Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_log.h"
  22#include "xfs_trans.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_mount.h"
 
  26#include "xfs_error.h"
  27#include "xfs_log_priv.h"
  28#include "xfs_buf_item.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_log_recover.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
  36#include "xfs_trace.h"
 
 
 
  37
  38kmem_zone_t	*xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43	struct xlog		*log,
  44	struct xlog_ticket	*ticket,
  45	struct xlog_in_core	**iclog,
  46	xfs_lsn_t		*commitlsnp);
  47
  48STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
  49				xfs_buftarg_t	*log_target,
  50				xfs_daddr_t	blk_offset,
  51				int		num_bblks);
  52STATIC int
  53xlog_space_left(
  54	struct xlog		*log,
  55	atomic64_t		*head);
  56STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
  57STATIC void	 xlog_dealloc_log(xlog_t *log);
 
  58
  59/* local state machine functions */
  60STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  61STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
  62STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
  63				       int		len,
  64				       xlog_in_core_t	**iclog,
  65				       xlog_ticket_t	*ticket,
  66				       int		*continued_write,
  67				       int		*logoffsetp);
  68STATIC int  xlog_state_release_iclog(xlog_t		*log,
  69				     xlog_in_core_t	*iclog);
  70STATIC void xlog_state_switch_iclogs(xlog_t		*log,
  71				     xlog_in_core_t *iclog,
  72				     int		eventual_size);
  73STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
  74
  75STATIC void
  76xlog_grant_push_ail(
  77	struct xlog	*log,
  78	int		need_bytes);
  79STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
  80					   xlog_ticket_t *ticket);
  81STATIC void xlog_ungrant_log_space(xlog_t	 *log,
  82				   xlog_ticket_t *ticket);
  83
  84#if defined(DEBUG)
  85STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
 
 
 
  86STATIC void
  87xlog_verify_grant_tail(
  88	struct xlog	*log);
  89STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
  90				  int count, boolean_t syncing);
  91STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
  92				     xfs_lsn_t tail_lsn);
 
 
 
 
 
 
  93#else
  94#define xlog_verify_dest_ptr(a,b)
  95#define xlog_verify_grant_tail(a)
  96#define xlog_verify_iclog(a,b,c,d)
  97#define xlog_verify_tail_lsn(a,b,c)
  98#endif
  99
 100STATIC int	xlog_iclogs_empty(xlog_t *log);
 
 
 101
 102static void
 103xlog_grant_sub_space(
 104	struct xlog		*log,
 105	atomic64_t		*head,
 106	int			bytes)
 107{
 108	int64_t	head_val = atomic64_read(head);
 109	int64_t new, old;
 110
 111	do {
 112		int	cycle, space;
 113
 114		xlog_crack_grant_head_val(head_val, &cycle, &space);
 115
 116		space -= bytes;
 117		if (space < 0) {
 118			space += log->l_logsize;
 119			cycle--;
 120		}
 121
 122		old = head_val;
 123		new = xlog_assign_grant_head_val(cycle, space);
 124		head_val = atomic64_cmpxchg(head, old, new);
 125	} while (head_val != old);
 126}
 127
 128static void
 129xlog_grant_add_space(
 130	struct xlog		*log,
 131	atomic64_t		*head,
 132	int			bytes)
 133{
 134	int64_t	head_val = atomic64_read(head);
 135	int64_t new, old;
 136
 137	do {
 138		int		tmp;
 139		int		cycle, space;
 140
 141		xlog_crack_grant_head_val(head_val, &cycle, &space);
 142
 143		tmp = log->l_logsize - space;
 144		if (tmp > bytes)
 145			space += bytes;
 146		else {
 147			space = bytes - tmp;
 148			cycle++;
 149		}
 150
 151		old = head_val;
 152		new = xlog_assign_grant_head_val(cycle, space);
 153		head_val = atomic64_cmpxchg(head, old, new);
 154	} while (head_val != old);
 155}
 156
 157STATIC void
 158xlog_grant_head_init(
 159	struct xlog_grant_head	*head)
 160{
 161	xlog_assign_grant_head(&head->grant, 1, 0);
 162	INIT_LIST_HEAD(&head->waiters);
 163	spin_lock_init(&head->lock);
 164}
 165
 166STATIC void
 167xlog_grant_head_wake_all(
 168	struct xlog_grant_head	*head)
 169{
 170	struct xlog_ticket	*tic;
 171
 172	spin_lock(&head->lock);
 173	list_for_each_entry(tic, &head->waiters, t_queue)
 174		wake_up_process(tic->t_task);
 175	spin_unlock(&head->lock);
 176}
 177
 178static inline int
 179xlog_ticket_reservation(
 180	struct xlog		*log,
 181	struct xlog_grant_head	*head,
 182	struct xlog_ticket	*tic)
 183{
 184	if (head == &log->l_write_head) {
 185		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 186		return tic->t_unit_res;
 187	} else {
 188		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 189			return tic->t_unit_res * tic->t_cnt;
 190		else
 191			return tic->t_unit_res;
 192	}
 193}
 194
 195STATIC bool
 196xlog_grant_head_wake(
 197	struct xlog		*log,
 198	struct xlog_grant_head	*head,
 199	int			*free_bytes)
 200{
 201	struct xlog_ticket	*tic;
 202	int			need_bytes;
 
 203
 204	list_for_each_entry(tic, &head->waiters, t_queue) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205		need_bytes = xlog_ticket_reservation(log, head, tic);
 206		if (*free_bytes < need_bytes)
 
 
 207			return false;
 
 208
 209		*free_bytes -= need_bytes;
 210		trace_xfs_log_grant_wake_up(log, tic);
 211		wake_up_process(tic->t_task);
 
 212	}
 213
 214	return true;
 215}
 216
 217STATIC int
 218xlog_grant_head_wait(
 219	struct xlog		*log,
 220	struct xlog_grant_head	*head,
 221	struct xlog_ticket	*tic,
 222	int			need_bytes)
 
 223{
 224	list_add_tail(&tic->t_queue, &head->waiters);
 225
 226	do {
 227		if (XLOG_FORCED_SHUTDOWN(log))
 228			goto shutdown;
 229		xlog_grant_push_ail(log, need_bytes);
 230
 231		__set_current_state(TASK_UNINTERRUPTIBLE);
 232		spin_unlock(&head->lock);
 233
 234		XFS_STATS_INC(xs_sleep_logspace);
 235
 236		trace_xfs_log_grant_sleep(log, tic);
 237		schedule();
 238		trace_xfs_log_grant_wake(log, tic);
 239
 240		spin_lock(&head->lock);
 241		if (XLOG_FORCED_SHUTDOWN(log))
 242			goto shutdown;
 243	} while (xlog_space_left(log, &head->grant) < need_bytes);
 244
 245	list_del_init(&tic->t_queue);
 246	return 0;
 247shutdown:
 248	list_del_init(&tic->t_queue);
 249	return XFS_ERROR(EIO);
 250}
 251
 252/*
 253 * Atomically get the log space required for a log ticket.
 254 *
 255 * Once a ticket gets put onto head->waiters, it will only return after the
 256 * needed reservation is satisfied.
 257 *
 258 * This function is structured so that it has a lock free fast path. This is
 259 * necessary because every new transaction reservation will come through this
 260 * path. Hence any lock will be globally hot if we take it unconditionally on
 261 * every pass.
 262 *
 263 * As tickets are only ever moved on and off head->waiters under head->lock, we
 264 * only need to take that lock if we are going to add the ticket to the queue
 265 * and sleep. We can avoid taking the lock if the ticket was never added to
 266 * head->waiters because the t_queue list head will be empty and we hold the
 267 * only reference to it so it can safely be checked unlocked.
 268 */
 269STATIC int
 270xlog_grant_head_check(
 271	struct xlog		*log,
 272	struct xlog_grant_head	*head,
 273	struct xlog_ticket	*tic,
 274	int			*need_bytes)
 275{
 276	int			free_bytes;
 277	int			error = 0;
 278
 279	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 280
 281	/*
 282	 * If there are other waiters on the queue then give them a chance at
 283	 * logspace before us.  Wake up the first waiters, if we do not wake
 284	 * up all the waiters then go to sleep waiting for more free space,
 285	 * otherwise try to get some space for this transaction.
 286	 */
 287	*need_bytes = xlog_ticket_reservation(log, head, tic);
 288	free_bytes = xlog_space_left(log, &head->grant);
 289	if (!list_empty_careful(&head->waiters)) {
 290		spin_lock(&head->lock);
 291		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 292		    free_bytes < *need_bytes) {
 293			error = xlog_grant_head_wait(log, head, tic,
 294						     *need_bytes);
 295		}
 296		spin_unlock(&head->lock);
 297	} else if (free_bytes < *need_bytes) {
 298		spin_lock(&head->lock);
 299		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 300		spin_unlock(&head->lock);
 301	}
 302
 303	return error;
 304}
 305
 306static void
 307xlog_tic_reset_res(xlog_ticket_t *tic)
 308{
 309	tic->t_res_num = 0;
 310	tic->t_res_arr_sum = 0;
 311	tic->t_res_num_ophdrs = 0;
 312}
 313
 314static void
 315xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 316{
 317	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 318		/* add to overflow and start again */
 319		tic->t_res_o_flow += tic->t_res_arr_sum;
 320		tic->t_res_num = 0;
 321		tic->t_res_arr_sum = 0;
 322	}
 323
 324	tic->t_res_arr[tic->t_res_num].r_len = len;
 325	tic->t_res_arr[tic->t_res_num].r_type = type;
 326	tic->t_res_arr_sum += len;
 327	tic->t_res_num++;
 328}
 329
 330/*
 331 * Replenish the byte reservation required by moving the grant write head.
 332 */
 333int
 334xfs_log_regrant(
 335	struct xfs_mount	*mp,
 336	struct xlog_ticket	*tic)
 337{
 338	struct xlog		*log = mp->m_log;
 339	int			need_bytes;
 340	int			error = 0;
 341
 342	if (XLOG_FORCED_SHUTDOWN(log))
 343		return XFS_ERROR(EIO);
 344
 345	XFS_STATS_INC(xs_try_logspace);
 346
 347	/*
 348	 * This is a new transaction on the ticket, so we need to change the
 349	 * transaction ID so that the next transaction has a different TID in
 350	 * the log. Just add one to the existing tid so that we can see chains
 351	 * of rolling transactions in the log easily.
 352	 */
 353	tic->t_tid++;
 354
 355	xlog_grant_push_ail(log, tic->t_unit_res);
 356
 357	tic->t_curr_res = tic->t_unit_res;
 358	xlog_tic_reset_res(tic);
 359
 360	if (tic->t_cnt > 0)
 361		return 0;
 362
 363	trace_xfs_log_regrant(log, tic);
 364
 365	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 366				      &need_bytes);
 367	if (error)
 368		goto out_error;
 369
 370	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 371	trace_xfs_log_regrant_exit(log, tic);
 372	xlog_verify_grant_tail(log);
 373	return 0;
 374
 375out_error:
 376	/*
 377	 * If we are failing, make sure the ticket doesn't have any current
 378	 * reservations.  We don't want to add this back when the ticket/
 379	 * transaction gets cancelled.
 380	 */
 381	tic->t_curr_res = 0;
 382	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 383	return error;
 384}
 385
 386/*
 387 * Reserve log space and return a ticket corresponding the reservation.
 388 *
 389 * Each reservation is going to reserve extra space for a log record header.
 390 * When writes happen to the on-disk log, we don't subtract the length of the
 391 * log record header from any reservation.  By wasting space in each
 392 * reservation, we prevent over allocation problems.
 393 */
 394int
 395xfs_log_reserve(
 396	struct xfs_mount	*mp,
 397	int		 	unit_bytes,
 398	int		 	cnt,
 399	struct xlog_ticket	**ticp,
 400	__uint8_t	 	client,
 401	bool			permanent,
 402	uint		 	t_type)
 403{
 404	struct xlog		*log = mp->m_log;
 405	struct xlog_ticket	*tic;
 406	int			need_bytes;
 407	int			error = 0;
 408
 409	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 410
 411	if (XLOG_FORCED_SHUTDOWN(log))
 412		return XFS_ERROR(EIO);
 413
 414	XFS_STATS_INC(xs_try_logspace);
 415
 416	ASSERT(*ticp == NULL);
 417	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 418				KM_SLEEP | KM_MAYFAIL);
 419	if (!tic)
 420		return XFS_ERROR(ENOMEM);
 421
 422	tic->t_trans_type = t_type;
 423	*ticp = tic;
 424
 425	xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
 
 426
 427	trace_xfs_log_reserve(log, tic);
 428
 429	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 430				      &need_bytes);
 431	if (error)
 432		goto out_error;
 433
 434	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 436	trace_xfs_log_reserve_exit(log, tic);
 437	xlog_verify_grant_tail(log);
 438	return 0;
 439
 440out_error:
 441	/*
 442	 * If we are failing, make sure the ticket doesn't have any current
 443	 * reservations.  We don't want to add this back when the ticket/
 444	 * transaction gets cancelled.
 445	 */
 446	tic->t_curr_res = 0;
 447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 448	return error;
 449}
 450
 451
 452/*
 453 * NOTES:
 454 *
 455 *	1. currblock field gets updated at startup and after in-core logs
 456 *		marked as with WANT_SYNC.
 457 */
 458
 459/*
 460 * This routine is called when a user of a log manager ticket is done with
 461 * the reservation.  If the ticket was ever used, then a commit record for
 462 * the associated transaction is written out as a log operation header with
 463 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 464 * a given ticket.  If the ticket was one with a permanent reservation, then
 465 * a few operations are done differently.  Permanent reservation tickets by
 466 * default don't release the reservation.  They just commit the current
 467 * transaction with the belief that the reservation is still needed.  A flag
 468 * must be passed in before permanent reservations are actually released.
 469 * When these type of tickets are not released, they need to be set into
 470 * the inited state again.  By doing this, a start record will be written
 471 * out when the next write occurs.
 472 */
 473xfs_lsn_t
 474xfs_log_done(
 475	struct xfs_mount	*mp,
 476	struct xlog_ticket	*ticket,
 477	struct xlog_in_core	**iclog,
 478	uint			flags)
 479{
 480	struct xlog		*log = mp->m_log;
 481	xfs_lsn_t		lsn = 0;
 482
 483	if (XLOG_FORCED_SHUTDOWN(log) ||
 484	    /*
 485	     * If nothing was ever written, don't write out commit record.
 486	     * If we get an error, just continue and give back the log ticket.
 487	     */
 488	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 489	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 490		lsn = (xfs_lsn_t) -1;
 491		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
 492			flags |= XFS_LOG_REL_PERM_RESERV;
 493		}
 494	}
 495
 
 
 
 496
 497	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
 498	    (flags & XFS_LOG_REL_PERM_RESERV)) {
 499		trace_xfs_log_done_nonperm(log, ticket);
 500
 501		/*
 502		 * Release ticket if not permanent reservation or a specific
 503		 * request has been made to release a permanent reservation.
 504		 */
 505		xlog_ungrant_log_space(log, ticket);
 506		xfs_log_ticket_put(ticket);
 507	} else {
 508		trace_xfs_log_done_perm(log, ticket);
 509
 510		xlog_regrant_reserve_log_space(log, ticket);
 511		/* If this ticket was a permanent reservation and we aren't
 512		 * trying to release it, reset the inited flags; so next time
 513		 * we write, a start record will be written out.
 514		 */
 515		ticket->t_flags |= XLOG_TIC_INITED;
 516	}
 517
 518	return lsn;
 
 519}
 520
 521/*
 522 * Attaches a new iclog I/O completion callback routine during
 523 * transaction commit.  If the log is in error state, a non-zero
 524 * return code is handed back and the caller is responsible for
 525 * executing the callback at an appropriate time.
 526 */
 527int
 528xfs_log_notify(
 529	struct xfs_mount	*mp,
 530	struct xlog_in_core	*iclog,
 531	xfs_log_callback_t	*cb)
 532{
 533	int	abortflg;
 534
 535	spin_lock(&iclog->ic_callback_lock);
 536	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 537	if (!abortflg) {
 538		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 539			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 540		cb->cb_next = NULL;
 541		*(iclog->ic_callback_tail) = cb;
 542		iclog->ic_callback_tail = &(cb->cb_next);
 543	}
 544	spin_unlock(&iclog->ic_callback_lock);
 545	return abortflg;
 546}
 547
 548int
 549xfs_log_release_iclog(
 550	struct xfs_mount	*mp,
 551	struct xlog_in_core	*iclog)
 552{
 553	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 554		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 555		return EIO;
 
 
 
 
 556	}
 557
 558	return 0;
 
 559}
 560
 561/*
 562 * Mount a log filesystem
 563 *
 564 * mp		- ubiquitous xfs mount point structure
 565 * log_target	- buftarg of on-disk log device
 566 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 567 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 568 *
 569 * Return error or zero.
 570 */
 571int
 572xfs_log_mount(
 573	xfs_mount_t	*mp,
 574	xfs_buftarg_t	*log_target,
 575	xfs_daddr_t	blk_offset,
 576	int		num_bblks)
 577{
 578	int		error;
 
 
 579
 580	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 581		xfs_notice(mp, "Mounting Filesystem");
 582	else {
 
 583		xfs_notice(mp,
 584"Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
 
 585		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 586	}
 587
 588	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 589	if (IS_ERR(mp->m_log)) {
 590		error = -PTR_ERR(mp->m_log);
 591		goto out;
 592	}
 593
 594	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595	 * Initialize the AIL now we have a log.
 596	 */
 597	error = xfs_trans_ail_init(mp);
 598	if (error) {
 599		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 600		goto out_free_log;
 601	}
 602	mp->m_log->l_ailp = mp->m_ail;
 603
 604	/*
 605	 * skip log recovery on a norecovery mount.  pretend it all
 606	 * just worked.
 607	 */
 608	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 609		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 610
 611		if (readonly)
 612			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 613
 614		error = xlog_recover(mp->m_log);
 615
 616		if (readonly)
 617			mp->m_flags |= XFS_MOUNT_RDONLY;
 618		if (error) {
 619			xfs_warn(mp, "log mount/recovery failed: error %d",
 620				error);
 
 621			goto out_destroy_ail;
 622		}
 623	}
 624
 
 
 
 
 
 625	/* Normal transactions can now occur */
 626	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 627
 628	/*
 629	 * Now the log has been fully initialised and we know were our
 630	 * space grant counters are, we can initialise the permanent ticket
 631	 * needed for delayed logging to work.
 632	 */
 633	xlog_cil_init_post_recovery(mp->m_log);
 634
 635	return 0;
 636
 637out_destroy_ail:
 638	xfs_trans_ail_destroy(mp);
 639out_free_log:
 640	xlog_dealloc_log(mp->m_log);
 641out:
 642	return error;
 643}
 644
 645/*
 646 * Finish the recovery of the file system.  This is separate from
 647 * the xfs_log_mount() call, because it depends on the code in
 648 * xfs_mountfs() to read in the root and real-time bitmap inodes
 649 * between calling xfs_log_mount() and here.
 650 *
 651 * mp		- ubiquitous xfs mount point structure
 
 
 652 */
 653int
 654xfs_log_mount_finish(xfs_mount_t *mp)
 
 655{
 656	int	error;
 
 
 657
 658	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 659		error = xlog_recover_finish(mp->m_log);
 660	else {
 661		error = 0;
 662		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 
 
 
 663	}
 664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	return error;
 666}
 667
 668/*
 669 * Final log writes as part of unmount.
 670 *
 671 * Mark the filesystem clean as unmount happens.  Note that during relocation
 672 * this routine needs to be executed as part of source-bag while the
 673 * deallocation must not be done until source-end.
 674 */
 
 
 
 
 
 
 
 675
 676/*
 677 * Unmount record used to have a string "Unmount filesystem--" in the
 678 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 679 * We just write the magic number now since that particular field isn't
 680 * currently architecture converted and "nUmount" is a bit foo.
 681 * As far as I know, there weren't any dependencies on the old behaviour.
 682 */
 
 
 
 
 
 
 683
 684int
 685xfs_log_unmount_write(xfs_mount_t *mp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686{
 687	xlog_t		 *log = mp->m_log;
 688	xlog_in_core_t	 *iclog;
 689#ifdef DEBUG
 690	xlog_in_core_t	 *first_iclog;
 691#endif
 692	xlog_ticket_t	*tic = NULL;
 693	xfs_lsn_t	 lsn;
 694	int		 error;
 
 
 
 
 
 
 
 
 
 695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696	/*
 697	 * Don't write out unmount record on read-only mounts.
 698	 * Or, if we are doing a forced umount (typically because of IO errors).
 699	 */
 700	if (mp->m_flags & XFS_MOUNT_RDONLY)
 701		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702
 703	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 704	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 
 
 
 705
 706#ifdef DEBUG
 707	first_iclog = iclog = log->l_iclog;
 708	do {
 709		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 710			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 711			ASSERT(iclog->ic_offset == 0);
 712		}
 713		iclog = iclog->ic_next;
 714	} while (iclog != first_iclog);
 715#endif
 716	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 717		error = xfs_log_reserve(mp, 600, 1, &tic,
 718					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 719		if (!error) {
 720			/* the data section must be 32 bit size aligned */
 721			struct {
 722			    __uint16_t magic;
 723			    __uint16_t pad1;
 724			    __uint32_t pad2; /* may as well make it 64 bits */
 725			} magic = {
 726				.magic = XLOG_UNMOUNT_TYPE,
 727			};
 728			struct xfs_log_iovec reg = {
 729				.i_addr = &magic,
 730				.i_len = sizeof(magic),
 731				.i_type = XLOG_REG_TYPE_UNMOUNT,
 732			};
 733			struct xfs_log_vec vec = {
 734				.lv_niovecs = 1,
 735				.lv_iovecp = &reg,
 736			};
 737
 738			/* remove inited flag, and account for space used */
 739			tic->t_flags = 0;
 740			tic->t_curr_res -= sizeof(magic);
 741			error = xlog_write(log, &vec, tic, &lsn,
 742					   NULL, XLOG_UNMOUNT_TRANS);
 743			/*
 744			 * At this point, we're umounting anyway,
 745			 * so there's no point in transitioning log state
 746			 * to IOERROR. Just continue...
 747			 */
 748		}
 749
 750		if (error)
 751			xfs_alert(mp, "%s: unmount record failed", __func__);
 
 
 
 
 
 
 
 
 
 
 752
 
 
 
 
 
 
 
 
 
 753
 754		spin_lock(&log->l_icloglock);
 755		iclog = log->l_iclog;
 756		atomic_inc(&iclog->ic_refcnt);
 757		xlog_state_want_sync(log, iclog);
 758		spin_unlock(&log->l_icloglock);
 759		error = xlog_state_release_iclog(log, iclog);
 760
 761		spin_lock(&log->l_icloglock);
 762		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 763		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 764			if (!XLOG_FORCED_SHUTDOWN(log)) {
 765				xlog_wait(&iclog->ic_force_wait,
 766							&log->l_icloglock);
 767			} else {
 768				spin_unlock(&log->l_icloglock);
 769			}
 770		} else {
 771			spin_unlock(&log->l_icloglock);
 772		}
 773		if (tic) {
 774			trace_xfs_log_umount_write(log, tic);
 775			xlog_ungrant_log_space(log, tic);
 776			xfs_log_ticket_put(tic);
 777		}
 778	} else {
 779		/*
 780		 * We're already in forced_shutdown mode, couldn't
 781		 * even attempt to write out the unmount transaction.
 782		 *
 783		 * Go through the motions of sync'ing and releasing
 784		 * the iclog, even though no I/O will actually happen,
 785		 * we need to wait for other log I/Os that may already
 786		 * be in progress.  Do this as a separate section of
 787		 * code so we'll know if we ever get stuck here that
 788		 * we're in this odd situation of trying to unmount
 789		 * a file system that went into forced_shutdown as
 790		 * the result of an unmount..
 791		 */
 792		spin_lock(&log->l_icloglock);
 793		iclog = log->l_iclog;
 794		atomic_inc(&iclog->ic_refcnt);
 795
 796		xlog_state_want_sync(log, iclog);
 797		spin_unlock(&log->l_icloglock);
 798		error =  xlog_state_release_iclog(log, iclog);
 
 
 
 
 
 
 
 
 
 799
 800		spin_lock(&log->l_icloglock);
 
 
 801
 802		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 803			|| iclog->ic_state == XLOG_STATE_DIRTY
 804			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806				xlog_wait(&iclog->ic_force_wait,
 807							&log->l_icloglock);
 808		} else {
 809			spin_unlock(&log->l_icloglock);
 810		}
 811	}
 
 
 
 
 
 812
 813	return error;
 814}	/* xfs_log_unmount_write */
 815
 816/*
 817 * Deallocate log structures for unmount/relocation.
 818 *
 819 * We need to stop the aild from running before we destroy
 820 * and deallocate the log as the aild references the log.
 
 821 */
 822void
 823xfs_log_unmount(xfs_mount_t *mp)
 
 824{
 825	cancel_delayed_work_sync(&mp->m_sync_work);
 
 826	xfs_trans_ail_destroy(mp);
 
 
 
 827	xlog_dealloc_log(mp->m_log);
 828}
 829
 830void
 831xfs_log_item_init(
 832	struct xfs_mount	*mp,
 833	struct xfs_log_item	*item,
 834	int			type,
 835	const struct xfs_item_ops *ops)
 836{
 837	item->li_mountp = mp;
 838	item->li_ailp = mp->m_ail;
 839	item->li_type = type;
 840	item->li_ops = ops;
 841	item->li_lv = NULL;
 842
 843	INIT_LIST_HEAD(&item->li_ail);
 844	INIT_LIST_HEAD(&item->li_cil);
 
 
 845}
 846
 847/*
 848 * Wake up processes waiting for log space after we have moved the log tail.
 849 */
 850void
 851xfs_log_space_wake(
 852	struct xfs_mount	*mp)
 853{
 854	struct xlog		*log = mp->m_log;
 855	int			free_bytes;
 856
 857	if (XLOG_FORCED_SHUTDOWN(log))
 858		return;
 859
 860	if (!list_empty_careful(&log->l_write_head.waiters)) {
 861		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 862
 863		spin_lock(&log->l_write_head.lock);
 864		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
 865		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
 866		spin_unlock(&log->l_write_head.lock);
 867	}
 868
 869	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
 870		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 871
 872		spin_lock(&log->l_reserve_head.lock);
 873		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
 874		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
 875		spin_unlock(&log->l_reserve_head.lock);
 876	}
 877}
 878
 879/*
 880 * Determine if we have a transaction that has gone to disk
 881 * that needs to be covered. To begin the transition to the idle state
 882 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
 883 * If we are then in a state where covering is needed, the caller is informed
 884 * that dummy transactions are required to move the log into the idle state.
 885 *
 886 * Because this is called as part of the sync process, we should also indicate
 887 * that dummy transactions should be issued in anything but the covered or
 888 * idle states. This ensures that the log tail is accurately reflected in
 889 * the log at the end of the sync, hence if a crash occurrs avoids replay
 890 * of transactions where the metadata is already on disk.
 
 
 
 
 891 */
 892int
 893xfs_log_need_covered(xfs_mount_t *mp)
 894{
 
 895	int		needed = 0;
 896	xlog_t		*log = mp->m_log;
 897
 898	if (!xfs_fs_writable(mp))
 
 
 
 899		return 0;
 900
 901	spin_lock(&log->l_icloglock);
 902	switch (log->l_covered_state) {
 903	case XLOG_STATE_COVER_DONE:
 904	case XLOG_STATE_COVER_DONE2:
 905	case XLOG_STATE_COVER_IDLE:
 906		break;
 907	case XLOG_STATE_COVER_NEED:
 908	case XLOG_STATE_COVER_NEED2:
 909		if (!xfs_ail_min_lsn(log->l_ailp) &&
 910		    xlog_iclogs_empty(log)) {
 911			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
 912				log->l_covered_state = XLOG_STATE_COVER_DONE;
 913			else
 914				log->l_covered_state = XLOG_STATE_COVER_DONE2;
 915		}
 916		/* FALLTHRU */
 
 
 
 917	default:
 918		needed = 1;
 919		break;
 920	}
 921	spin_unlock(&log->l_icloglock);
 922	return needed;
 923}
 924
 925/*
 926 * We may be holding the log iclog lock upon entering this routine.
 927 */
 928xfs_lsn_t
 929xlog_assign_tail_lsn_locked(
 930	struct xfs_mount	*mp)
 931{
 932	struct xlog		*log = mp->m_log;
 933	struct xfs_log_item	*lip;
 934	xfs_lsn_t		tail_lsn;
 935
 936	assert_spin_locked(&mp->m_ail->xa_lock);
 937
 938	/*
 939	 * To make sure we always have a valid LSN for the log tail we keep
 940	 * track of the last LSN which was committed in log->l_last_sync_lsn,
 941	 * and use that when the AIL was empty.
 942	 */
 943	lip = xfs_ail_min(mp->m_ail);
 944	if (lip)
 945		tail_lsn = lip->li_lsn;
 946	else
 947		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
 
 948	atomic64_set(&log->l_tail_lsn, tail_lsn);
 949	return tail_lsn;
 950}
 951
 952xfs_lsn_t
 953xlog_assign_tail_lsn(
 954	struct xfs_mount	*mp)
 955{
 956	xfs_lsn_t		tail_lsn;
 957
 958	spin_lock(&mp->m_ail->xa_lock);
 959	tail_lsn = xlog_assign_tail_lsn_locked(mp);
 960	spin_unlock(&mp->m_ail->xa_lock);
 961
 962	return tail_lsn;
 963}
 964
 965/*
 966 * Return the space in the log between the tail and the head.  The head
 967 * is passed in the cycle/bytes formal parms.  In the special case where
 968 * the reserve head has wrapped passed the tail, this calculation is no
 969 * longer valid.  In this case, just return 0 which means there is no space
 970 * in the log.  This works for all places where this function is called
 971 * with the reserve head.  Of course, if the write head were to ever
 972 * wrap the tail, we should blow up.  Rather than catch this case here,
 973 * we depend on other ASSERTions in other parts of the code.   XXXmiken
 974 *
 975 * This code also handles the case where the reservation head is behind
 976 * the tail.  The details of this case are described below, but the end
 977 * result is that we return the size of the log as the amount of space left.
 978 */
 979STATIC int
 980xlog_space_left(
 981	struct xlog	*log,
 982	atomic64_t	*head)
 983{
 984	int		free_bytes;
 985	int		tail_bytes;
 986	int		tail_cycle;
 987	int		head_cycle;
 988	int		head_bytes;
 989
 990	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
 991	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
 992	tail_bytes = BBTOB(tail_bytes);
 993	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
 994		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
 995	else if (tail_cycle + 1 < head_cycle)
 996		return 0;
 997	else if (tail_cycle < head_cycle) {
 998		ASSERT(tail_cycle == (head_cycle - 1));
 999		free_bytes = tail_bytes - head_bytes;
1000	} else {
1001		/*
1002		 * The reservation head is behind the tail.
1003		 * In this case we just want to return the size of the
1004		 * log as the amount of space left.
1005		 */
 
 
 
 
1006		xfs_alert(log->l_mp,
1007			"xlog_space_left: head behind tail\n"
1008			"  tail_cycle = %d, tail_bytes = %d\n"
1009			"  GH   cycle = %d, GH   bytes = %d",
1010			tail_cycle, tail_bytes, head_cycle, head_bytes);
1011		ASSERT(0);
1012		free_bytes = log->l_logsize;
1013	}
1014	return free_bytes;
1015}
1016
1017
1018/*
1019 * Log function which is called when an io completes.
1020 *
1021 * The log manager needs its own routine, in order to control what
1022 * happens with the buffer after the write completes.
1023 */
1024void
1025xlog_iodone(xfs_buf_t *bp)
1026{
1027	xlog_in_core_t	*iclog = bp->b_fspriv;
1028	xlog_t		*l = iclog->ic_log;
1029	int		aborted = 0;
 
 
 
 
 
 
 
 
1030
1031	/*
1032	 * Race to shutdown the filesystem if we see an error.
1033	 */
1034	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1035			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1036		xfs_buf_ioerror_alert(bp, __func__);
1037		xfs_buf_stale(bp);
1038		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1039		/*
1040		 * This flag will be propagated to the trans-committed
1041		 * callback routines to let them know that the log-commit
1042		 * didn't succeed.
1043		 */
1044		aborted = XFS_LI_ABORTED;
1045	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1046		aborted = XFS_LI_ABORTED;
1047	}
1048
1049	/* log I/O is always issued ASYNC */
1050	ASSERT(XFS_BUF_ISASYNC(bp));
1051	xlog_state_done_syncing(iclog, aborted);
1052	/*
1053	 * do not reference the buffer (bp) here as we could race
1054	 * with it being freed after writing the unmount record to the
1055	 * log.
 
1056	 */
1057
1058}	/* xlog_iodone */
1059
1060/*
1061 * Return size of each in-core log record buffer.
1062 *
1063 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1064 *
1065 * If the filesystem blocksize is too large, we may need to choose a
1066 * larger size since the directory code currently logs entire blocks.
1067 */
1068
1069STATIC void
1070xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
1071			   xlog_t	*log)
 
1072{
1073	int size;
1074	int xhdrs;
1075
1076	if (mp->m_logbufs <= 0)
1077		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1078	else
1079		log->l_iclog_bufs = mp->m_logbufs;
 
 
 
1080
1081	/*
1082	 * Buffer size passed in from mount system call.
1083	 */
1084	if (mp->m_logbsize > 0) {
1085		size = log->l_iclog_size = mp->m_logbsize;
1086		log->l_iclog_size_log = 0;
1087		while (size != 1) {
1088			log->l_iclog_size_log++;
1089			size >>= 1;
1090		}
1091
1092		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1093			/* # headers = size / 32k
1094			 * one header holds cycles from 32k of data
1095			 */
 
 
 
1096
1097			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1098			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1099				xhdrs++;
1100			log->l_iclog_hsize = xhdrs << BBSHIFT;
1101			log->l_iclog_heads = xhdrs;
1102		} else {
1103			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1104			log->l_iclog_hsize = BBSIZE;
1105			log->l_iclog_heads = 1;
1106		}
1107		goto done;
1108	}
1109
1110	/* All machines use 32kB buffers by default. */
1111	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1112	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1113
1114	/* the default log size is 16k or 32k which is one header sector */
1115	log->l_iclog_hsize = BBSIZE;
1116	log->l_iclog_heads = 1;
1117
1118done:
1119	/* are we being asked to make the sizes selected above visible? */
1120	if (mp->m_logbufs == 0)
1121		mp->m_logbufs = log->l_iclog_bufs;
1122	if (mp->m_logbsize == 0)
1123		mp->m_logbsize = log->l_iclog_size;
1124}	/* xlog_get_iclog_buffer_size */
1125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126
1127/*
1128 * This routine initializes some of the log structure for a given mount point.
1129 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1130 * some other stuff may be filled in too.
1131 */
1132STATIC xlog_t *
1133xlog_alloc_log(xfs_mount_t	*mp,
1134	       xfs_buftarg_t	*log_target,
1135	       xfs_daddr_t	blk_offset,
1136	       int		num_bblks)
 
1137{
1138	xlog_t			*log;
1139	xlog_rec_header_t	*head;
1140	xlog_in_core_t		**iclogp;
1141	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1142	xfs_buf_t		*bp;
1143	int			i;
1144	int			error = ENOMEM;
1145	uint			log2_size = 0;
1146
1147	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1148	if (!log) {
1149		xfs_warn(mp, "Log allocation failed: No memory!");
1150		goto out;
1151	}
1152
1153	log->l_mp	   = mp;
1154	log->l_targ	   = log_target;
1155	log->l_logsize     = BBTOB(num_bblks);
1156	log->l_logBBstart  = blk_offset;
1157	log->l_logBBsize   = num_bblks;
1158	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1159	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
 
1160
1161	log->l_prev_block  = -1;
1162	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1163	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1164	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1165	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1166
1167	xlog_grant_head_init(&log->l_reserve_head);
1168	xlog_grant_head_init(&log->l_write_head);
1169
1170	error = EFSCORRUPTED;
1171	if (xfs_sb_version_hassector(&mp->m_sb)) {
1172	        log2_size = mp->m_sb.sb_logsectlog;
1173		if (log2_size < BBSHIFT) {
1174			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1175				log2_size, BBSHIFT);
1176			goto out_free_log;
1177		}
1178
1179	        log2_size -= BBSHIFT;
1180		if (log2_size > mp->m_sectbb_log) {
1181			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1182				log2_size, mp->m_sectbb_log);
1183			goto out_free_log;
1184		}
1185
1186		/* for larger sector sizes, must have v2 or external log */
1187		if (log2_size && log->l_logBBstart > 0 &&
1188			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1189			xfs_warn(mp,
1190		"log sector size (0x%x) invalid for configuration.",
1191				log2_size);
1192			goto out_free_log;
1193		}
1194	}
1195	log->l_sectBBsize = 1 << log2_size;
1196
1197	xlog_get_iclog_buffer_size(mp, log);
1198
1199	error = ENOMEM;
1200	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1201	if (!bp)
1202		goto out_free_log;
1203	bp->b_iodone = xlog_iodone;
1204	ASSERT(xfs_buf_islocked(bp));
1205	log->l_xbuf = bp;
1206
1207	spin_lock_init(&log->l_icloglock);
1208	init_waitqueue_head(&log->l_flush_wait);
1209
1210	iclogp = &log->l_iclog;
1211	/*
1212	 * The amount of memory to allocate for the iclog structure is
1213	 * rather funky due to the way the structure is defined.  It is
1214	 * done this way so that we can use different sizes for machines
1215	 * with different amounts of memory.  See the definition of
1216	 * xlog_in_core_t in xfs_log_priv.h for details.
1217	 */
1218	ASSERT(log->l_iclog_size >= 4096);
1219	for (i=0; i < log->l_iclog_bufs; i++) {
1220		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1221		if (!*iclogp)
 
 
 
 
1222			goto out_free_iclog;
1223
1224		iclog = *iclogp;
1225		iclog->ic_prev = prev_iclog;
1226		prev_iclog = iclog;
1227
1228		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1229						BTOBB(log->l_iclog_size), 0);
1230		if (!bp)
1231			goto out_free_iclog;
1232
1233		bp->b_iodone = xlog_iodone;
1234		iclog->ic_bp = bp;
1235		iclog->ic_data = bp->b_addr;
1236#ifdef DEBUG
1237		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1238#endif
1239		head = &iclog->ic_header;
1240		memset(head, 0, sizeof(xlog_rec_header_t));
1241		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1242		head->h_version = cpu_to_be32(
1243			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1244		head->h_size = cpu_to_be32(log->l_iclog_size);
1245		/* new fields */
1246		head->h_fmt = cpu_to_be32(XLOG_FMT);
1247		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1248
1249		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1250		iclog->ic_state = XLOG_STATE_ACTIVE;
1251		iclog->ic_log = log;
1252		atomic_set(&iclog->ic_refcnt, 0);
1253		spin_lock_init(&iclog->ic_callback_lock);
1254		iclog->ic_callback_tail = &(iclog->ic_callback);
1255		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1256
1257		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1258		init_waitqueue_head(&iclog->ic_force_wait);
1259		init_waitqueue_head(&iclog->ic_write_wait);
 
 
1260
1261		iclogp = &iclog->ic_next;
1262	}
1263	*iclogp = log->l_iclog;			/* complete ring */
1264	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1265
 
 
 
 
 
 
1266	error = xlog_cil_init(log);
1267	if (error)
1268		goto out_free_iclog;
1269	return log;
1270
 
 
1271out_free_iclog:
1272	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1273		prev_iclog = iclog->ic_next;
1274		if (iclog->ic_bp)
1275			xfs_buf_free(iclog->ic_bp);
1276		kmem_free(iclog);
 
 
1277	}
1278	spinlock_destroy(&log->l_icloglock);
1279	xfs_buf_free(log->l_xbuf);
1280out_free_log:
1281	kmem_free(log);
1282out:
1283	return ERR_PTR(-error);
1284}	/* xlog_alloc_log */
1285
1286
1287/*
1288 * Write out the commit record of a transaction associated with the given
1289 * ticket.  Return the lsn of the commit record.
1290 */
1291STATIC int
1292xlog_commit_record(
1293	struct xlog		*log,
1294	struct xlog_ticket	*ticket,
1295	struct xlog_in_core	**iclog,
1296	xfs_lsn_t		*commitlsnp)
1297{
1298	struct xfs_mount *mp = log->l_mp;
1299	int	error;
1300	struct xfs_log_iovec reg = {
1301		.i_addr = NULL,
1302		.i_len = 0,
1303		.i_type = XLOG_REG_TYPE_COMMIT,
1304	};
1305	struct xfs_log_vec vec = {
1306		.lv_niovecs = 1,
1307		.lv_iovecp = &reg,
1308	};
 
1309
1310	ASSERT_ALWAYS(iclog);
1311	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1312					XLOG_COMMIT_TRANS);
 
 
1313	if (error)
1314		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1315	return error;
1316}
1317
1318/*
1319 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1320 * log space.  This code pushes on the lsn which would supposedly free up
1321 * the 25% which we want to leave free.  We may need to adopt a policy which
1322 * pushes on an lsn which is further along in the log once we reach the high
1323 * water mark.  In this manner, we would be creating a low water mark.
1324 */
1325STATIC void
1326xlog_grant_push_ail(
1327	struct xlog	*log,
1328	int		need_bytes)
1329{
1330	xfs_lsn_t	threshold_lsn = 0;
1331	xfs_lsn_t	last_sync_lsn;
1332	int		free_blocks;
1333	int		free_bytes;
1334	int		threshold_block;
1335	int		threshold_cycle;
1336	int		free_threshold;
1337
1338	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1339
1340	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1341	free_blocks = BTOBBT(free_bytes);
1342
1343	/*
1344	 * Set the threshold for the minimum number of free blocks in the
1345	 * log to the maximum of what the caller needs, one quarter of the
1346	 * log, and 256 blocks.
1347	 */
1348	free_threshold = BTOBB(need_bytes);
1349	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1350	free_threshold = MAX(free_threshold, 256);
1351	if (free_blocks >= free_threshold)
1352		return;
1353
1354	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1355						&threshold_block);
1356	threshold_block += free_threshold;
1357	if (threshold_block >= log->l_logBBsize) {
1358		threshold_block -= log->l_logBBsize;
1359		threshold_cycle += 1;
1360	}
1361	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1362					threshold_block);
1363	/*
1364	 * Don't pass in an lsn greater than the lsn of the last
1365	 * log record known to be on disk. Use a snapshot of the last sync lsn
1366	 * so that it doesn't change between the compare and the set.
1367	 */
1368	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1369	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1370		threshold_lsn = last_sync_lsn;
1371
1372	/*
1373	 * Get the transaction layer to kick the dirty buffers out to
1374	 * disk asynchronously. No point in trying to do this if
1375	 * the filesystem is shutting down.
1376	 */
1377	if (!XLOG_FORCED_SHUTDOWN(log))
1378		xfs_ail_push(log->l_ailp, threshold_lsn);
1379}
1380
1381/*
1382 * The bdstrat callback function for log bufs. This gives us a central
1383 * place to trap bufs in case we get hit by a log I/O error and need to
1384 * shutdown. Actually, in practice, even when we didn't get a log error,
1385 * we transition the iclogs to IOERROR state *after* flushing all existing
1386 * iclogs to disk. This is because we don't want anymore new transactions to be
1387 * started or completed afterwards.
1388 */
1389STATIC int
1390xlog_bdstrat(
1391	struct xfs_buf		*bp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392{
1393	struct xlog_in_core	*iclog = bp->b_fspriv;
 
 
 
 
1394
1395	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1396		xfs_buf_ioerror(bp, EIO);
1397		xfs_buf_stale(bp);
1398		xfs_buf_ioend(bp, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399		/*
1400		 * It would seem logical to return EIO here, but we rely on
1401		 * the log state machine to propagate I/O errors instead of
1402		 * doing it here.
 
 
1403		 */
1404		return 0;
 
 
1405	}
1406
1407	xfs_buf_iorequest(bp);
1408	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409}
1410
1411/*
1412 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1413 * fashion.  Previously, we should have moved the current iclog
1414 * ptr in the log to point to the next available iclog.  This allows further
1415 * write to continue while this code syncs out an iclog ready to go.
1416 * Before an in-core log can be written out, the data section must be scanned
1417 * to save away the 1st word of each BBSIZE block into the header.  We replace
1418 * it with the current cycle count.  Each BBSIZE block is tagged with the
1419 * cycle count because there in an implicit assumption that drives will
1420 * guarantee that entire 512 byte blocks get written at once.  In other words,
1421 * we can't have part of a 512 byte block written and part not written.  By
1422 * tagging each block, we will know which blocks are valid when recovering
1423 * after an unclean shutdown.
1424 *
1425 * This routine is single threaded on the iclog.  No other thread can be in
1426 * this routine with the same iclog.  Changing contents of iclog can there-
1427 * fore be done without grabbing the state machine lock.  Updating the global
1428 * log will require grabbing the lock though.
1429 *
1430 * The entire log manager uses a logical block numbering scheme.  Only
1431 * log_sync (and then only bwrite()) know about the fact that the log may
1432 * not start with block zero on a given device.  The log block start offset
1433 * is added immediately before calling bwrite().
1434 */
1435
1436STATIC int
1437xlog_sync(xlog_t		*log,
1438	  xlog_in_core_t	*iclog)
1439{
1440	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1441	xfs_buf_t	*bp;
1442	int		i;
1443	uint		count;		/* byte count of bwrite */
1444	uint		count_init;	/* initial count before roundup */
1445	int		roundoff;       /* roundoff to BB or stripe */
1446	int		split = 0;	/* split write into two regions */
1447	int		error;
1448	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1449
1450	XFS_STATS_INC(xs_log_writes);
1451	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1452
1453	/* Add for LR header */
1454	count_init = log->l_iclog_hsize + iclog->ic_offset;
1455
1456	/* Round out the log write size */
1457	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1458		/* we have a v2 stripe unit to use */
1459		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1460	} else {
1461		count = BBTOB(BTOBB(count_init));
1462	}
1463	roundoff = count - count_init;
1464	ASSERT(roundoff >= 0);
1465	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1466                roundoff < log->l_mp->m_sb.sb_logsunit)
1467		|| 
1468		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1469		 roundoff < BBTOB(1)));
1470
1471	/* move grant heads by roundoff in sync */
1472	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1473	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1474
1475	/* put cycle number in every block */
1476	xlog_pack_data(log, iclog, roundoff); 
1477
1478	/* real byte length */
1479	if (v2) {
1480		iclog->ic_header.h_len =
1481			cpu_to_be32(iclog->ic_offset + roundoff);
1482	} else {
1483		iclog->ic_header.h_len =
1484			cpu_to_be32(iclog->ic_offset);
1485	}
1486
1487	bp = iclog->ic_bp;
1488	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1489
1490	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1491
1492	/* Do we need to split this write into 2 parts? */
1493	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1494		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1495		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1496		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1497	} else {
1498		iclog->ic_bwritecnt = 1;
1499	}
1500	bp->b_io_length = BTOBB(count);
1501	bp->b_fspriv = iclog;
1502	XFS_BUF_ZEROFLAGS(bp);
1503	XFS_BUF_ASYNC(bp);
1504	bp->b_flags |= XBF_SYNCIO;
1505
1506	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1507		bp->b_flags |= XBF_FUA;
1508
1509		/*
1510		 * Flush the data device before flushing the log to make
1511		 * sure all meta data written back from the AIL actually made
1512		 * it to disk before stamping the new log tail LSN into the
1513		 * log buffer.  For an external log we need to issue the
1514		 * flush explicitly, and unfortunately synchronously here;
1515		 * for an internal log we can simply use the block layer
1516		 * state machine for preflushes.
1517		 */
1518		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1519			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1520		else
1521			bp->b_flags |= XBF_FLUSH;
 
1522	}
 
1523
1524	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1525	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1526
1527	xlog_verify_iclog(log, iclog, count, B_TRUE);
1528
1529	/* account for log which doesn't start at block #0 */
1530	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1531	/*
1532	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1533	 * is shutting down.
1534	 */
1535	XFS_BUF_WRITE(bp);
1536
1537	error = xlog_bdstrat(bp);
1538	if (error) {
1539		xfs_buf_ioerror_alert(bp, "xlog_sync");
1540		return error;
 
1541	}
1542	if (split) {
1543		bp = iclog->ic_log->l_xbuf;
1544		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1545		xfs_buf_associate_memory(bp,
1546				(char *)&iclog->ic_header + count, split);
1547		bp->b_fspriv = iclog;
1548		XFS_BUF_ZEROFLAGS(bp);
1549		XFS_BUF_ASYNC(bp);
1550		bp->b_flags |= XBF_SYNCIO;
1551		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1552			bp->b_flags |= XBF_FUA;
1553		dptr = bp->b_addr;
1554		/*
1555		 * Bump the cycle numbers at the start of each block
1556		 * since this part of the buffer is at the start of
1557		 * a new cycle.  Watch out for the header magic number
1558		 * case, though.
1559		 */
1560		for (i = 0; i < split; i += BBSIZE) {
1561			be32_add_cpu((__be32 *)dptr, 1);
1562			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1563				be32_add_cpu((__be32 *)dptr, 1);
1564			dptr += BBSIZE;
1565		}
1566
1567		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1568		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1569
1570		/* account for internal log which doesn't start at block #0 */
1571		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1572		XFS_BUF_WRITE(bp);
1573		error = xlog_bdstrat(bp);
1574		if (error) {
1575			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1576			return error;
1577		}
1578	}
1579	return 0;
1580}	/* xlog_sync */
1581
 
 
 
1582
1583/*
1584 * Deallocate a log structure
1585 */
1586STATIC void
1587xlog_dealloc_log(xlog_t *log)
 
1588{
1589	xlog_in_core_t	*iclog, *next_iclog;
1590	int		i;
1591
1592	xlog_cil_destroy(log);
1593
1594	/*
1595	 * always need to ensure that the extra buffer does not point to memory
1596	 * owned by another log buffer before we free it.
1597	 */
1598	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1599	xfs_buf_free(log->l_xbuf);
 
 
 
 
1600
1601	iclog = log->l_iclog;
1602	for (i=0; i<log->l_iclog_bufs; i++) {
1603		xfs_buf_free(iclog->ic_bp);
1604		next_iclog = iclog->ic_next;
 
1605		kmem_free(iclog);
1606		iclog = next_iclog;
1607	}
1608	spinlock_destroy(&log->l_icloglock);
1609
1610	log->l_mp->m_log = NULL;
 
1611	kmem_free(log);
1612}	/* xlog_dealloc_log */
1613
1614/*
1615 * Update counters atomically now that memcpy is done.
1616 */
1617/* ARGSUSED */
1618static inline void
1619xlog_state_finish_copy(xlog_t		*log,
1620		       xlog_in_core_t	*iclog,
1621		       int		record_cnt,
1622		       int		copy_bytes)
 
1623{
1624	spin_lock(&log->l_icloglock);
1625
1626	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1627	iclog->ic_offset += copy_bytes;
1628
1629	spin_unlock(&log->l_icloglock);
1630}	/* xlog_state_finish_copy */
1631
1632
1633
1634
1635/*
1636 * print out info relating to regions written which consume
1637 * the reservation
1638 */
1639void
1640xlog_print_tic_res(
1641	struct xfs_mount	*mp,
1642	struct xlog_ticket	*ticket)
1643{
1644	uint i;
1645	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1646
1647	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1648	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1649	    "bformat",
1650	    "bchunk",
1651	    "efi_format",
1652	    "efd_format",
1653	    "iformat",
1654	    "icore",
1655	    "iext",
1656	    "ibroot",
1657	    "ilocal",
1658	    "iattr_ext",
1659	    "iattr_broot",
1660	    "iattr_local",
1661	    "qformat",
1662	    "dquot",
1663	    "quotaoff",
1664	    "LR header",
1665	    "unmount",
1666	    "commit",
1667	    "trans header"
1668	};
1669	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1670	    "SETATTR_NOT_SIZE",
1671	    "SETATTR_SIZE",
1672	    "INACTIVE",
1673	    "CREATE",
1674	    "CREATE_TRUNC",
1675	    "TRUNCATE_FILE",
1676	    "REMOVE",
1677	    "LINK",
1678	    "RENAME",
1679	    "MKDIR",
1680	    "RMDIR",
1681	    "SYMLINK",
1682	    "SET_DMATTRS",
1683	    "GROWFS",
1684	    "STRAT_WRITE",
1685	    "DIOSTRAT",
1686	    "WRITE_SYNC",
1687	    "WRITEID",
1688	    "ADDAFORK",
1689	    "ATTRINVAL",
1690	    "ATRUNCATE",
1691	    "ATTR_SET",
1692	    "ATTR_RM",
1693	    "ATTR_FLAG",
1694	    "CLEAR_AGI_BUCKET",
1695	    "QM_SBCHANGE",
1696	    "DUMMY1",
1697	    "DUMMY2",
1698	    "QM_QUOTAOFF",
1699	    "QM_DQALLOC",
1700	    "QM_SETQLIM",
1701	    "QM_DQCLUSTER",
1702	    "QM_QINOCREATE",
1703	    "QM_QUOTAOFF_END",
1704	    "SB_UNIT",
1705	    "FSYNC_TS",
1706	    "GROWFSRT_ALLOC",
1707	    "GROWFSRT_ZERO",
1708	    "GROWFSRT_FREE",
1709	    "SWAPEXT"
1710	};
 
 
1711
1712	xfs_warn(mp,
1713		"xlog_write: reservation summary:\n"
1714		"  trans type  = %s (%u)\n"
1715		"  unit res    = %d bytes\n"
1716		"  current res = %d bytes\n"
1717		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1718		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1719		"  ophdr + reg = %u bytes\n"
1720		"  num regions = %u\n",
1721		((ticket->t_trans_type <= 0 ||
1722		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1723		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1724		ticket->t_trans_type,
1725		ticket->t_unit_res,
1726		ticket->t_curr_res,
1727		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1728		ticket->t_res_num_ophdrs, ophdr_spc,
1729		ticket->t_res_arr_sum +
1730		ticket->t_res_o_flow + ophdr_spc,
1731		ticket->t_res_num);
1732
1733	for (i = 0; i < ticket->t_res_num; i++) {
1734		uint r_type = ticket->t_res_arr[i].r_type;
1735		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1736			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1737			    "bad-rtype" : res_type_str[r_type-1]),
1738			    ticket->t_res_arr[i].r_len);
1739	}
 
 
 
 
 
 
 
 
 
 
 
1740
1741	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1742		"xlog_write: reservation ran out. Need to up reservation");
1743	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744}
1745
1746/*
1747 * Calculate the potential space needed by the log vector.  Each region gets
1748 * its own xlog_op_header_t and may need to be double word aligned.
 
1749 */
1750static int
1751xlog_write_calc_vec_length(
1752	struct xlog_ticket	*ticket,
1753	struct xfs_log_vec	*log_vector)
 
1754{
1755	struct xfs_log_vec	*lv;
1756	int			headers = 0;
1757	int			len = 0;
1758	int			i;
1759
1760	/* acct for start rec of xact */
1761	if (ticket->t_flags & XLOG_TIC_INITED)
1762		headers++;
1763
1764	for (lv = log_vector; lv; lv = lv->lv_next) {
 
 
 
 
1765		headers += lv->lv_niovecs;
1766
1767		for (i = 0; i < lv->lv_niovecs; i++) {
1768			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1769
1770			len += vecp->i_len;
1771			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1772		}
1773	}
1774
1775	ticket->t_res_num_ophdrs += headers;
1776	len += headers * sizeof(struct xlog_op_header);
1777
1778	return len;
1779}
1780
1781/*
1782 * If first write for transaction, insert start record  We can't be trying to
1783 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1784 */
1785static int
1786xlog_write_start_rec(
1787	struct xlog_op_header	*ophdr,
1788	struct xlog_ticket	*ticket)
1789{
1790	if (!(ticket->t_flags & XLOG_TIC_INITED))
1791		return 0;
1792
1793	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1794	ophdr->oh_clientid = ticket->t_clientid;
1795	ophdr->oh_len = 0;
1796	ophdr->oh_flags = XLOG_START_TRANS;
1797	ophdr->oh_res2 = 0;
1798
1799	ticket->t_flags &= ~XLOG_TIC_INITED;
1800
1801	return sizeof(struct xlog_op_header);
1802}
1803
1804static xlog_op_header_t *
1805xlog_write_setup_ophdr(
1806	struct xlog		*log,
1807	struct xlog_op_header	*ophdr,
1808	struct xlog_ticket	*ticket,
1809	uint			flags)
1810{
1811	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1812	ophdr->oh_clientid = ticket->t_clientid;
1813	ophdr->oh_res2 = 0;
1814
1815	/* are we copying a commit or unmount record? */
1816	ophdr->oh_flags = flags;
1817
1818	/*
1819	 * We've seen logs corrupted with bad transaction client ids.  This
1820	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1821	 * and shut down the filesystem.
1822	 */
1823	switch (ophdr->oh_clientid)  {
1824	case XFS_TRANSACTION:
1825	case XFS_VOLUME:
1826	case XFS_LOG:
1827		break;
1828	default:
1829		xfs_warn(log->l_mp,
1830			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1831			ophdr->oh_clientid, ticket);
1832		return NULL;
1833	}
1834
1835	return ophdr;
1836}
1837
1838/*
1839 * Set up the parameters of the region copy into the log. This has
1840 * to handle region write split across multiple log buffers - this
1841 * state is kept external to this function so that this code can
1842 * can be written in an obvious, self documenting manner.
1843 */
1844static int
1845xlog_write_setup_copy(
1846	struct xlog_ticket	*ticket,
1847	struct xlog_op_header	*ophdr,
1848	int			space_available,
1849	int			space_required,
1850	int			*copy_off,
1851	int			*copy_len,
1852	int			*last_was_partial_copy,
1853	int			*bytes_consumed)
1854{
1855	int			still_to_copy;
1856
1857	still_to_copy = space_required - *bytes_consumed;
1858	*copy_off = *bytes_consumed;
1859
1860	if (still_to_copy <= space_available) {
1861		/* write of region completes here */
1862		*copy_len = still_to_copy;
1863		ophdr->oh_len = cpu_to_be32(*copy_len);
1864		if (*last_was_partial_copy)
1865			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1866		*last_was_partial_copy = 0;
1867		*bytes_consumed = 0;
1868		return 0;
1869	}
1870
1871	/* partial write of region, needs extra log op header reservation */
1872	*copy_len = space_available;
1873	ophdr->oh_len = cpu_to_be32(*copy_len);
1874	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1875	if (*last_was_partial_copy)
1876		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1877	*bytes_consumed += *copy_len;
1878	(*last_was_partial_copy)++;
1879
1880	/* account for new log op header */
1881	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1882	ticket->t_res_num_ophdrs++;
1883
1884	return sizeof(struct xlog_op_header);
1885}
1886
1887static int
1888xlog_write_copy_finish(
1889	struct xlog		*log,
1890	struct xlog_in_core	*iclog,
1891	uint			flags,
1892	int			*record_cnt,
1893	int			*data_cnt,
1894	int			*partial_copy,
1895	int			*partial_copy_len,
1896	int			log_offset,
1897	struct xlog_in_core	**commit_iclog)
1898{
 
 
1899	if (*partial_copy) {
1900		/*
1901		 * This iclog has already been marked WANT_SYNC by
1902		 * xlog_state_get_iclog_space.
1903		 */
 
1904		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1905		*record_cnt = 0;
1906		*data_cnt = 0;
1907		return xlog_state_release_iclog(log, iclog);
1908	}
1909
1910	*partial_copy = 0;
1911	*partial_copy_len = 0;
1912
1913	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1914		/* no more space in this iclog - push it. */
 
1915		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1916		*record_cnt = 0;
1917		*data_cnt = 0;
1918
1919		spin_lock(&log->l_icloglock);
1920		xlog_state_want_sync(log, iclog);
1921		spin_unlock(&log->l_icloglock);
1922
 
1923		if (!commit_iclog)
1924			return xlog_state_release_iclog(log, iclog);
 
1925		ASSERT(flags & XLOG_COMMIT_TRANS);
1926		*commit_iclog = iclog;
1927	}
1928
1929	return 0;
 
 
 
 
 
1930}
1931
1932/*
1933 * Write some region out to in-core log
1934 *
1935 * This will be called when writing externally provided regions or when
1936 * writing out a commit record for a given transaction.
1937 *
1938 * General algorithm:
1939 *	1. Find total length of this write.  This may include adding to the
1940 *		lengths passed in.
1941 *	2. Check whether we violate the tickets reservation.
1942 *	3. While writing to this iclog
1943 *	    A. Reserve as much space in this iclog as can get
1944 *	    B. If this is first write, save away start lsn
1945 *	    C. While writing this region:
1946 *		1. If first write of transaction, write start record
1947 *		2. Write log operation header (header per region)
1948 *		3. Find out if we can fit entire region into this iclog
1949 *		4. Potentially, verify destination memcpy ptr
1950 *		5. Memcpy (partial) region
1951 *		6. If partial copy, release iclog; otherwise, continue
1952 *			copying more regions into current iclog
1953 *	4. Mark want sync bit (in simulation mode)
1954 *	5. Release iclog for potential flush to on-disk log.
1955 *
1956 * ERRORS:
1957 * 1.	Panic if reservation is overrun.  This should never happen since
1958 *	reservation amounts are generated internal to the filesystem.
1959 * NOTES:
1960 * 1. Tickets are single threaded data structures.
1961 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1962 *	syncing routine.  When a single log_write region needs to span
1963 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1964 *	on all log operation writes which don't contain the end of the
1965 *	region.  The XLOG_END_TRANS bit is used for the in-core log
1966 *	operation which contains the end of the continued log_write region.
1967 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1968 *	we don't really know exactly how much space will be used.  As a result,
1969 *	we don't update ic_offset until the end when we know exactly how many
1970 *	bytes have been written out.
1971 */
1972int
1973xlog_write(
1974	struct xlog		*log,
1975	struct xfs_log_vec	*log_vector,
1976	struct xlog_ticket	*ticket,
1977	xfs_lsn_t		*start_lsn,
1978	struct xlog_in_core	**commit_iclog,
1979	uint			flags)
 
1980{
1981	struct xlog_in_core	*iclog = NULL;
1982	struct xfs_log_iovec	*vecp;
1983	struct xfs_log_vec	*lv;
 
1984	int			len;
1985	int			index;
1986	int			partial_copy = 0;
1987	int			partial_copy_len = 0;
1988	int			contwr = 0;
1989	int			record_cnt = 0;
1990	int			data_cnt = 0;
1991	int			error;
1992
1993	*start_lsn = 0;
1994
1995	len = xlog_write_calc_vec_length(ticket, log_vector);
1996
1997	/*
1998	 * Region headers and bytes are already accounted for.
1999	 * We only need to take into account start records and
2000	 * split regions in this function.
2001	 */
2002	if (ticket->t_flags & XLOG_TIC_INITED)
2003		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2004
2005	/*
2006	 * Commit record headers need to be accounted for. These
2007	 * come in as separate writes so are easy to detect.
 
 
2008	 */
2009	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2010		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2011
2012	if (ticket->t_curr_res < 0)
2013		xlog_print_tic_res(log->l_mp, ticket);
 
 
2014
2015	index = 0;
2016	lv = log_vector;
2017	vecp = lv->lv_iovecp;
2018	while (lv && index < lv->lv_niovecs) {
2019		void		*ptr;
2020		int		log_offset;
2021
2022		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2023						   &contwr, &log_offset);
2024		if (error)
2025			return error;
2026
2027		ASSERT(log_offset <= iclog->ic_size - 1);
2028		ptr = iclog->ic_datap + log_offset;
2029
2030		/* start_lsn is the first lsn written to. That's all we need. */
2031		if (!*start_lsn)
2032			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2033
2034		/*
2035		 * This loop writes out as many regions as can fit in the amount
2036		 * of space which was allocated by xlog_state_get_iclog_space().
2037		 */
2038		while (lv && index < lv->lv_niovecs) {
2039			struct xfs_log_iovec	*reg = &vecp[index];
2040			struct xlog_op_header	*ophdr;
2041			int			start_rec_copy;
2042			int			copy_len;
2043			int			copy_off;
 
 
 
 
 
 
 
 
2044
2045			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2046			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
 
2047
2048			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2049			if (start_rec_copy) {
2050				record_cnt++;
 
 
 
 
2051				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2052						   start_rec_copy);
2053			}
2054
2055			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2056			if (!ophdr)
2057				return XFS_ERROR(EIO);
2058
2059			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2060					   sizeof(struct xlog_op_header));
2061
2062			len += xlog_write_setup_copy(ticket, ophdr,
2063						     iclog->ic_size-log_offset,
2064						     reg->i_len,
2065						     &copy_off, &copy_len,
2066						     &partial_copy,
2067						     &partial_copy_len);
2068			xlog_verify_dest_ptr(log, ptr);
2069
2070			/* copy region */
 
 
 
 
 
 
 
2071			ASSERT(copy_len >= 0);
2072			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2073			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2074
2075			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
 
 
2076			record_cnt++;
 
 
 
 
 
2077			data_cnt += contwr ? copy_len : 0;
2078
2079			error = xlog_write_copy_finish(log, iclog, flags,
2080						       &record_cnt, &data_cnt,
2081						       &partial_copy,
2082						       &partial_copy_len,
2083						       log_offset,
2084						       commit_iclog);
2085			if (error)
2086				return error;
2087
2088			/*
2089			 * if we had a partial copy, we need to get more iclog
2090			 * space but we don't want to increment the region
2091			 * index because there is still more is this region to
2092			 * write.
2093			 *
2094			 * If we completed writing this region, and we flushed
2095			 * the iclog (indicated by resetting of the record
2096			 * count), then we also need to get more log space. If
2097			 * this was the last record, though, we are done and
2098			 * can just return.
2099			 */
2100			if (partial_copy)
2101				break;
2102
2103			if (++index == lv->lv_niovecs) {
 
2104				lv = lv->lv_next;
2105				index = 0;
2106				if (lv)
2107					vecp = lv->lv_iovecp;
2108			}
2109			if (record_cnt == 0) {
2110				if (!lv)
2111					return 0;
2112				break;
2113			}
2114		}
2115	}
2116
2117	ASSERT(len == 0);
2118
 
2119	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2120	if (!commit_iclog)
2121		return xlog_state_release_iclog(log, iclog);
 
 
 
 
 
2122
2123	ASSERT(flags & XLOG_COMMIT_TRANS);
2124	*commit_iclog = iclog;
2125	return 0;
2126}
2127
 
 
 
 
 
 
2128
2129/*****************************************************************************
2130 *
2131 *		State Machine functions
2132 *
2133 *****************************************************************************
2134 */
 
 
 
 
 
 
 
 
 
 
2135
2136/* Clean iclogs starting from the head.  This ordering must be
2137 * maintained, so an iclog doesn't become ACTIVE beyond one that
2138 * is SYNCING.  This is also required to maintain the notion that we use
2139 * a ordered wait queue to hold off would be writers to the log when every
2140 * iclog is trying to sync to disk.
2141 *
2142 * State Change: DIRTY -> ACTIVE
 
 
 
 
2143 */
2144STATIC void
2145xlog_state_clean_log(xlog_t *log)
 
 
2146{
2147	xlog_in_core_t	*iclog;
2148	int changed = 0;
2149
2150	iclog = log->l_iclog;
2151	do {
2152		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2153			iclog->ic_state	= XLOG_STATE_ACTIVE;
2154			iclog->ic_offset       = 0;
2155			ASSERT(iclog->ic_callback == NULL);
2156			/*
2157			 * If the number of ops in this iclog indicate it just
2158			 * contains the dummy transaction, we can
2159			 * change state into IDLE (the second time around).
2160			 * Otherwise we should change the state into
2161			 * NEED a dummy.
2162			 * We don't need to cover the dummy.
2163			 */
2164			if (!changed &&
2165			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2166			   		XLOG_COVER_OPS)) {
2167				changed = 1;
2168			} else {
2169				/*
2170				 * We have two dirty iclogs so start over
2171				 * This could also be num of ops indicates
2172				 * this is not the dummy going out.
2173				 */
2174				changed = 2;
2175			}
2176			iclog->ic_header.h_num_logops = 0;
2177			memset(iclog->ic_header.h_cycle_data, 0,
2178			      sizeof(iclog->ic_header.h_cycle_data));
2179			iclog->ic_header.h_lsn = 0;
2180		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2181			/* do nothing */;
2182		else
2183			break;	/* stop cleaning */
2184		iclog = iclog->ic_next;
2185	} while (iclog != log->l_iclog);
2186
2187	/* log is locked when we are called */
 
 
 
 
2188	/*
2189	 * Change state for the dummy log recording.
2190	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2191	 * we are done writing the dummy record.
2192	 * If we are done with the second dummy recored (DONE2), then
2193	 * we go to IDLE.
2194	 */
2195	if (changed) {
2196		switch (log->l_covered_state) {
2197		case XLOG_STATE_COVER_IDLE:
2198		case XLOG_STATE_COVER_NEED:
2199		case XLOG_STATE_COVER_NEED2:
2200			log->l_covered_state = XLOG_STATE_COVER_NEED;
2201			break;
 
 
 
 
 
 
 
2202
2203		case XLOG_STATE_COVER_DONE:
2204			if (changed == 1)
2205				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2206			else
2207				log->l_covered_state = XLOG_STATE_COVER_NEED;
2208			break;
2209
2210		case XLOG_STATE_COVER_DONE2:
2211			if (changed == 1)
2212				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2213			else
2214				log->l_covered_state = XLOG_STATE_COVER_NEED;
2215			break;
2216
2217		default:
2218			ASSERT(0);
2219		}
 
 
 
 
 
2220	}
2221}	/* xlog_state_clean_log */
2222
2223STATIC xfs_lsn_t
2224xlog_get_lowest_lsn(
2225	xlog_t		*log)
2226{
2227	xlog_in_core_t  *lsn_log;
2228	xfs_lsn_t	lowest_lsn, lsn;
2229
2230	lsn_log = log->l_iclog;
2231	lowest_lsn = 0;
2232	do {
2233	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2234		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2235		if ((lsn && !lowest_lsn) ||
2236		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
 
 
2237			lowest_lsn = lsn;
2238		}
2239	    }
2240	    lsn_log = lsn_log->ic_next;
2241	} while (lsn_log != log->l_iclog);
2242	return lowest_lsn;
2243}
2244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245
2246STATIC void
2247xlog_state_do_callback(
2248	xlog_t		*log,
2249	int		aborted,
2250	xlog_in_core_t	*ciclog)
2251{
2252	xlog_in_core_t	   *iclog;
2253	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2254						 * processed all iclogs once */
2255	xfs_log_callback_t *cb, *cb_next;
2256	int		   flushcnt = 0;
2257	xfs_lsn_t	   lowest_lsn;
2258	int		   ioerrors;	/* counter: iclogs with errors */
2259	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2260	int		   funcdidcallbacks; /* flag: function did callbacks */
2261	int		   repeats;	/* for issuing console warnings if
2262					 * looping too many times */
2263	int		   wake = 0;
2264
2265	spin_lock(&log->l_icloglock);
2266	first_iclog = iclog = log->l_iclog;
2267	ioerrors = 0;
2268	funcdidcallbacks = 0;
2269	repeats = 0;
2270
2271	do {
2272		/*
2273		 * Scan all iclogs starting with the one pointed to by the
2274		 * log.  Reset this starting point each time the log is
2275		 * unlocked (during callbacks).
2276		 *
2277		 * Keep looping through iclogs until one full pass is made
2278		 * without running any callbacks.
2279		 */
2280		first_iclog = log->l_iclog;
2281		iclog = log->l_iclog;
2282		loopdidcallbacks = 0;
 
2283		repeats++;
2284
2285		do {
 
 
 
2286
2287			/* skip all iclogs in the ACTIVE & DIRTY states */
2288			if (iclog->ic_state &
2289			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2290				iclog = iclog->ic_next;
2291				continue;
2292			}
2293
2294			/*
2295			 * Between marking a filesystem SHUTDOWN and stopping
2296			 * the log, we do flush all iclogs to disk (if there
2297			 * wasn't a log I/O error). So, we do want things to
2298			 * go smoothly in case of just a SHUTDOWN  w/o a
2299			 * LOG_IO_ERROR.
2300			 */
2301			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2302				/*
2303				 * Can only perform callbacks in order.  Since
2304				 * this iclog is not in the DONE_SYNC/
2305				 * DO_CALLBACK state, we skip the rest and
2306				 * just try to clean up.  If we set our iclog
2307				 * to DO_CALLBACK, we will not process it when
2308				 * we retry since a previous iclog is in the
2309				 * CALLBACK and the state cannot change since
2310				 * we are holding the l_icloglock.
2311				 */
2312				if (!(iclog->ic_state &
2313					(XLOG_STATE_DONE_SYNC |
2314						 XLOG_STATE_DO_CALLBACK))) {
2315					if (ciclog && (ciclog->ic_state ==
2316							XLOG_STATE_DONE_SYNC)) {
2317						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2318					}
2319					break;
2320				}
2321				/*
2322				 * We now have an iclog that is in either the
2323				 * DO_CALLBACK or DONE_SYNC states. The other
2324				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2325				 * caught by the above if and are going to
2326				 * clean (i.e. we aren't doing their callbacks)
2327				 * see the above if.
2328				 */
2329
2330				/*
2331				 * We will do one more check here to see if we
2332				 * have chased our tail around.
2333				 */
2334
2335				lowest_lsn = xlog_get_lowest_lsn(log);
2336				if (lowest_lsn &&
2337				    XFS_LSN_CMP(lowest_lsn,
2338						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2339					iclog = iclog->ic_next;
2340					continue; /* Leave this iclog for
2341						   * another thread */
2342				}
2343
2344				iclog->ic_state = XLOG_STATE_CALLBACK;
2345
2346
2347				/*
2348				 * update the last_sync_lsn before we drop the
2349				 * icloglock to ensure we are the only one that
2350				 * can update it.
2351				 */
2352				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2353					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2354				atomic64_set(&log->l_last_sync_lsn,
2355					be64_to_cpu(iclog->ic_header.h_lsn));
2356
2357			} else
2358				ioerrors++;
2359
2360			spin_unlock(&log->l_icloglock);
2361
2362			/*
2363			 * Keep processing entries in the callback list until
2364			 * we come around and it is empty.  We need to
2365			 * atomically see that the list is empty and change the
2366			 * state to DIRTY so that we don't miss any more
2367			 * callbacks being added.
2368			 */
2369			spin_lock(&iclog->ic_callback_lock);
2370			cb = iclog->ic_callback;
2371			while (cb) {
2372				iclog->ic_callback_tail = &(iclog->ic_callback);
2373				iclog->ic_callback = NULL;
2374				spin_unlock(&iclog->ic_callback_lock);
2375
2376				/* perform callbacks in the order given */
2377				for (; cb; cb = cb_next) {
2378					cb_next = cb->cb_next;
2379					cb->cb_func(cb->cb_arg, aborted);
2380				}
2381				spin_lock(&iclog->ic_callback_lock);
2382				cb = iclog->ic_callback;
2383			}
2384
2385			loopdidcallbacks++;
2386			funcdidcallbacks++;
2387
2388			spin_lock(&log->l_icloglock);
2389			ASSERT(iclog->ic_callback == NULL);
2390			spin_unlock(&iclog->ic_callback_lock);
2391			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2392				iclog->ic_state = XLOG_STATE_DIRTY;
2393
2394			/*
2395			 * Transition from DIRTY to ACTIVE if applicable.
2396			 * NOP if STATE_IOERROR.
2397			 */
2398			xlog_state_clean_log(log);
2399
2400			/* wake up threads waiting in xfs_log_force() */
2401			wake_up_all(&iclog->ic_force_wait);
2402
2403			iclog = iclog->ic_next;
2404		} while (first_iclog != iclog);
2405
2406		if (repeats > 5000) {
2407			flushcnt += repeats;
2408			repeats = 0;
2409			xfs_warn(log->l_mp,
2410				"%s: possible infinite loop (%d iterations)",
2411				__func__, flushcnt);
2412		}
2413	} while (!ioerrors && loopdidcallbacks);
2414
2415	/*
2416	 * make one last gasp attempt to see if iclogs are being left in
2417	 * limbo..
2418	 */
2419#ifdef DEBUG
2420	if (funcdidcallbacks) {
2421		first_iclog = iclog = log->l_iclog;
2422		do {
2423			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2424			/*
2425			 * Terminate the loop if iclogs are found in states
2426			 * which will cause other threads to clean up iclogs.
2427			 *
2428			 * SYNCING - i/o completion will go through logs
2429			 * DONE_SYNC - interrupt thread should be waiting for
2430			 *              l_icloglock
2431			 * IOERROR - give up hope all ye who enter here
2432			 */
2433			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2434			    iclog->ic_state == XLOG_STATE_SYNCING ||
2435			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2436			    iclog->ic_state == XLOG_STATE_IOERROR )
2437				break;
2438			iclog = iclog->ic_next;
2439		} while (first_iclog != iclog);
2440	}
2441#endif
2442
2443	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2444		wake = 1;
2445	spin_unlock(&log->l_icloglock);
2446
2447	if (wake)
2448		wake_up_all(&log->l_flush_wait);
2449}
2450
2451
2452/*
2453 * Finish transitioning this iclog to the dirty state.
2454 *
2455 * Make sure that we completely execute this routine only when this is
2456 * the last call to the iclog.  There is a good chance that iclog flushes,
2457 * when we reach the end of the physical log, get turned into 2 separate
2458 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2459 * routine.  By using the reference count bwritecnt, we guarantee that only
2460 * the second completion goes through.
2461 *
2462 * Callbacks could take time, so they are done outside the scope of the
2463 * global state machine log lock.
2464 */
2465STATIC void
2466xlog_state_done_syncing(
2467	xlog_in_core_t	*iclog,
2468	int		aborted)
2469{
2470	xlog_t		   *log = iclog->ic_log;
2471
2472	spin_lock(&log->l_icloglock);
2473
2474	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2475	       iclog->ic_state == XLOG_STATE_IOERROR);
2476	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2477	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2478
2479
2480	/*
2481	 * If we got an error, either on the first buffer, or in the case of
2482	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2483	 * and none should ever be attempted to be written to disk
2484	 * again.
2485	 */
2486	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2487		if (--iclog->ic_bwritecnt == 1) {
2488			spin_unlock(&log->l_icloglock);
2489			return;
2490		}
2491		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2492	}
2493
2494	/*
2495	 * Someone could be sleeping prior to writing out the next
2496	 * iclog buffer, we wake them all, one will get to do the
2497	 * I/O, the others get to wait for the result.
2498	 */
2499	wake_up_all(&iclog->ic_write_wait);
2500	spin_unlock(&log->l_icloglock);
2501	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2502}	/* xlog_state_done_syncing */
2503
2504
2505/*
2506 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2507 * sleep.  We wait on the flush queue on the head iclog as that should be
2508 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2509 * we will wait here and all new writes will sleep until a sync completes.
2510 *
2511 * The in-core logs are used in a circular fashion. They are not used
2512 * out-of-order even when an iclog past the head is free.
2513 *
2514 * return:
2515 *	* log_offset where xlog_write() can start writing into the in-core
2516 *		log's data space.
2517 *	* in-core log pointer to which xlog_write() should write.
2518 *	* boolean indicating this is a continued write to an in-core log.
2519 *		If this is the last write, then the in-core log's offset field
2520 *		needs to be incremented, depending on the amount of data which
2521 *		is copied.
2522 */
2523STATIC int
2524xlog_state_get_iclog_space(xlog_t	  *log,
2525			   int		  len,
2526			   xlog_in_core_t **iclogp,
2527			   xlog_ticket_t  *ticket,
2528			   int		  *continued_write,
2529			   int		  *logoffsetp)
 
2530{
2531	int		  log_offset;
2532	xlog_rec_header_t *head;
2533	xlog_in_core_t	  *iclog;
2534	int		  error;
2535
2536restart:
2537	spin_lock(&log->l_icloglock);
2538	if (XLOG_FORCED_SHUTDOWN(log)) {
2539		spin_unlock(&log->l_icloglock);
2540		return XFS_ERROR(EIO);
2541	}
2542
2543	iclog = log->l_iclog;
2544	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2545		XFS_STATS_INC(xs_log_noiclogs);
2546
2547		/* Wait for log writes to have flushed */
2548		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2549		goto restart;
2550	}
2551
2552	head = &iclog->ic_header;
2553
2554	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2555	log_offset = iclog->ic_offset;
2556
2557	/* On the 1st write to an iclog, figure out lsn.  This works
2558	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2559	 * committing to.  If the offset is set, that's how many blocks
2560	 * must be written.
2561	 */
2562	if (log_offset == 0) {
2563		ticket->t_curr_res -= log->l_iclog_hsize;
2564		xlog_tic_add_region(ticket,
2565				    log->l_iclog_hsize,
2566				    XLOG_REG_TYPE_LRHEADER);
2567		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2568		head->h_lsn = cpu_to_be64(
2569			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2570		ASSERT(log->l_curr_block >= 0);
2571	}
2572
2573	/* If there is enough room to write everything, then do it.  Otherwise,
2574	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2575	 * bit is on, so this will get flushed out.  Don't update ic_offset
2576	 * until you know exactly how many bytes get copied.  Therefore, wait
2577	 * until later to update ic_offset.
2578	 *
2579	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2580	 * can fit into remaining data section.
2581	 */
2582	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
 
 
2583		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2584
2585		/*
2586		 * If I'm the only one writing to this iclog, sync it to disk.
2587		 * We need to do an atomic compare and decrement here to avoid
2588		 * racing with concurrent atomic_dec_and_lock() calls in
2589		 * xlog_state_release_iclog() when there is more than one
2590		 * reference to the iclog.
2591		 */
2592		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2593			/* we are the only one */
2594			spin_unlock(&log->l_icloglock);
2595			error = xlog_state_release_iclog(log, iclog);
2596			if (error)
2597				return error;
2598		} else {
2599			spin_unlock(&log->l_icloglock);
2600		}
2601		goto restart;
2602	}
2603
2604	/* Do we have enough room to write the full amount in the remainder
2605	 * of this iclog?  Or must we continue a write on the next iclog and
2606	 * mark this iclog as completely taken?  In the case where we switch
2607	 * iclogs (to mark it taken), this particular iclog will release/sync
2608	 * to disk in xlog_write().
2609	 */
2610	if (len <= iclog->ic_size - iclog->ic_offset) {
2611		*continued_write = 0;
2612		iclog->ic_offset += len;
2613	} else {
2614		*continued_write = 1;
2615		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2616	}
2617	*iclogp = iclog;
2618
2619	ASSERT(iclog->ic_offset <= iclog->ic_size);
2620	spin_unlock(&log->l_icloglock);
2621
2622	*logoffsetp = log_offset;
2623	return 0;
2624}	/* xlog_state_get_iclog_space */
2625
2626/* The first cnt-1 times through here we don't need to
2627 * move the grant write head because the permanent
2628 * reservation has reserved cnt times the unit amount.
2629 * Release part of current permanent unit reservation and
2630 * reset current reservation to be one units worth.  Also
2631 * move grant reservation head forward.
2632 */
2633STATIC void
2634xlog_regrant_reserve_log_space(xlog_t	     *log,
2635			       xlog_ticket_t *ticket)
 
2636{
2637	trace_xfs_log_regrant_reserve_enter(log, ticket);
2638
2639	if (ticket->t_cnt > 0)
2640		ticket->t_cnt--;
2641
2642	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2643					ticket->t_curr_res);
2644	xlog_grant_sub_space(log, &log->l_write_head.grant,
2645					ticket->t_curr_res);
2646	ticket->t_curr_res = ticket->t_unit_res;
2647	xlog_tic_reset_res(ticket);
2648
2649	trace_xfs_log_regrant_reserve_sub(log, ticket);
2650
2651	/* just return if we still have some of the pre-reserved space */
2652	if (ticket->t_cnt > 0)
2653		return;
 
 
2654
2655	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2656					ticket->t_unit_res);
2657
2658	trace_xfs_log_regrant_reserve_exit(log, ticket);
2659
2660	ticket->t_curr_res = ticket->t_unit_res;
2661	xlog_tic_reset_res(ticket);
2662}	/* xlog_regrant_reserve_log_space */
2663
 
 
2664
2665/*
2666 * Give back the space left from a reservation.
2667 *
2668 * All the information we need to make a correct determination of space left
2669 * is present.  For non-permanent reservations, things are quite easy.  The
2670 * count should have been decremented to zero.  We only need to deal with the
2671 * space remaining in the current reservation part of the ticket.  If the
2672 * ticket contains a permanent reservation, there may be left over space which
2673 * needs to be released.  A count of N means that N-1 refills of the current
2674 * reservation can be done before we need to ask for more space.  The first
2675 * one goes to fill up the first current reservation.  Once we run out of
2676 * space, the count will stay at zero and the only space remaining will be
2677 * in the current reservation field.
2678 */
2679STATIC void
2680xlog_ungrant_log_space(xlog_t	     *log,
2681		       xlog_ticket_t *ticket)
 
2682{
2683	int	bytes;
 
 
2684
2685	if (ticket->t_cnt > 0)
2686		ticket->t_cnt--;
2687
2688	trace_xfs_log_ungrant_enter(log, ticket);
2689	trace_xfs_log_ungrant_sub(log, ticket);
2690
2691	/*
2692	 * If this is a permanent reservation ticket, we may be able to free
2693	 * up more space based on the remaining count.
2694	 */
2695	bytes = ticket->t_curr_res;
2696	if (ticket->t_cnt > 0) {
2697		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2698		bytes += ticket->t_unit_res*ticket->t_cnt;
2699	}
2700
2701	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2702	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2703
2704	trace_xfs_log_ungrant_exit(log, ticket);
2705
2706	xfs_log_space_wake(log->l_mp);
 
2707}
2708
2709/*
2710 * Flush iclog to disk if this is the last reference to the given iclog and
2711 * the WANT_SYNC bit is set.
2712 *
2713 * When this function is entered, the iclog is not necessarily in the
2714 * WANT_SYNC state.  It may be sitting around waiting to get filled.
2715 *
2716 *
2717 */
2718STATIC int
2719xlog_state_release_iclog(
2720	xlog_t		*log,
2721	xlog_in_core_t	*iclog)
2722{
2723	int		sync = 0;	/* do we sync? */
2724
2725	if (iclog->ic_state & XLOG_STATE_IOERROR)
2726		return XFS_ERROR(EIO);
2727
2728	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2729	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2730		return 0;
2731
2732	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2733		spin_unlock(&log->l_icloglock);
2734		return XFS_ERROR(EIO);
2735	}
2736	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2737	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2738
2739	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2740		/* update tail before writing to iclog */
2741		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2742		sync++;
2743		iclog->ic_state = XLOG_STATE_SYNCING;
2744		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2745		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2746		/* cycle incremented when incrementing curr_block */
2747	}
2748	spin_unlock(&log->l_icloglock);
2749
2750	/*
2751	 * We let the log lock go, so it's possible that we hit a log I/O
2752	 * error or some other SHUTDOWN condition that marks the iclog
2753	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2754	 * this iclog has consistent data, so we ignore IOERROR
2755	 * flags after this point.
2756	 */
2757	if (sync)
2758		return xlog_sync(log, iclog);
2759	return 0;
2760}	/* xlog_state_release_iclog */
2761
2762
2763/*
2764 * This routine will mark the current iclog in the ring as WANT_SYNC
2765 * and move the current iclog pointer to the next iclog in the ring.
2766 * When this routine is called from xlog_state_get_iclog_space(), the
2767 * exact size of the iclog has not yet been determined.  All we know is
2768 * that every data block.  We have run out of space in this log record.
2769 */
2770STATIC void
2771xlog_state_switch_iclogs(xlog_t		*log,
2772			 xlog_in_core_t *iclog,
2773			 int		eventual_size)
 
2774{
2775	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 
 
2776	if (!eventual_size)
2777		eventual_size = iclog->ic_offset;
2778	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2779	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2780	log->l_prev_block = log->l_curr_block;
2781	log->l_prev_cycle = log->l_curr_cycle;
2782
2783	/* roll log?: ic_offset changed later */
2784	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2785
2786	/* Round up to next log-sunit */
2787	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2788	    log->l_mp->m_sb.sb_logsunit > 1) {
2789		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2790		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2791	}
2792
2793	if (log->l_curr_block >= log->l_logBBsize) {
 
 
 
 
 
 
 
 
 
 
2794		log->l_curr_cycle++;
2795		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2796			log->l_curr_cycle++;
2797		log->l_curr_block -= log->l_logBBsize;
2798		ASSERT(log->l_curr_block >= 0);
2799	}
2800	ASSERT(iclog == log->l_iclog);
2801	log->l_iclog = iclog->ic_next;
2802}	/* xlog_state_switch_iclogs */
2803
2804/*
2805 * Write out all data in the in-core log as of this exact moment in time.
2806 *
2807 * Data may be written to the in-core log during this call.  However,
2808 * we don't guarantee this data will be written out.  A change from past
2809 * implementation means this routine will *not* write out zero length LRs.
2810 *
2811 * Basically, we try and perform an intelligent scan of the in-core logs.
2812 * If we determine there is no flushable data, we just return.  There is no
2813 * flushable data if:
2814 *
2815 *	1. the current iclog is active and has no data; the previous iclog
2816 *		is in the active or dirty state.
2817 *	2. the current iclog is drity, and the previous iclog is in the
2818 *		active or dirty state.
2819 *
2820 * We may sleep if:
2821 *
2822 *	1. the current iclog is not in the active nor dirty state.
2823 *	2. the current iclog dirty, and the previous iclog is not in the
2824 *		active nor dirty state.
2825 *	3. the current iclog is active, and there is another thread writing
2826 *		to this particular iclog.
2827 *	4. a) the current iclog is active and has no other writers
2828 *	   b) when we return from flushing out this iclog, it is still
2829 *		not in the active nor dirty state.
2830 */
2831int
2832_xfs_log_force(
2833	struct xfs_mount	*mp,
2834	uint			flags,
2835	int			*log_flushed)
2836{
2837	struct xlog		*log = mp->m_log;
2838	struct xlog_in_core	*iclog;
2839	xfs_lsn_t		lsn;
2840
2841	XFS_STATS_INC(xs_log_force);
 
2842
2843	xlog_cil_force(log);
2844
2845	spin_lock(&log->l_icloglock);
2846
2847	iclog = log->l_iclog;
2848	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2849		spin_unlock(&log->l_icloglock);
2850		return XFS_ERROR(EIO);
2851	}
2852
2853	/* If the head iclog is not active nor dirty, we just attach
2854	 * ourselves to the head and go to sleep.
2855	 */
2856	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2857	    iclog->ic_state == XLOG_STATE_DIRTY) {
2858		/*
2859		 * If the head is dirty or (active and empty), then
2860		 * we need to look at the previous iclog.  If the previous
2861		 * iclog is active or dirty we are done.  There is nothing
2862		 * to sync out.  Otherwise, we attach ourselves to the
 
2863		 * previous iclog and go to sleep.
2864		 */
2865		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2866		    (atomic_read(&iclog->ic_refcnt) == 0
2867		     && iclog->ic_offset == 0)) {
2868			iclog = iclog->ic_prev;
2869			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2870			    iclog->ic_state == XLOG_STATE_DIRTY)
2871				goto no_sleep;
2872			else
2873				goto maybe_sleep;
2874		} else {
2875			if (atomic_read(&iclog->ic_refcnt) == 0) {
2876				/* We are the only one with access to this
2877				 * iclog.  Flush it out now.  There should
2878				 * be a roundoff of zero to show that someone
2879				 * has already taken care of the roundoff from
2880				 * the previous sync.
2881				 */
2882				atomic_inc(&iclog->ic_refcnt);
2883				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2884				xlog_state_switch_iclogs(log, iclog, 0);
2885				spin_unlock(&log->l_icloglock);
2886
2887				if (xlog_state_release_iclog(log, iclog))
2888					return XFS_ERROR(EIO);
2889
2890				if (log_flushed)
2891					*log_flushed = 1;
2892				spin_lock(&log->l_icloglock);
2893				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2894				    iclog->ic_state != XLOG_STATE_DIRTY)
2895					goto maybe_sleep;
2896				else
2897					goto no_sleep;
2898			} else {
2899				/* Someone else is writing to this iclog.
2900				 * Use its call to flush out the data.  However,
2901				 * the other thread may not force out this LR,
2902				 * so we mark it WANT_SYNC.
2903				 */
2904				xlog_state_switch_iclogs(log, iclog, 0);
2905				goto maybe_sleep;
2906			}
2907		}
2908	}
2909
2910	/* By the time we come around again, the iclog could've been filled
2911	 * which would give it another lsn.  If we have a new lsn, just
2912	 * return because the relevant data has been flushed.
2913	 */
2914maybe_sleep:
2915	if (flags & XFS_LOG_SYNC) {
2916		/*
2917		 * We must check if we're shutting down here, before
2918		 * we wait, while we're holding the l_icloglock.
2919		 * Then we check again after waking up, in case our
2920		 * sleep was disturbed by a bad news.
2921		 */
2922		if (iclog->ic_state & XLOG_STATE_IOERROR) {
2923			spin_unlock(&log->l_icloglock);
2924			return XFS_ERROR(EIO);
2925		}
2926		XFS_STATS_INC(xs_log_force_sleep);
2927		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2928		/*
2929		 * No need to grab the log lock here since we're
2930		 * only deciding whether or not to return EIO
2931		 * and the memory read should be atomic.
2932		 */
2933		if (iclog->ic_state & XLOG_STATE_IOERROR)
2934			return XFS_ERROR(EIO);
2935		if (log_flushed)
2936			*log_flushed = 1;
2937	} else {
2938
2939no_sleep:
2940		spin_unlock(&log->l_icloglock);
2941	}
 
 
 
 
 
2942	return 0;
 
 
 
2943}
2944
2945/*
2946 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2947 * about errors or whether the log was flushed or not. This is the normal
2948 * interface to use when trying to unpin items or move the log forward.
2949 */
2950void
2951xfs_log_force(
2952	xfs_mount_t	*mp,
2953	uint		flags)
2954{
2955	int	error;
 
2956
2957	trace_xfs_log_force(mp, 0);
2958	error = _xfs_log_force(mp, flags, NULL);
2959	if (error)
2960		xfs_warn(mp, "%s: error %d returned.", __func__, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961}
2962
2963/*
2964 * Force the in-core log to disk for a specific LSN.
2965 *
2966 * Find in-core log with lsn.
2967 *	If it is in the DIRTY state, just return.
2968 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2969 *		state and go to sleep or return.
2970 *	If it is in any other state, go to sleep or return.
2971 *
2972 * Synchronous forces are implemented with a signal variable. All callers
2973 * to force a given lsn to disk will wait on a the sv attached to the
2974 * specific in-core log.  When given in-core log finally completes its
2975 * write to disk, that thread will wake up all threads waiting on the
2976 * sv.
2977 */
2978int
2979_xfs_log_force_lsn(
2980	struct xfs_mount	*mp,
2981	xfs_lsn_t		lsn,
2982	uint			flags,
2983	int			*log_flushed)
2984{
2985	struct xlog		*log = mp->m_log;
2986	struct xlog_in_core	*iclog;
2987	int			already_slept = 0;
2988
2989	ASSERT(lsn != 0);
2990
2991	XFS_STATS_INC(xs_log_force);
 
2992
2993	lsn = xlog_cil_force_lsn(log, lsn);
2994	if (lsn == NULLCOMMITLSN)
2995		return 0;
2996
2997try_again:
2998	spin_lock(&log->l_icloglock);
2999	iclog = log->l_iclog;
3000	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3001		spin_unlock(&log->l_icloglock);
3002		return XFS_ERROR(EIO);
3003	}
3004
3005	do {
3006		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3007			iclog = iclog->ic_next;
3008			continue;
3009		}
3010
3011		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3012			spin_unlock(&log->l_icloglock);
3013			return 0;
3014		}
3015
3016		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3017			/*
3018			 * We sleep here if we haven't already slept (e.g.
3019			 * this is the first time we've looked at the correct
3020			 * iclog buf) and the buffer before us is going to
3021			 * be sync'ed. The reason for this is that if we
3022			 * are doing sync transactions here, by waiting for
3023			 * the previous I/O to complete, we can allow a few
3024			 * more transactions into this iclog before we close
3025			 * it down.
3026			 *
3027			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3028			 * up the refcnt so we can release the log (which
3029			 * drops the ref count).  The state switch keeps new
3030			 * transaction commits from using this buffer.  When
3031			 * the current commits finish writing into the buffer,
3032			 * the refcount will drop to zero and the buffer will
3033			 * go out then.
3034			 */
3035			if (!already_slept &&
3036			    (iclog->ic_prev->ic_state &
3037			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3038				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3039
3040				XFS_STATS_INC(xs_log_force_sleep);
3041
3042				xlog_wait(&iclog->ic_prev->ic_write_wait,
3043							&log->l_icloglock);
3044				if (log_flushed)
3045					*log_flushed = 1;
3046				already_slept = 1;
3047				goto try_again;
3048			}
3049			atomic_inc(&iclog->ic_refcnt);
3050			xlog_state_switch_iclogs(log, iclog, 0);
3051			spin_unlock(&log->l_icloglock);
3052			if (xlog_state_release_iclog(log, iclog))
3053				return XFS_ERROR(EIO);
3054			if (log_flushed)
3055				*log_flushed = 1;
3056			spin_lock(&log->l_icloglock);
3057		}
3058
3059		if ((flags & XFS_LOG_SYNC) && /* sleep */
3060		    !(iclog->ic_state &
3061		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3062			/*
3063			 * Don't wait on completion if we know that we've
3064			 * gotten a log write error.
3065			 */
3066			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3067				spin_unlock(&log->l_icloglock);
3068				return XFS_ERROR(EIO);
3069			}
3070			XFS_STATS_INC(xs_log_force_sleep);
3071			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3072			/*
3073			 * No need to grab the log lock here since we're
3074			 * only deciding whether or not to return EIO
3075			 * and the memory read should be atomic.
3076			 */
3077			if (iclog->ic_state & XLOG_STATE_IOERROR)
3078				return XFS_ERROR(EIO);
3079
3080			if (log_flushed)
3081				*log_flushed = 1;
3082		} else {		/* just return */
3083			spin_unlock(&log->l_icloglock);
3084		}
3085
3086		return 0;
3087	} while (iclog != log->l_iclog);
3088
3089	spin_unlock(&log->l_icloglock);
3090	return 0;
3091}
3092
3093/*
3094 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3095 * about errors or whether the log was flushed or not. This is the normal
3096 * interface to use when trying to unpin items or move the log forward.
3097 */
3098void
3099xfs_log_force_lsn(
3100	xfs_mount_t	*mp,
3101	xfs_lsn_t	lsn,
3102	uint		flags)
3103{
3104	int	error;
3105
3106	trace_xfs_log_force(mp, lsn);
3107	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3108	if (error)
3109		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3110}
3111
3112/*
3113 * Called when we want to mark the current iclog as being ready to sync to
3114 * disk.
3115 */
3116STATIC void
3117xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3118{
3119	assert_spin_locked(&log->l_icloglock);
3120
3121	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3122		xlog_state_switch_iclogs(log, iclog, 0);
3123	} else {
3124		ASSERT(iclog->ic_state &
3125			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3126	}
3127}
3128
3129
3130/*****************************************************************************
3131 *
3132 *		TICKET functions
3133 *
3134 *****************************************************************************
3135 */
3136
3137/*
3138 * Free a used ticket when its refcount falls to zero.
3139 */
3140void
3141xfs_log_ticket_put(
3142	xlog_ticket_t	*ticket)
3143{
3144	ASSERT(atomic_read(&ticket->t_ref) > 0);
3145	if (atomic_dec_and_test(&ticket->t_ref))
3146		kmem_zone_free(xfs_log_ticket_zone, ticket);
3147}
3148
3149xlog_ticket_t *
3150xfs_log_ticket_get(
3151	xlog_ticket_t	*ticket)
3152{
3153	ASSERT(atomic_read(&ticket->t_ref) > 0);
3154	atomic_inc(&ticket->t_ref);
3155	return ticket;
3156}
3157
3158/*
3159 * Allocate and initialise a new log ticket.
 
3160 */
3161xlog_ticket_t *
3162xlog_ticket_alloc(
3163	struct xlog	*log,
3164	int		unit_bytes,
3165	int		cnt,
3166	char		client,
3167	bool		permanent,
3168	xfs_km_flags_t	alloc_flags)
3169{
3170	struct xlog_ticket *tic;
3171	uint		num_headers;
3172	int		iclog_space;
3173
3174	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3175	if (!tic)
3176		return NULL;
3177
3178	/*
3179	 * Permanent reservations have up to 'cnt'-1 active log operations
3180	 * in the log.  A unit in this case is the amount of space for one
3181	 * of these log operations.  Normal reservations have a cnt of 1
3182	 * and their unit amount is the total amount of space required.
3183	 *
3184	 * The following lines of code account for non-transaction data
3185	 * which occupy space in the on-disk log.
3186	 *
3187	 * Normal form of a transaction is:
3188	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3189	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3190	 *
3191	 * We need to account for all the leadup data and trailer data
3192	 * around the transaction data.
3193	 * And then we need to account for the worst case in terms of using
3194	 * more space.
3195	 * The worst case will happen if:
3196	 * - the placement of the transaction happens to be such that the
3197	 *   roundoff is at its maximum
3198	 * - the transaction data is synced before the commit record is synced
3199	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3200	 *   Therefore the commit record is in its own Log Record.
3201	 *   This can happen as the commit record is called with its
3202	 *   own region to xlog_write().
3203	 *   This then means that in the worst case, roundoff can happen for
3204	 *   the commit-rec as well.
3205	 *   The commit-rec is smaller than padding in this scenario and so it is
3206	 *   not added separately.
3207	 */
3208
3209	/* for trans header */
3210	unit_bytes += sizeof(xlog_op_header_t);
3211	unit_bytes += sizeof(xfs_trans_header_t);
3212
3213	/* for start-rec */
3214	unit_bytes += sizeof(xlog_op_header_t);
3215
3216	/*
3217	 * for LR headers - the space for data in an iclog is the size minus
3218	 * the space used for the headers. If we use the iclog size, then we
3219	 * undercalculate the number of headers required.
3220	 *
3221	 * Furthermore - the addition of op headers for split-recs might
3222	 * increase the space required enough to require more log and op
3223	 * headers, so take that into account too.
3224	 *
3225	 * IMPORTANT: This reservation makes the assumption that if this
3226	 * transaction is the first in an iclog and hence has the LR headers
3227	 * accounted to it, then the remaining space in the iclog is
3228	 * exclusively for this transaction.  i.e. if the transaction is larger
3229	 * than the iclog, it will be the only thing in that iclog.
3230	 * Fundamentally, this means we must pass the entire log vector to
3231	 * xlog_write to guarantee this.
3232	 */
3233	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3234	num_headers = howmany(unit_bytes, iclog_space);
3235
3236	/* for split-recs - ophdrs added when data split over LRs */
3237	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3238
3239	/* add extra header reservations if we overrun */
3240	while (!num_headers ||
3241	       howmany(unit_bytes, iclog_space) > num_headers) {
3242		unit_bytes += sizeof(xlog_op_header_t);
3243		num_headers++;
3244	}
3245	unit_bytes += log->l_iclog_hsize * num_headers;
3246
3247	/* for commit-rec LR header - note: padding will subsume the ophdr */
3248	unit_bytes += log->l_iclog_hsize;
3249
3250	/* for roundoff padding for transaction data and one for commit record */
3251	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3252	    log->l_mp->m_sb.sb_logsunit > 1) {
3253		/* log su roundoff */
3254		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3255	} else {
3256		/* BB roundoff */
3257		unit_bytes += 2*BBSIZE;
3258        }
3259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260	atomic_set(&tic->t_ref, 1);
3261	tic->t_task		= current;
3262	INIT_LIST_HEAD(&tic->t_queue);
3263	tic->t_unit_res		= unit_bytes;
3264	tic->t_curr_res		= unit_bytes;
3265	tic->t_cnt		= cnt;
3266	tic->t_ocnt		= cnt;
3267	tic->t_tid		= random32();
3268	tic->t_clientid		= client;
3269	tic->t_flags		= XLOG_TIC_INITED;
3270	tic->t_trans_type	= 0;
3271	if (permanent)
3272		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3273
3274	xlog_tic_reset_res(tic);
3275
3276	return tic;
3277}
3278
3279
3280/******************************************************************************
3281 *
3282 *		Log debug routines
3283 *
3284 ******************************************************************************
3285 */
3286#if defined(DEBUG)
3287/*
3288 * Make sure that the destination ptr is within the valid data region of
3289 * one of the iclogs.  This uses backup pointers stored in a different
3290 * part of the log in case we trash the log structure.
3291 */
3292void
3293xlog_verify_dest_ptr(
3294	struct xlog	*log,
3295	char		*ptr)
3296{
3297	int i;
3298	int good_ptr = 0;
3299
3300	for (i = 0; i < log->l_iclog_bufs; i++) {
3301		if (ptr >= log->l_iclog_bak[i] &&
3302		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3303			good_ptr++;
3304	}
3305
3306	if (!good_ptr)
3307		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3308}
3309
3310/*
3311 * Check to make sure the grant write head didn't just over lap the tail.  If
3312 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3313 * the cycles differ by exactly one and check the byte count.
3314 *
3315 * This check is run unlocked, so can give false positives. Rather than assert
3316 * on failures, use a warn-once flag and a panic tag to allow the admin to
3317 * determine if they want to panic the machine when such an error occurs. For
3318 * debug kernels this will have the same effect as using an assert but, unlinke
3319 * an assert, it can be turned off at runtime.
3320 */
3321STATIC void
3322xlog_verify_grant_tail(
3323	struct xlog	*log)
3324{
3325	int		tail_cycle, tail_blocks;
3326	int		cycle, space;
3327
3328	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3329	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3330	if (tail_cycle != cycle) {
3331		if (cycle - 1 != tail_cycle &&
3332		    !(log->l_flags & XLOG_TAIL_WARN)) {
3333			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3334				"%s: cycle - 1 != tail_cycle", __func__);
3335			log->l_flags |= XLOG_TAIL_WARN;
3336		}
3337
3338		if (space > BBTOB(tail_blocks) &&
3339		    !(log->l_flags & XLOG_TAIL_WARN)) {
3340			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3341				"%s: space > BBTOB(tail_blocks)", __func__);
3342			log->l_flags |= XLOG_TAIL_WARN;
3343		}
3344	}
3345}
3346
3347/* check if it will fit */
3348STATIC void
3349xlog_verify_tail_lsn(xlog_t	    *log,
3350		     xlog_in_core_t *iclog,
3351		     xfs_lsn_t	    tail_lsn)
 
3352{
3353    int blocks;
3354
3355    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3356	blocks =
3357	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3358	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3359		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3360    } else {
3361	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3362
3363	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3364		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3365
3366	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3367	if (blocks < BTOBB(iclog->ic_offset) + 1)
3368		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3369    }
3370}	/* xlog_verify_tail_lsn */
3371
3372/*
3373 * Perform a number of checks on the iclog before writing to disk.
3374 *
3375 * 1. Make sure the iclogs are still circular
3376 * 2. Make sure we have a good magic number
3377 * 3. Make sure we don't have magic numbers in the data
3378 * 4. Check fields of each log operation header for:
3379 *	A. Valid client identifier
3380 *	B. tid ptr value falls in valid ptr space (user space code)
3381 *	C. Length in log record header is correct according to the
3382 *		individual operation headers within record.
3383 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3384 *	log, check the preceding blocks of the physical log to make sure all
3385 *	the cycle numbers agree with the current cycle number.
3386 */
3387STATIC void
3388xlog_verify_iclog(xlog_t	 *log,
3389		  xlog_in_core_t *iclog,
3390		  int		 count,
3391		  boolean_t	 syncing)
3392{
3393	xlog_op_header_t	*ophead;
3394	xlog_in_core_t		*icptr;
3395	xlog_in_core_2_t	*xhdr;
3396	xfs_caddr_t		ptr;
3397	xfs_caddr_t		base_ptr;
3398	__psint_t		field_offset;
3399	__uint8_t		clientid;
3400	int			len, i, j, k, op_len;
3401	int			idx;
3402
3403	/* check validity of iclog pointers */
3404	spin_lock(&log->l_icloglock);
3405	icptr = log->l_iclog;
3406	for (i=0; i < log->l_iclog_bufs; i++) {
3407		if (icptr == NULL)
3408			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3409		icptr = icptr->ic_next;
3410	}
3411	if (icptr != log->l_iclog)
3412		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3413	spin_unlock(&log->l_icloglock);
3414
3415	/* check log magic numbers */
3416	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3417		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3418
3419	ptr = (xfs_caddr_t) &iclog->ic_header;
3420	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3421	     ptr += BBSIZE) {
3422		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3423			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3424				__func__);
3425	}
3426
3427	/* check fields */
3428	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3429	ptr = iclog->ic_datap;
3430	base_ptr = ptr;
3431	ophead = (xlog_op_header_t *)ptr;
3432	xhdr = iclog->ic_data;
3433	for (i = 0; i < len; i++) {
3434		ophead = (xlog_op_header_t *)ptr;
3435
3436		/* clientid is only 1 byte */
3437		field_offset = (__psint_t)
3438			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3439		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3440			clientid = ophead->oh_clientid;
3441		} else {
3442			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3443			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3444				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3445				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3446				clientid = xlog_get_client_id(
3447					xhdr[j].hic_xheader.xh_cycle_data[k]);
3448			} else {
3449				clientid = xlog_get_client_id(
3450					iclog->ic_header.h_cycle_data[idx]);
3451			}
3452		}
3453		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3454			xfs_warn(log->l_mp,
3455				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3456				__func__, clientid, ophead,
3457				(unsigned long)field_offset);
3458
3459		/* check length */
3460		field_offset = (__psint_t)
3461			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3462		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3463			op_len = be32_to_cpu(ophead->oh_len);
3464		} else {
3465			idx = BTOBBT((__psint_t)&ophead->oh_len -
3466				    (__psint_t)iclog->ic_datap);
3467			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3468				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3469				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3470				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3471			} else {
3472				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3473			}
3474		}
3475		ptr += sizeof(xlog_op_header_t) + op_len;
3476	}
3477}	/* xlog_verify_iclog */
3478#endif
3479
3480/*
3481 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3482 */
3483STATIC int
3484xlog_state_ioerror(
3485	xlog_t	*log)
3486{
3487	xlog_in_core_t	*iclog, *ic;
3488
3489	iclog = log->l_iclog;
3490	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3491		/*
3492		 * Mark all the incore logs IOERROR.
3493		 * From now on, no log flushes will result.
3494		 */
3495		ic = iclog;
3496		do {
3497			ic->ic_state = XLOG_STATE_IOERROR;
3498			ic = ic->ic_next;
3499		} while (ic != iclog);
3500		return 0;
3501	}
3502	/*
3503	 * Return non-zero, if state transition has already happened.
3504	 */
3505	return 1;
3506}
3507
3508/*
3509 * This is called from xfs_force_shutdown, when we're forcibly
3510 * shutting down the filesystem, typically because of an IO error.
3511 * Our main objectives here are to make sure that:
3512 *	a. the filesystem gets marked 'SHUTDOWN' for all interested
 
 
3513 *	   parties to find out, 'atomically'.
3514 *	b. those who're sleeping on log reservations, pinned objects and
3515 *	    other resources get woken up, and be told the bad news.
3516 *	c. nothing new gets queued up after (a) and (b) are done.
3517 *	d. if !logerror, flush the iclogs to disk, then seal them off
3518 *	   for business.
3519 *
3520 * Note: for delayed logging the !logerror case needs to flush the regions
3521 * held in memory out to the iclogs before flushing them to disk. This needs
3522 * to be done before the log is marked as shutdown, otherwise the flush to the
3523 * iclogs will fail.
3524 */
3525int
3526xfs_log_force_umount(
3527	struct xfs_mount	*mp,
3528	int			logerror)
3529{
3530	xlog_t		*log;
3531	int		retval;
3532
3533	log = mp->m_log;
3534
3535	/*
3536	 * If this happens during log recovery, don't worry about
3537	 * locking; the log isn't open for business yet.
3538	 */
3539	if (!log ||
3540	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3541		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3542		if (mp->m_sb_bp)
3543			XFS_BUF_DONE(mp->m_sb_bp);
3544		return 0;
3545	}
3546
3547	/*
3548	 * Somebody could've already done the hard work for us.
3549	 * No need to get locks for this.
3550	 */
3551	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3552		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3553		return 1;
3554	}
3555	retval = 0;
3556
3557	/*
3558	 * Flush the in memory commit item list before marking the log as
3559	 * being shut down. We need to do it in this order to ensure all the
3560	 * completed transactions are flushed to disk with the xfs_log_force()
3561	 * call below.
 
3562	 */
3563	if (!logerror)
3564		xlog_cil_force(log);
3565
3566	/*
3567	 * mark the filesystem and the as in a shutdown state and wake
3568	 * everybody up to tell them the bad news.
3569	 */
3570	spin_lock(&log->l_icloglock);
3571	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3572	if (mp->m_sb_bp)
3573		XFS_BUF_DONE(mp->m_sb_bp);
3574
3575	/*
3576	 * This flag is sort of redundant because of the mount flag, but
3577	 * it's good to maintain the separation between the log and the rest
3578	 * of XFS.
3579	 */
3580	log->l_flags |= XLOG_IO_ERROR;
3581
3582	/*
3583	 * If we hit a log error, we want to mark all the iclogs IOERROR
3584	 * while we're still holding the loglock.
3585	 */
3586	if (logerror)
3587		retval = xlog_state_ioerror(log);
3588	spin_unlock(&log->l_icloglock);
3589
3590	/*
3591	 * We don't want anybody waiting for log reservations after this. That
3592	 * means we have to wake up everybody queued up on reserveq as well as
3593	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3594	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3595	 * action is protected by the grant locks.
3596	 */
3597	xlog_grant_head_wake_all(&log->l_reserve_head);
3598	xlog_grant_head_wake_all(&log->l_write_head);
3599
3600	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3601		ASSERT(!logerror);
3602		/*
3603		 * Force the incore logs to disk before shutting the
3604		 * log down completely.
3605		 */
3606		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3607
3608		spin_lock(&log->l_icloglock);
3609		retval = xlog_state_ioerror(log);
3610		spin_unlock(&log->l_icloglock);
3611	}
3612	/*
3613	 * Wake up everybody waiting on xfs_log_force.
3614	 * Callback all log item committed functions as if the
3615	 * log writes were completed.
3616	 */
3617	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3618
3619#ifdef XFSERRORDEBUG
3620	{
3621		xlog_in_core_t	*iclog;
3622
3623		spin_lock(&log->l_icloglock);
3624		iclog = log->l_iclog;
3625		do {
3626			ASSERT(iclog->ic_callback == 0);
3627			iclog = iclog->ic_next;
3628		} while (iclog != log->l_iclog);
3629		spin_unlock(&log->l_icloglock);
3630	}
3631#endif
3632	/* return non-zero if log IOERROR transition had already happened */
3633	return retval;
3634}
3635
3636STATIC int
3637xlog_iclogs_empty(xlog_t *log)
 
3638{
3639	xlog_in_core_t	*iclog;
3640
3641	iclog = log->l_iclog;
3642	do {
3643		/* endianness does not matter here, zero is zero in
3644		 * any language.
3645		 */
3646		if (iclog->ic_header.h_num_logops)
3647			return 0;
3648		iclog = iclog->ic_next;
3649	} while (iclog != log->l_iclog);
3650	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
 
 
 
 
 
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t	*xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
 
 
 
 
 
  33STATIC int
  34xlog_space_left(
  35	struct xlog		*log,
  36	atomic64_t		*head);
  37STATIC void
  38xlog_dealloc_log(
  39	struct xlog		*log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
  43	struct xlog_in_core	*iclog);
  44STATIC int
  45xlog_state_get_iclog_space(
  46	struct xlog		*log,
  47	int			len,
  48	struct xlog_in_core	**iclog,
  49	struct xlog_ticket	*ticket,
  50	int			*continued_write,
  51	int			*logoffsetp);
  52STATIC void
  53xlog_state_switch_iclogs(
  54	struct xlog		*log,
  55	struct xlog_in_core	*iclog,
  56	int			eventual_size);
  57STATIC void
  58xlog_grant_push_ail(
  59	struct xlog		*log,
  60	int			need_bytes);
  61STATIC void
  62xlog_sync(
  63	struct xlog		*log,
  64	struct xlog_in_core	*iclog);
 
  65#if defined(DEBUG)
  66STATIC void
  67xlog_verify_dest_ptr(
  68	struct xlog		*log,
  69	void			*ptr);
  70STATIC void
  71xlog_verify_grant_tail(
  72	struct xlog *log);
  73STATIC void
  74xlog_verify_iclog(
  75	struct xlog		*log,
  76	struct xlog_in_core	*iclog,
  77	int			count);
  78STATIC void
  79xlog_verify_tail_lsn(
  80	struct xlog		*log,
  81	struct xlog_in_core	*iclog,
  82	xfs_lsn_t		tail_lsn);
  83#else
  84#define xlog_verify_dest_ptr(a,b)
  85#define xlog_verify_grant_tail(a)
  86#define xlog_verify_iclog(a,b,c)
  87#define xlog_verify_tail_lsn(a,b,c)
  88#endif
  89
  90STATIC int
  91xlog_iclogs_empty(
  92	struct xlog		*log);
  93
  94static void
  95xlog_grant_sub_space(
  96	struct xlog		*log,
  97	atomic64_t		*head,
  98	int			bytes)
  99{
 100	int64_t	head_val = atomic64_read(head);
 101	int64_t new, old;
 102
 103	do {
 104		int	cycle, space;
 105
 106		xlog_crack_grant_head_val(head_val, &cycle, &space);
 107
 108		space -= bytes;
 109		if (space < 0) {
 110			space += log->l_logsize;
 111			cycle--;
 112		}
 113
 114		old = head_val;
 115		new = xlog_assign_grant_head_val(cycle, space);
 116		head_val = atomic64_cmpxchg(head, old, new);
 117	} while (head_val != old);
 118}
 119
 120static void
 121xlog_grant_add_space(
 122	struct xlog		*log,
 123	atomic64_t		*head,
 124	int			bytes)
 125{
 126	int64_t	head_val = atomic64_read(head);
 127	int64_t new, old;
 128
 129	do {
 130		int		tmp;
 131		int		cycle, space;
 132
 133		xlog_crack_grant_head_val(head_val, &cycle, &space);
 134
 135		tmp = log->l_logsize - space;
 136		if (tmp > bytes)
 137			space += bytes;
 138		else {
 139			space = bytes - tmp;
 140			cycle++;
 141		}
 142
 143		old = head_val;
 144		new = xlog_assign_grant_head_val(cycle, space);
 145		head_val = atomic64_cmpxchg(head, old, new);
 146	} while (head_val != old);
 147}
 148
 149STATIC void
 150xlog_grant_head_init(
 151	struct xlog_grant_head	*head)
 152{
 153	xlog_assign_grant_head(&head->grant, 1, 0);
 154	INIT_LIST_HEAD(&head->waiters);
 155	spin_lock_init(&head->lock);
 156}
 157
 158STATIC void
 159xlog_grant_head_wake_all(
 160	struct xlog_grant_head	*head)
 161{
 162	struct xlog_ticket	*tic;
 163
 164	spin_lock(&head->lock);
 165	list_for_each_entry(tic, &head->waiters, t_queue)
 166		wake_up_process(tic->t_task);
 167	spin_unlock(&head->lock);
 168}
 169
 170static inline int
 171xlog_ticket_reservation(
 172	struct xlog		*log,
 173	struct xlog_grant_head	*head,
 174	struct xlog_ticket	*tic)
 175{
 176	if (head == &log->l_write_head) {
 177		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 178		return tic->t_unit_res;
 179	} else {
 180		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 181			return tic->t_unit_res * tic->t_cnt;
 182		else
 183			return tic->t_unit_res;
 184	}
 185}
 186
 187STATIC bool
 188xlog_grant_head_wake(
 189	struct xlog		*log,
 190	struct xlog_grant_head	*head,
 191	int			*free_bytes)
 192{
 193	struct xlog_ticket	*tic;
 194	int			need_bytes;
 195	bool			woken_task = false;
 196
 197	list_for_each_entry(tic, &head->waiters, t_queue) {
 198
 199		/*
 200		 * There is a chance that the size of the CIL checkpoints in
 201		 * progress at the last AIL push target calculation resulted in
 202		 * limiting the target to the log head (l_last_sync_lsn) at the
 203		 * time. This may not reflect where the log head is now as the
 204		 * CIL checkpoints may have completed.
 205		 *
 206		 * Hence when we are woken here, it may be that the head of the
 207		 * log that has moved rather than the tail. As the tail didn't
 208		 * move, there still won't be space available for the
 209		 * reservation we require.  However, if the AIL has already
 210		 * pushed to the target defined by the old log head location, we
 211		 * will hang here waiting for something else to update the AIL
 212		 * push target.
 213		 *
 214		 * Therefore, if there isn't space to wake the first waiter on
 215		 * the grant head, we need to push the AIL again to ensure the
 216		 * target reflects both the current log tail and log head
 217		 * position before we wait for the tail to move again.
 218		 */
 219
 220		need_bytes = xlog_ticket_reservation(log, head, tic);
 221		if (*free_bytes < need_bytes) {
 222			if (!woken_task)
 223				xlog_grant_push_ail(log, need_bytes);
 224			return false;
 225		}
 226
 227		*free_bytes -= need_bytes;
 228		trace_xfs_log_grant_wake_up(log, tic);
 229		wake_up_process(tic->t_task);
 230		woken_task = true;
 231	}
 232
 233	return true;
 234}
 235
 236STATIC int
 237xlog_grant_head_wait(
 238	struct xlog		*log,
 239	struct xlog_grant_head	*head,
 240	struct xlog_ticket	*tic,
 241	int			need_bytes) __releases(&head->lock)
 242					    __acquires(&head->lock)
 243{
 244	list_add_tail(&tic->t_queue, &head->waiters);
 245
 246	do {
 247		if (XLOG_FORCED_SHUTDOWN(log))
 248			goto shutdown;
 249		xlog_grant_push_ail(log, need_bytes);
 250
 251		__set_current_state(TASK_UNINTERRUPTIBLE);
 252		spin_unlock(&head->lock);
 253
 254		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 255
 256		trace_xfs_log_grant_sleep(log, tic);
 257		schedule();
 258		trace_xfs_log_grant_wake(log, tic);
 259
 260		spin_lock(&head->lock);
 261		if (XLOG_FORCED_SHUTDOWN(log))
 262			goto shutdown;
 263	} while (xlog_space_left(log, &head->grant) < need_bytes);
 264
 265	list_del_init(&tic->t_queue);
 266	return 0;
 267shutdown:
 268	list_del_init(&tic->t_queue);
 269	return -EIO;
 270}
 271
 272/*
 273 * Atomically get the log space required for a log ticket.
 274 *
 275 * Once a ticket gets put onto head->waiters, it will only return after the
 276 * needed reservation is satisfied.
 277 *
 278 * This function is structured so that it has a lock free fast path. This is
 279 * necessary because every new transaction reservation will come through this
 280 * path. Hence any lock will be globally hot if we take it unconditionally on
 281 * every pass.
 282 *
 283 * As tickets are only ever moved on and off head->waiters under head->lock, we
 284 * only need to take that lock if we are going to add the ticket to the queue
 285 * and sleep. We can avoid taking the lock if the ticket was never added to
 286 * head->waiters because the t_queue list head will be empty and we hold the
 287 * only reference to it so it can safely be checked unlocked.
 288 */
 289STATIC int
 290xlog_grant_head_check(
 291	struct xlog		*log,
 292	struct xlog_grant_head	*head,
 293	struct xlog_ticket	*tic,
 294	int			*need_bytes)
 295{
 296	int			free_bytes;
 297	int			error = 0;
 298
 299	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 300
 301	/*
 302	 * If there are other waiters on the queue then give them a chance at
 303	 * logspace before us.  Wake up the first waiters, if we do not wake
 304	 * up all the waiters then go to sleep waiting for more free space,
 305	 * otherwise try to get some space for this transaction.
 306	 */
 307	*need_bytes = xlog_ticket_reservation(log, head, tic);
 308	free_bytes = xlog_space_left(log, &head->grant);
 309	if (!list_empty_careful(&head->waiters)) {
 310		spin_lock(&head->lock);
 311		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 312		    free_bytes < *need_bytes) {
 313			error = xlog_grant_head_wait(log, head, tic,
 314						     *need_bytes);
 315		}
 316		spin_unlock(&head->lock);
 317	} else if (free_bytes < *need_bytes) {
 318		spin_lock(&head->lock);
 319		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 320		spin_unlock(&head->lock);
 321	}
 322
 323	return error;
 324}
 325
 326static void
 327xlog_tic_reset_res(xlog_ticket_t *tic)
 328{
 329	tic->t_res_num = 0;
 330	tic->t_res_arr_sum = 0;
 331	tic->t_res_num_ophdrs = 0;
 332}
 333
 334static void
 335xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 336{
 337	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 338		/* add to overflow and start again */
 339		tic->t_res_o_flow += tic->t_res_arr_sum;
 340		tic->t_res_num = 0;
 341		tic->t_res_arr_sum = 0;
 342	}
 343
 344	tic->t_res_arr[tic->t_res_num].r_len = len;
 345	tic->t_res_arr[tic->t_res_num].r_type = type;
 346	tic->t_res_arr_sum += len;
 347	tic->t_res_num++;
 348}
 349
 350/*
 351 * Replenish the byte reservation required by moving the grant write head.
 352 */
 353int
 354xfs_log_regrant(
 355	struct xfs_mount	*mp,
 356	struct xlog_ticket	*tic)
 357{
 358	struct xlog		*log = mp->m_log;
 359	int			need_bytes;
 360	int			error = 0;
 361
 362	if (XLOG_FORCED_SHUTDOWN(log))
 363		return -EIO;
 364
 365	XFS_STATS_INC(mp, xs_try_logspace);
 366
 367	/*
 368	 * This is a new transaction on the ticket, so we need to change the
 369	 * transaction ID so that the next transaction has a different TID in
 370	 * the log. Just add one to the existing tid so that we can see chains
 371	 * of rolling transactions in the log easily.
 372	 */
 373	tic->t_tid++;
 374
 375	xlog_grant_push_ail(log, tic->t_unit_res);
 376
 377	tic->t_curr_res = tic->t_unit_res;
 378	xlog_tic_reset_res(tic);
 379
 380	if (tic->t_cnt > 0)
 381		return 0;
 382
 383	trace_xfs_log_regrant(log, tic);
 384
 385	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 386				      &need_bytes);
 387	if (error)
 388		goto out_error;
 389
 390	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 391	trace_xfs_log_regrant_exit(log, tic);
 392	xlog_verify_grant_tail(log);
 393	return 0;
 394
 395out_error:
 396	/*
 397	 * If we are failing, make sure the ticket doesn't have any current
 398	 * reservations.  We don't want to add this back when the ticket/
 399	 * transaction gets cancelled.
 400	 */
 401	tic->t_curr_res = 0;
 402	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 403	return error;
 404}
 405
 406/*
 407 * Reserve log space and return a ticket corresponding to the reservation.
 408 *
 409 * Each reservation is going to reserve extra space for a log record header.
 410 * When writes happen to the on-disk log, we don't subtract the length of the
 411 * log record header from any reservation.  By wasting space in each
 412 * reservation, we prevent over allocation problems.
 413 */
 414int
 415xfs_log_reserve(
 416	struct xfs_mount	*mp,
 417	int		 	unit_bytes,
 418	int		 	cnt,
 419	struct xlog_ticket	**ticp,
 420	uint8_t		 	client,
 421	bool			permanent)
 
 422{
 423	struct xlog		*log = mp->m_log;
 424	struct xlog_ticket	*tic;
 425	int			need_bytes;
 426	int			error = 0;
 427
 428	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 429
 430	if (XLOG_FORCED_SHUTDOWN(log))
 431		return -EIO;
 432
 433	XFS_STATS_INC(mp, xs_try_logspace);
 434
 435	ASSERT(*ticp == NULL);
 436	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
 
 
 
 
 
 437	*ticp = tic;
 438
 439	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 440					    : tic->t_unit_res);
 441
 442	trace_xfs_log_reserve(log, tic);
 443
 444	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 445				      &need_bytes);
 446	if (error)
 447		goto out_error;
 448
 449	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 450	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 451	trace_xfs_log_reserve_exit(log, tic);
 452	xlog_verify_grant_tail(log);
 453	return 0;
 454
 455out_error:
 456	/*
 457	 * If we are failing, make sure the ticket doesn't have any current
 458	 * reservations.  We don't want to add this back when the ticket/
 459	 * transaction gets cancelled.
 460	 */
 461	tic->t_curr_res = 0;
 462	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 463	return error;
 464}
 465
 466static bool
 467__xlog_state_release_iclog(
 468	struct xlog		*log,
 469	struct xlog_in_core	*iclog)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470{
 471	lockdep_assert_held(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472
 473	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
 474		/* update tail before writing to iclog */
 475		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 476
 477		iclog->ic_state = XLOG_STATE_SYNCING;
 478		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 479		xlog_verify_tail_lsn(log, iclog, tail_lsn);
 480		/* cycle incremented when incrementing curr_block */
 481		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	}
 483
 484	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 485	return false;
 486}
 487
 488/*
 489 * Flush iclog to disk if this is the last reference to the given iclog and the
 490 * it is in the WANT_SYNC state.
 
 
 491 */
 492static int
 493xlog_state_release_iclog(
 494	struct xlog		*log,
 495	struct xlog_in_core	*iclog)
 
 496{
 497	lockdep_assert_held(&log->l_icloglock);
 498
 499	if (iclog->ic_state == XLOG_STATE_IOERROR)
 500		return -EIO;
 501
 502	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
 503	    __xlog_state_release_iclog(log, iclog)) {
 504		spin_unlock(&log->l_icloglock);
 505		xlog_sync(log, iclog);
 506		spin_lock(&log->l_icloglock);
 507	}
 508
 509	return 0;
 510}
 511
 512void
 513xfs_log_release_iclog(
 
 514	struct xlog_in_core	*iclog)
 515{
 516	struct xlog		*log = iclog->ic_log;
 517	bool			sync = false;
 518
 519	if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
 520		if (iclog->ic_state != XLOG_STATE_IOERROR)
 521			sync = __xlog_state_release_iclog(log, iclog);
 522		spin_unlock(&log->l_icloglock);
 523	}
 524
 525	if (sync)
 526		xlog_sync(log, iclog);
 527}
 528
 529/*
 530 * Mount a log filesystem
 531 *
 532 * mp		- ubiquitous xfs mount point structure
 533 * log_target	- buftarg of on-disk log device
 534 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 535 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 536 *
 537 * Return error or zero.
 538 */
 539int
 540xfs_log_mount(
 541	xfs_mount_t	*mp,
 542	xfs_buftarg_t	*log_target,
 543	xfs_daddr_t	blk_offset,
 544	int		num_bblks)
 545{
 546	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
 547	int		error = 0;
 548	int		min_logfsbs;
 549
 550	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 551		xfs_notice(mp, "Mounting V%d Filesystem",
 552			   XFS_SB_VERSION_NUM(&mp->m_sb));
 553	} else {
 554		xfs_notice(mp,
 555"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 556			   XFS_SB_VERSION_NUM(&mp->m_sb));
 557		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 558	}
 559
 560	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 561	if (IS_ERR(mp->m_log)) {
 562		error = PTR_ERR(mp->m_log);
 563		goto out;
 564	}
 565
 566	/*
 567	 * Validate the given log space and drop a critical message via syslog
 568	 * if the log size is too small that would lead to some unexpected
 569	 * situations in transaction log space reservation stage.
 570	 *
 571	 * Note: we can't just reject the mount if the validation fails.  This
 572	 * would mean that people would have to downgrade their kernel just to
 573	 * remedy the situation as there is no way to grow the log (short of
 574	 * black magic surgery with xfs_db).
 575	 *
 576	 * We can, however, reject mounts for CRC format filesystems, as the
 577	 * mkfs binary being used to make the filesystem should never create a
 578	 * filesystem with a log that is too small.
 579	 */
 580	min_logfsbs = xfs_log_calc_minimum_size(mp);
 581
 582	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 583		xfs_warn(mp,
 584		"Log size %d blocks too small, minimum size is %d blocks",
 585			 mp->m_sb.sb_logblocks, min_logfsbs);
 586		error = -EINVAL;
 587	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 588		xfs_warn(mp,
 589		"Log size %d blocks too large, maximum size is %lld blocks",
 590			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 591		error = -EINVAL;
 592	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 593		xfs_warn(mp,
 594		"log size %lld bytes too large, maximum size is %lld bytes",
 595			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 596			 XFS_MAX_LOG_BYTES);
 597		error = -EINVAL;
 598	} else if (mp->m_sb.sb_logsunit > 1 &&
 599		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 600		xfs_warn(mp,
 601		"log stripe unit %u bytes must be a multiple of block size",
 602			 mp->m_sb.sb_logsunit);
 603		error = -EINVAL;
 604		fatal = true;
 605	}
 606	if (error) {
 607		/*
 608		 * Log check errors are always fatal on v5; or whenever bad
 609		 * metadata leads to a crash.
 610		 */
 611		if (fatal) {
 612			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 613			ASSERT(0);
 614			goto out_free_log;
 615		}
 616		xfs_crit(mp, "Log size out of supported range.");
 617		xfs_crit(mp,
 618"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 619	}
 620
 621	/*
 622	 * Initialize the AIL now we have a log.
 623	 */
 624	error = xfs_trans_ail_init(mp);
 625	if (error) {
 626		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 627		goto out_free_log;
 628	}
 629	mp->m_log->l_ailp = mp->m_ail;
 630
 631	/*
 632	 * skip log recovery on a norecovery mount.  pretend it all
 633	 * just worked.
 634	 */
 635	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 636		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 637
 638		if (readonly)
 639			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 640
 641		error = xlog_recover(mp->m_log);
 642
 643		if (readonly)
 644			mp->m_flags |= XFS_MOUNT_RDONLY;
 645		if (error) {
 646			xfs_warn(mp, "log mount/recovery failed: error %d",
 647				error);
 648			xlog_recover_cancel(mp->m_log);
 649			goto out_destroy_ail;
 650		}
 651	}
 652
 653	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 654			       "log");
 655	if (error)
 656		goto out_destroy_ail;
 657
 658	/* Normal transactions can now occur */
 659	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 660
 661	/*
 662	 * Now the log has been fully initialised and we know were our
 663	 * space grant counters are, we can initialise the permanent ticket
 664	 * needed for delayed logging to work.
 665	 */
 666	xlog_cil_init_post_recovery(mp->m_log);
 667
 668	return 0;
 669
 670out_destroy_ail:
 671	xfs_trans_ail_destroy(mp);
 672out_free_log:
 673	xlog_dealloc_log(mp->m_log);
 674out:
 675	return error;
 676}
 677
 678/*
 679 * Finish the recovery of the file system.  This is separate from the
 680 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 681 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 682 * here.
 683 *
 684 * If we finish recovery successfully, start the background log work. If we are
 685 * not doing recovery, then we have a RO filesystem and we don't need to start
 686 * it.
 687 */
 688int
 689xfs_log_mount_finish(
 690	struct xfs_mount	*mp)
 691{
 692	int	error = 0;
 693	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 694	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 695
 696	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 
 
 
 697		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 698		return 0;
 699	} else if (readonly) {
 700		/* Allow unlinked processing to proceed */
 701		mp->m_flags &= ~XFS_MOUNT_RDONLY;
 702	}
 703
 704	/*
 705	 * During the second phase of log recovery, we need iget and
 706	 * iput to behave like they do for an active filesystem.
 707	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 708	 * of inodes before we're done replaying log items on those
 709	 * inodes.  Turn it off immediately after recovery finishes
 710	 * so that we don't leak the quota inodes if subsequent mount
 711	 * activities fail.
 712	 *
 713	 * We let all inodes involved in redo item processing end up on
 714	 * the LRU instead of being evicted immediately so that if we do
 715	 * something to an unlinked inode, the irele won't cause
 716	 * premature truncation and freeing of the inode, which results
 717	 * in log recovery failure.  We have to evict the unreferenced
 718	 * lru inodes after clearing SB_ACTIVE because we don't
 719	 * otherwise clean up the lru if there's a subsequent failure in
 720	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 721	 * else (e.g. quotacheck) references the inodes before the
 722	 * mount failure occurs.
 723	 */
 724	mp->m_super->s_flags |= SB_ACTIVE;
 725	error = xlog_recover_finish(mp->m_log);
 726	if (!error)
 727		xfs_log_work_queue(mp);
 728	mp->m_super->s_flags &= ~SB_ACTIVE;
 729	evict_inodes(mp->m_super);
 730
 731	/*
 732	 * Drain the buffer LRU after log recovery. This is required for v4
 733	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 734	 * but we do it unconditionally to make sure we're always in a clean
 735	 * cache state after mount.
 736	 *
 737	 * Don't push in the error case because the AIL may have pending intents
 738	 * that aren't removed until recovery is cancelled.
 739	 */
 740	if (!error && recovered) {
 741		xfs_log_force(mp, XFS_LOG_SYNC);
 742		xfs_ail_push_all_sync(mp->m_ail);
 743	}
 744	xfs_wait_buftarg(mp->m_ddev_targp);
 745
 746	if (readonly)
 747		mp->m_flags |= XFS_MOUNT_RDONLY;
 748
 749	return error;
 750}
 751
 752/*
 753 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 754 * the log.
 
 
 
 755 */
 756void
 757xfs_log_mount_cancel(
 758	struct xfs_mount	*mp)
 759{
 760	xlog_recover_cancel(mp->m_log);
 761	xfs_log_unmount(mp);
 762}
 763
 764/*
 765 * Wait for the iclog to be written disk, or return an error if the log has been
 766 * shut down.
 
 
 
 767 */
 768static int
 769xlog_wait_on_iclog(
 770	struct xlog_in_core	*iclog)
 771		__releases(iclog->ic_log->l_icloglock)
 772{
 773	struct xlog		*log = iclog->ic_log;
 774
 775	if (!XLOG_FORCED_SHUTDOWN(log) &&
 776	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 777	    iclog->ic_state != XLOG_STATE_DIRTY) {
 778		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 779		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 780	} else {
 781		spin_unlock(&log->l_icloglock);
 782	}
 783
 784	if (XLOG_FORCED_SHUTDOWN(log))
 785		return -EIO;
 786	return 0;
 787}
 788
 789/*
 790 * Write out an unmount record using the ticket provided. We have to account for
 791 * the data space used in the unmount ticket as this write is not done from a
 792 * transaction context that has already done the accounting for us.
 793 */
 794static int
 795xlog_write_unmount_record(
 796	struct xlog		*log,
 797	struct xlog_ticket	*ticket,
 798	xfs_lsn_t		*lsn,
 799	uint			flags)
 800{
 801	struct xfs_unmount_log_format ulf = {
 802		.magic = XLOG_UNMOUNT_TYPE,
 803	};
 804	struct xfs_log_iovec reg = {
 805		.i_addr = &ulf,
 806		.i_len = sizeof(ulf),
 807		.i_type = XLOG_REG_TYPE_UNMOUNT,
 808	};
 809	struct xfs_log_vec vec = {
 810		.lv_niovecs = 1,
 811		.lv_iovecp = &reg,
 812	};
 813
 814	/* account for space used by record data */
 815	ticket->t_curr_res -= sizeof(ulf);
 816	return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
 817}
 818
 819/*
 820 * Mark the filesystem clean by writing an unmount record to the head of the
 821 * log.
 822 */
 823static void
 824xlog_unmount_write(
 825	struct xlog		*log)
 826{
 827	struct xfs_mount	*mp = log->l_mp;
 828	struct xlog_in_core	*iclog;
 829	struct xlog_ticket	*tic = NULL;
 830	xfs_lsn_t		lsn;
 831	uint			flags = XLOG_UNMOUNT_TRANS;
 832	int			error;
 833
 834	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 835	if (error)
 836		goto out_err;
 837
 838	error = xlog_write_unmount_record(log, tic, &lsn, flags);
 839	/*
 840	 * At this point, we're umounting anyway, so there's no point in
 841	 * transitioning log state to IOERROR. Just continue...
 842	 */
 843out_err:
 844	if (error)
 845		xfs_alert(mp, "%s: unmount record failed", __func__);
 846
 847	spin_lock(&log->l_icloglock);
 848	iclog = log->l_iclog;
 849	atomic_inc(&iclog->ic_refcnt);
 850	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 851		xlog_state_switch_iclogs(log, iclog, 0);
 852	else
 853		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 854		       iclog->ic_state == XLOG_STATE_IOERROR);
 855	error = xlog_state_release_iclog(log, iclog);
 856	xlog_wait_on_iclog(iclog);
 857
 858	if (tic) {
 859		trace_xfs_log_umount_write(log, tic);
 860		xfs_log_ticket_ungrant(log, tic);
 861	}
 862}
 863
 864static void
 865xfs_log_unmount_verify_iclog(
 866	struct xlog		*log)
 867{
 868	struct xlog_in_core	*iclog = log->l_iclog;
 869
 
 
 870	do {
 871		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 872		ASSERT(iclog->ic_offset == 0);
 873	} while ((iclog = iclog->ic_next) != log->l_iclog);
 874}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876/*
 877 * Unmount record used to have a string "Unmount filesystem--" in the
 878 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 879 * We just write the magic number now since that particular field isn't
 880 * currently architecture converted and "Unmount" is a bit foo.
 881 * As far as I know, there weren't any dependencies on the old behaviour.
 882 */
 883static void
 884xfs_log_unmount_write(
 885	struct xfs_mount	*mp)
 886{
 887	struct xlog		*log = mp->m_log;
 888
 889	/*
 890	 * Don't write out unmount record on norecovery mounts or ro devices.
 891	 * Or, if we are doing a forced umount (typically because of IO errors).
 892	 */
 893	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 894	    xfs_readonly_buftarg(log->l_targ)) {
 895		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 896		return;
 897	}
 898
 899	xfs_log_force(mp, XFS_LOG_SYNC);
 
 
 
 
 
 900
 901	if (XLOG_FORCED_SHUTDOWN(log))
 902		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	/*
 905	 * If we think the summary counters are bad, avoid writing the unmount
 906	 * record to force log recovery at next mount, after which the summary
 907	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 908	 * more details.
 909	 */
 910	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 911			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 912		xfs_alert(mp, "%s: will fix summary counters at next mount",
 913				__func__);
 914		return;
 915	}
 916
 917	xfs_log_unmount_verify_iclog(log);
 918	xlog_unmount_write(log);
 919}
 920
 921/*
 922 * Empty the log for unmount/freeze.
 923 *
 924 * To do this, we first need to shut down the background log work so it is not
 925 * trying to cover the log as we clean up. We then need to unpin all objects in
 926 * the log so we can then flush them out. Once they have completed their IO and
 927 * run the callbacks removing themselves from the AIL, we can write the unmount
 928 * record.
 929 */
 930void
 931xfs_log_quiesce(
 932	struct xfs_mount	*mp)
 933{
 934	cancel_delayed_work_sync(&mp->m_log->l_work);
 935	xfs_log_force(mp, XFS_LOG_SYNC);
 936
 937	/*
 938	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 939	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
 940	 * xfs_buf_iowait() cannot be used because it was pushed with the
 941	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 942	 * the IO to complete.
 943	 */
 944	xfs_ail_push_all_sync(mp->m_ail);
 945	xfs_wait_buftarg(mp->m_ddev_targp);
 946	xfs_buf_lock(mp->m_sb_bp);
 947	xfs_buf_unlock(mp->m_sb_bp);
 948
 949	xfs_log_unmount_write(mp);
 950}
 951
 952/*
 953 * Shut down and release the AIL and Log.
 954 *
 955 * During unmount, we need to ensure we flush all the dirty metadata objects
 956 * from the AIL so that the log is empty before we write the unmount record to
 957 * the log. Once this is done, we can tear down the AIL and the log.
 958 */
 959void
 960xfs_log_unmount(
 961	struct xfs_mount	*mp)
 962{
 963	xfs_log_quiesce(mp);
 964
 965	xfs_trans_ail_destroy(mp);
 966
 967	xfs_sysfs_del(&mp->m_log->l_kobj);
 968
 969	xlog_dealloc_log(mp->m_log);
 970}
 971
 972void
 973xfs_log_item_init(
 974	struct xfs_mount	*mp,
 975	struct xfs_log_item	*item,
 976	int			type,
 977	const struct xfs_item_ops *ops)
 978{
 979	item->li_mountp = mp;
 980	item->li_ailp = mp->m_ail;
 981	item->li_type = type;
 982	item->li_ops = ops;
 983	item->li_lv = NULL;
 984
 985	INIT_LIST_HEAD(&item->li_ail);
 986	INIT_LIST_HEAD(&item->li_cil);
 987	INIT_LIST_HEAD(&item->li_bio_list);
 988	INIT_LIST_HEAD(&item->li_trans);
 989}
 990
 991/*
 992 * Wake up processes waiting for log space after we have moved the log tail.
 993 */
 994void
 995xfs_log_space_wake(
 996	struct xfs_mount	*mp)
 997{
 998	struct xlog		*log = mp->m_log;
 999	int			free_bytes;
1000
1001	if (XLOG_FORCED_SHUTDOWN(log))
1002		return;
1003
1004	if (!list_empty_careful(&log->l_write_head.waiters)) {
1005		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1006
1007		spin_lock(&log->l_write_head.lock);
1008		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1009		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1010		spin_unlock(&log->l_write_head.lock);
1011	}
1012
1013	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1014		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1015
1016		spin_lock(&log->l_reserve_head.lock);
1017		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1018		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1019		spin_unlock(&log->l_reserve_head.lock);
1020	}
1021}
1022
1023/*
1024 * Determine if we have a transaction that has gone to disk that needs to be
1025 * covered. To begin the transition to the idle state firstly the log needs to
1026 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1027 * we start attempting to cover the log.
1028 *
1029 * Only if we are then in a state where covering is needed, the caller is
1030 * informed that dummy transactions are required to move the log into the idle
1031 * state.
1032 *
1033 * If there are any items in the AIl or CIL, then we do not want to attempt to
1034 * cover the log as we may be in a situation where there isn't log space
1035 * available to run a dummy transaction and this can lead to deadlocks when the
1036 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1037 * there's no point in running a dummy transaction at this point because we
1038 * can't start trying to idle the log until both the CIL and AIL are empty.
1039 */
1040static int
1041xfs_log_need_covered(xfs_mount_t *mp)
1042{
1043	struct xlog	*log = mp->m_log;
1044	int		needed = 0;
 
1045
1046	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1047		return 0;
1048
1049	if (!xlog_cil_empty(log))
1050		return 0;
1051
1052	spin_lock(&log->l_icloglock);
1053	switch (log->l_covered_state) {
1054	case XLOG_STATE_COVER_DONE:
1055	case XLOG_STATE_COVER_DONE2:
1056	case XLOG_STATE_COVER_IDLE:
1057		break;
1058	case XLOG_STATE_COVER_NEED:
1059	case XLOG_STATE_COVER_NEED2:
1060		if (xfs_ail_min_lsn(log->l_ailp))
1061			break;
1062		if (!xlog_iclogs_empty(log))
1063			break;
1064
1065		needed = 1;
1066		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1067			log->l_covered_state = XLOG_STATE_COVER_DONE;
1068		else
1069			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1070		break;
1071	default:
1072		needed = 1;
1073		break;
1074	}
1075	spin_unlock(&log->l_icloglock);
1076	return needed;
1077}
1078
1079/*
1080 * We may be holding the log iclog lock upon entering this routine.
1081 */
1082xfs_lsn_t
1083xlog_assign_tail_lsn_locked(
1084	struct xfs_mount	*mp)
1085{
1086	struct xlog		*log = mp->m_log;
1087	struct xfs_log_item	*lip;
1088	xfs_lsn_t		tail_lsn;
1089
1090	assert_spin_locked(&mp->m_ail->ail_lock);
1091
1092	/*
1093	 * To make sure we always have a valid LSN for the log tail we keep
1094	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1095	 * and use that when the AIL was empty.
1096	 */
1097	lip = xfs_ail_min(mp->m_ail);
1098	if (lip)
1099		tail_lsn = lip->li_lsn;
1100	else
1101		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1102	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1103	atomic64_set(&log->l_tail_lsn, tail_lsn);
1104	return tail_lsn;
1105}
1106
1107xfs_lsn_t
1108xlog_assign_tail_lsn(
1109	struct xfs_mount	*mp)
1110{
1111	xfs_lsn_t		tail_lsn;
1112
1113	spin_lock(&mp->m_ail->ail_lock);
1114	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1115	spin_unlock(&mp->m_ail->ail_lock);
1116
1117	return tail_lsn;
1118}
1119
1120/*
1121 * Return the space in the log between the tail and the head.  The head
1122 * is passed in the cycle/bytes formal parms.  In the special case where
1123 * the reserve head has wrapped passed the tail, this calculation is no
1124 * longer valid.  In this case, just return 0 which means there is no space
1125 * in the log.  This works for all places where this function is called
1126 * with the reserve head.  Of course, if the write head were to ever
1127 * wrap the tail, we should blow up.  Rather than catch this case here,
1128 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1129 *
1130 * This code also handles the case where the reservation head is behind
1131 * the tail.  The details of this case are described below, but the end
1132 * result is that we return the size of the log as the amount of space left.
1133 */
1134STATIC int
1135xlog_space_left(
1136	struct xlog	*log,
1137	atomic64_t	*head)
1138{
1139	int		free_bytes;
1140	int		tail_bytes;
1141	int		tail_cycle;
1142	int		head_cycle;
1143	int		head_bytes;
1144
1145	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1146	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1147	tail_bytes = BBTOB(tail_bytes);
1148	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1149		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1150	else if (tail_cycle + 1 < head_cycle)
1151		return 0;
1152	else if (tail_cycle < head_cycle) {
1153		ASSERT(tail_cycle == (head_cycle - 1));
1154		free_bytes = tail_bytes - head_bytes;
1155	} else {
1156		/*
1157		 * The reservation head is behind the tail.
1158		 * In this case we just want to return the size of the
1159		 * log as the amount of space left.
1160		 */
1161		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1162		xfs_alert(log->l_mp,
1163			  "  tail_cycle = %d, tail_bytes = %d",
1164			  tail_cycle, tail_bytes);
1165		xfs_alert(log->l_mp,
1166			  "  GH   cycle = %d, GH   bytes = %d",
1167			  head_cycle, head_bytes);
 
 
1168		ASSERT(0);
1169		free_bytes = log->l_logsize;
1170	}
1171	return free_bytes;
1172}
1173
1174
1175static void
1176xlog_ioend_work(
1177	struct work_struct	*work)
 
 
 
 
 
1178{
1179	struct xlog_in_core     *iclog =
1180		container_of(work, struct xlog_in_core, ic_end_io_work);
1181	struct xlog		*log = iclog->ic_log;
1182	int			error;
1183
1184	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1185#ifdef DEBUG
1186	/* treat writes with injected CRC errors as failed */
1187	if (iclog->ic_fail_crc)
1188		error = -EIO;
1189#endif
1190
1191	/*
1192	 * Race to shutdown the filesystem if we see an error.
1193	 */
1194	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1195		xfs_alert(log->l_mp, "log I/O error %d", error);
1196		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
 
 
 
 
 
 
 
 
 
 
1197	}
1198
1199	xlog_state_done_syncing(iclog);
1200	bio_uninit(&iclog->ic_bio);
1201
1202	/*
1203	 * Drop the lock to signal that we are done. Nothing references the
1204	 * iclog after this, so an unmount waiting on this lock can now tear it
1205	 * down safely. As such, it is unsafe to reference the iclog after the
1206	 * unlock as we could race with it being freed.
1207	 */
1208	up(&iclog->ic_sema);
1209}
1210
1211/*
1212 * Return size of each in-core log record buffer.
1213 *
1214 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1215 *
1216 * If the filesystem blocksize is too large, we may need to choose a
1217 * larger size since the directory code currently logs entire blocks.
1218 */
 
1219STATIC void
1220xlog_get_iclog_buffer_size(
1221	struct xfs_mount	*mp,
1222	struct xlog		*log)
1223{
 
 
 
1224	if (mp->m_logbufs <= 0)
1225		mp->m_logbufs = XLOG_MAX_ICLOGS;
1226	if (mp->m_logbsize <= 0)
1227		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1228
1229	log->l_iclog_bufs = mp->m_logbufs;
1230	log->l_iclog_size = mp->m_logbsize;
1231
1232	/*
1233	 * # headers = size / 32k - one header holds cycles from 32k of data.
1234	 */
1235	log->l_iclog_heads =
1236		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1237	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1238}
 
 
 
1239
1240void
1241xfs_log_work_queue(
1242	struct xfs_mount        *mp)
1243{
1244	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1245				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1246}
1247
1248/*
1249 * Every sync period we need to unpin all items in the AIL and push them to
1250 * disk. If there is nothing dirty, then we might need to cover the log to
1251 * indicate that the filesystem is idle.
1252 */
1253static void
1254xfs_log_worker(
1255	struct work_struct	*work)
1256{
1257	struct xlog		*log = container_of(to_delayed_work(work),
1258						struct xlog, l_work);
1259	struct xfs_mount	*mp = log->l_mp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260
1261	/* dgc: errors ignored - not fatal and nowhere to report them */
1262	if (xfs_log_need_covered(mp)) {
1263		/*
1264		 * Dump a transaction into the log that contains no real change.
1265		 * This is needed to stamp the current tail LSN into the log
1266		 * during the covering operation.
1267		 *
1268		 * We cannot use an inode here for this - that will push dirty
1269		 * state back up into the VFS and then periodic inode flushing
1270		 * will prevent log covering from making progress. Hence we
1271		 * synchronously log the superblock instead to ensure the
1272		 * superblock is immediately unpinned and can be written back.
1273		 */
1274		xfs_sync_sb(mp, true);
1275	} else
1276		xfs_log_force(mp, 0);
1277
1278	/* start pushing all the metadata that is currently dirty */
1279	xfs_ail_push_all(mp->m_ail);
1280
1281	/* queue us up again */
1282	xfs_log_work_queue(mp);
1283}
1284
1285/*
1286 * This routine initializes some of the log structure for a given mount point.
1287 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1288 * some other stuff may be filled in too.
1289 */
1290STATIC struct xlog *
1291xlog_alloc_log(
1292	struct xfs_mount	*mp,
1293	struct xfs_buftarg	*log_target,
1294	xfs_daddr_t		blk_offset,
1295	int			num_bblks)
1296{
1297	struct xlog		*log;
1298	xlog_rec_header_t	*head;
1299	xlog_in_core_t		**iclogp;
1300	xlog_in_core_t		*iclog, *prev_iclog=NULL;
 
1301	int			i;
1302	int			error = -ENOMEM;
1303	uint			log2_size = 0;
1304
1305	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1306	if (!log) {
1307		xfs_warn(mp, "Log allocation failed: No memory!");
1308		goto out;
1309	}
1310
1311	log->l_mp	   = mp;
1312	log->l_targ	   = log_target;
1313	log->l_logsize     = BBTOB(num_bblks);
1314	log->l_logBBstart  = blk_offset;
1315	log->l_logBBsize   = num_bblks;
1316	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1317	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1318	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1319
1320	log->l_prev_block  = -1;
1321	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1323	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1324	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1325
1326	xlog_grant_head_init(&log->l_reserve_head);
1327	xlog_grant_head_init(&log->l_write_head);
1328
1329	error = -EFSCORRUPTED;
1330	if (xfs_sb_version_hassector(&mp->m_sb)) {
1331	        log2_size = mp->m_sb.sb_logsectlog;
1332		if (log2_size < BBSHIFT) {
1333			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1334				log2_size, BBSHIFT);
1335			goto out_free_log;
1336		}
1337
1338	        log2_size -= BBSHIFT;
1339		if (log2_size > mp->m_sectbb_log) {
1340			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1341				log2_size, mp->m_sectbb_log);
1342			goto out_free_log;
1343		}
1344
1345		/* for larger sector sizes, must have v2 or external log */
1346		if (log2_size && log->l_logBBstart > 0 &&
1347			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1348			xfs_warn(mp,
1349		"log sector size (0x%x) invalid for configuration.",
1350				log2_size);
1351			goto out_free_log;
1352		}
1353	}
1354	log->l_sectBBsize = 1 << log2_size;
1355
1356	xlog_get_iclog_buffer_size(mp, log);
1357
 
 
 
 
 
 
 
 
1358	spin_lock_init(&log->l_icloglock);
1359	init_waitqueue_head(&log->l_flush_wait);
1360
1361	iclogp = &log->l_iclog;
1362	/*
1363	 * The amount of memory to allocate for the iclog structure is
1364	 * rather funky due to the way the structure is defined.  It is
1365	 * done this way so that we can use different sizes for machines
1366	 * with different amounts of memory.  See the definition of
1367	 * xlog_in_core_t in xfs_log_priv.h for details.
1368	 */
1369	ASSERT(log->l_iclog_size >= 4096);
1370	for (i = 0; i < log->l_iclog_bufs; i++) {
1371		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1372		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1373				sizeof(struct bio_vec);
1374
1375		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1376		if (!iclog)
1377			goto out_free_iclog;
1378
1379		*iclogp = iclog;
1380		iclog->ic_prev = prev_iclog;
1381		prev_iclog = iclog;
1382
1383		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1384						KM_MAYFAIL | KM_ZERO);
1385		if (!iclog->ic_data)
1386			goto out_free_iclog;
 
 
 
 
1387#ifdef DEBUG
1388		log->l_iclog_bak[i] = &iclog->ic_header;
1389#endif
1390		head = &iclog->ic_header;
1391		memset(head, 0, sizeof(xlog_rec_header_t));
1392		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1393		head->h_version = cpu_to_be32(
1394			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1395		head->h_size = cpu_to_be32(log->l_iclog_size);
1396		/* new fields */
1397		head->h_fmt = cpu_to_be32(XLOG_FMT);
1398		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1399
1400		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1401		iclog->ic_state = XLOG_STATE_ACTIVE;
1402		iclog->ic_log = log;
1403		atomic_set(&iclog->ic_refcnt, 0);
1404		spin_lock_init(&iclog->ic_callback_lock);
1405		INIT_LIST_HEAD(&iclog->ic_callbacks);
1406		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1407
 
1408		init_waitqueue_head(&iclog->ic_force_wait);
1409		init_waitqueue_head(&iclog->ic_write_wait);
1410		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1411		sema_init(&iclog->ic_sema, 1);
1412
1413		iclogp = &iclog->ic_next;
1414	}
1415	*iclogp = log->l_iclog;			/* complete ring */
1416	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1417
1418	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1419			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1420			mp->m_super->s_id);
1421	if (!log->l_ioend_workqueue)
1422		goto out_free_iclog;
1423
1424	error = xlog_cil_init(log);
1425	if (error)
1426		goto out_destroy_workqueue;
1427	return log;
1428
1429out_destroy_workqueue:
1430	destroy_workqueue(log->l_ioend_workqueue);
1431out_free_iclog:
1432	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1433		prev_iclog = iclog->ic_next;
1434		kmem_free(iclog->ic_data);
 
1435		kmem_free(iclog);
1436		if (prev_iclog == log->l_iclog)
1437			break;
1438	}
 
 
1439out_free_log:
1440	kmem_free(log);
1441out:
1442	return ERR_PTR(error);
1443}	/* xlog_alloc_log */
1444
 
1445/*
1446 * Write out the commit record of a transaction associated with the given
1447 * ticket to close off a running log write. Return the lsn of the commit record.
1448 */
1449int
1450xlog_commit_record(
1451	struct xlog		*log,
1452	struct xlog_ticket	*ticket,
1453	struct xlog_in_core	**iclog,
1454	xfs_lsn_t		*lsn)
1455{
 
 
1456	struct xfs_log_iovec reg = {
1457		.i_addr = NULL,
1458		.i_len = 0,
1459		.i_type = XLOG_REG_TYPE_COMMIT,
1460	};
1461	struct xfs_log_vec vec = {
1462		.lv_niovecs = 1,
1463		.lv_iovecp = &reg,
1464	};
1465	int	error;
1466
1467	if (XLOG_FORCED_SHUTDOWN(log))
1468		return -EIO;
1469
1470	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1471			   false);
1472	if (error)
1473		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1474	return error;
1475}
1476
1477/*
1478 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1479 * log space.  This code pushes on the lsn which would supposedly free up
1480 * the 25% which we want to leave free.  We may need to adopt a policy which
1481 * pushes on an lsn which is further along in the log once we reach the high
1482 * water mark.  In this manner, we would be creating a low water mark.
1483 */
1484STATIC void
1485xlog_grant_push_ail(
1486	struct xlog	*log,
1487	int		need_bytes)
1488{
1489	xfs_lsn_t	threshold_lsn = 0;
1490	xfs_lsn_t	last_sync_lsn;
1491	int		free_blocks;
1492	int		free_bytes;
1493	int		threshold_block;
1494	int		threshold_cycle;
1495	int		free_threshold;
1496
1497	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1498
1499	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1500	free_blocks = BTOBBT(free_bytes);
1501
1502	/*
1503	 * Set the threshold for the minimum number of free blocks in the
1504	 * log to the maximum of what the caller needs, one quarter of the
1505	 * log, and 256 blocks.
1506	 */
1507	free_threshold = BTOBB(need_bytes);
1508	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1509	free_threshold = max(free_threshold, 256);
1510	if (free_blocks >= free_threshold)
1511		return;
1512
1513	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1514						&threshold_block);
1515	threshold_block += free_threshold;
1516	if (threshold_block >= log->l_logBBsize) {
1517		threshold_block -= log->l_logBBsize;
1518		threshold_cycle += 1;
1519	}
1520	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1521					threshold_block);
1522	/*
1523	 * Don't pass in an lsn greater than the lsn of the last
1524	 * log record known to be on disk. Use a snapshot of the last sync lsn
1525	 * so that it doesn't change between the compare and the set.
1526	 */
1527	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1528	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1529		threshold_lsn = last_sync_lsn;
1530
1531	/*
1532	 * Get the transaction layer to kick the dirty buffers out to
1533	 * disk asynchronously. No point in trying to do this if
1534	 * the filesystem is shutting down.
1535	 */
1536	if (!XLOG_FORCED_SHUTDOWN(log))
1537		xfs_ail_push(log->l_ailp, threshold_lsn);
1538}
1539
1540/*
1541 * Stamp cycle number in every block
 
 
 
 
 
1542 */
1543STATIC void
1544xlog_pack_data(
1545	struct xlog		*log,
1546	struct xlog_in_core	*iclog,
1547	int			roundoff)
1548{
1549	int			i, j, k;
1550	int			size = iclog->ic_offset + roundoff;
1551	__be32			cycle_lsn;
1552	char			*dp;
1553
1554	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1555
1556	dp = iclog->ic_datap;
1557	for (i = 0; i < BTOBB(size); i++) {
1558		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1559			break;
1560		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1561		*(__be32 *)dp = cycle_lsn;
1562		dp += BBSIZE;
1563	}
1564
1565	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1566		xlog_in_core_2_t *xhdr = iclog->ic_data;
1567
1568		for ( ; i < BTOBB(size); i++) {
1569			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1570			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1571			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1572			*(__be32 *)dp = cycle_lsn;
1573			dp += BBSIZE;
1574		}
1575
1576		for (i = 1; i < log->l_iclog_heads; i++)
1577			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1578	}
1579}
1580
1581/*
1582 * Calculate the checksum for a log buffer.
1583 *
1584 * This is a little more complicated than it should be because the various
1585 * headers and the actual data are non-contiguous.
1586 */
1587__le32
1588xlog_cksum(
1589	struct xlog		*log,
1590	struct xlog_rec_header	*rhead,
1591	char			*dp,
1592	int			size)
1593{
1594	uint32_t		crc;
1595
1596	/* first generate the crc for the record header ... */
1597	crc = xfs_start_cksum_update((char *)rhead,
1598			      sizeof(struct xlog_rec_header),
1599			      offsetof(struct xlog_rec_header, h_crc));
1600
1601	/* ... then for additional cycle data for v2 logs ... */
1602	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1603		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1604		int		i;
1605		int		xheads;
1606
1607		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1608		if (size % XLOG_HEADER_CYCLE_SIZE)
1609			xheads++;
1610
1611		for (i = 1; i < xheads; i++) {
1612			crc = crc32c(crc, &xhdr[i].hic_xheader,
1613				     sizeof(struct xlog_rec_ext_header));
1614		}
1615	}
1616
1617	/* ... and finally for the payload */
1618	crc = crc32c(crc, dp, size);
1619
1620	return xfs_end_cksum(crc);
1621}
1622
1623static void
1624xlog_bio_end_io(
1625	struct bio		*bio)
1626{
1627	struct xlog_in_core	*iclog = bio->bi_private;
1628
1629	queue_work(iclog->ic_log->l_ioend_workqueue,
1630		   &iclog->ic_end_io_work);
1631}
1632
1633static int
1634xlog_map_iclog_data(
1635	struct bio		*bio,
1636	void			*data,
1637	size_t			count)
1638{
1639	do {
1640		struct page	*page = kmem_to_page(data);
1641		unsigned int	off = offset_in_page(data);
1642		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1643
1644		if (bio_add_page(bio, page, len, off) != len)
1645			return -EIO;
1646
1647		data += len;
1648		count -= len;
1649	} while (count);
1650
1651	return 0;
1652}
1653
1654STATIC void
1655xlog_write_iclog(
1656	struct xlog		*log,
1657	struct xlog_in_core	*iclog,
1658	uint64_t		bno,
1659	unsigned int		count,
1660	bool			need_flush)
1661{
1662	ASSERT(bno < log->l_logBBsize);
1663
1664	/*
1665	 * We lock the iclogbufs here so that we can serialise against I/O
1666	 * completion during unmount.  We might be processing a shutdown
1667	 * triggered during unmount, and that can occur asynchronously to the
1668	 * unmount thread, and hence we need to ensure that completes before
1669	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1670	 * across the log IO to archieve that.
1671	 */
1672	down(&iclog->ic_sema);
1673	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1674		/*
1675		 * It would seem logical to return EIO here, but we rely on
1676		 * the log state machine to propagate I/O errors instead of
1677		 * doing it here.  We kick of the state machine and unlock
1678		 * the buffer manually, the code needs to be kept in sync
1679		 * with the I/O completion path.
1680		 */
1681		xlog_state_done_syncing(iclog);
1682		up(&iclog->ic_sema);
1683		return;
1684	}
1685
1686	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1687	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1688	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1689	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1690	iclog->ic_bio.bi_private = iclog;
1691
1692	/*
1693	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1694	 * IOs coming immediately after this one. This prevents the block layer
1695	 * writeback throttle from throttling log writes behind background
1696	 * metadata writeback and causing priority inversions.
1697	 */
1698	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1699				REQ_IDLE | REQ_FUA;
1700	if (need_flush)
1701		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1702
1703	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1704		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1705		return;
1706	}
1707	if (is_vmalloc_addr(iclog->ic_data))
1708		flush_kernel_vmap_range(iclog->ic_data, count);
1709
1710	/*
1711	 * If this log buffer would straddle the end of the log we will have
1712	 * to split it up into two bios, so that we can continue at the start.
1713	 */
1714	if (bno + BTOBB(count) > log->l_logBBsize) {
1715		struct bio *split;
1716
1717		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1718				  GFP_NOIO, &fs_bio_set);
1719		bio_chain(split, &iclog->ic_bio);
1720		submit_bio(split);
1721
1722		/* restart at logical offset zero for the remainder */
1723		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1724	}
1725
1726	submit_bio(&iclog->ic_bio);
1727}
1728
1729/*
1730 * We need to bump cycle number for the part of the iclog that is
1731 * written to the start of the log. Watch out for the header magic
1732 * number case, though.
1733 */
1734static void
1735xlog_split_iclog(
1736	struct xlog		*log,
1737	void			*data,
1738	uint64_t		bno,
1739	unsigned int		count)
1740{
1741	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1742	unsigned int		i;
1743
1744	for (i = split_offset; i < count; i += BBSIZE) {
1745		uint32_t cycle = get_unaligned_be32(data + i);
1746
1747		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1748			cycle++;
1749		put_unaligned_be32(cycle, data + i);
1750	}
1751}
1752
1753static int
1754xlog_calc_iclog_size(
1755	struct xlog		*log,
1756	struct xlog_in_core	*iclog,
1757	uint32_t		*roundoff)
1758{
1759	uint32_t		count_init, count;
1760	bool			use_lsunit;
1761
1762	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1763			log->l_mp->m_sb.sb_logsunit > 1;
1764
1765	/* Add for LR header */
1766	count_init = log->l_iclog_hsize + iclog->ic_offset;
1767
1768	/* Round out the log write size */
1769	if (use_lsunit) {
1770		/* we have a v2 stripe unit to use */
1771		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1772	} else {
1773		count = BBTOB(BTOBB(count_init));
1774	}
1775
1776	ASSERT(count >= count_init);
1777	*roundoff = count - count_init;
1778
1779	if (use_lsunit)
1780		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1781	else
1782		ASSERT(*roundoff < BBTOB(1));
1783	return count;
1784}
1785
1786/*
1787 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1788 * fashion.  Previously, we should have moved the current iclog
1789 * ptr in the log to point to the next available iclog.  This allows further
1790 * write to continue while this code syncs out an iclog ready to go.
1791 * Before an in-core log can be written out, the data section must be scanned
1792 * to save away the 1st word of each BBSIZE block into the header.  We replace
1793 * it with the current cycle count.  Each BBSIZE block is tagged with the
1794 * cycle count because there in an implicit assumption that drives will
1795 * guarantee that entire 512 byte blocks get written at once.  In other words,
1796 * we can't have part of a 512 byte block written and part not written.  By
1797 * tagging each block, we will know which blocks are valid when recovering
1798 * after an unclean shutdown.
1799 *
1800 * This routine is single threaded on the iclog.  No other thread can be in
1801 * this routine with the same iclog.  Changing contents of iclog can there-
1802 * fore be done without grabbing the state machine lock.  Updating the global
1803 * log will require grabbing the lock though.
1804 *
1805 * The entire log manager uses a logical block numbering scheme.  Only
1806 * xlog_write_iclog knows about the fact that the log may not start with
1807 * block zero on a given device.
 
1808 */
1809STATIC void
1810xlog_sync(
1811	struct xlog		*log,
1812	struct xlog_in_core	*iclog)
1813{
1814	unsigned int		count;		/* byte count of bwrite */
1815	unsigned int		roundoff;       /* roundoff to BB or stripe */
1816	uint64_t		bno;
1817	unsigned int		size;
1818	bool			need_flush = true, split = false;
 
 
 
 
1819
 
1820	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1821
1822	count = xlog_calc_iclog_size(log, iclog, &roundoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824	/* move grant heads by roundoff in sync */
1825	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1826	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1827
1828	/* put cycle number in every block */
1829	xlog_pack_data(log, iclog, roundoff); 
1830
1831	/* real byte length */
1832	size = iclog->ic_offset;
1833	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1834		size += roundoff;
1835	iclog->ic_header.h_len = cpu_to_be32(size);
 
 
 
1836
1837	XFS_STATS_INC(log->l_mp, xs_log_writes);
1838	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1839
1840	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1841
1842	/* Do we need to split this write into 2 parts? */
1843	if (bno + BTOBB(count) > log->l_logBBsize) {
1844		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1845		split = true;
 
 
 
1846	}
 
 
 
 
 
1847
1848	/* calculcate the checksum */
1849	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1850					    iclog->ic_datap, size);
1851	/*
1852	 * Intentionally corrupt the log record CRC based on the error injection
1853	 * frequency, if defined. This facilitates testing log recovery in the
1854	 * event of torn writes. Hence, set the IOABORT state to abort the log
1855	 * write on I/O completion and shutdown the fs. The subsequent mount
1856	 * detects the bad CRC and attempts to recover.
1857	 */
1858#ifdef DEBUG
1859	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1860		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1861		iclog->ic_fail_crc = true;
1862		xfs_warn(log->l_mp,
1863	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1864			 be64_to_cpu(iclog->ic_header.h_lsn));
1865	}
1866#endif
1867
 
 
 
 
 
 
 
1868	/*
1869	 * Flush the data device before flushing the log to make sure all meta
1870	 * data written back from the AIL actually made it to disk before
1871	 * stamping the new log tail LSN into the log buffer.  For an external
1872	 * log we need to issue the flush explicitly, and unfortunately
1873	 * synchronously here; for an internal log we can simply use the block
1874	 * layer state machine for preflushes.
1875	 */
1876	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1877		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1878		need_flush = false;
1879	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880
1881	xlog_verify_iclog(log, iclog, count);
1882	xlog_write_iclog(log, iclog, bno, count, need_flush);
1883}
1884
1885/*
1886 * Deallocate a log structure
1887 */
1888STATIC void
1889xlog_dealloc_log(
1890	struct xlog	*log)
1891{
1892	xlog_in_core_t	*iclog, *next_iclog;
1893	int		i;
1894
1895	xlog_cil_destroy(log);
1896
1897	/*
1898	 * Cycle all the iclogbuf locks to make sure all log IO completion
1899	 * is done before we tear down these buffers.
1900	 */
1901	iclog = log->l_iclog;
1902	for (i = 0; i < log->l_iclog_bufs; i++) {
1903		down(&iclog->ic_sema);
1904		up(&iclog->ic_sema);
1905		iclog = iclog->ic_next;
1906	}
1907
1908	iclog = log->l_iclog;
1909	for (i = 0; i < log->l_iclog_bufs; i++) {
 
1910		next_iclog = iclog->ic_next;
1911		kmem_free(iclog->ic_data);
1912		kmem_free(iclog);
1913		iclog = next_iclog;
1914	}
 
1915
1916	log->l_mp->m_log = NULL;
1917	destroy_workqueue(log->l_ioend_workqueue);
1918	kmem_free(log);
1919}
1920
1921/*
1922 * Update counters atomically now that memcpy is done.
1923 */
 
1924static inline void
1925xlog_state_finish_copy(
1926	struct xlog		*log,
1927	struct xlog_in_core	*iclog,
1928	int			record_cnt,
1929	int			copy_bytes)
1930{
1931	lockdep_assert_held(&log->l_icloglock);
1932
1933	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1934	iclog->ic_offset += copy_bytes;
1935}
 
 
 
 
 
1936
1937/*
1938 * print out info relating to regions written which consume
1939 * the reservation
1940 */
1941void
1942xlog_print_tic_res(
1943	struct xfs_mount	*mp,
1944	struct xlog_ticket	*ticket)
1945{
1946	uint i;
1947	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1948
1949	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1950#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
1951	static char *res_type_str[] = {
1952	    REG_TYPE_STR(BFORMAT, "bformat"),
1953	    REG_TYPE_STR(BCHUNK, "bchunk"),
1954	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1955	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1956	    REG_TYPE_STR(IFORMAT, "iformat"),
1957	    REG_TYPE_STR(ICORE, "icore"),
1958	    REG_TYPE_STR(IEXT, "iext"),
1959	    REG_TYPE_STR(IBROOT, "ibroot"),
1960	    REG_TYPE_STR(ILOCAL, "ilocal"),
1961	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1962	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1963	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1964	    REG_TYPE_STR(QFORMAT, "qformat"),
1965	    REG_TYPE_STR(DQUOT, "dquot"),
1966	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1967	    REG_TYPE_STR(LRHEADER, "LR header"),
1968	    REG_TYPE_STR(UNMOUNT, "unmount"),
1969	    REG_TYPE_STR(COMMIT, "commit"),
1970	    REG_TYPE_STR(TRANSHDR, "trans header"),
1971	    REG_TYPE_STR(ICREATE, "inode create"),
1972	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
1973	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
1974	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
1975	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
1976	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
1977	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1978	};
1979	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
1980#undef REG_TYPE_STR
1981
1982	xfs_warn(mp, "ticket reservation summary:");
1983	xfs_warn(mp, "  unit res    = %d bytes",
1984		 ticket->t_unit_res);
1985	xfs_warn(mp, "  current res = %d bytes",
1986		 ticket->t_curr_res);
1987	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
1988		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
1989	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
1990		 ticket->t_res_num_ophdrs, ophdr_spc);
1991	xfs_warn(mp, "  ophdr + reg = %u bytes",
1992		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
1993	xfs_warn(mp, "  num regions = %u",
1994		 ticket->t_res_num);
 
 
 
 
 
 
 
1995
1996	for (i = 0; i < ticket->t_res_num; i++) {
1997		uint r_type = ticket->t_res_arr[i].r_type;
1998		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
1999			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2000			    "bad-rtype" : res_type_str[r_type]),
2001			    ticket->t_res_arr[i].r_len);
2002	}
2003}
2004
2005/*
2006 * Print a summary of the transaction.
2007 */
2008void
2009xlog_print_trans(
2010	struct xfs_trans	*tp)
2011{
2012	struct xfs_mount	*mp = tp->t_mountp;
2013	struct xfs_log_item	*lip;
2014
2015	/* dump core transaction and ticket info */
2016	xfs_warn(mp, "transaction summary:");
2017	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2018	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2019	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2020
2021	xlog_print_tic_res(mp, tp->t_ticket);
2022
2023	/* dump each log item */
2024	list_for_each_entry(lip, &tp->t_items, li_trans) {
2025		struct xfs_log_vec	*lv = lip->li_lv;
2026		struct xfs_log_iovec	*vec;
2027		int			i;
2028
2029		xfs_warn(mp, "log item: ");
2030		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2031		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2032		if (!lv)
2033			continue;
2034		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2035		xfs_warn(mp, "  size	= %d", lv->lv_size);
2036		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2037		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2038
2039		/* dump each iovec for the log item */
2040		vec = lv->lv_iovecp;
2041		for (i = 0; i < lv->lv_niovecs; i++) {
2042			int dumplen = min(vec->i_len, 32);
2043
2044			xfs_warn(mp, "  iovec[%d]", i);
2045			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2046			xfs_warn(mp, "    len	= %d", vec->i_len);
2047			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2048			xfs_hex_dump(vec->i_addr, dumplen);
2049
2050			vec++;
2051		}
2052	}
2053}
2054
2055/*
2056 * Calculate the potential space needed by the log vector.  We may need a start
2057 * record, and each region gets its own struct xlog_op_header and may need to be
2058 * double word aligned.
2059 */
2060static int
2061xlog_write_calc_vec_length(
2062	struct xlog_ticket	*ticket,
2063	struct xfs_log_vec	*log_vector,
2064	bool			need_start_rec)
2065{
2066	struct xfs_log_vec	*lv;
2067	int			headers = need_start_rec ? 1 : 0;
2068	int			len = 0;
2069	int			i;
2070
 
 
 
 
2071	for (lv = log_vector; lv; lv = lv->lv_next) {
2072		/* we don't write ordered log vectors */
2073		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2074			continue;
2075
2076		headers += lv->lv_niovecs;
2077
2078		for (i = 0; i < lv->lv_niovecs; i++) {
2079			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2080
2081			len += vecp->i_len;
2082			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2083		}
2084	}
2085
2086	ticket->t_res_num_ophdrs += headers;
2087	len += headers * sizeof(struct xlog_op_header);
2088
2089	return len;
2090}
2091
2092static void
 
 
 
 
2093xlog_write_start_rec(
2094	struct xlog_op_header	*ophdr,
2095	struct xlog_ticket	*ticket)
2096{
 
 
 
2097	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2098	ophdr->oh_clientid = ticket->t_clientid;
2099	ophdr->oh_len = 0;
2100	ophdr->oh_flags = XLOG_START_TRANS;
2101	ophdr->oh_res2 = 0;
 
 
 
 
2102}
2103
2104static xlog_op_header_t *
2105xlog_write_setup_ophdr(
2106	struct xlog		*log,
2107	struct xlog_op_header	*ophdr,
2108	struct xlog_ticket	*ticket,
2109	uint			flags)
2110{
2111	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2112	ophdr->oh_clientid = ticket->t_clientid;
2113	ophdr->oh_res2 = 0;
2114
2115	/* are we copying a commit or unmount record? */
2116	ophdr->oh_flags = flags;
2117
2118	/*
2119	 * We've seen logs corrupted with bad transaction client ids.  This
2120	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2121	 * and shut down the filesystem.
2122	 */
2123	switch (ophdr->oh_clientid)  {
2124	case XFS_TRANSACTION:
2125	case XFS_VOLUME:
2126	case XFS_LOG:
2127		break;
2128	default:
2129		xfs_warn(log->l_mp,
2130			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2131			ophdr->oh_clientid, ticket);
2132		return NULL;
2133	}
2134
2135	return ophdr;
2136}
2137
2138/*
2139 * Set up the parameters of the region copy into the log. This has
2140 * to handle region write split across multiple log buffers - this
2141 * state is kept external to this function so that this code can
2142 * be written in an obvious, self documenting manner.
2143 */
2144static int
2145xlog_write_setup_copy(
2146	struct xlog_ticket	*ticket,
2147	struct xlog_op_header	*ophdr,
2148	int			space_available,
2149	int			space_required,
2150	int			*copy_off,
2151	int			*copy_len,
2152	int			*last_was_partial_copy,
2153	int			*bytes_consumed)
2154{
2155	int			still_to_copy;
2156
2157	still_to_copy = space_required - *bytes_consumed;
2158	*copy_off = *bytes_consumed;
2159
2160	if (still_to_copy <= space_available) {
2161		/* write of region completes here */
2162		*copy_len = still_to_copy;
2163		ophdr->oh_len = cpu_to_be32(*copy_len);
2164		if (*last_was_partial_copy)
2165			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2166		*last_was_partial_copy = 0;
2167		*bytes_consumed = 0;
2168		return 0;
2169	}
2170
2171	/* partial write of region, needs extra log op header reservation */
2172	*copy_len = space_available;
2173	ophdr->oh_len = cpu_to_be32(*copy_len);
2174	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2175	if (*last_was_partial_copy)
2176		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2177	*bytes_consumed += *copy_len;
2178	(*last_was_partial_copy)++;
2179
2180	/* account for new log op header */
2181	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2182	ticket->t_res_num_ophdrs++;
2183
2184	return sizeof(struct xlog_op_header);
2185}
2186
2187static int
2188xlog_write_copy_finish(
2189	struct xlog		*log,
2190	struct xlog_in_core	*iclog,
2191	uint			flags,
2192	int			*record_cnt,
2193	int			*data_cnt,
2194	int			*partial_copy,
2195	int			*partial_copy_len,
2196	int			log_offset,
2197	struct xlog_in_core	**commit_iclog)
2198{
2199	int			error;
2200
2201	if (*partial_copy) {
2202		/*
2203		 * This iclog has already been marked WANT_SYNC by
2204		 * xlog_state_get_iclog_space.
2205		 */
2206		spin_lock(&log->l_icloglock);
2207		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2208		*record_cnt = 0;
2209		*data_cnt = 0;
2210		goto release_iclog;
2211	}
2212
2213	*partial_copy = 0;
2214	*partial_copy_len = 0;
2215
2216	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2217		/* no more space in this iclog - push it. */
2218		spin_lock(&log->l_icloglock);
2219		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2220		*record_cnt = 0;
2221		*data_cnt = 0;
2222
2223		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2224			xlog_state_switch_iclogs(log, iclog, 0);
2225		else
2226			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2227			       iclog->ic_state == XLOG_STATE_IOERROR);
2228		if (!commit_iclog)
2229			goto release_iclog;
2230		spin_unlock(&log->l_icloglock);
2231		ASSERT(flags & XLOG_COMMIT_TRANS);
2232		*commit_iclog = iclog;
2233	}
2234
2235	return 0;
2236
2237release_iclog:
2238	error = xlog_state_release_iclog(log, iclog);
2239	spin_unlock(&log->l_icloglock);
2240	return error;
2241}
2242
2243/*
2244 * Write some region out to in-core log
2245 *
2246 * This will be called when writing externally provided regions or when
2247 * writing out a commit record for a given transaction.
2248 *
2249 * General algorithm:
2250 *	1. Find total length of this write.  This may include adding to the
2251 *		lengths passed in.
2252 *	2. Check whether we violate the tickets reservation.
2253 *	3. While writing to this iclog
2254 *	    A. Reserve as much space in this iclog as can get
2255 *	    B. If this is first write, save away start lsn
2256 *	    C. While writing this region:
2257 *		1. If first write of transaction, write start record
2258 *		2. Write log operation header (header per region)
2259 *		3. Find out if we can fit entire region into this iclog
2260 *		4. Potentially, verify destination memcpy ptr
2261 *		5. Memcpy (partial) region
2262 *		6. If partial copy, release iclog; otherwise, continue
2263 *			copying more regions into current iclog
2264 *	4. Mark want sync bit (in simulation mode)
2265 *	5. Release iclog for potential flush to on-disk log.
2266 *
2267 * ERRORS:
2268 * 1.	Panic if reservation is overrun.  This should never happen since
2269 *	reservation amounts are generated internal to the filesystem.
2270 * NOTES:
2271 * 1. Tickets are single threaded data structures.
2272 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2273 *	syncing routine.  When a single log_write region needs to span
2274 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2275 *	on all log operation writes which don't contain the end of the
2276 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2277 *	operation which contains the end of the continued log_write region.
2278 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2279 *	we don't really know exactly how much space will be used.  As a result,
2280 *	we don't update ic_offset until the end when we know exactly how many
2281 *	bytes have been written out.
2282 */
2283int
2284xlog_write(
2285	struct xlog		*log,
2286	struct xfs_log_vec	*log_vector,
2287	struct xlog_ticket	*ticket,
2288	xfs_lsn_t		*start_lsn,
2289	struct xlog_in_core	**commit_iclog,
2290	uint			flags,
2291	bool			need_start_rec)
2292{
2293	struct xlog_in_core	*iclog = NULL;
2294	struct xfs_log_vec	*lv = log_vector;
2295	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2296	int			index = 0;
2297	int			len;
 
2298	int			partial_copy = 0;
2299	int			partial_copy_len = 0;
2300	int			contwr = 0;
2301	int			record_cnt = 0;
2302	int			data_cnt = 0;
2303	int			error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2304
2305	/*
2306	 * If this is a commit or unmount transaction, we don't need a start
2307	 * record to be written.  We do, however, have to account for the
2308	 * commit or unmount header that gets written. Hence we always have
2309	 * to account for an extra xlog_op_header here.
2310	 */
2311	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2312	if (ticket->t_curr_res < 0) {
2313		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2314		     "ctx ticket reservation ran out. Need to up reservation");
2315		xlog_print_tic_res(log->l_mp, ticket);
2316		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2317	}
2318
2319	len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2320	*start_lsn = 0;
2321	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
 
2322		void		*ptr;
2323		int		log_offset;
2324
2325		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2326						   &contwr, &log_offset);
2327		if (error)
2328			return error;
2329
2330		ASSERT(log_offset <= iclog->ic_size - 1);
2331		ptr = iclog->ic_datap + log_offset;
2332
2333		/* start_lsn is the first lsn written to. That's all we need. */
2334		if (!*start_lsn)
2335			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2336
2337		/*
2338		 * This loop writes out as many regions as can fit in the amount
2339		 * of space which was allocated by xlog_state_get_iclog_space().
2340		 */
2341		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2342			struct xfs_log_iovec	*reg;
2343			struct xlog_op_header	*ophdr;
 
2344			int			copy_len;
2345			int			copy_off;
2346			bool			ordered = false;
2347
2348			/* ordered log vectors have no regions to write */
2349			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2350				ASSERT(lv->lv_niovecs == 0);
2351				ordered = true;
2352				goto next_lv;
2353			}
2354
2355			reg = &vecp[index];
2356			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2357			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2358
2359			/*
2360			 * Before we start formatting log vectors, we need to
2361			 * write a start record. Only do this for the first
2362			 * iclog we write to.
2363			 */
2364			if (need_start_rec) {
2365				xlog_write_start_rec(ptr, ticket);
2366				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2367						sizeof(struct xlog_op_header));
2368			}
2369
2370			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2371			if (!ophdr)
2372				return -EIO;
2373
2374			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2375					   sizeof(struct xlog_op_header));
2376
2377			len += xlog_write_setup_copy(ticket, ophdr,
2378						     iclog->ic_size-log_offset,
2379						     reg->i_len,
2380						     &copy_off, &copy_len,
2381						     &partial_copy,
2382						     &partial_copy_len);
2383			xlog_verify_dest_ptr(log, ptr);
2384
2385			/*
2386			 * Copy region.
2387			 *
2388			 * Unmount records just log an opheader, so can have
2389			 * empty payloads with no data region to copy. Hence we
2390			 * only copy the payload if the vector says it has data
2391			 * to copy.
2392			 */
2393			ASSERT(copy_len >= 0);
2394			if (copy_len > 0) {
2395				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2396				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2397						   copy_len);
2398			}
2399			copy_len += sizeof(struct xlog_op_header);
2400			record_cnt++;
2401			if (need_start_rec) {
2402				copy_len += sizeof(struct xlog_op_header);
2403				record_cnt++;
2404				need_start_rec = false;
2405			}
2406			data_cnt += contwr ? copy_len : 0;
2407
2408			error = xlog_write_copy_finish(log, iclog, flags,
2409						       &record_cnt, &data_cnt,
2410						       &partial_copy,
2411						       &partial_copy_len,
2412						       log_offset,
2413						       commit_iclog);
2414			if (error)
2415				return error;
2416
2417			/*
2418			 * if we had a partial copy, we need to get more iclog
2419			 * space but we don't want to increment the region
2420			 * index because there is still more is this region to
2421			 * write.
2422			 *
2423			 * If we completed writing this region, and we flushed
2424			 * the iclog (indicated by resetting of the record
2425			 * count), then we also need to get more log space. If
2426			 * this was the last record, though, we are done and
2427			 * can just return.
2428			 */
2429			if (partial_copy)
2430				break;
2431
2432			if (++index == lv->lv_niovecs) {
2433next_lv:
2434				lv = lv->lv_next;
2435				index = 0;
2436				if (lv)
2437					vecp = lv->lv_iovecp;
2438			}
2439			if (record_cnt == 0 && !ordered) {
2440				if (!lv)
2441					return 0;
2442				break;
2443			}
2444		}
2445	}
2446
2447	ASSERT(len == 0);
2448
2449	spin_lock(&log->l_icloglock);
2450	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2451	if (commit_iclog) {
2452		ASSERT(flags & XLOG_COMMIT_TRANS);
2453		*commit_iclog = iclog;
2454	} else {
2455		error = xlog_state_release_iclog(log, iclog);
2456	}
2457	spin_unlock(&log->l_icloglock);
2458
2459	return error;
 
 
2460}
2461
2462static void
2463xlog_state_activate_iclog(
2464	struct xlog_in_core	*iclog,
2465	int			*iclogs_changed)
2466{
2467	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2468
2469	/*
2470	 * If the number of ops in this iclog indicate it just contains the
2471	 * dummy transaction, we can change state into IDLE (the second time
2472	 * around). Otherwise we should change the state into NEED a dummy.
2473	 * We don't need to cover the dummy.
2474	 */
2475	if (*iclogs_changed == 0 &&
2476	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2477		*iclogs_changed = 1;
2478	} else {
2479		/*
2480		 * We have two dirty iclogs so start over.  This could also be
2481		 * num of ops indicating this is not the dummy going out.
2482		 */
2483		*iclogs_changed = 2;
2484	}
2485
2486	iclog->ic_state	= XLOG_STATE_ACTIVE;
2487	iclog->ic_offset = 0;
2488	iclog->ic_header.h_num_logops = 0;
2489	memset(iclog->ic_header.h_cycle_data, 0,
2490		sizeof(iclog->ic_header.h_cycle_data));
2491	iclog->ic_header.h_lsn = 0;
2492}
2493
2494/*
2495 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2496 * ACTIVE after iclog I/O has completed.
2497 */
2498static void
2499xlog_state_activate_iclogs(
2500	struct xlog		*log,
2501	int			*iclogs_changed)
2502{
2503	struct xlog_in_core	*iclog = log->l_iclog;
 
2504
 
2505	do {
2506		if (iclog->ic_state == XLOG_STATE_DIRTY)
2507			xlog_state_activate_iclog(iclog, iclogs_changed);
2508		/*
2509		 * The ordering of marking iclogs ACTIVE must be maintained, so
2510		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2511		 */
2512		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2513			break;
2514	} while ((iclog = iclog->ic_next) != log->l_iclog);
2515}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516
2517static int
2518xlog_covered_state(
2519	int			prev_state,
2520	int			iclogs_changed)
2521{
2522	/*
2523	 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2524	 * are done writing the dummy record.  If we are done with the second
2525	 * dummy recored (DONE2), then we go to IDLE.
2526	 */
2527	switch (prev_state) {
2528	case XLOG_STATE_COVER_IDLE:
2529	case XLOG_STATE_COVER_NEED:
2530	case XLOG_STATE_COVER_NEED2:
2531		break;
2532	case XLOG_STATE_COVER_DONE:
2533		if (iclogs_changed == 1)
2534			return XLOG_STATE_COVER_NEED2;
2535		break;
2536	case XLOG_STATE_COVER_DONE2:
2537		if (iclogs_changed == 1)
2538			return XLOG_STATE_COVER_IDLE;
2539		break;
2540	default:
2541		ASSERT(0);
2542	}
2543
2544	return XLOG_STATE_COVER_NEED;
2545}
 
 
 
 
2546
2547STATIC void
2548xlog_state_clean_iclog(
2549	struct xlog		*log,
2550	struct xlog_in_core	*dirty_iclog)
2551{
2552	int			iclogs_changed = 0;
2553
2554	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2555
2556	xlog_state_activate_iclogs(log, &iclogs_changed);
2557	wake_up_all(&dirty_iclog->ic_force_wait);
2558
2559	if (iclogs_changed) {
2560		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2561				iclogs_changed);
2562	}
2563}
2564
2565STATIC xfs_lsn_t
2566xlog_get_lowest_lsn(
2567	struct xlog		*log)
2568{
2569	struct xlog_in_core	*iclog = log->l_iclog;
2570	xfs_lsn_t		lowest_lsn = 0, lsn;
2571
 
 
2572	do {
2573		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2574		    iclog->ic_state == XLOG_STATE_DIRTY)
2575			continue;
2576
2577		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2578		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2579			lowest_lsn = lsn;
2580	} while ((iclog = iclog->ic_next) != log->l_iclog);
2581
 
 
2582	return lowest_lsn;
2583}
2584
2585/*
2586 * Completion of a iclog IO does not imply that a transaction has completed, as
2587 * transactions can be large enough to span many iclogs. We cannot change the
2588 * tail of the log half way through a transaction as this may be the only
2589 * transaction in the log and moving the tail to point to the middle of it
2590 * will prevent recovery from finding the start of the transaction. Hence we
2591 * should only update the last_sync_lsn if this iclog contains transaction
2592 * completion callbacks on it.
2593 *
2594 * We have to do this before we drop the icloglock to ensure we are the only one
2595 * that can update it.
2596 *
2597 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2598 * the reservation grant head pushing. This is due to the fact that the push
2599 * target is bound by the current last_sync_lsn value. Hence if we have a large
2600 * amount of log space bound up in this committing transaction then the
2601 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2602 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2603 * should push the AIL to ensure the push target (and hence the grant head) is
2604 * no longer bound by the old log head location and can move forwards and make
2605 * progress again.
2606 */
2607static void
2608xlog_state_set_callback(
2609	struct xlog		*log,
2610	struct xlog_in_core	*iclog,
2611	xfs_lsn_t		header_lsn)
2612{
2613	iclog->ic_state = XLOG_STATE_CALLBACK;
2614
2615	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2616			   header_lsn) <= 0);
2617
2618	if (list_empty_careful(&iclog->ic_callbacks))
2619		return;
2620
2621	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2622	xlog_grant_push_ail(log, 0);
2623}
2624
2625/*
2626 * Return true if we need to stop processing, false to continue to the next
2627 * iclog. The caller will need to run callbacks if the iclog is returned in the
2628 * XLOG_STATE_CALLBACK state.
2629 */
2630static bool
2631xlog_state_iodone_process_iclog(
2632	struct xlog		*log,
2633	struct xlog_in_core	*iclog,
2634	bool			*ioerror)
2635{
2636	xfs_lsn_t		lowest_lsn;
2637	xfs_lsn_t		header_lsn;
2638
2639	switch (iclog->ic_state) {
2640	case XLOG_STATE_ACTIVE:
2641	case XLOG_STATE_DIRTY:
2642		/*
2643		 * Skip all iclogs in the ACTIVE & DIRTY states:
2644		 */
2645		return false;
2646	case XLOG_STATE_IOERROR:
2647		/*
2648		 * Between marking a filesystem SHUTDOWN and stopping the log,
2649		 * we do flush all iclogs to disk (if there wasn't a log I/O
2650		 * error). So, we do want things to go smoothly in case of just
2651		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2652		 */
2653		*ioerror = true;
2654		return false;
2655	case XLOG_STATE_DONE_SYNC:
2656		/*
2657		 * Now that we have an iclog that is in the DONE_SYNC state, do
2658		 * one more check here to see if we have chased our tail around.
2659		 * If this is not the lowest lsn iclog, then we will leave it
2660		 * for another completion to process.
2661		 */
2662		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2663		lowest_lsn = xlog_get_lowest_lsn(log);
2664		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2665			return false;
2666		xlog_state_set_callback(log, iclog, header_lsn);
2667		return false;
2668	default:
2669		/*
2670		 * Can only perform callbacks in order.  Since this iclog is not
2671		 * in the DONE_SYNC state, we skip the rest and just try to
2672		 * clean up.
2673		 */
2674		return true;
2675	}
2676}
2677
2678/*
2679 * Keep processing entries in the iclog callback list until we come around and
2680 * it is empty.  We need to atomically see that the list is empty and change the
2681 * state to DIRTY so that we don't miss any more callbacks being added.
2682 *
2683 * This function is called with the icloglock held and returns with it held. We
2684 * drop it while running callbacks, however, as holding it over thousands of
2685 * callbacks is unnecessary and causes excessive contention if we do.
2686 */
2687static void
2688xlog_state_do_iclog_callbacks(
2689	struct xlog		*log,
2690	struct xlog_in_core	*iclog)
2691		__releases(&log->l_icloglock)
2692		__acquires(&log->l_icloglock)
2693{
2694	spin_unlock(&log->l_icloglock);
2695	spin_lock(&iclog->ic_callback_lock);
2696	while (!list_empty(&iclog->ic_callbacks)) {
2697		LIST_HEAD(tmp);
2698
2699		list_splice_init(&iclog->ic_callbacks, &tmp);
2700
2701		spin_unlock(&iclog->ic_callback_lock);
2702		xlog_cil_process_committed(&tmp);
2703		spin_lock(&iclog->ic_callback_lock);
2704	}
2705
2706	/*
2707	 * Pick up the icloglock while still holding the callback lock so we
2708	 * serialise against anyone trying to add more callbacks to this iclog
2709	 * now we've finished processing.
2710	 */
2711	spin_lock(&log->l_icloglock);
2712	spin_unlock(&iclog->ic_callback_lock);
2713}
2714
2715STATIC void
2716xlog_state_do_callback(
2717	struct xlog		*log)
2718{
2719	struct xlog_in_core	*iclog;
2720	struct xlog_in_core	*first_iclog;
2721	bool			cycled_icloglock;
2722	bool			ioerror;
2723	int			flushcnt = 0;
2724	int			repeats = 0;
 
 
 
 
 
 
 
 
2725
2726	spin_lock(&log->l_icloglock);
 
 
 
 
 
2727	do {
2728		/*
2729		 * Scan all iclogs starting with the one pointed to by the
2730		 * log.  Reset this starting point each time the log is
2731		 * unlocked (during callbacks).
2732		 *
2733		 * Keep looping through iclogs until one full pass is made
2734		 * without running any callbacks.
2735		 */
2736		first_iclog = log->l_iclog;
2737		iclog = log->l_iclog;
2738		cycled_icloglock = false;
2739		ioerror = false;
2740		repeats++;
2741
2742		do {
2743			if (xlog_state_iodone_process_iclog(log, iclog,
2744							&ioerror))
2745				break;
2746
2747			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2748			    iclog->ic_state != XLOG_STATE_IOERROR) {
 
2749				iclog = iclog->ic_next;
2750				continue;
2751			}
2752
2753			/*
2754			 * Running callbacks will drop the icloglock which means
2755			 * we'll have to run at least one more complete loop.
 
 
 
2756			 */
2757			cycled_icloglock = true;
2758			xlog_state_do_iclog_callbacks(log, iclog);
2759			if (XLOG_FORCED_SHUTDOWN(log))
2760				wake_up_all(&iclog->ic_force_wait);
2761			else
2762				xlog_state_clean_iclog(log, iclog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763			iclog = iclog->ic_next;
2764		} while (first_iclog != iclog);
2765
2766		if (repeats > 5000) {
2767			flushcnt += repeats;
2768			repeats = 0;
2769			xfs_warn(log->l_mp,
2770				"%s: possible infinite loop (%d iterations)",
2771				__func__, flushcnt);
2772		}
2773	} while (!ioerror && cycled_icloglock);
2774
2775	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2776	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2777		wake_up_all(&log->l_flush_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778
 
 
2779	spin_unlock(&log->l_icloglock);
 
 
 
2780}
2781
2782
2783/*
2784 * Finish transitioning this iclog to the dirty state.
2785 *
2786 * Make sure that we completely execute this routine only when this is
2787 * the last call to the iclog.  There is a good chance that iclog flushes,
2788 * when we reach the end of the physical log, get turned into 2 separate
2789 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2790 * routine.  By using the reference count bwritecnt, we guarantee that only
2791 * the second completion goes through.
2792 *
2793 * Callbacks could take time, so they are done outside the scope of the
2794 * global state machine log lock.
2795 */
2796STATIC void
2797xlog_state_done_syncing(
2798	struct xlog_in_core	*iclog)
 
2799{
2800	struct xlog		*log = iclog->ic_log;
2801
2802	spin_lock(&log->l_icloglock);
 
 
 
2803	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
 
 
2804
2805	/*
2806	 * If we got an error, either on the first buffer, or in the case of
2807	 * split log writes, on the second, we shut down the file system and
2808	 * no iclogs should ever be attempted to be written to disk again.
 
2809	 */
2810	if (!XLOG_FORCED_SHUTDOWN(log)) {
2811		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
 
 
 
2812		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2813	}
2814
2815	/*
2816	 * Someone could be sleeping prior to writing out the next
2817	 * iclog buffer, we wake them all, one will get to do the
2818	 * I/O, the others get to wait for the result.
2819	 */
2820	wake_up_all(&iclog->ic_write_wait);
2821	spin_unlock(&log->l_icloglock);
2822	xlog_state_do_callback(log);
2823}
 
2824
2825/*
2826 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2827 * sleep.  We wait on the flush queue on the head iclog as that should be
2828 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2829 * we will wait here and all new writes will sleep until a sync completes.
2830 *
2831 * The in-core logs are used in a circular fashion. They are not used
2832 * out-of-order even when an iclog past the head is free.
2833 *
2834 * return:
2835 *	* log_offset where xlog_write() can start writing into the in-core
2836 *		log's data space.
2837 *	* in-core log pointer to which xlog_write() should write.
2838 *	* boolean indicating this is a continued write to an in-core log.
2839 *		If this is the last write, then the in-core log's offset field
2840 *		needs to be incremented, depending on the amount of data which
2841 *		is copied.
2842 */
2843STATIC int
2844xlog_state_get_iclog_space(
2845	struct xlog		*log,
2846	int			len,
2847	struct xlog_in_core	**iclogp,
2848	struct xlog_ticket	*ticket,
2849	int			*continued_write,
2850	int			*logoffsetp)
2851{
2852	int		  log_offset;
2853	xlog_rec_header_t *head;
2854	xlog_in_core_t	  *iclog;
 
2855
2856restart:
2857	spin_lock(&log->l_icloglock);
2858	if (XLOG_FORCED_SHUTDOWN(log)) {
2859		spin_unlock(&log->l_icloglock);
2860		return -EIO;
2861	}
2862
2863	iclog = log->l_iclog;
2864	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2865		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2866
2867		/* Wait for log writes to have flushed */
2868		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2869		goto restart;
2870	}
2871
2872	head = &iclog->ic_header;
2873
2874	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2875	log_offset = iclog->ic_offset;
2876
2877	/* On the 1st write to an iclog, figure out lsn.  This works
2878	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2879	 * committing to.  If the offset is set, that's how many blocks
2880	 * must be written.
2881	 */
2882	if (log_offset == 0) {
2883		ticket->t_curr_res -= log->l_iclog_hsize;
2884		xlog_tic_add_region(ticket,
2885				    log->l_iclog_hsize,
2886				    XLOG_REG_TYPE_LRHEADER);
2887		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2888		head->h_lsn = cpu_to_be64(
2889			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2890		ASSERT(log->l_curr_block >= 0);
2891	}
2892
2893	/* If there is enough room to write everything, then do it.  Otherwise,
2894	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2895	 * bit is on, so this will get flushed out.  Don't update ic_offset
2896	 * until you know exactly how many bytes get copied.  Therefore, wait
2897	 * until later to update ic_offset.
2898	 *
2899	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2900	 * can fit into remaining data section.
2901	 */
2902	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2903		int		error = 0;
2904
2905		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2906
2907		/*
2908		 * If we are the only one writing to this iclog, sync it to
2909		 * disk.  We need to do an atomic compare and decrement here to
2910		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2911		 * xlog_state_release_iclog() when there is more than one
2912		 * reference to the iclog.
2913		 */
2914		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
 
 
2915			error = xlog_state_release_iclog(log, iclog);
2916		spin_unlock(&log->l_icloglock);
2917		if (error)
2918			return error;
 
 
2919		goto restart;
2920	}
2921
2922	/* Do we have enough room to write the full amount in the remainder
2923	 * of this iclog?  Or must we continue a write on the next iclog and
2924	 * mark this iclog as completely taken?  In the case where we switch
2925	 * iclogs (to mark it taken), this particular iclog will release/sync
2926	 * to disk in xlog_write().
2927	 */
2928	if (len <= iclog->ic_size - iclog->ic_offset) {
2929		*continued_write = 0;
2930		iclog->ic_offset += len;
2931	} else {
2932		*continued_write = 1;
2933		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2934	}
2935	*iclogp = iclog;
2936
2937	ASSERT(iclog->ic_offset <= iclog->ic_size);
2938	spin_unlock(&log->l_icloglock);
2939
2940	*logoffsetp = log_offset;
2941	return 0;
2942}
2943
2944/*
2945 * The first cnt-1 times a ticket goes through here we don't need to move the
2946 * grant write head because the permanent reservation has reserved cnt times the
2947 * unit amount.  Release part of current permanent unit reservation and reset
2948 * current reservation to be one units worth.  Also move grant reservation head
2949 * forward.
2950 */
2951void
2952xfs_log_ticket_regrant(
2953	struct xlog		*log,
2954	struct xlog_ticket	*ticket)
2955{
2956	trace_xfs_log_ticket_regrant(log, ticket);
2957
2958	if (ticket->t_cnt > 0)
2959		ticket->t_cnt--;
2960
2961	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2962					ticket->t_curr_res);
2963	xlog_grant_sub_space(log, &log->l_write_head.grant,
2964					ticket->t_curr_res);
2965	ticket->t_curr_res = ticket->t_unit_res;
2966	xlog_tic_reset_res(ticket);
2967
2968	trace_xfs_log_ticket_regrant_sub(log, ticket);
2969
2970	/* just return if we still have some of the pre-reserved space */
2971	if (!ticket->t_cnt) {
2972		xlog_grant_add_space(log, &log->l_reserve_head.grant,
2973				     ticket->t_unit_res);
2974		trace_xfs_log_ticket_regrant_exit(log, ticket);
2975
2976		ticket->t_curr_res = ticket->t_unit_res;
2977		xlog_tic_reset_res(ticket);
2978	}
 
 
 
 
 
2979
2980	xfs_log_ticket_put(ticket);
2981}
2982
2983/*
2984 * Give back the space left from a reservation.
2985 *
2986 * All the information we need to make a correct determination of space left
2987 * is present.  For non-permanent reservations, things are quite easy.  The
2988 * count should have been decremented to zero.  We only need to deal with the
2989 * space remaining in the current reservation part of the ticket.  If the
2990 * ticket contains a permanent reservation, there may be left over space which
2991 * needs to be released.  A count of N means that N-1 refills of the current
2992 * reservation can be done before we need to ask for more space.  The first
2993 * one goes to fill up the first current reservation.  Once we run out of
2994 * space, the count will stay at zero and the only space remaining will be
2995 * in the current reservation field.
2996 */
2997void
2998xfs_log_ticket_ungrant(
2999	struct xlog		*log,
3000	struct xlog_ticket	*ticket)
3001{
3002	int			bytes;
3003
3004	trace_xfs_log_ticket_ungrant(log, ticket);
3005
3006	if (ticket->t_cnt > 0)
3007		ticket->t_cnt--;
3008
3009	trace_xfs_log_ticket_ungrant_sub(log, ticket);
 
3010
3011	/*
3012	 * If this is a permanent reservation ticket, we may be able to free
3013	 * up more space based on the remaining count.
3014	 */
3015	bytes = ticket->t_curr_res;
3016	if (ticket->t_cnt > 0) {
3017		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3018		bytes += ticket->t_unit_res*ticket->t_cnt;
3019	}
3020
3021	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3022	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3023
3024	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3025
3026	xfs_log_space_wake(log->l_mp);
3027	xfs_log_ticket_put(ticket);
3028}
3029
3030/*
3031 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3032 * the current iclog pointer to the next iclog in the ring.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3033 */
3034STATIC void
3035xlog_state_switch_iclogs(
3036	struct xlog		*log,
3037	struct xlog_in_core	*iclog,
3038	int			eventual_size)
3039{
3040	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3041	assert_spin_locked(&log->l_icloglock);
3042
3043	if (!eventual_size)
3044		eventual_size = iclog->ic_offset;
3045	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3046	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3047	log->l_prev_block = log->l_curr_block;
3048	log->l_prev_cycle = log->l_curr_cycle;
3049
3050	/* roll log?: ic_offset changed later */
3051	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3052
3053	/* Round up to next log-sunit */
3054	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3055	    log->l_mp->m_sb.sb_logsunit > 1) {
3056		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3057		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3058	}
3059
3060	if (log->l_curr_block >= log->l_logBBsize) {
3061		/*
3062		 * Rewind the current block before the cycle is bumped to make
3063		 * sure that the combined LSN never transiently moves forward
3064		 * when the log wraps to the next cycle. This is to support the
3065		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3066		 * other cases should acquire l_icloglock.
3067		 */
3068		log->l_curr_block -= log->l_logBBsize;
3069		ASSERT(log->l_curr_block >= 0);
3070		smp_wmb();
3071		log->l_curr_cycle++;
3072		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3073			log->l_curr_cycle++;
 
 
3074	}
3075	ASSERT(iclog == log->l_iclog);
3076	log->l_iclog = iclog->ic_next;
3077}
3078
3079/*
3080 * Write out all data in the in-core log as of this exact moment in time.
3081 *
3082 * Data may be written to the in-core log during this call.  However,
3083 * we don't guarantee this data will be written out.  A change from past
3084 * implementation means this routine will *not* write out zero length LRs.
3085 *
3086 * Basically, we try and perform an intelligent scan of the in-core logs.
3087 * If we determine there is no flushable data, we just return.  There is no
3088 * flushable data if:
3089 *
3090 *	1. the current iclog is active and has no data; the previous iclog
3091 *		is in the active or dirty state.
3092 *	2. the current iclog is drity, and the previous iclog is in the
3093 *		active or dirty state.
3094 *
3095 * We may sleep if:
3096 *
3097 *	1. the current iclog is not in the active nor dirty state.
3098 *	2. the current iclog dirty, and the previous iclog is not in the
3099 *		active nor dirty state.
3100 *	3. the current iclog is active, and there is another thread writing
3101 *		to this particular iclog.
3102 *	4. a) the current iclog is active and has no other writers
3103 *	   b) when we return from flushing out this iclog, it is still
3104 *		not in the active nor dirty state.
3105 */
3106int
3107xfs_log_force(
3108	struct xfs_mount	*mp,
3109	uint			flags)
 
3110{
3111	struct xlog		*log = mp->m_log;
3112	struct xlog_in_core	*iclog;
3113	xfs_lsn_t		lsn;
3114
3115	XFS_STATS_INC(mp, xs_log_force);
3116	trace_xfs_log_force(mp, 0, _RET_IP_);
3117
3118	xlog_cil_force(log);
3119
3120	spin_lock(&log->l_icloglock);
 
3121	iclog = log->l_iclog;
3122	if (iclog->ic_state == XLOG_STATE_IOERROR)
3123		goto out_error;
 
 
3124
3125	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3126	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3127	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
 
 
3128		/*
3129		 * If the head is dirty or (active and empty), then we need to
3130		 * look at the previous iclog.
3131		 *
3132		 * If the previous iclog is active or dirty we are done.  There
3133		 * is nothing to sync out. Otherwise, we attach ourselves to the
3134		 * previous iclog and go to sleep.
3135		 */
3136		iclog = iclog->ic_prev;
3137	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3138		if (atomic_read(&iclog->ic_refcnt) == 0) {
3139			/*
3140			 * We are the only one with access to this iclog.
3141			 *
3142			 * Flush it out now.  There should be a roundoff of zero
3143			 * to show that someone has already taken care of the
3144			 * roundoff from the previous sync.
3145			 */
3146			atomic_inc(&iclog->ic_refcnt);
3147			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3148			xlog_state_switch_iclogs(log, iclog, 0);
3149			if (xlog_state_release_iclog(log, iclog))
3150				goto out_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3151
3152			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3153				goto out_unlock;
3154		} else {
3155			/*
3156			 * Someone else is writing to this iclog.
3157			 *
3158			 * Use its call to flush out the data.  However, the
3159			 * other thread may not force out this LR, so we mark
3160			 * it WANT_SYNC.
3161			 */
3162			xlog_state_switch_iclogs(log, iclog, 0);
 
 
 
 
3163		}
3164	} else {
 
3165		/*
3166		 * If the head iclog is not active nor dirty, we just attach
3167		 * ourselves to the head and go to sleep if necessary.
 
3168		 */
3169		;
 
 
 
 
 
 
 
3170	}
3171
3172	if (flags & XFS_LOG_SYNC)
3173		return xlog_wait_on_iclog(iclog);
3174out_unlock:
3175	spin_unlock(&log->l_icloglock);
3176	return 0;
3177out_error:
3178	spin_unlock(&log->l_icloglock);
3179	return -EIO;
3180}
3181
3182static int
3183__xfs_log_force_lsn(
3184	struct xfs_mount	*mp,
3185	xfs_lsn_t		lsn,
3186	uint			flags,
3187	int			*log_flushed,
3188	bool			already_slept)
 
 
3189{
3190	struct xlog		*log = mp->m_log;
3191	struct xlog_in_core	*iclog;
3192
3193	spin_lock(&log->l_icloglock);
3194	iclog = log->l_iclog;
3195	if (iclog->ic_state == XLOG_STATE_IOERROR)
3196		goto out_error;
3197
3198	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3199		iclog = iclog->ic_next;
3200		if (iclog == log->l_iclog)
3201			goto out_unlock;
3202	}
3203
3204	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3205		/*
3206		 * We sleep here if we haven't already slept (e.g. this is the
3207		 * first time we've looked at the correct iclog buf) and the
3208		 * buffer before us is going to be sync'ed.  The reason for this
3209		 * is that if we are doing sync transactions here, by waiting
3210		 * for the previous I/O to complete, we can allow a few more
3211		 * transactions into this iclog before we close it down.
3212		 *
3213		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3214		 * refcnt so we can release the log (which drops the ref count).
3215		 * The state switch keeps new transaction commits from using
3216		 * this buffer.  When the current commits finish writing into
3217		 * the buffer, the refcount will drop to zero and the buffer
3218		 * will go out then.
3219		 */
3220		if (!already_slept &&
3221		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3222		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3223			XFS_STATS_INC(mp, xs_log_force_sleep);
3224
3225			xlog_wait(&iclog->ic_prev->ic_write_wait,
3226					&log->l_icloglock);
3227			return -EAGAIN;
3228		}
3229		atomic_inc(&iclog->ic_refcnt);
3230		xlog_state_switch_iclogs(log, iclog, 0);
3231		if (xlog_state_release_iclog(log, iclog))
3232			goto out_error;
3233		if (log_flushed)
3234			*log_flushed = 1;
3235	}
3236
3237	if (flags & XFS_LOG_SYNC)
3238		return xlog_wait_on_iclog(iclog);
3239out_unlock:
3240	spin_unlock(&log->l_icloglock);
3241	return 0;
3242out_error:
3243	spin_unlock(&log->l_icloglock);
3244	return -EIO;
3245}
3246
3247/*
3248 * Force the in-core log to disk for a specific LSN.
3249 *
3250 * Find in-core log with lsn.
3251 *	If it is in the DIRTY state, just return.
3252 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3253 *		state and go to sleep or return.
3254 *	If it is in any other state, go to sleep or return.
3255 *
3256 * Synchronous forces are implemented with a wait queue.  All callers trying
3257 * to force a given lsn to disk must wait on the queue attached to the
3258 * specific in-core log.  When given in-core log finally completes its write
3259 * to disk, that thread will wake up all threads waiting on the queue.
 
3260 */
3261int
3262xfs_log_force_lsn(
3263	struct xfs_mount	*mp,
3264	xfs_lsn_t		lsn,
3265	uint			flags,
3266	int			*log_flushed)
3267{
3268	int			ret;
 
 
 
3269	ASSERT(lsn != 0);
3270
3271	XFS_STATS_INC(mp, xs_log_force);
3272	trace_xfs_log_force(mp, lsn, _RET_IP_);
3273
3274	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3275	if (lsn == NULLCOMMITLSN)
3276		return 0;
3277
3278	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3279	if (ret == -EAGAIN)
3280		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3281	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282}
3283
 
 
 
 
 
 
 
 
3284/*
3285 * Free a used ticket when its refcount falls to zero.
3286 */
3287void
3288xfs_log_ticket_put(
3289	xlog_ticket_t	*ticket)
3290{
3291	ASSERT(atomic_read(&ticket->t_ref) > 0);
3292	if (atomic_dec_and_test(&ticket->t_ref))
3293		kmem_cache_free(xfs_log_ticket_zone, ticket);
3294}
3295
3296xlog_ticket_t *
3297xfs_log_ticket_get(
3298	xlog_ticket_t	*ticket)
3299{
3300	ASSERT(atomic_read(&ticket->t_ref) > 0);
3301	atomic_inc(&ticket->t_ref);
3302	return ticket;
3303}
3304
3305/*
3306 * Figure out the total log space unit (in bytes) that would be
3307 * required for a log ticket.
3308 */
3309int
3310xfs_log_calc_unit_res(
3311	struct xfs_mount	*mp,
3312	int			unit_bytes)
3313{
3314	struct xlog		*log = mp->m_log;
3315	int			iclog_space;
3316	uint			num_headers;
 
 
 
 
 
 
 
 
3317
3318	/*
3319	 * Permanent reservations have up to 'cnt'-1 active log operations
3320	 * in the log.  A unit in this case is the amount of space for one
3321	 * of these log operations.  Normal reservations have a cnt of 1
3322	 * and their unit amount is the total amount of space required.
3323	 *
3324	 * The following lines of code account for non-transaction data
3325	 * which occupy space in the on-disk log.
3326	 *
3327	 * Normal form of a transaction is:
3328	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3329	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3330	 *
3331	 * We need to account for all the leadup data and trailer data
3332	 * around the transaction data.
3333	 * And then we need to account for the worst case in terms of using
3334	 * more space.
3335	 * The worst case will happen if:
3336	 * - the placement of the transaction happens to be such that the
3337	 *   roundoff is at its maximum
3338	 * - the transaction data is synced before the commit record is synced
3339	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3340	 *   Therefore the commit record is in its own Log Record.
3341	 *   This can happen as the commit record is called with its
3342	 *   own region to xlog_write().
3343	 *   This then means that in the worst case, roundoff can happen for
3344	 *   the commit-rec as well.
3345	 *   The commit-rec is smaller than padding in this scenario and so it is
3346	 *   not added separately.
3347	 */
3348
3349	/* for trans header */
3350	unit_bytes += sizeof(xlog_op_header_t);
3351	unit_bytes += sizeof(xfs_trans_header_t);
3352
3353	/* for start-rec */
3354	unit_bytes += sizeof(xlog_op_header_t);
3355
3356	/*
3357	 * for LR headers - the space for data in an iclog is the size minus
3358	 * the space used for the headers. If we use the iclog size, then we
3359	 * undercalculate the number of headers required.
3360	 *
3361	 * Furthermore - the addition of op headers for split-recs might
3362	 * increase the space required enough to require more log and op
3363	 * headers, so take that into account too.
3364	 *
3365	 * IMPORTANT: This reservation makes the assumption that if this
3366	 * transaction is the first in an iclog and hence has the LR headers
3367	 * accounted to it, then the remaining space in the iclog is
3368	 * exclusively for this transaction.  i.e. if the transaction is larger
3369	 * than the iclog, it will be the only thing in that iclog.
3370	 * Fundamentally, this means we must pass the entire log vector to
3371	 * xlog_write to guarantee this.
3372	 */
3373	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3374	num_headers = howmany(unit_bytes, iclog_space);
3375
3376	/* for split-recs - ophdrs added when data split over LRs */
3377	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3378
3379	/* add extra header reservations if we overrun */
3380	while (!num_headers ||
3381	       howmany(unit_bytes, iclog_space) > num_headers) {
3382		unit_bytes += sizeof(xlog_op_header_t);
3383		num_headers++;
3384	}
3385	unit_bytes += log->l_iclog_hsize * num_headers;
3386
3387	/* for commit-rec LR header - note: padding will subsume the ophdr */
3388	unit_bytes += log->l_iclog_hsize;
3389
3390	/* for roundoff padding for transaction data and one for commit record */
3391	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
 
3392		/* log su roundoff */
3393		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3394	} else {
3395		/* BB roundoff */
3396		unit_bytes += 2 * BBSIZE;
3397        }
3398
3399	return unit_bytes;
3400}
3401
3402/*
3403 * Allocate and initialise a new log ticket.
3404 */
3405struct xlog_ticket *
3406xlog_ticket_alloc(
3407	struct xlog		*log,
3408	int			unit_bytes,
3409	int			cnt,
3410	char			client,
3411	bool			permanent)
3412{
3413	struct xlog_ticket	*tic;
3414	int			unit_res;
3415
3416	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3417
3418	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3419
3420	atomic_set(&tic->t_ref, 1);
3421	tic->t_task		= current;
3422	INIT_LIST_HEAD(&tic->t_queue);
3423	tic->t_unit_res		= unit_res;
3424	tic->t_curr_res		= unit_res;
3425	tic->t_cnt		= cnt;
3426	tic->t_ocnt		= cnt;
3427	tic->t_tid		= prandom_u32();
3428	tic->t_clientid		= client;
 
 
3429	if (permanent)
3430		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3431
3432	xlog_tic_reset_res(tic);
3433
3434	return tic;
3435}
3436
 
 
 
 
 
 
 
3437#if defined(DEBUG)
3438/*
3439 * Make sure that the destination ptr is within the valid data region of
3440 * one of the iclogs.  This uses backup pointers stored in a different
3441 * part of the log in case we trash the log structure.
3442 */
3443STATIC void
3444xlog_verify_dest_ptr(
3445	struct xlog	*log,
3446	void		*ptr)
3447{
3448	int i;
3449	int good_ptr = 0;
3450
3451	for (i = 0; i < log->l_iclog_bufs; i++) {
3452		if (ptr >= log->l_iclog_bak[i] &&
3453		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3454			good_ptr++;
3455	}
3456
3457	if (!good_ptr)
3458		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3459}
3460
3461/*
3462 * Check to make sure the grant write head didn't just over lap the tail.  If
3463 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3464 * the cycles differ by exactly one and check the byte count.
3465 *
3466 * This check is run unlocked, so can give false positives. Rather than assert
3467 * on failures, use a warn-once flag and a panic tag to allow the admin to
3468 * determine if they want to panic the machine when such an error occurs. For
3469 * debug kernels this will have the same effect as using an assert but, unlinke
3470 * an assert, it can be turned off at runtime.
3471 */
3472STATIC void
3473xlog_verify_grant_tail(
3474	struct xlog	*log)
3475{
3476	int		tail_cycle, tail_blocks;
3477	int		cycle, space;
3478
3479	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3480	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3481	if (tail_cycle != cycle) {
3482		if (cycle - 1 != tail_cycle &&
3483		    !(log->l_flags & XLOG_TAIL_WARN)) {
3484			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3485				"%s: cycle - 1 != tail_cycle", __func__);
3486			log->l_flags |= XLOG_TAIL_WARN;
3487		}
3488
3489		if (space > BBTOB(tail_blocks) &&
3490		    !(log->l_flags & XLOG_TAIL_WARN)) {
3491			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3492				"%s: space > BBTOB(tail_blocks)", __func__);
3493			log->l_flags |= XLOG_TAIL_WARN;
3494		}
3495	}
3496}
3497
3498/* check if it will fit */
3499STATIC void
3500xlog_verify_tail_lsn(
3501	struct xlog		*log,
3502	struct xlog_in_core	*iclog,
3503	xfs_lsn_t		tail_lsn)
3504{
3505    int blocks;
3506
3507    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3508	blocks =
3509	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3510	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3511		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3512    } else {
3513	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3514
3515	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3516		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3517
3518	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3519	if (blocks < BTOBB(iclog->ic_offset) + 1)
3520		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3521    }
3522}
3523
3524/*
3525 * Perform a number of checks on the iclog before writing to disk.
3526 *
3527 * 1. Make sure the iclogs are still circular
3528 * 2. Make sure we have a good magic number
3529 * 3. Make sure we don't have magic numbers in the data
3530 * 4. Check fields of each log operation header for:
3531 *	A. Valid client identifier
3532 *	B. tid ptr value falls in valid ptr space (user space code)
3533 *	C. Length in log record header is correct according to the
3534 *		individual operation headers within record.
3535 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3536 *	log, check the preceding blocks of the physical log to make sure all
3537 *	the cycle numbers agree with the current cycle number.
3538 */
3539STATIC void
3540xlog_verify_iclog(
3541	struct xlog		*log,
3542	struct xlog_in_core	*iclog,
3543	int			count)
3544{
3545	xlog_op_header_t	*ophead;
3546	xlog_in_core_t		*icptr;
3547	xlog_in_core_2_t	*xhdr;
3548	void			*base_ptr, *ptr, *p;
3549	ptrdiff_t		field_offset;
3550	uint8_t			clientid;
 
3551	int			len, i, j, k, op_len;
3552	int			idx;
3553
3554	/* check validity of iclog pointers */
3555	spin_lock(&log->l_icloglock);
3556	icptr = log->l_iclog;
3557	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3558		ASSERT(icptr);
3559
 
 
3560	if (icptr != log->l_iclog)
3561		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3562	spin_unlock(&log->l_icloglock);
3563
3564	/* check log magic numbers */
3565	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3566		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3567
3568	base_ptr = ptr = &iclog->ic_header;
3569	p = &iclog->ic_header;
3570	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3571		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3572			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3573				__func__);
3574	}
3575
3576	/* check fields */
3577	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3578	base_ptr = ptr = iclog->ic_datap;
3579	ophead = ptr;
 
3580	xhdr = iclog->ic_data;
3581	for (i = 0; i < len; i++) {
3582		ophead = ptr;
3583
3584		/* clientid is only 1 byte */
3585		p = &ophead->oh_clientid;
3586		field_offset = p - base_ptr;
3587		if (field_offset & 0x1ff) {
3588			clientid = ophead->oh_clientid;
3589		} else {
3590			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3591			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3592				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3593				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3594				clientid = xlog_get_client_id(
3595					xhdr[j].hic_xheader.xh_cycle_data[k]);
3596			} else {
3597				clientid = xlog_get_client_id(
3598					iclog->ic_header.h_cycle_data[idx]);
3599			}
3600		}
3601		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3602			xfs_warn(log->l_mp,
3603				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3604				__func__, clientid, ophead,
3605				(unsigned long)field_offset);
3606
3607		/* check length */
3608		p = &ophead->oh_len;
3609		field_offset = p - base_ptr;
3610		if (field_offset & 0x1ff) {
3611			op_len = be32_to_cpu(ophead->oh_len);
3612		} else {
3613			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3614				    (uintptr_t)iclog->ic_datap);
3615			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3616				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3617				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3618				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3619			} else {
3620				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3621			}
3622		}
3623		ptr += sizeof(xlog_op_header_t) + op_len;
3624	}
3625}
3626#endif
3627
3628/*
3629 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3630 */
3631STATIC int
3632xlog_state_ioerror(
3633	struct xlog	*log)
3634{
3635	xlog_in_core_t	*iclog, *ic;
3636
3637	iclog = log->l_iclog;
3638	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3639		/*
3640		 * Mark all the incore logs IOERROR.
3641		 * From now on, no log flushes will result.
3642		 */
3643		ic = iclog;
3644		do {
3645			ic->ic_state = XLOG_STATE_IOERROR;
3646			ic = ic->ic_next;
3647		} while (ic != iclog);
3648		return 0;
3649	}
3650	/*
3651	 * Return non-zero, if state transition has already happened.
3652	 */
3653	return 1;
3654}
3655
3656/*
3657 * This is called from xfs_force_shutdown, when we're forcibly
3658 * shutting down the filesystem, typically because of an IO error.
3659 * Our main objectives here are to make sure that:
3660 *	a. if !logerror, flush the logs to disk. Anything modified
3661 *	   after this is ignored.
3662 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3663 *	   parties to find out, 'atomically'.
3664 *	c. those who're sleeping on log reservations, pinned objects and
3665 *	    other resources get woken up, and be told the bad news.
3666 *	d. nothing new gets queued up after (b) and (c) are done.
3667 *
3668 * Note: for the !logerror case we need to flush the regions held in memory out
3669 * to disk first. This needs to be done before the log is marked as shutdown,
3670 * otherwise the iclog writes will fail.
 
 
 
3671 */
3672int
3673xfs_log_force_umount(
3674	struct xfs_mount	*mp,
3675	int			logerror)
3676{
3677	struct xlog	*log;
3678	int		retval;
3679
3680	log = mp->m_log;
3681
3682	/*
3683	 * If this happens during log recovery, don't worry about
3684	 * locking; the log isn't open for business yet.
3685	 */
3686	if (!log ||
3687	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3688		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3689		if (mp->m_sb_bp)
3690			mp->m_sb_bp->b_flags |= XBF_DONE;
3691		return 0;
3692	}
3693
3694	/*
3695	 * Somebody could've already done the hard work for us.
3696	 * No need to get locks for this.
3697	 */
3698	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3699		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3700		return 1;
3701	}
 
3702
3703	/*
3704	 * Flush all the completed transactions to disk before marking the log
3705	 * being shut down. We need to do it in this order to ensure that
3706	 * completed operations are safely on disk before we shut down, and that
3707	 * we don't have to issue any buffer IO after the shutdown flags are set
3708	 * to guarantee this.
3709	 */
3710	if (!logerror)
3711		xfs_log_force(mp, XFS_LOG_SYNC);
3712
3713	/*
3714	 * mark the filesystem and the as in a shutdown state and wake
3715	 * everybody up to tell them the bad news.
3716	 */
3717	spin_lock(&log->l_icloglock);
3718	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3719	if (mp->m_sb_bp)
3720		mp->m_sb_bp->b_flags |= XBF_DONE;
3721
3722	/*
3723	 * Mark the log and the iclogs with IO error flags to prevent any
3724	 * further log IO from being issued or completed.
 
3725	 */
3726	log->l_flags |= XLOG_IO_ERROR;
3727	retval = xlog_state_ioerror(log);
 
 
 
 
 
 
3728	spin_unlock(&log->l_icloglock);
3729
3730	/*
3731	 * We don't want anybody waiting for log reservations after this. That
3732	 * means we have to wake up everybody queued up on reserveq as well as
3733	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3734	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3735	 * action is protected by the grant locks.
3736	 */
3737	xlog_grant_head_wake_all(&log->l_reserve_head);
3738	xlog_grant_head_wake_all(&log->l_write_head);
3739
 
 
 
 
 
 
 
 
 
 
 
 
3740	/*
3741	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3742	 * as if the log writes were completed. The abort handling in the log
3743	 * item committed callback functions will do this again under lock to
3744	 * avoid races.
3745	 */
3746	spin_lock(&log->l_cilp->xc_push_lock);
3747	wake_up_all(&log->l_cilp->xc_commit_wait);
3748	spin_unlock(&log->l_cilp->xc_push_lock);
3749	xlog_state_do_callback(log);
3750
 
 
 
 
 
 
 
 
 
3751	/* return non-zero if log IOERROR transition had already happened */
3752	return retval;
3753}
3754
3755STATIC int
3756xlog_iclogs_empty(
3757	struct xlog	*log)
3758{
3759	xlog_in_core_t	*iclog;
3760
3761	iclog = log->l_iclog;
3762	do {
3763		/* endianness does not matter here, zero is zero in
3764		 * any language.
3765		 */
3766		if (iclog->ic_header.h_num_logops)
3767			return 0;
3768		iclog = iclog->ic_next;
3769	} while (iclog != log->l_iclog);
3770	return 1;
3771}
3772
3773/*
3774 * Verify that an LSN stamped into a piece of metadata is valid. This is
3775 * intended for use in read verifiers on v5 superblocks.
3776 */
3777bool
3778xfs_log_check_lsn(
3779	struct xfs_mount	*mp,
3780	xfs_lsn_t		lsn)
3781{
3782	struct xlog		*log = mp->m_log;
3783	bool			valid;
3784
3785	/*
3786	 * norecovery mode skips mount-time log processing and unconditionally
3787	 * resets the in-core LSN. We can't validate in this mode, but
3788	 * modifications are not allowed anyways so just return true.
3789	 */
3790	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3791		return true;
3792
3793	/*
3794	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3795	 * handled by recovery and thus safe to ignore here.
3796	 */
3797	if (lsn == NULLCOMMITLSN)
3798		return true;
3799
3800	valid = xlog_valid_lsn(mp->m_log, lsn);
3801
3802	/* warn the user about what's gone wrong before verifier failure */
3803	if (!valid) {
3804		spin_lock(&log->l_icloglock);
3805		xfs_warn(mp,
3806"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3807"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3808			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3809			 log->l_curr_cycle, log->l_curr_block);
3810		spin_unlock(&log->l_icloglock);
3811	}
3812
3813	return valid;
3814}
3815
3816bool
3817xfs_log_in_recovery(
3818	struct xfs_mount	*mp)
3819{
3820	struct xlog		*log = mp->m_log;
3821
3822	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3823}