Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/buffer_head.h>
52#include <linux/vfs.h>
53#include <linux/vmalloc.h>
54#include <linux/errno.h>
55#include <linux/mount.h>
56#include <linux/seq_file.h>
57#include <linux/bitmap.h>
58#include <linux/crc-itu-t.h>
59#include <linux/log2.h>
60#include <asm/byteorder.h>
61
62#include "udf_sb.h"
63#include "udf_i.h"
64
65#include <linux/init.h>
66#include <asm/uaccess.h>
67
68#define VDS_POS_PRIMARY_VOL_DESC 0
69#define VDS_POS_UNALLOC_SPACE_DESC 1
70#define VDS_POS_LOGICAL_VOL_DESC 2
71#define VDS_POS_PARTITION_DESC 3
72#define VDS_POS_IMP_USE_VOL_DESC 4
73#define VDS_POS_VOL_DESC_PTR 5
74#define VDS_POS_TERMINATING_DESC 6
75#define VDS_POS_LENGTH 7
76
77#define UDF_DEFAULT_BLOCKSIZE 2048
78
79enum { UDF_MAX_LINKS = 0xffff };
80
81/* These are the "meat" - everything else is stuffing */
82static int udf_fill_super(struct super_block *, void *, int);
83static void udf_put_super(struct super_block *);
84static int udf_sync_fs(struct super_block *, int);
85static int udf_remount_fs(struct super_block *, int *, char *);
86static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91static void udf_open_lvid(struct super_block *);
92static void udf_close_lvid(struct super_block *);
93static unsigned int udf_count_free(struct super_block *);
94static int udf_statfs(struct dentry *, struct kstatfs *);
95static int udf_show_options(struct seq_file *, struct dentry *);
96
97struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98{
99 struct logicalVolIntegrityDesc *lvid =
100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 __u32 offset = number_of_partitions * 2 *
103 sizeof(uint32_t)/sizeof(uint8_t);
104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105}
106
107/* UDF filesystem type */
108static struct dentry *udf_mount(struct file_system_type *fs_type,
109 int flags, const char *dev_name, void *data)
110{
111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112}
113
114static struct file_system_type udf_fstype = {
115 .owner = THIS_MODULE,
116 .name = "udf",
117 .mount = udf_mount,
118 .kill_sb = kill_block_super,
119 .fs_flags = FS_REQUIRES_DEV,
120};
121
122static struct kmem_cache *udf_inode_cachep;
123
124static struct inode *udf_alloc_inode(struct super_block *sb)
125{
126 struct udf_inode_info *ei;
127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 if (!ei)
129 return NULL;
130
131 ei->i_unique = 0;
132 ei->i_lenExtents = 0;
133 ei->i_next_alloc_block = 0;
134 ei->i_next_alloc_goal = 0;
135 ei->i_strat4096 = 0;
136 init_rwsem(&ei->i_data_sem);
137
138 return &ei->vfs_inode;
139}
140
141static void udf_i_callback(struct rcu_head *head)
142{
143 struct inode *inode = container_of(head, struct inode, i_rcu);
144 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145}
146
147static void udf_destroy_inode(struct inode *inode)
148{
149 call_rcu(&inode->i_rcu, udf_i_callback);
150}
151
152static void init_once(void *foo)
153{
154 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155
156 ei->i_ext.i_data = NULL;
157 inode_init_once(&ei->vfs_inode);
158}
159
160static int init_inodecache(void)
161{
162 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 sizeof(struct udf_inode_info),
164 0, (SLAB_RECLAIM_ACCOUNT |
165 SLAB_MEM_SPREAD),
166 init_once);
167 if (!udf_inode_cachep)
168 return -ENOMEM;
169 return 0;
170}
171
172static void destroy_inodecache(void)
173{
174 kmem_cache_destroy(udf_inode_cachep);
175}
176
177/* Superblock operations */
178static const struct super_operations udf_sb_ops = {
179 .alloc_inode = udf_alloc_inode,
180 .destroy_inode = udf_destroy_inode,
181 .write_inode = udf_write_inode,
182 .evict_inode = udf_evict_inode,
183 .put_super = udf_put_super,
184 .sync_fs = udf_sync_fs,
185 .statfs = udf_statfs,
186 .remount_fs = udf_remount_fs,
187 .show_options = udf_show_options,
188};
189
190struct udf_options {
191 unsigned char novrs;
192 unsigned int blocksize;
193 unsigned int session;
194 unsigned int lastblock;
195 unsigned int anchor;
196 unsigned int volume;
197 unsigned short partition;
198 unsigned int fileset;
199 unsigned int rootdir;
200 unsigned int flags;
201 umode_t umask;
202 gid_t gid;
203 uid_t uid;
204 umode_t fmode;
205 umode_t dmode;
206 struct nls_table *nls_map;
207};
208
209static int __init init_udf_fs(void)
210{
211 int err;
212
213 err = init_inodecache();
214 if (err)
215 goto out1;
216 err = register_filesystem(&udf_fstype);
217 if (err)
218 goto out;
219
220 return 0;
221
222out:
223 destroy_inodecache();
224
225out1:
226 return err;
227}
228
229static void __exit exit_udf_fs(void)
230{
231 unregister_filesystem(&udf_fstype);
232 destroy_inodecache();
233}
234
235module_init(init_udf_fs)
236module_exit(exit_udf_fs)
237
238static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239{
240 struct udf_sb_info *sbi = UDF_SB(sb);
241
242 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243 GFP_KERNEL);
244 if (!sbi->s_partmaps) {
245 udf_err(sb, "Unable to allocate space for %d partition maps\n",
246 count);
247 sbi->s_partitions = 0;
248 return -ENOMEM;
249 }
250
251 sbi->s_partitions = count;
252 return 0;
253}
254
255static int udf_show_options(struct seq_file *seq, struct dentry *root)
256{
257 struct super_block *sb = root->d_sb;
258 struct udf_sb_info *sbi = UDF_SB(sb);
259
260 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
261 seq_puts(seq, ",nostrict");
262 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
263 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
264 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
265 seq_puts(seq, ",unhide");
266 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
267 seq_puts(seq, ",undelete");
268 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
269 seq_puts(seq, ",noadinicb");
270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
271 seq_puts(seq, ",shortad");
272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
273 seq_puts(seq, ",uid=forget");
274 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
275 seq_puts(seq, ",uid=ignore");
276 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
277 seq_puts(seq, ",gid=forget");
278 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
279 seq_puts(seq, ",gid=ignore");
280 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
281 seq_printf(seq, ",uid=%u", sbi->s_uid);
282 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
283 seq_printf(seq, ",gid=%u", sbi->s_gid);
284 if (sbi->s_umask != 0)
285 seq_printf(seq, ",umask=%ho", sbi->s_umask);
286 if (sbi->s_fmode != UDF_INVALID_MODE)
287 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
288 if (sbi->s_dmode != UDF_INVALID_MODE)
289 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
290 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
291 seq_printf(seq, ",session=%u", sbi->s_session);
292 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
293 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
294 if (sbi->s_anchor != 0)
295 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
296 /*
297 * volume, partition, fileset and rootdir seem to be ignored
298 * currently
299 */
300 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
301 seq_puts(seq, ",utf8");
302 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
303 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
304
305 return 0;
306}
307
308/*
309 * udf_parse_options
310 *
311 * PURPOSE
312 * Parse mount options.
313 *
314 * DESCRIPTION
315 * The following mount options are supported:
316 *
317 * gid= Set the default group.
318 * umask= Set the default umask.
319 * mode= Set the default file permissions.
320 * dmode= Set the default directory permissions.
321 * uid= Set the default user.
322 * bs= Set the block size.
323 * unhide Show otherwise hidden files.
324 * undelete Show deleted files in lists.
325 * adinicb Embed data in the inode (default)
326 * noadinicb Don't embed data in the inode
327 * shortad Use short ad's
328 * longad Use long ad's (default)
329 * nostrict Unset strict conformance
330 * iocharset= Set the NLS character set
331 *
332 * The remaining are for debugging and disaster recovery:
333 *
334 * novrs Skip volume sequence recognition
335 *
336 * The following expect a offset from 0.
337 *
338 * session= Set the CDROM session (default= last session)
339 * anchor= Override standard anchor location. (default= 256)
340 * volume= Override the VolumeDesc location. (unused)
341 * partition= Override the PartitionDesc location. (unused)
342 * lastblock= Set the last block of the filesystem/
343 *
344 * The following expect a offset from the partition root.
345 *
346 * fileset= Override the fileset block location. (unused)
347 * rootdir= Override the root directory location. (unused)
348 * WARNING: overriding the rootdir to a non-directory may
349 * yield highly unpredictable results.
350 *
351 * PRE-CONDITIONS
352 * options Pointer to mount options string.
353 * uopts Pointer to mount options variable.
354 *
355 * POST-CONDITIONS
356 * <return> 1 Mount options parsed okay.
357 * <return> 0 Error parsing mount options.
358 *
359 * HISTORY
360 * July 1, 1997 - Andrew E. Mileski
361 * Written, tested, and released.
362 */
363
364enum {
365 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
366 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
367 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
368 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
369 Opt_rootdir, Opt_utf8, Opt_iocharset,
370 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
371 Opt_fmode, Opt_dmode
372};
373
374static const match_table_t tokens = {
375 {Opt_novrs, "novrs"},
376 {Opt_nostrict, "nostrict"},
377 {Opt_bs, "bs=%u"},
378 {Opt_unhide, "unhide"},
379 {Opt_undelete, "undelete"},
380 {Opt_noadinicb, "noadinicb"},
381 {Opt_adinicb, "adinicb"},
382 {Opt_shortad, "shortad"},
383 {Opt_longad, "longad"},
384 {Opt_uforget, "uid=forget"},
385 {Opt_uignore, "uid=ignore"},
386 {Opt_gforget, "gid=forget"},
387 {Opt_gignore, "gid=ignore"},
388 {Opt_gid, "gid=%u"},
389 {Opt_uid, "uid=%u"},
390 {Opt_umask, "umask=%o"},
391 {Opt_session, "session=%u"},
392 {Opt_lastblock, "lastblock=%u"},
393 {Opt_anchor, "anchor=%u"},
394 {Opt_volume, "volume=%u"},
395 {Opt_partition, "partition=%u"},
396 {Opt_fileset, "fileset=%u"},
397 {Opt_rootdir, "rootdir=%u"},
398 {Opt_utf8, "utf8"},
399 {Opt_iocharset, "iocharset=%s"},
400 {Opt_fmode, "mode=%o"},
401 {Opt_dmode, "dmode=%o"},
402 {Opt_err, NULL}
403};
404
405static int udf_parse_options(char *options, struct udf_options *uopt,
406 bool remount)
407{
408 char *p;
409 int option;
410
411 uopt->novrs = 0;
412 uopt->partition = 0xFFFF;
413 uopt->session = 0xFFFFFFFF;
414 uopt->lastblock = 0;
415 uopt->anchor = 0;
416 uopt->volume = 0xFFFFFFFF;
417 uopt->rootdir = 0xFFFFFFFF;
418 uopt->fileset = 0xFFFFFFFF;
419 uopt->nls_map = NULL;
420
421 if (!options)
422 return 1;
423
424 while ((p = strsep(&options, ",")) != NULL) {
425 substring_t args[MAX_OPT_ARGS];
426 int token;
427 if (!*p)
428 continue;
429
430 token = match_token(p, tokens, args);
431 switch (token) {
432 case Opt_novrs:
433 uopt->novrs = 1;
434 break;
435 case Opt_bs:
436 if (match_int(&args[0], &option))
437 return 0;
438 uopt->blocksize = option;
439 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
440 break;
441 case Opt_unhide:
442 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
443 break;
444 case Opt_undelete:
445 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
446 break;
447 case Opt_noadinicb:
448 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
449 break;
450 case Opt_adinicb:
451 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
452 break;
453 case Opt_shortad:
454 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
455 break;
456 case Opt_longad:
457 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
458 break;
459 case Opt_gid:
460 if (match_int(args, &option))
461 return 0;
462 uopt->gid = option;
463 uopt->flags |= (1 << UDF_FLAG_GID_SET);
464 break;
465 case Opt_uid:
466 if (match_int(args, &option))
467 return 0;
468 uopt->uid = option;
469 uopt->flags |= (1 << UDF_FLAG_UID_SET);
470 break;
471 case Opt_umask:
472 if (match_octal(args, &option))
473 return 0;
474 uopt->umask = option;
475 break;
476 case Opt_nostrict:
477 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
478 break;
479 case Opt_session:
480 if (match_int(args, &option))
481 return 0;
482 uopt->session = option;
483 if (!remount)
484 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
485 break;
486 case Opt_lastblock:
487 if (match_int(args, &option))
488 return 0;
489 uopt->lastblock = option;
490 if (!remount)
491 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
492 break;
493 case Opt_anchor:
494 if (match_int(args, &option))
495 return 0;
496 uopt->anchor = option;
497 break;
498 case Opt_volume:
499 if (match_int(args, &option))
500 return 0;
501 uopt->volume = option;
502 break;
503 case Opt_partition:
504 if (match_int(args, &option))
505 return 0;
506 uopt->partition = option;
507 break;
508 case Opt_fileset:
509 if (match_int(args, &option))
510 return 0;
511 uopt->fileset = option;
512 break;
513 case Opt_rootdir:
514 if (match_int(args, &option))
515 return 0;
516 uopt->rootdir = option;
517 break;
518 case Opt_utf8:
519 uopt->flags |= (1 << UDF_FLAG_UTF8);
520 break;
521#ifdef CONFIG_UDF_NLS
522 case Opt_iocharset:
523 uopt->nls_map = load_nls(args[0].from);
524 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
525 break;
526#endif
527 case Opt_uignore:
528 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
529 break;
530 case Opt_uforget:
531 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
532 break;
533 case Opt_gignore:
534 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
535 break;
536 case Opt_gforget:
537 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
538 break;
539 case Opt_fmode:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->fmode = option & 0777;
543 break;
544 case Opt_dmode:
545 if (match_octal(args, &option))
546 return 0;
547 uopt->dmode = option & 0777;
548 break;
549 default:
550 pr_err("bad mount option \"%s\" or missing value\n", p);
551 return 0;
552 }
553 }
554 return 1;
555}
556
557static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
558{
559 struct udf_options uopt;
560 struct udf_sb_info *sbi = UDF_SB(sb);
561 int error = 0;
562
563 uopt.flags = sbi->s_flags;
564 uopt.uid = sbi->s_uid;
565 uopt.gid = sbi->s_gid;
566 uopt.umask = sbi->s_umask;
567 uopt.fmode = sbi->s_fmode;
568 uopt.dmode = sbi->s_dmode;
569
570 if (!udf_parse_options(options, &uopt, true))
571 return -EINVAL;
572
573 write_lock(&sbi->s_cred_lock);
574 sbi->s_flags = uopt.flags;
575 sbi->s_uid = uopt.uid;
576 sbi->s_gid = uopt.gid;
577 sbi->s_umask = uopt.umask;
578 sbi->s_fmode = uopt.fmode;
579 sbi->s_dmode = uopt.dmode;
580 write_unlock(&sbi->s_cred_lock);
581
582 if (sbi->s_lvid_bh) {
583 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
584 if (write_rev > UDF_MAX_WRITE_VERSION)
585 *flags |= MS_RDONLY;
586 }
587
588 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
589 goto out_unlock;
590
591 if (*flags & MS_RDONLY)
592 udf_close_lvid(sb);
593 else
594 udf_open_lvid(sb);
595
596out_unlock:
597 return error;
598}
599
600/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
601/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
602static loff_t udf_check_vsd(struct super_block *sb)
603{
604 struct volStructDesc *vsd = NULL;
605 loff_t sector = 32768;
606 int sectorsize;
607 struct buffer_head *bh = NULL;
608 int nsr02 = 0;
609 int nsr03 = 0;
610 struct udf_sb_info *sbi;
611
612 sbi = UDF_SB(sb);
613 if (sb->s_blocksize < sizeof(struct volStructDesc))
614 sectorsize = sizeof(struct volStructDesc);
615 else
616 sectorsize = sb->s_blocksize;
617
618 sector += (sbi->s_session << sb->s_blocksize_bits);
619
620 udf_debug("Starting at sector %u (%ld byte sectors)\n",
621 (unsigned int)(sector >> sb->s_blocksize_bits),
622 sb->s_blocksize);
623 /* Process the sequence (if applicable) */
624 for (; !nsr02 && !nsr03; sector += sectorsize) {
625 /* Read a block */
626 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
627 if (!bh)
628 break;
629
630 /* Look for ISO descriptors */
631 vsd = (struct volStructDesc *)(bh->b_data +
632 (sector & (sb->s_blocksize - 1)));
633
634 if (vsd->stdIdent[0] == 0) {
635 brelse(bh);
636 break;
637 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
638 VSD_STD_ID_LEN)) {
639 switch (vsd->structType) {
640 case 0:
641 udf_debug("ISO9660 Boot Record found\n");
642 break;
643 case 1:
644 udf_debug("ISO9660 Primary Volume Descriptor found\n");
645 break;
646 case 2:
647 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
648 break;
649 case 3:
650 udf_debug("ISO9660 Volume Partition Descriptor found\n");
651 break;
652 case 255:
653 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
654 break;
655 default:
656 udf_debug("ISO9660 VRS (%u) found\n",
657 vsd->structType);
658 break;
659 }
660 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
661 VSD_STD_ID_LEN))
662 ; /* nothing */
663 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
664 VSD_STD_ID_LEN)) {
665 brelse(bh);
666 break;
667 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
668 VSD_STD_ID_LEN))
669 nsr02 = sector;
670 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
671 VSD_STD_ID_LEN))
672 nsr03 = sector;
673 brelse(bh);
674 }
675
676 if (nsr03)
677 return nsr03;
678 else if (nsr02)
679 return nsr02;
680 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
681 return -1;
682 else
683 return 0;
684}
685
686static int udf_find_fileset(struct super_block *sb,
687 struct kernel_lb_addr *fileset,
688 struct kernel_lb_addr *root)
689{
690 struct buffer_head *bh = NULL;
691 long lastblock;
692 uint16_t ident;
693 struct udf_sb_info *sbi;
694
695 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
696 fileset->partitionReferenceNum != 0xFFFF) {
697 bh = udf_read_ptagged(sb, fileset, 0, &ident);
698
699 if (!bh) {
700 return 1;
701 } else if (ident != TAG_IDENT_FSD) {
702 brelse(bh);
703 return 1;
704 }
705
706 }
707
708 sbi = UDF_SB(sb);
709 if (!bh) {
710 /* Search backwards through the partitions */
711 struct kernel_lb_addr newfileset;
712
713/* --> cvg: FIXME - is it reasonable? */
714 return 1;
715
716 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
717 (newfileset.partitionReferenceNum != 0xFFFF &&
718 fileset->logicalBlockNum == 0xFFFFFFFF &&
719 fileset->partitionReferenceNum == 0xFFFF);
720 newfileset.partitionReferenceNum--) {
721 lastblock = sbi->s_partmaps
722 [newfileset.partitionReferenceNum]
723 .s_partition_len;
724 newfileset.logicalBlockNum = 0;
725
726 do {
727 bh = udf_read_ptagged(sb, &newfileset, 0,
728 &ident);
729 if (!bh) {
730 newfileset.logicalBlockNum++;
731 continue;
732 }
733
734 switch (ident) {
735 case TAG_IDENT_SBD:
736 {
737 struct spaceBitmapDesc *sp;
738 sp = (struct spaceBitmapDesc *)
739 bh->b_data;
740 newfileset.logicalBlockNum += 1 +
741 ((le32_to_cpu(sp->numOfBytes) +
742 sizeof(struct spaceBitmapDesc)
743 - 1) >> sb->s_blocksize_bits);
744 brelse(bh);
745 break;
746 }
747 case TAG_IDENT_FSD:
748 *fileset = newfileset;
749 break;
750 default:
751 newfileset.logicalBlockNum++;
752 brelse(bh);
753 bh = NULL;
754 break;
755 }
756 } while (newfileset.logicalBlockNum < lastblock &&
757 fileset->logicalBlockNum == 0xFFFFFFFF &&
758 fileset->partitionReferenceNum == 0xFFFF);
759 }
760 }
761
762 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
763 fileset->partitionReferenceNum != 0xFFFF) && bh) {
764 udf_debug("Fileset at block=%d, partition=%d\n",
765 fileset->logicalBlockNum,
766 fileset->partitionReferenceNum);
767
768 sbi->s_partition = fileset->partitionReferenceNum;
769 udf_load_fileset(sb, bh, root);
770 brelse(bh);
771 return 0;
772 }
773 return 1;
774}
775
776static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
777{
778 struct primaryVolDesc *pvoldesc;
779 struct ustr *instr, *outstr;
780 struct buffer_head *bh;
781 uint16_t ident;
782 int ret = 1;
783
784 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
785 if (!instr)
786 return 1;
787
788 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
789 if (!outstr)
790 goto out1;
791
792 bh = udf_read_tagged(sb, block, block, &ident);
793 if (!bh)
794 goto out2;
795
796 BUG_ON(ident != TAG_IDENT_PVD);
797
798 pvoldesc = (struct primaryVolDesc *)bh->b_data;
799
800 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
801 pvoldesc->recordingDateAndTime)) {
802#ifdef UDFFS_DEBUG
803 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
804 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
805 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
806 ts->minute, le16_to_cpu(ts->typeAndTimezone));
807#endif
808 }
809
810 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
811 if (udf_CS0toUTF8(outstr, instr)) {
812 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
813 outstr->u_len > 31 ? 31 : outstr->u_len);
814 udf_debug("volIdent[] = '%s'\n",
815 UDF_SB(sb)->s_volume_ident);
816 }
817
818 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
819 if (udf_CS0toUTF8(outstr, instr))
820 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
821
822 brelse(bh);
823 ret = 0;
824out2:
825 kfree(outstr);
826out1:
827 kfree(instr);
828 return ret;
829}
830
831struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
832 u32 meta_file_loc, u32 partition_num)
833{
834 struct kernel_lb_addr addr;
835 struct inode *metadata_fe;
836
837 addr.logicalBlockNum = meta_file_loc;
838 addr.partitionReferenceNum = partition_num;
839
840 metadata_fe = udf_iget(sb, &addr);
841
842 if (metadata_fe == NULL)
843 udf_warn(sb, "metadata inode efe not found\n");
844 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
845 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
846 iput(metadata_fe);
847 metadata_fe = NULL;
848 }
849
850 return metadata_fe;
851}
852
853static int udf_load_metadata_files(struct super_block *sb, int partition)
854{
855 struct udf_sb_info *sbi = UDF_SB(sb);
856 struct udf_part_map *map;
857 struct udf_meta_data *mdata;
858 struct kernel_lb_addr addr;
859
860 map = &sbi->s_partmaps[partition];
861 mdata = &map->s_type_specific.s_metadata;
862
863 /* metadata address */
864 udf_debug("Metadata file location: block = %d part = %d\n",
865 mdata->s_meta_file_loc, map->s_partition_num);
866
867 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
868 mdata->s_meta_file_loc, map->s_partition_num);
869
870 if (mdata->s_metadata_fe == NULL) {
871 /* mirror file entry */
872 udf_debug("Mirror metadata file location: block = %d part = %d\n",
873 mdata->s_mirror_file_loc, map->s_partition_num);
874
875 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
876 mdata->s_mirror_file_loc, map->s_partition_num);
877
878 if (mdata->s_mirror_fe == NULL) {
879 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
880 goto error_exit;
881 }
882 }
883
884 /*
885 * bitmap file entry
886 * Note:
887 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
888 */
889 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
890 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
891 addr.partitionReferenceNum = map->s_partition_num;
892
893 udf_debug("Bitmap file location: block = %d part = %d\n",
894 addr.logicalBlockNum, addr.partitionReferenceNum);
895
896 mdata->s_bitmap_fe = udf_iget(sb, &addr);
897
898 if (mdata->s_bitmap_fe == NULL) {
899 if (sb->s_flags & MS_RDONLY)
900 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
901 else {
902 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
903 goto error_exit;
904 }
905 }
906 }
907
908 udf_debug("udf_load_metadata_files Ok\n");
909
910 return 0;
911
912error_exit:
913 return 1;
914}
915
916static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
917 struct kernel_lb_addr *root)
918{
919 struct fileSetDesc *fset;
920
921 fset = (struct fileSetDesc *)bh->b_data;
922
923 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
924
925 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
926
927 udf_debug("Rootdir at block=%d, partition=%d\n",
928 root->logicalBlockNum, root->partitionReferenceNum);
929}
930
931int udf_compute_nr_groups(struct super_block *sb, u32 partition)
932{
933 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
934 return DIV_ROUND_UP(map->s_partition_len +
935 (sizeof(struct spaceBitmapDesc) << 3),
936 sb->s_blocksize * 8);
937}
938
939static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
940{
941 struct udf_bitmap *bitmap;
942 int nr_groups;
943 int size;
944
945 nr_groups = udf_compute_nr_groups(sb, index);
946 size = sizeof(struct udf_bitmap) +
947 (sizeof(struct buffer_head *) * nr_groups);
948
949 if (size <= PAGE_SIZE)
950 bitmap = kzalloc(size, GFP_KERNEL);
951 else
952 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
953
954 if (bitmap == NULL)
955 return NULL;
956
957 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
958 bitmap->s_nr_groups = nr_groups;
959 return bitmap;
960}
961
962static int udf_fill_partdesc_info(struct super_block *sb,
963 struct partitionDesc *p, int p_index)
964{
965 struct udf_part_map *map;
966 struct udf_sb_info *sbi = UDF_SB(sb);
967 struct partitionHeaderDesc *phd;
968
969 map = &sbi->s_partmaps[p_index];
970
971 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
972 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
973
974 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
975 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
976 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
977 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
978 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
979 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
980 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
981 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
982
983 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
984 p_index, map->s_partition_type,
985 map->s_partition_root, map->s_partition_len);
986
987 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
988 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
989 return 0;
990
991 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
992 if (phd->unallocSpaceTable.extLength) {
993 struct kernel_lb_addr loc = {
994 .logicalBlockNum = le32_to_cpu(
995 phd->unallocSpaceTable.extPosition),
996 .partitionReferenceNum = p_index,
997 };
998
999 map->s_uspace.s_table = udf_iget(sb, &loc);
1000 if (!map->s_uspace.s_table) {
1001 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002 p_index);
1003 return 1;
1004 }
1005 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007 p_index, map->s_uspace.s_table->i_ino);
1008 }
1009
1010 if (phd->unallocSpaceBitmap.extLength) {
1011 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012 if (!bitmap)
1013 return 1;
1014 map->s_uspace.s_bitmap = bitmap;
1015 bitmap->s_extLength = le32_to_cpu(
1016 phd->unallocSpaceBitmap.extLength);
1017 bitmap->s_extPosition = le32_to_cpu(
1018 phd->unallocSpaceBitmap.extPosition);
1019 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021 p_index, bitmap->s_extPosition);
1022 }
1023
1024 if (phd->partitionIntegrityTable.extLength)
1025 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026
1027 if (phd->freedSpaceTable.extLength) {
1028 struct kernel_lb_addr loc = {
1029 .logicalBlockNum = le32_to_cpu(
1030 phd->freedSpaceTable.extPosition),
1031 .partitionReferenceNum = p_index,
1032 };
1033
1034 map->s_fspace.s_table = udf_iget(sb, &loc);
1035 if (!map->s_fspace.s_table) {
1036 udf_debug("cannot load freedSpaceTable (part %d)\n",
1037 p_index);
1038 return 1;
1039 }
1040
1041 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043 p_index, map->s_fspace.s_table->i_ino);
1044 }
1045
1046 if (phd->freedSpaceBitmap.extLength) {
1047 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048 if (!bitmap)
1049 return 1;
1050 map->s_fspace.s_bitmap = bitmap;
1051 bitmap->s_extLength = le32_to_cpu(
1052 phd->freedSpaceBitmap.extLength);
1053 bitmap->s_extPosition = le32_to_cpu(
1054 phd->freedSpaceBitmap.extPosition);
1055 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057 p_index, bitmap->s_extPosition);
1058 }
1059 return 0;
1060}
1061
1062static void udf_find_vat_block(struct super_block *sb, int p_index,
1063 int type1_index, sector_t start_block)
1064{
1065 struct udf_sb_info *sbi = UDF_SB(sb);
1066 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067 sector_t vat_block;
1068 struct kernel_lb_addr ino;
1069
1070 /*
1071 * VAT file entry is in the last recorded block. Some broken disks have
1072 * it a few blocks before so try a bit harder...
1073 */
1074 ino.partitionReferenceNum = type1_index;
1075 for (vat_block = start_block;
1076 vat_block >= map->s_partition_root &&
1077 vat_block >= start_block - 3 &&
1078 !sbi->s_vat_inode; vat_block--) {
1079 ino.logicalBlockNum = vat_block - map->s_partition_root;
1080 sbi->s_vat_inode = udf_iget(sb, &ino);
1081 }
1082}
1083
1084static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085{
1086 struct udf_sb_info *sbi = UDF_SB(sb);
1087 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088 struct buffer_head *bh = NULL;
1089 struct udf_inode_info *vati;
1090 uint32_t pos;
1091 struct virtualAllocationTable20 *vat20;
1092 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1093
1094 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095 if (!sbi->s_vat_inode &&
1096 sbi->s_last_block != blocks - 1) {
1097 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098 (unsigned long)sbi->s_last_block,
1099 (unsigned long)blocks - 1);
1100 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101 }
1102 if (!sbi->s_vat_inode)
1103 return 1;
1104
1105 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106 map->s_type_specific.s_virtual.s_start_offset = 0;
1107 map->s_type_specific.s_virtual.s_num_entries =
1108 (sbi->s_vat_inode->i_size - 36) >> 2;
1109 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110 vati = UDF_I(sbi->s_vat_inode);
1111 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112 pos = udf_block_map(sbi->s_vat_inode, 0);
1113 bh = sb_bread(sb, pos);
1114 if (!bh)
1115 return 1;
1116 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117 } else {
1118 vat20 = (struct virtualAllocationTable20 *)
1119 vati->i_ext.i_data;
1120 }
1121
1122 map->s_type_specific.s_virtual.s_start_offset =
1123 le16_to_cpu(vat20->lengthHeader);
1124 map->s_type_specific.s_virtual.s_num_entries =
1125 (sbi->s_vat_inode->i_size -
1126 map->s_type_specific.s_virtual.
1127 s_start_offset) >> 2;
1128 brelse(bh);
1129 }
1130 return 0;
1131}
1132
1133static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134{
1135 struct buffer_head *bh;
1136 struct partitionDesc *p;
1137 struct udf_part_map *map;
1138 struct udf_sb_info *sbi = UDF_SB(sb);
1139 int i, type1_idx;
1140 uint16_t partitionNumber;
1141 uint16_t ident;
1142 int ret = 0;
1143
1144 bh = udf_read_tagged(sb, block, block, &ident);
1145 if (!bh)
1146 return 1;
1147 if (ident != TAG_IDENT_PD)
1148 goto out_bh;
1149
1150 p = (struct partitionDesc *)bh->b_data;
1151 partitionNumber = le16_to_cpu(p->partitionNumber);
1152
1153 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1154 for (i = 0; i < sbi->s_partitions; i++) {
1155 map = &sbi->s_partmaps[i];
1156 udf_debug("Searching map: (%d == %d)\n",
1157 map->s_partition_num, partitionNumber);
1158 if (map->s_partition_num == partitionNumber &&
1159 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160 map->s_partition_type == UDF_SPARABLE_MAP15))
1161 break;
1162 }
1163
1164 if (i >= sbi->s_partitions) {
1165 udf_debug("Partition (%d) not found in partition map\n",
1166 partitionNumber);
1167 goto out_bh;
1168 }
1169
1170 ret = udf_fill_partdesc_info(sb, p, i);
1171
1172 /*
1173 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174 * PHYSICAL partitions are already set up
1175 */
1176 type1_idx = i;
1177 for (i = 0; i < sbi->s_partitions; i++) {
1178 map = &sbi->s_partmaps[i];
1179
1180 if (map->s_partition_num == partitionNumber &&
1181 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183 map->s_partition_type == UDF_METADATA_MAP25))
1184 break;
1185 }
1186
1187 if (i >= sbi->s_partitions)
1188 goto out_bh;
1189
1190 ret = udf_fill_partdesc_info(sb, p, i);
1191 if (ret)
1192 goto out_bh;
1193
1194 if (map->s_partition_type == UDF_METADATA_MAP25) {
1195 ret = udf_load_metadata_files(sb, i);
1196 if (ret) {
1197 udf_err(sb, "error loading MetaData partition map %d\n",
1198 i);
1199 goto out_bh;
1200 }
1201 } else {
1202 ret = udf_load_vat(sb, i, type1_idx);
1203 if (ret)
1204 goto out_bh;
1205 /*
1206 * Mark filesystem read-only if we have a partition with
1207 * virtual map since we don't handle writing to it (we
1208 * overwrite blocks instead of relocating them).
1209 */
1210 sb->s_flags |= MS_RDONLY;
1211 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1212 }
1213out_bh:
1214 /* In case loading failed, we handle cleanup in udf_fill_super */
1215 brelse(bh);
1216 return ret;
1217}
1218
1219static int udf_load_sparable_map(struct super_block *sb,
1220 struct udf_part_map *map,
1221 struct sparablePartitionMap *spm)
1222{
1223 uint32_t loc;
1224 uint16_t ident;
1225 struct sparingTable *st;
1226 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1227 int i;
1228 struct buffer_head *bh;
1229
1230 map->s_partition_type = UDF_SPARABLE_MAP15;
1231 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1232 if (!is_power_of_2(sdata->s_packet_len)) {
1233 udf_err(sb, "error loading logical volume descriptor: "
1234 "Invalid packet length %u\n",
1235 (unsigned)sdata->s_packet_len);
1236 return -EIO;
1237 }
1238 if (spm->numSparingTables > 4) {
1239 udf_err(sb, "error loading logical volume descriptor: "
1240 "Too many sparing tables (%d)\n",
1241 (int)spm->numSparingTables);
1242 return -EIO;
1243 }
1244
1245 for (i = 0; i < spm->numSparingTables; i++) {
1246 loc = le32_to_cpu(spm->locSparingTable[i]);
1247 bh = udf_read_tagged(sb, loc, loc, &ident);
1248 if (!bh)
1249 continue;
1250
1251 st = (struct sparingTable *)bh->b_data;
1252 if (ident != 0 ||
1253 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1254 strlen(UDF_ID_SPARING)) ||
1255 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1256 sb->s_blocksize) {
1257 brelse(bh);
1258 continue;
1259 }
1260
1261 sdata->s_spar_map[i] = bh;
1262 }
1263 map->s_partition_func = udf_get_pblock_spar15;
1264 return 0;
1265}
1266
1267static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1268 struct kernel_lb_addr *fileset)
1269{
1270 struct logicalVolDesc *lvd;
1271 int i, offset;
1272 uint8_t type;
1273 struct udf_sb_info *sbi = UDF_SB(sb);
1274 struct genericPartitionMap *gpm;
1275 uint16_t ident;
1276 struct buffer_head *bh;
1277 unsigned int table_len;
1278 int ret = 0;
1279
1280 bh = udf_read_tagged(sb, block, block, &ident);
1281 if (!bh)
1282 return 1;
1283 BUG_ON(ident != TAG_IDENT_LVD);
1284 lvd = (struct logicalVolDesc *)bh->b_data;
1285 table_len = le32_to_cpu(lvd->mapTableLength);
1286 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1287 udf_err(sb, "error loading logical volume descriptor: "
1288 "Partition table too long (%u > %lu)\n", table_len,
1289 sb->s_blocksize - sizeof(*lvd));
1290 goto out_bh;
1291 }
1292
1293 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1294 if (ret)
1295 goto out_bh;
1296
1297 for (i = 0, offset = 0;
1298 i < sbi->s_partitions && offset < table_len;
1299 i++, offset += gpm->partitionMapLength) {
1300 struct udf_part_map *map = &sbi->s_partmaps[i];
1301 gpm = (struct genericPartitionMap *)
1302 &(lvd->partitionMaps[offset]);
1303 type = gpm->partitionMapType;
1304 if (type == 1) {
1305 struct genericPartitionMap1 *gpm1 =
1306 (struct genericPartitionMap1 *)gpm;
1307 map->s_partition_type = UDF_TYPE1_MAP15;
1308 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1309 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1310 map->s_partition_func = NULL;
1311 } else if (type == 2) {
1312 struct udfPartitionMap2 *upm2 =
1313 (struct udfPartitionMap2 *)gpm;
1314 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1315 strlen(UDF_ID_VIRTUAL))) {
1316 u16 suf =
1317 le16_to_cpu(((__le16 *)upm2->partIdent.
1318 identSuffix)[0]);
1319 if (suf < 0x0200) {
1320 map->s_partition_type =
1321 UDF_VIRTUAL_MAP15;
1322 map->s_partition_func =
1323 udf_get_pblock_virt15;
1324 } else {
1325 map->s_partition_type =
1326 UDF_VIRTUAL_MAP20;
1327 map->s_partition_func =
1328 udf_get_pblock_virt20;
1329 }
1330 } else if (!strncmp(upm2->partIdent.ident,
1331 UDF_ID_SPARABLE,
1332 strlen(UDF_ID_SPARABLE))) {
1333 if (udf_load_sparable_map(sb, map,
1334 (struct sparablePartitionMap *)gpm) < 0)
1335 goto out_bh;
1336 } else if (!strncmp(upm2->partIdent.ident,
1337 UDF_ID_METADATA,
1338 strlen(UDF_ID_METADATA))) {
1339 struct udf_meta_data *mdata =
1340 &map->s_type_specific.s_metadata;
1341 struct metadataPartitionMap *mdm =
1342 (struct metadataPartitionMap *)
1343 &(lvd->partitionMaps[offset]);
1344 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1345 i, type, UDF_ID_METADATA);
1346
1347 map->s_partition_type = UDF_METADATA_MAP25;
1348 map->s_partition_func = udf_get_pblock_meta25;
1349
1350 mdata->s_meta_file_loc =
1351 le32_to_cpu(mdm->metadataFileLoc);
1352 mdata->s_mirror_file_loc =
1353 le32_to_cpu(mdm->metadataMirrorFileLoc);
1354 mdata->s_bitmap_file_loc =
1355 le32_to_cpu(mdm->metadataBitmapFileLoc);
1356 mdata->s_alloc_unit_size =
1357 le32_to_cpu(mdm->allocUnitSize);
1358 mdata->s_align_unit_size =
1359 le16_to_cpu(mdm->alignUnitSize);
1360 if (mdm->flags & 0x01)
1361 mdata->s_flags |= MF_DUPLICATE_MD;
1362
1363 udf_debug("Metadata Ident suffix=0x%x\n",
1364 le16_to_cpu(*(__le16 *)
1365 mdm->partIdent.identSuffix));
1366 udf_debug("Metadata part num=%d\n",
1367 le16_to_cpu(mdm->partitionNum));
1368 udf_debug("Metadata part alloc unit size=%d\n",
1369 le32_to_cpu(mdm->allocUnitSize));
1370 udf_debug("Metadata file loc=%d\n",
1371 le32_to_cpu(mdm->metadataFileLoc));
1372 udf_debug("Mirror file loc=%d\n",
1373 le32_to_cpu(mdm->metadataMirrorFileLoc));
1374 udf_debug("Bitmap file loc=%d\n",
1375 le32_to_cpu(mdm->metadataBitmapFileLoc));
1376 udf_debug("Flags: %d %d\n",
1377 mdata->s_flags, mdm->flags);
1378 } else {
1379 udf_debug("Unknown ident: %s\n",
1380 upm2->partIdent.ident);
1381 continue;
1382 }
1383 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1384 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1385 }
1386 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1387 i, map->s_partition_num, type, map->s_volumeseqnum);
1388 }
1389
1390 if (fileset) {
1391 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1392
1393 *fileset = lelb_to_cpu(la->extLocation);
1394 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1395 fileset->logicalBlockNum,
1396 fileset->partitionReferenceNum);
1397 }
1398 if (lvd->integritySeqExt.extLength)
1399 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1400
1401out_bh:
1402 brelse(bh);
1403 return ret;
1404}
1405
1406/*
1407 * udf_load_logicalvolint
1408 *
1409 */
1410static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1411{
1412 struct buffer_head *bh = NULL;
1413 uint16_t ident;
1414 struct udf_sb_info *sbi = UDF_SB(sb);
1415 struct logicalVolIntegrityDesc *lvid;
1416
1417 while (loc.extLength > 0 &&
1418 (bh = udf_read_tagged(sb, loc.extLocation,
1419 loc.extLocation, &ident)) &&
1420 ident == TAG_IDENT_LVID) {
1421 sbi->s_lvid_bh = bh;
1422 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1423
1424 if (lvid->nextIntegrityExt.extLength)
1425 udf_load_logicalvolint(sb,
1426 leea_to_cpu(lvid->nextIntegrityExt));
1427
1428 if (sbi->s_lvid_bh != bh)
1429 brelse(bh);
1430 loc.extLength -= sb->s_blocksize;
1431 loc.extLocation++;
1432 }
1433 if (sbi->s_lvid_bh != bh)
1434 brelse(bh);
1435}
1436
1437/*
1438 * udf_process_sequence
1439 *
1440 * PURPOSE
1441 * Process a main/reserve volume descriptor sequence.
1442 *
1443 * PRE-CONDITIONS
1444 * sb Pointer to _locked_ superblock.
1445 * block First block of first extent of the sequence.
1446 * lastblock Lastblock of first extent of the sequence.
1447 *
1448 * HISTORY
1449 * July 1, 1997 - Andrew E. Mileski
1450 * Written, tested, and released.
1451 */
1452static noinline int udf_process_sequence(struct super_block *sb, long block,
1453 long lastblock, struct kernel_lb_addr *fileset)
1454{
1455 struct buffer_head *bh = NULL;
1456 struct udf_vds_record vds[VDS_POS_LENGTH];
1457 struct udf_vds_record *curr;
1458 struct generic_desc *gd;
1459 struct volDescPtr *vdp;
1460 int done = 0;
1461 uint32_t vdsn;
1462 uint16_t ident;
1463 long next_s = 0, next_e = 0;
1464
1465 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1466
1467 /*
1468 * Read the main descriptor sequence and find which descriptors
1469 * are in it.
1470 */
1471 for (; (!done && block <= lastblock); block++) {
1472
1473 bh = udf_read_tagged(sb, block, block, &ident);
1474 if (!bh) {
1475 udf_err(sb,
1476 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1477 (unsigned long long)block);
1478 return 1;
1479 }
1480
1481 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1482 gd = (struct generic_desc *)bh->b_data;
1483 vdsn = le32_to_cpu(gd->volDescSeqNum);
1484 switch (ident) {
1485 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1486 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1487 if (vdsn >= curr->volDescSeqNum) {
1488 curr->volDescSeqNum = vdsn;
1489 curr->block = block;
1490 }
1491 break;
1492 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1493 curr = &vds[VDS_POS_VOL_DESC_PTR];
1494 if (vdsn >= curr->volDescSeqNum) {
1495 curr->volDescSeqNum = vdsn;
1496 curr->block = block;
1497
1498 vdp = (struct volDescPtr *)bh->b_data;
1499 next_s = le32_to_cpu(
1500 vdp->nextVolDescSeqExt.extLocation);
1501 next_e = le32_to_cpu(
1502 vdp->nextVolDescSeqExt.extLength);
1503 next_e = next_e >> sb->s_blocksize_bits;
1504 next_e += next_s;
1505 }
1506 break;
1507 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1508 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1509 if (vdsn >= curr->volDescSeqNum) {
1510 curr->volDescSeqNum = vdsn;
1511 curr->block = block;
1512 }
1513 break;
1514 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1515 curr = &vds[VDS_POS_PARTITION_DESC];
1516 if (!curr->block)
1517 curr->block = block;
1518 break;
1519 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1520 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1521 if (vdsn >= curr->volDescSeqNum) {
1522 curr->volDescSeqNum = vdsn;
1523 curr->block = block;
1524 }
1525 break;
1526 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1527 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1528 if (vdsn >= curr->volDescSeqNum) {
1529 curr->volDescSeqNum = vdsn;
1530 curr->block = block;
1531 }
1532 break;
1533 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1534 vds[VDS_POS_TERMINATING_DESC].block = block;
1535 if (next_e) {
1536 block = next_s;
1537 lastblock = next_e;
1538 next_s = next_e = 0;
1539 } else
1540 done = 1;
1541 break;
1542 }
1543 brelse(bh);
1544 }
1545 /*
1546 * Now read interesting descriptors again and process them
1547 * in a suitable order
1548 */
1549 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1550 udf_err(sb, "Primary Volume Descriptor not found!\n");
1551 return 1;
1552 }
1553 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1554 return 1;
1555
1556 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1557 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1558 return 1;
1559
1560 if (vds[VDS_POS_PARTITION_DESC].block) {
1561 /*
1562 * We rescan the whole descriptor sequence to find
1563 * partition descriptor blocks and process them.
1564 */
1565 for (block = vds[VDS_POS_PARTITION_DESC].block;
1566 block < vds[VDS_POS_TERMINATING_DESC].block;
1567 block++)
1568 if (udf_load_partdesc(sb, block))
1569 return 1;
1570 }
1571
1572 return 0;
1573}
1574
1575static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1576 struct kernel_lb_addr *fileset)
1577{
1578 struct anchorVolDescPtr *anchor;
1579 long main_s, main_e, reserve_s, reserve_e;
1580
1581 anchor = (struct anchorVolDescPtr *)bh->b_data;
1582
1583 /* Locate the main sequence */
1584 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1585 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1586 main_e = main_e >> sb->s_blocksize_bits;
1587 main_e += main_s;
1588
1589 /* Locate the reserve sequence */
1590 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1591 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1592 reserve_e = reserve_e >> sb->s_blocksize_bits;
1593 reserve_e += reserve_s;
1594
1595 /* Process the main & reserve sequences */
1596 /* responsible for finding the PartitionDesc(s) */
1597 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1598 return 1;
1599 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1600}
1601
1602/*
1603 * Check whether there is an anchor block in the given block and
1604 * load Volume Descriptor Sequence if so.
1605 */
1606static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1607 struct kernel_lb_addr *fileset)
1608{
1609 struct buffer_head *bh;
1610 uint16_t ident;
1611 int ret;
1612
1613 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1614 udf_fixed_to_variable(block) >=
1615 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1616 return 0;
1617
1618 bh = udf_read_tagged(sb, block, block, &ident);
1619 if (!bh)
1620 return 0;
1621 if (ident != TAG_IDENT_AVDP) {
1622 brelse(bh);
1623 return 0;
1624 }
1625 ret = udf_load_sequence(sb, bh, fileset);
1626 brelse(bh);
1627 return ret;
1628}
1629
1630/* Search for an anchor volume descriptor pointer */
1631static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1632 struct kernel_lb_addr *fileset)
1633{
1634 sector_t last[6];
1635 int i;
1636 struct udf_sb_info *sbi = UDF_SB(sb);
1637 int last_count = 0;
1638
1639 /* First try user provided anchor */
1640 if (sbi->s_anchor) {
1641 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1642 return lastblock;
1643 }
1644 /*
1645 * according to spec, anchor is in either:
1646 * block 256
1647 * lastblock-256
1648 * lastblock
1649 * however, if the disc isn't closed, it could be 512.
1650 */
1651 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1652 return lastblock;
1653 /*
1654 * The trouble is which block is the last one. Drives often misreport
1655 * this so we try various possibilities.
1656 */
1657 last[last_count++] = lastblock;
1658 if (lastblock >= 1)
1659 last[last_count++] = lastblock - 1;
1660 last[last_count++] = lastblock + 1;
1661 if (lastblock >= 2)
1662 last[last_count++] = lastblock - 2;
1663 if (lastblock >= 150)
1664 last[last_count++] = lastblock - 150;
1665 if (lastblock >= 152)
1666 last[last_count++] = lastblock - 152;
1667
1668 for (i = 0; i < last_count; i++) {
1669 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1670 sb->s_blocksize_bits)
1671 continue;
1672 if (udf_check_anchor_block(sb, last[i], fileset))
1673 return last[i];
1674 if (last[i] < 256)
1675 continue;
1676 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1677 return last[i];
1678 }
1679
1680 /* Finally try block 512 in case media is open */
1681 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1682 return last[0];
1683 return 0;
1684}
1685
1686/*
1687 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1688 * area specified by it. The function expects sbi->s_lastblock to be the last
1689 * block on the media.
1690 *
1691 * Return 1 if ok, 0 if not found.
1692 *
1693 */
1694static int udf_find_anchor(struct super_block *sb,
1695 struct kernel_lb_addr *fileset)
1696{
1697 sector_t lastblock;
1698 struct udf_sb_info *sbi = UDF_SB(sb);
1699
1700 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1701 if (lastblock)
1702 goto out;
1703
1704 /* No anchor found? Try VARCONV conversion of block numbers */
1705 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1706 /* Firstly, we try to not convert number of the last block */
1707 lastblock = udf_scan_anchors(sb,
1708 udf_variable_to_fixed(sbi->s_last_block),
1709 fileset);
1710 if (lastblock)
1711 goto out;
1712
1713 /* Secondly, we try with converted number of the last block */
1714 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1715 if (!lastblock) {
1716 /* VARCONV didn't help. Clear it. */
1717 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1718 return 0;
1719 }
1720out:
1721 sbi->s_last_block = lastblock;
1722 return 1;
1723}
1724
1725/*
1726 * Check Volume Structure Descriptor, find Anchor block and load Volume
1727 * Descriptor Sequence
1728 */
1729static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1730 int silent, struct kernel_lb_addr *fileset)
1731{
1732 struct udf_sb_info *sbi = UDF_SB(sb);
1733 loff_t nsr_off;
1734
1735 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1736 if (!silent)
1737 udf_warn(sb, "Bad block size\n");
1738 return 0;
1739 }
1740 sbi->s_last_block = uopt->lastblock;
1741 if (!uopt->novrs) {
1742 /* Check that it is NSR02 compliant */
1743 nsr_off = udf_check_vsd(sb);
1744 if (!nsr_off) {
1745 if (!silent)
1746 udf_warn(sb, "No VRS found\n");
1747 return 0;
1748 }
1749 if (nsr_off == -1)
1750 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1751 if (!sbi->s_last_block)
1752 sbi->s_last_block = udf_get_last_block(sb);
1753 } else {
1754 udf_debug("Validity check skipped because of novrs option\n");
1755 }
1756
1757 /* Look for anchor block and load Volume Descriptor Sequence */
1758 sbi->s_anchor = uopt->anchor;
1759 if (!udf_find_anchor(sb, fileset)) {
1760 if (!silent)
1761 udf_warn(sb, "No anchor found\n");
1762 return 0;
1763 }
1764 return 1;
1765}
1766
1767static void udf_open_lvid(struct super_block *sb)
1768{
1769 struct udf_sb_info *sbi = UDF_SB(sb);
1770 struct buffer_head *bh = sbi->s_lvid_bh;
1771 struct logicalVolIntegrityDesc *lvid;
1772 struct logicalVolIntegrityDescImpUse *lvidiu;
1773
1774 if (!bh)
1775 return;
1776
1777 mutex_lock(&sbi->s_alloc_mutex);
1778 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1779 lvidiu = udf_sb_lvidiu(sbi);
1780
1781 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1782 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1783 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1784 CURRENT_TIME);
1785 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1786
1787 lvid->descTag.descCRC = cpu_to_le16(
1788 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1789 le16_to_cpu(lvid->descTag.descCRCLength)));
1790
1791 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1792 mark_buffer_dirty(bh);
1793 sbi->s_lvid_dirty = 0;
1794 mutex_unlock(&sbi->s_alloc_mutex);
1795}
1796
1797static void udf_close_lvid(struct super_block *sb)
1798{
1799 struct udf_sb_info *sbi = UDF_SB(sb);
1800 struct buffer_head *bh = sbi->s_lvid_bh;
1801 struct logicalVolIntegrityDesc *lvid;
1802 struct logicalVolIntegrityDescImpUse *lvidiu;
1803
1804 if (!bh)
1805 return;
1806
1807 mutex_lock(&sbi->s_alloc_mutex);
1808 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1809 lvidiu = udf_sb_lvidiu(sbi);
1810 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1811 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1812 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1813 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1814 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1815 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1816 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1817 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1818 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1819 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1820
1821 lvid->descTag.descCRC = cpu_to_le16(
1822 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1823 le16_to_cpu(lvid->descTag.descCRCLength)));
1824
1825 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1826 /*
1827 * We set buffer uptodate unconditionally here to avoid spurious
1828 * warnings from mark_buffer_dirty() when previous EIO has marked
1829 * the buffer as !uptodate
1830 */
1831 set_buffer_uptodate(bh);
1832 mark_buffer_dirty(bh);
1833 sbi->s_lvid_dirty = 0;
1834 mutex_unlock(&sbi->s_alloc_mutex);
1835}
1836
1837u64 lvid_get_unique_id(struct super_block *sb)
1838{
1839 struct buffer_head *bh;
1840 struct udf_sb_info *sbi = UDF_SB(sb);
1841 struct logicalVolIntegrityDesc *lvid;
1842 struct logicalVolHeaderDesc *lvhd;
1843 u64 uniqueID;
1844 u64 ret;
1845
1846 bh = sbi->s_lvid_bh;
1847 if (!bh)
1848 return 0;
1849
1850 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1851 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1852
1853 mutex_lock(&sbi->s_alloc_mutex);
1854 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1855 if (!(++uniqueID & 0xFFFFFFFF))
1856 uniqueID += 16;
1857 lvhd->uniqueID = cpu_to_le64(uniqueID);
1858 mutex_unlock(&sbi->s_alloc_mutex);
1859 mark_buffer_dirty(bh);
1860
1861 return ret;
1862}
1863
1864static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1865{
1866 int i;
1867 int nr_groups = bitmap->s_nr_groups;
1868 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1869 nr_groups);
1870
1871 for (i = 0; i < nr_groups; i++)
1872 if (bitmap->s_block_bitmap[i])
1873 brelse(bitmap->s_block_bitmap[i]);
1874
1875 if (size <= PAGE_SIZE)
1876 kfree(bitmap);
1877 else
1878 vfree(bitmap);
1879}
1880
1881static void udf_free_partition(struct udf_part_map *map)
1882{
1883 int i;
1884 struct udf_meta_data *mdata;
1885
1886 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1887 iput(map->s_uspace.s_table);
1888 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1889 iput(map->s_fspace.s_table);
1890 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1891 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1892 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1893 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1894 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1895 for (i = 0; i < 4; i++)
1896 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1897 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1898 mdata = &map->s_type_specific.s_metadata;
1899 iput(mdata->s_metadata_fe);
1900 mdata->s_metadata_fe = NULL;
1901
1902 iput(mdata->s_mirror_fe);
1903 mdata->s_mirror_fe = NULL;
1904
1905 iput(mdata->s_bitmap_fe);
1906 mdata->s_bitmap_fe = NULL;
1907 }
1908}
1909
1910static int udf_fill_super(struct super_block *sb, void *options, int silent)
1911{
1912 int i;
1913 int ret;
1914 struct inode *inode = NULL;
1915 struct udf_options uopt;
1916 struct kernel_lb_addr rootdir, fileset;
1917 struct udf_sb_info *sbi;
1918
1919 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1920 uopt.uid = -1;
1921 uopt.gid = -1;
1922 uopt.umask = 0;
1923 uopt.fmode = UDF_INVALID_MODE;
1924 uopt.dmode = UDF_INVALID_MODE;
1925
1926 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1927 if (!sbi)
1928 return -ENOMEM;
1929
1930 sb->s_fs_info = sbi;
1931
1932 mutex_init(&sbi->s_alloc_mutex);
1933
1934 if (!udf_parse_options((char *)options, &uopt, false))
1935 goto error_out;
1936
1937 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1938 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1939 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1940 goto error_out;
1941 }
1942#ifdef CONFIG_UDF_NLS
1943 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1944 uopt.nls_map = load_nls_default();
1945 if (!uopt.nls_map)
1946 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1947 else
1948 udf_debug("Using default NLS map\n");
1949 }
1950#endif
1951 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1952 uopt.flags |= (1 << UDF_FLAG_UTF8);
1953
1954 fileset.logicalBlockNum = 0xFFFFFFFF;
1955 fileset.partitionReferenceNum = 0xFFFF;
1956
1957 sbi->s_flags = uopt.flags;
1958 sbi->s_uid = uopt.uid;
1959 sbi->s_gid = uopt.gid;
1960 sbi->s_umask = uopt.umask;
1961 sbi->s_fmode = uopt.fmode;
1962 sbi->s_dmode = uopt.dmode;
1963 sbi->s_nls_map = uopt.nls_map;
1964 rwlock_init(&sbi->s_cred_lock);
1965
1966 if (uopt.session == 0xFFFFFFFF)
1967 sbi->s_session = udf_get_last_session(sb);
1968 else
1969 sbi->s_session = uopt.session;
1970
1971 udf_debug("Multi-session=%d\n", sbi->s_session);
1972
1973 /* Fill in the rest of the superblock */
1974 sb->s_op = &udf_sb_ops;
1975 sb->s_export_op = &udf_export_ops;
1976
1977 sb->s_dirt = 0;
1978 sb->s_magic = UDF_SUPER_MAGIC;
1979 sb->s_time_gran = 1000;
1980
1981 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1982 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1983 } else {
1984 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1985 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1986 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1987 if (!silent)
1988 pr_notice("Rescanning with blocksize %d\n",
1989 UDF_DEFAULT_BLOCKSIZE);
1990 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1991 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1992 }
1993 }
1994 if (!ret) {
1995 udf_warn(sb, "No partition found (1)\n");
1996 goto error_out;
1997 }
1998
1999 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2000
2001 if (sbi->s_lvid_bh) {
2002 struct logicalVolIntegrityDescImpUse *lvidiu =
2003 udf_sb_lvidiu(sbi);
2004 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2005 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2006 /* uint16_t maxUDFWriteRev =
2007 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2008
2009 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2010 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2011 le16_to_cpu(lvidiu->minUDFReadRev),
2012 UDF_MAX_READ_VERSION);
2013 goto error_out;
2014 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2015 sb->s_flags |= MS_RDONLY;
2016
2017 sbi->s_udfrev = minUDFWriteRev;
2018
2019 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2020 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2021 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2022 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2023 }
2024
2025 if (!sbi->s_partitions) {
2026 udf_warn(sb, "No partition found (2)\n");
2027 goto error_out;
2028 }
2029
2030 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2031 UDF_PART_FLAG_READ_ONLY) {
2032 pr_notice("Partition marked readonly; forcing readonly mount\n");
2033 sb->s_flags |= MS_RDONLY;
2034 }
2035
2036 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2037 udf_warn(sb, "No fileset found\n");
2038 goto error_out;
2039 }
2040
2041 if (!silent) {
2042 struct timestamp ts;
2043 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2044 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2045 sbi->s_volume_ident,
2046 le16_to_cpu(ts.year), ts.month, ts.day,
2047 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2048 }
2049 if (!(sb->s_flags & MS_RDONLY))
2050 udf_open_lvid(sb);
2051
2052 /* Assign the root inode */
2053 /* assign inodes by physical block number */
2054 /* perhaps it's not extensible enough, but for now ... */
2055 inode = udf_iget(sb, &rootdir);
2056 if (!inode) {
2057 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2058 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2059 goto error_out;
2060 }
2061
2062 /* Allocate a dentry for the root inode */
2063 sb->s_root = d_make_root(inode);
2064 if (!sb->s_root) {
2065 udf_err(sb, "Couldn't allocate root dentry\n");
2066 goto error_out;
2067 }
2068 sb->s_maxbytes = MAX_LFS_FILESIZE;
2069 sb->s_max_links = UDF_MAX_LINKS;
2070 return 0;
2071
2072error_out:
2073 if (sbi->s_vat_inode)
2074 iput(sbi->s_vat_inode);
2075 if (sbi->s_partitions)
2076 for (i = 0; i < sbi->s_partitions; i++)
2077 udf_free_partition(&sbi->s_partmaps[i]);
2078#ifdef CONFIG_UDF_NLS
2079 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2080 unload_nls(sbi->s_nls_map);
2081#endif
2082 if (!(sb->s_flags & MS_RDONLY))
2083 udf_close_lvid(sb);
2084 brelse(sbi->s_lvid_bh);
2085
2086 kfree(sbi->s_partmaps);
2087 kfree(sbi);
2088 sb->s_fs_info = NULL;
2089
2090 return -EINVAL;
2091}
2092
2093void _udf_err(struct super_block *sb, const char *function,
2094 const char *fmt, ...)
2095{
2096 struct va_format vaf;
2097 va_list args;
2098
2099 /* mark sb error */
2100 if (!(sb->s_flags & MS_RDONLY))
2101 sb->s_dirt = 1;
2102
2103 va_start(args, fmt);
2104
2105 vaf.fmt = fmt;
2106 vaf.va = &args;
2107
2108 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2109
2110 va_end(args);
2111}
2112
2113void _udf_warn(struct super_block *sb, const char *function,
2114 const char *fmt, ...)
2115{
2116 struct va_format vaf;
2117 va_list args;
2118
2119 va_start(args, fmt);
2120
2121 vaf.fmt = fmt;
2122 vaf.va = &args;
2123
2124 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2125
2126 va_end(args);
2127}
2128
2129static void udf_put_super(struct super_block *sb)
2130{
2131 int i;
2132 struct udf_sb_info *sbi;
2133
2134 sbi = UDF_SB(sb);
2135
2136 if (sbi->s_vat_inode)
2137 iput(sbi->s_vat_inode);
2138 if (sbi->s_partitions)
2139 for (i = 0; i < sbi->s_partitions; i++)
2140 udf_free_partition(&sbi->s_partmaps[i]);
2141#ifdef CONFIG_UDF_NLS
2142 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2143 unload_nls(sbi->s_nls_map);
2144#endif
2145 if (!(sb->s_flags & MS_RDONLY))
2146 udf_close_lvid(sb);
2147 brelse(sbi->s_lvid_bh);
2148 kfree(sbi->s_partmaps);
2149 kfree(sb->s_fs_info);
2150 sb->s_fs_info = NULL;
2151}
2152
2153static int udf_sync_fs(struct super_block *sb, int wait)
2154{
2155 struct udf_sb_info *sbi = UDF_SB(sb);
2156
2157 mutex_lock(&sbi->s_alloc_mutex);
2158 if (sbi->s_lvid_dirty) {
2159 /*
2160 * Blockdevice will be synced later so we don't have to submit
2161 * the buffer for IO
2162 */
2163 mark_buffer_dirty(sbi->s_lvid_bh);
2164 sb->s_dirt = 0;
2165 sbi->s_lvid_dirty = 0;
2166 }
2167 mutex_unlock(&sbi->s_alloc_mutex);
2168
2169 return 0;
2170}
2171
2172static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2173{
2174 struct super_block *sb = dentry->d_sb;
2175 struct udf_sb_info *sbi = UDF_SB(sb);
2176 struct logicalVolIntegrityDescImpUse *lvidiu;
2177 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2178
2179 if (sbi->s_lvid_bh != NULL)
2180 lvidiu = udf_sb_lvidiu(sbi);
2181 else
2182 lvidiu = NULL;
2183
2184 buf->f_type = UDF_SUPER_MAGIC;
2185 buf->f_bsize = sb->s_blocksize;
2186 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2187 buf->f_bfree = udf_count_free(sb);
2188 buf->f_bavail = buf->f_bfree;
2189 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2190 le32_to_cpu(lvidiu->numDirs)) : 0)
2191 + buf->f_bfree;
2192 buf->f_ffree = buf->f_bfree;
2193 buf->f_namelen = UDF_NAME_LEN - 2;
2194 buf->f_fsid.val[0] = (u32)id;
2195 buf->f_fsid.val[1] = (u32)(id >> 32);
2196
2197 return 0;
2198}
2199
2200static unsigned int udf_count_free_bitmap(struct super_block *sb,
2201 struct udf_bitmap *bitmap)
2202{
2203 struct buffer_head *bh = NULL;
2204 unsigned int accum = 0;
2205 int index;
2206 int block = 0, newblock;
2207 struct kernel_lb_addr loc;
2208 uint32_t bytes;
2209 uint8_t *ptr;
2210 uint16_t ident;
2211 struct spaceBitmapDesc *bm;
2212
2213 loc.logicalBlockNum = bitmap->s_extPosition;
2214 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2215 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2216
2217 if (!bh) {
2218 udf_err(sb, "udf_count_free failed\n");
2219 goto out;
2220 } else if (ident != TAG_IDENT_SBD) {
2221 brelse(bh);
2222 udf_err(sb, "udf_count_free failed\n");
2223 goto out;
2224 }
2225
2226 bm = (struct spaceBitmapDesc *)bh->b_data;
2227 bytes = le32_to_cpu(bm->numOfBytes);
2228 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2229 ptr = (uint8_t *)bh->b_data;
2230
2231 while (bytes > 0) {
2232 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2233 accum += bitmap_weight((const unsigned long *)(ptr + index),
2234 cur_bytes * 8);
2235 bytes -= cur_bytes;
2236 if (bytes) {
2237 brelse(bh);
2238 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2239 bh = udf_tread(sb, newblock);
2240 if (!bh) {
2241 udf_debug("read failed\n");
2242 goto out;
2243 }
2244 index = 0;
2245 ptr = (uint8_t *)bh->b_data;
2246 }
2247 }
2248 brelse(bh);
2249out:
2250 return accum;
2251}
2252
2253static unsigned int udf_count_free_table(struct super_block *sb,
2254 struct inode *table)
2255{
2256 unsigned int accum = 0;
2257 uint32_t elen;
2258 struct kernel_lb_addr eloc;
2259 int8_t etype;
2260 struct extent_position epos;
2261
2262 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2263 epos.block = UDF_I(table)->i_location;
2264 epos.offset = sizeof(struct unallocSpaceEntry);
2265 epos.bh = NULL;
2266
2267 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2268 accum += (elen >> table->i_sb->s_blocksize_bits);
2269
2270 brelse(epos.bh);
2271 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2272
2273 return accum;
2274}
2275
2276static unsigned int udf_count_free(struct super_block *sb)
2277{
2278 unsigned int accum = 0;
2279 struct udf_sb_info *sbi;
2280 struct udf_part_map *map;
2281
2282 sbi = UDF_SB(sb);
2283 if (sbi->s_lvid_bh) {
2284 struct logicalVolIntegrityDesc *lvid =
2285 (struct logicalVolIntegrityDesc *)
2286 sbi->s_lvid_bh->b_data;
2287 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2288 accum = le32_to_cpu(
2289 lvid->freeSpaceTable[sbi->s_partition]);
2290 if (accum == 0xFFFFFFFF)
2291 accum = 0;
2292 }
2293 }
2294
2295 if (accum)
2296 return accum;
2297
2298 map = &sbi->s_partmaps[sbi->s_partition];
2299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2300 accum += udf_count_free_bitmap(sb,
2301 map->s_uspace.s_bitmap);
2302 }
2303 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2304 accum += udf_count_free_bitmap(sb,
2305 map->s_fspace.s_bitmap);
2306 }
2307 if (accum)
2308 return accum;
2309
2310 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2311 accum += udf_count_free_table(sb,
2312 map->s_uspace.s_table);
2313 }
2314 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2315 accum += udf_count_free_table(sb,
2316 map->s_fspace.s_table);
2317 }
2318
2319 return accum;
2320}
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73};
74
75#define VSD_FIRST_SECTOR_OFFSET 32768
76#define VSD_MAX_SECTOR_OFFSET 0x800000
77
78/*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84#define UDF_MAX_TD_NESTING 64
85#define UDF_MAX_LVID_NESTING 1000
86
87enum { UDF_MAX_LINKS = 0xffff };
88
89/* These are the "meat" - everything else is stuffing */
90static int udf_fill_super(struct super_block *, void *, int);
91static void udf_put_super(struct super_block *);
92static int udf_sync_fs(struct super_block *, int);
93static int udf_remount_fs(struct super_block *, int *, char *);
94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95static void udf_open_lvid(struct super_block *);
96static void udf_close_lvid(struct super_block *);
97static unsigned int udf_count_free(struct super_block *);
98static int udf_statfs(struct dentry *, struct kstatfs *);
99static int udf_show_options(struct seq_file *, struct dentry *);
100
101struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102{
103 struct logicalVolIntegrityDesc *lvid;
104 unsigned int partnum;
105 unsigned int offset;
106
107 if (!UDF_SB(sb)->s_lvid_bh)
108 return NULL;
109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 partnum = le32_to_cpu(lvid->numOfPartitions);
111 /* The offset is to skip freeSpaceTable and sizeTable arrays */
112 offset = partnum * 2 * sizeof(uint32_t);
113 return (struct logicalVolIntegrityDescImpUse *)
114 (((uint8_t *)(lvid + 1)) + offset);
115}
116
117/* UDF filesystem type */
118static struct dentry *udf_mount(struct file_system_type *fs_type,
119 int flags, const char *dev_name, void *data)
120{
121 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
122}
123
124static struct file_system_type udf_fstype = {
125 .owner = THIS_MODULE,
126 .name = "udf",
127 .mount = udf_mount,
128 .kill_sb = kill_block_super,
129 .fs_flags = FS_REQUIRES_DEV,
130};
131MODULE_ALIAS_FS("udf");
132
133static struct kmem_cache *udf_inode_cachep;
134
135static struct inode *udf_alloc_inode(struct super_block *sb)
136{
137 struct udf_inode_info *ei;
138 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
139 if (!ei)
140 return NULL;
141
142 ei->i_unique = 0;
143 ei->i_lenExtents = 0;
144 ei->i_lenStreams = 0;
145 ei->i_next_alloc_block = 0;
146 ei->i_next_alloc_goal = 0;
147 ei->i_strat4096 = 0;
148 ei->i_streamdir = 0;
149 init_rwsem(&ei->i_data_sem);
150 ei->cached_extent.lstart = -1;
151 spin_lock_init(&ei->i_extent_cache_lock);
152
153 return &ei->vfs_inode;
154}
155
156static void udf_free_in_core_inode(struct inode *inode)
157{
158 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
159}
160
161static void init_once(void *foo)
162{
163 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
164
165 ei->i_data = NULL;
166 inode_init_once(&ei->vfs_inode);
167}
168
169static int __init init_inodecache(void)
170{
171 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
172 sizeof(struct udf_inode_info),
173 0, (SLAB_RECLAIM_ACCOUNT |
174 SLAB_MEM_SPREAD |
175 SLAB_ACCOUNT),
176 init_once);
177 if (!udf_inode_cachep)
178 return -ENOMEM;
179 return 0;
180}
181
182static void destroy_inodecache(void)
183{
184 /*
185 * Make sure all delayed rcu free inodes are flushed before we
186 * destroy cache.
187 */
188 rcu_barrier();
189 kmem_cache_destroy(udf_inode_cachep);
190}
191
192/* Superblock operations */
193static const struct super_operations udf_sb_ops = {
194 .alloc_inode = udf_alloc_inode,
195 .free_inode = udf_free_in_core_inode,
196 .write_inode = udf_write_inode,
197 .evict_inode = udf_evict_inode,
198 .put_super = udf_put_super,
199 .sync_fs = udf_sync_fs,
200 .statfs = udf_statfs,
201 .remount_fs = udf_remount_fs,
202 .show_options = udf_show_options,
203};
204
205struct udf_options {
206 unsigned char novrs;
207 unsigned int blocksize;
208 unsigned int session;
209 unsigned int lastblock;
210 unsigned int anchor;
211 unsigned int flags;
212 umode_t umask;
213 kgid_t gid;
214 kuid_t uid;
215 umode_t fmode;
216 umode_t dmode;
217 struct nls_table *nls_map;
218};
219
220static int __init init_udf_fs(void)
221{
222 int err;
223
224 err = init_inodecache();
225 if (err)
226 goto out1;
227 err = register_filesystem(&udf_fstype);
228 if (err)
229 goto out;
230
231 return 0;
232
233out:
234 destroy_inodecache();
235
236out1:
237 return err;
238}
239
240static void __exit exit_udf_fs(void)
241{
242 unregister_filesystem(&udf_fstype);
243 destroy_inodecache();
244}
245
246static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247{
248 struct udf_sb_info *sbi = UDF_SB(sb);
249
250 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
251 if (!sbi->s_partmaps) {
252 sbi->s_partitions = 0;
253 return -ENOMEM;
254 }
255
256 sbi->s_partitions = count;
257 return 0;
258}
259
260static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261{
262 int i;
263 int nr_groups = bitmap->s_nr_groups;
264
265 for (i = 0; i < nr_groups; i++)
266 brelse(bitmap->s_block_bitmap[i]);
267
268 kvfree(bitmap);
269}
270
271static void udf_free_partition(struct udf_part_map *map)
272{
273 int i;
274 struct udf_meta_data *mdata;
275
276 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
277 iput(map->s_uspace.s_table);
278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
279 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
280 if (map->s_partition_type == UDF_SPARABLE_MAP15)
281 for (i = 0; i < 4; i++)
282 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
283 else if (map->s_partition_type == UDF_METADATA_MAP25) {
284 mdata = &map->s_type_specific.s_metadata;
285 iput(mdata->s_metadata_fe);
286 mdata->s_metadata_fe = NULL;
287
288 iput(mdata->s_mirror_fe);
289 mdata->s_mirror_fe = NULL;
290
291 iput(mdata->s_bitmap_fe);
292 mdata->s_bitmap_fe = NULL;
293 }
294}
295
296static void udf_sb_free_partitions(struct super_block *sb)
297{
298 struct udf_sb_info *sbi = UDF_SB(sb);
299 int i;
300
301 if (!sbi->s_partmaps)
302 return;
303 for (i = 0; i < sbi->s_partitions; i++)
304 udf_free_partition(&sbi->s_partmaps[i]);
305 kfree(sbi->s_partmaps);
306 sbi->s_partmaps = NULL;
307}
308
309static int udf_show_options(struct seq_file *seq, struct dentry *root)
310{
311 struct super_block *sb = root->d_sb;
312 struct udf_sb_info *sbi = UDF_SB(sb);
313
314 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
315 seq_puts(seq, ",nostrict");
316 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
317 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
319 seq_puts(seq, ",unhide");
320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
321 seq_puts(seq, ",undelete");
322 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
323 seq_puts(seq, ",noadinicb");
324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
325 seq_puts(seq, ",shortad");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
327 seq_puts(seq, ",uid=forget");
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
329 seq_puts(seq, ",gid=forget");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
331 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
333 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
334 if (sbi->s_umask != 0)
335 seq_printf(seq, ",umask=%ho", sbi->s_umask);
336 if (sbi->s_fmode != UDF_INVALID_MODE)
337 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
338 if (sbi->s_dmode != UDF_INVALID_MODE)
339 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
341 seq_printf(seq, ",session=%d", sbi->s_session);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
343 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
344 if (sbi->s_anchor != 0)
345 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
346 if (sbi->s_nls_map)
347 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
348 else
349 seq_puts(seq, ",iocharset=utf8");
350
351 return 0;
352}
353
354/*
355 * udf_parse_options
356 *
357 * PURPOSE
358 * Parse mount options.
359 *
360 * DESCRIPTION
361 * The following mount options are supported:
362 *
363 * gid= Set the default group.
364 * umask= Set the default umask.
365 * mode= Set the default file permissions.
366 * dmode= Set the default directory permissions.
367 * uid= Set the default user.
368 * bs= Set the block size.
369 * unhide Show otherwise hidden files.
370 * undelete Show deleted files in lists.
371 * adinicb Embed data in the inode (default)
372 * noadinicb Don't embed data in the inode
373 * shortad Use short ad's
374 * longad Use long ad's (default)
375 * nostrict Unset strict conformance
376 * iocharset= Set the NLS character set
377 *
378 * The remaining are for debugging and disaster recovery:
379 *
380 * novrs Skip volume sequence recognition
381 *
382 * The following expect a offset from 0.
383 *
384 * session= Set the CDROM session (default= last session)
385 * anchor= Override standard anchor location. (default= 256)
386 * volume= Override the VolumeDesc location. (unused)
387 * partition= Override the PartitionDesc location. (unused)
388 * lastblock= Set the last block of the filesystem/
389 *
390 * The following expect a offset from the partition root.
391 *
392 * fileset= Override the fileset block location. (unused)
393 * rootdir= Override the root directory location. (unused)
394 * WARNING: overriding the rootdir to a non-directory may
395 * yield highly unpredictable results.
396 *
397 * PRE-CONDITIONS
398 * options Pointer to mount options string.
399 * uopts Pointer to mount options variable.
400 *
401 * POST-CONDITIONS
402 * <return> 1 Mount options parsed okay.
403 * <return> 0 Error parsing mount options.
404 *
405 * HISTORY
406 * July 1, 1997 - Andrew E. Mileski
407 * Written, tested, and released.
408 */
409
410enum {
411 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
412 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
413 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
414 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
415 Opt_rootdir, Opt_utf8, Opt_iocharset,
416 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
417 Opt_fmode, Opt_dmode
418};
419
420static const match_table_t tokens = {
421 {Opt_novrs, "novrs"},
422 {Opt_nostrict, "nostrict"},
423 {Opt_bs, "bs=%u"},
424 {Opt_unhide, "unhide"},
425 {Opt_undelete, "undelete"},
426 {Opt_noadinicb, "noadinicb"},
427 {Opt_adinicb, "adinicb"},
428 {Opt_shortad, "shortad"},
429 {Opt_longad, "longad"},
430 {Opt_uforget, "uid=forget"},
431 {Opt_uignore, "uid=ignore"},
432 {Opt_gforget, "gid=forget"},
433 {Opt_gignore, "gid=ignore"},
434 {Opt_gid, "gid=%u"},
435 {Opt_uid, "uid=%u"},
436 {Opt_umask, "umask=%o"},
437 {Opt_session, "session=%u"},
438 {Opt_lastblock, "lastblock=%u"},
439 {Opt_anchor, "anchor=%u"},
440 {Opt_volume, "volume=%u"},
441 {Opt_partition, "partition=%u"},
442 {Opt_fileset, "fileset=%u"},
443 {Opt_rootdir, "rootdir=%u"},
444 {Opt_utf8, "utf8"},
445 {Opt_iocharset, "iocharset=%s"},
446 {Opt_fmode, "mode=%o"},
447 {Opt_dmode, "dmode=%o"},
448 {Opt_err, NULL}
449};
450
451static int udf_parse_options(char *options, struct udf_options *uopt,
452 bool remount)
453{
454 char *p;
455 int option;
456 unsigned int uv;
457
458 uopt->novrs = 0;
459 uopt->session = 0xFFFFFFFF;
460 uopt->lastblock = 0;
461 uopt->anchor = 0;
462
463 if (!options)
464 return 1;
465
466 while ((p = strsep(&options, ",")) != NULL) {
467 substring_t args[MAX_OPT_ARGS];
468 int token;
469 unsigned n;
470 if (!*p)
471 continue;
472
473 token = match_token(p, tokens, args);
474 switch (token) {
475 case Opt_novrs:
476 uopt->novrs = 1;
477 break;
478 case Opt_bs:
479 if (match_int(&args[0], &option))
480 return 0;
481 n = option;
482 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
483 return 0;
484 uopt->blocksize = n;
485 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
486 break;
487 case Opt_unhide:
488 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
489 break;
490 case Opt_undelete:
491 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
492 break;
493 case Opt_noadinicb:
494 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
495 break;
496 case Opt_adinicb:
497 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
498 break;
499 case Opt_shortad:
500 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
501 break;
502 case Opt_longad:
503 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
504 break;
505 case Opt_gid:
506 if (match_uint(args, &uv))
507 return 0;
508 uopt->gid = make_kgid(current_user_ns(), uv);
509 if (!gid_valid(uopt->gid))
510 return 0;
511 uopt->flags |= (1 << UDF_FLAG_GID_SET);
512 break;
513 case Opt_uid:
514 if (match_uint(args, &uv))
515 return 0;
516 uopt->uid = make_kuid(current_user_ns(), uv);
517 if (!uid_valid(uopt->uid))
518 return 0;
519 uopt->flags |= (1 << UDF_FLAG_UID_SET);
520 break;
521 case Opt_umask:
522 if (match_octal(args, &option))
523 return 0;
524 uopt->umask = option;
525 break;
526 case Opt_nostrict:
527 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
528 break;
529 case Opt_session:
530 if (match_int(args, &option))
531 return 0;
532 uopt->session = option;
533 if (!remount)
534 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
535 break;
536 case Opt_lastblock:
537 if (match_int(args, &option))
538 return 0;
539 uopt->lastblock = option;
540 if (!remount)
541 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
542 break;
543 case Opt_anchor:
544 if (match_int(args, &option))
545 return 0;
546 uopt->anchor = option;
547 break;
548 case Opt_volume:
549 case Opt_partition:
550 case Opt_fileset:
551 case Opt_rootdir:
552 /* Ignored (never implemented properly) */
553 break;
554 case Opt_utf8:
555 if (!remount) {
556 unload_nls(uopt->nls_map);
557 uopt->nls_map = NULL;
558 }
559 break;
560 case Opt_iocharset:
561 if (!remount) {
562 unload_nls(uopt->nls_map);
563 uopt->nls_map = NULL;
564 }
565 /* When nls_map is not loaded then UTF-8 is used */
566 if (!remount && strcmp(args[0].from, "utf8") != 0) {
567 uopt->nls_map = load_nls(args[0].from);
568 if (!uopt->nls_map) {
569 pr_err("iocharset %s not found\n",
570 args[0].from);
571 return 0;
572 }
573 }
574 break;
575 case Opt_uforget:
576 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 break;
578 case Opt_uignore:
579 case Opt_gignore:
580 /* These options are superseeded by uid=<number> */
581 break;
582 case Opt_gforget:
583 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 break;
585 case Opt_fmode:
586 if (match_octal(args, &option))
587 return 0;
588 uopt->fmode = option & 0777;
589 break;
590 case Opt_dmode:
591 if (match_octal(args, &option))
592 return 0;
593 uopt->dmode = option & 0777;
594 break;
595 default:
596 pr_err("bad mount option \"%s\" or missing value\n", p);
597 return 0;
598 }
599 }
600 return 1;
601}
602
603static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604{
605 struct udf_options uopt;
606 struct udf_sb_info *sbi = UDF_SB(sb);
607 int error = 0;
608
609 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 return -EACCES;
611
612 sync_filesystem(sb);
613
614 uopt.flags = sbi->s_flags;
615 uopt.uid = sbi->s_uid;
616 uopt.gid = sbi->s_gid;
617 uopt.umask = sbi->s_umask;
618 uopt.fmode = sbi->s_fmode;
619 uopt.dmode = sbi->s_dmode;
620 uopt.nls_map = NULL;
621
622 if (!udf_parse_options(options, &uopt, true))
623 return -EINVAL;
624
625 write_lock(&sbi->s_cred_lock);
626 sbi->s_flags = uopt.flags;
627 sbi->s_uid = uopt.uid;
628 sbi->s_gid = uopt.gid;
629 sbi->s_umask = uopt.umask;
630 sbi->s_fmode = uopt.fmode;
631 sbi->s_dmode = uopt.dmode;
632 write_unlock(&sbi->s_cred_lock);
633
634 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 goto out_unlock;
636
637 if (*flags & SB_RDONLY)
638 udf_close_lvid(sb);
639 else
640 udf_open_lvid(sb);
641
642out_unlock:
643 return error;
644}
645
646/*
647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649 * we found one of NSR descriptors we are looking for.
650 */
651static int identify_vsd(const struct volStructDesc *vsd)
652{
653 int ret = 0;
654
655 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 switch (vsd->structType) {
657 case 0:
658 udf_debug("ISO9660 Boot Record found\n");
659 break;
660 case 1:
661 udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 break;
663 case 2:
664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 break;
666 case 3:
667 udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 break;
669 case 255:
670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 break;
672 default:
673 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 break;
675 }
676 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 ; /* ret = 0 */
678 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 ret = 1;
680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 ret = 1;
682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 ; /* ret = 0 */
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 ; /* ret = 0 */
686 else {
687 /* TEA01 or invalid id : end of volume recognition area */
688 ret = -1;
689 }
690
691 return ret;
692}
693
694/*
695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697 * @return 1 if NSR02 or NSR03 found,
698 * -1 if first sector read error, 0 otherwise
699 */
700static int udf_check_vsd(struct super_block *sb)
701{
702 struct volStructDesc *vsd = NULL;
703 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 int sectorsize;
705 struct buffer_head *bh = NULL;
706 int nsr = 0;
707 struct udf_sb_info *sbi;
708 loff_t session_offset;
709
710 sbi = UDF_SB(sb);
711 if (sb->s_blocksize < sizeof(struct volStructDesc))
712 sectorsize = sizeof(struct volStructDesc);
713 else
714 sectorsize = sb->s_blocksize;
715
716 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
717 sector += session_offset;
718
719 udf_debug("Starting at sector %u (%lu byte sectors)\n",
720 (unsigned int)(sector >> sb->s_blocksize_bits),
721 sb->s_blocksize);
722 /* Process the sequence (if applicable). The hard limit on the sector
723 * offset is arbitrary, hopefully large enough so that all valid UDF
724 * filesystems will be recognised. There is no mention of an upper
725 * bound to the size of the volume recognition area in the standard.
726 * The limit will prevent the code to read all the sectors of a
727 * specially crafted image (like a bluray disc full of CD001 sectors),
728 * potentially causing minutes or even hours of uninterruptible I/O
729 * activity. This actually happened with uninitialised SSD partitions
730 * (all 0xFF) before the check for the limit and all valid IDs were
731 * added */
732 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
733 /* Read a block */
734 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
735 if (!bh)
736 break;
737
738 vsd = (struct volStructDesc *)(bh->b_data +
739 (sector & (sb->s_blocksize - 1)));
740 nsr = identify_vsd(vsd);
741 /* Found NSR or end? */
742 if (nsr) {
743 brelse(bh);
744 break;
745 }
746 /*
747 * Special handling for improperly formatted VRS (e.g., Win10)
748 * where components are separated by 2048 bytes even though
749 * sectors are 4K
750 */
751 if (sb->s_blocksize == 4096) {
752 nsr = identify_vsd(vsd + 1);
753 /* Ignore unknown IDs... */
754 if (nsr < 0)
755 nsr = 0;
756 }
757 brelse(bh);
758 }
759
760 if (nsr > 0)
761 return 1;
762 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
763 return -1;
764 else
765 return 0;
766}
767
768static int udf_verify_domain_identifier(struct super_block *sb,
769 struct regid *ident, char *dname)
770{
771 struct domainIdentSuffix *suffix;
772
773 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
774 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
775 goto force_ro;
776 }
777 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
778 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
779 dname);
780 goto force_ro;
781 }
782 suffix = (struct domainIdentSuffix *)ident->identSuffix;
783 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
784 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
785 if (!sb_rdonly(sb)) {
786 udf_warn(sb, "Descriptor for %s marked write protected."
787 " Forcing read only mount.\n", dname);
788 }
789 goto force_ro;
790 }
791 return 0;
792
793force_ro:
794 if (!sb_rdonly(sb))
795 return -EACCES;
796 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
797 return 0;
798}
799
800static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
801 struct kernel_lb_addr *root)
802{
803 int ret;
804
805 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
806 if (ret < 0)
807 return ret;
808
809 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
810 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
811
812 udf_debug("Rootdir at block=%u, partition=%u\n",
813 root->logicalBlockNum, root->partitionReferenceNum);
814 return 0;
815}
816
817static int udf_find_fileset(struct super_block *sb,
818 struct kernel_lb_addr *fileset,
819 struct kernel_lb_addr *root)
820{
821 struct buffer_head *bh = NULL;
822 uint16_t ident;
823 int ret;
824
825 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
826 fileset->partitionReferenceNum == 0xFFFF)
827 return -EINVAL;
828
829 bh = udf_read_ptagged(sb, fileset, 0, &ident);
830 if (!bh)
831 return -EIO;
832 if (ident != TAG_IDENT_FSD) {
833 brelse(bh);
834 return -EINVAL;
835 }
836
837 udf_debug("Fileset at block=%u, partition=%u\n",
838 fileset->logicalBlockNum, fileset->partitionReferenceNum);
839
840 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
841 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
842 brelse(bh);
843 return ret;
844}
845
846/*
847 * Load primary Volume Descriptor Sequence
848 *
849 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850 * should be tried.
851 */
852static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853{
854 struct primaryVolDesc *pvoldesc;
855 uint8_t *outstr;
856 struct buffer_head *bh;
857 uint16_t ident;
858 int ret;
859 struct timestamp *ts;
860
861 outstr = kmalloc(128, GFP_NOFS);
862 if (!outstr)
863 return -ENOMEM;
864
865 bh = udf_read_tagged(sb, block, block, &ident);
866 if (!bh) {
867 ret = -EAGAIN;
868 goto out2;
869 }
870
871 if (ident != TAG_IDENT_PVD) {
872 ret = -EIO;
873 goto out_bh;
874 }
875
876 pvoldesc = (struct primaryVolDesc *)bh->b_data;
877
878 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
879 pvoldesc->recordingDateAndTime);
880 ts = &pvoldesc->recordingDateAndTime;
881 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
882 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
883 ts->minute, le16_to_cpu(ts->typeAndTimezone));
884
885 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
886 if (ret < 0) {
887 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
888 pr_warn("incorrect volume identification, setting to "
889 "'InvalidName'\n");
890 } else {
891 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
892 }
893 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
894
895 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
896 if (ret < 0) {
897 ret = 0;
898 goto out_bh;
899 }
900 outstr[ret] = 0;
901 udf_debug("volSetIdent[] = '%s'\n", outstr);
902
903 ret = 0;
904out_bh:
905 brelse(bh);
906out2:
907 kfree(outstr);
908 return ret;
909}
910
911struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
912 u32 meta_file_loc, u32 partition_ref)
913{
914 struct kernel_lb_addr addr;
915 struct inode *metadata_fe;
916
917 addr.logicalBlockNum = meta_file_loc;
918 addr.partitionReferenceNum = partition_ref;
919
920 metadata_fe = udf_iget_special(sb, &addr);
921
922 if (IS_ERR(metadata_fe)) {
923 udf_warn(sb, "metadata inode efe not found\n");
924 return metadata_fe;
925 }
926 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928 iput(metadata_fe);
929 return ERR_PTR(-EIO);
930 }
931
932 return metadata_fe;
933}
934
935static int udf_load_metadata_files(struct super_block *sb, int partition,
936 int type1_index)
937{
938 struct udf_sb_info *sbi = UDF_SB(sb);
939 struct udf_part_map *map;
940 struct udf_meta_data *mdata;
941 struct kernel_lb_addr addr;
942 struct inode *fe;
943
944 map = &sbi->s_partmaps[partition];
945 mdata = &map->s_type_specific.s_metadata;
946 mdata->s_phys_partition_ref = type1_index;
947
948 /* metadata address */
949 udf_debug("Metadata file location: block = %u part = %u\n",
950 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
951
952 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
953 mdata->s_phys_partition_ref);
954 if (IS_ERR(fe)) {
955 /* mirror file entry */
956 udf_debug("Mirror metadata file location: block = %u part = %u\n",
957 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
958
959 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
960 mdata->s_phys_partition_ref);
961
962 if (IS_ERR(fe)) {
963 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
964 return PTR_ERR(fe);
965 }
966 mdata->s_mirror_fe = fe;
967 } else
968 mdata->s_metadata_fe = fe;
969
970
971 /*
972 * bitmap file entry
973 * Note:
974 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975 */
976 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
977 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
978 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
979
980 udf_debug("Bitmap file location: block = %u part = %u\n",
981 addr.logicalBlockNum, addr.partitionReferenceNum);
982
983 fe = udf_iget_special(sb, &addr);
984 if (IS_ERR(fe)) {
985 if (sb_rdonly(sb))
986 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
987 else {
988 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
989 return PTR_ERR(fe);
990 }
991 } else
992 mdata->s_bitmap_fe = fe;
993 }
994
995 udf_debug("udf_load_metadata_files Ok\n");
996 return 0;
997}
998
999int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000{
1001 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1002 return DIV_ROUND_UP(map->s_partition_len +
1003 (sizeof(struct spaceBitmapDesc) << 3),
1004 sb->s_blocksize * 8);
1005}
1006
1007static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008{
1009 struct udf_bitmap *bitmap;
1010 int nr_groups = udf_compute_nr_groups(sb, index);
1011
1012 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1013 GFP_KERNEL);
1014 if (!bitmap)
1015 return NULL;
1016
1017 bitmap->s_nr_groups = nr_groups;
1018 return bitmap;
1019}
1020
1021static int check_partition_desc(struct super_block *sb,
1022 struct partitionDesc *p,
1023 struct udf_part_map *map)
1024{
1025 bool umap, utable, fmap, ftable;
1026 struct partitionHeaderDesc *phd;
1027
1028 switch (le32_to_cpu(p->accessType)) {
1029 case PD_ACCESS_TYPE_READ_ONLY:
1030 case PD_ACCESS_TYPE_WRITE_ONCE:
1031 case PD_ACCESS_TYPE_NONE:
1032 goto force_ro;
1033 }
1034
1035 /* No Partition Header Descriptor? */
1036 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1037 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1038 goto force_ro;
1039
1040 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1041 utable = phd->unallocSpaceTable.extLength;
1042 umap = phd->unallocSpaceBitmap.extLength;
1043 ftable = phd->freedSpaceTable.extLength;
1044 fmap = phd->freedSpaceBitmap.extLength;
1045
1046 /* No allocation info? */
1047 if (!utable && !umap && !ftable && !fmap)
1048 goto force_ro;
1049
1050 /* We don't support blocks that require erasing before overwrite */
1051 if (ftable || fmap)
1052 goto force_ro;
1053 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1054 if (utable && umap)
1055 goto force_ro;
1056
1057 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1058 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1059 map->s_partition_type == UDF_METADATA_MAP25)
1060 goto force_ro;
1061
1062 return 0;
1063force_ro:
1064 if (!sb_rdonly(sb))
1065 return -EACCES;
1066 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1067 return 0;
1068}
1069
1070static int udf_fill_partdesc_info(struct super_block *sb,
1071 struct partitionDesc *p, int p_index)
1072{
1073 struct udf_part_map *map;
1074 struct udf_sb_info *sbi = UDF_SB(sb);
1075 struct partitionHeaderDesc *phd;
1076 int err;
1077
1078 map = &sbi->s_partmaps[p_index];
1079
1080 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1081 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1082
1083 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1084 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1086 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1088 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1090 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1091
1092 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1093 p_index, map->s_partition_type,
1094 map->s_partition_root, map->s_partition_len);
1095
1096 err = check_partition_desc(sb, p, map);
1097 if (err)
1098 return err;
1099
1100 /*
1101 * Skip loading allocation info it we cannot ever write to the fs.
1102 * This is a correctness thing as we may have decided to force ro mount
1103 * to avoid allocation info we don't support.
1104 */
1105 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1106 return 0;
1107
1108 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109 if (phd->unallocSpaceTable.extLength) {
1110 struct kernel_lb_addr loc = {
1111 .logicalBlockNum = le32_to_cpu(
1112 phd->unallocSpaceTable.extPosition),
1113 .partitionReferenceNum = p_index,
1114 };
1115 struct inode *inode;
1116
1117 inode = udf_iget_special(sb, &loc);
1118 if (IS_ERR(inode)) {
1119 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120 p_index);
1121 return PTR_ERR(inode);
1122 }
1123 map->s_uspace.s_table = inode;
1124 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126 p_index, map->s_uspace.s_table->i_ino);
1127 }
1128
1129 if (phd->unallocSpaceBitmap.extLength) {
1130 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131 if (!bitmap)
1132 return -ENOMEM;
1133 map->s_uspace.s_bitmap = bitmap;
1134 bitmap->s_extPosition = le32_to_cpu(
1135 phd->unallocSpaceBitmap.extPosition);
1136 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138 p_index, bitmap->s_extPosition);
1139 }
1140
1141 return 0;
1142}
1143
1144static void udf_find_vat_block(struct super_block *sb, int p_index,
1145 int type1_index, sector_t start_block)
1146{
1147 struct udf_sb_info *sbi = UDF_SB(sb);
1148 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1149 sector_t vat_block;
1150 struct kernel_lb_addr ino;
1151 struct inode *inode;
1152
1153 /*
1154 * VAT file entry is in the last recorded block. Some broken disks have
1155 * it a few blocks before so try a bit harder...
1156 */
1157 ino.partitionReferenceNum = type1_index;
1158 for (vat_block = start_block;
1159 vat_block >= map->s_partition_root &&
1160 vat_block >= start_block - 3; vat_block--) {
1161 ino.logicalBlockNum = vat_block - map->s_partition_root;
1162 inode = udf_iget_special(sb, &ino);
1163 if (!IS_ERR(inode)) {
1164 sbi->s_vat_inode = inode;
1165 break;
1166 }
1167 }
1168}
1169
1170static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1171{
1172 struct udf_sb_info *sbi = UDF_SB(sb);
1173 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174 struct buffer_head *bh = NULL;
1175 struct udf_inode_info *vati;
1176 uint32_t pos;
1177 struct virtualAllocationTable20 *vat20;
1178 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1179 sb->s_blocksize_bits;
1180
1181 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1182 if (!sbi->s_vat_inode &&
1183 sbi->s_last_block != blocks - 1) {
1184 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1185 (unsigned long)sbi->s_last_block,
1186 (unsigned long)blocks - 1);
1187 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1188 }
1189 if (!sbi->s_vat_inode)
1190 return -EIO;
1191
1192 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1193 map->s_type_specific.s_virtual.s_start_offset = 0;
1194 map->s_type_specific.s_virtual.s_num_entries =
1195 (sbi->s_vat_inode->i_size - 36) >> 2;
1196 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1197 vati = UDF_I(sbi->s_vat_inode);
1198 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1199 pos = udf_block_map(sbi->s_vat_inode, 0);
1200 bh = sb_bread(sb, pos);
1201 if (!bh)
1202 return -EIO;
1203 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1204 } else {
1205 vat20 = (struct virtualAllocationTable20 *)
1206 vati->i_data;
1207 }
1208
1209 map->s_type_specific.s_virtual.s_start_offset =
1210 le16_to_cpu(vat20->lengthHeader);
1211 map->s_type_specific.s_virtual.s_num_entries =
1212 (sbi->s_vat_inode->i_size -
1213 map->s_type_specific.s_virtual.
1214 s_start_offset) >> 2;
1215 brelse(bh);
1216 }
1217 return 0;
1218}
1219
1220/*
1221 * Load partition descriptor block
1222 *
1223 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1224 * sequence.
1225 */
1226static int udf_load_partdesc(struct super_block *sb, sector_t block)
1227{
1228 struct buffer_head *bh;
1229 struct partitionDesc *p;
1230 struct udf_part_map *map;
1231 struct udf_sb_info *sbi = UDF_SB(sb);
1232 int i, type1_idx;
1233 uint16_t partitionNumber;
1234 uint16_t ident;
1235 int ret;
1236
1237 bh = udf_read_tagged(sb, block, block, &ident);
1238 if (!bh)
1239 return -EAGAIN;
1240 if (ident != TAG_IDENT_PD) {
1241 ret = 0;
1242 goto out_bh;
1243 }
1244
1245 p = (struct partitionDesc *)bh->b_data;
1246 partitionNumber = le16_to_cpu(p->partitionNumber);
1247
1248 /* First scan for TYPE1 and SPARABLE partitions */
1249 for (i = 0; i < sbi->s_partitions; i++) {
1250 map = &sbi->s_partmaps[i];
1251 udf_debug("Searching map: (%u == %u)\n",
1252 map->s_partition_num, partitionNumber);
1253 if (map->s_partition_num == partitionNumber &&
1254 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1255 map->s_partition_type == UDF_SPARABLE_MAP15))
1256 break;
1257 }
1258
1259 if (i >= sbi->s_partitions) {
1260 udf_debug("Partition (%u) not found in partition map\n",
1261 partitionNumber);
1262 ret = 0;
1263 goto out_bh;
1264 }
1265
1266 ret = udf_fill_partdesc_info(sb, p, i);
1267 if (ret < 0)
1268 goto out_bh;
1269
1270 /*
1271 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1272 * PHYSICAL partitions are already set up
1273 */
1274 type1_idx = i;
1275 map = NULL; /* supress 'maybe used uninitialized' warning */
1276 for (i = 0; i < sbi->s_partitions; i++) {
1277 map = &sbi->s_partmaps[i];
1278
1279 if (map->s_partition_num == partitionNumber &&
1280 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1281 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1282 map->s_partition_type == UDF_METADATA_MAP25))
1283 break;
1284 }
1285
1286 if (i >= sbi->s_partitions) {
1287 ret = 0;
1288 goto out_bh;
1289 }
1290
1291 ret = udf_fill_partdesc_info(sb, p, i);
1292 if (ret < 0)
1293 goto out_bh;
1294
1295 if (map->s_partition_type == UDF_METADATA_MAP25) {
1296 ret = udf_load_metadata_files(sb, i, type1_idx);
1297 if (ret < 0) {
1298 udf_err(sb, "error loading MetaData partition map %d\n",
1299 i);
1300 goto out_bh;
1301 }
1302 } else {
1303 /*
1304 * If we have a partition with virtual map, we don't handle
1305 * writing to it (we overwrite blocks instead of relocating
1306 * them).
1307 */
1308 if (!sb_rdonly(sb)) {
1309 ret = -EACCES;
1310 goto out_bh;
1311 }
1312 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1313 ret = udf_load_vat(sb, i, type1_idx);
1314 if (ret < 0)
1315 goto out_bh;
1316 }
1317 ret = 0;
1318out_bh:
1319 /* In case loading failed, we handle cleanup in udf_fill_super */
1320 brelse(bh);
1321 return ret;
1322}
1323
1324static int udf_load_sparable_map(struct super_block *sb,
1325 struct udf_part_map *map,
1326 struct sparablePartitionMap *spm)
1327{
1328 uint32_t loc;
1329 uint16_t ident;
1330 struct sparingTable *st;
1331 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1332 int i;
1333 struct buffer_head *bh;
1334
1335 map->s_partition_type = UDF_SPARABLE_MAP15;
1336 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1337 if (!is_power_of_2(sdata->s_packet_len)) {
1338 udf_err(sb, "error loading logical volume descriptor: "
1339 "Invalid packet length %u\n",
1340 (unsigned)sdata->s_packet_len);
1341 return -EIO;
1342 }
1343 if (spm->numSparingTables > 4) {
1344 udf_err(sb, "error loading logical volume descriptor: "
1345 "Too many sparing tables (%d)\n",
1346 (int)spm->numSparingTables);
1347 return -EIO;
1348 }
1349 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1350 udf_err(sb, "error loading logical volume descriptor: "
1351 "Too big sparing table size (%u)\n",
1352 le32_to_cpu(spm->sizeSparingTable));
1353 return -EIO;
1354 }
1355
1356 for (i = 0; i < spm->numSparingTables; i++) {
1357 loc = le32_to_cpu(spm->locSparingTable[i]);
1358 bh = udf_read_tagged(sb, loc, loc, &ident);
1359 if (!bh)
1360 continue;
1361
1362 st = (struct sparingTable *)bh->b_data;
1363 if (ident != 0 ||
1364 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365 strlen(UDF_ID_SPARING)) ||
1366 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367 sb->s_blocksize) {
1368 brelse(bh);
1369 continue;
1370 }
1371
1372 sdata->s_spar_map[i] = bh;
1373 }
1374 map->s_partition_func = udf_get_pblock_spar15;
1375 return 0;
1376}
1377
1378static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379 struct kernel_lb_addr *fileset)
1380{
1381 struct logicalVolDesc *lvd;
1382 int i, offset;
1383 uint8_t type;
1384 struct udf_sb_info *sbi = UDF_SB(sb);
1385 struct genericPartitionMap *gpm;
1386 uint16_t ident;
1387 struct buffer_head *bh;
1388 unsigned int table_len;
1389 int ret;
1390
1391 bh = udf_read_tagged(sb, block, block, &ident);
1392 if (!bh)
1393 return -EAGAIN;
1394 BUG_ON(ident != TAG_IDENT_LVD);
1395 lvd = (struct logicalVolDesc *)bh->b_data;
1396 table_len = le32_to_cpu(lvd->mapTableLength);
1397 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398 udf_err(sb, "error loading logical volume descriptor: "
1399 "Partition table too long (%u > %lu)\n", table_len,
1400 sb->s_blocksize - sizeof(*lvd));
1401 ret = -EIO;
1402 goto out_bh;
1403 }
1404
1405 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1406 "logical volume");
1407 if (ret)
1408 goto out_bh;
1409 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1410 if (ret)
1411 goto out_bh;
1412
1413 for (i = 0, offset = 0;
1414 i < sbi->s_partitions && offset < table_len;
1415 i++, offset += gpm->partitionMapLength) {
1416 struct udf_part_map *map = &sbi->s_partmaps[i];
1417 gpm = (struct genericPartitionMap *)
1418 &(lvd->partitionMaps[offset]);
1419 type = gpm->partitionMapType;
1420 if (type == 1) {
1421 struct genericPartitionMap1 *gpm1 =
1422 (struct genericPartitionMap1 *)gpm;
1423 map->s_partition_type = UDF_TYPE1_MAP15;
1424 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1425 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1426 map->s_partition_func = NULL;
1427 } else if (type == 2) {
1428 struct udfPartitionMap2 *upm2 =
1429 (struct udfPartitionMap2 *)gpm;
1430 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1431 strlen(UDF_ID_VIRTUAL))) {
1432 u16 suf =
1433 le16_to_cpu(((__le16 *)upm2->partIdent.
1434 identSuffix)[0]);
1435 if (suf < 0x0200) {
1436 map->s_partition_type =
1437 UDF_VIRTUAL_MAP15;
1438 map->s_partition_func =
1439 udf_get_pblock_virt15;
1440 } else {
1441 map->s_partition_type =
1442 UDF_VIRTUAL_MAP20;
1443 map->s_partition_func =
1444 udf_get_pblock_virt20;
1445 }
1446 } else if (!strncmp(upm2->partIdent.ident,
1447 UDF_ID_SPARABLE,
1448 strlen(UDF_ID_SPARABLE))) {
1449 ret = udf_load_sparable_map(sb, map,
1450 (struct sparablePartitionMap *)gpm);
1451 if (ret < 0)
1452 goto out_bh;
1453 } else if (!strncmp(upm2->partIdent.ident,
1454 UDF_ID_METADATA,
1455 strlen(UDF_ID_METADATA))) {
1456 struct udf_meta_data *mdata =
1457 &map->s_type_specific.s_metadata;
1458 struct metadataPartitionMap *mdm =
1459 (struct metadataPartitionMap *)
1460 &(lvd->partitionMaps[offset]);
1461 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1462 i, type, UDF_ID_METADATA);
1463
1464 map->s_partition_type = UDF_METADATA_MAP25;
1465 map->s_partition_func = udf_get_pblock_meta25;
1466
1467 mdata->s_meta_file_loc =
1468 le32_to_cpu(mdm->metadataFileLoc);
1469 mdata->s_mirror_file_loc =
1470 le32_to_cpu(mdm->metadataMirrorFileLoc);
1471 mdata->s_bitmap_file_loc =
1472 le32_to_cpu(mdm->metadataBitmapFileLoc);
1473 mdata->s_alloc_unit_size =
1474 le32_to_cpu(mdm->allocUnitSize);
1475 mdata->s_align_unit_size =
1476 le16_to_cpu(mdm->alignUnitSize);
1477 if (mdm->flags & 0x01)
1478 mdata->s_flags |= MF_DUPLICATE_MD;
1479
1480 udf_debug("Metadata Ident suffix=0x%x\n",
1481 le16_to_cpu(*(__le16 *)
1482 mdm->partIdent.identSuffix));
1483 udf_debug("Metadata part num=%u\n",
1484 le16_to_cpu(mdm->partitionNum));
1485 udf_debug("Metadata part alloc unit size=%u\n",
1486 le32_to_cpu(mdm->allocUnitSize));
1487 udf_debug("Metadata file loc=%u\n",
1488 le32_to_cpu(mdm->metadataFileLoc));
1489 udf_debug("Mirror file loc=%u\n",
1490 le32_to_cpu(mdm->metadataMirrorFileLoc));
1491 udf_debug("Bitmap file loc=%u\n",
1492 le32_to_cpu(mdm->metadataBitmapFileLoc));
1493 udf_debug("Flags: %d %u\n",
1494 mdata->s_flags, mdm->flags);
1495 } else {
1496 udf_debug("Unknown ident: %s\n",
1497 upm2->partIdent.ident);
1498 continue;
1499 }
1500 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1501 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1502 }
1503 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1504 i, map->s_partition_num, type, map->s_volumeseqnum);
1505 }
1506
1507 if (fileset) {
1508 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1509
1510 *fileset = lelb_to_cpu(la->extLocation);
1511 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1512 fileset->logicalBlockNum,
1513 fileset->partitionReferenceNum);
1514 }
1515 if (lvd->integritySeqExt.extLength)
1516 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1517 ret = 0;
1518
1519 if (!sbi->s_lvid_bh) {
1520 /* We can't generate unique IDs without a valid LVID */
1521 if (sb_rdonly(sb)) {
1522 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1523 } else {
1524 udf_warn(sb, "Damaged or missing LVID, forcing "
1525 "readonly mount\n");
1526 ret = -EACCES;
1527 }
1528 }
1529out_bh:
1530 brelse(bh);
1531 return ret;
1532}
1533
1534/*
1535 * Find the prevailing Logical Volume Integrity Descriptor.
1536 */
1537static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1538{
1539 struct buffer_head *bh, *final_bh;
1540 uint16_t ident;
1541 struct udf_sb_info *sbi = UDF_SB(sb);
1542 struct logicalVolIntegrityDesc *lvid;
1543 int indirections = 0;
1544 u32 parts, impuselen;
1545
1546 while (++indirections <= UDF_MAX_LVID_NESTING) {
1547 final_bh = NULL;
1548 while (loc.extLength > 0 &&
1549 (bh = udf_read_tagged(sb, loc.extLocation,
1550 loc.extLocation, &ident))) {
1551 if (ident != TAG_IDENT_LVID) {
1552 brelse(bh);
1553 break;
1554 }
1555
1556 brelse(final_bh);
1557 final_bh = bh;
1558
1559 loc.extLength -= sb->s_blocksize;
1560 loc.extLocation++;
1561 }
1562
1563 if (!final_bh)
1564 return;
1565
1566 brelse(sbi->s_lvid_bh);
1567 sbi->s_lvid_bh = final_bh;
1568
1569 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570 if (lvid->nextIntegrityExt.extLength == 0)
1571 goto check;
1572
1573 loc = leea_to_cpu(lvid->nextIntegrityExt);
1574 }
1575
1576 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577 UDF_MAX_LVID_NESTING);
1578out_err:
1579 brelse(sbi->s_lvid_bh);
1580 sbi->s_lvid_bh = NULL;
1581 return;
1582check:
1583 parts = le32_to_cpu(lvid->numOfPartitions);
1584 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1585 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1586 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1587 2 * parts * sizeof(u32) > sb->s_blocksize) {
1588 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1589 "ignoring.\n", parts, impuselen);
1590 goto out_err;
1591 }
1592}
1593
1594/*
1595 * Step for reallocation of table of partition descriptor sequence numbers.
1596 * Must be power of 2.
1597 */
1598#define PART_DESC_ALLOC_STEP 32
1599
1600struct part_desc_seq_scan_data {
1601 struct udf_vds_record rec;
1602 u32 partnum;
1603};
1604
1605struct desc_seq_scan_data {
1606 struct udf_vds_record vds[VDS_POS_LENGTH];
1607 unsigned int size_part_descs;
1608 unsigned int num_part_descs;
1609 struct part_desc_seq_scan_data *part_descs_loc;
1610};
1611
1612static struct udf_vds_record *handle_partition_descriptor(
1613 struct buffer_head *bh,
1614 struct desc_seq_scan_data *data)
1615{
1616 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1617 int partnum;
1618 int i;
1619
1620 partnum = le16_to_cpu(desc->partitionNumber);
1621 for (i = 0; i < data->num_part_descs; i++)
1622 if (partnum == data->part_descs_loc[i].partnum)
1623 return &(data->part_descs_loc[i].rec);
1624 if (data->num_part_descs >= data->size_part_descs) {
1625 struct part_desc_seq_scan_data *new_loc;
1626 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1627
1628 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1629 if (!new_loc)
1630 return ERR_PTR(-ENOMEM);
1631 memcpy(new_loc, data->part_descs_loc,
1632 data->size_part_descs * sizeof(*new_loc));
1633 kfree(data->part_descs_loc);
1634 data->part_descs_loc = new_loc;
1635 data->size_part_descs = new_size;
1636 }
1637 return &(data->part_descs_loc[data->num_part_descs++].rec);
1638}
1639
1640
1641static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1642 struct buffer_head *bh, struct desc_seq_scan_data *data)
1643{
1644 switch (ident) {
1645 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1646 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1647 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1648 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1649 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1651 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1652 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1653 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1654 return handle_partition_descriptor(bh, data);
1655 }
1656 return NULL;
1657}
1658
1659/*
1660 * Process a main/reserve volume descriptor sequence.
1661 * @block First block of first extent of the sequence.
1662 * @lastblock Lastblock of first extent of the sequence.
1663 * @fileset There we store extent containing root fileset
1664 *
1665 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1666 * sequence
1667 */
1668static noinline int udf_process_sequence(
1669 struct super_block *sb,
1670 sector_t block, sector_t lastblock,
1671 struct kernel_lb_addr *fileset)
1672{
1673 struct buffer_head *bh = NULL;
1674 struct udf_vds_record *curr;
1675 struct generic_desc *gd;
1676 struct volDescPtr *vdp;
1677 bool done = false;
1678 uint32_t vdsn;
1679 uint16_t ident;
1680 int ret;
1681 unsigned int indirections = 0;
1682 struct desc_seq_scan_data data;
1683 unsigned int i;
1684
1685 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1686 data.size_part_descs = PART_DESC_ALLOC_STEP;
1687 data.num_part_descs = 0;
1688 data.part_descs_loc = kcalloc(data.size_part_descs,
1689 sizeof(*data.part_descs_loc),
1690 GFP_KERNEL);
1691 if (!data.part_descs_loc)
1692 return -ENOMEM;
1693
1694 /*
1695 * Read the main descriptor sequence and find which descriptors
1696 * are in it.
1697 */
1698 for (; (!done && block <= lastblock); block++) {
1699 bh = udf_read_tagged(sb, block, block, &ident);
1700 if (!bh)
1701 break;
1702
1703 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1704 gd = (struct generic_desc *)bh->b_data;
1705 vdsn = le32_to_cpu(gd->volDescSeqNum);
1706 switch (ident) {
1707 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1708 if (++indirections > UDF_MAX_TD_NESTING) {
1709 udf_err(sb, "too many Volume Descriptor "
1710 "Pointers (max %u supported)\n",
1711 UDF_MAX_TD_NESTING);
1712 brelse(bh);
1713 ret = -EIO;
1714 goto out;
1715 }
1716
1717 vdp = (struct volDescPtr *)bh->b_data;
1718 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1719 lastblock = le32_to_cpu(
1720 vdp->nextVolDescSeqExt.extLength) >>
1721 sb->s_blocksize_bits;
1722 lastblock += block - 1;
1723 /* For loop is going to increment 'block' again */
1724 block--;
1725 break;
1726 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1727 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1728 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1729 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1730 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1731 curr = get_volume_descriptor_record(ident, bh, &data);
1732 if (IS_ERR(curr)) {
1733 brelse(bh);
1734 ret = PTR_ERR(curr);
1735 goto out;
1736 }
1737 /* Descriptor we don't care about? */
1738 if (!curr)
1739 break;
1740 if (vdsn >= curr->volDescSeqNum) {
1741 curr->volDescSeqNum = vdsn;
1742 curr->block = block;
1743 }
1744 break;
1745 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1746 done = true;
1747 break;
1748 }
1749 brelse(bh);
1750 }
1751 /*
1752 * Now read interesting descriptors again and process them
1753 * in a suitable order
1754 */
1755 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1756 udf_err(sb, "Primary Volume Descriptor not found!\n");
1757 ret = -EAGAIN;
1758 goto out;
1759 }
1760 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1761 if (ret < 0)
1762 goto out;
1763
1764 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1765 ret = udf_load_logicalvol(sb,
1766 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1767 fileset);
1768 if (ret < 0)
1769 goto out;
1770 }
1771
1772 /* Now handle prevailing Partition Descriptors */
1773 for (i = 0; i < data.num_part_descs; i++) {
1774 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1775 if (ret < 0)
1776 goto out;
1777 }
1778 ret = 0;
1779out:
1780 kfree(data.part_descs_loc);
1781 return ret;
1782}
1783
1784/*
1785 * Load Volume Descriptor Sequence described by anchor in bh
1786 *
1787 * Returns <0 on error, 0 on success
1788 */
1789static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1790 struct kernel_lb_addr *fileset)
1791{
1792 struct anchorVolDescPtr *anchor;
1793 sector_t main_s, main_e, reserve_s, reserve_e;
1794 int ret;
1795
1796 anchor = (struct anchorVolDescPtr *)bh->b_data;
1797
1798 /* Locate the main sequence */
1799 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1800 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1801 main_e = main_e >> sb->s_blocksize_bits;
1802 main_e += main_s - 1;
1803
1804 /* Locate the reserve sequence */
1805 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1806 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1807 reserve_e = reserve_e >> sb->s_blocksize_bits;
1808 reserve_e += reserve_s - 1;
1809
1810 /* Process the main & reserve sequences */
1811 /* responsible for finding the PartitionDesc(s) */
1812 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1813 if (ret != -EAGAIN)
1814 return ret;
1815 udf_sb_free_partitions(sb);
1816 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1817 if (ret < 0) {
1818 udf_sb_free_partitions(sb);
1819 /* No sequence was OK, return -EIO */
1820 if (ret == -EAGAIN)
1821 ret = -EIO;
1822 }
1823 return ret;
1824}
1825
1826/*
1827 * Check whether there is an anchor block in the given block and
1828 * load Volume Descriptor Sequence if so.
1829 *
1830 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1831 * block
1832 */
1833static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1834 struct kernel_lb_addr *fileset)
1835{
1836 struct buffer_head *bh;
1837 uint16_t ident;
1838 int ret;
1839
1840 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1841 udf_fixed_to_variable(block) >=
1842 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1843 return -EAGAIN;
1844
1845 bh = udf_read_tagged(sb, block, block, &ident);
1846 if (!bh)
1847 return -EAGAIN;
1848 if (ident != TAG_IDENT_AVDP) {
1849 brelse(bh);
1850 return -EAGAIN;
1851 }
1852 ret = udf_load_sequence(sb, bh, fileset);
1853 brelse(bh);
1854 return ret;
1855}
1856
1857/*
1858 * Search for an anchor volume descriptor pointer.
1859 *
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861 * of anchors.
1862 */
1863static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864 struct kernel_lb_addr *fileset)
1865{
1866 sector_t last[6];
1867 int i;
1868 struct udf_sb_info *sbi = UDF_SB(sb);
1869 int last_count = 0;
1870 int ret;
1871
1872 /* First try user provided anchor */
1873 if (sbi->s_anchor) {
1874 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875 if (ret != -EAGAIN)
1876 return ret;
1877 }
1878 /*
1879 * according to spec, anchor is in either:
1880 * block 256
1881 * lastblock-256
1882 * lastblock
1883 * however, if the disc isn't closed, it could be 512.
1884 */
1885 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886 if (ret != -EAGAIN)
1887 return ret;
1888 /*
1889 * The trouble is which block is the last one. Drives often misreport
1890 * this so we try various possibilities.
1891 */
1892 last[last_count++] = *lastblock;
1893 if (*lastblock >= 1)
1894 last[last_count++] = *lastblock - 1;
1895 last[last_count++] = *lastblock + 1;
1896 if (*lastblock >= 2)
1897 last[last_count++] = *lastblock - 2;
1898 if (*lastblock >= 150)
1899 last[last_count++] = *lastblock - 150;
1900 if (*lastblock >= 152)
1901 last[last_count++] = *lastblock - 152;
1902
1903 for (i = 0; i < last_count; i++) {
1904 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1905 sb->s_blocksize_bits)
1906 continue;
1907 ret = udf_check_anchor_block(sb, last[i], fileset);
1908 if (ret != -EAGAIN) {
1909 if (!ret)
1910 *lastblock = last[i];
1911 return ret;
1912 }
1913 if (last[i] < 256)
1914 continue;
1915 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916 if (ret != -EAGAIN) {
1917 if (!ret)
1918 *lastblock = last[i];
1919 return ret;
1920 }
1921 }
1922
1923 /* Finally try block 512 in case media is open */
1924 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1925}
1926
1927/*
1928 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929 * area specified by it. The function expects sbi->s_lastblock to be the last
1930 * block on the media.
1931 *
1932 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1933 * was not found.
1934 */
1935static int udf_find_anchor(struct super_block *sb,
1936 struct kernel_lb_addr *fileset)
1937{
1938 struct udf_sb_info *sbi = UDF_SB(sb);
1939 sector_t lastblock = sbi->s_last_block;
1940 int ret;
1941
1942 ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 if (ret != -EAGAIN)
1944 goto out;
1945
1946 /* No anchor found? Try VARCONV conversion of block numbers */
1947 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949 /* Firstly, we try to not convert number of the last block */
1950 ret = udf_scan_anchors(sb, &lastblock, fileset);
1951 if (ret != -EAGAIN)
1952 goto out;
1953
1954 lastblock = sbi->s_last_block;
1955 /* Secondly, we try with converted number of the last block */
1956 ret = udf_scan_anchors(sb, &lastblock, fileset);
1957 if (ret < 0) {
1958 /* VARCONV didn't help. Clear it. */
1959 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1960 }
1961out:
1962 if (ret == 0)
1963 sbi->s_last_block = lastblock;
1964 return ret;
1965}
1966
1967/*
1968 * Check Volume Structure Descriptor, find Anchor block and load Volume
1969 * Descriptor Sequence.
1970 *
1971 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972 * block was not found.
1973 */
1974static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975 int silent, struct kernel_lb_addr *fileset)
1976{
1977 struct udf_sb_info *sbi = UDF_SB(sb);
1978 int nsr = 0;
1979 int ret;
1980
1981 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982 if (!silent)
1983 udf_warn(sb, "Bad block size\n");
1984 return -EINVAL;
1985 }
1986 sbi->s_last_block = uopt->lastblock;
1987 if (!uopt->novrs) {
1988 /* Check that it is NSR02 compliant */
1989 nsr = udf_check_vsd(sb);
1990 if (!nsr) {
1991 if (!silent)
1992 udf_warn(sb, "No VRS found\n");
1993 return -EINVAL;
1994 }
1995 if (nsr == -1)
1996 udf_debug("Failed to read sector at offset %d. "
1997 "Assuming open disc. Skipping validity "
1998 "check\n", VSD_FIRST_SECTOR_OFFSET);
1999 if (!sbi->s_last_block)
2000 sbi->s_last_block = udf_get_last_block(sb);
2001 } else {
2002 udf_debug("Validity check skipped because of novrs option\n");
2003 }
2004
2005 /* Look for anchor block and load Volume Descriptor Sequence */
2006 sbi->s_anchor = uopt->anchor;
2007 ret = udf_find_anchor(sb, fileset);
2008 if (ret < 0) {
2009 if (!silent && ret == -EAGAIN)
2010 udf_warn(sb, "No anchor found\n");
2011 return ret;
2012 }
2013 return 0;
2014}
2015
2016static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017{
2018 struct timespec64 ts;
2019
2020 ktime_get_real_ts64(&ts);
2021 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022 lvid->descTag.descCRC = cpu_to_le16(
2023 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024 le16_to_cpu(lvid->descTag.descCRCLength)));
2025 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026}
2027
2028static void udf_open_lvid(struct super_block *sb)
2029{
2030 struct udf_sb_info *sbi = UDF_SB(sb);
2031 struct buffer_head *bh = sbi->s_lvid_bh;
2032 struct logicalVolIntegrityDesc *lvid;
2033 struct logicalVolIntegrityDescImpUse *lvidiu;
2034
2035 if (!bh)
2036 return;
2037 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038 lvidiu = udf_sb_lvidiu(sb);
2039 if (!lvidiu)
2040 return;
2041
2042 mutex_lock(&sbi->s_alloc_mutex);
2043 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047 else
2048 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049
2050 udf_finalize_lvid(lvid);
2051 mark_buffer_dirty(bh);
2052 sbi->s_lvid_dirty = 0;
2053 mutex_unlock(&sbi->s_alloc_mutex);
2054 /* Make opening of filesystem visible on the media immediately */
2055 sync_dirty_buffer(bh);
2056}
2057
2058static void udf_close_lvid(struct super_block *sb)
2059{
2060 struct udf_sb_info *sbi = UDF_SB(sb);
2061 struct buffer_head *bh = sbi->s_lvid_bh;
2062 struct logicalVolIntegrityDesc *lvid;
2063 struct logicalVolIntegrityDescImpUse *lvidiu;
2064
2065 if (!bh)
2066 return;
2067 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068 lvidiu = udf_sb_lvidiu(sb);
2069 if (!lvidiu)
2070 return;
2071
2072 mutex_lock(&sbi->s_alloc_mutex);
2073 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2083
2084 /*
2085 * We set buffer uptodate unconditionally here to avoid spurious
2086 * warnings from mark_buffer_dirty() when previous EIO has marked
2087 * the buffer as !uptodate
2088 */
2089 set_buffer_uptodate(bh);
2090 udf_finalize_lvid(lvid);
2091 mark_buffer_dirty(bh);
2092 sbi->s_lvid_dirty = 0;
2093 mutex_unlock(&sbi->s_alloc_mutex);
2094 /* Make closing of filesystem visible on the media immediately */
2095 sync_dirty_buffer(bh);
2096}
2097
2098u64 lvid_get_unique_id(struct super_block *sb)
2099{
2100 struct buffer_head *bh;
2101 struct udf_sb_info *sbi = UDF_SB(sb);
2102 struct logicalVolIntegrityDesc *lvid;
2103 struct logicalVolHeaderDesc *lvhd;
2104 u64 uniqueID;
2105 u64 ret;
2106
2107 bh = sbi->s_lvid_bh;
2108 if (!bh)
2109 return 0;
2110
2111 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113
2114 mutex_lock(&sbi->s_alloc_mutex);
2115 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116 if (!(++uniqueID & 0xFFFFFFFF))
2117 uniqueID += 16;
2118 lvhd->uniqueID = cpu_to_le64(uniqueID);
2119 udf_updated_lvid(sb);
2120 mutex_unlock(&sbi->s_alloc_mutex);
2121
2122 return ret;
2123}
2124
2125static int udf_fill_super(struct super_block *sb, void *options, int silent)
2126{
2127 int ret = -EINVAL;
2128 struct inode *inode = NULL;
2129 struct udf_options uopt;
2130 struct kernel_lb_addr rootdir, fileset;
2131 struct udf_sb_info *sbi;
2132 bool lvid_open = false;
2133
2134 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138 uopt.umask = 0;
2139 uopt.fmode = UDF_INVALID_MODE;
2140 uopt.dmode = UDF_INVALID_MODE;
2141 uopt.nls_map = NULL;
2142
2143 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2144 if (!sbi)
2145 return -ENOMEM;
2146
2147 sb->s_fs_info = sbi;
2148
2149 mutex_init(&sbi->s_alloc_mutex);
2150
2151 if (!udf_parse_options((char *)options, &uopt, false))
2152 goto parse_options_failure;
2153
2154 fileset.logicalBlockNum = 0xFFFFFFFF;
2155 fileset.partitionReferenceNum = 0xFFFF;
2156
2157 sbi->s_flags = uopt.flags;
2158 sbi->s_uid = uopt.uid;
2159 sbi->s_gid = uopt.gid;
2160 sbi->s_umask = uopt.umask;
2161 sbi->s_fmode = uopt.fmode;
2162 sbi->s_dmode = uopt.dmode;
2163 sbi->s_nls_map = uopt.nls_map;
2164 rwlock_init(&sbi->s_cred_lock);
2165
2166 if (uopt.session == 0xFFFFFFFF)
2167 sbi->s_session = udf_get_last_session(sb);
2168 else
2169 sbi->s_session = uopt.session;
2170
2171 udf_debug("Multi-session=%d\n", sbi->s_session);
2172
2173 /* Fill in the rest of the superblock */
2174 sb->s_op = &udf_sb_ops;
2175 sb->s_export_op = &udf_export_ops;
2176
2177 sb->s_magic = UDF_SUPER_MAGIC;
2178 sb->s_time_gran = 1000;
2179
2180 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182 } else {
2183 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184 while (uopt.blocksize <= 4096) {
2185 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186 if (ret < 0) {
2187 if (!silent && ret != -EACCES) {
2188 pr_notice("Scanning with blocksize %u failed\n",
2189 uopt.blocksize);
2190 }
2191 brelse(sbi->s_lvid_bh);
2192 sbi->s_lvid_bh = NULL;
2193 /*
2194 * EACCES is special - we want to propagate to
2195 * upper layers that we cannot handle RW mount.
2196 */
2197 if (ret == -EACCES)
2198 break;
2199 } else
2200 break;
2201
2202 uopt.blocksize <<= 1;
2203 }
2204 }
2205 if (ret < 0) {
2206 if (ret == -EAGAIN) {
2207 udf_warn(sb, "No partition found (1)\n");
2208 ret = -EINVAL;
2209 }
2210 goto error_out;
2211 }
2212
2213 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214
2215 if (sbi->s_lvid_bh) {
2216 struct logicalVolIntegrityDescImpUse *lvidiu =
2217 udf_sb_lvidiu(sb);
2218 uint16_t minUDFReadRev;
2219 uint16_t minUDFWriteRev;
2220
2221 if (!lvidiu) {
2222 ret = -EINVAL;
2223 goto error_out;
2224 }
2225 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229 minUDFReadRev,
2230 UDF_MAX_READ_VERSION);
2231 ret = -EINVAL;
2232 goto error_out;
2233 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234 if (!sb_rdonly(sb)) {
2235 ret = -EACCES;
2236 goto error_out;
2237 }
2238 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239 }
2240
2241 sbi->s_udfrev = minUDFWriteRev;
2242
2243 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2247 }
2248
2249 if (!sbi->s_partitions) {
2250 udf_warn(sb, "No partition found (2)\n");
2251 ret = -EINVAL;
2252 goto error_out;
2253 }
2254
2255 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256 UDF_PART_FLAG_READ_ONLY) {
2257 if (!sb_rdonly(sb)) {
2258 ret = -EACCES;
2259 goto error_out;
2260 }
2261 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2262 }
2263
2264 ret = udf_find_fileset(sb, &fileset, &rootdir);
2265 if (ret < 0) {
2266 udf_warn(sb, "No fileset found\n");
2267 goto error_out;
2268 }
2269
2270 if (!silent) {
2271 struct timestamp ts;
2272 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274 sbi->s_volume_ident,
2275 le16_to_cpu(ts.year), ts.month, ts.day,
2276 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277 }
2278 if (!sb_rdonly(sb)) {
2279 udf_open_lvid(sb);
2280 lvid_open = true;
2281 }
2282
2283 /* Assign the root inode */
2284 /* assign inodes by physical block number */
2285 /* perhaps it's not extensible enough, but for now ... */
2286 inode = udf_iget(sb, &rootdir);
2287 if (IS_ERR(inode)) {
2288 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290 ret = PTR_ERR(inode);
2291 goto error_out;
2292 }
2293
2294 /* Allocate a dentry for the root inode */
2295 sb->s_root = d_make_root(inode);
2296 if (!sb->s_root) {
2297 udf_err(sb, "Couldn't allocate root dentry\n");
2298 ret = -ENOMEM;
2299 goto error_out;
2300 }
2301 sb->s_maxbytes = MAX_LFS_FILESIZE;
2302 sb->s_max_links = UDF_MAX_LINKS;
2303 return 0;
2304
2305error_out:
2306 iput(sbi->s_vat_inode);
2307parse_options_failure:
2308 unload_nls(uopt.nls_map);
2309 if (lvid_open)
2310 udf_close_lvid(sb);
2311 brelse(sbi->s_lvid_bh);
2312 udf_sb_free_partitions(sb);
2313 kfree(sbi);
2314 sb->s_fs_info = NULL;
2315
2316 return ret;
2317}
2318
2319void _udf_err(struct super_block *sb, const char *function,
2320 const char *fmt, ...)
2321{
2322 struct va_format vaf;
2323 va_list args;
2324
2325 va_start(args, fmt);
2326
2327 vaf.fmt = fmt;
2328 vaf.va = &args;
2329
2330 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331
2332 va_end(args);
2333}
2334
2335void _udf_warn(struct super_block *sb, const char *function,
2336 const char *fmt, ...)
2337{
2338 struct va_format vaf;
2339 va_list args;
2340
2341 va_start(args, fmt);
2342
2343 vaf.fmt = fmt;
2344 vaf.va = &args;
2345
2346 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347
2348 va_end(args);
2349}
2350
2351static void udf_put_super(struct super_block *sb)
2352{
2353 struct udf_sb_info *sbi;
2354
2355 sbi = UDF_SB(sb);
2356
2357 iput(sbi->s_vat_inode);
2358 unload_nls(sbi->s_nls_map);
2359 if (!sb_rdonly(sb))
2360 udf_close_lvid(sb);
2361 brelse(sbi->s_lvid_bh);
2362 udf_sb_free_partitions(sb);
2363 mutex_destroy(&sbi->s_alloc_mutex);
2364 kfree(sb->s_fs_info);
2365 sb->s_fs_info = NULL;
2366}
2367
2368static int udf_sync_fs(struct super_block *sb, int wait)
2369{
2370 struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372 mutex_lock(&sbi->s_alloc_mutex);
2373 if (sbi->s_lvid_dirty) {
2374 struct buffer_head *bh = sbi->s_lvid_bh;
2375 struct logicalVolIntegrityDesc *lvid;
2376
2377 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378 udf_finalize_lvid(lvid);
2379
2380 /*
2381 * Blockdevice will be synced later so we don't have to submit
2382 * the buffer for IO
2383 */
2384 mark_buffer_dirty(bh);
2385 sbi->s_lvid_dirty = 0;
2386 }
2387 mutex_unlock(&sbi->s_alloc_mutex);
2388
2389 return 0;
2390}
2391
2392static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393{
2394 struct super_block *sb = dentry->d_sb;
2395 struct udf_sb_info *sbi = UDF_SB(sb);
2396 struct logicalVolIntegrityDescImpUse *lvidiu;
2397 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399 lvidiu = udf_sb_lvidiu(sb);
2400 buf->f_type = UDF_SUPER_MAGIC;
2401 buf->f_bsize = sb->s_blocksize;
2402 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403 buf->f_bfree = udf_count_free(sb);
2404 buf->f_bavail = buf->f_bfree;
2405 /*
2406 * Let's pretend each free block is also a free 'inode' since UDF does
2407 * not have separate preallocated table of inodes.
2408 */
2409 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410 le32_to_cpu(lvidiu->numDirs)) : 0)
2411 + buf->f_bfree;
2412 buf->f_ffree = buf->f_bfree;
2413 buf->f_namelen = UDF_NAME_LEN;
2414 buf->f_fsid = u64_to_fsid(id);
2415
2416 return 0;
2417}
2418
2419static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420 struct udf_bitmap *bitmap)
2421{
2422 struct buffer_head *bh = NULL;
2423 unsigned int accum = 0;
2424 int index;
2425 udf_pblk_t block = 0, newblock;
2426 struct kernel_lb_addr loc;
2427 uint32_t bytes;
2428 uint8_t *ptr;
2429 uint16_t ident;
2430 struct spaceBitmapDesc *bm;
2431
2432 loc.logicalBlockNum = bitmap->s_extPosition;
2433 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2435
2436 if (!bh) {
2437 udf_err(sb, "udf_count_free failed\n");
2438 goto out;
2439 } else if (ident != TAG_IDENT_SBD) {
2440 brelse(bh);
2441 udf_err(sb, "udf_count_free failed\n");
2442 goto out;
2443 }
2444
2445 bm = (struct spaceBitmapDesc *)bh->b_data;
2446 bytes = le32_to_cpu(bm->numOfBytes);
2447 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448 ptr = (uint8_t *)bh->b_data;
2449
2450 while (bytes > 0) {
2451 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452 accum += bitmap_weight((const unsigned long *)(ptr + index),
2453 cur_bytes * 8);
2454 bytes -= cur_bytes;
2455 if (bytes) {
2456 brelse(bh);
2457 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458 bh = udf_tread(sb, newblock);
2459 if (!bh) {
2460 udf_debug("read failed\n");
2461 goto out;
2462 }
2463 index = 0;
2464 ptr = (uint8_t *)bh->b_data;
2465 }
2466 }
2467 brelse(bh);
2468out:
2469 return accum;
2470}
2471
2472static unsigned int udf_count_free_table(struct super_block *sb,
2473 struct inode *table)
2474{
2475 unsigned int accum = 0;
2476 uint32_t elen;
2477 struct kernel_lb_addr eloc;
2478 int8_t etype;
2479 struct extent_position epos;
2480
2481 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2482 epos.block = UDF_I(table)->i_location;
2483 epos.offset = sizeof(struct unallocSpaceEntry);
2484 epos.bh = NULL;
2485
2486 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2487 accum += (elen >> table->i_sb->s_blocksize_bits);
2488
2489 brelse(epos.bh);
2490 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2491
2492 return accum;
2493}
2494
2495static unsigned int udf_count_free(struct super_block *sb)
2496{
2497 unsigned int accum = 0;
2498 struct udf_sb_info *sbi = UDF_SB(sb);
2499 struct udf_part_map *map;
2500 unsigned int part = sbi->s_partition;
2501 int ptype = sbi->s_partmaps[part].s_partition_type;
2502
2503 if (ptype == UDF_METADATA_MAP25) {
2504 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2505 s_phys_partition_ref;
2506 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2507 /*
2508 * Filesystems with VAT are append-only and we cannot write to
2509 * them. Let's just report 0 here.
2510 */
2511 return 0;
2512 }
2513
2514 if (sbi->s_lvid_bh) {
2515 struct logicalVolIntegrityDesc *lvid =
2516 (struct logicalVolIntegrityDesc *)
2517 sbi->s_lvid_bh->b_data;
2518 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2519 accum = le32_to_cpu(
2520 lvid->freeSpaceTable[part]);
2521 if (accum == 0xFFFFFFFF)
2522 accum = 0;
2523 }
2524 }
2525
2526 if (accum)
2527 return accum;
2528
2529 map = &sbi->s_partmaps[part];
2530 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2531 accum += udf_count_free_bitmap(sb,
2532 map->s_uspace.s_bitmap);
2533 }
2534 if (accum)
2535 return accum;
2536
2537 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2538 accum += udf_count_free_table(sb,
2539 map->s_uspace.s_table);
2540 }
2541 return accum;
2542}
2543
2544MODULE_AUTHOR("Ben Fennema");
2545MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2546MODULE_LICENSE("GPL");
2547module_init(init_udf_fs)
2548module_exit(exit_udf_fs)