Loading...
1/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/jbd2.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30#include <linux/pagevec.h>
31#include <linux/mpage.h>
32#include <linux/namei.h>
33#include <linux/uio.h>
34#include <linux/bio.h>
35#include <linux/workqueue.h>
36#include <linux/kernel.h>
37#include <linux/printk.h>
38#include <linux/slab.h>
39#include <linux/ratelimit.h>
40
41#include "ext4_jbd2.h"
42#include "xattr.h"
43#include "acl.h"
44#include "truncate.h"
45
46#include <trace/events/ext4.h>
47
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132}
133
134static void ext4_invalidatepage(struct page *page, unsigned long offset);
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
144
145/*
146 * Test whether an inode is a fast symlink.
147 */
148static int ext4_inode_is_fast_symlink(struct inode *inode)
149{
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 int nblocks)
163{
164 int ret;
165
166 /*
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 jbd_debug(2, "restarting handle %p\n", handle);
174 up_write(&EXT4_I(inode)->i_data_sem);
175 ret = ext4_journal_restart(handle, nblocks);
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode);
178
179 return ret;
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
185void ext4_evict_inode(struct inode *inode)
186{
187 handle_t *handle;
188 int err;
189
190 trace_ext4_evict_inode(inode);
191
192 ext4_ioend_wait(inode);
193
194 if (inode->i_nlink) {
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
226 if (!is_bad_inode(inode))
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
236 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
244 ext4_orphan_del(NULL, inode);
245 goto no_delete;
246 }
247
248 if (IS_SYNC(inode))
249 ext4_handle_sync(handle);
250 inode->i_size = 0;
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
253 ext4_warning(inode->i_sb,
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
256 }
257 if (inode->i_blocks)
258 ext4_truncate(inode);
259
260 /*
261 * ext4_ext_truncate() doesn't reserve any slop when it
262 * restarts journal transactions; therefore there may not be
263 * enough credits left in the handle to remove the inode from
264 * the orphan list and set the dtime field.
265 */
266 if (!ext4_handle_has_enough_credits(handle, 3)) {
267 err = ext4_journal_extend(handle, 3);
268 if (err > 0)
269 err = ext4_journal_restart(handle, 3);
270 if (err != 0) {
271 ext4_warning(inode->i_sb,
272 "couldn't extend journal (err %d)", err);
273 stop_handle:
274 ext4_journal_stop(handle);
275 ext4_orphan_del(NULL, inode);
276 goto no_delete;
277 }
278 }
279
280 /*
281 * Kill off the orphan record which ext4_truncate created.
282 * AKPM: I think this can be inside the above `if'.
283 * Note that ext4_orphan_del() has to be able to cope with the
284 * deletion of a non-existent orphan - this is because we don't
285 * know if ext4_truncate() actually created an orphan record.
286 * (Well, we could do this if we need to, but heck - it works)
287 */
288 ext4_orphan_del(handle, inode);
289 EXT4_I(inode)->i_dtime = get_seconds();
290
291 /*
292 * One subtle ordering requirement: if anything has gone wrong
293 * (transaction abort, IO errors, whatever), then we can still
294 * do these next steps (the fs will already have been marked as
295 * having errors), but we can't free the inode if the mark_dirty
296 * fails.
297 */
298 if (ext4_mark_inode_dirty(handle, inode))
299 /* If that failed, just do the required in-core inode clear. */
300 ext4_clear_inode(inode);
301 else
302 ext4_free_inode(handle, inode);
303 ext4_journal_stop(handle);
304 return;
305no_delete:
306 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
307}
308
309#ifdef CONFIG_QUOTA
310qsize_t *ext4_get_reserved_space(struct inode *inode)
311{
312 return &EXT4_I(inode)->i_reserved_quota;
313}
314#endif
315
316/*
317 * Calculate the number of metadata blocks need to reserve
318 * to allocate a block located at @lblock
319 */
320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
321{
322 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
323 return ext4_ext_calc_metadata_amount(inode, lblock);
324
325 return ext4_ind_calc_metadata_amount(inode, lblock);
326}
327
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
332void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
334{
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
337
338 spin_lock(&ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
348
349 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
350 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
351 "with only %d reserved metadata blocks\n", __func__,
352 inode->i_ino, ei->i_allocated_meta_blocks,
353 ei->i_reserved_meta_blocks);
354 WARN_ON(1);
355 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
356 }
357
358 /* Update per-inode reservations */
359 ei->i_reserved_data_blocks -= used;
360 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
361 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
362 used + ei->i_allocated_meta_blocks);
363 ei->i_allocated_meta_blocks = 0;
364
365 if (ei->i_reserved_data_blocks == 0) {
366 /*
367 * We can release all of the reserved metadata blocks
368 * only when we have written all of the delayed
369 * allocation blocks.
370 */
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 ei->i_reserved_meta_blocks);
373 ei->i_reserved_meta_blocks = 0;
374 ei->i_da_metadata_calc_len = 0;
375 }
376 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
377
378 /* Update quota subsystem for data blocks */
379 if (quota_claim)
380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 else {
382 /*
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
385 * not re-claim the quota for fallocated blocks.
386 */
387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 }
389
390 /*
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
394 */
395 if ((ei->i_reserved_data_blocks == 0) &&
396 (atomic_read(&inode->i_writecount) == 0))
397 ext4_discard_preallocations(inode);
398}
399
400static int __check_block_validity(struct inode *inode, const char *func,
401 unsigned int line,
402 struct ext4_map_blocks *map)
403{
404 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
405 map->m_len)) {
406 ext4_error_inode(inode, func, line, map->m_pblk,
407 "lblock %lu mapped to illegal pblock "
408 "(length %d)", (unsigned long) map->m_lblk,
409 map->m_len);
410 return -EIO;
411 }
412 return 0;
413}
414
415#define check_block_validity(inode, map) \
416 __check_block_validity((inode), __func__, __LINE__, (map))
417
418/*
419 * Return the number of contiguous dirty pages in a given inode
420 * starting at page frame idx.
421 */
422static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
423 unsigned int max_pages)
424{
425 struct address_space *mapping = inode->i_mapping;
426 pgoff_t index;
427 struct pagevec pvec;
428 pgoff_t num = 0;
429 int i, nr_pages, done = 0;
430
431 if (max_pages == 0)
432 return 0;
433 pagevec_init(&pvec, 0);
434 while (!done) {
435 index = idx;
436 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_DIRTY,
438 (pgoff_t)PAGEVEC_SIZE);
439 if (nr_pages == 0)
440 break;
441 for (i = 0; i < nr_pages; i++) {
442 struct page *page = pvec.pages[i];
443 struct buffer_head *bh, *head;
444
445 lock_page(page);
446 if (unlikely(page->mapping != mapping) ||
447 !PageDirty(page) ||
448 PageWriteback(page) ||
449 page->index != idx) {
450 done = 1;
451 unlock_page(page);
452 break;
453 }
454 if (page_has_buffers(page)) {
455 bh = head = page_buffers(page);
456 do {
457 if (!buffer_delay(bh) &&
458 !buffer_unwritten(bh))
459 done = 1;
460 bh = bh->b_this_page;
461 } while (!done && (bh != head));
462 }
463 unlock_page(page);
464 if (done)
465 break;
466 idx++;
467 num++;
468 if (num >= max_pages) {
469 done = 1;
470 break;
471 }
472 }
473 pagevec_release(&pvec);
474 }
475 return num;
476}
477
478/*
479 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
480 */
481static void set_buffers_da_mapped(struct inode *inode,
482 struct ext4_map_blocks *map)
483{
484 struct address_space *mapping = inode->i_mapping;
485 struct pagevec pvec;
486 int i, nr_pages;
487 pgoff_t index, end;
488
489 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
490 end = (map->m_lblk + map->m_len - 1) >>
491 (PAGE_CACHE_SHIFT - inode->i_blkbits);
492
493 pagevec_init(&pvec, 0);
494 while (index <= end) {
495 nr_pages = pagevec_lookup(&pvec, mapping, index,
496 min(end - index + 1,
497 (pgoff_t)PAGEVEC_SIZE));
498 if (nr_pages == 0)
499 break;
500 for (i = 0; i < nr_pages; i++) {
501 struct page *page = pvec.pages[i];
502 struct buffer_head *bh, *head;
503
504 if (unlikely(page->mapping != mapping) ||
505 !PageDirty(page))
506 break;
507
508 if (page_has_buffers(page)) {
509 bh = head = page_buffers(page);
510 do {
511 set_buffer_da_mapped(bh);
512 bh = bh->b_this_page;
513 } while (bh != head);
514 }
515 index++;
516 }
517 pagevec_release(&pvec);
518 }
519}
520
521/*
522 * The ext4_map_blocks() function tries to look up the requested blocks,
523 * and returns if the blocks are already mapped.
524 *
525 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
526 * and store the allocated blocks in the result buffer head and mark it
527 * mapped.
528 *
529 * If file type is extents based, it will call ext4_ext_map_blocks(),
530 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
531 * based files
532 *
533 * On success, it returns the number of blocks being mapped or allocate.
534 * if create==0 and the blocks are pre-allocated and uninitialized block,
535 * the result buffer head is unmapped. If the create ==1, it will make sure
536 * the buffer head is mapped.
537 *
538 * It returns 0 if plain look up failed (blocks have not been allocated), in
539 * that case, buffer head is unmapped
540 *
541 * It returns the error in case of allocation failure.
542 */
543int ext4_map_blocks(handle_t *handle, struct inode *inode,
544 struct ext4_map_blocks *map, int flags)
545{
546 int retval;
547
548 map->m_flags = 0;
549 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
550 "logical block %lu\n", inode->i_ino, flags, map->m_len,
551 (unsigned long) map->m_lblk);
552 /*
553 * Try to see if we can get the block without requesting a new
554 * file system block.
555 */
556 down_read((&EXT4_I(inode)->i_data_sem));
557 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
558 retval = ext4_ext_map_blocks(handle, inode, map, flags &
559 EXT4_GET_BLOCKS_KEEP_SIZE);
560 } else {
561 retval = ext4_ind_map_blocks(handle, inode, map, flags &
562 EXT4_GET_BLOCKS_KEEP_SIZE);
563 }
564 up_read((&EXT4_I(inode)->i_data_sem));
565
566 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
567 int ret = check_block_validity(inode, map);
568 if (ret != 0)
569 return ret;
570 }
571
572 /* If it is only a block(s) look up */
573 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
574 return retval;
575
576 /*
577 * Returns if the blocks have already allocated
578 *
579 * Note that if blocks have been preallocated
580 * ext4_ext_get_block() returns the create = 0
581 * with buffer head unmapped.
582 */
583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
584 return retval;
585
586 /*
587 * When we call get_blocks without the create flag, the
588 * BH_Unwritten flag could have gotten set if the blocks
589 * requested were part of a uninitialized extent. We need to
590 * clear this flag now that we are committed to convert all or
591 * part of the uninitialized extent to be an initialized
592 * extent. This is because we need to avoid the combination
593 * of BH_Unwritten and BH_Mapped flags being simultaneously
594 * set on the buffer_head.
595 */
596 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
597
598 /*
599 * New blocks allocate and/or writing to uninitialized extent
600 * will possibly result in updating i_data, so we take
601 * the write lock of i_data_sem, and call get_blocks()
602 * with create == 1 flag.
603 */
604 down_write((&EXT4_I(inode)->i_data_sem));
605
606 /*
607 * if the caller is from delayed allocation writeout path
608 * we have already reserved fs blocks for allocation
609 * let the underlying get_block() function know to
610 * avoid double accounting
611 */
612 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
613 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
643 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
644
645 /* If we have successfully mapped the delayed allocated blocks,
646 * set the BH_Da_Mapped bit on them. Its important to do this
647 * under the protection of i_data_sem.
648 */
649 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
650 set_buffers_da_mapped(inode, map);
651 }
652
653 up_write((&EXT4_I(inode)->i_data_sem));
654 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
655 int ret = check_block_validity(inode, map);
656 if (ret != 0)
657 return ret;
658 }
659 return retval;
660}
661
662/* Maximum number of blocks we map for direct IO at once. */
663#define DIO_MAX_BLOCKS 4096
664
665static int _ext4_get_block(struct inode *inode, sector_t iblock,
666 struct buffer_head *bh, int flags)
667{
668 handle_t *handle = ext4_journal_current_handle();
669 struct ext4_map_blocks map;
670 int ret = 0, started = 0;
671 int dio_credits;
672
673 map.m_lblk = iblock;
674 map.m_len = bh->b_size >> inode->i_blkbits;
675
676 if (flags && !handle) {
677 /* Direct IO write... */
678 if (map.m_len > DIO_MAX_BLOCKS)
679 map.m_len = DIO_MAX_BLOCKS;
680 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
681 handle = ext4_journal_start(inode, dio_credits);
682 if (IS_ERR(handle)) {
683 ret = PTR_ERR(handle);
684 return ret;
685 }
686 started = 1;
687 }
688
689 ret = ext4_map_blocks(handle, inode, &map, flags);
690 if (ret > 0) {
691 map_bh(bh, inode->i_sb, map.m_pblk);
692 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
693 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
694 ret = 0;
695 }
696 if (started)
697 ext4_journal_stop(handle);
698 return ret;
699}
700
701int ext4_get_block(struct inode *inode, sector_t iblock,
702 struct buffer_head *bh, int create)
703{
704 return _ext4_get_block(inode, iblock, bh,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
706}
707
708/*
709 * `handle' can be NULL if create is zero
710 */
711struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
712 ext4_lblk_t block, int create, int *errp)
713{
714 struct ext4_map_blocks map;
715 struct buffer_head *bh;
716 int fatal = 0, err;
717
718 J_ASSERT(handle != NULL || create == 0);
719
720 map.m_lblk = block;
721 map.m_len = 1;
722 err = ext4_map_blocks(handle, inode, &map,
723 create ? EXT4_GET_BLOCKS_CREATE : 0);
724
725 if (err < 0)
726 *errp = err;
727 if (err <= 0)
728 return NULL;
729 *errp = 0;
730
731 bh = sb_getblk(inode->i_sb, map.m_pblk);
732 if (!bh) {
733 *errp = -EIO;
734 return NULL;
735 }
736 if (map.m_flags & EXT4_MAP_NEW) {
737 J_ASSERT(create != 0);
738 J_ASSERT(handle != NULL);
739
740 /*
741 * Now that we do not always journal data, we should
742 * keep in mind whether this should always journal the
743 * new buffer as metadata. For now, regular file
744 * writes use ext4_get_block instead, so it's not a
745 * problem.
746 */
747 lock_buffer(bh);
748 BUFFER_TRACE(bh, "call get_create_access");
749 fatal = ext4_journal_get_create_access(handle, bh);
750 if (!fatal && !buffer_uptodate(bh)) {
751 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
752 set_buffer_uptodate(bh);
753 }
754 unlock_buffer(bh);
755 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
756 err = ext4_handle_dirty_metadata(handle, inode, bh);
757 if (!fatal)
758 fatal = err;
759 } else {
760 BUFFER_TRACE(bh, "not a new buffer");
761 }
762 if (fatal) {
763 *errp = fatal;
764 brelse(bh);
765 bh = NULL;
766 }
767 return bh;
768}
769
770struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
771 ext4_lblk_t block, int create, int *err)
772{
773 struct buffer_head *bh;
774
775 bh = ext4_getblk(handle, inode, block, create, err);
776 if (!bh)
777 return bh;
778 if (buffer_uptodate(bh))
779 return bh;
780 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
781 wait_on_buffer(bh);
782 if (buffer_uptodate(bh))
783 return bh;
784 put_bh(bh);
785 *err = -EIO;
786 return NULL;
787}
788
789static int walk_page_buffers(handle_t *handle,
790 struct buffer_head *head,
791 unsigned from,
792 unsigned to,
793 int *partial,
794 int (*fn)(handle_t *handle,
795 struct buffer_head *bh))
796{
797 struct buffer_head *bh;
798 unsigned block_start, block_end;
799 unsigned blocksize = head->b_size;
800 int err, ret = 0;
801 struct buffer_head *next;
802
803 for (bh = head, block_start = 0;
804 ret == 0 && (bh != head || !block_start);
805 block_start = block_end, bh = next) {
806 next = bh->b_this_page;
807 block_end = block_start + blocksize;
808 if (block_end <= from || block_start >= to) {
809 if (partial && !buffer_uptodate(bh))
810 *partial = 1;
811 continue;
812 }
813 err = (*fn)(handle, bh);
814 if (!ret)
815 ret = err;
816 }
817 return ret;
818}
819
820/*
821 * To preserve ordering, it is essential that the hole instantiation and
822 * the data write be encapsulated in a single transaction. We cannot
823 * close off a transaction and start a new one between the ext4_get_block()
824 * and the commit_write(). So doing the jbd2_journal_start at the start of
825 * prepare_write() is the right place.
826 *
827 * Also, this function can nest inside ext4_writepage() ->
828 * block_write_full_page(). In that case, we *know* that ext4_writepage()
829 * has generated enough buffer credits to do the whole page. So we won't
830 * block on the journal in that case, which is good, because the caller may
831 * be PF_MEMALLOC.
832 *
833 * By accident, ext4 can be reentered when a transaction is open via
834 * quota file writes. If we were to commit the transaction while thus
835 * reentered, there can be a deadlock - we would be holding a quota
836 * lock, and the commit would never complete if another thread had a
837 * transaction open and was blocking on the quota lock - a ranking
838 * violation.
839 *
840 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
841 * will _not_ run commit under these circumstances because handle->h_ref
842 * is elevated. We'll still have enough credits for the tiny quotafile
843 * write.
844 */
845static int do_journal_get_write_access(handle_t *handle,
846 struct buffer_head *bh)
847{
848 int dirty = buffer_dirty(bh);
849 int ret;
850
851 if (!buffer_mapped(bh) || buffer_freed(bh))
852 return 0;
853 /*
854 * __block_write_begin() could have dirtied some buffers. Clean
855 * the dirty bit as jbd2_journal_get_write_access() could complain
856 * otherwise about fs integrity issues. Setting of the dirty bit
857 * by __block_write_begin() isn't a real problem here as we clear
858 * the bit before releasing a page lock and thus writeback cannot
859 * ever write the buffer.
860 */
861 if (dirty)
862 clear_buffer_dirty(bh);
863 ret = ext4_journal_get_write_access(handle, bh);
864 if (!ret && dirty)
865 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
866 return ret;
867}
868
869static int ext4_get_block_write(struct inode *inode, sector_t iblock,
870 struct buffer_head *bh_result, int create);
871static int ext4_write_begin(struct file *file, struct address_space *mapping,
872 loff_t pos, unsigned len, unsigned flags,
873 struct page **pagep, void **fsdata)
874{
875 struct inode *inode = mapping->host;
876 int ret, needed_blocks;
877 handle_t *handle;
878 int retries = 0;
879 struct page *page;
880 pgoff_t index;
881 unsigned from, to;
882
883 trace_ext4_write_begin(inode, pos, len, flags);
884 /*
885 * Reserve one block more for addition to orphan list in case
886 * we allocate blocks but write fails for some reason
887 */
888 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
889 index = pos >> PAGE_CACHE_SHIFT;
890 from = pos & (PAGE_CACHE_SIZE - 1);
891 to = from + len;
892
893retry:
894 handle = ext4_journal_start(inode, needed_blocks);
895 if (IS_ERR(handle)) {
896 ret = PTR_ERR(handle);
897 goto out;
898 }
899
900 /* We cannot recurse into the filesystem as the transaction is already
901 * started */
902 flags |= AOP_FLAG_NOFS;
903
904 page = grab_cache_page_write_begin(mapping, index, flags);
905 if (!page) {
906 ext4_journal_stop(handle);
907 ret = -ENOMEM;
908 goto out;
909 }
910 *pagep = page;
911
912 if (ext4_should_dioread_nolock(inode))
913 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
914 else
915 ret = __block_write_begin(page, pos, len, ext4_get_block);
916
917 if (!ret && ext4_should_journal_data(inode)) {
918 ret = walk_page_buffers(handle, page_buffers(page),
919 from, to, NULL, do_journal_get_write_access);
920 }
921
922 if (ret) {
923 unlock_page(page);
924 page_cache_release(page);
925 /*
926 * __block_write_begin may have instantiated a few blocks
927 * outside i_size. Trim these off again. Don't need
928 * i_size_read because we hold i_mutex.
929 *
930 * Add inode to orphan list in case we crash before
931 * truncate finishes
932 */
933 if (pos + len > inode->i_size && ext4_can_truncate(inode))
934 ext4_orphan_add(handle, inode);
935
936 ext4_journal_stop(handle);
937 if (pos + len > inode->i_size) {
938 ext4_truncate_failed_write(inode);
939 /*
940 * If truncate failed early the inode might
941 * still be on the orphan list; we need to
942 * make sure the inode is removed from the
943 * orphan list in that case.
944 */
945 if (inode->i_nlink)
946 ext4_orphan_del(NULL, inode);
947 }
948 }
949
950 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
951 goto retry;
952out:
953 return ret;
954}
955
956/* For write_end() in data=journal mode */
957static int write_end_fn(handle_t *handle, struct buffer_head *bh)
958{
959 if (!buffer_mapped(bh) || buffer_freed(bh))
960 return 0;
961 set_buffer_uptodate(bh);
962 return ext4_handle_dirty_metadata(handle, NULL, bh);
963}
964
965static int ext4_generic_write_end(struct file *file,
966 struct address_space *mapping,
967 loff_t pos, unsigned len, unsigned copied,
968 struct page *page, void *fsdata)
969{
970 int i_size_changed = 0;
971 struct inode *inode = mapping->host;
972 handle_t *handle = ext4_journal_current_handle();
973
974 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
975
976 /*
977 * No need to use i_size_read() here, the i_size
978 * cannot change under us because we hold i_mutex.
979 *
980 * But it's important to update i_size while still holding page lock:
981 * page writeout could otherwise come in and zero beyond i_size.
982 */
983 if (pos + copied > inode->i_size) {
984 i_size_write(inode, pos + copied);
985 i_size_changed = 1;
986 }
987
988 if (pos + copied > EXT4_I(inode)->i_disksize) {
989 /* We need to mark inode dirty even if
990 * new_i_size is less that inode->i_size
991 * bu greater than i_disksize.(hint delalloc)
992 */
993 ext4_update_i_disksize(inode, (pos + copied));
994 i_size_changed = 1;
995 }
996 unlock_page(page);
997 page_cache_release(page);
998
999 /*
1000 * Don't mark the inode dirty under page lock. First, it unnecessarily
1001 * makes the holding time of page lock longer. Second, it forces lock
1002 * ordering of page lock and transaction start for journaling
1003 * filesystems.
1004 */
1005 if (i_size_changed)
1006 ext4_mark_inode_dirty(handle, inode);
1007
1008 return copied;
1009}
1010
1011/*
1012 * We need to pick up the new inode size which generic_commit_write gave us
1013 * `file' can be NULL - eg, when called from page_symlink().
1014 *
1015 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1016 * buffers are managed internally.
1017 */
1018static int ext4_ordered_write_end(struct file *file,
1019 struct address_space *mapping,
1020 loff_t pos, unsigned len, unsigned copied,
1021 struct page *page, void *fsdata)
1022{
1023 handle_t *handle = ext4_journal_current_handle();
1024 struct inode *inode = mapping->host;
1025 int ret = 0, ret2;
1026
1027 trace_ext4_ordered_write_end(inode, pos, len, copied);
1028 ret = ext4_jbd2_file_inode(handle, inode);
1029
1030 if (ret == 0) {
1031 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1032 page, fsdata);
1033 copied = ret2;
1034 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1035 /* if we have allocated more blocks and copied
1036 * less. We will have blocks allocated outside
1037 * inode->i_size. So truncate them
1038 */
1039 ext4_orphan_add(handle, inode);
1040 if (ret2 < 0)
1041 ret = ret2;
1042 } else {
1043 unlock_page(page);
1044 page_cache_release(page);
1045 }
1046
1047 ret2 = ext4_journal_stop(handle);
1048 if (!ret)
1049 ret = ret2;
1050
1051 if (pos + len > inode->i_size) {
1052 ext4_truncate_failed_write(inode);
1053 /*
1054 * If truncate failed early the inode might still be
1055 * on the orphan list; we need to make sure the inode
1056 * is removed from the orphan list in that case.
1057 */
1058 if (inode->i_nlink)
1059 ext4_orphan_del(NULL, inode);
1060 }
1061
1062
1063 return ret ? ret : copied;
1064}
1065
1066static int ext4_writeback_write_end(struct file *file,
1067 struct address_space *mapping,
1068 loff_t pos, unsigned len, unsigned copied,
1069 struct page *page, void *fsdata)
1070{
1071 handle_t *handle = ext4_journal_current_handle();
1072 struct inode *inode = mapping->host;
1073 int ret = 0, ret2;
1074
1075 trace_ext4_writeback_write_end(inode, pos, len, copied);
1076 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1077 page, fsdata);
1078 copied = ret2;
1079 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1080 /* if we have allocated more blocks and copied
1081 * less. We will have blocks allocated outside
1082 * inode->i_size. So truncate them
1083 */
1084 ext4_orphan_add(handle, inode);
1085
1086 if (ret2 < 0)
1087 ret = ret2;
1088
1089 ret2 = ext4_journal_stop(handle);
1090 if (!ret)
1091 ret = ret2;
1092
1093 if (pos + len > inode->i_size) {
1094 ext4_truncate_failed_write(inode);
1095 /*
1096 * If truncate failed early the inode might still be
1097 * on the orphan list; we need to make sure the inode
1098 * is removed from the orphan list in that case.
1099 */
1100 if (inode->i_nlink)
1101 ext4_orphan_del(NULL, inode);
1102 }
1103
1104 return ret ? ret : copied;
1105}
1106
1107static int ext4_journalled_write_end(struct file *file,
1108 struct address_space *mapping,
1109 loff_t pos, unsigned len, unsigned copied,
1110 struct page *page, void *fsdata)
1111{
1112 handle_t *handle = ext4_journal_current_handle();
1113 struct inode *inode = mapping->host;
1114 int ret = 0, ret2;
1115 int partial = 0;
1116 unsigned from, to;
1117 loff_t new_i_size;
1118
1119 trace_ext4_journalled_write_end(inode, pos, len, copied);
1120 from = pos & (PAGE_CACHE_SIZE - 1);
1121 to = from + len;
1122
1123 BUG_ON(!ext4_handle_valid(handle));
1124
1125 if (copied < len) {
1126 if (!PageUptodate(page))
1127 copied = 0;
1128 page_zero_new_buffers(page, from+copied, to);
1129 }
1130
1131 ret = walk_page_buffers(handle, page_buffers(page), from,
1132 to, &partial, write_end_fn);
1133 if (!partial)
1134 SetPageUptodate(page);
1135 new_i_size = pos + copied;
1136 if (new_i_size > inode->i_size)
1137 i_size_write(inode, pos+copied);
1138 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1139 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1140 if (new_i_size > EXT4_I(inode)->i_disksize) {
1141 ext4_update_i_disksize(inode, new_i_size);
1142 ret2 = ext4_mark_inode_dirty(handle, inode);
1143 if (!ret)
1144 ret = ret2;
1145 }
1146
1147 unlock_page(page);
1148 page_cache_release(page);
1149 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1150 /* if we have allocated more blocks and copied
1151 * less. We will have blocks allocated outside
1152 * inode->i_size. So truncate them
1153 */
1154 ext4_orphan_add(handle, inode);
1155
1156 ret2 = ext4_journal_stop(handle);
1157 if (!ret)
1158 ret = ret2;
1159 if (pos + len > inode->i_size) {
1160 ext4_truncate_failed_write(inode);
1161 /*
1162 * If truncate failed early the inode might still be
1163 * on the orphan list; we need to make sure the inode
1164 * is removed from the orphan list in that case.
1165 */
1166 if (inode->i_nlink)
1167 ext4_orphan_del(NULL, inode);
1168 }
1169
1170 return ret ? ret : copied;
1171}
1172
1173/*
1174 * Reserve a single cluster located at lblock
1175 */
1176static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1177{
1178 int retries = 0;
1179 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1180 struct ext4_inode_info *ei = EXT4_I(inode);
1181 unsigned int md_needed;
1182 int ret;
1183 ext4_lblk_t save_last_lblock;
1184 int save_len;
1185
1186 /*
1187 * We will charge metadata quota at writeout time; this saves
1188 * us from metadata over-estimation, though we may go over by
1189 * a small amount in the end. Here we just reserve for data.
1190 */
1191 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1192 if (ret)
1193 return ret;
1194
1195 /*
1196 * recalculate the amount of metadata blocks to reserve
1197 * in order to allocate nrblocks
1198 * worse case is one extent per block
1199 */
1200repeat:
1201 spin_lock(&ei->i_block_reservation_lock);
1202 /*
1203 * ext4_calc_metadata_amount() has side effects, which we have
1204 * to be prepared undo if we fail to claim space.
1205 */
1206 save_len = ei->i_da_metadata_calc_len;
1207 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1208 md_needed = EXT4_NUM_B2C(sbi,
1209 ext4_calc_metadata_amount(inode, lblock));
1210 trace_ext4_da_reserve_space(inode, md_needed);
1211
1212 /*
1213 * We do still charge estimated metadata to the sb though;
1214 * we cannot afford to run out of free blocks.
1215 */
1216 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1217 ei->i_da_metadata_calc_len = save_len;
1218 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1219 spin_unlock(&ei->i_block_reservation_lock);
1220 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1221 yield();
1222 goto repeat;
1223 }
1224 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1225 return -ENOSPC;
1226 }
1227 ei->i_reserved_data_blocks++;
1228 ei->i_reserved_meta_blocks += md_needed;
1229 spin_unlock(&ei->i_block_reservation_lock);
1230
1231 return 0; /* success */
1232}
1233
1234static void ext4_da_release_space(struct inode *inode, int to_free)
1235{
1236 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1237 struct ext4_inode_info *ei = EXT4_I(inode);
1238
1239 if (!to_free)
1240 return; /* Nothing to release, exit */
1241
1242 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1243
1244 trace_ext4_da_release_space(inode, to_free);
1245 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1246 /*
1247 * if there aren't enough reserved blocks, then the
1248 * counter is messed up somewhere. Since this
1249 * function is called from invalidate page, it's
1250 * harmless to return without any action.
1251 */
1252 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1253 "ino %lu, to_free %d with only %d reserved "
1254 "data blocks", inode->i_ino, to_free,
1255 ei->i_reserved_data_blocks);
1256 WARN_ON(1);
1257 to_free = ei->i_reserved_data_blocks;
1258 }
1259 ei->i_reserved_data_blocks -= to_free;
1260
1261 if (ei->i_reserved_data_blocks == 0) {
1262 /*
1263 * We can release all of the reserved metadata blocks
1264 * only when we have written all of the delayed
1265 * allocation blocks.
1266 * Note that in case of bigalloc, i_reserved_meta_blocks,
1267 * i_reserved_data_blocks, etc. refer to number of clusters.
1268 */
1269 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1270 ei->i_reserved_meta_blocks);
1271 ei->i_reserved_meta_blocks = 0;
1272 ei->i_da_metadata_calc_len = 0;
1273 }
1274
1275 /* update fs dirty data blocks counter */
1276 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1277
1278 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1279
1280 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1281}
1282
1283static void ext4_da_page_release_reservation(struct page *page,
1284 unsigned long offset)
1285{
1286 int to_release = 0;
1287 struct buffer_head *head, *bh;
1288 unsigned int curr_off = 0;
1289 struct inode *inode = page->mapping->host;
1290 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1291 int num_clusters;
1292
1293 head = page_buffers(page);
1294 bh = head;
1295 do {
1296 unsigned int next_off = curr_off + bh->b_size;
1297
1298 if ((offset <= curr_off) && (buffer_delay(bh))) {
1299 to_release++;
1300 clear_buffer_delay(bh);
1301 clear_buffer_da_mapped(bh);
1302 }
1303 curr_off = next_off;
1304 } while ((bh = bh->b_this_page) != head);
1305
1306 /* If we have released all the blocks belonging to a cluster, then we
1307 * need to release the reserved space for that cluster. */
1308 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1309 while (num_clusters > 0) {
1310 ext4_fsblk_t lblk;
1311 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1312 ((num_clusters - 1) << sbi->s_cluster_bits);
1313 if (sbi->s_cluster_ratio == 1 ||
1314 !ext4_find_delalloc_cluster(inode, lblk, 1))
1315 ext4_da_release_space(inode, 1);
1316
1317 num_clusters--;
1318 }
1319}
1320
1321/*
1322 * Delayed allocation stuff
1323 */
1324
1325/*
1326 * mpage_da_submit_io - walks through extent of pages and try to write
1327 * them with writepage() call back
1328 *
1329 * @mpd->inode: inode
1330 * @mpd->first_page: first page of the extent
1331 * @mpd->next_page: page after the last page of the extent
1332 *
1333 * By the time mpage_da_submit_io() is called we expect all blocks
1334 * to be allocated. this may be wrong if allocation failed.
1335 *
1336 * As pages are already locked by write_cache_pages(), we can't use it
1337 */
1338static int mpage_da_submit_io(struct mpage_da_data *mpd,
1339 struct ext4_map_blocks *map)
1340{
1341 struct pagevec pvec;
1342 unsigned long index, end;
1343 int ret = 0, err, nr_pages, i;
1344 struct inode *inode = mpd->inode;
1345 struct address_space *mapping = inode->i_mapping;
1346 loff_t size = i_size_read(inode);
1347 unsigned int len, block_start;
1348 struct buffer_head *bh, *page_bufs = NULL;
1349 int journal_data = ext4_should_journal_data(inode);
1350 sector_t pblock = 0, cur_logical = 0;
1351 struct ext4_io_submit io_submit;
1352
1353 BUG_ON(mpd->next_page <= mpd->first_page);
1354 memset(&io_submit, 0, sizeof(io_submit));
1355 /*
1356 * We need to start from the first_page to the next_page - 1
1357 * to make sure we also write the mapped dirty buffer_heads.
1358 * If we look at mpd->b_blocknr we would only be looking
1359 * at the currently mapped buffer_heads.
1360 */
1361 index = mpd->first_page;
1362 end = mpd->next_page - 1;
1363
1364 pagevec_init(&pvec, 0);
1365 while (index <= end) {
1366 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1367 if (nr_pages == 0)
1368 break;
1369 for (i = 0; i < nr_pages; i++) {
1370 int commit_write = 0, skip_page = 0;
1371 struct page *page = pvec.pages[i];
1372
1373 index = page->index;
1374 if (index > end)
1375 break;
1376
1377 if (index == size >> PAGE_CACHE_SHIFT)
1378 len = size & ~PAGE_CACHE_MASK;
1379 else
1380 len = PAGE_CACHE_SIZE;
1381 if (map) {
1382 cur_logical = index << (PAGE_CACHE_SHIFT -
1383 inode->i_blkbits);
1384 pblock = map->m_pblk + (cur_logical -
1385 map->m_lblk);
1386 }
1387 index++;
1388
1389 BUG_ON(!PageLocked(page));
1390 BUG_ON(PageWriteback(page));
1391
1392 /*
1393 * If the page does not have buffers (for
1394 * whatever reason), try to create them using
1395 * __block_write_begin. If this fails,
1396 * skip the page and move on.
1397 */
1398 if (!page_has_buffers(page)) {
1399 if (__block_write_begin(page, 0, len,
1400 noalloc_get_block_write)) {
1401 skip_page:
1402 unlock_page(page);
1403 continue;
1404 }
1405 commit_write = 1;
1406 }
1407
1408 bh = page_bufs = page_buffers(page);
1409 block_start = 0;
1410 do {
1411 if (!bh)
1412 goto skip_page;
1413 if (map && (cur_logical >= map->m_lblk) &&
1414 (cur_logical <= (map->m_lblk +
1415 (map->m_len - 1)))) {
1416 if (buffer_delay(bh)) {
1417 clear_buffer_delay(bh);
1418 bh->b_blocknr = pblock;
1419 }
1420 if (buffer_da_mapped(bh))
1421 clear_buffer_da_mapped(bh);
1422 if (buffer_unwritten(bh) ||
1423 buffer_mapped(bh))
1424 BUG_ON(bh->b_blocknr != pblock);
1425 if (map->m_flags & EXT4_MAP_UNINIT)
1426 set_buffer_uninit(bh);
1427 clear_buffer_unwritten(bh);
1428 }
1429
1430 /*
1431 * skip page if block allocation undone and
1432 * block is dirty
1433 */
1434 if (ext4_bh_delay_or_unwritten(NULL, bh))
1435 skip_page = 1;
1436 bh = bh->b_this_page;
1437 block_start += bh->b_size;
1438 cur_logical++;
1439 pblock++;
1440 } while (bh != page_bufs);
1441
1442 if (skip_page)
1443 goto skip_page;
1444
1445 if (commit_write)
1446 /* mark the buffer_heads as dirty & uptodate */
1447 block_commit_write(page, 0, len);
1448
1449 clear_page_dirty_for_io(page);
1450 /*
1451 * Delalloc doesn't support data journalling,
1452 * but eventually maybe we'll lift this
1453 * restriction.
1454 */
1455 if (unlikely(journal_data && PageChecked(page)))
1456 err = __ext4_journalled_writepage(page, len);
1457 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1458 err = ext4_bio_write_page(&io_submit, page,
1459 len, mpd->wbc);
1460 else if (buffer_uninit(page_bufs)) {
1461 ext4_set_bh_endio(page_bufs, inode);
1462 err = block_write_full_page_endio(page,
1463 noalloc_get_block_write,
1464 mpd->wbc, ext4_end_io_buffer_write);
1465 } else
1466 err = block_write_full_page(page,
1467 noalloc_get_block_write, mpd->wbc);
1468
1469 if (!err)
1470 mpd->pages_written++;
1471 /*
1472 * In error case, we have to continue because
1473 * remaining pages are still locked
1474 */
1475 if (ret == 0)
1476 ret = err;
1477 }
1478 pagevec_release(&pvec);
1479 }
1480 ext4_io_submit(&io_submit);
1481 return ret;
1482}
1483
1484static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1485{
1486 int nr_pages, i;
1487 pgoff_t index, end;
1488 struct pagevec pvec;
1489 struct inode *inode = mpd->inode;
1490 struct address_space *mapping = inode->i_mapping;
1491
1492 index = mpd->first_page;
1493 end = mpd->next_page - 1;
1494 while (index <= end) {
1495 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1496 if (nr_pages == 0)
1497 break;
1498 for (i = 0; i < nr_pages; i++) {
1499 struct page *page = pvec.pages[i];
1500 if (page->index > end)
1501 break;
1502 BUG_ON(!PageLocked(page));
1503 BUG_ON(PageWriteback(page));
1504 block_invalidatepage(page, 0);
1505 ClearPageUptodate(page);
1506 unlock_page(page);
1507 }
1508 index = pvec.pages[nr_pages - 1]->index + 1;
1509 pagevec_release(&pvec);
1510 }
1511 return;
1512}
1513
1514static void ext4_print_free_blocks(struct inode *inode)
1515{
1516 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1517 struct super_block *sb = inode->i_sb;
1518
1519 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1520 EXT4_C2B(EXT4_SB(inode->i_sb),
1521 ext4_count_free_clusters(inode->i_sb)));
1522 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1523 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1524 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1525 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1526 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1527 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1528 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1529 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1530 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1531 EXT4_I(inode)->i_reserved_data_blocks);
1532 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1533 EXT4_I(inode)->i_reserved_meta_blocks);
1534 return;
1535}
1536
1537/*
1538 * mpage_da_map_and_submit - go through given space, map them
1539 * if necessary, and then submit them for I/O
1540 *
1541 * @mpd - bh describing space
1542 *
1543 * The function skips space we know is already mapped to disk blocks.
1544 *
1545 */
1546static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1547{
1548 int err, blks, get_blocks_flags;
1549 struct ext4_map_blocks map, *mapp = NULL;
1550 sector_t next = mpd->b_blocknr;
1551 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1552 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1553 handle_t *handle = NULL;
1554
1555 /*
1556 * If the blocks are mapped already, or we couldn't accumulate
1557 * any blocks, then proceed immediately to the submission stage.
1558 */
1559 if ((mpd->b_size == 0) ||
1560 ((mpd->b_state & (1 << BH_Mapped)) &&
1561 !(mpd->b_state & (1 << BH_Delay)) &&
1562 !(mpd->b_state & (1 << BH_Unwritten))))
1563 goto submit_io;
1564
1565 handle = ext4_journal_current_handle();
1566 BUG_ON(!handle);
1567
1568 /*
1569 * Call ext4_map_blocks() to allocate any delayed allocation
1570 * blocks, or to convert an uninitialized extent to be
1571 * initialized (in the case where we have written into
1572 * one or more preallocated blocks).
1573 *
1574 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1575 * indicate that we are on the delayed allocation path. This
1576 * affects functions in many different parts of the allocation
1577 * call path. This flag exists primarily because we don't
1578 * want to change *many* call functions, so ext4_map_blocks()
1579 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1580 * inode's allocation semaphore is taken.
1581 *
1582 * If the blocks in questions were delalloc blocks, set
1583 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1584 * variables are updated after the blocks have been allocated.
1585 */
1586 map.m_lblk = next;
1587 map.m_len = max_blocks;
1588 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1589 if (ext4_should_dioread_nolock(mpd->inode))
1590 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1591 if (mpd->b_state & (1 << BH_Delay))
1592 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1593
1594 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1595 if (blks < 0) {
1596 struct super_block *sb = mpd->inode->i_sb;
1597
1598 err = blks;
1599 /*
1600 * If get block returns EAGAIN or ENOSPC and there
1601 * appears to be free blocks we will just let
1602 * mpage_da_submit_io() unlock all of the pages.
1603 */
1604 if (err == -EAGAIN)
1605 goto submit_io;
1606
1607 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1608 mpd->retval = err;
1609 goto submit_io;
1610 }
1611
1612 /*
1613 * get block failure will cause us to loop in
1614 * writepages, because a_ops->writepage won't be able
1615 * to make progress. The page will be redirtied by
1616 * writepage and writepages will again try to write
1617 * the same.
1618 */
1619 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1620 ext4_msg(sb, KERN_CRIT,
1621 "delayed block allocation failed for inode %lu "
1622 "at logical offset %llu with max blocks %zd "
1623 "with error %d", mpd->inode->i_ino,
1624 (unsigned long long) next,
1625 mpd->b_size >> mpd->inode->i_blkbits, err);
1626 ext4_msg(sb, KERN_CRIT,
1627 "This should not happen!! Data will be lost\n");
1628 if (err == -ENOSPC)
1629 ext4_print_free_blocks(mpd->inode);
1630 }
1631 /* invalidate all the pages */
1632 ext4_da_block_invalidatepages(mpd);
1633
1634 /* Mark this page range as having been completed */
1635 mpd->io_done = 1;
1636 return;
1637 }
1638 BUG_ON(blks == 0);
1639
1640 mapp = ↦
1641 if (map.m_flags & EXT4_MAP_NEW) {
1642 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1643 int i;
1644
1645 for (i = 0; i < map.m_len; i++)
1646 unmap_underlying_metadata(bdev, map.m_pblk + i);
1647
1648 if (ext4_should_order_data(mpd->inode)) {
1649 err = ext4_jbd2_file_inode(handle, mpd->inode);
1650 if (err) {
1651 /* Only if the journal is aborted */
1652 mpd->retval = err;
1653 goto submit_io;
1654 }
1655 }
1656 }
1657
1658 /*
1659 * Update on-disk size along with block allocation.
1660 */
1661 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1662 if (disksize > i_size_read(mpd->inode))
1663 disksize = i_size_read(mpd->inode);
1664 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1665 ext4_update_i_disksize(mpd->inode, disksize);
1666 err = ext4_mark_inode_dirty(handle, mpd->inode);
1667 if (err)
1668 ext4_error(mpd->inode->i_sb,
1669 "Failed to mark inode %lu dirty",
1670 mpd->inode->i_ino);
1671 }
1672
1673submit_io:
1674 mpage_da_submit_io(mpd, mapp);
1675 mpd->io_done = 1;
1676}
1677
1678#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1679 (1 << BH_Delay) | (1 << BH_Unwritten))
1680
1681/*
1682 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1683 *
1684 * @mpd->lbh - extent of blocks
1685 * @logical - logical number of the block in the file
1686 * @bh - bh of the block (used to access block's state)
1687 *
1688 * the function is used to collect contig. blocks in same state
1689 */
1690static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1691 sector_t logical, size_t b_size,
1692 unsigned long b_state)
1693{
1694 sector_t next;
1695 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1696
1697 /*
1698 * XXX Don't go larger than mballoc is willing to allocate
1699 * This is a stopgap solution. We eventually need to fold
1700 * mpage_da_submit_io() into this function and then call
1701 * ext4_map_blocks() multiple times in a loop
1702 */
1703 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1704 goto flush_it;
1705
1706 /* check if thereserved journal credits might overflow */
1707 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1708 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1709 /*
1710 * With non-extent format we are limited by the journal
1711 * credit available. Total credit needed to insert
1712 * nrblocks contiguous blocks is dependent on the
1713 * nrblocks. So limit nrblocks.
1714 */
1715 goto flush_it;
1716 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1717 EXT4_MAX_TRANS_DATA) {
1718 /*
1719 * Adding the new buffer_head would make it cross the
1720 * allowed limit for which we have journal credit
1721 * reserved. So limit the new bh->b_size
1722 */
1723 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1724 mpd->inode->i_blkbits;
1725 /* we will do mpage_da_submit_io in the next loop */
1726 }
1727 }
1728 /*
1729 * First block in the extent
1730 */
1731 if (mpd->b_size == 0) {
1732 mpd->b_blocknr = logical;
1733 mpd->b_size = b_size;
1734 mpd->b_state = b_state & BH_FLAGS;
1735 return;
1736 }
1737
1738 next = mpd->b_blocknr + nrblocks;
1739 /*
1740 * Can we merge the block to our big extent?
1741 */
1742 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1743 mpd->b_size += b_size;
1744 return;
1745 }
1746
1747flush_it:
1748 /*
1749 * We couldn't merge the block to our extent, so we
1750 * need to flush current extent and start new one
1751 */
1752 mpage_da_map_and_submit(mpd);
1753 return;
1754}
1755
1756static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1757{
1758 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1759}
1760
1761/*
1762 * This function is grabs code from the very beginning of
1763 * ext4_map_blocks, but assumes that the caller is from delayed write
1764 * time. This function looks up the requested blocks and sets the
1765 * buffer delay bit under the protection of i_data_sem.
1766 */
1767static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1768 struct ext4_map_blocks *map,
1769 struct buffer_head *bh)
1770{
1771 int retval;
1772 sector_t invalid_block = ~((sector_t) 0xffff);
1773
1774 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1775 invalid_block = ~0;
1776
1777 map->m_flags = 0;
1778 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1779 "logical block %lu\n", inode->i_ino, map->m_len,
1780 (unsigned long) map->m_lblk);
1781 /*
1782 * Try to see if we can get the block without requesting a new
1783 * file system block.
1784 */
1785 down_read((&EXT4_I(inode)->i_data_sem));
1786 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1787 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1788 else
1789 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1790
1791 if (retval == 0) {
1792 /*
1793 * XXX: __block_prepare_write() unmaps passed block,
1794 * is it OK?
1795 */
1796 /* If the block was allocated from previously allocated cluster,
1797 * then we dont need to reserve it again. */
1798 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1799 retval = ext4_da_reserve_space(inode, iblock);
1800 if (retval)
1801 /* not enough space to reserve */
1802 goto out_unlock;
1803 }
1804
1805 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1806 * and it should not appear on the bh->b_state.
1807 */
1808 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1809
1810 map_bh(bh, inode->i_sb, invalid_block);
1811 set_buffer_new(bh);
1812 set_buffer_delay(bh);
1813 }
1814
1815out_unlock:
1816 up_read((&EXT4_I(inode)->i_data_sem));
1817
1818 return retval;
1819}
1820
1821/*
1822 * This is a special get_blocks_t callback which is used by
1823 * ext4_da_write_begin(). It will either return mapped block or
1824 * reserve space for a single block.
1825 *
1826 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1827 * We also have b_blocknr = -1 and b_bdev initialized properly
1828 *
1829 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1830 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1831 * initialized properly.
1832 */
1833static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1834 struct buffer_head *bh, int create)
1835{
1836 struct ext4_map_blocks map;
1837 int ret = 0;
1838
1839 BUG_ON(create == 0);
1840 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1841
1842 map.m_lblk = iblock;
1843 map.m_len = 1;
1844
1845 /*
1846 * first, we need to know whether the block is allocated already
1847 * preallocated blocks are unmapped but should treated
1848 * the same as allocated blocks.
1849 */
1850 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1851 if (ret <= 0)
1852 return ret;
1853
1854 map_bh(bh, inode->i_sb, map.m_pblk);
1855 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1856
1857 if (buffer_unwritten(bh)) {
1858 /* A delayed write to unwritten bh should be marked
1859 * new and mapped. Mapped ensures that we don't do
1860 * get_block multiple times when we write to the same
1861 * offset and new ensures that we do proper zero out
1862 * for partial write.
1863 */
1864 set_buffer_new(bh);
1865 set_buffer_mapped(bh);
1866 }
1867 return 0;
1868}
1869
1870/*
1871 * This function is used as a standard get_block_t calback function
1872 * when there is no desire to allocate any blocks. It is used as a
1873 * callback function for block_write_begin() and block_write_full_page().
1874 * These functions should only try to map a single block at a time.
1875 *
1876 * Since this function doesn't do block allocations even if the caller
1877 * requests it by passing in create=1, it is critically important that
1878 * any caller checks to make sure that any buffer heads are returned
1879 * by this function are either all already mapped or marked for
1880 * delayed allocation before calling block_write_full_page(). Otherwise,
1881 * b_blocknr could be left unitialized, and the page write functions will
1882 * be taken by surprise.
1883 */
1884static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1885 struct buffer_head *bh_result, int create)
1886{
1887 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1888 return _ext4_get_block(inode, iblock, bh_result, 0);
1889}
1890
1891static int bget_one(handle_t *handle, struct buffer_head *bh)
1892{
1893 get_bh(bh);
1894 return 0;
1895}
1896
1897static int bput_one(handle_t *handle, struct buffer_head *bh)
1898{
1899 put_bh(bh);
1900 return 0;
1901}
1902
1903static int __ext4_journalled_writepage(struct page *page,
1904 unsigned int len)
1905{
1906 struct address_space *mapping = page->mapping;
1907 struct inode *inode = mapping->host;
1908 struct buffer_head *page_bufs;
1909 handle_t *handle = NULL;
1910 int ret = 0;
1911 int err;
1912
1913 ClearPageChecked(page);
1914 page_bufs = page_buffers(page);
1915 BUG_ON(!page_bufs);
1916 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1917 /* As soon as we unlock the page, it can go away, but we have
1918 * references to buffers so we are safe */
1919 unlock_page(page);
1920
1921 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1922 if (IS_ERR(handle)) {
1923 ret = PTR_ERR(handle);
1924 goto out;
1925 }
1926
1927 BUG_ON(!ext4_handle_valid(handle));
1928
1929 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1930 do_journal_get_write_access);
1931
1932 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933 write_end_fn);
1934 if (ret == 0)
1935 ret = err;
1936 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937 err = ext4_journal_stop(handle);
1938 if (!ret)
1939 ret = err;
1940
1941 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1942 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1943out:
1944 return ret;
1945}
1946
1947static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1948static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1949
1950/*
1951 * Note that we don't need to start a transaction unless we're journaling data
1952 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1953 * need to file the inode to the transaction's list in ordered mode because if
1954 * we are writing back data added by write(), the inode is already there and if
1955 * we are writing back data modified via mmap(), no one guarantees in which
1956 * transaction the data will hit the disk. In case we are journaling data, we
1957 * cannot start transaction directly because transaction start ranks above page
1958 * lock so we have to do some magic.
1959 *
1960 * This function can get called via...
1961 * - ext4_da_writepages after taking page lock (have journal handle)
1962 * - journal_submit_inode_data_buffers (no journal handle)
1963 * - shrink_page_list via pdflush (no journal handle)
1964 * - grab_page_cache when doing write_begin (have journal handle)
1965 *
1966 * We don't do any block allocation in this function. If we have page with
1967 * multiple blocks we need to write those buffer_heads that are mapped. This
1968 * is important for mmaped based write. So if we do with blocksize 1K
1969 * truncate(f, 1024);
1970 * a = mmap(f, 0, 4096);
1971 * a[0] = 'a';
1972 * truncate(f, 4096);
1973 * we have in the page first buffer_head mapped via page_mkwrite call back
1974 * but other buffer_heads would be unmapped but dirty (dirty done via the
1975 * do_wp_page). So writepage should write the first block. If we modify
1976 * the mmap area beyond 1024 we will again get a page_fault and the
1977 * page_mkwrite callback will do the block allocation and mark the
1978 * buffer_heads mapped.
1979 *
1980 * We redirty the page if we have any buffer_heads that is either delay or
1981 * unwritten in the page.
1982 *
1983 * We can get recursively called as show below.
1984 *
1985 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1986 * ext4_writepage()
1987 *
1988 * But since we don't do any block allocation we should not deadlock.
1989 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1990 */
1991static int ext4_writepage(struct page *page,
1992 struct writeback_control *wbc)
1993{
1994 int ret = 0, commit_write = 0;
1995 loff_t size;
1996 unsigned int len;
1997 struct buffer_head *page_bufs = NULL;
1998 struct inode *inode = page->mapping->host;
1999
2000 trace_ext4_writepage(page);
2001 size = i_size_read(inode);
2002 if (page->index == size >> PAGE_CACHE_SHIFT)
2003 len = size & ~PAGE_CACHE_MASK;
2004 else
2005 len = PAGE_CACHE_SIZE;
2006
2007 /*
2008 * If the page does not have buffers (for whatever reason),
2009 * try to create them using __block_write_begin. If this
2010 * fails, redirty the page and move on.
2011 */
2012 if (!page_has_buffers(page)) {
2013 if (__block_write_begin(page, 0, len,
2014 noalloc_get_block_write)) {
2015 redirty_page:
2016 redirty_page_for_writepage(wbc, page);
2017 unlock_page(page);
2018 return 0;
2019 }
2020 commit_write = 1;
2021 }
2022 page_bufs = page_buffers(page);
2023 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2024 ext4_bh_delay_or_unwritten)) {
2025 /*
2026 * We don't want to do block allocation, so redirty
2027 * the page and return. We may reach here when we do
2028 * a journal commit via journal_submit_inode_data_buffers.
2029 * We can also reach here via shrink_page_list but it
2030 * should never be for direct reclaim so warn if that
2031 * happens
2032 */
2033 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2034 PF_MEMALLOC);
2035 goto redirty_page;
2036 }
2037 if (commit_write)
2038 /* now mark the buffer_heads as dirty and uptodate */
2039 block_commit_write(page, 0, len);
2040
2041 if (PageChecked(page) && ext4_should_journal_data(inode))
2042 /*
2043 * It's mmapped pagecache. Add buffers and journal it. There
2044 * doesn't seem much point in redirtying the page here.
2045 */
2046 return __ext4_journalled_writepage(page, len);
2047
2048 if (buffer_uninit(page_bufs)) {
2049 ext4_set_bh_endio(page_bufs, inode);
2050 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2051 wbc, ext4_end_io_buffer_write);
2052 } else
2053 ret = block_write_full_page(page, noalloc_get_block_write,
2054 wbc);
2055
2056 return ret;
2057}
2058
2059/*
2060 * This is called via ext4_da_writepages() to
2061 * calculate the total number of credits to reserve to fit
2062 * a single extent allocation into a single transaction,
2063 * ext4_da_writpeages() will loop calling this before
2064 * the block allocation.
2065 */
2066
2067static int ext4_da_writepages_trans_blocks(struct inode *inode)
2068{
2069 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2070
2071 /*
2072 * With non-extent format the journal credit needed to
2073 * insert nrblocks contiguous block is dependent on
2074 * number of contiguous block. So we will limit
2075 * number of contiguous block to a sane value
2076 */
2077 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2078 (max_blocks > EXT4_MAX_TRANS_DATA))
2079 max_blocks = EXT4_MAX_TRANS_DATA;
2080
2081 return ext4_chunk_trans_blocks(inode, max_blocks);
2082}
2083
2084/*
2085 * write_cache_pages_da - walk the list of dirty pages of the given
2086 * address space and accumulate pages that need writing, and call
2087 * mpage_da_map_and_submit to map a single contiguous memory region
2088 * and then write them.
2089 */
2090static int write_cache_pages_da(struct address_space *mapping,
2091 struct writeback_control *wbc,
2092 struct mpage_da_data *mpd,
2093 pgoff_t *done_index)
2094{
2095 struct buffer_head *bh, *head;
2096 struct inode *inode = mapping->host;
2097 struct pagevec pvec;
2098 unsigned int nr_pages;
2099 sector_t logical;
2100 pgoff_t index, end;
2101 long nr_to_write = wbc->nr_to_write;
2102 int i, tag, ret = 0;
2103
2104 memset(mpd, 0, sizeof(struct mpage_da_data));
2105 mpd->wbc = wbc;
2106 mpd->inode = inode;
2107 pagevec_init(&pvec, 0);
2108 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2109 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2110
2111 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2112 tag = PAGECACHE_TAG_TOWRITE;
2113 else
2114 tag = PAGECACHE_TAG_DIRTY;
2115
2116 *done_index = index;
2117 while (index <= end) {
2118 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2119 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2120 if (nr_pages == 0)
2121 return 0;
2122
2123 for (i = 0; i < nr_pages; i++) {
2124 struct page *page = pvec.pages[i];
2125
2126 /*
2127 * At this point, the page may be truncated or
2128 * invalidated (changing page->mapping to NULL), or
2129 * even swizzled back from swapper_space to tmpfs file
2130 * mapping. However, page->index will not change
2131 * because we have a reference on the page.
2132 */
2133 if (page->index > end)
2134 goto out;
2135
2136 *done_index = page->index + 1;
2137
2138 /*
2139 * If we can't merge this page, and we have
2140 * accumulated an contiguous region, write it
2141 */
2142 if ((mpd->next_page != page->index) &&
2143 (mpd->next_page != mpd->first_page)) {
2144 mpage_da_map_and_submit(mpd);
2145 goto ret_extent_tail;
2146 }
2147
2148 lock_page(page);
2149
2150 /*
2151 * If the page is no longer dirty, or its
2152 * mapping no longer corresponds to inode we
2153 * are writing (which means it has been
2154 * truncated or invalidated), or the page is
2155 * already under writeback and we are not
2156 * doing a data integrity writeback, skip the page
2157 */
2158 if (!PageDirty(page) ||
2159 (PageWriteback(page) &&
2160 (wbc->sync_mode == WB_SYNC_NONE)) ||
2161 unlikely(page->mapping != mapping)) {
2162 unlock_page(page);
2163 continue;
2164 }
2165
2166 wait_on_page_writeback(page);
2167 BUG_ON(PageWriteback(page));
2168
2169 if (mpd->next_page != page->index)
2170 mpd->first_page = page->index;
2171 mpd->next_page = page->index + 1;
2172 logical = (sector_t) page->index <<
2173 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2174
2175 if (!page_has_buffers(page)) {
2176 mpage_add_bh_to_extent(mpd, logical,
2177 PAGE_CACHE_SIZE,
2178 (1 << BH_Dirty) | (1 << BH_Uptodate));
2179 if (mpd->io_done)
2180 goto ret_extent_tail;
2181 } else {
2182 /*
2183 * Page with regular buffer heads,
2184 * just add all dirty ones
2185 */
2186 head = page_buffers(page);
2187 bh = head;
2188 do {
2189 BUG_ON(buffer_locked(bh));
2190 /*
2191 * We need to try to allocate
2192 * unmapped blocks in the same page.
2193 * Otherwise we won't make progress
2194 * with the page in ext4_writepage
2195 */
2196 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2197 mpage_add_bh_to_extent(mpd, logical,
2198 bh->b_size,
2199 bh->b_state);
2200 if (mpd->io_done)
2201 goto ret_extent_tail;
2202 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2203 /*
2204 * mapped dirty buffer. We need
2205 * to update the b_state
2206 * because we look at b_state
2207 * in mpage_da_map_blocks. We
2208 * don't update b_size because
2209 * if we find an unmapped
2210 * buffer_head later we need to
2211 * use the b_state flag of that
2212 * buffer_head.
2213 */
2214 if (mpd->b_size == 0)
2215 mpd->b_state = bh->b_state & BH_FLAGS;
2216 }
2217 logical++;
2218 } while ((bh = bh->b_this_page) != head);
2219 }
2220
2221 if (nr_to_write > 0) {
2222 nr_to_write--;
2223 if (nr_to_write == 0 &&
2224 wbc->sync_mode == WB_SYNC_NONE)
2225 /*
2226 * We stop writing back only if we are
2227 * not doing integrity sync. In case of
2228 * integrity sync we have to keep going
2229 * because someone may be concurrently
2230 * dirtying pages, and we might have
2231 * synced a lot of newly appeared dirty
2232 * pages, but have not synced all of the
2233 * old dirty pages.
2234 */
2235 goto out;
2236 }
2237 }
2238 pagevec_release(&pvec);
2239 cond_resched();
2240 }
2241 return 0;
2242ret_extent_tail:
2243 ret = MPAGE_DA_EXTENT_TAIL;
2244out:
2245 pagevec_release(&pvec);
2246 cond_resched();
2247 return ret;
2248}
2249
2250
2251static int ext4_da_writepages(struct address_space *mapping,
2252 struct writeback_control *wbc)
2253{
2254 pgoff_t index;
2255 int range_whole = 0;
2256 handle_t *handle = NULL;
2257 struct mpage_da_data mpd;
2258 struct inode *inode = mapping->host;
2259 int pages_written = 0;
2260 unsigned int max_pages;
2261 int range_cyclic, cycled = 1, io_done = 0;
2262 int needed_blocks, ret = 0;
2263 long desired_nr_to_write, nr_to_writebump = 0;
2264 loff_t range_start = wbc->range_start;
2265 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2266 pgoff_t done_index = 0;
2267 pgoff_t end;
2268 struct blk_plug plug;
2269
2270 trace_ext4_da_writepages(inode, wbc);
2271
2272 /*
2273 * No pages to write? This is mainly a kludge to avoid starting
2274 * a transaction for special inodes like journal inode on last iput()
2275 * because that could violate lock ordering on umount
2276 */
2277 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2278 return 0;
2279
2280 /*
2281 * If the filesystem has aborted, it is read-only, so return
2282 * right away instead of dumping stack traces later on that
2283 * will obscure the real source of the problem. We test
2284 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2285 * the latter could be true if the filesystem is mounted
2286 * read-only, and in that case, ext4_da_writepages should
2287 * *never* be called, so if that ever happens, we would want
2288 * the stack trace.
2289 */
2290 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2291 return -EROFS;
2292
2293 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2294 range_whole = 1;
2295
2296 range_cyclic = wbc->range_cyclic;
2297 if (wbc->range_cyclic) {
2298 index = mapping->writeback_index;
2299 if (index)
2300 cycled = 0;
2301 wbc->range_start = index << PAGE_CACHE_SHIFT;
2302 wbc->range_end = LLONG_MAX;
2303 wbc->range_cyclic = 0;
2304 end = -1;
2305 } else {
2306 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2307 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2308 }
2309
2310 /*
2311 * This works around two forms of stupidity. The first is in
2312 * the writeback code, which caps the maximum number of pages
2313 * written to be 1024 pages. This is wrong on multiple
2314 * levels; different architectues have a different page size,
2315 * which changes the maximum amount of data which gets
2316 * written. Secondly, 4 megabytes is way too small. XFS
2317 * forces this value to be 16 megabytes by multiplying
2318 * nr_to_write parameter by four, and then relies on its
2319 * allocator to allocate larger extents to make them
2320 * contiguous. Unfortunately this brings us to the second
2321 * stupidity, which is that ext4's mballoc code only allocates
2322 * at most 2048 blocks. So we force contiguous writes up to
2323 * the number of dirty blocks in the inode, or
2324 * sbi->max_writeback_mb_bump whichever is smaller.
2325 */
2326 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2327 if (!range_cyclic && range_whole) {
2328 if (wbc->nr_to_write == LONG_MAX)
2329 desired_nr_to_write = wbc->nr_to_write;
2330 else
2331 desired_nr_to_write = wbc->nr_to_write * 8;
2332 } else
2333 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2334 max_pages);
2335 if (desired_nr_to_write > max_pages)
2336 desired_nr_to_write = max_pages;
2337
2338 if (wbc->nr_to_write < desired_nr_to_write) {
2339 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2340 wbc->nr_to_write = desired_nr_to_write;
2341 }
2342
2343retry:
2344 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345 tag_pages_for_writeback(mapping, index, end);
2346
2347 blk_start_plug(&plug);
2348 while (!ret && wbc->nr_to_write > 0) {
2349
2350 /*
2351 * we insert one extent at a time. So we need
2352 * credit needed for single extent allocation.
2353 * journalled mode is currently not supported
2354 * by delalloc
2355 */
2356 BUG_ON(ext4_should_journal_data(inode));
2357 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2358
2359 /* start a new transaction*/
2360 handle = ext4_journal_start(inode, needed_blocks);
2361 if (IS_ERR(handle)) {
2362 ret = PTR_ERR(handle);
2363 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2364 "%ld pages, ino %lu; err %d", __func__,
2365 wbc->nr_to_write, inode->i_ino, ret);
2366 blk_finish_plug(&plug);
2367 goto out_writepages;
2368 }
2369
2370 /*
2371 * Now call write_cache_pages_da() to find the next
2372 * contiguous region of logical blocks that need
2373 * blocks to be allocated by ext4 and submit them.
2374 */
2375 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2376 /*
2377 * If we have a contiguous extent of pages and we
2378 * haven't done the I/O yet, map the blocks and submit
2379 * them for I/O.
2380 */
2381 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2382 mpage_da_map_and_submit(&mpd);
2383 ret = MPAGE_DA_EXTENT_TAIL;
2384 }
2385 trace_ext4_da_write_pages(inode, &mpd);
2386 wbc->nr_to_write -= mpd.pages_written;
2387
2388 ext4_journal_stop(handle);
2389
2390 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2391 /* commit the transaction which would
2392 * free blocks released in the transaction
2393 * and try again
2394 */
2395 jbd2_journal_force_commit_nested(sbi->s_journal);
2396 ret = 0;
2397 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2398 /*
2399 * Got one extent now try with rest of the pages.
2400 * If mpd.retval is set -EIO, journal is aborted.
2401 * So we don't need to write any more.
2402 */
2403 pages_written += mpd.pages_written;
2404 ret = mpd.retval;
2405 io_done = 1;
2406 } else if (wbc->nr_to_write)
2407 /*
2408 * There is no more writeout needed
2409 * or we requested for a noblocking writeout
2410 * and we found the device congested
2411 */
2412 break;
2413 }
2414 blk_finish_plug(&plug);
2415 if (!io_done && !cycled) {
2416 cycled = 1;
2417 index = 0;
2418 wbc->range_start = index << PAGE_CACHE_SHIFT;
2419 wbc->range_end = mapping->writeback_index - 1;
2420 goto retry;
2421 }
2422
2423 /* Update index */
2424 wbc->range_cyclic = range_cyclic;
2425 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2426 /*
2427 * set the writeback_index so that range_cyclic
2428 * mode will write it back later
2429 */
2430 mapping->writeback_index = done_index;
2431
2432out_writepages:
2433 wbc->nr_to_write -= nr_to_writebump;
2434 wbc->range_start = range_start;
2435 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2436 return ret;
2437}
2438
2439#define FALL_BACK_TO_NONDELALLOC 1
2440static int ext4_nonda_switch(struct super_block *sb)
2441{
2442 s64 free_blocks, dirty_blocks;
2443 struct ext4_sb_info *sbi = EXT4_SB(sb);
2444
2445 /*
2446 * switch to non delalloc mode if we are running low
2447 * on free block. The free block accounting via percpu
2448 * counters can get slightly wrong with percpu_counter_batch getting
2449 * accumulated on each CPU without updating global counters
2450 * Delalloc need an accurate free block accounting. So switch
2451 * to non delalloc when we are near to error range.
2452 */
2453 free_blocks = EXT4_C2B(sbi,
2454 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2455 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456 if (2 * free_blocks < 3 * dirty_blocks ||
2457 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2458 /*
2459 * free block count is less than 150% of dirty blocks
2460 * or free blocks is less than watermark
2461 */
2462 return 1;
2463 }
2464 /*
2465 * Even if we don't switch but are nearing capacity,
2466 * start pushing delalloc when 1/2 of free blocks are dirty.
2467 */
2468 if (free_blocks < 2 * dirty_blocks)
2469 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2470
2471 return 0;
2472}
2473
2474static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2475 loff_t pos, unsigned len, unsigned flags,
2476 struct page **pagep, void **fsdata)
2477{
2478 int ret, retries = 0;
2479 struct page *page;
2480 pgoff_t index;
2481 struct inode *inode = mapping->host;
2482 handle_t *handle;
2483
2484 index = pos >> PAGE_CACHE_SHIFT;
2485
2486 if (ext4_nonda_switch(inode->i_sb)) {
2487 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2488 return ext4_write_begin(file, mapping, pos,
2489 len, flags, pagep, fsdata);
2490 }
2491 *fsdata = (void *)0;
2492 trace_ext4_da_write_begin(inode, pos, len, flags);
2493retry:
2494 /*
2495 * With delayed allocation, we don't log the i_disksize update
2496 * if there is delayed block allocation. But we still need
2497 * to journalling the i_disksize update if writes to the end
2498 * of file which has an already mapped buffer.
2499 */
2500 handle = ext4_journal_start(inode, 1);
2501 if (IS_ERR(handle)) {
2502 ret = PTR_ERR(handle);
2503 goto out;
2504 }
2505 /* We cannot recurse into the filesystem as the transaction is already
2506 * started */
2507 flags |= AOP_FLAG_NOFS;
2508
2509 page = grab_cache_page_write_begin(mapping, index, flags);
2510 if (!page) {
2511 ext4_journal_stop(handle);
2512 ret = -ENOMEM;
2513 goto out;
2514 }
2515 *pagep = page;
2516
2517 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2518 if (ret < 0) {
2519 unlock_page(page);
2520 ext4_journal_stop(handle);
2521 page_cache_release(page);
2522 /*
2523 * block_write_begin may have instantiated a few blocks
2524 * outside i_size. Trim these off again. Don't need
2525 * i_size_read because we hold i_mutex.
2526 */
2527 if (pos + len > inode->i_size)
2528 ext4_truncate_failed_write(inode);
2529 }
2530
2531 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2532 goto retry;
2533out:
2534 return ret;
2535}
2536
2537/*
2538 * Check if we should update i_disksize
2539 * when write to the end of file but not require block allocation
2540 */
2541static int ext4_da_should_update_i_disksize(struct page *page,
2542 unsigned long offset)
2543{
2544 struct buffer_head *bh;
2545 struct inode *inode = page->mapping->host;
2546 unsigned int idx;
2547 int i;
2548
2549 bh = page_buffers(page);
2550 idx = offset >> inode->i_blkbits;
2551
2552 for (i = 0; i < idx; i++)
2553 bh = bh->b_this_page;
2554
2555 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2556 return 0;
2557 return 1;
2558}
2559
2560static int ext4_da_write_end(struct file *file,
2561 struct address_space *mapping,
2562 loff_t pos, unsigned len, unsigned copied,
2563 struct page *page, void *fsdata)
2564{
2565 struct inode *inode = mapping->host;
2566 int ret = 0, ret2;
2567 handle_t *handle = ext4_journal_current_handle();
2568 loff_t new_i_size;
2569 unsigned long start, end;
2570 int write_mode = (int)(unsigned long)fsdata;
2571
2572 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2573 switch (ext4_inode_journal_mode(inode)) {
2574 case EXT4_INODE_ORDERED_DATA_MODE:
2575 return ext4_ordered_write_end(file, mapping, pos,
2576 len, copied, page, fsdata);
2577 case EXT4_INODE_WRITEBACK_DATA_MODE:
2578 return ext4_writeback_write_end(file, mapping, pos,
2579 len, copied, page, fsdata);
2580 default:
2581 BUG();
2582 }
2583 }
2584
2585 trace_ext4_da_write_end(inode, pos, len, copied);
2586 start = pos & (PAGE_CACHE_SIZE - 1);
2587 end = start + copied - 1;
2588
2589 /*
2590 * generic_write_end() will run mark_inode_dirty() if i_size
2591 * changes. So let's piggyback the i_disksize mark_inode_dirty
2592 * into that.
2593 */
2594
2595 new_i_size = pos + copied;
2596 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2597 if (ext4_da_should_update_i_disksize(page, end)) {
2598 down_write(&EXT4_I(inode)->i_data_sem);
2599 if (new_i_size > EXT4_I(inode)->i_disksize) {
2600 /*
2601 * Updating i_disksize when extending file
2602 * without needing block allocation
2603 */
2604 if (ext4_should_order_data(inode))
2605 ret = ext4_jbd2_file_inode(handle,
2606 inode);
2607
2608 EXT4_I(inode)->i_disksize = new_i_size;
2609 }
2610 up_write(&EXT4_I(inode)->i_data_sem);
2611 /* We need to mark inode dirty even if
2612 * new_i_size is less that inode->i_size
2613 * bu greater than i_disksize.(hint delalloc)
2614 */
2615 ext4_mark_inode_dirty(handle, inode);
2616 }
2617 }
2618 ret2 = generic_write_end(file, mapping, pos, len, copied,
2619 page, fsdata);
2620 copied = ret2;
2621 if (ret2 < 0)
2622 ret = ret2;
2623 ret2 = ext4_journal_stop(handle);
2624 if (!ret)
2625 ret = ret2;
2626
2627 return ret ? ret : copied;
2628}
2629
2630static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2631{
2632 /*
2633 * Drop reserved blocks
2634 */
2635 BUG_ON(!PageLocked(page));
2636 if (!page_has_buffers(page))
2637 goto out;
2638
2639 ext4_da_page_release_reservation(page, offset);
2640
2641out:
2642 ext4_invalidatepage(page, offset);
2643
2644 return;
2645}
2646
2647/*
2648 * Force all delayed allocation blocks to be allocated for a given inode.
2649 */
2650int ext4_alloc_da_blocks(struct inode *inode)
2651{
2652 trace_ext4_alloc_da_blocks(inode);
2653
2654 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2655 !EXT4_I(inode)->i_reserved_meta_blocks)
2656 return 0;
2657
2658 /*
2659 * We do something simple for now. The filemap_flush() will
2660 * also start triggering a write of the data blocks, which is
2661 * not strictly speaking necessary (and for users of
2662 * laptop_mode, not even desirable). However, to do otherwise
2663 * would require replicating code paths in:
2664 *
2665 * ext4_da_writepages() ->
2666 * write_cache_pages() ---> (via passed in callback function)
2667 * __mpage_da_writepage() -->
2668 * mpage_add_bh_to_extent()
2669 * mpage_da_map_blocks()
2670 *
2671 * The problem is that write_cache_pages(), located in
2672 * mm/page-writeback.c, marks pages clean in preparation for
2673 * doing I/O, which is not desirable if we're not planning on
2674 * doing I/O at all.
2675 *
2676 * We could call write_cache_pages(), and then redirty all of
2677 * the pages by calling redirty_page_for_writepage() but that
2678 * would be ugly in the extreme. So instead we would need to
2679 * replicate parts of the code in the above functions,
2680 * simplifying them because we wouldn't actually intend to
2681 * write out the pages, but rather only collect contiguous
2682 * logical block extents, call the multi-block allocator, and
2683 * then update the buffer heads with the block allocations.
2684 *
2685 * For now, though, we'll cheat by calling filemap_flush(),
2686 * which will map the blocks, and start the I/O, but not
2687 * actually wait for the I/O to complete.
2688 */
2689 return filemap_flush(inode->i_mapping);
2690}
2691
2692/*
2693 * bmap() is special. It gets used by applications such as lilo and by
2694 * the swapper to find the on-disk block of a specific piece of data.
2695 *
2696 * Naturally, this is dangerous if the block concerned is still in the
2697 * journal. If somebody makes a swapfile on an ext4 data-journaling
2698 * filesystem and enables swap, then they may get a nasty shock when the
2699 * data getting swapped to that swapfile suddenly gets overwritten by
2700 * the original zero's written out previously to the journal and
2701 * awaiting writeback in the kernel's buffer cache.
2702 *
2703 * So, if we see any bmap calls here on a modified, data-journaled file,
2704 * take extra steps to flush any blocks which might be in the cache.
2705 */
2706static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2707{
2708 struct inode *inode = mapping->host;
2709 journal_t *journal;
2710 int err;
2711
2712 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2713 test_opt(inode->i_sb, DELALLOC)) {
2714 /*
2715 * With delalloc we want to sync the file
2716 * so that we can make sure we allocate
2717 * blocks for file
2718 */
2719 filemap_write_and_wait(mapping);
2720 }
2721
2722 if (EXT4_JOURNAL(inode) &&
2723 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2724 /*
2725 * This is a REALLY heavyweight approach, but the use of
2726 * bmap on dirty files is expected to be extremely rare:
2727 * only if we run lilo or swapon on a freshly made file
2728 * do we expect this to happen.
2729 *
2730 * (bmap requires CAP_SYS_RAWIO so this does not
2731 * represent an unprivileged user DOS attack --- we'd be
2732 * in trouble if mortal users could trigger this path at
2733 * will.)
2734 *
2735 * NB. EXT4_STATE_JDATA is not set on files other than
2736 * regular files. If somebody wants to bmap a directory
2737 * or symlink and gets confused because the buffer
2738 * hasn't yet been flushed to disk, they deserve
2739 * everything they get.
2740 */
2741
2742 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2743 journal = EXT4_JOURNAL(inode);
2744 jbd2_journal_lock_updates(journal);
2745 err = jbd2_journal_flush(journal);
2746 jbd2_journal_unlock_updates(journal);
2747
2748 if (err)
2749 return 0;
2750 }
2751
2752 return generic_block_bmap(mapping, block, ext4_get_block);
2753}
2754
2755static int ext4_readpage(struct file *file, struct page *page)
2756{
2757 trace_ext4_readpage(page);
2758 return mpage_readpage(page, ext4_get_block);
2759}
2760
2761static int
2762ext4_readpages(struct file *file, struct address_space *mapping,
2763 struct list_head *pages, unsigned nr_pages)
2764{
2765 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2766}
2767
2768static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2769{
2770 struct buffer_head *head, *bh;
2771 unsigned int curr_off = 0;
2772
2773 if (!page_has_buffers(page))
2774 return;
2775 head = bh = page_buffers(page);
2776 do {
2777 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2778 && bh->b_private) {
2779 ext4_free_io_end(bh->b_private);
2780 bh->b_private = NULL;
2781 bh->b_end_io = NULL;
2782 }
2783 curr_off = curr_off + bh->b_size;
2784 bh = bh->b_this_page;
2785 } while (bh != head);
2786}
2787
2788static void ext4_invalidatepage(struct page *page, unsigned long offset)
2789{
2790 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2791
2792 trace_ext4_invalidatepage(page, offset);
2793
2794 /*
2795 * free any io_end structure allocated for buffers to be discarded
2796 */
2797 if (ext4_should_dioread_nolock(page->mapping->host))
2798 ext4_invalidatepage_free_endio(page, offset);
2799 /*
2800 * If it's a full truncate we just forget about the pending dirtying
2801 */
2802 if (offset == 0)
2803 ClearPageChecked(page);
2804
2805 if (journal)
2806 jbd2_journal_invalidatepage(journal, page, offset);
2807 else
2808 block_invalidatepage(page, offset);
2809}
2810
2811static int ext4_releasepage(struct page *page, gfp_t wait)
2812{
2813 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2814
2815 trace_ext4_releasepage(page);
2816
2817 WARN_ON(PageChecked(page));
2818 if (!page_has_buffers(page))
2819 return 0;
2820 if (journal)
2821 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2822 else
2823 return try_to_free_buffers(page);
2824}
2825
2826/*
2827 * ext4_get_block used when preparing for a DIO write or buffer write.
2828 * We allocate an uinitialized extent if blocks haven't been allocated.
2829 * The extent will be converted to initialized after the IO is complete.
2830 */
2831static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2832 struct buffer_head *bh_result, int create)
2833{
2834 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2835 inode->i_ino, create);
2836 return _ext4_get_block(inode, iblock, bh_result,
2837 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2838}
2839
2840static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2841 ssize_t size, void *private, int ret,
2842 bool is_async)
2843{
2844 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2845 ext4_io_end_t *io_end = iocb->private;
2846 struct workqueue_struct *wq;
2847 unsigned long flags;
2848 struct ext4_inode_info *ei;
2849
2850 /* if not async direct IO or dio with 0 bytes write, just return */
2851 if (!io_end || !size)
2852 goto out;
2853
2854 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2855 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2856 iocb->private, io_end->inode->i_ino, iocb, offset,
2857 size);
2858
2859 iocb->private = NULL;
2860
2861 /* if not aio dio with unwritten extents, just free io and return */
2862 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2863 ext4_free_io_end(io_end);
2864out:
2865 if (is_async)
2866 aio_complete(iocb, ret, 0);
2867 inode_dio_done(inode);
2868 return;
2869 }
2870
2871 io_end->offset = offset;
2872 io_end->size = size;
2873 if (is_async) {
2874 io_end->iocb = iocb;
2875 io_end->result = ret;
2876 }
2877 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2878
2879 /* Add the io_end to per-inode completed aio dio list*/
2880 ei = EXT4_I(io_end->inode);
2881 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2882 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2883 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2884
2885 /* queue the work to convert unwritten extents to written */
2886 queue_work(wq, &io_end->work);
2887}
2888
2889static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2890{
2891 ext4_io_end_t *io_end = bh->b_private;
2892 struct workqueue_struct *wq;
2893 struct inode *inode;
2894 unsigned long flags;
2895
2896 if (!test_clear_buffer_uninit(bh) || !io_end)
2897 goto out;
2898
2899 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2900 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2901 "sb umounted, discard end_io request for inode %lu",
2902 io_end->inode->i_ino);
2903 ext4_free_io_end(io_end);
2904 goto out;
2905 }
2906
2907 /*
2908 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2909 * but being more careful is always safe for the future change.
2910 */
2911 inode = io_end->inode;
2912 ext4_set_io_unwritten_flag(inode, io_end);
2913
2914 /* Add the io_end to per-inode completed io list*/
2915 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2916 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2917 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2918
2919 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2920 /* queue the work to convert unwritten extents to written */
2921 queue_work(wq, &io_end->work);
2922out:
2923 bh->b_private = NULL;
2924 bh->b_end_io = NULL;
2925 clear_buffer_uninit(bh);
2926 end_buffer_async_write(bh, uptodate);
2927}
2928
2929static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2930{
2931 ext4_io_end_t *io_end;
2932 struct page *page = bh->b_page;
2933 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2934 size_t size = bh->b_size;
2935
2936retry:
2937 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2938 if (!io_end) {
2939 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2940 schedule();
2941 goto retry;
2942 }
2943 io_end->offset = offset;
2944 io_end->size = size;
2945 /*
2946 * We need to hold a reference to the page to make sure it
2947 * doesn't get evicted before ext4_end_io_work() has a chance
2948 * to convert the extent from written to unwritten.
2949 */
2950 io_end->page = page;
2951 get_page(io_end->page);
2952
2953 bh->b_private = io_end;
2954 bh->b_end_io = ext4_end_io_buffer_write;
2955 return 0;
2956}
2957
2958/*
2959 * For ext4 extent files, ext4 will do direct-io write to holes,
2960 * preallocated extents, and those write extend the file, no need to
2961 * fall back to buffered IO.
2962 *
2963 * For holes, we fallocate those blocks, mark them as uninitialized
2964 * If those blocks were preallocated, we mark sure they are splited, but
2965 * still keep the range to write as uninitialized.
2966 *
2967 * The unwrritten extents will be converted to written when DIO is completed.
2968 * For async direct IO, since the IO may still pending when return, we
2969 * set up an end_io call back function, which will do the conversion
2970 * when async direct IO completed.
2971 *
2972 * If the O_DIRECT write will extend the file then add this inode to the
2973 * orphan list. So recovery will truncate it back to the original size
2974 * if the machine crashes during the write.
2975 *
2976 */
2977static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2978 const struct iovec *iov, loff_t offset,
2979 unsigned long nr_segs)
2980{
2981 struct file *file = iocb->ki_filp;
2982 struct inode *inode = file->f_mapping->host;
2983 ssize_t ret;
2984 size_t count = iov_length(iov, nr_segs);
2985
2986 loff_t final_size = offset + count;
2987 if (rw == WRITE && final_size <= inode->i_size) {
2988 /*
2989 * We could direct write to holes and fallocate.
2990 *
2991 * Allocated blocks to fill the hole are marked as uninitialized
2992 * to prevent parallel buffered read to expose the stale data
2993 * before DIO complete the data IO.
2994 *
2995 * As to previously fallocated extents, ext4 get_block
2996 * will just simply mark the buffer mapped but still
2997 * keep the extents uninitialized.
2998 *
2999 * for non AIO case, we will convert those unwritten extents
3000 * to written after return back from blockdev_direct_IO.
3001 *
3002 * for async DIO, the conversion needs to be defered when
3003 * the IO is completed. The ext4 end_io callback function
3004 * will be called to take care of the conversion work.
3005 * Here for async case, we allocate an io_end structure to
3006 * hook to the iocb.
3007 */
3008 iocb->private = NULL;
3009 EXT4_I(inode)->cur_aio_dio = NULL;
3010 if (!is_sync_kiocb(iocb)) {
3011 ext4_io_end_t *io_end =
3012 ext4_init_io_end(inode, GFP_NOFS);
3013 if (!io_end)
3014 return -ENOMEM;
3015 io_end->flag |= EXT4_IO_END_DIRECT;
3016 iocb->private = io_end;
3017 /*
3018 * we save the io structure for current async
3019 * direct IO, so that later ext4_map_blocks()
3020 * could flag the io structure whether there
3021 * is a unwritten extents needs to be converted
3022 * when IO is completed.
3023 */
3024 EXT4_I(inode)->cur_aio_dio = iocb->private;
3025 }
3026
3027 ret = __blockdev_direct_IO(rw, iocb, inode,
3028 inode->i_sb->s_bdev, iov,
3029 offset, nr_segs,
3030 ext4_get_block_write,
3031 ext4_end_io_dio,
3032 NULL,
3033 DIO_LOCKING);
3034 if (iocb->private)
3035 EXT4_I(inode)->cur_aio_dio = NULL;
3036 /*
3037 * The io_end structure takes a reference to the inode,
3038 * that structure needs to be destroyed and the
3039 * reference to the inode need to be dropped, when IO is
3040 * complete, even with 0 byte write, or failed.
3041 *
3042 * In the successful AIO DIO case, the io_end structure will be
3043 * desctroyed and the reference to the inode will be dropped
3044 * after the end_io call back function is called.
3045 *
3046 * In the case there is 0 byte write, or error case, since
3047 * VFS direct IO won't invoke the end_io call back function,
3048 * we need to free the end_io structure here.
3049 */
3050 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3051 ext4_free_io_end(iocb->private);
3052 iocb->private = NULL;
3053 } else if (ret > 0 && ext4_test_inode_state(inode,
3054 EXT4_STATE_DIO_UNWRITTEN)) {
3055 int err;
3056 /*
3057 * for non AIO case, since the IO is already
3058 * completed, we could do the conversion right here
3059 */
3060 err = ext4_convert_unwritten_extents(inode,
3061 offset, ret);
3062 if (err < 0)
3063 ret = err;
3064 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3065 }
3066 return ret;
3067 }
3068
3069 /* for write the the end of file case, we fall back to old way */
3070 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3071}
3072
3073static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3074 const struct iovec *iov, loff_t offset,
3075 unsigned long nr_segs)
3076{
3077 struct file *file = iocb->ki_filp;
3078 struct inode *inode = file->f_mapping->host;
3079 ssize_t ret;
3080
3081 /*
3082 * If we are doing data journalling we don't support O_DIRECT
3083 */
3084 if (ext4_should_journal_data(inode))
3085 return 0;
3086
3087 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3088 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3089 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3090 else
3091 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3092 trace_ext4_direct_IO_exit(inode, offset,
3093 iov_length(iov, nr_segs), rw, ret);
3094 return ret;
3095}
3096
3097/*
3098 * Pages can be marked dirty completely asynchronously from ext4's journalling
3099 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3100 * much here because ->set_page_dirty is called under VFS locks. The page is
3101 * not necessarily locked.
3102 *
3103 * We cannot just dirty the page and leave attached buffers clean, because the
3104 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3105 * or jbddirty because all the journalling code will explode.
3106 *
3107 * So what we do is to mark the page "pending dirty" and next time writepage
3108 * is called, propagate that into the buffers appropriately.
3109 */
3110static int ext4_journalled_set_page_dirty(struct page *page)
3111{
3112 SetPageChecked(page);
3113 return __set_page_dirty_nobuffers(page);
3114}
3115
3116static const struct address_space_operations ext4_ordered_aops = {
3117 .readpage = ext4_readpage,
3118 .readpages = ext4_readpages,
3119 .writepage = ext4_writepage,
3120 .write_begin = ext4_write_begin,
3121 .write_end = ext4_ordered_write_end,
3122 .bmap = ext4_bmap,
3123 .invalidatepage = ext4_invalidatepage,
3124 .releasepage = ext4_releasepage,
3125 .direct_IO = ext4_direct_IO,
3126 .migratepage = buffer_migrate_page,
3127 .is_partially_uptodate = block_is_partially_uptodate,
3128 .error_remove_page = generic_error_remove_page,
3129};
3130
3131static const struct address_space_operations ext4_writeback_aops = {
3132 .readpage = ext4_readpage,
3133 .readpages = ext4_readpages,
3134 .writepage = ext4_writepage,
3135 .write_begin = ext4_write_begin,
3136 .write_end = ext4_writeback_write_end,
3137 .bmap = ext4_bmap,
3138 .invalidatepage = ext4_invalidatepage,
3139 .releasepage = ext4_releasepage,
3140 .direct_IO = ext4_direct_IO,
3141 .migratepage = buffer_migrate_page,
3142 .is_partially_uptodate = block_is_partially_uptodate,
3143 .error_remove_page = generic_error_remove_page,
3144};
3145
3146static const struct address_space_operations ext4_journalled_aops = {
3147 .readpage = ext4_readpage,
3148 .readpages = ext4_readpages,
3149 .writepage = ext4_writepage,
3150 .write_begin = ext4_write_begin,
3151 .write_end = ext4_journalled_write_end,
3152 .set_page_dirty = ext4_journalled_set_page_dirty,
3153 .bmap = ext4_bmap,
3154 .invalidatepage = ext4_invalidatepage,
3155 .releasepage = ext4_releasepage,
3156 .direct_IO = ext4_direct_IO,
3157 .is_partially_uptodate = block_is_partially_uptodate,
3158 .error_remove_page = generic_error_remove_page,
3159};
3160
3161static const struct address_space_operations ext4_da_aops = {
3162 .readpage = ext4_readpage,
3163 .readpages = ext4_readpages,
3164 .writepage = ext4_writepage,
3165 .writepages = ext4_da_writepages,
3166 .write_begin = ext4_da_write_begin,
3167 .write_end = ext4_da_write_end,
3168 .bmap = ext4_bmap,
3169 .invalidatepage = ext4_da_invalidatepage,
3170 .releasepage = ext4_releasepage,
3171 .direct_IO = ext4_direct_IO,
3172 .migratepage = buffer_migrate_page,
3173 .is_partially_uptodate = block_is_partially_uptodate,
3174 .error_remove_page = generic_error_remove_page,
3175};
3176
3177void ext4_set_aops(struct inode *inode)
3178{
3179 switch (ext4_inode_journal_mode(inode)) {
3180 case EXT4_INODE_ORDERED_DATA_MODE:
3181 if (test_opt(inode->i_sb, DELALLOC))
3182 inode->i_mapping->a_ops = &ext4_da_aops;
3183 else
3184 inode->i_mapping->a_ops = &ext4_ordered_aops;
3185 break;
3186 case EXT4_INODE_WRITEBACK_DATA_MODE:
3187 if (test_opt(inode->i_sb, DELALLOC))
3188 inode->i_mapping->a_ops = &ext4_da_aops;
3189 else
3190 inode->i_mapping->a_ops = &ext4_writeback_aops;
3191 break;
3192 case EXT4_INODE_JOURNAL_DATA_MODE:
3193 inode->i_mapping->a_ops = &ext4_journalled_aops;
3194 break;
3195 default:
3196 BUG();
3197 }
3198}
3199
3200
3201/*
3202 * ext4_discard_partial_page_buffers()
3203 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3204 * This function finds and locks the page containing the offset
3205 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3206 * Calling functions that already have the page locked should call
3207 * ext4_discard_partial_page_buffers_no_lock directly.
3208 */
3209int ext4_discard_partial_page_buffers(handle_t *handle,
3210 struct address_space *mapping, loff_t from,
3211 loff_t length, int flags)
3212{
3213 struct inode *inode = mapping->host;
3214 struct page *page;
3215 int err = 0;
3216
3217 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3218 mapping_gfp_mask(mapping) & ~__GFP_FS);
3219 if (!page)
3220 return -ENOMEM;
3221
3222 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3223 from, length, flags);
3224
3225 unlock_page(page);
3226 page_cache_release(page);
3227 return err;
3228}
3229
3230/*
3231 * ext4_discard_partial_page_buffers_no_lock()
3232 * Zeros a page range of length 'length' starting from offset 'from'.
3233 * Buffer heads that correspond to the block aligned regions of the
3234 * zeroed range will be unmapped. Unblock aligned regions
3235 * will have the corresponding buffer head mapped if needed so that
3236 * that region of the page can be updated with the partial zero out.
3237 *
3238 * This function assumes that the page has already been locked. The
3239 * The range to be discarded must be contained with in the given page.
3240 * If the specified range exceeds the end of the page it will be shortened
3241 * to the end of the page that corresponds to 'from'. This function is
3242 * appropriate for updating a page and it buffer heads to be unmapped and
3243 * zeroed for blocks that have been either released, or are going to be
3244 * released.
3245 *
3246 * handle: The journal handle
3247 * inode: The files inode
3248 * page: A locked page that contains the offset "from"
3249 * from: The starting byte offset (from the begining of the file)
3250 * to begin discarding
3251 * len: The length of bytes to discard
3252 * flags: Optional flags that may be used:
3253 *
3254 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3255 * Only zero the regions of the page whose buffer heads
3256 * have already been unmapped. This flag is appropriate
3257 * for updateing the contents of a page whose blocks may
3258 * have already been released, and we only want to zero
3259 * out the regions that correspond to those released blocks.
3260 *
3261 * Returns zero on sucess or negative on failure.
3262 */
3263static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3264 struct inode *inode, struct page *page, loff_t from,
3265 loff_t length, int flags)
3266{
3267 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3268 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3269 unsigned int blocksize, max, pos;
3270 ext4_lblk_t iblock;
3271 struct buffer_head *bh;
3272 int err = 0;
3273
3274 blocksize = inode->i_sb->s_blocksize;
3275 max = PAGE_CACHE_SIZE - offset;
3276
3277 if (index != page->index)
3278 return -EINVAL;
3279
3280 /*
3281 * correct length if it does not fall between
3282 * 'from' and the end of the page
3283 */
3284 if (length > max || length < 0)
3285 length = max;
3286
3287 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3288
3289 if (!page_has_buffers(page))
3290 create_empty_buffers(page, blocksize, 0);
3291
3292 /* Find the buffer that contains "offset" */
3293 bh = page_buffers(page);
3294 pos = blocksize;
3295 while (offset >= pos) {
3296 bh = bh->b_this_page;
3297 iblock++;
3298 pos += blocksize;
3299 }
3300
3301 pos = offset;
3302 while (pos < offset + length) {
3303 unsigned int end_of_block, range_to_discard;
3304
3305 err = 0;
3306
3307 /* The length of space left to zero and unmap */
3308 range_to_discard = offset + length - pos;
3309
3310 /* The length of space until the end of the block */
3311 end_of_block = blocksize - (pos & (blocksize-1));
3312
3313 /*
3314 * Do not unmap or zero past end of block
3315 * for this buffer head
3316 */
3317 if (range_to_discard > end_of_block)
3318 range_to_discard = end_of_block;
3319
3320
3321 /*
3322 * Skip this buffer head if we are only zeroing unampped
3323 * regions of the page
3324 */
3325 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3326 buffer_mapped(bh))
3327 goto next;
3328
3329 /* If the range is block aligned, unmap */
3330 if (range_to_discard == blocksize) {
3331 clear_buffer_dirty(bh);
3332 bh->b_bdev = NULL;
3333 clear_buffer_mapped(bh);
3334 clear_buffer_req(bh);
3335 clear_buffer_new(bh);
3336 clear_buffer_delay(bh);
3337 clear_buffer_unwritten(bh);
3338 clear_buffer_uptodate(bh);
3339 zero_user(page, pos, range_to_discard);
3340 BUFFER_TRACE(bh, "Buffer discarded");
3341 goto next;
3342 }
3343
3344 /*
3345 * If this block is not completely contained in the range
3346 * to be discarded, then it is not going to be released. Because
3347 * we need to keep this block, we need to make sure this part
3348 * of the page is uptodate before we modify it by writeing
3349 * partial zeros on it.
3350 */
3351 if (!buffer_mapped(bh)) {
3352 /*
3353 * Buffer head must be mapped before we can read
3354 * from the block
3355 */
3356 BUFFER_TRACE(bh, "unmapped");
3357 ext4_get_block(inode, iblock, bh, 0);
3358 /* unmapped? It's a hole - nothing to do */
3359 if (!buffer_mapped(bh)) {
3360 BUFFER_TRACE(bh, "still unmapped");
3361 goto next;
3362 }
3363 }
3364
3365 /* Ok, it's mapped. Make sure it's up-to-date */
3366 if (PageUptodate(page))
3367 set_buffer_uptodate(bh);
3368
3369 if (!buffer_uptodate(bh)) {
3370 err = -EIO;
3371 ll_rw_block(READ, 1, &bh);
3372 wait_on_buffer(bh);
3373 /* Uhhuh. Read error. Complain and punt.*/
3374 if (!buffer_uptodate(bh))
3375 goto next;
3376 }
3377
3378 if (ext4_should_journal_data(inode)) {
3379 BUFFER_TRACE(bh, "get write access");
3380 err = ext4_journal_get_write_access(handle, bh);
3381 if (err)
3382 goto next;
3383 }
3384
3385 zero_user(page, pos, range_to_discard);
3386
3387 err = 0;
3388 if (ext4_should_journal_data(inode)) {
3389 err = ext4_handle_dirty_metadata(handle, inode, bh);
3390 } else
3391 mark_buffer_dirty(bh);
3392
3393 BUFFER_TRACE(bh, "Partial buffer zeroed");
3394next:
3395 bh = bh->b_this_page;
3396 iblock++;
3397 pos += range_to_discard;
3398 }
3399
3400 return err;
3401}
3402
3403int ext4_can_truncate(struct inode *inode)
3404{
3405 if (S_ISREG(inode->i_mode))
3406 return 1;
3407 if (S_ISDIR(inode->i_mode))
3408 return 1;
3409 if (S_ISLNK(inode->i_mode))
3410 return !ext4_inode_is_fast_symlink(inode);
3411 return 0;
3412}
3413
3414/*
3415 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3416 * associated with the given offset and length
3417 *
3418 * @inode: File inode
3419 * @offset: The offset where the hole will begin
3420 * @len: The length of the hole
3421 *
3422 * Returns: 0 on sucess or negative on failure
3423 */
3424
3425int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3426{
3427 struct inode *inode = file->f_path.dentry->d_inode;
3428 if (!S_ISREG(inode->i_mode))
3429 return -EOPNOTSUPP;
3430
3431 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3432 /* TODO: Add support for non extent hole punching */
3433 return -EOPNOTSUPP;
3434 }
3435
3436 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3437 /* TODO: Add support for bigalloc file systems */
3438 return -EOPNOTSUPP;
3439 }
3440
3441 return ext4_ext_punch_hole(file, offset, length);
3442}
3443
3444/*
3445 * ext4_truncate()
3446 *
3447 * We block out ext4_get_block() block instantiations across the entire
3448 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3449 * simultaneously on behalf of the same inode.
3450 *
3451 * As we work through the truncate and commit bits of it to the journal there
3452 * is one core, guiding principle: the file's tree must always be consistent on
3453 * disk. We must be able to restart the truncate after a crash.
3454 *
3455 * The file's tree may be transiently inconsistent in memory (although it
3456 * probably isn't), but whenever we close off and commit a journal transaction,
3457 * the contents of (the filesystem + the journal) must be consistent and
3458 * restartable. It's pretty simple, really: bottom up, right to left (although
3459 * left-to-right works OK too).
3460 *
3461 * Note that at recovery time, journal replay occurs *before* the restart of
3462 * truncate against the orphan inode list.
3463 *
3464 * The committed inode has the new, desired i_size (which is the same as
3465 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3466 * that this inode's truncate did not complete and it will again call
3467 * ext4_truncate() to have another go. So there will be instantiated blocks
3468 * to the right of the truncation point in a crashed ext4 filesystem. But
3469 * that's fine - as long as they are linked from the inode, the post-crash
3470 * ext4_truncate() run will find them and release them.
3471 */
3472void ext4_truncate(struct inode *inode)
3473{
3474 trace_ext4_truncate_enter(inode);
3475
3476 if (!ext4_can_truncate(inode))
3477 return;
3478
3479 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3480
3481 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3482 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3483
3484 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3485 ext4_ext_truncate(inode);
3486 else
3487 ext4_ind_truncate(inode);
3488
3489 trace_ext4_truncate_exit(inode);
3490}
3491
3492/*
3493 * ext4_get_inode_loc returns with an extra refcount against the inode's
3494 * underlying buffer_head on success. If 'in_mem' is true, we have all
3495 * data in memory that is needed to recreate the on-disk version of this
3496 * inode.
3497 */
3498static int __ext4_get_inode_loc(struct inode *inode,
3499 struct ext4_iloc *iloc, int in_mem)
3500{
3501 struct ext4_group_desc *gdp;
3502 struct buffer_head *bh;
3503 struct super_block *sb = inode->i_sb;
3504 ext4_fsblk_t block;
3505 int inodes_per_block, inode_offset;
3506
3507 iloc->bh = NULL;
3508 if (!ext4_valid_inum(sb, inode->i_ino))
3509 return -EIO;
3510
3511 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3512 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3513 if (!gdp)
3514 return -EIO;
3515
3516 /*
3517 * Figure out the offset within the block group inode table
3518 */
3519 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3520 inode_offset = ((inode->i_ino - 1) %
3521 EXT4_INODES_PER_GROUP(sb));
3522 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3523 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3524
3525 bh = sb_getblk(sb, block);
3526 if (!bh) {
3527 EXT4_ERROR_INODE_BLOCK(inode, block,
3528 "unable to read itable block");
3529 return -EIO;
3530 }
3531 if (!buffer_uptodate(bh)) {
3532 lock_buffer(bh);
3533
3534 /*
3535 * If the buffer has the write error flag, we have failed
3536 * to write out another inode in the same block. In this
3537 * case, we don't have to read the block because we may
3538 * read the old inode data successfully.
3539 */
3540 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3541 set_buffer_uptodate(bh);
3542
3543 if (buffer_uptodate(bh)) {
3544 /* someone brought it uptodate while we waited */
3545 unlock_buffer(bh);
3546 goto has_buffer;
3547 }
3548
3549 /*
3550 * If we have all information of the inode in memory and this
3551 * is the only valid inode in the block, we need not read the
3552 * block.
3553 */
3554 if (in_mem) {
3555 struct buffer_head *bitmap_bh;
3556 int i, start;
3557
3558 start = inode_offset & ~(inodes_per_block - 1);
3559
3560 /* Is the inode bitmap in cache? */
3561 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3562 if (!bitmap_bh)
3563 goto make_io;
3564
3565 /*
3566 * If the inode bitmap isn't in cache then the
3567 * optimisation may end up performing two reads instead
3568 * of one, so skip it.
3569 */
3570 if (!buffer_uptodate(bitmap_bh)) {
3571 brelse(bitmap_bh);
3572 goto make_io;
3573 }
3574 for (i = start; i < start + inodes_per_block; i++) {
3575 if (i == inode_offset)
3576 continue;
3577 if (ext4_test_bit(i, bitmap_bh->b_data))
3578 break;
3579 }
3580 brelse(bitmap_bh);
3581 if (i == start + inodes_per_block) {
3582 /* all other inodes are free, so skip I/O */
3583 memset(bh->b_data, 0, bh->b_size);
3584 set_buffer_uptodate(bh);
3585 unlock_buffer(bh);
3586 goto has_buffer;
3587 }
3588 }
3589
3590make_io:
3591 /*
3592 * If we need to do any I/O, try to pre-readahead extra
3593 * blocks from the inode table.
3594 */
3595 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3596 ext4_fsblk_t b, end, table;
3597 unsigned num;
3598
3599 table = ext4_inode_table(sb, gdp);
3600 /* s_inode_readahead_blks is always a power of 2 */
3601 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3602 if (table > b)
3603 b = table;
3604 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3605 num = EXT4_INODES_PER_GROUP(sb);
3606 if (ext4_has_group_desc_csum(sb))
3607 num -= ext4_itable_unused_count(sb, gdp);
3608 table += num / inodes_per_block;
3609 if (end > table)
3610 end = table;
3611 while (b <= end)
3612 sb_breadahead(sb, b++);
3613 }
3614
3615 /*
3616 * There are other valid inodes in the buffer, this inode
3617 * has in-inode xattrs, or we don't have this inode in memory.
3618 * Read the block from disk.
3619 */
3620 trace_ext4_load_inode(inode);
3621 get_bh(bh);
3622 bh->b_end_io = end_buffer_read_sync;
3623 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3624 wait_on_buffer(bh);
3625 if (!buffer_uptodate(bh)) {
3626 EXT4_ERROR_INODE_BLOCK(inode, block,
3627 "unable to read itable block");
3628 brelse(bh);
3629 return -EIO;
3630 }
3631 }
3632has_buffer:
3633 iloc->bh = bh;
3634 return 0;
3635}
3636
3637int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3638{
3639 /* We have all inode data except xattrs in memory here. */
3640 return __ext4_get_inode_loc(inode, iloc,
3641 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3642}
3643
3644void ext4_set_inode_flags(struct inode *inode)
3645{
3646 unsigned int flags = EXT4_I(inode)->i_flags;
3647
3648 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3649 if (flags & EXT4_SYNC_FL)
3650 inode->i_flags |= S_SYNC;
3651 if (flags & EXT4_APPEND_FL)
3652 inode->i_flags |= S_APPEND;
3653 if (flags & EXT4_IMMUTABLE_FL)
3654 inode->i_flags |= S_IMMUTABLE;
3655 if (flags & EXT4_NOATIME_FL)
3656 inode->i_flags |= S_NOATIME;
3657 if (flags & EXT4_DIRSYNC_FL)
3658 inode->i_flags |= S_DIRSYNC;
3659}
3660
3661/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3662void ext4_get_inode_flags(struct ext4_inode_info *ei)
3663{
3664 unsigned int vfs_fl;
3665 unsigned long old_fl, new_fl;
3666
3667 do {
3668 vfs_fl = ei->vfs_inode.i_flags;
3669 old_fl = ei->i_flags;
3670 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3671 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3672 EXT4_DIRSYNC_FL);
3673 if (vfs_fl & S_SYNC)
3674 new_fl |= EXT4_SYNC_FL;
3675 if (vfs_fl & S_APPEND)
3676 new_fl |= EXT4_APPEND_FL;
3677 if (vfs_fl & S_IMMUTABLE)
3678 new_fl |= EXT4_IMMUTABLE_FL;
3679 if (vfs_fl & S_NOATIME)
3680 new_fl |= EXT4_NOATIME_FL;
3681 if (vfs_fl & S_DIRSYNC)
3682 new_fl |= EXT4_DIRSYNC_FL;
3683 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3684}
3685
3686static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3687 struct ext4_inode_info *ei)
3688{
3689 blkcnt_t i_blocks ;
3690 struct inode *inode = &(ei->vfs_inode);
3691 struct super_block *sb = inode->i_sb;
3692
3693 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3694 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3695 /* we are using combined 48 bit field */
3696 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3697 le32_to_cpu(raw_inode->i_blocks_lo);
3698 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3699 /* i_blocks represent file system block size */
3700 return i_blocks << (inode->i_blkbits - 9);
3701 } else {
3702 return i_blocks;
3703 }
3704 } else {
3705 return le32_to_cpu(raw_inode->i_blocks_lo);
3706 }
3707}
3708
3709struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3710{
3711 struct ext4_iloc iloc;
3712 struct ext4_inode *raw_inode;
3713 struct ext4_inode_info *ei;
3714 struct inode *inode;
3715 journal_t *journal = EXT4_SB(sb)->s_journal;
3716 long ret;
3717 int block;
3718 uid_t i_uid;
3719 gid_t i_gid;
3720
3721 inode = iget_locked(sb, ino);
3722 if (!inode)
3723 return ERR_PTR(-ENOMEM);
3724 if (!(inode->i_state & I_NEW))
3725 return inode;
3726
3727 ei = EXT4_I(inode);
3728 iloc.bh = NULL;
3729
3730 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3731 if (ret < 0)
3732 goto bad_inode;
3733 raw_inode = ext4_raw_inode(&iloc);
3734
3735 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3736 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3737 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3738 EXT4_INODE_SIZE(inode->i_sb)) {
3739 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3740 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3741 EXT4_INODE_SIZE(inode->i_sb));
3742 ret = -EIO;
3743 goto bad_inode;
3744 }
3745 } else
3746 ei->i_extra_isize = 0;
3747
3748 /* Precompute checksum seed for inode metadata */
3749 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3750 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3751 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3752 __u32 csum;
3753 __le32 inum = cpu_to_le32(inode->i_ino);
3754 __le32 gen = raw_inode->i_generation;
3755 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3756 sizeof(inum));
3757 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3758 sizeof(gen));
3759 }
3760
3761 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3762 EXT4_ERROR_INODE(inode, "checksum invalid");
3763 ret = -EIO;
3764 goto bad_inode;
3765 }
3766
3767 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3768 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3769 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3770 if (!(test_opt(inode->i_sb, NO_UID32))) {
3771 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3772 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3773 }
3774 i_uid_write(inode, i_uid);
3775 i_gid_write(inode, i_gid);
3776 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3777
3778 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3779 ei->i_dir_start_lookup = 0;
3780 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3781 /* We now have enough fields to check if the inode was active or not.
3782 * This is needed because nfsd might try to access dead inodes
3783 * the test is that same one that e2fsck uses
3784 * NeilBrown 1999oct15
3785 */
3786 if (inode->i_nlink == 0) {
3787 if (inode->i_mode == 0 ||
3788 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3789 /* this inode is deleted */
3790 ret = -ESTALE;
3791 goto bad_inode;
3792 }
3793 /* The only unlinked inodes we let through here have
3794 * valid i_mode and are being read by the orphan
3795 * recovery code: that's fine, we're about to complete
3796 * the process of deleting those. */
3797 }
3798 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3799 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3800 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3801 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3802 ei->i_file_acl |=
3803 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3804 inode->i_size = ext4_isize(raw_inode);
3805 ei->i_disksize = inode->i_size;
3806#ifdef CONFIG_QUOTA
3807 ei->i_reserved_quota = 0;
3808#endif
3809 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3810 ei->i_block_group = iloc.block_group;
3811 ei->i_last_alloc_group = ~0;
3812 /*
3813 * NOTE! The in-memory inode i_data array is in little-endian order
3814 * even on big-endian machines: we do NOT byteswap the block numbers!
3815 */
3816 for (block = 0; block < EXT4_N_BLOCKS; block++)
3817 ei->i_data[block] = raw_inode->i_block[block];
3818 INIT_LIST_HEAD(&ei->i_orphan);
3819
3820 /*
3821 * Set transaction id's of transactions that have to be committed
3822 * to finish f[data]sync. We set them to currently running transaction
3823 * as we cannot be sure that the inode or some of its metadata isn't
3824 * part of the transaction - the inode could have been reclaimed and
3825 * now it is reread from disk.
3826 */
3827 if (journal) {
3828 transaction_t *transaction;
3829 tid_t tid;
3830
3831 read_lock(&journal->j_state_lock);
3832 if (journal->j_running_transaction)
3833 transaction = journal->j_running_transaction;
3834 else
3835 transaction = journal->j_committing_transaction;
3836 if (transaction)
3837 tid = transaction->t_tid;
3838 else
3839 tid = journal->j_commit_sequence;
3840 read_unlock(&journal->j_state_lock);
3841 ei->i_sync_tid = tid;
3842 ei->i_datasync_tid = tid;
3843 }
3844
3845 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3846 if (ei->i_extra_isize == 0) {
3847 /* The extra space is currently unused. Use it. */
3848 ei->i_extra_isize = sizeof(struct ext4_inode) -
3849 EXT4_GOOD_OLD_INODE_SIZE;
3850 } else {
3851 __le32 *magic = (void *)raw_inode +
3852 EXT4_GOOD_OLD_INODE_SIZE +
3853 ei->i_extra_isize;
3854 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3855 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3856 }
3857 }
3858
3859 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3860 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3861 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3862 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3863
3864 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3865 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3866 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3867 inode->i_version |=
3868 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3869 }
3870
3871 ret = 0;
3872 if (ei->i_file_acl &&
3873 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3874 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3875 ei->i_file_acl);
3876 ret = -EIO;
3877 goto bad_inode;
3878 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3879 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3880 (S_ISLNK(inode->i_mode) &&
3881 !ext4_inode_is_fast_symlink(inode)))
3882 /* Validate extent which is part of inode */
3883 ret = ext4_ext_check_inode(inode);
3884 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3885 (S_ISLNK(inode->i_mode) &&
3886 !ext4_inode_is_fast_symlink(inode))) {
3887 /* Validate block references which are part of inode */
3888 ret = ext4_ind_check_inode(inode);
3889 }
3890 if (ret)
3891 goto bad_inode;
3892
3893 if (S_ISREG(inode->i_mode)) {
3894 inode->i_op = &ext4_file_inode_operations;
3895 inode->i_fop = &ext4_file_operations;
3896 ext4_set_aops(inode);
3897 } else if (S_ISDIR(inode->i_mode)) {
3898 inode->i_op = &ext4_dir_inode_operations;
3899 inode->i_fop = &ext4_dir_operations;
3900 } else if (S_ISLNK(inode->i_mode)) {
3901 if (ext4_inode_is_fast_symlink(inode)) {
3902 inode->i_op = &ext4_fast_symlink_inode_operations;
3903 nd_terminate_link(ei->i_data, inode->i_size,
3904 sizeof(ei->i_data) - 1);
3905 } else {
3906 inode->i_op = &ext4_symlink_inode_operations;
3907 ext4_set_aops(inode);
3908 }
3909 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3910 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3911 inode->i_op = &ext4_special_inode_operations;
3912 if (raw_inode->i_block[0])
3913 init_special_inode(inode, inode->i_mode,
3914 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3915 else
3916 init_special_inode(inode, inode->i_mode,
3917 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3918 } else {
3919 ret = -EIO;
3920 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3921 goto bad_inode;
3922 }
3923 brelse(iloc.bh);
3924 ext4_set_inode_flags(inode);
3925 unlock_new_inode(inode);
3926 return inode;
3927
3928bad_inode:
3929 brelse(iloc.bh);
3930 iget_failed(inode);
3931 return ERR_PTR(ret);
3932}
3933
3934static int ext4_inode_blocks_set(handle_t *handle,
3935 struct ext4_inode *raw_inode,
3936 struct ext4_inode_info *ei)
3937{
3938 struct inode *inode = &(ei->vfs_inode);
3939 u64 i_blocks = inode->i_blocks;
3940 struct super_block *sb = inode->i_sb;
3941
3942 if (i_blocks <= ~0U) {
3943 /*
3944 * i_blocks can be represnted in a 32 bit variable
3945 * as multiple of 512 bytes
3946 */
3947 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3948 raw_inode->i_blocks_high = 0;
3949 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3950 return 0;
3951 }
3952 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3953 return -EFBIG;
3954
3955 if (i_blocks <= 0xffffffffffffULL) {
3956 /*
3957 * i_blocks can be represented in a 48 bit variable
3958 * as multiple of 512 bytes
3959 */
3960 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3961 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3962 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3963 } else {
3964 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3965 /* i_block is stored in file system block size */
3966 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3967 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3968 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3969 }
3970 return 0;
3971}
3972
3973/*
3974 * Post the struct inode info into an on-disk inode location in the
3975 * buffer-cache. This gobbles the caller's reference to the
3976 * buffer_head in the inode location struct.
3977 *
3978 * The caller must have write access to iloc->bh.
3979 */
3980static int ext4_do_update_inode(handle_t *handle,
3981 struct inode *inode,
3982 struct ext4_iloc *iloc)
3983{
3984 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3985 struct ext4_inode_info *ei = EXT4_I(inode);
3986 struct buffer_head *bh = iloc->bh;
3987 int err = 0, rc, block;
3988 uid_t i_uid;
3989 gid_t i_gid;
3990
3991 /* For fields not not tracking in the in-memory inode,
3992 * initialise them to zero for new inodes. */
3993 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3994 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3995
3996 ext4_get_inode_flags(ei);
3997 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3998 i_uid = i_uid_read(inode);
3999 i_gid = i_gid_read(inode);
4000 if (!(test_opt(inode->i_sb, NO_UID32))) {
4001 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4002 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4003/*
4004 * Fix up interoperability with old kernels. Otherwise, old inodes get
4005 * re-used with the upper 16 bits of the uid/gid intact
4006 */
4007 if (!ei->i_dtime) {
4008 raw_inode->i_uid_high =
4009 cpu_to_le16(high_16_bits(i_uid));
4010 raw_inode->i_gid_high =
4011 cpu_to_le16(high_16_bits(i_gid));
4012 } else {
4013 raw_inode->i_uid_high = 0;
4014 raw_inode->i_gid_high = 0;
4015 }
4016 } else {
4017 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4018 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4019 raw_inode->i_uid_high = 0;
4020 raw_inode->i_gid_high = 0;
4021 }
4022 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4023
4024 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4025 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4026 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4027 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4028
4029 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4030 goto out_brelse;
4031 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4032 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4033 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4034 cpu_to_le32(EXT4_OS_HURD))
4035 raw_inode->i_file_acl_high =
4036 cpu_to_le16(ei->i_file_acl >> 32);
4037 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4038 ext4_isize_set(raw_inode, ei->i_disksize);
4039 if (ei->i_disksize > 0x7fffffffULL) {
4040 struct super_block *sb = inode->i_sb;
4041 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4042 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4043 EXT4_SB(sb)->s_es->s_rev_level ==
4044 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4045 /* If this is the first large file
4046 * created, add a flag to the superblock.
4047 */
4048 err = ext4_journal_get_write_access(handle,
4049 EXT4_SB(sb)->s_sbh);
4050 if (err)
4051 goto out_brelse;
4052 ext4_update_dynamic_rev(sb);
4053 EXT4_SET_RO_COMPAT_FEATURE(sb,
4054 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4055 ext4_handle_sync(handle);
4056 err = ext4_handle_dirty_super_now(handle, sb);
4057 }
4058 }
4059 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4060 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4061 if (old_valid_dev(inode->i_rdev)) {
4062 raw_inode->i_block[0] =
4063 cpu_to_le32(old_encode_dev(inode->i_rdev));
4064 raw_inode->i_block[1] = 0;
4065 } else {
4066 raw_inode->i_block[0] = 0;
4067 raw_inode->i_block[1] =
4068 cpu_to_le32(new_encode_dev(inode->i_rdev));
4069 raw_inode->i_block[2] = 0;
4070 }
4071 } else
4072 for (block = 0; block < EXT4_N_BLOCKS; block++)
4073 raw_inode->i_block[block] = ei->i_data[block];
4074
4075 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4076 if (ei->i_extra_isize) {
4077 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4078 raw_inode->i_version_hi =
4079 cpu_to_le32(inode->i_version >> 32);
4080 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4081 }
4082
4083 ext4_inode_csum_set(inode, raw_inode, ei);
4084
4085 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4086 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4087 if (!err)
4088 err = rc;
4089 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4090
4091 ext4_update_inode_fsync_trans(handle, inode, 0);
4092out_brelse:
4093 brelse(bh);
4094 ext4_std_error(inode->i_sb, err);
4095 return err;
4096}
4097
4098/*
4099 * ext4_write_inode()
4100 *
4101 * We are called from a few places:
4102 *
4103 * - Within generic_file_write() for O_SYNC files.
4104 * Here, there will be no transaction running. We wait for any running
4105 * trasnaction to commit.
4106 *
4107 * - Within sys_sync(), kupdate and such.
4108 * We wait on commit, if tol to.
4109 *
4110 * - Within prune_icache() (PF_MEMALLOC == true)
4111 * Here we simply return. We can't afford to block kswapd on the
4112 * journal commit.
4113 *
4114 * In all cases it is actually safe for us to return without doing anything,
4115 * because the inode has been copied into a raw inode buffer in
4116 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4117 * knfsd.
4118 *
4119 * Note that we are absolutely dependent upon all inode dirtiers doing the
4120 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4121 * which we are interested.
4122 *
4123 * It would be a bug for them to not do this. The code:
4124 *
4125 * mark_inode_dirty(inode)
4126 * stuff();
4127 * inode->i_size = expr;
4128 *
4129 * is in error because a kswapd-driven write_inode() could occur while
4130 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4131 * will no longer be on the superblock's dirty inode list.
4132 */
4133int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4134{
4135 int err;
4136
4137 if (current->flags & PF_MEMALLOC)
4138 return 0;
4139
4140 if (EXT4_SB(inode->i_sb)->s_journal) {
4141 if (ext4_journal_current_handle()) {
4142 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4143 dump_stack();
4144 return -EIO;
4145 }
4146
4147 if (wbc->sync_mode != WB_SYNC_ALL)
4148 return 0;
4149
4150 err = ext4_force_commit(inode->i_sb);
4151 } else {
4152 struct ext4_iloc iloc;
4153
4154 err = __ext4_get_inode_loc(inode, &iloc, 0);
4155 if (err)
4156 return err;
4157 if (wbc->sync_mode == WB_SYNC_ALL)
4158 sync_dirty_buffer(iloc.bh);
4159 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4160 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4161 "IO error syncing inode");
4162 err = -EIO;
4163 }
4164 brelse(iloc.bh);
4165 }
4166 return err;
4167}
4168
4169/*
4170 * ext4_setattr()
4171 *
4172 * Called from notify_change.
4173 *
4174 * We want to trap VFS attempts to truncate the file as soon as
4175 * possible. In particular, we want to make sure that when the VFS
4176 * shrinks i_size, we put the inode on the orphan list and modify
4177 * i_disksize immediately, so that during the subsequent flushing of
4178 * dirty pages and freeing of disk blocks, we can guarantee that any
4179 * commit will leave the blocks being flushed in an unused state on
4180 * disk. (On recovery, the inode will get truncated and the blocks will
4181 * be freed, so we have a strong guarantee that no future commit will
4182 * leave these blocks visible to the user.)
4183 *
4184 * Another thing we have to assure is that if we are in ordered mode
4185 * and inode is still attached to the committing transaction, we must
4186 * we start writeout of all the dirty pages which are being truncated.
4187 * This way we are sure that all the data written in the previous
4188 * transaction are already on disk (truncate waits for pages under
4189 * writeback).
4190 *
4191 * Called with inode->i_mutex down.
4192 */
4193int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4194{
4195 struct inode *inode = dentry->d_inode;
4196 int error, rc = 0;
4197 int orphan = 0;
4198 const unsigned int ia_valid = attr->ia_valid;
4199
4200 error = inode_change_ok(inode, attr);
4201 if (error)
4202 return error;
4203
4204 if (is_quota_modification(inode, attr))
4205 dquot_initialize(inode);
4206 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4207 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4208 handle_t *handle;
4209
4210 /* (user+group)*(old+new) structure, inode write (sb,
4211 * inode block, ? - but truncate inode update has it) */
4212 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4213 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4214 if (IS_ERR(handle)) {
4215 error = PTR_ERR(handle);
4216 goto err_out;
4217 }
4218 error = dquot_transfer(inode, attr);
4219 if (error) {
4220 ext4_journal_stop(handle);
4221 return error;
4222 }
4223 /* Update corresponding info in inode so that everything is in
4224 * one transaction */
4225 if (attr->ia_valid & ATTR_UID)
4226 inode->i_uid = attr->ia_uid;
4227 if (attr->ia_valid & ATTR_GID)
4228 inode->i_gid = attr->ia_gid;
4229 error = ext4_mark_inode_dirty(handle, inode);
4230 ext4_journal_stop(handle);
4231 }
4232
4233 if (attr->ia_valid & ATTR_SIZE) {
4234 inode_dio_wait(inode);
4235
4236 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4237 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4238
4239 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4240 return -EFBIG;
4241 }
4242 }
4243
4244 if (S_ISREG(inode->i_mode) &&
4245 attr->ia_valid & ATTR_SIZE &&
4246 (attr->ia_size < inode->i_size)) {
4247 handle_t *handle;
4248
4249 handle = ext4_journal_start(inode, 3);
4250 if (IS_ERR(handle)) {
4251 error = PTR_ERR(handle);
4252 goto err_out;
4253 }
4254 if (ext4_handle_valid(handle)) {
4255 error = ext4_orphan_add(handle, inode);
4256 orphan = 1;
4257 }
4258 EXT4_I(inode)->i_disksize = attr->ia_size;
4259 rc = ext4_mark_inode_dirty(handle, inode);
4260 if (!error)
4261 error = rc;
4262 ext4_journal_stop(handle);
4263
4264 if (ext4_should_order_data(inode)) {
4265 error = ext4_begin_ordered_truncate(inode,
4266 attr->ia_size);
4267 if (error) {
4268 /* Do as much error cleanup as possible */
4269 handle = ext4_journal_start(inode, 3);
4270 if (IS_ERR(handle)) {
4271 ext4_orphan_del(NULL, inode);
4272 goto err_out;
4273 }
4274 ext4_orphan_del(handle, inode);
4275 orphan = 0;
4276 ext4_journal_stop(handle);
4277 goto err_out;
4278 }
4279 }
4280 }
4281
4282 if (attr->ia_valid & ATTR_SIZE) {
4283 if (attr->ia_size != i_size_read(inode))
4284 truncate_setsize(inode, attr->ia_size);
4285 ext4_truncate(inode);
4286 }
4287
4288 if (!rc) {
4289 setattr_copy(inode, attr);
4290 mark_inode_dirty(inode);
4291 }
4292
4293 /*
4294 * If the call to ext4_truncate failed to get a transaction handle at
4295 * all, we need to clean up the in-core orphan list manually.
4296 */
4297 if (orphan && inode->i_nlink)
4298 ext4_orphan_del(NULL, inode);
4299
4300 if (!rc && (ia_valid & ATTR_MODE))
4301 rc = ext4_acl_chmod(inode);
4302
4303err_out:
4304 ext4_std_error(inode->i_sb, error);
4305 if (!error)
4306 error = rc;
4307 return error;
4308}
4309
4310int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4311 struct kstat *stat)
4312{
4313 struct inode *inode;
4314 unsigned long delalloc_blocks;
4315
4316 inode = dentry->d_inode;
4317 generic_fillattr(inode, stat);
4318
4319 /*
4320 * We can't update i_blocks if the block allocation is delayed
4321 * otherwise in the case of system crash before the real block
4322 * allocation is done, we will have i_blocks inconsistent with
4323 * on-disk file blocks.
4324 * We always keep i_blocks updated together with real
4325 * allocation. But to not confuse with user, stat
4326 * will return the blocks that include the delayed allocation
4327 * blocks for this file.
4328 */
4329 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4330 EXT4_I(inode)->i_reserved_data_blocks);
4331
4332 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4333 return 0;
4334}
4335
4336static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4337{
4338 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4339 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4340 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4341}
4342
4343/*
4344 * Account for index blocks, block groups bitmaps and block group
4345 * descriptor blocks if modify datablocks and index blocks
4346 * worse case, the indexs blocks spread over different block groups
4347 *
4348 * If datablocks are discontiguous, they are possible to spread over
4349 * different block groups too. If they are contiuguous, with flexbg,
4350 * they could still across block group boundary.
4351 *
4352 * Also account for superblock, inode, quota and xattr blocks
4353 */
4354static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4355{
4356 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4357 int gdpblocks;
4358 int idxblocks;
4359 int ret = 0;
4360
4361 /*
4362 * How many index blocks need to touch to modify nrblocks?
4363 * The "Chunk" flag indicating whether the nrblocks is
4364 * physically contiguous on disk
4365 *
4366 * For Direct IO and fallocate, they calls get_block to allocate
4367 * one single extent at a time, so they could set the "Chunk" flag
4368 */
4369 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4370
4371 ret = idxblocks;
4372
4373 /*
4374 * Now let's see how many group bitmaps and group descriptors need
4375 * to account
4376 */
4377 groups = idxblocks;
4378 if (chunk)
4379 groups += 1;
4380 else
4381 groups += nrblocks;
4382
4383 gdpblocks = groups;
4384 if (groups > ngroups)
4385 groups = ngroups;
4386 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4387 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4388
4389 /* bitmaps and block group descriptor blocks */
4390 ret += groups + gdpblocks;
4391
4392 /* Blocks for super block, inode, quota and xattr blocks */
4393 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4394
4395 return ret;
4396}
4397
4398/*
4399 * Calculate the total number of credits to reserve to fit
4400 * the modification of a single pages into a single transaction,
4401 * which may include multiple chunks of block allocations.
4402 *
4403 * This could be called via ext4_write_begin()
4404 *
4405 * We need to consider the worse case, when
4406 * one new block per extent.
4407 */
4408int ext4_writepage_trans_blocks(struct inode *inode)
4409{
4410 int bpp = ext4_journal_blocks_per_page(inode);
4411 int ret;
4412
4413 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4414
4415 /* Account for data blocks for journalled mode */
4416 if (ext4_should_journal_data(inode))
4417 ret += bpp;
4418 return ret;
4419}
4420
4421/*
4422 * Calculate the journal credits for a chunk of data modification.
4423 *
4424 * This is called from DIO, fallocate or whoever calling
4425 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4426 *
4427 * journal buffers for data blocks are not included here, as DIO
4428 * and fallocate do no need to journal data buffers.
4429 */
4430int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4431{
4432 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4433}
4434
4435/*
4436 * The caller must have previously called ext4_reserve_inode_write().
4437 * Give this, we know that the caller already has write access to iloc->bh.
4438 */
4439int ext4_mark_iloc_dirty(handle_t *handle,
4440 struct inode *inode, struct ext4_iloc *iloc)
4441{
4442 int err = 0;
4443
4444 if (IS_I_VERSION(inode))
4445 inode_inc_iversion(inode);
4446
4447 /* the do_update_inode consumes one bh->b_count */
4448 get_bh(iloc->bh);
4449
4450 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4451 err = ext4_do_update_inode(handle, inode, iloc);
4452 put_bh(iloc->bh);
4453 return err;
4454}
4455
4456/*
4457 * On success, We end up with an outstanding reference count against
4458 * iloc->bh. This _must_ be cleaned up later.
4459 */
4460
4461int
4462ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4463 struct ext4_iloc *iloc)
4464{
4465 int err;
4466
4467 err = ext4_get_inode_loc(inode, iloc);
4468 if (!err) {
4469 BUFFER_TRACE(iloc->bh, "get_write_access");
4470 err = ext4_journal_get_write_access(handle, iloc->bh);
4471 if (err) {
4472 brelse(iloc->bh);
4473 iloc->bh = NULL;
4474 }
4475 }
4476 ext4_std_error(inode->i_sb, err);
4477 return err;
4478}
4479
4480/*
4481 * Expand an inode by new_extra_isize bytes.
4482 * Returns 0 on success or negative error number on failure.
4483 */
4484static int ext4_expand_extra_isize(struct inode *inode,
4485 unsigned int new_extra_isize,
4486 struct ext4_iloc iloc,
4487 handle_t *handle)
4488{
4489 struct ext4_inode *raw_inode;
4490 struct ext4_xattr_ibody_header *header;
4491
4492 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4493 return 0;
4494
4495 raw_inode = ext4_raw_inode(&iloc);
4496
4497 header = IHDR(inode, raw_inode);
4498
4499 /* No extended attributes present */
4500 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4501 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4502 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4503 new_extra_isize);
4504 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4505 return 0;
4506 }
4507
4508 /* try to expand with EAs present */
4509 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4510 raw_inode, handle);
4511}
4512
4513/*
4514 * What we do here is to mark the in-core inode as clean with respect to inode
4515 * dirtiness (it may still be data-dirty).
4516 * This means that the in-core inode may be reaped by prune_icache
4517 * without having to perform any I/O. This is a very good thing,
4518 * because *any* task may call prune_icache - even ones which
4519 * have a transaction open against a different journal.
4520 *
4521 * Is this cheating? Not really. Sure, we haven't written the
4522 * inode out, but prune_icache isn't a user-visible syncing function.
4523 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4524 * we start and wait on commits.
4525 *
4526 * Is this efficient/effective? Well, we're being nice to the system
4527 * by cleaning up our inodes proactively so they can be reaped
4528 * without I/O. But we are potentially leaving up to five seconds'
4529 * worth of inodes floating about which prune_icache wants us to
4530 * write out. One way to fix that would be to get prune_icache()
4531 * to do a write_super() to free up some memory. It has the desired
4532 * effect.
4533 */
4534int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4535{
4536 struct ext4_iloc iloc;
4537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4538 static unsigned int mnt_count;
4539 int err, ret;
4540
4541 might_sleep();
4542 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4543 err = ext4_reserve_inode_write(handle, inode, &iloc);
4544 if (ext4_handle_valid(handle) &&
4545 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4546 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4547 /*
4548 * We need extra buffer credits since we may write into EA block
4549 * with this same handle. If journal_extend fails, then it will
4550 * only result in a minor loss of functionality for that inode.
4551 * If this is felt to be critical, then e2fsck should be run to
4552 * force a large enough s_min_extra_isize.
4553 */
4554 if ((jbd2_journal_extend(handle,
4555 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4556 ret = ext4_expand_extra_isize(inode,
4557 sbi->s_want_extra_isize,
4558 iloc, handle);
4559 if (ret) {
4560 ext4_set_inode_state(inode,
4561 EXT4_STATE_NO_EXPAND);
4562 if (mnt_count !=
4563 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4564 ext4_warning(inode->i_sb,
4565 "Unable to expand inode %lu. Delete"
4566 " some EAs or run e2fsck.",
4567 inode->i_ino);
4568 mnt_count =
4569 le16_to_cpu(sbi->s_es->s_mnt_count);
4570 }
4571 }
4572 }
4573 }
4574 if (!err)
4575 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4576 return err;
4577}
4578
4579/*
4580 * ext4_dirty_inode() is called from __mark_inode_dirty()
4581 *
4582 * We're really interested in the case where a file is being extended.
4583 * i_size has been changed by generic_commit_write() and we thus need
4584 * to include the updated inode in the current transaction.
4585 *
4586 * Also, dquot_alloc_block() will always dirty the inode when blocks
4587 * are allocated to the file.
4588 *
4589 * If the inode is marked synchronous, we don't honour that here - doing
4590 * so would cause a commit on atime updates, which we don't bother doing.
4591 * We handle synchronous inodes at the highest possible level.
4592 */
4593void ext4_dirty_inode(struct inode *inode, int flags)
4594{
4595 handle_t *handle;
4596
4597 handle = ext4_journal_start(inode, 2);
4598 if (IS_ERR(handle))
4599 goto out;
4600
4601 ext4_mark_inode_dirty(handle, inode);
4602
4603 ext4_journal_stop(handle);
4604out:
4605 return;
4606}
4607
4608#if 0
4609/*
4610 * Bind an inode's backing buffer_head into this transaction, to prevent
4611 * it from being flushed to disk early. Unlike
4612 * ext4_reserve_inode_write, this leaves behind no bh reference and
4613 * returns no iloc structure, so the caller needs to repeat the iloc
4614 * lookup to mark the inode dirty later.
4615 */
4616static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4617{
4618 struct ext4_iloc iloc;
4619
4620 int err = 0;
4621 if (handle) {
4622 err = ext4_get_inode_loc(inode, &iloc);
4623 if (!err) {
4624 BUFFER_TRACE(iloc.bh, "get_write_access");
4625 err = jbd2_journal_get_write_access(handle, iloc.bh);
4626 if (!err)
4627 err = ext4_handle_dirty_metadata(handle,
4628 NULL,
4629 iloc.bh);
4630 brelse(iloc.bh);
4631 }
4632 }
4633 ext4_std_error(inode->i_sb, err);
4634 return err;
4635}
4636#endif
4637
4638int ext4_change_inode_journal_flag(struct inode *inode, int val)
4639{
4640 journal_t *journal;
4641 handle_t *handle;
4642 int err;
4643
4644 /*
4645 * We have to be very careful here: changing a data block's
4646 * journaling status dynamically is dangerous. If we write a
4647 * data block to the journal, change the status and then delete
4648 * that block, we risk forgetting to revoke the old log record
4649 * from the journal and so a subsequent replay can corrupt data.
4650 * So, first we make sure that the journal is empty and that
4651 * nobody is changing anything.
4652 */
4653
4654 journal = EXT4_JOURNAL(inode);
4655 if (!journal)
4656 return 0;
4657 if (is_journal_aborted(journal))
4658 return -EROFS;
4659 /* We have to allocate physical blocks for delalloc blocks
4660 * before flushing journal. otherwise delalloc blocks can not
4661 * be allocated any more. even more truncate on delalloc blocks
4662 * could trigger BUG by flushing delalloc blocks in journal.
4663 * There is no delalloc block in non-journal data mode.
4664 */
4665 if (val && test_opt(inode->i_sb, DELALLOC)) {
4666 err = ext4_alloc_da_blocks(inode);
4667 if (err < 0)
4668 return err;
4669 }
4670
4671 jbd2_journal_lock_updates(journal);
4672
4673 /*
4674 * OK, there are no updates running now, and all cached data is
4675 * synced to disk. We are now in a completely consistent state
4676 * which doesn't have anything in the journal, and we know that
4677 * no filesystem updates are running, so it is safe to modify
4678 * the inode's in-core data-journaling state flag now.
4679 */
4680
4681 if (val)
4682 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4683 else {
4684 jbd2_journal_flush(journal);
4685 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4686 }
4687 ext4_set_aops(inode);
4688
4689 jbd2_journal_unlock_updates(journal);
4690
4691 /* Finally we can mark the inode as dirty. */
4692
4693 handle = ext4_journal_start(inode, 1);
4694 if (IS_ERR(handle))
4695 return PTR_ERR(handle);
4696
4697 err = ext4_mark_inode_dirty(handle, inode);
4698 ext4_handle_sync(handle);
4699 ext4_journal_stop(handle);
4700 ext4_std_error(inode->i_sb, err);
4701
4702 return err;
4703}
4704
4705static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4706{
4707 return !buffer_mapped(bh);
4708}
4709
4710int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4711{
4712 struct page *page = vmf->page;
4713 loff_t size;
4714 unsigned long len;
4715 int ret;
4716 struct file *file = vma->vm_file;
4717 struct inode *inode = file->f_path.dentry->d_inode;
4718 struct address_space *mapping = inode->i_mapping;
4719 handle_t *handle;
4720 get_block_t *get_block;
4721 int retries = 0;
4722
4723 /*
4724 * This check is racy but catches the common case. We rely on
4725 * __block_page_mkwrite() to do a reliable check.
4726 */
4727 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4728 /* Delalloc case is easy... */
4729 if (test_opt(inode->i_sb, DELALLOC) &&
4730 !ext4_should_journal_data(inode) &&
4731 !ext4_nonda_switch(inode->i_sb)) {
4732 do {
4733 ret = __block_page_mkwrite(vma, vmf,
4734 ext4_da_get_block_prep);
4735 } while (ret == -ENOSPC &&
4736 ext4_should_retry_alloc(inode->i_sb, &retries));
4737 goto out_ret;
4738 }
4739
4740 lock_page(page);
4741 size = i_size_read(inode);
4742 /* Page got truncated from under us? */
4743 if (page->mapping != mapping || page_offset(page) > size) {
4744 unlock_page(page);
4745 ret = VM_FAULT_NOPAGE;
4746 goto out;
4747 }
4748
4749 if (page->index == size >> PAGE_CACHE_SHIFT)
4750 len = size & ~PAGE_CACHE_MASK;
4751 else
4752 len = PAGE_CACHE_SIZE;
4753 /*
4754 * Return if we have all the buffers mapped. This avoids the need to do
4755 * journal_start/journal_stop which can block and take a long time
4756 */
4757 if (page_has_buffers(page)) {
4758 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4759 ext4_bh_unmapped)) {
4760 /* Wait so that we don't change page under IO */
4761 wait_on_page_writeback(page);
4762 ret = VM_FAULT_LOCKED;
4763 goto out;
4764 }
4765 }
4766 unlock_page(page);
4767 /* OK, we need to fill the hole... */
4768 if (ext4_should_dioread_nolock(inode))
4769 get_block = ext4_get_block_write;
4770 else
4771 get_block = ext4_get_block;
4772retry_alloc:
4773 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4774 if (IS_ERR(handle)) {
4775 ret = VM_FAULT_SIGBUS;
4776 goto out;
4777 }
4778 ret = __block_page_mkwrite(vma, vmf, get_block);
4779 if (!ret && ext4_should_journal_data(inode)) {
4780 if (walk_page_buffers(handle, page_buffers(page), 0,
4781 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4782 unlock_page(page);
4783 ret = VM_FAULT_SIGBUS;
4784 ext4_journal_stop(handle);
4785 goto out;
4786 }
4787 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4788 }
4789 ext4_journal_stop(handle);
4790 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791 goto retry_alloc;
4792out_ret:
4793 ret = block_page_mkwrite_return(ret);
4794out:
4795 return ret;
4796}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static void ext4_journalled_zero_new_buffers(handle_t *handle,
53 struct inode *inode,
54 struct folio *folio,
55 unsigned from, unsigned to);
56
57static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
58 struct ext4_inode_info *ei)
59{
60 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
61 __u32 csum;
62 __u16 dummy_csum = 0;
63 int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 unsigned int csum_size = sizeof(dummy_csum);
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
67 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
68 offset += csum_size;
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
70 EXT4_GOOD_OLD_INODE_SIZE - offset);
71
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 offset = offsetof(struct ext4_inode, i_checksum_hi);
74 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
75 EXT4_GOOD_OLD_INODE_SIZE,
76 offset - EXT4_GOOD_OLD_INODE_SIZE);
77 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
78 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
79 csum_size);
80 offset += csum_size;
81 }
82 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
83 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 }
85
86 return csum;
87}
88
89static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
90 struct ext4_inode_info *ei)
91{
92 __u32 provided, calculated;
93
94 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
95 cpu_to_le32(EXT4_OS_LINUX) ||
96 !ext4_has_metadata_csum(inode->i_sb))
97 return 1;
98
99 provided = le16_to_cpu(raw->i_checksum_lo);
100 calculated = ext4_inode_csum(inode, raw, ei);
101 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
102 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
103 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
104 else
105 calculated &= 0xFFFF;
106
107 return provided == calculated;
108}
109
110void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
111 struct ext4_inode_info *ei)
112{
113 __u32 csum;
114
115 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
116 cpu_to_le32(EXT4_OS_LINUX) ||
117 !ext4_has_metadata_csum(inode->i_sb))
118 return;
119
120 csum = ext4_inode_csum(inode, raw, ei);
121 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
122 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
123 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
124 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
125}
126
127static inline int ext4_begin_ordered_truncate(struct inode *inode,
128 loff_t new_size)
129{
130 trace_ext4_begin_ordered_truncate(inode, new_size);
131 /*
132 * If jinode is zero, then we never opened the file for
133 * writing, so there's no need to call
134 * jbd2_journal_begin_ordered_truncate() since there's no
135 * outstanding writes we need to flush.
136 */
137 if (!EXT4_I(inode)->jinode)
138 return 0;
139 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
140 EXT4_I(inode)->jinode,
141 new_size);
142}
143
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147/*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151int ext4_inode_is_fast_symlink(struct inode *inode)
152{
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164}
165
166/*
167 * Called at the last iput() if i_nlink is zero.
168 */
169void ext4_evict_inode(struct inode *inode)
170{
171 handle_t *handle;
172 int err;
173 /*
174 * Credits for final inode cleanup and freeing:
175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 * (xattr block freeing), bitmap, group descriptor (inode freeing)
177 */
178 int extra_credits = 6;
179 struct ext4_xattr_inode_array *ea_inode_array = NULL;
180 bool freeze_protected = false;
181
182 trace_ext4_evict_inode(inode);
183
184 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
185 ext4_evict_ea_inode(inode);
186 if (inode->i_nlink) {
187 truncate_inode_pages_final(&inode->i_data);
188
189 goto no_delete;
190 }
191
192 if (is_bad_inode(inode))
193 goto no_delete;
194 dquot_initialize(inode);
195
196 if (ext4_should_order_data(inode))
197 ext4_begin_ordered_truncate(inode, 0);
198 truncate_inode_pages_final(&inode->i_data);
199
200 /*
201 * For inodes with journalled data, transaction commit could have
202 * dirtied the inode. And for inodes with dioread_nolock, unwritten
203 * extents converting worker could merge extents and also have dirtied
204 * the inode. Flush worker is ignoring it because of I_FREEING flag but
205 * we still need to remove the inode from the writeback lists.
206 */
207 if (!list_empty_careful(&inode->i_io_list))
208 inode_io_list_del(inode);
209
210 /*
211 * Protect us against freezing - iput() caller didn't have to have any
212 * protection against it. When we are in a running transaction though,
213 * we are already protected against freezing and we cannot grab further
214 * protection due to lock ordering constraints.
215 */
216 if (!ext4_journal_current_handle()) {
217 sb_start_intwrite(inode->i_sb);
218 freeze_protected = true;
219 }
220
221 if (!IS_NOQUOTA(inode))
222 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
223
224 /*
225 * Block bitmap, group descriptor, and inode are accounted in both
226 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
227 */
228 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
229 ext4_blocks_for_truncate(inode) + extra_credits - 3);
230 if (IS_ERR(handle)) {
231 ext4_std_error(inode->i_sb, PTR_ERR(handle));
232 /*
233 * If we're going to skip the normal cleanup, we still need to
234 * make sure that the in-core orphan linked list is properly
235 * cleaned up.
236 */
237 ext4_orphan_del(NULL, inode);
238 if (freeze_protected)
239 sb_end_intwrite(inode->i_sb);
240 goto no_delete;
241 }
242
243 if (IS_SYNC(inode))
244 ext4_handle_sync(handle);
245
246 /*
247 * Set inode->i_size to 0 before calling ext4_truncate(). We need
248 * special handling of symlinks here because i_size is used to
249 * determine whether ext4_inode_info->i_data contains symlink data or
250 * block mappings. Setting i_size to 0 will remove its fast symlink
251 * status. Erase i_data so that it becomes a valid empty block map.
252 */
253 if (ext4_inode_is_fast_symlink(inode))
254 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks) {
263 err = ext4_truncate(inode);
264 if (err) {
265 ext4_error_err(inode->i_sb, -err,
266 "couldn't truncate inode %lu (err %d)",
267 inode->i_ino, err);
268 goto stop_handle;
269 }
270 }
271
272 /* Remove xattr references. */
273 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
274 extra_credits);
275 if (err) {
276 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
277stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 if (freeze_protected)
281 sb_end_intwrite(inode->i_sb);
282 ext4_xattr_inode_array_free(ea_inode_array);
283 goto no_delete;
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 if (freeze_protected)
311 sb_end_intwrite(inode->i_sb);
312 ext4_xattr_inode_array_free(ea_inode_array);
313 return;
314no_delete:
315 /*
316 * Check out some where else accidentally dirty the evicting inode,
317 * which may probably cause inode use-after-free issues later.
318 */
319 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
320
321 if (!list_empty(&EXT4_I(inode)->i_fc_list))
322 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
323 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
324}
325
326#ifdef CONFIG_QUOTA
327qsize_t *ext4_get_reserved_space(struct inode *inode)
328{
329 return &EXT4_I(inode)->i_reserved_quota;
330}
331#endif
332
333/*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
337void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
339{
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 struct ext4_inode_info *ei = EXT4_I(inode);
342
343 spin_lock(&ei->i_block_reservation_lock);
344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 if (unlikely(used > ei->i_reserved_data_blocks)) {
346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
353
354 /* Update per-inode reservations */
355 ei->i_reserved_data_blocks -= used;
356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357
358 spin_unlock(&ei->i_block_reservation_lock);
359
360 /* Update quota subsystem for data blocks */
361 if (quota_claim)
362 dquot_claim_block(inode, EXT4_C2B(sbi, used));
363 else {
364 /*
365 * We did fallocate with an offset that is already delayed
366 * allocated. So on delayed allocated writeback we should
367 * not re-claim the quota for fallocated blocks.
368 */
369 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370 }
371
372 /*
373 * If we have done all the pending block allocations and if
374 * there aren't any writers on the inode, we can discard the
375 * inode's preallocations.
376 */
377 if ((ei->i_reserved_data_blocks == 0) &&
378 !inode_is_open_for_write(inode))
379 ext4_discard_preallocations(inode);
380}
381
382static int __check_block_validity(struct inode *inode, const char *func,
383 unsigned int line,
384 struct ext4_map_blocks *map)
385{
386 if (ext4_has_feature_journal(inode->i_sb) &&
387 (inode->i_ino ==
388 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389 return 0;
390 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
391 ext4_error_inode(inode, func, line, map->m_pblk,
392 "lblock %lu mapped to illegal pblock %llu "
393 "(length %d)", (unsigned long) map->m_lblk,
394 map->m_pblk, map->m_len);
395 return -EFSCORRUPTED;
396 }
397 return 0;
398}
399
400int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
401 ext4_lblk_t len)
402{
403 int ret;
404
405 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
406 return fscrypt_zeroout_range(inode, lblk, pblk, len);
407
408 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
409 if (ret > 0)
410 ret = 0;
411
412 return ret;
413}
414
415#define check_block_validity(inode, map) \
416 __check_block_validity((inode), __func__, __LINE__, (map))
417
418#ifdef ES_AGGRESSIVE_TEST
419static void ext4_map_blocks_es_recheck(handle_t *handle,
420 struct inode *inode,
421 struct ext4_map_blocks *es_map,
422 struct ext4_map_blocks *map,
423 int flags)
424{
425 int retval;
426
427 map->m_flags = 0;
428 /*
429 * There is a race window that the result is not the same.
430 * e.g. xfstests #223 when dioread_nolock enables. The reason
431 * is that we lookup a block mapping in extent status tree with
432 * out taking i_data_sem. So at the time the unwritten extent
433 * could be converted.
434 */
435 down_read(&EXT4_I(inode)->i_data_sem);
436 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
437 retval = ext4_ext_map_blocks(handle, inode, map, 0);
438 } else {
439 retval = ext4_ind_map_blocks(handle, inode, map, 0);
440 }
441 up_read((&EXT4_I(inode)->i_data_sem));
442
443 /*
444 * We don't check m_len because extent will be collpased in status
445 * tree. So the m_len might not equal.
446 */
447 if (es_map->m_lblk != map->m_lblk ||
448 es_map->m_flags != map->m_flags ||
449 es_map->m_pblk != map->m_pblk) {
450 printk("ES cache assertion failed for inode: %lu "
451 "es_cached ex [%d/%d/%llu/%x] != "
452 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 inode->i_ino, es_map->m_lblk, es_map->m_len,
454 es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 map->m_len, map->m_pblk, map->m_flags,
456 retval, flags);
457 }
458}
459#endif /* ES_AGGRESSIVE_TEST */
460
461static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
462 struct ext4_map_blocks *map)
463{
464 unsigned int status;
465 int retval;
466
467 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
468 retval = ext4_ext_map_blocks(handle, inode, map, 0);
469 else
470 retval = ext4_ind_map_blocks(handle, inode, map, 0);
471
472 if (retval <= 0)
473 return retval;
474
475 if (unlikely(retval != map->m_len)) {
476 ext4_warning(inode->i_sb,
477 "ES len assertion failed for inode "
478 "%lu: retval %d != map->m_len %d",
479 inode->i_ino, retval, map->m_len);
480 WARN_ON(1);
481 }
482
483 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
484 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
485 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
486 map->m_pblk, status, false);
487 return retval;
488}
489
490static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
491 struct ext4_map_blocks *map, int flags)
492{
493 struct extent_status es;
494 unsigned int status;
495 int err, retval = 0;
496
497 /*
498 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
499 * indicates that the blocks and quotas has already been
500 * checked when the data was copied into the page cache.
501 */
502 if (map->m_flags & EXT4_MAP_DELAYED)
503 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
504
505 /*
506 * Here we clear m_flags because after allocating an new extent,
507 * it will be set again.
508 */
509 map->m_flags &= ~EXT4_MAP_FLAGS;
510
511 /*
512 * We need to check for EXT4 here because migrate could have
513 * changed the inode type in between.
514 */
515 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516 retval = ext4_ext_map_blocks(handle, inode, map, flags);
517 } else {
518 retval = ext4_ind_map_blocks(handle, inode, map, flags);
519
520 /*
521 * We allocated new blocks which will result in i_data's
522 * format changing. Force the migrate to fail by clearing
523 * migrate flags.
524 */
525 if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
526 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
527 }
528 if (retval <= 0)
529 return retval;
530
531 if (unlikely(retval != map->m_len)) {
532 ext4_warning(inode->i_sb,
533 "ES len assertion failed for inode %lu: "
534 "retval %d != map->m_len %d",
535 inode->i_ino, retval, map->m_len);
536 WARN_ON(1);
537 }
538
539 /*
540 * We have to zeroout blocks before inserting them into extent
541 * status tree. Otherwise someone could look them up there and
542 * use them before they are really zeroed. We also have to
543 * unmap metadata before zeroing as otherwise writeback can
544 * overwrite zeros with stale data from block device.
545 */
546 if (flags & EXT4_GET_BLOCKS_ZERO &&
547 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
548 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
549 map->m_len);
550 if (err)
551 return err;
552 }
553
554 /*
555 * If the extent has been zeroed out, we don't need to update
556 * extent status tree.
557 */
558 if (flags & EXT4_GET_BLOCKS_PRE_IO &&
559 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
560 if (ext4_es_is_written(&es))
561 return retval;
562 }
563
564 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
567 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
568
569 return retval;
570}
571
572/*
573 * The ext4_map_blocks() function tries to look up the requested blocks,
574 * and returns if the blocks are already mapped.
575 *
576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
577 * and store the allocated blocks in the result buffer head and mark it
578 * mapped.
579 *
580 * If file type is extents based, it will call ext4_ext_map_blocks(),
581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
582 * based files
583 *
584 * On success, it returns the number of blocks being mapped or allocated.
585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
586 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
588 *
589 * It returns 0 if plain look up failed (blocks have not been allocated), in
590 * that case, @map is returned as unmapped but we still do fill map->m_len to
591 * indicate the length of a hole starting at map->m_lblk.
592 *
593 * It returns the error in case of allocation failure.
594 */
595int ext4_map_blocks(handle_t *handle, struct inode *inode,
596 struct ext4_map_blocks *map, int flags)
597{
598 struct extent_status es;
599 int retval;
600 int ret = 0;
601#ifdef ES_AGGRESSIVE_TEST
602 struct ext4_map_blocks orig_map;
603
604 memcpy(&orig_map, map, sizeof(*map));
605#endif
606
607 map->m_flags = 0;
608 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
609 flags, map->m_len, (unsigned long) map->m_lblk);
610
611 /*
612 * ext4_map_blocks returns an int, and m_len is an unsigned int
613 */
614 if (unlikely(map->m_len > INT_MAX))
615 map->m_len = INT_MAX;
616
617 /* We can handle the block number less than EXT_MAX_BLOCKS */
618 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
619 return -EFSCORRUPTED;
620
621 /* Lookup extent status tree firstly */
622 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
623 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
624 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
625 map->m_pblk = ext4_es_pblock(&es) +
626 map->m_lblk - es.es_lblk;
627 map->m_flags |= ext4_es_is_written(&es) ?
628 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
629 retval = es.es_len - (map->m_lblk - es.es_lblk);
630 if (retval > map->m_len)
631 retval = map->m_len;
632 map->m_len = retval;
633 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
634 map->m_pblk = 0;
635 map->m_flags |= ext4_es_is_delayed(&es) ?
636 EXT4_MAP_DELAYED : 0;
637 retval = es.es_len - (map->m_lblk - es.es_lblk);
638 if (retval > map->m_len)
639 retval = map->m_len;
640 map->m_len = retval;
641 retval = 0;
642 } else {
643 BUG();
644 }
645
646 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
647 return retval;
648#ifdef ES_AGGRESSIVE_TEST
649 ext4_map_blocks_es_recheck(handle, inode, map,
650 &orig_map, flags);
651#endif
652 goto found;
653 }
654 /*
655 * In the query cache no-wait mode, nothing we can do more if we
656 * cannot find extent in the cache.
657 */
658 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
659 return 0;
660
661 /*
662 * Try to see if we can get the block without requesting a new
663 * file system block.
664 */
665 down_read(&EXT4_I(inode)->i_data_sem);
666 retval = ext4_map_query_blocks(handle, inode, map);
667 up_read((&EXT4_I(inode)->i_data_sem));
668
669found:
670 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
671 ret = check_block_validity(inode, map);
672 if (ret != 0)
673 return ret;
674 }
675
676 /* If it is only a block(s) look up */
677 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
678 return retval;
679
680 /*
681 * Returns if the blocks have already allocated
682 *
683 * Note that if blocks have been preallocated
684 * ext4_ext_map_blocks() returns with buffer head unmapped
685 */
686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
687 /*
688 * If we need to convert extent to unwritten
689 * we continue and do the actual work in
690 * ext4_ext_map_blocks()
691 */
692 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
693 return retval;
694
695 /*
696 * New blocks allocate and/or writing to unwritten extent
697 * will possibly result in updating i_data, so we take
698 * the write lock of i_data_sem, and call get_block()
699 * with create == 1 flag.
700 */
701 down_write(&EXT4_I(inode)->i_data_sem);
702 retval = ext4_map_create_blocks(handle, inode, map, flags);
703 up_write((&EXT4_I(inode)->i_data_sem));
704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 ret = check_block_validity(inode, map);
706 if (ret != 0)
707 return ret;
708
709 /*
710 * Inodes with freshly allocated blocks where contents will be
711 * visible after transaction commit must be on transaction's
712 * ordered data list.
713 */
714 if (map->m_flags & EXT4_MAP_NEW &&
715 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 !ext4_is_quota_file(inode) &&
718 ext4_should_order_data(inode)) {
719 loff_t start_byte =
720 (loff_t)map->m_lblk << inode->i_blkbits;
721 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722
723 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724 ret = ext4_jbd2_inode_add_wait(handle, inode,
725 start_byte, length);
726 else
727 ret = ext4_jbd2_inode_add_write(handle, inode,
728 start_byte, length);
729 if (ret)
730 return ret;
731 }
732 }
733 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
734 map->m_flags & EXT4_MAP_MAPPED))
735 ext4_fc_track_range(handle, inode, map->m_lblk,
736 map->m_lblk + map->m_len - 1);
737 if (retval < 0)
738 ext_debug(inode, "failed with err %d\n", retval);
739 return retval;
740}
741
742/*
743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744 * we have to be careful as someone else may be manipulating b_state as well.
745 */
746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747{
748 unsigned long old_state;
749 unsigned long new_state;
750
751 flags &= EXT4_MAP_FLAGS;
752
753 /* Dummy buffer_head? Set non-atomically. */
754 if (!bh->b_page) {
755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 return;
757 }
758 /*
759 * Someone else may be modifying b_state. Be careful! This is ugly but
760 * once we get rid of using bh as a container for mapping information
761 * to pass to / from get_block functions, this can go away.
762 */
763 old_state = READ_ONCE(bh->b_state);
764 do {
765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
767}
768
769static int _ext4_get_block(struct inode *inode, sector_t iblock,
770 struct buffer_head *bh, int flags)
771{
772 struct ext4_map_blocks map;
773 int ret = 0;
774
775 if (ext4_has_inline_data(inode))
776 return -ERANGE;
777
778 map.m_lblk = iblock;
779 map.m_len = bh->b_size >> inode->i_blkbits;
780
781 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782 flags);
783 if (ret > 0) {
784 map_bh(bh, inode->i_sb, map.m_pblk);
785 ext4_update_bh_state(bh, map.m_flags);
786 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787 ret = 0;
788 } else if (ret == 0) {
789 /* hole case, need to fill in bh->b_size */
790 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 }
792 return ret;
793}
794
795int ext4_get_block(struct inode *inode, sector_t iblock,
796 struct buffer_head *bh, int create)
797{
798 return _ext4_get_block(inode, iblock, bh,
799 create ? EXT4_GET_BLOCKS_CREATE : 0);
800}
801
802/*
803 * Get block function used when preparing for buffered write if we require
804 * creating an unwritten extent if blocks haven't been allocated. The extent
805 * will be converted to written after the IO is complete.
806 */
807int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh_result, int create)
809{
810 int ret = 0;
811
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 ret = _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
816
817 /*
818 * If the buffer is marked unwritten, mark it as new to make sure it is
819 * zeroed out correctly in case of partial writes. Otherwise, there is
820 * a chance of stale data getting exposed.
821 */
822 if (ret == 0 && buffer_unwritten(bh_result))
823 set_buffer_new(bh_result);
824
825 return ret;
826}
827
828/* Maximum number of blocks we map for direct IO at once. */
829#define DIO_MAX_BLOCKS 4096
830
831/*
832 * `handle' can be NULL if create is zero
833 */
834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
836{
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
841 int err;
842
843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 || handle != NULL || create == 0);
845 ASSERT(create == 0 || !nowait);
846
847 map.m_lblk = block;
848 map.m_len = 1;
849 err = ext4_map_blocks(handle, inode, &map, map_flags);
850
851 if (err == 0)
852 return create ? ERR_PTR(-ENOSPC) : NULL;
853 if (err < 0)
854 return ERR_PTR(err);
855
856 if (nowait)
857 return sb_find_get_block(inode->i_sb, map.m_pblk);
858
859 /*
860 * Since bh could introduce extra ref count such as referred by
861 * journal_head etc. Try to avoid using __GFP_MOVABLE here
862 * as it may fail the migration when journal_head remains.
863 */
864 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
865 inode->i_sb->s_blocksize);
866
867 if (unlikely(!bh))
868 return ERR_PTR(-ENOMEM);
869 if (map.m_flags & EXT4_MAP_NEW) {
870 ASSERT(create != 0);
871 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872 || (handle != NULL));
873
874 /*
875 * Now that we do not always journal data, we should
876 * keep in mind whether this should always journal the
877 * new buffer as metadata. For now, regular file
878 * writes use ext4_get_block instead, so it's not a
879 * problem.
880 */
881 lock_buffer(bh);
882 BUFFER_TRACE(bh, "call get_create_access");
883 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884 EXT4_JTR_NONE);
885 if (unlikely(err)) {
886 unlock_buffer(bh);
887 goto errout;
888 }
889 if (!buffer_uptodate(bh)) {
890 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891 set_buffer_uptodate(bh);
892 }
893 unlock_buffer(bh);
894 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895 err = ext4_handle_dirty_metadata(handle, inode, bh);
896 if (unlikely(err))
897 goto errout;
898 } else
899 BUFFER_TRACE(bh, "not a new buffer");
900 return bh;
901errout:
902 brelse(bh);
903 return ERR_PTR(err);
904}
905
906struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907 ext4_lblk_t block, int map_flags)
908{
909 struct buffer_head *bh;
910 int ret;
911
912 bh = ext4_getblk(handle, inode, block, map_flags);
913 if (IS_ERR(bh))
914 return bh;
915 if (!bh || ext4_buffer_uptodate(bh))
916 return bh;
917
918 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919 if (ret) {
920 put_bh(bh);
921 return ERR_PTR(ret);
922 }
923 return bh;
924}
925
926/* Read a contiguous batch of blocks. */
927int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928 bool wait, struct buffer_head **bhs)
929{
930 int i, err;
931
932 for (i = 0; i < bh_count; i++) {
933 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934 if (IS_ERR(bhs[i])) {
935 err = PTR_ERR(bhs[i]);
936 bh_count = i;
937 goto out_brelse;
938 }
939 }
940
941 for (i = 0; i < bh_count; i++)
942 /* Note that NULL bhs[i] is valid because of holes. */
943 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945
946 if (!wait)
947 return 0;
948
949 for (i = 0; i < bh_count; i++)
950 if (bhs[i])
951 wait_on_buffer(bhs[i]);
952
953 for (i = 0; i < bh_count; i++) {
954 if (bhs[i] && !buffer_uptodate(bhs[i])) {
955 err = -EIO;
956 goto out_brelse;
957 }
958 }
959 return 0;
960
961out_brelse:
962 for (i = 0; i < bh_count; i++) {
963 brelse(bhs[i]);
964 bhs[i] = NULL;
965 }
966 return err;
967}
968
969int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970 struct buffer_head *head,
971 unsigned from,
972 unsigned to,
973 int *partial,
974 int (*fn)(handle_t *handle, struct inode *inode,
975 struct buffer_head *bh))
976{
977 struct buffer_head *bh;
978 unsigned block_start, block_end;
979 unsigned blocksize = head->b_size;
980 int err, ret = 0;
981 struct buffer_head *next;
982
983 for (bh = head, block_start = 0;
984 ret == 0 && (bh != head || !block_start);
985 block_start = block_end, bh = next) {
986 next = bh->b_this_page;
987 block_end = block_start + blocksize;
988 if (block_end <= from || block_start >= to) {
989 if (partial && !buffer_uptodate(bh))
990 *partial = 1;
991 continue;
992 }
993 err = (*fn)(handle, inode, bh);
994 if (!ret)
995 ret = err;
996 }
997 return ret;
998}
999
1000/*
1001 * Helper for handling dirtying of journalled data. We also mark the folio as
1002 * dirty so that writeback code knows about this page (and inode) contains
1003 * dirty data. ext4_writepages() then commits appropriate transaction to
1004 * make data stable.
1005 */
1006static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007{
1008 folio_mark_dirty(bh->b_folio);
1009 return ext4_handle_dirty_metadata(handle, NULL, bh);
1010}
1011
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1014{
1015 if (!buffer_mapped(bh) || buffer_freed(bh))
1016 return 0;
1017 BUFFER_TRACE(bh, "get write access");
1018 return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019 EXT4_JTR_NONE);
1020}
1021
1022int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023 loff_t pos, unsigned len,
1024 get_block_t *get_block)
1025{
1026 unsigned from = pos & (PAGE_SIZE - 1);
1027 unsigned to = from + len;
1028 struct inode *inode = folio->mapping->host;
1029 unsigned block_start, block_end;
1030 sector_t block;
1031 int err = 0;
1032 unsigned blocksize = inode->i_sb->s_blocksize;
1033 unsigned bbits;
1034 struct buffer_head *bh, *head, *wait[2];
1035 int nr_wait = 0;
1036 int i;
1037 bool should_journal_data = ext4_should_journal_data(inode);
1038
1039 BUG_ON(!folio_test_locked(folio));
1040 BUG_ON(from > PAGE_SIZE);
1041 BUG_ON(to > PAGE_SIZE);
1042 BUG_ON(from > to);
1043
1044 head = folio_buffers(folio);
1045 if (!head)
1046 head = create_empty_buffers(folio, blocksize, 0);
1047 bbits = ilog2(blocksize);
1048 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050 for (bh = head, block_start = 0; bh != head || !block_start;
1051 block++, block_start = block_end, bh = bh->b_this_page) {
1052 block_end = block_start + blocksize;
1053 if (block_end <= from || block_start >= to) {
1054 if (folio_test_uptodate(folio)) {
1055 set_buffer_uptodate(bh);
1056 }
1057 continue;
1058 }
1059 if (buffer_new(bh))
1060 clear_buffer_new(bh);
1061 if (!buffer_mapped(bh)) {
1062 WARN_ON(bh->b_size != blocksize);
1063 err = get_block(inode, block, bh, 1);
1064 if (err)
1065 break;
1066 if (buffer_new(bh)) {
1067 /*
1068 * We may be zeroing partial buffers or all new
1069 * buffers in case of failure. Prepare JBD2 for
1070 * that.
1071 */
1072 if (should_journal_data)
1073 do_journal_get_write_access(handle,
1074 inode, bh);
1075 if (folio_test_uptodate(folio)) {
1076 /*
1077 * Unlike __block_write_begin() we leave
1078 * dirtying of new uptodate buffers to
1079 * ->write_end() time or
1080 * folio_zero_new_buffers().
1081 */
1082 set_buffer_uptodate(bh);
1083 continue;
1084 }
1085 if (block_end > to || block_start < from)
1086 folio_zero_segments(folio, to,
1087 block_end,
1088 block_start, from);
1089 continue;
1090 }
1091 }
1092 if (folio_test_uptodate(folio)) {
1093 set_buffer_uptodate(bh);
1094 continue;
1095 }
1096 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097 !buffer_unwritten(bh) &&
1098 (block_start < from || block_end > to)) {
1099 ext4_read_bh_lock(bh, 0, false);
1100 wait[nr_wait++] = bh;
1101 }
1102 }
1103 /*
1104 * If we issued read requests, let them complete.
1105 */
1106 for (i = 0; i < nr_wait; i++) {
1107 wait_on_buffer(wait[i]);
1108 if (!buffer_uptodate(wait[i]))
1109 err = -EIO;
1110 }
1111 if (unlikely(err)) {
1112 if (should_journal_data)
1113 ext4_journalled_zero_new_buffers(handle, inode, folio,
1114 from, to);
1115 else
1116 folio_zero_new_buffers(folio, from, to);
1117 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118 for (i = 0; i < nr_wait; i++) {
1119 int err2;
1120
1121 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122 blocksize, bh_offset(wait[i]));
1123 if (err2) {
1124 clear_buffer_uptodate(wait[i]);
1125 err = err2;
1126 }
1127 }
1128 }
1129
1130 return err;
1131}
1132
1133/*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction. We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
1140static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141 loff_t pos, unsigned len,
1142 struct folio **foliop, void **fsdata)
1143{
1144 struct inode *inode = mapping->host;
1145 int ret, needed_blocks;
1146 handle_t *handle;
1147 int retries = 0;
1148 struct folio *folio;
1149 pgoff_t index;
1150 unsigned from, to;
1151
1152 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153 return -EIO;
1154
1155 trace_ext4_write_begin(inode, pos, len);
1156 /*
1157 * Reserve one block more for addition to orphan list in case
1158 * we allocate blocks but write fails for some reason
1159 */
1160 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161 index = pos >> PAGE_SHIFT;
1162 from = pos & (PAGE_SIZE - 1);
1163 to = from + len;
1164
1165 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 foliop);
1168 if (ret < 0)
1169 return ret;
1170 if (ret == 1)
1171 return 0;
1172 }
1173
1174 /*
1175 * __filemap_get_folio() can take a long time if the
1176 * system is thrashing due to memory pressure, or if the folio
1177 * is being written back. So grab it first before we start
1178 * the transaction handle. This also allows us to allocate
1179 * the folio (if needed) without using GFP_NOFS.
1180 */
1181retry_grab:
1182 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183 mapping_gfp_mask(mapping));
1184 if (IS_ERR(folio))
1185 return PTR_ERR(folio);
1186 /*
1187 * The same as page allocation, we prealloc buffer heads before
1188 * starting the handle.
1189 */
1190 if (!folio_buffers(folio))
1191 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193 folio_unlock(folio);
1194
1195retry_journal:
1196 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197 if (IS_ERR(handle)) {
1198 folio_put(folio);
1199 return PTR_ERR(handle);
1200 }
1201
1202 folio_lock(folio);
1203 if (folio->mapping != mapping) {
1204 /* The folio got truncated from under us */
1205 folio_unlock(folio);
1206 folio_put(folio);
1207 ext4_journal_stop(handle);
1208 goto retry_grab;
1209 }
1210 /* In case writeback began while the folio was unlocked */
1211 folio_wait_stable(folio);
1212
1213 if (ext4_should_dioread_nolock(inode))
1214 ret = ext4_block_write_begin(handle, folio, pos, len,
1215 ext4_get_block_unwritten);
1216 else
1217 ret = ext4_block_write_begin(handle, folio, pos, len,
1218 ext4_get_block);
1219 if (!ret && ext4_should_journal_data(inode)) {
1220 ret = ext4_walk_page_buffers(handle, inode,
1221 folio_buffers(folio), from, to,
1222 NULL, do_journal_get_write_access);
1223 }
1224
1225 if (ret) {
1226 bool extended = (pos + len > inode->i_size) &&
1227 !ext4_verity_in_progress(inode);
1228
1229 folio_unlock(folio);
1230 /*
1231 * ext4_block_write_begin may have instantiated a few blocks
1232 * outside i_size. Trim these off again. Don't need
1233 * i_size_read because we hold i_rwsem.
1234 *
1235 * Add inode to orphan list in case we crash before
1236 * truncate finishes
1237 */
1238 if (extended && ext4_can_truncate(inode))
1239 ext4_orphan_add(handle, inode);
1240
1241 ext4_journal_stop(handle);
1242 if (extended) {
1243 ext4_truncate_failed_write(inode);
1244 /*
1245 * If truncate failed early the inode might
1246 * still be on the orphan list; we need to
1247 * make sure the inode is removed from the
1248 * orphan list in that case.
1249 */
1250 if (inode->i_nlink)
1251 ext4_orphan_del(NULL, inode);
1252 }
1253
1254 if (ret == -ENOSPC &&
1255 ext4_should_retry_alloc(inode->i_sb, &retries))
1256 goto retry_journal;
1257 folio_put(folio);
1258 return ret;
1259 }
1260 *foliop = folio;
1261 return ret;
1262}
1263
1264/* For write_end() in data=journal mode */
1265static int write_end_fn(handle_t *handle, struct inode *inode,
1266 struct buffer_head *bh)
1267{
1268 int ret;
1269 if (!buffer_mapped(bh) || buffer_freed(bh))
1270 return 0;
1271 set_buffer_uptodate(bh);
1272 ret = ext4_dirty_journalled_data(handle, bh);
1273 clear_buffer_meta(bh);
1274 clear_buffer_prio(bh);
1275 return ret;
1276}
1277
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata
1283 * buffers are managed internally.
1284 */
1285static int ext4_write_end(struct file *file,
1286 struct address_space *mapping,
1287 loff_t pos, unsigned len, unsigned copied,
1288 struct folio *folio, void *fsdata)
1289{
1290 handle_t *handle = ext4_journal_current_handle();
1291 struct inode *inode = mapping->host;
1292 loff_t old_size = inode->i_size;
1293 int ret = 0, ret2;
1294 int i_size_changed = 0;
1295 bool verity = ext4_verity_in_progress(inode);
1296
1297 trace_ext4_write_end(inode, pos, len, copied);
1298
1299 if (ext4_has_inline_data(inode) &&
1300 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301 return ext4_write_inline_data_end(inode, pos, len, copied,
1302 folio);
1303
1304 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305 /*
1306 * it's important to update i_size while still holding folio lock:
1307 * page writeout could otherwise come in and zero beyond i_size.
1308 *
1309 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310 * blocks are being written past EOF, so skip the i_size update.
1311 */
1312 if (!verity)
1313 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314 folio_unlock(folio);
1315 folio_put(folio);
1316
1317 if (old_size < pos && !verity) {
1318 pagecache_isize_extended(inode, old_size, pos);
1319 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320 }
1321 /*
1322 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323 * makes the holding time of folio lock longer. Second, it forces lock
1324 * ordering of folio lock and transaction start for journaling
1325 * filesystems.
1326 */
1327 if (i_size_changed)
1328 ret = ext4_mark_inode_dirty(handle, inode);
1329
1330 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331 /* if we have allocated more blocks and copied
1332 * less. We will have blocks allocated outside
1333 * inode->i_size. So truncate them
1334 */
1335 ext4_orphan_add(handle, inode);
1336
1337 ret2 = ext4_journal_stop(handle);
1338 if (!ret)
1339 ret = ret2;
1340
1341 if (pos + len > inode->i_size && !verity) {
1342 ext4_truncate_failed_write(inode);
1343 /*
1344 * If truncate failed early the inode might still be
1345 * on the orphan list; we need to make sure the inode
1346 * is removed from the orphan list in that case.
1347 */
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1350 }
1351
1352 return ret ? ret : copied;
1353}
1354
1355/*
1356 * This is a private version of folio_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_dirty_journalled_data() instead.
1359 */
1360static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361 struct inode *inode,
1362 struct folio *folio,
1363 unsigned from, unsigned to)
1364{
1365 unsigned int block_start = 0, block_end;
1366 struct buffer_head *head, *bh;
1367
1368 bh = head = folio_buffers(folio);
1369 do {
1370 block_end = block_start + bh->b_size;
1371 if (buffer_new(bh)) {
1372 if (block_end > from && block_start < to) {
1373 if (!folio_test_uptodate(folio)) {
1374 unsigned start, size;
1375
1376 start = max(from, block_start);
1377 size = min(to, block_end) - start;
1378
1379 folio_zero_range(folio, start, size);
1380 }
1381 clear_buffer_new(bh);
1382 write_end_fn(handle, inode, bh);
1383 }
1384 }
1385 block_start = block_end;
1386 bh = bh->b_this_page;
1387 } while (bh != head);
1388}
1389
1390static int ext4_journalled_write_end(struct file *file,
1391 struct address_space *mapping,
1392 loff_t pos, unsigned len, unsigned copied,
1393 struct folio *folio, void *fsdata)
1394{
1395 handle_t *handle = ext4_journal_current_handle();
1396 struct inode *inode = mapping->host;
1397 loff_t old_size = inode->i_size;
1398 int ret = 0, ret2;
1399 int partial = 0;
1400 unsigned from, to;
1401 int size_changed = 0;
1402 bool verity = ext4_verity_in_progress(inode);
1403
1404 trace_ext4_journalled_write_end(inode, pos, len, copied);
1405 from = pos & (PAGE_SIZE - 1);
1406 to = from + len;
1407
1408 BUG_ON(!ext4_handle_valid(handle));
1409
1410 if (ext4_has_inline_data(inode))
1411 return ext4_write_inline_data_end(inode, pos, len, copied,
1412 folio);
1413
1414 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415 copied = 0;
1416 ext4_journalled_zero_new_buffers(handle, inode, folio,
1417 from, to);
1418 } else {
1419 if (unlikely(copied < len))
1420 ext4_journalled_zero_new_buffers(handle, inode, folio,
1421 from + copied, to);
1422 ret = ext4_walk_page_buffers(handle, inode,
1423 folio_buffers(folio),
1424 from, from + copied, &partial,
1425 write_end_fn);
1426 if (!partial)
1427 folio_mark_uptodate(folio);
1428 }
1429 if (!verity)
1430 size_changed = ext4_update_inode_size(inode, pos + copied);
1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432 folio_unlock(folio);
1433 folio_put(folio);
1434
1435 if (old_size < pos && !verity) {
1436 pagecache_isize_extended(inode, old_size, pos);
1437 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438 }
1439
1440 if (size_changed) {
1441 ret2 = ext4_mark_inode_dirty(handle, inode);
1442 if (!ret)
1443 ret = ret2;
1444 }
1445
1446 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447 /* if we have allocated more blocks and copied
1448 * less. We will have blocks allocated outside
1449 * inode->i_size. So truncate them
1450 */
1451 ext4_orphan_add(handle, inode);
1452
1453 ret2 = ext4_journal_stop(handle);
1454 if (!ret)
1455 ret = ret2;
1456 if (pos + len > inode->i_size && !verity) {
1457 ext4_truncate_failed_write(inode);
1458 /*
1459 * If truncate failed early the inode might still be
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1462 */
1463 if (inode->i_nlink)
1464 ext4_orphan_del(NULL, inode);
1465 }
1466
1467 return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for 'nr_resv' clusters
1472 */
1473static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474{
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 struct ext4_inode_info *ei = EXT4_I(inode);
1477 int ret;
1478
1479 /*
1480 * We will charge metadata quota at writeout time; this saves
1481 * us from metadata over-estimation, though we may go over by
1482 * a small amount in the end. Here we just reserve for data.
1483 */
1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485 if (ret)
1486 return ret;
1487
1488 spin_lock(&ei->i_block_reservation_lock);
1489 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490 spin_unlock(&ei->i_block_reservation_lock);
1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492 return -ENOSPC;
1493 }
1494 ei->i_reserved_data_blocks += nr_resv;
1495 trace_ext4_da_reserve_space(inode, nr_resv);
1496 spin_unlock(&ei->i_block_reservation_lock);
1497
1498 return 0; /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506 if (!to_free)
1507 return; /* Nothing to release, exit */
1508
1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511 trace_ext4_da_release_space(inode, to_free);
1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513 /*
1514 * if there aren't enough reserved blocks, then the
1515 * counter is messed up somewhere. Since this
1516 * function is called from invalidate page, it's
1517 * harmless to return without any action.
1518 */
1519 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 "ino %lu, to_free %d with only %d reserved "
1521 "data blocks", inode->i_ino, to_free,
1522 ei->i_reserved_data_blocks);
1523 WARN_ON(1);
1524 to_free = ei->i_reserved_data_blocks;
1525 }
1526 ei->i_reserved_data_blocks -= to_free;
1527
1528 /* update fs dirty data blocks counter */
1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541 /* These are input fields for ext4_do_writepages() */
1542 struct inode *inode;
1543 struct writeback_control *wbc;
1544 unsigned int can_map:1; /* Can writepages call map blocks? */
1545
1546 /* These are internal state of ext4_do_writepages() */
1547 pgoff_t first_page; /* The first page to write */
1548 pgoff_t next_page; /* Current page to examine */
1549 pgoff_t last_page; /* Last page to examine */
1550 /*
1551 * Extent to map - this can be after first_page because that can be
1552 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553 * is delalloc or unwritten.
1554 */
1555 struct ext4_map_blocks map;
1556 struct ext4_io_submit io_submit; /* IO submission data */
1557 unsigned int do_map:1;
1558 unsigned int scanned_until_end:1;
1559 unsigned int journalled_more_data:1;
1560};
1561
1562static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563 bool invalidate)
1564{
1565 unsigned nr, i;
1566 pgoff_t index, end;
1567 struct folio_batch fbatch;
1568 struct inode *inode = mpd->inode;
1569 struct address_space *mapping = inode->i_mapping;
1570
1571 /* This is necessary when next_page == 0. */
1572 if (mpd->first_page >= mpd->next_page)
1573 return;
1574
1575 mpd->scanned_until_end = 0;
1576 index = mpd->first_page;
1577 end = mpd->next_page - 1;
1578 if (invalidate) {
1579 ext4_lblk_t start, last;
1580 start = index << (PAGE_SHIFT - inode->i_blkbits);
1581 last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583 /*
1584 * avoid racing with extent status tree scans made by
1585 * ext4_insert_delayed_block()
1586 */
1587 down_write(&EXT4_I(inode)->i_data_sem);
1588 ext4_es_remove_extent(inode, start, last - start + 1);
1589 up_write(&EXT4_I(inode)->i_data_sem);
1590 }
1591
1592 folio_batch_init(&fbatch);
1593 while (index <= end) {
1594 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595 if (nr == 0)
1596 break;
1597 for (i = 0; i < nr; i++) {
1598 struct folio *folio = fbatch.folios[i];
1599
1600 if (folio->index < mpd->first_page)
1601 continue;
1602 if (folio_next_index(folio) - 1 > end)
1603 continue;
1604 BUG_ON(!folio_test_locked(folio));
1605 BUG_ON(folio_test_writeback(folio));
1606 if (invalidate) {
1607 if (folio_mapped(folio))
1608 folio_clear_dirty_for_io(folio);
1609 block_invalidate_folio(folio, 0,
1610 folio_size(folio));
1611 folio_clear_uptodate(folio);
1612 }
1613 folio_unlock(folio);
1614 }
1615 folio_batch_release(&fbatch);
1616 }
1617}
1618
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622 struct super_block *sb = inode->i_sb;
1623 struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626 EXT4_C2B(EXT4_SB(inode->i_sb),
1627 ext4_count_free_clusters(sb)));
1628 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630 (long long) EXT4_C2B(EXT4_SB(sb),
1631 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633 (long long) EXT4_C2B(EXT4_SB(sb),
1634 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637 ei->i_reserved_data_blocks);
1638 return;
1639}
1640
1641/*
1642 * Check whether the cluster containing lblk has been allocated or has
1643 * delalloc reservation.
1644 *
1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646 * reservation, 2 if it's already been allocated, negative error code on
1647 * failure.
1648 */
1649static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650{
1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652 int ret;
1653
1654 /* Has delalloc reservation? */
1655 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656 return 1;
1657
1658 /* Already been allocated? */
1659 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660 return 2;
1661 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662 if (ret < 0)
1663 return ret;
1664 if (ret > 0)
1665 return 2;
1666
1667 return 0;
1668}
1669
1670/*
1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672 * status tree, incrementing the reserved
1673 * cluster/block count or making pending
1674 * reservations where needed
1675 *
1676 * @inode - file containing the newly added block
1677 * @lblk - start logical block to be added
1678 * @len - length of blocks to be added
1679 *
1680 * Returns 0 on success, negative error code on failure.
1681 */
1682static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683 ext4_lblk_t len)
1684{
1685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686 int ret;
1687 bool lclu_allocated = false;
1688 bool end_allocated = false;
1689 ext4_lblk_t resv_clu;
1690 ext4_lblk_t end = lblk + len - 1;
1691
1692 /*
1693 * If the cluster containing lblk or end is shared with a delayed,
1694 * written, or unwritten extent in a bigalloc file system, it's
1695 * already been accounted for and does not need to be reserved.
1696 * A pending reservation must be made for the cluster if it's
1697 * shared with a written or unwritten extent and doesn't already
1698 * have one. Written and unwritten extents can be purged from the
1699 * extents status tree if the system is under memory pressure, so
1700 * it's necessary to examine the extent tree if a search of the
1701 * extents status tree doesn't get a match.
1702 */
1703 if (sbi->s_cluster_ratio == 1) {
1704 ret = ext4_da_reserve_space(inode, len);
1705 if (ret != 0) /* ENOSPC */
1706 return ret;
1707 } else { /* bigalloc */
1708 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710 ret = ext4_clu_alloc_state(inode, lblk);
1711 if (ret < 0)
1712 return ret;
1713 if (ret > 0) {
1714 resv_clu--;
1715 lclu_allocated = (ret == 2);
1716 }
1717
1718 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719 ret = ext4_clu_alloc_state(inode, end);
1720 if (ret < 0)
1721 return ret;
1722 if (ret > 0) {
1723 resv_clu--;
1724 end_allocated = (ret == 2);
1725 }
1726 }
1727
1728 if (resv_clu) {
1729 ret = ext4_da_reserve_space(inode, resv_clu);
1730 if (ret != 0) /* ENOSPC */
1731 return ret;
1732 }
1733 }
1734
1735 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736 end_allocated);
1737 return 0;
1738}
1739
1740/*
1741 * Looks up the requested blocks and sets the delalloc extent map.
1742 * First try to look up for the extent entry that contains the requested
1743 * blocks in the extent status tree without i_data_sem, then try to look
1744 * up for the ondisk extent mapping with i_data_sem in read mode,
1745 * finally hold i_data_sem in write mode, looks up again and add a
1746 * delalloc extent entry if it still couldn't find any extent. Pass out
1747 * the mapped extent through @map and return 0 on success.
1748 */
1749static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750{
1751 struct extent_status es;
1752 int retval;
1753#ifdef ES_AGGRESSIVE_TEST
1754 struct ext4_map_blocks orig_map;
1755
1756 memcpy(&orig_map, map, sizeof(*map));
1757#endif
1758
1759 map->m_flags = 0;
1760 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1761 (unsigned long) map->m_lblk);
1762
1763 /* Lookup extent status tree firstly */
1764 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765 map->m_len = min_t(unsigned int, map->m_len,
1766 es.es_len - (map->m_lblk - es.es_lblk));
1767
1768 if (ext4_es_is_hole(&es))
1769 goto add_delayed;
1770
1771found:
1772 /*
1773 * Delayed extent could be allocated by fallocate.
1774 * So we need to check it.
1775 */
1776 if (ext4_es_is_delayed(&es)) {
1777 map->m_flags |= EXT4_MAP_DELAYED;
1778 return 0;
1779 }
1780
1781 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1782 if (ext4_es_is_written(&es))
1783 map->m_flags |= EXT4_MAP_MAPPED;
1784 else if (ext4_es_is_unwritten(&es))
1785 map->m_flags |= EXT4_MAP_UNWRITTEN;
1786 else
1787 BUG();
1788
1789#ifdef ES_AGGRESSIVE_TEST
1790 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791#endif
1792 return 0;
1793 }
1794
1795 /*
1796 * Try to see if we can get the block without requesting a new
1797 * file system block.
1798 */
1799 down_read(&EXT4_I(inode)->i_data_sem);
1800 if (ext4_has_inline_data(inode))
1801 retval = 0;
1802 else
1803 retval = ext4_map_query_blocks(NULL, inode, map);
1804 up_read(&EXT4_I(inode)->i_data_sem);
1805 if (retval)
1806 return retval < 0 ? retval : 0;
1807
1808add_delayed:
1809 down_write(&EXT4_I(inode)->i_data_sem);
1810 /*
1811 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812 * and fallocate path (no folio lock) can race. Make sure we
1813 * lookup the extent status tree here again while i_data_sem
1814 * is held in write mode, before inserting a new da entry in
1815 * the extent status tree.
1816 */
1817 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818 map->m_len = min_t(unsigned int, map->m_len,
1819 es.es_len - (map->m_lblk - es.es_lblk));
1820
1821 if (!ext4_es_is_hole(&es)) {
1822 up_write(&EXT4_I(inode)->i_data_sem);
1823 goto found;
1824 }
1825 } else if (!ext4_has_inline_data(inode)) {
1826 retval = ext4_map_query_blocks(NULL, inode, map);
1827 if (retval) {
1828 up_write(&EXT4_I(inode)->i_data_sem);
1829 return retval < 0 ? retval : 0;
1830 }
1831 }
1832
1833 map->m_flags |= EXT4_MAP_DELAYED;
1834 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835 up_write(&EXT4_I(inode)->i_data_sem);
1836
1837 return retval;
1838}
1839
1840/*
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin(). It will either return mapped block or
1843 * reserve space for a single block.
1844 *
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1847 *
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1851 */
1852int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853 struct buffer_head *bh, int create)
1854{
1855 struct ext4_map_blocks map;
1856 sector_t invalid_block = ~((sector_t) 0xffff);
1857 int ret = 0;
1858
1859 BUG_ON(create == 0);
1860 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863 invalid_block = ~0;
1864
1865 map.m_lblk = iblock;
1866 map.m_len = 1;
1867
1868 /*
1869 * first, we need to know whether the block is allocated already
1870 * preallocated blocks are unmapped but should treated
1871 * the same as allocated blocks.
1872 */
1873 ret = ext4_da_map_blocks(inode, &map);
1874 if (ret < 0)
1875 return ret;
1876
1877 if (map.m_flags & EXT4_MAP_DELAYED) {
1878 map_bh(bh, inode->i_sb, invalid_block);
1879 set_buffer_new(bh);
1880 set_buffer_delay(bh);
1881 return 0;
1882 }
1883
1884 map_bh(bh, inode->i_sb, map.m_pblk);
1885 ext4_update_bh_state(bh, map.m_flags);
1886
1887 if (buffer_unwritten(bh)) {
1888 /* A delayed write to unwritten bh should be marked
1889 * new and mapped. Mapped ensures that we don't do
1890 * get_block multiple times when we write to the same
1891 * offset and new ensures that we do proper zero out
1892 * for partial write.
1893 */
1894 set_buffer_new(bh);
1895 set_buffer_mapped(bh);
1896 }
1897 return 0;
1898}
1899
1900static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901{
1902 mpd->first_page += folio_nr_pages(folio);
1903 folio_unlock(folio);
1904}
1905
1906static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907{
1908 size_t len;
1909 loff_t size;
1910 int err;
1911
1912 BUG_ON(folio->index != mpd->first_page);
1913 folio_clear_dirty_for_io(folio);
1914 /*
1915 * We have to be very careful here! Nothing protects writeback path
1916 * against i_size changes and the page can be writeably mapped into
1917 * page tables. So an application can be growing i_size and writing
1918 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919 * write-protects our page in page tables and the page cannot get
1920 * written to again until we release folio lock. So only after
1921 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923 * on the barrier provided by folio_test_clear_dirty() in
1924 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925 * after page tables are updated.
1926 */
1927 size = i_size_read(mpd->inode);
1928 len = folio_size(folio);
1929 if (folio_pos(folio) + len > size &&
1930 !ext4_verity_in_progress(mpd->inode))
1931 len = size & (len - 1);
1932 err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933 if (!err)
1934 mpd->wbc->nr_to_write--;
1935
1936 return err;
1937}
1938
1939#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941/*
1942 * mballoc gives us at most this number of blocks...
1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944 * The rest of mballoc seems to handle chunks up to full group size.
1945 */
1946#define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948/*
1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950 *
1951 * @mpd - extent of blocks
1952 * @lblk - logical number of the block in the file
1953 * @bh - buffer head we want to add to the extent
1954 *
1955 * The function is used to collect contig. blocks in the same state. If the
1956 * buffer doesn't require mapping for writeback and we haven't started the
1957 * extent of buffers to map yet, the function returns 'true' immediately - the
1958 * caller can write the buffer right away. Otherwise the function returns true
1959 * if the block has been added to the extent, false if the block couldn't be
1960 * added.
1961 */
1962static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963 struct buffer_head *bh)
1964{
1965 struct ext4_map_blocks *map = &mpd->map;
1966
1967 /* Buffer that doesn't need mapping for writeback? */
1968 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970 /* So far no extent to map => we write the buffer right away */
1971 if (map->m_len == 0)
1972 return true;
1973 return false;
1974 }
1975
1976 /* First block in the extent? */
1977 if (map->m_len == 0) {
1978 /* We cannot map unless handle is started... */
1979 if (!mpd->do_map)
1980 return false;
1981 map->m_lblk = lblk;
1982 map->m_len = 1;
1983 map->m_flags = bh->b_state & BH_FLAGS;
1984 return true;
1985 }
1986
1987 /* Don't go larger than mballoc is willing to allocate */
1988 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989 return false;
1990
1991 /* Can we merge the block to our big extent? */
1992 if (lblk == map->m_lblk + map->m_len &&
1993 (bh->b_state & BH_FLAGS) == map->m_flags) {
1994 map->m_len++;
1995 return true;
1996 }
1997 return false;
1998}
1999
2000/*
2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002 *
2003 * @mpd - extent of blocks for mapping
2004 * @head - the first buffer in the page
2005 * @bh - buffer we should start processing from
2006 * @lblk - logical number of the block in the file corresponding to @bh
2007 *
2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009 * the page for IO if all buffers in this page were mapped and there's no
2010 * accumulated extent of buffers to map or add buffers in the page to the
2011 * extent of buffers to map. The function returns 1 if the caller can continue
2012 * by processing the next page, 0 if it should stop adding buffers to the
2013 * extent to map because we cannot extend it anymore. It can also return value
2014 * < 0 in case of error during IO submission.
2015 */
2016static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017 struct buffer_head *head,
2018 struct buffer_head *bh,
2019 ext4_lblk_t lblk)
2020{
2021 struct inode *inode = mpd->inode;
2022 int err;
2023 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024 >> inode->i_blkbits;
2025
2026 if (ext4_verity_in_progress(inode))
2027 blocks = EXT_MAX_BLOCKS;
2028
2029 do {
2030 BUG_ON(buffer_locked(bh));
2031
2032 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033 /* Found extent to map? */
2034 if (mpd->map.m_len)
2035 return 0;
2036 /* Buffer needs mapping and handle is not started? */
2037 if (!mpd->do_map)
2038 return 0;
2039 /* Everything mapped so far and we hit EOF */
2040 break;
2041 }
2042 } while (lblk++, (bh = bh->b_this_page) != head);
2043 /* So far everything mapped? Submit the page for IO. */
2044 if (mpd->map.m_len == 0) {
2045 err = mpage_submit_folio(mpd, head->b_folio);
2046 if (err < 0)
2047 return err;
2048 mpage_folio_done(mpd, head->b_folio);
2049 }
2050 if (lblk >= blocks) {
2051 mpd->scanned_until_end = 1;
2052 return 0;
2053 }
2054 return 1;
2055}
2056
2057/*
2058 * mpage_process_folio - update folio buffers corresponding to changed extent
2059 * and may submit fully mapped page for IO
2060 * @mpd: description of extent to map, on return next extent to map
2061 * @folio: Contains these buffers.
2062 * @m_lblk: logical block mapping.
2063 * @m_pblk: corresponding physical mapping.
2064 * @map_bh: determines on return whether this page requires any further
2065 * mapping or not.
2066 *
2067 * Scan given folio buffers corresponding to changed extent and update buffer
2068 * state according to new extent state.
2069 * We map delalloc buffers to their physical location, clear unwritten bits.
2070 * If the given folio is not fully mapped, we update @mpd to the next extent in
2071 * the given folio that needs mapping & return @map_bh as true.
2072 */
2073static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075 bool *map_bh)
2076{
2077 struct buffer_head *head, *bh;
2078 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079 ext4_lblk_t lblk = *m_lblk;
2080 ext4_fsblk_t pblock = *m_pblk;
2081 int err = 0;
2082 int blkbits = mpd->inode->i_blkbits;
2083 ssize_t io_end_size = 0;
2084 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086 bh = head = folio_buffers(folio);
2087 do {
2088 if (lblk < mpd->map.m_lblk)
2089 continue;
2090 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091 /*
2092 * Buffer after end of mapped extent.
2093 * Find next buffer in the folio to map.
2094 */
2095 mpd->map.m_len = 0;
2096 mpd->map.m_flags = 0;
2097 io_end_vec->size += io_end_size;
2098
2099 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100 if (err > 0)
2101 err = 0;
2102 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103 io_end_vec = ext4_alloc_io_end_vec(io_end);
2104 if (IS_ERR(io_end_vec)) {
2105 err = PTR_ERR(io_end_vec);
2106 goto out;
2107 }
2108 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109 }
2110 *map_bh = true;
2111 goto out;
2112 }
2113 if (buffer_delay(bh)) {
2114 clear_buffer_delay(bh);
2115 bh->b_blocknr = pblock++;
2116 }
2117 clear_buffer_unwritten(bh);
2118 io_end_size += (1 << blkbits);
2119 } while (lblk++, (bh = bh->b_this_page) != head);
2120
2121 io_end_vec->size += io_end_size;
2122 *map_bh = false;
2123out:
2124 *m_lblk = lblk;
2125 *m_pblk = pblock;
2126 return err;
2127}
2128
2129/*
2130 * mpage_map_buffers - update buffers corresponding to changed extent and
2131 * submit fully mapped pages for IO
2132 *
2133 * @mpd - description of extent to map, on return next extent to map
2134 *
2135 * Scan buffers corresponding to changed extent (we expect corresponding pages
2136 * to be already locked) and update buffer state according to new extent state.
2137 * We map delalloc buffers to their physical location, clear unwritten bits,
2138 * and mark buffers as uninit when we perform writes to unwritten extents
2139 * and do extent conversion after IO is finished. If the last page is not fully
2140 * mapped, we update @map to the next extent in the last page that needs
2141 * mapping. Otherwise we submit the page for IO.
2142 */
2143static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144{
2145 struct folio_batch fbatch;
2146 unsigned nr, i;
2147 struct inode *inode = mpd->inode;
2148 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149 pgoff_t start, end;
2150 ext4_lblk_t lblk;
2151 ext4_fsblk_t pblock;
2152 int err;
2153 bool map_bh = false;
2154
2155 start = mpd->map.m_lblk >> bpp_bits;
2156 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157 lblk = start << bpp_bits;
2158 pblock = mpd->map.m_pblk;
2159
2160 folio_batch_init(&fbatch);
2161 while (start <= end) {
2162 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163 if (nr == 0)
2164 break;
2165 for (i = 0; i < nr; i++) {
2166 struct folio *folio = fbatch.folios[i];
2167
2168 err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169 &map_bh);
2170 /*
2171 * If map_bh is true, means page may require further bh
2172 * mapping, or maybe the page was submitted for IO.
2173 * So we return to call further extent mapping.
2174 */
2175 if (err < 0 || map_bh)
2176 goto out;
2177 /* Page fully mapped - let IO run! */
2178 err = mpage_submit_folio(mpd, folio);
2179 if (err < 0)
2180 goto out;
2181 mpage_folio_done(mpd, folio);
2182 }
2183 folio_batch_release(&fbatch);
2184 }
2185 /* Extent fully mapped and matches with page boundary. We are done. */
2186 mpd->map.m_len = 0;
2187 mpd->map.m_flags = 0;
2188 return 0;
2189out:
2190 folio_batch_release(&fbatch);
2191 return err;
2192}
2193
2194static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195{
2196 struct inode *inode = mpd->inode;
2197 struct ext4_map_blocks *map = &mpd->map;
2198 int get_blocks_flags;
2199 int err, dioread_nolock;
2200
2201 trace_ext4_da_write_pages_extent(inode, map);
2202 /*
2203 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204 * to convert an unwritten extent to be initialized (in the case
2205 * where we have written into one or more preallocated blocks). It is
2206 * possible that we're going to need more metadata blocks than
2207 * previously reserved. However we must not fail because we're in
2208 * writeback and there is nothing we can do about it so it might result
2209 * in data loss. So use reserved blocks to allocate metadata if
2210 * possible.
2211 */
2212 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214 EXT4_GET_BLOCKS_IO_SUBMIT;
2215 dioread_nolock = ext4_should_dioread_nolock(inode);
2216 if (dioread_nolock)
2217 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2218
2219 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220 if (err < 0)
2221 return err;
2222 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223 if (!mpd->io_submit.io_end->handle &&
2224 ext4_handle_valid(handle)) {
2225 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226 handle->h_rsv_handle = NULL;
2227 }
2228 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229 }
2230
2231 BUG_ON(map->m_len == 0);
2232 return 0;
2233}
2234
2235/*
2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237 * mpd->len and submit pages underlying it for IO
2238 *
2239 * @handle - handle for journal operations
2240 * @mpd - extent to map
2241 * @give_up_on_write - we set this to true iff there is a fatal error and there
2242 * is no hope of writing the data. The caller should discard
2243 * dirty pages to avoid infinite loops.
2244 *
2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247 * them to initialized or split the described range from larger unwritten
2248 * extent. Note that we need not map all the described range since allocation
2249 * can return less blocks or the range is covered by more unwritten extents. We
2250 * cannot map more because we are limited by reserved transaction credits. On
2251 * the other hand we always make sure that the last touched page is fully
2252 * mapped so that it can be written out (and thus forward progress is
2253 * guaranteed). After mapping we submit all mapped pages for IO.
2254 */
2255static int mpage_map_and_submit_extent(handle_t *handle,
2256 struct mpage_da_data *mpd,
2257 bool *give_up_on_write)
2258{
2259 struct inode *inode = mpd->inode;
2260 struct ext4_map_blocks *map = &mpd->map;
2261 int err;
2262 loff_t disksize;
2263 int progress = 0;
2264 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265 struct ext4_io_end_vec *io_end_vec;
2266
2267 io_end_vec = ext4_alloc_io_end_vec(io_end);
2268 if (IS_ERR(io_end_vec))
2269 return PTR_ERR(io_end_vec);
2270 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271 do {
2272 err = mpage_map_one_extent(handle, mpd);
2273 if (err < 0) {
2274 struct super_block *sb = inode->i_sb;
2275
2276 if (ext4_forced_shutdown(sb))
2277 goto invalidate_dirty_pages;
2278 /*
2279 * Let the uper layers retry transient errors.
2280 * In the case of ENOSPC, if ext4_count_free_blocks()
2281 * is non-zero, a commit should free up blocks.
2282 */
2283 if ((err == -ENOMEM) ||
2284 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285 if (progress)
2286 goto update_disksize;
2287 return err;
2288 }
2289 ext4_msg(sb, KERN_CRIT,
2290 "Delayed block allocation failed for "
2291 "inode %lu at logical offset %llu with"
2292 " max blocks %u with error %d",
2293 inode->i_ino,
2294 (unsigned long long)map->m_lblk,
2295 (unsigned)map->m_len, -err);
2296 ext4_msg(sb, KERN_CRIT,
2297 "This should not happen!! Data will "
2298 "be lost\n");
2299 if (err == -ENOSPC)
2300 ext4_print_free_blocks(inode);
2301 invalidate_dirty_pages:
2302 *give_up_on_write = true;
2303 return err;
2304 }
2305 progress = 1;
2306 /*
2307 * Update buffer state, submit mapped pages, and get us new
2308 * extent to map
2309 */
2310 err = mpage_map_and_submit_buffers(mpd);
2311 if (err < 0)
2312 goto update_disksize;
2313 } while (map->m_len);
2314
2315update_disksize:
2316 /*
2317 * Update on-disk size after IO is submitted. Races with
2318 * truncate are avoided by checking i_size under i_data_sem.
2319 */
2320 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322 int err2;
2323 loff_t i_size;
2324
2325 down_write(&EXT4_I(inode)->i_data_sem);
2326 i_size = i_size_read(inode);
2327 if (disksize > i_size)
2328 disksize = i_size;
2329 if (disksize > EXT4_I(inode)->i_disksize)
2330 EXT4_I(inode)->i_disksize = disksize;
2331 up_write(&EXT4_I(inode)->i_data_sem);
2332 err2 = ext4_mark_inode_dirty(handle, inode);
2333 if (err2) {
2334 ext4_error_err(inode->i_sb, -err2,
2335 "Failed to mark inode %lu dirty",
2336 inode->i_ino);
2337 }
2338 if (!err)
2339 err = err2;
2340 }
2341 return err;
2342}
2343
2344/*
2345 * Calculate the total number of credits to reserve for one writepages
2346 * iteration. This is called from ext4_writepages(). We map an extent of
2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349 * bpp - 1 blocks in bpp different extents.
2350 */
2351static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352{
2353 int bpp = ext4_journal_blocks_per_page(inode);
2354
2355 return ext4_meta_trans_blocks(inode,
2356 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357}
2358
2359static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360 size_t len)
2361{
2362 struct buffer_head *page_bufs = folio_buffers(folio);
2363 struct inode *inode = folio->mapping->host;
2364 int ret, err;
2365
2366 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367 NULL, do_journal_get_write_access);
2368 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369 NULL, write_end_fn);
2370 if (ret == 0)
2371 ret = err;
2372 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373 if (ret == 0)
2374 ret = err;
2375 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377 return ret;
2378}
2379
2380static int mpage_journal_page_buffers(handle_t *handle,
2381 struct mpage_da_data *mpd,
2382 struct folio *folio)
2383{
2384 struct inode *inode = mpd->inode;
2385 loff_t size = i_size_read(inode);
2386 size_t len = folio_size(folio);
2387
2388 folio_clear_checked(folio);
2389 mpd->wbc->nr_to_write--;
2390
2391 if (folio_pos(folio) + len > size &&
2392 !ext4_verity_in_progress(inode))
2393 len = size & (len - 1);
2394
2395 return ext4_journal_folio_buffers(handle, folio, len);
2396}
2397
2398/*
2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400 * needing mapping, submit mapped pages
2401 *
2402 * @mpd - where to look for pages
2403 *
2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405 * IO immediately. If we cannot map blocks, we submit just already mapped
2406 * buffers in the page for IO and keep page dirty. When we can map blocks and
2407 * we find a page which isn't mapped we start accumulating extent of buffers
2408 * underlying these pages that needs mapping (formed by either delayed or
2409 * unwritten buffers). We also lock the pages containing these buffers. The
2410 * extent found is returned in @mpd structure (starting at mpd->lblk with
2411 * length mpd->len blocks).
2412 *
2413 * Note that this function can attach bios to one io_end structure which are
2414 * neither logically nor physically contiguous. Although it may seem as an
2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416 * case as we need to track IO to all buffers underlying a page in one io_end.
2417 */
2418static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419{
2420 struct address_space *mapping = mpd->inode->i_mapping;
2421 struct folio_batch fbatch;
2422 unsigned int nr_folios;
2423 pgoff_t index = mpd->first_page;
2424 pgoff_t end = mpd->last_page;
2425 xa_mark_t tag;
2426 int i, err = 0;
2427 int blkbits = mpd->inode->i_blkbits;
2428 ext4_lblk_t lblk;
2429 struct buffer_head *head;
2430 handle_t *handle = NULL;
2431 int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434 tag = PAGECACHE_TAG_TOWRITE;
2435 else
2436 tag = PAGECACHE_TAG_DIRTY;
2437
2438 mpd->map.m_len = 0;
2439 mpd->next_page = index;
2440 if (ext4_should_journal_data(mpd->inode)) {
2441 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442 bpp);
2443 if (IS_ERR(handle))
2444 return PTR_ERR(handle);
2445 }
2446 folio_batch_init(&fbatch);
2447 while (index <= end) {
2448 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449 tag, &fbatch);
2450 if (nr_folios == 0)
2451 break;
2452
2453 for (i = 0; i < nr_folios; i++) {
2454 struct folio *folio = fbatch.folios[i];
2455
2456 /*
2457 * Accumulated enough dirty pages? This doesn't apply
2458 * to WB_SYNC_ALL mode. For integrity sync we have to
2459 * keep going because someone may be concurrently
2460 * dirtying pages, and we might have synced a lot of
2461 * newly appeared dirty pages, but have not synced all
2462 * of the old dirty pages.
2463 */
2464 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465 mpd->wbc->nr_to_write <=
2466 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467 goto out;
2468
2469 /* If we can't merge this page, we are done. */
2470 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471 goto out;
2472
2473 if (handle) {
2474 err = ext4_journal_ensure_credits(handle, bpp,
2475 0);
2476 if (err < 0)
2477 goto out;
2478 }
2479
2480 folio_lock(folio);
2481 /*
2482 * If the page is no longer dirty, or its mapping no
2483 * longer corresponds to inode we are writing (which
2484 * means it has been truncated or invalidated), or the
2485 * page is already under writeback and we are not doing
2486 * a data integrity writeback, skip the page
2487 */
2488 if (!folio_test_dirty(folio) ||
2489 (folio_test_writeback(folio) &&
2490 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491 unlikely(folio->mapping != mapping)) {
2492 folio_unlock(folio);
2493 continue;
2494 }
2495
2496 folio_wait_writeback(folio);
2497 BUG_ON(folio_test_writeback(folio));
2498
2499 /*
2500 * Should never happen but for buggy code in
2501 * other subsystems that call
2502 * set_page_dirty() without properly warning
2503 * the file system first. See [1] for more
2504 * information.
2505 *
2506 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507 */
2508 if (!folio_buffers(folio)) {
2509 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510 folio_clear_dirty(folio);
2511 folio_unlock(folio);
2512 continue;
2513 }
2514
2515 if (mpd->map.m_len == 0)
2516 mpd->first_page = folio->index;
2517 mpd->next_page = folio_next_index(folio);
2518 /*
2519 * Writeout when we cannot modify metadata is simple.
2520 * Just submit the page. For data=journal mode we
2521 * first handle writeout of the page for checkpoint and
2522 * only after that handle delayed page dirtying. This
2523 * makes sure current data is checkpointed to the final
2524 * location before possibly journalling it again which
2525 * is desirable when the page is frequently dirtied
2526 * through a pin.
2527 */
2528 if (!mpd->can_map) {
2529 err = mpage_submit_folio(mpd, folio);
2530 if (err < 0)
2531 goto out;
2532 /* Pending dirtying of journalled data? */
2533 if (folio_test_checked(folio)) {
2534 err = mpage_journal_page_buffers(handle,
2535 mpd, folio);
2536 if (err < 0)
2537 goto out;
2538 mpd->journalled_more_data = 1;
2539 }
2540 mpage_folio_done(mpd, folio);
2541 } else {
2542 /* Add all dirty buffers to mpd */
2543 lblk = ((ext4_lblk_t)folio->index) <<
2544 (PAGE_SHIFT - blkbits);
2545 head = folio_buffers(folio);
2546 err = mpage_process_page_bufs(mpd, head, head,
2547 lblk);
2548 if (err <= 0)
2549 goto out;
2550 err = 0;
2551 }
2552 }
2553 folio_batch_release(&fbatch);
2554 cond_resched();
2555 }
2556 mpd->scanned_until_end = 1;
2557 if (handle)
2558 ext4_journal_stop(handle);
2559 return 0;
2560out:
2561 folio_batch_release(&fbatch);
2562 if (handle)
2563 ext4_journal_stop(handle);
2564 return err;
2565}
2566
2567static int ext4_do_writepages(struct mpage_da_data *mpd)
2568{
2569 struct writeback_control *wbc = mpd->wbc;
2570 pgoff_t writeback_index = 0;
2571 long nr_to_write = wbc->nr_to_write;
2572 int range_whole = 0;
2573 int cycled = 1;
2574 handle_t *handle = NULL;
2575 struct inode *inode = mpd->inode;
2576 struct address_space *mapping = inode->i_mapping;
2577 int needed_blocks, rsv_blocks = 0, ret = 0;
2578 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2579 struct blk_plug plug;
2580 bool give_up_on_write = false;
2581
2582 trace_ext4_writepages(inode, wbc);
2583
2584 /*
2585 * No pages to write? This is mainly a kludge to avoid starting
2586 * a transaction for special inodes like journal inode on last iput()
2587 * because that could violate lock ordering on umount
2588 */
2589 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590 goto out_writepages;
2591
2592 /*
2593 * If the filesystem has aborted, it is read-only, so return
2594 * right away instead of dumping stack traces later on that
2595 * will obscure the real source of the problem. We test
2596 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597 * the latter could be true if the filesystem is mounted
2598 * read-only, and in that case, ext4_writepages should
2599 * *never* be called, so if that ever happens, we would want
2600 * the stack trace.
2601 */
2602 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603 ret = -EROFS;
2604 goto out_writepages;
2605 }
2606
2607 /*
2608 * If we have inline data and arrive here, it means that
2609 * we will soon create the block for the 1st page, so
2610 * we'd better clear the inline data here.
2611 */
2612 if (ext4_has_inline_data(inode)) {
2613 /* Just inode will be modified... */
2614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615 if (IS_ERR(handle)) {
2616 ret = PTR_ERR(handle);
2617 goto out_writepages;
2618 }
2619 BUG_ON(ext4_test_inode_state(inode,
2620 EXT4_STATE_MAY_INLINE_DATA));
2621 ext4_destroy_inline_data(handle, inode);
2622 ext4_journal_stop(handle);
2623 }
2624
2625 /*
2626 * data=journal mode does not do delalloc so we just need to writeout /
2627 * journal already mapped buffers. On the other hand we need to commit
2628 * transaction to make data stable. We expect all the data to be
2629 * already in the journal (the only exception are DMA pinned pages
2630 * dirtied behind our back) so we commit transaction here and run the
2631 * writeback loop to checkpoint them. The checkpointing is not actually
2632 * necessary to make data persistent *but* quite a few places (extent
2633 * shifting operations, fsverity, ...) depend on being able to drop
2634 * pagecache pages after calling filemap_write_and_wait() and for that
2635 * checkpointing needs to happen.
2636 */
2637 if (ext4_should_journal_data(inode)) {
2638 mpd->can_map = 0;
2639 if (wbc->sync_mode == WB_SYNC_ALL)
2640 ext4_fc_commit(sbi->s_journal,
2641 EXT4_I(inode)->i_datasync_tid);
2642 }
2643 mpd->journalled_more_data = 0;
2644
2645 if (ext4_should_dioread_nolock(inode)) {
2646 /*
2647 * We may need to convert up to one extent per block in
2648 * the page and we may dirty the inode.
2649 */
2650 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651 PAGE_SIZE >> inode->i_blkbits);
2652 }
2653
2654 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655 range_whole = 1;
2656
2657 if (wbc->range_cyclic) {
2658 writeback_index = mapping->writeback_index;
2659 if (writeback_index)
2660 cycled = 0;
2661 mpd->first_page = writeback_index;
2662 mpd->last_page = -1;
2663 } else {
2664 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666 }
2667
2668 ext4_io_submit_init(&mpd->io_submit, wbc);
2669retry:
2670 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671 tag_pages_for_writeback(mapping, mpd->first_page,
2672 mpd->last_page);
2673 blk_start_plug(&plug);
2674
2675 /*
2676 * First writeback pages that don't need mapping - we can avoid
2677 * starting a transaction unnecessarily and also avoid being blocked
2678 * in the block layer on device congestion while having transaction
2679 * started.
2680 */
2681 mpd->do_map = 0;
2682 mpd->scanned_until_end = 0;
2683 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684 if (!mpd->io_submit.io_end) {
2685 ret = -ENOMEM;
2686 goto unplug;
2687 }
2688 ret = mpage_prepare_extent_to_map(mpd);
2689 /* Unlock pages we didn't use */
2690 mpage_release_unused_pages(mpd, false);
2691 /* Submit prepared bio */
2692 ext4_io_submit(&mpd->io_submit);
2693 ext4_put_io_end_defer(mpd->io_submit.io_end);
2694 mpd->io_submit.io_end = NULL;
2695 if (ret < 0)
2696 goto unplug;
2697
2698 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699 /* For each extent of pages we use new io_end */
2700 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701 if (!mpd->io_submit.io_end) {
2702 ret = -ENOMEM;
2703 break;
2704 }
2705
2706 WARN_ON_ONCE(!mpd->can_map);
2707 /*
2708 * We have two constraints: We find one extent to map and we
2709 * must always write out whole page (makes a difference when
2710 * blocksize < pagesize) so that we don't block on IO when we
2711 * try to write out the rest of the page. Journalled mode is
2712 * not supported by delalloc.
2713 */
2714 BUG_ON(ext4_should_journal_data(inode));
2715 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717 /* start a new transaction */
2718 handle = ext4_journal_start_with_reserve(inode,
2719 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720 if (IS_ERR(handle)) {
2721 ret = PTR_ERR(handle);
2722 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723 "%ld pages, ino %lu; err %d", __func__,
2724 wbc->nr_to_write, inode->i_ino, ret);
2725 /* Release allocated io_end */
2726 ext4_put_io_end(mpd->io_submit.io_end);
2727 mpd->io_submit.io_end = NULL;
2728 break;
2729 }
2730 mpd->do_map = 1;
2731
2732 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733 ret = mpage_prepare_extent_to_map(mpd);
2734 if (!ret && mpd->map.m_len)
2735 ret = mpage_map_and_submit_extent(handle, mpd,
2736 &give_up_on_write);
2737 /*
2738 * Caution: If the handle is synchronous,
2739 * ext4_journal_stop() can wait for transaction commit
2740 * to finish which may depend on writeback of pages to
2741 * complete or on page lock to be released. In that
2742 * case, we have to wait until after we have
2743 * submitted all the IO, released page locks we hold,
2744 * and dropped io_end reference (for extent conversion
2745 * to be able to complete) before stopping the handle.
2746 */
2747 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748 ext4_journal_stop(handle);
2749 handle = NULL;
2750 mpd->do_map = 0;
2751 }
2752 /* Unlock pages we didn't use */
2753 mpage_release_unused_pages(mpd, give_up_on_write);
2754 /* Submit prepared bio */
2755 ext4_io_submit(&mpd->io_submit);
2756
2757 /*
2758 * Drop our io_end reference we got from init. We have
2759 * to be careful and use deferred io_end finishing if
2760 * we are still holding the transaction as we can
2761 * release the last reference to io_end which may end
2762 * up doing unwritten extent conversion.
2763 */
2764 if (handle) {
2765 ext4_put_io_end_defer(mpd->io_submit.io_end);
2766 ext4_journal_stop(handle);
2767 } else
2768 ext4_put_io_end(mpd->io_submit.io_end);
2769 mpd->io_submit.io_end = NULL;
2770
2771 if (ret == -ENOSPC && sbi->s_journal) {
2772 /*
2773 * Commit the transaction which would
2774 * free blocks released in the transaction
2775 * and try again
2776 */
2777 jbd2_journal_force_commit_nested(sbi->s_journal);
2778 ret = 0;
2779 continue;
2780 }
2781 /* Fatal error - ENOMEM, EIO... */
2782 if (ret)
2783 break;
2784 }
2785unplug:
2786 blk_finish_plug(&plug);
2787 if (!ret && !cycled && wbc->nr_to_write > 0) {
2788 cycled = 1;
2789 mpd->last_page = writeback_index - 1;
2790 mpd->first_page = 0;
2791 goto retry;
2792 }
2793
2794 /* Update index */
2795 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796 /*
2797 * Set the writeback_index so that range_cyclic
2798 * mode will write it back later
2799 */
2800 mapping->writeback_index = mpd->first_page;
2801
2802out_writepages:
2803 trace_ext4_writepages_result(inode, wbc, ret,
2804 nr_to_write - wbc->nr_to_write);
2805 return ret;
2806}
2807
2808static int ext4_writepages(struct address_space *mapping,
2809 struct writeback_control *wbc)
2810{
2811 struct super_block *sb = mapping->host->i_sb;
2812 struct mpage_da_data mpd = {
2813 .inode = mapping->host,
2814 .wbc = wbc,
2815 .can_map = 1,
2816 };
2817 int ret;
2818 int alloc_ctx;
2819
2820 if (unlikely(ext4_forced_shutdown(sb)))
2821 return -EIO;
2822
2823 alloc_ctx = ext4_writepages_down_read(sb);
2824 ret = ext4_do_writepages(&mpd);
2825 /*
2826 * For data=journal writeback we could have come across pages marked
2827 * for delayed dirtying (PageChecked) which were just added to the
2828 * running transaction. Try once more to get them to stable storage.
2829 */
2830 if (!ret && mpd.journalled_more_data)
2831 ret = ext4_do_writepages(&mpd);
2832 ext4_writepages_up_read(sb, alloc_ctx);
2833
2834 return ret;
2835}
2836
2837int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838{
2839 struct writeback_control wbc = {
2840 .sync_mode = WB_SYNC_ALL,
2841 .nr_to_write = LONG_MAX,
2842 .range_start = jinode->i_dirty_start,
2843 .range_end = jinode->i_dirty_end,
2844 };
2845 struct mpage_da_data mpd = {
2846 .inode = jinode->i_vfs_inode,
2847 .wbc = &wbc,
2848 .can_map = 0,
2849 };
2850 return ext4_do_writepages(&mpd);
2851}
2852
2853static int ext4_dax_writepages(struct address_space *mapping,
2854 struct writeback_control *wbc)
2855{
2856 int ret;
2857 long nr_to_write = wbc->nr_to_write;
2858 struct inode *inode = mapping->host;
2859 int alloc_ctx;
2860
2861 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862 return -EIO;
2863
2864 alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865 trace_ext4_writepages(inode, wbc);
2866
2867 ret = dax_writeback_mapping_range(mapping,
2868 EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869 trace_ext4_writepages_result(inode, wbc, ret,
2870 nr_to_write - wbc->nr_to_write);
2871 ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872 return ret;
2873}
2874
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877 s64 free_clusters, dirty_clusters;
2878 struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880 /*
2881 * switch to non delalloc mode if we are running low
2882 * on free block. The free block accounting via percpu
2883 * counters can get slightly wrong with percpu_counter_batch getting
2884 * accumulated on each CPU without updating global counters
2885 * Delalloc need an accurate free block accounting. So switch
2886 * to non delalloc when we are near to error range.
2887 */
2888 free_clusters =
2889 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 dirty_clusters =
2891 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 /*
2893 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 */
2895 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898 if (2 * free_clusters < 3 * dirty_clusters ||
2899 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 /*
2901 * free block count is less than 150% of dirty blocks
2902 * or free blocks is less than watermark
2903 */
2904 return 1;
2905 }
2906 return 0;
2907}
2908
2909static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910 loff_t pos, unsigned len,
2911 struct folio **foliop, void **fsdata)
2912{
2913 int ret, retries = 0;
2914 struct folio *folio;
2915 pgoff_t index;
2916 struct inode *inode = mapping->host;
2917
2918 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919 return -EIO;
2920
2921 index = pos >> PAGE_SHIFT;
2922
2923 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925 return ext4_write_begin(file, mapping, pos,
2926 len, foliop, fsdata);
2927 }
2928 *fsdata = (void *)0;
2929 trace_ext4_da_write_begin(inode, pos, len);
2930
2931 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933 foliop, fsdata);
2934 if (ret < 0)
2935 return ret;
2936 if (ret == 1)
2937 return 0;
2938 }
2939
2940retry:
2941 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942 mapping_gfp_mask(mapping));
2943 if (IS_ERR(folio))
2944 return PTR_ERR(folio);
2945
2946 ret = ext4_block_write_begin(NULL, folio, pos, len,
2947 ext4_da_get_block_prep);
2948 if (ret < 0) {
2949 folio_unlock(folio);
2950 folio_put(folio);
2951 /*
2952 * block_write_begin may have instantiated a few blocks
2953 * outside i_size. Trim these off again. Don't need
2954 * i_size_read because we hold inode lock.
2955 */
2956 if (pos + len > inode->i_size)
2957 ext4_truncate_failed_write(inode);
2958
2959 if (ret == -ENOSPC &&
2960 ext4_should_retry_alloc(inode->i_sb, &retries))
2961 goto retry;
2962 return ret;
2963 }
2964
2965 *foliop = folio;
2966 return ret;
2967}
2968
2969/*
2970 * Check if we should update i_disksize
2971 * when write to the end of file but not require block allocation
2972 */
2973static int ext4_da_should_update_i_disksize(struct folio *folio,
2974 unsigned long offset)
2975{
2976 struct buffer_head *bh;
2977 struct inode *inode = folio->mapping->host;
2978 unsigned int idx;
2979 int i;
2980
2981 bh = folio_buffers(folio);
2982 idx = offset >> inode->i_blkbits;
2983
2984 for (i = 0; i < idx; i++)
2985 bh = bh->b_this_page;
2986
2987 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988 return 0;
2989 return 1;
2990}
2991
2992static int ext4_da_do_write_end(struct address_space *mapping,
2993 loff_t pos, unsigned len, unsigned copied,
2994 struct folio *folio)
2995{
2996 struct inode *inode = mapping->host;
2997 loff_t old_size = inode->i_size;
2998 bool disksize_changed = false;
2999 loff_t new_i_size, zero_len = 0;
3000 handle_t *handle;
3001
3002 if (unlikely(!folio_buffers(folio))) {
3003 folio_unlock(folio);
3004 folio_put(folio);
3005 return -EIO;
3006 }
3007 /*
3008 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009 * flag, which all that's needed to trigger page writeback.
3010 */
3011 copied = block_write_end(NULL, mapping, pos, len, copied,
3012 folio, NULL);
3013 new_i_size = pos + copied;
3014
3015 /*
3016 * It's important to update i_size while still holding folio lock,
3017 * because folio writeout could otherwise come in and zero beyond
3018 * i_size.
3019 *
3020 * Since we are holding inode lock, we are sure i_disksize <=
3021 * i_size. We also know that if i_disksize < i_size, there are
3022 * delalloc writes pending in the range up to i_size. If the end of
3023 * the current write is <= i_size, there's no need to touch
3024 * i_disksize since writeback will push i_disksize up to i_size
3025 * eventually. If the end of the current write is > i_size and
3026 * inside an allocated block which ext4_da_should_update_i_disksize()
3027 * checked, we need to update i_disksize here as certain
3028 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029 */
3030 if (new_i_size > inode->i_size) {
3031 unsigned long end;
3032
3033 i_size_write(inode, new_i_size);
3034 end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036 ext4_update_i_disksize(inode, new_i_size);
3037 disksize_changed = true;
3038 }
3039 }
3040
3041 folio_unlock(folio);
3042 folio_put(folio);
3043
3044 if (pos > old_size) {
3045 pagecache_isize_extended(inode, old_size, pos);
3046 zero_len = pos - old_size;
3047 }
3048
3049 if (!disksize_changed && !zero_len)
3050 return copied;
3051
3052 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053 if (IS_ERR(handle))
3054 return PTR_ERR(handle);
3055 if (zero_len)
3056 ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057 ext4_mark_inode_dirty(handle, inode);
3058 ext4_journal_stop(handle);
3059
3060 return copied;
3061}
3062
3063static int ext4_da_write_end(struct file *file,
3064 struct address_space *mapping,
3065 loff_t pos, unsigned len, unsigned copied,
3066 struct folio *folio, void *fsdata)
3067{
3068 struct inode *inode = mapping->host;
3069 int write_mode = (int)(unsigned long)fsdata;
3070
3071 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072 return ext4_write_end(file, mapping, pos,
3073 len, copied, folio, fsdata);
3074
3075 trace_ext4_da_write_end(inode, pos, len, copied);
3076
3077 if (write_mode != CONVERT_INLINE_DATA &&
3078 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079 ext4_has_inline_data(inode))
3080 return ext4_write_inline_data_end(inode, pos, len, copied,
3081 folio);
3082
3083 if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084 copied = 0;
3085
3086 return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087}
3088
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
3094 trace_ext4_alloc_da_blocks(inode);
3095
3096 if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 return 0;
3098
3099 /*
3100 * We do something simple for now. The filemap_flush() will
3101 * also start triggering a write of the data blocks, which is
3102 * not strictly speaking necessary (and for users of
3103 * laptop_mode, not even desirable). However, to do otherwise
3104 * would require replicating code paths in:
3105 *
3106 * ext4_writepages() ->
3107 * write_cache_pages() ---> (via passed in callback function)
3108 * __mpage_da_writepage() -->
3109 * mpage_add_bh_to_extent()
3110 * mpage_da_map_blocks()
3111 *
3112 * The problem is that write_cache_pages(), located in
3113 * mm/page-writeback.c, marks pages clean in preparation for
3114 * doing I/O, which is not desirable if we're not planning on
3115 * doing I/O at all.
3116 *
3117 * We could call write_cache_pages(), and then redirty all of
3118 * the pages by calling redirty_page_for_writepage() but that
3119 * would be ugly in the extreme. So instead we would need to
3120 * replicate parts of the code in the above functions,
3121 * simplifying them because we wouldn't actually intend to
3122 * write out the pages, but rather only collect contiguous
3123 * logical block extents, call the multi-block allocator, and
3124 * then update the buffer heads with the block allocations.
3125 *
3126 * For now, though, we'll cheat by calling filemap_flush(),
3127 * which will map the blocks, and start the I/O, but not
3128 * actually wait for the I/O to complete.
3129 */
3130 return filemap_flush(inode->i_mapping);
3131}
3132
3133/*
3134 * bmap() is special. It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal. If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148{
3149 struct inode *inode = mapping->host;
3150 sector_t ret = 0;
3151
3152 inode_lock_shared(inode);
3153 /*
3154 * We can get here for an inline file via the FIBMAP ioctl
3155 */
3156 if (ext4_has_inline_data(inode))
3157 goto out;
3158
3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 (test_opt(inode->i_sb, DELALLOC) ||
3161 ext4_should_journal_data(inode))) {
3162 /*
3163 * With delalloc or journalled data we want to sync the file so
3164 * that we can make sure we allocate blocks for file and data
3165 * is in place for the user to see it
3166 */
3167 filemap_write_and_wait(mapping);
3168 }
3169
3170 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3171
3172out:
3173 inode_unlock_shared(inode);
3174 return ret;
3175}
3176
3177static int ext4_read_folio(struct file *file, struct folio *folio)
3178{
3179 int ret = -EAGAIN;
3180 struct inode *inode = folio->mapping->host;
3181
3182 trace_ext4_read_folio(inode, folio);
3183
3184 if (ext4_has_inline_data(inode))
3185 ret = ext4_readpage_inline(inode, folio);
3186
3187 if (ret == -EAGAIN)
3188 return ext4_mpage_readpages(inode, NULL, folio);
3189
3190 return ret;
3191}
3192
3193static void ext4_readahead(struct readahead_control *rac)
3194{
3195 struct inode *inode = rac->mapping->host;
3196
3197 /* If the file has inline data, no need to do readahead. */
3198 if (ext4_has_inline_data(inode))
3199 return;
3200
3201 ext4_mpage_readpages(inode, rac, NULL);
3202}
3203
3204static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205 size_t length)
3206{
3207 trace_ext4_invalidate_folio(folio, offset, length);
3208
3209 /* No journalling happens on data buffers when this function is used */
3210 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211
3212 block_invalidate_folio(folio, offset, length);
3213}
3214
3215static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216 size_t offset, size_t length)
3217{
3218 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222 /*
3223 * If it's a full truncate we just forget about the pending dirtying
3224 */
3225 if (offset == 0 && length == folio_size(folio))
3226 folio_clear_checked(folio);
3227
3228 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229}
3230
3231/* Wrapper for aops... */
3232static void ext4_journalled_invalidate_folio(struct folio *folio,
3233 size_t offset,
3234 size_t length)
3235{
3236 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237}
3238
3239static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240{
3241 struct inode *inode = folio->mapping->host;
3242 journal_t *journal = EXT4_JOURNAL(inode);
3243
3244 trace_ext4_release_folio(inode, folio);
3245
3246 /* Page has dirty journalled data -> cannot release */
3247 if (folio_test_checked(folio))
3248 return false;
3249 if (journal)
3250 return jbd2_journal_try_to_free_buffers(journal, folio);
3251 else
3252 return try_to_free_buffers(folio);
3253}
3254
3255static bool ext4_inode_datasync_dirty(struct inode *inode)
3256{
3257 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258
3259 if (journal) {
3260 if (jbd2_transaction_committed(journal,
3261 EXT4_I(inode)->i_datasync_tid))
3262 return false;
3263 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264 return !list_empty(&EXT4_I(inode)->i_fc_list);
3265 return true;
3266 }
3267
3268 /* Any metadata buffers to write? */
3269 if (!list_empty(&inode->i_mapping->i_private_list))
3270 return true;
3271 return inode->i_state & I_DIRTY_DATASYNC;
3272}
3273
3274static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275 struct ext4_map_blocks *map, loff_t offset,
3276 loff_t length, unsigned int flags)
3277{
3278 u8 blkbits = inode->i_blkbits;
3279
3280 /*
3281 * Writes that span EOF might trigger an I/O size update on completion,
3282 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283 * there is no other metadata changes being made or are pending.
3284 */
3285 iomap->flags = 0;
3286 if (ext4_inode_datasync_dirty(inode) ||
3287 offset + length > i_size_read(inode))
3288 iomap->flags |= IOMAP_F_DIRTY;
3289
3290 if (map->m_flags & EXT4_MAP_NEW)
3291 iomap->flags |= IOMAP_F_NEW;
3292
3293 if (flags & IOMAP_DAX)
3294 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295 else
3296 iomap->bdev = inode->i_sb->s_bdev;
3297 iomap->offset = (u64) map->m_lblk << blkbits;
3298 iomap->length = (u64) map->m_len << blkbits;
3299
3300 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302 iomap->flags |= IOMAP_F_MERGED;
3303
3304 /*
3305 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307 * set. In order for any allocated unwritten extents to be converted
3308 * into written extents correctly within the ->end_io() handler, we
3309 * need to ensure that the iomap->type is set appropriately. Hence, the
3310 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311 * been set first.
3312 */
3313 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314 iomap->type = IOMAP_UNWRITTEN;
3315 iomap->addr = (u64) map->m_pblk << blkbits;
3316 if (flags & IOMAP_DAX)
3317 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3319 iomap->type = IOMAP_MAPPED;
3320 iomap->addr = (u64) map->m_pblk << blkbits;
3321 if (flags & IOMAP_DAX)
3322 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323 } else if (map->m_flags & EXT4_MAP_DELAYED) {
3324 iomap->type = IOMAP_DELALLOC;
3325 iomap->addr = IOMAP_NULL_ADDR;
3326 } else {
3327 iomap->type = IOMAP_HOLE;
3328 iomap->addr = IOMAP_NULL_ADDR;
3329 }
3330}
3331
3332static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333 unsigned int flags)
3334{
3335 handle_t *handle;
3336 u8 blkbits = inode->i_blkbits;
3337 int ret, dio_credits, m_flags = 0, retries = 0;
3338
3339 /*
3340 * Trim the mapping request to the maximum value that we can map at
3341 * once for direct I/O.
3342 */
3343 if (map->m_len > DIO_MAX_BLOCKS)
3344 map->m_len = DIO_MAX_BLOCKS;
3345 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347retry:
3348 /*
3349 * Either we allocate blocks and then don't get an unwritten extent, so
3350 * in that case we have reserved enough credits. Or, the blocks are
3351 * already allocated and unwritten. In that case, the extent conversion
3352 * fits into the credits as well.
3353 */
3354 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355 if (IS_ERR(handle))
3356 return PTR_ERR(handle);
3357
3358 /*
3359 * DAX and direct I/O are the only two operations that are currently
3360 * supported with IOMAP_WRITE.
3361 */
3362 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363 if (flags & IOMAP_DAX)
3364 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365 /*
3366 * We use i_size instead of i_disksize here because delalloc writeback
3367 * can complete at any point during the I/O and subsequently push the
3368 * i_disksize out to i_size. This could be beyond where direct I/O is
3369 * happening and thus expose allocated blocks to direct I/O reads.
3370 */
3371 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372 m_flags = EXT4_GET_BLOCKS_CREATE;
3373 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375
3376 ret = ext4_map_blocks(handle, inode, map, m_flags);
3377
3378 /*
3379 * We cannot fill holes in indirect tree based inodes as that could
3380 * expose stale data in the case of a crash. Use the magic error code
3381 * to fallback to buffered I/O.
3382 */
3383 if (!m_flags && !ret)
3384 ret = -ENOTBLK;
3385
3386 ext4_journal_stop(handle);
3387 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388 goto retry;
3389
3390 return ret;
3391}
3392
3393
3394static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396{
3397 int ret;
3398 struct ext4_map_blocks map;
3399 u8 blkbits = inode->i_blkbits;
3400
3401 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402 return -EINVAL;
3403
3404 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405 return -ERANGE;
3406
3407 /*
3408 * Calculate the first and last logical blocks respectively.
3409 */
3410 map.m_lblk = offset >> blkbits;
3411 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413
3414 if (flags & IOMAP_WRITE) {
3415 /*
3416 * We check here if the blocks are already allocated, then we
3417 * don't need to start a journal txn and we can directly return
3418 * the mapping information. This could boost performance
3419 * especially in multi-threaded overwrite requests.
3420 */
3421 if (offset + length <= i_size_read(inode)) {
3422 ret = ext4_map_blocks(NULL, inode, &map, 0);
3423 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424 goto out;
3425 }
3426 ret = ext4_iomap_alloc(inode, &map, flags);
3427 } else {
3428 ret = ext4_map_blocks(NULL, inode, &map, 0);
3429 }
3430
3431 if (ret < 0)
3432 return ret;
3433out:
3434 /*
3435 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436 * has to be broken up to guarantee DUN contiguity. Handle this by
3437 * limiting the length of the mapping returned.
3438 */
3439 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443 return 0;
3444}
3445
3446static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447 loff_t length, unsigned flags, struct iomap *iomap,
3448 struct iomap *srcmap)
3449{
3450 int ret;
3451
3452 /*
3453 * Even for writes we don't need to allocate blocks, so just pretend
3454 * we are reading to save overhead of starting a transaction.
3455 */
3456 flags &= ~IOMAP_WRITE;
3457 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459 return ret;
3460}
3461
3462static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463{
3464 /* must be a directio to fall back to buffered */
3465 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466 (IOMAP_WRITE | IOMAP_DIRECT))
3467 return false;
3468
3469 /* atomic writes are all-or-nothing */
3470 if (flags & IOMAP_ATOMIC)
3471 return false;
3472
3473 /* can only try again if we wrote nothing */
3474 return written == 0;
3475}
3476
3477static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478 ssize_t written, unsigned flags, struct iomap *iomap)
3479{
3480 /*
3481 * Check to see whether an error occurred while writing out the data to
3482 * the allocated blocks. If so, return the magic error code for
3483 * non-atomic write so that we fallback to buffered I/O and attempt to
3484 * complete the remainder of the I/O.
3485 * For non-atomic writes, any blocks that may have been
3486 * allocated in preparation for the direct I/O will be reused during
3487 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488 */
3489 if (ext4_want_directio_fallback(flags, written))
3490 return -ENOTBLK;
3491
3492 return 0;
3493}
3494
3495const struct iomap_ops ext4_iomap_ops = {
3496 .iomap_begin = ext4_iomap_begin,
3497 .iomap_end = ext4_iomap_end,
3498};
3499
3500const struct iomap_ops ext4_iomap_overwrite_ops = {
3501 .iomap_begin = ext4_iomap_overwrite_begin,
3502 .iomap_end = ext4_iomap_end,
3503};
3504
3505static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506 loff_t length, unsigned int flags,
3507 struct iomap *iomap, struct iomap *srcmap)
3508{
3509 int ret;
3510 struct ext4_map_blocks map;
3511 u8 blkbits = inode->i_blkbits;
3512
3513 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514 return -EINVAL;
3515
3516 if (ext4_has_inline_data(inode)) {
3517 ret = ext4_inline_data_iomap(inode, iomap);
3518 if (ret != -EAGAIN) {
3519 if (ret == 0 && offset >= iomap->length)
3520 ret = -ENOENT;
3521 return ret;
3522 }
3523 }
3524
3525 /*
3526 * Calculate the first and last logical block respectively.
3527 */
3528 map.m_lblk = offset >> blkbits;
3529 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531
3532 /*
3533 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534 * So handle it here itself instead of querying ext4_map_blocks().
3535 * Since ext4_map_blocks() will warn about it and will return
3536 * -EIO error.
3537 */
3538 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541 if (offset >= sbi->s_bitmap_maxbytes) {
3542 map.m_flags = 0;
3543 goto set_iomap;
3544 }
3545 }
3546
3547 ret = ext4_map_blocks(NULL, inode, &map, 0);
3548 if (ret < 0)
3549 return ret;
3550set_iomap:
3551 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553 return 0;
3554}
3555
3556const struct iomap_ops ext4_iomap_report_ops = {
3557 .iomap_begin = ext4_iomap_begin_report,
3558};
3559
3560/*
3561 * For data=journal mode, folio should be marked dirty only when it was
3562 * writeably mapped. When that happens, it was already attached to the
3563 * transaction and marked as jbddirty (we take care of this in
3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565 * so we should have nothing to do here, except for the case when someone
3566 * had the page pinned and dirtied the page through this pin (e.g. by doing
3567 * direct IO to it). In that case we'd need to attach buffers here to the
3568 * transaction but we cannot due to lock ordering. We cannot just dirty the
3569 * folio and leave attached buffers clean, because the buffers' dirty state is
3570 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3571 * the journalling code will explode. So what we do is to mark the folio
3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573 * to the transaction appropriately.
3574 */
3575static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576 struct folio *folio)
3577{
3578 WARN_ON_ONCE(!folio_buffers(folio));
3579 if (folio_maybe_dma_pinned(folio))
3580 folio_set_checked(folio);
3581 return filemap_dirty_folio(mapping, folio);
3582}
3583
3584static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585{
3586 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587 WARN_ON_ONCE(!folio_buffers(folio));
3588 return block_dirty_folio(mapping, folio);
3589}
3590
3591static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592 struct file *file, sector_t *span)
3593{
3594 return iomap_swapfile_activate(sis, file, span,
3595 &ext4_iomap_report_ops);
3596}
3597
3598static const struct address_space_operations ext4_aops = {
3599 .read_folio = ext4_read_folio,
3600 .readahead = ext4_readahead,
3601 .writepages = ext4_writepages,
3602 .write_begin = ext4_write_begin,
3603 .write_end = ext4_write_end,
3604 .dirty_folio = ext4_dirty_folio,
3605 .bmap = ext4_bmap,
3606 .invalidate_folio = ext4_invalidate_folio,
3607 .release_folio = ext4_release_folio,
3608 .migrate_folio = buffer_migrate_folio,
3609 .is_partially_uptodate = block_is_partially_uptodate,
3610 .error_remove_folio = generic_error_remove_folio,
3611 .swap_activate = ext4_iomap_swap_activate,
3612};
3613
3614static const struct address_space_operations ext4_journalled_aops = {
3615 .read_folio = ext4_read_folio,
3616 .readahead = ext4_readahead,
3617 .writepages = ext4_writepages,
3618 .write_begin = ext4_write_begin,
3619 .write_end = ext4_journalled_write_end,
3620 .dirty_folio = ext4_journalled_dirty_folio,
3621 .bmap = ext4_bmap,
3622 .invalidate_folio = ext4_journalled_invalidate_folio,
3623 .release_folio = ext4_release_folio,
3624 .migrate_folio = buffer_migrate_folio_norefs,
3625 .is_partially_uptodate = block_is_partially_uptodate,
3626 .error_remove_folio = generic_error_remove_folio,
3627 .swap_activate = ext4_iomap_swap_activate,
3628};
3629
3630static const struct address_space_operations ext4_da_aops = {
3631 .read_folio = ext4_read_folio,
3632 .readahead = ext4_readahead,
3633 .writepages = ext4_writepages,
3634 .write_begin = ext4_da_write_begin,
3635 .write_end = ext4_da_write_end,
3636 .dirty_folio = ext4_dirty_folio,
3637 .bmap = ext4_bmap,
3638 .invalidate_folio = ext4_invalidate_folio,
3639 .release_folio = ext4_release_folio,
3640 .migrate_folio = buffer_migrate_folio,
3641 .is_partially_uptodate = block_is_partially_uptodate,
3642 .error_remove_folio = generic_error_remove_folio,
3643 .swap_activate = ext4_iomap_swap_activate,
3644};
3645
3646static const struct address_space_operations ext4_dax_aops = {
3647 .writepages = ext4_dax_writepages,
3648 .dirty_folio = noop_dirty_folio,
3649 .bmap = ext4_bmap,
3650 .swap_activate = ext4_iomap_swap_activate,
3651};
3652
3653void ext4_set_aops(struct inode *inode)
3654{
3655 switch (ext4_inode_journal_mode(inode)) {
3656 case EXT4_INODE_ORDERED_DATA_MODE:
3657 case EXT4_INODE_WRITEBACK_DATA_MODE:
3658 break;
3659 case EXT4_INODE_JOURNAL_DATA_MODE:
3660 inode->i_mapping->a_ops = &ext4_journalled_aops;
3661 return;
3662 default:
3663 BUG();
3664 }
3665 if (IS_DAX(inode))
3666 inode->i_mapping->a_ops = &ext4_dax_aops;
3667 else if (test_opt(inode->i_sb, DELALLOC))
3668 inode->i_mapping->a_ops = &ext4_da_aops;
3669 else
3670 inode->i_mapping->a_ops = &ext4_aops;
3671}
3672
3673/*
3674 * Here we can't skip an unwritten buffer even though it usually reads zero
3675 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677 * racing writeback can come later and flush the stale pagecache to disk.
3678 */
3679static int __ext4_block_zero_page_range(handle_t *handle,
3680 struct address_space *mapping, loff_t from, loff_t length)
3681{
3682 ext4_fsblk_t index = from >> PAGE_SHIFT;
3683 unsigned offset = from & (PAGE_SIZE-1);
3684 unsigned blocksize, pos;
3685 ext4_lblk_t iblock;
3686 struct inode *inode = mapping->host;
3687 struct buffer_head *bh;
3688 struct folio *folio;
3689 int err = 0;
3690
3691 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693 mapping_gfp_constraint(mapping, ~__GFP_FS));
3694 if (IS_ERR(folio))
3695 return PTR_ERR(folio);
3696
3697 blocksize = inode->i_sb->s_blocksize;
3698
3699 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700
3701 bh = folio_buffers(folio);
3702 if (!bh)
3703 bh = create_empty_buffers(folio, blocksize, 0);
3704
3705 /* Find the buffer that contains "offset" */
3706 pos = blocksize;
3707 while (offset >= pos) {
3708 bh = bh->b_this_page;
3709 iblock++;
3710 pos += blocksize;
3711 }
3712 if (buffer_freed(bh)) {
3713 BUFFER_TRACE(bh, "freed: skip");
3714 goto unlock;
3715 }
3716 if (!buffer_mapped(bh)) {
3717 BUFFER_TRACE(bh, "unmapped");
3718 ext4_get_block(inode, iblock, bh, 0);
3719 /* unmapped? It's a hole - nothing to do */
3720 if (!buffer_mapped(bh)) {
3721 BUFFER_TRACE(bh, "still unmapped");
3722 goto unlock;
3723 }
3724 }
3725
3726 /* Ok, it's mapped. Make sure it's up-to-date */
3727 if (folio_test_uptodate(folio))
3728 set_buffer_uptodate(bh);
3729
3730 if (!buffer_uptodate(bh)) {
3731 err = ext4_read_bh_lock(bh, 0, true);
3732 if (err)
3733 goto unlock;
3734 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3735 /* We expect the key to be set. */
3736 BUG_ON(!fscrypt_has_encryption_key(inode));
3737 err = fscrypt_decrypt_pagecache_blocks(folio,
3738 blocksize,
3739 bh_offset(bh));
3740 if (err) {
3741 clear_buffer_uptodate(bh);
3742 goto unlock;
3743 }
3744 }
3745 }
3746 if (ext4_should_journal_data(inode)) {
3747 BUFFER_TRACE(bh, "get write access");
3748 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749 EXT4_JTR_NONE);
3750 if (err)
3751 goto unlock;
3752 }
3753 folio_zero_range(folio, offset, length);
3754 BUFFER_TRACE(bh, "zeroed end of block");
3755
3756 if (ext4_should_journal_data(inode)) {
3757 err = ext4_dirty_journalled_data(handle, bh);
3758 } else {
3759 err = 0;
3760 mark_buffer_dirty(bh);
3761 if (ext4_should_order_data(inode))
3762 err = ext4_jbd2_inode_add_write(handle, inode, from,
3763 length);
3764 }
3765
3766unlock:
3767 folio_unlock(folio);
3768 folio_put(folio);
3769 return err;
3770}
3771
3772/*
3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774 * starting from file offset 'from'. The range to be zero'd must
3775 * be contained with in one block. If the specified range exceeds
3776 * the end of the block it will be shortened to end of the block
3777 * that corresponds to 'from'
3778 */
3779static int ext4_block_zero_page_range(handle_t *handle,
3780 struct address_space *mapping, loff_t from, loff_t length)
3781{
3782 struct inode *inode = mapping->host;
3783 unsigned offset = from & (PAGE_SIZE-1);
3784 unsigned blocksize = inode->i_sb->s_blocksize;
3785 unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787 /*
3788 * correct length if it does not fall between
3789 * 'from' and the end of the block
3790 */
3791 if (length > max || length < 0)
3792 length = max;
3793
3794 if (IS_DAX(inode)) {
3795 return dax_zero_range(inode, from, length, NULL,
3796 &ext4_iomap_ops);
3797 }
3798 return __ext4_block_zero_page_range(handle, mapping, from, length);
3799}
3800
3801/*
3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803 * up to the end of the block which corresponds to `from'.
3804 * This required during truncate. We need to physically zero the tail end
3805 * of that block so it doesn't yield old data if the file is later grown.
3806 */
3807static int ext4_block_truncate_page(handle_t *handle,
3808 struct address_space *mapping, loff_t from)
3809{
3810 unsigned offset = from & (PAGE_SIZE-1);
3811 unsigned length;
3812 unsigned blocksize;
3813 struct inode *inode = mapping->host;
3814
3815 /* If we are processing an encrypted inode during orphan list handling */
3816 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817 return 0;
3818
3819 blocksize = inode->i_sb->s_blocksize;
3820 length = blocksize - (offset & (blocksize - 1));
3821
3822 return ext4_block_zero_page_range(handle, mapping, from, length);
3823}
3824
3825int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826 loff_t lstart, loff_t length)
3827{
3828 struct super_block *sb = inode->i_sb;
3829 struct address_space *mapping = inode->i_mapping;
3830 unsigned partial_start, partial_end;
3831 ext4_fsblk_t start, end;
3832 loff_t byte_end = (lstart + length - 1);
3833 int err = 0;
3834
3835 partial_start = lstart & (sb->s_blocksize - 1);
3836 partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838 start = lstart >> sb->s_blocksize_bits;
3839 end = byte_end >> sb->s_blocksize_bits;
3840
3841 /* Handle partial zero within the single block */
3842 if (start == end &&
3843 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844 err = ext4_block_zero_page_range(handle, mapping,
3845 lstart, length);
3846 return err;
3847 }
3848 /* Handle partial zero out on the start of the range */
3849 if (partial_start) {
3850 err = ext4_block_zero_page_range(handle, mapping,
3851 lstart, sb->s_blocksize);
3852 if (err)
3853 return err;
3854 }
3855 /* Handle partial zero out on the end of the range */
3856 if (partial_end != sb->s_blocksize - 1)
3857 err = ext4_block_zero_page_range(handle, mapping,
3858 byte_end - partial_end,
3859 partial_end + 1);
3860 return err;
3861}
3862
3863int ext4_can_truncate(struct inode *inode)
3864{
3865 if (S_ISREG(inode->i_mode))
3866 return 1;
3867 if (S_ISDIR(inode->i_mode))
3868 return 1;
3869 if (S_ISLNK(inode->i_mode))
3870 return !ext4_inode_is_fast_symlink(inode);
3871 return 0;
3872}
3873
3874/*
3875 * We have to make sure i_disksize gets properly updated before we truncate
3876 * page cache due to hole punching or zero range. Otherwise i_disksize update
3877 * can get lost as it may have been postponed to submission of writeback but
3878 * that will never happen after we truncate page cache.
3879 */
3880int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881 loff_t len)
3882{
3883 handle_t *handle;
3884 int ret;
3885
3886 loff_t size = i_size_read(inode);
3887
3888 WARN_ON(!inode_is_locked(inode));
3889 if (offset > size || offset + len < size)
3890 return 0;
3891
3892 if (EXT4_I(inode)->i_disksize >= size)
3893 return 0;
3894
3895 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896 if (IS_ERR(handle))
3897 return PTR_ERR(handle);
3898 ext4_update_i_disksize(inode, size);
3899 ret = ext4_mark_inode_dirty(handle, inode);
3900 ext4_journal_stop(handle);
3901
3902 return ret;
3903}
3904
3905static void ext4_wait_dax_page(struct inode *inode)
3906{
3907 filemap_invalidate_unlock(inode->i_mapping);
3908 schedule();
3909 filemap_invalidate_lock(inode->i_mapping);
3910}
3911
3912int ext4_break_layouts(struct inode *inode)
3913{
3914 struct page *page;
3915 int error;
3916
3917 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918 return -EINVAL;
3919
3920 do {
3921 page = dax_layout_busy_page(inode->i_mapping);
3922 if (!page)
3923 return 0;
3924
3925 error = ___wait_var_event(&page->_refcount,
3926 atomic_read(&page->_refcount) == 1,
3927 TASK_INTERRUPTIBLE, 0, 0,
3928 ext4_wait_dax_page(inode));
3929 } while (error == 0);
3930
3931 return error;
3932}
3933
3934/*
3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936 * associated with the given offset and length
3937 *
3938 * @inode: File inode
3939 * @offset: The offset where the hole will begin
3940 * @len: The length of the hole
3941 *
3942 * Returns: 0 on success or negative on failure
3943 */
3944
3945int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946{
3947 struct inode *inode = file_inode(file);
3948 struct super_block *sb = inode->i_sb;
3949 ext4_lblk_t first_block, stop_block;
3950 struct address_space *mapping = inode->i_mapping;
3951 loff_t first_block_offset, last_block_offset, max_length;
3952 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953 handle_t *handle;
3954 unsigned int credits;
3955 int ret = 0, ret2 = 0;
3956
3957 trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959 /*
3960 * Write out all dirty pages to avoid race conditions
3961 * Then release them.
3962 */
3963 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964 ret = filemap_write_and_wait_range(mapping, offset,
3965 offset + length - 1);
3966 if (ret)
3967 return ret;
3968 }
3969
3970 inode_lock(inode);
3971
3972 /* No need to punch hole beyond i_size */
3973 if (offset >= inode->i_size)
3974 goto out_mutex;
3975
3976 /*
3977 * If the hole extends beyond i_size, set the hole
3978 * to end after the page that contains i_size
3979 */
3980 if (offset + length > inode->i_size) {
3981 length = inode->i_size +
3982 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983 offset;
3984 }
3985
3986 /*
3987 * For punch hole the length + offset needs to be within one block
3988 * before last range. Adjust the length if it goes beyond that limit.
3989 */
3990 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991 if (offset + length > max_length)
3992 length = max_length - offset;
3993
3994 if (offset & (sb->s_blocksize - 1) ||
3995 (offset + length) & (sb->s_blocksize - 1)) {
3996 /*
3997 * Attach jinode to inode for jbd2 if we do any zeroing of
3998 * partial block
3999 */
4000 ret = ext4_inode_attach_jinode(inode);
4001 if (ret < 0)
4002 goto out_mutex;
4003
4004 }
4005
4006 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4007 inode_dio_wait(inode);
4008
4009 ret = file_modified(file);
4010 if (ret)
4011 goto out_mutex;
4012
4013 /*
4014 * Prevent page faults from reinstantiating pages we have released from
4015 * page cache.
4016 */
4017 filemap_invalidate_lock(mapping);
4018
4019 ret = ext4_break_layouts(inode);
4020 if (ret)
4021 goto out_dio;
4022
4023 first_block_offset = round_up(offset, sb->s_blocksize);
4024 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026 /* Now release the pages and zero block aligned part of pages*/
4027 if (last_block_offset > first_block_offset) {
4028 ret = ext4_update_disksize_before_punch(inode, offset, length);
4029 if (ret)
4030 goto out_dio;
4031 truncate_pagecache_range(inode, first_block_offset,
4032 last_block_offset);
4033 }
4034
4035 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036 credits = ext4_writepage_trans_blocks(inode);
4037 else
4038 credits = ext4_blocks_for_truncate(inode);
4039 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040 if (IS_ERR(handle)) {
4041 ret = PTR_ERR(handle);
4042 ext4_std_error(sb, ret);
4043 goto out_dio;
4044 }
4045
4046 ret = ext4_zero_partial_blocks(handle, inode, offset,
4047 length);
4048 if (ret)
4049 goto out_stop;
4050
4051 first_block = (offset + sb->s_blocksize - 1) >>
4052 EXT4_BLOCK_SIZE_BITS(sb);
4053 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055 /* If there are blocks to remove, do it */
4056 if (stop_block > first_block) {
4057 ext4_lblk_t hole_len = stop_block - first_block;
4058
4059 down_write(&EXT4_I(inode)->i_data_sem);
4060 ext4_discard_preallocations(inode);
4061
4062 ext4_es_remove_extent(inode, first_block, hole_len);
4063
4064 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065 ret = ext4_ext_remove_space(inode, first_block,
4066 stop_block - 1);
4067 else
4068 ret = ext4_ind_remove_space(handle, inode, first_block,
4069 stop_block);
4070
4071 ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072 EXTENT_STATUS_HOLE, 0);
4073 up_write(&EXT4_I(inode)->i_data_sem);
4074 }
4075 ext4_fc_track_range(handle, inode, first_block, stop_block);
4076 if (IS_SYNC(inode))
4077 ext4_handle_sync(handle);
4078
4079 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080 ret2 = ext4_mark_inode_dirty(handle, inode);
4081 if (unlikely(ret2))
4082 ret = ret2;
4083 if (ret >= 0)
4084 ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086 ext4_journal_stop(handle);
4087out_dio:
4088 filemap_invalidate_unlock(mapping);
4089out_mutex:
4090 inode_unlock(inode);
4091 return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096 struct ext4_inode_info *ei = EXT4_I(inode);
4097 struct jbd2_inode *jinode;
4098
4099 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100 return 0;
4101
4102 jinode = jbd2_alloc_inode(GFP_KERNEL);
4103 spin_lock(&inode->i_lock);
4104 if (!ei->jinode) {
4105 if (!jinode) {
4106 spin_unlock(&inode->i_lock);
4107 return -ENOMEM;
4108 }
4109 ei->jinode = jinode;
4110 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111 jinode = NULL;
4112 }
4113 spin_unlock(&inode->i_lock);
4114 if (unlikely(jinode != NULL))
4115 jbd2_free_inode(jinode);
4116 return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk. We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable. It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go. So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem. But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149 struct ext4_inode_info *ei = EXT4_I(inode);
4150 unsigned int credits;
4151 int err = 0, err2;
4152 handle_t *handle;
4153 struct address_space *mapping = inode->i_mapping;
4154
4155 /*
4156 * There is a possibility that we're either freeing the inode
4157 * or it's a completely new inode. In those cases we might not
4158 * have i_rwsem locked because it's not necessary.
4159 */
4160 if (!(inode->i_state & (I_NEW|I_FREEING)))
4161 WARN_ON(!inode_is_locked(inode));
4162 trace_ext4_truncate_enter(inode);
4163
4164 if (!ext4_can_truncate(inode))
4165 goto out_trace;
4166
4167 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170 if (ext4_has_inline_data(inode)) {
4171 int has_inline = 1;
4172
4173 err = ext4_inline_data_truncate(inode, &has_inline);
4174 if (err || has_inline)
4175 goto out_trace;
4176 }
4177
4178 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180 err = ext4_inode_attach_jinode(inode);
4181 if (err)
4182 goto out_trace;
4183 }
4184
4185 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186 credits = ext4_writepage_trans_blocks(inode);
4187 else
4188 credits = ext4_blocks_for_truncate(inode);
4189
4190 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191 if (IS_ERR(handle)) {
4192 err = PTR_ERR(handle);
4193 goto out_trace;
4194 }
4195
4196 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197 ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199 /*
4200 * We add the inode to the orphan list, so that if this
4201 * truncate spans multiple transactions, and we crash, we will
4202 * resume the truncate when the filesystem recovers. It also
4203 * marks the inode dirty, to catch the new size.
4204 *
4205 * Implication: the file must always be in a sane, consistent
4206 * truncatable state while each transaction commits.
4207 */
4208 err = ext4_orphan_add(handle, inode);
4209 if (err)
4210 goto out_stop;
4211
4212 down_write(&EXT4_I(inode)->i_data_sem);
4213
4214 ext4_discard_preallocations(inode);
4215
4216 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217 err = ext4_ext_truncate(handle, inode);
4218 else
4219 ext4_ind_truncate(handle, inode);
4220
4221 up_write(&ei->i_data_sem);
4222 if (err)
4223 goto out_stop;
4224
4225 if (IS_SYNC(inode))
4226 ext4_handle_sync(handle);
4227
4228out_stop:
4229 /*
4230 * If this was a simple ftruncate() and the file will remain alive,
4231 * then we need to clear up the orphan record which we created above.
4232 * However, if this was a real unlink then we were called by
4233 * ext4_evict_inode(), and we allow that function to clean up the
4234 * orphan info for us.
4235 */
4236 if (inode->i_nlink)
4237 ext4_orphan_del(handle, inode);
4238
4239 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240 err2 = ext4_mark_inode_dirty(handle, inode);
4241 if (unlikely(err2 && !err))
4242 err = err2;
4243 ext4_journal_stop(handle);
4244
4245out_trace:
4246 trace_ext4_truncate_exit(inode);
4247 return err;
4248}
4249
4250static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251{
4252 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253 return inode_peek_iversion_raw(inode);
4254 else
4255 return inode_peek_iversion(inode);
4256}
4257
4258static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259 struct ext4_inode_info *ei)
4260{
4261 struct inode *inode = &(ei->vfs_inode);
4262 u64 i_blocks = READ_ONCE(inode->i_blocks);
4263 struct super_block *sb = inode->i_sb;
4264
4265 if (i_blocks <= ~0U) {
4266 /*
4267 * i_blocks can be represented in a 32 bit variable
4268 * as multiple of 512 bytes
4269 */
4270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4271 raw_inode->i_blocks_high = 0;
4272 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273 return 0;
4274 }
4275
4276 /*
4277 * This should never happen since sb->s_maxbytes should not have
4278 * allowed this, sb->s_maxbytes was set according to the huge_file
4279 * feature in ext4_fill_super().
4280 */
4281 if (!ext4_has_feature_huge_file(sb))
4282 return -EFSCORRUPTED;
4283
4284 if (i_blocks <= 0xffffffffffffULL) {
4285 /*
4286 * i_blocks can be represented in a 48 bit variable
4287 * as multiple of 512 bytes
4288 */
4289 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4290 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292 } else {
4293 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294 /* i_block is stored in file system block size */
4295 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4297 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298 }
4299 return 0;
4300}
4301
4302static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303{
4304 struct ext4_inode_info *ei = EXT4_I(inode);
4305 uid_t i_uid;
4306 gid_t i_gid;
4307 projid_t i_projid;
4308 int block;
4309 int err;
4310
4311 err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314 i_uid = i_uid_read(inode);
4315 i_gid = i_gid_read(inode);
4316 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317 if (!(test_opt(inode->i_sb, NO_UID32))) {
4318 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320 /*
4321 * Fix up interoperability with old kernels. Otherwise,
4322 * old inodes get re-used with the upper 16 bits of the
4323 * uid/gid intact.
4324 */
4325 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326 raw_inode->i_uid_high = 0;
4327 raw_inode->i_gid_high = 0;
4328 } else {
4329 raw_inode->i_uid_high =
4330 cpu_to_le16(high_16_bits(i_uid));
4331 raw_inode->i_gid_high =
4332 cpu_to_le16(high_16_bits(i_gid));
4333 }
4334 } else {
4335 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337 raw_inode->i_uid_high = 0;
4338 raw_inode->i_gid_high = 0;
4339 }
4340 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342 EXT4_INODE_SET_CTIME(inode, raw_inode);
4343 EXT4_INODE_SET_MTIME(inode, raw_inode);
4344 EXT4_INODE_SET_ATIME(inode, raw_inode);
4345 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350 raw_inode->i_file_acl_high =
4351 cpu_to_le16(ei->i_file_acl >> 32);
4352 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353 ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357 if (old_valid_dev(inode->i_rdev)) {
4358 raw_inode->i_block[0] =
4359 cpu_to_le32(old_encode_dev(inode->i_rdev));
4360 raw_inode->i_block[1] = 0;
4361 } else {
4362 raw_inode->i_block[0] = 0;
4363 raw_inode->i_block[1] =
4364 cpu_to_le32(new_encode_dev(inode->i_rdev));
4365 raw_inode->i_block[2] = 0;
4366 }
4367 } else if (!ext4_has_inline_data(inode)) {
4368 for (block = 0; block < EXT4_N_BLOCKS; block++)
4369 raw_inode->i_block[block] = ei->i_data[block];
4370 }
4371
4372 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373 u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375 raw_inode->i_disk_version = cpu_to_le32(ivers);
4376 if (ei->i_extra_isize) {
4377 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378 raw_inode->i_version_hi =
4379 cpu_to_le32(ivers >> 32);
4380 raw_inode->i_extra_isize =
4381 cpu_to_le16(ei->i_extra_isize);
4382 }
4383 }
4384
4385 if (i_projid != EXT4_DEF_PROJID &&
4386 !ext4_has_feature_project(inode->i_sb))
4387 err = err ?: -EFSCORRUPTED;
4388
4389 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391 raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393 ext4_inode_csum_set(inode, raw_inode, ei);
4394 return err;
4395}
4396
4397/*
4398 * ext4_get_inode_loc returns with an extra refcount against the inode's
4399 * underlying buffer_head on success. If we pass 'inode' and it does not
4400 * have in-inode xattr, we have all inode data in memory that is needed
4401 * to recreate the on-disk version of this inode.
4402 */
4403static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404 struct inode *inode, struct ext4_iloc *iloc,
4405 ext4_fsblk_t *ret_block)
4406{
4407 struct ext4_group_desc *gdp;
4408 struct buffer_head *bh;
4409 ext4_fsblk_t block;
4410 struct blk_plug plug;
4411 int inodes_per_block, inode_offset;
4412
4413 iloc->bh = NULL;
4414 if (ino < EXT4_ROOT_INO ||
4415 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416 return -EFSCORRUPTED;
4417
4418 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420 if (!gdp)
4421 return -EIO;
4422
4423 /*
4424 * Figure out the offset within the block group inode table
4425 */
4426 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427 inode_offset = ((ino - 1) %
4428 EXT4_INODES_PER_GROUP(sb));
4429 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431 block = ext4_inode_table(sb, gdp);
4432 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434 ext4_error(sb, "Invalid inode table block %llu in "
4435 "block_group %u", block, iloc->block_group);
4436 return -EFSCORRUPTED;
4437 }
4438 block += (inode_offset / inodes_per_block);
4439
4440 bh = sb_getblk(sb, block);
4441 if (unlikely(!bh))
4442 return -ENOMEM;
4443 if (ext4_buffer_uptodate(bh))
4444 goto has_buffer;
4445
4446 lock_buffer(bh);
4447 if (ext4_buffer_uptodate(bh)) {
4448 /* Someone brought it uptodate while we waited */
4449 unlock_buffer(bh);
4450 goto has_buffer;
4451 }
4452
4453 /*
4454 * If we have all information of the inode in memory and this
4455 * is the only valid inode in the block, we need not read the
4456 * block.
4457 */
4458 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459 struct buffer_head *bitmap_bh;
4460 int i, start;
4461
4462 start = inode_offset & ~(inodes_per_block - 1);
4463
4464 /* Is the inode bitmap in cache? */
4465 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466 if (unlikely(!bitmap_bh))
4467 goto make_io;
4468
4469 /*
4470 * If the inode bitmap isn't in cache then the
4471 * optimisation may end up performing two reads instead
4472 * of one, so skip it.
4473 */
4474 if (!buffer_uptodate(bitmap_bh)) {
4475 brelse(bitmap_bh);
4476 goto make_io;
4477 }
4478 for (i = start; i < start + inodes_per_block; i++) {
4479 if (i == inode_offset)
4480 continue;
4481 if (ext4_test_bit(i, bitmap_bh->b_data))
4482 break;
4483 }
4484 brelse(bitmap_bh);
4485 if (i == start + inodes_per_block) {
4486 struct ext4_inode *raw_inode =
4487 (struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489 /* all other inodes are free, so skip I/O */
4490 memset(bh->b_data, 0, bh->b_size);
4491 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492 ext4_fill_raw_inode(inode, raw_inode);
4493 set_buffer_uptodate(bh);
4494 unlock_buffer(bh);
4495 goto has_buffer;
4496 }
4497 }
4498
4499make_io:
4500 /*
4501 * If we need to do any I/O, try to pre-readahead extra
4502 * blocks from the inode table.
4503 */
4504 blk_start_plug(&plug);
4505 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506 ext4_fsblk_t b, end, table;
4507 unsigned num;
4508 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510 table = ext4_inode_table(sb, gdp);
4511 /* s_inode_readahead_blks is always a power of 2 */
4512 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513 if (table > b)
4514 b = table;
4515 end = b + ra_blks;
4516 num = EXT4_INODES_PER_GROUP(sb);
4517 if (ext4_has_group_desc_csum(sb))
4518 num -= ext4_itable_unused_count(sb, gdp);
4519 table += num / inodes_per_block;
4520 if (end > table)
4521 end = table;
4522 while (b <= end)
4523 ext4_sb_breadahead_unmovable(sb, b++);
4524 }
4525
4526 /*
4527 * There are other valid inodes in the buffer, this inode
4528 * has in-inode xattrs, or we don't have this inode in memory.
4529 * Read the block from disk.
4530 */
4531 trace_ext4_load_inode(sb, ino);
4532 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534 blk_finish_plug(&plug);
4535 wait_on_buffer(bh);
4536 if (!buffer_uptodate(bh)) {
4537 if (ret_block)
4538 *ret_block = block;
4539 brelse(bh);
4540 return -EIO;
4541 }
4542has_buffer:
4543 iloc->bh = bh;
4544 return 0;
4545}
4546
4547static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548 struct ext4_iloc *iloc)
4549{
4550 ext4_fsblk_t err_blk = 0;
4551 int ret;
4552
4553 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554 &err_blk);
4555
4556 if (ret == -EIO)
4557 ext4_error_inode_block(inode, err_blk, EIO,
4558 "unable to read itable block");
4559
4560 return ret;
4561}
4562
4563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564{
4565 ext4_fsblk_t err_blk = 0;
4566 int ret;
4567
4568 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569 &err_blk);
4570
4571 if (ret == -EIO)
4572 ext4_error_inode_block(inode, err_blk, EIO,
4573 "unable to read itable block");
4574
4575 return ret;
4576}
4577
4578
4579int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580 struct ext4_iloc *iloc)
4581{
4582 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583}
4584
4585static bool ext4_should_enable_dax(struct inode *inode)
4586{
4587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589 if (test_opt2(inode->i_sb, DAX_NEVER))
4590 return false;
4591 if (!S_ISREG(inode->i_mode))
4592 return false;
4593 if (ext4_should_journal_data(inode))
4594 return false;
4595 if (ext4_has_inline_data(inode))
4596 return false;
4597 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598 return false;
4599 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600 return false;
4601 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602 return false;
4603 if (test_opt(inode->i_sb, DAX_ALWAYS))
4604 return true;
4605
4606 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607}
4608
4609void ext4_set_inode_flags(struct inode *inode, bool init)
4610{
4611 unsigned int flags = EXT4_I(inode)->i_flags;
4612 unsigned int new_fl = 0;
4613
4614 WARN_ON_ONCE(IS_DAX(inode) && init);
4615
4616 if (flags & EXT4_SYNC_FL)
4617 new_fl |= S_SYNC;
4618 if (flags & EXT4_APPEND_FL)
4619 new_fl |= S_APPEND;
4620 if (flags & EXT4_IMMUTABLE_FL)
4621 new_fl |= S_IMMUTABLE;
4622 if (flags & EXT4_NOATIME_FL)
4623 new_fl |= S_NOATIME;
4624 if (flags & EXT4_DIRSYNC_FL)
4625 new_fl |= S_DIRSYNC;
4626
4627 /* Because of the way inode_set_flags() works we must preserve S_DAX
4628 * here if already set. */
4629 new_fl |= (inode->i_flags & S_DAX);
4630 if (init && ext4_should_enable_dax(inode))
4631 new_fl |= S_DAX;
4632
4633 if (flags & EXT4_ENCRYPT_FL)
4634 new_fl |= S_ENCRYPTED;
4635 if (flags & EXT4_CASEFOLD_FL)
4636 new_fl |= S_CASEFOLD;
4637 if (flags & EXT4_VERITY_FL)
4638 new_fl |= S_VERITY;
4639 inode_set_flags(inode, new_fl,
4640 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4642}
4643
4644static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645 struct ext4_inode_info *ei)
4646{
4647 blkcnt_t i_blocks ;
4648 struct inode *inode = &(ei->vfs_inode);
4649 struct super_block *sb = inode->i_sb;
4650
4651 if (ext4_has_feature_huge_file(sb)) {
4652 /* we are using combined 48 bit field */
4653 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654 le32_to_cpu(raw_inode->i_blocks_lo);
4655 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656 /* i_blocks represent file system block size */
4657 return i_blocks << (inode->i_blkbits - 9);
4658 } else {
4659 return i_blocks;
4660 }
4661 } else {
4662 return le32_to_cpu(raw_inode->i_blocks_lo);
4663 }
4664}
4665
4666static inline int ext4_iget_extra_inode(struct inode *inode,
4667 struct ext4_inode *raw_inode,
4668 struct ext4_inode_info *ei)
4669{
4670 __le32 *magic = (void *)raw_inode +
4671 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4674 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675 int err;
4676
4677 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678 err = ext4_find_inline_data_nolock(inode);
4679 if (!err && ext4_has_inline_data(inode))
4680 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681 return err;
4682 } else
4683 EXT4_I(inode)->i_inline_off = 0;
4684 return 0;
4685}
4686
4687int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688{
4689 if (!ext4_has_feature_project(inode->i_sb))
4690 return -EOPNOTSUPP;
4691 *projid = EXT4_I(inode)->i_projid;
4692 return 0;
4693}
4694
4695/*
4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698 * set.
4699 */
4700static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701{
4702 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703 inode_set_iversion_raw(inode, val);
4704 else
4705 inode_set_iversion_queried(inode, val);
4706}
4707
4708static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710{
4711 if (flags & EXT4_IGET_EA_INODE) {
4712 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713 return "missing EA_INODE flag";
4714 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715 EXT4_I(inode)->i_file_acl)
4716 return "ea_inode with extended attributes";
4717 } else {
4718 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719 return "unexpected EA_INODE flag";
4720 }
4721 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722 return "unexpected bad inode w/o EXT4_IGET_BAD";
4723 return NULL;
4724}
4725
4726struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727 ext4_iget_flags flags, const char *function,
4728 unsigned int line)
4729{
4730 struct ext4_iloc iloc;
4731 struct ext4_inode *raw_inode;
4732 struct ext4_inode_info *ei;
4733 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734 struct inode *inode;
4735 const char *err_str;
4736 journal_t *journal = EXT4_SB(sb)->s_journal;
4737 long ret;
4738 loff_t size;
4739 int block;
4740 uid_t i_uid;
4741 gid_t i_gid;
4742 projid_t i_projid;
4743
4744 if ((!(flags & EXT4_IGET_SPECIAL) &&
4745 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750 (ino < EXT4_ROOT_INO) ||
4751 (ino > le32_to_cpu(es->s_inodes_count))) {
4752 if (flags & EXT4_IGET_HANDLE)
4753 return ERR_PTR(-ESTALE);
4754 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755 "inode #%lu: comm %s: iget: illegal inode #",
4756 ino, current->comm);
4757 return ERR_PTR(-EFSCORRUPTED);
4758 }
4759
4760 inode = iget_locked(sb, ino);
4761 if (!inode)
4762 return ERR_PTR(-ENOMEM);
4763 if (!(inode->i_state & I_NEW)) {
4764 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765 ext4_error_inode(inode, function, line, 0, err_str);
4766 iput(inode);
4767 return ERR_PTR(-EFSCORRUPTED);
4768 }
4769 return inode;
4770 }
4771
4772 ei = EXT4_I(inode);
4773 iloc.bh = NULL;
4774
4775 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776 if (ret < 0)
4777 goto bad_inode;
4778 raw_inode = ext4_raw_inode(&iloc);
4779
4780 if ((flags & EXT4_IGET_HANDLE) &&
4781 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782 ret = -ESTALE;
4783 goto bad_inode;
4784 }
4785
4786 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789 EXT4_INODE_SIZE(inode->i_sb) ||
4790 (ei->i_extra_isize & 3)) {
4791 ext4_error_inode(inode, function, line, 0,
4792 "iget: bad extra_isize %u "
4793 "(inode size %u)",
4794 ei->i_extra_isize,
4795 EXT4_INODE_SIZE(inode->i_sb));
4796 ret = -EFSCORRUPTED;
4797 goto bad_inode;
4798 }
4799 } else
4800 ei->i_extra_isize = 0;
4801
4802 /* Precompute checksum seed for inode metadata */
4803 if (ext4_has_metadata_csum(sb)) {
4804 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805 __u32 csum;
4806 __le32 inum = cpu_to_le32(inode->i_ino);
4807 __le32 gen = raw_inode->i_generation;
4808 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809 sizeof(inum));
4810 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811 sizeof(gen));
4812 }
4813
4814 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817 ext4_error_inode_err(inode, function, line, 0,
4818 EFSBADCRC, "iget: checksum invalid");
4819 ret = -EFSBADCRC;
4820 goto bad_inode;
4821 }
4822
4823 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826 if (ext4_has_feature_project(sb) &&
4827 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830 else
4831 i_projid = EXT4_DEF_PROJID;
4832
4833 if (!(test_opt(inode->i_sb, NO_UID32))) {
4834 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836 }
4837 i_uid_write(inode, i_uid);
4838 i_gid_write(inode, i_gid);
4839 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4843 ei->i_inline_off = 0;
4844 ei->i_dir_start_lookup = 0;
4845 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846 /* We now have enough fields to check if the inode was active or not.
4847 * This is needed because nfsd might try to access dead inodes
4848 * the test is that same one that e2fsck uses
4849 * NeilBrown 1999oct15
4850 */
4851 if (inode->i_nlink == 0) {
4852 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854 ino != EXT4_BOOT_LOADER_INO) {
4855 /* this inode is deleted or unallocated */
4856 if (flags & EXT4_IGET_SPECIAL) {
4857 ext4_error_inode(inode, function, line, 0,
4858 "iget: special inode unallocated");
4859 ret = -EFSCORRUPTED;
4860 } else
4861 ret = -ESTALE;
4862 goto bad_inode;
4863 }
4864 /* The only unlinked inodes we let through here have
4865 * valid i_mode and are being read by the orphan
4866 * recovery code: that's fine, we're about to complete
4867 * the process of deleting those.
4868 * OR it is the EXT4_BOOT_LOADER_INO which is
4869 * not initialized on a new filesystem. */
4870 }
4871 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872 ext4_set_inode_flags(inode, true);
4873 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875 if (ext4_has_feature_64bit(sb))
4876 ei->i_file_acl |=
4877 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878 inode->i_size = ext4_isize(sb, raw_inode);
4879 if ((size = i_size_read(inode)) < 0) {
4880 ext4_error_inode(inode, function, line, 0,
4881 "iget: bad i_size value: %lld", size);
4882 ret = -EFSCORRUPTED;
4883 goto bad_inode;
4884 }
4885 /*
4886 * If dir_index is not enabled but there's dir with INDEX flag set,
4887 * we'd normally treat htree data as empty space. But with metadata
4888 * checksumming that corrupts checksums so forbid that.
4889 */
4890 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892 ext4_error_inode(inode, function, line, 0,
4893 "iget: Dir with htree data on filesystem without dir_index feature.");
4894 ret = -EFSCORRUPTED;
4895 goto bad_inode;
4896 }
4897 ei->i_disksize = inode->i_size;
4898#ifdef CONFIG_QUOTA
4899 ei->i_reserved_quota = 0;
4900#endif
4901 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902 ei->i_block_group = iloc.block_group;
4903 ei->i_last_alloc_group = ~0;
4904 /*
4905 * NOTE! The in-memory inode i_data array is in little-endian order
4906 * even on big-endian machines: we do NOT byteswap the block numbers!
4907 */
4908 for (block = 0; block < EXT4_N_BLOCKS; block++)
4909 ei->i_data[block] = raw_inode->i_block[block];
4910 INIT_LIST_HEAD(&ei->i_orphan);
4911 ext4_fc_init_inode(&ei->vfs_inode);
4912
4913 /*
4914 * Set transaction id's of transactions that have to be committed
4915 * to finish f[data]sync. We set them to currently running transaction
4916 * as we cannot be sure that the inode or some of its metadata isn't
4917 * part of the transaction - the inode could have been reclaimed and
4918 * now it is reread from disk.
4919 */
4920 if (journal) {
4921 transaction_t *transaction;
4922 tid_t tid;
4923
4924 read_lock(&journal->j_state_lock);
4925 if (journal->j_running_transaction)
4926 transaction = journal->j_running_transaction;
4927 else
4928 transaction = journal->j_committing_transaction;
4929 if (transaction)
4930 tid = transaction->t_tid;
4931 else
4932 tid = journal->j_commit_sequence;
4933 read_unlock(&journal->j_state_lock);
4934 ei->i_sync_tid = tid;
4935 ei->i_datasync_tid = tid;
4936 }
4937
4938 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939 if (ei->i_extra_isize == 0) {
4940 /* The extra space is currently unused. Use it. */
4941 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942 ei->i_extra_isize = sizeof(struct ext4_inode) -
4943 EXT4_GOOD_OLD_INODE_SIZE;
4944 } else {
4945 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946 if (ret)
4947 goto bad_inode;
4948 }
4949 }
4950
4951 EXT4_INODE_GET_CTIME(inode, raw_inode);
4952 EXT4_INODE_GET_ATIME(inode, raw_inode);
4953 EXT4_INODE_GET_MTIME(inode, raw_inode);
4954 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961 ivers |=
4962 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963 }
4964 ext4_inode_set_iversion_queried(inode, ivers);
4965 }
4966
4967 ret = 0;
4968 if (ei->i_file_acl &&
4969 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970 ext4_error_inode(inode, function, line, 0,
4971 "iget: bad extended attribute block %llu",
4972 ei->i_file_acl);
4973 ret = -EFSCORRUPTED;
4974 goto bad_inode;
4975 } else if (!ext4_has_inline_data(inode)) {
4976 /* validate the block references in the inode */
4977 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979 (S_ISLNK(inode->i_mode) &&
4980 !ext4_inode_is_fast_symlink(inode)))) {
4981 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982 ret = ext4_ext_check_inode(inode);
4983 else
4984 ret = ext4_ind_check_inode(inode);
4985 }
4986 }
4987 if (ret)
4988 goto bad_inode;
4989
4990 if (S_ISREG(inode->i_mode)) {
4991 inode->i_op = &ext4_file_inode_operations;
4992 inode->i_fop = &ext4_file_operations;
4993 ext4_set_aops(inode);
4994 } else if (S_ISDIR(inode->i_mode)) {
4995 inode->i_op = &ext4_dir_inode_operations;
4996 inode->i_fop = &ext4_dir_operations;
4997 } else if (S_ISLNK(inode->i_mode)) {
4998 /* VFS does not allow setting these so must be corruption */
4999 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000 ext4_error_inode(inode, function, line, 0,
5001 "iget: immutable or append flags "
5002 "not allowed on symlinks");
5003 ret = -EFSCORRUPTED;
5004 goto bad_inode;
5005 }
5006 if (IS_ENCRYPTED(inode)) {
5007 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5008 } else if (ext4_inode_is_fast_symlink(inode)) {
5009 inode->i_link = (char *)ei->i_data;
5010 inode->i_op = &ext4_fast_symlink_inode_operations;
5011 nd_terminate_link(ei->i_data, inode->i_size,
5012 sizeof(ei->i_data) - 1);
5013 } else {
5014 inode->i_op = &ext4_symlink_inode_operations;
5015 }
5016 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018 inode->i_op = &ext4_special_inode_operations;
5019 if (raw_inode->i_block[0])
5020 init_special_inode(inode, inode->i_mode,
5021 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022 else
5023 init_special_inode(inode, inode->i_mode,
5024 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025 } else if (ino == EXT4_BOOT_LOADER_INO) {
5026 make_bad_inode(inode);
5027 } else {
5028 ret = -EFSCORRUPTED;
5029 ext4_error_inode(inode, function, line, 0,
5030 "iget: bogus i_mode (%o)", inode->i_mode);
5031 goto bad_inode;
5032 }
5033 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034 ext4_error_inode(inode, function, line, 0,
5035 "casefold flag without casefold feature");
5036 ret = -EFSCORRUPTED;
5037 goto bad_inode;
5038 }
5039 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040 ext4_error_inode(inode, function, line, 0, err_str);
5041 ret = -EFSCORRUPTED;
5042 goto bad_inode;
5043 }
5044
5045 brelse(iloc.bh);
5046 unlock_new_inode(inode);
5047 return inode;
5048
5049bad_inode:
5050 brelse(iloc.bh);
5051 iget_failed(inode);
5052 return ERR_PTR(ret);
5053}
5054
5055static void __ext4_update_other_inode_time(struct super_block *sb,
5056 unsigned long orig_ino,
5057 unsigned long ino,
5058 struct ext4_inode *raw_inode)
5059{
5060 struct inode *inode;
5061
5062 inode = find_inode_by_ino_rcu(sb, ino);
5063 if (!inode)
5064 return;
5065
5066 if (!inode_is_dirtytime_only(inode))
5067 return;
5068
5069 spin_lock(&inode->i_lock);
5070 if (inode_is_dirtytime_only(inode)) {
5071 struct ext4_inode_info *ei = EXT4_I(inode);
5072
5073 inode->i_state &= ~I_DIRTY_TIME;
5074 spin_unlock(&inode->i_lock);
5075
5076 spin_lock(&ei->i_raw_lock);
5077 EXT4_INODE_SET_CTIME(inode, raw_inode);
5078 EXT4_INODE_SET_MTIME(inode, raw_inode);
5079 EXT4_INODE_SET_ATIME(inode, raw_inode);
5080 ext4_inode_csum_set(inode, raw_inode, ei);
5081 spin_unlock(&ei->i_raw_lock);
5082 trace_ext4_other_inode_update_time(inode, orig_ino);
5083 return;
5084 }
5085 spin_unlock(&inode->i_lock);
5086}
5087
5088/*
5089 * Opportunistically update the other time fields for other inodes in
5090 * the same inode table block.
5091 */
5092static void ext4_update_other_inodes_time(struct super_block *sb,
5093 unsigned long orig_ino, char *buf)
5094{
5095 unsigned long ino;
5096 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097 int inode_size = EXT4_INODE_SIZE(sb);
5098
5099 /*
5100 * Calculate the first inode in the inode table block. Inode
5101 * numbers are one-based. That is, the first inode in a block
5102 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103 */
5104 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105 rcu_read_lock();
5106 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107 if (ino == orig_ino)
5108 continue;
5109 __ext4_update_other_inode_time(sb, orig_ino, ino,
5110 (struct ext4_inode *)buf);
5111 }
5112 rcu_read_unlock();
5113}
5114
5115/*
5116 * Post the struct inode info into an on-disk inode location in the
5117 * buffer-cache. This gobbles the caller's reference to the
5118 * buffer_head in the inode location struct.
5119 *
5120 * The caller must have write access to iloc->bh.
5121 */
5122static int ext4_do_update_inode(handle_t *handle,
5123 struct inode *inode,
5124 struct ext4_iloc *iloc)
5125{
5126 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127 struct ext4_inode_info *ei = EXT4_I(inode);
5128 struct buffer_head *bh = iloc->bh;
5129 struct super_block *sb = inode->i_sb;
5130 int err;
5131 int need_datasync = 0, set_large_file = 0;
5132
5133 spin_lock(&ei->i_raw_lock);
5134
5135 /*
5136 * For fields not tracked in the in-memory inode, initialise them
5137 * to zero for new inodes.
5138 */
5139 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141
5142 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5143 need_datasync = 1;
5144 if (ei->i_disksize > 0x7fffffffULL) {
5145 if (!ext4_has_feature_large_file(sb) ||
5146 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5147 set_large_file = 1;
5148 }
5149
5150 err = ext4_fill_raw_inode(inode, raw_inode);
5151 spin_unlock(&ei->i_raw_lock);
5152 if (err) {
5153 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5154 goto out_brelse;
5155 }
5156
5157 if (inode->i_sb->s_flags & SB_LAZYTIME)
5158 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159 bh->b_data);
5160
5161 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163 if (err)
5164 goto out_error;
5165 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166 if (set_large_file) {
5167 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168 err = ext4_journal_get_write_access(handle, sb,
5169 EXT4_SB(sb)->s_sbh,
5170 EXT4_JTR_NONE);
5171 if (err)
5172 goto out_error;
5173 lock_buffer(EXT4_SB(sb)->s_sbh);
5174 ext4_set_feature_large_file(sb);
5175 ext4_superblock_csum_set(sb);
5176 unlock_buffer(EXT4_SB(sb)->s_sbh);
5177 ext4_handle_sync(handle);
5178 err = ext4_handle_dirty_metadata(handle, NULL,
5179 EXT4_SB(sb)->s_sbh);
5180 }
5181 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182out_error:
5183 ext4_std_error(inode->i_sb, err);
5184out_brelse:
5185 brelse(bh);
5186 return err;
5187}
5188
5189/*
5190 * ext4_write_inode()
5191 *
5192 * We are called from a few places:
5193 *
5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195 * Here, there will be no transaction running. We wait for any running
5196 * transaction to commit.
5197 *
5198 * - Within flush work (sys_sync(), kupdate and such).
5199 * We wait on commit, if told to.
5200 *
5201 * - Within iput_final() -> write_inode_now()
5202 * We wait on commit, if told to.
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
5206 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5207 * writeback.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this. The code:
5214 *
5215 * mark_inode_dirty(inode)
5216 * stuff();
5217 * inode->i_size = expr;
5218 *
5219 * is in error because write_inode() could occur while `stuff()' is running,
5220 * and the new i_size will be lost. Plus the inode will no longer be on the
5221 * superblock's dirty inode list.
5222 */
5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224{
5225 int err;
5226
5227 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228 return 0;
5229
5230 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231 return -EIO;
5232
5233 if (EXT4_SB(inode->i_sb)->s_journal) {
5234 if (ext4_journal_current_handle()) {
5235 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236 dump_stack();
5237 return -EIO;
5238 }
5239
5240 /*
5241 * No need to force transaction in WB_SYNC_NONE mode. Also
5242 * ext4_sync_fs() will force the commit after everything is
5243 * written.
5244 */
5245 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246 return 0;
5247
5248 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249 EXT4_I(inode)->i_sync_tid);
5250 } else {
5251 struct ext4_iloc iloc;
5252
5253 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254 if (err)
5255 return err;
5256 /*
5257 * sync(2) will flush the whole buffer cache. No need to do
5258 * it here separately for each inode.
5259 */
5260 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261 sync_dirty_buffer(iloc.bh);
5262 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264 "IO error syncing inode");
5265 err = -EIO;
5266 }
5267 brelse(iloc.bh);
5268 }
5269 return err;
5270}
5271
5272/*
5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274 * buffers that are attached to a folio straddling i_size and are undergoing
5275 * commit. In that case we have to wait for commit to finish and try again.
5276 */
5277static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278{
5279 unsigned offset;
5280 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281 tid_t commit_tid;
5282 int ret;
5283 bool has_transaction;
5284
5285 offset = inode->i_size & (PAGE_SIZE - 1);
5286 /*
5287 * If the folio is fully truncated, we don't need to wait for any commit
5288 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289 * strip all buffers from the folio but keep the folio dirty which can then
5290 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291 * buffers). Also we don't need to wait for any commit if all buffers in
5292 * the folio remain valid. This is most beneficial for the common case of
5293 * blocksize == PAGESIZE.
5294 */
5295 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296 return;
5297 while (1) {
5298 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299 inode->i_size >> PAGE_SHIFT);
5300 if (IS_ERR(folio))
5301 return;
5302 ret = __ext4_journalled_invalidate_folio(folio, offset,
5303 folio_size(folio) - offset);
5304 folio_unlock(folio);
5305 folio_put(folio);
5306 if (ret != -EBUSY)
5307 return;
5308 has_transaction = false;
5309 read_lock(&journal->j_state_lock);
5310 if (journal->j_committing_transaction) {
5311 commit_tid = journal->j_committing_transaction->t_tid;
5312 has_transaction = true;
5313 }
5314 read_unlock(&journal->j_state_lock);
5315 if (has_transaction)
5316 jbd2_log_wait_commit(journal, commit_tid);
5317 }
5318}
5319
5320/*
5321 * ext4_setattr()
5322 *
5323 * Called from notify_change.
5324 *
5325 * We want to trap VFS attempts to truncate the file as soon as
5326 * possible. In particular, we want to make sure that when the VFS
5327 * shrinks i_size, we put the inode on the orphan list and modify
5328 * i_disksize immediately, so that during the subsequent flushing of
5329 * dirty pages and freeing of disk blocks, we can guarantee that any
5330 * commit will leave the blocks being flushed in an unused state on
5331 * disk. (On recovery, the inode will get truncated and the blocks will
5332 * be freed, so we have a strong guarantee that no future commit will
5333 * leave these blocks visible to the user.)
5334 *
5335 * Another thing we have to assure is that if we are in ordered mode
5336 * and inode is still attached to the committing transaction, we must
5337 * we start writeout of all the dirty pages which are being truncated.
5338 * This way we are sure that all the data written in the previous
5339 * transaction are already on disk (truncate waits for pages under
5340 * writeback).
5341 *
5342 * Called with inode->i_rwsem down.
5343 */
5344int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345 struct iattr *attr)
5346{
5347 struct inode *inode = d_inode(dentry);
5348 int error, rc = 0;
5349 int orphan = 0;
5350 const unsigned int ia_valid = attr->ia_valid;
5351 bool inc_ivers = true;
5352
5353 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354 return -EIO;
5355
5356 if (unlikely(IS_IMMUTABLE(inode)))
5357 return -EPERM;
5358
5359 if (unlikely(IS_APPEND(inode) &&
5360 (ia_valid & (ATTR_MODE | ATTR_UID |
5361 ATTR_GID | ATTR_TIMES_SET))))
5362 return -EPERM;
5363
5364 error = setattr_prepare(idmap, dentry, attr);
5365 if (error)
5366 return error;
5367
5368 error = fscrypt_prepare_setattr(dentry, attr);
5369 if (error)
5370 return error;
5371
5372 error = fsverity_prepare_setattr(dentry, attr);
5373 if (error)
5374 return error;
5375
5376 if (is_quota_modification(idmap, inode, attr)) {
5377 error = dquot_initialize(inode);
5378 if (error)
5379 return error;
5380 }
5381
5382 if (i_uid_needs_update(idmap, attr, inode) ||
5383 i_gid_needs_update(idmap, attr, inode)) {
5384 handle_t *handle;
5385
5386 /* (user+group)*(old+new) structure, inode write (sb,
5387 * inode block, ? - but truncate inode update has it) */
5388 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391 if (IS_ERR(handle)) {
5392 error = PTR_ERR(handle);
5393 goto err_out;
5394 }
5395
5396 /* dquot_transfer() calls back ext4_get_inode_usage() which
5397 * counts xattr inode references.
5398 */
5399 down_read(&EXT4_I(inode)->xattr_sem);
5400 error = dquot_transfer(idmap, inode, attr);
5401 up_read(&EXT4_I(inode)->xattr_sem);
5402
5403 if (error) {
5404 ext4_journal_stop(handle);
5405 return error;
5406 }
5407 /* Update corresponding info in inode so that everything is in
5408 * one transaction */
5409 i_uid_update(idmap, attr, inode);
5410 i_gid_update(idmap, attr, inode);
5411 error = ext4_mark_inode_dirty(handle, inode);
5412 ext4_journal_stop(handle);
5413 if (unlikely(error)) {
5414 return error;
5415 }
5416 }
5417
5418 if (attr->ia_valid & ATTR_SIZE) {
5419 handle_t *handle;
5420 loff_t oldsize = inode->i_size;
5421 loff_t old_disksize;
5422 int shrink = (attr->ia_size < inode->i_size);
5423
5424 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426
5427 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428 return -EFBIG;
5429 }
5430 }
5431 if (!S_ISREG(inode->i_mode)) {
5432 return -EINVAL;
5433 }
5434
5435 if (attr->ia_size == inode->i_size)
5436 inc_ivers = false;
5437
5438 if (shrink) {
5439 if (ext4_should_order_data(inode)) {
5440 error = ext4_begin_ordered_truncate(inode,
5441 attr->ia_size);
5442 if (error)
5443 goto err_out;
5444 }
5445 /*
5446 * Blocks are going to be removed from the inode. Wait
5447 * for dio in flight.
5448 */
5449 inode_dio_wait(inode);
5450 }
5451
5452 filemap_invalidate_lock(inode->i_mapping);
5453
5454 rc = ext4_break_layouts(inode);
5455 if (rc) {
5456 filemap_invalidate_unlock(inode->i_mapping);
5457 goto err_out;
5458 }
5459
5460 if (attr->ia_size != inode->i_size) {
5461 /* attach jbd2 jinode for EOF folio tail zeroing */
5462 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463 oldsize & (inode->i_sb->s_blocksize - 1)) {
5464 error = ext4_inode_attach_jinode(inode);
5465 if (error)
5466 goto err_out;
5467 }
5468
5469 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470 if (IS_ERR(handle)) {
5471 error = PTR_ERR(handle);
5472 goto out_mmap_sem;
5473 }
5474 if (ext4_handle_valid(handle) && shrink) {
5475 error = ext4_orphan_add(handle, inode);
5476 orphan = 1;
5477 }
5478 /*
5479 * Update c/mtime and tail zero the EOF folio on
5480 * truncate up. ext4_truncate() handles the shrink case
5481 * below.
5482 */
5483 if (!shrink) {
5484 inode_set_mtime_to_ts(inode,
5485 inode_set_ctime_current(inode));
5486 if (oldsize & (inode->i_sb->s_blocksize - 1))
5487 ext4_block_truncate_page(handle,
5488 inode->i_mapping, oldsize);
5489 }
5490
5491 if (shrink)
5492 ext4_fc_track_range(handle, inode,
5493 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494 inode->i_sb->s_blocksize_bits,
5495 EXT_MAX_BLOCKS - 1);
5496 else
5497 ext4_fc_track_range(
5498 handle, inode,
5499 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5500 inode->i_sb->s_blocksize_bits,
5501 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502 inode->i_sb->s_blocksize_bits);
5503
5504 down_write(&EXT4_I(inode)->i_data_sem);
5505 old_disksize = EXT4_I(inode)->i_disksize;
5506 EXT4_I(inode)->i_disksize = attr->ia_size;
5507 rc = ext4_mark_inode_dirty(handle, inode);
5508 if (!error)
5509 error = rc;
5510 /*
5511 * We have to update i_size under i_data_sem together
5512 * with i_disksize to avoid races with writeback code
5513 * running ext4_wb_update_i_disksize().
5514 */
5515 if (!error)
5516 i_size_write(inode, attr->ia_size);
5517 else
5518 EXT4_I(inode)->i_disksize = old_disksize;
5519 up_write(&EXT4_I(inode)->i_data_sem);
5520 ext4_journal_stop(handle);
5521 if (error)
5522 goto out_mmap_sem;
5523 if (!shrink) {
5524 pagecache_isize_extended(inode, oldsize,
5525 inode->i_size);
5526 } else if (ext4_should_journal_data(inode)) {
5527 ext4_wait_for_tail_page_commit(inode);
5528 }
5529 }
5530
5531 /*
5532 * Truncate pagecache after we've waited for commit
5533 * in data=journal mode to make pages freeable.
5534 */
5535 truncate_pagecache(inode, inode->i_size);
5536 /*
5537 * Call ext4_truncate() even if i_size didn't change to
5538 * truncate possible preallocated blocks.
5539 */
5540 if (attr->ia_size <= oldsize) {
5541 rc = ext4_truncate(inode);
5542 if (rc)
5543 error = rc;
5544 }
5545out_mmap_sem:
5546 filemap_invalidate_unlock(inode->i_mapping);
5547 }
5548
5549 if (!error) {
5550 if (inc_ivers)
5551 inode_inc_iversion(inode);
5552 setattr_copy(idmap, inode, attr);
5553 mark_inode_dirty(inode);
5554 }
5555
5556 /*
5557 * If the call to ext4_truncate failed to get a transaction handle at
5558 * all, we need to clean up the in-core orphan list manually.
5559 */
5560 if (orphan && inode->i_nlink)
5561 ext4_orphan_del(NULL, inode);
5562
5563 if (!error && (ia_valid & ATTR_MODE))
5564 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565
5566err_out:
5567 if (error)
5568 ext4_std_error(inode->i_sb, error);
5569 if (!error)
5570 error = rc;
5571 return error;
5572}
5573
5574u32 ext4_dio_alignment(struct inode *inode)
5575{
5576 if (fsverity_active(inode))
5577 return 0;
5578 if (ext4_should_journal_data(inode))
5579 return 0;
5580 if (ext4_has_inline_data(inode))
5581 return 0;
5582 if (IS_ENCRYPTED(inode)) {
5583 if (!fscrypt_dio_supported(inode))
5584 return 0;
5585 return i_blocksize(inode);
5586 }
5587 return 1; /* use the iomap defaults */
5588}
5589
5590int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592{
5593 struct inode *inode = d_inode(path->dentry);
5594 struct ext4_inode *raw_inode;
5595 struct ext4_inode_info *ei = EXT4_I(inode);
5596 unsigned int flags;
5597
5598 if ((request_mask & STATX_BTIME) &&
5599 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600 stat->result_mask |= STATX_BTIME;
5601 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603 }
5604
5605 /*
5606 * Return the DIO alignment restrictions if requested. We only return
5607 * this information when requested, since on encrypted files it might
5608 * take a fair bit of work to get if the file wasn't opened recently.
5609 */
5610 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611 u32 dio_align = ext4_dio_alignment(inode);
5612
5613 stat->result_mask |= STATX_DIOALIGN;
5614 if (dio_align == 1) {
5615 struct block_device *bdev = inode->i_sb->s_bdev;
5616
5617 /* iomap defaults */
5618 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619 stat->dio_offset_align = bdev_logical_block_size(bdev);
5620 } else {
5621 stat->dio_mem_align = dio_align;
5622 stat->dio_offset_align = dio_align;
5623 }
5624 }
5625
5626 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628 unsigned int awu_min = 0, awu_max = 0;
5629
5630 if (ext4_inode_can_atomic_write(inode)) {
5631 awu_min = sbi->s_awu_min;
5632 awu_max = sbi->s_awu_max;
5633 }
5634
5635 generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636 }
5637
5638 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639 if (flags & EXT4_APPEND_FL)
5640 stat->attributes |= STATX_ATTR_APPEND;
5641 if (flags & EXT4_COMPR_FL)
5642 stat->attributes |= STATX_ATTR_COMPRESSED;
5643 if (flags & EXT4_ENCRYPT_FL)
5644 stat->attributes |= STATX_ATTR_ENCRYPTED;
5645 if (flags & EXT4_IMMUTABLE_FL)
5646 stat->attributes |= STATX_ATTR_IMMUTABLE;
5647 if (flags & EXT4_NODUMP_FL)
5648 stat->attributes |= STATX_ATTR_NODUMP;
5649 if (flags & EXT4_VERITY_FL)
5650 stat->attributes |= STATX_ATTR_VERITY;
5651
5652 stat->attributes_mask |= (STATX_ATTR_APPEND |
5653 STATX_ATTR_COMPRESSED |
5654 STATX_ATTR_ENCRYPTED |
5655 STATX_ATTR_IMMUTABLE |
5656 STATX_ATTR_NODUMP |
5657 STATX_ATTR_VERITY);
5658
5659 generic_fillattr(idmap, request_mask, inode, stat);
5660 return 0;
5661}
5662
5663int ext4_file_getattr(struct mnt_idmap *idmap,
5664 const struct path *path, struct kstat *stat,
5665 u32 request_mask, unsigned int query_flags)
5666{
5667 struct inode *inode = d_inode(path->dentry);
5668 u64 delalloc_blocks;
5669
5670 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5671
5672 /*
5673 * If there is inline data in the inode, the inode will normally not
5674 * have data blocks allocated (it may have an external xattr block).
5675 * Report at least one sector for such files, so tools like tar, rsync,
5676 * others don't incorrectly think the file is completely sparse.
5677 */
5678 if (unlikely(ext4_has_inline_data(inode)))
5679 stat->blocks += (stat->size + 511) >> 9;
5680
5681 /*
5682 * We can't update i_blocks if the block allocation is delayed
5683 * otherwise in the case of system crash before the real block
5684 * allocation is done, we will have i_blocks inconsistent with
5685 * on-disk file blocks.
5686 * We always keep i_blocks updated together with real
5687 * allocation. But to not confuse with user, stat
5688 * will return the blocks that include the delayed allocation
5689 * blocks for this file.
5690 */
5691 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692 EXT4_I(inode)->i_reserved_data_blocks);
5693 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694 return 0;
5695}
5696
5697static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698 int pextents)
5699{
5700 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701 return ext4_ind_trans_blocks(inode, lblocks);
5702 return ext4_ext_index_trans_blocks(inode, pextents);
5703}
5704
5705/*
5706 * Account for index blocks, block groups bitmaps and block group
5707 * descriptor blocks if modify datablocks and index blocks
5708 * worse case, the indexs blocks spread over different block groups
5709 *
5710 * If datablocks are discontiguous, they are possible to spread over
5711 * different block groups too. If they are contiguous, with flexbg,
5712 * they could still across block group boundary.
5713 *
5714 * Also account for superblock, inode, quota and xattr blocks
5715 */
5716static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717 int pextents)
5718{
5719 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720 int gdpblocks;
5721 int idxblocks;
5722 int ret;
5723
5724 /*
5725 * How many index blocks need to touch to map @lblocks logical blocks
5726 * to @pextents physical extents?
5727 */
5728 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729
5730 ret = idxblocks;
5731
5732 /*
5733 * Now let's see how many group bitmaps and group descriptors need
5734 * to account
5735 */
5736 groups = idxblocks + pextents;
5737 gdpblocks = groups;
5738 if (groups > ngroups)
5739 groups = ngroups;
5740 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742
5743 /* bitmaps and block group descriptor blocks */
5744 ret += groups + gdpblocks;
5745
5746 /* Blocks for super block, inode, quota and xattr blocks */
5747 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748
5749 return ret;
5750}
5751
5752/*
5753 * Calculate the total number of credits to reserve to fit
5754 * the modification of a single pages into a single transaction,
5755 * which may include multiple chunks of block allocations.
5756 *
5757 * This could be called via ext4_write_begin()
5758 *
5759 * We need to consider the worse case, when
5760 * one new block per extent.
5761 */
5762int ext4_writepage_trans_blocks(struct inode *inode)
5763{
5764 int bpp = ext4_journal_blocks_per_page(inode);
5765 int ret;
5766
5767 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768
5769 /* Account for data blocks for journalled mode */
5770 if (ext4_should_journal_data(inode))
5771 ret += bpp;
5772 return ret;
5773}
5774
5775/*
5776 * Calculate the journal credits for a chunk of data modification.
5777 *
5778 * This is called from DIO, fallocate or whoever calling
5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780 *
5781 * journal buffers for data blocks are not included here, as DIO
5782 * and fallocate do no need to journal data buffers.
5783 */
5784int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785{
5786 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787}
5788
5789/*
5790 * The caller must have previously called ext4_reserve_inode_write().
5791 * Give this, we know that the caller already has write access to iloc->bh.
5792 */
5793int ext4_mark_iloc_dirty(handle_t *handle,
5794 struct inode *inode, struct ext4_iloc *iloc)
5795{
5796 int err = 0;
5797
5798 if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799 put_bh(iloc->bh);
5800 return -EIO;
5801 }
5802 ext4_fc_track_inode(handle, inode);
5803
5804 /* the do_update_inode consumes one bh->b_count */
5805 get_bh(iloc->bh);
5806
5807 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808 err = ext4_do_update_inode(handle, inode, iloc);
5809 put_bh(iloc->bh);
5810 return err;
5811}
5812
5813/*
5814 * On success, We end up with an outstanding reference count against
5815 * iloc->bh. This _must_ be cleaned up later.
5816 */
5817
5818int
5819ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820 struct ext4_iloc *iloc)
5821{
5822 int err;
5823
5824 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825 return -EIO;
5826
5827 err = ext4_get_inode_loc(inode, iloc);
5828 if (!err) {
5829 BUFFER_TRACE(iloc->bh, "get_write_access");
5830 err = ext4_journal_get_write_access(handle, inode->i_sb,
5831 iloc->bh, EXT4_JTR_NONE);
5832 if (err) {
5833 brelse(iloc->bh);
5834 iloc->bh = NULL;
5835 }
5836 }
5837 ext4_std_error(inode->i_sb, err);
5838 return err;
5839}
5840
5841static int __ext4_expand_extra_isize(struct inode *inode,
5842 unsigned int new_extra_isize,
5843 struct ext4_iloc *iloc,
5844 handle_t *handle, int *no_expand)
5845{
5846 struct ext4_inode *raw_inode;
5847 struct ext4_xattr_ibody_header *header;
5848 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849 struct ext4_inode_info *ei = EXT4_I(inode);
5850 int error;
5851
5852 /* this was checked at iget time, but double check for good measure */
5853 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854 (ei->i_extra_isize & 3)) {
5855 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856 ei->i_extra_isize,
5857 EXT4_INODE_SIZE(inode->i_sb));
5858 return -EFSCORRUPTED;
5859 }
5860 if ((new_extra_isize < ei->i_extra_isize) ||
5861 (new_extra_isize < 4) ||
5862 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863 return -EINVAL; /* Should never happen */
5864
5865 raw_inode = ext4_raw_inode(iloc);
5866
5867 header = IHDR(inode, raw_inode);
5868
5869 /* No extended attributes present */
5870 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873 EXT4_I(inode)->i_extra_isize, 0,
5874 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876 return 0;
5877 }
5878
5879 /*
5880 * We may need to allocate external xattr block so we need quotas
5881 * initialized. Here we can be called with various locks held so we
5882 * cannot affort to initialize quotas ourselves. So just bail.
5883 */
5884 if (dquot_initialize_needed(inode))
5885 return -EAGAIN;
5886
5887 /* try to expand with EAs present */
5888 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889 raw_inode, handle);
5890 if (error) {
5891 /*
5892 * Inode size expansion failed; don't try again
5893 */
5894 *no_expand = 1;
5895 }
5896
5897 return error;
5898}
5899
5900/*
5901 * Expand an inode by new_extra_isize bytes.
5902 * Returns 0 on success or negative error number on failure.
5903 */
5904static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905 unsigned int new_extra_isize,
5906 struct ext4_iloc iloc,
5907 handle_t *handle)
5908{
5909 int no_expand;
5910 int error;
5911
5912 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913 return -EOVERFLOW;
5914
5915 /*
5916 * In nojournal mode, we can immediately attempt to expand
5917 * the inode. When journaled, we first need to obtain extra
5918 * buffer credits since we may write into the EA block
5919 * with this same handle. If journal_extend fails, then it will
5920 * only result in a minor loss of functionality for that inode.
5921 * If this is felt to be critical, then e2fsck should be run to
5922 * force a large enough s_min_extra_isize.
5923 */
5924 if (ext4_journal_extend(handle,
5925 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5926 return -ENOSPC;
5927
5928 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929 return -EBUSY;
5930
5931 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932 handle, &no_expand);
5933 ext4_write_unlock_xattr(inode, &no_expand);
5934
5935 return error;
5936}
5937
5938int ext4_expand_extra_isize(struct inode *inode,
5939 unsigned int new_extra_isize,
5940 struct ext4_iloc *iloc)
5941{
5942 handle_t *handle;
5943 int no_expand;
5944 int error, rc;
5945
5946 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947 brelse(iloc->bh);
5948 return -EOVERFLOW;
5949 }
5950
5951 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953 if (IS_ERR(handle)) {
5954 error = PTR_ERR(handle);
5955 brelse(iloc->bh);
5956 return error;
5957 }
5958
5959 ext4_write_lock_xattr(inode, &no_expand);
5960
5961 BUFFER_TRACE(iloc->bh, "get_write_access");
5962 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963 EXT4_JTR_NONE);
5964 if (error) {
5965 brelse(iloc->bh);
5966 goto out_unlock;
5967 }
5968
5969 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970 handle, &no_expand);
5971
5972 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973 if (!error)
5974 error = rc;
5975
5976out_unlock:
5977 ext4_write_unlock_xattr(inode, &no_expand);
5978 ext4_journal_stop(handle);
5979 return error;
5980}
5981
5982/*
5983 * What we do here is to mark the in-core inode as clean with respect to inode
5984 * dirtiness (it may still be data-dirty).
5985 * This means that the in-core inode may be reaped by prune_icache
5986 * without having to perform any I/O. This is a very good thing,
5987 * because *any* task may call prune_icache - even ones which
5988 * have a transaction open against a different journal.
5989 *
5990 * Is this cheating? Not really. Sure, we haven't written the
5991 * inode out, but prune_icache isn't a user-visible syncing function.
5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993 * we start and wait on commits.
5994 */
5995int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996 const char *func, unsigned int line)
5997{
5998 struct ext4_iloc iloc;
5999 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000 int err;
6001
6002 might_sleep();
6003 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004 err = ext4_reserve_inode_write(handle, inode, &iloc);
6005 if (err)
6006 goto out;
6007
6008 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010 iloc, handle);
6011
6012 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013out:
6014 if (unlikely(err))
6015 ext4_error_inode_err(inode, func, line, 0, err,
6016 "mark_inode_dirty error");
6017 return err;
6018}
6019
6020/*
6021 * ext4_dirty_inode() is called from __mark_inode_dirty()
6022 *
6023 * We're really interested in the case where a file is being extended.
6024 * i_size has been changed by generic_commit_write() and we thus need
6025 * to include the updated inode in the current transaction.
6026 *
6027 * Also, dquot_alloc_block() will always dirty the inode when blocks
6028 * are allocated to the file.
6029 *
6030 * If the inode is marked synchronous, we don't honour that here - doing
6031 * so would cause a commit on atime updates, which we don't bother doing.
6032 * We handle synchronous inodes at the highest possible level.
6033 */
6034void ext4_dirty_inode(struct inode *inode, int flags)
6035{
6036 handle_t *handle;
6037
6038 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039 if (IS_ERR(handle))
6040 return;
6041 ext4_mark_inode_dirty(handle, inode);
6042 ext4_journal_stop(handle);
6043}
6044
6045int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046{
6047 journal_t *journal;
6048 handle_t *handle;
6049 int err;
6050 int alloc_ctx;
6051
6052 /*
6053 * We have to be very careful here: changing a data block's
6054 * journaling status dynamically is dangerous. If we write a
6055 * data block to the journal, change the status and then delete
6056 * that block, we risk forgetting to revoke the old log record
6057 * from the journal and so a subsequent replay can corrupt data.
6058 * So, first we make sure that the journal is empty and that
6059 * nobody is changing anything.
6060 */
6061
6062 journal = EXT4_JOURNAL(inode);
6063 if (!journal)
6064 return 0;
6065 if (is_journal_aborted(journal))
6066 return -EROFS;
6067
6068 /* Wait for all existing dio workers */
6069 inode_dio_wait(inode);
6070
6071 /*
6072 * Before flushing the journal and switching inode's aops, we have
6073 * to flush all dirty data the inode has. There can be outstanding
6074 * delayed allocations, there can be unwritten extents created by
6075 * fallocate or buffered writes in dioread_nolock mode covered by
6076 * dirty data which can be converted only after flushing the dirty
6077 * data (and journalled aops don't know how to handle these cases).
6078 */
6079 if (val) {
6080 filemap_invalidate_lock(inode->i_mapping);
6081 err = filemap_write_and_wait(inode->i_mapping);
6082 if (err < 0) {
6083 filemap_invalidate_unlock(inode->i_mapping);
6084 return err;
6085 }
6086 }
6087
6088 alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089 jbd2_journal_lock_updates(journal);
6090
6091 /*
6092 * OK, there are no updates running now, and all cached data is
6093 * synced to disk. We are now in a completely consistent state
6094 * which doesn't have anything in the journal, and we know that
6095 * no filesystem updates are running, so it is safe to modify
6096 * the inode's in-core data-journaling state flag now.
6097 */
6098
6099 if (val)
6100 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101 else {
6102 err = jbd2_journal_flush(journal, 0);
6103 if (err < 0) {
6104 jbd2_journal_unlock_updates(journal);
6105 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6106 return err;
6107 }
6108 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109 }
6110 ext4_set_aops(inode);
6111
6112 jbd2_journal_unlock_updates(journal);
6113 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114
6115 if (val)
6116 filemap_invalidate_unlock(inode->i_mapping);
6117
6118 /* Finally we can mark the inode as dirty. */
6119
6120 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121 if (IS_ERR(handle))
6122 return PTR_ERR(handle);
6123
6124 ext4_fc_mark_ineligible(inode->i_sb,
6125 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126 err = ext4_mark_inode_dirty(handle, inode);
6127 ext4_handle_sync(handle);
6128 ext4_journal_stop(handle);
6129 ext4_std_error(inode->i_sb, err);
6130
6131 return err;
6132}
6133
6134static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135 struct buffer_head *bh)
6136{
6137 return !buffer_mapped(bh);
6138}
6139
6140vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141{
6142 struct vm_area_struct *vma = vmf->vma;
6143 struct folio *folio = page_folio(vmf->page);
6144 loff_t size;
6145 unsigned long len;
6146 int err;
6147 vm_fault_t ret;
6148 struct file *file = vma->vm_file;
6149 struct inode *inode = file_inode(file);
6150 struct address_space *mapping = inode->i_mapping;
6151 handle_t *handle;
6152 get_block_t *get_block;
6153 int retries = 0;
6154
6155 if (unlikely(IS_IMMUTABLE(inode)))
6156 return VM_FAULT_SIGBUS;
6157
6158 sb_start_pagefault(inode->i_sb);
6159 file_update_time(vma->vm_file);
6160
6161 filemap_invalidate_lock_shared(mapping);
6162
6163 err = ext4_convert_inline_data(inode);
6164 if (err)
6165 goto out_ret;
6166
6167 /*
6168 * On data journalling we skip straight to the transaction handle:
6169 * there's no delalloc; page truncated will be checked later; the
6170 * early return w/ all buffers mapped (calculates size/len) can't
6171 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172 */
6173 if (ext4_should_journal_data(inode))
6174 goto retry_alloc;
6175
6176 /* Delalloc case is easy... */
6177 if (test_opt(inode->i_sb, DELALLOC) &&
6178 !ext4_nonda_switch(inode->i_sb)) {
6179 do {
6180 err = block_page_mkwrite(vma, vmf,
6181 ext4_da_get_block_prep);
6182 } while (err == -ENOSPC &&
6183 ext4_should_retry_alloc(inode->i_sb, &retries));
6184 goto out_ret;
6185 }
6186
6187 folio_lock(folio);
6188 size = i_size_read(inode);
6189 /* Page got truncated from under us? */
6190 if (folio->mapping != mapping || folio_pos(folio) > size) {
6191 folio_unlock(folio);
6192 ret = VM_FAULT_NOPAGE;
6193 goto out;
6194 }
6195
6196 len = folio_size(folio);
6197 if (folio_pos(folio) + len > size)
6198 len = size - folio_pos(folio);
6199 /*
6200 * Return if we have all the buffers mapped. This avoids the need to do
6201 * journal_start/journal_stop which can block and take a long time
6202 *
6203 * This cannot be done for data journalling, as we have to add the
6204 * inode to the transaction's list to writeprotect pages on commit.
6205 */
6206 if (folio_buffers(folio)) {
6207 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208 0, len, NULL,
6209 ext4_bh_unmapped)) {
6210 /* Wait so that we don't change page under IO */
6211 folio_wait_stable(folio);
6212 ret = VM_FAULT_LOCKED;
6213 goto out;
6214 }
6215 }
6216 folio_unlock(folio);
6217 /* OK, we need to fill the hole... */
6218 if (ext4_should_dioread_nolock(inode))
6219 get_block = ext4_get_block_unwritten;
6220 else
6221 get_block = ext4_get_block;
6222retry_alloc:
6223 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224 ext4_writepage_trans_blocks(inode));
6225 if (IS_ERR(handle)) {
6226 ret = VM_FAULT_SIGBUS;
6227 goto out;
6228 }
6229 /*
6230 * Data journalling can't use block_page_mkwrite() because it
6231 * will set_buffer_dirty() before do_journal_get_write_access()
6232 * thus might hit warning messages for dirty metadata buffers.
6233 */
6234 if (!ext4_should_journal_data(inode)) {
6235 err = block_page_mkwrite(vma, vmf, get_block);
6236 } else {
6237 folio_lock(folio);
6238 size = i_size_read(inode);
6239 /* Page got truncated from under us? */
6240 if (folio->mapping != mapping || folio_pos(folio) > size) {
6241 ret = VM_FAULT_NOPAGE;
6242 goto out_error;
6243 }
6244
6245 len = folio_size(folio);
6246 if (folio_pos(folio) + len > size)
6247 len = size - folio_pos(folio);
6248
6249 err = ext4_block_write_begin(handle, folio, 0, len,
6250 ext4_get_block);
6251 if (!err) {
6252 ret = VM_FAULT_SIGBUS;
6253 if (ext4_journal_folio_buffers(handle, folio, len))
6254 goto out_error;
6255 } else {
6256 folio_unlock(folio);
6257 }
6258 }
6259 ext4_journal_stop(handle);
6260 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261 goto retry_alloc;
6262out_ret:
6263 ret = vmf_fs_error(err);
6264out:
6265 filemap_invalidate_unlock_shared(mapping);
6266 sb_end_pagefault(inode->i_sb);
6267 return ret;
6268out_error:
6269 folio_unlock(folio);
6270 ext4_journal_stop(handle);
6271 goto out;
6272}