Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34#include "qgroup.h"
35
36#define BTRFS_ROOT_TRANS_TAG 0
37
38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59};
60
61void btrfs_put_transaction(struct btrfs_transaction *transaction)
62{
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kmem_cache_free(btrfs_transaction_cachep, transaction);
97 }
98}
99
100static void clear_btree_io_tree(struct extent_io_tree *tree)
101{
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127}
128
129static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131{
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157}
158
159static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161{
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164}
165
166static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168{
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171}
172
173static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175{
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177}
178
179static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180{
181 return atomic_read(&trans->num_extwriters);
182}
183
184/*
185 * either allocate a new transaction or hop into the existing one
186 */
187static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
189{
190 struct btrfs_transaction *cur_trans;
191
192 spin_lock(&fs_info->trans_lock);
193loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 atomic_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 atomic_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305}
306
307/*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316{
317 struct btrfs_fs_info *fs_info = root->fs_info;
318
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
323
324 /*
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
328 */
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
333 */
334 smp_wmb();
335
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
340 }
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
346
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
351 *
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
354 *
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
360 *
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
365 */
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 }
370 return 0;
371}
372
373
374void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376{
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
379
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
384
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
391}
392
393int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
395{
396 struct btrfs_fs_info *fs_info = root->fs_info;
397
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
400
401 /*
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
404 */
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
409
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
413
414 return 0;
415}
416
417static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418{
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
422}
423
424/* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
427 */
428static void wait_current_trans(struct btrfs_fs_info *fs_info)
429{
430 struct btrfs_transaction *cur_trans;
431
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 atomic_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
437
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
444 }
445}
446
447static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448{
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
451
452 if (type == TRANS_USERSPACE)
453 return 1;
454
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
458
459 return 0;
460}
461
462static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463{
464 struct btrfs_fs_info *fs_info = root->fs_info;
465
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
471
472 return true;
473}
474
475static struct btrfs_trans_handle *
476start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush)
478{
479 struct btrfs_fs_info *fs_info = root->fs_info;
480
481 struct btrfs_trans_handle *h;
482 struct btrfs_transaction *cur_trans;
483 u64 num_bytes = 0;
484 u64 qgroup_reserved = 0;
485 bool reloc_reserved = false;
486 int ret;
487
488 /* Send isn't supposed to start transactions. */
489 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
490
491 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
492 return ERR_PTR(-EROFS);
493
494 if (current->journal_info) {
495 WARN_ON(type & TRANS_EXTWRITERS);
496 h = current->journal_info;
497 h->use_count++;
498 WARN_ON(h->use_count > 2);
499 h->orig_rsv = h->block_rsv;
500 h->block_rsv = NULL;
501 goto got_it;
502 }
503
504 /*
505 * Do the reservation before we join the transaction so we can do all
506 * the appropriate flushing if need be.
507 */
508 if (num_items > 0 && root != fs_info->chunk_root) {
509 qgroup_reserved = num_items * fs_info->nodesize;
510 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
511 if (ret)
512 return ERR_PTR(ret);
513
514 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
515 /*
516 * Do the reservation for the relocation root creation
517 */
518 if (need_reserve_reloc_root(root)) {
519 num_bytes += fs_info->nodesize;
520 reloc_reserved = true;
521 }
522
523 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
524 num_bytes, flush);
525 if (ret)
526 goto reserve_fail;
527 }
528again:
529 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
530 if (!h) {
531 ret = -ENOMEM;
532 goto alloc_fail;
533 }
534
535 /*
536 * If we are JOIN_NOLOCK we're already committing a transaction and
537 * waiting on this guy, so we don't need to do the sb_start_intwrite
538 * because we're already holding a ref. We need this because we could
539 * have raced in and did an fsync() on a file which can kick a commit
540 * and then we deadlock with somebody doing a freeze.
541 *
542 * If we are ATTACH, it means we just want to catch the current
543 * transaction and commit it, so we needn't do sb_start_intwrite().
544 */
545 if (type & __TRANS_FREEZABLE)
546 sb_start_intwrite(fs_info->sb);
547
548 if (may_wait_transaction(fs_info, type))
549 wait_current_trans(fs_info);
550
551 do {
552 ret = join_transaction(fs_info, type);
553 if (ret == -EBUSY) {
554 wait_current_trans(fs_info);
555 if (unlikely(type == TRANS_ATTACH))
556 ret = -ENOENT;
557 }
558 } while (ret == -EBUSY);
559
560 if (ret < 0)
561 goto join_fail;
562
563 cur_trans = fs_info->running_transaction;
564
565 h->transid = cur_trans->transid;
566 h->transaction = cur_trans;
567 h->root = root;
568 h->use_count = 1;
569 h->fs_info = root->fs_info;
570
571 h->type = type;
572 h->can_flush_pending_bgs = true;
573 INIT_LIST_HEAD(&h->qgroup_ref_list);
574 INIT_LIST_HEAD(&h->new_bgs);
575
576 smp_mb();
577 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
578 may_wait_transaction(fs_info, type)) {
579 current->journal_info = h;
580 btrfs_commit_transaction(h);
581 goto again;
582 }
583
584 if (num_bytes) {
585 trace_btrfs_space_reservation(fs_info, "transaction",
586 h->transid, num_bytes, 1);
587 h->block_rsv = &fs_info->trans_block_rsv;
588 h->bytes_reserved = num_bytes;
589 h->reloc_reserved = reloc_reserved;
590 }
591
592got_it:
593 btrfs_record_root_in_trans(h, root);
594
595 if (!current->journal_info && type != TRANS_USERSPACE)
596 current->journal_info = h;
597 return h;
598
599join_fail:
600 if (type & __TRANS_FREEZABLE)
601 sb_end_intwrite(fs_info->sb);
602 kmem_cache_free(btrfs_trans_handle_cachep, h);
603alloc_fail:
604 if (num_bytes)
605 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
606 num_bytes);
607reserve_fail:
608 btrfs_qgroup_free_meta(root, qgroup_reserved);
609 return ERR_PTR(ret);
610}
611
612struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
613 unsigned int num_items)
614{
615 return start_transaction(root, num_items, TRANS_START,
616 BTRFS_RESERVE_FLUSH_ALL);
617}
618struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
619 struct btrfs_root *root,
620 unsigned int num_items,
621 int min_factor)
622{
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 struct btrfs_trans_handle *trans;
625 u64 num_bytes;
626 int ret;
627
628 trans = btrfs_start_transaction(root, num_items);
629 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
630 return trans;
631
632 trans = btrfs_start_transaction(root, 0);
633 if (IS_ERR(trans))
634 return trans;
635
636 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
637 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
638 num_bytes, min_factor);
639 if (ret) {
640 btrfs_end_transaction(trans);
641 return ERR_PTR(ret);
642 }
643
644 trans->block_rsv = &fs_info->trans_block_rsv;
645 trans->bytes_reserved = num_bytes;
646 trace_btrfs_space_reservation(fs_info, "transaction",
647 trans->transid, num_bytes, 1);
648
649 return trans;
650}
651
652struct btrfs_trans_handle *btrfs_start_transaction_lflush(
653 struct btrfs_root *root,
654 unsigned int num_items)
655{
656 return start_transaction(root, num_items, TRANS_START,
657 BTRFS_RESERVE_FLUSH_LIMIT);
658}
659
660struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
661{
662 return start_transaction(root, 0, TRANS_JOIN,
663 BTRFS_RESERVE_NO_FLUSH);
664}
665
666struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
667{
668 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
669 BTRFS_RESERVE_NO_FLUSH);
670}
671
672struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
673{
674 return start_transaction(root, 0, TRANS_USERSPACE,
675 BTRFS_RESERVE_NO_FLUSH);
676}
677
678/*
679 * btrfs_attach_transaction() - catch the running transaction
680 *
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
683 *
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
688 * invoke
689 * btrfs_attach_transaction_barrier()
690 */
691struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
692{
693 return start_transaction(root, 0, TRANS_ATTACH,
694 BTRFS_RESERVE_NO_FLUSH);
695}
696
697/*
698 * btrfs_attach_transaction_barrier() - catch the running transaction
699 *
700 * It is similar to the above function, the differentia is this one
701 * will wait for all the inactive transactions until they fully
702 * complete.
703 */
704struct btrfs_trans_handle *
705btrfs_attach_transaction_barrier(struct btrfs_root *root)
706{
707 struct btrfs_trans_handle *trans;
708
709 trans = start_transaction(root, 0, TRANS_ATTACH,
710 BTRFS_RESERVE_NO_FLUSH);
711 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
712 btrfs_wait_for_commit(root->fs_info, 0);
713
714 return trans;
715}
716
717/* wait for a transaction commit to be fully complete */
718static noinline void wait_for_commit(struct btrfs_transaction *commit)
719{
720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
721}
722
723int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
724{
725 struct btrfs_transaction *cur_trans = NULL, *t;
726 int ret = 0;
727
728 if (transid) {
729 if (transid <= fs_info->last_trans_committed)
730 goto out;
731
732 /* find specified transaction */
733 spin_lock(&fs_info->trans_lock);
734 list_for_each_entry(t, &fs_info->trans_list, list) {
735 if (t->transid == transid) {
736 cur_trans = t;
737 atomic_inc(&cur_trans->use_count);
738 ret = 0;
739 break;
740 }
741 if (t->transid > transid) {
742 ret = 0;
743 break;
744 }
745 }
746 spin_unlock(&fs_info->trans_lock);
747
748 /*
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
751 */
752 if (!cur_trans) {
753 if (transid > fs_info->last_trans_committed)
754 ret = -EINVAL;
755 goto out;
756 }
757 } else {
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info->trans_lock);
760 list_for_each_entry_reverse(t, &fs_info->trans_list,
761 list) {
762 if (t->state >= TRANS_STATE_COMMIT_START) {
763 if (t->state == TRANS_STATE_COMPLETED)
764 break;
765 cur_trans = t;
766 atomic_inc(&cur_trans->use_count);
767 break;
768 }
769 }
770 spin_unlock(&fs_info->trans_lock);
771 if (!cur_trans)
772 goto out; /* nothing committing|committed */
773 }
774
775 wait_for_commit(cur_trans);
776 btrfs_put_transaction(cur_trans);
777out:
778 return ret;
779}
780
781void btrfs_throttle(struct btrfs_fs_info *fs_info)
782{
783 if (!atomic_read(&fs_info->open_ioctl_trans))
784 wait_current_trans(fs_info);
785}
786
787static int should_end_transaction(struct btrfs_trans_handle *trans)
788{
789 struct btrfs_fs_info *fs_info = trans->fs_info;
790
791 if (fs_info->global_block_rsv.space_info->full &&
792 btrfs_check_space_for_delayed_refs(trans, fs_info))
793 return 1;
794
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796}
797
798int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
799{
800 struct btrfs_transaction *cur_trans = trans->transaction;
801 struct btrfs_fs_info *fs_info = trans->fs_info;
802 int updates;
803 int err;
804
805 smp_mb();
806 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
807 cur_trans->delayed_refs.flushing)
808 return 1;
809
810 updates = trans->delayed_ref_updates;
811 trans->delayed_ref_updates = 0;
812 if (updates) {
813 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
814 if (err) /* Error code will also eval true */
815 return err;
816 }
817
818 return should_end_transaction(trans);
819}
820
821static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
822 int throttle)
823{
824 struct btrfs_fs_info *info = trans->fs_info;
825 struct btrfs_transaction *cur_trans = trans->transaction;
826 u64 transid = trans->transid;
827 unsigned long cur = trans->delayed_ref_updates;
828 int lock = (trans->type != TRANS_JOIN_NOLOCK);
829 int err = 0;
830 int must_run_delayed_refs = 0;
831
832 if (trans->use_count > 1) {
833 trans->use_count--;
834 trans->block_rsv = trans->orig_rsv;
835 return 0;
836 }
837
838 btrfs_trans_release_metadata(trans, info);
839 trans->block_rsv = NULL;
840
841 if (!list_empty(&trans->new_bgs))
842 btrfs_create_pending_block_groups(trans, info);
843
844 trans->delayed_ref_updates = 0;
845 if (!trans->sync) {
846 must_run_delayed_refs =
847 btrfs_should_throttle_delayed_refs(trans, info);
848 cur = max_t(unsigned long, cur, 32);
849
850 /*
851 * don't make the caller wait if they are from a NOLOCK
852 * or ATTACH transaction, it will deadlock with commit
853 */
854 if (must_run_delayed_refs == 1 &&
855 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
856 must_run_delayed_refs = 2;
857 }
858
859 btrfs_trans_release_metadata(trans, info);
860 trans->block_rsv = NULL;
861
862 if (!list_empty(&trans->new_bgs))
863 btrfs_create_pending_block_groups(trans, info);
864
865 btrfs_trans_release_chunk_metadata(trans);
866
867 if (lock && !atomic_read(&info->open_ioctl_trans) &&
868 should_end_transaction(trans) &&
869 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
870 spin_lock(&info->trans_lock);
871 if (cur_trans->state == TRANS_STATE_RUNNING)
872 cur_trans->state = TRANS_STATE_BLOCKED;
873 spin_unlock(&info->trans_lock);
874 }
875
876 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
877 if (throttle)
878 return btrfs_commit_transaction(trans);
879 else
880 wake_up_process(info->transaction_kthread);
881 }
882
883 if (trans->type & __TRANS_FREEZABLE)
884 sb_end_intwrite(info->sb);
885
886 WARN_ON(cur_trans != info->running_transaction);
887 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
888 atomic_dec(&cur_trans->num_writers);
889 extwriter_counter_dec(cur_trans, trans->type);
890
891 /*
892 * Make sure counter is updated before we wake up waiters.
893 */
894 smp_mb();
895 if (waitqueue_active(&cur_trans->writer_wait))
896 wake_up(&cur_trans->writer_wait);
897 btrfs_put_transaction(cur_trans);
898
899 if (current->journal_info == trans)
900 current->journal_info = NULL;
901
902 if (throttle)
903 btrfs_run_delayed_iputs(info);
904
905 if (trans->aborted ||
906 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
907 wake_up_process(info->transaction_kthread);
908 err = -EIO;
909 }
910 assert_qgroups_uptodate(trans);
911
912 kmem_cache_free(btrfs_trans_handle_cachep, trans);
913 if (must_run_delayed_refs) {
914 btrfs_async_run_delayed_refs(info, cur, transid,
915 must_run_delayed_refs == 1);
916 }
917 return err;
918}
919
920int btrfs_end_transaction(struct btrfs_trans_handle *trans)
921{
922 return __btrfs_end_transaction(trans, 0);
923}
924
925int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
926{
927 return __btrfs_end_transaction(trans, 1);
928}
929
930/*
931 * when btree blocks are allocated, they have some corresponding bits set for
932 * them in one of two extent_io trees. This is used to make sure all of
933 * those extents are sent to disk but does not wait on them
934 */
935int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
936 struct extent_io_tree *dirty_pages, int mark)
937{
938 int err = 0;
939 int werr = 0;
940 struct address_space *mapping = fs_info->btree_inode->i_mapping;
941 struct extent_state *cached_state = NULL;
942 u64 start = 0;
943 u64 end;
944
945 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
946 mark, &cached_state)) {
947 bool wait_writeback = false;
948
949 err = convert_extent_bit(dirty_pages, start, end,
950 EXTENT_NEED_WAIT,
951 mark, &cached_state);
952 /*
953 * convert_extent_bit can return -ENOMEM, which is most of the
954 * time a temporary error. So when it happens, ignore the error
955 * and wait for writeback of this range to finish - because we
956 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
957 * to __btrfs_wait_marked_extents() would not know that
958 * writeback for this range started and therefore wouldn't
959 * wait for it to finish - we don't want to commit a
960 * superblock that points to btree nodes/leafs for which
961 * writeback hasn't finished yet (and without errors).
962 * We cleanup any entries left in the io tree when committing
963 * the transaction (through clear_btree_io_tree()).
964 */
965 if (err == -ENOMEM) {
966 err = 0;
967 wait_writeback = true;
968 }
969 if (!err)
970 err = filemap_fdatawrite_range(mapping, start, end);
971 if (err)
972 werr = err;
973 else if (wait_writeback)
974 werr = filemap_fdatawait_range(mapping, start, end);
975 free_extent_state(cached_state);
976 cached_state = NULL;
977 cond_resched();
978 start = end + 1;
979 }
980 return werr;
981}
982
983/*
984 * when btree blocks are allocated, they have some corresponding bits set for
985 * them in one of two extent_io trees. This is used to make sure all of
986 * those extents are on disk for transaction or log commit. We wait
987 * on all the pages and clear them from the dirty pages state tree
988 */
989static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
990 struct extent_io_tree *dirty_pages)
991{
992 int err = 0;
993 int werr = 0;
994 struct address_space *mapping = fs_info->btree_inode->i_mapping;
995 struct extent_state *cached_state = NULL;
996 u64 start = 0;
997 u64 end;
998
999 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1000 EXTENT_NEED_WAIT, &cached_state)) {
1001 /*
1002 * Ignore -ENOMEM errors returned by clear_extent_bit().
1003 * When committing the transaction, we'll remove any entries
1004 * left in the io tree. For a log commit, we don't remove them
1005 * after committing the log because the tree can be accessed
1006 * concurrently - we do it only at transaction commit time when
1007 * it's safe to do it (through clear_btree_io_tree()).
1008 */
1009 err = clear_extent_bit(dirty_pages, start, end,
1010 EXTENT_NEED_WAIT,
1011 0, 0, &cached_state, GFP_NOFS);
1012 if (err == -ENOMEM)
1013 err = 0;
1014 if (!err)
1015 err = filemap_fdatawait_range(mapping, start, end);
1016 if (err)
1017 werr = err;
1018 free_extent_state(cached_state);
1019 cached_state = NULL;
1020 cond_resched();
1021 start = end + 1;
1022 }
1023 if (err)
1024 werr = err;
1025 return werr;
1026}
1027
1028int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1029 struct extent_io_tree *dirty_pages)
1030{
1031 bool errors = false;
1032 int err;
1033
1034 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1035 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1036 errors = true;
1037
1038 if (errors && !err)
1039 err = -EIO;
1040 return err;
1041}
1042
1043int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1044{
1045 struct btrfs_fs_info *fs_info = log_root->fs_info;
1046 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1047 bool errors = false;
1048 int err;
1049
1050 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1051
1052 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1053 if ((mark & EXTENT_DIRTY) &&
1054 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1055 errors = true;
1056
1057 if ((mark & EXTENT_NEW) &&
1058 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1059 errors = true;
1060
1061 if (errors && !err)
1062 err = -EIO;
1063 return err;
1064}
1065
1066/*
1067 * when btree blocks are allocated, they have some corresponding bits set for
1068 * them in one of two extent_io trees. This is used to make sure all of
1069 * those extents are on disk for transaction or log commit
1070 */
1071static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1072 struct extent_io_tree *dirty_pages, int mark)
1073{
1074 int ret;
1075 int ret2;
1076 struct blk_plug plug;
1077
1078 blk_start_plug(&plug);
1079 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1080 blk_finish_plug(&plug);
1081 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1082
1083 if (ret)
1084 return ret;
1085 if (ret2)
1086 return ret2;
1087 return 0;
1088}
1089
1090static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1091 struct btrfs_fs_info *fs_info)
1092{
1093 int ret;
1094
1095 ret = btrfs_write_and_wait_marked_extents(fs_info,
1096 &trans->transaction->dirty_pages,
1097 EXTENT_DIRTY);
1098 clear_btree_io_tree(&trans->transaction->dirty_pages);
1099
1100 return ret;
1101}
1102
1103/*
1104 * this is used to update the root pointer in the tree of tree roots.
1105 *
1106 * But, in the case of the extent allocation tree, updating the root
1107 * pointer may allocate blocks which may change the root of the extent
1108 * allocation tree.
1109 *
1110 * So, this loops and repeats and makes sure the cowonly root didn't
1111 * change while the root pointer was being updated in the metadata.
1112 */
1113static int update_cowonly_root(struct btrfs_trans_handle *trans,
1114 struct btrfs_root *root)
1115{
1116 int ret;
1117 u64 old_root_bytenr;
1118 u64 old_root_used;
1119 struct btrfs_fs_info *fs_info = root->fs_info;
1120 struct btrfs_root *tree_root = fs_info->tree_root;
1121
1122 old_root_used = btrfs_root_used(&root->root_item);
1123
1124 while (1) {
1125 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1126 if (old_root_bytenr == root->node->start &&
1127 old_root_used == btrfs_root_used(&root->root_item))
1128 break;
1129
1130 btrfs_set_root_node(&root->root_item, root->node);
1131 ret = btrfs_update_root(trans, tree_root,
1132 &root->root_key,
1133 &root->root_item);
1134 if (ret)
1135 return ret;
1136
1137 old_root_used = btrfs_root_used(&root->root_item);
1138 }
1139
1140 return 0;
1141}
1142
1143/*
1144 * update all the cowonly tree roots on disk
1145 *
1146 * The error handling in this function may not be obvious. Any of the
1147 * failures will cause the file system to go offline. We still need
1148 * to clean up the delayed refs.
1149 */
1150static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1151 struct btrfs_fs_info *fs_info)
1152{
1153 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1154 struct list_head *io_bgs = &trans->transaction->io_bgs;
1155 struct list_head *next;
1156 struct extent_buffer *eb;
1157 int ret;
1158
1159 eb = btrfs_lock_root_node(fs_info->tree_root);
1160 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1161 0, &eb);
1162 btrfs_tree_unlock(eb);
1163 free_extent_buffer(eb);
1164
1165 if (ret)
1166 return ret;
1167
1168 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1169 if (ret)
1170 return ret;
1171
1172 ret = btrfs_run_dev_stats(trans, fs_info);
1173 if (ret)
1174 return ret;
1175 ret = btrfs_run_dev_replace(trans, fs_info);
1176 if (ret)
1177 return ret;
1178 ret = btrfs_run_qgroups(trans, fs_info);
1179 if (ret)
1180 return ret;
1181
1182 ret = btrfs_setup_space_cache(trans, fs_info);
1183 if (ret)
1184 return ret;
1185
1186 /* run_qgroups might have added some more refs */
1187 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1188 if (ret)
1189 return ret;
1190again:
1191 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1192 struct btrfs_root *root;
1193 next = fs_info->dirty_cowonly_roots.next;
1194 list_del_init(next);
1195 root = list_entry(next, struct btrfs_root, dirty_list);
1196 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1197
1198 if (root != fs_info->extent_root)
1199 list_add_tail(&root->dirty_list,
1200 &trans->transaction->switch_commits);
1201 ret = update_cowonly_root(trans, root);
1202 if (ret)
1203 return ret;
1204 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1205 if (ret)
1206 return ret;
1207 }
1208
1209 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1210 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1211 if (ret)
1212 return ret;
1213 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1214 if (ret)
1215 return ret;
1216 }
1217
1218 if (!list_empty(&fs_info->dirty_cowonly_roots))
1219 goto again;
1220
1221 list_add_tail(&fs_info->extent_root->dirty_list,
1222 &trans->transaction->switch_commits);
1223 btrfs_after_dev_replace_commit(fs_info);
1224
1225 return 0;
1226}
1227
1228/*
1229 * dead roots are old snapshots that need to be deleted. This allocates
1230 * a dirty root struct and adds it into the list of dead roots that need to
1231 * be deleted
1232 */
1233void btrfs_add_dead_root(struct btrfs_root *root)
1234{
1235 struct btrfs_fs_info *fs_info = root->fs_info;
1236
1237 spin_lock(&fs_info->trans_lock);
1238 if (list_empty(&root->root_list))
1239 list_add_tail(&root->root_list, &fs_info->dead_roots);
1240 spin_unlock(&fs_info->trans_lock);
1241}
1242
1243/*
1244 * update all the cowonly tree roots on disk
1245 */
1246static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1247 struct btrfs_fs_info *fs_info)
1248{
1249 struct btrfs_root *gang[8];
1250 int i;
1251 int ret;
1252 int err = 0;
1253
1254 spin_lock(&fs_info->fs_roots_radix_lock);
1255 while (1) {
1256 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1257 (void **)gang, 0,
1258 ARRAY_SIZE(gang),
1259 BTRFS_ROOT_TRANS_TAG);
1260 if (ret == 0)
1261 break;
1262 for (i = 0; i < ret; i++) {
1263 struct btrfs_root *root = gang[i];
1264 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1265 (unsigned long)root->root_key.objectid,
1266 BTRFS_ROOT_TRANS_TAG);
1267 spin_unlock(&fs_info->fs_roots_radix_lock);
1268
1269 btrfs_free_log(trans, root);
1270 btrfs_update_reloc_root(trans, root);
1271 btrfs_orphan_commit_root(trans, root);
1272
1273 btrfs_save_ino_cache(root, trans);
1274
1275 /* see comments in should_cow_block() */
1276 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1277 smp_mb__after_atomic();
1278
1279 if (root->commit_root != root->node) {
1280 list_add_tail(&root->dirty_list,
1281 &trans->transaction->switch_commits);
1282 btrfs_set_root_node(&root->root_item,
1283 root->node);
1284 }
1285
1286 err = btrfs_update_root(trans, fs_info->tree_root,
1287 &root->root_key,
1288 &root->root_item);
1289 spin_lock(&fs_info->fs_roots_radix_lock);
1290 if (err)
1291 break;
1292 btrfs_qgroup_free_meta_all(root);
1293 }
1294 }
1295 spin_unlock(&fs_info->fs_roots_radix_lock);
1296 return err;
1297}
1298
1299/*
1300 * defrag a given btree.
1301 * Every leaf in the btree is read and defragged.
1302 */
1303int btrfs_defrag_root(struct btrfs_root *root)
1304{
1305 struct btrfs_fs_info *info = root->fs_info;
1306 struct btrfs_trans_handle *trans;
1307 int ret;
1308
1309 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1310 return 0;
1311
1312 while (1) {
1313 trans = btrfs_start_transaction(root, 0);
1314 if (IS_ERR(trans))
1315 return PTR_ERR(trans);
1316
1317 ret = btrfs_defrag_leaves(trans, root);
1318
1319 btrfs_end_transaction(trans);
1320 btrfs_btree_balance_dirty(info);
1321 cond_resched();
1322
1323 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1324 break;
1325
1326 if (btrfs_defrag_cancelled(info)) {
1327 btrfs_debug(info, "defrag_root cancelled");
1328 ret = -EAGAIN;
1329 break;
1330 }
1331 }
1332 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1333 return ret;
1334}
1335
1336/*
1337 * Do all special snapshot related qgroup dirty hack.
1338 *
1339 * Will do all needed qgroup inherit and dirty hack like switch commit
1340 * roots inside one transaction and write all btree into disk, to make
1341 * qgroup works.
1342 */
1343static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1344 struct btrfs_root *src,
1345 struct btrfs_root *parent,
1346 struct btrfs_qgroup_inherit *inherit,
1347 u64 dst_objectid)
1348{
1349 struct btrfs_fs_info *fs_info = src->fs_info;
1350 int ret;
1351
1352 /*
1353 * Save some performance in the case that qgroups are not
1354 * enabled. If this check races with the ioctl, rescan will
1355 * kick in anyway.
1356 */
1357 mutex_lock(&fs_info->qgroup_ioctl_lock);
1358 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1359 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1360 return 0;
1361 }
1362 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1363
1364 /*
1365 * We are going to commit transaction, see btrfs_commit_transaction()
1366 * comment for reason locking tree_log_mutex
1367 */
1368 mutex_lock(&fs_info->tree_log_mutex);
1369
1370 ret = commit_fs_roots(trans, fs_info);
1371 if (ret)
1372 goto out;
1373 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1374 if (ret < 0)
1375 goto out;
1376 ret = btrfs_qgroup_account_extents(trans, fs_info);
1377 if (ret < 0)
1378 goto out;
1379
1380 /* Now qgroup are all updated, we can inherit it to new qgroups */
1381 ret = btrfs_qgroup_inherit(trans, fs_info,
1382 src->root_key.objectid, dst_objectid,
1383 inherit);
1384 if (ret < 0)
1385 goto out;
1386
1387 /*
1388 * Now we do a simplified commit transaction, which will:
1389 * 1) commit all subvolume and extent tree
1390 * To ensure all subvolume and extent tree have a valid
1391 * commit_root to accounting later insert_dir_item()
1392 * 2) write all btree blocks onto disk
1393 * This is to make sure later btree modification will be cowed
1394 * Or commit_root can be populated and cause wrong qgroup numbers
1395 * In this simplified commit, we don't really care about other trees
1396 * like chunk and root tree, as they won't affect qgroup.
1397 * And we don't write super to avoid half committed status.
1398 */
1399 ret = commit_cowonly_roots(trans, fs_info);
1400 if (ret)
1401 goto out;
1402 switch_commit_roots(trans->transaction, fs_info);
1403 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1404 if (ret)
1405 btrfs_handle_fs_error(fs_info, ret,
1406 "Error while writing out transaction for qgroup");
1407
1408out:
1409 mutex_unlock(&fs_info->tree_log_mutex);
1410
1411 /*
1412 * Force parent root to be updated, as we recorded it before so its
1413 * last_trans == cur_transid.
1414 * Or it won't be committed again onto disk after later
1415 * insert_dir_item()
1416 */
1417 if (!ret)
1418 record_root_in_trans(trans, parent, 1);
1419 return ret;
1420}
1421
1422/*
1423 * new snapshots need to be created at a very specific time in the
1424 * transaction commit. This does the actual creation.
1425 *
1426 * Note:
1427 * If the error which may affect the commitment of the current transaction
1428 * happens, we should return the error number. If the error which just affect
1429 * the creation of the pending snapshots, just return 0.
1430 */
1431static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1432 struct btrfs_fs_info *fs_info,
1433 struct btrfs_pending_snapshot *pending)
1434{
1435 struct btrfs_key key;
1436 struct btrfs_root_item *new_root_item;
1437 struct btrfs_root *tree_root = fs_info->tree_root;
1438 struct btrfs_root *root = pending->root;
1439 struct btrfs_root *parent_root;
1440 struct btrfs_block_rsv *rsv;
1441 struct inode *parent_inode;
1442 struct btrfs_path *path;
1443 struct btrfs_dir_item *dir_item;
1444 struct dentry *dentry;
1445 struct extent_buffer *tmp;
1446 struct extent_buffer *old;
1447 struct timespec cur_time;
1448 int ret = 0;
1449 u64 to_reserve = 0;
1450 u64 index = 0;
1451 u64 objectid;
1452 u64 root_flags;
1453 uuid_le new_uuid;
1454
1455 ASSERT(pending->path);
1456 path = pending->path;
1457
1458 ASSERT(pending->root_item);
1459 new_root_item = pending->root_item;
1460
1461 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1462 if (pending->error)
1463 goto no_free_objectid;
1464
1465 /*
1466 * Make qgroup to skip current new snapshot's qgroupid, as it is
1467 * accounted by later btrfs_qgroup_inherit().
1468 */
1469 btrfs_set_skip_qgroup(trans, objectid);
1470
1471 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1472
1473 if (to_reserve > 0) {
1474 pending->error = btrfs_block_rsv_add(root,
1475 &pending->block_rsv,
1476 to_reserve,
1477 BTRFS_RESERVE_NO_FLUSH);
1478 if (pending->error)
1479 goto clear_skip_qgroup;
1480 }
1481
1482 key.objectid = objectid;
1483 key.offset = (u64)-1;
1484 key.type = BTRFS_ROOT_ITEM_KEY;
1485
1486 rsv = trans->block_rsv;
1487 trans->block_rsv = &pending->block_rsv;
1488 trans->bytes_reserved = trans->block_rsv->reserved;
1489 trace_btrfs_space_reservation(fs_info, "transaction",
1490 trans->transid,
1491 trans->bytes_reserved, 1);
1492 dentry = pending->dentry;
1493 parent_inode = pending->dir;
1494 parent_root = BTRFS_I(parent_inode)->root;
1495 record_root_in_trans(trans, parent_root, 0);
1496
1497 cur_time = current_time(parent_inode);
1498
1499 /*
1500 * insert the directory item
1501 */
1502 ret = btrfs_set_inode_index(parent_inode, &index);
1503 BUG_ON(ret); /* -ENOMEM */
1504
1505 /* check if there is a file/dir which has the same name. */
1506 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1507 btrfs_ino(parent_inode),
1508 dentry->d_name.name,
1509 dentry->d_name.len, 0);
1510 if (dir_item != NULL && !IS_ERR(dir_item)) {
1511 pending->error = -EEXIST;
1512 goto dir_item_existed;
1513 } else if (IS_ERR(dir_item)) {
1514 ret = PTR_ERR(dir_item);
1515 btrfs_abort_transaction(trans, ret);
1516 goto fail;
1517 }
1518 btrfs_release_path(path);
1519
1520 /*
1521 * pull in the delayed directory update
1522 * and the delayed inode item
1523 * otherwise we corrupt the FS during
1524 * snapshot
1525 */
1526 ret = btrfs_run_delayed_items(trans, fs_info);
1527 if (ret) { /* Transaction aborted */
1528 btrfs_abort_transaction(trans, ret);
1529 goto fail;
1530 }
1531
1532 record_root_in_trans(trans, root, 0);
1533 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1534 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1535 btrfs_check_and_init_root_item(new_root_item);
1536
1537 root_flags = btrfs_root_flags(new_root_item);
1538 if (pending->readonly)
1539 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1540 else
1541 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1542 btrfs_set_root_flags(new_root_item, root_flags);
1543
1544 btrfs_set_root_generation_v2(new_root_item,
1545 trans->transid);
1546 uuid_le_gen(&new_uuid);
1547 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1548 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1549 BTRFS_UUID_SIZE);
1550 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1551 memset(new_root_item->received_uuid, 0,
1552 sizeof(new_root_item->received_uuid));
1553 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1554 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1555 btrfs_set_root_stransid(new_root_item, 0);
1556 btrfs_set_root_rtransid(new_root_item, 0);
1557 }
1558 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1559 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1560 btrfs_set_root_otransid(new_root_item, trans->transid);
1561
1562 old = btrfs_lock_root_node(root);
1563 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1564 if (ret) {
1565 btrfs_tree_unlock(old);
1566 free_extent_buffer(old);
1567 btrfs_abort_transaction(trans, ret);
1568 goto fail;
1569 }
1570
1571 btrfs_set_lock_blocking(old);
1572
1573 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1574 /* clean up in any case */
1575 btrfs_tree_unlock(old);
1576 free_extent_buffer(old);
1577 if (ret) {
1578 btrfs_abort_transaction(trans, ret);
1579 goto fail;
1580 }
1581 /* see comments in should_cow_block() */
1582 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1583 smp_wmb();
1584
1585 btrfs_set_root_node(new_root_item, tmp);
1586 /* record when the snapshot was created in key.offset */
1587 key.offset = trans->transid;
1588 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1589 btrfs_tree_unlock(tmp);
1590 free_extent_buffer(tmp);
1591 if (ret) {
1592 btrfs_abort_transaction(trans, ret);
1593 goto fail;
1594 }
1595
1596 /*
1597 * insert root back/forward references
1598 */
1599 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1600 parent_root->root_key.objectid,
1601 btrfs_ino(parent_inode), index,
1602 dentry->d_name.name, dentry->d_name.len);
1603 if (ret) {
1604 btrfs_abort_transaction(trans, ret);
1605 goto fail;
1606 }
1607
1608 key.offset = (u64)-1;
1609 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1610 if (IS_ERR(pending->snap)) {
1611 ret = PTR_ERR(pending->snap);
1612 btrfs_abort_transaction(trans, ret);
1613 goto fail;
1614 }
1615
1616 ret = btrfs_reloc_post_snapshot(trans, pending);
1617 if (ret) {
1618 btrfs_abort_transaction(trans, ret);
1619 goto fail;
1620 }
1621
1622 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1623 if (ret) {
1624 btrfs_abort_transaction(trans, ret);
1625 goto fail;
1626 }
1627
1628 /*
1629 * Do special qgroup accounting for snapshot, as we do some qgroup
1630 * snapshot hack to do fast snapshot.
1631 * To co-operate with that hack, we do hack again.
1632 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1633 */
1634 ret = qgroup_account_snapshot(trans, root, parent_root,
1635 pending->inherit, objectid);
1636 if (ret < 0)
1637 goto fail;
1638
1639 ret = btrfs_insert_dir_item(trans, parent_root,
1640 dentry->d_name.name, dentry->d_name.len,
1641 parent_inode, &key,
1642 BTRFS_FT_DIR, index);
1643 /* We have check then name at the beginning, so it is impossible. */
1644 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649
1650 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1651 dentry->d_name.len * 2);
1652 parent_inode->i_mtime = parent_inode->i_ctime =
1653 current_time(parent_inode);
1654 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1655 if (ret) {
1656 btrfs_abort_transaction(trans, ret);
1657 goto fail;
1658 }
1659 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1660 BTRFS_UUID_KEY_SUBVOL, objectid);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1664 }
1665 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1666 ret = btrfs_uuid_tree_add(trans, fs_info,
1667 new_root_item->received_uuid,
1668 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1669 objectid);
1670 if (ret && ret != -EEXIST) {
1671 btrfs_abort_transaction(trans, ret);
1672 goto fail;
1673 }
1674 }
1675
1676 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1677 if (ret) {
1678 btrfs_abort_transaction(trans, ret);
1679 goto fail;
1680 }
1681
1682fail:
1683 pending->error = ret;
1684dir_item_existed:
1685 trans->block_rsv = rsv;
1686 trans->bytes_reserved = 0;
1687clear_skip_qgroup:
1688 btrfs_clear_skip_qgroup(trans);
1689no_free_objectid:
1690 kfree(new_root_item);
1691 pending->root_item = NULL;
1692 btrfs_free_path(path);
1693 pending->path = NULL;
1694
1695 return ret;
1696}
1697
1698/*
1699 * create all the snapshots we've scheduled for creation
1700 */
1701static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1702 struct btrfs_fs_info *fs_info)
1703{
1704 struct btrfs_pending_snapshot *pending, *next;
1705 struct list_head *head = &trans->transaction->pending_snapshots;
1706 int ret = 0;
1707
1708 list_for_each_entry_safe(pending, next, head, list) {
1709 list_del(&pending->list);
1710 ret = create_pending_snapshot(trans, fs_info, pending);
1711 if (ret)
1712 break;
1713 }
1714 return ret;
1715}
1716
1717static void update_super_roots(struct btrfs_fs_info *fs_info)
1718{
1719 struct btrfs_root_item *root_item;
1720 struct btrfs_super_block *super;
1721
1722 super = fs_info->super_copy;
1723
1724 root_item = &fs_info->chunk_root->root_item;
1725 super->chunk_root = root_item->bytenr;
1726 super->chunk_root_generation = root_item->generation;
1727 super->chunk_root_level = root_item->level;
1728
1729 root_item = &fs_info->tree_root->root_item;
1730 super->root = root_item->bytenr;
1731 super->generation = root_item->generation;
1732 super->root_level = root_item->level;
1733 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1734 super->cache_generation = root_item->generation;
1735 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1736 super->uuid_tree_generation = root_item->generation;
1737}
1738
1739int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1740{
1741 struct btrfs_transaction *trans;
1742 int ret = 0;
1743
1744 spin_lock(&info->trans_lock);
1745 trans = info->running_transaction;
1746 if (trans)
1747 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1748 spin_unlock(&info->trans_lock);
1749 return ret;
1750}
1751
1752int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1753{
1754 struct btrfs_transaction *trans;
1755 int ret = 0;
1756
1757 spin_lock(&info->trans_lock);
1758 trans = info->running_transaction;
1759 if (trans)
1760 ret = is_transaction_blocked(trans);
1761 spin_unlock(&info->trans_lock);
1762 return ret;
1763}
1764
1765/*
1766 * wait for the current transaction commit to start and block subsequent
1767 * transaction joins
1768 */
1769static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1770 struct btrfs_transaction *trans)
1771{
1772 wait_event(fs_info->transaction_blocked_wait,
1773 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1774}
1775
1776/*
1777 * wait for the current transaction to start and then become unblocked.
1778 * caller holds ref.
1779 */
1780static void wait_current_trans_commit_start_and_unblock(
1781 struct btrfs_fs_info *fs_info,
1782 struct btrfs_transaction *trans)
1783{
1784 wait_event(fs_info->transaction_wait,
1785 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1786}
1787
1788/*
1789 * commit transactions asynchronously. once btrfs_commit_transaction_async
1790 * returns, any subsequent transaction will not be allowed to join.
1791 */
1792struct btrfs_async_commit {
1793 struct btrfs_trans_handle *newtrans;
1794 struct work_struct work;
1795};
1796
1797static void do_async_commit(struct work_struct *work)
1798{
1799 struct btrfs_async_commit *ac =
1800 container_of(work, struct btrfs_async_commit, work);
1801
1802 /*
1803 * We've got freeze protection passed with the transaction.
1804 * Tell lockdep about it.
1805 */
1806 if (ac->newtrans->type & __TRANS_FREEZABLE)
1807 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1808
1809 current->journal_info = ac->newtrans;
1810
1811 btrfs_commit_transaction(ac->newtrans);
1812 kfree(ac);
1813}
1814
1815int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1816 int wait_for_unblock)
1817{
1818 struct btrfs_fs_info *fs_info = trans->fs_info;
1819 struct btrfs_async_commit *ac;
1820 struct btrfs_transaction *cur_trans;
1821
1822 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1823 if (!ac)
1824 return -ENOMEM;
1825
1826 INIT_WORK(&ac->work, do_async_commit);
1827 ac->newtrans = btrfs_join_transaction(trans->root);
1828 if (IS_ERR(ac->newtrans)) {
1829 int err = PTR_ERR(ac->newtrans);
1830 kfree(ac);
1831 return err;
1832 }
1833
1834 /* take transaction reference */
1835 cur_trans = trans->transaction;
1836 atomic_inc(&cur_trans->use_count);
1837
1838 btrfs_end_transaction(trans);
1839
1840 /*
1841 * Tell lockdep we've released the freeze rwsem, since the
1842 * async commit thread will be the one to unlock it.
1843 */
1844 if (ac->newtrans->type & __TRANS_FREEZABLE)
1845 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1846
1847 schedule_work(&ac->work);
1848
1849 /* wait for transaction to start and unblock */
1850 if (wait_for_unblock)
1851 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1852 else
1853 wait_current_trans_commit_start(fs_info, cur_trans);
1854
1855 if (current->journal_info == trans)
1856 current->journal_info = NULL;
1857
1858 btrfs_put_transaction(cur_trans);
1859 return 0;
1860}
1861
1862
1863static void cleanup_transaction(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root, int err)
1865{
1866 struct btrfs_fs_info *fs_info = root->fs_info;
1867 struct btrfs_transaction *cur_trans = trans->transaction;
1868 DEFINE_WAIT(wait);
1869
1870 WARN_ON(trans->use_count > 1);
1871
1872 btrfs_abort_transaction(trans, err);
1873
1874 spin_lock(&fs_info->trans_lock);
1875
1876 /*
1877 * If the transaction is removed from the list, it means this
1878 * transaction has been committed successfully, so it is impossible
1879 * to call the cleanup function.
1880 */
1881 BUG_ON(list_empty(&cur_trans->list));
1882
1883 list_del_init(&cur_trans->list);
1884 if (cur_trans == fs_info->running_transaction) {
1885 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1886 spin_unlock(&fs_info->trans_lock);
1887 wait_event(cur_trans->writer_wait,
1888 atomic_read(&cur_trans->num_writers) == 1);
1889
1890 spin_lock(&fs_info->trans_lock);
1891 }
1892 spin_unlock(&fs_info->trans_lock);
1893
1894 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1895
1896 spin_lock(&fs_info->trans_lock);
1897 if (cur_trans == fs_info->running_transaction)
1898 fs_info->running_transaction = NULL;
1899 spin_unlock(&fs_info->trans_lock);
1900
1901 if (trans->type & __TRANS_FREEZABLE)
1902 sb_end_intwrite(fs_info->sb);
1903 btrfs_put_transaction(cur_trans);
1904 btrfs_put_transaction(cur_trans);
1905
1906 trace_btrfs_transaction_commit(root);
1907
1908 if (current->journal_info == trans)
1909 current->journal_info = NULL;
1910 btrfs_scrub_cancel(fs_info);
1911
1912 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1913}
1914
1915static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1916{
1917 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1918 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1919 return 0;
1920}
1921
1922static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1923{
1924 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1925 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1926}
1927
1928static inline void
1929btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1930{
1931 wait_event(cur_trans->pending_wait,
1932 atomic_read(&cur_trans->pending_ordered) == 0);
1933}
1934
1935int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1936{
1937 struct btrfs_fs_info *fs_info = trans->fs_info;
1938 struct btrfs_transaction *cur_trans = trans->transaction;
1939 struct btrfs_transaction *prev_trans = NULL;
1940 int ret;
1941
1942 /* Stop the commit early if ->aborted is set */
1943 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1944 ret = cur_trans->aborted;
1945 btrfs_end_transaction(trans);
1946 return ret;
1947 }
1948
1949 /* make a pass through all the delayed refs we have so far
1950 * any runnings procs may add more while we are here
1951 */
1952 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1953 if (ret) {
1954 btrfs_end_transaction(trans);
1955 return ret;
1956 }
1957
1958 btrfs_trans_release_metadata(trans, fs_info);
1959 trans->block_rsv = NULL;
1960
1961 cur_trans = trans->transaction;
1962
1963 /*
1964 * set the flushing flag so procs in this transaction have to
1965 * start sending their work down.
1966 */
1967 cur_trans->delayed_refs.flushing = 1;
1968 smp_wmb();
1969
1970 if (!list_empty(&trans->new_bgs))
1971 btrfs_create_pending_block_groups(trans, fs_info);
1972
1973 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1974 if (ret) {
1975 btrfs_end_transaction(trans);
1976 return ret;
1977 }
1978
1979 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1980 int run_it = 0;
1981
1982 /* this mutex is also taken before trying to set
1983 * block groups readonly. We need to make sure
1984 * that nobody has set a block group readonly
1985 * after a extents from that block group have been
1986 * allocated for cache files. btrfs_set_block_group_ro
1987 * will wait for the transaction to commit if it
1988 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1989 *
1990 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1991 * only one process starts all the block group IO. It wouldn't
1992 * hurt to have more than one go through, but there's no
1993 * real advantage to it either.
1994 */
1995 mutex_lock(&fs_info->ro_block_group_mutex);
1996 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1997 &cur_trans->flags))
1998 run_it = 1;
1999 mutex_unlock(&fs_info->ro_block_group_mutex);
2000
2001 if (run_it)
2002 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2003 }
2004 if (ret) {
2005 btrfs_end_transaction(trans);
2006 return ret;
2007 }
2008
2009 spin_lock(&fs_info->trans_lock);
2010 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2011 spin_unlock(&fs_info->trans_lock);
2012 atomic_inc(&cur_trans->use_count);
2013 ret = btrfs_end_transaction(trans);
2014
2015 wait_for_commit(cur_trans);
2016
2017 if (unlikely(cur_trans->aborted))
2018 ret = cur_trans->aborted;
2019
2020 btrfs_put_transaction(cur_trans);
2021
2022 return ret;
2023 }
2024
2025 cur_trans->state = TRANS_STATE_COMMIT_START;
2026 wake_up(&fs_info->transaction_blocked_wait);
2027
2028 if (cur_trans->list.prev != &fs_info->trans_list) {
2029 prev_trans = list_entry(cur_trans->list.prev,
2030 struct btrfs_transaction, list);
2031 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2032 atomic_inc(&prev_trans->use_count);
2033 spin_unlock(&fs_info->trans_lock);
2034
2035 wait_for_commit(prev_trans);
2036 ret = prev_trans->aborted;
2037
2038 btrfs_put_transaction(prev_trans);
2039 if (ret)
2040 goto cleanup_transaction;
2041 } else {
2042 spin_unlock(&fs_info->trans_lock);
2043 }
2044 } else {
2045 spin_unlock(&fs_info->trans_lock);
2046 }
2047
2048 extwriter_counter_dec(cur_trans, trans->type);
2049
2050 ret = btrfs_start_delalloc_flush(fs_info);
2051 if (ret)
2052 goto cleanup_transaction;
2053
2054 ret = btrfs_run_delayed_items(trans, fs_info);
2055 if (ret)
2056 goto cleanup_transaction;
2057
2058 wait_event(cur_trans->writer_wait,
2059 extwriter_counter_read(cur_trans) == 0);
2060
2061 /* some pending stuffs might be added after the previous flush. */
2062 ret = btrfs_run_delayed_items(trans, fs_info);
2063 if (ret)
2064 goto cleanup_transaction;
2065
2066 btrfs_wait_delalloc_flush(fs_info);
2067
2068 btrfs_wait_pending_ordered(cur_trans);
2069
2070 btrfs_scrub_pause(fs_info);
2071 /*
2072 * Ok now we need to make sure to block out any other joins while we
2073 * commit the transaction. We could have started a join before setting
2074 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2075 */
2076 spin_lock(&fs_info->trans_lock);
2077 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2078 spin_unlock(&fs_info->trans_lock);
2079 wait_event(cur_trans->writer_wait,
2080 atomic_read(&cur_trans->num_writers) == 1);
2081
2082 /* ->aborted might be set after the previous check, so check it */
2083 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2084 ret = cur_trans->aborted;
2085 goto scrub_continue;
2086 }
2087 /*
2088 * the reloc mutex makes sure that we stop
2089 * the balancing code from coming in and moving
2090 * extents around in the middle of the commit
2091 */
2092 mutex_lock(&fs_info->reloc_mutex);
2093
2094 /*
2095 * We needn't worry about the delayed items because we will
2096 * deal with them in create_pending_snapshot(), which is the
2097 * core function of the snapshot creation.
2098 */
2099 ret = create_pending_snapshots(trans, fs_info);
2100 if (ret) {
2101 mutex_unlock(&fs_info->reloc_mutex);
2102 goto scrub_continue;
2103 }
2104
2105 /*
2106 * We insert the dir indexes of the snapshots and update the inode
2107 * of the snapshots' parents after the snapshot creation, so there
2108 * are some delayed items which are not dealt with. Now deal with
2109 * them.
2110 *
2111 * We needn't worry that this operation will corrupt the snapshots,
2112 * because all the tree which are snapshoted will be forced to COW
2113 * the nodes and leaves.
2114 */
2115 ret = btrfs_run_delayed_items(trans, fs_info);
2116 if (ret) {
2117 mutex_unlock(&fs_info->reloc_mutex);
2118 goto scrub_continue;
2119 }
2120
2121 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2122 if (ret) {
2123 mutex_unlock(&fs_info->reloc_mutex);
2124 goto scrub_continue;
2125 }
2126
2127 /* Reocrd old roots for later qgroup accounting */
2128 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2129 if (ret) {
2130 mutex_unlock(&fs_info->reloc_mutex);
2131 goto scrub_continue;
2132 }
2133
2134 /*
2135 * make sure none of the code above managed to slip in a
2136 * delayed item
2137 */
2138 btrfs_assert_delayed_root_empty(fs_info);
2139
2140 WARN_ON(cur_trans != trans->transaction);
2141
2142 /* btrfs_commit_tree_roots is responsible for getting the
2143 * various roots consistent with each other. Every pointer
2144 * in the tree of tree roots has to point to the most up to date
2145 * root for every subvolume and other tree. So, we have to keep
2146 * the tree logging code from jumping in and changing any
2147 * of the trees.
2148 *
2149 * At this point in the commit, there can't be any tree-log
2150 * writers, but a little lower down we drop the trans mutex
2151 * and let new people in. By holding the tree_log_mutex
2152 * from now until after the super is written, we avoid races
2153 * with the tree-log code.
2154 */
2155 mutex_lock(&fs_info->tree_log_mutex);
2156
2157 ret = commit_fs_roots(trans, fs_info);
2158 if (ret) {
2159 mutex_unlock(&fs_info->tree_log_mutex);
2160 mutex_unlock(&fs_info->reloc_mutex);
2161 goto scrub_continue;
2162 }
2163
2164 /*
2165 * Since the transaction is done, we can apply the pending changes
2166 * before the next transaction.
2167 */
2168 btrfs_apply_pending_changes(fs_info);
2169
2170 /* commit_fs_roots gets rid of all the tree log roots, it is now
2171 * safe to free the root of tree log roots
2172 */
2173 btrfs_free_log_root_tree(trans, fs_info);
2174
2175 /*
2176 * Since fs roots are all committed, we can get a quite accurate
2177 * new_roots. So let's do quota accounting.
2178 */
2179 ret = btrfs_qgroup_account_extents(trans, fs_info);
2180 if (ret < 0) {
2181 mutex_unlock(&fs_info->tree_log_mutex);
2182 mutex_unlock(&fs_info->reloc_mutex);
2183 goto scrub_continue;
2184 }
2185
2186 ret = commit_cowonly_roots(trans, fs_info);
2187 if (ret) {
2188 mutex_unlock(&fs_info->tree_log_mutex);
2189 mutex_unlock(&fs_info->reloc_mutex);
2190 goto scrub_continue;
2191 }
2192
2193 /*
2194 * The tasks which save the space cache and inode cache may also
2195 * update ->aborted, check it.
2196 */
2197 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2198 ret = cur_trans->aborted;
2199 mutex_unlock(&fs_info->tree_log_mutex);
2200 mutex_unlock(&fs_info->reloc_mutex);
2201 goto scrub_continue;
2202 }
2203
2204 btrfs_prepare_extent_commit(trans, fs_info);
2205
2206 cur_trans = fs_info->running_transaction;
2207
2208 btrfs_set_root_node(&fs_info->tree_root->root_item,
2209 fs_info->tree_root->node);
2210 list_add_tail(&fs_info->tree_root->dirty_list,
2211 &cur_trans->switch_commits);
2212
2213 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2214 fs_info->chunk_root->node);
2215 list_add_tail(&fs_info->chunk_root->dirty_list,
2216 &cur_trans->switch_commits);
2217
2218 switch_commit_roots(cur_trans, fs_info);
2219
2220 assert_qgroups_uptodate(trans);
2221 ASSERT(list_empty(&cur_trans->dirty_bgs));
2222 ASSERT(list_empty(&cur_trans->io_bgs));
2223 update_super_roots(fs_info);
2224
2225 btrfs_set_super_log_root(fs_info->super_copy, 0);
2226 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2227 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2228 sizeof(*fs_info->super_copy));
2229
2230 btrfs_update_commit_device_size(fs_info);
2231 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2232
2233 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2234 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2235
2236 btrfs_trans_release_chunk_metadata(trans);
2237
2238 spin_lock(&fs_info->trans_lock);
2239 cur_trans->state = TRANS_STATE_UNBLOCKED;
2240 fs_info->running_transaction = NULL;
2241 spin_unlock(&fs_info->trans_lock);
2242 mutex_unlock(&fs_info->reloc_mutex);
2243
2244 wake_up(&fs_info->transaction_wait);
2245
2246 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2247 if (ret) {
2248 btrfs_handle_fs_error(fs_info, ret,
2249 "Error while writing out transaction");
2250 mutex_unlock(&fs_info->tree_log_mutex);
2251 goto scrub_continue;
2252 }
2253
2254 ret = write_ctree_super(trans, fs_info, 0);
2255 if (ret) {
2256 mutex_unlock(&fs_info->tree_log_mutex);
2257 goto scrub_continue;
2258 }
2259
2260 /*
2261 * the super is written, we can safely allow the tree-loggers
2262 * to go about their business
2263 */
2264 mutex_unlock(&fs_info->tree_log_mutex);
2265
2266 btrfs_finish_extent_commit(trans, fs_info);
2267
2268 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2269 btrfs_clear_space_info_full(fs_info);
2270
2271 fs_info->last_trans_committed = cur_trans->transid;
2272 /*
2273 * We needn't acquire the lock here because there is no other task
2274 * which can change it.
2275 */
2276 cur_trans->state = TRANS_STATE_COMPLETED;
2277 wake_up(&cur_trans->commit_wait);
2278
2279 spin_lock(&fs_info->trans_lock);
2280 list_del_init(&cur_trans->list);
2281 spin_unlock(&fs_info->trans_lock);
2282
2283 btrfs_put_transaction(cur_trans);
2284 btrfs_put_transaction(cur_trans);
2285
2286 if (trans->type & __TRANS_FREEZABLE)
2287 sb_end_intwrite(fs_info->sb);
2288
2289 trace_btrfs_transaction_commit(trans->root);
2290
2291 btrfs_scrub_continue(fs_info);
2292
2293 if (current->journal_info == trans)
2294 current->journal_info = NULL;
2295
2296 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2297
2298 /*
2299 * If fs has been frozen, we can not handle delayed iputs, otherwise
2300 * it'll result in deadlock about SB_FREEZE_FS.
2301 */
2302 if (current != fs_info->transaction_kthread &&
2303 current != fs_info->cleaner_kthread && !fs_info->fs_frozen)
2304 btrfs_run_delayed_iputs(fs_info);
2305
2306 return ret;
2307
2308scrub_continue:
2309 btrfs_scrub_continue(fs_info);
2310cleanup_transaction:
2311 btrfs_trans_release_metadata(trans, fs_info);
2312 btrfs_trans_release_chunk_metadata(trans);
2313 trans->block_rsv = NULL;
2314 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2315 if (current->journal_info == trans)
2316 current->journal_info = NULL;
2317 cleanup_transaction(trans, trans->root, ret);
2318
2319 return ret;
2320}
2321
2322/*
2323 * return < 0 if error
2324 * 0 if there are no more dead_roots at the time of call
2325 * 1 there are more to be processed, call me again
2326 *
2327 * The return value indicates there are certainly more snapshots to delete, but
2328 * if there comes a new one during processing, it may return 0. We don't mind,
2329 * because btrfs_commit_super will poke cleaner thread and it will process it a
2330 * few seconds later.
2331 */
2332int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2333{
2334 int ret;
2335 struct btrfs_fs_info *fs_info = root->fs_info;
2336
2337 spin_lock(&fs_info->trans_lock);
2338 if (list_empty(&fs_info->dead_roots)) {
2339 spin_unlock(&fs_info->trans_lock);
2340 return 0;
2341 }
2342 root = list_first_entry(&fs_info->dead_roots,
2343 struct btrfs_root, root_list);
2344 list_del_init(&root->root_list);
2345 spin_unlock(&fs_info->trans_lock);
2346
2347 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2348
2349 btrfs_kill_all_delayed_nodes(root);
2350
2351 if (btrfs_header_backref_rev(root->node) <
2352 BTRFS_MIXED_BACKREF_REV)
2353 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2354 else
2355 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2356
2357 return (ret < 0) ? 0 : 1;
2358}
2359
2360void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2361{
2362 unsigned long prev;
2363 unsigned long bit;
2364
2365 prev = xchg(&fs_info->pending_changes, 0);
2366 if (!prev)
2367 return;
2368
2369 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2370 if (prev & bit)
2371 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2372 prev &= ~bit;
2373
2374 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2375 if (prev & bit)
2376 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2377 prev &= ~bit;
2378
2379 bit = 1 << BTRFS_PENDING_COMMIT;
2380 if (prev & bit)
2381 btrfs_debug(fs_info, "pending commit done");
2382 prev &= ~bit;
2383
2384 if (prev)
2385 btrfs_warn(fs_info,
2386 "unknown pending changes left 0x%lx, ignoring", prev);
2387}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34#include "qgroup.h"
35
36#define BTRFS_ROOT_TRANS_TAG 0
37
38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59};
60
61void btrfs_put_transaction(struct btrfs_transaction *transaction)
62{
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 /*
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
84 */
85 while (!list_empty(&transaction->deleted_bgs)) {
86 struct btrfs_block_group_cache *cache;
87
88 cache = list_first_entry(&transaction->deleted_bgs,
89 struct btrfs_block_group_cache,
90 bg_list);
91 list_del_init(&cache->bg_list);
92 btrfs_put_block_group_trimming(cache);
93 btrfs_put_block_group(cache);
94 }
95 kmem_cache_free(btrfs_transaction_cachep, transaction);
96 }
97}
98
99static void clear_btree_io_tree(struct extent_io_tree *tree)
100{
101 spin_lock(&tree->lock);
102 /*
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
105 * called.
106 */
107 smp_mb();
108 while (!RB_EMPTY_ROOT(&tree->state)) {
109 struct rb_node *node;
110 struct extent_state *state;
111
112 node = rb_first(&tree->state);
113 state = rb_entry(node, struct extent_state, rb_node);
114 rb_erase(&state->rb_node, &tree->state);
115 RB_CLEAR_NODE(&state->rb_node);
116 /*
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
119 */
120 ASSERT(!waitqueue_active(&state->wq));
121 free_extent_state(state);
122
123 cond_resched_lock(&tree->lock);
124 }
125 spin_unlock(&tree->lock);
126}
127
128static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 struct btrfs_fs_info *fs_info)
130{
131 struct btrfs_root *root, *tmp;
132
133 down_write(&fs_info->commit_root_sem);
134 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 dirty_list) {
136 list_del_init(&root->dirty_list);
137 free_extent_buffer(root->commit_root);
138 root->commit_root = btrfs_root_node(root);
139 if (is_fstree(root->objectid))
140 btrfs_unpin_free_ino(root);
141 clear_btree_io_tree(&root->dirty_log_pages);
142 }
143
144 /* We can free old roots now. */
145 spin_lock(&trans->dropped_roots_lock);
146 while (!list_empty(&trans->dropped_roots)) {
147 root = list_first_entry(&trans->dropped_roots,
148 struct btrfs_root, root_list);
149 list_del_init(&root->root_list);
150 spin_unlock(&trans->dropped_roots_lock);
151 btrfs_drop_and_free_fs_root(fs_info, root);
152 spin_lock(&trans->dropped_roots_lock);
153 }
154 spin_unlock(&trans->dropped_roots_lock);
155 up_write(&fs_info->commit_root_sem);
156}
157
158static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 unsigned int type)
160{
161 if (type & TRANS_EXTWRITERS)
162 atomic_inc(&trans->num_extwriters);
163}
164
165static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 unsigned int type)
167{
168 if (type & TRANS_EXTWRITERS)
169 atomic_dec(&trans->num_extwriters);
170}
171
172static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 unsigned int type)
174{
175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176}
177
178static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179{
180 return atomic_read(&trans->num_extwriters);
181}
182
183/*
184 * either allocate a new transaction or hop into the existing one
185 */
186static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187{
188 struct btrfs_transaction *cur_trans;
189 struct btrfs_fs_info *fs_info = root->fs_info;
190
191 spin_lock(&fs_info->trans_lock);
192loop:
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 spin_unlock(&fs_info->trans_lock);
196 return -EROFS;
197 }
198
199 cur_trans = fs_info->running_transaction;
200 if (cur_trans) {
201 if (cur_trans->aborted) {
202 spin_unlock(&fs_info->trans_lock);
203 return cur_trans->aborted;
204 }
205 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 spin_unlock(&fs_info->trans_lock);
207 return -EBUSY;
208 }
209 atomic_inc(&cur_trans->use_count);
210 atomic_inc(&cur_trans->num_writers);
211 extwriter_counter_inc(cur_trans, type);
212 spin_unlock(&fs_info->trans_lock);
213 return 0;
214 }
215 spin_unlock(&fs_info->trans_lock);
216
217 /*
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
220 */
221 if (type == TRANS_ATTACH)
222 return -ENOENT;
223
224 /*
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
227 */
228 BUG_ON(type == TRANS_JOIN_NOLOCK);
229
230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 if (!cur_trans)
232 return -ENOMEM;
233
234 spin_lock(&fs_info->trans_lock);
235 if (fs_info->running_transaction) {
236 /*
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
239 */
240 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 goto loop;
242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 spin_unlock(&fs_info->trans_lock);
244 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 return -EROFS;
246 }
247
248 atomic_set(&cur_trans->num_writers, 1);
249 extwriter_counter_init(cur_trans, type);
250 init_waitqueue_head(&cur_trans->writer_wait);
251 init_waitqueue_head(&cur_trans->commit_wait);
252 init_waitqueue_head(&cur_trans->pending_wait);
253 cur_trans->state = TRANS_STATE_RUNNING;
254 /*
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
257 */
258 atomic_set(&cur_trans->use_count, 2);
259 atomic_set(&cur_trans->pending_ordered, 0);
260 cur_trans->flags = 0;
261 cur_trans->start_time = get_seconds();
262
263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264
265 cur_trans->delayed_refs.href_root = RB_ROOT;
266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268
269 /*
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
272 */
273 smp_mb();
274 if (!list_empty(&fs_info->tree_mod_seq_list))
275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305}
306
307/*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root)
315{
316 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
317 root->last_trans < trans->transid) {
318 WARN_ON(root == root->fs_info->extent_root);
319 WARN_ON(root->commit_root != root->node);
320
321 /*
322 * see below for IN_TRANS_SETUP usage rules
323 * we have the reloc mutex held now, so there
324 * is only one writer in this function
325 */
326 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
327
328 /* make sure readers find IN_TRANS_SETUP before
329 * they find our root->last_trans update
330 */
331 smp_wmb();
332
333 spin_lock(&root->fs_info->fs_roots_radix_lock);
334 if (root->last_trans == trans->transid) {
335 spin_unlock(&root->fs_info->fs_roots_radix_lock);
336 return 0;
337 }
338 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
339 (unsigned long)root->root_key.objectid,
340 BTRFS_ROOT_TRANS_TAG);
341 spin_unlock(&root->fs_info->fs_roots_radix_lock);
342 root->last_trans = trans->transid;
343
344 /* this is pretty tricky. We don't want to
345 * take the relocation lock in btrfs_record_root_in_trans
346 * unless we're really doing the first setup for this root in
347 * this transaction.
348 *
349 * Normally we'd use root->last_trans as a flag to decide
350 * if we want to take the expensive mutex.
351 *
352 * But, we have to set root->last_trans before we
353 * init the relocation root, otherwise, we trip over warnings
354 * in ctree.c. The solution used here is to flag ourselves
355 * with root IN_TRANS_SETUP. When this is 1, we're still
356 * fixing up the reloc trees and everyone must wait.
357 *
358 * When this is zero, they can trust root->last_trans and fly
359 * through btrfs_record_root_in_trans without having to take the
360 * lock. smp_wmb() makes sure that all the writes above are
361 * done before we pop in the zero below
362 */
363 btrfs_init_reloc_root(trans, root);
364 smp_mb__before_atomic();
365 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
366 }
367 return 0;
368}
369
370
371void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
372 struct btrfs_root *root)
373{
374 struct btrfs_transaction *cur_trans = trans->transaction;
375
376 /* Add ourselves to the transaction dropped list */
377 spin_lock(&cur_trans->dropped_roots_lock);
378 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
379 spin_unlock(&cur_trans->dropped_roots_lock);
380
381 /* Make sure we don't try to update the root at commit time */
382 spin_lock(&root->fs_info->fs_roots_radix_lock);
383 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
384 (unsigned long)root->root_key.objectid,
385 BTRFS_ROOT_TRANS_TAG);
386 spin_unlock(&root->fs_info->fs_roots_radix_lock);
387}
388
389int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
390 struct btrfs_root *root)
391{
392 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393 return 0;
394
395 /*
396 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397 * and barriers
398 */
399 smp_rmb();
400 if (root->last_trans == trans->transid &&
401 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402 return 0;
403
404 mutex_lock(&root->fs_info->reloc_mutex);
405 record_root_in_trans(trans, root);
406 mutex_unlock(&root->fs_info->reloc_mutex);
407
408 return 0;
409}
410
411static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412{
413 return (trans->state >= TRANS_STATE_BLOCKED &&
414 trans->state < TRANS_STATE_UNBLOCKED &&
415 !trans->aborted);
416}
417
418/* wait for commit against the current transaction to become unblocked
419 * when this is done, it is safe to start a new transaction, but the current
420 * transaction might not be fully on disk.
421 */
422static void wait_current_trans(struct btrfs_root *root)
423{
424 struct btrfs_transaction *cur_trans;
425
426 spin_lock(&root->fs_info->trans_lock);
427 cur_trans = root->fs_info->running_transaction;
428 if (cur_trans && is_transaction_blocked(cur_trans)) {
429 atomic_inc(&cur_trans->use_count);
430 spin_unlock(&root->fs_info->trans_lock);
431
432 wait_event(root->fs_info->transaction_wait,
433 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434 cur_trans->aborted);
435 btrfs_put_transaction(cur_trans);
436 } else {
437 spin_unlock(&root->fs_info->trans_lock);
438 }
439}
440
441static int may_wait_transaction(struct btrfs_root *root, int type)
442{
443 if (root->fs_info->log_root_recovering)
444 return 0;
445
446 if (type == TRANS_USERSPACE)
447 return 1;
448
449 if (type == TRANS_START &&
450 !atomic_read(&root->fs_info->open_ioctl_trans))
451 return 1;
452
453 return 0;
454}
455
456static inline bool need_reserve_reloc_root(struct btrfs_root *root)
457{
458 if (!root->fs_info->reloc_ctl ||
459 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
460 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
461 root->reloc_root)
462 return false;
463
464 return true;
465}
466
467static struct btrfs_trans_handle *
468start_transaction(struct btrfs_root *root, unsigned int num_items,
469 unsigned int type, enum btrfs_reserve_flush_enum flush)
470{
471 struct btrfs_trans_handle *h;
472 struct btrfs_transaction *cur_trans;
473 u64 num_bytes = 0;
474 u64 qgroup_reserved = 0;
475 bool reloc_reserved = false;
476 int ret;
477
478 /* Send isn't supposed to start transactions. */
479 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
480
481 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
482 return ERR_PTR(-EROFS);
483
484 if (current->journal_info) {
485 WARN_ON(type & TRANS_EXTWRITERS);
486 h = current->journal_info;
487 h->use_count++;
488 WARN_ON(h->use_count > 2);
489 h->orig_rsv = h->block_rsv;
490 h->block_rsv = NULL;
491 goto got_it;
492 }
493
494 /*
495 * Do the reservation before we join the transaction so we can do all
496 * the appropriate flushing if need be.
497 */
498 if (num_items > 0 && root != root->fs_info->chunk_root) {
499 qgroup_reserved = num_items * root->nodesize;
500 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
501 if (ret)
502 return ERR_PTR(ret);
503
504 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
505 /*
506 * Do the reservation for the relocation root creation
507 */
508 if (need_reserve_reloc_root(root)) {
509 num_bytes += root->nodesize;
510 reloc_reserved = true;
511 }
512
513 ret = btrfs_block_rsv_add(root,
514 &root->fs_info->trans_block_rsv,
515 num_bytes, flush);
516 if (ret)
517 goto reserve_fail;
518 }
519again:
520 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
521 if (!h) {
522 ret = -ENOMEM;
523 goto alloc_fail;
524 }
525
526 /*
527 * If we are JOIN_NOLOCK we're already committing a transaction and
528 * waiting on this guy, so we don't need to do the sb_start_intwrite
529 * because we're already holding a ref. We need this because we could
530 * have raced in and did an fsync() on a file which can kick a commit
531 * and then we deadlock with somebody doing a freeze.
532 *
533 * If we are ATTACH, it means we just want to catch the current
534 * transaction and commit it, so we needn't do sb_start_intwrite().
535 */
536 if (type & __TRANS_FREEZABLE)
537 sb_start_intwrite(root->fs_info->sb);
538
539 if (may_wait_transaction(root, type))
540 wait_current_trans(root);
541
542 do {
543 ret = join_transaction(root, type);
544 if (ret == -EBUSY) {
545 wait_current_trans(root);
546 if (unlikely(type == TRANS_ATTACH))
547 ret = -ENOENT;
548 }
549 } while (ret == -EBUSY);
550
551 if (ret < 0) {
552 /* We must get the transaction if we are JOIN_NOLOCK. */
553 BUG_ON(type == TRANS_JOIN_NOLOCK);
554 goto join_fail;
555 }
556
557 cur_trans = root->fs_info->running_transaction;
558
559 h->transid = cur_trans->transid;
560 h->transaction = cur_trans;
561 h->root = root;
562 h->use_count = 1;
563
564 h->type = type;
565 h->can_flush_pending_bgs = true;
566 INIT_LIST_HEAD(&h->qgroup_ref_list);
567 INIT_LIST_HEAD(&h->new_bgs);
568
569 smp_mb();
570 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
571 may_wait_transaction(root, type)) {
572 current->journal_info = h;
573 btrfs_commit_transaction(h, root);
574 goto again;
575 }
576
577 if (num_bytes) {
578 trace_btrfs_space_reservation(root->fs_info, "transaction",
579 h->transid, num_bytes, 1);
580 h->block_rsv = &root->fs_info->trans_block_rsv;
581 h->bytes_reserved = num_bytes;
582 h->reloc_reserved = reloc_reserved;
583 }
584
585got_it:
586 btrfs_record_root_in_trans(h, root);
587
588 if (!current->journal_info && type != TRANS_USERSPACE)
589 current->journal_info = h;
590 return h;
591
592join_fail:
593 if (type & __TRANS_FREEZABLE)
594 sb_end_intwrite(root->fs_info->sb);
595 kmem_cache_free(btrfs_trans_handle_cachep, h);
596alloc_fail:
597 if (num_bytes)
598 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
599 num_bytes);
600reserve_fail:
601 btrfs_qgroup_free_meta(root, qgroup_reserved);
602 return ERR_PTR(ret);
603}
604
605struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606 unsigned int num_items)
607{
608 return start_transaction(root, num_items, TRANS_START,
609 BTRFS_RESERVE_FLUSH_ALL);
610}
611struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612 struct btrfs_root *root,
613 unsigned int num_items,
614 int min_factor)
615{
616 struct btrfs_trans_handle *trans;
617 u64 num_bytes;
618 int ret;
619
620 trans = btrfs_start_transaction(root, num_items);
621 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
622 return trans;
623
624 trans = btrfs_start_transaction(root, 0);
625 if (IS_ERR(trans))
626 return trans;
627
628 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
629 ret = btrfs_cond_migrate_bytes(root->fs_info,
630 &root->fs_info->trans_block_rsv,
631 num_bytes,
632 min_factor);
633 if (ret) {
634 btrfs_end_transaction(trans, root);
635 return ERR_PTR(ret);
636 }
637
638 trans->block_rsv = &root->fs_info->trans_block_rsv;
639 trans->bytes_reserved = num_bytes;
640 trace_btrfs_space_reservation(root->fs_info, "transaction",
641 trans->transid, num_bytes, 1);
642
643 return trans;
644}
645
646struct btrfs_trans_handle *btrfs_start_transaction_lflush(
647 struct btrfs_root *root,
648 unsigned int num_items)
649{
650 return start_transaction(root, num_items, TRANS_START,
651 BTRFS_RESERVE_FLUSH_LIMIT);
652}
653
654struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
655{
656 return start_transaction(root, 0, TRANS_JOIN,
657 BTRFS_RESERVE_NO_FLUSH);
658}
659
660struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
661{
662 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
663 BTRFS_RESERVE_NO_FLUSH);
664}
665
666struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
667{
668 return start_transaction(root, 0, TRANS_USERSPACE,
669 BTRFS_RESERVE_NO_FLUSH);
670}
671
672/*
673 * btrfs_attach_transaction() - catch the running transaction
674 *
675 * It is used when we want to commit the current the transaction, but
676 * don't want to start a new one.
677 *
678 * Note: If this function return -ENOENT, it just means there is no
679 * running transaction. But it is possible that the inactive transaction
680 * is still in the memory, not fully on disk. If you hope there is no
681 * inactive transaction in the fs when -ENOENT is returned, you should
682 * invoke
683 * btrfs_attach_transaction_barrier()
684 */
685struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
686{
687 return start_transaction(root, 0, TRANS_ATTACH,
688 BTRFS_RESERVE_NO_FLUSH);
689}
690
691/*
692 * btrfs_attach_transaction_barrier() - catch the running transaction
693 *
694 * It is similar to the above function, the differentia is this one
695 * will wait for all the inactive transactions until they fully
696 * complete.
697 */
698struct btrfs_trans_handle *
699btrfs_attach_transaction_barrier(struct btrfs_root *root)
700{
701 struct btrfs_trans_handle *trans;
702
703 trans = start_transaction(root, 0, TRANS_ATTACH,
704 BTRFS_RESERVE_NO_FLUSH);
705 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
706 btrfs_wait_for_commit(root, 0);
707
708 return trans;
709}
710
711/* wait for a transaction commit to be fully complete */
712static noinline void wait_for_commit(struct btrfs_root *root,
713 struct btrfs_transaction *commit)
714{
715 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
716}
717
718int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
719{
720 struct btrfs_transaction *cur_trans = NULL, *t;
721 int ret = 0;
722
723 if (transid) {
724 if (transid <= root->fs_info->last_trans_committed)
725 goto out;
726
727 /* find specified transaction */
728 spin_lock(&root->fs_info->trans_lock);
729 list_for_each_entry(t, &root->fs_info->trans_list, list) {
730 if (t->transid == transid) {
731 cur_trans = t;
732 atomic_inc(&cur_trans->use_count);
733 ret = 0;
734 break;
735 }
736 if (t->transid > transid) {
737 ret = 0;
738 break;
739 }
740 }
741 spin_unlock(&root->fs_info->trans_lock);
742
743 /*
744 * The specified transaction doesn't exist, or we
745 * raced with btrfs_commit_transaction
746 */
747 if (!cur_trans) {
748 if (transid > root->fs_info->last_trans_committed)
749 ret = -EINVAL;
750 goto out;
751 }
752 } else {
753 /* find newest transaction that is committing | committed */
754 spin_lock(&root->fs_info->trans_lock);
755 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
756 list) {
757 if (t->state >= TRANS_STATE_COMMIT_START) {
758 if (t->state == TRANS_STATE_COMPLETED)
759 break;
760 cur_trans = t;
761 atomic_inc(&cur_trans->use_count);
762 break;
763 }
764 }
765 spin_unlock(&root->fs_info->trans_lock);
766 if (!cur_trans)
767 goto out; /* nothing committing|committed */
768 }
769
770 wait_for_commit(root, cur_trans);
771 btrfs_put_transaction(cur_trans);
772out:
773 return ret;
774}
775
776void btrfs_throttle(struct btrfs_root *root)
777{
778 if (!atomic_read(&root->fs_info->open_ioctl_trans))
779 wait_current_trans(root);
780}
781
782static int should_end_transaction(struct btrfs_trans_handle *trans,
783 struct btrfs_root *root)
784{
785 if (root->fs_info->global_block_rsv.space_info->full &&
786 btrfs_check_space_for_delayed_refs(trans, root))
787 return 1;
788
789 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
790}
791
792int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root)
794{
795 struct btrfs_transaction *cur_trans = trans->transaction;
796 int updates;
797 int err;
798
799 smp_mb();
800 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
801 cur_trans->delayed_refs.flushing)
802 return 1;
803
804 updates = trans->delayed_ref_updates;
805 trans->delayed_ref_updates = 0;
806 if (updates) {
807 err = btrfs_run_delayed_refs(trans, root, updates * 2);
808 if (err) /* Error code will also eval true */
809 return err;
810 }
811
812 return should_end_transaction(trans, root);
813}
814
815static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
816 struct btrfs_root *root, int throttle)
817{
818 struct btrfs_transaction *cur_trans = trans->transaction;
819 struct btrfs_fs_info *info = root->fs_info;
820 unsigned long cur = trans->delayed_ref_updates;
821 int lock = (trans->type != TRANS_JOIN_NOLOCK);
822 int err = 0;
823 int must_run_delayed_refs = 0;
824
825 if (trans->use_count > 1) {
826 trans->use_count--;
827 trans->block_rsv = trans->orig_rsv;
828 return 0;
829 }
830
831 btrfs_trans_release_metadata(trans, root);
832 trans->block_rsv = NULL;
833
834 if (!list_empty(&trans->new_bgs))
835 btrfs_create_pending_block_groups(trans, root);
836
837 trans->delayed_ref_updates = 0;
838 if (!trans->sync) {
839 must_run_delayed_refs =
840 btrfs_should_throttle_delayed_refs(trans, root);
841 cur = max_t(unsigned long, cur, 32);
842
843 /*
844 * don't make the caller wait if they are from a NOLOCK
845 * or ATTACH transaction, it will deadlock with commit
846 */
847 if (must_run_delayed_refs == 1 &&
848 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849 must_run_delayed_refs = 2;
850 }
851
852 btrfs_trans_release_metadata(trans, root);
853 trans->block_rsv = NULL;
854
855 if (!list_empty(&trans->new_bgs))
856 btrfs_create_pending_block_groups(trans, root);
857
858 btrfs_trans_release_chunk_metadata(trans);
859
860 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861 should_end_transaction(trans, root) &&
862 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863 spin_lock(&info->trans_lock);
864 if (cur_trans->state == TRANS_STATE_RUNNING)
865 cur_trans->state = TRANS_STATE_BLOCKED;
866 spin_unlock(&info->trans_lock);
867 }
868
869 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870 if (throttle)
871 return btrfs_commit_transaction(trans, root);
872 else
873 wake_up_process(info->transaction_kthread);
874 }
875
876 if (trans->type & __TRANS_FREEZABLE)
877 sb_end_intwrite(root->fs_info->sb);
878
879 WARN_ON(cur_trans != info->running_transaction);
880 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881 atomic_dec(&cur_trans->num_writers);
882 extwriter_counter_dec(cur_trans, trans->type);
883
884 /*
885 * Make sure counter is updated before we wake up waiters.
886 */
887 smp_mb();
888 if (waitqueue_active(&cur_trans->writer_wait))
889 wake_up(&cur_trans->writer_wait);
890 btrfs_put_transaction(cur_trans);
891
892 if (current->journal_info == trans)
893 current->journal_info = NULL;
894
895 if (throttle)
896 btrfs_run_delayed_iputs(root);
897
898 if (trans->aborted ||
899 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900 wake_up_process(info->transaction_kthread);
901 err = -EIO;
902 }
903 assert_qgroups_uptodate(trans);
904
905 kmem_cache_free(btrfs_trans_handle_cachep, trans);
906 if (must_run_delayed_refs) {
907 btrfs_async_run_delayed_refs(root, cur,
908 must_run_delayed_refs == 1);
909 }
910 return err;
911}
912
913int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914 struct btrfs_root *root)
915{
916 return __btrfs_end_transaction(trans, root, 0);
917}
918
919int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920 struct btrfs_root *root)
921{
922 return __btrfs_end_transaction(trans, root, 1);
923}
924
925/*
926 * when btree blocks are allocated, they have some corresponding bits set for
927 * them in one of two extent_io trees. This is used to make sure all of
928 * those extents are sent to disk but does not wait on them
929 */
930int btrfs_write_marked_extents(struct btrfs_root *root,
931 struct extent_io_tree *dirty_pages, int mark)
932{
933 int err = 0;
934 int werr = 0;
935 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936 struct extent_state *cached_state = NULL;
937 u64 start = 0;
938 u64 end;
939
940 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941 mark, &cached_state)) {
942 bool wait_writeback = false;
943
944 err = convert_extent_bit(dirty_pages, start, end,
945 EXTENT_NEED_WAIT,
946 mark, &cached_state, GFP_NOFS);
947 /*
948 * convert_extent_bit can return -ENOMEM, which is most of the
949 * time a temporary error. So when it happens, ignore the error
950 * and wait for writeback of this range to finish - because we
951 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 * to btrfs_wait_marked_extents() would not know that writeback
953 * for this range started and therefore wouldn't wait for it to
954 * finish - we don't want to commit a superblock that points to
955 * btree nodes/leafs for which writeback hasn't finished yet
956 * (and without errors).
957 * We cleanup any entries left in the io tree when committing
958 * the transaction (through clear_btree_io_tree()).
959 */
960 if (err == -ENOMEM) {
961 err = 0;
962 wait_writeback = true;
963 }
964 if (!err)
965 err = filemap_fdatawrite_range(mapping, start, end);
966 if (err)
967 werr = err;
968 else if (wait_writeback)
969 werr = filemap_fdatawait_range(mapping, start, end);
970 free_extent_state(cached_state);
971 cached_state = NULL;
972 cond_resched();
973 start = end + 1;
974 }
975 return werr;
976}
977
978/*
979 * when btree blocks are allocated, they have some corresponding bits set for
980 * them in one of two extent_io trees. This is used to make sure all of
981 * those extents are on disk for transaction or log commit. We wait
982 * on all the pages and clear them from the dirty pages state tree
983 */
984int btrfs_wait_marked_extents(struct btrfs_root *root,
985 struct extent_io_tree *dirty_pages, int mark)
986{
987 int err = 0;
988 int werr = 0;
989 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990 struct extent_state *cached_state = NULL;
991 u64 start = 0;
992 u64 end;
993 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
994 bool errors = false;
995
996 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
997 EXTENT_NEED_WAIT, &cached_state)) {
998 /*
999 * Ignore -ENOMEM errors returned by clear_extent_bit().
1000 * When committing the transaction, we'll remove any entries
1001 * left in the io tree. For a log commit, we don't remove them
1002 * after committing the log because the tree can be accessed
1003 * concurrently - we do it only at transaction commit time when
1004 * it's safe to do it (through clear_btree_io_tree()).
1005 */
1006 err = clear_extent_bit(dirty_pages, start, end,
1007 EXTENT_NEED_WAIT,
1008 0, 0, &cached_state, GFP_NOFS);
1009 if (err == -ENOMEM)
1010 err = 0;
1011 if (!err)
1012 err = filemap_fdatawait_range(mapping, start, end);
1013 if (err)
1014 werr = err;
1015 free_extent_state(cached_state);
1016 cached_state = NULL;
1017 cond_resched();
1018 start = end + 1;
1019 }
1020 if (err)
1021 werr = err;
1022
1023 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1024 if ((mark & EXTENT_DIRTY) &&
1025 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1026 &btree_ino->runtime_flags))
1027 errors = true;
1028
1029 if ((mark & EXTENT_NEW) &&
1030 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1031 &btree_ino->runtime_flags))
1032 errors = true;
1033 } else {
1034 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1035 &btree_ino->runtime_flags))
1036 errors = true;
1037 }
1038
1039 if (errors && !werr)
1040 werr = -EIO;
1041
1042 return werr;
1043}
1044
1045/*
1046 * when btree blocks are allocated, they have some corresponding bits set for
1047 * them in one of two extent_io trees. This is used to make sure all of
1048 * those extents are on disk for transaction or log commit
1049 */
1050static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1051 struct extent_io_tree *dirty_pages, int mark)
1052{
1053 int ret;
1054 int ret2;
1055 struct blk_plug plug;
1056
1057 blk_start_plug(&plug);
1058 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1059 blk_finish_plug(&plug);
1060 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1061
1062 if (ret)
1063 return ret;
1064 if (ret2)
1065 return ret2;
1066 return 0;
1067}
1068
1069static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root)
1071{
1072 int ret;
1073
1074 ret = btrfs_write_and_wait_marked_extents(root,
1075 &trans->transaction->dirty_pages,
1076 EXTENT_DIRTY);
1077 clear_btree_io_tree(&trans->transaction->dirty_pages);
1078
1079 return ret;
1080}
1081
1082/*
1083 * this is used to update the root pointer in the tree of tree roots.
1084 *
1085 * But, in the case of the extent allocation tree, updating the root
1086 * pointer may allocate blocks which may change the root of the extent
1087 * allocation tree.
1088 *
1089 * So, this loops and repeats and makes sure the cowonly root didn't
1090 * change while the root pointer was being updated in the metadata.
1091 */
1092static int update_cowonly_root(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root)
1094{
1095 int ret;
1096 u64 old_root_bytenr;
1097 u64 old_root_used;
1098 struct btrfs_root *tree_root = root->fs_info->tree_root;
1099
1100 old_root_used = btrfs_root_used(&root->root_item);
1101
1102 while (1) {
1103 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1104 if (old_root_bytenr == root->node->start &&
1105 old_root_used == btrfs_root_used(&root->root_item))
1106 break;
1107
1108 btrfs_set_root_node(&root->root_item, root->node);
1109 ret = btrfs_update_root(trans, tree_root,
1110 &root->root_key,
1111 &root->root_item);
1112 if (ret)
1113 return ret;
1114
1115 old_root_used = btrfs_root_used(&root->root_item);
1116 }
1117
1118 return 0;
1119}
1120
1121/*
1122 * update all the cowonly tree roots on disk
1123 *
1124 * The error handling in this function may not be obvious. Any of the
1125 * failures will cause the file system to go offline. We still need
1126 * to clean up the delayed refs.
1127 */
1128static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1129 struct btrfs_root *root)
1130{
1131 struct btrfs_fs_info *fs_info = root->fs_info;
1132 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1133 struct list_head *io_bgs = &trans->transaction->io_bgs;
1134 struct list_head *next;
1135 struct extent_buffer *eb;
1136 int ret;
1137
1138 eb = btrfs_lock_root_node(fs_info->tree_root);
1139 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1140 0, &eb);
1141 btrfs_tree_unlock(eb);
1142 free_extent_buffer(eb);
1143
1144 if (ret)
1145 return ret;
1146
1147 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1148 if (ret)
1149 return ret;
1150
1151 ret = btrfs_run_dev_stats(trans, root->fs_info);
1152 if (ret)
1153 return ret;
1154 ret = btrfs_run_dev_replace(trans, root->fs_info);
1155 if (ret)
1156 return ret;
1157 ret = btrfs_run_qgroups(trans, root->fs_info);
1158 if (ret)
1159 return ret;
1160
1161 ret = btrfs_setup_space_cache(trans, root);
1162 if (ret)
1163 return ret;
1164
1165 /* run_qgroups might have added some more refs */
1166 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1167 if (ret)
1168 return ret;
1169again:
1170 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1171 next = fs_info->dirty_cowonly_roots.next;
1172 list_del_init(next);
1173 root = list_entry(next, struct btrfs_root, dirty_list);
1174 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175
1176 if (root != fs_info->extent_root)
1177 list_add_tail(&root->dirty_list,
1178 &trans->transaction->switch_commits);
1179 ret = update_cowonly_root(trans, root);
1180 if (ret)
1181 return ret;
1182 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1183 if (ret)
1184 return ret;
1185 }
1186
1187 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1188 ret = btrfs_write_dirty_block_groups(trans, root);
1189 if (ret)
1190 return ret;
1191 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1192 if (ret)
1193 return ret;
1194 }
1195
1196 if (!list_empty(&fs_info->dirty_cowonly_roots))
1197 goto again;
1198
1199 list_add_tail(&fs_info->extent_root->dirty_list,
1200 &trans->transaction->switch_commits);
1201 btrfs_after_dev_replace_commit(fs_info);
1202
1203 return 0;
1204}
1205
1206/*
1207 * dead roots are old snapshots that need to be deleted. This allocates
1208 * a dirty root struct and adds it into the list of dead roots that need to
1209 * be deleted
1210 */
1211void btrfs_add_dead_root(struct btrfs_root *root)
1212{
1213 spin_lock(&root->fs_info->trans_lock);
1214 if (list_empty(&root->root_list))
1215 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1216 spin_unlock(&root->fs_info->trans_lock);
1217}
1218
1219/*
1220 * update all the cowonly tree roots on disk
1221 */
1222static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root)
1224{
1225 struct btrfs_root *gang[8];
1226 struct btrfs_fs_info *fs_info = root->fs_info;
1227 int i;
1228 int ret;
1229 int err = 0;
1230
1231 spin_lock(&fs_info->fs_roots_radix_lock);
1232 while (1) {
1233 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1234 (void **)gang, 0,
1235 ARRAY_SIZE(gang),
1236 BTRFS_ROOT_TRANS_TAG);
1237 if (ret == 0)
1238 break;
1239 for (i = 0; i < ret; i++) {
1240 root = gang[i];
1241 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1242 (unsigned long)root->root_key.objectid,
1243 BTRFS_ROOT_TRANS_TAG);
1244 spin_unlock(&fs_info->fs_roots_radix_lock);
1245
1246 btrfs_free_log(trans, root);
1247 btrfs_update_reloc_root(trans, root);
1248 btrfs_orphan_commit_root(trans, root);
1249
1250 btrfs_save_ino_cache(root, trans);
1251
1252 /* see comments in should_cow_block() */
1253 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1254 smp_mb__after_atomic();
1255
1256 if (root->commit_root != root->node) {
1257 list_add_tail(&root->dirty_list,
1258 &trans->transaction->switch_commits);
1259 btrfs_set_root_node(&root->root_item,
1260 root->node);
1261 }
1262
1263 err = btrfs_update_root(trans, fs_info->tree_root,
1264 &root->root_key,
1265 &root->root_item);
1266 spin_lock(&fs_info->fs_roots_radix_lock);
1267 if (err)
1268 break;
1269 btrfs_qgroup_free_meta_all(root);
1270 }
1271 }
1272 spin_unlock(&fs_info->fs_roots_radix_lock);
1273 return err;
1274}
1275
1276/*
1277 * defrag a given btree.
1278 * Every leaf in the btree is read and defragged.
1279 */
1280int btrfs_defrag_root(struct btrfs_root *root)
1281{
1282 struct btrfs_fs_info *info = root->fs_info;
1283 struct btrfs_trans_handle *trans;
1284 int ret;
1285
1286 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1287 return 0;
1288
1289 while (1) {
1290 trans = btrfs_start_transaction(root, 0);
1291 if (IS_ERR(trans))
1292 return PTR_ERR(trans);
1293
1294 ret = btrfs_defrag_leaves(trans, root);
1295
1296 btrfs_end_transaction(trans, root);
1297 btrfs_btree_balance_dirty(info->tree_root);
1298 cond_resched();
1299
1300 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1301 break;
1302
1303 if (btrfs_defrag_cancelled(root->fs_info)) {
1304 pr_debug("BTRFS: defrag_root cancelled\n");
1305 ret = -EAGAIN;
1306 break;
1307 }
1308 }
1309 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1310 return ret;
1311}
1312
1313/*
1314 * new snapshots need to be created at a very specific time in the
1315 * transaction commit. This does the actual creation.
1316 *
1317 * Note:
1318 * If the error which may affect the commitment of the current transaction
1319 * happens, we should return the error number. If the error which just affect
1320 * the creation of the pending snapshots, just return 0.
1321 */
1322static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info,
1324 struct btrfs_pending_snapshot *pending)
1325{
1326 struct btrfs_key key;
1327 struct btrfs_root_item *new_root_item;
1328 struct btrfs_root *tree_root = fs_info->tree_root;
1329 struct btrfs_root *root = pending->root;
1330 struct btrfs_root *parent_root;
1331 struct btrfs_block_rsv *rsv;
1332 struct inode *parent_inode;
1333 struct btrfs_path *path;
1334 struct btrfs_dir_item *dir_item;
1335 struct dentry *dentry;
1336 struct extent_buffer *tmp;
1337 struct extent_buffer *old;
1338 struct timespec cur_time;
1339 int ret = 0;
1340 u64 to_reserve = 0;
1341 u64 index = 0;
1342 u64 objectid;
1343 u64 root_flags;
1344 uuid_le new_uuid;
1345
1346 ASSERT(pending->path);
1347 path = pending->path;
1348
1349 ASSERT(pending->root_item);
1350 new_root_item = pending->root_item;
1351
1352 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1353 if (pending->error)
1354 goto no_free_objectid;
1355
1356 /*
1357 * Make qgroup to skip current new snapshot's qgroupid, as it is
1358 * accounted by later btrfs_qgroup_inherit().
1359 */
1360 btrfs_set_skip_qgroup(trans, objectid);
1361
1362 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1363
1364 if (to_reserve > 0) {
1365 pending->error = btrfs_block_rsv_add(root,
1366 &pending->block_rsv,
1367 to_reserve,
1368 BTRFS_RESERVE_NO_FLUSH);
1369 if (pending->error)
1370 goto clear_skip_qgroup;
1371 }
1372
1373 key.objectid = objectid;
1374 key.offset = (u64)-1;
1375 key.type = BTRFS_ROOT_ITEM_KEY;
1376
1377 rsv = trans->block_rsv;
1378 trans->block_rsv = &pending->block_rsv;
1379 trans->bytes_reserved = trans->block_rsv->reserved;
1380 trace_btrfs_space_reservation(root->fs_info, "transaction",
1381 trans->transid,
1382 trans->bytes_reserved, 1);
1383 dentry = pending->dentry;
1384 parent_inode = pending->dir;
1385 parent_root = BTRFS_I(parent_inode)->root;
1386 record_root_in_trans(trans, parent_root);
1387
1388 cur_time = current_fs_time(parent_inode->i_sb);
1389
1390 /*
1391 * insert the directory item
1392 */
1393 ret = btrfs_set_inode_index(parent_inode, &index);
1394 BUG_ON(ret); /* -ENOMEM */
1395
1396 /* check if there is a file/dir which has the same name. */
1397 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1398 btrfs_ino(parent_inode),
1399 dentry->d_name.name,
1400 dentry->d_name.len, 0);
1401 if (dir_item != NULL && !IS_ERR(dir_item)) {
1402 pending->error = -EEXIST;
1403 goto dir_item_existed;
1404 } else if (IS_ERR(dir_item)) {
1405 ret = PTR_ERR(dir_item);
1406 btrfs_abort_transaction(trans, root, ret);
1407 goto fail;
1408 }
1409 btrfs_release_path(path);
1410
1411 /*
1412 * pull in the delayed directory update
1413 * and the delayed inode item
1414 * otherwise we corrupt the FS during
1415 * snapshot
1416 */
1417 ret = btrfs_run_delayed_items(trans, root);
1418 if (ret) { /* Transaction aborted */
1419 btrfs_abort_transaction(trans, root, ret);
1420 goto fail;
1421 }
1422
1423 record_root_in_trans(trans, root);
1424 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1425 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1426 btrfs_check_and_init_root_item(new_root_item);
1427
1428 root_flags = btrfs_root_flags(new_root_item);
1429 if (pending->readonly)
1430 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1431 else
1432 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1433 btrfs_set_root_flags(new_root_item, root_flags);
1434
1435 btrfs_set_root_generation_v2(new_root_item,
1436 trans->transid);
1437 uuid_le_gen(&new_uuid);
1438 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1439 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1440 BTRFS_UUID_SIZE);
1441 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1442 memset(new_root_item->received_uuid, 0,
1443 sizeof(new_root_item->received_uuid));
1444 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1445 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1446 btrfs_set_root_stransid(new_root_item, 0);
1447 btrfs_set_root_rtransid(new_root_item, 0);
1448 }
1449 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1450 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1451 btrfs_set_root_otransid(new_root_item, trans->transid);
1452
1453 old = btrfs_lock_root_node(root);
1454 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1455 if (ret) {
1456 btrfs_tree_unlock(old);
1457 free_extent_buffer(old);
1458 btrfs_abort_transaction(trans, root, ret);
1459 goto fail;
1460 }
1461
1462 btrfs_set_lock_blocking(old);
1463
1464 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1465 /* clean up in any case */
1466 btrfs_tree_unlock(old);
1467 free_extent_buffer(old);
1468 if (ret) {
1469 btrfs_abort_transaction(trans, root, ret);
1470 goto fail;
1471 }
1472 /* see comments in should_cow_block() */
1473 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1474 smp_wmb();
1475
1476 btrfs_set_root_node(new_root_item, tmp);
1477 /* record when the snapshot was created in key.offset */
1478 key.offset = trans->transid;
1479 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1480 btrfs_tree_unlock(tmp);
1481 free_extent_buffer(tmp);
1482 if (ret) {
1483 btrfs_abort_transaction(trans, root, ret);
1484 goto fail;
1485 }
1486
1487 /*
1488 * insert root back/forward references
1489 */
1490 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1491 parent_root->root_key.objectid,
1492 btrfs_ino(parent_inode), index,
1493 dentry->d_name.name, dentry->d_name.len);
1494 if (ret) {
1495 btrfs_abort_transaction(trans, root, ret);
1496 goto fail;
1497 }
1498
1499 key.offset = (u64)-1;
1500 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1501 if (IS_ERR(pending->snap)) {
1502 ret = PTR_ERR(pending->snap);
1503 btrfs_abort_transaction(trans, root, ret);
1504 goto fail;
1505 }
1506
1507 ret = btrfs_reloc_post_snapshot(trans, pending);
1508 if (ret) {
1509 btrfs_abort_transaction(trans, root, ret);
1510 goto fail;
1511 }
1512
1513 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1514 if (ret) {
1515 btrfs_abort_transaction(trans, root, ret);
1516 goto fail;
1517 }
1518
1519 ret = btrfs_insert_dir_item(trans, parent_root,
1520 dentry->d_name.name, dentry->d_name.len,
1521 parent_inode, &key,
1522 BTRFS_FT_DIR, index);
1523 /* We have check then name at the beginning, so it is impossible. */
1524 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1525 if (ret) {
1526 btrfs_abort_transaction(trans, root, ret);
1527 goto fail;
1528 }
1529
1530 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1531 dentry->d_name.len * 2);
1532 parent_inode->i_mtime = parent_inode->i_ctime =
1533 current_fs_time(parent_inode->i_sb);
1534 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1535 if (ret) {
1536 btrfs_abort_transaction(trans, root, ret);
1537 goto fail;
1538 }
1539 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1540 BTRFS_UUID_KEY_SUBVOL, objectid);
1541 if (ret) {
1542 btrfs_abort_transaction(trans, root, ret);
1543 goto fail;
1544 }
1545 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1546 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1547 new_root_item->received_uuid,
1548 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1549 objectid);
1550 if (ret && ret != -EEXIST) {
1551 btrfs_abort_transaction(trans, root, ret);
1552 goto fail;
1553 }
1554 }
1555
1556 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1557 if (ret) {
1558 btrfs_abort_transaction(trans, root, ret);
1559 goto fail;
1560 }
1561
1562 /*
1563 * account qgroup counters before qgroup_inherit()
1564 */
1565 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1566 if (ret)
1567 goto fail;
1568 ret = btrfs_qgroup_account_extents(trans, fs_info);
1569 if (ret)
1570 goto fail;
1571 ret = btrfs_qgroup_inherit(trans, fs_info,
1572 root->root_key.objectid,
1573 objectid, pending->inherit);
1574 if (ret) {
1575 btrfs_abort_transaction(trans, root, ret);
1576 goto fail;
1577 }
1578
1579fail:
1580 pending->error = ret;
1581dir_item_existed:
1582 trans->block_rsv = rsv;
1583 trans->bytes_reserved = 0;
1584clear_skip_qgroup:
1585 btrfs_clear_skip_qgroup(trans);
1586no_free_objectid:
1587 kfree(new_root_item);
1588 pending->root_item = NULL;
1589 btrfs_free_path(path);
1590 pending->path = NULL;
1591
1592 return ret;
1593}
1594
1595/*
1596 * create all the snapshots we've scheduled for creation
1597 */
1598static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1599 struct btrfs_fs_info *fs_info)
1600{
1601 struct btrfs_pending_snapshot *pending, *next;
1602 struct list_head *head = &trans->transaction->pending_snapshots;
1603 int ret = 0;
1604
1605 list_for_each_entry_safe(pending, next, head, list) {
1606 list_del(&pending->list);
1607 ret = create_pending_snapshot(trans, fs_info, pending);
1608 if (ret)
1609 break;
1610 }
1611 return ret;
1612}
1613
1614static void update_super_roots(struct btrfs_root *root)
1615{
1616 struct btrfs_root_item *root_item;
1617 struct btrfs_super_block *super;
1618
1619 super = root->fs_info->super_copy;
1620
1621 root_item = &root->fs_info->chunk_root->root_item;
1622 super->chunk_root = root_item->bytenr;
1623 super->chunk_root_generation = root_item->generation;
1624 super->chunk_root_level = root_item->level;
1625
1626 root_item = &root->fs_info->tree_root->root_item;
1627 super->root = root_item->bytenr;
1628 super->generation = root_item->generation;
1629 super->root_level = root_item->level;
1630 if (btrfs_test_opt(root, SPACE_CACHE))
1631 super->cache_generation = root_item->generation;
1632 if (root->fs_info->update_uuid_tree_gen)
1633 super->uuid_tree_generation = root_item->generation;
1634}
1635
1636int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1637{
1638 struct btrfs_transaction *trans;
1639 int ret = 0;
1640
1641 spin_lock(&info->trans_lock);
1642 trans = info->running_transaction;
1643 if (trans)
1644 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1645 spin_unlock(&info->trans_lock);
1646 return ret;
1647}
1648
1649int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1650{
1651 struct btrfs_transaction *trans;
1652 int ret = 0;
1653
1654 spin_lock(&info->trans_lock);
1655 trans = info->running_transaction;
1656 if (trans)
1657 ret = is_transaction_blocked(trans);
1658 spin_unlock(&info->trans_lock);
1659 return ret;
1660}
1661
1662/*
1663 * wait for the current transaction commit to start and block subsequent
1664 * transaction joins
1665 */
1666static void wait_current_trans_commit_start(struct btrfs_root *root,
1667 struct btrfs_transaction *trans)
1668{
1669 wait_event(root->fs_info->transaction_blocked_wait,
1670 trans->state >= TRANS_STATE_COMMIT_START ||
1671 trans->aborted);
1672}
1673
1674/*
1675 * wait for the current transaction to start and then become unblocked.
1676 * caller holds ref.
1677 */
1678static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1679 struct btrfs_transaction *trans)
1680{
1681 wait_event(root->fs_info->transaction_wait,
1682 trans->state >= TRANS_STATE_UNBLOCKED ||
1683 trans->aborted);
1684}
1685
1686/*
1687 * commit transactions asynchronously. once btrfs_commit_transaction_async
1688 * returns, any subsequent transaction will not be allowed to join.
1689 */
1690struct btrfs_async_commit {
1691 struct btrfs_trans_handle *newtrans;
1692 struct btrfs_root *root;
1693 struct work_struct work;
1694};
1695
1696static void do_async_commit(struct work_struct *work)
1697{
1698 struct btrfs_async_commit *ac =
1699 container_of(work, struct btrfs_async_commit, work);
1700
1701 /*
1702 * We've got freeze protection passed with the transaction.
1703 * Tell lockdep about it.
1704 */
1705 if (ac->newtrans->type & __TRANS_FREEZABLE)
1706 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1707
1708 current->journal_info = ac->newtrans;
1709
1710 btrfs_commit_transaction(ac->newtrans, ac->root);
1711 kfree(ac);
1712}
1713
1714int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1715 struct btrfs_root *root,
1716 int wait_for_unblock)
1717{
1718 struct btrfs_async_commit *ac;
1719 struct btrfs_transaction *cur_trans;
1720
1721 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1722 if (!ac)
1723 return -ENOMEM;
1724
1725 INIT_WORK(&ac->work, do_async_commit);
1726 ac->root = root;
1727 ac->newtrans = btrfs_join_transaction(root);
1728 if (IS_ERR(ac->newtrans)) {
1729 int err = PTR_ERR(ac->newtrans);
1730 kfree(ac);
1731 return err;
1732 }
1733
1734 /* take transaction reference */
1735 cur_trans = trans->transaction;
1736 atomic_inc(&cur_trans->use_count);
1737
1738 btrfs_end_transaction(trans, root);
1739
1740 /*
1741 * Tell lockdep we've released the freeze rwsem, since the
1742 * async commit thread will be the one to unlock it.
1743 */
1744 if (ac->newtrans->type & __TRANS_FREEZABLE)
1745 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1746
1747 schedule_work(&ac->work);
1748
1749 /* wait for transaction to start and unblock */
1750 if (wait_for_unblock)
1751 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1752 else
1753 wait_current_trans_commit_start(root, cur_trans);
1754
1755 if (current->journal_info == trans)
1756 current->journal_info = NULL;
1757
1758 btrfs_put_transaction(cur_trans);
1759 return 0;
1760}
1761
1762
1763static void cleanup_transaction(struct btrfs_trans_handle *trans,
1764 struct btrfs_root *root, int err)
1765{
1766 struct btrfs_transaction *cur_trans = trans->transaction;
1767 DEFINE_WAIT(wait);
1768
1769 WARN_ON(trans->use_count > 1);
1770
1771 btrfs_abort_transaction(trans, root, err);
1772
1773 spin_lock(&root->fs_info->trans_lock);
1774
1775 /*
1776 * If the transaction is removed from the list, it means this
1777 * transaction has been committed successfully, so it is impossible
1778 * to call the cleanup function.
1779 */
1780 BUG_ON(list_empty(&cur_trans->list));
1781
1782 list_del_init(&cur_trans->list);
1783 if (cur_trans == root->fs_info->running_transaction) {
1784 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1785 spin_unlock(&root->fs_info->trans_lock);
1786 wait_event(cur_trans->writer_wait,
1787 atomic_read(&cur_trans->num_writers) == 1);
1788
1789 spin_lock(&root->fs_info->trans_lock);
1790 }
1791 spin_unlock(&root->fs_info->trans_lock);
1792
1793 btrfs_cleanup_one_transaction(trans->transaction, root);
1794
1795 spin_lock(&root->fs_info->trans_lock);
1796 if (cur_trans == root->fs_info->running_transaction)
1797 root->fs_info->running_transaction = NULL;
1798 spin_unlock(&root->fs_info->trans_lock);
1799
1800 if (trans->type & __TRANS_FREEZABLE)
1801 sb_end_intwrite(root->fs_info->sb);
1802 btrfs_put_transaction(cur_trans);
1803 btrfs_put_transaction(cur_trans);
1804
1805 trace_btrfs_transaction_commit(root);
1806
1807 if (current->journal_info == trans)
1808 current->journal_info = NULL;
1809 btrfs_scrub_cancel(root->fs_info);
1810
1811 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1812}
1813
1814static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1815{
1816 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1817 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1818 return 0;
1819}
1820
1821static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1822{
1823 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1824 btrfs_wait_ordered_roots(fs_info, -1);
1825}
1826
1827static inline void
1828btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1829{
1830 wait_event(cur_trans->pending_wait,
1831 atomic_read(&cur_trans->pending_ordered) == 0);
1832}
1833
1834int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1835 struct btrfs_root *root)
1836{
1837 struct btrfs_transaction *cur_trans = trans->transaction;
1838 struct btrfs_transaction *prev_trans = NULL;
1839 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1840 int ret;
1841
1842 /* Stop the commit early if ->aborted is set */
1843 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1844 ret = cur_trans->aborted;
1845 btrfs_end_transaction(trans, root);
1846 return ret;
1847 }
1848
1849 /* make a pass through all the delayed refs we have so far
1850 * any runnings procs may add more while we are here
1851 */
1852 ret = btrfs_run_delayed_refs(trans, root, 0);
1853 if (ret) {
1854 btrfs_end_transaction(trans, root);
1855 return ret;
1856 }
1857
1858 btrfs_trans_release_metadata(trans, root);
1859 trans->block_rsv = NULL;
1860
1861 cur_trans = trans->transaction;
1862
1863 /*
1864 * set the flushing flag so procs in this transaction have to
1865 * start sending their work down.
1866 */
1867 cur_trans->delayed_refs.flushing = 1;
1868 smp_wmb();
1869
1870 if (!list_empty(&trans->new_bgs))
1871 btrfs_create_pending_block_groups(trans, root);
1872
1873 ret = btrfs_run_delayed_refs(trans, root, 0);
1874 if (ret) {
1875 btrfs_end_transaction(trans, root);
1876 return ret;
1877 }
1878
1879 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1880 int run_it = 0;
1881
1882 /* this mutex is also taken before trying to set
1883 * block groups readonly. We need to make sure
1884 * that nobody has set a block group readonly
1885 * after a extents from that block group have been
1886 * allocated for cache files. btrfs_set_block_group_ro
1887 * will wait for the transaction to commit if it
1888 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1889 *
1890 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1891 * only one process starts all the block group IO. It wouldn't
1892 * hurt to have more than one go through, but there's no
1893 * real advantage to it either.
1894 */
1895 mutex_lock(&root->fs_info->ro_block_group_mutex);
1896 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1897 &cur_trans->flags))
1898 run_it = 1;
1899 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1900
1901 if (run_it)
1902 ret = btrfs_start_dirty_block_groups(trans, root);
1903 }
1904 if (ret) {
1905 btrfs_end_transaction(trans, root);
1906 return ret;
1907 }
1908
1909 spin_lock(&root->fs_info->trans_lock);
1910 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1911 spin_unlock(&root->fs_info->trans_lock);
1912 atomic_inc(&cur_trans->use_count);
1913 ret = btrfs_end_transaction(trans, root);
1914
1915 wait_for_commit(root, cur_trans);
1916
1917 if (unlikely(cur_trans->aborted))
1918 ret = cur_trans->aborted;
1919
1920 btrfs_put_transaction(cur_trans);
1921
1922 return ret;
1923 }
1924
1925 cur_trans->state = TRANS_STATE_COMMIT_START;
1926 wake_up(&root->fs_info->transaction_blocked_wait);
1927
1928 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1929 prev_trans = list_entry(cur_trans->list.prev,
1930 struct btrfs_transaction, list);
1931 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1932 atomic_inc(&prev_trans->use_count);
1933 spin_unlock(&root->fs_info->trans_lock);
1934
1935 wait_for_commit(root, prev_trans);
1936 ret = prev_trans->aborted;
1937
1938 btrfs_put_transaction(prev_trans);
1939 if (ret)
1940 goto cleanup_transaction;
1941 } else {
1942 spin_unlock(&root->fs_info->trans_lock);
1943 }
1944 } else {
1945 spin_unlock(&root->fs_info->trans_lock);
1946 }
1947
1948 extwriter_counter_dec(cur_trans, trans->type);
1949
1950 ret = btrfs_start_delalloc_flush(root->fs_info);
1951 if (ret)
1952 goto cleanup_transaction;
1953
1954 ret = btrfs_run_delayed_items(trans, root);
1955 if (ret)
1956 goto cleanup_transaction;
1957
1958 wait_event(cur_trans->writer_wait,
1959 extwriter_counter_read(cur_trans) == 0);
1960
1961 /* some pending stuffs might be added after the previous flush. */
1962 ret = btrfs_run_delayed_items(trans, root);
1963 if (ret)
1964 goto cleanup_transaction;
1965
1966 btrfs_wait_delalloc_flush(root->fs_info);
1967
1968 btrfs_wait_pending_ordered(cur_trans);
1969
1970 btrfs_scrub_pause(root);
1971 /*
1972 * Ok now we need to make sure to block out any other joins while we
1973 * commit the transaction. We could have started a join before setting
1974 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1975 */
1976 spin_lock(&root->fs_info->trans_lock);
1977 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1978 spin_unlock(&root->fs_info->trans_lock);
1979 wait_event(cur_trans->writer_wait,
1980 atomic_read(&cur_trans->num_writers) == 1);
1981
1982 /* ->aborted might be set after the previous check, so check it */
1983 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1984 ret = cur_trans->aborted;
1985 goto scrub_continue;
1986 }
1987 /*
1988 * the reloc mutex makes sure that we stop
1989 * the balancing code from coming in and moving
1990 * extents around in the middle of the commit
1991 */
1992 mutex_lock(&root->fs_info->reloc_mutex);
1993
1994 /*
1995 * We needn't worry about the delayed items because we will
1996 * deal with them in create_pending_snapshot(), which is the
1997 * core function of the snapshot creation.
1998 */
1999 ret = create_pending_snapshots(trans, root->fs_info);
2000 if (ret) {
2001 mutex_unlock(&root->fs_info->reloc_mutex);
2002 goto scrub_continue;
2003 }
2004
2005 /*
2006 * We insert the dir indexes of the snapshots and update the inode
2007 * of the snapshots' parents after the snapshot creation, so there
2008 * are some delayed items which are not dealt with. Now deal with
2009 * them.
2010 *
2011 * We needn't worry that this operation will corrupt the snapshots,
2012 * because all the tree which are snapshoted will be forced to COW
2013 * the nodes and leaves.
2014 */
2015 ret = btrfs_run_delayed_items(trans, root);
2016 if (ret) {
2017 mutex_unlock(&root->fs_info->reloc_mutex);
2018 goto scrub_continue;
2019 }
2020
2021 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2022 if (ret) {
2023 mutex_unlock(&root->fs_info->reloc_mutex);
2024 goto scrub_continue;
2025 }
2026
2027 /* Reocrd old roots for later qgroup accounting */
2028 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2029 if (ret) {
2030 mutex_unlock(&root->fs_info->reloc_mutex);
2031 goto scrub_continue;
2032 }
2033
2034 /*
2035 * make sure none of the code above managed to slip in a
2036 * delayed item
2037 */
2038 btrfs_assert_delayed_root_empty(root);
2039
2040 WARN_ON(cur_trans != trans->transaction);
2041
2042 /* btrfs_commit_tree_roots is responsible for getting the
2043 * various roots consistent with each other. Every pointer
2044 * in the tree of tree roots has to point to the most up to date
2045 * root for every subvolume and other tree. So, we have to keep
2046 * the tree logging code from jumping in and changing any
2047 * of the trees.
2048 *
2049 * At this point in the commit, there can't be any tree-log
2050 * writers, but a little lower down we drop the trans mutex
2051 * and let new people in. By holding the tree_log_mutex
2052 * from now until after the super is written, we avoid races
2053 * with the tree-log code.
2054 */
2055 mutex_lock(&root->fs_info->tree_log_mutex);
2056
2057 ret = commit_fs_roots(trans, root);
2058 if (ret) {
2059 mutex_unlock(&root->fs_info->tree_log_mutex);
2060 mutex_unlock(&root->fs_info->reloc_mutex);
2061 goto scrub_continue;
2062 }
2063
2064 /*
2065 * Since the transaction is done, we can apply the pending changes
2066 * before the next transaction.
2067 */
2068 btrfs_apply_pending_changes(root->fs_info);
2069
2070 /* commit_fs_roots gets rid of all the tree log roots, it is now
2071 * safe to free the root of tree log roots
2072 */
2073 btrfs_free_log_root_tree(trans, root->fs_info);
2074
2075 /*
2076 * Since fs roots are all committed, we can get a quite accurate
2077 * new_roots. So let's do quota accounting.
2078 */
2079 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2080 if (ret < 0) {
2081 mutex_unlock(&root->fs_info->tree_log_mutex);
2082 mutex_unlock(&root->fs_info->reloc_mutex);
2083 goto scrub_continue;
2084 }
2085
2086 ret = commit_cowonly_roots(trans, root);
2087 if (ret) {
2088 mutex_unlock(&root->fs_info->tree_log_mutex);
2089 mutex_unlock(&root->fs_info->reloc_mutex);
2090 goto scrub_continue;
2091 }
2092
2093 /*
2094 * The tasks which save the space cache and inode cache may also
2095 * update ->aborted, check it.
2096 */
2097 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2098 ret = cur_trans->aborted;
2099 mutex_unlock(&root->fs_info->tree_log_mutex);
2100 mutex_unlock(&root->fs_info->reloc_mutex);
2101 goto scrub_continue;
2102 }
2103
2104 btrfs_prepare_extent_commit(trans, root);
2105
2106 cur_trans = root->fs_info->running_transaction;
2107
2108 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2109 root->fs_info->tree_root->node);
2110 list_add_tail(&root->fs_info->tree_root->dirty_list,
2111 &cur_trans->switch_commits);
2112
2113 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2114 root->fs_info->chunk_root->node);
2115 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2116 &cur_trans->switch_commits);
2117
2118 switch_commit_roots(cur_trans, root->fs_info);
2119
2120 assert_qgroups_uptodate(trans);
2121 ASSERT(list_empty(&cur_trans->dirty_bgs));
2122 ASSERT(list_empty(&cur_trans->io_bgs));
2123 update_super_roots(root);
2124
2125 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2126 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2127 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2128 sizeof(*root->fs_info->super_copy));
2129
2130 btrfs_update_commit_device_size(root->fs_info);
2131 btrfs_update_commit_device_bytes_used(root, cur_trans);
2132
2133 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2134 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2135
2136 btrfs_trans_release_chunk_metadata(trans);
2137
2138 spin_lock(&root->fs_info->trans_lock);
2139 cur_trans->state = TRANS_STATE_UNBLOCKED;
2140 root->fs_info->running_transaction = NULL;
2141 spin_unlock(&root->fs_info->trans_lock);
2142 mutex_unlock(&root->fs_info->reloc_mutex);
2143
2144 wake_up(&root->fs_info->transaction_wait);
2145
2146 ret = btrfs_write_and_wait_transaction(trans, root);
2147 if (ret) {
2148 btrfs_std_error(root->fs_info, ret,
2149 "Error while writing out transaction");
2150 mutex_unlock(&root->fs_info->tree_log_mutex);
2151 goto scrub_continue;
2152 }
2153
2154 ret = write_ctree_super(trans, root, 0);
2155 if (ret) {
2156 mutex_unlock(&root->fs_info->tree_log_mutex);
2157 goto scrub_continue;
2158 }
2159
2160 /*
2161 * the super is written, we can safely allow the tree-loggers
2162 * to go about their business
2163 */
2164 mutex_unlock(&root->fs_info->tree_log_mutex);
2165
2166 btrfs_finish_extent_commit(trans, root);
2167
2168 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2169 btrfs_clear_space_info_full(root->fs_info);
2170
2171 root->fs_info->last_trans_committed = cur_trans->transid;
2172 /*
2173 * We needn't acquire the lock here because there is no other task
2174 * which can change it.
2175 */
2176 cur_trans->state = TRANS_STATE_COMPLETED;
2177 wake_up(&cur_trans->commit_wait);
2178
2179 spin_lock(&root->fs_info->trans_lock);
2180 list_del_init(&cur_trans->list);
2181 spin_unlock(&root->fs_info->trans_lock);
2182
2183 btrfs_put_transaction(cur_trans);
2184 btrfs_put_transaction(cur_trans);
2185
2186 if (trans->type & __TRANS_FREEZABLE)
2187 sb_end_intwrite(root->fs_info->sb);
2188
2189 trace_btrfs_transaction_commit(root);
2190
2191 btrfs_scrub_continue(root);
2192
2193 if (current->journal_info == trans)
2194 current->journal_info = NULL;
2195
2196 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2197
2198 if (current != root->fs_info->transaction_kthread &&
2199 current != root->fs_info->cleaner_kthread)
2200 btrfs_run_delayed_iputs(root);
2201
2202 return ret;
2203
2204scrub_continue:
2205 btrfs_scrub_continue(root);
2206cleanup_transaction:
2207 btrfs_trans_release_metadata(trans, root);
2208 btrfs_trans_release_chunk_metadata(trans);
2209 trans->block_rsv = NULL;
2210 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2211 if (current->journal_info == trans)
2212 current->journal_info = NULL;
2213 cleanup_transaction(trans, root, ret);
2214
2215 return ret;
2216}
2217
2218/*
2219 * return < 0 if error
2220 * 0 if there are no more dead_roots at the time of call
2221 * 1 there are more to be processed, call me again
2222 *
2223 * The return value indicates there are certainly more snapshots to delete, but
2224 * if there comes a new one during processing, it may return 0. We don't mind,
2225 * because btrfs_commit_super will poke cleaner thread and it will process it a
2226 * few seconds later.
2227 */
2228int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2229{
2230 int ret;
2231 struct btrfs_fs_info *fs_info = root->fs_info;
2232
2233 spin_lock(&fs_info->trans_lock);
2234 if (list_empty(&fs_info->dead_roots)) {
2235 spin_unlock(&fs_info->trans_lock);
2236 return 0;
2237 }
2238 root = list_first_entry(&fs_info->dead_roots,
2239 struct btrfs_root, root_list);
2240 list_del_init(&root->root_list);
2241 spin_unlock(&fs_info->trans_lock);
2242
2243 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2244
2245 btrfs_kill_all_delayed_nodes(root);
2246
2247 if (btrfs_header_backref_rev(root->node) <
2248 BTRFS_MIXED_BACKREF_REV)
2249 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2250 else
2251 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2252
2253 return (ret < 0) ? 0 : 1;
2254}
2255
2256void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2257{
2258 unsigned long prev;
2259 unsigned long bit;
2260
2261 prev = xchg(&fs_info->pending_changes, 0);
2262 if (!prev)
2263 return;
2264
2265 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2266 if (prev & bit)
2267 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2268 prev &= ~bit;
2269
2270 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2271 if (prev & bit)
2272 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2273 prev &= ~bit;
2274
2275 bit = 1 << BTRFS_PENDING_COMMIT;
2276 if (prev & bit)
2277 btrfs_debug(fs_info, "pending commit done");
2278 prev &= ~bit;
2279
2280 if (prev)
2281 btrfs_warn(fs_info,
2282 "unknown pending changes left 0x%lx, ignoring", prev);
2283}