Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/jbd2.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
 
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/ratelimit.h>
 
 
  40
  41#include "ext4_jbd2.h"
  42#include "xattr.h"
  43#include "acl.h"
  44#include "truncate.h"
  45
  46#include <trace/events/ext4.h>
  47
  48#define MPAGE_DA_EXTENT_TAIL 0x01
  49
  50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  51			      struct ext4_inode_info *ei)
  52{
  53	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54	__u16 csum_lo;
  55	__u16 csum_hi = 0;
  56	__u32 csum;
 
 
 
 
 
 
 
 
 
  57
  58	csum_lo = raw->i_checksum_lo;
  59	raw->i_checksum_lo = 0;
  60	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  61	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  62		csum_hi = raw->i_checksum_hi;
  63		raw->i_checksum_hi = 0;
 
 
 
 
 
 
  64	}
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  67			   EXT4_INODE_SIZE(inode->i_sb));
  68
  69	raw->i_checksum_lo = csum_lo;
  70	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  71	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  72		raw->i_checksum_hi = csum_hi;
  73
  74	return csum;
  75}
  76
  77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  78				  struct ext4_inode_info *ei)
  79{
  80	__u32 provided, calculated;
  81
  82	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  83	    cpu_to_le32(EXT4_OS_LINUX) ||
  84	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  85		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  86		return 1;
  87
  88	provided = le16_to_cpu(raw->i_checksum_lo);
  89	calculated = ext4_inode_csum(inode, raw, ei);
  90	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  91	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  92		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  93	else
  94		calculated &= 0xFFFF;
  95
  96	return provided == calculated;
  97}
  98
  99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 100				struct ext4_inode_info *ei)
 101{
 102	__u32 csum;
 103
 104	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 105	    cpu_to_le32(EXT4_OS_LINUX) ||
 106	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 107		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 108		return;
 109
 110	csum = ext4_inode_csum(inode, raw, ei);
 111	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 112	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 113	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 114		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 115}
 116
 117static inline int ext4_begin_ordered_truncate(struct inode *inode,
 118					      loff_t new_size)
 119{
 120	trace_ext4_begin_ordered_truncate(inode, new_size);
 121	/*
 122	 * If jinode is zero, then we never opened the file for
 123	 * writing, so there's no need to call
 124	 * jbd2_journal_begin_ordered_truncate() since there's no
 125	 * outstanding writes we need to flush.
 126	 */
 127	if (!EXT4_I(inode)->jinode)
 128		return 0;
 129	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 130						   EXT4_I(inode)->jinode,
 131						   new_size);
 132}
 133
 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
 135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
 136				   struct buffer_head *bh_result, int create);
 137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
 138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
 139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
 142		struct inode *inode, struct page *page, loff_t from,
 143		loff_t length, int flags);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 
 147 */
 148static int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150	int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151		(inode->i_sb->s_blocksize >> 9) : 0;
 152
 153	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 154}
 155
 156/*
 157 * Restart the transaction associated with *handle.  This does a commit,
 158 * so before we call here everything must be consistently dirtied against
 159 * this transaction.
 160 */
 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 162				 int nblocks)
 163{
 164	int ret;
 
 
 165
 166	/*
 167	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 168	 * moment, get_block can be called only for blocks inside i_size since
 169	 * page cache has been already dropped and writes are blocked by
 170	 * i_mutex. So we can safely drop the i_data_sem here.
 171	 */
 172	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 173	jbd_debug(2, "restarting handle %p\n", handle);
 174	up_write(&EXT4_I(inode)->i_data_sem);
 175	ret = ext4_journal_restart(handle, nblocks);
 176	down_write(&EXT4_I(inode)->i_data_sem);
 177	ext4_discard_preallocations(inode);
 178
 179	return ret;
 
 
 
 180}
 181
 182/*
 183 * Called at the last iput() if i_nlink is zero.
 184 */
 185void ext4_evict_inode(struct inode *inode)
 186{
 187	handle_t *handle;
 188	int err;
 
 
 
 
 
 
 
 189
 190	trace_ext4_evict_inode(inode);
 191
 192	ext4_ioend_wait(inode);
 193
 194	if (inode->i_nlink) {
 195		/*
 196		 * When journalling data dirty buffers are tracked only in the
 197		 * journal. So although mm thinks everything is clean and
 198		 * ready for reaping the inode might still have some pages to
 199		 * write in the running transaction or waiting to be
 200		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 201		 * (via truncate_inode_pages()) to discard these buffers can
 202		 * cause data loss. Also even if we did not discard these
 203		 * buffers, we would have no way to find them after the inode
 204		 * is reaped and thus user could see stale data if he tries to
 205		 * read them before the transaction is checkpointed. So be
 206		 * careful and force everything to disk here... We use
 207		 * ei->i_datasync_tid to store the newest transaction
 208		 * containing inode's data.
 209		 *
 210		 * Note that directories do not have this problem because they
 211		 * don't use page cache.
 212		 */
 213		if (ext4_should_journal_data(inode) &&
 214		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 
 
 215			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 216			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 217
 218			jbd2_log_start_commit(journal, commit_tid);
 219			jbd2_log_wait_commit(journal, commit_tid);
 220			filemap_write_and_wait(&inode->i_data);
 221		}
 222		truncate_inode_pages(&inode->i_data, 0);
 
 223		goto no_delete;
 224	}
 225
 226	if (!is_bad_inode(inode))
 227		dquot_initialize(inode);
 
 228
 229	if (ext4_should_order_data(inode))
 230		ext4_begin_ordered_truncate(inode, 0);
 231	truncate_inode_pages(&inode->i_data, 0);
 232
 233	if (is_bad_inode(inode))
 234		goto no_delete;
 
 
 
 
 
 
 
 235
 236	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237	if (IS_ERR(handle)) {
 238		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 239		/*
 240		 * If we're going to skip the normal cleanup, we still need to
 241		 * make sure that the in-core orphan linked list is properly
 242		 * cleaned up.
 243		 */
 244		ext4_orphan_del(NULL, inode);
 
 245		goto no_delete;
 246	}
 247
 248	if (IS_SYNC(inode))
 249		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 250	inode->i_size = 0;
 251	err = ext4_mark_inode_dirty(handle, inode);
 252	if (err) {
 253		ext4_warning(inode->i_sb,
 254			     "couldn't mark inode dirty (err %d)", err);
 255		goto stop_handle;
 256	}
 257	if (inode->i_blocks)
 258		ext4_truncate(inode);
 259
 260	/*
 261	 * ext4_ext_truncate() doesn't reserve any slop when it
 262	 * restarts journal transactions; therefore there may not be
 263	 * enough credits left in the handle to remove the inode from
 264	 * the orphan list and set the dtime field.
 265	 */
 266	if (!ext4_handle_has_enough_credits(handle, 3)) {
 267		err = ext4_journal_extend(handle, 3);
 268		if (err > 0)
 269			err = ext4_journal_restart(handle, 3);
 270		if (err != 0) {
 271			ext4_warning(inode->i_sb,
 272				     "couldn't extend journal (err %d)", err);
 273		stop_handle:
 274			ext4_journal_stop(handle);
 275			ext4_orphan_del(NULL, inode);
 276			goto no_delete;
 277		}
 278	}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 280	/*
 281	 * Kill off the orphan record which ext4_truncate created.
 282	 * AKPM: I think this can be inside the above `if'.
 283	 * Note that ext4_orphan_del() has to be able to cope with the
 284	 * deletion of a non-existent orphan - this is because we don't
 285	 * know if ext4_truncate() actually created an orphan record.
 286	 * (Well, we could do this if we need to, but heck - it works)
 287	 */
 288	ext4_orphan_del(handle, inode);
 289	EXT4_I(inode)->i_dtime	= get_seconds();
 290
 291	/*
 292	 * One subtle ordering requirement: if anything has gone wrong
 293	 * (transaction abort, IO errors, whatever), then we can still
 294	 * do these next steps (the fs will already have been marked as
 295	 * having errors), but we can't free the inode if the mark_dirty
 296	 * fails.
 297	 */
 298	if (ext4_mark_inode_dirty(handle, inode))
 299		/* If that failed, just do the required in-core inode clear. */
 300		ext4_clear_inode(inode);
 301	else
 302		ext4_free_inode(handle, inode);
 303	ext4_journal_stop(handle);
 
 
 304	return;
 305no_delete:
 306	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 307}
 308
 309#ifdef CONFIG_QUOTA
 310qsize_t *ext4_get_reserved_space(struct inode *inode)
 311{
 312	return &EXT4_I(inode)->i_reserved_quota;
 313}
 314#endif
 315
 316/*
 317 * Calculate the number of metadata blocks need to reserve
 318 * to allocate a block located at @lblock
 319 */
 320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 321{
 322	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 323		return ext4_ext_calc_metadata_amount(inode, lblock);
 324
 325	return ext4_ind_calc_metadata_amount(inode, lblock);
 326}
 327
 328/*
 329 * Called with i_data_sem down, which is important since we can call
 330 * ext4_discard_preallocations() from here.
 331 */
 332void ext4_da_update_reserve_space(struct inode *inode,
 333					int used, int quota_claim)
 334{
 335	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 336	struct ext4_inode_info *ei = EXT4_I(inode);
 337
 338	spin_lock(&ei->i_block_reservation_lock);
 339	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 340	if (unlikely(used > ei->i_reserved_data_blocks)) {
 341		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
 342			 "with only %d reserved data blocks",
 343			 __func__, inode->i_ino, used,
 344			 ei->i_reserved_data_blocks);
 345		WARN_ON(1);
 346		used = ei->i_reserved_data_blocks;
 347	}
 348
 349	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
 350		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
 351			 "with only %d reserved metadata blocks\n", __func__,
 352			 inode->i_ino, ei->i_allocated_meta_blocks,
 353			 ei->i_reserved_meta_blocks);
 354		WARN_ON(1);
 355		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
 356	}
 357
 358	/* Update per-inode reservations */
 359	ei->i_reserved_data_blocks -= used;
 360	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 361	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 362			   used + ei->i_allocated_meta_blocks);
 363	ei->i_allocated_meta_blocks = 0;
 364
 365	if (ei->i_reserved_data_blocks == 0) {
 366		/*
 367		 * We can release all of the reserved metadata blocks
 368		 * only when we have written all of the delayed
 369		 * allocation blocks.
 370		 */
 371		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 372				   ei->i_reserved_meta_blocks);
 373		ei->i_reserved_meta_blocks = 0;
 374		ei->i_da_metadata_calc_len = 0;
 375	}
 376	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 377
 378	/* Update quota subsystem for data blocks */
 379	if (quota_claim)
 380		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 381	else {
 382		/*
 383		 * We did fallocate with an offset that is already delayed
 384		 * allocated. So on delayed allocated writeback we should
 385		 * not re-claim the quota for fallocated blocks.
 386		 */
 387		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 388	}
 389
 390	/*
 391	 * If we have done all the pending block allocations and if
 392	 * there aren't any writers on the inode, we can discard the
 393	 * inode's preallocations.
 394	 */
 395	if ((ei->i_reserved_data_blocks == 0) &&
 396	    (atomic_read(&inode->i_writecount) == 0))
 397		ext4_discard_preallocations(inode);
 398}
 399
 400static int __check_block_validity(struct inode *inode, const char *func,
 401				unsigned int line,
 402				struct ext4_map_blocks *map)
 403{
 404	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 405				   map->m_len)) {
 
 
 
 406		ext4_error_inode(inode, func, line, map->m_pblk,
 407				 "lblock %lu mapped to illegal pblock "
 408				 "(length %d)", (unsigned long) map->m_lblk,
 409				 map->m_len);
 410		return -EIO;
 411	}
 412	return 0;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418/*
 419 * Return the number of contiguous dirty pages in a given inode
 420 * starting at page frame idx.
 421 */
 422static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
 423				    unsigned int max_pages)
 424{
 425	struct address_space *mapping = inode->i_mapping;
 426	pgoff_t	index;
 427	struct pagevec pvec;
 428	pgoff_t num = 0;
 429	int i, nr_pages, done = 0;
 430
 431	if (max_pages == 0)
 432		return 0;
 433	pagevec_init(&pvec, 0);
 434	while (!done) {
 435		index = idx;
 436		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 437					      PAGECACHE_TAG_DIRTY,
 438					      (pgoff_t)PAGEVEC_SIZE);
 439		if (nr_pages == 0)
 440			break;
 441		for (i = 0; i < nr_pages; i++) {
 442			struct page *page = pvec.pages[i];
 443			struct buffer_head *bh, *head;
 444
 445			lock_page(page);
 446			if (unlikely(page->mapping != mapping) ||
 447			    !PageDirty(page) ||
 448			    PageWriteback(page) ||
 449			    page->index != idx) {
 450				done = 1;
 451				unlock_page(page);
 452				break;
 453			}
 454			if (page_has_buffers(page)) {
 455				bh = head = page_buffers(page);
 456				do {
 457					if (!buffer_delay(bh) &&
 458					    !buffer_unwritten(bh))
 459						done = 1;
 460					bh = bh->b_this_page;
 461				} while (!done && (bh != head));
 462			}
 463			unlock_page(page);
 464			if (done)
 465				break;
 466			idx++;
 467			num++;
 468			if (num >= max_pages) {
 469				done = 1;
 470				break;
 471			}
 472		}
 473		pagevec_release(&pvec);
 474	}
 475	return num;
 476}
 477
 478/*
 479 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 480 */
 481static void set_buffers_da_mapped(struct inode *inode,
 482				   struct ext4_map_blocks *map)
 483{
 484	struct address_space *mapping = inode->i_mapping;
 485	struct pagevec pvec;
 486	int i, nr_pages;
 487	pgoff_t index, end;
 488
 489	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
 490	end = (map->m_lblk + map->m_len - 1) >>
 491		(PAGE_CACHE_SHIFT - inode->i_blkbits);
 492
 493	pagevec_init(&pvec, 0);
 494	while (index <= end) {
 495		nr_pages = pagevec_lookup(&pvec, mapping, index,
 496					  min(end - index + 1,
 497					      (pgoff_t)PAGEVEC_SIZE));
 498		if (nr_pages == 0)
 499			break;
 500		for (i = 0; i < nr_pages; i++) {
 501			struct page *page = pvec.pages[i];
 502			struct buffer_head *bh, *head;
 503
 504			if (unlikely(page->mapping != mapping) ||
 505			    !PageDirty(page))
 506				break;
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508			if (page_has_buffers(page)) {
 509				bh = head = page_buffers(page);
 510				do {
 511					set_buffer_da_mapped(bh);
 512					bh = bh->b_this_page;
 513				} while (bh != head);
 514			}
 515			index++;
 516		}
 517		pagevec_release(&pvec);
 
 
 
 
 518	}
 519}
 
 520
 521/*
 522 * The ext4_map_blocks() function tries to look up the requested blocks,
 523 * and returns if the blocks are already mapped.
 524 *
 525 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 526 * and store the allocated blocks in the result buffer head and mark it
 527 * mapped.
 528 *
 529 * If file type is extents based, it will call ext4_ext_map_blocks(),
 530 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 531 * based files
 532 *
 533 * On success, it returns the number of blocks being mapped or allocate.
 534 * if create==0 and the blocks are pre-allocated and uninitialized block,
 535 * the result buffer head is unmapped. If the create ==1, it will make sure
 536 * the buffer head is mapped.
 537 *
 538 * It returns 0 if plain look up failed (blocks have not been allocated), in
 539 * that case, buffer head is unmapped
 
 540 *
 541 * It returns the error in case of allocation failure.
 542 */
 543int ext4_map_blocks(handle_t *handle, struct inode *inode,
 544		    struct ext4_map_blocks *map, int flags)
 545{
 
 546	int retval;
 
 
 
 
 
 
 547
 548	map->m_flags = 0;
 549	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 550		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 551		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552	/*
 553	 * Try to see if we can get the block without requesting a new
 554	 * file system block.
 555	 */
 556	down_read((&EXT4_I(inode)->i_data_sem));
 557	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 558		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 559					     EXT4_GET_BLOCKS_KEEP_SIZE);
 560	} else {
 561		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 562					     EXT4_GET_BLOCKS_KEEP_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	}
 564	up_read((&EXT4_I(inode)->i_data_sem));
 565
 
 566	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 567		int ret = check_block_validity(inode, map);
 568		if (ret != 0)
 569			return ret;
 570	}
 571
 572	/* If it is only a block(s) look up */
 573	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 574		return retval;
 575
 576	/*
 577	 * Returns if the blocks have already allocated
 578	 *
 579	 * Note that if blocks have been preallocated
 580	 * ext4_ext_get_block() returns the create = 0
 581	 * with buffer head unmapped.
 582	 */
 583	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 584		return retval;
 
 
 
 
 
 
 585
 586	/*
 587	 * When we call get_blocks without the create flag, the
 588	 * BH_Unwritten flag could have gotten set if the blocks
 589	 * requested were part of a uninitialized extent.  We need to
 590	 * clear this flag now that we are committed to convert all or
 591	 * part of the uninitialized extent to be an initialized
 592	 * extent.  This is because we need to avoid the combination
 593	 * of BH_Unwritten and BH_Mapped flags being simultaneously
 594	 * set on the buffer_head.
 595	 */
 596	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
 597
 598	/*
 599	 * New blocks allocate and/or writing to uninitialized extent
 600	 * will possibly result in updating i_data, so we take
 601	 * the write lock of i_data_sem, and call get_blocks()
 602	 * with create == 1 flag.
 603	 */
 604	down_write((&EXT4_I(inode)->i_data_sem));
 605
 606	/*
 607	 * if the caller is from delayed allocation writeout path
 608	 * we have already reserved fs blocks for allocation
 609	 * let the underlying get_block() function know to
 610	 * avoid double accounting
 611	 */
 612	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 613		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 614	/*
 615	 * We need to check for EXT4 here because migrate
 616	 * could have changed the inode type in between
 617	 */
 618	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 619		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 620	} else {
 621		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 622
 623		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 624			/*
 625			 * We allocated new blocks which will result in
 626			 * i_data's format changing.  Force the migrate
 627			 * to fail by clearing migrate flags
 628			 */
 629			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 630		}
 631
 632		/*
 633		 * Update reserved blocks/metadata blocks after successful
 634		 * block allocation which had been deferred till now. We don't
 635		 * support fallocate for non extent files. So we can update
 636		 * reserve space here.
 637		 */
 638		if ((retval > 0) &&
 639			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 640			ext4_da_update_reserve_space(inode, retval, 1);
 641	}
 642	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
 643		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 644
 645		/* If we have successfully mapped the delayed allocated blocks,
 646		 * set the BH_Da_Mapped bit on them. Its important to do this
 647		 * under the protection of i_data_sem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648		 */
 649		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 650			set_buffers_da_mapped(inode, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651	}
 652
 
 653	up_write((&EXT4_I(inode)->i_data_sem));
 654	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 655		int ret = check_block_validity(inode, map);
 656		if (ret != 0)
 657			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658	}
 
 
 
 659	return retval;
 660}
 661
 662/* Maximum number of blocks we map for direct IO at once. */
 663#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 665static int _ext4_get_block(struct inode *inode, sector_t iblock,
 666			   struct buffer_head *bh, int flags)
 667{
 668	handle_t *handle = ext4_journal_current_handle();
 669	struct ext4_map_blocks map;
 670	int ret = 0, started = 0;
 671	int dio_credits;
 
 
 672
 673	map.m_lblk = iblock;
 674	map.m_len = bh->b_size >> inode->i_blkbits;
 675
 676	if (flags && !handle) {
 677		/* Direct IO write... */
 678		if (map.m_len > DIO_MAX_BLOCKS)
 679			map.m_len = DIO_MAX_BLOCKS;
 680		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 681		handle = ext4_journal_start(inode, dio_credits);
 682		if (IS_ERR(handle)) {
 683			ret = PTR_ERR(handle);
 684			return ret;
 685		}
 686		started = 1;
 687	}
 688
 689	ret = ext4_map_blocks(handle, inode, &map, flags);
 690	if (ret > 0) {
 691		map_bh(bh, inode->i_sb, map.m_pblk);
 692		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 693		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 694		ret = 0;
 
 
 
 695	}
 696	if (started)
 697		ext4_journal_stop(handle);
 698	return ret;
 699}
 700
 701int ext4_get_block(struct inode *inode, sector_t iblock,
 702		   struct buffer_head *bh, int create)
 703{
 704	return _ext4_get_block(inode, iblock, bh,
 705			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 706}
 707
 708/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709 * `handle' can be NULL if create is zero
 710 */
 711struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 712				ext4_lblk_t block, int create, int *errp)
 713{
 714	struct ext4_map_blocks map;
 715	struct buffer_head *bh;
 716	int fatal = 0, err;
 
 717
 718	J_ASSERT(handle != NULL || create == 0);
 719
 720	map.m_lblk = block;
 721	map.m_len = 1;
 722	err = ext4_map_blocks(handle, inode, &map,
 723			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 724
 
 
 725	if (err < 0)
 726		*errp = err;
 727	if (err <= 0)
 728		return NULL;
 729	*errp = 0;
 730
 731	bh = sb_getblk(inode->i_sb, map.m_pblk);
 732	if (!bh) {
 733		*errp = -EIO;
 734		return NULL;
 735	}
 736	if (map.m_flags & EXT4_MAP_NEW) {
 737		J_ASSERT(create != 0);
 738		J_ASSERT(handle != NULL);
 739
 740		/*
 741		 * Now that we do not always journal data, we should
 742		 * keep in mind whether this should always journal the
 743		 * new buffer as metadata.  For now, regular file
 744		 * writes use ext4_get_block instead, so it's not a
 745		 * problem.
 746		 */
 747		lock_buffer(bh);
 748		BUFFER_TRACE(bh, "call get_create_access");
 749		fatal = ext4_journal_get_create_access(handle, bh);
 750		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 751			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 752			set_buffer_uptodate(bh);
 753		}
 754		unlock_buffer(bh);
 755		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 756		err = ext4_handle_dirty_metadata(handle, inode, bh);
 757		if (!fatal)
 758			fatal = err;
 759	} else {
 760		BUFFER_TRACE(bh, "not a new buffer");
 761	}
 762	if (fatal) {
 763		*errp = fatal;
 764		brelse(bh);
 765		bh = NULL;
 766	}
 767	return bh;
 
 
 
 768}
 769
 770struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 771			       ext4_lblk_t block, int create, int *err)
 772{
 773	struct buffer_head *bh;
 774
 775	bh = ext4_getblk(handle, inode, block, create, err);
 776	if (!bh)
 777		return bh;
 778	if (buffer_uptodate(bh))
 779		return bh;
 780	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 781	wait_on_buffer(bh);
 782	if (buffer_uptodate(bh))
 783		return bh;
 784	put_bh(bh);
 785	*err = -EIO;
 786	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789static int walk_page_buffers(handle_t *handle,
 790			     struct buffer_head *head,
 791			     unsigned from,
 792			     unsigned to,
 793			     int *partial,
 794			     int (*fn)(handle_t *handle,
 795				       struct buffer_head *bh))
 796{
 797	struct buffer_head *bh;
 798	unsigned block_start, block_end;
 799	unsigned blocksize = head->b_size;
 800	int err, ret = 0;
 801	struct buffer_head *next;
 802
 803	for (bh = head, block_start = 0;
 804	     ret == 0 && (bh != head || !block_start);
 805	     block_start = block_end, bh = next) {
 806		next = bh->b_this_page;
 807		block_end = block_start + blocksize;
 808		if (block_end <= from || block_start >= to) {
 809			if (partial && !buffer_uptodate(bh))
 810				*partial = 1;
 811			continue;
 812		}
 813		err = (*fn)(handle, bh);
 814		if (!ret)
 815			ret = err;
 816	}
 817	return ret;
 818}
 819
 820/*
 821 * To preserve ordering, it is essential that the hole instantiation and
 822 * the data write be encapsulated in a single transaction.  We cannot
 823 * close off a transaction and start a new one between the ext4_get_block()
 824 * and the commit_write().  So doing the jbd2_journal_start at the start of
 825 * prepare_write() is the right place.
 826 *
 827 * Also, this function can nest inside ext4_writepage() ->
 828 * block_write_full_page(). In that case, we *know* that ext4_writepage()
 829 * has generated enough buffer credits to do the whole page.  So we won't
 830 * block on the journal in that case, which is good, because the caller may
 831 * be PF_MEMALLOC.
 832 *
 833 * By accident, ext4 can be reentered when a transaction is open via
 834 * quota file writes.  If we were to commit the transaction while thus
 835 * reentered, there can be a deadlock - we would be holding a quota
 836 * lock, and the commit would never complete if another thread had a
 837 * transaction open and was blocking on the quota lock - a ranking
 838 * violation.
 839 *
 840 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 841 * will _not_ run commit under these circumstances because handle->h_ref
 842 * is elevated.  We'll still have enough credits for the tiny quotafile
 843 * write.
 844 */
 845static int do_journal_get_write_access(handle_t *handle,
 846				       struct buffer_head *bh)
 847{
 848	int dirty = buffer_dirty(bh);
 849	int ret;
 850
 851	if (!buffer_mapped(bh) || buffer_freed(bh))
 852		return 0;
 853	/*
 854	 * __block_write_begin() could have dirtied some buffers. Clean
 855	 * the dirty bit as jbd2_journal_get_write_access() could complain
 856	 * otherwise about fs integrity issues. Setting of the dirty bit
 857	 * by __block_write_begin() isn't a real problem here as we clear
 858	 * the bit before releasing a page lock and thus writeback cannot
 859	 * ever write the buffer.
 860	 */
 861	if (dirty)
 862		clear_buffer_dirty(bh);
 
 863	ret = ext4_journal_get_write_access(handle, bh);
 864	if (!ret && dirty)
 865		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 866	return ret;
 867}
 868
 869static int ext4_get_block_write(struct inode *inode, sector_t iblock,
 870		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871static int ext4_write_begin(struct file *file, struct address_space *mapping,
 872			    loff_t pos, unsigned len, unsigned flags,
 873			    struct page **pagep, void **fsdata)
 874{
 875	struct inode *inode = mapping->host;
 876	int ret, needed_blocks;
 877	handle_t *handle;
 878	int retries = 0;
 879	struct page *page;
 880	pgoff_t index;
 881	unsigned from, to;
 882
 
 
 
 883	trace_ext4_write_begin(inode, pos, len, flags);
 884	/*
 885	 * Reserve one block more for addition to orphan list in case
 886	 * we allocate blocks but write fails for some reason
 887	 */
 888	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 889	index = pos >> PAGE_CACHE_SHIFT;
 890	from = pos & (PAGE_CACHE_SIZE - 1);
 891	to = from + len;
 892
 893retry:
 894	handle = ext4_journal_start(inode, needed_blocks);
 895	if (IS_ERR(handle)) {
 896		ret = PTR_ERR(handle);
 897		goto out;
 
 
 898	}
 899
 900	/* We cannot recurse into the filesystem as the transaction is already
 901	 * started */
 902	flags |= AOP_FLAG_NOFS;
 903
 
 
 
 
 904	page = grab_cache_page_write_begin(mapping, index, flags);
 905	if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906		ext4_journal_stop(handle);
 907		ret = -ENOMEM;
 908		goto out;
 909	}
 910	*pagep = page;
 
 911
 
 
 
 
 
 
 
 
 912	if (ext4_should_dioread_nolock(inode))
 913		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 914	else
 915		ret = __block_write_begin(page, pos, len, ext4_get_block);
 916
 917	if (!ret && ext4_should_journal_data(inode)) {
 918		ret = walk_page_buffers(handle, page_buffers(page),
 919				from, to, NULL, do_journal_get_write_access);
 
 920	}
 921
 922	if (ret) {
 
 
 
 923		unlock_page(page);
 924		page_cache_release(page);
 925		/*
 926		 * __block_write_begin may have instantiated a few blocks
 927		 * outside i_size.  Trim these off again. Don't need
 928		 * i_size_read because we hold i_mutex.
 929		 *
 930		 * Add inode to orphan list in case we crash before
 931		 * truncate finishes
 932		 */
 933		if (pos + len > inode->i_size && ext4_can_truncate(inode))
 934			ext4_orphan_add(handle, inode);
 935
 936		ext4_journal_stop(handle);
 937		if (pos + len > inode->i_size) {
 938			ext4_truncate_failed_write(inode);
 939			/*
 940			 * If truncate failed early the inode might
 941			 * still be on the orphan list; we need to
 942			 * make sure the inode is removed from the
 943			 * orphan list in that case.
 944			 */
 945			if (inode->i_nlink)
 946				ext4_orphan_del(NULL, inode);
 947		}
 948	}
 949
 950	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 951		goto retry;
 952out:
 
 
 
 
 953	return ret;
 954}
 955
 956/* For write_end() in data=journal mode */
 957static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 958{
 
 959	if (!buffer_mapped(bh) || buffer_freed(bh))
 960		return 0;
 961	set_buffer_uptodate(bh);
 962	return ext4_handle_dirty_metadata(handle, NULL, bh);
 
 
 
 963}
 964
 965static int ext4_generic_write_end(struct file *file,
 966				  struct address_space *mapping,
 967				  loff_t pos, unsigned len, unsigned copied,
 968				  struct page *page, void *fsdata)
 
 
 
 
 
 
 
 969{
 970	int i_size_changed = 0;
 971	struct inode *inode = mapping->host;
 972	handle_t *handle = ext4_journal_current_handle();
 
 
 
 
 
 
 973
 974	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 975
 
 
 
 
 
 
 
 
 
 
 
 976	/*
 977	 * No need to use i_size_read() here, the i_size
 978	 * cannot change under us because we hold i_mutex.
 979	 *
 980	 * But it's important to update i_size while still holding page lock:
 981	 * page writeout could otherwise come in and zero beyond i_size.
 
 
 
 982	 */
 983	if (pos + copied > inode->i_size) {
 984		i_size_write(inode, pos + copied);
 985		i_size_changed = 1;
 986	}
 987
 988	if (pos + copied >  EXT4_I(inode)->i_disksize) {
 989		/* We need to mark inode dirty even if
 990		 * new_i_size is less that inode->i_size
 991		 * bu greater than i_disksize.(hint delalloc)
 992		 */
 993		ext4_update_i_disksize(inode, (pos + copied));
 994		i_size_changed = 1;
 995	}
 996	unlock_page(page);
 997	page_cache_release(page);
 998
 
 
 999	/*
1000	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1001	 * makes the holding time of page lock longer. Second, it forces lock
1002	 * ordering of page lock and transaction start for journaling
1003	 * filesystems.
1004	 */
1005	if (i_size_changed)
1006		ext4_mark_inode_dirty(handle, inode);
1007
1008	return copied;
1009}
1010
1011/*
1012 * We need to pick up the new inode size which generic_commit_write gave us
1013 * `file' can be NULL - eg, when called from page_symlink().
1014 *
1015 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1016 * buffers are managed internally.
1017 */
1018static int ext4_ordered_write_end(struct file *file,
1019				  struct address_space *mapping,
1020				  loff_t pos, unsigned len, unsigned copied,
1021				  struct page *page, void *fsdata)
1022{
1023	handle_t *handle = ext4_journal_current_handle();
1024	struct inode *inode = mapping->host;
1025	int ret = 0, ret2;
1026
1027	trace_ext4_ordered_write_end(inode, pos, len, copied);
1028	ret = ext4_jbd2_file_inode(handle, inode);
1029
1030	if (ret == 0) {
1031		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1032							page, fsdata);
1033		copied = ret2;
1034		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1035			/* if we have allocated more blocks and copied
1036			 * less. We will have blocks allocated outside
1037			 * inode->i_size. So truncate them
1038			 */
1039			ext4_orphan_add(handle, inode);
1040		if (ret2 < 0)
1041			ret = ret2;
1042	} else {
1043		unlock_page(page);
1044		page_cache_release(page);
1045	}
1046
 
 
 
 
 
 
 
1047	ret2 = ext4_journal_stop(handle);
1048	if (!ret)
1049		ret = ret2;
1050
1051	if (pos + len > inode->i_size) {
1052		ext4_truncate_failed_write(inode);
1053		/*
1054		 * If truncate failed early the inode might still be
1055		 * on the orphan list; we need to make sure the inode
1056		 * is removed from the orphan list in that case.
1057		 */
1058		if (inode->i_nlink)
1059			ext4_orphan_del(NULL, inode);
1060	}
1061
1062
1063	return ret ? ret : copied;
1064}
1065
1066static int ext4_writeback_write_end(struct file *file,
1067				    struct address_space *mapping,
1068				    loff_t pos, unsigned len, unsigned copied,
1069				    struct page *page, void *fsdata)
 
 
 
 
1070{
1071	handle_t *handle = ext4_journal_current_handle();
1072	struct inode *inode = mapping->host;
1073	int ret = 0, ret2;
1074
1075	trace_ext4_writeback_write_end(inode, pos, len, copied);
1076	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1077							page, fsdata);
1078	copied = ret2;
1079	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1080		/* if we have allocated more blocks and copied
1081		 * less. We will have blocks allocated outside
1082		 * inode->i_size. So truncate them
1083		 */
1084		ext4_orphan_add(handle, inode);
1085
1086	if (ret2 < 0)
1087		ret = ret2;
 
 
 
 
 
1088
1089	ret2 = ext4_journal_stop(handle);
1090	if (!ret)
1091		ret = ret2;
1092
1093	if (pos + len > inode->i_size) {
1094		ext4_truncate_failed_write(inode);
1095		/*
1096		 * If truncate failed early the inode might still be
1097		 * on the orphan list; we need to make sure the inode
1098		 * is removed from the orphan list in that case.
1099		 */
1100		if (inode->i_nlink)
1101			ext4_orphan_del(NULL, inode);
1102	}
1103
1104	return ret ? ret : copied;
1105}
1106
1107static int ext4_journalled_write_end(struct file *file,
1108				     struct address_space *mapping,
1109				     loff_t pos, unsigned len, unsigned copied,
1110				     struct page *page, void *fsdata)
1111{
1112	handle_t *handle = ext4_journal_current_handle();
1113	struct inode *inode = mapping->host;
 
1114	int ret = 0, ret2;
1115	int partial = 0;
1116	unsigned from, to;
1117	loff_t new_i_size;
 
 
1118
1119	trace_ext4_journalled_write_end(inode, pos, len, copied);
1120	from = pos & (PAGE_CACHE_SIZE - 1);
1121	to = from + len;
1122
1123	BUG_ON(!ext4_handle_valid(handle));
1124
1125	if (copied < len) {
1126		if (!PageUptodate(page))
1127			copied = 0;
1128		page_zero_new_buffers(page, from+copied, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129	}
1130
1131	ret = walk_page_buffers(handle, page_buffers(page), from,
1132				to, &partial, write_end_fn);
1133	if (!partial)
1134		SetPageUptodate(page);
1135	new_i_size = pos + copied;
1136	if (new_i_size > inode->i_size)
1137		i_size_write(inode, pos+copied);
1138	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1139	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1140	if (new_i_size > EXT4_I(inode)->i_disksize) {
1141		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
1142		ret2 = ext4_mark_inode_dirty(handle, inode);
1143		if (!ret)
1144			ret = ret2;
1145	}
1146
1147	unlock_page(page);
1148	page_cache_release(page);
1149	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1150		/* if we have allocated more blocks and copied
1151		 * less. We will have blocks allocated outside
1152		 * inode->i_size. So truncate them
1153		 */
1154		ext4_orphan_add(handle, inode);
1155
 
1156	ret2 = ext4_journal_stop(handle);
1157	if (!ret)
1158		ret = ret2;
1159	if (pos + len > inode->i_size) {
1160		ext4_truncate_failed_write(inode);
1161		/*
1162		 * If truncate failed early the inode might still be
1163		 * on the orphan list; we need to make sure the inode
1164		 * is removed from the orphan list in that case.
1165		 */
1166		if (inode->i_nlink)
1167			ext4_orphan_del(NULL, inode);
1168	}
1169
1170	return ret ? ret : copied;
1171}
1172
1173/*
1174 * Reserve a single cluster located at lblock
1175 */
1176static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1177{
1178	int retries = 0;
1179	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1180	struct ext4_inode_info *ei = EXT4_I(inode);
1181	unsigned int md_needed;
1182	int ret;
1183	ext4_lblk_t save_last_lblock;
1184	int save_len;
1185
1186	/*
1187	 * We will charge metadata quota at writeout time; this saves
1188	 * us from metadata over-estimation, though we may go over by
1189	 * a small amount in the end.  Here we just reserve for data.
1190	 */
1191	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1192	if (ret)
1193		return ret;
1194
1195	/*
1196	 * recalculate the amount of metadata blocks to reserve
1197	 * in order to allocate nrblocks
1198	 * worse case is one extent per block
1199	 */
1200repeat:
1201	spin_lock(&ei->i_block_reservation_lock);
1202	/*
1203	 * ext4_calc_metadata_amount() has side effects, which we have
1204	 * to be prepared undo if we fail to claim space.
1205	 */
1206	save_len = ei->i_da_metadata_calc_len;
1207	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1208	md_needed = EXT4_NUM_B2C(sbi,
1209				 ext4_calc_metadata_amount(inode, lblock));
1210	trace_ext4_da_reserve_space(inode, md_needed);
1211
1212	/*
1213	 * We do still charge estimated metadata to the sb though;
1214	 * we cannot afford to run out of free blocks.
1215	 */
1216	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1217		ei->i_da_metadata_calc_len = save_len;
1218		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1219		spin_unlock(&ei->i_block_reservation_lock);
1220		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1221			yield();
1222			goto repeat;
1223		}
1224		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1225		return -ENOSPC;
1226	}
1227	ei->i_reserved_data_blocks++;
1228	ei->i_reserved_meta_blocks += md_needed;
1229	spin_unlock(&ei->i_block_reservation_lock);
1230
1231	return 0;       /* success */
1232}
1233
1234static void ext4_da_release_space(struct inode *inode, int to_free)
1235{
1236	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1237	struct ext4_inode_info *ei = EXT4_I(inode);
1238
1239	if (!to_free)
1240		return;		/* Nothing to release, exit */
1241
1242	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1243
1244	trace_ext4_da_release_space(inode, to_free);
1245	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1246		/*
1247		 * if there aren't enough reserved blocks, then the
1248		 * counter is messed up somewhere.  Since this
1249		 * function is called from invalidate page, it's
1250		 * harmless to return without any action.
1251		 */
1252		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1253			 "ino %lu, to_free %d with only %d reserved "
1254			 "data blocks", inode->i_ino, to_free,
1255			 ei->i_reserved_data_blocks);
1256		WARN_ON(1);
1257		to_free = ei->i_reserved_data_blocks;
1258	}
1259	ei->i_reserved_data_blocks -= to_free;
1260
1261	if (ei->i_reserved_data_blocks == 0) {
1262		/*
1263		 * We can release all of the reserved metadata blocks
1264		 * only when we have written all of the delayed
1265		 * allocation blocks.
1266		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1267		 * i_reserved_data_blocks, etc. refer to number of clusters.
1268		 */
1269		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1270				   ei->i_reserved_meta_blocks);
1271		ei->i_reserved_meta_blocks = 0;
1272		ei->i_da_metadata_calc_len = 0;
1273	}
1274
1275	/* update fs dirty data blocks counter */
1276	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1277
1278	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1279
1280	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1281}
1282
1283static void ext4_da_page_release_reservation(struct page *page,
1284					     unsigned long offset)
1285{
1286	int to_release = 0;
1287	struct buffer_head *head, *bh;
1288	unsigned int curr_off = 0;
1289	struct inode *inode = page->mapping->host;
1290	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1291	int num_clusters;
1292
1293	head = page_buffers(page);
1294	bh = head;
1295	do {
1296		unsigned int next_off = curr_off + bh->b_size;
1297
1298		if ((offset <= curr_off) && (buffer_delay(bh))) {
1299			to_release++;
1300			clear_buffer_delay(bh);
1301			clear_buffer_da_mapped(bh);
1302		}
1303		curr_off = next_off;
1304	} while ((bh = bh->b_this_page) != head);
1305
1306	/* If we have released all the blocks belonging to a cluster, then we
1307	 * need to release the reserved space for that cluster. */
1308	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1309	while (num_clusters > 0) {
1310		ext4_fsblk_t lblk;
1311		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1312			((num_clusters - 1) << sbi->s_cluster_bits);
1313		if (sbi->s_cluster_ratio == 1 ||
1314		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1315			ext4_da_release_space(inode, 1);
1316
1317		num_clusters--;
1318	}
1319}
1320
1321/*
1322 * Delayed allocation stuff
1323 */
1324
1325/*
1326 * mpage_da_submit_io - walks through extent of pages and try to write
1327 * them with writepage() call back
1328 *
1329 * @mpd->inode: inode
1330 * @mpd->first_page: first page of the extent
1331 * @mpd->next_page: page after the last page of the extent
1332 *
1333 * By the time mpage_da_submit_io() is called we expect all blocks
1334 * to be allocated. this may be wrong if allocation failed.
1335 *
1336 * As pages are already locked by write_cache_pages(), we can't use it
1337 */
1338static int mpage_da_submit_io(struct mpage_da_data *mpd,
1339			      struct ext4_map_blocks *map)
1340{
1341	struct pagevec pvec;
1342	unsigned long index, end;
1343	int ret = 0, err, nr_pages, i;
1344	struct inode *inode = mpd->inode;
1345	struct address_space *mapping = inode->i_mapping;
1346	loff_t size = i_size_read(inode);
1347	unsigned int len, block_start;
1348	struct buffer_head *bh, *page_bufs = NULL;
1349	int journal_data = ext4_should_journal_data(inode);
1350	sector_t pblock = 0, cur_logical = 0;
1351	struct ext4_io_submit io_submit;
1352
1353	BUG_ON(mpd->next_page <= mpd->first_page);
1354	memset(&io_submit, 0, sizeof(io_submit));
1355	/*
1356	 * We need to start from the first_page to the next_page - 1
1357	 * to make sure we also write the mapped dirty buffer_heads.
1358	 * If we look at mpd->b_blocknr we would only be looking
1359	 * at the currently mapped buffer_heads.
1360	 */
1361	index = mpd->first_page;
1362	end = mpd->next_page - 1;
1363
1364	pagevec_init(&pvec, 0);
1365	while (index <= end) {
1366		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1367		if (nr_pages == 0)
1368			break;
1369		for (i = 0; i < nr_pages; i++) {
1370			int commit_write = 0, skip_page = 0;
1371			struct page *page = pvec.pages[i];
1372
1373			index = page->index;
1374			if (index > end)
1375				break;
1376
1377			if (index == size >> PAGE_CACHE_SHIFT)
1378				len = size & ~PAGE_CACHE_MASK;
1379			else
1380				len = PAGE_CACHE_SIZE;
1381			if (map) {
1382				cur_logical = index << (PAGE_CACHE_SHIFT -
1383							inode->i_blkbits);
1384				pblock = map->m_pblk + (cur_logical -
1385							map->m_lblk);
1386			}
1387			index++;
1388
1389			BUG_ON(!PageLocked(page));
1390			BUG_ON(PageWriteback(page));
1391
1392			/*
1393			 * If the page does not have buffers (for
1394			 * whatever reason), try to create them using
1395			 * __block_write_begin.  If this fails,
1396			 * skip the page and move on.
1397			 */
1398			if (!page_has_buffers(page)) {
1399				if (__block_write_begin(page, 0, len,
1400						noalloc_get_block_write)) {
1401				skip_page:
1402					unlock_page(page);
1403					continue;
1404				}
1405				commit_write = 1;
1406			}
1407
1408			bh = page_bufs = page_buffers(page);
1409			block_start = 0;
1410			do {
1411				if (!bh)
1412					goto skip_page;
1413				if (map && (cur_logical >= map->m_lblk) &&
1414				    (cur_logical <= (map->m_lblk +
1415						     (map->m_len - 1)))) {
1416					if (buffer_delay(bh)) {
1417						clear_buffer_delay(bh);
1418						bh->b_blocknr = pblock;
1419					}
1420					if (buffer_da_mapped(bh))
1421						clear_buffer_da_mapped(bh);
1422					if (buffer_unwritten(bh) ||
1423					    buffer_mapped(bh))
1424						BUG_ON(bh->b_blocknr != pblock);
1425					if (map->m_flags & EXT4_MAP_UNINIT)
1426						set_buffer_uninit(bh);
1427					clear_buffer_unwritten(bh);
1428				}
1429
1430				/*
1431				 * skip page if block allocation undone and
1432				 * block is dirty
1433				 */
1434				if (ext4_bh_delay_or_unwritten(NULL, bh))
1435					skip_page = 1;
1436				bh = bh->b_this_page;
1437				block_start += bh->b_size;
1438				cur_logical++;
1439				pblock++;
1440			} while (bh != page_bufs);
1441
1442			if (skip_page)
1443				goto skip_page;
1444
1445			if (commit_write)
1446				/* mark the buffer_heads as dirty & uptodate */
1447				block_commit_write(page, 0, len);
1448
1449			clear_page_dirty_for_io(page);
1450			/*
1451			 * Delalloc doesn't support data journalling,
1452			 * but eventually maybe we'll lift this
1453			 * restriction.
1454			 */
1455			if (unlikely(journal_data && PageChecked(page)))
1456				err = __ext4_journalled_writepage(page, len);
1457			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1458				err = ext4_bio_write_page(&io_submit, page,
1459							  len, mpd->wbc);
1460			else if (buffer_uninit(page_bufs)) {
1461				ext4_set_bh_endio(page_bufs, inode);
1462				err = block_write_full_page_endio(page,
1463					noalloc_get_block_write,
1464					mpd->wbc, ext4_end_io_buffer_write);
1465			} else
1466				err = block_write_full_page(page,
1467					noalloc_get_block_write, mpd->wbc);
1468
1469			if (!err)
1470				mpd->pages_written++;
1471			/*
1472			 * In error case, we have to continue because
1473			 * remaining pages are still locked
1474			 */
1475			if (ret == 0)
1476				ret = err;
1477		}
1478		pagevec_release(&pvec);
1479	}
1480	ext4_io_submit(&io_submit);
1481	return ret;
1482}
1483
1484static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
 
1485{
1486	int nr_pages, i;
1487	pgoff_t index, end;
1488	struct pagevec pvec;
1489	struct inode *inode = mpd->inode;
1490	struct address_space *mapping = inode->i_mapping;
1491
 
 
 
 
 
1492	index = mpd->first_page;
1493	end   = mpd->next_page - 1;
 
 
 
 
 
 
 
 
1494	while (index <= end) {
1495		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1496		if (nr_pages == 0)
1497			break;
1498		for (i = 0; i < nr_pages; i++) {
1499			struct page *page = pvec.pages[i];
1500			if (page->index > end)
1501				break;
1502			BUG_ON(!PageLocked(page));
1503			BUG_ON(PageWriteback(page));
1504			block_invalidatepage(page, 0);
1505			ClearPageUptodate(page);
 
 
 
 
1506			unlock_page(page);
1507		}
1508		index = pvec.pages[nr_pages - 1]->index + 1;
1509		pagevec_release(&pvec);
1510	}
1511	return;
1512}
1513
1514static void ext4_print_free_blocks(struct inode *inode)
1515{
1516	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1517	struct super_block *sb = inode->i_sb;
 
1518
1519	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1520	       EXT4_C2B(EXT4_SB(inode->i_sb),
1521			ext4_count_free_clusters(inode->i_sb)));
1522	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1523	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1524	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1525		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1526	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1527	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1528		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1529	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1530	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1531		 EXT4_I(inode)->i_reserved_data_blocks);
1532	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1533	       EXT4_I(inode)->i_reserved_meta_blocks);
1534	return;
1535}
1536
1537/*
1538 * mpage_da_map_and_submit - go through given space, map them
1539 *       if necessary, and then submit them for I/O
1540 *
1541 * @mpd - bh describing space
1542 *
1543 * The function skips space we know is already mapped to disk blocks.
1544 *
1545 */
1546static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1547{
1548	int err, blks, get_blocks_flags;
1549	struct ext4_map_blocks map, *mapp = NULL;
1550	sector_t next = mpd->b_blocknr;
1551	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1552	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1553	handle_t *handle = NULL;
1554
1555	/*
1556	 * If the blocks are mapped already, or we couldn't accumulate
1557	 * any blocks, then proceed immediately to the submission stage.
1558	 */
1559	if ((mpd->b_size == 0) ||
1560	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1561	     !(mpd->b_state & (1 << BH_Delay)) &&
1562	     !(mpd->b_state & (1 << BH_Unwritten))))
1563		goto submit_io;
1564
1565	handle = ext4_journal_current_handle();
1566	BUG_ON(!handle);
1567
1568	/*
1569	 * Call ext4_map_blocks() to allocate any delayed allocation
1570	 * blocks, or to convert an uninitialized extent to be
1571	 * initialized (in the case where we have written into
1572	 * one or more preallocated blocks).
1573	 *
1574	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1575	 * indicate that we are on the delayed allocation path.  This
1576	 * affects functions in many different parts of the allocation
1577	 * call path.  This flag exists primarily because we don't
1578	 * want to change *many* call functions, so ext4_map_blocks()
1579	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1580	 * inode's allocation semaphore is taken.
1581	 *
1582	 * If the blocks in questions were delalloc blocks, set
1583	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1584	 * variables are updated after the blocks have been allocated.
1585	 */
1586	map.m_lblk = next;
1587	map.m_len = max_blocks;
1588	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1589	if (ext4_should_dioread_nolock(mpd->inode))
1590		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1591	if (mpd->b_state & (1 << BH_Delay))
1592		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1593
1594	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1595	if (blks < 0) {
1596		struct super_block *sb = mpd->inode->i_sb;
1597
1598		err = blks;
1599		/*
1600		 * If get block returns EAGAIN or ENOSPC and there
1601		 * appears to be free blocks we will just let
1602		 * mpage_da_submit_io() unlock all of the pages.
1603		 */
1604		if (err == -EAGAIN)
1605			goto submit_io;
1606
1607		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1608			mpd->retval = err;
1609			goto submit_io;
1610		}
1611
1612		/*
1613		 * get block failure will cause us to loop in
1614		 * writepages, because a_ops->writepage won't be able
1615		 * to make progress. The page will be redirtied by
1616		 * writepage and writepages will again try to write
1617		 * the same.
1618		 */
1619		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1620			ext4_msg(sb, KERN_CRIT,
1621				 "delayed block allocation failed for inode %lu "
1622				 "at logical offset %llu with max blocks %zd "
1623				 "with error %d", mpd->inode->i_ino,
1624				 (unsigned long long) next,
1625				 mpd->b_size >> mpd->inode->i_blkbits, err);
1626			ext4_msg(sb, KERN_CRIT,
1627				"This should not happen!! Data will be lost\n");
1628			if (err == -ENOSPC)
1629				ext4_print_free_blocks(mpd->inode);
1630		}
1631		/* invalidate all the pages */
1632		ext4_da_block_invalidatepages(mpd);
1633
1634		/* Mark this page range as having been completed */
1635		mpd->io_done = 1;
1636		return;
1637	}
1638	BUG_ON(blks == 0);
1639
1640	mapp = &map;
1641	if (map.m_flags & EXT4_MAP_NEW) {
1642		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1643		int i;
1644
1645		for (i = 0; i < map.m_len; i++)
1646			unmap_underlying_metadata(bdev, map.m_pblk + i);
1647
1648		if (ext4_should_order_data(mpd->inode)) {
1649			err = ext4_jbd2_file_inode(handle, mpd->inode);
1650			if (err) {
1651				/* Only if the journal is aborted */
1652				mpd->retval = err;
1653				goto submit_io;
1654			}
1655		}
1656	}
1657
1658	/*
1659	 * Update on-disk size along with block allocation.
1660	 */
1661	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1662	if (disksize > i_size_read(mpd->inode))
1663		disksize = i_size_read(mpd->inode);
1664	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1665		ext4_update_i_disksize(mpd->inode, disksize);
1666		err = ext4_mark_inode_dirty(handle, mpd->inode);
1667		if (err)
1668			ext4_error(mpd->inode->i_sb,
1669				   "Failed to mark inode %lu dirty",
1670				   mpd->inode->i_ino);
1671	}
1672
1673submit_io:
1674	mpage_da_submit_io(mpd, mapp);
1675	mpd->io_done = 1;
1676}
1677
1678#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1679		(1 << BH_Delay) | (1 << BH_Unwritten))
1680
1681/*
1682 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 
 
 
1683 *
1684 * @mpd->lbh - extent of blocks
1685 * @logical - logical number of the block in the file
1686 * @bh - bh of the block (used to access block's state)
1687 *
1688 * the function is used to collect contig. blocks in same state
1689 */
1690static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1691				   sector_t logical, size_t b_size,
1692				   unsigned long b_state)
1693{
1694	sector_t next;
1695	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
 
1696
1697	/*
1698	 * XXX Don't go larger than mballoc is willing to allocate
1699	 * This is a stopgap solution.  We eventually need to fold
1700	 * mpage_da_submit_io() into this function and then call
1701	 * ext4_map_blocks() multiple times in a loop
1702	 */
1703	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1704		goto flush_it;
1705
1706	/* check if thereserved journal credits might overflow */
1707	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1708		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1709			/*
1710			 * With non-extent format we are limited by the journal
1711			 * credit available.  Total credit needed to insert
1712			 * nrblocks contiguous blocks is dependent on the
1713			 * nrblocks.  So limit nrblocks.
1714			 */
1715			goto flush_it;
1716		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1717				EXT4_MAX_TRANS_DATA) {
1718			/*
1719			 * Adding the new buffer_head would make it cross the
1720			 * allowed limit for which we have journal credit
1721			 * reserved. So limit the new bh->b_size
1722			 */
1723			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1724						mpd->inode->i_blkbits;
1725			/* we will do mpage_da_submit_io in the next loop */
 
 
 
 
1726		}
1727	}
1728	/*
1729	 * First block in the extent
1730	 */
1731	if (mpd->b_size == 0) {
1732		mpd->b_blocknr = logical;
1733		mpd->b_size = b_size;
1734		mpd->b_state = b_state & BH_FLAGS;
1735		return;
1736	}
1737
1738	next = mpd->b_blocknr + nrblocks;
1739	/*
1740	 * Can we merge the block to our big extent?
1741	 */
1742	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1743		mpd->b_size += b_size;
1744		return;
1745	}
1746
1747flush_it:
1748	/*
1749	 * We couldn't merge the block to our extent, so we
1750	 * need to flush current  extent and start new one
1751	 */
1752	mpage_da_map_and_submit(mpd);
1753	return;
1754}
1755
1756static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1757{
1758	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1759}
1760
1761/*
1762 * This function is grabs code from the very beginning of
1763 * ext4_map_blocks, but assumes that the caller is from delayed write
1764 * time. This function looks up the requested blocks and sets the
1765 * buffer delay bit under the protection of i_data_sem.
1766 */
1767static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1768			      struct ext4_map_blocks *map,
1769			      struct buffer_head *bh)
1770{
 
1771	int retval;
1772	sector_t invalid_block = ~((sector_t) 0xffff);
 
 
 
 
 
1773
1774	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1775		invalid_block = ~0;
1776
1777	map->m_flags = 0;
1778	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1779		  "logical block %lu\n", inode->i_ino, map->m_len,
1780		  (unsigned long) map->m_lblk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	/*
1782	 * Try to see if we can get the block without requesting a new
1783	 * file system block.
1784	 */
1785	down_read((&EXT4_I(inode)->i_data_sem));
1786	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 
 
1787		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1788	else
1789		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1790
 
1791	if (retval == 0) {
 
 
1792		/*
1793		 * XXX: __block_prepare_write() unmaps passed block,
1794		 * is it OK?
1795		 */
1796		/* If the block was allocated from previously allocated cluster,
1797		 * then we dont need to reserve it again. */
1798		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1799			retval = ext4_da_reserve_space(inode, iblock);
1800			if (retval)
1801				/* not enough space to reserve */
1802				goto out_unlock;
1803		}
1804
1805		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1806		 * and it should not appear on the bh->b_state.
1807		 */
1808		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
 
1809
1810		map_bh(bh, inode->i_sb, invalid_block);
1811		set_buffer_new(bh);
1812		set_buffer_delay(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813	}
1814
1815out_unlock:
1816	up_read((&EXT4_I(inode)->i_data_sem));
1817
1818	return retval;
1819}
1820
1821/*
1822 * This is a special get_blocks_t callback which is used by
1823 * ext4_da_write_begin().  It will either return mapped block or
1824 * reserve space for a single block.
1825 *
1826 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1827 * We also have b_blocknr = -1 and b_bdev initialized properly
1828 *
1829 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1830 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1831 * initialized properly.
1832 */
1833static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1834				  struct buffer_head *bh, int create)
1835{
1836	struct ext4_map_blocks map;
1837	int ret = 0;
1838
1839	BUG_ON(create == 0);
1840	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1841
1842	map.m_lblk = iblock;
1843	map.m_len = 1;
1844
1845	/*
1846	 * first, we need to know whether the block is allocated already
1847	 * preallocated blocks are unmapped but should treated
1848	 * the same as allocated blocks.
1849	 */
1850	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1851	if (ret <= 0)
1852		return ret;
1853
1854	map_bh(bh, inode->i_sb, map.m_pblk);
1855	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1856
1857	if (buffer_unwritten(bh)) {
1858		/* A delayed write to unwritten bh should be marked
1859		 * new and mapped.  Mapped ensures that we don't do
1860		 * get_block multiple times when we write to the same
1861		 * offset and new ensures that we do proper zero out
1862		 * for partial write.
1863		 */
1864		set_buffer_new(bh);
1865		set_buffer_mapped(bh);
1866	}
1867	return 0;
1868}
1869
1870/*
1871 * This function is used as a standard get_block_t calback function
1872 * when there is no desire to allocate any blocks.  It is used as a
1873 * callback function for block_write_begin() and block_write_full_page().
1874 * These functions should only try to map a single block at a time.
1875 *
1876 * Since this function doesn't do block allocations even if the caller
1877 * requests it by passing in create=1, it is critically important that
1878 * any caller checks to make sure that any buffer heads are returned
1879 * by this function are either all already mapped or marked for
1880 * delayed allocation before calling  block_write_full_page().  Otherwise,
1881 * b_blocknr could be left unitialized, and the page write functions will
1882 * be taken by surprise.
1883 */
1884static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1885				   struct buffer_head *bh_result, int create)
1886{
1887	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1888	return _ext4_get_block(inode, iblock, bh_result, 0);
1889}
1890
1891static int bget_one(handle_t *handle, struct buffer_head *bh)
1892{
1893	get_bh(bh);
1894	return 0;
1895}
1896
1897static int bput_one(handle_t *handle, struct buffer_head *bh)
1898{
1899	put_bh(bh);
1900	return 0;
1901}
1902
1903static int __ext4_journalled_writepage(struct page *page,
1904				       unsigned int len)
1905{
1906	struct address_space *mapping = page->mapping;
1907	struct inode *inode = mapping->host;
1908	struct buffer_head *page_bufs;
1909	handle_t *handle = NULL;
1910	int ret = 0;
1911	int err;
 
1912
1913	ClearPageChecked(page);
1914	page_bufs = page_buffers(page);
1915	BUG_ON(!page_bufs);
1916	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1917	/* As soon as we unlock the page, it can go away, but we have
1918	 * references to buffers so we are safe */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919	unlock_page(page);
1920
1921	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
1922	if (IS_ERR(handle)) {
1923		ret = PTR_ERR(handle);
1924		goto out;
 
1925	}
1926
1927	BUG_ON(!ext4_handle_valid(handle));
1928
1929	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1930				do_journal_get_write_access);
 
 
 
 
 
 
 
 
 
 
 
 
1931
1932	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933				write_end_fn);
 
1934	if (ret == 0)
1935		ret = err;
1936	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937	err = ext4_journal_stop(handle);
1938	if (!ret)
1939		ret = err;
1940
1941	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
 
 
1942	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1943out:
 
 
 
1944	return ret;
1945}
1946
1947static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1948static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1949
1950/*
1951 * Note that we don't need to start a transaction unless we're journaling data
1952 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1953 * need to file the inode to the transaction's list in ordered mode because if
1954 * we are writing back data added by write(), the inode is already there and if
1955 * we are writing back data modified via mmap(), no one guarantees in which
1956 * transaction the data will hit the disk. In case we are journaling data, we
1957 * cannot start transaction directly because transaction start ranks above page
1958 * lock so we have to do some magic.
1959 *
1960 * This function can get called via...
1961 *   - ext4_da_writepages after taking page lock (have journal handle)
1962 *   - journal_submit_inode_data_buffers (no journal handle)
1963 *   - shrink_page_list via pdflush (no journal handle)
1964 *   - grab_page_cache when doing write_begin (have journal handle)
1965 *
1966 * We don't do any block allocation in this function. If we have page with
1967 * multiple blocks we need to write those buffer_heads that are mapped. This
1968 * is important for mmaped based write. So if we do with blocksize 1K
1969 * truncate(f, 1024);
1970 * a = mmap(f, 0, 4096);
1971 * a[0] = 'a';
1972 * truncate(f, 4096);
1973 * we have in the page first buffer_head mapped via page_mkwrite call back
1974 * but other buffer_heads would be unmapped but dirty (dirty done via the
1975 * do_wp_page). So writepage should write the first block. If we modify
1976 * the mmap area beyond 1024 we will again get a page_fault and the
1977 * page_mkwrite callback will do the block allocation and mark the
1978 * buffer_heads mapped.
1979 *
1980 * We redirty the page if we have any buffer_heads that is either delay or
1981 * unwritten in the page.
1982 *
1983 * We can get recursively called as show below.
1984 *
1985 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1986 *		ext4_writepage()
1987 *
1988 * But since we don't do any block allocation we should not deadlock.
1989 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1990 */
1991static int ext4_writepage(struct page *page,
1992			  struct writeback_control *wbc)
1993{
1994	int ret = 0, commit_write = 0;
1995	loff_t size;
1996	unsigned int len;
1997	struct buffer_head *page_bufs = NULL;
1998	struct inode *inode = page->mapping->host;
 
 
 
 
 
 
 
 
1999
2000	trace_ext4_writepage(page);
2001	size = i_size_read(inode);
2002	if (page->index == size >> PAGE_CACHE_SHIFT)
2003		len = size & ~PAGE_CACHE_MASK;
 
2004	else
2005		len = PAGE_CACHE_SIZE;
2006
 
2007	/*
2008	 * If the page does not have buffers (for whatever reason),
2009	 * try to create them using __block_write_begin.  If this
2010	 * fails, redirty the page and move on.
2011	 */
2012	if (!page_has_buffers(page)) {
2013		if (__block_write_begin(page, 0, len,
2014					noalloc_get_block_write)) {
2015		redirty_page:
2016			redirty_page_for_writepage(wbc, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017			unlock_page(page);
2018			return 0;
2019		}
2020		commit_write = 1;
2021	}
2022	page_bufs = page_buffers(page);
2023	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2024			      ext4_bh_delay_or_unwritten)) {
2025		/*
2026		 * We don't want to do block allocation, so redirty
2027		 * the page and return.  We may reach here when we do
2028		 * a journal commit via journal_submit_inode_data_buffers.
2029		 * We can also reach here via shrink_page_list but it
2030		 * should never be for direct reclaim so warn if that
2031		 * happens
2032		 */
2033		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2034								PF_MEMALLOC);
2035		goto redirty_page;
2036	}
2037	if (commit_write)
2038		/* now mark the buffer_heads as dirty and uptodate */
2039		block_commit_write(page, 0, len);
2040
2041	if (PageChecked(page) && ext4_should_journal_data(inode))
2042		/*
2043		 * It's mmapped pagecache.  Add buffers and journal it.  There
2044		 * doesn't seem much point in redirtying the page here.
2045		 */
2046		return __ext4_journalled_writepage(page, len);
2047
2048	if (buffer_uninit(page_bufs)) {
2049		ext4_set_bh_endio(page_bufs, inode);
2050		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2051					    wbc, ext4_end_io_buffer_write);
2052	} else
2053		ret = block_write_full_page(page, noalloc_get_block_write,
2054					    wbc);
2055
 
 
 
2056	return ret;
2057}
2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059/*
2060 * This is called via ext4_da_writepages() to
2061 * calculate the total number of credits to reserve to fit
2062 * a single extent allocation into a single transaction,
2063 * ext4_da_writpeages() will loop calling this before
2064 * the block allocation.
2065 */
 
2066
2067static int ext4_da_writepages_trans_blocks(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068{
2069	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070
 
2071	/*
2072	 * With non-extent format the journal credit needed to
2073	 * insert nrblocks contiguous block is dependent on
2074	 * number of contiguous block. So we will limit
2075	 * number of contiguous block to a sane value
2076	 */
2077	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2078	    (max_blocks > EXT4_MAX_TRANS_DATA))
2079		max_blocks = EXT4_MAX_TRANS_DATA;
2080
2081	return ext4_chunk_trans_blocks(inode, max_blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084/*
2085 * write_cache_pages_da - walk the list of dirty pages of the given
2086 * address space and accumulate pages that need writing, and call
2087 * mpage_da_map_and_submit to map a single contiguous memory region
2088 * and then write them.
2089 */
2090static int write_cache_pages_da(struct address_space *mapping,
2091				struct writeback_control *wbc,
2092				struct mpage_da_data *mpd,
2093				pgoff_t *done_index)
2094{
2095	struct buffer_head	*bh, *head;
2096	struct inode		*inode = mapping->host;
2097	struct pagevec		pvec;
2098	unsigned int		nr_pages;
2099	sector_t		logical;
2100	pgoff_t			index, end;
2101	long			nr_to_write = wbc->nr_to_write;
2102	int			i, tag, ret = 0;
2103
2104	memset(mpd, 0, sizeof(struct mpage_da_data));
2105	mpd->wbc = wbc;
2106	mpd->inode = inode;
2107	pagevec_init(&pvec, 0);
2108	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2109	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2110
2111	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112		tag = PAGECACHE_TAG_TOWRITE;
2113	else
2114		tag = PAGECACHE_TAG_DIRTY;
2115
2116	*done_index = index;
 
 
2117	while (index <= end) {
2118		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2119			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2120		if (nr_pages == 0)
2121			return 0;
2122
2123		for (i = 0; i < nr_pages; i++) {
2124			struct page *page = pvec.pages[i];
2125
2126			/*
2127			 * At this point, the page may be truncated or
2128			 * invalidated (changing page->mapping to NULL), or
2129			 * even swizzled back from swapper_space to tmpfs file
2130			 * mapping. However, page->index will not change
2131			 * because we have a reference on the page.
 
2132			 */
2133			if (page->index > end)
2134				goto out;
2135
2136			*done_index = page->index + 1;
2137
2138			/*
2139			 * If we can't merge this page, and we have
2140			 * accumulated an contiguous region, write it
2141			 */
2142			if ((mpd->next_page != page->index) &&
2143			    (mpd->next_page != mpd->first_page)) {
2144				mpage_da_map_and_submit(mpd);
2145				goto ret_extent_tail;
2146			}
2147
2148			lock_page(page);
2149
2150			/*
2151			 * If the page is no longer dirty, or its
2152			 * mapping no longer corresponds to inode we
2153			 * are writing (which means it has been
2154			 * truncated or invalidated), or the page is
2155			 * already under writeback and we are not
2156			 * doing a data integrity writeback, skip the page
2157			 */
2158			if (!PageDirty(page) ||
2159			    (PageWriteback(page) &&
2160			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2161			    unlikely(page->mapping != mapping)) {
2162				unlock_page(page);
2163				continue;
2164			}
2165
2166			wait_on_page_writeback(page);
2167			BUG_ON(PageWriteback(page));
2168
2169			if (mpd->next_page != page->index)
2170				mpd->first_page = page->index;
2171			mpd->next_page = page->index + 1;
2172			logical = (sector_t) page->index <<
2173				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2174
2175			if (!page_has_buffers(page)) {
2176				mpage_add_bh_to_extent(mpd, logical,
2177						       PAGE_CACHE_SIZE,
2178						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2179				if (mpd->io_done)
2180					goto ret_extent_tail;
2181			} else {
2182				/*
2183				 * Page with regular buffer heads,
2184				 * just add all dirty ones
2185				 */
2186				head = page_buffers(page);
2187				bh = head;
2188				do {
2189					BUG_ON(buffer_locked(bh));
2190					/*
2191					 * We need to try to allocate
2192					 * unmapped blocks in the same page.
2193					 * Otherwise we won't make progress
2194					 * with the page in ext4_writepage
2195					 */
2196					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2197						mpage_add_bh_to_extent(mpd, logical,
2198								       bh->b_size,
2199								       bh->b_state);
2200						if (mpd->io_done)
2201							goto ret_extent_tail;
2202					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2203						/*
2204						 * mapped dirty buffer. We need
2205						 * to update the b_state
2206						 * because we look at b_state
2207						 * in mpage_da_map_blocks.  We
2208						 * don't update b_size because
2209						 * if we find an unmapped
2210						 * buffer_head later we need to
2211						 * use the b_state flag of that
2212						 * buffer_head.
2213						 */
2214						if (mpd->b_size == 0)
2215							mpd->b_state = bh->b_state & BH_FLAGS;
2216					}
2217					logical++;
2218				} while ((bh = bh->b_this_page) != head);
2219			}
2220
2221			if (nr_to_write > 0) {
2222				nr_to_write--;
2223				if (nr_to_write == 0 &&
2224				    wbc->sync_mode == WB_SYNC_NONE)
2225					/*
2226					 * We stop writing back only if we are
2227					 * not doing integrity sync. In case of
2228					 * integrity sync we have to keep going
2229					 * because someone may be concurrently
2230					 * dirtying pages, and we might have
2231					 * synced a lot of newly appeared dirty
2232					 * pages, but have not synced all of the
2233					 * old dirty pages.
2234					 */
2235					goto out;
2236			}
2237		}
2238		pagevec_release(&pvec);
2239		cond_resched();
2240	}
 
2241	return 0;
2242ret_extent_tail:
2243	ret = MPAGE_DA_EXTENT_TAIL;
2244out:
2245	pagevec_release(&pvec);
2246	cond_resched();
2247	return ret;
2248}
2249
2250
2251static int ext4_da_writepages(struct address_space *mapping,
2252			      struct writeback_control *wbc)
2253{
2254	pgoff_t	index;
 
2255	int range_whole = 0;
 
2256	handle_t *handle = NULL;
2257	struct mpage_da_data mpd;
2258	struct inode *inode = mapping->host;
2259	int pages_written = 0;
2260	unsigned int max_pages;
2261	int range_cyclic, cycled = 1, io_done = 0;
2262	int needed_blocks, ret = 0;
2263	long desired_nr_to_write, nr_to_writebump = 0;
2264	loff_t range_start = wbc->range_start;
2265	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2266	pgoff_t done_index = 0;
2267	pgoff_t end;
2268	struct blk_plug plug;
 
2269
2270	trace_ext4_da_writepages(inode, wbc);
 
 
 
 
2271
2272	/*
2273	 * No pages to write? This is mainly a kludge to avoid starting
2274	 * a transaction for special inodes like journal inode on last iput()
2275	 * because that could violate lock ordering on umount
2276	 */
2277	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2278		return 0;
 
 
 
 
 
2279
2280	/*
2281	 * If the filesystem has aborted, it is read-only, so return
2282	 * right away instead of dumping stack traces later on that
2283	 * will obscure the real source of the problem.  We test
2284	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2285	 * the latter could be true if the filesystem is mounted
2286	 * read-only, and in that case, ext4_da_writepages should
2287	 * *never* be called, so if that ever happens, we would want
2288	 * the stack trace.
2289	 */
2290	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2291		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292
2293	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2294		range_whole = 1;
2295
2296	range_cyclic = wbc->range_cyclic;
2297	if (wbc->range_cyclic) {
2298		index = mapping->writeback_index;
2299		if (index)
2300			cycled = 0;
2301		wbc->range_start = index << PAGE_CACHE_SHIFT;
2302		wbc->range_end  = LLONG_MAX;
2303		wbc->range_cyclic = 0;
2304		end = -1;
2305	} else {
2306		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2307		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2308	}
2309
2310	/*
2311	 * This works around two forms of stupidity.  The first is in
2312	 * the writeback code, which caps the maximum number of pages
2313	 * written to be 1024 pages.  This is wrong on multiple
2314	 * levels; different architectues have a different page size,
2315	 * which changes the maximum amount of data which gets
2316	 * written.  Secondly, 4 megabytes is way too small.  XFS
2317	 * forces this value to be 16 megabytes by multiplying
2318	 * nr_to_write parameter by four, and then relies on its
2319	 * allocator to allocate larger extents to make them
2320	 * contiguous.  Unfortunately this brings us to the second
2321	 * stupidity, which is that ext4's mballoc code only allocates
2322	 * at most 2048 blocks.  So we force contiguous writes up to
2323	 * the number of dirty blocks in the inode, or
2324	 * sbi->max_writeback_mb_bump whichever is smaller.
2325	 */
2326	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2327	if (!range_cyclic && range_whole) {
2328		if (wbc->nr_to_write == LONG_MAX)
2329			desired_nr_to_write = wbc->nr_to_write;
2330		else
2331			desired_nr_to_write = wbc->nr_to_write * 8;
2332	} else
2333		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2334							   max_pages);
2335	if (desired_nr_to_write > max_pages)
2336		desired_nr_to_write = max_pages;
2337
2338	if (wbc->nr_to_write < desired_nr_to_write) {
2339		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2340		wbc->nr_to_write = desired_nr_to_write;
2341	}
2342
 
 
 
2343retry:
2344	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345		tag_pages_for_writeback(mapping, index, end);
2346
2347	blk_start_plug(&plug);
2348	while (!ret && wbc->nr_to_write > 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349
2350		/*
2351		 * we  insert one extent at a time. So we need
2352		 * credit needed for single extent allocation.
2353		 * journalled mode is currently not supported
2354		 * by delalloc
 
2355		 */
2356		BUG_ON(ext4_should_journal_data(inode));
2357		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2358
2359		/* start a new transaction*/
2360		handle = ext4_journal_start(inode, needed_blocks);
 
2361		if (IS_ERR(handle)) {
2362			ret = PTR_ERR(handle);
2363			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2364			       "%ld pages, ino %lu; err %d", __func__,
2365				wbc->nr_to_write, inode->i_ino, ret);
2366			blk_finish_plug(&plug);
2367			goto out_writepages;
 
 
2368		}
 
2369
 
 
 
 
 
2370		/*
2371		 * Now call write_cache_pages_da() to find the next
2372		 * contiguous region of logical blocks that need
2373		 * blocks to be allocated by ext4 and submit them.
 
 
 
 
 
2374		 */
2375		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2376		/*
2377		 * If we have a contiguous extent of pages and we
2378		 * haven't done the I/O yet, map the blocks and submit
2379		 * them for I/O.
2380		 */
2381		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2382			mpage_da_map_and_submit(&mpd);
2383			ret = MPAGE_DA_EXTENT_TAIL;
2384		}
2385		trace_ext4_da_write_pages(inode, &mpd);
2386		wbc->nr_to_write -= mpd.pages_written;
 
 
2387
2388		ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
2389
2390		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2391			/* commit the transaction which would
 
2392			 * free blocks released in the transaction
2393			 * and try again
2394			 */
2395			jbd2_journal_force_commit_nested(sbi->s_journal);
2396			ret = 0;
2397		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2398			/*
2399			 * Got one extent now try with rest of the pages.
2400			 * If mpd.retval is set -EIO, journal is aborted.
2401			 * So we don't need to write any more.
2402			 */
2403			pages_written += mpd.pages_written;
2404			ret = mpd.retval;
2405			io_done = 1;
2406		} else if (wbc->nr_to_write)
2407			/*
2408			 * There is no more writeout needed
2409			 * or we requested for a noblocking writeout
2410			 * and we found the device congested
2411			 */
2412			break;
2413	}
 
2414	blk_finish_plug(&plug);
2415	if (!io_done && !cycled) {
2416		cycled = 1;
2417		index = 0;
2418		wbc->range_start = index << PAGE_CACHE_SHIFT;
2419		wbc->range_end  = mapping->writeback_index - 1;
2420		goto retry;
2421	}
2422
2423	/* Update index */
2424	wbc->range_cyclic = range_cyclic;
2425	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2426		/*
2427		 * set the writeback_index so that range_cyclic
2428		 * mode will write it back later
2429		 */
2430		mapping->writeback_index = done_index;
2431
2432out_writepages:
2433	wbc->nr_to_write -= nr_to_writebump;
2434	wbc->range_start = range_start;
2435	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2436	return ret;
2437}
2438
2439#define FALL_BACK_TO_NONDELALLOC 1
2440static int ext4_nonda_switch(struct super_block *sb)
2441{
2442	s64 free_blocks, dirty_blocks;
2443	struct ext4_sb_info *sbi = EXT4_SB(sb);
2444
2445	/*
2446	 * switch to non delalloc mode if we are running low
2447	 * on free block. The free block accounting via percpu
2448	 * counters can get slightly wrong with percpu_counter_batch getting
2449	 * accumulated on each CPU without updating global counters
2450	 * Delalloc need an accurate free block accounting. So switch
2451	 * to non delalloc when we are near to error range.
2452	 */
2453	free_blocks  = EXT4_C2B(sbi,
2454		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2455	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456	if (2 * free_blocks < 3 * dirty_blocks ||
2457		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
 
 
 
 
 
 
 
2458		/*
2459		 * free block count is less than 150% of dirty blocks
2460		 * or free blocks is less than watermark
2461		 */
2462		return 1;
2463	}
2464	/*
2465	 * Even if we don't switch but are nearing capacity,
2466	 * start pushing delalloc when 1/2 of free blocks are dirty.
2467	 */
2468	if (free_blocks < 2 * dirty_blocks)
2469		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2470
2471	return 0;
2472}
2473
 
 
 
 
 
 
 
 
 
 
 
 
 
2474static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2475			       loff_t pos, unsigned len, unsigned flags,
2476			       struct page **pagep, void **fsdata)
2477{
2478	int ret, retries = 0;
2479	struct page *page;
2480	pgoff_t index;
2481	struct inode *inode = mapping->host;
2482	handle_t *handle;
2483
2484	index = pos >> PAGE_CACHE_SHIFT;
 
 
 
2485
2486	if (ext4_nonda_switch(inode->i_sb)) {
 
2487		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2488		return ext4_write_begin(file, mapping, pos,
2489					len, flags, pagep, fsdata);
2490	}
2491	*fsdata = (void *)0;
2492	trace_ext4_da_write_begin(inode, pos, len, flags);
2493retry:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494	/*
2495	 * With delayed allocation, we don't log the i_disksize update
2496	 * if there is delayed block allocation. But we still need
2497	 * to journalling the i_disksize update if writes to the end
2498	 * of file which has an already mapped buffer.
2499	 */
2500	handle = ext4_journal_start(inode, 1);
 
 
2501	if (IS_ERR(handle)) {
2502		ret = PTR_ERR(handle);
2503		goto out;
2504	}
2505	/* We cannot recurse into the filesystem as the transaction is already
2506	 * started */
2507	flags |= AOP_FLAG_NOFS;
2508
2509	page = grab_cache_page_write_begin(mapping, index, flags);
2510	if (!page) {
 
 
 
2511		ext4_journal_stop(handle);
2512		ret = -ENOMEM;
2513		goto out;
2514	}
2515	*pagep = page;
 
2516
 
 
 
 
2517	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
 
2518	if (ret < 0) {
2519		unlock_page(page);
2520		ext4_journal_stop(handle);
2521		page_cache_release(page);
2522		/*
2523		 * block_write_begin may have instantiated a few blocks
2524		 * outside i_size.  Trim these off again. Don't need
2525		 * i_size_read because we hold i_mutex.
2526		 */
2527		if (pos + len > inode->i_size)
2528			ext4_truncate_failed_write(inode);
 
 
 
 
 
 
 
2529	}
2530
2531	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2532		goto retry;
2533out:
2534	return ret;
2535}
2536
2537/*
2538 * Check if we should update i_disksize
2539 * when write to the end of file but not require block allocation
2540 */
2541static int ext4_da_should_update_i_disksize(struct page *page,
2542					    unsigned long offset)
2543{
2544	struct buffer_head *bh;
2545	struct inode *inode = page->mapping->host;
2546	unsigned int idx;
2547	int i;
2548
2549	bh = page_buffers(page);
2550	idx = offset >> inode->i_blkbits;
2551
2552	for (i = 0; i < idx; i++)
2553		bh = bh->b_this_page;
2554
2555	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2556		return 0;
2557	return 1;
2558}
2559
2560static int ext4_da_write_end(struct file *file,
2561			     struct address_space *mapping,
2562			     loff_t pos, unsigned len, unsigned copied,
2563			     struct page *page, void *fsdata)
2564{
2565	struct inode *inode = mapping->host;
2566	int ret = 0, ret2;
2567	handle_t *handle = ext4_journal_current_handle();
2568	loff_t new_i_size;
2569	unsigned long start, end;
2570	int write_mode = (int)(unsigned long)fsdata;
2571
2572	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2573		switch (ext4_inode_journal_mode(inode)) {
2574		case EXT4_INODE_ORDERED_DATA_MODE:
2575			return ext4_ordered_write_end(file, mapping, pos,
2576					len, copied, page, fsdata);
2577		case EXT4_INODE_WRITEBACK_DATA_MODE:
2578			return ext4_writeback_write_end(file, mapping, pos,
2579					len, copied, page, fsdata);
2580		default:
2581			BUG();
2582		}
2583	}
2584
2585	trace_ext4_da_write_end(inode, pos, len, copied);
2586	start = pos & (PAGE_CACHE_SIZE - 1);
2587	end = start + copied - 1;
2588
2589	/*
2590	 * generic_write_end() will run mark_inode_dirty() if i_size
2591	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2592	 * into that.
2593	 */
2594
2595	new_i_size = pos + copied;
2596	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2597		if (ext4_da_should_update_i_disksize(page, end)) {
2598			down_write(&EXT4_I(inode)->i_data_sem);
2599			if (new_i_size > EXT4_I(inode)->i_disksize) {
2600				/*
2601				 * Updating i_disksize when extending file
2602				 * without needing block allocation
2603				 */
2604				if (ext4_should_order_data(inode))
2605					ret = ext4_jbd2_file_inode(handle,
2606								   inode);
2607
2608				EXT4_I(inode)->i_disksize = new_i_size;
2609			}
2610			up_write(&EXT4_I(inode)->i_data_sem);
2611			/* We need to mark inode dirty even if
2612			 * new_i_size is less that inode->i_size
2613			 * bu greater than i_disksize.(hint delalloc)
2614			 */
2615			ext4_mark_inode_dirty(handle, inode);
2616		}
2617	}
2618	ret2 = generic_write_end(file, mapping, pos, len, copied,
 
 
 
 
 
 
 
2619							page, fsdata);
 
2620	copied = ret2;
2621	if (ret2 < 0)
2622		ret = ret2;
2623	ret2 = ext4_journal_stop(handle);
2624	if (!ret)
2625		ret = ret2;
2626
2627	return ret ? ret : copied;
2628}
2629
2630static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2631{
2632	/*
2633	 * Drop reserved blocks
2634	 */
2635	BUG_ON(!PageLocked(page));
2636	if (!page_has_buffers(page))
2637		goto out;
2638
2639	ext4_da_page_release_reservation(page, offset);
2640
2641out:
2642	ext4_invalidatepage(page, offset);
2643
2644	return;
2645}
2646
2647/*
2648 * Force all delayed allocation blocks to be allocated for a given inode.
2649 */
2650int ext4_alloc_da_blocks(struct inode *inode)
2651{
2652	trace_ext4_alloc_da_blocks(inode);
2653
2654	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2655	    !EXT4_I(inode)->i_reserved_meta_blocks)
2656		return 0;
2657
2658	/*
2659	 * We do something simple for now.  The filemap_flush() will
2660	 * also start triggering a write of the data blocks, which is
2661	 * not strictly speaking necessary (and for users of
2662	 * laptop_mode, not even desirable).  However, to do otherwise
2663	 * would require replicating code paths in:
2664	 *
2665	 * ext4_da_writepages() ->
2666	 *    write_cache_pages() ---> (via passed in callback function)
2667	 *        __mpage_da_writepage() -->
2668	 *           mpage_add_bh_to_extent()
2669	 *           mpage_da_map_blocks()
2670	 *
2671	 * The problem is that write_cache_pages(), located in
2672	 * mm/page-writeback.c, marks pages clean in preparation for
2673	 * doing I/O, which is not desirable if we're not planning on
2674	 * doing I/O at all.
2675	 *
2676	 * We could call write_cache_pages(), and then redirty all of
2677	 * the pages by calling redirty_page_for_writepage() but that
2678	 * would be ugly in the extreme.  So instead we would need to
2679	 * replicate parts of the code in the above functions,
2680	 * simplifying them because we wouldn't actually intend to
2681	 * write out the pages, but rather only collect contiguous
2682	 * logical block extents, call the multi-block allocator, and
2683	 * then update the buffer heads with the block allocations.
2684	 *
2685	 * For now, though, we'll cheat by calling filemap_flush(),
2686	 * which will map the blocks, and start the I/O, but not
2687	 * actually wait for the I/O to complete.
2688	 */
2689	return filemap_flush(inode->i_mapping);
2690}
2691
2692/*
2693 * bmap() is special.  It gets used by applications such as lilo and by
2694 * the swapper to find the on-disk block of a specific piece of data.
2695 *
2696 * Naturally, this is dangerous if the block concerned is still in the
2697 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2698 * filesystem and enables swap, then they may get a nasty shock when the
2699 * data getting swapped to that swapfile suddenly gets overwritten by
2700 * the original zero's written out previously to the journal and
2701 * awaiting writeback in the kernel's buffer cache.
2702 *
2703 * So, if we see any bmap calls here on a modified, data-journaled file,
2704 * take extra steps to flush any blocks which might be in the cache.
2705 */
2706static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2707{
2708	struct inode *inode = mapping->host;
2709	journal_t *journal;
2710	int err;
2711
 
 
 
 
 
 
2712	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2713			test_opt(inode->i_sb, DELALLOC)) {
2714		/*
2715		 * With delalloc we want to sync the file
2716		 * so that we can make sure we allocate
2717		 * blocks for file
2718		 */
2719		filemap_write_and_wait(mapping);
2720	}
2721
2722	if (EXT4_JOURNAL(inode) &&
2723	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2724		/*
2725		 * This is a REALLY heavyweight approach, but the use of
2726		 * bmap on dirty files is expected to be extremely rare:
2727		 * only if we run lilo or swapon on a freshly made file
2728		 * do we expect this to happen.
2729		 *
2730		 * (bmap requires CAP_SYS_RAWIO so this does not
2731		 * represent an unprivileged user DOS attack --- we'd be
2732		 * in trouble if mortal users could trigger this path at
2733		 * will.)
2734		 *
2735		 * NB. EXT4_STATE_JDATA is not set on files other than
2736		 * regular files.  If somebody wants to bmap a directory
2737		 * or symlink and gets confused because the buffer
2738		 * hasn't yet been flushed to disk, they deserve
2739		 * everything they get.
2740		 */
2741
2742		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2743		journal = EXT4_JOURNAL(inode);
2744		jbd2_journal_lock_updates(journal);
2745		err = jbd2_journal_flush(journal);
2746		jbd2_journal_unlock_updates(journal);
2747
2748		if (err)
2749			return 0;
2750	}
2751
2752	return generic_block_bmap(mapping, block, ext4_get_block);
2753}
2754
2755static int ext4_readpage(struct file *file, struct page *page)
2756{
 
 
 
2757	trace_ext4_readpage(page);
2758	return mpage_readpage(page, ext4_get_block);
 
 
 
 
 
 
 
2759}
2760
2761static int
2762ext4_readpages(struct file *file, struct address_space *mapping,
2763		struct list_head *pages, unsigned nr_pages)
2764{
2765	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
 
 
 
 
 
 
2766}
2767
2768static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
 
2769{
2770	struct buffer_head *head, *bh;
2771	unsigned int curr_off = 0;
2772
2773	if (!page_has_buffers(page))
2774		return;
2775	head = bh = page_buffers(page);
2776	do {
2777		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2778					&& bh->b_private) {
2779			ext4_free_io_end(bh->b_private);
2780			bh->b_private = NULL;
2781			bh->b_end_io = NULL;
2782		}
2783		curr_off = curr_off + bh->b_size;
2784		bh = bh->b_this_page;
2785	} while (bh != head);
2786}
2787
2788static void ext4_invalidatepage(struct page *page, unsigned long offset)
 
 
2789{
2790	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2791
2792	trace_ext4_invalidatepage(page, offset);
2793
2794	/*
2795	 * free any io_end structure allocated for buffers to be discarded
2796	 */
2797	if (ext4_should_dioread_nolock(page->mapping->host))
2798		ext4_invalidatepage_free_endio(page, offset);
2799	/*
2800	 * If it's a full truncate we just forget about the pending dirtying
2801	 */
2802	if (offset == 0)
2803		ClearPageChecked(page);
2804
2805	if (journal)
2806		jbd2_journal_invalidatepage(journal, page, offset);
2807	else
2808		block_invalidatepage(page, offset);
 
 
 
 
 
2809}
2810
2811static int ext4_releasepage(struct page *page, gfp_t wait)
2812{
2813	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2814
2815	trace_ext4_releasepage(page);
2816
2817	WARN_ON(PageChecked(page));
2818	if (!page_has_buffers(page))
2819		return 0;
2820	if (journal)
2821		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2822	else
2823		return try_to_free_buffers(page);
2824}
2825
2826/*
2827 * ext4_get_block used when preparing for a DIO write or buffer write.
2828 * We allocate an uinitialized extent if blocks haven't been allocated.
2829 * The extent will be converted to initialized after the IO is complete.
2830 */
2831static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2832		   struct buffer_head *bh_result, int create)
2833{
2834	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2835		   inode->i_ino, create);
2836	return _ext4_get_block(inode, iblock, bh_result,
2837			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2841			    ssize_t size, void *private, int ret,
2842			    bool is_async)
2843{
2844	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2845        ext4_io_end_t *io_end = iocb->private;
2846	struct workqueue_struct *wq;
2847	unsigned long flags;
2848	struct ext4_inode_info *ei;
2849
2850	/* if not async direct IO or dio with 0 bytes write, just return */
2851	if (!io_end || !size)
2852		goto out;
 
 
 
 
2853
2854	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2855		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2856 		  iocb->private, io_end->inode->i_ino, iocb, offset,
2857		  size);
2858
2859	iocb->private = NULL;
2860
2861	/* if not aio dio with unwritten extents, just free io and return */
2862	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2863		ext4_free_io_end(io_end);
2864out:
2865		if (is_async)
2866			aio_complete(iocb, ret, 0);
2867		inode_dio_done(inode);
2868		return;
2869	}
2870
2871	io_end->offset = offset;
2872	io_end->size = size;
2873	if (is_async) {
2874		io_end->iocb = iocb;
2875		io_end->result = ret;
2876	}
2877	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
 
 
 
 
 
 
 
 
 
 
 
 
2878
2879	/* Add the io_end to per-inode completed aio dio list*/
2880	ei = EXT4_I(io_end->inode);
2881	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2882	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2883	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
 
 
2884
2885	/* queue the work to convert unwritten extents to written */
2886	queue_work(wq, &io_end->work);
 
 
 
2887}
2888
2889static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
 
 
2890{
2891	ext4_io_end_t *io_end = bh->b_private;
2892	struct workqueue_struct *wq;
2893	struct inode *inode;
2894	unsigned long flags;
2895
2896	if (!test_clear_buffer_uninit(bh) || !io_end)
2897		goto out;
2898
2899	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2900		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2901			 "sb umounted, discard end_io request for inode %lu",
2902			 io_end->inode->i_ino);
2903		ext4_free_io_end(io_end);
2904		goto out;
2905	}
2906
2907	/*
2908	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2909	 * but being more careful is always safe for the future change.
2910	 */
2911	inode = io_end->inode;
2912	ext4_set_io_unwritten_flag(inode, io_end);
 
2913
2914	/* Add the io_end to per-inode completed io list*/
2915	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2916	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2917	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2918
2919	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2920	/* queue the work to convert unwritten extents to written */
2921	queue_work(wq, &io_end->work);
2922out:
2923	bh->b_private = NULL;
2924	bh->b_end_io = NULL;
2925	clear_buffer_uninit(bh);
2926	end_buffer_async_write(bh, uptodate);
2927}
2928
2929static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2930{
2931	ext4_io_end_t *io_end;
2932	struct page *page = bh->b_page;
2933	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2934	size_t size = bh->b_size;
2935
2936retry:
2937	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2938	if (!io_end) {
2939		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2940		schedule();
2941		goto retry;
2942	}
2943	io_end->offset = offset;
2944	io_end->size = size;
2945	/*
2946	 * We need to hold a reference to the page to make sure it
2947	 * doesn't get evicted before ext4_end_io_work() has a chance
2948	 * to convert the extent from written to unwritten.
2949	 */
2950	io_end->page = page;
2951	get_page(io_end->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952
2953	bh->b_private = io_end;
2954	bh->b_end_io = ext4_end_io_buffer_write;
2955	return 0;
2956}
2957
2958/*
2959 * For ext4 extent files, ext4 will do direct-io write to holes,
2960 * preallocated extents, and those write extend the file, no need to
2961 * fall back to buffered IO.
2962 *
2963 * For holes, we fallocate those blocks, mark them as uninitialized
2964 * If those blocks were preallocated, we mark sure they are splited, but
2965 * still keep the range to write as uninitialized.
2966 *
2967 * The unwrritten extents will be converted to written when DIO is completed.
2968 * For async direct IO, since the IO may still pending when return, we
2969 * set up an end_io call back function, which will do the conversion
2970 * when async direct IO completed.
2971 *
2972 * If the O_DIRECT write will extend the file then add this inode to the
2973 * orphan list.  So recovery will truncate it back to the original size
2974 * if the machine crashes during the write.
2975 *
2976 */
2977static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2978			      const struct iovec *iov, loff_t offset,
2979			      unsigned long nr_segs)
2980{
2981	struct file *file = iocb->ki_filp;
2982	struct inode *inode = file->f_mapping->host;
2983	ssize_t ret;
2984	size_t count = iov_length(iov, nr_segs);
2985
2986	loff_t final_size = offset + count;
2987	if (rw == WRITE && final_size <= inode->i_size) {
2988		/*
2989 		 * We could direct write to holes and fallocate.
2990		 *
2991 		 * Allocated blocks to fill the hole are marked as uninitialized
2992 		 * to prevent parallel buffered read to expose the stale data
2993 		 * before DIO complete the data IO.
2994		 *
2995 		 * As to previously fallocated extents, ext4 get_block
2996 		 * will just simply mark the buffer mapped but still
2997 		 * keep the extents uninitialized.
2998 		 *
2999		 * for non AIO case, we will convert those unwritten extents
3000		 * to written after return back from blockdev_direct_IO.
3001		 *
3002		 * for async DIO, the conversion needs to be defered when
3003		 * the IO is completed. The ext4 end_io callback function
3004		 * will be called to take care of the conversion work.
3005		 * Here for async case, we allocate an io_end structure to
3006		 * hook to the iocb.
3007 		 */
3008		iocb->private = NULL;
3009		EXT4_I(inode)->cur_aio_dio = NULL;
3010		if (!is_sync_kiocb(iocb)) {
3011			ext4_io_end_t *io_end =
3012				ext4_init_io_end(inode, GFP_NOFS);
3013			if (!io_end)
3014				return -ENOMEM;
3015			io_end->flag |= EXT4_IO_END_DIRECT;
3016			iocb->private = io_end;
3017			/*
3018			 * we save the io structure for current async
3019			 * direct IO, so that later ext4_map_blocks()
3020			 * could flag the io structure whether there
3021			 * is a unwritten extents needs to be converted
3022			 * when IO is completed.
3023			 */
3024			EXT4_I(inode)->cur_aio_dio = iocb->private;
3025		}
3026
3027		ret = __blockdev_direct_IO(rw, iocb, inode,
3028					 inode->i_sb->s_bdev, iov,
3029					 offset, nr_segs,
3030					 ext4_get_block_write,
3031					 ext4_end_io_dio,
3032					 NULL,
3033					 DIO_LOCKING);
3034		if (iocb->private)
3035			EXT4_I(inode)->cur_aio_dio = NULL;
3036		/*
3037		 * The io_end structure takes a reference to the inode,
3038		 * that structure needs to be destroyed and the
3039		 * reference to the inode need to be dropped, when IO is
3040		 * complete, even with 0 byte write, or failed.
3041		 *
3042		 * In the successful AIO DIO case, the io_end structure will be
3043		 * desctroyed and the reference to the inode will be dropped
3044		 * after the end_io call back function is called.
3045		 *
3046		 * In the case there is 0 byte write, or error case, since
3047		 * VFS direct IO won't invoke the end_io call back function,
3048		 * we need to free the end_io structure here.
3049		 */
3050		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3051			ext4_free_io_end(iocb->private);
3052			iocb->private = NULL;
3053		} else if (ret > 0 && ext4_test_inode_state(inode,
3054						EXT4_STATE_DIO_UNWRITTEN)) {
3055			int err;
3056			/*
3057			 * for non AIO case, since the IO is already
3058			 * completed, we could do the conversion right here
3059			 */
3060			err = ext4_convert_unwritten_extents(inode,
3061							     offset, ret);
3062			if (err < 0)
3063				ret = err;
3064			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3065		}
3066		return ret;
3067	}
3068
3069	/* for write the the end of file case, we fall back to old way */
3070	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
3071}
3072
3073static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3074			      const struct iovec *iov, loff_t offset,
3075			      unsigned long nr_segs)
3076{
3077	struct file *file = iocb->ki_filp;
3078	struct inode *inode = file->f_mapping->host;
3079	ssize_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
3080
3081	/*
3082	 * If we are doing data journalling we don't support O_DIRECT
3083	 */
3084	if (ext4_should_journal_data(inode))
3085		return 0;
 
3086
3087	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3088	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3089		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3090	else
3091		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3092	trace_ext4_direct_IO_exit(inode, offset,
3093				iov_length(iov, nr_segs), rw, ret);
3094	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095}
3096
 
 
 
 
3097/*
3098 * Pages can be marked dirty completely asynchronously from ext4's journalling
3099 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3100 * much here because ->set_page_dirty is called under VFS locks.  The page is
3101 * not necessarily locked.
3102 *
3103 * We cannot just dirty the page and leave attached buffers clean, because the
3104 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3105 * or jbddirty because all the journalling code will explode.
3106 *
3107 * So what we do is to mark the page "pending dirty" and next time writepage
3108 * is called, propagate that into the buffers appropriately.
3109 */
3110static int ext4_journalled_set_page_dirty(struct page *page)
3111{
3112	SetPageChecked(page);
3113	return __set_page_dirty_nobuffers(page);
3114}
3115
3116static const struct address_space_operations ext4_ordered_aops = {
3117	.readpage		= ext4_readpage,
3118	.readpages		= ext4_readpages,
3119	.writepage		= ext4_writepage,
3120	.write_begin		= ext4_write_begin,
3121	.write_end		= ext4_ordered_write_end,
3122	.bmap			= ext4_bmap,
3123	.invalidatepage		= ext4_invalidatepage,
3124	.releasepage		= ext4_releasepage,
3125	.direct_IO		= ext4_direct_IO,
3126	.migratepage		= buffer_migrate_page,
3127	.is_partially_uptodate  = block_is_partially_uptodate,
3128	.error_remove_page	= generic_error_remove_page,
3129};
3130
3131static const struct address_space_operations ext4_writeback_aops = {
3132	.readpage		= ext4_readpage,
3133	.readpages		= ext4_readpages,
3134	.writepage		= ext4_writepage,
 
3135	.write_begin		= ext4_write_begin,
3136	.write_end		= ext4_writeback_write_end,
 
3137	.bmap			= ext4_bmap,
3138	.invalidatepage		= ext4_invalidatepage,
3139	.releasepage		= ext4_releasepage,
3140	.direct_IO		= ext4_direct_IO,
3141	.migratepage		= buffer_migrate_page,
3142	.is_partially_uptodate  = block_is_partially_uptodate,
3143	.error_remove_page	= generic_error_remove_page,
3144};
3145
3146static const struct address_space_operations ext4_journalled_aops = {
3147	.readpage		= ext4_readpage,
3148	.readpages		= ext4_readpages,
3149	.writepage		= ext4_writepage,
 
3150	.write_begin		= ext4_write_begin,
3151	.write_end		= ext4_journalled_write_end,
3152	.set_page_dirty		= ext4_journalled_set_page_dirty,
3153	.bmap			= ext4_bmap,
3154	.invalidatepage		= ext4_invalidatepage,
3155	.releasepage		= ext4_releasepage,
3156	.direct_IO		= ext4_direct_IO,
3157	.is_partially_uptodate  = block_is_partially_uptodate,
3158	.error_remove_page	= generic_error_remove_page,
3159};
3160
3161static const struct address_space_operations ext4_da_aops = {
3162	.readpage		= ext4_readpage,
3163	.readpages		= ext4_readpages,
3164	.writepage		= ext4_writepage,
3165	.writepages		= ext4_da_writepages,
3166	.write_begin		= ext4_da_write_begin,
3167	.write_end		= ext4_da_write_end,
 
3168	.bmap			= ext4_bmap,
3169	.invalidatepage		= ext4_da_invalidatepage,
3170	.releasepage		= ext4_releasepage,
3171	.direct_IO		= ext4_direct_IO,
3172	.migratepage		= buffer_migrate_page,
3173	.is_partially_uptodate  = block_is_partially_uptodate,
3174	.error_remove_page	= generic_error_remove_page,
3175};
3176
 
 
 
 
 
 
 
 
3177void ext4_set_aops(struct inode *inode)
3178{
3179	switch (ext4_inode_journal_mode(inode)) {
3180	case EXT4_INODE_ORDERED_DATA_MODE:
3181		if (test_opt(inode->i_sb, DELALLOC))
3182			inode->i_mapping->a_ops = &ext4_da_aops;
3183		else
3184			inode->i_mapping->a_ops = &ext4_ordered_aops;
3185		break;
3186	case EXT4_INODE_WRITEBACK_DATA_MODE:
3187		if (test_opt(inode->i_sb, DELALLOC))
3188			inode->i_mapping->a_ops = &ext4_da_aops;
3189		else
3190			inode->i_mapping->a_ops = &ext4_writeback_aops;
3191		break;
3192	case EXT4_INODE_JOURNAL_DATA_MODE:
3193		inode->i_mapping->a_ops = &ext4_journalled_aops;
3194		break;
3195	default:
3196		BUG();
3197	}
 
 
 
 
 
 
3198}
3199
3200
3201/*
3202 * ext4_discard_partial_page_buffers()
3203 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3204 * This function finds and locks the page containing the offset
3205 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3206 * Calling functions that already have the page locked should call
3207 * ext4_discard_partial_page_buffers_no_lock directly.
3208 */
3209int ext4_discard_partial_page_buffers(handle_t *handle,
3210		struct address_space *mapping, loff_t from,
3211		loff_t length, int flags)
3212{
 
 
 
 
3213	struct inode *inode = mapping->host;
 
3214	struct page *page;
3215	int err = 0;
3216
3217	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3218				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3219	if (!page)
3220		return -ENOMEM;
3221
3222	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3223		from, length, flags);
3224
3225	unlock_page(page);
3226	page_cache_release(page);
3227	return err;
3228}
3229
3230/*
3231 * ext4_discard_partial_page_buffers_no_lock()
3232 * Zeros a page range of length 'length' starting from offset 'from'.
3233 * Buffer heads that correspond to the block aligned regions of the
3234 * zeroed range will be unmapped.  Unblock aligned regions
3235 * will have the corresponding buffer head mapped if needed so that
3236 * that region of the page can be updated with the partial zero out.
3237 *
3238 * This function assumes that the page has already been  locked.  The
3239 * The range to be discarded must be contained with in the given page.
3240 * If the specified range exceeds the end of the page it will be shortened
3241 * to the end of the page that corresponds to 'from'.  This function is
3242 * appropriate for updating a page and it buffer heads to be unmapped and
3243 * zeroed for blocks that have been either released, or are going to be
3244 * released.
3245 *
3246 * handle: The journal handle
3247 * inode:  The files inode
3248 * page:   A locked page that contains the offset "from"
3249 * from:   The starting byte offset (from the begining of the file)
3250 *         to begin discarding
3251 * len:    The length of bytes to discard
3252 * flags:  Optional flags that may be used:
3253 *
3254 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3255 *         Only zero the regions of the page whose buffer heads
3256 *         have already been unmapped.  This flag is appropriate
3257 *         for updateing the contents of a page whose blocks may
3258 *         have already been released, and we only want to zero
3259 *         out the regions that correspond to those released blocks.
3260 *
3261 * Returns zero on sucess or negative on failure.
3262 */
3263static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3264		struct inode *inode, struct page *page, loff_t from,
3265		loff_t length, int flags)
3266{
3267	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3268	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3269	unsigned int blocksize, max, pos;
3270	ext4_lblk_t iblock;
3271	struct buffer_head *bh;
3272	int err = 0;
3273
3274	blocksize = inode->i_sb->s_blocksize;
3275	max = PAGE_CACHE_SIZE - offset;
3276
3277	if (index != page->index)
3278		return -EINVAL;
3279
3280	/*
3281	 * correct length if it does not fall between
3282	 * 'from' and the end of the page
3283	 */
3284	if (length > max || length < 0)
3285		length = max;
3286
3287	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3288
3289	if (!page_has_buffers(page))
3290		create_empty_buffers(page, blocksize, 0);
3291
3292	/* Find the buffer that contains "offset" */
3293	bh = page_buffers(page);
3294	pos = blocksize;
3295	while (offset >= pos) {
3296		bh = bh->b_this_page;
3297		iblock++;
3298		pos += blocksize;
3299	}
 
 
 
 
 
 
 
 
 
 
 
 
 
3300
3301	pos = offset;
3302	while (pos < offset + length) {
3303		unsigned int end_of_block, range_to_discard;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3304
 
 
 
3305		err = 0;
 
 
 
 
 
3306
3307		/* The length of space left to zero and unmap */
3308		range_to_discard = offset + length - pos;
 
 
 
3309
3310		/* The length of space until the end of the block */
3311		end_of_block = blocksize - (pos & (blocksize-1));
 
 
 
 
 
 
 
 
 
 
 
 
3312
3313		/*
3314		 * Do not unmap or zero past end of block
3315		 * for this buffer head
3316		 */
3317		if (range_to_discard > end_of_block)
3318			range_to_discard = end_of_block;
3319
 
 
 
 
 
 
3320
3321		/*
3322		 * Skip this buffer head if we are only zeroing unampped
3323		 * regions of the page
3324		 */
3325		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3326			buffer_mapped(bh))
3327				goto next;
3328
3329		/* If the range is block aligned, unmap */
3330		if (range_to_discard == blocksize) {
3331			clear_buffer_dirty(bh);
3332			bh->b_bdev = NULL;
3333			clear_buffer_mapped(bh);
3334			clear_buffer_req(bh);
3335			clear_buffer_new(bh);
3336			clear_buffer_delay(bh);
3337			clear_buffer_unwritten(bh);
3338			clear_buffer_uptodate(bh);
3339			zero_user(page, pos, range_to_discard);
3340			BUFFER_TRACE(bh, "Buffer discarded");
3341			goto next;
3342		}
3343
3344		/*
3345		 * If this block is not completely contained in the range
3346		 * to be discarded, then it is not going to be released. Because
3347		 * we need to keep this block, we need to make sure this part
3348		 * of the page is uptodate before we modify it by writeing
3349		 * partial zeros on it.
3350		 */
3351		if (!buffer_mapped(bh)) {
3352			/*
3353			 * Buffer head must be mapped before we can read
3354			 * from the block
3355			 */
3356			BUFFER_TRACE(bh, "unmapped");
3357			ext4_get_block(inode, iblock, bh, 0);
3358			/* unmapped? It's a hole - nothing to do */
3359			if (!buffer_mapped(bh)) {
3360				BUFFER_TRACE(bh, "still unmapped");
3361				goto next;
3362			}
3363		}
3364
3365		/* Ok, it's mapped. Make sure it's up-to-date */
3366		if (PageUptodate(page))
3367			set_buffer_uptodate(bh);
3368
3369		if (!buffer_uptodate(bh)) {
3370			err = -EIO;
3371			ll_rw_block(READ, 1, &bh);
3372			wait_on_buffer(bh);
3373			/* Uhhuh. Read error. Complain and punt.*/
3374			if (!buffer_uptodate(bh))
3375				goto next;
3376		}
3377
3378		if (ext4_should_journal_data(inode)) {
3379			BUFFER_TRACE(bh, "get write access");
3380			err = ext4_journal_get_write_access(handle, bh);
3381			if (err)
3382				goto next;
3383		}
 
 
 
3384
3385		zero_user(page, pos, range_to_discard);
 
3386
3387		err = 0;
3388		if (ext4_should_journal_data(inode)) {
3389			err = ext4_handle_dirty_metadata(handle, inode, bh);
3390		} else
3391			mark_buffer_dirty(bh);
3392
3393		BUFFER_TRACE(bh, "Partial buffer zeroed");
3394next:
3395		bh = bh->b_this_page;
3396		iblock++;
3397		pos += range_to_discard;
 
 
 
 
 
 
 
 
3398	}
3399
 
 
 
 
3400	return err;
3401}
3402
3403int ext4_can_truncate(struct inode *inode)
3404{
3405	if (S_ISREG(inode->i_mode))
3406		return 1;
3407	if (S_ISDIR(inode->i_mode))
3408		return 1;
3409	if (S_ISLNK(inode->i_mode))
3410		return !ext4_inode_is_fast_symlink(inode);
3411	return 0;
3412}
3413
3414/*
3415 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3416 * associated with the given offset and length
3417 *
3418 * @inode:  File inode
3419 * @offset: The offset where the hole will begin
3420 * @len:    The length of the hole
3421 *
3422 * Returns: 0 on sucess or negative on failure
3423 */
3424
3425int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3426{
3427	struct inode *inode = file->f_path.dentry->d_inode;
3428	if (!S_ISREG(inode->i_mode))
3429		return -EOPNOTSUPP;
 
 
 
 
3430
3431	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3432		/* TODO: Add support for non extent hole punching */
3433		return -EOPNOTSUPP;
 
 
 
 
 
 
3434	}
3435
3436	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3437		/* TODO: Add support for bigalloc file systems */
3438		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3439	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3440
3441	return ext4_ext_punch_hole(file, offset, length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442}
3443
3444/*
3445 * ext4_truncate()
3446 *
3447 * We block out ext4_get_block() block instantiations across the entire
3448 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3449 * simultaneously on behalf of the same inode.
3450 *
3451 * As we work through the truncate and commit bits of it to the journal there
3452 * is one core, guiding principle: the file's tree must always be consistent on
3453 * disk.  We must be able to restart the truncate after a crash.
3454 *
3455 * The file's tree may be transiently inconsistent in memory (although it
3456 * probably isn't), but whenever we close off and commit a journal transaction,
3457 * the contents of (the filesystem + the journal) must be consistent and
3458 * restartable.  It's pretty simple, really: bottom up, right to left (although
3459 * left-to-right works OK too).
3460 *
3461 * Note that at recovery time, journal replay occurs *before* the restart of
3462 * truncate against the orphan inode list.
3463 *
3464 * The committed inode has the new, desired i_size (which is the same as
3465 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3466 * that this inode's truncate did not complete and it will again call
3467 * ext4_truncate() to have another go.  So there will be instantiated blocks
3468 * to the right of the truncation point in a crashed ext4 filesystem.  But
3469 * that's fine - as long as they are linked from the inode, the post-crash
3470 * ext4_truncate() run will find them and release them.
3471 */
3472void ext4_truncate(struct inode *inode)
3473{
 
 
 
 
 
 
 
 
 
 
 
 
 
3474	trace_ext4_truncate_enter(inode);
3475
3476	if (!ext4_can_truncate(inode))
3477		return;
3478
3479	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3480
3481	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3482		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3484	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3485		ext4_ext_truncate(inode);
3486	else
3487		ext4_ind_truncate(inode);
 
 
 
 
 
 
3488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3489	trace_ext4_truncate_exit(inode);
 
3490}
3491
3492/*
3493 * ext4_get_inode_loc returns with an extra refcount against the inode's
3494 * underlying buffer_head on success. If 'in_mem' is true, we have all
3495 * data in memory that is needed to recreate the on-disk version of this
3496 * inode.
3497 */
3498static int __ext4_get_inode_loc(struct inode *inode,
3499				struct ext4_iloc *iloc, int in_mem)
3500{
3501	struct ext4_group_desc	*gdp;
3502	struct buffer_head	*bh;
3503	struct super_block	*sb = inode->i_sb;
3504	ext4_fsblk_t		block;
 
3505	int			inodes_per_block, inode_offset;
3506
3507	iloc->bh = NULL;
3508	if (!ext4_valid_inum(sb, inode->i_ino))
3509		return -EIO;
 
3510
3511	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3512	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3513	if (!gdp)
3514		return -EIO;
3515
3516	/*
3517	 * Figure out the offset within the block group inode table
3518	 */
3519	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3520	inode_offset = ((inode->i_ino - 1) %
3521			EXT4_INODES_PER_GROUP(sb));
3522	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3523	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3524
3525	bh = sb_getblk(sb, block);
3526	if (!bh) {
3527		EXT4_ERROR_INODE_BLOCK(inode, block,
3528				       "unable to read itable block");
3529		return -EIO;
3530	}
3531	if (!buffer_uptodate(bh)) {
3532		lock_buffer(bh);
3533
3534		/*
3535		 * If the buffer has the write error flag, we have failed
3536		 * to write out another inode in the same block.  In this
3537		 * case, we don't have to read the block because we may
3538		 * read the old inode data successfully.
3539		 */
3540		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3541			set_buffer_uptodate(bh);
3542
3543		if (buffer_uptodate(bh)) {
3544			/* someone brought it uptodate while we waited */
3545			unlock_buffer(bh);
3546			goto has_buffer;
3547		}
3548
3549		/*
3550		 * If we have all information of the inode in memory and this
3551		 * is the only valid inode in the block, we need not read the
3552		 * block.
3553		 */
3554		if (in_mem) {
3555			struct buffer_head *bitmap_bh;
3556			int i, start;
3557
3558			start = inode_offset & ~(inodes_per_block - 1);
3559
3560			/* Is the inode bitmap in cache? */
3561			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3562			if (!bitmap_bh)
3563				goto make_io;
3564
3565			/*
3566			 * If the inode bitmap isn't in cache then the
3567			 * optimisation may end up performing two reads instead
3568			 * of one, so skip it.
3569			 */
3570			if (!buffer_uptodate(bitmap_bh)) {
3571				brelse(bitmap_bh);
3572				goto make_io;
3573			}
3574			for (i = start; i < start + inodes_per_block; i++) {
3575				if (i == inode_offset)
3576					continue;
3577				if (ext4_test_bit(i, bitmap_bh->b_data))
3578					break;
3579			}
3580			brelse(bitmap_bh);
3581			if (i == start + inodes_per_block) {
3582				/* all other inodes are free, so skip I/O */
3583				memset(bh->b_data, 0, bh->b_size);
3584				set_buffer_uptodate(bh);
3585				unlock_buffer(bh);
3586				goto has_buffer;
3587			}
3588		}
3589
3590make_io:
3591		/*
3592		 * If we need to do any I/O, try to pre-readahead extra
3593		 * blocks from the inode table.
3594		 */
 
3595		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3596			ext4_fsblk_t b, end, table;
3597			unsigned num;
 
3598
3599			table = ext4_inode_table(sb, gdp);
3600			/* s_inode_readahead_blks is always a power of 2 */
3601			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3602			if (table > b)
3603				b = table;
3604			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3605			num = EXT4_INODES_PER_GROUP(sb);
3606			if (ext4_has_group_desc_csum(sb))
3607				num -= ext4_itable_unused_count(sb, gdp);
3608			table += num / inodes_per_block;
3609			if (end > table)
3610				end = table;
3611			while (b <= end)
3612				sb_breadahead(sb, b++);
3613		}
3614
3615		/*
3616		 * There are other valid inodes in the buffer, this inode
3617		 * has in-inode xattrs, or we don't have this inode in memory.
3618		 * Read the block from disk.
3619		 */
3620		trace_ext4_load_inode(inode);
3621		get_bh(bh);
3622		bh->b_end_io = end_buffer_read_sync;
3623		submit_bh(READ | REQ_META | REQ_PRIO, bh);
 
3624		wait_on_buffer(bh);
3625		if (!buffer_uptodate(bh)) {
3626			EXT4_ERROR_INODE_BLOCK(inode, block,
 
3627					       "unable to read itable block");
3628			brelse(bh);
3629			return -EIO;
3630		}
3631	}
3632has_buffer:
3633	iloc->bh = bh;
3634	return 0;
3635}
3636
3637int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3638{
3639	/* We have all inode data except xattrs in memory here. */
3640	return __ext4_get_inode_loc(inode, iloc,
3641		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3642}
3643
3644void ext4_set_inode_flags(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645{
3646	unsigned int flags = EXT4_I(inode)->i_flags;
 
 
 
3647
3648	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3649	if (flags & EXT4_SYNC_FL)
3650		inode->i_flags |= S_SYNC;
3651	if (flags & EXT4_APPEND_FL)
3652		inode->i_flags |= S_APPEND;
3653	if (flags & EXT4_IMMUTABLE_FL)
3654		inode->i_flags |= S_IMMUTABLE;
3655	if (flags & EXT4_NOATIME_FL)
3656		inode->i_flags |= S_NOATIME;
3657	if (flags & EXT4_DIRSYNC_FL)
3658		inode->i_flags |= S_DIRSYNC;
3659}
3660
3661/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3662void ext4_get_inode_flags(struct ext4_inode_info *ei)
3663{
3664	unsigned int vfs_fl;
3665	unsigned long old_fl, new_fl;
3666
3667	do {
3668		vfs_fl = ei->vfs_inode.i_flags;
3669		old_fl = ei->i_flags;
3670		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3671				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3672				EXT4_DIRSYNC_FL);
3673		if (vfs_fl & S_SYNC)
3674			new_fl |= EXT4_SYNC_FL;
3675		if (vfs_fl & S_APPEND)
3676			new_fl |= EXT4_APPEND_FL;
3677		if (vfs_fl & S_IMMUTABLE)
3678			new_fl |= EXT4_IMMUTABLE_FL;
3679		if (vfs_fl & S_NOATIME)
3680			new_fl |= EXT4_NOATIME_FL;
3681		if (vfs_fl & S_DIRSYNC)
3682			new_fl |= EXT4_DIRSYNC_FL;
3683	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3684}
3685
3686static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3687				  struct ext4_inode_info *ei)
3688{
3689	blkcnt_t i_blocks ;
3690	struct inode *inode = &(ei->vfs_inode);
3691	struct super_block *sb = inode->i_sb;
3692
3693	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3694				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3695		/* we are using combined 48 bit field */
3696		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3697					le32_to_cpu(raw_inode->i_blocks_lo);
3698		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3699			/* i_blocks represent file system block size */
3700			return i_blocks  << (inode->i_blkbits - 9);
3701		} else {
3702			return i_blocks;
3703		}
3704	} else {
3705		return le32_to_cpu(raw_inode->i_blocks_lo);
3706	}
3707}
3708
3709struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710{
3711	struct ext4_iloc iloc;
3712	struct ext4_inode *raw_inode;
3713	struct ext4_inode_info *ei;
3714	struct inode *inode;
3715	journal_t *journal = EXT4_SB(sb)->s_journal;
3716	long ret;
 
3717	int block;
3718	uid_t i_uid;
3719	gid_t i_gid;
 
 
 
 
 
 
 
 
 
 
 
 
 
3720
3721	inode = iget_locked(sb, ino);
3722	if (!inode)
3723		return ERR_PTR(-ENOMEM);
3724	if (!(inode->i_state & I_NEW))
3725		return inode;
3726
3727	ei = EXT4_I(inode);
3728	iloc.bh = NULL;
3729
3730	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3731	if (ret < 0)
3732		goto bad_inode;
3733	raw_inode = ext4_raw_inode(&iloc);
3734
 
 
 
 
 
 
 
 
 
 
 
 
 
3735	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3736		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3737		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3738		    EXT4_INODE_SIZE(inode->i_sb)) {
3739			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3740				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3741				EXT4_INODE_SIZE(inode->i_sb));
3742			ret = -EIO;
 
 
 
3743			goto bad_inode;
3744		}
3745	} else
3746		ei->i_extra_isize = 0;
3747
3748	/* Precompute checksum seed for inode metadata */
3749	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3750			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3751		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3752		__u32 csum;
3753		__le32 inum = cpu_to_le32(inode->i_ino);
3754		__le32 gen = raw_inode->i_generation;
3755		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3756				   sizeof(inum));
3757		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3758					      sizeof(gen));
3759	}
3760
3761	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3762		EXT4_ERROR_INODE(inode, "checksum invalid");
3763		ret = -EIO;
 
 
3764		goto bad_inode;
3765	}
3766
3767	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3768	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3769	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
3770	if (!(test_opt(inode->i_sb, NO_UID32))) {
3771		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3772		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3773	}
3774	i_uid_write(inode, i_uid);
3775	i_gid_write(inode, i_gid);
 
3776	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3777
3778	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
 
3779	ei->i_dir_start_lookup = 0;
3780	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3781	/* We now have enough fields to check if the inode was active or not.
3782	 * This is needed because nfsd might try to access dead inodes
3783	 * the test is that same one that e2fsck uses
3784	 * NeilBrown 1999oct15
3785	 */
3786	if (inode->i_nlink == 0) {
3787		if (inode->i_mode == 0 ||
3788		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
 
3789			/* this inode is deleted */
3790			ret = -ESTALE;
3791			goto bad_inode;
3792		}
3793		/* The only unlinked inodes we let through here have
3794		 * valid i_mode and are being read by the orphan
3795		 * recovery code: that's fine, we're about to complete
3796		 * the process of deleting those. */
 
 
3797	}
3798	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
3799	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3800	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3801	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3802		ei->i_file_acl |=
3803			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3804	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805	ei->i_disksize = inode->i_size;
3806#ifdef CONFIG_QUOTA
3807	ei->i_reserved_quota = 0;
3808#endif
3809	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3810	ei->i_block_group = iloc.block_group;
3811	ei->i_last_alloc_group = ~0;
3812	/*
3813	 * NOTE! The in-memory inode i_data array is in little-endian order
3814	 * even on big-endian machines: we do NOT byteswap the block numbers!
3815	 */
3816	for (block = 0; block < EXT4_N_BLOCKS; block++)
3817		ei->i_data[block] = raw_inode->i_block[block];
3818	INIT_LIST_HEAD(&ei->i_orphan);
3819
3820	/*
3821	 * Set transaction id's of transactions that have to be committed
3822	 * to finish f[data]sync. We set them to currently running transaction
3823	 * as we cannot be sure that the inode or some of its metadata isn't
3824	 * part of the transaction - the inode could have been reclaimed and
3825	 * now it is reread from disk.
3826	 */
3827	if (journal) {
3828		transaction_t *transaction;
3829		tid_t tid;
3830
3831		read_lock(&journal->j_state_lock);
3832		if (journal->j_running_transaction)
3833			transaction = journal->j_running_transaction;
3834		else
3835			transaction = journal->j_committing_transaction;
3836		if (transaction)
3837			tid = transaction->t_tid;
3838		else
3839			tid = journal->j_commit_sequence;
3840		read_unlock(&journal->j_state_lock);
3841		ei->i_sync_tid = tid;
3842		ei->i_datasync_tid = tid;
3843	}
3844
3845	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3846		if (ei->i_extra_isize == 0) {
3847			/* The extra space is currently unused. Use it. */
 
3848			ei->i_extra_isize = sizeof(struct ext4_inode) -
3849					    EXT4_GOOD_OLD_INODE_SIZE;
3850		} else {
3851			__le32 *magic = (void *)raw_inode +
3852					EXT4_GOOD_OLD_INODE_SIZE +
3853					ei->i_extra_isize;
3854			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3855				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3856		}
3857	}
3858
3859	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3860	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3861	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3862	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3863
3864	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3865	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3866		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3867			inode->i_version |=
3868			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
 
 
 
 
3869	}
3870
3871	ret = 0;
3872	if (ei->i_file_acl &&
3873	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3874		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
3875				 ei->i_file_acl);
3876		ret = -EIO;
3877		goto bad_inode;
3878	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 
3879		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3880		    (S_ISLNK(inode->i_mode) &&
3881		     !ext4_inode_is_fast_symlink(inode)))
3882			/* Validate extent which is part of inode */
3883			ret = ext4_ext_check_inode(inode);
3884	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3885		   (S_ISLNK(inode->i_mode) &&
3886		    !ext4_inode_is_fast_symlink(inode))) {
3887		/* Validate block references which are part of inode */
3888		ret = ext4_ind_check_inode(inode);
 
 
 
3889	}
3890	if (ret)
3891		goto bad_inode;
3892
3893	if (S_ISREG(inode->i_mode)) {
3894		inode->i_op = &ext4_file_inode_operations;
3895		inode->i_fop = &ext4_file_operations;
3896		ext4_set_aops(inode);
3897	} else if (S_ISDIR(inode->i_mode)) {
3898		inode->i_op = &ext4_dir_inode_operations;
3899		inode->i_fop = &ext4_dir_operations;
3900	} else if (S_ISLNK(inode->i_mode)) {
3901		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
 
 
 
 
 
 
 
 
3902			inode->i_op = &ext4_fast_symlink_inode_operations;
3903			nd_terminate_link(ei->i_data, inode->i_size,
3904				sizeof(ei->i_data) - 1);
3905		} else {
3906			inode->i_op = &ext4_symlink_inode_operations;
3907			ext4_set_aops(inode);
3908		}
 
3909	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3910	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3911		inode->i_op = &ext4_special_inode_operations;
3912		if (raw_inode->i_block[0])
3913			init_special_inode(inode, inode->i_mode,
3914			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3915		else
3916			init_special_inode(inode, inode->i_mode,
3917			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
 
 
3918	} else {
3919		ret = -EIO;
3920		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
3921		goto bad_inode;
3922	}
 
 
 
3923	brelse(iloc.bh);
3924	ext4_set_inode_flags(inode);
3925	unlock_new_inode(inode);
3926	return inode;
3927
3928bad_inode:
3929	brelse(iloc.bh);
3930	iget_failed(inode);
3931	return ERR_PTR(ret);
3932}
3933
3934static int ext4_inode_blocks_set(handle_t *handle,
3935				struct ext4_inode *raw_inode,
3936				struct ext4_inode_info *ei)
3937{
3938	struct inode *inode = &(ei->vfs_inode);
3939	u64 i_blocks = inode->i_blocks;
3940	struct super_block *sb = inode->i_sb;
3941
3942	if (i_blocks <= ~0U) {
3943		/*
3944		 * i_blocks can be represnted in a 32 bit variable
3945		 * as multiple of 512 bytes
3946		 */
3947		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3948		raw_inode->i_blocks_high = 0;
3949		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3950		return 0;
3951	}
3952	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3953		return -EFBIG;
3954
3955	if (i_blocks <= 0xffffffffffffULL) {
3956		/*
3957		 * i_blocks can be represented in a 48 bit variable
3958		 * as multiple of 512 bytes
3959		 */
3960		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3961		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3962		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3963	} else {
3964		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3965		/* i_block is stored in file system block size */
3966		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3967		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3968		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3969	}
3970	return 0;
3971}
3972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3973/*
3974 * Post the struct inode info into an on-disk inode location in the
3975 * buffer-cache.  This gobbles the caller's reference to the
3976 * buffer_head in the inode location struct.
3977 *
3978 * The caller must have write access to iloc->bh.
3979 */
3980static int ext4_do_update_inode(handle_t *handle,
3981				struct inode *inode,
3982				struct ext4_iloc *iloc)
3983{
3984	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3985	struct ext4_inode_info *ei = EXT4_I(inode);
3986	struct buffer_head *bh = iloc->bh;
 
3987	int err = 0, rc, block;
 
3988	uid_t i_uid;
3989	gid_t i_gid;
 
3990
3991	/* For fields not not tracking in the in-memory inode,
 
 
3992	 * initialise them to zero for new inodes. */
3993	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3994		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3995
3996	ext4_get_inode_flags(ei);
3997	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3998	i_uid = i_uid_read(inode);
3999	i_gid = i_gid_read(inode);
 
4000	if (!(test_opt(inode->i_sb, NO_UID32))) {
4001		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4002		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4003/*
4004 * Fix up interoperability with old kernels. Otherwise, old inodes get
4005 * re-used with the upper 16 bits of the uid/gid intact
4006 */
4007		if (!ei->i_dtime) {
 
 
 
4008			raw_inode->i_uid_high =
4009				cpu_to_le16(high_16_bits(i_uid));
4010			raw_inode->i_gid_high =
4011				cpu_to_le16(high_16_bits(i_gid));
4012		} else {
4013			raw_inode->i_uid_high = 0;
4014			raw_inode->i_gid_high = 0;
4015		}
4016	} else {
4017		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4018		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4019		raw_inode->i_uid_high = 0;
4020		raw_inode->i_gid_high = 0;
4021	}
4022	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4023
4024	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4025	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4026	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4027	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4028
4029	if (ext4_inode_blocks_set(handle, raw_inode, ei))
 
 
4030		goto out_brelse;
 
4031	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4032	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4033	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4034	    cpu_to_le32(EXT4_OS_HURD))
4035		raw_inode->i_file_acl_high =
4036			cpu_to_le16(ei->i_file_acl >> 32);
4037	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4038	ext4_isize_set(raw_inode, ei->i_disksize);
 
 
 
4039	if (ei->i_disksize > 0x7fffffffULL) {
4040		struct super_block *sb = inode->i_sb;
4041		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4042				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4043				EXT4_SB(sb)->s_es->s_rev_level ==
4044				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4045			/* If this is the first large file
4046			 * created, add a flag to the superblock.
4047			 */
4048			err = ext4_journal_get_write_access(handle,
4049					EXT4_SB(sb)->s_sbh);
4050			if (err)
4051				goto out_brelse;
4052			ext4_update_dynamic_rev(sb);
4053			EXT4_SET_RO_COMPAT_FEATURE(sb,
4054					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4055			ext4_handle_sync(handle);
4056			err = ext4_handle_dirty_super_now(handle, sb);
4057		}
4058	}
4059	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4060	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4061		if (old_valid_dev(inode->i_rdev)) {
4062			raw_inode->i_block[0] =
4063				cpu_to_le32(old_encode_dev(inode->i_rdev));
4064			raw_inode->i_block[1] = 0;
4065		} else {
4066			raw_inode->i_block[0] = 0;
4067			raw_inode->i_block[1] =
4068				cpu_to_le32(new_encode_dev(inode->i_rdev));
4069			raw_inode->i_block[2] = 0;
4070		}
4071	} else
4072		for (block = 0; block < EXT4_N_BLOCKS; block++)
4073			raw_inode->i_block[block] = ei->i_data[block];
 
 
 
 
4074
4075	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4076	if (ei->i_extra_isize) {
4077		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4078			raw_inode->i_version_hi =
4079			cpu_to_le32(inode->i_version >> 32);
4080		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
 
 
4081	}
4082
 
 
 
 
 
 
 
4083	ext4_inode_csum_set(inode, raw_inode, ei);
 
 
 
 
4084
4085	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4086	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4087	if (!err)
4088		err = rc;
4089	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4090
4091	ext4_update_inode_fsync_trans(handle, inode, 0);
 
 
 
 
 
 
 
 
4092out_brelse:
4093	brelse(bh);
4094	ext4_std_error(inode->i_sb, err);
4095	return err;
4096}
4097
4098/*
4099 * ext4_write_inode()
4100 *
4101 * We are called from a few places:
4102 *
4103 * - Within generic_file_write() for O_SYNC files.
4104 *   Here, there will be no transaction running. We wait for any running
4105 *   trasnaction to commit.
4106 *
4107 * - Within sys_sync(), kupdate and such.
4108 *   We wait on commit, if tol to.
4109 *
4110 * - Within prune_icache() (PF_MEMALLOC == true)
4111 *   Here we simply return.  We can't afford to block kswapd on the
4112 *   journal commit.
4113 *
4114 * In all cases it is actually safe for us to return without doing anything,
4115 * because the inode has been copied into a raw inode buffer in
4116 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4117 * knfsd.
4118 *
4119 * Note that we are absolutely dependent upon all inode dirtiers doing the
4120 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4121 * which we are interested.
4122 *
4123 * It would be a bug for them to not do this.  The code:
4124 *
4125 *	mark_inode_dirty(inode)
4126 *	stuff();
4127 *	inode->i_size = expr;
4128 *
4129 * is in error because a kswapd-driven write_inode() could occur while
4130 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4131 * will no longer be on the superblock's dirty inode list.
4132 */
4133int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4134{
4135	int err;
4136
4137	if (current->flags & PF_MEMALLOC)
 
4138		return 0;
4139
 
 
 
4140	if (EXT4_SB(inode->i_sb)->s_journal) {
4141		if (ext4_journal_current_handle()) {
4142			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4143			dump_stack();
4144			return -EIO;
4145		}
4146
4147		if (wbc->sync_mode != WB_SYNC_ALL)
 
 
 
 
 
4148			return 0;
4149
4150		err = ext4_force_commit(inode->i_sb);
 
4151	} else {
4152		struct ext4_iloc iloc;
4153
4154		err = __ext4_get_inode_loc(inode, &iloc, 0);
4155		if (err)
4156			return err;
4157		if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
4158			sync_dirty_buffer(iloc.bh);
4159		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4160			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4161					 "IO error syncing inode");
4162			err = -EIO;
4163		}
4164		brelse(iloc.bh);
4165	}
4166	return err;
4167}
4168
4169/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170 * ext4_setattr()
4171 *
4172 * Called from notify_change.
4173 *
4174 * We want to trap VFS attempts to truncate the file as soon as
4175 * possible.  In particular, we want to make sure that when the VFS
4176 * shrinks i_size, we put the inode on the orphan list and modify
4177 * i_disksize immediately, so that during the subsequent flushing of
4178 * dirty pages and freeing of disk blocks, we can guarantee that any
4179 * commit will leave the blocks being flushed in an unused state on
4180 * disk.  (On recovery, the inode will get truncated and the blocks will
4181 * be freed, so we have a strong guarantee that no future commit will
4182 * leave these blocks visible to the user.)
4183 *
4184 * Another thing we have to assure is that if we are in ordered mode
4185 * and inode is still attached to the committing transaction, we must
4186 * we start writeout of all the dirty pages which are being truncated.
4187 * This way we are sure that all the data written in the previous
4188 * transaction are already on disk (truncate waits for pages under
4189 * writeback).
4190 *
4191 * Called with inode->i_mutex down.
4192 */
4193int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4194{
4195	struct inode *inode = dentry->d_inode;
4196	int error, rc = 0;
4197	int orphan = 0;
4198	const unsigned int ia_valid = attr->ia_valid;
4199
4200	error = inode_change_ok(inode, attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4201	if (error)
4202		return error;
4203
4204	if (is_quota_modification(inode, attr))
4205		dquot_initialize(inode);
 
 
 
 
 
 
 
4206	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4207	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4208		handle_t *handle;
4209
4210		/* (user+group)*(old+new) structure, inode write (sb,
4211		 * inode block, ? - but truncate inode update has it) */
4212		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4213					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
 
4214		if (IS_ERR(handle)) {
4215			error = PTR_ERR(handle);
4216			goto err_out;
4217		}
 
 
 
 
 
4218		error = dquot_transfer(inode, attr);
 
 
4219		if (error) {
4220			ext4_journal_stop(handle);
4221			return error;
4222		}
4223		/* Update corresponding info in inode so that everything is in
4224		 * one transaction */
4225		if (attr->ia_valid & ATTR_UID)
4226			inode->i_uid = attr->ia_uid;
4227		if (attr->ia_valid & ATTR_GID)
4228			inode->i_gid = attr->ia_gid;
4229		error = ext4_mark_inode_dirty(handle, inode);
4230		ext4_journal_stop(handle);
 
 
4231	}
4232
4233	if (attr->ia_valid & ATTR_SIZE) {
4234		inode_dio_wait(inode);
 
 
4235
4236		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4237			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4238
4239			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4240				return -EFBIG;
4241		}
4242	}
4243
4244	if (S_ISREG(inode->i_mode) &&
4245	    attr->ia_valid & ATTR_SIZE &&
4246	    (attr->ia_size < inode->i_size)) {
4247		handle_t *handle;
4248
4249		handle = ext4_journal_start(inode, 3);
4250		if (IS_ERR(handle)) {
4251			error = PTR_ERR(handle);
4252			goto err_out;
4253		}
4254		if (ext4_handle_valid(handle)) {
4255			error = ext4_orphan_add(handle, inode);
4256			orphan = 1;
4257		}
4258		EXT4_I(inode)->i_disksize = attr->ia_size;
4259		rc = ext4_mark_inode_dirty(handle, inode);
4260		if (!error)
4261			error = rc;
4262		ext4_journal_stop(handle);
4263
4264		if (ext4_should_order_data(inode)) {
4265			error = ext4_begin_ordered_truncate(inode,
 
4266							    attr->ia_size);
4267			if (error) {
4268				/* Do as much error cleanup as possible */
4269				handle = ext4_journal_start(inode, 3);
4270				if (IS_ERR(handle)) {
4271					ext4_orphan_del(NULL, inode);
4272					goto err_out;
4273				}
4274				ext4_orphan_del(handle, inode);
4275				orphan = 0;
4276				ext4_journal_stop(handle);
4277				goto err_out;
4278			}
 
 
 
 
 
4279		}
4280	}
4281
4282	if (attr->ia_valid & ATTR_SIZE) {
4283		if (attr->ia_size != i_size_read(inode))
4284			truncate_setsize(inode, attr->ia_size);
4285		ext4_truncate(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4286	}
4287
4288	if (!rc) {
4289		setattr_copy(inode, attr);
4290		mark_inode_dirty(inode);
4291	}
4292
4293	/*
4294	 * If the call to ext4_truncate failed to get a transaction handle at
4295	 * all, we need to clean up the in-core orphan list manually.
4296	 */
4297	if (orphan && inode->i_nlink)
4298		ext4_orphan_del(NULL, inode);
4299
4300	if (!rc && (ia_valid & ATTR_MODE))
4301		rc = ext4_acl_chmod(inode);
4302
4303err_out:
4304	ext4_std_error(inode->i_sb, error);
4305	if (!error)
4306		error = rc;
4307	return error;
4308}
4309
4310int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4311		 struct kstat *stat)
4312{
4313	struct inode *inode;
4314	unsigned long delalloc_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4315
4316	inode = dentry->d_inode;
4317	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4318
4319	/*
4320	 * We can't update i_blocks if the block allocation is delayed
4321	 * otherwise in the case of system crash before the real block
4322	 * allocation is done, we will have i_blocks inconsistent with
4323	 * on-disk file blocks.
4324	 * We always keep i_blocks updated together with real
4325	 * allocation. But to not confuse with user, stat
4326	 * will return the blocks that include the delayed allocation
4327	 * blocks for this file.
4328	 */
4329	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4330				EXT4_I(inode)->i_reserved_data_blocks);
4331
4332	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4333	return 0;
4334}
4335
4336static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4337{
4338	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4339		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4340	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4341}
4342
4343/*
4344 * Account for index blocks, block groups bitmaps and block group
4345 * descriptor blocks if modify datablocks and index blocks
4346 * worse case, the indexs blocks spread over different block groups
4347 *
4348 * If datablocks are discontiguous, they are possible to spread over
4349 * different block groups too. If they are contiuguous, with flexbg,
4350 * they could still across block group boundary.
4351 *
4352 * Also account for superblock, inode, quota and xattr blocks
4353 */
4354static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 
4355{
4356	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4357	int gdpblocks;
4358	int idxblocks;
4359	int ret = 0;
4360
4361	/*
4362	 * How many index blocks need to touch to modify nrblocks?
4363	 * The "Chunk" flag indicating whether the nrblocks is
4364	 * physically contiguous on disk
4365	 *
4366	 * For Direct IO and fallocate, they calls get_block to allocate
4367	 * one single extent at a time, so they could set the "Chunk" flag
4368	 */
4369	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4370
4371	ret = idxblocks;
4372
4373	/*
4374	 * Now let's see how many group bitmaps and group descriptors need
4375	 * to account
4376	 */
4377	groups = idxblocks;
4378	if (chunk)
4379		groups += 1;
4380	else
4381		groups += nrblocks;
4382
4383	gdpblocks = groups;
4384	if (groups > ngroups)
4385		groups = ngroups;
4386	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4387		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4388
4389	/* bitmaps and block group descriptor blocks */
4390	ret += groups + gdpblocks;
4391
4392	/* Blocks for super block, inode, quota and xattr blocks */
4393	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4394
4395	return ret;
4396}
4397
4398/*
4399 * Calculate the total number of credits to reserve to fit
4400 * the modification of a single pages into a single transaction,
4401 * which may include multiple chunks of block allocations.
4402 *
4403 * This could be called via ext4_write_begin()
4404 *
4405 * We need to consider the worse case, when
4406 * one new block per extent.
4407 */
4408int ext4_writepage_trans_blocks(struct inode *inode)
4409{
4410	int bpp = ext4_journal_blocks_per_page(inode);
4411	int ret;
4412
4413	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4414
4415	/* Account for data blocks for journalled mode */
4416	if (ext4_should_journal_data(inode))
4417		ret += bpp;
4418	return ret;
4419}
4420
4421/*
4422 * Calculate the journal credits for a chunk of data modification.
4423 *
4424 * This is called from DIO, fallocate or whoever calling
4425 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4426 *
4427 * journal buffers for data blocks are not included here, as DIO
4428 * and fallocate do no need to journal data buffers.
4429 */
4430int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4431{
4432	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4433}
4434
4435/*
4436 * The caller must have previously called ext4_reserve_inode_write().
4437 * Give this, we know that the caller already has write access to iloc->bh.
4438 */
4439int ext4_mark_iloc_dirty(handle_t *handle,
4440			 struct inode *inode, struct ext4_iloc *iloc)
4441{
4442	int err = 0;
4443
 
 
 
 
4444	if (IS_I_VERSION(inode))
4445		inode_inc_iversion(inode);
4446
4447	/* the do_update_inode consumes one bh->b_count */
4448	get_bh(iloc->bh);
4449
4450	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4451	err = ext4_do_update_inode(handle, inode, iloc);
4452	put_bh(iloc->bh);
4453	return err;
4454}
4455
4456/*
4457 * On success, We end up with an outstanding reference count against
4458 * iloc->bh.  This _must_ be cleaned up later.
4459 */
4460
4461int
4462ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4463			 struct ext4_iloc *iloc)
4464{
4465	int err;
4466
 
 
 
4467	err = ext4_get_inode_loc(inode, iloc);
4468	if (!err) {
4469		BUFFER_TRACE(iloc->bh, "get_write_access");
4470		err = ext4_journal_get_write_access(handle, iloc->bh);
4471		if (err) {
4472			brelse(iloc->bh);
4473			iloc->bh = NULL;
4474		}
4475	}
4476	ext4_std_error(inode->i_sb, err);
4477	return err;
4478}
4479
4480/*
4481 * Expand an inode by new_extra_isize bytes.
4482 * Returns 0 on success or negative error number on failure.
4483 */
4484static int ext4_expand_extra_isize(struct inode *inode,
4485				   unsigned int new_extra_isize,
4486				   struct ext4_iloc iloc,
4487				   handle_t *handle)
4488{
4489	struct ext4_inode *raw_inode;
4490	struct ext4_xattr_ibody_header *header;
 
 
 
4491
4492	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4493		return 0;
 
 
 
 
 
 
 
 
 
 
4494
4495	raw_inode = ext4_raw_inode(&iloc);
4496
4497	header = IHDR(inode, raw_inode);
4498
4499	/* No extended attributes present */
4500	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4501	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4502		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4503			new_extra_isize);
 
4504		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4505		return 0;
4506	}
4507
4508	/* try to expand with EAs present */
4509	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4510					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4511}
4512
4513/*
4514 * What we do here is to mark the in-core inode as clean with respect to inode
4515 * dirtiness (it may still be data-dirty).
4516 * This means that the in-core inode may be reaped by prune_icache
4517 * without having to perform any I/O.  This is a very good thing,
4518 * because *any* task may call prune_icache - even ones which
4519 * have a transaction open against a different journal.
4520 *
4521 * Is this cheating?  Not really.  Sure, we haven't written the
4522 * inode out, but prune_icache isn't a user-visible syncing function.
4523 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4524 * we start and wait on commits.
4525 *
4526 * Is this efficient/effective?  Well, we're being nice to the system
4527 * by cleaning up our inodes proactively so they can be reaped
4528 * without I/O.  But we are potentially leaving up to five seconds'
4529 * worth of inodes floating about which prune_icache wants us to
4530 * write out.  One way to fix that would be to get prune_icache()
4531 * to do a write_super() to free up some memory.  It has the desired
4532 * effect.
4533 */
4534int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
4535{
4536	struct ext4_iloc iloc;
4537	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4538	static unsigned int mnt_count;
4539	int err, ret;
4540
4541	might_sleep();
4542	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4543	err = ext4_reserve_inode_write(handle, inode, &iloc);
4544	if (ext4_handle_valid(handle) &&
4545	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4546	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4547		/*
4548		 * We need extra buffer credits since we may write into EA block
4549		 * with this same handle. If journal_extend fails, then it will
4550		 * only result in a minor loss of functionality for that inode.
4551		 * If this is felt to be critical, then e2fsck should be run to
4552		 * force a large enough s_min_extra_isize.
4553		 */
4554		if ((jbd2_journal_extend(handle,
4555			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4556			ret = ext4_expand_extra_isize(inode,
4557						      sbi->s_want_extra_isize,
4558						      iloc, handle);
4559			if (ret) {
4560				ext4_set_inode_state(inode,
4561						     EXT4_STATE_NO_EXPAND);
4562				if (mnt_count !=
4563					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4564					ext4_warning(inode->i_sb,
4565					"Unable to expand inode %lu. Delete"
4566					" some EAs or run e2fsck.",
4567					inode->i_ino);
4568					mnt_count =
4569					  le16_to_cpu(sbi->s_es->s_mnt_count);
4570				}
4571			}
4572		}
4573	}
4574	if (!err)
4575		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4576	return err;
4577}
4578
4579/*
4580 * ext4_dirty_inode() is called from __mark_inode_dirty()
4581 *
4582 * We're really interested in the case where a file is being extended.
4583 * i_size has been changed by generic_commit_write() and we thus need
4584 * to include the updated inode in the current transaction.
4585 *
4586 * Also, dquot_alloc_block() will always dirty the inode when blocks
4587 * are allocated to the file.
4588 *
4589 * If the inode is marked synchronous, we don't honour that here - doing
4590 * so would cause a commit on atime updates, which we don't bother doing.
4591 * We handle synchronous inodes at the highest possible level.
 
 
 
 
4592 */
4593void ext4_dirty_inode(struct inode *inode, int flags)
4594{
4595	handle_t *handle;
4596
4597	handle = ext4_journal_start(inode, 2);
 
 
4598	if (IS_ERR(handle))
4599		goto out;
4600
4601	ext4_mark_inode_dirty(handle, inode);
4602
4603	ext4_journal_stop(handle);
4604out:
4605	return;
4606}
4607
4608#if 0
4609/*
4610 * Bind an inode's backing buffer_head into this transaction, to prevent
4611 * it from being flushed to disk early.  Unlike
4612 * ext4_reserve_inode_write, this leaves behind no bh reference and
4613 * returns no iloc structure, so the caller needs to repeat the iloc
4614 * lookup to mark the inode dirty later.
4615 */
4616static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4617{
4618	struct ext4_iloc iloc;
4619
4620	int err = 0;
4621	if (handle) {
4622		err = ext4_get_inode_loc(inode, &iloc);
4623		if (!err) {
4624			BUFFER_TRACE(iloc.bh, "get_write_access");
4625			err = jbd2_journal_get_write_access(handle, iloc.bh);
4626			if (!err)
4627				err = ext4_handle_dirty_metadata(handle,
4628								 NULL,
4629								 iloc.bh);
4630			brelse(iloc.bh);
4631		}
4632	}
4633	ext4_std_error(inode->i_sb, err);
4634	return err;
4635}
4636#endif
4637
4638int ext4_change_inode_journal_flag(struct inode *inode, int val)
4639{
4640	journal_t *journal;
4641	handle_t *handle;
4642	int err;
 
4643
4644	/*
4645	 * We have to be very careful here: changing a data block's
4646	 * journaling status dynamically is dangerous.  If we write a
4647	 * data block to the journal, change the status and then delete
4648	 * that block, we risk forgetting to revoke the old log record
4649	 * from the journal and so a subsequent replay can corrupt data.
4650	 * So, first we make sure that the journal is empty and that
4651	 * nobody is changing anything.
4652	 */
4653
4654	journal = EXT4_JOURNAL(inode);
4655	if (!journal)
4656		return 0;
4657	if (is_journal_aborted(journal))
4658		return -EROFS;
4659	/* We have to allocate physical blocks for delalloc blocks
4660	 * before flushing journal. otherwise delalloc blocks can not
4661	 * be allocated any more. even more truncate on delalloc blocks
4662	 * could trigger BUG by flushing delalloc blocks in journal.
4663	 * There is no delalloc block in non-journal data mode.
4664	 */
4665	if (val && test_opt(inode->i_sb, DELALLOC)) {
4666		err = ext4_alloc_da_blocks(inode);
4667		if (err < 0)
 
 
 
 
 
 
 
 
4668			return err;
 
4669	}
4670
 
4671	jbd2_journal_lock_updates(journal);
4672
4673	/*
4674	 * OK, there are no updates running now, and all cached data is
4675	 * synced to disk.  We are now in a completely consistent state
4676	 * which doesn't have anything in the journal, and we know that
4677	 * no filesystem updates are running, so it is safe to modify
4678	 * the inode's in-core data-journaling state flag now.
4679	 */
4680
4681	if (val)
4682		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4683	else {
4684		jbd2_journal_flush(journal);
 
 
 
 
 
4685		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4686	}
4687	ext4_set_aops(inode);
4688
4689	jbd2_journal_unlock_updates(journal);
 
 
 
 
4690
4691	/* Finally we can mark the inode as dirty. */
4692
4693	handle = ext4_journal_start(inode, 1);
4694	if (IS_ERR(handle))
4695		return PTR_ERR(handle);
4696
4697	err = ext4_mark_inode_dirty(handle, inode);
4698	ext4_handle_sync(handle);
4699	ext4_journal_stop(handle);
4700	ext4_std_error(inode->i_sb, err);
4701
4702	return err;
4703}
4704
4705static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4706{
4707	return !buffer_mapped(bh);
4708}
4709
4710int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4711{
 
4712	struct page *page = vmf->page;
4713	loff_t size;
4714	unsigned long len;
4715	int ret;
 
4716	struct file *file = vma->vm_file;
4717	struct inode *inode = file->f_path.dentry->d_inode;
4718	struct address_space *mapping = inode->i_mapping;
4719	handle_t *handle;
4720	get_block_t *get_block;
4721	int retries = 0;
4722
4723	/*
4724	 * This check is racy but catches the common case. We rely on
4725	 * __block_page_mkwrite() to do a reliable check.
4726	 */
4727	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 
 
 
 
 
 
 
4728	/* Delalloc case is easy... */
4729	if (test_opt(inode->i_sb, DELALLOC) &&
4730	    !ext4_should_journal_data(inode) &&
4731	    !ext4_nonda_switch(inode->i_sb)) {
4732		do {
4733			ret = __block_page_mkwrite(vma, vmf,
4734						   ext4_da_get_block_prep);
4735		} while (ret == -ENOSPC &&
4736		       ext4_should_retry_alloc(inode->i_sb, &retries));
4737		goto out_ret;
4738	}
4739
4740	lock_page(page);
4741	size = i_size_read(inode);
4742	/* Page got truncated from under us? */
4743	if (page->mapping != mapping || page_offset(page) > size) {
4744		unlock_page(page);
4745		ret = VM_FAULT_NOPAGE;
4746		goto out;
4747	}
4748
4749	if (page->index == size >> PAGE_CACHE_SHIFT)
4750		len = size & ~PAGE_CACHE_MASK;
4751	else
4752		len = PAGE_CACHE_SIZE;
4753	/*
4754	 * Return if we have all the buffers mapped. This avoids the need to do
4755	 * journal_start/journal_stop which can block and take a long time
4756	 */
4757	if (page_has_buffers(page)) {
4758		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4759					ext4_bh_unmapped)) {
 
4760			/* Wait so that we don't change page under IO */
4761			wait_on_page_writeback(page);
4762			ret = VM_FAULT_LOCKED;
4763			goto out;
4764		}
4765	}
4766	unlock_page(page);
4767	/* OK, we need to fill the hole... */
4768	if (ext4_should_dioread_nolock(inode))
4769		get_block = ext4_get_block_write;
4770	else
4771		get_block = ext4_get_block;
4772retry_alloc:
4773	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
 
4774	if (IS_ERR(handle)) {
4775		ret = VM_FAULT_SIGBUS;
4776		goto out;
4777	}
4778	ret = __block_page_mkwrite(vma, vmf, get_block);
4779	if (!ret && ext4_should_journal_data(inode)) {
4780		if (walk_page_buffers(handle, page_buffers(page), 0,
4781			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4782			unlock_page(page);
4783			ret = VM_FAULT_SIGBUS;
4784			ext4_journal_stop(handle);
4785			goto out;
4786		}
4787		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4788	}
4789	ext4_journal_stop(handle);
4790	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791		goto retry_alloc;
4792out_ret:
4793	ret = block_page_mkwrite_return(ret);
4794out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4795	return ret;
4796}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
 
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
 
 
  51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  52			      struct ext4_inode_info *ei)
  53{
  54	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
 
  55	__u32 csum;
  56	__u16 dummy_csum = 0;
  57	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  58	unsigned int csum_size = sizeof(dummy_csum);
  59
  60	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  61	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  62	offset += csum_size;
  63	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  64			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  65
  66	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  67		offset = offsetof(struct ext4_inode, i_checksum_hi);
  68		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  69				   EXT4_GOOD_OLD_INODE_SIZE,
  70				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  71		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  72			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  73					   csum_size);
  74			offset += csum_size;
  75		}
  76		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  77				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  78	}
  79
 
 
 
 
 
 
 
 
  80	return csum;
  81}
  82
  83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  84				  struct ext4_inode_info *ei)
  85{
  86	__u32 provided, calculated;
  87
  88	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  89	    cpu_to_le32(EXT4_OS_LINUX) ||
  90	    !ext4_has_metadata_csum(inode->i_sb))
 
  91		return 1;
  92
  93	provided = le16_to_cpu(raw->i_checksum_lo);
  94	calculated = ext4_inode_csum(inode, raw, ei);
  95	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  96	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  97		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  98	else
  99		calculated &= 0xFFFF;
 100
 101	return provided == calculated;
 102}
 103
 104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 105				struct ext4_inode_info *ei)
 106{
 107	__u32 csum;
 108
 109	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 110	    cpu_to_le32(EXT4_OS_LINUX) ||
 111	    !ext4_has_metadata_csum(inode->i_sb))
 
 112		return;
 113
 114	csum = ext4_inode_csum(inode, raw, ei);
 115	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 116	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 117	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 118		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 119}
 120
 121static inline int ext4_begin_ordered_truncate(struct inode *inode,
 122					      loff_t new_size)
 123{
 124	trace_ext4_begin_ordered_truncate(inode, new_size);
 125	/*
 126	 * If jinode is zero, then we never opened the file for
 127	 * writing, so there's no need to call
 128	 * jbd2_journal_begin_ordered_truncate() since there's no
 129	 * outstanding writes we need to flush.
 130	 */
 131	if (!EXT4_I(inode)->jinode)
 132		return 0;
 133	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 134						   EXT4_I(inode)->jinode,
 135						   new_size);
 136}
 137
 138static void ext4_invalidatepage(struct page *page, unsigned int offset,
 139				unsigned int length);
 
 
 
 140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143				  int pextents);
 
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 148 */
 149int ext4_inode_is_fast_symlink(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150{
 151	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 152		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 153				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 154
 155		if (ext4_has_inline_data(inode))
 156			return 0;
 
 
 
 
 
 
 
 
 
 
 157
 158		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 159	}
 160	return S_ISLNK(inode->i_mode) && inode->i_size &&
 161	       (inode->i_size < EXT4_N_BLOCKS * 4);
 162}
 163
 164/*
 165 * Called at the last iput() if i_nlink is zero.
 166 */
 167void ext4_evict_inode(struct inode *inode)
 168{
 169	handle_t *handle;
 170	int err;
 171	/*
 172	 * Credits for final inode cleanup and freeing:
 173	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 174	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 175	 */
 176	int extra_credits = 6;
 177	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 178
 179	trace_ext4_evict_inode(inode);
 180
 
 
 181	if (inode->i_nlink) {
 182		/*
 183		 * When journalling data dirty buffers are tracked only in the
 184		 * journal. So although mm thinks everything is clean and
 185		 * ready for reaping the inode might still have some pages to
 186		 * write in the running transaction or waiting to be
 187		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 188		 * (via truncate_inode_pages()) to discard these buffers can
 189		 * cause data loss. Also even if we did not discard these
 190		 * buffers, we would have no way to find them after the inode
 191		 * is reaped and thus user could see stale data if he tries to
 192		 * read them before the transaction is checkpointed. So be
 193		 * careful and force everything to disk here... We use
 194		 * ei->i_datasync_tid to store the newest transaction
 195		 * containing inode's data.
 196		 *
 197		 * Note that directories do not have this problem because they
 198		 * don't use page cache.
 199		 */
 200		if (inode->i_ino != EXT4_JOURNAL_INO &&
 201		    ext4_should_journal_data(inode) &&
 202		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 203		    inode->i_data.nrpages) {
 204			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 205			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 206
 207			jbd2_complete_transaction(journal, commit_tid);
 
 208			filemap_write_and_wait(&inode->i_data);
 209		}
 210		truncate_inode_pages_final(&inode->i_data);
 211
 212		goto no_delete;
 213	}
 214
 215	if (is_bad_inode(inode))
 216		goto no_delete;
 217	dquot_initialize(inode);
 218
 219	if (ext4_should_order_data(inode))
 220		ext4_begin_ordered_truncate(inode, 0);
 221	truncate_inode_pages_final(&inode->i_data);
 222
 223	/*
 224	 * For inodes with journalled data, transaction commit could have
 225	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
 226	 * flag but we still need to remove the inode from the writeback lists.
 227	 */
 228	if (!list_empty_careful(&inode->i_io_list)) {
 229		WARN_ON_ONCE(!ext4_should_journal_data(inode));
 230		inode_io_list_del(inode);
 231	}
 232
 233	/*
 234	 * Protect us against freezing - iput() caller didn't have to have any
 235	 * protection against it
 236	 */
 237	sb_start_intwrite(inode->i_sb);
 238
 239	if (!IS_NOQUOTA(inode))
 240		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 241
 242	/*
 243	 * Block bitmap, group descriptor, and inode are accounted in both
 244	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 245	 */
 246	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 247			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 248	if (IS_ERR(handle)) {
 249		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 250		/*
 251		 * If we're going to skip the normal cleanup, we still need to
 252		 * make sure that the in-core orphan linked list is properly
 253		 * cleaned up.
 254		 */
 255		ext4_orphan_del(NULL, inode);
 256		sb_end_intwrite(inode->i_sb);
 257		goto no_delete;
 258	}
 259
 260	if (IS_SYNC(inode))
 261		ext4_handle_sync(handle);
 262
 263	/*
 264	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 265	 * special handling of symlinks here because i_size is used to
 266	 * determine whether ext4_inode_info->i_data contains symlink data or
 267	 * block mappings. Setting i_size to 0 will remove its fast symlink
 268	 * status. Erase i_data so that it becomes a valid empty block map.
 269	 */
 270	if (ext4_inode_is_fast_symlink(inode))
 271		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 272	inode->i_size = 0;
 273	err = ext4_mark_inode_dirty(handle, inode);
 274	if (err) {
 275		ext4_warning(inode->i_sb,
 276			     "couldn't mark inode dirty (err %d)", err);
 277		goto stop_handle;
 278	}
 279	if (inode->i_blocks) {
 280		err = ext4_truncate(inode);
 281		if (err) {
 282			ext4_error_err(inode->i_sb, -err,
 283				       "couldn't truncate inode %lu (err %d)",
 284				       inode->i_ino, err);
 285			goto stop_handle;
 
 
 
 
 
 
 
 
 
 
 
 
 
 286		}
 287	}
 288
 289	/* Remove xattr references. */
 290	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 291				      extra_credits);
 292	if (err) {
 293		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 294stop_handle:
 295		ext4_journal_stop(handle);
 296		ext4_orphan_del(NULL, inode);
 297		sb_end_intwrite(inode->i_sb);
 298		ext4_xattr_inode_array_free(ea_inode_array);
 299		goto no_delete;
 300	}
 301
 302	/*
 303	 * Kill off the orphan record which ext4_truncate created.
 304	 * AKPM: I think this can be inside the above `if'.
 305	 * Note that ext4_orphan_del() has to be able to cope with the
 306	 * deletion of a non-existent orphan - this is because we don't
 307	 * know if ext4_truncate() actually created an orphan record.
 308	 * (Well, we could do this if we need to, but heck - it works)
 309	 */
 310	ext4_orphan_del(handle, inode);
 311	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 312
 313	/*
 314	 * One subtle ordering requirement: if anything has gone wrong
 315	 * (transaction abort, IO errors, whatever), then we can still
 316	 * do these next steps (the fs will already have been marked as
 317	 * having errors), but we can't free the inode if the mark_dirty
 318	 * fails.
 319	 */
 320	if (ext4_mark_inode_dirty(handle, inode))
 321		/* If that failed, just do the required in-core inode clear. */
 322		ext4_clear_inode(inode);
 323	else
 324		ext4_free_inode(handle, inode);
 325	ext4_journal_stop(handle);
 326	sb_end_intwrite(inode->i_sb);
 327	ext4_xattr_inode_array_free(ea_inode_array);
 328	return;
 329no_delete:
 330	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 331}
 332
 333#ifdef CONFIG_QUOTA
 334qsize_t *ext4_get_reserved_space(struct inode *inode)
 335{
 336	return &EXT4_I(inode)->i_reserved_quota;
 337}
 338#endif
 339
 340/*
 
 
 
 
 
 
 
 
 
 
 
 
 341 * Called with i_data_sem down, which is important since we can call
 342 * ext4_discard_preallocations() from here.
 343 */
 344void ext4_da_update_reserve_space(struct inode *inode,
 345					int used, int quota_claim)
 346{
 347	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 348	struct ext4_inode_info *ei = EXT4_I(inode);
 349
 350	spin_lock(&ei->i_block_reservation_lock);
 351	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 352	if (unlikely(used > ei->i_reserved_data_blocks)) {
 353		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 354			 "with only %d reserved data blocks",
 355			 __func__, inode->i_ino, used,
 356			 ei->i_reserved_data_blocks);
 357		WARN_ON(1);
 358		used = ei->i_reserved_data_blocks;
 359	}
 360
 
 
 
 
 
 
 
 
 
 361	/* Update per-inode reservations */
 362	ei->i_reserved_data_blocks -= used;
 363	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 
 
 
 364
 
 
 
 
 
 
 
 
 
 
 
 365	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 366
 367	/* Update quota subsystem for data blocks */
 368	if (quota_claim)
 369		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 370	else {
 371		/*
 372		 * We did fallocate with an offset that is already delayed
 373		 * allocated. So on delayed allocated writeback we should
 374		 * not re-claim the quota for fallocated blocks.
 375		 */
 376		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 377	}
 378
 379	/*
 380	 * If we have done all the pending block allocations and if
 381	 * there aren't any writers on the inode, we can discard the
 382	 * inode's preallocations.
 383	 */
 384	if ((ei->i_reserved_data_blocks == 0) &&
 385	    !inode_is_open_for_write(inode))
 386		ext4_discard_preallocations(inode, 0);
 387}
 388
 389static int __check_block_validity(struct inode *inode, const char *func,
 390				unsigned int line,
 391				struct ext4_map_blocks *map)
 392{
 393	if (ext4_has_feature_journal(inode->i_sb) &&
 394	    (inode->i_ino ==
 395	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 396		return 0;
 397	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 398		ext4_error_inode(inode, func, line, map->m_pblk,
 399				 "lblock %lu mapped to illegal pblock %llu "
 400				 "(length %d)", (unsigned long) map->m_lblk,
 401				 map->m_pblk, map->m_len);
 402		return -EFSCORRUPTED;
 403	}
 404	return 0;
 405}
 406
 407int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 408		       ext4_lblk_t len)
 
 
 
 
 
 
 
 409{
 410	int ret;
 
 
 
 
 411
 412	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 413		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 
 
 
 
 
 
 
 
 
 
 
 414
 415	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 416	if (ret > 0)
 417		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418
 419	return ret;
 420}
 
 
 
 
 
 
 
 
 421
 422#define check_block_validity(inode, map)	\
 423	__check_block_validity((inode), __func__, __LINE__, (map))
 
 424
 425#ifdef ES_AGGRESSIVE_TEST
 426static void ext4_map_blocks_es_recheck(handle_t *handle,
 427				       struct inode *inode,
 428				       struct ext4_map_blocks *es_map,
 429				       struct ext4_map_blocks *map,
 430				       int flags)
 431{
 432	int retval;
 
 
 433
 434	map->m_flags = 0;
 435	/*
 436	 * There is a race window that the result is not the same.
 437	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 438	 * is that we lookup a block mapping in extent status tree with
 439	 * out taking i_data_sem.  So at the time the unwritten extent
 440	 * could be converted.
 441	 */
 442	down_read(&EXT4_I(inode)->i_data_sem);
 443	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 444		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 445	} else {
 446		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 447	}
 448	up_read((&EXT4_I(inode)->i_data_sem));
 449
 450	/*
 451	 * We don't check m_len because extent will be collpased in status
 452	 * tree.  So the m_len might not equal.
 453	 */
 454	if (es_map->m_lblk != map->m_lblk ||
 455	    es_map->m_flags != map->m_flags ||
 456	    es_map->m_pblk != map->m_pblk) {
 457		printk("ES cache assertion failed for inode: %lu "
 458		       "es_cached ex [%d/%d/%llu/%x] != "
 459		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 460		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 461		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 462		       map->m_len, map->m_pblk, map->m_flags,
 463		       retval, flags);
 464	}
 465}
 466#endif /* ES_AGGRESSIVE_TEST */
 467
 468/*
 469 * The ext4_map_blocks() function tries to look up the requested blocks,
 470 * and returns if the blocks are already mapped.
 471 *
 472 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 473 * and store the allocated blocks in the result buffer head and mark it
 474 * mapped.
 475 *
 476 * If file type is extents based, it will call ext4_ext_map_blocks(),
 477 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 478 * based files
 479 *
 480 * On success, it returns the number of blocks being mapped or allocated.  if
 481 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 482 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 
 483 *
 484 * It returns 0 if plain look up failed (blocks have not been allocated), in
 485 * that case, @map is returned as unmapped but we still do fill map->m_len to
 486 * indicate the length of a hole starting at map->m_lblk.
 487 *
 488 * It returns the error in case of allocation failure.
 489 */
 490int ext4_map_blocks(handle_t *handle, struct inode *inode,
 491		    struct ext4_map_blocks *map, int flags)
 492{
 493	struct extent_status es;
 494	int retval;
 495	int ret = 0;
 496#ifdef ES_AGGRESSIVE_TEST
 497	struct ext4_map_blocks orig_map;
 498
 499	memcpy(&orig_map, map, sizeof(*map));
 500#endif
 501
 502	map->m_flags = 0;
 503	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 504		  flags, map->m_len, (unsigned long) map->m_lblk);
 505
 506	/*
 507	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 508	 */
 509	if (unlikely(map->m_len > INT_MAX))
 510		map->m_len = INT_MAX;
 511
 512	/* We can handle the block number less than EXT_MAX_BLOCKS */
 513	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 514		return -EFSCORRUPTED;
 515
 516	/* Lookup extent status tree firstly */
 517	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 518		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 519			map->m_pblk = ext4_es_pblock(&es) +
 520					map->m_lblk - es.es_lblk;
 521			map->m_flags |= ext4_es_is_written(&es) ?
 522					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 523			retval = es.es_len - (map->m_lblk - es.es_lblk);
 524			if (retval > map->m_len)
 525				retval = map->m_len;
 526			map->m_len = retval;
 527		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 528			map->m_pblk = 0;
 529			retval = es.es_len - (map->m_lblk - es.es_lblk);
 530			if (retval > map->m_len)
 531				retval = map->m_len;
 532			map->m_len = retval;
 533			retval = 0;
 534		} else {
 535			BUG();
 536		}
 537#ifdef ES_AGGRESSIVE_TEST
 538		ext4_map_blocks_es_recheck(handle, inode, map,
 539					   &orig_map, flags);
 540#endif
 541		goto found;
 542	}
 543
 544	/*
 545	 * Try to see if we can get the block without requesting a new
 546	 * file system block.
 547	 */
 548	down_read(&EXT4_I(inode)->i_data_sem);
 549	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 550		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 
 551	} else {
 552		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 553	}
 554	if (retval > 0) {
 555		unsigned int status;
 556
 557		if (unlikely(retval != map->m_len)) {
 558			ext4_warning(inode->i_sb,
 559				     "ES len assertion failed for inode "
 560				     "%lu: retval %d != map->m_len %d",
 561				     inode->i_ino, retval, map->m_len);
 562			WARN_ON(1);
 563		}
 564
 565		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 566				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 567		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 568		    !(status & EXTENT_STATUS_WRITTEN) &&
 569		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 570				       map->m_lblk + map->m_len - 1))
 571			status |= EXTENT_STATUS_DELAYED;
 572		ret = ext4_es_insert_extent(inode, map->m_lblk,
 573					    map->m_len, map->m_pblk, status);
 574		if (ret < 0)
 575			retval = ret;
 576	}
 577	up_read((&EXT4_I(inode)->i_data_sem));
 578
 579found:
 580	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 581		ret = check_block_validity(inode, map);
 582		if (ret != 0)
 583			return ret;
 584	}
 585
 586	/* If it is only a block(s) look up */
 587	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 588		return retval;
 589
 590	/*
 591	 * Returns if the blocks have already allocated
 592	 *
 593	 * Note that if blocks have been preallocated
 594	 * ext4_ext_get_block() returns the create = 0
 595	 * with buffer head unmapped.
 596	 */
 597	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 598		/*
 599		 * If we need to convert extent to unwritten
 600		 * we continue and do the actual work in
 601		 * ext4_ext_map_blocks()
 602		 */
 603		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 604			return retval;
 605
 606	/*
 607	 * Here we clear m_flags because after allocating an new extent,
 608	 * it will be set again.
 
 
 
 
 
 
 609	 */
 610	map->m_flags &= ~EXT4_MAP_FLAGS;
 611
 612	/*
 613	 * New blocks allocate and/or writing to unwritten extent
 614	 * will possibly result in updating i_data, so we take
 615	 * the write lock of i_data_sem, and call get_block()
 616	 * with create == 1 flag.
 617	 */
 618	down_write(&EXT4_I(inode)->i_data_sem);
 619
 620	/*
 
 
 
 
 
 
 
 
 621	 * We need to check for EXT4 here because migrate
 622	 * could have changed the inode type in between
 623	 */
 624	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 625		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 626	} else {
 627		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 628
 629		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 630			/*
 631			 * We allocated new blocks which will result in
 632			 * i_data's format changing.  Force the migrate
 633			 * to fail by clearing migrate flags
 634			 */
 635			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 636		}
 637
 638		/*
 639		 * Update reserved blocks/metadata blocks after successful
 640		 * block allocation which had been deferred till now. We don't
 641		 * support fallocate for non extent files. So we can update
 642		 * reserve space here.
 643		 */
 644		if ((retval > 0) &&
 645			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 646			ext4_da_update_reserve_space(inode, retval, 1);
 647	}
 
 
 648
 649	if (retval > 0) {
 650		unsigned int status;
 651
 652		if (unlikely(retval != map->m_len)) {
 653			ext4_warning(inode->i_sb,
 654				     "ES len assertion failed for inode "
 655				     "%lu: retval %d != map->m_len %d",
 656				     inode->i_ino, retval, map->m_len);
 657			WARN_ON(1);
 658		}
 659
 660		/*
 661		 * We have to zeroout blocks before inserting them into extent
 662		 * status tree. Otherwise someone could look them up there and
 663		 * use them before they are really zeroed. We also have to
 664		 * unmap metadata before zeroing as otherwise writeback can
 665		 * overwrite zeros with stale data from block device.
 666		 */
 667		if (flags & EXT4_GET_BLOCKS_ZERO &&
 668		    map->m_flags & EXT4_MAP_MAPPED &&
 669		    map->m_flags & EXT4_MAP_NEW) {
 670			ret = ext4_issue_zeroout(inode, map->m_lblk,
 671						 map->m_pblk, map->m_len);
 672			if (ret) {
 673				retval = ret;
 674				goto out_sem;
 675			}
 676		}
 677
 678		/*
 679		 * If the extent has been zeroed out, we don't need to update
 680		 * extent status tree.
 681		 */
 682		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 683		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 684			if (ext4_es_is_written(&es))
 685				goto out_sem;
 686		}
 687		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 688				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 689		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 690		    !(status & EXTENT_STATUS_WRITTEN) &&
 691		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 692				       map->m_lblk + map->m_len - 1))
 693			status |= EXTENT_STATUS_DELAYED;
 694		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 695					    map->m_pblk, status);
 696		if (ret < 0) {
 697			retval = ret;
 698			goto out_sem;
 699		}
 700	}
 701
 702out_sem:
 703	up_write((&EXT4_I(inode)->i_data_sem));
 704	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 705		ret = check_block_validity(inode, map);
 706		if (ret != 0)
 707			return ret;
 708
 709		/*
 710		 * Inodes with freshly allocated blocks where contents will be
 711		 * visible after transaction commit must be on transaction's
 712		 * ordered data list.
 713		 */
 714		if (map->m_flags & EXT4_MAP_NEW &&
 715		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 716		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 717		    !ext4_is_quota_file(inode) &&
 718		    ext4_should_order_data(inode)) {
 719			loff_t start_byte =
 720				(loff_t)map->m_lblk << inode->i_blkbits;
 721			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 722
 723			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 724				ret = ext4_jbd2_inode_add_wait(handle, inode,
 725						start_byte, length);
 726			else
 727				ret = ext4_jbd2_inode_add_write(handle, inode,
 728						start_byte, length);
 729			if (ret)
 730				return ret;
 731		}
 732	}
 733
 734	if (retval < 0)
 735		ext_debug(inode, "failed with err %d\n", retval);
 736	return retval;
 737}
 738
 739/*
 740 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 741 * we have to be careful as someone else may be manipulating b_state as well.
 742 */
 743static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 744{
 745	unsigned long old_state;
 746	unsigned long new_state;
 747
 748	flags &= EXT4_MAP_FLAGS;
 749
 750	/* Dummy buffer_head? Set non-atomically. */
 751	if (!bh->b_page) {
 752		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 753		return;
 754	}
 755	/*
 756	 * Someone else may be modifying b_state. Be careful! This is ugly but
 757	 * once we get rid of using bh as a container for mapping information
 758	 * to pass to / from get_block functions, this can go away.
 759	 */
 760	do {
 761		old_state = READ_ONCE(bh->b_state);
 762		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 763	} while (unlikely(
 764		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 765}
 766
 767static int _ext4_get_block(struct inode *inode, sector_t iblock,
 768			   struct buffer_head *bh, int flags)
 769{
 
 770	struct ext4_map_blocks map;
 771	int ret = 0;
 772
 773	if (ext4_has_inline_data(inode))
 774		return -ERANGE;
 775
 776	map.m_lblk = iblock;
 777	map.m_len = bh->b_size >> inode->i_blkbits;
 778
 779	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 780			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 781	if (ret > 0) {
 782		map_bh(bh, inode->i_sb, map.m_pblk);
 783		ext4_update_bh_state(bh, map.m_flags);
 784		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 785		ret = 0;
 786	} else if (ret == 0) {
 787		/* hole case, need to fill in bh->b_size */
 788		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 789	}
 
 
 790	return ret;
 791}
 792
 793int ext4_get_block(struct inode *inode, sector_t iblock,
 794		   struct buffer_head *bh, int create)
 795{
 796	return _ext4_get_block(inode, iblock, bh,
 797			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 798}
 799
 800/*
 801 * Get block function used when preparing for buffered write if we require
 802 * creating an unwritten extent if blocks haven't been allocated.  The extent
 803 * will be converted to written after the IO is complete.
 804 */
 805int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 806			     struct buffer_head *bh_result, int create)
 807{
 808	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 809		   inode->i_ino, create);
 810	return _ext4_get_block(inode, iblock, bh_result,
 811			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 812}
 813
 814/* Maximum number of blocks we map for direct IO at once. */
 815#define DIO_MAX_BLOCKS 4096
 816
 817/*
 818 * `handle' can be NULL if create is zero
 819 */
 820struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 821				ext4_lblk_t block, int map_flags)
 822{
 823	struct ext4_map_blocks map;
 824	struct buffer_head *bh;
 825	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 826	int err;
 827
 828	J_ASSERT(handle != NULL || create == 0);
 829
 830	map.m_lblk = block;
 831	map.m_len = 1;
 832	err = ext4_map_blocks(handle, inode, &map, map_flags);
 
 833
 834	if (err == 0)
 835		return create ? ERR_PTR(-ENOSPC) : NULL;
 836	if (err < 0)
 837		return ERR_PTR(err);
 
 
 
 838
 839	bh = sb_getblk(inode->i_sb, map.m_pblk);
 840	if (unlikely(!bh))
 841		return ERR_PTR(-ENOMEM);
 
 
 842	if (map.m_flags & EXT4_MAP_NEW) {
 843		J_ASSERT(create != 0);
 844		J_ASSERT(handle != NULL);
 845
 846		/*
 847		 * Now that we do not always journal data, we should
 848		 * keep in mind whether this should always journal the
 849		 * new buffer as metadata.  For now, regular file
 850		 * writes use ext4_get_block instead, so it's not a
 851		 * problem.
 852		 */
 853		lock_buffer(bh);
 854		BUFFER_TRACE(bh, "call get_create_access");
 855		err = ext4_journal_get_create_access(handle, bh);
 856		if (unlikely(err)) {
 857			unlock_buffer(bh);
 858			goto errout;
 859		}
 860		if (!buffer_uptodate(bh)) {
 861			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 862			set_buffer_uptodate(bh);
 863		}
 864		unlock_buffer(bh);
 865		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 866		err = ext4_handle_dirty_metadata(handle, inode, bh);
 867		if (unlikely(err))
 868			goto errout;
 869	} else
 870		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
 871	return bh;
 872errout:
 873	brelse(bh);
 874	return ERR_PTR(err);
 875}
 876
 877struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 878			       ext4_lblk_t block, int map_flags)
 879{
 880	struct buffer_head *bh;
 881
 882	bh = ext4_getblk(handle, inode, block, map_flags);
 883	if (IS_ERR(bh))
 884		return bh;
 885	if (!bh || ext4_buffer_uptodate(bh))
 886		return bh;
 887	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
 888	wait_on_buffer(bh);
 889	if (buffer_uptodate(bh))
 890		return bh;
 891	put_bh(bh);
 892	return ERR_PTR(-EIO);
 893}
 894
 895/* Read a contiguous batch of blocks. */
 896int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 897		     bool wait, struct buffer_head **bhs)
 898{
 899	int i, err;
 900
 901	for (i = 0; i < bh_count; i++) {
 902		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 903		if (IS_ERR(bhs[i])) {
 904			err = PTR_ERR(bhs[i]);
 905			bh_count = i;
 906			goto out_brelse;
 907		}
 908	}
 909
 910	for (i = 0; i < bh_count; i++)
 911		/* Note that NULL bhs[i] is valid because of holes. */
 912		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 913			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
 914				    &bhs[i]);
 915
 916	if (!wait)
 917		return 0;
 918
 919	for (i = 0; i < bh_count; i++)
 920		if (bhs[i])
 921			wait_on_buffer(bhs[i]);
 922
 923	for (i = 0; i < bh_count; i++) {
 924		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 925			err = -EIO;
 926			goto out_brelse;
 927		}
 928	}
 929	return 0;
 930
 931out_brelse:
 932	for (i = 0; i < bh_count; i++) {
 933		brelse(bhs[i]);
 934		bhs[i] = NULL;
 935	}
 936	return err;
 937}
 938
 939int ext4_walk_page_buffers(handle_t *handle,
 940			   struct buffer_head *head,
 941			   unsigned from,
 942			   unsigned to,
 943			   int *partial,
 944			   int (*fn)(handle_t *handle,
 945				     struct buffer_head *bh))
 946{
 947	struct buffer_head *bh;
 948	unsigned block_start, block_end;
 949	unsigned blocksize = head->b_size;
 950	int err, ret = 0;
 951	struct buffer_head *next;
 952
 953	for (bh = head, block_start = 0;
 954	     ret == 0 && (bh != head || !block_start);
 955	     block_start = block_end, bh = next) {
 956		next = bh->b_this_page;
 957		block_end = block_start + blocksize;
 958		if (block_end <= from || block_start >= to) {
 959			if (partial && !buffer_uptodate(bh))
 960				*partial = 1;
 961			continue;
 962		}
 963		err = (*fn)(handle, bh);
 964		if (!ret)
 965			ret = err;
 966	}
 967	return ret;
 968}
 969
 970/*
 971 * To preserve ordering, it is essential that the hole instantiation and
 972 * the data write be encapsulated in a single transaction.  We cannot
 973 * close off a transaction and start a new one between the ext4_get_block()
 974 * and the commit_write().  So doing the jbd2_journal_start at the start of
 975 * prepare_write() is the right place.
 976 *
 977 * Also, this function can nest inside ext4_writepage().  In that case, we
 978 * *know* that ext4_writepage() has generated enough buffer credits to do the
 979 * whole page.  So we won't block on the journal in that case, which is good,
 980 * because the caller may be PF_MEMALLOC.
 
 981 *
 982 * By accident, ext4 can be reentered when a transaction is open via
 983 * quota file writes.  If we were to commit the transaction while thus
 984 * reentered, there can be a deadlock - we would be holding a quota
 985 * lock, and the commit would never complete if another thread had a
 986 * transaction open and was blocking on the quota lock - a ranking
 987 * violation.
 988 *
 989 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 990 * will _not_ run commit under these circumstances because handle->h_ref
 991 * is elevated.  We'll still have enough credits for the tiny quotafile
 992 * write.
 993 */
 994int do_journal_get_write_access(handle_t *handle,
 995				struct buffer_head *bh)
 996{
 997	int dirty = buffer_dirty(bh);
 998	int ret;
 999
1000	if (!buffer_mapped(bh) || buffer_freed(bh))
1001		return 0;
1002	/*
1003	 * __block_write_begin() could have dirtied some buffers. Clean
1004	 * the dirty bit as jbd2_journal_get_write_access() could complain
1005	 * otherwise about fs integrity issues. Setting of the dirty bit
1006	 * by __block_write_begin() isn't a real problem here as we clear
1007	 * the bit before releasing a page lock and thus writeback cannot
1008	 * ever write the buffer.
1009	 */
1010	if (dirty)
1011		clear_buffer_dirty(bh);
1012	BUFFER_TRACE(bh, "get write access");
1013	ret = ext4_journal_get_write_access(handle, bh);
1014	if (!ret && dirty)
1015		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1016	return ret;
1017}
1018
1019#ifdef CONFIG_FS_ENCRYPTION
1020static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1021				  get_block_t *get_block)
1022{
1023	unsigned from = pos & (PAGE_SIZE - 1);
1024	unsigned to = from + len;
1025	struct inode *inode = page->mapping->host;
1026	unsigned block_start, block_end;
1027	sector_t block;
1028	int err = 0;
1029	unsigned blocksize = inode->i_sb->s_blocksize;
1030	unsigned bbits;
1031	struct buffer_head *bh, *head, *wait[2];
1032	int nr_wait = 0;
1033	int i;
1034
1035	BUG_ON(!PageLocked(page));
1036	BUG_ON(from > PAGE_SIZE);
1037	BUG_ON(to > PAGE_SIZE);
1038	BUG_ON(from > to);
1039
1040	if (!page_has_buffers(page))
1041		create_empty_buffers(page, blocksize, 0);
1042	head = page_buffers(page);
1043	bbits = ilog2(blocksize);
1044	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1045
1046	for (bh = head, block_start = 0; bh != head || !block_start;
1047	    block++, block_start = block_end, bh = bh->b_this_page) {
1048		block_end = block_start + blocksize;
1049		if (block_end <= from || block_start >= to) {
1050			if (PageUptodate(page)) {
1051				if (!buffer_uptodate(bh))
1052					set_buffer_uptodate(bh);
1053			}
1054			continue;
1055		}
1056		if (buffer_new(bh))
1057			clear_buffer_new(bh);
1058		if (!buffer_mapped(bh)) {
1059			WARN_ON(bh->b_size != blocksize);
1060			err = get_block(inode, block, bh, 1);
1061			if (err)
1062				break;
1063			if (buffer_new(bh)) {
1064				if (PageUptodate(page)) {
1065					clear_buffer_new(bh);
1066					set_buffer_uptodate(bh);
1067					mark_buffer_dirty(bh);
1068					continue;
1069				}
1070				if (block_end > to || block_start < from)
1071					zero_user_segments(page, to, block_end,
1072							   block_start, from);
1073				continue;
1074			}
1075		}
1076		if (PageUptodate(page)) {
1077			if (!buffer_uptodate(bh))
1078				set_buffer_uptodate(bh);
1079			continue;
1080		}
1081		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1082		    !buffer_unwritten(bh) &&
1083		    (block_start < from || block_end > to)) {
1084			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1085			wait[nr_wait++] = bh;
1086		}
1087	}
1088	/*
1089	 * If we issued read requests, let them complete.
1090	 */
1091	for (i = 0; i < nr_wait; i++) {
1092		wait_on_buffer(wait[i]);
1093		if (!buffer_uptodate(wait[i]))
1094			err = -EIO;
1095	}
1096	if (unlikely(err)) {
1097		page_zero_new_buffers(page, from, to);
1098	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1099		for (i = 0; i < nr_wait; i++) {
1100			int err2;
1101
1102			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1103								bh_offset(wait[i]));
1104			if (err2) {
1105				clear_buffer_uptodate(wait[i]);
1106				err = err2;
1107			}
1108		}
1109	}
1110
1111	return err;
1112}
1113#endif
1114
1115static int ext4_write_begin(struct file *file, struct address_space *mapping,
1116			    loff_t pos, unsigned len, unsigned flags,
1117			    struct page **pagep, void **fsdata)
1118{
1119	struct inode *inode = mapping->host;
1120	int ret, needed_blocks;
1121	handle_t *handle;
1122	int retries = 0;
1123	struct page *page;
1124	pgoff_t index;
1125	unsigned from, to;
1126
1127	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1128		return -EIO;
1129
1130	trace_ext4_write_begin(inode, pos, len, flags);
1131	/*
1132	 * Reserve one block more for addition to orphan list in case
1133	 * we allocate blocks but write fails for some reason
1134	 */
1135	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1136	index = pos >> PAGE_SHIFT;
1137	from = pos & (PAGE_SIZE - 1);
1138	to = from + len;
1139
1140	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1141		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1142						    flags, pagep);
1143		if (ret < 0)
1144			return ret;
1145		if (ret == 1)
1146			return 0;
1147	}
1148
1149	/*
1150	 * grab_cache_page_write_begin() can take a long time if the
1151	 * system is thrashing due to memory pressure, or if the page
1152	 * is being written back.  So grab it first before we start
1153	 * the transaction handle.  This also allows us to allocate
1154	 * the page (if needed) without using GFP_NOFS.
1155	 */
1156retry_grab:
1157	page = grab_cache_page_write_begin(mapping, index, flags);
1158	if (!page)
1159		return -ENOMEM;
1160	unlock_page(page);
1161
1162retry_journal:
1163	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1164	if (IS_ERR(handle)) {
1165		put_page(page);
1166		return PTR_ERR(handle);
1167	}
1168
1169	lock_page(page);
1170	if (page->mapping != mapping) {
1171		/* The page got truncated from under us */
1172		unlock_page(page);
1173		put_page(page);
1174		ext4_journal_stop(handle);
1175		goto retry_grab;
 
1176	}
1177	/* In case writeback began while the page was unlocked */
1178	wait_for_stable_page(page);
1179
1180#ifdef CONFIG_FS_ENCRYPTION
1181	if (ext4_should_dioread_nolock(inode))
1182		ret = ext4_block_write_begin(page, pos, len,
1183					     ext4_get_block_unwritten);
1184	else
1185		ret = ext4_block_write_begin(page, pos, len,
1186					     ext4_get_block);
1187#else
1188	if (ext4_should_dioread_nolock(inode))
1189		ret = __block_write_begin(page, pos, len,
1190					  ext4_get_block_unwritten);
1191	else
1192		ret = __block_write_begin(page, pos, len, ext4_get_block);
1193#endif
1194	if (!ret && ext4_should_journal_data(inode)) {
1195		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1196					     from, to, NULL,
1197					     do_journal_get_write_access);
1198	}
1199
1200	if (ret) {
1201		bool extended = (pos + len > inode->i_size) &&
1202				!ext4_verity_in_progress(inode);
1203
1204		unlock_page(page);
 
1205		/*
1206		 * __block_write_begin may have instantiated a few blocks
1207		 * outside i_size.  Trim these off again. Don't need
1208		 * i_size_read because we hold i_mutex.
1209		 *
1210		 * Add inode to orphan list in case we crash before
1211		 * truncate finishes
1212		 */
1213		if (extended && ext4_can_truncate(inode))
1214			ext4_orphan_add(handle, inode);
1215
1216		ext4_journal_stop(handle);
1217		if (extended) {
1218			ext4_truncate_failed_write(inode);
1219			/*
1220			 * If truncate failed early the inode might
1221			 * still be on the orphan list; we need to
1222			 * make sure the inode is removed from the
1223			 * orphan list in that case.
1224			 */
1225			if (inode->i_nlink)
1226				ext4_orphan_del(NULL, inode);
1227		}
 
1228
1229		if (ret == -ENOSPC &&
1230		    ext4_should_retry_alloc(inode->i_sb, &retries))
1231			goto retry_journal;
1232		put_page(page);
1233		return ret;
1234	}
1235	*pagep = page;
1236	return ret;
1237}
1238
1239/* For write_end() in data=journal mode */
1240static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1241{
1242	int ret;
1243	if (!buffer_mapped(bh) || buffer_freed(bh))
1244		return 0;
1245	set_buffer_uptodate(bh);
1246	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1247	clear_buffer_meta(bh);
1248	clear_buffer_prio(bh);
1249	return ret;
1250}
1251
1252/*
1253 * We need to pick up the new inode size which generic_commit_write gave us
1254 * `file' can be NULL - eg, when called from page_symlink().
1255 *
1256 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1257 * buffers are managed internally.
1258 */
1259static int ext4_write_end(struct file *file,
1260			  struct address_space *mapping,
1261			  loff_t pos, unsigned len, unsigned copied,
1262			  struct page *page, void *fsdata)
1263{
 
 
1264	handle_t *handle = ext4_journal_current_handle();
1265	struct inode *inode = mapping->host;
1266	loff_t old_size = inode->i_size;
1267	int ret = 0, ret2;
1268	int i_size_changed = 0;
1269	int inline_data = ext4_has_inline_data(inode);
1270	bool verity = ext4_verity_in_progress(inode);
1271
1272	trace_ext4_write_end(inode, pos, len, copied);
1273	if (inline_data) {
1274		ret = ext4_write_inline_data_end(inode, pos, len,
1275						 copied, page);
1276		if (ret < 0) {
1277			unlock_page(page);
1278			put_page(page);
1279			goto errout;
1280		}
1281		copied = ret;
1282	} else
1283		copied = block_write_end(file, mapping, pos,
1284					 len, copied, page, fsdata);
1285	/*
1286	 * it's important to update i_size while still holding page lock:
 
 
 
1287	 * page writeout could otherwise come in and zero beyond i_size.
1288	 *
1289	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1290	 * blocks are being written past EOF, so skip the i_size update.
1291	 */
1292	if (!verity)
1293		i_size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
 
 
 
 
 
1294	unlock_page(page);
1295	put_page(page);
1296
1297	if (old_size < pos && !verity)
1298		pagecache_isize_extended(inode, old_size, pos);
1299	/*
1300	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1301	 * makes the holding time of page lock longer. Second, it forces lock
1302	 * ordering of page lock and transaction start for journaling
1303	 * filesystems.
1304	 */
1305	if (i_size_changed || inline_data)
1306		ret = ext4_mark_inode_dirty(handle, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307
1308	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1309		/* if we have allocated more blocks and copied
1310		 * less. We will have blocks allocated outside
1311		 * inode->i_size. So truncate them
1312		 */
1313		ext4_orphan_add(handle, inode);
1314errout:
1315	ret2 = ext4_journal_stop(handle);
1316	if (!ret)
1317		ret = ret2;
1318
1319	if (pos + len > inode->i_size && !verity) {
1320		ext4_truncate_failed_write(inode);
1321		/*
1322		 * If truncate failed early the inode might still be
1323		 * on the orphan list; we need to make sure the inode
1324		 * is removed from the orphan list in that case.
1325		 */
1326		if (inode->i_nlink)
1327			ext4_orphan_del(NULL, inode);
1328	}
1329
 
1330	return ret ? ret : copied;
1331}
1332
1333/*
1334 * This is a private version of page_zero_new_buffers() which doesn't
1335 * set the buffer to be dirty, since in data=journalled mode we need
1336 * to call ext4_handle_dirty_metadata() instead.
1337 */
1338static void ext4_journalled_zero_new_buffers(handle_t *handle,
1339					    struct page *page,
1340					    unsigned from, unsigned to)
1341{
1342	unsigned int block_start = 0, block_end;
1343	struct buffer_head *head, *bh;
 
 
 
 
 
 
 
 
 
 
 
 
1344
1345	bh = head = page_buffers(page);
1346	do {
1347		block_end = block_start + bh->b_size;
1348		if (buffer_new(bh)) {
1349			if (block_end > from && block_start < to) {
1350				if (!PageUptodate(page)) {
1351					unsigned start, size;
1352
1353					start = max(from, block_start);
1354					size = min(to, block_end) - start;
 
1355
1356					zero_user(page, start, size);
1357					write_end_fn(handle, bh);
1358				}
1359				clear_buffer_new(bh);
1360			}
1361		}
1362		block_start = block_end;
1363		bh = bh->b_this_page;
1364	} while (bh != head);
 
 
 
1365}
1366
1367static int ext4_journalled_write_end(struct file *file,
1368				     struct address_space *mapping,
1369				     loff_t pos, unsigned len, unsigned copied,
1370				     struct page *page, void *fsdata)
1371{
1372	handle_t *handle = ext4_journal_current_handle();
1373	struct inode *inode = mapping->host;
1374	loff_t old_size = inode->i_size;
1375	int ret = 0, ret2;
1376	int partial = 0;
1377	unsigned from, to;
1378	int size_changed = 0;
1379	int inline_data = ext4_has_inline_data(inode);
1380	bool verity = ext4_verity_in_progress(inode);
1381
1382	trace_ext4_journalled_write_end(inode, pos, len, copied);
1383	from = pos & (PAGE_SIZE - 1);
1384	to = from + len;
1385
1386	BUG_ON(!ext4_handle_valid(handle));
1387
1388	if (inline_data) {
1389		ret = ext4_write_inline_data_end(inode, pos, len,
1390						 copied, page);
1391		if (ret < 0) {
1392			unlock_page(page);
1393			put_page(page);
1394			goto errout;
1395		}
1396		copied = ret;
1397	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1398		copied = 0;
1399		ext4_journalled_zero_new_buffers(handle, page, from, to);
1400	} else {
1401		if (unlikely(copied < len))
1402			ext4_journalled_zero_new_buffers(handle, page,
1403							 from + copied, to);
1404		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1405					     from + copied, &partial,
1406					     write_end_fn);
1407		if (!partial)
1408			SetPageUptodate(page);
1409	}
1410	if (!verity)
1411		size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
 
 
 
 
1412	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1413	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1414	unlock_page(page);
1415	put_page(page);
1416
1417	if (old_size < pos && !verity)
1418		pagecache_isize_extended(inode, old_size, pos);
1419
1420	if (size_changed || inline_data) {
1421		ret2 = ext4_mark_inode_dirty(handle, inode);
1422		if (!ret)
1423			ret = ret2;
1424	}
1425
1426	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
 
 
1427		/* if we have allocated more blocks and copied
1428		 * less. We will have blocks allocated outside
1429		 * inode->i_size. So truncate them
1430		 */
1431		ext4_orphan_add(handle, inode);
1432
1433errout:
1434	ret2 = ext4_journal_stop(handle);
1435	if (!ret)
1436		ret = ret2;
1437	if (pos + len > inode->i_size && !verity) {
1438		ext4_truncate_failed_write(inode);
1439		/*
1440		 * If truncate failed early the inode might still be
1441		 * on the orphan list; we need to make sure the inode
1442		 * is removed from the orphan list in that case.
1443		 */
1444		if (inode->i_nlink)
1445			ext4_orphan_del(NULL, inode);
1446	}
1447
1448	return ret ? ret : copied;
1449}
1450
1451/*
1452 * Reserve space for a single cluster
1453 */
1454static int ext4_da_reserve_space(struct inode *inode)
1455{
 
1456	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1457	struct ext4_inode_info *ei = EXT4_I(inode);
 
1458	int ret;
 
 
1459
1460	/*
1461	 * We will charge metadata quota at writeout time; this saves
1462	 * us from metadata over-estimation, though we may go over by
1463	 * a small amount in the end.  Here we just reserve for data.
1464	 */
1465	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1466	if (ret)
1467		return ret;
1468
 
 
 
 
 
 
1469	spin_lock(&ei->i_block_reservation_lock);
1470	if (ext4_claim_free_clusters(sbi, 1, 0)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471		spin_unlock(&ei->i_block_reservation_lock);
 
 
 
 
1472		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1473		return -ENOSPC;
1474	}
1475	ei->i_reserved_data_blocks++;
1476	trace_ext4_da_reserve_space(inode);
1477	spin_unlock(&ei->i_block_reservation_lock);
1478
1479	return 0;       /* success */
1480}
1481
1482void ext4_da_release_space(struct inode *inode, int to_free)
1483{
1484	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1485	struct ext4_inode_info *ei = EXT4_I(inode);
1486
1487	if (!to_free)
1488		return;		/* Nothing to release, exit */
1489
1490	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1491
1492	trace_ext4_da_release_space(inode, to_free);
1493	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1494		/*
1495		 * if there aren't enough reserved blocks, then the
1496		 * counter is messed up somewhere.  Since this
1497		 * function is called from invalidate page, it's
1498		 * harmless to return without any action.
1499		 */
1500		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1501			 "ino %lu, to_free %d with only %d reserved "
1502			 "data blocks", inode->i_ino, to_free,
1503			 ei->i_reserved_data_blocks);
1504		WARN_ON(1);
1505		to_free = ei->i_reserved_data_blocks;
1506	}
1507	ei->i_reserved_data_blocks -= to_free;
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509	/* update fs dirty data blocks counter */
1510	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1511
1512	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1513
1514	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1515}
1516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517/*
1518 * Delayed allocation stuff
1519 */
1520
1521struct mpage_da_data {
1522	struct inode *inode;
1523	struct writeback_control *wbc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524
1525	pgoff_t first_page;	/* The first page to write */
1526	pgoff_t next_page;	/* Current page to examine */
1527	pgoff_t last_page;	/* Last page to examine */
1528	/*
1529	 * Extent to map - this can be after first_page because that can be
1530	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1531	 * is delalloc or unwritten.
1532	 */
1533	struct ext4_map_blocks map;
1534	struct ext4_io_submit io_submit;	/* IO submission data */
1535	unsigned int do_map:1;
1536	unsigned int scanned_until_end:1;
1537};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538
1539static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1540				       bool invalidate)
1541{
1542	int nr_pages, i;
1543	pgoff_t index, end;
1544	struct pagevec pvec;
1545	struct inode *inode = mpd->inode;
1546	struct address_space *mapping = inode->i_mapping;
1547
1548	/* This is necessary when next_page == 0. */
1549	if (mpd->first_page >= mpd->next_page)
1550		return;
1551
1552	mpd->scanned_until_end = 0;
1553	index = mpd->first_page;
1554	end   = mpd->next_page - 1;
1555	if (invalidate) {
1556		ext4_lblk_t start, last;
1557		start = index << (PAGE_SHIFT - inode->i_blkbits);
1558		last = end << (PAGE_SHIFT - inode->i_blkbits);
1559		ext4_es_remove_extent(inode, start, last - start + 1);
1560	}
1561
1562	pagevec_init(&pvec);
1563	while (index <= end) {
1564		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1565		if (nr_pages == 0)
1566			break;
1567		for (i = 0; i < nr_pages; i++) {
1568			struct page *page = pvec.pages[i];
1569
 
1570			BUG_ON(!PageLocked(page));
1571			BUG_ON(PageWriteback(page));
1572			if (invalidate) {
1573				if (page_mapped(page))
1574					clear_page_dirty_for_io(page);
1575				block_invalidatepage(page, 0, PAGE_SIZE);
1576				ClearPageUptodate(page);
1577			}
1578			unlock_page(page);
1579		}
 
1580		pagevec_release(&pvec);
1581	}
 
1582}
1583
1584static void ext4_print_free_blocks(struct inode *inode)
1585{
1586	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1587	struct super_block *sb = inode->i_sb;
1588	struct ext4_inode_info *ei = EXT4_I(inode);
1589
1590	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1591	       EXT4_C2B(EXT4_SB(inode->i_sb),
1592			ext4_count_free_clusters(sb)));
1593	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1594	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1595	       (long long) EXT4_C2B(EXT4_SB(sb),
1596		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1597	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1598	       (long long) EXT4_C2B(EXT4_SB(sb),
1599		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1600	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1601	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1602		 ei->i_reserved_data_blocks);
 
 
1603	return;
1604}
1605
1606static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
1607{
1608	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609}
1610
 
 
 
1611/*
1612 * ext4_insert_delayed_block - adds a delayed block to the extents status
1613 *                             tree, incrementing the reserved cluster/block
1614 *                             count or making a pending reservation
1615 *                             where needed
1616 *
1617 * @inode - file containing the newly added block
1618 * @lblk - logical block to be added
 
1619 *
1620 * Returns 0 on success, negative error code on failure.
1621 */
1622static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
 
 
1623{
1624	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625	int ret;
1626	bool allocated = false;
1627
1628	/*
1629	 * If the cluster containing lblk is shared with a delayed,
1630	 * written, or unwritten extent in a bigalloc file system, it's
1631	 * already been accounted for and does not need to be reserved.
1632	 * A pending reservation must be made for the cluster if it's
1633	 * shared with a written or unwritten extent and doesn't already
1634	 * have one.  Written and unwritten extents can be purged from the
1635	 * extents status tree if the system is under memory pressure, so
1636	 * it's necessary to examine the extent tree if a search of the
1637	 * extents status tree doesn't get a match.
1638	 */
1639	if (sbi->s_cluster_ratio == 1) {
1640		ret = ext4_da_reserve_space(inode);
1641		if (ret != 0)   /* ENOSPC */
1642			goto errout;
1643	} else {   /* bigalloc */
1644		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1645			if (!ext4_es_scan_clu(inode,
1646					      &ext4_es_is_mapped, lblk)) {
1647				ret = ext4_clu_mapped(inode,
1648						      EXT4_B2C(sbi, lblk));
1649				if (ret < 0)
1650					goto errout;
1651				if (ret == 0) {
1652					ret = ext4_da_reserve_space(inode);
1653					if (ret != 0)   /* ENOSPC */
1654						goto errout;
1655				} else {
1656					allocated = true;
1657				}
1658			} else {
1659				allocated = true;
1660			}
1661		}
1662	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663
1664	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
 
 
 
 
 
 
 
1665
1666errout:
1667	return ret;
 
1668}
1669
1670/*
1671 * This function is grabs code from the very beginning of
1672 * ext4_map_blocks, but assumes that the caller is from delayed write
1673 * time. This function looks up the requested blocks and sets the
1674 * buffer delay bit under the protection of i_data_sem.
1675 */
1676static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1677			      struct ext4_map_blocks *map,
1678			      struct buffer_head *bh)
1679{
1680	struct extent_status es;
1681	int retval;
1682	sector_t invalid_block = ~((sector_t) 0xffff);
1683#ifdef ES_AGGRESSIVE_TEST
1684	struct ext4_map_blocks orig_map;
1685
1686	memcpy(&orig_map, map, sizeof(*map));
1687#endif
1688
1689	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1690		invalid_block = ~0;
1691
1692	map->m_flags = 0;
1693	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
 
1694		  (unsigned long) map->m_lblk);
1695
1696	/* Lookup extent status tree firstly */
1697	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1698		if (ext4_es_is_hole(&es)) {
1699			retval = 0;
1700			down_read(&EXT4_I(inode)->i_data_sem);
1701			goto add_delayed;
1702		}
1703
1704		/*
1705		 * Delayed extent could be allocated by fallocate.
1706		 * So we need to check it.
1707		 */
1708		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1709			map_bh(bh, inode->i_sb, invalid_block);
1710			set_buffer_new(bh);
1711			set_buffer_delay(bh);
1712			return 0;
1713		}
1714
1715		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1716		retval = es.es_len - (iblock - es.es_lblk);
1717		if (retval > map->m_len)
1718			retval = map->m_len;
1719		map->m_len = retval;
1720		if (ext4_es_is_written(&es))
1721			map->m_flags |= EXT4_MAP_MAPPED;
1722		else if (ext4_es_is_unwritten(&es))
1723			map->m_flags |= EXT4_MAP_UNWRITTEN;
1724		else
1725			BUG();
1726
1727#ifdef ES_AGGRESSIVE_TEST
1728		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1729#endif
1730		return retval;
1731	}
1732
1733	/*
1734	 * Try to see if we can get the block without requesting a new
1735	 * file system block.
1736	 */
1737	down_read(&EXT4_I(inode)->i_data_sem);
1738	if (ext4_has_inline_data(inode))
1739		retval = 0;
1740	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1741		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1742	else
1743		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1744
1745add_delayed:
1746	if (retval == 0) {
1747		int ret;
1748
1749		/*
1750		 * XXX: __block_prepare_write() unmaps passed block,
1751		 * is it OK?
1752		 */
 
 
 
 
 
 
 
 
1753
1754		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1755		if (ret != 0) {
1756			retval = ret;
1757			goto out_unlock;
1758		}
1759
1760		map_bh(bh, inode->i_sb, invalid_block);
1761		set_buffer_new(bh);
1762		set_buffer_delay(bh);
1763	} else if (retval > 0) {
1764		int ret;
1765		unsigned int status;
1766
1767		if (unlikely(retval != map->m_len)) {
1768			ext4_warning(inode->i_sb,
1769				     "ES len assertion failed for inode "
1770				     "%lu: retval %d != map->m_len %d",
1771				     inode->i_ino, retval, map->m_len);
1772			WARN_ON(1);
1773		}
1774
1775		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1776				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1777		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1778					    map->m_pblk, status);
1779		if (ret != 0)
1780			retval = ret;
1781	}
1782
1783out_unlock:
1784	up_read((&EXT4_I(inode)->i_data_sem));
1785
1786	return retval;
1787}
1788
1789/*
1790 * This is a special get_block_t callback which is used by
1791 * ext4_da_write_begin().  It will either return mapped block or
1792 * reserve space for a single block.
1793 *
1794 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1795 * We also have b_blocknr = -1 and b_bdev initialized properly
1796 *
1797 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1798 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1799 * initialized properly.
1800 */
1801int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1802			   struct buffer_head *bh, int create)
1803{
1804	struct ext4_map_blocks map;
1805	int ret = 0;
1806
1807	BUG_ON(create == 0);
1808	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1809
1810	map.m_lblk = iblock;
1811	map.m_len = 1;
1812
1813	/*
1814	 * first, we need to know whether the block is allocated already
1815	 * preallocated blocks are unmapped but should treated
1816	 * the same as allocated blocks.
1817	 */
1818	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1819	if (ret <= 0)
1820		return ret;
1821
1822	map_bh(bh, inode->i_sb, map.m_pblk);
1823	ext4_update_bh_state(bh, map.m_flags);
1824
1825	if (buffer_unwritten(bh)) {
1826		/* A delayed write to unwritten bh should be marked
1827		 * new and mapped.  Mapped ensures that we don't do
1828		 * get_block multiple times when we write to the same
1829		 * offset and new ensures that we do proper zero out
1830		 * for partial write.
1831		 */
1832		set_buffer_new(bh);
1833		set_buffer_mapped(bh);
1834	}
1835	return 0;
1836}
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838static int bget_one(handle_t *handle, struct buffer_head *bh)
1839{
1840	get_bh(bh);
1841	return 0;
1842}
1843
1844static int bput_one(handle_t *handle, struct buffer_head *bh)
1845{
1846	put_bh(bh);
1847	return 0;
1848}
1849
1850static int __ext4_journalled_writepage(struct page *page,
1851				       unsigned int len)
1852{
1853	struct address_space *mapping = page->mapping;
1854	struct inode *inode = mapping->host;
1855	struct buffer_head *page_bufs = NULL;
1856	handle_t *handle = NULL;
1857	int ret = 0, err = 0;
1858	int inline_data = ext4_has_inline_data(inode);
1859	struct buffer_head *inode_bh = NULL;
1860
1861	ClearPageChecked(page);
1862
1863	if (inline_data) {
1864		BUG_ON(page->index != 0);
1865		BUG_ON(len > ext4_get_max_inline_size(inode));
1866		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1867		if (inode_bh == NULL)
1868			goto out;
1869	} else {
1870		page_bufs = page_buffers(page);
1871		if (!page_bufs) {
1872			BUG();
1873			goto out;
1874		}
1875		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1876				       NULL, bget_one);
1877	}
1878	/*
1879	 * We need to release the page lock before we start the
1880	 * journal, so grab a reference so the page won't disappear
1881	 * out from under us.
1882	 */
1883	get_page(page);
1884	unlock_page(page);
1885
1886	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1887				    ext4_writepage_trans_blocks(inode));
1888	if (IS_ERR(handle)) {
1889		ret = PTR_ERR(handle);
1890		put_page(page);
1891		goto out_no_pagelock;
1892	}
 
1893	BUG_ON(!ext4_handle_valid(handle));
1894
1895	lock_page(page);
1896	put_page(page);
1897	if (page->mapping != mapping) {
1898		/* The page got truncated from under us */
1899		ext4_journal_stop(handle);
1900		ret = 0;
1901		goto out;
1902	}
1903
1904	if (inline_data) {
1905		ret = ext4_mark_inode_dirty(handle, inode);
1906	} else {
1907		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1908					     do_journal_get_write_access);
1909
1910		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911					     write_end_fn);
1912	}
1913	if (ret == 0)
1914		ret = err;
1915	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1916	err = ext4_journal_stop(handle);
1917	if (!ret)
1918		ret = err;
1919
1920	if (!ext4_has_inline_data(inode))
1921		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1922				       NULL, bput_one);
1923	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924out:
1925	unlock_page(page);
1926out_no_pagelock:
1927	brelse(inode_bh);
1928	return ret;
1929}
1930
 
 
 
1931/*
1932 * Note that we don't need to start a transaction unless we're journaling data
1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934 * need to file the inode to the transaction's list in ordered mode because if
1935 * we are writing back data added by write(), the inode is already there and if
1936 * we are writing back data modified via mmap(), no one guarantees in which
1937 * transaction the data will hit the disk. In case we are journaling data, we
1938 * cannot start transaction directly because transaction start ranks above page
1939 * lock so we have to do some magic.
1940 *
1941 * This function can get called via...
1942 *   - ext4_writepages after taking page lock (have journal handle)
1943 *   - journal_submit_inode_data_buffers (no journal handle)
1944 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1945 *   - grab_page_cache when doing write_begin (have journal handle)
1946 *
1947 * We don't do any block allocation in this function. If we have page with
1948 * multiple blocks we need to write those buffer_heads that are mapped. This
1949 * is important for mmaped based write. So if we do with blocksize 1K
1950 * truncate(f, 1024);
1951 * a = mmap(f, 0, 4096);
1952 * a[0] = 'a';
1953 * truncate(f, 4096);
1954 * we have in the page first buffer_head mapped via page_mkwrite call back
1955 * but other buffer_heads would be unmapped but dirty (dirty done via the
1956 * do_wp_page). So writepage should write the first block. If we modify
1957 * the mmap area beyond 1024 we will again get a page_fault and the
1958 * page_mkwrite callback will do the block allocation and mark the
1959 * buffer_heads mapped.
1960 *
1961 * We redirty the page if we have any buffer_heads that is either delay or
1962 * unwritten in the page.
1963 *
1964 * We can get recursively called as show below.
1965 *
1966 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967 *		ext4_writepage()
1968 *
1969 * But since we don't do any block allocation we should not deadlock.
1970 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971 */
1972static int ext4_writepage(struct page *page,
1973			  struct writeback_control *wbc)
1974{
1975	int ret = 0;
1976	loff_t size;
1977	unsigned int len;
1978	struct buffer_head *page_bufs = NULL;
1979	struct inode *inode = page->mapping->host;
1980	struct ext4_io_submit io_submit;
1981	bool keep_towrite = false;
1982
1983	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1985		unlock_page(page);
1986		return -EIO;
1987	}
1988
1989	trace_ext4_writepage(page);
1990	size = i_size_read(inode);
1991	if (page->index == size >> PAGE_SHIFT &&
1992	    !ext4_verity_in_progress(inode))
1993		len = size & ~PAGE_MASK;
1994	else
1995		len = PAGE_SIZE;
1996
1997	page_bufs = page_buffers(page);
1998	/*
1999	 * We cannot do block allocation or other extent handling in this
2000	 * function. If there are buffers needing that, we have to redirty
2001	 * the page. But we may reach here when we do a journal commit via
2002	 * journal_submit_inode_data_buffers() and in that case we must write
2003	 * allocated buffers to achieve data=ordered mode guarantees.
2004	 *
2005	 * Also, if there is only one buffer per page (the fs block
2006	 * size == the page size), if one buffer needs block
2007	 * allocation or needs to modify the extent tree to clear the
2008	 * unwritten flag, we know that the page can't be written at
2009	 * all, so we might as well refuse the write immediately.
2010	 * Unfortunately if the block size != page size, we can't as
2011	 * easily detect this case using ext4_walk_page_buffers(), but
2012	 * for the extremely common case, this is an optimization that
2013	 * skips a useless round trip through ext4_bio_write_page().
2014	 */
2015	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2016				   ext4_bh_delay_or_unwritten)) {
2017		redirty_page_for_writepage(wbc, page);
2018		if ((current->flags & PF_MEMALLOC) ||
2019		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2020			/*
2021			 * For memory cleaning there's no point in writing only
2022			 * some buffers. So just bail out. Warn if we came here
2023			 * from direct reclaim.
2024			 */
2025			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2026							== PF_MEMALLOC);
2027			unlock_page(page);
2028			return 0;
2029		}
2030		keep_towrite = true;
2031	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032
2033	if (PageChecked(page) && ext4_should_journal_data(inode))
2034		/*
2035		 * It's mmapped pagecache.  Add buffers and journal it.  There
2036		 * doesn't seem much point in redirtying the page here.
2037		 */
2038		return __ext4_journalled_writepage(page, len);
2039
2040	ext4_io_submit_init(&io_submit, wbc);
2041	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2042	if (!io_submit.io_end) {
2043		redirty_page_for_writepage(wbc, page);
2044		unlock_page(page);
2045		return -ENOMEM;
2046	}
2047	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2048	ext4_io_submit(&io_submit);
2049	/* Drop io_end reference we got from init */
2050	ext4_put_io_end_defer(io_submit.io_end);
2051	return ret;
2052}
2053
2054static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2055{
2056	int len;
2057	loff_t size;
2058	int err;
2059
2060	BUG_ON(page->index != mpd->first_page);
2061	clear_page_dirty_for_io(page);
2062	/*
2063	 * We have to be very careful here!  Nothing protects writeback path
2064	 * against i_size changes and the page can be writeably mapped into
2065	 * page tables. So an application can be growing i_size and writing
2066	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2067	 * write-protects our page in page tables and the page cannot get
2068	 * written to again until we release page lock. So only after
2069	 * clear_page_dirty_for_io() we are safe to sample i_size for
2070	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2071	 * on the barrier provided by TestClearPageDirty in
2072	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2073	 * after page tables are updated.
2074	 */
2075	size = i_size_read(mpd->inode);
2076	if (page->index == size >> PAGE_SHIFT &&
2077	    !ext4_verity_in_progress(mpd->inode))
2078		len = size & ~PAGE_MASK;
2079	else
2080		len = PAGE_SIZE;
2081	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2082	if (!err)
2083		mpd->wbc->nr_to_write--;
2084	mpd->first_page++;
2085
2086	return err;
2087}
2088
2089#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2090
2091/*
2092 * mballoc gives us at most this number of blocks...
2093 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2094 * The rest of mballoc seems to handle chunks up to full group size.
 
 
2095 */
2096#define MAX_WRITEPAGES_EXTENT_LEN 2048
2097
2098/*
2099 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2100 *
2101 * @mpd - extent of blocks
2102 * @lblk - logical number of the block in the file
2103 * @bh - buffer head we want to add to the extent
2104 *
2105 * The function is used to collect contig. blocks in the same state. If the
2106 * buffer doesn't require mapping for writeback and we haven't started the
2107 * extent of buffers to map yet, the function returns 'true' immediately - the
2108 * caller can write the buffer right away. Otherwise the function returns true
2109 * if the block has been added to the extent, false if the block couldn't be
2110 * added.
2111 */
2112static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2113				   struct buffer_head *bh)
2114{
2115	struct ext4_map_blocks *map = &mpd->map;
2116
2117	/* Buffer that doesn't need mapping for writeback? */
2118	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2119	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2120		/* So far no extent to map => we write the buffer right away */
2121		if (map->m_len == 0)
2122			return true;
2123		return false;
2124	}
2125
2126	/* First block in the extent? */
2127	if (map->m_len == 0) {
2128		/* We cannot map unless handle is started... */
2129		if (!mpd->do_map)
2130			return false;
2131		map->m_lblk = lblk;
2132		map->m_len = 1;
2133		map->m_flags = bh->b_state & BH_FLAGS;
2134		return true;
2135	}
2136
2137	/* Don't go larger than mballoc is willing to allocate */
2138	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139		return false;
2140
2141	/* Can we merge the block to our big extent? */
2142	if (lblk == map->m_lblk + map->m_len &&
2143	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2144		map->m_len++;
2145		return true;
2146	}
2147	return false;
2148}
2149
2150/*
2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152 *
2153 * @mpd - extent of blocks for mapping
2154 * @head - the first buffer in the page
2155 * @bh - buffer we should start processing from
2156 * @lblk - logical number of the block in the file corresponding to @bh
2157 *
2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159 * the page for IO if all buffers in this page were mapped and there's no
2160 * accumulated extent of buffers to map or add buffers in the page to the
2161 * extent of buffers to map. The function returns 1 if the caller can continue
2162 * by processing the next page, 0 if it should stop adding buffers to the
2163 * extent to map because we cannot extend it anymore. It can also return value
2164 * < 0 in case of error during IO submission.
2165 */
2166static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167				   struct buffer_head *head,
2168				   struct buffer_head *bh,
2169				   ext4_lblk_t lblk)
2170{
2171	struct inode *inode = mpd->inode;
2172	int err;
2173	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2174							>> inode->i_blkbits;
2175
2176	if (ext4_verity_in_progress(inode))
2177		blocks = EXT_MAX_BLOCKS;
2178
2179	do {
2180		BUG_ON(buffer_locked(bh));
2181
2182		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2183			/* Found extent to map? */
2184			if (mpd->map.m_len)
2185				return 0;
2186			/* Buffer needs mapping and handle is not started? */
2187			if (!mpd->do_map)
2188				return 0;
2189			/* Everything mapped so far and we hit EOF */
2190			break;
2191		}
2192	} while (lblk++, (bh = bh->b_this_page) != head);
2193	/* So far everything mapped? Submit the page for IO. */
2194	if (mpd->map.m_len == 0) {
2195		err = mpage_submit_page(mpd, head->b_page);
2196		if (err < 0)
2197			return err;
2198	}
2199	if (lblk >= blocks) {
2200		mpd->scanned_until_end = 1;
2201		return 0;
2202	}
2203	return 1;
2204}
2205
2206/*
2207 * mpage_process_page - update page buffers corresponding to changed extent and
2208 *		       may submit fully mapped page for IO
2209 *
2210 * @mpd		- description of extent to map, on return next extent to map
2211 * @m_lblk	- logical block mapping.
2212 * @m_pblk	- corresponding physical mapping.
2213 * @map_bh	- determines on return whether this page requires any further
2214 *		  mapping or not.
2215 * Scan given page buffers corresponding to changed extent and update buffer
2216 * state according to new extent state.
2217 * We map delalloc buffers to their physical location, clear unwritten bits.
2218 * If the given page is not fully mapped, we update @map to the next extent in
2219 * the given page that needs mapping & return @map_bh as true.
2220 */
2221static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2222			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2223			      bool *map_bh)
2224{
2225	struct buffer_head *head, *bh;
2226	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2227	ext4_lblk_t lblk = *m_lblk;
2228	ext4_fsblk_t pblock = *m_pblk;
2229	int err = 0;
2230	int blkbits = mpd->inode->i_blkbits;
2231	ssize_t io_end_size = 0;
2232	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2233
2234	bh = head = page_buffers(page);
2235	do {
2236		if (lblk < mpd->map.m_lblk)
2237			continue;
2238		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2239			/*
2240			 * Buffer after end of mapped extent.
2241			 * Find next buffer in the page to map.
2242			 */
2243			mpd->map.m_len = 0;
2244			mpd->map.m_flags = 0;
2245			io_end_vec->size += io_end_size;
2246			io_end_size = 0;
2247
2248			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2249			if (err > 0)
2250				err = 0;
2251			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2252				io_end_vec = ext4_alloc_io_end_vec(io_end);
2253				if (IS_ERR(io_end_vec)) {
2254					err = PTR_ERR(io_end_vec);
2255					goto out;
2256				}
2257				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2258			}
2259			*map_bh = true;
2260			goto out;
2261		}
2262		if (buffer_delay(bh)) {
2263			clear_buffer_delay(bh);
2264			bh->b_blocknr = pblock++;
2265		}
2266		clear_buffer_unwritten(bh);
2267		io_end_size += (1 << blkbits);
2268	} while (lblk++, (bh = bh->b_this_page) != head);
2269
2270	io_end_vec->size += io_end_size;
2271	io_end_size = 0;
2272	*map_bh = false;
2273out:
2274	*m_lblk = lblk;
2275	*m_pblk = pblock;
2276	return err;
2277}
2278
2279/*
2280 * mpage_map_buffers - update buffers corresponding to changed extent and
2281 *		       submit fully mapped pages for IO
2282 *
2283 * @mpd - description of extent to map, on return next extent to map
2284 *
2285 * Scan buffers corresponding to changed extent (we expect corresponding pages
2286 * to be already locked) and update buffer state according to new extent state.
2287 * We map delalloc buffers to their physical location, clear unwritten bits,
2288 * and mark buffers as uninit when we perform writes to unwritten extents
2289 * and do extent conversion after IO is finished. If the last page is not fully
2290 * mapped, we update @map to the next extent in the last page that needs
2291 * mapping. Otherwise we submit the page for IO.
2292 */
2293static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2294{
2295	struct pagevec pvec;
2296	int nr_pages, i;
2297	struct inode *inode = mpd->inode;
2298	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2299	pgoff_t start, end;
2300	ext4_lblk_t lblk;
2301	ext4_fsblk_t pblock;
2302	int err;
2303	bool map_bh = false;
2304
2305	start = mpd->map.m_lblk >> bpp_bits;
2306	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2307	lblk = start << bpp_bits;
2308	pblock = mpd->map.m_pblk;
2309
2310	pagevec_init(&pvec);
2311	while (start <= end) {
2312		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2313						&start, end);
2314		if (nr_pages == 0)
2315			break;
2316		for (i = 0; i < nr_pages; i++) {
2317			struct page *page = pvec.pages[i];
2318
2319			err = mpage_process_page(mpd, page, &lblk, &pblock,
2320						 &map_bh);
2321			/*
2322			 * If map_bh is true, means page may require further bh
2323			 * mapping, or maybe the page was submitted for IO.
2324			 * So we return to call further extent mapping.
2325			 */
2326			if (err < 0 || map_bh)
2327				goto out;
2328			/* Page fully mapped - let IO run! */
2329			err = mpage_submit_page(mpd, page);
2330			if (err < 0)
2331				goto out;
2332		}
2333		pagevec_release(&pvec);
2334	}
2335	/* Extent fully mapped and matches with page boundary. We are done. */
2336	mpd->map.m_len = 0;
2337	mpd->map.m_flags = 0;
2338	return 0;
2339out:
2340	pagevec_release(&pvec);
2341	return err;
2342}
2343
2344static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2345{
2346	struct inode *inode = mpd->inode;
2347	struct ext4_map_blocks *map = &mpd->map;
2348	int get_blocks_flags;
2349	int err, dioread_nolock;
2350
2351	trace_ext4_da_write_pages_extent(inode, map);
2352	/*
2353	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2354	 * to convert an unwritten extent to be initialized (in the case
2355	 * where we have written into one or more preallocated blocks).  It is
2356	 * possible that we're going to need more metadata blocks than
2357	 * previously reserved. However we must not fail because we're in
2358	 * writeback and there is nothing we can do about it so it might result
2359	 * in data loss.  So use reserved blocks to allocate metadata if
2360	 * possible.
2361	 *
2362	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2363	 * the blocks in question are delalloc blocks.  This indicates
2364	 * that the blocks and quotas has already been checked when
2365	 * the data was copied into the page cache.
2366	 */
2367	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2368			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2369			   EXT4_GET_BLOCKS_IO_SUBMIT;
2370	dioread_nolock = ext4_should_dioread_nolock(inode);
2371	if (dioread_nolock)
2372		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2373	if (map->m_flags & BIT(BH_Delay))
2374		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2375
2376	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2377	if (err < 0)
2378		return err;
2379	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2380		if (!mpd->io_submit.io_end->handle &&
2381		    ext4_handle_valid(handle)) {
2382			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2383			handle->h_rsv_handle = NULL;
2384		}
2385		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2386	}
2387
2388	BUG_ON(map->m_len == 0);
2389	return 0;
2390}
2391
2392/*
2393 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2394 *				 mpd->len and submit pages underlying it for IO
2395 *
2396 * @handle - handle for journal operations
2397 * @mpd - extent to map
2398 * @give_up_on_write - we set this to true iff there is a fatal error and there
2399 *                     is no hope of writing the data. The caller should discard
2400 *                     dirty pages to avoid infinite loops.
2401 *
2402 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2403 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2404 * them to initialized or split the described range from larger unwritten
2405 * extent. Note that we need not map all the described range since allocation
2406 * can return less blocks or the range is covered by more unwritten extents. We
2407 * cannot map more because we are limited by reserved transaction credits. On
2408 * the other hand we always make sure that the last touched page is fully
2409 * mapped so that it can be written out (and thus forward progress is
2410 * guaranteed). After mapping we submit all mapped pages for IO.
2411 */
2412static int mpage_map_and_submit_extent(handle_t *handle,
2413				       struct mpage_da_data *mpd,
2414				       bool *give_up_on_write)
2415{
2416	struct inode *inode = mpd->inode;
2417	struct ext4_map_blocks *map = &mpd->map;
2418	int err;
2419	loff_t disksize;
2420	int progress = 0;
2421	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2422	struct ext4_io_end_vec *io_end_vec;
2423
2424	io_end_vec = ext4_alloc_io_end_vec(io_end);
2425	if (IS_ERR(io_end_vec))
2426		return PTR_ERR(io_end_vec);
2427	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2428	do {
2429		err = mpage_map_one_extent(handle, mpd);
2430		if (err < 0) {
2431			struct super_block *sb = inode->i_sb;
2432
2433			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2434			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2435				goto invalidate_dirty_pages;
2436			/*
2437			 * Let the uper layers retry transient errors.
2438			 * In the case of ENOSPC, if ext4_count_free_blocks()
2439			 * is non-zero, a commit should free up blocks.
2440			 */
2441			if ((err == -ENOMEM) ||
2442			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2443				if (progress)
2444					goto update_disksize;
2445				return err;
2446			}
2447			ext4_msg(sb, KERN_CRIT,
2448				 "Delayed block allocation failed for "
2449				 "inode %lu at logical offset %llu with"
2450				 " max blocks %u with error %d",
2451				 inode->i_ino,
2452				 (unsigned long long)map->m_lblk,
2453				 (unsigned)map->m_len, -err);
2454			ext4_msg(sb, KERN_CRIT,
2455				 "This should not happen!! Data will "
2456				 "be lost\n");
2457			if (err == -ENOSPC)
2458				ext4_print_free_blocks(inode);
2459		invalidate_dirty_pages:
2460			*give_up_on_write = true;
2461			return err;
2462		}
2463		progress = 1;
2464		/*
2465		 * Update buffer state, submit mapped pages, and get us new
2466		 * extent to map
2467		 */
2468		err = mpage_map_and_submit_buffers(mpd);
2469		if (err < 0)
2470			goto update_disksize;
2471	} while (map->m_len);
2472
2473update_disksize:
2474	/*
2475	 * Update on-disk size after IO is submitted.  Races with
2476	 * truncate are avoided by checking i_size under i_data_sem.
2477	 */
2478	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2479	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2480		int err2;
2481		loff_t i_size;
2482
2483		down_write(&EXT4_I(inode)->i_data_sem);
2484		i_size = i_size_read(inode);
2485		if (disksize > i_size)
2486			disksize = i_size;
2487		if (disksize > EXT4_I(inode)->i_disksize)
2488			EXT4_I(inode)->i_disksize = disksize;
2489		up_write(&EXT4_I(inode)->i_data_sem);
2490		err2 = ext4_mark_inode_dirty(handle, inode);
2491		if (err2) {
2492			ext4_error_err(inode->i_sb, -err2,
2493				       "Failed to mark inode %lu dirty",
2494				       inode->i_ino);
2495		}
2496		if (!err)
2497			err = err2;
2498	}
2499	return err;
2500}
2501
2502/*
2503 * Calculate the total number of credits to reserve for one writepages
2504 * iteration. This is called from ext4_writepages(). We map an extent of
2505 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507 * bpp - 1 blocks in bpp different extents.
2508 */
2509static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510{
2511	int bpp = ext4_journal_blocks_per_page(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512
2513	return ext4_meta_trans_blocks(inode,
2514				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2515}
2516
2517/*
2518 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519 * 				 and underlying extent to map
2520 *
2521 * @mpd - where to look for pages
2522 *
2523 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524 * IO immediately. When we find a page which isn't mapped we start accumulating
2525 * extent of buffers underlying these pages that needs mapping (formed by
2526 * either delayed or unwritten buffers). We also lock the pages containing
2527 * these buffers. The extent found is returned in @mpd structure (starting at
2528 * mpd->lblk with length mpd->len blocks).
2529 *
2530 * Note that this function can attach bios to one io_end structure which are
2531 * neither logically nor physically contiguous. Although it may seem as an
2532 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533 * case as we need to track IO to all buffers underlying a page in one io_end.
2534 */
2535static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2536{
2537	struct address_space *mapping = mpd->inode->i_mapping;
2538	struct pagevec pvec;
2539	unsigned int nr_pages;
2540	long left = mpd->wbc->nr_to_write;
2541	pgoff_t index = mpd->first_page;
2542	pgoff_t end = mpd->last_page;
2543	xa_mark_t tag;
2544	int i, err = 0;
2545	int blkbits = mpd->inode->i_blkbits;
2546	ext4_lblk_t lblk;
2547	struct buffer_head *head;
2548
2549	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2550		tag = PAGECACHE_TAG_TOWRITE;
2551	else
2552		tag = PAGECACHE_TAG_DIRTY;
2553
2554	pagevec_init(&pvec);
2555	mpd->map.m_len = 0;
2556	mpd->next_page = index;
2557	while (index <= end) {
2558		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2559				tag);
2560		if (nr_pages == 0)
2561			break;
2562
2563		for (i = 0; i < nr_pages; i++) {
2564			struct page *page = pvec.pages[i];
2565
2566			/*
2567			 * Accumulated enough dirty pages? This doesn't apply
2568			 * to WB_SYNC_ALL mode. For integrity sync we have to
2569			 * keep going because someone may be concurrently
2570			 * dirtying pages, and we might have synced a lot of
2571			 * newly appeared dirty pages, but have not synced all
2572			 * of the old dirty pages.
2573			 */
2574			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575				goto out;
2576
2577			/* If we can't merge this page, we are done. */
2578			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579				goto out;
 
 
 
 
 
 
 
 
2580
2581			lock_page(page);
 
2582			/*
2583			 * If the page is no longer dirty, or its mapping no
2584			 * longer corresponds to inode we are writing (which
2585			 * means it has been truncated or invalidated), or the
2586			 * page is already under writeback and we are not doing
2587			 * a data integrity writeback, skip the page
 
2588			 */
2589			if (!PageDirty(page) ||
2590			    (PageWriteback(page) &&
2591			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592			    unlikely(page->mapping != mapping)) {
2593				unlock_page(page);
2594				continue;
2595			}
2596
2597			wait_on_page_writeback(page);
2598			BUG_ON(PageWriteback(page));
2599
2600			if (mpd->map.m_len == 0)
2601				mpd->first_page = page->index;
2602			mpd->next_page = page->index + 1;
2603			/* Add all dirty buffers to mpd */
2604			lblk = ((ext4_lblk_t)page->index) <<
2605				(PAGE_SHIFT - blkbits);
2606			head = page_buffers(page);
2607			err = mpage_process_page_bufs(mpd, head, head, lblk);
2608			if (err <= 0)
2609				goto out;
2610			err = 0;
2611			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612		}
2613		pagevec_release(&pvec);
2614		cond_resched();
2615	}
2616	mpd->scanned_until_end = 1;
2617	return 0;
 
 
2618out:
2619	pagevec_release(&pvec);
2620	return err;
 
2621}
2622
2623static int ext4_writepages(struct address_space *mapping,
2624			   struct writeback_control *wbc)
 
2625{
2626	pgoff_t	writeback_index = 0;
2627	long nr_to_write = wbc->nr_to_write;
2628	int range_whole = 0;
2629	int cycled = 1;
2630	handle_t *handle = NULL;
2631	struct mpage_da_data mpd;
2632	struct inode *inode = mapping->host;
2633	int needed_blocks, rsv_blocks = 0, ret = 0;
 
 
 
 
 
2634	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
 
 
2635	struct blk_plug plug;
2636	bool give_up_on_write = false;
2637
2638	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2639		return -EIO;
2640
2641	percpu_down_read(&sbi->s_writepages_rwsem);
2642	trace_ext4_writepages(inode, wbc);
2643
2644	/*
2645	 * No pages to write? This is mainly a kludge to avoid starting
2646	 * a transaction for special inodes like journal inode on last iput()
2647	 * because that could violate lock ordering on umount
2648	 */
2649	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2650		goto out_writepages;
2651
2652	if (ext4_should_journal_data(inode)) {
2653		ret = generic_writepages(mapping, wbc);
2654		goto out_writepages;
2655	}
2656
2657	/*
2658	 * If the filesystem has aborted, it is read-only, so return
2659	 * right away instead of dumping stack traces later on that
2660	 * will obscure the real source of the problem.  We test
2661	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2662	 * the latter could be true if the filesystem is mounted
2663	 * read-only, and in that case, ext4_writepages should
2664	 * *never* be called, so if that ever happens, we would want
2665	 * the stack trace.
2666	 */
2667	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2668		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2669		ret = -EROFS;
2670		goto out_writepages;
2671	}
2672
2673	/*
2674	 * If we have inline data and arrive here, it means that
2675	 * we will soon create the block for the 1st page, so
2676	 * we'd better clear the inline data here.
2677	 */
2678	if (ext4_has_inline_data(inode)) {
2679		/* Just inode will be modified... */
2680		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2681		if (IS_ERR(handle)) {
2682			ret = PTR_ERR(handle);
2683			goto out_writepages;
2684		}
2685		BUG_ON(ext4_test_inode_state(inode,
2686				EXT4_STATE_MAY_INLINE_DATA));
2687		ext4_destroy_inline_data(handle, inode);
2688		ext4_journal_stop(handle);
2689	}
2690
2691	if (ext4_should_dioread_nolock(inode)) {
2692		/*
2693		 * We may need to convert up to one extent per block in
2694		 * the page and we may dirty the inode.
2695		 */
2696		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2697						PAGE_SIZE >> inode->i_blkbits);
2698	}
2699
2700	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2701		range_whole = 1;
2702
 
2703	if (wbc->range_cyclic) {
2704		writeback_index = mapping->writeback_index;
2705		if (writeback_index)
2706			cycled = 0;
2707		mpd.first_page = writeback_index;
2708		mpd.last_page = -1;
 
 
2709	} else {
2710		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2711		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2712	}
2713
2714	mpd.inode = inode;
2715	mpd.wbc = wbc;
2716	ext4_io_submit_init(&mpd.io_submit, wbc);
2717retry:
2718	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2719		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
 
2720	blk_start_plug(&plug);
2721
2722	/*
2723	 * First writeback pages that don't need mapping - we can avoid
2724	 * starting a transaction unnecessarily and also avoid being blocked
2725	 * in the block layer on device congestion while having transaction
2726	 * started.
2727	 */
2728	mpd.do_map = 0;
2729	mpd.scanned_until_end = 0;
2730	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2731	if (!mpd.io_submit.io_end) {
2732		ret = -ENOMEM;
2733		goto unplug;
2734	}
2735	ret = mpage_prepare_extent_to_map(&mpd);
2736	/* Unlock pages we didn't use */
2737	mpage_release_unused_pages(&mpd, false);
2738	/* Submit prepared bio */
2739	ext4_io_submit(&mpd.io_submit);
2740	ext4_put_io_end_defer(mpd.io_submit.io_end);
2741	mpd.io_submit.io_end = NULL;
2742	if (ret < 0)
2743		goto unplug;
2744
2745	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2746		/* For each extent of pages we use new io_end */
2747		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2748		if (!mpd.io_submit.io_end) {
2749			ret = -ENOMEM;
2750			break;
2751		}
2752
2753		/*
2754		 * We have two constraints: We find one extent to map and we
2755		 * must always write out whole page (makes a difference when
2756		 * blocksize < pagesize) so that we don't block on IO when we
2757		 * try to write out the rest of the page. Journalled mode is
2758		 * not supported by delalloc.
2759		 */
2760		BUG_ON(ext4_should_journal_data(inode));
2761		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2762
2763		/* start a new transaction */
2764		handle = ext4_journal_start_with_reserve(inode,
2765				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2766		if (IS_ERR(handle)) {
2767			ret = PTR_ERR(handle);
2768			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2769			       "%ld pages, ino %lu; err %d", __func__,
2770				wbc->nr_to_write, inode->i_ino, ret);
2771			/* Release allocated io_end */
2772			ext4_put_io_end(mpd.io_submit.io_end);
2773			mpd.io_submit.io_end = NULL;
2774			break;
2775		}
2776		mpd.do_map = 1;
2777
2778		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2779		ret = mpage_prepare_extent_to_map(&mpd);
2780		if (!ret && mpd.map.m_len)
2781			ret = mpage_map_and_submit_extent(handle, &mpd,
2782					&give_up_on_write);
2783		/*
2784		 * Caution: If the handle is synchronous,
2785		 * ext4_journal_stop() can wait for transaction commit
2786		 * to finish which may depend on writeback of pages to
2787		 * complete or on page lock to be released.  In that
2788		 * case, we have to wait until after after we have
2789		 * submitted all the IO, released page locks we hold,
2790		 * and dropped io_end reference (for extent conversion
2791		 * to be able to complete) before stopping the handle.
2792		 */
2793		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794			ext4_journal_stop(handle);
2795			handle = NULL;
2796			mpd.do_map = 0;
 
 
 
 
 
2797		}
2798		/* Unlock pages we didn't use */
2799		mpage_release_unused_pages(&mpd, give_up_on_write);
2800		/* Submit prepared bio */
2801		ext4_io_submit(&mpd.io_submit);
2802
2803		/*
2804		 * Drop our io_end reference we got from init. We have
2805		 * to be careful and use deferred io_end finishing if
2806		 * we are still holding the transaction as we can
2807		 * release the last reference to io_end which may end
2808		 * up doing unwritten extent conversion.
2809		 */
2810		if (handle) {
2811			ext4_put_io_end_defer(mpd.io_submit.io_end);
2812			ext4_journal_stop(handle);
2813		} else
2814			ext4_put_io_end(mpd.io_submit.io_end);
2815		mpd.io_submit.io_end = NULL;
2816
2817		if (ret == -ENOSPC && sbi->s_journal) {
2818			/*
2819			 * Commit the transaction which would
2820			 * free blocks released in the transaction
2821			 * and try again
2822			 */
2823			jbd2_journal_force_commit_nested(sbi->s_journal);
2824			ret = 0;
2825			continue;
2826		}
2827		/* Fatal error - ENOMEM, EIO... */
2828		if (ret)
 
 
 
 
 
 
 
 
 
 
 
2829			break;
2830	}
2831unplug:
2832	blk_finish_plug(&plug);
2833	if (!ret && !cycled && wbc->nr_to_write > 0) {
2834		cycled = 1;
2835		mpd.last_page = writeback_index - 1;
2836		mpd.first_page = 0;
 
2837		goto retry;
2838	}
2839
2840	/* Update index */
 
2841	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2842		/*
2843		 * Set the writeback_index so that range_cyclic
2844		 * mode will write it back later
2845		 */
2846		mapping->writeback_index = mpd.first_page;
2847
2848out_writepages:
2849	trace_ext4_writepages_result(inode, wbc, ret,
2850				     nr_to_write - wbc->nr_to_write);
2851	percpu_up_read(&sbi->s_writepages_rwsem);
2852	return ret;
2853}
2854
2855static int ext4_dax_writepages(struct address_space *mapping,
2856			       struct writeback_control *wbc)
2857{
2858	int ret;
2859	long nr_to_write = wbc->nr_to_write;
2860	struct inode *inode = mapping->host;
2861	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2862
2863	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2864		return -EIO;
2865
2866	percpu_down_read(&sbi->s_writepages_rwsem);
2867	trace_ext4_writepages(inode, wbc);
2868
2869	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2870	trace_ext4_writepages_result(inode, wbc, ret,
2871				     nr_to_write - wbc->nr_to_write);
2872	percpu_up_read(&sbi->s_writepages_rwsem);
2873	return ret;
2874}
2875
 
2876static int ext4_nonda_switch(struct super_block *sb)
2877{
2878	s64 free_clusters, dirty_clusters;
2879	struct ext4_sb_info *sbi = EXT4_SB(sb);
2880
2881	/*
2882	 * switch to non delalloc mode if we are running low
2883	 * on free block. The free block accounting via percpu
2884	 * counters can get slightly wrong with percpu_counter_batch getting
2885	 * accumulated on each CPU without updating global counters
2886	 * Delalloc need an accurate free block accounting. So switch
2887	 * to non delalloc when we are near to error range.
2888	 */
2889	free_clusters =
2890		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2891	dirty_clusters =
2892		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2893	/*
2894	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2895	 */
2896	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2898
2899	if (2 * free_clusters < 3 * dirty_clusters ||
2900	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2901		/*
2902		 * free block count is less than 150% of dirty blocks
2903		 * or free blocks is less than watermark
2904		 */
2905		return 1;
2906	}
 
 
 
 
 
 
 
2907	return 0;
2908}
2909
2910/* We always reserve for an inode update; the superblock could be there too */
2911static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2912{
2913	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2914		return 1;
2915
2916	if (pos + len <= 0x7fffffffULL)
2917		return 1;
2918
2919	/* We might need to update the superblock to set LARGE_FILE */
2920	return 2;
2921}
2922
2923static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2924			       loff_t pos, unsigned len, unsigned flags,
2925			       struct page **pagep, void **fsdata)
2926{
2927	int ret, retries = 0;
2928	struct page *page;
2929	pgoff_t index;
2930	struct inode *inode = mapping->host;
2931	handle_t *handle;
2932
2933	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934		return -EIO;
2935
2936	index = pos >> PAGE_SHIFT;
2937
2938	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939	    ext4_verity_in_progress(inode)) {
2940		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941		return ext4_write_begin(file, mapping, pos,
2942					len, flags, pagep, fsdata);
2943	}
2944	*fsdata = (void *)0;
2945	trace_ext4_da_write_begin(inode, pos, len, flags);
2946
2947	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948		ret = ext4_da_write_inline_data_begin(mapping, inode,
2949						      pos, len, flags,
2950						      pagep, fsdata);
2951		if (ret < 0)
2952			return ret;
2953		if (ret == 1)
2954			return 0;
2955	}
2956
2957	/*
2958	 * grab_cache_page_write_begin() can take a long time if the
2959	 * system is thrashing due to memory pressure, or if the page
2960	 * is being written back.  So grab it first before we start
2961	 * the transaction handle.  This also allows us to allocate
2962	 * the page (if needed) without using GFP_NOFS.
2963	 */
2964retry_grab:
2965	page = grab_cache_page_write_begin(mapping, index, flags);
2966	if (!page)
2967		return -ENOMEM;
2968	unlock_page(page);
2969
2970	/*
2971	 * With delayed allocation, we don't log the i_disksize update
2972	 * if there is delayed block allocation. But we still need
2973	 * to journalling the i_disksize update if writes to the end
2974	 * of file which has an already mapped buffer.
2975	 */
2976retry_journal:
2977	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2978				ext4_da_write_credits(inode, pos, len));
2979	if (IS_ERR(handle)) {
2980		put_page(page);
2981		return PTR_ERR(handle);
2982	}
 
 
 
2983
2984	lock_page(page);
2985	if (page->mapping != mapping) {
2986		/* The page got truncated from under us */
2987		unlock_page(page);
2988		put_page(page);
2989		ext4_journal_stop(handle);
2990		goto retry_grab;
 
2991	}
2992	/* In case writeback began while the page was unlocked */
2993	wait_for_stable_page(page);
2994
2995#ifdef CONFIG_FS_ENCRYPTION
2996	ret = ext4_block_write_begin(page, pos, len,
2997				     ext4_da_get_block_prep);
2998#else
2999	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000#endif
3001	if (ret < 0) {
3002		unlock_page(page);
3003		ext4_journal_stop(handle);
 
3004		/*
3005		 * block_write_begin may have instantiated a few blocks
3006		 * outside i_size.  Trim these off again. Don't need
3007		 * i_size_read because we hold i_mutex.
3008		 */
3009		if (pos + len > inode->i_size)
3010			ext4_truncate_failed_write(inode);
3011
3012		if (ret == -ENOSPC &&
3013		    ext4_should_retry_alloc(inode->i_sb, &retries))
3014			goto retry_journal;
3015
3016		put_page(page);
3017		return ret;
3018	}
3019
3020	*pagep = page;
 
 
3021	return ret;
3022}
3023
3024/*
3025 * Check if we should update i_disksize
3026 * when write to the end of file but not require block allocation
3027 */
3028static int ext4_da_should_update_i_disksize(struct page *page,
3029					    unsigned long offset)
3030{
3031	struct buffer_head *bh;
3032	struct inode *inode = page->mapping->host;
3033	unsigned int idx;
3034	int i;
3035
3036	bh = page_buffers(page);
3037	idx = offset >> inode->i_blkbits;
3038
3039	for (i = 0; i < idx; i++)
3040		bh = bh->b_this_page;
3041
3042	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3043		return 0;
3044	return 1;
3045}
3046
3047static int ext4_da_write_end(struct file *file,
3048			     struct address_space *mapping,
3049			     loff_t pos, unsigned len, unsigned copied,
3050			     struct page *page, void *fsdata)
3051{
3052	struct inode *inode = mapping->host;
3053	int ret = 0, ret2;
3054	handle_t *handle = ext4_journal_current_handle();
3055	loff_t new_i_size;
3056	unsigned long start, end;
3057	int write_mode = (int)(unsigned long)fsdata;
3058
3059	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3060		return ext4_write_end(file, mapping, pos,
3061				      len, copied, page, fsdata);
 
 
 
 
 
 
 
 
 
3062
3063	trace_ext4_da_write_end(inode, pos, len, copied);
3064	start = pos & (PAGE_SIZE - 1);
3065	end = start + copied - 1;
3066
3067	/*
3068	 * generic_write_end() will run mark_inode_dirty() if i_size
3069	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3070	 * into that.
3071	 */
 
3072	new_i_size = pos + copied;
3073	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3074		if (ext4_has_inline_data(inode) ||
3075		    ext4_da_should_update_i_disksize(page, end)) {
3076			ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
 
 
 
 
 
 
3077			/* We need to mark inode dirty even if
3078			 * new_i_size is less that inode->i_size
3079			 * bu greater than i_disksize.(hint delalloc)
3080			 */
3081			ret = ext4_mark_inode_dirty(handle, inode);
3082		}
3083	}
3084
3085	if (write_mode != CONVERT_INLINE_DATA &&
3086	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3087	    ext4_has_inline_data(inode))
3088		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3089						     page);
3090	else
3091		ret2 = generic_write_end(file, mapping, pos, len, copied,
3092							page, fsdata);
3093
3094	copied = ret2;
3095	if (ret2 < 0)
3096		ret = ret2;
3097	ret2 = ext4_journal_stop(handle);
3098	if (unlikely(ret2 && !ret))
3099		ret = ret2;
3100
3101	return ret ? ret : copied;
3102}
3103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104/*
3105 * Force all delayed allocation blocks to be allocated for a given inode.
3106 */
3107int ext4_alloc_da_blocks(struct inode *inode)
3108{
3109	trace_ext4_alloc_da_blocks(inode);
3110
3111	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3112		return 0;
3113
3114	/*
3115	 * We do something simple for now.  The filemap_flush() will
3116	 * also start triggering a write of the data blocks, which is
3117	 * not strictly speaking necessary (and for users of
3118	 * laptop_mode, not even desirable).  However, to do otherwise
3119	 * would require replicating code paths in:
3120	 *
3121	 * ext4_writepages() ->
3122	 *    write_cache_pages() ---> (via passed in callback function)
3123	 *        __mpage_da_writepage() -->
3124	 *           mpage_add_bh_to_extent()
3125	 *           mpage_da_map_blocks()
3126	 *
3127	 * The problem is that write_cache_pages(), located in
3128	 * mm/page-writeback.c, marks pages clean in preparation for
3129	 * doing I/O, which is not desirable if we're not planning on
3130	 * doing I/O at all.
3131	 *
3132	 * We could call write_cache_pages(), and then redirty all of
3133	 * the pages by calling redirty_page_for_writepage() but that
3134	 * would be ugly in the extreme.  So instead we would need to
3135	 * replicate parts of the code in the above functions,
3136	 * simplifying them because we wouldn't actually intend to
3137	 * write out the pages, but rather only collect contiguous
3138	 * logical block extents, call the multi-block allocator, and
3139	 * then update the buffer heads with the block allocations.
3140	 *
3141	 * For now, though, we'll cheat by calling filemap_flush(),
3142	 * which will map the blocks, and start the I/O, but not
3143	 * actually wait for the I/O to complete.
3144	 */
3145	return filemap_flush(inode->i_mapping);
3146}
3147
3148/*
3149 * bmap() is special.  It gets used by applications such as lilo and by
3150 * the swapper to find the on-disk block of a specific piece of data.
3151 *
3152 * Naturally, this is dangerous if the block concerned is still in the
3153 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3154 * filesystem and enables swap, then they may get a nasty shock when the
3155 * data getting swapped to that swapfile suddenly gets overwritten by
3156 * the original zero's written out previously to the journal and
3157 * awaiting writeback in the kernel's buffer cache.
3158 *
3159 * So, if we see any bmap calls here on a modified, data-journaled file,
3160 * take extra steps to flush any blocks which might be in the cache.
3161 */
3162static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3163{
3164	struct inode *inode = mapping->host;
3165	journal_t *journal;
3166	int err;
3167
3168	/*
3169	 * We can get here for an inline file via the FIBMAP ioctl
3170	 */
3171	if (ext4_has_inline_data(inode))
3172		return 0;
3173
3174	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3175			test_opt(inode->i_sb, DELALLOC)) {
3176		/*
3177		 * With delalloc we want to sync the file
3178		 * so that we can make sure we allocate
3179		 * blocks for file
3180		 */
3181		filemap_write_and_wait(mapping);
3182	}
3183
3184	if (EXT4_JOURNAL(inode) &&
3185	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3186		/*
3187		 * This is a REALLY heavyweight approach, but the use of
3188		 * bmap on dirty files is expected to be extremely rare:
3189		 * only if we run lilo or swapon on a freshly made file
3190		 * do we expect this to happen.
3191		 *
3192		 * (bmap requires CAP_SYS_RAWIO so this does not
3193		 * represent an unprivileged user DOS attack --- we'd be
3194		 * in trouble if mortal users could trigger this path at
3195		 * will.)
3196		 *
3197		 * NB. EXT4_STATE_JDATA is not set on files other than
3198		 * regular files.  If somebody wants to bmap a directory
3199		 * or symlink and gets confused because the buffer
3200		 * hasn't yet been flushed to disk, they deserve
3201		 * everything they get.
3202		 */
3203
3204		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3205		journal = EXT4_JOURNAL(inode);
3206		jbd2_journal_lock_updates(journal);
3207		err = jbd2_journal_flush(journal);
3208		jbd2_journal_unlock_updates(journal);
3209
3210		if (err)
3211			return 0;
3212	}
3213
3214	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3215}
3216
3217static int ext4_readpage(struct file *file, struct page *page)
3218{
3219	int ret = -EAGAIN;
3220	struct inode *inode = page->mapping->host;
3221
3222	trace_ext4_readpage(page);
3223
3224	if (ext4_has_inline_data(inode))
3225		ret = ext4_readpage_inline(inode, page);
3226
3227	if (ret == -EAGAIN)
3228		return ext4_mpage_readpages(inode, NULL, page);
3229
3230	return ret;
3231}
3232
3233static void ext4_readahead(struct readahead_control *rac)
 
 
3234{
3235	struct inode *inode = rac->mapping->host;
3236
3237	/* If the file has inline data, no need to do readahead. */
3238	if (ext4_has_inline_data(inode))
3239		return;
3240
3241	ext4_mpage_readpages(inode, rac, NULL);
3242}
3243
3244static void ext4_invalidatepage(struct page *page, unsigned int offset,
3245				unsigned int length)
3246{
3247	trace_ext4_invalidatepage(page, offset, length);
 
3248
3249	/* No journalling happens on data buffers when this function is used */
3250	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3251
3252	block_invalidatepage(page, offset, length);
 
 
 
 
 
 
 
 
 
3253}
3254
3255static int __ext4_journalled_invalidatepage(struct page *page,
3256					    unsigned int offset,
3257					    unsigned int length)
3258{
3259	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3260
3261	trace_ext4_journalled_invalidatepage(page, offset, length);
3262
3263	/*
 
 
 
 
 
3264	 * If it's a full truncate we just forget about the pending dirtying
3265	 */
3266	if (offset == 0 && length == PAGE_SIZE)
3267		ClearPageChecked(page);
3268
3269	return jbd2_journal_invalidatepage(journal, page, offset, length);
3270}
3271
3272/* Wrapper for aops... */
3273static void ext4_journalled_invalidatepage(struct page *page,
3274					   unsigned int offset,
3275					   unsigned int length)
3276{
3277	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3278}
3279
3280static int ext4_releasepage(struct page *page, gfp_t wait)
3281{
3282	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3283
3284	trace_ext4_releasepage(page);
3285
3286	/* Page has dirty journalled data -> cannot release */
3287	if (PageChecked(page))
3288		return 0;
3289	if (journal)
3290		return jbd2_journal_try_to_free_buffers(journal, page);
3291	else
3292		return try_to_free_buffers(page);
3293}
3294
3295static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
 
 
 
 
3296{
3297	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3298
3299	if (journal)
3300		return !jbd2_transaction_committed(journal,
3301					EXT4_I(inode)->i_datasync_tid);
3302	/* Any metadata buffers to write? */
3303	if (!list_empty(&inode->i_mapping->private_list))
3304		return true;
3305	return inode->i_state & I_DIRTY_DATASYNC;
3306}
3307
3308static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3309			   struct ext4_map_blocks *map, loff_t offset,
3310			   loff_t length)
3311{
3312	u8 blkbits = inode->i_blkbits;
3313
3314	/*
3315	 * Writes that span EOF might trigger an I/O size update on completion,
3316	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3317	 * there is no other metadata changes being made or are pending.
3318	 */
3319	iomap->flags = 0;
3320	if (ext4_inode_datasync_dirty(inode) ||
3321	    offset + length > i_size_read(inode))
3322		iomap->flags |= IOMAP_F_DIRTY;
3323
3324	if (map->m_flags & EXT4_MAP_NEW)
3325		iomap->flags |= IOMAP_F_NEW;
3326
3327	iomap->bdev = inode->i_sb->s_bdev;
3328	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3329	iomap->offset = (u64) map->m_lblk << blkbits;
3330	iomap->length = (u64) map->m_len << blkbits;
3331
3332	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3333	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3334		iomap->flags |= IOMAP_F_MERGED;
3335
3336	/*
3337	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3338	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3339	 * set. In order for any allocated unwritten extents to be converted
3340	 * into written extents correctly within the ->end_io() handler, we
3341	 * need to ensure that the iomap->type is set appropriately. Hence, the
3342	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3343	 * been set first.
3344	 */
3345	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3346		iomap->type = IOMAP_UNWRITTEN;
3347		iomap->addr = (u64) map->m_pblk << blkbits;
3348	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3349		iomap->type = IOMAP_MAPPED;
3350		iomap->addr = (u64) map->m_pblk << blkbits;
3351	} else {
3352		iomap->type = IOMAP_HOLE;
3353		iomap->addr = IOMAP_NULL_ADDR;
3354	}
3355}
3356
3357static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3358			    unsigned int flags)
3359{
3360	handle_t *handle;
3361	u8 blkbits = inode->i_blkbits;
3362	int ret, dio_credits, m_flags = 0, retries = 0;
 
 
 
3363
3364	/*
3365	 * Trim the mapping request to the maximum value that we can map at
3366	 * once for direct I/O.
3367	 */
3368	if (map->m_len > DIO_MAX_BLOCKS)
3369		map->m_len = DIO_MAX_BLOCKS;
3370	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3371
3372retry:
3373	/*
3374	 * Either we allocate blocks and then don't get an unwritten extent, so
3375	 * in that case we have reserved enough credits. Or, the blocks are
3376	 * already allocated and unwritten. In that case, the extent conversion
3377	 * fits into the credits as well.
3378	 */
3379	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3380	if (IS_ERR(handle))
3381		return PTR_ERR(handle);
 
 
 
 
 
 
3382
3383	/*
3384	 * DAX and direct I/O are the only two operations that are currently
3385	 * supported with IOMAP_WRITE.
3386	 */
3387	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3388	if (IS_DAX(inode))
3389		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3390	/*
3391	 * We use i_size instead of i_disksize here because delalloc writeback
3392	 * can complete at any point during the I/O and subsequently push the
3393	 * i_disksize out to i_size. This could be beyond where direct I/O is
3394	 * happening and thus expose allocated blocks to direct I/O reads.
3395	 */
3396	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3397		m_flags = EXT4_GET_BLOCKS_CREATE;
3398	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3400
3401	ret = ext4_map_blocks(handle, inode, map, m_flags);
3402
3403	/*
3404	 * We cannot fill holes in indirect tree based inodes as that could
3405	 * expose stale data in the case of a crash. Use the magic error code
3406	 * to fallback to buffered I/O.
3407	 */
3408	if (!m_flags && !ret)
3409		ret = -ENOTBLK;
3410
3411	ext4_journal_stop(handle);
3412	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3413		goto retry;
3414
3415	return ret;
3416}
3417
3418
3419static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3420		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3421{
3422	int ret;
3423	struct ext4_map_blocks map;
3424	u8 blkbits = inode->i_blkbits;
 
3425
3426	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3427		return -EINVAL;
3428
3429	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3430		return -ERANGE;
 
 
 
 
 
3431
3432	/*
3433	 * Calculate the first and last logical blocks respectively.
 
3434	 */
3435	map.m_lblk = offset >> blkbits;
3436	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3437			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3438
3439	if (flags & IOMAP_WRITE)
3440		ret = ext4_iomap_alloc(inode, &map, flags);
3441	else
3442		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443
3444	if (ret < 0)
3445		return ret;
3446
3447	ext4_set_iomap(inode, iomap, &map, offset, length);
3448
3449	return 0;
 
 
3450}
3451
3452static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3453		loff_t length, unsigned flags, struct iomap *iomap,
3454		struct iomap *srcmap)
3455{
3456	int ret;
 
3457
 
 
 
 
 
 
 
 
 
3458	/*
3459	 * Even for writes we don't need to allocate blocks, so just pretend
3460	 * we are reading to save overhead of starting a transaction.
 
3461	 */
3462	flags &= ~IOMAP_WRITE;
3463	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3464	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3465	return ret;
3466}
3467
3468static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3469			  ssize_t written, unsigned flags, struct iomap *iomap)
3470{
3471	/*
3472	 * Check to see whether an error occurred while writing out the data to
3473	 * the allocated blocks. If so, return the magic error code so that we
3474	 * fallback to buffered I/O and attempt to complete the remainder of
3475	 * the I/O. Any blocks that may have been allocated in preparation for
3476	 * the direct I/O will be reused during buffered I/O.
3477	 */
3478	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3479		return -ENOTBLK;
3480
 
 
3481	return 0;
3482}
3483
3484const struct iomap_ops ext4_iomap_ops = {
3485	.iomap_begin		= ext4_iomap_begin,
3486	.iomap_end		= ext4_iomap_end,
3487};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3488
3489const struct iomap_ops ext4_iomap_overwrite_ops = {
3490	.iomap_begin		= ext4_iomap_overwrite_begin,
3491	.iomap_end		= ext4_iomap_end,
3492};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3493
3494static bool ext4_iomap_is_delalloc(struct inode *inode,
3495				   struct ext4_map_blocks *map)
3496{
3497	struct extent_status es;
3498	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3499
3500	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3501				  map->m_lblk, end, &es);
3502
3503	if (!es.es_len || es.es_lblk > end)
3504		return false;
3505
3506	if (es.es_lblk > map->m_lblk) {
3507		map->m_len = es.es_lblk - map->m_lblk;
3508		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3509	}
3510
3511	offset = map->m_lblk - es.es_lblk;
3512	map->m_len = es.es_len - offset;
3513
3514	return true;
3515}
3516
3517static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3518				   loff_t length, unsigned int flags,
3519				   struct iomap *iomap, struct iomap *srcmap)
3520{
3521	int ret;
3522	bool delalloc = false;
3523	struct ext4_map_blocks map;
3524	u8 blkbits = inode->i_blkbits;
3525
3526	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3527		return -EINVAL;
3528
3529	if (ext4_has_inline_data(inode)) {
3530		ret = ext4_inline_data_iomap(inode, iomap);
3531		if (ret != -EAGAIN) {
3532			if (ret == 0 && offset >= iomap->length)
3533				ret = -ENOENT;
3534			return ret;
3535		}
3536	}
3537
3538	/*
3539	 * Calculate the first and last logical block respectively.
3540	 */
3541	map.m_lblk = offset >> blkbits;
3542	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3543			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3544
3545	/*
3546	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3547	 * So handle it here itself instead of querying ext4_map_blocks().
3548	 * Since ext4_map_blocks() will warn about it and will return
3549	 * -EIO error.
3550	 */
3551	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3552		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3553
3554		if (offset >= sbi->s_bitmap_maxbytes) {
3555			map.m_flags = 0;
3556			goto set_iomap;
3557		}
3558	}
3559
3560	ret = ext4_map_blocks(NULL, inode, &map, 0);
3561	if (ret < 0)
3562		return ret;
3563	if (ret == 0)
3564		delalloc = ext4_iomap_is_delalloc(inode, &map);
3565
3566set_iomap:
3567	ext4_set_iomap(inode, iomap, &map, offset, length);
3568	if (delalloc && iomap->type == IOMAP_HOLE)
3569		iomap->type = IOMAP_DELALLOC;
3570
3571	return 0;
3572}
3573
3574const struct iomap_ops ext4_iomap_report_ops = {
3575	.iomap_begin = ext4_iomap_begin_report,
3576};
3577
3578/*
3579 * Pages can be marked dirty completely asynchronously from ext4's journalling
3580 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3581 * much here because ->set_page_dirty is called under VFS locks.  The page is
3582 * not necessarily locked.
3583 *
3584 * We cannot just dirty the page and leave attached buffers clean, because the
3585 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3586 * or jbddirty because all the journalling code will explode.
3587 *
3588 * So what we do is to mark the page "pending dirty" and next time writepage
3589 * is called, propagate that into the buffers appropriately.
3590 */
3591static int ext4_journalled_set_page_dirty(struct page *page)
3592{
3593	SetPageChecked(page);
3594	return __set_page_dirty_nobuffers(page);
3595}
3596
3597static int ext4_set_page_dirty(struct page *page)
3598{
3599	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3600	WARN_ON_ONCE(!page_has_buffers(page));
3601	return __set_page_dirty_buffers(page);
3602}
 
 
 
 
 
 
 
 
3603
3604static const struct address_space_operations ext4_aops = {
3605	.readpage		= ext4_readpage,
3606	.readahead		= ext4_readahead,
3607	.writepage		= ext4_writepage,
3608	.writepages		= ext4_writepages,
3609	.write_begin		= ext4_write_begin,
3610	.write_end		= ext4_write_end,
3611	.set_page_dirty		= ext4_set_page_dirty,
3612	.bmap			= ext4_bmap,
3613	.invalidatepage		= ext4_invalidatepage,
3614	.releasepage		= ext4_releasepage,
3615	.direct_IO		= noop_direct_IO,
3616	.migratepage		= buffer_migrate_page,
3617	.is_partially_uptodate  = block_is_partially_uptodate,
3618	.error_remove_page	= generic_error_remove_page,
3619};
3620
3621static const struct address_space_operations ext4_journalled_aops = {
3622	.readpage		= ext4_readpage,
3623	.readahead		= ext4_readahead,
3624	.writepage		= ext4_writepage,
3625	.writepages		= ext4_writepages,
3626	.write_begin		= ext4_write_begin,
3627	.write_end		= ext4_journalled_write_end,
3628	.set_page_dirty		= ext4_journalled_set_page_dirty,
3629	.bmap			= ext4_bmap,
3630	.invalidatepage		= ext4_journalled_invalidatepage,
3631	.releasepage		= ext4_releasepage,
3632	.direct_IO		= noop_direct_IO,
3633	.is_partially_uptodate  = block_is_partially_uptodate,
3634	.error_remove_page	= generic_error_remove_page,
3635};
3636
3637static const struct address_space_operations ext4_da_aops = {
3638	.readpage		= ext4_readpage,
3639	.readahead		= ext4_readahead,
3640	.writepage		= ext4_writepage,
3641	.writepages		= ext4_writepages,
3642	.write_begin		= ext4_da_write_begin,
3643	.write_end		= ext4_da_write_end,
3644	.set_page_dirty		= ext4_set_page_dirty,
3645	.bmap			= ext4_bmap,
3646	.invalidatepage		= ext4_invalidatepage,
3647	.releasepage		= ext4_releasepage,
3648	.direct_IO		= noop_direct_IO,
3649	.migratepage		= buffer_migrate_page,
3650	.is_partially_uptodate  = block_is_partially_uptodate,
3651	.error_remove_page	= generic_error_remove_page,
3652};
3653
3654static const struct address_space_operations ext4_dax_aops = {
3655	.writepages		= ext4_dax_writepages,
3656	.direct_IO		= noop_direct_IO,
3657	.set_page_dirty		= noop_set_page_dirty,
3658	.bmap			= ext4_bmap,
3659	.invalidatepage		= noop_invalidatepage,
3660};
3661
3662void ext4_set_aops(struct inode *inode)
3663{
3664	switch (ext4_inode_journal_mode(inode)) {
3665	case EXT4_INODE_ORDERED_DATA_MODE:
 
 
 
 
 
3666	case EXT4_INODE_WRITEBACK_DATA_MODE:
 
 
 
 
3667		break;
3668	case EXT4_INODE_JOURNAL_DATA_MODE:
3669		inode->i_mapping->a_ops = &ext4_journalled_aops;
3670		return;
3671	default:
3672		BUG();
3673	}
3674	if (IS_DAX(inode))
3675		inode->i_mapping->a_ops = &ext4_dax_aops;
3676	else if (test_opt(inode->i_sb, DELALLOC))
3677		inode->i_mapping->a_ops = &ext4_da_aops;
3678	else
3679		inode->i_mapping->a_ops = &ext4_aops;
3680}
3681
3682static int __ext4_block_zero_page_range(handle_t *handle,
3683		struct address_space *mapping, loff_t from, loff_t length)
 
 
 
 
 
 
 
 
 
 
3684{
3685	ext4_fsblk_t index = from >> PAGE_SHIFT;
3686	unsigned offset = from & (PAGE_SIZE-1);
3687	unsigned blocksize, pos;
3688	ext4_lblk_t iblock;
3689	struct inode *inode = mapping->host;
3690	struct buffer_head *bh;
3691	struct page *page;
3692	int err = 0;
3693
3694	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3695				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3696	if (!page)
3697		return -ENOMEM;
3698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3699	blocksize = inode->i_sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
3700
3701	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3702
3703	if (!page_has_buffers(page))
3704		create_empty_buffers(page, blocksize, 0);
3705
3706	/* Find the buffer that contains "offset" */
3707	bh = page_buffers(page);
3708	pos = blocksize;
3709	while (offset >= pos) {
3710		bh = bh->b_this_page;
3711		iblock++;
3712		pos += blocksize;
3713	}
3714	if (buffer_freed(bh)) {
3715		BUFFER_TRACE(bh, "freed: skip");
3716		goto unlock;
3717	}
3718	if (!buffer_mapped(bh)) {
3719		BUFFER_TRACE(bh, "unmapped");
3720		ext4_get_block(inode, iblock, bh, 0);
3721		/* unmapped? It's a hole - nothing to do */
3722		if (!buffer_mapped(bh)) {
3723			BUFFER_TRACE(bh, "still unmapped");
3724			goto unlock;
3725		}
3726	}
3727
3728	/* Ok, it's mapped. Make sure it's up-to-date */
3729	if (PageUptodate(page))
3730		set_buffer_uptodate(bh);
3731
3732	if (!buffer_uptodate(bh)) {
3733		err = -EIO;
3734		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3735		wait_on_buffer(bh);
3736		/* Uhhuh. Read error. Complain and punt. */
3737		if (!buffer_uptodate(bh))
3738			goto unlock;
3739		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3740			/* We expect the key to be set. */
3741			BUG_ON(!fscrypt_has_encryption_key(inode));
3742			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3743							       bh_offset(bh));
3744			if (err) {
3745				clear_buffer_uptodate(bh);
3746				goto unlock;
3747			}
3748		}
3749	}
3750	if (ext4_should_journal_data(inode)) {
3751		BUFFER_TRACE(bh, "get write access");
3752		err = ext4_journal_get_write_access(handle, bh);
3753		if (err)
3754			goto unlock;
3755	}
3756	zero_user(page, offset, length);
3757	BUFFER_TRACE(bh, "zeroed end of block");
3758
3759	if (ext4_should_journal_data(inode)) {
3760		err = ext4_handle_dirty_metadata(handle, inode, bh);
3761	} else {
3762		err = 0;
3763		mark_buffer_dirty(bh);
3764		if (ext4_should_order_data(inode))
3765			err = ext4_jbd2_inode_add_write(handle, inode, from,
3766					length);
3767	}
3768
3769unlock:
3770	unlock_page(page);
3771	put_page(page);
3772	return err;
3773}
3774
3775/*
3776 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3777 * starting from file offset 'from'.  The range to be zero'd must
3778 * be contained with in one block.  If the specified range exceeds
3779 * the end of the block it will be shortened to end of the block
3780 * that cooresponds to 'from'
3781 */
3782static int ext4_block_zero_page_range(handle_t *handle,
3783		struct address_space *mapping, loff_t from, loff_t length)
3784{
3785	struct inode *inode = mapping->host;
3786	unsigned offset = from & (PAGE_SIZE-1);
3787	unsigned blocksize = inode->i_sb->s_blocksize;
3788	unsigned max = blocksize - (offset & (blocksize - 1));
3789
3790	/*
3791	 * correct length if it does not fall between
3792	 * 'from' and the end of the block
3793	 */
3794	if (length > max || length < 0)
3795		length = max;
3796
3797	if (IS_DAX(inode)) {
3798		return iomap_zero_range(inode, from, length, NULL,
3799					&ext4_iomap_ops);
3800	}
3801	return __ext4_block_zero_page_range(handle, mapping, from, length);
3802}
3803
3804/*
3805 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3806 * up to the end of the block which corresponds to `from'.
3807 * This required during truncate. We need to physically zero the tail end
3808 * of that block so it doesn't yield old data if the file is later grown.
3809 */
3810static int ext4_block_truncate_page(handle_t *handle,
3811		struct address_space *mapping, loff_t from)
3812{
3813	unsigned offset = from & (PAGE_SIZE-1);
3814	unsigned length;
3815	unsigned blocksize;
3816	struct inode *inode = mapping->host;
 
 
 
 
 
 
 
 
 
3817
3818	/* If we are processing an encrypted inode during orphan list handling */
3819	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3820		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3821
3822	blocksize = inode->i_sb->s_blocksize;
3823	length = blocksize - (offset & (blocksize - 1));
 
3824
3825	return ext4_block_zero_page_range(handle, mapping, from, length);
3826}
 
 
 
 
 
 
3827
3828int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3829			     loff_t lstart, loff_t length)
3830{
3831	struct super_block *sb = inode->i_sb;
3832	struct address_space *mapping = inode->i_mapping;
3833	unsigned partial_start, partial_end;
3834	ext4_fsblk_t start, end;
3835	loff_t byte_end = (lstart + length - 1);
3836	int err = 0;
3837
3838	partial_start = lstart & (sb->s_blocksize - 1);
3839	partial_end = byte_end & (sb->s_blocksize - 1);
3840
3841	start = lstart >> sb->s_blocksize_bits;
3842	end = byte_end >> sb->s_blocksize_bits;
 
 
 
3843
3844	/* Handle partial zero within the single block */
3845	if (start == end &&
3846	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3847		err = ext4_block_zero_page_range(handle, mapping,
3848						 lstart, length);
3849		return err;
3850	}
3851	/* Handle partial zero out on the start of the range */
3852	if (partial_start) {
3853		err = ext4_block_zero_page_range(handle, mapping,
3854						 lstart, sb->s_blocksize);
3855		if (err)
3856			return err;
3857	}
3858	/* Handle partial zero out on the end of the range */
3859	if (partial_end != sb->s_blocksize - 1)
3860		err = ext4_block_zero_page_range(handle, mapping,
3861						 byte_end - partial_end,
3862						 partial_end + 1);
3863	return err;
3864}
3865
3866int ext4_can_truncate(struct inode *inode)
3867{
3868	if (S_ISREG(inode->i_mode))
3869		return 1;
3870	if (S_ISDIR(inode->i_mode))
3871		return 1;
3872	if (S_ISLNK(inode->i_mode))
3873		return !ext4_inode_is_fast_symlink(inode);
3874	return 0;
3875}
3876
3877/*
3878 * We have to make sure i_disksize gets properly updated before we truncate
3879 * page cache due to hole punching or zero range. Otherwise i_disksize update
3880 * can get lost as it may have been postponed to submission of writeback but
3881 * that will never happen after we truncate page cache.
3882 */
3883int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3884				      loff_t len)
3885{
3886	handle_t *handle;
3887	int ret;
3888
3889	loff_t size = i_size_read(inode);
3890
3891	WARN_ON(!inode_is_locked(inode));
3892	if (offset > size || offset + len < size)
3893		return 0;
3894
3895	if (EXT4_I(inode)->i_disksize >= size)
3896		return 0;
3897
3898	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899	if (IS_ERR(handle))
3900		return PTR_ERR(handle);
3901	ext4_update_i_disksize(inode, size);
3902	ret = ext4_mark_inode_dirty(handle, inode);
3903	ext4_journal_stop(handle);
3904
3905	return ret;
3906}
3907
3908static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909{
3910	up_write(&ei->i_mmap_sem);
3911	schedule();
3912	down_write(&ei->i_mmap_sem);
3913}
3914
3915int ext4_break_layouts(struct inode *inode)
3916{
3917	struct ext4_inode_info *ei = EXT4_I(inode);
3918	struct page *page;
3919	int error;
3920
3921	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922		return -EINVAL;
3923
3924	do {
3925		page = dax_layout_busy_page(inode->i_mapping);
3926		if (!page)
3927			return 0;
3928
3929		error = ___wait_var_event(&page->_refcount,
3930				atomic_read(&page->_refcount) == 1,
3931				TASK_INTERRUPTIBLE, 0, 0,
3932				ext4_wait_dax_page(ei));
3933	} while (error == 0);
3934
3935	return error;
3936}
3937
3938/*
3939 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940 * associated with the given offset and length
3941 *
3942 * @inode:  File inode
3943 * @offset: The offset where the hole will begin
3944 * @len:    The length of the hole
3945 *
3946 * Returns: 0 on success or negative on failure
3947 */
3948
3949int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950{
3951	struct super_block *sb = inode->i_sb;
3952	ext4_lblk_t first_block, stop_block;
3953	struct address_space *mapping = inode->i_mapping;
3954	loff_t first_block_offset, last_block_offset;
3955	handle_t *handle;
3956	unsigned int credits;
3957	int ret = 0, ret2 = 0;
3958
3959	trace_ext4_punch_hole(inode, offset, length, 0);
3960
3961	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962	if (ext4_has_inline_data(inode)) {
3963		down_write(&EXT4_I(inode)->i_mmap_sem);
3964		ret = ext4_convert_inline_data(inode);
3965		up_write(&EXT4_I(inode)->i_mmap_sem);
3966		if (ret)
3967			return ret;
3968	}
3969
3970	/*
3971	 * Write out all dirty pages to avoid race conditions
3972	 * Then release them.
3973	 */
3974	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975		ret = filemap_write_and_wait_range(mapping, offset,
3976						   offset + length - 1);
3977		if (ret)
3978			return ret;
3979	}
3980
3981	inode_lock(inode);
3982
3983	/* No need to punch hole beyond i_size */
3984	if (offset >= inode->i_size)
3985		goto out_mutex;
3986
3987	/*
3988	 * If the hole extends beyond i_size, set the hole
3989	 * to end after the page that contains i_size
3990	 */
3991	if (offset + length > inode->i_size) {
3992		length = inode->i_size +
3993		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994		   offset;
3995	}
3996
3997	if (offset & (sb->s_blocksize - 1) ||
3998	    (offset + length) & (sb->s_blocksize - 1)) {
3999		/*
4000		 * Attach jinode to inode for jbd2 if we do any zeroing of
4001		 * partial block
4002		 */
4003		ret = ext4_inode_attach_jinode(inode);
4004		if (ret < 0)
4005			goto out_mutex;
4006
4007	}
4008
4009	/* Wait all existing dio workers, newcomers will block on i_mutex */
4010	inode_dio_wait(inode);
4011
4012	/*
4013	 * Prevent page faults from reinstantiating pages we have released from
4014	 * page cache.
4015	 */
4016	down_write(&EXT4_I(inode)->i_mmap_sem);
4017
4018	ret = ext4_break_layouts(inode);
4019	if (ret)
4020		goto out_dio;
4021
4022	first_block_offset = round_up(offset, sb->s_blocksize);
4023	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024
4025	/* Now release the pages and zero block aligned part of pages*/
4026	if (last_block_offset > first_block_offset) {
4027		ret = ext4_update_disksize_before_punch(inode, offset, length);
4028		if (ret)
4029			goto out_dio;
4030		truncate_pagecache_range(inode, first_block_offset,
4031					 last_block_offset);
4032	}
4033
4034	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035		credits = ext4_writepage_trans_blocks(inode);
4036	else
4037		credits = ext4_blocks_for_truncate(inode);
4038	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039	if (IS_ERR(handle)) {
4040		ret = PTR_ERR(handle);
4041		ext4_std_error(sb, ret);
4042		goto out_dio;
4043	}
4044
4045	ret = ext4_zero_partial_blocks(handle, inode, offset,
4046				       length);
4047	if (ret)
4048		goto out_stop;
4049
4050	first_block = (offset + sb->s_blocksize - 1) >>
4051		EXT4_BLOCK_SIZE_BITS(sb);
4052	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053
4054	/* If there are blocks to remove, do it */
4055	if (stop_block > first_block) {
4056
4057		down_write(&EXT4_I(inode)->i_data_sem);
4058		ext4_discard_preallocations(inode, 0);
4059
4060		ret = ext4_es_remove_extent(inode, first_block,
4061					    stop_block - first_block);
4062		if (ret) {
4063			up_write(&EXT4_I(inode)->i_data_sem);
4064			goto out_stop;
4065		}
4066
4067		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068			ret = ext4_ext_remove_space(inode, first_block,
4069						    stop_block - 1);
4070		else
4071			ret = ext4_ind_remove_space(handle, inode, first_block,
4072						    stop_block);
4073
4074		up_write(&EXT4_I(inode)->i_data_sem);
4075	}
4076	if (IS_SYNC(inode))
4077		ext4_handle_sync(handle);
4078
4079	inode->i_mtime = inode->i_ctime = current_time(inode);
4080	ret2 = ext4_mark_inode_dirty(handle, inode);
4081	if (unlikely(ret2))
4082		ret = ret2;
4083	if (ret >= 0)
4084		ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086	ext4_journal_stop(handle);
4087out_dio:
4088	up_write(&EXT4_I(inode)->i_mmap_sem);
4089out_mutex:
4090	inode_unlock(inode);
4091	return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096	struct ext4_inode_info *ei = EXT4_I(inode);
4097	struct jbd2_inode *jinode;
4098
4099	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100		return 0;
4101
4102	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103	spin_lock(&inode->i_lock);
4104	if (!ei->jinode) {
4105		if (!jinode) {
4106			spin_unlock(&inode->i_lock);
4107			return -ENOMEM;
4108		}
4109		ei->jinode = jinode;
4110		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111		jinode = NULL;
4112	}
4113	spin_unlock(&inode->i_lock);
4114	if (unlikely(jinode != NULL))
4115		jbd2_free_inode(jinode);
4116	return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk.  We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable.  It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go.  So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem.  But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149	struct ext4_inode_info *ei = EXT4_I(inode);
4150	unsigned int credits;
4151	int err = 0, err2;
4152	handle_t *handle;
4153	struct address_space *mapping = inode->i_mapping;
4154
4155	/*
4156	 * There is a possibility that we're either freeing the inode
4157	 * or it's a completely new inode. In those cases we might not
4158	 * have i_mutex locked because it's not necessary.
4159	 */
4160	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161		WARN_ON(!inode_is_locked(inode));
4162	trace_ext4_truncate_enter(inode);
4163
4164	if (!ext4_can_truncate(inode))
4165		goto out_trace;
 
 
4166
4167	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170	if (ext4_has_inline_data(inode)) {
4171		int has_inline = 1;
4172
4173		err = ext4_inline_data_truncate(inode, &has_inline);
4174		if (err || has_inline)
4175			goto out_trace;
4176	}
4177
4178	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180		if (ext4_inode_attach_jinode(inode) < 0)
4181			goto out_trace;
4182	}
4183
4184	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185		credits = ext4_writepage_trans_blocks(inode);
4186	else
4187		credits = ext4_blocks_for_truncate(inode);
4188
4189	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190	if (IS_ERR(handle)) {
4191		err = PTR_ERR(handle);
4192		goto out_trace;
4193	}
4194
4195	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4196		ext4_block_truncate_page(handle, mapping, inode->i_size);
4197
4198	/*
4199	 * We add the inode to the orphan list, so that if this
4200	 * truncate spans multiple transactions, and we crash, we will
4201	 * resume the truncate when the filesystem recovers.  It also
4202	 * marks the inode dirty, to catch the new size.
4203	 *
4204	 * Implication: the file must always be in a sane, consistent
4205	 * truncatable state while each transaction commits.
4206	 */
4207	err = ext4_orphan_add(handle, inode);
4208	if (err)
4209		goto out_stop;
4210
4211	down_write(&EXT4_I(inode)->i_data_sem);
4212
4213	ext4_discard_preallocations(inode, 0);
4214
4215	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4216		err = ext4_ext_truncate(handle, inode);
4217	else
4218		ext4_ind_truncate(handle, inode);
4219
4220	up_write(&ei->i_data_sem);
4221	if (err)
4222		goto out_stop;
4223
4224	if (IS_SYNC(inode))
4225		ext4_handle_sync(handle);
4226
4227out_stop:
4228	/*
4229	 * If this was a simple ftruncate() and the file will remain alive,
4230	 * then we need to clear up the orphan record which we created above.
4231	 * However, if this was a real unlink then we were called by
4232	 * ext4_evict_inode(), and we allow that function to clean up the
4233	 * orphan info for us.
4234	 */
4235	if (inode->i_nlink)
4236		ext4_orphan_del(handle, inode);
4237
4238	inode->i_mtime = inode->i_ctime = current_time(inode);
4239	err2 = ext4_mark_inode_dirty(handle, inode);
4240	if (unlikely(err2 && !err))
4241		err = err2;
4242	ext4_journal_stop(handle);
4243
4244out_trace:
4245	trace_ext4_truncate_exit(inode);
4246	return err;
4247}
4248
4249/*
4250 * ext4_get_inode_loc returns with an extra refcount against the inode's
4251 * underlying buffer_head on success. If 'in_mem' is true, we have all
4252 * data in memory that is needed to recreate the on-disk version of this
4253 * inode.
4254 */
4255static int __ext4_get_inode_loc(struct inode *inode,
4256				struct ext4_iloc *iloc, int in_mem)
4257{
4258	struct ext4_group_desc	*gdp;
4259	struct buffer_head	*bh;
4260	struct super_block	*sb = inode->i_sb;
4261	ext4_fsblk_t		block;
4262	struct blk_plug		plug;
4263	int			inodes_per_block, inode_offset;
4264
4265	iloc->bh = NULL;
4266	if (inode->i_ino < EXT4_ROOT_INO ||
4267	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4268		return -EFSCORRUPTED;
4269
4270	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4271	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4272	if (!gdp)
4273		return -EIO;
4274
4275	/*
4276	 * Figure out the offset within the block group inode table
4277	 */
4278	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4279	inode_offset = ((inode->i_ino - 1) %
4280			EXT4_INODES_PER_GROUP(sb));
4281	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4282	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4283
4284	bh = sb_getblk(sb, block);
4285	if (unlikely(!bh))
4286		return -ENOMEM;
4287	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4288		goto simulate_eio;
 
4289	if (!buffer_uptodate(bh)) {
4290		lock_buffer(bh);
4291
4292		/*
4293		 * If the buffer has the write error flag, we have failed
4294		 * to write out another inode in the same block.  In this
4295		 * case, we don't have to read the block because we may
4296		 * read the old inode data successfully.
4297		 */
4298		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4299			set_buffer_uptodate(bh);
4300
4301		if (buffer_uptodate(bh)) {
4302			/* someone brought it uptodate while we waited */
4303			unlock_buffer(bh);
4304			goto has_buffer;
4305		}
4306
4307		/*
4308		 * If we have all information of the inode in memory and this
4309		 * is the only valid inode in the block, we need not read the
4310		 * block.
4311		 */
4312		if (in_mem) {
4313			struct buffer_head *bitmap_bh;
4314			int i, start;
4315
4316			start = inode_offset & ~(inodes_per_block - 1);
4317
4318			/* Is the inode bitmap in cache? */
4319			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4320			if (unlikely(!bitmap_bh))
4321				goto make_io;
4322
4323			/*
4324			 * If the inode bitmap isn't in cache then the
4325			 * optimisation may end up performing two reads instead
4326			 * of one, so skip it.
4327			 */
4328			if (!buffer_uptodate(bitmap_bh)) {
4329				brelse(bitmap_bh);
4330				goto make_io;
4331			}
4332			for (i = start; i < start + inodes_per_block; i++) {
4333				if (i == inode_offset)
4334					continue;
4335				if (ext4_test_bit(i, bitmap_bh->b_data))
4336					break;
4337			}
4338			brelse(bitmap_bh);
4339			if (i == start + inodes_per_block) {
4340				/* all other inodes are free, so skip I/O */
4341				memset(bh->b_data, 0, bh->b_size);
4342				set_buffer_uptodate(bh);
4343				unlock_buffer(bh);
4344				goto has_buffer;
4345			}
4346		}
4347
4348make_io:
4349		/*
4350		 * If we need to do any I/O, try to pre-readahead extra
4351		 * blocks from the inode table.
4352		 */
4353		blk_start_plug(&plug);
4354		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4355			ext4_fsblk_t b, end, table;
4356			unsigned num;
4357			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4358
4359			table = ext4_inode_table(sb, gdp);
4360			/* s_inode_readahead_blks is always a power of 2 */
4361			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4362			if (table > b)
4363				b = table;
4364			end = b + ra_blks;
4365			num = EXT4_INODES_PER_GROUP(sb);
4366			if (ext4_has_group_desc_csum(sb))
4367				num -= ext4_itable_unused_count(sb, gdp);
4368			table += num / inodes_per_block;
4369			if (end > table)
4370				end = table;
4371			while (b <= end)
4372				sb_breadahead_unmovable(sb, b++);
4373		}
4374
4375		/*
4376		 * There are other valid inodes in the buffer, this inode
4377		 * has in-inode xattrs, or we don't have this inode in memory.
4378		 * Read the block from disk.
4379		 */
4380		trace_ext4_load_inode(inode);
4381		get_bh(bh);
4382		bh->b_end_io = end_buffer_read_sync;
4383		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4384		blk_finish_plug(&plug);
4385		wait_on_buffer(bh);
4386		if (!buffer_uptodate(bh)) {
4387		simulate_eio:
4388			ext4_error_inode_block(inode, block, EIO,
4389					       "unable to read itable block");
4390			brelse(bh);
4391			return -EIO;
4392		}
4393	}
4394has_buffer:
4395	iloc->bh = bh;
4396	return 0;
4397}
4398
4399int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4400{
4401	/* We have all inode data except xattrs in memory here. */
4402	return __ext4_get_inode_loc(inode, iloc,
4403		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4404}
4405
4406static bool ext4_should_enable_dax(struct inode *inode)
4407{
4408	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4409
4410	if (test_opt2(inode->i_sb, DAX_NEVER))
4411		return false;
4412	if (!S_ISREG(inode->i_mode))
4413		return false;
4414	if (ext4_should_journal_data(inode))
4415		return false;
4416	if (ext4_has_inline_data(inode))
4417		return false;
4418	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4419		return false;
4420	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4421		return false;
4422	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4423		return false;
4424	if (test_opt(inode->i_sb, DAX_ALWAYS))
4425		return true;
4426
4427	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4428}
4429
4430void ext4_set_inode_flags(struct inode *inode, bool init)
4431{
4432	unsigned int flags = EXT4_I(inode)->i_flags;
4433	unsigned int new_fl = 0;
4434
4435	WARN_ON_ONCE(IS_DAX(inode) && init);
4436
 
4437	if (flags & EXT4_SYNC_FL)
4438		new_fl |= S_SYNC;
4439	if (flags & EXT4_APPEND_FL)
4440		new_fl |= S_APPEND;
4441	if (flags & EXT4_IMMUTABLE_FL)
4442		new_fl |= S_IMMUTABLE;
4443	if (flags & EXT4_NOATIME_FL)
4444		new_fl |= S_NOATIME;
4445	if (flags & EXT4_DIRSYNC_FL)
4446		new_fl |= S_DIRSYNC;
 
 
 
 
 
 
 
4447
4448	/* Because of the way inode_set_flags() works we must preserve S_DAX
4449	 * here if already set. */
4450	new_fl |= (inode->i_flags & S_DAX);
4451	if (init && ext4_should_enable_dax(inode))
4452		new_fl |= S_DAX;
4453
4454	if (flags & EXT4_ENCRYPT_FL)
4455		new_fl |= S_ENCRYPTED;
4456	if (flags & EXT4_CASEFOLD_FL)
4457		new_fl |= S_CASEFOLD;
4458	if (flags & EXT4_VERITY_FL)
4459		new_fl |= S_VERITY;
4460	inode_set_flags(inode, new_fl,
4461			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4462			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
 
 
4463}
4464
4465static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4466				  struct ext4_inode_info *ei)
4467{
4468	blkcnt_t i_blocks ;
4469	struct inode *inode = &(ei->vfs_inode);
4470	struct super_block *sb = inode->i_sb;
4471
4472	if (ext4_has_feature_huge_file(sb)) {
 
4473		/* we are using combined 48 bit field */
4474		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4475					le32_to_cpu(raw_inode->i_blocks_lo);
4476		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4477			/* i_blocks represent file system block size */
4478			return i_blocks  << (inode->i_blkbits - 9);
4479		} else {
4480			return i_blocks;
4481		}
4482	} else {
4483		return le32_to_cpu(raw_inode->i_blocks_lo);
4484	}
4485}
4486
4487static inline int ext4_iget_extra_inode(struct inode *inode,
4488					 struct ext4_inode *raw_inode,
4489					 struct ext4_inode_info *ei)
4490{
4491	__le32 *magic = (void *)raw_inode +
4492			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4493
4494	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4495	    EXT4_INODE_SIZE(inode->i_sb) &&
4496	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4497		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4498		return ext4_find_inline_data_nolock(inode);
4499	} else
4500		EXT4_I(inode)->i_inline_off = 0;
4501	return 0;
4502}
4503
4504int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4505{
4506	if (!ext4_has_feature_project(inode->i_sb))
4507		return -EOPNOTSUPP;
4508	*projid = EXT4_I(inode)->i_projid;
4509	return 0;
4510}
4511
4512/*
4513 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4514 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4515 * set.
4516 */
4517static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4518{
4519	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4520		inode_set_iversion_raw(inode, val);
4521	else
4522		inode_set_iversion_queried(inode, val);
4523}
4524static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4525{
4526	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527		return inode_peek_iversion_raw(inode);
4528	else
4529		return inode_peek_iversion(inode);
4530}
4531
4532struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4533			  ext4_iget_flags flags, const char *function,
4534			  unsigned int line)
4535{
4536	struct ext4_iloc iloc;
4537	struct ext4_inode *raw_inode;
4538	struct ext4_inode_info *ei;
4539	struct inode *inode;
4540	journal_t *journal = EXT4_SB(sb)->s_journal;
4541	long ret;
4542	loff_t size;
4543	int block;
4544	uid_t i_uid;
4545	gid_t i_gid;
4546	projid_t i_projid;
4547
4548	if ((!(flags & EXT4_IGET_SPECIAL) &&
4549	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4550	    (ino < EXT4_ROOT_INO) ||
4551	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4552		if (flags & EXT4_IGET_HANDLE)
4553			return ERR_PTR(-ESTALE);
4554		__ext4_error(sb, function, line, EFSCORRUPTED, 0,
4555			     "inode #%lu: comm %s: iget: illegal inode #",
4556			     ino, current->comm);
4557		return ERR_PTR(-EFSCORRUPTED);
4558	}
4559
4560	inode = iget_locked(sb, ino);
4561	if (!inode)
4562		return ERR_PTR(-ENOMEM);
4563	if (!(inode->i_state & I_NEW))
4564		return inode;
4565
4566	ei = EXT4_I(inode);
4567	iloc.bh = NULL;
4568
4569	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4570	if (ret < 0)
4571		goto bad_inode;
4572	raw_inode = ext4_raw_inode(&iloc);
4573
4574	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4575		ext4_error_inode(inode, function, line, 0,
4576				 "iget: root inode unallocated");
4577		ret = -EFSCORRUPTED;
4578		goto bad_inode;
4579	}
4580
4581	if ((flags & EXT4_IGET_HANDLE) &&
4582	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4583		ret = -ESTALE;
4584		goto bad_inode;
4585	}
4586
4587	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4588		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4589		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4590			EXT4_INODE_SIZE(inode->i_sb) ||
4591		    (ei->i_extra_isize & 3)) {
4592			ext4_error_inode(inode, function, line, 0,
4593					 "iget: bad extra_isize %u "
4594					 "(inode size %u)",
4595					 ei->i_extra_isize,
4596					 EXT4_INODE_SIZE(inode->i_sb));
4597			ret = -EFSCORRUPTED;
4598			goto bad_inode;
4599		}
4600	} else
4601		ei->i_extra_isize = 0;
4602
4603	/* Precompute checksum seed for inode metadata */
4604	if (ext4_has_metadata_csum(sb)) {
 
4605		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4606		__u32 csum;
4607		__le32 inum = cpu_to_le32(inode->i_ino);
4608		__le32 gen = raw_inode->i_generation;
4609		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4610				   sizeof(inum));
4611		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4612					      sizeof(gen));
4613	}
4614
4615	if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4616	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4617		ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4618				     "iget: checksum invalid");
4619		ret = -EFSBADCRC;
4620		goto bad_inode;
4621	}
4622
4623	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626	if (ext4_has_feature_project(sb) &&
4627	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630	else
4631		i_projid = EXT4_DEF_PROJID;
4632
4633	if (!(test_opt(inode->i_sb, NO_UID32))) {
4634		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4636	}
4637	i_uid_write(inode, i_uid);
4638	i_gid_write(inode, i_gid);
4639	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4641
4642	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4643	ei->i_inline_off = 0;
4644	ei->i_dir_start_lookup = 0;
4645	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646	/* We now have enough fields to check if the inode was active or not.
4647	 * This is needed because nfsd might try to access dead inodes
4648	 * the test is that same one that e2fsck uses
4649	 * NeilBrown 1999oct15
4650	 */
4651	if (inode->i_nlink == 0) {
4652		if ((inode->i_mode == 0 ||
4653		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654		    ino != EXT4_BOOT_LOADER_INO) {
4655			/* this inode is deleted */
4656			ret = -ESTALE;
4657			goto bad_inode;
4658		}
4659		/* The only unlinked inodes we let through here have
4660		 * valid i_mode and are being read by the orphan
4661		 * recovery code: that's fine, we're about to complete
4662		 * the process of deleting those.
4663		 * OR it is the EXT4_BOOT_LOADER_INO which is
4664		 * not initialized on a new filesystem. */
4665	}
4666	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667	ext4_set_inode_flags(inode, true);
4668	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670	if (ext4_has_feature_64bit(sb))
4671		ei->i_file_acl |=
4672			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673	inode->i_size = ext4_isize(sb, raw_inode);
4674	if ((size = i_size_read(inode)) < 0) {
4675		ext4_error_inode(inode, function, line, 0,
4676				 "iget: bad i_size value: %lld", size);
4677		ret = -EFSCORRUPTED;
4678		goto bad_inode;
4679	}
4680	/*
4681	 * If dir_index is not enabled but there's dir with INDEX flag set,
4682	 * we'd normally treat htree data as empty space. But with metadata
4683	 * checksumming that corrupts checksums so forbid that.
4684	 */
4685	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687		ext4_error_inode(inode, function, line, 0,
4688			 "iget: Dir with htree data on filesystem without dir_index feature.");
4689		ret = -EFSCORRUPTED;
4690		goto bad_inode;
4691	}
4692	ei->i_disksize = inode->i_size;
4693#ifdef CONFIG_QUOTA
4694	ei->i_reserved_quota = 0;
4695#endif
4696	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697	ei->i_block_group = iloc.block_group;
4698	ei->i_last_alloc_group = ~0;
4699	/*
4700	 * NOTE! The in-memory inode i_data array is in little-endian order
4701	 * even on big-endian machines: we do NOT byteswap the block numbers!
4702	 */
4703	for (block = 0; block < EXT4_N_BLOCKS; block++)
4704		ei->i_data[block] = raw_inode->i_block[block];
4705	INIT_LIST_HEAD(&ei->i_orphan);
4706
4707	/*
4708	 * Set transaction id's of transactions that have to be committed
4709	 * to finish f[data]sync. We set them to currently running transaction
4710	 * as we cannot be sure that the inode or some of its metadata isn't
4711	 * part of the transaction - the inode could have been reclaimed and
4712	 * now it is reread from disk.
4713	 */
4714	if (journal) {
4715		transaction_t *transaction;
4716		tid_t tid;
4717
4718		read_lock(&journal->j_state_lock);
4719		if (journal->j_running_transaction)
4720			transaction = journal->j_running_transaction;
4721		else
4722			transaction = journal->j_committing_transaction;
4723		if (transaction)
4724			tid = transaction->t_tid;
4725		else
4726			tid = journal->j_commit_sequence;
4727		read_unlock(&journal->j_state_lock);
4728		ei->i_sync_tid = tid;
4729		ei->i_datasync_tid = tid;
4730	}
4731
4732	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733		if (ei->i_extra_isize == 0) {
4734			/* The extra space is currently unused. Use it. */
4735			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4736			ei->i_extra_isize = sizeof(struct ext4_inode) -
4737					    EXT4_GOOD_OLD_INODE_SIZE;
4738		} else {
4739			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4740			if (ret)
4741				goto bad_inode;
 
 
4742		}
4743	}
4744
4745	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4746	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4747	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4748	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4749
4750	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4751		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4752
4753		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4755				ivers |=
4756		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4757		}
4758		ext4_inode_set_iversion_queried(inode, ivers);
4759	}
4760
4761	ret = 0;
4762	if (ei->i_file_acl &&
4763	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4764		ext4_error_inode(inode, function, line, 0,
4765				 "iget: bad extended attribute block %llu",
4766				 ei->i_file_acl);
4767		ret = -EFSCORRUPTED;
4768		goto bad_inode;
4769	} else if (!ext4_has_inline_data(inode)) {
4770		/* validate the block references in the inode */
4771		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 
 
 
 
 
4772		   (S_ISLNK(inode->i_mode) &&
4773		    !ext4_inode_is_fast_symlink(inode))) {
4774			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4775				ret = ext4_ext_check_inode(inode);
4776			else
4777				ret = ext4_ind_check_inode(inode);
4778		}
4779	}
4780	if (ret)
4781		goto bad_inode;
4782
4783	if (S_ISREG(inode->i_mode)) {
4784		inode->i_op = &ext4_file_inode_operations;
4785		inode->i_fop = &ext4_file_operations;
4786		ext4_set_aops(inode);
4787	} else if (S_ISDIR(inode->i_mode)) {
4788		inode->i_op = &ext4_dir_inode_operations;
4789		inode->i_fop = &ext4_dir_operations;
4790	} else if (S_ISLNK(inode->i_mode)) {
4791		/* VFS does not allow setting these so must be corruption */
4792		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4793			ext4_error_inode(inode, function, line, 0,
4794					 "iget: immutable or append flags "
4795					 "not allowed on symlinks");
4796			ret = -EFSCORRUPTED;
4797			goto bad_inode;
4798		}
4799		if (IS_ENCRYPTED(inode)) {
4800			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4801			ext4_set_aops(inode);
4802		} else if (ext4_inode_is_fast_symlink(inode)) {
4803			inode->i_link = (char *)ei->i_data;
4804			inode->i_op = &ext4_fast_symlink_inode_operations;
4805			nd_terminate_link(ei->i_data, inode->i_size,
4806				sizeof(ei->i_data) - 1);
4807		} else {
4808			inode->i_op = &ext4_symlink_inode_operations;
4809			ext4_set_aops(inode);
4810		}
4811		inode_nohighmem(inode);
4812	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4813	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4814		inode->i_op = &ext4_special_inode_operations;
4815		if (raw_inode->i_block[0])
4816			init_special_inode(inode, inode->i_mode,
4817			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4818		else
4819			init_special_inode(inode, inode->i_mode,
4820			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4821	} else if (ino == EXT4_BOOT_LOADER_INO) {
4822		make_bad_inode(inode);
4823	} else {
4824		ret = -EFSCORRUPTED;
4825		ext4_error_inode(inode, function, line, 0,
4826				 "iget: bogus i_mode (%o)", inode->i_mode);
4827		goto bad_inode;
4828	}
4829	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4830		ext4_error_inode(inode, function, line, 0,
4831				 "casefold flag without casefold feature");
4832	brelse(iloc.bh);
4833
4834	unlock_new_inode(inode);
4835	return inode;
4836
4837bad_inode:
4838	brelse(iloc.bh);
4839	iget_failed(inode);
4840	return ERR_PTR(ret);
4841}
4842
4843static int ext4_inode_blocks_set(handle_t *handle,
4844				struct ext4_inode *raw_inode,
4845				struct ext4_inode_info *ei)
4846{
4847	struct inode *inode = &(ei->vfs_inode);
4848	u64 i_blocks = READ_ONCE(inode->i_blocks);
4849	struct super_block *sb = inode->i_sb;
4850
4851	if (i_blocks <= ~0U) {
4852		/*
4853		 * i_blocks can be represented in a 32 bit variable
4854		 * as multiple of 512 bytes
4855		 */
4856		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4857		raw_inode->i_blocks_high = 0;
4858		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4859		return 0;
4860	}
4861	if (!ext4_has_feature_huge_file(sb))
4862		return -EFBIG;
4863
4864	if (i_blocks <= 0xffffffffffffULL) {
4865		/*
4866		 * i_blocks can be represented in a 48 bit variable
4867		 * as multiple of 512 bytes
4868		 */
4869		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4870		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4871		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4872	} else {
4873		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874		/* i_block is stored in file system block size */
4875		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4876		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4877		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4878	}
4879	return 0;
4880}
4881
4882static void __ext4_update_other_inode_time(struct super_block *sb,
4883					   unsigned long orig_ino,
4884					   unsigned long ino,
4885					   struct ext4_inode *raw_inode)
4886{
4887	struct inode *inode;
4888
4889	inode = find_inode_by_ino_rcu(sb, ino);
4890	if (!inode)
4891		return;
4892
4893	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4894			       I_DIRTY_INODE)) ||
4895	    ((inode->i_state & I_DIRTY_TIME) == 0))
4896		return;
4897
4898	spin_lock(&inode->i_lock);
4899	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900				I_DIRTY_INODE)) == 0) &&
4901	    (inode->i_state & I_DIRTY_TIME)) {
4902		struct ext4_inode_info	*ei = EXT4_I(inode);
4903
4904		inode->i_state &= ~I_DIRTY_TIME;
4905		spin_unlock(&inode->i_lock);
4906
4907		spin_lock(&ei->i_raw_lock);
4908		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4909		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4910		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4911		ext4_inode_csum_set(inode, raw_inode, ei);
4912		spin_unlock(&ei->i_raw_lock);
4913		trace_ext4_other_inode_update_time(inode, orig_ino);
4914		return;
4915	}
4916	spin_unlock(&inode->i_lock);
4917}
4918
4919/*
4920 * Opportunistically update the other time fields for other inodes in
4921 * the same inode table block.
4922 */
4923static void ext4_update_other_inodes_time(struct super_block *sb,
4924					  unsigned long orig_ino, char *buf)
4925{
4926	unsigned long ino;
4927	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4928	int inode_size = EXT4_INODE_SIZE(sb);
4929
4930	/*
4931	 * Calculate the first inode in the inode table block.  Inode
4932	 * numbers are one-based.  That is, the first inode in a block
4933	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4934	 */
4935	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4936	rcu_read_lock();
4937	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4938		if (ino == orig_ino)
4939			continue;
4940		__ext4_update_other_inode_time(sb, orig_ino, ino,
4941					       (struct ext4_inode *)buf);
4942	}
4943	rcu_read_unlock();
4944}
4945
4946/*
4947 * Post the struct inode info into an on-disk inode location in the
4948 * buffer-cache.  This gobbles the caller's reference to the
4949 * buffer_head in the inode location struct.
4950 *
4951 * The caller must have write access to iloc->bh.
4952 */
4953static int ext4_do_update_inode(handle_t *handle,
4954				struct inode *inode,
4955				struct ext4_iloc *iloc)
4956{
4957	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4958	struct ext4_inode_info *ei = EXT4_I(inode);
4959	struct buffer_head *bh = iloc->bh;
4960	struct super_block *sb = inode->i_sb;
4961	int err = 0, rc, block;
4962	int need_datasync = 0, set_large_file = 0;
4963	uid_t i_uid;
4964	gid_t i_gid;
4965	projid_t i_projid;
4966
4967	spin_lock(&ei->i_raw_lock);
4968
4969	/* For fields not tracked in the in-memory inode,
4970	 * initialise them to zero for new inodes. */
4971	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4972		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4973
 
4974	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4975	i_uid = i_uid_read(inode);
4976	i_gid = i_gid_read(inode);
4977	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4978	if (!(test_opt(inode->i_sb, NO_UID32))) {
4979		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4980		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4981/*
4982 * Fix up interoperability with old kernels. Otherwise, old inodes get
4983 * re-used with the upper 16 bits of the uid/gid intact
4984 */
4985		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4986			raw_inode->i_uid_high = 0;
4987			raw_inode->i_gid_high = 0;
4988		} else {
4989			raw_inode->i_uid_high =
4990				cpu_to_le16(high_16_bits(i_uid));
4991			raw_inode->i_gid_high =
4992				cpu_to_le16(high_16_bits(i_gid));
 
 
 
4993		}
4994	} else {
4995		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4996		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4997		raw_inode->i_uid_high = 0;
4998		raw_inode->i_gid_high = 0;
4999	}
5000	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5001
5002	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5003	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5004	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5005	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5006
5007	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5008	if (err) {
5009		spin_unlock(&ei->i_raw_lock);
5010		goto out_brelse;
5011	}
5012	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5013	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5014	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
 
5015		raw_inode->i_file_acl_high =
5016			cpu_to_le16(ei->i_file_acl >> 32);
5017	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5018	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5019		ext4_isize_set(raw_inode, ei->i_disksize);
5020		need_datasync = 1;
5021	}
5022	if (ei->i_disksize > 0x7fffffffULL) {
5023		if (!ext4_has_feature_large_file(sb) ||
 
 
5024				EXT4_SB(sb)->s_es->s_rev_level ==
5025		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5026			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
5027	}
5028	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5029	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5030		if (old_valid_dev(inode->i_rdev)) {
5031			raw_inode->i_block[0] =
5032				cpu_to_le32(old_encode_dev(inode->i_rdev));
5033			raw_inode->i_block[1] = 0;
5034		} else {
5035			raw_inode->i_block[0] = 0;
5036			raw_inode->i_block[1] =
5037				cpu_to_le32(new_encode_dev(inode->i_rdev));
5038			raw_inode->i_block[2] = 0;
5039		}
5040	} else if (!ext4_has_inline_data(inode)) {
5041		for (block = 0; block < EXT4_N_BLOCKS; block++)
5042			raw_inode->i_block[block] = ei->i_data[block];
5043	}
5044
5045	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5046		u64 ivers = ext4_inode_peek_iversion(inode);
5047
5048		raw_inode->i_disk_version = cpu_to_le32(ivers);
5049		if (ei->i_extra_isize) {
5050			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5051				raw_inode->i_version_hi =
5052					cpu_to_le32(ivers >> 32);
5053			raw_inode->i_extra_isize =
5054				cpu_to_le16(ei->i_extra_isize);
5055		}
5056	}
5057
5058	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5059	       i_projid != EXT4_DEF_PROJID);
5060
5061	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5062	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5063		raw_inode->i_projid = cpu_to_le32(i_projid);
5064
5065	ext4_inode_csum_set(inode, raw_inode, ei);
5066	spin_unlock(&ei->i_raw_lock);
5067	if (inode->i_sb->s_flags & SB_LAZYTIME)
5068		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5069					      bh->b_data);
5070
5071	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5072	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5073	if (!err)
5074		err = rc;
5075	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5076	if (set_large_file) {
5077		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5078		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5079		if (err)
5080			goto out_brelse;
5081		ext4_set_feature_large_file(sb);
5082		ext4_handle_sync(handle);
5083		err = ext4_handle_dirty_super(handle, sb);
5084	}
5085	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5086out_brelse:
5087	brelse(bh);
5088	ext4_std_error(inode->i_sb, err);
5089	return err;
5090}
5091
5092/*
5093 * ext4_write_inode()
5094 *
5095 * We are called from a few places:
5096 *
5097 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5098 *   Here, there will be no transaction running. We wait for any running
5099 *   transaction to commit.
5100 *
5101 * - Within flush work (sys_sync(), kupdate and such).
5102 *   We wait on commit, if told to.
5103 *
5104 * - Within iput_final() -> write_inode_now()
5105 *   We wait on commit, if told to.
 
5106 *
5107 * In all cases it is actually safe for us to return without doing anything,
5108 * because the inode has been copied into a raw inode buffer in
5109 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5110 * writeback.
5111 *
5112 * Note that we are absolutely dependent upon all inode dirtiers doing the
5113 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5114 * which we are interested.
5115 *
5116 * It would be a bug for them to not do this.  The code:
5117 *
5118 *	mark_inode_dirty(inode)
5119 *	stuff();
5120 *	inode->i_size = expr;
5121 *
5122 * is in error because write_inode() could occur while `stuff()' is running,
5123 * and the new i_size will be lost.  Plus the inode will no longer be on the
5124 * superblock's dirty inode list.
5125 */
5126int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5127{
5128	int err;
5129
5130	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5131	    sb_rdonly(inode->i_sb))
5132		return 0;
5133
5134	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5135		return -EIO;
5136
5137	if (EXT4_SB(inode->i_sb)->s_journal) {
5138		if (ext4_journal_current_handle()) {
5139			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5140			dump_stack();
5141			return -EIO;
5142		}
5143
5144		/*
5145		 * No need to force transaction in WB_SYNC_NONE mode. Also
5146		 * ext4_sync_fs() will force the commit after everything is
5147		 * written.
5148		 */
5149		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5150			return 0;
5151
5152		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5153						EXT4_I(inode)->i_sync_tid);
5154	} else {
5155		struct ext4_iloc iloc;
5156
5157		err = __ext4_get_inode_loc(inode, &iloc, 0);
5158		if (err)
5159			return err;
5160		/*
5161		 * sync(2) will flush the whole buffer cache. No need to do
5162		 * it here separately for each inode.
5163		 */
5164		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5165			sync_dirty_buffer(iloc.bh);
5166		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5167			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5168					       "IO error syncing inode");
5169			err = -EIO;
5170		}
5171		brelse(iloc.bh);
5172	}
5173	return err;
5174}
5175
5176/*
5177 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178 * buffers that are attached to a page stradding i_size and are undergoing
5179 * commit. In that case we have to wait for commit to finish and try again.
5180 */
5181static void ext4_wait_for_tail_page_commit(struct inode *inode)
5182{
5183	struct page *page;
5184	unsigned offset;
5185	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186	tid_t commit_tid = 0;
5187	int ret;
5188
5189	offset = inode->i_size & (PAGE_SIZE - 1);
5190	/*
5191	 * If the page is fully truncated, we don't need to wait for any commit
5192	 * (and we even should not as __ext4_journalled_invalidatepage() may
5193	 * strip all buffers from the page but keep the page dirty which can then
5194	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5195	 * buffers). Also we don't need to wait for any commit if all buffers in
5196	 * the page remain valid. This is most beneficial for the common case of
5197	 * blocksize == PAGESIZE.
5198	 */
5199	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5200		return;
5201	while (1) {
5202		page = find_lock_page(inode->i_mapping,
5203				      inode->i_size >> PAGE_SHIFT);
5204		if (!page)
5205			return;
5206		ret = __ext4_journalled_invalidatepage(page, offset,
5207						PAGE_SIZE - offset);
5208		unlock_page(page);
5209		put_page(page);
5210		if (ret != -EBUSY)
5211			return;
5212		commit_tid = 0;
5213		read_lock(&journal->j_state_lock);
5214		if (journal->j_committing_transaction)
5215			commit_tid = journal->j_committing_transaction->t_tid;
5216		read_unlock(&journal->j_state_lock);
5217		if (commit_tid)
5218			jbd2_log_wait_commit(journal, commit_tid);
5219	}
5220}
5221
5222/*
5223 * ext4_setattr()
5224 *
5225 * Called from notify_change.
5226 *
5227 * We want to trap VFS attempts to truncate the file as soon as
5228 * possible.  In particular, we want to make sure that when the VFS
5229 * shrinks i_size, we put the inode on the orphan list and modify
5230 * i_disksize immediately, so that during the subsequent flushing of
5231 * dirty pages and freeing of disk blocks, we can guarantee that any
5232 * commit will leave the blocks being flushed in an unused state on
5233 * disk.  (On recovery, the inode will get truncated and the blocks will
5234 * be freed, so we have a strong guarantee that no future commit will
5235 * leave these blocks visible to the user.)
5236 *
5237 * Another thing we have to assure is that if we are in ordered mode
5238 * and inode is still attached to the committing transaction, we must
5239 * we start writeout of all the dirty pages which are being truncated.
5240 * This way we are sure that all the data written in the previous
5241 * transaction are already on disk (truncate waits for pages under
5242 * writeback).
5243 *
5244 * Called with inode->i_mutex down.
5245 */
5246int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5247{
5248	struct inode *inode = d_inode(dentry);
5249	int error, rc = 0;
5250	int orphan = 0;
5251	const unsigned int ia_valid = attr->ia_valid;
5252
5253	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5254		return -EIO;
5255
5256	if (unlikely(IS_IMMUTABLE(inode)))
5257		return -EPERM;
5258
5259	if (unlikely(IS_APPEND(inode) &&
5260		     (ia_valid & (ATTR_MODE | ATTR_UID |
5261				  ATTR_GID | ATTR_TIMES_SET))))
5262		return -EPERM;
5263
5264	error = setattr_prepare(dentry, attr);
5265	if (error)
5266		return error;
5267
5268	error = fscrypt_prepare_setattr(dentry, attr);
5269	if (error)
5270		return error;
5271
5272	error = fsverity_prepare_setattr(dentry, attr);
5273	if (error)
5274		return error;
5275
5276	if (is_quota_modification(inode, attr)) {
5277		error = dquot_initialize(inode);
5278		if (error)
5279			return error;
5280	}
5281	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5282	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5283		handle_t *handle;
5284
5285		/* (user+group)*(old+new) structure, inode write (sb,
5286		 * inode block, ? - but truncate inode update has it) */
5287		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5288			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5289			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5290		if (IS_ERR(handle)) {
5291			error = PTR_ERR(handle);
5292			goto err_out;
5293		}
5294
5295		/* dquot_transfer() calls back ext4_get_inode_usage() which
5296		 * counts xattr inode references.
5297		 */
5298		down_read(&EXT4_I(inode)->xattr_sem);
5299		error = dquot_transfer(inode, attr);
5300		up_read(&EXT4_I(inode)->xattr_sem);
5301
5302		if (error) {
5303			ext4_journal_stop(handle);
5304			return error;
5305		}
5306		/* Update corresponding info in inode so that everything is in
5307		 * one transaction */
5308		if (attr->ia_valid & ATTR_UID)
5309			inode->i_uid = attr->ia_uid;
5310		if (attr->ia_valid & ATTR_GID)
5311			inode->i_gid = attr->ia_gid;
5312		error = ext4_mark_inode_dirty(handle, inode);
5313		ext4_journal_stop(handle);
5314		if (unlikely(error))
5315			return error;
5316	}
5317
5318	if (attr->ia_valid & ATTR_SIZE) {
5319		handle_t *handle;
5320		loff_t oldsize = inode->i_size;
5321		int shrink = (attr->ia_size < inode->i_size);
5322
5323		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5325
5326			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327				return -EFBIG;
5328		}
5329		if (!S_ISREG(inode->i_mode))
5330			return -EINVAL;
 
 
 
 
5331
5332		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5333			inode_inc_iversion(inode);
 
 
 
 
 
 
 
 
 
 
 
 
5334
5335		if (shrink) {
5336			if (ext4_should_order_data(inode)) {
5337				error = ext4_begin_ordered_truncate(inode,
5338							    attr->ia_size);
5339				if (error)
 
 
 
 
5340					goto err_out;
 
 
 
 
 
5341			}
5342			/*
5343			 * Blocks are going to be removed from the inode. Wait
5344			 * for dio in flight.
5345			 */
5346			inode_dio_wait(inode);
5347		}
 
5348
5349		down_write(&EXT4_I(inode)->i_mmap_sem);
5350
5351		rc = ext4_break_layouts(inode);
5352		if (rc) {
5353			up_write(&EXT4_I(inode)->i_mmap_sem);
5354			return rc;
5355		}
5356
5357		if (attr->ia_size != inode->i_size) {
5358			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5359			if (IS_ERR(handle)) {
5360				error = PTR_ERR(handle);
5361				goto out_mmap_sem;
5362			}
5363			if (ext4_handle_valid(handle) && shrink) {
5364				error = ext4_orphan_add(handle, inode);
5365				orphan = 1;
5366			}
5367			/*
5368			 * Update c/mtime on truncate up, ext4_truncate() will
5369			 * update c/mtime in shrink case below
5370			 */
5371			if (!shrink) {
5372				inode->i_mtime = current_time(inode);
5373				inode->i_ctime = inode->i_mtime;
5374			}
5375			down_write(&EXT4_I(inode)->i_data_sem);
5376			EXT4_I(inode)->i_disksize = attr->ia_size;
5377			rc = ext4_mark_inode_dirty(handle, inode);
5378			if (!error)
5379				error = rc;
5380			/*
5381			 * We have to update i_size under i_data_sem together
5382			 * with i_disksize to avoid races with writeback code
5383			 * running ext4_wb_update_i_disksize().
5384			 */
5385			if (!error)
5386				i_size_write(inode, attr->ia_size);
5387			up_write(&EXT4_I(inode)->i_data_sem);
5388			ext4_journal_stop(handle);
5389			if (error)
5390				goto out_mmap_sem;
5391			if (!shrink) {
5392				pagecache_isize_extended(inode, oldsize,
5393							 inode->i_size);
5394			} else if (ext4_should_journal_data(inode)) {
5395				ext4_wait_for_tail_page_commit(inode);
5396			}
5397		}
5398
5399		/*
5400		 * Truncate pagecache after we've waited for commit
5401		 * in data=journal mode to make pages freeable.
5402		 */
5403		truncate_pagecache(inode, inode->i_size);
5404		/*
5405		 * Call ext4_truncate() even if i_size didn't change to
5406		 * truncate possible preallocated blocks.
5407		 */
5408		if (attr->ia_size <= oldsize) {
5409			rc = ext4_truncate(inode);
5410			if (rc)
5411				error = rc;
5412		}
5413out_mmap_sem:
5414		up_write(&EXT4_I(inode)->i_mmap_sem);
5415	}
5416
5417	if (!error) {
5418		setattr_copy(inode, attr);
5419		mark_inode_dirty(inode);
5420	}
5421
5422	/*
5423	 * If the call to ext4_truncate failed to get a transaction handle at
5424	 * all, we need to clean up the in-core orphan list manually.
5425	 */
5426	if (orphan && inode->i_nlink)
5427		ext4_orphan_del(NULL, inode);
5428
5429	if (!error && (ia_valid & ATTR_MODE))
5430		rc = posix_acl_chmod(inode, inode->i_mode);
5431
5432err_out:
5433	ext4_std_error(inode->i_sb, error);
5434	if (!error)
5435		error = rc;
5436	return error;
5437}
5438
5439int ext4_getattr(const struct path *path, struct kstat *stat,
5440		 u32 request_mask, unsigned int query_flags)
5441{
5442	struct inode *inode = d_inode(path->dentry);
5443	struct ext4_inode *raw_inode;
5444	struct ext4_inode_info *ei = EXT4_I(inode);
5445	unsigned int flags;
5446
5447	if ((request_mask & STATX_BTIME) &&
5448	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5449		stat->result_mask |= STATX_BTIME;
5450		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5451		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5452	}
5453
5454	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5455	if (flags & EXT4_APPEND_FL)
5456		stat->attributes |= STATX_ATTR_APPEND;
5457	if (flags & EXT4_COMPR_FL)
5458		stat->attributes |= STATX_ATTR_COMPRESSED;
5459	if (flags & EXT4_ENCRYPT_FL)
5460		stat->attributes |= STATX_ATTR_ENCRYPTED;
5461	if (flags & EXT4_IMMUTABLE_FL)
5462		stat->attributes |= STATX_ATTR_IMMUTABLE;
5463	if (flags & EXT4_NODUMP_FL)
5464		stat->attributes |= STATX_ATTR_NODUMP;
5465	if (flags & EXT4_VERITY_FL)
5466		stat->attributes |= STATX_ATTR_VERITY;
5467
5468	stat->attributes_mask |= (STATX_ATTR_APPEND |
5469				  STATX_ATTR_COMPRESSED |
5470				  STATX_ATTR_ENCRYPTED |
5471				  STATX_ATTR_IMMUTABLE |
5472				  STATX_ATTR_NODUMP |
5473				  STATX_ATTR_VERITY);
5474
 
5475	generic_fillattr(inode, stat);
5476	return 0;
5477}
5478
5479int ext4_file_getattr(const struct path *path, struct kstat *stat,
5480		      u32 request_mask, unsigned int query_flags)
5481{
5482	struct inode *inode = d_inode(path->dentry);
5483	u64 delalloc_blocks;
5484
5485	ext4_getattr(path, stat, request_mask, query_flags);
5486
5487	/*
5488	 * If there is inline data in the inode, the inode will normally not
5489	 * have data blocks allocated (it may have an external xattr block).
5490	 * Report at least one sector for such files, so tools like tar, rsync,
5491	 * others don't incorrectly think the file is completely sparse.
5492	 */
5493	if (unlikely(ext4_has_inline_data(inode)))
5494		stat->blocks += (stat->size + 511) >> 9;
5495
5496	/*
5497	 * We can't update i_blocks if the block allocation is delayed
5498	 * otherwise in the case of system crash before the real block
5499	 * allocation is done, we will have i_blocks inconsistent with
5500	 * on-disk file blocks.
5501	 * We always keep i_blocks updated together with real
5502	 * allocation. But to not confuse with user, stat
5503	 * will return the blocks that include the delayed allocation
5504	 * blocks for this file.
5505	 */
5506	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5507				   EXT4_I(inode)->i_reserved_data_blocks);
5508	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
 
5509	return 0;
5510}
5511
5512static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5513				   int pextents)
5514{
5515	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5516		return ext4_ind_trans_blocks(inode, lblocks);
5517	return ext4_ext_index_trans_blocks(inode, pextents);
5518}
5519
5520/*
5521 * Account for index blocks, block groups bitmaps and block group
5522 * descriptor blocks if modify datablocks and index blocks
5523 * worse case, the indexs blocks spread over different block groups
5524 *
5525 * If datablocks are discontiguous, they are possible to spread over
5526 * different block groups too. If they are contiguous, with flexbg,
5527 * they could still across block group boundary.
5528 *
5529 * Also account for superblock, inode, quota and xattr blocks
5530 */
5531static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5532				  int pextents)
5533{
5534	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535	int gdpblocks;
5536	int idxblocks;
5537	int ret = 0;
5538
5539	/*
5540	 * How many index blocks need to touch to map @lblocks logical blocks
5541	 * to @pextents physical extents?
 
 
 
 
5542	 */
5543	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5544
5545	ret = idxblocks;
5546
5547	/*
5548	 * Now let's see how many group bitmaps and group descriptors need
5549	 * to account
5550	 */
5551	groups = idxblocks + pextents;
 
 
 
 
 
5552	gdpblocks = groups;
5553	if (groups > ngroups)
5554		groups = ngroups;
5555	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5556		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5557
5558	/* bitmaps and block group descriptor blocks */
5559	ret += groups + gdpblocks;
5560
5561	/* Blocks for super block, inode, quota and xattr blocks */
5562	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5563
5564	return ret;
5565}
5566
5567/*
5568 * Calculate the total number of credits to reserve to fit
5569 * the modification of a single pages into a single transaction,
5570 * which may include multiple chunks of block allocations.
5571 *
5572 * This could be called via ext4_write_begin()
5573 *
5574 * We need to consider the worse case, when
5575 * one new block per extent.
5576 */
5577int ext4_writepage_trans_blocks(struct inode *inode)
5578{
5579	int bpp = ext4_journal_blocks_per_page(inode);
5580	int ret;
5581
5582	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5583
5584	/* Account for data blocks for journalled mode */
5585	if (ext4_should_journal_data(inode))
5586		ret += bpp;
5587	return ret;
5588}
5589
5590/*
5591 * Calculate the journal credits for a chunk of data modification.
5592 *
5593 * This is called from DIO, fallocate or whoever calling
5594 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5595 *
5596 * journal buffers for data blocks are not included here, as DIO
5597 * and fallocate do no need to journal data buffers.
5598 */
5599int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5600{
5601	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5602}
5603
5604/*
5605 * The caller must have previously called ext4_reserve_inode_write().
5606 * Give this, we know that the caller already has write access to iloc->bh.
5607 */
5608int ext4_mark_iloc_dirty(handle_t *handle,
5609			 struct inode *inode, struct ext4_iloc *iloc)
5610{
5611	int err = 0;
5612
5613	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5614		put_bh(iloc->bh);
5615		return -EIO;
5616	}
5617	if (IS_I_VERSION(inode))
5618		inode_inc_iversion(inode);
5619
5620	/* the do_update_inode consumes one bh->b_count */
5621	get_bh(iloc->bh);
5622
5623	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5624	err = ext4_do_update_inode(handle, inode, iloc);
5625	put_bh(iloc->bh);
5626	return err;
5627}
5628
5629/*
5630 * On success, We end up with an outstanding reference count against
5631 * iloc->bh.  This _must_ be cleaned up later.
5632 */
5633
5634int
5635ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5636			 struct ext4_iloc *iloc)
5637{
5638	int err;
5639
5640	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5641		return -EIO;
5642
5643	err = ext4_get_inode_loc(inode, iloc);
5644	if (!err) {
5645		BUFFER_TRACE(iloc->bh, "get_write_access");
5646		err = ext4_journal_get_write_access(handle, iloc->bh);
5647		if (err) {
5648			brelse(iloc->bh);
5649			iloc->bh = NULL;
5650		}
5651	}
5652	ext4_std_error(inode->i_sb, err);
5653	return err;
5654}
5655
5656static int __ext4_expand_extra_isize(struct inode *inode,
5657				     unsigned int new_extra_isize,
5658				     struct ext4_iloc *iloc,
5659				     handle_t *handle, int *no_expand)
 
 
 
 
5660{
5661	struct ext4_inode *raw_inode;
5662	struct ext4_xattr_ibody_header *header;
5663	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5664	struct ext4_inode_info *ei = EXT4_I(inode);
5665	int error;
5666
5667	/* this was checked at iget time, but double check for good measure */
5668	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5669	    (ei->i_extra_isize & 3)) {
5670		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5671				 ei->i_extra_isize,
5672				 EXT4_INODE_SIZE(inode->i_sb));
5673		return -EFSCORRUPTED;
5674	}
5675	if ((new_extra_isize < ei->i_extra_isize) ||
5676	    (new_extra_isize < 4) ||
5677	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5678		return -EINVAL;	/* Should never happen */
5679
5680	raw_inode = ext4_raw_inode(iloc);
5681
5682	header = IHDR(inode, raw_inode);
5683
5684	/* No extended attributes present */
5685	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5686	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5687		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5688		       EXT4_I(inode)->i_extra_isize, 0,
5689		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5690		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5691		return 0;
5692	}
5693
5694	/* try to expand with EAs present */
5695	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5696					   raw_inode, handle);
5697	if (error) {
5698		/*
5699		 * Inode size expansion failed; don't try again
5700		 */
5701		*no_expand = 1;
5702	}
5703
5704	return error;
5705}
5706
5707/*
5708 * Expand an inode by new_extra_isize bytes.
5709 * Returns 0 on success or negative error number on failure.
5710 */
5711static int ext4_try_to_expand_extra_isize(struct inode *inode,
5712					  unsigned int new_extra_isize,
5713					  struct ext4_iloc iloc,
5714					  handle_t *handle)
5715{
5716	int no_expand;
5717	int error;
5718
5719	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5720		return -EOVERFLOW;
5721
5722	/*
5723	 * In nojournal mode, we can immediately attempt to expand
5724	 * the inode.  When journaled, we first need to obtain extra
5725	 * buffer credits since we may write into the EA block
5726	 * with this same handle. If journal_extend fails, then it will
5727	 * only result in a minor loss of functionality for that inode.
5728	 * If this is felt to be critical, then e2fsck should be run to
5729	 * force a large enough s_min_extra_isize.
5730	 */
5731	if (ext4_journal_extend(handle,
5732				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5733		return -ENOSPC;
5734
5735	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5736		return -EBUSY;
5737
5738	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5739					  handle, &no_expand);
5740	ext4_write_unlock_xattr(inode, &no_expand);
5741
5742	return error;
5743}
5744
5745int ext4_expand_extra_isize(struct inode *inode,
5746			    unsigned int new_extra_isize,
5747			    struct ext4_iloc *iloc)
5748{
5749	handle_t *handle;
5750	int no_expand;
5751	int error, rc;
5752
5753	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5754		brelse(iloc->bh);
5755		return -EOVERFLOW;
5756	}
5757
5758	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5759				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5760	if (IS_ERR(handle)) {
5761		error = PTR_ERR(handle);
5762		brelse(iloc->bh);
5763		return error;
5764	}
5765
5766	ext4_write_lock_xattr(inode, &no_expand);
5767
5768	BUFFER_TRACE(iloc->bh, "get_write_access");
5769	error = ext4_journal_get_write_access(handle, iloc->bh);
5770	if (error) {
5771		brelse(iloc->bh);
5772		goto out_unlock;
5773	}
5774
5775	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5776					  handle, &no_expand);
5777
5778	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5779	if (!error)
5780		error = rc;
5781
5782out_unlock:
5783	ext4_write_unlock_xattr(inode, &no_expand);
5784	ext4_journal_stop(handle);
5785	return error;
5786}
5787
5788/*
5789 * What we do here is to mark the in-core inode as clean with respect to inode
5790 * dirtiness (it may still be data-dirty).
5791 * This means that the in-core inode may be reaped by prune_icache
5792 * without having to perform any I/O.  This is a very good thing,
5793 * because *any* task may call prune_icache - even ones which
5794 * have a transaction open against a different journal.
5795 *
5796 * Is this cheating?  Not really.  Sure, we haven't written the
5797 * inode out, but prune_icache isn't a user-visible syncing function.
5798 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5799 * we start and wait on commits.
 
 
 
 
 
 
 
 
5800 */
5801int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5802				const char *func, unsigned int line)
5803{
5804	struct ext4_iloc iloc;
5805	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806	int err;
 
5807
5808	might_sleep();
5809	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5810	err = ext4_reserve_inode_write(handle, inode, &iloc);
5811	if (err)
5812		goto out;
5813
5814	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5815		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5816					       iloc, handle);
5817
5818	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819out:
5820	if (unlikely(err))
5821		ext4_error_inode_err(inode, func, line, 0, err,
5822					"mark_inode_dirty error");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5823	return err;
5824}
5825
5826/*
5827 * ext4_dirty_inode() is called from __mark_inode_dirty()
5828 *
5829 * We're really interested in the case where a file is being extended.
5830 * i_size has been changed by generic_commit_write() and we thus need
5831 * to include the updated inode in the current transaction.
5832 *
5833 * Also, dquot_alloc_block() will always dirty the inode when blocks
5834 * are allocated to the file.
5835 *
5836 * If the inode is marked synchronous, we don't honour that here - doing
5837 * so would cause a commit on atime updates, which we don't bother doing.
5838 * We handle synchronous inodes at the highest possible level.
5839 *
5840 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5841 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5842 * to copy into the on-disk inode structure are the timestamp files.
5843 */
5844void ext4_dirty_inode(struct inode *inode, int flags)
5845{
5846	handle_t *handle;
5847
5848	if (flags == I_DIRTY_TIME)
5849		return;
5850	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5851	if (IS_ERR(handle))
5852		goto out;
5853
5854	ext4_mark_inode_dirty(handle, inode);
5855
5856	ext4_journal_stop(handle);
5857out:
5858	return;
5859}
5860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5861int ext4_change_inode_journal_flag(struct inode *inode, int val)
5862{
5863	journal_t *journal;
5864	handle_t *handle;
5865	int err;
5866	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867
5868	/*
5869	 * We have to be very careful here: changing a data block's
5870	 * journaling status dynamically is dangerous.  If we write a
5871	 * data block to the journal, change the status and then delete
5872	 * that block, we risk forgetting to revoke the old log record
5873	 * from the journal and so a subsequent replay can corrupt data.
5874	 * So, first we make sure that the journal is empty and that
5875	 * nobody is changing anything.
5876	 */
5877
5878	journal = EXT4_JOURNAL(inode);
5879	if (!journal)
5880		return 0;
5881	if (is_journal_aborted(journal))
5882		return -EROFS;
5883
5884	/* Wait for all existing dio workers */
5885	inode_dio_wait(inode);
5886
5887	/*
5888	 * Before flushing the journal and switching inode's aops, we have
5889	 * to flush all dirty data the inode has. There can be outstanding
5890	 * delayed allocations, there can be unwritten extents created by
5891	 * fallocate or buffered writes in dioread_nolock mode covered by
5892	 * dirty data which can be converted only after flushing the dirty
5893	 * data (and journalled aops don't know how to handle these cases).
5894	 */
5895	if (val) {
5896		down_write(&EXT4_I(inode)->i_mmap_sem);
5897		err = filemap_write_and_wait(inode->i_mapping);
5898		if (err < 0) {
5899			up_write(&EXT4_I(inode)->i_mmap_sem);
5900			return err;
5901		}
5902	}
5903
5904	percpu_down_write(&sbi->s_writepages_rwsem);
5905	jbd2_journal_lock_updates(journal);
5906
5907	/*
5908	 * OK, there are no updates running now, and all cached data is
5909	 * synced to disk.  We are now in a completely consistent state
5910	 * which doesn't have anything in the journal, and we know that
5911	 * no filesystem updates are running, so it is safe to modify
5912	 * the inode's in-core data-journaling state flag now.
5913	 */
5914
5915	if (val)
5916		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5917	else {
5918		err = jbd2_journal_flush(journal);
5919		if (err < 0) {
5920			jbd2_journal_unlock_updates(journal);
5921			percpu_up_write(&sbi->s_writepages_rwsem);
5922			return err;
5923		}
5924		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5925	}
5926	ext4_set_aops(inode);
5927
5928	jbd2_journal_unlock_updates(journal);
5929	percpu_up_write(&sbi->s_writepages_rwsem);
5930
5931	if (val)
5932		up_write(&EXT4_I(inode)->i_mmap_sem);
5933
5934	/* Finally we can mark the inode as dirty. */
5935
5936	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5937	if (IS_ERR(handle))
5938		return PTR_ERR(handle);
5939
5940	err = ext4_mark_inode_dirty(handle, inode);
5941	ext4_handle_sync(handle);
5942	ext4_journal_stop(handle);
5943	ext4_std_error(inode->i_sb, err);
5944
5945	return err;
5946}
5947
5948static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5949{
5950	return !buffer_mapped(bh);
5951}
5952
5953vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5954{
5955	struct vm_area_struct *vma = vmf->vma;
5956	struct page *page = vmf->page;
5957	loff_t size;
5958	unsigned long len;
5959	int err;
5960	vm_fault_t ret;
5961	struct file *file = vma->vm_file;
5962	struct inode *inode = file_inode(file);
5963	struct address_space *mapping = inode->i_mapping;
5964	handle_t *handle;
5965	get_block_t *get_block;
5966	int retries = 0;
5967
5968	if (unlikely(IS_IMMUTABLE(inode)))
5969		return VM_FAULT_SIGBUS;
5970
5971	sb_start_pagefault(inode->i_sb);
5972	file_update_time(vma->vm_file);
5973
5974	down_read(&EXT4_I(inode)->i_mmap_sem);
5975
5976	err = ext4_convert_inline_data(inode);
5977	if (err)
5978		goto out_ret;
5979
5980	/* Delalloc case is easy... */
5981	if (test_opt(inode->i_sb, DELALLOC) &&
5982	    !ext4_should_journal_data(inode) &&
5983	    !ext4_nonda_switch(inode->i_sb)) {
5984		do {
5985			err = block_page_mkwrite(vma, vmf,
5986						   ext4_da_get_block_prep);
5987		} while (err == -ENOSPC &&
5988		       ext4_should_retry_alloc(inode->i_sb, &retries));
5989		goto out_ret;
5990	}
5991
5992	lock_page(page);
5993	size = i_size_read(inode);
5994	/* Page got truncated from under us? */
5995	if (page->mapping != mapping || page_offset(page) > size) {
5996		unlock_page(page);
5997		ret = VM_FAULT_NOPAGE;
5998		goto out;
5999	}
6000
6001	if (page->index == size >> PAGE_SHIFT)
6002		len = size & ~PAGE_MASK;
6003	else
6004		len = PAGE_SIZE;
6005	/*
6006	 * Return if we have all the buffers mapped. This avoids the need to do
6007	 * journal_start/journal_stop which can block and take a long time
6008	 */
6009	if (page_has_buffers(page)) {
6010		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6011					    0, len, NULL,
6012					    ext4_bh_unmapped)) {
6013			/* Wait so that we don't change page under IO */
6014			wait_for_stable_page(page);
6015			ret = VM_FAULT_LOCKED;
6016			goto out;
6017		}
6018	}
6019	unlock_page(page);
6020	/* OK, we need to fill the hole... */
6021	if (ext4_should_dioread_nolock(inode))
6022		get_block = ext4_get_block_unwritten;
6023	else
6024		get_block = ext4_get_block;
6025retry_alloc:
6026	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6027				    ext4_writepage_trans_blocks(inode));
6028	if (IS_ERR(handle)) {
6029		ret = VM_FAULT_SIGBUS;
6030		goto out;
6031	}
6032	err = block_page_mkwrite(vma, vmf, get_block);
6033	if (!err && ext4_should_journal_data(inode)) {
6034		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6035			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6036			unlock_page(page);
6037			ret = VM_FAULT_SIGBUS;
6038			ext4_journal_stop(handle);
6039			goto out;
6040		}
6041		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6042	}
6043	ext4_journal_stop(handle);
6044	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6045		goto retry_alloc;
6046out_ret:
6047	ret = block_page_mkwrite_return(err);
6048out:
6049	up_read(&EXT4_I(inode)->i_mmap_sem);
6050	sb_end_pagefault(inode->i_sb);
6051	return ret;
6052}
6053
6054vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6055{
6056	struct inode *inode = file_inode(vmf->vma->vm_file);
6057	vm_fault_t ret;
6058
6059	down_read(&EXT4_I(inode)->i_mmap_sem);
6060	ret = filemap_fault(vmf);
6061	up_read(&EXT4_I(inode)->i_mmap_sem);
6062
6063	return ret;
6064}