end_transaction(trans);
2014
2015 wait_for_commit(cur_trans);
2016
2017 if (unlikely(cur_trans->aborted))
2018 ret = cur_trans->aborted;
2019
2020 btrfs_put_transaction(cur_trans);
2021
2022 return ret;
2023 }
2024
2025 cur_trans->state = TRANS_STATE_COMMIT_START;
2026 wake_up(&fs_info->transaction_blocked_wait);
2027
2028 if (cur_trans->list.prev != &fs_info->trans_list) {
2029 prev_trans = list_entry(cur_trans->list.prev,
2030 struct btrfs_transaction, list);
2031 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2032 atomic_inc(&prev_trans->use_count);
2033 spin_unlock(&fs_info->trans_lock);
2034
2035 wait_for_commit(prev_trans);
2036 ret = prev_trans->aborted;
2037
2038 btrfs_put_transaction(prev_trans);
2039 if (ret)
2040 goto cleanup_transaction;
2041 } else {
2042 spin_unlock(&fs_info->trans_lock);
2043 }
2044 } else {
2045 spin_unlock(&fs_info->trans_lock);
2046 }
2047
2048 extwriter_counter_dec(cur_trans, trans->type);
2049
2050 ret = btrfs_start_delalloc_flush(fs_info);
2051 if (ret)
2052 goto cleanup_transaction;
2053
2054 ret = btrfs_run_delayed_items(trans, fs_info);
2055 if (ret)
2056 goto cleanup_transaction;
2057
2058 wait_event(cur_trans->writer_wait,
2059 extwriter_counter_read(cur_trans) == 0);
2060
2061 /* some pending stuffs might be added after the previous flush. */
2062 ret = btrfs_run_delayed_items(trans, fs_info);
2063 if (ret)
2064 goto cleanup_transaction;
2065
2066 btrfs_wait_delalloc_flush(fs_info);
2067
2068 btrfs_wait_pending_ordered(cur_trans);
2069
2070 btrfs_scrub_pause(fs_info);
2071 /*
2072 * Ok now we need to make sure to block out any other joins while we
2073 * commit the transaction. We could have started a join before setting
2074 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2075 */
2076 spin_lock(&fs_info->trans_lock);
2077 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2078 spin_unlock(&fs_info->trans_lock);
2079 wait_event(cur_trans->writer_wait,
2080 atomic_read(&cur_trans->num_writers) == 1);
2081
2082 /* ->aborted might be set after the previous check, so check it */
2083 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2084 ret = cur_trans->aborted;
2085 goto scrub_continue;
2086 }
2087 /*
2088 * the reloc mutex makes sure that we stop
2089 * the balancing code from coming in and moving
2090 * extents around in the middle of the commit
2091 */
2092 mutex_lock(&fs_info->reloc_mutex);
2093
2094 /*
2095 * We needn't worry about the delayed items because we will
2096 * deal with them in create_pending_snapshot(), which is the
2097 * core function of the snapshot creation.
2098 */
2099 ret = create_pending_snapshots(trans, fs_info);
2100 if (ret) {
2101 mutex_unlock(&fs_info->reloc_mutex);
2102 goto scrub_continue;
2103 }
2104
2105 /*
2106 * We insert the dir indexes of the snapshots and update the inode
2107 * of the snapshots' parents after the snapshot creation, so there
2108 * are some delayed items which are not dealt with. Now deal with
2109 * them.
2110 *
2111 * We needn't worry that this operation will corrupt the snapshots,
2112 * because all the tree which are snapshoted will be forced to COW
2113 * the nodes and leaves.
2114 */
2115 ret = btrfs_run_delayed_items(trans, fs_info);
2116 if (ret) {
2117 mutex_unlock(&fs_info->reloc_mutex);
2118 goto scrub_continue;
2119 }
2120
2121 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2122 if (ret) {
2123 mutex_unlock(&fs_info->reloc_mutex);
2124 goto scrub_continue;
2125 }
2126
2127 /* Reocrd old roots for later qgroup accounting */
2128 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2129 if (ret) {
2130 mutex_unlock(&fs_info->reloc_mutex);
2131 goto scrub_continue;
2132 }
2133
2134 /*
2135 * make sure none of the code above managed to slip in a
2136 * delayed item
2137 */
2138 btrfs_assert_delayed_root_empty(fs_info);
2139
2140 WARN_ON(cur_trans != trans->transaction);
2141
2142 /* btrfs_commit_tree_roots is responsible for getting the
2143 * various roots consistent with each other. Every pointer
2144 * in the tree of tree roots has to point to the most up to date
2145 * root for every subvolume and other tree. So, we have to keep
2146 * the tree logging code from jumping in and changing any
2147 * of the trees.
2148 *
2149 * At this point in the commit, there can't be any tree-log
2150 * writers, but a little lower down we drop the trans mutex
2151 * and let new people in. By holding the tree_log_mutex
2152 * from now until after the super is written, we avoid races
2153 * with the tree-log code.
2154 */
2155 mutex_lock(&fs_info->tree_log_mutex);
2156
2157 ret = commit_fs_roots(trans, fs_info);
2158 if (ret) {
2159 mutex_unlock(&fs_info->tree_log_mutex);
2160 mutex_unlock(&fs_info->reloc_mutex);
2161 goto scrub_continue;
2162 }
2163
2164 /*
2165 * Since the transaction is done, we can apply the pending changes
2166 * before the next transaction.
2167 */
2168 btrfs_apply_pending_changes(fs_info);
2169
2170 /* commit_fs_roots gets rid of all the tree log roots, it is now
2171 * safe to free the root of tree log roots
2172 */
2173 btrfs_free_log_root_tree(trans, fs_info);
2174
2175 /*
2176 * Since fs roots are all committed, we can get a quite accurate
2177 * new_roots. So let's do quota accounting.
2178 */
2179 ret = btrfs_qgroup_account_extents(trans, fs_info);
2180 if (ret < 0) {
2181 mutex_unlock(&fs_info->tree_log_mutex);
2182 mutex_unlock(&fs_info->reloc_mutex);
2183 goto scrub_continue;
2184 }
2185
2186 ret = commit_cowonly_roots(trans, fs_info);
2187 if (ret) {
2188 mutex_unlock(&fs_info->tree_log_mutex);
2189 mutex_unlock(&fs_info->reloc_mutex);
2190 goto scrub_continue;
2191 }
2192
2193 /*
2194 * The tasks which save the space cache and inode cache may also
2195 * update ->aborted, check it.
2196 */
2197 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2198 ret = cur_trans->aborted;
2199 mutex_unlock(&fs_info->tree_log_mutex);
2200 mutex_unlock(&fs_info->reloc_mutex);
2201 goto scrub_continue;
2202 }
2203
2204 btrfs_prepare_extent_commit(trans, fs_info);
2205
2206 cur_trans = fs_info->running_transaction;
2207
2208 btrfs_set_root_node(&fs_info->tree_root->root_item,
2209 fs_info->tree_root->node);
2210 list_add_tail(&fs_info->tree_root->dirty_list,
2211 &cur_trans->switch_commits);
2212
2213 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2214 fs_info->chunk_root->node);
2215 list_add_tail(&fs_info->chunk_root->dirty_list,
2216 &cur_trans->switch_commits);
2217
2218 switch_commit_roots(cur_trans, fs_info);
2219
2220 assert_qgroups_uptodate(trans);
2221 ASSERT(list_empty(&cur_trans->dirty_bgs));
2222 ASSERT(list_empty(&cur_trans->io_bgs));
2223 update_super_roots(fs_info);
2224
2225 btrfs_set_super_log_root(fs_info->super_copy, 0);
2226 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2227 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2228 sizeof(*fs_info->super_copy));
2229
2230 btrfs_update_commit_device_size(fs_info);
2231 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2232
2233 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2234 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2235
2236 btrfs_trans_release_chunk_metadata(trans);
2237
2238 spin_lock(&fs_info->trans_lock);
2239 cur_trans->state = TRANS_STATE_UNBLOCKED;
2240 fs_info->running_transaction = NULL;
2241 spin_unlock(&fs_info->trans_lock);
2242 mutex_unlock(&fs_info->reloc_mutex);
2243
2244 wake_up(&fs_info->transaction_wait);
2245
2246 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2247 if (ret) {
2248 btrfs_handle_fs_error(fs_info, ret,
2249 "Error while writing out transaction");
2250 mutex_unlock(&fs_info->tree_log_mutex);
2251 goto scrub_continue;
2252 }
2253
2254 ret = write_ctree_super(trans, fs_info, 0);
2255 if (ret) {
2256 mutex_unlock(&fs_info->tree_log_mutex);
2257 goto scrub_continue;
2258 }
2259
2260 /*
2261 * the super is written, we can safely allow the tree-loggers
2262 * to go about their business
2263 */
2264 mutex_unlock(&fs_info->tree_log_mutex);
2265
2266 btrfs_finish_extent_commit(trans, fs_info);
2267
2268 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2269 btrfs_clear_space_info_full(fs_info);
2270
2271 fs_info->last_trans_committed = cur_trans->transid;
2272 /*
2273 * We needn't acquire the lock here because there is no other task
2274 * which can change it.
2275 */
2276 cur_trans->state = TRANS_STATE_COMPLETED;
2277 wake_up(&cur_trans->commit_wait);
2278
2279 spin_lock(&fs_info->trans_lock);
2280 list_del_init(&cur_trans->list);
2281 spin_unlock(&fs_info->trans_lock);
2282
2283 btrfs_put_transaction(cur_trans);
2284 btrfs_put_transaction(cur_trans);
2285
2286 if (trans->type & __TRANS_FREEZABLE)
2287 sb_end_intwrite(fs_info->sb);
2288
2289 trace_btrfs_transaction_commit(trans->root);
2290
2291 btrfs_scrub_continue(fs_info);
2292
2293 if (current->journal_info == trans)
2294 current->journal_info = NULL;
2295
2296 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2297
2298 /*
2299 * If fs has been frozen, we can not handle delayed iputs, otherwise
2300 * it'll result in deadlock about SB_FREEZE_FS.
2301 */
2302 if (current != fs_info->transaction_kthread &&
2303 current != fs_info->cleaner_kthread && !fs_info->fs_frozen)
2304 btrfs_run_delayed_iputs(fs_info);
2305
2306 return ret;
2307
2308scrub_continue:
2309 btrfs_scrub_continue(fs_info);
2310cleanup_transaction:
2311 btrfs_trans_release_metadata(trans, fs_info);
2312 btrfs_trans_release_chunk_metadata(trans);
2313 trans->block_rsv = NULL;
2314 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2315 if (current->journal_info == trans)
2316 current->journal_info = NULL;
2317 cleanup_transaction(trans, trans->root, ret);
2318
2319 return ret;
2320}
2321
2322/*
2323 * return < 0 if error
2324 * 0 if there are no more dead_roots at the time of call
2325 * 1 there are more to be processed, call me again
2326 *
2327 * The return value indicates there are certainly more snapshots to delete, but
2328 * if there comes a new one during processing, it may return 0. We don't mind,
2329 * because btrfs_commit_super will poke cleaner thread and it will process it a
2330 * few seconds later.
2331 */
2332int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2333{
2334 int ret;
2335 struct btrfs_fs_info *fs_info = root->fs_info;
2336
2337 spin_lock(&fs_info->trans_lock);
2338 if (list_empty(&fs_info->dead_roots)) {
2339 spin_unlock(&fs_info->trans_lock);
2340 return 0;
2341 }
2342 root = list_first_entry(&fs_info->dead_roots,
2343 struct btrfs_root, root_list);
2344 list_del_init(&root->root_list);
2345 spin_unlock(&fs_info->trans_lock);
2346
2347 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2348
2349 btrfs_kill_all_delayed_nodes(root);
2350
2351 if (btrfs_header_backref_rev(root->node) <
2352 BTRFS_MIXED_BACKREF_REV)
2353 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2354 else
2355 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2356
2357 return (ret < 0) ? 0 : 1;
2358}
2359
2360void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2361{
2362 unsigned long prev;
2363 unsigned long bit;
2364
2365 prev = xchg(&fs_info->pending_changes, 0);
2366 if (!prev)
2367 return;
2368
2369 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2370 if (prev & bit)
2371 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2372 prev &= ~bit;
2373
2374 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2375 if (prev & bit)
2376 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2377 prev &= ~bit;
2378
2379 bit = 1 << BTRFS_PENDING_COMMIT;
2380 if (prev & bit)
2381 btrfs_debug(fs_info, "pending commit done");
2382 prev &= ~bit;
2383
2384 if (prev)
2385 btrfs_warn(fs_info,
2386 "unknown pending changes left 0x%lx, ignoring", prev);
2387}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/writeback.h>
10#include <linux/pagemap.h>
11#include <linux/blkdev.h>
12#include <linux/uuid.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "locking.h"
17#include "tree-log.h"
18#include "inode-map.h"
19#include "volumes.h"
20#include "dev-replace.h"
21#include "qgroup.h"
22
23#define BTRFS_ROOT_TRANS_TAG 0
24
25static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN),
32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
33 __TRANS_ATTACH |
34 __TRANS_JOIN |
35 __TRANS_JOIN_NOLOCK),
36 [TRANS_STATE_COMPLETED] = (__TRANS_START |
37 __TRANS_ATTACH |
38 __TRANS_JOIN |
39 __TRANS_JOIN_NOLOCK),
40};
41
42void btrfs_put_transaction(struct btrfs_transaction *transaction)
43{
44 WARN_ON(refcount_read(&transaction->use_count) == 0);
45 if (refcount_dec_and_test(&transaction->use_count)) {
46 BUG_ON(!list_empty(&transaction->list));
47 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
48 if (transaction->delayed_refs.pending_csums)
49 btrfs_err(transaction->fs_info,
50 "pending csums is %llu",
51 transaction->delayed_refs.pending_csums);
52 while (!list_empty(&transaction->pending_chunks)) {
53 struct extent_map *em;
54
55 em = list_first_entry(&transaction->pending_chunks,
56 struct extent_map, list);
57 list_del_init(&em->list);
58 free_extent_map(em);
59 }
60 /*
61 * If any block groups are found in ->deleted_bgs then it's
62 * because the transaction was aborted and a commit did not
63 * happen (things failed before writing the new superblock
64 * and calling btrfs_finish_extent_commit()), so we can not
65 * discard the physical locations of the block groups.
66 */
67 while (!list_empty(&transaction->deleted_bgs)) {
68 struct btrfs_block_group_cache *cache;
69
70 cache = list_first_entry(&transaction->deleted_bgs,
71 struct btrfs_block_group_cache,
72 bg_list);
73 list_del_init(&cache->bg_list);
74 btrfs_put_block_group_trimming(cache);
75 btrfs_put_block_group(cache);
76 }
77 kfree(transaction);
78 }
79}
80
81static void clear_btree_io_tree(struct extent_io_tree *tree)
82{
83 spin_lock(&tree->lock);
84 /*
85 * Do a single barrier for the waitqueue_active check here, the state
86 * of the waitqueue should not change once clear_btree_io_tree is
87 * called.
88 */
89 smp_mb();
90 while (!RB_EMPTY_ROOT(&tree->state)) {
91 struct rb_node *node;
92 struct extent_state *state;
93
94 node = rb_first(&tree->state);
95 state = rb_entry(node, struct extent_state, rb_node);
96 rb_erase(&state->rb_node, &tree->state);
97 RB_CLEAR_NODE(&state->rb_node);
98 /*
99 * btree io trees aren't supposed to have tasks waiting for
100 * changes in the flags of extent states ever.
101 */
102 ASSERT(!waitqueue_active(&state->wq));
103 free_extent_state(state);
104
105 cond_resched_lock(&tree->lock);
106 }
107 spin_unlock(&tree->lock);
108}
109
110static noinline void switch_commit_roots(struct btrfs_transaction *trans)
111{
112 struct btrfs_fs_info *fs_info = trans->fs_info;
113 struct btrfs_root *root, *tmp;
114
115 down_write(&fs_info->commit_root_sem);
116 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
117 dirty_list) {
118 list_del_init(&root->dirty_list);
119 free_extent_buffer(root->commit_root);
120 root->commit_root = btrfs_root_node(root);
121 if (is_fstree(root->objectid))
122 btrfs_unpin_free_ino(root);
123 clear_btree_io_tree(&root->dirty_log_pages);
124 }
125
126 /* We can free old roots now. */
127 spin_lock(&trans->dropped_roots_lock);
128 while (!list_empty(&trans->dropped_roots)) {
129 root = list_first_entry(&trans->dropped_roots,
130 struct btrfs_root, root_list);
131 list_del_init(&root->root_list);
132 spin_unlock(&trans->dropped_roots_lock);
133 btrfs_drop_and_free_fs_root(fs_info, root);
134 spin_lock(&trans->dropped_roots_lock);
135 }
136 spin_unlock(&trans->dropped_roots_lock);
137 up_write(&fs_info->commit_root_sem);
138}
139
140static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
141 unsigned int type)
142{
143 if (type & TRANS_EXTWRITERS)
144 atomic_inc(&trans->num_extwriters);
145}
146
147static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
148 unsigned int type)
149{
150 if (type & TRANS_EXTWRITERS)
151 atomic_dec(&trans->num_extwriters);
152}
153
154static inline void extwriter_counter_init(struct btrfs_transaction *trans,
155 unsigned int type)
156{
157 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
158}
159
160static inline int extwriter_counter_read(struct btrfs_transaction *trans)
161{
162 return atomic_read(&trans->num_extwriters);
163}
164
165/*
166 * either allocate a new transaction or hop into the existing one
167 */
168static noinline int join_transaction(struct btrfs_fs_info *fs_info,
169 unsigned int type)
170{
171 struct btrfs_transaction *cur_trans;
172
173 spin_lock(&fs_info->trans_lock);
174loop:
175 /* The file system has been taken offline. No new transactions. */
176 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
177 spin_unlock(&fs_info->trans_lock);
178 return -EROFS;
179 }
180
181 cur_trans = fs_info->running_transaction;
182 if (cur_trans) {
183 if (cur_trans->aborted) {
184 spin_unlock(&fs_info->trans_lock);
185 return cur_trans->aborted;
186 }
187 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
188 spin_unlock(&fs_info->trans_lock);
189 return -EBUSY;
190 }
191 refcount_inc(&cur_trans->use_count);
192 atomic_inc(&cur_trans->num_writers);
193 extwriter_counter_inc(cur_trans, type);
194 spin_unlock(&fs_info->trans_lock);
195 return 0;
196 }
197 spin_unlock(&fs_info->trans_lock);
198
199 /*
200 * If we are ATTACH, we just want to catch the current transaction,
201 * and commit it. If there is no transaction, just return ENOENT.
202 */
203 if (type == TRANS_ATTACH)
204 return -ENOENT;
205
206 /*
207 * JOIN_NOLOCK only happens during the transaction commit, so
208 * it is impossible that ->running_transaction is NULL
209 */
210 BUG_ON(type == TRANS_JOIN_NOLOCK);
211
212 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
213 if (!cur_trans)
214 return -ENOMEM;
215
216 spin_lock(&fs_info->trans_lock);
217 if (fs_info->running_transaction) {
218 /*
219 * someone started a transaction after we unlocked. Make sure
220 * to redo the checks above
221 */
222 kfree(cur_trans);
223 goto loop;
224 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
225 spin_unlock(&fs_info->trans_lock);
226 kfree(cur_trans);
227 return -EROFS;
228 }
229
230 cur_trans->fs_info = fs_info;
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 init_waitqueue_head(&cur_trans->pending_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
237 /*
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
240 */
241 refcount_set(&cur_trans->use_count, 2);
242 atomic_set(&cur_trans->pending_ordered, 0);
243 cur_trans->flags = 0;
244 cur_trans->start_time = get_seconds();
245
246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247
248 cur_trans->delayed_refs.href_root = RB_ROOT;
249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251
252 /*
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
255 */
256 smp_mb();
257 if (!list_empty(&fs_info->tree_mod_seq_list))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
261 atomic64_set(&fs_info->tree_mod_seq, 0);
262
263 spin_lock_init(&cur_trans->delayed_refs.lock);
264
265 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
266 INIT_LIST_HEAD(&cur_trans->pending_chunks);
267 INIT_LIST_HEAD(&cur_trans->switch_commits);
268 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 INIT_LIST_HEAD(&cur_trans->io_bgs);
270 INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 mutex_init(&cur_trans->cache_write_mutex);
272 cur_trans->num_dirty_bgs = 0;
273 spin_lock_init(&cur_trans->dirty_bgs_lock);
274 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 spin_lock_init(&cur_trans->dropped_roots_lock);
276 list_add_tail(&cur_trans->list, &fs_info->trans_list);
277 extent_io_tree_init(&cur_trans->dirty_pages,
278 fs_info->btree_inode);
279 fs_info->generation++;
280 cur_trans->transid = fs_info->generation;
281 fs_info->running_transaction = cur_trans;
282 cur_trans->aborted = 0;
283 spin_unlock(&fs_info->trans_lock);
284
285 return 0;
286}
287
288/*
289 * this does all the record keeping required to make sure that a reference
290 * counted root is properly recorded in a given transaction. This is required
291 * to make sure the old root from before we joined the transaction is deleted
292 * when the transaction commits
293 */
294static int record_root_in_trans(struct btrfs_trans_handle *trans,
295 struct btrfs_root *root,
296 int force)
297{
298 struct btrfs_fs_info *fs_info = root->fs_info;
299
300 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 root->last_trans < trans->transid) || force) {
302 WARN_ON(root == fs_info->extent_root);
303 WARN_ON(!force && root->commit_root != root->node);
304
305 /*
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
309 */
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
314 */
315 smp_wmb();
316
317 spin_lock(&fs_info->fs_roots_radix_lock);
318 if (root->last_trans == trans->transid && !force) {
319 spin_unlock(&fs_info->fs_roots_radix_lock);
320 return 0;
321 }
322 radix_tree_tag_set(&fs_info->fs_roots_radix,
323 (unsigned long)root->root_key.objectid,
324 BTRFS_ROOT_TRANS_TAG);
325 spin_unlock(&fs_info->fs_roots_radix_lock);
326 root->last_trans = trans->transid;
327
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
331 * this transaction.
332 *
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
335 *
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
341 *
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
346 */
347 btrfs_init_reloc_root(trans, root);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 }
351 return 0;
352}
353
354
355void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 struct btrfs_root *root)
357{
358 struct btrfs_fs_info *fs_info = root->fs_info;
359 struct btrfs_transaction *cur_trans = trans->transaction;
360
361 /* Add ourselves to the transaction dropped list */
362 spin_lock(&cur_trans->dropped_roots_lock);
363 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
364 spin_unlock(&cur_trans->dropped_roots_lock);
365
366 /* Make sure we don't try to update the root at commit time */
367 spin_lock(&fs_info->fs_roots_radix_lock);
368 radix_tree_tag_clear(&fs_info->fs_roots_radix,
369 (unsigned long)root->root_key.objectid,
370 BTRFS_ROOT_TRANS_TAG);
371 spin_unlock(&fs_info->fs_roots_radix_lock);
372}
373
374int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376{
377 struct btrfs_fs_info *fs_info = root->fs_info;
378
379 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
380 return 0;
381
382 /*
383 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
384 * and barriers
385 */
386 smp_rmb();
387 if (root->last_trans == trans->transid &&
388 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
389 return 0;
390
391 mutex_lock(&fs_info->reloc_mutex);
392 record_root_in_trans(trans, root, 0);
393 mutex_unlock(&fs_info->reloc_mutex);
394
395 return 0;
396}
397
398static inline int is_transaction_blocked(struct btrfs_transaction *trans)
399{
400 return (trans->state >= TRANS_STATE_BLOCKED &&
401 trans->state < TRANS_STATE_UNBLOCKED &&
402 !trans->aborted);
403}
404
405/* wait for commit against the current transaction to become unblocked
406 * when this is done, it is safe to start a new transaction, but the current
407 * transaction might not be fully on disk.
408 */
409static void wait_current_trans(struct btrfs_fs_info *fs_info)
410{
411 struct btrfs_transaction *cur_trans;
412
413 spin_lock(&fs_info->trans_lock);
414 cur_trans = fs_info->running_transaction;
415 if (cur_trans && is_transaction_blocked(cur_trans)) {
416 refcount_inc(&cur_trans->use_count);
417 spin_unlock(&fs_info->trans_lock);
418
419 wait_event(fs_info->transaction_wait,
420 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
421 cur_trans->aborted);
422 btrfs_put_transaction(cur_trans);
423 } else {
424 spin_unlock(&fs_info->trans_lock);
425 }
426}
427
428static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
429{
430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
431 return 0;
432
433 if (type == TRANS_START)
434 return 1;
435
436 return 0;
437}
438
439static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440{
441 struct btrfs_fs_info *fs_info = root->fs_info;
442
443 if (!fs_info->reloc_ctl ||
444 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
446 root->reloc_root)
447 return false;
448
449 return true;
450}
451
452static struct btrfs_trans_handle *
453start_transaction(struct btrfs_root *root, unsigned int num_items,
454 unsigned int type, enum btrfs_reserve_flush_enum flush,
455 bool enforce_qgroups)
456{
457 struct btrfs_fs_info *fs_info = root->fs_info;
458
459 struct btrfs_trans_handle *h;
460 struct btrfs_transaction *cur_trans;
461 u64 num_bytes = 0;
462 u64 qgroup_reserved = 0;
463 bool reloc_reserved = false;
464 int ret;
465
466 /* Send isn't supposed to start transactions. */
467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
468
469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
470 return ERR_PTR(-EROFS);
471
472 if (current->journal_info) {
473 WARN_ON(type & TRANS_EXTWRITERS);
474 h = current->journal_info;
475 refcount_inc(&h->use_count);
476 WARN_ON(refcount_read(&h->use_count) > 2);
477 h->orig_rsv = h->block_rsv;
478 h->block_rsv = NULL;
479 goto got_it;
480 }
481
482 /*
483 * Do the reservation before we join the transaction so we can do all
484 * the appropriate flushing if need be.
485 */
486 if (num_items && root != fs_info->chunk_root) {
487 qgroup_reserved = num_items * fs_info->nodesize;
488 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
489 enforce_qgroups);
490 if (ret)
491 return ERR_PTR(ret);
492
493 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
494 /*
495 * Do the reservation for the relocation root creation
496 */
497 if (need_reserve_reloc_root(root)) {
498 num_bytes += fs_info->nodesize;
499 reloc_reserved = true;
500 }
501
502 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
503 num_bytes, flush);
504 if (ret)
505 goto reserve_fail;
506 }
507again:
508 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
509 if (!h) {
510 ret = -ENOMEM;
511 goto alloc_fail;
512 }
513
514 /*
515 * If we are JOIN_NOLOCK we're already committing a transaction and
516 * waiting on this guy, so we don't need to do the sb_start_intwrite
517 * because we're already holding a ref. We need this because we could
518 * have raced in and did an fsync() on a file which can kick a commit
519 * and then we deadlock with somebody doing a freeze.
520 *
521 * If we are ATTACH, it means we just want to catch the current
522 * transaction and commit it, so we needn't do sb_start_intwrite().
523 */
524 if (type & __TRANS_FREEZABLE)
525 sb_start_intwrite(fs_info->sb);
526
527 if (may_wait_transaction(fs_info, type))
528 wait_current_trans(fs_info);
529
530 do {
531 ret = join_transaction(fs_info, type);
532 if (ret == -EBUSY) {
533 wait_current_trans(fs_info);
534 if (unlikely(type == TRANS_ATTACH))
535 ret = -ENOENT;
536 }
537 } while (ret == -EBUSY);
538
539 if (ret < 0)
540 goto join_fail;
541
542 cur_trans = fs_info->running_transaction;
543
544 h->transid = cur_trans->transid;
545 h->transaction = cur_trans;
546 h->root = root;
547 refcount_set(&h->use_count, 1);
548 h->fs_info = root->fs_info;
549
550 h->type = type;
551 h->can_flush_pending_bgs = true;
552 INIT_LIST_HEAD(&h->new_bgs);
553
554 smp_mb();
555 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
556 may_wait_transaction(fs_info, type)) {
557 current->journal_info = h;
558 btrfs_commit_transaction(h);
559 goto again;
560 }
561
562 if (num_bytes) {
563 trace_btrfs_space_reservation(fs_info, "transaction",
564 h->transid, num_bytes, 1);
565 h->block_rsv = &fs_info->trans_block_rsv;
566 h->bytes_reserved = num_bytes;
567 h->reloc_reserved = reloc_reserved;
568 }
569
570got_it:
571 btrfs_record_root_in_trans(h, root);
572
573 if (!current->journal_info)
574 current->journal_info = h;
575 return h;
576
577join_fail:
578 if (type & __TRANS_FREEZABLE)
579 sb_end_intwrite(fs_info->sb);
580 kmem_cache_free(btrfs_trans_handle_cachep, h);
581alloc_fail:
582 if (num_bytes)
583 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
584 num_bytes);
585reserve_fail:
586 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
587 return ERR_PTR(ret);
588}
589
590struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
591 unsigned int num_items)
592{
593 return start_transaction(root, num_items, TRANS_START,
594 BTRFS_RESERVE_FLUSH_ALL, true);
595}
596
597struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
598 struct btrfs_root *root,
599 unsigned int num_items,
600 int min_factor)
601{
602 struct btrfs_fs_info *fs_info = root->fs_info;
603 struct btrfs_trans_handle *trans;
604 u64 num_bytes;
605 int ret;
606
607 /*
608 * We have two callers: unlink and block group removal. The
609 * former should succeed even if we will temporarily exceed
610 * quota and the latter operates on the extent root so
611 * qgroup enforcement is ignored anyway.
612 */
613 trans = start_transaction(root, num_items, TRANS_START,
614 BTRFS_RESERVE_FLUSH_ALL, false);
615 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
616 return trans;
617
618 trans = btrfs_start_transaction(root, 0);
619 if (IS_ERR(trans))
620 return trans;
621
622 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
623 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
624 num_bytes, min_factor);
625 if (ret) {
626 btrfs_end_transaction(trans);
627 return ERR_PTR(ret);
628 }
629
630 trans->block_rsv = &fs_info->trans_block_rsv;
631 trans->bytes_reserved = num_bytes;
632 trace_btrfs_space_reservation(fs_info, "transaction",
633 trans->transid, num_bytes, 1);
634
635 return trans;
636}
637
638struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
639{
640 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
641 true);
642}
643
644struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
645{
646 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
647 BTRFS_RESERVE_NO_FLUSH, true);
648}
649
650/*
651 * btrfs_attach_transaction() - catch the running transaction
652 *
653 * It is used when we want to commit the current the transaction, but
654 * don't want to start a new one.
655 *
656 * Note: If this function return -ENOENT, it just means there is no
657 * running transaction. But it is possible that the inactive transaction
658 * is still in the memory, not fully on disk. If you hope there is no
659 * inactive transaction in the fs when -ENOENT is returned, you should
660 * invoke
661 * btrfs_attach_transaction_barrier()
662 */
663struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664{
665 return start_transaction(root, 0, TRANS_ATTACH,
666 BTRFS_RESERVE_NO_FLUSH, true);
667}
668
669/*
670 * btrfs_attach_transaction_barrier() - catch the running transaction
671 *
672 * It is similar to the above function, the differentia is this one
673 * will wait for all the inactive transactions until they fully
674 * complete.
675 */
676struct btrfs_trans_handle *
677btrfs_attach_transaction_barrier(struct btrfs_root *root)
678{
679 struct btrfs_trans_handle *trans;
680
681 trans = start_transaction(root, 0, TRANS_ATTACH,
682 BTRFS_RESERVE_NO_FLUSH, true);
683 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
684 btrfs_wait_for_commit(root->fs_info, 0);
685
686 return trans;
687}
688
689/* wait for a transaction commit to be fully complete */
690static noinline void wait_for_commit(struct btrfs_transaction *commit)
691{
692 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
693}
694
695int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
696{
697 struct btrfs_transaction *cur_trans = NULL, *t;
698 int ret = 0;
699
700 if (transid) {
701 if (transid <= fs_info->last_trans_committed)
702 goto out;
703
704 /* find specified transaction */
705 spin_lock(&fs_info->trans_lock);
706 list_for_each_entry(t, &fs_info->trans_list, list) {
707 if (t->transid == transid) {
708 cur_trans = t;
709 refcount_inc(&cur_trans->use_count);
710 ret = 0;
711 break;
712 }
713 if (t->transid > transid) {
714 ret = 0;
715 break;
716 }
717 }
718 spin_unlock(&fs_info->trans_lock);
719
720 /*
721 * The specified transaction doesn't exist, or we
722 * raced with btrfs_commit_transaction
723 */
724 if (!cur_trans) {
725 if (transid > fs_info->last_trans_committed)
726 ret = -EINVAL;
727 goto out;
728 }
729 } else {
730 /* find newest transaction that is committing | committed */
731 spin_lock(&fs_info->trans_lock);
732 list_for_each_entry_reverse(t, &fs_info->trans_list,
733 list) {
734 if (t->state >= TRANS_STATE_COMMIT_START) {
735 if (t->state == TRANS_STATE_COMPLETED)
736 break;
737 cur_trans = t;
738 refcount_inc(&cur_trans->use_count);
739 break;
740 }
741 }
742 spin_unlock(&fs_info->trans_lock);
743 if (!cur_trans)
744 goto out; /* nothing committing|committed */
745 }
746
747 wait_for_commit(cur_trans);
748 btrfs_put_transaction(cur_trans);
749out:
750 return ret;
751}
752
753void btrfs_throttle(struct btrfs_fs_info *fs_info)
754{
755 wait_current_trans(fs_info);
756}
757
758static int should_end_transaction(struct btrfs_trans_handle *trans)
759{
760 struct btrfs_fs_info *fs_info = trans->fs_info;
761
762 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
763 return 1;
764
765 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
766}
767
768int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
769{
770 struct btrfs_transaction *cur_trans = trans->transaction;
771 int updates;
772 int err;
773
774 smp_mb();
775 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
776 cur_trans->delayed_refs.flushing)
777 return 1;
778
779 updates = trans->delayed_ref_updates;
780 trans->delayed_ref_updates = 0;
781 if (updates) {
782 err = btrfs_run_delayed_refs(trans, updates * 2);
783 if (err) /* Error code will also eval true */
784 return err;
785 }
786
787 return should_end_transaction(trans);
788}
789
790static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
791
792{
793 struct btrfs_fs_info *fs_info = trans->fs_info;
794
795 if (!trans->block_rsv) {
796 ASSERT(!trans->bytes_reserved);
797 return;
798 }
799
800 if (!trans->bytes_reserved)
801 return;
802
803 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
804 trace_btrfs_space_reservation(fs_info, "transaction",
805 trans->transid, trans->bytes_reserved, 0);
806 btrfs_block_rsv_release(fs_info, trans->block_rsv,
807 trans->bytes_reserved);
808 trans->bytes_reserved = 0;
809}
810
811static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
812 int throttle)
813{
814 struct btrfs_fs_info *info = trans->fs_info;
815 struct btrfs_transaction *cur_trans = trans->transaction;
816 u64 transid = trans->transid;
817 unsigned long cur = trans->delayed_ref_updates;
818 int lock = (trans->type != TRANS_JOIN_NOLOCK);
819 int err = 0;
820 int must_run_delayed_refs = 0;
821
822 if (refcount_read(&trans->use_count) > 1) {
823 refcount_dec(&trans->use_count);
824 trans->block_rsv = trans->orig_rsv;
825 return 0;
826 }
827
828 btrfs_trans_release_metadata(trans);
829 trans->block_rsv = NULL;
830
831 if (!list_empty(&trans->new_bgs))
832 btrfs_create_pending_block_groups(trans);
833
834 trans->delayed_ref_updates = 0;
835 if (!trans->sync) {
836 must_run_delayed_refs =
837 btrfs_should_throttle_delayed_refs(trans, info);
838 cur = max_t(unsigned long, cur, 32);
839
840 /*
841 * don't make the caller wait if they are from a NOLOCK
842 * or ATTACH transaction, it will deadlock with commit
843 */
844 if (must_run_delayed_refs == 1 &&
845 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
846 must_run_delayed_refs = 2;
847 }
848
849 btrfs_trans_release_metadata(trans);
850 trans->block_rsv = NULL;
851
852 if (!list_empty(&trans->new_bgs))
853 btrfs_create_pending_block_groups(trans);
854
855 btrfs_trans_release_chunk_metadata(trans);
856
857 if (lock && should_end_transaction(trans) &&
858 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
859 spin_lock(&info->trans_lock);
860 if (cur_trans->state == TRANS_STATE_RUNNING)
861 cur_trans->state = TRANS_STATE_BLOCKED;
862 spin_unlock(&info->trans_lock);
863 }
864
865 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
866 if (throttle)
867 return btrfs_commit_transaction(trans);
868 else
869 wake_up_process(info->transaction_kthread);
870 }
871
872 if (trans->type & __TRANS_FREEZABLE)
873 sb_end_intwrite(info->sb);
874
875 WARN_ON(cur_trans != info->running_transaction);
876 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
877 atomic_dec(&cur_trans->num_writers);
878 extwriter_counter_dec(cur_trans, trans->type);
879
880 /*
881 * Make sure counter is updated before we wake up waiters.
882 */
883 smp_mb();
884 if (waitqueue_active(&cur_trans->writer_wait))
885 wake_up(&cur_trans->writer_wait);
886 btrfs_put_transaction(cur_trans);
887
888 if (current->journal_info == trans)
889 current->journal_info = NULL;
890
891 if (throttle)
892 btrfs_run_delayed_iputs(info);
893
894 if (trans->aborted ||
895 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
896 wake_up_process(info->transaction_kthread);
897 err = -EIO;
898 }
899
900 kmem_cache_free(btrfs_trans_handle_cachep, trans);
901 if (must_run_delayed_refs) {
902 btrfs_async_run_delayed_refs(info, cur, transid,
903 must_run_delayed_refs == 1);
904 }
905 return err;
906}
907
908int btrfs_end_transaction(struct btrfs_trans_handle *trans)
909{
910 return __btrfs_end_transaction(trans, 0);
911}
912
913int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
914{
915 return __btrfs_end_transaction(trans, 1);
916}
917
918/*
919 * when btree blocks are allocated, they have some corresponding bits set for
920 * them in one of two extent_io trees. This is used to make sure all of
921 * those extents are sent to disk but does not wait on them
922 */
923int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
924 struct extent_io_tree *dirty_pages, int mark)
925{
926 int err = 0;
927 int werr = 0;
928 struct address_space *mapping = fs_info->btree_inode->i_mapping;
929 struct extent_state *cached_state = NULL;
930 u64 start = 0;
931 u64 end;
932
933 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
934 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
935 mark, &cached_state)) {
936 bool wait_writeback = false;
937
938 err = convert_extent_bit(dirty_pages, start, end,
939 EXTENT_NEED_WAIT,
940 mark, &cached_state);
941 /*
942 * convert_extent_bit can return -ENOMEM, which is most of the
943 * time a temporary error. So when it happens, ignore the error
944 * and wait for writeback of this range to finish - because we
945 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
946 * to __btrfs_wait_marked_extents() would not know that
947 * writeback for this range started and therefore wouldn't
948 * wait for it to finish - we don't want to commit a
949 * superblock that points to btree nodes/leafs for which
950 * writeback hasn't finished yet (and without errors).
951 * We cleanup any entries left in the io tree when committing
952 * the transaction (through clear_btree_io_tree()).
953 */
954 if (err == -ENOMEM) {
955 err = 0;
956 wait_writeback = true;
957 }
958 if (!err)
959 err = filemap_fdatawrite_range(mapping, start, end);
960 if (err)
961 werr = err;
962 else if (wait_writeback)
963 werr = filemap_fdatawait_range(mapping, start, end);
964 free_extent_state(cached_state);
965 cached_state = NULL;
966 cond_resched();
967 start = end + 1;
968 }
969 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
970 return werr;
971}
972
973/*
974 * when btree blocks are allocated, they have some corresponding bits set for
975 * them in one of two extent_io trees. This is used to make sure all of
976 * those extents are on disk for transaction or log commit. We wait
977 * on all the pages and clear them from the dirty pages state tree
978 */
979static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
980 struct extent_io_tree *dirty_pages)
981{
982 int err = 0;
983 int werr = 0;
984 struct address_space *mapping = fs_info->btree_inode->i_mapping;
985 struct extent_state *cached_state = NULL;
986 u64 start = 0;
987 u64 end;
988
989 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
990 EXTENT_NEED_WAIT, &cached_state)) {
991 /*
992 * Ignore -ENOMEM errors returned by clear_extent_bit().
993 * When committing the transaction, we'll remove any entries
994 * left in the io tree. For a log commit, we don't remove them
995 * after committing the log because the tree can be accessed
996 * concurrently - we do it only at transaction commit time when
997 * it's safe to do it (through clear_btree_io_tree()).
998 */
999 err = clear_extent_bit(dirty_pages, start, end,
1000 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1001 if (err == -ENOMEM)
1002 err = 0;
1003 if (!err)
1004 err = filemap_fdatawait_range(mapping, start, end);
1005 if (err)
1006 werr = err;
1007 free_extent_state(cached_state);
1008 cached_state = NULL;
1009 cond_resched();
1010 start = end + 1;
1011 }
1012 if (err)
1013 werr = err;
1014 return werr;
1015}
1016
1017int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1018 struct extent_io_tree *dirty_pages)
1019{
1020 bool errors = false;
1021 int err;
1022
1023 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1024 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1025 errors = true;
1026
1027 if (errors && !err)
1028 err = -EIO;
1029 return err;
1030}
1031
1032int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1033{
1034 struct btrfs_fs_info *fs_info = log_root->fs_info;
1035 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1036 bool errors = false;
1037 int err;
1038
1039 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1040
1041 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1042 if ((mark & EXTENT_DIRTY) &&
1043 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1044 errors = true;
1045
1046 if ((mark & EXTENT_NEW) &&
1047 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1048 errors = true;
1049
1050 if (errors && !err)
1051 err = -EIO;
1052 return err;
1053}
1054
1055/*
1056 * When btree blocks are allocated the corresponding extents are marked dirty.
1057 * This function ensures such extents are persisted on disk for transaction or
1058 * log commit.
1059 *
1060 * @trans: transaction whose dirty pages we'd like to write
1061 */
1062static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1063{
1064 int ret;
1065 int ret2;
1066 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1067 struct btrfs_fs_info *fs_info = trans->fs_info;
1068 struct blk_plug plug;
1069
1070 blk_start_plug(&plug);
1071 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1072 blk_finish_plug(&plug);
1073 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1074
1075 clear_btree_io_tree(&trans->transaction->dirty_pages);
1076
1077 if (ret)
1078 return ret;
1079 else if (ret2)
1080 return ret2;
1081 else
1082 return 0;
1083}
1084
1085/*
1086 * this is used to update the root pointer in the tree of tree roots.
1087 *
1088 * But, in the case of the extent allocation tree, updating the root
1089 * pointer may allocate blocks which may change the root of the extent
1090 * allocation tree.
1091 *
1092 * So, this loops and repeats and makes sure the cowonly root didn't
1093 * change while the root pointer was being updated in the metadata.
1094 */
1095static int update_cowonly_root(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root)
1097{
1098 int ret;
1099 u64 old_root_bytenr;
1100 u64 old_root_used;
1101 struct btrfs_fs_info *fs_info = root->fs_info;
1102 struct btrfs_root *tree_root = fs_info->tree_root;
1103
1104 old_root_used = btrfs_root_used(&root->root_item);
1105
1106 while (1) {
1107 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1108 if (old_root_bytenr == root->node->start &&
1109 old_root_used == btrfs_root_used(&root->root_item))
1110 break;
1111
1112 btrfs_set_root_node(&root->root_item, root->node);
1113 ret = btrfs_update_root(trans, tree_root,
1114 &root->root_key,
1115 &root->root_item);
1116 if (ret)
1117 return ret;
1118
1119 old_root_used = btrfs_root_used(&root->root_item);
1120 }
1121
1122 return 0;
1123}
1124
1125/*
1126 * update all the cowonly tree roots on disk
1127 *
1128 * The error handling in this function may not be obvious. Any of the
1129 * failures will cause the file system to go offline. We still need
1130 * to clean up the delayed refs.
1131 */
1132static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1133{
1134 struct btrfs_fs_info *fs_info = trans->fs_info;
1135 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1136 struct list_head *io_bgs = &trans->transaction->io_bgs;
1137 struct list_head *next;
1138 struct extent_buffer *eb;
1139 int ret;
1140
1141 eb = btrfs_lock_root_node(fs_info->tree_root);
1142 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1143 0, &eb);
1144 btrfs_tree_unlock(eb);
1145 free_extent_buffer(eb);
1146
1147 if (ret)
1148 return ret;
1149
1150 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1151 if (ret)
1152 return ret;
1153
1154 ret = btrfs_run_dev_stats(trans, fs_info);
1155 if (ret)
1156 return ret;
1157 ret = btrfs_run_dev_replace(trans, fs_info);
1158 if (ret)
1159 return ret;
1160 ret = btrfs_run_qgroups(trans, fs_info);
1161 if (ret)
1162 return ret;
1163
1164 ret = btrfs_setup_space_cache(trans, fs_info);
1165 if (ret)
1166 return ret;
1167
1168 /* run_qgroups might have added some more refs */
1169 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1170 if (ret)
1171 return ret;
1172again:
1173 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1174 struct btrfs_root *root;
1175 next = fs_info->dirty_cowonly_roots.next;
1176 list_del_init(next);
1177 root = list_entry(next, struct btrfs_root, dirty_list);
1178 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1179
1180 if (root != fs_info->extent_root)
1181 list_add_tail(&root->dirty_list,
1182 &trans->transaction->switch_commits);
1183 ret = update_cowonly_root(trans, root);
1184 if (ret)
1185 return ret;
1186 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1187 if (ret)
1188 return ret;
1189 }
1190
1191 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1192 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1193 if (ret)
1194 return ret;
1195 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1196 if (ret)
1197 return ret;
1198 }
1199
1200 if (!list_empty(&fs_info->dirty_cowonly_roots))
1201 goto again;
1202
1203 list_add_tail(&fs_info->extent_root->dirty_list,
1204 &trans->transaction->switch_commits);
1205 btrfs_after_dev_replace_commit(fs_info);
1206
1207 return 0;
1208}
1209
1210/*
1211 * dead roots are old snapshots that need to be deleted. This allocates
1212 * a dirty root struct and adds it into the list of dead roots that need to
1213 * be deleted
1214 */
1215void btrfs_add_dead_root(struct btrfs_root *root)
1216{
1217 struct btrfs_fs_info *fs_info = root->fs_info;
1218
1219 spin_lock(&fs_info->trans_lock);
1220 if (list_empty(&root->root_list))
1221 list_add_tail(&root->root_list, &fs_info->dead_roots);
1222 spin_unlock(&fs_info->trans_lock);
1223}
1224
1225/*
1226 * update all the cowonly tree roots on disk
1227 */
1228static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1229{
1230 struct btrfs_fs_info *fs_info = trans->fs_info;
1231 struct btrfs_root *gang[8];
1232 int i;
1233 int ret;
1234 int err = 0;
1235
1236 spin_lock(&fs_info->fs_roots_radix_lock);
1237 while (1) {
1238 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1239 (void **)gang, 0,
1240 ARRAY_SIZE(gang),
1241 BTRFS_ROOT_TRANS_TAG);
1242 if (ret == 0)
1243 break;
1244 for (i = 0; i < ret; i++) {
1245 struct btrfs_root *root = gang[i];
1246 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1247 (unsigned long)root->root_key.objectid,
1248 BTRFS_ROOT_TRANS_TAG);
1249 spin_unlock(&fs_info->fs_roots_radix_lock);
1250
1251 btrfs_free_log(trans, root);
1252 btrfs_update_reloc_root(trans, root);
1253 btrfs_orphan_commit_root(trans, root);
1254
1255 btrfs_save_ino_cache(root, trans);
1256
1257 /* see comments in should_cow_block() */
1258 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1259 smp_mb__after_atomic();
1260
1261 if (root->commit_root != root->node) {
1262 list_add_tail(&root->dirty_list,
1263 &trans->transaction->switch_commits);
1264 btrfs_set_root_node(&root->root_item,
1265 root->node);
1266 }
1267
1268 err = btrfs_update_root(trans, fs_info->tree_root,
1269 &root->root_key,
1270 &root->root_item);
1271 spin_lock(&fs_info->fs_roots_radix_lock);
1272 if (err)
1273 break;
1274 btrfs_qgroup_free_meta_all_pertrans(root);
1275 }
1276 }
1277 spin_unlock(&fs_info->fs_roots_radix_lock);
1278 return err;
1279}
1280
1281/*
1282 * defrag a given btree.
1283 * Every leaf in the btree is read and defragged.
1284 */
1285int btrfs_defrag_root(struct btrfs_root *root)
1286{
1287 struct btrfs_fs_info *info = root->fs_info;
1288 struct btrfs_trans_handle *trans;
1289 int ret;
1290
1291 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1292 return 0;
1293
1294 while (1) {
1295 trans = btrfs_start_transaction(root, 0);
1296 if (IS_ERR(trans))
1297 return PTR_ERR(trans);
1298
1299 ret = btrfs_defrag_leaves(trans, root);
1300
1301 btrfs_end_transaction(trans);
1302 btrfs_btree_balance_dirty(info);
1303 cond_resched();
1304
1305 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1306 break;
1307
1308 if (btrfs_defrag_cancelled(info)) {
1309 btrfs_debug(info, "defrag_root cancelled");
1310 ret = -EAGAIN;
1311 break;
1312 }
1313 }
1314 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1315 return ret;
1316}
1317
1318/*
1319 * Do all special snapshot related qgroup dirty hack.
1320 *
1321 * Will do all needed qgroup inherit and dirty hack like switch commit
1322 * roots inside one transaction and write all btree into disk, to make
1323 * qgroup works.
1324 */
1325static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *src,
1327 struct btrfs_root *parent,
1328 struct btrfs_qgroup_inherit *inherit,
1329 u64 dst_objectid)
1330{
1331 struct btrfs_fs_info *fs_info = src->fs_info;
1332 int ret;
1333
1334 /*
1335 * Save some performance in the case that qgroups are not
1336 * enabled. If this check races with the ioctl, rescan will
1337 * kick in anyway.
1338 */
1339 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1340 return 0;
1341
1342 /*
1343 * Ensure dirty @src will be commited. Or, after comming
1344 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1345 * recorded root will never be updated again, causing an outdated root
1346 * item.
1347 */
1348 record_root_in_trans(trans, src, 1);
1349
1350 /*
1351 * We are going to commit transaction, see btrfs_commit_transaction()
1352 * comment for reason locking tree_log_mutex
1353 */
1354 mutex_lock(&fs_info->tree_log_mutex);
1355
1356 ret = commit_fs_roots(trans);
1357 if (ret)
1358 goto out;
1359 ret = btrfs_qgroup_account_extents(trans);
1360 if (ret < 0)
1361 goto out;
1362
1363 /* Now qgroup are all updated, we can inherit it to new qgroups */
1364 ret = btrfs_qgroup_inherit(trans, fs_info,
1365 src->root_key.objectid, dst_objectid,
1366 inherit);
1367 if (ret < 0)
1368 goto out;
1369
1370 /*
1371 * Now we do a simplified commit transaction, which will:
1372 * 1) commit all subvolume and extent tree
1373 * To ensure all subvolume and extent tree have a valid
1374 * commit_root to accounting later insert_dir_item()
1375 * 2) write all btree blocks onto disk
1376 * This is to make sure later btree modification will be cowed
1377 * Or commit_root can be populated and cause wrong qgroup numbers
1378 * In this simplified commit, we don't really care about other trees
1379 * like chunk and root tree, as they won't affect qgroup.
1380 * And we don't write super to avoid half committed status.
1381 */
1382 ret = commit_cowonly_roots(trans);
1383 if (ret)
1384 goto out;
1385 switch_commit_roots(trans->transaction);
1386 ret = btrfs_write_and_wait_transaction(trans);
1387 if (ret)
1388 btrfs_handle_fs_error(fs_info, ret,
1389 "Error while writing out transaction for qgroup");
1390
1391out:
1392 mutex_unlock(&fs_info->tree_log_mutex);
1393
1394 /*
1395 * Force parent root to be updated, as we recorded it before so its
1396 * last_trans == cur_transid.
1397 * Or it won't be committed again onto disk after later
1398 * insert_dir_item()
1399 */
1400 if (!ret)
1401 record_root_in_trans(trans, parent, 1);
1402 return ret;
1403}
1404
1405/*
1406 * new snapshots need to be created at a very specific time in the
1407 * transaction commit. This does the actual creation.
1408 *
1409 * Note:
1410 * If the error which may affect the commitment of the current transaction
1411 * happens, we should return the error number. If the error which just affect
1412 * the creation of the pending snapshots, just return 0.
1413 */
1414static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1415 struct btrfs_pending_snapshot *pending)
1416{
1417
1418 struct btrfs_fs_info *fs_info = trans->fs_info;
1419 struct btrfs_key key;
1420 struct btrfs_root_item *new_root_item;
1421 struct btrfs_root *tree_root = fs_info->tree_root;
1422 struct btrfs_root *root = pending->root;
1423 struct btrfs_root *parent_root;
1424 struct btrfs_block_rsv *rsv;
1425 struct inode *parent_inode;
1426 struct btrfs_path *path;
1427 struct btrfs_dir_item *dir_item;
1428 struct dentry *dentry;
1429 struct extent_buffer *tmp;
1430 struct extent_buffer *old;
1431 struct timespec cur_time;
1432 int ret = 0;
1433 u64 to_reserve = 0;
1434 u64 index = 0;
1435 u64 objectid;
1436 u64 root_flags;
1437 uuid_le new_uuid;
1438
1439 ASSERT(pending->path);
1440 path = pending->path;
1441
1442 ASSERT(pending->root_item);
1443 new_root_item = pending->root_item;
1444
1445 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1446 if (pending->error)
1447 goto no_free_objectid;
1448
1449 /*
1450 * Make qgroup to skip current new snapshot's qgroupid, as it is
1451 * accounted by later btrfs_qgroup_inherit().
1452 */
1453 btrfs_set_skip_qgroup(trans, objectid);
1454
1455 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1456
1457 if (to_reserve > 0) {
1458 pending->error = btrfs_block_rsv_add(root,
1459 &pending->block_rsv,
1460 to_reserve,
1461 BTRFS_RESERVE_NO_FLUSH);
1462 if (pending->error)
1463 goto clear_skip_qgroup;
1464 }
1465
1466 key.objectid = objectid;
1467 key.offset = (u64)-1;
1468 key.type = BTRFS_ROOT_ITEM_KEY;
1469
1470 rsv = trans->block_rsv;
1471 trans->block_rsv = &pending->block_rsv;
1472 trans->bytes_reserved = trans->block_rsv->reserved;
1473 trace_btrfs_space_reservation(fs_info, "transaction",
1474 trans->transid,
1475 trans->bytes_reserved, 1);
1476 dentry = pending->dentry;
1477 parent_inode = pending->dir;
1478 parent_root = BTRFS_I(parent_inode)->root;
1479 record_root_in_trans(trans, parent_root, 0);
1480
1481 cur_time = current_time(parent_inode);
1482
1483 /*
1484 * insert the directory item
1485 */
1486 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1487 BUG_ON(ret); /* -ENOMEM */
1488
1489 /* check if there is a file/dir which has the same name. */
1490 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1491 btrfs_ino(BTRFS_I(parent_inode)),
1492 dentry->d_name.name,
1493 dentry->d_name.len, 0);
1494 if (dir_item != NULL && !IS_ERR(dir_item)) {
1495 pending->error = -EEXIST;
1496 goto dir_item_existed;
1497 } else if (IS_ERR(dir_item)) {
1498 ret = PTR_ERR(dir_item);
1499 btrfs_abort_transaction(trans, ret);
1500 goto fail;
1501 }
1502 btrfs_release_path(path);
1503
1504 /*
1505 * pull in the delayed directory update
1506 * and the delayed inode item
1507 * otherwise we corrupt the FS during
1508 * snapshot
1509 */
1510 ret = btrfs_run_delayed_items(trans);
1511 if (ret) { /* Transaction aborted */
1512 btrfs_abort_transaction(trans, ret);
1513 goto fail;
1514 }
1515
1516 record_root_in_trans(trans, root, 0);
1517 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1518 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1519 btrfs_check_and_init_root_item(new_root_item);
1520
1521 root_flags = btrfs_root_flags(new_root_item);
1522 if (pending->readonly)
1523 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1524 else
1525 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1526 btrfs_set_root_flags(new_root_item, root_flags);
1527
1528 btrfs_set_root_generation_v2(new_root_item,
1529 trans->transid);
1530 uuid_le_gen(&new_uuid);
1531 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1532 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1533 BTRFS_UUID_SIZE);
1534 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1535 memset(new_root_item->received_uuid, 0,
1536 sizeof(new_root_item->received_uuid));
1537 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1538 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1539 btrfs_set_root_stransid(new_root_item, 0);
1540 btrfs_set_root_rtransid(new_root_item, 0);
1541 }
1542 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1543 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1544 btrfs_set_root_otransid(new_root_item, trans->transid);
1545
1546 old = btrfs_lock_root_node(root);
1547 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1548 if (ret) {
1549 btrfs_tree_unlock(old);
1550 free_extent_buffer(old);
1551 btrfs_abort_transaction(trans, ret);
1552 goto fail;
1553 }
1554
1555 btrfs_set_lock_blocking(old);
1556
1557 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1558 /* clean up in any case */
1559 btrfs_tree_unlock(old);
1560 free_extent_buffer(old);
1561 if (ret) {
1562 btrfs_abort_transaction(trans, ret);
1563 goto fail;
1564 }
1565 /* see comments in should_cow_block() */
1566 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1567 smp_wmb();
1568
1569 btrfs_set_root_node(new_root_item, tmp);
1570 /* record when the snapshot was created in key.offset */
1571 key.offset = trans->transid;
1572 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1573 btrfs_tree_unlock(tmp);
1574 free_extent_buffer(tmp);
1575 if (ret) {
1576 btrfs_abort_transaction(trans, ret);
1577 goto fail;
1578 }
1579
1580 /*
1581 * insert root back/forward references
1582 */
1583 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1584 parent_root->root_key.objectid,
1585 btrfs_ino(BTRFS_I(parent_inode)), index,
1586 dentry->d_name.name, dentry->d_name.len);
1587 if (ret) {
1588 btrfs_abort_transaction(trans, ret);
1589 goto fail;
1590 }
1591
1592 key.offset = (u64)-1;
1593 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1594 if (IS_ERR(pending->snap)) {
1595 ret = PTR_ERR(pending->snap);
1596 btrfs_abort_transaction(trans, ret);
1597 goto fail;
1598 }
1599
1600 ret = btrfs_reloc_post_snapshot(trans, pending);
1601 if (ret) {
1602 btrfs_abort_transaction(trans, ret);
1603 goto fail;
1604 }
1605
1606 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1607 if (ret) {
1608 btrfs_abort_transaction(trans, ret);
1609 goto fail;
1610 }
1611
1612 /*
1613 * Do special qgroup accounting for snapshot, as we do some qgroup
1614 * snapshot hack to do fast snapshot.
1615 * To co-operate with that hack, we do hack again.
1616 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1617 */
1618 ret = qgroup_account_snapshot(trans, root, parent_root,
1619 pending->inherit, objectid);
1620 if (ret < 0)
1621 goto fail;
1622
1623 ret = btrfs_insert_dir_item(trans, parent_root,
1624 dentry->d_name.name, dentry->d_name.len,
1625 BTRFS_I(parent_inode), &key,
1626 BTRFS_FT_DIR, index);
1627 /* We have check then name at the beginning, so it is impossible. */
1628 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1629 if (ret) {
1630 btrfs_abort_transaction(trans, ret);
1631 goto fail;
1632 }
1633
1634 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1635 dentry->d_name.len * 2);
1636 parent_inode->i_mtime = parent_inode->i_ctime =
1637 current_time(parent_inode);
1638 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1639 if (ret) {
1640 btrfs_abort_transaction(trans, ret);
1641 goto fail;
1642 }
1643 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1644 BTRFS_UUID_KEY_SUBVOL, objectid);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1650 ret = btrfs_uuid_tree_add(trans, fs_info,
1651 new_root_item->received_uuid,
1652 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1653 objectid);
1654 if (ret && ret != -EEXIST) {
1655 btrfs_abort_transaction(trans, ret);
1656 goto fail;
1657 }
1658 }
1659
1660 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1664 }
1665
1666fail:
1667 pending->error = ret;
1668dir_item_existed:
1669 trans->block_rsv = rsv;
1670 trans->bytes_reserved = 0;
1671clear_skip_qgroup:
1672 btrfs_clear_skip_qgroup(trans);
1673no_free_objectid:
1674 kfree(new_root_item);
1675 pending->root_item = NULL;
1676 btrfs_free_path(path);
1677 pending->path = NULL;
1678
1679 return ret;
1680}
1681
1682/*
1683 * create all the snapshots we've scheduled for creation
1684 */
1685static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1686{
1687 struct btrfs_pending_snapshot *pending, *next;
1688 struct list_head *head = &trans->transaction->pending_snapshots;
1689 int ret = 0;
1690
1691 list_for_each_entry_safe(pending, next, head, list) {
1692 list_del(&pending->list);
1693 ret = create_pending_snapshot(trans, pending);
1694 if (ret)
1695 break;
1696 }
1697 return ret;
1698}
1699
1700static void update_super_roots(struct btrfs_fs_info *fs_info)
1701{
1702 struct btrfs_root_item *root_item;
1703 struct btrfs_super_block *super;
1704
1705 super = fs_info->super_copy;
1706
1707 root_item = &fs_info->chunk_root->root_item;
1708 super->chunk_root = root_item->bytenr;
1709 super->chunk_root_generation = root_item->generation;
1710 super->chunk_root_level = root_item->level;
1711
1712 root_item = &fs_info->tree_root->root_item;
1713 super->root = root_item->bytenr;
1714 super->generation = root_item->generation;
1715 super->root_level = root_item->level;
1716 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1717 super->cache_generation = root_item->generation;
1718 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1719 super->uuid_tree_generation = root_item->generation;
1720}
1721
1722int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1723{
1724 struct btrfs_transaction *trans;
1725 int ret = 0;
1726
1727 spin_lock(&info->trans_lock);
1728 trans = info->running_transaction;
1729 if (trans)
1730 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1731 spin_unlock(&info->trans_lock);
1732 return ret;
1733}
1734
1735int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1736{
1737 struct btrfs_transaction *trans;
1738 int ret = 0;
1739
1740 spin_lock(&info->trans_lock);
1741 trans = info->running_transaction;
1742 if (trans)
1743 ret = is_transaction_blocked(trans);
1744 spin_unlock(&info->trans_lock);
1745 return ret;
1746}
1747
1748/*
1749 * wait for the current transaction commit to start and block subsequent
1750 * transaction joins
1751 */
1752static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1753 struct btrfs_transaction *trans)
1754{
1755 wait_event(fs_info->transaction_blocked_wait,
1756 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1757}
1758
1759/*
1760 * wait for the current transaction to start and then become unblocked.
1761 * caller holds ref.
1762 */
1763static void wait_current_trans_commit_start_and_unblock(
1764 struct btrfs_fs_info *fs_info,
1765 struct btrfs_transaction *trans)
1766{
1767 wait_event(fs_info->transaction_wait,
1768 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1769}
1770
1771/*
1772 * commit transactions asynchronously. once btrfs_commit_transaction_async
1773 * returns, any subsequent transaction will not be allowed to join.
1774 */
1775struct btrfs_async_commit {
1776 struct btrfs_trans_handle *newtrans;
1777 struct work_struct work;
1778};
1779
1780static void do_async_commit(struct work_struct *work)
1781{
1782 struct btrfs_async_commit *ac =
1783 container_of(work, struct btrfs_async_commit, work);
1784
1785 /*
1786 * We've got freeze protection passed with the transaction.
1787 * Tell lockdep about it.
1788 */
1789 if (ac->newtrans->type & __TRANS_FREEZABLE)
1790 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1791
1792 current->journal_info = ac->newtrans;
1793
1794 btrfs_commit_transaction(ac->newtrans);
1795 kfree(ac);
1796}
1797
1798int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1799 int wait_for_unblock)
1800{
1801 struct btrfs_fs_info *fs_info = trans->fs_info;
1802 struct btrfs_async_commit *ac;
1803 struct btrfs_transaction *cur_trans;
1804
1805 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1806 if (!ac)
1807 return -ENOMEM;
1808
1809 INIT_WORK(&ac->work, do_async_commit);
1810 ac->newtrans = btrfs_join_transaction(trans->root);
1811 if (IS_ERR(ac->newtrans)) {
1812 int err = PTR_ERR(ac->newtrans);
1813 kfree(ac);
1814 return err;
1815 }
1816
1817 /* take transaction reference */
1818 cur_trans = trans->transaction;
1819 refcount_inc(&cur_trans->use_count);
1820
1821 btrfs_end_transaction(trans);
1822
1823 /*
1824 * Tell lockdep we've released the freeze rwsem, since the
1825 * async commit thread will be the one to unlock it.
1826 */
1827 if (ac->newtrans->type & __TRANS_FREEZABLE)
1828 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1829
1830 schedule_work(&ac->work);
1831
1832 /* wait for transaction to start and unblock */
1833 if (wait_for_unblock)
1834 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1835 else
1836 wait_current_trans_commit_start(fs_info, cur_trans);
1837
1838 if (current->journal_info == trans)
1839 current->journal_info = NULL;
1840
1841 btrfs_put_transaction(cur_trans);
1842 return 0;
1843}
1844
1845
1846static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1847{
1848 struct btrfs_fs_info *fs_info = trans->fs_info;
1849 struct btrfs_transaction *cur_trans = trans->transaction;
1850 DEFINE_WAIT(wait);
1851
1852 WARN_ON(refcount_read(&trans->use_count) > 1);
1853
1854 btrfs_abort_transaction(trans, err);
1855
1856 spin_lock(&fs_info->trans_lock);
1857
1858 /*
1859 * If the transaction is removed from the list, it means this
1860 * transaction has been committed successfully, so it is impossible
1861 * to call the cleanup function.
1862 */
1863 BUG_ON(list_empty(&cur_trans->list));
1864
1865 list_del_init(&cur_trans->list);
1866 if (cur_trans == fs_info->running_transaction) {
1867 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1868 spin_unlock(&fs_info->trans_lock);
1869 wait_event(cur_trans->writer_wait,
1870 atomic_read(&cur_trans->num_writers) == 1);
1871
1872 spin_lock(&fs_info->trans_lock);
1873 }
1874 spin_unlock(&fs_info->trans_lock);
1875
1876 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1877
1878 spin_lock(&fs_info->trans_lock);
1879 if (cur_trans == fs_info->running_transaction)
1880 fs_info->running_transaction = NULL;
1881 spin_unlock(&fs_info->trans_lock);
1882
1883 if (trans->type & __TRANS_FREEZABLE)
1884 sb_end_intwrite(fs_info->sb);
1885 btrfs_put_transaction(cur_trans);
1886 btrfs_put_transaction(cur_trans);
1887
1888 trace_btrfs_transaction_commit(trans->root);
1889
1890 if (current->journal_info == trans)
1891 current->journal_info = NULL;
1892 btrfs_scrub_cancel(fs_info);
1893
1894 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1895}
1896
1897static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1898{
1899 /*
1900 * We use writeback_inodes_sb here because if we used
1901 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1902 * Currently are holding the fs freeze lock, if we do an async flush
1903 * we'll do btrfs_join_transaction() and deadlock because we need to
1904 * wait for the fs freeze lock. Using the direct flushing we benefit
1905 * from already being in a transaction and our join_transaction doesn't
1906 * have to re-take the fs freeze lock.
1907 */
1908 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1909 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1910 return 0;
1911}
1912
1913static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1914{
1915 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1916 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1917}
1918
1919static inline void
1920btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1921{
1922 wait_event(cur_trans->pending_wait,
1923 atomic_read(&cur_trans->pending_ordered) == 0);
1924}
1925
1926int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1927{
1928 struct btrfs_fs_info *fs_info = trans->fs_info;
1929 struct btrfs_transaction *cur_trans = trans->transaction;
1930 struct btrfs_transaction *prev_trans = NULL;
1931 int ret;
1932
1933 /* Stop the commit early if ->aborted is set */
1934 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1935 ret = cur_trans->aborted;
1936 btrfs_end_transaction(trans);
1937 return ret;
1938 }
1939
1940 /* make a pass through all the delayed refs we have so far
1941 * any runnings procs may add more while we are here
1942 */
1943 ret = btrfs_run_delayed_refs(trans, 0);
1944 if (ret) {
1945 btrfs_end_transaction(trans);
1946 return ret;
1947 }
1948
1949 btrfs_trans_release_metadata(trans);
1950 trans->block_rsv = NULL;
1951
1952 cur_trans = trans->transaction;
1953
1954 /*
1955 * set the flushing flag so procs in this transaction have to
1956 * start sending their work down.
1957 */
1958 cur_trans->delayed_refs.flushing = 1;
1959 smp_wmb();
1960
1961 if (!list_empty(&trans->new_bgs))
1962 btrfs_create_pending_block_groups(trans);
1963
1964 ret = btrfs_run_delayed_refs(trans, 0);
1965 if (ret) {
1966 btrfs_end_transaction(trans);
1967 return ret;
1968 }
1969
1970 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1971 int run_it = 0;
1972
1973 /* this mutex is also taken before trying to set
1974 * block groups readonly. We need to make sure
1975 * that nobody has set a block group readonly
1976 * after a extents from that block group have been
1977 * allocated for cache files. btrfs_set_block_group_ro
1978 * will wait for the transaction to commit if it
1979 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1980 *
1981 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1982 * only one process starts all the block group IO. It wouldn't
1983 * hurt to have more than one go through, but there's no
1984 * real advantage to it either.
1985 */
1986 mutex_lock(&fs_info->ro_block_group_mutex);
1987 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1988 &cur_trans->flags))
1989 run_it = 1;
1990 mutex_unlock(&fs_info->ro_block_group_mutex);
1991
1992 if (run_it) {
1993 ret = btrfs_start_dirty_block_groups(trans);
1994 if (ret) {
1995 btrfs_end_transaction(trans);
1996 return ret;
1997 }
1998 }
1999 }
2000
2001 spin_lock(&fs_info->trans_lock);
2002 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2003 spin_unlock(&fs_info->trans_lock);
2004 refcount_inc(&cur_trans->use_count);
2005 ret = btrfs_end_transaction(trans);
2006
2007 wait_for_commit(cur_trans);
2008
2009 if (unlikely(cur_trans->aborted))
2010 ret = cur_trans->aborted;
2011
2012 btrfs_put_transaction(cur_trans);
2013
2014 return ret;
2015 }
2016
2017 cur_trans->state = TRANS_STATE_COMMIT_START;
2018 wake_up(&fs_info->transaction_blocked_wait);
2019
2020 if (cur_trans->list.prev != &fs_info->trans_list) {
2021 prev_trans = list_entry(cur_trans->list.prev,
2022 struct btrfs_transaction, list);
2023 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2024 refcount_inc(&prev_trans->use_count);
2025 spin_unlock(&fs_info->trans_lock);
2026
2027 wait_for_commit(prev_trans);
2028 ret = prev_trans->aborted;
2029
2030 btrfs_put_transaction(prev_trans);
2031 if (ret)
2032 goto cleanup_transaction;
2033 } else {
2034 spin_unlock(&fs_info->trans_lock);
2035 }
2036 } else {
2037 spin_unlock(&fs_info->trans_lock);
2038 }
2039
2040 extwriter_counter_dec(cur_trans, trans->type);
2041
2042 ret = btrfs_start_delalloc_flush(fs_info);
2043 if (ret)
2044 goto cleanup_transaction;
2045
2046 ret = btrfs_run_delayed_items(trans);
2047 if (ret)
2048 goto cleanup_transaction;
2049
2050 wait_event(cur_trans->writer_wait,
2051 extwriter_counter_read(cur_trans) == 0);
2052
2053 /* some pending stuffs might be added after the previous flush. */
2054 ret = btrfs_run_delayed_items(trans);
2055 if (ret)
2056 goto cleanup_transaction;
2057
2058 btrfs_wait_delalloc_flush(fs_info);
2059
2060 btrfs_wait_pending_ordered(cur_trans);
2061
2062 btrfs_scrub_pause(fs_info);
2063 /*
2064 * Ok now we need to make sure to block out any other joins while we
2065 * commit the transaction. We could have started a join before setting
2066 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2067 */
2068 spin_lock(&fs_info->trans_lock);
2069 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2070 spin_unlock(&fs_info->trans_lock);
2071 wait_event(cur_trans->writer_wait,
2072 atomic_read(&cur_trans->num_writers) == 1);
2073
2074 /* ->aborted might be set after the previous check, so check it */
2075 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2076 ret = cur_trans->aborted;
2077 goto scrub_continue;
2078 }
2079 /*
2080 * the reloc mutex makes sure that we stop
2081 * the balancing code from coming in and moving
2082 * extents around in the middle of the commit
2083 */
2084 mutex_lock(&fs_info->reloc_mutex);
2085
2086 /*
2087 * We needn't worry about the delayed items because we will
2088 * deal with them in create_pending_snapshot(), which is the
2089 * core function of the snapshot creation.
2090 */
2091 ret = create_pending_snapshots(trans);
2092 if (ret) {
2093 mutex_unlock(&fs_info->reloc_mutex);
2094 goto scrub_continue;
2095 }
2096
2097 /*
2098 * We insert the dir indexes of the snapshots and update the inode
2099 * of the snapshots' parents after the snapshot creation, so there
2100 * are some delayed items which are not dealt with. Now deal with
2101 * them.
2102 *
2103 * We needn't worry that this operation will corrupt the snapshots,
2104 * because all the tree which are snapshoted will be forced to COW
2105 * the nodes and leaves.
2106 */
2107 ret = btrfs_run_delayed_items(trans);
2108 if (ret) {
2109 mutex_unlock(&fs_info->reloc_mutex);
2110 goto scrub_continue;
2111 }
2112
2113 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2114 if (ret) {
2115 mutex_unlock(&fs_info->reloc_mutex);
2116 goto scrub_continue;
2117 }
2118
2119 /*
2120 * make sure none of the code above managed to slip in a
2121 * delayed item
2122 */
2123 btrfs_assert_delayed_root_empty(fs_info);
2124
2125 WARN_ON(cur_trans != trans->transaction);
2126
2127 /* btrfs_commit_tree_roots is responsible for getting the
2128 * various roots consistent with each other. Every pointer
2129 * in the tree of tree roots has to point to the most up to date
2130 * root for every subvolume and other tree. So, we have to keep
2131 * the tree logging code from jumping in and changing any
2132 * of the trees.
2133 *
2134 * At this point in the commit, there can't be any tree-log
2135 * writers, but a little lower down we drop the trans mutex
2136 * and let new people in. By holding the tree_log_mutex
2137 * from now until after the super is written, we avoid races
2138 * with the tree-log code.
2139 */
2140 mutex_lock(&fs_info->tree_log_mutex);
2141
2142 ret = commit_fs_roots(trans);
2143 if (ret) {
2144 mutex_unlock(&fs_info->tree_log_mutex);
2145 mutex_unlock(&fs_info->reloc_mutex);
2146 goto scrub_continue;
2147 }
2148
2149 /*
2150 * Since the transaction is done, we can apply the pending changes
2151 * before the next transaction.
2152 */
2153 btrfs_apply_pending_changes(fs_info);
2154
2155 /* commit_fs_roots gets rid of all the tree log roots, it is now
2156 * safe to free the root of tree log roots
2157 */
2158 btrfs_free_log_root_tree(trans, fs_info);
2159
2160 /*
2161 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2162 * new delayed refs. Must handle them or qgroup can be wrong.
2163 */
2164 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2165 if (ret) {
2166 mutex_unlock(&fs_info->tree_log_mutex);
2167 mutex_unlock(&fs_info->reloc_mutex);
2168 goto scrub_continue;
2169 }
2170
2171 /*
2172 * Since fs roots are all committed, we can get a quite accurate
2173 * new_roots. So let's do quota accounting.
2174 */
2175 ret = btrfs_qgroup_account_extents(trans);
2176 if (ret < 0) {
2177 mutex_unlock(&fs_info->tree_log_mutex);
2178 mutex_unlock(&fs_info->reloc_mutex);
2179 goto scrub_continue;
2180 }
2181
2182 ret = commit_cowonly_roots(trans);
2183 if (ret) {
2184 mutex_unlock(&fs_info->tree_log_mutex);
2185 mutex_unlock(&fs_info->reloc_mutex);
2186 goto scrub_continue;
2187 }
2188
2189 /*
2190 * The tasks which save the space cache and inode cache may also
2191 * update ->aborted, check it.
2192 */
2193 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2194 ret = cur_trans->aborted;
2195 mutex_unlock(&fs_info->tree_log_mutex);
2196 mutex_unlock(&fs_info->reloc_mutex);
2197 goto scrub_continue;
2198 }
2199
2200 btrfs_prepare_extent_commit(fs_info);
2201
2202 cur_trans = fs_info->running_transaction;
2203
2204 btrfs_set_root_node(&fs_info->tree_root->root_item,
2205 fs_info->tree_root->node);
2206 list_add_tail(&fs_info->tree_root->dirty_list,
2207 &cur_trans->switch_commits);
2208
2209 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2210 fs_info->chunk_root->node);
2211 list_add_tail(&fs_info->chunk_root->dirty_list,
2212 &cur_trans->switch_commits);
2213
2214 switch_commit_roots(cur_trans);
2215
2216 ASSERT(list_empty(&cur_trans->dirty_bgs));
2217 ASSERT(list_empty(&cur_trans->io_bgs));
2218 update_super_roots(fs_info);
2219
2220 btrfs_set_super_log_root(fs_info->super_copy, 0);
2221 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2222 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2223 sizeof(*fs_info->super_copy));
2224
2225 btrfs_update_commit_device_size(fs_info);
2226 btrfs_update_commit_device_bytes_used(cur_trans);
2227
2228 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2229 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2230
2231 btrfs_trans_release_chunk_metadata(trans);
2232
2233 spin_lock(&fs_info->trans_lock);
2234 cur_trans->state = TRANS_STATE_UNBLOCKED;
2235 fs_info->running_transaction = NULL;
2236 spin_unlock(&fs_info->trans_lock);
2237 mutex_unlock(&fs_info->reloc_mutex);
2238
2239 wake_up(&fs_info->transaction_wait);
2240
2241 ret = btrfs_write_and_wait_transaction(trans);
2242 if (ret) {
2243 btrfs_handle_fs_error(fs_info, ret,
2244 "Error while writing out transaction");
2245 mutex_unlock(&fs_info->tree_log_mutex);
2246 goto scrub_continue;
2247 }
2248
2249 ret = write_all_supers(fs_info, 0);
2250 /*
2251 * the super is written, we can safely allow the tree-loggers
2252 * to go about their business
2253 */
2254 mutex_unlock(&fs_info->tree_log_mutex);
2255 if (ret)
2256 goto scrub_continue;
2257
2258 btrfs_finish_extent_commit(trans);
2259
2260 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2261 btrfs_clear_space_info_full(fs_info);
2262
2263 fs_info->last_trans_committed = cur_trans->transid;
2264 /*
2265 * We needn't acquire the lock here because there is no other task
2266 * which can change it.
2267 */
2268 cur_trans->state = TRANS_STATE_COMPLETED;
2269 wake_up(&cur_trans->commit_wait);
2270 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2271
2272 spin_lock(&fs_info->trans_lock);
2273 list_del_init(&cur_trans->list);
2274 spin_unlock(&fs_info->trans_lock);
2275
2276 btrfs_put_transaction(cur_trans);
2277 btrfs_put_transaction(cur_trans);
2278
2279 if (trans->type & __TRANS_FREEZABLE)
2280 sb_end_intwrite(fs_info->sb);
2281
2282 trace_btrfs_transaction_commit(trans->root);
2283
2284 btrfs_scrub_continue(fs_info);
2285
2286 if (current->journal_info == trans)
2287 current->journal_info = NULL;
2288
2289 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2290
2291 /*
2292 * If fs has been frozen, we can not handle delayed iputs, otherwise
2293 * it'll result in deadlock about SB_FREEZE_FS.
2294 */
2295 if (current != fs_info->transaction_kthread &&
2296 current != fs_info->cleaner_kthread &&
2297 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2298 btrfs_run_delayed_iputs(fs_info);
2299
2300 return ret;
2301
2302scrub_continue:
2303 btrfs_scrub_continue(fs_info);
2304cleanup_transaction:
2305 btrfs_trans_release_metadata(trans);
2306 btrfs_trans_release_chunk_metadata(trans);
2307 trans->block_rsv = NULL;
2308 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2309 if (current->journal_info == trans)
2310 current->journal_info = NULL;
2311 cleanup_transaction(trans, ret);
2312
2313 return ret;
2314}
2315
2316/*
2317 * return < 0 if error
2318 * 0 if there are no more dead_roots at the time of call
2319 * 1 there are more to be processed, call me again
2320 *
2321 * The return value indicates there are certainly more snapshots to delete, but
2322 * if there comes a new one during processing, it may return 0. We don't mind,
2323 * because btrfs_commit_super will poke cleaner thread and it will process it a
2324 * few seconds later.
2325 */
2326int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2327{
2328 int ret;
2329 struct btrfs_fs_info *fs_info = root->fs_info;
2330
2331 spin_lock(&fs_info->trans_lock);
2332 if (list_empty(&fs_info->dead_roots)) {
2333 spin_unlock(&fs_info->trans_lock);
2334 return 0;
2335 }
2336 root = list_first_entry(&fs_info->dead_roots,
2337 struct btrfs_root, root_list);
2338 list_del_init(&root->root_list);
2339 spin_unlock(&fs_info->trans_lock);
2340
2341 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2342
2343 btrfs_kill_all_delayed_nodes(root);
2344
2345 if (btrfs_header_backref_rev(root->node) <
2346 BTRFS_MIXED_BACKREF_REV)
2347 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2348 else
2349 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2350
2351 return (ret < 0) ? 0 : 1;
2352}
2353
2354void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2355{
2356 unsigned long prev;
2357 unsigned long bit;
2358
2359 prev = xchg(&fs_info->pending_changes, 0);
2360 if (!prev)
2361 return;
2362
2363 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2364 if (prev & bit)
2365 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2366 prev &= ~bit;
2367
2368 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2369 if (prev & bit)
2370 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2371 prev &= ~bit;
2372
2373 bit = 1 << BTRFS_PENDING_COMMIT;
2374 if (prev & bit)
2375 btrfs_debug(fs_info, "pending commit done");
2376 prev &= ~bit;
2377
2378 if (prev)
2379 btrfs_warn(fs_info,
2380 "unknown pending changes left 0x%lx, ignoring", prev);
2381}