Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_log.h"
  22#include "xfs_trans.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_mount.h"
  26#include "xfs_error.h"
 
 
 
  27#include "xfs_log_priv.h"
  28#include "xfs_buf_item.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_log_recover.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
  36#include "xfs_trace.h"
 
 
 
 
  37
  38kmem_zone_t	*xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43	struct xlog		*log,
  44	struct xlog_ticket	*ticket,
  45	struct xlog_in_core	**iclog,
  46	xfs_lsn_t		*commitlsnp);
  47
  48STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
  49				xfs_buftarg_t	*log_target,
  50				xfs_daddr_t	blk_offset,
  51				int		num_bblks);
 
 
  52STATIC int
  53xlog_space_left(
  54	struct xlog		*log,
  55	atomic64_t		*head);
  56STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
  57STATIC void	 xlog_dealloc_log(xlog_t *log);
 
 
 
 
 
  58
  59/* local state machine functions */
  60STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  61STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
  62STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
  63				       int		len,
  64				       xlog_in_core_t	**iclog,
  65				       xlog_ticket_t	*ticket,
  66				       int		*continued_write,
  67				       int		*logoffsetp);
  68STATIC int  xlog_state_release_iclog(xlog_t		*log,
  69				     xlog_in_core_t	*iclog);
  70STATIC void xlog_state_switch_iclogs(xlog_t		*log,
  71				     xlog_in_core_t *iclog,
  72				     int		eventual_size);
  73STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
  75STATIC void
  76xlog_grant_push_ail(
  77	struct xlog	*log,
  78	int		need_bytes);
  79STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
  80					   xlog_ticket_t *ticket);
  81STATIC void xlog_ungrant_log_space(xlog_t	 *log,
  82				   xlog_ticket_t *ticket);
 
 
 
 
  83
  84#if defined(DEBUG)
  85STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
 
 
 
  86STATIC void
  87xlog_verify_grant_tail(
  88	struct xlog	*log);
  89STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
  90				  int count, boolean_t syncing);
  91STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
  92				     xfs_lsn_t tail_lsn);
 
 
 
 
 
 
 
  93#else
  94#define xlog_verify_dest_ptr(a,b)
  95#define xlog_verify_grant_tail(a)
  96#define xlog_verify_iclog(a,b,c,d)
  97#define xlog_verify_tail_lsn(a,b,c)
  98#endif
  99
 100STATIC int	xlog_iclogs_empty(xlog_t *log);
 
 
 101
 102static void
 103xlog_grant_sub_space(
 104	struct xlog		*log,
 105	atomic64_t		*head,
 106	int			bytes)
 107{
 108	int64_t	head_val = atomic64_read(head);
 109	int64_t new, old;
 110
 111	do {
 112		int	cycle, space;
 113
 114		xlog_crack_grant_head_val(head_val, &cycle, &space);
 115
 116		space -= bytes;
 117		if (space < 0) {
 118			space += log->l_logsize;
 119			cycle--;
 120		}
 121
 122		old = head_val;
 123		new = xlog_assign_grant_head_val(cycle, space);
 124		head_val = atomic64_cmpxchg(head, old, new);
 125	} while (head_val != old);
 126}
 127
 128static void
 129xlog_grant_add_space(
 130	struct xlog		*log,
 131	atomic64_t		*head,
 132	int			bytes)
 133{
 134	int64_t	head_val = atomic64_read(head);
 135	int64_t new, old;
 136
 137	do {
 138		int		tmp;
 139		int		cycle, space;
 140
 141		xlog_crack_grant_head_val(head_val, &cycle, &space);
 142
 143		tmp = log->l_logsize - space;
 144		if (tmp > bytes)
 145			space += bytes;
 146		else {
 147			space = bytes - tmp;
 148			cycle++;
 149		}
 150
 151		old = head_val;
 152		new = xlog_assign_grant_head_val(cycle, space);
 153		head_val = atomic64_cmpxchg(head, old, new);
 154	} while (head_val != old);
 155}
 156
 157STATIC void
 158xlog_grant_head_init(
 159	struct xlog_grant_head	*head)
 160{
 161	xlog_assign_grant_head(&head->grant, 1, 0);
 162	INIT_LIST_HEAD(&head->waiters);
 163	spin_lock_init(&head->lock);
 164}
 165
 166STATIC void
 167xlog_grant_head_wake_all(
 168	struct xlog_grant_head	*head)
 169{
 170	struct xlog_ticket	*tic;
 171
 172	spin_lock(&head->lock);
 173	list_for_each_entry(tic, &head->waiters, t_queue)
 174		wake_up_process(tic->t_task);
 175	spin_unlock(&head->lock);
 176}
 177
 178static inline int
 179xlog_ticket_reservation(
 180	struct xlog		*log,
 181	struct xlog_grant_head	*head,
 182	struct xlog_ticket	*tic)
 183{
 184	if (head == &log->l_write_head) {
 185		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 186		return tic->t_unit_res;
 187	} else {
 188		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 189			return tic->t_unit_res * tic->t_cnt;
 190		else
 191			return tic->t_unit_res;
 192	}
 193}
 194
 195STATIC bool
 196xlog_grant_head_wake(
 197	struct xlog		*log,
 198	struct xlog_grant_head	*head,
 199	int			*free_bytes)
 200{
 201	struct xlog_ticket	*tic;
 202	int			need_bytes;
 203
 204	list_for_each_entry(tic, &head->waiters, t_queue) {
 205		need_bytes = xlog_ticket_reservation(log, head, tic);
 206		if (*free_bytes < need_bytes)
 207			return false;
 208
 209		*free_bytes -= need_bytes;
 210		trace_xfs_log_grant_wake_up(log, tic);
 211		wake_up_process(tic->t_task);
 212	}
 213
 214	return true;
 215}
 216
 217STATIC int
 218xlog_grant_head_wait(
 219	struct xlog		*log,
 220	struct xlog_grant_head	*head,
 221	struct xlog_ticket	*tic,
 222	int			need_bytes)
 
 223{
 224	list_add_tail(&tic->t_queue, &head->waiters);
 225
 226	do {
 227		if (XLOG_FORCED_SHUTDOWN(log))
 228			goto shutdown;
 229		xlog_grant_push_ail(log, need_bytes);
 230
 231		__set_current_state(TASK_UNINTERRUPTIBLE);
 232		spin_unlock(&head->lock);
 233
 234		XFS_STATS_INC(xs_sleep_logspace);
 235
 236		trace_xfs_log_grant_sleep(log, tic);
 237		schedule();
 238		trace_xfs_log_grant_wake(log, tic);
 239
 240		spin_lock(&head->lock);
 241		if (XLOG_FORCED_SHUTDOWN(log))
 242			goto shutdown;
 243	} while (xlog_space_left(log, &head->grant) < need_bytes);
 244
 245	list_del_init(&tic->t_queue);
 246	return 0;
 247shutdown:
 248	list_del_init(&tic->t_queue);
 249	return XFS_ERROR(EIO);
 250}
 251
 252/*
 253 * Atomically get the log space required for a log ticket.
 254 *
 255 * Once a ticket gets put onto head->waiters, it will only return after the
 256 * needed reservation is satisfied.
 257 *
 258 * This function is structured so that it has a lock free fast path. This is
 259 * necessary because every new transaction reservation will come through this
 260 * path. Hence any lock will be globally hot if we take it unconditionally on
 261 * every pass.
 262 *
 263 * As tickets are only ever moved on and off head->waiters under head->lock, we
 264 * only need to take that lock if we are going to add the ticket to the queue
 265 * and sleep. We can avoid taking the lock if the ticket was never added to
 266 * head->waiters because the t_queue list head will be empty and we hold the
 267 * only reference to it so it can safely be checked unlocked.
 268 */
 269STATIC int
 270xlog_grant_head_check(
 271	struct xlog		*log,
 272	struct xlog_grant_head	*head,
 273	struct xlog_ticket	*tic,
 274	int			*need_bytes)
 275{
 276	int			free_bytes;
 277	int			error = 0;
 278
 279	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 280
 281	/*
 282	 * If there are other waiters on the queue then give them a chance at
 283	 * logspace before us.  Wake up the first waiters, if we do not wake
 284	 * up all the waiters then go to sleep waiting for more free space,
 285	 * otherwise try to get some space for this transaction.
 286	 */
 287	*need_bytes = xlog_ticket_reservation(log, head, tic);
 288	free_bytes = xlog_space_left(log, &head->grant);
 289	if (!list_empty_careful(&head->waiters)) {
 290		spin_lock(&head->lock);
 291		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 292		    free_bytes < *need_bytes) {
 293			error = xlog_grant_head_wait(log, head, tic,
 294						     *need_bytes);
 295		}
 296		spin_unlock(&head->lock);
 297	} else if (free_bytes < *need_bytes) {
 298		spin_lock(&head->lock);
 299		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 300		spin_unlock(&head->lock);
 301	}
 302
 303	return error;
 304}
 305
 306static void
 307xlog_tic_reset_res(xlog_ticket_t *tic)
 308{
 309	tic->t_res_num = 0;
 310	tic->t_res_arr_sum = 0;
 311	tic->t_res_num_ophdrs = 0;
 312}
 313
 314static void
 315xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 316{
 317	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 318		/* add to overflow and start again */
 319		tic->t_res_o_flow += tic->t_res_arr_sum;
 320		tic->t_res_num = 0;
 321		tic->t_res_arr_sum = 0;
 322	}
 323
 324	tic->t_res_arr[tic->t_res_num].r_len = len;
 325	tic->t_res_arr[tic->t_res_num].r_type = type;
 326	tic->t_res_arr_sum += len;
 327	tic->t_res_num++;
 328}
 329
 330/*
 331 * Replenish the byte reservation required by moving the grant write head.
 332 */
 333int
 334xfs_log_regrant(
 335	struct xfs_mount	*mp,
 336	struct xlog_ticket	*tic)
 337{
 338	struct xlog		*log = mp->m_log;
 339	int			need_bytes;
 340	int			error = 0;
 341
 342	if (XLOG_FORCED_SHUTDOWN(log))
 343		return XFS_ERROR(EIO);
 344
 345	XFS_STATS_INC(xs_try_logspace);
 346
 347	/*
 348	 * This is a new transaction on the ticket, so we need to change the
 349	 * transaction ID so that the next transaction has a different TID in
 350	 * the log. Just add one to the existing tid so that we can see chains
 351	 * of rolling transactions in the log easily.
 352	 */
 353	tic->t_tid++;
 354
 355	xlog_grant_push_ail(log, tic->t_unit_res);
 356
 357	tic->t_curr_res = tic->t_unit_res;
 358	xlog_tic_reset_res(tic);
 359
 360	if (tic->t_cnt > 0)
 361		return 0;
 362
 363	trace_xfs_log_regrant(log, tic);
 364
 365	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 366				      &need_bytes);
 367	if (error)
 368		goto out_error;
 369
 370	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 371	trace_xfs_log_regrant_exit(log, tic);
 372	xlog_verify_grant_tail(log);
 373	return 0;
 374
 375out_error:
 376	/*
 377	 * If we are failing, make sure the ticket doesn't have any current
 378	 * reservations.  We don't want to add this back when the ticket/
 379	 * transaction gets cancelled.
 380	 */
 381	tic->t_curr_res = 0;
 382	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 383	return error;
 384}
 385
 386/*
 387 * Reserve log space and return a ticket corresponding the reservation.
 388 *
 389 * Each reservation is going to reserve extra space for a log record header.
 390 * When writes happen to the on-disk log, we don't subtract the length of the
 391 * log record header from any reservation.  By wasting space in each
 392 * reservation, we prevent over allocation problems.
 393 */
 394int
 395xfs_log_reserve(
 396	struct xfs_mount	*mp,
 397	int		 	unit_bytes,
 398	int		 	cnt,
 399	struct xlog_ticket	**ticp,
 400	__uint8_t	 	client,
 401	bool			permanent,
 402	uint		 	t_type)
 403{
 404	struct xlog		*log = mp->m_log;
 405	struct xlog_ticket	*tic;
 406	int			need_bytes;
 407	int			error = 0;
 408
 409	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 410
 411	if (XLOG_FORCED_SHUTDOWN(log))
 412		return XFS_ERROR(EIO);
 413
 414	XFS_STATS_INC(xs_try_logspace);
 415
 416	ASSERT(*ticp == NULL);
 417	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 418				KM_SLEEP | KM_MAYFAIL);
 419	if (!tic)
 420		return XFS_ERROR(ENOMEM);
 421
 422	tic->t_trans_type = t_type;
 423	*ticp = tic;
 424
 425	xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
 
 426
 427	trace_xfs_log_reserve(log, tic);
 428
 429	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 430				      &need_bytes);
 431	if (error)
 432		goto out_error;
 433
 434	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 436	trace_xfs_log_reserve_exit(log, tic);
 437	xlog_verify_grant_tail(log);
 438	return 0;
 439
 440out_error:
 441	/*
 442	 * If we are failing, make sure the ticket doesn't have any current
 443	 * reservations.  We don't want to add this back when the ticket/
 444	 * transaction gets cancelled.
 445	 */
 446	tic->t_curr_res = 0;
 447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 448	return error;
 449}
 450
 451
 452/*
 453 * NOTES:
 454 *
 455 *	1. currblock field gets updated at startup and after in-core logs
 456 *		marked as with WANT_SYNC.
 457 */
 458
 459/*
 460 * This routine is called when a user of a log manager ticket is done with
 461 * the reservation.  If the ticket was ever used, then a commit record for
 462 * the associated transaction is written out as a log operation header with
 463 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 464 * a given ticket.  If the ticket was one with a permanent reservation, then
 465 * a few operations are done differently.  Permanent reservation tickets by
 466 * default don't release the reservation.  They just commit the current
 467 * transaction with the belief that the reservation is still needed.  A flag
 468 * must be passed in before permanent reservations are actually released.
 469 * When these type of tickets are not released, they need to be set into
 470 * the inited state again.  By doing this, a start record will be written
 471 * out when the next write occurs.
 472 */
 473xfs_lsn_t
 474xfs_log_done(
 475	struct xfs_mount	*mp,
 476	struct xlog_ticket	*ticket,
 477	struct xlog_in_core	**iclog,
 478	uint			flags)
 479{
 480	struct xlog		*log = mp->m_log;
 481	xfs_lsn_t		lsn = 0;
 482
 483	if (XLOG_FORCED_SHUTDOWN(log) ||
 484	    /*
 485	     * If nothing was ever written, don't write out commit record.
 486	     * If we get an error, just continue and give back the log ticket.
 487	     */
 488	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 489	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 490		lsn = (xfs_lsn_t) -1;
 491		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
 492			flags |= XFS_LOG_REL_PERM_RESERV;
 493		}
 494	}
 495
 496
 497	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
 498	    (flags & XFS_LOG_REL_PERM_RESERV)) {
 499		trace_xfs_log_done_nonperm(log, ticket);
 500
 501		/*
 502		 * Release ticket if not permanent reservation or a specific
 503		 * request has been made to release a permanent reservation.
 504		 */
 505		xlog_ungrant_log_space(log, ticket);
 506		xfs_log_ticket_put(ticket);
 507	} else {
 508		trace_xfs_log_done_perm(log, ticket);
 509
 510		xlog_regrant_reserve_log_space(log, ticket);
 511		/* If this ticket was a permanent reservation and we aren't
 512		 * trying to release it, reset the inited flags; so next time
 513		 * we write, a start record will be written out.
 514		 */
 515		ticket->t_flags |= XLOG_TIC_INITED;
 516	}
 517
 
 518	return lsn;
 519}
 520
 521/*
 522 * Attaches a new iclog I/O completion callback routine during
 523 * transaction commit.  If the log is in error state, a non-zero
 524 * return code is handed back and the caller is responsible for
 525 * executing the callback at an appropriate time.
 526 */
 527int
 528xfs_log_notify(
 529	struct xfs_mount	*mp,
 530	struct xlog_in_core	*iclog,
 531	xfs_log_callback_t	*cb)
 532{
 533	int	abortflg;
 534
 535	spin_lock(&iclog->ic_callback_lock);
 536	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 537	if (!abortflg) {
 538		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 539			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 540		cb->cb_next = NULL;
 541		*(iclog->ic_callback_tail) = cb;
 542		iclog->ic_callback_tail = &(cb->cb_next);
 543	}
 544	spin_unlock(&iclog->ic_callback_lock);
 545	return abortflg;
 546}
 547
 548int
 549xfs_log_release_iclog(
 550	struct xfs_mount	*mp,
 551	struct xlog_in_core	*iclog)
 552{
 553	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 554		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 555		return EIO;
 556	}
 557
 558	return 0;
 559}
 560
 561/*
 562 * Mount a log filesystem
 563 *
 564 * mp		- ubiquitous xfs mount point structure
 565 * log_target	- buftarg of on-disk log device
 566 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 567 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 568 *
 569 * Return error or zero.
 570 */
 571int
 572xfs_log_mount(
 573	xfs_mount_t	*mp,
 574	xfs_buftarg_t	*log_target,
 575	xfs_daddr_t	blk_offset,
 576	int		num_bblks)
 577{
 578	int		error;
 
 579
 580	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 581		xfs_notice(mp, "Mounting Filesystem");
 582	else {
 
 583		xfs_notice(mp,
 584"Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
 
 585		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 586	}
 587
 588	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 589	if (IS_ERR(mp->m_log)) {
 590		error = -PTR_ERR(mp->m_log);
 591		goto out;
 592	}
 593
 594	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595	 * Initialize the AIL now we have a log.
 596	 */
 597	error = xfs_trans_ail_init(mp);
 598	if (error) {
 599		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 600		goto out_free_log;
 601	}
 602	mp->m_log->l_ailp = mp->m_ail;
 603
 604	/*
 605	 * skip log recovery on a norecovery mount.  pretend it all
 606	 * just worked.
 607	 */
 608	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 609		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 610
 611		if (readonly)
 612			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 613
 614		error = xlog_recover(mp->m_log);
 615
 616		if (readonly)
 617			mp->m_flags |= XFS_MOUNT_RDONLY;
 618		if (error) {
 619			xfs_warn(mp, "log mount/recovery failed: error %d",
 620				error);
 
 621			goto out_destroy_ail;
 622		}
 623	}
 624
 
 
 
 
 
 625	/* Normal transactions can now occur */
 626	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 627
 628	/*
 629	 * Now the log has been fully initialised and we know were our
 630	 * space grant counters are, we can initialise the permanent ticket
 631	 * needed for delayed logging to work.
 632	 */
 633	xlog_cil_init_post_recovery(mp->m_log);
 634
 635	return 0;
 636
 637out_destroy_ail:
 638	xfs_trans_ail_destroy(mp);
 639out_free_log:
 640	xlog_dealloc_log(mp->m_log);
 641out:
 642	return error;
 643}
 644
 645/*
 646 * Finish the recovery of the file system.  This is separate from
 647 * the xfs_log_mount() call, because it depends on the code in
 648 * xfs_mountfs() to read in the root and real-time bitmap inodes
 649 * between calling xfs_log_mount() and here.
 650 *
 651 * mp		- ubiquitous xfs mount point structure
 
 
 652 */
 653int
 654xfs_log_mount_finish(xfs_mount_t *mp)
 
 655{
 656	int	error;
 657
 658	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 659		error = xlog_recover_finish(mp->m_log);
 660	else {
 661		error = 0;
 662		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 663	}
 664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	return error;
 666}
 667
 668/*
 669 * Final log writes as part of unmount.
 670 *
 671 * Mark the filesystem clean as unmount happens.  Note that during relocation
 672 * this routine needs to be executed as part of source-bag while the
 673 * deallocation must not be done until source-end.
 674 */
 675
 676/*
 677 * Unmount record used to have a string "Unmount filesystem--" in the
 678 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 679 * We just write the magic number now since that particular field isn't
 680 * currently architecture converted and "nUmount" is a bit foo.
 681 * As far as I know, there weren't any dependencies on the old behaviour.
 682 */
 683
 684int
 685xfs_log_unmount_write(xfs_mount_t *mp)
 686{
 687	xlog_t		 *log = mp->m_log;
 688	xlog_in_core_t	 *iclog;
 689#ifdef DEBUG
 690	xlog_in_core_t	 *first_iclog;
 691#endif
 692	xlog_ticket_t	*tic = NULL;
 693	xfs_lsn_t	 lsn;
 694	int		 error;
 695
 696	/*
 697	 * Don't write out unmount record on read-only mounts.
 698	 * Or, if we are doing a forced umount (typically because of IO errors).
 699	 */
 700	if (mp->m_flags & XFS_MOUNT_RDONLY)
 701		return 0;
 702
 703	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 704	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 705
 706#ifdef DEBUG
 707	first_iclog = iclog = log->l_iclog;
 708	do {
 709		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 710			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 711			ASSERT(iclog->ic_offset == 0);
 712		}
 713		iclog = iclog->ic_next;
 714	} while (iclog != first_iclog);
 715#endif
 716	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 717		error = xfs_log_reserve(mp, 600, 1, &tic,
 718					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 719		if (!error) {
 720			/* the data section must be 32 bit size aligned */
 721			struct {
 722			    __uint16_t magic;
 723			    __uint16_t pad1;
 724			    __uint32_t pad2; /* may as well make it 64 bits */
 725			} magic = {
 726				.magic = XLOG_UNMOUNT_TYPE,
 727			};
 728			struct xfs_log_iovec reg = {
 729				.i_addr = &magic,
 730				.i_len = sizeof(magic),
 731				.i_type = XLOG_REG_TYPE_UNMOUNT,
 732			};
 733			struct xfs_log_vec vec = {
 734				.lv_niovecs = 1,
 735				.lv_iovecp = &reg,
 736			};
 737
 738			/* remove inited flag, and account for space used */
 739			tic->t_flags = 0;
 740			tic->t_curr_res -= sizeof(magic);
 741			error = xlog_write(log, &vec, tic, &lsn,
 742					   NULL, XLOG_UNMOUNT_TRANS);
 743			/*
 744			 * At this point, we're umounting anyway,
 745			 * so there's no point in transitioning log state
 746			 * to IOERROR. Just continue...
 747			 */
 748		}
 749
 750		if (error)
 751			xfs_alert(mp, "%s: unmount record failed", __func__);
 752
 753
 754		spin_lock(&log->l_icloglock);
 755		iclog = log->l_iclog;
 756		atomic_inc(&iclog->ic_refcnt);
 757		xlog_state_want_sync(log, iclog);
 758		spin_unlock(&log->l_icloglock);
 759		error = xlog_state_release_iclog(log, iclog);
 760
 761		spin_lock(&log->l_icloglock);
 762		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 763		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 764			if (!XLOG_FORCED_SHUTDOWN(log)) {
 765				xlog_wait(&iclog->ic_force_wait,
 766							&log->l_icloglock);
 767			} else {
 768				spin_unlock(&log->l_icloglock);
 769			}
 770		} else {
 771			spin_unlock(&log->l_icloglock);
 772		}
 773		if (tic) {
 774			trace_xfs_log_umount_write(log, tic);
 775			xlog_ungrant_log_space(log, tic);
 776			xfs_log_ticket_put(tic);
 777		}
 778	} else {
 779		/*
 780		 * We're already in forced_shutdown mode, couldn't
 781		 * even attempt to write out the unmount transaction.
 782		 *
 783		 * Go through the motions of sync'ing and releasing
 784		 * the iclog, even though no I/O will actually happen,
 785		 * we need to wait for other log I/Os that may already
 786		 * be in progress.  Do this as a separate section of
 787		 * code so we'll know if we ever get stuck here that
 788		 * we're in this odd situation of trying to unmount
 789		 * a file system that went into forced_shutdown as
 790		 * the result of an unmount..
 791		 */
 792		spin_lock(&log->l_icloglock);
 793		iclog = log->l_iclog;
 794		atomic_inc(&iclog->ic_refcnt);
 795
 796		xlog_state_want_sync(log, iclog);
 797		spin_unlock(&log->l_icloglock);
 798		error =  xlog_state_release_iclog(log, iclog);
 799
 800		spin_lock(&log->l_icloglock);
 801
 802		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 803			|| iclog->ic_state == XLOG_STATE_DIRTY
 804			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 805
 806				xlog_wait(&iclog->ic_force_wait,
 807							&log->l_icloglock);
 808		} else {
 809			spin_unlock(&log->l_icloglock);
 810		}
 811	}
 812
 813	return error;
 814}	/* xfs_log_unmount_write */
 815
 816/*
 817 * Deallocate log structures for unmount/relocation.
 818 *
 819 * We need to stop the aild from running before we destroy
 820 * and deallocate the log as the aild references the log.
 
 
 
 821 */
 822void
 823xfs_log_unmount(xfs_mount_t *mp)
 
 824{
 825	cancel_delayed_work_sync(&mp->m_sync_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826	xfs_trans_ail_destroy(mp);
 
 
 
 827	xlog_dealloc_log(mp->m_log);
 828}
 829
 830void
 831xfs_log_item_init(
 832	struct xfs_mount	*mp,
 833	struct xfs_log_item	*item,
 834	int			type,
 835	const struct xfs_item_ops *ops)
 836{
 837	item->li_mountp = mp;
 838	item->li_ailp = mp->m_ail;
 839	item->li_type = type;
 840	item->li_ops = ops;
 841	item->li_lv = NULL;
 842
 843	INIT_LIST_HEAD(&item->li_ail);
 844	INIT_LIST_HEAD(&item->li_cil);
 845}
 846
 847/*
 848 * Wake up processes waiting for log space after we have moved the log tail.
 849 */
 850void
 851xfs_log_space_wake(
 852	struct xfs_mount	*mp)
 853{
 854	struct xlog		*log = mp->m_log;
 855	int			free_bytes;
 856
 857	if (XLOG_FORCED_SHUTDOWN(log))
 858		return;
 859
 860	if (!list_empty_careful(&log->l_write_head.waiters)) {
 861		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 862
 863		spin_lock(&log->l_write_head.lock);
 864		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
 865		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
 866		spin_unlock(&log->l_write_head.lock);
 867	}
 868
 869	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
 870		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 871
 872		spin_lock(&log->l_reserve_head.lock);
 873		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
 874		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
 875		spin_unlock(&log->l_reserve_head.lock);
 876	}
 877}
 878
 879/*
 880 * Determine if we have a transaction that has gone to disk
 881 * that needs to be covered. To begin the transition to the idle state
 882 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
 883 * If we are then in a state where covering is needed, the caller is informed
 884 * that dummy transactions are required to move the log into the idle state.
 885 *
 886 * Because this is called as part of the sync process, we should also indicate
 887 * that dummy transactions should be issued in anything but the covered or
 888 * idle states. This ensures that the log tail is accurately reflected in
 889 * the log at the end of the sync, hence if a crash occurrs avoids replay
 890 * of transactions where the metadata is already on disk.
 
 
 
 
 891 */
 892int
 893xfs_log_need_covered(xfs_mount_t *mp)
 894{
 
 895	int		needed = 0;
 896	xlog_t		*log = mp->m_log;
 897
 898	if (!xfs_fs_writable(mp))
 
 
 
 899		return 0;
 900
 901	spin_lock(&log->l_icloglock);
 902	switch (log->l_covered_state) {
 903	case XLOG_STATE_COVER_DONE:
 904	case XLOG_STATE_COVER_DONE2:
 905	case XLOG_STATE_COVER_IDLE:
 906		break;
 907	case XLOG_STATE_COVER_NEED:
 908	case XLOG_STATE_COVER_NEED2:
 909		if (!xfs_ail_min_lsn(log->l_ailp) &&
 910		    xlog_iclogs_empty(log)) {
 911			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
 912				log->l_covered_state = XLOG_STATE_COVER_DONE;
 913			else
 914				log->l_covered_state = XLOG_STATE_COVER_DONE2;
 915		}
 916		/* FALLTHRU */
 
 
 
 917	default:
 918		needed = 1;
 919		break;
 920	}
 921	spin_unlock(&log->l_icloglock);
 922	return needed;
 923}
 924
 925/*
 926 * We may be holding the log iclog lock upon entering this routine.
 927 */
 928xfs_lsn_t
 929xlog_assign_tail_lsn_locked(
 930	struct xfs_mount	*mp)
 931{
 932	struct xlog		*log = mp->m_log;
 933	struct xfs_log_item	*lip;
 934	xfs_lsn_t		tail_lsn;
 935
 936	assert_spin_locked(&mp->m_ail->xa_lock);
 937
 938	/*
 939	 * To make sure we always have a valid LSN for the log tail we keep
 940	 * track of the last LSN which was committed in log->l_last_sync_lsn,
 941	 * and use that when the AIL was empty.
 942	 */
 943	lip = xfs_ail_min(mp->m_ail);
 944	if (lip)
 945		tail_lsn = lip->li_lsn;
 946	else
 947		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
 
 948	atomic64_set(&log->l_tail_lsn, tail_lsn);
 949	return tail_lsn;
 950}
 951
 952xfs_lsn_t
 953xlog_assign_tail_lsn(
 954	struct xfs_mount	*mp)
 955{
 956	xfs_lsn_t		tail_lsn;
 957
 958	spin_lock(&mp->m_ail->xa_lock);
 959	tail_lsn = xlog_assign_tail_lsn_locked(mp);
 960	spin_unlock(&mp->m_ail->xa_lock);
 961
 962	return tail_lsn;
 963}
 964
 965/*
 966 * Return the space in the log between the tail and the head.  The head
 967 * is passed in the cycle/bytes formal parms.  In the special case where
 968 * the reserve head has wrapped passed the tail, this calculation is no
 969 * longer valid.  In this case, just return 0 which means there is no space
 970 * in the log.  This works for all places where this function is called
 971 * with the reserve head.  Of course, if the write head were to ever
 972 * wrap the tail, we should blow up.  Rather than catch this case here,
 973 * we depend on other ASSERTions in other parts of the code.   XXXmiken
 974 *
 975 * This code also handles the case where the reservation head is behind
 976 * the tail.  The details of this case are described below, but the end
 977 * result is that we return the size of the log as the amount of space left.
 978 */
 979STATIC int
 980xlog_space_left(
 981	struct xlog	*log,
 982	atomic64_t	*head)
 983{
 984	int		free_bytes;
 985	int		tail_bytes;
 986	int		tail_cycle;
 987	int		head_cycle;
 988	int		head_bytes;
 989
 990	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
 991	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
 992	tail_bytes = BBTOB(tail_bytes);
 993	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
 994		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
 995	else if (tail_cycle + 1 < head_cycle)
 996		return 0;
 997	else if (tail_cycle < head_cycle) {
 998		ASSERT(tail_cycle == (head_cycle - 1));
 999		free_bytes = tail_bytes - head_bytes;
1000	} else {
1001		/*
1002		 * The reservation head is behind the tail.
1003		 * In this case we just want to return the size of the
1004		 * log as the amount of space left.
1005		 */
 
1006		xfs_alert(log->l_mp,
1007			"xlog_space_left: head behind tail\n"
1008			"  tail_cycle = %d, tail_bytes = %d\n"
1009			"  GH   cycle = %d, GH   bytes = %d",
1010			tail_cycle, tail_bytes, head_cycle, head_bytes);
 
1011		ASSERT(0);
1012		free_bytes = log->l_logsize;
1013	}
1014	return free_bytes;
1015}
1016
1017
1018/*
1019 * Log function which is called when an io completes.
1020 *
1021 * The log manager needs its own routine, in order to control what
1022 * happens with the buffer after the write completes.
1023 */
1024void
1025xlog_iodone(xfs_buf_t *bp)
1026{
1027	xlog_in_core_t	*iclog = bp->b_fspriv;
1028	xlog_t		*l = iclog->ic_log;
1029	int		aborted = 0;
1030
1031	/*
1032	 * Race to shutdown the filesystem if we see an error.
1033	 */
1034	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1035			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
 
 
 
 
 
 
1036		xfs_buf_ioerror_alert(bp, __func__);
1037		xfs_buf_stale(bp);
1038		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1039		/*
1040		 * This flag will be propagated to the trans-committed
1041		 * callback routines to let them know that the log-commit
1042		 * didn't succeed.
1043		 */
1044		aborted = XFS_LI_ABORTED;
1045	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1046		aborted = XFS_LI_ABORTED;
1047	}
1048
1049	/* log I/O is always issued ASYNC */
1050	ASSERT(XFS_BUF_ISASYNC(bp));
1051	xlog_state_done_syncing(iclog, aborted);
 
1052	/*
1053	 * do not reference the buffer (bp) here as we could race
1054	 * with it being freed after writing the unmount record to the
1055	 * log.
 
1056	 */
1057
1058}	/* xlog_iodone */
1059
1060/*
1061 * Return size of each in-core log record buffer.
1062 *
1063 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1064 *
1065 * If the filesystem blocksize is too large, we may need to choose a
1066 * larger size since the directory code currently logs entire blocks.
1067 */
1068
1069STATIC void
1070xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
1071			   xlog_t	*log)
 
1072{
1073	int size;
1074	int xhdrs;
1075
1076	if (mp->m_logbufs <= 0)
1077		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1078	else
1079		log->l_iclog_bufs = mp->m_logbufs;
1080
1081	/*
1082	 * Buffer size passed in from mount system call.
1083	 */
1084	if (mp->m_logbsize > 0) {
1085		size = log->l_iclog_size = mp->m_logbsize;
1086		log->l_iclog_size_log = 0;
1087		while (size != 1) {
1088			log->l_iclog_size_log++;
1089			size >>= 1;
1090		}
1091
1092		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1093			/* # headers = size / 32k
1094			 * one header holds cycles from 32k of data
1095			 */
1096
1097			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1098			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1099				xhdrs++;
1100			log->l_iclog_hsize = xhdrs << BBSHIFT;
1101			log->l_iclog_heads = xhdrs;
1102		} else {
1103			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1104			log->l_iclog_hsize = BBSIZE;
1105			log->l_iclog_heads = 1;
1106		}
1107		goto done;
1108	}
1109
1110	/* All machines use 32kB buffers by default. */
1111	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1112	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1113
1114	/* the default log size is 16k or 32k which is one header sector */
1115	log->l_iclog_hsize = BBSIZE;
1116	log->l_iclog_heads = 1;
1117
1118done:
1119	/* are we being asked to make the sizes selected above visible? */
1120	if (mp->m_logbufs == 0)
1121		mp->m_logbufs = log->l_iclog_bufs;
1122	if (mp->m_logbsize == 0)
1123		mp->m_logbsize = log->l_iclog_size;
1124}	/* xlog_get_iclog_buffer_size */
1125
1126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127/*
1128 * This routine initializes some of the log structure for a given mount point.
1129 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1130 * some other stuff may be filled in too.
1131 */
1132STATIC xlog_t *
1133xlog_alloc_log(xfs_mount_t	*mp,
1134	       xfs_buftarg_t	*log_target,
1135	       xfs_daddr_t	blk_offset,
1136	       int		num_bblks)
 
1137{
1138	xlog_t			*log;
1139	xlog_rec_header_t	*head;
1140	xlog_in_core_t		**iclogp;
1141	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1142	xfs_buf_t		*bp;
1143	int			i;
1144	int			error = ENOMEM;
1145	uint			log2_size = 0;
1146
1147	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1148	if (!log) {
1149		xfs_warn(mp, "Log allocation failed: No memory!");
1150		goto out;
1151	}
1152
1153	log->l_mp	   = mp;
1154	log->l_targ	   = log_target;
1155	log->l_logsize     = BBTOB(num_bblks);
1156	log->l_logBBstart  = blk_offset;
1157	log->l_logBBsize   = num_bblks;
1158	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1159	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
 
1160
1161	log->l_prev_block  = -1;
1162	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1163	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1164	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1165	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1166
1167	xlog_grant_head_init(&log->l_reserve_head);
1168	xlog_grant_head_init(&log->l_write_head);
1169
1170	error = EFSCORRUPTED;
1171	if (xfs_sb_version_hassector(&mp->m_sb)) {
1172	        log2_size = mp->m_sb.sb_logsectlog;
1173		if (log2_size < BBSHIFT) {
1174			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1175				log2_size, BBSHIFT);
1176			goto out_free_log;
1177		}
1178
1179	        log2_size -= BBSHIFT;
1180		if (log2_size > mp->m_sectbb_log) {
1181			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1182				log2_size, mp->m_sectbb_log);
1183			goto out_free_log;
1184		}
1185
1186		/* for larger sector sizes, must have v2 or external log */
1187		if (log2_size && log->l_logBBstart > 0 &&
1188			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1189			xfs_warn(mp,
1190		"log sector size (0x%x) invalid for configuration.",
1191				log2_size);
1192			goto out_free_log;
1193		}
1194	}
1195	log->l_sectBBsize = 1 << log2_size;
1196
1197	xlog_get_iclog_buffer_size(mp, log);
1198
1199	error = ENOMEM;
1200	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
 
 
 
 
 
 
1201	if (!bp)
1202		goto out_free_log;
1203	bp->b_iodone = xlog_iodone;
 
 
 
 
 
1204	ASSERT(xfs_buf_islocked(bp));
 
 
 
 
 
1205	log->l_xbuf = bp;
1206
1207	spin_lock_init(&log->l_icloglock);
1208	init_waitqueue_head(&log->l_flush_wait);
1209
1210	iclogp = &log->l_iclog;
1211	/*
1212	 * The amount of memory to allocate for the iclog structure is
1213	 * rather funky due to the way the structure is defined.  It is
1214	 * done this way so that we can use different sizes for machines
1215	 * with different amounts of memory.  See the definition of
1216	 * xlog_in_core_t in xfs_log_priv.h for details.
1217	 */
1218	ASSERT(log->l_iclog_size >= 4096);
1219	for (i=0; i < log->l_iclog_bufs; i++) {
1220		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1221		if (!*iclogp)
1222			goto out_free_iclog;
1223
1224		iclog = *iclogp;
1225		iclog->ic_prev = prev_iclog;
1226		prev_iclog = iclog;
1227
1228		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1229						BTOBB(log->l_iclog_size), 0);
1230		if (!bp)
1231			goto out_free_iclog;
1232
 
 
 
 
 
1233		bp->b_iodone = xlog_iodone;
1234		iclog->ic_bp = bp;
1235		iclog->ic_data = bp->b_addr;
1236#ifdef DEBUG
1237		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1238#endif
1239		head = &iclog->ic_header;
1240		memset(head, 0, sizeof(xlog_rec_header_t));
1241		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1242		head->h_version = cpu_to_be32(
1243			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1244		head->h_size = cpu_to_be32(log->l_iclog_size);
1245		/* new fields */
1246		head->h_fmt = cpu_to_be32(XLOG_FMT);
1247		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1248
1249		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1250		iclog->ic_state = XLOG_STATE_ACTIVE;
1251		iclog->ic_log = log;
1252		atomic_set(&iclog->ic_refcnt, 0);
1253		spin_lock_init(&iclog->ic_callback_lock);
1254		iclog->ic_callback_tail = &(iclog->ic_callback);
1255		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1256
1257		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1258		init_waitqueue_head(&iclog->ic_force_wait);
1259		init_waitqueue_head(&iclog->ic_write_wait);
1260
1261		iclogp = &iclog->ic_next;
1262	}
1263	*iclogp = log->l_iclog;			/* complete ring */
1264	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1265
1266	error = xlog_cil_init(log);
1267	if (error)
1268		goto out_free_iclog;
1269	return log;
1270
1271out_free_iclog:
1272	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1273		prev_iclog = iclog->ic_next;
1274		if (iclog->ic_bp)
1275			xfs_buf_free(iclog->ic_bp);
1276		kmem_free(iclog);
1277	}
1278	spinlock_destroy(&log->l_icloglock);
1279	xfs_buf_free(log->l_xbuf);
1280out_free_log:
1281	kmem_free(log);
1282out:
1283	return ERR_PTR(-error);
1284}	/* xlog_alloc_log */
1285
1286
1287/*
1288 * Write out the commit record of a transaction associated with the given
1289 * ticket.  Return the lsn of the commit record.
1290 */
1291STATIC int
1292xlog_commit_record(
1293	struct xlog		*log,
1294	struct xlog_ticket	*ticket,
1295	struct xlog_in_core	**iclog,
1296	xfs_lsn_t		*commitlsnp)
1297{
1298	struct xfs_mount *mp = log->l_mp;
1299	int	error;
1300	struct xfs_log_iovec reg = {
1301		.i_addr = NULL,
1302		.i_len = 0,
1303		.i_type = XLOG_REG_TYPE_COMMIT,
1304	};
1305	struct xfs_log_vec vec = {
1306		.lv_niovecs = 1,
1307		.lv_iovecp = &reg,
1308	};
1309
1310	ASSERT_ALWAYS(iclog);
1311	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1312					XLOG_COMMIT_TRANS);
1313	if (error)
1314		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1315	return error;
1316}
1317
1318/*
1319 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1320 * log space.  This code pushes on the lsn which would supposedly free up
1321 * the 25% which we want to leave free.  We may need to adopt a policy which
1322 * pushes on an lsn which is further along in the log once we reach the high
1323 * water mark.  In this manner, we would be creating a low water mark.
1324 */
1325STATIC void
1326xlog_grant_push_ail(
1327	struct xlog	*log,
1328	int		need_bytes)
1329{
1330	xfs_lsn_t	threshold_lsn = 0;
1331	xfs_lsn_t	last_sync_lsn;
1332	int		free_blocks;
1333	int		free_bytes;
1334	int		threshold_block;
1335	int		threshold_cycle;
1336	int		free_threshold;
1337
1338	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1339
1340	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1341	free_blocks = BTOBBT(free_bytes);
1342
1343	/*
1344	 * Set the threshold for the minimum number of free blocks in the
1345	 * log to the maximum of what the caller needs, one quarter of the
1346	 * log, and 256 blocks.
1347	 */
1348	free_threshold = BTOBB(need_bytes);
1349	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1350	free_threshold = MAX(free_threshold, 256);
1351	if (free_blocks >= free_threshold)
1352		return;
1353
1354	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1355						&threshold_block);
1356	threshold_block += free_threshold;
1357	if (threshold_block >= log->l_logBBsize) {
1358		threshold_block -= log->l_logBBsize;
1359		threshold_cycle += 1;
1360	}
1361	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1362					threshold_block);
1363	/*
1364	 * Don't pass in an lsn greater than the lsn of the last
1365	 * log record known to be on disk. Use a snapshot of the last sync lsn
1366	 * so that it doesn't change between the compare and the set.
1367	 */
1368	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1369	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1370		threshold_lsn = last_sync_lsn;
1371
1372	/*
1373	 * Get the transaction layer to kick the dirty buffers out to
1374	 * disk asynchronously. No point in trying to do this if
1375	 * the filesystem is shutting down.
1376	 */
1377	if (!XLOG_FORCED_SHUTDOWN(log))
1378		xfs_ail_push(log->l_ailp, threshold_lsn);
1379}
1380
1381/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382 * The bdstrat callback function for log bufs. This gives us a central
1383 * place to trap bufs in case we get hit by a log I/O error and need to
1384 * shutdown. Actually, in practice, even when we didn't get a log error,
1385 * we transition the iclogs to IOERROR state *after* flushing all existing
1386 * iclogs to disk. This is because we don't want anymore new transactions to be
1387 * started or completed afterwards.
 
 
 
 
 
 
1388 */
1389STATIC int
1390xlog_bdstrat(
1391	struct xfs_buf		*bp)
1392{
1393	struct xlog_in_core	*iclog = bp->b_fspriv;
1394
 
1395	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1396		xfs_buf_ioerror(bp, EIO);
1397		xfs_buf_stale(bp);
1398		xfs_buf_ioend(bp, 0);
1399		/*
1400		 * It would seem logical to return EIO here, but we rely on
1401		 * the log state machine to propagate I/O errors instead of
1402		 * doing it here.
 
1403		 */
1404		return 0;
1405	}
1406
1407	xfs_buf_iorequest(bp);
1408	return 0;
1409}
1410
1411/*
1412 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1413 * fashion.  Previously, we should have moved the current iclog
1414 * ptr in the log to point to the next available iclog.  This allows further
1415 * write to continue while this code syncs out an iclog ready to go.
1416 * Before an in-core log can be written out, the data section must be scanned
1417 * to save away the 1st word of each BBSIZE block into the header.  We replace
1418 * it with the current cycle count.  Each BBSIZE block is tagged with the
1419 * cycle count because there in an implicit assumption that drives will
1420 * guarantee that entire 512 byte blocks get written at once.  In other words,
1421 * we can't have part of a 512 byte block written and part not written.  By
1422 * tagging each block, we will know which blocks are valid when recovering
1423 * after an unclean shutdown.
1424 *
1425 * This routine is single threaded on the iclog.  No other thread can be in
1426 * this routine with the same iclog.  Changing contents of iclog can there-
1427 * fore be done without grabbing the state machine lock.  Updating the global
1428 * log will require grabbing the lock though.
1429 *
1430 * The entire log manager uses a logical block numbering scheme.  Only
1431 * log_sync (and then only bwrite()) know about the fact that the log may
1432 * not start with block zero on a given device.  The log block start offset
1433 * is added immediately before calling bwrite().
1434 */
1435
1436STATIC int
1437xlog_sync(xlog_t		*log,
1438	  xlog_in_core_t	*iclog)
 
1439{
1440	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1441	xfs_buf_t	*bp;
1442	int		i;
1443	uint		count;		/* byte count of bwrite */
1444	uint		count_init;	/* initial count before roundup */
1445	int		roundoff;       /* roundoff to BB or stripe */
1446	int		split = 0;	/* split write into two regions */
1447	int		error;
1448	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
 
1449
1450	XFS_STATS_INC(xs_log_writes);
1451	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1452
1453	/* Add for LR header */
1454	count_init = log->l_iclog_hsize + iclog->ic_offset;
1455
1456	/* Round out the log write size */
1457	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1458		/* we have a v2 stripe unit to use */
1459		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1460	} else {
1461		count = BBTOB(BTOBB(count_init));
1462	}
1463	roundoff = count - count_init;
1464	ASSERT(roundoff >= 0);
1465	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1466                roundoff < log->l_mp->m_sb.sb_logsunit)
1467		|| 
1468		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1469		 roundoff < BBTOB(1)));
1470
1471	/* move grant heads by roundoff in sync */
1472	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1473	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1474
1475	/* put cycle number in every block */
1476	xlog_pack_data(log, iclog, roundoff); 
1477
1478	/* real byte length */
1479	if (v2) {
1480		iclog->ic_header.h_len =
1481			cpu_to_be32(iclog->ic_offset + roundoff);
1482	} else {
1483		iclog->ic_header.h_len =
1484			cpu_to_be32(iclog->ic_offset);
1485	}
1486
1487	bp = iclog->ic_bp;
1488	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1489
1490	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1491
1492	/* Do we need to split this write into 2 parts? */
1493	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
 
 
1494		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1495		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1496		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497	} else {
1498		iclog->ic_bwritecnt = 1;
1499	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500	bp->b_io_length = BTOBB(count);
1501	bp->b_fspriv = iclog;
1502	XFS_BUF_ZEROFLAGS(bp);
1503	XFS_BUF_ASYNC(bp);
1504	bp->b_flags |= XBF_SYNCIO;
1505
1506	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1507		bp->b_flags |= XBF_FUA;
1508
1509		/*
1510		 * Flush the data device before flushing the log to make
1511		 * sure all meta data written back from the AIL actually made
1512		 * it to disk before stamping the new log tail LSN into the
1513		 * log buffer.  For an external log we need to issue the
1514		 * flush explicitly, and unfortunately synchronously here;
1515		 * for an internal log we can simply use the block layer
1516		 * state machine for preflushes.
1517		 */
1518		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1519			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1520		else
1521			bp->b_flags |= XBF_FLUSH;
1522	}
1523
1524	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1525	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1526
1527	xlog_verify_iclog(log, iclog, count, B_TRUE);
1528
1529	/* account for log which doesn't start at block #0 */
1530	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
 
1531	/*
1532	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1533	 * is shutting down.
1534	 */
1535	XFS_BUF_WRITE(bp);
1536
1537	error = xlog_bdstrat(bp);
1538	if (error) {
1539		xfs_buf_ioerror_alert(bp, "xlog_sync");
1540		return error;
1541	}
1542	if (split) {
1543		bp = iclog->ic_log->l_xbuf;
1544		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1545		xfs_buf_associate_memory(bp,
1546				(char *)&iclog->ic_header + count, split);
1547		bp->b_fspriv = iclog;
1548		XFS_BUF_ZEROFLAGS(bp);
1549		XFS_BUF_ASYNC(bp);
1550		bp->b_flags |= XBF_SYNCIO;
1551		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1552			bp->b_flags |= XBF_FUA;
1553		dptr = bp->b_addr;
1554		/*
1555		 * Bump the cycle numbers at the start of each block
1556		 * since this part of the buffer is at the start of
1557		 * a new cycle.  Watch out for the header magic number
1558		 * case, though.
1559		 */
1560		for (i = 0; i < split; i += BBSIZE) {
1561			be32_add_cpu((__be32 *)dptr, 1);
1562			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1563				be32_add_cpu((__be32 *)dptr, 1);
1564			dptr += BBSIZE;
1565		}
1566
1567		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1568		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1569
1570		/* account for internal log which doesn't start at block #0 */
1571		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1572		XFS_BUF_WRITE(bp);
1573		error = xlog_bdstrat(bp);
1574		if (error) {
1575			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1576			return error;
1577		}
1578	}
1579	return 0;
1580}	/* xlog_sync */
1581
1582
1583/*
1584 * Deallocate a log structure
1585 */
1586STATIC void
1587xlog_dealloc_log(xlog_t *log)
 
1588{
1589	xlog_in_core_t	*iclog, *next_iclog;
1590	int		i;
1591
1592	xlog_cil_destroy(log);
1593
1594	/*
1595	 * always need to ensure that the extra buffer does not point to memory
1596	 * owned by another log buffer before we free it.
1597	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1599	xfs_buf_free(log->l_xbuf);
1600
1601	iclog = log->l_iclog;
1602	for (i=0; i<log->l_iclog_bufs; i++) {
1603		xfs_buf_free(iclog->ic_bp);
1604		next_iclog = iclog->ic_next;
1605		kmem_free(iclog);
1606		iclog = next_iclog;
1607	}
1608	spinlock_destroy(&log->l_icloglock);
1609
1610	log->l_mp->m_log = NULL;
1611	kmem_free(log);
1612}	/* xlog_dealloc_log */
1613
1614/*
1615 * Update counters atomically now that memcpy is done.
1616 */
1617/* ARGSUSED */
1618static inline void
1619xlog_state_finish_copy(xlog_t		*log,
1620		       xlog_in_core_t	*iclog,
1621		       int		record_cnt,
1622		       int		copy_bytes)
 
1623{
1624	spin_lock(&log->l_icloglock);
1625
1626	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1627	iclog->ic_offset += copy_bytes;
1628
1629	spin_unlock(&log->l_icloglock);
1630}	/* xlog_state_finish_copy */
1631
1632
1633
1634
1635/*
1636 * print out info relating to regions written which consume
1637 * the reservation
1638 */
1639void
1640xlog_print_tic_res(
1641	struct xfs_mount	*mp,
1642	struct xlog_ticket	*ticket)
1643{
1644	uint i;
1645	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1646
1647	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1648	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1649	    "bformat",
1650	    "bchunk",
1651	    "efi_format",
1652	    "efd_format",
1653	    "iformat",
1654	    "icore",
1655	    "iext",
1656	    "ibroot",
1657	    "ilocal",
1658	    "iattr_ext",
1659	    "iattr_broot",
1660	    "iattr_local",
1661	    "qformat",
1662	    "dquot",
1663	    "quotaoff",
1664	    "LR header",
1665	    "unmount",
1666	    "commit",
1667	    "trans header"
 
 
1668	};
 
 
1669	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1670	    "SETATTR_NOT_SIZE",
1671	    "SETATTR_SIZE",
1672	    "INACTIVE",
1673	    "CREATE",
1674	    "CREATE_TRUNC",
1675	    "TRUNCATE_FILE",
1676	    "REMOVE",
1677	    "LINK",
1678	    "RENAME",
1679	    "MKDIR",
1680	    "RMDIR",
1681	    "SYMLINK",
1682	    "SET_DMATTRS",
1683	    "GROWFS",
1684	    "STRAT_WRITE",
1685	    "DIOSTRAT",
1686	    "WRITE_SYNC",
1687	    "WRITEID",
1688	    "ADDAFORK",
1689	    "ATTRINVAL",
1690	    "ATRUNCATE",
1691	    "ATTR_SET",
1692	    "ATTR_RM",
1693	    "ATTR_FLAG",
1694	    "CLEAR_AGI_BUCKET",
1695	    "QM_SBCHANGE",
1696	    "DUMMY1",
1697	    "DUMMY2",
1698	    "QM_QUOTAOFF",
1699	    "QM_DQALLOC",
1700	    "QM_SETQLIM",
1701	    "QM_DQCLUSTER",
1702	    "QM_QINOCREATE",
1703	    "QM_QUOTAOFF_END",
1704	    "SB_UNIT",
1705	    "FSYNC_TS",
1706	    "GROWFSRT_ALLOC",
1707	    "GROWFSRT_ZERO",
1708	    "GROWFSRT_FREE",
1709	    "SWAPEXT"
 
1710	};
 
1711
1712	xfs_warn(mp,
1713		"xlog_write: reservation summary:\n"
1714		"  trans type  = %s (%u)\n"
1715		"  unit res    = %d bytes\n"
1716		"  current res = %d bytes\n"
1717		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1718		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1719		"  ophdr + reg = %u bytes\n"
1720		"  num regions = %u\n",
1721		((ticket->t_trans_type <= 0 ||
1722		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1723		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1724		ticket->t_trans_type,
1725		ticket->t_unit_res,
1726		ticket->t_curr_res,
1727		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1728		ticket->t_res_num_ophdrs, ophdr_spc,
1729		ticket->t_res_arr_sum +
1730		ticket->t_res_o_flow + ophdr_spc,
1731		ticket->t_res_num);
1732
1733	for (i = 0; i < ticket->t_res_num; i++) {
1734		uint r_type = ticket->t_res_arr[i].r_type;
1735		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1736			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1737			    "bad-rtype" : res_type_str[r_type-1]),
1738			    ticket->t_res_arr[i].r_len);
1739	}
1740
1741	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1742		"xlog_write: reservation ran out. Need to up reservation");
1743	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1744}
1745
1746/*
1747 * Calculate the potential space needed by the log vector.  Each region gets
1748 * its own xlog_op_header_t and may need to be double word aligned.
1749 */
1750static int
1751xlog_write_calc_vec_length(
1752	struct xlog_ticket	*ticket,
1753	struct xfs_log_vec	*log_vector)
1754{
1755	struct xfs_log_vec	*lv;
1756	int			headers = 0;
1757	int			len = 0;
1758	int			i;
1759
1760	/* acct for start rec of xact */
1761	if (ticket->t_flags & XLOG_TIC_INITED)
1762		headers++;
1763
1764	for (lv = log_vector; lv; lv = lv->lv_next) {
 
 
 
 
1765		headers += lv->lv_niovecs;
1766
1767		for (i = 0; i < lv->lv_niovecs; i++) {
1768			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1769
1770			len += vecp->i_len;
1771			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1772		}
1773	}
1774
1775	ticket->t_res_num_ophdrs += headers;
1776	len += headers * sizeof(struct xlog_op_header);
1777
1778	return len;
1779}
1780
1781/*
1782 * If first write for transaction, insert start record  We can't be trying to
1783 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1784 */
1785static int
1786xlog_write_start_rec(
1787	struct xlog_op_header	*ophdr,
1788	struct xlog_ticket	*ticket)
1789{
1790	if (!(ticket->t_flags & XLOG_TIC_INITED))
1791		return 0;
1792
1793	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1794	ophdr->oh_clientid = ticket->t_clientid;
1795	ophdr->oh_len = 0;
1796	ophdr->oh_flags = XLOG_START_TRANS;
1797	ophdr->oh_res2 = 0;
1798
1799	ticket->t_flags &= ~XLOG_TIC_INITED;
1800
1801	return sizeof(struct xlog_op_header);
1802}
1803
1804static xlog_op_header_t *
1805xlog_write_setup_ophdr(
1806	struct xlog		*log,
1807	struct xlog_op_header	*ophdr,
1808	struct xlog_ticket	*ticket,
1809	uint			flags)
1810{
1811	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1812	ophdr->oh_clientid = ticket->t_clientid;
1813	ophdr->oh_res2 = 0;
1814
1815	/* are we copying a commit or unmount record? */
1816	ophdr->oh_flags = flags;
1817
1818	/*
1819	 * We've seen logs corrupted with bad transaction client ids.  This
1820	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1821	 * and shut down the filesystem.
1822	 */
1823	switch (ophdr->oh_clientid)  {
1824	case XFS_TRANSACTION:
1825	case XFS_VOLUME:
1826	case XFS_LOG:
1827		break;
1828	default:
1829		xfs_warn(log->l_mp,
1830			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1831			ophdr->oh_clientid, ticket);
1832		return NULL;
1833	}
1834
1835	return ophdr;
1836}
1837
1838/*
1839 * Set up the parameters of the region copy into the log. This has
1840 * to handle region write split across multiple log buffers - this
1841 * state is kept external to this function so that this code can
1842 * can be written in an obvious, self documenting manner.
1843 */
1844static int
1845xlog_write_setup_copy(
1846	struct xlog_ticket	*ticket,
1847	struct xlog_op_header	*ophdr,
1848	int			space_available,
1849	int			space_required,
1850	int			*copy_off,
1851	int			*copy_len,
1852	int			*last_was_partial_copy,
1853	int			*bytes_consumed)
1854{
1855	int			still_to_copy;
1856
1857	still_to_copy = space_required - *bytes_consumed;
1858	*copy_off = *bytes_consumed;
1859
1860	if (still_to_copy <= space_available) {
1861		/* write of region completes here */
1862		*copy_len = still_to_copy;
1863		ophdr->oh_len = cpu_to_be32(*copy_len);
1864		if (*last_was_partial_copy)
1865			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1866		*last_was_partial_copy = 0;
1867		*bytes_consumed = 0;
1868		return 0;
1869	}
1870
1871	/* partial write of region, needs extra log op header reservation */
1872	*copy_len = space_available;
1873	ophdr->oh_len = cpu_to_be32(*copy_len);
1874	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1875	if (*last_was_partial_copy)
1876		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1877	*bytes_consumed += *copy_len;
1878	(*last_was_partial_copy)++;
1879
1880	/* account for new log op header */
1881	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1882	ticket->t_res_num_ophdrs++;
1883
1884	return sizeof(struct xlog_op_header);
1885}
1886
1887static int
1888xlog_write_copy_finish(
1889	struct xlog		*log,
1890	struct xlog_in_core	*iclog,
1891	uint			flags,
1892	int			*record_cnt,
1893	int			*data_cnt,
1894	int			*partial_copy,
1895	int			*partial_copy_len,
1896	int			log_offset,
1897	struct xlog_in_core	**commit_iclog)
1898{
1899	if (*partial_copy) {
1900		/*
1901		 * This iclog has already been marked WANT_SYNC by
1902		 * xlog_state_get_iclog_space.
1903		 */
1904		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1905		*record_cnt = 0;
1906		*data_cnt = 0;
1907		return xlog_state_release_iclog(log, iclog);
1908	}
1909
1910	*partial_copy = 0;
1911	*partial_copy_len = 0;
1912
1913	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1914		/* no more space in this iclog - push it. */
1915		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1916		*record_cnt = 0;
1917		*data_cnt = 0;
1918
1919		spin_lock(&log->l_icloglock);
1920		xlog_state_want_sync(log, iclog);
1921		spin_unlock(&log->l_icloglock);
1922
1923		if (!commit_iclog)
1924			return xlog_state_release_iclog(log, iclog);
1925		ASSERT(flags & XLOG_COMMIT_TRANS);
1926		*commit_iclog = iclog;
1927	}
1928
1929	return 0;
1930}
1931
1932/*
1933 * Write some region out to in-core log
1934 *
1935 * This will be called when writing externally provided regions or when
1936 * writing out a commit record for a given transaction.
1937 *
1938 * General algorithm:
1939 *	1. Find total length of this write.  This may include adding to the
1940 *		lengths passed in.
1941 *	2. Check whether we violate the tickets reservation.
1942 *	3. While writing to this iclog
1943 *	    A. Reserve as much space in this iclog as can get
1944 *	    B. If this is first write, save away start lsn
1945 *	    C. While writing this region:
1946 *		1. If first write of transaction, write start record
1947 *		2. Write log operation header (header per region)
1948 *		3. Find out if we can fit entire region into this iclog
1949 *		4. Potentially, verify destination memcpy ptr
1950 *		5. Memcpy (partial) region
1951 *		6. If partial copy, release iclog; otherwise, continue
1952 *			copying more regions into current iclog
1953 *	4. Mark want sync bit (in simulation mode)
1954 *	5. Release iclog for potential flush to on-disk log.
1955 *
1956 * ERRORS:
1957 * 1.	Panic if reservation is overrun.  This should never happen since
1958 *	reservation amounts are generated internal to the filesystem.
1959 * NOTES:
1960 * 1. Tickets are single threaded data structures.
1961 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1962 *	syncing routine.  When a single log_write region needs to span
1963 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1964 *	on all log operation writes which don't contain the end of the
1965 *	region.  The XLOG_END_TRANS bit is used for the in-core log
1966 *	operation which contains the end of the continued log_write region.
1967 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1968 *	we don't really know exactly how much space will be used.  As a result,
1969 *	we don't update ic_offset until the end when we know exactly how many
1970 *	bytes have been written out.
1971 */
1972int
1973xlog_write(
1974	struct xlog		*log,
1975	struct xfs_log_vec	*log_vector,
1976	struct xlog_ticket	*ticket,
1977	xfs_lsn_t		*start_lsn,
1978	struct xlog_in_core	**commit_iclog,
1979	uint			flags)
1980{
1981	struct xlog_in_core	*iclog = NULL;
1982	struct xfs_log_iovec	*vecp;
1983	struct xfs_log_vec	*lv;
1984	int			len;
1985	int			index;
1986	int			partial_copy = 0;
1987	int			partial_copy_len = 0;
1988	int			contwr = 0;
1989	int			record_cnt = 0;
1990	int			data_cnt = 0;
1991	int			error;
1992
1993	*start_lsn = 0;
1994
1995	len = xlog_write_calc_vec_length(ticket, log_vector);
1996
1997	/*
1998	 * Region headers and bytes are already accounted for.
1999	 * We only need to take into account start records and
2000	 * split regions in this function.
2001	 */
2002	if (ticket->t_flags & XLOG_TIC_INITED)
2003		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2004
2005	/*
2006	 * Commit record headers need to be accounted for. These
2007	 * come in as separate writes so are easy to detect.
2008	 */
2009	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2010		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2011
2012	if (ticket->t_curr_res < 0)
2013		xlog_print_tic_res(log->l_mp, ticket);
2014
2015	index = 0;
2016	lv = log_vector;
2017	vecp = lv->lv_iovecp;
2018	while (lv && index < lv->lv_niovecs) {
2019		void		*ptr;
2020		int		log_offset;
2021
2022		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2023						   &contwr, &log_offset);
2024		if (error)
2025			return error;
2026
2027		ASSERT(log_offset <= iclog->ic_size - 1);
2028		ptr = iclog->ic_datap + log_offset;
2029
2030		/* start_lsn is the first lsn written to. That's all we need. */
2031		if (!*start_lsn)
2032			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2033
2034		/*
2035		 * This loop writes out as many regions as can fit in the amount
2036		 * of space which was allocated by xlog_state_get_iclog_space().
2037		 */
2038		while (lv && index < lv->lv_niovecs) {
2039			struct xfs_log_iovec	*reg = &vecp[index];
2040			struct xlog_op_header	*ophdr;
2041			int			start_rec_copy;
2042			int			copy_len;
2043			int			copy_off;
 
2044
 
 
 
 
 
 
 
 
2045			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2046			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2047
2048			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2049			if (start_rec_copy) {
2050				record_cnt++;
2051				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2052						   start_rec_copy);
2053			}
2054
2055			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2056			if (!ophdr)
2057				return XFS_ERROR(EIO);
2058
2059			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2060					   sizeof(struct xlog_op_header));
2061
2062			len += xlog_write_setup_copy(ticket, ophdr,
2063						     iclog->ic_size-log_offset,
2064						     reg->i_len,
2065						     &copy_off, &copy_len,
2066						     &partial_copy,
2067						     &partial_copy_len);
2068			xlog_verify_dest_ptr(log, ptr);
2069
2070			/* copy region */
 
 
 
 
 
 
 
2071			ASSERT(copy_len >= 0);
2072			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2073			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2074
 
 
2075			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2076			record_cnt++;
2077			data_cnt += contwr ? copy_len : 0;
2078
2079			error = xlog_write_copy_finish(log, iclog, flags,
2080						       &record_cnt, &data_cnt,
2081						       &partial_copy,
2082						       &partial_copy_len,
2083						       log_offset,
2084						       commit_iclog);
2085			if (error)
2086				return error;
2087
2088			/*
2089			 * if we had a partial copy, we need to get more iclog
2090			 * space but we don't want to increment the region
2091			 * index because there is still more is this region to
2092			 * write.
2093			 *
2094			 * If we completed writing this region, and we flushed
2095			 * the iclog (indicated by resetting of the record
2096			 * count), then we also need to get more log space. If
2097			 * this was the last record, though, we are done and
2098			 * can just return.
2099			 */
2100			if (partial_copy)
2101				break;
2102
2103			if (++index == lv->lv_niovecs) {
 
2104				lv = lv->lv_next;
2105				index = 0;
2106				if (lv)
2107					vecp = lv->lv_iovecp;
2108			}
2109			if (record_cnt == 0) {
2110				if (!lv)
2111					return 0;
2112				break;
2113			}
2114		}
2115	}
2116
2117	ASSERT(len == 0);
2118
2119	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2120	if (!commit_iclog)
2121		return xlog_state_release_iclog(log, iclog);
2122
2123	ASSERT(flags & XLOG_COMMIT_TRANS);
2124	*commit_iclog = iclog;
2125	return 0;
2126}
2127
2128
2129/*****************************************************************************
2130 *
2131 *		State Machine functions
2132 *
2133 *****************************************************************************
2134 */
2135
2136/* Clean iclogs starting from the head.  This ordering must be
2137 * maintained, so an iclog doesn't become ACTIVE beyond one that
2138 * is SYNCING.  This is also required to maintain the notion that we use
2139 * a ordered wait queue to hold off would be writers to the log when every
2140 * iclog is trying to sync to disk.
2141 *
2142 * State Change: DIRTY -> ACTIVE
2143 */
2144STATIC void
2145xlog_state_clean_log(xlog_t *log)
 
2146{
2147	xlog_in_core_t	*iclog;
2148	int changed = 0;
2149
2150	iclog = log->l_iclog;
2151	do {
2152		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2153			iclog->ic_state	= XLOG_STATE_ACTIVE;
2154			iclog->ic_offset       = 0;
2155			ASSERT(iclog->ic_callback == NULL);
2156			/*
2157			 * If the number of ops in this iclog indicate it just
2158			 * contains the dummy transaction, we can
2159			 * change state into IDLE (the second time around).
2160			 * Otherwise we should change the state into
2161			 * NEED a dummy.
2162			 * We don't need to cover the dummy.
2163			 */
2164			if (!changed &&
2165			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2166			   		XLOG_COVER_OPS)) {
2167				changed = 1;
2168			} else {
2169				/*
2170				 * We have two dirty iclogs so start over
2171				 * This could also be num of ops indicates
2172				 * this is not the dummy going out.
2173				 */
2174				changed = 2;
2175			}
2176			iclog->ic_header.h_num_logops = 0;
2177			memset(iclog->ic_header.h_cycle_data, 0,
2178			      sizeof(iclog->ic_header.h_cycle_data));
2179			iclog->ic_header.h_lsn = 0;
2180		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2181			/* do nothing */;
2182		else
2183			break;	/* stop cleaning */
2184		iclog = iclog->ic_next;
2185	} while (iclog != log->l_iclog);
2186
2187	/* log is locked when we are called */
2188	/*
2189	 * Change state for the dummy log recording.
2190	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2191	 * we are done writing the dummy record.
2192	 * If we are done with the second dummy recored (DONE2), then
2193	 * we go to IDLE.
2194	 */
2195	if (changed) {
2196		switch (log->l_covered_state) {
2197		case XLOG_STATE_COVER_IDLE:
2198		case XLOG_STATE_COVER_NEED:
2199		case XLOG_STATE_COVER_NEED2:
2200			log->l_covered_state = XLOG_STATE_COVER_NEED;
2201			break;
2202
2203		case XLOG_STATE_COVER_DONE:
2204			if (changed == 1)
2205				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2206			else
2207				log->l_covered_state = XLOG_STATE_COVER_NEED;
2208			break;
2209
2210		case XLOG_STATE_COVER_DONE2:
2211			if (changed == 1)
2212				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2213			else
2214				log->l_covered_state = XLOG_STATE_COVER_NEED;
2215			break;
2216
2217		default:
2218			ASSERT(0);
2219		}
2220	}
2221}	/* xlog_state_clean_log */
2222
2223STATIC xfs_lsn_t
2224xlog_get_lowest_lsn(
2225	xlog_t		*log)
2226{
2227	xlog_in_core_t  *lsn_log;
2228	xfs_lsn_t	lowest_lsn, lsn;
2229
2230	lsn_log = log->l_iclog;
2231	lowest_lsn = 0;
2232	do {
2233	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2234		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2235		if ((lsn && !lowest_lsn) ||
2236		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2237			lowest_lsn = lsn;
2238		}
2239	    }
2240	    lsn_log = lsn_log->ic_next;
2241	} while (lsn_log != log->l_iclog);
2242	return lowest_lsn;
2243}
2244
2245
2246STATIC void
2247xlog_state_do_callback(
2248	xlog_t		*log,
2249	int		aborted,
2250	xlog_in_core_t	*ciclog)
2251{
2252	xlog_in_core_t	   *iclog;
2253	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2254						 * processed all iclogs once */
2255	xfs_log_callback_t *cb, *cb_next;
2256	int		   flushcnt = 0;
2257	xfs_lsn_t	   lowest_lsn;
2258	int		   ioerrors;	/* counter: iclogs with errors */
2259	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2260	int		   funcdidcallbacks; /* flag: function did callbacks */
2261	int		   repeats;	/* for issuing console warnings if
2262					 * looping too many times */
2263	int		   wake = 0;
2264
2265	spin_lock(&log->l_icloglock);
2266	first_iclog = iclog = log->l_iclog;
2267	ioerrors = 0;
2268	funcdidcallbacks = 0;
2269	repeats = 0;
2270
2271	do {
2272		/*
2273		 * Scan all iclogs starting with the one pointed to by the
2274		 * log.  Reset this starting point each time the log is
2275		 * unlocked (during callbacks).
2276		 *
2277		 * Keep looping through iclogs until one full pass is made
2278		 * without running any callbacks.
2279		 */
2280		first_iclog = log->l_iclog;
2281		iclog = log->l_iclog;
2282		loopdidcallbacks = 0;
2283		repeats++;
2284
2285		do {
2286
2287			/* skip all iclogs in the ACTIVE & DIRTY states */
2288			if (iclog->ic_state &
2289			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2290				iclog = iclog->ic_next;
2291				continue;
2292			}
2293
2294			/*
2295			 * Between marking a filesystem SHUTDOWN and stopping
2296			 * the log, we do flush all iclogs to disk (if there
2297			 * wasn't a log I/O error). So, we do want things to
2298			 * go smoothly in case of just a SHUTDOWN  w/o a
2299			 * LOG_IO_ERROR.
2300			 */
2301			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2302				/*
2303				 * Can only perform callbacks in order.  Since
2304				 * this iclog is not in the DONE_SYNC/
2305				 * DO_CALLBACK state, we skip the rest and
2306				 * just try to clean up.  If we set our iclog
2307				 * to DO_CALLBACK, we will not process it when
2308				 * we retry since a previous iclog is in the
2309				 * CALLBACK and the state cannot change since
2310				 * we are holding the l_icloglock.
2311				 */
2312				if (!(iclog->ic_state &
2313					(XLOG_STATE_DONE_SYNC |
2314						 XLOG_STATE_DO_CALLBACK))) {
2315					if (ciclog && (ciclog->ic_state ==
2316							XLOG_STATE_DONE_SYNC)) {
2317						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2318					}
2319					break;
2320				}
2321				/*
2322				 * We now have an iclog that is in either the
2323				 * DO_CALLBACK or DONE_SYNC states. The other
2324				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2325				 * caught by the above if and are going to
2326				 * clean (i.e. we aren't doing their callbacks)
2327				 * see the above if.
2328				 */
2329
2330				/*
2331				 * We will do one more check here to see if we
2332				 * have chased our tail around.
2333				 */
2334
2335				lowest_lsn = xlog_get_lowest_lsn(log);
2336				if (lowest_lsn &&
2337				    XFS_LSN_CMP(lowest_lsn,
2338						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2339					iclog = iclog->ic_next;
2340					continue; /* Leave this iclog for
2341						   * another thread */
2342				}
2343
2344				iclog->ic_state = XLOG_STATE_CALLBACK;
2345
2346
2347				/*
2348				 * update the last_sync_lsn before we drop the
 
 
 
 
 
 
 
 
 
 
 
 
2349				 * icloglock to ensure we are the only one that
2350				 * can update it.
2351				 */
2352				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2353					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2354				atomic64_set(&log->l_last_sync_lsn,
2355					be64_to_cpu(iclog->ic_header.h_lsn));
 
2356
2357			} else
2358				ioerrors++;
2359
2360			spin_unlock(&log->l_icloglock);
2361
2362			/*
2363			 * Keep processing entries in the callback list until
2364			 * we come around and it is empty.  We need to
2365			 * atomically see that the list is empty and change the
2366			 * state to DIRTY so that we don't miss any more
2367			 * callbacks being added.
2368			 */
2369			spin_lock(&iclog->ic_callback_lock);
2370			cb = iclog->ic_callback;
2371			while (cb) {
2372				iclog->ic_callback_tail = &(iclog->ic_callback);
2373				iclog->ic_callback = NULL;
2374				spin_unlock(&iclog->ic_callback_lock);
2375
2376				/* perform callbacks in the order given */
2377				for (; cb; cb = cb_next) {
2378					cb_next = cb->cb_next;
2379					cb->cb_func(cb->cb_arg, aborted);
2380				}
2381				spin_lock(&iclog->ic_callback_lock);
2382				cb = iclog->ic_callback;
2383			}
2384
2385			loopdidcallbacks++;
2386			funcdidcallbacks++;
2387
2388			spin_lock(&log->l_icloglock);
2389			ASSERT(iclog->ic_callback == NULL);
2390			spin_unlock(&iclog->ic_callback_lock);
2391			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2392				iclog->ic_state = XLOG_STATE_DIRTY;
2393
2394			/*
2395			 * Transition from DIRTY to ACTIVE if applicable.
2396			 * NOP if STATE_IOERROR.
2397			 */
2398			xlog_state_clean_log(log);
2399
2400			/* wake up threads waiting in xfs_log_force() */
2401			wake_up_all(&iclog->ic_force_wait);
2402
2403			iclog = iclog->ic_next;
2404		} while (first_iclog != iclog);
2405
2406		if (repeats > 5000) {
2407			flushcnt += repeats;
2408			repeats = 0;
2409			xfs_warn(log->l_mp,
2410				"%s: possible infinite loop (%d iterations)",
2411				__func__, flushcnt);
2412		}
2413	} while (!ioerrors && loopdidcallbacks);
2414
 
2415	/*
2416	 * make one last gasp attempt to see if iclogs are being left in
2417	 * limbo..
 
 
 
 
 
 
 
 
2418	 */
2419#ifdef DEBUG
2420	if (funcdidcallbacks) {
2421		first_iclog = iclog = log->l_iclog;
2422		do {
2423			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2424			/*
2425			 * Terminate the loop if iclogs are found in states
2426			 * which will cause other threads to clean up iclogs.
2427			 *
2428			 * SYNCING - i/o completion will go through logs
2429			 * DONE_SYNC - interrupt thread should be waiting for
2430			 *              l_icloglock
2431			 * IOERROR - give up hope all ye who enter here
2432			 */
2433			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2434			    iclog->ic_state == XLOG_STATE_SYNCING ||
2435			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2436			    iclog->ic_state == XLOG_STATE_IOERROR )
2437				break;
2438			iclog = iclog->ic_next;
2439		} while (first_iclog != iclog);
2440	}
2441#endif
2442
2443	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2444		wake = 1;
2445	spin_unlock(&log->l_icloglock);
2446
2447	if (wake)
2448		wake_up_all(&log->l_flush_wait);
2449}
2450
2451
2452/*
2453 * Finish transitioning this iclog to the dirty state.
2454 *
2455 * Make sure that we completely execute this routine only when this is
2456 * the last call to the iclog.  There is a good chance that iclog flushes,
2457 * when we reach the end of the physical log, get turned into 2 separate
2458 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2459 * routine.  By using the reference count bwritecnt, we guarantee that only
2460 * the second completion goes through.
2461 *
2462 * Callbacks could take time, so they are done outside the scope of the
2463 * global state machine log lock.
2464 */
2465STATIC void
2466xlog_state_done_syncing(
2467	xlog_in_core_t	*iclog,
2468	int		aborted)
2469{
2470	xlog_t		   *log = iclog->ic_log;
2471
2472	spin_lock(&log->l_icloglock);
2473
2474	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2475	       iclog->ic_state == XLOG_STATE_IOERROR);
2476	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2477	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2478
2479
2480	/*
2481	 * If we got an error, either on the first buffer, or in the case of
2482	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2483	 * and none should ever be attempted to be written to disk
2484	 * again.
2485	 */
2486	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2487		if (--iclog->ic_bwritecnt == 1) {
2488			spin_unlock(&log->l_icloglock);
2489			return;
2490		}
2491		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2492	}
2493
2494	/*
2495	 * Someone could be sleeping prior to writing out the next
2496	 * iclog buffer, we wake them all, one will get to do the
2497	 * I/O, the others get to wait for the result.
2498	 */
2499	wake_up_all(&iclog->ic_write_wait);
2500	spin_unlock(&log->l_icloglock);
2501	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2502}	/* xlog_state_done_syncing */
2503
2504
2505/*
2506 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2507 * sleep.  We wait on the flush queue on the head iclog as that should be
2508 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2509 * we will wait here and all new writes will sleep until a sync completes.
2510 *
2511 * The in-core logs are used in a circular fashion. They are not used
2512 * out-of-order even when an iclog past the head is free.
2513 *
2514 * return:
2515 *	* log_offset where xlog_write() can start writing into the in-core
2516 *		log's data space.
2517 *	* in-core log pointer to which xlog_write() should write.
2518 *	* boolean indicating this is a continued write to an in-core log.
2519 *		If this is the last write, then the in-core log's offset field
2520 *		needs to be incremented, depending on the amount of data which
2521 *		is copied.
2522 */
2523STATIC int
2524xlog_state_get_iclog_space(xlog_t	  *log,
2525			   int		  len,
2526			   xlog_in_core_t **iclogp,
2527			   xlog_ticket_t  *ticket,
2528			   int		  *continued_write,
2529			   int		  *logoffsetp)
 
2530{
2531	int		  log_offset;
2532	xlog_rec_header_t *head;
2533	xlog_in_core_t	  *iclog;
2534	int		  error;
2535
2536restart:
2537	spin_lock(&log->l_icloglock);
2538	if (XLOG_FORCED_SHUTDOWN(log)) {
2539		spin_unlock(&log->l_icloglock);
2540		return XFS_ERROR(EIO);
2541	}
2542
2543	iclog = log->l_iclog;
2544	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2545		XFS_STATS_INC(xs_log_noiclogs);
2546
2547		/* Wait for log writes to have flushed */
2548		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2549		goto restart;
2550	}
2551
2552	head = &iclog->ic_header;
2553
2554	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2555	log_offset = iclog->ic_offset;
2556
2557	/* On the 1st write to an iclog, figure out lsn.  This works
2558	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2559	 * committing to.  If the offset is set, that's how many blocks
2560	 * must be written.
2561	 */
2562	if (log_offset == 0) {
2563		ticket->t_curr_res -= log->l_iclog_hsize;
2564		xlog_tic_add_region(ticket,
2565				    log->l_iclog_hsize,
2566				    XLOG_REG_TYPE_LRHEADER);
2567		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2568		head->h_lsn = cpu_to_be64(
2569			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2570		ASSERT(log->l_curr_block >= 0);
2571	}
2572
2573	/* If there is enough room to write everything, then do it.  Otherwise,
2574	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2575	 * bit is on, so this will get flushed out.  Don't update ic_offset
2576	 * until you know exactly how many bytes get copied.  Therefore, wait
2577	 * until later to update ic_offset.
2578	 *
2579	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2580	 * can fit into remaining data section.
2581	 */
2582	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2583		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2584
2585		/*
2586		 * If I'm the only one writing to this iclog, sync it to disk.
2587		 * We need to do an atomic compare and decrement here to avoid
2588		 * racing with concurrent atomic_dec_and_lock() calls in
2589		 * xlog_state_release_iclog() when there is more than one
2590		 * reference to the iclog.
2591		 */
2592		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2593			/* we are the only one */
2594			spin_unlock(&log->l_icloglock);
2595			error = xlog_state_release_iclog(log, iclog);
2596			if (error)
2597				return error;
2598		} else {
2599			spin_unlock(&log->l_icloglock);
2600		}
2601		goto restart;
2602	}
2603
2604	/* Do we have enough room to write the full amount in the remainder
2605	 * of this iclog?  Or must we continue a write on the next iclog and
2606	 * mark this iclog as completely taken?  In the case where we switch
2607	 * iclogs (to mark it taken), this particular iclog will release/sync
2608	 * to disk in xlog_write().
2609	 */
2610	if (len <= iclog->ic_size - iclog->ic_offset) {
2611		*continued_write = 0;
2612		iclog->ic_offset += len;
2613	} else {
2614		*continued_write = 1;
2615		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2616	}
2617	*iclogp = iclog;
2618
2619	ASSERT(iclog->ic_offset <= iclog->ic_size);
2620	spin_unlock(&log->l_icloglock);
2621
2622	*logoffsetp = log_offset;
2623	return 0;
2624}	/* xlog_state_get_iclog_space */
2625
2626/* The first cnt-1 times through here we don't need to
2627 * move the grant write head because the permanent
2628 * reservation has reserved cnt times the unit amount.
2629 * Release part of current permanent unit reservation and
2630 * reset current reservation to be one units worth.  Also
2631 * move grant reservation head forward.
2632 */
2633STATIC void
2634xlog_regrant_reserve_log_space(xlog_t	     *log,
2635			       xlog_ticket_t *ticket)
 
2636{
2637	trace_xfs_log_regrant_reserve_enter(log, ticket);
2638
2639	if (ticket->t_cnt > 0)
2640		ticket->t_cnt--;
2641
2642	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2643					ticket->t_curr_res);
2644	xlog_grant_sub_space(log, &log->l_write_head.grant,
2645					ticket->t_curr_res);
2646	ticket->t_curr_res = ticket->t_unit_res;
2647	xlog_tic_reset_res(ticket);
2648
2649	trace_xfs_log_regrant_reserve_sub(log, ticket);
2650
2651	/* just return if we still have some of the pre-reserved space */
2652	if (ticket->t_cnt > 0)
2653		return;
2654
2655	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2656					ticket->t_unit_res);
2657
2658	trace_xfs_log_regrant_reserve_exit(log, ticket);
2659
2660	ticket->t_curr_res = ticket->t_unit_res;
2661	xlog_tic_reset_res(ticket);
2662}	/* xlog_regrant_reserve_log_space */
2663
2664
2665/*
2666 * Give back the space left from a reservation.
2667 *
2668 * All the information we need to make a correct determination of space left
2669 * is present.  For non-permanent reservations, things are quite easy.  The
2670 * count should have been decremented to zero.  We only need to deal with the
2671 * space remaining in the current reservation part of the ticket.  If the
2672 * ticket contains a permanent reservation, there may be left over space which
2673 * needs to be released.  A count of N means that N-1 refills of the current
2674 * reservation can be done before we need to ask for more space.  The first
2675 * one goes to fill up the first current reservation.  Once we run out of
2676 * space, the count will stay at zero and the only space remaining will be
2677 * in the current reservation field.
2678 */
2679STATIC void
2680xlog_ungrant_log_space(xlog_t	     *log,
2681		       xlog_ticket_t *ticket)
 
2682{
2683	int	bytes;
2684
2685	if (ticket->t_cnt > 0)
2686		ticket->t_cnt--;
2687
2688	trace_xfs_log_ungrant_enter(log, ticket);
2689	trace_xfs_log_ungrant_sub(log, ticket);
2690
2691	/*
2692	 * If this is a permanent reservation ticket, we may be able to free
2693	 * up more space based on the remaining count.
2694	 */
2695	bytes = ticket->t_curr_res;
2696	if (ticket->t_cnt > 0) {
2697		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2698		bytes += ticket->t_unit_res*ticket->t_cnt;
2699	}
2700
2701	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2702	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2703
2704	trace_xfs_log_ungrant_exit(log, ticket);
2705
2706	xfs_log_space_wake(log->l_mp);
2707}
2708
2709/*
2710 * Flush iclog to disk if this is the last reference to the given iclog and
2711 * the WANT_SYNC bit is set.
2712 *
2713 * When this function is entered, the iclog is not necessarily in the
2714 * WANT_SYNC state.  It may be sitting around waiting to get filled.
2715 *
2716 *
2717 */
2718STATIC int
2719xlog_state_release_iclog(
2720	xlog_t		*log,
2721	xlog_in_core_t	*iclog)
2722{
2723	int		sync = 0;	/* do we sync? */
2724
2725	if (iclog->ic_state & XLOG_STATE_IOERROR)
2726		return XFS_ERROR(EIO);
2727
2728	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2729	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2730		return 0;
2731
2732	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2733		spin_unlock(&log->l_icloglock);
2734		return XFS_ERROR(EIO);
2735	}
2736	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2737	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2738
2739	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2740		/* update tail before writing to iclog */
2741		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2742		sync++;
2743		iclog->ic_state = XLOG_STATE_SYNCING;
2744		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2745		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2746		/* cycle incremented when incrementing curr_block */
2747	}
2748	spin_unlock(&log->l_icloglock);
2749
2750	/*
2751	 * We let the log lock go, so it's possible that we hit a log I/O
2752	 * error or some other SHUTDOWN condition that marks the iclog
2753	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2754	 * this iclog has consistent data, so we ignore IOERROR
2755	 * flags after this point.
2756	 */
2757	if (sync)
2758		return xlog_sync(log, iclog);
2759	return 0;
2760}	/* xlog_state_release_iclog */
2761
2762
2763/*
2764 * This routine will mark the current iclog in the ring as WANT_SYNC
2765 * and move the current iclog pointer to the next iclog in the ring.
2766 * When this routine is called from xlog_state_get_iclog_space(), the
2767 * exact size of the iclog has not yet been determined.  All we know is
2768 * that every data block.  We have run out of space in this log record.
2769 */
2770STATIC void
2771xlog_state_switch_iclogs(xlog_t		*log,
2772			 xlog_in_core_t *iclog,
2773			 int		eventual_size)
 
2774{
2775	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2776	if (!eventual_size)
2777		eventual_size = iclog->ic_offset;
2778	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2779	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2780	log->l_prev_block = log->l_curr_block;
2781	log->l_prev_cycle = log->l_curr_cycle;
2782
2783	/* roll log?: ic_offset changed later */
2784	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2785
2786	/* Round up to next log-sunit */
2787	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2788	    log->l_mp->m_sb.sb_logsunit > 1) {
2789		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2790		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2791	}
2792
2793	if (log->l_curr_block >= log->l_logBBsize) {
 
 
 
 
 
 
 
 
 
 
2794		log->l_curr_cycle++;
2795		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2796			log->l_curr_cycle++;
2797		log->l_curr_block -= log->l_logBBsize;
2798		ASSERT(log->l_curr_block >= 0);
2799	}
2800	ASSERT(iclog == log->l_iclog);
2801	log->l_iclog = iclog->ic_next;
2802}	/* xlog_state_switch_iclogs */
2803
2804/*
2805 * Write out all data in the in-core log as of this exact moment in time.
2806 *
2807 * Data may be written to the in-core log during this call.  However,
2808 * we don't guarantee this data will be written out.  A change from past
2809 * implementation means this routine will *not* write out zero length LRs.
2810 *
2811 * Basically, we try and perform an intelligent scan of the in-core logs.
2812 * If we determine there is no flushable data, we just return.  There is no
2813 * flushable data if:
2814 *
2815 *	1. the current iclog is active and has no data; the previous iclog
2816 *		is in the active or dirty state.
2817 *	2. the current iclog is drity, and the previous iclog is in the
2818 *		active or dirty state.
2819 *
2820 * We may sleep if:
2821 *
2822 *	1. the current iclog is not in the active nor dirty state.
2823 *	2. the current iclog dirty, and the previous iclog is not in the
2824 *		active nor dirty state.
2825 *	3. the current iclog is active, and there is another thread writing
2826 *		to this particular iclog.
2827 *	4. a) the current iclog is active and has no other writers
2828 *	   b) when we return from flushing out this iclog, it is still
2829 *		not in the active nor dirty state.
2830 */
2831int
2832_xfs_log_force(
2833	struct xfs_mount	*mp,
2834	uint			flags,
2835	int			*log_flushed)
2836{
2837	struct xlog		*log = mp->m_log;
2838	struct xlog_in_core	*iclog;
2839	xfs_lsn_t		lsn;
2840
2841	XFS_STATS_INC(xs_log_force);
2842
2843	xlog_cil_force(log);
2844
2845	spin_lock(&log->l_icloglock);
2846
2847	iclog = log->l_iclog;
2848	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2849		spin_unlock(&log->l_icloglock);
2850		return XFS_ERROR(EIO);
2851	}
2852
2853	/* If the head iclog is not active nor dirty, we just attach
2854	 * ourselves to the head and go to sleep.
2855	 */
2856	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2857	    iclog->ic_state == XLOG_STATE_DIRTY) {
2858		/*
2859		 * If the head is dirty or (active and empty), then
2860		 * we need to look at the previous iclog.  If the previous
2861		 * iclog is active or dirty we are done.  There is nothing
2862		 * to sync out.  Otherwise, we attach ourselves to the
2863		 * previous iclog and go to sleep.
2864		 */
2865		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2866		    (atomic_read(&iclog->ic_refcnt) == 0
2867		     && iclog->ic_offset == 0)) {
2868			iclog = iclog->ic_prev;
2869			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2870			    iclog->ic_state == XLOG_STATE_DIRTY)
2871				goto no_sleep;
2872			else
2873				goto maybe_sleep;
2874		} else {
2875			if (atomic_read(&iclog->ic_refcnt) == 0) {
2876				/* We are the only one with access to this
2877				 * iclog.  Flush it out now.  There should
2878				 * be a roundoff of zero to show that someone
2879				 * has already taken care of the roundoff from
2880				 * the previous sync.
2881				 */
2882				atomic_inc(&iclog->ic_refcnt);
2883				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2884				xlog_state_switch_iclogs(log, iclog, 0);
2885				spin_unlock(&log->l_icloglock);
2886
2887				if (xlog_state_release_iclog(log, iclog))
2888					return XFS_ERROR(EIO);
2889
2890				if (log_flushed)
2891					*log_flushed = 1;
2892				spin_lock(&log->l_icloglock);
2893				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2894				    iclog->ic_state != XLOG_STATE_DIRTY)
2895					goto maybe_sleep;
2896				else
2897					goto no_sleep;
2898			} else {
2899				/* Someone else is writing to this iclog.
2900				 * Use its call to flush out the data.  However,
2901				 * the other thread may not force out this LR,
2902				 * so we mark it WANT_SYNC.
2903				 */
2904				xlog_state_switch_iclogs(log, iclog, 0);
2905				goto maybe_sleep;
2906			}
2907		}
2908	}
2909
2910	/* By the time we come around again, the iclog could've been filled
2911	 * which would give it another lsn.  If we have a new lsn, just
2912	 * return because the relevant data has been flushed.
2913	 */
2914maybe_sleep:
2915	if (flags & XFS_LOG_SYNC) {
2916		/*
2917		 * We must check if we're shutting down here, before
2918		 * we wait, while we're holding the l_icloglock.
2919		 * Then we check again after waking up, in case our
2920		 * sleep was disturbed by a bad news.
2921		 */
2922		if (iclog->ic_state & XLOG_STATE_IOERROR) {
2923			spin_unlock(&log->l_icloglock);
2924			return XFS_ERROR(EIO);
2925		}
2926		XFS_STATS_INC(xs_log_force_sleep);
2927		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2928		/*
2929		 * No need to grab the log lock here since we're
2930		 * only deciding whether or not to return EIO
2931		 * and the memory read should be atomic.
2932		 */
2933		if (iclog->ic_state & XLOG_STATE_IOERROR)
2934			return XFS_ERROR(EIO);
2935		if (log_flushed)
2936			*log_flushed = 1;
2937	} else {
2938
2939no_sleep:
2940		spin_unlock(&log->l_icloglock);
2941	}
2942	return 0;
2943}
2944
2945/*
2946 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2947 * about errors or whether the log was flushed or not. This is the normal
2948 * interface to use when trying to unpin items or move the log forward.
2949 */
2950void
2951xfs_log_force(
2952	xfs_mount_t	*mp,
2953	uint		flags)
2954{
2955	int	error;
2956
2957	trace_xfs_log_force(mp, 0);
2958	error = _xfs_log_force(mp, flags, NULL);
2959	if (error)
2960		xfs_warn(mp, "%s: error %d returned.", __func__, error);
2961}
2962
2963/*
2964 * Force the in-core log to disk for a specific LSN.
2965 *
2966 * Find in-core log with lsn.
2967 *	If it is in the DIRTY state, just return.
2968 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2969 *		state and go to sleep or return.
2970 *	If it is in any other state, go to sleep or return.
2971 *
2972 * Synchronous forces are implemented with a signal variable. All callers
2973 * to force a given lsn to disk will wait on a the sv attached to the
2974 * specific in-core log.  When given in-core log finally completes its
2975 * write to disk, that thread will wake up all threads waiting on the
2976 * sv.
2977 */
2978int
2979_xfs_log_force_lsn(
2980	struct xfs_mount	*mp,
2981	xfs_lsn_t		lsn,
2982	uint			flags,
2983	int			*log_flushed)
2984{
2985	struct xlog		*log = mp->m_log;
2986	struct xlog_in_core	*iclog;
2987	int			already_slept = 0;
2988
2989	ASSERT(lsn != 0);
2990
2991	XFS_STATS_INC(xs_log_force);
2992
2993	lsn = xlog_cil_force_lsn(log, lsn);
2994	if (lsn == NULLCOMMITLSN)
2995		return 0;
2996
2997try_again:
2998	spin_lock(&log->l_icloglock);
2999	iclog = log->l_iclog;
3000	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3001		spin_unlock(&log->l_icloglock);
3002		return XFS_ERROR(EIO);
3003	}
3004
3005	do {
3006		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3007			iclog = iclog->ic_next;
3008			continue;
3009		}
3010
3011		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3012			spin_unlock(&log->l_icloglock);
3013			return 0;
3014		}
3015
3016		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3017			/*
3018			 * We sleep here if we haven't already slept (e.g.
3019			 * this is the first time we've looked at the correct
3020			 * iclog buf) and the buffer before us is going to
3021			 * be sync'ed. The reason for this is that if we
3022			 * are doing sync transactions here, by waiting for
3023			 * the previous I/O to complete, we can allow a few
3024			 * more transactions into this iclog before we close
3025			 * it down.
3026			 *
3027			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3028			 * up the refcnt so we can release the log (which
3029			 * drops the ref count).  The state switch keeps new
3030			 * transaction commits from using this buffer.  When
3031			 * the current commits finish writing into the buffer,
3032			 * the refcount will drop to zero and the buffer will
3033			 * go out then.
3034			 */
3035			if (!already_slept &&
3036			    (iclog->ic_prev->ic_state &
3037			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3038				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3039
3040				XFS_STATS_INC(xs_log_force_sleep);
3041
3042				xlog_wait(&iclog->ic_prev->ic_write_wait,
3043							&log->l_icloglock);
3044				if (log_flushed)
3045					*log_flushed = 1;
3046				already_slept = 1;
3047				goto try_again;
3048			}
3049			atomic_inc(&iclog->ic_refcnt);
3050			xlog_state_switch_iclogs(log, iclog, 0);
3051			spin_unlock(&log->l_icloglock);
3052			if (xlog_state_release_iclog(log, iclog))
3053				return XFS_ERROR(EIO);
3054			if (log_flushed)
3055				*log_flushed = 1;
3056			spin_lock(&log->l_icloglock);
3057		}
3058
3059		if ((flags & XFS_LOG_SYNC) && /* sleep */
3060		    !(iclog->ic_state &
3061		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3062			/*
3063			 * Don't wait on completion if we know that we've
3064			 * gotten a log write error.
3065			 */
3066			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3067				spin_unlock(&log->l_icloglock);
3068				return XFS_ERROR(EIO);
3069			}
3070			XFS_STATS_INC(xs_log_force_sleep);
3071			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3072			/*
3073			 * No need to grab the log lock here since we're
3074			 * only deciding whether or not to return EIO
3075			 * and the memory read should be atomic.
3076			 */
3077			if (iclog->ic_state & XLOG_STATE_IOERROR)
3078				return XFS_ERROR(EIO);
3079
3080			if (log_flushed)
3081				*log_flushed = 1;
3082		} else {		/* just return */
3083			spin_unlock(&log->l_icloglock);
3084		}
3085
3086		return 0;
3087	} while (iclog != log->l_iclog);
3088
3089	spin_unlock(&log->l_icloglock);
3090	return 0;
3091}
3092
3093/*
3094 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3095 * about errors or whether the log was flushed or not. This is the normal
3096 * interface to use when trying to unpin items or move the log forward.
3097 */
3098void
3099xfs_log_force_lsn(
3100	xfs_mount_t	*mp,
3101	xfs_lsn_t	lsn,
3102	uint		flags)
3103{
3104	int	error;
3105
3106	trace_xfs_log_force(mp, lsn);
3107	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3108	if (error)
3109		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3110}
3111
3112/*
3113 * Called when we want to mark the current iclog as being ready to sync to
3114 * disk.
3115 */
3116STATIC void
3117xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
 
 
3118{
3119	assert_spin_locked(&log->l_icloglock);
3120
3121	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3122		xlog_state_switch_iclogs(log, iclog, 0);
3123	} else {
3124		ASSERT(iclog->ic_state &
3125			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3126	}
3127}
3128
3129
3130/*****************************************************************************
3131 *
3132 *		TICKET functions
3133 *
3134 *****************************************************************************
3135 */
3136
3137/*
3138 * Free a used ticket when its refcount falls to zero.
3139 */
3140void
3141xfs_log_ticket_put(
3142	xlog_ticket_t	*ticket)
3143{
3144	ASSERT(atomic_read(&ticket->t_ref) > 0);
3145	if (atomic_dec_and_test(&ticket->t_ref))
3146		kmem_zone_free(xfs_log_ticket_zone, ticket);
3147}
3148
3149xlog_ticket_t *
3150xfs_log_ticket_get(
3151	xlog_ticket_t	*ticket)
3152{
3153	ASSERT(atomic_read(&ticket->t_ref) > 0);
3154	atomic_inc(&ticket->t_ref);
3155	return ticket;
3156}
3157
3158/*
3159 * Allocate and initialise a new log ticket.
 
3160 */
3161xlog_ticket_t *
3162xlog_ticket_alloc(
3163	struct xlog	*log,
3164	int		unit_bytes,
3165	int		cnt,
3166	char		client,
3167	bool		permanent,
3168	xfs_km_flags_t	alloc_flags)
3169{
3170	struct xlog_ticket *tic;
3171	uint		num_headers;
3172	int		iclog_space;
3173
3174	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3175	if (!tic)
3176		return NULL;
3177
3178	/*
3179	 * Permanent reservations have up to 'cnt'-1 active log operations
3180	 * in the log.  A unit in this case is the amount of space for one
3181	 * of these log operations.  Normal reservations have a cnt of 1
3182	 * and their unit amount is the total amount of space required.
3183	 *
3184	 * The following lines of code account for non-transaction data
3185	 * which occupy space in the on-disk log.
3186	 *
3187	 * Normal form of a transaction is:
3188	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3189	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3190	 *
3191	 * We need to account for all the leadup data and trailer data
3192	 * around the transaction data.
3193	 * And then we need to account for the worst case in terms of using
3194	 * more space.
3195	 * The worst case will happen if:
3196	 * - the placement of the transaction happens to be such that the
3197	 *   roundoff is at its maximum
3198	 * - the transaction data is synced before the commit record is synced
3199	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3200	 *   Therefore the commit record is in its own Log Record.
3201	 *   This can happen as the commit record is called with its
3202	 *   own region to xlog_write().
3203	 *   This then means that in the worst case, roundoff can happen for
3204	 *   the commit-rec as well.
3205	 *   The commit-rec is smaller than padding in this scenario and so it is
3206	 *   not added separately.
3207	 */
3208
3209	/* for trans header */
3210	unit_bytes += sizeof(xlog_op_header_t);
3211	unit_bytes += sizeof(xfs_trans_header_t);
3212
3213	/* for start-rec */
3214	unit_bytes += sizeof(xlog_op_header_t);
3215
3216	/*
3217	 * for LR headers - the space for data in an iclog is the size minus
3218	 * the space used for the headers. If we use the iclog size, then we
3219	 * undercalculate the number of headers required.
3220	 *
3221	 * Furthermore - the addition of op headers for split-recs might
3222	 * increase the space required enough to require more log and op
3223	 * headers, so take that into account too.
3224	 *
3225	 * IMPORTANT: This reservation makes the assumption that if this
3226	 * transaction is the first in an iclog and hence has the LR headers
3227	 * accounted to it, then the remaining space in the iclog is
3228	 * exclusively for this transaction.  i.e. if the transaction is larger
3229	 * than the iclog, it will be the only thing in that iclog.
3230	 * Fundamentally, this means we must pass the entire log vector to
3231	 * xlog_write to guarantee this.
3232	 */
3233	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3234	num_headers = howmany(unit_bytes, iclog_space);
3235
3236	/* for split-recs - ophdrs added when data split over LRs */
3237	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3238
3239	/* add extra header reservations if we overrun */
3240	while (!num_headers ||
3241	       howmany(unit_bytes, iclog_space) > num_headers) {
3242		unit_bytes += sizeof(xlog_op_header_t);
3243		num_headers++;
3244	}
3245	unit_bytes += log->l_iclog_hsize * num_headers;
3246
3247	/* for commit-rec LR header - note: padding will subsume the ophdr */
3248	unit_bytes += log->l_iclog_hsize;
3249
3250	/* for roundoff padding for transaction data and one for commit record */
3251	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3252	    log->l_mp->m_sb.sb_logsunit > 1) {
3253		/* log su roundoff */
3254		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3255	} else {
3256		/* BB roundoff */
3257		unit_bytes += 2*BBSIZE;
3258        }
3259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260	atomic_set(&tic->t_ref, 1);
3261	tic->t_task		= current;
3262	INIT_LIST_HEAD(&tic->t_queue);
3263	tic->t_unit_res		= unit_bytes;
3264	tic->t_curr_res		= unit_bytes;
3265	tic->t_cnt		= cnt;
3266	tic->t_ocnt		= cnt;
3267	tic->t_tid		= random32();
3268	tic->t_clientid		= client;
3269	tic->t_flags		= XLOG_TIC_INITED;
3270	tic->t_trans_type	= 0;
3271	if (permanent)
3272		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3273
3274	xlog_tic_reset_res(tic);
3275
3276	return tic;
3277}
3278
3279
3280/******************************************************************************
3281 *
3282 *		Log debug routines
3283 *
3284 ******************************************************************************
3285 */
3286#if defined(DEBUG)
3287/*
3288 * Make sure that the destination ptr is within the valid data region of
3289 * one of the iclogs.  This uses backup pointers stored in a different
3290 * part of the log in case we trash the log structure.
3291 */
3292void
3293xlog_verify_dest_ptr(
3294	struct xlog	*log,
3295	char		*ptr)
3296{
3297	int i;
3298	int good_ptr = 0;
3299
3300	for (i = 0; i < log->l_iclog_bufs; i++) {
3301		if (ptr >= log->l_iclog_bak[i] &&
3302		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3303			good_ptr++;
3304	}
3305
3306	if (!good_ptr)
3307		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3308}
3309
3310/*
3311 * Check to make sure the grant write head didn't just over lap the tail.  If
3312 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3313 * the cycles differ by exactly one and check the byte count.
3314 *
3315 * This check is run unlocked, so can give false positives. Rather than assert
3316 * on failures, use a warn-once flag and a panic tag to allow the admin to
3317 * determine if they want to panic the machine when such an error occurs. For
3318 * debug kernels this will have the same effect as using an assert but, unlinke
3319 * an assert, it can be turned off at runtime.
3320 */
3321STATIC void
3322xlog_verify_grant_tail(
3323	struct xlog	*log)
3324{
3325	int		tail_cycle, tail_blocks;
3326	int		cycle, space;
3327
3328	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3329	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3330	if (tail_cycle != cycle) {
3331		if (cycle - 1 != tail_cycle &&
3332		    !(log->l_flags & XLOG_TAIL_WARN)) {
3333			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3334				"%s: cycle - 1 != tail_cycle", __func__);
3335			log->l_flags |= XLOG_TAIL_WARN;
3336		}
3337
3338		if (space > BBTOB(tail_blocks) &&
3339		    !(log->l_flags & XLOG_TAIL_WARN)) {
3340			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3341				"%s: space > BBTOB(tail_blocks)", __func__);
3342			log->l_flags |= XLOG_TAIL_WARN;
3343		}
3344	}
3345}
3346
3347/* check if it will fit */
3348STATIC void
3349xlog_verify_tail_lsn(xlog_t	    *log,
3350		     xlog_in_core_t *iclog,
3351		     xfs_lsn_t	    tail_lsn)
 
3352{
3353    int blocks;
3354
3355    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3356	blocks =
3357	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3358	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3359		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3360    } else {
3361	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3362
3363	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3364		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3365
3366	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3367	if (blocks < BTOBB(iclog->ic_offset) + 1)
3368		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3369    }
3370}	/* xlog_verify_tail_lsn */
3371
3372/*
3373 * Perform a number of checks on the iclog before writing to disk.
3374 *
3375 * 1. Make sure the iclogs are still circular
3376 * 2. Make sure we have a good magic number
3377 * 3. Make sure we don't have magic numbers in the data
3378 * 4. Check fields of each log operation header for:
3379 *	A. Valid client identifier
3380 *	B. tid ptr value falls in valid ptr space (user space code)
3381 *	C. Length in log record header is correct according to the
3382 *		individual operation headers within record.
3383 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3384 *	log, check the preceding blocks of the physical log to make sure all
3385 *	the cycle numbers agree with the current cycle number.
3386 */
3387STATIC void
3388xlog_verify_iclog(xlog_t	 *log,
3389		  xlog_in_core_t *iclog,
3390		  int		 count,
3391		  boolean_t	 syncing)
 
3392{
3393	xlog_op_header_t	*ophead;
3394	xlog_in_core_t		*icptr;
3395	xlog_in_core_2_t	*xhdr;
3396	xfs_caddr_t		ptr;
3397	xfs_caddr_t		base_ptr;
3398	__psint_t		field_offset;
3399	__uint8_t		clientid;
3400	int			len, i, j, k, op_len;
3401	int			idx;
3402
3403	/* check validity of iclog pointers */
3404	spin_lock(&log->l_icloglock);
3405	icptr = log->l_iclog;
3406	for (i=0; i < log->l_iclog_bufs; i++) {
3407		if (icptr == NULL)
3408			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3409		icptr = icptr->ic_next;
3410	}
3411	if (icptr != log->l_iclog)
3412		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3413	spin_unlock(&log->l_icloglock);
3414
3415	/* check log magic numbers */
3416	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3417		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3418
3419	ptr = (xfs_caddr_t) &iclog->ic_header;
3420	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3421	     ptr += BBSIZE) {
3422		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3423			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3424				__func__);
3425	}
3426
3427	/* check fields */
3428	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3429	ptr = iclog->ic_datap;
3430	base_ptr = ptr;
3431	ophead = (xlog_op_header_t *)ptr;
3432	xhdr = iclog->ic_data;
3433	for (i = 0; i < len; i++) {
3434		ophead = (xlog_op_header_t *)ptr;
3435
3436		/* clientid is only 1 byte */
3437		field_offset = (__psint_t)
3438			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3439		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3440			clientid = ophead->oh_clientid;
3441		} else {
3442			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3443			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3444				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3445				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3446				clientid = xlog_get_client_id(
3447					xhdr[j].hic_xheader.xh_cycle_data[k]);
3448			} else {
3449				clientid = xlog_get_client_id(
3450					iclog->ic_header.h_cycle_data[idx]);
3451			}
3452		}
3453		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3454			xfs_warn(log->l_mp,
3455				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3456				__func__, clientid, ophead,
3457				(unsigned long)field_offset);
3458
3459		/* check length */
3460		field_offset = (__psint_t)
3461			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3462		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3463			op_len = be32_to_cpu(ophead->oh_len);
3464		} else {
3465			idx = BTOBBT((__psint_t)&ophead->oh_len -
3466				    (__psint_t)iclog->ic_datap);
3467			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3468				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3469				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3470				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3471			} else {
3472				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3473			}
3474		}
3475		ptr += sizeof(xlog_op_header_t) + op_len;
3476	}
3477}	/* xlog_verify_iclog */
3478#endif
3479
3480/*
3481 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3482 */
3483STATIC int
3484xlog_state_ioerror(
3485	xlog_t	*log)
3486{
3487	xlog_in_core_t	*iclog, *ic;
3488
3489	iclog = log->l_iclog;
3490	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3491		/*
3492		 * Mark all the incore logs IOERROR.
3493		 * From now on, no log flushes will result.
3494		 */
3495		ic = iclog;
3496		do {
3497			ic->ic_state = XLOG_STATE_IOERROR;
3498			ic = ic->ic_next;
3499		} while (ic != iclog);
3500		return 0;
3501	}
3502	/*
3503	 * Return non-zero, if state transition has already happened.
3504	 */
3505	return 1;
3506}
3507
3508/*
3509 * This is called from xfs_force_shutdown, when we're forcibly
3510 * shutting down the filesystem, typically because of an IO error.
3511 * Our main objectives here are to make sure that:
3512 *	a. the filesystem gets marked 'SHUTDOWN' for all interested
 
 
3513 *	   parties to find out, 'atomically'.
3514 *	b. those who're sleeping on log reservations, pinned objects and
3515 *	    other resources get woken up, and be told the bad news.
3516 *	c. nothing new gets queued up after (a) and (b) are done.
3517 *	d. if !logerror, flush the iclogs to disk, then seal them off
3518 *	   for business.
3519 *
3520 * Note: for delayed logging the !logerror case needs to flush the regions
3521 * held in memory out to the iclogs before flushing them to disk. This needs
3522 * to be done before the log is marked as shutdown, otherwise the flush to the
3523 * iclogs will fail.
3524 */
3525int
3526xfs_log_force_umount(
3527	struct xfs_mount	*mp,
3528	int			logerror)
3529{
3530	xlog_t		*log;
3531	int		retval;
3532
3533	log = mp->m_log;
3534
3535	/*
3536	 * If this happens during log recovery, don't worry about
3537	 * locking; the log isn't open for business yet.
3538	 */
3539	if (!log ||
3540	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3541		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3542		if (mp->m_sb_bp)
3543			XFS_BUF_DONE(mp->m_sb_bp);
3544		return 0;
3545	}
3546
3547	/*
3548	 * Somebody could've already done the hard work for us.
3549	 * No need to get locks for this.
3550	 */
3551	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3552		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3553		return 1;
3554	}
3555	retval = 0;
3556
3557	/*
3558	 * Flush the in memory commit item list before marking the log as
3559	 * being shut down. We need to do it in this order to ensure all the
3560	 * completed transactions are flushed to disk with the xfs_log_force()
3561	 * call below.
 
3562	 */
3563	if (!logerror)
3564		xlog_cil_force(log);
3565
3566	/*
3567	 * mark the filesystem and the as in a shutdown state and wake
3568	 * everybody up to tell them the bad news.
3569	 */
3570	spin_lock(&log->l_icloglock);
3571	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3572	if (mp->m_sb_bp)
3573		XFS_BUF_DONE(mp->m_sb_bp);
3574
3575	/*
3576	 * This flag is sort of redundant because of the mount flag, but
3577	 * it's good to maintain the separation between the log and the rest
3578	 * of XFS.
3579	 */
3580	log->l_flags |= XLOG_IO_ERROR;
3581
3582	/*
3583	 * If we hit a log error, we want to mark all the iclogs IOERROR
3584	 * while we're still holding the loglock.
3585	 */
3586	if (logerror)
3587		retval = xlog_state_ioerror(log);
3588	spin_unlock(&log->l_icloglock);
3589
3590	/*
3591	 * We don't want anybody waiting for log reservations after this. That
3592	 * means we have to wake up everybody queued up on reserveq as well as
3593	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3594	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3595	 * action is protected by the grant locks.
3596	 */
3597	xlog_grant_head_wake_all(&log->l_reserve_head);
3598	xlog_grant_head_wake_all(&log->l_write_head);
3599
3600	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3601		ASSERT(!logerror);
3602		/*
3603		 * Force the incore logs to disk before shutting the
3604		 * log down completely.
3605		 */
3606		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3607
3608		spin_lock(&log->l_icloglock);
3609		retval = xlog_state_ioerror(log);
3610		spin_unlock(&log->l_icloglock);
3611	}
3612	/*
3613	 * Wake up everybody waiting on xfs_log_force.
3614	 * Callback all log item committed functions as if the
3615	 * log writes were completed.
 
3616	 */
 
3617	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3618
3619#ifdef XFSERRORDEBUG
3620	{
3621		xlog_in_core_t	*iclog;
3622
3623		spin_lock(&log->l_icloglock);
3624		iclog = log->l_iclog;
3625		do {
3626			ASSERT(iclog->ic_callback == 0);
3627			iclog = iclog->ic_next;
3628		} while (iclog != log->l_iclog);
3629		spin_unlock(&log->l_icloglock);
3630	}
3631#endif
3632	/* return non-zero if log IOERROR transition had already happened */
3633	return retval;
3634}
3635
3636STATIC int
3637xlog_iclogs_empty(xlog_t *log)
 
3638{
3639	xlog_in_core_t	*iclog;
3640
3641	iclog = log->l_iclog;
3642	do {
3643		/* endianness does not matter here, zero is zero in
3644		 * any language.
3645		 */
3646		if (iclog->ic_header.h_num_logops)
3647			return 0;
3648		iclog = iclog->ic_next;
3649	} while (iclog != log->l_iclog);
3650	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651}
v4.6
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
 
  24#include "xfs_mount.h"
  25#include "xfs_error.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_log.h"
  29#include "xfs_log_priv.h"
 
 
 
 
  30#include "xfs_log_recover.h"
 
 
  31#include "xfs_inode.h"
  32#include "xfs_trace.h"
  33#include "xfs_fsops.h"
  34#include "xfs_cksum.h"
  35#include "xfs_sysfs.h"
  36#include "xfs_sb.h"
  37
  38kmem_zone_t	*xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43	struct xlog		*log,
  44	struct xlog_ticket	*ticket,
  45	struct xlog_in_core	**iclog,
  46	xfs_lsn_t		*commitlsnp);
  47
  48STATIC struct xlog *
  49xlog_alloc_log(
  50	struct xfs_mount	*mp,
  51	struct xfs_buftarg	*log_target,
  52	xfs_daddr_t		blk_offset,
  53	int			num_bblks);
  54STATIC int
  55xlog_space_left(
  56	struct xlog		*log,
  57	atomic64_t		*head);
  58STATIC int
  59xlog_sync(
  60	struct xlog		*log,
  61	struct xlog_in_core	*iclog);
  62STATIC void
  63xlog_dealloc_log(
  64	struct xlog		*log);
  65
  66/* local state machine functions */
  67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  68STATIC void
  69xlog_state_do_callback(
  70	struct xlog		*log,
  71	int			aborted,
  72	struct xlog_in_core	*iclog);
  73STATIC int
  74xlog_state_get_iclog_space(
  75	struct xlog		*log,
  76	int			len,
  77	struct xlog_in_core	**iclog,
  78	struct xlog_ticket	*ticket,
  79	int			*continued_write,
  80	int			*logoffsetp);
  81STATIC int
  82xlog_state_release_iclog(
  83	struct xlog		*log,
  84	struct xlog_in_core	*iclog);
  85STATIC void
  86xlog_state_switch_iclogs(
  87	struct xlog		*log,
  88	struct xlog_in_core	*iclog,
  89	int			eventual_size);
  90STATIC void
  91xlog_state_want_sync(
  92	struct xlog		*log,
  93	struct xlog_in_core	*iclog);
  94
  95STATIC void
  96xlog_grant_push_ail(
  97	struct xlog		*log,
  98	int			need_bytes);
  99STATIC void
 100xlog_regrant_reserve_log_space(
 101	struct xlog		*log,
 102	struct xlog_ticket	*ticket);
 103STATIC void
 104xlog_ungrant_log_space(
 105	struct xlog		*log,
 106	struct xlog_ticket	*ticket);
 107
 108#if defined(DEBUG)
 109STATIC void
 110xlog_verify_dest_ptr(
 111	struct xlog		*log,
 112	void			*ptr);
 113STATIC void
 114xlog_verify_grant_tail(
 115	struct xlog *log);
 116STATIC void
 117xlog_verify_iclog(
 118	struct xlog		*log,
 119	struct xlog_in_core	*iclog,
 120	int			count,
 121	bool                    syncing);
 122STATIC void
 123xlog_verify_tail_lsn(
 124	struct xlog		*log,
 125	struct xlog_in_core	*iclog,
 126	xfs_lsn_t		tail_lsn);
 127#else
 128#define xlog_verify_dest_ptr(a,b)
 129#define xlog_verify_grant_tail(a)
 130#define xlog_verify_iclog(a,b,c,d)
 131#define xlog_verify_tail_lsn(a,b,c)
 132#endif
 133
 134STATIC int
 135xlog_iclogs_empty(
 136	struct xlog		*log);
 137
 138static void
 139xlog_grant_sub_space(
 140	struct xlog		*log,
 141	atomic64_t		*head,
 142	int			bytes)
 143{
 144	int64_t	head_val = atomic64_read(head);
 145	int64_t new, old;
 146
 147	do {
 148		int	cycle, space;
 149
 150		xlog_crack_grant_head_val(head_val, &cycle, &space);
 151
 152		space -= bytes;
 153		if (space < 0) {
 154			space += log->l_logsize;
 155			cycle--;
 156		}
 157
 158		old = head_val;
 159		new = xlog_assign_grant_head_val(cycle, space);
 160		head_val = atomic64_cmpxchg(head, old, new);
 161	} while (head_val != old);
 162}
 163
 164static void
 165xlog_grant_add_space(
 166	struct xlog		*log,
 167	atomic64_t		*head,
 168	int			bytes)
 169{
 170	int64_t	head_val = atomic64_read(head);
 171	int64_t new, old;
 172
 173	do {
 174		int		tmp;
 175		int		cycle, space;
 176
 177		xlog_crack_grant_head_val(head_val, &cycle, &space);
 178
 179		tmp = log->l_logsize - space;
 180		if (tmp > bytes)
 181			space += bytes;
 182		else {
 183			space = bytes - tmp;
 184			cycle++;
 185		}
 186
 187		old = head_val;
 188		new = xlog_assign_grant_head_val(cycle, space);
 189		head_val = atomic64_cmpxchg(head, old, new);
 190	} while (head_val != old);
 191}
 192
 193STATIC void
 194xlog_grant_head_init(
 195	struct xlog_grant_head	*head)
 196{
 197	xlog_assign_grant_head(&head->grant, 1, 0);
 198	INIT_LIST_HEAD(&head->waiters);
 199	spin_lock_init(&head->lock);
 200}
 201
 202STATIC void
 203xlog_grant_head_wake_all(
 204	struct xlog_grant_head	*head)
 205{
 206	struct xlog_ticket	*tic;
 207
 208	spin_lock(&head->lock);
 209	list_for_each_entry(tic, &head->waiters, t_queue)
 210		wake_up_process(tic->t_task);
 211	spin_unlock(&head->lock);
 212}
 213
 214static inline int
 215xlog_ticket_reservation(
 216	struct xlog		*log,
 217	struct xlog_grant_head	*head,
 218	struct xlog_ticket	*tic)
 219{
 220	if (head == &log->l_write_head) {
 221		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 222		return tic->t_unit_res;
 223	} else {
 224		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 225			return tic->t_unit_res * tic->t_cnt;
 226		else
 227			return tic->t_unit_res;
 228	}
 229}
 230
 231STATIC bool
 232xlog_grant_head_wake(
 233	struct xlog		*log,
 234	struct xlog_grant_head	*head,
 235	int			*free_bytes)
 236{
 237	struct xlog_ticket	*tic;
 238	int			need_bytes;
 239
 240	list_for_each_entry(tic, &head->waiters, t_queue) {
 241		need_bytes = xlog_ticket_reservation(log, head, tic);
 242		if (*free_bytes < need_bytes)
 243			return false;
 244
 245		*free_bytes -= need_bytes;
 246		trace_xfs_log_grant_wake_up(log, tic);
 247		wake_up_process(tic->t_task);
 248	}
 249
 250	return true;
 251}
 252
 253STATIC int
 254xlog_grant_head_wait(
 255	struct xlog		*log,
 256	struct xlog_grant_head	*head,
 257	struct xlog_ticket	*tic,
 258	int			need_bytes) __releases(&head->lock)
 259					    __acquires(&head->lock)
 260{
 261	list_add_tail(&tic->t_queue, &head->waiters);
 262
 263	do {
 264		if (XLOG_FORCED_SHUTDOWN(log))
 265			goto shutdown;
 266		xlog_grant_push_ail(log, need_bytes);
 267
 268		__set_current_state(TASK_UNINTERRUPTIBLE);
 269		spin_unlock(&head->lock);
 270
 271		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 272
 273		trace_xfs_log_grant_sleep(log, tic);
 274		schedule();
 275		trace_xfs_log_grant_wake(log, tic);
 276
 277		spin_lock(&head->lock);
 278		if (XLOG_FORCED_SHUTDOWN(log))
 279			goto shutdown;
 280	} while (xlog_space_left(log, &head->grant) < need_bytes);
 281
 282	list_del_init(&tic->t_queue);
 283	return 0;
 284shutdown:
 285	list_del_init(&tic->t_queue);
 286	return -EIO;
 287}
 288
 289/*
 290 * Atomically get the log space required for a log ticket.
 291 *
 292 * Once a ticket gets put onto head->waiters, it will only return after the
 293 * needed reservation is satisfied.
 294 *
 295 * This function is structured so that it has a lock free fast path. This is
 296 * necessary because every new transaction reservation will come through this
 297 * path. Hence any lock will be globally hot if we take it unconditionally on
 298 * every pass.
 299 *
 300 * As tickets are only ever moved on and off head->waiters under head->lock, we
 301 * only need to take that lock if we are going to add the ticket to the queue
 302 * and sleep. We can avoid taking the lock if the ticket was never added to
 303 * head->waiters because the t_queue list head will be empty and we hold the
 304 * only reference to it so it can safely be checked unlocked.
 305 */
 306STATIC int
 307xlog_grant_head_check(
 308	struct xlog		*log,
 309	struct xlog_grant_head	*head,
 310	struct xlog_ticket	*tic,
 311	int			*need_bytes)
 312{
 313	int			free_bytes;
 314	int			error = 0;
 315
 316	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 317
 318	/*
 319	 * If there are other waiters on the queue then give them a chance at
 320	 * logspace before us.  Wake up the first waiters, if we do not wake
 321	 * up all the waiters then go to sleep waiting for more free space,
 322	 * otherwise try to get some space for this transaction.
 323	 */
 324	*need_bytes = xlog_ticket_reservation(log, head, tic);
 325	free_bytes = xlog_space_left(log, &head->grant);
 326	if (!list_empty_careful(&head->waiters)) {
 327		spin_lock(&head->lock);
 328		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 329		    free_bytes < *need_bytes) {
 330			error = xlog_grant_head_wait(log, head, tic,
 331						     *need_bytes);
 332		}
 333		spin_unlock(&head->lock);
 334	} else if (free_bytes < *need_bytes) {
 335		spin_lock(&head->lock);
 336		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 337		spin_unlock(&head->lock);
 338	}
 339
 340	return error;
 341}
 342
 343static void
 344xlog_tic_reset_res(xlog_ticket_t *tic)
 345{
 346	tic->t_res_num = 0;
 347	tic->t_res_arr_sum = 0;
 348	tic->t_res_num_ophdrs = 0;
 349}
 350
 351static void
 352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 353{
 354	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 355		/* add to overflow and start again */
 356		tic->t_res_o_flow += tic->t_res_arr_sum;
 357		tic->t_res_num = 0;
 358		tic->t_res_arr_sum = 0;
 359	}
 360
 361	tic->t_res_arr[tic->t_res_num].r_len = len;
 362	tic->t_res_arr[tic->t_res_num].r_type = type;
 363	tic->t_res_arr_sum += len;
 364	tic->t_res_num++;
 365}
 366
 367/*
 368 * Replenish the byte reservation required by moving the grant write head.
 369 */
 370int
 371xfs_log_regrant(
 372	struct xfs_mount	*mp,
 373	struct xlog_ticket	*tic)
 374{
 375	struct xlog		*log = mp->m_log;
 376	int			need_bytes;
 377	int			error = 0;
 378
 379	if (XLOG_FORCED_SHUTDOWN(log))
 380		return -EIO;
 381
 382	XFS_STATS_INC(mp, xs_try_logspace);
 383
 384	/*
 385	 * This is a new transaction on the ticket, so we need to change the
 386	 * transaction ID so that the next transaction has a different TID in
 387	 * the log. Just add one to the existing tid so that we can see chains
 388	 * of rolling transactions in the log easily.
 389	 */
 390	tic->t_tid++;
 391
 392	xlog_grant_push_ail(log, tic->t_unit_res);
 393
 394	tic->t_curr_res = tic->t_unit_res;
 395	xlog_tic_reset_res(tic);
 396
 397	if (tic->t_cnt > 0)
 398		return 0;
 399
 400	trace_xfs_log_regrant(log, tic);
 401
 402	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 403				      &need_bytes);
 404	if (error)
 405		goto out_error;
 406
 407	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 408	trace_xfs_log_regrant_exit(log, tic);
 409	xlog_verify_grant_tail(log);
 410	return 0;
 411
 412out_error:
 413	/*
 414	 * If we are failing, make sure the ticket doesn't have any current
 415	 * reservations.  We don't want to add this back when the ticket/
 416	 * transaction gets cancelled.
 417	 */
 418	tic->t_curr_res = 0;
 419	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 420	return error;
 421}
 422
 423/*
 424 * Reserve log space and return a ticket corresponding the reservation.
 425 *
 426 * Each reservation is going to reserve extra space for a log record header.
 427 * When writes happen to the on-disk log, we don't subtract the length of the
 428 * log record header from any reservation.  By wasting space in each
 429 * reservation, we prevent over allocation problems.
 430 */
 431int
 432xfs_log_reserve(
 433	struct xfs_mount	*mp,
 434	int		 	unit_bytes,
 435	int		 	cnt,
 436	struct xlog_ticket	**ticp,
 437	__uint8_t	 	client,
 438	bool			permanent,
 439	uint		 	t_type)
 440{
 441	struct xlog		*log = mp->m_log;
 442	struct xlog_ticket	*tic;
 443	int			need_bytes;
 444	int			error = 0;
 445
 446	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 447
 448	if (XLOG_FORCED_SHUTDOWN(log))
 449		return -EIO;
 450
 451	XFS_STATS_INC(mp, xs_try_logspace);
 452
 453	ASSERT(*ticp == NULL);
 454	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 455				KM_SLEEP | KM_MAYFAIL);
 456	if (!tic)
 457		return -ENOMEM;
 458
 459	tic->t_trans_type = t_type;
 460	*ticp = tic;
 461
 462	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 463					    : tic->t_unit_res);
 464
 465	trace_xfs_log_reserve(log, tic);
 466
 467	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 468				      &need_bytes);
 469	if (error)
 470		goto out_error;
 471
 472	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 473	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 474	trace_xfs_log_reserve_exit(log, tic);
 475	xlog_verify_grant_tail(log);
 476	return 0;
 477
 478out_error:
 479	/*
 480	 * If we are failing, make sure the ticket doesn't have any current
 481	 * reservations.  We don't want to add this back when the ticket/
 482	 * transaction gets cancelled.
 483	 */
 484	tic->t_curr_res = 0;
 485	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 486	return error;
 487}
 488
 489
 490/*
 491 * NOTES:
 492 *
 493 *	1. currblock field gets updated at startup and after in-core logs
 494 *		marked as with WANT_SYNC.
 495 */
 496
 497/*
 498 * This routine is called when a user of a log manager ticket is done with
 499 * the reservation.  If the ticket was ever used, then a commit record for
 500 * the associated transaction is written out as a log operation header with
 501 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 502 * a given ticket.  If the ticket was one with a permanent reservation, then
 503 * a few operations are done differently.  Permanent reservation tickets by
 504 * default don't release the reservation.  They just commit the current
 505 * transaction with the belief that the reservation is still needed.  A flag
 506 * must be passed in before permanent reservations are actually released.
 507 * When these type of tickets are not released, they need to be set into
 508 * the inited state again.  By doing this, a start record will be written
 509 * out when the next write occurs.
 510 */
 511xfs_lsn_t
 512xfs_log_done(
 513	struct xfs_mount	*mp,
 514	struct xlog_ticket	*ticket,
 515	struct xlog_in_core	**iclog,
 516	bool			regrant)
 517{
 518	struct xlog		*log = mp->m_log;
 519	xfs_lsn_t		lsn = 0;
 520
 521	if (XLOG_FORCED_SHUTDOWN(log) ||
 522	    /*
 523	     * If nothing was ever written, don't write out commit record.
 524	     * If we get an error, just continue and give back the log ticket.
 525	     */
 526	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 527	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 528		lsn = (xfs_lsn_t) -1;
 529		regrant = false;
 
 
 530	}
 531
 532
 533	if (!regrant) {
 
 534		trace_xfs_log_done_nonperm(log, ticket);
 535
 536		/*
 537		 * Release ticket if not permanent reservation or a specific
 538		 * request has been made to release a permanent reservation.
 539		 */
 540		xlog_ungrant_log_space(log, ticket);
 
 541	} else {
 542		trace_xfs_log_done_perm(log, ticket);
 543
 544		xlog_regrant_reserve_log_space(log, ticket);
 545		/* If this ticket was a permanent reservation and we aren't
 546		 * trying to release it, reset the inited flags; so next time
 547		 * we write, a start record will be written out.
 548		 */
 549		ticket->t_flags |= XLOG_TIC_INITED;
 550	}
 551
 552	xfs_log_ticket_put(ticket);
 553	return lsn;
 554}
 555
 556/*
 557 * Attaches a new iclog I/O completion callback routine during
 558 * transaction commit.  If the log is in error state, a non-zero
 559 * return code is handed back and the caller is responsible for
 560 * executing the callback at an appropriate time.
 561 */
 562int
 563xfs_log_notify(
 564	struct xfs_mount	*mp,
 565	struct xlog_in_core	*iclog,
 566	xfs_log_callback_t	*cb)
 567{
 568	int	abortflg;
 569
 570	spin_lock(&iclog->ic_callback_lock);
 571	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 572	if (!abortflg) {
 573		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 574			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 575		cb->cb_next = NULL;
 576		*(iclog->ic_callback_tail) = cb;
 577		iclog->ic_callback_tail = &(cb->cb_next);
 578	}
 579	spin_unlock(&iclog->ic_callback_lock);
 580	return abortflg;
 581}
 582
 583int
 584xfs_log_release_iclog(
 585	struct xfs_mount	*mp,
 586	struct xlog_in_core	*iclog)
 587{
 588	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 589		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 590		return -EIO;
 591	}
 592
 593	return 0;
 594}
 595
 596/*
 597 * Mount a log filesystem
 598 *
 599 * mp		- ubiquitous xfs mount point structure
 600 * log_target	- buftarg of on-disk log device
 601 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 602 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 603 *
 604 * Return error or zero.
 605 */
 606int
 607xfs_log_mount(
 608	xfs_mount_t	*mp,
 609	xfs_buftarg_t	*log_target,
 610	xfs_daddr_t	blk_offset,
 611	int		num_bblks)
 612{
 613	int		error = 0;
 614	int		min_logfsbs;
 615
 616	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 617		xfs_notice(mp, "Mounting V%d Filesystem",
 618			   XFS_SB_VERSION_NUM(&mp->m_sb));
 619	} else {
 620		xfs_notice(mp,
 621"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 622			   XFS_SB_VERSION_NUM(&mp->m_sb));
 623		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 624	}
 625
 626	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 627	if (IS_ERR(mp->m_log)) {
 628		error = PTR_ERR(mp->m_log);
 629		goto out;
 630	}
 631
 632	/*
 633	 * Validate the given log space and drop a critical message via syslog
 634	 * if the log size is too small that would lead to some unexpected
 635	 * situations in transaction log space reservation stage.
 636	 *
 637	 * Note: we can't just reject the mount if the validation fails.  This
 638	 * would mean that people would have to downgrade their kernel just to
 639	 * remedy the situation as there is no way to grow the log (short of
 640	 * black magic surgery with xfs_db).
 641	 *
 642	 * We can, however, reject mounts for CRC format filesystems, as the
 643	 * mkfs binary being used to make the filesystem should never create a
 644	 * filesystem with a log that is too small.
 645	 */
 646	min_logfsbs = xfs_log_calc_minimum_size(mp);
 647
 648	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 649		xfs_warn(mp,
 650		"Log size %d blocks too small, minimum size is %d blocks",
 651			 mp->m_sb.sb_logblocks, min_logfsbs);
 652		error = -EINVAL;
 653	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 654		xfs_warn(mp,
 655		"Log size %d blocks too large, maximum size is %lld blocks",
 656			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 657		error = -EINVAL;
 658	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 659		xfs_warn(mp,
 660		"log size %lld bytes too large, maximum size is %lld bytes",
 661			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 662			 XFS_MAX_LOG_BYTES);
 663		error = -EINVAL;
 664	}
 665	if (error) {
 666		if (xfs_sb_version_hascrc(&mp->m_sb)) {
 667			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 668			ASSERT(0);
 669			goto out_free_log;
 670		}
 671		xfs_crit(mp, "Log size out of supported range.");
 672		xfs_crit(mp,
 673"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 674	}
 675
 676	/*
 677	 * Initialize the AIL now we have a log.
 678	 */
 679	error = xfs_trans_ail_init(mp);
 680	if (error) {
 681		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 682		goto out_free_log;
 683	}
 684	mp->m_log->l_ailp = mp->m_ail;
 685
 686	/*
 687	 * skip log recovery on a norecovery mount.  pretend it all
 688	 * just worked.
 689	 */
 690	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 691		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 692
 693		if (readonly)
 694			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 695
 696		error = xlog_recover(mp->m_log);
 697
 698		if (readonly)
 699			mp->m_flags |= XFS_MOUNT_RDONLY;
 700		if (error) {
 701			xfs_warn(mp, "log mount/recovery failed: error %d",
 702				error);
 703			xlog_recover_cancel(mp->m_log);
 704			goto out_destroy_ail;
 705		}
 706	}
 707
 708	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 709			       "log");
 710	if (error)
 711		goto out_destroy_ail;
 712
 713	/* Normal transactions can now occur */
 714	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 715
 716	/*
 717	 * Now the log has been fully initialised and we know were our
 718	 * space grant counters are, we can initialise the permanent ticket
 719	 * needed for delayed logging to work.
 720	 */
 721	xlog_cil_init_post_recovery(mp->m_log);
 722
 723	return 0;
 724
 725out_destroy_ail:
 726	xfs_trans_ail_destroy(mp);
 727out_free_log:
 728	xlog_dealloc_log(mp->m_log);
 729out:
 730	return error;
 731}
 732
 733/*
 734 * Finish the recovery of the file system.  This is separate from the
 735 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 736 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 737 * here.
 738 *
 739 * If we finish recovery successfully, start the background log work. If we are
 740 * not doing recovery, then we have a RO filesystem and we don't need to start
 741 * it.
 742 */
 743int
 744xfs_log_mount_finish(
 745	struct xfs_mount	*mp)
 746{
 747	int	error = 0;
 748
 749	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 
 
 
 750		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 751		return 0;
 752	}
 753
 754	error = xlog_recover_finish(mp->m_log);
 755	if (!error)
 756		xfs_log_work_queue(mp);
 757
 758	return error;
 759}
 760
 761/*
 762 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 763 * the log.
 764 */
 765int
 766xfs_log_mount_cancel(
 767	struct xfs_mount	*mp)
 768{
 769	int			error;
 770
 771	error = xlog_recover_cancel(mp->m_log);
 772	xfs_log_unmount(mp);
 773
 774	return error;
 775}
 776
 777/*
 778 * Final log writes as part of unmount.
 779 *
 780 * Mark the filesystem clean as unmount happens.  Note that during relocation
 781 * this routine needs to be executed as part of source-bag while the
 782 * deallocation must not be done until source-end.
 783 */
 784
 785/*
 786 * Unmount record used to have a string "Unmount filesystem--" in the
 787 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 788 * We just write the magic number now since that particular field isn't
 789 * currently architecture converted and "Unmount" is a bit foo.
 790 * As far as I know, there weren't any dependencies on the old behaviour.
 791 */
 792
 793int
 794xfs_log_unmount_write(xfs_mount_t *mp)
 795{
 796	struct xlog	 *log = mp->m_log;
 797	xlog_in_core_t	 *iclog;
 798#ifdef DEBUG
 799	xlog_in_core_t	 *first_iclog;
 800#endif
 801	xlog_ticket_t	*tic = NULL;
 802	xfs_lsn_t	 lsn;
 803	int		 error;
 804
 805	/*
 806	 * Don't write out unmount record on read-only mounts.
 807	 * Or, if we are doing a forced umount (typically because of IO errors).
 808	 */
 809	if (mp->m_flags & XFS_MOUNT_RDONLY)
 810		return 0;
 811
 812	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 813	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 814
 815#ifdef DEBUG
 816	first_iclog = iclog = log->l_iclog;
 817	do {
 818		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 819			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 820			ASSERT(iclog->ic_offset == 0);
 821		}
 822		iclog = iclog->ic_next;
 823	} while (iclog != first_iclog);
 824#endif
 825	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 826		error = xfs_log_reserve(mp, 600, 1, &tic,
 827					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 828		if (!error) {
 829			/* the data section must be 32 bit size aligned */
 830			struct {
 831			    __uint16_t magic;
 832			    __uint16_t pad1;
 833			    __uint32_t pad2; /* may as well make it 64 bits */
 834			} magic = {
 835				.magic = XLOG_UNMOUNT_TYPE,
 836			};
 837			struct xfs_log_iovec reg = {
 838				.i_addr = &magic,
 839				.i_len = sizeof(magic),
 840				.i_type = XLOG_REG_TYPE_UNMOUNT,
 841			};
 842			struct xfs_log_vec vec = {
 843				.lv_niovecs = 1,
 844				.lv_iovecp = &reg,
 845			};
 846
 847			/* remove inited flag, and account for space used */
 848			tic->t_flags = 0;
 849			tic->t_curr_res -= sizeof(magic);
 850			error = xlog_write(log, &vec, tic, &lsn,
 851					   NULL, XLOG_UNMOUNT_TRANS);
 852			/*
 853			 * At this point, we're umounting anyway,
 854			 * so there's no point in transitioning log state
 855			 * to IOERROR. Just continue...
 856			 */
 857		}
 858
 859		if (error)
 860			xfs_alert(mp, "%s: unmount record failed", __func__);
 861
 862
 863		spin_lock(&log->l_icloglock);
 864		iclog = log->l_iclog;
 865		atomic_inc(&iclog->ic_refcnt);
 866		xlog_state_want_sync(log, iclog);
 867		spin_unlock(&log->l_icloglock);
 868		error = xlog_state_release_iclog(log, iclog);
 869
 870		spin_lock(&log->l_icloglock);
 871		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 872		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 873			if (!XLOG_FORCED_SHUTDOWN(log)) {
 874				xlog_wait(&iclog->ic_force_wait,
 875							&log->l_icloglock);
 876			} else {
 877				spin_unlock(&log->l_icloglock);
 878			}
 879		} else {
 880			spin_unlock(&log->l_icloglock);
 881		}
 882		if (tic) {
 883			trace_xfs_log_umount_write(log, tic);
 884			xlog_ungrant_log_space(log, tic);
 885			xfs_log_ticket_put(tic);
 886		}
 887	} else {
 888		/*
 889		 * We're already in forced_shutdown mode, couldn't
 890		 * even attempt to write out the unmount transaction.
 891		 *
 892		 * Go through the motions of sync'ing and releasing
 893		 * the iclog, even though no I/O will actually happen,
 894		 * we need to wait for other log I/Os that may already
 895		 * be in progress.  Do this as a separate section of
 896		 * code so we'll know if we ever get stuck here that
 897		 * we're in this odd situation of trying to unmount
 898		 * a file system that went into forced_shutdown as
 899		 * the result of an unmount..
 900		 */
 901		spin_lock(&log->l_icloglock);
 902		iclog = log->l_iclog;
 903		atomic_inc(&iclog->ic_refcnt);
 904
 905		xlog_state_want_sync(log, iclog);
 906		spin_unlock(&log->l_icloglock);
 907		error =  xlog_state_release_iclog(log, iclog);
 908
 909		spin_lock(&log->l_icloglock);
 910
 911		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 912			|| iclog->ic_state == XLOG_STATE_DIRTY
 913			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 914
 915				xlog_wait(&iclog->ic_force_wait,
 916							&log->l_icloglock);
 917		} else {
 918			spin_unlock(&log->l_icloglock);
 919		}
 920	}
 921
 922	return error;
 923}	/* xfs_log_unmount_write */
 924
 925/*
 926 * Empty the log for unmount/freeze.
 927 *
 928 * To do this, we first need to shut down the background log work so it is not
 929 * trying to cover the log as we clean up. We then need to unpin all objects in
 930 * the log so we can then flush them out. Once they have completed their IO and
 931 * run the callbacks removing themselves from the AIL, we can write the unmount
 932 * record.
 933 */
 934void
 935xfs_log_quiesce(
 936	struct xfs_mount	*mp)
 937{
 938	cancel_delayed_work_sync(&mp->m_log->l_work);
 939	xfs_log_force(mp, XFS_LOG_SYNC);
 940
 941	/*
 942	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 943	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
 944	 * xfs_buf_iowait() cannot be used because it was pushed with the
 945	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 946	 * the IO to complete.
 947	 */
 948	xfs_ail_push_all_sync(mp->m_ail);
 949	xfs_wait_buftarg(mp->m_ddev_targp);
 950	xfs_buf_lock(mp->m_sb_bp);
 951	xfs_buf_unlock(mp->m_sb_bp);
 952
 953	xfs_log_unmount_write(mp);
 954}
 955
 956/*
 957 * Shut down and release the AIL and Log.
 958 *
 959 * During unmount, we need to ensure we flush all the dirty metadata objects
 960 * from the AIL so that the log is empty before we write the unmount record to
 961 * the log. Once this is done, we can tear down the AIL and the log.
 962 */
 963void
 964xfs_log_unmount(
 965	struct xfs_mount	*mp)
 966{
 967	xfs_log_quiesce(mp);
 968
 969	xfs_trans_ail_destroy(mp);
 970
 971	xfs_sysfs_del(&mp->m_log->l_kobj);
 972
 973	xlog_dealloc_log(mp->m_log);
 974}
 975
 976void
 977xfs_log_item_init(
 978	struct xfs_mount	*mp,
 979	struct xfs_log_item	*item,
 980	int			type,
 981	const struct xfs_item_ops *ops)
 982{
 983	item->li_mountp = mp;
 984	item->li_ailp = mp->m_ail;
 985	item->li_type = type;
 986	item->li_ops = ops;
 987	item->li_lv = NULL;
 988
 989	INIT_LIST_HEAD(&item->li_ail);
 990	INIT_LIST_HEAD(&item->li_cil);
 991}
 992
 993/*
 994 * Wake up processes waiting for log space after we have moved the log tail.
 995 */
 996void
 997xfs_log_space_wake(
 998	struct xfs_mount	*mp)
 999{
1000	struct xlog		*log = mp->m_log;
1001	int			free_bytes;
1002
1003	if (XLOG_FORCED_SHUTDOWN(log))
1004		return;
1005
1006	if (!list_empty_careful(&log->l_write_head.waiters)) {
1007		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008
1009		spin_lock(&log->l_write_head.lock);
1010		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012		spin_unlock(&log->l_write_head.lock);
1013	}
1014
1015	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017
1018		spin_lock(&log->l_reserve_head.lock);
1019		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021		spin_unlock(&log->l_reserve_head.lock);
1022	}
1023}
1024
1025/*
1026 * Determine if we have a transaction that has gone to disk that needs to be
1027 * covered. To begin the transition to the idle state firstly the log needs to
1028 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029 * we start attempting to cover the log.
1030 *
1031 * Only if we are then in a state where covering is needed, the caller is
1032 * informed that dummy transactions are required to move the log into the idle
1033 * state.
1034 *
1035 * If there are any items in the AIl or CIL, then we do not want to attempt to
1036 * cover the log as we may be in a situation where there isn't log space
1037 * available to run a dummy transaction and this can lead to deadlocks when the
1038 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1039 * there's no point in running a dummy transaction at this point because we
1040 * can't start trying to idle the log until both the CIL and AIL are empty.
1041 */
1042int
1043xfs_log_need_covered(xfs_mount_t *mp)
1044{
1045	struct xlog	*log = mp->m_log;
1046	int		needed = 0;
 
1047
1048	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049		return 0;
1050
1051	if (!xlog_cil_empty(log))
1052		return 0;
1053
1054	spin_lock(&log->l_icloglock);
1055	switch (log->l_covered_state) {
1056	case XLOG_STATE_COVER_DONE:
1057	case XLOG_STATE_COVER_DONE2:
1058	case XLOG_STATE_COVER_IDLE:
1059		break;
1060	case XLOG_STATE_COVER_NEED:
1061	case XLOG_STATE_COVER_NEED2:
1062		if (xfs_ail_min_lsn(log->l_ailp))
1063			break;
1064		if (!xlog_iclogs_empty(log))
1065			break;
1066
1067		needed = 1;
1068		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069			log->l_covered_state = XLOG_STATE_COVER_DONE;
1070		else
1071			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072		break;
1073	default:
1074		needed = 1;
1075		break;
1076	}
1077	spin_unlock(&log->l_icloglock);
1078	return needed;
1079}
1080
1081/*
1082 * We may be holding the log iclog lock upon entering this routine.
1083 */
1084xfs_lsn_t
1085xlog_assign_tail_lsn_locked(
1086	struct xfs_mount	*mp)
1087{
1088	struct xlog		*log = mp->m_log;
1089	struct xfs_log_item	*lip;
1090	xfs_lsn_t		tail_lsn;
1091
1092	assert_spin_locked(&mp->m_ail->xa_lock);
1093
1094	/*
1095	 * To make sure we always have a valid LSN for the log tail we keep
1096	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1097	 * and use that when the AIL was empty.
1098	 */
1099	lip = xfs_ail_min(mp->m_ail);
1100	if (lip)
1101		tail_lsn = lip->li_lsn;
1102	else
1103		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105	atomic64_set(&log->l_tail_lsn, tail_lsn);
1106	return tail_lsn;
1107}
1108
1109xfs_lsn_t
1110xlog_assign_tail_lsn(
1111	struct xfs_mount	*mp)
1112{
1113	xfs_lsn_t		tail_lsn;
1114
1115	spin_lock(&mp->m_ail->xa_lock);
1116	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117	spin_unlock(&mp->m_ail->xa_lock);
1118
1119	return tail_lsn;
1120}
1121
1122/*
1123 * Return the space in the log between the tail and the head.  The head
1124 * is passed in the cycle/bytes formal parms.  In the special case where
1125 * the reserve head has wrapped passed the tail, this calculation is no
1126 * longer valid.  In this case, just return 0 which means there is no space
1127 * in the log.  This works for all places where this function is called
1128 * with the reserve head.  Of course, if the write head were to ever
1129 * wrap the tail, we should blow up.  Rather than catch this case here,
1130 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1131 *
1132 * This code also handles the case where the reservation head is behind
1133 * the tail.  The details of this case are described below, but the end
1134 * result is that we return the size of the log as the amount of space left.
1135 */
1136STATIC int
1137xlog_space_left(
1138	struct xlog	*log,
1139	atomic64_t	*head)
1140{
1141	int		free_bytes;
1142	int		tail_bytes;
1143	int		tail_cycle;
1144	int		head_cycle;
1145	int		head_bytes;
1146
1147	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149	tail_bytes = BBTOB(tail_bytes);
1150	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152	else if (tail_cycle + 1 < head_cycle)
1153		return 0;
1154	else if (tail_cycle < head_cycle) {
1155		ASSERT(tail_cycle == (head_cycle - 1));
1156		free_bytes = tail_bytes - head_bytes;
1157	} else {
1158		/*
1159		 * The reservation head is behind the tail.
1160		 * In this case we just want to return the size of the
1161		 * log as the amount of space left.
1162		 */
1163		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164		xfs_alert(log->l_mp,
1165			  "  tail_cycle = %d, tail_bytes = %d",
1166			  tail_cycle, tail_bytes);
1167		xfs_alert(log->l_mp,
1168			  "  GH   cycle = %d, GH   bytes = %d",
1169			  head_cycle, head_bytes);
1170		ASSERT(0);
1171		free_bytes = log->l_logsize;
1172	}
1173	return free_bytes;
1174}
1175
1176
1177/*
1178 * Log function which is called when an io completes.
1179 *
1180 * The log manager needs its own routine, in order to control what
1181 * happens with the buffer after the write completes.
1182 */
1183void
1184xlog_iodone(xfs_buf_t *bp)
1185{
1186	struct xlog_in_core	*iclog = bp->b_fspriv;
1187	struct xlog		*l = iclog->ic_log;
1188	int			aborted = 0;
1189
1190	/*
1191	 * Race to shutdown the filesystem if we see an error or the iclog is in
1192	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1193	 * CRC errors into log recovery.
1194	 */
1195	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1196			   XFS_RANDOM_IODONE_IOERR) ||
1197	    iclog->ic_state & XLOG_STATE_IOABORT) {
1198		if (iclog->ic_state & XLOG_STATE_IOABORT)
1199			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1200
1201		xfs_buf_ioerror_alert(bp, __func__);
1202		xfs_buf_stale(bp);
1203		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1204		/*
1205		 * This flag will be propagated to the trans-committed
1206		 * callback routines to let them know that the log-commit
1207		 * didn't succeed.
1208		 */
1209		aborted = XFS_LI_ABORTED;
1210	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1211		aborted = XFS_LI_ABORTED;
1212	}
1213
1214	/* log I/O is always issued ASYNC */
1215	ASSERT(bp->b_flags & XBF_ASYNC);
1216	xlog_state_done_syncing(iclog, aborted);
1217
1218	/*
1219	 * drop the buffer lock now that we are done. Nothing references
1220	 * the buffer after this, so an unmount waiting on this lock can now
1221	 * tear it down safely. As such, it is unsafe to reference the buffer
1222	 * (bp) after the unlock as we could race with it being freed.
1223	 */
1224	xfs_buf_unlock(bp);
1225}
1226
1227/*
1228 * Return size of each in-core log record buffer.
1229 *
1230 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1231 *
1232 * If the filesystem blocksize is too large, we may need to choose a
1233 * larger size since the directory code currently logs entire blocks.
1234 */
1235
1236STATIC void
1237xlog_get_iclog_buffer_size(
1238	struct xfs_mount	*mp,
1239	struct xlog		*log)
1240{
1241	int size;
1242	int xhdrs;
1243
1244	if (mp->m_logbufs <= 0)
1245		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1246	else
1247		log->l_iclog_bufs = mp->m_logbufs;
1248
1249	/*
1250	 * Buffer size passed in from mount system call.
1251	 */
1252	if (mp->m_logbsize > 0) {
1253		size = log->l_iclog_size = mp->m_logbsize;
1254		log->l_iclog_size_log = 0;
1255		while (size != 1) {
1256			log->l_iclog_size_log++;
1257			size >>= 1;
1258		}
1259
1260		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1261			/* # headers = size / 32k
1262			 * one header holds cycles from 32k of data
1263			 */
1264
1265			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1266			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1267				xhdrs++;
1268			log->l_iclog_hsize = xhdrs << BBSHIFT;
1269			log->l_iclog_heads = xhdrs;
1270		} else {
1271			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1272			log->l_iclog_hsize = BBSIZE;
1273			log->l_iclog_heads = 1;
1274		}
1275		goto done;
1276	}
1277
1278	/* All machines use 32kB buffers by default. */
1279	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1280	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1281
1282	/* the default log size is 16k or 32k which is one header sector */
1283	log->l_iclog_hsize = BBSIZE;
1284	log->l_iclog_heads = 1;
1285
1286done:
1287	/* are we being asked to make the sizes selected above visible? */
1288	if (mp->m_logbufs == 0)
1289		mp->m_logbufs = log->l_iclog_bufs;
1290	if (mp->m_logbsize == 0)
1291		mp->m_logbsize = log->l_iclog_size;
1292}	/* xlog_get_iclog_buffer_size */
1293
1294
1295void
1296xfs_log_work_queue(
1297	struct xfs_mount        *mp)
1298{
1299	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1300				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1301}
1302
1303/*
1304 * Every sync period we need to unpin all items in the AIL and push them to
1305 * disk. If there is nothing dirty, then we might need to cover the log to
1306 * indicate that the filesystem is idle.
1307 */
1308void
1309xfs_log_worker(
1310	struct work_struct	*work)
1311{
1312	struct xlog		*log = container_of(to_delayed_work(work),
1313						struct xlog, l_work);
1314	struct xfs_mount	*mp = log->l_mp;
1315
1316	/* dgc: errors ignored - not fatal and nowhere to report them */
1317	if (xfs_log_need_covered(mp)) {
1318		/*
1319		 * Dump a transaction into the log that contains no real change.
1320		 * This is needed to stamp the current tail LSN into the log
1321		 * during the covering operation.
1322		 *
1323		 * We cannot use an inode here for this - that will push dirty
1324		 * state back up into the VFS and then periodic inode flushing
1325		 * will prevent log covering from making progress. Hence we
1326		 * synchronously log the superblock instead to ensure the
1327		 * superblock is immediately unpinned and can be written back.
1328		 */
1329		xfs_sync_sb(mp, true);
1330	} else
1331		xfs_log_force(mp, 0);
1332
1333	/* start pushing all the metadata that is currently dirty */
1334	xfs_ail_push_all(mp->m_ail);
1335
1336	/* queue us up again */
1337	xfs_log_work_queue(mp);
1338}
1339
1340/*
1341 * This routine initializes some of the log structure for a given mount point.
1342 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1343 * some other stuff may be filled in too.
1344 */
1345STATIC struct xlog *
1346xlog_alloc_log(
1347	struct xfs_mount	*mp,
1348	struct xfs_buftarg	*log_target,
1349	xfs_daddr_t		blk_offset,
1350	int			num_bblks)
1351{
1352	struct xlog		*log;
1353	xlog_rec_header_t	*head;
1354	xlog_in_core_t		**iclogp;
1355	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1356	xfs_buf_t		*bp;
1357	int			i;
1358	int			error = -ENOMEM;
1359	uint			log2_size = 0;
1360
1361	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1362	if (!log) {
1363		xfs_warn(mp, "Log allocation failed: No memory!");
1364		goto out;
1365	}
1366
1367	log->l_mp	   = mp;
1368	log->l_targ	   = log_target;
1369	log->l_logsize     = BBTOB(num_bblks);
1370	log->l_logBBstart  = blk_offset;
1371	log->l_logBBsize   = num_bblks;
1372	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1373	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1374	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1375
1376	log->l_prev_block  = -1;
1377	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1378	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1379	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1380	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1381
1382	xlog_grant_head_init(&log->l_reserve_head);
1383	xlog_grant_head_init(&log->l_write_head);
1384
1385	error = -EFSCORRUPTED;
1386	if (xfs_sb_version_hassector(&mp->m_sb)) {
1387	        log2_size = mp->m_sb.sb_logsectlog;
1388		if (log2_size < BBSHIFT) {
1389			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1390				log2_size, BBSHIFT);
1391			goto out_free_log;
1392		}
1393
1394	        log2_size -= BBSHIFT;
1395		if (log2_size > mp->m_sectbb_log) {
1396			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1397				log2_size, mp->m_sectbb_log);
1398			goto out_free_log;
1399		}
1400
1401		/* for larger sector sizes, must have v2 or external log */
1402		if (log2_size && log->l_logBBstart > 0 &&
1403			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1404			xfs_warn(mp,
1405		"log sector size (0x%x) invalid for configuration.",
1406				log2_size);
1407			goto out_free_log;
1408		}
1409	}
1410	log->l_sectBBsize = 1 << log2_size;
1411
1412	xlog_get_iclog_buffer_size(mp, log);
1413
1414	/*
1415	 * Use a NULL block for the extra log buffer used during splits so that
1416	 * it will trigger errors if we ever try to do IO on it without first
1417	 * having set it up properly.
1418	 */
1419	error = -ENOMEM;
1420	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1421			   BTOBB(log->l_iclog_size), 0);
1422	if (!bp)
1423		goto out_free_log;
1424
1425	/*
1426	 * The iclogbuf buffer locks are held over IO but we are not going to do
1427	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1428	 * when appropriately.
1429	 */
1430	ASSERT(xfs_buf_islocked(bp));
1431	xfs_buf_unlock(bp);
1432
1433	/* use high priority wq for log I/O completion */
1434	bp->b_ioend_wq = mp->m_log_workqueue;
1435	bp->b_iodone = xlog_iodone;
1436	log->l_xbuf = bp;
1437
1438	spin_lock_init(&log->l_icloglock);
1439	init_waitqueue_head(&log->l_flush_wait);
1440
1441	iclogp = &log->l_iclog;
1442	/*
1443	 * The amount of memory to allocate for the iclog structure is
1444	 * rather funky due to the way the structure is defined.  It is
1445	 * done this way so that we can use different sizes for machines
1446	 * with different amounts of memory.  See the definition of
1447	 * xlog_in_core_t in xfs_log_priv.h for details.
1448	 */
1449	ASSERT(log->l_iclog_size >= 4096);
1450	for (i=0; i < log->l_iclog_bufs; i++) {
1451		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1452		if (!*iclogp)
1453			goto out_free_iclog;
1454
1455		iclog = *iclogp;
1456		iclog->ic_prev = prev_iclog;
1457		prev_iclog = iclog;
1458
1459		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1460						BTOBB(log->l_iclog_size), 0);
1461		if (!bp)
1462			goto out_free_iclog;
1463
1464		ASSERT(xfs_buf_islocked(bp));
1465		xfs_buf_unlock(bp);
1466
1467		/* use high priority wq for log I/O completion */
1468		bp->b_ioend_wq = mp->m_log_workqueue;
1469		bp->b_iodone = xlog_iodone;
1470		iclog->ic_bp = bp;
1471		iclog->ic_data = bp->b_addr;
1472#ifdef DEBUG
1473		log->l_iclog_bak[i] = &iclog->ic_header;
1474#endif
1475		head = &iclog->ic_header;
1476		memset(head, 0, sizeof(xlog_rec_header_t));
1477		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1478		head->h_version = cpu_to_be32(
1479			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1480		head->h_size = cpu_to_be32(log->l_iclog_size);
1481		/* new fields */
1482		head->h_fmt = cpu_to_be32(XLOG_FMT);
1483		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1484
1485		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1486		iclog->ic_state = XLOG_STATE_ACTIVE;
1487		iclog->ic_log = log;
1488		atomic_set(&iclog->ic_refcnt, 0);
1489		spin_lock_init(&iclog->ic_callback_lock);
1490		iclog->ic_callback_tail = &(iclog->ic_callback);
1491		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1492
 
1493		init_waitqueue_head(&iclog->ic_force_wait);
1494		init_waitqueue_head(&iclog->ic_write_wait);
1495
1496		iclogp = &iclog->ic_next;
1497	}
1498	*iclogp = log->l_iclog;			/* complete ring */
1499	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1500
1501	error = xlog_cil_init(log);
1502	if (error)
1503		goto out_free_iclog;
1504	return log;
1505
1506out_free_iclog:
1507	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1508		prev_iclog = iclog->ic_next;
1509		if (iclog->ic_bp)
1510			xfs_buf_free(iclog->ic_bp);
1511		kmem_free(iclog);
1512	}
1513	spinlock_destroy(&log->l_icloglock);
1514	xfs_buf_free(log->l_xbuf);
1515out_free_log:
1516	kmem_free(log);
1517out:
1518	return ERR_PTR(error);
1519}	/* xlog_alloc_log */
1520
1521
1522/*
1523 * Write out the commit record of a transaction associated with the given
1524 * ticket.  Return the lsn of the commit record.
1525 */
1526STATIC int
1527xlog_commit_record(
1528	struct xlog		*log,
1529	struct xlog_ticket	*ticket,
1530	struct xlog_in_core	**iclog,
1531	xfs_lsn_t		*commitlsnp)
1532{
1533	struct xfs_mount *mp = log->l_mp;
1534	int	error;
1535	struct xfs_log_iovec reg = {
1536		.i_addr = NULL,
1537		.i_len = 0,
1538		.i_type = XLOG_REG_TYPE_COMMIT,
1539	};
1540	struct xfs_log_vec vec = {
1541		.lv_niovecs = 1,
1542		.lv_iovecp = &reg,
1543	};
1544
1545	ASSERT_ALWAYS(iclog);
1546	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1547					XLOG_COMMIT_TRANS);
1548	if (error)
1549		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1550	return error;
1551}
1552
1553/*
1554 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1555 * log space.  This code pushes on the lsn which would supposedly free up
1556 * the 25% which we want to leave free.  We may need to adopt a policy which
1557 * pushes on an lsn which is further along in the log once we reach the high
1558 * water mark.  In this manner, we would be creating a low water mark.
1559 */
1560STATIC void
1561xlog_grant_push_ail(
1562	struct xlog	*log,
1563	int		need_bytes)
1564{
1565	xfs_lsn_t	threshold_lsn = 0;
1566	xfs_lsn_t	last_sync_lsn;
1567	int		free_blocks;
1568	int		free_bytes;
1569	int		threshold_block;
1570	int		threshold_cycle;
1571	int		free_threshold;
1572
1573	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1574
1575	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1576	free_blocks = BTOBBT(free_bytes);
1577
1578	/*
1579	 * Set the threshold for the minimum number of free blocks in the
1580	 * log to the maximum of what the caller needs, one quarter of the
1581	 * log, and 256 blocks.
1582	 */
1583	free_threshold = BTOBB(need_bytes);
1584	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1585	free_threshold = MAX(free_threshold, 256);
1586	if (free_blocks >= free_threshold)
1587		return;
1588
1589	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1590						&threshold_block);
1591	threshold_block += free_threshold;
1592	if (threshold_block >= log->l_logBBsize) {
1593		threshold_block -= log->l_logBBsize;
1594		threshold_cycle += 1;
1595	}
1596	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1597					threshold_block);
1598	/*
1599	 * Don't pass in an lsn greater than the lsn of the last
1600	 * log record known to be on disk. Use a snapshot of the last sync lsn
1601	 * so that it doesn't change between the compare and the set.
1602	 */
1603	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1604	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1605		threshold_lsn = last_sync_lsn;
1606
1607	/*
1608	 * Get the transaction layer to kick the dirty buffers out to
1609	 * disk asynchronously. No point in trying to do this if
1610	 * the filesystem is shutting down.
1611	 */
1612	if (!XLOG_FORCED_SHUTDOWN(log))
1613		xfs_ail_push(log->l_ailp, threshold_lsn);
1614}
1615
1616/*
1617 * Stamp cycle number in every block
1618 */
1619STATIC void
1620xlog_pack_data(
1621	struct xlog		*log,
1622	struct xlog_in_core	*iclog,
1623	int			roundoff)
1624{
1625	int			i, j, k;
1626	int			size = iclog->ic_offset + roundoff;
1627	__be32			cycle_lsn;
1628	char			*dp;
1629
1630	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1631
1632	dp = iclog->ic_datap;
1633	for (i = 0; i < BTOBB(size); i++) {
1634		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1635			break;
1636		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1637		*(__be32 *)dp = cycle_lsn;
1638		dp += BBSIZE;
1639	}
1640
1641	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642		xlog_in_core_2_t *xhdr = iclog->ic_data;
1643
1644		for ( ; i < BTOBB(size); i++) {
1645			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1646			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1647			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1648			*(__be32 *)dp = cycle_lsn;
1649			dp += BBSIZE;
1650		}
1651
1652		for (i = 1; i < log->l_iclog_heads; i++)
1653			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1654	}
1655}
1656
1657/*
1658 * Calculate the checksum for a log buffer.
1659 *
1660 * This is a little more complicated than it should be because the various
1661 * headers and the actual data are non-contiguous.
1662 */
1663__le32
1664xlog_cksum(
1665	struct xlog		*log,
1666	struct xlog_rec_header	*rhead,
1667	char			*dp,
1668	int			size)
1669{
1670	__uint32_t		crc;
1671
1672	/* first generate the crc for the record header ... */
1673	crc = xfs_start_cksum((char *)rhead,
1674			      sizeof(struct xlog_rec_header),
1675			      offsetof(struct xlog_rec_header, h_crc));
1676
1677	/* ... then for additional cycle data for v2 logs ... */
1678	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1679		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1680		int		i;
1681		int		xheads;
1682
1683		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1684		if (size % XLOG_HEADER_CYCLE_SIZE)
1685			xheads++;
1686
1687		for (i = 1; i < xheads; i++) {
1688			crc = crc32c(crc, &xhdr[i].hic_xheader,
1689				     sizeof(struct xlog_rec_ext_header));
1690		}
1691	}
1692
1693	/* ... and finally for the payload */
1694	crc = crc32c(crc, dp, size);
1695
1696	return xfs_end_cksum(crc);
1697}
1698
1699/*
1700 * The bdstrat callback function for log bufs. This gives us a central
1701 * place to trap bufs in case we get hit by a log I/O error and need to
1702 * shutdown. Actually, in practice, even when we didn't get a log error,
1703 * we transition the iclogs to IOERROR state *after* flushing all existing
1704 * iclogs to disk. This is because we don't want anymore new transactions to be
1705 * started or completed afterwards.
1706 *
1707 * We lock the iclogbufs here so that we can serialise against IO completion
1708 * during unmount. We might be processing a shutdown triggered during unmount,
1709 * and that can occur asynchronously to the unmount thread, and hence we need to
1710 * ensure that completes before tearing down the iclogbufs. Hence we need to
1711 * hold the buffer lock across the log IO to acheive that.
1712 */
1713STATIC int
1714xlog_bdstrat(
1715	struct xfs_buf		*bp)
1716{
1717	struct xlog_in_core	*iclog = bp->b_fspriv;
1718
1719	xfs_buf_lock(bp);
1720	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1721		xfs_buf_ioerror(bp, -EIO);
1722		xfs_buf_stale(bp);
1723		xfs_buf_ioend(bp);
1724		/*
1725		 * It would seem logical to return EIO here, but we rely on
1726		 * the log state machine to propagate I/O errors instead of
1727		 * doing it here. Similarly, IO completion will unlock the
1728		 * buffer, so we don't do it here.
1729		 */
1730		return 0;
1731	}
1732
1733	xfs_buf_submit(bp);
1734	return 0;
1735}
1736
1737/*
1738 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1739 * fashion.  Previously, we should have moved the current iclog
1740 * ptr in the log to point to the next available iclog.  This allows further
1741 * write to continue while this code syncs out an iclog ready to go.
1742 * Before an in-core log can be written out, the data section must be scanned
1743 * to save away the 1st word of each BBSIZE block into the header.  We replace
1744 * it with the current cycle count.  Each BBSIZE block is tagged with the
1745 * cycle count because there in an implicit assumption that drives will
1746 * guarantee that entire 512 byte blocks get written at once.  In other words,
1747 * we can't have part of a 512 byte block written and part not written.  By
1748 * tagging each block, we will know which blocks are valid when recovering
1749 * after an unclean shutdown.
1750 *
1751 * This routine is single threaded on the iclog.  No other thread can be in
1752 * this routine with the same iclog.  Changing contents of iclog can there-
1753 * fore be done without grabbing the state machine lock.  Updating the global
1754 * log will require grabbing the lock though.
1755 *
1756 * The entire log manager uses a logical block numbering scheme.  Only
1757 * log_sync (and then only bwrite()) know about the fact that the log may
1758 * not start with block zero on a given device.  The log block start offset
1759 * is added immediately before calling bwrite().
1760 */
1761
1762STATIC int
1763xlog_sync(
1764	struct xlog		*log,
1765	struct xlog_in_core	*iclog)
1766{
 
1767	xfs_buf_t	*bp;
1768	int		i;
1769	uint		count;		/* byte count of bwrite */
1770	uint		count_init;	/* initial count before roundup */
1771	int		roundoff;       /* roundoff to BB or stripe */
1772	int		split = 0;	/* split write into two regions */
1773	int		error;
1774	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1775	int		size;
1776
1777	XFS_STATS_INC(log->l_mp, xs_log_writes);
1778	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1779
1780	/* Add for LR header */
1781	count_init = log->l_iclog_hsize + iclog->ic_offset;
1782
1783	/* Round out the log write size */
1784	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1785		/* we have a v2 stripe unit to use */
1786		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1787	} else {
1788		count = BBTOB(BTOBB(count_init));
1789	}
1790	roundoff = count - count_init;
1791	ASSERT(roundoff >= 0);
1792	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1793                roundoff < log->l_mp->m_sb.sb_logsunit)
1794		|| 
1795		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1796		 roundoff < BBTOB(1)));
1797
1798	/* move grant heads by roundoff in sync */
1799	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1800	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1801
1802	/* put cycle number in every block */
1803	xlog_pack_data(log, iclog, roundoff); 
1804
1805	/* real byte length */
1806	size = iclog->ic_offset;
1807	if (v2)
1808		size += roundoff;
1809	iclog->ic_header.h_len = cpu_to_be32(size);
 
 
 
1810
1811	bp = iclog->ic_bp;
1812	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1813
1814	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1815
1816	/* Do we need to split this write into 2 parts? */
1817	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1818		char		*dptr;
1819
1820		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1821		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1822		iclog->ic_bwritecnt = 2;
1823
1824		/*
1825		 * Bump the cycle numbers at the start of each block in the
1826		 * part of the iclog that ends up in the buffer that gets
1827		 * written to the start of the log.
1828		 *
1829		 * Watch out for the header magic number case, though.
1830		 */
1831		dptr = (char *)&iclog->ic_header + count;
1832		for (i = 0; i < split; i += BBSIZE) {
1833			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1834			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1835				cycle++;
1836			*(__be32 *)dptr = cpu_to_be32(cycle);
1837
1838			dptr += BBSIZE;
1839		}
1840	} else {
1841		iclog->ic_bwritecnt = 1;
1842	}
1843
1844	/* calculcate the checksum */
1845	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1846					    iclog->ic_datap, size);
1847#ifdef DEBUG
1848	/*
1849	 * Intentionally corrupt the log record CRC based on the error injection
1850	 * frequency, if defined. This facilitates testing log recovery in the
1851	 * event of torn writes. Hence, set the IOABORT state to abort the log
1852	 * write on I/O completion and shutdown the fs. The subsequent mount
1853	 * detects the bad CRC and attempts to recover.
1854	 */
1855	if (log->l_badcrc_factor &&
1856	    (prandom_u32() % log->l_badcrc_factor == 0)) {
1857		iclog->ic_header.h_crc &= 0xAAAAAAAA;
1858		iclog->ic_state |= XLOG_STATE_IOABORT;
1859		xfs_warn(log->l_mp,
1860	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1861			 be64_to_cpu(iclog->ic_header.h_lsn));
1862	}
1863#endif
1864
1865	bp->b_io_length = BTOBB(count);
1866	bp->b_fspriv = iclog;
1867	bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1868	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
 
1869
1870	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1871		bp->b_flags |= XBF_FUA;
1872
1873		/*
1874		 * Flush the data device before flushing the log to make
1875		 * sure all meta data written back from the AIL actually made
1876		 * it to disk before stamping the new log tail LSN into the
1877		 * log buffer.  For an external log we need to issue the
1878		 * flush explicitly, and unfortunately synchronously here;
1879		 * for an internal log we can simply use the block layer
1880		 * state machine for preflushes.
1881		 */
1882		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1883			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1884		else
1885			bp->b_flags |= XBF_FLUSH;
1886	}
1887
1888	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1889	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1890
1891	xlog_verify_iclog(log, iclog, count, true);
1892
1893	/* account for log which doesn't start at block #0 */
1894	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1895
1896	/*
1897	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898	 * is shutting down.
1899	 */
 
 
1900	error = xlog_bdstrat(bp);
1901	if (error) {
1902		xfs_buf_ioerror_alert(bp, "xlog_sync");
1903		return error;
1904	}
1905	if (split) {
1906		bp = iclog->ic_log->l_xbuf;
1907		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1908		xfs_buf_associate_memory(bp,
1909				(char *)&iclog->ic_header + count, split);
1910		bp->b_fspriv = iclog;
1911		bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1912		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
 
1913		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1914			bp->b_flags |= XBF_FUA;
 
 
 
 
 
 
 
 
 
 
 
 
 
1915
1916		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1917		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1918
1919		/* account for internal log which doesn't start at block #0 */
1920		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
 
1921		error = xlog_bdstrat(bp);
1922		if (error) {
1923			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1924			return error;
1925		}
1926	}
1927	return 0;
1928}	/* xlog_sync */
1929
 
1930/*
1931 * Deallocate a log structure
1932 */
1933STATIC void
1934xlog_dealloc_log(
1935	struct xlog	*log)
1936{
1937	xlog_in_core_t	*iclog, *next_iclog;
1938	int		i;
1939
1940	xlog_cil_destroy(log);
1941
1942	/*
1943	 * Cycle all the iclogbuf locks to make sure all log IO completion
1944	 * is done before we tear down these buffers.
1945	 */
1946	iclog = log->l_iclog;
1947	for (i = 0; i < log->l_iclog_bufs; i++) {
1948		xfs_buf_lock(iclog->ic_bp);
1949		xfs_buf_unlock(iclog->ic_bp);
1950		iclog = iclog->ic_next;
1951	}
1952
1953	/*
1954	 * Always need to ensure that the extra buffer does not point to memory
1955	 * owned by another log buffer before we free it. Also, cycle the lock
1956	 * first to ensure we've completed IO on it.
1957	 */
1958	xfs_buf_lock(log->l_xbuf);
1959	xfs_buf_unlock(log->l_xbuf);
1960	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1961	xfs_buf_free(log->l_xbuf);
1962
1963	iclog = log->l_iclog;
1964	for (i = 0; i < log->l_iclog_bufs; i++) {
1965		xfs_buf_free(iclog->ic_bp);
1966		next_iclog = iclog->ic_next;
1967		kmem_free(iclog);
1968		iclog = next_iclog;
1969	}
1970	spinlock_destroy(&log->l_icloglock);
1971
1972	log->l_mp->m_log = NULL;
1973	kmem_free(log);
1974}	/* xlog_dealloc_log */
1975
1976/*
1977 * Update counters atomically now that memcpy is done.
1978 */
1979/* ARGSUSED */
1980static inline void
1981xlog_state_finish_copy(
1982	struct xlog		*log,
1983	struct xlog_in_core	*iclog,
1984	int			record_cnt,
1985	int			copy_bytes)
1986{
1987	spin_lock(&log->l_icloglock);
1988
1989	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1990	iclog->ic_offset += copy_bytes;
1991
1992	spin_unlock(&log->l_icloglock);
1993}	/* xlog_state_finish_copy */
1994
1995
1996
1997
1998/*
1999 * print out info relating to regions written which consume
2000 * the reservation
2001 */
2002void
2003xlog_print_tic_res(
2004	struct xfs_mount	*mp,
2005	struct xlog_ticket	*ticket)
2006{
2007	uint i;
2008	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2009
2010	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2011#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2012	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2013	    REG_TYPE_STR(BFORMAT, "bformat"),
2014	    REG_TYPE_STR(BCHUNK, "bchunk"),
2015	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2016	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2017	    REG_TYPE_STR(IFORMAT, "iformat"),
2018	    REG_TYPE_STR(ICORE, "icore"),
2019	    REG_TYPE_STR(IEXT, "iext"),
2020	    REG_TYPE_STR(IBROOT, "ibroot"),
2021	    REG_TYPE_STR(ILOCAL, "ilocal"),
2022	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2023	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2024	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2025	    REG_TYPE_STR(QFORMAT, "qformat"),
2026	    REG_TYPE_STR(DQUOT, "dquot"),
2027	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2028	    REG_TYPE_STR(LRHEADER, "LR header"),
2029	    REG_TYPE_STR(UNMOUNT, "unmount"),
2030	    REG_TYPE_STR(COMMIT, "commit"),
2031	    REG_TYPE_STR(TRANSHDR, "trans header"),
2032	    REG_TYPE_STR(ICREATE, "inode create")
2033	};
2034#undef REG_TYPE_STR
2035#define TRANS_TYPE_STR(type)	[XFS_TRANS_##type] = #type
2036	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2037	    TRANS_TYPE_STR(SETATTR_NOT_SIZE),
2038	    TRANS_TYPE_STR(SETATTR_SIZE),
2039	    TRANS_TYPE_STR(INACTIVE),
2040	    TRANS_TYPE_STR(CREATE),
2041	    TRANS_TYPE_STR(CREATE_TRUNC),
2042	    TRANS_TYPE_STR(TRUNCATE_FILE),
2043	    TRANS_TYPE_STR(REMOVE),
2044	    TRANS_TYPE_STR(LINK),
2045	    TRANS_TYPE_STR(RENAME),
2046	    TRANS_TYPE_STR(MKDIR),
2047	    TRANS_TYPE_STR(RMDIR),
2048	    TRANS_TYPE_STR(SYMLINK),
2049	    TRANS_TYPE_STR(SET_DMATTRS),
2050	    TRANS_TYPE_STR(GROWFS),
2051	    TRANS_TYPE_STR(STRAT_WRITE),
2052	    TRANS_TYPE_STR(DIOSTRAT),
2053	    TRANS_TYPE_STR(WRITEID),
2054	    TRANS_TYPE_STR(ADDAFORK),
2055	    TRANS_TYPE_STR(ATTRINVAL),
2056	    TRANS_TYPE_STR(ATRUNCATE),
2057	    TRANS_TYPE_STR(ATTR_SET),
2058	    TRANS_TYPE_STR(ATTR_RM),
2059	    TRANS_TYPE_STR(ATTR_FLAG),
2060	    TRANS_TYPE_STR(CLEAR_AGI_BUCKET),
2061	    TRANS_TYPE_STR(SB_CHANGE),
2062	    TRANS_TYPE_STR(DUMMY1),
2063	    TRANS_TYPE_STR(DUMMY2),
2064	    TRANS_TYPE_STR(QM_QUOTAOFF),
2065	    TRANS_TYPE_STR(QM_DQALLOC),
2066	    TRANS_TYPE_STR(QM_SETQLIM),
2067	    TRANS_TYPE_STR(QM_DQCLUSTER),
2068	    TRANS_TYPE_STR(QM_QINOCREATE),
2069	    TRANS_TYPE_STR(QM_QUOTAOFF_END),
2070	    TRANS_TYPE_STR(FSYNC_TS),
2071	    TRANS_TYPE_STR(GROWFSRT_ALLOC),
2072	    TRANS_TYPE_STR(GROWFSRT_ZERO),
2073	    TRANS_TYPE_STR(GROWFSRT_FREE),
2074	    TRANS_TYPE_STR(SWAPEXT),
2075	    TRANS_TYPE_STR(CHECKPOINT),
2076	    TRANS_TYPE_STR(ICREATE),
2077	    TRANS_TYPE_STR(CREATE_TMPFILE)
2078	};
2079#undef TRANS_TYPE_STR
2080
2081	xfs_warn(mp, "xlog_write: reservation summary:");
2082	xfs_warn(mp, "  trans type  = %s (%u)",
2083		 ((ticket->t_trans_type <= 0 ||
2084		   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2085		  "bad-trans-type" : trans_type_str[ticket->t_trans_type]),
2086		 ticket->t_trans_type);
2087	xfs_warn(mp, "  unit res    = %d bytes",
2088		 ticket->t_unit_res);
2089	xfs_warn(mp, "  current res = %d bytes",
2090		 ticket->t_curr_res);
2091	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2092		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2094		 ticket->t_res_num_ophdrs, ophdr_spc);
2095	xfs_warn(mp, "  ophdr + reg = %u bytes",
2096		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097	xfs_warn(mp, "  num regions = %u",
2098		 ticket->t_res_num);
 
 
2099
2100	for (i = 0; i < ticket->t_res_num; i++) {
2101		uint r_type = ticket->t_res_arr[i].r_type;
2102		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2103			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2104			    "bad-rtype" : res_type_str[r_type]),
2105			    ticket->t_res_arr[i].r_len);
2106	}
2107
2108	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2109		"xlog_write: reservation ran out. Need to up reservation");
2110	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2111}
2112
2113/*
2114 * Calculate the potential space needed by the log vector.  Each region gets
2115 * its own xlog_op_header_t and may need to be double word aligned.
2116 */
2117static int
2118xlog_write_calc_vec_length(
2119	struct xlog_ticket	*ticket,
2120	struct xfs_log_vec	*log_vector)
2121{
2122	struct xfs_log_vec	*lv;
2123	int			headers = 0;
2124	int			len = 0;
2125	int			i;
2126
2127	/* acct for start rec of xact */
2128	if (ticket->t_flags & XLOG_TIC_INITED)
2129		headers++;
2130
2131	for (lv = log_vector; lv; lv = lv->lv_next) {
2132		/* we don't write ordered log vectors */
2133		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2134			continue;
2135
2136		headers += lv->lv_niovecs;
2137
2138		for (i = 0; i < lv->lv_niovecs; i++) {
2139			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2140
2141			len += vecp->i_len;
2142			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2143		}
2144	}
2145
2146	ticket->t_res_num_ophdrs += headers;
2147	len += headers * sizeof(struct xlog_op_header);
2148
2149	return len;
2150}
2151
2152/*
2153 * If first write for transaction, insert start record  We can't be trying to
2154 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2155 */
2156static int
2157xlog_write_start_rec(
2158	struct xlog_op_header	*ophdr,
2159	struct xlog_ticket	*ticket)
2160{
2161	if (!(ticket->t_flags & XLOG_TIC_INITED))
2162		return 0;
2163
2164	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2165	ophdr->oh_clientid = ticket->t_clientid;
2166	ophdr->oh_len = 0;
2167	ophdr->oh_flags = XLOG_START_TRANS;
2168	ophdr->oh_res2 = 0;
2169
2170	ticket->t_flags &= ~XLOG_TIC_INITED;
2171
2172	return sizeof(struct xlog_op_header);
2173}
2174
2175static xlog_op_header_t *
2176xlog_write_setup_ophdr(
2177	struct xlog		*log,
2178	struct xlog_op_header	*ophdr,
2179	struct xlog_ticket	*ticket,
2180	uint			flags)
2181{
2182	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2183	ophdr->oh_clientid = ticket->t_clientid;
2184	ophdr->oh_res2 = 0;
2185
2186	/* are we copying a commit or unmount record? */
2187	ophdr->oh_flags = flags;
2188
2189	/*
2190	 * We've seen logs corrupted with bad transaction client ids.  This
2191	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2192	 * and shut down the filesystem.
2193	 */
2194	switch (ophdr->oh_clientid)  {
2195	case XFS_TRANSACTION:
2196	case XFS_VOLUME:
2197	case XFS_LOG:
2198		break;
2199	default:
2200		xfs_warn(log->l_mp,
2201			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2202			ophdr->oh_clientid, ticket);
2203		return NULL;
2204	}
2205
2206	return ophdr;
2207}
2208
2209/*
2210 * Set up the parameters of the region copy into the log. This has
2211 * to handle region write split across multiple log buffers - this
2212 * state is kept external to this function so that this code can
2213 * be written in an obvious, self documenting manner.
2214 */
2215static int
2216xlog_write_setup_copy(
2217	struct xlog_ticket	*ticket,
2218	struct xlog_op_header	*ophdr,
2219	int			space_available,
2220	int			space_required,
2221	int			*copy_off,
2222	int			*copy_len,
2223	int			*last_was_partial_copy,
2224	int			*bytes_consumed)
2225{
2226	int			still_to_copy;
2227
2228	still_to_copy = space_required - *bytes_consumed;
2229	*copy_off = *bytes_consumed;
2230
2231	if (still_to_copy <= space_available) {
2232		/* write of region completes here */
2233		*copy_len = still_to_copy;
2234		ophdr->oh_len = cpu_to_be32(*copy_len);
2235		if (*last_was_partial_copy)
2236			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2237		*last_was_partial_copy = 0;
2238		*bytes_consumed = 0;
2239		return 0;
2240	}
2241
2242	/* partial write of region, needs extra log op header reservation */
2243	*copy_len = space_available;
2244	ophdr->oh_len = cpu_to_be32(*copy_len);
2245	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2246	if (*last_was_partial_copy)
2247		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2248	*bytes_consumed += *copy_len;
2249	(*last_was_partial_copy)++;
2250
2251	/* account for new log op header */
2252	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2253	ticket->t_res_num_ophdrs++;
2254
2255	return sizeof(struct xlog_op_header);
2256}
2257
2258static int
2259xlog_write_copy_finish(
2260	struct xlog		*log,
2261	struct xlog_in_core	*iclog,
2262	uint			flags,
2263	int			*record_cnt,
2264	int			*data_cnt,
2265	int			*partial_copy,
2266	int			*partial_copy_len,
2267	int			log_offset,
2268	struct xlog_in_core	**commit_iclog)
2269{
2270	if (*partial_copy) {
2271		/*
2272		 * This iclog has already been marked WANT_SYNC by
2273		 * xlog_state_get_iclog_space.
2274		 */
2275		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2276		*record_cnt = 0;
2277		*data_cnt = 0;
2278		return xlog_state_release_iclog(log, iclog);
2279	}
2280
2281	*partial_copy = 0;
2282	*partial_copy_len = 0;
2283
2284	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2285		/* no more space in this iclog - push it. */
2286		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2287		*record_cnt = 0;
2288		*data_cnt = 0;
2289
2290		spin_lock(&log->l_icloglock);
2291		xlog_state_want_sync(log, iclog);
2292		spin_unlock(&log->l_icloglock);
2293
2294		if (!commit_iclog)
2295			return xlog_state_release_iclog(log, iclog);
2296		ASSERT(flags & XLOG_COMMIT_TRANS);
2297		*commit_iclog = iclog;
2298	}
2299
2300	return 0;
2301}
2302
2303/*
2304 * Write some region out to in-core log
2305 *
2306 * This will be called when writing externally provided regions or when
2307 * writing out a commit record for a given transaction.
2308 *
2309 * General algorithm:
2310 *	1. Find total length of this write.  This may include adding to the
2311 *		lengths passed in.
2312 *	2. Check whether we violate the tickets reservation.
2313 *	3. While writing to this iclog
2314 *	    A. Reserve as much space in this iclog as can get
2315 *	    B. If this is first write, save away start lsn
2316 *	    C. While writing this region:
2317 *		1. If first write of transaction, write start record
2318 *		2. Write log operation header (header per region)
2319 *		3. Find out if we can fit entire region into this iclog
2320 *		4. Potentially, verify destination memcpy ptr
2321 *		5. Memcpy (partial) region
2322 *		6. If partial copy, release iclog; otherwise, continue
2323 *			copying more regions into current iclog
2324 *	4. Mark want sync bit (in simulation mode)
2325 *	5. Release iclog for potential flush to on-disk log.
2326 *
2327 * ERRORS:
2328 * 1.	Panic if reservation is overrun.  This should never happen since
2329 *	reservation amounts are generated internal to the filesystem.
2330 * NOTES:
2331 * 1. Tickets are single threaded data structures.
2332 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2333 *	syncing routine.  When a single log_write region needs to span
2334 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2335 *	on all log operation writes which don't contain the end of the
2336 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2337 *	operation which contains the end of the continued log_write region.
2338 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2339 *	we don't really know exactly how much space will be used.  As a result,
2340 *	we don't update ic_offset until the end when we know exactly how many
2341 *	bytes have been written out.
2342 */
2343int
2344xlog_write(
2345	struct xlog		*log,
2346	struct xfs_log_vec	*log_vector,
2347	struct xlog_ticket	*ticket,
2348	xfs_lsn_t		*start_lsn,
2349	struct xlog_in_core	**commit_iclog,
2350	uint			flags)
2351{
2352	struct xlog_in_core	*iclog = NULL;
2353	struct xfs_log_iovec	*vecp;
2354	struct xfs_log_vec	*lv;
2355	int			len;
2356	int			index;
2357	int			partial_copy = 0;
2358	int			partial_copy_len = 0;
2359	int			contwr = 0;
2360	int			record_cnt = 0;
2361	int			data_cnt = 0;
2362	int			error;
2363
2364	*start_lsn = 0;
2365
2366	len = xlog_write_calc_vec_length(ticket, log_vector);
2367
2368	/*
2369	 * Region headers and bytes are already accounted for.
2370	 * We only need to take into account start records and
2371	 * split regions in this function.
2372	 */
2373	if (ticket->t_flags & XLOG_TIC_INITED)
2374		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2375
2376	/*
2377	 * Commit record headers need to be accounted for. These
2378	 * come in as separate writes so are easy to detect.
2379	 */
2380	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2381		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2382
2383	if (ticket->t_curr_res < 0)
2384		xlog_print_tic_res(log->l_mp, ticket);
2385
2386	index = 0;
2387	lv = log_vector;
2388	vecp = lv->lv_iovecp;
2389	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390		void		*ptr;
2391		int		log_offset;
2392
2393		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394						   &contwr, &log_offset);
2395		if (error)
2396			return error;
2397
2398		ASSERT(log_offset <= iclog->ic_size - 1);
2399		ptr = iclog->ic_datap + log_offset;
2400
2401		/* start_lsn is the first lsn written to. That's all we need. */
2402		if (!*start_lsn)
2403			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404
2405		/*
2406		 * This loop writes out as many regions as can fit in the amount
2407		 * of space which was allocated by xlog_state_get_iclog_space().
2408		 */
2409		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410			struct xfs_log_iovec	*reg;
2411			struct xlog_op_header	*ophdr;
2412			int			start_rec_copy;
2413			int			copy_len;
2414			int			copy_off;
2415			bool			ordered = false;
2416
2417			/* ordered log vectors have no regions to write */
2418			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419				ASSERT(lv->lv_niovecs == 0);
2420				ordered = true;
2421				goto next_lv;
2422			}
2423
2424			reg = &vecp[index];
2425			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2426			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2427
2428			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429			if (start_rec_copy) {
2430				record_cnt++;
2431				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432						   start_rec_copy);
2433			}
2434
2435			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436			if (!ophdr)
2437				return -EIO;
2438
2439			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440					   sizeof(struct xlog_op_header));
2441
2442			len += xlog_write_setup_copy(ticket, ophdr,
2443						     iclog->ic_size-log_offset,
2444						     reg->i_len,
2445						     &copy_off, &copy_len,
2446						     &partial_copy,
2447						     &partial_copy_len);
2448			xlog_verify_dest_ptr(log, ptr);
2449
2450			/*
2451			 * Copy region.
2452			 *
2453			 * Unmount records just log an opheader, so can have
2454			 * empty payloads with no data region to copy. Hence we
2455			 * only copy the payload if the vector says it has data
2456			 * to copy.
2457			 */
2458			ASSERT(copy_len >= 0);
2459			if (copy_len > 0) {
2460				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462						   copy_len);
2463			}
2464			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465			record_cnt++;
2466			data_cnt += contwr ? copy_len : 0;
2467
2468			error = xlog_write_copy_finish(log, iclog, flags,
2469						       &record_cnt, &data_cnt,
2470						       &partial_copy,
2471						       &partial_copy_len,
2472						       log_offset,
2473						       commit_iclog);
2474			if (error)
2475				return error;
2476
2477			/*
2478			 * if we had a partial copy, we need to get more iclog
2479			 * space but we don't want to increment the region
2480			 * index because there is still more is this region to
2481			 * write.
2482			 *
2483			 * If we completed writing this region, and we flushed
2484			 * the iclog (indicated by resetting of the record
2485			 * count), then we also need to get more log space. If
2486			 * this was the last record, though, we are done and
2487			 * can just return.
2488			 */
2489			if (partial_copy)
2490				break;
2491
2492			if (++index == lv->lv_niovecs) {
2493next_lv:
2494				lv = lv->lv_next;
2495				index = 0;
2496				if (lv)
2497					vecp = lv->lv_iovecp;
2498			}
2499			if (record_cnt == 0 && ordered == false) {
2500				if (!lv)
2501					return 0;
2502				break;
2503			}
2504		}
2505	}
2506
2507	ASSERT(len == 0);
2508
2509	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510	if (!commit_iclog)
2511		return xlog_state_release_iclog(log, iclog);
2512
2513	ASSERT(flags & XLOG_COMMIT_TRANS);
2514	*commit_iclog = iclog;
2515	return 0;
2516}
2517
2518
2519/*****************************************************************************
2520 *
2521 *		State Machine functions
2522 *
2523 *****************************************************************************
2524 */
2525
2526/* Clean iclogs starting from the head.  This ordering must be
2527 * maintained, so an iclog doesn't become ACTIVE beyond one that
2528 * is SYNCING.  This is also required to maintain the notion that we use
2529 * a ordered wait queue to hold off would be writers to the log when every
2530 * iclog is trying to sync to disk.
2531 *
2532 * State Change: DIRTY -> ACTIVE
2533 */
2534STATIC void
2535xlog_state_clean_log(
2536	struct xlog *log)
2537{
2538	xlog_in_core_t	*iclog;
2539	int changed = 0;
2540
2541	iclog = log->l_iclog;
2542	do {
2543		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2544			iclog->ic_state	= XLOG_STATE_ACTIVE;
2545			iclog->ic_offset       = 0;
2546			ASSERT(iclog->ic_callback == NULL);
2547			/*
2548			 * If the number of ops in this iclog indicate it just
2549			 * contains the dummy transaction, we can
2550			 * change state into IDLE (the second time around).
2551			 * Otherwise we should change the state into
2552			 * NEED a dummy.
2553			 * We don't need to cover the dummy.
2554			 */
2555			if (!changed &&
2556			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2557			   		XLOG_COVER_OPS)) {
2558				changed = 1;
2559			} else {
2560				/*
2561				 * We have two dirty iclogs so start over
2562				 * This could also be num of ops indicates
2563				 * this is not the dummy going out.
2564				 */
2565				changed = 2;
2566			}
2567			iclog->ic_header.h_num_logops = 0;
2568			memset(iclog->ic_header.h_cycle_data, 0,
2569			      sizeof(iclog->ic_header.h_cycle_data));
2570			iclog->ic_header.h_lsn = 0;
2571		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2572			/* do nothing */;
2573		else
2574			break;	/* stop cleaning */
2575		iclog = iclog->ic_next;
2576	} while (iclog != log->l_iclog);
2577
2578	/* log is locked when we are called */
2579	/*
2580	 * Change state for the dummy log recording.
2581	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2582	 * we are done writing the dummy record.
2583	 * If we are done with the second dummy recored (DONE2), then
2584	 * we go to IDLE.
2585	 */
2586	if (changed) {
2587		switch (log->l_covered_state) {
2588		case XLOG_STATE_COVER_IDLE:
2589		case XLOG_STATE_COVER_NEED:
2590		case XLOG_STATE_COVER_NEED2:
2591			log->l_covered_state = XLOG_STATE_COVER_NEED;
2592			break;
2593
2594		case XLOG_STATE_COVER_DONE:
2595			if (changed == 1)
2596				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2597			else
2598				log->l_covered_state = XLOG_STATE_COVER_NEED;
2599			break;
2600
2601		case XLOG_STATE_COVER_DONE2:
2602			if (changed == 1)
2603				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2604			else
2605				log->l_covered_state = XLOG_STATE_COVER_NEED;
2606			break;
2607
2608		default:
2609			ASSERT(0);
2610		}
2611	}
2612}	/* xlog_state_clean_log */
2613
2614STATIC xfs_lsn_t
2615xlog_get_lowest_lsn(
2616	struct xlog	*log)
2617{
2618	xlog_in_core_t  *lsn_log;
2619	xfs_lsn_t	lowest_lsn, lsn;
2620
2621	lsn_log = log->l_iclog;
2622	lowest_lsn = 0;
2623	do {
2624	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2625		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2626		if ((lsn && !lowest_lsn) ||
2627		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2628			lowest_lsn = lsn;
2629		}
2630	    }
2631	    lsn_log = lsn_log->ic_next;
2632	} while (lsn_log != log->l_iclog);
2633	return lowest_lsn;
2634}
2635
2636
2637STATIC void
2638xlog_state_do_callback(
2639	struct xlog		*log,
2640	int			aborted,
2641	struct xlog_in_core	*ciclog)
2642{
2643	xlog_in_core_t	   *iclog;
2644	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2645						 * processed all iclogs once */
2646	xfs_log_callback_t *cb, *cb_next;
2647	int		   flushcnt = 0;
2648	xfs_lsn_t	   lowest_lsn;
2649	int		   ioerrors;	/* counter: iclogs with errors */
2650	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2651	int		   funcdidcallbacks; /* flag: function did callbacks */
2652	int		   repeats;	/* for issuing console warnings if
2653					 * looping too many times */
2654	int		   wake = 0;
2655
2656	spin_lock(&log->l_icloglock);
2657	first_iclog = iclog = log->l_iclog;
2658	ioerrors = 0;
2659	funcdidcallbacks = 0;
2660	repeats = 0;
2661
2662	do {
2663		/*
2664		 * Scan all iclogs starting with the one pointed to by the
2665		 * log.  Reset this starting point each time the log is
2666		 * unlocked (during callbacks).
2667		 *
2668		 * Keep looping through iclogs until one full pass is made
2669		 * without running any callbacks.
2670		 */
2671		first_iclog = log->l_iclog;
2672		iclog = log->l_iclog;
2673		loopdidcallbacks = 0;
2674		repeats++;
2675
2676		do {
2677
2678			/* skip all iclogs in the ACTIVE & DIRTY states */
2679			if (iclog->ic_state &
2680			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2681				iclog = iclog->ic_next;
2682				continue;
2683			}
2684
2685			/*
2686			 * Between marking a filesystem SHUTDOWN and stopping
2687			 * the log, we do flush all iclogs to disk (if there
2688			 * wasn't a log I/O error). So, we do want things to
2689			 * go smoothly in case of just a SHUTDOWN  w/o a
2690			 * LOG_IO_ERROR.
2691			 */
2692			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2693				/*
2694				 * Can only perform callbacks in order.  Since
2695				 * this iclog is not in the DONE_SYNC/
2696				 * DO_CALLBACK state, we skip the rest and
2697				 * just try to clean up.  If we set our iclog
2698				 * to DO_CALLBACK, we will not process it when
2699				 * we retry since a previous iclog is in the
2700				 * CALLBACK and the state cannot change since
2701				 * we are holding the l_icloglock.
2702				 */
2703				if (!(iclog->ic_state &
2704					(XLOG_STATE_DONE_SYNC |
2705						 XLOG_STATE_DO_CALLBACK))) {
2706					if (ciclog && (ciclog->ic_state ==
2707							XLOG_STATE_DONE_SYNC)) {
2708						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2709					}
2710					break;
2711				}
2712				/*
2713				 * We now have an iclog that is in either the
2714				 * DO_CALLBACK or DONE_SYNC states. The other
2715				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2716				 * caught by the above if and are going to
2717				 * clean (i.e. we aren't doing their callbacks)
2718				 * see the above if.
2719				 */
2720
2721				/*
2722				 * We will do one more check here to see if we
2723				 * have chased our tail around.
2724				 */
2725
2726				lowest_lsn = xlog_get_lowest_lsn(log);
2727				if (lowest_lsn &&
2728				    XFS_LSN_CMP(lowest_lsn,
2729						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2730					iclog = iclog->ic_next;
2731					continue; /* Leave this iclog for
2732						   * another thread */
2733				}
2734
2735				iclog->ic_state = XLOG_STATE_CALLBACK;
2736
2737
2738				/*
2739				 * Completion of a iclog IO does not imply that
2740				 * a transaction has completed, as transactions
2741				 * can be large enough to span many iclogs. We
2742				 * cannot change the tail of the log half way
2743				 * through a transaction as this may be the only
2744				 * transaction in the log and moving th etail to
2745				 * point to the middle of it will prevent
2746				 * recovery from finding the start of the
2747				 * transaction. Hence we should only update the
2748				 * last_sync_lsn if this iclog contains
2749				 * transaction completion callbacks on it.
2750				 *
2751				 * We have to do this before we drop the
2752				 * icloglock to ensure we are the only one that
2753				 * can update it.
2754				 */
2755				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2756					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2757				if (iclog->ic_callback)
2758					atomic64_set(&log->l_last_sync_lsn,
2759						be64_to_cpu(iclog->ic_header.h_lsn));
2760
2761			} else
2762				ioerrors++;
2763
2764			spin_unlock(&log->l_icloglock);
2765
2766			/*
2767			 * Keep processing entries in the callback list until
2768			 * we come around and it is empty.  We need to
2769			 * atomically see that the list is empty and change the
2770			 * state to DIRTY so that we don't miss any more
2771			 * callbacks being added.
2772			 */
2773			spin_lock(&iclog->ic_callback_lock);
2774			cb = iclog->ic_callback;
2775			while (cb) {
2776				iclog->ic_callback_tail = &(iclog->ic_callback);
2777				iclog->ic_callback = NULL;
2778				spin_unlock(&iclog->ic_callback_lock);
2779
2780				/* perform callbacks in the order given */
2781				for (; cb; cb = cb_next) {
2782					cb_next = cb->cb_next;
2783					cb->cb_func(cb->cb_arg, aborted);
2784				}
2785				spin_lock(&iclog->ic_callback_lock);
2786				cb = iclog->ic_callback;
2787			}
2788
2789			loopdidcallbacks++;
2790			funcdidcallbacks++;
2791
2792			spin_lock(&log->l_icloglock);
2793			ASSERT(iclog->ic_callback == NULL);
2794			spin_unlock(&iclog->ic_callback_lock);
2795			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2796				iclog->ic_state = XLOG_STATE_DIRTY;
2797
2798			/*
2799			 * Transition from DIRTY to ACTIVE if applicable.
2800			 * NOP if STATE_IOERROR.
2801			 */
2802			xlog_state_clean_log(log);
2803
2804			/* wake up threads waiting in xfs_log_force() */
2805			wake_up_all(&iclog->ic_force_wait);
2806
2807			iclog = iclog->ic_next;
2808		} while (first_iclog != iclog);
2809
2810		if (repeats > 5000) {
2811			flushcnt += repeats;
2812			repeats = 0;
2813			xfs_warn(log->l_mp,
2814				"%s: possible infinite loop (%d iterations)",
2815				__func__, flushcnt);
2816		}
2817	} while (!ioerrors && loopdidcallbacks);
2818
2819#ifdef DEBUG
2820	/*
2821	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2822	 * If the above loop finds an iclog earlier than the current iclog and
2823	 * in one of the syncing states, the current iclog is put into
2824	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2825	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2826	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2827	 * states.
2828	 *
2829	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2830	 * for ic_state == SYNCING.
2831	 */
 
2832	if (funcdidcallbacks) {
2833		first_iclog = iclog = log->l_iclog;
2834		do {
2835			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2836			/*
2837			 * Terminate the loop if iclogs are found in states
2838			 * which will cause other threads to clean up iclogs.
2839			 *
2840			 * SYNCING - i/o completion will go through logs
2841			 * DONE_SYNC - interrupt thread should be waiting for
2842			 *              l_icloglock
2843			 * IOERROR - give up hope all ye who enter here
2844			 */
2845			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2846			    iclog->ic_state & XLOG_STATE_SYNCING ||
2847			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2848			    iclog->ic_state == XLOG_STATE_IOERROR )
2849				break;
2850			iclog = iclog->ic_next;
2851		} while (first_iclog != iclog);
2852	}
2853#endif
2854
2855	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2856		wake = 1;
2857	spin_unlock(&log->l_icloglock);
2858
2859	if (wake)
2860		wake_up_all(&log->l_flush_wait);
2861}
2862
2863
2864/*
2865 * Finish transitioning this iclog to the dirty state.
2866 *
2867 * Make sure that we completely execute this routine only when this is
2868 * the last call to the iclog.  There is a good chance that iclog flushes,
2869 * when we reach the end of the physical log, get turned into 2 separate
2870 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2871 * routine.  By using the reference count bwritecnt, we guarantee that only
2872 * the second completion goes through.
2873 *
2874 * Callbacks could take time, so they are done outside the scope of the
2875 * global state machine log lock.
2876 */
2877STATIC void
2878xlog_state_done_syncing(
2879	xlog_in_core_t	*iclog,
2880	int		aborted)
2881{
2882	struct xlog	   *log = iclog->ic_log;
2883
2884	spin_lock(&log->l_icloglock);
2885
2886	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2887	       iclog->ic_state == XLOG_STATE_IOERROR);
2888	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2889	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2890
2891
2892	/*
2893	 * If we got an error, either on the first buffer, or in the case of
2894	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2895	 * and none should ever be attempted to be written to disk
2896	 * again.
2897	 */
2898	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2899		if (--iclog->ic_bwritecnt == 1) {
2900			spin_unlock(&log->l_icloglock);
2901			return;
2902		}
2903		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2904	}
2905
2906	/*
2907	 * Someone could be sleeping prior to writing out the next
2908	 * iclog buffer, we wake them all, one will get to do the
2909	 * I/O, the others get to wait for the result.
2910	 */
2911	wake_up_all(&iclog->ic_write_wait);
2912	spin_unlock(&log->l_icloglock);
2913	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2914}	/* xlog_state_done_syncing */
2915
2916
2917/*
2918 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2919 * sleep.  We wait on the flush queue on the head iclog as that should be
2920 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2921 * we will wait here and all new writes will sleep until a sync completes.
2922 *
2923 * The in-core logs are used in a circular fashion. They are not used
2924 * out-of-order even when an iclog past the head is free.
2925 *
2926 * return:
2927 *	* log_offset where xlog_write() can start writing into the in-core
2928 *		log's data space.
2929 *	* in-core log pointer to which xlog_write() should write.
2930 *	* boolean indicating this is a continued write to an in-core log.
2931 *		If this is the last write, then the in-core log's offset field
2932 *		needs to be incremented, depending on the amount of data which
2933 *		is copied.
2934 */
2935STATIC int
2936xlog_state_get_iclog_space(
2937	struct xlog		*log,
2938	int			len,
2939	struct xlog_in_core	**iclogp,
2940	struct xlog_ticket	*ticket,
2941	int			*continued_write,
2942	int			*logoffsetp)
2943{
2944	int		  log_offset;
2945	xlog_rec_header_t *head;
2946	xlog_in_core_t	  *iclog;
2947	int		  error;
2948
2949restart:
2950	spin_lock(&log->l_icloglock);
2951	if (XLOG_FORCED_SHUTDOWN(log)) {
2952		spin_unlock(&log->l_icloglock);
2953		return -EIO;
2954	}
2955
2956	iclog = log->l_iclog;
2957	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2958		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2959
2960		/* Wait for log writes to have flushed */
2961		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2962		goto restart;
2963	}
2964
2965	head = &iclog->ic_header;
2966
2967	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2968	log_offset = iclog->ic_offset;
2969
2970	/* On the 1st write to an iclog, figure out lsn.  This works
2971	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2972	 * committing to.  If the offset is set, that's how many blocks
2973	 * must be written.
2974	 */
2975	if (log_offset == 0) {
2976		ticket->t_curr_res -= log->l_iclog_hsize;
2977		xlog_tic_add_region(ticket,
2978				    log->l_iclog_hsize,
2979				    XLOG_REG_TYPE_LRHEADER);
2980		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2981		head->h_lsn = cpu_to_be64(
2982			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2983		ASSERT(log->l_curr_block >= 0);
2984	}
2985
2986	/* If there is enough room to write everything, then do it.  Otherwise,
2987	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2988	 * bit is on, so this will get flushed out.  Don't update ic_offset
2989	 * until you know exactly how many bytes get copied.  Therefore, wait
2990	 * until later to update ic_offset.
2991	 *
2992	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2993	 * can fit into remaining data section.
2994	 */
2995	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2996		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997
2998		/*
2999		 * If I'm the only one writing to this iclog, sync it to disk.
3000		 * We need to do an atomic compare and decrement here to avoid
3001		 * racing with concurrent atomic_dec_and_lock() calls in
3002		 * xlog_state_release_iclog() when there is more than one
3003		 * reference to the iclog.
3004		 */
3005		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3006			/* we are the only one */
3007			spin_unlock(&log->l_icloglock);
3008			error = xlog_state_release_iclog(log, iclog);
3009			if (error)
3010				return error;
3011		} else {
3012			spin_unlock(&log->l_icloglock);
3013		}
3014		goto restart;
3015	}
3016
3017	/* Do we have enough room to write the full amount in the remainder
3018	 * of this iclog?  Or must we continue a write on the next iclog and
3019	 * mark this iclog as completely taken?  In the case where we switch
3020	 * iclogs (to mark it taken), this particular iclog will release/sync
3021	 * to disk in xlog_write().
3022	 */
3023	if (len <= iclog->ic_size - iclog->ic_offset) {
3024		*continued_write = 0;
3025		iclog->ic_offset += len;
3026	} else {
3027		*continued_write = 1;
3028		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3029	}
3030	*iclogp = iclog;
3031
3032	ASSERT(iclog->ic_offset <= iclog->ic_size);
3033	spin_unlock(&log->l_icloglock);
3034
3035	*logoffsetp = log_offset;
3036	return 0;
3037}	/* xlog_state_get_iclog_space */
3038
3039/* The first cnt-1 times through here we don't need to
3040 * move the grant write head because the permanent
3041 * reservation has reserved cnt times the unit amount.
3042 * Release part of current permanent unit reservation and
3043 * reset current reservation to be one units worth.  Also
3044 * move grant reservation head forward.
3045 */
3046STATIC void
3047xlog_regrant_reserve_log_space(
3048	struct xlog		*log,
3049	struct xlog_ticket	*ticket)
3050{
3051	trace_xfs_log_regrant_reserve_enter(log, ticket);
3052
3053	if (ticket->t_cnt > 0)
3054		ticket->t_cnt--;
3055
3056	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3057					ticket->t_curr_res);
3058	xlog_grant_sub_space(log, &log->l_write_head.grant,
3059					ticket->t_curr_res);
3060	ticket->t_curr_res = ticket->t_unit_res;
3061	xlog_tic_reset_res(ticket);
3062
3063	trace_xfs_log_regrant_reserve_sub(log, ticket);
3064
3065	/* just return if we still have some of the pre-reserved space */
3066	if (ticket->t_cnt > 0)
3067		return;
3068
3069	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3070					ticket->t_unit_res);
3071
3072	trace_xfs_log_regrant_reserve_exit(log, ticket);
3073
3074	ticket->t_curr_res = ticket->t_unit_res;
3075	xlog_tic_reset_res(ticket);
3076}	/* xlog_regrant_reserve_log_space */
3077
3078
3079/*
3080 * Give back the space left from a reservation.
3081 *
3082 * All the information we need to make a correct determination of space left
3083 * is present.  For non-permanent reservations, things are quite easy.  The
3084 * count should have been decremented to zero.  We only need to deal with the
3085 * space remaining in the current reservation part of the ticket.  If the
3086 * ticket contains a permanent reservation, there may be left over space which
3087 * needs to be released.  A count of N means that N-1 refills of the current
3088 * reservation can be done before we need to ask for more space.  The first
3089 * one goes to fill up the first current reservation.  Once we run out of
3090 * space, the count will stay at zero and the only space remaining will be
3091 * in the current reservation field.
3092 */
3093STATIC void
3094xlog_ungrant_log_space(
3095	struct xlog		*log,
3096	struct xlog_ticket	*ticket)
3097{
3098	int	bytes;
3099
3100	if (ticket->t_cnt > 0)
3101		ticket->t_cnt--;
3102
3103	trace_xfs_log_ungrant_enter(log, ticket);
3104	trace_xfs_log_ungrant_sub(log, ticket);
3105
3106	/*
3107	 * If this is a permanent reservation ticket, we may be able to free
3108	 * up more space based on the remaining count.
3109	 */
3110	bytes = ticket->t_curr_res;
3111	if (ticket->t_cnt > 0) {
3112		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3113		bytes += ticket->t_unit_res*ticket->t_cnt;
3114	}
3115
3116	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3117	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3118
3119	trace_xfs_log_ungrant_exit(log, ticket);
3120
3121	xfs_log_space_wake(log->l_mp);
3122}
3123
3124/*
3125 * Flush iclog to disk if this is the last reference to the given iclog and
3126 * the WANT_SYNC bit is set.
3127 *
3128 * When this function is entered, the iclog is not necessarily in the
3129 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3130 *
3131 *
3132 */
3133STATIC int
3134xlog_state_release_iclog(
3135	struct xlog		*log,
3136	struct xlog_in_core	*iclog)
3137{
3138	int		sync = 0;	/* do we sync? */
3139
3140	if (iclog->ic_state & XLOG_STATE_IOERROR)
3141		return -EIO;
3142
3143	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3144	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3145		return 0;
3146
3147	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3148		spin_unlock(&log->l_icloglock);
3149		return -EIO;
3150	}
3151	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3152	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3153
3154	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3155		/* update tail before writing to iclog */
3156		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3157		sync++;
3158		iclog->ic_state = XLOG_STATE_SYNCING;
3159		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3160		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3161		/* cycle incremented when incrementing curr_block */
3162	}
3163	spin_unlock(&log->l_icloglock);
3164
3165	/*
3166	 * We let the log lock go, so it's possible that we hit a log I/O
3167	 * error or some other SHUTDOWN condition that marks the iclog
3168	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3169	 * this iclog has consistent data, so we ignore IOERROR
3170	 * flags after this point.
3171	 */
3172	if (sync)
3173		return xlog_sync(log, iclog);
3174	return 0;
3175}	/* xlog_state_release_iclog */
3176
3177
3178/*
3179 * This routine will mark the current iclog in the ring as WANT_SYNC
3180 * and move the current iclog pointer to the next iclog in the ring.
3181 * When this routine is called from xlog_state_get_iclog_space(), the
3182 * exact size of the iclog has not yet been determined.  All we know is
3183 * that every data block.  We have run out of space in this log record.
3184 */
3185STATIC void
3186xlog_state_switch_iclogs(
3187	struct xlog		*log,
3188	struct xlog_in_core	*iclog,
3189	int			eventual_size)
3190{
3191	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3192	if (!eventual_size)
3193		eventual_size = iclog->ic_offset;
3194	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3195	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3196	log->l_prev_block = log->l_curr_block;
3197	log->l_prev_cycle = log->l_curr_cycle;
3198
3199	/* roll log?: ic_offset changed later */
3200	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3201
3202	/* Round up to next log-sunit */
3203	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3204	    log->l_mp->m_sb.sb_logsunit > 1) {
3205		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3206		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3207	}
3208
3209	if (log->l_curr_block >= log->l_logBBsize) {
3210		/*
3211		 * Rewind the current block before the cycle is bumped to make
3212		 * sure that the combined LSN never transiently moves forward
3213		 * when the log wraps to the next cycle. This is to support the
3214		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3215		 * other cases should acquire l_icloglock.
3216		 */
3217		log->l_curr_block -= log->l_logBBsize;
3218		ASSERT(log->l_curr_block >= 0);
3219		smp_wmb();
3220		log->l_curr_cycle++;
3221		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3222			log->l_curr_cycle++;
 
 
3223	}
3224	ASSERT(iclog == log->l_iclog);
3225	log->l_iclog = iclog->ic_next;
3226}	/* xlog_state_switch_iclogs */
3227
3228/*
3229 * Write out all data in the in-core log as of this exact moment in time.
3230 *
3231 * Data may be written to the in-core log during this call.  However,
3232 * we don't guarantee this data will be written out.  A change from past
3233 * implementation means this routine will *not* write out zero length LRs.
3234 *
3235 * Basically, we try and perform an intelligent scan of the in-core logs.
3236 * If we determine there is no flushable data, we just return.  There is no
3237 * flushable data if:
3238 *
3239 *	1. the current iclog is active and has no data; the previous iclog
3240 *		is in the active or dirty state.
3241 *	2. the current iclog is drity, and the previous iclog is in the
3242 *		active or dirty state.
3243 *
3244 * We may sleep if:
3245 *
3246 *	1. the current iclog is not in the active nor dirty state.
3247 *	2. the current iclog dirty, and the previous iclog is not in the
3248 *		active nor dirty state.
3249 *	3. the current iclog is active, and there is another thread writing
3250 *		to this particular iclog.
3251 *	4. a) the current iclog is active and has no other writers
3252 *	   b) when we return from flushing out this iclog, it is still
3253 *		not in the active nor dirty state.
3254 */
3255int
3256_xfs_log_force(
3257	struct xfs_mount	*mp,
3258	uint			flags,
3259	int			*log_flushed)
3260{
3261	struct xlog		*log = mp->m_log;
3262	struct xlog_in_core	*iclog;
3263	xfs_lsn_t		lsn;
3264
3265	XFS_STATS_INC(mp, xs_log_force);
3266
3267	xlog_cil_force(log);
3268
3269	spin_lock(&log->l_icloglock);
3270
3271	iclog = log->l_iclog;
3272	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3273		spin_unlock(&log->l_icloglock);
3274		return -EIO;
3275	}
3276
3277	/* If the head iclog is not active nor dirty, we just attach
3278	 * ourselves to the head and go to sleep.
3279	 */
3280	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3281	    iclog->ic_state == XLOG_STATE_DIRTY) {
3282		/*
3283		 * If the head is dirty or (active and empty), then
3284		 * we need to look at the previous iclog.  If the previous
3285		 * iclog is active or dirty we are done.  There is nothing
3286		 * to sync out.  Otherwise, we attach ourselves to the
3287		 * previous iclog and go to sleep.
3288		 */
3289		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3290		    (atomic_read(&iclog->ic_refcnt) == 0
3291		     && iclog->ic_offset == 0)) {
3292			iclog = iclog->ic_prev;
3293			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3294			    iclog->ic_state == XLOG_STATE_DIRTY)
3295				goto no_sleep;
3296			else
3297				goto maybe_sleep;
3298		} else {
3299			if (atomic_read(&iclog->ic_refcnt) == 0) {
3300				/* We are the only one with access to this
3301				 * iclog.  Flush it out now.  There should
3302				 * be a roundoff of zero to show that someone
3303				 * has already taken care of the roundoff from
3304				 * the previous sync.
3305				 */
3306				atomic_inc(&iclog->ic_refcnt);
3307				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3308				xlog_state_switch_iclogs(log, iclog, 0);
3309				spin_unlock(&log->l_icloglock);
3310
3311				if (xlog_state_release_iclog(log, iclog))
3312					return -EIO;
3313
3314				if (log_flushed)
3315					*log_flushed = 1;
3316				spin_lock(&log->l_icloglock);
3317				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3318				    iclog->ic_state != XLOG_STATE_DIRTY)
3319					goto maybe_sleep;
3320				else
3321					goto no_sleep;
3322			} else {
3323				/* Someone else is writing to this iclog.
3324				 * Use its call to flush out the data.  However,
3325				 * the other thread may not force out this LR,
3326				 * so we mark it WANT_SYNC.
3327				 */
3328				xlog_state_switch_iclogs(log, iclog, 0);
3329				goto maybe_sleep;
3330			}
3331		}
3332	}
3333
3334	/* By the time we come around again, the iclog could've been filled
3335	 * which would give it another lsn.  If we have a new lsn, just
3336	 * return because the relevant data has been flushed.
3337	 */
3338maybe_sleep:
3339	if (flags & XFS_LOG_SYNC) {
3340		/*
3341		 * We must check if we're shutting down here, before
3342		 * we wait, while we're holding the l_icloglock.
3343		 * Then we check again after waking up, in case our
3344		 * sleep was disturbed by a bad news.
3345		 */
3346		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3347			spin_unlock(&log->l_icloglock);
3348			return -EIO;
3349		}
3350		XFS_STATS_INC(mp, xs_log_force_sleep);
3351		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3352		/*
3353		 * No need to grab the log lock here since we're
3354		 * only deciding whether or not to return EIO
3355		 * and the memory read should be atomic.
3356		 */
3357		if (iclog->ic_state & XLOG_STATE_IOERROR)
3358			return -EIO;
3359		if (log_flushed)
3360			*log_flushed = 1;
3361	} else {
3362
3363no_sleep:
3364		spin_unlock(&log->l_icloglock);
3365	}
3366	return 0;
3367}
3368
3369/*
3370 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3371 * about errors or whether the log was flushed or not. This is the normal
3372 * interface to use when trying to unpin items or move the log forward.
3373 */
3374void
3375xfs_log_force(
3376	xfs_mount_t	*mp,
3377	uint		flags)
3378{
3379	int	error;
3380
3381	trace_xfs_log_force(mp, 0);
3382	error = _xfs_log_force(mp, flags, NULL);
3383	if (error)
3384		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3385}
3386
3387/*
3388 * Force the in-core log to disk for a specific LSN.
3389 *
3390 * Find in-core log with lsn.
3391 *	If it is in the DIRTY state, just return.
3392 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3393 *		state and go to sleep or return.
3394 *	If it is in any other state, go to sleep or return.
3395 *
3396 * Synchronous forces are implemented with a signal variable. All callers
3397 * to force a given lsn to disk will wait on a the sv attached to the
3398 * specific in-core log.  When given in-core log finally completes its
3399 * write to disk, that thread will wake up all threads waiting on the
3400 * sv.
3401 */
3402int
3403_xfs_log_force_lsn(
3404	struct xfs_mount	*mp,
3405	xfs_lsn_t		lsn,
3406	uint			flags,
3407	int			*log_flushed)
3408{
3409	struct xlog		*log = mp->m_log;
3410	struct xlog_in_core	*iclog;
3411	int			already_slept = 0;
3412
3413	ASSERT(lsn != 0);
3414
3415	XFS_STATS_INC(mp, xs_log_force);
3416
3417	lsn = xlog_cil_force_lsn(log, lsn);
3418	if (lsn == NULLCOMMITLSN)
3419		return 0;
3420
3421try_again:
3422	spin_lock(&log->l_icloglock);
3423	iclog = log->l_iclog;
3424	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3425		spin_unlock(&log->l_icloglock);
3426		return -EIO;
3427	}
3428
3429	do {
3430		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3431			iclog = iclog->ic_next;
3432			continue;
3433		}
3434
3435		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3436			spin_unlock(&log->l_icloglock);
3437			return 0;
3438		}
3439
3440		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3441			/*
3442			 * We sleep here if we haven't already slept (e.g.
3443			 * this is the first time we've looked at the correct
3444			 * iclog buf) and the buffer before us is going to
3445			 * be sync'ed. The reason for this is that if we
3446			 * are doing sync transactions here, by waiting for
3447			 * the previous I/O to complete, we can allow a few
3448			 * more transactions into this iclog before we close
3449			 * it down.
3450			 *
3451			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3452			 * up the refcnt so we can release the log (which
3453			 * drops the ref count).  The state switch keeps new
3454			 * transaction commits from using this buffer.  When
3455			 * the current commits finish writing into the buffer,
3456			 * the refcount will drop to zero and the buffer will
3457			 * go out then.
3458			 */
3459			if (!already_slept &&
3460			    (iclog->ic_prev->ic_state &
3461			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3462				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3463
3464				XFS_STATS_INC(mp, xs_log_force_sleep);
3465
3466				xlog_wait(&iclog->ic_prev->ic_write_wait,
3467							&log->l_icloglock);
3468				if (log_flushed)
3469					*log_flushed = 1;
3470				already_slept = 1;
3471				goto try_again;
3472			}
3473			atomic_inc(&iclog->ic_refcnt);
3474			xlog_state_switch_iclogs(log, iclog, 0);
3475			spin_unlock(&log->l_icloglock);
3476			if (xlog_state_release_iclog(log, iclog))
3477				return -EIO;
3478			if (log_flushed)
3479				*log_flushed = 1;
3480			spin_lock(&log->l_icloglock);
3481		}
3482
3483		if ((flags & XFS_LOG_SYNC) && /* sleep */
3484		    !(iclog->ic_state &
3485		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3486			/*
3487			 * Don't wait on completion if we know that we've
3488			 * gotten a log write error.
3489			 */
3490			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3491				spin_unlock(&log->l_icloglock);
3492				return -EIO;
3493			}
3494			XFS_STATS_INC(mp, xs_log_force_sleep);
3495			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3496			/*
3497			 * No need to grab the log lock here since we're
3498			 * only deciding whether or not to return EIO
3499			 * and the memory read should be atomic.
3500			 */
3501			if (iclog->ic_state & XLOG_STATE_IOERROR)
3502				return -EIO;
3503
3504			if (log_flushed)
3505				*log_flushed = 1;
3506		} else {		/* just return */
3507			spin_unlock(&log->l_icloglock);
3508		}
3509
3510		return 0;
3511	} while (iclog != log->l_iclog);
3512
3513	spin_unlock(&log->l_icloglock);
3514	return 0;
3515}
3516
3517/*
3518 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3519 * about errors or whether the log was flushed or not. This is the normal
3520 * interface to use when trying to unpin items or move the log forward.
3521 */
3522void
3523xfs_log_force_lsn(
3524	xfs_mount_t	*mp,
3525	xfs_lsn_t	lsn,
3526	uint		flags)
3527{
3528	int	error;
3529
3530	trace_xfs_log_force(mp, lsn);
3531	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3532	if (error)
3533		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3534}
3535
3536/*
3537 * Called when we want to mark the current iclog as being ready to sync to
3538 * disk.
3539 */
3540STATIC void
3541xlog_state_want_sync(
3542	struct xlog		*log,
3543	struct xlog_in_core	*iclog)
3544{
3545	assert_spin_locked(&log->l_icloglock);
3546
3547	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3548		xlog_state_switch_iclogs(log, iclog, 0);
3549	} else {
3550		ASSERT(iclog->ic_state &
3551			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3552	}
3553}
3554
3555
3556/*****************************************************************************
3557 *
3558 *		TICKET functions
3559 *
3560 *****************************************************************************
3561 */
3562
3563/*
3564 * Free a used ticket when its refcount falls to zero.
3565 */
3566void
3567xfs_log_ticket_put(
3568	xlog_ticket_t	*ticket)
3569{
3570	ASSERT(atomic_read(&ticket->t_ref) > 0);
3571	if (atomic_dec_and_test(&ticket->t_ref))
3572		kmem_zone_free(xfs_log_ticket_zone, ticket);
3573}
3574
3575xlog_ticket_t *
3576xfs_log_ticket_get(
3577	xlog_ticket_t	*ticket)
3578{
3579	ASSERT(atomic_read(&ticket->t_ref) > 0);
3580	atomic_inc(&ticket->t_ref);
3581	return ticket;
3582}
3583
3584/*
3585 * Figure out the total log space unit (in bytes) that would be
3586 * required for a log ticket.
3587 */
3588int
3589xfs_log_calc_unit_res(
3590	struct xfs_mount	*mp,
3591	int			unit_bytes)
3592{
3593	struct xlog		*log = mp->m_log;
3594	int			iclog_space;
3595	uint			num_headers;
 
 
 
 
 
 
 
 
3596
3597	/*
3598	 * Permanent reservations have up to 'cnt'-1 active log operations
3599	 * in the log.  A unit in this case is the amount of space for one
3600	 * of these log operations.  Normal reservations have a cnt of 1
3601	 * and their unit amount is the total amount of space required.
3602	 *
3603	 * The following lines of code account for non-transaction data
3604	 * which occupy space in the on-disk log.
3605	 *
3606	 * Normal form of a transaction is:
3607	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3608	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3609	 *
3610	 * We need to account for all the leadup data and trailer data
3611	 * around the transaction data.
3612	 * And then we need to account for the worst case in terms of using
3613	 * more space.
3614	 * The worst case will happen if:
3615	 * - the placement of the transaction happens to be such that the
3616	 *   roundoff is at its maximum
3617	 * - the transaction data is synced before the commit record is synced
3618	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3619	 *   Therefore the commit record is in its own Log Record.
3620	 *   This can happen as the commit record is called with its
3621	 *   own region to xlog_write().
3622	 *   This then means that in the worst case, roundoff can happen for
3623	 *   the commit-rec as well.
3624	 *   The commit-rec is smaller than padding in this scenario and so it is
3625	 *   not added separately.
3626	 */
3627
3628	/* for trans header */
3629	unit_bytes += sizeof(xlog_op_header_t);
3630	unit_bytes += sizeof(xfs_trans_header_t);
3631
3632	/* for start-rec */
3633	unit_bytes += sizeof(xlog_op_header_t);
3634
3635	/*
3636	 * for LR headers - the space for data in an iclog is the size minus
3637	 * the space used for the headers. If we use the iclog size, then we
3638	 * undercalculate the number of headers required.
3639	 *
3640	 * Furthermore - the addition of op headers for split-recs might
3641	 * increase the space required enough to require more log and op
3642	 * headers, so take that into account too.
3643	 *
3644	 * IMPORTANT: This reservation makes the assumption that if this
3645	 * transaction is the first in an iclog and hence has the LR headers
3646	 * accounted to it, then the remaining space in the iclog is
3647	 * exclusively for this transaction.  i.e. if the transaction is larger
3648	 * than the iclog, it will be the only thing in that iclog.
3649	 * Fundamentally, this means we must pass the entire log vector to
3650	 * xlog_write to guarantee this.
3651	 */
3652	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3653	num_headers = howmany(unit_bytes, iclog_space);
3654
3655	/* for split-recs - ophdrs added when data split over LRs */
3656	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3657
3658	/* add extra header reservations if we overrun */
3659	while (!num_headers ||
3660	       howmany(unit_bytes, iclog_space) > num_headers) {
3661		unit_bytes += sizeof(xlog_op_header_t);
3662		num_headers++;
3663	}
3664	unit_bytes += log->l_iclog_hsize * num_headers;
3665
3666	/* for commit-rec LR header - note: padding will subsume the ophdr */
3667	unit_bytes += log->l_iclog_hsize;
3668
3669	/* for roundoff padding for transaction data and one for commit record */
3670	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
 
3671		/* log su roundoff */
3672		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3673	} else {
3674		/* BB roundoff */
3675		unit_bytes += 2 * BBSIZE;
3676        }
3677
3678	return unit_bytes;
3679}
3680
3681/*
3682 * Allocate and initialise a new log ticket.
3683 */
3684struct xlog_ticket *
3685xlog_ticket_alloc(
3686	struct xlog		*log,
3687	int			unit_bytes,
3688	int			cnt,
3689	char			client,
3690	bool			permanent,
3691	xfs_km_flags_t		alloc_flags)
3692{
3693	struct xlog_ticket	*tic;
3694	int			unit_res;
3695
3696	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3697	if (!tic)
3698		return NULL;
3699
3700	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3701
3702	atomic_set(&tic->t_ref, 1);
3703	tic->t_task		= current;
3704	INIT_LIST_HEAD(&tic->t_queue);
3705	tic->t_unit_res		= unit_res;
3706	tic->t_curr_res		= unit_res;
3707	tic->t_cnt		= cnt;
3708	tic->t_ocnt		= cnt;
3709	tic->t_tid		= prandom_u32();
3710	tic->t_clientid		= client;
3711	tic->t_flags		= XLOG_TIC_INITED;
3712	tic->t_trans_type	= 0;
3713	if (permanent)
3714		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3715
3716	xlog_tic_reset_res(tic);
3717
3718	return tic;
3719}
3720
3721
3722/******************************************************************************
3723 *
3724 *		Log debug routines
3725 *
3726 ******************************************************************************
3727 */
3728#if defined(DEBUG)
3729/*
3730 * Make sure that the destination ptr is within the valid data region of
3731 * one of the iclogs.  This uses backup pointers stored in a different
3732 * part of the log in case we trash the log structure.
3733 */
3734void
3735xlog_verify_dest_ptr(
3736	struct xlog	*log,
3737	void		*ptr)
3738{
3739	int i;
3740	int good_ptr = 0;
3741
3742	for (i = 0; i < log->l_iclog_bufs; i++) {
3743		if (ptr >= log->l_iclog_bak[i] &&
3744		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3745			good_ptr++;
3746	}
3747
3748	if (!good_ptr)
3749		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3750}
3751
3752/*
3753 * Check to make sure the grant write head didn't just over lap the tail.  If
3754 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3755 * the cycles differ by exactly one and check the byte count.
3756 *
3757 * This check is run unlocked, so can give false positives. Rather than assert
3758 * on failures, use a warn-once flag and a panic tag to allow the admin to
3759 * determine if they want to panic the machine when such an error occurs. For
3760 * debug kernels this will have the same effect as using an assert but, unlinke
3761 * an assert, it can be turned off at runtime.
3762 */
3763STATIC void
3764xlog_verify_grant_tail(
3765	struct xlog	*log)
3766{
3767	int		tail_cycle, tail_blocks;
3768	int		cycle, space;
3769
3770	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3771	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3772	if (tail_cycle != cycle) {
3773		if (cycle - 1 != tail_cycle &&
3774		    !(log->l_flags & XLOG_TAIL_WARN)) {
3775			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3776				"%s: cycle - 1 != tail_cycle", __func__);
3777			log->l_flags |= XLOG_TAIL_WARN;
3778		}
3779
3780		if (space > BBTOB(tail_blocks) &&
3781		    !(log->l_flags & XLOG_TAIL_WARN)) {
3782			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3783				"%s: space > BBTOB(tail_blocks)", __func__);
3784			log->l_flags |= XLOG_TAIL_WARN;
3785		}
3786	}
3787}
3788
3789/* check if it will fit */
3790STATIC void
3791xlog_verify_tail_lsn(
3792	struct xlog		*log,
3793	struct xlog_in_core	*iclog,
3794	xfs_lsn_t		tail_lsn)
3795{
3796    int blocks;
3797
3798    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3799	blocks =
3800	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3801	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3802		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3803    } else {
3804	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3805
3806	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3807		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3808
3809	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3810	if (blocks < BTOBB(iclog->ic_offset) + 1)
3811		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3812    }
3813}	/* xlog_verify_tail_lsn */
3814
3815/*
3816 * Perform a number of checks on the iclog before writing to disk.
3817 *
3818 * 1. Make sure the iclogs are still circular
3819 * 2. Make sure we have a good magic number
3820 * 3. Make sure we don't have magic numbers in the data
3821 * 4. Check fields of each log operation header for:
3822 *	A. Valid client identifier
3823 *	B. tid ptr value falls in valid ptr space (user space code)
3824 *	C. Length in log record header is correct according to the
3825 *		individual operation headers within record.
3826 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3827 *	log, check the preceding blocks of the physical log to make sure all
3828 *	the cycle numbers agree with the current cycle number.
3829 */
3830STATIC void
3831xlog_verify_iclog(
3832	struct xlog		*log,
3833	struct xlog_in_core	*iclog,
3834	int			count,
3835	bool                    syncing)
3836{
3837	xlog_op_header_t	*ophead;
3838	xlog_in_core_t		*icptr;
3839	xlog_in_core_2_t	*xhdr;
3840	void			*base_ptr, *ptr, *p;
3841	ptrdiff_t		field_offset;
 
3842	__uint8_t		clientid;
3843	int			len, i, j, k, op_len;
3844	int			idx;
3845
3846	/* check validity of iclog pointers */
3847	spin_lock(&log->l_icloglock);
3848	icptr = log->l_iclog;
3849	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3850		ASSERT(icptr);
3851
 
 
3852	if (icptr != log->l_iclog)
3853		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3854	spin_unlock(&log->l_icloglock);
3855
3856	/* check log magic numbers */
3857	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3858		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3859
3860	base_ptr = ptr = &iclog->ic_header;
3861	p = &iclog->ic_header;
3862	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3863		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3864			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3865				__func__);
3866	}
3867
3868	/* check fields */
3869	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3870	base_ptr = ptr = iclog->ic_datap;
3871	ophead = ptr;
 
3872	xhdr = iclog->ic_data;
3873	for (i = 0; i < len; i++) {
3874		ophead = ptr;
3875
3876		/* clientid is only 1 byte */
3877		p = &ophead->oh_clientid;
3878		field_offset = p - base_ptr;
3879		if (!syncing || (field_offset & 0x1ff)) {
3880			clientid = ophead->oh_clientid;
3881		} else {
3882			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3883			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3884				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3885				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3886				clientid = xlog_get_client_id(
3887					xhdr[j].hic_xheader.xh_cycle_data[k]);
3888			} else {
3889				clientid = xlog_get_client_id(
3890					iclog->ic_header.h_cycle_data[idx]);
3891			}
3892		}
3893		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3894			xfs_warn(log->l_mp,
3895				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3896				__func__, clientid, ophead,
3897				(unsigned long)field_offset);
3898
3899		/* check length */
3900		p = &ophead->oh_len;
3901		field_offset = p - base_ptr;
3902		if (!syncing || (field_offset & 0x1ff)) {
3903			op_len = be32_to_cpu(ophead->oh_len);
3904		} else {
3905			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3906				    (uintptr_t)iclog->ic_datap);
3907			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3908				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3909				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3910				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3911			} else {
3912				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3913			}
3914		}
3915		ptr += sizeof(xlog_op_header_t) + op_len;
3916	}
3917}	/* xlog_verify_iclog */
3918#endif
3919
3920/*
3921 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3922 */
3923STATIC int
3924xlog_state_ioerror(
3925	struct xlog	*log)
3926{
3927	xlog_in_core_t	*iclog, *ic;
3928
3929	iclog = log->l_iclog;
3930	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3931		/*
3932		 * Mark all the incore logs IOERROR.
3933		 * From now on, no log flushes will result.
3934		 */
3935		ic = iclog;
3936		do {
3937			ic->ic_state = XLOG_STATE_IOERROR;
3938			ic = ic->ic_next;
3939		} while (ic != iclog);
3940		return 0;
3941	}
3942	/*
3943	 * Return non-zero, if state transition has already happened.
3944	 */
3945	return 1;
3946}
3947
3948/*
3949 * This is called from xfs_force_shutdown, when we're forcibly
3950 * shutting down the filesystem, typically because of an IO error.
3951 * Our main objectives here are to make sure that:
3952 *	a. if !logerror, flush the logs to disk. Anything modified
3953 *	   after this is ignored.
3954 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3955 *	   parties to find out, 'atomically'.
3956 *	c. those who're sleeping on log reservations, pinned objects and
3957 *	    other resources get woken up, and be told the bad news.
3958 *	d. nothing new gets queued up after (b) and (c) are done.
3959 *
3960 * Note: for the !logerror case we need to flush the regions held in memory out
3961 * to disk first. This needs to be done before the log is marked as shutdown,
3962 * otherwise the iclog writes will fail.
 
 
 
3963 */
3964int
3965xfs_log_force_umount(
3966	struct xfs_mount	*mp,
3967	int			logerror)
3968{
3969	struct xlog	*log;
3970	int		retval;
3971
3972	log = mp->m_log;
3973
3974	/*
3975	 * If this happens during log recovery, don't worry about
3976	 * locking; the log isn't open for business yet.
3977	 */
3978	if (!log ||
3979	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3980		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3981		if (mp->m_sb_bp)
3982			mp->m_sb_bp->b_flags |= XBF_DONE;
3983		return 0;
3984	}
3985
3986	/*
3987	 * Somebody could've already done the hard work for us.
3988	 * No need to get locks for this.
3989	 */
3990	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3991		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3992		return 1;
3993	}
 
3994
3995	/*
3996	 * Flush all the completed transactions to disk before marking the log
3997	 * being shut down. We need to do it in this order to ensure that
3998	 * completed operations are safely on disk before we shut down, and that
3999	 * we don't have to issue any buffer IO after the shutdown flags are set
4000	 * to guarantee this.
4001	 */
4002	if (!logerror)
4003		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4004
4005	/*
4006	 * mark the filesystem and the as in a shutdown state and wake
4007	 * everybody up to tell them the bad news.
4008	 */
4009	spin_lock(&log->l_icloglock);
4010	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4011	if (mp->m_sb_bp)
4012		mp->m_sb_bp->b_flags |= XBF_DONE;
4013
4014	/*
4015	 * Mark the log and the iclogs with IO error flags to prevent any
4016	 * further log IO from being issued or completed.
 
4017	 */
4018	log->l_flags |= XLOG_IO_ERROR;
4019	retval = xlog_state_ioerror(log);
 
 
 
 
 
 
4020	spin_unlock(&log->l_icloglock);
4021
4022	/*
4023	 * We don't want anybody waiting for log reservations after this. That
4024	 * means we have to wake up everybody queued up on reserveq as well as
4025	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4026	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4027	 * action is protected by the grant locks.
4028	 */
4029	xlog_grant_head_wake_all(&log->l_reserve_head);
4030	xlog_grant_head_wake_all(&log->l_write_head);
4031
 
 
 
 
 
 
 
 
 
 
 
 
4032	/*
4033	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4034	 * as if the log writes were completed. The abort handling in the log
4035	 * item committed callback functions will do this again under lock to
4036	 * avoid races.
4037	 */
4038	wake_up_all(&log->l_cilp->xc_commit_wait);
4039	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4040
4041#ifdef XFSERRORDEBUG
4042	{
4043		xlog_in_core_t	*iclog;
4044
4045		spin_lock(&log->l_icloglock);
4046		iclog = log->l_iclog;
4047		do {
4048			ASSERT(iclog->ic_callback == 0);
4049			iclog = iclog->ic_next;
4050		} while (iclog != log->l_iclog);
4051		spin_unlock(&log->l_icloglock);
4052	}
4053#endif
4054	/* return non-zero if log IOERROR transition had already happened */
4055	return retval;
4056}
4057
4058STATIC int
4059xlog_iclogs_empty(
4060	struct xlog	*log)
4061{
4062	xlog_in_core_t	*iclog;
4063
4064	iclog = log->l_iclog;
4065	do {
4066		/* endianness does not matter here, zero is zero in
4067		 * any language.
4068		 */
4069		if (iclog->ic_header.h_num_logops)
4070			return 0;
4071		iclog = iclog->ic_next;
4072	} while (iclog != log->l_iclog);
4073	return 1;
4074}
4075
4076/*
4077 * Verify that an LSN stamped into a piece of metadata is valid. This is
4078 * intended for use in read verifiers on v5 superblocks.
4079 */
4080bool
4081xfs_log_check_lsn(
4082	struct xfs_mount	*mp,
4083	xfs_lsn_t		lsn)
4084{
4085	struct xlog		*log = mp->m_log;
4086	bool			valid;
4087
4088	/*
4089	 * norecovery mode skips mount-time log processing and unconditionally
4090	 * resets the in-core LSN. We can't validate in this mode, but
4091	 * modifications are not allowed anyways so just return true.
4092	 */
4093	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4094		return true;
4095
4096	/*
4097	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4098	 * handled by recovery and thus safe to ignore here.
4099	 */
4100	if (lsn == NULLCOMMITLSN)
4101		return true;
4102
4103	valid = xlog_valid_lsn(mp->m_log, lsn);
4104
4105	/* warn the user about what's gone wrong before verifier failure */
4106	if (!valid) {
4107		spin_lock(&log->l_icloglock);
4108		xfs_warn(mp,
4109"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4110"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4111			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4112			 log->l_curr_cycle, log->l_curr_block);
4113		spin_unlock(&log->l_icloglock);
4114	}
4115
4116	return valid;
4117}