Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include "ctree.h"
  27#include "disk-io.h"
  28#include "transaction.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "inode-map.h"
  32#include "volumes.h"
  33#include "dev-replace.h"
  34#include "qgroup.h"
  35
  36#define BTRFS_ROOT_TRANS_TAG 0
  37
  38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
  39	[TRANS_STATE_RUNNING]		= 0U,
  40	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
  41					   __TRANS_START),
  42	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
  43					   __TRANS_START |
  44					   __TRANS_ATTACH),
  45	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
  46					   __TRANS_START |
  47					   __TRANS_ATTACH |
  48					   __TRANS_JOIN),
  49	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
  50					   __TRANS_START |
  51					   __TRANS_ATTACH |
  52					   __TRANS_JOIN |
  53					   __TRANS_JOIN_NOLOCK),
  54	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
  55					   __TRANS_START |
  56					   __TRANS_ATTACH |
  57					   __TRANS_JOIN |
  58					   __TRANS_JOIN_NOLOCK),
  59};
  60
  61void btrfs_put_transaction(struct btrfs_transaction *transaction)
  62{
  63	WARN_ON(atomic_read(&transaction->use_count) == 0);
  64	if (atomic_dec_and_test(&transaction->use_count)) {
  65		BUG_ON(!list_empty(&transaction->list));
  66		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
  67		if (transaction->delayed_refs.pending_csums)
  68			btrfs_err(transaction->fs_info,
  69				  "pending csums is %llu",
  70				  transaction->delayed_refs.pending_csums);
  71		while (!list_empty(&transaction->pending_chunks)) {
  72			struct extent_map *em;
  73
  74			em = list_first_entry(&transaction->pending_chunks,
  75					      struct extent_map, list);
  76			list_del_init(&em->list);
  77			free_extent_map(em);
  78		}
  79		/*
  80		 * If any block groups are found in ->deleted_bgs then it's
  81		 * because the transaction was aborted and a commit did not
  82		 * happen (things failed before writing the new superblock
  83		 * and calling btrfs_finish_extent_commit()), so we can not
  84		 * discard the physical locations of the block groups.
  85		 */
  86		while (!list_empty(&transaction->deleted_bgs)) {
  87			struct btrfs_block_group_cache *cache;
  88
  89			cache = list_first_entry(&transaction->deleted_bgs,
  90						 struct btrfs_block_group_cache,
  91						 bg_list);
  92			list_del_init(&cache->bg_list);
  93			btrfs_put_block_group_trimming(cache);
  94			btrfs_put_block_group(cache);
  95		}
  96		kmem_cache_free(btrfs_transaction_cachep, transaction);
  97	}
  98}
  99
 100static void clear_btree_io_tree(struct extent_io_tree *tree)
 101{
 102	spin_lock(&tree->lock);
 103	/*
 104	 * Do a single barrier for the waitqueue_active check here, the state
 105	 * of the waitqueue should not change once clear_btree_io_tree is
 106	 * called.
 107	 */
 108	smp_mb();
 109	while (!RB_EMPTY_ROOT(&tree->state)) {
 110		struct rb_node *node;
 111		struct extent_state *state;
 112
 113		node = rb_first(&tree->state);
 114		state = rb_entry(node, struct extent_state, rb_node);
 115		rb_erase(&state->rb_node, &tree->state);
 116		RB_CLEAR_NODE(&state->rb_node);
 117		/*
 118		 * btree io trees aren't supposed to have tasks waiting for
 119		 * changes in the flags of extent states ever.
 120		 */
 121		ASSERT(!waitqueue_active(&state->wq));
 122		free_extent_state(state);
 123
 124		cond_resched_lock(&tree->lock);
 125	}
 126	spin_unlock(&tree->lock);
 127}
 128
 129static noinline void switch_commit_roots(struct btrfs_transaction *trans,
 130					 struct btrfs_fs_info *fs_info)
 131{
 132	struct btrfs_root *root, *tmp;
 133
 134	down_write(&fs_info->commit_root_sem);
 135	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
 136				 dirty_list) {
 137		list_del_init(&root->dirty_list);
 138		free_extent_buffer(root->commit_root);
 139		root->commit_root = btrfs_root_node(root);
 140		if (is_fstree(root->objectid))
 141			btrfs_unpin_free_ino(root);
 142		clear_btree_io_tree(&root->dirty_log_pages);
 143	}
 144
 145	/* We can free old roots now. */
 146	spin_lock(&trans->dropped_roots_lock);
 147	while (!list_empty(&trans->dropped_roots)) {
 148		root = list_first_entry(&trans->dropped_roots,
 149					struct btrfs_root, root_list);
 150		list_del_init(&root->root_list);
 151		spin_unlock(&trans->dropped_roots_lock);
 152		btrfs_drop_and_free_fs_root(fs_info, root);
 153		spin_lock(&trans->dropped_roots_lock);
 154	}
 155	spin_unlock(&trans->dropped_roots_lock);
 156	up_write(&fs_info->commit_root_sem);
 157}
 158
 159static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 160					 unsigned int type)
 161{
 162	if (type & TRANS_EXTWRITERS)
 163		atomic_inc(&trans->num_extwriters);
 164}
 165
 166static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 167					 unsigned int type)
 168{
 169	if (type & TRANS_EXTWRITERS)
 170		atomic_dec(&trans->num_extwriters);
 171}
 172
 173static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 174					  unsigned int type)
 175{
 176	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 177}
 178
 179static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 180{
 181	return atomic_read(&trans->num_extwriters);
 182}
 183
 184/*
 185 * either allocate a new transaction or hop into the existing one
 186 */
 187static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 188				     unsigned int type)
 189{
 190	struct btrfs_transaction *cur_trans;
 
 191
 192	spin_lock(&fs_info->trans_lock);
 193loop:
 194	/* The file system has been taken offline. No new transactions. */
 195	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 196		spin_unlock(&fs_info->trans_lock);
 197		return -EROFS;
 198	}
 199
 200	cur_trans = fs_info->running_transaction;
 201	if (cur_trans) {
 202		if (cur_trans->aborted) {
 203			spin_unlock(&fs_info->trans_lock);
 204			return cur_trans->aborted;
 205		}
 206		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 207			spin_unlock(&fs_info->trans_lock);
 208			return -EBUSY;
 209		}
 210		atomic_inc(&cur_trans->use_count);
 211		atomic_inc(&cur_trans->num_writers);
 212		extwriter_counter_inc(cur_trans, type);
 213		spin_unlock(&fs_info->trans_lock);
 214		return 0;
 215	}
 216	spin_unlock(&fs_info->trans_lock);
 217
 218	/*
 219	 * If we are ATTACH, we just want to catch the current transaction,
 220	 * and commit it. If there is no transaction, just return ENOENT.
 221	 */
 222	if (type == TRANS_ATTACH)
 223		return -ENOENT;
 224
 225	/*
 226	 * JOIN_NOLOCK only happens during the transaction commit, so
 227	 * it is impossible that ->running_transaction is NULL
 228	 */
 229	BUG_ON(type == TRANS_JOIN_NOLOCK);
 230
 231	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
 232	if (!cur_trans)
 233		return -ENOMEM;
 234
 235	spin_lock(&fs_info->trans_lock);
 236	if (fs_info->running_transaction) {
 237		/*
 238		 * someone started a transaction after we unlocked.  Make sure
 239		 * to redo the checks above
 240		 */
 241		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 242		goto loop;
 243	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 244		spin_unlock(&fs_info->trans_lock);
 245		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 246		return -EROFS;
 247	}
 248
 249	cur_trans->fs_info = fs_info;
 250	atomic_set(&cur_trans->num_writers, 1);
 251	extwriter_counter_init(cur_trans, type);
 252	init_waitqueue_head(&cur_trans->writer_wait);
 253	init_waitqueue_head(&cur_trans->commit_wait);
 254	init_waitqueue_head(&cur_trans->pending_wait);
 255	cur_trans->state = TRANS_STATE_RUNNING;
 256	/*
 257	 * One for this trans handle, one so it will live on until we
 258	 * commit the transaction.
 259	 */
 260	atomic_set(&cur_trans->use_count, 2);
 261	atomic_set(&cur_trans->pending_ordered, 0);
 262	cur_trans->flags = 0;
 263	cur_trans->start_time = get_seconds();
 264
 265	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 266
 267	cur_trans->delayed_refs.href_root = RB_ROOT;
 268	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 269	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 
 
 
 
 270
 271	/*
 272	 * although the tree mod log is per file system and not per transaction,
 273	 * the log must never go across transaction boundaries.
 274	 */
 275	smp_mb();
 276	if (!list_empty(&fs_info->tree_mod_seq_list))
 277		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 
 278	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 279		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 
 280	atomic64_set(&fs_info->tree_mod_seq, 0);
 281
 282	spin_lock_init(&cur_trans->delayed_refs.lock);
 283
 284	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 
 285	INIT_LIST_HEAD(&cur_trans->pending_chunks);
 286	INIT_LIST_HEAD(&cur_trans->switch_commits);
 287	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 288	INIT_LIST_HEAD(&cur_trans->io_bgs);
 289	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 290	mutex_init(&cur_trans->cache_write_mutex);
 291	cur_trans->num_dirty_bgs = 0;
 292	spin_lock_init(&cur_trans->dirty_bgs_lock);
 293	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 294	spin_lock_init(&cur_trans->dropped_roots_lock);
 295	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 296	extent_io_tree_init(&cur_trans->dirty_pages,
 297			     fs_info->btree_inode->i_mapping);
 298	fs_info->generation++;
 299	cur_trans->transid = fs_info->generation;
 300	fs_info->running_transaction = cur_trans;
 301	cur_trans->aborted = 0;
 302	spin_unlock(&fs_info->trans_lock);
 303
 304	return 0;
 305}
 306
 307/*
 308 * this does all the record keeping required to make sure that a reference
 309 * counted root is properly recorded in a given transaction.  This is required
 310 * to make sure the old root from before we joined the transaction is deleted
 311 * when the transaction commits
 312 */
 313static int record_root_in_trans(struct btrfs_trans_handle *trans,
 314			       struct btrfs_root *root,
 315			       int force)
 316{
 317	struct btrfs_fs_info *fs_info = root->fs_info;
 318
 319	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 320	    root->last_trans < trans->transid) || force) {
 321		WARN_ON(root == fs_info->extent_root);
 322		WARN_ON(root->commit_root != root->node);
 323
 324		/*
 325		 * see below for IN_TRANS_SETUP usage rules
 326		 * we have the reloc mutex held now, so there
 327		 * is only one writer in this function
 328		 */
 329		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 330
 331		/* make sure readers find IN_TRANS_SETUP before
 332		 * they find our root->last_trans update
 333		 */
 334		smp_wmb();
 335
 336		spin_lock(&fs_info->fs_roots_radix_lock);
 337		if (root->last_trans == trans->transid && !force) {
 338			spin_unlock(&fs_info->fs_roots_radix_lock);
 339			return 0;
 340		}
 341		radix_tree_tag_set(&fs_info->fs_roots_radix,
 342				   (unsigned long)root->root_key.objectid,
 343				   BTRFS_ROOT_TRANS_TAG);
 344		spin_unlock(&fs_info->fs_roots_radix_lock);
 345		root->last_trans = trans->transid;
 346
 347		/* this is pretty tricky.  We don't want to
 348		 * take the relocation lock in btrfs_record_root_in_trans
 349		 * unless we're really doing the first setup for this root in
 350		 * this transaction.
 351		 *
 352		 * Normally we'd use root->last_trans as a flag to decide
 353		 * if we want to take the expensive mutex.
 354		 *
 355		 * But, we have to set root->last_trans before we
 356		 * init the relocation root, otherwise, we trip over warnings
 357		 * in ctree.c.  The solution used here is to flag ourselves
 358		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 359		 * fixing up the reloc trees and everyone must wait.
 360		 *
 361		 * When this is zero, they can trust root->last_trans and fly
 362		 * through btrfs_record_root_in_trans without having to take the
 363		 * lock.  smp_wmb() makes sure that all the writes above are
 364		 * done before we pop in the zero below
 365		 */
 366		btrfs_init_reloc_root(trans, root);
 367		smp_mb__before_atomic();
 368		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 369	}
 370	return 0;
 371}
 372
 373
 374void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 375			    struct btrfs_root *root)
 376{
 377	struct btrfs_fs_info *fs_info = root->fs_info;
 378	struct btrfs_transaction *cur_trans = trans->transaction;
 379
 380	/* Add ourselves to the transaction dropped list */
 381	spin_lock(&cur_trans->dropped_roots_lock);
 382	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 383	spin_unlock(&cur_trans->dropped_roots_lock);
 384
 385	/* Make sure we don't try to update the root at commit time */
 386	spin_lock(&fs_info->fs_roots_radix_lock);
 387	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 388			     (unsigned long)root->root_key.objectid,
 389			     BTRFS_ROOT_TRANS_TAG);
 390	spin_unlock(&fs_info->fs_roots_radix_lock);
 391}
 392
 393int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 394			       struct btrfs_root *root)
 395{
 396	struct btrfs_fs_info *fs_info = root->fs_info;
 397
 398	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 399		return 0;
 400
 401	/*
 402	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 403	 * and barriers
 404	 */
 405	smp_rmb();
 406	if (root->last_trans == trans->transid &&
 407	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 408		return 0;
 409
 410	mutex_lock(&fs_info->reloc_mutex);
 411	record_root_in_trans(trans, root, 0);
 412	mutex_unlock(&fs_info->reloc_mutex);
 413
 414	return 0;
 415}
 416
 417static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 418{
 419	return (trans->state >= TRANS_STATE_BLOCKED &&
 420		trans->state < TRANS_STATE_UNBLOCKED &&
 421		!trans->aborted);
 422}
 423
 424/* wait for commit against the current transaction to become unblocked
 425 * when this is done, it is safe to start a new transaction, but the current
 426 * transaction might not be fully on disk.
 427 */
 428static void wait_current_trans(struct btrfs_fs_info *fs_info)
 429{
 430	struct btrfs_transaction *cur_trans;
 431
 432	spin_lock(&fs_info->trans_lock);
 433	cur_trans = fs_info->running_transaction;
 434	if (cur_trans && is_transaction_blocked(cur_trans)) {
 435		atomic_inc(&cur_trans->use_count);
 436		spin_unlock(&fs_info->trans_lock);
 437
 438		wait_event(fs_info->transaction_wait,
 439			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 440			   cur_trans->aborted);
 441		btrfs_put_transaction(cur_trans);
 442	} else {
 443		spin_unlock(&fs_info->trans_lock);
 444	}
 445}
 446
 447static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 448{
 449	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 450		return 0;
 451
 452	if (type == TRANS_USERSPACE)
 453		return 1;
 454
 455	if (type == TRANS_START &&
 456	    !atomic_read(&fs_info->open_ioctl_trans))
 457		return 1;
 458
 459	return 0;
 460}
 461
 462static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 463{
 464	struct btrfs_fs_info *fs_info = root->fs_info;
 465
 466	if (!fs_info->reloc_ctl ||
 467	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 468	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 469	    root->reloc_root)
 470		return false;
 471
 472	return true;
 473}
 474
 475static struct btrfs_trans_handle *
 476start_transaction(struct btrfs_root *root, unsigned int num_items,
 477		  unsigned int type, enum btrfs_reserve_flush_enum flush)
 478{
 479	struct btrfs_fs_info *fs_info = root->fs_info;
 480
 481	struct btrfs_trans_handle *h;
 482	struct btrfs_transaction *cur_trans;
 483	u64 num_bytes = 0;
 484	u64 qgroup_reserved = 0;
 485	bool reloc_reserved = false;
 486	int ret;
 487
 488	/* Send isn't supposed to start transactions. */
 489	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 490
 491	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 492		return ERR_PTR(-EROFS);
 493
 494	if (current->journal_info) {
 
 495		WARN_ON(type & TRANS_EXTWRITERS);
 496		h = current->journal_info;
 497		h->use_count++;
 498		WARN_ON(h->use_count > 2);
 499		h->orig_rsv = h->block_rsv;
 500		h->block_rsv = NULL;
 501		goto got_it;
 502	}
 503
 504	/*
 505	 * Do the reservation before we join the transaction so we can do all
 506	 * the appropriate flushing if need be.
 507	 */
 508	if (num_items > 0 && root != fs_info->chunk_root) {
 509		qgroup_reserved = num_items * fs_info->nodesize;
 510		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
 511		if (ret)
 512			return ERR_PTR(ret);
 
 
 
 513
 514		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 515		/*
 516		 * Do the reservation for the relocation root creation
 517		 */
 518		if (need_reserve_reloc_root(root)) {
 519			num_bytes += fs_info->nodesize;
 520			reloc_reserved = true;
 521		}
 522
 523		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
 
 524					  num_bytes, flush);
 525		if (ret)
 526			goto reserve_fail;
 527	}
 528again:
 529	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 530	if (!h) {
 531		ret = -ENOMEM;
 532		goto alloc_fail;
 533	}
 534
 535	/*
 536	 * If we are JOIN_NOLOCK we're already committing a transaction and
 537	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 538	 * because we're already holding a ref.  We need this because we could
 539	 * have raced in and did an fsync() on a file which can kick a commit
 540	 * and then we deadlock with somebody doing a freeze.
 541	 *
 542	 * If we are ATTACH, it means we just want to catch the current
 543	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 544	 */
 545	if (type & __TRANS_FREEZABLE)
 546		sb_start_intwrite(fs_info->sb);
 547
 548	if (may_wait_transaction(fs_info, type))
 549		wait_current_trans(fs_info);
 550
 551	do {
 552		ret = join_transaction(fs_info, type);
 553		if (ret == -EBUSY) {
 554			wait_current_trans(fs_info);
 555			if (unlikely(type == TRANS_ATTACH))
 556				ret = -ENOENT;
 557		}
 558	} while (ret == -EBUSY);
 559
 560	if (ret < 0)
 
 
 561		goto join_fail;
 
 562
 563	cur_trans = fs_info->running_transaction;
 564
 565	h->transid = cur_trans->transid;
 566	h->transaction = cur_trans;
 
 
 567	h->root = root;
 
 568	h->use_count = 1;
 569	h->fs_info = root->fs_info;
 570
 
 
 
 
 571	h->type = type;
 572	h->can_flush_pending_bgs = true;
 
 
 573	INIT_LIST_HEAD(&h->qgroup_ref_list);
 574	INIT_LIST_HEAD(&h->new_bgs);
 575
 576	smp_mb();
 577	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 578	    may_wait_transaction(fs_info, type)) {
 579		current->journal_info = h;
 580		btrfs_commit_transaction(h);
 581		goto again;
 582	}
 583
 584	if (num_bytes) {
 585		trace_btrfs_space_reservation(fs_info, "transaction",
 586					      h->transid, num_bytes, 1);
 587		h->block_rsv = &fs_info->trans_block_rsv;
 588		h->bytes_reserved = num_bytes;
 589		h->reloc_reserved = reloc_reserved;
 590	}
 
 591
 592got_it:
 593	btrfs_record_root_in_trans(h, root);
 594
 595	if (!current->journal_info && type != TRANS_USERSPACE)
 596		current->journal_info = h;
 597	return h;
 598
 599join_fail:
 600	if (type & __TRANS_FREEZABLE)
 601		sb_end_intwrite(fs_info->sb);
 602	kmem_cache_free(btrfs_trans_handle_cachep, h);
 603alloc_fail:
 604	if (num_bytes)
 605		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 606					num_bytes);
 607reserve_fail:
 608	btrfs_qgroup_free_meta(root, qgroup_reserved);
 
 609	return ERR_PTR(ret);
 610}
 611
 612struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 613						   unsigned int num_items)
 614{
 615	return start_transaction(root, num_items, TRANS_START,
 616				 BTRFS_RESERVE_FLUSH_ALL);
 617}
 618struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 619					struct btrfs_root *root,
 620					unsigned int num_items,
 621					int min_factor)
 622{
 623	struct btrfs_fs_info *fs_info = root->fs_info;
 624	struct btrfs_trans_handle *trans;
 625	u64 num_bytes;
 626	int ret;
 627
 628	trans = btrfs_start_transaction(root, num_items);
 629	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
 630		return trans;
 631
 632	trans = btrfs_start_transaction(root, 0);
 633	if (IS_ERR(trans))
 634		return trans;
 635
 636	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 637	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
 638				       num_bytes, min_factor);
 639	if (ret) {
 640		btrfs_end_transaction(trans);
 641		return ERR_PTR(ret);
 642	}
 643
 644	trans->block_rsv = &fs_info->trans_block_rsv;
 645	trans->bytes_reserved = num_bytes;
 646	trace_btrfs_space_reservation(fs_info, "transaction",
 647				      trans->transid, num_bytes, 1);
 648
 649	return trans;
 650}
 651
 652struct btrfs_trans_handle *btrfs_start_transaction_lflush(
 653					struct btrfs_root *root,
 654					unsigned int num_items)
 655{
 656	return start_transaction(root, num_items, TRANS_START,
 657				 BTRFS_RESERVE_FLUSH_LIMIT);
 658}
 659
 660struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 661{
 662	return start_transaction(root, 0, TRANS_JOIN,
 663				 BTRFS_RESERVE_NO_FLUSH);
 664}
 665
 666struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 667{
 668	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 669				 BTRFS_RESERVE_NO_FLUSH);
 670}
 671
 672struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 673{
 674	return start_transaction(root, 0, TRANS_USERSPACE,
 675				 BTRFS_RESERVE_NO_FLUSH);
 676}
 677
 678/*
 679 * btrfs_attach_transaction() - catch the running transaction
 680 *
 681 * It is used when we want to commit the current the transaction, but
 682 * don't want to start a new one.
 683 *
 684 * Note: If this function return -ENOENT, it just means there is no
 685 * running transaction. But it is possible that the inactive transaction
 686 * is still in the memory, not fully on disk. If you hope there is no
 687 * inactive transaction in the fs when -ENOENT is returned, you should
 688 * invoke
 689 *     btrfs_attach_transaction_barrier()
 690 */
 691struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 692{
 693	return start_transaction(root, 0, TRANS_ATTACH,
 694				 BTRFS_RESERVE_NO_FLUSH);
 695}
 696
 697/*
 698 * btrfs_attach_transaction_barrier() - catch the running transaction
 699 *
 700 * It is similar to the above function, the differentia is this one
 701 * will wait for all the inactive transactions until they fully
 702 * complete.
 703 */
 704struct btrfs_trans_handle *
 705btrfs_attach_transaction_barrier(struct btrfs_root *root)
 706{
 707	struct btrfs_trans_handle *trans;
 708
 709	trans = start_transaction(root, 0, TRANS_ATTACH,
 710				  BTRFS_RESERVE_NO_FLUSH);
 711	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
 712		btrfs_wait_for_commit(root->fs_info, 0);
 713
 714	return trans;
 715}
 716
 717/* wait for a transaction commit to be fully complete */
 718static noinline void wait_for_commit(struct btrfs_transaction *commit)
 
 719{
 720	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 721}
 722
 723int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 724{
 725	struct btrfs_transaction *cur_trans = NULL, *t;
 726	int ret = 0;
 727
 728	if (transid) {
 729		if (transid <= fs_info->last_trans_committed)
 730			goto out;
 731
 
 732		/* find specified transaction */
 733		spin_lock(&fs_info->trans_lock);
 734		list_for_each_entry(t, &fs_info->trans_list, list) {
 735			if (t->transid == transid) {
 736				cur_trans = t;
 737				atomic_inc(&cur_trans->use_count);
 738				ret = 0;
 739				break;
 740			}
 741			if (t->transid > transid) {
 742				ret = 0;
 743				break;
 744			}
 745		}
 746		spin_unlock(&fs_info->trans_lock);
 747
 748		/*
 749		 * The specified transaction doesn't exist, or we
 750		 * raced with btrfs_commit_transaction
 751		 */
 752		if (!cur_trans) {
 753			if (transid > fs_info->last_trans_committed)
 754				ret = -EINVAL;
 755			goto out;
 756		}
 757	} else {
 758		/* find newest transaction that is committing | committed */
 759		spin_lock(&fs_info->trans_lock);
 760		list_for_each_entry_reverse(t, &fs_info->trans_list,
 761					    list) {
 762			if (t->state >= TRANS_STATE_COMMIT_START) {
 763				if (t->state == TRANS_STATE_COMPLETED)
 764					break;
 765				cur_trans = t;
 766				atomic_inc(&cur_trans->use_count);
 767				break;
 768			}
 769		}
 770		spin_unlock(&fs_info->trans_lock);
 771		if (!cur_trans)
 772			goto out;  /* nothing committing|committed */
 773	}
 774
 775	wait_for_commit(cur_trans);
 776	btrfs_put_transaction(cur_trans);
 777out:
 778	return ret;
 779}
 780
 781void btrfs_throttle(struct btrfs_fs_info *fs_info)
 782{
 783	if (!atomic_read(&fs_info->open_ioctl_trans))
 784		wait_current_trans(fs_info);
 785}
 786
 787static int should_end_transaction(struct btrfs_trans_handle *trans)
 
 788{
 789	struct btrfs_fs_info *fs_info = trans->fs_info;
 790
 791	if (fs_info->global_block_rsv.space_info->full &&
 792	    btrfs_check_space_for_delayed_refs(trans, fs_info))
 793		return 1;
 794
 795	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 796}
 797
 798int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 
 799{
 800	struct btrfs_transaction *cur_trans = trans->transaction;
 801	struct btrfs_fs_info *fs_info = trans->fs_info;
 802	int updates;
 803	int err;
 804
 805	smp_mb();
 806	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 807	    cur_trans->delayed_refs.flushing)
 808		return 1;
 809
 810	updates = trans->delayed_ref_updates;
 811	trans->delayed_ref_updates = 0;
 812	if (updates) {
 813		err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
 814		if (err) /* Error code will also eval true */
 815			return err;
 816	}
 817
 818	return should_end_transaction(trans);
 819}
 820
 821static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 822				   int throttle)
 823{
 824	struct btrfs_fs_info *info = trans->fs_info;
 825	struct btrfs_transaction *cur_trans = trans->transaction;
 826	u64 transid = trans->transid;
 827	unsigned long cur = trans->delayed_ref_updates;
 828	int lock = (trans->type != TRANS_JOIN_NOLOCK);
 829	int err = 0;
 830	int must_run_delayed_refs = 0;
 831
 832	if (trans->use_count > 1) {
 833		trans->use_count--;
 834		trans->block_rsv = trans->orig_rsv;
 835		return 0;
 836	}
 837
 838	btrfs_trans_release_metadata(trans, info);
 
 
 
 
 
 839	trans->block_rsv = NULL;
 840
 
 
 
 
 
 
 
 
 
 841	if (!list_empty(&trans->new_bgs))
 842		btrfs_create_pending_block_groups(trans, info);
 843
 844	trans->delayed_ref_updates = 0;
 845	if (!trans->sync) {
 846		must_run_delayed_refs =
 847			btrfs_should_throttle_delayed_refs(trans, info);
 848		cur = max_t(unsigned long, cur, 32);
 849
 850		/*
 851		 * don't make the caller wait if they are from a NOLOCK
 852		 * or ATTACH transaction, it will deadlock with commit
 853		 */
 854		if (must_run_delayed_refs == 1 &&
 855		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
 856			must_run_delayed_refs = 2;
 857	}
 858
 859	btrfs_trans_release_metadata(trans, info);
 860	trans->block_rsv = NULL;
 861
 862	if (!list_empty(&trans->new_bgs))
 863		btrfs_create_pending_block_groups(trans, info);
 864
 865	btrfs_trans_release_chunk_metadata(trans);
 866
 867	if (lock && !atomic_read(&info->open_ioctl_trans) &&
 868	    should_end_transaction(trans) &&
 869	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
 870		spin_lock(&info->trans_lock);
 871		if (cur_trans->state == TRANS_STATE_RUNNING)
 872			cur_trans->state = TRANS_STATE_BLOCKED;
 873		spin_unlock(&info->trans_lock);
 874	}
 875
 876	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 877		if (throttle)
 878			return btrfs_commit_transaction(trans);
 879		else
 880			wake_up_process(info->transaction_kthread);
 881	}
 882
 883	if (trans->type & __TRANS_FREEZABLE)
 884		sb_end_intwrite(info->sb);
 885
 886	WARN_ON(cur_trans != info->running_transaction);
 887	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 888	atomic_dec(&cur_trans->num_writers);
 889	extwriter_counter_dec(cur_trans, trans->type);
 890
 891	/*
 892	 * Make sure counter is updated before we wake up waiters.
 893	 */
 894	smp_mb();
 895	if (waitqueue_active(&cur_trans->writer_wait))
 896		wake_up(&cur_trans->writer_wait);
 897	btrfs_put_transaction(cur_trans);
 898
 899	if (current->journal_info == trans)
 900		current->journal_info = NULL;
 901
 902	if (throttle)
 903		btrfs_run_delayed_iputs(info);
 904
 905	if (trans->aborted ||
 906	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 907		wake_up_process(info->transaction_kthread);
 908		err = -EIO;
 909	}
 910	assert_qgroups_uptodate(trans);
 911
 912	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 913	if (must_run_delayed_refs) {
 914		btrfs_async_run_delayed_refs(info, cur, transid,
 915					     must_run_delayed_refs == 1);
 916	}
 917	return err;
 918}
 919
 920int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 
 921{
 922	return __btrfs_end_transaction(trans, 0);
 923}
 924
 925int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 
 926{
 927	return __btrfs_end_transaction(trans, 1);
 928}
 929
 930/*
 931 * when btree blocks are allocated, they have some corresponding bits set for
 932 * them in one of two extent_io trees.  This is used to make sure all of
 933 * those extents are sent to disk but does not wait on them
 934 */
 935int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 936			       struct extent_io_tree *dirty_pages, int mark)
 937{
 938	int err = 0;
 939	int werr = 0;
 940	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 941	struct extent_state *cached_state = NULL;
 942	u64 start = 0;
 943	u64 end;
 944
 945	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 946				      mark, &cached_state)) {
 947		bool wait_writeback = false;
 948
 949		err = convert_extent_bit(dirty_pages, start, end,
 950					 EXTENT_NEED_WAIT,
 951					 mark, &cached_state);
 952		/*
 953		 * convert_extent_bit can return -ENOMEM, which is most of the
 954		 * time a temporary error. So when it happens, ignore the error
 955		 * and wait for writeback of this range to finish - because we
 956		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 957		 * to __btrfs_wait_marked_extents() would not know that
 958		 * writeback for this range started and therefore wouldn't
 959		 * wait for it to finish - we don't want to commit a
 960		 * superblock that points to btree nodes/leafs for which
 961		 * writeback hasn't finished yet (and without errors).
 962		 * We cleanup any entries left in the io tree when committing
 963		 * the transaction (through clear_btree_io_tree()).
 964		 */
 965		if (err == -ENOMEM) {
 966			err = 0;
 967			wait_writeback = true;
 968		}
 969		if (!err)
 970			err = filemap_fdatawrite_range(mapping, start, end);
 971		if (err)
 972			werr = err;
 973		else if (wait_writeback)
 974			werr = filemap_fdatawait_range(mapping, start, end);
 975		free_extent_state(cached_state);
 976		cached_state = NULL;
 977		cond_resched();
 978		start = end + 1;
 979	}
 
 
 980	return werr;
 981}
 982
 983/*
 984 * when btree blocks are allocated, they have some corresponding bits set for
 985 * them in one of two extent_io trees.  This is used to make sure all of
 986 * those extents are on disk for transaction or log commit.  We wait
 987 * on all the pages and clear them from the dirty pages state tree
 988 */
 989static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
 990				       struct extent_io_tree *dirty_pages)
 991{
 992	int err = 0;
 993	int werr = 0;
 994	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 995	struct extent_state *cached_state = NULL;
 996	u64 start = 0;
 997	u64 end;
 998
 999	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1000				      EXTENT_NEED_WAIT, &cached_state)) {
1001		/*
1002		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1003		 * When committing the transaction, we'll remove any entries
1004		 * left in the io tree. For a log commit, we don't remove them
1005		 * after committing the log because the tree can be accessed
1006		 * concurrently - we do it only at transaction commit time when
1007		 * it's safe to do it (through clear_btree_io_tree()).
1008		 */
1009		err = clear_extent_bit(dirty_pages, start, end,
1010				       EXTENT_NEED_WAIT,
1011				       0, 0, &cached_state, GFP_NOFS);
1012		if (err == -ENOMEM)
1013			err = 0;
1014		if (!err)
1015			err = filemap_fdatawait_range(mapping, start, end);
1016		if (err)
1017			werr = err;
1018		free_extent_state(cached_state);
1019		cached_state = NULL;
1020		cond_resched();
1021		start = end + 1;
1022	}
1023	if (err)
1024		werr = err;
1025	return werr;
1026}
1027
1028int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1029		       struct extent_io_tree *dirty_pages)
1030{
1031	bool errors = false;
1032	int err;
1033
1034	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1035	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1036		errors = true;
1037
1038	if (errors && !err)
1039		err = -EIO;
1040	return err;
1041}
1042
1043int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1044{
1045	struct btrfs_fs_info *fs_info = log_root->fs_info;
1046	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1047	bool errors = false;
1048	int err;
1049
1050	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1051
1052	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1053	if ((mark & EXTENT_DIRTY) &&
1054	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1055		errors = true;
1056
1057	if ((mark & EXTENT_NEW) &&
1058	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1059		errors = true;
1060
1061	if (errors && !err)
1062		err = -EIO;
1063	return err;
1064}
1065
1066/*
1067 * when btree blocks are allocated, they have some corresponding bits set for
1068 * them in one of two extent_io trees.  This is used to make sure all of
1069 * those extents are on disk for transaction or log commit
1070 */
1071static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1072				struct extent_io_tree *dirty_pages, int mark)
1073{
1074	int ret;
1075	int ret2;
1076	struct blk_plug plug;
1077
1078	blk_start_plug(&plug);
1079	ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1080	blk_finish_plug(&plug);
1081	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1082
1083	if (ret)
1084		return ret;
1085	if (ret2)
1086		return ret2;
1087	return 0;
1088}
1089
1090static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1091					    struct btrfs_fs_info *fs_info)
1092{
1093	int ret;
1094
1095	ret = btrfs_write_and_wait_marked_extents(fs_info,
 
 
 
1096					   &trans->transaction->dirty_pages,
1097					   EXTENT_DIRTY);
1098	clear_btree_io_tree(&trans->transaction->dirty_pages);
1099
1100	return ret;
1101}
1102
1103/*
1104 * this is used to update the root pointer in the tree of tree roots.
1105 *
1106 * But, in the case of the extent allocation tree, updating the root
1107 * pointer may allocate blocks which may change the root of the extent
1108 * allocation tree.
1109 *
1110 * So, this loops and repeats and makes sure the cowonly root didn't
1111 * change while the root pointer was being updated in the metadata.
1112 */
1113static int update_cowonly_root(struct btrfs_trans_handle *trans,
1114			       struct btrfs_root *root)
1115{
1116	int ret;
1117	u64 old_root_bytenr;
1118	u64 old_root_used;
1119	struct btrfs_fs_info *fs_info = root->fs_info;
1120	struct btrfs_root *tree_root = fs_info->tree_root;
1121
1122	old_root_used = btrfs_root_used(&root->root_item);
 
1123
1124	while (1) {
1125		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1126		if (old_root_bytenr == root->node->start &&
1127		    old_root_used == btrfs_root_used(&root->root_item))
1128			break;
1129
1130		btrfs_set_root_node(&root->root_item, root->node);
1131		ret = btrfs_update_root(trans, tree_root,
1132					&root->root_key,
1133					&root->root_item);
1134		if (ret)
1135			return ret;
1136
1137		old_root_used = btrfs_root_used(&root->root_item);
 
 
 
1138	}
1139
1140	return 0;
1141}
1142
1143/*
1144 * update all the cowonly tree roots on disk
1145 *
1146 * The error handling in this function may not be obvious. Any of the
1147 * failures will cause the file system to go offline. We still need
1148 * to clean up the delayed refs.
1149 */
1150static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1151					 struct btrfs_fs_info *fs_info)
1152{
1153	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1154	struct list_head *io_bgs = &trans->transaction->io_bgs;
1155	struct list_head *next;
1156	struct extent_buffer *eb;
1157	int ret;
1158
 
 
 
 
1159	eb = btrfs_lock_root_node(fs_info->tree_root);
1160	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1161			      0, &eb);
1162	btrfs_tree_unlock(eb);
1163	free_extent_buffer(eb);
1164
1165	if (ret)
1166		return ret;
1167
1168	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1169	if (ret)
1170		return ret;
1171
1172	ret = btrfs_run_dev_stats(trans, fs_info);
1173	if (ret)
1174		return ret;
1175	ret = btrfs_run_dev_replace(trans, fs_info);
1176	if (ret)
1177		return ret;
1178	ret = btrfs_run_qgroups(trans, fs_info);
1179	if (ret)
1180		return ret;
1181
1182	ret = btrfs_setup_space_cache(trans, fs_info);
1183	if (ret)
1184		return ret;
1185
1186	/* run_qgroups might have added some more refs */
1187	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1188	if (ret)
1189		return ret;
1190again:
1191	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1192		struct btrfs_root *root;
1193		next = fs_info->dirty_cowonly_roots.next;
1194		list_del_init(next);
1195		root = list_entry(next, struct btrfs_root, dirty_list);
1196		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1197
1198		if (root != fs_info->extent_root)
1199			list_add_tail(&root->dirty_list,
1200				      &trans->transaction->switch_commits);
1201		ret = update_cowonly_root(trans, root);
1202		if (ret)
1203			return ret;
1204		ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1205		if (ret)
1206			return ret;
1207	}
1208
1209	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1210		ret = btrfs_write_dirty_block_groups(trans, fs_info);
1211		if (ret)
1212			return ret;
1213		ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1214		if (ret)
1215			return ret;
1216	}
1217
1218	if (!list_empty(&fs_info->dirty_cowonly_roots))
1219		goto again;
1220
1221	list_add_tail(&fs_info->extent_root->dirty_list,
1222		      &trans->transaction->switch_commits);
1223	btrfs_after_dev_replace_commit(fs_info);
1224
1225	return 0;
1226}
1227
1228/*
1229 * dead roots are old snapshots that need to be deleted.  This allocates
1230 * a dirty root struct and adds it into the list of dead roots that need to
1231 * be deleted
1232 */
1233void btrfs_add_dead_root(struct btrfs_root *root)
1234{
1235	struct btrfs_fs_info *fs_info = root->fs_info;
1236
1237	spin_lock(&fs_info->trans_lock);
1238	if (list_empty(&root->root_list))
1239		list_add_tail(&root->root_list, &fs_info->dead_roots);
1240	spin_unlock(&fs_info->trans_lock);
1241}
1242
1243/*
1244 * update all the cowonly tree roots on disk
1245 */
1246static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1247				    struct btrfs_fs_info *fs_info)
1248{
1249	struct btrfs_root *gang[8];
 
1250	int i;
1251	int ret;
1252	int err = 0;
1253
1254	spin_lock(&fs_info->fs_roots_radix_lock);
1255	while (1) {
1256		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1257						 (void **)gang, 0,
1258						 ARRAY_SIZE(gang),
1259						 BTRFS_ROOT_TRANS_TAG);
1260		if (ret == 0)
1261			break;
1262		for (i = 0; i < ret; i++) {
1263			struct btrfs_root *root = gang[i];
1264			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1265					(unsigned long)root->root_key.objectid,
1266					BTRFS_ROOT_TRANS_TAG);
1267			spin_unlock(&fs_info->fs_roots_radix_lock);
1268
1269			btrfs_free_log(trans, root);
1270			btrfs_update_reloc_root(trans, root);
1271			btrfs_orphan_commit_root(trans, root);
1272
1273			btrfs_save_ino_cache(root, trans);
1274
1275			/* see comments in should_cow_block() */
1276			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1277			smp_mb__after_atomic();
1278
1279			if (root->commit_root != root->node) {
1280				list_add_tail(&root->dirty_list,
1281					&trans->transaction->switch_commits);
1282				btrfs_set_root_node(&root->root_item,
1283						    root->node);
1284			}
1285
1286			err = btrfs_update_root(trans, fs_info->tree_root,
1287						&root->root_key,
1288						&root->root_item);
1289			spin_lock(&fs_info->fs_roots_radix_lock);
1290			if (err)
1291				break;
1292			btrfs_qgroup_free_meta_all(root);
1293		}
1294	}
1295	spin_unlock(&fs_info->fs_roots_radix_lock);
1296	return err;
1297}
1298
1299/*
1300 * defrag a given btree.
1301 * Every leaf in the btree is read and defragged.
1302 */
1303int btrfs_defrag_root(struct btrfs_root *root)
1304{
1305	struct btrfs_fs_info *info = root->fs_info;
1306	struct btrfs_trans_handle *trans;
1307	int ret;
1308
1309	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1310		return 0;
1311
1312	while (1) {
1313		trans = btrfs_start_transaction(root, 0);
1314		if (IS_ERR(trans))
1315			return PTR_ERR(trans);
1316
1317		ret = btrfs_defrag_leaves(trans, root);
1318
1319		btrfs_end_transaction(trans);
1320		btrfs_btree_balance_dirty(info);
1321		cond_resched();
1322
1323		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1324			break;
1325
1326		if (btrfs_defrag_cancelled(info)) {
1327			btrfs_debug(info, "defrag_root cancelled");
1328			ret = -EAGAIN;
1329			break;
1330		}
1331	}
1332	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1333	return ret;
1334}
1335
1336/*
1337 * Do all special snapshot related qgroup dirty hack.
1338 *
1339 * Will do all needed qgroup inherit and dirty hack like switch commit
1340 * roots inside one transaction and write all btree into disk, to make
1341 * qgroup works.
1342 */
1343static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1344				   struct btrfs_root *src,
1345				   struct btrfs_root *parent,
1346				   struct btrfs_qgroup_inherit *inherit,
1347				   u64 dst_objectid)
1348{
1349	struct btrfs_fs_info *fs_info = src->fs_info;
1350	int ret;
1351
1352	/*
1353	 * Save some performance in the case that qgroups are not
1354	 * enabled. If this check races with the ioctl, rescan will
1355	 * kick in anyway.
1356	 */
1357	mutex_lock(&fs_info->qgroup_ioctl_lock);
1358	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1359		mutex_unlock(&fs_info->qgroup_ioctl_lock);
1360		return 0;
1361	}
1362	mutex_unlock(&fs_info->qgroup_ioctl_lock);
1363
1364	/*
1365	 * We are going to commit transaction, see btrfs_commit_transaction()
1366	 * comment for reason locking tree_log_mutex
1367	 */
1368	mutex_lock(&fs_info->tree_log_mutex);
1369
1370	ret = commit_fs_roots(trans, fs_info);
1371	if (ret)
1372		goto out;
1373	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1374	if (ret < 0)
1375		goto out;
1376	ret = btrfs_qgroup_account_extents(trans, fs_info);
1377	if (ret < 0)
1378		goto out;
1379
1380	/* Now qgroup are all updated, we can inherit it to new qgroups */
1381	ret = btrfs_qgroup_inherit(trans, fs_info,
1382				   src->root_key.objectid, dst_objectid,
1383				   inherit);
1384	if (ret < 0)
1385		goto out;
1386
1387	/*
1388	 * Now we do a simplified commit transaction, which will:
1389	 * 1) commit all subvolume and extent tree
1390	 *    To ensure all subvolume and extent tree have a valid
1391	 *    commit_root to accounting later insert_dir_item()
1392	 * 2) write all btree blocks onto disk
1393	 *    This is to make sure later btree modification will be cowed
1394	 *    Or commit_root can be populated and cause wrong qgroup numbers
1395	 * In this simplified commit, we don't really care about other trees
1396	 * like chunk and root tree, as they won't affect qgroup.
1397	 * And we don't write super to avoid half committed status.
1398	 */
1399	ret = commit_cowonly_roots(trans, fs_info);
1400	if (ret)
1401		goto out;
1402	switch_commit_roots(trans->transaction, fs_info);
1403	ret = btrfs_write_and_wait_transaction(trans, fs_info);
1404	if (ret)
1405		btrfs_handle_fs_error(fs_info, ret,
1406			"Error while writing out transaction for qgroup");
1407
1408out:
1409	mutex_unlock(&fs_info->tree_log_mutex);
1410
1411	/*
1412	 * Force parent root to be updated, as we recorded it before so its
1413	 * last_trans == cur_transid.
1414	 * Or it won't be committed again onto disk after later
1415	 * insert_dir_item()
1416	 */
1417	if (!ret)
1418		record_root_in_trans(trans, parent, 1);
1419	return ret;
1420}
1421
1422/*
1423 * new snapshots need to be created at a very specific time in the
1424 * transaction commit.  This does the actual creation.
1425 *
1426 * Note:
1427 * If the error which may affect the commitment of the current transaction
1428 * happens, we should return the error number. If the error which just affect
1429 * the creation of the pending snapshots, just return 0.
1430 */
1431static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1432				   struct btrfs_fs_info *fs_info,
1433				   struct btrfs_pending_snapshot *pending)
1434{
1435	struct btrfs_key key;
1436	struct btrfs_root_item *new_root_item;
1437	struct btrfs_root *tree_root = fs_info->tree_root;
1438	struct btrfs_root *root = pending->root;
1439	struct btrfs_root *parent_root;
1440	struct btrfs_block_rsv *rsv;
1441	struct inode *parent_inode;
1442	struct btrfs_path *path;
1443	struct btrfs_dir_item *dir_item;
1444	struct dentry *dentry;
1445	struct extent_buffer *tmp;
1446	struct extent_buffer *old;
1447	struct timespec cur_time;
1448	int ret = 0;
1449	u64 to_reserve = 0;
1450	u64 index = 0;
1451	u64 objectid;
1452	u64 root_flags;
1453	uuid_le new_uuid;
1454
1455	ASSERT(pending->path);
1456	path = pending->path;
 
 
 
1457
1458	ASSERT(pending->root_item);
1459	new_root_item = pending->root_item;
 
 
 
1460
1461	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1462	if (pending->error)
1463		goto no_free_objectid;
1464
1465	/*
1466	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1467	 * accounted by later btrfs_qgroup_inherit().
1468	 */
1469	btrfs_set_skip_qgroup(trans, objectid);
1470
1471	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1472
1473	if (to_reserve > 0) {
1474		pending->error = btrfs_block_rsv_add(root,
1475						     &pending->block_rsv,
1476						     to_reserve,
1477						     BTRFS_RESERVE_NO_FLUSH);
1478		if (pending->error)
1479			goto clear_skip_qgroup;
1480	}
1481
 
 
 
 
 
 
1482	key.objectid = objectid;
1483	key.offset = (u64)-1;
1484	key.type = BTRFS_ROOT_ITEM_KEY;
1485
1486	rsv = trans->block_rsv;
1487	trans->block_rsv = &pending->block_rsv;
1488	trans->bytes_reserved = trans->block_rsv->reserved;
1489	trace_btrfs_space_reservation(fs_info, "transaction",
1490				      trans->transid,
1491				      trans->bytes_reserved, 1);
1492	dentry = pending->dentry;
1493	parent_inode = pending->dir;
1494	parent_root = BTRFS_I(parent_inode)->root;
1495	record_root_in_trans(trans, parent_root, 0);
1496
1497	cur_time = current_time(parent_inode);
1498
1499	/*
1500	 * insert the directory item
1501	 */
1502	ret = btrfs_set_inode_index(parent_inode, &index);
1503	BUG_ON(ret); /* -ENOMEM */
1504
1505	/* check if there is a file/dir which has the same name. */
1506	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1507					 btrfs_ino(parent_inode),
1508					 dentry->d_name.name,
1509					 dentry->d_name.len, 0);
1510	if (dir_item != NULL && !IS_ERR(dir_item)) {
1511		pending->error = -EEXIST;
1512		goto dir_item_existed;
1513	} else if (IS_ERR(dir_item)) {
1514		ret = PTR_ERR(dir_item);
1515		btrfs_abort_transaction(trans, ret);
1516		goto fail;
1517	}
1518	btrfs_release_path(path);
1519
1520	/*
1521	 * pull in the delayed directory update
1522	 * and the delayed inode item
1523	 * otherwise we corrupt the FS during
1524	 * snapshot
1525	 */
1526	ret = btrfs_run_delayed_items(trans, fs_info);
1527	if (ret) {	/* Transaction aborted */
1528		btrfs_abort_transaction(trans, ret);
1529		goto fail;
1530	}
1531
1532	record_root_in_trans(trans, root, 0);
1533	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1534	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1535	btrfs_check_and_init_root_item(new_root_item);
1536
1537	root_flags = btrfs_root_flags(new_root_item);
1538	if (pending->readonly)
1539		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1540	else
1541		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1542	btrfs_set_root_flags(new_root_item, root_flags);
1543
1544	btrfs_set_root_generation_v2(new_root_item,
1545			trans->transid);
1546	uuid_le_gen(&new_uuid);
1547	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1548	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1549			BTRFS_UUID_SIZE);
1550	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1551		memset(new_root_item->received_uuid, 0,
1552		       sizeof(new_root_item->received_uuid));
1553		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1554		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1555		btrfs_set_root_stransid(new_root_item, 0);
1556		btrfs_set_root_rtransid(new_root_item, 0);
1557	}
1558	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1559	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1560	btrfs_set_root_otransid(new_root_item, trans->transid);
1561
1562	old = btrfs_lock_root_node(root);
1563	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1564	if (ret) {
1565		btrfs_tree_unlock(old);
1566		free_extent_buffer(old);
1567		btrfs_abort_transaction(trans, ret);
1568		goto fail;
1569	}
1570
1571	btrfs_set_lock_blocking(old);
1572
1573	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1574	/* clean up in any case */
1575	btrfs_tree_unlock(old);
1576	free_extent_buffer(old);
1577	if (ret) {
1578		btrfs_abort_transaction(trans, ret);
1579		goto fail;
1580	}
 
1581	/* see comments in should_cow_block() */
1582	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1583	smp_wmb();
1584
1585	btrfs_set_root_node(new_root_item, tmp);
1586	/* record when the snapshot was created in key.offset */
1587	key.offset = trans->transid;
1588	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1589	btrfs_tree_unlock(tmp);
1590	free_extent_buffer(tmp);
1591	if (ret) {
1592		btrfs_abort_transaction(trans, ret);
1593		goto fail;
1594	}
1595
1596	/*
1597	 * insert root back/forward references
1598	 */
1599	ret = btrfs_add_root_ref(trans, fs_info, objectid,
1600				 parent_root->root_key.objectid,
1601				 btrfs_ino(parent_inode), index,
1602				 dentry->d_name.name, dentry->d_name.len);
1603	if (ret) {
1604		btrfs_abort_transaction(trans, ret);
1605		goto fail;
1606	}
1607
1608	key.offset = (u64)-1;
1609	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1610	if (IS_ERR(pending->snap)) {
1611		ret = PTR_ERR(pending->snap);
1612		btrfs_abort_transaction(trans, ret);
1613		goto fail;
1614	}
1615
1616	ret = btrfs_reloc_post_snapshot(trans, pending);
1617	if (ret) {
1618		btrfs_abort_transaction(trans, ret);
1619		goto fail;
1620	}
1621
1622	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1623	if (ret) {
1624		btrfs_abort_transaction(trans, ret);
1625		goto fail;
1626	}
1627
1628	/*
1629	 * Do special qgroup accounting for snapshot, as we do some qgroup
1630	 * snapshot hack to do fast snapshot.
1631	 * To co-operate with that hack, we do hack again.
1632	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1633	 */
1634	ret = qgroup_account_snapshot(trans, root, parent_root,
1635				      pending->inherit, objectid);
1636	if (ret < 0)
1637		goto fail;
1638
1639	ret = btrfs_insert_dir_item(trans, parent_root,
1640				    dentry->d_name.name, dentry->d_name.len,
1641				    parent_inode, &key,
1642				    BTRFS_FT_DIR, index);
1643	/* We have check then name at the beginning, so it is impossible. */
1644	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1645	if (ret) {
1646		btrfs_abort_transaction(trans, ret);
1647		goto fail;
1648	}
1649
1650	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1651					 dentry->d_name.len * 2);
1652	parent_inode->i_mtime = parent_inode->i_ctime =
1653		current_time(parent_inode);
1654	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1655	if (ret) {
1656		btrfs_abort_transaction(trans, ret);
1657		goto fail;
1658	}
1659	ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1660				  BTRFS_UUID_KEY_SUBVOL, objectid);
1661	if (ret) {
1662		btrfs_abort_transaction(trans, ret);
1663		goto fail;
1664	}
1665	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1666		ret = btrfs_uuid_tree_add(trans, fs_info,
1667					  new_root_item->received_uuid,
1668					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1669					  objectid);
1670		if (ret && ret != -EEXIST) {
1671			btrfs_abort_transaction(trans, ret);
1672			goto fail;
1673		}
1674	}
1675
1676	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1677	if (ret) {
1678		btrfs_abort_transaction(trans, ret);
1679		goto fail;
1680	}
1681
1682fail:
1683	pending->error = ret;
1684dir_item_existed:
1685	trans->block_rsv = rsv;
1686	trans->bytes_reserved = 0;
1687clear_skip_qgroup:
1688	btrfs_clear_skip_qgroup(trans);
1689no_free_objectid:
1690	kfree(new_root_item);
1691	pending->root_item = NULL;
1692	btrfs_free_path(path);
1693	pending->path = NULL;
1694
1695	return ret;
1696}
1697
1698/*
1699 * create all the snapshots we've scheduled for creation
1700 */
1701static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1702					     struct btrfs_fs_info *fs_info)
1703{
1704	struct btrfs_pending_snapshot *pending, *next;
1705	struct list_head *head = &trans->transaction->pending_snapshots;
1706	int ret = 0;
1707
1708	list_for_each_entry_safe(pending, next, head, list) {
1709		list_del(&pending->list);
1710		ret = create_pending_snapshot(trans, fs_info, pending);
1711		if (ret)
1712			break;
1713	}
1714	return ret;
1715}
1716
1717static void update_super_roots(struct btrfs_fs_info *fs_info)
1718{
1719	struct btrfs_root_item *root_item;
1720	struct btrfs_super_block *super;
1721
1722	super = fs_info->super_copy;
1723
1724	root_item = &fs_info->chunk_root->root_item;
1725	super->chunk_root = root_item->bytenr;
1726	super->chunk_root_generation = root_item->generation;
1727	super->chunk_root_level = root_item->level;
1728
1729	root_item = &fs_info->tree_root->root_item;
1730	super->root = root_item->bytenr;
1731	super->generation = root_item->generation;
1732	super->root_level = root_item->level;
1733	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1734		super->cache_generation = root_item->generation;
1735	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1736		super->uuid_tree_generation = root_item->generation;
1737}
1738
1739int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1740{
1741	struct btrfs_transaction *trans;
1742	int ret = 0;
1743
1744	spin_lock(&info->trans_lock);
1745	trans = info->running_transaction;
1746	if (trans)
1747		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1748	spin_unlock(&info->trans_lock);
1749	return ret;
1750}
1751
1752int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1753{
1754	struct btrfs_transaction *trans;
1755	int ret = 0;
1756
1757	spin_lock(&info->trans_lock);
1758	trans = info->running_transaction;
1759	if (trans)
1760		ret = is_transaction_blocked(trans);
1761	spin_unlock(&info->trans_lock);
1762	return ret;
1763}
1764
1765/*
1766 * wait for the current transaction commit to start and block subsequent
1767 * transaction joins
1768 */
1769static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1770					    struct btrfs_transaction *trans)
1771{
1772	wait_event(fs_info->transaction_blocked_wait,
1773		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
 
1774}
1775
1776/*
1777 * wait for the current transaction to start and then become unblocked.
1778 * caller holds ref.
1779 */
1780static void wait_current_trans_commit_start_and_unblock(
1781					struct btrfs_fs_info *fs_info,
1782					struct btrfs_transaction *trans)
1783{
1784	wait_event(fs_info->transaction_wait,
1785		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
 
1786}
1787
1788/*
1789 * commit transactions asynchronously. once btrfs_commit_transaction_async
1790 * returns, any subsequent transaction will not be allowed to join.
1791 */
1792struct btrfs_async_commit {
1793	struct btrfs_trans_handle *newtrans;
 
1794	struct work_struct work;
1795};
1796
1797static void do_async_commit(struct work_struct *work)
1798{
1799	struct btrfs_async_commit *ac =
1800		container_of(work, struct btrfs_async_commit, work);
1801
1802	/*
1803	 * We've got freeze protection passed with the transaction.
1804	 * Tell lockdep about it.
1805	 */
1806	if (ac->newtrans->type & __TRANS_FREEZABLE)
1807		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
 
 
1808
1809	current->journal_info = ac->newtrans;
1810
1811	btrfs_commit_transaction(ac->newtrans);
1812	kfree(ac);
1813}
1814
1815int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
 
1816				   int wait_for_unblock)
1817{
1818	struct btrfs_fs_info *fs_info = trans->fs_info;
1819	struct btrfs_async_commit *ac;
1820	struct btrfs_transaction *cur_trans;
1821
1822	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1823	if (!ac)
1824		return -ENOMEM;
1825
1826	INIT_WORK(&ac->work, do_async_commit);
1827	ac->newtrans = btrfs_join_transaction(trans->root);
 
1828	if (IS_ERR(ac->newtrans)) {
1829		int err = PTR_ERR(ac->newtrans);
1830		kfree(ac);
1831		return err;
1832	}
1833
1834	/* take transaction reference */
1835	cur_trans = trans->transaction;
1836	atomic_inc(&cur_trans->use_count);
1837
1838	btrfs_end_transaction(trans);
1839
1840	/*
1841	 * Tell lockdep we've released the freeze rwsem, since the
1842	 * async commit thread will be the one to unlock it.
1843	 */
1844	if (ac->newtrans->type & __TRANS_FREEZABLE)
1845		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
 
 
1846
1847	schedule_work(&ac->work);
1848
1849	/* wait for transaction to start and unblock */
1850	if (wait_for_unblock)
1851		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1852	else
1853		wait_current_trans_commit_start(fs_info, cur_trans);
1854
1855	if (current->journal_info == trans)
1856		current->journal_info = NULL;
1857
1858	btrfs_put_transaction(cur_trans);
1859	return 0;
1860}
1861
1862
1863static void cleanup_transaction(struct btrfs_trans_handle *trans,
1864				struct btrfs_root *root, int err)
1865{
1866	struct btrfs_fs_info *fs_info = root->fs_info;
1867	struct btrfs_transaction *cur_trans = trans->transaction;
1868	DEFINE_WAIT(wait);
1869
1870	WARN_ON(trans->use_count > 1);
1871
1872	btrfs_abort_transaction(trans, err);
1873
1874	spin_lock(&fs_info->trans_lock);
1875
1876	/*
1877	 * If the transaction is removed from the list, it means this
1878	 * transaction has been committed successfully, so it is impossible
1879	 * to call the cleanup function.
1880	 */
1881	BUG_ON(list_empty(&cur_trans->list));
1882
1883	list_del_init(&cur_trans->list);
1884	if (cur_trans == fs_info->running_transaction) {
1885		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1886		spin_unlock(&fs_info->trans_lock);
1887		wait_event(cur_trans->writer_wait,
1888			   atomic_read(&cur_trans->num_writers) == 1);
1889
1890		spin_lock(&fs_info->trans_lock);
1891	}
1892	spin_unlock(&fs_info->trans_lock);
1893
1894	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1895
1896	spin_lock(&fs_info->trans_lock);
1897	if (cur_trans == fs_info->running_transaction)
1898		fs_info->running_transaction = NULL;
1899	spin_unlock(&fs_info->trans_lock);
1900
1901	if (trans->type & __TRANS_FREEZABLE)
1902		sb_end_intwrite(fs_info->sb);
1903	btrfs_put_transaction(cur_trans);
1904	btrfs_put_transaction(cur_trans);
1905
1906	trace_btrfs_transaction_commit(root);
1907
1908	if (current->journal_info == trans)
1909		current->journal_info = NULL;
1910	btrfs_scrub_cancel(fs_info);
1911
1912	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1913}
1914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1916{
1917	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1918		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1919	return 0;
1920}
1921
1922static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1923{
1924	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1925		btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1926}
1927
1928static inline void
1929btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1930{
1931	wait_event(cur_trans->pending_wait,
1932		   atomic_read(&cur_trans->pending_ordered) == 0);
1933}
1934
1935int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
 
1936{
1937	struct btrfs_fs_info *fs_info = trans->fs_info;
1938	struct btrfs_transaction *cur_trans = trans->transaction;
1939	struct btrfs_transaction *prev_trans = NULL;
1940	int ret;
1941
 
 
 
 
 
 
 
1942	/* Stop the commit early if ->aborted is set */
1943	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1944		ret = cur_trans->aborted;
1945		btrfs_end_transaction(trans);
1946		return ret;
1947	}
1948
1949	/* make a pass through all the delayed refs we have so far
1950	 * any runnings procs may add more while we are here
1951	 */
1952	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1953	if (ret) {
1954		btrfs_end_transaction(trans);
1955		return ret;
1956	}
1957
1958	btrfs_trans_release_metadata(trans, fs_info);
1959	trans->block_rsv = NULL;
 
 
 
 
1960
1961	cur_trans = trans->transaction;
1962
1963	/*
1964	 * set the flushing flag so procs in this transaction have to
1965	 * start sending their work down.
1966	 */
1967	cur_trans->delayed_refs.flushing = 1;
1968	smp_wmb();
1969
1970	if (!list_empty(&trans->new_bgs))
1971		btrfs_create_pending_block_groups(trans, fs_info);
1972
1973	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1974	if (ret) {
1975		btrfs_end_transaction(trans);
1976		return ret;
1977	}
1978
1979	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1980		int run_it = 0;
1981
1982		/* this mutex is also taken before trying to set
1983		 * block groups readonly.  We need to make sure
1984		 * that nobody has set a block group readonly
1985		 * after a extents from that block group have been
1986		 * allocated for cache files.  btrfs_set_block_group_ro
1987		 * will wait for the transaction to commit if it
1988		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1989		 *
1990		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1991		 * only one process starts all the block group IO.  It wouldn't
1992		 * hurt to have more than one go through, but there's no
1993		 * real advantage to it either.
1994		 */
1995		mutex_lock(&fs_info->ro_block_group_mutex);
1996		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1997				      &cur_trans->flags))
1998			run_it = 1;
1999		mutex_unlock(&fs_info->ro_block_group_mutex);
2000
2001		if (run_it)
2002			ret = btrfs_start_dirty_block_groups(trans, fs_info);
2003	}
2004	if (ret) {
2005		btrfs_end_transaction(trans);
2006		return ret;
2007	}
2008
2009	spin_lock(&fs_info->trans_lock);
2010	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2011		spin_unlock(&fs_info->trans_lock);
2012		atomic_inc(&cur_trans->use_count);
2013		ret = btrfs_end_transaction(trans);
2014
2015		wait_for_commit(cur_trans);
2016
2017		if (unlikely(cur_trans->aborted))
2018			ret = cur_trans->aborted;
2019
2020		btrfs_put_transaction(cur_trans);
2021
2022		return ret;
2023	}
2024
2025	cur_trans->state = TRANS_STATE_COMMIT_START;
2026	wake_up(&fs_info->transaction_blocked_wait);
2027
2028	if (cur_trans->list.prev != &fs_info->trans_list) {
2029		prev_trans = list_entry(cur_trans->list.prev,
2030					struct btrfs_transaction, list);
2031		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2032			atomic_inc(&prev_trans->use_count);
2033			spin_unlock(&fs_info->trans_lock);
2034
2035			wait_for_commit(prev_trans);
2036			ret = prev_trans->aborted;
2037
2038			btrfs_put_transaction(prev_trans);
2039			if (ret)
2040				goto cleanup_transaction;
2041		} else {
2042			spin_unlock(&fs_info->trans_lock);
2043		}
2044	} else {
2045		spin_unlock(&fs_info->trans_lock);
2046	}
2047
2048	extwriter_counter_dec(cur_trans, trans->type);
2049
2050	ret = btrfs_start_delalloc_flush(fs_info);
2051	if (ret)
2052		goto cleanup_transaction;
2053
2054	ret = btrfs_run_delayed_items(trans, fs_info);
2055	if (ret)
2056		goto cleanup_transaction;
2057
2058	wait_event(cur_trans->writer_wait,
2059		   extwriter_counter_read(cur_trans) == 0);
2060
2061	/* some pending stuffs might be added after the previous flush. */
2062	ret = btrfs_run_delayed_items(trans, fs_info);
2063	if (ret)
2064		goto cleanup_transaction;
2065
2066	btrfs_wait_delalloc_flush(fs_info);
2067
2068	btrfs_wait_pending_ordered(cur_trans);
2069
2070	btrfs_scrub_pause(fs_info);
2071	/*
2072	 * Ok now we need to make sure to block out any other joins while we
2073	 * commit the transaction.  We could have started a join before setting
2074	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2075	 */
2076	spin_lock(&fs_info->trans_lock);
2077	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2078	spin_unlock(&fs_info->trans_lock);
2079	wait_event(cur_trans->writer_wait,
2080		   atomic_read(&cur_trans->num_writers) == 1);
2081
2082	/* ->aborted might be set after the previous check, so check it */
2083	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2084		ret = cur_trans->aborted;
2085		goto scrub_continue;
2086	}
2087	/*
2088	 * the reloc mutex makes sure that we stop
2089	 * the balancing code from coming in and moving
2090	 * extents around in the middle of the commit
2091	 */
2092	mutex_lock(&fs_info->reloc_mutex);
2093
2094	/*
2095	 * We needn't worry about the delayed items because we will
2096	 * deal with them in create_pending_snapshot(), which is the
2097	 * core function of the snapshot creation.
2098	 */
2099	ret = create_pending_snapshots(trans, fs_info);
2100	if (ret) {
2101		mutex_unlock(&fs_info->reloc_mutex);
2102		goto scrub_continue;
2103	}
2104
2105	/*
2106	 * We insert the dir indexes of the snapshots and update the inode
2107	 * of the snapshots' parents after the snapshot creation, so there
2108	 * are some delayed items which are not dealt with. Now deal with
2109	 * them.
2110	 *
2111	 * We needn't worry that this operation will corrupt the snapshots,
2112	 * because all the tree which are snapshoted will be forced to COW
2113	 * the nodes and leaves.
2114	 */
2115	ret = btrfs_run_delayed_items(trans, fs_info);
2116	if (ret) {
2117		mutex_unlock(&fs_info->reloc_mutex);
2118		goto scrub_continue;
2119	}
2120
2121	ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2122	if (ret) {
2123		mutex_unlock(&fs_info->reloc_mutex);
2124		goto scrub_continue;
2125	}
2126
2127	/* Reocrd old roots for later qgroup accounting */
2128	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2129	if (ret) {
2130		mutex_unlock(&fs_info->reloc_mutex);
2131		goto scrub_continue;
2132	}
2133
2134	/*
2135	 * make sure none of the code above managed to slip in a
2136	 * delayed item
2137	 */
2138	btrfs_assert_delayed_root_empty(fs_info);
2139
2140	WARN_ON(cur_trans != trans->transaction);
2141
2142	/* btrfs_commit_tree_roots is responsible for getting the
2143	 * various roots consistent with each other.  Every pointer
2144	 * in the tree of tree roots has to point to the most up to date
2145	 * root for every subvolume and other tree.  So, we have to keep
2146	 * the tree logging code from jumping in and changing any
2147	 * of the trees.
2148	 *
2149	 * At this point in the commit, there can't be any tree-log
2150	 * writers, but a little lower down we drop the trans mutex
2151	 * and let new people in.  By holding the tree_log_mutex
2152	 * from now until after the super is written, we avoid races
2153	 * with the tree-log code.
2154	 */
2155	mutex_lock(&fs_info->tree_log_mutex);
2156
2157	ret = commit_fs_roots(trans, fs_info);
2158	if (ret) {
2159		mutex_unlock(&fs_info->tree_log_mutex);
2160		mutex_unlock(&fs_info->reloc_mutex);
2161		goto scrub_continue;
2162	}
2163
2164	/*
2165	 * Since the transaction is done, we can apply the pending changes
2166	 * before the next transaction.
2167	 */
2168	btrfs_apply_pending_changes(fs_info);
 
 
 
2169
2170	/* commit_fs_roots gets rid of all the tree log roots, it is now
2171	 * safe to free the root of tree log roots
2172	 */
2173	btrfs_free_log_root_tree(trans, fs_info);
2174
2175	/*
2176	 * Since fs roots are all committed, we can get a quite accurate
2177	 * new_roots. So let's do quota accounting.
2178	 */
2179	ret = btrfs_qgroup_account_extents(trans, fs_info);
2180	if (ret < 0) {
2181		mutex_unlock(&fs_info->tree_log_mutex);
2182		mutex_unlock(&fs_info->reloc_mutex);
2183		goto scrub_continue;
2184	}
2185
2186	ret = commit_cowonly_roots(trans, fs_info);
2187	if (ret) {
2188		mutex_unlock(&fs_info->tree_log_mutex);
2189		mutex_unlock(&fs_info->reloc_mutex);
2190		goto scrub_continue;
2191	}
2192
2193	/*
2194	 * The tasks which save the space cache and inode cache may also
2195	 * update ->aborted, check it.
2196	 */
2197	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2198		ret = cur_trans->aborted;
2199		mutex_unlock(&fs_info->tree_log_mutex);
2200		mutex_unlock(&fs_info->reloc_mutex);
2201		goto scrub_continue;
2202	}
2203
2204	btrfs_prepare_extent_commit(trans, fs_info);
2205
2206	cur_trans = fs_info->running_transaction;
2207
2208	btrfs_set_root_node(&fs_info->tree_root->root_item,
2209			    fs_info->tree_root->node);
2210	list_add_tail(&fs_info->tree_root->dirty_list,
2211		      &cur_trans->switch_commits);
2212
2213	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2214			    fs_info->chunk_root->node);
2215	list_add_tail(&fs_info->chunk_root->dirty_list,
2216		      &cur_trans->switch_commits);
2217
2218	switch_commit_roots(cur_trans, fs_info);
2219
2220	assert_qgroups_uptodate(trans);
2221	ASSERT(list_empty(&cur_trans->dirty_bgs));
2222	ASSERT(list_empty(&cur_trans->io_bgs));
2223	update_super_roots(fs_info);
2224
2225	btrfs_set_super_log_root(fs_info->super_copy, 0);
2226	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2227	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2228	       sizeof(*fs_info->super_copy));
2229
2230	btrfs_update_commit_device_size(fs_info);
2231	btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2232
2233	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2234	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
 
 
2235
2236	btrfs_trans_release_chunk_metadata(trans);
2237
2238	spin_lock(&fs_info->trans_lock);
2239	cur_trans->state = TRANS_STATE_UNBLOCKED;
2240	fs_info->running_transaction = NULL;
2241	spin_unlock(&fs_info->trans_lock);
2242	mutex_unlock(&fs_info->reloc_mutex);
2243
2244	wake_up(&fs_info->transaction_wait);
2245
2246	ret = btrfs_write_and_wait_transaction(trans, fs_info);
2247	if (ret) {
2248		btrfs_handle_fs_error(fs_info, ret,
2249				      "Error while writing out transaction");
2250		mutex_unlock(&fs_info->tree_log_mutex);
2251		goto scrub_continue;
2252	}
2253
2254	ret = write_ctree_super(trans, fs_info, 0);
2255	if (ret) {
2256		mutex_unlock(&fs_info->tree_log_mutex);
2257		goto scrub_continue;
2258	}
2259
2260	/*
2261	 * the super is written, we can safely allow the tree-loggers
2262	 * to go about their business
2263	 */
2264	mutex_unlock(&fs_info->tree_log_mutex);
2265
2266	btrfs_finish_extent_commit(trans, fs_info);
2267
2268	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2269		btrfs_clear_space_info_full(fs_info);
2270
2271	fs_info->last_trans_committed = cur_trans->transid;
2272	/*
2273	 * We needn't acquire the lock here because there is no other task
2274	 * which can change it.
2275	 */
2276	cur_trans->state = TRANS_STATE_COMPLETED;
2277	wake_up(&cur_trans->commit_wait);
2278
2279	spin_lock(&fs_info->trans_lock);
2280	list_del_init(&cur_trans->list);
2281	spin_unlock(&fs_info->trans_lock);
2282
2283	btrfs_put_transaction(cur_trans);
2284	btrfs_put_transaction(cur_trans);
2285
2286	if (trans->type & __TRANS_FREEZABLE)
2287		sb_end_intwrite(fs_info->sb);
2288
2289	trace_btrfs_transaction_commit(trans->root);
2290
2291	btrfs_scrub_continue(fs_info);
2292
2293	if (current->journal_info == trans)
2294		current->journal_info = NULL;
2295
2296	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2297
2298	/*
2299	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2300	 * it'll result in deadlock about SB_FREEZE_FS.
2301	 */
2302	if (current != fs_info->transaction_kthread &&
2303	    current != fs_info->cleaner_kthread && !fs_info->fs_frozen)
2304		btrfs_run_delayed_iputs(fs_info);
2305
2306	return ret;
2307
2308scrub_continue:
2309	btrfs_scrub_continue(fs_info);
2310cleanup_transaction:
2311	btrfs_trans_release_metadata(trans, fs_info);
2312	btrfs_trans_release_chunk_metadata(trans);
2313	trans->block_rsv = NULL;
2314	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
 
 
 
 
2315	if (current->journal_info == trans)
2316		current->journal_info = NULL;
2317	cleanup_transaction(trans, trans->root, ret);
2318
2319	return ret;
2320}
2321
2322/*
2323 * return < 0 if error
2324 * 0 if there are no more dead_roots at the time of call
2325 * 1 there are more to be processed, call me again
2326 *
2327 * The return value indicates there are certainly more snapshots to delete, but
2328 * if there comes a new one during processing, it may return 0. We don't mind,
2329 * because btrfs_commit_super will poke cleaner thread and it will process it a
2330 * few seconds later.
2331 */
2332int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2333{
2334	int ret;
2335	struct btrfs_fs_info *fs_info = root->fs_info;
2336
2337	spin_lock(&fs_info->trans_lock);
2338	if (list_empty(&fs_info->dead_roots)) {
2339		spin_unlock(&fs_info->trans_lock);
2340		return 0;
2341	}
2342	root = list_first_entry(&fs_info->dead_roots,
2343			struct btrfs_root, root_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
2344	list_del_init(&root->root_list);
2345	spin_unlock(&fs_info->trans_lock);
2346
2347	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2348
2349	btrfs_kill_all_delayed_nodes(root);
2350
2351	if (btrfs_header_backref_rev(root->node) <
2352			BTRFS_MIXED_BACKREF_REV)
2353		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2354	else
2355		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2356
 
 
 
2357	return (ret < 0) ? 0 : 1;
2358}
2359
2360void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2361{
2362	unsigned long prev;
2363	unsigned long bit;
2364
2365	prev = xchg(&fs_info->pending_changes, 0);
2366	if (!prev)
2367		return;
2368
2369	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2370	if (prev & bit)
2371		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2372	prev &= ~bit;
2373
2374	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2375	if (prev & bit)
2376		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2377	prev &= ~bit;
2378
2379	bit = 1 << BTRFS_PENDING_COMMIT;
2380	if (prev & bit)
2381		btrfs_debug(fs_info, "pending commit done");
2382	prev &= ~bit;
2383
2384	if (prev)
2385		btrfs_warn(fs_info,
2386			"unknown pending changes left 0x%lx, ignoring", prev);
2387}
v3.15
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include "ctree.h"
  27#include "disk-io.h"
  28#include "transaction.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "inode-map.h"
  32#include "volumes.h"
  33#include "dev-replace.h"
 
  34
  35#define BTRFS_ROOT_TRANS_TAG 0
  36
  37static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
  38	[TRANS_STATE_RUNNING]		= 0U,
  39	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
  40					   __TRANS_START),
  41	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
  42					   __TRANS_START |
  43					   __TRANS_ATTACH),
  44	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
  45					   __TRANS_START |
  46					   __TRANS_ATTACH |
  47					   __TRANS_JOIN),
  48	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
  49					   __TRANS_START |
  50					   __TRANS_ATTACH |
  51					   __TRANS_JOIN |
  52					   __TRANS_JOIN_NOLOCK),
  53	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
  54					   __TRANS_START |
  55					   __TRANS_ATTACH |
  56					   __TRANS_JOIN |
  57					   __TRANS_JOIN_NOLOCK),
  58};
  59
  60void btrfs_put_transaction(struct btrfs_transaction *transaction)
  61{
  62	WARN_ON(atomic_read(&transaction->use_count) == 0);
  63	if (atomic_dec_and_test(&transaction->use_count)) {
  64		BUG_ON(!list_empty(&transaction->list));
  65		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
 
 
 
 
  66		while (!list_empty(&transaction->pending_chunks)) {
  67			struct extent_map *em;
  68
  69			em = list_first_entry(&transaction->pending_chunks,
  70					      struct extent_map, list);
  71			list_del_init(&em->list);
  72			free_extent_map(em);
  73		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74		kmem_cache_free(btrfs_transaction_cachep, transaction);
  75	}
  76}
  77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78static noinline void switch_commit_roots(struct btrfs_transaction *trans,
  79					 struct btrfs_fs_info *fs_info)
  80{
  81	struct btrfs_root *root, *tmp;
  82
  83	down_write(&fs_info->commit_root_sem);
  84	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
  85				 dirty_list) {
  86		list_del_init(&root->dirty_list);
  87		free_extent_buffer(root->commit_root);
  88		root->commit_root = btrfs_root_node(root);
  89		if (is_fstree(root->objectid))
  90			btrfs_unpin_free_ino(root);
 
  91	}
 
 
 
 
 
 
 
 
 
 
 
 
  92	up_write(&fs_info->commit_root_sem);
  93}
  94
  95static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
  96					 unsigned int type)
  97{
  98	if (type & TRANS_EXTWRITERS)
  99		atomic_inc(&trans->num_extwriters);
 100}
 101
 102static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 103					 unsigned int type)
 104{
 105	if (type & TRANS_EXTWRITERS)
 106		atomic_dec(&trans->num_extwriters);
 107}
 108
 109static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 110					  unsigned int type)
 111{
 112	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 113}
 114
 115static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 116{
 117	return atomic_read(&trans->num_extwriters);
 118}
 119
 120/*
 121 * either allocate a new transaction or hop into the existing one
 122 */
 123static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
 
 124{
 125	struct btrfs_transaction *cur_trans;
 126	struct btrfs_fs_info *fs_info = root->fs_info;
 127
 128	spin_lock(&fs_info->trans_lock);
 129loop:
 130	/* The file system has been taken offline. No new transactions. */
 131	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 132		spin_unlock(&fs_info->trans_lock);
 133		return -EROFS;
 134	}
 135
 136	cur_trans = fs_info->running_transaction;
 137	if (cur_trans) {
 138		if (cur_trans->aborted) {
 139			spin_unlock(&fs_info->trans_lock);
 140			return cur_trans->aborted;
 141		}
 142		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 143			spin_unlock(&fs_info->trans_lock);
 144			return -EBUSY;
 145		}
 146		atomic_inc(&cur_trans->use_count);
 147		atomic_inc(&cur_trans->num_writers);
 148		extwriter_counter_inc(cur_trans, type);
 149		spin_unlock(&fs_info->trans_lock);
 150		return 0;
 151	}
 152	spin_unlock(&fs_info->trans_lock);
 153
 154	/*
 155	 * If we are ATTACH, we just want to catch the current transaction,
 156	 * and commit it. If there is no transaction, just return ENOENT.
 157	 */
 158	if (type == TRANS_ATTACH)
 159		return -ENOENT;
 160
 161	/*
 162	 * JOIN_NOLOCK only happens during the transaction commit, so
 163	 * it is impossible that ->running_transaction is NULL
 164	 */
 165	BUG_ON(type == TRANS_JOIN_NOLOCK);
 166
 167	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
 168	if (!cur_trans)
 169		return -ENOMEM;
 170
 171	spin_lock(&fs_info->trans_lock);
 172	if (fs_info->running_transaction) {
 173		/*
 174		 * someone started a transaction after we unlocked.  Make sure
 175		 * to redo the checks above
 176		 */
 177		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 178		goto loop;
 179	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 180		spin_unlock(&fs_info->trans_lock);
 181		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 182		return -EROFS;
 183	}
 184
 
 185	atomic_set(&cur_trans->num_writers, 1);
 186	extwriter_counter_init(cur_trans, type);
 187	init_waitqueue_head(&cur_trans->writer_wait);
 188	init_waitqueue_head(&cur_trans->commit_wait);
 
 189	cur_trans->state = TRANS_STATE_RUNNING;
 190	/*
 191	 * One for this trans handle, one so it will live on until we
 192	 * commit the transaction.
 193	 */
 194	atomic_set(&cur_trans->use_count, 2);
 
 
 195	cur_trans->start_time = get_seconds();
 196
 
 
 197	cur_trans->delayed_refs.href_root = RB_ROOT;
 
 198	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 199	cur_trans->delayed_refs.num_heads_ready = 0;
 200	cur_trans->delayed_refs.num_heads = 0;
 201	cur_trans->delayed_refs.flushing = 0;
 202	cur_trans->delayed_refs.run_delayed_start = 0;
 203
 204	/*
 205	 * although the tree mod log is per file system and not per transaction,
 206	 * the log must never go across transaction boundaries.
 207	 */
 208	smp_mb();
 209	if (!list_empty(&fs_info->tree_mod_seq_list))
 210		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
 211			"creating a fresh transaction\n");
 212	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 213		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
 214			"creating a fresh transaction\n");
 215	atomic64_set(&fs_info->tree_mod_seq, 0);
 216
 217	spin_lock_init(&cur_trans->delayed_refs.lock);
 218
 219	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 220	INIT_LIST_HEAD(&cur_trans->ordered_operations);
 221	INIT_LIST_HEAD(&cur_trans->pending_chunks);
 222	INIT_LIST_HEAD(&cur_trans->switch_commits);
 
 
 
 
 
 
 
 
 223	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 224	extent_io_tree_init(&cur_trans->dirty_pages,
 225			     fs_info->btree_inode->i_mapping);
 226	fs_info->generation++;
 227	cur_trans->transid = fs_info->generation;
 228	fs_info->running_transaction = cur_trans;
 229	cur_trans->aborted = 0;
 230	spin_unlock(&fs_info->trans_lock);
 231
 232	return 0;
 233}
 234
 235/*
 236 * this does all the record keeping required to make sure that a reference
 237 * counted root is properly recorded in a given transaction.  This is required
 238 * to make sure the old root from before we joined the transaction is deleted
 239 * when the transaction commits
 240 */
 241static int record_root_in_trans(struct btrfs_trans_handle *trans,
 242			       struct btrfs_root *root)
 
 243{
 244	if (root->ref_cows && root->last_trans < trans->transid) {
 245		WARN_ON(root == root->fs_info->extent_root);
 
 
 
 246		WARN_ON(root->commit_root != root->node);
 247
 248		/*
 249		 * see below for in_trans_setup usage rules
 250		 * we have the reloc mutex held now, so there
 251		 * is only one writer in this function
 252		 */
 253		root->in_trans_setup = 1;
 254
 255		/* make sure readers find in_trans_setup before
 256		 * they find our root->last_trans update
 257		 */
 258		smp_wmb();
 259
 260		spin_lock(&root->fs_info->fs_roots_radix_lock);
 261		if (root->last_trans == trans->transid) {
 262			spin_unlock(&root->fs_info->fs_roots_radix_lock);
 263			return 0;
 264		}
 265		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
 266			   (unsigned long)root->root_key.objectid,
 267			   BTRFS_ROOT_TRANS_TAG);
 268		spin_unlock(&root->fs_info->fs_roots_radix_lock);
 269		root->last_trans = trans->transid;
 270
 271		/* this is pretty tricky.  We don't want to
 272		 * take the relocation lock in btrfs_record_root_in_trans
 273		 * unless we're really doing the first setup for this root in
 274		 * this transaction.
 275		 *
 276		 * Normally we'd use root->last_trans as a flag to decide
 277		 * if we want to take the expensive mutex.
 278		 *
 279		 * But, we have to set root->last_trans before we
 280		 * init the relocation root, otherwise, we trip over warnings
 281		 * in ctree.c.  The solution used here is to flag ourselves
 282		 * with root->in_trans_setup.  When this is 1, we're still
 283		 * fixing up the reloc trees and everyone must wait.
 284		 *
 285		 * When this is zero, they can trust root->last_trans and fly
 286		 * through btrfs_record_root_in_trans without having to take the
 287		 * lock.  smp_wmb() makes sure that all the writes above are
 288		 * done before we pop in the zero below
 289		 */
 290		btrfs_init_reloc_root(trans, root);
 291		smp_wmb();
 292		root->in_trans_setup = 0;
 293	}
 294	return 0;
 295}
 296
 297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 299			       struct btrfs_root *root)
 300{
 301	if (!root->ref_cows)
 
 
 302		return 0;
 303
 304	/*
 305	 * see record_root_in_trans for comments about in_trans_setup usage
 306	 * and barriers
 307	 */
 308	smp_rmb();
 309	if (root->last_trans == trans->transid &&
 310	    !root->in_trans_setup)
 311		return 0;
 312
 313	mutex_lock(&root->fs_info->reloc_mutex);
 314	record_root_in_trans(trans, root);
 315	mutex_unlock(&root->fs_info->reloc_mutex);
 316
 317	return 0;
 318}
 319
 320static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 321{
 322	return (trans->state >= TRANS_STATE_BLOCKED &&
 323		trans->state < TRANS_STATE_UNBLOCKED &&
 324		!trans->aborted);
 325}
 326
 327/* wait for commit against the current transaction to become unblocked
 328 * when this is done, it is safe to start a new transaction, but the current
 329 * transaction might not be fully on disk.
 330 */
 331static void wait_current_trans(struct btrfs_root *root)
 332{
 333	struct btrfs_transaction *cur_trans;
 334
 335	spin_lock(&root->fs_info->trans_lock);
 336	cur_trans = root->fs_info->running_transaction;
 337	if (cur_trans && is_transaction_blocked(cur_trans)) {
 338		atomic_inc(&cur_trans->use_count);
 339		spin_unlock(&root->fs_info->trans_lock);
 340
 341		wait_event(root->fs_info->transaction_wait,
 342			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 343			   cur_trans->aborted);
 344		btrfs_put_transaction(cur_trans);
 345	} else {
 346		spin_unlock(&root->fs_info->trans_lock);
 347	}
 348}
 349
 350static int may_wait_transaction(struct btrfs_root *root, int type)
 351{
 352	if (root->fs_info->log_root_recovering)
 353		return 0;
 354
 355	if (type == TRANS_USERSPACE)
 356		return 1;
 357
 358	if (type == TRANS_START &&
 359	    !atomic_read(&root->fs_info->open_ioctl_trans))
 360		return 1;
 361
 362	return 0;
 363}
 364
 365static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 366{
 367	if (!root->fs_info->reloc_ctl ||
 368	    !root->ref_cows ||
 
 
 369	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 370	    root->reloc_root)
 371		return false;
 372
 373	return true;
 374}
 375
 376static struct btrfs_trans_handle *
 377start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
 378		  enum btrfs_reserve_flush_enum flush)
 379{
 
 
 380	struct btrfs_trans_handle *h;
 381	struct btrfs_transaction *cur_trans;
 382	u64 num_bytes = 0;
 383	u64 qgroup_reserved = 0;
 384	bool reloc_reserved = false;
 385	int ret;
 386
 387	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
 
 
 
 388		return ERR_PTR(-EROFS);
 389
 390	if (current->journal_info &&
 391	    current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
 392		WARN_ON(type & TRANS_EXTWRITERS);
 393		h = current->journal_info;
 394		h->use_count++;
 395		WARN_ON(h->use_count > 2);
 396		h->orig_rsv = h->block_rsv;
 397		h->block_rsv = NULL;
 398		goto got_it;
 399	}
 400
 401	/*
 402	 * Do the reservation before we join the transaction so we can do all
 403	 * the appropriate flushing if need be.
 404	 */
 405	if (num_items > 0 && root != root->fs_info->chunk_root) {
 406		if (root->fs_info->quota_enabled &&
 407		    is_fstree(root->root_key.objectid)) {
 408			qgroup_reserved = num_items * root->leafsize;
 409			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
 410			if (ret)
 411				return ERR_PTR(ret);
 412		}
 413
 414		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
 415		/*
 416		 * Do the reservation for the relocation root creation
 417		 */
 418		if (unlikely(need_reserve_reloc_root(root))) {
 419			num_bytes += root->nodesize;
 420			reloc_reserved = true;
 421		}
 422
 423		ret = btrfs_block_rsv_add(root,
 424					  &root->fs_info->trans_block_rsv,
 425					  num_bytes, flush);
 426		if (ret)
 427			goto reserve_fail;
 428	}
 429again:
 430	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
 431	if (!h) {
 432		ret = -ENOMEM;
 433		goto alloc_fail;
 434	}
 435
 436	/*
 437	 * If we are JOIN_NOLOCK we're already committing a transaction and
 438	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 439	 * because we're already holding a ref.  We need this because we could
 440	 * have raced in and did an fsync() on a file which can kick a commit
 441	 * and then we deadlock with somebody doing a freeze.
 442	 *
 443	 * If we are ATTACH, it means we just want to catch the current
 444	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 445	 */
 446	if (type & __TRANS_FREEZABLE)
 447		sb_start_intwrite(root->fs_info->sb);
 448
 449	if (may_wait_transaction(root, type))
 450		wait_current_trans(root);
 451
 452	do {
 453		ret = join_transaction(root, type);
 454		if (ret == -EBUSY) {
 455			wait_current_trans(root);
 456			if (unlikely(type == TRANS_ATTACH))
 457				ret = -ENOENT;
 458		}
 459	} while (ret == -EBUSY);
 460
 461	if (ret < 0) {
 462		/* We must get the transaction if we are JOIN_NOLOCK. */
 463		BUG_ON(type == TRANS_JOIN_NOLOCK);
 464		goto join_fail;
 465	}
 466
 467	cur_trans = root->fs_info->running_transaction;
 468
 469	h->transid = cur_trans->transid;
 470	h->transaction = cur_trans;
 471	h->blocks_used = 0;
 472	h->bytes_reserved = 0;
 473	h->root = root;
 474	h->delayed_ref_updates = 0;
 475	h->use_count = 1;
 476	h->adding_csums = 0;
 477	h->block_rsv = NULL;
 478	h->orig_rsv = NULL;
 479	h->aborted = 0;
 480	h->qgroup_reserved = 0;
 481	h->delayed_ref_elem.seq = 0;
 482	h->type = type;
 483	h->allocating_chunk = false;
 484	h->reloc_reserved = false;
 485	h->sync = false;
 486	INIT_LIST_HEAD(&h->qgroup_ref_list);
 487	INIT_LIST_HEAD(&h->new_bgs);
 488
 489	smp_mb();
 490	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 491	    may_wait_transaction(root, type)) {
 492		btrfs_commit_transaction(h, root);
 
 493		goto again;
 494	}
 495
 496	if (num_bytes) {
 497		trace_btrfs_space_reservation(root->fs_info, "transaction",
 498					      h->transid, num_bytes, 1);
 499		h->block_rsv = &root->fs_info->trans_block_rsv;
 500		h->bytes_reserved = num_bytes;
 501		h->reloc_reserved = reloc_reserved;
 502	}
 503	h->qgroup_reserved = qgroup_reserved;
 504
 505got_it:
 506	btrfs_record_root_in_trans(h, root);
 507
 508	if (!current->journal_info && type != TRANS_USERSPACE)
 509		current->journal_info = h;
 510	return h;
 511
 512join_fail:
 513	if (type & __TRANS_FREEZABLE)
 514		sb_end_intwrite(root->fs_info->sb);
 515	kmem_cache_free(btrfs_trans_handle_cachep, h);
 516alloc_fail:
 517	if (num_bytes)
 518		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
 519					num_bytes);
 520reserve_fail:
 521	if (qgroup_reserved)
 522		btrfs_qgroup_free(root, qgroup_reserved);
 523	return ERR_PTR(ret);
 524}
 525
 526struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 527						   int num_items)
 528{
 529	return start_transaction(root, num_items, TRANS_START,
 530				 BTRFS_RESERVE_FLUSH_ALL);
 531}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533struct btrfs_trans_handle *btrfs_start_transaction_lflush(
 534					struct btrfs_root *root, int num_items)
 
 535{
 536	return start_transaction(root, num_items, TRANS_START,
 537				 BTRFS_RESERVE_FLUSH_LIMIT);
 538}
 539
 540struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 541{
 542	return start_transaction(root, 0, TRANS_JOIN, 0);
 
 543}
 544
 545struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 546{
 547	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
 
 548}
 549
 550struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 551{
 552	return start_transaction(root, 0, TRANS_USERSPACE, 0);
 
 553}
 554
 555/*
 556 * btrfs_attach_transaction() - catch the running transaction
 557 *
 558 * It is used when we want to commit the current the transaction, but
 559 * don't want to start a new one.
 560 *
 561 * Note: If this function return -ENOENT, it just means there is no
 562 * running transaction. But it is possible that the inactive transaction
 563 * is still in the memory, not fully on disk. If you hope there is no
 564 * inactive transaction in the fs when -ENOENT is returned, you should
 565 * invoke
 566 *     btrfs_attach_transaction_barrier()
 567 */
 568struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 569{
 570	return start_transaction(root, 0, TRANS_ATTACH, 0);
 
 571}
 572
 573/*
 574 * btrfs_attach_transaction_barrier() - catch the running transaction
 575 *
 576 * It is similar to the above function, the differentia is this one
 577 * will wait for all the inactive transactions until they fully
 578 * complete.
 579 */
 580struct btrfs_trans_handle *
 581btrfs_attach_transaction_barrier(struct btrfs_root *root)
 582{
 583	struct btrfs_trans_handle *trans;
 584
 585	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
 
 586	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
 587		btrfs_wait_for_commit(root, 0);
 588
 589	return trans;
 590}
 591
 592/* wait for a transaction commit to be fully complete */
 593static noinline void wait_for_commit(struct btrfs_root *root,
 594				    struct btrfs_transaction *commit)
 595{
 596	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 597}
 598
 599int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
 600{
 601	struct btrfs_transaction *cur_trans = NULL, *t;
 602	int ret = 0;
 603
 604	if (transid) {
 605		if (transid <= root->fs_info->last_trans_committed)
 606			goto out;
 607
 608		ret = -EINVAL;
 609		/* find specified transaction */
 610		spin_lock(&root->fs_info->trans_lock);
 611		list_for_each_entry(t, &root->fs_info->trans_list, list) {
 612			if (t->transid == transid) {
 613				cur_trans = t;
 614				atomic_inc(&cur_trans->use_count);
 615				ret = 0;
 616				break;
 617			}
 618			if (t->transid > transid) {
 619				ret = 0;
 620				break;
 621			}
 622		}
 623		spin_unlock(&root->fs_info->trans_lock);
 624		/* The specified transaction doesn't exist */
 625		if (!cur_trans)
 
 
 
 
 
 
 626			goto out;
 
 627	} else {
 628		/* find newest transaction that is committing | committed */
 629		spin_lock(&root->fs_info->trans_lock);
 630		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
 631					    list) {
 632			if (t->state >= TRANS_STATE_COMMIT_START) {
 633				if (t->state == TRANS_STATE_COMPLETED)
 634					break;
 635				cur_trans = t;
 636				atomic_inc(&cur_trans->use_count);
 637				break;
 638			}
 639		}
 640		spin_unlock(&root->fs_info->trans_lock);
 641		if (!cur_trans)
 642			goto out;  /* nothing committing|committed */
 643	}
 644
 645	wait_for_commit(root, cur_trans);
 646	btrfs_put_transaction(cur_trans);
 647out:
 648	return ret;
 649}
 650
 651void btrfs_throttle(struct btrfs_root *root)
 652{
 653	if (!atomic_read(&root->fs_info->open_ioctl_trans))
 654		wait_current_trans(root);
 655}
 656
 657static int should_end_transaction(struct btrfs_trans_handle *trans,
 658				  struct btrfs_root *root)
 659{
 660	if (root->fs_info->global_block_rsv.space_info->full &&
 661	    btrfs_check_space_for_delayed_refs(trans, root))
 
 
 662		return 1;
 663
 664	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
 665}
 666
 667int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
 668				 struct btrfs_root *root)
 669{
 670	struct btrfs_transaction *cur_trans = trans->transaction;
 
 671	int updates;
 672	int err;
 673
 674	smp_mb();
 675	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 676	    cur_trans->delayed_refs.flushing)
 677		return 1;
 678
 679	updates = trans->delayed_ref_updates;
 680	trans->delayed_ref_updates = 0;
 681	if (updates) {
 682		err = btrfs_run_delayed_refs(trans, root, updates);
 683		if (err) /* Error code will also eval true */
 684			return err;
 685	}
 686
 687	return should_end_transaction(trans, root);
 688}
 689
 690static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 691			  struct btrfs_root *root, int throttle)
 692{
 
 693	struct btrfs_transaction *cur_trans = trans->transaction;
 694	struct btrfs_fs_info *info = root->fs_info;
 695	unsigned long cur = trans->delayed_ref_updates;
 696	int lock = (trans->type != TRANS_JOIN_NOLOCK);
 697	int err = 0;
 
 698
 699	if (trans->use_count > 1) {
 700		trans->use_count--;
 701		trans->block_rsv = trans->orig_rsv;
 702		return 0;
 703	}
 704
 705	/*
 706	 * do the qgroup accounting as early as possible
 707	 */
 708	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
 709
 710	btrfs_trans_release_metadata(trans, root);
 711	trans->block_rsv = NULL;
 712
 713	if (trans->qgroup_reserved) {
 714		/*
 715		 * the same root has to be passed here between start_transaction
 716		 * and end_transaction. Subvolume quota depends on this.
 717		 */
 718		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
 719		trans->qgroup_reserved = 0;
 720	}
 721
 722	if (!list_empty(&trans->new_bgs))
 723		btrfs_create_pending_block_groups(trans, root);
 724
 725	trans->delayed_ref_updates = 0;
 726	if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
 
 
 727		cur = max_t(unsigned long, cur, 32);
 728		trans->delayed_ref_updates = 0;
 729		btrfs_run_delayed_refs(trans, root, cur);
 
 
 
 
 
 
 730	}
 731
 732	btrfs_trans_release_metadata(trans, root);
 733	trans->block_rsv = NULL;
 734
 735	if (!list_empty(&trans->new_bgs))
 736		btrfs_create_pending_block_groups(trans, root);
 
 
 737
 738	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
 739	    should_end_transaction(trans, root) &&
 740	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
 741		spin_lock(&info->trans_lock);
 742		if (cur_trans->state == TRANS_STATE_RUNNING)
 743			cur_trans->state = TRANS_STATE_BLOCKED;
 744		spin_unlock(&info->trans_lock);
 745	}
 746
 747	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 748		if (throttle)
 749			return btrfs_commit_transaction(trans, root);
 750		else
 751			wake_up_process(info->transaction_kthread);
 752	}
 753
 754	if (trans->type & __TRANS_FREEZABLE)
 755		sb_end_intwrite(root->fs_info->sb);
 756
 757	WARN_ON(cur_trans != info->running_transaction);
 758	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 759	atomic_dec(&cur_trans->num_writers);
 760	extwriter_counter_dec(cur_trans, trans->type);
 761
 
 
 
 762	smp_mb();
 763	if (waitqueue_active(&cur_trans->writer_wait))
 764		wake_up(&cur_trans->writer_wait);
 765	btrfs_put_transaction(cur_trans);
 766
 767	if (current->journal_info == trans)
 768		current->journal_info = NULL;
 769
 770	if (throttle)
 771		btrfs_run_delayed_iputs(root);
 772
 773	if (trans->aborted ||
 774	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
 775		wake_up_process(info->transaction_kthread);
 776		err = -EIO;
 777	}
 778	assert_qgroups_uptodate(trans);
 779
 780	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 
 
 
 
 781	return err;
 782}
 783
 784int btrfs_end_transaction(struct btrfs_trans_handle *trans,
 785			  struct btrfs_root *root)
 786{
 787	return __btrfs_end_transaction(trans, root, 0);
 788}
 789
 790int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
 791				   struct btrfs_root *root)
 792{
 793	return __btrfs_end_transaction(trans, root, 1);
 794}
 795
 796/*
 797 * when btree blocks are allocated, they have some corresponding bits set for
 798 * them in one of two extent_io trees.  This is used to make sure all of
 799 * those extents are sent to disk but does not wait on them
 800 */
 801int btrfs_write_marked_extents(struct btrfs_root *root,
 802			       struct extent_io_tree *dirty_pages, int mark)
 803{
 804	int err = 0;
 805	int werr = 0;
 806	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 807	struct extent_state *cached_state = NULL;
 808	u64 start = 0;
 809	u64 end;
 810
 811	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 812				      mark, &cached_state)) {
 813		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 814				   mark, &cached_state, GFP_NOFS);
 815		cached_state = NULL;
 816		err = filemap_fdatawrite_range(mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817		if (err)
 818			werr = err;
 
 
 
 
 819		cond_resched();
 820		start = end + 1;
 821	}
 822	if (err)
 823		werr = err;
 824	return werr;
 825}
 826
 827/*
 828 * when btree blocks are allocated, they have some corresponding bits set for
 829 * them in one of two extent_io trees.  This is used to make sure all of
 830 * those extents are on disk for transaction or log commit.  We wait
 831 * on all the pages and clear them from the dirty pages state tree
 832 */
 833int btrfs_wait_marked_extents(struct btrfs_root *root,
 834			      struct extent_io_tree *dirty_pages, int mark)
 835{
 836	int err = 0;
 837	int werr = 0;
 838	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 839	struct extent_state *cached_state = NULL;
 840	u64 start = 0;
 841	u64 end;
 842
 843	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 844				      EXTENT_NEED_WAIT, &cached_state)) {
 845		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 846				 0, 0, &cached_state, GFP_NOFS);
 847		err = filemap_fdatawait_range(mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 848		if (err)
 849			werr = err;
 
 
 850		cond_resched();
 851		start = end + 1;
 852	}
 853	if (err)
 854		werr = err;
 855	return werr;
 856}
 857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858/*
 859 * when btree blocks are allocated, they have some corresponding bits set for
 860 * them in one of two extent_io trees.  This is used to make sure all of
 861 * those extents are on disk for transaction or log commit
 862 */
 863static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
 864				struct extent_io_tree *dirty_pages, int mark)
 865{
 866	int ret;
 867	int ret2;
 868	struct blk_plug plug;
 869
 870	blk_start_plug(&plug);
 871	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
 872	blk_finish_plug(&plug);
 873	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
 874
 875	if (ret)
 876		return ret;
 877	if (ret2)
 878		return ret2;
 879	return 0;
 880}
 881
 882int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
 883				     struct btrfs_root *root)
 884{
 885	if (!trans || !trans->transaction) {
 886		struct inode *btree_inode;
 887		btree_inode = root->fs_info->btree_inode;
 888		return filemap_write_and_wait(btree_inode->i_mapping);
 889	}
 890	return btrfs_write_and_wait_marked_extents(root,
 891					   &trans->transaction->dirty_pages,
 892					   EXTENT_DIRTY);
 
 
 
 893}
 894
 895/*
 896 * this is used to update the root pointer in the tree of tree roots.
 897 *
 898 * But, in the case of the extent allocation tree, updating the root
 899 * pointer may allocate blocks which may change the root of the extent
 900 * allocation tree.
 901 *
 902 * So, this loops and repeats and makes sure the cowonly root didn't
 903 * change while the root pointer was being updated in the metadata.
 904 */
 905static int update_cowonly_root(struct btrfs_trans_handle *trans,
 906			       struct btrfs_root *root)
 907{
 908	int ret;
 909	u64 old_root_bytenr;
 910	u64 old_root_used;
 911	struct btrfs_root *tree_root = root->fs_info->tree_root;
 
 912
 913	old_root_used = btrfs_root_used(&root->root_item);
 914	btrfs_write_dirty_block_groups(trans, root);
 915
 916	while (1) {
 917		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
 918		if (old_root_bytenr == root->node->start &&
 919		    old_root_used == btrfs_root_used(&root->root_item))
 920			break;
 921
 922		btrfs_set_root_node(&root->root_item, root->node);
 923		ret = btrfs_update_root(trans, tree_root,
 924					&root->root_key,
 925					&root->root_item);
 926		if (ret)
 927			return ret;
 928
 929		old_root_used = btrfs_root_used(&root->root_item);
 930		ret = btrfs_write_dirty_block_groups(trans, root);
 931		if (ret)
 932			return ret;
 933	}
 934
 935	return 0;
 936}
 937
 938/*
 939 * update all the cowonly tree roots on disk
 940 *
 941 * The error handling in this function may not be obvious. Any of the
 942 * failures will cause the file system to go offline. We still need
 943 * to clean up the delayed refs.
 944 */
 945static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
 946					 struct btrfs_root *root)
 947{
 948	struct btrfs_fs_info *fs_info = root->fs_info;
 
 949	struct list_head *next;
 950	struct extent_buffer *eb;
 951	int ret;
 952
 953	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 954	if (ret)
 955		return ret;
 956
 957	eb = btrfs_lock_root_node(fs_info->tree_root);
 958	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
 959			      0, &eb);
 960	btrfs_tree_unlock(eb);
 961	free_extent_buffer(eb);
 962
 963	if (ret)
 964		return ret;
 965
 966	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 967	if (ret)
 968		return ret;
 969
 970	ret = btrfs_run_dev_stats(trans, root->fs_info);
 971	if (ret)
 972		return ret;
 973	ret = btrfs_run_dev_replace(trans, root->fs_info);
 974	if (ret)
 975		return ret;
 976	ret = btrfs_run_qgroups(trans, root->fs_info);
 
 
 
 
 977	if (ret)
 978		return ret;
 979
 980	/* run_qgroups might have added some more refs */
 981	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 982	if (ret)
 983		return ret;
 984
 985	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
 
 986		next = fs_info->dirty_cowonly_roots.next;
 987		list_del_init(next);
 988		root = list_entry(next, struct btrfs_root, dirty_list);
 
 989
 990		if (root != fs_info->extent_root)
 991			list_add_tail(&root->dirty_list,
 992				      &trans->transaction->switch_commits);
 993		ret = update_cowonly_root(trans, root);
 994		if (ret)
 995			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 996	}
 997
 
 
 
 998	list_add_tail(&fs_info->extent_root->dirty_list,
 999		      &trans->transaction->switch_commits);
1000	btrfs_after_dev_replace_commit(fs_info);
1001
1002	return 0;
1003}
1004
1005/*
1006 * dead roots are old snapshots that need to be deleted.  This allocates
1007 * a dirty root struct and adds it into the list of dead roots that need to
1008 * be deleted
1009 */
1010void btrfs_add_dead_root(struct btrfs_root *root)
1011{
1012	spin_lock(&root->fs_info->trans_lock);
 
 
1013	if (list_empty(&root->root_list))
1014		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1015	spin_unlock(&root->fs_info->trans_lock);
1016}
1017
1018/*
1019 * update all the cowonly tree roots on disk
1020 */
1021static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1022				    struct btrfs_root *root)
1023{
1024	struct btrfs_root *gang[8];
1025	struct btrfs_fs_info *fs_info = root->fs_info;
1026	int i;
1027	int ret;
1028	int err = 0;
1029
1030	spin_lock(&fs_info->fs_roots_radix_lock);
1031	while (1) {
1032		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1033						 (void **)gang, 0,
1034						 ARRAY_SIZE(gang),
1035						 BTRFS_ROOT_TRANS_TAG);
1036		if (ret == 0)
1037			break;
1038		for (i = 0; i < ret; i++) {
1039			root = gang[i];
1040			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1041					(unsigned long)root->root_key.objectid,
1042					BTRFS_ROOT_TRANS_TAG);
1043			spin_unlock(&fs_info->fs_roots_radix_lock);
1044
1045			btrfs_free_log(trans, root);
1046			btrfs_update_reloc_root(trans, root);
1047			btrfs_orphan_commit_root(trans, root);
1048
1049			btrfs_save_ino_cache(root, trans);
1050
1051			/* see comments in should_cow_block() */
1052			root->force_cow = 0;
1053			smp_wmb();
1054
1055			if (root->commit_root != root->node) {
1056				list_add_tail(&root->dirty_list,
1057					&trans->transaction->switch_commits);
1058				btrfs_set_root_node(&root->root_item,
1059						    root->node);
1060			}
1061
1062			err = btrfs_update_root(trans, fs_info->tree_root,
1063						&root->root_key,
1064						&root->root_item);
1065			spin_lock(&fs_info->fs_roots_radix_lock);
1066			if (err)
1067				break;
 
1068		}
1069	}
1070	spin_unlock(&fs_info->fs_roots_radix_lock);
1071	return err;
1072}
1073
1074/*
1075 * defrag a given btree.
1076 * Every leaf in the btree is read and defragged.
1077 */
1078int btrfs_defrag_root(struct btrfs_root *root)
1079{
1080	struct btrfs_fs_info *info = root->fs_info;
1081	struct btrfs_trans_handle *trans;
1082	int ret;
1083
1084	if (xchg(&root->defrag_running, 1))
1085		return 0;
1086
1087	while (1) {
1088		trans = btrfs_start_transaction(root, 0);
1089		if (IS_ERR(trans))
1090			return PTR_ERR(trans);
1091
1092		ret = btrfs_defrag_leaves(trans, root);
1093
1094		btrfs_end_transaction(trans, root);
1095		btrfs_btree_balance_dirty(info->tree_root);
1096		cond_resched();
1097
1098		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1099			break;
1100
1101		if (btrfs_defrag_cancelled(root->fs_info)) {
1102			pr_debug("BTRFS: defrag_root cancelled\n");
1103			ret = -EAGAIN;
1104			break;
1105		}
1106	}
1107	root->defrag_running = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108	return ret;
1109}
1110
1111/*
1112 * new snapshots need to be created at a very specific time in the
1113 * transaction commit.  This does the actual creation.
1114 *
1115 * Note:
1116 * If the error which may affect the commitment of the current transaction
1117 * happens, we should return the error number. If the error which just affect
1118 * the creation of the pending snapshots, just return 0.
1119 */
1120static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1121				   struct btrfs_fs_info *fs_info,
1122				   struct btrfs_pending_snapshot *pending)
1123{
1124	struct btrfs_key key;
1125	struct btrfs_root_item *new_root_item;
1126	struct btrfs_root *tree_root = fs_info->tree_root;
1127	struct btrfs_root *root = pending->root;
1128	struct btrfs_root *parent_root;
1129	struct btrfs_block_rsv *rsv;
1130	struct inode *parent_inode;
1131	struct btrfs_path *path;
1132	struct btrfs_dir_item *dir_item;
1133	struct dentry *dentry;
1134	struct extent_buffer *tmp;
1135	struct extent_buffer *old;
1136	struct timespec cur_time = CURRENT_TIME;
1137	int ret = 0;
1138	u64 to_reserve = 0;
1139	u64 index = 0;
1140	u64 objectid;
1141	u64 root_flags;
1142	uuid_le new_uuid;
1143
1144	path = btrfs_alloc_path();
1145	if (!path) {
1146		pending->error = -ENOMEM;
1147		return 0;
1148	}
1149
1150	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1151	if (!new_root_item) {
1152		pending->error = -ENOMEM;
1153		goto root_item_alloc_fail;
1154	}
1155
1156	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1157	if (pending->error)
1158		goto no_free_objectid;
1159
1160	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
 
 
 
 
 
 
1161
1162	if (to_reserve > 0) {
1163		pending->error = btrfs_block_rsv_add(root,
1164						     &pending->block_rsv,
1165						     to_reserve,
1166						     BTRFS_RESERVE_NO_FLUSH);
1167		if (pending->error)
1168			goto no_free_objectid;
1169	}
1170
1171	pending->error = btrfs_qgroup_inherit(trans, fs_info,
1172					      root->root_key.objectid,
1173					      objectid, pending->inherit);
1174	if (pending->error)
1175		goto no_free_objectid;
1176
1177	key.objectid = objectid;
1178	key.offset = (u64)-1;
1179	key.type = BTRFS_ROOT_ITEM_KEY;
1180
1181	rsv = trans->block_rsv;
1182	trans->block_rsv = &pending->block_rsv;
1183	trans->bytes_reserved = trans->block_rsv->reserved;
1184
 
 
1185	dentry = pending->dentry;
1186	parent_inode = pending->dir;
1187	parent_root = BTRFS_I(parent_inode)->root;
1188	record_root_in_trans(trans, parent_root);
 
 
1189
1190	/*
1191	 * insert the directory item
1192	 */
1193	ret = btrfs_set_inode_index(parent_inode, &index);
1194	BUG_ON(ret); /* -ENOMEM */
1195
1196	/* check if there is a file/dir which has the same name. */
1197	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1198					 btrfs_ino(parent_inode),
1199					 dentry->d_name.name,
1200					 dentry->d_name.len, 0);
1201	if (dir_item != NULL && !IS_ERR(dir_item)) {
1202		pending->error = -EEXIST;
1203		goto dir_item_existed;
1204	} else if (IS_ERR(dir_item)) {
1205		ret = PTR_ERR(dir_item);
1206		btrfs_abort_transaction(trans, root, ret);
1207		goto fail;
1208	}
1209	btrfs_release_path(path);
1210
1211	/*
1212	 * pull in the delayed directory update
1213	 * and the delayed inode item
1214	 * otherwise we corrupt the FS during
1215	 * snapshot
1216	 */
1217	ret = btrfs_run_delayed_items(trans, root);
1218	if (ret) {	/* Transaction aborted */
1219		btrfs_abort_transaction(trans, root, ret);
1220		goto fail;
1221	}
1222
1223	record_root_in_trans(trans, root);
1224	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1225	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1226	btrfs_check_and_init_root_item(new_root_item);
1227
1228	root_flags = btrfs_root_flags(new_root_item);
1229	if (pending->readonly)
1230		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1231	else
1232		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1233	btrfs_set_root_flags(new_root_item, root_flags);
1234
1235	btrfs_set_root_generation_v2(new_root_item,
1236			trans->transid);
1237	uuid_le_gen(&new_uuid);
1238	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1239	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1240			BTRFS_UUID_SIZE);
1241	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1242		memset(new_root_item->received_uuid, 0,
1243		       sizeof(new_root_item->received_uuid));
1244		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1245		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1246		btrfs_set_root_stransid(new_root_item, 0);
1247		btrfs_set_root_rtransid(new_root_item, 0);
1248	}
1249	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1250	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1251	btrfs_set_root_otransid(new_root_item, trans->transid);
1252
1253	old = btrfs_lock_root_node(root);
1254	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1255	if (ret) {
1256		btrfs_tree_unlock(old);
1257		free_extent_buffer(old);
1258		btrfs_abort_transaction(trans, root, ret);
1259		goto fail;
1260	}
1261
1262	btrfs_set_lock_blocking(old);
1263
1264	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1265	/* clean up in any case */
1266	btrfs_tree_unlock(old);
1267	free_extent_buffer(old);
1268	if (ret) {
1269		btrfs_abort_transaction(trans, root, ret);
1270		goto fail;
1271	}
1272
1273	/* see comments in should_cow_block() */
1274	root->force_cow = 1;
1275	smp_wmb();
1276
1277	btrfs_set_root_node(new_root_item, tmp);
1278	/* record when the snapshot was created in key.offset */
1279	key.offset = trans->transid;
1280	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1281	btrfs_tree_unlock(tmp);
1282	free_extent_buffer(tmp);
1283	if (ret) {
1284		btrfs_abort_transaction(trans, root, ret);
1285		goto fail;
1286	}
1287
1288	/*
1289	 * insert root back/forward references
1290	 */
1291	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1292				 parent_root->root_key.objectid,
1293				 btrfs_ino(parent_inode), index,
1294				 dentry->d_name.name, dentry->d_name.len);
1295	if (ret) {
1296		btrfs_abort_transaction(trans, root, ret);
1297		goto fail;
1298	}
1299
1300	key.offset = (u64)-1;
1301	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1302	if (IS_ERR(pending->snap)) {
1303		ret = PTR_ERR(pending->snap);
1304		btrfs_abort_transaction(trans, root, ret);
1305		goto fail;
1306	}
1307
1308	ret = btrfs_reloc_post_snapshot(trans, pending);
1309	if (ret) {
1310		btrfs_abort_transaction(trans, root, ret);
1311		goto fail;
1312	}
1313
1314	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1315	if (ret) {
1316		btrfs_abort_transaction(trans, root, ret);
1317		goto fail;
1318	}
1319
 
 
 
 
 
 
 
 
 
 
 
1320	ret = btrfs_insert_dir_item(trans, parent_root,
1321				    dentry->d_name.name, dentry->d_name.len,
1322				    parent_inode, &key,
1323				    BTRFS_FT_DIR, index);
1324	/* We have check then name at the beginning, so it is impossible. */
1325	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1326	if (ret) {
1327		btrfs_abort_transaction(trans, root, ret);
1328		goto fail;
1329	}
1330
1331	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1332					 dentry->d_name.len * 2);
1333	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
 
1334	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1335	if (ret) {
1336		btrfs_abort_transaction(trans, root, ret);
1337		goto fail;
1338	}
1339	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1340				  BTRFS_UUID_KEY_SUBVOL, objectid);
1341	if (ret) {
1342		btrfs_abort_transaction(trans, root, ret);
1343		goto fail;
1344	}
1345	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1346		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1347					  new_root_item->received_uuid,
1348					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1349					  objectid);
1350		if (ret && ret != -EEXIST) {
1351			btrfs_abort_transaction(trans, root, ret);
1352			goto fail;
1353		}
1354	}
 
 
 
 
 
 
 
1355fail:
1356	pending->error = ret;
1357dir_item_existed:
1358	trans->block_rsv = rsv;
1359	trans->bytes_reserved = 0;
 
 
1360no_free_objectid:
1361	kfree(new_root_item);
1362root_item_alloc_fail:
1363	btrfs_free_path(path);
 
 
1364	return ret;
1365}
1366
1367/*
1368 * create all the snapshots we've scheduled for creation
1369 */
1370static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1371					     struct btrfs_fs_info *fs_info)
1372{
1373	struct btrfs_pending_snapshot *pending, *next;
1374	struct list_head *head = &trans->transaction->pending_snapshots;
1375	int ret = 0;
1376
1377	list_for_each_entry_safe(pending, next, head, list) {
1378		list_del(&pending->list);
1379		ret = create_pending_snapshot(trans, fs_info, pending);
1380		if (ret)
1381			break;
1382	}
1383	return ret;
1384}
1385
1386static void update_super_roots(struct btrfs_root *root)
1387{
1388	struct btrfs_root_item *root_item;
1389	struct btrfs_super_block *super;
1390
1391	super = root->fs_info->super_copy;
1392
1393	root_item = &root->fs_info->chunk_root->root_item;
1394	super->chunk_root = root_item->bytenr;
1395	super->chunk_root_generation = root_item->generation;
1396	super->chunk_root_level = root_item->level;
1397
1398	root_item = &root->fs_info->tree_root->root_item;
1399	super->root = root_item->bytenr;
1400	super->generation = root_item->generation;
1401	super->root_level = root_item->level;
1402	if (btrfs_test_opt(root, SPACE_CACHE))
1403		super->cache_generation = root_item->generation;
1404	if (root->fs_info->update_uuid_tree_gen)
1405		super->uuid_tree_generation = root_item->generation;
1406}
1407
1408int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1409{
1410	struct btrfs_transaction *trans;
1411	int ret = 0;
1412
1413	spin_lock(&info->trans_lock);
1414	trans = info->running_transaction;
1415	if (trans)
1416		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1417	spin_unlock(&info->trans_lock);
1418	return ret;
1419}
1420
1421int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1422{
1423	struct btrfs_transaction *trans;
1424	int ret = 0;
1425
1426	spin_lock(&info->trans_lock);
1427	trans = info->running_transaction;
1428	if (trans)
1429		ret = is_transaction_blocked(trans);
1430	spin_unlock(&info->trans_lock);
1431	return ret;
1432}
1433
1434/*
1435 * wait for the current transaction commit to start and block subsequent
1436 * transaction joins
1437 */
1438static void wait_current_trans_commit_start(struct btrfs_root *root,
1439					    struct btrfs_transaction *trans)
1440{
1441	wait_event(root->fs_info->transaction_blocked_wait,
1442		   trans->state >= TRANS_STATE_COMMIT_START ||
1443		   trans->aborted);
1444}
1445
1446/*
1447 * wait for the current transaction to start and then become unblocked.
1448 * caller holds ref.
1449 */
1450static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1451					 struct btrfs_transaction *trans)
 
1452{
1453	wait_event(root->fs_info->transaction_wait,
1454		   trans->state >= TRANS_STATE_UNBLOCKED ||
1455		   trans->aborted);
1456}
1457
1458/*
1459 * commit transactions asynchronously. once btrfs_commit_transaction_async
1460 * returns, any subsequent transaction will not be allowed to join.
1461 */
1462struct btrfs_async_commit {
1463	struct btrfs_trans_handle *newtrans;
1464	struct btrfs_root *root;
1465	struct work_struct work;
1466};
1467
1468static void do_async_commit(struct work_struct *work)
1469{
1470	struct btrfs_async_commit *ac =
1471		container_of(work, struct btrfs_async_commit, work);
1472
1473	/*
1474	 * We've got freeze protection passed with the transaction.
1475	 * Tell lockdep about it.
1476	 */
1477	if (ac->newtrans->type & __TRANS_FREEZABLE)
1478		rwsem_acquire_read(
1479		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480		     0, 1, _THIS_IP_);
1481
1482	current->journal_info = ac->newtrans;
1483
1484	btrfs_commit_transaction(ac->newtrans, ac->root);
1485	kfree(ac);
1486}
1487
1488int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1489				   struct btrfs_root *root,
1490				   int wait_for_unblock)
1491{
 
1492	struct btrfs_async_commit *ac;
1493	struct btrfs_transaction *cur_trans;
1494
1495	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1496	if (!ac)
1497		return -ENOMEM;
1498
1499	INIT_WORK(&ac->work, do_async_commit);
1500	ac->root = root;
1501	ac->newtrans = btrfs_join_transaction(root);
1502	if (IS_ERR(ac->newtrans)) {
1503		int err = PTR_ERR(ac->newtrans);
1504		kfree(ac);
1505		return err;
1506	}
1507
1508	/* take transaction reference */
1509	cur_trans = trans->transaction;
1510	atomic_inc(&cur_trans->use_count);
1511
1512	btrfs_end_transaction(trans, root);
1513
1514	/*
1515	 * Tell lockdep we've released the freeze rwsem, since the
1516	 * async commit thread will be the one to unlock it.
1517	 */
1518	if (ac->newtrans->type & __TRANS_FREEZABLE)
1519		rwsem_release(
1520			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1521			1, _THIS_IP_);
1522
1523	schedule_work(&ac->work);
1524
1525	/* wait for transaction to start and unblock */
1526	if (wait_for_unblock)
1527		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1528	else
1529		wait_current_trans_commit_start(root, cur_trans);
1530
1531	if (current->journal_info == trans)
1532		current->journal_info = NULL;
1533
1534	btrfs_put_transaction(cur_trans);
1535	return 0;
1536}
1537
1538
1539static void cleanup_transaction(struct btrfs_trans_handle *trans,
1540				struct btrfs_root *root, int err)
1541{
 
1542	struct btrfs_transaction *cur_trans = trans->transaction;
1543	DEFINE_WAIT(wait);
1544
1545	WARN_ON(trans->use_count > 1);
1546
1547	btrfs_abort_transaction(trans, root, err);
1548
1549	spin_lock(&root->fs_info->trans_lock);
1550
1551	/*
1552	 * If the transaction is removed from the list, it means this
1553	 * transaction has been committed successfully, so it is impossible
1554	 * to call the cleanup function.
1555	 */
1556	BUG_ON(list_empty(&cur_trans->list));
1557
1558	list_del_init(&cur_trans->list);
1559	if (cur_trans == root->fs_info->running_transaction) {
1560		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1561		spin_unlock(&root->fs_info->trans_lock);
1562		wait_event(cur_trans->writer_wait,
1563			   atomic_read(&cur_trans->num_writers) == 1);
1564
1565		spin_lock(&root->fs_info->trans_lock);
1566	}
1567	spin_unlock(&root->fs_info->trans_lock);
1568
1569	btrfs_cleanup_one_transaction(trans->transaction, root);
1570
1571	spin_lock(&root->fs_info->trans_lock);
1572	if (cur_trans == root->fs_info->running_transaction)
1573		root->fs_info->running_transaction = NULL;
1574	spin_unlock(&root->fs_info->trans_lock);
1575
1576	if (trans->type & __TRANS_FREEZABLE)
1577		sb_end_intwrite(root->fs_info->sb);
1578	btrfs_put_transaction(cur_trans);
1579	btrfs_put_transaction(cur_trans);
1580
1581	trace_btrfs_transaction_commit(root);
1582
1583	if (current->journal_info == trans)
1584		current->journal_info = NULL;
1585	btrfs_scrub_cancel(root->fs_info);
1586
1587	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1588}
1589
1590static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1591					  struct btrfs_root *root)
1592{
1593	int ret;
1594
1595	ret = btrfs_run_delayed_items(trans, root);
1596	/*
1597	 * running the delayed items may have added new refs. account
1598	 * them now so that they hinder processing of more delayed refs
1599	 * as little as possible.
1600	 */
1601	if (ret) {
1602		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1603		return ret;
1604	}
1605
1606	ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1607	if (ret)
1608		return ret;
1609
1610	/*
1611	 * rename don't use btrfs_join_transaction, so, once we
1612	 * set the transaction to blocked above, we aren't going
1613	 * to get any new ordered operations.  We can safely run
1614	 * it here and no for sure that nothing new will be added
1615	 * to the list
1616	 */
1617	ret = btrfs_run_ordered_operations(trans, root, 1);
1618
1619	return ret;
1620}
1621
1622static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1623{
1624	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1625		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1626	return 0;
1627}
1628
1629static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1630{
1631	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632		btrfs_wait_ordered_roots(fs_info, -1);
 
 
 
 
 
 
 
1633}
1634
1635int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1636			     struct btrfs_root *root)
1637{
 
1638	struct btrfs_transaction *cur_trans = trans->transaction;
1639	struct btrfs_transaction *prev_trans = NULL;
1640	int ret;
1641
1642	ret = btrfs_run_ordered_operations(trans, root, 0);
1643	if (ret) {
1644		btrfs_abort_transaction(trans, root, ret);
1645		btrfs_end_transaction(trans, root);
1646		return ret;
1647	}
1648
1649	/* Stop the commit early if ->aborted is set */
1650	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1651		ret = cur_trans->aborted;
1652		btrfs_end_transaction(trans, root);
1653		return ret;
1654	}
1655
1656	/* make a pass through all the delayed refs we have so far
1657	 * any runnings procs may add more while we are here
1658	 */
1659	ret = btrfs_run_delayed_refs(trans, root, 0);
1660	if (ret) {
1661		btrfs_end_transaction(trans, root);
1662		return ret;
1663	}
1664
1665	btrfs_trans_release_metadata(trans, root);
1666	trans->block_rsv = NULL;
1667	if (trans->qgroup_reserved) {
1668		btrfs_qgroup_free(root, trans->qgroup_reserved);
1669		trans->qgroup_reserved = 0;
1670	}
1671
1672	cur_trans = trans->transaction;
1673
1674	/*
1675	 * set the flushing flag so procs in this transaction have to
1676	 * start sending their work down.
1677	 */
1678	cur_trans->delayed_refs.flushing = 1;
1679	smp_wmb();
1680
1681	if (!list_empty(&trans->new_bgs))
1682		btrfs_create_pending_block_groups(trans, root);
1683
1684	ret = btrfs_run_delayed_refs(trans, root, 0);
1685	if (ret) {
1686		btrfs_end_transaction(trans, root);
1687		return ret;
1688	}
1689
1690	spin_lock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1692		spin_unlock(&root->fs_info->trans_lock);
1693		atomic_inc(&cur_trans->use_count);
1694		ret = btrfs_end_transaction(trans, root);
 
 
1695
1696		wait_for_commit(root, cur_trans);
 
1697
1698		btrfs_put_transaction(cur_trans);
1699
1700		return ret;
1701	}
1702
1703	cur_trans->state = TRANS_STATE_COMMIT_START;
1704	wake_up(&root->fs_info->transaction_blocked_wait);
1705
1706	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1707		prev_trans = list_entry(cur_trans->list.prev,
1708					struct btrfs_transaction, list);
1709		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1710			atomic_inc(&prev_trans->use_count);
1711			spin_unlock(&root->fs_info->trans_lock);
1712
1713			wait_for_commit(root, prev_trans);
 
1714
1715			btrfs_put_transaction(prev_trans);
 
 
1716		} else {
1717			spin_unlock(&root->fs_info->trans_lock);
1718		}
1719	} else {
1720		spin_unlock(&root->fs_info->trans_lock);
1721	}
1722
1723	extwriter_counter_dec(cur_trans, trans->type);
1724
1725	ret = btrfs_start_delalloc_flush(root->fs_info);
1726	if (ret)
1727		goto cleanup_transaction;
1728
1729	ret = btrfs_flush_all_pending_stuffs(trans, root);
1730	if (ret)
1731		goto cleanup_transaction;
1732
1733	wait_event(cur_trans->writer_wait,
1734		   extwriter_counter_read(cur_trans) == 0);
1735
1736	/* some pending stuffs might be added after the previous flush. */
1737	ret = btrfs_flush_all_pending_stuffs(trans, root);
1738	if (ret)
1739		goto cleanup_transaction;
1740
1741	btrfs_wait_delalloc_flush(root->fs_info);
1742
1743	btrfs_scrub_pause(root);
 
 
1744	/*
1745	 * Ok now we need to make sure to block out any other joins while we
1746	 * commit the transaction.  We could have started a join before setting
1747	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1748	 */
1749	spin_lock(&root->fs_info->trans_lock);
1750	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1751	spin_unlock(&root->fs_info->trans_lock);
1752	wait_event(cur_trans->writer_wait,
1753		   atomic_read(&cur_trans->num_writers) == 1);
1754
1755	/* ->aborted might be set after the previous check, so check it */
1756	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1757		ret = cur_trans->aborted;
1758		goto scrub_continue;
1759	}
1760	/*
1761	 * the reloc mutex makes sure that we stop
1762	 * the balancing code from coming in and moving
1763	 * extents around in the middle of the commit
1764	 */
1765	mutex_lock(&root->fs_info->reloc_mutex);
1766
1767	/*
1768	 * We needn't worry about the delayed items because we will
1769	 * deal with them in create_pending_snapshot(), which is the
1770	 * core function of the snapshot creation.
1771	 */
1772	ret = create_pending_snapshots(trans, root->fs_info);
1773	if (ret) {
1774		mutex_unlock(&root->fs_info->reloc_mutex);
1775		goto scrub_continue;
1776	}
1777
1778	/*
1779	 * We insert the dir indexes of the snapshots and update the inode
1780	 * of the snapshots' parents after the snapshot creation, so there
1781	 * are some delayed items which are not dealt with. Now deal with
1782	 * them.
1783	 *
1784	 * We needn't worry that this operation will corrupt the snapshots,
1785	 * because all the tree which are snapshoted will be forced to COW
1786	 * the nodes and leaves.
1787	 */
1788	ret = btrfs_run_delayed_items(trans, root);
 
 
 
 
 
 
1789	if (ret) {
1790		mutex_unlock(&root->fs_info->reloc_mutex);
1791		goto scrub_continue;
1792	}
1793
1794	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 
1795	if (ret) {
1796		mutex_unlock(&root->fs_info->reloc_mutex);
1797		goto scrub_continue;
1798	}
1799
1800	/*
1801	 * make sure none of the code above managed to slip in a
1802	 * delayed item
1803	 */
1804	btrfs_assert_delayed_root_empty(root);
1805
1806	WARN_ON(cur_trans != trans->transaction);
1807
1808	/* btrfs_commit_tree_roots is responsible for getting the
1809	 * various roots consistent with each other.  Every pointer
1810	 * in the tree of tree roots has to point to the most up to date
1811	 * root for every subvolume and other tree.  So, we have to keep
1812	 * the tree logging code from jumping in and changing any
1813	 * of the trees.
1814	 *
1815	 * At this point in the commit, there can't be any tree-log
1816	 * writers, but a little lower down we drop the trans mutex
1817	 * and let new people in.  By holding the tree_log_mutex
1818	 * from now until after the super is written, we avoid races
1819	 * with the tree-log code.
1820	 */
1821	mutex_lock(&root->fs_info->tree_log_mutex);
1822
1823	ret = commit_fs_roots(trans, root);
1824	if (ret) {
1825		mutex_unlock(&root->fs_info->tree_log_mutex);
1826		mutex_unlock(&root->fs_info->reloc_mutex);
1827		goto scrub_continue;
1828	}
1829
1830	/*
1831	 * Since the transaction is done, we should set the inode map cache flag
1832	 * before any other comming transaction.
1833	 */
1834	if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1835		btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1836	else
1837		btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1838
1839	/* commit_fs_roots gets rid of all the tree log roots, it is now
1840	 * safe to free the root of tree log roots
1841	 */
1842	btrfs_free_log_root_tree(trans, root->fs_info);
 
 
 
 
 
 
 
 
 
 
 
1843
1844	ret = commit_cowonly_roots(trans, root);
1845	if (ret) {
1846		mutex_unlock(&root->fs_info->tree_log_mutex);
1847		mutex_unlock(&root->fs_info->reloc_mutex);
1848		goto scrub_continue;
1849	}
1850
1851	/*
1852	 * The tasks which save the space cache and inode cache may also
1853	 * update ->aborted, check it.
1854	 */
1855	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856		ret = cur_trans->aborted;
1857		mutex_unlock(&root->fs_info->tree_log_mutex);
1858		mutex_unlock(&root->fs_info->reloc_mutex);
1859		goto scrub_continue;
1860	}
1861
1862	btrfs_prepare_extent_commit(trans, root);
1863
1864	cur_trans = root->fs_info->running_transaction;
1865
1866	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867			    root->fs_info->tree_root->node);
1868	list_add_tail(&root->fs_info->tree_root->dirty_list,
1869		      &cur_trans->switch_commits);
1870
1871	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1872			    root->fs_info->chunk_root->node);
1873	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1874		      &cur_trans->switch_commits);
1875
1876	switch_commit_roots(cur_trans, root->fs_info);
1877
1878	assert_qgroups_uptodate(trans);
1879	update_super_roots(root);
 
 
 
 
 
 
 
 
 
 
1880
1881	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1882	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1883	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1884	       sizeof(*root->fs_info->super_copy));
1885
1886	spin_lock(&root->fs_info->trans_lock);
 
 
1887	cur_trans->state = TRANS_STATE_UNBLOCKED;
1888	root->fs_info->running_transaction = NULL;
1889	spin_unlock(&root->fs_info->trans_lock);
1890	mutex_unlock(&root->fs_info->reloc_mutex);
1891
1892	wake_up(&root->fs_info->transaction_wait);
1893
1894	ret = btrfs_write_and_wait_transaction(trans, root);
1895	if (ret) {
1896		btrfs_error(root->fs_info, ret,
1897			    "Error while writing out transaction");
1898		mutex_unlock(&root->fs_info->tree_log_mutex);
1899		goto scrub_continue;
1900	}
1901
1902	ret = write_ctree_super(trans, root, 0);
1903	if (ret) {
1904		mutex_unlock(&root->fs_info->tree_log_mutex);
1905		goto scrub_continue;
1906	}
1907
1908	/*
1909	 * the super is written, we can safely allow the tree-loggers
1910	 * to go about their business
1911	 */
1912	mutex_unlock(&root->fs_info->tree_log_mutex);
 
 
1913
1914	btrfs_finish_extent_commit(trans, root);
 
1915
1916	root->fs_info->last_trans_committed = cur_trans->transid;
1917	/*
1918	 * We needn't acquire the lock here because there is no other task
1919	 * which can change it.
1920	 */
1921	cur_trans->state = TRANS_STATE_COMPLETED;
1922	wake_up(&cur_trans->commit_wait);
1923
1924	spin_lock(&root->fs_info->trans_lock);
1925	list_del_init(&cur_trans->list);
1926	spin_unlock(&root->fs_info->trans_lock);
1927
1928	btrfs_put_transaction(cur_trans);
1929	btrfs_put_transaction(cur_trans);
1930
1931	if (trans->type & __TRANS_FREEZABLE)
1932		sb_end_intwrite(root->fs_info->sb);
1933
1934	trace_btrfs_transaction_commit(root);
1935
1936	btrfs_scrub_continue(root);
1937
1938	if (current->journal_info == trans)
1939		current->journal_info = NULL;
1940
1941	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942
1943	if (current != root->fs_info->transaction_kthread)
1944		btrfs_run_delayed_iputs(root);
 
 
 
 
 
1945
1946	return ret;
1947
1948scrub_continue:
1949	btrfs_scrub_continue(root);
1950cleanup_transaction:
1951	btrfs_trans_release_metadata(trans, root);
 
1952	trans->block_rsv = NULL;
1953	if (trans->qgroup_reserved) {
1954		btrfs_qgroup_free(root, trans->qgroup_reserved);
1955		trans->qgroup_reserved = 0;
1956	}
1957	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1958	if (current->journal_info == trans)
1959		current->journal_info = NULL;
1960	cleanup_transaction(trans, root, ret);
1961
1962	return ret;
1963}
1964
1965/*
1966 * return < 0 if error
1967 * 0 if there are no more dead_roots at the time of call
1968 * 1 there are more to be processed, call me again
1969 *
1970 * The return value indicates there are certainly more snapshots to delete, but
1971 * if there comes a new one during processing, it may return 0. We don't mind,
1972 * because btrfs_commit_super will poke cleaner thread and it will process it a
1973 * few seconds later.
1974 */
1975int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1976{
1977	int ret;
1978	struct btrfs_fs_info *fs_info = root->fs_info;
1979
1980	spin_lock(&fs_info->trans_lock);
1981	if (list_empty(&fs_info->dead_roots)) {
1982		spin_unlock(&fs_info->trans_lock);
1983		return 0;
1984	}
1985	root = list_first_entry(&fs_info->dead_roots,
1986			struct btrfs_root, root_list);
1987	/*
1988	 * Make sure root is not involved in send,
1989	 * if we fail with first root, we return
1990	 * directly rather than continue.
1991	 */
1992	spin_lock(&root->root_item_lock);
1993	if (root->send_in_progress) {
1994		spin_unlock(&fs_info->trans_lock);
1995		spin_unlock(&root->root_item_lock);
1996		return 0;
1997	}
1998	spin_unlock(&root->root_item_lock);
1999
2000	list_del_init(&root->root_list);
2001	spin_unlock(&fs_info->trans_lock);
2002
2003	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2004
2005	btrfs_kill_all_delayed_nodes(root);
2006
2007	if (btrfs_header_backref_rev(root->node) <
2008			BTRFS_MIXED_BACKREF_REV)
2009		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2010	else
2011		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2012	/*
2013	 * If we encounter a transaction abort during snapshot cleaning, we
2014	 * don't want to crash here
2015	 */
2016	return (ret < 0) ? 0 : 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017}