Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/jbd2.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
 
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/ratelimit.h>
  40
  41#include "ext4_jbd2.h"
  42#include "xattr.h"
  43#include "acl.h"
  44#include "truncate.h"
  45
  46#include <trace/events/ext4.h>
  47
  48#define MPAGE_DA_EXTENT_TAIL 0x01
  49
  50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  51			      struct ext4_inode_info *ei)
  52{
  53	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54	__u16 csum_lo;
  55	__u16 csum_hi = 0;
  56	__u32 csum;
  57
  58	csum_lo = raw->i_checksum_lo;
  59	raw->i_checksum_lo = 0;
  60	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  61	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  62		csum_hi = raw->i_checksum_hi;
  63		raw->i_checksum_hi = 0;
  64	}
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  67			   EXT4_INODE_SIZE(inode->i_sb));
  68
  69	raw->i_checksum_lo = csum_lo;
  70	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  71	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  72		raw->i_checksum_hi = csum_hi;
  73
  74	return csum;
  75}
  76
  77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  78				  struct ext4_inode_info *ei)
  79{
  80	__u32 provided, calculated;
  81
  82	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  83	    cpu_to_le32(EXT4_OS_LINUX) ||
  84	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  85		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  86		return 1;
  87
  88	provided = le16_to_cpu(raw->i_checksum_lo);
  89	calculated = ext4_inode_csum(inode, raw, ei);
  90	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  91	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  92		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  93	else
  94		calculated &= 0xFFFF;
  95
  96	return provided == calculated;
  97}
  98
  99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 100				struct ext4_inode_info *ei)
 101{
 102	__u32 csum;
 103
 104	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 105	    cpu_to_le32(EXT4_OS_LINUX) ||
 106	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 107		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 108		return;
 109
 110	csum = ext4_inode_csum(inode, raw, ei);
 111	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 112	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 113	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 114		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 115}
 116
 117static inline int ext4_begin_ordered_truncate(struct inode *inode,
 118					      loff_t new_size)
 119{
 120	trace_ext4_begin_ordered_truncate(inode, new_size);
 121	/*
 122	 * If jinode is zero, then we never opened the file for
 123	 * writing, so there's no need to call
 124	 * jbd2_journal_begin_ordered_truncate() since there's no
 125	 * outstanding writes we need to flush.
 126	 */
 127	if (!EXT4_I(inode)->jinode)
 128		return 0;
 129	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 130						   EXT4_I(inode)->jinode,
 131						   new_size);
 132}
 133
 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
 135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
 136				   struct buffer_head *bh_result, int create);
 137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
 138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
 139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
 142		struct inode *inode, struct page *page, loff_t from,
 143		loff_t length, int flags);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 */
 148static int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150	int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151		(inode->i_sb->s_blocksize >> 9) : 0;
 
 
 
 152
 153	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 154}
 155
 156/*
 157 * Restart the transaction associated with *handle.  This does a commit,
 158 * so before we call here everything must be consistently dirtied against
 159 * this transaction.
 160 */
 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 162				 int nblocks)
 163{
 164	int ret;
 165
 166	/*
 167	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 168	 * moment, get_block can be called only for blocks inside i_size since
 169	 * page cache has been already dropped and writes are blocked by
 170	 * i_mutex. So we can safely drop the i_data_sem here.
 171	 */
 172	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 173	jbd_debug(2, "restarting handle %p\n", handle);
 174	up_write(&EXT4_I(inode)->i_data_sem);
 175	ret = ext4_journal_restart(handle, nblocks);
 176	down_write(&EXT4_I(inode)->i_data_sem);
 177	ext4_discard_preallocations(inode);
 178
 179	return ret;
 180}
 181
 182/*
 183 * Called at the last iput() if i_nlink is zero.
 184 */
 185void ext4_evict_inode(struct inode *inode)
 186{
 187	handle_t *handle;
 188	int err;
 189
 190	trace_ext4_evict_inode(inode);
 191
 192	ext4_ioend_wait(inode);
 193
 194	if (inode->i_nlink) {
 195		/*
 196		 * When journalling data dirty buffers are tracked only in the
 197		 * journal. So although mm thinks everything is clean and
 198		 * ready for reaping the inode might still have some pages to
 199		 * write in the running transaction or waiting to be
 200		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 201		 * (via truncate_inode_pages()) to discard these buffers can
 202		 * cause data loss. Also even if we did not discard these
 203		 * buffers, we would have no way to find them after the inode
 204		 * is reaped and thus user could see stale data if he tries to
 205		 * read them before the transaction is checkpointed. So be
 206		 * careful and force everything to disk here... We use
 207		 * ei->i_datasync_tid to store the newest transaction
 208		 * containing inode's data.
 209		 *
 210		 * Note that directories do not have this problem because they
 211		 * don't use page cache.
 212		 */
 213		if (ext4_should_journal_data(inode) &&
 214		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 
 215			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 216			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 217
 218			jbd2_log_start_commit(journal, commit_tid);
 219			jbd2_log_wait_commit(journal, commit_tid);
 220			filemap_write_and_wait(&inode->i_data);
 221		}
 222		truncate_inode_pages(&inode->i_data, 0);
 
 223		goto no_delete;
 224	}
 225
 226	if (!is_bad_inode(inode))
 227		dquot_initialize(inode);
 
 228
 229	if (ext4_should_order_data(inode))
 230		ext4_begin_ordered_truncate(inode, 0);
 231	truncate_inode_pages(&inode->i_data, 0);
 232
 233	if (is_bad_inode(inode))
 234		goto no_delete;
 235
 236	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 
 
 
 
 
 
 237	if (IS_ERR(handle)) {
 238		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 239		/*
 240		 * If we're going to skip the normal cleanup, we still need to
 241		 * make sure that the in-core orphan linked list is properly
 242		 * cleaned up.
 243		 */
 244		ext4_orphan_del(NULL, inode);
 
 245		goto no_delete;
 246	}
 247
 248	if (IS_SYNC(inode))
 249		ext4_handle_sync(handle);
 250	inode->i_size = 0;
 251	err = ext4_mark_inode_dirty(handle, inode);
 252	if (err) {
 253		ext4_warning(inode->i_sb,
 254			     "couldn't mark inode dirty (err %d)", err);
 255		goto stop_handle;
 256	}
 257	if (inode->i_blocks)
 258		ext4_truncate(inode);
 259
 260	/*
 261	 * ext4_ext_truncate() doesn't reserve any slop when it
 262	 * restarts journal transactions; therefore there may not be
 263	 * enough credits left in the handle to remove the inode from
 264	 * the orphan list and set the dtime field.
 265	 */
 266	if (!ext4_handle_has_enough_credits(handle, 3)) {
 267		err = ext4_journal_extend(handle, 3);
 268		if (err > 0)
 269			err = ext4_journal_restart(handle, 3);
 270		if (err != 0) {
 271			ext4_warning(inode->i_sb,
 272				     "couldn't extend journal (err %d)", err);
 273		stop_handle:
 274			ext4_journal_stop(handle);
 275			ext4_orphan_del(NULL, inode);
 
 276			goto no_delete;
 277		}
 278	}
 279
 280	/*
 281	 * Kill off the orphan record which ext4_truncate created.
 282	 * AKPM: I think this can be inside the above `if'.
 283	 * Note that ext4_orphan_del() has to be able to cope with the
 284	 * deletion of a non-existent orphan - this is because we don't
 285	 * know if ext4_truncate() actually created an orphan record.
 286	 * (Well, we could do this if we need to, but heck - it works)
 287	 */
 288	ext4_orphan_del(handle, inode);
 289	EXT4_I(inode)->i_dtime	= get_seconds();
 290
 291	/*
 292	 * One subtle ordering requirement: if anything has gone wrong
 293	 * (transaction abort, IO errors, whatever), then we can still
 294	 * do these next steps (the fs will already have been marked as
 295	 * having errors), but we can't free the inode if the mark_dirty
 296	 * fails.
 297	 */
 298	if (ext4_mark_inode_dirty(handle, inode))
 299		/* If that failed, just do the required in-core inode clear. */
 300		ext4_clear_inode(inode);
 301	else
 302		ext4_free_inode(handle, inode);
 303	ext4_journal_stop(handle);
 
 304	return;
 305no_delete:
 306	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 307}
 308
 309#ifdef CONFIG_QUOTA
 310qsize_t *ext4_get_reserved_space(struct inode *inode)
 311{
 312	return &EXT4_I(inode)->i_reserved_quota;
 313}
 314#endif
 315
 316/*
 317 * Calculate the number of metadata blocks need to reserve
 318 * to allocate a block located at @lblock
 319 */
 320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 321{
 322	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 323		return ext4_ext_calc_metadata_amount(inode, lblock);
 324
 325	return ext4_ind_calc_metadata_amount(inode, lblock);
 326}
 327
 328/*
 329 * Called with i_data_sem down, which is important since we can call
 330 * ext4_discard_preallocations() from here.
 331 */
 332void ext4_da_update_reserve_space(struct inode *inode,
 333					int used, int quota_claim)
 334{
 335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 336	struct ext4_inode_info *ei = EXT4_I(inode);
 337
 338	spin_lock(&ei->i_block_reservation_lock);
 339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 340	if (unlikely(used > ei->i_reserved_data_blocks)) {
 341		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 342			 "with only %d reserved data blocks",
 343			 __func__, inode->i_ino, used,
 344			 ei->i_reserved_data_blocks);
 345		WARN_ON(1);
 346		used = ei->i_reserved_data_blocks;
 347	}
 348
 349	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
 350		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
 351			 "with only %d reserved metadata blocks\n", __func__,
 352			 inode->i_ino, ei->i_allocated_meta_blocks,
 353			 ei->i_reserved_meta_blocks);
 354		WARN_ON(1);
 355		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
 356	}
 357
 358	/* Update per-inode reservations */
 359	ei->i_reserved_data_blocks -= used;
 360	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 361	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 362			   used + ei->i_allocated_meta_blocks);
 363	ei->i_allocated_meta_blocks = 0;
 364
 365	if (ei->i_reserved_data_blocks == 0) {
 366		/*
 367		 * We can release all of the reserved metadata blocks
 368		 * only when we have written all of the delayed
 369		 * allocation blocks.
 370		 */
 371		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 372				   ei->i_reserved_meta_blocks);
 373		ei->i_reserved_meta_blocks = 0;
 374		ei->i_da_metadata_calc_len = 0;
 375	}
 376	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 377
 378	/* Update quota subsystem for data blocks */
 379	if (quota_claim)
 380		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 381	else {
 382		/*
 383		 * We did fallocate with an offset that is already delayed
 384		 * allocated. So on delayed allocated writeback we should
 385		 * not re-claim the quota for fallocated blocks.
 386		 */
 387		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 388	}
 389
 390	/*
 391	 * If we have done all the pending block allocations and if
 392	 * there aren't any writers on the inode, we can discard the
 393	 * inode's preallocations.
 394	 */
 395	if ((ei->i_reserved_data_blocks == 0) &&
 396	    (atomic_read(&inode->i_writecount) == 0))
 397		ext4_discard_preallocations(inode);
 398}
 399
 400static int __check_block_validity(struct inode *inode, const char *func,
 401				unsigned int line,
 402				struct ext4_map_blocks *map)
 403{
 404	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 405				   map->m_len)) {
 406		ext4_error_inode(inode, func, line, map->m_pblk,
 407				 "lblock %lu mapped to illegal pblock "
 408				 "(length %d)", (unsigned long) map->m_lblk,
 409				 map->m_len);
 410		return -EIO;
 411	}
 412	return 0;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418/*
 419 * Return the number of contiguous dirty pages in a given inode
 420 * starting at page frame idx.
 421 */
 422static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 423				    unsigned int max_pages)
 424{
 425	struct address_space *mapping = inode->i_mapping;
 426	pgoff_t	index;
 427	struct pagevec pvec;
 428	pgoff_t num = 0;
 429	int i, nr_pages, done = 0;
 430
 431	if (max_pages == 0)
 432		return 0;
 433	pagevec_init(&pvec, 0);
 434	while (!done) {
 435		index = idx;
 436		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 437					      PAGECACHE_TAG_DIRTY,
 438					      (pgoff_t)PAGEVEC_SIZE);
 439		if (nr_pages == 0)
 440			break;
 441		for (i = 0; i < nr_pages; i++) {
 442			struct page *page = pvec.pages[i];
 443			struct buffer_head *bh, *head;
 444
 445			lock_page(page);
 446			if (unlikely(page->mapping != mapping) ||
 447			    !PageDirty(page) ||
 448			    PageWriteback(page) ||
 449			    page->index != idx) {
 450				done = 1;
 451				unlock_page(page);
 452				break;
 453			}
 454			if (page_has_buffers(page)) {
 455				bh = head = page_buffers(page);
 456				do {
 457					if (!buffer_delay(bh) &&
 458					    !buffer_unwritten(bh))
 459						done = 1;
 460					bh = bh->b_this_page;
 461				} while (!done && (bh != head));
 462			}
 463			unlock_page(page);
 464			if (done)
 465				break;
 466			idx++;
 467			num++;
 468			if (num >= max_pages) {
 469				done = 1;
 470				break;
 471			}
 472		}
 473		pagevec_release(&pvec);
 474	}
 475	return num;
 476}
 477
 478/*
 479 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 480 */
 481static void set_buffers_da_mapped(struct inode *inode,
 482				   struct ext4_map_blocks *map)
 483{
 484	struct address_space *mapping = inode->i_mapping;
 485	struct pagevec pvec;
 486	int i, nr_pages;
 487	pgoff_t index, end;
 488
 489	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
 490	end = (map->m_lblk + map->m_len - 1) >>
 491		(PAGE_CACHE_SHIFT - inode->i_blkbits);
 492
 493	pagevec_init(&pvec, 0);
 494	while (index <= end) {
 495		nr_pages = pagevec_lookup(&pvec, mapping, index,
 496					  min(end - index + 1,
 497					      (pgoff_t)PAGEVEC_SIZE));
 498		if (nr_pages == 0)
 499			break;
 500		for (i = 0; i < nr_pages; i++) {
 501			struct page *page = pvec.pages[i];
 502			struct buffer_head *bh, *head;
 503
 504			if (unlikely(page->mapping != mapping) ||
 505			    !PageDirty(page))
 506				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508			if (page_has_buffers(page)) {
 509				bh = head = page_buffers(page);
 510				do {
 511					set_buffer_da_mapped(bh);
 512					bh = bh->b_this_page;
 513				} while (bh != head);
 514			}
 515			index++;
 516		}
 517		pagevec_release(&pvec);
 
 
 
 
 518	}
 519}
 
 520
 521/*
 522 * The ext4_map_blocks() function tries to look up the requested blocks,
 523 * and returns if the blocks are already mapped.
 524 *
 525 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 526 * and store the allocated blocks in the result buffer head and mark it
 527 * mapped.
 528 *
 529 * If file type is extents based, it will call ext4_ext_map_blocks(),
 530 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 531 * based files
 532 *
 533 * On success, it returns the number of blocks being mapped or allocate.
 534 * if create==0 and the blocks are pre-allocated and uninitialized block,
 535 * the result buffer head is unmapped. If the create ==1, it will make sure
 536 * the buffer head is mapped.
 537 *
 538 * It returns 0 if plain look up failed (blocks have not been allocated), in
 539 * that case, buffer head is unmapped
 
 540 *
 541 * It returns the error in case of allocation failure.
 542 */
 543int ext4_map_blocks(handle_t *handle, struct inode *inode,
 544		    struct ext4_map_blocks *map, int flags)
 545{
 
 546	int retval;
 
 
 
 
 
 
 547
 548	map->m_flags = 0;
 549	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 550		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 551		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552	/*
 553	 * Try to see if we can get the block without requesting a new
 554	 * file system block.
 555	 */
 556	down_read((&EXT4_I(inode)->i_data_sem));
 557	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 558		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 559					     EXT4_GET_BLOCKS_KEEP_SIZE);
 560	} else {
 561		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 562					     EXT4_GET_BLOCKS_KEEP_SIZE);
 563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564	up_read((&EXT4_I(inode)->i_data_sem));
 565
 
 566	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 567		int ret = check_block_validity(inode, map);
 568		if (ret != 0)
 569			return ret;
 570	}
 571
 572	/* If it is only a block(s) look up */
 573	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 574		return retval;
 575
 576	/*
 577	 * Returns if the blocks have already allocated
 578	 *
 579	 * Note that if blocks have been preallocated
 580	 * ext4_ext_get_block() returns the create = 0
 581	 * with buffer head unmapped.
 582	 */
 583	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 584		return retval;
 
 
 
 
 
 
 585
 586	/*
 587	 * When we call get_blocks without the create flag, the
 588	 * BH_Unwritten flag could have gotten set if the blocks
 589	 * requested were part of a uninitialized extent.  We need to
 590	 * clear this flag now that we are committed to convert all or
 591	 * part of the uninitialized extent to be an initialized
 592	 * extent.  This is because we need to avoid the combination
 593	 * of BH_Unwritten and BH_Mapped flags being simultaneously
 594	 * set on the buffer_head.
 595	 */
 596	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 597
 598	/*
 599	 * New blocks allocate and/or writing to uninitialized extent
 600	 * will possibly result in updating i_data, so we take
 601	 * the write lock of i_data_sem, and call get_blocks()
 602	 * with create == 1 flag.
 603	 */
 604	down_write((&EXT4_I(inode)->i_data_sem));
 605
 606	/*
 607	 * if the caller is from delayed allocation writeout path
 608	 * we have already reserved fs blocks for allocation
 609	 * let the underlying get_block() function know to
 610	 * avoid double accounting
 611	 */
 612	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 613		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 614	/*
 615	 * We need to check for EXT4 here because migrate
 616	 * could have changed the inode type in between
 617	 */
 618	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 619		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 620	} else {
 621		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 622
 623		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 624			/*
 625			 * We allocated new blocks which will result in
 626			 * i_data's format changing.  Force the migrate
 627			 * to fail by clearing migrate flags
 628			 */
 629			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 630		}
 631
 632		/*
 633		 * Update reserved blocks/metadata blocks after successful
 634		 * block allocation which had been deferred till now. We don't
 635		 * support fallocate for non extent files. So we can update
 636		 * reserve space here.
 637		 */
 638		if ((retval > 0) &&
 639			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 640			ext4_da_update_reserve_space(inode, retval, 1);
 641	}
 642	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
 643		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 644
 645		/* If we have successfully mapped the delayed allocated blocks,
 646		 * set the BH_Da_Mapped bit on them. Its important to do this
 647		 * under the protection of i_data_sem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648		 */
 649		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 650			set_buffers_da_mapped(inode, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651	}
 652
 
 653	up_write((&EXT4_I(inode)->i_data_sem));
 654	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 655		int ret = check_block_validity(inode, map);
 656		if (ret != 0)
 657			return ret;
 658	}
 659	return retval;
 660}
 661
 662/* Maximum number of blocks we map for direct IO at once. */
 663#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 665static int _ext4_get_block(struct inode *inode, sector_t iblock,
 666			   struct buffer_head *bh, int flags)
 667{
 668	handle_t *handle = ext4_journal_current_handle();
 669	struct ext4_map_blocks map;
 670	int ret = 0, started = 0;
 671	int dio_credits;
 
 
 672
 673	map.m_lblk = iblock;
 674	map.m_len = bh->b_size >> inode->i_blkbits;
 675
 676	if (flags && !handle) {
 677		/* Direct IO write... */
 678		if (map.m_len > DIO_MAX_BLOCKS)
 679			map.m_len = DIO_MAX_BLOCKS;
 680		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 681		handle = ext4_journal_start(inode, dio_credits);
 682		if (IS_ERR(handle)) {
 683			ret = PTR_ERR(handle);
 684			return ret;
 685		}
 686		started = 1;
 687	}
 688
 689	ret = ext4_map_blocks(handle, inode, &map, flags);
 690	if (ret > 0) {
 691		map_bh(bh, inode->i_sb, map.m_pblk);
 692		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 693		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 694		ret = 0;
 695	}
 696	if (started)
 697		ext4_journal_stop(handle);
 698	return ret;
 699}
 700
 701int ext4_get_block(struct inode *inode, sector_t iblock,
 702		   struct buffer_head *bh, int create)
 703{
 704	return _ext4_get_block(inode, iblock, bh,
 705			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 706}
 707
 708/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709 * `handle' can be NULL if create is zero
 710 */
 711struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 712				ext4_lblk_t block, int create, int *errp)
 713{
 714	struct ext4_map_blocks map;
 715	struct buffer_head *bh;
 716	int fatal = 0, err;
 
 717
 718	J_ASSERT(handle != NULL || create == 0);
 719
 720	map.m_lblk = block;
 721	map.m_len = 1;
 722	err = ext4_map_blocks(handle, inode, &map,
 723			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 724
 
 
 725	if (err < 0)
 726		*errp = err;
 727	if (err <= 0)
 728		return NULL;
 729	*errp = 0;
 730
 731	bh = sb_getblk(inode->i_sb, map.m_pblk);
 732	if (!bh) {
 733		*errp = -EIO;
 734		return NULL;
 735	}
 736	if (map.m_flags & EXT4_MAP_NEW) {
 737		J_ASSERT(create != 0);
 738		J_ASSERT(handle != NULL);
 739
 740		/*
 741		 * Now that we do not always journal data, we should
 742		 * keep in mind whether this should always journal the
 743		 * new buffer as metadata.  For now, regular file
 744		 * writes use ext4_get_block instead, so it's not a
 745		 * problem.
 746		 */
 747		lock_buffer(bh);
 748		BUFFER_TRACE(bh, "call get_create_access");
 749		fatal = ext4_journal_get_create_access(handle, bh);
 750		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 751			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 752			set_buffer_uptodate(bh);
 753		}
 754		unlock_buffer(bh);
 755		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 756		err = ext4_handle_dirty_metadata(handle, inode, bh);
 757		if (!fatal)
 758			fatal = err;
 759	} else {
 760		BUFFER_TRACE(bh, "not a new buffer");
 761	}
 762	if (fatal) {
 763		*errp = fatal;
 764		brelse(bh);
 765		bh = NULL;
 766	}
 767	return bh;
 
 
 
 768}
 769
 770struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 771			       ext4_lblk_t block, int create, int *err)
 772{
 773	struct buffer_head *bh;
 774
 775	bh = ext4_getblk(handle, inode, block, create, err);
 776	if (!bh)
 777		return bh;
 778	if (buffer_uptodate(bh))
 779		return bh;
 780	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 781	wait_on_buffer(bh);
 782	if (buffer_uptodate(bh))
 783		return bh;
 784	put_bh(bh);
 785	*err = -EIO;
 786	return NULL;
 787}
 788
 789static int walk_page_buffers(handle_t *handle,
 790			     struct buffer_head *head,
 791			     unsigned from,
 792			     unsigned to,
 793			     int *partial,
 794			     int (*fn)(handle_t *handle,
 795				       struct buffer_head *bh))
 796{
 797	struct buffer_head *bh;
 798	unsigned block_start, block_end;
 799	unsigned blocksize = head->b_size;
 800	int err, ret = 0;
 801	struct buffer_head *next;
 802
 803	for (bh = head, block_start = 0;
 804	     ret == 0 && (bh != head || !block_start);
 805	     block_start = block_end, bh = next) {
 806		next = bh->b_this_page;
 807		block_end = block_start + blocksize;
 808		if (block_end <= from || block_start >= to) {
 809			if (partial && !buffer_uptodate(bh))
 810				*partial = 1;
 811			continue;
 812		}
 813		err = (*fn)(handle, bh);
 814		if (!ret)
 815			ret = err;
 816	}
 817	return ret;
 818}
 819
 820/*
 821 * To preserve ordering, it is essential that the hole instantiation and
 822 * the data write be encapsulated in a single transaction.  We cannot
 823 * close off a transaction and start a new one between the ext4_get_block()
 824 * and the commit_write().  So doing the jbd2_journal_start at the start of
 825 * prepare_write() is the right place.
 826 *
 827 * Also, this function can nest inside ext4_writepage() ->
 828 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 829 * has generated enough buffer credits to do the whole page.  So we won't
 830 * block on the journal in that case, which is good, because the caller may
 831 * be PF_MEMALLOC.
 832 *
 833 * By accident, ext4 can be reentered when a transaction is open via
 834 * quota file writes.  If we were to commit the transaction while thus
 835 * reentered, there can be a deadlock - we would be holding a quota
 836 * lock, and the commit would never complete if another thread had a
 837 * transaction open and was blocking on the quota lock - a ranking
 838 * violation.
 839 *
 840 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 841 * will _not_ run commit under these circumstances because handle->h_ref
 842 * is elevated.  We'll still have enough credits for the tiny quotafile
 843 * write.
 844 */
 845static int do_journal_get_write_access(handle_t *handle,
 846				       struct buffer_head *bh)
 847{
 848	int dirty = buffer_dirty(bh);
 849	int ret;
 850
 851	if (!buffer_mapped(bh) || buffer_freed(bh))
 852		return 0;
 853	/*
 854	 * __block_write_begin() could have dirtied some buffers. Clean
 855	 * the dirty bit as jbd2_journal_get_write_access() could complain
 856	 * otherwise about fs integrity issues. Setting of the dirty bit
 857	 * by __block_write_begin() isn't a real problem here as we clear
 858	 * the bit before releasing a page lock and thus writeback cannot
 859	 * ever write the buffer.
 860	 */
 861	if (dirty)
 862		clear_buffer_dirty(bh);
 
 863	ret = ext4_journal_get_write_access(handle, bh);
 864	if (!ret && dirty)
 865		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 866	return ret;
 867}
 868
 869static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 870		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871static int ext4_write_begin(struct file *file, struct address_space *mapping,
 872			    loff_t pos, unsigned len, unsigned flags,
 873			    struct page **pagep, void **fsdata)
 874{
 875	struct inode *inode = mapping->host;
 876	int ret, needed_blocks;
 877	handle_t *handle;
 878	int retries = 0;
 879	struct page *page;
 880	pgoff_t index;
 881	unsigned from, to;
 882
 883	trace_ext4_write_begin(inode, pos, len, flags);
 884	/*
 885	 * Reserve one block more for addition to orphan list in case
 886	 * we allocate blocks but write fails for some reason
 887	 */
 888	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 889	index = pos >> PAGE_CACHE_SHIFT;
 890	from = pos & (PAGE_CACHE_SIZE - 1);
 891	to = from + len;
 892
 893retry:
 894	handle = ext4_journal_start(inode, needed_blocks);
 895	if (IS_ERR(handle)) {
 896		ret = PTR_ERR(handle);
 897		goto out;
 
 
 898	}
 899
 900	/* We cannot recurse into the filesystem as the transaction is already
 901	 * started */
 902	flags |= AOP_FLAG_NOFS;
 903
 
 
 
 
 904	page = grab_cache_page_write_begin(mapping, index, flags);
 905	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906		ext4_journal_stop(handle);
 907		ret = -ENOMEM;
 908		goto out;
 909	}
 910	*pagep = page;
 
 911
 
 
 
 
 
 
 
 
 912	if (ext4_should_dioread_nolock(inode))
 913		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 914	else
 915		ret = __block_write_begin(page, pos, len, ext4_get_block);
 916
 917	if (!ret && ext4_should_journal_data(inode)) {
 918		ret = walk_page_buffers(handle, page_buffers(page),
 919				from, to, NULL, do_journal_get_write_access);
 
 920	}
 921
 922	if (ret) {
 923		unlock_page(page);
 924		page_cache_release(page);
 925		/*
 926		 * __block_write_begin may have instantiated a few blocks
 927		 * outside i_size.  Trim these off again. Don't need
 928		 * i_size_read because we hold i_mutex.
 929		 *
 930		 * Add inode to orphan list in case we crash before
 931		 * truncate finishes
 932		 */
 933		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 934			ext4_orphan_add(handle, inode);
 935
 936		ext4_journal_stop(handle);
 937		if (pos + len > inode->i_size) {
 938			ext4_truncate_failed_write(inode);
 939			/*
 940			 * If truncate failed early the inode might
 941			 * still be on the orphan list; we need to
 942			 * make sure the inode is removed from the
 943			 * orphan list in that case.
 944			 */
 945			if (inode->i_nlink)
 946				ext4_orphan_del(NULL, inode);
 947		}
 948	}
 949
 950	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 951		goto retry;
 952out:
 
 
 
 
 953	return ret;
 954}
 955
 956/* For write_end() in data=journal mode */
 957static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 958{
 
 959	if (!buffer_mapped(bh) || buffer_freed(bh))
 960		return 0;
 961	set_buffer_uptodate(bh);
 962	return ext4_handle_dirty_metadata(handle, NULL, bh);
 
 
 
 963}
 964
 965static int ext4_generic_write_end(struct file *file,
 966				  struct address_space *mapping,
 967				  loff_t pos, unsigned len, unsigned copied,
 968				  struct page *page, void *fsdata)
 
 
 
 
 
 
 
 969{
 970	int i_size_changed = 0;
 971	struct inode *inode = mapping->host;
 972	handle_t *handle = ext4_journal_current_handle();
 
 
 
 
 973
 974	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 
 
 
 
 
 
 
 
 975
 
 
 
 
 
 
 
 
 
 976	/*
 977	 * No need to use i_size_read() here, the i_size
 978	 * cannot change under us because we hold i_mutex.
 979	 *
 980	 * But it's important to update i_size while still holding page lock:
 981	 * page writeout could otherwise come in and zero beyond i_size.
 982	 */
 983	if (pos + copied > inode->i_size) {
 984		i_size_write(inode, pos + copied);
 985		i_size_changed = 1;
 986	}
 987
 988	if (pos + copied >  EXT4_I(inode)->i_disksize) {
 989		/* We need to mark inode dirty even if
 990		 * new_i_size is less that inode->i_size
 991		 * bu greater than i_disksize.(hint delalloc)
 992		 */
 993		ext4_update_i_disksize(inode, (pos + copied));
 994		i_size_changed = 1;
 995	}
 996	unlock_page(page);
 997	page_cache_release(page);
 998
 
 
 999	/*
1000	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1001	 * makes the holding time of page lock longer. Second, it forces lock
1002	 * ordering of page lock and transaction start for journaling
1003	 * filesystems.
1004	 */
1005	if (i_size_changed)
1006		ext4_mark_inode_dirty(handle, inode);
1007
1008	return copied;
1009}
1010
1011/*
1012 * We need to pick up the new inode size which generic_commit_write gave us
1013 * `file' can be NULL - eg, when called from page_symlink().
1014 *
1015 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1016 * buffers are managed internally.
1017 */
1018static int ext4_ordered_write_end(struct file *file,
1019				  struct address_space *mapping,
1020				  loff_t pos, unsigned len, unsigned copied,
1021				  struct page *page, void *fsdata)
1022{
1023	handle_t *handle = ext4_journal_current_handle();
1024	struct inode *inode = mapping->host;
1025	int ret = 0, ret2;
1026
1027	trace_ext4_ordered_write_end(inode, pos, len, copied);
1028	ret = ext4_jbd2_file_inode(handle, inode);
1029
1030	if (ret == 0) {
1031		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1032							page, fsdata);
1033		copied = ret2;
1034		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1035			/* if we have allocated more blocks and copied
1036			 * less. We will have blocks allocated outside
1037			 * inode->i_size. So truncate them
1038			 */
1039			ext4_orphan_add(handle, inode);
1040		if (ret2 < 0)
1041			ret = ret2;
1042	} else {
1043		unlock_page(page);
1044		page_cache_release(page);
1045	}
1046
1047	ret2 = ext4_journal_stop(handle);
1048	if (!ret)
1049		ret = ret2;
1050
1051	if (pos + len > inode->i_size) {
1052		ext4_truncate_failed_write(inode);
1053		/*
1054		 * If truncate failed early the inode might still be
1055		 * on the orphan list; we need to make sure the inode
1056		 * is removed from the orphan list in that case.
1057		 */
1058		if (inode->i_nlink)
1059			ext4_orphan_del(NULL, inode);
1060	}
1061
1062
1063	return ret ? ret : copied;
1064}
1065
1066static int ext4_writeback_write_end(struct file *file,
1067				    struct address_space *mapping,
1068				    loff_t pos, unsigned len, unsigned copied,
1069				    struct page *page, void *fsdata)
1070{
1071	handle_t *handle = ext4_journal_current_handle();
1072	struct inode *inode = mapping->host;
1073	int ret = 0, ret2;
1074
1075	trace_ext4_writeback_write_end(inode, pos, len, copied);
1076	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1077							page, fsdata);
1078	copied = ret2;
1079	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1080		/* if we have allocated more blocks and copied
1081		 * less. We will have blocks allocated outside
1082		 * inode->i_size. So truncate them
1083		 */
1084		ext4_orphan_add(handle, inode);
1085
1086	if (ret2 < 0)
1087		ret = ret2;
1088
1089	ret2 = ext4_journal_stop(handle);
1090	if (!ret)
1091		ret = ret2;
1092
1093	if (pos + len > inode->i_size) {
1094		ext4_truncate_failed_write(inode);
1095		/*
1096		 * If truncate failed early the inode might still be
1097		 * on the orphan list; we need to make sure the inode
1098		 * is removed from the orphan list in that case.
1099		 */
1100		if (inode->i_nlink)
1101			ext4_orphan_del(NULL, inode);
1102	}
1103
1104	return ret ? ret : copied;
1105}
1106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107static int ext4_journalled_write_end(struct file *file,
1108				     struct address_space *mapping,
1109				     loff_t pos, unsigned len, unsigned copied,
1110				     struct page *page, void *fsdata)
1111{
1112	handle_t *handle = ext4_journal_current_handle();
1113	struct inode *inode = mapping->host;
 
1114	int ret = 0, ret2;
1115	int partial = 0;
1116	unsigned from, to;
1117	loff_t new_i_size;
1118
1119	trace_ext4_journalled_write_end(inode, pos, len, copied);
1120	from = pos & (PAGE_CACHE_SIZE - 1);
1121	to = from + len;
1122
1123	BUG_ON(!ext4_handle_valid(handle));
1124
1125	if (copied < len) {
1126		if (!PageUptodate(page))
1127			copied = 0;
1128		page_zero_new_buffers(page, from+copied, to);
1129	}
 
 
 
 
1130
1131	ret = walk_page_buffers(handle, page_buffers(page), from,
1132				to, &partial, write_end_fn);
1133	if (!partial)
1134		SetPageUptodate(page);
1135	new_i_size = pos + copied;
1136	if (new_i_size > inode->i_size)
1137		i_size_write(inode, pos+copied);
1138	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1139	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1140	if (new_i_size > EXT4_I(inode)->i_disksize) {
1141		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
1142		ret2 = ext4_mark_inode_dirty(handle, inode);
1143		if (!ret)
1144			ret = ret2;
1145	}
1146
1147	unlock_page(page);
1148	page_cache_release(page);
1149	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1150		/* if we have allocated more blocks and copied
1151		 * less. We will have blocks allocated outside
1152		 * inode->i_size. So truncate them
1153		 */
1154		ext4_orphan_add(handle, inode);
1155
1156	ret2 = ext4_journal_stop(handle);
1157	if (!ret)
1158		ret = ret2;
1159	if (pos + len > inode->i_size) {
1160		ext4_truncate_failed_write(inode);
1161		/*
1162		 * If truncate failed early the inode might still be
1163		 * on the orphan list; we need to make sure the inode
1164		 * is removed from the orphan list in that case.
1165		 */
1166		if (inode->i_nlink)
1167			ext4_orphan_del(NULL, inode);
1168	}
1169
1170	return ret ? ret : copied;
1171}
1172
1173/*
1174 * Reserve a single cluster located at lblock
1175 */
1176static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1177{
1178	int retries = 0;
1179	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1180	struct ext4_inode_info *ei = EXT4_I(inode);
1181	unsigned int md_needed;
1182	int ret;
1183	ext4_lblk_t save_last_lblock;
1184	int save_len;
1185
1186	/*
1187	 * We will charge metadata quota at writeout time; this saves
1188	 * us from metadata over-estimation, though we may go over by
1189	 * a small amount in the end.  Here we just reserve for data.
1190	 */
1191	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1192	if (ret)
1193		return ret;
1194
1195	/*
1196	 * recalculate the amount of metadata blocks to reserve
1197	 * in order to allocate nrblocks
1198	 * worse case is one extent per block
1199	 */
1200repeat:
1201	spin_lock(&ei->i_block_reservation_lock);
1202	/*
1203	 * ext4_calc_metadata_amount() has side effects, which we have
1204	 * to be prepared undo if we fail to claim space.
1205	 */
1206	save_len = ei->i_da_metadata_calc_len;
1207	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1208	md_needed = EXT4_NUM_B2C(sbi,
1209				 ext4_calc_metadata_amount(inode, lblock));
1210	trace_ext4_da_reserve_space(inode, md_needed);
1211
1212	/*
1213	 * We do still charge estimated metadata to the sb though;
1214	 * we cannot afford to run out of free blocks.
1215	 */
1216	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1217		ei->i_da_metadata_calc_len = save_len;
1218		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1219		spin_unlock(&ei->i_block_reservation_lock);
1220		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1221			yield();
1222			goto repeat;
1223		}
1224		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1225		return -ENOSPC;
1226	}
1227	ei->i_reserved_data_blocks++;
1228	ei->i_reserved_meta_blocks += md_needed;
1229	spin_unlock(&ei->i_block_reservation_lock);
1230
1231	return 0;       /* success */
1232}
1233
1234static void ext4_da_release_space(struct inode *inode, int to_free)
1235{
1236	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1237	struct ext4_inode_info *ei = EXT4_I(inode);
1238
1239	if (!to_free)
1240		return;		/* Nothing to release, exit */
1241
1242	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1243
1244	trace_ext4_da_release_space(inode, to_free);
1245	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1246		/*
1247		 * if there aren't enough reserved blocks, then the
1248		 * counter is messed up somewhere.  Since this
1249		 * function is called from invalidate page, it's
1250		 * harmless to return without any action.
1251		 */
1252		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1253			 "ino %lu, to_free %d with only %d reserved "
1254			 "data blocks", inode->i_ino, to_free,
1255			 ei->i_reserved_data_blocks);
1256		WARN_ON(1);
1257		to_free = ei->i_reserved_data_blocks;
1258	}
1259	ei->i_reserved_data_blocks -= to_free;
1260
1261	if (ei->i_reserved_data_blocks == 0) {
1262		/*
1263		 * We can release all of the reserved metadata blocks
1264		 * only when we have written all of the delayed
1265		 * allocation blocks.
1266		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1267		 * i_reserved_data_blocks, etc. refer to number of clusters.
1268		 */
1269		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1270				   ei->i_reserved_meta_blocks);
1271		ei->i_reserved_meta_blocks = 0;
1272		ei->i_da_metadata_calc_len = 0;
1273	}
1274
1275	/* update fs dirty data blocks counter */
1276	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1277
1278	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1279
1280	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1281}
1282
1283static void ext4_da_page_release_reservation(struct page *page,
1284					     unsigned long offset)
 
1285{
1286	int to_release = 0;
1287	struct buffer_head *head, *bh;
1288	unsigned int curr_off = 0;
1289	struct inode *inode = page->mapping->host;
1290	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
1291	int num_clusters;
 
 
 
1292
1293	head = page_buffers(page);
1294	bh = head;
1295	do {
1296		unsigned int next_off = curr_off + bh->b_size;
1297
 
 
 
1298		if ((offset <= curr_off) && (buffer_delay(bh))) {
1299			to_release++;
 
1300			clear_buffer_delay(bh);
1301			clear_buffer_da_mapped(bh);
 
 
 
 
 
 
1302		}
1303		curr_off = next_off;
1304	} while ((bh = bh->b_this_page) != head);
1305
 
 
 
 
 
 
1306	/* If we have released all the blocks belonging to a cluster, then we
1307	 * need to release the reserved space for that cluster. */
1308	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1309	while (num_clusters > 0) {
1310		ext4_fsblk_t lblk;
1311		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1312			((num_clusters - 1) << sbi->s_cluster_bits);
1313		if (sbi->s_cluster_ratio == 1 ||
1314		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1315			ext4_da_release_space(inode, 1);
1316
1317		num_clusters--;
1318	}
1319}
1320
1321/*
1322 * Delayed allocation stuff
1323 */
1324
1325/*
1326 * mpage_da_submit_io - walks through extent of pages and try to write
1327 * them with writepage() call back
1328 *
1329 * @mpd->inode: inode
1330 * @mpd->first_page: first page of the extent
1331 * @mpd->next_page: page after the last page of the extent
1332 *
1333 * By the time mpage_da_submit_io() is called we expect all blocks
1334 * to be allocated. this may be wrong if allocation failed.
1335 *
1336 * As pages are already locked by write_cache_pages(), we can't use it
1337 */
1338static int mpage_da_submit_io(struct mpage_da_data *mpd,
1339			      struct ext4_map_blocks *map)
1340{
1341	struct pagevec pvec;
1342	unsigned long index, end;
1343	int ret = 0, err, nr_pages, i;
1344	struct inode *inode = mpd->inode;
1345	struct address_space *mapping = inode->i_mapping;
1346	loff_t size = i_size_read(inode);
1347	unsigned int len, block_start;
1348	struct buffer_head *bh, *page_bufs = NULL;
1349	int journal_data = ext4_should_journal_data(inode);
1350	sector_t pblock = 0, cur_logical = 0;
1351	struct ext4_io_submit io_submit;
1352
1353	BUG_ON(mpd->next_page <= mpd->first_page);
1354	memset(&io_submit, 0, sizeof(io_submit));
1355	/*
1356	 * We need to start from the first_page to the next_page - 1
1357	 * to make sure we also write the mapped dirty buffer_heads.
1358	 * If we look at mpd->b_blocknr we would only be looking
1359	 * at the currently mapped buffer_heads.
1360	 */
1361	index = mpd->first_page;
1362	end = mpd->next_page - 1;
1363
1364	pagevec_init(&pvec, 0);
1365	while (index <= end) {
1366		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1367		if (nr_pages == 0)
1368			break;
1369		for (i = 0; i < nr_pages; i++) {
1370			int commit_write = 0, skip_page = 0;
1371			struct page *page = pvec.pages[i];
1372
1373			index = page->index;
1374			if (index > end)
1375				break;
1376
1377			if (index == size >> PAGE_CACHE_SHIFT)
1378				len = size & ~PAGE_CACHE_MASK;
1379			else
1380				len = PAGE_CACHE_SIZE;
1381			if (map) {
1382				cur_logical = index << (PAGE_CACHE_SHIFT -
1383							inode->i_blkbits);
1384				pblock = map->m_pblk + (cur_logical -
1385							map->m_lblk);
1386			}
1387			index++;
1388
1389			BUG_ON(!PageLocked(page));
1390			BUG_ON(PageWriteback(page));
1391
1392			/*
1393			 * If the page does not have buffers (for
1394			 * whatever reason), try to create them using
1395			 * __block_write_begin.  If this fails,
1396			 * skip the page and move on.
1397			 */
1398			if (!page_has_buffers(page)) {
1399				if (__block_write_begin(page, 0, len,
1400						noalloc_get_block_write)) {
1401				skip_page:
1402					unlock_page(page);
1403					continue;
1404				}
1405				commit_write = 1;
1406			}
1407
1408			bh = page_bufs = page_buffers(page);
1409			block_start = 0;
1410			do {
1411				if (!bh)
1412					goto skip_page;
1413				if (map && (cur_logical >= map->m_lblk) &&
1414				    (cur_logical <= (map->m_lblk +
1415						     (map->m_len - 1)))) {
1416					if (buffer_delay(bh)) {
1417						clear_buffer_delay(bh);
1418						bh->b_blocknr = pblock;
1419					}
1420					if (buffer_da_mapped(bh))
1421						clear_buffer_da_mapped(bh);
1422					if (buffer_unwritten(bh) ||
1423					    buffer_mapped(bh))
1424						BUG_ON(bh->b_blocknr != pblock);
1425					if (map->m_flags & EXT4_MAP_UNINIT)
1426						set_buffer_uninit(bh);
1427					clear_buffer_unwritten(bh);
1428				}
1429
1430				/*
1431				 * skip page if block allocation undone and
1432				 * block is dirty
1433				 */
1434				if (ext4_bh_delay_or_unwritten(NULL, bh))
1435					skip_page = 1;
1436				bh = bh->b_this_page;
1437				block_start += bh->b_size;
1438				cur_logical++;
1439				pblock++;
1440			} while (bh != page_bufs);
1441
1442			if (skip_page)
1443				goto skip_page;
1444
1445			if (commit_write)
1446				/* mark the buffer_heads as dirty & uptodate */
1447				block_commit_write(page, 0, len);
1448
1449			clear_page_dirty_for_io(page);
1450			/*
1451			 * Delalloc doesn't support data journalling,
1452			 * but eventually maybe we'll lift this
1453			 * restriction.
1454			 */
1455			if (unlikely(journal_data && PageChecked(page)))
1456				err = __ext4_journalled_writepage(page, len);
1457			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1458				err = ext4_bio_write_page(&io_submit, page,
1459							  len, mpd->wbc);
1460			else if (buffer_uninit(page_bufs)) {
1461				ext4_set_bh_endio(page_bufs, inode);
1462				err = block_write_full_page_endio(page,
1463					noalloc_get_block_write,
1464					mpd->wbc, ext4_end_io_buffer_write);
1465			} else
1466				err = block_write_full_page(page,
1467					noalloc_get_block_write, mpd->wbc);
1468
1469			if (!err)
1470				mpd->pages_written++;
1471			/*
1472			 * In error case, we have to continue because
1473			 * remaining pages are still locked
1474			 */
1475			if (ret == 0)
1476				ret = err;
1477		}
1478		pagevec_release(&pvec);
1479	}
1480	ext4_io_submit(&io_submit);
1481	return ret;
1482}
1483
1484static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
 
1485{
1486	int nr_pages, i;
1487	pgoff_t index, end;
1488	struct pagevec pvec;
1489	struct inode *inode = mpd->inode;
1490	struct address_space *mapping = inode->i_mapping;
1491
 
 
 
 
1492	index = mpd->first_page;
1493	end   = mpd->next_page - 1;
 
 
 
 
 
 
 
 
1494	while (index <= end) {
1495		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1496		if (nr_pages == 0)
1497			break;
1498		for (i = 0; i < nr_pages; i++) {
1499			struct page *page = pvec.pages[i];
1500			if (page->index > end)
1501				break;
1502			BUG_ON(!PageLocked(page));
1503			BUG_ON(PageWriteback(page));
1504			block_invalidatepage(page, 0);
1505			ClearPageUptodate(page);
 
 
1506			unlock_page(page);
1507		}
1508		index = pvec.pages[nr_pages - 1]->index + 1;
1509		pagevec_release(&pvec);
1510	}
1511	return;
1512}
1513
1514static void ext4_print_free_blocks(struct inode *inode)
1515{
1516	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1517	struct super_block *sb = inode->i_sb;
 
1518
1519	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1520	       EXT4_C2B(EXT4_SB(inode->i_sb),
1521			ext4_count_free_clusters(inode->i_sb)));
1522	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1523	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1524	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1525		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1526	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1527	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1528		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1529	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1530	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1531		 EXT4_I(inode)->i_reserved_data_blocks);
1532	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1533	       EXT4_I(inode)->i_reserved_meta_blocks);
1534	return;
1535}
1536
1537/*
1538 * mpage_da_map_and_submit - go through given space, map them
1539 *       if necessary, and then submit them for I/O
1540 *
1541 * @mpd - bh describing space
1542 *
1543 * The function skips space we know is already mapped to disk blocks.
1544 *
1545 */
1546static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1547{
1548	int err, blks, get_blocks_flags;
1549	struct ext4_map_blocks map, *mapp = NULL;
1550	sector_t next = mpd->b_blocknr;
1551	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1552	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1553	handle_t *handle = NULL;
1554
1555	/*
1556	 * If the blocks are mapped already, or we couldn't accumulate
1557	 * any blocks, then proceed immediately to the submission stage.
1558	 */
1559	if ((mpd->b_size == 0) ||
1560	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1561	     !(mpd->b_state & (1 << BH_Delay)) &&
1562	     !(mpd->b_state & (1 << BH_Unwritten))))
1563		goto submit_io;
1564
1565	handle = ext4_journal_current_handle();
1566	BUG_ON(!handle);
1567
1568	/*
1569	 * Call ext4_map_blocks() to allocate any delayed allocation
1570	 * blocks, or to convert an uninitialized extent to be
1571	 * initialized (in the case where we have written into
1572	 * one or more preallocated blocks).
1573	 *
1574	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1575	 * indicate that we are on the delayed allocation path.  This
1576	 * affects functions in many different parts of the allocation
1577	 * call path.  This flag exists primarily because we don't
1578	 * want to change *many* call functions, so ext4_map_blocks()
1579	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1580	 * inode's allocation semaphore is taken.
1581	 *
1582	 * If the blocks in questions were delalloc blocks, set
1583	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1584	 * variables are updated after the blocks have been allocated.
1585	 */
1586	map.m_lblk = next;
1587	map.m_len = max_blocks;
1588	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1589	if (ext4_should_dioread_nolock(mpd->inode))
1590		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1591	if (mpd->b_state & (1 << BH_Delay))
1592		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1593
1594	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1595	if (blks < 0) {
1596		struct super_block *sb = mpd->inode->i_sb;
1597
1598		err = blks;
1599		/*
1600		 * If get block returns EAGAIN or ENOSPC and there
1601		 * appears to be free blocks we will just let
1602		 * mpage_da_submit_io() unlock all of the pages.
1603		 */
1604		if (err == -EAGAIN)
1605			goto submit_io;
1606
1607		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1608			mpd->retval = err;
1609			goto submit_io;
1610		}
1611
1612		/*
1613		 * get block failure will cause us to loop in
1614		 * writepages, because a_ops->writepage won't be able
1615		 * to make progress. The page will be redirtied by
1616		 * writepage and writepages will again try to write
1617		 * the same.
1618		 */
1619		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1620			ext4_msg(sb, KERN_CRIT,
1621				 "delayed block allocation failed for inode %lu "
1622				 "at logical offset %llu with max blocks %zd "
1623				 "with error %d", mpd->inode->i_ino,
1624				 (unsigned long long) next,
1625				 mpd->b_size >> mpd->inode->i_blkbits, err);
1626			ext4_msg(sb, KERN_CRIT,
1627				"This should not happen!! Data will be lost\n");
1628			if (err == -ENOSPC)
1629				ext4_print_free_blocks(mpd->inode);
1630		}
1631		/* invalidate all the pages */
1632		ext4_da_block_invalidatepages(mpd);
1633
1634		/* Mark this page range as having been completed */
1635		mpd->io_done = 1;
1636		return;
1637	}
1638	BUG_ON(blks == 0);
1639
1640	mapp = &map;
1641	if (map.m_flags & EXT4_MAP_NEW) {
1642		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1643		int i;
1644
1645		for (i = 0; i < map.m_len; i++)
1646			unmap_underlying_metadata(bdev, map.m_pblk + i);
1647
1648		if (ext4_should_order_data(mpd->inode)) {
1649			err = ext4_jbd2_file_inode(handle, mpd->inode);
1650			if (err) {
1651				/* Only if the journal is aborted */
1652				mpd->retval = err;
1653				goto submit_io;
1654			}
1655		}
1656	}
1657
1658	/*
1659	 * Update on-disk size along with block allocation.
1660	 */
1661	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1662	if (disksize > i_size_read(mpd->inode))
1663		disksize = i_size_read(mpd->inode);
1664	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1665		ext4_update_i_disksize(mpd->inode, disksize);
1666		err = ext4_mark_inode_dirty(handle, mpd->inode);
1667		if (err)
1668			ext4_error(mpd->inode->i_sb,
1669				   "Failed to mark inode %lu dirty",
1670				   mpd->inode->i_ino);
1671	}
1672
1673submit_io:
1674	mpage_da_submit_io(mpd, mapp);
1675	mpd->io_done = 1;
1676}
1677
1678#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1679		(1 << BH_Delay) | (1 << BH_Unwritten))
1680
1681/*
1682 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1683 *
1684 * @mpd->lbh - extent of blocks
1685 * @logical - logical number of the block in the file
1686 * @bh - bh of the block (used to access block's state)
1687 *
1688 * the function is used to collect contig. blocks in same state
1689 */
1690static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1691				   sector_t logical, size_t b_size,
1692				   unsigned long b_state)
1693{
1694	sector_t next;
1695	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1696
1697	/*
1698	 * XXX Don't go larger than mballoc is willing to allocate
1699	 * This is a stopgap solution.  We eventually need to fold
1700	 * mpage_da_submit_io() into this function and then call
1701	 * ext4_map_blocks() multiple times in a loop
1702	 */
1703	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1704		goto flush_it;
1705
1706	/* check if thereserved journal credits might overflow */
1707	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1708		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1709			/*
1710			 * With non-extent format we are limited by the journal
1711			 * credit available.  Total credit needed to insert
1712			 * nrblocks contiguous blocks is dependent on the
1713			 * nrblocks.  So limit nrblocks.
1714			 */
1715			goto flush_it;
1716		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1717				EXT4_MAX_TRANS_DATA) {
1718			/*
1719			 * Adding the new buffer_head would make it cross the
1720			 * allowed limit for which we have journal credit
1721			 * reserved. So limit the new bh->b_size
1722			 */
1723			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1724						mpd->inode->i_blkbits;
1725			/* we will do mpage_da_submit_io in the next loop */
1726		}
1727	}
1728	/*
1729	 * First block in the extent
1730	 */
1731	if (mpd->b_size == 0) {
1732		mpd->b_blocknr = logical;
1733		mpd->b_size = b_size;
1734		mpd->b_state = b_state & BH_FLAGS;
1735		return;
1736	}
1737
1738	next = mpd->b_blocknr + nrblocks;
1739	/*
1740	 * Can we merge the block to our big extent?
1741	 */
1742	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1743		mpd->b_size += b_size;
1744		return;
1745	}
1746
1747flush_it:
1748	/*
1749	 * We couldn't merge the block to our extent, so we
1750	 * need to flush current  extent and start new one
1751	 */
1752	mpage_da_map_and_submit(mpd);
1753	return;
1754}
1755
1756static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1757{
1758	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1759}
1760
1761/*
1762 * This function is grabs code from the very beginning of
1763 * ext4_map_blocks, but assumes that the caller is from delayed write
1764 * time. This function looks up the requested blocks and sets the
1765 * buffer delay bit under the protection of i_data_sem.
1766 */
1767static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1768			      struct ext4_map_blocks *map,
1769			      struct buffer_head *bh)
1770{
 
1771	int retval;
1772	sector_t invalid_block = ~((sector_t) 0xffff);
 
 
 
 
 
1773
1774	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1775		invalid_block = ~0;
1776
1777	map->m_flags = 0;
1778	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1779		  "logical block %lu\n", inode->i_ino, map->m_len,
1780		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	/*
1782	 * Try to see if we can get the block without requesting a new
1783	 * file system block.
1784	 */
1785	down_read((&EXT4_I(inode)->i_data_sem));
1786	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 
 
1787		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1788	else
1789		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1790
 
1791	if (retval == 0) {
 
1792		/*
1793		 * XXX: __block_prepare_write() unmaps passed block,
1794		 * is it OK?
1795		 */
1796		/* If the block was allocated from previously allocated cluster,
1797		 * then we dont need to reserve it again. */
1798		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1799			retval = ext4_da_reserve_space(inode, iblock);
1800			if (retval)
 
 
 
 
1801				/* not enough space to reserve */
 
1802				goto out_unlock;
 
1803		}
1804
1805		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1806		 * and it should not appear on the bh->b_state.
1807		 */
1808		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
 
 
1809
1810		map_bh(bh, inode->i_sb, invalid_block);
1811		set_buffer_new(bh);
1812		set_buffer_delay(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813	}
1814
1815out_unlock:
1816	up_read((&EXT4_I(inode)->i_data_sem));
1817
1818	return retval;
1819}
1820
1821/*
1822 * This is a special get_blocks_t callback which is used by
1823 * ext4_da_write_begin().  It will either return mapped block or
1824 * reserve space for a single block.
1825 *
1826 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1827 * We also have b_blocknr = -1 and b_bdev initialized properly
1828 *
1829 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1830 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1831 * initialized properly.
1832 */
1833static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1834				  struct buffer_head *bh, int create)
1835{
1836	struct ext4_map_blocks map;
1837	int ret = 0;
1838
1839	BUG_ON(create == 0);
1840	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1841
1842	map.m_lblk = iblock;
1843	map.m_len = 1;
1844
1845	/*
1846	 * first, we need to know whether the block is allocated already
1847	 * preallocated blocks are unmapped but should treated
1848	 * the same as allocated blocks.
1849	 */
1850	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1851	if (ret <= 0)
1852		return ret;
1853
1854	map_bh(bh, inode->i_sb, map.m_pblk);
1855	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1856
1857	if (buffer_unwritten(bh)) {
1858		/* A delayed write to unwritten bh should be marked
1859		 * new and mapped.  Mapped ensures that we don't do
1860		 * get_block multiple times when we write to the same
1861		 * offset and new ensures that we do proper zero out
1862		 * for partial write.
1863		 */
1864		set_buffer_new(bh);
1865		set_buffer_mapped(bh);
1866	}
1867	return 0;
1868}
1869
1870/*
1871 * This function is used as a standard get_block_t calback function
1872 * when there is no desire to allocate any blocks.  It is used as a
1873 * callback function for block_write_begin() and block_write_full_page().
1874 * These functions should only try to map a single block at a time.
1875 *
1876 * Since this function doesn't do block allocations even if the caller
1877 * requests it by passing in create=1, it is critically important that
1878 * any caller checks to make sure that any buffer heads are returned
1879 * by this function are either all already mapped or marked for
1880 * delayed allocation before calling  block_write_full_page().  Otherwise,
1881 * b_blocknr could be left unitialized, and the page write functions will
1882 * be taken by surprise.
1883 */
1884static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1885				   struct buffer_head *bh_result, int create)
1886{
1887	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1888	return _ext4_get_block(inode, iblock, bh_result, 0);
1889}
1890
1891static int bget_one(handle_t *handle, struct buffer_head *bh)
1892{
1893	get_bh(bh);
1894	return 0;
1895}
1896
1897static int bput_one(handle_t *handle, struct buffer_head *bh)
1898{
1899	put_bh(bh);
1900	return 0;
1901}
1902
1903static int __ext4_journalled_writepage(struct page *page,
1904				       unsigned int len)
1905{
1906	struct address_space *mapping = page->mapping;
1907	struct inode *inode = mapping->host;
1908	struct buffer_head *page_bufs;
1909	handle_t *handle = NULL;
1910	int ret = 0;
1911	int err;
 
1912
1913	ClearPageChecked(page);
1914	page_bufs = page_buffers(page);
1915	BUG_ON(!page_bufs);
1916	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1917	/* As soon as we unlock the page, it can go away, but we have
1918	 * references to buffers so we are safe */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919	unlock_page(page);
1920
1921	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
1922	if (IS_ERR(handle)) {
1923		ret = PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
1924		goto out;
1925	}
1926
1927	BUG_ON(!ext4_handle_valid(handle));
 
 
1928
1929	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1930				do_journal_get_write_access);
1931
1932	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933				write_end_fn);
 
 
 
 
 
1934	if (ret == 0)
1935		ret = err;
1936	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937	err = ext4_journal_stop(handle);
1938	if (!ret)
1939		ret = err;
1940
1941	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
 
 
1942	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1943out:
 
 
 
1944	return ret;
1945}
1946
1947static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1948static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1949
1950/*
1951 * Note that we don't need to start a transaction unless we're journaling data
1952 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1953 * need to file the inode to the transaction's list in ordered mode because if
1954 * we are writing back data added by write(), the inode is already there and if
1955 * we are writing back data modified via mmap(), no one guarantees in which
1956 * transaction the data will hit the disk. In case we are journaling data, we
1957 * cannot start transaction directly because transaction start ranks above page
1958 * lock so we have to do some magic.
1959 *
1960 * This function can get called via...
1961 *   - ext4_da_writepages after taking page lock (have journal handle)
1962 *   - journal_submit_inode_data_buffers (no journal handle)
1963 *   - shrink_page_list via pdflush (no journal handle)
1964 *   - grab_page_cache when doing write_begin (have journal handle)
1965 *
1966 * We don't do any block allocation in this function. If we have page with
1967 * multiple blocks we need to write those buffer_heads that are mapped. This
1968 * is important for mmaped based write. So if we do with blocksize 1K
1969 * truncate(f, 1024);
1970 * a = mmap(f, 0, 4096);
1971 * a[0] = 'a';
1972 * truncate(f, 4096);
1973 * we have in the page first buffer_head mapped via page_mkwrite call back
1974 * but other buffer_heads would be unmapped but dirty (dirty done via the
1975 * do_wp_page). So writepage should write the first block. If we modify
1976 * the mmap area beyond 1024 we will again get a page_fault and the
1977 * page_mkwrite callback will do the block allocation and mark the
1978 * buffer_heads mapped.
1979 *
1980 * We redirty the page if we have any buffer_heads that is either delay or
1981 * unwritten in the page.
1982 *
1983 * We can get recursively called as show below.
1984 *
1985 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1986 *		ext4_writepage()
1987 *
1988 * But since we don't do any block allocation we should not deadlock.
1989 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1990 */
1991static int ext4_writepage(struct page *page,
1992			  struct writeback_control *wbc)
1993{
1994	int ret = 0, commit_write = 0;
1995	loff_t size;
1996	unsigned int len;
1997	struct buffer_head *page_bufs = NULL;
1998	struct inode *inode = page->mapping->host;
 
 
1999
2000	trace_ext4_writepage(page);
2001	size = i_size_read(inode);
2002	if (page->index == size >> PAGE_CACHE_SHIFT)
2003		len = size & ~PAGE_CACHE_MASK;
2004	else
2005		len = PAGE_CACHE_SIZE;
2006
 
2007	/*
2008	 * If the page does not have buffers (for whatever reason),
2009	 * try to create them using __block_write_begin.  If this
2010	 * fails, redirty the page and move on.
2011	 */
2012	if (!page_has_buffers(page)) {
2013		if (__block_write_begin(page, 0, len,
2014					noalloc_get_block_write)) {
2015		redirty_page:
2016			redirty_page_for_writepage(wbc, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017			unlock_page(page);
2018			return 0;
2019		}
2020		commit_write = 1;
2021	}
2022	page_bufs = page_buffers(page);
2023	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2024			      ext4_bh_delay_or_unwritten)) {
2025		/*
2026		 * We don't want to do block allocation, so redirty
2027		 * the page and return.  We may reach here when we do
2028		 * a journal commit via journal_submit_inode_data_buffers.
2029		 * We can also reach here via shrink_page_list but it
2030		 * should never be for direct reclaim so warn if that
2031		 * happens
2032		 */
2033		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2034								PF_MEMALLOC);
2035		goto redirty_page;
2036	}
2037	if (commit_write)
2038		/* now mark the buffer_heads as dirty and uptodate */
2039		block_commit_write(page, 0, len);
2040
2041	if (PageChecked(page) && ext4_should_journal_data(inode))
2042		/*
2043		 * It's mmapped pagecache.  Add buffers and journal it.  There
2044		 * doesn't seem much point in redirtying the page here.
2045		 */
2046		return __ext4_journalled_writepage(page, len);
2047
2048	if (buffer_uninit(page_bufs)) {
2049		ext4_set_bh_endio(page_bufs, inode);
2050		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2051					    wbc, ext4_end_io_buffer_write);
2052	} else
2053		ret = block_write_full_page(page, noalloc_get_block_write,
2054					    wbc);
2055
 
 
 
2056	return ret;
2057}
2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059/*
2060 * This is called via ext4_da_writepages() to
2061 * calculate the total number of credits to reserve to fit
2062 * a single extent allocation into a single transaction,
2063 * ext4_da_writpeages() will loop calling this before
2064 * the block allocation.
2065 */
 
2066
2067static int ext4_da_writepages_trans_blocks(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068{
2069	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2070
2071	/*
2072	 * With non-extent format the journal credit needed to
2073	 * insert nrblocks contiguous block is dependent on
2074	 * number of contiguous block. So we will limit
2075	 * number of contiguous block to a sane value
2076	 */
2077	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2078	    (max_blocks > EXT4_MAX_TRANS_DATA))
2079		max_blocks = EXT4_MAX_TRANS_DATA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080
2081	return ext4_chunk_trans_blocks(inode, max_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084/*
2085 * write_cache_pages_da - walk the list of dirty pages of the given
2086 * address space and accumulate pages that need writing, and call
2087 * mpage_da_map_and_submit to map a single contiguous memory region
2088 * and then write them.
 
 
 
 
 
 
 
 
2089 */
2090static int write_cache_pages_da(struct address_space *mapping,
2091				struct writeback_control *wbc,
2092				struct mpage_da_data *mpd,
2093				pgoff_t *done_index)
2094{
2095	struct buffer_head	*bh, *head;
2096	struct inode		*inode = mapping->host;
2097	struct pagevec		pvec;
2098	unsigned int		nr_pages;
2099	sector_t		logical;
2100	pgoff_t			index, end;
2101	long			nr_to_write = wbc->nr_to_write;
2102	int			i, tag, ret = 0;
 
 
 
 
 
 
2103
2104	memset(mpd, 0, sizeof(struct mpage_da_data));
2105	mpd->wbc = wbc;
2106	mpd->inode = inode;
2107	pagevec_init(&pvec, 0);
2108	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2109	end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
 
 
 
2110
2111	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112		tag = PAGECACHE_TAG_TOWRITE;
2113	else
2114		tag = PAGECACHE_TAG_DIRTY;
2115
2116	*done_index = index;
 
 
2117	while (index <= end) {
2118		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2119			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2120		if (nr_pages == 0)
2121			return 0;
2122
2123		for (i = 0; i < nr_pages; i++) {
2124			struct page *page = pvec.pages[i];
2125
2126			/*
2127			 * At this point, the page may be truncated or
2128			 * invalidated (changing page->mapping to NULL), or
2129			 * even swizzled back from swapper_space to tmpfs file
2130			 * mapping. However, page->index will not change
2131			 * because we have a reference on the page.
2132			 */
2133			if (page->index > end)
2134				goto out;
2135
2136			*done_index = page->index + 1;
2137
2138			/*
2139			 * If we can't merge this page, and we have
2140			 * accumulated an contiguous region, write it
 
 
 
 
2141			 */
2142			if ((mpd->next_page != page->index) &&
2143			    (mpd->next_page != mpd->first_page)) {
2144				mpage_da_map_and_submit(mpd);
2145				goto ret_extent_tail;
2146			}
2147
2148			lock_page(page);
 
 
2149
 
2150			/*
2151			 * If the page is no longer dirty, or its
2152			 * mapping no longer corresponds to inode we
2153			 * are writing (which means it has been
2154			 * truncated or invalidated), or the page is
2155			 * already under writeback and we are not
2156			 * doing a data integrity writeback, skip the page
2157			 */
2158			if (!PageDirty(page) ||
2159			    (PageWriteback(page) &&
2160			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2161			    unlikely(page->mapping != mapping)) {
2162				unlock_page(page);
2163				continue;
2164			}
2165
2166			wait_on_page_writeback(page);
2167			BUG_ON(PageWriteback(page));
2168
2169			if (mpd->next_page != page->index)
2170				mpd->first_page = page->index;
2171			mpd->next_page = page->index + 1;
2172			logical = (sector_t) page->index <<
2173				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2174
2175			if (!page_has_buffers(page)) {
2176				mpage_add_bh_to_extent(mpd, logical,
2177						       PAGE_CACHE_SIZE,
2178						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2179				if (mpd->io_done)
2180					goto ret_extent_tail;
2181			} else {
2182				/*
2183				 * Page with regular buffer heads,
2184				 * just add all dirty ones
2185				 */
2186				head = page_buffers(page);
2187				bh = head;
2188				do {
2189					BUG_ON(buffer_locked(bh));
2190					/*
2191					 * We need to try to allocate
2192					 * unmapped blocks in the same page.
2193					 * Otherwise we won't make progress
2194					 * with the page in ext4_writepage
2195					 */
2196					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2197						mpage_add_bh_to_extent(mpd, logical,
2198								       bh->b_size,
2199								       bh->b_state);
2200						if (mpd->io_done)
2201							goto ret_extent_tail;
2202					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2203						/*
2204						 * mapped dirty buffer. We need
2205						 * to update the b_state
2206						 * because we look at b_state
2207						 * in mpage_da_map_blocks.  We
2208						 * don't update b_size because
2209						 * if we find an unmapped
2210						 * buffer_head later we need to
2211						 * use the b_state flag of that
2212						 * buffer_head.
2213						 */
2214						if (mpd->b_size == 0)
2215							mpd->b_state = bh->b_state & BH_FLAGS;
2216					}
2217					logical++;
2218				} while ((bh = bh->b_this_page) != head);
2219			}
2220
2221			if (nr_to_write > 0) {
2222				nr_to_write--;
2223				if (nr_to_write == 0 &&
2224				    wbc->sync_mode == WB_SYNC_NONE)
2225					/*
2226					 * We stop writing back only if we are
2227					 * not doing integrity sync. In case of
2228					 * integrity sync we have to keep going
2229					 * because someone may be concurrently
2230					 * dirtying pages, and we might have
2231					 * synced a lot of newly appeared dirty
2232					 * pages, but have not synced all of the
2233					 * old dirty pages.
2234					 */
2235					goto out;
2236			}
2237		}
2238		pagevec_release(&pvec);
2239		cond_resched();
2240	}
2241	return 0;
2242ret_extent_tail:
2243	ret = MPAGE_DA_EXTENT_TAIL;
2244out:
2245	pagevec_release(&pvec);
2246	cond_resched();
2247	return ret;
2248}
2249
 
 
 
 
 
 
 
 
2250
2251static int ext4_da_writepages(struct address_space *mapping,
2252			      struct writeback_control *wbc)
2253{
2254	pgoff_t	index;
 
2255	int range_whole = 0;
 
2256	handle_t *handle = NULL;
2257	struct mpage_da_data mpd;
2258	struct inode *inode = mapping->host;
2259	int pages_written = 0;
2260	unsigned int max_pages;
2261	int range_cyclic, cycled = 1, io_done = 0;
2262	int needed_blocks, ret = 0;
2263	long desired_nr_to_write, nr_to_writebump = 0;
2264	loff_t range_start = wbc->range_start;
2265	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2266	pgoff_t done_index = 0;
2267	pgoff_t end;
2268	struct blk_plug plug;
 
2269
2270	trace_ext4_da_writepages(inode, wbc);
 
 
 
 
2271
2272	/*
2273	 * No pages to write? This is mainly a kludge to avoid starting
2274	 * a transaction for special inodes like journal inode on last iput()
2275	 * because that could violate lock ordering on umount
2276	 */
2277	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2278		return 0;
 
 
 
 
 
 
 
 
 
2279
2280	/*
2281	 * If the filesystem has aborted, it is read-only, so return
2282	 * right away instead of dumping stack traces later on that
2283	 * will obscure the real source of the problem.  We test
2284	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2285	 * the latter could be true if the filesystem is mounted
2286	 * read-only, and in that case, ext4_da_writepages should
2287	 * *never* be called, so if that ever happens, we would want
2288	 * the stack trace.
2289	 */
2290	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2291		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292
2293	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2294		range_whole = 1;
2295
2296	range_cyclic = wbc->range_cyclic;
2297	if (wbc->range_cyclic) {
2298		index = mapping->writeback_index;
2299		if (index)
2300			cycled = 0;
2301		wbc->range_start = index << PAGE_CACHE_SHIFT;
2302		wbc->range_end  = LLONG_MAX;
2303		wbc->range_cyclic = 0;
2304		end = -1;
2305	} else {
2306		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2307		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2308	}
2309
2310	/*
2311	 * This works around two forms of stupidity.  The first is in
2312	 * the writeback code, which caps the maximum number of pages
2313	 * written to be 1024 pages.  This is wrong on multiple
2314	 * levels; different architectues have a different page size,
2315	 * which changes the maximum amount of data which gets
2316	 * written.  Secondly, 4 megabytes is way too small.  XFS
2317	 * forces this value to be 16 megabytes by multiplying
2318	 * nr_to_write parameter by four, and then relies on its
2319	 * allocator to allocate larger extents to make them
2320	 * contiguous.  Unfortunately this brings us to the second
2321	 * stupidity, which is that ext4's mballoc code only allocates
2322	 * at most 2048 blocks.  So we force contiguous writes up to
2323	 * the number of dirty blocks in the inode, or
2324	 * sbi->max_writeback_mb_bump whichever is smaller.
2325	 */
2326	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2327	if (!range_cyclic && range_whole) {
2328		if (wbc->nr_to_write == LONG_MAX)
2329			desired_nr_to_write = wbc->nr_to_write;
2330		else
2331			desired_nr_to_write = wbc->nr_to_write * 8;
2332	} else
2333		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2334							   max_pages);
2335	if (desired_nr_to_write > max_pages)
2336		desired_nr_to_write = max_pages;
2337
2338	if (wbc->nr_to_write < desired_nr_to_write) {
2339		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2340		wbc->nr_to_write = desired_nr_to_write;
2341	}
2342
 
 
 
2343retry:
2344	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345		tag_pages_for_writeback(mapping, index, end);
2346
2347	blk_start_plug(&plug);
2348	while (!ret && wbc->nr_to_write > 0) {
 
 
 
 
 
 
2349
2350		/*
2351		 * we  insert one extent at a time. So we need
2352		 * credit needed for single extent allocation.
2353		 * journalled mode is currently not supported
2354		 * by delalloc
 
2355		 */
2356		BUG_ON(ext4_should_journal_data(inode));
2357		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2358
2359		/* start a new transaction*/
2360		handle = ext4_journal_start(inode, needed_blocks);
 
2361		if (IS_ERR(handle)) {
2362			ret = PTR_ERR(handle);
2363			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2364			       "%ld pages, ino %lu; err %d", __func__,
2365				wbc->nr_to_write, inode->i_ino, ret);
2366			blk_finish_plug(&plug);
2367			goto out_writepages;
 
2368		}
2369
2370		/*
2371		 * Now call write_cache_pages_da() to find the next
2372		 * contiguous region of logical blocks that need
2373		 * blocks to be allocated by ext4 and submit them.
2374		 */
2375		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2376		/*
2377		 * If we have a contiguous extent of pages and we
2378		 * haven't done the I/O yet, map the blocks and submit
2379		 * them for I/O.
2380		 */
2381		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2382			mpage_da_map_and_submit(&mpd);
2383			ret = MPAGE_DA_EXTENT_TAIL;
 
2384		}
2385		trace_ext4_da_write_pages(inode, &mpd);
2386		wbc->nr_to_write -= mpd.pages_written;
2387
2388		ext4_journal_stop(handle);
 
 
 
 
 
 
2389
2390		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2391			/* commit the transaction which would
 
2392			 * free blocks released in the transaction
2393			 * and try again
2394			 */
2395			jbd2_journal_force_commit_nested(sbi->s_journal);
2396			ret = 0;
2397		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2398			/*
2399			 * Got one extent now try with rest of the pages.
2400			 * If mpd.retval is set -EIO, journal is aborted.
2401			 * So we don't need to write any more.
2402			 */
2403			pages_written += mpd.pages_written;
2404			ret = mpd.retval;
2405			io_done = 1;
2406		} else if (wbc->nr_to_write)
2407			/*
2408			 * There is no more writeout needed
2409			 * or we requested for a noblocking writeout
2410			 * and we found the device congested
2411			 */
2412			break;
2413	}
2414	blk_finish_plug(&plug);
2415	if (!io_done && !cycled) {
2416		cycled = 1;
2417		index = 0;
2418		wbc->range_start = index << PAGE_CACHE_SHIFT;
2419		wbc->range_end  = mapping->writeback_index - 1;
2420		goto retry;
2421	}
2422
2423	/* Update index */
2424	wbc->range_cyclic = range_cyclic;
2425	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2426		/*
2427		 * set the writeback_index so that range_cyclic
2428		 * mode will write it back later
2429		 */
2430		mapping->writeback_index = done_index;
2431
2432out_writepages:
2433	wbc->nr_to_write -= nr_to_writebump;
2434	wbc->range_start = range_start;
2435	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2436	return ret;
2437}
2438
2439#define FALL_BACK_TO_NONDELALLOC 1
2440static int ext4_nonda_switch(struct super_block *sb)
2441{
2442	s64 free_blocks, dirty_blocks;
2443	struct ext4_sb_info *sbi = EXT4_SB(sb);
2444
2445	/*
2446	 * switch to non delalloc mode if we are running low
2447	 * on free block. The free block accounting via percpu
2448	 * counters can get slightly wrong with percpu_counter_batch getting
2449	 * accumulated on each CPU without updating global counters
2450	 * Delalloc need an accurate free block accounting. So switch
2451	 * to non delalloc when we are near to error range.
2452	 */
2453	free_blocks  = EXT4_C2B(sbi,
2454		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2455	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456	if (2 * free_blocks < 3 * dirty_blocks ||
2457		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
 
 
 
 
 
 
 
2458		/*
2459		 * free block count is less than 150% of dirty blocks
2460		 * or free blocks is less than watermark
2461		 */
2462		return 1;
2463	}
2464	/*
2465	 * Even if we don't switch but are nearing capacity,
2466	 * start pushing delalloc when 1/2 of free blocks are dirty.
2467	 */
2468	if (free_blocks < 2 * dirty_blocks)
2469		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2470
2471	return 0;
2472}
2473
 
 
 
 
 
 
 
 
 
 
 
 
 
2474static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2475			       loff_t pos, unsigned len, unsigned flags,
2476			       struct page **pagep, void **fsdata)
2477{
2478	int ret, retries = 0;
2479	struct page *page;
2480	pgoff_t index;
2481	struct inode *inode = mapping->host;
2482	handle_t *handle;
2483
2484	index = pos >> PAGE_CACHE_SHIFT;
2485
2486	if (ext4_nonda_switch(inode->i_sb)) {
2487		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2488		return ext4_write_begin(file, mapping, pos,
2489					len, flags, pagep, fsdata);
2490	}
2491	*fsdata = (void *)0;
2492	trace_ext4_da_write_begin(inode, pos, len, flags);
2493retry:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494	/*
2495	 * With delayed allocation, we don't log the i_disksize update
2496	 * if there is delayed block allocation. But we still need
2497	 * to journalling the i_disksize update if writes to the end
2498	 * of file which has an already mapped buffer.
2499	 */
2500	handle = ext4_journal_start(inode, 1);
 
 
2501	if (IS_ERR(handle)) {
2502		ret = PTR_ERR(handle);
2503		goto out;
2504	}
2505	/* We cannot recurse into the filesystem as the transaction is already
2506	 * started */
2507	flags |= AOP_FLAG_NOFS;
2508
2509	page = grab_cache_page_write_begin(mapping, index, flags);
2510	if (!page) {
 
 
 
2511		ext4_journal_stop(handle);
2512		ret = -ENOMEM;
2513		goto out;
2514	}
2515	*pagep = page;
 
2516
 
 
 
 
2517	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 
2518	if (ret < 0) {
2519		unlock_page(page);
2520		ext4_journal_stop(handle);
2521		page_cache_release(page);
2522		/*
2523		 * block_write_begin may have instantiated a few blocks
2524		 * outside i_size.  Trim these off again. Don't need
2525		 * i_size_read because we hold i_mutex.
2526		 */
2527		if (pos + len > inode->i_size)
2528			ext4_truncate_failed_write(inode);
 
 
 
 
 
 
 
2529	}
2530
2531	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2532		goto retry;
2533out:
2534	return ret;
2535}
2536
2537/*
2538 * Check if we should update i_disksize
2539 * when write to the end of file but not require block allocation
2540 */
2541static int ext4_da_should_update_i_disksize(struct page *page,
2542					    unsigned long offset)
2543{
2544	struct buffer_head *bh;
2545	struct inode *inode = page->mapping->host;
2546	unsigned int idx;
2547	int i;
2548
2549	bh = page_buffers(page);
2550	idx = offset >> inode->i_blkbits;
2551
2552	for (i = 0; i < idx; i++)
2553		bh = bh->b_this_page;
2554
2555	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2556		return 0;
2557	return 1;
2558}
2559
2560static int ext4_da_write_end(struct file *file,
2561			     struct address_space *mapping,
2562			     loff_t pos, unsigned len, unsigned copied,
2563			     struct page *page, void *fsdata)
2564{
2565	struct inode *inode = mapping->host;
2566	int ret = 0, ret2;
2567	handle_t *handle = ext4_journal_current_handle();
2568	loff_t new_i_size;
2569	unsigned long start, end;
2570	int write_mode = (int)(unsigned long)fsdata;
2571
2572	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2573		switch (ext4_inode_journal_mode(inode)) {
2574		case EXT4_INODE_ORDERED_DATA_MODE:
2575			return ext4_ordered_write_end(file, mapping, pos,
2576					len, copied, page, fsdata);
2577		case EXT4_INODE_WRITEBACK_DATA_MODE:
2578			return ext4_writeback_write_end(file, mapping, pos,
2579					len, copied, page, fsdata);
2580		default:
2581			BUG();
2582		}
2583	}
2584
2585	trace_ext4_da_write_end(inode, pos, len, copied);
2586	start = pos & (PAGE_CACHE_SIZE - 1);
2587	end = start + copied - 1;
2588
2589	/*
2590	 * generic_write_end() will run mark_inode_dirty() if i_size
2591	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2592	 * into that.
2593	 */
2594
2595	new_i_size = pos + copied;
2596	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2597		if (ext4_da_should_update_i_disksize(page, end)) {
2598			down_write(&EXT4_I(inode)->i_data_sem);
2599			if (new_i_size > EXT4_I(inode)->i_disksize) {
2600				/*
2601				 * Updating i_disksize when extending file
2602				 * without needing block allocation
2603				 */
2604				if (ext4_should_order_data(inode))
2605					ret = ext4_jbd2_file_inode(handle,
2606								   inode);
2607
2608				EXT4_I(inode)->i_disksize = new_i_size;
2609			}
2610			up_write(&EXT4_I(inode)->i_data_sem);
2611			/* We need to mark inode dirty even if
2612			 * new_i_size is less that inode->i_size
2613			 * bu greater than i_disksize.(hint delalloc)
2614			 */
2615			ext4_mark_inode_dirty(handle, inode);
2616		}
2617	}
2618	ret2 = generic_write_end(file, mapping, pos, len, copied,
 
 
 
 
 
 
 
2619							page, fsdata);
 
2620	copied = ret2;
2621	if (ret2 < 0)
2622		ret = ret2;
2623	ret2 = ext4_journal_stop(handle);
2624	if (!ret)
2625		ret = ret2;
2626
2627	return ret ? ret : copied;
2628}
2629
2630static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
 
2631{
2632	/*
2633	 * Drop reserved blocks
2634	 */
2635	BUG_ON(!PageLocked(page));
2636	if (!page_has_buffers(page))
2637		goto out;
2638
2639	ext4_da_page_release_reservation(page, offset);
2640
2641out:
2642	ext4_invalidatepage(page, offset);
2643
2644	return;
2645}
2646
2647/*
2648 * Force all delayed allocation blocks to be allocated for a given inode.
2649 */
2650int ext4_alloc_da_blocks(struct inode *inode)
2651{
2652	trace_ext4_alloc_da_blocks(inode);
2653
2654	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2655	    !EXT4_I(inode)->i_reserved_meta_blocks)
2656		return 0;
2657
2658	/*
2659	 * We do something simple for now.  The filemap_flush() will
2660	 * also start triggering a write of the data blocks, which is
2661	 * not strictly speaking necessary (and for users of
2662	 * laptop_mode, not even desirable).  However, to do otherwise
2663	 * would require replicating code paths in:
2664	 *
2665	 * ext4_da_writepages() ->
2666	 *    write_cache_pages() ---> (via passed in callback function)
2667	 *        __mpage_da_writepage() -->
2668	 *           mpage_add_bh_to_extent()
2669	 *           mpage_da_map_blocks()
2670	 *
2671	 * The problem is that write_cache_pages(), located in
2672	 * mm/page-writeback.c, marks pages clean in preparation for
2673	 * doing I/O, which is not desirable if we're not planning on
2674	 * doing I/O at all.
2675	 *
2676	 * We could call write_cache_pages(), and then redirty all of
2677	 * the pages by calling redirty_page_for_writepage() but that
2678	 * would be ugly in the extreme.  So instead we would need to
2679	 * replicate parts of the code in the above functions,
2680	 * simplifying them because we wouldn't actually intend to
2681	 * write out the pages, but rather only collect contiguous
2682	 * logical block extents, call the multi-block allocator, and
2683	 * then update the buffer heads with the block allocations.
2684	 *
2685	 * For now, though, we'll cheat by calling filemap_flush(),
2686	 * which will map the blocks, and start the I/O, but not
2687	 * actually wait for the I/O to complete.
2688	 */
2689	return filemap_flush(inode->i_mapping);
2690}
2691
2692/*
2693 * bmap() is special.  It gets used by applications such as lilo and by
2694 * the swapper to find the on-disk block of a specific piece of data.
2695 *
2696 * Naturally, this is dangerous if the block concerned is still in the
2697 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2698 * filesystem and enables swap, then they may get a nasty shock when the
2699 * data getting swapped to that swapfile suddenly gets overwritten by
2700 * the original zero's written out previously to the journal and
2701 * awaiting writeback in the kernel's buffer cache.
2702 *
2703 * So, if we see any bmap calls here on a modified, data-journaled file,
2704 * take extra steps to flush any blocks which might be in the cache.
2705 */
2706static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2707{
2708	struct inode *inode = mapping->host;
2709	journal_t *journal;
2710	int err;
2711
 
 
 
 
 
 
2712	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2713			test_opt(inode->i_sb, DELALLOC)) {
2714		/*
2715		 * With delalloc we want to sync the file
2716		 * so that we can make sure we allocate
2717		 * blocks for file
2718		 */
2719		filemap_write_and_wait(mapping);
2720	}
2721
2722	if (EXT4_JOURNAL(inode) &&
2723	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2724		/*
2725		 * This is a REALLY heavyweight approach, but the use of
2726		 * bmap on dirty files is expected to be extremely rare:
2727		 * only if we run lilo or swapon on a freshly made file
2728		 * do we expect this to happen.
2729		 *
2730		 * (bmap requires CAP_SYS_RAWIO so this does not
2731		 * represent an unprivileged user DOS attack --- we'd be
2732		 * in trouble if mortal users could trigger this path at
2733		 * will.)
2734		 *
2735		 * NB. EXT4_STATE_JDATA is not set on files other than
2736		 * regular files.  If somebody wants to bmap a directory
2737		 * or symlink and gets confused because the buffer
2738		 * hasn't yet been flushed to disk, they deserve
2739		 * everything they get.
2740		 */
2741
2742		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2743		journal = EXT4_JOURNAL(inode);
2744		jbd2_journal_lock_updates(journal);
2745		err = jbd2_journal_flush(journal);
2746		jbd2_journal_unlock_updates(journal);
2747
2748		if (err)
2749			return 0;
2750	}
2751
2752	return generic_block_bmap(mapping, block, ext4_get_block);
2753}
2754
2755static int ext4_readpage(struct file *file, struct page *page)
2756{
 
 
 
2757	trace_ext4_readpage(page);
2758	return mpage_readpage(page, ext4_get_block);
 
 
 
 
 
 
 
2759}
2760
2761static int
2762ext4_readpages(struct file *file, struct address_space *mapping,
2763		struct list_head *pages, unsigned nr_pages)
2764{
2765	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
 
 
 
 
 
 
2766}
2767
2768static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
 
2769{
2770	struct buffer_head *head, *bh;
2771	unsigned int curr_off = 0;
2772
2773	if (!page_has_buffers(page))
2774		return;
2775	head = bh = page_buffers(page);
2776	do {
2777		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2778					&& bh->b_private) {
2779			ext4_free_io_end(bh->b_private);
2780			bh->b_private = NULL;
2781			bh->b_end_io = NULL;
2782		}
2783		curr_off = curr_off + bh->b_size;
2784		bh = bh->b_this_page;
2785	} while (bh != head);
2786}
2787
2788static void ext4_invalidatepage(struct page *page, unsigned long offset)
 
 
2789{
2790	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2791
2792	trace_ext4_invalidatepage(page, offset);
2793
2794	/*
2795	 * free any io_end structure allocated for buffers to be discarded
2796	 */
2797	if (ext4_should_dioread_nolock(page->mapping->host))
2798		ext4_invalidatepage_free_endio(page, offset);
2799	/*
2800	 * If it's a full truncate we just forget about the pending dirtying
2801	 */
2802	if (offset == 0)
2803		ClearPageChecked(page);
2804
2805	if (journal)
2806		jbd2_journal_invalidatepage(journal, page, offset);
2807	else
2808		block_invalidatepage(page, offset);
 
 
 
 
 
2809}
2810
2811static int ext4_releasepage(struct page *page, gfp_t wait)
2812{
2813	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2814
2815	trace_ext4_releasepage(page);
2816
2817	WARN_ON(PageChecked(page));
2818	if (!page_has_buffers(page))
2819		return 0;
2820	if (journal)
2821		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2822	else
2823		return try_to_free_buffers(page);
2824}
2825
2826/*
2827 * ext4_get_block used when preparing for a DIO write or buffer write.
2828 * We allocate an uinitialized extent if blocks haven't been allocated.
2829 * The extent will be converted to initialized after the IO is complete.
2830 */
2831static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2832		   struct buffer_head *bh_result, int create)
2833{
2834	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2835		   inode->i_ino, create);
2836	return _ext4_get_block(inode, iblock, bh_result,
2837			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2838}
2839
2840static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2841			    ssize_t size, void *private, int ret,
2842			    bool is_async)
2843{
2844	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2845        ext4_io_end_t *io_end = iocb->private;
2846	struct workqueue_struct *wq;
2847	unsigned long flags;
2848	struct ext4_inode_info *ei;
 
 
 
 
2849
2850	/* if not async direct IO or dio with 0 bytes write, just return */
2851	if (!io_end || !size)
 
 
 
 
 
2852		goto out;
 
 
2853
2854	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2855		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2856 		  iocb->private, io_end->inode->i_ino, iocb, offset,
2857		  size);
2858
2859	iocb->private = NULL;
 
 
 
 
 
 
2860
2861	/* if not aio dio with unwritten extents, just free io and return */
2862	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2863		ext4_free_io_end(io_end);
2864out:
2865		if (is_async)
2866			aio_complete(iocb, ret, 0);
2867		inode_dio_done(inode);
2868		return;
2869	}
2870
2871	io_end->offset = offset;
2872	io_end->size = size;
2873	if (is_async) {
2874		io_end->iocb = iocb;
2875		io_end->result = ret;
 
 
 
 
 
 
2876	}
2877	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2878
2879	/* Add the io_end to per-inode completed aio dio list*/
2880	ei = EXT4_I(io_end->inode);
2881	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2882	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2883	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2884
2885	/* queue the work to convert unwritten extents to written */
2886	queue_work(wq, &io_end->work);
2887}
 
2888
2889static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
 
2890{
2891	ext4_io_end_t *io_end = bh->b_private;
2892	struct workqueue_struct *wq;
2893	struct inode *inode;
2894	unsigned long flags;
2895
2896	if (!test_clear_buffer_uninit(bh) || !io_end)
2897		goto out;
 
2898
2899	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2900		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2901			 "sb umounted, discard end_io request for inode %lu",
2902			 io_end->inode->i_ino);
2903		ext4_free_io_end(io_end);
2904		goto out;
2905	}
2906
2907	/*
2908	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2909	 * but being more careful is always safe for the future change.
2910	 */
2911	inode = io_end->inode;
2912	ext4_set_io_unwritten_flag(inode, io_end);
2913
2914	/* Add the io_end to per-inode completed io list*/
2915	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2916	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2917	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2918
2919	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2920	/* queue the work to convert unwritten extents to written */
2921	queue_work(wq, &io_end->work);
2922out:
2923	bh->b_private = NULL;
2924	bh->b_end_io = NULL;
2925	clear_buffer_uninit(bh);
2926	end_buffer_async_write(bh, uptodate);
2927}
2928
2929static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2930{
2931	ext4_io_end_t *io_end;
2932	struct page *page = bh->b_page;
2933	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2934	size_t size = bh->b_size;
2935
2936retry:
2937	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2938	if (!io_end) {
2939		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2940		schedule();
2941		goto retry;
2942	}
2943	io_end->offset = offset;
2944	io_end->size = size;
2945	/*
2946	 * We need to hold a reference to the page to make sure it
2947	 * doesn't get evicted before ext4_end_io_work() has a chance
2948	 * to convert the extent from written to unwritten.
2949	 */
2950	io_end->page = page;
2951	get_page(io_end->page);
2952
2953	bh->b_private = io_end;
2954	bh->b_end_io = ext4_end_io_buffer_write;
2955	return 0;
2956}
2957
2958/*
2959 * For ext4 extent files, ext4 will do direct-io write to holes,
2960 * preallocated extents, and those write extend the file, no need to
2961 * fall back to buffered IO.
2962 *
2963 * For holes, we fallocate those blocks, mark them as uninitialized
2964 * If those blocks were preallocated, we mark sure they are splited, but
2965 * still keep the range to write as uninitialized.
2966 *
2967 * The unwrritten extents will be converted to written when DIO is completed.
2968 * For async direct IO, since the IO may still pending when return, we
2969 * set up an end_io call back function, which will do the conversion
2970 * when async direct IO completed.
2971 *
2972 * If the O_DIRECT write will extend the file then add this inode to the
2973 * orphan list.  So recovery will truncate it back to the original size
2974 * if the machine crashes during the write.
2975 *
2976 */
2977static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2978			      const struct iovec *iov, loff_t offset,
2979			      unsigned long nr_segs)
2980{
2981	struct file *file = iocb->ki_filp;
2982	struct inode *inode = file->f_mapping->host;
2983	ssize_t ret;
2984	size_t count = iov_length(iov, nr_segs);
2985
 
 
2986	loff_t final_size = offset + count;
2987	if (rw == WRITE && final_size <= inode->i_size) {
2988		/*
2989 		 * We could direct write to holes and fallocate.
2990		 *
2991 		 * Allocated blocks to fill the hole are marked as uninitialized
2992 		 * to prevent parallel buffered read to expose the stale data
2993 		 * before DIO complete the data IO.
2994		 *
2995 		 * As to previously fallocated extents, ext4 get_block
2996 		 * will just simply mark the buffer mapped but still
2997 		 * keep the extents uninitialized.
2998 		 *
2999		 * for non AIO case, we will convert those unwritten extents
3000		 * to written after return back from blockdev_direct_IO.
3001		 *
3002		 * for async DIO, the conversion needs to be defered when
3003		 * the IO is completed. The ext4 end_io callback function
3004		 * will be called to take care of the conversion work.
3005		 * Here for async case, we allocate an io_end structure to
3006		 * hook to the iocb.
3007 		 */
3008		iocb->private = NULL;
3009		EXT4_I(inode)->cur_aio_dio = NULL;
3010		if (!is_sync_kiocb(iocb)) {
3011			ext4_io_end_t *io_end =
3012				ext4_init_io_end(inode, GFP_NOFS);
3013			if (!io_end)
3014				return -ENOMEM;
3015			io_end->flag |= EXT4_IO_END_DIRECT;
3016			iocb->private = io_end;
3017			/*
3018			 * we save the io structure for current async
3019			 * direct IO, so that later ext4_map_blocks()
3020			 * could flag the io structure whether there
3021			 * is a unwritten extents needs to be converted
3022			 * when IO is completed.
3023			 */
3024			EXT4_I(inode)->cur_aio_dio = iocb->private;
3025		}
3026
3027		ret = __blockdev_direct_IO(rw, iocb, inode,
3028					 inode->i_sb->s_bdev, iov,
3029					 offset, nr_segs,
3030					 ext4_get_block_write,
3031					 ext4_end_io_dio,
3032					 NULL,
3033					 DIO_LOCKING);
3034		if (iocb->private)
3035			EXT4_I(inode)->cur_aio_dio = NULL;
3036		/*
3037		 * The io_end structure takes a reference to the inode,
3038		 * that structure needs to be destroyed and the
3039		 * reference to the inode need to be dropped, when IO is
3040		 * complete, even with 0 byte write, or failed.
3041		 *
3042		 * In the successful AIO DIO case, the io_end structure will be
3043		 * desctroyed and the reference to the inode will be dropped
3044		 * after the end_io call back function is called.
3045		 *
3046		 * In the case there is 0 byte write, or error case, since
3047		 * VFS direct IO won't invoke the end_io call back function,
3048		 * we need to free the end_io structure here.
3049		 */
3050		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3051			ext4_free_io_end(iocb->private);
3052			iocb->private = NULL;
3053		} else if (ret > 0 && ext4_test_inode_state(inode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054						EXT4_STATE_DIO_UNWRITTEN)) {
3055			int err;
3056			/*
3057			 * for non AIO case, since the IO is already
3058			 * completed, we could do the conversion right here
3059			 */
3060			err = ext4_convert_unwritten_extents(inode,
3061							     offset, ret);
3062			if (err < 0)
3063				ret = err;
3064			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3065		}
3066		return ret;
3067	}
3068
3069	/* for write the the end of file case, we fall back to old way */
3070	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
 
 
 
3071}
3072
3073static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3074			      const struct iovec *iov, loff_t offset,
3075			      unsigned long nr_segs)
3076{
3077	struct file *file = iocb->ki_filp;
3078	struct inode *inode = file->f_mapping->host;
 
3079	ssize_t ret;
3080
 
 
 
 
 
3081	/*
3082	 * If we are doing data journalling we don't support O_DIRECT
3083	 */
3084	if (ext4_should_journal_data(inode))
3085		return 0;
3086
3087	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
 
 
 
 
3088	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3089		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3090	else
3091		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3092	trace_ext4_direct_IO_exit(inode, offset,
3093				iov_length(iov, nr_segs), rw, ret);
3094	return ret;
3095}
3096
3097/*
3098 * Pages can be marked dirty completely asynchronously from ext4's journalling
3099 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3100 * much here because ->set_page_dirty is called under VFS locks.  The page is
3101 * not necessarily locked.
3102 *
3103 * We cannot just dirty the page and leave attached buffers clean, because the
3104 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3105 * or jbddirty because all the journalling code will explode.
3106 *
3107 * So what we do is to mark the page "pending dirty" and next time writepage
3108 * is called, propagate that into the buffers appropriately.
3109 */
3110static int ext4_journalled_set_page_dirty(struct page *page)
3111{
3112	SetPageChecked(page);
3113	return __set_page_dirty_nobuffers(page);
3114}
3115
3116static const struct address_space_operations ext4_ordered_aops = {
3117	.readpage		= ext4_readpage,
3118	.readpages		= ext4_readpages,
3119	.writepage		= ext4_writepage,
3120	.write_begin		= ext4_write_begin,
3121	.write_end		= ext4_ordered_write_end,
3122	.bmap			= ext4_bmap,
3123	.invalidatepage		= ext4_invalidatepage,
3124	.releasepage		= ext4_releasepage,
3125	.direct_IO		= ext4_direct_IO,
3126	.migratepage		= buffer_migrate_page,
3127	.is_partially_uptodate  = block_is_partially_uptodate,
3128	.error_remove_page	= generic_error_remove_page,
3129};
3130
3131static const struct address_space_operations ext4_writeback_aops = {
3132	.readpage		= ext4_readpage,
3133	.readpages		= ext4_readpages,
3134	.writepage		= ext4_writepage,
 
3135	.write_begin		= ext4_write_begin,
3136	.write_end		= ext4_writeback_write_end,
3137	.bmap			= ext4_bmap,
3138	.invalidatepage		= ext4_invalidatepage,
3139	.releasepage		= ext4_releasepage,
3140	.direct_IO		= ext4_direct_IO,
3141	.migratepage		= buffer_migrate_page,
3142	.is_partially_uptodate  = block_is_partially_uptodate,
3143	.error_remove_page	= generic_error_remove_page,
3144};
3145
3146static const struct address_space_operations ext4_journalled_aops = {
3147	.readpage		= ext4_readpage,
3148	.readpages		= ext4_readpages,
3149	.writepage		= ext4_writepage,
 
3150	.write_begin		= ext4_write_begin,
3151	.write_end		= ext4_journalled_write_end,
3152	.set_page_dirty		= ext4_journalled_set_page_dirty,
3153	.bmap			= ext4_bmap,
3154	.invalidatepage		= ext4_invalidatepage,
3155	.releasepage		= ext4_releasepage,
3156	.direct_IO		= ext4_direct_IO,
3157	.is_partially_uptodate  = block_is_partially_uptodate,
3158	.error_remove_page	= generic_error_remove_page,
3159};
3160
3161static const struct address_space_operations ext4_da_aops = {
3162	.readpage		= ext4_readpage,
3163	.readpages		= ext4_readpages,
3164	.writepage		= ext4_writepage,
3165	.writepages		= ext4_da_writepages,
3166	.write_begin		= ext4_da_write_begin,
3167	.write_end		= ext4_da_write_end,
3168	.bmap			= ext4_bmap,
3169	.invalidatepage		= ext4_da_invalidatepage,
3170	.releasepage		= ext4_releasepage,
3171	.direct_IO		= ext4_direct_IO,
3172	.migratepage		= buffer_migrate_page,
3173	.is_partially_uptodate  = block_is_partially_uptodate,
3174	.error_remove_page	= generic_error_remove_page,
3175};
3176
3177void ext4_set_aops(struct inode *inode)
3178{
3179	switch (ext4_inode_journal_mode(inode)) {
3180	case EXT4_INODE_ORDERED_DATA_MODE:
3181		if (test_opt(inode->i_sb, DELALLOC))
3182			inode->i_mapping->a_ops = &ext4_da_aops;
3183		else
3184			inode->i_mapping->a_ops = &ext4_ordered_aops;
3185		break;
3186	case EXT4_INODE_WRITEBACK_DATA_MODE:
3187		if (test_opt(inode->i_sb, DELALLOC))
3188			inode->i_mapping->a_ops = &ext4_da_aops;
3189		else
3190			inode->i_mapping->a_ops = &ext4_writeback_aops;
3191		break;
3192	case EXT4_INODE_JOURNAL_DATA_MODE:
3193		inode->i_mapping->a_ops = &ext4_journalled_aops;
3194		break;
3195	default:
3196		BUG();
3197	}
 
 
 
 
3198}
3199
3200
3201/*
3202 * ext4_discard_partial_page_buffers()
3203 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3204 * This function finds and locks the page containing the offset
3205 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3206 * Calling functions that already have the page locked should call
3207 * ext4_discard_partial_page_buffers_no_lock directly.
3208 */
3209int ext4_discard_partial_page_buffers(handle_t *handle,
3210		struct address_space *mapping, loff_t from,
3211		loff_t length, int flags)
3212{
 
 
 
 
3213	struct inode *inode = mapping->host;
 
3214	struct page *page;
3215	int err = 0;
3216
3217	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3218				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3219	if (!page)
3220		return -ENOMEM;
3221
3222	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3223		from, length, flags);
3224
3225	unlock_page(page);
3226	page_cache_release(page);
3227	return err;
3228}
3229
3230/*
3231 * ext4_discard_partial_page_buffers_no_lock()
3232 * Zeros a page range of length 'length' starting from offset 'from'.
3233 * Buffer heads that correspond to the block aligned regions of the
3234 * zeroed range will be unmapped.  Unblock aligned regions
3235 * will have the corresponding buffer head mapped if needed so that
3236 * that region of the page can be updated with the partial zero out.
3237 *
3238 * This function assumes that the page has already been  locked.  The
3239 * The range to be discarded must be contained with in the given page.
3240 * If the specified range exceeds the end of the page it will be shortened
3241 * to the end of the page that corresponds to 'from'.  This function is
3242 * appropriate for updating a page and it buffer heads to be unmapped and
3243 * zeroed for blocks that have been either released, or are going to be
3244 * released.
3245 *
3246 * handle: The journal handle
3247 * inode:  The files inode
3248 * page:   A locked page that contains the offset "from"
3249 * from:   The starting byte offset (from the begining of the file)
3250 *         to begin discarding
3251 * len:    The length of bytes to discard
3252 * flags:  Optional flags that may be used:
3253 *
3254 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3255 *         Only zero the regions of the page whose buffer heads
3256 *         have already been unmapped.  This flag is appropriate
3257 *         for updateing the contents of a page whose blocks may
3258 *         have already been released, and we only want to zero
3259 *         out the regions that correspond to those released blocks.
3260 *
3261 * Returns zero on sucess or negative on failure.
3262 */
3263static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3264		struct inode *inode, struct page *page, loff_t from,
3265		loff_t length, int flags)
3266{
3267	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3268	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3269	unsigned int blocksize, max, pos;
3270	ext4_lblk_t iblock;
3271	struct buffer_head *bh;
3272	int err = 0;
3273
3274	blocksize = inode->i_sb->s_blocksize;
3275	max = PAGE_CACHE_SIZE - offset;
3276
3277	if (index != page->index)
3278		return -EINVAL;
3279
3280	/*
3281	 * correct length if it does not fall between
3282	 * 'from' and the end of the page
3283	 */
3284	if (length > max || length < 0)
3285		length = max;
3286
3287	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3288
3289	if (!page_has_buffers(page))
3290		create_empty_buffers(page, blocksize, 0);
3291
3292	/* Find the buffer that contains "offset" */
3293	bh = page_buffers(page);
3294	pos = blocksize;
3295	while (offset >= pos) {
3296		bh = bh->b_this_page;
3297		iblock++;
3298		pos += blocksize;
3299	}
 
 
 
 
 
 
 
 
 
 
 
 
 
3300
3301	pos = offset;
3302	while (pos < offset + length) {
3303		unsigned int end_of_block, range_to_discard;
3304
3305		err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3306
3307		/* The length of space left to zero and unmap */
3308		range_to_discard = offset + length - pos;
 
 
 
 
 
 
3309
3310		/* The length of space until the end of the block */
3311		end_of_block = blocksize - (pos & (blocksize-1));
 
 
 
3312
3313		/*
3314		 * Do not unmap or zero past end of block
3315		 * for this buffer head
3316		 */
3317		if (range_to_discard > end_of_block)
3318			range_to_discard = end_of_block;
 
 
 
 
 
 
 
 
3319
 
 
 
 
 
 
3320
3321		/*
3322		 * Skip this buffer head if we are only zeroing unampped
3323		 * regions of the page
3324		 */
3325		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3326			buffer_mapped(bh))
3327				goto next;
3328
3329		/* If the range is block aligned, unmap */
3330		if (range_to_discard == blocksize) {
3331			clear_buffer_dirty(bh);
3332			bh->b_bdev = NULL;
3333			clear_buffer_mapped(bh);
3334			clear_buffer_req(bh);
3335			clear_buffer_new(bh);
3336			clear_buffer_delay(bh);
3337			clear_buffer_unwritten(bh);
3338			clear_buffer_uptodate(bh);
3339			zero_user(page, pos, range_to_discard);
3340			BUFFER_TRACE(bh, "Buffer discarded");
3341			goto next;
3342		}
3343
3344		/*
3345		 * If this block is not completely contained in the range
3346		 * to be discarded, then it is not going to be released. Because
3347		 * we need to keep this block, we need to make sure this part
3348		 * of the page is uptodate before we modify it by writeing
3349		 * partial zeros on it.
3350		 */
3351		if (!buffer_mapped(bh)) {
3352			/*
3353			 * Buffer head must be mapped before we can read
3354			 * from the block
3355			 */
3356			BUFFER_TRACE(bh, "unmapped");
3357			ext4_get_block(inode, iblock, bh, 0);
3358			/* unmapped? It's a hole - nothing to do */
3359			if (!buffer_mapped(bh)) {
3360				BUFFER_TRACE(bh, "still unmapped");
3361				goto next;
3362			}
3363		}
3364
3365		/* Ok, it's mapped. Make sure it's up-to-date */
3366		if (PageUptodate(page))
3367			set_buffer_uptodate(bh);
3368
3369		if (!buffer_uptodate(bh)) {
3370			err = -EIO;
3371			ll_rw_block(READ, 1, &bh);
3372			wait_on_buffer(bh);
3373			/* Uhhuh. Read error. Complain and punt.*/
3374			if (!buffer_uptodate(bh))
3375				goto next;
3376		}
3377
3378		if (ext4_should_journal_data(inode)) {
3379			BUFFER_TRACE(bh, "get write access");
3380			err = ext4_journal_get_write_access(handle, bh);
3381			if (err)
3382				goto next;
3383		}
 
 
 
3384
3385		zero_user(page, pos, range_to_discard);
 
3386
3387		err = 0;
3388		if (ext4_should_journal_data(inode)) {
3389			err = ext4_handle_dirty_metadata(handle, inode, bh);
3390		} else
3391			mark_buffer_dirty(bh);
3392
3393		BUFFER_TRACE(bh, "Partial buffer zeroed");
3394next:
3395		bh = bh->b_this_page;
3396		iblock++;
3397		pos += range_to_discard;
 
 
 
 
 
 
 
 
3398	}
3399
 
 
 
 
3400	return err;
3401}
3402
3403int ext4_can_truncate(struct inode *inode)
3404{
3405	if (S_ISREG(inode->i_mode))
3406		return 1;
3407	if (S_ISDIR(inode->i_mode))
3408		return 1;
3409	if (S_ISLNK(inode->i_mode))
3410		return !ext4_inode_is_fast_symlink(inode);
3411	return 0;
3412}
3413
3414/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3415 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3416 * associated with the given offset and length
3417 *
3418 * @inode:  File inode
3419 * @offset: The offset where the hole will begin
3420 * @len:    The length of the hole
3421 *
3422 * Returns: 0 on sucess or negative on failure
3423 */
3424
3425int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3426{
3427	struct inode *inode = file->f_path.dentry->d_inode;
 
 
 
 
 
 
 
3428	if (!S_ISREG(inode->i_mode))
3429		return -EOPNOTSUPP;
3430
3431	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3432		/* TODO: Add support for non extent hole punching */
3433		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
3434	}
3435
3436	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3437		/* TODO: Add support for bigalloc file systems */
3438		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3439	}
3440
3441	return ext4_ext_punch_hole(file, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442}
3443
3444/*
3445 * ext4_truncate()
3446 *
3447 * We block out ext4_get_block() block instantiations across the entire
3448 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3449 * simultaneously on behalf of the same inode.
3450 *
3451 * As we work through the truncate and commit bits of it to the journal there
3452 * is one core, guiding principle: the file's tree must always be consistent on
3453 * disk.  We must be able to restart the truncate after a crash.
3454 *
3455 * The file's tree may be transiently inconsistent in memory (although it
3456 * probably isn't), but whenever we close off and commit a journal transaction,
3457 * the contents of (the filesystem + the journal) must be consistent and
3458 * restartable.  It's pretty simple, really: bottom up, right to left (although
3459 * left-to-right works OK too).
3460 *
3461 * Note that at recovery time, journal replay occurs *before* the restart of
3462 * truncate against the orphan inode list.
3463 *
3464 * The committed inode has the new, desired i_size (which is the same as
3465 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3466 * that this inode's truncate did not complete and it will again call
3467 * ext4_truncate() to have another go.  So there will be instantiated blocks
3468 * to the right of the truncation point in a crashed ext4 filesystem.  But
3469 * that's fine - as long as they are linked from the inode, the post-crash
3470 * ext4_truncate() run will find them and release them.
3471 */
3472void ext4_truncate(struct inode *inode)
3473{
 
 
 
 
 
 
 
 
 
 
 
 
3474	trace_ext4_truncate_enter(inode);
3475
3476	if (!ext4_can_truncate(inode))
3477		return;
3478
3479	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3480
3481	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3482		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3484	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3485		ext4_ext_truncate(inode);
3486	else
3487		ext4_ind_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3488
3489	trace_ext4_truncate_exit(inode);
3490}
3491
3492/*
3493 * ext4_get_inode_loc returns with an extra refcount against the inode's
3494 * underlying buffer_head on success. If 'in_mem' is true, we have all
3495 * data in memory that is needed to recreate the on-disk version of this
3496 * inode.
3497 */
3498static int __ext4_get_inode_loc(struct inode *inode,
3499				struct ext4_iloc *iloc, int in_mem)
3500{
3501	struct ext4_group_desc	*gdp;
3502	struct buffer_head	*bh;
3503	struct super_block	*sb = inode->i_sb;
3504	ext4_fsblk_t		block;
3505	int			inodes_per_block, inode_offset;
3506
3507	iloc->bh = NULL;
3508	if (!ext4_valid_inum(sb, inode->i_ino))
3509		return -EIO;
3510
3511	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3512	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3513	if (!gdp)
3514		return -EIO;
3515
3516	/*
3517	 * Figure out the offset within the block group inode table
3518	 */
3519	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3520	inode_offset = ((inode->i_ino - 1) %
3521			EXT4_INODES_PER_GROUP(sb));
3522	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3523	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3524
3525	bh = sb_getblk(sb, block);
3526	if (!bh) {
3527		EXT4_ERROR_INODE_BLOCK(inode, block,
3528				       "unable to read itable block");
3529		return -EIO;
3530	}
3531	if (!buffer_uptodate(bh)) {
3532		lock_buffer(bh);
3533
3534		/*
3535		 * If the buffer has the write error flag, we have failed
3536		 * to write out another inode in the same block.  In this
3537		 * case, we don't have to read the block because we may
3538		 * read the old inode data successfully.
3539		 */
3540		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3541			set_buffer_uptodate(bh);
3542
3543		if (buffer_uptodate(bh)) {
3544			/* someone brought it uptodate while we waited */
3545			unlock_buffer(bh);
3546			goto has_buffer;
3547		}
3548
3549		/*
3550		 * If we have all information of the inode in memory and this
3551		 * is the only valid inode in the block, we need not read the
3552		 * block.
3553		 */
3554		if (in_mem) {
3555			struct buffer_head *bitmap_bh;
3556			int i, start;
3557
3558			start = inode_offset & ~(inodes_per_block - 1);
3559
3560			/* Is the inode bitmap in cache? */
3561			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3562			if (!bitmap_bh)
3563				goto make_io;
3564
3565			/*
3566			 * If the inode bitmap isn't in cache then the
3567			 * optimisation may end up performing two reads instead
3568			 * of one, so skip it.
3569			 */
3570			if (!buffer_uptodate(bitmap_bh)) {
3571				brelse(bitmap_bh);
3572				goto make_io;
3573			}
3574			for (i = start; i < start + inodes_per_block; i++) {
3575				if (i == inode_offset)
3576					continue;
3577				if (ext4_test_bit(i, bitmap_bh->b_data))
3578					break;
3579			}
3580			brelse(bitmap_bh);
3581			if (i == start + inodes_per_block) {
3582				/* all other inodes are free, so skip I/O */
3583				memset(bh->b_data, 0, bh->b_size);
3584				set_buffer_uptodate(bh);
3585				unlock_buffer(bh);
3586				goto has_buffer;
3587			}
3588		}
3589
3590make_io:
3591		/*
3592		 * If we need to do any I/O, try to pre-readahead extra
3593		 * blocks from the inode table.
3594		 */
3595		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3596			ext4_fsblk_t b, end, table;
3597			unsigned num;
 
3598
3599			table = ext4_inode_table(sb, gdp);
3600			/* s_inode_readahead_blks is always a power of 2 */
3601			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3602			if (table > b)
3603				b = table;
3604			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3605			num = EXT4_INODES_PER_GROUP(sb);
3606			if (ext4_has_group_desc_csum(sb))
3607				num -= ext4_itable_unused_count(sb, gdp);
3608			table += num / inodes_per_block;
3609			if (end > table)
3610				end = table;
3611			while (b <= end)
3612				sb_breadahead(sb, b++);
3613		}
3614
3615		/*
3616		 * There are other valid inodes in the buffer, this inode
3617		 * has in-inode xattrs, or we don't have this inode in memory.
3618		 * Read the block from disk.
3619		 */
3620		trace_ext4_load_inode(inode);
3621		get_bh(bh);
3622		bh->b_end_io = end_buffer_read_sync;
3623		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3624		wait_on_buffer(bh);
3625		if (!buffer_uptodate(bh)) {
3626			EXT4_ERROR_INODE_BLOCK(inode, block,
3627					       "unable to read itable block");
3628			brelse(bh);
3629			return -EIO;
3630		}
3631	}
3632has_buffer:
3633	iloc->bh = bh;
3634	return 0;
3635}
3636
3637int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3638{
3639	/* We have all inode data except xattrs in memory here. */
3640	return __ext4_get_inode_loc(inode, iloc,
3641		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3642}
3643
3644void ext4_set_inode_flags(struct inode *inode)
3645{
3646	unsigned int flags = EXT4_I(inode)->i_flags;
 
3647
3648	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3649	if (flags & EXT4_SYNC_FL)
3650		inode->i_flags |= S_SYNC;
3651	if (flags & EXT4_APPEND_FL)
3652		inode->i_flags |= S_APPEND;
3653	if (flags & EXT4_IMMUTABLE_FL)
3654		inode->i_flags |= S_IMMUTABLE;
3655	if (flags & EXT4_NOATIME_FL)
3656		inode->i_flags |= S_NOATIME;
3657	if (flags & EXT4_DIRSYNC_FL)
3658		inode->i_flags |= S_DIRSYNC;
 
 
 
 
3659}
3660
3661/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3662void ext4_get_inode_flags(struct ext4_inode_info *ei)
3663{
3664	unsigned int vfs_fl;
3665	unsigned long old_fl, new_fl;
3666
3667	do {
3668		vfs_fl = ei->vfs_inode.i_flags;
3669		old_fl = ei->i_flags;
3670		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3671				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3672				EXT4_DIRSYNC_FL);
3673		if (vfs_fl & S_SYNC)
3674			new_fl |= EXT4_SYNC_FL;
3675		if (vfs_fl & S_APPEND)
3676			new_fl |= EXT4_APPEND_FL;
3677		if (vfs_fl & S_IMMUTABLE)
3678			new_fl |= EXT4_IMMUTABLE_FL;
3679		if (vfs_fl & S_NOATIME)
3680			new_fl |= EXT4_NOATIME_FL;
3681		if (vfs_fl & S_DIRSYNC)
3682			new_fl |= EXT4_DIRSYNC_FL;
3683	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3684}
3685
3686static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3687				  struct ext4_inode_info *ei)
3688{
3689	blkcnt_t i_blocks ;
3690	struct inode *inode = &(ei->vfs_inode);
3691	struct super_block *sb = inode->i_sb;
3692
3693	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3694				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3695		/* we are using combined 48 bit field */
3696		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3697					le32_to_cpu(raw_inode->i_blocks_lo);
3698		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3699			/* i_blocks represent file system block size */
3700			return i_blocks  << (inode->i_blkbits - 9);
3701		} else {
3702			return i_blocks;
3703		}
3704	} else {
3705		return le32_to_cpu(raw_inode->i_blocks_lo);
3706	}
3707}
3708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3709struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3710{
3711	struct ext4_iloc iloc;
3712	struct ext4_inode *raw_inode;
3713	struct ext4_inode_info *ei;
3714	struct inode *inode;
3715	journal_t *journal = EXT4_SB(sb)->s_journal;
3716	long ret;
3717	int block;
3718	uid_t i_uid;
3719	gid_t i_gid;
 
3720
3721	inode = iget_locked(sb, ino);
3722	if (!inode)
3723		return ERR_PTR(-ENOMEM);
3724	if (!(inode->i_state & I_NEW))
3725		return inode;
3726
3727	ei = EXT4_I(inode);
3728	iloc.bh = NULL;
3729
3730	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3731	if (ret < 0)
3732		goto bad_inode;
3733	raw_inode = ext4_raw_inode(&iloc);
3734
3735	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3736		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3737		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3738		    EXT4_INODE_SIZE(inode->i_sb)) {
3739			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3740				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3741				EXT4_INODE_SIZE(inode->i_sb));
3742			ret = -EIO;
3743			goto bad_inode;
3744		}
3745	} else
3746		ei->i_extra_isize = 0;
3747
3748	/* Precompute checksum seed for inode metadata */
3749	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3750			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3751		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3752		__u32 csum;
3753		__le32 inum = cpu_to_le32(inode->i_ino);
3754		__le32 gen = raw_inode->i_generation;
3755		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3756				   sizeof(inum));
3757		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3758					      sizeof(gen));
3759	}
3760
3761	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3762		EXT4_ERROR_INODE(inode, "checksum invalid");
3763		ret = -EIO;
3764		goto bad_inode;
3765	}
3766
3767	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3768	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3769	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
3770	if (!(test_opt(inode->i_sb, NO_UID32))) {
3771		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3772		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3773	}
3774	i_uid_write(inode, i_uid);
3775	i_gid_write(inode, i_gid);
 
3776	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3777
3778	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 
3779	ei->i_dir_start_lookup = 0;
3780	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3781	/* We now have enough fields to check if the inode was active or not.
3782	 * This is needed because nfsd might try to access dead inodes
3783	 * the test is that same one that e2fsck uses
3784	 * NeilBrown 1999oct15
3785	 */
3786	if (inode->i_nlink == 0) {
3787		if (inode->i_mode == 0 ||
3788		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
 
3789			/* this inode is deleted */
3790			ret = -ESTALE;
3791			goto bad_inode;
3792		}
3793		/* The only unlinked inodes we let through here have
3794		 * valid i_mode and are being read by the orphan
3795		 * recovery code: that's fine, we're about to complete
3796		 * the process of deleting those. */
 
 
3797	}
3798	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3799	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3800	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3801	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3802		ei->i_file_acl |=
3803			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3804	inode->i_size = ext4_isize(raw_inode);
3805	ei->i_disksize = inode->i_size;
3806#ifdef CONFIG_QUOTA
3807	ei->i_reserved_quota = 0;
3808#endif
3809	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3810	ei->i_block_group = iloc.block_group;
3811	ei->i_last_alloc_group = ~0;
3812	/*
3813	 * NOTE! The in-memory inode i_data array is in little-endian order
3814	 * even on big-endian machines: we do NOT byteswap the block numbers!
3815	 */
3816	for (block = 0; block < EXT4_N_BLOCKS; block++)
3817		ei->i_data[block] = raw_inode->i_block[block];
3818	INIT_LIST_HEAD(&ei->i_orphan);
3819
3820	/*
3821	 * Set transaction id's of transactions that have to be committed
3822	 * to finish f[data]sync. We set them to currently running transaction
3823	 * as we cannot be sure that the inode or some of its metadata isn't
3824	 * part of the transaction - the inode could have been reclaimed and
3825	 * now it is reread from disk.
3826	 */
3827	if (journal) {
3828		transaction_t *transaction;
3829		tid_t tid;
3830
3831		read_lock(&journal->j_state_lock);
3832		if (journal->j_running_transaction)
3833			transaction = journal->j_running_transaction;
3834		else
3835			transaction = journal->j_committing_transaction;
3836		if (transaction)
3837			tid = transaction->t_tid;
3838		else
3839			tid = journal->j_commit_sequence;
3840		read_unlock(&journal->j_state_lock);
3841		ei->i_sync_tid = tid;
3842		ei->i_datasync_tid = tid;
3843	}
3844
3845	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3846		if (ei->i_extra_isize == 0) {
3847			/* The extra space is currently unused. Use it. */
3848			ei->i_extra_isize = sizeof(struct ext4_inode) -
3849					    EXT4_GOOD_OLD_INODE_SIZE;
3850		} else {
3851			__le32 *magic = (void *)raw_inode +
3852					EXT4_GOOD_OLD_INODE_SIZE +
3853					ei->i_extra_isize;
3854			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3855				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3856		}
3857	}
3858
3859	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3860	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3861	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3862	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3863
3864	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3865	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3866		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3867			inode->i_version |=
3868			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 
 
3869	}
3870
3871	ret = 0;
3872	if (ei->i_file_acl &&
3873	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3874		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3875				 ei->i_file_acl);
3876		ret = -EIO;
3877		goto bad_inode;
3878	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3879		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3880		    (S_ISLNK(inode->i_mode) &&
3881		     !ext4_inode_is_fast_symlink(inode)))
3882			/* Validate extent which is part of inode */
3883			ret = ext4_ext_check_inode(inode);
3884	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3885		   (S_ISLNK(inode->i_mode) &&
3886		    !ext4_inode_is_fast_symlink(inode))) {
3887		/* Validate block references which are part of inode */
3888		ret = ext4_ind_check_inode(inode);
 
 
3889	}
3890	if (ret)
3891		goto bad_inode;
3892
3893	if (S_ISREG(inode->i_mode)) {
3894		inode->i_op = &ext4_file_inode_operations;
3895		inode->i_fop = &ext4_file_operations;
3896		ext4_set_aops(inode);
3897	} else if (S_ISDIR(inode->i_mode)) {
3898		inode->i_op = &ext4_dir_inode_operations;
3899		inode->i_fop = &ext4_dir_operations;
3900	} else if (S_ISLNK(inode->i_mode)) {
3901		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
3902			inode->i_op = &ext4_fast_symlink_inode_operations;
3903			nd_terminate_link(ei->i_data, inode->i_size,
3904				sizeof(ei->i_data) - 1);
3905		} else {
3906			inode->i_op = &ext4_symlink_inode_operations;
3907			ext4_set_aops(inode);
3908		}
 
3909	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3910	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3911		inode->i_op = &ext4_special_inode_operations;
3912		if (raw_inode->i_block[0])
3913			init_special_inode(inode, inode->i_mode,
3914			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3915		else
3916			init_special_inode(inode, inode->i_mode,
3917			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 
 
3918	} else {
3919		ret = -EIO;
3920		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3921		goto bad_inode;
3922	}
3923	brelse(iloc.bh);
3924	ext4_set_inode_flags(inode);
3925	unlock_new_inode(inode);
3926	return inode;
3927
3928bad_inode:
3929	brelse(iloc.bh);
3930	iget_failed(inode);
3931	return ERR_PTR(ret);
3932}
3933
 
 
 
 
 
 
 
3934static int ext4_inode_blocks_set(handle_t *handle,
3935				struct ext4_inode *raw_inode,
3936				struct ext4_inode_info *ei)
3937{
3938	struct inode *inode = &(ei->vfs_inode);
3939	u64 i_blocks = inode->i_blocks;
3940	struct super_block *sb = inode->i_sb;
3941
3942	if (i_blocks <= ~0U) {
3943		/*
3944		 * i_blocks can be represnted in a 32 bit variable
3945		 * as multiple of 512 bytes
3946		 */
3947		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3948		raw_inode->i_blocks_high = 0;
3949		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3950		return 0;
3951	}
3952	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3953		return -EFBIG;
3954
3955	if (i_blocks <= 0xffffffffffffULL) {
3956		/*
3957		 * i_blocks can be represented in a 48 bit variable
3958		 * as multiple of 512 bytes
3959		 */
3960		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3961		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3962		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3963	} else {
3964		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3965		/* i_block is stored in file system block size */
3966		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3967		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3968		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3969	}
3970	return 0;
3971}
3972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3973/*
3974 * Post the struct inode info into an on-disk inode location in the
3975 * buffer-cache.  This gobbles the caller's reference to the
3976 * buffer_head in the inode location struct.
3977 *
3978 * The caller must have write access to iloc->bh.
3979 */
3980static int ext4_do_update_inode(handle_t *handle,
3981				struct inode *inode,
3982				struct ext4_iloc *iloc)
3983{
3984	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3985	struct ext4_inode_info *ei = EXT4_I(inode);
3986	struct buffer_head *bh = iloc->bh;
 
3987	int err = 0, rc, block;
 
3988	uid_t i_uid;
3989	gid_t i_gid;
 
3990
3991	/* For fields not not tracking in the in-memory inode,
 
 
3992	 * initialise them to zero for new inodes. */
3993	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3994		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3995
3996	ext4_get_inode_flags(ei);
3997	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3998	i_uid = i_uid_read(inode);
3999	i_gid = i_gid_read(inode);
 
4000	if (!(test_opt(inode->i_sb, NO_UID32))) {
4001		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4002		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4003/*
4004 * Fix up interoperability with old kernels. Otherwise, old inodes get
4005 * re-used with the upper 16 bits of the uid/gid intact
4006 */
4007		if (!ei->i_dtime) {
4008			raw_inode->i_uid_high =
4009				cpu_to_le16(high_16_bits(i_uid));
4010			raw_inode->i_gid_high =
4011				cpu_to_le16(high_16_bits(i_gid));
4012		} else {
4013			raw_inode->i_uid_high = 0;
4014			raw_inode->i_gid_high = 0;
4015		}
4016	} else {
4017		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4018		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4019		raw_inode->i_uid_high = 0;
4020		raw_inode->i_gid_high = 0;
4021	}
4022	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4023
4024	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4025	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4026	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4027	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4028
4029	if (ext4_inode_blocks_set(handle, raw_inode, ei))
 
 
4030		goto out_brelse;
 
4031	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4032	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4033	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4034	    cpu_to_le32(EXT4_OS_HURD))
4035		raw_inode->i_file_acl_high =
4036			cpu_to_le16(ei->i_file_acl >> 32);
4037	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4038	ext4_isize_set(raw_inode, ei->i_disksize);
 
 
 
4039	if (ei->i_disksize > 0x7fffffffULL) {
4040		struct super_block *sb = inode->i_sb;
4041		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4042				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4043				EXT4_SB(sb)->s_es->s_rev_level ==
4044				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4045			/* If this is the first large file
4046			 * created, add a flag to the superblock.
4047			 */
4048			err = ext4_journal_get_write_access(handle,
4049					EXT4_SB(sb)->s_sbh);
4050			if (err)
4051				goto out_brelse;
4052			ext4_update_dynamic_rev(sb);
4053			EXT4_SET_RO_COMPAT_FEATURE(sb,
4054					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4055			ext4_handle_sync(handle);
4056			err = ext4_handle_dirty_super_now(handle, sb);
4057		}
4058	}
4059	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4060	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4061		if (old_valid_dev(inode->i_rdev)) {
4062			raw_inode->i_block[0] =
4063				cpu_to_le32(old_encode_dev(inode->i_rdev));
4064			raw_inode->i_block[1] = 0;
4065		} else {
4066			raw_inode->i_block[0] = 0;
4067			raw_inode->i_block[1] =
4068				cpu_to_le32(new_encode_dev(inode->i_rdev));
4069			raw_inode->i_block[2] = 0;
4070		}
4071	} else
4072		for (block = 0; block < EXT4_N_BLOCKS; block++)
4073			raw_inode->i_block[block] = ei->i_data[block];
 
4074
4075	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4076	if (ei->i_extra_isize) {
4077		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4078			raw_inode->i_version_hi =
4079			cpu_to_le32(inode->i_version >> 32);
4080		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
 
 
 
4081	}
4082
 
 
 
 
 
 
 
 
4083	ext4_inode_csum_set(inode, raw_inode, ei);
 
 
 
 
4084
4085	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4086	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4087	if (!err)
4088		err = rc;
4089	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4090
4091	ext4_update_inode_fsync_trans(handle, inode, 0);
 
 
 
 
 
 
 
 
 
4092out_brelse:
4093	brelse(bh);
4094	ext4_std_error(inode->i_sb, err);
4095	return err;
4096}
4097
4098/*
4099 * ext4_write_inode()
4100 *
4101 * We are called from a few places:
4102 *
4103 * - Within generic_file_write() for O_SYNC files.
4104 *   Here, there will be no transaction running. We wait for any running
4105 *   trasnaction to commit.
4106 *
4107 * - Within sys_sync(), kupdate and such.
4108 *   We wait on commit, if tol to.
4109 *
4110 * - Within prune_icache() (PF_MEMALLOC == true)
4111 *   Here we simply return.  We can't afford to block kswapd on the
4112 *   journal commit.
4113 *
4114 * In all cases it is actually safe for us to return without doing anything,
4115 * because the inode has been copied into a raw inode buffer in
4116 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4117 * knfsd.
4118 *
4119 * Note that we are absolutely dependent upon all inode dirtiers doing the
4120 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4121 * which we are interested.
4122 *
4123 * It would be a bug for them to not do this.  The code:
4124 *
4125 *	mark_inode_dirty(inode)
4126 *	stuff();
4127 *	inode->i_size = expr;
4128 *
4129 * is in error because a kswapd-driven write_inode() could occur while
4130 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4131 * will no longer be on the superblock's dirty inode list.
4132 */
4133int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4134{
4135	int err;
4136
4137	if (current->flags & PF_MEMALLOC)
4138		return 0;
4139
4140	if (EXT4_SB(inode->i_sb)->s_journal) {
4141		if (ext4_journal_current_handle()) {
4142			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4143			dump_stack();
4144			return -EIO;
4145		}
4146
4147		if (wbc->sync_mode != WB_SYNC_ALL)
 
 
 
 
 
4148			return 0;
4149
4150		err = ext4_force_commit(inode->i_sb);
4151	} else {
4152		struct ext4_iloc iloc;
4153
4154		err = __ext4_get_inode_loc(inode, &iloc, 0);
4155		if (err)
4156			return err;
4157		if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
4158			sync_dirty_buffer(iloc.bh);
4159		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4160			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4161					 "IO error syncing inode");
4162			err = -EIO;
4163		}
4164		brelse(iloc.bh);
4165	}
4166	return err;
4167}
4168
4169/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170 * ext4_setattr()
4171 *
4172 * Called from notify_change.
4173 *
4174 * We want to trap VFS attempts to truncate the file as soon as
4175 * possible.  In particular, we want to make sure that when the VFS
4176 * shrinks i_size, we put the inode on the orphan list and modify
4177 * i_disksize immediately, so that during the subsequent flushing of
4178 * dirty pages and freeing of disk blocks, we can guarantee that any
4179 * commit will leave the blocks being flushed in an unused state on
4180 * disk.  (On recovery, the inode will get truncated and the blocks will
4181 * be freed, so we have a strong guarantee that no future commit will
4182 * leave these blocks visible to the user.)
4183 *
4184 * Another thing we have to assure is that if we are in ordered mode
4185 * and inode is still attached to the committing transaction, we must
4186 * we start writeout of all the dirty pages which are being truncated.
4187 * This way we are sure that all the data written in the previous
4188 * transaction are already on disk (truncate waits for pages under
4189 * writeback).
4190 *
4191 * Called with inode->i_mutex down.
4192 */
4193int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4194{
4195	struct inode *inode = dentry->d_inode;
4196	int error, rc = 0;
4197	int orphan = 0;
4198	const unsigned int ia_valid = attr->ia_valid;
4199
4200	error = inode_change_ok(inode, attr);
4201	if (error)
4202		return error;
4203
4204	if (is_quota_modification(inode, attr))
4205		dquot_initialize(inode);
 
 
 
4206	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4207	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4208		handle_t *handle;
4209
4210		/* (user+group)*(old+new) structure, inode write (sb,
4211		 * inode block, ? - but truncate inode update has it) */
4212		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4213					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
 
4214		if (IS_ERR(handle)) {
4215			error = PTR_ERR(handle);
4216			goto err_out;
4217		}
4218		error = dquot_transfer(inode, attr);
4219		if (error) {
4220			ext4_journal_stop(handle);
4221			return error;
4222		}
4223		/* Update corresponding info in inode so that everything is in
4224		 * one transaction */
4225		if (attr->ia_valid & ATTR_UID)
4226			inode->i_uid = attr->ia_uid;
4227		if (attr->ia_valid & ATTR_GID)
4228			inode->i_gid = attr->ia_gid;
4229		error = ext4_mark_inode_dirty(handle, inode);
4230		ext4_journal_stop(handle);
4231	}
4232
4233	if (attr->ia_valid & ATTR_SIZE) {
4234		inode_dio_wait(inode);
 
 
4235
4236		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4237			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4238
4239			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4240				return -EFBIG;
4241		}
4242	}
4243
4244	if (S_ISREG(inode->i_mode) &&
4245	    attr->ia_valid & ATTR_SIZE &&
4246	    (attr->ia_size < inode->i_size)) {
4247		handle_t *handle;
4248
4249		handle = ext4_journal_start(inode, 3);
4250		if (IS_ERR(handle)) {
4251			error = PTR_ERR(handle);
4252			goto err_out;
4253		}
4254		if (ext4_handle_valid(handle)) {
4255			error = ext4_orphan_add(handle, inode);
4256			orphan = 1;
4257		}
4258		EXT4_I(inode)->i_disksize = attr->ia_size;
4259		rc = ext4_mark_inode_dirty(handle, inode);
4260		if (!error)
4261			error = rc;
4262		ext4_journal_stop(handle);
4263
4264		if (ext4_should_order_data(inode)) {
 
4265			error = ext4_begin_ordered_truncate(inode,
4266							    attr->ia_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4267			if (error) {
4268				/* Do as much error cleanup as possible */
4269				handle = ext4_journal_start(inode, 3);
4270				if (IS_ERR(handle)) {
4271					ext4_orphan_del(NULL, inode);
4272					goto err_out;
4273				}
4274				ext4_orphan_del(handle, inode);
4275				orphan = 0;
4276				ext4_journal_stop(handle);
4277				goto err_out;
4278			}
4279		}
4280	}
 
4281
4282	if (attr->ia_valid & ATTR_SIZE) {
4283		if (attr->ia_size != i_size_read(inode))
4284			truncate_setsize(inode, attr->ia_size);
4285		ext4_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4286	}
4287
4288	if (!rc) {
4289		setattr_copy(inode, attr);
4290		mark_inode_dirty(inode);
4291	}
4292
4293	/*
4294	 * If the call to ext4_truncate failed to get a transaction handle at
4295	 * all, we need to clean up the in-core orphan list manually.
4296	 */
4297	if (orphan && inode->i_nlink)
4298		ext4_orphan_del(NULL, inode);
4299
4300	if (!rc && (ia_valid & ATTR_MODE))
4301		rc = ext4_acl_chmod(inode);
4302
4303err_out:
4304	ext4_std_error(inode->i_sb, error);
4305	if (!error)
4306		error = rc;
4307	return error;
4308}
4309
4310int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4311		 struct kstat *stat)
4312{
4313	struct inode *inode;
4314	unsigned long delalloc_blocks;
4315
4316	inode = dentry->d_inode;
4317	generic_fillattr(inode, stat);
4318
4319	/*
 
 
 
 
 
 
 
 
 
4320	 * We can't update i_blocks if the block allocation is delayed
4321	 * otherwise in the case of system crash before the real block
4322	 * allocation is done, we will have i_blocks inconsistent with
4323	 * on-disk file blocks.
4324	 * We always keep i_blocks updated together with real
4325	 * allocation. But to not confuse with user, stat
4326	 * will return the blocks that include the delayed allocation
4327	 * blocks for this file.
4328	 */
4329	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4330				EXT4_I(inode)->i_reserved_data_blocks);
4331
4332	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4333	return 0;
4334}
4335
4336static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4337{
4338	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4339		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4340	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4341}
4342
4343/*
4344 * Account for index blocks, block groups bitmaps and block group
4345 * descriptor blocks if modify datablocks and index blocks
4346 * worse case, the indexs blocks spread over different block groups
4347 *
4348 * If datablocks are discontiguous, they are possible to spread over
4349 * different block groups too. If they are contiuguous, with flexbg,
4350 * they could still across block group boundary.
4351 *
4352 * Also account for superblock, inode, quota and xattr blocks
4353 */
4354static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4355{
4356	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4357	int gdpblocks;
4358	int idxblocks;
4359	int ret = 0;
4360
4361	/*
4362	 * How many index blocks need to touch to modify nrblocks?
4363	 * The "Chunk" flag indicating whether the nrblocks is
4364	 * physically contiguous on disk
4365	 *
4366	 * For Direct IO and fallocate, they calls get_block to allocate
4367	 * one single extent at a time, so they could set the "Chunk" flag
4368	 */
4369	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4370
4371	ret = idxblocks;
4372
4373	/*
4374	 * Now let's see how many group bitmaps and group descriptors need
4375	 * to account
4376	 */
4377	groups = idxblocks;
4378	if (chunk)
4379		groups += 1;
4380	else
4381		groups += nrblocks;
4382
4383	gdpblocks = groups;
4384	if (groups > ngroups)
4385		groups = ngroups;
4386	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4387		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4388
4389	/* bitmaps and block group descriptor blocks */
4390	ret += groups + gdpblocks;
4391
4392	/* Blocks for super block, inode, quota and xattr blocks */
4393	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4394
4395	return ret;
4396}
4397
4398/*
4399 * Calculate the total number of credits to reserve to fit
4400 * the modification of a single pages into a single transaction,
4401 * which may include multiple chunks of block allocations.
4402 *
4403 * This could be called via ext4_write_begin()
4404 *
4405 * We need to consider the worse case, when
4406 * one new block per extent.
4407 */
4408int ext4_writepage_trans_blocks(struct inode *inode)
4409{
4410	int bpp = ext4_journal_blocks_per_page(inode);
4411	int ret;
4412
4413	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4414
4415	/* Account for data blocks for journalled mode */
4416	if (ext4_should_journal_data(inode))
4417		ret += bpp;
4418	return ret;
4419}
4420
4421/*
4422 * Calculate the journal credits for a chunk of data modification.
4423 *
4424 * This is called from DIO, fallocate or whoever calling
4425 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4426 *
4427 * journal buffers for data blocks are not included here, as DIO
4428 * and fallocate do no need to journal data buffers.
4429 */
4430int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4431{
4432	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4433}
4434
4435/*
4436 * The caller must have previously called ext4_reserve_inode_write().
4437 * Give this, we know that the caller already has write access to iloc->bh.
4438 */
4439int ext4_mark_iloc_dirty(handle_t *handle,
4440			 struct inode *inode, struct ext4_iloc *iloc)
4441{
4442	int err = 0;
4443
4444	if (IS_I_VERSION(inode))
4445		inode_inc_iversion(inode);
4446
4447	/* the do_update_inode consumes one bh->b_count */
4448	get_bh(iloc->bh);
4449
4450	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4451	err = ext4_do_update_inode(handle, inode, iloc);
4452	put_bh(iloc->bh);
4453	return err;
4454}
4455
4456/*
4457 * On success, We end up with an outstanding reference count against
4458 * iloc->bh.  This _must_ be cleaned up later.
4459 */
4460
4461int
4462ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4463			 struct ext4_iloc *iloc)
4464{
4465	int err;
4466
4467	err = ext4_get_inode_loc(inode, iloc);
4468	if (!err) {
4469		BUFFER_TRACE(iloc->bh, "get_write_access");
4470		err = ext4_journal_get_write_access(handle, iloc->bh);
4471		if (err) {
4472			brelse(iloc->bh);
4473			iloc->bh = NULL;
4474		}
4475	}
4476	ext4_std_error(inode->i_sb, err);
4477	return err;
4478}
4479
4480/*
4481 * Expand an inode by new_extra_isize bytes.
4482 * Returns 0 on success or negative error number on failure.
4483 */
4484static int ext4_expand_extra_isize(struct inode *inode,
4485				   unsigned int new_extra_isize,
4486				   struct ext4_iloc iloc,
4487				   handle_t *handle)
4488{
4489	struct ext4_inode *raw_inode;
4490	struct ext4_xattr_ibody_header *header;
4491
4492	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4493		return 0;
4494
4495	raw_inode = ext4_raw_inode(&iloc);
4496
4497	header = IHDR(inode, raw_inode);
4498
4499	/* No extended attributes present */
4500	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4501	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4502		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4503			new_extra_isize);
4504		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4505		return 0;
4506	}
4507
4508	/* try to expand with EAs present */
4509	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4510					  raw_inode, handle);
4511}
4512
4513/*
4514 * What we do here is to mark the in-core inode as clean with respect to inode
4515 * dirtiness (it may still be data-dirty).
4516 * This means that the in-core inode may be reaped by prune_icache
4517 * without having to perform any I/O.  This is a very good thing,
4518 * because *any* task may call prune_icache - even ones which
4519 * have a transaction open against a different journal.
4520 *
4521 * Is this cheating?  Not really.  Sure, we haven't written the
4522 * inode out, but prune_icache isn't a user-visible syncing function.
4523 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4524 * we start and wait on commits.
4525 *
4526 * Is this efficient/effective?  Well, we're being nice to the system
4527 * by cleaning up our inodes proactively so they can be reaped
4528 * without I/O.  But we are potentially leaving up to five seconds'
4529 * worth of inodes floating about which prune_icache wants us to
4530 * write out.  One way to fix that would be to get prune_icache()
4531 * to do a write_super() to free up some memory.  It has the desired
4532 * effect.
4533 */
4534int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4535{
4536	struct ext4_iloc iloc;
4537	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4538	static unsigned int mnt_count;
4539	int err, ret;
4540
4541	might_sleep();
4542	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4543	err = ext4_reserve_inode_write(handle, inode, &iloc);
 
 
4544	if (ext4_handle_valid(handle) &&
4545	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4546	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4547		/*
4548		 * We need extra buffer credits since we may write into EA block
4549		 * with this same handle. If journal_extend fails, then it will
4550		 * only result in a minor loss of functionality for that inode.
4551		 * If this is felt to be critical, then e2fsck should be run to
4552		 * force a large enough s_min_extra_isize.
4553		 */
4554		if ((jbd2_journal_extend(handle,
4555			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4556			ret = ext4_expand_extra_isize(inode,
4557						      sbi->s_want_extra_isize,
4558						      iloc, handle);
4559			if (ret) {
4560				ext4_set_inode_state(inode,
4561						     EXT4_STATE_NO_EXPAND);
4562				if (mnt_count !=
4563					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4564					ext4_warning(inode->i_sb,
4565					"Unable to expand inode %lu. Delete"
4566					" some EAs or run e2fsck.",
4567					inode->i_ino);
4568					mnt_count =
4569					  le16_to_cpu(sbi->s_es->s_mnt_count);
4570				}
4571			}
4572		}
4573	}
4574	if (!err)
4575		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4576	return err;
4577}
4578
4579/*
4580 * ext4_dirty_inode() is called from __mark_inode_dirty()
4581 *
4582 * We're really interested in the case where a file is being extended.
4583 * i_size has been changed by generic_commit_write() and we thus need
4584 * to include the updated inode in the current transaction.
4585 *
4586 * Also, dquot_alloc_block() will always dirty the inode when blocks
4587 * are allocated to the file.
4588 *
4589 * If the inode is marked synchronous, we don't honour that here - doing
4590 * so would cause a commit on atime updates, which we don't bother doing.
4591 * We handle synchronous inodes at the highest possible level.
 
 
 
 
4592 */
4593void ext4_dirty_inode(struct inode *inode, int flags)
4594{
4595	handle_t *handle;
4596
4597	handle = ext4_journal_start(inode, 2);
 
 
4598	if (IS_ERR(handle))
4599		goto out;
4600
4601	ext4_mark_inode_dirty(handle, inode);
4602
4603	ext4_journal_stop(handle);
4604out:
4605	return;
4606}
4607
4608#if 0
4609/*
4610 * Bind an inode's backing buffer_head into this transaction, to prevent
4611 * it from being flushed to disk early.  Unlike
4612 * ext4_reserve_inode_write, this leaves behind no bh reference and
4613 * returns no iloc structure, so the caller needs to repeat the iloc
4614 * lookup to mark the inode dirty later.
4615 */
4616static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4617{
4618	struct ext4_iloc iloc;
4619
4620	int err = 0;
4621	if (handle) {
4622		err = ext4_get_inode_loc(inode, &iloc);
4623		if (!err) {
4624			BUFFER_TRACE(iloc.bh, "get_write_access");
4625			err = jbd2_journal_get_write_access(handle, iloc.bh);
4626			if (!err)
4627				err = ext4_handle_dirty_metadata(handle,
4628								 NULL,
4629								 iloc.bh);
4630			brelse(iloc.bh);
4631		}
4632	}
4633	ext4_std_error(inode->i_sb, err);
4634	return err;
4635}
4636#endif
4637
4638int ext4_change_inode_journal_flag(struct inode *inode, int val)
4639{
4640	journal_t *journal;
4641	handle_t *handle;
4642	int err;
4643
4644	/*
4645	 * We have to be very careful here: changing a data block's
4646	 * journaling status dynamically is dangerous.  If we write a
4647	 * data block to the journal, change the status and then delete
4648	 * that block, we risk forgetting to revoke the old log record
4649	 * from the journal and so a subsequent replay can corrupt data.
4650	 * So, first we make sure that the journal is empty and that
4651	 * nobody is changing anything.
4652	 */
4653
4654	journal = EXT4_JOURNAL(inode);
4655	if (!journal)
4656		return 0;
4657	if (is_journal_aborted(journal))
4658		return -EROFS;
4659	/* We have to allocate physical blocks for delalloc blocks
4660	 * before flushing journal. otherwise delalloc blocks can not
4661	 * be allocated any more. even more truncate on delalloc blocks
4662	 * could trigger BUG by flushing delalloc blocks in journal.
4663	 * There is no delalloc block in non-journal data mode.
4664	 */
4665	if (val && test_opt(inode->i_sb, DELALLOC)) {
4666		err = ext4_alloc_da_blocks(inode);
4667		if (err < 0)
4668			return err;
4669	}
4670
 
 
 
 
4671	jbd2_journal_lock_updates(journal);
4672
4673	/*
4674	 * OK, there are no updates running now, and all cached data is
4675	 * synced to disk.  We are now in a completely consistent state
4676	 * which doesn't have anything in the journal, and we know that
4677	 * no filesystem updates are running, so it is safe to modify
4678	 * the inode's in-core data-journaling state flag now.
4679	 */
4680
4681	if (val)
4682		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4683	else {
4684		jbd2_journal_flush(journal);
 
 
 
 
 
4685		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4686	}
4687	ext4_set_aops(inode);
4688
4689	jbd2_journal_unlock_updates(journal);
 
4690
4691	/* Finally we can mark the inode as dirty. */
4692
4693	handle = ext4_journal_start(inode, 1);
4694	if (IS_ERR(handle))
4695		return PTR_ERR(handle);
4696
4697	err = ext4_mark_inode_dirty(handle, inode);
4698	ext4_handle_sync(handle);
4699	ext4_journal_stop(handle);
4700	ext4_std_error(inode->i_sb, err);
4701
4702	return err;
4703}
4704
4705static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4706{
4707	return !buffer_mapped(bh);
4708}
4709
4710int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4711{
4712	struct page *page = vmf->page;
4713	loff_t size;
4714	unsigned long len;
4715	int ret;
4716	struct file *file = vma->vm_file;
4717	struct inode *inode = file->f_path.dentry->d_inode;
4718	struct address_space *mapping = inode->i_mapping;
4719	handle_t *handle;
4720	get_block_t *get_block;
4721	int retries = 0;
4722
4723	/*
4724	 * This check is racy but catches the common case. We rely on
4725	 * __block_page_mkwrite() to do a reliable check.
4726	 */
4727	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4728	/* Delalloc case is easy... */
4729	if (test_opt(inode->i_sb, DELALLOC) &&
4730	    !ext4_should_journal_data(inode) &&
4731	    !ext4_nonda_switch(inode->i_sb)) {
4732		do {
4733			ret = __block_page_mkwrite(vma, vmf,
4734						   ext4_da_get_block_prep);
4735		} while (ret == -ENOSPC &&
4736		       ext4_should_retry_alloc(inode->i_sb, &retries));
4737		goto out_ret;
4738	}
4739
4740	lock_page(page);
4741	size = i_size_read(inode);
4742	/* Page got truncated from under us? */
4743	if (page->mapping != mapping || page_offset(page) > size) {
4744		unlock_page(page);
4745		ret = VM_FAULT_NOPAGE;
4746		goto out;
4747	}
4748
4749	if (page->index == size >> PAGE_CACHE_SHIFT)
4750		len = size & ~PAGE_CACHE_MASK;
4751	else
4752		len = PAGE_CACHE_SIZE;
4753	/*
4754	 * Return if we have all the buffers mapped. This avoids the need to do
4755	 * journal_start/journal_stop which can block and take a long time
4756	 */
4757	if (page_has_buffers(page)) {
4758		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4759					ext4_bh_unmapped)) {
 
4760			/* Wait so that we don't change page under IO */
4761			wait_on_page_writeback(page);
4762			ret = VM_FAULT_LOCKED;
4763			goto out;
4764		}
4765	}
4766	unlock_page(page);
4767	/* OK, we need to fill the hole... */
4768	if (ext4_should_dioread_nolock(inode))
4769		get_block = ext4_get_block_write;
4770	else
4771		get_block = ext4_get_block;
4772retry_alloc:
4773	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
4774	if (IS_ERR(handle)) {
4775		ret = VM_FAULT_SIGBUS;
4776		goto out;
4777	}
4778	ret = __block_page_mkwrite(vma, vmf, get_block);
4779	if (!ret && ext4_should_journal_data(inode)) {
4780		if (walk_page_buffers(handle, page_buffers(page), 0,
4781			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4782			unlock_page(page);
4783			ret = VM_FAULT_SIGBUS;
4784			ext4_journal_stop(handle);
4785			goto out;
4786		}
4787		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4788	}
4789	ext4_journal_stop(handle);
4790	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791		goto retry_alloc;
4792out_ret:
4793	ret = block_page_mkwrite_return(ret);
4794out:
 
 
4795	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4796}
v4.6
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
 
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/bitops.h>
  40
  41#include "ext4_jbd2.h"
  42#include "xattr.h"
  43#include "acl.h"
  44#include "truncate.h"
  45
  46#include <trace/events/ext4.h>
  47
  48#define MPAGE_DA_EXTENT_TAIL 0x01
  49
  50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  51			      struct ext4_inode_info *ei)
  52{
  53	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54	__u16 csum_lo;
  55	__u16 csum_hi = 0;
  56	__u32 csum;
  57
  58	csum_lo = le16_to_cpu(raw->i_checksum_lo);
  59	raw->i_checksum_lo = 0;
  60	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  61	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  62		csum_hi = le16_to_cpu(raw->i_checksum_hi);
  63		raw->i_checksum_hi = 0;
  64	}
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  67			   EXT4_INODE_SIZE(inode->i_sb));
  68
  69	raw->i_checksum_lo = cpu_to_le16(csum_lo);
  70	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  71	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  72		raw->i_checksum_hi = cpu_to_le16(csum_hi);
  73
  74	return csum;
  75}
  76
  77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  78				  struct ext4_inode_info *ei)
  79{
  80	__u32 provided, calculated;
  81
  82	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  83	    cpu_to_le32(EXT4_OS_LINUX) ||
  84	    !ext4_has_metadata_csum(inode->i_sb))
 
  85		return 1;
  86
  87	provided = le16_to_cpu(raw->i_checksum_lo);
  88	calculated = ext4_inode_csum(inode, raw, ei);
  89	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  90	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  91		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  92	else
  93		calculated &= 0xFFFF;
  94
  95	return provided == calculated;
  96}
  97
  98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
  99				struct ext4_inode_info *ei)
 100{
 101	__u32 csum;
 102
 103	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 104	    cpu_to_le32(EXT4_OS_LINUX) ||
 105	    !ext4_has_metadata_csum(inode->i_sb))
 
 106		return;
 107
 108	csum = ext4_inode_csum(inode, raw, ei);
 109	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 110	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 111	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 112		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 113}
 114
 115static inline int ext4_begin_ordered_truncate(struct inode *inode,
 116					      loff_t new_size)
 117{
 118	trace_ext4_begin_ordered_truncate(inode, new_size);
 119	/*
 120	 * If jinode is zero, then we never opened the file for
 121	 * writing, so there's no need to call
 122	 * jbd2_journal_begin_ordered_truncate() since there's no
 123	 * outstanding writes we need to flush.
 124	 */
 125	if (!EXT4_I(inode)->jinode)
 126		return 0;
 127	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 128						   EXT4_I(inode)->jinode,
 129						   new_size);
 130}
 131
 132static void ext4_invalidatepage(struct page *page, unsigned int offset,
 133				unsigned int length);
 
 
 
 134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 137				  int pextents);
 
 138
 139/*
 140 * Test whether an inode is a fast symlink.
 141 */
 142int ext4_inode_is_fast_symlink(struct inode *inode)
 143{
 144        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 145		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 146
 147	if (ext4_has_inline_data(inode))
 148		return 0;
 149
 150	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 151}
 152
 153/*
 154 * Restart the transaction associated with *handle.  This does a commit,
 155 * so before we call here everything must be consistently dirtied against
 156 * this transaction.
 157 */
 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 159				 int nblocks)
 160{
 161	int ret;
 162
 163	/*
 164	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 165	 * moment, get_block can be called only for blocks inside i_size since
 166	 * page cache has been already dropped and writes are blocked by
 167	 * i_mutex. So we can safely drop the i_data_sem here.
 168	 */
 169	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 170	jbd_debug(2, "restarting handle %p\n", handle);
 171	up_write(&EXT4_I(inode)->i_data_sem);
 172	ret = ext4_journal_restart(handle, nblocks);
 173	down_write(&EXT4_I(inode)->i_data_sem);
 174	ext4_discard_preallocations(inode);
 175
 176	return ret;
 177}
 178
 179/*
 180 * Called at the last iput() if i_nlink is zero.
 181 */
 182void ext4_evict_inode(struct inode *inode)
 183{
 184	handle_t *handle;
 185	int err;
 186
 187	trace_ext4_evict_inode(inode);
 188
 
 
 189	if (inode->i_nlink) {
 190		/*
 191		 * When journalling data dirty buffers are tracked only in the
 192		 * journal. So although mm thinks everything is clean and
 193		 * ready for reaping the inode might still have some pages to
 194		 * write in the running transaction or waiting to be
 195		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 196		 * (via truncate_inode_pages()) to discard these buffers can
 197		 * cause data loss. Also even if we did not discard these
 198		 * buffers, we would have no way to find them after the inode
 199		 * is reaped and thus user could see stale data if he tries to
 200		 * read them before the transaction is checkpointed. So be
 201		 * careful and force everything to disk here... We use
 202		 * ei->i_datasync_tid to store the newest transaction
 203		 * containing inode's data.
 204		 *
 205		 * Note that directories do not have this problem because they
 206		 * don't use page cache.
 207		 */
 208		if (ext4_should_journal_data(inode) &&
 209		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 210		    inode->i_ino != EXT4_JOURNAL_INO) {
 211			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 212			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 213
 214			jbd2_complete_transaction(journal, commit_tid);
 
 215			filemap_write_and_wait(&inode->i_data);
 216		}
 217		truncate_inode_pages_final(&inode->i_data);
 218
 219		goto no_delete;
 220	}
 221
 222	if (is_bad_inode(inode))
 223		goto no_delete;
 224	dquot_initialize(inode);
 225
 226	if (ext4_should_order_data(inode))
 227		ext4_begin_ordered_truncate(inode, 0);
 228	truncate_inode_pages_final(&inode->i_data);
 
 
 
 229
 230	/*
 231	 * Protect us against freezing - iput() caller didn't have to have any
 232	 * protection against it
 233	 */
 234	sb_start_intwrite(inode->i_sb);
 235	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 236				    ext4_blocks_for_truncate(inode)+3);
 237	if (IS_ERR(handle)) {
 238		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 239		/*
 240		 * If we're going to skip the normal cleanup, we still need to
 241		 * make sure that the in-core orphan linked list is properly
 242		 * cleaned up.
 243		 */
 244		ext4_orphan_del(NULL, inode);
 245		sb_end_intwrite(inode->i_sb);
 246		goto no_delete;
 247	}
 248
 249	if (IS_SYNC(inode))
 250		ext4_handle_sync(handle);
 251	inode->i_size = 0;
 252	err = ext4_mark_inode_dirty(handle, inode);
 253	if (err) {
 254		ext4_warning(inode->i_sb,
 255			     "couldn't mark inode dirty (err %d)", err);
 256		goto stop_handle;
 257	}
 258	if (inode->i_blocks)
 259		ext4_truncate(inode);
 260
 261	/*
 262	 * ext4_ext_truncate() doesn't reserve any slop when it
 263	 * restarts journal transactions; therefore there may not be
 264	 * enough credits left in the handle to remove the inode from
 265	 * the orphan list and set the dtime field.
 266	 */
 267	if (!ext4_handle_has_enough_credits(handle, 3)) {
 268		err = ext4_journal_extend(handle, 3);
 269		if (err > 0)
 270			err = ext4_journal_restart(handle, 3);
 271		if (err != 0) {
 272			ext4_warning(inode->i_sb,
 273				     "couldn't extend journal (err %d)", err);
 274		stop_handle:
 275			ext4_journal_stop(handle);
 276			ext4_orphan_del(NULL, inode);
 277			sb_end_intwrite(inode->i_sb);
 278			goto no_delete;
 279		}
 280	}
 281
 282	/*
 283	 * Kill off the orphan record which ext4_truncate created.
 284	 * AKPM: I think this can be inside the above `if'.
 285	 * Note that ext4_orphan_del() has to be able to cope with the
 286	 * deletion of a non-existent orphan - this is because we don't
 287	 * know if ext4_truncate() actually created an orphan record.
 288	 * (Well, we could do this if we need to, but heck - it works)
 289	 */
 290	ext4_orphan_del(handle, inode);
 291	EXT4_I(inode)->i_dtime	= get_seconds();
 292
 293	/*
 294	 * One subtle ordering requirement: if anything has gone wrong
 295	 * (transaction abort, IO errors, whatever), then we can still
 296	 * do these next steps (the fs will already have been marked as
 297	 * having errors), but we can't free the inode if the mark_dirty
 298	 * fails.
 299	 */
 300	if (ext4_mark_inode_dirty(handle, inode))
 301		/* If that failed, just do the required in-core inode clear. */
 302		ext4_clear_inode(inode);
 303	else
 304		ext4_free_inode(handle, inode);
 305	ext4_journal_stop(handle);
 306	sb_end_intwrite(inode->i_sb);
 307	return;
 308no_delete:
 309	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 310}
 311
 312#ifdef CONFIG_QUOTA
 313qsize_t *ext4_get_reserved_space(struct inode *inode)
 314{
 315	return &EXT4_I(inode)->i_reserved_quota;
 316}
 317#endif
 318
 319/*
 
 
 
 
 
 
 
 
 
 
 
 
 320 * Called with i_data_sem down, which is important since we can call
 321 * ext4_discard_preallocations() from here.
 322 */
 323void ext4_da_update_reserve_space(struct inode *inode,
 324					int used, int quota_claim)
 325{
 326	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 327	struct ext4_inode_info *ei = EXT4_I(inode);
 328
 329	spin_lock(&ei->i_block_reservation_lock);
 330	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 331	if (unlikely(used > ei->i_reserved_data_blocks)) {
 332		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 333			 "with only %d reserved data blocks",
 334			 __func__, inode->i_ino, used,
 335			 ei->i_reserved_data_blocks);
 336		WARN_ON(1);
 337		used = ei->i_reserved_data_blocks;
 338	}
 339
 
 
 
 
 
 
 
 
 
 340	/* Update per-inode reservations */
 341	ei->i_reserved_data_blocks -= used;
 342	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 
 
 
 343
 
 
 
 
 
 
 
 
 
 
 
 344	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 345
 346	/* Update quota subsystem for data blocks */
 347	if (quota_claim)
 348		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 349	else {
 350		/*
 351		 * We did fallocate with an offset that is already delayed
 352		 * allocated. So on delayed allocated writeback we should
 353		 * not re-claim the quota for fallocated blocks.
 354		 */
 355		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 356	}
 357
 358	/*
 359	 * If we have done all the pending block allocations and if
 360	 * there aren't any writers on the inode, we can discard the
 361	 * inode's preallocations.
 362	 */
 363	if ((ei->i_reserved_data_blocks == 0) &&
 364	    (atomic_read(&inode->i_writecount) == 0))
 365		ext4_discard_preallocations(inode);
 366}
 367
 368static int __check_block_validity(struct inode *inode, const char *func,
 369				unsigned int line,
 370				struct ext4_map_blocks *map)
 371{
 372	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 373				   map->m_len)) {
 374		ext4_error_inode(inode, func, line, map->m_pblk,
 375				 "lblock %lu mapped to illegal pblock "
 376				 "(length %d)", (unsigned long) map->m_lblk,
 377				 map->m_len);
 378		return -EFSCORRUPTED;
 379	}
 380	return 0;
 381}
 382
 383int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 384		       ext4_lblk_t len)
 
 
 
 
 
 
 
 385{
 386	int ret;
 
 
 
 
 387
 388	if (ext4_encrypted_inode(inode))
 389		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
 
 
 
 
 
 
 
 
 
 
 
 390
 391	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 392	if (ret > 0)
 393		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395	return ret;
 396}
 
 
 
 
 
 
 
 
 397
 398#define check_block_validity(inode, map)	\
 399	__check_block_validity((inode), __func__, __LINE__, (map))
 
 400
 401#ifdef ES_AGGRESSIVE_TEST
 402static void ext4_map_blocks_es_recheck(handle_t *handle,
 403				       struct inode *inode,
 404				       struct ext4_map_blocks *es_map,
 405				       struct ext4_map_blocks *map,
 406				       int flags)
 407{
 408	int retval;
 
 
 409
 410	map->m_flags = 0;
 411	/*
 412	 * There is a race window that the result is not the same.
 413	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 414	 * is that we lookup a block mapping in extent status tree with
 415	 * out taking i_data_sem.  So at the time the unwritten extent
 416	 * could be converted.
 417	 */
 418	down_read(&EXT4_I(inode)->i_data_sem);
 419	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 420		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 421					     EXT4_GET_BLOCKS_KEEP_SIZE);
 422	} else {
 423		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 424					     EXT4_GET_BLOCKS_KEEP_SIZE);
 425	}
 426	up_read((&EXT4_I(inode)->i_data_sem));
 427
 428	/*
 429	 * We don't check m_len because extent will be collpased in status
 430	 * tree.  So the m_len might not equal.
 431	 */
 432	if (es_map->m_lblk != map->m_lblk ||
 433	    es_map->m_flags != map->m_flags ||
 434	    es_map->m_pblk != map->m_pblk) {
 435		printk("ES cache assertion failed for inode: %lu "
 436		       "es_cached ex [%d/%d/%llu/%x] != "
 437		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 438		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 439		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 440		       map->m_len, map->m_pblk, map->m_flags,
 441		       retval, flags);
 442	}
 443}
 444#endif /* ES_AGGRESSIVE_TEST */
 445
 446/*
 447 * The ext4_map_blocks() function tries to look up the requested blocks,
 448 * and returns if the blocks are already mapped.
 449 *
 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 451 * and store the allocated blocks in the result buffer head and mark it
 452 * mapped.
 453 *
 454 * If file type is extents based, it will call ext4_ext_map_blocks(),
 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 456 * based files
 457 *
 458 * On success, it returns the number of blocks being mapped or allocated.  if
 459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 
 461 *
 462 * It returns 0 if plain look up failed (blocks have not been allocated), in
 463 * that case, @map is returned as unmapped but we still do fill map->m_len to
 464 * indicate the length of a hole starting at map->m_lblk.
 465 *
 466 * It returns the error in case of allocation failure.
 467 */
 468int ext4_map_blocks(handle_t *handle, struct inode *inode,
 469		    struct ext4_map_blocks *map, int flags)
 470{
 471	struct extent_status es;
 472	int retval;
 473	int ret = 0;
 474#ifdef ES_AGGRESSIVE_TEST
 475	struct ext4_map_blocks orig_map;
 476
 477	memcpy(&orig_map, map, sizeof(*map));
 478#endif
 479
 480	map->m_flags = 0;
 481	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 482		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 483		  (unsigned long) map->m_lblk);
 484
 485	/*
 486	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 487	 */
 488	if (unlikely(map->m_len > INT_MAX))
 489		map->m_len = INT_MAX;
 490
 491	/* We can handle the block number less than EXT_MAX_BLOCKS */
 492	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 493		return -EFSCORRUPTED;
 494
 495	/* Lookup extent status tree firstly */
 496	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 497		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 498			map->m_pblk = ext4_es_pblock(&es) +
 499					map->m_lblk - es.es_lblk;
 500			map->m_flags |= ext4_es_is_written(&es) ?
 501					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 502			retval = es.es_len - (map->m_lblk - es.es_lblk);
 503			if (retval > map->m_len)
 504				retval = map->m_len;
 505			map->m_len = retval;
 506		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 507			map->m_pblk = 0;
 508			retval = es.es_len - (map->m_lblk - es.es_lblk);
 509			if (retval > map->m_len)
 510				retval = map->m_len;
 511			map->m_len = retval;
 512			retval = 0;
 513		} else {
 514			BUG_ON(1);
 515		}
 516#ifdef ES_AGGRESSIVE_TEST
 517		ext4_map_blocks_es_recheck(handle, inode, map,
 518					   &orig_map, flags);
 519#endif
 520		goto found;
 521	}
 522
 523	/*
 524	 * Try to see if we can get the block without requesting a new
 525	 * file system block.
 526	 */
 527	down_read(&EXT4_I(inode)->i_data_sem);
 528	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 529		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 530					     EXT4_GET_BLOCKS_KEEP_SIZE);
 531	} else {
 532		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 533					     EXT4_GET_BLOCKS_KEEP_SIZE);
 534	}
 535	if (retval > 0) {
 536		unsigned int status;
 537
 538		if (unlikely(retval != map->m_len)) {
 539			ext4_warning(inode->i_sb,
 540				     "ES len assertion failed for inode "
 541				     "%lu: retval %d != map->m_len %d",
 542				     inode->i_ino, retval, map->m_len);
 543			WARN_ON(1);
 544		}
 545
 546		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 547				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 548		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 549		    !(status & EXTENT_STATUS_WRITTEN) &&
 550		    ext4_find_delalloc_range(inode, map->m_lblk,
 551					     map->m_lblk + map->m_len - 1))
 552			status |= EXTENT_STATUS_DELAYED;
 553		ret = ext4_es_insert_extent(inode, map->m_lblk,
 554					    map->m_len, map->m_pblk, status);
 555		if (ret < 0)
 556			retval = ret;
 557	}
 558	up_read((&EXT4_I(inode)->i_data_sem));
 559
 560found:
 561	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 562		ret = check_block_validity(inode, map);
 563		if (ret != 0)
 564			return ret;
 565	}
 566
 567	/* If it is only a block(s) look up */
 568	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 569		return retval;
 570
 571	/*
 572	 * Returns if the blocks have already allocated
 573	 *
 574	 * Note that if blocks have been preallocated
 575	 * ext4_ext_get_block() returns the create = 0
 576	 * with buffer head unmapped.
 577	 */
 578	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 579		/*
 580		 * If we need to convert extent to unwritten
 581		 * we continue and do the actual work in
 582		 * ext4_ext_map_blocks()
 583		 */
 584		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 585			return retval;
 586
 587	/*
 588	 * Here we clear m_flags because after allocating an new extent,
 589	 * it will be set again.
 
 
 
 
 
 
 590	 */
 591	map->m_flags &= ~EXT4_MAP_FLAGS;
 592
 593	/*
 594	 * New blocks allocate and/or writing to unwritten extent
 595	 * will possibly result in updating i_data, so we take
 596	 * the write lock of i_data_sem, and call get_block()
 597	 * with create == 1 flag.
 598	 */
 599	down_write(&EXT4_I(inode)->i_data_sem);
 600
 601	/*
 
 
 
 
 
 
 
 
 602	 * We need to check for EXT4 here because migrate
 603	 * could have changed the inode type in between
 604	 */
 605	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 606		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 607	} else {
 608		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 609
 610		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 611			/*
 612			 * We allocated new blocks which will result in
 613			 * i_data's format changing.  Force the migrate
 614			 * to fail by clearing migrate flags
 615			 */
 616			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 617		}
 618
 619		/*
 620		 * Update reserved blocks/metadata blocks after successful
 621		 * block allocation which had been deferred till now. We don't
 622		 * support fallocate for non extent files. So we can update
 623		 * reserve space here.
 624		 */
 625		if ((retval > 0) &&
 626			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 627			ext4_da_update_reserve_space(inode, retval, 1);
 628	}
 
 
 629
 630	if (retval > 0) {
 631		unsigned int status;
 632
 633		if (unlikely(retval != map->m_len)) {
 634			ext4_warning(inode->i_sb,
 635				     "ES len assertion failed for inode "
 636				     "%lu: retval %d != map->m_len %d",
 637				     inode->i_ino, retval, map->m_len);
 638			WARN_ON(1);
 639		}
 640
 641		/*
 642		 * We have to zeroout blocks before inserting them into extent
 643		 * status tree. Otherwise someone could look them up there and
 644		 * use them before they are really zeroed.
 645		 */
 646		if (flags & EXT4_GET_BLOCKS_ZERO &&
 647		    map->m_flags & EXT4_MAP_MAPPED &&
 648		    map->m_flags & EXT4_MAP_NEW) {
 649			ret = ext4_issue_zeroout(inode, map->m_lblk,
 650						 map->m_pblk, map->m_len);
 651			if (ret) {
 652				retval = ret;
 653				goto out_sem;
 654			}
 655		}
 656
 657		/*
 658		 * If the extent has been zeroed out, we don't need to update
 659		 * extent status tree.
 660		 */
 661		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 662		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 663			if (ext4_es_is_written(&es))
 664				goto out_sem;
 665		}
 666		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 667				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 668		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 669		    !(status & EXTENT_STATUS_WRITTEN) &&
 670		    ext4_find_delalloc_range(inode, map->m_lblk,
 671					     map->m_lblk + map->m_len - 1))
 672			status |= EXTENT_STATUS_DELAYED;
 673		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 674					    map->m_pblk, status);
 675		if (ret < 0) {
 676			retval = ret;
 677			goto out_sem;
 678		}
 679	}
 680
 681out_sem:
 682	up_write((&EXT4_I(inode)->i_data_sem));
 683	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 684		ret = check_block_validity(inode, map);
 685		if (ret != 0)
 686			return ret;
 687	}
 688	return retval;
 689}
 690
 691/*
 692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 693 * we have to be careful as someone else may be manipulating b_state as well.
 694 */
 695static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 696{
 697	unsigned long old_state;
 698	unsigned long new_state;
 699
 700	flags &= EXT4_MAP_FLAGS;
 701
 702	/* Dummy buffer_head? Set non-atomically. */
 703	if (!bh->b_page) {
 704		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 705		return;
 706	}
 707	/*
 708	 * Someone else may be modifying b_state. Be careful! This is ugly but
 709	 * once we get rid of using bh as a container for mapping information
 710	 * to pass to / from get_block functions, this can go away.
 711	 */
 712	do {
 713		old_state = READ_ONCE(bh->b_state);
 714		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 715	} while (unlikely(
 716		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 717}
 718
 719static int _ext4_get_block(struct inode *inode, sector_t iblock,
 720			   struct buffer_head *bh, int flags)
 721{
 
 722	struct ext4_map_blocks map;
 723	int ret = 0;
 724
 725	if (ext4_has_inline_data(inode))
 726		return -ERANGE;
 727
 728	map.m_lblk = iblock;
 729	map.m_len = bh->b_size >> inode->i_blkbits;
 730
 731	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 732			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 733	if (ret > 0) {
 734		map_bh(bh, inode->i_sb, map.m_pblk);
 735		ext4_update_bh_state(bh, map.m_flags);
 736		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 737		ret = 0;
 738	}
 
 
 739	return ret;
 740}
 741
 742int ext4_get_block(struct inode *inode, sector_t iblock,
 743		   struct buffer_head *bh, int create)
 744{
 745	return _ext4_get_block(inode, iblock, bh,
 746			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 747}
 748
 749/*
 750 * Get block function used when preparing for buffered write if we require
 751 * creating an unwritten extent if blocks haven't been allocated.  The extent
 752 * will be converted to written after the IO is complete.
 753 */
 754int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 755			     struct buffer_head *bh_result, int create)
 756{
 757	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 758		   inode->i_ino, create);
 759	return _ext4_get_block(inode, iblock, bh_result,
 760			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 761}
 762
 763/* Maximum number of blocks we map for direct IO at once. */
 764#define DIO_MAX_BLOCKS 4096
 765
 766/*
 767 * Get blocks function for the cases that need to start a transaction -
 768 * generally difference cases of direct IO and DAX IO. It also handles retries
 769 * in case of ENOSPC.
 770 */
 771static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 772				struct buffer_head *bh_result, int flags)
 773{
 774	int dio_credits;
 775	handle_t *handle;
 776	int retries = 0;
 777	int ret;
 778
 779	/* Trim mapping request to maximum we can map at once for DIO */
 780	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 781		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 782	dio_credits = ext4_chunk_trans_blocks(inode,
 783				      bh_result->b_size >> inode->i_blkbits);
 784retry:
 785	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 786	if (IS_ERR(handle))
 787		return PTR_ERR(handle);
 788
 789	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 790	ext4_journal_stop(handle);
 791
 792	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 793		goto retry;
 794	return ret;
 795}
 796
 797/* Get block function for DIO reads and writes to inodes without extents */
 798int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 799		       struct buffer_head *bh, int create)
 800{
 801	/* We don't expect handle for direct IO */
 802	WARN_ON_ONCE(ext4_journal_current_handle());
 803
 804	if (!create)
 805		return _ext4_get_block(inode, iblock, bh, 0);
 806	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 807}
 808
 809/*
 810 * Get block function for AIO DIO writes when we create unwritten extent if
 811 * blocks are not allocated yet. The extent will be converted to written
 812 * after IO is complete.
 813 */
 814static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 815		sector_t iblock, struct buffer_head *bh_result,	int create)
 816{
 817	int ret;
 818
 819	/* We don't expect handle for direct IO */
 820	WARN_ON_ONCE(ext4_journal_current_handle());
 821
 822	ret = ext4_get_block_trans(inode, iblock, bh_result,
 823				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 824
 825	/*
 826	 * When doing DIO using unwritten extents, we need io_end to convert
 827	 * unwritten extents to written on IO completion. We allocate io_end
 828	 * once we spot unwritten extent and store it in b_private. Generic
 829	 * DIO code keeps b_private set and furthermore passes the value to
 830	 * our completion callback in 'private' argument.
 831	 */
 832	if (!ret && buffer_unwritten(bh_result)) {
 833		if (!bh_result->b_private) {
 834			ext4_io_end_t *io_end;
 835
 836			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 837			if (!io_end)
 838				return -ENOMEM;
 839			bh_result->b_private = io_end;
 840			ext4_set_io_unwritten_flag(inode, io_end);
 841		}
 842		set_buffer_defer_completion(bh_result);
 843	}
 844
 845	return ret;
 846}
 847
 848/*
 849 * Get block function for non-AIO DIO writes when we create unwritten extent if
 850 * blocks are not allocated yet. The extent will be converted to written
 851 * after IO is complete from ext4_ext_direct_IO() function.
 852 */
 853static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 854		sector_t iblock, struct buffer_head *bh_result,	int create)
 855{
 856	int ret;
 857
 858	/* We don't expect handle for direct IO */
 859	WARN_ON_ONCE(ext4_journal_current_handle());
 860
 861	ret = ext4_get_block_trans(inode, iblock, bh_result,
 862				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 863
 864	/*
 865	 * Mark inode as having pending DIO writes to unwritten extents.
 866	 * ext4_ext_direct_IO() checks this flag and converts extents to
 867	 * written.
 868	 */
 869	if (!ret && buffer_unwritten(bh_result))
 870		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 871
 872	return ret;
 873}
 874
 875static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 876		   struct buffer_head *bh_result, int create)
 877{
 878	int ret;
 879
 880	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 881		   inode->i_ino, create);
 882	/* We don't expect handle for direct IO */
 883	WARN_ON_ONCE(ext4_journal_current_handle());
 884
 885	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 886	/*
 887	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 888	 * that.
 889	 */
 890	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 891
 892	return ret;
 893}
 894
 895
 896/*
 897 * `handle' can be NULL if create is zero
 898 */
 899struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 900				ext4_lblk_t block, int map_flags)
 901{
 902	struct ext4_map_blocks map;
 903	struct buffer_head *bh;
 904	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 905	int err;
 906
 907	J_ASSERT(handle != NULL || create == 0);
 908
 909	map.m_lblk = block;
 910	map.m_len = 1;
 911	err = ext4_map_blocks(handle, inode, &map, map_flags);
 
 912
 913	if (err == 0)
 914		return create ? ERR_PTR(-ENOSPC) : NULL;
 915	if (err < 0)
 916		return ERR_PTR(err);
 
 
 
 917
 918	bh = sb_getblk(inode->i_sb, map.m_pblk);
 919	if (unlikely(!bh))
 920		return ERR_PTR(-ENOMEM);
 
 
 921	if (map.m_flags & EXT4_MAP_NEW) {
 922		J_ASSERT(create != 0);
 923		J_ASSERT(handle != NULL);
 924
 925		/*
 926		 * Now that we do not always journal data, we should
 927		 * keep in mind whether this should always journal the
 928		 * new buffer as metadata.  For now, regular file
 929		 * writes use ext4_get_block instead, so it's not a
 930		 * problem.
 931		 */
 932		lock_buffer(bh);
 933		BUFFER_TRACE(bh, "call get_create_access");
 934		err = ext4_journal_get_create_access(handle, bh);
 935		if (unlikely(err)) {
 936			unlock_buffer(bh);
 937			goto errout;
 938		}
 939		if (!buffer_uptodate(bh)) {
 940			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 941			set_buffer_uptodate(bh);
 942		}
 943		unlock_buffer(bh);
 944		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 945		err = ext4_handle_dirty_metadata(handle, inode, bh);
 946		if (unlikely(err))
 947			goto errout;
 948	} else
 949		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
 950	return bh;
 951errout:
 952	brelse(bh);
 953	return ERR_PTR(err);
 954}
 955
 956struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 957			       ext4_lblk_t block, int map_flags)
 958{
 959	struct buffer_head *bh;
 960
 961	bh = ext4_getblk(handle, inode, block, map_flags);
 962	if (IS_ERR(bh))
 963		return bh;
 964	if (!bh || buffer_uptodate(bh))
 965		return bh;
 966	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 967	wait_on_buffer(bh);
 968	if (buffer_uptodate(bh))
 969		return bh;
 970	put_bh(bh);
 971	return ERR_PTR(-EIO);
 
 972}
 973
 974int ext4_walk_page_buffers(handle_t *handle,
 975			   struct buffer_head *head,
 976			   unsigned from,
 977			   unsigned to,
 978			   int *partial,
 979			   int (*fn)(handle_t *handle,
 980				     struct buffer_head *bh))
 981{
 982	struct buffer_head *bh;
 983	unsigned block_start, block_end;
 984	unsigned blocksize = head->b_size;
 985	int err, ret = 0;
 986	struct buffer_head *next;
 987
 988	for (bh = head, block_start = 0;
 989	     ret == 0 && (bh != head || !block_start);
 990	     block_start = block_end, bh = next) {
 991		next = bh->b_this_page;
 992		block_end = block_start + blocksize;
 993		if (block_end <= from || block_start >= to) {
 994			if (partial && !buffer_uptodate(bh))
 995				*partial = 1;
 996			continue;
 997		}
 998		err = (*fn)(handle, bh);
 999		if (!ret)
1000			ret = err;
1001	}
1002	return ret;
1003}
1004
1005/*
1006 * To preserve ordering, it is essential that the hole instantiation and
1007 * the data write be encapsulated in a single transaction.  We cannot
1008 * close off a transaction and start a new one between the ext4_get_block()
1009 * and the commit_write().  So doing the jbd2_journal_start at the start of
1010 * prepare_write() is the right place.
1011 *
1012 * Also, this function can nest inside ext4_writepage().  In that case, we
1013 * *know* that ext4_writepage() has generated enough buffer credits to do the
1014 * whole page.  So we won't block on the journal in that case, which is good,
1015 * because the caller may be PF_MEMALLOC.
 
1016 *
1017 * By accident, ext4 can be reentered when a transaction is open via
1018 * quota file writes.  If we were to commit the transaction while thus
1019 * reentered, there can be a deadlock - we would be holding a quota
1020 * lock, and the commit would never complete if another thread had a
1021 * transaction open and was blocking on the quota lock - a ranking
1022 * violation.
1023 *
1024 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025 * will _not_ run commit under these circumstances because handle->h_ref
1026 * is elevated.  We'll still have enough credits for the tiny quotafile
1027 * write.
1028 */
1029int do_journal_get_write_access(handle_t *handle,
1030				struct buffer_head *bh)
1031{
1032	int dirty = buffer_dirty(bh);
1033	int ret;
1034
1035	if (!buffer_mapped(bh) || buffer_freed(bh))
1036		return 0;
1037	/*
1038	 * __block_write_begin() could have dirtied some buffers. Clean
1039	 * the dirty bit as jbd2_journal_get_write_access() could complain
1040	 * otherwise about fs integrity issues. Setting of the dirty bit
1041	 * by __block_write_begin() isn't a real problem here as we clear
1042	 * the bit before releasing a page lock and thus writeback cannot
1043	 * ever write the buffer.
1044	 */
1045	if (dirty)
1046		clear_buffer_dirty(bh);
1047	BUFFER_TRACE(bh, "get write access");
1048	ret = ext4_journal_get_write_access(handle, bh);
1049	if (!ret && dirty)
1050		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051	return ret;
1052}
1053
1054#ifdef CONFIG_EXT4_FS_ENCRYPTION
1055static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056				  get_block_t *get_block)
1057{
1058	unsigned from = pos & (PAGE_SIZE - 1);
1059	unsigned to = from + len;
1060	struct inode *inode = page->mapping->host;
1061	unsigned block_start, block_end;
1062	sector_t block;
1063	int err = 0;
1064	unsigned blocksize = inode->i_sb->s_blocksize;
1065	unsigned bbits;
1066	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067	bool decrypt = false;
1068
1069	BUG_ON(!PageLocked(page));
1070	BUG_ON(from > PAGE_SIZE);
1071	BUG_ON(to > PAGE_SIZE);
1072	BUG_ON(from > to);
1073
1074	if (!page_has_buffers(page))
1075		create_empty_buffers(page, blocksize, 0);
1076	head = page_buffers(page);
1077	bbits = ilog2(blocksize);
1078	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1079
1080	for (bh = head, block_start = 0; bh != head || !block_start;
1081	    block++, block_start = block_end, bh = bh->b_this_page) {
1082		block_end = block_start + blocksize;
1083		if (block_end <= from || block_start >= to) {
1084			if (PageUptodate(page)) {
1085				if (!buffer_uptodate(bh))
1086					set_buffer_uptodate(bh);
1087			}
1088			continue;
1089		}
1090		if (buffer_new(bh))
1091			clear_buffer_new(bh);
1092		if (!buffer_mapped(bh)) {
1093			WARN_ON(bh->b_size != blocksize);
1094			err = get_block(inode, block, bh, 1);
1095			if (err)
1096				break;
1097			if (buffer_new(bh)) {
1098				unmap_underlying_metadata(bh->b_bdev,
1099							  bh->b_blocknr);
1100				if (PageUptodate(page)) {
1101					clear_buffer_new(bh);
1102					set_buffer_uptodate(bh);
1103					mark_buffer_dirty(bh);
1104					continue;
1105				}
1106				if (block_end > to || block_start < from)
1107					zero_user_segments(page, to, block_end,
1108							   block_start, from);
1109				continue;
1110			}
1111		}
1112		if (PageUptodate(page)) {
1113			if (!buffer_uptodate(bh))
1114				set_buffer_uptodate(bh);
1115			continue;
1116		}
1117		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118		    !buffer_unwritten(bh) &&
1119		    (block_start < from || block_end > to)) {
1120			ll_rw_block(READ, 1, &bh);
1121			*wait_bh++ = bh;
1122			decrypt = ext4_encrypted_inode(inode) &&
1123				S_ISREG(inode->i_mode);
1124		}
1125	}
1126	/*
1127	 * If we issued read requests, let them complete.
1128	 */
1129	while (wait_bh > wait) {
1130		wait_on_buffer(*--wait_bh);
1131		if (!buffer_uptodate(*wait_bh))
1132			err = -EIO;
1133	}
1134	if (unlikely(err))
1135		page_zero_new_buffers(page, from, to);
1136	else if (decrypt)
1137		err = ext4_decrypt(page);
1138	return err;
1139}
1140#endif
1141
1142static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143			    loff_t pos, unsigned len, unsigned flags,
1144			    struct page **pagep, void **fsdata)
1145{
1146	struct inode *inode = mapping->host;
1147	int ret, needed_blocks;
1148	handle_t *handle;
1149	int retries = 0;
1150	struct page *page;
1151	pgoff_t index;
1152	unsigned from, to;
1153
1154	trace_ext4_write_begin(inode, pos, len, flags);
1155	/*
1156	 * Reserve one block more for addition to orphan list in case
1157	 * we allocate blocks but write fails for some reason
1158	 */
1159	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1160	index = pos >> PAGE_SHIFT;
1161	from = pos & (PAGE_SIZE - 1);
1162	to = from + len;
1163
1164	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166						    flags, pagep);
1167		if (ret < 0)
1168			return ret;
1169		if (ret == 1)
1170			return 0;
1171	}
1172
1173	/*
1174	 * grab_cache_page_write_begin() can take a long time if the
1175	 * system is thrashing due to memory pressure, or if the page
1176	 * is being written back.  So grab it first before we start
1177	 * the transaction handle.  This also allows us to allocate
1178	 * the page (if needed) without using GFP_NOFS.
1179	 */
1180retry_grab:
1181	page = grab_cache_page_write_begin(mapping, index, flags);
1182	if (!page)
1183		return -ENOMEM;
1184	unlock_page(page);
1185
1186retry_journal:
1187	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1188	if (IS_ERR(handle)) {
1189		put_page(page);
1190		return PTR_ERR(handle);
1191	}
1192
1193	lock_page(page);
1194	if (page->mapping != mapping) {
1195		/* The page got truncated from under us */
1196		unlock_page(page);
1197		put_page(page);
1198		ext4_journal_stop(handle);
1199		goto retry_grab;
 
1200	}
1201	/* In case writeback began while the page was unlocked */
1202	wait_for_stable_page(page);
1203
1204#ifdef CONFIG_EXT4_FS_ENCRYPTION
1205	if (ext4_should_dioread_nolock(inode))
1206		ret = ext4_block_write_begin(page, pos, len,
1207					     ext4_get_block_unwritten);
1208	else
1209		ret = ext4_block_write_begin(page, pos, len,
1210					     ext4_get_block);
1211#else
1212	if (ext4_should_dioread_nolock(inode))
1213		ret = __block_write_begin(page, pos, len,
1214					  ext4_get_block_unwritten);
1215	else
1216		ret = __block_write_begin(page, pos, len, ext4_get_block);
1217#endif
1218	if (!ret && ext4_should_journal_data(inode)) {
1219		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220					     from, to, NULL,
1221					     do_journal_get_write_access);
1222	}
1223
1224	if (ret) {
1225		unlock_page(page);
 
1226		/*
1227		 * __block_write_begin may have instantiated a few blocks
1228		 * outside i_size.  Trim these off again. Don't need
1229		 * i_size_read because we hold i_mutex.
1230		 *
1231		 * Add inode to orphan list in case we crash before
1232		 * truncate finishes
1233		 */
1234		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235			ext4_orphan_add(handle, inode);
1236
1237		ext4_journal_stop(handle);
1238		if (pos + len > inode->i_size) {
1239			ext4_truncate_failed_write(inode);
1240			/*
1241			 * If truncate failed early the inode might
1242			 * still be on the orphan list; we need to
1243			 * make sure the inode is removed from the
1244			 * orphan list in that case.
1245			 */
1246			if (inode->i_nlink)
1247				ext4_orphan_del(NULL, inode);
1248		}
 
1249
1250		if (ret == -ENOSPC &&
1251		    ext4_should_retry_alloc(inode->i_sb, &retries))
1252			goto retry_journal;
1253		put_page(page);
1254		return ret;
1255	}
1256	*pagep = page;
1257	return ret;
1258}
1259
1260/* For write_end() in data=journal mode */
1261static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1262{
1263	int ret;
1264	if (!buffer_mapped(bh) || buffer_freed(bh))
1265		return 0;
1266	set_buffer_uptodate(bh);
1267	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268	clear_buffer_meta(bh);
1269	clear_buffer_prio(bh);
1270	return ret;
1271}
1272
1273/*
1274 * We need to pick up the new inode size which generic_commit_write gave us
1275 * `file' can be NULL - eg, when called from page_symlink().
1276 *
1277 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1278 * buffers are managed internally.
1279 */
1280static int ext4_write_end(struct file *file,
1281			  struct address_space *mapping,
1282			  loff_t pos, unsigned len, unsigned copied,
1283			  struct page *page, void *fsdata)
1284{
 
 
1285	handle_t *handle = ext4_journal_current_handle();
1286	struct inode *inode = mapping->host;
1287	loff_t old_size = inode->i_size;
1288	int ret = 0, ret2;
1289	int i_size_changed = 0;
1290
1291	trace_ext4_write_end(inode, pos, len, copied);
1292	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293		ret = ext4_jbd2_file_inode(handle, inode);
1294		if (ret) {
1295			unlock_page(page);
1296			put_page(page);
1297			goto errout;
1298		}
1299	}
1300
1301	if (ext4_has_inline_data(inode)) {
1302		ret = ext4_write_inline_data_end(inode, pos, len,
1303						 copied, page);
1304		if (ret < 0)
1305			goto errout;
1306		copied = ret;
1307	} else
1308		copied = block_write_end(file, mapping, pos,
1309					 len, copied, page, fsdata);
1310	/*
1311	 * it's important to update i_size while still holding page lock:
 
 
 
1312	 * page writeout could otherwise come in and zero beyond i_size.
1313	 */
1314	i_size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
 
 
 
 
 
1315	unlock_page(page);
1316	put_page(page);
1317
1318	if (old_size < pos)
1319		pagecache_isize_extended(inode, old_size, pos);
1320	/*
1321	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1322	 * makes the holding time of page lock longer. Second, it forces lock
1323	 * ordering of page lock and transaction start for journaling
1324	 * filesystems.
1325	 */
1326	if (i_size_changed)
1327		ext4_mark_inode_dirty(handle, inode);
1328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1330		/* if we have allocated more blocks and copied
1331		 * less. We will have blocks allocated outside
1332		 * inode->i_size. So truncate them
1333		 */
1334		ext4_orphan_add(handle, inode);
1335errout:
 
 
 
1336	ret2 = ext4_journal_stop(handle);
1337	if (!ret)
1338		ret = ret2;
1339
1340	if (pos + len > inode->i_size) {
1341		ext4_truncate_failed_write(inode);
1342		/*
1343		 * If truncate failed early the inode might still be
1344		 * on the orphan list; we need to make sure the inode
1345		 * is removed from the orphan list in that case.
1346		 */
1347		if (inode->i_nlink)
1348			ext4_orphan_del(NULL, inode);
1349	}
1350
1351	return ret ? ret : copied;
1352}
1353
1354/*
1355 * This is a private version of page_zero_new_buffers() which doesn't
1356 * set the buffer to be dirty, since in data=journalled mode we need
1357 * to call ext4_handle_dirty_metadata() instead.
1358 */
1359static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1360{
1361	unsigned int block_start = 0, block_end;
1362	struct buffer_head *head, *bh;
1363
1364	bh = head = page_buffers(page);
1365	do {
1366		block_end = block_start + bh->b_size;
1367		if (buffer_new(bh)) {
1368			if (block_end > from && block_start < to) {
1369				if (!PageUptodate(page)) {
1370					unsigned start, size;
1371
1372					start = max(from, block_start);
1373					size = min(to, block_end) - start;
1374
1375					zero_user(page, start, size);
1376					set_buffer_uptodate(bh);
1377				}
1378				clear_buffer_new(bh);
1379			}
1380		}
1381		block_start = block_end;
1382		bh = bh->b_this_page;
1383	} while (bh != head);
1384}
1385
1386static int ext4_journalled_write_end(struct file *file,
1387				     struct address_space *mapping,
1388				     loff_t pos, unsigned len, unsigned copied,
1389				     struct page *page, void *fsdata)
1390{
1391	handle_t *handle = ext4_journal_current_handle();
1392	struct inode *inode = mapping->host;
1393	loff_t old_size = inode->i_size;
1394	int ret = 0, ret2;
1395	int partial = 0;
1396	unsigned from, to;
1397	int size_changed = 0;
1398
1399	trace_ext4_journalled_write_end(inode, pos, len, copied);
1400	from = pos & (PAGE_SIZE - 1);
1401	to = from + len;
1402
1403	BUG_ON(!ext4_handle_valid(handle));
1404
1405	if (ext4_has_inline_data(inode))
1406		copied = ext4_write_inline_data_end(inode, pos, len,
1407						    copied, page);
1408	else {
1409		if (copied < len) {
1410			if (!PageUptodate(page))
1411				copied = 0;
1412			zero_new_buffers(page, from+copied, to);
1413		}
1414
1415		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416					     to, &partial, write_end_fn);
1417		if (!partial)
1418			SetPageUptodate(page);
1419	}
1420	size_changed = ext4_update_inode_size(inode, pos + copied);
 
1421	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423	unlock_page(page);
1424	put_page(page);
1425
1426	if (old_size < pos)
1427		pagecache_isize_extended(inode, old_size, pos);
1428
1429	if (size_changed) {
1430		ret2 = ext4_mark_inode_dirty(handle, inode);
1431		if (!ret)
1432			ret = ret2;
1433	}
1434
 
 
1435	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1436		/* if we have allocated more blocks and copied
1437		 * less. We will have blocks allocated outside
1438		 * inode->i_size. So truncate them
1439		 */
1440		ext4_orphan_add(handle, inode);
1441
1442	ret2 = ext4_journal_stop(handle);
1443	if (!ret)
1444		ret = ret2;
1445	if (pos + len > inode->i_size) {
1446		ext4_truncate_failed_write(inode);
1447		/*
1448		 * If truncate failed early the inode might still be
1449		 * on the orphan list; we need to make sure the inode
1450		 * is removed from the orphan list in that case.
1451		 */
1452		if (inode->i_nlink)
1453			ext4_orphan_del(NULL, inode);
1454	}
1455
1456	return ret ? ret : copied;
1457}
1458
1459/*
1460 * Reserve space for a single cluster
1461 */
1462static int ext4_da_reserve_space(struct inode *inode)
1463{
 
1464	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465	struct ext4_inode_info *ei = EXT4_I(inode);
 
1466	int ret;
 
 
1467
1468	/*
1469	 * We will charge metadata quota at writeout time; this saves
1470	 * us from metadata over-estimation, though we may go over by
1471	 * a small amount in the end.  Here we just reserve for data.
1472	 */
1473	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474	if (ret)
1475		return ret;
1476
 
 
 
 
 
 
1477	spin_lock(&ei->i_block_reservation_lock);
1478	if (ext4_claim_free_clusters(sbi, 1, 0)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479		spin_unlock(&ei->i_block_reservation_lock);
 
 
 
 
1480		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481		return -ENOSPC;
1482	}
1483	ei->i_reserved_data_blocks++;
1484	trace_ext4_da_reserve_space(inode);
1485	spin_unlock(&ei->i_block_reservation_lock);
1486
1487	return 0;       /* success */
1488}
1489
1490static void ext4_da_release_space(struct inode *inode, int to_free)
1491{
1492	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493	struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495	if (!to_free)
1496		return;		/* Nothing to release, exit */
1497
1498	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500	trace_ext4_da_release_space(inode, to_free);
1501	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502		/*
1503		 * if there aren't enough reserved blocks, then the
1504		 * counter is messed up somewhere.  Since this
1505		 * function is called from invalidate page, it's
1506		 * harmless to return without any action.
1507		 */
1508		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509			 "ino %lu, to_free %d with only %d reserved "
1510			 "data blocks", inode->i_ino, to_free,
1511			 ei->i_reserved_data_blocks);
1512		WARN_ON(1);
1513		to_free = ei->i_reserved_data_blocks;
1514	}
1515	ei->i_reserved_data_blocks -= to_free;
1516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517	/* update fs dirty data blocks counter */
1518	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523}
1524
1525static void ext4_da_page_release_reservation(struct page *page,
1526					     unsigned int offset,
1527					     unsigned int length)
1528{
1529	int to_release = 0, contiguous_blks = 0;
1530	struct buffer_head *head, *bh;
1531	unsigned int curr_off = 0;
1532	struct inode *inode = page->mapping->host;
1533	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534	unsigned int stop = offset + length;
1535	int num_clusters;
1536	ext4_fsblk_t lblk;
1537
1538	BUG_ON(stop > PAGE_SIZE || stop < length);
1539
1540	head = page_buffers(page);
1541	bh = head;
1542	do {
1543		unsigned int next_off = curr_off + bh->b_size;
1544
1545		if (next_off > stop)
1546			break;
1547
1548		if ((offset <= curr_off) && (buffer_delay(bh))) {
1549			to_release++;
1550			contiguous_blks++;
1551			clear_buffer_delay(bh);
1552		} else if (contiguous_blks) {
1553			lblk = page->index <<
1554			       (PAGE_SHIFT - inode->i_blkbits);
1555			lblk += (curr_off >> inode->i_blkbits) -
1556				contiguous_blks;
1557			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558			contiguous_blks = 0;
1559		}
1560		curr_off = next_off;
1561	} while ((bh = bh->b_this_page) != head);
1562
1563	if (contiguous_blks) {
1564		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1565		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567	}
1568
1569	/* If we have released all the blocks belonging to a cluster, then we
1570	 * need to release the reserved space for that cluster. */
1571	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572	while (num_clusters > 0) {
1573		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
 
1574			((num_clusters - 1) << sbi->s_cluster_bits);
1575		if (sbi->s_cluster_ratio == 1 ||
1576		    !ext4_find_delalloc_cluster(inode, lblk))
1577			ext4_da_release_space(inode, 1);
1578
1579		num_clusters--;
1580	}
1581}
1582
1583/*
1584 * Delayed allocation stuff
1585 */
1586
1587struct mpage_da_data {
1588	struct inode *inode;
1589	struct writeback_control *wbc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590
1591	pgoff_t first_page;	/* The first page to write */
1592	pgoff_t next_page;	/* Current page to examine */
1593	pgoff_t last_page;	/* Last page to examine */
1594	/*
1595	 * Extent to map - this can be after first_page because that can be
1596	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1597	 * is delalloc or unwritten.
1598	 */
1599	struct ext4_map_blocks map;
1600	struct ext4_io_submit io_submit;	/* IO submission data */
1601};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602
1603static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604				       bool invalidate)
1605{
1606	int nr_pages, i;
1607	pgoff_t index, end;
1608	struct pagevec pvec;
1609	struct inode *inode = mpd->inode;
1610	struct address_space *mapping = inode->i_mapping;
1611
1612	/* This is necessary when next_page == 0. */
1613	if (mpd->first_page >= mpd->next_page)
1614		return;
1615
1616	index = mpd->first_page;
1617	end   = mpd->next_page - 1;
1618	if (invalidate) {
1619		ext4_lblk_t start, last;
1620		start = index << (PAGE_SHIFT - inode->i_blkbits);
1621		last = end << (PAGE_SHIFT - inode->i_blkbits);
1622		ext4_es_remove_extent(inode, start, last - start + 1);
1623	}
1624
1625	pagevec_init(&pvec, 0);
1626	while (index <= end) {
1627		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628		if (nr_pages == 0)
1629			break;
1630		for (i = 0; i < nr_pages; i++) {
1631			struct page *page = pvec.pages[i];
1632			if (page->index > end)
1633				break;
1634			BUG_ON(!PageLocked(page));
1635			BUG_ON(PageWriteback(page));
1636			if (invalidate) {
1637				block_invalidatepage(page, 0, PAGE_SIZE);
1638				ClearPageUptodate(page);
1639			}
1640			unlock_page(page);
1641		}
1642		index = pvec.pages[nr_pages - 1]->index + 1;
1643		pagevec_release(&pvec);
1644	}
 
1645}
1646
1647static void ext4_print_free_blocks(struct inode *inode)
1648{
1649	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650	struct super_block *sb = inode->i_sb;
1651	struct ext4_inode_info *ei = EXT4_I(inode);
1652
1653	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1654	       EXT4_C2B(EXT4_SB(inode->i_sb),
1655			ext4_count_free_clusters(sb)));
1656	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1658	       (long long) EXT4_C2B(EXT4_SB(sb),
1659		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1660	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1661	       (long long) EXT4_C2B(EXT4_SB(sb),
1662		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1663	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1665		 ei->i_reserved_data_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666	return;
1667}
1668
1669static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1670{
1671	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1672}
1673
1674/*
1675 * This function is grabs code from the very beginning of
1676 * ext4_map_blocks, but assumes that the caller is from delayed write
1677 * time. This function looks up the requested blocks and sets the
1678 * buffer delay bit under the protection of i_data_sem.
1679 */
1680static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681			      struct ext4_map_blocks *map,
1682			      struct buffer_head *bh)
1683{
1684	struct extent_status es;
1685	int retval;
1686	sector_t invalid_block = ~((sector_t) 0xffff);
1687#ifdef ES_AGGRESSIVE_TEST
1688	struct ext4_map_blocks orig_map;
1689
1690	memcpy(&orig_map, map, sizeof(*map));
1691#endif
1692
1693	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694		invalid_block = ~0;
1695
1696	map->m_flags = 0;
1697	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698		  "logical block %lu\n", inode->i_ino, map->m_len,
1699		  (unsigned long) map->m_lblk);
1700
1701	/* Lookup extent status tree firstly */
1702	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1703		if (ext4_es_is_hole(&es)) {
1704			retval = 0;
1705			down_read(&EXT4_I(inode)->i_data_sem);
1706			goto add_delayed;
1707		}
1708
1709		/*
1710		 * Delayed extent could be allocated by fallocate.
1711		 * So we need to check it.
1712		 */
1713		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714			map_bh(bh, inode->i_sb, invalid_block);
1715			set_buffer_new(bh);
1716			set_buffer_delay(bh);
1717			return 0;
1718		}
1719
1720		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721		retval = es.es_len - (iblock - es.es_lblk);
1722		if (retval > map->m_len)
1723			retval = map->m_len;
1724		map->m_len = retval;
1725		if (ext4_es_is_written(&es))
1726			map->m_flags |= EXT4_MAP_MAPPED;
1727		else if (ext4_es_is_unwritten(&es))
1728			map->m_flags |= EXT4_MAP_UNWRITTEN;
1729		else
1730			BUG_ON(1);
1731
1732#ifdef ES_AGGRESSIVE_TEST
1733		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734#endif
1735		return retval;
1736	}
1737
1738	/*
1739	 * Try to see if we can get the block without requesting a new
1740	 * file system block.
1741	 */
1742	down_read(&EXT4_I(inode)->i_data_sem);
1743	if (ext4_has_inline_data(inode))
1744		retval = 0;
1745	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1746		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1747	else
1748		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1749
1750add_delayed:
1751	if (retval == 0) {
1752		int ret;
1753		/*
1754		 * XXX: __block_prepare_write() unmaps passed block,
1755		 * is it OK?
1756		 */
1757		/*
1758		 * If the block was allocated from previously allocated cluster,
1759		 * then we don't need to reserve it again. However we still need
1760		 * to reserve metadata for every block we're going to write.
1761		 */
1762		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1763		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1764			ret = ext4_da_reserve_space(inode);
1765			if (ret) {
1766				/* not enough space to reserve */
1767				retval = ret;
1768				goto out_unlock;
1769			}
1770		}
1771
1772		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773					    ~0, EXTENT_STATUS_DELAYED);
1774		if (ret) {
1775			retval = ret;
1776			goto out_unlock;
1777		}
1778
1779		map_bh(bh, inode->i_sb, invalid_block);
1780		set_buffer_new(bh);
1781		set_buffer_delay(bh);
1782	} else if (retval > 0) {
1783		int ret;
1784		unsigned int status;
1785
1786		if (unlikely(retval != map->m_len)) {
1787			ext4_warning(inode->i_sb,
1788				     "ES len assertion failed for inode "
1789				     "%lu: retval %d != map->m_len %d",
1790				     inode->i_ino, retval, map->m_len);
1791			WARN_ON(1);
1792		}
1793
1794		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797					    map->m_pblk, status);
1798		if (ret != 0)
1799			retval = ret;
1800	}
1801
1802out_unlock:
1803	up_read((&EXT4_I(inode)->i_data_sem));
1804
1805	return retval;
1806}
1807
1808/*
1809 * This is a special get_block_t callback which is used by
1810 * ext4_da_write_begin().  It will either return mapped block or
1811 * reserve space for a single block.
1812 *
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1815 *
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
1819 */
1820int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821			   struct buffer_head *bh, int create)
1822{
1823	struct ext4_map_blocks map;
1824	int ret = 0;
1825
1826	BUG_ON(create == 0);
1827	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829	map.m_lblk = iblock;
1830	map.m_len = 1;
1831
1832	/*
1833	 * first, we need to know whether the block is allocated already
1834	 * preallocated blocks are unmapped but should treated
1835	 * the same as allocated blocks.
1836	 */
1837	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838	if (ret <= 0)
1839		return ret;
1840
1841	map_bh(bh, inode->i_sb, map.m_pblk);
1842	ext4_update_bh_state(bh, map.m_flags);
1843
1844	if (buffer_unwritten(bh)) {
1845		/* A delayed write to unwritten bh should be marked
1846		 * new and mapped.  Mapped ensures that we don't do
1847		 * get_block multiple times when we write to the same
1848		 * offset and new ensures that we do proper zero out
1849		 * for partial write.
1850		 */
1851		set_buffer_new(bh);
1852		set_buffer_mapped(bh);
1853	}
1854	return 0;
1855}
1856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857static int bget_one(handle_t *handle, struct buffer_head *bh)
1858{
1859	get_bh(bh);
1860	return 0;
1861}
1862
1863static int bput_one(handle_t *handle, struct buffer_head *bh)
1864{
1865	put_bh(bh);
1866	return 0;
1867}
1868
1869static int __ext4_journalled_writepage(struct page *page,
1870				       unsigned int len)
1871{
1872	struct address_space *mapping = page->mapping;
1873	struct inode *inode = mapping->host;
1874	struct buffer_head *page_bufs = NULL;
1875	handle_t *handle = NULL;
1876	int ret = 0, err = 0;
1877	int inline_data = ext4_has_inline_data(inode);
1878	struct buffer_head *inode_bh = NULL;
1879
1880	ClearPageChecked(page);
1881
1882	if (inline_data) {
1883		BUG_ON(page->index != 0);
1884		BUG_ON(len > ext4_get_max_inline_size(inode));
1885		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886		if (inode_bh == NULL)
1887			goto out;
1888	} else {
1889		page_bufs = page_buffers(page);
1890		if (!page_bufs) {
1891			BUG();
1892			goto out;
1893		}
1894		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895				       NULL, bget_one);
1896	}
1897	/*
1898	 * We need to release the page lock before we start the
1899	 * journal, so grab a reference so the page won't disappear
1900	 * out from under us.
1901	 */
1902	get_page(page);
1903	unlock_page(page);
1904
1905	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906				    ext4_writepage_trans_blocks(inode));
1907	if (IS_ERR(handle)) {
1908		ret = PTR_ERR(handle);
1909		put_page(page);
1910		goto out_no_pagelock;
1911	}
1912	BUG_ON(!ext4_handle_valid(handle));
1913
1914	lock_page(page);
1915	put_page(page);
1916	if (page->mapping != mapping) {
1917		/* The page got truncated from under us */
1918		ext4_journal_stop(handle);
1919		ret = 0;
1920		goto out;
1921	}
1922
1923	if (inline_data) {
1924		BUFFER_TRACE(inode_bh, "get write access");
1925		ret = ext4_journal_get_write_access(handle, inode_bh);
1926
1927		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
 
1928
1929	} else {
1930		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931					     do_journal_get_write_access);
1932
1933		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934					     write_end_fn);
1935	}
1936	if (ret == 0)
1937		ret = err;
1938	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939	err = ext4_journal_stop(handle);
1940	if (!ret)
1941		ret = err;
1942
1943	if (!ext4_has_inline_data(inode))
1944		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945				       NULL, bput_one);
1946	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947out:
1948	unlock_page(page);
1949out_no_pagelock:
1950	brelse(inode_bh);
1951	return ret;
1952}
1953
 
 
 
1954/*
1955 * Note that we don't need to start a transaction unless we're journaling data
1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957 * need to file the inode to the transaction's list in ordered mode because if
1958 * we are writing back data added by write(), the inode is already there and if
1959 * we are writing back data modified via mmap(), no one guarantees in which
1960 * transaction the data will hit the disk. In case we are journaling data, we
1961 * cannot start transaction directly because transaction start ranks above page
1962 * lock so we have to do some magic.
1963 *
1964 * This function can get called via...
1965 *   - ext4_writepages after taking page lock (have journal handle)
1966 *   - journal_submit_inode_data_buffers (no journal handle)
1967 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968 *   - grab_page_cache when doing write_begin (have journal handle)
1969 *
1970 * We don't do any block allocation in this function. If we have page with
1971 * multiple blocks we need to write those buffer_heads that are mapped. This
1972 * is important for mmaped based write. So if we do with blocksize 1K
1973 * truncate(f, 1024);
1974 * a = mmap(f, 0, 4096);
1975 * a[0] = 'a';
1976 * truncate(f, 4096);
1977 * we have in the page first buffer_head mapped via page_mkwrite call back
1978 * but other buffer_heads would be unmapped but dirty (dirty done via the
1979 * do_wp_page). So writepage should write the first block. If we modify
1980 * the mmap area beyond 1024 we will again get a page_fault and the
1981 * page_mkwrite callback will do the block allocation and mark the
1982 * buffer_heads mapped.
1983 *
1984 * We redirty the page if we have any buffer_heads that is either delay or
1985 * unwritten in the page.
1986 *
1987 * We can get recursively called as show below.
1988 *
1989 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990 *		ext4_writepage()
1991 *
1992 * But since we don't do any block allocation we should not deadlock.
1993 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994 */
1995static int ext4_writepage(struct page *page,
1996			  struct writeback_control *wbc)
1997{
1998	int ret = 0;
1999	loff_t size;
2000	unsigned int len;
2001	struct buffer_head *page_bufs = NULL;
2002	struct inode *inode = page->mapping->host;
2003	struct ext4_io_submit io_submit;
2004	bool keep_towrite = false;
2005
2006	trace_ext4_writepage(page);
2007	size = i_size_read(inode);
2008	if (page->index == size >> PAGE_SHIFT)
2009		len = size & ~PAGE_MASK;
2010	else
2011		len = PAGE_SIZE;
2012
2013	page_bufs = page_buffers(page);
2014	/*
2015	 * We cannot do block allocation or other extent handling in this
2016	 * function. If there are buffers needing that, we have to redirty
2017	 * the page. But we may reach here when we do a journal commit via
2018	 * journal_submit_inode_data_buffers() and in that case we must write
2019	 * allocated buffers to achieve data=ordered mode guarantees.
2020	 *
2021	 * Also, if there is only one buffer per page (the fs block
2022	 * size == the page size), if one buffer needs block
2023	 * allocation or needs to modify the extent tree to clear the
2024	 * unwritten flag, we know that the page can't be written at
2025	 * all, so we might as well refuse the write immediately.
2026	 * Unfortunately if the block size != page size, we can't as
2027	 * easily detect this case using ext4_walk_page_buffers(), but
2028	 * for the extremely common case, this is an optimization that
2029	 * skips a useless round trip through ext4_bio_write_page().
2030	 */
2031	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032				   ext4_bh_delay_or_unwritten)) {
2033		redirty_page_for_writepage(wbc, page);
2034		if ((current->flags & PF_MEMALLOC) ||
2035		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2036			/*
2037			 * For memory cleaning there's no point in writing only
2038			 * some buffers. So just bail out. Warn if we came here
2039			 * from direct reclaim.
2040			 */
2041			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042							== PF_MEMALLOC);
2043			unlock_page(page);
2044			return 0;
2045		}
2046		keep_towrite = true;
2047	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048
2049	if (PageChecked(page) && ext4_should_journal_data(inode))
2050		/*
2051		 * It's mmapped pagecache.  Add buffers and journal it.  There
2052		 * doesn't seem much point in redirtying the page here.
2053		 */
2054		return __ext4_journalled_writepage(page, len);
2055
2056	ext4_io_submit_init(&io_submit, wbc);
2057	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058	if (!io_submit.io_end) {
2059		redirty_page_for_writepage(wbc, page);
2060		unlock_page(page);
2061		return -ENOMEM;
2062	}
2063	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2064	ext4_io_submit(&io_submit);
2065	/* Drop io_end reference we got from init */
2066	ext4_put_io_end_defer(io_submit.io_end);
2067	return ret;
2068}
2069
2070static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2071{
2072	int len;
2073	loff_t size = i_size_read(mpd->inode);
2074	int err;
2075
2076	BUG_ON(page->index != mpd->first_page);
2077	if (page->index == size >> PAGE_SHIFT)
2078		len = size & ~PAGE_MASK;
2079	else
2080		len = PAGE_SIZE;
2081	clear_page_dirty_for_io(page);
2082	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083	if (!err)
2084		mpd->wbc->nr_to_write--;
2085	mpd->first_page++;
2086
2087	return err;
2088}
2089
2090#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2091
2092/*
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
 
 
2096 */
2097#define MAX_WRITEPAGES_EXTENT_LEN 2048
2098
2099/*
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101 *
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2105 *
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
2112 */
2113static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114				   struct buffer_head *bh)
2115{
2116	struct ext4_map_blocks *map = &mpd->map;
2117
2118	/* Buffer that doesn't need mapping for writeback? */
2119	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121		/* So far no extent to map => we write the buffer right away */
2122		if (map->m_len == 0)
2123			return true;
2124		return false;
2125	}
2126
2127	/* First block in the extent? */
2128	if (map->m_len == 0) {
2129		map->m_lblk = lblk;
2130		map->m_len = 1;
2131		map->m_flags = bh->b_state & BH_FLAGS;
2132		return true;
2133	}
2134
2135	/* Don't go larger than mballoc is willing to allocate */
2136	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137		return false;
2138
2139	/* Can we merge the block to our big extent? */
2140	if (lblk == map->m_lblk + map->m_len &&
2141	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2142		map->m_len++;
2143		return true;
2144	}
2145	return false;
2146}
2147
2148/*
2149 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2150 *
2151 * @mpd - extent of blocks for mapping
2152 * @head - the first buffer in the page
2153 * @bh - buffer we should start processing from
2154 * @lblk - logical number of the block in the file corresponding to @bh
2155 *
2156 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157 * the page for IO if all buffers in this page were mapped and there's no
2158 * accumulated extent of buffers to map or add buffers in the page to the
2159 * extent of buffers to map. The function returns 1 if the caller can continue
2160 * by processing the next page, 0 if it should stop adding buffers to the
2161 * extent to map because we cannot extend it anymore. It can also return value
2162 * < 0 in case of error during IO submission.
2163 */
2164static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165				   struct buffer_head *head,
2166				   struct buffer_head *bh,
2167				   ext4_lblk_t lblk)
2168{
2169	struct inode *inode = mpd->inode;
2170	int err;
2171	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172							>> inode->i_blkbits;
2173
2174	do {
2175		BUG_ON(buffer_locked(bh));
2176
2177		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178			/* Found extent to map? */
2179			if (mpd->map.m_len)
2180				return 0;
2181			/* Everything mapped so far and we hit EOF */
2182			break;
2183		}
2184	} while (lblk++, (bh = bh->b_this_page) != head);
2185	/* So far everything mapped? Submit the page for IO. */
2186	if (mpd->map.m_len == 0) {
2187		err = mpage_submit_page(mpd, head->b_page);
2188		if (err < 0)
2189			return err;
2190	}
2191	return lblk < blocks;
2192}
2193
2194/*
2195 * mpage_map_buffers - update buffers corresponding to changed extent and
2196 *		       submit fully mapped pages for IO
2197 *
2198 * @mpd - description of extent to map, on return next extent to map
2199 *
2200 * Scan buffers corresponding to changed extent (we expect corresponding pages
2201 * to be already locked) and update buffer state according to new extent state.
2202 * We map delalloc buffers to their physical location, clear unwritten bits,
2203 * and mark buffers as uninit when we perform writes to unwritten extents
2204 * and do extent conversion after IO is finished. If the last page is not fully
2205 * mapped, we update @map to the next extent in the last page that needs
2206 * mapping. Otherwise we submit the page for IO.
2207 */
2208static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
 
 
 
2209{
2210	struct pagevec pvec;
2211	int nr_pages, i;
2212	struct inode *inode = mpd->inode;
2213	struct buffer_head *head, *bh;
2214	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2215	pgoff_t start, end;
2216	ext4_lblk_t lblk;
2217	sector_t pblock;
2218	int err;
2219
2220	start = mpd->map.m_lblk >> bpp_bits;
2221	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222	lblk = start << bpp_bits;
2223	pblock = mpd->map.m_pblk;
2224
 
 
 
2225	pagevec_init(&pvec, 0);
2226	while (start <= end) {
2227		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228					  PAGEVEC_SIZE);
2229		if (nr_pages == 0)
2230			break;
2231		for (i = 0; i < nr_pages; i++) {
2232			struct page *page = pvec.pages[i];
2233
2234			if (page->index > end)
2235				break;
2236			/* Up to 'end' pages must be contiguous */
2237			BUG_ON(page->index != start);
2238			bh = head = page_buffers(page);
2239			do {
2240				if (lblk < mpd->map.m_lblk)
2241					continue;
2242				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243					/*
2244					 * Buffer after end of mapped extent.
2245					 * Find next buffer in the page to map.
2246					 */
2247					mpd->map.m_len = 0;
2248					mpd->map.m_flags = 0;
2249					/*
2250					 * FIXME: If dioread_nolock supports
2251					 * blocksize < pagesize, we need to make
2252					 * sure we add size mapped so far to
2253					 * io_end->size as the following call
2254					 * can submit the page for IO.
2255					 */
2256					err = mpage_process_page_bufs(mpd, head,
2257								      bh, lblk);
2258					pagevec_release(&pvec);
2259					if (err > 0)
2260						err = 0;
2261					return err;
2262				}
2263				if (buffer_delay(bh)) {
2264					clear_buffer_delay(bh);
2265					bh->b_blocknr = pblock++;
2266				}
2267				clear_buffer_unwritten(bh);
2268			} while (lblk++, (bh = bh->b_this_page) != head);
2269
2270			/*
2271			 * FIXME: This is going to break if dioread_nolock
2272			 * supports blocksize < pagesize as we will try to
2273			 * convert potentially unmapped parts of inode.
2274			 */
2275			mpd->io_submit.io_end->size += PAGE_SIZE;
2276			/* Page fully mapped - let IO run! */
2277			err = mpage_submit_page(mpd, page);
2278			if (err < 0) {
2279				pagevec_release(&pvec);
2280				return err;
2281			}
2282			start++;
2283		}
2284		pagevec_release(&pvec);
2285	}
2286	/* Extent fully mapped and matches with page boundary. We are done. */
2287	mpd->map.m_len = 0;
2288	mpd->map.m_flags = 0;
2289	return 0;
2290}
2291
2292static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2293{
2294	struct inode *inode = mpd->inode;
2295	struct ext4_map_blocks *map = &mpd->map;
2296	int get_blocks_flags;
2297	int err, dioread_nolock;
2298
2299	trace_ext4_da_write_pages_extent(inode, map);
2300	/*
2301	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302	 * to convert an unwritten extent to be initialized (in the case
2303	 * where we have written into one or more preallocated blocks).  It is
2304	 * possible that we're going to need more metadata blocks than
2305	 * previously reserved. However we must not fail because we're in
2306	 * writeback and there is nothing we can do about it so it might result
2307	 * in data loss.  So use reserved blocks to allocate metadata if
2308	 * possible.
2309	 *
2310	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311	 * the blocks in question are delalloc blocks.  This indicates
2312	 * that the blocks and quotas has already been checked when
2313	 * the data was copied into the page cache.
2314	 */
2315	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2317	dioread_nolock = ext4_should_dioread_nolock(inode);
2318	if (dioread_nolock)
2319		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320	if (map->m_flags & (1 << BH_Delay))
2321		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2322
2323	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324	if (err < 0)
2325		return err;
2326	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2327		if (!mpd->io_submit.io_end->handle &&
2328		    ext4_handle_valid(handle)) {
2329			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330			handle->h_rsv_handle = NULL;
2331		}
2332		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2333	}
2334
2335	BUG_ON(map->m_len == 0);
2336	if (map->m_flags & EXT4_MAP_NEW) {
2337		struct block_device *bdev = inode->i_sb->s_bdev;
2338		int i;
2339
2340		for (i = 0; i < map->m_len; i++)
2341			unmap_underlying_metadata(bdev, map->m_pblk + i);
2342	}
2343	return 0;
2344}
2345
2346/*
2347 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348 *				 mpd->len and submit pages underlying it for IO
2349 *
2350 * @handle - handle for journal operations
2351 * @mpd - extent to map
2352 * @give_up_on_write - we set this to true iff there is a fatal error and there
2353 *                     is no hope of writing the data. The caller should discard
2354 *                     dirty pages to avoid infinite loops.
2355 *
2356 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358 * them to initialized or split the described range from larger unwritten
2359 * extent. Note that we need not map all the described range since allocation
2360 * can return less blocks or the range is covered by more unwritten extents. We
2361 * cannot map more because we are limited by reserved transaction credits. On
2362 * the other hand we always make sure that the last touched page is fully
2363 * mapped so that it can be written out (and thus forward progress is
2364 * guaranteed). After mapping we submit all mapped pages for IO.
2365 */
2366static int mpage_map_and_submit_extent(handle_t *handle,
2367				       struct mpage_da_data *mpd,
2368				       bool *give_up_on_write)
2369{
2370	struct inode *inode = mpd->inode;
2371	struct ext4_map_blocks *map = &mpd->map;
2372	int err;
2373	loff_t disksize;
2374	int progress = 0;
2375
2376	mpd->io_submit.io_end->offset =
2377				((loff_t)map->m_lblk) << inode->i_blkbits;
2378	do {
2379		err = mpage_map_one_extent(handle, mpd);
2380		if (err < 0) {
2381			struct super_block *sb = inode->i_sb;
2382
2383			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384				goto invalidate_dirty_pages;
2385			/*
2386			 * Let the uper layers retry transient errors.
2387			 * In the case of ENOSPC, if ext4_count_free_blocks()
2388			 * is non-zero, a commit should free up blocks.
2389			 */
2390			if ((err == -ENOMEM) ||
2391			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392				if (progress)
2393					goto update_disksize;
2394				return err;
2395			}
2396			ext4_msg(sb, KERN_CRIT,
2397				 "Delayed block allocation failed for "
2398				 "inode %lu at logical offset %llu with"
2399				 " max blocks %u with error %d",
2400				 inode->i_ino,
2401				 (unsigned long long)map->m_lblk,
2402				 (unsigned)map->m_len, -err);
2403			ext4_msg(sb, KERN_CRIT,
2404				 "This should not happen!! Data will "
2405				 "be lost\n");
2406			if (err == -ENOSPC)
2407				ext4_print_free_blocks(inode);
2408		invalidate_dirty_pages:
2409			*give_up_on_write = true;
2410			return err;
2411		}
2412		progress = 1;
2413		/*
2414		 * Update buffer state, submit mapped pages, and get us new
2415		 * extent to map
2416		 */
2417		err = mpage_map_and_submit_buffers(mpd);
2418		if (err < 0)
2419			goto update_disksize;
2420	} while (map->m_len);
2421
2422update_disksize:
2423	/*
2424	 * Update on-disk size after IO is submitted.  Races with
2425	 * truncate are avoided by checking i_size under i_data_sem.
2426	 */
2427	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2428	if (disksize > EXT4_I(inode)->i_disksize) {
2429		int err2;
2430		loff_t i_size;
2431
2432		down_write(&EXT4_I(inode)->i_data_sem);
2433		i_size = i_size_read(inode);
2434		if (disksize > i_size)
2435			disksize = i_size;
2436		if (disksize > EXT4_I(inode)->i_disksize)
2437			EXT4_I(inode)->i_disksize = disksize;
2438		err2 = ext4_mark_inode_dirty(handle, inode);
2439		up_write(&EXT4_I(inode)->i_data_sem);
2440		if (err2)
2441			ext4_error(inode->i_sb,
2442				   "Failed to mark inode %lu dirty",
2443				   inode->i_ino);
2444		if (!err)
2445			err = err2;
2446	}
2447	return err;
2448}
2449
2450/*
2451 * Calculate the total number of credits to reserve for one writepages
2452 * iteration. This is called from ext4_writepages(). We map an extent of
2453 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455 * bpp - 1 blocks in bpp different extents.
2456 */
2457static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458{
2459	int bpp = ext4_journal_blocks_per_page(inode);
2460
2461	return ext4_meta_trans_blocks(inode,
2462				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2463}
2464
2465/*
2466 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467 * 				 and underlying extent to map
2468 *
2469 * @mpd - where to look for pages
2470 *
2471 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472 * IO immediately. When we find a page which isn't mapped we start accumulating
2473 * extent of buffers underlying these pages that needs mapping (formed by
2474 * either delayed or unwritten buffers). We also lock the pages containing
2475 * these buffers. The extent found is returned in @mpd structure (starting at
2476 * mpd->lblk with length mpd->len blocks).
2477 *
2478 * Note that this function can attach bios to one io_end structure which are
2479 * neither logically nor physically contiguous. Although it may seem as an
2480 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481 * case as we need to track IO to all buffers underlying a page in one io_end.
2482 */
2483static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2484{
2485	struct address_space *mapping = mpd->inode->i_mapping;
2486	struct pagevec pvec;
2487	unsigned int nr_pages;
2488	long left = mpd->wbc->nr_to_write;
2489	pgoff_t index = mpd->first_page;
2490	pgoff_t end = mpd->last_page;
2491	int tag;
2492	int i, err = 0;
2493	int blkbits = mpd->inode->i_blkbits;
2494	ext4_lblk_t lblk;
2495	struct buffer_head *head;
2496
2497	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2498		tag = PAGECACHE_TAG_TOWRITE;
2499	else
2500		tag = PAGECACHE_TAG_DIRTY;
2501
2502	pagevec_init(&pvec, 0);
2503	mpd->map.m_len = 0;
2504	mpd->next_page = index;
2505	while (index <= end) {
2506		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2507			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508		if (nr_pages == 0)
2509			goto out;
2510
2511		for (i = 0; i < nr_pages; i++) {
2512			struct page *page = pvec.pages[i];
2513
2514			/*
2515			 * At this point, the page may be truncated or
2516			 * invalidated (changing page->mapping to NULL), or
2517			 * even swizzled back from swapper_space to tmpfs file
2518			 * mapping. However, page->index will not change
2519			 * because we have a reference on the page.
2520			 */
2521			if (page->index > end)
2522				goto out;
2523
 
 
2524			/*
2525			 * Accumulated enough dirty pages? This doesn't apply
2526			 * to WB_SYNC_ALL mode. For integrity sync we have to
2527			 * keep going because someone may be concurrently
2528			 * dirtying pages, and we might have synced a lot of
2529			 * newly appeared dirty pages, but have not synced all
2530			 * of the old dirty pages.
2531			 */
2532			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533				goto out;
 
 
 
2534
2535			/* If we can't merge this page, we are done. */
2536			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537				goto out;
2538
2539			lock_page(page);
2540			/*
2541			 * If the page is no longer dirty, or its mapping no
2542			 * longer corresponds to inode we are writing (which
2543			 * means it has been truncated or invalidated), or the
2544			 * page is already under writeback and we are not doing
2545			 * a data integrity writeback, skip the page
 
2546			 */
2547			if (!PageDirty(page) ||
2548			    (PageWriteback(page) &&
2549			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2550			    unlikely(page->mapping != mapping)) {
2551				unlock_page(page);
2552				continue;
2553			}
2554
2555			wait_on_page_writeback(page);
2556			BUG_ON(PageWriteback(page));
2557
2558			if (mpd->map.m_len == 0)
2559				mpd->first_page = page->index;
2560			mpd->next_page = page->index + 1;
2561			/* Add all dirty buffers to mpd */
2562			lblk = ((ext4_lblk_t)page->index) <<
2563				(PAGE_SHIFT - blkbits);
2564			head = page_buffers(page);
2565			err = mpage_process_page_bufs(mpd, head, head, lblk);
2566			if (err <= 0)
2567				goto out;
2568			err = 0;
2569			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570		}
2571		pagevec_release(&pvec);
2572		cond_resched();
2573	}
2574	return 0;
 
 
2575out:
2576	pagevec_release(&pvec);
2577	return err;
 
2578}
2579
2580static int __writepage(struct page *page, struct writeback_control *wbc,
2581		       void *data)
2582{
2583	struct address_space *mapping = data;
2584	int ret = ext4_writepage(page, wbc);
2585	mapping_set_error(mapping, ret);
2586	return ret;
2587}
2588
2589static int ext4_writepages(struct address_space *mapping,
2590			   struct writeback_control *wbc)
2591{
2592	pgoff_t	writeback_index = 0;
2593	long nr_to_write = wbc->nr_to_write;
2594	int range_whole = 0;
2595	int cycled = 1;
2596	handle_t *handle = NULL;
2597	struct mpage_da_data mpd;
2598	struct inode *inode = mapping->host;
2599	int needed_blocks, rsv_blocks = 0, ret = 0;
 
 
 
 
 
2600	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2601	bool done;
 
2602	struct blk_plug plug;
2603	bool give_up_on_write = false;
2604
2605	trace_ext4_writepages(inode, wbc);
2606
2607	if (dax_mapping(mapping))
2608		return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609						   wbc);
2610
2611	/*
2612	 * No pages to write? This is mainly a kludge to avoid starting
2613	 * a transaction for special inodes like journal inode on last iput()
2614	 * because that could violate lock ordering on umount
2615	 */
2616	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617		goto out_writepages;
2618
2619	if (ext4_should_journal_data(inode)) {
2620		struct blk_plug plug;
2621
2622		blk_start_plug(&plug);
2623		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624		blk_finish_plug(&plug);
2625		goto out_writepages;
2626	}
2627
2628	/*
2629	 * If the filesystem has aborted, it is read-only, so return
2630	 * right away instead of dumping stack traces later on that
2631	 * will obscure the real source of the problem.  We test
2632	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633	 * the latter could be true if the filesystem is mounted
2634	 * read-only, and in that case, ext4_writepages should
2635	 * *never* be called, so if that ever happens, we would want
2636	 * the stack trace.
2637	 */
2638	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639		ret = -EROFS;
2640		goto out_writepages;
2641	}
2642
2643	if (ext4_should_dioread_nolock(inode)) {
2644		/*
2645		 * We may need to convert up to one extent per block in
2646		 * the page and we may dirty the inode.
2647		 */
2648		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2649	}
2650
2651	/*
2652	 * If we have inline data and arrive here, it means that
2653	 * we will soon create the block for the 1st page, so
2654	 * we'd better clear the inline data here.
2655	 */
2656	if (ext4_has_inline_data(inode)) {
2657		/* Just inode will be modified... */
2658		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659		if (IS_ERR(handle)) {
2660			ret = PTR_ERR(handle);
2661			goto out_writepages;
2662		}
2663		BUG_ON(ext4_test_inode_state(inode,
2664				EXT4_STATE_MAY_INLINE_DATA));
2665		ext4_destroy_inline_data(handle, inode);
2666		ext4_journal_stop(handle);
2667	}
2668
2669	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670		range_whole = 1;
2671
 
2672	if (wbc->range_cyclic) {
2673		writeback_index = mapping->writeback_index;
2674		if (writeback_index)
2675			cycled = 0;
2676		mpd.first_page = writeback_index;
2677		mpd.last_page = -1;
 
 
2678	} else {
2679		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681	}
2682
2683	mpd.inode = inode;
2684	mpd.wbc = wbc;
2685	ext4_io_submit_init(&mpd.io_submit, wbc);
2686retry:
2687	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2688		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689	done = false;
2690	blk_start_plug(&plug);
2691	while (!done && mpd.first_page <= mpd.last_page) {
2692		/* For each extent of pages we use new io_end */
2693		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694		if (!mpd.io_submit.io_end) {
2695			ret = -ENOMEM;
2696			break;
2697		}
2698
2699		/*
2700		 * We have two constraints: We find one extent to map and we
2701		 * must always write out whole page (makes a difference when
2702		 * blocksize < pagesize) so that we don't block on IO when we
2703		 * try to write out the rest of the page. Journalled mode is
2704		 * not supported by delalloc.
2705		 */
2706		BUG_ON(ext4_should_journal_data(inode));
2707		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2708
2709		/* start a new transaction */
2710		handle = ext4_journal_start_with_reserve(inode,
2711				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2712		if (IS_ERR(handle)) {
2713			ret = PTR_ERR(handle);
2714			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2715			       "%ld pages, ino %lu; err %d", __func__,
2716				wbc->nr_to_write, inode->i_ino, ret);
2717			/* Release allocated io_end */
2718			ext4_put_io_end(mpd.io_submit.io_end);
2719			break;
2720		}
2721
2722		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723		ret = mpage_prepare_extent_to_map(&mpd);
2724		if (!ret) {
2725			if (mpd.map.m_len)
2726				ret = mpage_map_and_submit_extent(handle, &mpd,
2727					&give_up_on_write);
2728			else {
2729				/*
2730				 * We scanned the whole range (or exhausted
2731				 * nr_to_write), submitted what was mapped and
2732				 * didn't find anything needing mapping. We are
2733				 * done.
2734				 */
2735				done = true;
2736			}
2737		}
 
 
 
2738		ext4_journal_stop(handle);
2739		/* Submit prepared bio */
2740		ext4_io_submit(&mpd.io_submit);
2741		/* Unlock pages we didn't use */
2742		mpage_release_unused_pages(&mpd, give_up_on_write);
2743		/* Drop our io_end reference we got from init */
2744		ext4_put_io_end(mpd.io_submit.io_end);
2745
2746		if (ret == -ENOSPC && sbi->s_journal) {
2747			/*
2748			 * Commit the transaction which would
2749			 * free blocks released in the transaction
2750			 * and try again
2751			 */
2752			jbd2_journal_force_commit_nested(sbi->s_journal);
2753			ret = 0;
2754			continue;
2755		}
2756		/* Fatal error - ENOMEM, EIO... */
2757		if (ret)
 
 
 
 
 
 
 
 
 
 
 
2758			break;
2759	}
2760	blk_finish_plug(&plug);
2761	if (!ret && !cycled && wbc->nr_to_write > 0) {
2762		cycled = 1;
2763		mpd.last_page = writeback_index - 1;
2764		mpd.first_page = 0;
 
2765		goto retry;
2766	}
2767
2768	/* Update index */
 
2769	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2770		/*
2771		 * Set the writeback_index so that range_cyclic
2772		 * mode will write it back later
2773		 */
2774		mapping->writeback_index = mpd.first_page;
2775
2776out_writepages:
2777	trace_ext4_writepages_result(inode, wbc, ret,
2778				     nr_to_write - wbc->nr_to_write);
 
2779	return ret;
2780}
2781
 
2782static int ext4_nonda_switch(struct super_block *sb)
2783{
2784	s64 free_clusters, dirty_clusters;
2785	struct ext4_sb_info *sbi = EXT4_SB(sb);
2786
2787	/*
2788	 * switch to non delalloc mode if we are running low
2789	 * on free block. The free block accounting via percpu
2790	 * counters can get slightly wrong with percpu_counter_batch getting
2791	 * accumulated on each CPU without updating global counters
2792	 * Delalloc need an accurate free block accounting. So switch
2793	 * to non delalloc when we are near to error range.
2794	 */
2795	free_clusters =
2796		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797	dirty_clusters =
2798		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2799	/*
2800	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2801	 */
2802	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2803		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2804
2805	if (2 * free_clusters < 3 * dirty_clusters ||
2806	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2807		/*
2808		 * free block count is less than 150% of dirty blocks
2809		 * or free blocks is less than watermark
2810		 */
2811		return 1;
2812	}
 
 
 
 
 
 
 
2813	return 0;
2814}
2815
2816/* We always reserve for an inode update; the superblock could be there too */
2817static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2818{
2819	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2820		return 1;
2821
2822	if (pos + len <= 0x7fffffffULL)
2823		return 1;
2824
2825	/* We might need to update the superblock to set LARGE_FILE */
2826	return 2;
2827}
2828
2829static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2830			       loff_t pos, unsigned len, unsigned flags,
2831			       struct page **pagep, void **fsdata)
2832{
2833	int ret, retries = 0;
2834	struct page *page;
2835	pgoff_t index;
2836	struct inode *inode = mapping->host;
2837	handle_t *handle;
2838
2839	index = pos >> PAGE_SHIFT;
2840
2841	if (ext4_nonda_switch(inode->i_sb)) {
2842		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843		return ext4_write_begin(file, mapping, pos,
2844					len, flags, pagep, fsdata);
2845	}
2846	*fsdata = (void *)0;
2847	trace_ext4_da_write_begin(inode, pos, len, flags);
2848
2849	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850		ret = ext4_da_write_inline_data_begin(mapping, inode,
2851						      pos, len, flags,
2852						      pagep, fsdata);
2853		if (ret < 0)
2854			return ret;
2855		if (ret == 1)
2856			return 0;
2857	}
2858
2859	/*
2860	 * grab_cache_page_write_begin() can take a long time if the
2861	 * system is thrashing due to memory pressure, or if the page
2862	 * is being written back.  So grab it first before we start
2863	 * the transaction handle.  This also allows us to allocate
2864	 * the page (if needed) without using GFP_NOFS.
2865	 */
2866retry_grab:
2867	page = grab_cache_page_write_begin(mapping, index, flags);
2868	if (!page)
2869		return -ENOMEM;
2870	unlock_page(page);
2871
2872	/*
2873	 * With delayed allocation, we don't log the i_disksize update
2874	 * if there is delayed block allocation. But we still need
2875	 * to journalling the i_disksize update if writes to the end
2876	 * of file which has an already mapped buffer.
2877	 */
2878retry_journal:
2879	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880				ext4_da_write_credits(inode, pos, len));
2881	if (IS_ERR(handle)) {
2882		put_page(page);
2883		return PTR_ERR(handle);
2884	}
 
 
 
2885
2886	lock_page(page);
2887	if (page->mapping != mapping) {
2888		/* The page got truncated from under us */
2889		unlock_page(page);
2890		put_page(page);
2891		ext4_journal_stop(handle);
2892		goto retry_grab;
 
2893	}
2894	/* In case writeback began while the page was unlocked */
2895	wait_for_stable_page(page);
2896
2897#ifdef CONFIG_EXT4_FS_ENCRYPTION
2898	ret = ext4_block_write_begin(page, pos, len,
2899				     ext4_da_get_block_prep);
2900#else
2901	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2902#endif
2903	if (ret < 0) {
2904		unlock_page(page);
2905		ext4_journal_stop(handle);
 
2906		/*
2907		 * block_write_begin may have instantiated a few blocks
2908		 * outside i_size.  Trim these off again. Don't need
2909		 * i_size_read because we hold i_mutex.
2910		 */
2911		if (pos + len > inode->i_size)
2912			ext4_truncate_failed_write(inode);
2913
2914		if (ret == -ENOSPC &&
2915		    ext4_should_retry_alloc(inode->i_sb, &retries))
2916			goto retry_journal;
2917
2918		put_page(page);
2919		return ret;
2920	}
2921
2922	*pagep = page;
 
 
2923	return ret;
2924}
2925
2926/*
2927 * Check if we should update i_disksize
2928 * when write to the end of file but not require block allocation
2929 */
2930static int ext4_da_should_update_i_disksize(struct page *page,
2931					    unsigned long offset)
2932{
2933	struct buffer_head *bh;
2934	struct inode *inode = page->mapping->host;
2935	unsigned int idx;
2936	int i;
2937
2938	bh = page_buffers(page);
2939	idx = offset >> inode->i_blkbits;
2940
2941	for (i = 0; i < idx; i++)
2942		bh = bh->b_this_page;
2943
2944	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2945		return 0;
2946	return 1;
2947}
2948
2949static int ext4_da_write_end(struct file *file,
2950			     struct address_space *mapping,
2951			     loff_t pos, unsigned len, unsigned copied,
2952			     struct page *page, void *fsdata)
2953{
2954	struct inode *inode = mapping->host;
2955	int ret = 0, ret2;
2956	handle_t *handle = ext4_journal_current_handle();
2957	loff_t new_i_size;
2958	unsigned long start, end;
2959	int write_mode = (int)(unsigned long)fsdata;
2960
2961	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962		return ext4_write_end(file, mapping, pos,
2963				      len, copied, page, fsdata);
 
 
 
 
 
 
 
 
 
2964
2965	trace_ext4_da_write_end(inode, pos, len, copied);
2966	start = pos & (PAGE_SIZE - 1);
2967	end = start + copied - 1;
2968
2969	/*
2970	 * generic_write_end() will run mark_inode_dirty() if i_size
2971	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2972	 * into that.
2973	 */
 
2974	new_i_size = pos + copied;
2975	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2976		if (ext4_has_inline_data(inode) ||
2977		    ext4_da_should_update_i_disksize(page, end)) {
2978			ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
 
 
 
 
 
 
2979			/* We need to mark inode dirty even if
2980			 * new_i_size is less that inode->i_size
2981			 * bu greater than i_disksize.(hint delalloc)
2982			 */
2983			ext4_mark_inode_dirty(handle, inode);
2984		}
2985	}
2986
2987	if (write_mode != CONVERT_INLINE_DATA &&
2988	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989	    ext4_has_inline_data(inode))
2990		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991						     page);
2992	else
2993		ret2 = generic_write_end(file, mapping, pos, len, copied,
2994							page, fsdata);
2995
2996	copied = ret2;
2997	if (ret2 < 0)
2998		ret = ret2;
2999	ret2 = ext4_journal_stop(handle);
3000	if (!ret)
3001		ret = ret2;
3002
3003	return ret ? ret : copied;
3004}
3005
3006static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007				   unsigned int length)
3008{
3009	/*
3010	 * Drop reserved blocks
3011	 */
3012	BUG_ON(!PageLocked(page));
3013	if (!page_has_buffers(page))
3014		goto out;
3015
3016	ext4_da_page_release_reservation(page, offset, length);
3017
3018out:
3019	ext4_invalidatepage(page, offset, length);
3020
3021	return;
3022}
3023
3024/*
3025 * Force all delayed allocation blocks to be allocated for a given inode.
3026 */
3027int ext4_alloc_da_blocks(struct inode *inode)
3028{
3029	trace_ext4_alloc_da_blocks(inode);
3030
3031	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3032		return 0;
3033
3034	/*
3035	 * We do something simple for now.  The filemap_flush() will
3036	 * also start triggering a write of the data blocks, which is
3037	 * not strictly speaking necessary (and for users of
3038	 * laptop_mode, not even desirable).  However, to do otherwise
3039	 * would require replicating code paths in:
3040	 *
3041	 * ext4_writepages() ->
3042	 *    write_cache_pages() ---> (via passed in callback function)
3043	 *        __mpage_da_writepage() -->
3044	 *           mpage_add_bh_to_extent()
3045	 *           mpage_da_map_blocks()
3046	 *
3047	 * The problem is that write_cache_pages(), located in
3048	 * mm/page-writeback.c, marks pages clean in preparation for
3049	 * doing I/O, which is not desirable if we're not planning on
3050	 * doing I/O at all.
3051	 *
3052	 * We could call write_cache_pages(), and then redirty all of
3053	 * the pages by calling redirty_page_for_writepage() but that
3054	 * would be ugly in the extreme.  So instead we would need to
3055	 * replicate parts of the code in the above functions,
3056	 * simplifying them because we wouldn't actually intend to
3057	 * write out the pages, but rather only collect contiguous
3058	 * logical block extents, call the multi-block allocator, and
3059	 * then update the buffer heads with the block allocations.
3060	 *
3061	 * For now, though, we'll cheat by calling filemap_flush(),
3062	 * which will map the blocks, and start the I/O, but not
3063	 * actually wait for the I/O to complete.
3064	 */
3065	return filemap_flush(inode->i_mapping);
3066}
3067
3068/*
3069 * bmap() is special.  It gets used by applications such as lilo and by
3070 * the swapper to find the on-disk block of a specific piece of data.
3071 *
3072 * Naturally, this is dangerous if the block concerned is still in the
3073 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3074 * filesystem and enables swap, then they may get a nasty shock when the
3075 * data getting swapped to that swapfile suddenly gets overwritten by
3076 * the original zero's written out previously to the journal and
3077 * awaiting writeback in the kernel's buffer cache.
3078 *
3079 * So, if we see any bmap calls here on a modified, data-journaled file,
3080 * take extra steps to flush any blocks which might be in the cache.
3081 */
3082static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3083{
3084	struct inode *inode = mapping->host;
3085	journal_t *journal;
3086	int err;
3087
3088	/*
3089	 * We can get here for an inline file via the FIBMAP ioctl
3090	 */
3091	if (ext4_has_inline_data(inode))
3092		return 0;
3093
3094	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095			test_opt(inode->i_sb, DELALLOC)) {
3096		/*
3097		 * With delalloc we want to sync the file
3098		 * so that we can make sure we allocate
3099		 * blocks for file
3100		 */
3101		filemap_write_and_wait(mapping);
3102	}
3103
3104	if (EXT4_JOURNAL(inode) &&
3105	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3106		/*
3107		 * This is a REALLY heavyweight approach, but the use of
3108		 * bmap on dirty files is expected to be extremely rare:
3109		 * only if we run lilo or swapon on a freshly made file
3110		 * do we expect this to happen.
3111		 *
3112		 * (bmap requires CAP_SYS_RAWIO so this does not
3113		 * represent an unprivileged user DOS attack --- we'd be
3114		 * in trouble if mortal users could trigger this path at
3115		 * will.)
3116		 *
3117		 * NB. EXT4_STATE_JDATA is not set on files other than
3118		 * regular files.  If somebody wants to bmap a directory
3119		 * or symlink and gets confused because the buffer
3120		 * hasn't yet been flushed to disk, they deserve
3121		 * everything they get.
3122		 */
3123
3124		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3125		journal = EXT4_JOURNAL(inode);
3126		jbd2_journal_lock_updates(journal);
3127		err = jbd2_journal_flush(journal);
3128		jbd2_journal_unlock_updates(journal);
3129
3130		if (err)
3131			return 0;
3132	}
3133
3134	return generic_block_bmap(mapping, block, ext4_get_block);
3135}
3136
3137static int ext4_readpage(struct file *file, struct page *page)
3138{
3139	int ret = -EAGAIN;
3140	struct inode *inode = page->mapping->host;
3141
3142	trace_ext4_readpage(page);
3143
3144	if (ext4_has_inline_data(inode))
3145		ret = ext4_readpage_inline(inode, page);
3146
3147	if (ret == -EAGAIN)
3148		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3149
3150	return ret;
3151}
3152
3153static int
3154ext4_readpages(struct file *file, struct address_space *mapping,
3155		struct list_head *pages, unsigned nr_pages)
3156{
3157	struct inode *inode = mapping->host;
3158
3159	/* If the file has inline data, no need to do readpages. */
3160	if (ext4_has_inline_data(inode))
3161		return 0;
3162
3163	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3164}
3165
3166static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167				unsigned int length)
3168{
3169	trace_ext4_invalidatepage(page, offset, length);
 
3170
3171	/* No journalling happens on data buffers when this function is used */
3172	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3173
3174	block_invalidatepage(page, offset, length);
 
 
 
 
 
 
 
 
 
3175}
3176
3177static int __ext4_journalled_invalidatepage(struct page *page,
3178					    unsigned int offset,
3179					    unsigned int length)
3180{
3181	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3182
3183	trace_ext4_journalled_invalidatepage(page, offset, length);
3184
3185	/*
 
 
 
 
 
3186	 * If it's a full truncate we just forget about the pending dirtying
3187	 */
3188	if (offset == 0 && length == PAGE_SIZE)
3189		ClearPageChecked(page);
3190
3191	return jbd2_journal_invalidatepage(journal, page, offset, length);
3192}
3193
3194/* Wrapper for aops... */
3195static void ext4_journalled_invalidatepage(struct page *page,
3196					   unsigned int offset,
3197					   unsigned int length)
3198{
3199	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3200}
3201
3202static int ext4_releasepage(struct page *page, gfp_t wait)
3203{
3204	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3205
3206	trace_ext4_releasepage(page);
3207
3208	/* Page has dirty journalled data -> cannot release */
3209	if (PageChecked(page))
3210		return 0;
3211	if (journal)
3212		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213	else
3214		return try_to_free_buffers(page);
3215}
3216
3217#ifdef CONFIG_FS_DAX
3218int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219			    struct buffer_head *bh_result, int create)
 
 
 
 
3220{
3221	int ret, err;
3222	int credits;
3223	struct ext4_map_blocks map;
3224	handle_t *handle = NULL;
3225	int flags = 0;
3226
3227	ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228		   inode->i_ino, create);
3229	map.m_lblk = iblock;
3230	map.m_len = bh_result->b_size >> inode->i_blkbits;
3231	credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232	if (create) {
3233		flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235		if (IS_ERR(handle)) {
3236			ret = PTR_ERR(handle);
3237			return ret;
3238		}
3239	}
3240
3241	ret = ext4_map_blocks(handle, inode, &map, flags);
3242	if (create) {
3243		err = ext4_journal_stop(handle);
3244		if (ret >= 0 && err < 0)
3245			ret = err;
3246	}
3247	if (ret <= 0)
3248		goto out;
3249	if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250		int err2;
3251
3252		/*
3253		 * We are protected by i_mmap_sem so we know block cannot go
3254		 * away from under us even though we dropped i_data_sem.
3255		 * Convert extent to written and write zeros there.
3256		 *
3257		 * Note: We may get here even when create == 0.
3258		 */
3259		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260		if (IS_ERR(handle)) {
3261			ret = PTR_ERR(handle);
3262			goto out;
3263		}
3264
3265		err = ext4_map_blocks(handle, inode, &map,
3266		      EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267		if (err < 0)
3268			ret = err;
3269		err2 = ext4_journal_stop(handle);
3270		if (err2 < 0 && ret > 0)
3271			ret = err2;
 
3272	}
3273out:
3274	WARN_ON_ONCE(ret == 0 && create);
3275	if (ret > 0) {
3276		map_bh(bh_result, inode->i_sb, map.m_pblk);
3277		/*
3278		 * At least for now we have to clear BH_New so that DAX code
3279		 * doesn't attempt to zero blocks again in a racy way.
3280		 */
3281		map.m_flags &= ~EXT4_MAP_NEW;
3282		ext4_update_bh_state(bh_result, map.m_flags);
3283		bh_result->b_size = map.m_len << inode->i_blkbits;
3284		ret = 0;
3285	}
3286	return ret;
 
 
 
 
 
 
 
 
 
3287}
3288#endif
3289
3290static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3291			    ssize_t size, void *private)
3292{
3293        ext4_io_end_t *io_end = private;
 
 
 
3294
3295	/* if not async direct IO just return */
3296	if (!io_end)
3297		return 0;
3298
3299	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301		  io_end, io_end->inode->i_ino, iocb, offset, size);
 
 
 
 
3302
3303	/*
3304	 * Error during AIO DIO. We cannot convert unwritten extents as the
3305	 * data was not written. Just clear the unwritten flag and drop io_end.
3306	 */
3307	if (size <= 0) {
3308		ext4_clear_io_unwritten_flag(io_end);
3309		size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3310	}
3311	io_end->offset = offset;
3312	io_end->size = size;
3313	ext4_put_io_end(io_end);
 
 
 
 
 
 
3314
 
 
3315	return 0;
3316}
3317
3318/*
3319 * For ext4 extent files, ext4 will do direct-io write to holes,
3320 * preallocated extents, and those write extend the file, no need to
3321 * fall back to buffered IO.
3322 *
3323 * For holes, we fallocate those blocks, mark them as unwritten
3324 * If those blocks were preallocated, we mark sure they are split, but
3325 * still keep the range to write as unwritten.
3326 *
3327 * The unwritten extents will be converted to written when DIO is completed.
3328 * For async direct IO, since the IO may still pending when return, we
3329 * set up an end_io call back function, which will do the conversion
3330 * when async direct IO completed.
3331 *
3332 * If the O_DIRECT write will extend the file then add this inode to the
3333 * orphan list.  So recovery will truncate it back to the original size
3334 * if the machine crashes during the write.
3335 *
3336 */
3337static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3338				  loff_t offset)
 
3339{
3340	struct file *file = iocb->ki_filp;
3341	struct inode *inode = file->f_mapping->host;
3342	ssize_t ret;
3343	size_t count = iov_iter_count(iter);
3344	int overwrite = 0;
3345	get_block_t *get_block_func = NULL;
3346	int dio_flags = 0;
3347	loff_t final_size = offset + count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3348
3349	/* Use the old path for reads and writes beyond i_size. */
3350	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351		return ext4_ind_direct_IO(iocb, iter, offset);
3352
3353	BUG_ON(iocb->private == NULL);
3354
3355	/*
3356	 * Make all waiters for direct IO properly wait also for extent
3357	 * conversion. This also disallows race between truncate() and
3358	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3359	 */
3360	if (iov_iter_rw(iter) == WRITE)
3361		inode_dio_begin(inode);
3362
3363	/* If we do a overwrite dio, i_mutex locking can be released */
3364	overwrite = *((int *)iocb->private);
3365
3366	if (overwrite)
3367		inode_unlock(inode);
3368
3369	/*
3370	 * We could direct write to holes and fallocate.
3371	 *
3372	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3373	 * parallel buffered read to expose the stale data before DIO complete
3374	 * the data IO.
3375	 *
3376	 * As to previously fallocated extents, ext4 get_block will just simply
3377	 * mark the buffer mapped but still keep the extents unwritten.
3378	 *
3379	 * For non AIO case, we will convert those unwritten extents to written
3380	 * after return back from blockdev_direct_IO. That way we save us from
3381	 * allocating io_end structure and also the overhead of offloading
3382	 * the extent convertion to a workqueue.
3383	 *
3384	 * For async DIO, the conversion needs to be deferred when the
3385	 * IO is completed. The ext4 end_io callback function will be
3386	 * called to take care of the conversion work.  Here for async
3387	 * case, we allocate an io_end structure to hook to the iocb.
3388	 */
3389	iocb->private = NULL;
3390	if (overwrite)
3391		get_block_func = ext4_dio_get_block_overwrite;
3392	else if (is_sync_kiocb(iocb)) {
3393		get_block_func = ext4_dio_get_block_unwritten_sync;
3394		dio_flags = DIO_LOCKING;
3395	} else {
3396		get_block_func = ext4_dio_get_block_unwritten_async;
3397		dio_flags = DIO_LOCKING;
3398	}
3399#ifdef CONFIG_EXT4_FS_ENCRYPTION
3400	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401#endif
3402	if (IS_DAX(inode))
3403		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3404				ext4_end_io_dio, dio_flags);
3405	else
3406		ret = __blockdev_direct_IO(iocb, inode,
3407					   inode->i_sb->s_bdev, iter, offset,
3408					   get_block_func,
3409					   ext4_end_io_dio, NULL, dio_flags);
3410
3411	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3412						EXT4_STATE_DIO_UNWRITTEN)) {
3413		int err;
3414		/*
3415		 * for non AIO case, since the IO is already
3416		 * completed, we could do the conversion right here
3417		 */
3418		err = ext4_convert_unwritten_extents(NULL, inode,
3419						     offset, ret);
3420		if (err < 0)
3421			ret = err;
3422		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 
 
3423	}
3424
3425	if (iov_iter_rw(iter) == WRITE)
3426		inode_dio_end(inode);
3427	/* take i_mutex locking again if we do a ovewrite dio */
3428	if (overwrite)
3429		inode_lock(inode);
3430
3431	return ret;
3432}
3433
3434static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3435			      loff_t offset)
 
3436{
3437	struct file *file = iocb->ki_filp;
3438	struct inode *inode = file->f_mapping->host;
3439	size_t count = iov_iter_count(iter);
3440	ssize_t ret;
3441
3442#ifdef CONFIG_EXT4_FS_ENCRYPTION
3443	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444		return 0;
3445#endif
3446
3447	/*
3448	 * If we are doing data journalling we don't support O_DIRECT
3449	 */
3450	if (ext4_should_journal_data(inode))
3451		return 0;
3452
3453	/* Let buffer I/O handle the inline data case. */
3454	if (ext4_has_inline_data(inode))
3455		return 0;
3456
3457	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3458	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459		ret = ext4_ext_direct_IO(iocb, iter, offset);
3460	else
3461		ret = ext4_ind_direct_IO(iocb, iter, offset);
3462	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
 
3463	return ret;
3464}
3465
3466/*
3467 * Pages can be marked dirty completely asynchronously from ext4's journalling
3468 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3469 * much here because ->set_page_dirty is called under VFS locks.  The page is
3470 * not necessarily locked.
3471 *
3472 * We cannot just dirty the page and leave attached buffers clean, because the
3473 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3474 * or jbddirty because all the journalling code will explode.
3475 *
3476 * So what we do is to mark the page "pending dirty" and next time writepage
3477 * is called, propagate that into the buffers appropriately.
3478 */
3479static int ext4_journalled_set_page_dirty(struct page *page)
3480{
3481	SetPageChecked(page);
3482	return __set_page_dirty_nobuffers(page);
3483}
3484
3485static const struct address_space_operations ext4_aops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3486	.readpage		= ext4_readpage,
3487	.readpages		= ext4_readpages,
3488	.writepage		= ext4_writepage,
3489	.writepages		= ext4_writepages,
3490	.write_begin		= ext4_write_begin,
3491	.write_end		= ext4_write_end,
3492	.bmap			= ext4_bmap,
3493	.invalidatepage		= ext4_invalidatepage,
3494	.releasepage		= ext4_releasepage,
3495	.direct_IO		= ext4_direct_IO,
3496	.migratepage		= buffer_migrate_page,
3497	.is_partially_uptodate  = block_is_partially_uptodate,
3498	.error_remove_page	= generic_error_remove_page,
3499};
3500
3501static const struct address_space_operations ext4_journalled_aops = {
3502	.readpage		= ext4_readpage,
3503	.readpages		= ext4_readpages,
3504	.writepage		= ext4_writepage,
3505	.writepages		= ext4_writepages,
3506	.write_begin		= ext4_write_begin,
3507	.write_end		= ext4_journalled_write_end,
3508	.set_page_dirty		= ext4_journalled_set_page_dirty,
3509	.bmap			= ext4_bmap,
3510	.invalidatepage		= ext4_journalled_invalidatepage,
3511	.releasepage		= ext4_releasepage,
3512	.direct_IO		= ext4_direct_IO,
3513	.is_partially_uptodate  = block_is_partially_uptodate,
3514	.error_remove_page	= generic_error_remove_page,
3515};
3516
3517static const struct address_space_operations ext4_da_aops = {
3518	.readpage		= ext4_readpage,
3519	.readpages		= ext4_readpages,
3520	.writepage		= ext4_writepage,
3521	.writepages		= ext4_writepages,
3522	.write_begin		= ext4_da_write_begin,
3523	.write_end		= ext4_da_write_end,
3524	.bmap			= ext4_bmap,
3525	.invalidatepage		= ext4_da_invalidatepage,
3526	.releasepage		= ext4_releasepage,
3527	.direct_IO		= ext4_direct_IO,
3528	.migratepage		= buffer_migrate_page,
3529	.is_partially_uptodate  = block_is_partially_uptodate,
3530	.error_remove_page	= generic_error_remove_page,
3531};
3532
3533void ext4_set_aops(struct inode *inode)
3534{
3535	switch (ext4_inode_journal_mode(inode)) {
3536	case EXT4_INODE_ORDERED_DATA_MODE:
3537		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
 
 
 
3538		break;
3539	case EXT4_INODE_WRITEBACK_DATA_MODE:
3540		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
 
 
 
3541		break;
3542	case EXT4_INODE_JOURNAL_DATA_MODE:
3543		inode->i_mapping->a_ops = &ext4_journalled_aops;
3544		return;
3545	default:
3546		BUG();
3547	}
3548	if (test_opt(inode->i_sb, DELALLOC))
3549		inode->i_mapping->a_ops = &ext4_da_aops;
3550	else
3551		inode->i_mapping->a_ops = &ext4_aops;
3552}
3553
3554static int __ext4_block_zero_page_range(handle_t *handle,
3555		struct address_space *mapping, loff_t from, loff_t length)
 
 
 
 
 
 
 
 
 
 
3556{
3557	ext4_fsblk_t index = from >> PAGE_SHIFT;
3558	unsigned offset = from & (PAGE_SIZE-1);
3559	unsigned blocksize, pos;
3560	ext4_lblk_t iblock;
3561	struct inode *inode = mapping->host;
3562	struct buffer_head *bh;
3563	struct page *page;
3564	int err = 0;
3565
3566	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3567				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3568	if (!page)
3569		return -ENOMEM;
3570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3571	blocksize = inode->i_sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
3572
3573	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3574
3575	if (!page_has_buffers(page))
3576		create_empty_buffers(page, blocksize, 0);
3577
3578	/* Find the buffer that contains "offset" */
3579	bh = page_buffers(page);
3580	pos = blocksize;
3581	while (offset >= pos) {
3582		bh = bh->b_this_page;
3583		iblock++;
3584		pos += blocksize;
3585	}
3586	if (buffer_freed(bh)) {
3587		BUFFER_TRACE(bh, "freed: skip");
3588		goto unlock;
3589	}
3590	if (!buffer_mapped(bh)) {
3591		BUFFER_TRACE(bh, "unmapped");
3592		ext4_get_block(inode, iblock, bh, 0);
3593		/* unmapped? It's a hole - nothing to do */
3594		if (!buffer_mapped(bh)) {
3595			BUFFER_TRACE(bh, "still unmapped");
3596			goto unlock;
3597		}
3598	}
3599
3600	/* Ok, it's mapped. Make sure it's up-to-date */
3601	if (PageUptodate(page))
3602		set_buffer_uptodate(bh);
3603
3604	if (!buffer_uptodate(bh)) {
3605		err = -EIO;
3606		ll_rw_block(READ, 1, &bh);
3607		wait_on_buffer(bh);
3608		/* Uhhuh. Read error. Complain and punt. */
3609		if (!buffer_uptodate(bh))
3610			goto unlock;
3611		if (S_ISREG(inode->i_mode) &&
3612		    ext4_encrypted_inode(inode)) {
3613			/* We expect the key to be set. */
3614			BUG_ON(!ext4_has_encryption_key(inode));
3615			BUG_ON(blocksize != PAGE_SIZE);
3616			WARN_ON_ONCE(ext4_decrypt(page));
3617		}
3618	}
3619	if (ext4_should_journal_data(inode)) {
3620		BUFFER_TRACE(bh, "get write access");
3621		err = ext4_journal_get_write_access(handle, bh);
3622		if (err)
3623			goto unlock;
3624	}
3625	zero_user(page, offset, length);
3626	BUFFER_TRACE(bh, "zeroed end of block");
3627
3628	if (ext4_should_journal_data(inode)) {
3629		err = ext4_handle_dirty_metadata(handle, inode, bh);
3630	} else {
3631		err = 0;
3632		mark_buffer_dirty(bh);
3633		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634			err = ext4_jbd2_file_inode(handle, inode);
3635	}
3636
3637unlock:
3638	unlock_page(page);
3639	put_page(page);
3640	return err;
3641}
3642
3643/*
3644 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645 * starting from file offset 'from'.  The range to be zero'd must
3646 * be contained with in one block.  If the specified range exceeds
3647 * the end of the block it will be shortened to end of the block
3648 * that cooresponds to 'from'
3649 */
3650static int ext4_block_zero_page_range(handle_t *handle,
3651		struct address_space *mapping, loff_t from, loff_t length)
3652{
3653	struct inode *inode = mapping->host;
3654	unsigned offset = from & (PAGE_SIZE-1);
3655	unsigned blocksize = inode->i_sb->s_blocksize;
3656	unsigned max = blocksize - (offset & (blocksize - 1));
3657
3658	/*
3659	 * correct length if it does not fall between
3660	 * 'from' and the end of the block
3661	 */
3662	if (length > max || length < 0)
3663		length = max;
3664
3665	if (IS_DAX(inode))
3666		return dax_zero_page_range(inode, from, length, ext4_get_block);
3667	return __ext4_block_zero_page_range(handle, mapping, from, length);
3668}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669
3670/*
3671 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672 * up to the end of the block which corresponds to `from'.
3673 * This required during truncate. We need to physically zero the tail end
3674 * of that block so it doesn't yield old data if the file is later grown.
3675 */
3676static int ext4_block_truncate_page(handle_t *handle,
3677		struct address_space *mapping, loff_t from)
3678{
3679	unsigned offset = from & (PAGE_SIZE-1);
3680	unsigned length;
3681	unsigned blocksize;
3682	struct inode *inode = mapping->host;
 
 
 
 
 
 
 
3683
3684	blocksize = inode->i_sb->s_blocksize;
3685	length = blocksize - (offset & (blocksize - 1));
 
3686
3687	return ext4_block_zero_page_range(handle, mapping, from, length);
3688}
 
 
 
 
 
 
3689
3690int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691			     loff_t lstart, loff_t length)
3692{
3693	struct super_block *sb = inode->i_sb;
3694	struct address_space *mapping = inode->i_mapping;
3695	unsigned partial_start, partial_end;
3696	ext4_fsblk_t start, end;
3697	loff_t byte_end = (lstart + length - 1);
3698	int err = 0;
3699
3700	partial_start = lstart & (sb->s_blocksize - 1);
3701	partial_end = byte_end & (sb->s_blocksize - 1);
3702
3703	start = lstart >> sb->s_blocksize_bits;
3704	end = byte_end >> sb->s_blocksize_bits;
 
 
 
3705
3706	/* Handle partial zero within the single block */
3707	if (start == end &&
3708	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3709		err = ext4_block_zero_page_range(handle, mapping,
3710						 lstart, length);
3711		return err;
3712	}
3713	/* Handle partial zero out on the start of the range */
3714	if (partial_start) {
3715		err = ext4_block_zero_page_range(handle, mapping,
3716						 lstart, sb->s_blocksize);
3717		if (err)
3718			return err;
3719	}
3720	/* Handle partial zero out on the end of the range */
3721	if (partial_end != sb->s_blocksize - 1)
3722		err = ext4_block_zero_page_range(handle, mapping,
3723						 byte_end - partial_end,
3724						 partial_end + 1);
3725	return err;
3726}
3727
3728int ext4_can_truncate(struct inode *inode)
3729{
3730	if (S_ISREG(inode->i_mode))
3731		return 1;
3732	if (S_ISDIR(inode->i_mode))
3733		return 1;
3734	if (S_ISLNK(inode->i_mode))
3735		return !ext4_inode_is_fast_symlink(inode);
3736	return 0;
3737}
3738
3739/*
3740 * We have to make sure i_disksize gets properly updated before we truncate
3741 * page cache due to hole punching or zero range. Otherwise i_disksize update
3742 * can get lost as it may have been postponed to submission of writeback but
3743 * that will never happen after we truncate page cache.
3744 */
3745int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746				      loff_t len)
3747{
3748	handle_t *handle;
3749	loff_t size = i_size_read(inode);
3750
3751	WARN_ON(!inode_is_locked(inode));
3752	if (offset > size || offset + len < size)
3753		return 0;
3754
3755	if (EXT4_I(inode)->i_disksize >= size)
3756		return 0;
3757
3758	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759	if (IS_ERR(handle))
3760		return PTR_ERR(handle);
3761	ext4_update_i_disksize(inode, size);
3762	ext4_mark_inode_dirty(handle, inode);
3763	ext4_journal_stop(handle);
3764
3765	return 0;
3766}
3767
3768/*
3769 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770 * associated with the given offset and length
3771 *
3772 * @inode:  File inode
3773 * @offset: The offset where the hole will begin
3774 * @len:    The length of the hole
3775 *
3776 * Returns: 0 on success or negative on failure
3777 */
3778
3779int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3780{
3781	struct super_block *sb = inode->i_sb;
3782	ext4_lblk_t first_block, stop_block;
3783	struct address_space *mapping = inode->i_mapping;
3784	loff_t first_block_offset, last_block_offset;
3785	handle_t *handle;
3786	unsigned int credits;
3787	int ret = 0;
3788
3789	if (!S_ISREG(inode->i_mode))
3790		return -EOPNOTSUPP;
3791
3792	trace_ext4_punch_hole(inode, offset, length, 0);
3793
3794	/*
3795	 * Write out all dirty pages to avoid race conditions
3796	 * Then release them.
3797	 */
3798	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799		ret = filemap_write_and_wait_range(mapping, offset,
3800						   offset + length - 1);
3801		if (ret)
3802			return ret;
3803	}
3804
3805	inode_lock(inode);
3806
3807	/* No need to punch hole beyond i_size */
3808	if (offset >= inode->i_size)
3809		goto out_mutex;
3810
3811	/*
3812	 * If the hole extends beyond i_size, set the hole
3813	 * to end after the page that contains i_size
3814	 */
3815	if (offset + length > inode->i_size) {
3816		length = inode->i_size +
3817		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3818		   offset;
3819	}
3820
3821	if (offset & (sb->s_blocksize - 1) ||
3822	    (offset + length) & (sb->s_blocksize - 1)) {
3823		/*
3824		 * Attach jinode to inode for jbd2 if we do any zeroing of
3825		 * partial block
3826		 */
3827		ret = ext4_inode_attach_jinode(inode);
3828		if (ret < 0)
3829			goto out_mutex;
3830
3831	}
3832
3833	/* Wait all existing dio workers, newcomers will block on i_mutex */
3834	ext4_inode_block_unlocked_dio(inode);
3835	inode_dio_wait(inode);
3836
3837	/*
3838	 * Prevent page faults from reinstantiating pages we have released from
3839	 * page cache.
3840	 */
3841	down_write(&EXT4_I(inode)->i_mmap_sem);
3842	first_block_offset = round_up(offset, sb->s_blocksize);
3843	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3844
3845	/* Now release the pages and zero block aligned part of pages*/
3846	if (last_block_offset > first_block_offset) {
3847		ret = ext4_update_disksize_before_punch(inode, offset, length);
3848		if (ret)
3849			goto out_dio;
3850		truncate_pagecache_range(inode, first_block_offset,
3851					 last_block_offset);
3852	}
3853
3854	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855		credits = ext4_writepage_trans_blocks(inode);
3856	else
3857		credits = ext4_blocks_for_truncate(inode);
3858	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859	if (IS_ERR(handle)) {
3860		ret = PTR_ERR(handle);
3861		ext4_std_error(sb, ret);
3862		goto out_dio;
3863	}
3864
3865	ret = ext4_zero_partial_blocks(handle, inode, offset,
3866				       length);
3867	if (ret)
3868		goto out_stop;
3869
3870	first_block = (offset + sb->s_blocksize - 1) >>
3871		EXT4_BLOCK_SIZE_BITS(sb);
3872	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3873
3874	/* If there are no blocks to remove, return now */
3875	if (first_block >= stop_block)
3876		goto out_stop;
3877
3878	down_write(&EXT4_I(inode)->i_data_sem);
3879	ext4_discard_preallocations(inode);
3880
3881	ret = ext4_es_remove_extent(inode, first_block,
3882				    stop_block - first_block);
3883	if (ret) {
3884		up_write(&EXT4_I(inode)->i_data_sem);
3885		goto out_stop;
3886	}
3887
3888	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889		ret = ext4_ext_remove_space(inode, first_block,
3890					    stop_block - 1);
3891	else
3892		ret = ext4_ind_remove_space(handle, inode, first_block,
3893					    stop_block);
3894
3895	up_write(&EXT4_I(inode)->i_data_sem);
3896	if (IS_SYNC(inode))
3897		ext4_handle_sync(handle);
3898
3899	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900	ext4_mark_inode_dirty(handle, inode);
3901out_stop:
3902	ext4_journal_stop(handle);
3903out_dio:
3904	up_write(&EXT4_I(inode)->i_mmap_sem);
3905	ext4_inode_resume_unlocked_dio(inode);
3906out_mutex:
3907	inode_unlock(inode);
3908	return ret;
3909}
3910
3911int ext4_inode_attach_jinode(struct inode *inode)
3912{
3913	struct ext4_inode_info *ei = EXT4_I(inode);
3914	struct jbd2_inode *jinode;
3915
3916	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917		return 0;
3918
3919	jinode = jbd2_alloc_inode(GFP_KERNEL);
3920	spin_lock(&inode->i_lock);
3921	if (!ei->jinode) {
3922		if (!jinode) {
3923			spin_unlock(&inode->i_lock);
3924			return -ENOMEM;
3925		}
3926		ei->jinode = jinode;
3927		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928		jinode = NULL;
3929	}
3930	spin_unlock(&inode->i_lock);
3931	if (unlikely(jinode != NULL))
3932		jbd2_free_inode(jinode);
3933	return 0;
3934}
3935
3936/*
3937 * ext4_truncate()
3938 *
3939 * We block out ext4_get_block() block instantiations across the entire
3940 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941 * simultaneously on behalf of the same inode.
3942 *
3943 * As we work through the truncate and commit bits of it to the journal there
3944 * is one core, guiding principle: the file's tree must always be consistent on
3945 * disk.  We must be able to restart the truncate after a crash.
3946 *
3947 * The file's tree may be transiently inconsistent in memory (although it
3948 * probably isn't), but whenever we close off and commit a journal transaction,
3949 * the contents of (the filesystem + the journal) must be consistent and
3950 * restartable.  It's pretty simple, really: bottom up, right to left (although
3951 * left-to-right works OK too).
3952 *
3953 * Note that at recovery time, journal replay occurs *before* the restart of
3954 * truncate against the orphan inode list.
3955 *
3956 * The committed inode has the new, desired i_size (which is the same as
3957 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3958 * that this inode's truncate did not complete and it will again call
3959 * ext4_truncate() to have another go.  So there will be instantiated blocks
3960 * to the right of the truncation point in a crashed ext4 filesystem.  But
3961 * that's fine - as long as they are linked from the inode, the post-crash
3962 * ext4_truncate() run will find them and release them.
3963 */
3964void ext4_truncate(struct inode *inode)
3965{
3966	struct ext4_inode_info *ei = EXT4_I(inode);
3967	unsigned int credits;
3968	handle_t *handle;
3969	struct address_space *mapping = inode->i_mapping;
3970
3971	/*
3972	 * There is a possibility that we're either freeing the inode
3973	 * or it's a completely new inode. In those cases we might not
3974	 * have i_mutex locked because it's not necessary.
3975	 */
3976	if (!(inode->i_state & (I_NEW|I_FREEING)))
3977		WARN_ON(!inode_is_locked(inode));
3978	trace_ext4_truncate_enter(inode);
3979
3980	if (!ext4_can_truncate(inode))
3981		return;
3982
3983	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3984
3985	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3986		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3987
3988	if (ext4_has_inline_data(inode)) {
3989		int has_inline = 1;
3990
3991		ext4_inline_data_truncate(inode, &has_inline);
3992		if (has_inline)
3993			return;
3994	}
3995
3996	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998		if (ext4_inode_attach_jinode(inode) < 0)
3999			return;
4000	}
4001
4002	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003		credits = ext4_writepage_trans_blocks(inode);
4004	else
4005		credits = ext4_blocks_for_truncate(inode);
4006
4007	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008	if (IS_ERR(handle)) {
4009		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010		return;
4011	}
4012
4013	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014		ext4_block_truncate_page(handle, mapping, inode->i_size);
4015
4016	/*
4017	 * We add the inode to the orphan list, so that if this
4018	 * truncate spans multiple transactions, and we crash, we will
4019	 * resume the truncate when the filesystem recovers.  It also
4020	 * marks the inode dirty, to catch the new size.
4021	 *
4022	 * Implication: the file must always be in a sane, consistent
4023	 * truncatable state while each transaction commits.
4024	 */
4025	if (ext4_orphan_add(handle, inode))
4026		goto out_stop;
4027
4028	down_write(&EXT4_I(inode)->i_data_sem);
4029
4030	ext4_discard_preallocations(inode);
4031
4032	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033		ext4_ext_truncate(handle, inode);
4034	else
4035		ext4_ind_truncate(handle, inode);
4036
4037	up_write(&ei->i_data_sem);
4038
4039	if (IS_SYNC(inode))
4040		ext4_handle_sync(handle);
4041
4042out_stop:
4043	/*
4044	 * If this was a simple ftruncate() and the file will remain alive,
4045	 * then we need to clear up the orphan record which we created above.
4046	 * However, if this was a real unlink then we were called by
4047	 * ext4_evict_inode(), and we allow that function to clean up the
4048	 * orphan info for us.
4049	 */
4050	if (inode->i_nlink)
4051		ext4_orphan_del(handle, inode);
4052
4053	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054	ext4_mark_inode_dirty(handle, inode);
4055	ext4_journal_stop(handle);
4056
4057	trace_ext4_truncate_exit(inode);
4058}
4059
4060/*
4061 * ext4_get_inode_loc returns with an extra refcount against the inode's
4062 * underlying buffer_head on success. If 'in_mem' is true, we have all
4063 * data in memory that is needed to recreate the on-disk version of this
4064 * inode.
4065 */
4066static int __ext4_get_inode_loc(struct inode *inode,
4067				struct ext4_iloc *iloc, int in_mem)
4068{
4069	struct ext4_group_desc	*gdp;
4070	struct buffer_head	*bh;
4071	struct super_block	*sb = inode->i_sb;
4072	ext4_fsblk_t		block;
4073	int			inodes_per_block, inode_offset;
4074
4075	iloc->bh = NULL;
4076	if (!ext4_valid_inum(sb, inode->i_ino))
4077		return -EFSCORRUPTED;
4078
4079	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081	if (!gdp)
4082		return -EIO;
4083
4084	/*
4085	 * Figure out the offset within the block group inode table
4086	 */
4087	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4088	inode_offset = ((inode->i_ino - 1) %
4089			EXT4_INODES_PER_GROUP(sb));
4090	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4092
4093	bh = sb_getblk(sb, block);
4094	if (unlikely(!bh))
4095		return -ENOMEM;
 
 
 
4096	if (!buffer_uptodate(bh)) {
4097		lock_buffer(bh);
4098
4099		/*
4100		 * If the buffer has the write error flag, we have failed
4101		 * to write out another inode in the same block.  In this
4102		 * case, we don't have to read the block because we may
4103		 * read the old inode data successfully.
4104		 */
4105		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106			set_buffer_uptodate(bh);
4107
4108		if (buffer_uptodate(bh)) {
4109			/* someone brought it uptodate while we waited */
4110			unlock_buffer(bh);
4111			goto has_buffer;
4112		}
4113
4114		/*
4115		 * If we have all information of the inode in memory and this
4116		 * is the only valid inode in the block, we need not read the
4117		 * block.
4118		 */
4119		if (in_mem) {
4120			struct buffer_head *bitmap_bh;
4121			int i, start;
4122
4123			start = inode_offset & ~(inodes_per_block - 1);
4124
4125			/* Is the inode bitmap in cache? */
4126			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4127			if (unlikely(!bitmap_bh))
4128				goto make_io;
4129
4130			/*
4131			 * If the inode bitmap isn't in cache then the
4132			 * optimisation may end up performing two reads instead
4133			 * of one, so skip it.
4134			 */
4135			if (!buffer_uptodate(bitmap_bh)) {
4136				brelse(bitmap_bh);
4137				goto make_io;
4138			}
4139			for (i = start; i < start + inodes_per_block; i++) {
4140				if (i == inode_offset)
4141					continue;
4142				if (ext4_test_bit(i, bitmap_bh->b_data))
4143					break;
4144			}
4145			brelse(bitmap_bh);
4146			if (i == start + inodes_per_block) {
4147				/* all other inodes are free, so skip I/O */
4148				memset(bh->b_data, 0, bh->b_size);
4149				set_buffer_uptodate(bh);
4150				unlock_buffer(bh);
4151				goto has_buffer;
4152			}
4153		}
4154
4155make_io:
4156		/*
4157		 * If we need to do any I/O, try to pre-readahead extra
4158		 * blocks from the inode table.
4159		 */
4160		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161			ext4_fsblk_t b, end, table;
4162			unsigned num;
4163			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4164
4165			table = ext4_inode_table(sb, gdp);
4166			/* s_inode_readahead_blks is always a power of 2 */
4167			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4168			if (table > b)
4169				b = table;
4170			end = b + ra_blks;
4171			num = EXT4_INODES_PER_GROUP(sb);
4172			if (ext4_has_group_desc_csum(sb))
4173				num -= ext4_itable_unused_count(sb, gdp);
4174			table += num / inodes_per_block;
4175			if (end > table)
4176				end = table;
4177			while (b <= end)
4178				sb_breadahead(sb, b++);
4179		}
4180
4181		/*
4182		 * There are other valid inodes in the buffer, this inode
4183		 * has in-inode xattrs, or we don't have this inode in memory.
4184		 * Read the block from disk.
4185		 */
4186		trace_ext4_load_inode(inode);
4187		get_bh(bh);
4188		bh->b_end_io = end_buffer_read_sync;
4189		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4190		wait_on_buffer(bh);
4191		if (!buffer_uptodate(bh)) {
4192			EXT4_ERROR_INODE_BLOCK(inode, block,
4193					       "unable to read itable block");
4194			brelse(bh);
4195			return -EIO;
4196		}
4197	}
4198has_buffer:
4199	iloc->bh = bh;
4200	return 0;
4201}
4202
4203int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4204{
4205	/* We have all inode data except xattrs in memory here. */
4206	return __ext4_get_inode_loc(inode, iloc,
4207		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4208}
4209
4210void ext4_set_inode_flags(struct inode *inode)
4211{
4212	unsigned int flags = EXT4_I(inode)->i_flags;
4213	unsigned int new_fl = 0;
4214
 
4215	if (flags & EXT4_SYNC_FL)
4216		new_fl |= S_SYNC;
4217	if (flags & EXT4_APPEND_FL)
4218		new_fl |= S_APPEND;
4219	if (flags & EXT4_IMMUTABLE_FL)
4220		new_fl |= S_IMMUTABLE;
4221	if (flags & EXT4_NOATIME_FL)
4222		new_fl |= S_NOATIME;
4223	if (flags & EXT4_DIRSYNC_FL)
4224		new_fl |= S_DIRSYNC;
4225	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4226		new_fl |= S_DAX;
4227	inode_set_flags(inode, new_fl,
4228			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4229}
4230
4231/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232void ext4_get_inode_flags(struct ext4_inode_info *ei)
4233{
4234	unsigned int vfs_fl;
4235	unsigned long old_fl, new_fl;
4236
4237	do {
4238		vfs_fl = ei->vfs_inode.i_flags;
4239		old_fl = ei->i_flags;
4240		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242				EXT4_DIRSYNC_FL);
4243		if (vfs_fl & S_SYNC)
4244			new_fl |= EXT4_SYNC_FL;
4245		if (vfs_fl & S_APPEND)
4246			new_fl |= EXT4_APPEND_FL;
4247		if (vfs_fl & S_IMMUTABLE)
4248			new_fl |= EXT4_IMMUTABLE_FL;
4249		if (vfs_fl & S_NOATIME)
4250			new_fl |= EXT4_NOATIME_FL;
4251		if (vfs_fl & S_DIRSYNC)
4252			new_fl |= EXT4_DIRSYNC_FL;
4253	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4254}
4255
4256static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4257				  struct ext4_inode_info *ei)
4258{
4259	blkcnt_t i_blocks ;
4260	struct inode *inode = &(ei->vfs_inode);
4261	struct super_block *sb = inode->i_sb;
4262
4263	if (ext4_has_feature_huge_file(sb)) {
 
4264		/* we are using combined 48 bit field */
4265		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266					le32_to_cpu(raw_inode->i_blocks_lo);
4267		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4268			/* i_blocks represent file system block size */
4269			return i_blocks  << (inode->i_blkbits - 9);
4270		} else {
4271			return i_blocks;
4272		}
4273	} else {
4274		return le32_to_cpu(raw_inode->i_blocks_lo);
4275	}
4276}
4277
4278static inline void ext4_iget_extra_inode(struct inode *inode,
4279					 struct ext4_inode *raw_inode,
4280					 struct ext4_inode_info *ei)
4281{
4282	__le32 *magic = (void *)raw_inode +
4283			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4284	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4285		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4286		ext4_find_inline_data_nolock(inode);
4287	} else
4288		EXT4_I(inode)->i_inline_off = 0;
4289}
4290
4291int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4292{
4293	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294		return -EOPNOTSUPP;
4295	*projid = EXT4_I(inode)->i_projid;
4296	return 0;
4297}
4298
4299struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4300{
4301	struct ext4_iloc iloc;
4302	struct ext4_inode *raw_inode;
4303	struct ext4_inode_info *ei;
4304	struct inode *inode;
4305	journal_t *journal = EXT4_SB(sb)->s_journal;
4306	long ret;
4307	int block;
4308	uid_t i_uid;
4309	gid_t i_gid;
4310	projid_t i_projid;
4311
4312	inode = iget_locked(sb, ino);
4313	if (!inode)
4314		return ERR_PTR(-ENOMEM);
4315	if (!(inode->i_state & I_NEW))
4316		return inode;
4317
4318	ei = EXT4_I(inode);
4319	iloc.bh = NULL;
4320
4321	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322	if (ret < 0)
4323		goto bad_inode;
4324	raw_inode = ext4_raw_inode(&iloc);
4325
4326	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329		    EXT4_INODE_SIZE(inode->i_sb)) {
4330			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332				EXT4_INODE_SIZE(inode->i_sb));
4333			ret = -EFSCORRUPTED;
4334			goto bad_inode;
4335		}
4336	} else
4337		ei->i_extra_isize = 0;
4338
4339	/* Precompute checksum seed for inode metadata */
4340	if (ext4_has_metadata_csum(sb)) {
 
4341		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342		__u32 csum;
4343		__le32 inum = cpu_to_le32(inode->i_ino);
4344		__le32 gen = raw_inode->i_generation;
4345		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346				   sizeof(inum));
4347		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348					      sizeof(gen));
4349	}
4350
4351	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352		EXT4_ERROR_INODE(inode, "checksum invalid");
4353		ret = -EFSBADCRC;
4354		goto bad_inode;
4355	}
4356
4357	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4358	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4360	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364	else
4365		i_projid = EXT4_DEF_PROJID;
4366
4367	if (!(test_opt(inode->i_sb, NO_UID32))) {
4368		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370	}
4371	i_uid_write(inode, i_uid);
4372	i_gid_write(inode, i_gid);
4373	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4374	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4375
4376	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4377	ei->i_inline_off = 0;
4378	ei->i_dir_start_lookup = 0;
4379	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380	/* We now have enough fields to check if the inode was active or not.
4381	 * This is needed because nfsd might try to access dead inodes
4382	 * the test is that same one that e2fsck uses
4383	 * NeilBrown 1999oct15
4384	 */
4385	if (inode->i_nlink == 0) {
4386		if ((inode->i_mode == 0 ||
4387		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388		    ino != EXT4_BOOT_LOADER_INO) {
4389			/* this inode is deleted */
4390			ret = -ESTALE;
4391			goto bad_inode;
4392		}
4393		/* The only unlinked inodes we let through here have
4394		 * valid i_mode and are being read by the orphan
4395		 * recovery code: that's fine, we're about to complete
4396		 * the process of deleting those.
4397		 * OR it is the EXT4_BOOT_LOADER_INO which is
4398		 * not initialized on a new filesystem. */
4399	}
4400	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4401	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4402	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4403	if (ext4_has_feature_64bit(sb))
4404		ei->i_file_acl |=
4405			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4406	inode->i_size = ext4_isize(raw_inode);
4407	ei->i_disksize = inode->i_size;
4408#ifdef CONFIG_QUOTA
4409	ei->i_reserved_quota = 0;
4410#endif
4411	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412	ei->i_block_group = iloc.block_group;
4413	ei->i_last_alloc_group = ~0;
4414	/*
4415	 * NOTE! The in-memory inode i_data array is in little-endian order
4416	 * even on big-endian machines: we do NOT byteswap the block numbers!
4417	 */
4418	for (block = 0; block < EXT4_N_BLOCKS; block++)
4419		ei->i_data[block] = raw_inode->i_block[block];
4420	INIT_LIST_HEAD(&ei->i_orphan);
4421
4422	/*
4423	 * Set transaction id's of transactions that have to be committed
4424	 * to finish f[data]sync. We set them to currently running transaction
4425	 * as we cannot be sure that the inode or some of its metadata isn't
4426	 * part of the transaction - the inode could have been reclaimed and
4427	 * now it is reread from disk.
4428	 */
4429	if (journal) {
4430		transaction_t *transaction;
4431		tid_t tid;
4432
4433		read_lock(&journal->j_state_lock);
4434		if (journal->j_running_transaction)
4435			transaction = journal->j_running_transaction;
4436		else
4437			transaction = journal->j_committing_transaction;
4438		if (transaction)
4439			tid = transaction->t_tid;
4440		else
4441			tid = journal->j_commit_sequence;
4442		read_unlock(&journal->j_state_lock);
4443		ei->i_sync_tid = tid;
4444		ei->i_datasync_tid = tid;
4445	}
4446
4447	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4448		if (ei->i_extra_isize == 0) {
4449			/* The extra space is currently unused. Use it. */
4450			ei->i_extra_isize = sizeof(struct ext4_inode) -
4451					    EXT4_GOOD_OLD_INODE_SIZE;
4452		} else {
4453			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
 
 
4454		}
4455	}
4456
4457	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
4462	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466				inode->i_version |=
4467		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4468		}
4469	}
4470
4471	ret = 0;
4472	if (ei->i_file_acl &&
4473	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4474		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475				 ei->i_file_acl);
4476		ret = -EFSCORRUPTED;
4477		goto bad_inode;
4478	} else if (!ext4_has_inline_data(inode)) {
4479		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481			    (S_ISLNK(inode->i_mode) &&
4482			     !ext4_inode_is_fast_symlink(inode))))
4483				/* Validate extent which is part of inode */
4484				ret = ext4_ext_check_inode(inode);
4485		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486			   (S_ISLNK(inode->i_mode) &&
4487			    !ext4_inode_is_fast_symlink(inode))) {
4488			/* Validate block references which are part of inode */
4489			ret = ext4_ind_check_inode(inode);
4490		}
4491	}
4492	if (ret)
4493		goto bad_inode;
4494
4495	if (S_ISREG(inode->i_mode)) {
4496		inode->i_op = &ext4_file_inode_operations;
4497		inode->i_fop = &ext4_file_operations;
4498		ext4_set_aops(inode);
4499	} else if (S_ISDIR(inode->i_mode)) {
4500		inode->i_op = &ext4_dir_inode_operations;
4501		inode->i_fop = &ext4_dir_operations;
4502	} else if (S_ISLNK(inode->i_mode)) {
4503		if (ext4_encrypted_inode(inode)) {
4504			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505			ext4_set_aops(inode);
4506		} else if (ext4_inode_is_fast_symlink(inode)) {
4507			inode->i_link = (char *)ei->i_data;
4508			inode->i_op = &ext4_fast_symlink_inode_operations;
4509			nd_terminate_link(ei->i_data, inode->i_size,
4510				sizeof(ei->i_data) - 1);
4511		} else {
4512			inode->i_op = &ext4_symlink_inode_operations;
4513			ext4_set_aops(inode);
4514		}
4515		inode_nohighmem(inode);
4516	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4518		inode->i_op = &ext4_special_inode_operations;
4519		if (raw_inode->i_block[0])
4520			init_special_inode(inode, inode->i_mode,
4521			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522		else
4523			init_special_inode(inode, inode->i_mode,
4524			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4525	} else if (ino == EXT4_BOOT_LOADER_INO) {
4526		make_bad_inode(inode);
4527	} else {
4528		ret = -EFSCORRUPTED;
4529		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4530		goto bad_inode;
4531	}
4532	brelse(iloc.bh);
4533	ext4_set_inode_flags(inode);
4534	unlock_new_inode(inode);
4535	return inode;
4536
4537bad_inode:
4538	brelse(iloc.bh);
4539	iget_failed(inode);
4540	return ERR_PTR(ret);
4541}
4542
4543struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4544{
4545	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4546		return ERR_PTR(-EFSCORRUPTED);
4547	return ext4_iget(sb, ino);
4548}
4549
4550static int ext4_inode_blocks_set(handle_t *handle,
4551				struct ext4_inode *raw_inode,
4552				struct ext4_inode_info *ei)
4553{
4554	struct inode *inode = &(ei->vfs_inode);
4555	u64 i_blocks = inode->i_blocks;
4556	struct super_block *sb = inode->i_sb;
4557
4558	if (i_blocks <= ~0U) {
4559		/*
4560		 * i_blocks can be represented in a 32 bit variable
4561		 * as multiple of 512 bytes
4562		 */
4563		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4564		raw_inode->i_blocks_high = 0;
4565		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4566		return 0;
4567	}
4568	if (!ext4_has_feature_huge_file(sb))
4569		return -EFBIG;
4570
4571	if (i_blocks <= 0xffffffffffffULL) {
4572		/*
4573		 * i_blocks can be represented in a 48 bit variable
4574		 * as multiple of 512 bytes
4575		 */
4576		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4577		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4578		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4579	} else {
4580		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581		/* i_block is stored in file system block size */
4582		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4584		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4585	}
4586	return 0;
4587}
4588
4589struct other_inode {
4590	unsigned long		orig_ino;
4591	struct ext4_inode	*raw_inode;
4592};
4593
4594static int other_inode_match(struct inode * inode, unsigned long ino,
4595			     void *data)
4596{
4597	struct other_inode *oi = (struct other_inode *) data;
4598
4599	if ((inode->i_ino != ino) ||
4600	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602	    ((inode->i_state & I_DIRTY_TIME) == 0))
4603		return 0;
4604	spin_lock(&inode->i_lock);
4605	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607	    (inode->i_state & I_DIRTY_TIME)) {
4608		struct ext4_inode_info	*ei = EXT4_I(inode);
4609
4610		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611		spin_unlock(&inode->i_lock);
4612
4613		spin_lock(&ei->i_raw_lock);
4614		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618		spin_unlock(&ei->i_raw_lock);
4619		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620		return -1;
4621	}
4622	spin_unlock(&inode->i_lock);
4623	return -1;
4624}
4625
4626/*
4627 * Opportunistically update the other time fields for other inodes in
4628 * the same inode table block.
4629 */
4630static void ext4_update_other_inodes_time(struct super_block *sb,
4631					  unsigned long orig_ino, char *buf)
4632{
4633	struct other_inode oi;
4634	unsigned long ino;
4635	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636	int inode_size = EXT4_INODE_SIZE(sb);
4637
4638	oi.orig_ino = orig_ino;
4639	/*
4640	 * Calculate the first inode in the inode table block.  Inode
4641	 * numbers are one-based.  That is, the first inode in a block
4642	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4643	 */
4644	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4645	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646		if (ino == orig_ino)
4647			continue;
4648		oi.raw_inode = (struct ext4_inode *) buf;
4649		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4650	}
4651}
4652
4653/*
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache.  This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4657 *
4658 * The caller must have write access to iloc->bh.
4659 */
4660static int ext4_do_update_inode(handle_t *handle,
4661				struct inode *inode,
4662				struct ext4_iloc *iloc)
4663{
4664	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665	struct ext4_inode_info *ei = EXT4_I(inode);
4666	struct buffer_head *bh = iloc->bh;
4667	struct super_block *sb = inode->i_sb;
4668	int err = 0, rc, block;
4669	int need_datasync = 0, set_large_file = 0;
4670	uid_t i_uid;
4671	gid_t i_gid;
4672	projid_t i_projid;
4673
4674	spin_lock(&ei->i_raw_lock);
4675
4676	/* For fields not tracked in the in-memory inode,
4677	 * initialise them to zero for new inodes. */
4678	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4679		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680
4681	ext4_get_inode_flags(ei);
4682	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683	i_uid = i_uid_read(inode);
4684	i_gid = i_gid_read(inode);
4685	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4686	if (!(test_opt(inode->i_sb, NO_UID32))) {
4687		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4689/*
4690 * Fix up interoperability with old kernels. Otherwise, old inodes get
4691 * re-used with the upper 16 bits of the uid/gid intact
4692 */
4693		if (!ei->i_dtime) {
4694			raw_inode->i_uid_high =
4695				cpu_to_le16(high_16_bits(i_uid));
4696			raw_inode->i_gid_high =
4697				cpu_to_le16(high_16_bits(i_gid));
4698		} else {
4699			raw_inode->i_uid_high = 0;
4700			raw_inode->i_gid_high = 0;
4701		}
4702	} else {
4703		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4705		raw_inode->i_uid_high = 0;
4706		raw_inode->i_gid_high = 0;
4707	}
4708	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4709
4710	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4714
4715	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716	if (err) {
4717		spin_unlock(&ei->i_raw_lock);
4718		goto out_brelse;
4719	}
4720	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4721	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4722	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
 
4723		raw_inode->i_file_acl_high =
4724			cpu_to_le16(ei->i_file_acl >> 32);
4725	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4726	if (ei->i_disksize != ext4_isize(raw_inode)) {
4727		ext4_isize_set(raw_inode, ei->i_disksize);
4728		need_datasync = 1;
4729	}
4730	if (ei->i_disksize > 0x7fffffffULL) {
4731		if (!ext4_has_feature_large_file(sb) ||
 
 
4732				EXT4_SB(sb)->s_es->s_rev_level ==
4733		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4734			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
4735	}
4736	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738		if (old_valid_dev(inode->i_rdev)) {
4739			raw_inode->i_block[0] =
4740				cpu_to_le32(old_encode_dev(inode->i_rdev));
4741			raw_inode->i_block[1] = 0;
4742		} else {
4743			raw_inode->i_block[0] = 0;
4744			raw_inode->i_block[1] =
4745				cpu_to_le32(new_encode_dev(inode->i_rdev));
4746			raw_inode->i_block[2] = 0;
4747		}
4748	} else if (!ext4_has_inline_data(inode)) {
4749		for (block = 0; block < EXT4_N_BLOCKS; block++)
4750			raw_inode->i_block[block] = ei->i_data[block];
4751	}
4752
4753	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4754		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755		if (ei->i_extra_isize) {
4756			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757				raw_inode->i_version_hi =
4758					cpu_to_le32(inode->i_version >> 32);
4759			raw_inode->i_extra_isize =
4760				cpu_to_le16(ei->i_extra_isize);
4761		}
4762	}
4763
4764	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766	       i_projid != EXT4_DEF_PROJID);
4767
4768	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770		raw_inode->i_projid = cpu_to_le32(i_projid);
4771
4772	ext4_inode_csum_set(inode, raw_inode, ei);
4773	spin_unlock(&ei->i_raw_lock);
4774	if (inode->i_sb->s_flags & MS_LAZYTIME)
4775		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776					      bh->b_data);
4777
4778	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4779	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4780	if (!err)
4781		err = rc;
4782	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4783	if (set_large_file) {
4784		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4785		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786		if (err)
4787			goto out_brelse;
4788		ext4_update_dynamic_rev(sb);
4789		ext4_set_feature_large_file(sb);
4790		ext4_handle_sync(handle);
4791		err = ext4_handle_dirty_super(handle, sb);
4792	}
4793	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4794out_brelse:
4795	brelse(bh);
4796	ext4_std_error(inode->i_sb, err);
4797	return err;
4798}
4799
4800/*
4801 * ext4_write_inode()
4802 *
4803 * We are called from a few places:
4804 *
4805 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806 *   Here, there will be no transaction running. We wait for any running
4807 *   transaction to commit.
4808 *
4809 * - Within flush work (sys_sync(), kupdate and such).
4810 *   We wait on commit, if told to.
4811 *
4812 * - Within iput_final() -> write_inode_now()
4813 *   We wait on commit, if told to.
 
4814 *
4815 * In all cases it is actually safe for us to return without doing anything,
4816 * because the inode has been copied into a raw inode buffer in
4817 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4818 * writeback.
4819 *
4820 * Note that we are absolutely dependent upon all inode dirtiers doing the
4821 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822 * which we are interested.
4823 *
4824 * It would be a bug for them to not do this.  The code:
4825 *
4826 *	mark_inode_dirty(inode)
4827 *	stuff();
4828 *	inode->i_size = expr;
4829 *
4830 * is in error because write_inode() could occur while `stuff()' is running,
4831 * and the new i_size will be lost.  Plus the inode will no longer be on the
4832 * superblock's dirty inode list.
4833 */
4834int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4835{
4836	int err;
4837
4838	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4839		return 0;
4840
4841	if (EXT4_SB(inode->i_sb)->s_journal) {
4842		if (ext4_journal_current_handle()) {
4843			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844			dump_stack();
4845			return -EIO;
4846		}
4847
4848		/*
4849		 * No need to force transaction in WB_SYNC_NONE mode. Also
4850		 * ext4_sync_fs() will force the commit after everything is
4851		 * written.
4852		 */
4853		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4854			return 0;
4855
4856		err = ext4_force_commit(inode->i_sb);
4857	} else {
4858		struct ext4_iloc iloc;
4859
4860		err = __ext4_get_inode_loc(inode, &iloc, 0);
4861		if (err)
4862			return err;
4863		/*
4864		 * sync(2) will flush the whole buffer cache. No need to do
4865		 * it here separately for each inode.
4866		 */
4867		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4868			sync_dirty_buffer(iloc.bh);
4869		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4870			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871					 "IO error syncing inode");
4872			err = -EIO;
4873		}
4874		brelse(iloc.bh);
4875	}
4876	return err;
4877}
4878
4879/*
4880 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881 * buffers that are attached to a page stradding i_size and are undergoing
4882 * commit. In that case we have to wait for commit to finish and try again.
4883 */
4884static void ext4_wait_for_tail_page_commit(struct inode *inode)
4885{
4886	struct page *page;
4887	unsigned offset;
4888	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889	tid_t commit_tid = 0;
4890	int ret;
4891
4892	offset = inode->i_size & (PAGE_SIZE - 1);
4893	/*
4894	 * All buffers in the last page remain valid? Then there's nothing to
4895	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4896	 * blocksize case
4897	 */
4898	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4899		return;
4900	while (1) {
4901		page = find_lock_page(inode->i_mapping,
4902				      inode->i_size >> PAGE_SHIFT);
4903		if (!page)
4904			return;
4905		ret = __ext4_journalled_invalidatepage(page, offset,
4906						PAGE_SIZE - offset);
4907		unlock_page(page);
4908		put_page(page);
4909		if (ret != -EBUSY)
4910			return;
4911		commit_tid = 0;
4912		read_lock(&journal->j_state_lock);
4913		if (journal->j_committing_transaction)
4914			commit_tid = journal->j_committing_transaction->t_tid;
4915		read_unlock(&journal->j_state_lock);
4916		if (commit_tid)
4917			jbd2_log_wait_commit(journal, commit_tid);
4918	}
4919}
4920
4921/*
4922 * ext4_setattr()
4923 *
4924 * Called from notify_change.
4925 *
4926 * We want to trap VFS attempts to truncate the file as soon as
4927 * possible.  In particular, we want to make sure that when the VFS
4928 * shrinks i_size, we put the inode on the orphan list and modify
4929 * i_disksize immediately, so that during the subsequent flushing of
4930 * dirty pages and freeing of disk blocks, we can guarantee that any
4931 * commit will leave the blocks being flushed in an unused state on
4932 * disk.  (On recovery, the inode will get truncated and the blocks will
4933 * be freed, so we have a strong guarantee that no future commit will
4934 * leave these blocks visible to the user.)
4935 *
4936 * Another thing we have to assure is that if we are in ordered mode
4937 * and inode is still attached to the committing transaction, we must
4938 * we start writeout of all the dirty pages which are being truncated.
4939 * This way we are sure that all the data written in the previous
4940 * transaction are already on disk (truncate waits for pages under
4941 * writeback).
4942 *
4943 * Called with inode->i_mutex down.
4944 */
4945int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4946{
4947	struct inode *inode = d_inode(dentry);
4948	int error, rc = 0;
4949	int orphan = 0;
4950	const unsigned int ia_valid = attr->ia_valid;
4951
4952	error = inode_change_ok(inode, attr);
4953	if (error)
4954		return error;
4955
4956	if (is_quota_modification(inode, attr)) {
4957		error = dquot_initialize(inode);
4958		if (error)
4959			return error;
4960	}
4961	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4963		handle_t *handle;
4964
4965		/* (user+group)*(old+new) structure, inode write (sb,
4966		 * inode block, ? - but truncate inode update has it) */
4967		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4970		if (IS_ERR(handle)) {
4971			error = PTR_ERR(handle);
4972			goto err_out;
4973		}
4974		error = dquot_transfer(inode, attr);
4975		if (error) {
4976			ext4_journal_stop(handle);
4977			return error;
4978		}
4979		/* Update corresponding info in inode so that everything is in
4980		 * one transaction */
4981		if (attr->ia_valid & ATTR_UID)
4982			inode->i_uid = attr->ia_uid;
4983		if (attr->ia_valid & ATTR_GID)
4984			inode->i_gid = attr->ia_gid;
4985		error = ext4_mark_inode_dirty(handle, inode);
4986		ext4_journal_stop(handle);
4987	}
4988
4989	if (attr->ia_valid & ATTR_SIZE) {
4990		handle_t *handle;
4991		loff_t oldsize = inode->i_size;
4992		int shrink = (attr->ia_size <= inode->i_size);
4993
4994		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4995			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4996
4997			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998				return -EFBIG;
4999		}
5000		if (!S_ISREG(inode->i_mode))
5001			return -EINVAL;
 
 
 
 
5002
5003		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004			inode_inc_iversion(inode);
 
 
 
 
 
 
 
 
 
 
 
 
5005
5006		if (ext4_should_order_data(inode) &&
5007		    (attr->ia_size < inode->i_size)) {
5008			error = ext4_begin_ordered_truncate(inode,
5009							    attr->ia_size);
5010			if (error)
5011				goto err_out;
5012		}
5013		if (attr->ia_size != inode->i_size) {
5014			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015			if (IS_ERR(handle)) {
5016				error = PTR_ERR(handle);
5017				goto err_out;
5018			}
5019			if (ext4_handle_valid(handle) && shrink) {
5020				error = ext4_orphan_add(handle, inode);
5021				orphan = 1;
5022			}
5023			/*
5024			 * Update c/mtime on truncate up, ext4_truncate() will
5025			 * update c/mtime in shrink case below
5026			 */
5027			if (!shrink) {
5028				inode->i_mtime = ext4_current_time(inode);
5029				inode->i_ctime = inode->i_mtime;
5030			}
5031			down_write(&EXT4_I(inode)->i_data_sem);
5032			EXT4_I(inode)->i_disksize = attr->ia_size;
5033			rc = ext4_mark_inode_dirty(handle, inode);
5034			if (!error)
5035				error = rc;
5036			/*
5037			 * We have to update i_size under i_data_sem together
5038			 * with i_disksize to avoid races with writeback code
5039			 * running ext4_wb_update_i_disksize().
5040			 */
5041			if (!error)
5042				i_size_write(inode, attr->ia_size);
5043			up_write(&EXT4_I(inode)->i_data_sem);
5044			ext4_journal_stop(handle);
5045			if (error) {
5046				if (orphan)
 
 
5047					ext4_orphan_del(NULL, inode);
 
 
 
 
 
5048				goto err_out;
5049			}
5050		}
5051		if (!shrink)
5052			pagecache_isize_extended(inode, oldsize, inode->i_size);
5053
5054		/*
5055		 * Blocks are going to be removed from the inode. Wait
5056		 * for dio in flight.  Temporarily disable
5057		 * dioread_nolock to prevent livelock.
5058		 */
5059		if (orphan) {
5060			if (!ext4_should_journal_data(inode)) {
5061				ext4_inode_block_unlocked_dio(inode);
5062				inode_dio_wait(inode);
5063				ext4_inode_resume_unlocked_dio(inode);
5064			} else
5065				ext4_wait_for_tail_page_commit(inode);
5066		}
5067		down_write(&EXT4_I(inode)->i_mmap_sem);
5068		/*
5069		 * Truncate pagecache after we've waited for commit
5070		 * in data=journal mode to make pages freeable.
5071		 */
5072		truncate_pagecache(inode, inode->i_size);
5073		if (shrink)
5074			ext4_truncate(inode);
5075		up_write(&EXT4_I(inode)->i_mmap_sem);
5076	}
5077
5078	if (!rc) {
5079		setattr_copy(inode, attr);
5080		mark_inode_dirty(inode);
5081	}
5082
5083	/*
5084	 * If the call to ext4_truncate failed to get a transaction handle at
5085	 * all, we need to clean up the in-core orphan list manually.
5086	 */
5087	if (orphan && inode->i_nlink)
5088		ext4_orphan_del(NULL, inode);
5089
5090	if (!rc && (ia_valid & ATTR_MODE))
5091		rc = posix_acl_chmod(inode, inode->i_mode);
5092
5093err_out:
5094	ext4_std_error(inode->i_sb, error);
5095	if (!error)
5096		error = rc;
5097	return error;
5098}
5099
5100int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101		 struct kstat *stat)
5102{
5103	struct inode *inode;
5104	unsigned long long delalloc_blocks;
5105
5106	inode = d_inode(dentry);
5107	generic_fillattr(inode, stat);
5108
5109	/*
5110	 * If there is inline data in the inode, the inode will normally not
5111	 * have data blocks allocated (it may have an external xattr block).
5112	 * Report at least one sector for such files, so tools like tar, rsync,
5113	 * others doen't incorrectly think the file is completely sparse.
5114	 */
5115	if (unlikely(ext4_has_inline_data(inode)))
5116		stat->blocks += (stat->size + 511) >> 9;
5117
5118	/*
5119	 * We can't update i_blocks if the block allocation is delayed
5120	 * otherwise in the case of system crash before the real block
5121	 * allocation is done, we will have i_blocks inconsistent with
5122	 * on-disk file blocks.
5123	 * We always keep i_blocks updated together with real
5124	 * allocation. But to not confuse with user, stat
5125	 * will return the blocks that include the delayed allocation
5126	 * blocks for this file.
5127	 */
5128	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5129				   EXT4_I(inode)->i_reserved_data_blocks);
5130	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
 
5131	return 0;
5132}
5133
5134static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135				   int pextents)
5136{
5137	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5138		return ext4_ind_trans_blocks(inode, lblocks);
5139	return ext4_ext_index_trans_blocks(inode, pextents);
5140}
5141
5142/*
5143 * Account for index blocks, block groups bitmaps and block group
5144 * descriptor blocks if modify datablocks and index blocks
5145 * worse case, the indexs blocks spread over different block groups
5146 *
5147 * If datablocks are discontiguous, they are possible to spread over
5148 * different block groups too. If they are contiguous, with flexbg,
5149 * they could still across block group boundary.
5150 *
5151 * Also account for superblock, inode, quota and xattr blocks
5152 */
5153static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154				  int pextents)
5155{
5156	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157	int gdpblocks;
5158	int idxblocks;
5159	int ret = 0;
5160
5161	/*
5162	 * How many index blocks need to touch to map @lblocks logical blocks
5163	 * to @pextents physical extents?
 
 
 
 
5164	 */
5165	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5166
5167	ret = idxblocks;
5168
5169	/*
5170	 * Now let's see how many group bitmaps and group descriptors need
5171	 * to account
5172	 */
5173	groups = idxblocks + pextents;
 
 
 
 
 
5174	gdpblocks = groups;
5175	if (groups > ngroups)
5176		groups = ngroups;
5177	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5179
5180	/* bitmaps and block group descriptor blocks */
5181	ret += groups + gdpblocks;
5182
5183	/* Blocks for super block, inode, quota and xattr blocks */
5184	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5185
5186	return ret;
5187}
5188
5189/*
5190 * Calculate the total number of credits to reserve to fit
5191 * the modification of a single pages into a single transaction,
5192 * which may include multiple chunks of block allocations.
5193 *
5194 * This could be called via ext4_write_begin()
5195 *
5196 * We need to consider the worse case, when
5197 * one new block per extent.
5198 */
5199int ext4_writepage_trans_blocks(struct inode *inode)
5200{
5201	int bpp = ext4_journal_blocks_per_page(inode);
5202	int ret;
5203
5204	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5205
5206	/* Account for data blocks for journalled mode */
5207	if (ext4_should_journal_data(inode))
5208		ret += bpp;
5209	return ret;
5210}
5211
5212/*
5213 * Calculate the journal credits for a chunk of data modification.
5214 *
5215 * This is called from DIO, fallocate or whoever calling
5216 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5217 *
5218 * journal buffers for data blocks are not included here, as DIO
5219 * and fallocate do no need to journal data buffers.
5220 */
5221int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5222{
5223	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5224}
5225
5226/*
5227 * The caller must have previously called ext4_reserve_inode_write().
5228 * Give this, we know that the caller already has write access to iloc->bh.
5229 */
5230int ext4_mark_iloc_dirty(handle_t *handle,
5231			 struct inode *inode, struct ext4_iloc *iloc)
5232{
5233	int err = 0;
5234
5235	if (IS_I_VERSION(inode))
5236		inode_inc_iversion(inode);
5237
5238	/* the do_update_inode consumes one bh->b_count */
5239	get_bh(iloc->bh);
5240
5241	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242	err = ext4_do_update_inode(handle, inode, iloc);
5243	put_bh(iloc->bh);
5244	return err;
5245}
5246
5247/*
5248 * On success, We end up with an outstanding reference count against
5249 * iloc->bh.  This _must_ be cleaned up later.
5250 */
5251
5252int
5253ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254			 struct ext4_iloc *iloc)
5255{
5256	int err;
5257
5258	err = ext4_get_inode_loc(inode, iloc);
5259	if (!err) {
5260		BUFFER_TRACE(iloc->bh, "get_write_access");
5261		err = ext4_journal_get_write_access(handle, iloc->bh);
5262		if (err) {
5263			brelse(iloc->bh);
5264			iloc->bh = NULL;
5265		}
5266	}
5267	ext4_std_error(inode->i_sb, err);
5268	return err;
5269}
5270
5271/*
5272 * Expand an inode by new_extra_isize bytes.
5273 * Returns 0 on success or negative error number on failure.
5274 */
5275static int ext4_expand_extra_isize(struct inode *inode,
5276				   unsigned int new_extra_isize,
5277				   struct ext4_iloc iloc,
5278				   handle_t *handle)
5279{
5280	struct ext4_inode *raw_inode;
5281	struct ext4_xattr_ibody_header *header;
5282
5283	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284		return 0;
5285
5286	raw_inode = ext4_raw_inode(&iloc);
5287
5288	header = IHDR(inode, raw_inode);
5289
5290	/* No extended attributes present */
5291	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5293		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294			new_extra_isize);
5295		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296		return 0;
5297	}
5298
5299	/* try to expand with EAs present */
5300	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301					  raw_inode, handle);
5302}
5303
5304/*
5305 * What we do here is to mark the in-core inode as clean with respect to inode
5306 * dirtiness (it may still be data-dirty).
5307 * This means that the in-core inode may be reaped by prune_icache
5308 * without having to perform any I/O.  This is a very good thing,
5309 * because *any* task may call prune_icache - even ones which
5310 * have a transaction open against a different journal.
5311 *
5312 * Is this cheating?  Not really.  Sure, we haven't written the
5313 * inode out, but prune_icache isn't a user-visible syncing function.
5314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315 * we start and wait on commits.
 
 
 
 
 
 
 
 
5316 */
5317int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5318{
5319	struct ext4_iloc iloc;
5320	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321	static unsigned int mnt_count;
5322	int err, ret;
5323
5324	might_sleep();
5325	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5326	err = ext4_reserve_inode_write(handle, inode, &iloc);
5327	if (err)
5328		return err;
5329	if (ext4_handle_valid(handle) &&
5330	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5331	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5332		/*
5333		 * We need extra buffer credits since we may write into EA block
5334		 * with this same handle. If journal_extend fails, then it will
5335		 * only result in a minor loss of functionality for that inode.
5336		 * If this is felt to be critical, then e2fsck should be run to
5337		 * force a large enough s_min_extra_isize.
5338		 */
5339		if ((jbd2_journal_extend(handle,
5340			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5341			ret = ext4_expand_extra_isize(inode,
5342						      sbi->s_want_extra_isize,
5343						      iloc, handle);
5344			if (ret) {
5345				ext4_set_inode_state(inode,
5346						     EXT4_STATE_NO_EXPAND);
5347				if (mnt_count !=
5348					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5349					ext4_warning(inode->i_sb,
5350					"Unable to expand inode %lu. Delete"
5351					" some EAs or run e2fsck.",
5352					inode->i_ino);
5353					mnt_count =
5354					  le16_to_cpu(sbi->s_es->s_mnt_count);
5355				}
5356			}
5357		}
5358	}
5359	return ext4_mark_iloc_dirty(handle, inode, &iloc);
 
 
5360}
5361
5362/*
5363 * ext4_dirty_inode() is called from __mark_inode_dirty()
5364 *
5365 * We're really interested in the case where a file is being extended.
5366 * i_size has been changed by generic_commit_write() and we thus need
5367 * to include the updated inode in the current transaction.
5368 *
5369 * Also, dquot_alloc_block() will always dirty the inode when blocks
5370 * are allocated to the file.
5371 *
5372 * If the inode is marked synchronous, we don't honour that here - doing
5373 * so would cause a commit on atime updates, which we don't bother doing.
5374 * We handle synchronous inodes at the highest possible level.
5375 *
5376 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5377 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378 * to copy into the on-disk inode structure are the timestamp files.
5379 */
5380void ext4_dirty_inode(struct inode *inode, int flags)
5381{
5382	handle_t *handle;
5383
5384	if (flags == I_DIRTY_TIME)
5385		return;
5386	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5387	if (IS_ERR(handle))
5388		goto out;
5389
5390	ext4_mark_inode_dirty(handle, inode);
5391
5392	ext4_journal_stop(handle);
5393out:
5394	return;
5395}
5396
5397#if 0
5398/*
5399 * Bind an inode's backing buffer_head into this transaction, to prevent
5400 * it from being flushed to disk early.  Unlike
5401 * ext4_reserve_inode_write, this leaves behind no bh reference and
5402 * returns no iloc structure, so the caller needs to repeat the iloc
5403 * lookup to mark the inode dirty later.
5404 */
5405static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5406{
5407	struct ext4_iloc iloc;
5408
5409	int err = 0;
5410	if (handle) {
5411		err = ext4_get_inode_loc(inode, &iloc);
5412		if (!err) {
5413			BUFFER_TRACE(iloc.bh, "get_write_access");
5414			err = jbd2_journal_get_write_access(handle, iloc.bh);
5415			if (!err)
5416				err = ext4_handle_dirty_metadata(handle,
5417								 NULL,
5418								 iloc.bh);
5419			brelse(iloc.bh);
5420		}
5421	}
5422	ext4_std_error(inode->i_sb, err);
5423	return err;
5424}
5425#endif
5426
5427int ext4_change_inode_journal_flag(struct inode *inode, int val)
5428{
5429	journal_t *journal;
5430	handle_t *handle;
5431	int err;
5432
5433	/*
5434	 * We have to be very careful here: changing a data block's
5435	 * journaling status dynamically is dangerous.  If we write a
5436	 * data block to the journal, change the status and then delete
5437	 * that block, we risk forgetting to revoke the old log record
5438	 * from the journal and so a subsequent replay can corrupt data.
5439	 * So, first we make sure that the journal is empty and that
5440	 * nobody is changing anything.
5441	 */
5442
5443	journal = EXT4_JOURNAL(inode);
5444	if (!journal)
5445		return 0;
5446	if (is_journal_aborted(journal))
5447		return -EROFS;
5448	/* We have to allocate physical blocks for delalloc blocks
5449	 * before flushing journal. otherwise delalloc blocks can not
5450	 * be allocated any more. even more truncate on delalloc blocks
5451	 * could trigger BUG by flushing delalloc blocks in journal.
5452	 * There is no delalloc block in non-journal data mode.
5453	 */
5454	if (val && test_opt(inode->i_sb, DELALLOC)) {
5455		err = ext4_alloc_da_blocks(inode);
5456		if (err < 0)
5457			return err;
5458	}
5459
5460	/* Wait for all existing dio workers */
5461	ext4_inode_block_unlocked_dio(inode);
5462	inode_dio_wait(inode);
5463
5464	jbd2_journal_lock_updates(journal);
5465
5466	/*
5467	 * OK, there are no updates running now, and all cached data is
5468	 * synced to disk.  We are now in a completely consistent state
5469	 * which doesn't have anything in the journal, and we know that
5470	 * no filesystem updates are running, so it is safe to modify
5471	 * the inode's in-core data-journaling state flag now.
5472	 */
5473
5474	if (val)
5475		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476	else {
5477		err = jbd2_journal_flush(journal);
5478		if (err < 0) {
5479			jbd2_journal_unlock_updates(journal);
5480			ext4_inode_resume_unlocked_dio(inode);
5481			return err;
5482		}
5483		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5484	}
5485	ext4_set_aops(inode);
5486
5487	jbd2_journal_unlock_updates(journal);
5488	ext4_inode_resume_unlocked_dio(inode);
5489
5490	/* Finally we can mark the inode as dirty. */
5491
5492	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5493	if (IS_ERR(handle))
5494		return PTR_ERR(handle);
5495
5496	err = ext4_mark_inode_dirty(handle, inode);
5497	ext4_handle_sync(handle);
5498	ext4_journal_stop(handle);
5499	ext4_std_error(inode->i_sb, err);
5500
5501	return err;
5502}
5503
5504static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5505{
5506	return !buffer_mapped(bh);
5507}
5508
5509int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5510{
5511	struct page *page = vmf->page;
5512	loff_t size;
5513	unsigned long len;
5514	int ret;
5515	struct file *file = vma->vm_file;
5516	struct inode *inode = file_inode(file);
5517	struct address_space *mapping = inode->i_mapping;
5518	handle_t *handle;
5519	get_block_t *get_block;
5520	int retries = 0;
5521
5522	sb_start_pagefault(inode->i_sb);
5523	file_update_time(vma->vm_file);
5524
5525	down_read(&EXT4_I(inode)->i_mmap_sem);
 
5526	/* Delalloc case is easy... */
5527	if (test_opt(inode->i_sb, DELALLOC) &&
5528	    !ext4_should_journal_data(inode) &&
5529	    !ext4_nonda_switch(inode->i_sb)) {
5530		do {
5531			ret = block_page_mkwrite(vma, vmf,
5532						   ext4_da_get_block_prep);
5533		} while (ret == -ENOSPC &&
5534		       ext4_should_retry_alloc(inode->i_sb, &retries));
5535		goto out_ret;
5536	}
5537
5538	lock_page(page);
5539	size = i_size_read(inode);
5540	/* Page got truncated from under us? */
5541	if (page->mapping != mapping || page_offset(page) > size) {
5542		unlock_page(page);
5543		ret = VM_FAULT_NOPAGE;
5544		goto out;
5545	}
5546
5547	if (page->index == size >> PAGE_SHIFT)
5548		len = size & ~PAGE_MASK;
5549	else
5550		len = PAGE_SIZE;
5551	/*
5552	 * Return if we have all the buffers mapped. This avoids the need to do
5553	 * journal_start/journal_stop which can block and take a long time
5554	 */
5555	if (page_has_buffers(page)) {
5556		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557					    0, len, NULL,
5558					    ext4_bh_unmapped)) {
5559			/* Wait so that we don't change page under IO */
5560			wait_for_stable_page(page);
5561			ret = VM_FAULT_LOCKED;
5562			goto out;
5563		}
5564	}
5565	unlock_page(page);
5566	/* OK, we need to fill the hole... */
5567	if (ext4_should_dioread_nolock(inode))
5568		get_block = ext4_get_block_unwritten;
5569	else
5570		get_block = ext4_get_block;
5571retry_alloc:
5572	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573				    ext4_writepage_trans_blocks(inode));
5574	if (IS_ERR(handle)) {
5575		ret = VM_FAULT_SIGBUS;
5576		goto out;
5577	}
5578	ret = block_page_mkwrite(vma, vmf, get_block);
5579	if (!ret && ext4_should_journal_data(inode)) {
5580		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5581			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5582			unlock_page(page);
5583			ret = VM_FAULT_SIGBUS;
5584			ext4_journal_stop(handle);
5585			goto out;
5586		}
5587		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5588	}
5589	ext4_journal_stop(handle);
5590	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591		goto retry_alloc;
5592out_ret:
5593	ret = block_page_mkwrite_return(ret);
5594out:
5595	up_read(&EXT4_I(inode)->i_mmap_sem);
5596	sb_end_pagefault(inode->i_sb);
5597	return ret;
5598}
5599
5600int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5601{
5602	struct inode *inode = file_inode(vma->vm_file);
5603	int err;
5604
5605	down_read(&EXT4_I(inode)->i_mmap_sem);
5606	err = filemap_fault(vma, vmf);
5607	up_read(&EXT4_I(inode)->i_mmap_sem);
5608
5609	return err;
5610}
5611
5612/*
5613 * Find the first extent at or after @lblk in an inode that is not a hole.
5614 * Search for @map_len blocks at most. The extent is returned in @result.
5615 *
5616 * The function returns 1 if we found an extent. The function returns 0 in
5617 * case there is no extent at or after @lblk and in that case also sets
5618 * @result->es_len to 0. In case of error, the error code is returned.
5619 */
5620int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621			 unsigned int map_len, struct extent_status *result)
5622{
5623	struct ext4_map_blocks map;
5624	struct extent_status es = {};
5625	int ret;
5626
5627	map.m_lblk = lblk;
5628	map.m_len = map_len;
5629
5630	/*
5631	 * For non-extent based files this loop may iterate several times since
5632	 * we do not determine full hole size.
5633	 */
5634	while (map.m_len > 0) {
5635		ret = ext4_map_blocks(NULL, inode, &map, 0);
5636		if (ret < 0)
5637			return ret;
5638		/* There's extent covering m_lblk? Just return it. */
5639		if (ret > 0) {
5640			int status;
5641
5642			ext4_es_store_pblock(result, map.m_pblk);
5643			result->es_lblk = map.m_lblk;
5644			result->es_len = map.m_len;
5645			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646				status = EXTENT_STATUS_UNWRITTEN;
5647			else
5648				status = EXTENT_STATUS_WRITTEN;
5649			ext4_es_store_status(result, status);
5650			return 1;
5651		}
5652		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653						  map.m_lblk + map.m_len - 1,
5654						  &es);
5655		/* Is delalloc data before next block in extent tree? */
5656		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657			ext4_lblk_t offset = 0;
5658
5659			if (es.es_lblk < lblk)
5660				offset = lblk - es.es_lblk;
5661			result->es_lblk = es.es_lblk + offset;
5662			ext4_es_store_pblock(result,
5663					     ext4_es_pblock(&es) + offset);
5664			result->es_len = es.es_len - offset;
5665			ext4_es_store_status(result, ext4_es_status(&es));
5666
5667			return 1;
5668		}
5669		/* There's a hole at m_lblk, advance us after it */
5670		map.m_lblk += map.m_len;
5671		map_len -= map.m_len;
5672		map.m_len = map_len;
5673		cond_resched();
5674	}
5675	result->es_len = 0;
5676	return 0;
5677}