Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    http://www.ecma.ch/
  15 *    http://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/buffer_head.h>
  52#include <linux/vfs.h>
  53#include <linux/vmalloc.h>
  54#include <linux/errno.h>
  55#include <linux/mount.h>
  56#include <linux/seq_file.h>
  57#include <linux/bitmap.h>
  58#include <linux/crc-itu-t.h>
  59#include <linux/log2.h>
  60#include <asm/byteorder.h>
 
  61
  62#include "udf_sb.h"
  63#include "udf_i.h"
  64
  65#include <linux/init.h>
  66#include <asm/uaccess.h>
  67
  68#define VDS_POS_PRIMARY_VOL_DESC	0
  69#define VDS_POS_UNALLOC_SPACE_DESC	1
  70#define VDS_POS_LOGICAL_VOL_DESC	2
  71#define VDS_POS_PARTITION_DESC		3
  72#define VDS_POS_IMP_USE_VOL_DESC	4
  73#define VDS_POS_VOL_DESC_PTR		5
  74#define VDS_POS_TERMINATING_DESC	6
  75#define VDS_POS_LENGTH			7
  76
  77#define UDF_DEFAULT_BLOCKSIZE 2048
 
 
 
 
 
 
 
 
 
 
  78
  79enum { UDF_MAX_LINKS = 0xffff };
 
 
 
 
 
 
 
  80
  81/* These are the "meat" - everything else is stuffing */
  82static int udf_fill_super(struct super_block *, void *, int);
  83static void udf_put_super(struct super_block *);
  84static int udf_sync_fs(struct super_block *, int);
  85static int udf_remount_fs(struct super_block *, int *, char *);
  86static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  87static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
  88			    struct kernel_lb_addr *);
  89static void udf_load_fileset(struct super_block *, struct buffer_head *,
  90			     struct kernel_lb_addr *);
  91static void udf_open_lvid(struct super_block *);
  92static void udf_close_lvid(struct super_block *);
  93static unsigned int udf_count_free(struct super_block *);
  94static int udf_statfs(struct dentry *, struct kstatfs *);
  95static int udf_show_options(struct seq_file *, struct dentry *);
  96
  97struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
  98{
  99	struct logicalVolIntegrityDesc *lvid =
 100		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
 101	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
 102	__u32 offset = number_of_partitions * 2 *
 103				sizeof(uint32_t)/sizeof(uint8_t);
 104	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 
 
 
 
 
 
 105}
 106
 107/* UDF filesystem type */
 108static struct dentry *udf_mount(struct file_system_type *fs_type,
 109		      int flags, const char *dev_name, void *data)
 110{
 111	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 112}
 113
 114static struct file_system_type udf_fstype = {
 115	.owner		= THIS_MODULE,
 116	.name		= "udf",
 117	.mount		= udf_mount,
 118	.kill_sb	= kill_block_super,
 119	.fs_flags	= FS_REQUIRES_DEV,
 120};
 
 121
 122static struct kmem_cache *udf_inode_cachep;
 123
 124static struct inode *udf_alloc_inode(struct super_block *sb)
 125{
 126	struct udf_inode_info *ei;
 127	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 128	if (!ei)
 129		return NULL;
 130
 131	ei->i_unique = 0;
 132	ei->i_lenExtents = 0;
 
 133	ei->i_next_alloc_block = 0;
 134	ei->i_next_alloc_goal = 0;
 135	ei->i_strat4096 = 0;
 
 
 136	init_rwsem(&ei->i_data_sem);
 
 
 
 137
 138	return &ei->vfs_inode;
 139}
 140
 141static void udf_i_callback(struct rcu_head *head)
 142{
 143	struct inode *inode = container_of(head, struct inode, i_rcu);
 144	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 145}
 146
 147static void udf_destroy_inode(struct inode *inode)
 148{
 149	call_rcu(&inode->i_rcu, udf_i_callback);
 150}
 151
 152static void init_once(void *foo)
 153{
 154	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 155
 156	ei->i_ext.i_data = NULL;
 157	inode_init_once(&ei->vfs_inode);
 158}
 159
 160static int init_inodecache(void)
 161{
 162	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 163					     sizeof(struct udf_inode_info),
 164					     0, (SLAB_RECLAIM_ACCOUNT |
 165						 SLAB_MEM_SPREAD),
 
 166					     init_once);
 167	if (!udf_inode_cachep)
 168		return -ENOMEM;
 169	return 0;
 170}
 171
 172static void destroy_inodecache(void)
 173{
 
 
 
 
 
 174	kmem_cache_destroy(udf_inode_cachep);
 175}
 176
 177/* Superblock operations */
 178static const struct super_operations udf_sb_ops = {
 179	.alloc_inode	= udf_alloc_inode,
 180	.destroy_inode	= udf_destroy_inode,
 181	.write_inode	= udf_write_inode,
 182	.evict_inode	= udf_evict_inode,
 183	.put_super	= udf_put_super,
 184	.sync_fs	= udf_sync_fs,
 185	.statfs		= udf_statfs,
 186	.remount_fs	= udf_remount_fs,
 187	.show_options	= udf_show_options,
 188};
 189
 190struct udf_options {
 191	unsigned char novrs;
 192	unsigned int blocksize;
 193	unsigned int session;
 194	unsigned int lastblock;
 195	unsigned int anchor;
 196	unsigned int volume;
 197	unsigned short partition;
 198	unsigned int fileset;
 199	unsigned int rootdir;
 200	unsigned int flags;
 201	umode_t umask;
 202	gid_t gid;
 203	uid_t uid;
 204	umode_t fmode;
 205	umode_t dmode;
 206	struct nls_table *nls_map;
 207};
 208
 209static int __init init_udf_fs(void)
 210{
 211	int err;
 212
 213	err = init_inodecache();
 214	if (err)
 215		goto out1;
 216	err = register_filesystem(&udf_fstype);
 217	if (err)
 218		goto out;
 219
 220	return 0;
 221
 222out:
 223	destroy_inodecache();
 224
 225out1:
 226	return err;
 227}
 228
 229static void __exit exit_udf_fs(void)
 230{
 231	unregister_filesystem(&udf_fstype);
 232	destroy_inodecache();
 233}
 234
 235module_init(init_udf_fs)
 236module_exit(exit_udf_fs)
 237
 238static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 239{
 240	struct udf_sb_info *sbi = UDF_SB(sb);
 241
 242	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
 243				  GFP_KERNEL);
 244	if (!sbi->s_partmaps) {
 245		udf_err(sb, "Unable to allocate space for %d partition maps\n",
 246			count);
 247		sbi->s_partitions = 0;
 248		return -ENOMEM;
 249	}
 250
 251	sbi->s_partitions = count;
 252	return 0;
 253}
 254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255static int udf_show_options(struct seq_file *seq, struct dentry *root)
 256{
 257	struct super_block *sb = root->d_sb;
 258	struct udf_sb_info *sbi = UDF_SB(sb);
 259
 260	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 261		seq_puts(seq, ",nostrict");
 262	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 263		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 264	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 265		seq_puts(seq, ",unhide");
 266	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 267		seq_puts(seq, ",undelete");
 268	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 269		seq_puts(seq, ",noadinicb");
 270	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 271		seq_puts(seq, ",shortad");
 272	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 273		seq_puts(seq, ",uid=forget");
 274	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
 275		seq_puts(seq, ",uid=ignore");
 276	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 277		seq_puts(seq, ",gid=forget");
 278	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
 279		seq_puts(seq, ",gid=ignore");
 280	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 281		seq_printf(seq, ",uid=%u", sbi->s_uid);
 282	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 283		seq_printf(seq, ",gid=%u", sbi->s_gid);
 284	if (sbi->s_umask != 0)
 285		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 286	if (sbi->s_fmode != UDF_INVALID_MODE)
 287		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 288	if (sbi->s_dmode != UDF_INVALID_MODE)
 289		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 290	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 291		seq_printf(seq, ",session=%u", sbi->s_session);
 292	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 293		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 294	if (sbi->s_anchor != 0)
 295		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 296	/*
 297	 * volume, partition, fileset and rootdir seem to be ignored
 298	 * currently
 299	 */
 300	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 301		seq_puts(seq, ",utf8");
 302	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 303		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 
 
 304
 305	return 0;
 306}
 307
 308/*
 309 * udf_parse_options
 310 *
 311 * PURPOSE
 312 *	Parse mount options.
 313 *
 314 * DESCRIPTION
 315 *	The following mount options are supported:
 316 *
 317 *	gid=		Set the default group.
 318 *	umask=		Set the default umask.
 319 *	mode=		Set the default file permissions.
 320 *	dmode=		Set the default directory permissions.
 321 *	uid=		Set the default user.
 322 *	bs=		Set the block size.
 323 *	unhide		Show otherwise hidden files.
 324 *	undelete	Show deleted files in lists.
 325 *	adinicb		Embed data in the inode (default)
 326 *	noadinicb	Don't embed data in the inode
 327 *	shortad		Use short ad's
 328 *	longad		Use long ad's (default)
 329 *	nostrict	Unset strict conformance
 330 *	iocharset=	Set the NLS character set
 331 *
 332 *	The remaining are for debugging and disaster recovery:
 333 *
 334 *	novrs		Skip volume sequence recognition
 335 *
 336 *	The following expect a offset from 0.
 337 *
 338 *	session=	Set the CDROM session (default= last session)
 339 *	anchor=		Override standard anchor location. (default= 256)
 340 *	volume=		Override the VolumeDesc location. (unused)
 341 *	partition=	Override the PartitionDesc location. (unused)
 342 *	lastblock=	Set the last block of the filesystem/
 343 *
 344 *	The following expect a offset from the partition root.
 345 *
 346 *	fileset=	Override the fileset block location. (unused)
 347 *	rootdir=	Override the root directory location. (unused)
 348 *		WARNING: overriding the rootdir to a non-directory may
 349 *		yield highly unpredictable results.
 350 *
 351 * PRE-CONDITIONS
 352 *	options		Pointer to mount options string.
 353 *	uopts		Pointer to mount options variable.
 354 *
 355 * POST-CONDITIONS
 356 *	<return>	1	Mount options parsed okay.
 357 *	<return>	0	Error parsing mount options.
 358 *
 359 * HISTORY
 360 *	July 1, 1997 - Andrew E. Mileski
 361 *	Written, tested, and released.
 362 */
 363
 364enum {
 365	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 366	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 367	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 368	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 369	Opt_rootdir, Opt_utf8, Opt_iocharset,
 370	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 371	Opt_fmode, Opt_dmode
 372};
 373
 374static const match_table_t tokens = {
 375	{Opt_novrs,	"novrs"},
 376	{Opt_nostrict,	"nostrict"},
 377	{Opt_bs,	"bs=%u"},
 378	{Opt_unhide,	"unhide"},
 379	{Opt_undelete,	"undelete"},
 380	{Opt_noadinicb,	"noadinicb"},
 381	{Opt_adinicb,	"adinicb"},
 382	{Opt_shortad,	"shortad"},
 383	{Opt_longad,	"longad"},
 384	{Opt_uforget,	"uid=forget"},
 385	{Opt_uignore,	"uid=ignore"},
 386	{Opt_gforget,	"gid=forget"},
 387	{Opt_gignore,	"gid=ignore"},
 388	{Opt_gid,	"gid=%u"},
 389	{Opt_uid,	"uid=%u"},
 390	{Opt_umask,	"umask=%o"},
 391	{Opt_session,	"session=%u"},
 392	{Opt_lastblock,	"lastblock=%u"},
 393	{Opt_anchor,	"anchor=%u"},
 394	{Opt_volume,	"volume=%u"},
 395	{Opt_partition,	"partition=%u"},
 396	{Opt_fileset,	"fileset=%u"},
 397	{Opt_rootdir,	"rootdir=%u"},
 398	{Opt_utf8,	"utf8"},
 399	{Opt_iocharset,	"iocharset=%s"},
 400	{Opt_fmode,     "mode=%o"},
 401	{Opt_dmode,     "dmode=%o"},
 402	{Opt_err,	NULL}
 403};
 404
 405static int udf_parse_options(char *options, struct udf_options *uopt,
 406			     bool remount)
 407{
 408	char *p;
 409	int option;
 
 410
 411	uopt->novrs = 0;
 412	uopt->partition = 0xFFFF;
 413	uopt->session = 0xFFFFFFFF;
 414	uopt->lastblock = 0;
 415	uopt->anchor = 0;
 416	uopt->volume = 0xFFFFFFFF;
 417	uopt->rootdir = 0xFFFFFFFF;
 418	uopt->fileset = 0xFFFFFFFF;
 419	uopt->nls_map = NULL;
 420
 421	if (!options)
 422		return 1;
 423
 424	while ((p = strsep(&options, ",")) != NULL) {
 425		substring_t args[MAX_OPT_ARGS];
 426		int token;
 
 427		if (!*p)
 428			continue;
 429
 430		token = match_token(p, tokens, args);
 431		switch (token) {
 432		case Opt_novrs:
 433			uopt->novrs = 1;
 434			break;
 435		case Opt_bs:
 436			if (match_int(&args[0], &option))
 437				return 0;
 438			uopt->blocksize = option;
 
 
 
 439			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 440			break;
 441		case Opt_unhide:
 442			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 443			break;
 444		case Opt_undelete:
 445			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 446			break;
 447		case Opt_noadinicb:
 448			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 449			break;
 450		case Opt_adinicb:
 451			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 452			break;
 453		case Opt_shortad:
 454			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 455			break;
 456		case Opt_longad:
 457			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 458			break;
 459		case Opt_gid:
 460			if (match_int(args, &option))
 
 
 
 461				return 0;
 462			uopt->gid = option;
 463			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 464			break;
 465		case Opt_uid:
 466			if (match_int(args, &option))
 
 
 
 467				return 0;
 468			uopt->uid = option;
 469			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 470			break;
 471		case Opt_umask:
 472			if (match_octal(args, &option))
 473				return 0;
 474			uopt->umask = option;
 475			break;
 476		case Opt_nostrict:
 477			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 478			break;
 479		case Opt_session:
 480			if (match_int(args, &option))
 481				return 0;
 482			uopt->session = option;
 483			if (!remount)
 484				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 485			break;
 486		case Opt_lastblock:
 487			if (match_int(args, &option))
 488				return 0;
 489			uopt->lastblock = option;
 490			if (!remount)
 491				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 492			break;
 493		case Opt_anchor:
 494			if (match_int(args, &option))
 495				return 0;
 496			uopt->anchor = option;
 497			break;
 498		case Opt_volume:
 499			if (match_int(args, &option))
 500				return 0;
 501			uopt->volume = option;
 502			break;
 503		case Opt_partition:
 504			if (match_int(args, &option))
 505				return 0;
 506			uopt->partition = option;
 507			break;
 508		case Opt_fileset:
 509			if (match_int(args, &option))
 510				return 0;
 511			uopt->fileset = option;
 512			break;
 513		case Opt_rootdir:
 514			if (match_int(args, &option))
 515				return 0;
 516			uopt->rootdir = option;
 517			break;
 518		case Opt_utf8:
 519			uopt->flags |= (1 << UDF_FLAG_UTF8);
 
 
 
 520			break;
 521#ifdef CONFIG_UDF_NLS
 522		case Opt_iocharset:
 523			uopt->nls_map = load_nls(args[0].from);
 524			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 525			break;
 526#endif
 527		case Opt_uignore:
 528			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
 
 
 
 
 
 
 
 529			break;
 530		case Opt_uforget:
 531			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 532			break;
 
 533		case Opt_gignore:
 534			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
 535			break;
 536		case Opt_gforget:
 537			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 538			break;
 539		case Opt_fmode:
 540			if (match_octal(args, &option))
 541				return 0;
 542			uopt->fmode = option & 0777;
 543			break;
 544		case Opt_dmode:
 545			if (match_octal(args, &option))
 546				return 0;
 547			uopt->dmode = option & 0777;
 548			break;
 549		default:
 550			pr_err("bad mount option \"%s\" or missing value\n", p);
 551			return 0;
 552		}
 553	}
 554	return 1;
 555}
 556
 557static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 558{
 559	struct udf_options uopt;
 560	struct udf_sb_info *sbi = UDF_SB(sb);
 561	int error = 0;
 562
 
 
 
 
 
 563	uopt.flags = sbi->s_flags;
 564	uopt.uid   = sbi->s_uid;
 565	uopt.gid   = sbi->s_gid;
 566	uopt.umask = sbi->s_umask;
 567	uopt.fmode = sbi->s_fmode;
 568	uopt.dmode = sbi->s_dmode;
 
 569
 570	if (!udf_parse_options(options, &uopt, true))
 571		return -EINVAL;
 572
 573	write_lock(&sbi->s_cred_lock);
 574	sbi->s_flags = uopt.flags;
 575	sbi->s_uid   = uopt.uid;
 576	sbi->s_gid   = uopt.gid;
 577	sbi->s_umask = uopt.umask;
 578	sbi->s_fmode = uopt.fmode;
 579	sbi->s_dmode = uopt.dmode;
 580	write_unlock(&sbi->s_cred_lock);
 581
 582	if (sbi->s_lvid_bh) {
 583		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
 584		if (write_rev > UDF_MAX_WRITE_VERSION)
 585			*flags |= MS_RDONLY;
 586	}
 587
 588	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 589		goto out_unlock;
 590
 591	if (*flags & MS_RDONLY)
 592		udf_close_lvid(sb);
 593	else
 594		udf_open_lvid(sb);
 595
 596out_unlock:
 597	return error;
 598}
 599
 600/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
 601/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
 602static loff_t udf_check_vsd(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603{
 604	struct volStructDesc *vsd = NULL;
 605	loff_t sector = 32768;
 606	int sectorsize;
 607	struct buffer_head *bh = NULL;
 608	int nsr02 = 0;
 609	int nsr03 = 0;
 610	struct udf_sb_info *sbi;
 
 611
 612	sbi = UDF_SB(sb);
 613	if (sb->s_blocksize < sizeof(struct volStructDesc))
 614		sectorsize = sizeof(struct volStructDesc);
 615	else
 616		sectorsize = sb->s_blocksize;
 617
 618	sector += (sbi->s_session << sb->s_blocksize_bits);
 
 619
 620	udf_debug("Starting at sector %u (%ld byte sectors)\n",
 621		  (unsigned int)(sector >> sb->s_blocksize_bits),
 622		  sb->s_blocksize);
 623	/* Process the sequence (if applicable) */
 624	for (; !nsr02 && !nsr03; sector += sectorsize) {
 
 
 
 
 
 
 
 
 
 625		/* Read a block */
 626		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 627		if (!bh)
 628			break;
 629
 630		/* Look for ISO  descriptors */
 631		vsd = (struct volStructDesc *)(bh->b_data +
 632					      (sector & (sb->s_blocksize - 1)));
 633
 634		if (vsd->stdIdent[0] == 0) {
 635			brelse(bh);
 636			break;
 637		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
 638				    VSD_STD_ID_LEN)) {
 639			switch (vsd->structType) {
 640			case 0:
 641				udf_debug("ISO9660 Boot Record found\n");
 642				break;
 643			case 1:
 644				udf_debug("ISO9660 Primary Volume Descriptor found\n");
 645				break;
 646			case 2:
 647				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 648				break;
 649			case 3:
 650				udf_debug("ISO9660 Volume Partition Descriptor found\n");
 651				break;
 652			case 255:
 653				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 654				break;
 655			default:
 656				udf_debug("ISO9660 VRS (%u) found\n",
 657					  vsd->structType);
 658				break;
 659			}
 660		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
 661				    VSD_STD_ID_LEN))
 662			; /* nothing */
 663		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
 664				    VSD_STD_ID_LEN)) {
 665			brelse(bh);
 666			break;
 667		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
 668				    VSD_STD_ID_LEN))
 669			nsr02 = sector;
 670		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
 671				    VSD_STD_ID_LEN))
 672			nsr03 = sector;
 
 
 
 
 
 
 673		brelse(bh);
 674	}
 675
 676	if (nsr03)
 677		return nsr03;
 678	else if (nsr02)
 679		return nsr02;
 680	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
 681		return -1;
 682	else
 683		return 0;
 684}
 685
 686static int udf_find_fileset(struct super_block *sb,
 687			    struct kernel_lb_addr *fileset,
 688			    struct kernel_lb_addr *root)
 689{
 690	struct buffer_head *bh = NULL;
 691	long lastblock;
 692	uint16_t ident;
 693	struct udf_sb_info *sbi;
 694
 695	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
 696	    fileset->partitionReferenceNum != 0xFFFF) {
 697		bh = udf_read_ptagged(sb, fileset, 0, &ident);
 698
 699		if (!bh) {
 700			return 1;
 701		} else if (ident != TAG_IDENT_FSD) {
 702			brelse(bh);
 703			return 1;
 
 
 
 
 
 
 704		}
 705
 706	}
 
 707
 708	sbi = UDF_SB(sb);
 709	if (!bh) {
 710		/* Search backwards through the partitions */
 711		struct kernel_lb_addr newfileset;
 
 
 712
 713/* --> cvg: FIXME - is it reasonable? */
 714		return 1;
 
 
 715
 716		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
 717		     (newfileset.partitionReferenceNum != 0xFFFF &&
 718		      fileset->logicalBlockNum == 0xFFFFFFFF &&
 719		      fileset->partitionReferenceNum == 0xFFFF);
 720		     newfileset.partitionReferenceNum--) {
 721			lastblock = sbi->s_partmaps
 722					[newfileset.partitionReferenceNum]
 723						.s_partition_len;
 724			newfileset.logicalBlockNum = 0;
 725
 726			do {
 727				bh = udf_read_ptagged(sb, &newfileset, 0,
 728						      &ident);
 729				if (!bh) {
 730					newfileset.logicalBlockNum++;
 731					continue;
 732				}
 733
 734				switch (ident) {
 735				case TAG_IDENT_SBD:
 736				{
 737					struct spaceBitmapDesc *sp;
 738					sp = (struct spaceBitmapDesc *)
 739								bh->b_data;
 740					newfileset.logicalBlockNum += 1 +
 741						((le32_to_cpu(sp->numOfBytes) +
 742						  sizeof(struct spaceBitmapDesc)
 743						  - 1) >> sb->s_blocksize_bits);
 744					brelse(bh);
 745					break;
 746				}
 747				case TAG_IDENT_FSD:
 748					*fileset = newfileset;
 749					break;
 750				default:
 751					newfileset.logicalBlockNum++;
 752					brelse(bh);
 753					bh = NULL;
 754					break;
 755				}
 756			} while (newfileset.logicalBlockNum < lastblock &&
 757				 fileset->logicalBlockNum == 0xFFFFFFFF &&
 758				 fileset->partitionReferenceNum == 0xFFFF);
 759		}
 760	}
 761
 762	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
 763	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
 764		udf_debug("Fileset at block=%d, partition=%d\n",
 765			  fileset->logicalBlockNum,
 766			  fileset->partitionReferenceNum);
 767
 768		sbi->s_partition = fileset->partitionReferenceNum;
 769		udf_load_fileset(sb, bh, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770		brelse(bh);
 771		return 0;
 772	}
 773	return 1;
 
 
 
 
 
 
 
 774}
 775
 
 
 
 
 
 
 776static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 777{
 778	struct primaryVolDesc *pvoldesc;
 779	struct ustr *instr, *outstr;
 780	struct buffer_head *bh;
 781	uint16_t ident;
 782	int ret = 1;
 783
 784	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 785	if (!instr)
 786		return 1;
 787
 788	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 789	if (!outstr)
 790		goto out1;
 791
 792	bh = udf_read_tagged(sb, block, block, &ident);
 793	if (!bh)
 
 794		goto out2;
 
 795
 796	BUG_ON(ident != TAG_IDENT_PVD);
 
 
 
 797
 798	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 799
 800	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 801			      pvoldesc->recordingDateAndTime)) {
 802#ifdef UDFFS_DEBUG
 803		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
 804		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 805			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 806			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 807#endif
 808	}
 809
 810	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
 811		if (udf_CS0toUTF8(outstr, instr)) {
 812			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
 813				outstr->u_len > 31 ? 31 : outstr->u_len);
 814			udf_debug("volIdent[] = '%s'\n",
 815				  UDF_SB(sb)->s_volume_ident);
 816		}
 817
 818	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
 819		if (udf_CS0toUTF8(outstr, instr))
 820			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
 
 
 
 821
 822	brelse(bh);
 823	ret = 0;
 
 
 824out2:
 825	kfree(outstr);
 826out1:
 827	kfree(instr);
 828	return ret;
 829}
 830
 831struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 832					u32 meta_file_loc, u32 partition_num)
 833{
 834	struct kernel_lb_addr addr;
 835	struct inode *metadata_fe;
 836
 837	addr.logicalBlockNum = meta_file_loc;
 838	addr.partitionReferenceNum = partition_num;
 839
 840	metadata_fe = udf_iget(sb, &addr);
 841
 842	if (metadata_fe == NULL)
 843		udf_warn(sb, "metadata inode efe not found\n");
 844	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 
 
 845		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 846		iput(metadata_fe);
 847		metadata_fe = NULL;
 848	}
 849
 850	return metadata_fe;
 851}
 852
 853static int udf_load_metadata_files(struct super_block *sb, int partition)
 
 854{
 855	struct udf_sb_info *sbi = UDF_SB(sb);
 856	struct udf_part_map *map;
 857	struct udf_meta_data *mdata;
 858	struct kernel_lb_addr addr;
 
 859
 860	map = &sbi->s_partmaps[partition];
 861	mdata = &map->s_type_specific.s_metadata;
 
 862
 863	/* metadata address */
 864	udf_debug("Metadata file location: block = %d part = %d\n",
 865		  mdata->s_meta_file_loc, map->s_partition_num);
 866
 867	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
 868		mdata->s_meta_file_loc, map->s_partition_num);
 869
 870	if (mdata->s_metadata_fe == NULL) {
 871		/* mirror file entry */
 872		udf_debug("Mirror metadata file location: block = %d part = %d\n",
 873			  mdata->s_mirror_file_loc, map->s_partition_num);
 874
 875		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
 876			mdata->s_mirror_file_loc, map->s_partition_num);
 877
 878		if (mdata->s_mirror_fe == NULL) {
 879			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 880			goto error_exit;
 881		}
 882	}
 
 
 
 883
 884	/*
 885	 * bitmap file entry
 886	 * Note:
 887	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 888	*/
 889	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 890		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 891		addr.partitionReferenceNum = map->s_partition_num;
 892
 893		udf_debug("Bitmap file location: block = %d part = %d\n",
 894			  addr.logicalBlockNum, addr.partitionReferenceNum);
 895
 896		mdata->s_bitmap_fe = udf_iget(sb, &addr);
 897
 898		if (mdata->s_bitmap_fe == NULL) {
 899			if (sb->s_flags & MS_RDONLY)
 900				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 901			else {
 902				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 903				goto error_exit;
 904			}
 905		}
 
 906	}
 907
 908	udf_debug("udf_load_metadata_files Ok\n");
 909
 910	return 0;
 911
 912error_exit:
 913	return 1;
 914}
 915
 916static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
 917			     struct kernel_lb_addr *root)
 918{
 919	struct fileSetDesc *fset;
 920
 921	fset = (struct fileSetDesc *)bh->b_data;
 922
 923	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 924
 925	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 926
 927	udf_debug("Rootdir at block=%d, partition=%d\n",
 928		  root->logicalBlockNum, root->partitionReferenceNum);
 929}
 930
 931int udf_compute_nr_groups(struct super_block *sb, u32 partition)
 932{
 933	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 934	return DIV_ROUND_UP(map->s_partition_len +
 935			    (sizeof(struct spaceBitmapDesc) << 3),
 936			    sb->s_blocksize * 8);
 937}
 938
 939static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
 940{
 941	struct udf_bitmap *bitmap;
 942	int nr_groups;
 943	int size;
 944
 945	nr_groups = udf_compute_nr_groups(sb, index);
 946	size = sizeof(struct udf_bitmap) +
 947		(sizeof(struct buffer_head *) * nr_groups);
 948
 949	if (size <= PAGE_SIZE)
 950		bitmap = kzalloc(size, GFP_KERNEL);
 951	else
 952		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
 953
 954	if (bitmap == NULL)
 
 
 955		return NULL;
 956
 957	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
 958	bitmap->s_nr_groups = nr_groups;
 959	return bitmap;
 960}
 961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962static int udf_fill_partdesc_info(struct super_block *sb,
 963		struct partitionDesc *p, int p_index)
 964{
 965	struct udf_part_map *map;
 966	struct udf_sb_info *sbi = UDF_SB(sb);
 967	struct partitionHeaderDesc *phd;
 
 968
 969	map = &sbi->s_partmaps[p_index];
 970
 971	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
 972	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
 973
 974	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
 975		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
 976	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
 977		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
 978	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
 979		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
 980	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
 981		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
 982
 983	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
 984		  p_index, map->s_partition_type,
 985		  map->s_partition_root, map->s_partition_len);
 986
 987	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
 988	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
 
 
 
 
 
 
 
 
 989		return 0;
 990
 991	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
 992	if (phd->unallocSpaceTable.extLength) {
 993		struct kernel_lb_addr loc = {
 994			.logicalBlockNum = le32_to_cpu(
 995				phd->unallocSpaceTable.extPosition),
 996			.partitionReferenceNum = p_index,
 997		};
 
 998
 999		map->s_uspace.s_table = udf_iget(sb, &loc);
1000		if (!map->s_uspace.s_table) {
1001			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002				  p_index);
1003			return 1;
1004		}
 
1005		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007			  p_index, map->s_uspace.s_table->i_ino);
1008	}
1009
1010	if (phd->unallocSpaceBitmap.extLength) {
1011		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012		if (!bitmap)
1013			return 1;
1014		map->s_uspace.s_bitmap = bitmap;
1015		bitmap->s_extLength = le32_to_cpu(
1016				phd->unallocSpaceBitmap.extLength);
1017		bitmap->s_extPosition = le32_to_cpu(
1018				phd->unallocSpaceBitmap.extPosition);
1019		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021			  p_index, bitmap->s_extPosition);
1022	}
1023
1024	if (phd->partitionIntegrityTable.extLength)
1025		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026
1027	if (phd->freedSpaceTable.extLength) {
1028		struct kernel_lb_addr loc = {
1029			.logicalBlockNum = le32_to_cpu(
1030				phd->freedSpaceTable.extPosition),
1031			.partitionReferenceNum = p_index,
1032		};
1033
1034		map->s_fspace.s_table = udf_iget(sb, &loc);
1035		if (!map->s_fspace.s_table) {
1036			udf_debug("cannot load freedSpaceTable (part %d)\n",
1037				  p_index);
1038			return 1;
1039		}
1040
1041		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043			  p_index, map->s_fspace.s_table->i_ino);
1044	}
1045
1046	if (phd->freedSpaceBitmap.extLength) {
1047		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048		if (!bitmap)
1049			return 1;
1050		map->s_fspace.s_bitmap = bitmap;
1051		bitmap->s_extLength = le32_to_cpu(
1052				phd->freedSpaceBitmap.extLength);
1053		bitmap->s_extPosition = le32_to_cpu(
1054				phd->freedSpaceBitmap.extPosition);
1055		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057			  p_index, bitmap->s_extPosition);
1058	}
1059	return 0;
1060}
1061
1062static void udf_find_vat_block(struct super_block *sb, int p_index,
1063			       int type1_index, sector_t start_block)
1064{
1065	struct udf_sb_info *sbi = UDF_SB(sb);
1066	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067	sector_t vat_block;
1068	struct kernel_lb_addr ino;
 
1069
1070	/*
1071	 * VAT file entry is in the last recorded block. Some broken disks have
1072	 * it a few blocks before so try a bit harder...
1073	 */
1074	ino.partitionReferenceNum = type1_index;
1075	for (vat_block = start_block;
1076	     vat_block >= map->s_partition_root &&
1077	     vat_block >= start_block - 3 &&
1078	     !sbi->s_vat_inode; vat_block--) {
1079		ino.logicalBlockNum = vat_block - map->s_partition_root;
1080		sbi->s_vat_inode = udf_iget(sb, &ino);
 
 
 
 
1081	}
1082}
1083
1084static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085{
1086	struct udf_sb_info *sbi = UDF_SB(sb);
1087	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088	struct buffer_head *bh = NULL;
1089	struct udf_inode_info *vati;
1090	uint32_t pos;
1091	struct virtualAllocationTable20 *vat20;
1092	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1093
1094	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095	if (!sbi->s_vat_inode &&
1096	    sbi->s_last_block != blocks - 1) {
1097		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098			  (unsigned long)sbi->s_last_block,
1099			  (unsigned long)blocks - 1);
1100		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101	}
1102	if (!sbi->s_vat_inode)
1103		return 1;
1104
1105	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106		map->s_type_specific.s_virtual.s_start_offset = 0;
1107		map->s_type_specific.s_virtual.s_num_entries =
1108			(sbi->s_vat_inode->i_size - 36) >> 2;
1109	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110		vati = UDF_I(sbi->s_vat_inode);
1111		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112			pos = udf_block_map(sbi->s_vat_inode, 0);
1113			bh = sb_bread(sb, pos);
1114			if (!bh)
1115				return 1;
 
 
 
 
1116			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117		} else {
1118			vat20 = (struct virtualAllocationTable20 *)
1119							vati->i_ext.i_data;
1120		}
1121
1122		map->s_type_specific.s_virtual.s_start_offset =
1123			le16_to_cpu(vat20->lengthHeader);
1124		map->s_type_specific.s_virtual.s_num_entries =
1125			(sbi->s_vat_inode->i_size -
1126				map->s_type_specific.s_virtual.
1127					s_start_offset) >> 2;
1128		brelse(bh);
1129	}
1130	return 0;
1131}
1132
 
 
 
 
 
 
1133static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134{
1135	struct buffer_head *bh;
1136	struct partitionDesc *p;
1137	struct udf_part_map *map;
1138	struct udf_sb_info *sbi = UDF_SB(sb);
1139	int i, type1_idx;
1140	uint16_t partitionNumber;
1141	uint16_t ident;
1142	int ret = 0;
1143
1144	bh = udf_read_tagged(sb, block, block, &ident);
1145	if (!bh)
1146		return 1;
1147	if (ident != TAG_IDENT_PD)
 
1148		goto out_bh;
 
1149
1150	p = (struct partitionDesc *)bh->b_data;
1151	partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1154	for (i = 0; i < sbi->s_partitions; i++) {
1155		map = &sbi->s_partmaps[i];
1156		udf_debug("Searching map: (%d == %d)\n",
1157			  map->s_partition_num, partitionNumber);
1158		if (map->s_partition_num == partitionNumber &&
1159		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160		     map->s_partition_type == UDF_SPARABLE_MAP15))
1161			break;
1162	}
1163
1164	if (i >= sbi->s_partitions) {
1165		udf_debug("Partition (%d) not found in partition map\n",
1166			  partitionNumber);
 
1167		goto out_bh;
1168	}
1169
1170	ret = udf_fill_partdesc_info(sb, p, i);
 
 
1171
1172	/*
1173	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174	 * PHYSICAL partitions are already set up
1175	 */
1176	type1_idx = i;
 
1177	for (i = 0; i < sbi->s_partitions; i++) {
1178		map = &sbi->s_partmaps[i];
1179
1180		if (map->s_partition_num == partitionNumber &&
1181		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183		     map->s_partition_type == UDF_METADATA_MAP25))
1184			break;
1185	}
1186
1187	if (i >= sbi->s_partitions)
 
1188		goto out_bh;
 
1189
1190	ret = udf_fill_partdesc_info(sb, p, i);
1191	if (ret)
1192		goto out_bh;
1193
1194	if (map->s_partition_type == UDF_METADATA_MAP25) {
1195		ret = udf_load_metadata_files(sb, i);
1196		if (ret) {
1197			udf_err(sb, "error loading MetaData partition map %d\n",
1198				i);
1199			goto out_bh;
1200		}
1201	} else {
1202		ret = udf_load_vat(sb, i, type1_idx);
1203		if (ret)
1204			goto out_bh;
1205		/*
1206		 * Mark filesystem read-only if we have a partition with
1207		 * virtual map since we don't handle writing to it (we
1208		 * overwrite blocks instead of relocating them).
1209		 */
1210		sb->s_flags |= MS_RDONLY;
1211		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
 
 
 
 
 
 
1212	}
 
1213out_bh:
1214	/* In case loading failed, we handle cleanup in udf_fill_super */
1215	brelse(bh);
1216	return ret;
1217}
1218
1219static int udf_load_sparable_map(struct super_block *sb,
1220				 struct udf_part_map *map,
1221				 struct sparablePartitionMap *spm)
1222{
1223	uint32_t loc;
1224	uint16_t ident;
1225	struct sparingTable *st;
1226	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1227	int i;
1228	struct buffer_head *bh;
1229
1230	map->s_partition_type = UDF_SPARABLE_MAP15;
1231	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1232	if (!is_power_of_2(sdata->s_packet_len)) {
1233		udf_err(sb, "error loading logical volume descriptor: "
1234			"Invalid packet length %u\n",
1235			(unsigned)sdata->s_packet_len);
1236		return -EIO;
1237	}
1238	if (spm->numSparingTables > 4) {
1239		udf_err(sb, "error loading logical volume descriptor: "
1240			"Too many sparing tables (%d)\n",
1241			(int)spm->numSparingTables);
1242		return -EIO;
1243	}
 
 
 
 
 
 
1244
1245	for (i = 0; i < spm->numSparingTables; i++) {
1246		loc = le32_to_cpu(spm->locSparingTable[i]);
1247		bh = udf_read_tagged(sb, loc, loc, &ident);
1248		if (!bh)
1249			continue;
1250
1251		st = (struct sparingTable *)bh->b_data;
1252		if (ident != 0 ||
1253		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1254			    strlen(UDF_ID_SPARING)) ||
1255		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1256							sb->s_blocksize) {
1257			brelse(bh);
1258			continue;
1259		}
1260
1261		sdata->s_spar_map[i] = bh;
1262	}
1263	map->s_partition_func = udf_get_pblock_spar15;
1264	return 0;
1265}
1266
1267static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1268			       struct kernel_lb_addr *fileset)
1269{
1270	struct logicalVolDesc *lvd;
1271	int i, offset;
1272	uint8_t type;
1273	struct udf_sb_info *sbi = UDF_SB(sb);
1274	struct genericPartitionMap *gpm;
1275	uint16_t ident;
1276	struct buffer_head *bh;
1277	unsigned int table_len;
1278	int ret = 0;
1279
1280	bh = udf_read_tagged(sb, block, block, &ident);
1281	if (!bh)
1282		return 1;
1283	BUG_ON(ident != TAG_IDENT_LVD);
1284	lvd = (struct logicalVolDesc *)bh->b_data;
1285	table_len = le32_to_cpu(lvd->mapTableLength);
1286	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1287		udf_err(sb, "error loading logical volume descriptor: "
1288			"Partition table too long (%u > %lu)\n", table_len,
1289			sb->s_blocksize - sizeof(*lvd));
 
1290		goto out_bh;
1291	}
1292
 
 
 
 
1293	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1294	if (ret)
1295		goto out_bh;
1296
1297	for (i = 0, offset = 0;
1298	     i < sbi->s_partitions && offset < table_len;
1299	     i++, offset += gpm->partitionMapLength) {
1300		struct udf_part_map *map = &sbi->s_partmaps[i];
1301		gpm = (struct genericPartitionMap *)
1302				&(lvd->partitionMaps[offset]);
1303		type = gpm->partitionMapType;
1304		if (type == 1) {
1305			struct genericPartitionMap1 *gpm1 =
1306				(struct genericPartitionMap1 *)gpm;
1307			map->s_partition_type = UDF_TYPE1_MAP15;
1308			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1309			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1310			map->s_partition_func = NULL;
1311		} else if (type == 2) {
1312			struct udfPartitionMap2 *upm2 =
1313						(struct udfPartitionMap2 *)gpm;
1314			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1315						strlen(UDF_ID_VIRTUAL))) {
1316				u16 suf =
1317					le16_to_cpu(((__le16 *)upm2->partIdent.
1318							identSuffix)[0]);
1319				if (suf < 0x0200) {
1320					map->s_partition_type =
1321							UDF_VIRTUAL_MAP15;
1322					map->s_partition_func =
1323							udf_get_pblock_virt15;
1324				} else {
1325					map->s_partition_type =
1326							UDF_VIRTUAL_MAP20;
1327					map->s_partition_func =
1328							udf_get_pblock_virt20;
1329				}
1330			} else if (!strncmp(upm2->partIdent.ident,
1331						UDF_ID_SPARABLE,
1332						strlen(UDF_ID_SPARABLE))) {
1333				if (udf_load_sparable_map(sb, map,
1334				    (struct sparablePartitionMap *)gpm) < 0)
 
1335					goto out_bh;
1336			} else if (!strncmp(upm2->partIdent.ident,
1337						UDF_ID_METADATA,
1338						strlen(UDF_ID_METADATA))) {
1339				struct udf_meta_data *mdata =
1340					&map->s_type_specific.s_metadata;
1341				struct metadataPartitionMap *mdm =
1342						(struct metadataPartitionMap *)
1343						&(lvd->partitionMaps[offset]);
1344				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1345					  i, type, UDF_ID_METADATA);
1346
1347				map->s_partition_type = UDF_METADATA_MAP25;
1348				map->s_partition_func = udf_get_pblock_meta25;
1349
1350				mdata->s_meta_file_loc   =
1351					le32_to_cpu(mdm->metadataFileLoc);
1352				mdata->s_mirror_file_loc =
1353					le32_to_cpu(mdm->metadataMirrorFileLoc);
1354				mdata->s_bitmap_file_loc =
1355					le32_to_cpu(mdm->metadataBitmapFileLoc);
1356				mdata->s_alloc_unit_size =
1357					le32_to_cpu(mdm->allocUnitSize);
1358				mdata->s_align_unit_size =
1359					le16_to_cpu(mdm->alignUnitSize);
1360				if (mdm->flags & 0x01)
1361					mdata->s_flags |= MF_DUPLICATE_MD;
1362
1363				udf_debug("Metadata Ident suffix=0x%x\n",
1364					  le16_to_cpu(*(__le16 *)
1365						      mdm->partIdent.identSuffix));
1366				udf_debug("Metadata part num=%d\n",
1367					  le16_to_cpu(mdm->partitionNum));
1368				udf_debug("Metadata part alloc unit size=%d\n",
1369					  le32_to_cpu(mdm->allocUnitSize));
1370				udf_debug("Metadata file loc=%d\n",
1371					  le32_to_cpu(mdm->metadataFileLoc));
1372				udf_debug("Mirror file loc=%d\n",
1373					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1374				udf_debug("Bitmap file loc=%d\n",
1375					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1376				udf_debug("Flags: %d %d\n",
1377					  mdata->s_flags, mdm->flags);
1378			} else {
1379				udf_debug("Unknown ident: %s\n",
1380					  upm2->partIdent.ident);
1381				continue;
1382			}
1383			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1384			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1385		}
1386		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1387			  i, map->s_partition_num, type, map->s_volumeseqnum);
1388	}
1389
1390	if (fileset) {
1391		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1392
1393		*fileset = lelb_to_cpu(la->extLocation);
1394		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1395			  fileset->logicalBlockNum,
1396			  fileset->partitionReferenceNum);
1397	}
1398	if (lvd->integritySeqExt.extLength)
1399		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
 
1400
 
 
 
 
 
 
 
 
 
 
1401out_bh:
1402	brelse(bh);
1403	return ret;
1404}
1405
1406/*
1407 * udf_load_logicalvolint
1408 *
1409 */
1410static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1411{
1412	struct buffer_head *bh = NULL;
1413	uint16_t ident;
1414	struct udf_sb_info *sbi = UDF_SB(sb);
1415	struct logicalVolIntegrityDesc *lvid;
 
 
1416
1417	while (loc.extLength > 0 &&
1418	       (bh = udf_read_tagged(sb, loc.extLocation,
1419				     loc.extLocation, &ident)) &&
1420	       ident == TAG_IDENT_LVID) {
1421		sbi->s_lvid_bh = bh;
1422		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
 
 
 
1423
1424		if (lvid->nextIntegrityExt.extLength)
1425			udf_load_logicalvolint(sb,
1426				leea_to_cpu(lvid->nextIntegrityExt));
1427
1428		if (sbi->s_lvid_bh != bh)
1429			brelse(bh);
1430		loc.extLength -= sb->s_blocksize;
1431		loc.extLocation++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432	}
1433	if (sbi->s_lvid_bh != bh)
1434		brelse(bh);
1435}
1436
1437/*
1438 * udf_process_sequence
1439 *
1440 * PURPOSE
1441 *	Process a main/reserve volume descriptor sequence.
1442 *
1443 * PRE-CONDITIONS
1444 *	sb			Pointer to _locked_ superblock.
1445 *	block			First block of first extent of the sequence.
1446 *	lastblock		Lastblock of first extent of the sequence.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447 *
1448 * HISTORY
1449 *	July 1, 1997 - Andrew E. Mileski
1450 *	Written, tested, and released.
1451 */
1452static noinline int udf_process_sequence(struct super_block *sb, long block,
1453				long lastblock, struct kernel_lb_addr *fileset)
 
 
1454{
1455	struct buffer_head *bh = NULL;
1456	struct udf_vds_record vds[VDS_POS_LENGTH];
1457	struct udf_vds_record *curr;
1458	struct generic_desc *gd;
1459	struct volDescPtr *vdp;
1460	int done = 0;
1461	uint32_t vdsn;
1462	uint16_t ident;
1463	long next_s = 0, next_e = 0;
1464
1465	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
 
 
 
 
 
 
 
 
 
 
1466
1467	/*
1468	 * Read the main descriptor sequence and find which descriptors
1469	 * are in it.
1470	 */
1471	for (; (!done && block <= lastblock); block++) {
1472
1473		bh = udf_read_tagged(sb, block, block, &ident);
1474		if (!bh) {
1475			udf_err(sb,
1476				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1477				(unsigned long long)block);
1478			return 1;
1479		}
1480
1481		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1482		gd = (struct generic_desc *)bh->b_data;
1483		vdsn = le32_to_cpu(gd->volDescSeqNum);
1484		switch (ident) {
1485		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1486			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1487			if (vdsn >= curr->volDescSeqNum) {
1488				curr->volDescSeqNum = vdsn;
1489				curr->block = block;
1490			}
1491			break;
1492		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1493			curr = &vds[VDS_POS_VOL_DESC_PTR];
1494			if (vdsn >= curr->volDescSeqNum) {
1495				curr->volDescSeqNum = vdsn;
1496				curr->block = block;
1497
1498				vdp = (struct volDescPtr *)bh->b_data;
1499				next_s = le32_to_cpu(
1500					vdp->nextVolDescSeqExt.extLocation);
1501				next_e = le32_to_cpu(
1502					vdp->nextVolDescSeqExt.extLength);
1503				next_e = next_e >> sb->s_blocksize_bits;
1504				next_e += next_s;
1505			}
 
 
 
 
 
 
 
 
 
1506			break;
 
1507		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1508			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1509			if (vdsn >= curr->volDescSeqNum) {
1510				curr->volDescSeqNum = vdsn;
1511				curr->block = block;
1512			}
1513			break;
1514		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1515			curr = &vds[VDS_POS_PARTITION_DESC];
1516			if (!curr->block)
1517				curr->block = block;
1518			break;
1519		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1520			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1521			if (vdsn >= curr->volDescSeqNum) {
1522				curr->volDescSeqNum = vdsn;
1523				curr->block = block;
1524			}
1525			break;
1526		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1527			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
 
 
 
 
 
 
 
 
 
1528			if (vdsn >= curr->volDescSeqNum) {
1529				curr->volDescSeqNum = vdsn;
1530				curr->block = block;
1531			}
1532			break;
1533		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1534			vds[VDS_POS_TERMINATING_DESC].block = block;
1535			if (next_e) {
1536				block = next_s;
1537				lastblock = next_e;
1538				next_s = next_e = 0;
1539			} else
1540				done = 1;
1541			break;
1542		}
1543		brelse(bh);
1544	}
1545	/*
1546	 * Now read interesting descriptors again and process them
1547	 * in a suitable order
1548	 */
1549	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1550		udf_err(sb, "Primary Volume Descriptor not found!\n");
1551		return 1;
 
1552	}
1553	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1554		return 1;
1555
1556	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1557	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1558		return 1;
1559
1560	if (vds[VDS_POS_PARTITION_DESC].block) {
1561		/*
1562		 * We rescan the whole descriptor sequence to find
1563		 * partition descriptor blocks and process them.
1564		 */
1565		for (block = vds[VDS_POS_PARTITION_DESC].block;
1566		     block < vds[VDS_POS_TERMINATING_DESC].block;
1567		     block++)
1568			if (udf_load_partdesc(sb, block))
1569				return 1;
1570	}
1571
1572	return 0;
 
 
 
 
 
 
 
 
 
1573}
1574
 
 
 
 
 
1575static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1576			     struct kernel_lb_addr *fileset)
1577{
1578	struct anchorVolDescPtr *anchor;
1579	long main_s, main_e, reserve_s, reserve_e;
 
1580
1581	anchor = (struct anchorVolDescPtr *)bh->b_data;
1582
1583	/* Locate the main sequence */
1584	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1585	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1586	main_e = main_e >> sb->s_blocksize_bits;
1587	main_e += main_s;
1588
1589	/* Locate the reserve sequence */
1590	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1591	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1592	reserve_e = reserve_e >> sb->s_blocksize_bits;
1593	reserve_e += reserve_s;
1594
1595	/* Process the main & reserve sequences */
1596	/* responsible for finding the PartitionDesc(s) */
1597	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1598		return 1;
1599	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
 
 
 
 
 
 
 
 
 
1600}
1601
1602/*
1603 * Check whether there is an anchor block in the given block and
1604 * load Volume Descriptor Sequence if so.
 
 
 
1605 */
1606static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1607				  struct kernel_lb_addr *fileset)
1608{
1609	struct buffer_head *bh;
1610	uint16_t ident;
1611	int ret;
1612
1613	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1614	    udf_fixed_to_variable(block) >=
1615	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1616		return 0;
1617
1618	bh = udf_read_tagged(sb, block, block, &ident);
1619	if (!bh)
1620		return 0;
1621	if (ident != TAG_IDENT_AVDP) {
1622		brelse(bh);
1623		return 0;
1624	}
1625	ret = udf_load_sequence(sb, bh, fileset);
1626	brelse(bh);
1627	return ret;
1628}
1629
1630/* Search for an anchor volume descriptor pointer */
1631static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1632				 struct kernel_lb_addr *fileset)
 
 
 
 
 
1633{
1634	sector_t last[6];
1635	int i;
1636	struct udf_sb_info *sbi = UDF_SB(sb);
1637	int last_count = 0;
 
1638
1639	/* First try user provided anchor */
1640	if (sbi->s_anchor) {
1641		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1642			return lastblock;
 
1643	}
1644	/*
1645	 * according to spec, anchor is in either:
1646	 *     block 256
1647	 *     lastblock-256
1648	 *     lastblock
1649	 *  however, if the disc isn't closed, it could be 512.
1650	 */
1651	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1652		return lastblock;
 
1653	/*
1654	 * The trouble is which block is the last one. Drives often misreport
1655	 * this so we try various possibilities.
1656	 */
1657	last[last_count++] = lastblock;
1658	if (lastblock >= 1)
1659		last[last_count++] = lastblock - 1;
1660	last[last_count++] = lastblock + 1;
1661	if (lastblock >= 2)
1662		last[last_count++] = lastblock - 2;
1663	if (lastblock >= 150)
1664		last[last_count++] = lastblock - 150;
1665	if (lastblock >= 152)
1666		last[last_count++] = lastblock - 152;
1667
1668	for (i = 0; i < last_count; i++) {
1669		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1670				sb->s_blocksize_bits)
1671			continue;
1672		if (udf_check_anchor_block(sb, last[i], fileset))
1673			return last[i];
 
 
 
 
1674		if (last[i] < 256)
1675			continue;
1676		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1677			return last[i];
 
 
 
 
1678	}
1679
1680	/* Finally try block 512 in case media is open */
1681	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1682		return last[0];
1683	return 0;
1684}
1685
1686/*
1687 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1688 * area specified by it. The function expects sbi->s_lastblock to be the last
1689 * block on the media.
1690 *
1691 * Return 1 if ok, 0 if not found.
1692 *
1693 */
1694static int udf_find_anchor(struct super_block *sb,
1695			   struct kernel_lb_addr *fileset)
1696{
1697	sector_t lastblock;
1698	struct udf_sb_info *sbi = UDF_SB(sb);
1699
1700	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1701	if (lastblock)
1702		goto out;
1703
1704	/* No anchor found? Try VARCONV conversion of block numbers */
1705	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1706	/* Firstly, we try to not convert number of the last block */
1707	lastblock = udf_scan_anchors(sb,
1708				udf_variable_to_fixed(sbi->s_last_block),
1709				fileset);
1710	if (lastblock)
1711		goto out;
1712
1713	/* Secondly, we try with converted number of the last block */
1714	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1715	if (!lastblock) {
1716		/* VARCONV didn't help. Clear it. */
1717		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1718		return 0;
1719	}
1720out:
1721	sbi->s_last_block = lastblock;
1722	return 1;
1723}
1724
1725/*
1726 * Check Volume Structure Descriptor, find Anchor block and load Volume
1727 * Descriptor Sequence
 
 
 
1728 */
1729static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1730			int silent, struct kernel_lb_addr *fileset)
1731{
1732	struct udf_sb_info *sbi = UDF_SB(sb);
1733	loff_t nsr_off;
 
1734
1735	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1736		if (!silent)
1737			udf_warn(sb, "Bad block size\n");
1738		return 0;
1739	}
1740	sbi->s_last_block = uopt->lastblock;
1741	if (!uopt->novrs) {
1742		/* Check that it is NSR02 compliant */
1743		nsr_off = udf_check_vsd(sb);
1744		if (!nsr_off) {
1745			if (!silent)
1746				udf_warn(sb, "No VRS found\n");
1747			return 0;
1748		}
1749		if (nsr_off == -1)
1750			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
 
 
1751		if (!sbi->s_last_block)
1752			sbi->s_last_block = udf_get_last_block(sb);
1753	} else {
1754		udf_debug("Validity check skipped because of novrs option\n");
1755	}
1756
1757	/* Look for anchor block and load Volume Descriptor Sequence */
1758	sbi->s_anchor = uopt->anchor;
1759	if (!udf_find_anchor(sb, fileset)) {
1760		if (!silent)
 
1761			udf_warn(sb, "No anchor found\n");
1762		return 0;
1763	}
1764	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
1765}
1766
1767static void udf_open_lvid(struct super_block *sb)
1768{
1769	struct udf_sb_info *sbi = UDF_SB(sb);
1770	struct buffer_head *bh = sbi->s_lvid_bh;
1771	struct logicalVolIntegrityDesc *lvid;
1772	struct logicalVolIntegrityDescImpUse *lvidiu;
1773
1774	if (!bh)
1775		return;
1776
1777	mutex_lock(&sbi->s_alloc_mutex);
1778	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1779	lvidiu = udf_sb_lvidiu(sbi);
 
 
1780
 
1781	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1782	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1783	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1784				CURRENT_TIME);
1785	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1786
1787	lvid->descTag.descCRC = cpu_to_le16(
1788		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1789			le16_to_cpu(lvid->descTag.descCRCLength)));
1790
1791	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1792	mark_buffer_dirty(bh);
1793	sbi->s_lvid_dirty = 0;
1794	mutex_unlock(&sbi->s_alloc_mutex);
 
 
1795}
1796
1797static void udf_close_lvid(struct super_block *sb)
1798{
1799	struct udf_sb_info *sbi = UDF_SB(sb);
1800	struct buffer_head *bh = sbi->s_lvid_bh;
1801	struct logicalVolIntegrityDesc *lvid;
1802	struct logicalVolIntegrityDescImpUse *lvidiu;
1803
1804	if (!bh)
1805		return;
 
 
 
 
1806
1807	mutex_lock(&sbi->s_alloc_mutex);
1808	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1809	lvidiu = udf_sb_lvidiu(sbi);
1810	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1813	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1814		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1815	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1816		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1817	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1818		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1819	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1820
1821	lvid->descTag.descCRC = cpu_to_le16(
1822			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1823				le16_to_cpu(lvid->descTag.descCRCLength)));
1824
1825	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1826	/*
1827	 * We set buffer uptodate unconditionally here to avoid spurious
1828	 * warnings from mark_buffer_dirty() when previous EIO has marked
1829	 * the buffer as !uptodate
1830	 */
1831	set_buffer_uptodate(bh);
 
1832	mark_buffer_dirty(bh);
1833	sbi->s_lvid_dirty = 0;
1834	mutex_unlock(&sbi->s_alloc_mutex);
 
 
1835}
1836
1837u64 lvid_get_unique_id(struct super_block *sb)
1838{
1839	struct buffer_head *bh;
1840	struct udf_sb_info *sbi = UDF_SB(sb);
1841	struct logicalVolIntegrityDesc *lvid;
1842	struct logicalVolHeaderDesc *lvhd;
1843	u64 uniqueID;
1844	u64 ret;
1845
1846	bh = sbi->s_lvid_bh;
1847	if (!bh)
1848		return 0;
1849
1850	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1851	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1852
1853	mutex_lock(&sbi->s_alloc_mutex);
1854	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1855	if (!(++uniqueID & 0xFFFFFFFF))
1856		uniqueID += 16;
1857	lvhd->uniqueID = cpu_to_le64(uniqueID);
 
1858	mutex_unlock(&sbi->s_alloc_mutex);
1859	mark_buffer_dirty(bh);
1860
1861	return ret;
1862}
1863
1864static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1865{
1866	int i;
1867	int nr_groups = bitmap->s_nr_groups;
1868	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1869						nr_groups);
1870
1871	for (i = 0; i < nr_groups; i++)
1872		if (bitmap->s_block_bitmap[i])
1873			brelse(bitmap->s_block_bitmap[i]);
1874
1875	if (size <= PAGE_SIZE)
1876		kfree(bitmap);
1877	else
1878		vfree(bitmap);
1879}
1880
1881static void udf_free_partition(struct udf_part_map *map)
1882{
1883	int i;
1884	struct udf_meta_data *mdata;
1885
1886	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1887		iput(map->s_uspace.s_table);
1888	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1889		iput(map->s_fspace.s_table);
1890	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1891		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1892	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1893		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1894	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1895		for (i = 0; i < 4; i++)
1896			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1897	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1898		mdata = &map->s_type_specific.s_metadata;
1899		iput(mdata->s_metadata_fe);
1900		mdata->s_metadata_fe = NULL;
1901
1902		iput(mdata->s_mirror_fe);
1903		mdata->s_mirror_fe = NULL;
1904
1905		iput(mdata->s_bitmap_fe);
1906		mdata->s_bitmap_fe = NULL;
1907	}
1908}
1909
1910static int udf_fill_super(struct super_block *sb, void *options, int silent)
1911{
1912	int i;
1913	int ret;
1914	struct inode *inode = NULL;
1915	struct udf_options uopt;
1916	struct kernel_lb_addr rootdir, fileset;
1917	struct udf_sb_info *sbi;
 
1918
1919	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1920	uopt.uid = -1;
1921	uopt.gid = -1;
 
1922	uopt.umask = 0;
1923	uopt.fmode = UDF_INVALID_MODE;
1924	uopt.dmode = UDF_INVALID_MODE;
 
1925
1926	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1927	if (!sbi)
1928		return -ENOMEM;
1929
1930	sb->s_fs_info = sbi;
1931
1932	mutex_init(&sbi->s_alloc_mutex);
1933
1934	if (!udf_parse_options((char *)options, &uopt, false))
1935		goto error_out;
1936
1937	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1938	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1939		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1940		goto error_out;
1941	}
1942#ifdef CONFIG_UDF_NLS
1943	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1944		uopt.nls_map = load_nls_default();
1945		if (!uopt.nls_map)
1946			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1947		else
1948			udf_debug("Using default NLS map\n");
1949	}
1950#endif
1951	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1952		uopt.flags |= (1 << UDF_FLAG_UTF8);
1953
1954	fileset.logicalBlockNum = 0xFFFFFFFF;
1955	fileset.partitionReferenceNum = 0xFFFF;
1956
1957	sbi->s_flags = uopt.flags;
1958	sbi->s_uid = uopt.uid;
1959	sbi->s_gid = uopt.gid;
1960	sbi->s_umask = uopt.umask;
1961	sbi->s_fmode = uopt.fmode;
1962	sbi->s_dmode = uopt.dmode;
1963	sbi->s_nls_map = uopt.nls_map;
1964	rwlock_init(&sbi->s_cred_lock);
1965
1966	if (uopt.session == 0xFFFFFFFF)
1967		sbi->s_session = udf_get_last_session(sb);
1968	else
1969		sbi->s_session = uopt.session;
1970
1971	udf_debug("Multi-session=%d\n", sbi->s_session);
1972
1973	/* Fill in the rest of the superblock */
1974	sb->s_op = &udf_sb_ops;
1975	sb->s_export_op = &udf_export_ops;
1976
1977	sb->s_dirt = 0;
1978	sb->s_magic = UDF_SUPER_MAGIC;
1979	sb->s_time_gran = 1000;
1980
1981	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1982		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1983	} else {
1984		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1985		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1986		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1987			if (!silent)
1988				pr_notice("Rescanning with blocksize %d\n",
1989					  UDF_DEFAULT_BLOCKSIZE);
1990			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1991			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992		}
1993	}
1994	if (!ret) {
1995		udf_warn(sb, "No partition found (1)\n");
 
 
 
1996		goto error_out;
1997	}
1998
1999	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2000
2001	if (sbi->s_lvid_bh) {
2002		struct logicalVolIntegrityDescImpUse *lvidiu =
2003							udf_sb_lvidiu(sbi);
2004		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2005		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2006		/* uint16_t maxUDFWriteRev =
2007				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2008
 
 
 
 
 
 
2009		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2010			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2011				le16_to_cpu(lvidiu->minUDFReadRev),
2012				UDF_MAX_READ_VERSION);
 
2013			goto error_out;
2014		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2015			sb->s_flags |= MS_RDONLY;
 
 
 
 
 
2016
2017		sbi->s_udfrev = minUDFWriteRev;
2018
2019		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2020			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2021		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2022			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2023	}
2024
2025	if (!sbi->s_partitions) {
2026		udf_warn(sb, "No partition found (2)\n");
 
2027		goto error_out;
2028	}
2029
2030	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2031			UDF_PART_FLAG_READ_ONLY) {
2032		pr_notice("Partition marked readonly; forcing readonly mount\n");
2033		sb->s_flags |= MS_RDONLY;
 
 
 
2034	}
2035
2036	if (udf_find_fileset(sb, &fileset, &rootdir)) {
 
2037		udf_warn(sb, "No fileset found\n");
2038		goto error_out;
2039	}
2040
2041	if (!silent) {
2042		struct timestamp ts;
2043		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2044		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2045			 sbi->s_volume_ident,
2046			 le16_to_cpu(ts.year), ts.month, ts.day,
2047			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2048	}
2049	if (!(sb->s_flags & MS_RDONLY))
2050		udf_open_lvid(sb);
 
 
2051
2052	/* Assign the root inode */
2053	/* assign inodes by physical block number */
2054	/* perhaps it's not extensible enough, but for now ... */
2055	inode = udf_iget(sb, &rootdir);
2056	if (!inode) {
2057		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2058		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
 
2059		goto error_out;
2060	}
2061
2062	/* Allocate a dentry for the root inode */
2063	sb->s_root = d_make_root(inode);
2064	if (!sb->s_root) {
2065		udf_err(sb, "Couldn't allocate root dentry\n");
 
2066		goto error_out;
2067	}
2068	sb->s_maxbytes = MAX_LFS_FILESIZE;
2069	sb->s_max_links = UDF_MAX_LINKS;
2070	return 0;
2071
2072error_out:
2073	if (sbi->s_vat_inode)
2074		iput(sbi->s_vat_inode);
2075	if (sbi->s_partitions)
2076		for (i = 0; i < sbi->s_partitions; i++)
2077			udf_free_partition(&sbi->s_partmaps[i]);
2078#ifdef CONFIG_UDF_NLS
2079	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2080		unload_nls(sbi->s_nls_map);
2081#endif
2082	if (!(sb->s_flags & MS_RDONLY))
2083		udf_close_lvid(sb);
2084	brelse(sbi->s_lvid_bh);
2085
2086	kfree(sbi->s_partmaps);
2087	kfree(sbi);
2088	sb->s_fs_info = NULL;
2089
2090	return -EINVAL;
2091}
2092
2093void _udf_err(struct super_block *sb, const char *function,
2094	      const char *fmt, ...)
2095{
2096	struct va_format vaf;
2097	va_list args;
2098
2099	/* mark sb error */
2100	if (!(sb->s_flags & MS_RDONLY))
2101		sb->s_dirt = 1;
2102
2103	va_start(args, fmt);
2104
2105	vaf.fmt = fmt;
2106	vaf.va = &args;
2107
2108	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2109
2110	va_end(args);
2111}
2112
2113void _udf_warn(struct super_block *sb, const char *function,
2114	       const char *fmt, ...)
2115{
2116	struct va_format vaf;
2117	va_list args;
2118
2119	va_start(args, fmt);
2120
2121	vaf.fmt = fmt;
2122	vaf.va = &args;
2123
2124	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2125
2126	va_end(args);
2127}
2128
2129static void udf_put_super(struct super_block *sb)
2130{
2131	int i;
2132	struct udf_sb_info *sbi;
2133
2134	sbi = UDF_SB(sb);
2135
2136	if (sbi->s_vat_inode)
2137		iput(sbi->s_vat_inode);
2138	if (sbi->s_partitions)
2139		for (i = 0; i < sbi->s_partitions; i++)
2140			udf_free_partition(&sbi->s_partmaps[i]);
2141#ifdef CONFIG_UDF_NLS
2142	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2143		unload_nls(sbi->s_nls_map);
2144#endif
2145	if (!(sb->s_flags & MS_RDONLY))
2146		udf_close_lvid(sb);
2147	brelse(sbi->s_lvid_bh);
2148	kfree(sbi->s_partmaps);
 
2149	kfree(sb->s_fs_info);
2150	sb->s_fs_info = NULL;
2151}
2152
2153static int udf_sync_fs(struct super_block *sb, int wait)
2154{
2155	struct udf_sb_info *sbi = UDF_SB(sb);
2156
2157	mutex_lock(&sbi->s_alloc_mutex);
2158	if (sbi->s_lvid_dirty) {
 
 
 
 
 
 
2159		/*
2160		 * Blockdevice will be synced later so we don't have to submit
2161		 * the buffer for IO
2162		 */
2163		mark_buffer_dirty(sbi->s_lvid_bh);
2164		sb->s_dirt = 0;
2165		sbi->s_lvid_dirty = 0;
2166	}
2167	mutex_unlock(&sbi->s_alloc_mutex);
2168
2169	return 0;
2170}
2171
2172static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2173{
2174	struct super_block *sb = dentry->d_sb;
2175	struct udf_sb_info *sbi = UDF_SB(sb);
2176	struct logicalVolIntegrityDescImpUse *lvidiu;
2177	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2178
2179	if (sbi->s_lvid_bh != NULL)
2180		lvidiu = udf_sb_lvidiu(sbi);
2181	else
2182		lvidiu = NULL;
2183
2184	buf->f_type = UDF_SUPER_MAGIC;
2185	buf->f_bsize = sb->s_blocksize;
2186	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2187	buf->f_bfree = udf_count_free(sb);
2188	buf->f_bavail = buf->f_bfree;
 
 
 
 
2189	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2190					  le32_to_cpu(lvidiu->numDirs)) : 0)
2191			+ buf->f_bfree;
2192	buf->f_ffree = buf->f_bfree;
2193	buf->f_namelen = UDF_NAME_LEN - 2;
2194	buf->f_fsid.val[0] = (u32)id;
2195	buf->f_fsid.val[1] = (u32)(id >> 32);
2196
2197	return 0;
2198}
2199
2200static unsigned int udf_count_free_bitmap(struct super_block *sb,
2201					  struct udf_bitmap *bitmap)
2202{
2203	struct buffer_head *bh = NULL;
2204	unsigned int accum = 0;
2205	int index;
2206	int block = 0, newblock;
2207	struct kernel_lb_addr loc;
2208	uint32_t bytes;
2209	uint8_t *ptr;
2210	uint16_t ident;
2211	struct spaceBitmapDesc *bm;
2212
2213	loc.logicalBlockNum = bitmap->s_extPosition;
2214	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2215	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2216
2217	if (!bh) {
2218		udf_err(sb, "udf_count_free failed\n");
2219		goto out;
2220	} else if (ident != TAG_IDENT_SBD) {
2221		brelse(bh);
2222		udf_err(sb, "udf_count_free failed\n");
2223		goto out;
2224	}
2225
2226	bm = (struct spaceBitmapDesc *)bh->b_data;
2227	bytes = le32_to_cpu(bm->numOfBytes);
2228	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2229	ptr = (uint8_t *)bh->b_data;
2230
2231	while (bytes > 0) {
2232		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2233		accum += bitmap_weight((const unsigned long *)(ptr + index),
2234					cur_bytes * 8);
2235		bytes -= cur_bytes;
2236		if (bytes) {
2237			brelse(bh);
2238			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2239			bh = udf_tread(sb, newblock);
2240			if (!bh) {
2241				udf_debug("read failed\n");
2242				goto out;
2243			}
2244			index = 0;
2245			ptr = (uint8_t *)bh->b_data;
2246		}
2247	}
2248	brelse(bh);
2249out:
2250	return accum;
2251}
2252
2253static unsigned int udf_count_free_table(struct super_block *sb,
2254					 struct inode *table)
2255{
2256	unsigned int accum = 0;
2257	uint32_t elen;
2258	struct kernel_lb_addr eloc;
2259	int8_t etype;
2260	struct extent_position epos;
2261
2262	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2263	epos.block = UDF_I(table)->i_location;
2264	epos.offset = sizeof(struct unallocSpaceEntry);
2265	epos.bh = NULL;
2266
2267	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2268		accum += (elen >> table->i_sb->s_blocksize_bits);
2269
2270	brelse(epos.bh);
2271	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2272
2273	return accum;
2274}
2275
2276static unsigned int udf_count_free(struct super_block *sb)
2277{
2278	unsigned int accum = 0;
2279	struct udf_sb_info *sbi;
2280	struct udf_part_map *map;
 
 
 
 
 
 
 
 
 
 
 
 
 
2281
2282	sbi = UDF_SB(sb);
2283	if (sbi->s_lvid_bh) {
2284		struct logicalVolIntegrityDesc *lvid =
2285			(struct logicalVolIntegrityDesc *)
2286			sbi->s_lvid_bh->b_data;
2287		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2288			accum = le32_to_cpu(
2289					lvid->freeSpaceTable[sbi->s_partition]);
2290			if (accum == 0xFFFFFFFF)
2291				accum = 0;
2292		}
2293	}
2294
2295	if (accum)
2296		return accum;
2297
2298	map = &sbi->s_partmaps[sbi->s_partition];
2299	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2300		accum += udf_count_free_bitmap(sb,
2301					       map->s_uspace.s_bitmap);
2302	}
2303	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2304		accum += udf_count_free_bitmap(sb,
2305					       map->s_fspace.s_bitmap);
2306	}
2307	if (accum)
2308		return accum;
2309
2310	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2311		accum += udf_count_free_table(sb,
2312					      map->s_uspace.s_table);
2313	}
2314	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2315		accum += udf_count_free_table(sb,
2316					      map->s_fspace.s_table);
2317	}
2318
2319	return accum;
2320}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * super.c
   4 *
   5 * PURPOSE
   6 *  Super block routines for the OSTA-UDF(tm) filesystem.
   7 *
   8 * DESCRIPTION
   9 *  OSTA-UDF(tm) = Optical Storage Technology Association
  10 *  Universal Disk Format.
  11 *
  12 *  This code is based on version 2.00 of the UDF specification,
  13 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  14 *    http://www.osta.org/
  15 *    https://www.ecma.ch/
  16 *    https://www.iso.org/
  17 *
  18 * COPYRIGHT
 
 
 
 
 
  19 *  (C) 1998 Dave Boynton
  20 *  (C) 1998-2004 Ben Fennema
  21 *  (C) 2000 Stelias Computing Inc
  22 *
  23 * HISTORY
  24 *
  25 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  26 *                added some debugging.
  27 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  28 *  10/16/98      attempting some multi-session support
  29 *  10/17/98      added freespace count for "df"
  30 *  11/11/98 gr   added novrs option
  31 *  11/26/98 dgb  added fileset,anchor mount options
  32 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  33 *                vol descs. rewrote option handling based on isofs
  34 *  12/20/98      find the free space bitmap (if it exists)
  35 */
  36
  37#include "udfdecl.h"
  38
  39#include <linux/blkdev.h>
  40#include <linux/slab.h>
  41#include <linux/kernel.h>
  42#include <linux/module.h>
  43#include <linux/parser.h>
  44#include <linux/stat.h>
  45#include <linux/cdrom.h>
  46#include <linux/nls.h>
 
  47#include <linux/vfs.h>
  48#include <linux/vmalloc.h>
  49#include <linux/errno.h>
  50#include <linux/mount.h>
  51#include <linux/seq_file.h>
  52#include <linux/bitmap.h>
  53#include <linux/crc-itu-t.h>
  54#include <linux/log2.h>
  55#include <asm/byteorder.h>
  56#include <linux/iversion.h>
  57
  58#include "udf_sb.h"
  59#include "udf_i.h"
  60
  61#include <linux/init.h>
  62#include <linux/uaccess.h>
  63
  64enum {
  65	VDS_POS_PRIMARY_VOL_DESC,
  66	VDS_POS_UNALLOC_SPACE_DESC,
  67	VDS_POS_LOGICAL_VOL_DESC,
  68	VDS_POS_IMP_USE_VOL_DESC,
  69	VDS_POS_LENGTH
  70};
 
  71
  72#define VSD_FIRST_SECTOR_OFFSET		32768
  73#define VSD_MAX_SECTOR_OFFSET		0x800000
  74
  75/*
  76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  78 * hopefully don't limit any real use of rewritten inode on write-once media
  79 * but avoid looping for too long on corrupted media.
  80 */
  81#define UDF_MAX_TD_NESTING 64
  82#define UDF_MAX_LVID_NESTING 1000
  83
  84enum { UDF_MAX_LINKS = 0xffff };
  85/*
  86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
  87 * more but because the file space is described by a linked list of extents,
  88 * each of which can have at most 1GB, the creation and handling of extents
  89 * gets unusably slow beyond certain point...
  90 */
  91#define UDF_MAX_FILESIZE (1ULL << 42)
  92
  93/* These are the "meat" - everything else is stuffing */
  94static int udf_fill_super(struct super_block *, void *, int);
  95static void udf_put_super(struct super_block *);
  96static int udf_sync_fs(struct super_block *, int);
  97static int udf_remount_fs(struct super_block *, int *, char *);
  98static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 
 
 
 
  99static void udf_open_lvid(struct super_block *);
 100static void udf_close_lvid(struct super_block *);
 101static unsigned int udf_count_free(struct super_block *);
 102static int udf_statfs(struct dentry *, struct kstatfs *);
 103static int udf_show_options(struct seq_file *, struct dentry *);
 104
 105struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 106{
 107	struct logicalVolIntegrityDesc *lvid;
 108	unsigned int partnum;
 109	unsigned int offset;
 110
 111	if (!UDF_SB(sb)->s_lvid_bh)
 112		return NULL;
 113	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 114	partnum = le32_to_cpu(lvid->numOfPartitions);
 115	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 116	offset = partnum * 2 * sizeof(uint32_t);
 117	return (struct logicalVolIntegrityDescImpUse *)
 118					(((uint8_t *)(lvid + 1)) + offset);
 119}
 120
 121/* UDF filesystem type */
 122static struct dentry *udf_mount(struct file_system_type *fs_type,
 123		      int flags, const char *dev_name, void *data)
 124{
 125	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 126}
 127
 128static struct file_system_type udf_fstype = {
 129	.owner		= THIS_MODULE,
 130	.name		= "udf",
 131	.mount		= udf_mount,
 132	.kill_sb	= kill_block_super,
 133	.fs_flags	= FS_REQUIRES_DEV,
 134};
 135MODULE_ALIAS_FS("udf");
 136
 137static struct kmem_cache *udf_inode_cachep;
 138
 139static struct inode *udf_alloc_inode(struct super_block *sb)
 140{
 141	struct udf_inode_info *ei;
 142	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
 143	if (!ei)
 144		return NULL;
 145
 146	ei->i_unique = 0;
 147	ei->i_lenExtents = 0;
 148	ei->i_lenStreams = 0;
 149	ei->i_next_alloc_block = 0;
 150	ei->i_next_alloc_goal = 0;
 151	ei->i_strat4096 = 0;
 152	ei->i_streamdir = 0;
 153	ei->i_hidden = 0;
 154	init_rwsem(&ei->i_data_sem);
 155	ei->cached_extent.lstart = -1;
 156	spin_lock_init(&ei->i_extent_cache_lock);
 157	inode_set_iversion(&ei->vfs_inode, 1);
 158
 159	return &ei->vfs_inode;
 160}
 161
 162static void udf_free_in_core_inode(struct inode *inode)
 163{
 
 164	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 165}
 166
 
 
 
 
 
 167static void init_once(void *foo)
 168{
 169	struct udf_inode_info *ei = foo;
 170
 171	ei->i_data = NULL;
 172	inode_init_once(&ei->vfs_inode);
 173}
 174
 175static int __init init_inodecache(void)
 176{
 177	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 178					     sizeof(struct udf_inode_info),
 179					     0, (SLAB_RECLAIM_ACCOUNT |
 180						 SLAB_MEM_SPREAD |
 181						 SLAB_ACCOUNT),
 182					     init_once);
 183	if (!udf_inode_cachep)
 184		return -ENOMEM;
 185	return 0;
 186}
 187
 188static void destroy_inodecache(void)
 189{
 190	/*
 191	 * Make sure all delayed rcu free inodes are flushed before we
 192	 * destroy cache.
 193	 */
 194	rcu_barrier();
 195	kmem_cache_destroy(udf_inode_cachep);
 196}
 197
 198/* Superblock operations */
 199static const struct super_operations udf_sb_ops = {
 200	.alloc_inode	= udf_alloc_inode,
 201	.free_inode	= udf_free_in_core_inode,
 202	.write_inode	= udf_write_inode,
 203	.evict_inode	= udf_evict_inode,
 204	.put_super	= udf_put_super,
 205	.sync_fs	= udf_sync_fs,
 206	.statfs		= udf_statfs,
 207	.remount_fs	= udf_remount_fs,
 208	.show_options	= udf_show_options,
 209};
 210
 211struct udf_options {
 212	unsigned char novrs;
 213	unsigned int blocksize;
 214	unsigned int session;
 215	unsigned int lastblock;
 216	unsigned int anchor;
 
 
 
 
 217	unsigned int flags;
 218	umode_t umask;
 219	kgid_t gid;
 220	kuid_t uid;
 221	umode_t fmode;
 222	umode_t dmode;
 223	struct nls_table *nls_map;
 224};
 225
 226static int __init init_udf_fs(void)
 227{
 228	int err;
 229
 230	err = init_inodecache();
 231	if (err)
 232		goto out1;
 233	err = register_filesystem(&udf_fstype);
 234	if (err)
 235		goto out;
 236
 237	return 0;
 238
 239out:
 240	destroy_inodecache();
 241
 242out1:
 243	return err;
 244}
 245
 246static void __exit exit_udf_fs(void)
 247{
 248	unregister_filesystem(&udf_fstype);
 249	destroy_inodecache();
 250}
 251
 
 
 
 252static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 253{
 254	struct udf_sb_info *sbi = UDF_SB(sb);
 255
 256	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
 
 257	if (!sbi->s_partmaps) {
 
 
 258		sbi->s_partitions = 0;
 259		return -ENOMEM;
 260	}
 261
 262	sbi->s_partitions = count;
 263	return 0;
 264}
 265
 266static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 267{
 268	int i;
 269	int nr_groups = bitmap->s_nr_groups;
 270
 271	for (i = 0; i < nr_groups; i++)
 272		brelse(bitmap->s_block_bitmap[i]);
 273
 274	kvfree(bitmap);
 275}
 276
 277static void udf_free_partition(struct udf_part_map *map)
 278{
 279	int i;
 280	struct udf_meta_data *mdata;
 281
 282	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 283		iput(map->s_uspace.s_table);
 284	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 285		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 286	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 287		for (i = 0; i < 4; i++)
 288			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 289	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 290		mdata = &map->s_type_specific.s_metadata;
 291		iput(mdata->s_metadata_fe);
 292		mdata->s_metadata_fe = NULL;
 293
 294		iput(mdata->s_mirror_fe);
 295		mdata->s_mirror_fe = NULL;
 296
 297		iput(mdata->s_bitmap_fe);
 298		mdata->s_bitmap_fe = NULL;
 299	}
 300}
 301
 302static void udf_sb_free_partitions(struct super_block *sb)
 303{
 304	struct udf_sb_info *sbi = UDF_SB(sb);
 305	int i;
 306
 307	if (!sbi->s_partmaps)
 308		return;
 309	for (i = 0; i < sbi->s_partitions; i++)
 310		udf_free_partition(&sbi->s_partmaps[i]);
 311	kfree(sbi->s_partmaps);
 312	sbi->s_partmaps = NULL;
 313}
 314
 315static int udf_show_options(struct seq_file *seq, struct dentry *root)
 316{
 317	struct super_block *sb = root->d_sb;
 318	struct udf_sb_info *sbi = UDF_SB(sb);
 319
 320	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 321		seq_puts(seq, ",nostrict");
 322	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 323		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 324	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 325		seq_puts(seq, ",unhide");
 326	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 327		seq_puts(seq, ",undelete");
 328	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 329		seq_puts(seq, ",noadinicb");
 330	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 331		seq_puts(seq, ",shortad");
 332	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 333		seq_puts(seq, ",uid=forget");
 
 
 334	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 335		seq_puts(seq, ",gid=forget");
 
 
 336	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 337		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 338	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 339		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 340	if (sbi->s_umask != 0)
 341		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 342	if (sbi->s_fmode != UDF_INVALID_MODE)
 343		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 344	if (sbi->s_dmode != UDF_INVALID_MODE)
 345		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 346	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 347		seq_printf(seq, ",session=%d", sbi->s_session);
 348	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 349		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 350	if (sbi->s_anchor != 0)
 351		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 352	if (sbi->s_nls_map)
 
 
 
 
 
 
 353		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 354	else
 355		seq_puts(seq, ",iocharset=utf8");
 356
 357	return 0;
 358}
 359
 360/*
 361 * udf_parse_options
 362 *
 363 * PURPOSE
 364 *	Parse mount options.
 365 *
 366 * DESCRIPTION
 367 *	The following mount options are supported:
 368 *
 369 *	gid=		Set the default group.
 370 *	umask=		Set the default umask.
 371 *	mode=		Set the default file permissions.
 372 *	dmode=		Set the default directory permissions.
 373 *	uid=		Set the default user.
 374 *	bs=		Set the block size.
 375 *	unhide		Show otherwise hidden files.
 376 *	undelete	Show deleted files in lists.
 377 *	adinicb		Embed data in the inode (default)
 378 *	noadinicb	Don't embed data in the inode
 379 *	shortad		Use short ad's
 380 *	longad		Use long ad's (default)
 381 *	nostrict	Unset strict conformance
 382 *	iocharset=	Set the NLS character set
 383 *
 384 *	The remaining are for debugging and disaster recovery:
 385 *
 386 *	novrs		Skip volume sequence recognition
 387 *
 388 *	The following expect a offset from 0.
 389 *
 390 *	session=	Set the CDROM session (default= last session)
 391 *	anchor=		Override standard anchor location. (default= 256)
 392 *	volume=		Override the VolumeDesc location. (unused)
 393 *	partition=	Override the PartitionDesc location. (unused)
 394 *	lastblock=	Set the last block of the filesystem/
 395 *
 396 *	The following expect a offset from the partition root.
 397 *
 398 *	fileset=	Override the fileset block location. (unused)
 399 *	rootdir=	Override the root directory location. (unused)
 400 *		WARNING: overriding the rootdir to a non-directory may
 401 *		yield highly unpredictable results.
 402 *
 403 * PRE-CONDITIONS
 404 *	options		Pointer to mount options string.
 405 *	uopts		Pointer to mount options variable.
 406 *
 407 * POST-CONDITIONS
 408 *	<return>	1	Mount options parsed okay.
 409 *	<return>	0	Error parsing mount options.
 410 *
 411 * HISTORY
 412 *	July 1, 1997 - Andrew E. Mileski
 413 *	Written, tested, and released.
 414 */
 415
 416enum {
 417	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 418	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 419	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 420	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 421	Opt_rootdir, Opt_utf8, Opt_iocharset,
 422	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 423	Opt_fmode, Opt_dmode
 424};
 425
 426static const match_table_t tokens = {
 427	{Opt_novrs,	"novrs"},
 428	{Opt_nostrict,	"nostrict"},
 429	{Opt_bs,	"bs=%u"},
 430	{Opt_unhide,	"unhide"},
 431	{Opt_undelete,	"undelete"},
 432	{Opt_noadinicb,	"noadinicb"},
 433	{Opt_adinicb,	"adinicb"},
 434	{Opt_shortad,	"shortad"},
 435	{Opt_longad,	"longad"},
 436	{Opt_uforget,	"uid=forget"},
 437	{Opt_uignore,	"uid=ignore"},
 438	{Opt_gforget,	"gid=forget"},
 439	{Opt_gignore,	"gid=ignore"},
 440	{Opt_gid,	"gid=%u"},
 441	{Opt_uid,	"uid=%u"},
 442	{Opt_umask,	"umask=%o"},
 443	{Opt_session,	"session=%u"},
 444	{Opt_lastblock,	"lastblock=%u"},
 445	{Opt_anchor,	"anchor=%u"},
 446	{Opt_volume,	"volume=%u"},
 447	{Opt_partition,	"partition=%u"},
 448	{Opt_fileset,	"fileset=%u"},
 449	{Opt_rootdir,	"rootdir=%u"},
 450	{Opt_utf8,	"utf8"},
 451	{Opt_iocharset,	"iocharset=%s"},
 452	{Opt_fmode,     "mode=%o"},
 453	{Opt_dmode,     "dmode=%o"},
 454	{Opt_err,	NULL}
 455};
 456
 457static int udf_parse_options(char *options, struct udf_options *uopt,
 458			     bool remount)
 459{
 460	char *p;
 461	int option;
 462	unsigned int uv;
 463
 464	uopt->novrs = 0;
 
 465	uopt->session = 0xFFFFFFFF;
 466	uopt->lastblock = 0;
 467	uopt->anchor = 0;
 
 
 
 
 468
 469	if (!options)
 470		return 1;
 471
 472	while ((p = strsep(&options, ",")) != NULL) {
 473		substring_t args[MAX_OPT_ARGS];
 474		int token;
 475		unsigned n;
 476		if (!*p)
 477			continue;
 478
 479		token = match_token(p, tokens, args);
 480		switch (token) {
 481		case Opt_novrs:
 482			uopt->novrs = 1;
 483			break;
 484		case Opt_bs:
 485			if (match_int(&args[0], &option))
 486				return 0;
 487			n = option;
 488			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 489				return 0;
 490			uopt->blocksize = n;
 491			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 492			break;
 493		case Opt_unhide:
 494			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 495			break;
 496		case Opt_undelete:
 497			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 498			break;
 499		case Opt_noadinicb:
 500			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 501			break;
 502		case Opt_adinicb:
 503			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 504			break;
 505		case Opt_shortad:
 506			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 507			break;
 508		case Opt_longad:
 509			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 510			break;
 511		case Opt_gid:
 512			if (match_uint(args, &uv))
 513				return 0;
 514			uopt->gid = make_kgid(current_user_ns(), uv);
 515			if (!gid_valid(uopt->gid))
 516				return 0;
 
 517			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 518			break;
 519		case Opt_uid:
 520			if (match_uint(args, &uv))
 521				return 0;
 522			uopt->uid = make_kuid(current_user_ns(), uv);
 523			if (!uid_valid(uopt->uid))
 524				return 0;
 
 525			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 526			break;
 527		case Opt_umask:
 528			if (match_octal(args, &option))
 529				return 0;
 530			uopt->umask = option;
 531			break;
 532		case Opt_nostrict:
 533			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 534			break;
 535		case Opt_session:
 536			if (match_int(args, &option))
 537				return 0;
 538			uopt->session = option;
 539			if (!remount)
 540				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 541			break;
 542		case Opt_lastblock:
 543			if (match_int(args, &option))
 544				return 0;
 545			uopt->lastblock = option;
 546			if (!remount)
 547				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 548			break;
 549		case Opt_anchor:
 550			if (match_int(args, &option))
 551				return 0;
 552			uopt->anchor = option;
 553			break;
 554		case Opt_volume:
 
 
 
 
 555		case Opt_partition:
 
 
 
 
 556		case Opt_fileset:
 
 
 
 
 557		case Opt_rootdir:
 558			/* Ignored (never implemented properly) */
 
 
 559			break;
 560		case Opt_utf8:
 561			if (!remount) {
 562				unload_nls(uopt->nls_map);
 563				uopt->nls_map = NULL;
 564			}
 565			break;
 
 566		case Opt_iocharset:
 567			if (!remount) {
 568				unload_nls(uopt->nls_map);
 569				uopt->nls_map = NULL;
 570			}
 571			/* When nls_map is not loaded then UTF-8 is used */
 572			if (!remount && strcmp(args[0].from, "utf8") != 0) {
 573				uopt->nls_map = load_nls(args[0].from);
 574				if (!uopt->nls_map) {
 575					pr_err("iocharset %s not found\n",
 576						args[0].from);
 577					return 0;
 578				}
 579			}
 580			break;
 581		case Opt_uforget:
 582			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 583			break;
 584		case Opt_uignore:
 585		case Opt_gignore:
 586			/* These options are superseeded by uid=<number> */
 587			break;
 588		case Opt_gforget:
 589			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 590			break;
 591		case Opt_fmode:
 592			if (match_octal(args, &option))
 593				return 0;
 594			uopt->fmode = option & 0777;
 595			break;
 596		case Opt_dmode:
 597			if (match_octal(args, &option))
 598				return 0;
 599			uopt->dmode = option & 0777;
 600			break;
 601		default:
 602			pr_err("bad mount option \"%s\" or missing value\n", p);
 603			return 0;
 604		}
 605	}
 606	return 1;
 607}
 608
 609static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 610{
 611	struct udf_options uopt;
 612	struct udf_sb_info *sbi = UDF_SB(sb);
 613	int error = 0;
 614
 615	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
 616		return -EACCES;
 617
 618	sync_filesystem(sb);
 619
 620	uopt.flags = sbi->s_flags;
 621	uopt.uid   = sbi->s_uid;
 622	uopt.gid   = sbi->s_gid;
 623	uopt.umask = sbi->s_umask;
 624	uopt.fmode = sbi->s_fmode;
 625	uopt.dmode = sbi->s_dmode;
 626	uopt.nls_map = NULL;
 627
 628	if (!udf_parse_options(options, &uopt, true))
 629		return -EINVAL;
 630
 631	write_lock(&sbi->s_cred_lock);
 632	sbi->s_flags = uopt.flags;
 633	sbi->s_uid   = uopt.uid;
 634	sbi->s_gid   = uopt.gid;
 635	sbi->s_umask = uopt.umask;
 636	sbi->s_fmode = uopt.fmode;
 637	sbi->s_dmode = uopt.dmode;
 638	write_unlock(&sbi->s_cred_lock);
 639
 640	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
 
 
 
 
 
 
 641		goto out_unlock;
 642
 643	if (*flags & SB_RDONLY)
 644		udf_close_lvid(sb);
 645	else
 646		udf_open_lvid(sb);
 647
 648out_unlock:
 649	return error;
 650}
 651
 652/*
 653 * Check VSD descriptor. Returns -1 in case we are at the end of volume
 654 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
 655 * we found one of NSR descriptors we are looking for.
 656 */
 657static int identify_vsd(const struct volStructDesc *vsd)
 658{
 659	int ret = 0;
 660
 661	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
 662		switch (vsd->structType) {
 663		case 0:
 664			udf_debug("ISO9660 Boot Record found\n");
 665			break;
 666		case 1:
 667			udf_debug("ISO9660 Primary Volume Descriptor found\n");
 668			break;
 669		case 2:
 670			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 671			break;
 672		case 3:
 673			udf_debug("ISO9660 Volume Partition Descriptor found\n");
 674			break;
 675		case 255:
 676			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 677			break;
 678		default:
 679			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
 680			break;
 681		}
 682	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
 683		; /* ret = 0 */
 684	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
 685		ret = 1;
 686	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
 687		ret = 1;
 688	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
 689		; /* ret = 0 */
 690	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
 691		; /* ret = 0 */
 692	else {
 693		/* TEA01 or invalid id : end of volume recognition area */
 694		ret = -1;
 695	}
 696
 697	return ret;
 698}
 699
 700/*
 701 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
 702 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
 703 * @return   1 if NSR02 or NSR03 found,
 704 *	    -1 if first sector read error, 0 otherwise
 705 */
 706static int udf_check_vsd(struct super_block *sb)
 707{
 708	struct volStructDesc *vsd = NULL;
 709	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 710	int sectorsize;
 711	struct buffer_head *bh = NULL;
 712	int nsr = 0;
 
 713	struct udf_sb_info *sbi;
 714	loff_t session_offset;
 715
 716	sbi = UDF_SB(sb);
 717	if (sb->s_blocksize < sizeof(struct volStructDesc))
 718		sectorsize = sizeof(struct volStructDesc);
 719	else
 720		sectorsize = sb->s_blocksize;
 721
 722	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
 723	sector += session_offset;
 724
 725	udf_debug("Starting at sector %u (%lu byte sectors)\n",
 726		  (unsigned int)(sector >> sb->s_blocksize_bits),
 727		  sb->s_blocksize);
 728	/* Process the sequence (if applicable). The hard limit on the sector
 729	 * offset is arbitrary, hopefully large enough so that all valid UDF
 730	 * filesystems will be recognised. There is no mention of an upper
 731	 * bound to the size of the volume recognition area in the standard.
 732	 *  The limit will prevent the code to read all the sectors of a
 733	 * specially crafted image (like a bluray disc full of CD001 sectors),
 734	 * potentially causing minutes or even hours of uninterruptible I/O
 735	 * activity. This actually happened with uninitialised SSD partitions
 736	 * (all 0xFF) before the check for the limit and all valid IDs were
 737	 * added */
 738	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
 739		/* Read a block */
 740		bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
 741		if (!bh)
 742			break;
 743
 
 744		vsd = (struct volStructDesc *)(bh->b_data +
 745					      (sector & (sb->s_blocksize - 1)));
 746		nsr = identify_vsd(vsd);
 747		/* Found NSR or end? */
 748		if (nsr) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749			brelse(bh);
 750			break;
 751		}
 752		/*
 753		 * Special handling for improperly formatted VRS (e.g., Win10)
 754		 * where components are separated by 2048 bytes even though
 755		 * sectors are 4K
 756		 */
 757		if (sb->s_blocksize == 4096) {
 758			nsr = identify_vsd(vsd + 1);
 759			/* Ignore unknown IDs... */
 760			if (nsr < 0)
 761				nsr = 0;
 762		}
 763		brelse(bh);
 764	}
 765
 766	if (nsr > 0)
 767		return 1;
 768	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
 
 
 769		return -1;
 770	else
 771		return 0;
 772}
 773
 774static int udf_verify_domain_identifier(struct super_block *sb,
 775					struct regid *ident, char *dname)
 
 776{
 777	struct domainIdentSuffix *suffix;
 
 
 
 778
 779	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
 780		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
 781		goto force_ro;
 782	}
 783	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
 784		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
 785			 dname);
 786		goto force_ro;
 787	}
 788	suffix = (struct domainIdentSuffix *)ident->identSuffix;
 789	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
 790	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
 791		if (!sb_rdonly(sb)) {
 792			udf_warn(sb, "Descriptor for %s marked write protected."
 793				 " Forcing read only mount.\n", dname);
 794		}
 795		goto force_ro;
 796	}
 797	return 0;
 798
 799force_ro:
 800	if (!sb_rdonly(sb))
 801		return -EACCES;
 802	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
 803	return 0;
 804}
 805
 806static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
 807			    struct kernel_lb_addr *root)
 808{
 809	int ret;
 810
 811	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
 812	if (ret < 0)
 813		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814
 815	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 816	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817
 818	udf_debug("Rootdir at block=%u, partition=%u\n",
 819		  root->logicalBlockNum, root->partitionReferenceNum);
 820	return 0;
 821}
 
 822
 823static int udf_find_fileset(struct super_block *sb,
 824			    struct kernel_lb_addr *fileset,
 825			    struct kernel_lb_addr *root)
 826{
 827	struct buffer_head *bh;
 828	uint16_t ident;
 829	int ret;
 830
 831	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
 832	    fileset->partitionReferenceNum == 0xFFFF)
 833		return -EINVAL;
 834
 835	bh = udf_read_ptagged(sb, fileset, 0, &ident);
 836	if (!bh)
 837		return -EIO;
 838	if (ident != TAG_IDENT_FSD) {
 839		brelse(bh);
 840		return -EINVAL;
 841	}
 842
 843	udf_debug("Fileset at block=%u, partition=%u\n",
 844		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
 845
 846	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
 847	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
 848	brelse(bh);
 849	return ret;
 850}
 851
 852/*
 853 * Load primary Volume Descriptor Sequence
 854 *
 855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 856 * should be tried.
 857 */
 858static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 859{
 860	struct primaryVolDesc *pvoldesc;
 861	uint8_t *outstr;
 862	struct buffer_head *bh;
 863	uint16_t ident;
 864	int ret;
 865	struct timestamp *ts;
 
 
 
 866
 867	outstr = kmalloc(128, GFP_NOFS);
 868	if (!outstr)
 869		return -ENOMEM;
 870
 871	bh = udf_read_tagged(sb, block, block, &ident);
 872	if (!bh) {
 873		ret = -EAGAIN;
 874		goto out2;
 875	}
 876
 877	if (ident != TAG_IDENT_PVD) {
 878		ret = -EIO;
 879		goto out_bh;
 880	}
 881
 882	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 883
 884	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 885			      pvoldesc->recordingDateAndTime);
 886	ts = &pvoldesc->recordingDateAndTime;
 887	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 888		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 889		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 890
 891	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
 892	if (ret < 0) {
 893		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
 894		pr_warn("incorrect volume identification, setting to "
 895			"'InvalidName'\n");
 896	} else {
 897		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 898	}
 899	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 900
 901	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
 902	if (ret < 0) {
 903		ret = 0;
 904		goto out_bh;
 905	}
 906	outstr[ret] = 0;
 907	udf_debug("volSetIdent[] = '%s'\n", outstr);
 908
 
 909	ret = 0;
 910out_bh:
 911	brelse(bh);
 912out2:
 913	kfree(outstr);
 
 
 914	return ret;
 915}
 916
 917struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 918					u32 meta_file_loc, u32 partition_ref)
 919{
 920	struct kernel_lb_addr addr;
 921	struct inode *metadata_fe;
 922
 923	addr.logicalBlockNum = meta_file_loc;
 924	addr.partitionReferenceNum = partition_ref;
 925
 926	metadata_fe = udf_iget_special(sb, &addr);
 927
 928	if (IS_ERR(metadata_fe)) {
 929		udf_warn(sb, "metadata inode efe not found\n");
 930		return metadata_fe;
 931	}
 932	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 933		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 934		iput(metadata_fe);
 935		return ERR_PTR(-EIO);
 936	}
 937
 938	return metadata_fe;
 939}
 940
 941static int udf_load_metadata_files(struct super_block *sb, int partition,
 942				   int type1_index)
 943{
 944	struct udf_sb_info *sbi = UDF_SB(sb);
 945	struct udf_part_map *map;
 946	struct udf_meta_data *mdata;
 947	struct kernel_lb_addr addr;
 948	struct inode *fe;
 949
 950	map = &sbi->s_partmaps[partition];
 951	mdata = &map->s_type_specific.s_metadata;
 952	mdata->s_phys_partition_ref = type1_index;
 953
 954	/* metadata address */
 955	udf_debug("Metadata file location: block = %u part = %u\n",
 956		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 957
 958	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 959					 mdata->s_phys_partition_ref);
 960	if (IS_ERR(fe)) {
 
 961		/* mirror file entry */
 962		udf_debug("Mirror metadata file location: block = %u part = %u\n",
 963			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
 964
 965		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 966						 mdata->s_phys_partition_ref);
 967
 968		if (IS_ERR(fe)) {
 969			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 970			return PTR_ERR(fe);
 971		}
 972		mdata->s_mirror_fe = fe;
 973	} else
 974		mdata->s_metadata_fe = fe;
 975
 976
 977	/*
 978	 * bitmap file entry
 979	 * Note:
 980	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 981	*/
 982	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 983		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 984		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
 985
 986		udf_debug("Bitmap file location: block = %u part = %u\n",
 987			  addr.logicalBlockNum, addr.partitionReferenceNum);
 988
 989		fe = udf_iget_special(sb, &addr);
 990		if (IS_ERR(fe)) {
 991			if (sb_rdonly(sb))
 
 992				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 993			else {
 994				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 995				return PTR_ERR(fe);
 996			}
 997		} else
 998			mdata->s_bitmap_fe = fe;
 999	}
1000
1001	udf_debug("udf_load_metadata_files Ok\n");
 
1002	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1006{
1007	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1008	return DIV_ROUND_UP(map->s_partition_len +
1009			    (sizeof(struct spaceBitmapDesc) << 3),
1010			    sb->s_blocksize * 8);
1011}
1012
1013static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1014{
1015	struct udf_bitmap *bitmap;
1016	int nr_groups = udf_compute_nr_groups(sb, index);
 
 
 
 
 
 
 
 
 
 
1017
1018	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1019			  GFP_KERNEL);
1020	if (!bitmap)
1021		return NULL;
1022
 
1023	bitmap->s_nr_groups = nr_groups;
1024	return bitmap;
1025}
1026
1027static int check_partition_desc(struct super_block *sb,
1028				struct partitionDesc *p,
1029				struct udf_part_map *map)
1030{
1031	bool umap, utable, fmap, ftable;
1032	struct partitionHeaderDesc *phd;
1033
1034	switch (le32_to_cpu(p->accessType)) {
1035	case PD_ACCESS_TYPE_READ_ONLY:
1036	case PD_ACCESS_TYPE_WRITE_ONCE:
1037	case PD_ACCESS_TYPE_NONE:
1038		goto force_ro;
1039	}
1040
1041	/* No Partition Header Descriptor? */
1042	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1043	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1044		goto force_ro;
1045
1046	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1047	utable = phd->unallocSpaceTable.extLength;
1048	umap = phd->unallocSpaceBitmap.extLength;
1049	ftable = phd->freedSpaceTable.extLength;
1050	fmap = phd->freedSpaceBitmap.extLength;
1051
1052	/* No allocation info? */
1053	if (!utable && !umap && !ftable && !fmap)
1054		goto force_ro;
1055
1056	/* We don't support blocks that require erasing before overwrite */
1057	if (ftable || fmap)
1058		goto force_ro;
1059	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1060	if (utable && umap)
1061		goto force_ro;
1062
1063	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1064	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1065	    map->s_partition_type == UDF_METADATA_MAP25)
1066		goto force_ro;
1067
1068	return 0;
1069force_ro:
1070	if (!sb_rdonly(sb))
1071		return -EACCES;
1072	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1073	return 0;
1074}
1075
1076static int udf_fill_partdesc_info(struct super_block *sb,
1077		struct partitionDesc *p, int p_index)
1078{
1079	struct udf_part_map *map;
1080	struct udf_sb_info *sbi = UDF_SB(sb);
1081	struct partitionHeaderDesc *phd;
1082	int err;
1083
1084	map = &sbi->s_partmaps[p_index];
1085
1086	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1087	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1088
1089	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1090		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1091	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1092		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1093	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1094		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1095	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1096		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1097
1098	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1099		  p_index, map->s_partition_type,
1100		  map->s_partition_root, map->s_partition_len);
1101
1102	err = check_partition_desc(sb, p, map);
1103	if (err)
1104		return err;
1105
1106	/*
1107	 * Skip loading allocation info it we cannot ever write to the fs.
1108	 * This is a correctness thing as we may have decided to force ro mount
1109	 * to avoid allocation info we don't support.
1110	 */
1111	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1112		return 0;
1113
1114	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115	if (phd->unallocSpaceTable.extLength) {
1116		struct kernel_lb_addr loc = {
1117			.logicalBlockNum = le32_to_cpu(
1118				phd->unallocSpaceTable.extPosition),
1119			.partitionReferenceNum = p_index,
1120		};
1121		struct inode *inode;
1122
1123		inode = udf_iget_special(sb, &loc);
1124		if (IS_ERR(inode)) {
1125			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126				  p_index);
1127			return PTR_ERR(inode);
1128		}
1129		map->s_uspace.s_table = inode;
1130		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1132			  p_index, map->s_uspace.s_table->i_ino);
1133	}
1134
1135	if (phd->unallocSpaceBitmap.extLength) {
1136		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137		if (!bitmap)
1138			return -ENOMEM;
1139		map->s_uspace.s_bitmap = bitmap;
 
 
1140		bitmap->s_extPosition = le32_to_cpu(
1141				phd->unallocSpaceBitmap.extPosition);
1142		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1144			  p_index, bitmap->s_extPosition);
1145	}
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	return 0;
1148}
1149
1150static void udf_find_vat_block(struct super_block *sb, int p_index,
1151			       int type1_index, sector_t start_block)
1152{
1153	struct udf_sb_info *sbi = UDF_SB(sb);
1154	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155	sector_t vat_block;
1156	struct kernel_lb_addr ino;
1157	struct inode *inode;
1158
1159	/*
1160	 * VAT file entry is in the last recorded block. Some broken disks have
1161	 * it a few blocks before so try a bit harder...
1162	 */
1163	ino.partitionReferenceNum = type1_index;
1164	for (vat_block = start_block;
1165	     vat_block >= map->s_partition_root &&
1166	     vat_block >= start_block - 3; vat_block--) {
 
1167		ino.logicalBlockNum = vat_block - map->s_partition_root;
1168		inode = udf_iget_special(sb, &ino);
1169		if (!IS_ERR(inode)) {
1170			sbi->s_vat_inode = inode;
1171			break;
1172		}
1173	}
1174}
1175
1176static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177{
1178	struct udf_sb_info *sbi = UDF_SB(sb);
1179	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180	struct buffer_head *bh = NULL;
1181	struct udf_inode_info *vati;
 
1182	struct virtualAllocationTable20 *vat20;
1183	sector_t blocks = sb_bdev_nr_blocks(sb);
1184
1185	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1186	if (!sbi->s_vat_inode &&
1187	    sbi->s_last_block != blocks - 1) {
1188		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1189			  (unsigned long)sbi->s_last_block,
1190			  (unsigned long)blocks - 1);
1191		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1192	}
1193	if (!sbi->s_vat_inode)
1194		return -EIO;
1195
1196	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1197		map->s_type_specific.s_virtual.s_start_offset = 0;
1198		map->s_type_specific.s_virtual.s_num_entries =
1199			(sbi->s_vat_inode->i_size - 36) >> 2;
1200	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1201		vati = UDF_I(sbi->s_vat_inode);
1202		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1203			int err = 0;
1204
1205			bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1206			if (!bh) {
1207				if (!err)
1208					err = -EFSCORRUPTED;
1209				return err;
1210			}
1211			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1212		} else {
1213			vat20 = (struct virtualAllocationTable20 *)
1214							vati->i_data;
1215		}
1216
1217		map->s_type_specific.s_virtual.s_start_offset =
1218			le16_to_cpu(vat20->lengthHeader);
1219		map->s_type_specific.s_virtual.s_num_entries =
1220			(sbi->s_vat_inode->i_size -
1221				map->s_type_specific.s_virtual.
1222					s_start_offset) >> 2;
1223		brelse(bh);
1224	}
1225	return 0;
1226}
1227
1228/*
1229 * Load partition descriptor block
1230 *
1231 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1232 * sequence.
1233 */
1234static int udf_load_partdesc(struct super_block *sb, sector_t block)
1235{
1236	struct buffer_head *bh;
1237	struct partitionDesc *p;
1238	struct udf_part_map *map;
1239	struct udf_sb_info *sbi = UDF_SB(sb);
1240	int i, type1_idx;
1241	uint16_t partitionNumber;
1242	uint16_t ident;
1243	int ret;
1244
1245	bh = udf_read_tagged(sb, block, block, &ident);
1246	if (!bh)
1247		return -EAGAIN;
1248	if (ident != TAG_IDENT_PD) {
1249		ret = 0;
1250		goto out_bh;
1251	}
1252
1253	p = (struct partitionDesc *)bh->b_data;
1254	partitionNumber = le16_to_cpu(p->partitionNumber);
1255
1256	/* First scan for TYPE1 and SPARABLE partitions */
1257	for (i = 0; i < sbi->s_partitions; i++) {
1258		map = &sbi->s_partmaps[i];
1259		udf_debug("Searching map: (%u == %u)\n",
1260			  map->s_partition_num, partitionNumber);
1261		if (map->s_partition_num == partitionNumber &&
1262		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1263		     map->s_partition_type == UDF_SPARABLE_MAP15))
1264			break;
1265	}
1266
1267	if (i >= sbi->s_partitions) {
1268		udf_debug("Partition (%u) not found in partition map\n",
1269			  partitionNumber);
1270		ret = 0;
1271		goto out_bh;
1272	}
1273
1274	ret = udf_fill_partdesc_info(sb, p, i);
1275	if (ret < 0)
1276		goto out_bh;
1277
1278	/*
1279	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1280	 * PHYSICAL partitions are already set up
1281	 */
1282	type1_idx = i;
1283	map = NULL; /* supress 'maybe used uninitialized' warning */
1284	for (i = 0; i < sbi->s_partitions; i++) {
1285		map = &sbi->s_partmaps[i];
1286
1287		if (map->s_partition_num == partitionNumber &&
1288		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290		     map->s_partition_type == UDF_METADATA_MAP25))
1291			break;
1292	}
1293
1294	if (i >= sbi->s_partitions) {
1295		ret = 0;
1296		goto out_bh;
1297	}
1298
1299	ret = udf_fill_partdesc_info(sb, p, i);
1300	if (ret < 0)
1301		goto out_bh;
1302
1303	if (map->s_partition_type == UDF_METADATA_MAP25) {
1304		ret = udf_load_metadata_files(sb, i, type1_idx);
1305		if (ret < 0) {
1306			udf_err(sb, "error loading MetaData partition map %d\n",
1307				i);
1308			goto out_bh;
1309		}
1310	} else {
 
 
 
1311		/*
1312		 * If we have a partition with virtual map, we don't handle
1313		 * writing to it (we overwrite blocks instead of relocating
1314		 * them).
1315		 */
1316		if (!sb_rdonly(sb)) {
1317			ret = -EACCES;
1318			goto out_bh;
1319		}
1320		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1321		ret = udf_load_vat(sb, i, type1_idx);
1322		if (ret < 0)
1323			goto out_bh;
1324	}
1325	ret = 0;
1326out_bh:
1327	/* In case loading failed, we handle cleanup in udf_fill_super */
1328	brelse(bh);
1329	return ret;
1330}
1331
1332static int udf_load_sparable_map(struct super_block *sb,
1333				 struct udf_part_map *map,
1334				 struct sparablePartitionMap *spm)
1335{
1336	uint32_t loc;
1337	uint16_t ident;
1338	struct sparingTable *st;
1339	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1340	int i;
1341	struct buffer_head *bh;
1342
1343	map->s_partition_type = UDF_SPARABLE_MAP15;
1344	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1345	if (!is_power_of_2(sdata->s_packet_len)) {
1346		udf_err(sb, "error loading logical volume descriptor: "
1347			"Invalid packet length %u\n",
1348			(unsigned)sdata->s_packet_len);
1349		return -EIO;
1350	}
1351	if (spm->numSparingTables > 4) {
1352		udf_err(sb, "error loading logical volume descriptor: "
1353			"Too many sparing tables (%d)\n",
1354			(int)spm->numSparingTables);
1355		return -EIO;
1356	}
1357	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1358		udf_err(sb, "error loading logical volume descriptor: "
1359			"Too big sparing table size (%u)\n",
1360			le32_to_cpu(spm->sizeSparingTable));
1361		return -EIO;
1362	}
1363
1364	for (i = 0; i < spm->numSparingTables; i++) {
1365		loc = le32_to_cpu(spm->locSparingTable[i]);
1366		bh = udf_read_tagged(sb, loc, loc, &ident);
1367		if (!bh)
1368			continue;
1369
1370		st = (struct sparingTable *)bh->b_data;
1371		if (ident != 0 ||
1372		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1373			    strlen(UDF_ID_SPARING)) ||
1374		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1375							sb->s_blocksize) {
1376			brelse(bh);
1377			continue;
1378		}
1379
1380		sdata->s_spar_map[i] = bh;
1381	}
1382	map->s_partition_func = udf_get_pblock_spar15;
1383	return 0;
1384}
1385
1386static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1387			       struct kernel_lb_addr *fileset)
1388{
1389	struct logicalVolDesc *lvd;
1390	int i, offset;
1391	uint8_t type;
1392	struct udf_sb_info *sbi = UDF_SB(sb);
1393	struct genericPartitionMap *gpm;
1394	uint16_t ident;
1395	struct buffer_head *bh;
1396	unsigned int table_len;
1397	int ret;
1398
1399	bh = udf_read_tagged(sb, block, block, &ident);
1400	if (!bh)
1401		return -EAGAIN;
1402	BUG_ON(ident != TAG_IDENT_LVD);
1403	lvd = (struct logicalVolDesc *)bh->b_data;
1404	table_len = le32_to_cpu(lvd->mapTableLength);
1405	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1406		udf_err(sb, "error loading logical volume descriptor: "
1407			"Partition table too long (%u > %lu)\n", table_len,
1408			sb->s_blocksize - sizeof(*lvd));
1409		ret = -EIO;
1410		goto out_bh;
1411	}
1412
1413	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1414					   "logical volume");
1415	if (ret)
1416		goto out_bh;
1417	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1418	if (ret)
1419		goto out_bh;
1420
1421	for (i = 0, offset = 0;
1422	     i < sbi->s_partitions && offset < table_len;
1423	     i++, offset += gpm->partitionMapLength) {
1424		struct udf_part_map *map = &sbi->s_partmaps[i];
1425		gpm = (struct genericPartitionMap *)
1426				&(lvd->partitionMaps[offset]);
1427		type = gpm->partitionMapType;
1428		if (type == 1) {
1429			struct genericPartitionMap1 *gpm1 =
1430				(struct genericPartitionMap1 *)gpm;
1431			map->s_partition_type = UDF_TYPE1_MAP15;
1432			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1433			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1434			map->s_partition_func = NULL;
1435		} else if (type == 2) {
1436			struct udfPartitionMap2 *upm2 =
1437						(struct udfPartitionMap2 *)gpm;
1438			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1439						strlen(UDF_ID_VIRTUAL))) {
1440				u16 suf =
1441					le16_to_cpu(((__le16 *)upm2->partIdent.
1442							identSuffix)[0]);
1443				if (suf < 0x0200) {
1444					map->s_partition_type =
1445							UDF_VIRTUAL_MAP15;
1446					map->s_partition_func =
1447							udf_get_pblock_virt15;
1448				} else {
1449					map->s_partition_type =
1450							UDF_VIRTUAL_MAP20;
1451					map->s_partition_func =
1452							udf_get_pblock_virt20;
1453				}
1454			} else if (!strncmp(upm2->partIdent.ident,
1455						UDF_ID_SPARABLE,
1456						strlen(UDF_ID_SPARABLE))) {
1457				ret = udf_load_sparable_map(sb, map,
1458					(struct sparablePartitionMap *)gpm);
1459				if (ret < 0)
1460					goto out_bh;
1461			} else if (!strncmp(upm2->partIdent.ident,
1462						UDF_ID_METADATA,
1463						strlen(UDF_ID_METADATA))) {
1464				struct udf_meta_data *mdata =
1465					&map->s_type_specific.s_metadata;
1466				struct metadataPartitionMap *mdm =
1467						(struct metadataPartitionMap *)
1468						&(lvd->partitionMaps[offset]);
1469				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1470					  i, type, UDF_ID_METADATA);
1471
1472				map->s_partition_type = UDF_METADATA_MAP25;
1473				map->s_partition_func = udf_get_pblock_meta25;
1474
1475				mdata->s_meta_file_loc   =
1476					le32_to_cpu(mdm->metadataFileLoc);
1477				mdata->s_mirror_file_loc =
1478					le32_to_cpu(mdm->metadataMirrorFileLoc);
1479				mdata->s_bitmap_file_loc =
1480					le32_to_cpu(mdm->metadataBitmapFileLoc);
1481				mdata->s_alloc_unit_size =
1482					le32_to_cpu(mdm->allocUnitSize);
1483				mdata->s_align_unit_size =
1484					le16_to_cpu(mdm->alignUnitSize);
1485				if (mdm->flags & 0x01)
1486					mdata->s_flags |= MF_DUPLICATE_MD;
1487
1488				udf_debug("Metadata Ident suffix=0x%x\n",
1489					  le16_to_cpu(*(__le16 *)
1490						      mdm->partIdent.identSuffix));
1491				udf_debug("Metadata part num=%u\n",
1492					  le16_to_cpu(mdm->partitionNum));
1493				udf_debug("Metadata part alloc unit size=%u\n",
1494					  le32_to_cpu(mdm->allocUnitSize));
1495				udf_debug("Metadata file loc=%u\n",
1496					  le32_to_cpu(mdm->metadataFileLoc));
1497				udf_debug("Mirror file loc=%u\n",
1498					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1499				udf_debug("Bitmap file loc=%u\n",
1500					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1501				udf_debug("Flags: %d %u\n",
1502					  mdata->s_flags, mdm->flags);
1503			} else {
1504				udf_debug("Unknown ident: %s\n",
1505					  upm2->partIdent.ident);
1506				continue;
1507			}
1508			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1509			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1510		}
1511		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1512			  i, map->s_partition_num, type, map->s_volumeseqnum);
1513	}
1514
1515	if (fileset) {
1516		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1517
1518		*fileset = lelb_to_cpu(la->extLocation);
1519		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1520			  fileset->logicalBlockNum,
1521			  fileset->partitionReferenceNum);
1522	}
1523	if (lvd->integritySeqExt.extLength)
1524		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1525	ret = 0;
1526
1527	if (!sbi->s_lvid_bh) {
1528		/* We can't generate unique IDs without a valid LVID */
1529		if (sb_rdonly(sb)) {
1530			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1531		} else {
1532			udf_warn(sb, "Damaged or missing LVID, forcing "
1533				     "readonly mount\n");
1534			ret = -EACCES;
1535		}
1536	}
1537out_bh:
1538	brelse(bh);
1539	return ret;
1540}
1541
1542/*
1543 * Find the prevailing Logical Volume Integrity Descriptor.
 
1544 */
1545static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1546{
1547	struct buffer_head *bh, *final_bh;
1548	uint16_t ident;
1549	struct udf_sb_info *sbi = UDF_SB(sb);
1550	struct logicalVolIntegrityDesc *lvid;
1551	int indirections = 0;
1552	u32 parts, impuselen;
1553
1554	while (++indirections <= UDF_MAX_LVID_NESTING) {
1555		final_bh = NULL;
1556		while (loc.extLength > 0 &&
1557			(bh = udf_read_tagged(sb, loc.extLocation,
1558					loc.extLocation, &ident))) {
1559			if (ident != TAG_IDENT_LVID) {
1560				brelse(bh);
1561				break;
1562			}
1563
1564			brelse(final_bh);
1565			final_bh = bh;
 
1566
1567			loc.extLength -= sb->s_blocksize;
1568			loc.extLocation++;
1569		}
1570
1571		if (!final_bh)
1572			return;
1573
1574		brelse(sbi->s_lvid_bh);
1575		sbi->s_lvid_bh = final_bh;
1576
1577		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1578		if (lvid->nextIntegrityExt.extLength == 0)
1579			goto check;
1580
1581		loc = leea_to_cpu(lvid->nextIntegrityExt);
1582	}
1583
1584	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1585		UDF_MAX_LVID_NESTING);
1586out_err:
1587	brelse(sbi->s_lvid_bh);
1588	sbi->s_lvid_bh = NULL;
1589	return;
1590check:
1591	parts = le32_to_cpu(lvid->numOfPartitions);
1592	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1593	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1594	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1595	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1596		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1597			 "ignoring.\n", parts, impuselen);
1598		goto out_err;
1599	}
 
 
1600}
1601
1602/*
1603 * Step for reallocation of table of partition descriptor sequence numbers.
1604 * Must be power of 2.
1605 */
1606#define PART_DESC_ALLOC_STEP 32
1607
1608struct part_desc_seq_scan_data {
1609	struct udf_vds_record rec;
1610	u32 partnum;
1611};
1612
1613struct desc_seq_scan_data {
1614	struct udf_vds_record vds[VDS_POS_LENGTH];
1615	unsigned int size_part_descs;
1616	unsigned int num_part_descs;
1617	struct part_desc_seq_scan_data *part_descs_loc;
1618};
1619
1620static struct udf_vds_record *handle_partition_descriptor(
1621				struct buffer_head *bh,
1622				struct desc_seq_scan_data *data)
1623{
1624	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1625	int partnum;
1626	int i;
1627
1628	partnum = le16_to_cpu(desc->partitionNumber);
1629	for (i = 0; i < data->num_part_descs; i++)
1630		if (partnum == data->part_descs_loc[i].partnum)
1631			return &(data->part_descs_loc[i].rec);
1632	if (data->num_part_descs >= data->size_part_descs) {
1633		struct part_desc_seq_scan_data *new_loc;
1634		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1635
1636		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1637		if (!new_loc)
1638			return ERR_PTR(-ENOMEM);
1639		memcpy(new_loc, data->part_descs_loc,
1640		       data->size_part_descs * sizeof(*new_loc));
1641		kfree(data->part_descs_loc);
1642		data->part_descs_loc = new_loc;
1643		data->size_part_descs = new_size;
1644	}
1645	return &(data->part_descs_loc[data->num_part_descs++].rec);
1646}
1647
1648
1649static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1650		struct buffer_head *bh, struct desc_seq_scan_data *data)
1651{
1652	switch (ident) {
1653	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1654		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1655	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1656		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1657	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1658		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1659	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1660		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1661	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1662		return handle_partition_descriptor(bh, data);
1663	}
1664	return NULL;
1665}
1666
1667/*
1668 * Process a main/reserve volume descriptor sequence.
1669 *   @block		First block of first extent of the sequence.
1670 *   @lastblock		Lastblock of first extent of the sequence.
1671 *   @fileset		There we store extent containing root fileset
1672 *
1673 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1674 * sequence
 
1675 */
1676static noinline int udf_process_sequence(
1677		struct super_block *sb,
1678		sector_t block, sector_t lastblock,
1679		struct kernel_lb_addr *fileset)
1680{
1681	struct buffer_head *bh = NULL;
 
1682	struct udf_vds_record *curr;
1683	struct generic_desc *gd;
1684	struct volDescPtr *vdp;
1685	bool done = false;
1686	uint32_t vdsn;
1687	uint16_t ident;
1688	int ret;
1689	unsigned int indirections = 0;
1690	struct desc_seq_scan_data data;
1691	unsigned int i;
1692
1693	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1694	data.size_part_descs = PART_DESC_ALLOC_STEP;
1695	data.num_part_descs = 0;
1696	data.part_descs_loc = kcalloc(data.size_part_descs,
1697				      sizeof(*data.part_descs_loc),
1698				      GFP_KERNEL);
1699	if (!data.part_descs_loc)
1700		return -ENOMEM;
1701
1702	/*
1703	 * Read the main descriptor sequence and find which descriptors
1704	 * are in it.
1705	 */
1706	for (; (!done && block <= lastblock); block++) {
 
1707		bh = udf_read_tagged(sb, block, block, &ident);
1708		if (!bh)
1709			break;
 
 
 
 
1710
1711		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1712		gd = (struct generic_desc *)bh->b_data;
1713		vdsn = le32_to_cpu(gd->volDescSeqNum);
1714		switch (ident) {
 
 
 
 
 
 
 
1715		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1716			if (++indirections > UDF_MAX_TD_NESTING) {
1717				udf_err(sb, "too many Volume Descriptor "
1718					"Pointers (max %u supported)\n",
1719					UDF_MAX_TD_NESTING);
1720				brelse(bh);
1721				ret = -EIO;
1722				goto out;
 
 
 
 
 
1723			}
1724
1725			vdp = (struct volDescPtr *)bh->b_data;
1726			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1727			lastblock = le32_to_cpu(
1728				vdp->nextVolDescSeqExt.extLength) >>
1729				sb->s_blocksize_bits;
1730			lastblock += block - 1;
1731			/* For loop is going to increment 'block' again */
1732			block--;
1733			break;
1734		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1735		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
 
 
 
 
 
 
 
 
 
 
 
1736		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
 
 
 
 
 
 
1737		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1738		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1739			curr = get_volume_descriptor_record(ident, bh, &data);
1740			if (IS_ERR(curr)) {
1741				brelse(bh);
1742				ret = PTR_ERR(curr);
1743				goto out;
1744			}
1745			/* Descriptor we don't care about? */
1746			if (!curr)
1747				break;
1748			if (vdsn >= curr->volDescSeqNum) {
1749				curr->volDescSeqNum = vdsn;
1750				curr->block = block;
1751			}
1752			break;
1753		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1754			done = true;
 
 
 
 
 
 
1755			break;
1756		}
1757		brelse(bh);
1758	}
1759	/*
1760	 * Now read interesting descriptors again and process them
1761	 * in a suitable order
1762	 */
1763	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1764		udf_err(sb, "Primary Volume Descriptor not found!\n");
1765		ret = -EAGAIN;
1766		goto out;
1767	}
1768	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1769	if (ret < 0)
1770		goto out;
 
 
 
1771
1772	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1773		ret = udf_load_logicalvol(sb,
1774				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1775				fileset);
1776		if (ret < 0)
1777			goto out;
 
 
 
 
1778	}
1779
1780	/* Now handle prevailing Partition Descriptors */
1781	for (i = 0; i < data.num_part_descs; i++) {
1782		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1783		if (ret < 0)
1784			goto out;
1785	}
1786	ret = 0;
1787out:
1788	kfree(data.part_descs_loc);
1789	return ret;
1790}
1791
1792/*
1793 * Load Volume Descriptor Sequence described by anchor in bh
1794 *
1795 * Returns <0 on error, 0 on success
1796 */
1797static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1798			     struct kernel_lb_addr *fileset)
1799{
1800	struct anchorVolDescPtr *anchor;
1801	sector_t main_s, main_e, reserve_s, reserve_e;
1802	int ret;
1803
1804	anchor = (struct anchorVolDescPtr *)bh->b_data;
1805
1806	/* Locate the main sequence */
1807	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1808	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1809	main_e = main_e >> sb->s_blocksize_bits;
1810	main_e += main_s - 1;
1811
1812	/* Locate the reserve sequence */
1813	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1814	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1815	reserve_e = reserve_e >> sb->s_blocksize_bits;
1816	reserve_e += reserve_s - 1;
1817
1818	/* Process the main & reserve sequences */
1819	/* responsible for finding the PartitionDesc(s) */
1820	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1821	if (ret != -EAGAIN)
1822		return ret;
1823	udf_sb_free_partitions(sb);
1824	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1825	if (ret < 0) {
1826		udf_sb_free_partitions(sb);
1827		/* No sequence was OK, return -EIO */
1828		if (ret == -EAGAIN)
1829			ret = -EIO;
1830	}
1831	return ret;
1832}
1833
1834/*
1835 * Check whether there is an anchor block in the given block and
1836 * load Volume Descriptor Sequence if so.
1837 *
1838 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1839 * block
1840 */
1841static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1842				  struct kernel_lb_addr *fileset)
1843{
1844	struct buffer_head *bh;
1845	uint16_t ident;
1846	int ret;
1847
 
 
 
 
 
1848	bh = udf_read_tagged(sb, block, block, &ident);
1849	if (!bh)
1850		return -EAGAIN;
1851	if (ident != TAG_IDENT_AVDP) {
1852		brelse(bh);
1853		return -EAGAIN;
1854	}
1855	ret = udf_load_sequence(sb, bh, fileset);
1856	brelse(bh);
1857	return ret;
1858}
1859
1860/*
1861 * Search for an anchor volume descriptor pointer.
1862 *
1863 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1864 * of anchors.
1865 */
1866static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1867			    struct kernel_lb_addr *fileset)
1868{
1869	udf_pblk_t last[6];
1870	int i;
1871	struct udf_sb_info *sbi = UDF_SB(sb);
1872	int last_count = 0;
1873	int ret;
1874
1875	/* First try user provided anchor */
1876	if (sbi->s_anchor) {
1877		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1878		if (ret != -EAGAIN)
1879			return ret;
1880	}
1881	/*
1882	 * according to spec, anchor is in either:
1883	 *     block 256
1884	 *     lastblock-256
1885	 *     lastblock
1886	 *  however, if the disc isn't closed, it could be 512.
1887	 */
1888	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1889	if (ret != -EAGAIN)
1890		return ret;
1891	/*
1892	 * The trouble is which block is the last one. Drives often misreport
1893	 * this so we try various possibilities.
1894	 */
1895	last[last_count++] = *lastblock;
1896	if (*lastblock >= 1)
1897		last[last_count++] = *lastblock - 1;
1898	last[last_count++] = *lastblock + 1;
1899	if (*lastblock >= 2)
1900		last[last_count++] = *lastblock - 2;
1901	if (*lastblock >= 150)
1902		last[last_count++] = *lastblock - 150;
1903	if (*lastblock >= 152)
1904		last[last_count++] = *lastblock - 152;
1905
1906	for (i = 0; i < last_count; i++) {
1907		if (last[i] >= sb_bdev_nr_blocks(sb))
 
1908			continue;
1909		ret = udf_check_anchor_block(sb, last[i], fileset);
1910		if (ret != -EAGAIN) {
1911			if (!ret)
1912				*lastblock = last[i];
1913			return ret;
1914		}
1915		if (last[i] < 256)
1916			continue;
1917		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1918		if (ret != -EAGAIN) {
1919			if (!ret)
1920				*lastblock = last[i];
1921			return ret;
1922		}
1923	}
1924
1925	/* Finally try block 512 in case media is open */
1926	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927}
1928
1929/*
1930 * Check Volume Structure Descriptor, find Anchor block and load Volume
1931 * Descriptor Sequence.
1932 *
1933 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1934 * block was not found.
1935 */
1936static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1937			int silent, struct kernel_lb_addr *fileset)
1938{
1939	struct udf_sb_info *sbi = UDF_SB(sb);
1940	int nsr = 0;
1941	int ret;
1942
1943	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1944		if (!silent)
1945			udf_warn(sb, "Bad block size\n");
1946		return -EINVAL;
1947	}
1948	sbi->s_last_block = uopt->lastblock;
1949	if (!uopt->novrs) {
1950		/* Check that it is NSR02 compliant */
1951		nsr = udf_check_vsd(sb);
1952		if (!nsr) {
1953			if (!silent)
1954				udf_warn(sb, "No VRS found\n");
1955			return -EINVAL;
1956		}
1957		if (nsr == -1)
1958			udf_debug("Failed to read sector at offset %d. "
1959				  "Assuming open disc. Skipping validity "
1960				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1961		if (!sbi->s_last_block)
1962			sbi->s_last_block = udf_get_last_block(sb);
1963	} else {
1964		udf_debug("Validity check skipped because of novrs option\n");
1965	}
1966
1967	/* Look for anchor block and load Volume Descriptor Sequence */
1968	sbi->s_anchor = uopt->anchor;
1969	ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1970	if (ret < 0) {
1971		if (!silent && ret == -EAGAIN)
1972			udf_warn(sb, "No anchor found\n");
1973		return ret;
1974	}
1975	return 0;
1976}
1977
1978static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1979{
1980	struct timespec64 ts;
1981
1982	ktime_get_real_ts64(&ts);
1983	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1984	lvid->descTag.descCRC = cpu_to_le16(
1985		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1986			le16_to_cpu(lvid->descTag.descCRCLength)));
1987	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988}
1989
1990static void udf_open_lvid(struct super_block *sb)
1991{
1992	struct udf_sb_info *sbi = UDF_SB(sb);
1993	struct buffer_head *bh = sbi->s_lvid_bh;
1994	struct logicalVolIntegrityDesc *lvid;
1995	struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997	if (!bh)
1998		return;
 
 
1999	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000	lvidiu = udf_sb_lvidiu(sb);
2001	if (!lvidiu)
2002		return;
2003
2004	mutex_lock(&sbi->s_alloc_mutex);
2005	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2008		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2009	else
2010		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
 
 
 
2011
2012	udf_finalize_lvid(lvid);
2013	mark_buffer_dirty(bh);
2014	sbi->s_lvid_dirty = 0;
2015	mutex_unlock(&sbi->s_alloc_mutex);
2016	/* Make opening of filesystem visible on the media immediately */
2017	sync_dirty_buffer(bh);
2018}
2019
2020static void udf_close_lvid(struct super_block *sb)
2021{
2022	struct udf_sb_info *sbi = UDF_SB(sb);
2023	struct buffer_head *bh = sbi->s_lvid_bh;
2024	struct logicalVolIntegrityDesc *lvid;
2025	struct logicalVolIntegrityDescImpUse *lvidiu;
2026
2027	if (!bh)
2028		return;
2029	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2030	lvidiu = udf_sb_lvidiu(sb);
2031	if (!lvidiu)
2032		return;
2033
2034	mutex_lock(&sbi->s_alloc_mutex);
 
 
2035	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2036	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
 
2037	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2038		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2039	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2040		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2041	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2042		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2043	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2044		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
 
 
 
2045
 
2046	/*
2047	 * We set buffer uptodate unconditionally here to avoid spurious
2048	 * warnings from mark_buffer_dirty() when previous EIO has marked
2049	 * the buffer as !uptodate
2050	 */
2051	set_buffer_uptodate(bh);
2052	udf_finalize_lvid(lvid);
2053	mark_buffer_dirty(bh);
2054	sbi->s_lvid_dirty = 0;
2055	mutex_unlock(&sbi->s_alloc_mutex);
2056	/* Make closing of filesystem visible on the media immediately */
2057	sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062	struct buffer_head *bh;
2063	struct udf_sb_info *sbi = UDF_SB(sb);
2064	struct logicalVolIntegrityDesc *lvid;
2065	struct logicalVolHeaderDesc *lvhd;
2066	u64 uniqueID;
2067	u64 ret;
2068
2069	bh = sbi->s_lvid_bh;
2070	if (!bh)
2071		return 0;
2072
2073	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076	mutex_lock(&sbi->s_alloc_mutex);
2077	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078	if (!(++uniqueID & 0xFFFFFFFF))
2079		uniqueID += 16;
2080	lvhd->uniqueID = cpu_to_le64(uniqueID);
2081	udf_updated_lvid(sb);
2082	mutex_unlock(&sbi->s_alloc_mutex);
 
2083
2084	return ret;
2085}
2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089	int ret = -EINVAL;
 
2090	struct inode *inode = NULL;
2091	struct udf_options uopt;
2092	struct kernel_lb_addr rootdir, fileset;
2093	struct udf_sb_info *sbi;
2094	bool lvid_open = false;
2095
2096	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2098	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2099	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2100	uopt.umask = 0;
2101	uopt.fmode = UDF_INVALID_MODE;
2102	uopt.dmode = UDF_INVALID_MODE;
2103	uopt.nls_map = NULL;
2104
2105	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2106	if (!sbi)
2107		return -ENOMEM;
2108
2109	sb->s_fs_info = sbi;
2110
2111	mutex_init(&sbi->s_alloc_mutex);
2112
2113	if (!udf_parse_options((char *)options, &uopt, false))
2114		goto parse_options_failure;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115
2116	fileset.logicalBlockNum = 0xFFFFFFFF;
2117	fileset.partitionReferenceNum = 0xFFFF;
2118
2119	sbi->s_flags = uopt.flags;
2120	sbi->s_uid = uopt.uid;
2121	sbi->s_gid = uopt.gid;
2122	sbi->s_umask = uopt.umask;
2123	sbi->s_fmode = uopt.fmode;
2124	sbi->s_dmode = uopt.dmode;
2125	sbi->s_nls_map = uopt.nls_map;
2126	rwlock_init(&sbi->s_cred_lock);
2127
2128	if (uopt.session == 0xFFFFFFFF)
2129		sbi->s_session = udf_get_last_session(sb);
2130	else
2131		sbi->s_session = uopt.session;
2132
2133	udf_debug("Multi-session=%d\n", sbi->s_session);
2134
2135	/* Fill in the rest of the superblock */
2136	sb->s_op = &udf_sb_ops;
2137	sb->s_export_op = &udf_export_ops;
2138
 
2139	sb->s_magic = UDF_SUPER_MAGIC;
2140	sb->s_time_gran = 1000;
2141
2142	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2143		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2144	} else {
2145		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2146		while (uopt.blocksize <= 4096) {
 
 
 
 
 
2147			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148			if (ret < 0) {
2149				if (!silent && ret != -EACCES) {
2150					pr_notice("Scanning with blocksize %u failed\n",
2151						  uopt.blocksize);
2152				}
2153				brelse(sbi->s_lvid_bh);
2154				sbi->s_lvid_bh = NULL;
2155				/*
2156				 * EACCES is special - we want to propagate to
2157				 * upper layers that we cannot handle RW mount.
2158				 */
2159				if (ret == -EACCES)
2160					break;
2161			} else
2162				break;
2163
2164			uopt.blocksize <<= 1;
2165		}
2166	}
2167	if (ret < 0) {
2168		if (ret == -EAGAIN) {
2169			udf_warn(sb, "No partition found (1)\n");
2170			ret = -EINVAL;
2171		}
2172		goto error_out;
2173	}
2174
2175	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2176
2177	if (sbi->s_lvid_bh) {
2178		struct logicalVolIntegrityDescImpUse *lvidiu =
2179							udf_sb_lvidiu(sb);
2180		uint16_t minUDFReadRev;
2181		uint16_t minUDFWriteRev;
 
 
2182
2183		if (!lvidiu) {
2184			ret = -EINVAL;
2185			goto error_out;
2186		}
2187		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2188		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2189		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2190			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2191				minUDFReadRev,
2192				UDF_MAX_READ_VERSION);
2193			ret = -EINVAL;
2194			goto error_out;
2195		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2196			if (!sb_rdonly(sb)) {
2197				ret = -EACCES;
2198				goto error_out;
2199			}
2200			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2201		}
2202
2203		sbi->s_udfrev = minUDFWriteRev;
2204
2205		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2206			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2207		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2208			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2209	}
2210
2211	if (!sbi->s_partitions) {
2212		udf_warn(sb, "No partition found (2)\n");
2213		ret = -EINVAL;
2214		goto error_out;
2215	}
2216
2217	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2218			UDF_PART_FLAG_READ_ONLY) {
2219		if (!sb_rdonly(sb)) {
2220			ret = -EACCES;
2221			goto error_out;
2222		}
2223		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2224	}
2225
2226	ret = udf_find_fileset(sb, &fileset, &rootdir);
2227	if (ret < 0) {
2228		udf_warn(sb, "No fileset found\n");
2229		goto error_out;
2230	}
2231
2232	if (!silent) {
2233		struct timestamp ts;
2234		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2235		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2236			 sbi->s_volume_ident,
2237			 le16_to_cpu(ts.year), ts.month, ts.day,
2238			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2239	}
2240	if (!sb_rdonly(sb)) {
2241		udf_open_lvid(sb);
2242		lvid_open = true;
2243	}
2244
2245	/* Assign the root inode */
2246	/* assign inodes by physical block number */
2247	/* perhaps it's not extensible enough, but for now ... */
2248	inode = udf_iget(sb, &rootdir);
2249	if (IS_ERR(inode)) {
2250		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2251		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2252		ret = PTR_ERR(inode);
2253		goto error_out;
2254	}
2255
2256	/* Allocate a dentry for the root inode */
2257	sb->s_root = d_make_root(inode);
2258	if (!sb->s_root) {
2259		udf_err(sb, "Couldn't allocate root dentry\n");
2260		ret = -ENOMEM;
2261		goto error_out;
2262	}
2263	sb->s_maxbytes = UDF_MAX_FILESIZE;
2264	sb->s_max_links = UDF_MAX_LINKS;
2265	return 0;
2266
2267error_out:
2268	iput(sbi->s_vat_inode);
2269parse_options_failure:
2270	unload_nls(uopt.nls_map);
2271	if (lvid_open)
 
 
 
 
 
 
2272		udf_close_lvid(sb);
2273	brelse(sbi->s_lvid_bh);
2274	udf_sb_free_partitions(sb);
 
2275	kfree(sbi);
2276	sb->s_fs_info = NULL;
2277
2278	return ret;
2279}
2280
2281void _udf_err(struct super_block *sb, const char *function,
2282	      const char *fmt, ...)
2283{
2284	struct va_format vaf;
2285	va_list args;
2286
 
 
 
 
2287	va_start(args, fmt);
2288
2289	vaf.fmt = fmt;
2290	vaf.va = &args;
2291
2292	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2293
2294	va_end(args);
2295}
2296
2297void _udf_warn(struct super_block *sb, const char *function,
2298	       const char *fmt, ...)
2299{
2300	struct va_format vaf;
2301	va_list args;
2302
2303	va_start(args, fmt);
2304
2305	vaf.fmt = fmt;
2306	vaf.va = &args;
2307
2308	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2309
2310	va_end(args);
2311}
2312
2313static void udf_put_super(struct super_block *sb)
2314{
 
2315	struct udf_sb_info *sbi;
2316
2317	sbi = UDF_SB(sb);
2318
2319	iput(sbi->s_vat_inode);
2320	unload_nls(sbi->s_nls_map);
2321	if (!sb_rdonly(sb))
 
 
 
 
 
 
 
2322		udf_close_lvid(sb);
2323	brelse(sbi->s_lvid_bh);
2324	udf_sb_free_partitions(sb);
2325	mutex_destroy(&sbi->s_alloc_mutex);
2326	kfree(sb->s_fs_info);
2327	sb->s_fs_info = NULL;
2328}
2329
2330static int udf_sync_fs(struct super_block *sb, int wait)
2331{
2332	struct udf_sb_info *sbi = UDF_SB(sb);
2333
2334	mutex_lock(&sbi->s_alloc_mutex);
2335	if (sbi->s_lvid_dirty) {
2336		struct buffer_head *bh = sbi->s_lvid_bh;
2337		struct logicalVolIntegrityDesc *lvid;
2338
2339		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2340		udf_finalize_lvid(lvid);
2341
2342		/*
2343		 * Blockdevice will be synced later so we don't have to submit
2344		 * the buffer for IO
2345		 */
2346		mark_buffer_dirty(bh);
 
2347		sbi->s_lvid_dirty = 0;
2348	}
2349	mutex_unlock(&sbi->s_alloc_mutex);
2350
2351	return 0;
2352}
2353
2354static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2355{
2356	struct super_block *sb = dentry->d_sb;
2357	struct udf_sb_info *sbi = UDF_SB(sb);
2358	struct logicalVolIntegrityDescImpUse *lvidiu;
2359	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2360
2361	lvidiu = udf_sb_lvidiu(sb);
 
 
 
 
2362	buf->f_type = UDF_SUPER_MAGIC;
2363	buf->f_bsize = sb->s_blocksize;
2364	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2365	buf->f_bfree = udf_count_free(sb);
2366	buf->f_bavail = buf->f_bfree;
2367	/*
2368	 * Let's pretend each free block is also a free 'inode' since UDF does
2369	 * not have separate preallocated table of inodes.
2370	 */
2371	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2372					  le32_to_cpu(lvidiu->numDirs)) : 0)
2373			+ buf->f_bfree;
2374	buf->f_ffree = buf->f_bfree;
2375	buf->f_namelen = UDF_NAME_LEN;
2376	buf->f_fsid = u64_to_fsid(id);
 
2377
2378	return 0;
2379}
2380
2381static unsigned int udf_count_free_bitmap(struct super_block *sb,
2382					  struct udf_bitmap *bitmap)
2383{
2384	struct buffer_head *bh = NULL;
2385	unsigned int accum = 0;
2386	int index;
2387	udf_pblk_t block = 0, newblock;
2388	struct kernel_lb_addr loc;
2389	uint32_t bytes;
2390	uint8_t *ptr;
2391	uint16_t ident;
2392	struct spaceBitmapDesc *bm;
2393
2394	loc.logicalBlockNum = bitmap->s_extPosition;
2395	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2396	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2397
2398	if (!bh) {
2399		udf_err(sb, "udf_count_free failed\n");
2400		goto out;
2401	} else if (ident != TAG_IDENT_SBD) {
2402		brelse(bh);
2403		udf_err(sb, "udf_count_free failed\n");
2404		goto out;
2405	}
2406
2407	bm = (struct spaceBitmapDesc *)bh->b_data;
2408	bytes = le32_to_cpu(bm->numOfBytes);
2409	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2410	ptr = (uint8_t *)bh->b_data;
2411
2412	while (bytes > 0) {
2413		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2414		accum += bitmap_weight((const unsigned long *)(ptr + index),
2415					cur_bytes * 8);
2416		bytes -= cur_bytes;
2417		if (bytes) {
2418			brelse(bh);
2419			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2420			bh = sb_bread(sb, newblock);
2421			if (!bh) {
2422				udf_debug("read failed\n");
2423				goto out;
2424			}
2425			index = 0;
2426			ptr = (uint8_t *)bh->b_data;
2427		}
2428	}
2429	brelse(bh);
2430out:
2431	return accum;
2432}
2433
2434static unsigned int udf_count_free_table(struct super_block *sb,
2435					 struct inode *table)
2436{
2437	unsigned int accum = 0;
2438	uint32_t elen;
2439	struct kernel_lb_addr eloc;
 
2440	struct extent_position epos;
2441
2442	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2443	epos.block = UDF_I(table)->i_location;
2444	epos.offset = sizeof(struct unallocSpaceEntry);
2445	epos.bh = NULL;
2446
2447	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2448		accum += (elen >> table->i_sb->s_blocksize_bits);
2449
2450	brelse(epos.bh);
2451	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2452
2453	return accum;
2454}
2455
2456static unsigned int udf_count_free(struct super_block *sb)
2457{
2458	unsigned int accum = 0;
2459	struct udf_sb_info *sbi = UDF_SB(sb);
2460	struct udf_part_map *map;
2461	unsigned int part = sbi->s_partition;
2462	int ptype = sbi->s_partmaps[part].s_partition_type;
2463
2464	if (ptype == UDF_METADATA_MAP25) {
2465		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2466							s_phys_partition_ref;
2467	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2468		/*
2469		 * Filesystems with VAT are append-only and we cannot write to
2470 		 * them. Let's just report 0 here.
2471		 */
2472		return 0;
2473	}
2474
 
2475	if (sbi->s_lvid_bh) {
2476		struct logicalVolIntegrityDesc *lvid =
2477			(struct logicalVolIntegrityDesc *)
2478			sbi->s_lvid_bh->b_data;
2479		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2480			accum = le32_to_cpu(
2481					lvid->freeSpaceTable[part]);
2482			if (accum == 0xFFFFFFFF)
2483				accum = 0;
2484		}
2485	}
2486
2487	if (accum)
2488		return accum;
2489
2490	map = &sbi->s_partmaps[part];
2491	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2492		accum += udf_count_free_bitmap(sb,
2493					       map->s_uspace.s_bitmap);
2494	}
 
 
 
 
2495	if (accum)
2496		return accum;
2497
2498	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499		accum += udf_count_free_table(sb,
2500					      map->s_uspace.s_table);
2501	}
 
 
 
 
 
2502	return accum;
2503}
2504
2505MODULE_AUTHOR("Ben Fennema");
2506MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2507MODULE_LICENSE("GPL");
2508module_init(init_udf_fs)
2509module_exit(exit_udf_fs)