Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/jbd2.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
 
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/ratelimit.h>
 
 
  40
  41#include "ext4_jbd2.h"
  42#include "xattr.h"
  43#include "acl.h"
  44#include "truncate.h"
  45
  46#include <trace/events/ext4.h>
  47
  48#define MPAGE_DA_EXTENT_TAIL 0x01
  49
  50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  51			      struct ext4_inode_info *ei)
  52{
  53	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54	__u16 csum_lo;
  55	__u16 csum_hi = 0;
  56	__u32 csum;
 
 
 
 
 
 
 
 
 
  57
  58	csum_lo = raw->i_checksum_lo;
  59	raw->i_checksum_lo = 0;
  60	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  61	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  62		csum_hi = raw->i_checksum_hi;
  63		raw->i_checksum_hi = 0;
 
 
 
 
 
 
  64	}
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  67			   EXT4_INODE_SIZE(inode->i_sb));
  68
  69	raw->i_checksum_lo = csum_lo;
  70	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  71	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  72		raw->i_checksum_hi = csum_hi;
  73
  74	return csum;
  75}
  76
  77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  78				  struct ext4_inode_info *ei)
  79{
  80	__u32 provided, calculated;
  81
  82	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  83	    cpu_to_le32(EXT4_OS_LINUX) ||
  84	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  85		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  86		return 1;
  87
  88	provided = le16_to_cpu(raw->i_checksum_lo);
  89	calculated = ext4_inode_csum(inode, raw, ei);
  90	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  91	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  92		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  93	else
  94		calculated &= 0xFFFF;
  95
  96	return provided == calculated;
  97}
  98
  99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 100				struct ext4_inode_info *ei)
 101{
 102	__u32 csum;
 103
 104	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 105	    cpu_to_le32(EXT4_OS_LINUX) ||
 106	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 107		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 108		return;
 109
 110	csum = ext4_inode_csum(inode, raw, ei);
 111	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 112	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 113	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 114		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 115}
 116
 117static inline int ext4_begin_ordered_truncate(struct inode *inode,
 118					      loff_t new_size)
 119{
 120	trace_ext4_begin_ordered_truncate(inode, new_size);
 121	/*
 122	 * If jinode is zero, then we never opened the file for
 123	 * writing, so there's no need to call
 124	 * jbd2_journal_begin_ordered_truncate() since there's no
 125	 * outstanding writes we need to flush.
 126	 */
 127	if (!EXT4_I(inode)->jinode)
 128		return 0;
 129	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 130						   EXT4_I(inode)->jinode,
 131						   new_size);
 132}
 133
 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
 135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
 136				   struct buffer_head *bh_result, int create);
 137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
 138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
 139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
 142		struct inode *inode, struct page *page, loff_t from,
 143		loff_t length, int flags);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 
 147 */
 148static int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150	int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151		(inode->i_sb->s_blocksize >> 9) : 0;
 
 152
 153	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 
 
 
 
 
 
 154}
 155
 156/*
 157 * Restart the transaction associated with *handle.  This does a commit,
 158 * so before we call here everything must be consistently dirtied against
 159 * this transaction.
 160 */
 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 162				 int nblocks)
 163{
 164	int ret;
 165
 166	/*
 167	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 168	 * moment, get_block can be called only for blocks inside i_size since
 169	 * page cache has been already dropped and writes are blocked by
 170	 * i_mutex. So we can safely drop the i_data_sem here.
 171	 */
 172	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 173	jbd_debug(2, "restarting handle %p\n", handle);
 174	up_write(&EXT4_I(inode)->i_data_sem);
 175	ret = ext4_journal_restart(handle, nblocks);
 176	down_write(&EXT4_I(inode)->i_data_sem);
 177	ext4_discard_preallocations(inode);
 178
 179	return ret;
 180}
 181
 182/*
 183 * Called at the last iput() if i_nlink is zero.
 184 */
 185void ext4_evict_inode(struct inode *inode)
 186{
 187	handle_t *handle;
 188	int err;
 
 
 189
 190	trace_ext4_evict_inode(inode);
 191
 192	ext4_ioend_wait(inode);
 193
 194	if (inode->i_nlink) {
 195		/*
 196		 * When journalling data dirty buffers are tracked only in the
 197		 * journal. So although mm thinks everything is clean and
 198		 * ready for reaping the inode might still have some pages to
 199		 * write in the running transaction or waiting to be
 200		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 201		 * (via truncate_inode_pages()) to discard these buffers can
 202		 * cause data loss. Also even if we did not discard these
 203		 * buffers, we would have no way to find them after the inode
 204		 * is reaped and thus user could see stale data if he tries to
 205		 * read them before the transaction is checkpointed. So be
 206		 * careful and force everything to disk here... We use
 207		 * ei->i_datasync_tid to store the newest transaction
 208		 * containing inode's data.
 209		 *
 210		 * Note that directories do not have this problem because they
 211		 * don't use page cache.
 212		 */
 213		if (ext4_should_journal_data(inode) &&
 214		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 
 
 215			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 216			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 217
 218			jbd2_log_start_commit(journal, commit_tid);
 219			jbd2_log_wait_commit(journal, commit_tid);
 220			filemap_write_and_wait(&inode->i_data);
 221		}
 222		truncate_inode_pages(&inode->i_data, 0);
 
 223		goto no_delete;
 224	}
 225
 226	if (!is_bad_inode(inode))
 227		dquot_initialize(inode);
 
 228
 229	if (ext4_should_order_data(inode))
 230		ext4_begin_ordered_truncate(inode, 0);
 231	truncate_inode_pages(&inode->i_data, 0);
 232
 233	if (is_bad_inode(inode))
 234		goto no_delete;
 
 
 
 
 
 
 235
 236	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 
 237	if (IS_ERR(handle)) {
 238		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 239		/*
 240		 * If we're going to skip the normal cleanup, we still need to
 241		 * make sure that the in-core orphan linked list is properly
 242		 * cleaned up.
 243		 */
 244		ext4_orphan_del(NULL, inode);
 
 245		goto no_delete;
 246	}
 247
 248	if (IS_SYNC(inode))
 249		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 250	inode->i_size = 0;
 251	err = ext4_mark_inode_dirty(handle, inode);
 252	if (err) {
 253		ext4_warning(inode->i_sb,
 254			     "couldn't mark inode dirty (err %d)", err);
 255		goto stop_handle;
 256	}
 257	if (inode->i_blocks)
 258		ext4_truncate(inode);
 259
 260	/*
 261	 * ext4_ext_truncate() doesn't reserve any slop when it
 262	 * restarts journal transactions; therefore there may not be
 263	 * enough credits left in the handle to remove the inode from
 264	 * the orphan list and set the dtime field.
 265	 */
 266	if (!ext4_handle_has_enough_credits(handle, 3)) {
 267		err = ext4_journal_extend(handle, 3);
 268		if (err > 0)
 269			err = ext4_journal_restart(handle, 3);
 270		if (err != 0) {
 271			ext4_warning(inode->i_sb,
 272				     "couldn't extend journal (err %d)", err);
 273		stop_handle:
 274			ext4_journal_stop(handle);
 275			ext4_orphan_del(NULL, inode);
 276			goto no_delete;
 277		}
 278	}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 280	/*
 281	 * Kill off the orphan record which ext4_truncate created.
 282	 * AKPM: I think this can be inside the above `if'.
 283	 * Note that ext4_orphan_del() has to be able to cope with the
 284	 * deletion of a non-existent orphan - this is because we don't
 285	 * know if ext4_truncate() actually created an orphan record.
 286	 * (Well, we could do this if we need to, but heck - it works)
 287	 */
 288	ext4_orphan_del(handle, inode);
 289	EXT4_I(inode)->i_dtime	= get_seconds();
 290
 291	/*
 292	 * One subtle ordering requirement: if anything has gone wrong
 293	 * (transaction abort, IO errors, whatever), then we can still
 294	 * do these next steps (the fs will already have been marked as
 295	 * having errors), but we can't free the inode if the mark_dirty
 296	 * fails.
 297	 */
 298	if (ext4_mark_inode_dirty(handle, inode))
 299		/* If that failed, just do the required in-core inode clear. */
 300		ext4_clear_inode(inode);
 301	else
 302		ext4_free_inode(handle, inode);
 303	ext4_journal_stop(handle);
 
 
 304	return;
 305no_delete:
 306	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 307}
 308
 309#ifdef CONFIG_QUOTA
 310qsize_t *ext4_get_reserved_space(struct inode *inode)
 311{
 312	return &EXT4_I(inode)->i_reserved_quota;
 313}
 314#endif
 315
 316/*
 317 * Calculate the number of metadata blocks need to reserve
 318 * to allocate a block located at @lblock
 319 */
 320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 321{
 322	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 323		return ext4_ext_calc_metadata_amount(inode, lblock);
 324
 325	return ext4_ind_calc_metadata_amount(inode, lblock);
 326}
 327
 328/*
 329 * Called with i_data_sem down, which is important since we can call
 330 * ext4_discard_preallocations() from here.
 331 */
 332void ext4_da_update_reserve_space(struct inode *inode,
 333					int used, int quota_claim)
 334{
 335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 336	struct ext4_inode_info *ei = EXT4_I(inode);
 337
 338	spin_lock(&ei->i_block_reservation_lock);
 339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 340	if (unlikely(used > ei->i_reserved_data_blocks)) {
 341		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 342			 "with only %d reserved data blocks",
 343			 __func__, inode->i_ino, used,
 344			 ei->i_reserved_data_blocks);
 345		WARN_ON(1);
 346		used = ei->i_reserved_data_blocks;
 347	}
 348
 349	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
 350		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
 351			 "with only %d reserved metadata blocks\n", __func__,
 352			 inode->i_ino, ei->i_allocated_meta_blocks,
 353			 ei->i_reserved_meta_blocks);
 354		WARN_ON(1);
 355		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
 356	}
 357
 358	/* Update per-inode reservations */
 359	ei->i_reserved_data_blocks -= used;
 360	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 361	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 362			   used + ei->i_allocated_meta_blocks);
 363	ei->i_allocated_meta_blocks = 0;
 364
 365	if (ei->i_reserved_data_blocks == 0) {
 366		/*
 367		 * We can release all of the reserved metadata blocks
 368		 * only when we have written all of the delayed
 369		 * allocation blocks.
 370		 */
 371		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 372				   ei->i_reserved_meta_blocks);
 373		ei->i_reserved_meta_blocks = 0;
 374		ei->i_da_metadata_calc_len = 0;
 375	}
 376	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 377
 378	/* Update quota subsystem for data blocks */
 379	if (quota_claim)
 380		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 381	else {
 382		/*
 383		 * We did fallocate with an offset that is already delayed
 384		 * allocated. So on delayed allocated writeback we should
 385		 * not re-claim the quota for fallocated blocks.
 386		 */
 387		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 388	}
 389
 390	/*
 391	 * If we have done all the pending block allocations and if
 392	 * there aren't any writers on the inode, we can discard the
 393	 * inode's preallocations.
 394	 */
 395	if ((ei->i_reserved_data_blocks == 0) &&
 396	    (atomic_read(&inode->i_writecount) == 0))
 397		ext4_discard_preallocations(inode);
 398}
 399
 400static int __check_block_validity(struct inode *inode, const char *func,
 401				unsigned int line,
 402				struct ext4_map_blocks *map)
 403{
 404	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 405				   map->m_len)) {
 406		ext4_error_inode(inode, func, line, map->m_pblk,
 407				 "lblock %lu mapped to illegal pblock "
 408				 "(length %d)", (unsigned long) map->m_lblk,
 409				 map->m_len);
 410		return -EIO;
 411	}
 412	return 0;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418/*
 419 * Return the number of contiguous dirty pages in a given inode
 420 * starting at page frame idx.
 421 */
 422static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 423				    unsigned int max_pages)
 424{
 425	struct address_space *mapping = inode->i_mapping;
 426	pgoff_t	index;
 427	struct pagevec pvec;
 428	pgoff_t num = 0;
 429	int i, nr_pages, done = 0;
 430
 431	if (max_pages == 0)
 432		return 0;
 433	pagevec_init(&pvec, 0);
 434	while (!done) {
 435		index = idx;
 436		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 437					      PAGECACHE_TAG_DIRTY,
 438					      (pgoff_t)PAGEVEC_SIZE);
 439		if (nr_pages == 0)
 440			break;
 441		for (i = 0; i < nr_pages; i++) {
 442			struct page *page = pvec.pages[i];
 443			struct buffer_head *bh, *head;
 444
 445			lock_page(page);
 446			if (unlikely(page->mapping != mapping) ||
 447			    !PageDirty(page) ||
 448			    PageWriteback(page) ||
 449			    page->index != idx) {
 450				done = 1;
 451				unlock_page(page);
 452				break;
 453			}
 454			if (page_has_buffers(page)) {
 455				bh = head = page_buffers(page);
 456				do {
 457					if (!buffer_delay(bh) &&
 458					    !buffer_unwritten(bh))
 459						done = 1;
 460					bh = bh->b_this_page;
 461				} while (!done && (bh != head));
 462			}
 463			unlock_page(page);
 464			if (done)
 465				break;
 466			idx++;
 467			num++;
 468			if (num >= max_pages) {
 469				done = 1;
 470				break;
 471			}
 472		}
 473		pagevec_release(&pvec);
 474	}
 475	return num;
 476}
 477
 478/*
 479 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 480 */
 481static void set_buffers_da_mapped(struct inode *inode,
 482				   struct ext4_map_blocks *map)
 483{
 484	struct address_space *mapping = inode->i_mapping;
 485	struct pagevec pvec;
 486	int i, nr_pages;
 487	pgoff_t index, end;
 488
 489	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
 490	end = (map->m_lblk + map->m_len - 1) >>
 491		(PAGE_CACHE_SHIFT - inode->i_blkbits);
 492
 493	pagevec_init(&pvec, 0);
 494	while (index <= end) {
 495		nr_pages = pagevec_lookup(&pvec, mapping, index,
 496					  min(end - index + 1,
 497					      (pgoff_t)PAGEVEC_SIZE));
 498		if (nr_pages == 0)
 499			break;
 500		for (i = 0; i < nr_pages; i++) {
 501			struct page *page = pvec.pages[i];
 502			struct buffer_head *bh, *head;
 503
 504			if (unlikely(page->mapping != mapping) ||
 505			    !PageDirty(page))
 506				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508			if (page_has_buffers(page)) {
 509				bh = head = page_buffers(page);
 510				do {
 511					set_buffer_da_mapped(bh);
 512					bh = bh->b_this_page;
 513				} while (bh != head);
 514			}
 515			index++;
 516		}
 517		pagevec_release(&pvec);
 
 
 
 
 518	}
 519}
 
 520
 521/*
 522 * The ext4_map_blocks() function tries to look up the requested blocks,
 523 * and returns if the blocks are already mapped.
 524 *
 525 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 526 * and store the allocated blocks in the result buffer head and mark it
 527 * mapped.
 528 *
 529 * If file type is extents based, it will call ext4_ext_map_blocks(),
 530 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 531 * based files
 532 *
 533 * On success, it returns the number of blocks being mapped or allocate.
 534 * if create==0 and the blocks are pre-allocated and uninitialized block,
 535 * the result buffer head is unmapped. If the create ==1, it will make sure
 536 * the buffer head is mapped.
 537 *
 538 * It returns 0 if plain look up failed (blocks have not been allocated), in
 539 * that case, buffer head is unmapped
 
 540 *
 541 * It returns the error in case of allocation failure.
 542 */
 543int ext4_map_blocks(handle_t *handle, struct inode *inode,
 544		    struct ext4_map_blocks *map, int flags)
 545{
 
 546	int retval;
 
 
 
 
 
 
 547
 548	map->m_flags = 0;
 549	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 550		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 551		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552	/*
 553	 * Try to see if we can get the block without requesting a new
 554	 * file system block.
 555	 */
 556	down_read((&EXT4_I(inode)->i_data_sem));
 557	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 558		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 559					     EXT4_GET_BLOCKS_KEEP_SIZE);
 560	} else {
 561		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 562					     EXT4_GET_BLOCKS_KEEP_SIZE);
 563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564	up_read((&EXT4_I(inode)->i_data_sem));
 565
 
 566	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 567		int ret = check_block_validity(inode, map);
 568		if (ret != 0)
 569			return ret;
 570	}
 571
 572	/* If it is only a block(s) look up */
 573	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 574		return retval;
 575
 576	/*
 577	 * Returns if the blocks have already allocated
 578	 *
 579	 * Note that if blocks have been preallocated
 580	 * ext4_ext_get_block() returns the create = 0
 581	 * with buffer head unmapped.
 582	 */
 583	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 584		return retval;
 
 
 
 
 
 
 585
 586	/*
 587	 * When we call get_blocks without the create flag, the
 588	 * BH_Unwritten flag could have gotten set if the blocks
 589	 * requested were part of a uninitialized extent.  We need to
 590	 * clear this flag now that we are committed to convert all or
 591	 * part of the uninitialized extent to be an initialized
 592	 * extent.  This is because we need to avoid the combination
 593	 * of BH_Unwritten and BH_Mapped flags being simultaneously
 594	 * set on the buffer_head.
 595	 */
 596	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 597
 598	/*
 599	 * New blocks allocate and/or writing to uninitialized extent
 600	 * will possibly result in updating i_data, so we take
 601	 * the write lock of i_data_sem, and call get_blocks()
 602	 * with create == 1 flag.
 603	 */
 604	down_write((&EXT4_I(inode)->i_data_sem));
 605
 606	/*
 607	 * if the caller is from delayed allocation writeout path
 608	 * we have already reserved fs blocks for allocation
 609	 * let the underlying get_block() function know to
 610	 * avoid double accounting
 611	 */
 612	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 613		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 614	/*
 615	 * We need to check for EXT4 here because migrate
 616	 * could have changed the inode type in between
 617	 */
 618	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 619		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 620	} else {
 621		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 622
 623		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 624			/*
 625			 * We allocated new blocks which will result in
 626			 * i_data's format changing.  Force the migrate
 627			 * to fail by clearing migrate flags
 628			 */
 629			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 630		}
 631
 632		/*
 633		 * Update reserved blocks/metadata blocks after successful
 634		 * block allocation which had been deferred till now. We don't
 635		 * support fallocate for non extent files. So we can update
 636		 * reserve space here.
 637		 */
 638		if ((retval > 0) &&
 639			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 640			ext4_da_update_reserve_space(inode, retval, 1);
 641	}
 642	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
 643		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 644
 645		/* If we have successfully mapped the delayed allocated blocks,
 646		 * set the BH_Da_Mapped bit on them. Its important to do this
 647		 * under the protection of i_data_sem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648		 */
 649		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 650			set_buffers_da_mapped(inode, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651	}
 652
 
 653	up_write((&EXT4_I(inode)->i_data_sem));
 654	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 655		int ret = check_block_validity(inode, map);
 656		if (ret != 0)
 657			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658	}
 659	return retval;
 660}
 661
 662/* Maximum number of blocks we map for direct IO at once. */
 663#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 665static int _ext4_get_block(struct inode *inode, sector_t iblock,
 666			   struct buffer_head *bh, int flags)
 667{
 668	handle_t *handle = ext4_journal_current_handle();
 669	struct ext4_map_blocks map;
 670	int ret = 0, started = 0;
 671	int dio_credits;
 
 
 672
 673	map.m_lblk = iblock;
 674	map.m_len = bh->b_size >> inode->i_blkbits;
 675
 676	if (flags && !handle) {
 677		/* Direct IO write... */
 678		if (map.m_len > DIO_MAX_BLOCKS)
 679			map.m_len = DIO_MAX_BLOCKS;
 680		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 681		handle = ext4_journal_start(inode, dio_credits);
 682		if (IS_ERR(handle)) {
 683			ret = PTR_ERR(handle);
 684			return ret;
 685		}
 686		started = 1;
 687	}
 688
 689	ret = ext4_map_blocks(handle, inode, &map, flags);
 690	if (ret > 0) {
 691		map_bh(bh, inode->i_sb, map.m_pblk);
 692		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 693		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 694		ret = 0;
 
 
 
 695	}
 696	if (started)
 697		ext4_journal_stop(handle);
 698	return ret;
 699}
 700
 701int ext4_get_block(struct inode *inode, sector_t iblock,
 702		   struct buffer_head *bh, int create)
 703{
 704	return _ext4_get_block(inode, iblock, bh,
 705			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 706}
 707
 708/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709 * `handle' can be NULL if create is zero
 710 */
 711struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 712				ext4_lblk_t block, int create, int *errp)
 713{
 714	struct ext4_map_blocks map;
 715	struct buffer_head *bh;
 716	int fatal = 0, err;
 
 717
 718	J_ASSERT(handle != NULL || create == 0);
 719
 720	map.m_lblk = block;
 721	map.m_len = 1;
 722	err = ext4_map_blocks(handle, inode, &map,
 723			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 724
 
 
 725	if (err < 0)
 726		*errp = err;
 727	if (err <= 0)
 728		return NULL;
 729	*errp = 0;
 730
 731	bh = sb_getblk(inode->i_sb, map.m_pblk);
 732	if (!bh) {
 733		*errp = -EIO;
 734		return NULL;
 735	}
 736	if (map.m_flags & EXT4_MAP_NEW) {
 737		J_ASSERT(create != 0);
 738		J_ASSERT(handle != NULL);
 739
 740		/*
 741		 * Now that we do not always journal data, we should
 742		 * keep in mind whether this should always journal the
 743		 * new buffer as metadata.  For now, regular file
 744		 * writes use ext4_get_block instead, so it's not a
 745		 * problem.
 746		 */
 747		lock_buffer(bh);
 748		BUFFER_TRACE(bh, "call get_create_access");
 749		fatal = ext4_journal_get_create_access(handle, bh);
 750		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 751			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 752			set_buffer_uptodate(bh);
 753		}
 754		unlock_buffer(bh);
 755		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 756		err = ext4_handle_dirty_metadata(handle, inode, bh);
 757		if (!fatal)
 758			fatal = err;
 759	} else {
 760		BUFFER_TRACE(bh, "not a new buffer");
 761	}
 762	if (fatal) {
 763		*errp = fatal;
 764		brelse(bh);
 765		bh = NULL;
 766	}
 767	return bh;
 
 
 
 768}
 769
 770struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 771			       ext4_lblk_t block, int create, int *err)
 772{
 773	struct buffer_head *bh;
 774
 775	bh = ext4_getblk(handle, inode, block, create, err);
 776	if (!bh)
 777		return bh;
 778	if (buffer_uptodate(bh))
 779		return bh;
 780	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 781	wait_on_buffer(bh);
 782	if (buffer_uptodate(bh))
 783		return bh;
 784	put_bh(bh);
 785	*err = -EIO;
 786	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789static int walk_page_buffers(handle_t *handle,
 790			     struct buffer_head *head,
 791			     unsigned from,
 792			     unsigned to,
 793			     int *partial,
 794			     int (*fn)(handle_t *handle,
 795				       struct buffer_head *bh))
 796{
 797	struct buffer_head *bh;
 798	unsigned block_start, block_end;
 799	unsigned blocksize = head->b_size;
 800	int err, ret = 0;
 801	struct buffer_head *next;
 802
 803	for (bh = head, block_start = 0;
 804	     ret == 0 && (bh != head || !block_start);
 805	     block_start = block_end, bh = next) {
 806		next = bh->b_this_page;
 807		block_end = block_start + blocksize;
 808		if (block_end <= from || block_start >= to) {
 809			if (partial && !buffer_uptodate(bh))
 810				*partial = 1;
 811			continue;
 812		}
 813		err = (*fn)(handle, bh);
 814		if (!ret)
 815			ret = err;
 816	}
 817	return ret;
 818}
 819
 820/*
 821 * To preserve ordering, it is essential that the hole instantiation and
 822 * the data write be encapsulated in a single transaction.  We cannot
 823 * close off a transaction and start a new one between the ext4_get_block()
 824 * and the commit_write().  So doing the jbd2_journal_start at the start of
 825 * prepare_write() is the right place.
 826 *
 827 * Also, this function can nest inside ext4_writepage() ->
 828 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 829 * has generated enough buffer credits to do the whole page.  So we won't
 830 * block on the journal in that case, which is good, because the caller may
 831 * be PF_MEMALLOC.
 832 *
 833 * By accident, ext4 can be reentered when a transaction is open via
 834 * quota file writes.  If we were to commit the transaction while thus
 835 * reentered, there can be a deadlock - we would be holding a quota
 836 * lock, and the commit would never complete if another thread had a
 837 * transaction open and was blocking on the quota lock - a ranking
 838 * violation.
 839 *
 840 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 841 * will _not_ run commit under these circumstances because handle->h_ref
 842 * is elevated.  We'll still have enough credits for the tiny quotafile
 843 * write.
 844 */
 845static int do_journal_get_write_access(handle_t *handle,
 846				       struct buffer_head *bh)
 847{
 848	int dirty = buffer_dirty(bh);
 849	int ret;
 850
 851	if (!buffer_mapped(bh) || buffer_freed(bh))
 852		return 0;
 853	/*
 854	 * __block_write_begin() could have dirtied some buffers. Clean
 855	 * the dirty bit as jbd2_journal_get_write_access() could complain
 856	 * otherwise about fs integrity issues. Setting of the dirty bit
 857	 * by __block_write_begin() isn't a real problem here as we clear
 858	 * the bit before releasing a page lock and thus writeback cannot
 859	 * ever write the buffer.
 860	 */
 861	if (dirty)
 862		clear_buffer_dirty(bh);
 
 863	ret = ext4_journal_get_write_access(handle, bh);
 864	if (!ret && dirty)
 865		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 866	return ret;
 867}
 868
 869static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 870		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871static int ext4_write_begin(struct file *file, struct address_space *mapping,
 872			    loff_t pos, unsigned len, unsigned flags,
 873			    struct page **pagep, void **fsdata)
 874{
 875	struct inode *inode = mapping->host;
 876	int ret, needed_blocks;
 877	handle_t *handle;
 878	int retries = 0;
 879	struct page *page;
 880	pgoff_t index;
 881	unsigned from, to;
 882
 
 
 
 883	trace_ext4_write_begin(inode, pos, len, flags);
 884	/*
 885	 * Reserve one block more for addition to orphan list in case
 886	 * we allocate blocks but write fails for some reason
 887	 */
 888	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 889	index = pos >> PAGE_CACHE_SHIFT;
 890	from = pos & (PAGE_CACHE_SIZE - 1);
 891	to = from + len;
 892
 893retry:
 894	handle = ext4_journal_start(inode, needed_blocks);
 895	if (IS_ERR(handle)) {
 896		ret = PTR_ERR(handle);
 897		goto out;
 
 
 898	}
 899
 900	/* We cannot recurse into the filesystem as the transaction is already
 901	 * started */
 902	flags |= AOP_FLAG_NOFS;
 903
 
 
 
 
 904	page = grab_cache_page_write_begin(mapping, index, flags);
 905	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906		ext4_journal_stop(handle);
 907		ret = -ENOMEM;
 908		goto out;
 909	}
 910	*pagep = page;
 
 911
 
 912	if (ext4_should_dioread_nolock(inode))
 913		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 
 
 
 
 
 
 
 914	else
 915		ret = __block_write_begin(page, pos, len, ext4_get_block);
 916
 917	if (!ret && ext4_should_journal_data(inode)) {
 918		ret = walk_page_buffers(handle, page_buffers(page),
 919				from, to, NULL, do_journal_get_write_access);
 
 920	}
 921
 922	if (ret) {
 923		unlock_page(page);
 924		page_cache_release(page);
 925		/*
 926		 * __block_write_begin may have instantiated a few blocks
 927		 * outside i_size.  Trim these off again. Don't need
 928		 * i_size_read because we hold i_mutex.
 929		 *
 930		 * Add inode to orphan list in case we crash before
 931		 * truncate finishes
 932		 */
 933		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 934			ext4_orphan_add(handle, inode);
 935
 936		ext4_journal_stop(handle);
 937		if (pos + len > inode->i_size) {
 938			ext4_truncate_failed_write(inode);
 939			/*
 940			 * If truncate failed early the inode might
 941			 * still be on the orphan list; we need to
 942			 * make sure the inode is removed from the
 943			 * orphan list in that case.
 944			 */
 945			if (inode->i_nlink)
 946				ext4_orphan_del(NULL, inode);
 947		}
 948	}
 949
 950	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 951		goto retry;
 952out:
 
 
 
 
 953	return ret;
 954}
 955
 956/* For write_end() in data=journal mode */
 957static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 958{
 
 959	if (!buffer_mapped(bh) || buffer_freed(bh))
 960		return 0;
 961	set_buffer_uptodate(bh);
 962	return ext4_handle_dirty_metadata(handle, NULL, bh);
 
 
 
 963}
 964
 965static int ext4_generic_write_end(struct file *file,
 966				  struct address_space *mapping,
 967				  loff_t pos, unsigned len, unsigned copied,
 968				  struct page *page, void *fsdata)
 
 
 
 
 
 
 
 969{
 970	int i_size_changed = 0;
 971	struct inode *inode = mapping->host;
 972	handle_t *handle = ext4_journal_current_handle();
 
 
 
 
 973
 974	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 975
 
 
 
 
 
 
 
 
 
 
 
 976	/*
 977	 * No need to use i_size_read() here, the i_size
 978	 * cannot change under us because we hold i_mutex.
 979	 *
 980	 * But it's important to update i_size while still holding page lock:
 981	 * page writeout could otherwise come in and zero beyond i_size.
 982	 */
 983	if (pos + copied > inode->i_size) {
 984		i_size_write(inode, pos + copied);
 985		i_size_changed = 1;
 986	}
 987
 988	if (pos + copied >  EXT4_I(inode)->i_disksize) {
 989		/* We need to mark inode dirty even if
 990		 * new_i_size is less that inode->i_size
 991		 * bu greater than i_disksize.(hint delalloc)
 992		 */
 993		ext4_update_i_disksize(inode, (pos + copied));
 994		i_size_changed = 1;
 995	}
 996	unlock_page(page);
 997	page_cache_release(page);
 998
 
 
 999	/*
1000	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1001	 * makes the holding time of page lock longer. Second, it forces lock
1002	 * ordering of page lock and transaction start for journaling
1003	 * filesystems.
1004	 */
1005	if (i_size_changed)
1006		ext4_mark_inode_dirty(handle, inode);
1007
1008	return copied;
1009}
1010
1011/*
1012 * We need to pick up the new inode size which generic_commit_write gave us
1013 * `file' can be NULL - eg, when called from page_symlink().
1014 *
1015 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1016 * buffers are managed internally.
1017 */
1018static int ext4_ordered_write_end(struct file *file,
1019				  struct address_space *mapping,
1020				  loff_t pos, unsigned len, unsigned copied,
1021				  struct page *page, void *fsdata)
1022{
1023	handle_t *handle = ext4_journal_current_handle();
1024	struct inode *inode = mapping->host;
1025	int ret = 0, ret2;
1026
1027	trace_ext4_ordered_write_end(inode, pos, len, copied);
1028	ret = ext4_jbd2_file_inode(handle, inode);
1029
1030	if (ret == 0) {
1031		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1032							page, fsdata);
1033		copied = ret2;
1034		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1035			/* if we have allocated more blocks and copied
1036			 * less. We will have blocks allocated outside
1037			 * inode->i_size. So truncate them
1038			 */
1039			ext4_orphan_add(handle, inode);
1040		if (ret2 < 0)
1041			ret = ret2;
1042	} else {
1043		unlock_page(page);
1044		page_cache_release(page);
1045	}
1046
1047	ret2 = ext4_journal_stop(handle);
1048	if (!ret)
1049		ret = ret2;
1050
1051	if (pos + len > inode->i_size) {
1052		ext4_truncate_failed_write(inode);
1053		/*
1054		 * If truncate failed early the inode might still be
1055		 * on the orphan list; we need to make sure the inode
1056		 * is removed from the orphan list in that case.
1057		 */
1058		if (inode->i_nlink)
1059			ext4_orphan_del(NULL, inode);
1060	}
1061
1062
1063	return ret ? ret : copied;
1064}
1065
1066static int ext4_writeback_write_end(struct file *file,
1067				    struct address_space *mapping,
1068				    loff_t pos, unsigned len, unsigned copied,
1069				    struct page *page, void *fsdata)
1070{
1071	handle_t *handle = ext4_journal_current_handle();
1072	struct inode *inode = mapping->host;
1073	int ret = 0, ret2;
1074
1075	trace_ext4_writeback_write_end(inode, pos, len, copied);
1076	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1077							page, fsdata);
1078	copied = ret2;
1079	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1080		/* if we have allocated more blocks and copied
1081		 * less. We will have blocks allocated outside
1082		 * inode->i_size. So truncate them
1083		 */
1084		ext4_orphan_add(handle, inode);
1085
1086	if (ret2 < 0)
1087		ret = ret2;
1088
1089	ret2 = ext4_journal_stop(handle);
1090	if (!ret)
1091		ret = ret2;
1092
1093	if (pos + len > inode->i_size) {
1094		ext4_truncate_failed_write(inode);
1095		/*
1096		 * If truncate failed early the inode might still be
1097		 * on the orphan list; we need to make sure the inode
1098		 * is removed from the orphan list in that case.
1099		 */
1100		if (inode->i_nlink)
1101			ext4_orphan_del(NULL, inode);
1102	}
1103
1104	return ret ? ret : copied;
1105}
1106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107static int ext4_journalled_write_end(struct file *file,
1108				     struct address_space *mapping,
1109				     loff_t pos, unsigned len, unsigned copied,
1110				     struct page *page, void *fsdata)
1111{
1112	handle_t *handle = ext4_journal_current_handle();
1113	struct inode *inode = mapping->host;
 
1114	int ret = 0, ret2;
1115	int partial = 0;
1116	unsigned from, to;
1117	loff_t new_i_size;
1118
1119	trace_ext4_journalled_write_end(inode, pos, len, copied);
1120	from = pos & (PAGE_CACHE_SIZE - 1);
1121	to = from + len;
1122
1123	BUG_ON(!ext4_handle_valid(handle));
1124
1125	if (copied < len) {
1126		if (!PageUptodate(page))
1127			copied = 0;
1128		page_zero_new_buffers(page, from+copied, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129	}
1130
1131	ret = walk_page_buffers(handle, page_buffers(page), from,
1132				to, &partial, write_end_fn);
1133	if (!partial)
1134		SetPageUptodate(page);
1135	new_i_size = pos + copied;
1136	if (new_i_size > inode->i_size)
1137		i_size_write(inode, pos+copied);
1138	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1139	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1140	if (new_i_size > EXT4_I(inode)->i_disksize) {
1141		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
1142		ret2 = ext4_mark_inode_dirty(handle, inode);
1143		if (!ret)
1144			ret = ret2;
1145	}
1146
1147	unlock_page(page);
1148	page_cache_release(page);
1149	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1150		/* if we have allocated more blocks and copied
1151		 * less. We will have blocks allocated outside
1152		 * inode->i_size. So truncate them
1153		 */
1154		ext4_orphan_add(handle, inode);
1155
 
1156	ret2 = ext4_journal_stop(handle);
1157	if (!ret)
1158		ret = ret2;
1159	if (pos + len > inode->i_size) {
1160		ext4_truncate_failed_write(inode);
1161		/*
1162		 * If truncate failed early the inode might still be
1163		 * on the orphan list; we need to make sure the inode
1164		 * is removed from the orphan list in that case.
1165		 */
1166		if (inode->i_nlink)
1167			ext4_orphan_del(NULL, inode);
1168	}
1169
1170	return ret ? ret : copied;
1171}
1172
1173/*
1174 * Reserve a single cluster located at lblock
1175 */
1176static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1177{
1178	int retries = 0;
1179	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1180	struct ext4_inode_info *ei = EXT4_I(inode);
1181	unsigned int md_needed;
1182	int ret;
1183	ext4_lblk_t save_last_lblock;
1184	int save_len;
1185
1186	/*
1187	 * We will charge metadata quota at writeout time; this saves
1188	 * us from metadata over-estimation, though we may go over by
1189	 * a small amount in the end.  Here we just reserve for data.
1190	 */
1191	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1192	if (ret)
1193		return ret;
1194
1195	/*
1196	 * recalculate the amount of metadata blocks to reserve
1197	 * in order to allocate nrblocks
1198	 * worse case is one extent per block
1199	 */
1200repeat:
1201	spin_lock(&ei->i_block_reservation_lock);
1202	/*
1203	 * ext4_calc_metadata_amount() has side effects, which we have
1204	 * to be prepared undo if we fail to claim space.
1205	 */
1206	save_len = ei->i_da_metadata_calc_len;
1207	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1208	md_needed = EXT4_NUM_B2C(sbi,
1209				 ext4_calc_metadata_amount(inode, lblock));
1210	trace_ext4_da_reserve_space(inode, md_needed);
1211
1212	/*
1213	 * We do still charge estimated metadata to the sb though;
1214	 * we cannot afford to run out of free blocks.
1215	 */
1216	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1217		ei->i_da_metadata_calc_len = save_len;
1218		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1219		spin_unlock(&ei->i_block_reservation_lock);
1220		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1221			yield();
1222			goto repeat;
1223		}
1224		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1225		return -ENOSPC;
1226	}
1227	ei->i_reserved_data_blocks++;
1228	ei->i_reserved_meta_blocks += md_needed;
1229	spin_unlock(&ei->i_block_reservation_lock);
1230
1231	return 0;       /* success */
1232}
1233
1234static void ext4_da_release_space(struct inode *inode, int to_free)
1235{
1236	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1237	struct ext4_inode_info *ei = EXT4_I(inode);
1238
1239	if (!to_free)
1240		return;		/* Nothing to release, exit */
1241
1242	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1243
1244	trace_ext4_da_release_space(inode, to_free);
1245	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1246		/*
1247		 * if there aren't enough reserved blocks, then the
1248		 * counter is messed up somewhere.  Since this
1249		 * function is called from invalidate page, it's
1250		 * harmless to return without any action.
1251		 */
1252		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1253			 "ino %lu, to_free %d with only %d reserved "
1254			 "data blocks", inode->i_ino, to_free,
1255			 ei->i_reserved_data_blocks);
1256		WARN_ON(1);
1257		to_free = ei->i_reserved_data_blocks;
1258	}
1259	ei->i_reserved_data_blocks -= to_free;
1260
1261	if (ei->i_reserved_data_blocks == 0) {
1262		/*
1263		 * We can release all of the reserved metadata blocks
1264		 * only when we have written all of the delayed
1265		 * allocation blocks.
1266		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1267		 * i_reserved_data_blocks, etc. refer to number of clusters.
1268		 */
1269		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1270				   ei->i_reserved_meta_blocks);
1271		ei->i_reserved_meta_blocks = 0;
1272		ei->i_da_metadata_calc_len = 0;
1273	}
1274
1275	/* update fs dirty data blocks counter */
1276	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1277
1278	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1279
1280	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1281}
1282
1283static void ext4_da_page_release_reservation(struct page *page,
1284					     unsigned long offset)
 
1285{
1286	int to_release = 0;
1287	struct buffer_head *head, *bh;
1288	unsigned int curr_off = 0;
1289	struct inode *inode = page->mapping->host;
1290	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
1291	int num_clusters;
 
 
 
1292
1293	head = page_buffers(page);
1294	bh = head;
1295	do {
1296		unsigned int next_off = curr_off + bh->b_size;
1297
 
 
 
1298		if ((offset <= curr_off) && (buffer_delay(bh))) {
1299			to_release++;
 
1300			clear_buffer_delay(bh);
1301			clear_buffer_da_mapped(bh);
 
 
 
 
 
 
1302		}
1303		curr_off = next_off;
1304	} while ((bh = bh->b_this_page) != head);
1305
 
 
 
 
 
 
1306	/* If we have released all the blocks belonging to a cluster, then we
1307	 * need to release the reserved space for that cluster. */
1308	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1309	while (num_clusters > 0) {
1310		ext4_fsblk_t lblk;
1311		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1312			((num_clusters - 1) << sbi->s_cluster_bits);
1313		if (sbi->s_cluster_ratio == 1 ||
1314		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1315			ext4_da_release_space(inode, 1);
1316
1317		num_clusters--;
1318	}
1319}
1320
1321/*
1322 * Delayed allocation stuff
1323 */
1324
1325/*
1326 * mpage_da_submit_io - walks through extent of pages and try to write
1327 * them with writepage() call back
1328 *
1329 * @mpd->inode: inode
1330 * @mpd->first_page: first page of the extent
1331 * @mpd->next_page: page after the last page of the extent
1332 *
1333 * By the time mpage_da_submit_io() is called we expect all blocks
1334 * to be allocated. this may be wrong if allocation failed.
1335 *
1336 * As pages are already locked by write_cache_pages(), we can't use it
1337 */
1338static int mpage_da_submit_io(struct mpage_da_data *mpd,
1339			      struct ext4_map_blocks *map)
1340{
1341	struct pagevec pvec;
1342	unsigned long index, end;
1343	int ret = 0, err, nr_pages, i;
1344	struct inode *inode = mpd->inode;
1345	struct address_space *mapping = inode->i_mapping;
1346	loff_t size = i_size_read(inode);
1347	unsigned int len, block_start;
1348	struct buffer_head *bh, *page_bufs = NULL;
1349	int journal_data = ext4_should_journal_data(inode);
1350	sector_t pblock = 0, cur_logical = 0;
1351	struct ext4_io_submit io_submit;
1352
1353	BUG_ON(mpd->next_page <= mpd->first_page);
1354	memset(&io_submit, 0, sizeof(io_submit));
1355	/*
1356	 * We need to start from the first_page to the next_page - 1
1357	 * to make sure we also write the mapped dirty buffer_heads.
1358	 * If we look at mpd->b_blocknr we would only be looking
1359	 * at the currently mapped buffer_heads.
1360	 */
1361	index = mpd->first_page;
1362	end = mpd->next_page - 1;
1363
1364	pagevec_init(&pvec, 0);
1365	while (index <= end) {
1366		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1367		if (nr_pages == 0)
1368			break;
1369		for (i = 0; i < nr_pages; i++) {
1370			int commit_write = 0, skip_page = 0;
1371			struct page *page = pvec.pages[i];
1372
1373			index = page->index;
1374			if (index > end)
1375				break;
1376
1377			if (index == size >> PAGE_CACHE_SHIFT)
1378				len = size & ~PAGE_CACHE_MASK;
1379			else
1380				len = PAGE_CACHE_SIZE;
1381			if (map) {
1382				cur_logical = index << (PAGE_CACHE_SHIFT -
1383							inode->i_blkbits);
1384				pblock = map->m_pblk + (cur_logical -
1385							map->m_lblk);
1386			}
1387			index++;
1388
1389			BUG_ON(!PageLocked(page));
1390			BUG_ON(PageWriteback(page));
1391
1392			/*
1393			 * If the page does not have buffers (for
1394			 * whatever reason), try to create them using
1395			 * __block_write_begin.  If this fails,
1396			 * skip the page and move on.
1397			 */
1398			if (!page_has_buffers(page)) {
1399				if (__block_write_begin(page, 0, len,
1400						noalloc_get_block_write)) {
1401				skip_page:
1402					unlock_page(page);
1403					continue;
1404				}
1405				commit_write = 1;
1406			}
1407
1408			bh = page_bufs = page_buffers(page);
1409			block_start = 0;
1410			do {
1411				if (!bh)
1412					goto skip_page;
1413				if (map && (cur_logical >= map->m_lblk) &&
1414				    (cur_logical <= (map->m_lblk +
1415						     (map->m_len - 1)))) {
1416					if (buffer_delay(bh)) {
1417						clear_buffer_delay(bh);
1418						bh->b_blocknr = pblock;
1419					}
1420					if (buffer_da_mapped(bh))
1421						clear_buffer_da_mapped(bh);
1422					if (buffer_unwritten(bh) ||
1423					    buffer_mapped(bh))
1424						BUG_ON(bh->b_blocknr != pblock);
1425					if (map->m_flags & EXT4_MAP_UNINIT)
1426						set_buffer_uninit(bh);
1427					clear_buffer_unwritten(bh);
1428				}
1429
1430				/*
1431				 * skip page if block allocation undone and
1432				 * block is dirty
1433				 */
1434				if (ext4_bh_delay_or_unwritten(NULL, bh))
1435					skip_page = 1;
1436				bh = bh->b_this_page;
1437				block_start += bh->b_size;
1438				cur_logical++;
1439				pblock++;
1440			} while (bh != page_bufs);
1441
1442			if (skip_page)
1443				goto skip_page;
1444
1445			if (commit_write)
1446				/* mark the buffer_heads as dirty & uptodate */
1447				block_commit_write(page, 0, len);
1448
1449			clear_page_dirty_for_io(page);
1450			/*
1451			 * Delalloc doesn't support data journalling,
1452			 * but eventually maybe we'll lift this
1453			 * restriction.
1454			 */
1455			if (unlikely(journal_data && PageChecked(page)))
1456				err = __ext4_journalled_writepage(page, len);
1457			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1458				err = ext4_bio_write_page(&io_submit, page,
1459							  len, mpd->wbc);
1460			else if (buffer_uninit(page_bufs)) {
1461				ext4_set_bh_endio(page_bufs, inode);
1462				err = block_write_full_page_endio(page,
1463					noalloc_get_block_write,
1464					mpd->wbc, ext4_end_io_buffer_write);
1465			} else
1466				err = block_write_full_page(page,
1467					noalloc_get_block_write, mpd->wbc);
1468
1469			if (!err)
1470				mpd->pages_written++;
1471			/*
1472			 * In error case, we have to continue because
1473			 * remaining pages are still locked
1474			 */
1475			if (ret == 0)
1476				ret = err;
1477		}
1478		pagevec_release(&pvec);
1479	}
1480	ext4_io_submit(&io_submit);
1481	return ret;
1482}
1483
1484static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
 
1485{
1486	int nr_pages, i;
1487	pgoff_t index, end;
1488	struct pagevec pvec;
1489	struct inode *inode = mpd->inode;
1490	struct address_space *mapping = inode->i_mapping;
1491
 
 
 
 
1492	index = mpd->first_page;
1493	end   = mpd->next_page - 1;
 
 
 
 
 
 
 
 
1494	while (index <= end) {
1495		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1496		if (nr_pages == 0)
1497			break;
1498		for (i = 0; i < nr_pages; i++) {
1499			struct page *page = pvec.pages[i];
1500			if (page->index > end)
1501				break;
1502			BUG_ON(!PageLocked(page));
1503			BUG_ON(PageWriteback(page));
1504			block_invalidatepage(page, 0);
1505			ClearPageUptodate(page);
 
 
 
 
1506			unlock_page(page);
1507		}
1508		index = pvec.pages[nr_pages - 1]->index + 1;
1509		pagevec_release(&pvec);
1510	}
1511	return;
1512}
1513
1514static void ext4_print_free_blocks(struct inode *inode)
1515{
1516	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1517	struct super_block *sb = inode->i_sb;
 
1518
1519	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1520	       EXT4_C2B(EXT4_SB(inode->i_sb),
1521			ext4_count_free_clusters(inode->i_sb)));
1522	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1523	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1524	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1525		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1526	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1527	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1528		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1529	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1530	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1531		 EXT4_I(inode)->i_reserved_data_blocks);
1532	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1533	       EXT4_I(inode)->i_reserved_meta_blocks);
1534	return;
1535}
1536
1537/*
1538 * mpage_da_map_and_submit - go through given space, map them
1539 *       if necessary, and then submit them for I/O
1540 *
1541 * @mpd - bh describing space
1542 *
1543 * The function skips space we know is already mapped to disk blocks.
1544 *
1545 */
1546static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1547{
1548	int err, blks, get_blocks_flags;
1549	struct ext4_map_blocks map, *mapp = NULL;
1550	sector_t next = mpd->b_blocknr;
1551	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1552	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1553	handle_t *handle = NULL;
1554
1555	/*
1556	 * If the blocks are mapped already, or we couldn't accumulate
1557	 * any blocks, then proceed immediately to the submission stage.
1558	 */
1559	if ((mpd->b_size == 0) ||
1560	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1561	     !(mpd->b_state & (1 << BH_Delay)) &&
1562	     !(mpd->b_state & (1 << BH_Unwritten))))
1563		goto submit_io;
1564
1565	handle = ext4_journal_current_handle();
1566	BUG_ON(!handle);
1567
1568	/*
1569	 * Call ext4_map_blocks() to allocate any delayed allocation
1570	 * blocks, or to convert an uninitialized extent to be
1571	 * initialized (in the case where we have written into
1572	 * one or more preallocated blocks).
1573	 *
1574	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1575	 * indicate that we are on the delayed allocation path.  This
1576	 * affects functions in many different parts of the allocation
1577	 * call path.  This flag exists primarily because we don't
1578	 * want to change *many* call functions, so ext4_map_blocks()
1579	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1580	 * inode's allocation semaphore is taken.
1581	 *
1582	 * If the blocks in questions were delalloc blocks, set
1583	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1584	 * variables are updated after the blocks have been allocated.
1585	 */
1586	map.m_lblk = next;
1587	map.m_len = max_blocks;
1588	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1589	if (ext4_should_dioread_nolock(mpd->inode))
1590		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1591	if (mpd->b_state & (1 << BH_Delay))
1592		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1593
1594	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1595	if (blks < 0) {
1596		struct super_block *sb = mpd->inode->i_sb;
1597
1598		err = blks;
1599		/*
1600		 * If get block returns EAGAIN or ENOSPC and there
1601		 * appears to be free blocks we will just let
1602		 * mpage_da_submit_io() unlock all of the pages.
1603		 */
1604		if (err == -EAGAIN)
1605			goto submit_io;
1606
1607		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1608			mpd->retval = err;
1609			goto submit_io;
1610		}
1611
1612		/*
1613		 * get block failure will cause us to loop in
1614		 * writepages, because a_ops->writepage won't be able
1615		 * to make progress. The page will be redirtied by
1616		 * writepage and writepages will again try to write
1617		 * the same.
1618		 */
1619		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1620			ext4_msg(sb, KERN_CRIT,
1621				 "delayed block allocation failed for inode %lu "
1622				 "at logical offset %llu with max blocks %zd "
1623				 "with error %d", mpd->inode->i_ino,
1624				 (unsigned long long) next,
1625				 mpd->b_size >> mpd->inode->i_blkbits, err);
1626			ext4_msg(sb, KERN_CRIT,
1627				"This should not happen!! Data will be lost\n");
1628			if (err == -ENOSPC)
1629				ext4_print_free_blocks(mpd->inode);
1630		}
1631		/* invalidate all the pages */
1632		ext4_da_block_invalidatepages(mpd);
1633
1634		/* Mark this page range as having been completed */
1635		mpd->io_done = 1;
1636		return;
1637	}
1638	BUG_ON(blks == 0);
1639
1640	mapp = &map;
1641	if (map.m_flags & EXT4_MAP_NEW) {
1642		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1643		int i;
1644
1645		for (i = 0; i < map.m_len; i++)
1646			unmap_underlying_metadata(bdev, map.m_pblk + i);
1647
1648		if (ext4_should_order_data(mpd->inode)) {
1649			err = ext4_jbd2_file_inode(handle, mpd->inode);
1650			if (err) {
1651				/* Only if the journal is aborted */
1652				mpd->retval = err;
1653				goto submit_io;
1654			}
1655		}
1656	}
1657
1658	/*
1659	 * Update on-disk size along with block allocation.
1660	 */
1661	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1662	if (disksize > i_size_read(mpd->inode))
1663		disksize = i_size_read(mpd->inode);
1664	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1665		ext4_update_i_disksize(mpd->inode, disksize);
1666		err = ext4_mark_inode_dirty(handle, mpd->inode);
1667		if (err)
1668			ext4_error(mpd->inode->i_sb,
1669				   "Failed to mark inode %lu dirty",
1670				   mpd->inode->i_ino);
1671	}
1672
1673submit_io:
1674	mpage_da_submit_io(mpd, mapp);
1675	mpd->io_done = 1;
1676}
1677
1678#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1679		(1 << BH_Delay) | (1 << BH_Unwritten))
1680
1681/*
1682 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1683 *
1684 * @mpd->lbh - extent of blocks
1685 * @logical - logical number of the block in the file
1686 * @bh - bh of the block (used to access block's state)
1687 *
1688 * the function is used to collect contig. blocks in same state
1689 */
1690static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1691				   sector_t logical, size_t b_size,
1692				   unsigned long b_state)
1693{
1694	sector_t next;
1695	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1696
1697	/*
1698	 * XXX Don't go larger than mballoc is willing to allocate
1699	 * This is a stopgap solution.  We eventually need to fold
1700	 * mpage_da_submit_io() into this function and then call
1701	 * ext4_map_blocks() multiple times in a loop
1702	 */
1703	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1704		goto flush_it;
1705
1706	/* check if thereserved journal credits might overflow */
1707	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1708		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1709			/*
1710			 * With non-extent format we are limited by the journal
1711			 * credit available.  Total credit needed to insert
1712			 * nrblocks contiguous blocks is dependent on the
1713			 * nrblocks.  So limit nrblocks.
1714			 */
1715			goto flush_it;
1716		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1717				EXT4_MAX_TRANS_DATA) {
1718			/*
1719			 * Adding the new buffer_head would make it cross the
1720			 * allowed limit for which we have journal credit
1721			 * reserved. So limit the new bh->b_size
1722			 */
1723			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1724						mpd->inode->i_blkbits;
1725			/* we will do mpage_da_submit_io in the next loop */
1726		}
1727	}
1728	/*
1729	 * First block in the extent
1730	 */
1731	if (mpd->b_size == 0) {
1732		mpd->b_blocknr = logical;
1733		mpd->b_size = b_size;
1734		mpd->b_state = b_state & BH_FLAGS;
1735		return;
1736	}
1737
1738	next = mpd->b_blocknr + nrblocks;
1739	/*
1740	 * Can we merge the block to our big extent?
1741	 */
1742	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1743		mpd->b_size += b_size;
1744		return;
1745	}
1746
1747flush_it:
1748	/*
1749	 * We couldn't merge the block to our extent, so we
1750	 * need to flush current  extent and start new one
1751	 */
1752	mpage_da_map_and_submit(mpd);
1753	return;
1754}
1755
1756static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1757{
1758	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1759}
1760
1761/*
1762 * This function is grabs code from the very beginning of
1763 * ext4_map_blocks, but assumes that the caller is from delayed write
1764 * time. This function looks up the requested blocks and sets the
1765 * buffer delay bit under the protection of i_data_sem.
1766 */
1767static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1768			      struct ext4_map_blocks *map,
1769			      struct buffer_head *bh)
1770{
 
1771	int retval;
1772	sector_t invalid_block = ~((sector_t) 0xffff);
 
 
 
 
 
1773
1774	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1775		invalid_block = ~0;
1776
1777	map->m_flags = 0;
1778	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1779		  "logical block %lu\n", inode->i_ino, map->m_len,
1780		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	/*
1782	 * Try to see if we can get the block without requesting a new
1783	 * file system block.
1784	 */
1785	down_read((&EXT4_I(inode)->i_data_sem));
1786	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 
 
1787		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1788	else
1789		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1790
 
1791	if (retval == 0) {
 
1792		/*
1793		 * XXX: __block_prepare_write() unmaps passed block,
1794		 * is it OK?
1795		 */
1796		/* If the block was allocated from previously allocated cluster,
1797		 * then we dont need to reserve it again. */
1798		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1799			retval = ext4_da_reserve_space(inode, iblock);
1800			if (retval)
 
 
 
 
1801				/* not enough space to reserve */
 
1802				goto out_unlock;
 
1803		}
1804
1805		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1806		 * and it should not appear on the bh->b_state.
1807		 */
1808		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
 
 
1809
1810		map_bh(bh, inode->i_sb, invalid_block);
1811		set_buffer_new(bh);
1812		set_buffer_delay(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813	}
1814
1815out_unlock:
1816	up_read((&EXT4_I(inode)->i_data_sem));
1817
1818	return retval;
1819}
1820
1821/*
1822 * This is a special get_blocks_t callback which is used by
1823 * ext4_da_write_begin().  It will either return mapped block or
1824 * reserve space for a single block.
1825 *
1826 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1827 * We also have b_blocknr = -1 and b_bdev initialized properly
1828 *
1829 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1830 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1831 * initialized properly.
1832 */
1833static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1834				  struct buffer_head *bh, int create)
1835{
1836	struct ext4_map_blocks map;
1837	int ret = 0;
1838
1839	BUG_ON(create == 0);
1840	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1841
1842	map.m_lblk = iblock;
1843	map.m_len = 1;
1844
1845	/*
1846	 * first, we need to know whether the block is allocated already
1847	 * preallocated blocks are unmapped but should treated
1848	 * the same as allocated blocks.
1849	 */
1850	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1851	if (ret <= 0)
1852		return ret;
1853
1854	map_bh(bh, inode->i_sb, map.m_pblk);
1855	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1856
1857	if (buffer_unwritten(bh)) {
1858		/* A delayed write to unwritten bh should be marked
1859		 * new and mapped.  Mapped ensures that we don't do
1860		 * get_block multiple times when we write to the same
1861		 * offset and new ensures that we do proper zero out
1862		 * for partial write.
1863		 */
1864		set_buffer_new(bh);
1865		set_buffer_mapped(bh);
1866	}
1867	return 0;
1868}
1869
1870/*
1871 * This function is used as a standard get_block_t calback function
1872 * when there is no desire to allocate any blocks.  It is used as a
1873 * callback function for block_write_begin() and block_write_full_page().
1874 * These functions should only try to map a single block at a time.
1875 *
1876 * Since this function doesn't do block allocations even if the caller
1877 * requests it by passing in create=1, it is critically important that
1878 * any caller checks to make sure that any buffer heads are returned
1879 * by this function are either all already mapped or marked for
1880 * delayed allocation before calling  block_write_full_page().  Otherwise,
1881 * b_blocknr could be left unitialized, and the page write functions will
1882 * be taken by surprise.
1883 */
1884static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1885				   struct buffer_head *bh_result, int create)
1886{
1887	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1888	return _ext4_get_block(inode, iblock, bh_result, 0);
1889}
1890
1891static int bget_one(handle_t *handle, struct buffer_head *bh)
1892{
1893	get_bh(bh);
1894	return 0;
1895}
1896
1897static int bput_one(handle_t *handle, struct buffer_head *bh)
1898{
1899	put_bh(bh);
1900	return 0;
1901}
1902
1903static int __ext4_journalled_writepage(struct page *page,
1904				       unsigned int len)
1905{
1906	struct address_space *mapping = page->mapping;
1907	struct inode *inode = mapping->host;
1908	struct buffer_head *page_bufs;
1909	handle_t *handle = NULL;
1910	int ret = 0;
1911	int err;
 
1912
1913	ClearPageChecked(page);
1914	page_bufs = page_buffers(page);
1915	BUG_ON(!page_bufs);
1916	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1917	/* As soon as we unlock the page, it can go away, but we have
1918	 * references to buffers so we are safe */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919	unlock_page(page);
1920
1921	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
1922	if (IS_ERR(handle)) {
1923		ret = PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
1924		goto out;
1925	}
1926
1927	BUG_ON(!ext4_handle_valid(handle));
 
 
1928
1929	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1930				do_journal_get_write_access);
1931
1932	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933				write_end_fn);
 
 
 
 
 
1934	if (ret == 0)
1935		ret = err;
1936	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937	err = ext4_journal_stop(handle);
1938	if (!ret)
1939		ret = err;
1940
1941	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
 
 
1942	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1943out:
 
 
 
1944	return ret;
1945}
1946
1947static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1948static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1949
1950/*
1951 * Note that we don't need to start a transaction unless we're journaling data
1952 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1953 * need to file the inode to the transaction's list in ordered mode because if
1954 * we are writing back data added by write(), the inode is already there and if
1955 * we are writing back data modified via mmap(), no one guarantees in which
1956 * transaction the data will hit the disk. In case we are journaling data, we
1957 * cannot start transaction directly because transaction start ranks above page
1958 * lock so we have to do some magic.
1959 *
1960 * This function can get called via...
1961 *   - ext4_da_writepages after taking page lock (have journal handle)
1962 *   - journal_submit_inode_data_buffers (no journal handle)
1963 *   - shrink_page_list via pdflush (no journal handle)
1964 *   - grab_page_cache when doing write_begin (have journal handle)
1965 *
1966 * We don't do any block allocation in this function. If we have page with
1967 * multiple blocks we need to write those buffer_heads that are mapped. This
1968 * is important for mmaped based write. So if we do with blocksize 1K
1969 * truncate(f, 1024);
1970 * a = mmap(f, 0, 4096);
1971 * a[0] = 'a';
1972 * truncate(f, 4096);
1973 * we have in the page first buffer_head mapped via page_mkwrite call back
1974 * but other buffer_heads would be unmapped but dirty (dirty done via the
1975 * do_wp_page). So writepage should write the first block. If we modify
1976 * the mmap area beyond 1024 we will again get a page_fault and the
1977 * page_mkwrite callback will do the block allocation and mark the
1978 * buffer_heads mapped.
1979 *
1980 * We redirty the page if we have any buffer_heads that is either delay or
1981 * unwritten in the page.
1982 *
1983 * We can get recursively called as show below.
1984 *
1985 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1986 *		ext4_writepage()
1987 *
1988 * But since we don't do any block allocation we should not deadlock.
1989 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1990 */
1991static int ext4_writepage(struct page *page,
1992			  struct writeback_control *wbc)
1993{
1994	int ret = 0, commit_write = 0;
1995	loff_t size;
1996	unsigned int len;
1997	struct buffer_head *page_bufs = NULL;
1998	struct inode *inode = page->mapping->host;
 
 
 
 
 
 
 
 
1999
2000	trace_ext4_writepage(page);
2001	size = i_size_read(inode);
2002	if (page->index == size >> PAGE_CACHE_SHIFT)
2003		len = size & ~PAGE_CACHE_MASK;
2004	else
2005		len = PAGE_CACHE_SIZE;
2006
 
2007	/*
2008	 * If the page does not have buffers (for whatever reason),
2009	 * try to create them using __block_write_begin.  If this
2010	 * fails, redirty the page and move on.
2011	 */
2012	if (!page_has_buffers(page)) {
2013		if (__block_write_begin(page, 0, len,
2014					noalloc_get_block_write)) {
2015		redirty_page:
2016			redirty_page_for_writepage(wbc, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017			unlock_page(page);
2018			return 0;
2019		}
2020		commit_write = 1;
2021	}
2022	page_bufs = page_buffers(page);
2023	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2024			      ext4_bh_delay_or_unwritten)) {
2025		/*
2026		 * We don't want to do block allocation, so redirty
2027		 * the page and return.  We may reach here when we do
2028		 * a journal commit via journal_submit_inode_data_buffers.
2029		 * We can also reach here via shrink_page_list but it
2030		 * should never be for direct reclaim so warn if that
2031		 * happens
2032		 */
2033		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2034								PF_MEMALLOC);
2035		goto redirty_page;
2036	}
2037	if (commit_write)
2038		/* now mark the buffer_heads as dirty and uptodate */
2039		block_commit_write(page, 0, len);
2040
2041	if (PageChecked(page) && ext4_should_journal_data(inode))
2042		/*
2043		 * It's mmapped pagecache.  Add buffers and journal it.  There
2044		 * doesn't seem much point in redirtying the page here.
2045		 */
2046		return __ext4_journalled_writepage(page, len);
2047
2048	if (buffer_uninit(page_bufs)) {
2049		ext4_set_bh_endio(page_bufs, inode);
2050		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2051					    wbc, ext4_end_io_buffer_write);
2052	} else
2053		ret = block_write_full_page(page, noalloc_get_block_write,
2054					    wbc);
2055
 
 
 
2056	return ret;
2057}
2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059/*
2060 * This is called via ext4_da_writepages() to
2061 * calculate the total number of credits to reserve to fit
2062 * a single extent allocation into a single transaction,
2063 * ext4_da_writpeages() will loop calling this before
2064 * the block allocation.
2065 */
 
2066
2067static int ext4_da_writepages_trans_blocks(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068{
2069	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
 
 
 
 
 
 
2070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071	/*
2072	 * With non-extent format the journal credit needed to
2073	 * insert nrblocks contiguous block is dependent on
2074	 * number of contiguous block. So we will limit
2075	 * number of contiguous block to a sane value
2076	 */
2077	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2078	    (max_blocks > EXT4_MAX_TRANS_DATA))
2079		max_blocks = EXT4_MAX_TRANS_DATA;
2080
2081	return ext4_chunk_trans_blocks(inode, max_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084/*
2085 * write_cache_pages_da - walk the list of dirty pages of the given
2086 * address space and accumulate pages that need writing, and call
2087 * mpage_da_map_and_submit to map a single contiguous memory region
2088 * and then write them.
2089 */
2090static int write_cache_pages_da(struct address_space *mapping,
2091				struct writeback_control *wbc,
2092				struct mpage_da_data *mpd,
2093				pgoff_t *done_index)
2094{
2095	struct buffer_head	*bh, *head;
2096	struct inode		*inode = mapping->host;
2097	struct pagevec		pvec;
2098	unsigned int		nr_pages;
2099	sector_t		logical;
2100	pgoff_t			index, end;
2101	long			nr_to_write = wbc->nr_to_write;
2102	int			i, tag, ret = 0;
2103
2104	memset(mpd, 0, sizeof(struct mpage_da_data));
2105	mpd->wbc = wbc;
2106	mpd->inode = inode;
2107	pagevec_init(&pvec, 0);
2108	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2109	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2110
2111	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112		tag = PAGECACHE_TAG_TOWRITE;
2113	else
2114		tag = PAGECACHE_TAG_DIRTY;
2115
2116	*done_index = index;
 
 
2117	while (index <= end) {
2118		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2119			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2120		if (nr_pages == 0)
2121			return 0;
2122
2123		for (i = 0; i < nr_pages; i++) {
2124			struct page *page = pvec.pages[i];
2125
2126			/*
2127			 * At this point, the page may be truncated or
2128			 * invalidated (changing page->mapping to NULL), or
2129			 * even swizzled back from swapper_space to tmpfs file
2130			 * mapping. However, page->index will not change
2131			 * because we have a reference on the page.
 
2132			 */
2133			if (page->index > end)
2134				goto out;
2135
2136			*done_index = page->index + 1;
2137
2138			/*
2139			 * If we can't merge this page, and we have
2140			 * accumulated an contiguous region, write it
2141			 */
2142			if ((mpd->next_page != page->index) &&
2143			    (mpd->next_page != mpd->first_page)) {
2144				mpage_da_map_and_submit(mpd);
2145				goto ret_extent_tail;
2146			}
2147
2148			lock_page(page);
2149
2150			/*
2151			 * If the page is no longer dirty, or its
2152			 * mapping no longer corresponds to inode we
2153			 * are writing (which means it has been
2154			 * truncated or invalidated), or the page is
2155			 * already under writeback and we are not
2156			 * doing a data integrity writeback, skip the page
2157			 */
2158			if (!PageDirty(page) ||
2159			    (PageWriteback(page) &&
2160			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2161			    unlikely(page->mapping != mapping)) {
2162				unlock_page(page);
2163				continue;
2164			}
2165
2166			wait_on_page_writeback(page);
2167			BUG_ON(PageWriteback(page));
2168
2169			if (mpd->next_page != page->index)
2170				mpd->first_page = page->index;
2171			mpd->next_page = page->index + 1;
2172			logical = (sector_t) page->index <<
2173				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2174
2175			if (!page_has_buffers(page)) {
2176				mpage_add_bh_to_extent(mpd, logical,
2177						       PAGE_CACHE_SIZE,
2178						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2179				if (mpd->io_done)
2180					goto ret_extent_tail;
2181			} else {
2182				/*
2183				 * Page with regular buffer heads,
2184				 * just add all dirty ones
2185				 */
2186				head = page_buffers(page);
2187				bh = head;
2188				do {
2189					BUG_ON(buffer_locked(bh));
2190					/*
2191					 * We need to try to allocate
2192					 * unmapped blocks in the same page.
2193					 * Otherwise we won't make progress
2194					 * with the page in ext4_writepage
2195					 */
2196					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2197						mpage_add_bh_to_extent(mpd, logical,
2198								       bh->b_size,
2199								       bh->b_state);
2200						if (mpd->io_done)
2201							goto ret_extent_tail;
2202					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2203						/*
2204						 * mapped dirty buffer. We need
2205						 * to update the b_state
2206						 * because we look at b_state
2207						 * in mpage_da_map_blocks.  We
2208						 * don't update b_size because
2209						 * if we find an unmapped
2210						 * buffer_head later we need to
2211						 * use the b_state flag of that
2212						 * buffer_head.
2213						 */
2214						if (mpd->b_size == 0)
2215							mpd->b_state = bh->b_state & BH_FLAGS;
2216					}
2217					logical++;
2218				} while ((bh = bh->b_this_page) != head);
2219			}
2220
2221			if (nr_to_write > 0) {
2222				nr_to_write--;
2223				if (nr_to_write == 0 &&
2224				    wbc->sync_mode == WB_SYNC_NONE)
2225					/*
2226					 * We stop writing back only if we are
2227					 * not doing integrity sync. In case of
2228					 * integrity sync we have to keep going
2229					 * because someone may be concurrently
2230					 * dirtying pages, and we might have
2231					 * synced a lot of newly appeared dirty
2232					 * pages, but have not synced all of the
2233					 * old dirty pages.
2234					 */
2235					goto out;
2236			}
2237		}
2238		pagevec_release(&pvec);
2239		cond_resched();
2240	}
2241	return 0;
2242ret_extent_tail:
2243	ret = MPAGE_DA_EXTENT_TAIL;
2244out:
2245	pagevec_release(&pvec);
2246	cond_resched();
2247	return ret;
2248}
2249
2250
2251static int ext4_da_writepages(struct address_space *mapping,
2252			      struct writeback_control *wbc)
2253{
2254	pgoff_t	index;
 
2255	int range_whole = 0;
 
2256	handle_t *handle = NULL;
2257	struct mpage_da_data mpd;
2258	struct inode *inode = mapping->host;
2259	int pages_written = 0;
2260	unsigned int max_pages;
2261	int range_cyclic, cycled = 1, io_done = 0;
2262	int needed_blocks, ret = 0;
2263	long desired_nr_to_write, nr_to_writebump = 0;
2264	loff_t range_start = wbc->range_start;
2265	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2266	pgoff_t done_index = 0;
2267	pgoff_t end;
2268	struct blk_plug plug;
 
 
 
 
2269
2270	trace_ext4_da_writepages(inode, wbc);
 
2271
2272	/*
2273	 * No pages to write? This is mainly a kludge to avoid starting
2274	 * a transaction for special inodes like journal inode on last iput()
2275	 * because that could violate lock ordering on umount
2276	 */
2277	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2278		return 0;
 
 
 
 
 
2279
2280	/*
2281	 * If the filesystem has aborted, it is read-only, so return
2282	 * right away instead of dumping stack traces later on that
2283	 * will obscure the real source of the problem.  We test
2284	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2285	 * the latter could be true if the filesystem is mounted
2286	 * read-only, and in that case, ext4_da_writepages should
2287	 * *never* be called, so if that ever happens, we would want
2288	 * the stack trace.
2289	 */
2290	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2291		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292
2293	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2294		range_whole = 1;
2295
2296	range_cyclic = wbc->range_cyclic;
2297	if (wbc->range_cyclic) {
2298		index = mapping->writeback_index;
2299		if (index)
2300			cycled = 0;
2301		wbc->range_start = index << PAGE_CACHE_SHIFT;
2302		wbc->range_end  = LLONG_MAX;
2303		wbc->range_cyclic = 0;
2304		end = -1;
2305	} else {
2306		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2307		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2308	}
2309
2310	/*
2311	 * This works around two forms of stupidity.  The first is in
2312	 * the writeback code, which caps the maximum number of pages
2313	 * written to be 1024 pages.  This is wrong on multiple
2314	 * levels; different architectues have a different page size,
2315	 * which changes the maximum amount of data which gets
2316	 * written.  Secondly, 4 megabytes is way too small.  XFS
2317	 * forces this value to be 16 megabytes by multiplying
2318	 * nr_to_write parameter by four, and then relies on its
2319	 * allocator to allocate larger extents to make them
2320	 * contiguous.  Unfortunately this brings us to the second
2321	 * stupidity, which is that ext4's mballoc code only allocates
2322	 * at most 2048 blocks.  So we force contiguous writes up to
2323	 * the number of dirty blocks in the inode, or
2324	 * sbi->max_writeback_mb_bump whichever is smaller.
2325	 */
2326	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2327	if (!range_cyclic && range_whole) {
2328		if (wbc->nr_to_write == LONG_MAX)
2329			desired_nr_to_write = wbc->nr_to_write;
2330		else
2331			desired_nr_to_write = wbc->nr_to_write * 8;
2332	} else
2333		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2334							   max_pages);
2335	if (desired_nr_to_write > max_pages)
2336		desired_nr_to_write = max_pages;
2337
2338	if (wbc->nr_to_write < desired_nr_to_write) {
2339		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2340		wbc->nr_to_write = desired_nr_to_write;
2341	}
2342
 
 
 
2343retry:
2344	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345		tag_pages_for_writeback(mapping, index, end);
2346
2347	blk_start_plug(&plug);
2348	while (!ret && wbc->nr_to_write > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349
2350		/*
2351		 * we  insert one extent at a time. So we need
2352		 * credit needed for single extent allocation.
2353		 * journalled mode is currently not supported
2354		 * by delalloc
 
2355		 */
2356		BUG_ON(ext4_should_journal_data(inode));
2357		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2358
2359		/* start a new transaction*/
2360		handle = ext4_journal_start(inode, needed_blocks);
 
2361		if (IS_ERR(handle)) {
2362			ret = PTR_ERR(handle);
2363			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2364			       "%ld pages, ino %lu; err %d", __func__,
2365				wbc->nr_to_write, inode->i_ino, ret);
2366			blk_finish_plug(&plug);
2367			goto out_writepages;
 
 
2368		}
 
2369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2370		/*
2371		 * Now call write_cache_pages_da() to find the next
2372		 * contiguous region of logical blocks that need
2373		 * blocks to be allocated by ext4 and submit them.
2374		 */
2375		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2376		/*
2377		 * If we have a contiguous extent of pages and we
2378		 * haven't done the I/O yet, map the blocks and submit
2379		 * them for I/O.
2380		 */
2381		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2382			mpage_da_map_and_submit(&mpd);
2383			ret = MPAGE_DA_EXTENT_TAIL;
2384		}
2385		trace_ext4_da_write_pages(inode, &mpd);
2386		wbc->nr_to_write -= mpd.pages_written;
2387
2388		ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
2389
2390		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2391			/* commit the transaction which would
 
2392			 * free blocks released in the transaction
2393			 * and try again
2394			 */
2395			jbd2_journal_force_commit_nested(sbi->s_journal);
2396			ret = 0;
2397		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2398			/*
2399			 * Got one extent now try with rest of the pages.
2400			 * If mpd.retval is set -EIO, journal is aborted.
2401			 * So we don't need to write any more.
2402			 */
2403			pages_written += mpd.pages_written;
2404			ret = mpd.retval;
2405			io_done = 1;
2406		} else if (wbc->nr_to_write)
2407			/*
2408			 * There is no more writeout needed
2409			 * or we requested for a noblocking writeout
2410			 * and we found the device congested
2411			 */
2412			break;
2413	}
 
2414	blk_finish_plug(&plug);
2415	if (!io_done && !cycled) {
2416		cycled = 1;
2417		index = 0;
2418		wbc->range_start = index << PAGE_CACHE_SHIFT;
2419		wbc->range_end  = mapping->writeback_index - 1;
2420		goto retry;
2421	}
2422
2423	/* Update index */
2424	wbc->range_cyclic = range_cyclic;
2425	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2426		/*
2427		 * set the writeback_index so that range_cyclic
2428		 * mode will write it back later
2429		 */
2430		mapping->writeback_index = done_index;
2431
2432out_writepages:
2433	wbc->nr_to_write -= nr_to_writebump;
2434	wbc->range_start = range_start;
2435	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2436	return ret;
2437}
2438
2439#define FALL_BACK_TO_NONDELALLOC 1
2440static int ext4_nonda_switch(struct super_block *sb)
2441{
2442	s64 free_blocks, dirty_blocks;
2443	struct ext4_sb_info *sbi = EXT4_SB(sb);
2444
2445	/*
2446	 * switch to non delalloc mode if we are running low
2447	 * on free block. The free block accounting via percpu
2448	 * counters can get slightly wrong with percpu_counter_batch getting
2449	 * accumulated on each CPU without updating global counters
2450	 * Delalloc need an accurate free block accounting. So switch
2451	 * to non delalloc when we are near to error range.
2452	 */
2453	free_blocks  = EXT4_C2B(sbi,
2454		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2455	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456	if (2 * free_blocks < 3 * dirty_blocks ||
2457		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
 
 
 
 
 
 
 
2458		/*
2459		 * free block count is less than 150% of dirty blocks
2460		 * or free blocks is less than watermark
2461		 */
2462		return 1;
2463	}
2464	/*
2465	 * Even if we don't switch but are nearing capacity,
2466	 * start pushing delalloc when 1/2 of free blocks are dirty.
2467	 */
2468	if (free_blocks < 2 * dirty_blocks)
2469		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2470
2471	return 0;
2472}
2473
 
 
 
 
 
 
 
 
 
 
 
 
 
2474static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2475			       loff_t pos, unsigned len, unsigned flags,
2476			       struct page **pagep, void **fsdata)
2477{
2478	int ret, retries = 0;
2479	struct page *page;
2480	pgoff_t index;
2481	struct inode *inode = mapping->host;
2482	handle_t *handle;
2483
2484	index = pos >> PAGE_CACHE_SHIFT;
 
 
 
2485
2486	if (ext4_nonda_switch(inode->i_sb)) {
 
2487		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2488		return ext4_write_begin(file, mapping, pos,
2489					len, flags, pagep, fsdata);
2490	}
2491	*fsdata = (void *)0;
2492	trace_ext4_da_write_begin(inode, pos, len, flags);
2493retry:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494	/*
2495	 * With delayed allocation, we don't log the i_disksize update
2496	 * if there is delayed block allocation. But we still need
2497	 * to journalling the i_disksize update if writes to the end
2498	 * of file which has an already mapped buffer.
2499	 */
2500	handle = ext4_journal_start(inode, 1);
 
 
2501	if (IS_ERR(handle)) {
2502		ret = PTR_ERR(handle);
2503		goto out;
2504	}
2505	/* We cannot recurse into the filesystem as the transaction is already
2506	 * started */
2507	flags |= AOP_FLAG_NOFS;
2508
2509	page = grab_cache_page_write_begin(mapping, index, flags);
2510	if (!page) {
 
 
 
2511		ext4_journal_stop(handle);
2512		ret = -ENOMEM;
2513		goto out;
2514	}
2515	*pagep = page;
 
2516
 
 
 
 
2517	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 
2518	if (ret < 0) {
2519		unlock_page(page);
2520		ext4_journal_stop(handle);
2521		page_cache_release(page);
2522		/*
2523		 * block_write_begin may have instantiated a few blocks
2524		 * outside i_size.  Trim these off again. Don't need
2525		 * i_size_read because we hold i_mutex.
2526		 */
2527		if (pos + len > inode->i_size)
2528			ext4_truncate_failed_write(inode);
 
 
 
 
 
 
 
2529	}
2530
2531	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2532		goto retry;
2533out:
2534	return ret;
2535}
2536
2537/*
2538 * Check if we should update i_disksize
2539 * when write to the end of file but not require block allocation
2540 */
2541static int ext4_da_should_update_i_disksize(struct page *page,
2542					    unsigned long offset)
2543{
2544	struct buffer_head *bh;
2545	struct inode *inode = page->mapping->host;
2546	unsigned int idx;
2547	int i;
2548
2549	bh = page_buffers(page);
2550	idx = offset >> inode->i_blkbits;
2551
2552	for (i = 0; i < idx; i++)
2553		bh = bh->b_this_page;
2554
2555	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2556		return 0;
2557	return 1;
2558}
2559
2560static int ext4_da_write_end(struct file *file,
2561			     struct address_space *mapping,
2562			     loff_t pos, unsigned len, unsigned copied,
2563			     struct page *page, void *fsdata)
2564{
2565	struct inode *inode = mapping->host;
2566	int ret = 0, ret2;
2567	handle_t *handle = ext4_journal_current_handle();
2568	loff_t new_i_size;
2569	unsigned long start, end;
2570	int write_mode = (int)(unsigned long)fsdata;
2571
2572	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2573		switch (ext4_inode_journal_mode(inode)) {
2574		case EXT4_INODE_ORDERED_DATA_MODE:
2575			return ext4_ordered_write_end(file, mapping, pos,
2576					len, copied, page, fsdata);
2577		case EXT4_INODE_WRITEBACK_DATA_MODE:
2578			return ext4_writeback_write_end(file, mapping, pos,
2579					len, copied, page, fsdata);
2580		default:
2581			BUG();
2582		}
2583	}
2584
2585	trace_ext4_da_write_end(inode, pos, len, copied);
2586	start = pos & (PAGE_CACHE_SIZE - 1);
2587	end = start + copied - 1;
2588
2589	/*
2590	 * generic_write_end() will run mark_inode_dirty() if i_size
2591	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2592	 * into that.
2593	 */
2594
2595	new_i_size = pos + copied;
2596	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2597		if (ext4_da_should_update_i_disksize(page, end)) {
2598			down_write(&EXT4_I(inode)->i_data_sem);
2599			if (new_i_size > EXT4_I(inode)->i_disksize) {
2600				/*
2601				 * Updating i_disksize when extending file
2602				 * without needing block allocation
2603				 */
2604				if (ext4_should_order_data(inode))
2605					ret = ext4_jbd2_file_inode(handle,
2606								   inode);
2607
2608				EXT4_I(inode)->i_disksize = new_i_size;
2609			}
2610			up_write(&EXT4_I(inode)->i_data_sem);
2611			/* We need to mark inode dirty even if
2612			 * new_i_size is less that inode->i_size
2613			 * bu greater than i_disksize.(hint delalloc)
2614			 */
2615			ext4_mark_inode_dirty(handle, inode);
2616		}
2617	}
2618	ret2 = generic_write_end(file, mapping, pos, len, copied,
 
 
 
 
 
 
 
2619							page, fsdata);
 
2620	copied = ret2;
2621	if (ret2 < 0)
2622		ret = ret2;
2623	ret2 = ext4_journal_stop(handle);
2624	if (!ret)
2625		ret = ret2;
2626
2627	return ret ? ret : copied;
2628}
2629
2630static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
 
2631{
2632	/*
2633	 * Drop reserved blocks
2634	 */
2635	BUG_ON(!PageLocked(page));
2636	if (!page_has_buffers(page))
2637		goto out;
2638
2639	ext4_da_page_release_reservation(page, offset);
2640
2641out:
2642	ext4_invalidatepage(page, offset);
2643
2644	return;
2645}
2646
2647/*
2648 * Force all delayed allocation blocks to be allocated for a given inode.
2649 */
2650int ext4_alloc_da_blocks(struct inode *inode)
2651{
2652	trace_ext4_alloc_da_blocks(inode);
2653
2654	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2655	    !EXT4_I(inode)->i_reserved_meta_blocks)
2656		return 0;
2657
2658	/*
2659	 * We do something simple for now.  The filemap_flush() will
2660	 * also start triggering a write of the data blocks, which is
2661	 * not strictly speaking necessary (and for users of
2662	 * laptop_mode, not even desirable).  However, to do otherwise
2663	 * would require replicating code paths in:
2664	 *
2665	 * ext4_da_writepages() ->
2666	 *    write_cache_pages() ---> (via passed in callback function)
2667	 *        __mpage_da_writepage() -->
2668	 *           mpage_add_bh_to_extent()
2669	 *           mpage_da_map_blocks()
2670	 *
2671	 * The problem is that write_cache_pages(), located in
2672	 * mm/page-writeback.c, marks pages clean in preparation for
2673	 * doing I/O, which is not desirable if we're not planning on
2674	 * doing I/O at all.
2675	 *
2676	 * We could call write_cache_pages(), and then redirty all of
2677	 * the pages by calling redirty_page_for_writepage() but that
2678	 * would be ugly in the extreme.  So instead we would need to
2679	 * replicate parts of the code in the above functions,
2680	 * simplifying them because we wouldn't actually intend to
2681	 * write out the pages, but rather only collect contiguous
2682	 * logical block extents, call the multi-block allocator, and
2683	 * then update the buffer heads with the block allocations.
2684	 *
2685	 * For now, though, we'll cheat by calling filemap_flush(),
2686	 * which will map the blocks, and start the I/O, but not
2687	 * actually wait for the I/O to complete.
2688	 */
2689	return filemap_flush(inode->i_mapping);
2690}
2691
2692/*
2693 * bmap() is special.  It gets used by applications such as lilo and by
2694 * the swapper to find the on-disk block of a specific piece of data.
2695 *
2696 * Naturally, this is dangerous if the block concerned is still in the
2697 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2698 * filesystem and enables swap, then they may get a nasty shock when the
2699 * data getting swapped to that swapfile suddenly gets overwritten by
2700 * the original zero's written out previously to the journal and
2701 * awaiting writeback in the kernel's buffer cache.
2702 *
2703 * So, if we see any bmap calls here on a modified, data-journaled file,
2704 * take extra steps to flush any blocks which might be in the cache.
2705 */
2706static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2707{
2708	struct inode *inode = mapping->host;
2709	journal_t *journal;
2710	int err;
2711
 
 
 
 
 
 
2712	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2713			test_opt(inode->i_sb, DELALLOC)) {
2714		/*
2715		 * With delalloc we want to sync the file
2716		 * so that we can make sure we allocate
2717		 * blocks for file
2718		 */
2719		filemap_write_and_wait(mapping);
2720	}
2721
2722	if (EXT4_JOURNAL(inode) &&
2723	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2724		/*
2725		 * This is a REALLY heavyweight approach, but the use of
2726		 * bmap on dirty files is expected to be extremely rare:
2727		 * only if we run lilo or swapon on a freshly made file
2728		 * do we expect this to happen.
2729		 *
2730		 * (bmap requires CAP_SYS_RAWIO so this does not
2731		 * represent an unprivileged user DOS attack --- we'd be
2732		 * in trouble if mortal users could trigger this path at
2733		 * will.)
2734		 *
2735		 * NB. EXT4_STATE_JDATA is not set on files other than
2736		 * regular files.  If somebody wants to bmap a directory
2737		 * or symlink and gets confused because the buffer
2738		 * hasn't yet been flushed to disk, they deserve
2739		 * everything they get.
2740		 */
2741
2742		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2743		journal = EXT4_JOURNAL(inode);
2744		jbd2_journal_lock_updates(journal);
2745		err = jbd2_journal_flush(journal);
2746		jbd2_journal_unlock_updates(journal);
2747
2748		if (err)
2749			return 0;
2750	}
2751
2752	return generic_block_bmap(mapping, block, ext4_get_block);
2753}
2754
2755static int ext4_readpage(struct file *file, struct page *page)
2756{
 
 
 
2757	trace_ext4_readpage(page);
2758	return mpage_readpage(page, ext4_get_block);
 
 
 
 
 
 
 
2759}
2760
2761static int
2762ext4_readpages(struct file *file, struct address_space *mapping,
2763		struct list_head *pages, unsigned nr_pages)
2764{
2765	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
 
 
 
 
 
 
2766}
2767
2768static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
 
2769{
2770	struct buffer_head *head, *bh;
2771	unsigned int curr_off = 0;
2772
2773	if (!page_has_buffers(page))
2774		return;
2775	head = bh = page_buffers(page);
2776	do {
2777		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2778					&& bh->b_private) {
2779			ext4_free_io_end(bh->b_private);
2780			bh->b_private = NULL;
2781			bh->b_end_io = NULL;
2782		}
2783		curr_off = curr_off + bh->b_size;
2784		bh = bh->b_this_page;
2785	} while (bh != head);
2786}
2787
2788static void ext4_invalidatepage(struct page *page, unsigned long offset)
 
 
2789{
2790	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2791
2792	trace_ext4_invalidatepage(page, offset);
2793
2794	/*
2795	 * free any io_end structure allocated for buffers to be discarded
2796	 */
2797	if (ext4_should_dioread_nolock(page->mapping->host))
2798		ext4_invalidatepage_free_endio(page, offset);
2799	/*
2800	 * If it's a full truncate we just forget about the pending dirtying
2801	 */
2802	if (offset == 0)
2803		ClearPageChecked(page);
2804
2805	if (journal)
2806		jbd2_journal_invalidatepage(journal, page, offset);
2807	else
2808		block_invalidatepage(page, offset);
 
 
 
 
 
2809}
2810
2811static int ext4_releasepage(struct page *page, gfp_t wait)
2812{
2813	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2814
2815	trace_ext4_releasepage(page);
2816
2817	WARN_ON(PageChecked(page));
2818	if (!page_has_buffers(page))
2819		return 0;
2820	if (journal)
2821		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2822	else
2823		return try_to_free_buffers(page);
2824}
2825
2826/*
2827 * ext4_get_block used when preparing for a DIO write or buffer write.
2828 * We allocate an uinitialized extent if blocks haven't been allocated.
2829 * The extent will be converted to initialized after the IO is complete.
2830 */
2831static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2832		   struct buffer_head *bh_result, int create)
2833{
2834	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2835		   inode->i_ino, create);
2836	return _ext4_get_block(inode, iblock, bh_result,
2837			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 
 
 
 
 
2838}
2839
2840static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2841			    ssize_t size, void *private, int ret,
2842			    bool is_async)
2843{
2844	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2845        ext4_io_end_t *io_end = iocb->private;
2846	struct workqueue_struct *wq;
2847	unsigned long flags;
2848	struct ext4_inode_info *ei;
 
2849
2850	/* if not async direct IO or dio with 0 bytes write, just return */
2851	if (!io_end || !size)
2852		goto out;
2853
2854	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2855		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2856 		  iocb->private, io_end->inode->i_ino, iocb, offset,
2857		  size);
 
 
 
 
 
 
 
 
 
2858
2859	iocb->private = NULL;
 
2860
2861	/* if not aio dio with unwritten extents, just free io and return */
2862	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2863		ext4_free_io_end(io_end);
2864out:
2865		if (is_async)
2866			aio_complete(iocb, ret, 0);
2867		inode_dio_done(inode);
2868		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869	}
2870
2871	io_end->offset = offset;
2872	io_end->size = size;
2873	if (is_async) {
2874		io_end->iocb = iocb;
2875		io_end->result = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2876	}
2877	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2878
2879	/* Add the io_end to per-inode completed aio dio list*/
2880	ei = EXT4_I(io_end->inode);
2881	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2882	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2883	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2884
2885	/* queue the work to convert unwritten extents to written */
2886	queue_work(wq, &io_end->work);
2887}
2888
2889static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
 
2890{
2891	ext4_io_end_t *io_end = bh->b_private;
2892	struct workqueue_struct *wq;
2893	struct inode *inode;
2894	unsigned long flags;
2895
2896	if (!test_clear_buffer_uninit(bh) || !io_end)
2897		goto out;
2898
2899	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2900		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2901			 "sb umounted, discard end_io request for inode %lu",
2902			 io_end->inode->i_ino);
2903		ext4_free_io_end(io_end);
2904		goto out;
2905	}
2906
 
2907	/*
2908	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2909	 * but being more careful is always safe for the future change.
2910	 */
2911	inode = io_end->inode;
2912	ext4_set_io_unwritten_flag(inode, io_end);
 
2913
2914	/* Add the io_end to per-inode completed io list*/
2915	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2916	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2917	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2918
2919	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2920	/* queue the work to convert unwritten extents to written */
2921	queue_work(wq, &io_end->work);
2922out:
2923	bh->b_private = NULL;
2924	bh->b_end_io = NULL;
2925	clear_buffer_uninit(bh);
2926	end_buffer_async_write(bh, uptodate);
 
 
 
 
 
 
 
 
 
 
 
 
2927}
2928
2929static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2930{
2931	ext4_io_end_t *io_end;
2932	struct page *page = bh->b_page;
2933	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2934	size_t size = bh->b_size;
2935
2936retry:
2937	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2938	if (!io_end) {
2939		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2940		schedule();
2941		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942	}
2943	io_end->offset = offset;
2944	io_end->size = size;
2945	/*
2946	 * We need to hold a reference to the page to make sure it
2947	 * doesn't get evicted before ext4_end_io_work() has a chance
2948	 * to convert the extent from written to unwritten.
2949	 */
2950	io_end->page = page;
2951	get_page(io_end->page);
2952
2953	bh->b_private = io_end;
2954	bh->b_end_io = ext4_end_io_buffer_write;
2955	return 0;
2956}
2957
2958/*
2959 * For ext4 extent files, ext4 will do direct-io write to holes,
 
 
2960 * preallocated extents, and those write extend the file, no need to
2961 * fall back to buffered IO.
2962 *
2963 * For holes, we fallocate those blocks, mark them as uninitialized
2964 * If those blocks were preallocated, we mark sure they are splited, but
2965 * still keep the range to write as uninitialized.
2966 *
2967 * The unwrritten extents will be converted to written when DIO is completed.
2968 * For async direct IO, since the IO may still pending when return, we
2969 * set up an end_io call back function, which will do the conversion
2970 * when async direct IO completed.
2971 *
2972 * If the O_DIRECT write will extend the file then add this inode to the
2973 * orphan list.  So recovery will truncate it back to the original size
2974 * if the machine crashes during the write.
2975 *
2976 */
2977static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2978			      const struct iovec *iov, loff_t offset,
2979			      unsigned long nr_segs)
2980{
2981	struct file *file = iocb->ki_filp;
2982	struct inode *inode = file->f_mapping->host;
 
2983	ssize_t ret;
2984	size_t count = iov_length(iov, nr_segs);
2985
 
 
 
2986	loff_t final_size = offset + count;
2987	if (rw == WRITE && final_size <= inode->i_size) {
2988		/*
2989 		 * We could direct write to holes and fallocate.
2990		 *
2991 		 * Allocated blocks to fill the hole are marked as uninitialized
2992 		 * to prevent parallel buffered read to expose the stale data
2993 		 * before DIO complete the data IO.
2994		 *
2995 		 * As to previously fallocated extents, ext4 get_block
2996 		 * will just simply mark the buffer mapped but still
2997 		 * keep the extents uninitialized.
2998 		 *
2999		 * for non AIO case, we will convert those unwritten extents
3000		 * to written after return back from blockdev_direct_IO.
3001		 *
3002		 * for async DIO, the conversion needs to be defered when
3003		 * the IO is completed. The ext4 end_io callback function
3004		 * will be called to take care of the conversion work.
3005		 * Here for async case, we allocate an io_end structure to
3006		 * hook to the iocb.
3007 		 */
3008		iocb->private = NULL;
3009		EXT4_I(inode)->cur_aio_dio = NULL;
3010		if (!is_sync_kiocb(iocb)) {
3011			ext4_io_end_t *io_end =
3012				ext4_init_io_end(inode, GFP_NOFS);
3013			if (!io_end)
3014				return -ENOMEM;
3015			io_end->flag |= EXT4_IO_END_DIRECT;
3016			iocb->private = io_end;
3017			/*
3018			 * we save the io structure for current async
3019			 * direct IO, so that later ext4_map_blocks()
3020			 * could flag the io structure whether there
3021			 * is a unwritten extents needs to be converted
3022			 * when IO is completed.
3023			 */
3024			EXT4_I(inode)->cur_aio_dio = iocb->private;
3025		}
 
 
 
 
 
 
 
 
 
3026
3027		ret = __blockdev_direct_IO(rw, iocb, inode,
3028					 inode->i_sb->s_bdev, iov,
3029					 offset, nr_segs,
3030					 ext4_get_block_write,
3031					 ext4_end_io_dio,
3032					 NULL,
3033					 DIO_LOCKING);
3034		if (iocb->private)
3035			EXT4_I(inode)->cur_aio_dio = NULL;
3036		/*
3037		 * The io_end structure takes a reference to the inode,
3038		 * that structure needs to be destroyed and the
3039		 * reference to the inode need to be dropped, when IO is
3040		 * complete, even with 0 byte write, or failed.
3041		 *
3042		 * In the successful AIO DIO case, the io_end structure will be
3043		 * desctroyed and the reference to the inode will be dropped
3044		 * after the end_io call back function is called.
3045		 *
3046		 * In the case there is 0 byte write, or error case, since
3047		 * VFS direct IO won't invoke the end_io call back function,
3048		 * we need to free the end_io structure here.
3049		 */
3050		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3051			ext4_free_io_end(iocb->private);
3052			iocb->private = NULL;
3053		} else if (ret > 0 && ext4_test_inode_state(inode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054						EXT4_STATE_DIO_UNWRITTEN)) {
3055			int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3056			/*
3057			 * for non AIO case, since the IO is already
3058			 * completed, we could do the conversion right here
 
 
 
 
 
 
3059			 */
3060			err = ext4_convert_unwritten_extents(inode,
3061							     offset, ret);
3062			if (err < 0)
3063				ret = err;
3064			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 
3065		}
3066		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3067	}
 
 
 
3068
3069	/* for write the the end of file case, we fall back to old way */
3070	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3071}
3072
3073static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3074			      const struct iovec *iov, loff_t offset,
3075			      unsigned long nr_segs)
3076{
3077	struct file *file = iocb->ki_filp;
3078	struct inode *inode = file->f_mapping->host;
 
 
3079	ssize_t ret;
3080
 
 
 
 
 
3081	/*
3082	 * If we are doing data journalling we don't support O_DIRECT
3083	 */
3084	if (ext4_should_journal_data(inode))
3085		return 0;
3086
3087	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3088	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3089		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
 
 
3090	else
3091		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3092	trace_ext4_direct_IO_exit(inode, offset,
3093				iov_length(iov, nr_segs), rw, ret);
3094	return ret;
3095}
3096
3097/*
3098 * Pages can be marked dirty completely asynchronously from ext4's journalling
3099 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3100 * much here because ->set_page_dirty is called under VFS locks.  The page is
3101 * not necessarily locked.
3102 *
3103 * We cannot just dirty the page and leave attached buffers clean, because the
3104 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3105 * or jbddirty because all the journalling code will explode.
3106 *
3107 * So what we do is to mark the page "pending dirty" and next time writepage
3108 * is called, propagate that into the buffers appropriately.
3109 */
3110static int ext4_journalled_set_page_dirty(struct page *page)
3111{
3112	SetPageChecked(page);
3113	return __set_page_dirty_nobuffers(page);
3114}
3115
3116static const struct address_space_operations ext4_ordered_aops = {
3117	.readpage		= ext4_readpage,
3118	.readpages		= ext4_readpages,
3119	.writepage		= ext4_writepage,
3120	.write_begin		= ext4_write_begin,
3121	.write_end		= ext4_ordered_write_end,
3122	.bmap			= ext4_bmap,
3123	.invalidatepage		= ext4_invalidatepage,
3124	.releasepage		= ext4_releasepage,
3125	.direct_IO		= ext4_direct_IO,
3126	.migratepage		= buffer_migrate_page,
3127	.is_partially_uptodate  = block_is_partially_uptodate,
3128	.error_remove_page	= generic_error_remove_page,
3129};
3130
3131static const struct address_space_operations ext4_writeback_aops = {
3132	.readpage		= ext4_readpage,
3133	.readpages		= ext4_readpages,
3134	.writepage		= ext4_writepage,
 
3135	.write_begin		= ext4_write_begin,
3136	.write_end		= ext4_writeback_write_end,
 
3137	.bmap			= ext4_bmap,
3138	.invalidatepage		= ext4_invalidatepage,
3139	.releasepage		= ext4_releasepage,
3140	.direct_IO		= ext4_direct_IO,
3141	.migratepage		= buffer_migrate_page,
3142	.is_partially_uptodate  = block_is_partially_uptodate,
3143	.error_remove_page	= generic_error_remove_page,
3144};
3145
3146static const struct address_space_operations ext4_journalled_aops = {
3147	.readpage		= ext4_readpage,
3148	.readpages		= ext4_readpages,
3149	.writepage		= ext4_writepage,
 
3150	.write_begin		= ext4_write_begin,
3151	.write_end		= ext4_journalled_write_end,
3152	.set_page_dirty		= ext4_journalled_set_page_dirty,
3153	.bmap			= ext4_bmap,
3154	.invalidatepage		= ext4_invalidatepage,
3155	.releasepage		= ext4_releasepage,
3156	.direct_IO		= ext4_direct_IO,
3157	.is_partially_uptodate  = block_is_partially_uptodate,
3158	.error_remove_page	= generic_error_remove_page,
3159};
3160
3161static const struct address_space_operations ext4_da_aops = {
3162	.readpage		= ext4_readpage,
3163	.readpages		= ext4_readpages,
3164	.writepage		= ext4_writepage,
3165	.writepages		= ext4_da_writepages,
3166	.write_begin		= ext4_da_write_begin,
3167	.write_end		= ext4_da_write_end,
 
3168	.bmap			= ext4_bmap,
3169	.invalidatepage		= ext4_da_invalidatepage,
3170	.releasepage		= ext4_releasepage,
3171	.direct_IO		= ext4_direct_IO,
3172	.migratepage		= buffer_migrate_page,
3173	.is_partially_uptodate  = block_is_partially_uptodate,
3174	.error_remove_page	= generic_error_remove_page,
3175};
3176
 
 
 
 
 
 
 
3177void ext4_set_aops(struct inode *inode)
3178{
3179	switch (ext4_inode_journal_mode(inode)) {
3180	case EXT4_INODE_ORDERED_DATA_MODE:
3181		if (test_opt(inode->i_sb, DELALLOC))
3182			inode->i_mapping->a_ops = &ext4_da_aops;
3183		else
3184			inode->i_mapping->a_ops = &ext4_ordered_aops;
3185		break;
3186	case EXT4_INODE_WRITEBACK_DATA_MODE:
3187		if (test_opt(inode->i_sb, DELALLOC))
3188			inode->i_mapping->a_ops = &ext4_da_aops;
3189		else
3190			inode->i_mapping->a_ops = &ext4_writeback_aops;
3191		break;
3192	case EXT4_INODE_JOURNAL_DATA_MODE:
3193		inode->i_mapping->a_ops = &ext4_journalled_aops;
3194		break;
3195	default:
3196		BUG();
3197	}
 
 
 
 
 
 
3198}
3199
3200
3201/*
3202 * ext4_discard_partial_page_buffers()
3203 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3204 * This function finds and locks the page containing the offset
3205 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3206 * Calling functions that already have the page locked should call
3207 * ext4_discard_partial_page_buffers_no_lock directly.
3208 */
3209int ext4_discard_partial_page_buffers(handle_t *handle,
3210		struct address_space *mapping, loff_t from,
3211		loff_t length, int flags)
3212{
 
 
 
 
3213	struct inode *inode = mapping->host;
 
3214	struct page *page;
3215	int err = 0;
3216
3217	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3218				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3219	if (!page)
3220		return -ENOMEM;
3221
3222	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3223		from, length, flags);
3224
3225	unlock_page(page);
3226	page_cache_release(page);
3227	return err;
3228}
3229
3230/*
3231 * ext4_discard_partial_page_buffers_no_lock()
3232 * Zeros a page range of length 'length' starting from offset 'from'.
3233 * Buffer heads that correspond to the block aligned regions of the
3234 * zeroed range will be unmapped.  Unblock aligned regions
3235 * will have the corresponding buffer head mapped if needed so that
3236 * that region of the page can be updated with the partial zero out.
3237 *
3238 * This function assumes that the page has already been  locked.  The
3239 * The range to be discarded must be contained with in the given page.
3240 * If the specified range exceeds the end of the page it will be shortened
3241 * to the end of the page that corresponds to 'from'.  This function is
3242 * appropriate for updating a page and it buffer heads to be unmapped and
3243 * zeroed for blocks that have been either released, or are going to be
3244 * released.
3245 *
3246 * handle: The journal handle
3247 * inode:  The files inode
3248 * page:   A locked page that contains the offset "from"
3249 * from:   The starting byte offset (from the begining of the file)
3250 *         to begin discarding
3251 * len:    The length of bytes to discard
3252 * flags:  Optional flags that may be used:
3253 *
3254 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3255 *         Only zero the regions of the page whose buffer heads
3256 *         have already been unmapped.  This flag is appropriate
3257 *         for updateing the contents of a page whose blocks may
3258 *         have already been released, and we only want to zero
3259 *         out the regions that correspond to those released blocks.
3260 *
3261 * Returns zero on sucess or negative on failure.
3262 */
3263static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3264		struct inode *inode, struct page *page, loff_t from,
3265		loff_t length, int flags)
3266{
3267	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3268	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3269	unsigned int blocksize, max, pos;
3270	ext4_lblk_t iblock;
3271	struct buffer_head *bh;
3272	int err = 0;
3273
3274	blocksize = inode->i_sb->s_blocksize;
3275	max = PAGE_CACHE_SIZE - offset;
3276
3277	if (index != page->index)
3278		return -EINVAL;
3279
3280	/*
3281	 * correct length if it does not fall between
3282	 * 'from' and the end of the page
3283	 */
3284	if (length > max || length < 0)
3285		length = max;
3286
3287	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3288
3289	if (!page_has_buffers(page))
3290		create_empty_buffers(page, blocksize, 0);
3291
3292	/* Find the buffer that contains "offset" */
3293	bh = page_buffers(page);
3294	pos = blocksize;
3295	while (offset >= pos) {
3296		bh = bh->b_this_page;
3297		iblock++;
3298		pos += blocksize;
3299	}
 
 
 
 
 
 
 
 
 
 
 
 
 
3300
3301	pos = offset;
3302	while (pos < offset + length) {
3303		unsigned int end_of_block, range_to_discard;
3304
3305		err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3306
3307		/* The length of space left to zero and unmap */
3308		range_to_discard = offset + length - pos;
 
 
 
 
 
 
3309
3310		/* The length of space until the end of the block */
3311		end_of_block = blocksize - (pos & (blocksize-1));
 
 
 
3312
3313		/*
3314		 * Do not unmap or zero past end of block
3315		 * for this buffer head
3316		 */
3317		if (range_to_discard > end_of_block)
3318			range_to_discard = end_of_block;
 
 
 
 
 
 
 
 
3319
 
 
 
 
 
 
3320
3321		/*
3322		 * Skip this buffer head if we are only zeroing unampped
3323		 * regions of the page
3324		 */
3325		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3326			buffer_mapped(bh))
3327				goto next;
3328
3329		/* If the range is block aligned, unmap */
3330		if (range_to_discard == blocksize) {
3331			clear_buffer_dirty(bh);
3332			bh->b_bdev = NULL;
3333			clear_buffer_mapped(bh);
3334			clear_buffer_req(bh);
3335			clear_buffer_new(bh);
3336			clear_buffer_delay(bh);
3337			clear_buffer_unwritten(bh);
3338			clear_buffer_uptodate(bh);
3339			zero_user(page, pos, range_to_discard);
3340			BUFFER_TRACE(bh, "Buffer discarded");
3341			goto next;
3342		}
3343
3344		/*
3345		 * If this block is not completely contained in the range
3346		 * to be discarded, then it is not going to be released. Because
3347		 * we need to keep this block, we need to make sure this part
3348		 * of the page is uptodate before we modify it by writeing
3349		 * partial zeros on it.
3350		 */
3351		if (!buffer_mapped(bh)) {
3352			/*
3353			 * Buffer head must be mapped before we can read
3354			 * from the block
3355			 */
3356			BUFFER_TRACE(bh, "unmapped");
3357			ext4_get_block(inode, iblock, bh, 0);
3358			/* unmapped? It's a hole - nothing to do */
3359			if (!buffer_mapped(bh)) {
3360				BUFFER_TRACE(bh, "still unmapped");
3361				goto next;
3362			}
3363		}
3364
3365		/* Ok, it's mapped. Make sure it's up-to-date */
3366		if (PageUptodate(page))
3367			set_buffer_uptodate(bh);
3368
3369		if (!buffer_uptodate(bh)) {
3370			err = -EIO;
3371			ll_rw_block(READ, 1, &bh);
3372			wait_on_buffer(bh);
3373			/* Uhhuh. Read error. Complain and punt.*/
3374			if (!buffer_uptodate(bh))
3375				goto next;
3376		}
3377
3378		if (ext4_should_journal_data(inode)) {
3379			BUFFER_TRACE(bh, "get write access");
3380			err = ext4_journal_get_write_access(handle, bh);
3381			if (err)
3382				goto next;
3383		}
 
 
 
3384
3385		zero_user(page, pos, range_to_discard);
 
3386
3387		err = 0;
3388		if (ext4_should_journal_data(inode)) {
3389			err = ext4_handle_dirty_metadata(handle, inode, bh);
3390		} else
3391			mark_buffer_dirty(bh);
3392
3393		BUFFER_TRACE(bh, "Partial buffer zeroed");
3394next:
3395		bh = bh->b_this_page;
3396		iblock++;
3397		pos += range_to_discard;
 
 
 
 
 
 
 
 
3398	}
3399
 
 
 
 
3400	return err;
3401}
3402
3403int ext4_can_truncate(struct inode *inode)
3404{
3405	if (S_ISREG(inode->i_mode))
3406		return 1;
3407	if (S_ISDIR(inode->i_mode))
3408		return 1;
3409	if (S_ISLNK(inode->i_mode))
3410		return !ext4_inode_is_fast_symlink(inode);
3411	return 0;
3412}
3413
3414/*
3415 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3416 * associated with the given offset and length
3417 *
3418 * @inode:  File inode
3419 * @offset: The offset where the hole will begin
3420 * @len:    The length of the hole
3421 *
3422 * Returns: 0 on sucess or negative on failure
3423 */
3424
3425int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3426{
3427	struct inode *inode = file->f_path.dentry->d_inode;
 
 
 
 
 
 
 
3428	if (!S_ISREG(inode->i_mode))
3429		return -EOPNOTSUPP;
3430
3431	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3432		/* TODO: Add support for non extent hole punching */
3433		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
3434	}
3435
3436	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3437		/* TODO: Add support for bigalloc file systems */
3438		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3439	}
3440
3441	return ext4_ext_punch_hole(file, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442}
3443
3444/*
3445 * ext4_truncate()
3446 *
3447 * We block out ext4_get_block() block instantiations across the entire
3448 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3449 * simultaneously on behalf of the same inode.
3450 *
3451 * As we work through the truncate and commit bits of it to the journal there
3452 * is one core, guiding principle: the file's tree must always be consistent on
3453 * disk.  We must be able to restart the truncate after a crash.
3454 *
3455 * The file's tree may be transiently inconsistent in memory (although it
3456 * probably isn't), but whenever we close off and commit a journal transaction,
3457 * the contents of (the filesystem + the journal) must be consistent and
3458 * restartable.  It's pretty simple, really: bottom up, right to left (although
3459 * left-to-right works OK too).
3460 *
3461 * Note that at recovery time, journal replay occurs *before* the restart of
3462 * truncate against the orphan inode list.
3463 *
3464 * The committed inode has the new, desired i_size (which is the same as
3465 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3466 * that this inode's truncate did not complete and it will again call
3467 * ext4_truncate() to have another go.  So there will be instantiated blocks
3468 * to the right of the truncation point in a crashed ext4 filesystem.  But
3469 * that's fine - as long as they are linked from the inode, the post-crash
3470 * ext4_truncate() run will find them and release them.
3471 */
3472void ext4_truncate(struct inode *inode)
3473{
 
 
 
 
 
 
 
 
 
 
 
 
 
3474	trace_ext4_truncate_enter(inode);
3475
3476	if (!ext4_can_truncate(inode))
3477		return;
3478
3479	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3480
3481	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3482		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3484	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3485		ext4_ext_truncate(inode);
3486	else
3487		ext4_ind_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3488
3489	trace_ext4_truncate_exit(inode);
 
3490}
3491
3492/*
3493 * ext4_get_inode_loc returns with an extra refcount against the inode's
3494 * underlying buffer_head on success. If 'in_mem' is true, we have all
3495 * data in memory that is needed to recreate the on-disk version of this
3496 * inode.
3497 */
3498static int __ext4_get_inode_loc(struct inode *inode,
3499				struct ext4_iloc *iloc, int in_mem)
3500{
3501	struct ext4_group_desc	*gdp;
3502	struct buffer_head	*bh;
3503	struct super_block	*sb = inode->i_sb;
3504	ext4_fsblk_t		block;
3505	int			inodes_per_block, inode_offset;
3506
3507	iloc->bh = NULL;
3508	if (!ext4_valid_inum(sb, inode->i_ino))
3509		return -EIO;
3510
3511	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3512	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3513	if (!gdp)
3514		return -EIO;
3515
3516	/*
3517	 * Figure out the offset within the block group inode table
3518	 */
3519	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3520	inode_offset = ((inode->i_ino - 1) %
3521			EXT4_INODES_PER_GROUP(sb));
3522	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3523	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3524
3525	bh = sb_getblk(sb, block);
3526	if (!bh) {
3527		EXT4_ERROR_INODE_BLOCK(inode, block,
3528				       "unable to read itable block");
3529		return -EIO;
3530	}
3531	if (!buffer_uptodate(bh)) {
3532		lock_buffer(bh);
3533
3534		/*
3535		 * If the buffer has the write error flag, we have failed
3536		 * to write out another inode in the same block.  In this
3537		 * case, we don't have to read the block because we may
3538		 * read the old inode data successfully.
3539		 */
3540		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3541			set_buffer_uptodate(bh);
3542
3543		if (buffer_uptodate(bh)) {
3544			/* someone brought it uptodate while we waited */
3545			unlock_buffer(bh);
3546			goto has_buffer;
3547		}
3548
3549		/*
3550		 * If we have all information of the inode in memory and this
3551		 * is the only valid inode in the block, we need not read the
3552		 * block.
3553		 */
3554		if (in_mem) {
3555			struct buffer_head *bitmap_bh;
3556			int i, start;
3557
3558			start = inode_offset & ~(inodes_per_block - 1);
3559
3560			/* Is the inode bitmap in cache? */
3561			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3562			if (!bitmap_bh)
3563				goto make_io;
3564
3565			/*
3566			 * If the inode bitmap isn't in cache then the
3567			 * optimisation may end up performing two reads instead
3568			 * of one, so skip it.
3569			 */
3570			if (!buffer_uptodate(bitmap_bh)) {
3571				brelse(bitmap_bh);
3572				goto make_io;
3573			}
3574			for (i = start; i < start + inodes_per_block; i++) {
3575				if (i == inode_offset)
3576					continue;
3577				if (ext4_test_bit(i, bitmap_bh->b_data))
3578					break;
3579			}
3580			brelse(bitmap_bh);
3581			if (i == start + inodes_per_block) {
3582				/* all other inodes are free, so skip I/O */
3583				memset(bh->b_data, 0, bh->b_size);
3584				set_buffer_uptodate(bh);
3585				unlock_buffer(bh);
3586				goto has_buffer;
3587			}
3588		}
3589
3590make_io:
3591		/*
3592		 * If we need to do any I/O, try to pre-readahead extra
3593		 * blocks from the inode table.
3594		 */
3595		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3596			ext4_fsblk_t b, end, table;
3597			unsigned num;
 
3598
3599			table = ext4_inode_table(sb, gdp);
3600			/* s_inode_readahead_blks is always a power of 2 */
3601			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3602			if (table > b)
3603				b = table;
3604			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3605			num = EXT4_INODES_PER_GROUP(sb);
3606			if (ext4_has_group_desc_csum(sb))
3607				num -= ext4_itable_unused_count(sb, gdp);
3608			table += num / inodes_per_block;
3609			if (end > table)
3610				end = table;
3611			while (b <= end)
3612				sb_breadahead(sb, b++);
3613		}
3614
3615		/*
3616		 * There are other valid inodes in the buffer, this inode
3617		 * has in-inode xattrs, or we don't have this inode in memory.
3618		 * Read the block from disk.
3619		 */
3620		trace_ext4_load_inode(inode);
3621		get_bh(bh);
3622		bh->b_end_io = end_buffer_read_sync;
3623		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3624		wait_on_buffer(bh);
3625		if (!buffer_uptodate(bh)) {
3626			EXT4_ERROR_INODE_BLOCK(inode, block,
3627					       "unable to read itable block");
3628			brelse(bh);
3629			return -EIO;
3630		}
3631	}
3632has_buffer:
3633	iloc->bh = bh;
3634	return 0;
3635}
3636
3637int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3638{
3639	/* We have all inode data except xattrs in memory here. */
3640	return __ext4_get_inode_loc(inode, iloc,
3641		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3642}
3643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3644void ext4_set_inode_flags(struct inode *inode)
3645{
3646	unsigned int flags = EXT4_I(inode)->i_flags;
 
3647
3648	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3649	if (flags & EXT4_SYNC_FL)
3650		inode->i_flags |= S_SYNC;
3651	if (flags & EXT4_APPEND_FL)
3652		inode->i_flags |= S_APPEND;
3653	if (flags & EXT4_IMMUTABLE_FL)
3654		inode->i_flags |= S_IMMUTABLE;
3655	if (flags & EXT4_NOATIME_FL)
3656		inode->i_flags |= S_NOATIME;
3657	if (flags & EXT4_DIRSYNC_FL)
3658		inode->i_flags |= S_DIRSYNC;
3659}
3660
3661/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3662void ext4_get_inode_flags(struct ext4_inode_info *ei)
3663{
3664	unsigned int vfs_fl;
3665	unsigned long old_fl, new_fl;
3666
3667	do {
3668		vfs_fl = ei->vfs_inode.i_flags;
3669		old_fl = ei->i_flags;
3670		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3671				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3672				EXT4_DIRSYNC_FL);
3673		if (vfs_fl & S_SYNC)
3674			new_fl |= EXT4_SYNC_FL;
3675		if (vfs_fl & S_APPEND)
3676			new_fl |= EXT4_APPEND_FL;
3677		if (vfs_fl & S_IMMUTABLE)
3678			new_fl |= EXT4_IMMUTABLE_FL;
3679		if (vfs_fl & S_NOATIME)
3680			new_fl |= EXT4_NOATIME_FL;
3681		if (vfs_fl & S_DIRSYNC)
3682			new_fl |= EXT4_DIRSYNC_FL;
3683	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3684}
3685
3686static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3687				  struct ext4_inode_info *ei)
3688{
3689	blkcnt_t i_blocks ;
3690	struct inode *inode = &(ei->vfs_inode);
3691	struct super_block *sb = inode->i_sb;
3692
3693	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3694				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3695		/* we are using combined 48 bit field */
3696		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3697					le32_to_cpu(raw_inode->i_blocks_lo);
3698		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3699			/* i_blocks represent file system block size */
3700			return i_blocks  << (inode->i_blkbits - 9);
3701		} else {
3702			return i_blocks;
3703		}
3704	} else {
3705		return le32_to_cpu(raw_inode->i_blocks_lo);
3706	}
3707}
3708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3709struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3710{
3711	struct ext4_iloc iloc;
3712	struct ext4_inode *raw_inode;
3713	struct ext4_inode_info *ei;
3714	struct inode *inode;
3715	journal_t *journal = EXT4_SB(sb)->s_journal;
3716	long ret;
 
3717	int block;
3718	uid_t i_uid;
3719	gid_t i_gid;
 
3720
3721	inode = iget_locked(sb, ino);
3722	if (!inode)
3723		return ERR_PTR(-ENOMEM);
3724	if (!(inode->i_state & I_NEW))
3725		return inode;
3726
3727	ei = EXT4_I(inode);
3728	iloc.bh = NULL;
3729
3730	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3731	if (ret < 0)
3732		goto bad_inode;
3733	raw_inode = ext4_raw_inode(&iloc);
3734
 
 
 
 
 
 
3735	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3736		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3737		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3738		    EXT4_INODE_SIZE(inode->i_sb)) {
3739			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3740				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3741				EXT4_INODE_SIZE(inode->i_sb));
3742			ret = -EIO;
 
 
3743			goto bad_inode;
3744		}
3745	} else
3746		ei->i_extra_isize = 0;
3747
3748	/* Precompute checksum seed for inode metadata */
3749	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3750			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3751		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3752		__u32 csum;
3753		__le32 inum = cpu_to_le32(inode->i_ino);
3754		__le32 gen = raw_inode->i_generation;
3755		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3756				   sizeof(inum));
3757		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3758					      sizeof(gen));
3759	}
3760
3761	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3762		EXT4_ERROR_INODE(inode, "checksum invalid");
3763		ret = -EIO;
3764		goto bad_inode;
3765	}
3766
3767	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3768	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3769	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
3770	if (!(test_opt(inode->i_sb, NO_UID32))) {
3771		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3772		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3773	}
3774	i_uid_write(inode, i_uid);
3775	i_gid_write(inode, i_gid);
 
3776	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3777
3778	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 
3779	ei->i_dir_start_lookup = 0;
3780	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3781	/* We now have enough fields to check if the inode was active or not.
3782	 * This is needed because nfsd might try to access dead inodes
3783	 * the test is that same one that e2fsck uses
3784	 * NeilBrown 1999oct15
3785	 */
3786	if (inode->i_nlink == 0) {
3787		if (inode->i_mode == 0 ||
3788		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
 
3789			/* this inode is deleted */
3790			ret = -ESTALE;
3791			goto bad_inode;
3792		}
3793		/* The only unlinked inodes we let through here have
3794		 * valid i_mode and are being read by the orphan
3795		 * recovery code: that's fine, we're about to complete
3796		 * the process of deleting those. */
 
 
3797	}
3798	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3799	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3800	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3801	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3802		ei->i_file_acl |=
3803			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3804	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
3805	ei->i_disksize = inode->i_size;
3806#ifdef CONFIG_QUOTA
3807	ei->i_reserved_quota = 0;
3808#endif
3809	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3810	ei->i_block_group = iloc.block_group;
3811	ei->i_last_alloc_group = ~0;
3812	/*
3813	 * NOTE! The in-memory inode i_data array is in little-endian order
3814	 * even on big-endian machines: we do NOT byteswap the block numbers!
3815	 */
3816	for (block = 0; block < EXT4_N_BLOCKS; block++)
3817		ei->i_data[block] = raw_inode->i_block[block];
3818	INIT_LIST_HEAD(&ei->i_orphan);
3819
3820	/*
3821	 * Set transaction id's of transactions that have to be committed
3822	 * to finish f[data]sync. We set them to currently running transaction
3823	 * as we cannot be sure that the inode or some of its metadata isn't
3824	 * part of the transaction - the inode could have been reclaimed and
3825	 * now it is reread from disk.
3826	 */
3827	if (journal) {
3828		transaction_t *transaction;
3829		tid_t tid;
3830
3831		read_lock(&journal->j_state_lock);
3832		if (journal->j_running_transaction)
3833			transaction = journal->j_running_transaction;
3834		else
3835			transaction = journal->j_committing_transaction;
3836		if (transaction)
3837			tid = transaction->t_tid;
3838		else
3839			tid = journal->j_commit_sequence;
3840		read_unlock(&journal->j_state_lock);
3841		ei->i_sync_tid = tid;
3842		ei->i_datasync_tid = tid;
3843	}
3844
3845	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3846		if (ei->i_extra_isize == 0) {
3847			/* The extra space is currently unused. Use it. */
 
3848			ei->i_extra_isize = sizeof(struct ext4_inode) -
3849					    EXT4_GOOD_OLD_INODE_SIZE;
3850		} else {
3851			__le32 *magic = (void *)raw_inode +
3852					EXT4_GOOD_OLD_INODE_SIZE +
3853					ei->i_extra_isize;
3854			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3855				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3856		}
3857	}
3858
3859	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3860	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3861	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3862	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3863
3864	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3865	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3866		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3867			inode->i_version |=
3868			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 
 
 
 
3869	}
3870
3871	ret = 0;
3872	if (ei->i_file_acl &&
3873	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3874		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3875				 ei->i_file_acl);
3876		ret = -EIO;
3877		goto bad_inode;
3878	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3879		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3880		    (S_ISLNK(inode->i_mode) &&
3881		     !ext4_inode_is_fast_symlink(inode)))
3882			/* Validate extent which is part of inode */
3883			ret = ext4_ext_check_inode(inode);
3884	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3885		   (S_ISLNK(inode->i_mode) &&
3886		    !ext4_inode_is_fast_symlink(inode))) {
3887		/* Validate block references which are part of inode */
3888		ret = ext4_ind_check_inode(inode);
 
 
3889	}
3890	if (ret)
3891		goto bad_inode;
3892
3893	if (S_ISREG(inode->i_mode)) {
3894		inode->i_op = &ext4_file_inode_operations;
3895		inode->i_fop = &ext4_file_operations;
3896		ext4_set_aops(inode);
3897	} else if (S_ISDIR(inode->i_mode)) {
3898		inode->i_op = &ext4_dir_inode_operations;
3899		inode->i_fop = &ext4_dir_operations;
3900	} else if (S_ISLNK(inode->i_mode)) {
3901		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
3902			inode->i_op = &ext4_fast_symlink_inode_operations;
3903			nd_terminate_link(ei->i_data, inode->i_size,
3904				sizeof(ei->i_data) - 1);
3905		} else {
3906			inode->i_op = &ext4_symlink_inode_operations;
3907			ext4_set_aops(inode);
3908		}
 
3909	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3910	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3911		inode->i_op = &ext4_special_inode_operations;
3912		if (raw_inode->i_block[0])
3913			init_special_inode(inode, inode->i_mode,
3914			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3915		else
3916			init_special_inode(inode, inode->i_mode,
3917			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 
 
3918	} else {
3919		ret = -EIO;
3920		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3921		goto bad_inode;
3922	}
3923	brelse(iloc.bh);
3924	ext4_set_inode_flags(inode);
 
3925	unlock_new_inode(inode);
3926	return inode;
3927
3928bad_inode:
3929	brelse(iloc.bh);
3930	iget_failed(inode);
3931	return ERR_PTR(ret);
3932}
3933
 
 
 
 
 
 
 
3934static int ext4_inode_blocks_set(handle_t *handle,
3935				struct ext4_inode *raw_inode,
3936				struct ext4_inode_info *ei)
3937{
3938	struct inode *inode = &(ei->vfs_inode);
3939	u64 i_blocks = inode->i_blocks;
3940	struct super_block *sb = inode->i_sb;
3941
3942	if (i_blocks <= ~0U) {
3943		/*
3944		 * i_blocks can be represnted in a 32 bit variable
3945		 * as multiple of 512 bytes
3946		 */
3947		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3948		raw_inode->i_blocks_high = 0;
3949		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3950		return 0;
3951	}
3952	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3953		return -EFBIG;
3954
3955	if (i_blocks <= 0xffffffffffffULL) {
3956		/*
3957		 * i_blocks can be represented in a 48 bit variable
3958		 * as multiple of 512 bytes
3959		 */
3960		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3961		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3962		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3963	} else {
3964		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3965		/* i_block is stored in file system block size */
3966		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3967		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3968		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3969	}
3970	return 0;
3971}
3972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3973/*
3974 * Post the struct inode info into an on-disk inode location in the
3975 * buffer-cache.  This gobbles the caller's reference to the
3976 * buffer_head in the inode location struct.
3977 *
3978 * The caller must have write access to iloc->bh.
3979 */
3980static int ext4_do_update_inode(handle_t *handle,
3981				struct inode *inode,
3982				struct ext4_iloc *iloc)
3983{
3984	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3985	struct ext4_inode_info *ei = EXT4_I(inode);
3986	struct buffer_head *bh = iloc->bh;
 
3987	int err = 0, rc, block;
 
3988	uid_t i_uid;
3989	gid_t i_gid;
 
 
 
3990
3991	/* For fields not not tracking in the in-memory inode,
3992	 * initialise them to zero for new inodes. */
3993	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3994		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3995
3996	ext4_get_inode_flags(ei);
3997	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3998	i_uid = i_uid_read(inode);
3999	i_gid = i_gid_read(inode);
 
4000	if (!(test_opt(inode->i_sb, NO_UID32))) {
4001		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4002		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4003/*
4004 * Fix up interoperability with old kernels. Otherwise, old inodes get
4005 * re-used with the upper 16 bits of the uid/gid intact
4006 */
4007		if (!ei->i_dtime) {
 
 
 
4008			raw_inode->i_uid_high =
4009				cpu_to_le16(high_16_bits(i_uid));
4010			raw_inode->i_gid_high =
4011				cpu_to_le16(high_16_bits(i_gid));
4012		} else {
4013			raw_inode->i_uid_high = 0;
4014			raw_inode->i_gid_high = 0;
4015		}
4016	} else {
4017		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4018		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4019		raw_inode->i_uid_high = 0;
4020		raw_inode->i_gid_high = 0;
4021	}
4022	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4023
4024	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4025	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4026	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4027	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4028
4029	if (ext4_inode_blocks_set(handle, raw_inode, ei))
 
 
4030		goto out_brelse;
 
4031	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4032	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4033	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4034	    cpu_to_le32(EXT4_OS_HURD))
4035		raw_inode->i_file_acl_high =
4036			cpu_to_le16(ei->i_file_acl >> 32);
4037	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4038	ext4_isize_set(raw_inode, ei->i_disksize);
 
 
 
4039	if (ei->i_disksize > 0x7fffffffULL) {
4040		struct super_block *sb = inode->i_sb;
4041		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4042				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4043				EXT4_SB(sb)->s_es->s_rev_level ==
4044				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4045			/* If this is the first large file
4046			 * created, add a flag to the superblock.
4047			 */
4048			err = ext4_journal_get_write_access(handle,
4049					EXT4_SB(sb)->s_sbh);
4050			if (err)
4051				goto out_brelse;
4052			ext4_update_dynamic_rev(sb);
4053			EXT4_SET_RO_COMPAT_FEATURE(sb,
4054					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4055			ext4_handle_sync(handle);
4056			err = ext4_handle_dirty_super_now(handle, sb);
4057		}
4058	}
4059	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4060	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4061		if (old_valid_dev(inode->i_rdev)) {
4062			raw_inode->i_block[0] =
4063				cpu_to_le32(old_encode_dev(inode->i_rdev));
4064			raw_inode->i_block[1] = 0;
4065		} else {
4066			raw_inode->i_block[0] = 0;
4067			raw_inode->i_block[1] =
4068				cpu_to_le32(new_encode_dev(inode->i_rdev));
4069			raw_inode->i_block[2] = 0;
4070		}
4071	} else
4072		for (block = 0; block < EXT4_N_BLOCKS; block++)
4073			raw_inode->i_block[block] = ei->i_data[block];
 
 
 
 
4074
4075	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4076	if (ei->i_extra_isize) {
4077		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4078			raw_inode->i_version_hi =
4079			cpu_to_le32(inode->i_version >> 32);
4080		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
 
 
4081	}
4082
 
 
 
 
 
 
 
4083	ext4_inode_csum_set(inode, raw_inode, ei);
 
 
 
 
4084
4085	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4086	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4087	if (!err)
4088		err = rc;
4089	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4090
4091	ext4_update_inode_fsync_trans(handle, inode, 0);
 
 
 
 
 
 
 
 
 
4092out_brelse:
4093	brelse(bh);
4094	ext4_std_error(inode->i_sb, err);
4095	return err;
4096}
4097
4098/*
4099 * ext4_write_inode()
4100 *
4101 * We are called from a few places:
4102 *
4103 * - Within generic_file_write() for O_SYNC files.
4104 *   Here, there will be no transaction running. We wait for any running
4105 *   trasnaction to commit.
4106 *
4107 * - Within sys_sync(), kupdate and such.
4108 *   We wait on commit, if tol to.
4109 *
4110 * - Within prune_icache() (PF_MEMALLOC == true)
4111 *   Here we simply return.  We can't afford to block kswapd on the
4112 *   journal commit.
4113 *
4114 * In all cases it is actually safe for us to return without doing anything,
4115 * because the inode has been copied into a raw inode buffer in
4116 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4117 * knfsd.
4118 *
4119 * Note that we are absolutely dependent upon all inode dirtiers doing the
4120 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4121 * which we are interested.
4122 *
4123 * It would be a bug for them to not do this.  The code:
4124 *
4125 *	mark_inode_dirty(inode)
4126 *	stuff();
4127 *	inode->i_size = expr;
4128 *
4129 * is in error because a kswapd-driven write_inode() could occur while
4130 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4131 * will no longer be on the superblock's dirty inode list.
4132 */
4133int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4134{
4135	int err;
4136
4137	if (current->flags & PF_MEMALLOC)
4138		return 0;
4139
4140	if (EXT4_SB(inode->i_sb)->s_journal) {
4141		if (ext4_journal_current_handle()) {
4142			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4143			dump_stack();
4144			return -EIO;
4145		}
4146
4147		if (wbc->sync_mode != WB_SYNC_ALL)
 
 
 
 
 
4148			return 0;
4149
4150		err = ext4_force_commit(inode->i_sb);
4151	} else {
4152		struct ext4_iloc iloc;
4153
4154		err = __ext4_get_inode_loc(inode, &iloc, 0);
4155		if (err)
4156			return err;
4157		if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
4158			sync_dirty_buffer(iloc.bh);
4159		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4160			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4161					 "IO error syncing inode");
4162			err = -EIO;
4163		}
4164		brelse(iloc.bh);
4165	}
4166	return err;
4167}
4168
4169/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170 * ext4_setattr()
4171 *
4172 * Called from notify_change.
4173 *
4174 * We want to trap VFS attempts to truncate the file as soon as
4175 * possible.  In particular, we want to make sure that when the VFS
4176 * shrinks i_size, we put the inode on the orphan list and modify
4177 * i_disksize immediately, so that during the subsequent flushing of
4178 * dirty pages and freeing of disk blocks, we can guarantee that any
4179 * commit will leave the blocks being flushed in an unused state on
4180 * disk.  (On recovery, the inode will get truncated and the blocks will
4181 * be freed, so we have a strong guarantee that no future commit will
4182 * leave these blocks visible to the user.)
4183 *
4184 * Another thing we have to assure is that if we are in ordered mode
4185 * and inode is still attached to the committing transaction, we must
4186 * we start writeout of all the dirty pages which are being truncated.
4187 * This way we are sure that all the data written in the previous
4188 * transaction are already on disk (truncate waits for pages under
4189 * writeback).
4190 *
4191 * Called with inode->i_mutex down.
4192 */
4193int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4194{
4195	struct inode *inode = dentry->d_inode;
4196	int error, rc = 0;
4197	int orphan = 0;
4198	const unsigned int ia_valid = attr->ia_valid;
4199
4200	error = inode_change_ok(inode, attr);
 
 
 
 
 
 
 
4201	if (error)
4202		return error;
4203
4204	if (is_quota_modification(inode, attr))
4205		dquot_initialize(inode);
 
 
 
4206	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4207	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4208		handle_t *handle;
4209
4210		/* (user+group)*(old+new) structure, inode write (sb,
4211		 * inode block, ? - but truncate inode update has it) */
4212		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4213					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
 
4214		if (IS_ERR(handle)) {
4215			error = PTR_ERR(handle);
4216			goto err_out;
4217		}
 
 
 
 
 
4218		error = dquot_transfer(inode, attr);
 
 
4219		if (error) {
4220			ext4_journal_stop(handle);
4221			return error;
4222		}
4223		/* Update corresponding info in inode so that everything is in
4224		 * one transaction */
4225		if (attr->ia_valid & ATTR_UID)
4226			inode->i_uid = attr->ia_uid;
4227		if (attr->ia_valid & ATTR_GID)
4228			inode->i_gid = attr->ia_gid;
4229		error = ext4_mark_inode_dirty(handle, inode);
4230		ext4_journal_stop(handle);
4231	}
4232
4233	if (attr->ia_valid & ATTR_SIZE) {
4234		inode_dio_wait(inode);
 
 
4235
4236		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4237			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4238
4239			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4240				return -EFBIG;
4241		}
4242	}
 
4243
4244	if (S_ISREG(inode->i_mode) &&
4245	    attr->ia_valid & ATTR_SIZE &&
4246	    (attr->ia_size < inode->i_size)) {
4247		handle_t *handle;
4248
4249		handle = ext4_journal_start(inode, 3);
4250		if (IS_ERR(handle)) {
4251			error = PTR_ERR(handle);
4252			goto err_out;
4253		}
4254		if (ext4_handle_valid(handle)) {
4255			error = ext4_orphan_add(handle, inode);
4256			orphan = 1;
4257		}
4258		EXT4_I(inode)->i_disksize = attr->ia_size;
4259		rc = ext4_mark_inode_dirty(handle, inode);
4260		if (!error)
4261			error = rc;
4262		ext4_journal_stop(handle);
4263
4264		if (ext4_should_order_data(inode)) {
4265			error = ext4_begin_ordered_truncate(inode,
4266							    attr->ia_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4267			if (error) {
4268				/* Do as much error cleanup as possible */
4269				handle = ext4_journal_start(inode, 3);
4270				if (IS_ERR(handle)) {
4271					ext4_orphan_del(NULL, inode);
4272					goto err_out;
4273				}
4274				ext4_orphan_del(handle, inode);
4275				orphan = 0;
4276				ext4_journal_stop(handle);
4277				goto err_out;
4278			}
4279		}
4280	}
 
4281
4282	if (attr->ia_valid & ATTR_SIZE) {
4283		if (attr->ia_size != i_size_read(inode))
4284			truncate_setsize(inode, attr->ia_size);
4285		ext4_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4286	}
4287
4288	if (!rc) {
4289		setattr_copy(inode, attr);
4290		mark_inode_dirty(inode);
4291	}
4292
4293	/*
4294	 * If the call to ext4_truncate failed to get a transaction handle at
4295	 * all, we need to clean up the in-core orphan list manually.
4296	 */
4297	if (orphan && inode->i_nlink)
4298		ext4_orphan_del(NULL, inode);
4299
4300	if (!rc && (ia_valid & ATTR_MODE))
4301		rc = ext4_acl_chmod(inode);
4302
4303err_out:
4304	ext4_std_error(inode->i_sb, error);
4305	if (!error)
4306		error = rc;
4307	return error;
4308}
4309
4310int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4311		 struct kstat *stat)
4312{
4313	struct inode *inode;
4314	unsigned long delalloc_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4315
4316	inode = dentry->d_inode;
4317	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4318
4319	/*
4320	 * We can't update i_blocks if the block allocation is delayed
4321	 * otherwise in the case of system crash before the real block
4322	 * allocation is done, we will have i_blocks inconsistent with
4323	 * on-disk file blocks.
4324	 * We always keep i_blocks updated together with real
4325	 * allocation. But to not confuse with user, stat
4326	 * will return the blocks that include the delayed allocation
4327	 * blocks for this file.
4328	 */
4329	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4330				EXT4_I(inode)->i_reserved_data_blocks);
4331
4332	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4333	return 0;
4334}
4335
4336static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4337{
4338	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4339		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4340	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4341}
4342
4343/*
4344 * Account for index blocks, block groups bitmaps and block group
4345 * descriptor blocks if modify datablocks and index blocks
4346 * worse case, the indexs blocks spread over different block groups
4347 *
4348 * If datablocks are discontiguous, they are possible to spread over
4349 * different block groups too. If they are contiuguous, with flexbg,
4350 * they could still across block group boundary.
4351 *
4352 * Also account for superblock, inode, quota and xattr blocks
4353 */
4354static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4355{
4356	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4357	int gdpblocks;
4358	int idxblocks;
4359	int ret = 0;
4360
4361	/*
4362	 * How many index blocks need to touch to modify nrblocks?
4363	 * The "Chunk" flag indicating whether the nrblocks is
4364	 * physically contiguous on disk
4365	 *
4366	 * For Direct IO and fallocate, they calls get_block to allocate
4367	 * one single extent at a time, so they could set the "Chunk" flag
4368	 */
4369	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4370
4371	ret = idxblocks;
4372
4373	/*
4374	 * Now let's see how many group bitmaps and group descriptors need
4375	 * to account
4376	 */
4377	groups = idxblocks;
4378	if (chunk)
4379		groups += 1;
4380	else
4381		groups += nrblocks;
4382
4383	gdpblocks = groups;
4384	if (groups > ngroups)
4385		groups = ngroups;
4386	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4387		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4388
4389	/* bitmaps and block group descriptor blocks */
4390	ret += groups + gdpblocks;
4391
4392	/* Blocks for super block, inode, quota and xattr blocks */
4393	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4394
4395	return ret;
4396}
4397
4398/*
4399 * Calculate the total number of credits to reserve to fit
4400 * the modification of a single pages into a single transaction,
4401 * which may include multiple chunks of block allocations.
4402 *
4403 * This could be called via ext4_write_begin()
4404 *
4405 * We need to consider the worse case, when
4406 * one new block per extent.
4407 */
4408int ext4_writepage_trans_blocks(struct inode *inode)
4409{
4410	int bpp = ext4_journal_blocks_per_page(inode);
4411	int ret;
4412
4413	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4414
4415	/* Account for data blocks for journalled mode */
4416	if (ext4_should_journal_data(inode))
4417		ret += bpp;
4418	return ret;
4419}
4420
4421/*
4422 * Calculate the journal credits for a chunk of data modification.
4423 *
4424 * This is called from DIO, fallocate or whoever calling
4425 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4426 *
4427 * journal buffers for data blocks are not included here, as DIO
4428 * and fallocate do no need to journal data buffers.
4429 */
4430int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4431{
4432	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4433}
4434
4435/*
4436 * The caller must have previously called ext4_reserve_inode_write().
4437 * Give this, we know that the caller already has write access to iloc->bh.
4438 */
4439int ext4_mark_iloc_dirty(handle_t *handle,
4440			 struct inode *inode, struct ext4_iloc *iloc)
4441{
4442	int err = 0;
4443
 
 
 
4444	if (IS_I_VERSION(inode))
4445		inode_inc_iversion(inode);
4446
4447	/* the do_update_inode consumes one bh->b_count */
4448	get_bh(iloc->bh);
4449
4450	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4451	err = ext4_do_update_inode(handle, inode, iloc);
4452	put_bh(iloc->bh);
4453	return err;
4454}
4455
4456/*
4457 * On success, We end up with an outstanding reference count against
4458 * iloc->bh.  This _must_ be cleaned up later.
4459 */
4460
4461int
4462ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4463			 struct ext4_iloc *iloc)
4464{
4465	int err;
4466
 
 
 
4467	err = ext4_get_inode_loc(inode, iloc);
4468	if (!err) {
4469		BUFFER_TRACE(iloc->bh, "get_write_access");
4470		err = ext4_journal_get_write_access(handle, iloc->bh);
4471		if (err) {
4472			brelse(iloc->bh);
4473			iloc->bh = NULL;
4474		}
4475	}
4476	ext4_std_error(inode->i_sb, err);
4477	return err;
4478}
4479
4480/*
4481 * Expand an inode by new_extra_isize bytes.
4482 * Returns 0 on success or negative error number on failure.
4483 */
4484static int ext4_expand_extra_isize(struct inode *inode,
4485				   unsigned int new_extra_isize,
4486				   struct ext4_iloc iloc,
4487				   handle_t *handle)
4488{
4489	struct ext4_inode *raw_inode;
4490	struct ext4_xattr_ibody_header *header;
 
4491
4492	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4493		return 0;
4494
4495	raw_inode = ext4_raw_inode(&iloc);
4496
4497	header = IHDR(inode, raw_inode);
4498
4499	/* No extended attributes present */
4500	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4501	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4502		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4503			new_extra_isize);
 
4504		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4505		return 0;
4506	}
4507
4508	/* try to expand with EAs present */
4509	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4510					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511}
4512
4513/*
4514 * What we do here is to mark the in-core inode as clean with respect to inode
4515 * dirtiness (it may still be data-dirty).
4516 * This means that the in-core inode may be reaped by prune_icache
4517 * without having to perform any I/O.  This is a very good thing,
4518 * because *any* task may call prune_icache - even ones which
4519 * have a transaction open against a different journal.
4520 *
4521 * Is this cheating?  Not really.  Sure, we haven't written the
4522 * inode out, but prune_icache isn't a user-visible syncing function.
4523 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4524 * we start and wait on commits.
4525 *
4526 * Is this efficient/effective?  Well, we're being nice to the system
4527 * by cleaning up our inodes proactively so they can be reaped
4528 * without I/O.  But we are potentially leaving up to five seconds'
4529 * worth of inodes floating about which prune_icache wants us to
4530 * write out.  One way to fix that would be to get prune_icache()
4531 * to do a write_super() to free up some memory.  It has the desired
4532 * effect.
4533 */
4534int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4535{
4536	struct ext4_iloc iloc;
4537	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4538	static unsigned int mnt_count;
4539	int err, ret;
4540
4541	might_sleep();
4542	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4543	err = ext4_reserve_inode_write(handle, inode, &iloc);
4544	if (ext4_handle_valid(handle) &&
4545	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4546	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4547		/*
4548		 * We need extra buffer credits since we may write into EA block
4549		 * with this same handle. If journal_extend fails, then it will
4550		 * only result in a minor loss of functionality for that inode.
4551		 * If this is felt to be critical, then e2fsck should be run to
4552		 * force a large enough s_min_extra_isize.
4553		 */
4554		if ((jbd2_journal_extend(handle,
4555			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4556			ret = ext4_expand_extra_isize(inode,
4557						      sbi->s_want_extra_isize,
4558						      iloc, handle);
4559			if (ret) {
4560				ext4_set_inode_state(inode,
4561						     EXT4_STATE_NO_EXPAND);
4562				if (mnt_count !=
4563					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4564					ext4_warning(inode->i_sb,
4565					"Unable to expand inode %lu. Delete"
4566					" some EAs or run e2fsck.",
4567					inode->i_ino);
4568					mnt_count =
4569					  le16_to_cpu(sbi->s_es->s_mnt_count);
4570				}
4571			}
4572		}
4573	}
4574	if (!err)
4575		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4576	return err;
4577}
4578
4579/*
4580 * ext4_dirty_inode() is called from __mark_inode_dirty()
4581 *
4582 * We're really interested in the case where a file is being extended.
4583 * i_size has been changed by generic_commit_write() and we thus need
4584 * to include the updated inode in the current transaction.
4585 *
4586 * Also, dquot_alloc_block() will always dirty the inode when blocks
4587 * are allocated to the file.
4588 *
4589 * If the inode is marked synchronous, we don't honour that here - doing
4590 * so would cause a commit on atime updates, which we don't bother doing.
4591 * We handle synchronous inodes at the highest possible level.
 
 
 
 
4592 */
4593void ext4_dirty_inode(struct inode *inode, int flags)
4594{
4595	handle_t *handle;
4596
4597	handle = ext4_journal_start(inode, 2);
 
 
4598	if (IS_ERR(handle))
4599		goto out;
4600
4601	ext4_mark_inode_dirty(handle, inode);
4602
4603	ext4_journal_stop(handle);
4604out:
4605	return;
4606}
4607
4608#if 0
4609/*
4610 * Bind an inode's backing buffer_head into this transaction, to prevent
4611 * it from being flushed to disk early.  Unlike
4612 * ext4_reserve_inode_write, this leaves behind no bh reference and
4613 * returns no iloc structure, so the caller needs to repeat the iloc
4614 * lookup to mark the inode dirty later.
4615 */
4616static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4617{
4618	struct ext4_iloc iloc;
4619
4620	int err = 0;
4621	if (handle) {
4622		err = ext4_get_inode_loc(inode, &iloc);
4623		if (!err) {
4624			BUFFER_TRACE(iloc.bh, "get_write_access");
4625			err = jbd2_journal_get_write_access(handle, iloc.bh);
4626			if (!err)
4627				err = ext4_handle_dirty_metadata(handle,
4628								 NULL,
4629								 iloc.bh);
4630			brelse(iloc.bh);
4631		}
4632	}
4633	ext4_std_error(inode->i_sb, err);
4634	return err;
4635}
4636#endif
4637
4638int ext4_change_inode_journal_flag(struct inode *inode, int val)
4639{
4640	journal_t *journal;
4641	handle_t *handle;
4642	int err;
 
4643
4644	/*
4645	 * We have to be very careful here: changing a data block's
4646	 * journaling status dynamically is dangerous.  If we write a
4647	 * data block to the journal, change the status and then delete
4648	 * that block, we risk forgetting to revoke the old log record
4649	 * from the journal and so a subsequent replay can corrupt data.
4650	 * So, first we make sure that the journal is empty and that
4651	 * nobody is changing anything.
4652	 */
4653
4654	journal = EXT4_JOURNAL(inode);
4655	if (!journal)
4656		return 0;
4657	if (is_journal_aborted(journal))
4658		return -EROFS;
4659	/* We have to allocate physical blocks for delalloc blocks
4660	 * before flushing journal. otherwise delalloc blocks can not
4661	 * be allocated any more. even more truncate on delalloc blocks
4662	 * could trigger BUG by flushing delalloc blocks in journal.
4663	 * There is no delalloc block in non-journal data mode.
4664	 */
4665	if (val && test_opt(inode->i_sb, DELALLOC)) {
4666		err = ext4_alloc_da_blocks(inode);
4667		if (err < 0)
 
 
 
 
 
 
 
 
4668			return err;
 
4669	}
4670
 
4671	jbd2_journal_lock_updates(journal);
4672
4673	/*
4674	 * OK, there are no updates running now, and all cached data is
4675	 * synced to disk.  We are now in a completely consistent state
4676	 * which doesn't have anything in the journal, and we know that
4677	 * no filesystem updates are running, so it is safe to modify
4678	 * the inode's in-core data-journaling state flag now.
4679	 */
4680
4681	if (val)
4682		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4683	else {
4684		jbd2_journal_flush(journal);
 
 
 
 
 
4685		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4686	}
4687	ext4_set_aops(inode);
4688
4689	jbd2_journal_unlock_updates(journal);
 
 
 
 
4690
4691	/* Finally we can mark the inode as dirty. */
4692
4693	handle = ext4_journal_start(inode, 1);
4694	if (IS_ERR(handle))
4695		return PTR_ERR(handle);
4696
4697	err = ext4_mark_inode_dirty(handle, inode);
4698	ext4_handle_sync(handle);
4699	ext4_journal_stop(handle);
4700	ext4_std_error(inode->i_sb, err);
4701
4702	return err;
4703}
4704
4705static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4706{
4707	return !buffer_mapped(bh);
4708}
4709
4710int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4711{
 
4712	struct page *page = vmf->page;
4713	loff_t size;
4714	unsigned long len;
4715	int ret;
4716	struct file *file = vma->vm_file;
4717	struct inode *inode = file->f_path.dentry->d_inode;
4718	struct address_space *mapping = inode->i_mapping;
4719	handle_t *handle;
4720	get_block_t *get_block;
4721	int retries = 0;
4722
4723	/*
4724	 * This check is racy but catches the common case. We rely on
4725	 * __block_page_mkwrite() to do a reliable check.
4726	 */
4727	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 
 
 
 
4728	/* Delalloc case is easy... */
4729	if (test_opt(inode->i_sb, DELALLOC) &&
4730	    !ext4_should_journal_data(inode) &&
4731	    !ext4_nonda_switch(inode->i_sb)) {
4732		do {
4733			ret = __block_page_mkwrite(vma, vmf,
4734						   ext4_da_get_block_prep);
4735		} while (ret == -ENOSPC &&
4736		       ext4_should_retry_alloc(inode->i_sb, &retries));
4737		goto out_ret;
4738	}
4739
4740	lock_page(page);
4741	size = i_size_read(inode);
4742	/* Page got truncated from under us? */
4743	if (page->mapping != mapping || page_offset(page) > size) {
4744		unlock_page(page);
4745		ret = VM_FAULT_NOPAGE;
4746		goto out;
4747	}
4748
4749	if (page->index == size >> PAGE_CACHE_SHIFT)
4750		len = size & ~PAGE_CACHE_MASK;
4751	else
4752		len = PAGE_CACHE_SIZE;
4753	/*
4754	 * Return if we have all the buffers mapped. This avoids the need to do
4755	 * journal_start/journal_stop which can block and take a long time
4756	 */
4757	if (page_has_buffers(page)) {
4758		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4759					ext4_bh_unmapped)) {
 
4760			/* Wait so that we don't change page under IO */
4761			wait_on_page_writeback(page);
4762			ret = VM_FAULT_LOCKED;
4763			goto out;
4764		}
4765	}
4766	unlock_page(page);
4767	/* OK, we need to fill the hole... */
4768	if (ext4_should_dioread_nolock(inode))
4769		get_block = ext4_get_block_write;
4770	else
4771		get_block = ext4_get_block;
4772retry_alloc:
4773	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
4774	if (IS_ERR(handle)) {
4775		ret = VM_FAULT_SIGBUS;
4776		goto out;
4777	}
4778	ret = __block_page_mkwrite(vma, vmf, get_block);
4779	if (!ret && ext4_should_journal_data(inode)) {
4780		if (walk_page_buffers(handle, page_buffers(page), 0,
4781			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4782			unlock_page(page);
4783			ret = VM_FAULT_SIGBUS;
4784			ext4_journal_stop(handle);
4785			goto out;
4786		}
4787		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4788	}
4789	ext4_journal_stop(handle);
4790	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791		goto retry_alloc;
4792out_ret:
4793	ret = block_page_mkwrite_return(ret);
4794out:
 
 
4795	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
4796}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
 
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51#define MPAGE_DA_EXTENT_TAIL 0x01
  52
  53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  54			      struct ext4_inode_info *ei)
  55{
  56	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
 
  57	__u32 csum;
  58	__u16 dummy_csum = 0;
  59	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  60	unsigned int csum_size = sizeof(dummy_csum);
  61
  62	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  63	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  64	offset += csum_size;
  65	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  66			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  67
  68	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  69		offset = offsetof(struct ext4_inode, i_checksum_hi);
  70		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  71				   EXT4_GOOD_OLD_INODE_SIZE,
  72				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  73		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  74			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  75					   csum_size);
  76			offset += csum_size;
  77		}
  78		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  79				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  80	}
  81
 
 
 
 
 
 
 
 
  82	return csum;
  83}
  84
  85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  86				  struct ext4_inode_info *ei)
  87{
  88	__u32 provided, calculated;
  89
  90	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  91	    cpu_to_le32(EXT4_OS_LINUX) ||
  92	    !ext4_has_metadata_csum(inode->i_sb))
 
  93		return 1;
  94
  95	provided = le16_to_cpu(raw->i_checksum_lo);
  96	calculated = ext4_inode_csum(inode, raw, ei);
  97	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  98	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  99		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 100	else
 101		calculated &= 0xFFFF;
 102
 103	return provided == calculated;
 104}
 105
 106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 107				struct ext4_inode_info *ei)
 108{
 109	__u32 csum;
 110
 111	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 112	    cpu_to_le32(EXT4_OS_LINUX) ||
 113	    !ext4_has_metadata_csum(inode->i_sb))
 
 114		return;
 115
 116	csum = ext4_inode_csum(inode, raw, ei);
 117	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 118	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 119	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 120		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 121}
 122
 123static inline int ext4_begin_ordered_truncate(struct inode *inode,
 124					      loff_t new_size)
 125{
 126	trace_ext4_begin_ordered_truncate(inode, new_size);
 127	/*
 128	 * If jinode is zero, then we never opened the file for
 129	 * writing, so there's no need to call
 130	 * jbd2_journal_begin_ordered_truncate() since there's no
 131	 * outstanding writes we need to flush.
 132	 */
 133	if (!EXT4_I(inode)->jinode)
 134		return 0;
 135	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 136						   EXT4_I(inode)->jinode,
 137						   new_size);
 138}
 139
 140static void ext4_invalidatepage(struct page *page, unsigned int offset,
 141				unsigned int length);
 
 
 
 142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 172				 int nblocks)
 173{
 174	int ret;
 175
 176	/*
 177	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 178	 * moment, get_block can be called only for blocks inside i_size since
 179	 * page cache has been already dropped and writes are blocked by
 180	 * i_mutex. So we can safely drop the i_data_sem here.
 181	 */
 182	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 183	jbd_debug(2, "restarting handle %p\n", handle);
 184	up_write(&EXT4_I(inode)->i_data_sem);
 185	ret = ext4_journal_restart(handle, nblocks);
 186	down_write(&EXT4_I(inode)->i_data_sem);
 187	ext4_discard_preallocations(inode);
 188
 189	return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext4_evict_inode(struct inode *inode)
 196{
 197	handle_t *handle;
 198	int err;
 199	int extra_credits = 3;
 200	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 201
 202	trace_ext4_evict_inode(inode);
 203
 
 
 204	if (inode->i_nlink) {
 205		/*
 206		 * When journalling data dirty buffers are tracked only in the
 207		 * journal. So although mm thinks everything is clean and
 208		 * ready for reaping the inode might still have some pages to
 209		 * write in the running transaction or waiting to be
 210		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 211		 * (via truncate_inode_pages()) to discard these buffers can
 212		 * cause data loss. Also even if we did not discard these
 213		 * buffers, we would have no way to find them after the inode
 214		 * is reaped and thus user could see stale data if he tries to
 215		 * read them before the transaction is checkpointed. So be
 216		 * careful and force everything to disk here... We use
 217		 * ei->i_datasync_tid to store the newest transaction
 218		 * containing inode's data.
 219		 *
 220		 * Note that directories do not have this problem because they
 221		 * don't use page cache.
 222		 */
 223		if (inode->i_ino != EXT4_JOURNAL_INO &&
 224		    ext4_should_journal_data(inode) &&
 225		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 226		    inode->i_data.nrpages) {
 227			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 228			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 229
 230			jbd2_complete_transaction(journal, commit_tid);
 
 231			filemap_write_and_wait(&inode->i_data);
 232		}
 233		truncate_inode_pages_final(&inode->i_data);
 234
 235		goto no_delete;
 236	}
 237
 238	if (is_bad_inode(inode))
 239		goto no_delete;
 240	dquot_initialize(inode);
 241
 242	if (ext4_should_order_data(inode))
 243		ext4_begin_ordered_truncate(inode, 0);
 244	truncate_inode_pages_final(&inode->i_data);
 245
 246	/*
 247	 * Protect us against freezing - iput() caller didn't have to have any
 248	 * protection against it
 249	 */
 250	sb_start_intwrite(inode->i_sb);
 251
 252	if (!IS_NOQUOTA(inode))
 253		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 254
 255	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 256				 ext4_blocks_for_truncate(inode)+extra_credits);
 257	if (IS_ERR(handle)) {
 258		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 259		/*
 260		 * If we're going to skip the normal cleanup, we still need to
 261		 * make sure that the in-core orphan linked list is properly
 262		 * cleaned up.
 263		 */
 264		ext4_orphan_del(NULL, inode);
 265		sb_end_intwrite(inode->i_sb);
 266		goto no_delete;
 267	}
 268
 269	if (IS_SYNC(inode))
 270		ext4_handle_sync(handle);
 271
 272	/*
 273	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 274	 * special handling of symlinks here because i_size is used to
 275	 * determine whether ext4_inode_info->i_data contains symlink data or
 276	 * block mappings. Setting i_size to 0 will remove its fast symlink
 277	 * status. Erase i_data so that it becomes a valid empty block map.
 278	 */
 279	if (ext4_inode_is_fast_symlink(inode))
 280		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 281	inode->i_size = 0;
 282	err = ext4_mark_inode_dirty(handle, inode);
 283	if (err) {
 284		ext4_warning(inode->i_sb,
 285			     "couldn't mark inode dirty (err %d)", err);
 286		goto stop_handle;
 287	}
 288	if (inode->i_blocks) {
 289		err = ext4_truncate(inode);
 290		if (err) {
 291			ext4_error(inode->i_sb,
 292				   "couldn't truncate inode %lu (err %d)",
 293				   inode->i_ino, err);
 294			goto stop_handle;
 
 
 
 
 
 
 
 
 
 
 
 
 
 295		}
 296	}
 297
 298	/* Remove xattr references. */
 299	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 300				      extra_credits);
 301	if (err) {
 302		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 303stop_handle:
 304		ext4_journal_stop(handle);
 305		ext4_orphan_del(NULL, inode);
 306		sb_end_intwrite(inode->i_sb);
 307		ext4_xattr_inode_array_free(ea_inode_array);
 308		goto no_delete;
 309	}
 310
 311	/*
 312	 * Kill off the orphan record which ext4_truncate created.
 313	 * AKPM: I think this can be inside the above `if'.
 314	 * Note that ext4_orphan_del() has to be able to cope with the
 315	 * deletion of a non-existent orphan - this is because we don't
 316	 * know if ext4_truncate() actually created an orphan record.
 317	 * (Well, we could do this if we need to, but heck - it works)
 318	 */
 319	ext4_orphan_del(handle, inode);
 320	EXT4_I(inode)->i_dtime	= get_seconds();
 321
 322	/*
 323	 * One subtle ordering requirement: if anything has gone wrong
 324	 * (transaction abort, IO errors, whatever), then we can still
 325	 * do these next steps (the fs will already have been marked as
 326	 * having errors), but we can't free the inode if the mark_dirty
 327	 * fails.
 328	 */
 329	if (ext4_mark_inode_dirty(handle, inode))
 330		/* If that failed, just do the required in-core inode clear. */
 331		ext4_clear_inode(inode);
 332	else
 333		ext4_free_inode(handle, inode);
 334	ext4_journal_stop(handle);
 335	sb_end_intwrite(inode->i_sb);
 336	ext4_xattr_inode_array_free(ea_inode_array);
 337	return;
 338no_delete:
 339	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 340}
 341
 342#ifdef CONFIG_QUOTA
 343qsize_t *ext4_get_reserved_space(struct inode *inode)
 344{
 345	return &EXT4_I(inode)->i_reserved_quota;
 346}
 347#endif
 348
 349/*
 
 
 
 
 
 
 
 
 
 
 
 
 350 * Called with i_data_sem down, which is important since we can call
 351 * ext4_discard_preallocations() from here.
 352 */
 353void ext4_da_update_reserve_space(struct inode *inode,
 354					int used, int quota_claim)
 355{
 356	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 357	struct ext4_inode_info *ei = EXT4_I(inode);
 358
 359	spin_lock(&ei->i_block_reservation_lock);
 360	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 361	if (unlikely(used > ei->i_reserved_data_blocks)) {
 362		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 363			 "with only %d reserved data blocks",
 364			 __func__, inode->i_ino, used,
 365			 ei->i_reserved_data_blocks);
 366		WARN_ON(1);
 367		used = ei->i_reserved_data_blocks;
 368	}
 369
 
 
 
 
 
 
 
 
 
 370	/* Update per-inode reservations */
 371	ei->i_reserved_data_blocks -= used;
 372	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 375
 376	/* Update quota subsystem for data blocks */
 377	if (quota_claim)
 378		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 379	else {
 380		/*
 381		 * We did fallocate with an offset that is already delayed
 382		 * allocated. So on delayed allocated writeback we should
 383		 * not re-claim the quota for fallocated blocks.
 384		 */
 385		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 386	}
 387
 388	/*
 389	 * If we have done all the pending block allocations and if
 390	 * there aren't any writers on the inode, we can discard the
 391	 * inode's preallocations.
 392	 */
 393	if ((ei->i_reserved_data_blocks == 0) &&
 394	    (atomic_read(&inode->i_writecount) == 0))
 395		ext4_discard_preallocations(inode);
 396}
 397
 398static int __check_block_validity(struct inode *inode, const char *func,
 399				unsigned int line,
 400				struct ext4_map_blocks *map)
 401{
 402	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 403				   map->m_len)) {
 404		ext4_error_inode(inode, func, line, map->m_pblk,
 405				 "lblock %lu mapped to illegal pblock "
 406				 "(length %d)", (unsigned long) map->m_lblk,
 407				 map->m_len);
 408		return -EFSCORRUPTED;
 409	}
 410	return 0;
 411}
 412
 413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 414		       ext4_lblk_t len)
 
 
 
 
 
 
 
 415{
 416	int ret;
 
 
 
 
 417
 418	if (ext4_encrypted_inode(inode))
 419		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 
 
 
 
 
 
 
 
 
 
 
 420
 421	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 422	if (ret > 0)
 423		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425	return ret;
 426}
 
 
 
 
 
 
 
 
 427
 428#define check_block_validity(inode, map)	\
 429	__check_block_validity((inode), __func__, __LINE__, (map))
 
 430
 431#ifdef ES_AGGRESSIVE_TEST
 432static void ext4_map_blocks_es_recheck(handle_t *handle,
 433				       struct inode *inode,
 434				       struct ext4_map_blocks *es_map,
 435				       struct ext4_map_blocks *map,
 436				       int flags)
 437{
 438	int retval;
 
 
 439
 440	map->m_flags = 0;
 441	/*
 442	 * There is a race window that the result is not the same.
 443	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 444	 * is that we lookup a block mapping in extent status tree with
 445	 * out taking i_data_sem.  So at the time the unwritten extent
 446	 * could be converted.
 447	 */
 448	down_read(&EXT4_I(inode)->i_data_sem);
 449	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 450		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 451					     EXT4_GET_BLOCKS_KEEP_SIZE);
 452	} else {
 453		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 454					     EXT4_GET_BLOCKS_KEEP_SIZE);
 455	}
 456	up_read((&EXT4_I(inode)->i_data_sem));
 457
 458	/*
 459	 * We don't check m_len because extent will be collpased in status
 460	 * tree.  So the m_len might not equal.
 461	 */
 462	if (es_map->m_lblk != map->m_lblk ||
 463	    es_map->m_flags != map->m_flags ||
 464	    es_map->m_pblk != map->m_pblk) {
 465		printk("ES cache assertion failed for inode: %lu "
 466		       "es_cached ex [%d/%d/%llu/%x] != "
 467		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 468		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 469		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 470		       map->m_len, map->m_pblk, map->m_flags,
 471		       retval, flags);
 472	}
 473}
 474#endif /* ES_AGGRESSIVE_TEST */
 475
 476/*
 477 * The ext4_map_blocks() function tries to look up the requested blocks,
 478 * and returns if the blocks are already mapped.
 479 *
 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 481 * and store the allocated blocks in the result buffer head and mark it
 482 * mapped.
 483 *
 484 * If file type is extents based, it will call ext4_ext_map_blocks(),
 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 486 * based files
 487 *
 488 * On success, it returns the number of blocks being mapped or allocated.  if
 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 
 491 *
 492 * It returns 0 if plain look up failed (blocks have not been allocated), in
 493 * that case, @map is returned as unmapped but we still do fill map->m_len to
 494 * indicate the length of a hole starting at map->m_lblk.
 495 *
 496 * It returns the error in case of allocation failure.
 497 */
 498int ext4_map_blocks(handle_t *handle, struct inode *inode,
 499		    struct ext4_map_blocks *map, int flags)
 500{
 501	struct extent_status es;
 502	int retval;
 503	int ret = 0;
 504#ifdef ES_AGGRESSIVE_TEST
 505	struct ext4_map_blocks orig_map;
 506
 507	memcpy(&orig_map, map, sizeof(*map));
 508#endif
 509
 510	map->m_flags = 0;
 511	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 512		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 513		  (unsigned long) map->m_lblk);
 514
 515	/*
 516	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 517	 */
 518	if (unlikely(map->m_len > INT_MAX))
 519		map->m_len = INT_MAX;
 520
 521	/* We can handle the block number less than EXT_MAX_BLOCKS */
 522	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 523		return -EFSCORRUPTED;
 524
 525	/* Lookup extent status tree firstly */
 526	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 527		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 528			map->m_pblk = ext4_es_pblock(&es) +
 529					map->m_lblk - es.es_lblk;
 530			map->m_flags |= ext4_es_is_written(&es) ?
 531					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 532			retval = es.es_len - (map->m_lblk - es.es_lblk);
 533			if (retval > map->m_len)
 534				retval = map->m_len;
 535			map->m_len = retval;
 536		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 537			map->m_pblk = 0;
 538			retval = es.es_len - (map->m_lblk - es.es_lblk);
 539			if (retval > map->m_len)
 540				retval = map->m_len;
 541			map->m_len = retval;
 542			retval = 0;
 543		} else {
 544			BUG_ON(1);
 545		}
 546#ifdef ES_AGGRESSIVE_TEST
 547		ext4_map_blocks_es_recheck(handle, inode, map,
 548					   &orig_map, flags);
 549#endif
 550		goto found;
 551	}
 552
 553	/*
 554	 * Try to see if we can get the block without requesting a new
 555	 * file system block.
 556	 */
 557	down_read(&EXT4_I(inode)->i_data_sem);
 558	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 559		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 560					     EXT4_GET_BLOCKS_KEEP_SIZE);
 561	} else {
 562		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 563					     EXT4_GET_BLOCKS_KEEP_SIZE);
 564	}
 565	if (retval > 0) {
 566		unsigned int status;
 567
 568		if (unlikely(retval != map->m_len)) {
 569			ext4_warning(inode->i_sb,
 570				     "ES len assertion failed for inode "
 571				     "%lu: retval %d != map->m_len %d",
 572				     inode->i_ino, retval, map->m_len);
 573			WARN_ON(1);
 574		}
 575
 576		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 577				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 578		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 579		    !(status & EXTENT_STATUS_WRITTEN) &&
 580		    ext4_find_delalloc_range(inode, map->m_lblk,
 581					     map->m_lblk + map->m_len - 1))
 582			status |= EXTENT_STATUS_DELAYED;
 583		ret = ext4_es_insert_extent(inode, map->m_lblk,
 584					    map->m_len, map->m_pblk, status);
 585		if (ret < 0)
 586			retval = ret;
 587	}
 588	up_read((&EXT4_I(inode)->i_data_sem));
 589
 590found:
 591	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 592		ret = check_block_validity(inode, map);
 593		if (ret != 0)
 594			return ret;
 595	}
 596
 597	/* If it is only a block(s) look up */
 598	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 599		return retval;
 600
 601	/*
 602	 * Returns if the blocks have already allocated
 603	 *
 604	 * Note that if blocks have been preallocated
 605	 * ext4_ext_get_block() returns the create = 0
 606	 * with buffer head unmapped.
 607	 */
 608	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 609		/*
 610		 * If we need to convert extent to unwritten
 611		 * we continue and do the actual work in
 612		 * ext4_ext_map_blocks()
 613		 */
 614		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 615			return retval;
 616
 617	/*
 618	 * Here we clear m_flags because after allocating an new extent,
 619	 * it will be set again.
 
 
 
 
 
 
 620	 */
 621	map->m_flags &= ~EXT4_MAP_FLAGS;
 622
 623	/*
 624	 * New blocks allocate and/or writing to unwritten extent
 625	 * will possibly result in updating i_data, so we take
 626	 * the write lock of i_data_sem, and call get_block()
 627	 * with create == 1 flag.
 628	 */
 629	down_write(&EXT4_I(inode)->i_data_sem);
 630
 631	/*
 
 
 
 
 
 
 
 
 632	 * We need to check for EXT4 here because migrate
 633	 * could have changed the inode type in between
 634	 */
 635	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 636		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 637	} else {
 638		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 639
 640		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 641			/*
 642			 * We allocated new blocks which will result in
 643			 * i_data's format changing.  Force the migrate
 644			 * to fail by clearing migrate flags
 645			 */
 646			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 647		}
 648
 649		/*
 650		 * Update reserved blocks/metadata blocks after successful
 651		 * block allocation which had been deferred till now. We don't
 652		 * support fallocate for non extent files. So we can update
 653		 * reserve space here.
 654		 */
 655		if ((retval > 0) &&
 656			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 657			ext4_da_update_reserve_space(inode, retval, 1);
 658	}
 
 
 659
 660	if (retval > 0) {
 661		unsigned int status;
 662
 663		if (unlikely(retval != map->m_len)) {
 664			ext4_warning(inode->i_sb,
 665				     "ES len assertion failed for inode "
 666				     "%lu: retval %d != map->m_len %d",
 667				     inode->i_ino, retval, map->m_len);
 668			WARN_ON(1);
 669		}
 670
 671		/*
 672		 * We have to zeroout blocks before inserting them into extent
 673		 * status tree. Otherwise someone could look them up there and
 674		 * use them before they are really zeroed. We also have to
 675		 * unmap metadata before zeroing as otherwise writeback can
 676		 * overwrite zeros with stale data from block device.
 677		 */
 678		if (flags & EXT4_GET_BLOCKS_ZERO &&
 679		    map->m_flags & EXT4_MAP_MAPPED &&
 680		    map->m_flags & EXT4_MAP_NEW) {
 681			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 682					   map->m_len);
 683			ret = ext4_issue_zeroout(inode, map->m_lblk,
 684						 map->m_pblk, map->m_len);
 685			if (ret) {
 686				retval = ret;
 687				goto out_sem;
 688			}
 689		}
 690
 691		/*
 692		 * If the extent has been zeroed out, we don't need to update
 693		 * extent status tree.
 694		 */
 695		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 697			if (ext4_es_is_written(&es))
 698				goto out_sem;
 699		}
 700		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703		    !(status & EXTENT_STATUS_WRITTEN) &&
 704		    ext4_find_delalloc_range(inode, map->m_lblk,
 705					     map->m_lblk + map->m_len - 1))
 706			status |= EXTENT_STATUS_DELAYED;
 707		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708					    map->m_pblk, status);
 709		if (ret < 0) {
 710			retval = ret;
 711			goto out_sem;
 712		}
 713	}
 714
 715out_sem:
 716	up_write((&EXT4_I(inode)->i_data_sem));
 717	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718		ret = check_block_validity(inode, map);
 719		if (ret != 0)
 720			return ret;
 721
 722		/*
 723		 * Inodes with freshly allocated blocks where contents will be
 724		 * visible after transaction commit must be on transaction's
 725		 * ordered data list.
 726		 */
 727		if (map->m_flags & EXT4_MAP_NEW &&
 728		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730		    !ext4_is_quota_file(inode) &&
 731		    ext4_should_order_data(inode)) {
 732			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 733				ret = ext4_jbd2_inode_add_wait(handle, inode);
 734			else
 735				ret = ext4_jbd2_inode_add_write(handle, inode);
 736			if (ret)
 737				return ret;
 738		}
 739	}
 740	return retval;
 741}
 742
 743/*
 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 745 * we have to be careful as someone else may be manipulating b_state as well.
 746 */
 747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 748{
 749	unsigned long old_state;
 750	unsigned long new_state;
 751
 752	flags &= EXT4_MAP_FLAGS;
 753
 754	/* Dummy buffer_head? Set non-atomically. */
 755	if (!bh->b_page) {
 756		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 757		return;
 758	}
 759	/*
 760	 * Someone else may be modifying b_state. Be careful! This is ugly but
 761	 * once we get rid of using bh as a container for mapping information
 762	 * to pass to / from get_block functions, this can go away.
 763	 */
 764	do {
 765		old_state = READ_ONCE(bh->b_state);
 766		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 767	} while (unlikely(
 768		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 769}
 770
 771static int _ext4_get_block(struct inode *inode, sector_t iblock,
 772			   struct buffer_head *bh, int flags)
 773{
 
 774	struct ext4_map_blocks map;
 775	int ret = 0;
 776
 777	if (ext4_has_inline_data(inode))
 778		return -ERANGE;
 779
 780	map.m_lblk = iblock;
 781	map.m_len = bh->b_size >> inode->i_blkbits;
 782
 783	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 784			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 785	if (ret > 0) {
 786		map_bh(bh, inode->i_sb, map.m_pblk);
 787		ext4_update_bh_state(bh, map.m_flags);
 788		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 789		ret = 0;
 790	} else if (ret == 0) {
 791		/* hole case, need to fill in bh->b_size */
 792		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 793	}
 
 
 794	return ret;
 795}
 796
 797int ext4_get_block(struct inode *inode, sector_t iblock,
 798		   struct buffer_head *bh, int create)
 799{
 800	return _ext4_get_block(inode, iblock, bh,
 801			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 802}
 803
 804/*
 805 * Get block function used when preparing for buffered write if we require
 806 * creating an unwritten extent if blocks haven't been allocated.  The extent
 807 * will be converted to written after the IO is complete.
 808 */
 809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 810			     struct buffer_head *bh_result, int create)
 811{
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	return _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 816}
 817
 818/* Maximum number of blocks we map for direct IO at once. */
 819#define DIO_MAX_BLOCKS 4096
 820
 821/*
 822 * Get blocks function for the cases that need to start a transaction -
 823 * generally difference cases of direct IO and DAX IO. It also handles retries
 824 * in case of ENOSPC.
 825 */
 826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 827				struct buffer_head *bh_result, int flags)
 828{
 829	int dio_credits;
 830	handle_t *handle;
 831	int retries = 0;
 832	int ret;
 833
 834	/* Trim mapping request to maximum we can map at once for DIO */
 835	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 836		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 837	dio_credits = ext4_chunk_trans_blocks(inode,
 838				      bh_result->b_size >> inode->i_blkbits);
 839retry:
 840	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 841	if (IS_ERR(handle))
 842		return PTR_ERR(handle);
 843
 844	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 845	ext4_journal_stop(handle);
 846
 847	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 848		goto retry;
 849	return ret;
 850}
 851
 852/* Get block function for DIO reads and writes to inodes without extents */
 853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 854		       struct buffer_head *bh, int create)
 855{
 856	/* We don't expect handle for direct IO */
 857	WARN_ON_ONCE(ext4_journal_current_handle());
 858
 859	if (!create)
 860		return _ext4_get_block(inode, iblock, bh, 0);
 861	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 862}
 863
 864/*
 865 * Get block function for AIO DIO writes when we create unwritten extent if
 866 * blocks are not allocated yet. The extent will be converted to written
 867 * after IO is complete.
 868 */
 869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 870		sector_t iblock, struct buffer_head *bh_result,	int create)
 871{
 872	int ret;
 873
 874	/* We don't expect handle for direct IO */
 875	WARN_ON_ONCE(ext4_journal_current_handle());
 876
 877	ret = ext4_get_block_trans(inode, iblock, bh_result,
 878				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 879
 880	/*
 881	 * When doing DIO using unwritten extents, we need io_end to convert
 882	 * unwritten extents to written on IO completion. We allocate io_end
 883	 * once we spot unwritten extent and store it in b_private. Generic
 884	 * DIO code keeps b_private set and furthermore passes the value to
 885	 * our completion callback in 'private' argument.
 886	 */
 887	if (!ret && buffer_unwritten(bh_result)) {
 888		if (!bh_result->b_private) {
 889			ext4_io_end_t *io_end;
 890
 891			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 892			if (!io_end)
 893				return -ENOMEM;
 894			bh_result->b_private = io_end;
 895			ext4_set_io_unwritten_flag(inode, io_end);
 896		}
 897		set_buffer_defer_completion(bh_result);
 898	}
 899
 900	return ret;
 901}
 902
 903/*
 904 * Get block function for non-AIO DIO writes when we create unwritten extent if
 905 * blocks are not allocated yet. The extent will be converted to written
 906 * after IO is complete by ext4_direct_IO_write().
 907 */
 908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 909		sector_t iblock, struct buffer_head *bh_result,	int create)
 910{
 911	int ret;
 912
 913	/* We don't expect handle for direct IO */
 914	WARN_ON_ONCE(ext4_journal_current_handle());
 915
 916	ret = ext4_get_block_trans(inode, iblock, bh_result,
 917				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 918
 919	/*
 920	 * Mark inode as having pending DIO writes to unwritten extents.
 921	 * ext4_direct_IO_write() checks this flag and converts extents to
 922	 * written.
 923	 */
 924	if (!ret && buffer_unwritten(bh_result))
 925		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 926
 927	return ret;
 928}
 929
 930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 931		   struct buffer_head *bh_result, int create)
 932{
 933	int ret;
 934
 935	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 936		   inode->i_ino, create);
 937	/* We don't expect handle for direct IO */
 938	WARN_ON_ONCE(ext4_journal_current_handle());
 939
 940	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 941	/*
 942	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 943	 * that.
 944	 */
 945	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 946
 947	return ret;
 948}
 949
 950
 951/*
 952 * `handle' can be NULL if create is zero
 953 */
 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 955				ext4_lblk_t block, int map_flags)
 956{
 957	struct ext4_map_blocks map;
 958	struct buffer_head *bh;
 959	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 960	int err;
 961
 962	J_ASSERT(handle != NULL || create == 0);
 963
 964	map.m_lblk = block;
 965	map.m_len = 1;
 966	err = ext4_map_blocks(handle, inode, &map, map_flags);
 
 967
 968	if (err == 0)
 969		return create ? ERR_PTR(-ENOSPC) : NULL;
 970	if (err < 0)
 971		return ERR_PTR(err);
 
 
 
 972
 973	bh = sb_getblk(inode->i_sb, map.m_pblk);
 974	if (unlikely(!bh))
 975		return ERR_PTR(-ENOMEM);
 
 
 976	if (map.m_flags & EXT4_MAP_NEW) {
 977		J_ASSERT(create != 0);
 978		J_ASSERT(handle != NULL);
 979
 980		/*
 981		 * Now that we do not always journal data, we should
 982		 * keep in mind whether this should always journal the
 983		 * new buffer as metadata.  For now, regular file
 984		 * writes use ext4_get_block instead, so it's not a
 985		 * problem.
 986		 */
 987		lock_buffer(bh);
 988		BUFFER_TRACE(bh, "call get_create_access");
 989		err = ext4_journal_get_create_access(handle, bh);
 990		if (unlikely(err)) {
 991			unlock_buffer(bh);
 992			goto errout;
 993		}
 994		if (!buffer_uptodate(bh)) {
 995			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 996			set_buffer_uptodate(bh);
 997		}
 998		unlock_buffer(bh);
 999		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000		err = ext4_handle_dirty_metadata(handle, inode, bh);
1001		if (unlikely(err))
1002			goto errout;
1003	} else
1004		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
1005	return bh;
1006errout:
1007	brelse(bh);
1008	return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012			       ext4_lblk_t block, int map_flags)
1013{
1014	struct buffer_head *bh;
1015
1016	bh = ext4_getblk(handle, inode, block, map_flags);
1017	if (IS_ERR(bh))
1018		return bh;
1019	if (!bh || buffer_uptodate(bh))
1020		return bh;
1021	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022	wait_on_buffer(bh);
1023	if (buffer_uptodate(bh))
1024		return bh;
1025	put_bh(bh);
1026	return ERR_PTR(-EIO);
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031		     bool wait, struct buffer_head **bhs)
1032{
1033	int i, err;
1034
1035	for (i = 0; i < bh_count; i++) {
1036		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037		if (IS_ERR(bhs[i])) {
1038			err = PTR_ERR(bhs[i]);
1039			bh_count = i;
1040			goto out_brelse;
1041		}
1042	}
1043
1044	for (i = 0; i < bh_count; i++)
1045		/* Note that NULL bhs[i] is valid because of holes. */
1046		if (bhs[i] && !buffer_uptodate(bhs[i]))
1047			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048				    &bhs[i]);
1049
1050	if (!wait)
1051		return 0;
1052
1053	for (i = 0; i < bh_count; i++)
1054		if (bhs[i])
1055			wait_on_buffer(bhs[i]);
1056
1057	for (i = 0; i < bh_count; i++) {
1058		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059			err = -EIO;
1060			goto out_brelse;
1061		}
1062	}
1063	return 0;
1064
1065out_brelse:
1066	for (i = 0; i < bh_count; i++) {
1067		brelse(bhs[i]);
1068		bhs[i] = NULL;
1069	}
1070	return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074			   struct buffer_head *head,
1075			   unsigned from,
1076			   unsigned to,
1077			   int *partial,
1078			   int (*fn)(handle_t *handle,
1079				     struct buffer_head *bh))
1080{
1081	struct buffer_head *bh;
1082	unsigned block_start, block_end;
1083	unsigned blocksize = head->b_size;
1084	int err, ret = 0;
1085	struct buffer_head *next;
1086
1087	for (bh = head, block_start = 0;
1088	     ret == 0 && (bh != head || !block_start);
1089	     block_start = block_end, bh = next) {
1090		next = bh->b_this_page;
1091		block_end = block_start + blocksize;
1092		if (block_end <= from || block_start >= to) {
1093			if (partial && !buffer_uptodate(bh))
1094				*partial = 1;
1095			continue;
1096		}
1097		err = (*fn)(handle, bh);
1098		if (!ret)
1099			ret = err;
1100	}
1101	return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction.  We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write().  So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage().  In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page.  So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
 
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes.  If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated.  We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
1129				struct buffer_head *bh)
1130{
1131	int dirty = buffer_dirty(bh);
1132	int ret;
1133
1134	if (!buffer_mapped(bh) || buffer_freed(bh))
1135		return 0;
1136	/*
1137	 * __block_write_begin() could have dirtied some buffers. Clean
1138	 * the dirty bit as jbd2_journal_get_write_access() could complain
1139	 * otherwise about fs integrity issues. Setting of the dirty bit
1140	 * by __block_write_begin() isn't a real problem here as we clear
1141	 * the bit before releasing a page lock and thus writeback cannot
1142	 * ever write the buffer.
1143	 */
1144	if (dirty)
1145		clear_buffer_dirty(bh);
1146	BUFFER_TRACE(bh, "get write access");
1147	ret = ext4_journal_get_write_access(handle, bh);
1148	if (!ret && dirty)
1149		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150	return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155				  get_block_t *get_block)
1156{
1157	unsigned from = pos & (PAGE_SIZE - 1);
1158	unsigned to = from + len;
1159	struct inode *inode = page->mapping->host;
1160	unsigned block_start, block_end;
1161	sector_t block;
1162	int err = 0;
1163	unsigned blocksize = inode->i_sb->s_blocksize;
1164	unsigned bbits;
1165	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166	bool decrypt = false;
1167
1168	BUG_ON(!PageLocked(page));
1169	BUG_ON(from > PAGE_SIZE);
1170	BUG_ON(to > PAGE_SIZE);
1171	BUG_ON(from > to);
1172
1173	if (!page_has_buffers(page))
1174		create_empty_buffers(page, blocksize, 0);
1175	head = page_buffers(page);
1176	bbits = ilog2(blocksize);
1177	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179	for (bh = head, block_start = 0; bh != head || !block_start;
1180	    block++, block_start = block_end, bh = bh->b_this_page) {
1181		block_end = block_start + blocksize;
1182		if (block_end <= from || block_start >= to) {
1183			if (PageUptodate(page)) {
1184				if (!buffer_uptodate(bh))
1185					set_buffer_uptodate(bh);
1186			}
1187			continue;
1188		}
1189		if (buffer_new(bh))
1190			clear_buffer_new(bh);
1191		if (!buffer_mapped(bh)) {
1192			WARN_ON(bh->b_size != blocksize);
1193			err = get_block(inode, block, bh, 1);
1194			if (err)
1195				break;
1196			if (buffer_new(bh)) {
1197				clean_bdev_bh_alias(bh);
1198				if (PageUptodate(page)) {
1199					clear_buffer_new(bh);
1200					set_buffer_uptodate(bh);
1201					mark_buffer_dirty(bh);
1202					continue;
1203				}
1204				if (block_end > to || block_start < from)
1205					zero_user_segments(page, to, block_end,
1206							   block_start, from);
1207				continue;
1208			}
1209		}
1210		if (PageUptodate(page)) {
1211			if (!buffer_uptodate(bh))
1212				set_buffer_uptodate(bh);
1213			continue;
1214		}
1215		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216		    !buffer_unwritten(bh) &&
1217		    (block_start < from || block_end > to)) {
1218			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219			*wait_bh++ = bh;
1220			decrypt = ext4_encrypted_inode(inode) &&
1221				S_ISREG(inode->i_mode);
1222		}
1223	}
1224	/*
1225	 * If we issued read requests, let them complete.
1226	 */
1227	while (wait_bh > wait) {
1228		wait_on_buffer(*--wait_bh);
1229		if (!buffer_uptodate(*wait_bh))
1230			err = -EIO;
1231	}
1232	if (unlikely(err))
1233		page_zero_new_buffers(page, from, to);
1234	else if (decrypt)
1235		err = fscrypt_decrypt_page(page->mapping->host, page,
1236				PAGE_SIZE, 0, page->index);
1237	return err;
1238}
1239#endif
1240
1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242			    loff_t pos, unsigned len, unsigned flags,
1243			    struct page **pagep, void **fsdata)
1244{
1245	struct inode *inode = mapping->host;
1246	int ret, needed_blocks;
1247	handle_t *handle;
1248	int retries = 0;
1249	struct page *page;
1250	pgoff_t index;
1251	unsigned from, to;
1252
1253	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254		return -EIO;
1255
1256	trace_ext4_write_begin(inode, pos, len, flags);
1257	/*
1258	 * Reserve one block more for addition to orphan list in case
1259	 * we allocate blocks but write fails for some reason
1260	 */
1261	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262	index = pos >> PAGE_SHIFT;
1263	from = pos & (PAGE_SIZE - 1);
1264	to = from + len;
1265
1266	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268						    flags, pagep);
1269		if (ret < 0)
1270			return ret;
1271		if (ret == 1)
1272			return 0;
1273	}
1274
1275	/*
1276	 * grab_cache_page_write_begin() can take a long time if the
1277	 * system is thrashing due to memory pressure, or if the page
1278	 * is being written back.  So grab it first before we start
1279	 * the transaction handle.  This also allows us to allocate
1280	 * the page (if needed) without using GFP_NOFS.
1281	 */
1282retry_grab:
1283	page = grab_cache_page_write_begin(mapping, index, flags);
1284	if (!page)
1285		return -ENOMEM;
1286	unlock_page(page);
1287
1288retry_journal:
1289	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290	if (IS_ERR(handle)) {
1291		put_page(page);
1292		return PTR_ERR(handle);
1293	}
1294
1295	lock_page(page);
1296	if (page->mapping != mapping) {
1297		/* The page got truncated from under us */
1298		unlock_page(page);
1299		put_page(page);
1300		ext4_journal_stop(handle);
1301		goto retry_grab;
 
1302	}
1303	/* In case writeback began while the page was unlocked */
1304	wait_for_stable_page(page);
1305
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307	if (ext4_should_dioread_nolock(inode))
1308		ret = ext4_block_write_begin(page, pos, len,
1309					     ext4_get_block_unwritten);
1310	else
1311		ret = ext4_block_write_begin(page, pos, len,
1312					     ext4_get_block);
1313#else
1314	if (ext4_should_dioread_nolock(inode))
1315		ret = __block_write_begin(page, pos, len,
1316					  ext4_get_block_unwritten);
1317	else
1318		ret = __block_write_begin(page, pos, len, ext4_get_block);
1319#endif
1320	if (!ret && ext4_should_journal_data(inode)) {
1321		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322					     from, to, NULL,
1323					     do_journal_get_write_access);
1324	}
1325
1326	if (ret) {
1327		unlock_page(page);
 
1328		/*
1329		 * __block_write_begin may have instantiated a few blocks
1330		 * outside i_size.  Trim these off again. Don't need
1331		 * i_size_read because we hold i_mutex.
1332		 *
1333		 * Add inode to orphan list in case we crash before
1334		 * truncate finishes
1335		 */
1336		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337			ext4_orphan_add(handle, inode);
1338
1339		ext4_journal_stop(handle);
1340		if (pos + len > inode->i_size) {
1341			ext4_truncate_failed_write(inode);
1342			/*
1343			 * If truncate failed early the inode might
1344			 * still be on the orphan list; we need to
1345			 * make sure the inode is removed from the
1346			 * orphan list in that case.
1347			 */
1348			if (inode->i_nlink)
1349				ext4_orphan_del(NULL, inode);
1350		}
 
1351
1352		if (ret == -ENOSPC &&
1353		    ext4_should_retry_alloc(inode->i_sb, &retries))
1354			goto retry_journal;
1355		put_page(page);
1356		return ret;
1357	}
1358	*pagep = page;
1359	return ret;
1360}
1361
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364{
1365	int ret;
1366	if (!buffer_mapped(bh) || buffer_freed(bh))
1367		return 0;
1368	set_buffer_uptodate(bh);
1369	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370	clear_buffer_meta(bh);
1371	clear_buffer_prio(bh);
1372	return ret;
1373}
1374
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383			  struct address_space *mapping,
1384			  loff_t pos, unsigned len, unsigned copied,
1385			  struct page *page, void *fsdata)
1386{
 
 
1387	handle_t *handle = ext4_journal_current_handle();
1388	struct inode *inode = mapping->host;
1389	loff_t old_size = inode->i_size;
1390	int ret = 0, ret2;
1391	int i_size_changed = 0;
1392
1393	trace_ext4_write_end(inode, pos, len, copied);
1394	if (ext4_has_inline_data(inode)) {
1395		ret = ext4_write_inline_data_end(inode, pos, len,
1396						 copied, page);
1397		if (ret < 0) {
1398			unlock_page(page);
1399			put_page(page);
1400			goto errout;
1401		}
1402		copied = ret;
1403	} else
1404		copied = block_write_end(file, mapping, pos,
1405					 len, copied, page, fsdata);
1406	/*
1407	 * it's important to update i_size while still holding page lock:
 
 
 
1408	 * page writeout could otherwise come in and zero beyond i_size.
1409	 */
1410	i_size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
 
 
 
 
 
1411	unlock_page(page);
1412	put_page(page);
1413
1414	if (old_size < pos)
1415		pagecache_isize_extended(inode, old_size, pos);
1416	/*
1417	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418	 * makes the holding time of page lock longer. Second, it forces lock
1419	 * ordering of page lock and transaction start for journaling
1420	 * filesystems.
1421	 */
1422	if (i_size_changed)
1423		ext4_mark_inode_dirty(handle, inode);
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426		/* if we have allocated more blocks and copied
1427		 * less. We will have blocks allocated outside
1428		 * inode->i_size. So truncate them
1429		 */
1430		ext4_orphan_add(handle, inode);
1431errout:
 
 
 
1432	ret2 = ext4_journal_stop(handle);
1433	if (!ret)
1434		ret = ret2;
1435
1436	if (pos + len > inode->i_size) {
1437		ext4_truncate_failed_write(inode);
1438		/*
1439		 * If truncate failed early the inode might still be
1440		 * on the orphan list; we need to make sure the inode
1441		 * is removed from the orphan list in that case.
1442		 */
1443		if (inode->i_nlink)
1444			ext4_orphan_del(NULL, inode);
1445	}
1446
1447	return ret ? ret : copied;
1448}
1449
1450/*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
1455static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456					    struct page *page,
1457					    unsigned from, unsigned to)
1458{
1459	unsigned int block_start = 0, block_end;
1460	struct buffer_head *head, *bh;
1461
1462	bh = head = page_buffers(page);
1463	do {
1464		block_end = block_start + bh->b_size;
1465		if (buffer_new(bh)) {
1466			if (block_end > from && block_start < to) {
1467				if (!PageUptodate(page)) {
1468					unsigned start, size;
1469
1470					start = max(from, block_start);
1471					size = min(to, block_end) - start;
1472
1473					zero_user(page, start, size);
1474					write_end_fn(handle, bh);
1475				}
1476				clear_buffer_new(bh);
1477			}
1478		}
1479		block_start = block_end;
1480		bh = bh->b_this_page;
1481	} while (bh != head);
1482}
1483
1484static int ext4_journalled_write_end(struct file *file,
1485				     struct address_space *mapping,
1486				     loff_t pos, unsigned len, unsigned copied,
1487				     struct page *page, void *fsdata)
1488{
1489	handle_t *handle = ext4_journal_current_handle();
1490	struct inode *inode = mapping->host;
1491	loff_t old_size = inode->i_size;
1492	int ret = 0, ret2;
1493	int partial = 0;
1494	unsigned from, to;
1495	int size_changed = 0;
1496
1497	trace_ext4_journalled_write_end(inode, pos, len, copied);
1498	from = pos & (PAGE_SIZE - 1);
1499	to = from + len;
1500
1501	BUG_ON(!ext4_handle_valid(handle));
1502
1503	if (ext4_has_inline_data(inode)) {
1504		ret = ext4_write_inline_data_end(inode, pos, len,
1505						 copied, page);
1506		if (ret < 0) {
1507			unlock_page(page);
1508			put_page(page);
1509			goto errout;
1510		}
1511		copied = ret;
1512	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1513		copied = 0;
1514		ext4_journalled_zero_new_buffers(handle, page, from, to);
1515	} else {
1516		if (unlikely(copied < len))
1517			ext4_journalled_zero_new_buffers(handle, page,
1518							 from + copied, to);
1519		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520					     from + copied, &partial,
1521					     write_end_fn);
1522		if (!partial)
1523			SetPageUptodate(page);
1524	}
1525	size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
1526	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528	unlock_page(page);
1529	put_page(page);
1530
1531	if (old_size < pos)
1532		pagecache_isize_extended(inode, old_size, pos);
1533
1534	if (size_changed) {
1535		ret2 = ext4_mark_inode_dirty(handle, inode);
1536		if (!ret)
1537			ret = ret2;
1538	}
1539
 
 
1540	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541		/* if we have allocated more blocks and copied
1542		 * less. We will have blocks allocated outside
1543		 * inode->i_size. So truncate them
1544		 */
1545		ext4_orphan_add(handle, inode);
1546
1547errout:
1548	ret2 = ext4_journal_stop(handle);
1549	if (!ret)
1550		ret = ret2;
1551	if (pos + len > inode->i_size) {
1552		ext4_truncate_failed_write(inode);
1553		/*
1554		 * If truncate failed early the inode might still be
1555		 * on the orphan list; we need to make sure the inode
1556		 * is removed from the orphan list in that case.
1557		 */
1558		if (inode->i_nlink)
1559			ext4_orphan_del(NULL, inode);
1560	}
1561
1562	return ret ? ret : copied;
1563}
1564
1565/*
1566 * Reserve space for a single cluster
1567 */
1568static int ext4_da_reserve_space(struct inode *inode)
1569{
 
1570	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571	struct ext4_inode_info *ei = EXT4_I(inode);
 
1572	int ret;
 
 
1573
1574	/*
1575	 * We will charge metadata quota at writeout time; this saves
1576	 * us from metadata over-estimation, though we may go over by
1577	 * a small amount in the end.  Here we just reserve for data.
1578	 */
1579	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580	if (ret)
1581		return ret;
1582
 
 
 
 
 
 
1583	spin_lock(&ei->i_block_reservation_lock);
1584	if (ext4_claim_free_clusters(sbi, 1, 0)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585		spin_unlock(&ei->i_block_reservation_lock);
 
 
 
 
1586		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587		return -ENOSPC;
1588	}
1589	ei->i_reserved_data_blocks++;
1590	trace_ext4_da_reserve_space(inode);
1591	spin_unlock(&ei->i_block_reservation_lock);
1592
1593	return 0;       /* success */
1594}
1595
1596static void ext4_da_release_space(struct inode *inode, int to_free)
1597{
1598	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599	struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601	if (!to_free)
1602		return;		/* Nothing to release, exit */
1603
1604	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606	trace_ext4_da_release_space(inode, to_free);
1607	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608		/*
1609		 * if there aren't enough reserved blocks, then the
1610		 * counter is messed up somewhere.  Since this
1611		 * function is called from invalidate page, it's
1612		 * harmless to return without any action.
1613		 */
1614		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615			 "ino %lu, to_free %d with only %d reserved "
1616			 "data blocks", inode->i_ino, to_free,
1617			 ei->i_reserved_data_blocks);
1618		WARN_ON(1);
1619		to_free = ei->i_reserved_data_blocks;
1620	}
1621	ei->i_reserved_data_blocks -= to_free;
1622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623	/* update fs dirty data blocks counter */
1624	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629}
1630
1631static void ext4_da_page_release_reservation(struct page *page,
1632					     unsigned int offset,
1633					     unsigned int length)
1634{
1635	int to_release = 0, contiguous_blks = 0;
1636	struct buffer_head *head, *bh;
1637	unsigned int curr_off = 0;
1638	struct inode *inode = page->mapping->host;
1639	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640	unsigned int stop = offset + length;
1641	int num_clusters;
1642	ext4_fsblk_t lblk;
1643
1644	BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646	head = page_buffers(page);
1647	bh = head;
1648	do {
1649		unsigned int next_off = curr_off + bh->b_size;
1650
1651		if (next_off > stop)
1652			break;
1653
1654		if ((offset <= curr_off) && (buffer_delay(bh))) {
1655			to_release++;
1656			contiguous_blks++;
1657			clear_buffer_delay(bh);
1658		} else if (contiguous_blks) {
1659			lblk = page->index <<
1660			       (PAGE_SHIFT - inode->i_blkbits);
1661			lblk += (curr_off >> inode->i_blkbits) -
1662				contiguous_blks;
1663			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664			contiguous_blks = 0;
1665		}
1666		curr_off = next_off;
1667	} while ((bh = bh->b_this_page) != head);
1668
1669	if (contiguous_blks) {
1670		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673	}
1674
1675	/* If we have released all the blocks belonging to a cluster, then we
1676	 * need to release the reserved space for that cluster. */
1677	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678	while (num_clusters > 0) {
1679		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
 
1680			((num_clusters - 1) << sbi->s_cluster_bits);
1681		if (sbi->s_cluster_ratio == 1 ||
1682		    !ext4_find_delalloc_cluster(inode, lblk))
1683			ext4_da_release_space(inode, 1);
1684
1685		num_clusters--;
1686	}
1687}
1688
1689/*
1690 * Delayed allocation stuff
1691 */
1692
1693struct mpage_da_data {
1694	struct inode *inode;
1695	struct writeback_control *wbc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696
1697	pgoff_t first_page;	/* The first page to write */
1698	pgoff_t next_page;	/* Current page to examine */
1699	pgoff_t last_page;	/* Last page to examine */
1700	/*
1701	 * Extent to map - this can be after first_page because that can be
1702	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703	 * is delalloc or unwritten.
1704	 */
1705	struct ext4_map_blocks map;
1706	struct ext4_io_submit io_submit;	/* IO submission data */
1707	unsigned int do_map:1;
1708};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709
1710static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711				       bool invalidate)
1712{
1713	int nr_pages, i;
1714	pgoff_t index, end;
1715	struct pagevec pvec;
1716	struct inode *inode = mpd->inode;
1717	struct address_space *mapping = inode->i_mapping;
1718
1719	/* This is necessary when next_page == 0. */
1720	if (mpd->first_page >= mpd->next_page)
1721		return;
1722
1723	index = mpd->first_page;
1724	end   = mpd->next_page - 1;
1725	if (invalidate) {
1726		ext4_lblk_t start, last;
1727		start = index << (PAGE_SHIFT - inode->i_blkbits);
1728		last = end << (PAGE_SHIFT - inode->i_blkbits);
1729		ext4_es_remove_extent(inode, start, last - start + 1);
1730	}
1731
1732	pagevec_init(&pvec);
1733	while (index <= end) {
1734		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735		if (nr_pages == 0)
1736			break;
1737		for (i = 0; i < nr_pages; i++) {
1738			struct page *page = pvec.pages[i];
1739
 
1740			BUG_ON(!PageLocked(page));
1741			BUG_ON(PageWriteback(page));
1742			if (invalidate) {
1743				if (page_mapped(page))
1744					clear_page_dirty_for_io(page);
1745				block_invalidatepage(page, 0, PAGE_SIZE);
1746				ClearPageUptodate(page);
1747			}
1748			unlock_page(page);
1749		}
 
1750		pagevec_release(&pvec);
1751	}
 
1752}
1753
1754static void ext4_print_free_blocks(struct inode *inode)
1755{
1756	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757	struct super_block *sb = inode->i_sb;
1758	struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761	       EXT4_C2B(EXT4_SB(inode->i_sb),
1762			ext4_count_free_clusters(sb)));
1763	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765	       (long long) EXT4_C2B(EXT4_SB(sb),
1766		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768	       (long long) EXT4_C2B(EXT4_SB(sb),
1769		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772		 ei->i_reserved_data_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773	return;
1774}
1775
1776static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777{
1778	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779}
1780
1781/*
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
1786 */
1787static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788			      struct ext4_map_blocks *map,
1789			      struct buffer_head *bh)
1790{
1791	struct extent_status es;
1792	int retval;
1793	sector_t invalid_block = ~((sector_t) 0xffff);
1794#ifdef ES_AGGRESSIVE_TEST
1795	struct ext4_map_blocks orig_map;
1796
1797	memcpy(&orig_map, map, sizeof(*map));
1798#endif
1799
1800	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801		invalid_block = ~0;
1802
1803	map->m_flags = 0;
1804	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805		  "logical block %lu\n", inode->i_ino, map->m_len,
1806		  (unsigned long) map->m_lblk);
1807
1808	/* Lookup extent status tree firstly */
1809	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810		if (ext4_es_is_hole(&es)) {
1811			retval = 0;
1812			down_read(&EXT4_I(inode)->i_data_sem);
1813			goto add_delayed;
1814		}
1815
1816		/*
1817		 * Delayed extent could be allocated by fallocate.
1818		 * So we need to check it.
1819		 */
1820		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821			map_bh(bh, inode->i_sb, invalid_block);
1822			set_buffer_new(bh);
1823			set_buffer_delay(bh);
1824			return 0;
1825		}
1826
1827		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828		retval = es.es_len - (iblock - es.es_lblk);
1829		if (retval > map->m_len)
1830			retval = map->m_len;
1831		map->m_len = retval;
1832		if (ext4_es_is_written(&es))
1833			map->m_flags |= EXT4_MAP_MAPPED;
1834		else if (ext4_es_is_unwritten(&es))
1835			map->m_flags |= EXT4_MAP_UNWRITTEN;
1836		else
1837			BUG_ON(1);
1838
1839#ifdef ES_AGGRESSIVE_TEST
1840		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841#endif
1842		return retval;
1843	}
1844
1845	/*
1846	 * Try to see if we can get the block without requesting a new
1847	 * file system block.
1848	 */
1849	down_read(&EXT4_I(inode)->i_data_sem);
1850	if (ext4_has_inline_data(inode))
1851		retval = 0;
1852	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854	else
1855		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856
1857add_delayed:
1858	if (retval == 0) {
1859		int ret;
1860		/*
1861		 * XXX: __block_prepare_write() unmaps passed block,
1862		 * is it OK?
1863		 */
1864		/*
1865		 * If the block was allocated from previously allocated cluster,
1866		 * then we don't need to reserve it again. However we still need
1867		 * to reserve metadata for every block we're going to write.
1868		 */
1869		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871			ret = ext4_da_reserve_space(inode);
1872			if (ret) {
1873				/* not enough space to reserve */
1874				retval = ret;
1875				goto out_unlock;
1876			}
1877		}
1878
1879		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880					    ~0, EXTENT_STATUS_DELAYED);
1881		if (ret) {
1882			retval = ret;
1883			goto out_unlock;
1884		}
1885
1886		map_bh(bh, inode->i_sb, invalid_block);
1887		set_buffer_new(bh);
1888		set_buffer_delay(bh);
1889	} else if (retval > 0) {
1890		int ret;
1891		unsigned int status;
1892
1893		if (unlikely(retval != map->m_len)) {
1894			ext4_warning(inode->i_sb,
1895				     "ES len assertion failed for inode "
1896				     "%lu: retval %d != map->m_len %d",
1897				     inode->i_ino, retval, map->m_len);
1898			WARN_ON(1);
1899		}
1900
1901		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904					    map->m_pblk, status);
1905		if (ret != 0)
1906			retval = ret;
1907	}
1908
1909out_unlock:
1910	up_read((&EXT4_I(inode)->i_data_sem));
1911
1912	return retval;
1913}
1914
1915/*
1916 * This is a special get_block_t callback which is used by
1917 * ext4_da_write_begin().  It will either return mapped block or
1918 * reserve space for a single block.
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
1926 */
1927int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928			   struct buffer_head *bh, int create)
1929{
1930	struct ext4_map_blocks map;
1931	int ret = 0;
1932
1933	BUG_ON(create == 0);
1934	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936	map.m_lblk = iblock;
1937	map.m_len = 1;
1938
1939	/*
1940	 * first, we need to know whether the block is allocated already
1941	 * preallocated blocks are unmapped but should treated
1942	 * the same as allocated blocks.
1943	 */
1944	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945	if (ret <= 0)
1946		return ret;
1947
1948	map_bh(bh, inode->i_sb, map.m_pblk);
1949	ext4_update_bh_state(bh, map.m_flags);
1950
1951	if (buffer_unwritten(bh)) {
1952		/* A delayed write to unwritten bh should be marked
1953		 * new and mapped.  Mapped ensures that we don't do
1954		 * get_block multiple times when we write to the same
1955		 * offset and new ensures that we do proper zero out
1956		 * for partial write.
1957		 */
1958		set_buffer_new(bh);
1959		set_buffer_mapped(bh);
1960	}
1961	return 0;
1962}
1963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964static int bget_one(handle_t *handle, struct buffer_head *bh)
1965{
1966	get_bh(bh);
1967	return 0;
1968}
1969
1970static int bput_one(handle_t *handle, struct buffer_head *bh)
1971{
1972	put_bh(bh);
1973	return 0;
1974}
1975
1976static int __ext4_journalled_writepage(struct page *page,
1977				       unsigned int len)
1978{
1979	struct address_space *mapping = page->mapping;
1980	struct inode *inode = mapping->host;
1981	struct buffer_head *page_bufs = NULL;
1982	handle_t *handle = NULL;
1983	int ret = 0, err = 0;
1984	int inline_data = ext4_has_inline_data(inode);
1985	struct buffer_head *inode_bh = NULL;
1986
1987	ClearPageChecked(page);
1988
1989	if (inline_data) {
1990		BUG_ON(page->index != 0);
1991		BUG_ON(len > ext4_get_max_inline_size(inode));
1992		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993		if (inode_bh == NULL)
1994			goto out;
1995	} else {
1996		page_bufs = page_buffers(page);
1997		if (!page_bufs) {
1998			BUG();
1999			goto out;
2000		}
2001		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002				       NULL, bget_one);
2003	}
2004	/*
2005	 * We need to release the page lock before we start the
2006	 * journal, so grab a reference so the page won't disappear
2007	 * out from under us.
2008	 */
2009	get_page(page);
2010	unlock_page(page);
2011
2012	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013				    ext4_writepage_trans_blocks(inode));
2014	if (IS_ERR(handle)) {
2015		ret = PTR_ERR(handle);
2016		put_page(page);
2017		goto out_no_pagelock;
2018	}
2019	BUG_ON(!ext4_handle_valid(handle));
2020
2021	lock_page(page);
2022	put_page(page);
2023	if (page->mapping != mapping) {
2024		/* The page got truncated from under us */
2025		ext4_journal_stop(handle);
2026		ret = 0;
2027		goto out;
2028	}
2029
2030	if (inline_data) {
2031		BUFFER_TRACE(inode_bh, "get write access");
2032		ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
 
2035
2036	} else {
2037		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038					     do_journal_get_write_access);
2039
2040		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041					     write_end_fn);
2042	}
2043	if (ret == 0)
2044		ret = err;
2045	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046	err = ext4_journal_stop(handle);
2047	if (!ret)
2048		ret = err;
2049
2050	if (!ext4_has_inline_data(inode))
2051		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052				       NULL, bput_one);
2053	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054out:
2055	unlock_page(page);
2056out_no_pagelock:
2057	brelse(inode_bh);
2058	return ret;
2059}
2060
 
 
 
2061/*
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
2066 * we are writing back data modified via mmap(), no one guarantees in which
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
2071 * This function can get called via...
2072 *   - ext4_writepages after taking page lock (have journal handle)
2073 *   - journal_submit_inode_data_buffers (no journal handle)
2074 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075 *   - grab_page_cache when doing write_begin (have journal handle)
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 *		ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101 */
2102static int ext4_writepage(struct page *page,
2103			  struct writeback_control *wbc)
2104{
2105	int ret = 0;
2106	loff_t size;
2107	unsigned int len;
2108	struct buffer_head *page_bufs = NULL;
2109	struct inode *inode = page->mapping->host;
2110	struct ext4_io_submit io_submit;
2111	bool keep_towrite = false;
2112
2113	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114		ext4_invalidatepage(page, 0, PAGE_SIZE);
2115		unlock_page(page);
2116		return -EIO;
2117	}
2118
2119	trace_ext4_writepage(page);
2120	size = i_size_read(inode);
2121	if (page->index == size >> PAGE_SHIFT)
2122		len = size & ~PAGE_MASK;
2123	else
2124		len = PAGE_SIZE;
2125
2126	page_bufs = page_buffers(page);
2127	/*
2128	 * We cannot do block allocation or other extent handling in this
2129	 * function. If there are buffers needing that, we have to redirty
2130	 * the page. But we may reach here when we do a journal commit via
2131	 * journal_submit_inode_data_buffers() and in that case we must write
2132	 * allocated buffers to achieve data=ordered mode guarantees.
2133	 *
2134	 * Also, if there is only one buffer per page (the fs block
2135	 * size == the page size), if one buffer needs block
2136	 * allocation or needs to modify the extent tree to clear the
2137	 * unwritten flag, we know that the page can't be written at
2138	 * all, so we might as well refuse the write immediately.
2139	 * Unfortunately if the block size != page size, we can't as
2140	 * easily detect this case using ext4_walk_page_buffers(), but
2141	 * for the extremely common case, this is an optimization that
2142	 * skips a useless round trip through ext4_bio_write_page().
2143	 */
2144	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145				   ext4_bh_delay_or_unwritten)) {
2146		redirty_page_for_writepage(wbc, page);
2147		if ((current->flags & PF_MEMALLOC) ||
2148		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149			/*
2150			 * For memory cleaning there's no point in writing only
2151			 * some buffers. So just bail out. Warn if we came here
2152			 * from direct reclaim.
2153			 */
2154			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155							== PF_MEMALLOC);
2156			unlock_page(page);
2157			return 0;
2158		}
2159		keep_towrite = true;
2160	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161
2162	if (PageChecked(page) && ext4_should_journal_data(inode))
2163		/*
2164		 * It's mmapped pagecache.  Add buffers and journal it.  There
2165		 * doesn't seem much point in redirtying the page here.
2166		 */
2167		return __ext4_journalled_writepage(page, len);
2168
2169	ext4_io_submit_init(&io_submit, wbc);
2170	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171	if (!io_submit.io_end) {
2172		redirty_page_for_writepage(wbc, page);
2173		unlock_page(page);
2174		return -ENOMEM;
2175	}
2176	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177	ext4_io_submit(&io_submit);
2178	/* Drop io_end reference we got from init */
2179	ext4_put_io_end_defer(io_submit.io_end);
2180	return ret;
2181}
2182
2183static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184{
2185	int len;
2186	loff_t size;
2187	int err;
2188
2189	BUG_ON(page->index != mpd->first_page);
2190	clear_page_dirty_for_io(page);
2191	/*
2192	 * We have to be very careful here!  Nothing protects writeback path
2193	 * against i_size changes and the page can be writeably mapped into
2194	 * page tables. So an application can be growing i_size and writing
2195	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196	 * write-protects our page in page tables and the page cannot get
2197	 * written to again until we release page lock. So only after
2198	 * clear_page_dirty_for_io() we are safe to sample i_size for
2199	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200	 * on the barrier provided by TestClearPageDirty in
2201	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202	 * after page tables are updated.
2203	 */
2204	size = i_size_read(mpd->inode);
2205	if (page->index == size >> PAGE_SHIFT)
2206		len = size & ~PAGE_MASK;
2207	else
2208		len = PAGE_SIZE;
2209	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210	if (!err)
2211		mpd->wbc->nr_to_write--;
2212	mpd->first_page++;
2213
2214	return err;
2215}
2216
2217#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219/*
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222 * The rest of mballoc seems to handle chunks up to full group size.
 
 
2223 */
2224#define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226/*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
2231 * @bh - buffer head we want to add to the extent
2232 *
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
2239 */
2240static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241				   struct buffer_head *bh)
2242{
2243	struct ext4_map_blocks *map = &mpd->map;
2244
2245	/* Buffer that doesn't need mapping for writeback? */
2246	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248		/* So far no extent to map => we write the buffer right away */
2249		if (map->m_len == 0)
2250			return true;
2251		return false;
2252	}
2253
2254	/* First block in the extent? */
2255	if (map->m_len == 0) {
2256		/* We cannot map unless handle is started... */
2257		if (!mpd->do_map)
2258			return false;
2259		map->m_lblk = lblk;
2260		map->m_len = 1;
2261		map->m_flags = bh->b_state & BH_FLAGS;
2262		return true;
2263	}
2264
2265	/* Don't go larger than mballoc is willing to allocate */
2266	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267		return false;
2268
2269	/* Can we merge the block to our big extent? */
2270	if (lblk == map->m_lblk + map->m_len &&
2271	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2272		map->m_len++;
2273		return true;
2274	}
2275	return false;
2276}
2277
2278/*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295				   struct buffer_head *head,
2296				   struct buffer_head *bh,
2297				   ext4_lblk_t lblk)
2298{
2299	struct inode *inode = mpd->inode;
2300	int err;
2301	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302							>> inode->i_blkbits;
2303
2304	do {
2305		BUG_ON(buffer_locked(bh));
2306
2307		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308			/* Found extent to map? */
2309			if (mpd->map.m_len)
2310				return 0;
2311			/* Buffer needs mapping and handle is not started? */
2312			if (!mpd->do_map)
2313				return 0;
2314			/* Everything mapped so far and we hit EOF */
2315			break;
2316		}
2317	} while (lblk++, (bh = bh->b_this_page) != head);
2318	/* So far everything mapped? Submit the page for IO. */
2319	if (mpd->map.m_len == 0) {
2320		err = mpage_submit_page(mpd, head->b_page);
2321		if (err < 0)
2322			return err;
2323	}
2324	return lblk < blocks;
2325}
2326
2327/*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 *		       submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342{
2343	struct pagevec pvec;
2344	int nr_pages, i;
2345	struct inode *inode = mpd->inode;
2346	struct buffer_head *head, *bh;
2347	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348	pgoff_t start, end;
2349	ext4_lblk_t lblk;
2350	sector_t pblock;
2351	int err;
2352
2353	start = mpd->map.m_lblk >> bpp_bits;
2354	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355	lblk = start << bpp_bits;
2356	pblock = mpd->map.m_pblk;
2357
2358	pagevec_init(&pvec);
2359	while (start <= end) {
2360		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361						&start, end);
2362		if (nr_pages == 0)
2363			break;
2364		for (i = 0; i < nr_pages; i++) {
2365			struct page *page = pvec.pages[i];
2366
2367			bh = head = page_buffers(page);
2368			do {
2369				if (lblk < mpd->map.m_lblk)
2370					continue;
2371				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372					/*
2373					 * Buffer after end of mapped extent.
2374					 * Find next buffer in the page to map.
2375					 */
2376					mpd->map.m_len = 0;
2377					mpd->map.m_flags = 0;
2378					/*
2379					 * FIXME: If dioread_nolock supports
2380					 * blocksize < pagesize, we need to make
2381					 * sure we add size mapped so far to
2382					 * io_end->size as the following call
2383					 * can submit the page for IO.
2384					 */
2385					err = mpage_process_page_bufs(mpd, head,
2386								      bh, lblk);
2387					pagevec_release(&pvec);
2388					if (err > 0)
2389						err = 0;
2390					return err;
2391				}
2392				if (buffer_delay(bh)) {
2393					clear_buffer_delay(bh);
2394					bh->b_blocknr = pblock++;
2395				}
2396				clear_buffer_unwritten(bh);
2397			} while (lblk++, (bh = bh->b_this_page) != head);
2398
2399			/*
2400			 * FIXME: This is going to break if dioread_nolock
2401			 * supports blocksize < pagesize as we will try to
2402			 * convert potentially unmapped parts of inode.
2403			 */
2404			mpd->io_submit.io_end->size += PAGE_SIZE;
2405			/* Page fully mapped - let IO run! */
2406			err = mpage_submit_page(mpd, page);
2407			if (err < 0) {
2408				pagevec_release(&pvec);
2409				return err;
2410			}
2411		}
2412		pagevec_release(&pvec);
2413	}
2414	/* Extent fully mapped and matches with page boundary. We are done. */
2415	mpd->map.m_len = 0;
2416	mpd->map.m_flags = 0;
2417	return 0;
2418}
2419
2420static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421{
2422	struct inode *inode = mpd->inode;
2423	struct ext4_map_blocks *map = &mpd->map;
2424	int get_blocks_flags;
2425	int err, dioread_nolock;
2426
2427	trace_ext4_da_write_pages_extent(inode, map);
2428	/*
2429	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430	 * to convert an unwritten extent to be initialized (in the case
2431	 * where we have written into one or more preallocated blocks).  It is
2432	 * possible that we're going to need more metadata blocks than
2433	 * previously reserved. However we must not fail because we're in
2434	 * writeback and there is nothing we can do about it so it might result
2435	 * in data loss.  So use reserved blocks to allocate metadata if
2436	 * possible.
2437	 *
2438	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439	 * the blocks in question are delalloc blocks.  This indicates
2440	 * that the blocks and quotas has already been checked when
2441	 * the data was copied into the page cache.
2442	 */
2443	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445			   EXT4_GET_BLOCKS_IO_SUBMIT;
2446	dioread_nolock = ext4_should_dioread_nolock(inode);
2447	if (dioread_nolock)
2448		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449	if (map->m_flags & (1 << BH_Delay))
2450		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453	if (err < 0)
2454		return err;
2455	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456		if (!mpd->io_submit.io_end->handle &&
2457		    ext4_handle_valid(handle)) {
2458			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459			handle->h_rsv_handle = NULL;
2460		}
2461		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462	}
2463
2464	BUG_ON(map->m_len == 0);
2465	if (map->m_flags & EXT4_MAP_NEW) {
2466		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467				   map->m_len);
2468	}
2469	return 0;
2470}
2471
2472/*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 *				 mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 *                     is no hope of writing the data. The caller should discard
2480 *                     dirty pages to avoid infinite loops.
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492static int mpage_map_and_submit_extent(handle_t *handle,
2493				       struct mpage_da_data *mpd,
2494				       bool *give_up_on_write)
2495{
2496	struct inode *inode = mpd->inode;
2497	struct ext4_map_blocks *map = &mpd->map;
2498	int err;
2499	loff_t disksize;
2500	int progress = 0;
2501
2502	mpd->io_submit.io_end->offset =
2503				((loff_t)map->m_lblk) << inode->i_blkbits;
2504	do {
2505		err = mpage_map_one_extent(handle, mpd);
2506		if (err < 0) {
2507			struct super_block *sb = inode->i_sb;
2508
2509			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511				goto invalidate_dirty_pages;
2512			/*
2513			 * Let the uper layers retry transient errors.
2514			 * In the case of ENOSPC, if ext4_count_free_blocks()
2515			 * is non-zero, a commit should free up blocks.
2516			 */
2517			if ((err == -ENOMEM) ||
2518			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519				if (progress)
2520					goto update_disksize;
2521				return err;
2522			}
2523			ext4_msg(sb, KERN_CRIT,
2524				 "Delayed block allocation failed for "
2525				 "inode %lu at logical offset %llu with"
2526				 " max blocks %u with error %d",
2527				 inode->i_ino,
2528				 (unsigned long long)map->m_lblk,
2529				 (unsigned)map->m_len, -err);
2530			ext4_msg(sb, KERN_CRIT,
2531				 "This should not happen!! Data will "
2532				 "be lost\n");
2533			if (err == -ENOSPC)
2534				ext4_print_free_blocks(inode);
2535		invalidate_dirty_pages:
2536			*give_up_on_write = true;
2537			return err;
2538		}
2539		progress = 1;
2540		/*
2541		 * Update buffer state, submit mapped pages, and get us new
2542		 * extent to map
2543		 */
2544		err = mpage_map_and_submit_buffers(mpd);
2545		if (err < 0)
2546			goto update_disksize;
2547	} while (map->m_len);
2548
2549update_disksize:
2550	/*
2551	 * Update on-disk size after IO is submitted.  Races with
2552	 * truncate are avoided by checking i_size under i_data_sem.
2553	 */
2554	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555	if (disksize > EXT4_I(inode)->i_disksize) {
2556		int err2;
2557		loff_t i_size;
2558
2559		down_write(&EXT4_I(inode)->i_data_sem);
2560		i_size = i_size_read(inode);
2561		if (disksize > i_size)
2562			disksize = i_size;
2563		if (disksize > EXT4_I(inode)->i_disksize)
2564			EXT4_I(inode)->i_disksize = disksize;
2565		up_write(&EXT4_I(inode)->i_data_sem);
2566		err2 = ext4_mark_inode_dirty(handle, inode);
2567		if (err2)
2568			ext4_error(inode->i_sb,
2569				   "Failed to mark inode %lu dirty",
2570				   inode->i_ino);
2571		if (!err)
2572			err = err2;
2573	}
2574	return err;
2575}
2576
2577/*
2578 * Calculate the total number of credits to reserve for one writepages
2579 * iteration. This is called from ext4_writepages(). We map an extent of
2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
2584static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585{
2586	int bpp = ext4_journal_blocks_per_page(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587
2588	return ext4_meta_trans_blocks(inode,
2589				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590}
2591
2592/*
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 * 				 and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
2609 */
2610static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611{
2612	struct address_space *mapping = mpd->inode->i_mapping;
2613	struct pagevec pvec;
2614	unsigned int nr_pages;
2615	long left = mpd->wbc->nr_to_write;
2616	pgoff_t index = mpd->first_page;
2617	pgoff_t end = mpd->last_page;
2618	int tag;
2619	int i, err = 0;
2620	int blkbits = mpd->inode->i_blkbits;
2621	ext4_lblk_t lblk;
2622	struct buffer_head *head;
2623
2624	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625		tag = PAGECACHE_TAG_TOWRITE;
2626	else
2627		tag = PAGECACHE_TAG_DIRTY;
2628
2629	pagevec_init(&pvec);
2630	mpd->map.m_len = 0;
2631	mpd->next_page = index;
2632	while (index <= end) {
2633		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634				tag);
2635		if (nr_pages == 0)
2636			goto out;
2637
2638		for (i = 0; i < nr_pages; i++) {
2639			struct page *page = pvec.pages[i];
2640
2641			/*
2642			 * Accumulated enough dirty pages? This doesn't apply
2643			 * to WB_SYNC_ALL mode. For integrity sync we have to
2644			 * keep going because someone may be concurrently
2645			 * dirtying pages, and we might have synced a lot of
2646			 * newly appeared dirty pages, but have not synced all
2647			 * of the old dirty pages.
2648			 */
2649			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650				goto out;
2651
2652			/* If we can't merge this page, we are done. */
2653			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654				goto out;
 
 
 
 
 
 
 
 
2655
2656			lock_page(page);
 
2657			/*
2658			 * If the page is no longer dirty, or its mapping no
2659			 * longer corresponds to inode we are writing (which
2660			 * means it has been truncated or invalidated), or the
2661			 * page is already under writeback and we are not doing
2662			 * a data integrity writeback, skip the page
 
2663			 */
2664			if (!PageDirty(page) ||
2665			    (PageWriteback(page) &&
2666			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667			    unlikely(page->mapping != mapping)) {
2668				unlock_page(page);
2669				continue;
2670			}
2671
2672			wait_on_page_writeback(page);
2673			BUG_ON(PageWriteback(page));
2674
2675			if (mpd->map.m_len == 0)
2676				mpd->first_page = page->index;
2677			mpd->next_page = page->index + 1;
2678			/* Add all dirty buffers to mpd */
2679			lblk = ((ext4_lblk_t)page->index) <<
2680				(PAGE_SHIFT - blkbits);
2681			head = page_buffers(page);
2682			err = mpage_process_page_bufs(mpd, head, head, lblk);
2683			if (err <= 0)
2684				goto out;
2685			err = 0;
2686			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687		}
2688		pagevec_release(&pvec);
2689		cond_resched();
2690	}
2691	return 0;
 
 
2692out:
2693	pagevec_release(&pvec);
2694	return err;
 
2695}
2696
2697static int ext4_writepages(struct address_space *mapping,
2698			   struct writeback_control *wbc)
 
2699{
2700	pgoff_t	writeback_index = 0;
2701	long nr_to_write = wbc->nr_to_write;
2702	int range_whole = 0;
2703	int cycled = 1;
2704	handle_t *handle = NULL;
2705	struct mpage_da_data mpd;
2706	struct inode *inode = mapping->host;
2707	int needed_blocks, rsv_blocks = 0, ret = 0;
 
 
 
 
 
2708	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709	bool done;
 
2710	struct blk_plug plug;
2711	bool give_up_on_write = false;
2712
2713	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714		return -EIO;
2715
2716	percpu_down_read(&sbi->s_journal_flag_rwsem);
2717	trace_ext4_writepages(inode, wbc);
2718
2719	/*
2720	 * No pages to write? This is mainly a kludge to avoid starting
2721	 * a transaction for special inodes like journal inode on last iput()
2722	 * because that could violate lock ordering on umount
2723	 */
2724	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2725		goto out_writepages;
2726
2727	if (ext4_should_journal_data(inode)) {
2728		ret = generic_writepages(mapping, wbc);
2729		goto out_writepages;
2730	}
2731
2732	/*
2733	 * If the filesystem has aborted, it is read-only, so return
2734	 * right away instead of dumping stack traces later on that
2735	 * will obscure the real source of the problem.  We test
2736	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2737	 * the latter could be true if the filesystem is mounted
2738	 * read-only, and in that case, ext4_writepages should
2739	 * *never* be called, so if that ever happens, we would want
2740	 * the stack trace.
2741	 */
2742	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2744		ret = -EROFS;
2745		goto out_writepages;
2746	}
2747
2748	if (ext4_should_dioread_nolock(inode)) {
2749		/*
2750		 * We may need to convert up to one extent per block in
2751		 * the page and we may dirty the inode.
2752		 */
2753		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2754	}
2755
2756	/*
2757	 * If we have inline data and arrive here, it means that
2758	 * we will soon create the block for the 1st page, so
2759	 * we'd better clear the inline data here.
2760	 */
2761	if (ext4_has_inline_data(inode)) {
2762		/* Just inode will be modified... */
2763		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764		if (IS_ERR(handle)) {
2765			ret = PTR_ERR(handle);
2766			goto out_writepages;
2767		}
2768		BUG_ON(ext4_test_inode_state(inode,
2769				EXT4_STATE_MAY_INLINE_DATA));
2770		ext4_destroy_inline_data(handle, inode);
2771		ext4_journal_stop(handle);
2772	}
2773
2774	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775		range_whole = 1;
2776
 
2777	if (wbc->range_cyclic) {
2778		writeback_index = mapping->writeback_index;
2779		if (writeback_index)
2780			cycled = 0;
2781		mpd.first_page = writeback_index;
2782		mpd.last_page = -1;
 
 
2783	} else {
2784		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2786	}
2787
2788	mpd.inode = inode;
2789	mpd.wbc = wbc;
2790	ext4_io_submit_init(&mpd.io_submit, wbc);
2791retry:
2792	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794	done = false;
2795	blk_start_plug(&plug);
2796
2797	/*
2798	 * First writeback pages that don't need mapping - we can avoid
2799	 * starting a transaction unnecessarily and also avoid being blocked
2800	 * in the block layer on device congestion while having transaction
2801	 * started.
2802	 */
2803	mpd.do_map = 0;
2804	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805	if (!mpd.io_submit.io_end) {
2806		ret = -ENOMEM;
2807		goto unplug;
2808	}
2809	ret = mpage_prepare_extent_to_map(&mpd);
2810	/* Submit prepared bio */
2811	ext4_io_submit(&mpd.io_submit);
2812	ext4_put_io_end_defer(mpd.io_submit.io_end);
2813	mpd.io_submit.io_end = NULL;
2814	/* Unlock pages we didn't use */
2815	mpage_release_unused_pages(&mpd, false);
2816	if (ret < 0)
2817		goto unplug;
2818
2819	while (!done && mpd.first_page <= mpd.last_page) {
2820		/* For each extent of pages we use new io_end */
2821		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822		if (!mpd.io_submit.io_end) {
2823			ret = -ENOMEM;
2824			break;
2825		}
2826
2827		/*
2828		 * We have two constraints: We find one extent to map and we
2829		 * must always write out whole page (makes a difference when
2830		 * blocksize < pagesize) so that we don't block on IO when we
2831		 * try to write out the rest of the page. Journalled mode is
2832		 * not supported by delalloc.
2833		 */
2834		BUG_ON(ext4_should_journal_data(inode));
2835		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837		/* start a new transaction */
2838		handle = ext4_journal_start_with_reserve(inode,
2839				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840		if (IS_ERR(handle)) {
2841			ret = PTR_ERR(handle);
2842			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843			       "%ld pages, ino %lu; err %d", __func__,
2844				wbc->nr_to_write, inode->i_ino, ret);
2845			/* Release allocated io_end */
2846			ext4_put_io_end(mpd.io_submit.io_end);
2847			mpd.io_submit.io_end = NULL;
2848			break;
2849		}
2850		mpd.do_map = 1;
2851
2852		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853		ret = mpage_prepare_extent_to_map(&mpd);
2854		if (!ret) {
2855			if (mpd.map.m_len)
2856				ret = mpage_map_and_submit_extent(handle, &mpd,
2857					&give_up_on_write);
2858			else {
2859				/*
2860				 * We scanned the whole range (or exhausted
2861				 * nr_to_write), submitted what was mapped and
2862				 * didn't find anything needing mapping. We are
2863				 * done.
2864				 */
2865				done = true;
2866			}
2867		}
2868		/*
2869		 * Caution: If the handle is synchronous,
2870		 * ext4_journal_stop() can wait for transaction commit
2871		 * to finish which may depend on writeback of pages to
2872		 * complete or on page lock to be released.  In that
2873		 * case, we have to wait until after after we have
2874		 * submitted all the IO, released page locks we hold,
2875		 * and dropped io_end reference (for extent conversion
2876		 * to be able to complete) before stopping the handle.
2877		 */
2878		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879			ext4_journal_stop(handle);
2880			handle = NULL;
2881			mpd.do_map = 0;
2882		}
2883		/* Submit prepared bio */
2884		ext4_io_submit(&mpd.io_submit);
2885		/* Unlock pages we didn't use */
2886		mpage_release_unused_pages(&mpd, give_up_on_write);
2887		/*
2888		 * Drop our io_end reference we got from init. We have
2889		 * to be careful and use deferred io_end finishing if
2890		 * we are still holding the transaction as we can
2891		 * release the last reference to io_end which may end
2892		 * up doing unwritten extent conversion.
2893		 */
2894		if (handle) {
2895			ext4_put_io_end_defer(mpd.io_submit.io_end);
2896			ext4_journal_stop(handle);
2897		} else
2898			ext4_put_io_end(mpd.io_submit.io_end);
2899		mpd.io_submit.io_end = NULL;
2900
2901		if (ret == -ENOSPC && sbi->s_journal) {
2902			/*
2903			 * Commit the transaction which would
2904			 * free blocks released in the transaction
2905			 * and try again
2906			 */
2907			jbd2_journal_force_commit_nested(sbi->s_journal);
2908			ret = 0;
2909			continue;
2910		}
2911		/* Fatal error - ENOMEM, EIO... */
2912		if (ret)
 
 
 
 
 
 
 
 
 
 
 
2913			break;
2914	}
2915unplug:
2916	blk_finish_plug(&plug);
2917	if (!ret && !cycled && wbc->nr_to_write > 0) {
2918		cycled = 1;
2919		mpd.last_page = writeback_index - 1;
2920		mpd.first_page = 0;
 
2921		goto retry;
2922	}
2923
2924	/* Update index */
 
2925	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926		/*
2927		 * Set the writeback_index so that range_cyclic
2928		 * mode will write it back later
2929		 */
2930		mapping->writeback_index = mpd.first_page;
2931
2932out_writepages:
2933	trace_ext4_writepages_result(inode, wbc, ret,
2934				     nr_to_write - wbc->nr_to_write);
2935	percpu_up_read(&sbi->s_journal_flag_rwsem);
2936	return ret;
2937}
2938
2939static int ext4_dax_writepages(struct address_space *mapping,
2940			       struct writeback_control *wbc)
2941{
2942	int ret;
2943	long nr_to_write = wbc->nr_to_write;
2944	struct inode *inode = mapping->host;
2945	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948		return -EIO;
2949
2950	percpu_down_read(&sbi->s_journal_flag_rwsem);
2951	trace_ext4_writepages(inode, wbc);
2952
2953	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2954	trace_ext4_writepages_result(inode, wbc, ret,
2955				     nr_to_write - wbc->nr_to_write);
2956	percpu_up_read(&sbi->s_journal_flag_rwsem);
2957	return ret;
2958}
2959
 
2960static int ext4_nonda_switch(struct super_block *sb)
2961{
2962	s64 free_clusters, dirty_clusters;
2963	struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965	/*
2966	 * switch to non delalloc mode if we are running low
2967	 * on free block. The free block accounting via percpu
2968	 * counters can get slightly wrong with percpu_counter_batch getting
2969	 * accumulated on each CPU without updating global counters
2970	 * Delalloc need an accurate free block accounting. So switch
2971	 * to non delalloc when we are near to error range.
2972	 */
2973	free_clusters =
2974		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975	dirty_clusters =
2976		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977	/*
2978	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2979	 */
2980	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983	if (2 * free_clusters < 3 * dirty_clusters ||
2984	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985		/*
2986		 * free block count is less than 150% of dirty blocks
2987		 * or free blocks is less than watermark
2988		 */
2989		return 1;
2990	}
 
 
 
 
 
 
 
2991	return 0;
2992}
2993
2994/* We always reserve for an inode update; the superblock could be there too */
2995static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996{
2997	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998		return 1;
2999
3000	if (pos + len <= 0x7fffffffULL)
3001		return 1;
3002
3003	/* We might need to update the superblock to set LARGE_FILE */
3004	return 2;
3005}
3006
3007static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008			       loff_t pos, unsigned len, unsigned flags,
3009			       struct page **pagep, void **fsdata)
3010{
3011	int ret, retries = 0;
3012	struct page *page;
3013	pgoff_t index;
3014	struct inode *inode = mapping->host;
3015	handle_t *handle;
3016
3017	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018		return -EIO;
3019
3020	index = pos >> PAGE_SHIFT;
3021
3022	if (ext4_nonda_switch(inode->i_sb) ||
3023	    S_ISLNK(inode->i_mode)) {
3024		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025		return ext4_write_begin(file, mapping, pos,
3026					len, flags, pagep, fsdata);
3027	}
3028	*fsdata = (void *)0;
3029	trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032		ret = ext4_da_write_inline_data_begin(mapping, inode,
3033						      pos, len, flags,
3034						      pagep, fsdata);
3035		if (ret < 0)
3036			return ret;
3037		if (ret == 1)
3038			return 0;
3039	}
3040
3041	/*
3042	 * grab_cache_page_write_begin() can take a long time if the
3043	 * system is thrashing due to memory pressure, or if the page
3044	 * is being written back.  So grab it first before we start
3045	 * the transaction handle.  This also allows us to allocate
3046	 * the page (if needed) without using GFP_NOFS.
3047	 */
3048retry_grab:
3049	page = grab_cache_page_write_begin(mapping, index, flags);
3050	if (!page)
3051		return -ENOMEM;
3052	unlock_page(page);
3053
3054	/*
3055	 * With delayed allocation, we don't log the i_disksize update
3056	 * if there is delayed block allocation. But we still need
3057	 * to journalling the i_disksize update if writes to the end
3058	 * of file which has an already mapped buffer.
3059	 */
3060retry_journal:
3061	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062				ext4_da_write_credits(inode, pos, len));
3063	if (IS_ERR(handle)) {
3064		put_page(page);
3065		return PTR_ERR(handle);
3066	}
 
 
 
3067
3068	lock_page(page);
3069	if (page->mapping != mapping) {
3070		/* The page got truncated from under us */
3071		unlock_page(page);
3072		put_page(page);
3073		ext4_journal_stop(handle);
3074		goto retry_grab;
 
3075	}
3076	/* In case writeback began while the page was unlocked */
3077	wait_for_stable_page(page);
3078
3079#ifdef CONFIG_EXT4_FS_ENCRYPTION
3080	ret = ext4_block_write_begin(page, pos, len,
3081				     ext4_da_get_block_prep);
3082#else
3083	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084#endif
3085	if (ret < 0) {
3086		unlock_page(page);
3087		ext4_journal_stop(handle);
 
3088		/*
3089		 * block_write_begin may have instantiated a few blocks
3090		 * outside i_size.  Trim these off again. Don't need
3091		 * i_size_read because we hold i_mutex.
3092		 */
3093		if (pos + len > inode->i_size)
3094			ext4_truncate_failed_write(inode);
3095
3096		if (ret == -ENOSPC &&
3097		    ext4_should_retry_alloc(inode->i_sb, &retries))
3098			goto retry_journal;
3099
3100		put_page(page);
3101		return ret;
3102	}
3103
3104	*pagep = page;
 
 
3105	return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113					    unsigned long offset)
3114{
3115	struct buffer_head *bh;
3116	struct inode *inode = page->mapping->host;
3117	unsigned int idx;
3118	int i;
3119
3120	bh = page_buffers(page);
3121	idx = offset >> inode->i_blkbits;
3122
3123	for (i = 0; i < idx; i++)
3124		bh = bh->b_this_page;
3125
3126	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127		return 0;
3128	return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132			     struct address_space *mapping,
3133			     loff_t pos, unsigned len, unsigned copied,
3134			     struct page *page, void *fsdata)
3135{
3136	struct inode *inode = mapping->host;
3137	int ret = 0, ret2;
3138	handle_t *handle = ext4_journal_current_handle();
3139	loff_t new_i_size;
3140	unsigned long start, end;
3141	int write_mode = (int)(unsigned long)fsdata;
3142
3143	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144		return ext4_write_end(file, mapping, pos,
3145				      len, copied, page, fsdata);
 
 
 
 
 
 
 
 
 
3146
3147	trace_ext4_da_write_end(inode, pos, len, copied);
3148	start = pos & (PAGE_SIZE - 1);
3149	end = start + copied - 1;
3150
3151	/*
3152	 * generic_write_end() will run mark_inode_dirty() if i_size
3153	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3154	 * into that.
3155	 */
 
3156	new_i_size = pos + copied;
3157	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158		if (ext4_has_inline_data(inode) ||
3159		    ext4_da_should_update_i_disksize(page, end)) {
3160			ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
 
 
 
 
 
 
3161			/* We need to mark inode dirty even if
3162			 * new_i_size is less that inode->i_size
3163			 * bu greater than i_disksize.(hint delalloc)
3164			 */
3165			ext4_mark_inode_dirty(handle, inode);
3166		}
3167	}
3168
3169	if (write_mode != CONVERT_INLINE_DATA &&
3170	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171	    ext4_has_inline_data(inode))
3172		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173						     page);
3174	else
3175		ret2 = generic_write_end(file, mapping, pos, len, copied,
3176							page, fsdata);
3177
3178	copied = ret2;
3179	if (ret2 < 0)
3180		ret = ret2;
3181	ret2 = ext4_journal_stop(handle);
3182	if (!ret)
3183		ret = ret2;
3184
3185	return ret ? ret : copied;
3186}
3187
3188static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189				   unsigned int length)
3190{
3191	/*
3192	 * Drop reserved blocks
3193	 */
3194	BUG_ON(!PageLocked(page));
3195	if (!page_has_buffers(page))
3196		goto out;
3197
3198	ext4_da_page_release_reservation(page, offset, length);
3199
3200out:
3201	ext4_invalidatepage(page, offset, length);
3202
3203	return;
3204}
3205
3206/*
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3208 */
3209int ext4_alloc_da_blocks(struct inode *inode)
3210{
3211	trace_ext4_alloc_da_blocks(inode);
3212
3213	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3214		return 0;
3215
3216	/*
3217	 * We do something simple for now.  The filemap_flush() will
3218	 * also start triggering a write of the data blocks, which is
3219	 * not strictly speaking necessary (and for users of
3220	 * laptop_mode, not even desirable).  However, to do otherwise
3221	 * would require replicating code paths in:
3222	 *
3223	 * ext4_writepages() ->
3224	 *    write_cache_pages() ---> (via passed in callback function)
3225	 *        __mpage_da_writepage() -->
3226	 *           mpage_add_bh_to_extent()
3227	 *           mpage_da_map_blocks()
3228	 *
3229	 * The problem is that write_cache_pages(), located in
3230	 * mm/page-writeback.c, marks pages clean in preparation for
3231	 * doing I/O, which is not desirable if we're not planning on
3232	 * doing I/O at all.
3233	 *
3234	 * We could call write_cache_pages(), and then redirty all of
3235	 * the pages by calling redirty_page_for_writepage() but that
3236	 * would be ugly in the extreme.  So instead we would need to
3237	 * replicate parts of the code in the above functions,
3238	 * simplifying them because we wouldn't actually intend to
3239	 * write out the pages, but rather only collect contiguous
3240	 * logical block extents, call the multi-block allocator, and
3241	 * then update the buffer heads with the block allocations.
3242	 *
3243	 * For now, though, we'll cheat by calling filemap_flush(),
3244	 * which will map the blocks, and start the I/O, but not
3245	 * actually wait for the I/O to complete.
3246	 */
3247	return filemap_flush(inode->i_mapping);
3248}
3249
3250/*
3251 * bmap() is special.  It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3253 *
3254 * Naturally, this is dangerous if the block concerned is still in the
3255 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3260 *
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3263 */
3264static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265{
3266	struct inode *inode = mapping->host;
3267	journal_t *journal;
3268	int err;
3269
3270	/*
3271	 * We can get here for an inline file via the FIBMAP ioctl
3272	 */
3273	if (ext4_has_inline_data(inode))
3274		return 0;
3275
3276	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277			test_opt(inode->i_sb, DELALLOC)) {
3278		/*
3279		 * With delalloc we want to sync the file
3280		 * so that we can make sure we allocate
3281		 * blocks for file
3282		 */
3283		filemap_write_and_wait(mapping);
3284	}
3285
3286	if (EXT4_JOURNAL(inode) &&
3287	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288		/*
3289		 * This is a REALLY heavyweight approach, but the use of
3290		 * bmap on dirty files is expected to be extremely rare:
3291		 * only if we run lilo or swapon on a freshly made file
3292		 * do we expect this to happen.
3293		 *
3294		 * (bmap requires CAP_SYS_RAWIO so this does not
3295		 * represent an unprivileged user DOS attack --- we'd be
3296		 * in trouble if mortal users could trigger this path at
3297		 * will.)
3298		 *
3299		 * NB. EXT4_STATE_JDATA is not set on files other than
3300		 * regular files.  If somebody wants to bmap a directory
3301		 * or symlink and gets confused because the buffer
3302		 * hasn't yet been flushed to disk, they deserve
3303		 * everything they get.
3304		 */
3305
3306		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307		journal = EXT4_JOURNAL(inode);
3308		jbd2_journal_lock_updates(journal);
3309		err = jbd2_journal_flush(journal);
3310		jbd2_journal_unlock_updates(journal);
3311
3312		if (err)
3313			return 0;
3314	}
3315
3316	return generic_block_bmap(mapping, block, ext4_get_block);
3317}
3318
3319static int ext4_readpage(struct file *file, struct page *page)
3320{
3321	int ret = -EAGAIN;
3322	struct inode *inode = page->mapping->host;
3323
3324	trace_ext4_readpage(page);
3325
3326	if (ext4_has_inline_data(inode))
3327		ret = ext4_readpage_inline(inode, page);
3328
3329	if (ret == -EAGAIN)
3330		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332	return ret;
3333}
3334
3335static int
3336ext4_readpages(struct file *file, struct address_space *mapping,
3337		struct list_head *pages, unsigned nr_pages)
3338{
3339	struct inode *inode = mapping->host;
3340
3341	/* If the file has inline data, no need to do readpages. */
3342	if (ext4_has_inline_data(inode))
3343		return 0;
3344
3345	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346}
3347
3348static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349				unsigned int length)
3350{
3351	trace_ext4_invalidatepage(page, offset, length);
 
3352
3353	/* No journalling happens on data buffers when this function is used */
3354	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356	block_invalidatepage(page, offset, length);
 
 
 
 
 
 
 
 
 
3357}
3358
3359static int __ext4_journalled_invalidatepage(struct page *page,
3360					    unsigned int offset,
3361					    unsigned int length)
3362{
3363	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365	trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367	/*
 
 
 
 
 
3368	 * If it's a full truncate we just forget about the pending dirtying
3369	 */
3370	if (offset == 0 && length == PAGE_SIZE)
3371		ClearPageChecked(page);
3372
3373	return jbd2_journal_invalidatepage(journal, page, offset, length);
3374}
3375
3376/* Wrapper for aops... */
3377static void ext4_journalled_invalidatepage(struct page *page,
3378					   unsigned int offset,
3379					   unsigned int length)
3380{
3381	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382}
3383
3384static int ext4_releasepage(struct page *page, gfp_t wait)
3385{
3386	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388	trace_ext4_releasepage(page);
3389
3390	/* Page has dirty journalled data -> cannot release */
3391	if (PageChecked(page))
3392		return 0;
3393	if (journal)
3394		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395	else
3396		return try_to_free_buffers(page);
3397}
3398
3399static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
 
 
 
 
3400{
3401	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403	if (journal)
3404		return !jbd2_transaction_committed(journal,
3405					EXT4_I(inode)->i_datasync_tid);
3406	/* Any metadata buffers to write? */
3407	if (!list_empty(&inode->i_mapping->private_list))
3408		return true;
3409	return inode->i_state & I_DIRTY_DATASYNC;
3410}
3411
3412static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413			    unsigned flags, struct iomap *iomap)
3414{
3415	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3416	unsigned int blkbits = inode->i_blkbits;
3417	unsigned long first_block = offset >> blkbits;
3418	unsigned long last_block = (offset + length - 1) >> blkbits;
3419	struct ext4_map_blocks map;
3420	bool delalloc = false;
3421	int ret;
3422
 
 
 
3423
3424	if (flags & IOMAP_REPORT) {
3425		if (ext4_has_inline_data(inode)) {
3426			ret = ext4_inline_data_iomap(inode, iomap);
3427			if (ret != -EAGAIN) {
3428				if (ret == 0 && offset >= iomap->length)
3429					ret = -ENOENT;
3430				return ret;
3431			}
3432		}
3433	} else {
3434		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435			return -ERANGE;
3436	}
3437
3438	map.m_lblk = first_block;
3439	map.m_len = last_block - first_block + 1;
3440
3441	if (flags & IOMAP_REPORT) {
3442		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443		if (ret < 0)
3444			return ret;
3445
3446		if (ret == 0) {
3447			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448			struct extent_status es;
3449
3450			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452			if (!es.es_len || es.es_lblk > end) {
3453				/* entire range is a hole */
3454			} else if (es.es_lblk > map.m_lblk) {
3455				/* range starts with a hole */
3456				map.m_len = es.es_lblk - map.m_lblk;
3457			} else {
3458				ext4_lblk_t offs = 0;
3459
3460				if (es.es_lblk < map.m_lblk)
3461					offs = map.m_lblk - es.es_lblk;
3462				map.m_lblk = es.es_lblk + offs;
3463				map.m_len = es.es_len - offs;
3464				delalloc = true;
3465			}
3466		}
3467	} else if (flags & IOMAP_WRITE) {
3468		int dio_credits;
3469		handle_t *handle;
3470		int retries = 0;
3471
3472		/* Trim mapping request to maximum we can map at once for DIO */
3473		if (map.m_len > DIO_MAX_BLOCKS)
3474			map.m_len = DIO_MAX_BLOCKS;
3475		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476retry:
3477		/*
3478		 * Either we allocate blocks and then we don't get unwritten
3479		 * extent so we have reserved enough credits, or the blocks
3480		 * are already allocated and unwritten and in that case
3481		 * extent conversion fits in the credits as well.
3482		 */
3483		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484					    dio_credits);
3485		if (IS_ERR(handle))
3486			return PTR_ERR(handle);
3487
3488		ret = ext4_map_blocks(handle, inode, &map,
3489				      EXT4_GET_BLOCKS_CREATE_ZERO);
3490		if (ret < 0) {
3491			ext4_journal_stop(handle);
3492			if (ret == -ENOSPC &&
3493			    ext4_should_retry_alloc(inode->i_sb, &retries))
3494				goto retry;
3495			return ret;
3496		}
3497
3498		/*
3499		 * If we added blocks beyond i_size, we need to make sure they
3500		 * will get truncated if we crash before updating i_size in
3501		 * ext4_iomap_end(). For faults we don't need to do that (and
3502		 * even cannot because for orphan list operations inode_lock is
3503		 * required) - if we happen to instantiate block beyond i_size,
3504		 * it is because we race with truncate which has already added
3505		 * the inode to the orphan list.
3506		 */
3507		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3509			int err;
3510
3511			err = ext4_orphan_add(handle, inode);
3512			if (err < 0) {
3513				ext4_journal_stop(handle);
3514				return err;
3515			}
3516		}
3517		ext4_journal_stop(handle);
3518	} else {
3519		ret = ext4_map_blocks(NULL, inode, &map, 0);
3520		if (ret < 0)
3521			return ret;
3522	}
3523
3524	iomap->flags = 0;
3525	if (ext4_inode_datasync_dirty(inode))
3526		iomap->flags |= IOMAP_F_DIRTY;
3527	iomap->bdev = inode->i_sb->s_bdev;
3528	iomap->dax_dev = sbi->s_daxdev;
3529	iomap->offset = (u64)first_block << blkbits;
3530	iomap->length = (u64)map.m_len << blkbits;
3531
3532	if (ret == 0) {
3533		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3534		iomap->addr = IOMAP_NULL_ADDR;
3535	} else {
3536		if (map.m_flags & EXT4_MAP_MAPPED) {
3537			iomap->type = IOMAP_MAPPED;
3538		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539			iomap->type = IOMAP_UNWRITTEN;
3540		} else {
3541			WARN_ON_ONCE(1);
3542			return -EIO;
3543		}
3544		iomap->addr = (u64)map.m_pblk << blkbits;
3545	}
 
3546
3547	if (map.m_flags & EXT4_MAP_NEW)
3548		iomap->flags |= IOMAP_F_NEW;
 
 
 
3549
3550	return 0;
 
3551}
3552
3553static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554			  ssize_t written, unsigned flags, struct iomap *iomap)
3555{
3556	int ret = 0;
3557	handle_t *handle;
3558	int blkbits = inode->i_blkbits;
3559	bool truncate = false;
3560
3561	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3562		return 0;
3563
3564	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565	if (IS_ERR(handle)) {
3566		ret = PTR_ERR(handle);
3567		goto orphan_del;
 
 
3568	}
3569	if (ext4_update_inode_size(inode, offset + written))
3570		ext4_mark_inode_dirty(handle, inode);
3571	/*
3572	 * We may need to truncate allocated but not written blocks beyond EOF.
 
3573	 */
3574	if (iomap->offset + iomap->length > 
3575	    ALIGN(inode->i_size, 1 << blkbits)) {
3576		ext4_lblk_t written_blk, end_blk;
3577
3578		written_blk = (offset + written) >> blkbits;
3579		end_blk = (offset + length) >> blkbits;
3580		if (written_blk < end_blk && ext4_can_truncate(inode))
3581			truncate = true;
3582	}
3583	/*
3584	 * Remove inode from orphan list if we were extending a inode and
3585	 * everything went fine.
3586	 */
3587	if (!truncate && inode->i_nlink &&
3588	    !list_empty(&EXT4_I(inode)->i_orphan))
3589		ext4_orphan_del(handle, inode);
3590	ext4_journal_stop(handle);
3591	if (truncate) {
3592		ext4_truncate_failed_write(inode);
3593orphan_del:
3594		/*
3595		 * If truncate failed early the inode might still be on the
3596		 * orphan list; we need to make sure the inode is removed from
3597		 * the orphan list in that case.
3598		 */
3599		if (inode->i_nlink)
3600			ext4_orphan_del(NULL, inode);
3601	}
3602	return ret;
3603}
3604
3605const struct iomap_ops ext4_iomap_ops = {
3606	.iomap_begin		= ext4_iomap_begin,
3607	.iomap_end		= ext4_iomap_end,
3608};
 
 
3609
3610static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3611			    ssize_t size, void *private)
3612{
3613        ext4_io_end_t *io_end = private;
3614
3615	/* if not async direct IO just return */
3616	if (!io_end)
3617		return 0;
3618
3619	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3620		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3621		  io_end, io_end->inode->i_ino, iocb, offset, size);
3622
3623	/*
3624	 * Error during AIO DIO. We cannot convert unwritten extents as the
3625	 * data was not written. Just clear the unwritten flag and drop io_end.
3626	 */
3627	if (size <= 0) {
3628		ext4_clear_io_unwritten_flag(io_end);
3629		size = 0;
3630	}
3631	io_end->offset = offset;
3632	io_end->size = size;
3633	ext4_put_io_end(io_end);
 
 
 
 
 
 
3634
 
 
3635	return 0;
3636}
3637
3638/*
3639 * Handling of direct IO writes.
3640 *
3641 * For ext4 extent files, ext4 will do direct-io write even to holes,
3642 * preallocated extents, and those write extend the file, no need to
3643 * fall back to buffered IO.
3644 *
3645 * For holes, we fallocate those blocks, mark them as unwritten
3646 * If those blocks were preallocated, we mark sure they are split, but
3647 * still keep the range to write as unwritten.
3648 *
3649 * The unwritten extents will be converted to written when DIO is completed.
3650 * For async direct IO, since the IO may still pending when return, we
3651 * set up an end_io call back function, which will do the conversion
3652 * when async direct IO completed.
3653 *
3654 * If the O_DIRECT write will extend the file then add this inode to the
3655 * orphan list.  So recovery will truncate it back to the original size
3656 * if the machine crashes during the write.
3657 *
3658 */
3659static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
 
 
3660{
3661	struct file *file = iocb->ki_filp;
3662	struct inode *inode = file->f_mapping->host;
3663	struct ext4_inode_info *ei = EXT4_I(inode);
3664	ssize_t ret;
3665	loff_t offset = iocb->ki_pos;
3666	size_t count = iov_iter_count(iter);
3667	int overwrite = 0;
3668	get_block_t *get_block_func = NULL;
3669	int dio_flags = 0;
3670	loff_t final_size = offset + count;
3671	int orphan = 0;
3672	handle_t *handle;
3673
3674	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3675		/* Credits for sb + inode write */
3676		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677		if (IS_ERR(handle)) {
3678			ret = PTR_ERR(handle);
3679			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3680		}
3681		ret = ext4_orphan_add(handle, inode);
3682		if (ret) {
3683			ext4_journal_stop(handle);
3684			goto out;
3685		}
3686		orphan = 1;
3687		ext4_update_i_disksize(inode, inode->i_size);
3688		ext4_journal_stop(handle);
3689	}
3690
3691	BUG_ON(iocb->private == NULL);
3692
3693	/*
3694	 * Make all waiters for direct IO properly wait also for extent
3695	 * conversion. This also disallows race between truncate() and
3696	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697	 */
3698	inode_dio_begin(inode);
3699
3700	/* If we do a overwrite dio, i_mutex locking can be released */
3701	overwrite = *((int *)iocb->private);
3702
3703	if (overwrite)
3704		inode_unlock(inode);
3705
3706	/*
3707	 * For extent mapped files we could direct write to holes and fallocate.
3708	 *
3709	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3710	 * parallel buffered read to expose the stale data before DIO complete
3711	 * the data IO.
3712	 *
3713	 * As to previously fallocated extents, ext4 get_block will just simply
3714	 * mark the buffer mapped but still keep the extents unwritten.
3715	 *
3716	 * For non AIO case, we will convert those unwritten extents to written
3717	 * after return back from blockdev_direct_IO. That way we save us from
3718	 * allocating io_end structure and also the overhead of offloading
3719	 * the extent convertion to a workqueue.
3720	 *
3721	 * For async DIO, the conversion needs to be deferred when the
3722	 * IO is completed. The ext4 end_io callback function will be
3723	 * called to take care of the conversion work.  Here for async
3724	 * case, we allocate an io_end structure to hook to the iocb.
3725	 */
3726	iocb->private = NULL;
3727	if (overwrite)
3728		get_block_func = ext4_dio_get_block_overwrite;
3729	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3730		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3731		get_block_func = ext4_dio_get_block;
3732		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733	} else if (is_sync_kiocb(iocb)) {
3734		get_block_func = ext4_dio_get_block_unwritten_sync;
3735		dio_flags = DIO_LOCKING;
3736	} else {
3737		get_block_func = ext4_dio_get_block_unwritten_async;
3738		dio_flags = DIO_LOCKING;
3739	}
3740	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741				   get_block_func, ext4_end_io_dio, NULL,
3742				   dio_flags);
3743
3744	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3745						EXT4_STATE_DIO_UNWRITTEN)) {
3746		int err;
3747		/*
3748		 * for non AIO case, since the IO is already
3749		 * completed, we could do the conversion right here
3750		 */
3751		err = ext4_convert_unwritten_extents(NULL, inode,
3752						     offset, ret);
3753		if (err < 0)
3754			ret = err;
3755		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756	}
3757
3758	inode_dio_end(inode);
3759	/* take i_mutex locking again if we do a ovewrite dio */
3760	if (overwrite)
3761		inode_lock(inode);
3762
3763	if (ret < 0 && final_size > inode->i_size)
3764		ext4_truncate_failed_write(inode);
3765
3766	/* Handle extending of i_size after direct IO write */
3767	if (orphan) {
3768		int err;
3769
3770		/* Credits for sb + inode write */
3771		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772		if (IS_ERR(handle)) {
3773			/*
3774			 * We wrote the data but cannot extend
3775			 * i_size. Bail out. In async io case, we do
3776			 * not return error here because we have
3777			 * already submmitted the corresponding
3778			 * bio. Returning error here makes the caller
3779			 * think that this IO is done and failed
3780			 * resulting in race with bio's completion
3781			 * handler.
3782			 */
3783			if (!ret)
3784				ret = PTR_ERR(handle);
3785			if (inode->i_nlink)
3786				ext4_orphan_del(NULL, inode);
3787
3788			goto out;
3789		}
3790		if (inode->i_nlink)
3791			ext4_orphan_del(handle, inode);
3792		if (ret > 0) {
3793			loff_t end = offset + ret;
3794			if (end > inode->i_size || end > ei->i_disksize) {
3795				ext4_update_i_disksize(inode, end);
3796				if (end > inode->i_size)
3797					i_size_write(inode, end);
3798				/*
3799				 * We're going to return a positive `ret'
3800				 * here due to non-zero-length I/O, so there's
3801				 * no way of reporting error returns from
3802				 * ext4_mark_inode_dirty() to userspace.  So
3803				 * ignore it.
3804				 */
3805				ext4_mark_inode_dirty(handle, inode);
3806			}
3807		}
3808		err = ext4_journal_stop(handle);
3809		if (ret == 0)
3810			ret = err;
3811	}
3812out:
3813	return ret;
3814}
3815
3816static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817{
3818	struct address_space *mapping = iocb->ki_filp->f_mapping;
3819	struct inode *inode = mapping->host;
3820	size_t count = iov_iter_count(iter);
3821	ssize_t ret;
3822
3823	/*
3824	 * Shared inode_lock is enough for us - it protects against concurrent
3825	 * writes & truncates and since we take care of writing back page cache,
3826	 * we are protected against page writeback as well.
3827	 */
3828	inode_lock_shared(inode);
3829	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3830					   iocb->ki_pos + count - 1);
3831	if (ret)
3832		goto out_unlock;
3833	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834				   iter, ext4_dio_get_block, NULL, NULL, 0);
3835out_unlock:
3836	inode_unlock_shared(inode);
3837	return ret;
3838}
3839
3840static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
 
3841{
3842	struct file *file = iocb->ki_filp;
3843	struct inode *inode = file->f_mapping->host;
3844	size_t count = iov_iter_count(iter);
3845	loff_t offset = iocb->ki_pos;
3846	ssize_t ret;
3847
3848#ifdef CONFIG_EXT4_FS_ENCRYPTION
3849	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850		return 0;
3851#endif
3852
3853	/*
3854	 * If we are doing data journalling we don't support O_DIRECT
3855	 */
3856	if (ext4_should_journal_data(inode))
3857		return 0;
3858
3859	/* Let buffer I/O handle the inline data case. */
3860	if (ext4_has_inline_data(inode))
3861		return 0;
3862
3863	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864	if (iov_iter_rw(iter) == READ)
3865		ret = ext4_direct_IO_read(iocb, iter);
3866	else
3867		ret = ext4_direct_IO_write(iocb, iter);
3868	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
 
3869	return ret;
3870}
3871
3872/*
3873 * Pages can be marked dirty completely asynchronously from ext4's journalling
3874 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3875 * much here because ->set_page_dirty is called under VFS locks.  The page is
3876 * not necessarily locked.
3877 *
3878 * We cannot just dirty the page and leave attached buffers clean, because the
3879 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3880 * or jbddirty because all the journalling code will explode.
3881 *
3882 * So what we do is to mark the page "pending dirty" and next time writepage
3883 * is called, propagate that into the buffers appropriately.
3884 */
3885static int ext4_journalled_set_page_dirty(struct page *page)
3886{
3887	SetPageChecked(page);
3888	return __set_page_dirty_nobuffers(page);
3889}
3890
3891static int ext4_set_page_dirty(struct page *page)
3892{
3893	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894	WARN_ON_ONCE(!page_has_buffers(page));
3895	return __set_page_dirty_buffers(page);
3896}
 
 
 
 
 
 
 
 
3897
3898static const struct address_space_operations ext4_aops = {
3899	.readpage		= ext4_readpage,
3900	.readpages		= ext4_readpages,
3901	.writepage		= ext4_writepage,
3902	.writepages		= ext4_writepages,
3903	.write_begin		= ext4_write_begin,
3904	.write_end		= ext4_write_end,
3905	.set_page_dirty		= ext4_set_page_dirty,
3906	.bmap			= ext4_bmap,
3907	.invalidatepage		= ext4_invalidatepage,
3908	.releasepage		= ext4_releasepage,
3909	.direct_IO		= ext4_direct_IO,
3910	.migratepage		= buffer_migrate_page,
3911	.is_partially_uptodate  = block_is_partially_uptodate,
3912	.error_remove_page	= generic_error_remove_page,
3913};
3914
3915static const struct address_space_operations ext4_journalled_aops = {
3916	.readpage		= ext4_readpage,
3917	.readpages		= ext4_readpages,
3918	.writepage		= ext4_writepage,
3919	.writepages		= ext4_writepages,
3920	.write_begin		= ext4_write_begin,
3921	.write_end		= ext4_journalled_write_end,
3922	.set_page_dirty		= ext4_journalled_set_page_dirty,
3923	.bmap			= ext4_bmap,
3924	.invalidatepage		= ext4_journalled_invalidatepage,
3925	.releasepage		= ext4_releasepage,
3926	.direct_IO		= ext4_direct_IO,
3927	.is_partially_uptodate  = block_is_partially_uptodate,
3928	.error_remove_page	= generic_error_remove_page,
3929};
3930
3931static const struct address_space_operations ext4_da_aops = {
3932	.readpage		= ext4_readpage,
3933	.readpages		= ext4_readpages,
3934	.writepage		= ext4_writepage,
3935	.writepages		= ext4_writepages,
3936	.write_begin		= ext4_da_write_begin,
3937	.write_end		= ext4_da_write_end,
3938	.set_page_dirty		= ext4_set_page_dirty,
3939	.bmap			= ext4_bmap,
3940	.invalidatepage		= ext4_da_invalidatepage,
3941	.releasepage		= ext4_releasepage,
3942	.direct_IO		= ext4_direct_IO,
3943	.migratepage		= buffer_migrate_page,
3944	.is_partially_uptodate  = block_is_partially_uptodate,
3945	.error_remove_page	= generic_error_remove_page,
3946};
3947
3948static const struct address_space_operations ext4_dax_aops = {
3949	.writepages		= ext4_dax_writepages,
3950	.direct_IO		= noop_direct_IO,
3951	.set_page_dirty		= noop_set_page_dirty,
3952	.invalidatepage		= noop_invalidatepage,
3953};
3954
3955void ext4_set_aops(struct inode *inode)
3956{
3957	switch (ext4_inode_journal_mode(inode)) {
3958	case EXT4_INODE_ORDERED_DATA_MODE:
 
 
 
 
 
3959	case EXT4_INODE_WRITEBACK_DATA_MODE:
 
 
 
 
3960		break;
3961	case EXT4_INODE_JOURNAL_DATA_MODE:
3962		inode->i_mapping->a_ops = &ext4_journalled_aops;
3963		return;
3964	default:
3965		BUG();
3966	}
3967	if (IS_DAX(inode))
3968		inode->i_mapping->a_ops = &ext4_dax_aops;
3969	else if (test_opt(inode->i_sb, DELALLOC))
3970		inode->i_mapping->a_ops = &ext4_da_aops;
3971	else
3972		inode->i_mapping->a_ops = &ext4_aops;
3973}
3974
3975static int __ext4_block_zero_page_range(handle_t *handle,
3976		struct address_space *mapping, loff_t from, loff_t length)
 
 
 
 
 
 
 
 
 
 
3977{
3978	ext4_fsblk_t index = from >> PAGE_SHIFT;
3979	unsigned offset = from & (PAGE_SIZE-1);
3980	unsigned blocksize, pos;
3981	ext4_lblk_t iblock;
3982	struct inode *inode = mapping->host;
3983	struct buffer_head *bh;
3984	struct page *page;
3985	int err = 0;
3986
3987	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3988				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3989	if (!page)
3990		return -ENOMEM;
3991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3992	blocksize = inode->i_sb->s_blocksize;
 
 
 
 
3993
3994	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
 
 
 
 
 
 
 
3995
3996	if (!page_has_buffers(page))
3997		create_empty_buffers(page, blocksize, 0);
3998
3999	/* Find the buffer that contains "offset" */
4000	bh = page_buffers(page);
4001	pos = blocksize;
4002	while (offset >= pos) {
4003		bh = bh->b_this_page;
4004		iblock++;
4005		pos += blocksize;
4006	}
4007	if (buffer_freed(bh)) {
4008		BUFFER_TRACE(bh, "freed: skip");
4009		goto unlock;
4010	}
4011	if (!buffer_mapped(bh)) {
4012		BUFFER_TRACE(bh, "unmapped");
4013		ext4_get_block(inode, iblock, bh, 0);
4014		/* unmapped? It's a hole - nothing to do */
4015		if (!buffer_mapped(bh)) {
4016			BUFFER_TRACE(bh, "still unmapped");
4017			goto unlock;
4018		}
4019	}
4020
4021	/* Ok, it's mapped. Make sure it's up-to-date */
4022	if (PageUptodate(page))
4023		set_buffer_uptodate(bh);
4024
4025	if (!buffer_uptodate(bh)) {
4026		err = -EIO;
4027		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4028		wait_on_buffer(bh);
4029		/* Uhhuh. Read error. Complain and punt. */
4030		if (!buffer_uptodate(bh))
4031			goto unlock;
4032		if (S_ISREG(inode->i_mode) &&
4033		    ext4_encrypted_inode(inode)) {
4034			/* We expect the key to be set. */
4035			BUG_ON(!fscrypt_has_encryption_key(inode));
4036			BUG_ON(blocksize != PAGE_SIZE);
4037			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4038						page, PAGE_SIZE, 0, page->index));
4039		}
4040	}
4041	if (ext4_should_journal_data(inode)) {
4042		BUFFER_TRACE(bh, "get write access");
4043		err = ext4_journal_get_write_access(handle, bh);
4044		if (err)
4045			goto unlock;
4046	}
4047	zero_user(page, offset, length);
4048	BUFFER_TRACE(bh, "zeroed end of block");
4049
4050	if (ext4_should_journal_data(inode)) {
4051		err = ext4_handle_dirty_metadata(handle, inode, bh);
4052	} else {
4053		err = 0;
4054		mark_buffer_dirty(bh);
4055		if (ext4_should_order_data(inode))
4056			err = ext4_jbd2_inode_add_write(handle, inode);
4057	}
4058
4059unlock:
4060	unlock_page(page);
4061	put_page(page);
4062	return err;
4063}
4064
4065/*
4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067 * starting from file offset 'from'.  The range to be zero'd must
4068 * be contained with in one block.  If the specified range exceeds
4069 * the end of the block it will be shortened to end of the block
4070 * that cooresponds to 'from'
4071 */
4072static int ext4_block_zero_page_range(handle_t *handle,
4073		struct address_space *mapping, loff_t from, loff_t length)
4074{
4075	struct inode *inode = mapping->host;
4076	unsigned offset = from & (PAGE_SIZE-1);
4077	unsigned blocksize = inode->i_sb->s_blocksize;
4078	unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080	/*
4081	 * correct length if it does not fall between
4082	 * 'from' and the end of the block
4083	 */
4084	if (length > max || length < 0)
4085		length = max;
4086
4087	if (IS_DAX(inode)) {
4088		return iomap_zero_range(inode, from, length, NULL,
4089					&ext4_iomap_ops);
4090	}
4091	return __ext4_block_zero_page_range(handle, mapping, from, length);
4092}
 
4093
4094/*
4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096 * up to the end of the block which corresponds to `from'.
4097 * This required during truncate. We need to physically zero the tail end
4098 * of that block so it doesn't yield old data if the file is later grown.
4099 */
4100static int ext4_block_truncate_page(handle_t *handle,
4101		struct address_space *mapping, loff_t from)
4102{
4103	unsigned offset = from & (PAGE_SIZE-1);
4104	unsigned length;
4105	unsigned blocksize;
4106	struct inode *inode = mapping->host;
 
4107
4108	/* If we are processing an encrypted inode during orphan list handling */
4109	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4111
4112	blocksize = inode->i_sb->s_blocksize;
4113	length = blocksize - (offset & (blocksize - 1));
 
4114
4115	return ext4_block_zero_page_range(handle, mapping, from, length);
4116}
 
 
 
 
 
 
4117
4118int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119			     loff_t lstart, loff_t length)
4120{
4121	struct super_block *sb = inode->i_sb;
4122	struct address_space *mapping = inode->i_mapping;
4123	unsigned partial_start, partial_end;
4124	ext4_fsblk_t start, end;
4125	loff_t byte_end = (lstart + length - 1);
4126	int err = 0;
4127
4128	partial_start = lstart & (sb->s_blocksize - 1);
4129	partial_end = byte_end & (sb->s_blocksize - 1);
4130
4131	start = lstart >> sb->s_blocksize_bits;
4132	end = byte_end >> sb->s_blocksize_bits;
 
 
 
4133
4134	/* Handle partial zero within the single block */
4135	if (start == end &&
4136	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4137		err = ext4_block_zero_page_range(handle, mapping,
4138						 lstart, length);
4139		return err;
4140	}
4141	/* Handle partial zero out on the start of the range */
4142	if (partial_start) {
4143		err = ext4_block_zero_page_range(handle, mapping,
4144						 lstart, sb->s_blocksize);
4145		if (err)
4146			return err;
4147	}
4148	/* Handle partial zero out on the end of the range */
4149	if (partial_end != sb->s_blocksize - 1)
4150		err = ext4_block_zero_page_range(handle, mapping,
4151						 byte_end - partial_end,
4152						 partial_end + 1);
4153	return err;
4154}
4155
4156int ext4_can_truncate(struct inode *inode)
4157{
4158	if (S_ISREG(inode->i_mode))
4159		return 1;
4160	if (S_ISDIR(inode->i_mode))
4161		return 1;
4162	if (S_ISLNK(inode->i_mode))
4163		return !ext4_inode_is_fast_symlink(inode);
4164	return 0;
4165}
4166
4167/*
4168 * We have to make sure i_disksize gets properly updated before we truncate
4169 * page cache due to hole punching or zero range. Otherwise i_disksize update
4170 * can get lost as it may have been postponed to submission of writeback but
4171 * that will never happen after we truncate page cache.
4172 */
4173int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174				      loff_t len)
4175{
4176	handle_t *handle;
4177	loff_t size = i_size_read(inode);
4178
4179	WARN_ON(!inode_is_locked(inode));
4180	if (offset > size || offset + len < size)
4181		return 0;
4182
4183	if (EXT4_I(inode)->i_disksize >= size)
4184		return 0;
4185
4186	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187	if (IS_ERR(handle))
4188		return PTR_ERR(handle);
4189	ext4_update_i_disksize(inode, size);
4190	ext4_mark_inode_dirty(handle, inode);
4191	ext4_journal_stop(handle);
4192
4193	return 0;
4194}
4195
4196/*
4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4198 * associated with the given offset and length
4199 *
4200 * @inode:  File inode
4201 * @offset: The offset where the hole will begin
4202 * @len:    The length of the hole
4203 *
4204 * Returns: 0 on success or negative on failure
4205 */
4206
4207int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4208{
4209	struct super_block *sb = inode->i_sb;
4210	ext4_lblk_t first_block, stop_block;
4211	struct address_space *mapping = inode->i_mapping;
4212	loff_t first_block_offset, last_block_offset;
4213	handle_t *handle;
4214	unsigned int credits;
4215	int ret = 0;
4216
4217	if (!S_ISREG(inode->i_mode))
4218		return -EOPNOTSUPP;
4219
4220	trace_ext4_punch_hole(inode, offset, length, 0);
4221
4222	/*
4223	 * Write out all dirty pages to avoid race conditions
4224	 * Then release them.
4225	 */
4226	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4227		ret = filemap_write_and_wait_range(mapping, offset,
4228						   offset + length - 1);
4229		if (ret)
4230			return ret;
4231	}
4232
4233	inode_lock(inode);
4234
4235	/* No need to punch hole beyond i_size */
4236	if (offset >= inode->i_size)
4237		goto out_mutex;
4238
4239	/*
4240	 * If the hole extends beyond i_size, set the hole
4241	 * to end after the page that contains i_size
4242	 */
4243	if (offset + length > inode->i_size) {
4244		length = inode->i_size +
4245		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4246		   offset;
4247	}
4248
4249	if (offset & (sb->s_blocksize - 1) ||
4250	    (offset + length) & (sb->s_blocksize - 1)) {
4251		/*
4252		 * Attach jinode to inode for jbd2 if we do any zeroing of
4253		 * partial block
4254		 */
4255		ret = ext4_inode_attach_jinode(inode);
4256		if (ret < 0)
4257			goto out_mutex;
4258
4259	}
4260
4261	/* Wait all existing dio workers, newcomers will block on i_mutex */
4262	inode_dio_wait(inode);
4263
4264	/*
4265	 * Prevent page faults from reinstantiating pages we have released from
4266	 * page cache.
4267	 */
4268	down_write(&EXT4_I(inode)->i_mmap_sem);
4269	first_block_offset = round_up(offset, sb->s_blocksize);
4270	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4271
4272	/* Now release the pages and zero block aligned part of pages*/
4273	if (last_block_offset > first_block_offset) {
4274		ret = ext4_update_disksize_before_punch(inode, offset, length);
4275		if (ret)
4276			goto out_dio;
4277		truncate_pagecache_range(inode, first_block_offset,
4278					 last_block_offset);
4279	}
4280
4281	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282		credits = ext4_writepage_trans_blocks(inode);
4283	else
4284		credits = ext4_blocks_for_truncate(inode);
4285	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286	if (IS_ERR(handle)) {
4287		ret = PTR_ERR(handle);
4288		ext4_std_error(sb, ret);
4289		goto out_dio;
4290	}
4291
4292	ret = ext4_zero_partial_blocks(handle, inode, offset,
4293				       length);
4294	if (ret)
4295		goto out_stop;
4296
4297	first_block = (offset + sb->s_blocksize - 1) >>
4298		EXT4_BLOCK_SIZE_BITS(sb);
4299	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
4301	/* If there are no blocks to remove, return now */
4302	if (first_block >= stop_block)
4303		goto out_stop;
4304
4305	down_write(&EXT4_I(inode)->i_data_sem);
4306	ext4_discard_preallocations(inode);
4307
4308	ret = ext4_es_remove_extent(inode, first_block,
4309				    stop_block - first_block);
4310	if (ret) {
4311		up_write(&EXT4_I(inode)->i_data_sem);
4312		goto out_stop;
4313	}
4314
4315	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4316		ret = ext4_ext_remove_space(inode, first_block,
4317					    stop_block - 1);
4318	else
4319		ret = ext4_ind_remove_space(handle, inode, first_block,
4320					    stop_block);
4321
4322	up_write(&EXT4_I(inode)->i_data_sem);
4323	if (IS_SYNC(inode))
4324		ext4_handle_sync(handle);
4325
4326	inode->i_mtime = inode->i_ctime = current_time(inode);
4327	ext4_mark_inode_dirty(handle, inode);
4328	if (ret >= 0)
4329		ext4_update_inode_fsync_trans(handle, inode, 1);
4330out_stop:
4331	ext4_journal_stop(handle);
4332out_dio:
4333	up_write(&EXT4_I(inode)->i_mmap_sem);
4334out_mutex:
4335	inode_unlock(inode);
4336	return ret;
4337}
4338
4339int ext4_inode_attach_jinode(struct inode *inode)
4340{
4341	struct ext4_inode_info *ei = EXT4_I(inode);
4342	struct jbd2_inode *jinode;
4343
4344	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345		return 0;
4346
4347	jinode = jbd2_alloc_inode(GFP_KERNEL);
4348	spin_lock(&inode->i_lock);
4349	if (!ei->jinode) {
4350		if (!jinode) {
4351			spin_unlock(&inode->i_lock);
4352			return -ENOMEM;
4353		}
4354		ei->jinode = jinode;
4355		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356		jinode = NULL;
4357	}
4358	spin_unlock(&inode->i_lock);
4359	if (unlikely(jinode != NULL))
4360		jbd2_free_inode(jinode);
4361	return 0;
4362}
4363
4364/*
4365 * ext4_truncate()
4366 *
4367 * We block out ext4_get_block() block instantiations across the entire
4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4369 * simultaneously on behalf of the same inode.
4370 *
4371 * As we work through the truncate and commit bits of it to the journal there
4372 * is one core, guiding principle: the file's tree must always be consistent on
4373 * disk.  We must be able to restart the truncate after a crash.
4374 *
4375 * The file's tree may be transiently inconsistent in memory (although it
4376 * probably isn't), but whenever we close off and commit a journal transaction,
4377 * the contents of (the filesystem + the journal) must be consistent and
4378 * restartable.  It's pretty simple, really: bottom up, right to left (although
4379 * left-to-right works OK too).
4380 *
4381 * Note that at recovery time, journal replay occurs *before* the restart of
4382 * truncate against the orphan inode list.
4383 *
4384 * The committed inode has the new, desired i_size (which is the same as
4385 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4386 * that this inode's truncate did not complete and it will again call
4387 * ext4_truncate() to have another go.  So there will be instantiated blocks
4388 * to the right of the truncation point in a crashed ext4 filesystem.  But
4389 * that's fine - as long as they are linked from the inode, the post-crash
4390 * ext4_truncate() run will find them and release them.
4391 */
4392int ext4_truncate(struct inode *inode)
4393{
4394	struct ext4_inode_info *ei = EXT4_I(inode);
4395	unsigned int credits;
4396	int err = 0;
4397	handle_t *handle;
4398	struct address_space *mapping = inode->i_mapping;
4399
4400	/*
4401	 * There is a possibility that we're either freeing the inode
4402	 * or it's a completely new inode. In those cases we might not
4403	 * have i_mutex locked because it's not necessary.
4404	 */
4405	if (!(inode->i_state & (I_NEW|I_FREEING)))
4406		WARN_ON(!inode_is_locked(inode));
4407	trace_ext4_truncate_enter(inode);
4408
4409	if (!ext4_can_truncate(inode))
4410		return 0;
4411
4412	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4413
4414	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4416
4417	if (ext4_has_inline_data(inode)) {
4418		int has_inline = 1;
4419
4420		err = ext4_inline_data_truncate(inode, &has_inline);
4421		if (err)
4422			return err;
4423		if (has_inline)
4424			return 0;
4425	}
4426
4427	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429		if (ext4_inode_attach_jinode(inode) < 0)
4430			return 0;
4431	}
4432
4433	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434		credits = ext4_writepage_trans_blocks(inode);
4435	else
4436		credits = ext4_blocks_for_truncate(inode);
4437
4438	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4439	if (IS_ERR(handle))
4440		return PTR_ERR(handle);
4441
4442	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443		ext4_block_truncate_page(handle, mapping, inode->i_size);
4444
4445	/*
4446	 * We add the inode to the orphan list, so that if this
4447	 * truncate spans multiple transactions, and we crash, we will
4448	 * resume the truncate when the filesystem recovers.  It also
4449	 * marks the inode dirty, to catch the new size.
4450	 *
4451	 * Implication: the file must always be in a sane, consistent
4452	 * truncatable state while each transaction commits.
4453	 */
4454	err = ext4_orphan_add(handle, inode);
4455	if (err)
4456		goto out_stop;
4457
4458	down_write(&EXT4_I(inode)->i_data_sem);
4459
4460	ext4_discard_preallocations(inode);
4461
4462	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4463		err = ext4_ext_truncate(handle, inode);
4464	else
4465		ext4_ind_truncate(handle, inode);
4466
4467	up_write(&ei->i_data_sem);
4468	if (err)
4469		goto out_stop;
4470
4471	if (IS_SYNC(inode))
4472		ext4_handle_sync(handle);
4473
4474out_stop:
4475	/*
4476	 * If this was a simple ftruncate() and the file will remain alive,
4477	 * then we need to clear up the orphan record which we created above.
4478	 * However, if this was a real unlink then we were called by
4479	 * ext4_evict_inode(), and we allow that function to clean up the
4480	 * orphan info for us.
4481	 */
4482	if (inode->i_nlink)
4483		ext4_orphan_del(handle, inode);
4484
4485	inode->i_mtime = inode->i_ctime = current_time(inode);
4486	ext4_mark_inode_dirty(handle, inode);
4487	ext4_journal_stop(handle);
4488
4489	trace_ext4_truncate_exit(inode);
4490	return err;
4491}
4492
4493/*
4494 * ext4_get_inode_loc returns with an extra refcount against the inode's
4495 * underlying buffer_head on success. If 'in_mem' is true, we have all
4496 * data in memory that is needed to recreate the on-disk version of this
4497 * inode.
4498 */
4499static int __ext4_get_inode_loc(struct inode *inode,
4500				struct ext4_iloc *iloc, int in_mem)
4501{
4502	struct ext4_group_desc	*gdp;
4503	struct buffer_head	*bh;
4504	struct super_block	*sb = inode->i_sb;
4505	ext4_fsblk_t		block;
4506	int			inodes_per_block, inode_offset;
4507
4508	iloc->bh = NULL;
4509	if (!ext4_valid_inum(sb, inode->i_ino))
4510		return -EFSCORRUPTED;
4511
4512	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4513	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4514	if (!gdp)
4515		return -EIO;
4516
4517	/*
4518	 * Figure out the offset within the block group inode table
4519	 */
4520	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4521	inode_offset = ((inode->i_ino - 1) %
4522			EXT4_INODES_PER_GROUP(sb));
4523	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4524	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4525
4526	bh = sb_getblk(sb, block);
4527	if (unlikely(!bh))
4528		return -ENOMEM;
 
 
 
4529	if (!buffer_uptodate(bh)) {
4530		lock_buffer(bh);
4531
4532		/*
4533		 * If the buffer has the write error flag, we have failed
4534		 * to write out another inode in the same block.  In this
4535		 * case, we don't have to read the block because we may
4536		 * read the old inode data successfully.
4537		 */
4538		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4539			set_buffer_uptodate(bh);
4540
4541		if (buffer_uptodate(bh)) {
4542			/* someone brought it uptodate while we waited */
4543			unlock_buffer(bh);
4544			goto has_buffer;
4545		}
4546
4547		/*
4548		 * If we have all information of the inode in memory and this
4549		 * is the only valid inode in the block, we need not read the
4550		 * block.
4551		 */
4552		if (in_mem) {
4553			struct buffer_head *bitmap_bh;
4554			int i, start;
4555
4556			start = inode_offset & ~(inodes_per_block - 1);
4557
4558			/* Is the inode bitmap in cache? */
4559			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4560			if (unlikely(!bitmap_bh))
4561				goto make_io;
4562
4563			/*
4564			 * If the inode bitmap isn't in cache then the
4565			 * optimisation may end up performing two reads instead
4566			 * of one, so skip it.
4567			 */
4568			if (!buffer_uptodate(bitmap_bh)) {
4569				brelse(bitmap_bh);
4570				goto make_io;
4571			}
4572			for (i = start; i < start + inodes_per_block; i++) {
4573				if (i == inode_offset)
4574					continue;
4575				if (ext4_test_bit(i, bitmap_bh->b_data))
4576					break;
4577			}
4578			brelse(bitmap_bh);
4579			if (i == start + inodes_per_block) {
4580				/* all other inodes are free, so skip I/O */
4581				memset(bh->b_data, 0, bh->b_size);
4582				set_buffer_uptodate(bh);
4583				unlock_buffer(bh);
4584				goto has_buffer;
4585			}
4586		}
4587
4588make_io:
4589		/*
4590		 * If we need to do any I/O, try to pre-readahead extra
4591		 * blocks from the inode table.
4592		 */
4593		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4594			ext4_fsblk_t b, end, table;
4595			unsigned num;
4596			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4597
4598			table = ext4_inode_table(sb, gdp);
4599			/* s_inode_readahead_blks is always a power of 2 */
4600			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4601			if (table > b)
4602				b = table;
4603			end = b + ra_blks;
4604			num = EXT4_INODES_PER_GROUP(sb);
4605			if (ext4_has_group_desc_csum(sb))
4606				num -= ext4_itable_unused_count(sb, gdp);
4607			table += num / inodes_per_block;
4608			if (end > table)
4609				end = table;
4610			while (b <= end)
4611				sb_breadahead(sb, b++);
4612		}
4613
4614		/*
4615		 * There are other valid inodes in the buffer, this inode
4616		 * has in-inode xattrs, or we don't have this inode in memory.
4617		 * Read the block from disk.
4618		 */
4619		trace_ext4_load_inode(inode);
4620		get_bh(bh);
4621		bh->b_end_io = end_buffer_read_sync;
4622		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4623		wait_on_buffer(bh);
4624		if (!buffer_uptodate(bh)) {
4625			EXT4_ERROR_INODE_BLOCK(inode, block,
4626					       "unable to read itable block");
4627			brelse(bh);
4628			return -EIO;
4629		}
4630	}
4631has_buffer:
4632	iloc->bh = bh;
4633	return 0;
4634}
4635
4636int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4637{
4638	/* We have all inode data except xattrs in memory here. */
4639	return __ext4_get_inode_loc(inode, iloc,
4640		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4641}
4642
4643static bool ext4_should_use_dax(struct inode *inode)
4644{
4645	if (!test_opt(inode->i_sb, DAX))
4646		return false;
4647	if (!S_ISREG(inode->i_mode))
4648		return false;
4649	if (ext4_should_journal_data(inode))
4650		return false;
4651	if (ext4_has_inline_data(inode))
4652		return false;
4653	if (ext4_encrypted_inode(inode))
4654		return false;
4655	return true;
4656}
4657
4658void ext4_set_inode_flags(struct inode *inode)
4659{
4660	unsigned int flags = EXT4_I(inode)->i_flags;
4661	unsigned int new_fl = 0;
4662
 
4663	if (flags & EXT4_SYNC_FL)
4664		new_fl |= S_SYNC;
4665	if (flags & EXT4_APPEND_FL)
4666		new_fl |= S_APPEND;
4667	if (flags & EXT4_IMMUTABLE_FL)
4668		new_fl |= S_IMMUTABLE;
4669	if (flags & EXT4_NOATIME_FL)
4670		new_fl |= S_NOATIME;
4671	if (flags & EXT4_DIRSYNC_FL)
4672		new_fl |= S_DIRSYNC;
4673	if (ext4_should_use_dax(inode))
4674		new_fl |= S_DAX;
4675	if (flags & EXT4_ENCRYPT_FL)
4676		new_fl |= S_ENCRYPTED;
4677	inode_set_flags(inode, new_fl,
4678			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4679			S_ENCRYPTED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4680}
4681
4682static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4683				  struct ext4_inode_info *ei)
4684{
4685	blkcnt_t i_blocks ;
4686	struct inode *inode = &(ei->vfs_inode);
4687	struct super_block *sb = inode->i_sb;
4688
4689	if (ext4_has_feature_huge_file(sb)) {
 
4690		/* we are using combined 48 bit field */
4691		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4692					le32_to_cpu(raw_inode->i_blocks_lo);
4693		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4694			/* i_blocks represent file system block size */
4695			return i_blocks  << (inode->i_blkbits - 9);
4696		} else {
4697			return i_blocks;
4698		}
4699	} else {
4700		return le32_to_cpu(raw_inode->i_blocks_lo);
4701	}
4702}
4703
4704static inline void ext4_iget_extra_inode(struct inode *inode,
4705					 struct ext4_inode *raw_inode,
4706					 struct ext4_inode_info *ei)
4707{
4708	__le32 *magic = (void *)raw_inode +
4709			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4710	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711	    EXT4_INODE_SIZE(inode->i_sb) &&
4712	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4713		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714		ext4_find_inline_data_nolock(inode);
4715	} else
4716		EXT4_I(inode)->i_inline_off = 0;
4717}
4718
4719int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4720{
4721	if (!ext4_has_feature_project(inode->i_sb))
4722		return -EOPNOTSUPP;
4723	*projid = EXT4_I(inode)->i_projid;
4724	return 0;
4725}
4726
4727struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4728{
4729	struct ext4_iloc iloc;
4730	struct ext4_inode *raw_inode;
4731	struct ext4_inode_info *ei;
4732	struct inode *inode;
4733	journal_t *journal = EXT4_SB(sb)->s_journal;
4734	long ret;
4735	loff_t size;
4736	int block;
4737	uid_t i_uid;
4738	gid_t i_gid;
4739	projid_t i_projid;
4740
4741	inode = iget_locked(sb, ino);
4742	if (!inode)
4743		return ERR_PTR(-ENOMEM);
4744	if (!(inode->i_state & I_NEW))
4745		return inode;
4746
4747	ei = EXT4_I(inode);
4748	iloc.bh = NULL;
4749
4750	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4751	if (ret < 0)
4752		goto bad_inode;
4753	raw_inode = ext4_raw_inode(&iloc);
4754
4755	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4756		EXT4_ERROR_INODE(inode, "root inode unallocated");
4757		ret = -EFSCORRUPTED;
4758		goto bad_inode;
4759	}
4760
4761	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4762		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4763		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4764			EXT4_INODE_SIZE(inode->i_sb) ||
4765		    (ei->i_extra_isize & 3)) {
4766			EXT4_ERROR_INODE(inode,
4767					 "bad extra_isize %u (inode size %u)",
4768					 ei->i_extra_isize,
4769					 EXT4_INODE_SIZE(inode->i_sb));
4770			ret = -EFSCORRUPTED;
4771			goto bad_inode;
4772		}
4773	} else
4774		ei->i_extra_isize = 0;
4775
4776	/* Precompute checksum seed for inode metadata */
4777	if (ext4_has_metadata_csum(sb)) {
 
4778		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4779		__u32 csum;
4780		__le32 inum = cpu_to_le32(inode->i_ino);
4781		__le32 gen = raw_inode->i_generation;
4782		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4783				   sizeof(inum));
4784		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4785					      sizeof(gen));
4786	}
4787
4788	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4789		EXT4_ERROR_INODE(inode, "checksum invalid");
4790		ret = -EFSBADCRC;
4791		goto bad_inode;
4792	}
4793
4794	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4795	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4796	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4797	if (ext4_has_feature_project(sb) &&
4798	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4799	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4800		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4801	else
4802		i_projid = EXT4_DEF_PROJID;
4803
4804	if (!(test_opt(inode->i_sb, NO_UID32))) {
4805		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4806		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4807	}
4808	i_uid_write(inode, i_uid);
4809	i_gid_write(inode, i_gid);
4810	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4811	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4812
4813	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4814	ei->i_inline_off = 0;
4815	ei->i_dir_start_lookup = 0;
4816	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4817	/* We now have enough fields to check if the inode was active or not.
4818	 * This is needed because nfsd might try to access dead inodes
4819	 * the test is that same one that e2fsck uses
4820	 * NeilBrown 1999oct15
4821	 */
4822	if (inode->i_nlink == 0) {
4823		if ((inode->i_mode == 0 ||
4824		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4825		    ino != EXT4_BOOT_LOADER_INO) {
4826			/* this inode is deleted */
4827			ret = -ESTALE;
4828			goto bad_inode;
4829		}
4830		/* The only unlinked inodes we let through here have
4831		 * valid i_mode and are being read by the orphan
4832		 * recovery code: that's fine, we're about to complete
4833		 * the process of deleting those.
4834		 * OR it is the EXT4_BOOT_LOADER_INO which is
4835		 * not initialized on a new filesystem. */
4836	}
4837	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4838	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840	if (ext4_has_feature_64bit(sb))
4841		ei->i_file_acl |=
4842			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843	inode->i_size = ext4_isize(sb, raw_inode);
4844	if ((size = i_size_read(inode)) < 0) {
4845		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4846		ret = -EFSCORRUPTED;
4847		goto bad_inode;
4848	}
4849	ei->i_disksize = inode->i_size;
4850#ifdef CONFIG_QUOTA
4851	ei->i_reserved_quota = 0;
4852#endif
4853	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854	ei->i_block_group = iloc.block_group;
4855	ei->i_last_alloc_group = ~0;
4856	/*
4857	 * NOTE! The in-memory inode i_data array is in little-endian order
4858	 * even on big-endian machines: we do NOT byteswap the block numbers!
4859	 */
4860	for (block = 0; block < EXT4_N_BLOCKS; block++)
4861		ei->i_data[block] = raw_inode->i_block[block];
4862	INIT_LIST_HEAD(&ei->i_orphan);
4863
4864	/*
4865	 * Set transaction id's of transactions that have to be committed
4866	 * to finish f[data]sync. We set them to currently running transaction
4867	 * as we cannot be sure that the inode or some of its metadata isn't
4868	 * part of the transaction - the inode could have been reclaimed and
4869	 * now it is reread from disk.
4870	 */
4871	if (journal) {
4872		transaction_t *transaction;
4873		tid_t tid;
4874
4875		read_lock(&journal->j_state_lock);
4876		if (journal->j_running_transaction)
4877			transaction = journal->j_running_transaction;
4878		else
4879			transaction = journal->j_committing_transaction;
4880		if (transaction)
4881			tid = transaction->t_tid;
4882		else
4883			tid = journal->j_commit_sequence;
4884		read_unlock(&journal->j_state_lock);
4885		ei->i_sync_tid = tid;
4886		ei->i_datasync_tid = tid;
4887	}
4888
4889	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890		if (ei->i_extra_isize == 0) {
4891			/* The extra space is currently unused. Use it. */
4892			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4893			ei->i_extra_isize = sizeof(struct ext4_inode) -
4894					    EXT4_GOOD_OLD_INODE_SIZE;
4895		} else {
4896			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
 
 
4897		}
4898	}
4899
4900	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907
4908		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910				ivers |=
4911		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912		}
4913		inode_set_iversion_queried(inode, ivers);
4914	}
4915
4916	ret = 0;
4917	if (ei->i_file_acl &&
4918	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4919		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4920				 ei->i_file_acl);
4921		ret = -EFSCORRUPTED;
4922		goto bad_inode;
4923	} else if (!ext4_has_inline_data(inode)) {
4924		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4925			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4926			    (S_ISLNK(inode->i_mode) &&
4927			     !ext4_inode_is_fast_symlink(inode))))
4928				/* Validate extent which is part of inode */
4929				ret = ext4_ext_check_inode(inode);
4930		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4931			   (S_ISLNK(inode->i_mode) &&
4932			    !ext4_inode_is_fast_symlink(inode))) {
4933			/* Validate block references which are part of inode */
4934			ret = ext4_ind_check_inode(inode);
4935		}
4936	}
4937	if (ret)
4938		goto bad_inode;
4939
4940	if (S_ISREG(inode->i_mode)) {
4941		inode->i_op = &ext4_file_inode_operations;
4942		inode->i_fop = &ext4_file_operations;
4943		ext4_set_aops(inode);
4944	} else if (S_ISDIR(inode->i_mode)) {
4945		inode->i_op = &ext4_dir_inode_operations;
4946		inode->i_fop = &ext4_dir_operations;
4947	} else if (S_ISLNK(inode->i_mode)) {
4948		if (ext4_encrypted_inode(inode)) {
4949			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4950			ext4_set_aops(inode);
4951		} else if (ext4_inode_is_fast_symlink(inode)) {
4952			inode->i_link = (char *)ei->i_data;
4953			inode->i_op = &ext4_fast_symlink_inode_operations;
4954			nd_terminate_link(ei->i_data, inode->i_size,
4955				sizeof(ei->i_data) - 1);
4956		} else {
4957			inode->i_op = &ext4_symlink_inode_operations;
4958			ext4_set_aops(inode);
4959		}
4960		inode_nohighmem(inode);
4961	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963		inode->i_op = &ext4_special_inode_operations;
4964		if (raw_inode->i_block[0])
4965			init_special_inode(inode, inode->i_mode,
4966			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967		else
4968			init_special_inode(inode, inode->i_mode,
4969			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970	} else if (ino == EXT4_BOOT_LOADER_INO) {
4971		make_bad_inode(inode);
4972	} else {
4973		ret = -EFSCORRUPTED;
4974		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4975		goto bad_inode;
4976	}
4977	brelse(iloc.bh);
4978	ext4_set_inode_flags(inode);
4979
4980	unlock_new_inode(inode);
4981	return inode;
4982
4983bad_inode:
4984	brelse(iloc.bh);
4985	iget_failed(inode);
4986	return ERR_PTR(ret);
4987}
4988
4989struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4990{
4991	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4992		return ERR_PTR(-EFSCORRUPTED);
4993	return ext4_iget(sb, ino);
4994}
4995
4996static int ext4_inode_blocks_set(handle_t *handle,
4997				struct ext4_inode *raw_inode,
4998				struct ext4_inode_info *ei)
4999{
5000	struct inode *inode = &(ei->vfs_inode);
5001	u64 i_blocks = inode->i_blocks;
5002	struct super_block *sb = inode->i_sb;
5003
5004	if (i_blocks <= ~0U) {
5005		/*
5006		 * i_blocks can be represented in a 32 bit variable
5007		 * as multiple of 512 bytes
5008		 */
5009		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010		raw_inode->i_blocks_high = 0;
5011		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012		return 0;
5013	}
5014	if (!ext4_has_feature_huge_file(sb))
5015		return -EFBIG;
5016
5017	if (i_blocks <= 0xffffffffffffULL) {
5018		/*
5019		 * i_blocks can be represented in a 48 bit variable
5020		 * as multiple of 512 bytes
5021		 */
5022		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5023		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5024		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5025	} else {
5026		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5027		/* i_block is stored in file system block size */
5028		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5029		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5030		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5031	}
5032	return 0;
5033}
5034
5035struct other_inode {
5036	unsigned long		orig_ino;
5037	struct ext4_inode	*raw_inode;
5038};
5039
5040static int other_inode_match(struct inode * inode, unsigned long ino,
5041			     void *data)
5042{
5043	struct other_inode *oi = (struct other_inode *) data;
5044
5045	if ((inode->i_ino != ino) ||
5046	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5047			       I_DIRTY_INODE)) ||
5048	    ((inode->i_state & I_DIRTY_TIME) == 0))
5049		return 0;
5050	spin_lock(&inode->i_lock);
5051	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5052				I_DIRTY_INODE)) == 0) &&
5053	    (inode->i_state & I_DIRTY_TIME)) {
5054		struct ext4_inode_info	*ei = EXT4_I(inode);
5055
5056		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5057		spin_unlock(&inode->i_lock);
5058
5059		spin_lock(&ei->i_raw_lock);
5060		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5061		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5062		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5063		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5064		spin_unlock(&ei->i_raw_lock);
5065		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5066		return -1;
5067	}
5068	spin_unlock(&inode->i_lock);
5069	return -1;
5070}
5071
5072/*
5073 * Opportunistically update the other time fields for other inodes in
5074 * the same inode table block.
5075 */
5076static void ext4_update_other_inodes_time(struct super_block *sb,
5077					  unsigned long orig_ino, char *buf)
5078{
5079	struct other_inode oi;
5080	unsigned long ino;
5081	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5082	int inode_size = EXT4_INODE_SIZE(sb);
5083
5084	oi.orig_ino = orig_ino;
5085	/*
5086	 * Calculate the first inode in the inode table block.  Inode
5087	 * numbers are one-based.  That is, the first inode in a block
5088	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5089	 */
5090	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5091	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5092		if (ino == orig_ino)
5093			continue;
5094		oi.raw_inode = (struct ext4_inode *) buf;
5095		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5096	}
5097}
5098
5099/*
5100 * Post the struct inode info into an on-disk inode location in the
5101 * buffer-cache.  This gobbles the caller's reference to the
5102 * buffer_head in the inode location struct.
5103 *
5104 * The caller must have write access to iloc->bh.
5105 */
5106static int ext4_do_update_inode(handle_t *handle,
5107				struct inode *inode,
5108				struct ext4_iloc *iloc)
5109{
5110	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5111	struct ext4_inode_info *ei = EXT4_I(inode);
5112	struct buffer_head *bh = iloc->bh;
5113	struct super_block *sb = inode->i_sb;
5114	int err = 0, rc, block;
5115	int need_datasync = 0, set_large_file = 0;
5116	uid_t i_uid;
5117	gid_t i_gid;
5118	projid_t i_projid;
5119
5120	spin_lock(&ei->i_raw_lock);
5121
5122	/* For fields not tracked in the in-memory inode,
5123	 * initialise them to zero for new inodes. */
5124	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5125		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5126
 
5127	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5128	i_uid = i_uid_read(inode);
5129	i_gid = i_gid_read(inode);
5130	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5131	if (!(test_opt(inode->i_sb, NO_UID32))) {
5132		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5133		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5134/*
5135 * Fix up interoperability with old kernels. Otherwise, old inodes get
5136 * re-used with the upper 16 bits of the uid/gid intact
5137 */
5138		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5139			raw_inode->i_uid_high = 0;
5140			raw_inode->i_gid_high = 0;
5141		} else {
5142			raw_inode->i_uid_high =
5143				cpu_to_le16(high_16_bits(i_uid));
5144			raw_inode->i_gid_high =
5145				cpu_to_le16(high_16_bits(i_gid));
 
 
 
5146		}
5147	} else {
5148		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5149		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5150		raw_inode->i_uid_high = 0;
5151		raw_inode->i_gid_high = 0;
5152	}
5153	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5154
5155	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5156	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5157	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5158	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5159
5160	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5161	if (err) {
5162		spin_unlock(&ei->i_raw_lock);
5163		goto out_brelse;
5164	}
5165	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5166	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5167	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
 
5168		raw_inode->i_file_acl_high =
5169			cpu_to_le16(ei->i_file_acl >> 32);
5170	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5171	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5172		ext4_isize_set(raw_inode, ei->i_disksize);
5173		need_datasync = 1;
5174	}
5175	if (ei->i_disksize > 0x7fffffffULL) {
5176		if (!ext4_has_feature_large_file(sb) ||
 
 
5177				EXT4_SB(sb)->s_es->s_rev_level ==
5178		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5179			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
5180	}
5181	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183		if (old_valid_dev(inode->i_rdev)) {
5184			raw_inode->i_block[0] =
5185				cpu_to_le32(old_encode_dev(inode->i_rdev));
5186			raw_inode->i_block[1] = 0;
5187		} else {
5188			raw_inode->i_block[0] = 0;
5189			raw_inode->i_block[1] =
5190				cpu_to_le32(new_encode_dev(inode->i_rdev));
5191			raw_inode->i_block[2] = 0;
5192		}
5193	} else if (!ext4_has_inline_data(inode)) {
5194		for (block = 0; block < EXT4_N_BLOCKS; block++)
5195			raw_inode->i_block[block] = ei->i_data[block];
5196	}
5197
5198	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5199		u64 ivers = inode_peek_iversion(inode);
5200
5201		raw_inode->i_disk_version = cpu_to_le32(ivers);
5202		if (ei->i_extra_isize) {
5203			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5204				raw_inode->i_version_hi =
5205					cpu_to_le32(ivers >> 32);
5206			raw_inode->i_extra_isize =
5207				cpu_to_le16(ei->i_extra_isize);
5208		}
5209	}
5210
5211	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5212	       i_projid != EXT4_DEF_PROJID);
5213
5214	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5215	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5216		raw_inode->i_projid = cpu_to_le32(i_projid);
5217
5218	ext4_inode_csum_set(inode, raw_inode, ei);
5219	spin_unlock(&ei->i_raw_lock);
5220	if (inode->i_sb->s_flags & SB_LAZYTIME)
5221		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5222					      bh->b_data);
5223
5224	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5225	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5226	if (!err)
5227		err = rc;
5228	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5229	if (set_large_file) {
5230		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5231		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5232		if (err)
5233			goto out_brelse;
5234		ext4_update_dynamic_rev(sb);
5235		ext4_set_feature_large_file(sb);
5236		ext4_handle_sync(handle);
5237		err = ext4_handle_dirty_super(handle, sb);
5238	}
5239	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5240out_brelse:
5241	brelse(bh);
5242	ext4_std_error(inode->i_sb, err);
5243	return err;
5244}
5245
5246/*
5247 * ext4_write_inode()
5248 *
5249 * We are called from a few places:
5250 *
5251 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5252 *   Here, there will be no transaction running. We wait for any running
5253 *   transaction to commit.
5254 *
5255 * - Within flush work (sys_sync(), kupdate and such).
5256 *   We wait on commit, if told to.
5257 *
5258 * - Within iput_final() -> write_inode_now()
5259 *   We wait on commit, if told to.
 
5260 *
5261 * In all cases it is actually safe for us to return without doing anything,
5262 * because the inode has been copied into a raw inode buffer in
5263 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5264 * writeback.
5265 *
5266 * Note that we are absolutely dependent upon all inode dirtiers doing the
5267 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5268 * which we are interested.
5269 *
5270 * It would be a bug for them to not do this.  The code:
5271 *
5272 *	mark_inode_dirty(inode)
5273 *	stuff();
5274 *	inode->i_size = expr;
5275 *
5276 * is in error because write_inode() could occur while `stuff()' is running,
5277 * and the new i_size will be lost.  Plus the inode will no longer be on the
5278 * superblock's dirty inode list.
5279 */
5280int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5281{
5282	int err;
5283
5284	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5285		return 0;
5286
5287	if (EXT4_SB(inode->i_sb)->s_journal) {
5288		if (ext4_journal_current_handle()) {
5289			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290			dump_stack();
5291			return -EIO;
5292		}
5293
5294		/*
5295		 * No need to force transaction in WB_SYNC_NONE mode. Also
5296		 * ext4_sync_fs() will force the commit after everything is
5297		 * written.
5298		 */
5299		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300			return 0;
5301
5302		err = ext4_force_commit(inode->i_sb);
5303	} else {
5304		struct ext4_iloc iloc;
5305
5306		err = __ext4_get_inode_loc(inode, &iloc, 0);
5307		if (err)
5308			return err;
5309		/*
5310		 * sync(2) will flush the whole buffer cache. No need to do
5311		 * it here separately for each inode.
5312		 */
5313		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5314			sync_dirty_buffer(iloc.bh);
5315		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5316			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5317					 "IO error syncing inode");
5318			err = -EIO;
5319		}
5320		brelse(iloc.bh);
5321	}
5322	return err;
5323}
5324
5325/*
5326 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5327 * buffers that are attached to a page stradding i_size and are undergoing
5328 * commit. In that case we have to wait for commit to finish and try again.
5329 */
5330static void ext4_wait_for_tail_page_commit(struct inode *inode)
5331{
5332	struct page *page;
5333	unsigned offset;
5334	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5335	tid_t commit_tid = 0;
5336	int ret;
5337
5338	offset = inode->i_size & (PAGE_SIZE - 1);
5339	/*
5340	 * All buffers in the last page remain valid? Then there's nothing to
5341	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5342	 * blocksize case
5343	 */
5344	if (offset > PAGE_SIZE - i_blocksize(inode))
5345		return;
5346	while (1) {
5347		page = find_lock_page(inode->i_mapping,
5348				      inode->i_size >> PAGE_SHIFT);
5349		if (!page)
5350			return;
5351		ret = __ext4_journalled_invalidatepage(page, offset,
5352						PAGE_SIZE - offset);
5353		unlock_page(page);
5354		put_page(page);
5355		if (ret != -EBUSY)
5356			return;
5357		commit_tid = 0;
5358		read_lock(&journal->j_state_lock);
5359		if (journal->j_committing_transaction)
5360			commit_tid = journal->j_committing_transaction->t_tid;
5361		read_unlock(&journal->j_state_lock);
5362		if (commit_tid)
5363			jbd2_log_wait_commit(journal, commit_tid);
5364	}
5365}
5366
5367/*
5368 * ext4_setattr()
5369 *
5370 * Called from notify_change.
5371 *
5372 * We want to trap VFS attempts to truncate the file as soon as
5373 * possible.  In particular, we want to make sure that when the VFS
5374 * shrinks i_size, we put the inode on the orphan list and modify
5375 * i_disksize immediately, so that during the subsequent flushing of
5376 * dirty pages and freeing of disk blocks, we can guarantee that any
5377 * commit will leave the blocks being flushed in an unused state on
5378 * disk.  (On recovery, the inode will get truncated and the blocks will
5379 * be freed, so we have a strong guarantee that no future commit will
5380 * leave these blocks visible to the user.)
5381 *
5382 * Another thing we have to assure is that if we are in ordered mode
5383 * and inode is still attached to the committing transaction, we must
5384 * we start writeout of all the dirty pages which are being truncated.
5385 * This way we are sure that all the data written in the previous
5386 * transaction are already on disk (truncate waits for pages under
5387 * writeback).
5388 *
5389 * Called with inode->i_mutex down.
5390 */
5391int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5392{
5393	struct inode *inode = d_inode(dentry);
5394	int error, rc = 0;
5395	int orphan = 0;
5396	const unsigned int ia_valid = attr->ia_valid;
5397
5398	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5399		return -EIO;
5400
5401	error = setattr_prepare(dentry, attr);
5402	if (error)
5403		return error;
5404
5405	error = fscrypt_prepare_setattr(dentry, attr);
5406	if (error)
5407		return error;
5408
5409	if (is_quota_modification(inode, attr)) {
5410		error = dquot_initialize(inode);
5411		if (error)
5412			return error;
5413	}
5414	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5415	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5416		handle_t *handle;
5417
5418		/* (user+group)*(old+new) structure, inode write (sb,
5419		 * inode block, ? - but truncate inode update has it) */
5420		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5421			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5422			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5423		if (IS_ERR(handle)) {
5424			error = PTR_ERR(handle);
5425			goto err_out;
5426		}
5427
5428		/* dquot_transfer() calls back ext4_get_inode_usage() which
5429		 * counts xattr inode references.
5430		 */
5431		down_read(&EXT4_I(inode)->xattr_sem);
5432		error = dquot_transfer(inode, attr);
5433		up_read(&EXT4_I(inode)->xattr_sem);
5434
5435		if (error) {
5436			ext4_journal_stop(handle);
5437			return error;
5438		}
5439		/* Update corresponding info in inode so that everything is in
5440		 * one transaction */
5441		if (attr->ia_valid & ATTR_UID)
5442			inode->i_uid = attr->ia_uid;
5443		if (attr->ia_valid & ATTR_GID)
5444			inode->i_gid = attr->ia_gid;
5445		error = ext4_mark_inode_dirty(handle, inode);
5446		ext4_journal_stop(handle);
5447	}
5448
5449	if (attr->ia_valid & ATTR_SIZE) {
5450		handle_t *handle;
5451		loff_t oldsize = inode->i_size;
5452		int shrink = (attr->ia_size <= inode->i_size);
5453
5454		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5455			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5456
5457			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5458				return -EFBIG;
5459		}
5460		if (!S_ISREG(inode->i_mode))
5461			return -EINVAL;
5462
5463		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5464			inode_inc_iversion(inode);
 
 
5465
5466		if (ext4_should_order_data(inode) &&
5467		    (attr->ia_size < inode->i_size)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5468			error = ext4_begin_ordered_truncate(inode,
5469							    attr->ia_size);
5470			if (error)
5471				goto err_out;
5472		}
5473		if (attr->ia_size != inode->i_size) {
5474			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5475			if (IS_ERR(handle)) {
5476				error = PTR_ERR(handle);
5477				goto err_out;
5478			}
5479			if (ext4_handle_valid(handle) && shrink) {
5480				error = ext4_orphan_add(handle, inode);
5481				orphan = 1;
5482			}
5483			/*
5484			 * Update c/mtime on truncate up, ext4_truncate() will
5485			 * update c/mtime in shrink case below
5486			 */
5487			if (!shrink) {
5488				inode->i_mtime = current_time(inode);
5489				inode->i_ctime = inode->i_mtime;
5490			}
5491			down_write(&EXT4_I(inode)->i_data_sem);
5492			EXT4_I(inode)->i_disksize = attr->ia_size;
5493			rc = ext4_mark_inode_dirty(handle, inode);
5494			if (!error)
5495				error = rc;
5496			/*
5497			 * We have to update i_size under i_data_sem together
5498			 * with i_disksize to avoid races with writeback code
5499			 * running ext4_wb_update_i_disksize().
5500			 */
5501			if (!error)
5502				i_size_write(inode, attr->ia_size);
5503			up_write(&EXT4_I(inode)->i_data_sem);
5504			ext4_journal_stop(handle);
5505			if (error) {
5506				if (orphan)
 
 
5507					ext4_orphan_del(NULL, inode);
 
 
 
 
 
5508				goto err_out;
5509			}
5510		}
5511		if (!shrink)
5512			pagecache_isize_extended(inode, oldsize, inode->i_size);
5513
5514		/*
5515		 * Blocks are going to be removed from the inode. Wait
5516		 * for dio in flight.  Temporarily disable
5517		 * dioread_nolock to prevent livelock.
5518		 */
5519		if (orphan) {
5520			if (!ext4_should_journal_data(inode)) {
5521				inode_dio_wait(inode);
5522			} else
5523				ext4_wait_for_tail_page_commit(inode);
5524		}
5525		down_write(&EXT4_I(inode)->i_mmap_sem);
5526		/*
5527		 * Truncate pagecache after we've waited for commit
5528		 * in data=journal mode to make pages freeable.
5529		 */
5530		truncate_pagecache(inode, inode->i_size);
5531		if (shrink) {
5532			rc = ext4_truncate(inode);
5533			if (rc)
5534				error = rc;
5535		}
5536		up_write(&EXT4_I(inode)->i_mmap_sem);
5537	}
5538
5539	if (!error) {
5540		setattr_copy(inode, attr);
5541		mark_inode_dirty(inode);
5542	}
5543
5544	/*
5545	 * If the call to ext4_truncate failed to get a transaction handle at
5546	 * all, we need to clean up the in-core orphan list manually.
5547	 */
5548	if (orphan && inode->i_nlink)
5549		ext4_orphan_del(NULL, inode);
5550
5551	if (!error && (ia_valid & ATTR_MODE))
5552		rc = posix_acl_chmod(inode, inode->i_mode);
5553
5554err_out:
5555	ext4_std_error(inode->i_sb, error);
5556	if (!error)
5557		error = rc;
5558	return error;
5559}
5560
5561int ext4_getattr(const struct path *path, struct kstat *stat,
5562		 u32 request_mask, unsigned int query_flags)
5563{
5564	struct inode *inode = d_inode(path->dentry);
5565	struct ext4_inode *raw_inode;
5566	struct ext4_inode_info *ei = EXT4_I(inode);
5567	unsigned int flags;
5568
5569	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5570		stat->result_mask |= STATX_BTIME;
5571		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5572		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5573	}
5574
5575	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5576	if (flags & EXT4_APPEND_FL)
5577		stat->attributes |= STATX_ATTR_APPEND;
5578	if (flags & EXT4_COMPR_FL)
5579		stat->attributes |= STATX_ATTR_COMPRESSED;
5580	if (flags & EXT4_ENCRYPT_FL)
5581		stat->attributes |= STATX_ATTR_ENCRYPTED;
5582	if (flags & EXT4_IMMUTABLE_FL)
5583		stat->attributes |= STATX_ATTR_IMMUTABLE;
5584	if (flags & EXT4_NODUMP_FL)
5585		stat->attributes |= STATX_ATTR_NODUMP;
5586
5587	stat->attributes_mask |= (STATX_ATTR_APPEND |
5588				  STATX_ATTR_COMPRESSED |
5589				  STATX_ATTR_ENCRYPTED |
5590				  STATX_ATTR_IMMUTABLE |
5591				  STATX_ATTR_NODUMP);
5592
 
5593	generic_fillattr(inode, stat);
5594	return 0;
5595}
5596
5597int ext4_file_getattr(const struct path *path, struct kstat *stat,
5598		      u32 request_mask, unsigned int query_flags)
5599{
5600	struct inode *inode = d_inode(path->dentry);
5601	u64 delalloc_blocks;
5602
5603	ext4_getattr(path, stat, request_mask, query_flags);
5604
5605	/*
5606	 * If there is inline data in the inode, the inode will normally not
5607	 * have data blocks allocated (it may have an external xattr block).
5608	 * Report at least one sector for such files, so tools like tar, rsync,
5609	 * others don't incorrectly think the file is completely sparse.
5610	 */
5611	if (unlikely(ext4_has_inline_data(inode)))
5612		stat->blocks += (stat->size + 511) >> 9;
5613
5614	/*
5615	 * We can't update i_blocks if the block allocation is delayed
5616	 * otherwise in the case of system crash before the real block
5617	 * allocation is done, we will have i_blocks inconsistent with
5618	 * on-disk file blocks.
5619	 * We always keep i_blocks updated together with real
5620	 * allocation. But to not confuse with user, stat
5621	 * will return the blocks that include the delayed allocation
5622	 * blocks for this file.
5623	 */
5624	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5625				   EXT4_I(inode)->i_reserved_data_blocks);
5626	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
 
5627	return 0;
5628}
5629
5630static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5631				   int pextents)
5632{
5633	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5634		return ext4_ind_trans_blocks(inode, lblocks);
5635	return ext4_ext_index_trans_blocks(inode, pextents);
5636}
5637
5638/*
5639 * Account for index blocks, block groups bitmaps and block group
5640 * descriptor blocks if modify datablocks and index blocks
5641 * worse case, the indexs blocks spread over different block groups
5642 *
5643 * If datablocks are discontiguous, they are possible to spread over
5644 * different block groups too. If they are contiguous, with flexbg,
5645 * they could still across block group boundary.
5646 *
5647 * Also account for superblock, inode, quota and xattr blocks
5648 */
5649static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5650				  int pextents)
5651{
5652	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5653	int gdpblocks;
5654	int idxblocks;
5655	int ret = 0;
5656
5657	/*
5658	 * How many index blocks need to touch to map @lblocks logical blocks
5659	 * to @pextents physical extents?
 
 
 
 
5660	 */
5661	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5662
5663	ret = idxblocks;
5664
5665	/*
5666	 * Now let's see how many group bitmaps and group descriptors need
5667	 * to account
5668	 */
5669	groups = idxblocks + pextents;
 
 
 
 
 
5670	gdpblocks = groups;
5671	if (groups > ngroups)
5672		groups = ngroups;
5673	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5674		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5675
5676	/* bitmaps and block group descriptor blocks */
5677	ret += groups + gdpblocks;
5678
5679	/* Blocks for super block, inode, quota and xattr blocks */
5680	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5681
5682	return ret;
5683}
5684
5685/*
5686 * Calculate the total number of credits to reserve to fit
5687 * the modification of a single pages into a single transaction,
5688 * which may include multiple chunks of block allocations.
5689 *
5690 * This could be called via ext4_write_begin()
5691 *
5692 * We need to consider the worse case, when
5693 * one new block per extent.
5694 */
5695int ext4_writepage_trans_blocks(struct inode *inode)
5696{
5697	int bpp = ext4_journal_blocks_per_page(inode);
5698	int ret;
5699
5700	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5701
5702	/* Account for data blocks for journalled mode */
5703	if (ext4_should_journal_data(inode))
5704		ret += bpp;
5705	return ret;
5706}
5707
5708/*
5709 * Calculate the journal credits for a chunk of data modification.
5710 *
5711 * This is called from DIO, fallocate or whoever calling
5712 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5713 *
5714 * journal buffers for data blocks are not included here, as DIO
5715 * and fallocate do no need to journal data buffers.
5716 */
5717int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5718{
5719	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5720}
5721
5722/*
5723 * The caller must have previously called ext4_reserve_inode_write().
5724 * Give this, we know that the caller already has write access to iloc->bh.
5725 */
5726int ext4_mark_iloc_dirty(handle_t *handle,
5727			 struct inode *inode, struct ext4_iloc *iloc)
5728{
5729	int err = 0;
5730
5731	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5732		return -EIO;
5733
5734	if (IS_I_VERSION(inode))
5735		inode_inc_iversion(inode);
5736
5737	/* the do_update_inode consumes one bh->b_count */
5738	get_bh(iloc->bh);
5739
5740	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741	err = ext4_do_update_inode(handle, inode, iloc);
5742	put_bh(iloc->bh);
5743	return err;
5744}
5745
5746/*
5747 * On success, We end up with an outstanding reference count against
5748 * iloc->bh.  This _must_ be cleaned up later.
5749 */
5750
5751int
5752ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753			 struct ext4_iloc *iloc)
5754{
5755	int err;
5756
5757	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758		return -EIO;
5759
5760	err = ext4_get_inode_loc(inode, iloc);
5761	if (!err) {
5762		BUFFER_TRACE(iloc->bh, "get_write_access");
5763		err = ext4_journal_get_write_access(handle, iloc->bh);
5764		if (err) {
5765			brelse(iloc->bh);
5766			iloc->bh = NULL;
5767		}
5768	}
5769	ext4_std_error(inode->i_sb, err);
5770	return err;
5771}
5772
5773static int __ext4_expand_extra_isize(struct inode *inode,
5774				     unsigned int new_extra_isize,
5775				     struct ext4_iloc *iloc,
5776				     handle_t *handle, int *no_expand)
 
 
 
 
5777{
5778	struct ext4_inode *raw_inode;
5779	struct ext4_xattr_ibody_header *header;
5780	int error;
5781
5782	raw_inode = ext4_raw_inode(iloc);
 
 
 
5783
5784	header = IHDR(inode, raw_inode);
5785
5786	/* No extended attributes present */
5787	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790		       EXT4_I(inode)->i_extra_isize, 0,
5791		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793		return 0;
5794	}
5795
5796	/* try to expand with EAs present */
5797	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798					   raw_inode, handle);
5799	if (error) {
5800		/*
5801		 * Inode size expansion failed; don't try again
5802		 */
5803		*no_expand = 1;
5804	}
5805
5806	return error;
5807}
5808
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814					  unsigned int new_extra_isize,
5815					  struct ext4_iloc iloc,
5816					  handle_t *handle)
5817{
5818	int no_expand;
5819	int error;
5820
5821	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822		return -EOVERFLOW;
5823
5824	/*
5825	 * In nojournal mode, we can immediately attempt to expand
5826	 * the inode.  When journaled, we first need to obtain extra
5827	 * buffer credits since we may write into the EA block
5828	 * with this same handle. If journal_extend fails, then it will
5829	 * only result in a minor loss of functionality for that inode.
5830	 * If this is felt to be critical, then e2fsck should be run to
5831	 * force a large enough s_min_extra_isize.
5832	 */
5833	if (ext4_handle_valid(handle) &&
5834	    jbd2_journal_extend(handle,
5835				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5836		return -ENOSPC;
5837
5838	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5839		return -EBUSY;
5840
5841	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5842					  handle, &no_expand);
5843	ext4_write_unlock_xattr(inode, &no_expand);
5844
5845	return error;
5846}
5847
5848int ext4_expand_extra_isize(struct inode *inode,
5849			    unsigned int new_extra_isize,
5850			    struct ext4_iloc *iloc)
5851{
5852	handle_t *handle;
5853	int no_expand;
5854	int error, rc;
5855
5856	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5857		brelse(iloc->bh);
5858		return -EOVERFLOW;
5859	}
5860
5861	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5862				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5863	if (IS_ERR(handle)) {
5864		error = PTR_ERR(handle);
5865		brelse(iloc->bh);
5866		return error;
5867	}
5868
5869	ext4_write_lock_xattr(inode, &no_expand);
5870
5871	BUFFER_TRACE(iloc.bh, "get_write_access");
5872	error = ext4_journal_get_write_access(handle, iloc->bh);
5873	if (error) {
5874		brelse(iloc->bh);
5875		goto out_stop;
5876	}
5877
5878	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5879					  handle, &no_expand);
5880
5881	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5882	if (!error)
5883		error = rc;
5884
5885	ext4_write_unlock_xattr(inode, &no_expand);
5886out_stop:
5887	ext4_journal_stop(handle);
5888	return error;
5889}
5890
5891/*
5892 * What we do here is to mark the in-core inode as clean with respect to inode
5893 * dirtiness (it may still be data-dirty).
5894 * This means that the in-core inode may be reaped by prune_icache
5895 * without having to perform any I/O.  This is a very good thing,
5896 * because *any* task may call prune_icache - even ones which
5897 * have a transaction open against a different journal.
5898 *
5899 * Is this cheating?  Not really.  Sure, we haven't written the
5900 * inode out, but prune_icache isn't a user-visible syncing function.
5901 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5902 * we start and wait on commits.
 
 
 
 
 
 
 
 
5903 */
5904int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5905{
5906	struct ext4_iloc iloc;
5907	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908	int err;
 
5909
5910	might_sleep();
5911	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912	err = ext4_reserve_inode_write(handle, inode, &iloc);
5913	if (err)
5914		return err;
5915
5916	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918					       iloc, handle);
5919
5920	return ext4_mark_iloc_dirty(handle, inode, &iloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5921}
5922
5923/*
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5925 *
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5929 *
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5932 *
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5936 *
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5940 */
5941void ext4_dirty_inode(struct inode *inode, int flags)
5942{
5943	handle_t *handle;
5944
5945	if (flags == I_DIRTY_TIME)
5946		return;
5947	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948	if (IS_ERR(handle))
5949		goto out;
5950
5951	ext4_mark_inode_dirty(handle, inode);
5952
5953	ext4_journal_stop(handle);
5954out:
5955	return;
5956}
5957
5958#if 0
5959/*
5960 * Bind an inode's backing buffer_head into this transaction, to prevent
5961 * it from being flushed to disk early.  Unlike
5962 * ext4_reserve_inode_write, this leaves behind no bh reference and
5963 * returns no iloc structure, so the caller needs to repeat the iloc
5964 * lookup to mark the inode dirty later.
5965 */
5966static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5967{
5968	struct ext4_iloc iloc;
5969
5970	int err = 0;
5971	if (handle) {
5972		err = ext4_get_inode_loc(inode, &iloc);
5973		if (!err) {
5974			BUFFER_TRACE(iloc.bh, "get_write_access");
5975			err = jbd2_journal_get_write_access(handle, iloc.bh);
5976			if (!err)
5977				err = ext4_handle_dirty_metadata(handle,
5978								 NULL,
5979								 iloc.bh);
5980			brelse(iloc.bh);
5981		}
5982	}
5983	ext4_std_error(inode->i_sb, err);
5984	return err;
5985}
5986#endif
5987
5988int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989{
5990	journal_t *journal;
5991	handle_t *handle;
5992	int err;
5993	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994
5995	/*
5996	 * We have to be very careful here: changing a data block's
5997	 * journaling status dynamically is dangerous.  If we write a
5998	 * data block to the journal, change the status and then delete
5999	 * that block, we risk forgetting to revoke the old log record
6000	 * from the journal and so a subsequent replay can corrupt data.
6001	 * So, first we make sure that the journal is empty and that
6002	 * nobody is changing anything.
6003	 */
6004
6005	journal = EXT4_JOURNAL(inode);
6006	if (!journal)
6007		return 0;
6008	if (is_journal_aborted(journal))
6009		return -EROFS;
6010
6011	/* Wait for all existing dio workers */
6012	inode_dio_wait(inode);
6013
6014	/*
6015	 * Before flushing the journal and switching inode's aops, we have
6016	 * to flush all dirty data the inode has. There can be outstanding
6017	 * delayed allocations, there can be unwritten extents created by
6018	 * fallocate or buffered writes in dioread_nolock mode covered by
6019	 * dirty data which can be converted only after flushing the dirty
6020	 * data (and journalled aops don't know how to handle these cases).
6021	 */
6022	if (val) {
6023		down_write(&EXT4_I(inode)->i_mmap_sem);
6024		err = filemap_write_and_wait(inode->i_mapping);
6025		if (err < 0) {
6026			up_write(&EXT4_I(inode)->i_mmap_sem);
6027			return err;
6028		}
6029	}
6030
6031	percpu_down_write(&sbi->s_journal_flag_rwsem);
6032	jbd2_journal_lock_updates(journal);
6033
6034	/*
6035	 * OK, there are no updates running now, and all cached data is
6036	 * synced to disk.  We are now in a completely consistent state
6037	 * which doesn't have anything in the journal, and we know that
6038	 * no filesystem updates are running, so it is safe to modify
6039	 * the inode's in-core data-journaling state flag now.
6040	 */
6041
6042	if (val)
6043		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044	else {
6045		err = jbd2_journal_flush(journal);
6046		if (err < 0) {
6047			jbd2_journal_unlock_updates(journal);
6048			percpu_up_write(&sbi->s_journal_flag_rwsem);
6049			return err;
6050		}
6051		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052	}
6053	ext4_set_aops(inode);
6054
6055	jbd2_journal_unlock_updates(journal);
6056	percpu_up_write(&sbi->s_journal_flag_rwsem);
6057
6058	if (val)
6059		up_write(&EXT4_I(inode)->i_mmap_sem);
6060
6061	/* Finally we can mark the inode as dirty. */
6062
6063	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064	if (IS_ERR(handle))
6065		return PTR_ERR(handle);
6066
6067	err = ext4_mark_inode_dirty(handle, inode);
6068	ext4_handle_sync(handle);
6069	ext4_journal_stop(handle);
6070	ext4_std_error(inode->i_sb, err);
6071
6072	return err;
6073}
6074
6075static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6076{
6077	return !buffer_mapped(bh);
6078}
6079
6080int ext4_page_mkwrite(struct vm_fault *vmf)
6081{
6082	struct vm_area_struct *vma = vmf->vma;
6083	struct page *page = vmf->page;
6084	loff_t size;
6085	unsigned long len;
6086	int ret;
6087	struct file *file = vma->vm_file;
6088	struct inode *inode = file_inode(file);
6089	struct address_space *mapping = inode->i_mapping;
6090	handle_t *handle;
6091	get_block_t *get_block;
6092	int retries = 0;
6093
6094	sb_start_pagefault(inode->i_sb);
6095	file_update_time(vma->vm_file);
6096
6097	down_read(&EXT4_I(inode)->i_mmap_sem);
6098
6099	ret = ext4_convert_inline_data(inode);
6100	if (ret)
6101		goto out_ret;
6102
6103	/* Delalloc case is easy... */
6104	if (test_opt(inode->i_sb, DELALLOC) &&
6105	    !ext4_should_journal_data(inode) &&
6106	    !ext4_nonda_switch(inode->i_sb)) {
6107		do {
6108			ret = block_page_mkwrite(vma, vmf,
6109						   ext4_da_get_block_prep);
6110		} while (ret == -ENOSPC &&
6111		       ext4_should_retry_alloc(inode->i_sb, &retries));
6112		goto out_ret;
6113	}
6114
6115	lock_page(page);
6116	size = i_size_read(inode);
6117	/* Page got truncated from under us? */
6118	if (page->mapping != mapping || page_offset(page) > size) {
6119		unlock_page(page);
6120		ret = VM_FAULT_NOPAGE;
6121		goto out;
6122	}
6123
6124	if (page->index == size >> PAGE_SHIFT)
6125		len = size & ~PAGE_MASK;
6126	else
6127		len = PAGE_SIZE;
6128	/*
6129	 * Return if we have all the buffers mapped. This avoids the need to do
6130	 * journal_start/journal_stop which can block and take a long time
6131	 */
6132	if (page_has_buffers(page)) {
6133		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6134					    0, len, NULL,
6135					    ext4_bh_unmapped)) {
6136			/* Wait so that we don't change page under IO */
6137			wait_for_stable_page(page);
6138			ret = VM_FAULT_LOCKED;
6139			goto out;
6140		}
6141	}
6142	unlock_page(page);
6143	/* OK, we need to fill the hole... */
6144	if (ext4_should_dioread_nolock(inode))
6145		get_block = ext4_get_block_unwritten;
6146	else
6147		get_block = ext4_get_block;
6148retry_alloc:
6149	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150				    ext4_writepage_trans_blocks(inode));
6151	if (IS_ERR(handle)) {
6152		ret = VM_FAULT_SIGBUS;
6153		goto out;
6154	}
6155	ret = block_page_mkwrite(vma, vmf, get_block);
6156	if (!ret && ext4_should_journal_data(inode)) {
6157		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6158			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6159			unlock_page(page);
6160			ret = VM_FAULT_SIGBUS;
6161			ext4_journal_stop(handle);
6162			goto out;
6163		}
6164		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165	}
6166	ext4_journal_stop(handle);
6167	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6168		goto retry_alloc;
6169out_ret:
6170	ret = block_page_mkwrite_return(ret);
6171out:
6172	up_read(&EXT4_I(inode)->i_mmap_sem);
6173	sb_end_pagefault(inode->i_sb);
6174	return ret;
6175}
6176
6177int ext4_filemap_fault(struct vm_fault *vmf)
6178{
6179	struct inode *inode = file_inode(vmf->vma->vm_file);
6180	int err;
6181
6182	down_read(&EXT4_I(inode)->i_mmap_sem);
6183	err = filemap_fault(vmf);
6184	up_read(&EXT4_I(inode)->i_mmap_sem);
6185
6186	return err;
6187}