Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_log.h"
22#include "xfs_trans.h"
23#include "xfs_sb.h"
24#include "xfs_ag.h"
25#include "xfs_mount.h"
26#include "xfs_error.h"
27#include "xfs_log_priv.h"
28#include "xfs_buf_item.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_log_recover.h"
33#include "xfs_trans_priv.h"
34#include "xfs_dinode.h"
35#include "xfs_inode.h"
36#include "xfs_trace.h"
37
38kmem_zone_t *xfs_log_ticket_zone;
39
40/* Local miscellaneous function prototypes */
41STATIC int
42xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
49 xfs_buftarg_t *log_target,
50 xfs_daddr_t blk_offset,
51 int num_bblks);
52STATIC int
53xlog_space_left(
54 struct xlog *log,
55 atomic64_t *head);
56STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
57STATIC void xlog_dealloc_log(xlog_t *log);
58
59/* local state machine functions */
60STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
61STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
62STATIC int xlog_state_get_iclog_space(xlog_t *log,
63 int len,
64 xlog_in_core_t **iclog,
65 xlog_ticket_t *ticket,
66 int *continued_write,
67 int *logoffsetp);
68STATIC int xlog_state_release_iclog(xlog_t *log,
69 xlog_in_core_t *iclog);
70STATIC void xlog_state_switch_iclogs(xlog_t *log,
71 xlog_in_core_t *iclog,
72 int eventual_size);
73STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
74
75STATIC void
76xlog_grant_push_ail(
77 struct xlog *log,
78 int need_bytes);
79STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
80 xlog_ticket_t *ticket);
81STATIC void xlog_ungrant_log_space(xlog_t *log,
82 xlog_ticket_t *ticket);
83
84#if defined(DEBUG)
85STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
86STATIC void
87xlog_verify_grant_tail(
88 struct xlog *log);
89STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
90 int count, boolean_t syncing);
91STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
92 xfs_lsn_t tail_lsn);
93#else
94#define xlog_verify_dest_ptr(a,b)
95#define xlog_verify_grant_tail(a)
96#define xlog_verify_iclog(a,b,c,d)
97#define xlog_verify_tail_lsn(a,b,c)
98#endif
99
100STATIC int xlog_iclogs_empty(xlog_t *log);
101
102static void
103xlog_grant_sub_space(
104 struct xlog *log,
105 atomic64_t *head,
106 int bytes)
107{
108 int64_t head_val = atomic64_read(head);
109 int64_t new, old;
110
111 do {
112 int cycle, space;
113
114 xlog_crack_grant_head_val(head_val, &cycle, &space);
115
116 space -= bytes;
117 if (space < 0) {
118 space += log->l_logsize;
119 cycle--;
120 }
121
122 old = head_val;
123 new = xlog_assign_grant_head_val(cycle, space);
124 head_val = atomic64_cmpxchg(head, old, new);
125 } while (head_val != old);
126}
127
128static void
129xlog_grant_add_space(
130 struct xlog *log,
131 atomic64_t *head,
132 int bytes)
133{
134 int64_t head_val = atomic64_read(head);
135 int64_t new, old;
136
137 do {
138 int tmp;
139 int cycle, space;
140
141 xlog_crack_grant_head_val(head_val, &cycle, &space);
142
143 tmp = log->l_logsize - space;
144 if (tmp > bytes)
145 space += bytes;
146 else {
147 space = bytes - tmp;
148 cycle++;
149 }
150
151 old = head_val;
152 new = xlog_assign_grant_head_val(cycle, space);
153 head_val = atomic64_cmpxchg(head, old, new);
154 } while (head_val != old);
155}
156
157STATIC void
158xlog_grant_head_init(
159 struct xlog_grant_head *head)
160{
161 xlog_assign_grant_head(&head->grant, 1, 0);
162 INIT_LIST_HEAD(&head->waiters);
163 spin_lock_init(&head->lock);
164}
165
166STATIC void
167xlog_grant_head_wake_all(
168 struct xlog_grant_head *head)
169{
170 struct xlog_ticket *tic;
171
172 spin_lock(&head->lock);
173 list_for_each_entry(tic, &head->waiters, t_queue)
174 wake_up_process(tic->t_task);
175 spin_unlock(&head->lock);
176}
177
178static inline int
179xlog_ticket_reservation(
180 struct xlog *log,
181 struct xlog_grant_head *head,
182 struct xlog_ticket *tic)
183{
184 if (head == &log->l_write_head) {
185 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
186 return tic->t_unit_res;
187 } else {
188 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
189 return tic->t_unit_res * tic->t_cnt;
190 else
191 return tic->t_unit_res;
192 }
193}
194
195STATIC bool
196xlog_grant_head_wake(
197 struct xlog *log,
198 struct xlog_grant_head *head,
199 int *free_bytes)
200{
201 struct xlog_ticket *tic;
202 int need_bytes;
203
204 list_for_each_entry(tic, &head->waiters, t_queue) {
205 need_bytes = xlog_ticket_reservation(log, head, tic);
206 if (*free_bytes < need_bytes)
207 return false;
208
209 *free_bytes -= need_bytes;
210 trace_xfs_log_grant_wake_up(log, tic);
211 wake_up_process(tic->t_task);
212 }
213
214 return true;
215}
216
217STATIC int
218xlog_grant_head_wait(
219 struct xlog *log,
220 struct xlog_grant_head *head,
221 struct xlog_ticket *tic,
222 int need_bytes)
223{
224 list_add_tail(&tic->t_queue, &head->waiters);
225
226 do {
227 if (XLOG_FORCED_SHUTDOWN(log))
228 goto shutdown;
229 xlog_grant_push_ail(log, need_bytes);
230
231 __set_current_state(TASK_UNINTERRUPTIBLE);
232 spin_unlock(&head->lock);
233
234 XFS_STATS_INC(xs_sleep_logspace);
235
236 trace_xfs_log_grant_sleep(log, tic);
237 schedule();
238 trace_xfs_log_grant_wake(log, tic);
239
240 spin_lock(&head->lock);
241 if (XLOG_FORCED_SHUTDOWN(log))
242 goto shutdown;
243 } while (xlog_space_left(log, &head->grant) < need_bytes);
244
245 list_del_init(&tic->t_queue);
246 return 0;
247shutdown:
248 list_del_init(&tic->t_queue);
249 return XFS_ERROR(EIO);
250}
251
252/*
253 * Atomically get the log space required for a log ticket.
254 *
255 * Once a ticket gets put onto head->waiters, it will only return after the
256 * needed reservation is satisfied.
257 *
258 * This function is structured so that it has a lock free fast path. This is
259 * necessary because every new transaction reservation will come through this
260 * path. Hence any lock will be globally hot if we take it unconditionally on
261 * every pass.
262 *
263 * As tickets are only ever moved on and off head->waiters under head->lock, we
264 * only need to take that lock if we are going to add the ticket to the queue
265 * and sleep. We can avoid taking the lock if the ticket was never added to
266 * head->waiters because the t_queue list head will be empty and we hold the
267 * only reference to it so it can safely be checked unlocked.
268 */
269STATIC int
270xlog_grant_head_check(
271 struct xlog *log,
272 struct xlog_grant_head *head,
273 struct xlog_ticket *tic,
274 int *need_bytes)
275{
276 int free_bytes;
277 int error = 0;
278
279 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
280
281 /*
282 * If there are other waiters on the queue then give them a chance at
283 * logspace before us. Wake up the first waiters, if we do not wake
284 * up all the waiters then go to sleep waiting for more free space,
285 * otherwise try to get some space for this transaction.
286 */
287 *need_bytes = xlog_ticket_reservation(log, head, tic);
288 free_bytes = xlog_space_left(log, &head->grant);
289 if (!list_empty_careful(&head->waiters)) {
290 spin_lock(&head->lock);
291 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
292 free_bytes < *need_bytes) {
293 error = xlog_grant_head_wait(log, head, tic,
294 *need_bytes);
295 }
296 spin_unlock(&head->lock);
297 } else if (free_bytes < *need_bytes) {
298 spin_lock(&head->lock);
299 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
300 spin_unlock(&head->lock);
301 }
302
303 return error;
304}
305
306static void
307xlog_tic_reset_res(xlog_ticket_t *tic)
308{
309 tic->t_res_num = 0;
310 tic->t_res_arr_sum = 0;
311 tic->t_res_num_ophdrs = 0;
312}
313
314static void
315xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
316{
317 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
318 /* add to overflow and start again */
319 tic->t_res_o_flow += tic->t_res_arr_sum;
320 tic->t_res_num = 0;
321 tic->t_res_arr_sum = 0;
322 }
323
324 tic->t_res_arr[tic->t_res_num].r_len = len;
325 tic->t_res_arr[tic->t_res_num].r_type = type;
326 tic->t_res_arr_sum += len;
327 tic->t_res_num++;
328}
329
330/*
331 * Replenish the byte reservation required by moving the grant write head.
332 */
333int
334xfs_log_regrant(
335 struct xfs_mount *mp,
336 struct xlog_ticket *tic)
337{
338 struct xlog *log = mp->m_log;
339 int need_bytes;
340 int error = 0;
341
342 if (XLOG_FORCED_SHUTDOWN(log))
343 return XFS_ERROR(EIO);
344
345 XFS_STATS_INC(xs_try_logspace);
346
347 /*
348 * This is a new transaction on the ticket, so we need to change the
349 * transaction ID so that the next transaction has a different TID in
350 * the log. Just add one to the existing tid so that we can see chains
351 * of rolling transactions in the log easily.
352 */
353 tic->t_tid++;
354
355 xlog_grant_push_ail(log, tic->t_unit_res);
356
357 tic->t_curr_res = tic->t_unit_res;
358 xlog_tic_reset_res(tic);
359
360 if (tic->t_cnt > 0)
361 return 0;
362
363 trace_xfs_log_regrant(log, tic);
364
365 error = xlog_grant_head_check(log, &log->l_write_head, tic,
366 &need_bytes);
367 if (error)
368 goto out_error;
369
370 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
371 trace_xfs_log_regrant_exit(log, tic);
372 xlog_verify_grant_tail(log);
373 return 0;
374
375out_error:
376 /*
377 * If we are failing, make sure the ticket doesn't have any current
378 * reservations. We don't want to add this back when the ticket/
379 * transaction gets cancelled.
380 */
381 tic->t_curr_res = 0;
382 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
383 return error;
384}
385
386/*
387 * Reserve log space and return a ticket corresponding the reservation.
388 *
389 * Each reservation is going to reserve extra space for a log record header.
390 * When writes happen to the on-disk log, we don't subtract the length of the
391 * log record header from any reservation. By wasting space in each
392 * reservation, we prevent over allocation problems.
393 */
394int
395xfs_log_reserve(
396 struct xfs_mount *mp,
397 int unit_bytes,
398 int cnt,
399 struct xlog_ticket **ticp,
400 __uint8_t client,
401 bool permanent,
402 uint t_type)
403{
404 struct xlog *log = mp->m_log;
405 struct xlog_ticket *tic;
406 int need_bytes;
407 int error = 0;
408
409 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
410
411 if (XLOG_FORCED_SHUTDOWN(log))
412 return XFS_ERROR(EIO);
413
414 XFS_STATS_INC(xs_try_logspace);
415
416 ASSERT(*ticp == NULL);
417 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
418 KM_SLEEP | KM_MAYFAIL);
419 if (!tic)
420 return XFS_ERROR(ENOMEM);
421
422 tic->t_trans_type = t_type;
423 *ticp = tic;
424
425 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
426
427 trace_xfs_log_reserve(log, tic);
428
429 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
430 &need_bytes);
431 if (error)
432 goto out_error;
433
434 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
436 trace_xfs_log_reserve_exit(log, tic);
437 xlog_verify_grant_tail(log);
438 return 0;
439
440out_error:
441 /*
442 * If we are failing, make sure the ticket doesn't have any current
443 * reservations. We don't want to add this back when the ticket/
444 * transaction gets cancelled.
445 */
446 tic->t_curr_res = 0;
447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
448 return error;
449}
450
451
452/*
453 * NOTES:
454 *
455 * 1. currblock field gets updated at startup and after in-core logs
456 * marked as with WANT_SYNC.
457 */
458
459/*
460 * This routine is called when a user of a log manager ticket is done with
461 * the reservation. If the ticket was ever used, then a commit record for
462 * the associated transaction is written out as a log operation header with
463 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
464 * a given ticket. If the ticket was one with a permanent reservation, then
465 * a few operations are done differently. Permanent reservation tickets by
466 * default don't release the reservation. They just commit the current
467 * transaction with the belief that the reservation is still needed. A flag
468 * must be passed in before permanent reservations are actually released.
469 * When these type of tickets are not released, they need to be set into
470 * the inited state again. By doing this, a start record will be written
471 * out when the next write occurs.
472 */
473xfs_lsn_t
474xfs_log_done(
475 struct xfs_mount *mp,
476 struct xlog_ticket *ticket,
477 struct xlog_in_core **iclog,
478 uint flags)
479{
480 struct xlog *log = mp->m_log;
481 xfs_lsn_t lsn = 0;
482
483 if (XLOG_FORCED_SHUTDOWN(log) ||
484 /*
485 * If nothing was ever written, don't write out commit record.
486 * If we get an error, just continue and give back the log ticket.
487 */
488 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
489 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
490 lsn = (xfs_lsn_t) -1;
491 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
492 flags |= XFS_LOG_REL_PERM_RESERV;
493 }
494 }
495
496
497 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
498 (flags & XFS_LOG_REL_PERM_RESERV)) {
499 trace_xfs_log_done_nonperm(log, ticket);
500
501 /*
502 * Release ticket if not permanent reservation or a specific
503 * request has been made to release a permanent reservation.
504 */
505 xlog_ungrant_log_space(log, ticket);
506 xfs_log_ticket_put(ticket);
507 } else {
508 trace_xfs_log_done_perm(log, ticket);
509
510 xlog_regrant_reserve_log_space(log, ticket);
511 /* If this ticket was a permanent reservation and we aren't
512 * trying to release it, reset the inited flags; so next time
513 * we write, a start record will be written out.
514 */
515 ticket->t_flags |= XLOG_TIC_INITED;
516 }
517
518 return lsn;
519}
520
521/*
522 * Attaches a new iclog I/O completion callback routine during
523 * transaction commit. If the log is in error state, a non-zero
524 * return code is handed back and the caller is responsible for
525 * executing the callback at an appropriate time.
526 */
527int
528xfs_log_notify(
529 struct xfs_mount *mp,
530 struct xlog_in_core *iclog,
531 xfs_log_callback_t *cb)
532{
533 int abortflg;
534
535 spin_lock(&iclog->ic_callback_lock);
536 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
537 if (!abortflg) {
538 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
539 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
540 cb->cb_next = NULL;
541 *(iclog->ic_callback_tail) = cb;
542 iclog->ic_callback_tail = &(cb->cb_next);
543 }
544 spin_unlock(&iclog->ic_callback_lock);
545 return abortflg;
546}
547
548int
549xfs_log_release_iclog(
550 struct xfs_mount *mp,
551 struct xlog_in_core *iclog)
552{
553 if (xlog_state_release_iclog(mp->m_log, iclog)) {
554 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
555 return EIO;
556 }
557
558 return 0;
559}
560
561/*
562 * Mount a log filesystem
563 *
564 * mp - ubiquitous xfs mount point structure
565 * log_target - buftarg of on-disk log device
566 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
567 * num_bblocks - Number of BBSIZE blocks in on-disk log
568 *
569 * Return error or zero.
570 */
571int
572xfs_log_mount(
573 xfs_mount_t *mp,
574 xfs_buftarg_t *log_target,
575 xfs_daddr_t blk_offset,
576 int num_bblks)
577{
578 int error;
579
580 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
581 xfs_notice(mp, "Mounting Filesystem");
582 else {
583 xfs_notice(mp,
584"Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
585 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
586 }
587
588 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
589 if (IS_ERR(mp->m_log)) {
590 error = -PTR_ERR(mp->m_log);
591 goto out;
592 }
593
594 /*
595 * Initialize the AIL now we have a log.
596 */
597 error = xfs_trans_ail_init(mp);
598 if (error) {
599 xfs_warn(mp, "AIL initialisation failed: error %d", error);
600 goto out_free_log;
601 }
602 mp->m_log->l_ailp = mp->m_ail;
603
604 /*
605 * skip log recovery on a norecovery mount. pretend it all
606 * just worked.
607 */
608 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
609 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
610
611 if (readonly)
612 mp->m_flags &= ~XFS_MOUNT_RDONLY;
613
614 error = xlog_recover(mp->m_log);
615
616 if (readonly)
617 mp->m_flags |= XFS_MOUNT_RDONLY;
618 if (error) {
619 xfs_warn(mp, "log mount/recovery failed: error %d",
620 error);
621 goto out_destroy_ail;
622 }
623 }
624
625 /* Normal transactions can now occur */
626 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
627
628 /*
629 * Now the log has been fully initialised and we know were our
630 * space grant counters are, we can initialise the permanent ticket
631 * needed for delayed logging to work.
632 */
633 xlog_cil_init_post_recovery(mp->m_log);
634
635 return 0;
636
637out_destroy_ail:
638 xfs_trans_ail_destroy(mp);
639out_free_log:
640 xlog_dealloc_log(mp->m_log);
641out:
642 return error;
643}
644
645/*
646 * Finish the recovery of the file system. This is separate from
647 * the xfs_log_mount() call, because it depends on the code in
648 * xfs_mountfs() to read in the root and real-time bitmap inodes
649 * between calling xfs_log_mount() and here.
650 *
651 * mp - ubiquitous xfs mount point structure
652 */
653int
654xfs_log_mount_finish(xfs_mount_t *mp)
655{
656 int error;
657
658 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
659 error = xlog_recover_finish(mp->m_log);
660 else {
661 error = 0;
662 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
663 }
664
665 return error;
666}
667
668/*
669 * Final log writes as part of unmount.
670 *
671 * Mark the filesystem clean as unmount happens. Note that during relocation
672 * this routine needs to be executed as part of source-bag while the
673 * deallocation must not be done until source-end.
674 */
675
676/*
677 * Unmount record used to have a string "Unmount filesystem--" in the
678 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
679 * We just write the magic number now since that particular field isn't
680 * currently architecture converted and "nUmount" is a bit foo.
681 * As far as I know, there weren't any dependencies on the old behaviour.
682 */
683
684int
685xfs_log_unmount_write(xfs_mount_t *mp)
686{
687 xlog_t *log = mp->m_log;
688 xlog_in_core_t *iclog;
689#ifdef DEBUG
690 xlog_in_core_t *first_iclog;
691#endif
692 xlog_ticket_t *tic = NULL;
693 xfs_lsn_t lsn;
694 int error;
695
696 /*
697 * Don't write out unmount record on read-only mounts.
698 * Or, if we are doing a forced umount (typically because of IO errors).
699 */
700 if (mp->m_flags & XFS_MOUNT_RDONLY)
701 return 0;
702
703 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
704 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
705
706#ifdef DEBUG
707 first_iclog = iclog = log->l_iclog;
708 do {
709 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
710 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
711 ASSERT(iclog->ic_offset == 0);
712 }
713 iclog = iclog->ic_next;
714 } while (iclog != first_iclog);
715#endif
716 if (! (XLOG_FORCED_SHUTDOWN(log))) {
717 error = xfs_log_reserve(mp, 600, 1, &tic,
718 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
719 if (!error) {
720 /* the data section must be 32 bit size aligned */
721 struct {
722 __uint16_t magic;
723 __uint16_t pad1;
724 __uint32_t pad2; /* may as well make it 64 bits */
725 } magic = {
726 .magic = XLOG_UNMOUNT_TYPE,
727 };
728 struct xfs_log_iovec reg = {
729 .i_addr = &magic,
730 .i_len = sizeof(magic),
731 .i_type = XLOG_REG_TYPE_UNMOUNT,
732 };
733 struct xfs_log_vec vec = {
734 .lv_niovecs = 1,
735 .lv_iovecp = ®,
736 };
737
738 /* remove inited flag, and account for space used */
739 tic->t_flags = 0;
740 tic->t_curr_res -= sizeof(magic);
741 error = xlog_write(log, &vec, tic, &lsn,
742 NULL, XLOG_UNMOUNT_TRANS);
743 /*
744 * At this point, we're umounting anyway,
745 * so there's no point in transitioning log state
746 * to IOERROR. Just continue...
747 */
748 }
749
750 if (error)
751 xfs_alert(mp, "%s: unmount record failed", __func__);
752
753
754 spin_lock(&log->l_icloglock);
755 iclog = log->l_iclog;
756 atomic_inc(&iclog->ic_refcnt);
757 xlog_state_want_sync(log, iclog);
758 spin_unlock(&log->l_icloglock);
759 error = xlog_state_release_iclog(log, iclog);
760
761 spin_lock(&log->l_icloglock);
762 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
763 iclog->ic_state == XLOG_STATE_DIRTY)) {
764 if (!XLOG_FORCED_SHUTDOWN(log)) {
765 xlog_wait(&iclog->ic_force_wait,
766 &log->l_icloglock);
767 } else {
768 spin_unlock(&log->l_icloglock);
769 }
770 } else {
771 spin_unlock(&log->l_icloglock);
772 }
773 if (tic) {
774 trace_xfs_log_umount_write(log, tic);
775 xlog_ungrant_log_space(log, tic);
776 xfs_log_ticket_put(tic);
777 }
778 } else {
779 /*
780 * We're already in forced_shutdown mode, couldn't
781 * even attempt to write out the unmount transaction.
782 *
783 * Go through the motions of sync'ing and releasing
784 * the iclog, even though no I/O will actually happen,
785 * we need to wait for other log I/Os that may already
786 * be in progress. Do this as a separate section of
787 * code so we'll know if we ever get stuck here that
788 * we're in this odd situation of trying to unmount
789 * a file system that went into forced_shutdown as
790 * the result of an unmount..
791 */
792 spin_lock(&log->l_icloglock);
793 iclog = log->l_iclog;
794 atomic_inc(&iclog->ic_refcnt);
795
796 xlog_state_want_sync(log, iclog);
797 spin_unlock(&log->l_icloglock);
798 error = xlog_state_release_iclog(log, iclog);
799
800 spin_lock(&log->l_icloglock);
801
802 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
803 || iclog->ic_state == XLOG_STATE_DIRTY
804 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
805
806 xlog_wait(&iclog->ic_force_wait,
807 &log->l_icloglock);
808 } else {
809 spin_unlock(&log->l_icloglock);
810 }
811 }
812
813 return error;
814} /* xfs_log_unmount_write */
815
816/*
817 * Deallocate log structures for unmount/relocation.
818 *
819 * We need to stop the aild from running before we destroy
820 * and deallocate the log as the aild references the log.
821 */
822void
823xfs_log_unmount(xfs_mount_t *mp)
824{
825 cancel_delayed_work_sync(&mp->m_sync_work);
826 xfs_trans_ail_destroy(mp);
827 xlog_dealloc_log(mp->m_log);
828}
829
830void
831xfs_log_item_init(
832 struct xfs_mount *mp,
833 struct xfs_log_item *item,
834 int type,
835 const struct xfs_item_ops *ops)
836{
837 item->li_mountp = mp;
838 item->li_ailp = mp->m_ail;
839 item->li_type = type;
840 item->li_ops = ops;
841 item->li_lv = NULL;
842
843 INIT_LIST_HEAD(&item->li_ail);
844 INIT_LIST_HEAD(&item->li_cil);
845}
846
847/*
848 * Wake up processes waiting for log space after we have moved the log tail.
849 */
850void
851xfs_log_space_wake(
852 struct xfs_mount *mp)
853{
854 struct xlog *log = mp->m_log;
855 int free_bytes;
856
857 if (XLOG_FORCED_SHUTDOWN(log))
858 return;
859
860 if (!list_empty_careful(&log->l_write_head.waiters)) {
861 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
862
863 spin_lock(&log->l_write_head.lock);
864 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
865 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
866 spin_unlock(&log->l_write_head.lock);
867 }
868
869 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
870 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
871
872 spin_lock(&log->l_reserve_head.lock);
873 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
874 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
875 spin_unlock(&log->l_reserve_head.lock);
876 }
877}
878
879/*
880 * Determine if we have a transaction that has gone to disk
881 * that needs to be covered. To begin the transition to the idle state
882 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
883 * If we are then in a state where covering is needed, the caller is informed
884 * that dummy transactions are required to move the log into the idle state.
885 *
886 * Because this is called as part of the sync process, we should also indicate
887 * that dummy transactions should be issued in anything but the covered or
888 * idle states. This ensures that the log tail is accurately reflected in
889 * the log at the end of the sync, hence if a crash occurrs avoids replay
890 * of transactions where the metadata is already on disk.
891 */
892int
893xfs_log_need_covered(xfs_mount_t *mp)
894{
895 int needed = 0;
896 xlog_t *log = mp->m_log;
897
898 if (!xfs_fs_writable(mp))
899 return 0;
900
901 spin_lock(&log->l_icloglock);
902 switch (log->l_covered_state) {
903 case XLOG_STATE_COVER_DONE:
904 case XLOG_STATE_COVER_DONE2:
905 case XLOG_STATE_COVER_IDLE:
906 break;
907 case XLOG_STATE_COVER_NEED:
908 case XLOG_STATE_COVER_NEED2:
909 if (!xfs_ail_min_lsn(log->l_ailp) &&
910 xlog_iclogs_empty(log)) {
911 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
912 log->l_covered_state = XLOG_STATE_COVER_DONE;
913 else
914 log->l_covered_state = XLOG_STATE_COVER_DONE2;
915 }
916 /* FALLTHRU */
917 default:
918 needed = 1;
919 break;
920 }
921 spin_unlock(&log->l_icloglock);
922 return needed;
923}
924
925/*
926 * We may be holding the log iclog lock upon entering this routine.
927 */
928xfs_lsn_t
929xlog_assign_tail_lsn_locked(
930 struct xfs_mount *mp)
931{
932 struct xlog *log = mp->m_log;
933 struct xfs_log_item *lip;
934 xfs_lsn_t tail_lsn;
935
936 assert_spin_locked(&mp->m_ail->xa_lock);
937
938 /*
939 * To make sure we always have a valid LSN for the log tail we keep
940 * track of the last LSN which was committed in log->l_last_sync_lsn,
941 * and use that when the AIL was empty.
942 */
943 lip = xfs_ail_min(mp->m_ail);
944 if (lip)
945 tail_lsn = lip->li_lsn;
946 else
947 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
948 atomic64_set(&log->l_tail_lsn, tail_lsn);
949 return tail_lsn;
950}
951
952xfs_lsn_t
953xlog_assign_tail_lsn(
954 struct xfs_mount *mp)
955{
956 xfs_lsn_t tail_lsn;
957
958 spin_lock(&mp->m_ail->xa_lock);
959 tail_lsn = xlog_assign_tail_lsn_locked(mp);
960 spin_unlock(&mp->m_ail->xa_lock);
961
962 return tail_lsn;
963}
964
965/*
966 * Return the space in the log between the tail and the head. The head
967 * is passed in the cycle/bytes formal parms. In the special case where
968 * the reserve head has wrapped passed the tail, this calculation is no
969 * longer valid. In this case, just return 0 which means there is no space
970 * in the log. This works for all places where this function is called
971 * with the reserve head. Of course, if the write head were to ever
972 * wrap the tail, we should blow up. Rather than catch this case here,
973 * we depend on other ASSERTions in other parts of the code. XXXmiken
974 *
975 * This code also handles the case where the reservation head is behind
976 * the tail. The details of this case are described below, but the end
977 * result is that we return the size of the log as the amount of space left.
978 */
979STATIC int
980xlog_space_left(
981 struct xlog *log,
982 atomic64_t *head)
983{
984 int free_bytes;
985 int tail_bytes;
986 int tail_cycle;
987 int head_cycle;
988 int head_bytes;
989
990 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
991 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
992 tail_bytes = BBTOB(tail_bytes);
993 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
994 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
995 else if (tail_cycle + 1 < head_cycle)
996 return 0;
997 else if (tail_cycle < head_cycle) {
998 ASSERT(tail_cycle == (head_cycle - 1));
999 free_bytes = tail_bytes - head_bytes;
1000 } else {
1001 /*
1002 * The reservation head is behind the tail.
1003 * In this case we just want to return the size of the
1004 * log as the amount of space left.
1005 */
1006 xfs_alert(log->l_mp,
1007 "xlog_space_left: head behind tail\n"
1008 " tail_cycle = %d, tail_bytes = %d\n"
1009 " GH cycle = %d, GH bytes = %d",
1010 tail_cycle, tail_bytes, head_cycle, head_bytes);
1011 ASSERT(0);
1012 free_bytes = log->l_logsize;
1013 }
1014 return free_bytes;
1015}
1016
1017
1018/*
1019 * Log function which is called when an io completes.
1020 *
1021 * The log manager needs its own routine, in order to control what
1022 * happens with the buffer after the write completes.
1023 */
1024void
1025xlog_iodone(xfs_buf_t *bp)
1026{
1027 xlog_in_core_t *iclog = bp->b_fspriv;
1028 xlog_t *l = iclog->ic_log;
1029 int aborted = 0;
1030
1031 /*
1032 * Race to shutdown the filesystem if we see an error.
1033 */
1034 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1035 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1036 xfs_buf_ioerror_alert(bp, __func__);
1037 xfs_buf_stale(bp);
1038 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1039 /*
1040 * This flag will be propagated to the trans-committed
1041 * callback routines to let them know that the log-commit
1042 * didn't succeed.
1043 */
1044 aborted = XFS_LI_ABORTED;
1045 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1046 aborted = XFS_LI_ABORTED;
1047 }
1048
1049 /* log I/O is always issued ASYNC */
1050 ASSERT(XFS_BUF_ISASYNC(bp));
1051 xlog_state_done_syncing(iclog, aborted);
1052 /*
1053 * do not reference the buffer (bp) here as we could race
1054 * with it being freed after writing the unmount record to the
1055 * log.
1056 */
1057
1058} /* xlog_iodone */
1059
1060/*
1061 * Return size of each in-core log record buffer.
1062 *
1063 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1064 *
1065 * If the filesystem blocksize is too large, we may need to choose a
1066 * larger size since the directory code currently logs entire blocks.
1067 */
1068
1069STATIC void
1070xlog_get_iclog_buffer_size(xfs_mount_t *mp,
1071 xlog_t *log)
1072{
1073 int size;
1074 int xhdrs;
1075
1076 if (mp->m_logbufs <= 0)
1077 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1078 else
1079 log->l_iclog_bufs = mp->m_logbufs;
1080
1081 /*
1082 * Buffer size passed in from mount system call.
1083 */
1084 if (mp->m_logbsize > 0) {
1085 size = log->l_iclog_size = mp->m_logbsize;
1086 log->l_iclog_size_log = 0;
1087 while (size != 1) {
1088 log->l_iclog_size_log++;
1089 size >>= 1;
1090 }
1091
1092 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1093 /* # headers = size / 32k
1094 * one header holds cycles from 32k of data
1095 */
1096
1097 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1098 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1099 xhdrs++;
1100 log->l_iclog_hsize = xhdrs << BBSHIFT;
1101 log->l_iclog_heads = xhdrs;
1102 } else {
1103 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1104 log->l_iclog_hsize = BBSIZE;
1105 log->l_iclog_heads = 1;
1106 }
1107 goto done;
1108 }
1109
1110 /* All machines use 32kB buffers by default. */
1111 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1112 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1113
1114 /* the default log size is 16k or 32k which is one header sector */
1115 log->l_iclog_hsize = BBSIZE;
1116 log->l_iclog_heads = 1;
1117
1118done:
1119 /* are we being asked to make the sizes selected above visible? */
1120 if (mp->m_logbufs == 0)
1121 mp->m_logbufs = log->l_iclog_bufs;
1122 if (mp->m_logbsize == 0)
1123 mp->m_logbsize = log->l_iclog_size;
1124} /* xlog_get_iclog_buffer_size */
1125
1126
1127/*
1128 * This routine initializes some of the log structure for a given mount point.
1129 * Its primary purpose is to fill in enough, so recovery can occur. However,
1130 * some other stuff may be filled in too.
1131 */
1132STATIC xlog_t *
1133xlog_alloc_log(xfs_mount_t *mp,
1134 xfs_buftarg_t *log_target,
1135 xfs_daddr_t blk_offset,
1136 int num_bblks)
1137{
1138 xlog_t *log;
1139 xlog_rec_header_t *head;
1140 xlog_in_core_t **iclogp;
1141 xlog_in_core_t *iclog, *prev_iclog=NULL;
1142 xfs_buf_t *bp;
1143 int i;
1144 int error = ENOMEM;
1145 uint log2_size = 0;
1146
1147 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1148 if (!log) {
1149 xfs_warn(mp, "Log allocation failed: No memory!");
1150 goto out;
1151 }
1152
1153 log->l_mp = mp;
1154 log->l_targ = log_target;
1155 log->l_logsize = BBTOB(num_bblks);
1156 log->l_logBBstart = blk_offset;
1157 log->l_logBBsize = num_bblks;
1158 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1159 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1160
1161 log->l_prev_block = -1;
1162 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1163 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1164 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1165 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1166
1167 xlog_grant_head_init(&log->l_reserve_head);
1168 xlog_grant_head_init(&log->l_write_head);
1169
1170 error = EFSCORRUPTED;
1171 if (xfs_sb_version_hassector(&mp->m_sb)) {
1172 log2_size = mp->m_sb.sb_logsectlog;
1173 if (log2_size < BBSHIFT) {
1174 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1175 log2_size, BBSHIFT);
1176 goto out_free_log;
1177 }
1178
1179 log2_size -= BBSHIFT;
1180 if (log2_size > mp->m_sectbb_log) {
1181 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1182 log2_size, mp->m_sectbb_log);
1183 goto out_free_log;
1184 }
1185
1186 /* for larger sector sizes, must have v2 or external log */
1187 if (log2_size && log->l_logBBstart > 0 &&
1188 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1189 xfs_warn(mp,
1190 "log sector size (0x%x) invalid for configuration.",
1191 log2_size);
1192 goto out_free_log;
1193 }
1194 }
1195 log->l_sectBBsize = 1 << log2_size;
1196
1197 xlog_get_iclog_buffer_size(mp, log);
1198
1199 error = ENOMEM;
1200 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1201 if (!bp)
1202 goto out_free_log;
1203 bp->b_iodone = xlog_iodone;
1204 ASSERT(xfs_buf_islocked(bp));
1205 log->l_xbuf = bp;
1206
1207 spin_lock_init(&log->l_icloglock);
1208 init_waitqueue_head(&log->l_flush_wait);
1209
1210 iclogp = &log->l_iclog;
1211 /*
1212 * The amount of memory to allocate for the iclog structure is
1213 * rather funky due to the way the structure is defined. It is
1214 * done this way so that we can use different sizes for machines
1215 * with different amounts of memory. See the definition of
1216 * xlog_in_core_t in xfs_log_priv.h for details.
1217 */
1218 ASSERT(log->l_iclog_size >= 4096);
1219 for (i=0; i < log->l_iclog_bufs; i++) {
1220 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1221 if (!*iclogp)
1222 goto out_free_iclog;
1223
1224 iclog = *iclogp;
1225 iclog->ic_prev = prev_iclog;
1226 prev_iclog = iclog;
1227
1228 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1229 BTOBB(log->l_iclog_size), 0);
1230 if (!bp)
1231 goto out_free_iclog;
1232
1233 bp->b_iodone = xlog_iodone;
1234 iclog->ic_bp = bp;
1235 iclog->ic_data = bp->b_addr;
1236#ifdef DEBUG
1237 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1238#endif
1239 head = &iclog->ic_header;
1240 memset(head, 0, sizeof(xlog_rec_header_t));
1241 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1242 head->h_version = cpu_to_be32(
1243 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1244 head->h_size = cpu_to_be32(log->l_iclog_size);
1245 /* new fields */
1246 head->h_fmt = cpu_to_be32(XLOG_FMT);
1247 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1248
1249 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1250 iclog->ic_state = XLOG_STATE_ACTIVE;
1251 iclog->ic_log = log;
1252 atomic_set(&iclog->ic_refcnt, 0);
1253 spin_lock_init(&iclog->ic_callback_lock);
1254 iclog->ic_callback_tail = &(iclog->ic_callback);
1255 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1256
1257 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1258 init_waitqueue_head(&iclog->ic_force_wait);
1259 init_waitqueue_head(&iclog->ic_write_wait);
1260
1261 iclogp = &iclog->ic_next;
1262 }
1263 *iclogp = log->l_iclog; /* complete ring */
1264 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1265
1266 error = xlog_cil_init(log);
1267 if (error)
1268 goto out_free_iclog;
1269 return log;
1270
1271out_free_iclog:
1272 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1273 prev_iclog = iclog->ic_next;
1274 if (iclog->ic_bp)
1275 xfs_buf_free(iclog->ic_bp);
1276 kmem_free(iclog);
1277 }
1278 spinlock_destroy(&log->l_icloglock);
1279 xfs_buf_free(log->l_xbuf);
1280out_free_log:
1281 kmem_free(log);
1282out:
1283 return ERR_PTR(-error);
1284} /* xlog_alloc_log */
1285
1286
1287/*
1288 * Write out the commit record of a transaction associated with the given
1289 * ticket. Return the lsn of the commit record.
1290 */
1291STATIC int
1292xlog_commit_record(
1293 struct xlog *log,
1294 struct xlog_ticket *ticket,
1295 struct xlog_in_core **iclog,
1296 xfs_lsn_t *commitlsnp)
1297{
1298 struct xfs_mount *mp = log->l_mp;
1299 int error;
1300 struct xfs_log_iovec reg = {
1301 .i_addr = NULL,
1302 .i_len = 0,
1303 .i_type = XLOG_REG_TYPE_COMMIT,
1304 };
1305 struct xfs_log_vec vec = {
1306 .lv_niovecs = 1,
1307 .lv_iovecp = ®,
1308 };
1309
1310 ASSERT_ALWAYS(iclog);
1311 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1312 XLOG_COMMIT_TRANS);
1313 if (error)
1314 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1315 return error;
1316}
1317
1318/*
1319 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1320 * log space. This code pushes on the lsn which would supposedly free up
1321 * the 25% which we want to leave free. We may need to adopt a policy which
1322 * pushes on an lsn which is further along in the log once we reach the high
1323 * water mark. In this manner, we would be creating a low water mark.
1324 */
1325STATIC void
1326xlog_grant_push_ail(
1327 struct xlog *log,
1328 int need_bytes)
1329{
1330 xfs_lsn_t threshold_lsn = 0;
1331 xfs_lsn_t last_sync_lsn;
1332 int free_blocks;
1333 int free_bytes;
1334 int threshold_block;
1335 int threshold_cycle;
1336 int free_threshold;
1337
1338 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1339
1340 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1341 free_blocks = BTOBBT(free_bytes);
1342
1343 /*
1344 * Set the threshold for the minimum number of free blocks in the
1345 * log to the maximum of what the caller needs, one quarter of the
1346 * log, and 256 blocks.
1347 */
1348 free_threshold = BTOBB(need_bytes);
1349 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1350 free_threshold = MAX(free_threshold, 256);
1351 if (free_blocks >= free_threshold)
1352 return;
1353
1354 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1355 &threshold_block);
1356 threshold_block += free_threshold;
1357 if (threshold_block >= log->l_logBBsize) {
1358 threshold_block -= log->l_logBBsize;
1359 threshold_cycle += 1;
1360 }
1361 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1362 threshold_block);
1363 /*
1364 * Don't pass in an lsn greater than the lsn of the last
1365 * log record known to be on disk. Use a snapshot of the last sync lsn
1366 * so that it doesn't change between the compare and the set.
1367 */
1368 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1369 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1370 threshold_lsn = last_sync_lsn;
1371
1372 /*
1373 * Get the transaction layer to kick the dirty buffers out to
1374 * disk asynchronously. No point in trying to do this if
1375 * the filesystem is shutting down.
1376 */
1377 if (!XLOG_FORCED_SHUTDOWN(log))
1378 xfs_ail_push(log->l_ailp, threshold_lsn);
1379}
1380
1381/*
1382 * The bdstrat callback function for log bufs. This gives us a central
1383 * place to trap bufs in case we get hit by a log I/O error and need to
1384 * shutdown. Actually, in practice, even when we didn't get a log error,
1385 * we transition the iclogs to IOERROR state *after* flushing all existing
1386 * iclogs to disk. This is because we don't want anymore new transactions to be
1387 * started or completed afterwards.
1388 */
1389STATIC int
1390xlog_bdstrat(
1391 struct xfs_buf *bp)
1392{
1393 struct xlog_in_core *iclog = bp->b_fspriv;
1394
1395 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1396 xfs_buf_ioerror(bp, EIO);
1397 xfs_buf_stale(bp);
1398 xfs_buf_ioend(bp, 0);
1399 /*
1400 * It would seem logical to return EIO here, but we rely on
1401 * the log state machine to propagate I/O errors instead of
1402 * doing it here.
1403 */
1404 return 0;
1405 }
1406
1407 xfs_buf_iorequest(bp);
1408 return 0;
1409}
1410
1411/*
1412 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1413 * fashion. Previously, we should have moved the current iclog
1414 * ptr in the log to point to the next available iclog. This allows further
1415 * write to continue while this code syncs out an iclog ready to go.
1416 * Before an in-core log can be written out, the data section must be scanned
1417 * to save away the 1st word of each BBSIZE block into the header. We replace
1418 * it with the current cycle count. Each BBSIZE block is tagged with the
1419 * cycle count because there in an implicit assumption that drives will
1420 * guarantee that entire 512 byte blocks get written at once. In other words,
1421 * we can't have part of a 512 byte block written and part not written. By
1422 * tagging each block, we will know which blocks are valid when recovering
1423 * after an unclean shutdown.
1424 *
1425 * This routine is single threaded on the iclog. No other thread can be in
1426 * this routine with the same iclog. Changing contents of iclog can there-
1427 * fore be done without grabbing the state machine lock. Updating the global
1428 * log will require grabbing the lock though.
1429 *
1430 * The entire log manager uses a logical block numbering scheme. Only
1431 * log_sync (and then only bwrite()) know about the fact that the log may
1432 * not start with block zero on a given device. The log block start offset
1433 * is added immediately before calling bwrite().
1434 */
1435
1436STATIC int
1437xlog_sync(xlog_t *log,
1438 xlog_in_core_t *iclog)
1439{
1440 xfs_caddr_t dptr; /* pointer to byte sized element */
1441 xfs_buf_t *bp;
1442 int i;
1443 uint count; /* byte count of bwrite */
1444 uint count_init; /* initial count before roundup */
1445 int roundoff; /* roundoff to BB or stripe */
1446 int split = 0; /* split write into two regions */
1447 int error;
1448 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1449
1450 XFS_STATS_INC(xs_log_writes);
1451 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1452
1453 /* Add for LR header */
1454 count_init = log->l_iclog_hsize + iclog->ic_offset;
1455
1456 /* Round out the log write size */
1457 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1458 /* we have a v2 stripe unit to use */
1459 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1460 } else {
1461 count = BBTOB(BTOBB(count_init));
1462 }
1463 roundoff = count - count_init;
1464 ASSERT(roundoff >= 0);
1465 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1466 roundoff < log->l_mp->m_sb.sb_logsunit)
1467 ||
1468 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1469 roundoff < BBTOB(1)));
1470
1471 /* move grant heads by roundoff in sync */
1472 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1473 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1474
1475 /* put cycle number in every block */
1476 xlog_pack_data(log, iclog, roundoff);
1477
1478 /* real byte length */
1479 if (v2) {
1480 iclog->ic_header.h_len =
1481 cpu_to_be32(iclog->ic_offset + roundoff);
1482 } else {
1483 iclog->ic_header.h_len =
1484 cpu_to_be32(iclog->ic_offset);
1485 }
1486
1487 bp = iclog->ic_bp;
1488 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1489
1490 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1491
1492 /* Do we need to split this write into 2 parts? */
1493 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1494 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1495 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1496 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1497 } else {
1498 iclog->ic_bwritecnt = 1;
1499 }
1500 bp->b_io_length = BTOBB(count);
1501 bp->b_fspriv = iclog;
1502 XFS_BUF_ZEROFLAGS(bp);
1503 XFS_BUF_ASYNC(bp);
1504 bp->b_flags |= XBF_SYNCIO;
1505
1506 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1507 bp->b_flags |= XBF_FUA;
1508
1509 /*
1510 * Flush the data device before flushing the log to make
1511 * sure all meta data written back from the AIL actually made
1512 * it to disk before stamping the new log tail LSN into the
1513 * log buffer. For an external log we need to issue the
1514 * flush explicitly, and unfortunately synchronously here;
1515 * for an internal log we can simply use the block layer
1516 * state machine for preflushes.
1517 */
1518 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1519 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1520 else
1521 bp->b_flags |= XBF_FLUSH;
1522 }
1523
1524 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1525 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1526
1527 xlog_verify_iclog(log, iclog, count, B_TRUE);
1528
1529 /* account for log which doesn't start at block #0 */
1530 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1531 /*
1532 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1533 * is shutting down.
1534 */
1535 XFS_BUF_WRITE(bp);
1536
1537 error = xlog_bdstrat(bp);
1538 if (error) {
1539 xfs_buf_ioerror_alert(bp, "xlog_sync");
1540 return error;
1541 }
1542 if (split) {
1543 bp = iclog->ic_log->l_xbuf;
1544 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1545 xfs_buf_associate_memory(bp,
1546 (char *)&iclog->ic_header + count, split);
1547 bp->b_fspriv = iclog;
1548 XFS_BUF_ZEROFLAGS(bp);
1549 XFS_BUF_ASYNC(bp);
1550 bp->b_flags |= XBF_SYNCIO;
1551 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1552 bp->b_flags |= XBF_FUA;
1553 dptr = bp->b_addr;
1554 /*
1555 * Bump the cycle numbers at the start of each block
1556 * since this part of the buffer is at the start of
1557 * a new cycle. Watch out for the header magic number
1558 * case, though.
1559 */
1560 for (i = 0; i < split; i += BBSIZE) {
1561 be32_add_cpu((__be32 *)dptr, 1);
1562 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1563 be32_add_cpu((__be32 *)dptr, 1);
1564 dptr += BBSIZE;
1565 }
1566
1567 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1568 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1569
1570 /* account for internal log which doesn't start at block #0 */
1571 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1572 XFS_BUF_WRITE(bp);
1573 error = xlog_bdstrat(bp);
1574 if (error) {
1575 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1576 return error;
1577 }
1578 }
1579 return 0;
1580} /* xlog_sync */
1581
1582
1583/*
1584 * Deallocate a log structure
1585 */
1586STATIC void
1587xlog_dealloc_log(xlog_t *log)
1588{
1589 xlog_in_core_t *iclog, *next_iclog;
1590 int i;
1591
1592 xlog_cil_destroy(log);
1593
1594 /*
1595 * always need to ensure that the extra buffer does not point to memory
1596 * owned by another log buffer before we free it.
1597 */
1598 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1599 xfs_buf_free(log->l_xbuf);
1600
1601 iclog = log->l_iclog;
1602 for (i=0; i<log->l_iclog_bufs; i++) {
1603 xfs_buf_free(iclog->ic_bp);
1604 next_iclog = iclog->ic_next;
1605 kmem_free(iclog);
1606 iclog = next_iclog;
1607 }
1608 spinlock_destroy(&log->l_icloglock);
1609
1610 log->l_mp->m_log = NULL;
1611 kmem_free(log);
1612} /* xlog_dealloc_log */
1613
1614/*
1615 * Update counters atomically now that memcpy is done.
1616 */
1617/* ARGSUSED */
1618static inline void
1619xlog_state_finish_copy(xlog_t *log,
1620 xlog_in_core_t *iclog,
1621 int record_cnt,
1622 int copy_bytes)
1623{
1624 spin_lock(&log->l_icloglock);
1625
1626 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1627 iclog->ic_offset += copy_bytes;
1628
1629 spin_unlock(&log->l_icloglock);
1630} /* xlog_state_finish_copy */
1631
1632
1633
1634
1635/*
1636 * print out info relating to regions written which consume
1637 * the reservation
1638 */
1639void
1640xlog_print_tic_res(
1641 struct xfs_mount *mp,
1642 struct xlog_ticket *ticket)
1643{
1644 uint i;
1645 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1646
1647 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1648 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1649 "bformat",
1650 "bchunk",
1651 "efi_format",
1652 "efd_format",
1653 "iformat",
1654 "icore",
1655 "iext",
1656 "ibroot",
1657 "ilocal",
1658 "iattr_ext",
1659 "iattr_broot",
1660 "iattr_local",
1661 "qformat",
1662 "dquot",
1663 "quotaoff",
1664 "LR header",
1665 "unmount",
1666 "commit",
1667 "trans header"
1668 };
1669 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1670 "SETATTR_NOT_SIZE",
1671 "SETATTR_SIZE",
1672 "INACTIVE",
1673 "CREATE",
1674 "CREATE_TRUNC",
1675 "TRUNCATE_FILE",
1676 "REMOVE",
1677 "LINK",
1678 "RENAME",
1679 "MKDIR",
1680 "RMDIR",
1681 "SYMLINK",
1682 "SET_DMATTRS",
1683 "GROWFS",
1684 "STRAT_WRITE",
1685 "DIOSTRAT",
1686 "WRITE_SYNC",
1687 "WRITEID",
1688 "ADDAFORK",
1689 "ATTRINVAL",
1690 "ATRUNCATE",
1691 "ATTR_SET",
1692 "ATTR_RM",
1693 "ATTR_FLAG",
1694 "CLEAR_AGI_BUCKET",
1695 "QM_SBCHANGE",
1696 "DUMMY1",
1697 "DUMMY2",
1698 "QM_QUOTAOFF",
1699 "QM_DQALLOC",
1700 "QM_SETQLIM",
1701 "QM_DQCLUSTER",
1702 "QM_QINOCREATE",
1703 "QM_QUOTAOFF_END",
1704 "SB_UNIT",
1705 "FSYNC_TS",
1706 "GROWFSRT_ALLOC",
1707 "GROWFSRT_ZERO",
1708 "GROWFSRT_FREE",
1709 "SWAPEXT"
1710 };
1711
1712 xfs_warn(mp,
1713 "xlog_write: reservation summary:\n"
1714 " trans type = %s (%u)\n"
1715 " unit res = %d bytes\n"
1716 " current res = %d bytes\n"
1717 " total reg = %u bytes (o/flow = %u bytes)\n"
1718 " ophdrs = %u (ophdr space = %u bytes)\n"
1719 " ophdr + reg = %u bytes\n"
1720 " num regions = %u\n",
1721 ((ticket->t_trans_type <= 0 ||
1722 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1723 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1724 ticket->t_trans_type,
1725 ticket->t_unit_res,
1726 ticket->t_curr_res,
1727 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1728 ticket->t_res_num_ophdrs, ophdr_spc,
1729 ticket->t_res_arr_sum +
1730 ticket->t_res_o_flow + ophdr_spc,
1731 ticket->t_res_num);
1732
1733 for (i = 0; i < ticket->t_res_num; i++) {
1734 uint r_type = ticket->t_res_arr[i].r_type;
1735 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1736 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1737 "bad-rtype" : res_type_str[r_type-1]),
1738 ticket->t_res_arr[i].r_len);
1739 }
1740
1741 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1742 "xlog_write: reservation ran out. Need to up reservation");
1743 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1744}
1745
1746/*
1747 * Calculate the potential space needed by the log vector. Each region gets
1748 * its own xlog_op_header_t and may need to be double word aligned.
1749 */
1750static int
1751xlog_write_calc_vec_length(
1752 struct xlog_ticket *ticket,
1753 struct xfs_log_vec *log_vector)
1754{
1755 struct xfs_log_vec *lv;
1756 int headers = 0;
1757 int len = 0;
1758 int i;
1759
1760 /* acct for start rec of xact */
1761 if (ticket->t_flags & XLOG_TIC_INITED)
1762 headers++;
1763
1764 for (lv = log_vector; lv; lv = lv->lv_next) {
1765 headers += lv->lv_niovecs;
1766
1767 for (i = 0; i < lv->lv_niovecs; i++) {
1768 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1769
1770 len += vecp->i_len;
1771 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1772 }
1773 }
1774
1775 ticket->t_res_num_ophdrs += headers;
1776 len += headers * sizeof(struct xlog_op_header);
1777
1778 return len;
1779}
1780
1781/*
1782 * If first write for transaction, insert start record We can't be trying to
1783 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1784 */
1785static int
1786xlog_write_start_rec(
1787 struct xlog_op_header *ophdr,
1788 struct xlog_ticket *ticket)
1789{
1790 if (!(ticket->t_flags & XLOG_TIC_INITED))
1791 return 0;
1792
1793 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1794 ophdr->oh_clientid = ticket->t_clientid;
1795 ophdr->oh_len = 0;
1796 ophdr->oh_flags = XLOG_START_TRANS;
1797 ophdr->oh_res2 = 0;
1798
1799 ticket->t_flags &= ~XLOG_TIC_INITED;
1800
1801 return sizeof(struct xlog_op_header);
1802}
1803
1804static xlog_op_header_t *
1805xlog_write_setup_ophdr(
1806 struct xlog *log,
1807 struct xlog_op_header *ophdr,
1808 struct xlog_ticket *ticket,
1809 uint flags)
1810{
1811 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1812 ophdr->oh_clientid = ticket->t_clientid;
1813 ophdr->oh_res2 = 0;
1814
1815 /* are we copying a commit or unmount record? */
1816 ophdr->oh_flags = flags;
1817
1818 /*
1819 * We've seen logs corrupted with bad transaction client ids. This
1820 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1821 * and shut down the filesystem.
1822 */
1823 switch (ophdr->oh_clientid) {
1824 case XFS_TRANSACTION:
1825 case XFS_VOLUME:
1826 case XFS_LOG:
1827 break;
1828 default:
1829 xfs_warn(log->l_mp,
1830 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1831 ophdr->oh_clientid, ticket);
1832 return NULL;
1833 }
1834
1835 return ophdr;
1836}
1837
1838/*
1839 * Set up the parameters of the region copy into the log. This has
1840 * to handle region write split across multiple log buffers - this
1841 * state is kept external to this function so that this code can
1842 * can be written in an obvious, self documenting manner.
1843 */
1844static int
1845xlog_write_setup_copy(
1846 struct xlog_ticket *ticket,
1847 struct xlog_op_header *ophdr,
1848 int space_available,
1849 int space_required,
1850 int *copy_off,
1851 int *copy_len,
1852 int *last_was_partial_copy,
1853 int *bytes_consumed)
1854{
1855 int still_to_copy;
1856
1857 still_to_copy = space_required - *bytes_consumed;
1858 *copy_off = *bytes_consumed;
1859
1860 if (still_to_copy <= space_available) {
1861 /* write of region completes here */
1862 *copy_len = still_to_copy;
1863 ophdr->oh_len = cpu_to_be32(*copy_len);
1864 if (*last_was_partial_copy)
1865 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1866 *last_was_partial_copy = 0;
1867 *bytes_consumed = 0;
1868 return 0;
1869 }
1870
1871 /* partial write of region, needs extra log op header reservation */
1872 *copy_len = space_available;
1873 ophdr->oh_len = cpu_to_be32(*copy_len);
1874 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1875 if (*last_was_partial_copy)
1876 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1877 *bytes_consumed += *copy_len;
1878 (*last_was_partial_copy)++;
1879
1880 /* account for new log op header */
1881 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1882 ticket->t_res_num_ophdrs++;
1883
1884 return sizeof(struct xlog_op_header);
1885}
1886
1887static int
1888xlog_write_copy_finish(
1889 struct xlog *log,
1890 struct xlog_in_core *iclog,
1891 uint flags,
1892 int *record_cnt,
1893 int *data_cnt,
1894 int *partial_copy,
1895 int *partial_copy_len,
1896 int log_offset,
1897 struct xlog_in_core **commit_iclog)
1898{
1899 if (*partial_copy) {
1900 /*
1901 * This iclog has already been marked WANT_SYNC by
1902 * xlog_state_get_iclog_space.
1903 */
1904 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1905 *record_cnt = 0;
1906 *data_cnt = 0;
1907 return xlog_state_release_iclog(log, iclog);
1908 }
1909
1910 *partial_copy = 0;
1911 *partial_copy_len = 0;
1912
1913 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1914 /* no more space in this iclog - push it. */
1915 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1916 *record_cnt = 0;
1917 *data_cnt = 0;
1918
1919 spin_lock(&log->l_icloglock);
1920 xlog_state_want_sync(log, iclog);
1921 spin_unlock(&log->l_icloglock);
1922
1923 if (!commit_iclog)
1924 return xlog_state_release_iclog(log, iclog);
1925 ASSERT(flags & XLOG_COMMIT_TRANS);
1926 *commit_iclog = iclog;
1927 }
1928
1929 return 0;
1930}
1931
1932/*
1933 * Write some region out to in-core log
1934 *
1935 * This will be called when writing externally provided regions or when
1936 * writing out a commit record for a given transaction.
1937 *
1938 * General algorithm:
1939 * 1. Find total length of this write. This may include adding to the
1940 * lengths passed in.
1941 * 2. Check whether we violate the tickets reservation.
1942 * 3. While writing to this iclog
1943 * A. Reserve as much space in this iclog as can get
1944 * B. If this is first write, save away start lsn
1945 * C. While writing this region:
1946 * 1. If first write of transaction, write start record
1947 * 2. Write log operation header (header per region)
1948 * 3. Find out if we can fit entire region into this iclog
1949 * 4. Potentially, verify destination memcpy ptr
1950 * 5. Memcpy (partial) region
1951 * 6. If partial copy, release iclog; otherwise, continue
1952 * copying more regions into current iclog
1953 * 4. Mark want sync bit (in simulation mode)
1954 * 5. Release iclog for potential flush to on-disk log.
1955 *
1956 * ERRORS:
1957 * 1. Panic if reservation is overrun. This should never happen since
1958 * reservation amounts are generated internal to the filesystem.
1959 * NOTES:
1960 * 1. Tickets are single threaded data structures.
1961 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1962 * syncing routine. When a single log_write region needs to span
1963 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1964 * on all log operation writes which don't contain the end of the
1965 * region. The XLOG_END_TRANS bit is used for the in-core log
1966 * operation which contains the end of the continued log_write region.
1967 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1968 * we don't really know exactly how much space will be used. As a result,
1969 * we don't update ic_offset until the end when we know exactly how many
1970 * bytes have been written out.
1971 */
1972int
1973xlog_write(
1974 struct xlog *log,
1975 struct xfs_log_vec *log_vector,
1976 struct xlog_ticket *ticket,
1977 xfs_lsn_t *start_lsn,
1978 struct xlog_in_core **commit_iclog,
1979 uint flags)
1980{
1981 struct xlog_in_core *iclog = NULL;
1982 struct xfs_log_iovec *vecp;
1983 struct xfs_log_vec *lv;
1984 int len;
1985 int index;
1986 int partial_copy = 0;
1987 int partial_copy_len = 0;
1988 int contwr = 0;
1989 int record_cnt = 0;
1990 int data_cnt = 0;
1991 int error;
1992
1993 *start_lsn = 0;
1994
1995 len = xlog_write_calc_vec_length(ticket, log_vector);
1996
1997 /*
1998 * Region headers and bytes are already accounted for.
1999 * We only need to take into account start records and
2000 * split regions in this function.
2001 */
2002 if (ticket->t_flags & XLOG_TIC_INITED)
2003 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2004
2005 /*
2006 * Commit record headers need to be accounted for. These
2007 * come in as separate writes so are easy to detect.
2008 */
2009 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2010 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2011
2012 if (ticket->t_curr_res < 0)
2013 xlog_print_tic_res(log->l_mp, ticket);
2014
2015 index = 0;
2016 lv = log_vector;
2017 vecp = lv->lv_iovecp;
2018 while (lv && index < lv->lv_niovecs) {
2019 void *ptr;
2020 int log_offset;
2021
2022 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2023 &contwr, &log_offset);
2024 if (error)
2025 return error;
2026
2027 ASSERT(log_offset <= iclog->ic_size - 1);
2028 ptr = iclog->ic_datap + log_offset;
2029
2030 /* start_lsn is the first lsn written to. That's all we need. */
2031 if (!*start_lsn)
2032 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2033
2034 /*
2035 * This loop writes out as many regions as can fit in the amount
2036 * of space which was allocated by xlog_state_get_iclog_space().
2037 */
2038 while (lv && index < lv->lv_niovecs) {
2039 struct xfs_log_iovec *reg = &vecp[index];
2040 struct xlog_op_header *ophdr;
2041 int start_rec_copy;
2042 int copy_len;
2043 int copy_off;
2044
2045 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2046 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2047
2048 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2049 if (start_rec_copy) {
2050 record_cnt++;
2051 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2052 start_rec_copy);
2053 }
2054
2055 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2056 if (!ophdr)
2057 return XFS_ERROR(EIO);
2058
2059 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2060 sizeof(struct xlog_op_header));
2061
2062 len += xlog_write_setup_copy(ticket, ophdr,
2063 iclog->ic_size-log_offset,
2064 reg->i_len,
2065 ©_off, ©_len,
2066 &partial_copy,
2067 &partial_copy_len);
2068 xlog_verify_dest_ptr(log, ptr);
2069
2070 /* copy region */
2071 ASSERT(copy_len >= 0);
2072 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2073 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2074
2075 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2076 record_cnt++;
2077 data_cnt += contwr ? copy_len : 0;
2078
2079 error = xlog_write_copy_finish(log, iclog, flags,
2080 &record_cnt, &data_cnt,
2081 &partial_copy,
2082 &partial_copy_len,
2083 log_offset,
2084 commit_iclog);
2085 if (error)
2086 return error;
2087
2088 /*
2089 * if we had a partial copy, we need to get more iclog
2090 * space but we don't want to increment the region
2091 * index because there is still more is this region to
2092 * write.
2093 *
2094 * If we completed writing this region, and we flushed
2095 * the iclog (indicated by resetting of the record
2096 * count), then we also need to get more log space. If
2097 * this was the last record, though, we are done and
2098 * can just return.
2099 */
2100 if (partial_copy)
2101 break;
2102
2103 if (++index == lv->lv_niovecs) {
2104 lv = lv->lv_next;
2105 index = 0;
2106 if (lv)
2107 vecp = lv->lv_iovecp;
2108 }
2109 if (record_cnt == 0) {
2110 if (!lv)
2111 return 0;
2112 break;
2113 }
2114 }
2115 }
2116
2117 ASSERT(len == 0);
2118
2119 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2120 if (!commit_iclog)
2121 return xlog_state_release_iclog(log, iclog);
2122
2123 ASSERT(flags & XLOG_COMMIT_TRANS);
2124 *commit_iclog = iclog;
2125 return 0;
2126}
2127
2128
2129/*****************************************************************************
2130 *
2131 * State Machine functions
2132 *
2133 *****************************************************************************
2134 */
2135
2136/* Clean iclogs starting from the head. This ordering must be
2137 * maintained, so an iclog doesn't become ACTIVE beyond one that
2138 * is SYNCING. This is also required to maintain the notion that we use
2139 * a ordered wait queue to hold off would be writers to the log when every
2140 * iclog is trying to sync to disk.
2141 *
2142 * State Change: DIRTY -> ACTIVE
2143 */
2144STATIC void
2145xlog_state_clean_log(xlog_t *log)
2146{
2147 xlog_in_core_t *iclog;
2148 int changed = 0;
2149
2150 iclog = log->l_iclog;
2151 do {
2152 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2153 iclog->ic_state = XLOG_STATE_ACTIVE;
2154 iclog->ic_offset = 0;
2155 ASSERT(iclog->ic_callback == NULL);
2156 /*
2157 * If the number of ops in this iclog indicate it just
2158 * contains the dummy transaction, we can
2159 * change state into IDLE (the second time around).
2160 * Otherwise we should change the state into
2161 * NEED a dummy.
2162 * We don't need to cover the dummy.
2163 */
2164 if (!changed &&
2165 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2166 XLOG_COVER_OPS)) {
2167 changed = 1;
2168 } else {
2169 /*
2170 * We have two dirty iclogs so start over
2171 * This could also be num of ops indicates
2172 * this is not the dummy going out.
2173 */
2174 changed = 2;
2175 }
2176 iclog->ic_header.h_num_logops = 0;
2177 memset(iclog->ic_header.h_cycle_data, 0,
2178 sizeof(iclog->ic_header.h_cycle_data));
2179 iclog->ic_header.h_lsn = 0;
2180 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2181 /* do nothing */;
2182 else
2183 break; /* stop cleaning */
2184 iclog = iclog->ic_next;
2185 } while (iclog != log->l_iclog);
2186
2187 /* log is locked when we are called */
2188 /*
2189 * Change state for the dummy log recording.
2190 * We usually go to NEED. But we go to NEED2 if the changed indicates
2191 * we are done writing the dummy record.
2192 * If we are done with the second dummy recored (DONE2), then
2193 * we go to IDLE.
2194 */
2195 if (changed) {
2196 switch (log->l_covered_state) {
2197 case XLOG_STATE_COVER_IDLE:
2198 case XLOG_STATE_COVER_NEED:
2199 case XLOG_STATE_COVER_NEED2:
2200 log->l_covered_state = XLOG_STATE_COVER_NEED;
2201 break;
2202
2203 case XLOG_STATE_COVER_DONE:
2204 if (changed == 1)
2205 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2206 else
2207 log->l_covered_state = XLOG_STATE_COVER_NEED;
2208 break;
2209
2210 case XLOG_STATE_COVER_DONE2:
2211 if (changed == 1)
2212 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2213 else
2214 log->l_covered_state = XLOG_STATE_COVER_NEED;
2215 break;
2216
2217 default:
2218 ASSERT(0);
2219 }
2220 }
2221} /* xlog_state_clean_log */
2222
2223STATIC xfs_lsn_t
2224xlog_get_lowest_lsn(
2225 xlog_t *log)
2226{
2227 xlog_in_core_t *lsn_log;
2228 xfs_lsn_t lowest_lsn, lsn;
2229
2230 lsn_log = log->l_iclog;
2231 lowest_lsn = 0;
2232 do {
2233 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2234 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2235 if ((lsn && !lowest_lsn) ||
2236 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2237 lowest_lsn = lsn;
2238 }
2239 }
2240 lsn_log = lsn_log->ic_next;
2241 } while (lsn_log != log->l_iclog);
2242 return lowest_lsn;
2243}
2244
2245
2246STATIC void
2247xlog_state_do_callback(
2248 xlog_t *log,
2249 int aborted,
2250 xlog_in_core_t *ciclog)
2251{
2252 xlog_in_core_t *iclog;
2253 xlog_in_core_t *first_iclog; /* used to know when we've
2254 * processed all iclogs once */
2255 xfs_log_callback_t *cb, *cb_next;
2256 int flushcnt = 0;
2257 xfs_lsn_t lowest_lsn;
2258 int ioerrors; /* counter: iclogs with errors */
2259 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2260 int funcdidcallbacks; /* flag: function did callbacks */
2261 int repeats; /* for issuing console warnings if
2262 * looping too many times */
2263 int wake = 0;
2264
2265 spin_lock(&log->l_icloglock);
2266 first_iclog = iclog = log->l_iclog;
2267 ioerrors = 0;
2268 funcdidcallbacks = 0;
2269 repeats = 0;
2270
2271 do {
2272 /*
2273 * Scan all iclogs starting with the one pointed to by the
2274 * log. Reset this starting point each time the log is
2275 * unlocked (during callbacks).
2276 *
2277 * Keep looping through iclogs until one full pass is made
2278 * without running any callbacks.
2279 */
2280 first_iclog = log->l_iclog;
2281 iclog = log->l_iclog;
2282 loopdidcallbacks = 0;
2283 repeats++;
2284
2285 do {
2286
2287 /* skip all iclogs in the ACTIVE & DIRTY states */
2288 if (iclog->ic_state &
2289 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2290 iclog = iclog->ic_next;
2291 continue;
2292 }
2293
2294 /*
2295 * Between marking a filesystem SHUTDOWN and stopping
2296 * the log, we do flush all iclogs to disk (if there
2297 * wasn't a log I/O error). So, we do want things to
2298 * go smoothly in case of just a SHUTDOWN w/o a
2299 * LOG_IO_ERROR.
2300 */
2301 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2302 /*
2303 * Can only perform callbacks in order. Since
2304 * this iclog is not in the DONE_SYNC/
2305 * DO_CALLBACK state, we skip the rest and
2306 * just try to clean up. If we set our iclog
2307 * to DO_CALLBACK, we will not process it when
2308 * we retry since a previous iclog is in the
2309 * CALLBACK and the state cannot change since
2310 * we are holding the l_icloglock.
2311 */
2312 if (!(iclog->ic_state &
2313 (XLOG_STATE_DONE_SYNC |
2314 XLOG_STATE_DO_CALLBACK))) {
2315 if (ciclog && (ciclog->ic_state ==
2316 XLOG_STATE_DONE_SYNC)) {
2317 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2318 }
2319 break;
2320 }
2321 /*
2322 * We now have an iclog that is in either the
2323 * DO_CALLBACK or DONE_SYNC states. The other
2324 * states (WANT_SYNC, SYNCING, or CALLBACK were
2325 * caught by the above if and are going to
2326 * clean (i.e. we aren't doing their callbacks)
2327 * see the above if.
2328 */
2329
2330 /*
2331 * We will do one more check here to see if we
2332 * have chased our tail around.
2333 */
2334
2335 lowest_lsn = xlog_get_lowest_lsn(log);
2336 if (lowest_lsn &&
2337 XFS_LSN_CMP(lowest_lsn,
2338 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2339 iclog = iclog->ic_next;
2340 continue; /* Leave this iclog for
2341 * another thread */
2342 }
2343
2344 iclog->ic_state = XLOG_STATE_CALLBACK;
2345
2346
2347 /*
2348 * update the last_sync_lsn before we drop the
2349 * icloglock to ensure we are the only one that
2350 * can update it.
2351 */
2352 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2353 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2354 atomic64_set(&log->l_last_sync_lsn,
2355 be64_to_cpu(iclog->ic_header.h_lsn));
2356
2357 } else
2358 ioerrors++;
2359
2360 spin_unlock(&log->l_icloglock);
2361
2362 /*
2363 * Keep processing entries in the callback list until
2364 * we come around and it is empty. We need to
2365 * atomically see that the list is empty and change the
2366 * state to DIRTY so that we don't miss any more
2367 * callbacks being added.
2368 */
2369 spin_lock(&iclog->ic_callback_lock);
2370 cb = iclog->ic_callback;
2371 while (cb) {
2372 iclog->ic_callback_tail = &(iclog->ic_callback);
2373 iclog->ic_callback = NULL;
2374 spin_unlock(&iclog->ic_callback_lock);
2375
2376 /* perform callbacks in the order given */
2377 for (; cb; cb = cb_next) {
2378 cb_next = cb->cb_next;
2379 cb->cb_func(cb->cb_arg, aborted);
2380 }
2381 spin_lock(&iclog->ic_callback_lock);
2382 cb = iclog->ic_callback;
2383 }
2384
2385 loopdidcallbacks++;
2386 funcdidcallbacks++;
2387
2388 spin_lock(&log->l_icloglock);
2389 ASSERT(iclog->ic_callback == NULL);
2390 spin_unlock(&iclog->ic_callback_lock);
2391 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2392 iclog->ic_state = XLOG_STATE_DIRTY;
2393
2394 /*
2395 * Transition from DIRTY to ACTIVE if applicable.
2396 * NOP if STATE_IOERROR.
2397 */
2398 xlog_state_clean_log(log);
2399
2400 /* wake up threads waiting in xfs_log_force() */
2401 wake_up_all(&iclog->ic_force_wait);
2402
2403 iclog = iclog->ic_next;
2404 } while (first_iclog != iclog);
2405
2406 if (repeats > 5000) {
2407 flushcnt += repeats;
2408 repeats = 0;
2409 xfs_warn(log->l_mp,
2410 "%s: possible infinite loop (%d iterations)",
2411 __func__, flushcnt);
2412 }
2413 } while (!ioerrors && loopdidcallbacks);
2414
2415 /*
2416 * make one last gasp attempt to see if iclogs are being left in
2417 * limbo..
2418 */
2419#ifdef DEBUG
2420 if (funcdidcallbacks) {
2421 first_iclog = iclog = log->l_iclog;
2422 do {
2423 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2424 /*
2425 * Terminate the loop if iclogs are found in states
2426 * which will cause other threads to clean up iclogs.
2427 *
2428 * SYNCING - i/o completion will go through logs
2429 * DONE_SYNC - interrupt thread should be waiting for
2430 * l_icloglock
2431 * IOERROR - give up hope all ye who enter here
2432 */
2433 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2434 iclog->ic_state == XLOG_STATE_SYNCING ||
2435 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2436 iclog->ic_state == XLOG_STATE_IOERROR )
2437 break;
2438 iclog = iclog->ic_next;
2439 } while (first_iclog != iclog);
2440 }
2441#endif
2442
2443 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2444 wake = 1;
2445 spin_unlock(&log->l_icloglock);
2446
2447 if (wake)
2448 wake_up_all(&log->l_flush_wait);
2449}
2450
2451
2452/*
2453 * Finish transitioning this iclog to the dirty state.
2454 *
2455 * Make sure that we completely execute this routine only when this is
2456 * the last call to the iclog. There is a good chance that iclog flushes,
2457 * when we reach the end of the physical log, get turned into 2 separate
2458 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2459 * routine. By using the reference count bwritecnt, we guarantee that only
2460 * the second completion goes through.
2461 *
2462 * Callbacks could take time, so they are done outside the scope of the
2463 * global state machine log lock.
2464 */
2465STATIC void
2466xlog_state_done_syncing(
2467 xlog_in_core_t *iclog,
2468 int aborted)
2469{
2470 xlog_t *log = iclog->ic_log;
2471
2472 spin_lock(&log->l_icloglock);
2473
2474 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2475 iclog->ic_state == XLOG_STATE_IOERROR);
2476 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2477 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2478
2479
2480 /*
2481 * If we got an error, either on the first buffer, or in the case of
2482 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2483 * and none should ever be attempted to be written to disk
2484 * again.
2485 */
2486 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2487 if (--iclog->ic_bwritecnt == 1) {
2488 spin_unlock(&log->l_icloglock);
2489 return;
2490 }
2491 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2492 }
2493
2494 /*
2495 * Someone could be sleeping prior to writing out the next
2496 * iclog buffer, we wake them all, one will get to do the
2497 * I/O, the others get to wait for the result.
2498 */
2499 wake_up_all(&iclog->ic_write_wait);
2500 spin_unlock(&log->l_icloglock);
2501 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2502} /* xlog_state_done_syncing */
2503
2504
2505/*
2506 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2507 * sleep. We wait on the flush queue on the head iclog as that should be
2508 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2509 * we will wait here and all new writes will sleep until a sync completes.
2510 *
2511 * The in-core logs are used in a circular fashion. They are not used
2512 * out-of-order even when an iclog past the head is free.
2513 *
2514 * return:
2515 * * log_offset where xlog_write() can start writing into the in-core
2516 * log's data space.
2517 * * in-core log pointer to which xlog_write() should write.
2518 * * boolean indicating this is a continued write to an in-core log.
2519 * If this is the last write, then the in-core log's offset field
2520 * needs to be incremented, depending on the amount of data which
2521 * is copied.
2522 */
2523STATIC int
2524xlog_state_get_iclog_space(xlog_t *log,
2525 int len,
2526 xlog_in_core_t **iclogp,
2527 xlog_ticket_t *ticket,
2528 int *continued_write,
2529 int *logoffsetp)
2530{
2531 int log_offset;
2532 xlog_rec_header_t *head;
2533 xlog_in_core_t *iclog;
2534 int error;
2535
2536restart:
2537 spin_lock(&log->l_icloglock);
2538 if (XLOG_FORCED_SHUTDOWN(log)) {
2539 spin_unlock(&log->l_icloglock);
2540 return XFS_ERROR(EIO);
2541 }
2542
2543 iclog = log->l_iclog;
2544 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2545 XFS_STATS_INC(xs_log_noiclogs);
2546
2547 /* Wait for log writes to have flushed */
2548 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2549 goto restart;
2550 }
2551
2552 head = &iclog->ic_header;
2553
2554 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2555 log_offset = iclog->ic_offset;
2556
2557 /* On the 1st write to an iclog, figure out lsn. This works
2558 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2559 * committing to. If the offset is set, that's how many blocks
2560 * must be written.
2561 */
2562 if (log_offset == 0) {
2563 ticket->t_curr_res -= log->l_iclog_hsize;
2564 xlog_tic_add_region(ticket,
2565 log->l_iclog_hsize,
2566 XLOG_REG_TYPE_LRHEADER);
2567 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2568 head->h_lsn = cpu_to_be64(
2569 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2570 ASSERT(log->l_curr_block >= 0);
2571 }
2572
2573 /* If there is enough room to write everything, then do it. Otherwise,
2574 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2575 * bit is on, so this will get flushed out. Don't update ic_offset
2576 * until you know exactly how many bytes get copied. Therefore, wait
2577 * until later to update ic_offset.
2578 *
2579 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2580 * can fit into remaining data section.
2581 */
2582 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2583 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2584
2585 /*
2586 * If I'm the only one writing to this iclog, sync it to disk.
2587 * We need to do an atomic compare and decrement here to avoid
2588 * racing with concurrent atomic_dec_and_lock() calls in
2589 * xlog_state_release_iclog() when there is more than one
2590 * reference to the iclog.
2591 */
2592 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2593 /* we are the only one */
2594 spin_unlock(&log->l_icloglock);
2595 error = xlog_state_release_iclog(log, iclog);
2596 if (error)
2597 return error;
2598 } else {
2599 spin_unlock(&log->l_icloglock);
2600 }
2601 goto restart;
2602 }
2603
2604 /* Do we have enough room to write the full amount in the remainder
2605 * of this iclog? Or must we continue a write on the next iclog and
2606 * mark this iclog as completely taken? In the case where we switch
2607 * iclogs (to mark it taken), this particular iclog will release/sync
2608 * to disk in xlog_write().
2609 */
2610 if (len <= iclog->ic_size - iclog->ic_offset) {
2611 *continued_write = 0;
2612 iclog->ic_offset += len;
2613 } else {
2614 *continued_write = 1;
2615 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2616 }
2617 *iclogp = iclog;
2618
2619 ASSERT(iclog->ic_offset <= iclog->ic_size);
2620 spin_unlock(&log->l_icloglock);
2621
2622 *logoffsetp = log_offset;
2623 return 0;
2624} /* xlog_state_get_iclog_space */
2625
2626/* The first cnt-1 times through here we don't need to
2627 * move the grant write head because the permanent
2628 * reservation has reserved cnt times the unit amount.
2629 * Release part of current permanent unit reservation and
2630 * reset current reservation to be one units worth. Also
2631 * move grant reservation head forward.
2632 */
2633STATIC void
2634xlog_regrant_reserve_log_space(xlog_t *log,
2635 xlog_ticket_t *ticket)
2636{
2637 trace_xfs_log_regrant_reserve_enter(log, ticket);
2638
2639 if (ticket->t_cnt > 0)
2640 ticket->t_cnt--;
2641
2642 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2643 ticket->t_curr_res);
2644 xlog_grant_sub_space(log, &log->l_write_head.grant,
2645 ticket->t_curr_res);
2646 ticket->t_curr_res = ticket->t_unit_res;
2647 xlog_tic_reset_res(ticket);
2648
2649 trace_xfs_log_regrant_reserve_sub(log, ticket);
2650
2651 /* just return if we still have some of the pre-reserved space */
2652 if (ticket->t_cnt > 0)
2653 return;
2654
2655 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2656 ticket->t_unit_res);
2657
2658 trace_xfs_log_regrant_reserve_exit(log, ticket);
2659
2660 ticket->t_curr_res = ticket->t_unit_res;
2661 xlog_tic_reset_res(ticket);
2662} /* xlog_regrant_reserve_log_space */
2663
2664
2665/*
2666 * Give back the space left from a reservation.
2667 *
2668 * All the information we need to make a correct determination of space left
2669 * is present. For non-permanent reservations, things are quite easy. The
2670 * count should have been decremented to zero. We only need to deal with the
2671 * space remaining in the current reservation part of the ticket. If the
2672 * ticket contains a permanent reservation, there may be left over space which
2673 * needs to be released. A count of N means that N-1 refills of the current
2674 * reservation can be done before we need to ask for more space. The first
2675 * one goes to fill up the first current reservation. Once we run out of
2676 * space, the count will stay at zero and the only space remaining will be
2677 * in the current reservation field.
2678 */
2679STATIC void
2680xlog_ungrant_log_space(xlog_t *log,
2681 xlog_ticket_t *ticket)
2682{
2683 int bytes;
2684
2685 if (ticket->t_cnt > 0)
2686 ticket->t_cnt--;
2687
2688 trace_xfs_log_ungrant_enter(log, ticket);
2689 trace_xfs_log_ungrant_sub(log, ticket);
2690
2691 /*
2692 * If this is a permanent reservation ticket, we may be able to free
2693 * up more space based on the remaining count.
2694 */
2695 bytes = ticket->t_curr_res;
2696 if (ticket->t_cnt > 0) {
2697 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2698 bytes += ticket->t_unit_res*ticket->t_cnt;
2699 }
2700
2701 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2702 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2703
2704 trace_xfs_log_ungrant_exit(log, ticket);
2705
2706 xfs_log_space_wake(log->l_mp);
2707}
2708
2709/*
2710 * Flush iclog to disk if this is the last reference to the given iclog and
2711 * the WANT_SYNC bit is set.
2712 *
2713 * When this function is entered, the iclog is not necessarily in the
2714 * WANT_SYNC state. It may be sitting around waiting to get filled.
2715 *
2716 *
2717 */
2718STATIC int
2719xlog_state_release_iclog(
2720 xlog_t *log,
2721 xlog_in_core_t *iclog)
2722{
2723 int sync = 0; /* do we sync? */
2724
2725 if (iclog->ic_state & XLOG_STATE_IOERROR)
2726 return XFS_ERROR(EIO);
2727
2728 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2729 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2730 return 0;
2731
2732 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2733 spin_unlock(&log->l_icloglock);
2734 return XFS_ERROR(EIO);
2735 }
2736 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2737 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2738
2739 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2740 /* update tail before writing to iclog */
2741 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2742 sync++;
2743 iclog->ic_state = XLOG_STATE_SYNCING;
2744 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2745 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2746 /* cycle incremented when incrementing curr_block */
2747 }
2748 spin_unlock(&log->l_icloglock);
2749
2750 /*
2751 * We let the log lock go, so it's possible that we hit a log I/O
2752 * error or some other SHUTDOWN condition that marks the iclog
2753 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2754 * this iclog has consistent data, so we ignore IOERROR
2755 * flags after this point.
2756 */
2757 if (sync)
2758 return xlog_sync(log, iclog);
2759 return 0;
2760} /* xlog_state_release_iclog */
2761
2762
2763/*
2764 * This routine will mark the current iclog in the ring as WANT_SYNC
2765 * and move the current iclog pointer to the next iclog in the ring.
2766 * When this routine is called from xlog_state_get_iclog_space(), the
2767 * exact size of the iclog has not yet been determined. All we know is
2768 * that every data block. We have run out of space in this log record.
2769 */
2770STATIC void
2771xlog_state_switch_iclogs(xlog_t *log,
2772 xlog_in_core_t *iclog,
2773 int eventual_size)
2774{
2775 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2776 if (!eventual_size)
2777 eventual_size = iclog->ic_offset;
2778 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2779 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2780 log->l_prev_block = log->l_curr_block;
2781 log->l_prev_cycle = log->l_curr_cycle;
2782
2783 /* roll log?: ic_offset changed later */
2784 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2785
2786 /* Round up to next log-sunit */
2787 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2788 log->l_mp->m_sb.sb_logsunit > 1) {
2789 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2790 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2791 }
2792
2793 if (log->l_curr_block >= log->l_logBBsize) {
2794 log->l_curr_cycle++;
2795 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2796 log->l_curr_cycle++;
2797 log->l_curr_block -= log->l_logBBsize;
2798 ASSERT(log->l_curr_block >= 0);
2799 }
2800 ASSERT(iclog == log->l_iclog);
2801 log->l_iclog = iclog->ic_next;
2802} /* xlog_state_switch_iclogs */
2803
2804/*
2805 * Write out all data in the in-core log as of this exact moment in time.
2806 *
2807 * Data may be written to the in-core log during this call. However,
2808 * we don't guarantee this data will be written out. A change from past
2809 * implementation means this routine will *not* write out zero length LRs.
2810 *
2811 * Basically, we try and perform an intelligent scan of the in-core logs.
2812 * If we determine there is no flushable data, we just return. There is no
2813 * flushable data if:
2814 *
2815 * 1. the current iclog is active and has no data; the previous iclog
2816 * is in the active or dirty state.
2817 * 2. the current iclog is drity, and the previous iclog is in the
2818 * active or dirty state.
2819 *
2820 * We may sleep if:
2821 *
2822 * 1. the current iclog is not in the active nor dirty state.
2823 * 2. the current iclog dirty, and the previous iclog is not in the
2824 * active nor dirty state.
2825 * 3. the current iclog is active, and there is another thread writing
2826 * to this particular iclog.
2827 * 4. a) the current iclog is active and has no other writers
2828 * b) when we return from flushing out this iclog, it is still
2829 * not in the active nor dirty state.
2830 */
2831int
2832_xfs_log_force(
2833 struct xfs_mount *mp,
2834 uint flags,
2835 int *log_flushed)
2836{
2837 struct xlog *log = mp->m_log;
2838 struct xlog_in_core *iclog;
2839 xfs_lsn_t lsn;
2840
2841 XFS_STATS_INC(xs_log_force);
2842
2843 xlog_cil_force(log);
2844
2845 spin_lock(&log->l_icloglock);
2846
2847 iclog = log->l_iclog;
2848 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2849 spin_unlock(&log->l_icloglock);
2850 return XFS_ERROR(EIO);
2851 }
2852
2853 /* If the head iclog is not active nor dirty, we just attach
2854 * ourselves to the head and go to sleep.
2855 */
2856 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2857 iclog->ic_state == XLOG_STATE_DIRTY) {
2858 /*
2859 * If the head is dirty or (active and empty), then
2860 * we need to look at the previous iclog. If the previous
2861 * iclog is active or dirty we are done. There is nothing
2862 * to sync out. Otherwise, we attach ourselves to the
2863 * previous iclog and go to sleep.
2864 */
2865 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2866 (atomic_read(&iclog->ic_refcnt) == 0
2867 && iclog->ic_offset == 0)) {
2868 iclog = iclog->ic_prev;
2869 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2870 iclog->ic_state == XLOG_STATE_DIRTY)
2871 goto no_sleep;
2872 else
2873 goto maybe_sleep;
2874 } else {
2875 if (atomic_read(&iclog->ic_refcnt) == 0) {
2876 /* We are the only one with access to this
2877 * iclog. Flush it out now. There should
2878 * be a roundoff of zero to show that someone
2879 * has already taken care of the roundoff from
2880 * the previous sync.
2881 */
2882 atomic_inc(&iclog->ic_refcnt);
2883 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2884 xlog_state_switch_iclogs(log, iclog, 0);
2885 spin_unlock(&log->l_icloglock);
2886
2887 if (xlog_state_release_iclog(log, iclog))
2888 return XFS_ERROR(EIO);
2889
2890 if (log_flushed)
2891 *log_flushed = 1;
2892 spin_lock(&log->l_icloglock);
2893 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2894 iclog->ic_state != XLOG_STATE_DIRTY)
2895 goto maybe_sleep;
2896 else
2897 goto no_sleep;
2898 } else {
2899 /* Someone else is writing to this iclog.
2900 * Use its call to flush out the data. However,
2901 * the other thread may not force out this LR,
2902 * so we mark it WANT_SYNC.
2903 */
2904 xlog_state_switch_iclogs(log, iclog, 0);
2905 goto maybe_sleep;
2906 }
2907 }
2908 }
2909
2910 /* By the time we come around again, the iclog could've been filled
2911 * which would give it another lsn. If we have a new lsn, just
2912 * return because the relevant data has been flushed.
2913 */
2914maybe_sleep:
2915 if (flags & XFS_LOG_SYNC) {
2916 /*
2917 * We must check if we're shutting down here, before
2918 * we wait, while we're holding the l_icloglock.
2919 * Then we check again after waking up, in case our
2920 * sleep was disturbed by a bad news.
2921 */
2922 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2923 spin_unlock(&log->l_icloglock);
2924 return XFS_ERROR(EIO);
2925 }
2926 XFS_STATS_INC(xs_log_force_sleep);
2927 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2928 /*
2929 * No need to grab the log lock here since we're
2930 * only deciding whether or not to return EIO
2931 * and the memory read should be atomic.
2932 */
2933 if (iclog->ic_state & XLOG_STATE_IOERROR)
2934 return XFS_ERROR(EIO);
2935 if (log_flushed)
2936 *log_flushed = 1;
2937 } else {
2938
2939no_sleep:
2940 spin_unlock(&log->l_icloglock);
2941 }
2942 return 0;
2943}
2944
2945/*
2946 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2947 * about errors or whether the log was flushed or not. This is the normal
2948 * interface to use when trying to unpin items or move the log forward.
2949 */
2950void
2951xfs_log_force(
2952 xfs_mount_t *mp,
2953 uint flags)
2954{
2955 int error;
2956
2957 trace_xfs_log_force(mp, 0);
2958 error = _xfs_log_force(mp, flags, NULL);
2959 if (error)
2960 xfs_warn(mp, "%s: error %d returned.", __func__, error);
2961}
2962
2963/*
2964 * Force the in-core log to disk for a specific LSN.
2965 *
2966 * Find in-core log with lsn.
2967 * If it is in the DIRTY state, just return.
2968 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2969 * state and go to sleep or return.
2970 * If it is in any other state, go to sleep or return.
2971 *
2972 * Synchronous forces are implemented with a signal variable. All callers
2973 * to force a given lsn to disk will wait on a the sv attached to the
2974 * specific in-core log. When given in-core log finally completes its
2975 * write to disk, that thread will wake up all threads waiting on the
2976 * sv.
2977 */
2978int
2979_xfs_log_force_lsn(
2980 struct xfs_mount *mp,
2981 xfs_lsn_t lsn,
2982 uint flags,
2983 int *log_flushed)
2984{
2985 struct xlog *log = mp->m_log;
2986 struct xlog_in_core *iclog;
2987 int already_slept = 0;
2988
2989 ASSERT(lsn != 0);
2990
2991 XFS_STATS_INC(xs_log_force);
2992
2993 lsn = xlog_cil_force_lsn(log, lsn);
2994 if (lsn == NULLCOMMITLSN)
2995 return 0;
2996
2997try_again:
2998 spin_lock(&log->l_icloglock);
2999 iclog = log->l_iclog;
3000 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3001 spin_unlock(&log->l_icloglock);
3002 return XFS_ERROR(EIO);
3003 }
3004
3005 do {
3006 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3007 iclog = iclog->ic_next;
3008 continue;
3009 }
3010
3011 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3012 spin_unlock(&log->l_icloglock);
3013 return 0;
3014 }
3015
3016 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3017 /*
3018 * We sleep here if we haven't already slept (e.g.
3019 * this is the first time we've looked at the correct
3020 * iclog buf) and the buffer before us is going to
3021 * be sync'ed. The reason for this is that if we
3022 * are doing sync transactions here, by waiting for
3023 * the previous I/O to complete, we can allow a few
3024 * more transactions into this iclog before we close
3025 * it down.
3026 *
3027 * Otherwise, we mark the buffer WANT_SYNC, and bump
3028 * up the refcnt so we can release the log (which
3029 * drops the ref count). The state switch keeps new
3030 * transaction commits from using this buffer. When
3031 * the current commits finish writing into the buffer,
3032 * the refcount will drop to zero and the buffer will
3033 * go out then.
3034 */
3035 if (!already_slept &&
3036 (iclog->ic_prev->ic_state &
3037 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3038 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3039
3040 XFS_STATS_INC(xs_log_force_sleep);
3041
3042 xlog_wait(&iclog->ic_prev->ic_write_wait,
3043 &log->l_icloglock);
3044 if (log_flushed)
3045 *log_flushed = 1;
3046 already_slept = 1;
3047 goto try_again;
3048 }
3049 atomic_inc(&iclog->ic_refcnt);
3050 xlog_state_switch_iclogs(log, iclog, 0);
3051 spin_unlock(&log->l_icloglock);
3052 if (xlog_state_release_iclog(log, iclog))
3053 return XFS_ERROR(EIO);
3054 if (log_flushed)
3055 *log_flushed = 1;
3056 spin_lock(&log->l_icloglock);
3057 }
3058
3059 if ((flags & XFS_LOG_SYNC) && /* sleep */
3060 !(iclog->ic_state &
3061 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3062 /*
3063 * Don't wait on completion if we know that we've
3064 * gotten a log write error.
3065 */
3066 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3067 spin_unlock(&log->l_icloglock);
3068 return XFS_ERROR(EIO);
3069 }
3070 XFS_STATS_INC(xs_log_force_sleep);
3071 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3072 /*
3073 * No need to grab the log lock here since we're
3074 * only deciding whether or not to return EIO
3075 * and the memory read should be atomic.
3076 */
3077 if (iclog->ic_state & XLOG_STATE_IOERROR)
3078 return XFS_ERROR(EIO);
3079
3080 if (log_flushed)
3081 *log_flushed = 1;
3082 } else { /* just return */
3083 spin_unlock(&log->l_icloglock);
3084 }
3085
3086 return 0;
3087 } while (iclog != log->l_iclog);
3088
3089 spin_unlock(&log->l_icloglock);
3090 return 0;
3091}
3092
3093/*
3094 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3095 * about errors or whether the log was flushed or not. This is the normal
3096 * interface to use when trying to unpin items or move the log forward.
3097 */
3098void
3099xfs_log_force_lsn(
3100 xfs_mount_t *mp,
3101 xfs_lsn_t lsn,
3102 uint flags)
3103{
3104 int error;
3105
3106 trace_xfs_log_force(mp, lsn);
3107 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3108 if (error)
3109 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3110}
3111
3112/*
3113 * Called when we want to mark the current iclog as being ready to sync to
3114 * disk.
3115 */
3116STATIC void
3117xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3118{
3119 assert_spin_locked(&log->l_icloglock);
3120
3121 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3122 xlog_state_switch_iclogs(log, iclog, 0);
3123 } else {
3124 ASSERT(iclog->ic_state &
3125 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3126 }
3127}
3128
3129
3130/*****************************************************************************
3131 *
3132 * TICKET functions
3133 *
3134 *****************************************************************************
3135 */
3136
3137/*
3138 * Free a used ticket when its refcount falls to zero.
3139 */
3140void
3141xfs_log_ticket_put(
3142 xlog_ticket_t *ticket)
3143{
3144 ASSERT(atomic_read(&ticket->t_ref) > 0);
3145 if (atomic_dec_and_test(&ticket->t_ref))
3146 kmem_zone_free(xfs_log_ticket_zone, ticket);
3147}
3148
3149xlog_ticket_t *
3150xfs_log_ticket_get(
3151 xlog_ticket_t *ticket)
3152{
3153 ASSERT(atomic_read(&ticket->t_ref) > 0);
3154 atomic_inc(&ticket->t_ref);
3155 return ticket;
3156}
3157
3158/*
3159 * Allocate and initialise a new log ticket.
3160 */
3161xlog_ticket_t *
3162xlog_ticket_alloc(
3163 struct xlog *log,
3164 int unit_bytes,
3165 int cnt,
3166 char client,
3167 bool permanent,
3168 xfs_km_flags_t alloc_flags)
3169{
3170 struct xlog_ticket *tic;
3171 uint num_headers;
3172 int iclog_space;
3173
3174 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3175 if (!tic)
3176 return NULL;
3177
3178 /*
3179 * Permanent reservations have up to 'cnt'-1 active log operations
3180 * in the log. A unit in this case is the amount of space for one
3181 * of these log operations. Normal reservations have a cnt of 1
3182 * and their unit amount is the total amount of space required.
3183 *
3184 * The following lines of code account for non-transaction data
3185 * which occupy space in the on-disk log.
3186 *
3187 * Normal form of a transaction is:
3188 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3189 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3190 *
3191 * We need to account for all the leadup data and trailer data
3192 * around the transaction data.
3193 * And then we need to account for the worst case in terms of using
3194 * more space.
3195 * The worst case will happen if:
3196 * - the placement of the transaction happens to be such that the
3197 * roundoff is at its maximum
3198 * - the transaction data is synced before the commit record is synced
3199 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3200 * Therefore the commit record is in its own Log Record.
3201 * This can happen as the commit record is called with its
3202 * own region to xlog_write().
3203 * This then means that in the worst case, roundoff can happen for
3204 * the commit-rec as well.
3205 * The commit-rec is smaller than padding in this scenario and so it is
3206 * not added separately.
3207 */
3208
3209 /* for trans header */
3210 unit_bytes += sizeof(xlog_op_header_t);
3211 unit_bytes += sizeof(xfs_trans_header_t);
3212
3213 /* for start-rec */
3214 unit_bytes += sizeof(xlog_op_header_t);
3215
3216 /*
3217 * for LR headers - the space for data in an iclog is the size minus
3218 * the space used for the headers. If we use the iclog size, then we
3219 * undercalculate the number of headers required.
3220 *
3221 * Furthermore - the addition of op headers for split-recs might
3222 * increase the space required enough to require more log and op
3223 * headers, so take that into account too.
3224 *
3225 * IMPORTANT: This reservation makes the assumption that if this
3226 * transaction is the first in an iclog and hence has the LR headers
3227 * accounted to it, then the remaining space in the iclog is
3228 * exclusively for this transaction. i.e. if the transaction is larger
3229 * than the iclog, it will be the only thing in that iclog.
3230 * Fundamentally, this means we must pass the entire log vector to
3231 * xlog_write to guarantee this.
3232 */
3233 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3234 num_headers = howmany(unit_bytes, iclog_space);
3235
3236 /* for split-recs - ophdrs added when data split over LRs */
3237 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3238
3239 /* add extra header reservations if we overrun */
3240 while (!num_headers ||
3241 howmany(unit_bytes, iclog_space) > num_headers) {
3242 unit_bytes += sizeof(xlog_op_header_t);
3243 num_headers++;
3244 }
3245 unit_bytes += log->l_iclog_hsize * num_headers;
3246
3247 /* for commit-rec LR header - note: padding will subsume the ophdr */
3248 unit_bytes += log->l_iclog_hsize;
3249
3250 /* for roundoff padding for transaction data and one for commit record */
3251 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3252 log->l_mp->m_sb.sb_logsunit > 1) {
3253 /* log su roundoff */
3254 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3255 } else {
3256 /* BB roundoff */
3257 unit_bytes += 2*BBSIZE;
3258 }
3259
3260 atomic_set(&tic->t_ref, 1);
3261 tic->t_task = current;
3262 INIT_LIST_HEAD(&tic->t_queue);
3263 tic->t_unit_res = unit_bytes;
3264 tic->t_curr_res = unit_bytes;
3265 tic->t_cnt = cnt;
3266 tic->t_ocnt = cnt;
3267 tic->t_tid = random32();
3268 tic->t_clientid = client;
3269 tic->t_flags = XLOG_TIC_INITED;
3270 tic->t_trans_type = 0;
3271 if (permanent)
3272 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3273
3274 xlog_tic_reset_res(tic);
3275
3276 return tic;
3277}
3278
3279
3280/******************************************************************************
3281 *
3282 * Log debug routines
3283 *
3284 ******************************************************************************
3285 */
3286#if defined(DEBUG)
3287/*
3288 * Make sure that the destination ptr is within the valid data region of
3289 * one of the iclogs. This uses backup pointers stored in a different
3290 * part of the log in case we trash the log structure.
3291 */
3292void
3293xlog_verify_dest_ptr(
3294 struct xlog *log,
3295 char *ptr)
3296{
3297 int i;
3298 int good_ptr = 0;
3299
3300 for (i = 0; i < log->l_iclog_bufs; i++) {
3301 if (ptr >= log->l_iclog_bak[i] &&
3302 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3303 good_ptr++;
3304 }
3305
3306 if (!good_ptr)
3307 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3308}
3309
3310/*
3311 * Check to make sure the grant write head didn't just over lap the tail. If
3312 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3313 * the cycles differ by exactly one and check the byte count.
3314 *
3315 * This check is run unlocked, so can give false positives. Rather than assert
3316 * on failures, use a warn-once flag and a panic tag to allow the admin to
3317 * determine if they want to panic the machine when such an error occurs. For
3318 * debug kernels this will have the same effect as using an assert but, unlinke
3319 * an assert, it can be turned off at runtime.
3320 */
3321STATIC void
3322xlog_verify_grant_tail(
3323 struct xlog *log)
3324{
3325 int tail_cycle, tail_blocks;
3326 int cycle, space;
3327
3328 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3329 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3330 if (tail_cycle != cycle) {
3331 if (cycle - 1 != tail_cycle &&
3332 !(log->l_flags & XLOG_TAIL_WARN)) {
3333 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3334 "%s: cycle - 1 != tail_cycle", __func__);
3335 log->l_flags |= XLOG_TAIL_WARN;
3336 }
3337
3338 if (space > BBTOB(tail_blocks) &&
3339 !(log->l_flags & XLOG_TAIL_WARN)) {
3340 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3341 "%s: space > BBTOB(tail_blocks)", __func__);
3342 log->l_flags |= XLOG_TAIL_WARN;
3343 }
3344 }
3345}
3346
3347/* check if it will fit */
3348STATIC void
3349xlog_verify_tail_lsn(xlog_t *log,
3350 xlog_in_core_t *iclog,
3351 xfs_lsn_t tail_lsn)
3352{
3353 int blocks;
3354
3355 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3356 blocks =
3357 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3358 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3359 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3360 } else {
3361 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3362
3363 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3364 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3365
3366 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3367 if (blocks < BTOBB(iclog->ic_offset) + 1)
3368 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3369 }
3370} /* xlog_verify_tail_lsn */
3371
3372/*
3373 * Perform a number of checks on the iclog before writing to disk.
3374 *
3375 * 1. Make sure the iclogs are still circular
3376 * 2. Make sure we have a good magic number
3377 * 3. Make sure we don't have magic numbers in the data
3378 * 4. Check fields of each log operation header for:
3379 * A. Valid client identifier
3380 * B. tid ptr value falls in valid ptr space (user space code)
3381 * C. Length in log record header is correct according to the
3382 * individual operation headers within record.
3383 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3384 * log, check the preceding blocks of the physical log to make sure all
3385 * the cycle numbers agree with the current cycle number.
3386 */
3387STATIC void
3388xlog_verify_iclog(xlog_t *log,
3389 xlog_in_core_t *iclog,
3390 int count,
3391 boolean_t syncing)
3392{
3393 xlog_op_header_t *ophead;
3394 xlog_in_core_t *icptr;
3395 xlog_in_core_2_t *xhdr;
3396 xfs_caddr_t ptr;
3397 xfs_caddr_t base_ptr;
3398 __psint_t field_offset;
3399 __uint8_t clientid;
3400 int len, i, j, k, op_len;
3401 int idx;
3402
3403 /* check validity of iclog pointers */
3404 spin_lock(&log->l_icloglock);
3405 icptr = log->l_iclog;
3406 for (i=0; i < log->l_iclog_bufs; i++) {
3407 if (icptr == NULL)
3408 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3409 icptr = icptr->ic_next;
3410 }
3411 if (icptr != log->l_iclog)
3412 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3413 spin_unlock(&log->l_icloglock);
3414
3415 /* check log magic numbers */
3416 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3417 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3418
3419 ptr = (xfs_caddr_t) &iclog->ic_header;
3420 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3421 ptr += BBSIZE) {
3422 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3423 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3424 __func__);
3425 }
3426
3427 /* check fields */
3428 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3429 ptr = iclog->ic_datap;
3430 base_ptr = ptr;
3431 ophead = (xlog_op_header_t *)ptr;
3432 xhdr = iclog->ic_data;
3433 for (i = 0; i < len; i++) {
3434 ophead = (xlog_op_header_t *)ptr;
3435
3436 /* clientid is only 1 byte */
3437 field_offset = (__psint_t)
3438 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3439 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3440 clientid = ophead->oh_clientid;
3441 } else {
3442 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3443 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3444 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3445 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3446 clientid = xlog_get_client_id(
3447 xhdr[j].hic_xheader.xh_cycle_data[k]);
3448 } else {
3449 clientid = xlog_get_client_id(
3450 iclog->ic_header.h_cycle_data[idx]);
3451 }
3452 }
3453 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3454 xfs_warn(log->l_mp,
3455 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3456 __func__, clientid, ophead,
3457 (unsigned long)field_offset);
3458
3459 /* check length */
3460 field_offset = (__psint_t)
3461 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3462 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3463 op_len = be32_to_cpu(ophead->oh_len);
3464 } else {
3465 idx = BTOBBT((__psint_t)&ophead->oh_len -
3466 (__psint_t)iclog->ic_datap);
3467 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3468 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3469 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3470 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3471 } else {
3472 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3473 }
3474 }
3475 ptr += sizeof(xlog_op_header_t) + op_len;
3476 }
3477} /* xlog_verify_iclog */
3478#endif
3479
3480/*
3481 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3482 */
3483STATIC int
3484xlog_state_ioerror(
3485 xlog_t *log)
3486{
3487 xlog_in_core_t *iclog, *ic;
3488
3489 iclog = log->l_iclog;
3490 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3491 /*
3492 * Mark all the incore logs IOERROR.
3493 * From now on, no log flushes will result.
3494 */
3495 ic = iclog;
3496 do {
3497 ic->ic_state = XLOG_STATE_IOERROR;
3498 ic = ic->ic_next;
3499 } while (ic != iclog);
3500 return 0;
3501 }
3502 /*
3503 * Return non-zero, if state transition has already happened.
3504 */
3505 return 1;
3506}
3507
3508/*
3509 * This is called from xfs_force_shutdown, when we're forcibly
3510 * shutting down the filesystem, typically because of an IO error.
3511 * Our main objectives here are to make sure that:
3512 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3513 * parties to find out, 'atomically'.
3514 * b. those who're sleeping on log reservations, pinned objects and
3515 * other resources get woken up, and be told the bad news.
3516 * c. nothing new gets queued up after (a) and (b) are done.
3517 * d. if !logerror, flush the iclogs to disk, then seal them off
3518 * for business.
3519 *
3520 * Note: for delayed logging the !logerror case needs to flush the regions
3521 * held in memory out to the iclogs before flushing them to disk. This needs
3522 * to be done before the log is marked as shutdown, otherwise the flush to the
3523 * iclogs will fail.
3524 */
3525int
3526xfs_log_force_umount(
3527 struct xfs_mount *mp,
3528 int logerror)
3529{
3530 xlog_t *log;
3531 int retval;
3532
3533 log = mp->m_log;
3534
3535 /*
3536 * If this happens during log recovery, don't worry about
3537 * locking; the log isn't open for business yet.
3538 */
3539 if (!log ||
3540 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3541 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3542 if (mp->m_sb_bp)
3543 XFS_BUF_DONE(mp->m_sb_bp);
3544 return 0;
3545 }
3546
3547 /*
3548 * Somebody could've already done the hard work for us.
3549 * No need to get locks for this.
3550 */
3551 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3552 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3553 return 1;
3554 }
3555 retval = 0;
3556
3557 /*
3558 * Flush the in memory commit item list before marking the log as
3559 * being shut down. We need to do it in this order to ensure all the
3560 * completed transactions are flushed to disk with the xfs_log_force()
3561 * call below.
3562 */
3563 if (!logerror)
3564 xlog_cil_force(log);
3565
3566 /*
3567 * mark the filesystem and the as in a shutdown state and wake
3568 * everybody up to tell them the bad news.
3569 */
3570 spin_lock(&log->l_icloglock);
3571 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3572 if (mp->m_sb_bp)
3573 XFS_BUF_DONE(mp->m_sb_bp);
3574
3575 /*
3576 * This flag is sort of redundant because of the mount flag, but
3577 * it's good to maintain the separation between the log and the rest
3578 * of XFS.
3579 */
3580 log->l_flags |= XLOG_IO_ERROR;
3581
3582 /*
3583 * If we hit a log error, we want to mark all the iclogs IOERROR
3584 * while we're still holding the loglock.
3585 */
3586 if (logerror)
3587 retval = xlog_state_ioerror(log);
3588 spin_unlock(&log->l_icloglock);
3589
3590 /*
3591 * We don't want anybody waiting for log reservations after this. That
3592 * means we have to wake up everybody queued up on reserveq as well as
3593 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3594 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3595 * action is protected by the grant locks.
3596 */
3597 xlog_grant_head_wake_all(&log->l_reserve_head);
3598 xlog_grant_head_wake_all(&log->l_write_head);
3599
3600 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3601 ASSERT(!logerror);
3602 /*
3603 * Force the incore logs to disk before shutting the
3604 * log down completely.
3605 */
3606 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3607
3608 spin_lock(&log->l_icloglock);
3609 retval = xlog_state_ioerror(log);
3610 spin_unlock(&log->l_icloglock);
3611 }
3612 /*
3613 * Wake up everybody waiting on xfs_log_force.
3614 * Callback all log item committed functions as if the
3615 * log writes were completed.
3616 */
3617 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3618
3619#ifdef XFSERRORDEBUG
3620 {
3621 xlog_in_core_t *iclog;
3622
3623 spin_lock(&log->l_icloglock);
3624 iclog = log->l_iclog;
3625 do {
3626 ASSERT(iclog->ic_callback == 0);
3627 iclog = iclog->ic_next;
3628 } while (iclog != log->l_iclog);
3629 spin_unlock(&log->l_icloglock);
3630 }
3631#endif
3632 /* return non-zero if log IOERROR transition had already happened */
3633 return retval;
3634}
3635
3636STATIC int
3637xlog_iclogs_empty(xlog_t *log)
3638{
3639 xlog_in_core_t *iclog;
3640
3641 iclog = log->l_iclog;
3642 do {
3643 /* endianness does not matter here, zero is zero in
3644 * any language.
3645 */
3646 if (iclog->ic_header.h_num_logops)
3647 return 0;
3648 iclog = iclog->ic_next;
3649 } while (iclog != log->l_iclog);
3650 return 1;
3651}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_errortag.h"
14#include "xfs_error.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
18#include "xfs_log_priv.h"
19#include "xfs_trace.h"
20#include "xfs_sysfs.h"
21#include "xfs_sb.h"
22#include "xfs_health.h"
23
24struct kmem_cache *xfs_log_ticket_cache;
25
26/* Local miscellaneous function prototypes */
27STATIC struct xlog *
28xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
33STATIC int
34xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
37STATIC void
38xlog_dealloc_log(
39 struct xlog *log);
40
41/* local state machine functions */
42STATIC void xlog_state_done_syncing(
43 struct xlog_in_core *iclog);
44STATIC void xlog_state_do_callback(
45 struct xlog *log);
46STATIC int
47xlog_state_get_iclog_space(
48 struct xlog *log,
49 int len,
50 struct xlog_in_core **iclog,
51 struct xlog_ticket *ticket,
52 int *logoffsetp);
53STATIC void
54xlog_grant_push_ail(
55 struct xlog *log,
56 int need_bytes);
57STATIC void
58xlog_sync(
59 struct xlog *log,
60 struct xlog_in_core *iclog,
61 struct xlog_ticket *ticket);
62#if defined(DEBUG)
63STATIC void
64xlog_verify_grant_tail(
65 struct xlog *log);
66STATIC void
67xlog_verify_iclog(
68 struct xlog *log,
69 struct xlog_in_core *iclog,
70 int count);
71STATIC void
72xlog_verify_tail_lsn(
73 struct xlog *log,
74 struct xlog_in_core *iclog);
75#else
76#define xlog_verify_grant_tail(a)
77#define xlog_verify_iclog(a,b,c)
78#define xlog_verify_tail_lsn(a,b)
79#endif
80
81STATIC int
82xlog_iclogs_empty(
83 struct xlog *log);
84
85static int
86xfs_log_cover(struct xfs_mount *);
87
88/*
89 * We need to make sure the buffer pointer returned is naturally aligned for the
90 * biggest basic data type we put into it. We have already accounted for this
91 * padding when sizing the buffer.
92 *
93 * However, this padding does not get written into the log, and hence we have to
94 * track the space used by the log vectors separately to prevent log space hangs
95 * due to inaccurate accounting (i.e. a leak) of the used log space through the
96 * CIL context ticket.
97 *
98 * We also add space for the xlog_op_header that describes this region in the
99 * log. This prepends the data region we return to the caller to copy their data
100 * into, so do all the static initialisation of the ophdr now. Because the ophdr
101 * is not 8 byte aligned, we have to be careful to ensure that we align the
102 * start of the buffer such that the region we return to the call is 8 byte
103 * aligned and packed against the tail of the ophdr.
104 */
105void *
106xlog_prepare_iovec(
107 struct xfs_log_vec *lv,
108 struct xfs_log_iovec **vecp,
109 uint type)
110{
111 struct xfs_log_iovec *vec = *vecp;
112 struct xlog_op_header *oph;
113 uint32_t len;
114 void *buf;
115
116 if (vec) {
117 ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
118 vec++;
119 } else {
120 vec = &lv->lv_iovecp[0];
121 }
122
123 len = lv->lv_buf_len + sizeof(struct xlog_op_header);
124 if (!IS_ALIGNED(len, sizeof(uint64_t))) {
125 lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
126 sizeof(struct xlog_op_header);
127 }
128
129 vec->i_type = type;
130 vec->i_addr = lv->lv_buf + lv->lv_buf_len;
131
132 oph = vec->i_addr;
133 oph->oh_clientid = XFS_TRANSACTION;
134 oph->oh_res2 = 0;
135 oph->oh_flags = 0;
136
137 buf = vec->i_addr + sizeof(struct xlog_op_header);
138 ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
139
140 *vecp = vec;
141 return buf;
142}
143
144static void
145xlog_grant_sub_space(
146 struct xlog *log,
147 atomic64_t *head,
148 int bytes)
149{
150 int64_t head_val = atomic64_read(head);
151 int64_t new, old;
152
153 do {
154 int cycle, space;
155
156 xlog_crack_grant_head_val(head_val, &cycle, &space);
157
158 space -= bytes;
159 if (space < 0) {
160 space += log->l_logsize;
161 cycle--;
162 }
163
164 old = head_val;
165 new = xlog_assign_grant_head_val(cycle, space);
166 head_val = atomic64_cmpxchg(head, old, new);
167 } while (head_val != old);
168}
169
170static void
171xlog_grant_add_space(
172 struct xlog *log,
173 atomic64_t *head,
174 int bytes)
175{
176 int64_t head_val = atomic64_read(head);
177 int64_t new, old;
178
179 do {
180 int tmp;
181 int cycle, space;
182
183 xlog_crack_grant_head_val(head_val, &cycle, &space);
184
185 tmp = log->l_logsize - space;
186 if (tmp > bytes)
187 space += bytes;
188 else {
189 space = bytes - tmp;
190 cycle++;
191 }
192
193 old = head_val;
194 new = xlog_assign_grant_head_val(cycle, space);
195 head_val = atomic64_cmpxchg(head, old, new);
196 } while (head_val != old);
197}
198
199STATIC void
200xlog_grant_head_init(
201 struct xlog_grant_head *head)
202{
203 xlog_assign_grant_head(&head->grant, 1, 0);
204 INIT_LIST_HEAD(&head->waiters);
205 spin_lock_init(&head->lock);
206}
207
208STATIC void
209xlog_grant_head_wake_all(
210 struct xlog_grant_head *head)
211{
212 struct xlog_ticket *tic;
213
214 spin_lock(&head->lock);
215 list_for_each_entry(tic, &head->waiters, t_queue)
216 wake_up_process(tic->t_task);
217 spin_unlock(&head->lock);
218}
219
220static inline int
221xlog_ticket_reservation(
222 struct xlog *log,
223 struct xlog_grant_head *head,
224 struct xlog_ticket *tic)
225{
226 if (head == &log->l_write_head) {
227 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
228 return tic->t_unit_res;
229 }
230
231 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
232 return tic->t_unit_res * tic->t_cnt;
233
234 return tic->t_unit_res;
235}
236
237STATIC bool
238xlog_grant_head_wake(
239 struct xlog *log,
240 struct xlog_grant_head *head,
241 int *free_bytes)
242{
243 struct xlog_ticket *tic;
244 int need_bytes;
245 bool woken_task = false;
246
247 list_for_each_entry(tic, &head->waiters, t_queue) {
248
249 /*
250 * There is a chance that the size of the CIL checkpoints in
251 * progress at the last AIL push target calculation resulted in
252 * limiting the target to the log head (l_last_sync_lsn) at the
253 * time. This may not reflect where the log head is now as the
254 * CIL checkpoints may have completed.
255 *
256 * Hence when we are woken here, it may be that the head of the
257 * log that has moved rather than the tail. As the tail didn't
258 * move, there still won't be space available for the
259 * reservation we require. However, if the AIL has already
260 * pushed to the target defined by the old log head location, we
261 * will hang here waiting for something else to update the AIL
262 * push target.
263 *
264 * Therefore, if there isn't space to wake the first waiter on
265 * the grant head, we need to push the AIL again to ensure the
266 * target reflects both the current log tail and log head
267 * position before we wait for the tail to move again.
268 */
269
270 need_bytes = xlog_ticket_reservation(log, head, tic);
271 if (*free_bytes < need_bytes) {
272 if (!woken_task)
273 xlog_grant_push_ail(log, need_bytes);
274 return false;
275 }
276
277 *free_bytes -= need_bytes;
278 trace_xfs_log_grant_wake_up(log, tic);
279 wake_up_process(tic->t_task);
280 woken_task = true;
281 }
282
283 return true;
284}
285
286STATIC int
287xlog_grant_head_wait(
288 struct xlog *log,
289 struct xlog_grant_head *head,
290 struct xlog_ticket *tic,
291 int need_bytes) __releases(&head->lock)
292 __acquires(&head->lock)
293{
294 list_add_tail(&tic->t_queue, &head->waiters);
295
296 do {
297 if (xlog_is_shutdown(log))
298 goto shutdown;
299 xlog_grant_push_ail(log, need_bytes);
300
301 __set_current_state(TASK_UNINTERRUPTIBLE);
302 spin_unlock(&head->lock);
303
304 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
305
306 trace_xfs_log_grant_sleep(log, tic);
307 schedule();
308 trace_xfs_log_grant_wake(log, tic);
309
310 spin_lock(&head->lock);
311 if (xlog_is_shutdown(log))
312 goto shutdown;
313 } while (xlog_space_left(log, &head->grant) < need_bytes);
314
315 list_del_init(&tic->t_queue);
316 return 0;
317shutdown:
318 list_del_init(&tic->t_queue);
319 return -EIO;
320}
321
322/*
323 * Atomically get the log space required for a log ticket.
324 *
325 * Once a ticket gets put onto head->waiters, it will only return after the
326 * needed reservation is satisfied.
327 *
328 * This function is structured so that it has a lock free fast path. This is
329 * necessary because every new transaction reservation will come through this
330 * path. Hence any lock will be globally hot if we take it unconditionally on
331 * every pass.
332 *
333 * As tickets are only ever moved on and off head->waiters under head->lock, we
334 * only need to take that lock if we are going to add the ticket to the queue
335 * and sleep. We can avoid taking the lock if the ticket was never added to
336 * head->waiters because the t_queue list head will be empty and we hold the
337 * only reference to it so it can safely be checked unlocked.
338 */
339STATIC int
340xlog_grant_head_check(
341 struct xlog *log,
342 struct xlog_grant_head *head,
343 struct xlog_ticket *tic,
344 int *need_bytes)
345{
346 int free_bytes;
347 int error = 0;
348
349 ASSERT(!xlog_in_recovery(log));
350
351 /*
352 * If there are other waiters on the queue then give them a chance at
353 * logspace before us. Wake up the first waiters, if we do not wake
354 * up all the waiters then go to sleep waiting for more free space,
355 * otherwise try to get some space for this transaction.
356 */
357 *need_bytes = xlog_ticket_reservation(log, head, tic);
358 free_bytes = xlog_space_left(log, &head->grant);
359 if (!list_empty_careful(&head->waiters)) {
360 spin_lock(&head->lock);
361 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
362 free_bytes < *need_bytes) {
363 error = xlog_grant_head_wait(log, head, tic,
364 *need_bytes);
365 }
366 spin_unlock(&head->lock);
367 } else if (free_bytes < *need_bytes) {
368 spin_lock(&head->lock);
369 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
370 spin_unlock(&head->lock);
371 }
372
373 return error;
374}
375
376bool
377xfs_log_writable(
378 struct xfs_mount *mp)
379{
380 /*
381 * Do not write to the log on norecovery mounts, if the data or log
382 * devices are read-only, or if the filesystem is shutdown. Read-only
383 * mounts allow internal writes for log recovery and unmount purposes,
384 * so don't restrict that case.
385 */
386 if (xfs_has_norecovery(mp))
387 return false;
388 if (xfs_readonly_buftarg(mp->m_ddev_targp))
389 return false;
390 if (xfs_readonly_buftarg(mp->m_log->l_targ))
391 return false;
392 if (xlog_is_shutdown(mp->m_log))
393 return false;
394 return true;
395}
396
397/*
398 * Replenish the byte reservation required by moving the grant write head.
399 */
400int
401xfs_log_regrant(
402 struct xfs_mount *mp,
403 struct xlog_ticket *tic)
404{
405 struct xlog *log = mp->m_log;
406 int need_bytes;
407 int error = 0;
408
409 if (xlog_is_shutdown(log))
410 return -EIO;
411
412 XFS_STATS_INC(mp, xs_try_logspace);
413
414 /*
415 * This is a new transaction on the ticket, so we need to change the
416 * transaction ID so that the next transaction has a different TID in
417 * the log. Just add one to the existing tid so that we can see chains
418 * of rolling transactions in the log easily.
419 */
420 tic->t_tid++;
421
422 xlog_grant_push_ail(log, tic->t_unit_res);
423
424 tic->t_curr_res = tic->t_unit_res;
425 if (tic->t_cnt > 0)
426 return 0;
427
428 trace_xfs_log_regrant(log, tic);
429
430 error = xlog_grant_head_check(log, &log->l_write_head, tic,
431 &need_bytes);
432 if (error)
433 goto out_error;
434
435 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
436 trace_xfs_log_regrant_exit(log, tic);
437 xlog_verify_grant_tail(log);
438 return 0;
439
440out_error:
441 /*
442 * If we are failing, make sure the ticket doesn't have any current
443 * reservations. We don't want to add this back when the ticket/
444 * transaction gets cancelled.
445 */
446 tic->t_curr_res = 0;
447 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
448 return error;
449}
450
451/*
452 * Reserve log space and return a ticket corresponding to the reservation.
453 *
454 * Each reservation is going to reserve extra space for a log record header.
455 * When writes happen to the on-disk log, we don't subtract the length of the
456 * log record header from any reservation. By wasting space in each
457 * reservation, we prevent over allocation problems.
458 */
459int
460xfs_log_reserve(
461 struct xfs_mount *mp,
462 int unit_bytes,
463 int cnt,
464 struct xlog_ticket **ticp,
465 bool permanent)
466{
467 struct xlog *log = mp->m_log;
468 struct xlog_ticket *tic;
469 int need_bytes;
470 int error = 0;
471
472 if (xlog_is_shutdown(log))
473 return -EIO;
474
475 XFS_STATS_INC(mp, xs_try_logspace);
476
477 ASSERT(*ticp == NULL);
478 tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
479 *ticp = tic;
480
481 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
482 : tic->t_unit_res);
483
484 trace_xfs_log_reserve(log, tic);
485
486 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
487 &need_bytes);
488 if (error)
489 goto out_error;
490
491 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
492 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
493 trace_xfs_log_reserve_exit(log, tic);
494 xlog_verify_grant_tail(log);
495 return 0;
496
497out_error:
498 /*
499 * If we are failing, make sure the ticket doesn't have any current
500 * reservations. We don't want to add this back when the ticket/
501 * transaction gets cancelled.
502 */
503 tic->t_curr_res = 0;
504 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
505 return error;
506}
507
508/*
509 * Run all the pending iclog callbacks and wake log force waiters and iclog
510 * space waiters so they can process the newly set shutdown state. We really
511 * don't care what order we process callbacks here because the log is shut down
512 * and so state cannot change on disk anymore. However, we cannot wake waiters
513 * until the callbacks have been processed because we may be in unmount and
514 * we must ensure that all AIL operations the callbacks perform have completed
515 * before we tear down the AIL.
516 *
517 * We avoid processing actively referenced iclogs so that we don't run callbacks
518 * while the iclog owner might still be preparing the iclog for IO submssion.
519 * These will be caught by xlog_state_iclog_release() and call this function
520 * again to process any callbacks that may have been added to that iclog.
521 */
522static void
523xlog_state_shutdown_callbacks(
524 struct xlog *log)
525{
526 struct xlog_in_core *iclog;
527 LIST_HEAD(cb_list);
528
529 iclog = log->l_iclog;
530 do {
531 if (atomic_read(&iclog->ic_refcnt)) {
532 /* Reference holder will re-run iclog callbacks. */
533 continue;
534 }
535 list_splice_init(&iclog->ic_callbacks, &cb_list);
536 spin_unlock(&log->l_icloglock);
537
538 xlog_cil_process_committed(&cb_list);
539
540 spin_lock(&log->l_icloglock);
541 wake_up_all(&iclog->ic_write_wait);
542 wake_up_all(&iclog->ic_force_wait);
543 } while ((iclog = iclog->ic_next) != log->l_iclog);
544
545 wake_up_all(&log->l_flush_wait);
546}
547
548/*
549 * Flush iclog to disk if this is the last reference to the given iclog and the
550 * it is in the WANT_SYNC state.
551 *
552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
554 * written to stable storage, and implies that a commit record is contained
555 * within the iclog. We need to ensure that the log tail does not move beyond
556 * the tail that the first commit record in the iclog ordered against, otherwise
557 * correct recovery of that checkpoint becomes dependent on future operations
558 * performed on this iclog.
559 *
560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
561 * current tail into iclog. Once the iclog tail is set, future operations must
562 * not modify it, otherwise they potentially violate ordering constraints for
563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
564 * the iclog will get zeroed on activation of the iclog after sync, so we
565 * always capture the tail lsn on the iclog on the first NEED_FUA release
566 * regardless of the number of active reference counts on this iclog.
567 */
568int
569xlog_state_release_iclog(
570 struct xlog *log,
571 struct xlog_in_core *iclog,
572 struct xlog_ticket *ticket)
573{
574 xfs_lsn_t tail_lsn;
575 bool last_ref;
576
577 lockdep_assert_held(&log->l_icloglock);
578
579 trace_xlog_iclog_release(iclog, _RET_IP_);
580 /*
581 * Grabbing the current log tail needs to be atomic w.r.t. the writing
582 * of the tail LSN into the iclog so we guarantee that the log tail does
583 * not move between the first time we know that the iclog needs to be
584 * made stable and when we eventually submit it.
585 */
586 if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
587 (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
588 !iclog->ic_header.h_tail_lsn) {
589 tail_lsn = xlog_assign_tail_lsn(log->l_mp);
590 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
591 }
592
593 last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
594
595 if (xlog_is_shutdown(log)) {
596 /*
597 * If there are no more references to this iclog, process the
598 * pending iclog callbacks that were waiting on the release of
599 * this iclog.
600 */
601 if (last_ref)
602 xlog_state_shutdown_callbacks(log);
603 return -EIO;
604 }
605
606 if (!last_ref)
607 return 0;
608
609 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
610 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
611 return 0;
612 }
613
614 iclog->ic_state = XLOG_STATE_SYNCING;
615 xlog_verify_tail_lsn(log, iclog);
616 trace_xlog_iclog_syncing(iclog, _RET_IP_);
617
618 spin_unlock(&log->l_icloglock);
619 xlog_sync(log, iclog, ticket);
620 spin_lock(&log->l_icloglock);
621 return 0;
622}
623
624/*
625 * Mount a log filesystem
626 *
627 * mp - ubiquitous xfs mount point structure
628 * log_target - buftarg of on-disk log device
629 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
630 * num_bblocks - Number of BBSIZE blocks in on-disk log
631 *
632 * Return error or zero.
633 */
634int
635xfs_log_mount(
636 xfs_mount_t *mp,
637 struct xfs_buftarg *log_target,
638 xfs_daddr_t blk_offset,
639 int num_bblks)
640{
641 struct xlog *log;
642 int error = 0;
643 int min_logfsbs;
644
645 if (!xfs_has_norecovery(mp)) {
646 xfs_notice(mp, "Mounting V%d Filesystem %pU",
647 XFS_SB_VERSION_NUM(&mp->m_sb),
648 &mp->m_sb.sb_uuid);
649 } else {
650 xfs_notice(mp,
651"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
652 XFS_SB_VERSION_NUM(&mp->m_sb),
653 &mp->m_sb.sb_uuid);
654 ASSERT(xfs_is_readonly(mp));
655 }
656
657 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
658 if (IS_ERR(log)) {
659 error = PTR_ERR(log);
660 goto out;
661 }
662 mp->m_log = log;
663
664 /*
665 * Now that we have set up the log and it's internal geometry
666 * parameters, we can validate the given log space and drop a critical
667 * message via syslog if the log size is too small. A log that is too
668 * small can lead to unexpected situations in transaction log space
669 * reservation stage. The superblock verifier has already validated all
670 * the other log geometry constraints, so we don't have to check those
671 * here.
672 *
673 * Note: For v4 filesystems, we can't just reject the mount if the
674 * validation fails. This would mean that people would have to
675 * downgrade their kernel just to remedy the situation as there is no
676 * way to grow the log (short of black magic surgery with xfs_db).
677 *
678 * We can, however, reject mounts for V5 format filesystems, as the
679 * mkfs binary being used to make the filesystem should never create a
680 * filesystem with a log that is too small.
681 */
682 min_logfsbs = xfs_log_calc_minimum_size(mp);
683 if (mp->m_sb.sb_logblocks < min_logfsbs) {
684 xfs_warn(mp,
685 "Log size %d blocks too small, minimum size is %d blocks",
686 mp->m_sb.sb_logblocks, min_logfsbs);
687
688 /*
689 * Log check errors are always fatal on v5; or whenever bad
690 * metadata leads to a crash.
691 */
692 if (xfs_has_crc(mp)) {
693 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
694 ASSERT(0);
695 error = -EINVAL;
696 goto out_free_log;
697 }
698 xfs_crit(mp, "Log size out of supported range.");
699 xfs_crit(mp,
700"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
701 }
702
703 /*
704 * Initialize the AIL now we have a log.
705 */
706 error = xfs_trans_ail_init(mp);
707 if (error) {
708 xfs_warn(mp, "AIL initialisation failed: error %d", error);
709 goto out_free_log;
710 }
711 log->l_ailp = mp->m_ail;
712
713 /*
714 * skip log recovery on a norecovery mount. pretend it all
715 * just worked.
716 */
717 if (!xfs_has_norecovery(mp)) {
718 error = xlog_recover(log);
719 if (error) {
720 xfs_warn(mp, "log mount/recovery failed: error %d",
721 error);
722 xlog_recover_cancel(log);
723 goto out_destroy_ail;
724 }
725 }
726
727 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
728 "log");
729 if (error)
730 goto out_destroy_ail;
731
732 /* Normal transactions can now occur */
733 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
734
735 /*
736 * Now the log has been fully initialised and we know were our
737 * space grant counters are, we can initialise the permanent ticket
738 * needed for delayed logging to work.
739 */
740 xlog_cil_init_post_recovery(log);
741
742 return 0;
743
744out_destroy_ail:
745 xfs_trans_ail_destroy(mp);
746out_free_log:
747 xlog_dealloc_log(log);
748out:
749 return error;
750}
751
752/*
753 * Finish the recovery of the file system. This is separate from the
754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
756 * here.
757 *
758 * If we finish recovery successfully, start the background log work. If we are
759 * not doing recovery, then we have a RO filesystem and we don't need to start
760 * it.
761 */
762int
763xfs_log_mount_finish(
764 struct xfs_mount *mp)
765{
766 struct xlog *log = mp->m_log;
767 int error = 0;
768
769 if (xfs_has_norecovery(mp)) {
770 ASSERT(xfs_is_readonly(mp));
771 return 0;
772 }
773
774 /*
775 * During the second phase of log recovery, we need iget and
776 * iput to behave like they do for an active filesystem.
777 * xfs_fs_drop_inode needs to be able to prevent the deletion
778 * of inodes before we're done replaying log items on those
779 * inodes. Turn it off immediately after recovery finishes
780 * so that we don't leak the quota inodes if subsequent mount
781 * activities fail.
782 *
783 * We let all inodes involved in redo item processing end up on
784 * the LRU instead of being evicted immediately so that if we do
785 * something to an unlinked inode, the irele won't cause
786 * premature truncation and freeing of the inode, which results
787 * in log recovery failure. We have to evict the unreferenced
788 * lru inodes after clearing SB_ACTIVE because we don't
789 * otherwise clean up the lru if there's a subsequent failure in
790 * xfs_mountfs, which leads to us leaking the inodes if nothing
791 * else (e.g. quotacheck) references the inodes before the
792 * mount failure occurs.
793 */
794 mp->m_super->s_flags |= SB_ACTIVE;
795 xfs_log_work_queue(mp);
796 if (xlog_recovery_needed(log))
797 error = xlog_recover_finish(log);
798 mp->m_super->s_flags &= ~SB_ACTIVE;
799 evict_inodes(mp->m_super);
800
801 /*
802 * Drain the buffer LRU after log recovery. This is required for v4
803 * filesystems to avoid leaving around buffers with NULL verifier ops,
804 * but we do it unconditionally to make sure we're always in a clean
805 * cache state after mount.
806 *
807 * Don't push in the error case because the AIL may have pending intents
808 * that aren't removed until recovery is cancelled.
809 */
810 if (xlog_recovery_needed(log)) {
811 if (!error) {
812 xfs_log_force(mp, XFS_LOG_SYNC);
813 xfs_ail_push_all_sync(mp->m_ail);
814 }
815 xfs_notice(mp, "Ending recovery (logdev: %s)",
816 mp->m_logname ? mp->m_logname : "internal");
817 } else {
818 xfs_info(mp, "Ending clean mount");
819 }
820 xfs_buftarg_drain(mp->m_ddev_targp);
821
822 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
823
824 /* Make sure the log is dead if we're returning failure. */
825 ASSERT(!error || xlog_is_shutdown(log));
826
827 return error;
828}
829
830/*
831 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
832 * the log.
833 */
834void
835xfs_log_mount_cancel(
836 struct xfs_mount *mp)
837{
838 xlog_recover_cancel(mp->m_log);
839 xfs_log_unmount(mp);
840}
841
842/*
843 * Flush out the iclog to disk ensuring that device caches are flushed and
844 * the iclog hits stable storage before any completion waiters are woken.
845 */
846static inline int
847xlog_force_iclog(
848 struct xlog_in_core *iclog)
849{
850 atomic_inc(&iclog->ic_refcnt);
851 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
852 if (iclog->ic_state == XLOG_STATE_ACTIVE)
853 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
854 return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
855}
856
857/*
858 * Cycle all the iclogbuf locks to make sure all log IO completion
859 * is done before we tear down these buffers.
860 */
861static void
862xlog_wait_iclog_completion(struct xlog *log)
863{
864 int i;
865 struct xlog_in_core *iclog = log->l_iclog;
866
867 for (i = 0; i < log->l_iclog_bufs; i++) {
868 down(&iclog->ic_sema);
869 up(&iclog->ic_sema);
870 iclog = iclog->ic_next;
871 }
872}
873
874/*
875 * Wait for the iclog and all prior iclogs to be written disk as required by the
876 * log force state machine. Waiting on ic_force_wait ensures iclog completions
877 * have been ordered and callbacks run before we are woken here, hence
878 * guaranteeing that all the iclogs up to this one are on stable storage.
879 */
880int
881xlog_wait_on_iclog(
882 struct xlog_in_core *iclog)
883 __releases(iclog->ic_log->l_icloglock)
884{
885 struct xlog *log = iclog->ic_log;
886
887 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
888 if (!xlog_is_shutdown(log) &&
889 iclog->ic_state != XLOG_STATE_ACTIVE &&
890 iclog->ic_state != XLOG_STATE_DIRTY) {
891 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
892 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
893 } else {
894 spin_unlock(&log->l_icloglock);
895 }
896
897 if (xlog_is_shutdown(log))
898 return -EIO;
899 return 0;
900}
901
902/*
903 * Write out an unmount record using the ticket provided. We have to account for
904 * the data space used in the unmount ticket as this write is not done from a
905 * transaction context that has already done the accounting for us.
906 */
907static int
908xlog_write_unmount_record(
909 struct xlog *log,
910 struct xlog_ticket *ticket)
911{
912 struct {
913 struct xlog_op_header ophdr;
914 struct xfs_unmount_log_format ulf;
915 } unmount_rec = {
916 .ophdr = {
917 .oh_clientid = XFS_LOG,
918 .oh_tid = cpu_to_be32(ticket->t_tid),
919 .oh_flags = XLOG_UNMOUNT_TRANS,
920 },
921 .ulf = {
922 .magic = XLOG_UNMOUNT_TYPE,
923 },
924 };
925 struct xfs_log_iovec reg = {
926 .i_addr = &unmount_rec,
927 .i_len = sizeof(unmount_rec),
928 .i_type = XLOG_REG_TYPE_UNMOUNT,
929 };
930 struct xfs_log_vec vec = {
931 .lv_niovecs = 1,
932 .lv_iovecp = ®,
933 };
934 LIST_HEAD(lv_chain);
935 list_add(&vec.lv_list, &lv_chain);
936
937 BUILD_BUG_ON((sizeof(struct xlog_op_header) +
938 sizeof(struct xfs_unmount_log_format)) !=
939 sizeof(unmount_rec));
940
941 /* account for space used by record data */
942 ticket->t_curr_res -= sizeof(unmount_rec);
943
944 return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
945}
946
947/*
948 * Mark the filesystem clean by writing an unmount record to the head of the
949 * log.
950 */
951static void
952xlog_unmount_write(
953 struct xlog *log)
954{
955 struct xfs_mount *mp = log->l_mp;
956 struct xlog_in_core *iclog;
957 struct xlog_ticket *tic = NULL;
958 int error;
959
960 error = xfs_log_reserve(mp, 600, 1, &tic, 0);
961 if (error)
962 goto out_err;
963
964 error = xlog_write_unmount_record(log, tic);
965 /*
966 * At this point, we're umounting anyway, so there's no point in
967 * transitioning log state to shutdown. Just continue...
968 */
969out_err:
970 if (error)
971 xfs_alert(mp, "%s: unmount record failed", __func__);
972
973 spin_lock(&log->l_icloglock);
974 iclog = log->l_iclog;
975 error = xlog_force_iclog(iclog);
976 xlog_wait_on_iclog(iclog);
977
978 if (tic) {
979 trace_xfs_log_umount_write(log, tic);
980 xfs_log_ticket_ungrant(log, tic);
981 }
982}
983
984static void
985xfs_log_unmount_verify_iclog(
986 struct xlog *log)
987{
988 struct xlog_in_core *iclog = log->l_iclog;
989
990 do {
991 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
992 ASSERT(iclog->ic_offset == 0);
993 } while ((iclog = iclog->ic_next) != log->l_iclog);
994}
995
996/*
997 * Unmount record used to have a string "Unmount filesystem--" in the
998 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
999 * We just write the magic number now since that particular field isn't
1000 * currently architecture converted and "Unmount" is a bit foo.
1001 * As far as I know, there weren't any dependencies on the old behaviour.
1002 */
1003static void
1004xfs_log_unmount_write(
1005 struct xfs_mount *mp)
1006{
1007 struct xlog *log = mp->m_log;
1008
1009 if (!xfs_log_writable(mp))
1010 return;
1011
1012 xfs_log_force(mp, XFS_LOG_SYNC);
1013
1014 if (xlog_is_shutdown(log))
1015 return;
1016
1017 /*
1018 * If we think the summary counters are bad, avoid writing the unmount
1019 * record to force log recovery at next mount, after which the summary
1020 * counters will be recalculated. Refer to xlog_check_unmount_rec for
1021 * more details.
1022 */
1023 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1024 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1025 xfs_alert(mp, "%s: will fix summary counters at next mount",
1026 __func__);
1027 return;
1028 }
1029
1030 xfs_log_unmount_verify_iclog(log);
1031 xlog_unmount_write(log);
1032}
1033
1034/*
1035 * Empty the log for unmount/freeze.
1036 *
1037 * To do this, we first need to shut down the background log work so it is not
1038 * trying to cover the log as we clean up. We then need to unpin all objects in
1039 * the log so we can then flush them out. Once they have completed their IO and
1040 * run the callbacks removing themselves from the AIL, we can cover the log.
1041 */
1042int
1043xfs_log_quiesce(
1044 struct xfs_mount *mp)
1045{
1046 /*
1047 * Clear log incompat features since we're quiescing the log. Report
1048 * failures, though it's not fatal to have a higher log feature
1049 * protection level than the log contents actually require.
1050 */
1051 if (xfs_clear_incompat_log_features(mp)) {
1052 int error;
1053
1054 error = xfs_sync_sb(mp, false);
1055 if (error)
1056 xfs_warn(mp,
1057 "Failed to clear log incompat features on quiesce");
1058 }
1059
1060 cancel_delayed_work_sync(&mp->m_log->l_work);
1061 xfs_log_force(mp, XFS_LOG_SYNC);
1062
1063 /*
1064 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1065 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1066 * xfs_buf_iowait() cannot be used because it was pushed with the
1067 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1068 * the IO to complete.
1069 */
1070 xfs_ail_push_all_sync(mp->m_ail);
1071 xfs_buftarg_wait(mp->m_ddev_targp);
1072 xfs_buf_lock(mp->m_sb_bp);
1073 xfs_buf_unlock(mp->m_sb_bp);
1074
1075 return xfs_log_cover(mp);
1076}
1077
1078void
1079xfs_log_clean(
1080 struct xfs_mount *mp)
1081{
1082 xfs_log_quiesce(mp);
1083 xfs_log_unmount_write(mp);
1084}
1085
1086/*
1087 * Shut down and release the AIL and Log.
1088 *
1089 * During unmount, we need to ensure we flush all the dirty metadata objects
1090 * from the AIL so that the log is empty before we write the unmount record to
1091 * the log. Once this is done, we can tear down the AIL and the log.
1092 */
1093void
1094xfs_log_unmount(
1095 struct xfs_mount *mp)
1096{
1097 xfs_log_clean(mp);
1098
1099 /*
1100 * If shutdown has come from iclog IO context, the log
1101 * cleaning will have been skipped and so we need to wait
1102 * for the iclog to complete shutdown processing before we
1103 * tear anything down.
1104 */
1105 xlog_wait_iclog_completion(mp->m_log);
1106
1107 xfs_buftarg_drain(mp->m_ddev_targp);
1108
1109 xfs_trans_ail_destroy(mp);
1110
1111 xfs_sysfs_del(&mp->m_log->l_kobj);
1112
1113 xlog_dealloc_log(mp->m_log);
1114}
1115
1116void
1117xfs_log_item_init(
1118 struct xfs_mount *mp,
1119 struct xfs_log_item *item,
1120 int type,
1121 const struct xfs_item_ops *ops)
1122{
1123 item->li_log = mp->m_log;
1124 item->li_ailp = mp->m_ail;
1125 item->li_type = type;
1126 item->li_ops = ops;
1127 item->li_lv = NULL;
1128
1129 INIT_LIST_HEAD(&item->li_ail);
1130 INIT_LIST_HEAD(&item->li_cil);
1131 INIT_LIST_HEAD(&item->li_bio_list);
1132 INIT_LIST_HEAD(&item->li_trans);
1133}
1134
1135/*
1136 * Wake up processes waiting for log space after we have moved the log tail.
1137 */
1138void
1139xfs_log_space_wake(
1140 struct xfs_mount *mp)
1141{
1142 struct xlog *log = mp->m_log;
1143 int free_bytes;
1144
1145 if (xlog_is_shutdown(log))
1146 return;
1147
1148 if (!list_empty_careful(&log->l_write_head.waiters)) {
1149 ASSERT(!xlog_in_recovery(log));
1150
1151 spin_lock(&log->l_write_head.lock);
1152 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1153 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1154 spin_unlock(&log->l_write_head.lock);
1155 }
1156
1157 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1158 ASSERT(!xlog_in_recovery(log));
1159
1160 spin_lock(&log->l_reserve_head.lock);
1161 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1162 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1163 spin_unlock(&log->l_reserve_head.lock);
1164 }
1165}
1166
1167/*
1168 * Determine if we have a transaction that has gone to disk that needs to be
1169 * covered. To begin the transition to the idle state firstly the log needs to
1170 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1171 * we start attempting to cover the log.
1172 *
1173 * Only if we are then in a state where covering is needed, the caller is
1174 * informed that dummy transactions are required to move the log into the idle
1175 * state.
1176 *
1177 * If there are any items in the AIl or CIL, then we do not want to attempt to
1178 * cover the log as we may be in a situation where there isn't log space
1179 * available to run a dummy transaction and this can lead to deadlocks when the
1180 * tail of the log is pinned by an item that is modified in the CIL. Hence
1181 * there's no point in running a dummy transaction at this point because we
1182 * can't start trying to idle the log until both the CIL and AIL are empty.
1183 */
1184static bool
1185xfs_log_need_covered(
1186 struct xfs_mount *mp)
1187{
1188 struct xlog *log = mp->m_log;
1189 bool needed = false;
1190
1191 if (!xlog_cil_empty(log))
1192 return false;
1193
1194 spin_lock(&log->l_icloglock);
1195 switch (log->l_covered_state) {
1196 case XLOG_STATE_COVER_DONE:
1197 case XLOG_STATE_COVER_DONE2:
1198 case XLOG_STATE_COVER_IDLE:
1199 break;
1200 case XLOG_STATE_COVER_NEED:
1201 case XLOG_STATE_COVER_NEED2:
1202 if (xfs_ail_min_lsn(log->l_ailp))
1203 break;
1204 if (!xlog_iclogs_empty(log))
1205 break;
1206
1207 needed = true;
1208 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1209 log->l_covered_state = XLOG_STATE_COVER_DONE;
1210 else
1211 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1212 break;
1213 default:
1214 needed = true;
1215 break;
1216 }
1217 spin_unlock(&log->l_icloglock);
1218 return needed;
1219}
1220
1221/*
1222 * Explicitly cover the log. This is similar to background log covering but
1223 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1224 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1225 * must all be empty.
1226 */
1227static int
1228xfs_log_cover(
1229 struct xfs_mount *mp)
1230{
1231 int error = 0;
1232 bool need_covered;
1233
1234 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1235 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1236 xlog_is_shutdown(mp->m_log));
1237
1238 if (!xfs_log_writable(mp))
1239 return 0;
1240
1241 /*
1242 * xfs_log_need_covered() is not idempotent because it progresses the
1243 * state machine if the log requires covering. Therefore, we must call
1244 * this function once and use the result until we've issued an sb sync.
1245 * Do so first to make that abundantly clear.
1246 *
1247 * Fall into the covering sequence if the log needs covering or the
1248 * mount has lazy superblock accounting to sync to disk. The sb sync
1249 * used for covering accumulates the in-core counters, so covering
1250 * handles this for us.
1251 */
1252 need_covered = xfs_log_need_covered(mp);
1253 if (!need_covered && !xfs_has_lazysbcount(mp))
1254 return 0;
1255
1256 /*
1257 * To cover the log, commit the superblock twice (at most) in
1258 * independent checkpoints. The first serves as a reference for the
1259 * tail pointer. The sync transaction and AIL push empties the AIL and
1260 * updates the in-core tail to the LSN of the first checkpoint. The
1261 * second commit updates the on-disk tail with the in-core LSN,
1262 * covering the log. Push the AIL one more time to leave it empty, as
1263 * we found it.
1264 */
1265 do {
1266 error = xfs_sync_sb(mp, true);
1267 if (error)
1268 break;
1269 xfs_ail_push_all_sync(mp->m_ail);
1270 } while (xfs_log_need_covered(mp));
1271
1272 return error;
1273}
1274
1275/*
1276 * We may be holding the log iclog lock upon entering this routine.
1277 */
1278xfs_lsn_t
1279xlog_assign_tail_lsn_locked(
1280 struct xfs_mount *mp)
1281{
1282 struct xlog *log = mp->m_log;
1283 struct xfs_log_item *lip;
1284 xfs_lsn_t tail_lsn;
1285
1286 assert_spin_locked(&mp->m_ail->ail_lock);
1287
1288 /*
1289 * To make sure we always have a valid LSN for the log tail we keep
1290 * track of the last LSN which was committed in log->l_last_sync_lsn,
1291 * and use that when the AIL was empty.
1292 */
1293 lip = xfs_ail_min(mp->m_ail);
1294 if (lip)
1295 tail_lsn = lip->li_lsn;
1296 else
1297 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1298 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1299 atomic64_set(&log->l_tail_lsn, tail_lsn);
1300 return tail_lsn;
1301}
1302
1303xfs_lsn_t
1304xlog_assign_tail_lsn(
1305 struct xfs_mount *mp)
1306{
1307 xfs_lsn_t tail_lsn;
1308
1309 spin_lock(&mp->m_ail->ail_lock);
1310 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1311 spin_unlock(&mp->m_ail->ail_lock);
1312
1313 return tail_lsn;
1314}
1315
1316/*
1317 * Return the space in the log between the tail and the head. The head
1318 * is passed in the cycle/bytes formal parms. In the special case where
1319 * the reserve head has wrapped passed the tail, this calculation is no
1320 * longer valid. In this case, just return 0 which means there is no space
1321 * in the log. This works for all places where this function is called
1322 * with the reserve head. Of course, if the write head were to ever
1323 * wrap the tail, we should blow up. Rather than catch this case here,
1324 * we depend on other ASSERTions in other parts of the code. XXXmiken
1325 *
1326 * If reservation head is behind the tail, we have a problem. Warn about it,
1327 * but then treat it as if the log is empty.
1328 *
1329 * If the log is shut down, the head and tail may be invalid or out of whack, so
1330 * shortcut invalidity asserts in this case so that we don't trigger them
1331 * falsely.
1332 */
1333STATIC int
1334xlog_space_left(
1335 struct xlog *log,
1336 atomic64_t *head)
1337{
1338 int tail_bytes;
1339 int tail_cycle;
1340 int head_cycle;
1341 int head_bytes;
1342
1343 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1344 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1345 tail_bytes = BBTOB(tail_bytes);
1346 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1347 return log->l_logsize - (head_bytes - tail_bytes);
1348 if (tail_cycle + 1 < head_cycle)
1349 return 0;
1350
1351 /* Ignore potential inconsistency when shutdown. */
1352 if (xlog_is_shutdown(log))
1353 return log->l_logsize;
1354
1355 if (tail_cycle < head_cycle) {
1356 ASSERT(tail_cycle == (head_cycle - 1));
1357 return tail_bytes - head_bytes;
1358 }
1359
1360 /*
1361 * The reservation head is behind the tail. In this case we just want to
1362 * return the size of the log as the amount of space left.
1363 */
1364 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1365 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d",
1366 tail_cycle, tail_bytes);
1367 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d",
1368 head_cycle, head_bytes);
1369 ASSERT(0);
1370 return log->l_logsize;
1371}
1372
1373
1374static void
1375xlog_ioend_work(
1376 struct work_struct *work)
1377{
1378 struct xlog_in_core *iclog =
1379 container_of(work, struct xlog_in_core, ic_end_io_work);
1380 struct xlog *log = iclog->ic_log;
1381 int error;
1382
1383 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1384#ifdef DEBUG
1385 /* treat writes with injected CRC errors as failed */
1386 if (iclog->ic_fail_crc)
1387 error = -EIO;
1388#endif
1389
1390 /*
1391 * Race to shutdown the filesystem if we see an error.
1392 */
1393 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1394 xfs_alert(log->l_mp, "log I/O error %d", error);
1395 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1396 }
1397
1398 xlog_state_done_syncing(iclog);
1399 bio_uninit(&iclog->ic_bio);
1400
1401 /*
1402 * Drop the lock to signal that we are done. Nothing references the
1403 * iclog after this, so an unmount waiting on this lock can now tear it
1404 * down safely. As such, it is unsafe to reference the iclog after the
1405 * unlock as we could race with it being freed.
1406 */
1407 up(&iclog->ic_sema);
1408}
1409
1410/*
1411 * Return size of each in-core log record buffer.
1412 *
1413 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1414 *
1415 * If the filesystem blocksize is too large, we may need to choose a
1416 * larger size since the directory code currently logs entire blocks.
1417 */
1418STATIC void
1419xlog_get_iclog_buffer_size(
1420 struct xfs_mount *mp,
1421 struct xlog *log)
1422{
1423 if (mp->m_logbufs <= 0)
1424 mp->m_logbufs = XLOG_MAX_ICLOGS;
1425 if (mp->m_logbsize <= 0)
1426 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1427
1428 log->l_iclog_bufs = mp->m_logbufs;
1429 log->l_iclog_size = mp->m_logbsize;
1430
1431 /*
1432 * # headers = size / 32k - one header holds cycles from 32k of data.
1433 */
1434 log->l_iclog_heads =
1435 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1436 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1437}
1438
1439void
1440xfs_log_work_queue(
1441 struct xfs_mount *mp)
1442{
1443 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1444 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1445}
1446
1447/*
1448 * Clear the log incompat flags if we have the opportunity.
1449 *
1450 * This only happens if we're about to log the second dummy transaction as part
1451 * of covering the log and we can get the log incompat feature usage lock.
1452 */
1453static inline void
1454xlog_clear_incompat(
1455 struct xlog *log)
1456{
1457 struct xfs_mount *mp = log->l_mp;
1458
1459 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1460 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1461 return;
1462
1463 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1464 return;
1465
1466 if (!down_write_trylock(&log->l_incompat_users))
1467 return;
1468
1469 xfs_clear_incompat_log_features(mp);
1470 up_write(&log->l_incompat_users);
1471}
1472
1473/*
1474 * Every sync period we need to unpin all items in the AIL and push them to
1475 * disk. If there is nothing dirty, then we might need to cover the log to
1476 * indicate that the filesystem is idle.
1477 */
1478static void
1479xfs_log_worker(
1480 struct work_struct *work)
1481{
1482 struct xlog *log = container_of(to_delayed_work(work),
1483 struct xlog, l_work);
1484 struct xfs_mount *mp = log->l_mp;
1485
1486 /* dgc: errors ignored - not fatal and nowhere to report them */
1487 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1488 /*
1489 * Dump a transaction into the log that contains no real change.
1490 * This is needed to stamp the current tail LSN into the log
1491 * during the covering operation.
1492 *
1493 * We cannot use an inode here for this - that will push dirty
1494 * state back up into the VFS and then periodic inode flushing
1495 * will prevent log covering from making progress. Hence we
1496 * synchronously log the superblock instead to ensure the
1497 * superblock is immediately unpinned and can be written back.
1498 */
1499 xlog_clear_incompat(log);
1500 xfs_sync_sb(mp, true);
1501 } else
1502 xfs_log_force(mp, 0);
1503
1504 /* start pushing all the metadata that is currently dirty */
1505 xfs_ail_push_all(mp->m_ail);
1506
1507 /* queue us up again */
1508 xfs_log_work_queue(mp);
1509}
1510
1511/*
1512 * This routine initializes some of the log structure for a given mount point.
1513 * Its primary purpose is to fill in enough, so recovery can occur. However,
1514 * some other stuff may be filled in too.
1515 */
1516STATIC struct xlog *
1517xlog_alloc_log(
1518 struct xfs_mount *mp,
1519 struct xfs_buftarg *log_target,
1520 xfs_daddr_t blk_offset,
1521 int num_bblks)
1522{
1523 struct xlog *log;
1524 xlog_rec_header_t *head;
1525 xlog_in_core_t **iclogp;
1526 xlog_in_core_t *iclog, *prev_iclog=NULL;
1527 int i;
1528 int error = -ENOMEM;
1529 uint log2_size = 0;
1530
1531 log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1532 if (!log) {
1533 xfs_warn(mp, "Log allocation failed: No memory!");
1534 goto out;
1535 }
1536
1537 log->l_mp = mp;
1538 log->l_targ = log_target;
1539 log->l_logsize = BBTOB(num_bblks);
1540 log->l_logBBstart = blk_offset;
1541 log->l_logBBsize = num_bblks;
1542 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1543 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1544 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1545 INIT_LIST_HEAD(&log->r_dfops);
1546
1547 log->l_prev_block = -1;
1548 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1549 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1550 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1551 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1552
1553 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1554 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1555 else
1556 log->l_iclog_roundoff = BBSIZE;
1557
1558 xlog_grant_head_init(&log->l_reserve_head);
1559 xlog_grant_head_init(&log->l_write_head);
1560
1561 error = -EFSCORRUPTED;
1562 if (xfs_has_sector(mp)) {
1563 log2_size = mp->m_sb.sb_logsectlog;
1564 if (log2_size < BBSHIFT) {
1565 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1566 log2_size, BBSHIFT);
1567 goto out_free_log;
1568 }
1569
1570 log2_size -= BBSHIFT;
1571 if (log2_size > mp->m_sectbb_log) {
1572 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1573 log2_size, mp->m_sectbb_log);
1574 goto out_free_log;
1575 }
1576
1577 /* for larger sector sizes, must have v2 or external log */
1578 if (log2_size && log->l_logBBstart > 0 &&
1579 !xfs_has_logv2(mp)) {
1580 xfs_warn(mp,
1581 "log sector size (0x%x) invalid for configuration.",
1582 log2_size);
1583 goto out_free_log;
1584 }
1585 }
1586 log->l_sectBBsize = 1 << log2_size;
1587
1588 init_rwsem(&log->l_incompat_users);
1589
1590 xlog_get_iclog_buffer_size(mp, log);
1591
1592 spin_lock_init(&log->l_icloglock);
1593 init_waitqueue_head(&log->l_flush_wait);
1594
1595 iclogp = &log->l_iclog;
1596 /*
1597 * The amount of memory to allocate for the iclog structure is
1598 * rather funky due to the way the structure is defined. It is
1599 * done this way so that we can use different sizes for machines
1600 * with different amounts of memory. See the definition of
1601 * xlog_in_core_t in xfs_log_priv.h for details.
1602 */
1603 ASSERT(log->l_iclog_size >= 4096);
1604 for (i = 0; i < log->l_iclog_bufs; i++) {
1605 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1606 sizeof(struct bio_vec);
1607
1608 iclog = kzalloc(sizeof(*iclog) + bvec_size,
1609 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1610 if (!iclog)
1611 goto out_free_iclog;
1612
1613 *iclogp = iclog;
1614 iclog->ic_prev = prev_iclog;
1615 prev_iclog = iclog;
1616
1617 iclog->ic_data = kvzalloc(log->l_iclog_size,
1618 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1619 if (!iclog->ic_data)
1620 goto out_free_iclog;
1621 head = &iclog->ic_header;
1622 memset(head, 0, sizeof(xlog_rec_header_t));
1623 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1624 head->h_version = cpu_to_be32(
1625 xfs_has_logv2(log->l_mp) ? 2 : 1);
1626 head->h_size = cpu_to_be32(log->l_iclog_size);
1627 /* new fields */
1628 head->h_fmt = cpu_to_be32(XLOG_FMT);
1629 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1630
1631 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1632 iclog->ic_state = XLOG_STATE_ACTIVE;
1633 iclog->ic_log = log;
1634 atomic_set(&iclog->ic_refcnt, 0);
1635 INIT_LIST_HEAD(&iclog->ic_callbacks);
1636 iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1637
1638 init_waitqueue_head(&iclog->ic_force_wait);
1639 init_waitqueue_head(&iclog->ic_write_wait);
1640 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1641 sema_init(&iclog->ic_sema, 1);
1642
1643 iclogp = &iclog->ic_next;
1644 }
1645 *iclogp = log->l_iclog; /* complete ring */
1646 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1647
1648 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1649 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1650 WQ_HIGHPRI),
1651 0, mp->m_super->s_id);
1652 if (!log->l_ioend_workqueue)
1653 goto out_free_iclog;
1654
1655 error = xlog_cil_init(log);
1656 if (error)
1657 goto out_destroy_workqueue;
1658 return log;
1659
1660out_destroy_workqueue:
1661 destroy_workqueue(log->l_ioend_workqueue);
1662out_free_iclog:
1663 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1664 prev_iclog = iclog->ic_next;
1665 kvfree(iclog->ic_data);
1666 kfree(iclog);
1667 if (prev_iclog == log->l_iclog)
1668 break;
1669 }
1670out_free_log:
1671 kfree(log);
1672out:
1673 return ERR_PTR(error);
1674} /* xlog_alloc_log */
1675
1676/*
1677 * Compute the LSN that we'd need to push the log tail towards in order to have
1678 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1679 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1680 * log free space already meets all three thresholds, this function returns
1681 * NULLCOMMITLSN.
1682 */
1683xfs_lsn_t
1684xlog_grant_push_threshold(
1685 struct xlog *log,
1686 int need_bytes)
1687{
1688 xfs_lsn_t threshold_lsn = 0;
1689 xfs_lsn_t last_sync_lsn;
1690 int free_blocks;
1691 int free_bytes;
1692 int threshold_block;
1693 int threshold_cycle;
1694 int free_threshold;
1695
1696 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1697
1698 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1699 free_blocks = BTOBBT(free_bytes);
1700
1701 /*
1702 * Set the threshold for the minimum number of free blocks in the
1703 * log to the maximum of what the caller needs, one quarter of the
1704 * log, and 256 blocks.
1705 */
1706 free_threshold = BTOBB(need_bytes);
1707 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1708 free_threshold = max(free_threshold, 256);
1709 if (free_blocks >= free_threshold)
1710 return NULLCOMMITLSN;
1711
1712 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1713 &threshold_block);
1714 threshold_block += free_threshold;
1715 if (threshold_block >= log->l_logBBsize) {
1716 threshold_block -= log->l_logBBsize;
1717 threshold_cycle += 1;
1718 }
1719 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1720 threshold_block);
1721 /*
1722 * Don't pass in an lsn greater than the lsn of the last
1723 * log record known to be on disk. Use a snapshot of the last sync lsn
1724 * so that it doesn't change between the compare and the set.
1725 */
1726 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1727 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1728 threshold_lsn = last_sync_lsn;
1729
1730 return threshold_lsn;
1731}
1732
1733/*
1734 * Push the tail of the log if we need to do so to maintain the free log space
1735 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1736 * policy which pushes on an lsn which is further along in the log once we
1737 * reach the high water mark. In this manner, we would be creating a low water
1738 * mark.
1739 */
1740STATIC void
1741xlog_grant_push_ail(
1742 struct xlog *log,
1743 int need_bytes)
1744{
1745 xfs_lsn_t threshold_lsn;
1746
1747 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1748 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1749 return;
1750
1751 /*
1752 * Get the transaction layer to kick the dirty buffers out to
1753 * disk asynchronously. No point in trying to do this if
1754 * the filesystem is shutting down.
1755 */
1756 xfs_ail_push(log->l_ailp, threshold_lsn);
1757}
1758
1759/*
1760 * Stamp cycle number in every block
1761 */
1762STATIC void
1763xlog_pack_data(
1764 struct xlog *log,
1765 struct xlog_in_core *iclog,
1766 int roundoff)
1767{
1768 int i, j, k;
1769 int size = iclog->ic_offset + roundoff;
1770 __be32 cycle_lsn;
1771 char *dp;
1772
1773 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1774
1775 dp = iclog->ic_datap;
1776 for (i = 0; i < BTOBB(size); i++) {
1777 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1778 break;
1779 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1780 *(__be32 *)dp = cycle_lsn;
1781 dp += BBSIZE;
1782 }
1783
1784 if (xfs_has_logv2(log->l_mp)) {
1785 xlog_in_core_2_t *xhdr = iclog->ic_data;
1786
1787 for ( ; i < BTOBB(size); i++) {
1788 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1789 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1790 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1791 *(__be32 *)dp = cycle_lsn;
1792 dp += BBSIZE;
1793 }
1794
1795 for (i = 1; i < log->l_iclog_heads; i++)
1796 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1797 }
1798}
1799
1800/*
1801 * Calculate the checksum for a log buffer.
1802 *
1803 * This is a little more complicated than it should be because the various
1804 * headers and the actual data are non-contiguous.
1805 */
1806__le32
1807xlog_cksum(
1808 struct xlog *log,
1809 struct xlog_rec_header *rhead,
1810 char *dp,
1811 int size)
1812{
1813 uint32_t crc;
1814
1815 /* first generate the crc for the record header ... */
1816 crc = xfs_start_cksum_update((char *)rhead,
1817 sizeof(struct xlog_rec_header),
1818 offsetof(struct xlog_rec_header, h_crc));
1819
1820 /* ... then for additional cycle data for v2 logs ... */
1821 if (xfs_has_logv2(log->l_mp)) {
1822 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1823 int i;
1824 int xheads;
1825
1826 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1827
1828 for (i = 1; i < xheads; i++) {
1829 crc = crc32c(crc, &xhdr[i].hic_xheader,
1830 sizeof(struct xlog_rec_ext_header));
1831 }
1832 }
1833
1834 /* ... and finally for the payload */
1835 crc = crc32c(crc, dp, size);
1836
1837 return xfs_end_cksum(crc);
1838}
1839
1840static void
1841xlog_bio_end_io(
1842 struct bio *bio)
1843{
1844 struct xlog_in_core *iclog = bio->bi_private;
1845
1846 queue_work(iclog->ic_log->l_ioend_workqueue,
1847 &iclog->ic_end_io_work);
1848}
1849
1850static int
1851xlog_map_iclog_data(
1852 struct bio *bio,
1853 void *data,
1854 size_t count)
1855{
1856 do {
1857 struct page *page = kmem_to_page(data);
1858 unsigned int off = offset_in_page(data);
1859 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1860
1861 if (bio_add_page(bio, page, len, off) != len)
1862 return -EIO;
1863
1864 data += len;
1865 count -= len;
1866 } while (count);
1867
1868 return 0;
1869}
1870
1871STATIC void
1872xlog_write_iclog(
1873 struct xlog *log,
1874 struct xlog_in_core *iclog,
1875 uint64_t bno,
1876 unsigned int count)
1877{
1878 ASSERT(bno < log->l_logBBsize);
1879 trace_xlog_iclog_write(iclog, _RET_IP_);
1880
1881 /*
1882 * We lock the iclogbufs here so that we can serialise against I/O
1883 * completion during unmount. We might be processing a shutdown
1884 * triggered during unmount, and that can occur asynchronously to the
1885 * unmount thread, and hence we need to ensure that completes before
1886 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1887 * across the log IO to archieve that.
1888 */
1889 down(&iclog->ic_sema);
1890 if (xlog_is_shutdown(log)) {
1891 /*
1892 * It would seem logical to return EIO here, but we rely on
1893 * the log state machine to propagate I/O errors instead of
1894 * doing it here. We kick of the state machine and unlock
1895 * the buffer manually, the code needs to be kept in sync
1896 * with the I/O completion path.
1897 */
1898 goto sync;
1899 }
1900
1901 /*
1902 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1903 * IOs coming immediately after this one. This prevents the block layer
1904 * writeback throttle from throttling log writes behind background
1905 * metadata writeback and causing priority inversions.
1906 */
1907 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1908 howmany(count, PAGE_SIZE),
1909 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1910 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1911 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1912 iclog->ic_bio.bi_private = iclog;
1913
1914 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1915 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1916 /*
1917 * For external log devices, we also need to flush the data
1918 * device cache first to ensure all metadata writeback covered
1919 * by the LSN in this iclog is on stable storage. This is slow,
1920 * but it *must* complete before we issue the external log IO.
1921 *
1922 * If the flush fails, we cannot conclude that past metadata
1923 * writeback from the log succeeded. Repeating the flush is
1924 * not possible, hence we must shut down with log IO error to
1925 * avoid shutdown re-entering this path and erroring out again.
1926 */
1927 if (log->l_targ != log->l_mp->m_ddev_targp &&
1928 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1929 goto shutdown;
1930 }
1931 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1932 iclog->ic_bio.bi_opf |= REQ_FUA;
1933
1934 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1935
1936 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1937 goto shutdown;
1938
1939 if (is_vmalloc_addr(iclog->ic_data))
1940 flush_kernel_vmap_range(iclog->ic_data, count);
1941
1942 /*
1943 * If this log buffer would straddle the end of the log we will have
1944 * to split it up into two bios, so that we can continue at the start.
1945 */
1946 if (bno + BTOBB(count) > log->l_logBBsize) {
1947 struct bio *split;
1948
1949 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1950 GFP_NOIO, &fs_bio_set);
1951 bio_chain(split, &iclog->ic_bio);
1952 submit_bio(split);
1953
1954 /* restart at logical offset zero for the remainder */
1955 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1956 }
1957
1958 submit_bio(&iclog->ic_bio);
1959 return;
1960shutdown:
1961 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1962sync:
1963 xlog_state_done_syncing(iclog);
1964 up(&iclog->ic_sema);
1965}
1966
1967/*
1968 * We need to bump cycle number for the part of the iclog that is
1969 * written to the start of the log. Watch out for the header magic
1970 * number case, though.
1971 */
1972static void
1973xlog_split_iclog(
1974 struct xlog *log,
1975 void *data,
1976 uint64_t bno,
1977 unsigned int count)
1978{
1979 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1980 unsigned int i;
1981
1982 for (i = split_offset; i < count; i += BBSIZE) {
1983 uint32_t cycle = get_unaligned_be32(data + i);
1984
1985 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1986 cycle++;
1987 put_unaligned_be32(cycle, data + i);
1988 }
1989}
1990
1991static int
1992xlog_calc_iclog_size(
1993 struct xlog *log,
1994 struct xlog_in_core *iclog,
1995 uint32_t *roundoff)
1996{
1997 uint32_t count_init, count;
1998
1999 /* Add for LR header */
2000 count_init = log->l_iclog_hsize + iclog->ic_offset;
2001 count = roundup(count_init, log->l_iclog_roundoff);
2002
2003 *roundoff = count - count_init;
2004
2005 ASSERT(count >= count_init);
2006 ASSERT(*roundoff < log->l_iclog_roundoff);
2007 return count;
2008}
2009
2010/*
2011 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2012 * fashion. Previously, we should have moved the current iclog
2013 * ptr in the log to point to the next available iclog. This allows further
2014 * write to continue while this code syncs out an iclog ready to go.
2015 * Before an in-core log can be written out, the data section must be scanned
2016 * to save away the 1st word of each BBSIZE block into the header. We replace
2017 * it with the current cycle count. Each BBSIZE block is tagged with the
2018 * cycle count because there in an implicit assumption that drives will
2019 * guarantee that entire 512 byte blocks get written at once. In other words,
2020 * we can't have part of a 512 byte block written and part not written. By
2021 * tagging each block, we will know which blocks are valid when recovering
2022 * after an unclean shutdown.
2023 *
2024 * This routine is single threaded on the iclog. No other thread can be in
2025 * this routine with the same iclog. Changing contents of iclog can there-
2026 * fore be done without grabbing the state machine lock. Updating the global
2027 * log will require grabbing the lock though.
2028 *
2029 * The entire log manager uses a logical block numbering scheme. Only
2030 * xlog_write_iclog knows about the fact that the log may not start with
2031 * block zero on a given device.
2032 */
2033STATIC void
2034xlog_sync(
2035 struct xlog *log,
2036 struct xlog_in_core *iclog,
2037 struct xlog_ticket *ticket)
2038{
2039 unsigned int count; /* byte count of bwrite */
2040 unsigned int roundoff; /* roundoff to BB or stripe */
2041 uint64_t bno;
2042 unsigned int size;
2043
2044 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2045 trace_xlog_iclog_sync(iclog, _RET_IP_);
2046
2047 count = xlog_calc_iclog_size(log, iclog, &roundoff);
2048
2049 /*
2050 * If we have a ticket, account for the roundoff via the ticket
2051 * reservation to avoid touching the hot grant heads needlessly.
2052 * Otherwise, we have to move grant heads directly.
2053 */
2054 if (ticket) {
2055 ticket->t_curr_res -= roundoff;
2056 } else {
2057 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2058 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2059 }
2060
2061 /* put cycle number in every block */
2062 xlog_pack_data(log, iclog, roundoff);
2063
2064 /* real byte length */
2065 size = iclog->ic_offset;
2066 if (xfs_has_logv2(log->l_mp))
2067 size += roundoff;
2068 iclog->ic_header.h_len = cpu_to_be32(size);
2069
2070 XFS_STATS_INC(log->l_mp, xs_log_writes);
2071 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2072
2073 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2074
2075 /* Do we need to split this write into 2 parts? */
2076 if (bno + BTOBB(count) > log->l_logBBsize)
2077 xlog_split_iclog(log, &iclog->ic_header, bno, count);
2078
2079 /* calculcate the checksum */
2080 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2081 iclog->ic_datap, size);
2082 /*
2083 * Intentionally corrupt the log record CRC based on the error injection
2084 * frequency, if defined. This facilitates testing log recovery in the
2085 * event of torn writes. Hence, set the IOABORT state to abort the log
2086 * write on I/O completion and shutdown the fs. The subsequent mount
2087 * detects the bad CRC and attempts to recover.
2088 */
2089#ifdef DEBUG
2090 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2091 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2092 iclog->ic_fail_crc = true;
2093 xfs_warn(log->l_mp,
2094 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2095 be64_to_cpu(iclog->ic_header.h_lsn));
2096 }
2097#endif
2098 xlog_verify_iclog(log, iclog, count);
2099 xlog_write_iclog(log, iclog, bno, count);
2100}
2101
2102/*
2103 * Deallocate a log structure
2104 */
2105STATIC void
2106xlog_dealloc_log(
2107 struct xlog *log)
2108{
2109 xlog_in_core_t *iclog, *next_iclog;
2110 int i;
2111
2112 /*
2113 * Destroy the CIL after waiting for iclog IO completion because an
2114 * iclog EIO error will try to shut down the log, which accesses the
2115 * CIL to wake up the waiters.
2116 */
2117 xlog_cil_destroy(log);
2118
2119 iclog = log->l_iclog;
2120 for (i = 0; i < log->l_iclog_bufs; i++) {
2121 next_iclog = iclog->ic_next;
2122 kvfree(iclog->ic_data);
2123 kfree(iclog);
2124 iclog = next_iclog;
2125 }
2126
2127 log->l_mp->m_log = NULL;
2128 destroy_workqueue(log->l_ioend_workqueue);
2129 kfree(log);
2130}
2131
2132/*
2133 * Update counters atomically now that memcpy is done.
2134 */
2135static inline void
2136xlog_state_finish_copy(
2137 struct xlog *log,
2138 struct xlog_in_core *iclog,
2139 int record_cnt,
2140 int copy_bytes)
2141{
2142 lockdep_assert_held(&log->l_icloglock);
2143
2144 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2145 iclog->ic_offset += copy_bytes;
2146}
2147
2148/*
2149 * print out info relating to regions written which consume
2150 * the reservation
2151 */
2152void
2153xlog_print_tic_res(
2154 struct xfs_mount *mp,
2155 struct xlog_ticket *ticket)
2156{
2157 xfs_warn(mp, "ticket reservation summary:");
2158 xfs_warn(mp, " unit res = %d bytes", ticket->t_unit_res);
2159 xfs_warn(mp, " current res = %d bytes", ticket->t_curr_res);
2160 xfs_warn(mp, " original count = %d", ticket->t_ocnt);
2161 xfs_warn(mp, " remaining count = %d", ticket->t_cnt);
2162}
2163
2164/*
2165 * Print a summary of the transaction.
2166 */
2167void
2168xlog_print_trans(
2169 struct xfs_trans *tp)
2170{
2171 struct xfs_mount *mp = tp->t_mountp;
2172 struct xfs_log_item *lip;
2173
2174 /* dump core transaction and ticket info */
2175 xfs_warn(mp, "transaction summary:");
2176 xfs_warn(mp, " log res = %d", tp->t_log_res);
2177 xfs_warn(mp, " log count = %d", tp->t_log_count);
2178 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2179
2180 xlog_print_tic_res(mp, tp->t_ticket);
2181
2182 /* dump each log item */
2183 list_for_each_entry(lip, &tp->t_items, li_trans) {
2184 struct xfs_log_vec *lv = lip->li_lv;
2185 struct xfs_log_iovec *vec;
2186 int i;
2187
2188 xfs_warn(mp, "log item: ");
2189 xfs_warn(mp, " type = 0x%x", lip->li_type);
2190 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2191 if (!lv)
2192 continue;
2193 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2194 xfs_warn(mp, " size = %d", lv->lv_size);
2195 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2196 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2197
2198 /* dump each iovec for the log item */
2199 vec = lv->lv_iovecp;
2200 for (i = 0; i < lv->lv_niovecs; i++) {
2201 int dumplen = min(vec->i_len, 32);
2202
2203 xfs_warn(mp, " iovec[%d]", i);
2204 xfs_warn(mp, " type = 0x%x", vec->i_type);
2205 xfs_warn(mp, " len = %d", vec->i_len);
2206 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2207 xfs_hex_dump(vec->i_addr, dumplen);
2208
2209 vec++;
2210 }
2211 }
2212}
2213
2214static inline void
2215xlog_write_iovec(
2216 struct xlog_in_core *iclog,
2217 uint32_t *log_offset,
2218 void *data,
2219 uint32_t write_len,
2220 int *bytes_left,
2221 uint32_t *record_cnt,
2222 uint32_t *data_cnt)
2223{
2224 ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2225 ASSERT(*log_offset % sizeof(int32_t) == 0);
2226 ASSERT(write_len % sizeof(int32_t) == 0);
2227
2228 memcpy(iclog->ic_datap + *log_offset, data, write_len);
2229 *log_offset += write_len;
2230 *bytes_left -= write_len;
2231 (*record_cnt)++;
2232 *data_cnt += write_len;
2233}
2234
2235/*
2236 * Write log vectors into a single iclog which is guaranteed by the caller
2237 * to have enough space to write the entire log vector into.
2238 */
2239static void
2240xlog_write_full(
2241 struct xfs_log_vec *lv,
2242 struct xlog_ticket *ticket,
2243 struct xlog_in_core *iclog,
2244 uint32_t *log_offset,
2245 uint32_t *len,
2246 uint32_t *record_cnt,
2247 uint32_t *data_cnt)
2248{
2249 int index;
2250
2251 ASSERT(*log_offset + *len <= iclog->ic_size ||
2252 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2253
2254 /*
2255 * Ordered log vectors have no regions to write so this
2256 * loop will naturally skip them.
2257 */
2258 for (index = 0; index < lv->lv_niovecs; index++) {
2259 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2260 struct xlog_op_header *ophdr = reg->i_addr;
2261
2262 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2263 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2264 reg->i_len, len, record_cnt, data_cnt);
2265 }
2266}
2267
2268static int
2269xlog_write_get_more_iclog_space(
2270 struct xlog_ticket *ticket,
2271 struct xlog_in_core **iclogp,
2272 uint32_t *log_offset,
2273 uint32_t len,
2274 uint32_t *record_cnt,
2275 uint32_t *data_cnt)
2276{
2277 struct xlog_in_core *iclog = *iclogp;
2278 struct xlog *log = iclog->ic_log;
2279 int error;
2280
2281 spin_lock(&log->l_icloglock);
2282 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2283 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2284 error = xlog_state_release_iclog(log, iclog, ticket);
2285 spin_unlock(&log->l_icloglock);
2286 if (error)
2287 return error;
2288
2289 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2290 log_offset);
2291 if (error)
2292 return error;
2293 *record_cnt = 0;
2294 *data_cnt = 0;
2295 *iclogp = iclog;
2296 return 0;
2297}
2298
2299/*
2300 * Write log vectors into a single iclog which is smaller than the current chain
2301 * length. We write until we cannot fit a full record into the remaining space
2302 * and then stop. We return the log vector that is to be written that cannot
2303 * wholly fit in the iclog.
2304 */
2305static int
2306xlog_write_partial(
2307 struct xfs_log_vec *lv,
2308 struct xlog_ticket *ticket,
2309 struct xlog_in_core **iclogp,
2310 uint32_t *log_offset,
2311 uint32_t *len,
2312 uint32_t *record_cnt,
2313 uint32_t *data_cnt)
2314{
2315 struct xlog_in_core *iclog = *iclogp;
2316 struct xlog_op_header *ophdr;
2317 int index = 0;
2318 uint32_t rlen;
2319 int error;
2320
2321 /* walk the logvec, copying until we run out of space in the iclog */
2322 for (index = 0; index < lv->lv_niovecs; index++) {
2323 struct xfs_log_iovec *reg = &lv->lv_iovecp[index];
2324 uint32_t reg_offset = 0;
2325
2326 /*
2327 * The first region of a continuation must have a non-zero
2328 * length otherwise log recovery will just skip over it and
2329 * start recovering from the next opheader it finds. Because we
2330 * mark the next opheader as a continuation, recovery will then
2331 * incorrectly add the continuation to the previous region and
2332 * that breaks stuff.
2333 *
2334 * Hence if there isn't space for region data after the
2335 * opheader, then we need to start afresh with a new iclog.
2336 */
2337 if (iclog->ic_size - *log_offset <=
2338 sizeof(struct xlog_op_header)) {
2339 error = xlog_write_get_more_iclog_space(ticket,
2340 &iclog, log_offset, *len, record_cnt,
2341 data_cnt);
2342 if (error)
2343 return error;
2344 }
2345
2346 ophdr = reg->i_addr;
2347 rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2348
2349 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2350 ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2351 if (rlen != reg->i_len)
2352 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2353
2354 xlog_write_iovec(iclog, log_offset, reg->i_addr,
2355 rlen, len, record_cnt, data_cnt);
2356
2357 /* If we wrote the whole region, move to the next. */
2358 if (rlen == reg->i_len)
2359 continue;
2360
2361 /*
2362 * We now have a partially written iovec, but it can span
2363 * multiple iclogs so we loop here. First we release the iclog
2364 * we currently have, then we get a new iclog and add a new
2365 * opheader. Then we continue copying from where we were until
2366 * we either complete the iovec or fill the iclog. If we
2367 * complete the iovec, then we increment the index and go right
2368 * back to the top of the outer loop. if we fill the iclog, we
2369 * run the inner loop again.
2370 *
2371 * This is complicated by the tail of a region using all the
2372 * space in an iclog and hence requiring us to release the iclog
2373 * and get a new one before returning to the outer loop. We must
2374 * always guarantee that we exit this inner loop with at least
2375 * space for log transaction opheaders left in the current
2376 * iclog, hence we cannot just terminate the loop at the end
2377 * of the of the continuation. So we loop while there is no
2378 * space left in the current iclog, and check for the end of the
2379 * continuation after getting a new iclog.
2380 */
2381 do {
2382 /*
2383 * Ensure we include the continuation opheader in the
2384 * space we need in the new iclog by adding that size
2385 * to the length we require. This continuation opheader
2386 * needs to be accounted to the ticket as the space it
2387 * consumes hasn't been accounted to the lv we are
2388 * writing.
2389 */
2390 error = xlog_write_get_more_iclog_space(ticket,
2391 &iclog, log_offset,
2392 *len + sizeof(struct xlog_op_header),
2393 record_cnt, data_cnt);
2394 if (error)
2395 return error;
2396
2397 ophdr = iclog->ic_datap + *log_offset;
2398 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2399 ophdr->oh_clientid = XFS_TRANSACTION;
2400 ophdr->oh_res2 = 0;
2401 ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2402
2403 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2404 *log_offset += sizeof(struct xlog_op_header);
2405 *data_cnt += sizeof(struct xlog_op_header);
2406
2407 /*
2408 * If rlen fits in the iclog, then end the region
2409 * continuation. Otherwise we're going around again.
2410 */
2411 reg_offset += rlen;
2412 rlen = reg->i_len - reg_offset;
2413 if (rlen <= iclog->ic_size - *log_offset)
2414 ophdr->oh_flags |= XLOG_END_TRANS;
2415 else
2416 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2417
2418 rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2419 ophdr->oh_len = cpu_to_be32(rlen);
2420
2421 xlog_write_iovec(iclog, log_offset,
2422 reg->i_addr + reg_offset,
2423 rlen, len, record_cnt, data_cnt);
2424
2425 } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2426 }
2427
2428 /*
2429 * No more iovecs remain in this logvec so return the next log vec to
2430 * the caller so it can go back to fast path copying.
2431 */
2432 *iclogp = iclog;
2433 return 0;
2434}
2435
2436/*
2437 * Write some region out to in-core log
2438 *
2439 * This will be called when writing externally provided regions or when
2440 * writing out a commit record for a given transaction.
2441 *
2442 * General algorithm:
2443 * 1. Find total length of this write. This may include adding to the
2444 * lengths passed in.
2445 * 2. Check whether we violate the tickets reservation.
2446 * 3. While writing to this iclog
2447 * A. Reserve as much space in this iclog as can get
2448 * B. If this is first write, save away start lsn
2449 * C. While writing this region:
2450 * 1. If first write of transaction, write start record
2451 * 2. Write log operation header (header per region)
2452 * 3. Find out if we can fit entire region into this iclog
2453 * 4. Potentially, verify destination memcpy ptr
2454 * 5. Memcpy (partial) region
2455 * 6. If partial copy, release iclog; otherwise, continue
2456 * copying more regions into current iclog
2457 * 4. Mark want sync bit (in simulation mode)
2458 * 5. Release iclog for potential flush to on-disk log.
2459 *
2460 * ERRORS:
2461 * 1. Panic if reservation is overrun. This should never happen since
2462 * reservation amounts are generated internal to the filesystem.
2463 * NOTES:
2464 * 1. Tickets are single threaded data structures.
2465 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2466 * syncing routine. When a single log_write region needs to span
2467 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2468 * on all log operation writes which don't contain the end of the
2469 * region. The XLOG_END_TRANS bit is used for the in-core log
2470 * operation which contains the end of the continued log_write region.
2471 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2472 * we don't really know exactly how much space will be used. As a result,
2473 * we don't update ic_offset until the end when we know exactly how many
2474 * bytes have been written out.
2475 */
2476int
2477xlog_write(
2478 struct xlog *log,
2479 struct xfs_cil_ctx *ctx,
2480 struct list_head *lv_chain,
2481 struct xlog_ticket *ticket,
2482 uint32_t len)
2483
2484{
2485 struct xlog_in_core *iclog = NULL;
2486 struct xfs_log_vec *lv;
2487 uint32_t record_cnt = 0;
2488 uint32_t data_cnt = 0;
2489 int error = 0;
2490 int log_offset;
2491
2492 if (ticket->t_curr_res < 0) {
2493 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2494 "ctx ticket reservation ran out. Need to up reservation");
2495 xlog_print_tic_res(log->l_mp, ticket);
2496 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2497 }
2498
2499 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2500 &log_offset);
2501 if (error)
2502 return error;
2503
2504 ASSERT(log_offset <= iclog->ic_size - 1);
2505
2506 /*
2507 * If we have a context pointer, pass it the first iclog we are
2508 * writing to so it can record state needed for iclog write
2509 * ordering.
2510 */
2511 if (ctx)
2512 xlog_cil_set_ctx_write_state(ctx, iclog);
2513
2514 list_for_each_entry(lv, lv_chain, lv_list) {
2515 /*
2516 * If the entire log vec does not fit in the iclog, punt it to
2517 * the partial copy loop which can handle this case.
2518 */
2519 if (lv->lv_niovecs &&
2520 lv->lv_bytes > iclog->ic_size - log_offset) {
2521 error = xlog_write_partial(lv, ticket, &iclog,
2522 &log_offset, &len, &record_cnt,
2523 &data_cnt);
2524 if (error) {
2525 /*
2526 * We have no iclog to release, so just return
2527 * the error immediately.
2528 */
2529 return error;
2530 }
2531 } else {
2532 xlog_write_full(lv, ticket, iclog, &log_offset,
2533 &len, &record_cnt, &data_cnt);
2534 }
2535 }
2536 ASSERT(len == 0);
2537
2538 /*
2539 * We've already been guaranteed that the last writes will fit inside
2540 * the current iclog, and hence it will already have the space used by
2541 * those writes accounted to it. Hence we do not need to update the
2542 * iclog with the number of bytes written here.
2543 */
2544 spin_lock(&log->l_icloglock);
2545 xlog_state_finish_copy(log, iclog, record_cnt, 0);
2546 error = xlog_state_release_iclog(log, iclog, ticket);
2547 spin_unlock(&log->l_icloglock);
2548
2549 return error;
2550}
2551
2552static void
2553xlog_state_activate_iclog(
2554 struct xlog_in_core *iclog,
2555 int *iclogs_changed)
2556{
2557 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2558 trace_xlog_iclog_activate(iclog, _RET_IP_);
2559
2560 /*
2561 * If the number of ops in this iclog indicate it just contains the
2562 * dummy transaction, we can change state into IDLE (the second time
2563 * around). Otherwise we should change the state into NEED a dummy.
2564 * We don't need to cover the dummy.
2565 */
2566 if (*iclogs_changed == 0 &&
2567 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2568 *iclogs_changed = 1;
2569 } else {
2570 /*
2571 * We have two dirty iclogs so start over. This could also be
2572 * num of ops indicating this is not the dummy going out.
2573 */
2574 *iclogs_changed = 2;
2575 }
2576
2577 iclog->ic_state = XLOG_STATE_ACTIVE;
2578 iclog->ic_offset = 0;
2579 iclog->ic_header.h_num_logops = 0;
2580 memset(iclog->ic_header.h_cycle_data, 0,
2581 sizeof(iclog->ic_header.h_cycle_data));
2582 iclog->ic_header.h_lsn = 0;
2583 iclog->ic_header.h_tail_lsn = 0;
2584}
2585
2586/*
2587 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2588 * ACTIVE after iclog I/O has completed.
2589 */
2590static void
2591xlog_state_activate_iclogs(
2592 struct xlog *log,
2593 int *iclogs_changed)
2594{
2595 struct xlog_in_core *iclog = log->l_iclog;
2596
2597 do {
2598 if (iclog->ic_state == XLOG_STATE_DIRTY)
2599 xlog_state_activate_iclog(iclog, iclogs_changed);
2600 /*
2601 * The ordering of marking iclogs ACTIVE must be maintained, so
2602 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2603 */
2604 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2605 break;
2606 } while ((iclog = iclog->ic_next) != log->l_iclog);
2607}
2608
2609static int
2610xlog_covered_state(
2611 int prev_state,
2612 int iclogs_changed)
2613{
2614 /*
2615 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2616 * wrote the first covering record (DONE). We go to IDLE if we just
2617 * wrote the second covering record (DONE2) and remain in IDLE until a
2618 * non-covering write occurs.
2619 */
2620 switch (prev_state) {
2621 case XLOG_STATE_COVER_IDLE:
2622 if (iclogs_changed == 1)
2623 return XLOG_STATE_COVER_IDLE;
2624 fallthrough;
2625 case XLOG_STATE_COVER_NEED:
2626 case XLOG_STATE_COVER_NEED2:
2627 break;
2628 case XLOG_STATE_COVER_DONE:
2629 if (iclogs_changed == 1)
2630 return XLOG_STATE_COVER_NEED2;
2631 break;
2632 case XLOG_STATE_COVER_DONE2:
2633 if (iclogs_changed == 1)
2634 return XLOG_STATE_COVER_IDLE;
2635 break;
2636 default:
2637 ASSERT(0);
2638 }
2639
2640 return XLOG_STATE_COVER_NEED;
2641}
2642
2643STATIC void
2644xlog_state_clean_iclog(
2645 struct xlog *log,
2646 struct xlog_in_core *dirty_iclog)
2647{
2648 int iclogs_changed = 0;
2649
2650 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2651
2652 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2653
2654 xlog_state_activate_iclogs(log, &iclogs_changed);
2655 wake_up_all(&dirty_iclog->ic_force_wait);
2656
2657 if (iclogs_changed) {
2658 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2659 iclogs_changed);
2660 }
2661}
2662
2663STATIC xfs_lsn_t
2664xlog_get_lowest_lsn(
2665 struct xlog *log)
2666{
2667 struct xlog_in_core *iclog = log->l_iclog;
2668 xfs_lsn_t lowest_lsn = 0, lsn;
2669
2670 do {
2671 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2672 iclog->ic_state == XLOG_STATE_DIRTY)
2673 continue;
2674
2675 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2676 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2677 lowest_lsn = lsn;
2678 } while ((iclog = iclog->ic_next) != log->l_iclog);
2679
2680 return lowest_lsn;
2681}
2682
2683/*
2684 * Completion of a iclog IO does not imply that a transaction has completed, as
2685 * transactions can be large enough to span many iclogs. We cannot change the
2686 * tail of the log half way through a transaction as this may be the only
2687 * transaction in the log and moving the tail to point to the middle of it
2688 * will prevent recovery from finding the start of the transaction. Hence we
2689 * should only update the last_sync_lsn if this iclog contains transaction
2690 * completion callbacks on it.
2691 *
2692 * We have to do this before we drop the icloglock to ensure we are the only one
2693 * that can update it.
2694 *
2695 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2696 * the reservation grant head pushing. This is due to the fact that the push
2697 * target is bound by the current last_sync_lsn value. Hence if we have a large
2698 * amount of log space bound up in this committing transaction then the
2699 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2700 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2701 * should push the AIL to ensure the push target (and hence the grant head) is
2702 * no longer bound by the old log head location and can move forwards and make
2703 * progress again.
2704 */
2705static void
2706xlog_state_set_callback(
2707 struct xlog *log,
2708 struct xlog_in_core *iclog,
2709 xfs_lsn_t header_lsn)
2710{
2711 trace_xlog_iclog_callback(iclog, _RET_IP_);
2712 iclog->ic_state = XLOG_STATE_CALLBACK;
2713
2714 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2715 header_lsn) <= 0);
2716
2717 if (list_empty_careful(&iclog->ic_callbacks))
2718 return;
2719
2720 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2721 xlog_grant_push_ail(log, 0);
2722}
2723
2724/*
2725 * Return true if we need to stop processing, false to continue to the next
2726 * iclog. The caller will need to run callbacks if the iclog is returned in the
2727 * XLOG_STATE_CALLBACK state.
2728 */
2729static bool
2730xlog_state_iodone_process_iclog(
2731 struct xlog *log,
2732 struct xlog_in_core *iclog)
2733{
2734 xfs_lsn_t lowest_lsn;
2735 xfs_lsn_t header_lsn;
2736
2737 switch (iclog->ic_state) {
2738 case XLOG_STATE_ACTIVE:
2739 case XLOG_STATE_DIRTY:
2740 /*
2741 * Skip all iclogs in the ACTIVE & DIRTY states:
2742 */
2743 return false;
2744 case XLOG_STATE_DONE_SYNC:
2745 /*
2746 * Now that we have an iclog that is in the DONE_SYNC state, do
2747 * one more check here to see if we have chased our tail around.
2748 * If this is not the lowest lsn iclog, then we will leave it
2749 * for another completion to process.
2750 */
2751 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2752 lowest_lsn = xlog_get_lowest_lsn(log);
2753 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2754 return false;
2755 xlog_state_set_callback(log, iclog, header_lsn);
2756 return false;
2757 default:
2758 /*
2759 * Can only perform callbacks in order. Since this iclog is not
2760 * in the DONE_SYNC state, we skip the rest and just try to
2761 * clean up.
2762 */
2763 return true;
2764 }
2765}
2766
2767/*
2768 * Loop over all the iclogs, running attached callbacks on them. Return true if
2769 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2770 * to handle transient shutdown state here at all because
2771 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2772 * cleanup of the callbacks.
2773 */
2774static bool
2775xlog_state_do_iclog_callbacks(
2776 struct xlog *log)
2777 __releases(&log->l_icloglock)
2778 __acquires(&log->l_icloglock)
2779{
2780 struct xlog_in_core *first_iclog = log->l_iclog;
2781 struct xlog_in_core *iclog = first_iclog;
2782 bool ran_callback = false;
2783
2784 do {
2785 LIST_HEAD(cb_list);
2786
2787 if (xlog_state_iodone_process_iclog(log, iclog))
2788 break;
2789 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2790 iclog = iclog->ic_next;
2791 continue;
2792 }
2793 list_splice_init(&iclog->ic_callbacks, &cb_list);
2794 spin_unlock(&log->l_icloglock);
2795
2796 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2797 xlog_cil_process_committed(&cb_list);
2798 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2799 ran_callback = true;
2800
2801 spin_lock(&log->l_icloglock);
2802 xlog_state_clean_iclog(log, iclog);
2803 iclog = iclog->ic_next;
2804 } while (iclog != first_iclog);
2805
2806 return ran_callback;
2807}
2808
2809
2810/*
2811 * Loop running iclog completion callbacks until there are no more iclogs in a
2812 * state that can run callbacks.
2813 */
2814STATIC void
2815xlog_state_do_callback(
2816 struct xlog *log)
2817{
2818 int flushcnt = 0;
2819 int repeats = 0;
2820
2821 spin_lock(&log->l_icloglock);
2822 while (xlog_state_do_iclog_callbacks(log)) {
2823 if (xlog_is_shutdown(log))
2824 break;
2825
2826 if (++repeats > 5000) {
2827 flushcnt += repeats;
2828 repeats = 0;
2829 xfs_warn(log->l_mp,
2830 "%s: possible infinite loop (%d iterations)",
2831 __func__, flushcnt);
2832 }
2833 }
2834
2835 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2836 wake_up_all(&log->l_flush_wait);
2837
2838 spin_unlock(&log->l_icloglock);
2839}
2840
2841
2842/*
2843 * Finish transitioning this iclog to the dirty state.
2844 *
2845 * Callbacks could take time, so they are done outside the scope of the
2846 * global state machine log lock.
2847 */
2848STATIC void
2849xlog_state_done_syncing(
2850 struct xlog_in_core *iclog)
2851{
2852 struct xlog *log = iclog->ic_log;
2853
2854 spin_lock(&log->l_icloglock);
2855 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2856 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2857
2858 /*
2859 * If we got an error, either on the first buffer, or in the case of
2860 * split log writes, on the second, we shut down the file system and
2861 * no iclogs should ever be attempted to be written to disk again.
2862 */
2863 if (!xlog_is_shutdown(log)) {
2864 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2865 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2866 }
2867
2868 /*
2869 * Someone could be sleeping prior to writing out the next
2870 * iclog buffer, we wake them all, one will get to do the
2871 * I/O, the others get to wait for the result.
2872 */
2873 wake_up_all(&iclog->ic_write_wait);
2874 spin_unlock(&log->l_icloglock);
2875 xlog_state_do_callback(log);
2876}
2877
2878/*
2879 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2880 * sleep. We wait on the flush queue on the head iclog as that should be
2881 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2882 * we will wait here and all new writes will sleep until a sync completes.
2883 *
2884 * The in-core logs are used in a circular fashion. They are not used
2885 * out-of-order even when an iclog past the head is free.
2886 *
2887 * return:
2888 * * log_offset where xlog_write() can start writing into the in-core
2889 * log's data space.
2890 * * in-core log pointer to which xlog_write() should write.
2891 * * boolean indicating this is a continued write to an in-core log.
2892 * If this is the last write, then the in-core log's offset field
2893 * needs to be incremented, depending on the amount of data which
2894 * is copied.
2895 */
2896STATIC int
2897xlog_state_get_iclog_space(
2898 struct xlog *log,
2899 int len,
2900 struct xlog_in_core **iclogp,
2901 struct xlog_ticket *ticket,
2902 int *logoffsetp)
2903{
2904 int log_offset;
2905 xlog_rec_header_t *head;
2906 xlog_in_core_t *iclog;
2907
2908restart:
2909 spin_lock(&log->l_icloglock);
2910 if (xlog_is_shutdown(log)) {
2911 spin_unlock(&log->l_icloglock);
2912 return -EIO;
2913 }
2914
2915 iclog = log->l_iclog;
2916 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2917 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2918
2919 /* Wait for log writes to have flushed */
2920 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2921 goto restart;
2922 }
2923
2924 head = &iclog->ic_header;
2925
2926 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2927 log_offset = iclog->ic_offset;
2928
2929 trace_xlog_iclog_get_space(iclog, _RET_IP_);
2930
2931 /* On the 1st write to an iclog, figure out lsn. This works
2932 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2933 * committing to. If the offset is set, that's how many blocks
2934 * must be written.
2935 */
2936 if (log_offset == 0) {
2937 ticket->t_curr_res -= log->l_iclog_hsize;
2938 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2939 head->h_lsn = cpu_to_be64(
2940 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2941 ASSERT(log->l_curr_block >= 0);
2942 }
2943
2944 /* If there is enough room to write everything, then do it. Otherwise,
2945 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2946 * bit is on, so this will get flushed out. Don't update ic_offset
2947 * until you know exactly how many bytes get copied. Therefore, wait
2948 * until later to update ic_offset.
2949 *
2950 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2951 * can fit into remaining data section.
2952 */
2953 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2954 int error = 0;
2955
2956 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2957
2958 /*
2959 * If we are the only one writing to this iclog, sync it to
2960 * disk. We need to do an atomic compare and decrement here to
2961 * avoid racing with concurrent atomic_dec_and_lock() calls in
2962 * xlog_state_release_iclog() when there is more than one
2963 * reference to the iclog.
2964 */
2965 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2966 error = xlog_state_release_iclog(log, iclog, ticket);
2967 spin_unlock(&log->l_icloglock);
2968 if (error)
2969 return error;
2970 goto restart;
2971 }
2972
2973 /* Do we have enough room to write the full amount in the remainder
2974 * of this iclog? Or must we continue a write on the next iclog and
2975 * mark this iclog as completely taken? In the case where we switch
2976 * iclogs (to mark it taken), this particular iclog will release/sync
2977 * to disk in xlog_write().
2978 */
2979 if (len <= iclog->ic_size - iclog->ic_offset)
2980 iclog->ic_offset += len;
2981 else
2982 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2983 *iclogp = iclog;
2984
2985 ASSERT(iclog->ic_offset <= iclog->ic_size);
2986 spin_unlock(&log->l_icloglock);
2987
2988 *logoffsetp = log_offset;
2989 return 0;
2990}
2991
2992/*
2993 * The first cnt-1 times a ticket goes through here we don't need to move the
2994 * grant write head because the permanent reservation has reserved cnt times the
2995 * unit amount. Release part of current permanent unit reservation and reset
2996 * current reservation to be one units worth. Also move grant reservation head
2997 * forward.
2998 */
2999void
3000xfs_log_ticket_regrant(
3001 struct xlog *log,
3002 struct xlog_ticket *ticket)
3003{
3004 trace_xfs_log_ticket_regrant(log, ticket);
3005
3006 if (ticket->t_cnt > 0)
3007 ticket->t_cnt--;
3008
3009 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3010 ticket->t_curr_res);
3011 xlog_grant_sub_space(log, &log->l_write_head.grant,
3012 ticket->t_curr_res);
3013 ticket->t_curr_res = ticket->t_unit_res;
3014
3015 trace_xfs_log_ticket_regrant_sub(log, ticket);
3016
3017 /* just return if we still have some of the pre-reserved space */
3018 if (!ticket->t_cnt) {
3019 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3020 ticket->t_unit_res);
3021 trace_xfs_log_ticket_regrant_exit(log, ticket);
3022
3023 ticket->t_curr_res = ticket->t_unit_res;
3024 }
3025
3026 xfs_log_ticket_put(ticket);
3027}
3028
3029/*
3030 * Give back the space left from a reservation.
3031 *
3032 * All the information we need to make a correct determination of space left
3033 * is present. For non-permanent reservations, things are quite easy. The
3034 * count should have been decremented to zero. We only need to deal with the
3035 * space remaining in the current reservation part of the ticket. If the
3036 * ticket contains a permanent reservation, there may be left over space which
3037 * needs to be released. A count of N means that N-1 refills of the current
3038 * reservation can be done before we need to ask for more space. The first
3039 * one goes to fill up the first current reservation. Once we run out of
3040 * space, the count will stay at zero and the only space remaining will be
3041 * in the current reservation field.
3042 */
3043void
3044xfs_log_ticket_ungrant(
3045 struct xlog *log,
3046 struct xlog_ticket *ticket)
3047{
3048 int bytes;
3049
3050 trace_xfs_log_ticket_ungrant(log, ticket);
3051
3052 if (ticket->t_cnt > 0)
3053 ticket->t_cnt--;
3054
3055 trace_xfs_log_ticket_ungrant_sub(log, ticket);
3056
3057 /*
3058 * If this is a permanent reservation ticket, we may be able to free
3059 * up more space based on the remaining count.
3060 */
3061 bytes = ticket->t_curr_res;
3062 if (ticket->t_cnt > 0) {
3063 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3064 bytes += ticket->t_unit_res*ticket->t_cnt;
3065 }
3066
3067 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3068 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3069
3070 trace_xfs_log_ticket_ungrant_exit(log, ticket);
3071
3072 xfs_log_space_wake(log->l_mp);
3073 xfs_log_ticket_put(ticket);
3074}
3075
3076/*
3077 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3078 * the current iclog pointer to the next iclog in the ring.
3079 */
3080void
3081xlog_state_switch_iclogs(
3082 struct xlog *log,
3083 struct xlog_in_core *iclog,
3084 int eventual_size)
3085{
3086 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3087 assert_spin_locked(&log->l_icloglock);
3088 trace_xlog_iclog_switch(iclog, _RET_IP_);
3089
3090 if (!eventual_size)
3091 eventual_size = iclog->ic_offset;
3092 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3093 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3094 log->l_prev_block = log->l_curr_block;
3095 log->l_prev_cycle = log->l_curr_cycle;
3096
3097 /* roll log?: ic_offset changed later */
3098 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3099
3100 /* Round up to next log-sunit */
3101 if (log->l_iclog_roundoff > BBSIZE) {
3102 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3103 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3104 }
3105
3106 if (log->l_curr_block >= log->l_logBBsize) {
3107 /*
3108 * Rewind the current block before the cycle is bumped to make
3109 * sure that the combined LSN never transiently moves forward
3110 * when the log wraps to the next cycle. This is to support the
3111 * unlocked sample of these fields from xlog_valid_lsn(). Most
3112 * other cases should acquire l_icloglock.
3113 */
3114 log->l_curr_block -= log->l_logBBsize;
3115 ASSERT(log->l_curr_block >= 0);
3116 smp_wmb();
3117 log->l_curr_cycle++;
3118 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3119 log->l_curr_cycle++;
3120 }
3121 ASSERT(iclog == log->l_iclog);
3122 log->l_iclog = iclog->ic_next;
3123}
3124
3125/*
3126 * Force the iclog to disk and check if the iclog has been completed before
3127 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3128 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3129 * If completion has already occurred, tell the caller so that it can avoid an
3130 * unnecessary wait on the iclog.
3131 */
3132static int
3133xlog_force_and_check_iclog(
3134 struct xlog_in_core *iclog,
3135 bool *completed)
3136{
3137 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3138 int error;
3139
3140 *completed = false;
3141 error = xlog_force_iclog(iclog);
3142 if (error)
3143 return error;
3144
3145 /*
3146 * If the iclog has already been completed and reused the header LSN
3147 * will have been rewritten by completion
3148 */
3149 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3150 *completed = true;
3151 return 0;
3152}
3153
3154/*
3155 * Write out all data in the in-core log as of this exact moment in time.
3156 *
3157 * Data may be written to the in-core log during this call. However,
3158 * we don't guarantee this data will be written out. A change from past
3159 * implementation means this routine will *not* write out zero length LRs.
3160 *
3161 * Basically, we try and perform an intelligent scan of the in-core logs.
3162 * If we determine there is no flushable data, we just return. There is no
3163 * flushable data if:
3164 *
3165 * 1. the current iclog is active and has no data; the previous iclog
3166 * is in the active or dirty state.
3167 * 2. the current iclog is drity, and the previous iclog is in the
3168 * active or dirty state.
3169 *
3170 * We may sleep if:
3171 *
3172 * 1. the current iclog is not in the active nor dirty state.
3173 * 2. the current iclog dirty, and the previous iclog is not in the
3174 * active nor dirty state.
3175 * 3. the current iclog is active, and there is another thread writing
3176 * to this particular iclog.
3177 * 4. a) the current iclog is active and has no other writers
3178 * b) when we return from flushing out this iclog, it is still
3179 * not in the active nor dirty state.
3180 */
3181int
3182xfs_log_force(
3183 struct xfs_mount *mp,
3184 uint flags)
3185{
3186 struct xlog *log = mp->m_log;
3187 struct xlog_in_core *iclog;
3188
3189 XFS_STATS_INC(mp, xs_log_force);
3190 trace_xfs_log_force(mp, 0, _RET_IP_);
3191
3192 xlog_cil_force(log);
3193
3194 spin_lock(&log->l_icloglock);
3195 if (xlog_is_shutdown(log))
3196 goto out_error;
3197
3198 iclog = log->l_iclog;
3199 trace_xlog_iclog_force(iclog, _RET_IP_);
3200
3201 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3202 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3203 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3204 /*
3205 * If the head is dirty or (active and empty), then we need to
3206 * look at the previous iclog.
3207 *
3208 * If the previous iclog is active or dirty we are done. There
3209 * is nothing to sync out. Otherwise, we attach ourselves to the
3210 * previous iclog and go to sleep.
3211 */
3212 iclog = iclog->ic_prev;
3213 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3214 if (atomic_read(&iclog->ic_refcnt) == 0) {
3215 /* We have exclusive access to this iclog. */
3216 bool completed;
3217
3218 if (xlog_force_and_check_iclog(iclog, &completed))
3219 goto out_error;
3220
3221 if (completed)
3222 goto out_unlock;
3223 } else {
3224 /*
3225 * Someone else is still writing to this iclog, so we
3226 * need to ensure that when they release the iclog it
3227 * gets synced immediately as we may be waiting on it.
3228 */
3229 xlog_state_switch_iclogs(log, iclog, 0);
3230 }
3231 }
3232
3233 /*
3234 * The iclog we are about to wait on may contain the checkpoint pushed
3235 * by the above xlog_cil_force() call, but it may not have been pushed
3236 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3237 * are flushed when this iclog is written.
3238 */
3239 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3240 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3241
3242 if (flags & XFS_LOG_SYNC)
3243 return xlog_wait_on_iclog(iclog);
3244out_unlock:
3245 spin_unlock(&log->l_icloglock);
3246 return 0;
3247out_error:
3248 spin_unlock(&log->l_icloglock);
3249 return -EIO;
3250}
3251
3252/*
3253 * Force the log to a specific LSN.
3254 *
3255 * If an iclog with that lsn can be found:
3256 * If it is in the DIRTY state, just return.
3257 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3258 * state and go to sleep or return.
3259 * If it is in any other state, go to sleep or return.
3260 *
3261 * Synchronous forces are implemented with a wait queue. All callers trying
3262 * to force a given lsn to disk must wait on the queue attached to the
3263 * specific in-core log. When given in-core log finally completes its write
3264 * to disk, that thread will wake up all threads waiting on the queue.
3265 */
3266static int
3267xlog_force_lsn(
3268 struct xlog *log,
3269 xfs_lsn_t lsn,
3270 uint flags,
3271 int *log_flushed,
3272 bool already_slept)
3273{
3274 struct xlog_in_core *iclog;
3275 bool completed;
3276
3277 spin_lock(&log->l_icloglock);
3278 if (xlog_is_shutdown(log))
3279 goto out_error;
3280
3281 iclog = log->l_iclog;
3282 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3283 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3284 iclog = iclog->ic_next;
3285 if (iclog == log->l_iclog)
3286 goto out_unlock;
3287 }
3288
3289 switch (iclog->ic_state) {
3290 case XLOG_STATE_ACTIVE:
3291 /*
3292 * We sleep here if we haven't already slept (e.g. this is the
3293 * first time we've looked at the correct iclog buf) and the
3294 * buffer before us is going to be sync'ed. The reason for this
3295 * is that if we are doing sync transactions here, by waiting
3296 * for the previous I/O to complete, we can allow a few more
3297 * transactions into this iclog before we close it down.
3298 *
3299 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3300 * refcnt so we can release the log (which drops the ref count).
3301 * The state switch keeps new transaction commits from using
3302 * this buffer. When the current commits finish writing into
3303 * the buffer, the refcount will drop to zero and the buffer
3304 * will go out then.
3305 */
3306 if (!already_slept &&
3307 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3308 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3309 xlog_wait(&iclog->ic_prev->ic_write_wait,
3310 &log->l_icloglock);
3311 return -EAGAIN;
3312 }
3313 if (xlog_force_and_check_iclog(iclog, &completed))
3314 goto out_error;
3315 if (log_flushed)
3316 *log_flushed = 1;
3317 if (completed)
3318 goto out_unlock;
3319 break;
3320 case XLOG_STATE_WANT_SYNC:
3321 /*
3322 * This iclog may contain the checkpoint pushed by the
3323 * xlog_cil_force_seq() call, but there are other writers still
3324 * accessing it so it hasn't been pushed to disk yet. Like the
3325 * ACTIVE case above, we need to make sure caches are flushed
3326 * when this iclog is written.
3327 */
3328 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3329 break;
3330 default:
3331 /*
3332 * The entire checkpoint was written by the CIL force and is on
3333 * its way to disk already. It will be stable when it
3334 * completes, so we don't need to manipulate caches here at all.
3335 * We just need to wait for completion if necessary.
3336 */
3337 break;
3338 }
3339
3340 if (flags & XFS_LOG_SYNC)
3341 return xlog_wait_on_iclog(iclog);
3342out_unlock:
3343 spin_unlock(&log->l_icloglock);
3344 return 0;
3345out_error:
3346 spin_unlock(&log->l_icloglock);
3347 return -EIO;
3348}
3349
3350/*
3351 * Force the log to a specific checkpoint sequence.
3352 *
3353 * First force the CIL so that all the required changes have been flushed to the
3354 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3355 * the iclog that needs to be flushed to stable storage. If the caller needs
3356 * a synchronous log force, we will wait on the iclog with the LSN returned by
3357 * xlog_cil_force_seq() to be completed.
3358 */
3359int
3360xfs_log_force_seq(
3361 struct xfs_mount *mp,
3362 xfs_csn_t seq,
3363 uint flags,
3364 int *log_flushed)
3365{
3366 struct xlog *log = mp->m_log;
3367 xfs_lsn_t lsn;
3368 int ret;
3369 ASSERT(seq != 0);
3370
3371 XFS_STATS_INC(mp, xs_log_force);
3372 trace_xfs_log_force(mp, seq, _RET_IP_);
3373
3374 lsn = xlog_cil_force_seq(log, seq);
3375 if (lsn == NULLCOMMITLSN)
3376 return 0;
3377
3378 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3379 if (ret == -EAGAIN) {
3380 XFS_STATS_INC(mp, xs_log_force_sleep);
3381 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3382 }
3383 return ret;
3384}
3385
3386/*
3387 * Free a used ticket when its refcount falls to zero.
3388 */
3389void
3390xfs_log_ticket_put(
3391 xlog_ticket_t *ticket)
3392{
3393 ASSERT(atomic_read(&ticket->t_ref) > 0);
3394 if (atomic_dec_and_test(&ticket->t_ref))
3395 kmem_cache_free(xfs_log_ticket_cache, ticket);
3396}
3397
3398xlog_ticket_t *
3399xfs_log_ticket_get(
3400 xlog_ticket_t *ticket)
3401{
3402 ASSERT(atomic_read(&ticket->t_ref) > 0);
3403 atomic_inc(&ticket->t_ref);
3404 return ticket;
3405}
3406
3407/*
3408 * Figure out the total log space unit (in bytes) that would be
3409 * required for a log ticket.
3410 */
3411static int
3412xlog_calc_unit_res(
3413 struct xlog *log,
3414 int unit_bytes,
3415 int *niclogs)
3416{
3417 int iclog_space;
3418 uint num_headers;
3419
3420 /*
3421 * Permanent reservations have up to 'cnt'-1 active log operations
3422 * in the log. A unit in this case is the amount of space for one
3423 * of these log operations. Normal reservations have a cnt of 1
3424 * and their unit amount is the total amount of space required.
3425 *
3426 * The following lines of code account for non-transaction data
3427 * which occupy space in the on-disk log.
3428 *
3429 * Normal form of a transaction is:
3430 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3431 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3432 *
3433 * We need to account for all the leadup data and trailer data
3434 * around the transaction data.
3435 * And then we need to account for the worst case in terms of using
3436 * more space.
3437 * The worst case will happen if:
3438 * - the placement of the transaction happens to be such that the
3439 * roundoff is at its maximum
3440 * - the transaction data is synced before the commit record is synced
3441 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3442 * Therefore the commit record is in its own Log Record.
3443 * This can happen as the commit record is called with its
3444 * own region to xlog_write().
3445 * This then means that in the worst case, roundoff can happen for
3446 * the commit-rec as well.
3447 * The commit-rec is smaller than padding in this scenario and so it is
3448 * not added separately.
3449 */
3450
3451 /* for trans header */
3452 unit_bytes += sizeof(xlog_op_header_t);
3453 unit_bytes += sizeof(xfs_trans_header_t);
3454
3455 /* for start-rec */
3456 unit_bytes += sizeof(xlog_op_header_t);
3457
3458 /*
3459 * for LR headers - the space for data in an iclog is the size minus
3460 * the space used for the headers. If we use the iclog size, then we
3461 * undercalculate the number of headers required.
3462 *
3463 * Furthermore - the addition of op headers for split-recs might
3464 * increase the space required enough to require more log and op
3465 * headers, so take that into account too.
3466 *
3467 * IMPORTANT: This reservation makes the assumption that if this
3468 * transaction is the first in an iclog and hence has the LR headers
3469 * accounted to it, then the remaining space in the iclog is
3470 * exclusively for this transaction. i.e. if the transaction is larger
3471 * than the iclog, it will be the only thing in that iclog.
3472 * Fundamentally, this means we must pass the entire log vector to
3473 * xlog_write to guarantee this.
3474 */
3475 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3476 num_headers = howmany(unit_bytes, iclog_space);
3477
3478 /* for split-recs - ophdrs added when data split over LRs */
3479 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3480
3481 /* add extra header reservations if we overrun */
3482 while (!num_headers ||
3483 howmany(unit_bytes, iclog_space) > num_headers) {
3484 unit_bytes += sizeof(xlog_op_header_t);
3485 num_headers++;
3486 }
3487 unit_bytes += log->l_iclog_hsize * num_headers;
3488
3489 /* for commit-rec LR header - note: padding will subsume the ophdr */
3490 unit_bytes += log->l_iclog_hsize;
3491
3492 /* roundoff padding for transaction data and one for commit record */
3493 unit_bytes += 2 * log->l_iclog_roundoff;
3494
3495 if (niclogs)
3496 *niclogs = num_headers;
3497 return unit_bytes;
3498}
3499
3500int
3501xfs_log_calc_unit_res(
3502 struct xfs_mount *mp,
3503 int unit_bytes)
3504{
3505 return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3506}
3507
3508/*
3509 * Allocate and initialise a new log ticket.
3510 */
3511struct xlog_ticket *
3512xlog_ticket_alloc(
3513 struct xlog *log,
3514 int unit_bytes,
3515 int cnt,
3516 bool permanent)
3517{
3518 struct xlog_ticket *tic;
3519 int unit_res;
3520
3521 tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3522 GFP_KERNEL | __GFP_NOFAIL);
3523
3524 unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3525
3526 atomic_set(&tic->t_ref, 1);
3527 tic->t_task = current;
3528 INIT_LIST_HEAD(&tic->t_queue);
3529 tic->t_unit_res = unit_res;
3530 tic->t_curr_res = unit_res;
3531 tic->t_cnt = cnt;
3532 tic->t_ocnt = cnt;
3533 tic->t_tid = get_random_u32();
3534 if (permanent)
3535 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3536
3537 return tic;
3538}
3539
3540#if defined(DEBUG)
3541/*
3542 * Check to make sure the grant write head didn't just over lap the tail. If
3543 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3544 * the cycles differ by exactly one and check the byte count.
3545 *
3546 * This check is run unlocked, so can give false positives. Rather than assert
3547 * on failures, use a warn-once flag and a panic tag to allow the admin to
3548 * determine if they want to panic the machine when such an error occurs. For
3549 * debug kernels this will have the same effect as using an assert but, unlinke
3550 * an assert, it can be turned off at runtime.
3551 */
3552STATIC void
3553xlog_verify_grant_tail(
3554 struct xlog *log)
3555{
3556 int tail_cycle, tail_blocks;
3557 int cycle, space;
3558
3559 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3560 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3561 if (tail_cycle != cycle) {
3562 if (cycle - 1 != tail_cycle &&
3563 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3564 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3565 "%s: cycle - 1 != tail_cycle", __func__);
3566 }
3567
3568 if (space > BBTOB(tail_blocks) &&
3569 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3570 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3571 "%s: space > BBTOB(tail_blocks)", __func__);
3572 }
3573 }
3574}
3575
3576/* check if it will fit */
3577STATIC void
3578xlog_verify_tail_lsn(
3579 struct xlog *log,
3580 struct xlog_in_core *iclog)
3581{
3582 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3583 int blocks;
3584
3585 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3586 blocks =
3587 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3588 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3589 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3590 } else {
3591 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3592
3593 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3594 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3595
3596 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3597 if (blocks < BTOBB(iclog->ic_offset) + 1)
3598 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3599 }
3600}
3601
3602/*
3603 * Perform a number of checks on the iclog before writing to disk.
3604 *
3605 * 1. Make sure the iclogs are still circular
3606 * 2. Make sure we have a good magic number
3607 * 3. Make sure we don't have magic numbers in the data
3608 * 4. Check fields of each log operation header for:
3609 * A. Valid client identifier
3610 * B. tid ptr value falls in valid ptr space (user space code)
3611 * C. Length in log record header is correct according to the
3612 * individual operation headers within record.
3613 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3614 * log, check the preceding blocks of the physical log to make sure all
3615 * the cycle numbers agree with the current cycle number.
3616 */
3617STATIC void
3618xlog_verify_iclog(
3619 struct xlog *log,
3620 struct xlog_in_core *iclog,
3621 int count)
3622{
3623 xlog_op_header_t *ophead;
3624 xlog_in_core_t *icptr;
3625 xlog_in_core_2_t *xhdr;
3626 void *base_ptr, *ptr, *p;
3627 ptrdiff_t field_offset;
3628 uint8_t clientid;
3629 int len, i, j, k, op_len;
3630 int idx;
3631
3632 /* check validity of iclog pointers */
3633 spin_lock(&log->l_icloglock);
3634 icptr = log->l_iclog;
3635 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3636 ASSERT(icptr);
3637
3638 if (icptr != log->l_iclog)
3639 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3640 spin_unlock(&log->l_icloglock);
3641
3642 /* check log magic numbers */
3643 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3644 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3645
3646 base_ptr = ptr = &iclog->ic_header;
3647 p = &iclog->ic_header;
3648 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3649 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3650 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3651 __func__);
3652 }
3653
3654 /* check fields */
3655 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3656 base_ptr = ptr = iclog->ic_datap;
3657 ophead = ptr;
3658 xhdr = iclog->ic_data;
3659 for (i = 0; i < len; i++) {
3660 ophead = ptr;
3661
3662 /* clientid is only 1 byte */
3663 p = &ophead->oh_clientid;
3664 field_offset = p - base_ptr;
3665 if (field_offset & 0x1ff) {
3666 clientid = ophead->oh_clientid;
3667 } else {
3668 idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3669 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3670 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3671 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3672 clientid = xlog_get_client_id(
3673 xhdr[j].hic_xheader.xh_cycle_data[k]);
3674 } else {
3675 clientid = xlog_get_client_id(
3676 iclog->ic_header.h_cycle_data[idx]);
3677 }
3678 }
3679 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3680 xfs_warn(log->l_mp,
3681 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3682 __func__, i, clientid, ophead,
3683 (unsigned long)field_offset);
3684 }
3685
3686 /* check length */
3687 p = &ophead->oh_len;
3688 field_offset = p - base_ptr;
3689 if (field_offset & 0x1ff) {
3690 op_len = be32_to_cpu(ophead->oh_len);
3691 } else {
3692 idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3693 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3694 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3695 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3696 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3697 } else {
3698 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3699 }
3700 }
3701 ptr += sizeof(xlog_op_header_t) + op_len;
3702 }
3703}
3704#endif
3705
3706/*
3707 * Perform a forced shutdown on the log.
3708 *
3709 * This can be called from low level log code to trigger a shutdown, or from the
3710 * high level mount shutdown code when the mount shuts down.
3711 *
3712 * Our main objectives here are to make sure that:
3713 * a. if the shutdown was not due to a log IO error, flush the logs to
3714 * disk. Anything modified after this is ignored.
3715 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3716 * parties to find out. Nothing new gets queued after this is done.
3717 * c. Tasks sleeping on log reservations, pinned objects and
3718 * other resources get woken up.
3719 * d. The mount is also marked as shut down so that log triggered shutdowns
3720 * still behave the same as if they called xfs_forced_shutdown().
3721 *
3722 * Return true if the shutdown cause was a log IO error and we actually shut the
3723 * log down.
3724 */
3725bool
3726xlog_force_shutdown(
3727 struct xlog *log,
3728 uint32_t shutdown_flags)
3729{
3730 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3731
3732 if (!log)
3733 return false;
3734
3735 /*
3736 * Flush all the completed transactions to disk before marking the log
3737 * being shut down. We need to do this first as shutting down the log
3738 * before the force will prevent the log force from flushing the iclogs
3739 * to disk.
3740 *
3741 * When we are in recovery, there are no transactions to flush, and
3742 * we don't want to touch the log because we don't want to perturb the
3743 * current head/tail for future recovery attempts. Hence we need to
3744 * avoid a log force in this case.
3745 *
3746 * If we are shutting down due to a log IO error, then we must avoid
3747 * trying to write the log as that may just result in more IO errors and
3748 * an endless shutdown/force loop.
3749 */
3750 if (!log_error && !xlog_in_recovery(log))
3751 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3752
3753 /*
3754 * Atomically set the shutdown state. If the shutdown state is already
3755 * set, there someone else is performing the shutdown and so we are done
3756 * here. This should never happen because we should only ever get called
3757 * once by the first shutdown caller.
3758 *
3759 * Much of the log state machine transitions assume that shutdown state
3760 * cannot change once they hold the log->l_icloglock. Hence we need to
3761 * hold that lock here, even though we use the atomic test_and_set_bit()
3762 * operation to set the shutdown state.
3763 */
3764 spin_lock(&log->l_icloglock);
3765 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3766 spin_unlock(&log->l_icloglock);
3767 return false;
3768 }
3769 spin_unlock(&log->l_icloglock);
3770
3771 /*
3772 * If this log shutdown also sets the mount shutdown state, issue a
3773 * shutdown warning message.
3774 */
3775 if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3776 xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3777"Filesystem has been shut down due to log error (0x%x).",
3778 shutdown_flags);
3779 xfs_alert(log->l_mp,
3780"Please unmount the filesystem and rectify the problem(s).");
3781 if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3782 xfs_stack_trace();
3783 }
3784
3785 /*
3786 * We don't want anybody waiting for log reservations after this. That
3787 * means we have to wake up everybody queued up on reserveq as well as
3788 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3789 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3790 * action is protected by the grant locks.
3791 */
3792 xlog_grant_head_wake_all(&log->l_reserve_head);
3793 xlog_grant_head_wake_all(&log->l_write_head);
3794
3795 /*
3796 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3797 * as if the log writes were completed. The abort handling in the log
3798 * item committed callback functions will do this again under lock to
3799 * avoid races.
3800 */
3801 spin_lock(&log->l_cilp->xc_push_lock);
3802 wake_up_all(&log->l_cilp->xc_start_wait);
3803 wake_up_all(&log->l_cilp->xc_commit_wait);
3804 spin_unlock(&log->l_cilp->xc_push_lock);
3805
3806 spin_lock(&log->l_icloglock);
3807 xlog_state_shutdown_callbacks(log);
3808 spin_unlock(&log->l_icloglock);
3809
3810 wake_up_var(&log->l_opstate);
3811 return log_error;
3812}
3813
3814STATIC int
3815xlog_iclogs_empty(
3816 struct xlog *log)
3817{
3818 xlog_in_core_t *iclog;
3819
3820 iclog = log->l_iclog;
3821 do {
3822 /* endianness does not matter here, zero is zero in
3823 * any language.
3824 */
3825 if (iclog->ic_header.h_num_logops)
3826 return 0;
3827 iclog = iclog->ic_next;
3828 } while (iclog != log->l_iclog);
3829 return 1;
3830}
3831
3832/*
3833 * Verify that an LSN stamped into a piece of metadata is valid. This is
3834 * intended for use in read verifiers on v5 superblocks.
3835 */
3836bool
3837xfs_log_check_lsn(
3838 struct xfs_mount *mp,
3839 xfs_lsn_t lsn)
3840{
3841 struct xlog *log = mp->m_log;
3842 bool valid;
3843
3844 /*
3845 * norecovery mode skips mount-time log processing and unconditionally
3846 * resets the in-core LSN. We can't validate in this mode, but
3847 * modifications are not allowed anyways so just return true.
3848 */
3849 if (xfs_has_norecovery(mp))
3850 return true;
3851
3852 /*
3853 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3854 * handled by recovery and thus safe to ignore here.
3855 */
3856 if (lsn == NULLCOMMITLSN)
3857 return true;
3858
3859 valid = xlog_valid_lsn(mp->m_log, lsn);
3860
3861 /* warn the user about what's gone wrong before verifier failure */
3862 if (!valid) {
3863 spin_lock(&log->l_icloglock);
3864 xfs_warn(mp,
3865"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3866"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3867 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3868 log->l_curr_cycle, log->l_curr_block);
3869 spin_unlock(&log->l_icloglock);
3870 }
3871
3872 return valid;
3873}
3874
3875/*
3876 * Notify the log that we're about to start using a feature that is protected
3877 * by a log incompat feature flag. This will prevent log covering from
3878 * clearing those flags.
3879 */
3880void
3881xlog_use_incompat_feat(
3882 struct xlog *log)
3883{
3884 down_read(&log->l_incompat_users);
3885}
3886
3887/* Notify the log that we've finished using log incompat features. */
3888void
3889xlog_drop_incompat_feat(
3890 struct xlog *log)
3891{
3892 up_read(&log->l_incompat_users);
3893}