Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_log.h"
  22#include "xfs_trans.h"
  23#include "xfs_sb.h"
  24#include "xfs_ag.h"
  25#include "xfs_mount.h"
 
  26#include "xfs_error.h"
 
 
 
  27#include "xfs_log_priv.h"
  28#include "xfs_buf_item.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_log_recover.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
  36#include "xfs_trace.h"
 
 
 
 
  37
  38kmem_zone_t	*xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43	struct xlog		*log,
  44	struct xlog_ticket	*ticket,
  45	struct xlog_in_core	**iclog,
  46	xfs_lsn_t		*commitlsnp);
  47
  48STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
  49				xfs_buftarg_t	*log_target,
  50				xfs_daddr_t	blk_offset,
  51				int		num_bblks);
 
 
  52STATIC int
  53xlog_space_left(
  54	struct xlog		*log,
  55	atomic64_t		*head);
  56STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
  57STATIC void	 xlog_dealloc_log(xlog_t *log);
 
 
 
 
 
  58
  59/* local state machine functions */
  60STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  61STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
  62STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
  63				       int		len,
  64				       xlog_in_core_t	**iclog,
  65				       xlog_ticket_t	*ticket,
  66				       int		*continued_write,
  67				       int		*logoffsetp);
  68STATIC int  xlog_state_release_iclog(xlog_t		*log,
  69				     xlog_in_core_t	*iclog);
  70STATIC void xlog_state_switch_iclogs(xlog_t		*log,
  71				     xlog_in_core_t *iclog,
  72				     int		eventual_size);
  73STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
  75STATIC void
  76xlog_grant_push_ail(
  77	struct xlog	*log,
  78	int		need_bytes);
  79STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
  80					   xlog_ticket_t *ticket);
  81STATIC void xlog_ungrant_log_space(xlog_t	 *log,
  82				   xlog_ticket_t *ticket);
 
 
 
 
  83
  84#if defined(DEBUG)
  85STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
 
 
 
  86STATIC void
  87xlog_verify_grant_tail(
  88	struct xlog	*log);
  89STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
  90				  int count, boolean_t syncing);
  91STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
  92				     xfs_lsn_t tail_lsn);
 
 
 
 
 
 
 
  93#else
  94#define xlog_verify_dest_ptr(a,b)
  95#define xlog_verify_grant_tail(a)
  96#define xlog_verify_iclog(a,b,c,d)
  97#define xlog_verify_tail_lsn(a,b,c)
  98#endif
  99
 100STATIC int	xlog_iclogs_empty(xlog_t *log);
 
 
 101
 102static void
 103xlog_grant_sub_space(
 104	struct xlog		*log,
 105	atomic64_t		*head,
 106	int			bytes)
 107{
 108	int64_t	head_val = atomic64_read(head);
 109	int64_t new, old;
 110
 111	do {
 112		int	cycle, space;
 113
 114		xlog_crack_grant_head_val(head_val, &cycle, &space);
 115
 116		space -= bytes;
 117		if (space < 0) {
 118			space += log->l_logsize;
 119			cycle--;
 120		}
 121
 122		old = head_val;
 123		new = xlog_assign_grant_head_val(cycle, space);
 124		head_val = atomic64_cmpxchg(head, old, new);
 125	} while (head_val != old);
 126}
 127
 128static void
 129xlog_grant_add_space(
 130	struct xlog		*log,
 131	atomic64_t		*head,
 132	int			bytes)
 133{
 134	int64_t	head_val = atomic64_read(head);
 135	int64_t new, old;
 136
 137	do {
 138		int		tmp;
 139		int		cycle, space;
 140
 141		xlog_crack_grant_head_val(head_val, &cycle, &space);
 142
 143		tmp = log->l_logsize - space;
 144		if (tmp > bytes)
 145			space += bytes;
 146		else {
 147			space = bytes - tmp;
 148			cycle++;
 149		}
 150
 151		old = head_val;
 152		new = xlog_assign_grant_head_val(cycle, space);
 153		head_val = atomic64_cmpxchg(head, old, new);
 154	} while (head_val != old);
 155}
 156
 157STATIC void
 158xlog_grant_head_init(
 159	struct xlog_grant_head	*head)
 160{
 161	xlog_assign_grant_head(&head->grant, 1, 0);
 162	INIT_LIST_HEAD(&head->waiters);
 163	spin_lock_init(&head->lock);
 164}
 165
 166STATIC void
 167xlog_grant_head_wake_all(
 168	struct xlog_grant_head	*head)
 169{
 170	struct xlog_ticket	*tic;
 171
 172	spin_lock(&head->lock);
 173	list_for_each_entry(tic, &head->waiters, t_queue)
 174		wake_up_process(tic->t_task);
 175	spin_unlock(&head->lock);
 176}
 177
 178static inline int
 179xlog_ticket_reservation(
 180	struct xlog		*log,
 181	struct xlog_grant_head	*head,
 182	struct xlog_ticket	*tic)
 183{
 184	if (head == &log->l_write_head) {
 185		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 186		return tic->t_unit_res;
 187	} else {
 188		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 189			return tic->t_unit_res * tic->t_cnt;
 190		else
 191			return tic->t_unit_res;
 192	}
 193}
 194
 195STATIC bool
 196xlog_grant_head_wake(
 197	struct xlog		*log,
 198	struct xlog_grant_head	*head,
 199	int			*free_bytes)
 200{
 201	struct xlog_ticket	*tic;
 202	int			need_bytes;
 203
 204	list_for_each_entry(tic, &head->waiters, t_queue) {
 205		need_bytes = xlog_ticket_reservation(log, head, tic);
 206		if (*free_bytes < need_bytes)
 207			return false;
 208
 209		*free_bytes -= need_bytes;
 210		trace_xfs_log_grant_wake_up(log, tic);
 211		wake_up_process(tic->t_task);
 212	}
 213
 214	return true;
 215}
 216
 217STATIC int
 218xlog_grant_head_wait(
 219	struct xlog		*log,
 220	struct xlog_grant_head	*head,
 221	struct xlog_ticket	*tic,
 222	int			need_bytes)
 
 223{
 224	list_add_tail(&tic->t_queue, &head->waiters);
 225
 226	do {
 227		if (XLOG_FORCED_SHUTDOWN(log))
 228			goto shutdown;
 229		xlog_grant_push_ail(log, need_bytes);
 230
 231		__set_current_state(TASK_UNINTERRUPTIBLE);
 232		spin_unlock(&head->lock);
 233
 234		XFS_STATS_INC(xs_sleep_logspace);
 235
 236		trace_xfs_log_grant_sleep(log, tic);
 237		schedule();
 238		trace_xfs_log_grant_wake(log, tic);
 239
 240		spin_lock(&head->lock);
 241		if (XLOG_FORCED_SHUTDOWN(log))
 242			goto shutdown;
 243	} while (xlog_space_left(log, &head->grant) < need_bytes);
 244
 245	list_del_init(&tic->t_queue);
 246	return 0;
 247shutdown:
 248	list_del_init(&tic->t_queue);
 249	return XFS_ERROR(EIO);
 250}
 251
 252/*
 253 * Atomically get the log space required for a log ticket.
 254 *
 255 * Once a ticket gets put onto head->waiters, it will only return after the
 256 * needed reservation is satisfied.
 257 *
 258 * This function is structured so that it has a lock free fast path. This is
 259 * necessary because every new transaction reservation will come through this
 260 * path. Hence any lock will be globally hot if we take it unconditionally on
 261 * every pass.
 262 *
 263 * As tickets are only ever moved on and off head->waiters under head->lock, we
 264 * only need to take that lock if we are going to add the ticket to the queue
 265 * and sleep. We can avoid taking the lock if the ticket was never added to
 266 * head->waiters because the t_queue list head will be empty and we hold the
 267 * only reference to it so it can safely be checked unlocked.
 268 */
 269STATIC int
 270xlog_grant_head_check(
 271	struct xlog		*log,
 272	struct xlog_grant_head	*head,
 273	struct xlog_ticket	*tic,
 274	int			*need_bytes)
 275{
 276	int			free_bytes;
 277	int			error = 0;
 278
 279	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 280
 281	/*
 282	 * If there are other waiters on the queue then give them a chance at
 283	 * logspace before us.  Wake up the first waiters, if we do not wake
 284	 * up all the waiters then go to sleep waiting for more free space,
 285	 * otherwise try to get some space for this transaction.
 286	 */
 287	*need_bytes = xlog_ticket_reservation(log, head, tic);
 288	free_bytes = xlog_space_left(log, &head->grant);
 289	if (!list_empty_careful(&head->waiters)) {
 290		spin_lock(&head->lock);
 291		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 292		    free_bytes < *need_bytes) {
 293			error = xlog_grant_head_wait(log, head, tic,
 294						     *need_bytes);
 295		}
 296		spin_unlock(&head->lock);
 297	} else if (free_bytes < *need_bytes) {
 298		spin_lock(&head->lock);
 299		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 300		spin_unlock(&head->lock);
 301	}
 302
 303	return error;
 304}
 305
 306static void
 307xlog_tic_reset_res(xlog_ticket_t *tic)
 308{
 309	tic->t_res_num = 0;
 310	tic->t_res_arr_sum = 0;
 311	tic->t_res_num_ophdrs = 0;
 312}
 313
 314static void
 315xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 316{
 317	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 318		/* add to overflow and start again */
 319		tic->t_res_o_flow += tic->t_res_arr_sum;
 320		tic->t_res_num = 0;
 321		tic->t_res_arr_sum = 0;
 322	}
 323
 324	tic->t_res_arr[tic->t_res_num].r_len = len;
 325	tic->t_res_arr[tic->t_res_num].r_type = type;
 326	tic->t_res_arr_sum += len;
 327	tic->t_res_num++;
 328}
 329
 330/*
 331 * Replenish the byte reservation required by moving the grant write head.
 332 */
 333int
 334xfs_log_regrant(
 335	struct xfs_mount	*mp,
 336	struct xlog_ticket	*tic)
 337{
 338	struct xlog		*log = mp->m_log;
 339	int			need_bytes;
 340	int			error = 0;
 341
 342	if (XLOG_FORCED_SHUTDOWN(log))
 343		return XFS_ERROR(EIO);
 344
 345	XFS_STATS_INC(xs_try_logspace);
 346
 347	/*
 348	 * This is a new transaction on the ticket, so we need to change the
 349	 * transaction ID so that the next transaction has a different TID in
 350	 * the log. Just add one to the existing tid so that we can see chains
 351	 * of rolling transactions in the log easily.
 352	 */
 353	tic->t_tid++;
 354
 355	xlog_grant_push_ail(log, tic->t_unit_res);
 356
 357	tic->t_curr_res = tic->t_unit_res;
 358	xlog_tic_reset_res(tic);
 359
 360	if (tic->t_cnt > 0)
 361		return 0;
 362
 363	trace_xfs_log_regrant(log, tic);
 364
 365	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 366				      &need_bytes);
 367	if (error)
 368		goto out_error;
 369
 370	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 371	trace_xfs_log_regrant_exit(log, tic);
 372	xlog_verify_grant_tail(log);
 373	return 0;
 374
 375out_error:
 376	/*
 377	 * If we are failing, make sure the ticket doesn't have any current
 378	 * reservations.  We don't want to add this back when the ticket/
 379	 * transaction gets cancelled.
 380	 */
 381	tic->t_curr_res = 0;
 382	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 383	return error;
 384}
 385
 386/*
 387 * Reserve log space and return a ticket corresponding the reservation.
 388 *
 389 * Each reservation is going to reserve extra space for a log record header.
 390 * When writes happen to the on-disk log, we don't subtract the length of the
 391 * log record header from any reservation.  By wasting space in each
 392 * reservation, we prevent over allocation problems.
 393 */
 394int
 395xfs_log_reserve(
 396	struct xfs_mount	*mp,
 397	int		 	unit_bytes,
 398	int		 	cnt,
 399	struct xlog_ticket	**ticp,
 400	__uint8_t	 	client,
 401	bool			permanent,
 402	uint		 	t_type)
 403{
 404	struct xlog		*log = mp->m_log;
 405	struct xlog_ticket	*tic;
 406	int			need_bytes;
 407	int			error = 0;
 408
 409	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 410
 411	if (XLOG_FORCED_SHUTDOWN(log))
 412		return XFS_ERROR(EIO);
 413
 414	XFS_STATS_INC(xs_try_logspace);
 415
 416	ASSERT(*ticp == NULL);
 417	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 418				KM_SLEEP | KM_MAYFAIL);
 419	if (!tic)
 420		return XFS_ERROR(ENOMEM);
 421
 422	tic->t_trans_type = t_type;
 423	*ticp = tic;
 424
 425	xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
 
 426
 427	trace_xfs_log_reserve(log, tic);
 428
 429	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 430				      &need_bytes);
 431	if (error)
 432		goto out_error;
 433
 434	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 436	trace_xfs_log_reserve_exit(log, tic);
 437	xlog_verify_grant_tail(log);
 438	return 0;
 439
 440out_error:
 441	/*
 442	 * If we are failing, make sure the ticket doesn't have any current
 443	 * reservations.  We don't want to add this back when the ticket/
 444	 * transaction gets cancelled.
 445	 */
 446	tic->t_curr_res = 0;
 447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 448	return error;
 449}
 450
 451
 452/*
 453 * NOTES:
 454 *
 455 *	1. currblock field gets updated at startup and after in-core logs
 456 *		marked as with WANT_SYNC.
 457 */
 458
 459/*
 460 * This routine is called when a user of a log manager ticket is done with
 461 * the reservation.  If the ticket was ever used, then a commit record for
 462 * the associated transaction is written out as a log operation header with
 463 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 464 * a given ticket.  If the ticket was one with a permanent reservation, then
 465 * a few operations are done differently.  Permanent reservation tickets by
 466 * default don't release the reservation.  They just commit the current
 467 * transaction with the belief that the reservation is still needed.  A flag
 468 * must be passed in before permanent reservations are actually released.
 469 * When these type of tickets are not released, they need to be set into
 470 * the inited state again.  By doing this, a start record will be written
 471 * out when the next write occurs.
 472 */
 473xfs_lsn_t
 474xfs_log_done(
 475	struct xfs_mount	*mp,
 476	struct xlog_ticket	*ticket,
 477	struct xlog_in_core	**iclog,
 478	uint			flags)
 479{
 480	struct xlog		*log = mp->m_log;
 481	xfs_lsn_t		lsn = 0;
 482
 483	if (XLOG_FORCED_SHUTDOWN(log) ||
 484	    /*
 485	     * If nothing was ever written, don't write out commit record.
 486	     * If we get an error, just continue and give back the log ticket.
 487	     */
 488	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 489	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 490		lsn = (xfs_lsn_t) -1;
 491		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
 492			flags |= XFS_LOG_REL_PERM_RESERV;
 493		}
 494	}
 495
 496
 497	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
 498	    (flags & XFS_LOG_REL_PERM_RESERV)) {
 499		trace_xfs_log_done_nonperm(log, ticket);
 500
 501		/*
 502		 * Release ticket if not permanent reservation or a specific
 503		 * request has been made to release a permanent reservation.
 504		 */
 505		xlog_ungrant_log_space(log, ticket);
 506		xfs_log_ticket_put(ticket);
 507	} else {
 508		trace_xfs_log_done_perm(log, ticket);
 509
 510		xlog_regrant_reserve_log_space(log, ticket);
 511		/* If this ticket was a permanent reservation and we aren't
 512		 * trying to release it, reset the inited flags; so next time
 513		 * we write, a start record will be written out.
 514		 */
 515		ticket->t_flags |= XLOG_TIC_INITED;
 516	}
 517
 
 518	return lsn;
 519}
 520
 521/*
 522 * Attaches a new iclog I/O completion callback routine during
 523 * transaction commit.  If the log is in error state, a non-zero
 524 * return code is handed back and the caller is responsible for
 525 * executing the callback at an appropriate time.
 526 */
 527int
 528xfs_log_notify(
 529	struct xfs_mount	*mp,
 530	struct xlog_in_core	*iclog,
 531	xfs_log_callback_t	*cb)
 532{
 533	int	abortflg;
 534
 535	spin_lock(&iclog->ic_callback_lock);
 536	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 537	if (!abortflg) {
 538		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 539			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 540		cb->cb_next = NULL;
 541		*(iclog->ic_callback_tail) = cb;
 542		iclog->ic_callback_tail = &(cb->cb_next);
 543	}
 544	spin_unlock(&iclog->ic_callback_lock);
 545	return abortflg;
 546}
 547
 548int
 549xfs_log_release_iclog(
 550	struct xfs_mount	*mp,
 551	struct xlog_in_core	*iclog)
 552{
 553	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 554		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 555		return EIO;
 556	}
 557
 558	return 0;
 559}
 560
 561/*
 562 * Mount a log filesystem
 563 *
 564 * mp		- ubiquitous xfs mount point structure
 565 * log_target	- buftarg of on-disk log device
 566 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 567 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 568 *
 569 * Return error or zero.
 570 */
 571int
 572xfs_log_mount(
 573	xfs_mount_t	*mp,
 574	xfs_buftarg_t	*log_target,
 575	xfs_daddr_t	blk_offset,
 576	int		num_bblks)
 577{
 578	int		error;
 
 
 579
 580	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 581		xfs_notice(mp, "Mounting Filesystem");
 582	else {
 
 583		xfs_notice(mp,
 584"Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
 
 585		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 586	}
 587
 588	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 589	if (IS_ERR(mp->m_log)) {
 590		error = -PTR_ERR(mp->m_log);
 591		goto out;
 592	}
 593
 594	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595	 * Initialize the AIL now we have a log.
 596	 */
 597	error = xfs_trans_ail_init(mp);
 598	if (error) {
 599		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 600		goto out_free_log;
 601	}
 602	mp->m_log->l_ailp = mp->m_ail;
 603
 604	/*
 605	 * skip log recovery on a norecovery mount.  pretend it all
 606	 * just worked.
 607	 */
 608	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 609		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 610
 611		if (readonly)
 612			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 613
 614		error = xlog_recover(mp->m_log);
 615
 616		if (readonly)
 617			mp->m_flags |= XFS_MOUNT_RDONLY;
 618		if (error) {
 619			xfs_warn(mp, "log mount/recovery failed: error %d",
 620				error);
 
 621			goto out_destroy_ail;
 622		}
 623	}
 624
 
 
 
 
 
 625	/* Normal transactions can now occur */
 626	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 627
 628	/*
 629	 * Now the log has been fully initialised and we know were our
 630	 * space grant counters are, we can initialise the permanent ticket
 631	 * needed for delayed logging to work.
 632	 */
 633	xlog_cil_init_post_recovery(mp->m_log);
 634
 635	return 0;
 636
 637out_destroy_ail:
 638	xfs_trans_ail_destroy(mp);
 639out_free_log:
 640	xlog_dealloc_log(mp->m_log);
 641out:
 642	return error;
 643}
 644
 645/*
 646 * Finish the recovery of the file system.  This is separate from
 647 * the xfs_log_mount() call, because it depends on the code in
 648 * xfs_mountfs() to read in the root and real-time bitmap inodes
 649 * between calling xfs_log_mount() and here.
 650 *
 651 * mp		- ubiquitous xfs mount point structure
 
 
 652 */
 653int
 654xfs_log_mount_finish(xfs_mount_t *mp)
 
 655{
 656	int	error;
 
 
 657
 658	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
 659		error = xlog_recover_finish(mp->m_log);
 660	else {
 661		error = 0;
 662		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 665	return error;
 666}
 667
 668/*
 669 * Final log writes as part of unmount.
 670 *
 671 * Mark the filesystem clean as unmount happens.  Note that during relocation
 672 * this routine needs to be executed as part of source-bag while the
 673 * deallocation must not be done until source-end.
 674 */
 675
 676/*
 677 * Unmount record used to have a string "Unmount filesystem--" in the
 678 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 679 * We just write the magic number now since that particular field isn't
 680 * currently architecture converted and "nUmount" is a bit foo.
 681 * As far as I know, there weren't any dependencies on the old behaviour.
 682 */
 683
 684int
 685xfs_log_unmount_write(xfs_mount_t *mp)
 686{
 687	xlog_t		 *log = mp->m_log;
 688	xlog_in_core_t	 *iclog;
 689#ifdef DEBUG
 690	xlog_in_core_t	 *first_iclog;
 691#endif
 692	xlog_ticket_t	*tic = NULL;
 693	xfs_lsn_t	 lsn;
 694	int		 error;
 695
 696	/*
 697	 * Don't write out unmount record on read-only mounts.
 698	 * Or, if we are doing a forced umount (typically because of IO errors).
 699	 */
 700	if (mp->m_flags & XFS_MOUNT_RDONLY)
 
 
 701		return 0;
 
 702
 703	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 704	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 705
 706#ifdef DEBUG
 707	first_iclog = iclog = log->l_iclog;
 708	do {
 709		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 710			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 711			ASSERT(iclog->ic_offset == 0);
 712		}
 713		iclog = iclog->ic_next;
 714	} while (iclog != first_iclog);
 715#endif
 716	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 717		error = xfs_log_reserve(mp, 600, 1, &tic,
 718					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 719		if (!error) {
 720			/* the data section must be 32 bit size aligned */
 721			struct {
 722			    __uint16_t magic;
 723			    __uint16_t pad1;
 724			    __uint32_t pad2; /* may as well make it 64 bits */
 725			} magic = {
 726				.magic = XLOG_UNMOUNT_TYPE,
 727			};
 728			struct xfs_log_iovec reg = {
 729				.i_addr = &magic,
 730				.i_len = sizeof(magic),
 731				.i_type = XLOG_REG_TYPE_UNMOUNT,
 732			};
 733			struct xfs_log_vec vec = {
 734				.lv_niovecs = 1,
 735				.lv_iovecp = &reg,
 736			};
 737
 738			/* remove inited flag, and account for space used */
 739			tic->t_flags = 0;
 740			tic->t_curr_res -= sizeof(magic);
 741			error = xlog_write(log, &vec, tic, &lsn,
 742					   NULL, XLOG_UNMOUNT_TRANS);
 743			/*
 744			 * At this point, we're umounting anyway,
 745			 * so there's no point in transitioning log state
 746			 * to IOERROR. Just continue...
 747			 */
 748		}
 749
 750		if (error)
 751			xfs_alert(mp, "%s: unmount record failed", __func__);
 752
 753
 754		spin_lock(&log->l_icloglock);
 755		iclog = log->l_iclog;
 756		atomic_inc(&iclog->ic_refcnt);
 757		xlog_state_want_sync(log, iclog);
 758		spin_unlock(&log->l_icloglock);
 759		error = xlog_state_release_iclog(log, iclog);
 760
 761		spin_lock(&log->l_icloglock);
 762		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 763		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 764			if (!XLOG_FORCED_SHUTDOWN(log)) {
 765				xlog_wait(&iclog->ic_force_wait,
 766							&log->l_icloglock);
 767			} else {
 768				spin_unlock(&log->l_icloglock);
 769			}
 770		} else {
 771			spin_unlock(&log->l_icloglock);
 772		}
 773		if (tic) {
 774			trace_xfs_log_umount_write(log, tic);
 775			xlog_ungrant_log_space(log, tic);
 776			xfs_log_ticket_put(tic);
 777		}
 778	} else {
 779		/*
 780		 * We're already in forced_shutdown mode, couldn't
 781		 * even attempt to write out the unmount transaction.
 782		 *
 783		 * Go through the motions of sync'ing and releasing
 784		 * the iclog, even though no I/O will actually happen,
 785		 * we need to wait for other log I/Os that may already
 786		 * be in progress.  Do this as a separate section of
 787		 * code so we'll know if we ever get stuck here that
 788		 * we're in this odd situation of trying to unmount
 789		 * a file system that went into forced_shutdown as
 790		 * the result of an unmount..
 791		 */
 792		spin_lock(&log->l_icloglock);
 793		iclog = log->l_iclog;
 794		atomic_inc(&iclog->ic_refcnt);
 795
 796		xlog_state_want_sync(log, iclog);
 797		spin_unlock(&log->l_icloglock);
 798		error =  xlog_state_release_iclog(log, iclog);
 799
 800		spin_lock(&log->l_icloglock);
 801
 802		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 803			|| iclog->ic_state == XLOG_STATE_DIRTY
 804			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 805
 806				xlog_wait(&iclog->ic_force_wait,
 807							&log->l_icloglock);
 808		} else {
 809			spin_unlock(&log->l_icloglock);
 810		}
 811	}
 812
 813	return error;
 814}	/* xfs_log_unmount_write */
 815
 816/*
 817 * Deallocate log structures for unmount/relocation.
 818 *
 819 * We need to stop the aild from running before we destroy
 820 * and deallocate the log as the aild references the log.
 
 
 
 821 */
 822void
 823xfs_log_unmount(xfs_mount_t *mp)
 
 824{
 825	cancel_delayed_work_sync(&mp->m_sync_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826	xfs_trans_ail_destroy(mp);
 
 
 
 827	xlog_dealloc_log(mp->m_log);
 828}
 829
 830void
 831xfs_log_item_init(
 832	struct xfs_mount	*mp,
 833	struct xfs_log_item	*item,
 834	int			type,
 835	const struct xfs_item_ops *ops)
 836{
 837	item->li_mountp = mp;
 838	item->li_ailp = mp->m_ail;
 839	item->li_type = type;
 840	item->li_ops = ops;
 841	item->li_lv = NULL;
 842
 843	INIT_LIST_HEAD(&item->li_ail);
 844	INIT_LIST_HEAD(&item->li_cil);
 
 845}
 846
 847/*
 848 * Wake up processes waiting for log space after we have moved the log tail.
 849 */
 850void
 851xfs_log_space_wake(
 852	struct xfs_mount	*mp)
 853{
 854	struct xlog		*log = mp->m_log;
 855	int			free_bytes;
 856
 857	if (XLOG_FORCED_SHUTDOWN(log))
 858		return;
 859
 860	if (!list_empty_careful(&log->l_write_head.waiters)) {
 861		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 862
 863		spin_lock(&log->l_write_head.lock);
 864		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
 865		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
 866		spin_unlock(&log->l_write_head.lock);
 867	}
 868
 869	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
 870		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 871
 872		spin_lock(&log->l_reserve_head.lock);
 873		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
 874		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
 875		spin_unlock(&log->l_reserve_head.lock);
 876	}
 877}
 878
 879/*
 880 * Determine if we have a transaction that has gone to disk
 881 * that needs to be covered. To begin the transition to the idle state
 882 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
 883 * If we are then in a state where covering is needed, the caller is informed
 884 * that dummy transactions are required to move the log into the idle state.
 885 *
 886 * Because this is called as part of the sync process, we should also indicate
 887 * that dummy transactions should be issued in anything but the covered or
 888 * idle states. This ensures that the log tail is accurately reflected in
 889 * the log at the end of the sync, hence if a crash occurrs avoids replay
 890 * of transactions where the metadata is already on disk.
 
 
 
 
 891 */
 892int
 893xfs_log_need_covered(xfs_mount_t *mp)
 894{
 
 895	int		needed = 0;
 896	xlog_t		*log = mp->m_log;
 897
 898	if (!xfs_fs_writable(mp))
 
 
 
 899		return 0;
 900
 901	spin_lock(&log->l_icloglock);
 902	switch (log->l_covered_state) {
 903	case XLOG_STATE_COVER_DONE:
 904	case XLOG_STATE_COVER_DONE2:
 905	case XLOG_STATE_COVER_IDLE:
 906		break;
 907	case XLOG_STATE_COVER_NEED:
 908	case XLOG_STATE_COVER_NEED2:
 909		if (!xfs_ail_min_lsn(log->l_ailp) &&
 910		    xlog_iclogs_empty(log)) {
 911			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
 912				log->l_covered_state = XLOG_STATE_COVER_DONE;
 913			else
 914				log->l_covered_state = XLOG_STATE_COVER_DONE2;
 915		}
 916		/* FALLTHRU */
 
 
 
 917	default:
 918		needed = 1;
 919		break;
 920	}
 921	spin_unlock(&log->l_icloglock);
 922	return needed;
 923}
 924
 925/*
 926 * We may be holding the log iclog lock upon entering this routine.
 927 */
 928xfs_lsn_t
 929xlog_assign_tail_lsn_locked(
 930	struct xfs_mount	*mp)
 931{
 932	struct xlog		*log = mp->m_log;
 933	struct xfs_log_item	*lip;
 934	xfs_lsn_t		tail_lsn;
 935
 936	assert_spin_locked(&mp->m_ail->xa_lock);
 937
 938	/*
 939	 * To make sure we always have a valid LSN for the log tail we keep
 940	 * track of the last LSN which was committed in log->l_last_sync_lsn,
 941	 * and use that when the AIL was empty.
 942	 */
 943	lip = xfs_ail_min(mp->m_ail);
 944	if (lip)
 945		tail_lsn = lip->li_lsn;
 946	else
 947		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
 
 948	atomic64_set(&log->l_tail_lsn, tail_lsn);
 949	return tail_lsn;
 950}
 951
 952xfs_lsn_t
 953xlog_assign_tail_lsn(
 954	struct xfs_mount	*mp)
 955{
 956	xfs_lsn_t		tail_lsn;
 957
 958	spin_lock(&mp->m_ail->xa_lock);
 959	tail_lsn = xlog_assign_tail_lsn_locked(mp);
 960	spin_unlock(&mp->m_ail->xa_lock);
 961
 962	return tail_lsn;
 963}
 964
 965/*
 966 * Return the space in the log between the tail and the head.  The head
 967 * is passed in the cycle/bytes formal parms.  In the special case where
 968 * the reserve head has wrapped passed the tail, this calculation is no
 969 * longer valid.  In this case, just return 0 which means there is no space
 970 * in the log.  This works for all places where this function is called
 971 * with the reserve head.  Of course, if the write head were to ever
 972 * wrap the tail, we should blow up.  Rather than catch this case here,
 973 * we depend on other ASSERTions in other parts of the code.   XXXmiken
 974 *
 975 * This code also handles the case where the reservation head is behind
 976 * the tail.  The details of this case are described below, but the end
 977 * result is that we return the size of the log as the amount of space left.
 978 */
 979STATIC int
 980xlog_space_left(
 981	struct xlog	*log,
 982	atomic64_t	*head)
 983{
 984	int		free_bytes;
 985	int		tail_bytes;
 986	int		tail_cycle;
 987	int		head_cycle;
 988	int		head_bytes;
 989
 990	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
 991	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
 992	tail_bytes = BBTOB(tail_bytes);
 993	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
 994		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
 995	else if (tail_cycle + 1 < head_cycle)
 996		return 0;
 997	else if (tail_cycle < head_cycle) {
 998		ASSERT(tail_cycle == (head_cycle - 1));
 999		free_bytes = tail_bytes - head_bytes;
1000	} else {
1001		/*
1002		 * The reservation head is behind the tail.
1003		 * In this case we just want to return the size of the
1004		 * log as the amount of space left.
1005		 */
 
1006		xfs_alert(log->l_mp,
1007			"xlog_space_left: head behind tail\n"
1008			"  tail_cycle = %d, tail_bytes = %d\n"
1009			"  GH   cycle = %d, GH   bytes = %d",
1010			tail_cycle, tail_bytes, head_cycle, head_bytes);
 
1011		ASSERT(0);
1012		free_bytes = log->l_logsize;
1013	}
1014	return free_bytes;
1015}
1016
1017
1018/*
1019 * Log function which is called when an io completes.
1020 *
1021 * The log manager needs its own routine, in order to control what
1022 * happens with the buffer after the write completes.
1023 */
1024void
1025xlog_iodone(xfs_buf_t *bp)
1026{
1027	xlog_in_core_t	*iclog = bp->b_fspriv;
1028	xlog_t		*l = iclog->ic_log;
1029	int		aborted = 0;
1030
1031	/*
1032	 * Race to shutdown the filesystem if we see an error.
1033	 */
1034	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1035			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
 
 
 
 
 
1036		xfs_buf_ioerror_alert(bp, __func__);
1037		xfs_buf_stale(bp);
1038		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1039		/*
1040		 * This flag will be propagated to the trans-committed
1041		 * callback routines to let them know that the log-commit
1042		 * didn't succeed.
1043		 */
1044		aborted = XFS_LI_ABORTED;
1045	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1046		aborted = XFS_LI_ABORTED;
1047	}
1048
1049	/* log I/O is always issued ASYNC */
1050	ASSERT(XFS_BUF_ISASYNC(bp));
1051	xlog_state_done_syncing(iclog, aborted);
 
1052	/*
1053	 * do not reference the buffer (bp) here as we could race
1054	 * with it being freed after writing the unmount record to the
1055	 * log.
 
1056	 */
1057
1058}	/* xlog_iodone */
1059
1060/*
1061 * Return size of each in-core log record buffer.
1062 *
1063 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1064 *
1065 * If the filesystem blocksize is too large, we may need to choose a
1066 * larger size since the directory code currently logs entire blocks.
1067 */
1068
1069STATIC void
1070xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
1071			   xlog_t	*log)
 
1072{
1073	int size;
1074	int xhdrs;
1075
1076	if (mp->m_logbufs <= 0)
1077		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1078	else
1079		log->l_iclog_bufs = mp->m_logbufs;
1080
1081	/*
1082	 * Buffer size passed in from mount system call.
1083	 */
1084	if (mp->m_logbsize > 0) {
1085		size = log->l_iclog_size = mp->m_logbsize;
1086		log->l_iclog_size_log = 0;
1087		while (size != 1) {
1088			log->l_iclog_size_log++;
1089			size >>= 1;
1090		}
1091
1092		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1093			/* # headers = size / 32k
1094			 * one header holds cycles from 32k of data
1095			 */
1096
1097			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1098			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1099				xhdrs++;
1100			log->l_iclog_hsize = xhdrs << BBSHIFT;
1101			log->l_iclog_heads = xhdrs;
1102		} else {
1103			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1104			log->l_iclog_hsize = BBSIZE;
1105			log->l_iclog_heads = 1;
1106		}
1107		goto done;
1108	}
1109
1110	/* All machines use 32kB buffers by default. */
1111	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1112	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1113
1114	/* the default log size is 16k or 32k which is one header sector */
1115	log->l_iclog_hsize = BBSIZE;
1116	log->l_iclog_heads = 1;
1117
1118done:
1119	/* are we being asked to make the sizes selected above visible? */
1120	if (mp->m_logbufs == 0)
1121		mp->m_logbufs = log->l_iclog_bufs;
1122	if (mp->m_logbsize == 0)
1123		mp->m_logbsize = log->l_iclog_size;
1124}	/* xlog_get_iclog_buffer_size */
1125
1126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127/*
1128 * This routine initializes some of the log structure for a given mount point.
1129 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1130 * some other stuff may be filled in too.
1131 */
1132STATIC xlog_t *
1133xlog_alloc_log(xfs_mount_t	*mp,
1134	       xfs_buftarg_t	*log_target,
1135	       xfs_daddr_t	blk_offset,
1136	       int		num_bblks)
 
1137{
1138	xlog_t			*log;
1139	xlog_rec_header_t	*head;
1140	xlog_in_core_t		**iclogp;
1141	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1142	xfs_buf_t		*bp;
1143	int			i;
1144	int			error = ENOMEM;
1145	uint			log2_size = 0;
1146
1147	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1148	if (!log) {
1149		xfs_warn(mp, "Log allocation failed: No memory!");
1150		goto out;
1151	}
1152
1153	log->l_mp	   = mp;
1154	log->l_targ	   = log_target;
1155	log->l_logsize     = BBTOB(num_bblks);
1156	log->l_logBBstart  = blk_offset;
1157	log->l_logBBsize   = num_bblks;
1158	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1159	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
 
1160
1161	log->l_prev_block  = -1;
1162	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1163	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1164	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1165	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1166
1167	xlog_grant_head_init(&log->l_reserve_head);
1168	xlog_grant_head_init(&log->l_write_head);
1169
1170	error = EFSCORRUPTED;
1171	if (xfs_sb_version_hassector(&mp->m_sb)) {
1172	        log2_size = mp->m_sb.sb_logsectlog;
1173		if (log2_size < BBSHIFT) {
1174			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1175				log2_size, BBSHIFT);
1176			goto out_free_log;
1177		}
1178
1179	        log2_size -= BBSHIFT;
1180		if (log2_size > mp->m_sectbb_log) {
1181			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1182				log2_size, mp->m_sectbb_log);
1183			goto out_free_log;
1184		}
1185
1186		/* for larger sector sizes, must have v2 or external log */
1187		if (log2_size && log->l_logBBstart > 0 &&
1188			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1189			xfs_warn(mp,
1190		"log sector size (0x%x) invalid for configuration.",
1191				log2_size);
1192			goto out_free_log;
1193		}
1194	}
1195	log->l_sectBBsize = 1 << log2_size;
1196
1197	xlog_get_iclog_buffer_size(mp, log);
1198
1199	error = ENOMEM;
1200	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
 
 
 
 
 
 
1201	if (!bp)
1202		goto out_free_log;
1203	bp->b_iodone = xlog_iodone;
 
 
 
 
 
1204	ASSERT(xfs_buf_islocked(bp));
 
 
 
 
 
1205	log->l_xbuf = bp;
1206
1207	spin_lock_init(&log->l_icloglock);
1208	init_waitqueue_head(&log->l_flush_wait);
1209
1210	iclogp = &log->l_iclog;
1211	/*
1212	 * The amount of memory to allocate for the iclog structure is
1213	 * rather funky due to the way the structure is defined.  It is
1214	 * done this way so that we can use different sizes for machines
1215	 * with different amounts of memory.  See the definition of
1216	 * xlog_in_core_t in xfs_log_priv.h for details.
1217	 */
1218	ASSERT(log->l_iclog_size >= 4096);
1219	for (i=0; i < log->l_iclog_bufs; i++) {
1220		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1221		if (!*iclogp)
1222			goto out_free_iclog;
1223
1224		iclog = *iclogp;
1225		iclog->ic_prev = prev_iclog;
1226		prev_iclog = iclog;
1227
1228		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1229						BTOBB(log->l_iclog_size), 0);
 
1230		if (!bp)
1231			goto out_free_iclog;
1232
 
 
 
 
 
1233		bp->b_iodone = xlog_iodone;
1234		iclog->ic_bp = bp;
1235		iclog->ic_data = bp->b_addr;
1236#ifdef DEBUG
1237		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1238#endif
1239		head = &iclog->ic_header;
1240		memset(head, 0, sizeof(xlog_rec_header_t));
1241		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1242		head->h_version = cpu_to_be32(
1243			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1244		head->h_size = cpu_to_be32(log->l_iclog_size);
1245		/* new fields */
1246		head->h_fmt = cpu_to_be32(XLOG_FMT);
1247		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1248
1249		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1250		iclog->ic_state = XLOG_STATE_ACTIVE;
1251		iclog->ic_log = log;
1252		atomic_set(&iclog->ic_refcnt, 0);
1253		spin_lock_init(&iclog->ic_callback_lock);
1254		iclog->ic_callback_tail = &(iclog->ic_callback);
1255		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1256
1257		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1258		init_waitqueue_head(&iclog->ic_force_wait);
1259		init_waitqueue_head(&iclog->ic_write_wait);
1260
1261		iclogp = &iclog->ic_next;
1262	}
1263	*iclogp = log->l_iclog;			/* complete ring */
1264	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1265
1266	error = xlog_cil_init(log);
1267	if (error)
1268		goto out_free_iclog;
1269	return log;
1270
1271out_free_iclog:
1272	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1273		prev_iclog = iclog->ic_next;
1274		if (iclog->ic_bp)
1275			xfs_buf_free(iclog->ic_bp);
1276		kmem_free(iclog);
1277	}
1278	spinlock_destroy(&log->l_icloglock);
1279	xfs_buf_free(log->l_xbuf);
1280out_free_log:
1281	kmem_free(log);
1282out:
1283	return ERR_PTR(-error);
1284}	/* xlog_alloc_log */
1285
1286
1287/*
1288 * Write out the commit record of a transaction associated with the given
1289 * ticket.  Return the lsn of the commit record.
1290 */
1291STATIC int
1292xlog_commit_record(
1293	struct xlog		*log,
1294	struct xlog_ticket	*ticket,
1295	struct xlog_in_core	**iclog,
1296	xfs_lsn_t		*commitlsnp)
1297{
1298	struct xfs_mount *mp = log->l_mp;
1299	int	error;
1300	struct xfs_log_iovec reg = {
1301		.i_addr = NULL,
1302		.i_len = 0,
1303		.i_type = XLOG_REG_TYPE_COMMIT,
1304	};
1305	struct xfs_log_vec vec = {
1306		.lv_niovecs = 1,
1307		.lv_iovecp = &reg,
1308	};
1309
1310	ASSERT_ALWAYS(iclog);
1311	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1312					XLOG_COMMIT_TRANS);
1313	if (error)
1314		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1315	return error;
1316}
1317
1318/*
1319 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1320 * log space.  This code pushes on the lsn which would supposedly free up
1321 * the 25% which we want to leave free.  We may need to adopt a policy which
1322 * pushes on an lsn which is further along in the log once we reach the high
1323 * water mark.  In this manner, we would be creating a low water mark.
1324 */
1325STATIC void
1326xlog_grant_push_ail(
1327	struct xlog	*log,
1328	int		need_bytes)
1329{
1330	xfs_lsn_t	threshold_lsn = 0;
1331	xfs_lsn_t	last_sync_lsn;
1332	int		free_blocks;
1333	int		free_bytes;
1334	int		threshold_block;
1335	int		threshold_cycle;
1336	int		free_threshold;
1337
1338	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1339
1340	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1341	free_blocks = BTOBBT(free_bytes);
1342
1343	/*
1344	 * Set the threshold for the minimum number of free blocks in the
1345	 * log to the maximum of what the caller needs, one quarter of the
1346	 * log, and 256 blocks.
1347	 */
1348	free_threshold = BTOBB(need_bytes);
1349	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1350	free_threshold = MAX(free_threshold, 256);
1351	if (free_blocks >= free_threshold)
1352		return;
1353
1354	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1355						&threshold_block);
1356	threshold_block += free_threshold;
1357	if (threshold_block >= log->l_logBBsize) {
1358		threshold_block -= log->l_logBBsize;
1359		threshold_cycle += 1;
1360	}
1361	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1362					threshold_block);
1363	/*
1364	 * Don't pass in an lsn greater than the lsn of the last
1365	 * log record known to be on disk. Use a snapshot of the last sync lsn
1366	 * so that it doesn't change between the compare and the set.
1367	 */
1368	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1369	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1370		threshold_lsn = last_sync_lsn;
1371
1372	/*
1373	 * Get the transaction layer to kick the dirty buffers out to
1374	 * disk asynchronously. No point in trying to do this if
1375	 * the filesystem is shutting down.
1376	 */
1377	if (!XLOG_FORCED_SHUTDOWN(log))
1378		xfs_ail_push(log->l_ailp, threshold_lsn);
1379}
1380
1381/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382 * The bdstrat callback function for log bufs. This gives us a central
1383 * place to trap bufs in case we get hit by a log I/O error and need to
1384 * shutdown. Actually, in practice, even when we didn't get a log error,
1385 * we transition the iclogs to IOERROR state *after* flushing all existing
1386 * iclogs to disk. This is because we don't want anymore new transactions to be
1387 * started or completed afterwards.
 
 
 
 
 
 
1388 */
1389STATIC int
1390xlog_bdstrat(
1391	struct xfs_buf		*bp)
1392{
1393	struct xlog_in_core	*iclog = bp->b_fspriv;
1394
 
1395	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1396		xfs_buf_ioerror(bp, EIO);
1397		xfs_buf_stale(bp);
1398		xfs_buf_ioend(bp, 0);
1399		/*
1400		 * It would seem logical to return EIO here, but we rely on
1401		 * the log state machine to propagate I/O errors instead of
1402		 * doing it here.
 
1403		 */
1404		return 0;
1405	}
1406
1407	xfs_buf_iorequest(bp);
1408	return 0;
1409}
1410
1411/*
1412 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1413 * fashion.  Previously, we should have moved the current iclog
1414 * ptr in the log to point to the next available iclog.  This allows further
1415 * write to continue while this code syncs out an iclog ready to go.
1416 * Before an in-core log can be written out, the data section must be scanned
1417 * to save away the 1st word of each BBSIZE block into the header.  We replace
1418 * it with the current cycle count.  Each BBSIZE block is tagged with the
1419 * cycle count because there in an implicit assumption that drives will
1420 * guarantee that entire 512 byte blocks get written at once.  In other words,
1421 * we can't have part of a 512 byte block written and part not written.  By
1422 * tagging each block, we will know which blocks are valid when recovering
1423 * after an unclean shutdown.
1424 *
1425 * This routine is single threaded on the iclog.  No other thread can be in
1426 * this routine with the same iclog.  Changing contents of iclog can there-
1427 * fore be done without grabbing the state machine lock.  Updating the global
1428 * log will require grabbing the lock though.
1429 *
1430 * The entire log manager uses a logical block numbering scheme.  Only
1431 * log_sync (and then only bwrite()) know about the fact that the log may
1432 * not start with block zero on a given device.  The log block start offset
1433 * is added immediately before calling bwrite().
1434 */
1435
1436STATIC int
1437xlog_sync(xlog_t		*log,
1438	  xlog_in_core_t	*iclog)
 
1439{
1440	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1441	xfs_buf_t	*bp;
1442	int		i;
1443	uint		count;		/* byte count of bwrite */
1444	uint		count_init;	/* initial count before roundup */
1445	int		roundoff;       /* roundoff to BB or stripe */
1446	int		split = 0;	/* split write into two regions */
1447	int		error;
1448	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
 
1449
1450	XFS_STATS_INC(xs_log_writes);
1451	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1452
1453	/* Add for LR header */
1454	count_init = log->l_iclog_hsize + iclog->ic_offset;
1455
1456	/* Round out the log write size */
1457	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1458		/* we have a v2 stripe unit to use */
1459		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1460	} else {
1461		count = BBTOB(BTOBB(count_init));
1462	}
1463	roundoff = count - count_init;
1464	ASSERT(roundoff >= 0);
1465	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1466                roundoff < log->l_mp->m_sb.sb_logsunit)
1467		|| 
1468		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1469		 roundoff < BBTOB(1)));
1470
1471	/* move grant heads by roundoff in sync */
1472	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1473	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1474
1475	/* put cycle number in every block */
1476	xlog_pack_data(log, iclog, roundoff); 
1477
1478	/* real byte length */
1479	if (v2) {
1480		iclog->ic_header.h_len =
1481			cpu_to_be32(iclog->ic_offset + roundoff);
1482	} else {
1483		iclog->ic_header.h_len =
1484			cpu_to_be32(iclog->ic_offset);
1485	}
1486
1487	bp = iclog->ic_bp;
1488	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1489
1490	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1491
1492	/* Do we need to split this write into 2 parts? */
1493	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
 
 
1494		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1495		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1496		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497	} else {
1498		iclog->ic_bwritecnt = 1;
1499	}
1500	bp->b_io_length = BTOBB(count);
1501	bp->b_fspriv = iclog;
1502	XFS_BUF_ZEROFLAGS(bp);
1503	XFS_BUF_ASYNC(bp);
1504	bp->b_flags |= XBF_SYNCIO;
1505
1506	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1507		bp->b_flags |= XBF_FUA;
1508
1509		/*
1510		 * Flush the data device before flushing the log to make
1511		 * sure all meta data written back from the AIL actually made
1512		 * it to disk before stamping the new log tail LSN into the
1513		 * log buffer.  For an external log we need to issue the
1514		 * flush explicitly, and unfortunately synchronously here;
1515		 * for an internal log we can simply use the block layer
1516		 * state machine for preflushes.
1517		 */
1518		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1519			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1520		else
1521			bp->b_flags |= XBF_FLUSH;
 
 
 
1522	}
1523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1525	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1526
1527	xlog_verify_iclog(log, iclog, count, B_TRUE);
1528
1529	/* account for log which doesn't start at block #0 */
1530	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
 
1531	/*
1532	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1533	 * is shutting down.
1534	 */
1535	XFS_BUF_WRITE(bp);
1536
1537	error = xlog_bdstrat(bp);
1538	if (error) {
1539		xfs_buf_ioerror_alert(bp, "xlog_sync");
1540		return error;
1541	}
1542	if (split) {
1543		bp = iclog->ic_log->l_xbuf;
1544		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1545		xfs_buf_associate_memory(bp,
1546				(char *)&iclog->ic_header + count, split);
1547		bp->b_fspriv = iclog;
1548		XFS_BUF_ZEROFLAGS(bp);
1549		XFS_BUF_ASYNC(bp);
1550		bp->b_flags |= XBF_SYNCIO;
1551		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1552			bp->b_flags |= XBF_FUA;
1553		dptr = bp->b_addr;
1554		/*
1555		 * Bump the cycle numbers at the start of each block
1556		 * since this part of the buffer is at the start of
1557		 * a new cycle.  Watch out for the header magic number
1558		 * case, though.
1559		 */
1560		for (i = 0; i < split; i += BBSIZE) {
1561			be32_add_cpu((__be32 *)dptr, 1);
1562			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1563				be32_add_cpu((__be32 *)dptr, 1);
1564			dptr += BBSIZE;
1565		}
1566
1567		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1568		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1569
1570		/* account for internal log which doesn't start at block #0 */
1571		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1572		XFS_BUF_WRITE(bp);
1573		error = xlog_bdstrat(bp);
1574		if (error) {
1575			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1576			return error;
1577		}
1578	}
1579	return 0;
1580}	/* xlog_sync */
1581
1582
1583/*
1584 * Deallocate a log structure
1585 */
1586STATIC void
1587xlog_dealloc_log(xlog_t *log)
 
1588{
1589	xlog_in_core_t	*iclog, *next_iclog;
1590	int		i;
1591
1592	xlog_cil_destroy(log);
1593
1594	/*
1595	 * always need to ensure that the extra buffer does not point to memory
1596	 * owned by another log buffer before we free it.
1597	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1599	xfs_buf_free(log->l_xbuf);
1600
1601	iclog = log->l_iclog;
1602	for (i=0; i<log->l_iclog_bufs; i++) {
1603		xfs_buf_free(iclog->ic_bp);
1604		next_iclog = iclog->ic_next;
1605		kmem_free(iclog);
1606		iclog = next_iclog;
1607	}
1608	spinlock_destroy(&log->l_icloglock);
1609
1610	log->l_mp->m_log = NULL;
1611	kmem_free(log);
1612}	/* xlog_dealloc_log */
1613
1614/*
1615 * Update counters atomically now that memcpy is done.
1616 */
1617/* ARGSUSED */
1618static inline void
1619xlog_state_finish_copy(xlog_t		*log,
1620		       xlog_in_core_t	*iclog,
1621		       int		record_cnt,
1622		       int		copy_bytes)
 
1623{
1624	spin_lock(&log->l_icloglock);
1625
1626	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1627	iclog->ic_offset += copy_bytes;
1628
1629	spin_unlock(&log->l_icloglock);
1630}	/* xlog_state_finish_copy */
1631
1632
1633
1634
1635/*
1636 * print out info relating to regions written which consume
1637 * the reservation
1638 */
1639void
1640xlog_print_tic_res(
1641	struct xfs_mount	*mp,
1642	struct xlog_ticket	*ticket)
1643{
1644	uint i;
1645	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1646
1647	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1648	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1649	    "bformat",
1650	    "bchunk",
1651	    "efi_format",
1652	    "efd_format",
1653	    "iformat",
1654	    "icore",
1655	    "iext",
1656	    "ibroot",
1657	    "ilocal",
1658	    "iattr_ext",
1659	    "iattr_broot",
1660	    "iattr_local",
1661	    "qformat",
1662	    "dquot",
1663	    "quotaoff",
1664	    "LR header",
1665	    "unmount",
1666	    "commit",
1667	    "trans header"
1668	};
1669	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1670	    "SETATTR_NOT_SIZE",
1671	    "SETATTR_SIZE",
1672	    "INACTIVE",
1673	    "CREATE",
1674	    "CREATE_TRUNC",
1675	    "TRUNCATE_FILE",
1676	    "REMOVE",
1677	    "LINK",
1678	    "RENAME",
1679	    "MKDIR",
1680	    "RMDIR",
1681	    "SYMLINK",
1682	    "SET_DMATTRS",
1683	    "GROWFS",
1684	    "STRAT_WRITE",
1685	    "DIOSTRAT",
1686	    "WRITE_SYNC",
1687	    "WRITEID",
1688	    "ADDAFORK",
1689	    "ATTRINVAL",
1690	    "ATRUNCATE",
1691	    "ATTR_SET",
1692	    "ATTR_RM",
1693	    "ATTR_FLAG",
1694	    "CLEAR_AGI_BUCKET",
1695	    "QM_SBCHANGE",
1696	    "DUMMY1",
1697	    "DUMMY2",
1698	    "QM_QUOTAOFF",
1699	    "QM_DQALLOC",
1700	    "QM_SETQLIM",
1701	    "QM_DQCLUSTER",
1702	    "QM_QINOCREATE",
1703	    "QM_QUOTAOFF_END",
1704	    "SB_UNIT",
1705	    "FSYNC_TS",
1706	    "GROWFSRT_ALLOC",
1707	    "GROWFSRT_ZERO",
1708	    "GROWFSRT_FREE",
1709	    "SWAPEXT"
1710	};
 
1711
1712	xfs_warn(mp,
1713		"xlog_write: reservation summary:\n"
1714		"  trans type  = %s (%u)\n"
1715		"  unit res    = %d bytes\n"
1716		"  current res = %d bytes\n"
1717		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1718		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1719		"  ophdr + reg = %u bytes\n"
1720		"  num regions = %u\n",
1721		((ticket->t_trans_type <= 0 ||
1722		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1723		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1724		ticket->t_trans_type,
1725		ticket->t_unit_res,
1726		ticket->t_curr_res,
1727		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1728		ticket->t_res_num_ophdrs, ophdr_spc,
1729		ticket->t_res_arr_sum +
1730		ticket->t_res_o_flow + ophdr_spc,
1731		ticket->t_res_num);
1732
1733	for (i = 0; i < ticket->t_res_num; i++) {
1734		uint r_type = ticket->t_res_arr[i].r_type;
1735		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1736			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1737			    "bad-rtype" : res_type_str[r_type-1]),
1738			    ticket->t_res_arr[i].r_len);
1739	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740
1741	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1742		"xlog_write: reservation ran out. Need to up reservation");
1743	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 
 
 
 
 
 
 
 
 
 
 
1744}
1745
1746/*
1747 * Calculate the potential space needed by the log vector.  Each region gets
1748 * its own xlog_op_header_t and may need to be double word aligned.
1749 */
1750static int
1751xlog_write_calc_vec_length(
1752	struct xlog_ticket	*ticket,
1753	struct xfs_log_vec	*log_vector)
1754{
1755	struct xfs_log_vec	*lv;
1756	int			headers = 0;
1757	int			len = 0;
1758	int			i;
1759
1760	/* acct for start rec of xact */
1761	if (ticket->t_flags & XLOG_TIC_INITED)
1762		headers++;
1763
1764	for (lv = log_vector; lv; lv = lv->lv_next) {
 
 
 
 
1765		headers += lv->lv_niovecs;
1766
1767		for (i = 0; i < lv->lv_niovecs; i++) {
1768			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1769
1770			len += vecp->i_len;
1771			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1772		}
1773	}
1774
1775	ticket->t_res_num_ophdrs += headers;
1776	len += headers * sizeof(struct xlog_op_header);
1777
1778	return len;
1779}
1780
1781/*
1782 * If first write for transaction, insert start record  We can't be trying to
1783 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1784 */
1785static int
1786xlog_write_start_rec(
1787	struct xlog_op_header	*ophdr,
1788	struct xlog_ticket	*ticket)
1789{
1790	if (!(ticket->t_flags & XLOG_TIC_INITED))
1791		return 0;
1792
1793	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1794	ophdr->oh_clientid = ticket->t_clientid;
1795	ophdr->oh_len = 0;
1796	ophdr->oh_flags = XLOG_START_TRANS;
1797	ophdr->oh_res2 = 0;
1798
1799	ticket->t_flags &= ~XLOG_TIC_INITED;
1800
1801	return sizeof(struct xlog_op_header);
1802}
1803
1804static xlog_op_header_t *
1805xlog_write_setup_ophdr(
1806	struct xlog		*log,
1807	struct xlog_op_header	*ophdr,
1808	struct xlog_ticket	*ticket,
1809	uint			flags)
1810{
1811	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1812	ophdr->oh_clientid = ticket->t_clientid;
1813	ophdr->oh_res2 = 0;
1814
1815	/* are we copying a commit or unmount record? */
1816	ophdr->oh_flags = flags;
1817
1818	/*
1819	 * We've seen logs corrupted with bad transaction client ids.  This
1820	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1821	 * and shut down the filesystem.
1822	 */
1823	switch (ophdr->oh_clientid)  {
1824	case XFS_TRANSACTION:
1825	case XFS_VOLUME:
1826	case XFS_LOG:
1827		break;
1828	default:
1829		xfs_warn(log->l_mp,
1830			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1831			ophdr->oh_clientid, ticket);
1832		return NULL;
1833	}
1834
1835	return ophdr;
1836}
1837
1838/*
1839 * Set up the parameters of the region copy into the log. This has
1840 * to handle region write split across multiple log buffers - this
1841 * state is kept external to this function so that this code can
1842 * can be written in an obvious, self documenting manner.
1843 */
1844static int
1845xlog_write_setup_copy(
1846	struct xlog_ticket	*ticket,
1847	struct xlog_op_header	*ophdr,
1848	int			space_available,
1849	int			space_required,
1850	int			*copy_off,
1851	int			*copy_len,
1852	int			*last_was_partial_copy,
1853	int			*bytes_consumed)
1854{
1855	int			still_to_copy;
1856
1857	still_to_copy = space_required - *bytes_consumed;
1858	*copy_off = *bytes_consumed;
1859
1860	if (still_to_copy <= space_available) {
1861		/* write of region completes here */
1862		*copy_len = still_to_copy;
1863		ophdr->oh_len = cpu_to_be32(*copy_len);
1864		if (*last_was_partial_copy)
1865			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1866		*last_was_partial_copy = 0;
1867		*bytes_consumed = 0;
1868		return 0;
1869	}
1870
1871	/* partial write of region, needs extra log op header reservation */
1872	*copy_len = space_available;
1873	ophdr->oh_len = cpu_to_be32(*copy_len);
1874	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1875	if (*last_was_partial_copy)
1876		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1877	*bytes_consumed += *copy_len;
1878	(*last_was_partial_copy)++;
1879
1880	/* account for new log op header */
1881	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1882	ticket->t_res_num_ophdrs++;
1883
1884	return sizeof(struct xlog_op_header);
1885}
1886
1887static int
1888xlog_write_copy_finish(
1889	struct xlog		*log,
1890	struct xlog_in_core	*iclog,
1891	uint			flags,
1892	int			*record_cnt,
1893	int			*data_cnt,
1894	int			*partial_copy,
1895	int			*partial_copy_len,
1896	int			log_offset,
1897	struct xlog_in_core	**commit_iclog)
1898{
1899	if (*partial_copy) {
1900		/*
1901		 * This iclog has already been marked WANT_SYNC by
1902		 * xlog_state_get_iclog_space.
1903		 */
1904		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1905		*record_cnt = 0;
1906		*data_cnt = 0;
1907		return xlog_state_release_iclog(log, iclog);
1908	}
1909
1910	*partial_copy = 0;
1911	*partial_copy_len = 0;
1912
1913	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1914		/* no more space in this iclog - push it. */
1915		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1916		*record_cnt = 0;
1917		*data_cnt = 0;
1918
1919		spin_lock(&log->l_icloglock);
1920		xlog_state_want_sync(log, iclog);
1921		spin_unlock(&log->l_icloglock);
1922
1923		if (!commit_iclog)
1924			return xlog_state_release_iclog(log, iclog);
1925		ASSERT(flags & XLOG_COMMIT_TRANS);
1926		*commit_iclog = iclog;
1927	}
1928
1929	return 0;
1930}
1931
1932/*
1933 * Write some region out to in-core log
1934 *
1935 * This will be called when writing externally provided regions or when
1936 * writing out a commit record for a given transaction.
1937 *
1938 * General algorithm:
1939 *	1. Find total length of this write.  This may include adding to the
1940 *		lengths passed in.
1941 *	2. Check whether we violate the tickets reservation.
1942 *	3. While writing to this iclog
1943 *	    A. Reserve as much space in this iclog as can get
1944 *	    B. If this is first write, save away start lsn
1945 *	    C. While writing this region:
1946 *		1. If first write of transaction, write start record
1947 *		2. Write log operation header (header per region)
1948 *		3. Find out if we can fit entire region into this iclog
1949 *		4. Potentially, verify destination memcpy ptr
1950 *		5. Memcpy (partial) region
1951 *		6. If partial copy, release iclog; otherwise, continue
1952 *			copying more regions into current iclog
1953 *	4. Mark want sync bit (in simulation mode)
1954 *	5. Release iclog for potential flush to on-disk log.
1955 *
1956 * ERRORS:
1957 * 1.	Panic if reservation is overrun.  This should never happen since
1958 *	reservation amounts are generated internal to the filesystem.
1959 * NOTES:
1960 * 1. Tickets are single threaded data structures.
1961 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1962 *	syncing routine.  When a single log_write region needs to span
1963 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1964 *	on all log operation writes which don't contain the end of the
1965 *	region.  The XLOG_END_TRANS bit is used for the in-core log
1966 *	operation which contains the end of the continued log_write region.
1967 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1968 *	we don't really know exactly how much space will be used.  As a result,
1969 *	we don't update ic_offset until the end when we know exactly how many
1970 *	bytes have been written out.
1971 */
1972int
1973xlog_write(
1974	struct xlog		*log,
1975	struct xfs_log_vec	*log_vector,
1976	struct xlog_ticket	*ticket,
1977	xfs_lsn_t		*start_lsn,
1978	struct xlog_in_core	**commit_iclog,
1979	uint			flags)
1980{
1981	struct xlog_in_core	*iclog = NULL;
1982	struct xfs_log_iovec	*vecp;
1983	struct xfs_log_vec	*lv;
1984	int			len;
1985	int			index;
1986	int			partial_copy = 0;
1987	int			partial_copy_len = 0;
1988	int			contwr = 0;
1989	int			record_cnt = 0;
1990	int			data_cnt = 0;
1991	int			error;
1992
1993	*start_lsn = 0;
1994
1995	len = xlog_write_calc_vec_length(ticket, log_vector);
1996
1997	/*
1998	 * Region headers and bytes are already accounted for.
1999	 * We only need to take into account start records and
2000	 * split regions in this function.
2001	 */
2002	if (ticket->t_flags & XLOG_TIC_INITED)
2003		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2004
2005	/*
2006	 * Commit record headers need to be accounted for. These
2007	 * come in as separate writes so are easy to detect.
2008	 */
2009	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2010		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2011
2012	if (ticket->t_curr_res < 0)
 
 
2013		xlog_print_tic_res(log->l_mp, ticket);
 
 
2014
2015	index = 0;
2016	lv = log_vector;
2017	vecp = lv->lv_iovecp;
2018	while (lv && index < lv->lv_niovecs) {
2019		void		*ptr;
2020		int		log_offset;
2021
2022		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2023						   &contwr, &log_offset);
2024		if (error)
2025			return error;
2026
2027		ASSERT(log_offset <= iclog->ic_size - 1);
2028		ptr = iclog->ic_datap + log_offset;
2029
2030		/* start_lsn is the first lsn written to. That's all we need. */
2031		if (!*start_lsn)
2032			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2033
2034		/*
2035		 * This loop writes out as many regions as can fit in the amount
2036		 * of space which was allocated by xlog_state_get_iclog_space().
2037		 */
2038		while (lv && index < lv->lv_niovecs) {
2039			struct xfs_log_iovec	*reg = &vecp[index];
2040			struct xlog_op_header	*ophdr;
2041			int			start_rec_copy;
2042			int			copy_len;
2043			int			copy_off;
 
2044
2045			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2046			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
 
 
 
 
 
 
 
 
2047
2048			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2049			if (start_rec_copy) {
2050				record_cnt++;
2051				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2052						   start_rec_copy);
2053			}
2054
2055			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2056			if (!ophdr)
2057				return XFS_ERROR(EIO);
2058
2059			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2060					   sizeof(struct xlog_op_header));
2061
2062			len += xlog_write_setup_copy(ticket, ophdr,
2063						     iclog->ic_size-log_offset,
2064						     reg->i_len,
2065						     &copy_off, &copy_len,
2066						     &partial_copy,
2067						     &partial_copy_len);
2068			xlog_verify_dest_ptr(log, ptr);
2069
2070			/* copy region */
 
 
 
 
 
 
 
2071			ASSERT(copy_len >= 0);
2072			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2073			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2074
 
 
2075			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2076			record_cnt++;
2077			data_cnt += contwr ? copy_len : 0;
2078
2079			error = xlog_write_copy_finish(log, iclog, flags,
2080						       &record_cnt, &data_cnt,
2081						       &partial_copy,
2082						       &partial_copy_len,
2083						       log_offset,
2084						       commit_iclog);
2085			if (error)
2086				return error;
2087
2088			/*
2089			 * if we had a partial copy, we need to get more iclog
2090			 * space but we don't want to increment the region
2091			 * index because there is still more is this region to
2092			 * write.
2093			 *
2094			 * If we completed writing this region, and we flushed
2095			 * the iclog (indicated by resetting of the record
2096			 * count), then we also need to get more log space. If
2097			 * this was the last record, though, we are done and
2098			 * can just return.
2099			 */
2100			if (partial_copy)
2101				break;
2102
2103			if (++index == lv->lv_niovecs) {
 
2104				lv = lv->lv_next;
2105				index = 0;
2106				if (lv)
2107					vecp = lv->lv_iovecp;
2108			}
2109			if (record_cnt == 0) {
2110				if (!lv)
2111					return 0;
2112				break;
2113			}
2114		}
2115	}
2116
2117	ASSERT(len == 0);
2118
2119	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2120	if (!commit_iclog)
2121		return xlog_state_release_iclog(log, iclog);
2122
2123	ASSERT(flags & XLOG_COMMIT_TRANS);
2124	*commit_iclog = iclog;
2125	return 0;
2126}
2127
2128
2129/*****************************************************************************
2130 *
2131 *		State Machine functions
2132 *
2133 *****************************************************************************
2134 */
2135
2136/* Clean iclogs starting from the head.  This ordering must be
2137 * maintained, so an iclog doesn't become ACTIVE beyond one that
2138 * is SYNCING.  This is also required to maintain the notion that we use
2139 * a ordered wait queue to hold off would be writers to the log when every
2140 * iclog is trying to sync to disk.
2141 *
2142 * State Change: DIRTY -> ACTIVE
2143 */
2144STATIC void
2145xlog_state_clean_log(xlog_t *log)
 
2146{
2147	xlog_in_core_t	*iclog;
2148	int changed = 0;
2149
2150	iclog = log->l_iclog;
2151	do {
2152		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2153			iclog->ic_state	= XLOG_STATE_ACTIVE;
2154			iclog->ic_offset       = 0;
2155			ASSERT(iclog->ic_callback == NULL);
2156			/*
2157			 * If the number of ops in this iclog indicate it just
2158			 * contains the dummy transaction, we can
2159			 * change state into IDLE (the second time around).
2160			 * Otherwise we should change the state into
2161			 * NEED a dummy.
2162			 * We don't need to cover the dummy.
2163			 */
2164			if (!changed &&
2165			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2166			   		XLOG_COVER_OPS)) {
2167				changed = 1;
2168			} else {
2169				/*
2170				 * We have two dirty iclogs so start over
2171				 * This could also be num of ops indicates
2172				 * this is not the dummy going out.
2173				 */
2174				changed = 2;
2175			}
2176			iclog->ic_header.h_num_logops = 0;
2177			memset(iclog->ic_header.h_cycle_data, 0,
2178			      sizeof(iclog->ic_header.h_cycle_data));
2179			iclog->ic_header.h_lsn = 0;
2180		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2181			/* do nothing */;
2182		else
2183			break;	/* stop cleaning */
2184		iclog = iclog->ic_next;
2185	} while (iclog != log->l_iclog);
2186
2187	/* log is locked when we are called */
2188	/*
2189	 * Change state for the dummy log recording.
2190	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2191	 * we are done writing the dummy record.
2192	 * If we are done with the second dummy recored (DONE2), then
2193	 * we go to IDLE.
2194	 */
2195	if (changed) {
2196		switch (log->l_covered_state) {
2197		case XLOG_STATE_COVER_IDLE:
2198		case XLOG_STATE_COVER_NEED:
2199		case XLOG_STATE_COVER_NEED2:
2200			log->l_covered_state = XLOG_STATE_COVER_NEED;
2201			break;
2202
2203		case XLOG_STATE_COVER_DONE:
2204			if (changed == 1)
2205				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2206			else
2207				log->l_covered_state = XLOG_STATE_COVER_NEED;
2208			break;
2209
2210		case XLOG_STATE_COVER_DONE2:
2211			if (changed == 1)
2212				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2213			else
2214				log->l_covered_state = XLOG_STATE_COVER_NEED;
2215			break;
2216
2217		default:
2218			ASSERT(0);
2219		}
2220	}
2221}	/* xlog_state_clean_log */
2222
2223STATIC xfs_lsn_t
2224xlog_get_lowest_lsn(
2225	xlog_t		*log)
2226{
2227	xlog_in_core_t  *lsn_log;
2228	xfs_lsn_t	lowest_lsn, lsn;
2229
2230	lsn_log = log->l_iclog;
2231	lowest_lsn = 0;
2232	do {
2233	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2234		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2235		if ((lsn && !lowest_lsn) ||
2236		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2237			lowest_lsn = lsn;
2238		}
2239	    }
2240	    lsn_log = lsn_log->ic_next;
2241	} while (lsn_log != log->l_iclog);
2242	return lowest_lsn;
2243}
2244
2245
2246STATIC void
2247xlog_state_do_callback(
2248	xlog_t		*log,
2249	int		aborted,
2250	xlog_in_core_t	*ciclog)
2251{
2252	xlog_in_core_t	   *iclog;
2253	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2254						 * processed all iclogs once */
2255	xfs_log_callback_t *cb, *cb_next;
2256	int		   flushcnt = 0;
2257	xfs_lsn_t	   lowest_lsn;
2258	int		   ioerrors;	/* counter: iclogs with errors */
2259	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2260	int		   funcdidcallbacks; /* flag: function did callbacks */
2261	int		   repeats;	/* for issuing console warnings if
2262					 * looping too many times */
2263	int		   wake = 0;
2264
2265	spin_lock(&log->l_icloglock);
2266	first_iclog = iclog = log->l_iclog;
2267	ioerrors = 0;
2268	funcdidcallbacks = 0;
2269	repeats = 0;
2270
2271	do {
2272		/*
2273		 * Scan all iclogs starting with the one pointed to by the
2274		 * log.  Reset this starting point each time the log is
2275		 * unlocked (during callbacks).
2276		 *
2277		 * Keep looping through iclogs until one full pass is made
2278		 * without running any callbacks.
2279		 */
2280		first_iclog = log->l_iclog;
2281		iclog = log->l_iclog;
2282		loopdidcallbacks = 0;
2283		repeats++;
2284
2285		do {
2286
2287			/* skip all iclogs in the ACTIVE & DIRTY states */
2288			if (iclog->ic_state &
2289			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2290				iclog = iclog->ic_next;
2291				continue;
2292			}
2293
2294			/*
2295			 * Between marking a filesystem SHUTDOWN and stopping
2296			 * the log, we do flush all iclogs to disk (if there
2297			 * wasn't a log I/O error). So, we do want things to
2298			 * go smoothly in case of just a SHUTDOWN  w/o a
2299			 * LOG_IO_ERROR.
2300			 */
2301			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2302				/*
2303				 * Can only perform callbacks in order.  Since
2304				 * this iclog is not in the DONE_SYNC/
2305				 * DO_CALLBACK state, we skip the rest and
2306				 * just try to clean up.  If we set our iclog
2307				 * to DO_CALLBACK, we will not process it when
2308				 * we retry since a previous iclog is in the
2309				 * CALLBACK and the state cannot change since
2310				 * we are holding the l_icloglock.
2311				 */
2312				if (!(iclog->ic_state &
2313					(XLOG_STATE_DONE_SYNC |
2314						 XLOG_STATE_DO_CALLBACK))) {
2315					if (ciclog && (ciclog->ic_state ==
2316							XLOG_STATE_DONE_SYNC)) {
2317						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2318					}
2319					break;
2320				}
2321				/*
2322				 * We now have an iclog that is in either the
2323				 * DO_CALLBACK or DONE_SYNC states. The other
2324				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2325				 * caught by the above if and are going to
2326				 * clean (i.e. we aren't doing their callbacks)
2327				 * see the above if.
2328				 */
2329
2330				/*
2331				 * We will do one more check here to see if we
2332				 * have chased our tail around.
2333				 */
2334
2335				lowest_lsn = xlog_get_lowest_lsn(log);
2336				if (lowest_lsn &&
2337				    XFS_LSN_CMP(lowest_lsn,
2338						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2339					iclog = iclog->ic_next;
2340					continue; /* Leave this iclog for
2341						   * another thread */
2342				}
2343
2344				iclog->ic_state = XLOG_STATE_CALLBACK;
2345
2346
2347				/*
2348				 * update the last_sync_lsn before we drop the
 
 
 
 
 
 
 
 
 
 
 
 
2349				 * icloglock to ensure we are the only one that
2350				 * can update it.
2351				 */
2352				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2353					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2354				atomic64_set(&log->l_last_sync_lsn,
2355					be64_to_cpu(iclog->ic_header.h_lsn));
 
2356
2357			} else
2358				ioerrors++;
2359
2360			spin_unlock(&log->l_icloglock);
2361
2362			/*
2363			 * Keep processing entries in the callback list until
2364			 * we come around and it is empty.  We need to
2365			 * atomically see that the list is empty and change the
2366			 * state to DIRTY so that we don't miss any more
2367			 * callbacks being added.
2368			 */
2369			spin_lock(&iclog->ic_callback_lock);
2370			cb = iclog->ic_callback;
2371			while (cb) {
2372				iclog->ic_callback_tail = &(iclog->ic_callback);
2373				iclog->ic_callback = NULL;
2374				spin_unlock(&iclog->ic_callback_lock);
2375
2376				/* perform callbacks in the order given */
2377				for (; cb; cb = cb_next) {
2378					cb_next = cb->cb_next;
2379					cb->cb_func(cb->cb_arg, aborted);
2380				}
2381				spin_lock(&iclog->ic_callback_lock);
2382				cb = iclog->ic_callback;
2383			}
2384
2385			loopdidcallbacks++;
2386			funcdidcallbacks++;
2387
2388			spin_lock(&log->l_icloglock);
2389			ASSERT(iclog->ic_callback == NULL);
2390			spin_unlock(&iclog->ic_callback_lock);
2391			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2392				iclog->ic_state = XLOG_STATE_DIRTY;
2393
2394			/*
2395			 * Transition from DIRTY to ACTIVE if applicable.
2396			 * NOP if STATE_IOERROR.
2397			 */
2398			xlog_state_clean_log(log);
2399
2400			/* wake up threads waiting in xfs_log_force() */
2401			wake_up_all(&iclog->ic_force_wait);
2402
2403			iclog = iclog->ic_next;
2404		} while (first_iclog != iclog);
2405
2406		if (repeats > 5000) {
2407			flushcnt += repeats;
2408			repeats = 0;
2409			xfs_warn(log->l_mp,
2410				"%s: possible infinite loop (%d iterations)",
2411				__func__, flushcnt);
2412		}
2413	} while (!ioerrors && loopdidcallbacks);
2414
 
2415	/*
2416	 * make one last gasp attempt to see if iclogs are being left in
2417	 * limbo..
 
 
 
 
 
 
 
 
2418	 */
2419#ifdef DEBUG
2420	if (funcdidcallbacks) {
2421		first_iclog = iclog = log->l_iclog;
2422		do {
2423			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2424			/*
2425			 * Terminate the loop if iclogs are found in states
2426			 * which will cause other threads to clean up iclogs.
2427			 *
2428			 * SYNCING - i/o completion will go through logs
2429			 * DONE_SYNC - interrupt thread should be waiting for
2430			 *              l_icloglock
2431			 * IOERROR - give up hope all ye who enter here
2432			 */
2433			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2434			    iclog->ic_state == XLOG_STATE_SYNCING ||
2435			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2436			    iclog->ic_state == XLOG_STATE_IOERROR )
2437				break;
2438			iclog = iclog->ic_next;
2439		} while (first_iclog != iclog);
2440	}
2441#endif
2442
2443	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2444		wake = 1;
2445	spin_unlock(&log->l_icloglock);
2446
2447	if (wake)
2448		wake_up_all(&log->l_flush_wait);
2449}
2450
2451
2452/*
2453 * Finish transitioning this iclog to the dirty state.
2454 *
2455 * Make sure that we completely execute this routine only when this is
2456 * the last call to the iclog.  There is a good chance that iclog flushes,
2457 * when we reach the end of the physical log, get turned into 2 separate
2458 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2459 * routine.  By using the reference count bwritecnt, we guarantee that only
2460 * the second completion goes through.
2461 *
2462 * Callbacks could take time, so they are done outside the scope of the
2463 * global state machine log lock.
2464 */
2465STATIC void
2466xlog_state_done_syncing(
2467	xlog_in_core_t	*iclog,
2468	int		aborted)
2469{
2470	xlog_t		   *log = iclog->ic_log;
2471
2472	spin_lock(&log->l_icloglock);
2473
2474	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2475	       iclog->ic_state == XLOG_STATE_IOERROR);
2476	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2477	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2478
2479
2480	/*
2481	 * If we got an error, either on the first buffer, or in the case of
2482	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2483	 * and none should ever be attempted to be written to disk
2484	 * again.
2485	 */
2486	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2487		if (--iclog->ic_bwritecnt == 1) {
2488			spin_unlock(&log->l_icloglock);
2489			return;
2490		}
2491		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2492	}
2493
2494	/*
2495	 * Someone could be sleeping prior to writing out the next
2496	 * iclog buffer, we wake them all, one will get to do the
2497	 * I/O, the others get to wait for the result.
2498	 */
2499	wake_up_all(&iclog->ic_write_wait);
2500	spin_unlock(&log->l_icloglock);
2501	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2502}	/* xlog_state_done_syncing */
2503
2504
2505/*
2506 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2507 * sleep.  We wait on the flush queue on the head iclog as that should be
2508 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2509 * we will wait here and all new writes will sleep until a sync completes.
2510 *
2511 * The in-core logs are used in a circular fashion. They are not used
2512 * out-of-order even when an iclog past the head is free.
2513 *
2514 * return:
2515 *	* log_offset where xlog_write() can start writing into the in-core
2516 *		log's data space.
2517 *	* in-core log pointer to which xlog_write() should write.
2518 *	* boolean indicating this is a continued write to an in-core log.
2519 *		If this is the last write, then the in-core log's offset field
2520 *		needs to be incremented, depending on the amount of data which
2521 *		is copied.
2522 */
2523STATIC int
2524xlog_state_get_iclog_space(xlog_t	  *log,
2525			   int		  len,
2526			   xlog_in_core_t **iclogp,
2527			   xlog_ticket_t  *ticket,
2528			   int		  *continued_write,
2529			   int		  *logoffsetp)
 
2530{
2531	int		  log_offset;
2532	xlog_rec_header_t *head;
2533	xlog_in_core_t	  *iclog;
2534	int		  error;
2535
2536restart:
2537	spin_lock(&log->l_icloglock);
2538	if (XLOG_FORCED_SHUTDOWN(log)) {
2539		spin_unlock(&log->l_icloglock);
2540		return XFS_ERROR(EIO);
2541	}
2542
2543	iclog = log->l_iclog;
2544	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2545		XFS_STATS_INC(xs_log_noiclogs);
2546
2547		/* Wait for log writes to have flushed */
2548		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2549		goto restart;
2550	}
2551
2552	head = &iclog->ic_header;
2553
2554	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2555	log_offset = iclog->ic_offset;
2556
2557	/* On the 1st write to an iclog, figure out lsn.  This works
2558	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2559	 * committing to.  If the offset is set, that's how many blocks
2560	 * must be written.
2561	 */
2562	if (log_offset == 0) {
2563		ticket->t_curr_res -= log->l_iclog_hsize;
2564		xlog_tic_add_region(ticket,
2565				    log->l_iclog_hsize,
2566				    XLOG_REG_TYPE_LRHEADER);
2567		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2568		head->h_lsn = cpu_to_be64(
2569			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2570		ASSERT(log->l_curr_block >= 0);
2571	}
2572
2573	/* If there is enough room to write everything, then do it.  Otherwise,
2574	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2575	 * bit is on, so this will get flushed out.  Don't update ic_offset
2576	 * until you know exactly how many bytes get copied.  Therefore, wait
2577	 * until later to update ic_offset.
2578	 *
2579	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2580	 * can fit into remaining data section.
2581	 */
2582	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2583		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2584
2585		/*
2586		 * If I'm the only one writing to this iclog, sync it to disk.
2587		 * We need to do an atomic compare and decrement here to avoid
2588		 * racing with concurrent atomic_dec_and_lock() calls in
2589		 * xlog_state_release_iclog() when there is more than one
2590		 * reference to the iclog.
2591		 */
2592		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2593			/* we are the only one */
2594			spin_unlock(&log->l_icloglock);
2595			error = xlog_state_release_iclog(log, iclog);
2596			if (error)
2597				return error;
2598		} else {
2599			spin_unlock(&log->l_icloglock);
2600		}
2601		goto restart;
2602	}
2603
2604	/* Do we have enough room to write the full amount in the remainder
2605	 * of this iclog?  Or must we continue a write on the next iclog and
2606	 * mark this iclog as completely taken?  In the case where we switch
2607	 * iclogs (to mark it taken), this particular iclog will release/sync
2608	 * to disk in xlog_write().
2609	 */
2610	if (len <= iclog->ic_size - iclog->ic_offset) {
2611		*continued_write = 0;
2612		iclog->ic_offset += len;
2613	} else {
2614		*continued_write = 1;
2615		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2616	}
2617	*iclogp = iclog;
2618
2619	ASSERT(iclog->ic_offset <= iclog->ic_size);
2620	spin_unlock(&log->l_icloglock);
2621
2622	*logoffsetp = log_offset;
2623	return 0;
2624}	/* xlog_state_get_iclog_space */
2625
2626/* The first cnt-1 times through here we don't need to
2627 * move the grant write head because the permanent
2628 * reservation has reserved cnt times the unit amount.
2629 * Release part of current permanent unit reservation and
2630 * reset current reservation to be one units worth.  Also
2631 * move grant reservation head forward.
2632 */
2633STATIC void
2634xlog_regrant_reserve_log_space(xlog_t	     *log,
2635			       xlog_ticket_t *ticket)
 
2636{
2637	trace_xfs_log_regrant_reserve_enter(log, ticket);
2638
2639	if (ticket->t_cnt > 0)
2640		ticket->t_cnt--;
2641
2642	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2643					ticket->t_curr_res);
2644	xlog_grant_sub_space(log, &log->l_write_head.grant,
2645					ticket->t_curr_res);
2646	ticket->t_curr_res = ticket->t_unit_res;
2647	xlog_tic_reset_res(ticket);
2648
2649	trace_xfs_log_regrant_reserve_sub(log, ticket);
2650
2651	/* just return if we still have some of the pre-reserved space */
2652	if (ticket->t_cnt > 0)
2653		return;
2654
2655	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2656					ticket->t_unit_res);
2657
2658	trace_xfs_log_regrant_reserve_exit(log, ticket);
2659
2660	ticket->t_curr_res = ticket->t_unit_res;
2661	xlog_tic_reset_res(ticket);
2662}	/* xlog_regrant_reserve_log_space */
2663
2664
2665/*
2666 * Give back the space left from a reservation.
2667 *
2668 * All the information we need to make a correct determination of space left
2669 * is present.  For non-permanent reservations, things are quite easy.  The
2670 * count should have been decremented to zero.  We only need to deal with the
2671 * space remaining in the current reservation part of the ticket.  If the
2672 * ticket contains a permanent reservation, there may be left over space which
2673 * needs to be released.  A count of N means that N-1 refills of the current
2674 * reservation can be done before we need to ask for more space.  The first
2675 * one goes to fill up the first current reservation.  Once we run out of
2676 * space, the count will stay at zero and the only space remaining will be
2677 * in the current reservation field.
2678 */
2679STATIC void
2680xlog_ungrant_log_space(xlog_t	     *log,
2681		       xlog_ticket_t *ticket)
 
2682{
2683	int	bytes;
2684
2685	if (ticket->t_cnt > 0)
2686		ticket->t_cnt--;
2687
2688	trace_xfs_log_ungrant_enter(log, ticket);
2689	trace_xfs_log_ungrant_sub(log, ticket);
2690
2691	/*
2692	 * If this is a permanent reservation ticket, we may be able to free
2693	 * up more space based on the remaining count.
2694	 */
2695	bytes = ticket->t_curr_res;
2696	if (ticket->t_cnt > 0) {
2697		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2698		bytes += ticket->t_unit_res*ticket->t_cnt;
2699	}
2700
2701	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2702	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2703
2704	trace_xfs_log_ungrant_exit(log, ticket);
2705
2706	xfs_log_space_wake(log->l_mp);
2707}
2708
2709/*
2710 * Flush iclog to disk if this is the last reference to the given iclog and
2711 * the WANT_SYNC bit is set.
2712 *
2713 * When this function is entered, the iclog is not necessarily in the
2714 * WANT_SYNC state.  It may be sitting around waiting to get filled.
2715 *
2716 *
2717 */
2718STATIC int
2719xlog_state_release_iclog(
2720	xlog_t		*log,
2721	xlog_in_core_t	*iclog)
2722{
2723	int		sync = 0;	/* do we sync? */
2724
2725	if (iclog->ic_state & XLOG_STATE_IOERROR)
2726		return XFS_ERROR(EIO);
2727
2728	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2729	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2730		return 0;
2731
2732	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2733		spin_unlock(&log->l_icloglock);
2734		return XFS_ERROR(EIO);
2735	}
2736	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2737	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2738
2739	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2740		/* update tail before writing to iclog */
2741		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2742		sync++;
2743		iclog->ic_state = XLOG_STATE_SYNCING;
2744		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2745		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2746		/* cycle incremented when incrementing curr_block */
2747	}
2748	spin_unlock(&log->l_icloglock);
2749
2750	/*
2751	 * We let the log lock go, so it's possible that we hit a log I/O
2752	 * error or some other SHUTDOWN condition that marks the iclog
2753	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2754	 * this iclog has consistent data, so we ignore IOERROR
2755	 * flags after this point.
2756	 */
2757	if (sync)
2758		return xlog_sync(log, iclog);
2759	return 0;
2760}	/* xlog_state_release_iclog */
2761
2762
2763/*
2764 * This routine will mark the current iclog in the ring as WANT_SYNC
2765 * and move the current iclog pointer to the next iclog in the ring.
2766 * When this routine is called from xlog_state_get_iclog_space(), the
2767 * exact size of the iclog has not yet been determined.  All we know is
2768 * that every data block.  We have run out of space in this log record.
2769 */
2770STATIC void
2771xlog_state_switch_iclogs(xlog_t		*log,
2772			 xlog_in_core_t *iclog,
2773			 int		eventual_size)
 
2774{
2775	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2776	if (!eventual_size)
2777		eventual_size = iclog->ic_offset;
2778	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2779	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2780	log->l_prev_block = log->l_curr_block;
2781	log->l_prev_cycle = log->l_curr_cycle;
2782
2783	/* roll log?: ic_offset changed later */
2784	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2785
2786	/* Round up to next log-sunit */
2787	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2788	    log->l_mp->m_sb.sb_logsunit > 1) {
2789		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2790		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2791	}
2792
2793	if (log->l_curr_block >= log->l_logBBsize) {
 
 
 
 
 
 
 
 
 
 
2794		log->l_curr_cycle++;
2795		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2796			log->l_curr_cycle++;
2797		log->l_curr_block -= log->l_logBBsize;
2798		ASSERT(log->l_curr_block >= 0);
2799	}
2800	ASSERT(iclog == log->l_iclog);
2801	log->l_iclog = iclog->ic_next;
2802}	/* xlog_state_switch_iclogs */
2803
2804/*
2805 * Write out all data in the in-core log as of this exact moment in time.
2806 *
2807 * Data may be written to the in-core log during this call.  However,
2808 * we don't guarantee this data will be written out.  A change from past
2809 * implementation means this routine will *not* write out zero length LRs.
2810 *
2811 * Basically, we try and perform an intelligent scan of the in-core logs.
2812 * If we determine there is no flushable data, we just return.  There is no
2813 * flushable data if:
2814 *
2815 *	1. the current iclog is active and has no data; the previous iclog
2816 *		is in the active or dirty state.
2817 *	2. the current iclog is drity, and the previous iclog is in the
2818 *		active or dirty state.
2819 *
2820 * We may sleep if:
2821 *
2822 *	1. the current iclog is not in the active nor dirty state.
2823 *	2. the current iclog dirty, and the previous iclog is not in the
2824 *		active nor dirty state.
2825 *	3. the current iclog is active, and there is another thread writing
2826 *		to this particular iclog.
2827 *	4. a) the current iclog is active and has no other writers
2828 *	   b) when we return from flushing out this iclog, it is still
2829 *		not in the active nor dirty state.
2830 */
2831int
2832_xfs_log_force(
2833	struct xfs_mount	*mp,
2834	uint			flags,
2835	int			*log_flushed)
2836{
2837	struct xlog		*log = mp->m_log;
2838	struct xlog_in_core	*iclog;
2839	xfs_lsn_t		lsn;
2840
2841	XFS_STATS_INC(xs_log_force);
 
2842
2843	xlog_cil_force(log);
2844
2845	spin_lock(&log->l_icloglock);
2846
2847	iclog = log->l_iclog;
2848	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2849		spin_unlock(&log->l_icloglock);
2850		return XFS_ERROR(EIO);
2851	}
2852
2853	/* If the head iclog is not active nor dirty, we just attach
2854	 * ourselves to the head and go to sleep.
2855	 */
2856	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2857	    iclog->ic_state == XLOG_STATE_DIRTY) {
2858		/*
2859		 * If the head is dirty or (active and empty), then
2860		 * we need to look at the previous iclog.  If the previous
2861		 * iclog is active or dirty we are done.  There is nothing
2862		 * to sync out.  Otherwise, we attach ourselves to the
 
2863		 * previous iclog and go to sleep.
2864		 */
2865		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2866		    (atomic_read(&iclog->ic_refcnt) == 0
2867		     && iclog->ic_offset == 0)) {
2868			iclog = iclog->ic_prev;
2869			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870			    iclog->ic_state == XLOG_STATE_DIRTY)
2871				goto no_sleep;
2872			else
2873				goto maybe_sleep;
2874		} else {
2875			if (atomic_read(&iclog->ic_refcnt) == 0) {
2876				/* We are the only one with access to this
2877				 * iclog.  Flush it out now.  There should
2878				 * be a roundoff of zero to show that someone
2879				 * has already taken care of the roundoff from
2880				 * the previous sync.
2881				 */
2882				atomic_inc(&iclog->ic_refcnt);
2883				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2884				xlog_state_switch_iclogs(log, iclog, 0);
2885				spin_unlock(&log->l_icloglock);
 
 
 
 
 
2886
2887				if (xlog_state_release_iclog(log, iclog))
2888					return XFS_ERROR(EIO);
2889
2890				if (log_flushed)
2891					*log_flushed = 1;
2892				spin_lock(&log->l_icloglock);
2893				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2894				    iclog->ic_state != XLOG_STATE_DIRTY)
2895					goto maybe_sleep;
2896				else
2897					goto no_sleep;
2898			} else {
2899				/* Someone else is writing to this iclog.
2900				 * Use its call to flush out the data.  However,
2901				 * the other thread may not force out this LR,
2902				 * so we mark it WANT_SYNC.
2903				 */
2904				xlog_state_switch_iclogs(log, iclog, 0);
2905				goto maybe_sleep;
2906			}
2907		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2908	}
2909
2910	/* By the time we come around again, the iclog could've been filled
2911	 * which would give it another lsn.  If we have a new lsn, just
2912	 * return because the relevant data has been flushed.
2913	 */
2914maybe_sleep:
2915	if (flags & XFS_LOG_SYNC) {
2916		/*
2917		 * We must check if we're shutting down here, before
2918		 * we wait, while we're holding the l_icloglock.
2919		 * Then we check again after waking up, in case our
2920		 * sleep was disturbed by a bad news.
 
 
 
 
 
 
 
 
 
2921		 */
2922		if (iclog->ic_state & XLOG_STATE_IOERROR) {
2923			spin_unlock(&log->l_icloglock);
2924			return XFS_ERROR(EIO);
 
 
 
 
 
 
 
2925		}
2926		XFS_STATS_INC(xs_log_force_sleep);
2927		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2928		/*
2929		 * No need to grab the log lock here since we're
2930		 * only deciding whether or not to return EIO
2931		 * and the memory read should be atomic.
2932		 */
2933		if (iclog->ic_state & XLOG_STATE_IOERROR)
2934			return XFS_ERROR(EIO);
2935		if (log_flushed)
2936			*log_flushed = 1;
2937	} else {
2938
2939no_sleep:
2940		spin_unlock(&log->l_icloglock);
2941	}
2942	return 0;
2943}
2944
2945/*
2946 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2947 * about errors or whether the log was flushed or not. This is the normal
2948 * interface to use when trying to unpin items or move the log forward.
2949 */
2950void
2951xfs_log_force(
2952	xfs_mount_t	*mp,
2953	uint		flags)
2954{
2955	int	error;
2956
2957	trace_xfs_log_force(mp, 0);
2958	error = _xfs_log_force(mp, flags, NULL);
2959	if (error)
2960		xfs_warn(mp, "%s: error %d returned.", __func__, error);
 
 
 
 
 
 
 
 
 
 
 
2961}
2962
2963/*
2964 * Force the in-core log to disk for a specific LSN.
2965 *
2966 * Find in-core log with lsn.
2967 *	If it is in the DIRTY state, just return.
2968 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2969 *		state and go to sleep or return.
2970 *	If it is in any other state, go to sleep or return.
2971 *
2972 * Synchronous forces are implemented with a signal variable. All callers
2973 * to force a given lsn to disk will wait on a the sv attached to the
2974 * specific in-core log.  When given in-core log finally completes its
2975 * write to disk, that thread will wake up all threads waiting on the
2976 * sv.
2977 */
2978int
2979_xfs_log_force_lsn(
2980	struct xfs_mount	*mp,
2981	xfs_lsn_t		lsn,
2982	uint			flags,
2983	int			*log_flushed)
2984{
2985	struct xlog		*log = mp->m_log;
2986	struct xlog_in_core	*iclog;
2987	int			already_slept = 0;
2988
2989	ASSERT(lsn != 0);
2990
2991	XFS_STATS_INC(xs_log_force);
 
2992
2993	lsn = xlog_cil_force_lsn(log, lsn);
2994	if (lsn == NULLCOMMITLSN)
2995		return 0;
2996
2997try_again:
2998	spin_lock(&log->l_icloglock);
2999	iclog = log->l_iclog;
3000	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3001		spin_unlock(&log->l_icloglock);
3002		return XFS_ERROR(EIO);
3003	}
3004
3005	do {
3006		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3007			iclog = iclog->ic_next;
3008			continue;
3009		}
3010
3011		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3012			spin_unlock(&log->l_icloglock);
3013			return 0;
3014		}
3015
3016		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3017			/*
3018			 * We sleep here if we haven't already slept (e.g.
3019			 * this is the first time we've looked at the correct
3020			 * iclog buf) and the buffer before us is going to
3021			 * be sync'ed. The reason for this is that if we
3022			 * are doing sync transactions here, by waiting for
3023			 * the previous I/O to complete, we can allow a few
3024			 * more transactions into this iclog before we close
3025			 * it down.
3026			 *
3027			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3028			 * up the refcnt so we can release the log (which
3029			 * drops the ref count).  The state switch keeps new
3030			 * transaction commits from using this buffer.  When
3031			 * the current commits finish writing into the buffer,
3032			 * the refcount will drop to zero and the buffer will
3033			 * go out then.
3034			 */
3035			if (!already_slept &&
3036			    (iclog->ic_prev->ic_state &
3037			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3038				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3039
3040				XFS_STATS_INC(xs_log_force_sleep);
3041
3042				xlog_wait(&iclog->ic_prev->ic_write_wait,
3043							&log->l_icloglock);
3044				if (log_flushed)
3045					*log_flushed = 1;
3046				already_slept = 1;
3047				goto try_again;
3048			}
3049			atomic_inc(&iclog->ic_refcnt);
3050			xlog_state_switch_iclogs(log, iclog, 0);
3051			spin_unlock(&log->l_icloglock);
3052			if (xlog_state_release_iclog(log, iclog))
3053				return XFS_ERROR(EIO);
3054			if (log_flushed)
3055				*log_flushed = 1;
3056			spin_lock(&log->l_icloglock);
3057		}
3058
3059		if ((flags & XFS_LOG_SYNC) && /* sleep */
3060		    !(iclog->ic_state &
3061		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3062			/*
3063			 * Don't wait on completion if we know that we've
3064			 * gotten a log write error.
3065			 */
3066			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3067				spin_unlock(&log->l_icloglock);
3068				return XFS_ERROR(EIO);
3069			}
3070			XFS_STATS_INC(xs_log_force_sleep);
3071			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3072			/*
3073			 * No need to grab the log lock here since we're
3074			 * only deciding whether or not to return EIO
3075			 * and the memory read should be atomic.
3076			 */
3077			if (iclog->ic_state & XLOG_STATE_IOERROR)
3078				return XFS_ERROR(EIO);
3079
3080			if (log_flushed)
3081				*log_flushed = 1;
3082		} else {		/* just return */
3083			spin_unlock(&log->l_icloglock);
3084		}
3085
3086		return 0;
3087	} while (iclog != log->l_iclog);
3088
3089	spin_unlock(&log->l_icloglock);
3090	return 0;
3091}
3092
3093/*
3094 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3095 * about errors or whether the log was flushed or not. This is the normal
3096 * interface to use when trying to unpin items or move the log forward.
3097 */
3098void
3099xfs_log_force_lsn(
3100	xfs_mount_t	*mp,
3101	xfs_lsn_t	lsn,
3102	uint		flags)
3103{
3104	int	error;
3105
3106	trace_xfs_log_force(mp, lsn);
3107	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3108	if (error)
3109		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3110}
3111
3112/*
3113 * Called when we want to mark the current iclog as being ready to sync to
3114 * disk.
3115 */
3116STATIC void
3117xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
 
 
3118{
3119	assert_spin_locked(&log->l_icloglock);
3120
3121	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3122		xlog_state_switch_iclogs(log, iclog, 0);
3123	} else {
3124		ASSERT(iclog->ic_state &
3125			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3126	}
3127}
3128
3129
3130/*****************************************************************************
3131 *
3132 *		TICKET functions
3133 *
3134 *****************************************************************************
3135 */
3136
3137/*
3138 * Free a used ticket when its refcount falls to zero.
3139 */
3140void
3141xfs_log_ticket_put(
3142	xlog_ticket_t	*ticket)
3143{
3144	ASSERT(atomic_read(&ticket->t_ref) > 0);
3145	if (atomic_dec_and_test(&ticket->t_ref))
3146		kmem_zone_free(xfs_log_ticket_zone, ticket);
3147}
3148
3149xlog_ticket_t *
3150xfs_log_ticket_get(
3151	xlog_ticket_t	*ticket)
3152{
3153	ASSERT(atomic_read(&ticket->t_ref) > 0);
3154	atomic_inc(&ticket->t_ref);
3155	return ticket;
3156}
3157
3158/*
3159 * Allocate and initialise a new log ticket.
 
3160 */
3161xlog_ticket_t *
3162xlog_ticket_alloc(
3163	struct xlog	*log,
3164	int		unit_bytes,
3165	int		cnt,
3166	char		client,
3167	bool		permanent,
3168	xfs_km_flags_t	alloc_flags)
3169{
3170	struct xlog_ticket *tic;
3171	uint		num_headers;
3172	int		iclog_space;
3173
3174	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3175	if (!tic)
3176		return NULL;
3177
3178	/*
3179	 * Permanent reservations have up to 'cnt'-1 active log operations
3180	 * in the log.  A unit in this case is the amount of space for one
3181	 * of these log operations.  Normal reservations have a cnt of 1
3182	 * and their unit amount is the total amount of space required.
3183	 *
3184	 * The following lines of code account for non-transaction data
3185	 * which occupy space in the on-disk log.
3186	 *
3187	 * Normal form of a transaction is:
3188	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3189	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3190	 *
3191	 * We need to account for all the leadup data and trailer data
3192	 * around the transaction data.
3193	 * And then we need to account for the worst case in terms of using
3194	 * more space.
3195	 * The worst case will happen if:
3196	 * - the placement of the transaction happens to be such that the
3197	 *   roundoff is at its maximum
3198	 * - the transaction data is synced before the commit record is synced
3199	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3200	 *   Therefore the commit record is in its own Log Record.
3201	 *   This can happen as the commit record is called with its
3202	 *   own region to xlog_write().
3203	 *   This then means that in the worst case, roundoff can happen for
3204	 *   the commit-rec as well.
3205	 *   The commit-rec is smaller than padding in this scenario and so it is
3206	 *   not added separately.
3207	 */
3208
3209	/* for trans header */
3210	unit_bytes += sizeof(xlog_op_header_t);
3211	unit_bytes += sizeof(xfs_trans_header_t);
3212
3213	/* for start-rec */
3214	unit_bytes += sizeof(xlog_op_header_t);
3215
3216	/*
3217	 * for LR headers - the space for data in an iclog is the size minus
3218	 * the space used for the headers. If we use the iclog size, then we
3219	 * undercalculate the number of headers required.
3220	 *
3221	 * Furthermore - the addition of op headers for split-recs might
3222	 * increase the space required enough to require more log and op
3223	 * headers, so take that into account too.
3224	 *
3225	 * IMPORTANT: This reservation makes the assumption that if this
3226	 * transaction is the first in an iclog and hence has the LR headers
3227	 * accounted to it, then the remaining space in the iclog is
3228	 * exclusively for this transaction.  i.e. if the transaction is larger
3229	 * than the iclog, it will be the only thing in that iclog.
3230	 * Fundamentally, this means we must pass the entire log vector to
3231	 * xlog_write to guarantee this.
3232	 */
3233	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3234	num_headers = howmany(unit_bytes, iclog_space);
3235
3236	/* for split-recs - ophdrs added when data split over LRs */
3237	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3238
3239	/* add extra header reservations if we overrun */
3240	while (!num_headers ||
3241	       howmany(unit_bytes, iclog_space) > num_headers) {
3242		unit_bytes += sizeof(xlog_op_header_t);
3243		num_headers++;
3244	}
3245	unit_bytes += log->l_iclog_hsize * num_headers;
3246
3247	/* for commit-rec LR header - note: padding will subsume the ophdr */
3248	unit_bytes += log->l_iclog_hsize;
3249
3250	/* for roundoff padding for transaction data and one for commit record */
3251	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3252	    log->l_mp->m_sb.sb_logsunit > 1) {
3253		/* log su roundoff */
3254		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3255	} else {
3256		/* BB roundoff */
3257		unit_bytes += 2*BBSIZE;
3258        }
3259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260	atomic_set(&tic->t_ref, 1);
3261	tic->t_task		= current;
3262	INIT_LIST_HEAD(&tic->t_queue);
3263	tic->t_unit_res		= unit_bytes;
3264	tic->t_curr_res		= unit_bytes;
3265	tic->t_cnt		= cnt;
3266	tic->t_ocnt		= cnt;
3267	tic->t_tid		= random32();
3268	tic->t_clientid		= client;
3269	tic->t_flags		= XLOG_TIC_INITED;
3270	tic->t_trans_type	= 0;
3271	if (permanent)
3272		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3273
3274	xlog_tic_reset_res(tic);
3275
3276	return tic;
3277}
3278
3279
3280/******************************************************************************
3281 *
3282 *		Log debug routines
3283 *
3284 ******************************************************************************
3285 */
3286#if defined(DEBUG)
3287/*
3288 * Make sure that the destination ptr is within the valid data region of
3289 * one of the iclogs.  This uses backup pointers stored in a different
3290 * part of the log in case we trash the log structure.
3291 */
3292void
3293xlog_verify_dest_ptr(
3294	struct xlog	*log,
3295	char		*ptr)
3296{
3297	int i;
3298	int good_ptr = 0;
3299
3300	for (i = 0; i < log->l_iclog_bufs; i++) {
3301		if (ptr >= log->l_iclog_bak[i] &&
3302		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3303			good_ptr++;
3304	}
3305
3306	if (!good_ptr)
3307		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3308}
3309
3310/*
3311 * Check to make sure the grant write head didn't just over lap the tail.  If
3312 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3313 * the cycles differ by exactly one and check the byte count.
3314 *
3315 * This check is run unlocked, so can give false positives. Rather than assert
3316 * on failures, use a warn-once flag and a panic tag to allow the admin to
3317 * determine if they want to panic the machine when such an error occurs. For
3318 * debug kernels this will have the same effect as using an assert but, unlinke
3319 * an assert, it can be turned off at runtime.
3320 */
3321STATIC void
3322xlog_verify_grant_tail(
3323	struct xlog	*log)
3324{
3325	int		tail_cycle, tail_blocks;
3326	int		cycle, space;
3327
3328	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3329	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3330	if (tail_cycle != cycle) {
3331		if (cycle - 1 != tail_cycle &&
3332		    !(log->l_flags & XLOG_TAIL_WARN)) {
3333			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3334				"%s: cycle - 1 != tail_cycle", __func__);
3335			log->l_flags |= XLOG_TAIL_WARN;
3336		}
3337
3338		if (space > BBTOB(tail_blocks) &&
3339		    !(log->l_flags & XLOG_TAIL_WARN)) {
3340			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3341				"%s: space > BBTOB(tail_blocks)", __func__);
3342			log->l_flags |= XLOG_TAIL_WARN;
3343		}
3344	}
3345}
3346
3347/* check if it will fit */
3348STATIC void
3349xlog_verify_tail_lsn(xlog_t	    *log,
3350		     xlog_in_core_t *iclog,
3351		     xfs_lsn_t	    tail_lsn)
 
3352{
3353    int blocks;
3354
3355    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3356	blocks =
3357	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3358	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3359		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3360    } else {
3361	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3362
3363	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3364		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3365
3366	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3367	if (blocks < BTOBB(iclog->ic_offset) + 1)
3368		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3369    }
3370}	/* xlog_verify_tail_lsn */
3371
3372/*
3373 * Perform a number of checks on the iclog before writing to disk.
3374 *
3375 * 1. Make sure the iclogs are still circular
3376 * 2. Make sure we have a good magic number
3377 * 3. Make sure we don't have magic numbers in the data
3378 * 4. Check fields of each log operation header for:
3379 *	A. Valid client identifier
3380 *	B. tid ptr value falls in valid ptr space (user space code)
3381 *	C. Length in log record header is correct according to the
3382 *		individual operation headers within record.
3383 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3384 *	log, check the preceding blocks of the physical log to make sure all
3385 *	the cycle numbers agree with the current cycle number.
3386 */
3387STATIC void
3388xlog_verify_iclog(xlog_t	 *log,
3389		  xlog_in_core_t *iclog,
3390		  int		 count,
3391		  boolean_t	 syncing)
 
3392{
3393	xlog_op_header_t	*ophead;
3394	xlog_in_core_t		*icptr;
3395	xlog_in_core_2_t	*xhdr;
3396	xfs_caddr_t		ptr;
3397	xfs_caddr_t		base_ptr;
3398	__psint_t		field_offset;
3399	__uint8_t		clientid;
3400	int			len, i, j, k, op_len;
3401	int			idx;
3402
3403	/* check validity of iclog pointers */
3404	spin_lock(&log->l_icloglock);
3405	icptr = log->l_iclog;
3406	for (i=0; i < log->l_iclog_bufs; i++) {
3407		if (icptr == NULL)
3408			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3409		icptr = icptr->ic_next;
3410	}
3411	if (icptr != log->l_iclog)
3412		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3413	spin_unlock(&log->l_icloglock);
3414
3415	/* check log magic numbers */
3416	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3417		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3418
3419	ptr = (xfs_caddr_t) &iclog->ic_header;
3420	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3421	     ptr += BBSIZE) {
3422		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3423			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3424				__func__);
3425	}
3426
3427	/* check fields */
3428	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3429	ptr = iclog->ic_datap;
3430	base_ptr = ptr;
3431	ophead = (xlog_op_header_t *)ptr;
3432	xhdr = iclog->ic_data;
3433	for (i = 0; i < len; i++) {
3434		ophead = (xlog_op_header_t *)ptr;
3435
3436		/* clientid is only 1 byte */
3437		field_offset = (__psint_t)
3438			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3439		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3440			clientid = ophead->oh_clientid;
3441		} else {
3442			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3443			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3444				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3445				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3446				clientid = xlog_get_client_id(
3447					xhdr[j].hic_xheader.xh_cycle_data[k]);
3448			} else {
3449				clientid = xlog_get_client_id(
3450					iclog->ic_header.h_cycle_data[idx]);
3451			}
3452		}
3453		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3454			xfs_warn(log->l_mp,
3455				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3456				__func__, clientid, ophead,
3457				(unsigned long)field_offset);
3458
3459		/* check length */
3460		field_offset = (__psint_t)
3461			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3462		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3463			op_len = be32_to_cpu(ophead->oh_len);
3464		} else {
3465			idx = BTOBBT((__psint_t)&ophead->oh_len -
3466				    (__psint_t)iclog->ic_datap);
3467			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3468				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3469				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3470				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3471			} else {
3472				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3473			}
3474		}
3475		ptr += sizeof(xlog_op_header_t) + op_len;
3476	}
3477}	/* xlog_verify_iclog */
3478#endif
3479
3480/*
3481 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3482 */
3483STATIC int
3484xlog_state_ioerror(
3485	xlog_t	*log)
3486{
3487	xlog_in_core_t	*iclog, *ic;
3488
3489	iclog = log->l_iclog;
3490	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3491		/*
3492		 * Mark all the incore logs IOERROR.
3493		 * From now on, no log flushes will result.
3494		 */
3495		ic = iclog;
3496		do {
3497			ic->ic_state = XLOG_STATE_IOERROR;
3498			ic = ic->ic_next;
3499		} while (ic != iclog);
3500		return 0;
3501	}
3502	/*
3503	 * Return non-zero, if state transition has already happened.
3504	 */
3505	return 1;
3506}
3507
3508/*
3509 * This is called from xfs_force_shutdown, when we're forcibly
3510 * shutting down the filesystem, typically because of an IO error.
3511 * Our main objectives here are to make sure that:
3512 *	a. the filesystem gets marked 'SHUTDOWN' for all interested
 
 
3513 *	   parties to find out, 'atomically'.
3514 *	b. those who're sleeping on log reservations, pinned objects and
3515 *	    other resources get woken up, and be told the bad news.
3516 *	c. nothing new gets queued up after (a) and (b) are done.
3517 *	d. if !logerror, flush the iclogs to disk, then seal them off
3518 *	   for business.
3519 *
3520 * Note: for delayed logging the !logerror case needs to flush the regions
3521 * held in memory out to the iclogs before flushing them to disk. This needs
3522 * to be done before the log is marked as shutdown, otherwise the flush to the
3523 * iclogs will fail.
3524 */
3525int
3526xfs_log_force_umount(
3527	struct xfs_mount	*mp,
3528	int			logerror)
3529{
3530	xlog_t		*log;
3531	int		retval;
3532
3533	log = mp->m_log;
3534
3535	/*
3536	 * If this happens during log recovery, don't worry about
3537	 * locking; the log isn't open for business yet.
3538	 */
3539	if (!log ||
3540	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3541		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3542		if (mp->m_sb_bp)
3543			XFS_BUF_DONE(mp->m_sb_bp);
3544		return 0;
3545	}
3546
3547	/*
3548	 * Somebody could've already done the hard work for us.
3549	 * No need to get locks for this.
3550	 */
3551	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3552		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3553		return 1;
3554	}
3555	retval = 0;
3556
3557	/*
3558	 * Flush the in memory commit item list before marking the log as
3559	 * being shut down. We need to do it in this order to ensure all the
3560	 * completed transactions are flushed to disk with the xfs_log_force()
3561	 * call below.
 
3562	 */
3563	if (!logerror)
3564		xlog_cil_force(log);
3565
3566	/*
3567	 * mark the filesystem and the as in a shutdown state and wake
3568	 * everybody up to tell them the bad news.
3569	 */
3570	spin_lock(&log->l_icloglock);
3571	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3572	if (mp->m_sb_bp)
3573		XFS_BUF_DONE(mp->m_sb_bp);
3574
3575	/*
3576	 * This flag is sort of redundant because of the mount flag, but
3577	 * it's good to maintain the separation between the log and the rest
3578	 * of XFS.
3579	 */
3580	log->l_flags |= XLOG_IO_ERROR;
3581
3582	/*
3583	 * If we hit a log error, we want to mark all the iclogs IOERROR
3584	 * while we're still holding the loglock.
3585	 */
3586	if (logerror)
3587		retval = xlog_state_ioerror(log);
3588	spin_unlock(&log->l_icloglock);
3589
3590	/*
3591	 * We don't want anybody waiting for log reservations after this. That
3592	 * means we have to wake up everybody queued up on reserveq as well as
3593	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3594	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3595	 * action is protected by the grant locks.
3596	 */
3597	xlog_grant_head_wake_all(&log->l_reserve_head);
3598	xlog_grant_head_wake_all(&log->l_write_head);
3599
3600	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3601		ASSERT(!logerror);
3602		/*
3603		 * Force the incore logs to disk before shutting the
3604		 * log down completely.
3605		 */
3606		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3607
3608		spin_lock(&log->l_icloglock);
3609		retval = xlog_state_ioerror(log);
3610		spin_unlock(&log->l_icloglock);
3611	}
3612	/*
3613	 * Wake up everybody waiting on xfs_log_force.
3614	 * Callback all log item committed functions as if the
3615	 * log writes were completed.
 
3616	 */
 
3617	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3618
3619#ifdef XFSERRORDEBUG
3620	{
3621		xlog_in_core_t	*iclog;
3622
3623		spin_lock(&log->l_icloglock);
3624		iclog = log->l_iclog;
3625		do {
3626			ASSERT(iclog->ic_callback == 0);
3627			iclog = iclog->ic_next;
3628		} while (iclog != log->l_iclog);
3629		spin_unlock(&log->l_icloglock);
3630	}
3631#endif
3632	/* return non-zero if log IOERROR transition had already happened */
3633	return retval;
3634}
3635
3636STATIC int
3637xlog_iclogs_empty(xlog_t *log)
 
3638{
3639	xlog_in_core_t	*iclog;
3640
3641	iclog = log->l_iclog;
3642	do {
3643		/* endianness does not matter here, zero is zero in
3644		 * any language.
3645		 */
3646		if (iclog->ic_header.h_num_logops)
3647			return 0;
3648		iclog = iclog->ic_next;
3649	} while (iclog != log->l_iclog);
3650	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3651}
v4.17
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
 
  24#include "xfs_mount.h"
  25#include "xfs_errortag.h"
  26#include "xfs_error.h"
  27#include "xfs_trans.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_log.h"
  30#include "xfs_log_priv.h"
 
 
 
 
  31#include "xfs_log_recover.h"
 
 
  32#include "xfs_inode.h"
  33#include "xfs_trace.h"
  34#include "xfs_fsops.h"
  35#include "xfs_cksum.h"
  36#include "xfs_sysfs.h"
  37#include "xfs_sb.h"
  38
  39kmem_zone_t	*xfs_log_ticket_zone;
  40
  41/* Local miscellaneous function prototypes */
  42STATIC int
  43xlog_commit_record(
  44	struct xlog		*log,
  45	struct xlog_ticket	*ticket,
  46	struct xlog_in_core	**iclog,
  47	xfs_lsn_t		*commitlsnp);
  48
  49STATIC struct xlog *
  50xlog_alloc_log(
  51	struct xfs_mount	*mp,
  52	struct xfs_buftarg	*log_target,
  53	xfs_daddr_t		blk_offset,
  54	int			num_bblks);
  55STATIC int
  56xlog_space_left(
  57	struct xlog		*log,
  58	atomic64_t		*head);
  59STATIC int
  60xlog_sync(
  61	struct xlog		*log,
  62	struct xlog_in_core	*iclog);
  63STATIC void
  64xlog_dealloc_log(
  65	struct xlog		*log);
  66
  67/* local state machine functions */
  68STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  69STATIC void
  70xlog_state_do_callback(
  71	struct xlog		*log,
  72	int			aborted,
  73	struct xlog_in_core	*iclog);
  74STATIC int
  75xlog_state_get_iclog_space(
  76	struct xlog		*log,
  77	int			len,
  78	struct xlog_in_core	**iclog,
  79	struct xlog_ticket	*ticket,
  80	int			*continued_write,
  81	int			*logoffsetp);
  82STATIC int
  83xlog_state_release_iclog(
  84	struct xlog		*log,
  85	struct xlog_in_core	*iclog);
  86STATIC void
  87xlog_state_switch_iclogs(
  88	struct xlog		*log,
  89	struct xlog_in_core	*iclog,
  90	int			eventual_size);
  91STATIC void
  92xlog_state_want_sync(
  93	struct xlog		*log,
  94	struct xlog_in_core	*iclog);
  95
  96STATIC void
  97xlog_grant_push_ail(
  98	struct xlog		*log,
  99	int			need_bytes);
 100STATIC void
 101xlog_regrant_reserve_log_space(
 102	struct xlog		*log,
 103	struct xlog_ticket	*ticket);
 104STATIC void
 105xlog_ungrant_log_space(
 106	struct xlog		*log,
 107	struct xlog_ticket	*ticket);
 108
 109#if defined(DEBUG)
 110STATIC void
 111xlog_verify_dest_ptr(
 112	struct xlog		*log,
 113	void			*ptr);
 114STATIC void
 115xlog_verify_grant_tail(
 116	struct xlog *log);
 117STATIC void
 118xlog_verify_iclog(
 119	struct xlog		*log,
 120	struct xlog_in_core	*iclog,
 121	int			count,
 122	bool                    syncing);
 123STATIC void
 124xlog_verify_tail_lsn(
 125	struct xlog		*log,
 126	struct xlog_in_core	*iclog,
 127	xfs_lsn_t		tail_lsn);
 128#else
 129#define xlog_verify_dest_ptr(a,b)
 130#define xlog_verify_grant_tail(a)
 131#define xlog_verify_iclog(a,b,c,d)
 132#define xlog_verify_tail_lsn(a,b,c)
 133#endif
 134
 135STATIC int
 136xlog_iclogs_empty(
 137	struct xlog		*log);
 138
 139static void
 140xlog_grant_sub_space(
 141	struct xlog		*log,
 142	atomic64_t		*head,
 143	int			bytes)
 144{
 145	int64_t	head_val = atomic64_read(head);
 146	int64_t new, old;
 147
 148	do {
 149		int	cycle, space;
 150
 151		xlog_crack_grant_head_val(head_val, &cycle, &space);
 152
 153		space -= bytes;
 154		if (space < 0) {
 155			space += log->l_logsize;
 156			cycle--;
 157		}
 158
 159		old = head_val;
 160		new = xlog_assign_grant_head_val(cycle, space);
 161		head_val = atomic64_cmpxchg(head, old, new);
 162	} while (head_val != old);
 163}
 164
 165static void
 166xlog_grant_add_space(
 167	struct xlog		*log,
 168	atomic64_t		*head,
 169	int			bytes)
 170{
 171	int64_t	head_val = atomic64_read(head);
 172	int64_t new, old;
 173
 174	do {
 175		int		tmp;
 176		int		cycle, space;
 177
 178		xlog_crack_grant_head_val(head_val, &cycle, &space);
 179
 180		tmp = log->l_logsize - space;
 181		if (tmp > bytes)
 182			space += bytes;
 183		else {
 184			space = bytes - tmp;
 185			cycle++;
 186		}
 187
 188		old = head_val;
 189		new = xlog_assign_grant_head_val(cycle, space);
 190		head_val = atomic64_cmpxchg(head, old, new);
 191	} while (head_val != old);
 192}
 193
 194STATIC void
 195xlog_grant_head_init(
 196	struct xlog_grant_head	*head)
 197{
 198	xlog_assign_grant_head(&head->grant, 1, 0);
 199	INIT_LIST_HEAD(&head->waiters);
 200	spin_lock_init(&head->lock);
 201}
 202
 203STATIC void
 204xlog_grant_head_wake_all(
 205	struct xlog_grant_head	*head)
 206{
 207	struct xlog_ticket	*tic;
 208
 209	spin_lock(&head->lock);
 210	list_for_each_entry(tic, &head->waiters, t_queue)
 211		wake_up_process(tic->t_task);
 212	spin_unlock(&head->lock);
 213}
 214
 215static inline int
 216xlog_ticket_reservation(
 217	struct xlog		*log,
 218	struct xlog_grant_head	*head,
 219	struct xlog_ticket	*tic)
 220{
 221	if (head == &log->l_write_head) {
 222		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 223		return tic->t_unit_res;
 224	} else {
 225		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 226			return tic->t_unit_res * tic->t_cnt;
 227		else
 228			return tic->t_unit_res;
 229	}
 230}
 231
 232STATIC bool
 233xlog_grant_head_wake(
 234	struct xlog		*log,
 235	struct xlog_grant_head	*head,
 236	int			*free_bytes)
 237{
 238	struct xlog_ticket	*tic;
 239	int			need_bytes;
 240
 241	list_for_each_entry(tic, &head->waiters, t_queue) {
 242		need_bytes = xlog_ticket_reservation(log, head, tic);
 243		if (*free_bytes < need_bytes)
 244			return false;
 245
 246		*free_bytes -= need_bytes;
 247		trace_xfs_log_grant_wake_up(log, tic);
 248		wake_up_process(tic->t_task);
 249	}
 250
 251	return true;
 252}
 253
 254STATIC int
 255xlog_grant_head_wait(
 256	struct xlog		*log,
 257	struct xlog_grant_head	*head,
 258	struct xlog_ticket	*tic,
 259	int			need_bytes) __releases(&head->lock)
 260					    __acquires(&head->lock)
 261{
 262	list_add_tail(&tic->t_queue, &head->waiters);
 263
 264	do {
 265		if (XLOG_FORCED_SHUTDOWN(log))
 266			goto shutdown;
 267		xlog_grant_push_ail(log, need_bytes);
 268
 269		__set_current_state(TASK_UNINTERRUPTIBLE);
 270		spin_unlock(&head->lock);
 271
 272		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 273
 274		trace_xfs_log_grant_sleep(log, tic);
 275		schedule();
 276		trace_xfs_log_grant_wake(log, tic);
 277
 278		spin_lock(&head->lock);
 279		if (XLOG_FORCED_SHUTDOWN(log))
 280			goto shutdown;
 281	} while (xlog_space_left(log, &head->grant) < need_bytes);
 282
 283	list_del_init(&tic->t_queue);
 284	return 0;
 285shutdown:
 286	list_del_init(&tic->t_queue);
 287	return -EIO;
 288}
 289
 290/*
 291 * Atomically get the log space required for a log ticket.
 292 *
 293 * Once a ticket gets put onto head->waiters, it will only return after the
 294 * needed reservation is satisfied.
 295 *
 296 * This function is structured so that it has a lock free fast path. This is
 297 * necessary because every new transaction reservation will come through this
 298 * path. Hence any lock will be globally hot if we take it unconditionally on
 299 * every pass.
 300 *
 301 * As tickets are only ever moved on and off head->waiters under head->lock, we
 302 * only need to take that lock if we are going to add the ticket to the queue
 303 * and sleep. We can avoid taking the lock if the ticket was never added to
 304 * head->waiters because the t_queue list head will be empty and we hold the
 305 * only reference to it so it can safely be checked unlocked.
 306 */
 307STATIC int
 308xlog_grant_head_check(
 309	struct xlog		*log,
 310	struct xlog_grant_head	*head,
 311	struct xlog_ticket	*tic,
 312	int			*need_bytes)
 313{
 314	int			free_bytes;
 315	int			error = 0;
 316
 317	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 318
 319	/*
 320	 * If there are other waiters on the queue then give them a chance at
 321	 * logspace before us.  Wake up the first waiters, if we do not wake
 322	 * up all the waiters then go to sleep waiting for more free space,
 323	 * otherwise try to get some space for this transaction.
 324	 */
 325	*need_bytes = xlog_ticket_reservation(log, head, tic);
 326	free_bytes = xlog_space_left(log, &head->grant);
 327	if (!list_empty_careful(&head->waiters)) {
 328		spin_lock(&head->lock);
 329		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 330		    free_bytes < *need_bytes) {
 331			error = xlog_grant_head_wait(log, head, tic,
 332						     *need_bytes);
 333		}
 334		spin_unlock(&head->lock);
 335	} else if (free_bytes < *need_bytes) {
 336		spin_lock(&head->lock);
 337		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 338		spin_unlock(&head->lock);
 339	}
 340
 341	return error;
 342}
 343
 344static void
 345xlog_tic_reset_res(xlog_ticket_t *tic)
 346{
 347	tic->t_res_num = 0;
 348	tic->t_res_arr_sum = 0;
 349	tic->t_res_num_ophdrs = 0;
 350}
 351
 352static void
 353xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 354{
 355	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 356		/* add to overflow and start again */
 357		tic->t_res_o_flow += tic->t_res_arr_sum;
 358		tic->t_res_num = 0;
 359		tic->t_res_arr_sum = 0;
 360	}
 361
 362	tic->t_res_arr[tic->t_res_num].r_len = len;
 363	tic->t_res_arr[tic->t_res_num].r_type = type;
 364	tic->t_res_arr_sum += len;
 365	tic->t_res_num++;
 366}
 367
 368/*
 369 * Replenish the byte reservation required by moving the grant write head.
 370 */
 371int
 372xfs_log_regrant(
 373	struct xfs_mount	*mp,
 374	struct xlog_ticket	*tic)
 375{
 376	struct xlog		*log = mp->m_log;
 377	int			need_bytes;
 378	int			error = 0;
 379
 380	if (XLOG_FORCED_SHUTDOWN(log))
 381		return -EIO;
 382
 383	XFS_STATS_INC(mp, xs_try_logspace);
 384
 385	/*
 386	 * This is a new transaction on the ticket, so we need to change the
 387	 * transaction ID so that the next transaction has a different TID in
 388	 * the log. Just add one to the existing tid so that we can see chains
 389	 * of rolling transactions in the log easily.
 390	 */
 391	tic->t_tid++;
 392
 393	xlog_grant_push_ail(log, tic->t_unit_res);
 394
 395	tic->t_curr_res = tic->t_unit_res;
 396	xlog_tic_reset_res(tic);
 397
 398	if (tic->t_cnt > 0)
 399		return 0;
 400
 401	trace_xfs_log_regrant(log, tic);
 402
 403	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 404				      &need_bytes);
 405	if (error)
 406		goto out_error;
 407
 408	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 409	trace_xfs_log_regrant_exit(log, tic);
 410	xlog_verify_grant_tail(log);
 411	return 0;
 412
 413out_error:
 414	/*
 415	 * If we are failing, make sure the ticket doesn't have any current
 416	 * reservations.  We don't want to add this back when the ticket/
 417	 * transaction gets cancelled.
 418	 */
 419	tic->t_curr_res = 0;
 420	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 421	return error;
 422}
 423
 424/*
 425 * Reserve log space and return a ticket corresponding the reservation.
 426 *
 427 * Each reservation is going to reserve extra space for a log record header.
 428 * When writes happen to the on-disk log, we don't subtract the length of the
 429 * log record header from any reservation.  By wasting space in each
 430 * reservation, we prevent over allocation problems.
 431 */
 432int
 433xfs_log_reserve(
 434	struct xfs_mount	*mp,
 435	int		 	unit_bytes,
 436	int		 	cnt,
 437	struct xlog_ticket	**ticp,
 438	uint8_t		 	client,
 439	bool			permanent)
 
 440{
 441	struct xlog		*log = mp->m_log;
 442	struct xlog_ticket	*tic;
 443	int			need_bytes;
 444	int			error = 0;
 445
 446	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 447
 448	if (XLOG_FORCED_SHUTDOWN(log))
 449		return -EIO;
 450
 451	XFS_STATS_INC(mp, xs_try_logspace);
 452
 453	ASSERT(*ticp == NULL);
 454	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 455				KM_SLEEP | KM_MAYFAIL);
 456	if (!tic)
 457		return -ENOMEM;
 458
 
 459	*ticp = tic;
 460
 461	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 462					    : tic->t_unit_res);
 463
 464	trace_xfs_log_reserve(log, tic);
 465
 466	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 467				      &need_bytes);
 468	if (error)
 469		goto out_error;
 470
 471	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 472	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 473	trace_xfs_log_reserve_exit(log, tic);
 474	xlog_verify_grant_tail(log);
 475	return 0;
 476
 477out_error:
 478	/*
 479	 * If we are failing, make sure the ticket doesn't have any current
 480	 * reservations.  We don't want to add this back when the ticket/
 481	 * transaction gets cancelled.
 482	 */
 483	tic->t_curr_res = 0;
 484	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 485	return error;
 486}
 487
 488
 489/*
 490 * NOTES:
 491 *
 492 *	1. currblock field gets updated at startup and after in-core logs
 493 *		marked as with WANT_SYNC.
 494 */
 495
 496/*
 497 * This routine is called when a user of a log manager ticket is done with
 498 * the reservation.  If the ticket was ever used, then a commit record for
 499 * the associated transaction is written out as a log operation header with
 500 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 501 * a given ticket.  If the ticket was one with a permanent reservation, then
 502 * a few operations are done differently.  Permanent reservation tickets by
 503 * default don't release the reservation.  They just commit the current
 504 * transaction with the belief that the reservation is still needed.  A flag
 505 * must be passed in before permanent reservations are actually released.
 506 * When these type of tickets are not released, they need to be set into
 507 * the inited state again.  By doing this, a start record will be written
 508 * out when the next write occurs.
 509 */
 510xfs_lsn_t
 511xfs_log_done(
 512	struct xfs_mount	*mp,
 513	struct xlog_ticket	*ticket,
 514	struct xlog_in_core	**iclog,
 515	bool			regrant)
 516{
 517	struct xlog		*log = mp->m_log;
 518	xfs_lsn_t		lsn = 0;
 519
 520	if (XLOG_FORCED_SHUTDOWN(log) ||
 521	    /*
 522	     * If nothing was ever written, don't write out commit record.
 523	     * If we get an error, just continue and give back the log ticket.
 524	     */
 525	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 526	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 527		lsn = (xfs_lsn_t) -1;
 528		regrant = false;
 
 
 529	}
 530
 531
 532	if (!regrant) {
 
 533		trace_xfs_log_done_nonperm(log, ticket);
 534
 535		/*
 536		 * Release ticket if not permanent reservation or a specific
 537		 * request has been made to release a permanent reservation.
 538		 */
 539		xlog_ungrant_log_space(log, ticket);
 
 540	} else {
 541		trace_xfs_log_done_perm(log, ticket);
 542
 543		xlog_regrant_reserve_log_space(log, ticket);
 544		/* If this ticket was a permanent reservation and we aren't
 545		 * trying to release it, reset the inited flags; so next time
 546		 * we write, a start record will be written out.
 547		 */
 548		ticket->t_flags |= XLOG_TIC_INITED;
 549	}
 550
 551	xfs_log_ticket_put(ticket);
 552	return lsn;
 553}
 554
 555/*
 556 * Attaches a new iclog I/O completion callback routine during
 557 * transaction commit.  If the log is in error state, a non-zero
 558 * return code is handed back and the caller is responsible for
 559 * executing the callback at an appropriate time.
 560 */
 561int
 562xfs_log_notify(
 
 563	struct xlog_in_core	*iclog,
 564	xfs_log_callback_t	*cb)
 565{
 566	int	abortflg;
 567
 568	spin_lock(&iclog->ic_callback_lock);
 569	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 570	if (!abortflg) {
 571		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 572			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 573		cb->cb_next = NULL;
 574		*(iclog->ic_callback_tail) = cb;
 575		iclog->ic_callback_tail = &(cb->cb_next);
 576	}
 577	spin_unlock(&iclog->ic_callback_lock);
 578	return abortflg;
 579}
 580
 581int
 582xfs_log_release_iclog(
 583	struct xfs_mount	*mp,
 584	struct xlog_in_core	*iclog)
 585{
 586	if (xlog_state_release_iclog(mp->m_log, iclog)) {
 587		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 588		return -EIO;
 589	}
 590
 591	return 0;
 592}
 593
 594/*
 595 * Mount a log filesystem
 596 *
 597 * mp		- ubiquitous xfs mount point structure
 598 * log_target	- buftarg of on-disk log device
 599 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 600 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 601 *
 602 * Return error or zero.
 603 */
 604int
 605xfs_log_mount(
 606	xfs_mount_t	*mp,
 607	xfs_buftarg_t	*log_target,
 608	xfs_daddr_t	blk_offset,
 609	int		num_bblks)
 610{
 611	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
 612	int		error = 0;
 613	int		min_logfsbs;
 614
 615	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 616		xfs_notice(mp, "Mounting V%d Filesystem",
 617			   XFS_SB_VERSION_NUM(&mp->m_sb));
 618	} else {
 619		xfs_notice(mp,
 620"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 621			   XFS_SB_VERSION_NUM(&mp->m_sb));
 622		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 623	}
 624
 625	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 626	if (IS_ERR(mp->m_log)) {
 627		error = PTR_ERR(mp->m_log);
 628		goto out;
 629	}
 630
 631	/*
 632	 * Validate the given log space and drop a critical message via syslog
 633	 * if the log size is too small that would lead to some unexpected
 634	 * situations in transaction log space reservation stage.
 635	 *
 636	 * Note: we can't just reject the mount if the validation fails.  This
 637	 * would mean that people would have to downgrade their kernel just to
 638	 * remedy the situation as there is no way to grow the log (short of
 639	 * black magic surgery with xfs_db).
 640	 *
 641	 * We can, however, reject mounts for CRC format filesystems, as the
 642	 * mkfs binary being used to make the filesystem should never create a
 643	 * filesystem with a log that is too small.
 644	 */
 645	min_logfsbs = xfs_log_calc_minimum_size(mp);
 646
 647	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 648		xfs_warn(mp,
 649		"Log size %d blocks too small, minimum size is %d blocks",
 650			 mp->m_sb.sb_logblocks, min_logfsbs);
 651		error = -EINVAL;
 652	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 653		xfs_warn(mp,
 654		"Log size %d blocks too large, maximum size is %lld blocks",
 655			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 656		error = -EINVAL;
 657	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 658		xfs_warn(mp,
 659		"log size %lld bytes too large, maximum size is %lld bytes",
 660			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 661			 XFS_MAX_LOG_BYTES);
 662		error = -EINVAL;
 663	} else if (mp->m_sb.sb_logsunit > 1 &&
 664		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 665		xfs_warn(mp,
 666		"log stripe unit %u bytes must be a multiple of block size",
 667			 mp->m_sb.sb_logsunit);
 668		error = -EINVAL;
 669		fatal = true;
 670	}
 671	if (error) {
 672		/*
 673		 * Log check errors are always fatal on v5; or whenever bad
 674		 * metadata leads to a crash.
 675		 */
 676		if (fatal) {
 677			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 678			ASSERT(0);
 679			goto out_free_log;
 680		}
 681		xfs_crit(mp, "Log size out of supported range.");
 682		xfs_crit(mp,
 683"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 684	}
 685
 686	/*
 687	 * Initialize the AIL now we have a log.
 688	 */
 689	error = xfs_trans_ail_init(mp);
 690	if (error) {
 691		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 692		goto out_free_log;
 693	}
 694	mp->m_log->l_ailp = mp->m_ail;
 695
 696	/*
 697	 * skip log recovery on a norecovery mount.  pretend it all
 698	 * just worked.
 699	 */
 700	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 701		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 702
 703		if (readonly)
 704			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 705
 706		error = xlog_recover(mp->m_log);
 707
 708		if (readonly)
 709			mp->m_flags |= XFS_MOUNT_RDONLY;
 710		if (error) {
 711			xfs_warn(mp, "log mount/recovery failed: error %d",
 712				error);
 713			xlog_recover_cancel(mp->m_log);
 714			goto out_destroy_ail;
 715		}
 716	}
 717
 718	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 719			       "log");
 720	if (error)
 721		goto out_destroy_ail;
 722
 723	/* Normal transactions can now occur */
 724	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 725
 726	/*
 727	 * Now the log has been fully initialised and we know were our
 728	 * space grant counters are, we can initialise the permanent ticket
 729	 * needed for delayed logging to work.
 730	 */
 731	xlog_cil_init_post_recovery(mp->m_log);
 732
 733	return 0;
 734
 735out_destroy_ail:
 736	xfs_trans_ail_destroy(mp);
 737out_free_log:
 738	xlog_dealloc_log(mp->m_log);
 739out:
 740	return error;
 741}
 742
 743/*
 744 * Finish the recovery of the file system.  This is separate from the
 745 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 746 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 747 * here.
 748 *
 749 * If we finish recovery successfully, start the background log work. If we are
 750 * not doing recovery, then we have a RO filesystem and we don't need to start
 751 * it.
 752 */
 753int
 754xfs_log_mount_finish(
 755	struct xfs_mount	*mp)
 756{
 757	int	error = 0;
 758	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 759	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 760
 761	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 
 
 
 762		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 763		return 0;
 764	} else if (readonly) {
 765		/* Allow unlinked processing to proceed */
 766		mp->m_flags &= ~XFS_MOUNT_RDONLY;
 767	}
 768
 769	/*
 770	 * During the second phase of log recovery, we need iget and
 771	 * iput to behave like they do for an active filesystem.
 772	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 773	 * of inodes before we're done replaying log items on those
 774	 * inodes.  Turn it off immediately after recovery finishes
 775	 * so that we don't leak the quota inodes if subsequent mount
 776	 * activities fail.
 777	 *
 778	 * We let all inodes involved in redo item processing end up on
 779	 * the LRU instead of being evicted immediately so that if we do
 780	 * something to an unlinked inode, the irele won't cause
 781	 * premature truncation and freeing of the inode, which results
 782	 * in log recovery failure.  We have to evict the unreferenced
 783	 * lru inodes after clearing SB_ACTIVE because we don't
 784	 * otherwise clean up the lru if there's a subsequent failure in
 785	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 786	 * else (e.g. quotacheck) references the inodes before the
 787	 * mount failure occurs.
 788	 */
 789	mp->m_super->s_flags |= SB_ACTIVE;
 790	error = xlog_recover_finish(mp->m_log);
 791	if (!error)
 792		xfs_log_work_queue(mp);
 793	mp->m_super->s_flags &= ~SB_ACTIVE;
 794	evict_inodes(mp->m_super);
 795
 796	/*
 797	 * Drain the buffer LRU after log recovery. This is required for v4
 798	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 799	 * but we do it unconditionally to make sure we're always in a clean
 800	 * cache state after mount.
 801	 *
 802	 * Don't push in the error case because the AIL may have pending intents
 803	 * that aren't removed until recovery is cancelled.
 804	 */
 805	if (!error && recovered) {
 806		xfs_log_force(mp, XFS_LOG_SYNC);
 807		xfs_ail_push_all_sync(mp->m_ail);
 808	}
 809	xfs_wait_buftarg(mp->m_ddev_targp);
 810
 811	if (readonly)
 812		mp->m_flags |= XFS_MOUNT_RDONLY;
 813
 814	return error;
 815}
 816
 817/*
 818 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 819 * the log.
 820 */
 821int
 822xfs_log_mount_cancel(
 823	struct xfs_mount	*mp)
 824{
 825	int			error;
 826
 827	error = xlog_recover_cancel(mp->m_log);
 828	xfs_log_unmount(mp);
 829
 830	return error;
 831}
 832
 833/*
 834 * Final log writes as part of unmount.
 835 *
 836 * Mark the filesystem clean as unmount happens.  Note that during relocation
 837 * this routine needs to be executed as part of source-bag while the
 838 * deallocation must not be done until source-end.
 839 */
 840
 841/*
 842 * Unmount record used to have a string "Unmount filesystem--" in the
 843 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 844 * We just write the magic number now since that particular field isn't
 845 * currently architecture converted and "Unmount" is a bit foo.
 846 * As far as I know, there weren't any dependencies on the old behaviour.
 847 */
 848
 849static int
 850xfs_log_unmount_write(xfs_mount_t *mp)
 851{
 852	struct xlog	 *log = mp->m_log;
 853	xlog_in_core_t	 *iclog;
 854#ifdef DEBUG
 855	xlog_in_core_t	 *first_iclog;
 856#endif
 857	xlog_ticket_t	*tic = NULL;
 858	xfs_lsn_t	 lsn;
 859	int		 error;
 860
 861	/*
 862	 * Don't write out unmount record on norecovery mounts or ro devices.
 863	 * Or, if we are doing a forced umount (typically because of IO errors).
 864	 */
 865	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 866	    xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
 867		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 868		return 0;
 869	}
 870
 871	error = xfs_log_force(mp, XFS_LOG_SYNC);
 872	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 873
 874#ifdef DEBUG
 875	first_iclog = iclog = log->l_iclog;
 876	do {
 877		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 878			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 879			ASSERT(iclog->ic_offset == 0);
 880		}
 881		iclog = iclog->ic_next;
 882	} while (iclog != first_iclog);
 883#endif
 884	if (! (XLOG_FORCED_SHUTDOWN(log))) {
 885		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 
 886		if (!error) {
 887			/* the data section must be 32 bit size aligned */
 888			struct {
 889			    uint16_t magic;
 890			    uint16_t pad1;
 891			    uint32_t pad2; /* may as well make it 64 bits */
 892			} magic = {
 893				.magic = XLOG_UNMOUNT_TYPE,
 894			};
 895			struct xfs_log_iovec reg = {
 896				.i_addr = &magic,
 897				.i_len = sizeof(magic),
 898				.i_type = XLOG_REG_TYPE_UNMOUNT,
 899			};
 900			struct xfs_log_vec vec = {
 901				.lv_niovecs = 1,
 902				.lv_iovecp = &reg,
 903			};
 904
 905			/* remove inited flag, and account for space used */
 906			tic->t_flags = 0;
 907			tic->t_curr_res -= sizeof(magic);
 908			error = xlog_write(log, &vec, tic, &lsn,
 909					   NULL, XLOG_UNMOUNT_TRANS);
 910			/*
 911			 * At this point, we're umounting anyway,
 912			 * so there's no point in transitioning log state
 913			 * to IOERROR. Just continue...
 914			 */
 915		}
 916
 917		if (error)
 918			xfs_alert(mp, "%s: unmount record failed", __func__);
 919
 920
 921		spin_lock(&log->l_icloglock);
 922		iclog = log->l_iclog;
 923		atomic_inc(&iclog->ic_refcnt);
 924		xlog_state_want_sync(log, iclog);
 925		spin_unlock(&log->l_icloglock);
 926		error = xlog_state_release_iclog(log, iclog);
 927
 928		spin_lock(&log->l_icloglock);
 929		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 930		      iclog->ic_state == XLOG_STATE_DIRTY)) {
 931			if (!XLOG_FORCED_SHUTDOWN(log)) {
 932				xlog_wait(&iclog->ic_force_wait,
 933							&log->l_icloglock);
 934			} else {
 935				spin_unlock(&log->l_icloglock);
 936			}
 937		} else {
 938			spin_unlock(&log->l_icloglock);
 939		}
 940		if (tic) {
 941			trace_xfs_log_umount_write(log, tic);
 942			xlog_ungrant_log_space(log, tic);
 943			xfs_log_ticket_put(tic);
 944		}
 945	} else {
 946		/*
 947		 * We're already in forced_shutdown mode, couldn't
 948		 * even attempt to write out the unmount transaction.
 949		 *
 950		 * Go through the motions of sync'ing and releasing
 951		 * the iclog, even though no I/O will actually happen,
 952		 * we need to wait for other log I/Os that may already
 953		 * be in progress.  Do this as a separate section of
 954		 * code so we'll know if we ever get stuck here that
 955		 * we're in this odd situation of trying to unmount
 956		 * a file system that went into forced_shutdown as
 957		 * the result of an unmount..
 958		 */
 959		spin_lock(&log->l_icloglock);
 960		iclog = log->l_iclog;
 961		atomic_inc(&iclog->ic_refcnt);
 962
 963		xlog_state_want_sync(log, iclog);
 964		spin_unlock(&log->l_icloglock);
 965		error =  xlog_state_release_iclog(log, iclog);
 966
 967		spin_lock(&log->l_icloglock);
 968
 969		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 970			|| iclog->ic_state == XLOG_STATE_DIRTY
 971			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
 972
 973				xlog_wait(&iclog->ic_force_wait,
 974							&log->l_icloglock);
 975		} else {
 976			spin_unlock(&log->l_icloglock);
 977		}
 978	}
 979
 980	return error;
 981}	/* xfs_log_unmount_write */
 982
 983/*
 984 * Empty the log for unmount/freeze.
 985 *
 986 * To do this, we first need to shut down the background log work so it is not
 987 * trying to cover the log as we clean up. We then need to unpin all objects in
 988 * the log so we can then flush them out. Once they have completed their IO and
 989 * run the callbacks removing themselves from the AIL, we can write the unmount
 990 * record.
 991 */
 992void
 993xfs_log_quiesce(
 994	struct xfs_mount	*mp)
 995{
 996	cancel_delayed_work_sync(&mp->m_log->l_work);
 997	xfs_log_force(mp, XFS_LOG_SYNC);
 998
 999	/*
1000	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1001	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1002	 * xfs_buf_iowait() cannot be used because it was pushed with the
1003	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1004	 * the IO to complete.
1005	 */
1006	xfs_ail_push_all_sync(mp->m_ail);
1007	xfs_wait_buftarg(mp->m_ddev_targp);
1008	xfs_buf_lock(mp->m_sb_bp);
1009	xfs_buf_unlock(mp->m_sb_bp);
1010
1011	xfs_log_unmount_write(mp);
1012}
1013
1014/*
1015 * Shut down and release the AIL and Log.
1016 *
1017 * During unmount, we need to ensure we flush all the dirty metadata objects
1018 * from the AIL so that the log is empty before we write the unmount record to
1019 * the log. Once this is done, we can tear down the AIL and the log.
1020 */
1021void
1022xfs_log_unmount(
1023	struct xfs_mount	*mp)
1024{
1025	xfs_log_quiesce(mp);
1026
1027	xfs_trans_ail_destroy(mp);
1028
1029	xfs_sysfs_del(&mp->m_log->l_kobj);
1030
1031	xlog_dealloc_log(mp->m_log);
1032}
1033
1034void
1035xfs_log_item_init(
1036	struct xfs_mount	*mp,
1037	struct xfs_log_item	*item,
1038	int			type,
1039	const struct xfs_item_ops *ops)
1040{
1041	item->li_mountp = mp;
1042	item->li_ailp = mp->m_ail;
1043	item->li_type = type;
1044	item->li_ops = ops;
1045	item->li_lv = NULL;
1046
1047	INIT_LIST_HEAD(&item->li_ail);
1048	INIT_LIST_HEAD(&item->li_cil);
1049	INIT_LIST_HEAD(&item->li_bio_list);
1050}
1051
1052/*
1053 * Wake up processes waiting for log space after we have moved the log tail.
1054 */
1055void
1056xfs_log_space_wake(
1057	struct xfs_mount	*mp)
1058{
1059	struct xlog		*log = mp->m_log;
1060	int			free_bytes;
1061
1062	if (XLOG_FORCED_SHUTDOWN(log))
1063		return;
1064
1065	if (!list_empty_careful(&log->l_write_head.waiters)) {
1066		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1067
1068		spin_lock(&log->l_write_head.lock);
1069		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1070		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1071		spin_unlock(&log->l_write_head.lock);
1072	}
1073
1074	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1075		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1076
1077		spin_lock(&log->l_reserve_head.lock);
1078		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1079		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1080		spin_unlock(&log->l_reserve_head.lock);
1081	}
1082}
1083
1084/*
1085 * Determine if we have a transaction that has gone to disk that needs to be
1086 * covered. To begin the transition to the idle state firstly the log needs to
1087 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088 * we start attempting to cover the log.
1089 *
1090 * Only if we are then in a state where covering is needed, the caller is
1091 * informed that dummy transactions are required to move the log into the idle
1092 * state.
1093 *
1094 * If there are any items in the AIl or CIL, then we do not want to attempt to
1095 * cover the log as we may be in a situation where there isn't log space
1096 * available to run a dummy transaction and this can lead to deadlocks when the
1097 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1098 * there's no point in running a dummy transaction at this point because we
1099 * can't start trying to idle the log until both the CIL and AIL are empty.
1100 */
1101static int
1102xfs_log_need_covered(xfs_mount_t *mp)
1103{
1104	struct xlog	*log = mp->m_log;
1105	int		needed = 0;
 
1106
1107	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1108		return 0;
1109
1110	if (!xlog_cil_empty(log))
1111		return 0;
1112
1113	spin_lock(&log->l_icloglock);
1114	switch (log->l_covered_state) {
1115	case XLOG_STATE_COVER_DONE:
1116	case XLOG_STATE_COVER_DONE2:
1117	case XLOG_STATE_COVER_IDLE:
1118		break;
1119	case XLOG_STATE_COVER_NEED:
1120	case XLOG_STATE_COVER_NEED2:
1121		if (xfs_ail_min_lsn(log->l_ailp))
1122			break;
1123		if (!xlog_iclogs_empty(log))
1124			break;
1125
1126		needed = 1;
1127		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1128			log->l_covered_state = XLOG_STATE_COVER_DONE;
1129		else
1130			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1131		break;
1132	default:
1133		needed = 1;
1134		break;
1135	}
1136	spin_unlock(&log->l_icloglock);
1137	return needed;
1138}
1139
1140/*
1141 * We may be holding the log iclog lock upon entering this routine.
1142 */
1143xfs_lsn_t
1144xlog_assign_tail_lsn_locked(
1145	struct xfs_mount	*mp)
1146{
1147	struct xlog		*log = mp->m_log;
1148	struct xfs_log_item	*lip;
1149	xfs_lsn_t		tail_lsn;
1150
1151	assert_spin_locked(&mp->m_ail->ail_lock);
1152
1153	/*
1154	 * To make sure we always have a valid LSN for the log tail we keep
1155	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1156	 * and use that when the AIL was empty.
1157	 */
1158	lip = xfs_ail_min(mp->m_ail);
1159	if (lip)
1160		tail_lsn = lip->li_lsn;
1161	else
1162		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1163	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1164	atomic64_set(&log->l_tail_lsn, tail_lsn);
1165	return tail_lsn;
1166}
1167
1168xfs_lsn_t
1169xlog_assign_tail_lsn(
1170	struct xfs_mount	*mp)
1171{
1172	xfs_lsn_t		tail_lsn;
1173
1174	spin_lock(&mp->m_ail->ail_lock);
1175	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1176	spin_unlock(&mp->m_ail->ail_lock);
1177
1178	return tail_lsn;
1179}
1180
1181/*
1182 * Return the space in the log between the tail and the head.  The head
1183 * is passed in the cycle/bytes formal parms.  In the special case where
1184 * the reserve head has wrapped passed the tail, this calculation is no
1185 * longer valid.  In this case, just return 0 which means there is no space
1186 * in the log.  This works for all places where this function is called
1187 * with the reserve head.  Of course, if the write head were to ever
1188 * wrap the tail, we should blow up.  Rather than catch this case here,
1189 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1190 *
1191 * This code also handles the case where the reservation head is behind
1192 * the tail.  The details of this case are described below, but the end
1193 * result is that we return the size of the log as the amount of space left.
1194 */
1195STATIC int
1196xlog_space_left(
1197	struct xlog	*log,
1198	atomic64_t	*head)
1199{
1200	int		free_bytes;
1201	int		tail_bytes;
1202	int		tail_cycle;
1203	int		head_cycle;
1204	int		head_bytes;
1205
1206	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1207	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1208	tail_bytes = BBTOB(tail_bytes);
1209	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1210		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1211	else if (tail_cycle + 1 < head_cycle)
1212		return 0;
1213	else if (tail_cycle < head_cycle) {
1214		ASSERT(tail_cycle == (head_cycle - 1));
1215		free_bytes = tail_bytes - head_bytes;
1216	} else {
1217		/*
1218		 * The reservation head is behind the tail.
1219		 * In this case we just want to return the size of the
1220		 * log as the amount of space left.
1221		 */
1222		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1223		xfs_alert(log->l_mp,
1224			  "  tail_cycle = %d, tail_bytes = %d",
1225			  tail_cycle, tail_bytes);
1226		xfs_alert(log->l_mp,
1227			  "  GH   cycle = %d, GH   bytes = %d",
1228			  head_cycle, head_bytes);
1229		ASSERT(0);
1230		free_bytes = log->l_logsize;
1231	}
1232	return free_bytes;
1233}
1234
1235
1236/*
1237 * Log function which is called when an io completes.
1238 *
1239 * The log manager needs its own routine, in order to control what
1240 * happens with the buffer after the write completes.
1241 */
1242static void
1243xlog_iodone(xfs_buf_t *bp)
1244{
1245	struct xlog_in_core	*iclog = bp->b_log_item;
1246	struct xlog		*l = iclog->ic_log;
1247	int			aborted = 0;
1248
1249	/*
1250	 * Race to shutdown the filesystem if we see an error or the iclog is in
1251	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252	 * CRC errors into log recovery.
1253	 */
1254	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1255	    iclog->ic_state & XLOG_STATE_IOABORT) {
1256		if (iclog->ic_state & XLOG_STATE_IOABORT)
1257			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1258
1259		xfs_buf_ioerror_alert(bp, __func__);
1260		xfs_buf_stale(bp);
1261		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1262		/*
1263		 * This flag will be propagated to the trans-committed
1264		 * callback routines to let them know that the log-commit
1265		 * didn't succeed.
1266		 */
1267		aborted = XFS_LI_ABORTED;
1268	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1269		aborted = XFS_LI_ABORTED;
1270	}
1271
1272	/* log I/O is always issued ASYNC */
1273	ASSERT(bp->b_flags & XBF_ASYNC);
1274	xlog_state_done_syncing(iclog, aborted);
1275
1276	/*
1277	 * drop the buffer lock now that we are done. Nothing references
1278	 * the buffer after this, so an unmount waiting on this lock can now
1279	 * tear it down safely. As such, it is unsafe to reference the buffer
1280	 * (bp) after the unlock as we could race with it being freed.
1281	 */
1282	xfs_buf_unlock(bp);
1283}
1284
1285/*
1286 * Return size of each in-core log record buffer.
1287 *
1288 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1289 *
1290 * If the filesystem blocksize is too large, we may need to choose a
1291 * larger size since the directory code currently logs entire blocks.
1292 */
1293
1294STATIC void
1295xlog_get_iclog_buffer_size(
1296	struct xfs_mount	*mp,
1297	struct xlog		*log)
1298{
1299	int size;
1300	int xhdrs;
1301
1302	if (mp->m_logbufs <= 0)
1303		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1304	else
1305		log->l_iclog_bufs = mp->m_logbufs;
1306
1307	/*
1308	 * Buffer size passed in from mount system call.
1309	 */
1310	if (mp->m_logbsize > 0) {
1311		size = log->l_iclog_size = mp->m_logbsize;
1312		log->l_iclog_size_log = 0;
1313		while (size != 1) {
1314			log->l_iclog_size_log++;
1315			size >>= 1;
1316		}
1317
1318		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1319			/* # headers = size / 32k
1320			 * one header holds cycles from 32k of data
1321			 */
1322
1323			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1324			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1325				xhdrs++;
1326			log->l_iclog_hsize = xhdrs << BBSHIFT;
1327			log->l_iclog_heads = xhdrs;
1328		} else {
1329			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1330			log->l_iclog_hsize = BBSIZE;
1331			log->l_iclog_heads = 1;
1332		}
1333		goto done;
1334	}
1335
1336	/* All machines use 32kB buffers by default. */
1337	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1338	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1339
1340	/* the default log size is 16k or 32k which is one header sector */
1341	log->l_iclog_hsize = BBSIZE;
1342	log->l_iclog_heads = 1;
1343
1344done:
1345	/* are we being asked to make the sizes selected above visible? */
1346	if (mp->m_logbufs == 0)
1347		mp->m_logbufs = log->l_iclog_bufs;
1348	if (mp->m_logbsize == 0)
1349		mp->m_logbsize = log->l_iclog_size;
1350}	/* xlog_get_iclog_buffer_size */
1351
1352
1353void
1354xfs_log_work_queue(
1355	struct xfs_mount        *mp)
1356{
1357	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1358				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1359}
1360
1361/*
1362 * Every sync period we need to unpin all items in the AIL and push them to
1363 * disk. If there is nothing dirty, then we might need to cover the log to
1364 * indicate that the filesystem is idle.
1365 */
1366static void
1367xfs_log_worker(
1368	struct work_struct	*work)
1369{
1370	struct xlog		*log = container_of(to_delayed_work(work),
1371						struct xlog, l_work);
1372	struct xfs_mount	*mp = log->l_mp;
1373
1374	/* dgc: errors ignored - not fatal and nowhere to report them */
1375	if (xfs_log_need_covered(mp)) {
1376		/*
1377		 * Dump a transaction into the log that contains no real change.
1378		 * This is needed to stamp the current tail LSN into the log
1379		 * during the covering operation.
1380		 *
1381		 * We cannot use an inode here for this - that will push dirty
1382		 * state back up into the VFS and then periodic inode flushing
1383		 * will prevent log covering from making progress. Hence we
1384		 * synchronously log the superblock instead to ensure the
1385		 * superblock is immediately unpinned and can be written back.
1386		 */
1387		xfs_sync_sb(mp, true);
1388	} else
1389		xfs_log_force(mp, 0);
1390
1391	/* start pushing all the metadata that is currently dirty */
1392	xfs_ail_push_all(mp->m_ail);
1393
1394	/* queue us up again */
1395	xfs_log_work_queue(mp);
1396}
1397
1398/*
1399 * This routine initializes some of the log structure for a given mount point.
1400 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1401 * some other stuff may be filled in too.
1402 */
1403STATIC struct xlog *
1404xlog_alloc_log(
1405	struct xfs_mount	*mp,
1406	struct xfs_buftarg	*log_target,
1407	xfs_daddr_t		blk_offset,
1408	int			num_bblks)
1409{
1410	struct xlog		*log;
1411	xlog_rec_header_t	*head;
1412	xlog_in_core_t		**iclogp;
1413	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1414	xfs_buf_t		*bp;
1415	int			i;
1416	int			error = -ENOMEM;
1417	uint			log2_size = 0;
1418
1419	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1420	if (!log) {
1421		xfs_warn(mp, "Log allocation failed: No memory!");
1422		goto out;
1423	}
1424
1425	log->l_mp	   = mp;
1426	log->l_targ	   = log_target;
1427	log->l_logsize     = BBTOB(num_bblks);
1428	log->l_logBBstart  = blk_offset;
1429	log->l_logBBsize   = num_bblks;
1430	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1431	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1432	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1433
1434	log->l_prev_block  = -1;
1435	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1437	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1438	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1439
1440	xlog_grant_head_init(&log->l_reserve_head);
1441	xlog_grant_head_init(&log->l_write_head);
1442
1443	error = -EFSCORRUPTED;
1444	if (xfs_sb_version_hassector(&mp->m_sb)) {
1445	        log2_size = mp->m_sb.sb_logsectlog;
1446		if (log2_size < BBSHIFT) {
1447			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1448				log2_size, BBSHIFT);
1449			goto out_free_log;
1450		}
1451
1452	        log2_size -= BBSHIFT;
1453		if (log2_size > mp->m_sectbb_log) {
1454			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1455				log2_size, mp->m_sectbb_log);
1456			goto out_free_log;
1457		}
1458
1459		/* for larger sector sizes, must have v2 or external log */
1460		if (log2_size && log->l_logBBstart > 0 &&
1461			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1462			xfs_warn(mp,
1463		"log sector size (0x%x) invalid for configuration.",
1464				log2_size);
1465			goto out_free_log;
1466		}
1467	}
1468	log->l_sectBBsize = 1 << log2_size;
1469
1470	xlog_get_iclog_buffer_size(mp, log);
1471
1472	/*
1473	 * Use a NULL block for the extra log buffer used during splits so that
1474	 * it will trigger errors if we ever try to do IO on it without first
1475	 * having set it up properly.
1476	 */
1477	error = -ENOMEM;
1478	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1479			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1480	if (!bp)
1481		goto out_free_log;
1482
1483	/*
1484	 * The iclogbuf buffer locks are held over IO but we are not going to do
1485	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1486	 * when appropriately.
1487	 */
1488	ASSERT(xfs_buf_islocked(bp));
1489	xfs_buf_unlock(bp);
1490
1491	/* use high priority wq for log I/O completion */
1492	bp->b_ioend_wq = mp->m_log_workqueue;
1493	bp->b_iodone = xlog_iodone;
1494	log->l_xbuf = bp;
1495
1496	spin_lock_init(&log->l_icloglock);
1497	init_waitqueue_head(&log->l_flush_wait);
1498
1499	iclogp = &log->l_iclog;
1500	/*
1501	 * The amount of memory to allocate for the iclog structure is
1502	 * rather funky due to the way the structure is defined.  It is
1503	 * done this way so that we can use different sizes for machines
1504	 * with different amounts of memory.  See the definition of
1505	 * xlog_in_core_t in xfs_log_priv.h for details.
1506	 */
1507	ASSERT(log->l_iclog_size >= 4096);
1508	for (i=0; i < log->l_iclog_bufs; i++) {
1509		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1510		if (!*iclogp)
1511			goto out_free_iclog;
1512
1513		iclog = *iclogp;
1514		iclog->ic_prev = prev_iclog;
1515		prev_iclog = iclog;
1516
1517		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1518					  BTOBB(log->l_iclog_size),
1519					  XBF_NO_IOACCT);
1520		if (!bp)
1521			goto out_free_iclog;
1522
1523		ASSERT(xfs_buf_islocked(bp));
1524		xfs_buf_unlock(bp);
1525
1526		/* use high priority wq for log I/O completion */
1527		bp->b_ioend_wq = mp->m_log_workqueue;
1528		bp->b_iodone = xlog_iodone;
1529		iclog->ic_bp = bp;
1530		iclog->ic_data = bp->b_addr;
1531#ifdef DEBUG
1532		log->l_iclog_bak[i] = &iclog->ic_header;
1533#endif
1534		head = &iclog->ic_header;
1535		memset(head, 0, sizeof(xlog_rec_header_t));
1536		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1537		head->h_version = cpu_to_be32(
1538			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1539		head->h_size = cpu_to_be32(log->l_iclog_size);
1540		/* new fields */
1541		head->h_fmt = cpu_to_be32(XLOG_FMT);
1542		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1543
1544		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1545		iclog->ic_state = XLOG_STATE_ACTIVE;
1546		iclog->ic_log = log;
1547		atomic_set(&iclog->ic_refcnt, 0);
1548		spin_lock_init(&iclog->ic_callback_lock);
1549		iclog->ic_callback_tail = &(iclog->ic_callback);
1550		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1551
 
1552		init_waitqueue_head(&iclog->ic_force_wait);
1553		init_waitqueue_head(&iclog->ic_write_wait);
1554
1555		iclogp = &iclog->ic_next;
1556	}
1557	*iclogp = log->l_iclog;			/* complete ring */
1558	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1559
1560	error = xlog_cil_init(log);
1561	if (error)
1562		goto out_free_iclog;
1563	return log;
1564
1565out_free_iclog:
1566	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1567		prev_iclog = iclog->ic_next;
1568		if (iclog->ic_bp)
1569			xfs_buf_free(iclog->ic_bp);
1570		kmem_free(iclog);
1571	}
1572	spinlock_destroy(&log->l_icloglock);
1573	xfs_buf_free(log->l_xbuf);
1574out_free_log:
1575	kmem_free(log);
1576out:
1577	return ERR_PTR(error);
1578}	/* xlog_alloc_log */
1579
1580
1581/*
1582 * Write out the commit record of a transaction associated with the given
1583 * ticket.  Return the lsn of the commit record.
1584 */
1585STATIC int
1586xlog_commit_record(
1587	struct xlog		*log,
1588	struct xlog_ticket	*ticket,
1589	struct xlog_in_core	**iclog,
1590	xfs_lsn_t		*commitlsnp)
1591{
1592	struct xfs_mount *mp = log->l_mp;
1593	int	error;
1594	struct xfs_log_iovec reg = {
1595		.i_addr = NULL,
1596		.i_len = 0,
1597		.i_type = XLOG_REG_TYPE_COMMIT,
1598	};
1599	struct xfs_log_vec vec = {
1600		.lv_niovecs = 1,
1601		.lv_iovecp = &reg,
1602	};
1603
1604	ASSERT_ALWAYS(iclog);
1605	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1606					XLOG_COMMIT_TRANS);
1607	if (error)
1608		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1609	return error;
1610}
1611
1612/*
1613 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614 * log space.  This code pushes on the lsn which would supposedly free up
1615 * the 25% which we want to leave free.  We may need to adopt a policy which
1616 * pushes on an lsn which is further along in the log once we reach the high
1617 * water mark.  In this manner, we would be creating a low water mark.
1618 */
1619STATIC void
1620xlog_grant_push_ail(
1621	struct xlog	*log,
1622	int		need_bytes)
1623{
1624	xfs_lsn_t	threshold_lsn = 0;
1625	xfs_lsn_t	last_sync_lsn;
1626	int		free_blocks;
1627	int		free_bytes;
1628	int		threshold_block;
1629	int		threshold_cycle;
1630	int		free_threshold;
1631
1632	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1633
1634	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1635	free_blocks = BTOBBT(free_bytes);
1636
1637	/*
1638	 * Set the threshold for the minimum number of free blocks in the
1639	 * log to the maximum of what the caller needs, one quarter of the
1640	 * log, and 256 blocks.
1641	 */
1642	free_threshold = BTOBB(need_bytes);
1643	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1644	free_threshold = MAX(free_threshold, 256);
1645	if (free_blocks >= free_threshold)
1646		return;
1647
1648	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1649						&threshold_block);
1650	threshold_block += free_threshold;
1651	if (threshold_block >= log->l_logBBsize) {
1652		threshold_block -= log->l_logBBsize;
1653		threshold_cycle += 1;
1654	}
1655	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1656					threshold_block);
1657	/*
1658	 * Don't pass in an lsn greater than the lsn of the last
1659	 * log record known to be on disk. Use a snapshot of the last sync lsn
1660	 * so that it doesn't change between the compare and the set.
1661	 */
1662	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1663	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1664		threshold_lsn = last_sync_lsn;
1665
1666	/*
1667	 * Get the transaction layer to kick the dirty buffers out to
1668	 * disk asynchronously. No point in trying to do this if
1669	 * the filesystem is shutting down.
1670	 */
1671	if (!XLOG_FORCED_SHUTDOWN(log))
1672		xfs_ail_push(log->l_ailp, threshold_lsn);
1673}
1674
1675/*
1676 * Stamp cycle number in every block
1677 */
1678STATIC void
1679xlog_pack_data(
1680	struct xlog		*log,
1681	struct xlog_in_core	*iclog,
1682	int			roundoff)
1683{
1684	int			i, j, k;
1685	int			size = iclog->ic_offset + roundoff;
1686	__be32			cycle_lsn;
1687	char			*dp;
1688
1689	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1690
1691	dp = iclog->ic_datap;
1692	for (i = 0; i < BTOBB(size); i++) {
1693		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1694			break;
1695		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1696		*(__be32 *)dp = cycle_lsn;
1697		dp += BBSIZE;
1698	}
1699
1700	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1701		xlog_in_core_2_t *xhdr = iclog->ic_data;
1702
1703		for ( ; i < BTOBB(size); i++) {
1704			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1705			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1707			*(__be32 *)dp = cycle_lsn;
1708			dp += BBSIZE;
1709		}
1710
1711		for (i = 1; i < log->l_iclog_heads; i++)
1712			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1713	}
1714}
1715
1716/*
1717 * Calculate the checksum for a log buffer.
1718 *
1719 * This is a little more complicated than it should be because the various
1720 * headers and the actual data are non-contiguous.
1721 */
1722__le32
1723xlog_cksum(
1724	struct xlog		*log,
1725	struct xlog_rec_header	*rhead,
1726	char			*dp,
1727	int			size)
1728{
1729	uint32_t		crc;
1730
1731	/* first generate the crc for the record header ... */
1732	crc = xfs_start_cksum_update((char *)rhead,
1733			      sizeof(struct xlog_rec_header),
1734			      offsetof(struct xlog_rec_header, h_crc));
1735
1736	/* ... then for additional cycle data for v2 logs ... */
1737	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1738		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1739		int		i;
1740		int		xheads;
1741
1742		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1743		if (size % XLOG_HEADER_CYCLE_SIZE)
1744			xheads++;
1745
1746		for (i = 1; i < xheads; i++) {
1747			crc = crc32c(crc, &xhdr[i].hic_xheader,
1748				     sizeof(struct xlog_rec_ext_header));
1749		}
1750	}
1751
1752	/* ... and finally for the payload */
1753	crc = crc32c(crc, dp, size);
1754
1755	return xfs_end_cksum(crc);
1756}
1757
1758/*
1759 * The bdstrat callback function for log bufs. This gives us a central
1760 * place to trap bufs in case we get hit by a log I/O error and need to
1761 * shutdown. Actually, in practice, even when we didn't get a log error,
1762 * we transition the iclogs to IOERROR state *after* flushing all existing
1763 * iclogs to disk. This is because we don't want anymore new transactions to be
1764 * started or completed afterwards.
1765 *
1766 * We lock the iclogbufs here so that we can serialise against IO completion
1767 * during unmount. We might be processing a shutdown triggered during unmount,
1768 * and that can occur asynchronously to the unmount thread, and hence we need to
1769 * ensure that completes before tearing down the iclogbufs. Hence we need to
1770 * hold the buffer lock across the log IO to acheive that.
1771 */
1772STATIC int
1773xlog_bdstrat(
1774	struct xfs_buf		*bp)
1775{
1776	struct xlog_in_core	*iclog = bp->b_log_item;
1777
1778	xfs_buf_lock(bp);
1779	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1780		xfs_buf_ioerror(bp, -EIO);
1781		xfs_buf_stale(bp);
1782		xfs_buf_ioend(bp);
1783		/*
1784		 * It would seem logical to return EIO here, but we rely on
1785		 * the log state machine to propagate I/O errors instead of
1786		 * doing it here. Similarly, IO completion will unlock the
1787		 * buffer, so we don't do it here.
1788		 */
1789		return 0;
1790	}
1791
1792	xfs_buf_submit(bp);
1793	return 0;
1794}
1795
1796/*
1797 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1798 * fashion.  Previously, we should have moved the current iclog
1799 * ptr in the log to point to the next available iclog.  This allows further
1800 * write to continue while this code syncs out an iclog ready to go.
1801 * Before an in-core log can be written out, the data section must be scanned
1802 * to save away the 1st word of each BBSIZE block into the header.  We replace
1803 * it with the current cycle count.  Each BBSIZE block is tagged with the
1804 * cycle count because there in an implicit assumption that drives will
1805 * guarantee that entire 512 byte blocks get written at once.  In other words,
1806 * we can't have part of a 512 byte block written and part not written.  By
1807 * tagging each block, we will know which blocks are valid when recovering
1808 * after an unclean shutdown.
1809 *
1810 * This routine is single threaded on the iclog.  No other thread can be in
1811 * this routine with the same iclog.  Changing contents of iclog can there-
1812 * fore be done without grabbing the state machine lock.  Updating the global
1813 * log will require grabbing the lock though.
1814 *
1815 * The entire log manager uses a logical block numbering scheme.  Only
1816 * log_sync (and then only bwrite()) know about the fact that the log may
1817 * not start with block zero on a given device.  The log block start offset
1818 * is added immediately before calling bwrite().
1819 */
1820
1821STATIC int
1822xlog_sync(
1823	struct xlog		*log,
1824	struct xlog_in_core	*iclog)
1825{
 
1826	xfs_buf_t	*bp;
1827	int		i;
1828	uint		count;		/* byte count of bwrite */
1829	uint		count_init;	/* initial count before roundup */
1830	int		roundoff;       /* roundoff to BB or stripe */
1831	int		split = 0;	/* split write into two regions */
1832	int		error;
1833	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1834	int		size;
1835
1836	XFS_STATS_INC(log->l_mp, xs_log_writes);
1837	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1838
1839	/* Add for LR header */
1840	count_init = log->l_iclog_hsize + iclog->ic_offset;
1841
1842	/* Round out the log write size */
1843	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1844		/* we have a v2 stripe unit to use */
1845		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1846	} else {
1847		count = BBTOB(BTOBB(count_init));
1848	}
1849	roundoff = count - count_init;
1850	ASSERT(roundoff >= 0);
1851	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1852                roundoff < log->l_mp->m_sb.sb_logsunit)
1853		|| 
1854		(log->l_mp->m_sb.sb_logsunit <= 1 && 
1855		 roundoff < BBTOB(1)));
1856
1857	/* move grant heads by roundoff in sync */
1858	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860
1861	/* put cycle number in every block */
1862	xlog_pack_data(log, iclog, roundoff); 
1863
1864	/* real byte length */
1865	size = iclog->ic_offset;
1866	if (v2)
1867		size += roundoff;
1868	iclog->ic_header.h_len = cpu_to_be32(size);
 
 
 
1869
1870	bp = iclog->ic_bp;
1871	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1872
1873	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1874
1875	/* Do we need to split this write into 2 parts? */
1876	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1877		char		*dptr;
1878
1879		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1880		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1881		iclog->ic_bwritecnt = 2;
1882
1883		/*
1884		 * Bump the cycle numbers at the start of each block in the
1885		 * part of the iclog that ends up in the buffer that gets
1886		 * written to the start of the log.
1887		 *
1888		 * Watch out for the header magic number case, though.
1889		 */
1890		dptr = (char *)&iclog->ic_header + count;
1891		for (i = 0; i < split; i += BBSIZE) {
1892			uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1893			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1894				cycle++;
1895			*(__be32 *)dptr = cpu_to_be32(cycle);
1896
1897			dptr += BBSIZE;
1898		}
1899	} else {
1900		iclog->ic_bwritecnt = 1;
1901	}
 
 
 
 
 
 
 
 
1902
1903	/* calculcate the checksum */
1904	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1905					    iclog->ic_datap, size);
1906	/*
1907	 * Intentionally corrupt the log record CRC based on the error injection
1908	 * frequency, if defined. This facilitates testing log recovery in the
1909	 * event of torn writes. Hence, set the IOABORT state to abort the log
1910	 * write on I/O completion and shutdown the fs. The subsequent mount
1911	 * detects the bad CRC and attempts to recover.
1912	 */
1913	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1914		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1915		iclog->ic_state |= XLOG_STATE_IOABORT;
1916		xfs_warn(log->l_mp,
1917	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918			 be64_to_cpu(iclog->ic_header.h_lsn));
1919	}
1920
1921	bp->b_io_length = BTOBB(count);
1922	bp->b_log_item = iclog;
1923	bp->b_flags &= ~XBF_FLUSH;
1924	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1925
1926	/*
1927	 * Flush the data device before flushing the log to make sure all meta
1928	 * data written back from the AIL actually made it to disk before
1929	 * stamping the new log tail LSN into the log buffer.  For an external
1930	 * log we need to issue the flush explicitly, and unfortunately
1931	 * synchronously here; for an internal log we can simply use the block
1932	 * layer state machine for preflushes.
1933	 */
1934	if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1935		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1936	else
1937		bp->b_flags |= XBF_FLUSH;
1938
1939	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1940	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1941
1942	xlog_verify_iclog(log, iclog, count, true);
1943
1944	/* account for log which doesn't start at block #0 */
1945	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1946
1947	/*
1948	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1949	 * is shutting down.
1950	 */
 
 
1951	error = xlog_bdstrat(bp);
1952	if (error) {
1953		xfs_buf_ioerror_alert(bp, "xlog_sync");
1954		return error;
1955	}
1956	if (split) {
1957		bp = iclog->ic_log->l_xbuf;
1958		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1959		xfs_buf_associate_memory(bp,
1960				(char *)&iclog->ic_header + count, split);
1961		bp->b_log_item = iclog;
1962		bp->b_flags &= ~XBF_FLUSH;
1963		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964
1965		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1966		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1967
1968		/* account for internal log which doesn't start at block #0 */
1969		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
 
1970		error = xlog_bdstrat(bp);
1971		if (error) {
1972			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1973			return error;
1974		}
1975	}
1976	return 0;
1977}	/* xlog_sync */
1978
 
1979/*
1980 * Deallocate a log structure
1981 */
1982STATIC void
1983xlog_dealloc_log(
1984	struct xlog	*log)
1985{
1986	xlog_in_core_t	*iclog, *next_iclog;
1987	int		i;
1988
1989	xlog_cil_destroy(log);
1990
1991	/*
1992	 * Cycle all the iclogbuf locks to make sure all log IO completion
1993	 * is done before we tear down these buffers.
1994	 */
1995	iclog = log->l_iclog;
1996	for (i = 0; i < log->l_iclog_bufs; i++) {
1997		xfs_buf_lock(iclog->ic_bp);
1998		xfs_buf_unlock(iclog->ic_bp);
1999		iclog = iclog->ic_next;
2000	}
2001
2002	/*
2003	 * Always need to ensure that the extra buffer does not point to memory
2004	 * owned by another log buffer before we free it. Also, cycle the lock
2005	 * first to ensure we've completed IO on it.
2006	 */
2007	xfs_buf_lock(log->l_xbuf);
2008	xfs_buf_unlock(log->l_xbuf);
2009	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2010	xfs_buf_free(log->l_xbuf);
2011
2012	iclog = log->l_iclog;
2013	for (i = 0; i < log->l_iclog_bufs; i++) {
2014		xfs_buf_free(iclog->ic_bp);
2015		next_iclog = iclog->ic_next;
2016		kmem_free(iclog);
2017		iclog = next_iclog;
2018	}
2019	spinlock_destroy(&log->l_icloglock);
2020
2021	log->l_mp->m_log = NULL;
2022	kmem_free(log);
2023}	/* xlog_dealloc_log */
2024
2025/*
2026 * Update counters atomically now that memcpy is done.
2027 */
2028/* ARGSUSED */
2029static inline void
2030xlog_state_finish_copy(
2031	struct xlog		*log,
2032	struct xlog_in_core	*iclog,
2033	int			record_cnt,
2034	int			copy_bytes)
2035{
2036	spin_lock(&log->l_icloglock);
2037
2038	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2039	iclog->ic_offset += copy_bytes;
2040
2041	spin_unlock(&log->l_icloglock);
2042}	/* xlog_state_finish_copy */
2043
2044
2045
2046
2047/*
2048 * print out info relating to regions written which consume
2049 * the reservation
2050 */
2051void
2052xlog_print_tic_res(
2053	struct xfs_mount	*mp,
2054	struct xlog_ticket	*ticket)
2055{
2056	uint i;
2057	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2058
2059	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2060#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2061	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2062	    REG_TYPE_STR(BFORMAT, "bformat"),
2063	    REG_TYPE_STR(BCHUNK, "bchunk"),
2064	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2065	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2066	    REG_TYPE_STR(IFORMAT, "iformat"),
2067	    REG_TYPE_STR(ICORE, "icore"),
2068	    REG_TYPE_STR(IEXT, "iext"),
2069	    REG_TYPE_STR(IBROOT, "ibroot"),
2070	    REG_TYPE_STR(ILOCAL, "ilocal"),
2071	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2072	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2073	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2074	    REG_TYPE_STR(QFORMAT, "qformat"),
2075	    REG_TYPE_STR(DQUOT, "dquot"),
2076	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2077	    REG_TYPE_STR(LRHEADER, "LR header"),
2078	    REG_TYPE_STR(UNMOUNT, "unmount"),
2079	    REG_TYPE_STR(COMMIT, "commit"),
2080	    REG_TYPE_STR(TRANSHDR, "trans header"),
2081	    REG_TYPE_STR(ICREATE, "inode create")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082	};
2083#undef REG_TYPE_STR
2084
2085	xfs_warn(mp, "ticket reservation summary:");
2086	xfs_warn(mp, "  unit res    = %d bytes",
2087		 ticket->t_unit_res);
2088	xfs_warn(mp, "  current res = %d bytes",
2089		 ticket->t_curr_res);
2090	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2091		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2092	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2093		 ticket->t_res_num_ophdrs, ophdr_spc);
2094	xfs_warn(mp, "  ophdr + reg = %u bytes",
2095		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2096	xfs_warn(mp, "  num regions = %u",
2097		 ticket->t_res_num);
 
 
 
 
 
 
 
2098
2099	for (i = 0; i < ticket->t_res_num; i++) {
2100		uint r_type = ticket->t_res_arr[i].r_type;
2101		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2102			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2103			    "bad-rtype" : res_type_str[r_type]),
2104			    ticket->t_res_arr[i].r_len);
2105	}
2106}
2107
2108/*
2109 * Print a summary of the transaction.
2110 */
2111void
2112xlog_print_trans(
2113	struct xfs_trans		*tp)
2114{
2115	struct xfs_mount		*mp = tp->t_mountp;
2116	struct xfs_log_item_desc	*lidp;
2117
2118	/* dump core transaction and ticket info */
2119	xfs_warn(mp, "transaction summary:");
2120	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2121	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2122	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2123
2124	xlog_print_tic_res(mp, tp->t_ticket);
2125
2126	/* dump each log item */
2127	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2128		struct xfs_log_item	*lip = lidp->lid_item;
2129		struct xfs_log_vec	*lv = lip->li_lv;
2130		struct xfs_log_iovec	*vec;
2131		int			i;
2132
2133		xfs_warn(mp, "log item: ");
2134		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2135		xfs_warn(mp, "  flags	= 0x%x", lip->li_flags);
2136		if (!lv)
2137			continue;
2138		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2139		xfs_warn(mp, "  size	= %d", lv->lv_size);
2140		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2141		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2142
2143		/* dump each iovec for the log item */
2144		vec = lv->lv_iovecp;
2145		for (i = 0; i < lv->lv_niovecs; i++) {
2146			int dumplen = min(vec->i_len, 32);
2147
2148			xfs_warn(mp, "  iovec[%d]", i);
2149			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2150			xfs_warn(mp, "    len	= %d", vec->i_len);
2151			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2152			xfs_hex_dump(vec->i_addr, dumplen);
2153
2154			vec++;
2155		}
2156	}
2157}
2158
2159/*
2160 * Calculate the potential space needed by the log vector.  Each region gets
2161 * its own xlog_op_header_t and may need to be double word aligned.
2162 */
2163static int
2164xlog_write_calc_vec_length(
2165	struct xlog_ticket	*ticket,
2166	struct xfs_log_vec	*log_vector)
2167{
2168	struct xfs_log_vec	*lv;
2169	int			headers = 0;
2170	int			len = 0;
2171	int			i;
2172
2173	/* acct for start rec of xact */
2174	if (ticket->t_flags & XLOG_TIC_INITED)
2175		headers++;
2176
2177	for (lv = log_vector; lv; lv = lv->lv_next) {
2178		/* we don't write ordered log vectors */
2179		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2180			continue;
2181
2182		headers += lv->lv_niovecs;
2183
2184		for (i = 0; i < lv->lv_niovecs; i++) {
2185			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2186
2187			len += vecp->i_len;
2188			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2189		}
2190	}
2191
2192	ticket->t_res_num_ophdrs += headers;
2193	len += headers * sizeof(struct xlog_op_header);
2194
2195	return len;
2196}
2197
2198/*
2199 * If first write for transaction, insert start record  We can't be trying to
2200 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2201 */
2202static int
2203xlog_write_start_rec(
2204	struct xlog_op_header	*ophdr,
2205	struct xlog_ticket	*ticket)
2206{
2207	if (!(ticket->t_flags & XLOG_TIC_INITED))
2208		return 0;
2209
2210	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2211	ophdr->oh_clientid = ticket->t_clientid;
2212	ophdr->oh_len = 0;
2213	ophdr->oh_flags = XLOG_START_TRANS;
2214	ophdr->oh_res2 = 0;
2215
2216	ticket->t_flags &= ~XLOG_TIC_INITED;
2217
2218	return sizeof(struct xlog_op_header);
2219}
2220
2221static xlog_op_header_t *
2222xlog_write_setup_ophdr(
2223	struct xlog		*log,
2224	struct xlog_op_header	*ophdr,
2225	struct xlog_ticket	*ticket,
2226	uint			flags)
2227{
2228	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2229	ophdr->oh_clientid = ticket->t_clientid;
2230	ophdr->oh_res2 = 0;
2231
2232	/* are we copying a commit or unmount record? */
2233	ophdr->oh_flags = flags;
2234
2235	/*
2236	 * We've seen logs corrupted with bad transaction client ids.  This
2237	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2238	 * and shut down the filesystem.
2239	 */
2240	switch (ophdr->oh_clientid)  {
2241	case XFS_TRANSACTION:
2242	case XFS_VOLUME:
2243	case XFS_LOG:
2244		break;
2245	default:
2246		xfs_warn(log->l_mp,
2247			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2248			ophdr->oh_clientid, ticket);
2249		return NULL;
2250	}
2251
2252	return ophdr;
2253}
2254
2255/*
2256 * Set up the parameters of the region copy into the log. This has
2257 * to handle region write split across multiple log buffers - this
2258 * state is kept external to this function so that this code can
2259 * be written in an obvious, self documenting manner.
2260 */
2261static int
2262xlog_write_setup_copy(
2263	struct xlog_ticket	*ticket,
2264	struct xlog_op_header	*ophdr,
2265	int			space_available,
2266	int			space_required,
2267	int			*copy_off,
2268	int			*copy_len,
2269	int			*last_was_partial_copy,
2270	int			*bytes_consumed)
2271{
2272	int			still_to_copy;
2273
2274	still_to_copy = space_required - *bytes_consumed;
2275	*copy_off = *bytes_consumed;
2276
2277	if (still_to_copy <= space_available) {
2278		/* write of region completes here */
2279		*copy_len = still_to_copy;
2280		ophdr->oh_len = cpu_to_be32(*copy_len);
2281		if (*last_was_partial_copy)
2282			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2283		*last_was_partial_copy = 0;
2284		*bytes_consumed = 0;
2285		return 0;
2286	}
2287
2288	/* partial write of region, needs extra log op header reservation */
2289	*copy_len = space_available;
2290	ophdr->oh_len = cpu_to_be32(*copy_len);
2291	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2292	if (*last_was_partial_copy)
2293		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2294	*bytes_consumed += *copy_len;
2295	(*last_was_partial_copy)++;
2296
2297	/* account for new log op header */
2298	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2299	ticket->t_res_num_ophdrs++;
2300
2301	return sizeof(struct xlog_op_header);
2302}
2303
2304static int
2305xlog_write_copy_finish(
2306	struct xlog		*log,
2307	struct xlog_in_core	*iclog,
2308	uint			flags,
2309	int			*record_cnt,
2310	int			*data_cnt,
2311	int			*partial_copy,
2312	int			*partial_copy_len,
2313	int			log_offset,
2314	struct xlog_in_core	**commit_iclog)
2315{
2316	if (*partial_copy) {
2317		/*
2318		 * This iclog has already been marked WANT_SYNC by
2319		 * xlog_state_get_iclog_space.
2320		 */
2321		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2322		*record_cnt = 0;
2323		*data_cnt = 0;
2324		return xlog_state_release_iclog(log, iclog);
2325	}
2326
2327	*partial_copy = 0;
2328	*partial_copy_len = 0;
2329
2330	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2331		/* no more space in this iclog - push it. */
2332		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2333		*record_cnt = 0;
2334		*data_cnt = 0;
2335
2336		spin_lock(&log->l_icloglock);
2337		xlog_state_want_sync(log, iclog);
2338		spin_unlock(&log->l_icloglock);
2339
2340		if (!commit_iclog)
2341			return xlog_state_release_iclog(log, iclog);
2342		ASSERT(flags & XLOG_COMMIT_TRANS);
2343		*commit_iclog = iclog;
2344	}
2345
2346	return 0;
2347}
2348
2349/*
2350 * Write some region out to in-core log
2351 *
2352 * This will be called when writing externally provided regions or when
2353 * writing out a commit record for a given transaction.
2354 *
2355 * General algorithm:
2356 *	1. Find total length of this write.  This may include adding to the
2357 *		lengths passed in.
2358 *	2. Check whether we violate the tickets reservation.
2359 *	3. While writing to this iclog
2360 *	    A. Reserve as much space in this iclog as can get
2361 *	    B. If this is first write, save away start lsn
2362 *	    C. While writing this region:
2363 *		1. If first write of transaction, write start record
2364 *		2. Write log operation header (header per region)
2365 *		3. Find out if we can fit entire region into this iclog
2366 *		4. Potentially, verify destination memcpy ptr
2367 *		5. Memcpy (partial) region
2368 *		6. If partial copy, release iclog; otherwise, continue
2369 *			copying more regions into current iclog
2370 *	4. Mark want sync bit (in simulation mode)
2371 *	5. Release iclog for potential flush to on-disk log.
2372 *
2373 * ERRORS:
2374 * 1.	Panic if reservation is overrun.  This should never happen since
2375 *	reservation amounts are generated internal to the filesystem.
2376 * NOTES:
2377 * 1. Tickets are single threaded data structures.
2378 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2379 *	syncing routine.  When a single log_write region needs to span
2380 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2381 *	on all log operation writes which don't contain the end of the
2382 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2383 *	operation which contains the end of the continued log_write region.
2384 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2385 *	we don't really know exactly how much space will be used.  As a result,
2386 *	we don't update ic_offset until the end when we know exactly how many
2387 *	bytes have been written out.
2388 */
2389int
2390xlog_write(
2391	struct xlog		*log,
2392	struct xfs_log_vec	*log_vector,
2393	struct xlog_ticket	*ticket,
2394	xfs_lsn_t		*start_lsn,
2395	struct xlog_in_core	**commit_iclog,
2396	uint			flags)
2397{
2398	struct xlog_in_core	*iclog = NULL;
2399	struct xfs_log_iovec	*vecp;
2400	struct xfs_log_vec	*lv;
2401	int			len;
2402	int			index;
2403	int			partial_copy = 0;
2404	int			partial_copy_len = 0;
2405	int			contwr = 0;
2406	int			record_cnt = 0;
2407	int			data_cnt = 0;
2408	int			error;
2409
2410	*start_lsn = 0;
2411
2412	len = xlog_write_calc_vec_length(ticket, log_vector);
2413
2414	/*
2415	 * Region headers and bytes are already accounted for.
2416	 * We only need to take into account start records and
2417	 * split regions in this function.
2418	 */
2419	if (ticket->t_flags & XLOG_TIC_INITED)
2420		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2421
2422	/*
2423	 * Commit record headers need to be accounted for. These
2424	 * come in as separate writes so are easy to detect.
2425	 */
2426	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2427		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2428
2429	if (ticket->t_curr_res < 0) {
2430		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2431		     "ctx ticket reservation ran out. Need to up reservation");
2432		xlog_print_tic_res(log->l_mp, ticket);
2433		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2434	}
2435
2436	index = 0;
2437	lv = log_vector;
2438	vecp = lv->lv_iovecp;
2439	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2440		void		*ptr;
2441		int		log_offset;
2442
2443		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2444						   &contwr, &log_offset);
2445		if (error)
2446			return error;
2447
2448		ASSERT(log_offset <= iclog->ic_size - 1);
2449		ptr = iclog->ic_datap + log_offset;
2450
2451		/* start_lsn is the first lsn written to. That's all we need. */
2452		if (!*start_lsn)
2453			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2454
2455		/*
2456		 * This loop writes out as many regions as can fit in the amount
2457		 * of space which was allocated by xlog_state_get_iclog_space().
2458		 */
2459		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2460			struct xfs_log_iovec	*reg;
2461			struct xlog_op_header	*ophdr;
2462			int			start_rec_copy;
2463			int			copy_len;
2464			int			copy_off;
2465			bool			ordered = false;
2466
2467			/* ordered log vectors have no regions to write */
2468			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2469				ASSERT(lv->lv_niovecs == 0);
2470				ordered = true;
2471				goto next_lv;
2472			}
2473
2474			reg = &vecp[index];
2475			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2476			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2477
2478			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2479			if (start_rec_copy) {
2480				record_cnt++;
2481				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2482						   start_rec_copy);
2483			}
2484
2485			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2486			if (!ophdr)
2487				return -EIO;
2488
2489			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2490					   sizeof(struct xlog_op_header));
2491
2492			len += xlog_write_setup_copy(ticket, ophdr,
2493						     iclog->ic_size-log_offset,
2494						     reg->i_len,
2495						     &copy_off, &copy_len,
2496						     &partial_copy,
2497						     &partial_copy_len);
2498			xlog_verify_dest_ptr(log, ptr);
2499
2500			/*
2501			 * Copy region.
2502			 *
2503			 * Unmount records just log an opheader, so can have
2504			 * empty payloads with no data region to copy. Hence we
2505			 * only copy the payload if the vector says it has data
2506			 * to copy.
2507			 */
2508			ASSERT(copy_len >= 0);
2509			if (copy_len > 0) {
2510				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2511				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2512						   copy_len);
2513			}
2514			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2515			record_cnt++;
2516			data_cnt += contwr ? copy_len : 0;
2517
2518			error = xlog_write_copy_finish(log, iclog, flags,
2519						       &record_cnt, &data_cnt,
2520						       &partial_copy,
2521						       &partial_copy_len,
2522						       log_offset,
2523						       commit_iclog);
2524			if (error)
2525				return error;
2526
2527			/*
2528			 * if we had a partial copy, we need to get more iclog
2529			 * space but we don't want to increment the region
2530			 * index because there is still more is this region to
2531			 * write.
2532			 *
2533			 * If we completed writing this region, and we flushed
2534			 * the iclog (indicated by resetting of the record
2535			 * count), then we also need to get more log space. If
2536			 * this was the last record, though, we are done and
2537			 * can just return.
2538			 */
2539			if (partial_copy)
2540				break;
2541
2542			if (++index == lv->lv_niovecs) {
2543next_lv:
2544				lv = lv->lv_next;
2545				index = 0;
2546				if (lv)
2547					vecp = lv->lv_iovecp;
2548			}
2549			if (record_cnt == 0 && !ordered) {
2550				if (!lv)
2551					return 0;
2552				break;
2553			}
2554		}
2555	}
2556
2557	ASSERT(len == 0);
2558
2559	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2560	if (!commit_iclog)
2561		return xlog_state_release_iclog(log, iclog);
2562
2563	ASSERT(flags & XLOG_COMMIT_TRANS);
2564	*commit_iclog = iclog;
2565	return 0;
2566}
2567
2568
2569/*****************************************************************************
2570 *
2571 *		State Machine functions
2572 *
2573 *****************************************************************************
2574 */
2575
2576/* Clean iclogs starting from the head.  This ordering must be
2577 * maintained, so an iclog doesn't become ACTIVE beyond one that
2578 * is SYNCING.  This is also required to maintain the notion that we use
2579 * a ordered wait queue to hold off would be writers to the log when every
2580 * iclog is trying to sync to disk.
2581 *
2582 * State Change: DIRTY -> ACTIVE
2583 */
2584STATIC void
2585xlog_state_clean_log(
2586	struct xlog *log)
2587{
2588	xlog_in_core_t	*iclog;
2589	int changed = 0;
2590
2591	iclog = log->l_iclog;
2592	do {
2593		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2594			iclog->ic_state	= XLOG_STATE_ACTIVE;
2595			iclog->ic_offset       = 0;
2596			ASSERT(iclog->ic_callback == NULL);
2597			/*
2598			 * If the number of ops in this iclog indicate it just
2599			 * contains the dummy transaction, we can
2600			 * change state into IDLE (the second time around).
2601			 * Otherwise we should change the state into
2602			 * NEED a dummy.
2603			 * We don't need to cover the dummy.
2604			 */
2605			if (!changed &&
2606			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2607			   		XLOG_COVER_OPS)) {
2608				changed = 1;
2609			} else {
2610				/*
2611				 * We have two dirty iclogs so start over
2612				 * This could also be num of ops indicates
2613				 * this is not the dummy going out.
2614				 */
2615				changed = 2;
2616			}
2617			iclog->ic_header.h_num_logops = 0;
2618			memset(iclog->ic_header.h_cycle_data, 0,
2619			      sizeof(iclog->ic_header.h_cycle_data));
2620			iclog->ic_header.h_lsn = 0;
2621		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2622			/* do nothing */;
2623		else
2624			break;	/* stop cleaning */
2625		iclog = iclog->ic_next;
2626	} while (iclog != log->l_iclog);
2627
2628	/* log is locked when we are called */
2629	/*
2630	 * Change state for the dummy log recording.
2631	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2632	 * we are done writing the dummy record.
2633	 * If we are done with the second dummy recored (DONE2), then
2634	 * we go to IDLE.
2635	 */
2636	if (changed) {
2637		switch (log->l_covered_state) {
2638		case XLOG_STATE_COVER_IDLE:
2639		case XLOG_STATE_COVER_NEED:
2640		case XLOG_STATE_COVER_NEED2:
2641			log->l_covered_state = XLOG_STATE_COVER_NEED;
2642			break;
2643
2644		case XLOG_STATE_COVER_DONE:
2645			if (changed == 1)
2646				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2647			else
2648				log->l_covered_state = XLOG_STATE_COVER_NEED;
2649			break;
2650
2651		case XLOG_STATE_COVER_DONE2:
2652			if (changed == 1)
2653				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2654			else
2655				log->l_covered_state = XLOG_STATE_COVER_NEED;
2656			break;
2657
2658		default:
2659			ASSERT(0);
2660		}
2661	}
2662}	/* xlog_state_clean_log */
2663
2664STATIC xfs_lsn_t
2665xlog_get_lowest_lsn(
2666	struct xlog	*log)
2667{
2668	xlog_in_core_t  *lsn_log;
2669	xfs_lsn_t	lowest_lsn, lsn;
2670
2671	lsn_log = log->l_iclog;
2672	lowest_lsn = 0;
2673	do {
2674	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2675		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2676		if ((lsn && !lowest_lsn) ||
2677		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2678			lowest_lsn = lsn;
2679		}
2680	    }
2681	    lsn_log = lsn_log->ic_next;
2682	} while (lsn_log != log->l_iclog);
2683	return lowest_lsn;
2684}
2685
2686
2687STATIC void
2688xlog_state_do_callback(
2689	struct xlog		*log,
2690	int			aborted,
2691	struct xlog_in_core	*ciclog)
2692{
2693	xlog_in_core_t	   *iclog;
2694	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2695						 * processed all iclogs once */
2696	xfs_log_callback_t *cb, *cb_next;
2697	int		   flushcnt = 0;
2698	xfs_lsn_t	   lowest_lsn;
2699	int		   ioerrors;	/* counter: iclogs with errors */
2700	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2701	int		   funcdidcallbacks; /* flag: function did callbacks */
2702	int		   repeats;	/* for issuing console warnings if
2703					 * looping too many times */
2704	int		   wake = 0;
2705
2706	spin_lock(&log->l_icloglock);
2707	first_iclog = iclog = log->l_iclog;
2708	ioerrors = 0;
2709	funcdidcallbacks = 0;
2710	repeats = 0;
2711
2712	do {
2713		/*
2714		 * Scan all iclogs starting with the one pointed to by the
2715		 * log.  Reset this starting point each time the log is
2716		 * unlocked (during callbacks).
2717		 *
2718		 * Keep looping through iclogs until one full pass is made
2719		 * without running any callbacks.
2720		 */
2721		first_iclog = log->l_iclog;
2722		iclog = log->l_iclog;
2723		loopdidcallbacks = 0;
2724		repeats++;
2725
2726		do {
2727
2728			/* skip all iclogs in the ACTIVE & DIRTY states */
2729			if (iclog->ic_state &
2730			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2731				iclog = iclog->ic_next;
2732				continue;
2733			}
2734
2735			/*
2736			 * Between marking a filesystem SHUTDOWN and stopping
2737			 * the log, we do flush all iclogs to disk (if there
2738			 * wasn't a log I/O error). So, we do want things to
2739			 * go smoothly in case of just a SHUTDOWN  w/o a
2740			 * LOG_IO_ERROR.
2741			 */
2742			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2743				/*
2744				 * Can only perform callbacks in order.  Since
2745				 * this iclog is not in the DONE_SYNC/
2746				 * DO_CALLBACK state, we skip the rest and
2747				 * just try to clean up.  If we set our iclog
2748				 * to DO_CALLBACK, we will not process it when
2749				 * we retry since a previous iclog is in the
2750				 * CALLBACK and the state cannot change since
2751				 * we are holding the l_icloglock.
2752				 */
2753				if (!(iclog->ic_state &
2754					(XLOG_STATE_DONE_SYNC |
2755						 XLOG_STATE_DO_CALLBACK))) {
2756					if (ciclog && (ciclog->ic_state ==
2757							XLOG_STATE_DONE_SYNC)) {
2758						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2759					}
2760					break;
2761				}
2762				/*
2763				 * We now have an iclog that is in either the
2764				 * DO_CALLBACK or DONE_SYNC states. The other
2765				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2766				 * caught by the above if and are going to
2767				 * clean (i.e. we aren't doing their callbacks)
2768				 * see the above if.
2769				 */
2770
2771				/*
2772				 * We will do one more check here to see if we
2773				 * have chased our tail around.
2774				 */
2775
2776				lowest_lsn = xlog_get_lowest_lsn(log);
2777				if (lowest_lsn &&
2778				    XFS_LSN_CMP(lowest_lsn,
2779						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2780					iclog = iclog->ic_next;
2781					continue; /* Leave this iclog for
2782						   * another thread */
2783				}
2784
2785				iclog->ic_state = XLOG_STATE_CALLBACK;
2786
2787
2788				/*
2789				 * Completion of a iclog IO does not imply that
2790				 * a transaction has completed, as transactions
2791				 * can be large enough to span many iclogs. We
2792				 * cannot change the tail of the log half way
2793				 * through a transaction as this may be the only
2794				 * transaction in the log and moving th etail to
2795				 * point to the middle of it will prevent
2796				 * recovery from finding the start of the
2797				 * transaction. Hence we should only update the
2798				 * last_sync_lsn if this iclog contains
2799				 * transaction completion callbacks on it.
2800				 *
2801				 * We have to do this before we drop the
2802				 * icloglock to ensure we are the only one that
2803				 * can update it.
2804				 */
2805				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2806					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2807				if (iclog->ic_callback)
2808					atomic64_set(&log->l_last_sync_lsn,
2809						be64_to_cpu(iclog->ic_header.h_lsn));
2810
2811			} else
2812				ioerrors++;
2813
2814			spin_unlock(&log->l_icloglock);
2815
2816			/*
2817			 * Keep processing entries in the callback list until
2818			 * we come around and it is empty.  We need to
2819			 * atomically see that the list is empty and change the
2820			 * state to DIRTY so that we don't miss any more
2821			 * callbacks being added.
2822			 */
2823			spin_lock(&iclog->ic_callback_lock);
2824			cb = iclog->ic_callback;
2825			while (cb) {
2826				iclog->ic_callback_tail = &(iclog->ic_callback);
2827				iclog->ic_callback = NULL;
2828				spin_unlock(&iclog->ic_callback_lock);
2829
2830				/* perform callbacks in the order given */
2831				for (; cb; cb = cb_next) {
2832					cb_next = cb->cb_next;
2833					cb->cb_func(cb->cb_arg, aborted);
2834				}
2835				spin_lock(&iclog->ic_callback_lock);
2836				cb = iclog->ic_callback;
2837			}
2838
2839			loopdidcallbacks++;
2840			funcdidcallbacks++;
2841
2842			spin_lock(&log->l_icloglock);
2843			ASSERT(iclog->ic_callback == NULL);
2844			spin_unlock(&iclog->ic_callback_lock);
2845			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2846				iclog->ic_state = XLOG_STATE_DIRTY;
2847
2848			/*
2849			 * Transition from DIRTY to ACTIVE if applicable.
2850			 * NOP if STATE_IOERROR.
2851			 */
2852			xlog_state_clean_log(log);
2853
2854			/* wake up threads waiting in xfs_log_force() */
2855			wake_up_all(&iclog->ic_force_wait);
2856
2857			iclog = iclog->ic_next;
2858		} while (first_iclog != iclog);
2859
2860		if (repeats > 5000) {
2861			flushcnt += repeats;
2862			repeats = 0;
2863			xfs_warn(log->l_mp,
2864				"%s: possible infinite loop (%d iterations)",
2865				__func__, flushcnt);
2866		}
2867	} while (!ioerrors && loopdidcallbacks);
2868
2869#ifdef DEBUG
2870	/*
2871	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2872	 * If the above loop finds an iclog earlier than the current iclog and
2873	 * in one of the syncing states, the current iclog is put into
2874	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2875	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2876	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2877	 * states.
2878	 *
2879	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2880	 * for ic_state == SYNCING.
2881	 */
 
2882	if (funcdidcallbacks) {
2883		first_iclog = iclog = log->l_iclog;
2884		do {
2885			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2886			/*
2887			 * Terminate the loop if iclogs are found in states
2888			 * which will cause other threads to clean up iclogs.
2889			 *
2890			 * SYNCING - i/o completion will go through logs
2891			 * DONE_SYNC - interrupt thread should be waiting for
2892			 *              l_icloglock
2893			 * IOERROR - give up hope all ye who enter here
2894			 */
2895			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2896			    iclog->ic_state & XLOG_STATE_SYNCING ||
2897			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2898			    iclog->ic_state == XLOG_STATE_IOERROR )
2899				break;
2900			iclog = iclog->ic_next;
2901		} while (first_iclog != iclog);
2902	}
2903#endif
2904
2905	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2906		wake = 1;
2907	spin_unlock(&log->l_icloglock);
2908
2909	if (wake)
2910		wake_up_all(&log->l_flush_wait);
2911}
2912
2913
2914/*
2915 * Finish transitioning this iclog to the dirty state.
2916 *
2917 * Make sure that we completely execute this routine only when this is
2918 * the last call to the iclog.  There is a good chance that iclog flushes,
2919 * when we reach the end of the physical log, get turned into 2 separate
2920 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2921 * routine.  By using the reference count bwritecnt, we guarantee that only
2922 * the second completion goes through.
2923 *
2924 * Callbacks could take time, so they are done outside the scope of the
2925 * global state machine log lock.
2926 */
2927STATIC void
2928xlog_state_done_syncing(
2929	xlog_in_core_t	*iclog,
2930	int		aborted)
2931{
2932	struct xlog	   *log = iclog->ic_log;
2933
2934	spin_lock(&log->l_icloglock);
2935
2936	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2937	       iclog->ic_state == XLOG_STATE_IOERROR);
2938	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2939	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2940
2941
2942	/*
2943	 * If we got an error, either on the first buffer, or in the case of
2944	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2945	 * and none should ever be attempted to be written to disk
2946	 * again.
2947	 */
2948	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2949		if (--iclog->ic_bwritecnt == 1) {
2950			spin_unlock(&log->l_icloglock);
2951			return;
2952		}
2953		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2954	}
2955
2956	/*
2957	 * Someone could be sleeping prior to writing out the next
2958	 * iclog buffer, we wake them all, one will get to do the
2959	 * I/O, the others get to wait for the result.
2960	 */
2961	wake_up_all(&iclog->ic_write_wait);
2962	spin_unlock(&log->l_icloglock);
2963	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2964}	/* xlog_state_done_syncing */
2965
2966
2967/*
2968 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2969 * sleep.  We wait on the flush queue on the head iclog as that should be
2970 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2971 * we will wait here and all new writes will sleep until a sync completes.
2972 *
2973 * The in-core logs are used in a circular fashion. They are not used
2974 * out-of-order even when an iclog past the head is free.
2975 *
2976 * return:
2977 *	* log_offset where xlog_write() can start writing into the in-core
2978 *		log's data space.
2979 *	* in-core log pointer to which xlog_write() should write.
2980 *	* boolean indicating this is a continued write to an in-core log.
2981 *		If this is the last write, then the in-core log's offset field
2982 *		needs to be incremented, depending on the amount of data which
2983 *		is copied.
2984 */
2985STATIC int
2986xlog_state_get_iclog_space(
2987	struct xlog		*log,
2988	int			len,
2989	struct xlog_in_core	**iclogp,
2990	struct xlog_ticket	*ticket,
2991	int			*continued_write,
2992	int			*logoffsetp)
2993{
2994	int		  log_offset;
2995	xlog_rec_header_t *head;
2996	xlog_in_core_t	  *iclog;
2997	int		  error;
2998
2999restart:
3000	spin_lock(&log->l_icloglock);
3001	if (XLOG_FORCED_SHUTDOWN(log)) {
3002		spin_unlock(&log->l_icloglock);
3003		return -EIO;
3004	}
3005
3006	iclog = log->l_iclog;
3007	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3008		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3009
3010		/* Wait for log writes to have flushed */
3011		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3012		goto restart;
3013	}
3014
3015	head = &iclog->ic_header;
3016
3017	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3018	log_offset = iclog->ic_offset;
3019
3020	/* On the 1st write to an iclog, figure out lsn.  This works
3021	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3022	 * committing to.  If the offset is set, that's how many blocks
3023	 * must be written.
3024	 */
3025	if (log_offset == 0) {
3026		ticket->t_curr_res -= log->l_iclog_hsize;
3027		xlog_tic_add_region(ticket,
3028				    log->l_iclog_hsize,
3029				    XLOG_REG_TYPE_LRHEADER);
3030		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3031		head->h_lsn = cpu_to_be64(
3032			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3033		ASSERT(log->l_curr_block >= 0);
3034	}
3035
3036	/* If there is enough room to write everything, then do it.  Otherwise,
3037	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3038	 * bit is on, so this will get flushed out.  Don't update ic_offset
3039	 * until you know exactly how many bytes get copied.  Therefore, wait
3040	 * until later to update ic_offset.
3041	 *
3042	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3043	 * can fit into remaining data section.
3044	 */
3045	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3046		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3047
3048		/*
3049		 * If I'm the only one writing to this iclog, sync it to disk.
3050		 * We need to do an atomic compare and decrement here to avoid
3051		 * racing with concurrent atomic_dec_and_lock() calls in
3052		 * xlog_state_release_iclog() when there is more than one
3053		 * reference to the iclog.
3054		 */
3055		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3056			/* we are the only one */
3057			spin_unlock(&log->l_icloglock);
3058			error = xlog_state_release_iclog(log, iclog);
3059			if (error)
3060				return error;
3061		} else {
3062			spin_unlock(&log->l_icloglock);
3063		}
3064		goto restart;
3065	}
3066
3067	/* Do we have enough room to write the full amount in the remainder
3068	 * of this iclog?  Or must we continue a write on the next iclog and
3069	 * mark this iclog as completely taken?  In the case where we switch
3070	 * iclogs (to mark it taken), this particular iclog will release/sync
3071	 * to disk in xlog_write().
3072	 */
3073	if (len <= iclog->ic_size - iclog->ic_offset) {
3074		*continued_write = 0;
3075		iclog->ic_offset += len;
3076	} else {
3077		*continued_write = 1;
3078		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3079	}
3080	*iclogp = iclog;
3081
3082	ASSERT(iclog->ic_offset <= iclog->ic_size);
3083	spin_unlock(&log->l_icloglock);
3084
3085	*logoffsetp = log_offset;
3086	return 0;
3087}	/* xlog_state_get_iclog_space */
3088
3089/* The first cnt-1 times through here we don't need to
3090 * move the grant write head because the permanent
3091 * reservation has reserved cnt times the unit amount.
3092 * Release part of current permanent unit reservation and
3093 * reset current reservation to be one units worth.  Also
3094 * move grant reservation head forward.
3095 */
3096STATIC void
3097xlog_regrant_reserve_log_space(
3098	struct xlog		*log,
3099	struct xlog_ticket	*ticket)
3100{
3101	trace_xfs_log_regrant_reserve_enter(log, ticket);
3102
3103	if (ticket->t_cnt > 0)
3104		ticket->t_cnt--;
3105
3106	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3107					ticket->t_curr_res);
3108	xlog_grant_sub_space(log, &log->l_write_head.grant,
3109					ticket->t_curr_res);
3110	ticket->t_curr_res = ticket->t_unit_res;
3111	xlog_tic_reset_res(ticket);
3112
3113	trace_xfs_log_regrant_reserve_sub(log, ticket);
3114
3115	/* just return if we still have some of the pre-reserved space */
3116	if (ticket->t_cnt > 0)
3117		return;
3118
3119	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3120					ticket->t_unit_res);
3121
3122	trace_xfs_log_regrant_reserve_exit(log, ticket);
3123
3124	ticket->t_curr_res = ticket->t_unit_res;
3125	xlog_tic_reset_res(ticket);
3126}	/* xlog_regrant_reserve_log_space */
3127
3128
3129/*
3130 * Give back the space left from a reservation.
3131 *
3132 * All the information we need to make a correct determination of space left
3133 * is present.  For non-permanent reservations, things are quite easy.  The
3134 * count should have been decremented to zero.  We only need to deal with the
3135 * space remaining in the current reservation part of the ticket.  If the
3136 * ticket contains a permanent reservation, there may be left over space which
3137 * needs to be released.  A count of N means that N-1 refills of the current
3138 * reservation can be done before we need to ask for more space.  The first
3139 * one goes to fill up the first current reservation.  Once we run out of
3140 * space, the count will stay at zero and the only space remaining will be
3141 * in the current reservation field.
3142 */
3143STATIC void
3144xlog_ungrant_log_space(
3145	struct xlog		*log,
3146	struct xlog_ticket	*ticket)
3147{
3148	int	bytes;
3149
3150	if (ticket->t_cnt > 0)
3151		ticket->t_cnt--;
3152
3153	trace_xfs_log_ungrant_enter(log, ticket);
3154	trace_xfs_log_ungrant_sub(log, ticket);
3155
3156	/*
3157	 * If this is a permanent reservation ticket, we may be able to free
3158	 * up more space based on the remaining count.
3159	 */
3160	bytes = ticket->t_curr_res;
3161	if (ticket->t_cnt > 0) {
3162		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3163		bytes += ticket->t_unit_res*ticket->t_cnt;
3164	}
3165
3166	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3167	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3168
3169	trace_xfs_log_ungrant_exit(log, ticket);
3170
3171	xfs_log_space_wake(log->l_mp);
3172}
3173
3174/*
3175 * Flush iclog to disk if this is the last reference to the given iclog and
3176 * the WANT_SYNC bit is set.
3177 *
3178 * When this function is entered, the iclog is not necessarily in the
3179 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3180 *
3181 *
3182 */
3183STATIC int
3184xlog_state_release_iclog(
3185	struct xlog		*log,
3186	struct xlog_in_core	*iclog)
3187{
3188	int		sync = 0;	/* do we sync? */
3189
3190	if (iclog->ic_state & XLOG_STATE_IOERROR)
3191		return -EIO;
3192
3193	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3194	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3195		return 0;
3196
3197	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3198		spin_unlock(&log->l_icloglock);
3199		return -EIO;
3200	}
3201	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3202	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3203
3204	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3205		/* update tail before writing to iclog */
3206		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3207		sync++;
3208		iclog->ic_state = XLOG_STATE_SYNCING;
3209		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3210		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3211		/* cycle incremented when incrementing curr_block */
3212	}
3213	spin_unlock(&log->l_icloglock);
3214
3215	/*
3216	 * We let the log lock go, so it's possible that we hit a log I/O
3217	 * error or some other SHUTDOWN condition that marks the iclog
3218	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3219	 * this iclog has consistent data, so we ignore IOERROR
3220	 * flags after this point.
3221	 */
3222	if (sync)
3223		return xlog_sync(log, iclog);
3224	return 0;
3225}	/* xlog_state_release_iclog */
3226
3227
3228/*
3229 * This routine will mark the current iclog in the ring as WANT_SYNC
3230 * and move the current iclog pointer to the next iclog in the ring.
3231 * When this routine is called from xlog_state_get_iclog_space(), the
3232 * exact size of the iclog has not yet been determined.  All we know is
3233 * that every data block.  We have run out of space in this log record.
3234 */
3235STATIC void
3236xlog_state_switch_iclogs(
3237	struct xlog		*log,
3238	struct xlog_in_core	*iclog,
3239	int			eventual_size)
3240{
3241	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3242	if (!eventual_size)
3243		eventual_size = iclog->ic_offset;
3244	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3245	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3246	log->l_prev_block = log->l_curr_block;
3247	log->l_prev_cycle = log->l_curr_cycle;
3248
3249	/* roll log?: ic_offset changed later */
3250	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3251
3252	/* Round up to next log-sunit */
3253	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3254	    log->l_mp->m_sb.sb_logsunit > 1) {
3255		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3256		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3257	}
3258
3259	if (log->l_curr_block >= log->l_logBBsize) {
3260		/*
3261		 * Rewind the current block before the cycle is bumped to make
3262		 * sure that the combined LSN never transiently moves forward
3263		 * when the log wraps to the next cycle. This is to support the
3264		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3265		 * other cases should acquire l_icloglock.
3266		 */
3267		log->l_curr_block -= log->l_logBBsize;
3268		ASSERT(log->l_curr_block >= 0);
3269		smp_wmb();
3270		log->l_curr_cycle++;
3271		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3272			log->l_curr_cycle++;
 
 
3273	}
3274	ASSERT(iclog == log->l_iclog);
3275	log->l_iclog = iclog->ic_next;
3276}	/* xlog_state_switch_iclogs */
3277
3278/*
3279 * Write out all data in the in-core log as of this exact moment in time.
3280 *
3281 * Data may be written to the in-core log during this call.  However,
3282 * we don't guarantee this data will be written out.  A change from past
3283 * implementation means this routine will *not* write out zero length LRs.
3284 *
3285 * Basically, we try and perform an intelligent scan of the in-core logs.
3286 * If we determine there is no flushable data, we just return.  There is no
3287 * flushable data if:
3288 *
3289 *	1. the current iclog is active and has no data; the previous iclog
3290 *		is in the active or dirty state.
3291 *	2. the current iclog is drity, and the previous iclog is in the
3292 *		active or dirty state.
3293 *
3294 * We may sleep if:
3295 *
3296 *	1. the current iclog is not in the active nor dirty state.
3297 *	2. the current iclog dirty, and the previous iclog is not in the
3298 *		active nor dirty state.
3299 *	3. the current iclog is active, and there is another thread writing
3300 *		to this particular iclog.
3301 *	4. a) the current iclog is active and has no other writers
3302 *	   b) when we return from flushing out this iclog, it is still
3303 *		not in the active nor dirty state.
3304 */
3305int
3306xfs_log_force(
3307	struct xfs_mount	*mp,
3308	uint			flags)
 
3309{
3310	struct xlog		*log = mp->m_log;
3311	struct xlog_in_core	*iclog;
3312	xfs_lsn_t		lsn;
3313
3314	XFS_STATS_INC(mp, xs_log_force);
3315	trace_xfs_log_force(mp, 0, _RET_IP_);
3316
3317	xlog_cil_force(log);
3318
3319	spin_lock(&log->l_icloglock);
 
3320	iclog = log->l_iclog;
3321	if (iclog->ic_state & XLOG_STATE_IOERROR)
3322		goto out_error;
 
 
3323
3324	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3325	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3326	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
 
 
3327		/*
3328		 * If the head is dirty or (active and empty), then we need to
3329		 * look at the previous iclog.
3330		 *
3331		 * If the previous iclog is active or dirty we are done.  There
3332		 * is nothing to sync out. Otherwise, we attach ourselves to the
3333		 * previous iclog and go to sleep.
3334		 */
3335		iclog = iclog->ic_prev;
3336		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3337		    iclog->ic_state == XLOG_STATE_DIRTY)
3338			goto out_unlock;
3339	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3340		if (atomic_read(&iclog->ic_refcnt) == 0) {
3341			/*
3342			 * We are the only one with access to this iclog.
3343			 *
3344			 * Flush it out now.  There should be a roundoff of zero
3345			 * to show that someone has already taken care of the
3346			 * roundoff from the previous sync.
3347			 */
3348			atomic_inc(&iclog->ic_refcnt);
3349			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3350			xlog_state_switch_iclogs(log, iclog, 0);
3351			spin_unlock(&log->l_icloglock);
3352
3353			if (xlog_state_release_iclog(log, iclog))
3354				return -EIO;
3355
3356			spin_lock(&log->l_icloglock);
3357			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3358			    iclog->ic_state == XLOG_STATE_DIRTY)
3359				goto out_unlock;
 
 
3360		} else {
3361			/*
3362			 * Someone else is writing to this iclog.
3363			 *
3364			 * Use its call to flush out the data.  However, the
3365			 * other thread may not force out this LR, so we mark
3366			 * it WANT_SYNC.
3367			 */
3368			xlog_state_switch_iclogs(log, iclog, 0);
3369		}
3370	} else {
3371		/*
3372		 * If the head iclog is not active nor dirty, we just attach
3373		 * ourselves to the head and go to sleep if necessary.
3374		 */
3375		;
3376	}
3377
3378	if (!(flags & XFS_LOG_SYNC))
3379		goto out_unlock;
3380
3381	if (iclog->ic_state & XLOG_STATE_IOERROR)
3382		goto out_error;
3383	XFS_STATS_INC(mp, xs_log_force_sleep);
3384	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3385	if (iclog->ic_state & XLOG_STATE_IOERROR)
3386		return -EIO;
3387	return 0;
3388
3389out_unlock:
3390	spin_unlock(&log->l_icloglock);
3391	return 0;
3392out_error:
3393	spin_unlock(&log->l_icloglock);
3394	return -EIO;
3395}
3396
3397static int
3398__xfs_log_force_lsn(
3399	struct xfs_mount	*mp,
3400	xfs_lsn_t		lsn,
3401	uint			flags,
3402	int			*log_flushed,
3403	bool			already_slept)
3404{
3405	struct xlog		*log = mp->m_log;
3406	struct xlog_in_core	*iclog;
3407
3408	spin_lock(&log->l_icloglock);
3409	iclog = log->l_iclog;
3410	if (iclog->ic_state & XLOG_STATE_IOERROR)
3411		goto out_error;
3412
3413	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3414		iclog = iclog->ic_next;
3415		if (iclog == log->l_iclog)
3416			goto out_unlock;
3417	}
3418
3419	if (iclog->ic_state == XLOG_STATE_DIRTY)
3420		goto out_unlock;
3421
3422	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
 
 
3423		/*
3424		 * We sleep here if we haven't already slept (e.g. this is the
3425		 * first time we've looked at the correct iclog buf) and the
3426		 * buffer before us is going to be sync'ed.  The reason for this
3427		 * is that if we are doing sync transactions here, by waiting
3428		 * for the previous I/O to complete, we can allow a few more
3429		 * transactions into this iclog before we close it down.
3430		 *
3431		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3432		 * refcnt so we can release the log (which drops the ref count).
3433		 * The state switch keeps new transaction commits from using
3434		 * this buffer.  When the current commits finish writing into
3435		 * the buffer, the refcount will drop to zero and the buffer
3436		 * will go out then.
3437		 */
3438		if (!already_slept &&
3439		    (iclog->ic_prev->ic_state &
3440		     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3441			ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3442
3443			XFS_STATS_INC(mp, xs_log_force_sleep);
3444
3445			xlog_wait(&iclog->ic_prev->ic_write_wait,
3446					&log->l_icloglock);
3447			return -EAGAIN;
3448		}
3449		atomic_inc(&iclog->ic_refcnt);
3450		xlog_state_switch_iclogs(log, iclog, 0);
3451		spin_unlock(&log->l_icloglock);
3452		if (xlog_state_release_iclog(log, iclog))
3453			return -EIO;
 
 
 
 
3454		if (log_flushed)
3455			*log_flushed = 1;
3456		spin_lock(&log->l_icloglock);
 
 
 
3457	}
 
 
3458
3459	if (!(flags & XFS_LOG_SYNC) ||
3460	    (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3461		goto out_unlock;
 
 
 
 
 
 
 
 
3462
3463	if (iclog->ic_state & XLOG_STATE_IOERROR)
3464		goto out_error;
3465
3466	XFS_STATS_INC(mp, xs_log_force_sleep);
3467	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3468	if (iclog->ic_state & XLOG_STATE_IOERROR)
3469		return -EIO;
3470	return 0;
3471
3472out_unlock:
3473	spin_unlock(&log->l_icloglock);
3474	return 0;
3475out_error:
3476	spin_unlock(&log->l_icloglock);
3477	return -EIO;
3478}
3479
3480/*
3481 * Force the in-core log to disk for a specific LSN.
3482 *
3483 * Find in-core log with lsn.
3484 *	If it is in the DIRTY state, just return.
3485 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3486 *		state and go to sleep or return.
3487 *	If it is in any other state, go to sleep or return.
3488 *
3489 * Synchronous forces are implemented with a wait queue.  All callers trying
3490 * to force a given lsn to disk must wait on the queue attached to the
3491 * specific in-core log.  When given in-core log finally completes its write
3492 * to disk, that thread will wake up all threads waiting on the queue.
 
3493 */
3494int
3495xfs_log_force_lsn(
3496	struct xfs_mount	*mp,
3497	xfs_lsn_t		lsn,
3498	uint			flags,
3499	int			*log_flushed)
3500{
3501	int			ret;
 
 
 
3502	ASSERT(lsn != 0);
3503
3504	XFS_STATS_INC(mp, xs_log_force);
3505	trace_xfs_log_force(mp, lsn, _RET_IP_);
3506
3507	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3508	if (lsn == NULLCOMMITLSN)
3509		return 0;
3510
3511	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3512	if (ret == -EAGAIN)
3513		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3514	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3515}
3516
3517/*
3518 * Called when we want to mark the current iclog as being ready to sync to
3519 * disk.
3520 */
3521STATIC void
3522xlog_state_want_sync(
3523	struct xlog		*log,
3524	struct xlog_in_core	*iclog)
3525{
3526	assert_spin_locked(&log->l_icloglock);
3527
3528	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3529		xlog_state_switch_iclogs(log, iclog, 0);
3530	} else {
3531		ASSERT(iclog->ic_state &
3532			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3533	}
3534}
3535
3536
3537/*****************************************************************************
3538 *
3539 *		TICKET functions
3540 *
3541 *****************************************************************************
3542 */
3543
3544/*
3545 * Free a used ticket when its refcount falls to zero.
3546 */
3547void
3548xfs_log_ticket_put(
3549	xlog_ticket_t	*ticket)
3550{
3551	ASSERT(atomic_read(&ticket->t_ref) > 0);
3552	if (atomic_dec_and_test(&ticket->t_ref))
3553		kmem_zone_free(xfs_log_ticket_zone, ticket);
3554}
3555
3556xlog_ticket_t *
3557xfs_log_ticket_get(
3558	xlog_ticket_t	*ticket)
3559{
3560	ASSERT(atomic_read(&ticket->t_ref) > 0);
3561	atomic_inc(&ticket->t_ref);
3562	return ticket;
3563}
3564
3565/*
3566 * Figure out the total log space unit (in bytes) that would be
3567 * required for a log ticket.
3568 */
3569int
3570xfs_log_calc_unit_res(
3571	struct xfs_mount	*mp,
3572	int			unit_bytes)
3573{
3574	struct xlog		*log = mp->m_log;
3575	int			iclog_space;
3576	uint			num_headers;
 
 
 
 
 
 
 
 
3577
3578	/*
3579	 * Permanent reservations have up to 'cnt'-1 active log operations
3580	 * in the log.  A unit in this case is the amount of space for one
3581	 * of these log operations.  Normal reservations have a cnt of 1
3582	 * and their unit amount is the total amount of space required.
3583	 *
3584	 * The following lines of code account for non-transaction data
3585	 * which occupy space in the on-disk log.
3586	 *
3587	 * Normal form of a transaction is:
3588	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3589	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3590	 *
3591	 * We need to account for all the leadup data and trailer data
3592	 * around the transaction data.
3593	 * And then we need to account for the worst case in terms of using
3594	 * more space.
3595	 * The worst case will happen if:
3596	 * - the placement of the transaction happens to be such that the
3597	 *   roundoff is at its maximum
3598	 * - the transaction data is synced before the commit record is synced
3599	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3600	 *   Therefore the commit record is in its own Log Record.
3601	 *   This can happen as the commit record is called with its
3602	 *   own region to xlog_write().
3603	 *   This then means that in the worst case, roundoff can happen for
3604	 *   the commit-rec as well.
3605	 *   The commit-rec is smaller than padding in this scenario and so it is
3606	 *   not added separately.
3607	 */
3608
3609	/* for trans header */
3610	unit_bytes += sizeof(xlog_op_header_t);
3611	unit_bytes += sizeof(xfs_trans_header_t);
3612
3613	/* for start-rec */
3614	unit_bytes += sizeof(xlog_op_header_t);
3615
3616	/*
3617	 * for LR headers - the space for data in an iclog is the size minus
3618	 * the space used for the headers. If we use the iclog size, then we
3619	 * undercalculate the number of headers required.
3620	 *
3621	 * Furthermore - the addition of op headers for split-recs might
3622	 * increase the space required enough to require more log and op
3623	 * headers, so take that into account too.
3624	 *
3625	 * IMPORTANT: This reservation makes the assumption that if this
3626	 * transaction is the first in an iclog and hence has the LR headers
3627	 * accounted to it, then the remaining space in the iclog is
3628	 * exclusively for this transaction.  i.e. if the transaction is larger
3629	 * than the iclog, it will be the only thing in that iclog.
3630	 * Fundamentally, this means we must pass the entire log vector to
3631	 * xlog_write to guarantee this.
3632	 */
3633	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3634	num_headers = howmany(unit_bytes, iclog_space);
3635
3636	/* for split-recs - ophdrs added when data split over LRs */
3637	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3638
3639	/* add extra header reservations if we overrun */
3640	while (!num_headers ||
3641	       howmany(unit_bytes, iclog_space) > num_headers) {
3642		unit_bytes += sizeof(xlog_op_header_t);
3643		num_headers++;
3644	}
3645	unit_bytes += log->l_iclog_hsize * num_headers;
3646
3647	/* for commit-rec LR header - note: padding will subsume the ophdr */
3648	unit_bytes += log->l_iclog_hsize;
3649
3650	/* for roundoff padding for transaction data and one for commit record */
3651	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
 
3652		/* log su roundoff */
3653		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3654	} else {
3655		/* BB roundoff */
3656		unit_bytes += 2 * BBSIZE;
3657        }
3658
3659	return unit_bytes;
3660}
3661
3662/*
3663 * Allocate and initialise a new log ticket.
3664 */
3665struct xlog_ticket *
3666xlog_ticket_alloc(
3667	struct xlog		*log,
3668	int			unit_bytes,
3669	int			cnt,
3670	char			client,
3671	bool			permanent,
3672	xfs_km_flags_t		alloc_flags)
3673{
3674	struct xlog_ticket	*tic;
3675	int			unit_res;
3676
3677	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3678	if (!tic)
3679		return NULL;
3680
3681	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3682
3683	atomic_set(&tic->t_ref, 1);
3684	tic->t_task		= current;
3685	INIT_LIST_HEAD(&tic->t_queue);
3686	tic->t_unit_res		= unit_res;
3687	tic->t_curr_res		= unit_res;
3688	tic->t_cnt		= cnt;
3689	tic->t_ocnt		= cnt;
3690	tic->t_tid		= prandom_u32();
3691	tic->t_clientid		= client;
3692	tic->t_flags		= XLOG_TIC_INITED;
 
3693	if (permanent)
3694		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3695
3696	xlog_tic_reset_res(tic);
3697
3698	return tic;
3699}
3700
3701
3702/******************************************************************************
3703 *
3704 *		Log debug routines
3705 *
3706 ******************************************************************************
3707 */
3708#if defined(DEBUG)
3709/*
3710 * Make sure that the destination ptr is within the valid data region of
3711 * one of the iclogs.  This uses backup pointers stored in a different
3712 * part of the log in case we trash the log structure.
3713 */
3714STATIC void
3715xlog_verify_dest_ptr(
3716	struct xlog	*log,
3717	void		*ptr)
3718{
3719	int i;
3720	int good_ptr = 0;
3721
3722	for (i = 0; i < log->l_iclog_bufs; i++) {
3723		if (ptr >= log->l_iclog_bak[i] &&
3724		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3725			good_ptr++;
3726	}
3727
3728	if (!good_ptr)
3729		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3730}
3731
3732/*
3733 * Check to make sure the grant write head didn't just over lap the tail.  If
3734 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3735 * the cycles differ by exactly one and check the byte count.
3736 *
3737 * This check is run unlocked, so can give false positives. Rather than assert
3738 * on failures, use a warn-once flag and a panic tag to allow the admin to
3739 * determine if they want to panic the machine when such an error occurs. For
3740 * debug kernels this will have the same effect as using an assert but, unlinke
3741 * an assert, it can be turned off at runtime.
3742 */
3743STATIC void
3744xlog_verify_grant_tail(
3745	struct xlog	*log)
3746{
3747	int		tail_cycle, tail_blocks;
3748	int		cycle, space;
3749
3750	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3751	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3752	if (tail_cycle != cycle) {
3753		if (cycle - 1 != tail_cycle &&
3754		    !(log->l_flags & XLOG_TAIL_WARN)) {
3755			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3756				"%s: cycle - 1 != tail_cycle", __func__);
3757			log->l_flags |= XLOG_TAIL_WARN;
3758		}
3759
3760		if (space > BBTOB(tail_blocks) &&
3761		    !(log->l_flags & XLOG_TAIL_WARN)) {
3762			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3763				"%s: space > BBTOB(tail_blocks)", __func__);
3764			log->l_flags |= XLOG_TAIL_WARN;
3765		}
3766	}
3767}
3768
3769/* check if it will fit */
3770STATIC void
3771xlog_verify_tail_lsn(
3772	struct xlog		*log,
3773	struct xlog_in_core	*iclog,
3774	xfs_lsn_t		tail_lsn)
3775{
3776    int blocks;
3777
3778    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3779	blocks =
3780	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3781	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3782		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3783    } else {
3784	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3785
3786	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3787		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3788
3789	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3790	if (blocks < BTOBB(iclog->ic_offset) + 1)
3791		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3792    }
3793}	/* xlog_verify_tail_lsn */
3794
3795/*
3796 * Perform a number of checks on the iclog before writing to disk.
3797 *
3798 * 1. Make sure the iclogs are still circular
3799 * 2. Make sure we have a good magic number
3800 * 3. Make sure we don't have magic numbers in the data
3801 * 4. Check fields of each log operation header for:
3802 *	A. Valid client identifier
3803 *	B. tid ptr value falls in valid ptr space (user space code)
3804 *	C. Length in log record header is correct according to the
3805 *		individual operation headers within record.
3806 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3807 *	log, check the preceding blocks of the physical log to make sure all
3808 *	the cycle numbers agree with the current cycle number.
3809 */
3810STATIC void
3811xlog_verify_iclog(
3812	struct xlog		*log,
3813	struct xlog_in_core	*iclog,
3814	int			count,
3815	bool                    syncing)
3816{
3817	xlog_op_header_t	*ophead;
3818	xlog_in_core_t		*icptr;
3819	xlog_in_core_2_t	*xhdr;
3820	void			*base_ptr, *ptr, *p;
3821	ptrdiff_t		field_offset;
3822	uint8_t			clientid;
 
3823	int			len, i, j, k, op_len;
3824	int			idx;
3825
3826	/* check validity of iclog pointers */
3827	spin_lock(&log->l_icloglock);
3828	icptr = log->l_iclog;
3829	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3830		ASSERT(icptr);
3831
 
 
3832	if (icptr != log->l_iclog)
3833		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3834	spin_unlock(&log->l_icloglock);
3835
3836	/* check log magic numbers */
3837	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3838		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3839
3840	base_ptr = ptr = &iclog->ic_header;
3841	p = &iclog->ic_header;
3842	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3843		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3844			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3845				__func__);
3846	}
3847
3848	/* check fields */
3849	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3850	base_ptr = ptr = iclog->ic_datap;
3851	ophead = ptr;
 
3852	xhdr = iclog->ic_data;
3853	for (i = 0; i < len; i++) {
3854		ophead = ptr;
3855
3856		/* clientid is only 1 byte */
3857		p = &ophead->oh_clientid;
3858		field_offset = p - base_ptr;
3859		if (!syncing || (field_offset & 0x1ff)) {
3860			clientid = ophead->oh_clientid;
3861		} else {
3862			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3863			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3864				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3865				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3866				clientid = xlog_get_client_id(
3867					xhdr[j].hic_xheader.xh_cycle_data[k]);
3868			} else {
3869				clientid = xlog_get_client_id(
3870					iclog->ic_header.h_cycle_data[idx]);
3871			}
3872		}
3873		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3874			xfs_warn(log->l_mp,
3875				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3876				__func__, clientid, ophead,
3877				(unsigned long)field_offset);
3878
3879		/* check length */
3880		p = &ophead->oh_len;
3881		field_offset = p - base_ptr;
3882		if (!syncing || (field_offset & 0x1ff)) {
3883			op_len = be32_to_cpu(ophead->oh_len);
3884		} else {
3885			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3886				    (uintptr_t)iclog->ic_datap);
3887			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3888				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3889				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3890				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3891			} else {
3892				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3893			}
3894		}
3895		ptr += sizeof(xlog_op_header_t) + op_len;
3896	}
3897}	/* xlog_verify_iclog */
3898#endif
3899
3900/*
3901 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3902 */
3903STATIC int
3904xlog_state_ioerror(
3905	struct xlog	*log)
3906{
3907	xlog_in_core_t	*iclog, *ic;
3908
3909	iclog = log->l_iclog;
3910	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3911		/*
3912		 * Mark all the incore logs IOERROR.
3913		 * From now on, no log flushes will result.
3914		 */
3915		ic = iclog;
3916		do {
3917			ic->ic_state = XLOG_STATE_IOERROR;
3918			ic = ic->ic_next;
3919		} while (ic != iclog);
3920		return 0;
3921	}
3922	/*
3923	 * Return non-zero, if state transition has already happened.
3924	 */
3925	return 1;
3926}
3927
3928/*
3929 * This is called from xfs_force_shutdown, when we're forcibly
3930 * shutting down the filesystem, typically because of an IO error.
3931 * Our main objectives here are to make sure that:
3932 *	a. if !logerror, flush the logs to disk. Anything modified
3933 *	   after this is ignored.
3934 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3935 *	   parties to find out, 'atomically'.
3936 *	c. those who're sleeping on log reservations, pinned objects and
3937 *	    other resources get woken up, and be told the bad news.
3938 *	d. nothing new gets queued up after (b) and (c) are done.
3939 *
3940 * Note: for the !logerror case we need to flush the regions held in memory out
3941 * to disk first. This needs to be done before the log is marked as shutdown,
3942 * otherwise the iclog writes will fail.
 
 
 
3943 */
3944int
3945xfs_log_force_umount(
3946	struct xfs_mount	*mp,
3947	int			logerror)
3948{
3949	struct xlog	*log;
3950	int		retval;
3951
3952	log = mp->m_log;
3953
3954	/*
3955	 * If this happens during log recovery, don't worry about
3956	 * locking; the log isn't open for business yet.
3957	 */
3958	if (!log ||
3959	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3960		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3961		if (mp->m_sb_bp)
3962			mp->m_sb_bp->b_flags |= XBF_DONE;
3963		return 0;
3964	}
3965
3966	/*
3967	 * Somebody could've already done the hard work for us.
3968	 * No need to get locks for this.
3969	 */
3970	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3971		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3972		return 1;
3973	}
 
3974
3975	/*
3976	 * Flush all the completed transactions to disk before marking the log
3977	 * being shut down. We need to do it in this order to ensure that
3978	 * completed operations are safely on disk before we shut down, and that
3979	 * we don't have to issue any buffer IO after the shutdown flags are set
3980	 * to guarantee this.
3981	 */
3982	if (!logerror)
3983		xfs_log_force(mp, XFS_LOG_SYNC);
3984
3985	/*
3986	 * mark the filesystem and the as in a shutdown state and wake
3987	 * everybody up to tell them the bad news.
3988	 */
3989	spin_lock(&log->l_icloglock);
3990	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3991	if (mp->m_sb_bp)
3992		mp->m_sb_bp->b_flags |= XBF_DONE;
3993
3994	/*
3995	 * Mark the log and the iclogs with IO error flags to prevent any
3996	 * further log IO from being issued or completed.
 
3997	 */
3998	log->l_flags |= XLOG_IO_ERROR;
3999	retval = xlog_state_ioerror(log);
 
 
 
 
 
 
4000	spin_unlock(&log->l_icloglock);
4001
4002	/*
4003	 * We don't want anybody waiting for log reservations after this. That
4004	 * means we have to wake up everybody queued up on reserveq as well as
4005	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4006	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4007	 * action is protected by the grant locks.
4008	 */
4009	xlog_grant_head_wake_all(&log->l_reserve_head);
4010	xlog_grant_head_wake_all(&log->l_write_head);
4011
 
 
 
 
 
 
 
 
 
 
 
 
4012	/*
4013	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4014	 * as if the log writes were completed. The abort handling in the log
4015	 * item committed callback functions will do this again under lock to
4016	 * avoid races.
4017	 */
4018	wake_up_all(&log->l_cilp->xc_commit_wait);
4019	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4020
4021#ifdef XFSERRORDEBUG
4022	{
4023		xlog_in_core_t	*iclog;
4024
4025		spin_lock(&log->l_icloglock);
4026		iclog = log->l_iclog;
4027		do {
4028			ASSERT(iclog->ic_callback == 0);
4029			iclog = iclog->ic_next;
4030		} while (iclog != log->l_iclog);
4031		spin_unlock(&log->l_icloglock);
4032	}
4033#endif
4034	/* return non-zero if log IOERROR transition had already happened */
4035	return retval;
4036}
4037
4038STATIC int
4039xlog_iclogs_empty(
4040	struct xlog	*log)
4041{
4042	xlog_in_core_t	*iclog;
4043
4044	iclog = log->l_iclog;
4045	do {
4046		/* endianness does not matter here, zero is zero in
4047		 * any language.
4048		 */
4049		if (iclog->ic_header.h_num_logops)
4050			return 0;
4051		iclog = iclog->ic_next;
4052	} while (iclog != log->l_iclog);
4053	return 1;
4054}
4055
4056/*
4057 * Verify that an LSN stamped into a piece of metadata is valid. This is
4058 * intended for use in read verifiers on v5 superblocks.
4059 */
4060bool
4061xfs_log_check_lsn(
4062	struct xfs_mount	*mp,
4063	xfs_lsn_t		lsn)
4064{
4065	struct xlog		*log = mp->m_log;
4066	bool			valid;
4067
4068	/*
4069	 * norecovery mode skips mount-time log processing and unconditionally
4070	 * resets the in-core LSN. We can't validate in this mode, but
4071	 * modifications are not allowed anyways so just return true.
4072	 */
4073	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4074		return true;
4075
4076	/*
4077	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4078	 * handled by recovery and thus safe to ignore here.
4079	 */
4080	if (lsn == NULLCOMMITLSN)
4081		return true;
4082
4083	valid = xlog_valid_lsn(mp->m_log, lsn);
4084
4085	/* warn the user about what's gone wrong before verifier failure */
4086	if (!valid) {
4087		spin_lock(&log->l_icloglock);
4088		xfs_warn(mp,
4089"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4090"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4091			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4092			 log->l_curr_cycle, log->l_curr_block);
4093		spin_unlock(&log->l_icloglock);
4094	}
4095
4096	return valid;
4097}