Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/buffer_head.h>
52#include <linux/vfs.h>
53#include <linux/vmalloc.h>
54#include <linux/errno.h>
55#include <linux/mount.h>
56#include <linux/seq_file.h>
57#include <linux/bitmap.h>
58#include <linux/crc-itu-t.h>
59#include <linux/log2.h>
60#include <asm/byteorder.h>
61
62#include "udf_sb.h"
63#include "udf_i.h"
64
65#include <linux/init.h>
66#include <asm/uaccess.h>
67
68#define VDS_POS_PRIMARY_VOL_DESC 0
69#define VDS_POS_UNALLOC_SPACE_DESC 1
70#define VDS_POS_LOGICAL_VOL_DESC 2
71#define VDS_POS_PARTITION_DESC 3
72#define VDS_POS_IMP_USE_VOL_DESC 4
73#define VDS_POS_VOL_DESC_PTR 5
74#define VDS_POS_TERMINATING_DESC 6
75#define VDS_POS_LENGTH 7
76
77#define UDF_DEFAULT_BLOCKSIZE 2048
78
79enum { UDF_MAX_LINKS = 0xffff };
80
81/* These are the "meat" - everything else is stuffing */
82static int udf_fill_super(struct super_block *, void *, int);
83static void udf_put_super(struct super_block *);
84static int udf_sync_fs(struct super_block *, int);
85static int udf_remount_fs(struct super_block *, int *, char *);
86static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91static void udf_open_lvid(struct super_block *);
92static void udf_close_lvid(struct super_block *);
93static unsigned int udf_count_free(struct super_block *);
94static int udf_statfs(struct dentry *, struct kstatfs *);
95static int udf_show_options(struct seq_file *, struct dentry *);
96
97struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98{
99 struct logicalVolIntegrityDesc *lvid =
100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 __u32 offset = number_of_partitions * 2 *
103 sizeof(uint32_t)/sizeof(uint8_t);
104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105}
106
107/* UDF filesystem type */
108static struct dentry *udf_mount(struct file_system_type *fs_type,
109 int flags, const char *dev_name, void *data)
110{
111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112}
113
114static struct file_system_type udf_fstype = {
115 .owner = THIS_MODULE,
116 .name = "udf",
117 .mount = udf_mount,
118 .kill_sb = kill_block_super,
119 .fs_flags = FS_REQUIRES_DEV,
120};
121
122static struct kmem_cache *udf_inode_cachep;
123
124static struct inode *udf_alloc_inode(struct super_block *sb)
125{
126 struct udf_inode_info *ei;
127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 if (!ei)
129 return NULL;
130
131 ei->i_unique = 0;
132 ei->i_lenExtents = 0;
133 ei->i_next_alloc_block = 0;
134 ei->i_next_alloc_goal = 0;
135 ei->i_strat4096 = 0;
136 init_rwsem(&ei->i_data_sem);
137
138 return &ei->vfs_inode;
139}
140
141static void udf_i_callback(struct rcu_head *head)
142{
143 struct inode *inode = container_of(head, struct inode, i_rcu);
144 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145}
146
147static void udf_destroy_inode(struct inode *inode)
148{
149 call_rcu(&inode->i_rcu, udf_i_callback);
150}
151
152static void init_once(void *foo)
153{
154 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155
156 ei->i_ext.i_data = NULL;
157 inode_init_once(&ei->vfs_inode);
158}
159
160static int init_inodecache(void)
161{
162 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 sizeof(struct udf_inode_info),
164 0, (SLAB_RECLAIM_ACCOUNT |
165 SLAB_MEM_SPREAD),
166 init_once);
167 if (!udf_inode_cachep)
168 return -ENOMEM;
169 return 0;
170}
171
172static void destroy_inodecache(void)
173{
174 kmem_cache_destroy(udf_inode_cachep);
175}
176
177/* Superblock operations */
178static const struct super_operations udf_sb_ops = {
179 .alloc_inode = udf_alloc_inode,
180 .destroy_inode = udf_destroy_inode,
181 .write_inode = udf_write_inode,
182 .evict_inode = udf_evict_inode,
183 .put_super = udf_put_super,
184 .sync_fs = udf_sync_fs,
185 .statfs = udf_statfs,
186 .remount_fs = udf_remount_fs,
187 .show_options = udf_show_options,
188};
189
190struct udf_options {
191 unsigned char novrs;
192 unsigned int blocksize;
193 unsigned int session;
194 unsigned int lastblock;
195 unsigned int anchor;
196 unsigned int volume;
197 unsigned short partition;
198 unsigned int fileset;
199 unsigned int rootdir;
200 unsigned int flags;
201 umode_t umask;
202 gid_t gid;
203 uid_t uid;
204 umode_t fmode;
205 umode_t dmode;
206 struct nls_table *nls_map;
207};
208
209static int __init init_udf_fs(void)
210{
211 int err;
212
213 err = init_inodecache();
214 if (err)
215 goto out1;
216 err = register_filesystem(&udf_fstype);
217 if (err)
218 goto out;
219
220 return 0;
221
222out:
223 destroy_inodecache();
224
225out1:
226 return err;
227}
228
229static void __exit exit_udf_fs(void)
230{
231 unregister_filesystem(&udf_fstype);
232 destroy_inodecache();
233}
234
235module_init(init_udf_fs)
236module_exit(exit_udf_fs)
237
238static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239{
240 struct udf_sb_info *sbi = UDF_SB(sb);
241
242 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243 GFP_KERNEL);
244 if (!sbi->s_partmaps) {
245 udf_err(sb, "Unable to allocate space for %d partition maps\n",
246 count);
247 sbi->s_partitions = 0;
248 return -ENOMEM;
249 }
250
251 sbi->s_partitions = count;
252 return 0;
253}
254
255static int udf_show_options(struct seq_file *seq, struct dentry *root)
256{
257 struct super_block *sb = root->d_sb;
258 struct udf_sb_info *sbi = UDF_SB(sb);
259
260 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
261 seq_puts(seq, ",nostrict");
262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
263 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
265 seq_puts(seq, ",unhide");
266 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
267 seq_puts(seq, ",undelete");
268 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
269 seq_puts(seq, ",noadinicb");
270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
271 seq_puts(seq, ",shortad");
272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
273 seq_puts(seq, ",uid=forget");
274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
275 seq_puts(seq, ",uid=ignore");
276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
277 seq_puts(seq, ",gid=forget");
278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
279 seq_puts(seq, ",gid=ignore");
280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
281 seq_printf(seq, ",uid=%u", sbi->s_uid);
282 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
283 seq_printf(seq, ",gid=%u", sbi->s_gid);
284 if (sbi->s_umask != 0)
285 seq_printf(seq, ",umask=%ho", sbi->s_umask);
286 if (sbi->s_fmode != UDF_INVALID_MODE)
287 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
288 if (sbi->s_dmode != UDF_INVALID_MODE)
289 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
291 seq_printf(seq, ",session=%u", sbi->s_session);
292 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
293 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
294 if (sbi->s_anchor != 0)
295 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
296 /*
297 * volume, partition, fileset and rootdir seem to be ignored
298 * currently
299 */
300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
301 seq_puts(seq, ",utf8");
302 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
303 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
304
305 return 0;
306}
307
308/*
309 * udf_parse_options
310 *
311 * PURPOSE
312 * Parse mount options.
313 *
314 * DESCRIPTION
315 * The following mount options are supported:
316 *
317 * gid= Set the default group.
318 * umask= Set the default umask.
319 * mode= Set the default file permissions.
320 * dmode= Set the default directory permissions.
321 * uid= Set the default user.
322 * bs= Set the block size.
323 * unhide Show otherwise hidden files.
324 * undelete Show deleted files in lists.
325 * adinicb Embed data in the inode (default)
326 * noadinicb Don't embed data in the inode
327 * shortad Use short ad's
328 * longad Use long ad's (default)
329 * nostrict Unset strict conformance
330 * iocharset= Set the NLS character set
331 *
332 * The remaining are for debugging and disaster recovery:
333 *
334 * novrs Skip volume sequence recognition
335 *
336 * The following expect a offset from 0.
337 *
338 * session= Set the CDROM session (default= last session)
339 * anchor= Override standard anchor location. (default= 256)
340 * volume= Override the VolumeDesc location. (unused)
341 * partition= Override the PartitionDesc location. (unused)
342 * lastblock= Set the last block of the filesystem/
343 *
344 * The following expect a offset from the partition root.
345 *
346 * fileset= Override the fileset block location. (unused)
347 * rootdir= Override the root directory location. (unused)
348 * WARNING: overriding the rootdir to a non-directory may
349 * yield highly unpredictable results.
350 *
351 * PRE-CONDITIONS
352 * options Pointer to mount options string.
353 * uopts Pointer to mount options variable.
354 *
355 * POST-CONDITIONS
356 * <return> 1 Mount options parsed okay.
357 * <return> 0 Error parsing mount options.
358 *
359 * HISTORY
360 * July 1, 1997 - Andrew E. Mileski
361 * Written, tested, and released.
362 */
363
364enum {
365 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
366 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
367 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
368 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
369 Opt_rootdir, Opt_utf8, Opt_iocharset,
370 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
371 Opt_fmode, Opt_dmode
372};
373
374static const match_table_t tokens = {
375 {Opt_novrs, "novrs"},
376 {Opt_nostrict, "nostrict"},
377 {Opt_bs, "bs=%u"},
378 {Opt_unhide, "unhide"},
379 {Opt_undelete, "undelete"},
380 {Opt_noadinicb, "noadinicb"},
381 {Opt_adinicb, "adinicb"},
382 {Opt_shortad, "shortad"},
383 {Opt_longad, "longad"},
384 {Opt_uforget, "uid=forget"},
385 {Opt_uignore, "uid=ignore"},
386 {Opt_gforget, "gid=forget"},
387 {Opt_gignore, "gid=ignore"},
388 {Opt_gid, "gid=%u"},
389 {Opt_uid, "uid=%u"},
390 {Opt_umask, "umask=%o"},
391 {Opt_session, "session=%u"},
392 {Opt_lastblock, "lastblock=%u"},
393 {Opt_anchor, "anchor=%u"},
394 {Opt_volume, "volume=%u"},
395 {Opt_partition, "partition=%u"},
396 {Opt_fileset, "fileset=%u"},
397 {Opt_rootdir, "rootdir=%u"},
398 {Opt_utf8, "utf8"},
399 {Opt_iocharset, "iocharset=%s"},
400 {Opt_fmode, "mode=%o"},
401 {Opt_dmode, "dmode=%o"},
402 {Opt_err, NULL}
403};
404
405static int udf_parse_options(char *options, struct udf_options *uopt,
406 bool remount)
407{
408 char *p;
409 int option;
410
411 uopt->novrs = 0;
412 uopt->partition = 0xFFFF;
413 uopt->session = 0xFFFFFFFF;
414 uopt->lastblock = 0;
415 uopt->anchor = 0;
416 uopt->volume = 0xFFFFFFFF;
417 uopt->rootdir = 0xFFFFFFFF;
418 uopt->fileset = 0xFFFFFFFF;
419 uopt->nls_map = NULL;
420
421 if (!options)
422 return 1;
423
424 while ((p = strsep(&options, ",")) != NULL) {
425 substring_t args[MAX_OPT_ARGS];
426 int token;
427 if (!*p)
428 continue;
429
430 token = match_token(p, tokens, args);
431 switch (token) {
432 case Opt_novrs:
433 uopt->novrs = 1;
434 break;
435 case Opt_bs:
436 if (match_int(&args[0], &option))
437 return 0;
438 uopt->blocksize = option;
439 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
440 break;
441 case Opt_unhide:
442 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
443 break;
444 case Opt_undelete:
445 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
446 break;
447 case Opt_noadinicb:
448 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
449 break;
450 case Opt_adinicb:
451 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
452 break;
453 case Opt_shortad:
454 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
455 break;
456 case Opt_longad:
457 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
458 break;
459 case Opt_gid:
460 if (match_int(args, &option))
461 return 0;
462 uopt->gid = option;
463 uopt->flags |= (1 << UDF_FLAG_GID_SET);
464 break;
465 case Opt_uid:
466 if (match_int(args, &option))
467 return 0;
468 uopt->uid = option;
469 uopt->flags |= (1 << UDF_FLAG_UID_SET);
470 break;
471 case Opt_umask:
472 if (match_octal(args, &option))
473 return 0;
474 uopt->umask = option;
475 break;
476 case Opt_nostrict:
477 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
478 break;
479 case Opt_session:
480 if (match_int(args, &option))
481 return 0;
482 uopt->session = option;
483 if (!remount)
484 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
485 break;
486 case Opt_lastblock:
487 if (match_int(args, &option))
488 return 0;
489 uopt->lastblock = option;
490 if (!remount)
491 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
492 break;
493 case Opt_anchor:
494 if (match_int(args, &option))
495 return 0;
496 uopt->anchor = option;
497 break;
498 case Opt_volume:
499 if (match_int(args, &option))
500 return 0;
501 uopt->volume = option;
502 break;
503 case Opt_partition:
504 if (match_int(args, &option))
505 return 0;
506 uopt->partition = option;
507 break;
508 case Opt_fileset:
509 if (match_int(args, &option))
510 return 0;
511 uopt->fileset = option;
512 break;
513 case Opt_rootdir:
514 if (match_int(args, &option))
515 return 0;
516 uopt->rootdir = option;
517 break;
518 case Opt_utf8:
519 uopt->flags |= (1 << UDF_FLAG_UTF8);
520 break;
521#ifdef CONFIG_UDF_NLS
522 case Opt_iocharset:
523 uopt->nls_map = load_nls(args[0].from);
524 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
525 break;
526#endif
527 case Opt_uignore:
528 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
529 break;
530 case Opt_uforget:
531 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
532 break;
533 case Opt_gignore:
534 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
535 break;
536 case Opt_gforget:
537 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
538 break;
539 case Opt_fmode:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->fmode = option & 0777;
543 break;
544 case Opt_dmode:
545 if (match_octal(args, &option))
546 return 0;
547 uopt->dmode = option & 0777;
548 break;
549 default:
550 pr_err("bad mount option \"%s\" or missing value\n", p);
551 return 0;
552 }
553 }
554 return 1;
555}
556
557static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
558{
559 struct udf_options uopt;
560 struct udf_sb_info *sbi = UDF_SB(sb);
561 int error = 0;
562
563 uopt.flags = sbi->s_flags;
564 uopt.uid = sbi->s_uid;
565 uopt.gid = sbi->s_gid;
566 uopt.umask = sbi->s_umask;
567 uopt.fmode = sbi->s_fmode;
568 uopt.dmode = sbi->s_dmode;
569
570 if (!udf_parse_options(options, &uopt, true))
571 return -EINVAL;
572
573 write_lock(&sbi->s_cred_lock);
574 sbi->s_flags = uopt.flags;
575 sbi->s_uid = uopt.uid;
576 sbi->s_gid = uopt.gid;
577 sbi->s_umask = uopt.umask;
578 sbi->s_fmode = uopt.fmode;
579 sbi->s_dmode = uopt.dmode;
580 write_unlock(&sbi->s_cred_lock);
581
582 if (sbi->s_lvid_bh) {
583 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
584 if (write_rev > UDF_MAX_WRITE_VERSION)
585 *flags |= MS_RDONLY;
586 }
587
588 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
589 goto out_unlock;
590
591 if (*flags & MS_RDONLY)
592 udf_close_lvid(sb);
593 else
594 udf_open_lvid(sb);
595
596out_unlock:
597 return error;
598}
599
600/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
601/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
602static loff_t udf_check_vsd(struct super_block *sb)
603{
604 struct volStructDesc *vsd = NULL;
605 loff_t sector = 32768;
606 int sectorsize;
607 struct buffer_head *bh = NULL;
608 int nsr02 = 0;
609 int nsr03 = 0;
610 struct udf_sb_info *sbi;
611
612 sbi = UDF_SB(sb);
613 if (sb->s_blocksize < sizeof(struct volStructDesc))
614 sectorsize = sizeof(struct volStructDesc);
615 else
616 sectorsize = sb->s_blocksize;
617
618 sector += (sbi->s_session << sb->s_blocksize_bits);
619
620 udf_debug("Starting at sector %u (%ld byte sectors)\n",
621 (unsigned int)(sector >> sb->s_blocksize_bits),
622 sb->s_blocksize);
623 /* Process the sequence (if applicable) */
624 for (; !nsr02 && !nsr03; sector += sectorsize) {
625 /* Read a block */
626 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
627 if (!bh)
628 break;
629
630 /* Look for ISO descriptors */
631 vsd = (struct volStructDesc *)(bh->b_data +
632 (sector & (sb->s_blocksize - 1)));
633
634 if (vsd->stdIdent[0] == 0) {
635 brelse(bh);
636 break;
637 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
638 VSD_STD_ID_LEN)) {
639 switch (vsd->structType) {
640 case 0:
641 udf_debug("ISO9660 Boot Record found\n");
642 break;
643 case 1:
644 udf_debug("ISO9660 Primary Volume Descriptor found\n");
645 break;
646 case 2:
647 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
648 break;
649 case 3:
650 udf_debug("ISO9660 Volume Partition Descriptor found\n");
651 break;
652 case 255:
653 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
654 break;
655 default:
656 udf_debug("ISO9660 VRS (%u) found\n",
657 vsd->structType);
658 break;
659 }
660 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
661 VSD_STD_ID_LEN))
662 ; /* nothing */
663 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
664 VSD_STD_ID_LEN)) {
665 brelse(bh);
666 break;
667 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
668 VSD_STD_ID_LEN))
669 nsr02 = sector;
670 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
671 VSD_STD_ID_LEN))
672 nsr03 = sector;
673 brelse(bh);
674 }
675
676 if (nsr03)
677 return nsr03;
678 else if (nsr02)
679 return nsr02;
680 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
681 return -1;
682 else
683 return 0;
684}
685
686static int udf_find_fileset(struct super_block *sb,
687 struct kernel_lb_addr *fileset,
688 struct kernel_lb_addr *root)
689{
690 struct buffer_head *bh = NULL;
691 long lastblock;
692 uint16_t ident;
693 struct udf_sb_info *sbi;
694
695 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
696 fileset->partitionReferenceNum != 0xFFFF) {
697 bh = udf_read_ptagged(sb, fileset, 0, &ident);
698
699 if (!bh) {
700 return 1;
701 } else if (ident != TAG_IDENT_FSD) {
702 brelse(bh);
703 return 1;
704 }
705
706 }
707
708 sbi = UDF_SB(sb);
709 if (!bh) {
710 /* Search backwards through the partitions */
711 struct kernel_lb_addr newfileset;
712
713/* --> cvg: FIXME - is it reasonable? */
714 return 1;
715
716 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
717 (newfileset.partitionReferenceNum != 0xFFFF &&
718 fileset->logicalBlockNum == 0xFFFFFFFF &&
719 fileset->partitionReferenceNum == 0xFFFF);
720 newfileset.partitionReferenceNum--) {
721 lastblock = sbi->s_partmaps
722 [newfileset.partitionReferenceNum]
723 .s_partition_len;
724 newfileset.logicalBlockNum = 0;
725
726 do {
727 bh = udf_read_ptagged(sb, &newfileset, 0,
728 &ident);
729 if (!bh) {
730 newfileset.logicalBlockNum++;
731 continue;
732 }
733
734 switch (ident) {
735 case TAG_IDENT_SBD:
736 {
737 struct spaceBitmapDesc *sp;
738 sp = (struct spaceBitmapDesc *)
739 bh->b_data;
740 newfileset.logicalBlockNum += 1 +
741 ((le32_to_cpu(sp->numOfBytes) +
742 sizeof(struct spaceBitmapDesc)
743 - 1) >> sb->s_blocksize_bits);
744 brelse(bh);
745 break;
746 }
747 case TAG_IDENT_FSD:
748 *fileset = newfileset;
749 break;
750 default:
751 newfileset.logicalBlockNum++;
752 brelse(bh);
753 bh = NULL;
754 break;
755 }
756 } while (newfileset.logicalBlockNum < lastblock &&
757 fileset->logicalBlockNum == 0xFFFFFFFF &&
758 fileset->partitionReferenceNum == 0xFFFF);
759 }
760 }
761
762 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
763 fileset->partitionReferenceNum != 0xFFFF) && bh) {
764 udf_debug("Fileset at block=%d, partition=%d\n",
765 fileset->logicalBlockNum,
766 fileset->partitionReferenceNum);
767
768 sbi->s_partition = fileset->partitionReferenceNum;
769 udf_load_fileset(sb, bh, root);
770 brelse(bh);
771 return 0;
772 }
773 return 1;
774}
775
776static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
777{
778 struct primaryVolDesc *pvoldesc;
779 struct ustr *instr, *outstr;
780 struct buffer_head *bh;
781 uint16_t ident;
782 int ret = 1;
783
784 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
785 if (!instr)
786 return 1;
787
788 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
789 if (!outstr)
790 goto out1;
791
792 bh = udf_read_tagged(sb, block, block, &ident);
793 if (!bh)
794 goto out2;
795
796 BUG_ON(ident != TAG_IDENT_PVD);
797
798 pvoldesc = (struct primaryVolDesc *)bh->b_data;
799
800 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
801 pvoldesc->recordingDateAndTime)) {
802#ifdef UDFFS_DEBUG
803 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
804 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
805 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
806 ts->minute, le16_to_cpu(ts->typeAndTimezone));
807#endif
808 }
809
810 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
811 if (udf_CS0toUTF8(outstr, instr)) {
812 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
813 outstr->u_len > 31 ? 31 : outstr->u_len);
814 udf_debug("volIdent[] = '%s'\n",
815 UDF_SB(sb)->s_volume_ident);
816 }
817
818 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
819 if (udf_CS0toUTF8(outstr, instr))
820 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
821
822 brelse(bh);
823 ret = 0;
824out2:
825 kfree(outstr);
826out1:
827 kfree(instr);
828 return ret;
829}
830
831struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
832 u32 meta_file_loc, u32 partition_num)
833{
834 struct kernel_lb_addr addr;
835 struct inode *metadata_fe;
836
837 addr.logicalBlockNum = meta_file_loc;
838 addr.partitionReferenceNum = partition_num;
839
840 metadata_fe = udf_iget(sb, &addr);
841
842 if (metadata_fe == NULL)
843 udf_warn(sb, "metadata inode efe not found\n");
844 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
845 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
846 iput(metadata_fe);
847 metadata_fe = NULL;
848 }
849
850 return metadata_fe;
851}
852
853static int udf_load_metadata_files(struct super_block *sb, int partition)
854{
855 struct udf_sb_info *sbi = UDF_SB(sb);
856 struct udf_part_map *map;
857 struct udf_meta_data *mdata;
858 struct kernel_lb_addr addr;
859
860 map = &sbi->s_partmaps[partition];
861 mdata = &map->s_type_specific.s_metadata;
862
863 /* metadata address */
864 udf_debug("Metadata file location: block = %d part = %d\n",
865 mdata->s_meta_file_loc, map->s_partition_num);
866
867 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
868 mdata->s_meta_file_loc, map->s_partition_num);
869
870 if (mdata->s_metadata_fe == NULL) {
871 /* mirror file entry */
872 udf_debug("Mirror metadata file location: block = %d part = %d\n",
873 mdata->s_mirror_file_loc, map->s_partition_num);
874
875 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
876 mdata->s_mirror_file_loc, map->s_partition_num);
877
878 if (mdata->s_mirror_fe == NULL) {
879 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
880 goto error_exit;
881 }
882 }
883
884 /*
885 * bitmap file entry
886 * Note:
887 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
888 */
889 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
890 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
891 addr.partitionReferenceNum = map->s_partition_num;
892
893 udf_debug("Bitmap file location: block = %d part = %d\n",
894 addr.logicalBlockNum, addr.partitionReferenceNum);
895
896 mdata->s_bitmap_fe = udf_iget(sb, &addr);
897
898 if (mdata->s_bitmap_fe == NULL) {
899 if (sb->s_flags & MS_RDONLY)
900 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
901 else {
902 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
903 goto error_exit;
904 }
905 }
906 }
907
908 udf_debug("udf_load_metadata_files Ok\n");
909
910 return 0;
911
912error_exit:
913 return 1;
914}
915
916static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
917 struct kernel_lb_addr *root)
918{
919 struct fileSetDesc *fset;
920
921 fset = (struct fileSetDesc *)bh->b_data;
922
923 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
924
925 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
926
927 udf_debug("Rootdir at block=%d, partition=%d\n",
928 root->logicalBlockNum, root->partitionReferenceNum);
929}
930
931int udf_compute_nr_groups(struct super_block *sb, u32 partition)
932{
933 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
934 return DIV_ROUND_UP(map->s_partition_len +
935 (sizeof(struct spaceBitmapDesc) << 3),
936 sb->s_blocksize * 8);
937}
938
939static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
940{
941 struct udf_bitmap *bitmap;
942 int nr_groups;
943 int size;
944
945 nr_groups = udf_compute_nr_groups(sb, index);
946 size = sizeof(struct udf_bitmap) +
947 (sizeof(struct buffer_head *) * nr_groups);
948
949 if (size <= PAGE_SIZE)
950 bitmap = kzalloc(size, GFP_KERNEL);
951 else
952 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
953
954 if (bitmap == NULL)
955 return NULL;
956
957 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
958 bitmap->s_nr_groups = nr_groups;
959 return bitmap;
960}
961
962static int udf_fill_partdesc_info(struct super_block *sb,
963 struct partitionDesc *p, int p_index)
964{
965 struct udf_part_map *map;
966 struct udf_sb_info *sbi = UDF_SB(sb);
967 struct partitionHeaderDesc *phd;
968
969 map = &sbi->s_partmaps[p_index];
970
971 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
972 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
973
974 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
975 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
976 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
977 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
978 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
979 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
980 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
981 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
982
983 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
984 p_index, map->s_partition_type,
985 map->s_partition_root, map->s_partition_len);
986
987 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
988 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
989 return 0;
990
991 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
992 if (phd->unallocSpaceTable.extLength) {
993 struct kernel_lb_addr loc = {
994 .logicalBlockNum = le32_to_cpu(
995 phd->unallocSpaceTable.extPosition),
996 .partitionReferenceNum = p_index,
997 };
998
999 map->s_uspace.s_table = udf_iget(sb, &loc);
1000 if (!map->s_uspace.s_table) {
1001 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002 p_index);
1003 return 1;
1004 }
1005 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007 p_index, map->s_uspace.s_table->i_ino);
1008 }
1009
1010 if (phd->unallocSpaceBitmap.extLength) {
1011 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012 if (!bitmap)
1013 return 1;
1014 map->s_uspace.s_bitmap = bitmap;
1015 bitmap->s_extLength = le32_to_cpu(
1016 phd->unallocSpaceBitmap.extLength);
1017 bitmap->s_extPosition = le32_to_cpu(
1018 phd->unallocSpaceBitmap.extPosition);
1019 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021 p_index, bitmap->s_extPosition);
1022 }
1023
1024 if (phd->partitionIntegrityTable.extLength)
1025 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026
1027 if (phd->freedSpaceTable.extLength) {
1028 struct kernel_lb_addr loc = {
1029 .logicalBlockNum = le32_to_cpu(
1030 phd->freedSpaceTable.extPosition),
1031 .partitionReferenceNum = p_index,
1032 };
1033
1034 map->s_fspace.s_table = udf_iget(sb, &loc);
1035 if (!map->s_fspace.s_table) {
1036 udf_debug("cannot load freedSpaceTable (part %d)\n",
1037 p_index);
1038 return 1;
1039 }
1040
1041 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043 p_index, map->s_fspace.s_table->i_ino);
1044 }
1045
1046 if (phd->freedSpaceBitmap.extLength) {
1047 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048 if (!bitmap)
1049 return 1;
1050 map->s_fspace.s_bitmap = bitmap;
1051 bitmap->s_extLength = le32_to_cpu(
1052 phd->freedSpaceBitmap.extLength);
1053 bitmap->s_extPosition = le32_to_cpu(
1054 phd->freedSpaceBitmap.extPosition);
1055 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057 p_index, bitmap->s_extPosition);
1058 }
1059 return 0;
1060}
1061
1062static void udf_find_vat_block(struct super_block *sb, int p_index,
1063 int type1_index, sector_t start_block)
1064{
1065 struct udf_sb_info *sbi = UDF_SB(sb);
1066 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067 sector_t vat_block;
1068 struct kernel_lb_addr ino;
1069
1070 /*
1071 * VAT file entry is in the last recorded block. Some broken disks have
1072 * it a few blocks before so try a bit harder...
1073 */
1074 ino.partitionReferenceNum = type1_index;
1075 for (vat_block = start_block;
1076 vat_block >= map->s_partition_root &&
1077 vat_block >= start_block - 3 &&
1078 !sbi->s_vat_inode; vat_block--) {
1079 ino.logicalBlockNum = vat_block - map->s_partition_root;
1080 sbi->s_vat_inode = udf_iget(sb, &ino);
1081 }
1082}
1083
1084static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085{
1086 struct udf_sb_info *sbi = UDF_SB(sb);
1087 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088 struct buffer_head *bh = NULL;
1089 struct udf_inode_info *vati;
1090 uint32_t pos;
1091 struct virtualAllocationTable20 *vat20;
1092 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1093
1094 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095 if (!sbi->s_vat_inode &&
1096 sbi->s_last_block != blocks - 1) {
1097 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098 (unsigned long)sbi->s_last_block,
1099 (unsigned long)blocks - 1);
1100 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101 }
1102 if (!sbi->s_vat_inode)
1103 return 1;
1104
1105 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106 map->s_type_specific.s_virtual.s_start_offset = 0;
1107 map->s_type_specific.s_virtual.s_num_entries =
1108 (sbi->s_vat_inode->i_size - 36) >> 2;
1109 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110 vati = UDF_I(sbi->s_vat_inode);
1111 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112 pos = udf_block_map(sbi->s_vat_inode, 0);
1113 bh = sb_bread(sb, pos);
1114 if (!bh)
1115 return 1;
1116 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117 } else {
1118 vat20 = (struct virtualAllocationTable20 *)
1119 vati->i_ext.i_data;
1120 }
1121
1122 map->s_type_specific.s_virtual.s_start_offset =
1123 le16_to_cpu(vat20->lengthHeader);
1124 map->s_type_specific.s_virtual.s_num_entries =
1125 (sbi->s_vat_inode->i_size -
1126 map->s_type_specific.s_virtual.
1127 s_start_offset) >> 2;
1128 brelse(bh);
1129 }
1130 return 0;
1131}
1132
1133static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134{
1135 struct buffer_head *bh;
1136 struct partitionDesc *p;
1137 struct udf_part_map *map;
1138 struct udf_sb_info *sbi = UDF_SB(sb);
1139 int i, type1_idx;
1140 uint16_t partitionNumber;
1141 uint16_t ident;
1142 int ret = 0;
1143
1144 bh = udf_read_tagged(sb, block, block, &ident);
1145 if (!bh)
1146 return 1;
1147 if (ident != TAG_IDENT_PD)
1148 goto out_bh;
1149
1150 p = (struct partitionDesc *)bh->b_data;
1151 partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1154 for (i = 0; i < sbi->s_partitions; i++) {
1155 map = &sbi->s_partmaps[i];
1156 udf_debug("Searching map: (%d == %d)\n",
1157 map->s_partition_num, partitionNumber);
1158 if (map->s_partition_num == partitionNumber &&
1159 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160 map->s_partition_type == UDF_SPARABLE_MAP15))
1161 break;
1162 }
1163
1164 if (i >= sbi->s_partitions) {
1165 udf_debug("Partition (%d) not found in partition map\n",
1166 partitionNumber);
1167 goto out_bh;
1168 }
1169
1170 ret = udf_fill_partdesc_info(sb, p, i);
1171
1172 /*
1173 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174 * PHYSICAL partitions are already set up
1175 */
1176 type1_idx = i;
1177 for (i = 0; i < sbi->s_partitions; i++) {
1178 map = &sbi->s_partmaps[i];
1179
1180 if (map->s_partition_num == partitionNumber &&
1181 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183 map->s_partition_type == UDF_METADATA_MAP25))
1184 break;
1185 }
1186
1187 if (i >= sbi->s_partitions)
1188 goto out_bh;
1189
1190 ret = udf_fill_partdesc_info(sb, p, i);
1191 if (ret)
1192 goto out_bh;
1193
1194 if (map->s_partition_type == UDF_METADATA_MAP25) {
1195 ret = udf_load_metadata_files(sb, i);
1196 if (ret) {
1197 udf_err(sb, "error loading MetaData partition map %d\n",
1198 i);
1199 goto out_bh;
1200 }
1201 } else {
1202 ret = udf_load_vat(sb, i, type1_idx);
1203 if (ret)
1204 goto out_bh;
1205 /*
1206 * Mark filesystem read-only if we have a partition with
1207 * virtual map since we don't handle writing to it (we
1208 * overwrite blocks instead of relocating them).
1209 */
1210 sb->s_flags |= MS_RDONLY;
1211 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1212 }
1213out_bh:
1214 /* In case loading failed, we handle cleanup in udf_fill_super */
1215 brelse(bh);
1216 return ret;
1217}
1218
1219static int udf_load_sparable_map(struct super_block *sb,
1220 struct udf_part_map *map,
1221 struct sparablePartitionMap *spm)
1222{
1223 uint32_t loc;
1224 uint16_t ident;
1225 struct sparingTable *st;
1226 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1227 int i;
1228 struct buffer_head *bh;
1229
1230 map->s_partition_type = UDF_SPARABLE_MAP15;
1231 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1232 if (!is_power_of_2(sdata->s_packet_len)) {
1233 udf_err(sb, "error loading logical volume descriptor: "
1234 "Invalid packet length %u\n",
1235 (unsigned)sdata->s_packet_len);
1236 return -EIO;
1237 }
1238 if (spm->numSparingTables > 4) {
1239 udf_err(sb, "error loading logical volume descriptor: "
1240 "Too many sparing tables (%d)\n",
1241 (int)spm->numSparingTables);
1242 return -EIO;
1243 }
1244
1245 for (i = 0; i < spm->numSparingTables; i++) {
1246 loc = le32_to_cpu(spm->locSparingTable[i]);
1247 bh = udf_read_tagged(sb, loc, loc, &ident);
1248 if (!bh)
1249 continue;
1250
1251 st = (struct sparingTable *)bh->b_data;
1252 if (ident != 0 ||
1253 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1254 strlen(UDF_ID_SPARING)) ||
1255 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1256 sb->s_blocksize) {
1257 brelse(bh);
1258 continue;
1259 }
1260
1261 sdata->s_spar_map[i] = bh;
1262 }
1263 map->s_partition_func = udf_get_pblock_spar15;
1264 return 0;
1265}
1266
1267static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1268 struct kernel_lb_addr *fileset)
1269{
1270 struct logicalVolDesc *lvd;
1271 int i, offset;
1272 uint8_t type;
1273 struct udf_sb_info *sbi = UDF_SB(sb);
1274 struct genericPartitionMap *gpm;
1275 uint16_t ident;
1276 struct buffer_head *bh;
1277 unsigned int table_len;
1278 int ret = 0;
1279
1280 bh = udf_read_tagged(sb, block, block, &ident);
1281 if (!bh)
1282 return 1;
1283 BUG_ON(ident != TAG_IDENT_LVD);
1284 lvd = (struct logicalVolDesc *)bh->b_data;
1285 table_len = le32_to_cpu(lvd->mapTableLength);
1286 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1287 udf_err(sb, "error loading logical volume descriptor: "
1288 "Partition table too long (%u > %lu)\n", table_len,
1289 sb->s_blocksize - sizeof(*lvd));
1290 goto out_bh;
1291 }
1292
1293 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1294 if (ret)
1295 goto out_bh;
1296
1297 for (i = 0, offset = 0;
1298 i < sbi->s_partitions && offset < table_len;
1299 i++, offset += gpm->partitionMapLength) {
1300 struct udf_part_map *map = &sbi->s_partmaps[i];
1301 gpm = (struct genericPartitionMap *)
1302 &(lvd->partitionMaps[offset]);
1303 type = gpm->partitionMapType;
1304 if (type == 1) {
1305 struct genericPartitionMap1 *gpm1 =
1306 (struct genericPartitionMap1 *)gpm;
1307 map->s_partition_type = UDF_TYPE1_MAP15;
1308 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1309 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1310 map->s_partition_func = NULL;
1311 } else if (type == 2) {
1312 struct udfPartitionMap2 *upm2 =
1313 (struct udfPartitionMap2 *)gpm;
1314 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1315 strlen(UDF_ID_VIRTUAL))) {
1316 u16 suf =
1317 le16_to_cpu(((__le16 *)upm2->partIdent.
1318 identSuffix)[0]);
1319 if (suf < 0x0200) {
1320 map->s_partition_type =
1321 UDF_VIRTUAL_MAP15;
1322 map->s_partition_func =
1323 udf_get_pblock_virt15;
1324 } else {
1325 map->s_partition_type =
1326 UDF_VIRTUAL_MAP20;
1327 map->s_partition_func =
1328 udf_get_pblock_virt20;
1329 }
1330 } else if (!strncmp(upm2->partIdent.ident,
1331 UDF_ID_SPARABLE,
1332 strlen(UDF_ID_SPARABLE))) {
1333 if (udf_load_sparable_map(sb, map,
1334 (struct sparablePartitionMap *)gpm) < 0)
1335 goto out_bh;
1336 } else if (!strncmp(upm2->partIdent.ident,
1337 UDF_ID_METADATA,
1338 strlen(UDF_ID_METADATA))) {
1339 struct udf_meta_data *mdata =
1340 &map->s_type_specific.s_metadata;
1341 struct metadataPartitionMap *mdm =
1342 (struct metadataPartitionMap *)
1343 &(lvd->partitionMaps[offset]);
1344 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1345 i, type, UDF_ID_METADATA);
1346
1347 map->s_partition_type = UDF_METADATA_MAP25;
1348 map->s_partition_func = udf_get_pblock_meta25;
1349
1350 mdata->s_meta_file_loc =
1351 le32_to_cpu(mdm->metadataFileLoc);
1352 mdata->s_mirror_file_loc =
1353 le32_to_cpu(mdm->metadataMirrorFileLoc);
1354 mdata->s_bitmap_file_loc =
1355 le32_to_cpu(mdm->metadataBitmapFileLoc);
1356 mdata->s_alloc_unit_size =
1357 le32_to_cpu(mdm->allocUnitSize);
1358 mdata->s_align_unit_size =
1359 le16_to_cpu(mdm->alignUnitSize);
1360 if (mdm->flags & 0x01)
1361 mdata->s_flags |= MF_DUPLICATE_MD;
1362
1363 udf_debug("Metadata Ident suffix=0x%x\n",
1364 le16_to_cpu(*(__le16 *)
1365 mdm->partIdent.identSuffix));
1366 udf_debug("Metadata part num=%d\n",
1367 le16_to_cpu(mdm->partitionNum));
1368 udf_debug("Metadata part alloc unit size=%d\n",
1369 le32_to_cpu(mdm->allocUnitSize));
1370 udf_debug("Metadata file loc=%d\n",
1371 le32_to_cpu(mdm->metadataFileLoc));
1372 udf_debug("Mirror file loc=%d\n",
1373 le32_to_cpu(mdm->metadataMirrorFileLoc));
1374 udf_debug("Bitmap file loc=%d\n",
1375 le32_to_cpu(mdm->metadataBitmapFileLoc));
1376 udf_debug("Flags: %d %d\n",
1377 mdata->s_flags, mdm->flags);
1378 } else {
1379 udf_debug("Unknown ident: %s\n",
1380 upm2->partIdent.ident);
1381 continue;
1382 }
1383 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1384 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1385 }
1386 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1387 i, map->s_partition_num, type, map->s_volumeseqnum);
1388 }
1389
1390 if (fileset) {
1391 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1392
1393 *fileset = lelb_to_cpu(la->extLocation);
1394 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1395 fileset->logicalBlockNum,
1396 fileset->partitionReferenceNum);
1397 }
1398 if (lvd->integritySeqExt.extLength)
1399 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1400
1401out_bh:
1402 brelse(bh);
1403 return ret;
1404}
1405
1406/*
1407 * udf_load_logicalvolint
1408 *
1409 */
1410static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1411{
1412 struct buffer_head *bh = NULL;
1413 uint16_t ident;
1414 struct udf_sb_info *sbi = UDF_SB(sb);
1415 struct logicalVolIntegrityDesc *lvid;
1416
1417 while (loc.extLength > 0 &&
1418 (bh = udf_read_tagged(sb, loc.extLocation,
1419 loc.extLocation, &ident)) &&
1420 ident == TAG_IDENT_LVID) {
1421 sbi->s_lvid_bh = bh;
1422 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1423
1424 if (lvid->nextIntegrityExt.extLength)
1425 udf_load_logicalvolint(sb,
1426 leea_to_cpu(lvid->nextIntegrityExt));
1427
1428 if (sbi->s_lvid_bh != bh)
1429 brelse(bh);
1430 loc.extLength -= sb->s_blocksize;
1431 loc.extLocation++;
1432 }
1433 if (sbi->s_lvid_bh != bh)
1434 brelse(bh);
1435}
1436
1437/*
1438 * udf_process_sequence
1439 *
1440 * PURPOSE
1441 * Process a main/reserve volume descriptor sequence.
1442 *
1443 * PRE-CONDITIONS
1444 * sb Pointer to _locked_ superblock.
1445 * block First block of first extent of the sequence.
1446 * lastblock Lastblock of first extent of the sequence.
1447 *
1448 * HISTORY
1449 * July 1, 1997 - Andrew E. Mileski
1450 * Written, tested, and released.
1451 */
1452static noinline int udf_process_sequence(struct super_block *sb, long block,
1453 long lastblock, struct kernel_lb_addr *fileset)
1454{
1455 struct buffer_head *bh = NULL;
1456 struct udf_vds_record vds[VDS_POS_LENGTH];
1457 struct udf_vds_record *curr;
1458 struct generic_desc *gd;
1459 struct volDescPtr *vdp;
1460 int done = 0;
1461 uint32_t vdsn;
1462 uint16_t ident;
1463 long next_s = 0, next_e = 0;
1464
1465 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1466
1467 /*
1468 * Read the main descriptor sequence and find which descriptors
1469 * are in it.
1470 */
1471 for (; (!done && block <= lastblock); block++) {
1472
1473 bh = udf_read_tagged(sb, block, block, &ident);
1474 if (!bh) {
1475 udf_err(sb,
1476 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1477 (unsigned long long)block);
1478 return 1;
1479 }
1480
1481 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1482 gd = (struct generic_desc *)bh->b_data;
1483 vdsn = le32_to_cpu(gd->volDescSeqNum);
1484 switch (ident) {
1485 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1486 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1487 if (vdsn >= curr->volDescSeqNum) {
1488 curr->volDescSeqNum = vdsn;
1489 curr->block = block;
1490 }
1491 break;
1492 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1493 curr = &vds[VDS_POS_VOL_DESC_PTR];
1494 if (vdsn >= curr->volDescSeqNum) {
1495 curr->volDescSeqNum = vdsn;
1496 curr->block = block;
1497
1498 vdp = (struct volDescPtr *)bh->b_data;
1499 next_s = le32_to_cpu(
1500 vdp->nextVolDescSeqExt.extLocation);
1501 next_e = le32_to_cpu(
1502 vdp->nextVolDescSeqExt.extLength);
1503 next_e = next_e >> sb->s_blocksize_bits;
1504 next_e += next_s;
1505 }
1506 break;
1507 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1508 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1509 if (vdsn >= curr->volDescSeqNum) {
1510 curr->volDescSeqNum = vdsn;
1511 curr->block = block;
1512 }
1513 break;
1514 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1515 curr = &vds[VDS_POS_PARTITION_DESC];
1516 if (!curr->block)
1517 curr->block = block;
1518 break;
1519 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1520 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1521 if (vdsn >= curr->volDescSeqNum) {
1522 curr->volDescSeqNum = vdsn;
1523 curr->block = block;
1524 }
1525 break;
1526 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1527 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1528 if (vdsn >= curr->volDescSeqNum) {
1529 curr->volDescSeqNum = vdsn;
1530 curr->block = block;
1531 }
1532 break;
1533 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1534 vds[VDS_POS_TERMINATING_DESC].block = block;
1535 if (next_e) {
1536 block = next_s;
1537 lastblock = next_e;
1538 next_s = next_e = 0;
1539 } else
1540 done = 1;
1541 break;
1542 }
1543 brelse(bh);
1544 }
1545 /*
1546 * Now read interesting descriptors again and process them
1547 * in a suitable order
1548 */
1549 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1550 udf_err(sb, "Primary Volume Descriptor not found!\n");
1551 return 1;
1552 }
1553 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1554 return 1;
1555
1556 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1557 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1558 return 1;
1559
1560 if (vds[VDS_POS_PARTITION_DESC].block) {
1561 /*
1562 * We rescan the whole descriptor sequence to find
1563 * partition descriptor blocks and process them.
1564 */
1565 for (block = vds[VDS_POS_PARTITION_DESC].block;
1566 block < vds[VDS_POS_TERMINATING_DESC].block;
1567 block++)
1568 if (udf_load_partdesc(sb, block))
1569 return 1;
1570 }
1571
1572 return 0;
1573}
1574
1575static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1576 struct kernel_lb_addr *fileset)
1577{
1578 struct anchorVolDescPtr *anchor;
1579 long main_s, main_e, reserve_s, reserve_e;
1580
1581 anchor = (struct anchorVolDescPtr *)bh->b_data;
1582
1583 /* Locate the main sequence */
1584 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1585 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1586 main_e = main_e >> sb->s_blocksize_bits;
1587 main_e += main_s;
1588
1589 /* Locate the reserve sequence */
1590 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1591 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1592 reserve_e = reserve_e >> sb->s_blocksize_bits;
1593 reserve_e += reserve_s;
1594
1595 /* Process the main & reserve sequences */
1596 /* responsible for finding the PartitionDesc(s) */
1597 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1598 return 1;
1599 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1600}
1601
1602/*
1603 * Check whether there is an anchor block in the given block and
1604 * load Volume Descriptor Sequence if so.
1605 */
1606static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1607 struct kernel_lb_addr *fileset)
1608{
1609 struct buffer_head *bh;
1610 uint16_t ident;
1611 int ret;
1612
1613 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1614 udf_fixed_to_variable(block) >=
1615 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1616 return 0;
1617
1618 bh = udf_read_tagged(sb, block, block, &ident);
1619 if (!bh)
1620 return 0;
1621 if (ident != TAG_IDENT_AVDP) {
1622 brelse(bh);
1623 return 0;
1624 }
1625 ret = udf_load_sequence(sb, bh, fileset);
1626 brelse(bh);
1627 return ret;
1628}
1629
1630/* Search for an anchor volume descriptor pointer */
1631static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1632 struct kernel_lb_addr *fileset)
1633{
1634 sector_t last[6];
1635 int i;
1636 struct udf_sb_info *sbi = UDF_SB(sb);
1637 int last_count = 0;
1638
1639 /* First try user provided anchor */
1640 if (sbi->s_anchor) {
1641 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1642 return lastblock;
1643 }
1644 /*
1645 * according to spec, anchor is in either:
1646 * block 256
1647 * lastblock-256
1648 * lastblock
1649 * however, if the disc isn't closed, it could be 512.
1650 */
1651 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1652 return lastblock;
1653 /*
1654 * The trouble is which block is the last one. Drives often misreport
1655 * this so we try various possibilities.
1656 */
1657 last[last_count++] = lastblock;
1658 if (lastblock >= 1)
1659 last[last_count++] = lastblock - 1;
1660 last[last_count++] = lastblock + 1;
1661 if (lastblock >= 2)
1662 last[last_count++] = lastblock - 2;
1663 if (lastblock >= 150)
1664 last[last_count++] = lastblock - 150;
1665 if (lastblock >= 152)
1666 last[last_count++] = lastblock - 152;
1667
1668 for (i = 0; i < last_count; i++) {
1669 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1670 sb->s_blocksize_bits)
1671 continue;
1672 if (udf_check_anchor_block(sb, last[i], fileset))
1673 return last[i];
1674 if (last[i] < 256)
1675 continue;
1676 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1677 return last[i];
1678 }
1679
1680 /* Finally try block 512 in case media is open */
1681 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1682 return last[0];
1683 return 0;
1684}
1685
1686/*
1687 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1688 * area specified by it. The function expects sbi->s_lastblock to be the last
1689 * block on the media.
1690 *
1691 * Return 1 if ok, 0 if not found.
1692 *
1693 */
1694static int udf_find_anchor(struct super_block *sb,
1695 struct kernel_lb_addr *fileset)
1696{
1697 sector_t lastblock;
1698 struct udf_sb_info *sbi = UDF_SB(sb);
1699
1700 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1701 if (lastblock)
1702 goto out;
1703
1704 /* No anchor found? Try VARCONV conversion of block numbers */
1705 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1706 /* Firstly, we try to not convert number of the last block */
1707 lastblock = udf_scan_anchors(sb,
1708 udf_variable_to_fixed(sbi->s_last_block),
1709 fileset);
1710 if (lastblock)
1711 goto out;
1712
1713 /* Secondly, we try with converted number of the last block */
1714 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1715 if (!lastblock) {
1716 /* VARCONV didn't help. Clear it. */
1717 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1718 return 0;
1719 }
1720out:
1721 sbi->s_last_block = lastblock;
1722 return 1;
1723}
1724
1725/*
1726 * Check Volume Structure Descriptor, find Anchor block and load Volume
1727 * Descriptor Sequence
1728 */
1729static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1730 int silent, struct kernel_lb_addr *fileset)
1731{
1732 struct udf_sb_info *sbi = UDF_SB(sb);
1733 loff_t nsr_off;
1734
1735 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1736 if (!silent)
1737 udf_warn(sb, "Bad block size\n");
1738 return 0;
1739 }
1740 sbi->s_last_block = uopt->lastblock;
1741 if (!uopt->novrs) {
1742 /* Check that it is NSR02 compliant */
1743 nsr_off = udf_check_vsd(sb);
1744 if (!nsr_off) {
1745 if (!silent)
1746 udf_warn(sb, "No VRS found\n");
1747 return 0;
1748 }
1749 if (nsr_off == -1)
1750 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1751 if (!sbi->s_last_block)
1752 sbi->s_last_block = udf_get_last_block(sb);
1753 } else {
1754 udf_debug("Validity check skipped because of novrs option\n");
1755 }
1756
1757 /* Look for anchor block and load Volume Descriptor Sequence */
1758 sbi->s_anchor = uopt->anchor;
1759 if (!udf_find_anchor(sb, fileset)) {
1760 if (!silent)
1761 udf_warn(sb, "No anchor found\n");
1762 return 0;
1763 }
1764 return 1;
1765}
1766
1767static void udf_open_lvid(struct super_block *sb)
1768{
1769 struct udf_sb_info *sbi = UDF_SB(sb);
1770 struct buffer_head *bh = sbi->s_lvid_bh;
1771 struct logicalVolIntegrityDesc *lvid;
1772 struct logicalVolIntegrityDescImpUse *lvidiu;
1773
1774 if (!bh)
1775 return;
1776
1777 mutex_lock(&sbi->s_alloc_mutex);
1778 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1779 lvidiu = udf_sb_lvidiu(sbi);
1780
1781 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1782 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1783 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1784 CURRENT_TIME);
1785 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1786
1787 lvid->descTag.descCRC = cpu_to_le16(
1788 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1789 le16_to_cpu(lvid->descTag.descCRCLength)));
1790
1791 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1792 mark_buffer_dirty(bh);
1793 sbi->s_lvid_dirty = 0;
1794 mutex_unlock(&sbi->s_alloc_mutex);
1795}
1796
1797static void udf_close_lvid(struct super_block *sb)
1798{
1799 struct udf_sb_info *sbi = UDF_SB(sb);
1800 struct buffer_head *bh = sbi->s_lvid_bh;
1801 struct logicalVolIntegrityDesc *lvid;
1802 struct logicalVolIntegrityDescImpUse *lvidiu;
1803
1804 if (!bh)
1805 return;
1806
1807 mutex_lock(&sbi->s_alloc_mutex);
1808 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1809 lvidiu = udf_sb_lvidiu(sbi);
1810 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1813 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1814 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1815 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1816 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1817 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1818 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1819 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1820
1821 lvid->descTag.descCRC = cpu_to_le16(
1822 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1823 le16_to_cpu(lvid->descTag.descCRCLength)));
1824
1825 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1826 /*
1827 * We set buffer uptodate unconditionally here to avoid spurious
1828 * warnings from mark_buffer_dirty() when previous EIO has marked
1829 * the buffer as !uptodate
1830 */
1831 set_buffer_uptodate(bh);
1832 mark_buffer_dirty(bh);
1833 sbi->s_lvid_dirty = 0;
1834 mutex_unlock(&sbi->s_alloc_mutex);
1835}
1836
1837u64 lvid_get_unique_id(struct super_block *sb)
1838{
1839 struct buffer_head *bh;
1840 struct udf_sb_info *sbi = UDF_SB(sb);
1841 struct logicalVolIntegrityDesc *lvid;
1842 struct logicalVolHeaderDesc *lvhd;
1843 u64 uniqueID;
1844 u64 ret;
1845
1846 bh = sbi->s_lvid_bh;
1847 if (!bh)
1848 return 0;
1849
1850 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1851 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1852
1853 mutex_lock(&sbi->s_alloc_mutex);
1854 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1855 if (!(++uniqueID & 0xFFFFFFFF))
1856 uniqueID += 16;
1857 lvhd->uniqueID = cpu_to_le64(uniqueID);
1858 mutex_unlock(&sbi->s_alloc_mutex);
1859 mark_buffer_dirty(bh);
1860
1861 return ret;
1862}
1863
1864static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1865{
1866 int i;
1867 int nr_groups = bitmap->s_nr_groups;
1868 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1869 nr_groups);
1870
1871 for (i = 0; i < nr_groups; i++)
1872 if (bitmap->s_block_bitmap[i])
1873 brelse(bitmap->s_block_bitmap[i]);
1874
1875 if (size <= PAGE_SIZE)
1876 kfree(bitmap);
1877 else
1878 vfree(bitmap);
1879}
1880
1881static void udf_free_partition(struct udf_part_map *map)
1882{
1883 int i;
1884 struct udf_meta_data *mdata;
1885
1886 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1887 iput(map->s_uspace.s_table);
1888 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1889 iput(map->s_fspace.s_table);
1890 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1891 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1892 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1893 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1894 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1895 for (i = 0; i < 4; i++)
1896 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1897 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1898 mdata = &map->s_type_specific.s_metadata;
1899 iput(mdata->s_metadata_fe);
1900 mdata->s_metadata_fe = NULL;
1901
1902 iput(mdata->s_mirror_fe);
1903 mdata->s_mirror_fe = NULL;
1904
1905 iput(mdata->s_bitmap_fe);
1906 mdata->s_bitmap_fe = NULL;
1907 }
1908}
1909
1910static int udf_fill_super(struct super_block *sb, void *options, int silent)
1911{
1912 int i;
1913 int ret;
1914 struct inode *inode = NULL;
1915 struct udf_options uopt;
1916 struct kernel_lb_addr rootdir, fileset;
1917 struct udf_sb_info *sbi;
1918
1919 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1920 uopt.uid = -1;
1921 uopt.gid = -1;
1922 uopt.umask = 0;
1923 uopt.fmode = UDF_INVALID_MODE;
1924 uopt.dmode = UDF_INVALID_MODE;
1925
1926 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1927 if (!sbi)
1928 return -ENOMEM;
1929
1930 sb->s_fs_info = sbi;
1931
1932 mutex_init(&sbi->s_alloc_mutex);
1933
1934 if (!udf_parse_options((char *)options, &uopt, false))
1935 goto error_out;
1936
1937 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1938 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1939 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1940 goto error_out;
1941 }
1942#ifdef CONFIG_UDF_NLS
1943 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1944 uopt.nls_map = load_nls_default();
1945 if (!uopt.nls_map)
1946 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1947 else
1948 udf_debug("Using default NLS map\n");
1949 }
1950#endif
1951 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1952 uopt.flags |= (1 << UDF_FLAG_UTF8);
1953
1954 fileset.logicalBlockNum = 0xFFFFFFFF;
1955 fileset.partitionReferenceNum = 0xFFFF;
1956
1957 sbi->s_flags = uopt.flags;
1958 sbi->s_uid = uopt.uid;
1959 sbi->s_gid = uopt.gid;
1960 sbi->s_umask = uopt.umask;
1961 sbi->s_fmode = uopt.fmode;
1962 sbi->s_dmode = uopt.dmode;
1963 sbi->s_nls_map = uopt.nls_map;
1964 rwlock_init(&sbi->s_cred_lock);
1965
1966 if (uopt.session == 0xFFFFFFFF)
1967 sbi->s_session = udf_get_last_session(sb);
1968 else
1969 sbi->s_session = uopt.session;
1970
1971 udf_debug("Multi-session=%d\n", sbi->s_session);
1972
1973 /* Fill in the rest of the superblock */
1974 sb->s_op = &udf_sb_ops;
1975 sb->s_export_op = &udf_export_ops;
1976
1977 sb->s_dirt = 0;
1978 sb->s_magic = UDF_SUPER_MAGIC;
1979 sb->s_time_gran = 1000;
1980
1981 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1982 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1983 } else {
1984 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1985 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1986 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1987 if (!silent)
1988 pr_notice("Rescanning with blocksize %d\n",
1989 UDF_DEFAULT_BLOCKSIZE);
1990 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1991 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1992 }
1993 }
1994 if (!ret) {
1995 udf_warn(sb, "No partition found (1)\n");
1996 goto error_out;
1997 }
1998
1999 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2000
2001 if (sbi->s_lvid_bh) {
2002 struct logicalVolIntegrityDescImpUse *lvidiu =
2003 udf_sb_lvidiu(sbi);
2004 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2005 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2006 /* uint16_t maxUDFWriteRev =
2007 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2008
2009 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2010 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2011 le16_to_cpu(lvidiu->minUDFReadRev),
2012 UDF_MAX_READ_VERSION);
2013 goto error_out;
2014 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2015 sb->s_flags |= MS_RDONLY;
2016
2017 sbi->s_udfrev = minUDFWriteRev;
2018
2019 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2020 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2021 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2022 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2023 }
2024
2025 if (!sbi->s_partitions) {
2026 udf_warn(sb, "No partition found (2)\n");
2027 goto error_out;
2028 }
2029
2030 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2031 UDF_PART_FLAG_READ_ONLY) {
2032 pr_notice("Partition marked readonly; forcing readonly mount\n");
2033 sb->s_flags |= MS_RDONLY;
2034 }
2035
2036 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2037 udf_warn(sb, "No fileset found\n");
2038 goto error_out;
2039 }
2040
2041 if (!silent) {
2042 struct timestamp ts;
2043 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2044 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2045 sbi->s_volume_ident,
2046 le16_to_cpu(ts.year), ts.month, ts.day,
2047 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2048 }
2049 if (!(sb->s_flags & MS_RDONLY))
2050 udf_open_lvid(sb);
2051
2052 /* Assign the root inode */
2053 /* assign inodes by physical block number */
2054 /* perhaps it's not extensible enough, but for now ... */
2055 inode = udf_iget(sb, &rootdir);
2056 if (!inode) {
2057 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2058 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2059 goto error_out;
2060 }
2061
2062 /* Allocate a dentry for the root inode */
2063 sb->s_root = d_make_root(inode);
2064 if (!sb->s_root) {
2065 udf_err(sb, "Couldn't allocate root dentry\n");
2066 goto error_out;
2067 }
2068 sb->s_maxbytes = MAX_LFS_FILESIZE;
2069 sb->s_max_links = UDF_MAX_LINKS;
2070 return 0;
2071
2072error_out:
2073 if (sbi->s_vat_inode)
2074 iput(sbi->s_vat_inode);
2075 if (sbi->s_partitions)
2076 for (i = 0; i < sbi->s_partitions; i++)
2077 udf_free_partition(&sbi->s_partmaps[i]);
2078#ifdef CONFIG_UDF_NLS
2079 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2080 unload_nls(sbi->s_nls_map);
2081#endif
2082 if (!(sb->s_flags & MS_RDONLY))
2083 udf_close_lvid(sb);
2084 brelse(sbi->s_lvid_bh);
2085
2086 kfree(sbi->s_partmaps);
2087 kfree(sbi);
2088 sb->s_fs_info = NULL;
2089
2090 return -EINVAL;
2091}
2092
2093void _udf_err(struct super_block *sb, const char *function,
2094 const char *fmt, ...)
2095{
2096 struct va_format vaf;
2097 va_list args;
2098
2099 /* mark sb error */
2100 if (!(sb->s_flags & MS_RDONLY))
2101 sb->s_dirt = 1;
2102
2103 va_start(args, fmt);
2104
2105 vaf.fmt = fmt;
2106 vaf.va = &args;
2107
2108 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2109
2110 va_end(args);
2111}
2112
2113void _udf_warn(struct super_block *sb, const char *function,
2114 const char *fmt, ...)
2115{
2116 struct va_format vaf;
2117 va_list args;
2118
2119 va_start(args, fmt);
2120
2121 vaf.fmt = fmt;
2122 vaf.va = &args;
2123
2124 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2125
2126 va_end(args);
2127}
2128
2129static void udf_put_super(struct super_block *sb)
2130{
2131 int i;
2132 struct udf_sb_info *sbi;
2133
2134 sbi = UDF_SB(sb);
2135
2136 if (sbi->s_vat_inode)
2137 iput(sbi->s_vat_inode);
2138 if (sbi->s_partitions)
2139 for (i = 0; i < sbi->s_partitions; i++)
2140 udf_free_partition(&sbi->s_partmaps[i]);
2141#ifdef CONFIG_UDF_NLS
2142 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2143 unload_nls(sbi->s_nls_map);
2144#endif
2145 if (!(sb->s_flags & MS_RDONLY))
2146 udf_close_lvid(sb);
2147 brelse(sbi->s_lvid_bh);
2148 kfree(sbi->s_partmaps);
2149 kfree(sb->s_fs_info);
2150 sb->s_fs_info = NULL;
2151}
2152
2153static int udf_sync_fs(struct super_block *sb, int wait)
2154{
2155 struct udf_sb_info *sbi = UDF_SB(sb);
2156
2157 mutex_lock(&sbi->s_alloc_mutex);
2158 if (sbi->s_lvid_dirty) {
2159 /*
2160 * Blockdevice will be synced later so we don't have to submit
2161 * the buffer for IO
2162 */
2163 mark_buffer_dirty(sbi->s_lvid_bh);
2164 sb->s_dirt = 0;
2165 sbi->s_lvid_dirty = 0;
2166 }
2167 mutex_unlock(&sbi->s_alloc_mutex);
2168
2169 return 0;
2170}
2171
2172static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2173{
2174 struct super_block *sb = dentry->d_sb;
2175 struct udf_sb_info *sbi = UDF_SB(sb);
2176 struct logicalVolIntegrityDescImpUse *lvidiu;
2177 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2178
2179 if (sbi->s_lvid_bh != NULL)
2180 lvidiu = udf_sb_lvidiu(sbi);
2181 else
2182 lvidiu = NULL;
2183
2184 buf->f_type = UDF_SUPER_MAGIC;
2185 buf->f_bsize = sb->s_blocksize;
2186 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2187 buf->f_bfree = udf_count_free(sb);
2188 buf->f_bavail = buf->f_bfree;
2189 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2190 le32_to_cpu(lvidiu->numDirs)) : 0)
2191 + buf->f_bfree;
2192 buf->f_ffree = buf->f_bfree;
2193 buf->f_namelen = UDF_NAME_LEN - 2;
2194 buf->f_fsid.val[0] = (u32)id;
2195 buf->f_fsid.val[1] = (u32)(id >> 32);
2196
2197 return 0;
2198}
2199
2200static unsigned int udf_count_free_bitmap(struct super_block *sb,
2201 struct udf_bitmap *bitmap)
2202{
2203 struct buffer_head *bh = NULL;
2204 unsigned int accum = 0;
2205 int index;
2206 int block = 0, newblock;
2207 struct kernel_lb_addr loc;
2208 uint32_t bytes;
2209 uint8_t *ptr;
2210 uint16_t ident;
2211 struct spaceBitmapDesc *bm;
2212
2213 loc.logicalBlockNum = bitmap->s_extPosition;
2214 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2215 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2216
2217 if (!bh) {
2218 udf_err(sb, "udf_count_free failed\n");
2219 goto out;
2220 } else if (ident != TAG_IDENT_SBD) {
2221 brelse(bh);
2222 udf_err(sb, "udf_count_free failed\n");
2223 goto out;
2224 }
2225
2226 bm = (struct spaceBitmapDesc *)bh->b_data;
2227 bytes = le32_to_cpu(bm->numOfBytes);
2228 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2229 ptr = (uint8_t *)bh->b_data;
2230
2231 while (bytes > 0) {
2232 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2233 accum += bitmap_weight((const unsigned long *)(ptr + index),
2234 cur_bytes * 8);
2235 bytes -= cur_bytes;
2236 if (bytes) {
2237 brelse(bh);
2238 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2239 bh = udf_tread(sb, newblock);
2240 if (!bh) {
2241 udf_debug("read failed\n");
2242 goto out;
2243 }
2244 index = 0;
2245 ptr = (uint8_t *)bh->b_data;
2246 }
2247 }
2248 brelse(bh);
2249out:
2250 return accum;
2251}
2252
2253static unsigned int udf_count_free_table(struct super_block *sb,
2254 struct inode *table)
2255{
2256 unsigned int accum = 0;
2257 uint32_t elen;
2258 struct kernel_lb_addr eloc;
2259 int8_t etype;
2260 struct extent_position epos;
2261
2262 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2263 epos.block = UDF_I(table)->i_location;
2264 epos.offset = sizeof(struct unallocSpaceEntry);
2265 epos.bh = NULL;
2266
2267 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2268 accum += (elen >> table->i_sb->s_blocksize_bits);
2269
2270 brelse(epos.bh);
2271 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2272
2273 return accum;
2274}
2275
2276static unsigned int udf_count_free(struct super_block *sb)
2277{
2278 unsigned int accum = 0;
2279 struct udf_sb_info *sbi;
2280 struct udf_part_map *map;
2281
2282 sbi = UDF_SB(sb);
2283 if (sbi->s_lvid_bh) {
2284 struct logicalVolIntegrityDesc *lvid =
2285 (struct logicalVolIntegrityDesc *)
2286 sbi->s_lvid_bh->b_data;
2287 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2288 accum = le32_to_cpu(
2289 lvid->freeSpaceTable[sbi->s_partition]);
2290 if (accum == 0xFFFFFFFF)
2291 accum = 0;
2292 }
2293 }
2294
2295 if (accum)
2296 return accum;
2297
2298 map = &sbi->s_partmaps[sbi->s_partition];
2299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2300 accum += udf_count_free_bitmap(sb,
2301 map->s_uspace.s_bitmap);
2302 }
2303 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2304 accum += udf_count_free_bitmap(sb,
2305 map->s_fspace.s_bitmap);
2306 }
2307 if (accum)
2308 return accum;
2309
2310 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2311 accum += udf_count_free_table(sb,
2312 map->s_uspace.s_table);
2313 }
2314 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2315 accum += udf_count_free_table(sb,
2316 map->s_fspace.s_table);
2317 }
2318
2319 return accum;
2320}
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/buffer_head.h>
52#include <linux/vfs.h>
53#include <linux/vmalloc.h>
54#include <linux/errno.h>
55#include <linux/mount.h>
56#include <linux/seq_file.h>
57#include <linux/bitmap.h>
58#include <linux/crc-itu-t.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <asm/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define UDF_DEFAULT_BLOCKSIZE 2048
77
78static char error_buf[1024];
79
80/* These are the "meat" - everything else is stuffing */
81static int udf_fill_super(struct super_block *, void *, int);
82static void udf_put_super(struct super_block *);
83static int udf_sync_fs(struct super_block *, int);
84static int udf_remount_fs(struct super_block *, int *, char *);
85static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
86static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
87 struct kernel_lb_addr *);
88static void udf_load_fileset(struct super_block *, struct buffer_head *,
89 struct kernel_lb_addr *);
90static void udf_open_lvid(struct super_block *);
91static void udf_close_lvid(struct super_block *);
92static unsigned int udf_count_free(struct super_block *);
93static int udf_statfs(struct dentry *, struct kstatfs *);
94static int udf_show_options(struct seq_file *, struct vfsmount *);
95static void udf_error(struct super_block *sb, const char *function,
96 const char *fmt, ...);
97
98struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
99{
100 struct logicalVolIntegrityDesc *lvid =
101 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
102 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
103 __u32 offset = number_of_partitions * 2 *
104 sizeof(uint32_t)/sizeof(uint8_t);
105 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
106}
107
108/* UDF filesystem type */
109static struct dentry *udf_mount(struct file_system_type *fs_type,
110 int flags, const char *dev_name, void *data)
111{
112 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
113}
114
115static struct file_system_type udf_fstype = {
116 .owner = THIS_MODULE,
117 .name = "udf",
118 .mount = udf_mount,
119 .kill_sb = kill_block_super,
120 .fs_flags = FS_REQUIRES_DEV,
121};
122
123static struct kmem_cache *udf_inode_cachep;
124
125static struct inode *udf_alloc_inode(struct super_block *sb)
126{
127 struct udf_inode_info *ei;
128 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129 if (!ei)
130 return NULL;
131
132 ei->i_unique = 0;
133 ei->i_lenExtents = 0;
134 ei->i_next_alloc_block = 0;
135 ei->i_next_alloc_goal = 0;
136 ei->i_strat4096 = 0;
137 init_rwsem(&ei->i_data_sem);
138
139 return &ei->vfs_inode;
140}
141
142static void udf_i_callback(struct rcu_head *head)
143{
144 struct inode *inode = container_of(head, struct inode, i_rcu);
145 INIT_LIST_HEAD(&inode->i_dentry);
146 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
147}
148
149static void udf_destroy_inode(struct inode *inode)
150{
151 call_rcu(&inode->i_rcu, udf_i_callback);
152}
153
154static void init_once(void *foo)
155{
156 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
157
158 ei->i_ext.i_data = NULL;
159 inode_init_once(&ei->vfs_inode);
160}
161
162static int init_inodecache(void)
163{
164 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
165 sizeof(struct udf_inode_info),
166 0, (SLAB_RECLAIM_ACCOUNT |
167 SLAB_MEM_SPREAD),
168 init_once);
169 if (!udf_inode_cachep)
170 return -ENOMEM;
171 return 0;
172}
173
174static void destroy_inodecache(void)
175{
176 kmem_cache_destroy(udf_inode_cachep);
177}
178
179/* Superblock operations */
180static const struct super_operations udf_sb_ops = {
181 .alloc_inode = udf_alloc_inode,
182 .destroy_inode = udf_destroy_inode,
183 .write_inode = udf_write_inode,
184 .evict_inode = udf_evict_inode,
185 .put_super = udf_put_super,
186 .sync_fs = udf_sync_fs,
187 .statfs = udf_statfs,
188 .remount_fs = udf_remount_fs,
189 .show_options = udf_show_options,
190};
191
192struct udf_options {
193 unsigned char novrs;
194 unsigned int blocksize;
195 unsigned int session;
196 unsigned int lastblock;
197 unsigned int anchor;
198 unsigned int volume;
199 unsigned short partition;
200 unsigned int fileset;
201 unsigned int rootdir;
202 unsigned int flags;
203 mode_t umask;
204 gid_t gid;
205 uid_t uid;
206 mode_t fmode;
207 mode_t dmode;
208 struct nls_table *nls_map;
209};
210
211static int __init init_udf_fs(void)
212{
213 int err;
214
215 err = init_inodecache();
216 if (err)
217 goto out1;
218 err = register_filesystem(&udf_fstype);
219 if (err)
220 goto out;
221
222 return 0;
223
224out:
225 destroy_inodecache();
226
227out1:
228 return err;
229}
230
231static void __exit exit_udf_fs(void)
232{
233 unregister_filesystem(&udf_fstype);
234 destroy_inodecache();
235}
236
237module_init(init_udf_fs)
238module_exit(exit_udf_fs)
239
240static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
241{
242 struct udf_sb_info *sbi = UDF_SB(sb);
243
244 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
245 GFP_KERNEL);
246 if (!sbi->s_partmaps) {
247 udf_error(sb, __func__,
248 "Unable to allocate space for %d partition maps",
249 count);
250 sbi->s_partitions = 0;
251 return -ENOMEM;
252 }
253
254 sbi->s_partitions = count;
255 return 0;
256}
257
258static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
259{
260 struct super_block *sb = mnt->mnt_sb;
261 struct udf_sb_info *sbi = UDF_SB(sb);
262
263 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
264 seq_puts(seq, ",nostrict");
265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
266 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
267 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
268 seq_puts(seq, ",unhide");
269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
270 seq_puts(seq, ",undelete");
271 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
272 seq_puts(seq, ",noadinicb");
273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
274 seq_puts(seq, ",shortad");
275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
276 seq_puts(seq, ",uid=forget");
277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
278 seq_puts(seq, ",uid=ignore");
279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
280 seq_puts(seq, ",gid=forget");
281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
282 seq_puts(seq, ",gid=ignore");
283 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
284 seq_printf(seq, ",uid=%u", sbi->s_uid);
285 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
286 seq_printf(seq, ",gid=%u", sbi->s_gid);
287 if (sbi->s_umask != 0)
288 seq_printf(seq, ",umask=%o", sbi->s_umask);
289 if (sbi->s_fmode != UDF_INVALID_MODE)
290 seq_printf(seq, ",mode=%o", sbi->s_fmode);
291 if (sbi->s_dmode != UDF_INVALID_MODE)
292 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
293 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
294 seq_printf(seq, ",session=%u", sbi->s_session);
295 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
296 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
297 if (sbi->s_anchor != 0)
298 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
299 /*
300 * volume, partition, fileset and rootdir seem to be ignored
301 * currently
302 */
303 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
304 seq_puts(seq, ",utf8");
305 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
306 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
307
308 return 0;
309}
310
311/*
312 * udf_parse_options
313 *
314 * PURPOSE
315 * Parse mount options.
316 *
317 * DESCRIPTION
318 * The following mount options are supported:
319 *
320 * gid= Set the default group.
321 * umask= Set the default umask.
322 * mode= Set the default file permissions.
323 * dmode= Set the default directory permissions.
324 * uid= Set the default user.
325 * bs= Set the block size.
326 * unhide Show otherwise hidden files.
327 * undelete Show deleted files in lists.
328 * adinicb Embed data in the inode (default)
329 * noadinicb Don't embed data in the inode
330 * shortad Use short ad's
331 * longad Use long ad's (default)
332 * nostrict Unset strict conformance
333 * iocharset= Set the NLS character set
334 *
335 * The remaining are for debugging and disaster recovery:
336 *
337 * novrs Skip volume sequence recognition
338 *
339 * The following expect a offset from 0.
340 *
341 * session= Set the CDROM session (default= last session)
342 * anchor= Override standard anchor location. (default= 256)
343 * volume= Override the VolumeDesc location. (unused)
344 * partition= Override the PartitionDesc location. (unused)
345 * lastblock= Set the last block of the filesystem/
346 *
347 * The following expect a offset from the partition root.
348 *
349 * fileset= Override the fileset block location. (unused)
350 * rootdir= Override the root directory location. (unused)
351 * WARNING: overriding the rootdir to a non-directory may
352 * yield highly unpredictable results.
353 *
354 * PRE-CONDITIONS
355 * options Pointer to mount options string.
356 * uopts Pointer to mount options variable.
357 *
358 * POST-CONDITIONS
359 * <return> 1 Mount options parsed okay.
360 * <return> 0 Error parsing mount options.
361 *
362 * HISTORY
363 * July 1, 1997 - Andrew E. Mileski
364 * Written, tested, and released.
365 */
366
367enum {
368 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
369 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
370 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
371 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
372 Opt_rootdir, Opt_utf8, Opt_iocharset,
373 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
374 Opt_fmode, Opt_dmode
375};
376
377static const match_table_t tokens = {
378 {Opt_novrs, "novrs"},
379 {Opt_nostrict, "nostrict"},
380 {Opt_bs, "bs=%u"},
381 {Opt_unhide, "unhide"},
382 {Opt_undelete, "undelete"},
383 {Opt_noadinicb, "noadinicb"},
384 {Opt_adinicb, "adinicb"},
385 {Opt_shortad, "shortad"},
386 {Opt_longad, "longad"},
387 {Opt_uforget, "uid=forget"},
388 {Opt_uignore, "uid=ignore"},
389 {Opt_gforget, "gid=forget"},
390 {Opt_gignore, "gid=ignore"},
391 {Opt_gid, "gid=%u"},
392 {Opt_uid, "uid=%u"},
393 {Opt_umask, "umask=%o"},
394 {Opt_session, "session=%u"},
395 {Opt_lastblock, "lastblock=%u"},
396 {Opt_anchor, "anchor=%u"},
397 {Opt_volume, "volume=%u"},
398 {Opt_partition, "partition=%u"},
399 {Opt_fileset, "fileset=%u"},
400 {Opt_rootdir, "rootdir=%u"},
401 {Opt_utf8, "utf8"},
402 {Opt_iocharset, "iocharset=%s"},
403 {Opt_fmode, "mode=%o"},
404 {Opt_dmode, "dmode=%o"},
405 {Opt_err, NULL}
406};
407
408static int udf_parse_options(char *options, struct udf_options *uopt,
409 bool remount)
410{
411 char *p;
412 int option;
413
414 uopt->novrs = 0;
415 uopt->partition = 0xFFFF;
416 uopt->session = 0xFFFFFFFF;
417 uopt->lastblock = 0;
418 uopt->anchor = 0;
419 uopt->volume = 0xFFFFFFFF;
420 uopt->rootdir = 0xFFFFFFFF;
421 uopt->fileset = 0xFFFFFFFF;
422 uopt->nls_map = NULL;
423
424 if (!options)
425 return 1;
426
427 while ((p = strsep(&options, ",")) != NULL) {
428 substring_t args[MAX_OPT_ARGS];
429 int token;
430 if (!*p)
431 continue;
432
433 token = match_token(p, tokens, args);
434 switch (token) {
435 case Opt_novrs:
436 uopt->novrs = 1;
437 break;
438 case Opt_bs:
439 if (match_int(&args[0], &option))
440 return 0;
441 uopt->blocksize = option;
442 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
443 break;
444 case Opt_unhide:
445 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
446 break;
447 case Opt_undelete:
448 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
449 break;
450 case Opt_noadinicb:
451 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
452 break;
453 case Opt_adinicb:
454 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
455 break;
456 case Opt_shortad:
457 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
458 break;
459 case Opt_longad:
460 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
461 break;
462 case Opt_gid:
463 if (match_int(args, &option))
464 return 0;
465 uopt->gid = option;
466 uopt->flags |= (1 << UDF_FLAG_GID_SET);
467 break;
468 case Opt_uid:
469 if (match_int(args, &option))
470 return 0;
471 uopt->uid = option;
472 uopt->flags |= (1 << UDF_FLAG_UID_SET);
473 break;
474 case Opt_umask:
475 if (match_octal(args, &option))
476 return 0;
477 uopt->umask = option;
478 break;
479 case Opt_nostrict:
480 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
481 break;
482 case Opt_session:
483 if (match_int(args, &option))
484 return 0;
485 uopt->session = option;
486 if (!remount)
487 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
488 break;
489 case Opt_lastblock:
490 if (match_int(args, &option))
491 return 0;
492 uopt->lastblock = option;
493 if (!remount)
494 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
495 break;
496 case Opt_anchor:
497 if (match_int(args, &option))
498 return 0;
499 uopt->anchor = option;
500 break;
501 case Opt_volume:
502 if (match_int(args, &option))
503 return 0;
504 uopt->volume = option;
505 break;
506 case Opt_partition:
507 if (match_int(args, &option))
508 return 0;
509 uopt->partition = option;
510 break;
511 case Opt_fileset:
512 if (match_int(args, &option))
513 return 0;
514 uopt->fileset = option;
515 break;
516 case Opt_rootdir:
517 if (match_int(args, &option))
518 return 0;
519 uopt->rootdir = option;
520 break;
521 case Opt_utf8:
522 uopt->flags |= (1 << UDF_FLAG_UTF8);
523 break;
524#ifdef CONFIG_UDF_NLS
525 case Opt_iocharset:
526 uopt->nls_map = load_nls(args[0].from);
527 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
528 break;
529#endif
530 case Opt_uignore:
531 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
532 break;
533 case Opt_uforget:
534 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
535 break;
536 case Opt_gignore:
537 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
538 break;
539 case Opt_gforget:
540 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
541 break;
542 case Opt_fmode:
543 if (match_octal(args, &option))
544 return 0;
545 uopt->fmode = option & 0777;
546 break;
547 case Opt_dmode:
548 if (match_octal(args, &option))
549 return 0;
550 uopt->dmode = option & 0777;
551 break;
552 default:
553 printk(KERN_ERR "udf: bad mount option \"%s\" "
554 "or missing value\n", p);
555 return 0;
556 }
557 }
558 return 1;
559}
560
561static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
562{
563 struct udf_options uopt;
564 struct udf_sb_info *sbi = UDF_SB(sb);
565 int error = 0;
566
567 uopt.flags = sbi->s_flags;
568 uopt.uid = sbi->s_uid;
569 uopt.gid = sbi->s_gid;
570 uopt.umask = sbi->s_umask;
571 uopt.fmode = sbi->s_fmode;
572 uopt.dmode = sbi->s_dmode;
573
574 if (!udf_parse_options(options, &uopt, true))
575 return -EINVAL;
576
577 write_lock(&sbi->s_cred_lock);
578 sbi->s_flags = uopt.flags;
579 sbi->s_uid = uopt.uid;
580 sbi->s_gid = uopt.gid;
581 sbi->s_umask = uopt.umask;
582 sbi->s_fmode = uopt.fmode;
583 sbi->s_dmode = uopt.dmode;
584 write_unlock(&sbi->s_cred_lock);
585
586 if (sbi->s_lvid_bh) {
587 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
588 if (write_rev > UDF_MAX_WRITE_VERSION)
589 *flags |= MS_RDONLY;
590 }
591
592 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
593 goto out_unlock;
594
595 if (*flags & MS_RDONLY)
596 udf_close_lvid(sb);
597 else
598 udf_open_lvid(sb);
599
600out_unlock:
601 return error;
602}
603
604/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
605/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
606static loff_t udf_check_vsd(struct super_block *sb)
607{
608 struct volStructDesc *vsd = NULL;
609 loff_t sector = 32768;
610 int sectorsize;
611 struct buffer_head *bh = NULL;
612 int nsr02 = 0;
613 int nsr03 = 0;
614 struct udf_sb_info *sbi;
615
616 sbi = UDF_SB(sb);
617 if (sb->s_blocksize < sizeof(struct volStructDesc))
618 sectorsize = sizeof(struct volStructDesc);
619 else
620 sectorsize = sb->s_blocksize;
621
622 sector += (sbi->s_session << sb->s_blocksize_bits);
623
624 udf_debug("Starting at sector %u (%ld byte sectors)\n",
625 (unsigned int)(sector >> sb->s_blocksize_bits),
626 sb->s_blocksize);
627 /* Process the sequence (if applicable) */
628 for (; !nsr02 && !nsr03; sector += sectorsize) {
629 /* Read a block */
630 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
631 if (!bh)
632 break;
633
634 /* Look for ISO descriptors */
635 vsd = (struct volStructDesc *)(bh->b_data +
636 (sector & (sb->s_blocksize - 1)));
637
638 if (vsd->stdIdent[0] == 0) {
639 brelse(bh);
640 break;
641 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
642 VSD_STD_ID_LEN)) {
643 switch (vsd->structType) {
644 case 0:
645 udf_debug("ISO9660 Boot Record found\n");
646 break;
647 case 1:
648 udf_debug("ISO9660 Primary Volume Descriptor "
649 "found\n");
650 break;
651 case 2:
652 udf_debug("ISO9660 Supplementary Volume "
653 "Descriptor found\n");
654 break;
655 case 3:
656 udf_debug("ISO9660 Volume Partition Descriptor "
657 "found\n");
658 break;
659 case 255:
660 udf_debug("ISO9660 Volume Descriptor Set "
661 "Terminator found\n");
662 break;
663 default:
664 udf_debug("ISO9660 VRS (%u) found\n",
665 vsd->structType);
666 break;
667 }
668 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
669 VSD_STD_ID_LEN))
670 ; /* nothing */
671 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
672 VSD_STD_ID_LEN)) {
673 brelse(bh);
674 break;
675 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
676 VSD_STD_ID_LEN))
677 nsr02 = sector;
678 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
679 VSD_STD_ID_LEN))
680 nsr03 = sector;
681 brelse(bh);
682 }
683
684 if (nsr03)
685 return nsr03;
686 else if (nsr02)
687 return nsr02;
688 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
689 return -1;
690 else
691 return 0;
692}
693
694static int udf_find_fileset(struct super_block *sb,
695 struct kernel_lb_addr *fileset,
696 struct kernel_lb_addr *root)
697{
698 struct buffer_head *bh = NULL;
699 long lastblock;
700 uint16_t ident;
701 struct udf_sb_info *sbi;
702
703 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
704 fileset->partitionReferenceNum != 0xFFFF) {
705 bh = udf_read_ptagged(sb, fileset, 0, &ident);
706
707 if (!bh) {
708 return 1;
709 } else if (ident != TAG_IDENT_FSD) {
710 brelse(bh);
711 return 1;
712 }
713
714 }
715
716 sbi = UDF_SB(sb);
717 if (!bh) {
718 /* Search backwards through the partitions */
719 struct kernel_lb_addr newfileset;
720
721/* --> cvg: FIXME - is it reasonable? */
722 return 1;
723
724 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
725 (newfileset.partitionReferenceNum != 0xFFFF &&
726 fileset->logicalBlockNum == 0xFFFFFFFF &&
727 fileset->partitionReferenceNum == 0xFFFF);
728 newfileset.partitionReferenceNum--) {
729 lastblock = sbi->s_partmaps
730 [newfileset.partitionReferenceNum]
731 .s_partition_len;
732 newfileset.logicalBlockNum = 0;
733
734 do {
735 bh = udf_read_ptagged(sb, &newfileset, 0,
736 &ident);
737 if (!bh) {
738 newfileset.logicalBlockNum++;
739 continue;
740 }
741
742 switch (ident) {
743 case TAG_IDENT_SBD:
744 {
745 struct spaceBitmapDesc *sp;
746 sp = (struct spaceBitmapDesc *)
747 bh->b_data;
748 newfileset.logicalBlockNum += 1 +
749 ((le32_to_cpu(sp->numOfBytes) +
750 sizeof(struct spaceBitmapDesc)
751 - 1) >> sb->s_blocksize_bits);
752 brelse(bh);
753 break;
754 }
755 case TAG_IDENT_FSD:
756 *fileset = newfileset;
757 break;
758 default:
759 newfileset.logicalBlockNum++;
760 brelse(bh);
761 bh = NULL;
762 break;
763 }
764 } while (newfileset.logicalBlockNum < lastblock &&
765 fileset->logicalBlockNum == 0xFFFFFFFF &&
766 fileset->partitionReferenceNum == 0xFFFF);
767 }
768 }
769
770 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
771 fileset->partitionReferenceNum != 0xFFFF) && bh) {
772 udf_debug("Fileset at block=%d, partition=%d\n",
773 fileset->logicalBlockNum,
774 fileset->partitionReferenceNum);
775
776 sbi->s_partition = fileset->partitionReferenceNum;
777 udf_load_fileset(sb, bh, root);
778 brelse(bh);
779 return 0;
780 }
781 return 1;
782}
783
784static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
785{
786 struct primaryVolDesc *pvoldesc;
787 struct ustr *instr, *outstr;
788 struct buffer_head *bh;
789 uint16_t ident;
790 int ret = 1;
791
792 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
793 if (!instr)
794 return 1;
795
796 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
797 if (!outstr)
798 goto out1;
799
800 bh = udf_read_tagged(sb, block, block, &ident);
801 if (!bh)
802 goto out2;
803
804 BUG_ON(ident != TAG_IDENT_PVD);
805
806 pvoldesc = (struct primaryVolDesc *)bh->b_data;
807
808 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
809 pvoldesc->recordingDateAndTime)) {
810#ifdef UDFFS_DEBUG
811 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
812 udf_debug("recording time %04u/%02u/%02u"
813 " %02u:%02u (%x)\n",
814 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
815 ts->minute, le16_to_cpu(ts->typeAndTimezone));
816#endif
817 }
818
819 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
820 if (udf_CS0toUTF8(outstr, instr)) {
821 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
822 outstr->u_len > 31 ? 31 : outstr->u_len);
823 udf_debug("volIdent[] = '%s'\n",
824 UDF_SB(sb)->s_volume_ident);
825 }
826
827 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
828 if (udf_CS0toUTF8(outstr, instr))
829 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
830
831 brelse(bh);
832 ret = 0;
833out2:
834 kfree(outstr);
835out1:
836 kfree(instr);
837 return ret;
838}
839
840static int udf_load_metadata_files(struct super_block *sb, int partition)
841{
842 struct udf_sb_info *sbi = UDF_SB(sb);
843 struct udf_part_map *map;
844 struct udf_meta_data *mdata;
845 struct kernel_lb_addr addr;
846 int fe_error = 0;
847
848 map = &sbi->s_partmaps[partition];
849 mdata = &map->s_type_specific.s_metadata;
850
851 /* metadata address */
852 addr.logicalBlockNum = mdata->s_meta_file_loc;
853 addr.partitionReferenceNum = map->s_partition_num;
854
855 udf_debug("Metadata file location: block = %d part = %d\n",
856 addr.logicalBlockNum, addr.partitionReferenceNum);
857
858 mdata->s_metadata_fe = udf_iget(sb, &addr);
859
860 if (mdata->s_metadata_fe == NULL) {
861 udf_warning(sb, __func__, "metadata inode efe not found, "
862 "will try mirror inode.");
863 fe_error = 1;
864 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
865 ICBTAG_FLAG_AD_SHORT) {
866 udf_warning(sb, __func__, "metadata inode efe does not have "
867 "short allocation descriptors!");
868 fe_error = 1;
869 iput(mdata->s_metadata_fe);
870 mdata->s_metadata_fe = NULL;
871 }
872
873 /* mirror file entry */
874 addr.logicalBlockNum = mdata->s_mirror_file_loc;
875 addr.partitionReferenceNum = map->s_partition_num;
876
877 udf_debug("Mirror metadata file location: block = %d part = %d\n",
878 addr.logicalBlockNum, addr.partitionReferenceNum);
879
880 mdata->s_mirror_fe = udf_iget(sb, &addr);
881
882 if (mdata->s_mirror_fe == NULL) {
883 if (fe_error) {
884 udf_error(sb, __func__, "mirror inode efe not found "
885 "and metadata inode is missing too, exiting...");
886 goto error_exit;
887 } else
888 udf_warning(sb, __func__, "mirror inode efe not found,"
889 " but metadata inode is OK");
890 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
891 ICBTAG_FLAG_AD_SHORT) {
892 udf_warning(sb, __func__, "mirror inode efe does not have "
893 "short allocation descriptors!");
894 iput(mdata->s_mirror_fe);
895 mdata->s_mirror_fe = NULL;
896 if (fe_error)
897 goto error_exit;
898 }
899
900 /*
901 * bitmap file entry
902 * Note:
903 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
904 */
905 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
906 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
907 addr.partitionReferenceNum = map->s_partition_num;
908
909 udf_debug("Bitmap file location: block = %d part = %d\n",
910 addr.logicalBlockNum, addr.partitionReferenceNum);
911
912 mdata->s_bitmap_fe = udf_iget(sb, &addr);
913
914 if (mdata->s_bitmap_fe == NULL) {
915 if (sb->s_flags & MS_RDONLY)
916 udf_warning(sb, __func__, "bitmap inode efe "
917 "not found but it's ok since the disc"
918 " is mounted read-only");
919 else {
920 udf_error(sb, __func__, "bitmap inode efe not "
921 "found and attempted read-write mount");
922 goto error_exit;
923 }
924 }
925 }
926
927 udf_debug("udf_load_metadata_files Ok\n");
928
929 return 0;
930
931error_exit:
932 return 1;
933}
934
935static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
936 struct kernel_lb_addr *root)
937{
938 struct fileSetDesc *fset;
939
940 fset = (struct fileSetDesc *)bh->b_data;
941
942 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
943
944 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
945
946 udf_debug("Rootdir at block=%d, partition=%d\n",
947 root->logicalBlockNum, root->partitionReferenceNum);
948}
949
950int udf_compute_nr_groups(struct super_block *sb, u32 partition)
951{
952 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
953 return DIV_ROUND_UP(map->s_partition_len +
954 (sizeof(struct spaceBitmapDesc) << 3),
955 sb->s_blocksize * 8);
956}
957
958static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
959{
960 struct udf_bitmap *bitmap;
961 int nr_groups;
962 int size;
963
964 nr_groups = udf_compute_nr_groups(sb, index);
965 size = sizeof(struct udf_bitmap) +
966 (sizeof(struct buffer_head *) * nr_groups);
967
968 if (size <= PAGE_SIZE)
969 bitmap = kzalloc(size, GFP_KERNEL);
970 else
971 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
972
973 if (bitmap == NULL) {
974 udf_error(sb, __func__,
975 "Unable to allocate space for bitmap "
976 "and %d buffer_head pointers", nr_groups);
977 return NULL;
978 }
979
980 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
981 bitmap->s_nr_groups = nr_groups;
982 return bitmap;
983}
984
985static int udf_fill_partdesc_info(struct super_block *sb,
986 struct partitionDesc *p, int p_index)
987{
988 struct udf_part_map *map;
989 struct udf_sb_info *sbi = UDF_SB(sb);
990 struct partitionHeaderDesc *phd;
991
992 map = &sbi->s_partmaps[p_index];
993
994 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
995 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
996
997 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
998 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
999 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1000 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1001 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1002 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1003 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1004 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1005
1006 udf_debug("Partition (%d type %x) starts at physical %d, "
1007 "block length %d\n", p_index,
1008 map->s_partition_type, map->s_partition_root,
1009 map->s_partition_len);
1010
1011 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1012 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1013 return 0;
1014
1015 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1016 if (phd->unallocSpaceTable.extLength) {
1017 struct kernel_lb_addr loc = {
1018 .logicalBlockNum = le32_to_cpu(
1019 phd->unallocSpaceTable.extPosition),
1020 .partitionReferenceNum = p_index,
1021 };
1022
1023 map->s_uspace.s_table = udf_iget(sb, &loc);
1024 if (!map->s_uspace.s_table) {
1025 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1026 p_index);
1027 return 1;
1028 }
1029 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1030 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1031 p_index, map->s_uspace.s_table->i_ino);
1032 }
1033
1034 if (phd->unallocSpaceBitmap.extLength) {
1035 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1036 if (!bitmap)
1037 return 1;
1038 map->s_uspace.s_bitmap = bitmap;
1039 bitmap->s_extLength = le32_to_cpu(
1040 phd->unallocSpaceBitmap.extLength);
1041 bitmap->s_extPosition = le32_to_cpu(
1042 phd->unallocSpaceBitmap.extPosition);
1043 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1044 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1045 bitmap->s_extPosition);
1046 }
1047
1048 if (phd->partitionIntegrityTable.extLength)
1049 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1050
1051 if (phd->freedSpaceTable.extLength) {
1052 struct kernel_lb_addr loc = {
1053 .logicalBlockNum = le32_to_cpu(
1054 phd->freedSpaceTable.extPosition),
1055 .partitionReferenceNum = p_index,
1056 };
1057
1058 map->s_fspace.s_table = udf_iget(sb, &loc);
1059 if (!map->s_fspace.s_table) {
1060 udf_debug("cannot load freedSpaceTable (part %d)\n",
1061 p_index);
1062 return 1;
1063 }
1064
1065 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1066 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1067 p_index, map->s_fspace.s_table->i_ino);
1068 }
1069
1070 if (phd->freedSpaceBitmap.extLength) {
1071 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1072 if (!bitmap)
1073 return 1;
1074 map->s_fspace.s_bitmap = bitmap;
1075 bitmap->s_extLength = le32_to_cpu(
1076 phd->freedSpaceBitmap.extLength);
1077 bitmap->s_extPosition = le32_to_cpu(
1078 phd->freedSpaceBitmap.extPosition);
1079 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1080 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1081 bitmap->s_extPosition);
1082 }
1083 return 0;
1084}
1085
1086static void udf_find_vat_block(struct super_block *sb, int p_index,
1087 int type1_index, sector_t start_block)
1088{
1089 struct udf_sb_info *sbi = UDF_SB(sb);
1090 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1091 sector_t vat_block;
1092 struct kernel_lb_addr ino;
1093
1094 /*
1095 * VAT file entry is in the last recorded block. Some broken disks have
1096 * it a few blocks before so try a bit harder...
1097 */
1098 ino.partitionReferenceNum = type1_index;
1099 for (vat_block = start_block;
1100 vat_block >= map->s_partition_root &&
1101 vat_block >= start_block - 3 &&
1102 !sbi->s_vat_inode; vat_block--) {
1103 ino.logicalBlockNum = vat_block - map->s_partition_root;
1104 sbi->s_vat_inode = udf_iget(sb, &ino);
1105 }
1106}
1107
1108static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1109{
1110 struct udf_sb_info *sbi = UDF_SB(sb);
1111 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1112 struct buffer_head *bh = NULL;
1113 struct udf_inode_info *vati;
1114 uint32_t pos;
1115 struct virtualAllocationTable20 *vat20;
1116 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1117
1118 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1119 if (!sbi->s_vat_inode &&
1120 sbi->s_last_block != blocks - 1) {
1121 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1122 " last recorded block (%lu), retrying with the last "
1123 "block of the device (%lu).\n",
1124 (unsigned long)sbi->s_last_block,
1125 (unsigned long)blocks - 1);
1126 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1127 }
1128 if (!sbi->s_vat_inode)
1129 return 1;
1130
1131 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1132 map->s_type_specific.s_virtual.s_start_offset = 0;
1133 map->s_type_specific.s_virtual.s_num_entries =
1134 (sbi->s_vat_inode->i_size - 36) >> 2;
1135 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1136 vati = UDF_I(sbi->s_vat_inode);
1137 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1138 pos = udf_block_map(sbi->s_vat_inode, 0);
1139 bh = sb_bread(sb, pos);
1140 if (!bh)
1141 return 1;
1142 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1143 } else {
1144 vat20 = (struct virtualAllocationTable20 *)
1145 vati->i_ext.i_data;
1146 }
1147
1148 map->s_type_specific.s_virtual.s_start_offset =
1149 le16_to_cpu(vat20->lengthHeader);
1150 map->s_type_specific.s_virtual.s_num_entries =
1151 (sbi->s_vat_inode->i_size -
1152 map->s_type_specific.s_virtual.
1153 s_start_offset) >> 2;
1154 brelse(bh);
1155 }
1156 return 0;
1157}
1158
1159static int udf_load_partdesc(struct super_block *sb, sector_t block)
1160{
1161 struct buffer_head *bh;
1162 struct partitionDesc *p;
1163 struct udf_part_map *map;
1164 struct udf_sb_info *sbi = UDF_SB(sb);
1165 int i, type1_idx;
1166 uint16_t partitionNumber;
1167 uint16_t ident;
1168 int ret = 0;
1169
1170 bh = udf_read_tagged(sb, block, block, &ident);
1171 if (!bh)
1172 return 1;
1173 if (ident != TAG_IDENT_PD)
1174 goto out_bh;
1175
1176 p = (struct partitionDesc *)bh->b_data;
1177 partitionNumber = le16_to_cpu(p->partitionNumber);
1178
1179 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1180 for (i = 0; i < sbi->s_partitions; i++) {
1181 map = &sbi->s_partmaps[i];
1182 udf_debug("Searching map: (%d == %d)\n",
1183 map->s_partition_num, partitionNumber);
1184 if (map->s_partition_num == partitionNumber &&
1185 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1186 map->s_partition_type == UDF_SPARABLE_MAP15))
1187 break;
1188 }
1189
1190 if (i >= sbi->s_partitions) {
1191 udf_debug("Partition (%d) not found in partition map\n",
1192 partitionNumber);
1193 goto out_bh;
1194 }
1195
1196 ret = udf_fill_partdesc_info(sb, p, i);
1197
1198 /*
1199 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1200 * PHYSICAL partitions are already set up
1201 */
1202 type1_idx = i;
1203 for (i = 0; i < sbi->s_partitions; i++) {
1204 map = &sbi->s_partmaps[i];
1205
1206 if (map->s_partition_num == partitionNumber &&
1207 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1208 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1209 map->s_partition_type == UDF_METADATA_MAP25))
1210 break;
1211 }
1212
1213 if (i >= sbi->s_partitions)
1214 goto out_bh;
1215
1216 ret = udf_fill_partdesc_info(sb, p, i);
1217 if (ret)
1218 goto out_bh;
1219
1220 if (map->s_partition_type == UDF_METADATA_MAP25) {
1221 ret = udf_load_metadata_files(sb, i);
1222 if (ret) {
1223 printk(KERN_ERR "UDF-fs: error loading MetaData "
1224 "partition map %d\n", i);
1225 goto out_bh;
1226 }
1227 } else {
1228 ret = udf_load_vat(sb, i, type1_idx);
1229 if (ret)
1230 goto out_bh;
1231 /*
1232 * Mark filesystem read-only if we have a partition with
1233 * virtual map since we don't handle writing to it (we
1234 * overwrite blocks instead of relocating them).
1235 */
1236 sb->s_flags |= MS_RDONLY;
1237 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1238 "because writing to pseudooverwrite partition is "
1239 "not implemented.\n");
1240 }
1241out_bh:
1242 /* In case loading failed, we handle cleanup in udf_fill_super */
1243 brelse(bh);
1244 return ret;
1245}
1246
1247static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1248 struct kernel_lb_addr *fileset)
1249{
1250 struct logicalVolDesc *lvd;
1251 int i, j, offset;
1252 uint8_t type;
1253 struct udf_sb_info *sbi = UDF_SB(sb);
1254 struct genericPartitionMap *gpm;
1255 uint16_t ident;
1256 struct buffer_head *bh;
1257 int ret = 0;
1258
1259 bh = udf_read_tagged(sb, block, block, &ident);
1260 if (!bh)
1261 return 1;
1262 BUG_ON(ident != TAG_IDENT_LVD);
1263 lvd = (struct logicalVolDesc *)bh->b_data;
1264
1265 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1266 if (i != 0) {
1267 ret = i;
1268 goto out_bh;
1269 }
1270
1271 for (i = 0, offset = 0;
1272 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1273 i++, offset += gpm->partitionMapLength) {
1274 struct udf_part_map *map = &sbi->s_partmaps[i];
1275 gpm = (struct genericPartitionMap *)
1276 &(lvd->partitionMaps[offset]);
1277 type = gpm->partitionMapType;
1278 if (type == 1) {
1279 struct genericPartitionMap1 *gpm1 =
1280 (struct genericPartitionMap1 *)gpm;
1281 map->s_partition_type = UDF_TYPE1_MAP15;
1282 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1283 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1284 map->s_partition_func = NULL;
1285 } else if (type == 2) {
1286 struct udfPartitionMap2 *upm2 =
1287 (struct udfPartitionMap2 *)gpm;
1288 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1289 strlen(UDF_ID_VIRTUAL))) {
1290 u16 suf =
1291 le16_to_cpu(((__le16 *)upm2->partIdent.
1292 identSuffix)[0]);
1293 if (suf < 0x0200) {
1294 map->s_partition_type =
1295 UDF_VIRTUAL_MAP15;
1296 map->s_partition_func =
1297 udf_get_pblock_virt15;
1298 } else {
1299 map->s_partition_type =
1300 UDF_VIRTUAL_MAP20;
1301 map->s_partition_func =
1302 udf_get_pblock_virt20;
1303 }
1304 } else if (!strncmp(upm2->partIdent.ident,
1305 UDF_ID_SPARABLE,
1306 strlen(UDF_ID_SPARABLE))) {
1307 uint32_t loc;
1308 struct sparingTable *st;
1309 struct sparablePartitionMap *spm =
1310 (struct sparablePartitionMap *)gpm;
1311
1312 map->s_partition_type = UDF_SPARABLE_MAP15;
1313 map->s_type_specific.s_sparing.s_packet_len =
1314 le16_to_cpu(spm->packetLength);
1315 for (j = 0; j < spm->numSparingTables; j++) {
1316 struct buffer_head *bh2;
1317
1318 loc = le32_to_cpu(
1319 spm->locSparingTable[j]);
1320 bh2 = udf_read_tagged(sb, loc, loc,
1321 &ident);
1322 map->s_type_specific.s_sparing.
1323 s_spar_map[j] = bh2;
1324
1325 if (bh2 == NULL)
1326 continue;
1327
1328 st = (struct sparingTable *)bh2->b_data;
1329 if (ident != 0 || strncmp(
1330 st->sparingIdent.ident,
1331 UDF_ID_SPARING,
1332 strlen(UDF_ID_SPARING))) {
1333 brelse(bh2);
1334 map->s_type_specific.s_sparing.
1335 s_spar_map[j] = NULL;
1336 }
1337 }
1338 map->s_partition_func = udf_get_pblock_spar15;
1339 } else if (!strncmp(upm2->partIdent.ident,
1340 UDF_ID_METADATA,
1341 strlen(UDF_ID_METADATA))) {
1342 struct udf_meta_data *mdata =
1343 &map->s_type_specific.s_metadata;
1344 struct metadataPartitionMap *mdm =
1345 (struct metadataPartitionMap *)
1346 &(lvd->partitionMaps[offset]);
1347 udf_debug("Parsing Logical vol part %d "
1348 "type %d id=%s\n", i, type,
1349 UDF_ID_METADATA);
1350
1351 map->s_partition_type = UDF_METADATA_MAP25;
1352 map->s_partition_func = udf_get_pblock_meta25;
1353
1354 mdata->s_meta_file_loc =
1355 le32_to_cpu(mdm->metadataFileLoc);
1356 mdata->s_mirror_file_loc =
1357 le32_to_cpu(mdm->metadataMirrorFileLoc);
1358 mdata->s_bitmap_file_loc =
1359 le32_to_cpu(mdm->metadataBitmapFileLoc);
1360 mdata->s_alloc_unit_size =
1361 le32_to_cpu(mdm->allocUnitSize);
1362 mdata->s_align_unit_size =
1363 le16_to_cpu(mdm->alignUnitSize);
1364 mdata->s_dup_md_flag =
1365 mdm->flags & 0x01;
1366
1367 udf_debug("Metadata Ident suffix=0x%x\n",
1368 (le16_to_cpu(
1369 ((__le16 *)
1370 mdm->partIdent.identSuffix)[0])));
1371 udf_debug("Metadata part num=%d\n",
1372 le16_to_cpu(mdm->partitionNum));
1373 udf_debug("Metadata part alloc unit size=%d\n",
1374 le32_to_cpu(mdm->allocUnitSize));
1375 udf_debug("Metadata file loc=%d\n",
1376 le32_to_cpu(mdm->metadataFileLoc));
1377 udf_debug("Mirror file loc=%d\n",
1378 le32_to_cpu(mdm->metadataMirrorFileLoc));
1379 udf_debug("Bitmap file loc=%d\n",
1380 le32_to_cpu(mdm->metadataBitmapFileLoc));
1381 udf_debug("Duplicate Flag: %d %d\n",
1382 mdata->s_dup_md_flag, mdm->flags);
1383 } else {
1384 udf_debug("Unknown ident: %s\n",
1385 upm2->partIdent.ident);
1386 continue;
1387 }
1388 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1389 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1390 }
1391 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1392 i, map->s_partition_num, type,
1393 map->s_volumeseqnum);
1394 }
1395
1396 if (fileset) {
1397 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1398
1399 *fileset = lelb_to_cpu(la->extLocation);
1400 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1401 "partition=%d\n", fileset->logicalBlockNum,
1402 fileset->partitionReferenceNum);
1403 }
1404 if (lvd->integritySeqExt.extLength)
1405 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1406
1407out_bh:
1408 brelse(bh);
1409 return ret;
1410}
1411
1412/*
1413 * udf_load_logicalvolint
1414 *
1415 */
1416static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1417{
1418 struct buffer_head *bh = NULL;
1419 uint16_t ident;
1420 struct udf_sb_info *sbi = UDF_SB(sb);
1421 struct logicalVolIntegrityDesc *lvid;
1422
1423 while (loc.extLength > 0 &&
1424 (bh = udf_read_tagged(sb, loc.extLocation,
1425 loc.extLocation, &ident)) &&
1426 ident == TAG_IDENT_LVID) {
1427 sbi->s_lvid_bh = bh;
1428 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1429
1430 if (lvid->nextIntegrityExt.extLength)
1431 udf_load_logicalvolint(sb,
1432 leea_to_cpu(lvid->nextIntegrityExt));
1433
1434 if (sbi->s_lvid_bh != bh)
1435 brelse(bh);
1436 loc.extLength -= sb->s_blocksize;
1437 loc.extLocation++;
1438 }
1439 if (sbi->s_lvid_bh != bh)
1440 brelse(bh);
1441}
1442
1443/*
1444 * udf_process_sequence
1445 *
1446 * PURPOSE
1447 * Process a main/reserve volume descriptor sequence.
1448 *
1449 * PRE-CONDITIONS
1450 * sb Pointer to _locked_ superblock.
1451 * block First block of first extent of the sequence.
1452 * lastblock Lastblock of first extent of the sequence.
1453 *
1454 * HISTORY
1455 * July 1, 1997 - Andrew E. Mileski
1456 * Written, tested, and released.
1457 */
1458static noinline int udf_process_sequence(struct super_block *sb, long block,
1459 long lastblock, struct kernel_lb_addr *fileset)
1460{
1461 struct buffer_head *bh = NULL;
1462 struct udf_vds_record vds[VDS_POS_LENGTH];
1463 struct udf_vds_record *curr;
1464 struct generic_desc *gd;
1465 struct volDescPtr *vdp;
1466 int done = 0;
1467 uint32_t vdsn;
1468 uint16_t ident;
1469 long next_s = 0, next_e = 0;
1470
1471 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1472
1473 /*
1474 * Read the main descriptor sequence and find which descriptors
1475 * are in it.
1476 */
1477 for (; (!done && block <= lastblock); block++) {
1478
1479 bh = udf_read_tagged(sb, block, block, &ident);
1480 if (!bh) {
1481 printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1482 "sequence is corrupted or we could not read "
1483 "it.\n", (unsigned long long)block);
1484 return 1;
1485 }
1486
1487 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1488 gd = (struct generic_desc *)bh->b_data;
1489 vdsn = le32_to_cpu(gd->volDescSeqNum);
1490 switch (ident) {
1491 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1492 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1493 if (vdsn >= curr->volDescSeqNum) {
1494 curr->volDescSeqNum = vdsn;
1495 curr->block = block;
1496 }
1497 break;
1498 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1499 curr = &vds[VDS_POS_VOL_DESC_PTR];
1500 if (vdsn >= curr->volDescSeqNum) {
1501 curr->volDescSeqNum = vdsn;
1502 curr->block = block;
1503
1504 vdp = (struct volDescPtr *)bh->b_data;
1505 next_s = le32_to_cpu(
1506 vdp->nextVolDescSeqExt.extLocation);
1507 next_e = le32_to_cpu(
1508 vdp->nextVolDescSeqExt.extLength);
1509 next_e = next_e >> sb->s_blocksize_bits;
1510 next_e += next_s;
1511 }
1512 break;
1513 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1514 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1515 if (vdsn >= curr->volDescSeqNum) {
1516 curr->volDescSeqNum = vdsn;
1517 curr->block = block;
1518 }
1519 break;
1520 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1521 curr = &vds[VDS_POS_PARTITION_DESC];
1522 if (!curr->block)
1523 curr->block = block;
1524 break;
1525 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1526 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1527 if (vdsn >= curr->volDescSeqNum) {
1528 curr->volDescSeqNum = vdsn;
1529 curr->block = block;
1530 }
1531 break;
1532 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1533 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1534 if (vdsn >= curr->volDescSeqNum) {
1535 curr->volDescSeqNum = vdsn;
1536 curr->block = block;
1537 }
1538 break;
1539 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1540 vds[VDS_POS_TERMINATING_DESC].block = block;
1541 if (next_e) {
1542 block = next_s;
1543 lastblock = next_e;
1544 next_s = next_e = 0;
1545 } else
1546 done = 1;
1547 break;
1548 }
1549 brelse(bh);
1550 }
1551 /*
1552 * Now read interesting descriptors again and process them
1553 * in a suitable order
1554 */
1555 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1556 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1557 return 1;
1558 }
1559 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1560 return 1;
1561
1562 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1563 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1564 return 1;
1565
1566 if (vds[VDS_POS_PARTITION_DESC].block) {
1567 /*
1568 * We rescan the whole descriptor sequence to find
1569 * partition descriptor blocks and process them.
1570 */
1571 for (block = vds[VDS_POS_PARTITION_DESC].block;
1572 block < vds[VDS_POS_TERMINATING_DESC].block;
1573 block++)
1574 if (udf_load_partdesc(sb, block))
1575 return 1;
1576 }
1577
1578 return 0;
1579}
1580
1581static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1582 struct kernel_lb_addr *fileset)
1583{
1584 struct anchorVolDescPtr *anchor;
1585 long main_s, main_e, reserve_s, reserve_e;
1586
1587 anchor = (struct anchorVolDescPtr *)bh->b_data;
1588
1589 /* Locate the main sequence */
1590 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1591 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1592 main_e = main_e >> sb->s_blocksize_bits;
1593 main_e += main_s;
1594
1595 /* Locate the reserve sequence */
1596 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1597 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1598 reserve_e = reserve_e >> sb->s_blocksize_bits;
1599 reserve_e += reserve_s;
1600
1601 /* Process the main & reserve sequences */
1602 /* responsible for finding the PartitionDesc(s) */
1603 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1604 return 1;
1605 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1606}
1607
1608/*
1609 * Check whether there is an anchor block in the given block and
1610 * load Volume Descriptor Sequence if so.
1611 */
1612static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1613 struct kernel_lb_addr *fileset)
1614{
1615 struct buffer_head *bh;
1616 uint16_t ident;
1617 int ret;
1618
1619 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1620 udf_fixed_to_variable(block) >=
1621 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1622 return 0;
1623
1624 bh = udf_read_tagged(sb, block, block, &ident);
1625 if (!bh)
1626 return 0;
1627 if (ident != TAG_IDENT_AVDP) {
1628 brelse(bh);
1629 return 0;
1630 }
1631 ret = udf_load_sequence(sb, bh, fileset);
1632 brelse(bh);
1633 return ret;
1634}
1635
1636/* Search for an anchor volume descriptor pointer */
1637static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1638 struct kernel_lb_addr *fileset)
1639{
1640 sector_t last[6];
1641 int i;
1642 struct udf_sb_info *sbi = UDF_SB(sb);
1643 int last_count = 0;
1644
1645 /* First try user provided anchor */
1646 if (sbi->s_anchor) {
1647 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1648 return lastblock;
1649 }
1650 /*
1651 * according to spec, anchor is in either:
1652 * block 256
1653 * lastblock-256
1654 * lastblock
1655 * however, if the disc isn't closed, it could be 512.
1656 */
1657 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1658 return lastblock;
1659 /*
1660 * The trouble is which block is the last one. Drives often misreport
1661 * this so we try various possibilities.
1662 */
1663 last[last_count++] = lastblock;
1664 if (lastblock >= 1)
1665 last[last_count++] = lastblock - 1;
1666 last[last_count++] = lastblock + 1;
1667 if (lastblock >= 2)
1668 last[last_count++] = lastblock - 2;
1669 if (lastblock >= 150)
1670 last[last_count++] = lastblock - 150;
1671 if (lastblock >= 152)
1672 last[last_count++] = lastblock - 152;
1673
1674 for (i = 0; i < last_count; i++) {
1675 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1676 sb->s_blocksize_bits)
1677 continue;
1678 if (udf_check_anchor_block(sb, last[i], fileset))
1679 return last[i];
1680 if (last[i] < 256)
1681 continue;
1682 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1683 return last[i];
1684 }
1685
1686 /* Finally try block 512 in case media is open */
1687 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1688 return last[0];
1689 return 0;
1690}
1691
1692/*
1693 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1694 * area specified by it. The function expects sbi->s_lastblock to be the last
1695 * block on the media.
1696 *
1697 * Return 1 if ok, 0 if not found.
1698 *
1699 */
1700static int udf_find_anchor(struct super_block *sb,
1701 struct kernel_lb_addr *fileset)
1702{
1703 sector_t lastblock;
1704 struct udf_sb_info *sbi = UDF_SB(sb);
1705
1706 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1707 if (lastblock)
1708 goto out;
1709
1710 /* No anchor found? Try VARCONV conversion of block numbers */
1711 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1712 /* Firstly, we try to not convert number of the last block */
1713 lastblock = udf_scan_anchors(sb,
1714 udf_variable_to_fixed(sbi->s_last_block),
1715 fileset);
1716 if (lastblock)
1717 goto out;
1718
1719 /* Secondly, we try with converted number of the last block */
1720 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1721 if (!lastblock) {
1722 /* VARCONV didn't help. Clear it. */
1723 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1724 return 0;
1725 }
1726out:
1727 sbi->s_last_block = lastblock;
1728 return 1;
1729}
1730
1731/*
1732 * Check Volume Structure Descriptor, find Anchor block and load Volume
1733 * Descriptor Sequence
1734 */
1735static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1736 int silent, struct kernel_lb_addr *fileset)
1737{
1738 struct udf_sb_info *sbi = UDF_SB(sb);
1739 loff_t nsr_off;
1740
1741 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1742 if (!silent)
1743 printk(KERN_WARNING "UDF-fs: Bad block size\n");
1744 return 0;
1745 }
1746 sbi->s_last_block = uopt->lastblock;
1747 if (!uopt->novrs) {
1748 /* Check that it is NSR02 compliant */
1749 nsr_off = udf_check_vsd(sb);
1750 if (!nsr_off) {
1751 if (!silent)
1752 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1753 return 0;
1754 }
1755 if (nsr_off == -1)
1756 udf_debug("Failed to read byte 32768. Assuming open "
1757 "disc. Skipping validity check\n");
1758 if (!sbi->s_last_block)
1759 sbi->s_last_block = udf_get_last_block(sb);
1760 } else {
1761 udf_debug("Validity check skipped because of novrs option\n");
1762 }
1763
1764 /* Look for anchor block and load Volume Descriptor Sequence */
1765 sbi->s_anchor = uopt->anchor;
1766 if (!udf_find_anchor(sb, fileset)) {
1767 if (!silent)
1768 printk(KERN_WARNING "UDF-fs: No anchor found\n");
1769 return 0;
1770 }
1771 return 1;
1772}
1773
1774static void udf_open_lvid(struct super_block *sb)
1775{
1776 struct udf_sb_info *sbi = UDF_SB(sb);
1777 struct buffer_head *bh = sbi->s_lvid_bh;
1778 struct logicalVolIntegrityDesc *lvid;
1779 struct logicalVolIntegrityDescImpUse *lvidiu;
1780
1781 if (!bh)
1782 return;
1783
1784 mutex_lock(&sbi->s_alloc_mutex);
1785 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1786 lvidiu = udf_sb_lvidiu(sbi);
1787
1788 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1791 CURRENT_TIME);
1792 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1793
1794 lvid->descTag.descCRC = cpu_to_le16(
1795 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1796 le16_to_cpu(lvid->descTag.descCRCLength)));
1797
1798 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1799 mark_buffer_dirty(bh);
1800 sbi->s_lvid_dirty = 0;
1801 mutex_unlock(&sbi->s_alloc_mutex);
1802}
1803
1804static void udf_close_lvid(struct super_block *sb)
1805{
1806 struct udf_sb_info *sbi = UDF_SB(sb);
1807 struct buffer_head *bh = sbi->s_lvid_bh;
1808 struct logicalVolIntegrityDesc *lvid;
1809 struct logicalVolIntegrityDescImpUse *lvidiu;
1810
1811 if (!bh)
1812 return;
1813
1814 mutex_lock(&sbi->s_alloc_mutex);
1815 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1816 lvidiu = udf_sb_lvidiu(sbi);
1817 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1818 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1819 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1820 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1821 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1822 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1823 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1824 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1825 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1826 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1827
1828 lvid->descTag.descCRC = cpu_to_le16(
1829 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1830 le16_to_cpu(lvid->descTag.descCRCLength)));
1831
1832 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1833 mark_buffer_dirty(bh);
1834 sbi->s_lvid_dirty = 0;
1835 mutex_unlock(&sbi->s_alloc_mutex);
1836}
1837
1838u64 lvid_get_unique_id(struct super_block *sb)
1839{
1840 struct buffer_head *bh;
1841 struct udf_sb_info *sbi = UDF_SB(sb);
1842 struct logicalVolIntegrityDesc *lvid;
1843 struct logicalVolHeaderDesc *lvhd;
1844 u64 uniqueID;
1845 u64 ret;
1846
1847 bh = sbi->s_lvid_bh;
1848 if (!bh)
1849 return 0;
1850
1851 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1853
1854 mutex_lock(&sbi->s_alloc_mutex);
1855 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1856 if (!(++uniqueID & 0xFFFFFFFF))
1857 uniqueID += 16;
1858 lvhd->uniqueID = cpu_to_le64(uniqueID);
1859 mutex_unlock(&sbi->s_alloc_mutex);
1860 mark_buffer_dirty(bh);
1861
1862 return ret;
1863}
1864
1865static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1866{
1867 int i;
1868 int nr_groups = bitmap->s_nr_groups;
1869 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1870 nr_groups);
1871
1872 for (i = 0; i < nr_groups; i++)
1873 if (bitmap->s_block_bitmap[i])
1874 brelse(bitmap->s_block_bitmap[i]);
1875
1876 if (size <= PAGE_SIZE)
1877 kfree(bitmap);
1878 else
1879 vfree(bitmap);
1880}
1881
1882static void udf_free_partition(struct udf_part_map *map)
1883{
1884 int i;
1885 struct udf_meta_data *mdata;
1886
1887 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1888 iput(map->s_uspace.s_table);
1889 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1890 iput(map->s_fspace.s_table);
1891 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1892 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1893 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1894 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1895 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1896 for (i = 0; i < 4; i++)
1897 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1898 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1899 mdata = &map->s_type_specific.s_metadata;
1900 iput(mdata->s_metadata_fe);
1901 mdata->s_metadata_fe = NULL;
1902
1903 iput(mdata->s_mirror_fe);
1904 mdata->s_mirror_fe = NULL;
1905
1906 iput(mdata->s_bitmap_fe);
1907 mdata->s_bitmap_fe = NULL;
1908 }
1909}
1910
1911static int udf_fill_super(struct super_block *sb, void *options, int silent)
1912{
1913 int i;
1914 int ret;
1915 struct inode *inode = NULL;
1916 struct udf_options uopt;
1917 struct kernel_lb_addr rootdir, fileset;
1918 struct udf_sb_info *sbi;
1919
1920 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1921 uopt.uid = -1;
1922 uopt.gid = -1;
1923 uopt.umask = 0;
1924 uopt.fmode = UDF_INVALID_MODE;
1925 uopt.dmode = UDF_INVALID_MODE;
1926
1927 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1928 if (!sbi)
1929 return -ENOMEM;
1930
1931 sb->s_fs_info = sbi;
1932
1933 mutex_init(&sbi->s_alloc_mutex);
1934
1935 if (!udf_parse_options((char *)options, &uopt, false))
1936 goto error_out;
1937
1938 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1939 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1940 udf_error(sb, "udf_read_super",
1941 "utf8 cannot be combined with iocharset\n");
1942 goto error_out;
1943 }
1944#ifdef CONFIG_UDF_NLS
1945 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1946 uopt.nls_map = load_nls_default();
1947 if (!uopt.nls_map)
1948 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1949 else
1950 udf_debug("Using default NLS map\n");
1951 }
1952#endif
1953 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1954 uopt.flags |= (1 << UDF_FLAG_UTF8);
1955
1956 fileset.logicalBlockNum = 0xFFFFFFFF;
1957 fileset.partitionReferenceNum = 0xFFFF;
1958
1959 sbi->s_flags = uopt.flags;
1960 sbi->s_uid = uopt.uid;
1961 sbi->s_gid = uopt.gid;
1962 sbi->s_umask = uopt.umask;
1963 sbi->s_fmode = uopt.fmode;
1964 sbi->s_dmode = uopt.dmode;
1965 sbi->s_nls_map = uopt.nls_map;
1966 rwlock_init(&sbi->s_cred_lock);
1967
1968 if (uopt.session == 0xFFFFFFFF)
1969 sbi->s_session = udf_get_last_session(sb);
1970 else
1971 sbi->s_session = uopt.session;
1972
1973 udf_debug("Multi-session=%d\n", sbi->s_session);
1974
1975 /* Fill in the rest of the superblock */
1976 sb->s_op = &udf_sb_ops;
1977 sb->s_export_op = &udf_export_ops;
1978
1979 sb->s_dirt = 0;
1980 sb->s_magic = UDF_SUPER_MAGIC;
1981 sb->s_time_gran = 1000;
1982
1983 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1984 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1985 } else {
1986 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1987 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1988 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1989 if (!silent)
1990 printk(KERN_NOTICE
1991 "UDF-fs: Rescanning with blocksize "
1992 "%d\n", UDF_DEFAULT_BLOCKSIZE);
1993 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1995 }
1996 }
1997 if (!ret) {
1998 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1999 goto error_out;
2000 }
2001
2002 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003
2004 if (sbi->s_lvid_bh) {
2005 struct logicalVolIntegrityDescImpUse *lvidiu =
2006 udf_sb_lvidiu(sbi);
2007 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009 /* uint16_t maxUDFWriteRev =
2010 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011
2012 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
2014 "(max is %x)\n",
2015 le16_to_cpu(lvidiu->minUDFReadRev),
2016 UDF_MAX_READ_VERSION);
2017 goto error_out;
2018 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2019 sb->s_flags |= MS_RDONLY;
2020
2021 sbi->s_udfrev = minUDFWriteRev;
2022
2023 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2024 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2025 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2026 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2027 }
2028
2029 if (!sbi->s_partitions) {
2030 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
2031 goto error_out;
2032 }
2033
2034 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2035 UDF_PART_FLAG_READ_ONLY) {
2036 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2037 "forcing readonly mount\n");
2038 sb->s_flags |= MS_RDONLY;
2039 }
2040
2041 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2042 printk(KERN_WARNING "UDF-fs: No fileset found\n");
2043 goto error_out;
2044 }
2045
2046 if (!silent) {
2047 struct timestamp ts;
2048 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2049 udf_info("UDF: Mounting volume '%s', "
2050 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2051 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2052 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2053 }
2054 if (!(sb->s_flags & MS_RDONLY))
2055 udf_open_lvid(sb);
2056
2057 /* Assign the root inode */
2058 /* assign inodes by physical block number */
2059 /* perhaps it's not extensible enough, but for now ... */
2060 inode = udf_iget(sb, &rootdir);
2061 if (!inode) {
2062 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2063 "partition=%d\n",
2064 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2065 goto error_out;
2066 }
2067
2068 /* Allocate a dentry for the root inode */
2069 sb->s_root = d_alloc_root(inode);
2070 if (!sb->s_root) {
2071 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2072 iput(inode);
2073 goto error_out;
2074 }
2075 sb->s_maxbytes = MAX_LFS_FILESIZE;
2076 return 0;
2077
2078error_out:
2079 if (sbi->s_vat_inode)
2080 iput(sbi->s_vat_inode);
2081 if (sbi->s_partitions)
2082 for (i = 0; i < sbi->s_partitions; i++)
2083 udf_free_partition(&sbi->s_partmaps[i]);
2084#ifdef CONFIG_UDF_NLS
2085 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2086 unload_nls(sbi->s_nls_map);
2087#endif
2088 if (!(sb->s_flags & MS_RDONLY))
2089 udf_close_lvid(sb);
2090 brelse(sbi->s_lvid_bh);
2091
2092 kfree(sbi->s_partmaps);
2093 kfree(sbi);
2094 sb->s_fs_info = NULL;
2095
2096 return -EINVAL;
2097}
2098
2099static void udf_error(struct super_block *sb, const char *function,
2100 const char *fmt, ...)
2101{
2102 va_list args;
2103
2104 if (!(sb->s_flags & MS_RDONLY)) {
2105 /* mark sb error */
2106 sb->s_dirt = 1;
2107 }
2108 va_start(args, fmt);
2109 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2110 va_end(args);
2111 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2112 sb->s_id, function, error_buf);
2113}
2114
2115void udf_warning(struct super_block *sb, const char *function,
2116 const char *fmt, ...)
2117{
2118 va_list args;
2119
2120 va_start(args, fmt);
2121 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2122 va_end(args);
2123 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2124 sb->s_id, function, error_buf);
2125}
2126
2127static void udf_put_super(struct super_block *sb)
2128{
2129 int i;
2130 struct udf_sb_info *sbi;
2131
2132 sbi = UDF_SB(sb);
2133
2134 if (sbi->s_vat_inode)
2135 iput(sbi->s_vat_inode);
2136 if (sbi->s_partitions)
2137 for (i = 0; i < sbi->s_partitions; i++)
2138 udf_free_partition(&sbi->s_partmaps[i]);
2139#ifdef CONFIG_UDF_NLS
2140 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2141 unload_nls(sbi->s_nls_map);
2142#endif
2143 if (!(sb->s_flags & MS_RDONLY))
2144 udf_close_lvid(sb);
2145 brelse(sbi->s_lvid_bh);
2146 kfree(sbi->s_partmaps);
2147 kfree(sb->s_fs_info);
2148 sb->s_fs_info = NULL;
2149}
2150
2151static int udf_sync_fs(struct super_block *sb, int wait)
2152{
2153 struct udf_sb_info *sbi = UDF_SB(sb);
2154
2155 mutex_lock(&sbi->s_alloc_mutex);
2156 if (sbi->s_lvid_dirty) {
2157 /*
2158 * Blockdevice will be synced later so we don't have to submit
2159 * the buffer for IO
2160 */
2161 mark_buffer_dirty(sbi->s_lvid_bh);
2162 sb->s_dirt = 0;
2163 sbi->s_lvid_dirty = 0;
2164 }
2165 mutex_unlock(&sbi->s_alloc_mutex);
2166
2167 return 0;
2168}
2169
2170static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2171{
2172 struct super_block *sb = dentry->d_sb;
2173 struct udf_sb_info *sbi = UDF_SB(sb);
2174 struct logicalVolIntegrityDescImpUse *lvidiu;
2175 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2176
2177 if (sbi->s_lvid_bh != NULL)
2178 lvidiu = udf_sb_lvidiu(sbi);
2179 else
2180 lvidiu = NULL;
2181
2182 buf->f_type = UDF_SUPER_MAGIC;
2183 buf->f_bsize = sb->s_blocksize;
2184 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2185 buf->f_bfree = udf_count_free(sb);
2186 buf->f_bavail = buf->f_bfree;
2187 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2188 le32_to_cpu(lvidiu->numDirs)) : 0)
2189 + buf->f_bfree;
2190 buf->f_ffree = buf->f_bfree;
2191 buf->f_namelen = UDF_NAME_LEN - 2;
2192 buf->f_fsid.val[0] = (u32)id;
2193 buf->f_fsid.val[1] = (u32)(id >> 32);
2194
2195 return 0;
2196}
2197
2198static unsigned int udf_count_free_bitmap(struct super_block *sb,
2199 struct udf_bitmap *bitmap)
2200{
2201 struct buffer_head *bh = NULL;
2202 unsigned int accum = 0;
2203 int index;
2204 int block = 0, newblock;
2205 struct kernel_lb_addr loc;
2206 uint32_t bytes;
2207 uint8_t *ptr;
2208 uint16_t ident;
2209 struct spaceBitmapDesc *bm;
2210
2211 loc.logicalBlockNum = bitmap->s_extPosition;
2212 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2213 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2214
2215 if (!bh) {
2216 printk(KERN_ERR "udf: udf_count_free failed\n");
2217 goto out;
2218 } else if (ident != TAG_IDENT_SBD) {
2219 brelse(bh);
2220 printk(KERN_ERR "udf: udf_count_free failed\n");
2221 goto out;
2222 }
2223
2224 bm = (struct spaceBitmapDesc *)bh->b_data;
2225 bytes = le32_to_cpu(bm->numOfBytes);
2226 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2227 ptr = (uint8_t *)bh->b_data;
2228
2229 while (bytes > 0) {
2230 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2231 accum += bitmap_weight((const unsigned long *)(ptr + index),
2232 cur_bytes * 8);
2233 bytes -= cur_bytes;
2234 if (bytes) {
2235 brelse(bh);
2236 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2237 bh = udf_tread(sb, newblock);
2238 if (!bh) {
2239 udf_debug("read failed\n");
2240 goto out;
2241 }
2242 index = 0;
2243 ptr = (uint8_t *)bh->b_data;
2244 }
2245 }
2246 brelse(bh);
2247out:
2248 return accum;
2249}
2250
2251static unsigned int udf_count_free_table(struct super_block *sb,
2252 struct inode *table)
2253{
2254 unsigned int accum = 0;
2255 uint32_t elen;
2256 struct kernel_lb_addr eloc;
2257 int8_t etype;
2258 struct extent_position epos;
2259
2260 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2261 epos.block = UDF_I(table)->i_location;
2262 epos.offset = sizeof(struct unallocSpaceEntry);
2263 epos.bh = NULL;
2264
2265 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2266 accum += (elen >> table->i_sb->s_blocksize_bits);
2267
2268 brelse(epos.bh);
2269 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2270
2271 return accum;
2272}
2273
2274static unsigned int udf_count_free(struct super_block *sb)
2275{
2276 unsigned int accum = 0;
2277 struct udf_sb_info *sbi;
2278 struct udf_part_map *map;
2279
2280 sbi = UDF_SB(sb);
2281 if (sbi->s_lvid_bh) {
2282 struct logicalVolIntegrityDesc *lvid =
2283 (struct logicalVolIntegrityDesc *)
2284 sbi->s_lvid_bh->b_data;
2285 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2286 accum = le32_to_cpu(
2287 lvid->freeSpaceTable[sbi->s_partition]);
2288 if (accum == 0xFFFFFFFF)
2289 accum = 0;
2290 }
2291 }
2292
2293 if (accum)
2294 return accum;
2295
2296 map = &sbi->s_partmaps[sbi->s_partition];
2297 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2298 accum += udf_count_free_bitmap(sb,
2299 map->s_uspace.s_bitmap);
2300 }
2301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2302 accum += udf_count_free_bitmap(sb,
2303 map->s_fspace.s_bitmap);
2304 }
2305 if (accum)
2306 return accum;
2307
2308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2309 accum += udf_count_free_table(sb,
2310 map->s_uspace.s_table);
2311 }
2312 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2313 accum += udf_count_free_table(sb,
2314 map->s_fspace.s_table);
2315 }
2316
2317 return accum;
2318}