Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    http://www.ecma.ch/
  15 *    http://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/buffer_head.h>
  52#include <linux/vfs.h>
  53#include <linux/vmalloc.h>
  54#include <linux/errno.h>
  55#include <linux/mount.h>
  56#include <linux/seq_file.h>
  57#include <linux/bitmap.h>
  58#include <linux/crc-itu-t.h>
  59#include <linux/log2.h>
  60#include <asm/byteorder.h>
  61
  62#include "udf_sb.h"
  63#include "udf_i.h"
  64
  65#include <linux/init.h>
  66#include <asm/uaccess.h>
  67
  68#define VDS_POS_PRIMARY_VOL_DESC	0
  69#define VDS_POS_UNALLOC_SPACE_DESC	1
  70#define VDS_POS_LOGICAL_VOL_DESC	2
  71#define VDS_POS_PARTITION_DESC		3
  72#define VDS_POS_IMP_USE_VOL_DESC	4
  73#define VDS_POS_VOL_DESC_PTR		5
  74#define VDS_POS_TERMINATING_DESC	6
  75#define VDS_POS_LENGTH			7
  76
  77#define UDF_DEFAULT_BLOCKSIZE 2048
 
 
 
 
 
 
 
 
 
 
  78
  79enum { UDF_MAX_LINKS = 0xffff };
  80
  81/* These are the "meat" - everything else is stuffing */
  82static int udf_fill_super(struct super_block *, void *, int);
  83static void udf_put_super(struct super_block *);
  84static int udf_sync_fs(struct super_block *, int);
  85static int udf_remount_fs(struct super_block *, int *, char *);
  86static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  87static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
  88			    struct kernel_lb_addr *);
  89static void udf_load_fileset(struct super_block *, struct buffer_head *,
  90			     struct kernel_lb_addr *);
  91static void udf_open_lvid(struct super_block *);
  92static void udf_close_lvid(struct super_block *);
  93static unsigned int udf_count_free(struct super_block *);
  94static int udf_statfs(struct dentry *, struct kstatfs *);
  95static int udf_show_options(struct seq_file *, struct dentry *);
  96
  97struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
  98{
  99	struct logicalVolIntegrityDesc *lvid =
 100		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
 101	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
 102	__u32 offset = number_of_partitions * 2 *
 103				sizeof(uint32_t)/sizeof(uint8_t);
 
 
 
 
 
 
 
 
 
 
 
 
 104	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 105}
 106
 107/* UDF filesystem type */
 108static struct dentry *udf_mount(struct file_system_type *fs_type,
 109		      int flags, const char *dev_name, void *data)
 110{
 111	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 112}
 113
 114static struct file_system_type udf_fstype = {
 115	.owner		= THIS_MODULE,
 116	.name		= "udf",
 117	.mount		= udf_mount,
 118	.kill_sb	= kill_block_super,
 119	.fs_flags	= FS_REQUIRES_DEV,
 120};
 
 121
 122static struct kmem_cache *udf_inode_cachep;
 123
 124static struct inode *udf_alloc_inode(struct super_block *sb)
 125{
 126	struct udf_inode_info *ei;
 127	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 128	if (!ei)
 129		return NULL;
 130
 131	ei->i_unique = 0;
 132	ei->i_lenExtents = 0;
 
 133	ei->i_next_alloc_block = 0;
 134	ei->i_next_alloc_goal = 0;
 135	ei->i_strat4096 = 0;
 
 136	init_rwsem(&ei->i_data_sem);
 
 
 137
 138	return &ei->vfs_inode;
 139}
 140
 141static void udf_i_callback(struct rcu_head *head)
 142{
 143	struct inode *inode = container_of(head, struct inode, i_rcu);
 144	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 145}
 146
 147static void udf_destroy_inode(struct inode *inode)
 148{
 149	call_rcu(&inode->i_rcu, udf_i_callback);
 150}
 151
 152static void init_once(void *foo)
 153{
 154	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 155
 156	ei->i_ext.i_data = NULL;
 157	inode_init_once(&ei->vfs_inode);
 158}
 159
 160static int init_inodecache(void)
 161{
 162	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 163					     sizeof(struct udf_inode_info),
 164					     0, (SLAB_RECLAIM_ACCOUNT |
 165						 SLAB_MEM_SPREAD),
 
 166					     init_once);
 167	if (!udf_inode_cachep)
 168		return -ENOMEM;
 169	return 0;
 170}
 171
 172static void destroy_inodecache(void)
 173{
 
 
 
 
 
 174	kmem_cache_destroy(udf_inode_cachep);
 175}
 176
 177/* Superblock operations */
 178static const struct super_operations udf_sb_ops = {
 179	.alloc_inode	= udf_alloc_inode,
 180	.destroy_inode	= udf_destroy_inode,
 181	.write_inode	= udf_write_inode,
 182	.evict_inode	= udf_evict_inode,
 183	.put_super	= udf_put_super,
 184	.sync_fs	= udf_sync_fs,
 185	.statfs		= udf_statfs,
 186	.remount_fs	= udf_remount_fs,
 187	.show_options	= udf_show_options,
 188};
 189
 190struct udf_options {
 191	unsigned char novrs;
 192	unsigned int blocksize;
 193	unsigned int session;
 194	unsigned int lastblock;
 195	unsigned int anchor;
 196	unsigned int volume;
 197	unsigned short partition;
 198	unsigned int fileset;
 199	unsigned int rootdir;
 200	unsigned int flags;
 201	umode_t umask;
 202	gid_t gid;
 203	uid_t uid;
 204	umode_t fmode;
 205	umode_t dmode;
 206	struct nls_table *nls_map;
 207};
 208
 209static int __init init_udf_fs(void)
 210{
 211	int err;
 212
 213	err = init_inodecache();
 214	if (err)
 215		goto out1;
 216	err = register_filesystem(&udf_fstype);
 217	if (err)
 218		goto out;
 219
 220	return 0;
 221
 222out:
 223	destroy_inodecache();
 224
 225out1:
 226	return err;
 227}
 228
 229static void __exit exit_udf_fs(void)
 230{
 231	unregister_filesystem(&udf_fstype);
 232	destroy_inodecache();
 233}
 234
 235module_init(init_udf_fs)
 236module_exit(exit_udf_fs)
 237
 238static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 239{
 240	struct udf_sb_info *sbi = UDF_SB(sb);
 241
 242	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
 243				  GFP_KERNEL);
 244	if (!sbi->s_partmaps) {
 245		udf_err(sb, "Unable to allocate space for %d partition maps\n",
 246			count);
 247		sbi->s_partitions = 0;
 248		return -ENOMEM;
 249	}
 250
 251	sbi->s_partitions = count;
 252	return 0;
 253}
 254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255static int udf_show_options(struct seq_file *seq, struct dentry *root)
 256{
 257	struct super_block *sb = root->d_sb;
 258	struct udf_sb_info *sbi = UDF_SB(sb);
 259
 260	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 261		seq_puts(seq, ",nostrict");
 262	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 263		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 264	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 265		seq_puts(seq, ",unhide");
 266	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 267		seq_puts(seq, ",undelete");
 268	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 269		seq_puts(seq, ",noadinicb");
 270	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 271		seq_puts(seq, ",shortad");
 272	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 273		seq_puts(seq, ",uid=forget");
 274	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
 275		seq_puts(seq, ",uid=ignore");
 276	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 277		seq_puts(seq, ",gid=forget");
 278	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
 279		seq_puts(seq, ",gid=ignore");
 280	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 281		seq_printf(seq, ",uid=%u", sbi->s_uid);
 282	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 283		seq_printf(seq, ",gid=%u", sbi->s_gid);
 284	if (sbi->s_umask != 0)
 285		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 286	if (sbi->s_fmode != UDF_INVALID_MODE)
 287		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 288	if (sbi->s_dmode != UDF_INVALID_MODE)
 289		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 290	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 291		seq_printf(seq, ",session=%u", sbi->s_session);
 292	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 293		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 294	if (sbi->s_anchor != 0)
 295		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 296	/*
 297	 * volume, partition, fileset and rootdir seem to be ignored
 298	 * currently
 299	 */
 300	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 301		seq_puts(seq, ",utf8");
 302	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 303		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 304
 305	return 0;
 306}
 307
 308/*
 309 * udf_parse_options
 310 *
 311 * PURPOSE
 312 *	Parse mount options.
 313 *
 314 * DESCRIPTION
 315 *	The following mount options are supported:
 316 *
 317 *	gid=		Set the default group.
 318 *	umask=		Set the default umask.
 319 *	mode=		Set the default file permissions.
 320 *	dmode=		Set the default directory permissions.
 321 *	uid=		Set the default user.
 322 *	bs=		Set the block size.
 323 *	unhide		Show otherwise hidden files.
 324 *	undelete	Show deleted files in lists.
 325 *	adinicb		Embed data in the inode (default)
 326 *	noadinicb	Don't embed data in the inode
 327 *	shortad		Use short ad's
 328 *	longad		Use long ad's (default)
 329 *	nostrict	Unset strict conformance
 330 *	iocharset=	Set the NLS character set
 331 *
 332 *	The remaining are for debugging and disaster recovery:
 333 *
 334 *	novrs		Skip volume sequence recognition
 335 *
 336 *	The following expect a offset from 0.
 337 *
 338 *	session=	Set the CDROM session (default= last session)
 339 *	anchor=		Override standard anchor location. (default= 256)
 340 *	volume=		Override the VolumeDesc location. (unused)
 341 *	partition=	Override the PartitionDesc location. (unused)
 342 *	lastblock=	Set the last block of the filesystem/
 343 *
 344 *	The following expect a offset from the partition root.
 345 *
 346 *	fileset=	Override the fileset block location. (unused)
 347 *	rootdir=	Override the root directory location. (unused)
 348 *		WARNING: overriding the rootdir to a non-directory may
 349 *		yield highly unpredictable results.
 350 *
 351 * PRE-CONDITIONS
 352 *	options		Pointer to mount options string.
 353 *	uopts		Pointer to mount options variable.
 354 *
 355 * POST-CONDITIONS
 356 *	<return>	1	Mount options parsed okay.
 357 *	<return>	0	Error parsing mount options.
 358 *
 359 * HISTORY
 360 *	July 1, 1997 - Andrew E. Mileski
 361 *	Written, tested, and released.
 362 */
 363
 364enum {
 365	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 366	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 367	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 368	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 369	Opt_rootdir, Opt_utf8, Opt_iocharset,
 370	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 371	Opt_fmode, Opt_dmode
 372};
 373
 374static const match_table_t tokens = {
 375	{Opt_novrs,	"novrs"},
 376	{Opt_nostrict,	"nostrict"},
 377	{Opt_bs,	"bs=%u"},
 378	{Opt_unhide,	"unhide"},
 379	{Opt_undelete,	"undelete"},
 380	{Opt_noadinicb,	"noadinicb"},
 381	{Opt_adinicb,	"adinicb"},
 382	{Opt_shortad,	"shortad"},
 383	{Opt_longad,	"longad"},
 384	{Opt_uforget,	"uid=forget"},
 385	{Opt_uignore,	"uid=ignore"},
 386	{Opt_gforget,	"gid=forget"},
 387	{Opt_gignore,	"gid=ignore"},
 388	{Opt_gid,	"gid=%u"},
 389	{Opt_uid,	"uid=%u"},
 390	{Opt_umask,	"umask=%o"},
 391	{Opt_session,	"session=%u"},
 392	{Opt_lastblock,	"lastblock=%u"},
 393	{Opt_anchor,	"anchor=%u"},
 394	{Opt_volume,	"volume=%u"},
 395	{Opt_partition,	"partition=%u"},
 396	{Opt_fileset,	"fileset=%u"},
 397	{Opt_rootdir,	"rootdir=%u"},
 398	{Opt_utf8,	"utf8"},
 399	{Opt_iocharset,	"iocharset=%s"},
 400	{Opt_fmode,     "mode=%o"},
 401	{Opt_dmode,     "dmode=%o"},
 402	{Opt_err,	NULL}
 403};
 404
 405static int udf_parse_options(char *options, struct udf_options *uopt,
 406			     bool remount)
 407{
 408	char *p;
 409	int option;
 410
 411	uopt->novrs = 0;
 412	uopt->partition = 0xFFFF;
 413	uopt->session = 0xFFFFFFFF;
 414	uopt->lastblock = 0;
 415	uopt->anchor = 0;
 416	uopt->volume = 0xFFFFFFFF;
 417	uopt->rootdir = 0xFFFFFFFF;
 418	uopt->fileset = 0xFFFFFFFF;
 419	uopt->nls_map = NULL;
 420
 421	if (!options)
 422		return 1;
 423
 424	while ((p = strsep(&options, ",")) != NULL) {
 425		substring_t args[MAX_OPT_ARGS];
 426		int token;
 
 427		if (!*p)
 428			continue;
 429
 430		token = match_token(p, tokens, args);
 431		switch (token) {
 432		case Opt_novrs:
 433			uopt->novrs = 1;
 434			break;
 435		case Opt_bs:
 436			if (match_int(&args[0], &option))
 437				return 0;
 438			uopt->blocksize = option;
 
 
 
 439			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 440			break;
 441		case Opt_unhide:
 442			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 443			break;
 444		case Opt_undelete:
 445			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 446			break;
 447		case Opt_noadinicb:
 448			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 449			break;
 450		case Opt_adinicb:
 451			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 452			break;
 453		case Opt_shortad:
 454			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 455			break;
 456		case Opt_longad:
 457			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 458			break;
 459		case Opt_gid:
 460			if (match_int(args, &option))
 461				return 0;
 462			uopt->gid = option;
 
 
 463			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 464			break;
 465		case Opt_uid:
 466			if (match_int(args, &option))
 467				return 0;
 468			uopt->uid = option;
 
 
 469			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 470			break;
 471		case Opt_umask:
 472			if (match_octal(args, &option))
 473				return 0;
 474			uopt->umask = option;
 475			break;
 476		case Opt_nostrict:
 477			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 478			break;
 479		case Opt_session:
 480			if (match_int(args, &option))
 481				return 0;
 482			uopt->session = option;
 483			if (!remount)
 484				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 485			break;
 486		case Opt_lastblock:
 487			if (match_int(args, &option))
 488				return 0;
 489			uopt->lastblock = option;
 490			if (!remount)
 491				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 492			break;
 493		case Opt_anchor:
 494			if (match_int(args, &option))
 495				return 0;
 496			uopt->anchor = option;
 497			break;
 498		case Opt_volume:
 499			if (match_int(args, &option))
 500				return 0;
 501			uopt->volume = option;
 502			break;
 503		case Opt_partition:
 504			if (match_int(args, &option))
 505				return 0;
 506			uopt->partition = option;
 507			break;
 508		case Opt_fileset:
 509			if (match_int(args, &option))
 510				return 0;
 511			uopt->fileset = option;
 512			break;
 513		case Opt_rootdir:
 514			if (match_int(args, &option))
 515				return 0;
 516			uopt->rootdir = option;
 517			break;
 518		case Opt_utf8:
 519			uopt->flags |= (1 << UDF_FLAG_UTF8);
 520			break;
 521#ifdef CONFIG_UDF_NLS
 522		case Opt_iocharset:
 523			uopt->nls_map = load_nls(args[0].from);
 524			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 525			break;
 526#endif
 527		case Opt_uignore:
 528			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
 
 
 
 
 
 529			break;
 530		case Opt_uforget:
 531			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 532			break;
 
 533		case Opt_gignore:
 534			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
 535			break;
 536		case Opt_gforget:
 537			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 538			break;
 539		case Opt_fmode:
 540			if (match_octal(args, &option))
 541				return 0;
 542			uopt->fmode = option & 0777;
 543			break;
 544		case Opt_dmode:
 545			if (match_octal(args, &option))
 546				return 0;
 547			uopt->dmode = option & 0777;
 548			break;
 549		default:
 550			pr_err("bad mount option \"%s\" or missing value\n", p);
 551			return 0;
 552		}
 553	}
 554	return 1;
 555}
 556
 557static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 558{
 559	struct udf_options uopt;
 560	struct udf_sb_info *sbi = UDF_SB(sb);
 561	int error = 0;
 562
 
 
 
 
 
 563	uopt.flags = sbi->s_flags;
 564	uopt.uid   = sbi->s_uid;
 565	uopt.gid   = sbi->s_gid;
 566	uopt.umask = sbi->s_umask;
 567	uopt.fmode = sbi->s_fmode;
 568	uopt.dmode = sbi->s_dmode;
 
 569
 570	if (!udf_parse_options(options, &uopt, true))
 571		return -EINVAL;
 572
 573	write_lock(&sbi->s_cred_lock);
 574	sbi->s_flags = uopt.flags;
 575	sbi->s_uid   = uopt.uid;
 576	sbi->s_gid   = uopt.gid;
 577	sbi->s_umask = uopt.umask;
 578	sbi->s_fmode = uopt.fmode;
 579	sbi->s_dmode = uopt.dmode;
 580	write_unlock(&sbi->s_cred_lock);
 581
 582	if (sbi->s_lvid_bh) {
 583		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
 584		if (write_rev > UDF_MAX_WRITE_VERSION)
 585			*flags |= MS_RDONLY;
 586	}
 587
 588	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 589		goto out_unlock;
 590
 591	if (*flags & MS_RDONLY)
 592		udf_close_lvid(sb);
 593	else
 594		udf_open_lvid(sb);
 595
 596out_unlock:
 597	return error;
 598}
 599
 600/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
 601/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
 602static loff_t udf_check_vsd(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603{
 604	struct volStructDesc *vsd = NULL;
 605	loff_t sector = 32768;
 606	int sectorsize;
 607	struct buffer_head *bh = NULL;
 608	int nsr02 = 0;
 609	int nsr03 = 0;
 610	struct udf_sb_info *sbi;
 611
 612	sbi = UDF_SB(sb);
 613	if (sb->s_blocksize < sizeof(struct volStructDesc))
 614		sectorsize = sizeof(struct volStructDesc);
 615	else
 616		sectorsize = sb->s_blocksize;
 617
 618	sector += (sbi->s_session << sb->s_blocksize_bits);
 619
 620	udf_debug("Starting at sector %u (%ld byte sectors)\n",
 621		  (unsigned int)(sector >> sb->s_blocksize_bits),
 622		  sb->s_blocksize);
 623	/* Process the sequence (if applicable) */
 624	for (; !nsr02 && !nsr03; sector += sectorsize) {
 
 
 
 
 
 
 
 
 
 625		/* Read a block */
 626		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 627		if (!bh)
 628			break;
 629
 630		/* Look for ISO  descriptors */
 631		vsd = (struct volStructDesc *)(bh->b_data +
 632					      (sector & (sb->s_blocksize - 1)));
 633
 634		if (vsd->stdIdent[0] == 0) {
 
 635			brelse(bh);
 636			break;
 637		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
 638				    VSD_STD_ID_LEN)) {
 639			switch (vsd->structType) {
 640			case 0:
 641				udf_debug("ISO9660 Boot Record found\n");
 642				break;
 643			case 1:
 644				udf_debug("ISO9660 Primary Volume Descriptor found\n");
 645				break;
 646			case 2:
 647				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 648				break;
 649			case 3:
 650				udf_debug("ISO9660 Volume Partition Descriptor found\n");
 651				break;
 652			case 255:
 653				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 654				break;
 655			default:
 656				udf_debug("ISO9660 VRS (%u) found\n",
 657					  vsd->structType);
 658				break;
 659			}
 660		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
 661				    VSD_STD_ID_LEN))
 662			; /* nothing */
 663		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
 664				    VSD_STD_ID_LEN)) {
 665			brelse(bh);
 666			break;
 667		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
 668				    VSD_STD_ID_LEN))
 669			nsr02 = sector;
 670		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
 671				    VSD_STD_ID_LEN))
 672			nsr03 = sector;
 673		brelse(bh);
 674	}
 675
 676	if (nsr03)
 677		return nsr03;
 678	else if (nsr02)
 679		return nsr02;
 680	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
 681		return -1;
 682	else
 683		return 0;
 684}
 685
 686static int udf_find_fileset(struct super_block *sb,
 687			    struct kernel_lb_addr *fileset,
 688			    struct kernel_lb_addr *root)
 689{
 690	struct buffer_head *bh = NULL;
 691	long lastblock;
 692	uint16_t ident;
 693	struct udf_sb_info *sbi;
 694
 695	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
 696	    fileset->partitionReferenceNum != 0xFFFF) {
 697		bh = udf_read_ptagged(sb, fileset, 0, &ident);
 698
 699		if (!bh) {
 700			return 1;
 701		} else if (ident != TAG_IDENT_FSD) {
 702			brelse(bh);
 703			return 1;
 
 
 
 
 
 
 704		}
 705
 706	}
 
 707
 708	sbi = UDF_SB(sb);
 709	if (!bh) {
 710		/* Search backwards through the partitions */
 711		struct kernel_lb_addr newfileset;
 
 
 712
 713/* --> cvg: FIXME - is it reasonable? */
 714		return 1;
 
 
 715
 716		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
 717		     (newfileset.partitionReferenceNum != 0xFFFF &&
 718		      fileset->logicalBlockNum == 0xFFFFFFFF &&
 719		      fileset->partitionReferenceNum == 0xFFFF);
 720		     newfileset.partitionReferenceNum--) {
 721			lastblock = sbi->s_partmaps
 722					[newfileset.partitionReferenceNum]
 723						.s_partition_len;
 724			newfileset.logicalBlockNum = 0;
 725
 726			do {
 727				bh = udf_read_ptagged(sb, &newfileset, 0,
 728						      &ident);
 729				if (!bh) {
 730					newfileset.logicalBlockNum++;
 731					continue;
 732				}
 733
 734				switch (ident) {
 735				case TAG_IDENT_SBD:
 736				{
 737					struct spaceBitmapDesc *sp;
 738					sp = (struct spaceBitmapDesc *)
 739								bh->b_data;
 740					newfileset.logicalBlockNum += 1 +
 741						((le32_to_cpu(sp->numOfBytes) +
 742						  sizeof(struct spaceBitmapDesc)
 743						  - 1) >> sb->s_blocksize_bits);
 744					brelse(bh);
 745					break;
 746				}
 747				case TAG_IDENT_FSD:
 748					*fileset = newfileset;
 749					break;
 750				default:
 751					newfileset.logicalBlockNum++;
 752					brelse(bh);
 753					bh = NULL;
 754					break;
 755				}
 756			} while (newfileset.logicalBlockNum < lastblock &&
 757				 fileset->logicalBlockNum == 0xFFFFFFFF &&
 758				 fileset->partitionReferenceNum == 0xFFFF);
 759		}
 760	}
 761
 762	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
 763	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
 764		udf_debug("Fileset at block=%d, partition=%d\n",
 765			  fileset->logicalBlockNum,
 766			  fileset->partitionReferenceNum);
 
 
 
 
 
 
 
 767
 768		sbi->s_partition = fileset->partitionReferenceNum;
 769		udf_load_fileset(sb, bh, root);
 
 
 
 
 
 
 770		brelse(bh);
 771		return 0;
 772	}
 773	return 1;
 
 
 
 
 
 
 
 774}
 775
 
 
 
 
 
 
 776static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 777{
 778	struct primaryVolDesc *pvoldesc;
 779	struct ustr *instr, *outstr;
 780	struct buffer_head *bh;
 781	uint16_t ident;
 782	int ret = 1;
 783
 784	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 785	if (!instr)
 786		return 1;
 787
 788	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 789	if (!outstr)
 790		goto out1;
 791
 792	bh = udf_read_tagged(sb, block, block, &ident);
 793	if (!bh)
 
 794		goto out2;
 
 795
 796	BUG_ON(ident != TAG_IDENT_PVD);
 
 
 
 797
 798	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 799
 800	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 801			      pvoldesc->recordingDateAndTime)) {
 802#ifdef UDFFS_DEBUG
 803		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
 804		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 805			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 806			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 807#endif
 808	}
 809
 810	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
 811		if (udf_CS0toUTF8(outstr, instr)) {
 812			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
 813				outstr->u_len > 31 ? 31 : outstr->u_len);
 814			udf_debug("volIdent[] = '%s'\n",
 815				  UDF_SB(sb)->s_volume_ident);
 816		}
 817
 818	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
 819		if (udf_CS0toUTF8(outstr, instr))
 820			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
 
 
 
 821
 822	brelse(bh);
 823	ret = 0;
 
 
 824out2:
 825	kfree(outstr);
 826out1:
 827	kfree(instr);
 828	return ret;
 829}
 830
 831struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 832					u32 meta_file_loc, u32 partition_num)
 833{
 834	struct kernel_lb_addr addr;
 835	struct inode *metadata_fe;
 836
 837	addr.logicalBlockNum = meta_file_loc;
 838	addr.partitionReferenceNum = partition_num;
 839
 840	metadata_fe = udf_iget(sb, &addr);
 841
 842	if (metadata_fe == NULL)
 843		udf_warn(sb, "metadata inode efe not found\n");
 844	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 
 
 845		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 846		iput(metadata_fe);
 847		metadata_fe = NULL;
 848	}
 849
 850	return metadata_fe;
 851}
 852
 853static int udf_load_metadata_files(struct super_block *sb, int partition)
 
 854{
 855	struct udf_sb_info *sbi = UDF_SB(sb);
 856	struct udf_part_map *map;
 857	struct udf_meta_data *mdata;
 858	struct kernel_lb_addr addr;
 
 859
 860	map = &sbi->s_partmaps[partition];
 861	mdata = &map->s_type_specific.s_metadata;
 
 862
 863	/* metadata address */
 864	udf_debug("Metadata file location: block = %d part = %d\n",
 865		  mdata->s_meta_file_loc, map->s_partition_num);
 866
 867	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
 868		mdata->s_meta_file_loc, map->s_partition_num);
 869
 870	if (mdata->s_metadata_fe == NULL) {
 871		/* mirror file entry */
 872		udf_debug("Mirror metadata file location: block = %d part = %d\n",
 873			  mdata->s_mirror_file_loc, map->s_partition_num);
 874
 875		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
 876			mdata->s_mirror_file_loc, map->s_partition_num);
 877
 878		if (mdata->s_mirror_fe == NULL) {
 879			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 880			goto error_exit;
 881		}
 882	}
 
 
 
 883
 884	/*
 885	 * bitmap file entry
 886	 * Note:
 887	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 888	*/
 889	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 890		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 891		addr.partitionReferenceNum = map->s_partition_num;
 892
 893		udf_debug("Bitmap file location: block = %d part = %d\n",
 894			  addr.logicalBlockNum, addr.partitionReferenceNum);
 895
 896		mdata->s_bitmap_fe = udf_iget(sb, &addr);
 897
 898		if (mdata->s_bitmap_fe == NULL) {
 899			if (sb->s_flags & MS_RDONLY)
 900				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 901			else {
 902				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 903				goto error_exit;
 904			}
 905		}
 
 906	}
 907
 908	udf_debug("udf_load_metadata_files Ok\n");
 909
 910	return 0;
 911
 912error_exit:
 913	return 1;
 914}
 915
 916static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
 917			     struct kernel_lb_addr *root)
 918{
 919	struct fileSetDesc *fset;
 920
 921	fset = (struct fileSetDesc *)bh->b_data;
 922
 923	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 924
 925	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 926
 927	udf_debug("Rootdir at block=%d, partition=%d\n",
 928		  root->logicalBlockNum, root->partitionReferenceNum);
 929}
 930
 931int udf_compute_nr_groups(struct super_block *sb, u32 partition)
 932{
 933	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 934	return DIV_ROUND_UP(map->s_partition_len +
 935			    (sizeof(struct spaceBitmapDesc) << 3),
 936			    sb->s_blocksize * 8);
 937}
 938
 939static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
 940{
 941	struct udf_bitmap *bitmap;
 942	int nr_groups;
 943	int size;
 944
 945	nr_groups = udf_compute_nr_groups(sb, index);
 946	size = sizeof(struct udf_bitmap) +
 947		(sizeof(struct buffer_head *) * nr_groups);
 948
 949	if (size <= PAGE_SIZE)
 950		bitmap = kzalloc(size, GFP_KERNEL);
 951	else
 952		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
 953
 954	if (bitmap == NULL)
 955		return NULL;
 956
 957	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
 958	bitmap->s_nr_groups = nr_groups;
 959	return bitmap;
 960}
 961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962static int udf_fill_partdesc_info(struct super_block *sb,
 963		struct partitionDesc *p, int p_index)
 964{
 965	struct udf_part_map *map;
 966	struct udf_sb_info *sbi = UDF_SB(sb);
 967	struct partitionHeaderDesc *phd;
 
 968
 969	map = &sbi->s_partmaps[p_index];
 970
 971	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
 972	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
 973
 974	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
 975		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
 976	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
 977		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
 978	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
 979		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
 980	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
 981		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
 982
 983	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
 984		  p_index, map->s_partition_type,
 985		  map->s_partition_root, map->s_partition_len);
 986
 987	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
 988	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
 
 
 
 
 
 
 
 
 989		return 0;
 990
 991	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
 992	if (phd->unallocSpaceTable.extLength) {
 993		struct kernel_lb_addr loc = {
 994			.logicalBlockNum = le32_to_cpu(
 995				phd->unallocSpaceTable.extPosition),
 996			.partitionReferenceNum = p_index,
 997		};
 
 998
 999		map->s_uspace.s_table = udf_iget(sb, &loc);
1000		if (!map->s_uspace.s_table) {
1001			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002				  p_index);
1003			return 1;
1004		}
 
1005		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007			  p_index, map->s_uspace.s_table->i_ino);
1008	}
1009
1010	if (phd->unallocSpaceBitmap.extLength) {
1011		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012		if (!bitmap)
1013			return 1;
1014		map->s_uspace.s_bitmap = bitmap;
1015		bitmap->s_extLength = le32_to_cpu(
1016				phd->unallocSpaceBitmap.extLength);
1017		bitmap->s_extPosition = le32_to_cpu(
1018				phd->unallocSpaceBitmap.extPosition);
1019		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021			  p_index, bitmap->s_extPosition);
1022	}
1023
1024	if (phd->partitionIntegrityTable.extLength)
1025		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026
1027	if (phd->freedSpaceTable.extLength) {
1028		struct kernel_lb_addr loc = {
1029			.logicalBlockNum = le32_to_cpu(
1030				phd->freedSpaceTable.extPosition),
1031			.partitionReferenceNum = p_index,
1032		};
1033
1034		map->s_fspace.s_table = udf_iget(sb, &loc);
1035		if (!map->s_fspace.s_table) {
1036			udf_debug("cannot load freedSpaceTable (part %d)\n",
1037				  p_index);
1038			return 1;
1039		}
1040
1041		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043			  p_index, map->s_fspace.s_table->i_ino);
1044	}
1045
1046	if (phd->freedSpaceBitmap.extLength) {
1047		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048		if (!bitmap)
1049			return 1;
1050		map->s_fspace.s_bitmap = bitmap;
1051		bitmap->s_extLength = le32_to_cpu(
1052				phd->freedSpaceBitmap.extLength);
1053		bitmap->s_extPosition = le32_to_cpu(
1054				phd->freedSpaceBitmap.extPosition);
1055		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057			  p_index, bitmap->s_extPosition);
1058	}
1059	return 0;
1060}
1061
1062static void udf_find_vat_block(struct super_block *sb, int p_index,
1063			       int type1_index, sector_t start_block)
1064{
1065	struct udf_sb_info *sbi = UDF_SB(sb);
1066	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067	sector_t vat_block;
1068	struct kernel_lb_addr ino;
 
1069
1070	/*
1071	 * VAT file entry is in the last recorded block. Some broken disks have
1072	 * it a few blocks before so try a bit harder...
1073	 */
1074	ino.partitionReferenceNum = type1_index;
1075	for (vat_block = start_block;
1076	     vat_block >= map->s_partition_root &&
1077	     vat_block >= start_block - 3 &&
1078	     !sbi->s_vat_inode; vat_block--) {
1079		ino.logicalBlockNum = vat_block - map->s_partition_root;
1080		sbi->s_vat_inode = udf_iget(sb, &ino);
 
 
 
 
1081	}
1082}
1083
1084static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085{
1086	struct udf_sb_info *sbi = UDF_SB(sb);
1087	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088	struct buffer_head *bh = NULL;
1089	struct udf_inode_info *vati;
1090	uint32_t pos;
1091	struct virtualAllocationTable20 *vat20;
1092	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
 
1093
1094	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095	if (!sbi->s_vat_inode &&
1096	    sbi->s_last_block != blocks - 1) {
1097		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098			  (unsigned long)sbi->s_last_block,
1099			  (unsigned long)blocks - 1);
1100		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101	}
1102	if (!sbi->s_vat_inode)
1103		return 1;
1104
1105	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106		map->s_type_specific.s_virtual.s_start_offset = 0;
1107		map->s_type_specific.s_virtual.s_num_entries =
1108			(sbi->s_vat_inode->i_size - 36) >> 2;
1109	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110		vati = UDF_I(sbi->s_vat_inode);
1111		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112			pos = udf_block_map(sbi->s_vat_inode, 0);
1113			bh = sb_bread(sb, pos);
1114			if (!bh)
1115				return 1;
1116			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117		} else {
1118			vat20 = (struct virtualAllocationTable20 *)
1119							vati->i_ext.i_data;
1120		}
1121
1122		map->s_type_specific.s_virtual.s_start_offset =
1123			le16_to_cpu(vat20->lengthHeader);
1124		map->s_type_specific.s_virtual.s_num_entries =
1125			(sbi->s_vat_inode->i_size -
1126				map->s_type_specific.s_virtual.
1127					s_start_offset) >> 2;
1128		brelse(bh);
1129	}
1130	return 0;
1131}
1132
 
 
 
 
 
 
1133static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134{
1135	struct buffer_head *bh;
1136	struct partitionDesc *p;
1137	struct udf_part_map *map;
1138	struct udf_sb_info *sbi = UDF_SB(sb);
1139	int i, type1_idx;
1140	uint16_t partitionNumber;
1141	uint16_t ident;
1142	int ret = 0;
1143
1144	bh = udf_read_tagged(sb, block, block, &ident);
1145	if (!bh)
1146		return 1;
1147	if (ident != TAG_IDENT_PD)
 
1148		goto out_bh;
 
1149
1150	p = (struct partitionDesc *)bh->b_data;
1151	partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1154	for (i = 0; i < sbi->s_partitions; i++) {
1155		map = &sbi->s_partmaps[i];
1156		udf_debug("Searching map: (%d == %d)\n",
1157			  map->s_partition_num, partitionNumber);
1158		if (map->s_partition_num == partitionNumber &&
1159		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160		     map->s_partition_type == UDF_SPARABLE_MAP15))
1161			break;
1162	}
1163
1164	if (i >= sbi->s_partitions) {
1165		udf_debug("Partition (%d) not found in partition map\n",
1166			  partitionNumber);
 
1167		goto out_bh;
1168	}
1169
1170	ret = udf_fill_partdesc_info(sb, p, i);
 
 
1171
1172	/*
1173	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174	 * PHYSICAL partitions are already set up
1175	 */
1176	type1_idx = i;
 
1177	for (i = 0; i < sbi->s_partitions; i++) {
1178		map = &sbi->s_partmaps[i];
1179
1180		if (map->s_partition_num == partitionNumber &&
1181		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183		     map->s_partition_type == UDF_METADATA_MAP25))
1184			break;
1185	}
1186
1187	if (i >= sbi->s_partitions)
 
1188		goto out_bh;
 
1189
1190	ret = udf_fill_partdesc_info(sb, p, i);
1191	if (ret)
1192		goto out_bh;
1193
1194	if (map->s_partition_type == UDF_METADATA_MAP25) {
1195		ret = udf_load_metadata_files(sb, i);
1196		if (ret) {
1197			udf_err(sb, "error loading MetaData partition map %d\n",
1198				i);
1199			goto out_bh;
1200		}
1201	} else {
1202		ret = udf_load_vat(sb, i, type1_idx);
1203		if (ret)
1204			goto out_bh;
1205		/*
1206		 * Mark filesystem read-only if we have a partition with
1207		 * virtual map since we don't handle writing to it (we
1208		 * overwrite blocks instead of relocating them).
1209		 */
1210		sb->s_flags |= MS_RDONLY;
1211		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
 
 
 
 
 
 
1212	}
 
1213out_bh:
1214	/* In case loading failed, we handle cleanup in udf_fill_super */
1215	brelse(bh);
1216	return ret;
1217}
1218
1219static int udf_load_sparable_map(struct super_block *sb,
1220				 struct udf_part_map *map,
1221				 struct sparablePartitionMap *spm)
1222{
1223	uint32_t loc;
1224	uint16_t ident;
1225	struct sparingTable *st;
1226	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1227	int i;
1228	struct buffer_head *bh;
1229
1230	map->s_partition_type = UDF_SPARABLE_MAP15;
1231	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1232	if (!is_power_of_2(sdata->s_packet_len)) {
1233		udf_err(sb, "error loading logical volume descriptor: "
1234			"Invalid packet length %u\n",
1235			(unsigned)sdata->s_packet_len);
1236		return -EIO;
1237	}
1238	if (spm->numSparingTables > 4) {
1239		udf_err(sb, "error loading logical volume descriptor: "
1240			"Too many sparing tables (%d)\n",
1241			(int)spm->numSparingTables);
1242		return -EIO;
1243	}
1244
1245	for (i = 0; i < spm->numSparingTables; i++) {
1246		loc = le32_to_cpu(spm->locSparingTable[i]);
1247		bh = udf_read_tagged(sb, loc, loc, &ident);
1248		if (!bh)
1249			continue;
1250
1251		st = (struct sparingTable *)bh->b_data;
1252		if (ident != 0 ||
1253		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1254			    strlen(UDF_ID_SPARING)) ||
1255		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1256							sb->s_blocksize) {
1257			brelse(bh);
1258			continue;
1259		}
1260
1261		sdata->s_spar_map[i] = bh;
1262	}
1263	map->s_partition_func = udf_get_pblock_spar15;
1264	return 0;
1265}
1266
1267static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1268			       struct kernel_lb_addr *fileset)
1269{
1270	struct logicalVolDesc *lvd;
1271	int i, offset;
1272	uint8_t type;
1273	struct udf_sb_info *sbi = UDF_SB(sb);
1274	struct genericPartitionMap *gpm;
1275	uint16_t ident;
1276	struct buffer_head *bh;
1277	unsigned int table_len;
1278	int ret = 0;
1279
1280	bh = udf_read_tagged(sb, block, block, &ident);
1281	if (!bh)
1282		return 1;
1283	BUG_ON(ident != TAG_IDENT_LVD);
1284	lvd = (struct logicalVolDesc *)bh->b_data;
1285	table_len = le32_to_cpu(lvd->mapTableLength);
1286	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1287		udf_err(sb, "error loading logical volume descriptor: "
1288			"Partition table too long (%u > %lu)\n", table_len,
1289			sb->s_blocksize - sizeof(*lvd));
 
1290		goto out_bh;
1291	}
1292
 
 
 
 
1293	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1294	if (ret)
1295		goto out_bh;
1296
1297	for (i = 0, offset = 0;
1298	     i < sbi->s_partitions && offset < table_len;
1299	     i++, offset += gpm->partitionMapLength) {
1300		struct udf_part_map *map = &sbi->s_partmaps[i];
1301		gpm = (struct genericPartitionMap *)
1302				&(lvd->partitionMaps[offset]);
1303		type = gpm->partitionMapType;
1304		if (type == 1) {
1305			struct genericPartitionMap1 *gpm1 =
1306				(struct genericPartitionMap1 *)gpm;
1307			map->s_partition_type = UDF_TYPE1_MAP15;
1308			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1309			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1310			map->s_partition_func = NULL;
1311		} else if (type == 2) {
1312			struct udfPartitionMap2 *upm2 =
1313						(struct udfPartitionMap2 *)gpm;
1314			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1315						strlen(UDF_ID_VIRTUAL))) {
1316				u16 suf =
1317					le16_to_cpu(((__le16 *)upm2->partIdent.
1318							identSuffix)[0]);
1319				if (suf < 0x0200) {
1320					map->s_partition_type =
1321							UDF_VIRTUAL_MAP15;
1322					map->s_partition_func =
1323							udf_get_pblock_virt15;
1324				} else {
1325					map->s_partition_type =
1326							UDF_VIRTUAL_MAP20;
1327					map->s_partition_func =
1328							udf_get_pblock_virt20;
1329				}
1330			} else if (!strncmp(upm2->partIdent.ident,
1331						UDF_ID_SPARABLE,
1332						strlen(UDF_ID_SPARABLE))) {
1333				if (udf_load_sparable_map(sb, map,
1334				    (struct sparablePartitionMap *)gpm) < 0)
 
1335					goto out_bh;
1336			} else if (!strncmp(upm2->partIdent.ident,
1337						UDF_ID_METADATA,
1338						strlen(UDF_ID_METADATA))) {
1339				struct udf_meta_data *mdata =
1340					&map->s_type_specific.s_metadata;
1341				struct metadataPartitionMap *mdm =
1342						(struct metadataPartitionMap *)
1343						&(lvd->partitionMaps[offset]);
1344				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1345					  i, type, UDF_ID_METADATA);
1346
1347				map->s_partition_type = UDF_METADATA_MAP25;
1348				map->s_partition_func = udf_get_pblock_meta25;
1349
1350				mdata->s_meta_file_loc   =
1351					le32_to_cpu(mdm->metadataFileLoc);
1352				mdata->s_mirror_file_loc =
1353					le32_to_cpu(mdm->metadataMirrorFileLoc);
1354				mdata->s_bitmap_file_loc =
1355					le32_to_cpu(mdm->metadataBitmapFileLoc);
1356				mdata->s_alloc_unit_size =
1357					le32_to_cpu(mdm->allocUnitSize);
1358				mdata->s_align_unit_size =
1359					le16_to_cpu(mdm->alignUnitSize);
1360				if (mdm->flags & 0x01)
1361					mdata->s_flags |= MF_DUPLICATE_MD;
1362
1363				udf_debug("Metadata Ident suffix=0x%x\n",
1364					  le16_to_cpu(*(__le16 *)
1365						      mdm->partIdent.identSuffix));
1366				udf_debug("Metadata part num=%d\n",
1367					  le16_to_cpu(mdm->partitionNum));
1368				udf_debug("Metadata part alloc unit size=%d\n",
1369					  le32_to_cpu(mdm->allocUnitSize));
1370				udf_debug("Metadata file loc=%d\n",
1371					  le32_to_cpu(mdm->metadataFileLoc));
1372				udf_debug("Mirror file loc=%d\n",
1373					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1374				udf_debug("Bitmap file loc=%d\n",
1375					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1376				udf_debug("Flags: %d %d\n",
1377					  mdata->s_flags, mdm->flags);
1378			} else {
1379				udf_debug("Unknown ident: %s\n",
1380					  upm2->partIdent.ident);
1381				continue;
1382			}
1383			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1384			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1385		}
1386		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1387			  i, map->s_partition_num, type, map->s_volumeseqnum);
1388	}
1389
1390	if (fileset) {
1391		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1392
1393		*fileset = lelb_to_cpu(la->extLocation);
1394		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1395			  fileset->logicalBlockNum,
1396			  fileset->partitionReferenceNum);
1397	}
1398	if (lvd->integritySeqExt.extLength)
1399		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
 
1400
 
 
 
 
 
 
 
 
 
 
1401out_bh:
1402	brelse(bh);
1403	return ret;
1404}
1405
1406/*
1407 * udf_load_logicalvolint
1408 *
1409 */
1410static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1411{
1412	struct buffer_head *bh = NULL;
1413	uint16_t ident;
1414	struct udf_sb_info *sbi = UDF_SB(sb);
1415	struct logicalVolIntegrityDesc *lvid;
 
1416
1417	while (loc.extLength > 0 &&
1418	       (bh = udf_read_tagged(sb, loc.extLocation,
1419				     loc.extLocation, &ident)) &&
1420	       ident == TAG_IDENT_LVID) {
1421		sbi->s_lvid_bh = bh;
1422		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
 
 
 
1423
1424		if (lvid->nextIntegrityExt.extLength)
1425			udf_load_logicalvolint(sb,
1426				leea_to_cpu(lvid->nextIntegrityExt));
1427
1428		if (sbi->s_lvid_bh != bh)
1429			brelse(bh);
1430		loc.extLength -= sb->s_blocksize;
1431		loc.extLocation++;
 
 
 
 
 
 
 
 
 
 
 
1432	}
1433	if (sbi->s_lvid_bh != bh)
1434		brelse(bh);
 
 
 
1435}
1436
1437/*
1438 * udf_process_sequence
1439 *
1440 * PURPOSE
1441 *	Process a main/reserve volume descriptor sequence.
1442 *
1443 * PRE-CONDITIONS
1444 *	sb			Pointer to _locked_ superblock.
1445 *	block			First block of first extent of the sequence.
1446 *	lastblock		Lastblock of first extent of the sequence.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447 *
1448 * HISTORY
1449 *	July 1, 1997 - Andrew E. Mileski
1450 *	Written, tested, and released.
1451 */
1452static noinline int udf_process_sequence(struct super_block *sb, long block,
1453				long lastblock, struct kernel_lb_addr *fileset)
 
 
1454{
1455	struct buffer_head *bh = NULL;
1456	struct udf_vds_record vds[VDS_POS_LENGTH];
1457	struct udf_vds_record *curr;
1458	struct generic_desc *gd;
1459	struct volDescPtr *vdp;
1460	int done = 0;
1461	uint32_t vdsn;
1462	uint16_t ident;
1463	long next_s = 0, next_e = 0;
1464
1465	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
 
 
 
 
 
 
 
 
 
 
1466
1467	/*
1468	 * Read the main descriptor sequence and find which descriptors
1469	 * are in it.
1470	 */
1471	for (; (!done && block <= lastblock); block++) {
1472
1473		bh = udf_read_tagged(sb, block, block, &ident);
1474		if (!bh) {
1475			udf_err(sb,
1476				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1477				(unsigned long long)block);
1478			return 1;
1479		}
1480
1481		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1482		gd = (struct generic_desc *)bh->b_data;
1483		vdsn = le32_to_cpu(gd->volDescSeqNum);
1484		switch (ident) {
1485		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1486			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1487			if (vdsn >= curr->volDescSeqNum) {
1488				curr->volDescSeqNum = vdsn;
1489				curr->block = block;
1490			}
1491			break;
1492		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1493			curr = &vds[VDS_POS_VOL_DESC_PTR];
1494			if (vdsn >= curr->volDescSeqNum) {
1495				curr->volDescSeqNum = vdsn;
1496				curr->block = block;
1497
1498				vdp = (struct volDescPtr *)bh->b_data;
1499				next_s = le32_to_cpu(
1500					vdp->nextVolDescSeqExt.extLocation);
1501				next_e = le32_to_cpu(
1502					vdp->nextVolDescSeqExt.extLength);
1503				next_e = next_e >> sb->s_blocksize_bits;
1504				next_e += next_s;
1505			}
 
 
 
 
 
 
 
 
 
1506			break;
 
1507		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1508			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1509			if (vdsn >= curr->volDescSeqNum) {
1510				curr->volDescSeqNum = vdsn;
1511				curr->block = block;
1512			}
1513			break;
1514		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1515			curr = &vds[VDS_POS_PARTITION_DESC];
1516			if (!curr->block)
1517				curr->block = block;
1518			break;
1519		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1520			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1521			if (vdsn >= curr->volDescSeqNum) {
1522				curr->volDescSeqNum = vdsn;
1523				curr->block = block;
1524			}
1525			break;
1526		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1527			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
 
 
 
 
 
 
 
 
1528			if (vdsn >= curr->volDescSeqNum) {
1529				curr->volDescSeqNum = vdsn;
1530				curr->block = block;
1531			}
1532			break;
1533		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1534			vds[VDS_POS_TERMINATING_DESC].block = block;
1535			if (next_e) {
1536				block = next_s;
1537				lastblock = next_e;
1538				next_s = next_e = 0;
1539			} else
1540				done = 1;
1541			break;
1542		}
1543		brelse(bh);
1544	}
1545	/*
1546	 * Now read interesting descriptors again and process them
1547	 * in a suitable order
1548	 */
1549	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1550		udf_err(sb, "Primary Volume Descriptor not found!\n");
1551		return 1;
 
 
 
 
 
 
 
 
 
 
 
1552	}
1553	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1554		return 1;
1555
1556	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1557	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1558		return 1;
1559
1560	if (vds[VDS_POS_PARTITION_DESC].block) {
1561		/*
1562		 * We rescan the whole descriptor sequence to find
1563		 * partition descriptor blocks and process them.
1564		 */
1565		for (block = vds[VDS_POS_PARTITION_DESC].block;
1566		     block < vds[VDS_POS_TERMINATING_DESC].block;
1567		     block++)
1568			if (udf_load_partdesc(sb, block))
1569				return 1;
1570	}
1571
1572	return 0;
1573}
1574
 
 
 
 
 
1575static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1576			     struct kernel_lb_addr *fileset)
1577{
1578	struct anchorVolDescPtr *anchor;
1579	long main_s, main_e, reserve_s, reserve_e;
 
1580
1581	anchor = (struct anchorVolDescPtr *)bh->b_data;
1582
1583	/* Locate the main sequence */
1584	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1585	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1586	main_e = main_e >> sb->s_blocksize_bits;
1587	main_e += main_s;
1588
1589	/* Locate the reserve sequence */
1590	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1591	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1592	reserve_e = reserve_e >> sb->s_blocksize_bits;
1593	reserve_e += reserve_s;
1594
1595	/* Process the main & reserve sequences */
1596	/* responsible for finding the PartitionDesc(s) */
1597	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1598		return 1;
1599	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
 
 
 
 
 
 
 
 
 
1600}
1601
1602/*
1603 * Check whether there is an anchor block in the given block and
1604 * load Volume Descriptor Sequence if so.
 
 
 
1605 */
1606static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1607				  struct kernel_lb_addr *fileset)
1608{
1609	struct buffer_head *bh;
1610	uint16_t ident;
1611	int ret;
1612
1613	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1614	    udf_fixed_to_variable(block) >=
1615	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1616		return 0;
1617
1618	bh = udf_read_tagged(sb, block, block, &ident);
1619	if (!bh)
1620		return 0;
1621	if (ident != TAG_IDENT_AVDP) {
1622		brelse(bh);
1623		return 0;
1624	}
1625	ret = udf_load_sequence(sb, bh, fileset);
1626	brelse(bh);
1627	return ret;
1628}
1629
1630/* Search for an anchor volume descriptor pointer */
1631static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1632				 struct kernel_lb_addr *fileset)
 
 
 
 
 
1633{
1634	sector_t last[6];
1635	int i;
1636	struct udf_sb_info *sbi = UDF_SB(sb);
1637	int last_count = 0;
 
1638
1639	/* First try user provided anchor */
1640	if (sbi->s_anchor) {
1641		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1642			return lastblock;
 
1643	}
1644	/*
1645	 * according to spec, anchor is in either:
1646	 *     block 256
1647	 *     lastblock-256
1648	 *     lastblock
1649	 *  however, if the disc isn't closed, it could be 512.
1650	 */
1651	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1652		return lastblock;
 
1653	/*
1654	 * The trouble is which block is the last one. Drives often misreport
1655	 * this so we try various possibilities.
1656	 */
1657	last[last_count++] = lastblock;
1658	if (lastblock >= 1)
1659		last[last_count++] = lastblock - 1;
1660	last[last_count++] = lastblock + 1;
1661	if (lastblock >= 2)
1662		last[last_count++] = lastblock - 2;
1663	if (lastblock >= 150)
1664		last[last_count++] = lastblock - 150;
1665	if (lastblock >= 152)
1666		last[last_count++] = lastblock - 152;
1667
1668	for (i = 0; i < last_count; i++) {
1669		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1670				sb->s_blocksize_bits)
1671			continue;
1672		if (udf_check_anchor_block(sb, last[i], fileset))
1673			return last[i];
 
 
 
 
1674		if (last[i] < 256)
1675			continue;
1676		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1677			return last[i];
 
 
 
 
1678	}
1679
1680	/* Finally try block 512 in case media is open */
1681	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1682		return last[0];
1683	return 0;
1684}
1685
1686/*
1687 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1688 * area specified by it. The function expects sbi->s_lastblock to be the last
1689 * block on the media.
1690 *
1691 * Return 1 if ok, 0 if not found.
1692 *
1693 */
1694static int udf_find_anchor(struct super_block *sb,
1695			   struct kernel_lb_addr *fileset)
1696{
1697	sector_t lastblock;
1698	struct udf_sb_info *sbi = UDF_SB(sb);
 
 
1699
1700	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1701	if (lastblock)
1702		goto out;
1703
1704	/* No anchor found? Try VARCONV conversion of block numbers */
1705	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
 
1706	/* Firstly, we try to not convert number of the last block */
1707	lastblock = udf_scan_anchors(sb,
1708				udf_variable_to_fixed(sbi->s_last_block),
1709				fileset);
1710	if (lastblock)
1711		goto out;
1712
 
1713	/* Secondly, we try with converted number of the last block */
1714	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1715	if (!lastblock) {
1716		/* VARCONV didn't help. Clear it. */
1717		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1718		return 0;
1719	}
1720out:
1721	sbi->s_last_block = lastblock;
1722	return 1;
 
1723}
1724
1725/*
1726 * Check Volume Structure Descriptor, find Anchor block and load Volume
1727 * Descriptor Sequence
 
 
 
1728 */
1729static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1730			int silent, struct kernel_lb_addr *fileset)
1731{
1732	struct udf_sb_info *sbi = UDF_SB(sb);
1733	loff_t nsr_off;
 
1734
1735	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1736		if (!silent)
1737			udf_warn(sb, "Bad block size\n");
1738		return 0;
1739	}
1740	sbi->s_last_block = uopt->lastblock;
1741	if (!uopt->novrs) {
1742		/* Check that it is NSR02 compliant */
1743		nsr_off = udf_check_vsd(sb);
1744		if (!nsr_off) {
1745			if (!silent)
1746				udf_warn(sb, "No VRS found\n");
1747			return 0;
1748		}
1749		if (nsr_off == -1)
1750			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
 
 
1751		if (!sbi->s_last_block)
1752			sbi->s_last_block = udf_get_last_block(sb);
1753	} else {
1754		udf_debug("Validity check skipped because of novrs option\n");
1755	}
1756
1757	/* Look for anchor block and load Volume Descriptor Sequence */
1758	sbi->s_anchor = uopt->anchor;
1759	if (!udf_find_anchor(sb, fileset)) {
1760		if (!silent)
 
1761			udf_warn(sb, "No anchor found\n");
1762		return 0;
1763	}
1764	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
1765}
1766
1767static void udf_open_lvid(struct super_block *sb)
1768{
1769	struct udf_sb_info *sbi = UDF_SB(sb);
1770	struct buffer_head *bh = sbi->s_lvid_bh;
1771	struct logicalVolIntegrityDesc *lvid;
1772	struct logicalVolIntegrityDescImpUse *lvidiu;
1773
1774	if (!bh)
1775		return;
1776
1777	mutex_lock(&sbi->s_alloc_mutex);
1778	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1779	lvidiu = udf_sb_lvidiu(sbi);
 
 
1780
 
1781	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1782	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1783	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1784				CURRENT_TIME);
1785	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1786
1787	lvid->descTag.descCRC = cpu_to_le16(
1788		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1789			le16_to_cpu(lvid->descTag.descCRCLength)));
1790
1791	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1792	mark_buffer_dirty(bh);
1793	sbi->s_lvid_dirty = 0;
1794	mutex_unlock(&sbi->s_alloc_mutex);
 
 
1795}
1796
1797static void udf_close_lvid(struct super_block *sb)
1798{
1799	struct udf_sb_info *sbi = UDF_SB(sb);
1800	struct buffer_head *bh = sbi->s_lvid_bh;
1801	struct logicalVolIntegrityDesc *lvid;
1802	struct logicalVolIntegrityDescImpUse *lvidiu;
1803
1804	if (!bh)
1805		return;
 
 
 
 
1806
1807	mutex_lock(&sbi->s_alloc_mutex);
1808	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1809	lvidiu = udf_sb_lvidiu(sbi);
1810	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1813	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1814		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1815	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1816		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1817	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1818		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1819	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
 
1820
1821	lvid->descTag.descCRC = cpu_to_le16(
1822			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1823				le16_to_cpu(lvid->descTag.descCRCLength)));
1824
1825	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1826	/*
1827	 * We set buffer uptodate unconditionally here to avoid spurious
1828	 * warnings from mark_buffer_dirty() when previous EIO has marked
1829	 * the buffer as !uptodate
1830	 */
1831	set_buffer_uptodate(bh);
 
1832	mark_buffer_dirty(bh);
1833	sbi->s_lvid_dirty = 0;
1834	mutex_unlock(&sbi->s_alloc_mutex);
 
 
1835}
1836
1837u64 lvid_get_unique_id(struct super_block *sb)
1838{
1839	struct buffer_head *bh;
1840	struct udf_sb_info *sbi = UDF_SB(sb);
1841	struct logicalVolIntegrityDesc *lvid;
1842	struct logicalVolHeaderDesc *lvhd;
1843	u64 uniqueID;
1844	u64 ret;
1845
1846	bh = sbi->s_lvid_bh;
1847	if (!bh)
1848		return 0;
1849
1850	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1851	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1852
1853	mutex_lock(&sbi->s_alloc_mutex);
1854	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1855	if (!(++uniqueID & 0xFFFFFFFF))
1856		uniqueID += 16;
1857	lvhd->uniqueID = cpu_to_le64(uniqueID);
 
1858	mutex_unlock(&sbi->s_alloc_mutex);
1859	mark_buffer_dirty(bh);
1860
1861	return ret;
1862}
1863
1864static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1865{
1866	int i;
1867	int nr_groups = bitmap->s_nr_groups;
1868	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1869						nr_groups);
1870
1871	for (i = 0; i < nr_groups; i++)
1872		if (bitmap->s_block_bitmap[i])
1873			brelse(bitmap->s_block_bitmap[i]);
1874
1875	if (size <= PAGE_SIZE)
1876		kfree(bitmap);
1877	else
1878		vfree(bitmap);
1879}
1880
1881static void udf_free_partition(struct udf_part_map *map)
1882{
1883	int i;
1884	struct udf_meta_data *mdata;
1885
1886	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1887		iput(map->s_uspace.s_table);
1888	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1889		iput(map->s_fspace.s_table);
1890	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1891		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1892	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1893		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1894	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1895		for (i = 0; i < 4; i++)
1896			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1897	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1898		mdata = &map->s_type_specific.s_metadata;
1899		iput(mdata->s_metadata_fe);
1900		mdata->s_metadata_fe = NULL;
1901
1902		iput(mdata->s_mirror_fe);
1903		mdata->s_mirror_fe = NULL;
1904
1905		iput(mdata->s_bitmap_fe);
1906		mdata->s_bitmap_fe = NULL;
1907	}
1908}
1909
1910static int udf_fill_super(struct super_block *sb, void *options, int silent)
1911{
1912	int i;
1913	int ret;
1914	struct inode *inode = NULL;
1915	struct udf_options uopt;
1916	struct kernel_lb_addr rootdir, fileset;
1917	struct udf_sb_info *sbi;
 
1918
1919	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1920	uopt.uid = -1;
1921	uopt.gid = -1;
 
1922	uopt.umask = 0;
1923	uopt.fmode = UDF_INVALID_MODE;
1924	uopt.dmode = UDF_INVALID_MODE;
 
1925
1926	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1927	if (!sbi)
1928		return -ENOMEM;
1929
1930	sb->s_fs_info = sbi;
1931
1932	mutex_init(&sbi->s_alloc_mutex);
1933
1934	if (!udf_parse_options((char *)options, &uopt, false))
1935		goto error_out;
1936
1937	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1938	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1939		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1940		goto error_out;
1941	}
1942#ifdef CONFIG_UDF_NLS
1943	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1944		uopt.nls_map = load_nls_default();
1945		if (!uopt.nls_map)
1946			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1947		else
1948			udf_debug("Using default NLS map\n");
1949	}
1950#endif
1951	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1952		uopt.flags |= (1 << UDF_FLAG_UTF8);
1953
1954	fileset.logicalBlockNum = 0xFFFFFFFF;
1955	fileset.partitionReferenceNum = 0xFFFF;
1956
1957	sbi->s_flags = uopt.flags;
1958	sbi->s_uid = uopt.uid;
1959	sbi->s_gid = uopt.gid;
1960	sbi->s_umask = uopt.umask;
1961	sbi->s_fmode = uopt.fmode;
1962	sbi->s_dmode = uopt.dmode;
1963	sbi->s_nls_map = uopt.nls_map;
1964	rwlock_init(&sbi->s_cred_lock);
1965
1966	if (uopt.session == 0xFFFFFFFF)
1967		sbi->s_session = udf_get_last_session(sb);
1968	else
1969		sbi->s_session = uopt.session;
1970
1971	udf_debug("Multi-session=%d\n", sbi->s_session);
1972
1973	/* Fill in the rest of the superblock */
1974	sb->s_op = &udf_sb_ops;
1975	sb->s_export_op = &udf_export_ops;
1976
1977	sb->s_dirt = 0;
1978	sb->s_magic = UDF_SUPER_MAGIC;
1979	sb->s_time_gran = 1000;
1980
1981	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1982		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1983	} else {
1984		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1985		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1986		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1987			if (!silent)
1988				pr_notice("Rescanning with blocksize %d\n",
1989					  UDF_DEFAULT_BLOCKSIZE);
1990			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1991			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992		}
1993	}
1994	if (!ret) {
1995		udf_warn(sb, "No partition found (1)\n");
 
 
 
1996		goto error_out;
1997	}
1998
1999	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2000
2001	if (sbi->s_lvid_bh) {
2002		struct logicalVolIntegrityDescImpUse *lvidiu =
2003							udf_sb_lvidiu(sbi);
2004		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2005		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2006		/* uint16_t maxUDFWriteRev =
2007				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2008
 
 
 
 
 
 
2009		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2010			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2011				le16_to_cpu(lvidiu->minUDFReadRev),
2012				UDF_MAX_READ_VERSION);
 
2013			goto error_out;
2014		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2015			sb->s_flags |= MS_RDONLY;
 
 
 
 
 
2016
2017		sbi->s_udfrev = minUDFWriteRev;
2018
2019		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2020			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2021		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2022			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2023	}
2024
2025	if (!sbi->s_partitions) {
2026		udf_warn(sb, "No partition found (2)\n");
 
2027		goto error_out;
2028	}
2029
2030	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2031			UDF_PART_FLAG_READ_ONLY) {
2032		pr_notice("Partition marked readonly; forcing readonly mount\n");
2033		sb->s_flags |= MS_RDONLY;
 
 
 
2034	}
2035
2036	if (udf_find_fileset(sb, &fileset, &rootdir)) {
 
2037		udf_warn(sb, "No fileset found\n");
2038		goto error_out;
2039	}
2040
2041	if (!silent) {
2042		struct timestamp ts;
2043		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2044		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2045			 sbi->s_volume_ident,
2046			 le16_to_cpu(ts.year), ts.month, ts.day,
2047			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2048	}
2049	if (!(sb->s_flags & MS_RDONLY))
2050		udf_open_lvid(sb);
 
 
2051
2052	/* Assign the root inode */
2053	/* assign inodes by physical block number */
2054	/* perhaps it's not extensible enough, but for now ... */
2055	inode = udf_iget(sb, &rootdir);
2056	if (!inode) {
2057		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2058		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
 
2059		goto error_out;
2060	}
2061
2062	/* Allocate a dentry for the root inode */
2063	sb->s_root = d_make_root(inode);
2064	if (!sb->s_root) {
2065		udf_err(sb, "Couldn't allocate root dentry\n");
 
2066		goto error_out;
2067	}
2068	sb->s_maxbytes = MAX_LFS_FILESIZE;
2069	sb->s_max_links = UDF_MAX_LINKS;
2070	return 0;
2071
2072error_out:
2073	if (sbi->s_vat_inode)
2074		iput(sbi->s_vat_inode);
2075	if (sbi->s_partitions)
2076		for (i = 0; i < sbi->s_partitions; i++)
2077			udf_free_partition(&sbi->s_partmaps[i]);
2078#ifdef CONFIG_UDF_NLS
2079	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2080		unload_nls(sbi->s_nls_map);
2081#endif
2082	if (!(sb->s_flags & MS_RDONLY))
2083		udf_close_lvid(sb);
2084	brelse(sbi->s_lvid_bh);
2085
2086	kfree(sbi->s_partmaps);
2087	kfree(sbi);
2088	sb->s_fs_info = NULL;
2089
2090	return -EINVAL;
2091}
2092
2093void _udf_err(struct super_block *sb, const char *function,
2094	      const char *fmt, ...)
2095{
2096	struct va_format vaf;
2097	va_list args;
2098
2099	/* mark sb error */
2100	if (!(sb->s_flags & MS_RDONLY))
2101		sb->s_dirt = 1;
2102
2103	va_start(args, fmt);
2104
2105	vaf.fmt = fmt;
2106	vaf.va = &args;
2107
2108	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2109
2110	va_end(args);
2111}
2112
2113void _udf_warn(struct super_block *sb, const char *function,
2114	       const char *fmt, ...)
2115{
2116	struct va_format vaf;
2117	va_list args;
2118
2119	va_start(args, fmt);
2120
2121	vaf.fmt = fmt;
2122	vaf.va = &args;
2123
2124	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2125
2126	va_end(args);
2127}
2128
2129static void udf_put_super(struct super_block *sb)
2130{
2131	int i;
2132	struct udf_sb_info *sbi;
2133
2134	sbi = UDF_SB(sb);
2135
2136	if (sbi->s_vat_inode)
2137		iput(sbi->s_vat_inode);
2138	if (sbi->s_partitions)
2139		for (i = 0; i < sbi->s_partitions; i++)
2140			udf_free_partition(&sbi->s_partmaps[i]);
2141#ifdef CONFIG_UDF_NLS
2142	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2143		unload_nls(sbi->s_nls_map);
2144#endif
2145	if (!(sb->s_flags & MS_RDONLY))
2146		udf_close_lvid(sb);
2147	brelse(sbi->s_lvid_bh);
2148	kfree(sbi->s_partmaps);
 
2149	kfree(sb->s_fs_info);
2150	sb->s_fs_info = NULL;
2151}
2152
2153static int udf_sync_fs(struct super_block *sb, int wait)
2154{
2155	struct udf_sb_info *sbi = UDF_SB(sb);
2156
2157	mutex_lock(&sbi->s_alloc_mutex);
2158	if (sbi->s_lvid_dirty) {
 
 
 
 
 
 
2159		/*
2160		 * Blockdevice will be synced later so we don't have to submit
2161		 * the buffer for IO
2162		 */
2163		mark_buffer_dirty(sbi->s_lvid_bh);
2164		sb->s_dirt = 0;
2165		sbi->s_lvid_dirty = 0;
2166	}
2167	mutex_unlock(&sbi->s_alloc_mutex);
2168
2169	return 0;
2170}
2171
2172static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2173{
2174	struct super_block *sb = dentry->d_sb;
2175	struct udf_sb_info *sbi = UDF_SB(sb);
2176	struct logicalVolIntegrityDescImpUse *lvidiu;
2177	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2178
2179	if (sbi->s_lvid_bh != NULL)
2180		lvidiu = udf_sb_lvidiu(sbi);
2181	else
2182		lvidiu = NULL;
2183
2184	buf->f_type = UDF_SUPER_MAGIC;
2185	buf->f_bsize = sb->s_blocksize;
2186	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2187	buf->f_bfree = udf_count_free(sb);
2188	buf->f_bavail = buf->f_bfree;
2189	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2190					  le32_to_cpu(lvidiu->numDirs)) : 0)
2191			+ buf->f_bfree;
2192	buf->f_ffree = buf->f_bfree;
2193	buf->f_namelen = UDF_NAME_LEN - 2;
2194	buf->f_fsid.val[0] = (u32)id;
2195	buf->f_fsid.val[1] = (u32)(id >> 32);
2196
2197	return 0;
2198}
2199
2200static unsigned int udf_count_free_bitmap(struct super_block *sb,
2201					  struct udf_bitmap *bitmap)
2202{
2203	struct buffer_head *bh = NULL;
2204	unsigned int accum = 0;
2205	int index;
2206	int block = 0, newblock;
2207	struct kernel_lb_addr loc;
2208	uint32_t bytes;
2209	uint8_t *ptr;
2210	uint16_t ident;
2211	struct spaceBitmapDesc *bm;
2212
2213	loc.logicalBlockNum = bitmap->s_extPosition;
2214	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2215	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2216
2217	if (!bh) {
2218		udf_err(sb, "udf_count_free failed\n");
2219		goto out;
2220	} else if (ident != TAG_IDENT_SBD) {
2221		brelse(bh);
2222		udf_err(sb, "udf_count_free failed\n");
2223		goto out;
2224	}
2225
2226	bm = (struct spaceBitmapDesc *)bh->b_data;
2227	bytes = le32_to_cpu(bm->numOfBytes);
2228	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2229	ptr = (uint8_t *)bh->b_data;
2230
2231	while (bytes > 0) {
2232		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2233		accum += bitmap_weight((const unsigned long *)(ptr + index),
2234					cur_bytes * 8);
2235		bytes -= cur_bytes;
2236		if (bytes) {
2237			brelse(bh);
2238			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2239			bh = udf_tread(sb, newblock);
2240			if (!bh) {
2241				udf_debug("read failed\n");
2242				goto out;
2243			}
2244			index = 0;
2245			ptr = (uint8_t *)bh->b_data;
2246		}
2247	}
2248	brelse(bh);
2249out:
2250	return accum;
2251}
2252
2253static unsigned int udf_count_free_table(struct super_block *sb,
2254					 struct inode *table)
2255{
2256	unsigned int accum = 0;
2257	uint32_t elen;
2258	struct kernel_lb_addr eloc;
2259	int8_t etype;
2260	struct extent_position epos;
2261
2262	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2263	epos.block = UDF_I(table)->i_location;
2264	epos.offset = sizeof(struct unallocSpaceEntry);
2265	epos.bh = NULL;
2266
2267	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2268		accum += (elen >> table->i_sb->s_blocksize_bits);
2269
2270	brelse(epos.bh);
2271	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2272
2273	return accum;
2274}
2275
2276static unsigned int udf_count_free(struct super_block *sb)
2277{
2278	unsigned int accum = 0;
2279	struct udf_sb_info *sbi;
2280	struct udf_part_map *map;
2281
2282	sbi = UDF_SB(sb);
2283	if (sbi->s_lvid_bh) {
2284		struct logicalVolIntegrityDesc *lvid =
2285			(struct logicalVolIntegrityDesc *)
2286			sbi->s_lvid_bh->b_data;
2287		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2288			accum = le32_to_cpu(
2289					lvid->freeSpaceTable[sbi->s_partition]);
2290			if (accum == 0xFFFFFFFF)
2291				accum = 0;
2292		}
2293	}
2294
2295	if (accum)
2296		return accum;
2297
2298	map = &sbi->s_partmaps[sbi->s_partition];
2299	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2300		accum += udf_count_free_bitmap(sb,
2301					       map->s_uspace.s_bitmap);
2302	}
2303	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2304		accum += udf_count_free_bitmap(sb,
2305					       map->s_fspace.s_bitmap);
2306	}
2307	if (accum)
2308		return accum;
2309
2310	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2311		accum += udf_count_free_table(sb,
2312					      map->s_uspace.s_table);
2313	}
2314	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2315		accum += udf_count_free_table(sb,
2316					      map->s_fspace.s_table);
2317	}
2318
2319	return accum;
2320}
v5.4
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    http://www.ecma.ch/
  15 *    http://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
 
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
  60
  61#include "udf_sb.h"
  62#include "udf_i.h"
  63
  64#include <linux/init.h>
  65#include <linux/uaccess.h>
  66
  67enum {
  68	VDS_POS_PRIMARY_VOL_DESC,
  69	VDS_POS_UNALLOC_SPACE_DESC,
  70	VDS_POS_LOGICAL_VOL_DESC,
  71	VDS_POS_IMP_USE_VOL_DESC,
  72	VDS_POS_LENGTH
  73};
 
  74
  75#define VSD_FIRST_SECTOR_OFFSET		32768
  76#define VSD_MAX_SECTOR_OFFSET		0x800000
  77
  78/*
  79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  81 * hopefully don't limit any real use of rewritten inode on write-once media
  82 * but avoid looping for too long on corrupted media.
  83 */
  84#define UDF_MAX_TD_NESTING 64
  85#define UDF_MAX_LVID_NESTING 1000
  86
  87enum { UDF_MAX_LINKS = 0xffff };
  88
  89/* These are the "meat" - everything else is stuffing */
  90static int udf_fill_super(struct super_block *, void *, int);
  91static void udf_put_super(struct super_block *);
  92static int udf_sync_fs(struct super_block *, int);
  93static int udf_remount_fs(struct super_block *, int *, char *);
  94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 
 
 
 
  95static void udf_open_lvid(struct super_block *);
  96static void udf_close_lvid(struct super_block *);
  97static unsigned int udf_count_free(struct super_block *);
  98static int udf_statfs(struct dentry *, struct kstatfs *);
  99static int udf_show_options(struct seq_file *, struct dentry *);
 100
 101struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 102{
 103	struct logicalVolIntegrityDesc *lvid;
 104	unsigned int partnum;
 105	unsigned int offset;
 106
 107	if (!UDF_SB(sb)->s_lvid_bh)
 108		return NULL;
 109	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 110	partnum = le32_to_cpu(lvid->numOfPartitions);
 111	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
 112	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
 113	     (2 * sizeof(uint32_t)) < partnum) {
 114		udf_err(sb, "Logical volume integrity descriptor corrupted "
 115			"(numOfPartitions = %u)!\n", partnum);
 116		return NULL;
 117	}
 118	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 119	offset = partnum * 2 * sizeof(uint32_t);
 120	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 121}
 122
 123/* UDF filesystem type */
 124static struct dentry *udf_mount(struct file_system_type *fs_type,
 125		      int flags, const char *dev_name, void *data)
 126{
 127	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 128}
 129
 130static struct file_system_type udf_fstype = {
 131	.owner		= THIS_MODULE,
 132	.name		= "udf",
 133	.mount		= udf_mount,
 134	.kill_sb	= kill_block_super,
 135	.fs_flags	= FS_REQUIRES_DEV,
 136};
 137MODULE_ALIAS_FS("udf");
 138
 139static struct kmem_cache *udf_inode_cachep;
 140
 141static struct inode *udf_alloc_inode(struct super_block *sb)
 142{
 143	struct udf_inode_info *ei;
 144	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 145	if (!ei)
 146		return NULL;
 147
 148	ei->i_unique = 0;
 149	ei->i_lenExtents = 0;
 150	ei->i_lenStreams = 0;
 151	ei->i_next_alloc_block = 0;
 152	ei->i_next_alloc_goal = 0;
 153	ei->i_strat4096 = 0;
 154	ei->i_streamdir = 0;
 155	init_rwsem(&ei->i_data_sem);
 156	ei->cached_extent.lstart = -1;
 157	spin_lock_init(&ei->i_extent_cache_lock);
 158
 159	return &ei->vfs_inode;
 160}
 161
 162static void udf_free_in_core_inode(struct inode *inode)
 163{
 
 164	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 165}
 166
 
 
 
 
 
 167static void init_once(void *foo)
 168{
 169	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 170
 171	ei->i_ext.i_data = NULL;
 172	inode_init_once(&ei->vfs_inode);
 173}
 174
 175static int __init init_inodecache(void)
 176{
 177	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 178					     sizeof(struct udf_inode_info),
 179					     0, (SLAB_RECLAIM_ACCOUNT |
 180						 SLAB_MEM_SPREAD |
 181						 SLAB_ACCOUNT),
 182					     init_once);
 183	if (!udf_inode_cachep)
 184		return -ENOMEM;
 185	return 0;
 186}
 187
 188static void destroy_inodecache(void)
 189{
 190	/*
 191	 * Make sure all delayed rcu free inodes are flushed before we
 192	 * destroy cache.
 193	 */
 194	rcu_barrier();
 195	kmem_cache_destroy(udf_inode_cachep);
 196}
 197
 198/* Superblock operations */
 199static const struct super_operations udf_sb_ops = {
 200	.alloc_inode	= udf_alloc_inode,
 201	.free_inode	= udf_free_in_core_inode,
 202	.write_inode	= udf_write_inode,
 203	.evict_inode	= udf_evict_inode,
 204	.put_super	= udf_put_super,
 205	.sync_fs	= udf_sync_fs,
 206	.statfs		= udf_statfs,
 207	.remount_fs	= udf_remount_fs,
 208	.show_options	= udf_show_options,
 209};
 210
 211struct udf_options {
 212	unsigned char novrs;
 213	unsigned int blocksize;
 214	unsigned int session;
 215	unsigned int lastblock;
 216	unsigned int anchor;
 
 
 
 
 217	unsigned int flags;
 218	umode_t umask;
 219	kgid_t gid;
 220	kuid_t uid;
 221	umode_t fmode;
 222	umode_t dmode;
 223	struct nls_table *nls_map;
 224};
 225
 226static int __init init_udf_fs(void)
 227{
 228	int err;
 229
 230	err = init_inodecache();
 231	if (err)
 232		goto out1;
 233	err = register_filesystem(&udf_fstype);
 234	if (err)
 235		goto out;
 236
 237	return 0;
 238
 239out:
 240	destroy_inodecache();
 241
 242out1:
 243	return err;
 244}
 245
 246static void __exit exit_udf_fs(void)
 247{
 248	unregister_filesystem(&udf_fstype);
 249	destroy_inodecache();
 250}
 251
 
 
 
 252static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 253{
 254	struct udf_sb_info *sbi = UDF_SB(sb);
 255
 256	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
 
 257	if (!sbi->s_partmaps) {
 
 
 258		sbi->s_partitions = 0;
 259		return -ENOMEM;
 260	}
 261
 262	sbi->s_partitions = count;
 263	return 0;
 264}
 265
 266static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 267{
 268	int i;
 269	int nr_groups = bitmap->s_nr_groups;
 270
 271	for (i = 0; i < nr_groups; i++)
 272		brelse(bitmap->s_block_bitmap[i]);
 273
 274	kvfree(bitmap);
 275}
 276
 277static void udf_free_partition(struct udf_part_map *map)
 278{
 279	int i;
 280	struct udf_meta_data *mdata;
 281
 282	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 283		iput(map->s_uspace.s_table);
 284	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 285		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 286	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 287		for (i = 0; i < 4; i++)
 288			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 289	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 290		mdata = &map->s_type_specific.s_metadata;
 291		iput(mdata->s_metadata_fe);
 292		mdata->s_metadata_fe = NULL;
 293
 294		iput(mdata->s_mirror_fe);
 295		mdata->s_mirror_fe = NULL;
 296
 297		iput(mdata->s_bitmap_fe);
 298		mdata->s_bitmap_fe = NULL;
 299	}
 300}
 301
 302static void udf_sb_free_partitions(struct super_block *sb)
 303{
 304	struct udf_sb_info *sbi = UDF_SB(sb);
 305	int i;
 306
 307	if (!sbi->s_partmaps)
 308		return;
 309	for (i = 0; i < sbi->s_partitions; i++)
 310		udf_free_partition(&sbi->s_partmaps[i]);
 311	kfree(sbi->s_partmaps);
 312	sbi->s_partmaps = NULL;
 313}
 314
 315static int udf_show_options(struct seq_file *seq, struct dentry *root)
 316{
 317	struct super_block *sb = root->d_sb;
 318	struct udf_sb_info *sbi = UDF_SB(sb);
 319
 320	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 321		seq_puts(seq, ",nostrict");
 322	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 323		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 324	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 325		seq_puts(seq, ",unhide");
 326	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 327		seq_puts(seq, ",undelete");
 328	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 329		seq_puts(seq, ",noadinicb");
 330	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 331		seq_puts(seq, ",shortad");
 332	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 333		seq_puts(seq, ",uid=forget");
 
 
 334	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 335		seq_puts(seq, ",gid=forget");
 
 
 336	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 337		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 338	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 339		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 340	if (sbi->s_umask != 0)
 341		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 342	if (sbi->s_fmode != UDF_INVALID_MODE)
 343		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 344	if (sbi->s_dmode != UDF_INVALID_MODE)
 345		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 346	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 347		seq_printf(seq, ",session=%d", sbi->s_session);
 348	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 349		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 350	if (sbi->s_anchor != 0)
 351		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 
 
 
 
 352	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 353		seq_puts(seq, ",utf8");
 354	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 355		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 356
 357	return 0;
 358}
 359
 360/*
 361 * udf_parse_options
 362 *
 363 * PURPOSE
 364 *	Parse mount options.
 365 *
 366 * DESCRIPTION
 367 *	The following mount options are supported:
 368 *
 369 *	gid=		Set the default group.
 370 *	umask=		Set the default umask.
 371 *	mode=		Set the default file permissions.
 372 *	dmode=		Set the default directory permissions.
 373 *	uid=		Set the default user.
 374 *	bs=		Set the block size.
 375 *	unhide		Show otherwise hidden files.
 376 *	undelete	Show deleted files in lists.
 377 *	adinicb		Embed data in the inode (default)
 378 *	noadinicb	Don't embed data in the inode
 379 *	shortad		Use short ad's
 380 *	longad		Use long ad's (default)
 381 *	nostrict	Unset strict conformance
 382 *	iocharset=	Set the NLS character set
 383 *
 384 *	The remaining are for debugging and disaster recovery:
 385 *
 386 *	novrs		Skip volume sequence recognition
 387 *
 388 *	The following expect a offset from 0.
 389 *
 390 *	session=	Set the CDROM session (default= last session)
 391 *	anchor=		Override standard anchor location. (default= 256)
 392 *	volume=		Override the VolumeDesc location. (unused)
 393 *	partition=	Override the PartitionDesc location. (unused)
 394 *	lastblock=	Set the last block of the filesystem/
 395 *
 396 *	The following expect a offset from the partition root.
 397 *
 398 *	fileset=	Override the fileset block location. (unused)
 399 *	rootdir=	Override the root directory location. (unused)
 400 *		WARNING: overriding the rootdir to a non-directory may
 401 *		yield highly unpredictable results.
 402 *
 403 * PRE-CONDITIONS
 404 *	options		Pointer to mount options string.
 405 *	uopts		Pointer to mount options variable.
 406 *
 407 * POST-CONDITIONS
 408 *	<return>	1	Mount options parsed okay.
 409 *	<return>	0	Error parsing mount options.
 410 *
 411 * HISTORY
 412 *	July 1, 1997 - Andrew E. Mileski
 413 *	Written, tested, and released.
 414 */
 415
 416enum {
 417	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 418	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 419	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 420	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 421	Opt_rootdir, Opt_utf8, Opt_iocharset,
 422	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 423	Opt_fmode, Opt_dmode
 424};
 425
 426static const match_table_t tokens = {
 427	{Opt_novrs,	"novrs"},
 428	{Opt_nostrict,	"nostrict"},
 429	{Opt_bs,	"bs=%u"},
 430	{Opt_unhide,	"unhide"},
 431	{Opt_undelete,	"undelete"},
 432	{Opt_noadinicb,	"noadinicb"},
 433	{Opt_adinicb,	"adinicb"},
 434	{Opt_shortad,	"shortad"},
 435	{Opt_longad,	"longad"},
 436	{Opt_uforget,	"uid=forget"},
 437	{Opt_uignore,	"uid=ignore"},
 438	{Opt_gforget,	"gid=forget"},
 439	{Opt_gignore,	"gid=ignore"},
 440	{Opt_gid,	"gid=%u"},
 441	{Opt_uid,	"uid=%u"},
 442	{Opt_umask,	"umask=%o"},
 443	{Opt_session,	"session=%u"},
 444	{Opt_lastblock,	"lastblock=%u"},
 445	{Opt_anchor,	"anchor=%u"},
 446	{Opt_volume,	"volume=%u"},
 447	{Opt_partition,	"partition=%u"},
 448	{Opt_fileset,	"fileset=%u"},
 449	{Opt_rootdir,	"rootdir=%u"},
 450	{Opt_utf8,	"utf8"},
 451	{Opt_iocharset,	"iocharset=%s"},
 452	{Opt_fmode,     "mode=%o"},
 453	{Opt_dmode,     "dmode=%o"},
 454	{Opt_err,	NULL}
 455};
 456
 457static int udf_parse_options(char *options, struct udf_options *uopt,
 458			     bool remount)
 459{
 460	char *p;
 461	int option;
 462
 463	uopt->novrs = 0;
 
 464	uopt->session = 0xFFFFFFFF;
 465	uopt->lastblock = 0;
 466	uopt->anchor = 0;
 
 
 
 
 467
 468	if (!options)
 469		return 1;
 470
 471	while ((p = strsep(&options, ",")) != NULL) {
 472		substring_t args[MAX_OPT_ARGS];
 473		int token;
 474		unsigned n;
 475		if (!*p)
 476			continue;
 477
 478		token = match_token(p, tokens, args);
 479		switch (token) {
 480		case Opt_novrs:
 481			uopt->novrs = 1;
 482			break;
 483		case Opt_bs:
 484			if (match_int(&args[0], &option))
 485				return 0;
 486			n = option;
 487			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 488				return 0;
 489			uopt->blocksize = n;
 490			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 491			break;
 492		case Opt_unhide:
 493			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 494			break;
 495		case Opt_undelete:
 496			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 497			break;
 498		case Opt_noadinicb:
 499			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 500			break;
 501		case Opt_adinicb:
 502			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 503			break;
 504		case Opt_shortad:
 505			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 506			break;
 507		case Opt_longad:
 508			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 509			break;
 510		case Opt_gid:
 511			if (match_int(args, &option))
 512				return 0;
 513			uopt->gid = make_kgid(current_user_ns(), option);
 514			if (!gid_valid(uopt->gid))
 515				return 0;
 516			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 517			break;
 518		case Opt_uid:
 519			if (match_int(args, &option))
 520				return 0;
 521			uopt->uid = make_kuid(current_user_ns(), option);
 522			if (!uid_valid(uopt->uid))
 523				return 0;
 524			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 525			break;
 526		case Opt_umask:
 527			if (match_octal(args, &option))
 528				return 0;
 529			uopt->umask = option;
 530			break;
 531		case Opt_nostrict:
 532			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 533			break;
 534		case Opt_session:
 535			if (match_int(args, &option))
 536				return 0;
 537			uopt->session = option;
 538			if (!remount)
 539				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 540			break;
 541		case Opt_lastblock:
 542			if (match_int(args, &option))
 543				return 0;
 544			uopt->lastblock = option;
 545			if (!remount)
 546				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 547			break;
 548		case Opt_anchor:
 549			if (match_int(args, &option))
 550				return 0;
 551			uopt->anchor = option;
 552			break;
 553		case Opt_volume:
 
 
 
 
 554		case Opt_partition:
 
 
 
 
 555		case Opt_fileset:
 
 
 
 
 556		case Opt_rootdir:
 557			/* Ignored (never implemented properly) */
 
 
 558			break;
 559		case Opt_utf8:
 560			uopt->flags |= (1 << UDF_FLAG_UTF8);
 561			break;
 
 562		case Opt_iocharset:
 563			if (!remount) {
 564				if (uopt->nls_map)
 565					unload_nls(uopt->nls_map);
 566				/*
 567				 * load_nls() failure is handled later in
 568				 * udf_fill_super() after all options are
 569				 * parsed.
 570				 */
 571				uopt->nls_map = load_nls(args[0].from);
 572				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 573			}
 574			break;
 575		case Opt_uforget:
 576			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 577			break;
 578		case Opt_uignore:
 579		case Opt_gignore:
 580			/* These options are superseeded by uid=<number> */
 581			break;
 582		case Opt_gforget:
 583			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 584			break;
 585		case Opt_fmode:
 586			if (match_octal(args, &option))
 587				return 0;
 588			uopt->fmode = option & 0777;
 589			break;
 590		case Opt_dmode:
 591			if (match_octal(args, &option))
 592				return 0;
 593			uopt->dmode = option & 0777;
 594			break;
 595		default:
 596			pr_err("bad mount option \"%s\" or missing value\n", p);
 597			return 0;
 598		}
 599	}
 600	return 1;
 601}
 602
 603static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 604{
 605	struct udf_options uopt;
 606	struct udf_sb_info *sbi = UDF_SB(sb);
 607	int error = 0;
 608
 609	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
 610		return -EACCES;
 611
 612	sync_filesystem(sb);
 613
 614	uopt.flags = sbi->s_flags;
 615	uopt.uid   = sbi->s_uid;
 616	uopt.gid   = sbi->s_gid;
 617	uopt.umask = sbi->s_umask;
 618	uopt.fmode = sbi->s_fmode;
 619	uopt.dmode = sbi->s_dmode;
 620	uopt.nls_map = NULL;
 621
 622	if (!udf_parse_options(options, &uopt, true))
 623		return -EINVAL;
 624
 625	write_lock(&sbi->s_cred_lock);
 626	sbi->s_flags = uopt.flags;
 627	sbi->s_uid   = uopt.uid;
 628	sbi->s_gid   = uopt.gid;
 629	sbi->s_umask = uopt.umask;
 630	sbi->s_fmode = uopt.fmode;
 631	sbi->s_dmode = uopt.dmode;
 632	write_unlock(&sbi->s_cred_lock);
 633
 634	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
 
 
 
 
 
 
 635		goto out_unlock;
 636
 637	if (*flags & SB_RDONLY)
 638		udf_close_lvid(sb);
 639	else
 640		udf_open_lvid(sb);
 641
 642out_unlock:
 643	return error;
 644}
 645
 646/*
 647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
 648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
 649 * we found one of NSR descriptors we are looking for.
 650 */
 651static int identify_vsd(const struct volStructDesc *vsd)
 652{
 653	int ret = 0;
 654
 655	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
 656		switch (vsd->structType) {
 657		case 0:
 658			udf_debug("ISO9660 Boot Record found\n");
 659			break;
 660		case 1:
 661			udf_debug("ISO9660 Primary Volume Descriptor found\n");
 662			break;
 663		case 2:
 664			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 665			break;
 666		case 3:
 667			udf_debug("ISO9660 Volume Partition Descriptor found\n");
 668			break;
 669		case 255:
 670			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 671			break;
 672		default:
 673			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
 674			break;
 675		}
 676	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
 677		; /* ret = 0 */
 678	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
 679		ret = 1;
 680	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
 681		ret = 1;
 682	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
 683		; /* ret = 0 */
 684	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
 685		; /* ret = 0 */
 686	else {
 687		/* TEA01 or invalid id : end of volume recognition area */
 688		ret = -1;
 689	}
 690
 691	return ret;
 692}
 693
 694/*
 695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
 696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
 697 * @return   1 if NSR02 or NSR03 found,
 698 *	    -1 if first sector read error, 0 otherwise
 699 */
 700static int udf_check_vsd(struct super_block *sb)
 701{
 702	struct volStructDesc *vsd = NULL;
 703	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 704	int sectorsize;
 705	struct buffer_head *bh = NULL;
 706	int nsr = 0;
 
 707	struct udf_sb_info *sbi;
 708
 709	sbi = UDF_SB(sb);
 710	if (sb->s_blocksize < sizeof(struct volStructDesc))
 711		sectorsize = sizeof(struct volStructDesc);
 712	else
 713		sectorsize = sb->s_blocksize;
 714
 715	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
 716
 717	udf_debug("Starting at sector %u (%lu byte sectors)\n",
 718		  (unsigned int)(sector >> sb->s_blocksize_bits),
 719		  sb->s_blocksize);
 720	/* Process the sequence (if applicable). The hard limit on the sector
 721	 * offset is arbitrary, hopefully large enough so that all valid UDF
 722	 * filesystems will be recognised. There is no mention of an upper
 723	 * bound to the size of the volume recognition area in the standard.
 724	 *  The limit will prevent the code to read all the sectors of a
 725	 * specially crafted image (like a bluray disc full of CD001 sectors),
 726	 * potentially causing minutes or even hours of uninterruptible I/O
 727	 * activity. This actually happened with uninitialised SSD partitions
 728	 * (all 0xFF) before the check for the limit and all valid IDs were
 729	 * added */
 730	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
 731		/* Read a block */
 732		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 733		if (!bh)
 734			break;
 735
 
 736		vsd = (struct volStructDesc *)(bh->b_data +
 737					      (sector & (sb->s_blocksize - 1)));
 738		nsr = identify_vsd(vsd);
 739		/* Found NSR or end? */
 740		if (nsr) {
 741			brelse(bh);
 742			break;
 743		}
 744		/*
 745		 * Special handling for improperly formatted VRS (e.g., Win10)
 746		 * where components are separated by 2048 bytes even though
 747		 * sectors are 4K
 748		 */
 749		if (sb->s_blocksize == 4096) {
 750			nsr = identify_vsd(vsd + 1);
 751			/* Ignore unknown IDs... */
 752			if (nsr < 0)
 753				nsr = 0;
 754		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755		brelse(bh);
 756	}
 757
 758	if (nsr > 0)
 759		return 1;
 760	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
 761			VSD_FIRST_SECTOR_OFFSET)
 
 762		return -1;
 763	else
 764		return 0;
 765}
 766
 767static int udf_verify_domain_identifier(struct super_block *sb,
 768					struct regid *ident, char *dname)
 
 769{
 770	struct domainEntityIDSuffix *suffix;
 
 
 
 771
 772	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
 773		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
 774		goto force_ro;
 775	}
 776	if (ident->flags & (1 << ENTITYID_FLAGS_DIRTY)) {
 777		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
 778			 dname);
 779		goto force_ro;
 780	}
 781	suffix = (struct domainEntityIDSuffix *)ident->identSuffix;
 782	if (suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_HARDWRITEPROTECT) ||
 783	    suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_SOFTWRITEPROTECT)) {
 784		if (!sb_rdonly(sb)) {
 785			udf_warn(sb, "Descriptor for %s marked write protected."
 786				 " Forcing read only mount.\n", dname);
 787		}
 788		goto force_ro;
 789	}
 790	return 0;
 791
 792force_ro:
 793	if (!sb_rdonly(sb))
 794		return -EACCES;
 795	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
 796	return 0;
 797}
 798
 799static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
 800			    struct kernel_lb_addr *root)
 801{
 802	int ret;
 803
 804	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
 805	if (ret < 0)
 806		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807
 808	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 809	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810
 811	udf_debug("Rootdir at block=%u, partition=%u\n",
 812		  root->logicalBlockNum, root->partitionReferenceNum);
 813	return 0;
 814}
 815
 816static int udf_find_fileset(struct super_block *sb,
 817			    struct kernel_lb_addr *fileset,
 818			    struct kernel_lb_addr *root)
 819{
 820	struct buffer_head *bh = NULL;
 821	uint16_t ident;
 822	int ret;
 823
 824	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
 825	    fileset->partitionReferenceNum == 0xFFFF)
 826		return -EINVAL;
 827
 828	bh = udf_read_ptagged(sb, fileset, 0, &ident);
 829	if (!bh)
 830		return -EIO;
 831	if (ident != TAG_IDENT_FSD) {
 832		brelse(bh);
 833		return -EINVAL;
 834	}
 835
 836	udf_debug("Fileset at block=%u, partition=%u\n",
 837		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
 838
 839	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
 840	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
 841	brelse(bh);
 842	return ret;
 843}
 844
 845/*
 846 * Load primary Volume Descriptor Sequence
 847 *
 848 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 849 * should be tried.
 850 */
 851static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 852{
 853	struct primaryVolDesc *pvoldesc;
 854	uint8_t *outstr;
 855	struct buffer_head *bh;
 856	uint16_t ident;
 857	int ret = -ENOMEM;
 858	struct timestamp *ts;
 
 
 
 859
 860	outstr = kmalloc(128, GFP_NOFS);
 861	if (!outstr)
 862		return -ENOMEM;
 863
 864	bh = udf_read_tagged(sb, block, block, &ident);
 865	if (!bh) {
 866		ret = -EAGAIN;
 867		goto out2;
 868	}
 869
 870	if (ident != TAG_IDENT_PVD) {
 871		ret = -EIO;
 872		goto out_bh;
 873	}
 874
 875	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 876
 877	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 878			      pvoldesc->recordingDateAndTime);
 879	ts = &pvoldesc->recordingDateAndTime;
 880	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 881		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 882		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 883
 884	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
 885	if (ret < 0) {
 886		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
 887		pr_warn("incorrect volume identification, setting to "
 888			"'InvalidName'\n");
 889	} else {
 890		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 891	}
 892	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 893
 894	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
 895	if (ret < 0) {
 896		ret = 0;
 897		goto out_bh;
 898	}
 899	outstr[ret] = 0;
 900	udf_debug("volSetIdent[] = '%s'\n", outstr);
 901
 
 902	ret = 0;
 903out_bh:
 904	brelse(bh);
 905out2:
 906	kfree(outstr);
 
 
 907	return ret;
 908}
 909
 910struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 911					u32 meta_file_loc, u32 partition_ref)
 912{
 913	struct kernel_lb_addr addr;
 914	struct inode *metadata_fe;
 915
 916	addr.logicalBlockNum = meta_file_loc;
 917	addr.partitionReferenceNum = partition_ref;
 918
 919	metadata_fe = udf_iget_special(sb, &addr);
 920
 921	if (IS_ERR(metadata_fe)) {
 922		udf_warn(sb, "metadata inode efe not found\n");
 923		return metadata_fe;
 924	}
 925	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 926		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 927		iput(metadata_fe);
 928		return ERR_PTR(-EIO);
 929	}
 930
 931	return metadata_fe;
 932}
 933
 934static int udf_load_metadata_files(struct super_block *sb, int partition,
 935				   int type1_index)
 936{
 937	struct udf_sb_info *sbi = UDF_SB(sb);
 938	struct udf_part_map *map;
 939	struct udf_meta_data *mdata;
 940	struct kernel_lb_addr addr;
 941	struct inode *fe;
 942
 943	map = &sbi->s_partmaps[partition];
 944	mdata = &map->s_type_specific.s_metadata;
 945	mdata->s_phys_partition_ref = type1_index;
 946
 947	/* metadata address */
 948	udf_debug("Metadata file location: block = %u part = %u\n",
 949		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 950
 951	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 952					 mdata->s_phys_partition_ref);
 953	if (IS_ERR(fe)) {
 
 954		/* mirror file entry */
 955		udf_debug("Mirror metadata file location: block = %u part = %u\n",
 956			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
 957
 958		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 959						 mdata->s_phys_partition_ref);
 960
 961		if (IS_ERR(fe)) {
 962			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 963			return PTR_ERR(fe);
 964		}
 965		mdata->s_mirror_fe = fe;
 966	} else
 967		mdata->s_metadata_fe = fe;
 968
 969
 970	/*
 971	 * bitmap file entry
 972	 * Note:
 973	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 974	*/
 975	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 976		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 977		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
 978
 979		udf_debug("Bitmap file location: block = %u part = %u\n",
 980			  addr.logicalBlockNum, addr.partitionReferenceNum);
 981
 982		fe = udf_iget_special(sb, &addr);
 983		if (IS_ERR(fe)) {
 984			if (sb_rdonly(sb))
 
 985				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 986			else {
 987				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 988				return PTR_ERR(fe);
 989			}
 990		} else
 991			mdata->s_bitmap_fe = fe;
 992	}
 993
 994	udf_debug("udf_load_metadata_files Ok\n");
 
 995	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996}
 997
 998int udf_compute_nr_groups(struct super_block *sb, u32 partition)
 999{
1000	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001	return DIV_ROUND_UP(map->s_partition_len +
1002			    (sizeof(struct spaceBitmapDesc) << 3),
1003			    sb->s_blocksize * 8);
1004}
1005
1006static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007{
1008	struct udf_bitmap *bitmap;
1009	int nr_groups;
1010	int size;
1011
1012	nr_groups = udf_compute_nr_groups(sb, index);
1013	size = sizeof(struct udf_bitmap) +
1014		(sizeof(struct buffer_head *) * nr_groups);
1015
1016	if (size <= PAGE_SIZE)
1017		bitmap = kzalloc(size, GFP_KERNEL);
1018	else
1019		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1020
1021	if (!bitmap)
1022		return NULL;
1023
 
1024	bitmap->s_nr_groups = nr_groups;
1025	return bitmap;
1026}
1027
1028static int check_partition_desc(struct super_block *sb,
1029				struct partitionDesc *p,
1030				struct udf_part_map *map)
1031{
1032	bool umap, utable, fmap, ftable;
1033	struct partitionHeaderDesc *phd;
1034
1035	switch (le32_to_cpu(p->accessType)) {
1036	case PD_ACCESS_TYPE_READ_ONLY:
1037	case PD_ACCESS_TYPE_WRITE_ONCE:
1038	case PD_ACCESS_TYPE_REWRITABLE:
1039	case PD_ACCESS_TYPE_NONE:
1040		goto force_ro;
1041	}
1042
1043	/* No Partition Header Descriptor? */
1044	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1045	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1046		goto force_ro;
1047
1048	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1049	utable = phd->unallocSpaceTable.extLength;
1050	umap = phd->unallocSpaceBitmap.extLength;
1051	ftable = phd->freedSpaceTable.extLength;
1052	fmap = phd->freedSpaceBitmap.extLength;
1053
1054	/* No allocation info? */
1055	if (!utable && !umap && !ftable && !fmap)
1056		goto force_ro;
1057
1058	/* We don't support blocks that require erasing before overwrite */
1059	if (ftable || fmap)
1060		goto force_ro;
1061	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1062	if (utable && umap)
1063		goto force_ro;
1064
1065	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1066	    map->s_partition_type == UDF_VIRTUAL_MAP20)
1067		goto force_ro;
1068
1069	return 0;
1070force_ro:
1071	if (!sb_rdonly(sb))
1072		return -EACCES;
1073	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1074	return 0;
1075}
1076
1077static int udf_fill_partdesc_info(struct super_block *sb,
1078		struct partitionDesc *p, int p_index)
1079{
1080	struct udf_part_map *map;
1081	struct udf_sb_info *sbi = UDF_SB(sb);
1082	struct partitionHeaderDesc *phd;
1083	int err;
1084
1085	map = &sbi->s_partmaps[p_index];
1086
1087	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089
1090	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098
1099	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1100		  p_index, map->s_partition_type,
1101		  map->s_partition_root, map->s_partition_len);
1102
1103	err = check_partition_desc(sb, p, map);
1104	if (err)
1105		return err;
1106
1107	/*
1108	 * Skip loading allocation info it we cannot ever write to the fs.
1109	 * This is a correctness thing as we may have decided to force ro mount
1110	 * to avoid allocation info we don't support.
1111	 */
1112	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1113		return 0;
1114
1115	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116	if (phd->unallocSpaceTable.extLength) {
1117		struct kernel_lb_addr loc = {
1118			.logicalBlockNum = le32_to_cpu(
1119				phd->unallocSpaceTable.extPosition),
1120			.partitionReferenceNum = p_index,
1121		};
1122		struct inode *inode;
1123
1124		inode = udf_iget_special(sb, &loc);
1125		if (IS_ERR(inode)) {
1126			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127				  p_index);
1128			return PTR_ERR(inode);
1129		}
1130		map->s_uspace.s_table = inode;
1131		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1133			  p_index, map->s_uspace.s_table->i_ino);
1134	}
1135
1136	if (phd->unallocSpaceBitmap.extLength) {
1137		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138		if (!bitmap)
1139			return -ENOMEM;
1140		map->s_uspace.s_bitmap = bitmap;
 
 
1141		bitmap->s_extPosition = le32_to_cpu(
1142				phd->unallocSpaceBitmap.extPosition);
1143		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1145			  p_index, bitmap->s_extPosition);
1146	}
1147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148	return 0;
1149}
1150
1151static void udf_find_vat_block(struct super_block *sb, int p_index,
1152			       int type1_index, sector_t start_block)
1153{
1154	struct udf_sb_info *sbi = UDF_SB(sb);
1155	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1156	sector_t vat_block;
1157	struct kernel_lb_addr ino;
1158	struct inode *inode;
1159
1160	/*
1161	 * VAT file entry is in the last recorded block. Some broken disks have
1162	 * it a few blocks before so try a bit harder...
1163	 */
1164	ino.partitionReferenceNum = type1_index;
1165	for (vat_block = start_block;
1166	     vat_block >= map->s_partition_root &&
1167	     vat_block >= start_block - 3; vat_block--) {
 
1168		ino.logicalBlockNum = vat_block - map->s_partition_root;
1169		inode = udf_iget_special(sb, &ino);
1170		if (!IS_ERR(inode)) {
1171			sbi->s_vat_inode = inode;
1172			break;
1173		}
1174	}
1175}
1176
1177static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1178{
1179	struct udf_sb_info *sbi = UDF_SB(sb);
1180	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1181	struct buffer_head *bh = NULL;
1182	struct udf_inode_info *vati;
1183	uint32_t pos;
1184	struct virtualAllocationTable20 *vat20;
1185	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1186			  sb->s_blocksize_bits;
1187
1188	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1189	if (!sbi->s_vat_inode &&
1190	    sbi->s_last_block != blocks - 1) {
1191		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1192			  (unsigned long)sbi->s_last_block,
1193			  (unsigned long)blocks - 1);
1194		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1195	}
1196	if (!sbi->s_vat_inode)
1197		return -EIO;
1198
1199	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1200		map->s_type_specific.s_virtual.s_start_offset = 0;
1201		map->s_type_specific.s_virtual.s_num_entries =
1202			(sbi->s_vat_inode->i_size - 36) >> 2;
1203	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1204		vati = UDF_I(sbi->s_vat_inode);
1205		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1206			pos = udf_block_map(sbi->s_vat_inode, 0);
1207			bh = sb_bread(sb, pos);
1208			if (!bh)
1209				return -EIO;
1210			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1211		} else {
1212			vat20 = (struct virtualAllocationTable20 *)
1213							vati->i_ext.i_data;
1214		}
1215
1216		map->s_type_specific.s_virtual.s_start_offset =
1217			le16_to_cpu(vat20->lengthHeader);
1218		map->s_type_specific.s_virtual.s_num_entries =
1219			(sbi->s_vat_inode->i_size -
1220				map->s_type_specific.s_virtual.
1221					s_start_offset) >> 2;
1222		brelse(bh);
1223	}
1224	return 0;
1225}
1226
1227/*
1228 * Load partition descriptor block
1229 *
1230 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1231 * sequence.
1232 */
1233static int udf_load_partdesc(struct super_block *sb, sector_t block)
1234{
1235	struct buffer_head *bh;
1236	struct partitionDesc *p;
1237	struct udf_part_map *map;
1238	struct udf_sb_info *sbi = UDF_SB(sb);
1239	int i, type1_idx;
1240	uint16_t partitionNumber;
1241	uint16_t ident;
1242	int ret;
1243
1244	bh = udf_read_tagged(sb, block, block, &ident);
1245	if (!bh)
1246		return -EAGAIN;
1247	if (ident != TAG_IDENT_PD) {
1248		ret = 0;
1249		goto out_bh;
1250	}
1251
1252	p = (struct partitionDesc *)bh->b_data;
1253	partitionNumber = le16_to_cpu(p->partitionNumber);
1254
1255	/* First scan for TYPE1 and SPARABLE partitions */
1256	for (i = 0; i < sbi->s_partitions; i++) {
1257		map = &sbi->s_partmaps[i];
1258		udf_debug("Searching map: (%u == %u)\n",
1259			  map->s_partition_num, partitionNumber);
1260		if (map->s_partition_num == partitionNumber &&
1261		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1262		     map->s_partition_type == UDF_SPARABLE_MAP15))
1263			break;
1264	}
1265
1266	if (i >= sbi->s_partitions) {
1267		udf_debug("Partition (%u) not found in partition map\n",
1268			  partitionNumber);
1269		ret = 0;
1270		goto out_bh;
1271	}
1272
1273	ret = udf_fill_partdesc_info(sb, p, i);
1274	if (ret < 0)
1275		goto out_bh;
1276
1277	/*
1278	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1279	 * PHYSICAL partitions are already set up
1280	 */
1281	type1_idx = i;
1282	map = NULL; /* supress 'maybe used uninitialized' warning */
1283	for (i = 0; i < sbi->s_partitions; i++) {
1284		map = &sbi->s_partmaps[i];
1285
1286		if (map->s_partition_num == partitionNumber &&
1287		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289		     map->s_partition_type == UDF_METADATA_MAP25))
1290			break;
1291	}
1292
1293	if (i >= sbi->s_partitions) {
1294		ret = 0;
1295		goto out_bh;
1296	}
1297
1298	ret = udf_fill_partdesc_info(sb, p, i);
1299	if (ret < 0)
1300		goto out_bh;
1301
1302	if (map->s_partition_type == UDF_METADATA_MAP25) {
1303		ret = udf_load_metadata_files(sb, i, type1_idx);
1304		if (ret < 0) {
1305			udf_err(sb, "error loading MetaData partition map %d\n",
1306				i);
1307			goto out_bh;
1308		}
1309	} else {
 
 
 
1310		/*
1311		 * If we have a partition with virtual map, we don't handle
1312		 * writing to it (we overwrite blocks instead of relocating
1313		 * them).
1314		 */
1315		if (!sb_rdonly(sb)) {
1316			ret = -EACCES;
1317			goto out_bh;
1318		}
1319		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1320		ret = udf_load_vat(sb, i, type1_idx);
1321		if (ret < 0)
1322			goto out_bh;
1323	}
1324	ret = 0;
1325out_bh:
1326	/* In case loading failed, we handle cleanup in udf_fill_super */
1327	brelse(bh);
1328	return ret;
1329}
1330
1331static int udf_load_sparable_map(struct super_block *sb,
1332				 struct udf_part_map *map,
1333				 struct sparablePartitionMap *spm)
1334{
1335	uint32_t loc;
1336	uint16_t ident;
1337	struct sparingTable *st;
1338	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339	int i;
1340	struct buffer_head *bh;
1341
1342	map->s_partition_type = UDF_SPARABLE_MAP15;
1343	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344	if (!is_power_of_2(sdata->s_packet_len)) {
1345		udf_err(sb, "error loading logical volume descriptor: "
1346			"Invalid packet length %u\n",
1347			(unsigned)sdata->s_packet_len);
1348		return -EIO;
1349	}
1350	if (spm->numSparingTables > 4) {
1351		udf_err(sb, "error loading logical volume descriptor: "
1352			"Too many sparing tables (%d)\n",
1353			(int)spm->numSparingTables);
1354		return -EIO;
1355	}
1356
1357	for (i = 0; i < spm->numSparingTables; i++) {
1358		loc = le32_to_cpu(spm->locSparingTable[i]);
1359		bh = udf_read_tagged(sb, loc, loc, &ident);
1360		if (!bh)
1361			continue;
1362
1363		st = (struct sparingTable *)bh->b_data;
1364		if (ident != 0 ||
1365		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366			    strlen(UDF_ID_SPARING)) ||
1367		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368							sb->s_blocksize) {
1369			brelse(bh);
1370			continue;
1371		}
1372
1373		sdata->s_spar_map[i] = bh;
1374	}
1375	map->s_partition_func = udf_get_pblock_spar15;
1376	return 0;
1377}
1378
1379static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380			       struct kernel_lb_addr *fileset)
1381{
1382	struct logicalVolDesc *lvd;
1383	int i, offset;
1384	uint8_t type;
1385	struct udf_sb_info *sbi = UDF_SB(sb);
1386	struct genericPartitionMap *gpm;
1387	uint16_t ident;
1388	struct buffer_head *bh;
1389	unsigned int table_len;
1390	int ret;
1391
1392	bh = udf_read_tagged(sb, block, block, &ident);
1393	if (!bh)
1394		return -EAGAIN;
1395	BUG_ON(ident != TAG_IDENT_LVD);
1396	lvd = (struct logicalVolDesc *)bh->b_data;
1397	table_len = le32_to_cpu(lvd->mapTableLength);
1398	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399		udf_err(sb, "error loading logical volume descriptor: "
1400			"Partition table too long (%u > %lu)\n", table_len,
1401			sb->s_blocksize - sizeof(*lvd));
1402		ret = -EIO;
1403		goto out_bh;
1404	}
1405
1406	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407					   "logical volume");
1408	if (ret)
1409		goto out_bh;
1410	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411	if (ret)
1412		goto out_bh;
1413
1414	for (i = 0, offset = 0;
1415	     i < sbi->s_partitions && offset < table_len;
1416	     i++, offset += gpm->partitionMapLength) {
1417		struct udf_part_map *map = &sbi->s_partmaps[i];
1418		gpm = (struct genericPartitionMap *)
1419				&(lvd->partitionMaps[offset]);
1420		type = gpm->partitionMapType;
1421		if (type == 1) {
1422			struct genericPartitionMap1 *gpm1 =
1423				(struct genericPartitionMap1 *)gpm;
1424			map->s_partition_type = UDF_TYPE1_MAP15;
1425			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427			map->s_partition_func = NULL;
1428		} else if (type == 2) {
1429			struct udfPartitionMap2 *upm2 =
1430						(struct udfPartitionMap2 *)gpm;
1431			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432						strlen(UDF_ID_VIRTUAL))) {
1433				u16 suf =
1434					le16_to_cpu(((__le16 *)upm2->partIdent.
1435							identSuffix)[0]);
1436				if (suf < 0x0200) {
1437					map->s_partition_type =
1438							UDF_VIRTUAL_MAP15;
1439					map->s_partition_func =
1440							udf_get_pblock_virt15;
1441				} else {
1442					map->s_partition_type =
1443							UDF_VIRTUAL_MAP20;
1444					map->s_partition_func =
1445							udf_get_pblock_virt20;
1446				}
1447			} else if (!strncmp(upm2->partIdent.ident,
1448						UDF_ID_SPARABLE,
1449						strlen(UDF_ID_SPARABLE))) {
1450				ret = udf_load_sparable_map(sb, map,
1451					(struct sparablePartitionMap *)gpm);
1452				if (ret < 0)
1453					goto out_bh;
1454			} else if (!strncmp(upm2->partIdent.ident,
1455						UDF_ID_METADATA,
1456						strlen(UDF_ID_METADATA))) {
1457				struct udf_meta_data *mdata =
1458					&map->s_type_specific.s_metadata;
1459				struct metadataPartitionMap *mdm =
1460						(struct metadataPartitionMap *)
1461						&(lvd->partitionMaps[offset]);
1462				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463					  i, type, UDF_ID_METADATA);
1464
1465				map->s_partition_type = UDF_METADATA_MAP25;
1466				map->s_partition_func = udf_get_pblock_meta25;
1467
1468				mdata->s_meta_file_loc   =
1469					le32_to_cpu(mdm->metadataFileLoc);
1470				mdata->s_mirror_file_loc =
1471					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472				mdata->s_bitmap_file_loc =
1473					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474				mdata->s_alloc_unit_size =
1475					le32_to_cpu(mdm->allocUnitSize);
1476				mdata->s_align_unit_size =
1477					le16_to_cpu(mdm->alignUnitSize);
1478				if (mdm->flags & 0x01)
1479					mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481				udf_debug("Metadata Ident suffix=0x%x\n",
1482					  le16_to_cpu(*(__le16 *)
1483						      mdm->partIdent.identSuffix));
1484				udf_debug("Metadata part num=%u\n",
1485					  le16_to_cpu(mdm->partitionNum));
1486				udf_debug("Metadata part alloc unit size=%u\n",
1487					  le32_to_cpu(mdm->allocUnitSize));
1488				udf_debug("Metadata file loc=%u\n",
1489					  le32_to_cpu(mdm->metadataFileLoc));
1490				udf_debug("Mirror file loc=%u\n",
1491					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492				udf_debug("Bitmap file loc=%u\n",
1493					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494				udf_debug("Flags: %d %u\n",
1495					  mdata->s_flags, mdm->flags);
1496			} else {
1497				udf_debug("Unknown ident: %s\n",
1498					  upm2->partIdent.ident);
1499				continue;
1500			}
1501			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503		}
1504		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505			  i, map->s_partition_num, type, map->s_volumeseqnum);
1506	}
1507
1508	if (fileset) {
1509		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511		*fileset = lelb_to_cpu(la->extLocation);
1512		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513			  fileset->logicalBlockNum,
1514			  fileset->partitionReferenceNum);
1515	}
1516	if (lvd->integritySeqExt.extLength)
1517		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518	ret = 0;
1519
1520	if (!sbi->s_lvid_bh) {
1521		/* We can't generate unique IDs without a valid LVID */
1522		if (sb_rdonly(sb)) {
1523			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524		} else {
1525			udf_warn(sb, "Damaged or missing LVID, forcing "
1526				     "readonly mount\n");
1527			ret = -EACCES;
1528		}
1529	}
1530out_bh:
1531	brelse(bh);
1532	return ret;
1533}
1534
1535/*
1536 * Find the prevailing Logical Volume Integrity Descriptor.
 
1537 */
1538static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539{
1540	struct buffer_head *bh, *final_bh;
1541	uint16_t ident;
1542	struct udf_sb_info *sbi = UDF_SB(sb);
1543	struct logicalVolIntegrityDesc *lvid;
1544	int indirections = 0;
1545
1546	while (++indirections <= UDF_MAX_LVID_NESTING) {
1547		final_bh = NULL;
1548		while (loc.extLength > 0 &&
1549			(bh = udf_read_tagged(sb, loc.extLocation,
1550					loc.extLocation, &ident))) {
1551			if (ident != TAG_IDENT_LVID) {
1552				brelse(bh);
1553				break;
1554			}
1555
1556			brelse(final_bh);
1557			final_bh = bh;
 
1558
1559			loc.extLength -= sb->s_blocksize;
1560			loc.extLocation++;
1561		}
1562
1563		if (!final_bh)
1564			return;
1565
1566		brelse(sbi->s_lvid_bh);
1567		sbi->s_lvid_bh = final_bh;
1568
1569		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570		if (lvid->nextIntegrityExt.extLength == 0)
1571			return;
1572
1573		loc = leea_to_cpu(lvid->nextIntegrityExt);
1574	}
1575
1576	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577		UDF_MAX_LVID_NESTING);
1578	brelse(sbi->s_lvid_bh);
1579	sbi->s_lvid_bh = NULL;
1580}
1581
1582/*
1583 * Step for reallocation of table of partition descriptor sequence numbers.
1584 * Must be power of 2.
1585 */
1586#define PART_DESC_ALLOC_STEP 32
1587
1588struct part_desc_seq_scan_data {
1589	struct udf_vds_record rec;
1590	u32 partnum;
1591};
1592
1593struct desc_seq_scan_data {
1594	struct udf_vds_record vds[VDS_POS_LENGTH];
1595	unsigned int size_part_descs;
1596	unsigned int num_part_descs;
1597	struct part_desc_seq_scan_data *part_descs_loc;
1598};
1599
1600static struct udf_vds_record *handle_partition_descriptor(
1601				struct buffer_head *bh,
1602				struct desc_seq_scan_data *data)
1603{
1604	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1605	int partnum;
1606	int i;
1607
1608	partnum = le16_to_cpu(desc->partitionNumber);
1609	for (i = 0; i < data->num_part_descs; i++)
1610		if (partnum == data->part_descs_loc[i].partnum)
1611			return &(data->part_descs_loc[i].rec);
1612	if (data->num_part_descs >= data->size_part_descs) {
1613		struct part_desc_seq_scan_data *new_loc;
1614		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1615
1616		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1617		if (!new_loc)
1618			return ERR_PTR(-ENOMEM);
1619		memcpy(new_loc, data->part_descs_loc,
1620		       data->size_part_descs * sizeof(*new_loc));
1621		kfree(data->part_descs_loc);
1622		data->part_descs_loc = new_loc;
1623		data->size_part_descs = new_size;
1624	}
1625	return &(data->part_descs_loc[data->num_part_descs++].rec);
1626}
1627
1628
1629static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1630		struct buffer_head *bh, struct desc_seq_scan_data *data)
1631{
1632	switch (ident) {
1633	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1634		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1635	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1636		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1637	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1638		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1639	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1640		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1641	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1642		return handle_partition_descriptor(bh, data);
1643	}
1644	return NULL;
1645}
1646
1647/*
1648 * Process a main/reserve volume descriptor sequence.
1649 *   @block		First block of first extent of the sequence.
1650 *   @lastblock		Lastblock of first extent of the sequence.
1651 *   @fileset		There we store extent containing root fileset
1652 *
1653 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1654 * sequence
 
1655 */
1656static noinline int udf_process_sequence(
1657		struct super_block *sb,
1658		sector_t block, sector_t lastblock,
1659		struct kernel_lb_addr *fileset)
1660{
1661	struct buffer_head *bh = NULL;
 
1662	struct udf_vds_record *curr;
1663	struct generic_desc *gd;
1664	struct volDescPtr *vdp;
1665	bool done = false;
1666	uint32_t vdsn;
1667	uint16_t ident;
1668	int ret;
1669	unsigned int indirections = 0;
1670	struct desc_seq_scan_data data;
1671	unsigned int i;
1672
1673	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1674	data.size_part_descs = PART_DESC_ALLOC_STEP;
1675	data.num_part_descs = 0;
1676	data.part_descs_loc = kcalloc(data.size_part_descs,
1677				      sizeof(*data.part_descs_loc),
1678				      GFP_KERNEL);
1679	if (!data.part_descs_loc)
1680		return -ENOMEM;
1681
1682	/*
1683	 * Read the main descriptor sequence and find which descriptors
1684	 * are in it.
1685	 */
1686	for (; (!done && block <= lastblock); block++) {
 
1687		bh = udf_read_tagged(sb, block, block, &ident);
1688		if (!bh)
1689			break;
 
 
 
 
1690
1691		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1692		gd = (struct generic_desc *)bh->b_data;
1693		vdsn = le32_to_cpu(gd->volDescSeqNum);
1694		switch (ident) {
 
 
 
 
 
 
 
1695		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1696			if (++indirections > UDF_MAX_TD_NESTING) {
1697				udf_err(sb, "too many Volume Descriptor "
1698					"Pointers (max %u supported)\n",
1699					UDF_MAX_TD_NESTING);
1700				brelse(bh);
1701				return -EIO;
 
 
 
 
 
 
1702			}
1703
1704			vdp = (struct volDescPtr *)bh->b_data;
1705			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1706			lastblock = le32_to_cpu(
1707				vdp->nextVolDescSeqExt.extLength) >>
1708				sb->s_blocksize_bits;
1709			lastblock += block - 1;
1710			/* For loop is going to increment 'block' again */
1711			block--;
1712			break;
1713		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1714		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
 
 
 
 
 
 
 
 
 
 
 
1715		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
 
 
 
 
 
 
1716		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1717		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1718			curr = get_volume_descriptor_record(ident, bh, &data);
1719			if (IS_ERR(curr)) {
1720				brelse(bh);
1721				return PTR_ERR(curr);
1722			}
1723			/* Descriptor we don't care about? */
1724			if (!curr)
1725				break;
1726			if (vdsn >= curr->volDescSeqNum) {
1727				curr->volDescSeqNum = vdsn;
1728				curr->block = block;
1729			}
1730			break;
1731		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1732			done = true;
 
 
 
 
 
 
1733			break;
1734		}
1735		brelse(bh);
1736	}
1737	/*
1738	 * Now read interesting descriptors again and process them
1739	 * in a suitable order
1740	 */
1741	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1742		udf_err(sb, "Primary Volume Descriptor not found!\n");
1743		return -EAGAIN;
1744	}
1745	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1746	if (ret < 0)
1747		return ret;
1748
1749	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1750		ret = udf_load_logicalvol(sb,
1751				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1752				fileset);
1753		if (ret < 0)
1754			return ret;
1755	}
 
 
 
 
 
 
1756
1757	/* Now handle prevailing Partition Descriptors */
1758	for (i = 0; i < data.num_part_descs; i++) {
1759		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1760		if (ret < 0)
1761			return ret;
 
 
 
 
 
1762	}
1763
1764	return 0;
1765}
1766
1767/*
1768 * Load Volume Descriptor Sequence described by anchor in bh
1769 *
1770 * Returns <0 on error, 0 on success
1771 */
1772static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1773			     struct kernel_lb_addr *fileset)
1774{
1775	struct anchorVolDescPtr *anchor;
1776	sector_t main_s, main_e, reserve_s, reserve_e;
1777	int ret;
1778
1779	anchor = (struct anchorVolDescPtr *)bh->b_data;
1780
1781	/* Locate the main sequence */
1782	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1783	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1784	main_e = main_e >> sb->s_blocksize_bits;
1785	main_e += main_s - 1;
1786
1787	/* Locate the reserve sequence */
1788	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1789	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1790	reserve_e = reserve_e >> sb->s_blocksize_bits;
1791	reserve_e += reserve_s - 1;
1792
1793	/* Process the main & reserve sequences */
1794	/* responsible for finding the PartitionDesc(s) */
1795	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1796	if (ret != -EAGAIN)
1797		return ret;
1798	udf_sb_free_partitions(sb);
1799	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1800	if (ret < 0) {
1801		udf_sb_free_partitions(sb);
1802		/* No sequence was OK, return -EIO */
1803		if (ret == -EAGAIN)
1804			ret = -EIO;
1805	}
1806	return ret;
1807}
1808
1809/*
1810 * Check whether there is an anchor block in the given block and
1811 * load Volume Descriptor Sequence if so.
1812 *
1813 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1814 * block
1815 */
1816static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1817				  struct kernel_lb_addr *fileset)
1818{
1819	struct buffer_head *bh;
1820	uint16_t ident;
1821	int ret;
1822
1823	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1824	    udf_fixed_to_variable(block) >=
1825	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1826		return -EAGAIN;
1827
1828	bh = udf_read_tagged(sb, block, block, &ident);
1829	if (!bh)
1830		return -EAGAIN;
1831	if (ident != TAG_IDENT_AVDP) {
1832		brelse(bh);
1833		return -EAGAIN;
1834	}
1835	ret = udf_load_sequence(sb, bh, fileset);
1836	brelse(bh);
1837	return ret;
1838}
1839
1840/*
1841 * Search for an anchor volume descriptor pointer.
1842 *
1843 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1844 * of anchors.
1845 */
1846static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1847			    struct kernel_lb_addr *fileset)
1848{
1849	sector_t last[6];
1850	int i;
1851	struct udf_sb_info *sbi = UDF_SB(sb);
1852	int last_count = 0;
1853	int ret;
1854
1855	/* First try user provided anchor */
1856	if (sbi->s_anchor) {
1857		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1858		if (ret != -EAGAIN)
1859			return ret;
1860	}
1861	/*
1862	 * according to spec, anchor is in either:
1863	 *     block 256
1864	 *     lastblock-256
1865	 *     lastblock
1866	 *  however, if the disc isn't closed, it could be 512.
1867	 */
1868	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1869	if (ret != -EAGAIN)
1870		return ret;
1871	/*
1872	 * The trouble is which block is the last one. Drives often misreport
1873	 * this so we try various possibilities.
1874	 */
1875	last[last_count++] = *lastblock;
1876	if (*lastblock >= 1)
1877		last[last_count++] = *lastblock - 1;
1878	last[last_count++] = *lastblock + 1;
1879	if (*lastblock >= 2)
1880		last[last_count++] = *lastblock - 2;
1881	if (*lastblock >= 150)
1882		last[last_count++] = *lastblock - 150;
1883	if (*lastblock >= 152)
1884		last[last_count++] = *lastblock - 152;
1885
1886	for (i = 0; i < last_count; i++) {
1887		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1888				sb->s_blocksize_bits)
1889			continue;
1890		ret = udf_check_anchor_block(sb, last[i], fileset);
1891		if (ret != -EAGAIN) {
1892			if (!ret)
1893				*lastblock = last[i];
1894			return ret;
1895		}
1896		if (last[i] < 256)
1897			continue;
1898		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1899		if (ret != -EAGAIN) {
1900			if (!ret)
1901				*lastblock = last[i];
1902			return ret;
1903		}
1904	}
1905
1906	/* Finally try block 512 in case media is open */
1907	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
 
 
1908}
1909
1910/*
1911 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1912 * area specified by it. The function expects sbi->s_lastblock to be the last
1913 * block on the media.
1914 *
1915 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1916 * was not found.
1917 */
1918static int udf_find_anchor(struct super_block *sb,
1919			   struct kernel_lb_addr *fileset)
1920{
 
1921	struct udf_sb_info *sbi = UDF_SB(sb);
1922	sector_t lastblock = sbi->s_last_block;
1923	int ret;
1924
1925	ret = udf_scan_anchors(sb, &lastblock, fileset);
1926	if (ret != -EAGAIN)
1927		goto out;
1928
1929	/* No anchor found? Try VARCONV conversion of block numbers */
1930	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1931	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1932	/* Firstly, we try to not convert number of the last block */
1933	ret = udf_scan_anchors(sb, &lastblock, fileset);
1934	if (ret != -EAGAIN)
 
 
1935		goto out;
1936
1937	lastblock = sbi->s_last_block;
1938	/* Secondly, we try with converted number of the last block */
1939	ret = udf_scan_anchors(sb, &lastblock, fileset);
1940	if (ret < 0) {
1941		/* VARCONV didn't help. Clear it. */
1942		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
 
1943	}
1944out:
1945	if (ret == 0)
1946		sbi->s_last_block = lastblock;
1947	return ret;
1948}
1949
1950/*
1951 * Check Volume Structure Descriptor, find Anchor block and load Volume
1952 * Descriptor Sequence.
1953 *
1954 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1955 * block was not found.
1956 */
1957static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1958			int silent, struct kernel_lb_addr *fileset)
1959{
1960	struct udf_sb_info *sbi = UDF_SB(sb);
1961	int nsr = 0;
1962	int ret;
1963
1964	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1965		if (!silent)
1966			udf_warn(sb, "Bad block size\n");
1967		return -EINVAL;
1968	}
1969	sbi->s_last_block = uopt->lastblock;
1970	if (!uopt->novrs) {
1971		/* Check that it is NSR02 compliant */
1972		nsr = udf_check_vsd(sb);
1973		if (!nsr) {
1974			if (!silent)
1975				udf_warn(sb, "No VRS found\n");
1976			return -EINVAL;
1977		}
1978		if (nsr == -1)
1979			udf_debug("Failed to read sector at offset %d. "
1980				  "Assuming open disc. Skipping validity "
1981				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1982		if (!sbi->s_last_block)
1983			sbi->s_last_block = udf_get_last_block(sb);
1984	} else {
1985		udf_debug("Validity check skipped because of novrs option\n");
1986	}
1987
1988	/* Look for anchor block and load Volume Descriptor Sequence */
1989	sbi->s_anchor = uopt->anchor;
1990	ret = udf_find_anchor(sb, fileset);
1991	if (ret < 0) {
1992		if (!silent && ret == -EAGAIN)
1993			udf_warn(sb, "No anchor found\n");
1994		return ret;
1995	}
1996	return 0;
1997}
1998
1999static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2000{
2001	struct timespec64 ts;
2002
2003	ktime_get_real_ts64(&ts);
2004	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2005	lvid->descTag.descCRC = cpu_to_le16(
2006		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2007			le16_to_cpu(lvid->descTag.descCRCLength)));
2008	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009}
2010
2011static void udf_open_lvid(struct super_block *sb)
2012{
2013	struct udf_sb_info *sbi = UDF_SB(sb);
2014	struct buffer_head *bh = sbi->s_lvid_bh;
2015	struct logicalVolIntegrityDesc *lvid;
2016	struct logicalVolIntegrityDescImpUse *lvidiu;
2017
2018	if (!bh)
2019		return;
 
 
2020	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2021	lvidiu = udf_sb_lvidiu(sb);
2022	if (!lvidiu)
2023		return;
2024
2025	mutex_lock(&sbi->s_alloc_mutex);
2026	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2027	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2028	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2029		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2030	else
2031		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
 
 
 
2032
2033	udf_finalize_lvid(lvid);
2034	mark_buffer_dirty(bh);
2035	sbi->s_lvid_dirty = 0;
2036	mutex_unlock(&sbi->s_alloc_mutex);
2037	/* Make opening of filesystem visible on the media immediately */
2038	sync_dirty_buffer(bh);
2039}
2040
2041static void udf_close_lvid(struct super_block *sb)
2042{
2043	struct udf_sb_info *sbi = UDF_SB(sb);
2044	struct buffer_head *bh = sbi->s_lvid_bh;
2045	struct logicalVolIntegrityDesc *lvid;
2046	struct logicalVolIntegrityDescImpUse *lvidiu;
2047
2048	if (!bh)
2049		return;
2050	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2051	lvidiu = udf_sb_lvidiu(sb);
2052	if (!lvidiu)
2053		return;
2054
2055	mutex_lock(&sbi->s_alloc_mutex);
 
 
2056	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2057	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
 
2058	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2059		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2060	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2061		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2062	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2063		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2064	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2065		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2066
 
 
 
 
 
2067	/*
2068	 * We set buffer uptodate unconditionally here to avoid spurious
2069	 * warnings from mark_buffer_dirty() when previous EIO has marked
2070	 * the buffer as !uptodate
2071	 */
2072	set_buffer_uptodate(bh);
2073	udf_finalize_lvid(lvid);
2074	mark_buffer_dirty(bh);
2075	sbi->s_lvid_dirty = 0;
2076	mutex_unlock(&sbi->s_alloc_mutex);
2077	/* Make closing of filesystem visible on the media immediately */
2078	sync_dirty_buffer(bh);
2079}
2080
2081u64 lvid_get_unique_id(struct super_block *sb)
2082{
2083	struct buffer_head *bh;
2084	struct udf_sb_info *sbi = UDF_SB(sb);
2085	struct logicalVolIntegrityDesc *lvid;
2086	struct logicalVolHeaderDesc *lvhd;
2087	u64 uniqueID;
2088	u64 ret;
2089
2090	bh = sbi->s_lvid_bh;
2091	if (!bh)
2092		return 0;
2093
2094	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2095	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2096
2097	mutex_lock(&sbi->s_alloc_mutex);
2098	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2099	if (!(++uniqueID & 0xFFFFFFFF))
2100		uniqueID += 16;
2101	lvhd->uniqueID = cpu_to_le64(uniqueID);
2102	udf_updated_lvid(sb);
2103	mutex_unlock(&sbi->s_alloc_mutex);
 
2104
2105	return ret;
2106}
2107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108static int udf_fill_super(struct super_block *sb, void *options, int silent)
2109{
2110	int ret = -EINVAL;
 
2111	struct inode *inode = NULL;
2112	struct udf_options uopt;
2113	struct kernel_lb_addr rootdir, fileset;
2114	struct udf_sb_info *sbi;
2115	bool lvid_open = false;
2116
2117	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2118	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2119	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2120	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2121	uopt.umask = 0;
2122	uopt.fmode = UDF_INVALID_MODE;
2123	uopt.dmode = UDF_INVALID_MODE;
2124	uopt.nls_map = NULL;
2125
2126	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2127	if (!sbi)
2128		return -ENOMEM;
2129
2130	sb->s_fs_info = sbi;
2131
2132	mutex_init(&sbi->s_alloc_mutex);
2133
2134	if (!udf_parse_options((char *)options, &uopt, false))
2135		goto parse_options_failure;
2136
2137	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2138	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2139		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2140		goto parse_options_failure;
2141	}
 
2142	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2143		uopt.nls_map = load_nls_default();
2144		if (!uopt.nls_map)
2145			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2146		else
2147			udf_debug("Using default NLS map\n");
2148	}
 
2149	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2150		uopt.flags |= (1 << UDF_FLAG_UTF8);
2151
2152	fileset.logicalBlockNum = 0xFFFFFFFF;
2153	fileset.partitionReferenceNum = 0xFFFF;
2154
2155	sbi->s_flags = uopt.flags;
2156	sbi->s_uid = uopt.uid;
2157	sbi->s_gid = uopt.gid;
2158	sbi->s_umask = uopt.umask;
2159	sbi->s_fmode = uopt.fmode;
2160	sbi->s_dmode = uopt.dmode;
2161	sbi->s_nls_map = uopt.nls_map;
2162	rwlock_init(&sbi->s_cred_lock);
2163
2164	if (uopt.session == 0xFFFFFFFF)
2165		sbi->s_session = udf_get_last_session(sb);
2166	else
2167		sbi->s_session = uopt.session;
2168
2169	udf_debug("Multi-session=%d\n", sbi->s_session);
2170
2171	/* Fill in the rest of the superblock */
2172	sb->s_op = &udf_sb_ops;
2173	sb->s_export_op = &udf_export_ops;
2174
 
2175	sb->s_magic = UDF_SUPER_MAGIC;
2176	sb->s_time_gran = 1000;
2177
2178	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2179		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2180	} else {
2181		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2182		while (uopt.blocksize <= 4096) {
 
 
 
 
 
2183			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2184			if (ret < 0) {
2185				if (!silent && ret != -EACCES) {
2186					pr_notice("Scanning with blocksize %u failed\n",
2187						  uopt.blocksize);
2188				}
2189				brelse(sbi->s_lvid_bh);
2190				sbi->s_lvid_bh = NULL;
2191				/*
2192				 * EACCES is special - we want to propagate to
2193				 * upper layers that we cannot handle RW mount.
2194				 */
2195				if (ret == -EACCES)
2196					break;
2197			} else
2198				break;
2199
2200			uopt.blocksize <<= 1;
2201		}
2202	}
2203	if (ret < 0) {
2204		if (ret == -EAGAIN) {
2205			udf_warn(sb, "No partition found (1)\n");
2206			ret = -EINVAL;
2207		}
2208		goto error_out;
2209	}
2210
2211	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2212
2213	if (sbi->s_lvid_bh) {
2214		struct logicalVolIntegrityDescImpUse *lvidiu =
2215							udf_sb_lvidiu(sb);
2216		uint16_t minUDFReadRev;
2217		uint16_t minUDFWriteRev;
 
 
2218
2219		if (!lvidiu) {
2220			ret = -EINVAL;
2221			goto error_out;
2222		}
2223		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2224		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2225		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2226			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2227				minUDFReadRev,
2228				UDF_MAX_READ_VERSION);
2229			ret = -EINVAL;
2230			goto error_out;
2231		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2232			if (!sb_rdonly(sb)) {
2233				ret = -EACCES;
2234				goto error_out;
2235			}
2236			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2237		}
2238
2239		sbi->s_udfrev = minUDFWriteRev;
2240
2241		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2242			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2243		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2244			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2245	}
2246
2247	if (!sbi->s_partitions) {
2248		udf_warn(sb, "No partition found (2)\n");
2249		ret = -EINVAL;
2250		goto error_out;
2251	}
2252
2253	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2254			UDF_PART_FLAG_READ_ONLY) {
2255		if (!sb_rdonly(sb)) {
2256			ret = -EACCES;
2257			goto error_out;
2258		}
2259		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2260	}
2261
2262	ret = udf_find_fileset(sb, &fileset, &rootdir);
2263	if (ret < 0) {
2264		udf_warn(sb, "No fileset found\n");
2265		goto error_out;
2266	}
2267
2268	if (!silent) {
2269		struct timestamp ts;
2270		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2271		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2272			 sbi->s_volume_ident,
2273			 le16_to_cpu(ts.year), ts.month, ts.day,
2274			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2275	}
2276	if (!sb_rdonly(sb)) {
2277		udf_open_lvid(sb);
2278		lvid_open = true;
2279	}
2280
2281	/* Assign the root inode */
2282	/* assign inodes by physical block number */
2283	/* perhaps it's not extensible enough, but for now ... */
2284	inode = udf_iget(sb, &rootdir);
2285	if (IS_ERR(inode)) {
2286		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2287		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2288		ret = PTR_ERR(inode);
2289		goto error_out;
2290	}
2291
2292	/* Allocate a dentry for the root inode */
2293	sb->s_root = d_make_root(inode);
2294	if (!sb->s_root) {
2295		udf_err(sb, "Couldn't allocate root dentry\n");
2296		ret = -ENOMEM;
2297		goto error_out;
2298	}
2299	sb->s_maxbytes = MAX_LFS_FILESIZE;
2300	sb->s_max_links = UDF_MAX_LINKS;
2301	return 0;
2302
2303error_out:
2304	iput(sbi->s_vat_inode);
2305parse_options_failure:
2306	if (uopt.nls_map)
2307		unload_nls(uopt.nls_map);
2308	if (lvid_open)
 
 
 
 
 
2309		udf_close_lvid(sb);
2310	brelse(sbi->s_lvid_bh);
2311	udf_sb_free_partitions(sb);
 
2312	kfree(sbi);
2313	sb->s_fs_info = NULL;
2314
2315	return ret;
2316}
2317
2318void _udf_err(struct super_block *sb, const char *function,
2319	      const char *fmt, ...)
2320{
2321	struct va_format vaf;
2322	va_list args;
2323
 
 
 
 
2324	va_start(args, fmt);
2325
2326	vaf.fmt = fmt;
2327	vaf.va = &args;
2328
2329	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331	va_end(args);
2332}
2333
2334void _udf_warn(struct super_block *sb, const char *function,
2335	       const char *fmt, ...)
2336{
2337	struct va_format vaf;
2338	va_list args;
2339
2340	va_start(args, fmt);
2341
2342	vaf.fmt = fmt;
2343	vaf.va = &args;
2344
2345	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347	va_end(args);
2348}
2349
2350static void udf_put_super(struct super_block *sb)
2351{
 
2352	struct udf_sb_info *sbi;
2353
2354	sbi = UDF_SB(sb);
2355
2356	iput(sbi->s_vat_inode);
 
 
 
 
 
2357	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2358		unload_nls(sbi->s_nls_map);
2359	if (!sb_rdonly(sb))
 
2360		udf_close_lvid(sb);
2361	brelse(sbi->s_lvid_bh);
2362	udf_sb_free_partitions(sb);
2363	mutex_destroy(&sbi->s_alloc_mutex);
2364	kfree(sb->s_fs_info);
2365	sb->s_fs_info = NULL;
2366}
2367
2368static int udf_sync_fs(struct super_block *sb, int wait)
2369{
2370	struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372	mutex_lock(&sbi->s_alloc_mutex);
2373	if (sbi->s_lvid_dirty) {
2374		struct buffer_head *bh = sbi->s_lvid_bh;
2375		struct logicalVolIntegrityDesc *lvid;
2376
2377		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378		udf_finalize_lvid(lvid);
2379
2380		/*
2381		 * Blockdevice will be synced later so we don't have to submit
2382		 * the buffer for IO
2383		 */
2384		mark_buffer_dirty(bh);
 
2385		sbi->s_lvid_dirty = 0;
2386	}
2387	mutex_unlock(&sbi->s_alloc_mutex);
2388
2389	return 0;
2390}
2391
2392static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393{
2394	struct super_block *sb = dentry->d_sb;
2395	struct udf_sb_info *sbi = UDF_SB(sb);
2396	struct logicalVolIntegrityDescImpUse *lvidiu;
2397	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399	lvidiu = udf_sb_lvidiu(sb);
 
 
 
 
2400	buf->f_type = UDF_SUPER_MAGIC;
2401	buf->f_bsize = sb->s_blocksize;
2402	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403	buf->f_bfree = udf_count_free(sb);
2404	buf->f_bavail = buf->f_bfree;
2405	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2406					  le32_to_cpu(lvidiu->numDirs)) : 0)
2407			+ buf->f_bfree;
2408	buf->f_ffree = buf->f_bfree;
2409	buf->f_namelen = UDF_NAME_LEN;
2410	buf->f_fsid.val[0] = (u32)id;
2411	buf->f_fsid.val[1] = (u32)(id >> 32);
2412
2413	return 0;
2414}
2415
2416static unsigned int udf_count_free_bitmap(struct super_block *sb,
2417					  struct udf_bitmap *bitmap)
2418{
2419	struct buffer_head *bh = NULL;
2420	unsigned int accum = 0;
2421	int index;
2422	udf_pblk_t block = 0, newblock;
2423	struct kernel_lb_addr loc;
2424	uint32_t bytes;
2425	uint8_t *ptr;
2426	uint16_t ident;
2427	struct spaceBitmapDesc *bm;
2428
2429	loc.logicalBlockNum = bitmap->s_extPosition;
2430	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2431	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2432
2433	if (!bh) {
2434		udf_err(sb, "udf_count_free failed\n");
2435		goto out;
2436	} else if (ident != TAG_IDENT_SBD) {
2437		brelse(bh);
2438		udf_err(sb, "udf_count_free failed\n");
2439		goto out;
2440	}
2441
2442	bm = (struct spaceBitmapDesc *)bh->b_data;
2443	bytes = le32_to_cpu(bm->numOfBytes);
2444	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2445	ptr = (uint8_t *)bh->b_data;
2446
2447	while (bytes > 0) {
2448		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2449		accum += bitmap_weight((const unsigned long *)(ptr + index),
2450					cur_bytes * 8);
2451		bytes -= cur_bytes;
2452		if (bytes) {
2453			brelse(bh);
2454			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2455			bh = udf_tread(sb, newblock);
2456			if (!bh) {
2457				udf_debug("read failed\n");
2458				goto out;
2459			}
2460			index = 0;
2461			ptr = (uint8_t *)bh->b_data;
2462		}
2463	}
2464	brelse(bh);
2465out:
2466	return accum;
2467}
2468
2469static unsigned int udf_count_free_table(struct super_block *sb,
2470					 struct inode *table)
2471{
2472	unsigned int accum = 0;
2473	uint32_t elen;
2474	struct kernel_lb_addr eloc;
2475	int8_t etype;
2476	struct extent_position epos;
2477
2478	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2479	epos.block = UDF_I(table)->i_location;
2480	epos.offset = sizeof(struct unallocSpaceEntry);
2481	epos.bh = NULL;
2482
2483	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2484		accum += (elen >> table->i_sb->s_blocksize_bits);
2485
2486	brelse(epos.bh);
2487	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2488
2489	return accum;
2490}
2491
2492static unsigned int udf_count_free(struct super_block *sb)
2493{
2494	unsigned int accum = 0;
2495	struct udf_sb_info *sbi;
2496	struct udf_part_map *map;
2497
2498	sbi = UDF_SB(sb);
2499	if (sbi->s_lvid_bh) {
2500		struct logicalVolIntegrityDesc *lvid =
2501			(struct logicalVolIntegrityDesc *)
2502			sbi->s_lvid_bh->b_data;
2503		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2504			accum = le32_to_cpu(
2505					lvid->freeSpaceTable[sbi->s_partition]);
2506			if (accum == 0xFFFFFFFF)
2507				accum = 0;
2508		}
2509	}
2510
2511	if (accum)
2512		return accum;
2513
2514	map = &sbi->s_partmaps[sbi->s_partition];
2515	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2516		accum += udf_count_free_bitmap(sb,
2517					       map->s_uspace.s_bitmap);
2518	}
 
 
 
 
2519	if (accum)
2520		return accum;
2521
2522	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2523		accum += udf_count_free_table(sb,
2524					      map->s_uspace.s_table);
2525	}
 
 
 
 
 
2526	return accum;
2527}
2528
2529MODULE_AUTHOR("Ben Fennema");
2530MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2531MODULE_LICENSE("GPL");
2532module_init(init_udf_fs)
2533module_exit(exit_udf_fs)