Loading...
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
86{
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
91
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
115 return NULL;
116}
117
118/* Will return either the node or PTR_ERR(-ENOMEM) */
119static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
120 struct inode *inode)
121{
122 struct btrfs_delayed_node *node;
123 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
124 struct btrfs_root *root = btrfs_inode->root;
125 u64 ino = btrfs_ino(inode);
126 int ret;
127
128again:
129 node = btrfs_get_delayed_node(inode);
130 if (node)
131 return node;
132
133 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
134 if (!node)
135 return ERR_PTR(-ENOMEM);
136 btrfs_init_delayed_node(node, root, ino);
137
138 atomic_inc(&node->refs); /* cached in the btrfs inode */
139 atomic_inc(&node->refs); /* can be accessed */
140
141 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
142 if (ret) {
143 kmem_cache_free(delayed_node_cache, node);
144 return ERR_PTR(ret);
145 }
146
147 spin_lock(&root->inode_lock);
148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 if (ret == -EEXIST) {
150 kmem_cache_free(delayed_node_cache, node);
151 spin_unlock(&root->inode_lock);
152 radix_tree_preload_end();
153 goto again;
154 }
155 btrfs_inode->delayed_node = node;
156 spin_unlock(&root->inode_lock);
157 radix_tree_preload_end();
158
159 return node;
160}
161
162/*
163 * Call it when holding delayed_node->mutex
164 *
165 * If mod = 1, add this node into the prepared list.
166 */
167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 struct btrfs_delayed_node *node,
169 int mod)
170{
171 spin_lock(&root->lock);
172 if (node->in_list) {
173 if (!list_empty(&node->p_list))
174 list_move_tail(&node->p_list, &root->prepare_list);
175 else if (mod)
176 list_add_tail(&node->p_list, &root->prepare_list);
177 } else {
178 list_add_tail(&node->n_list, &root->node_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
180 atomic_inc(&node->refs); /* inserted into list */
181 root->nodes++;
182 node->in_list = 1;
183 }
184 spin_unlock(&root->lock);
185}
186
187/* Call it when holding delayed_node->mutex */
188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 struct btrfs_delayed_node *node)
190{
191 spin_lock(&root->lock);
192 if (node->in_list) {
193 root->nodes--;
194 atomic_dec(&node->refs); /* not in the list */
195 list_del_init(&node->n_list);
196 if (!list_empty(&node->p_list))
197 list_del_init(&node->p_list);
198 node->in_list = 0;
199 }
200 spin_unlock(&root->lock);
201}
202
203struct btrfs_delayed_node *btrfs_first_delayed_node(
204 struct btrfs_delayed_root *delayed_root)
205{
206 struct list_head *p;
207 struct btrfs_delayed_node *node = NULL;
208
209 spin_lock(&delayed_root->lock);
210 if (list_empty(&delayed_root->node_list))
211 goto out;
212
213 p = delayed_root->node_list.next;
214 node = list_entry(p, struct btrfs_delayed_node, n_list);
215 atomic_inc(&node->refs);
216out:
217 spin_unlock(&delayed_root->lock);
218
219 return node;
220}
221
222struct btrfs_delayed_node *btrfs_next_delayed_node(
223 struct btrfs_delayed_node *node)
224{
225 struct btrfs_delayed_root *delayed_root;
226 struct list_head *p;
227 struct btrfs_delayed_node *next = NULL;
228
229 delayed_root = node->root->fs_info->delayed_root;
230 spin_lock(&delayed_root->lock);
231 if (!node->in_list) { /* not in the list */
232 if (list_empty(&delayed_root->node_list))
233 goto out;
234 p = delayed_root->node_list.next;
235 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
236 goto out;
237 else
238 p = node->n_list.next;
239
240 next = list_entry(p, struct btrfs_delayed_node, n_list);
241 atomic_inc(&next->refs);
242out:
243 spin_unlock(&delayed_root->lock);
244
245 return next;
246}
247
248static void __btrfs_release_delayed_node(
249 struct btrfs_delayed_node *delayed_node,
250 int mod)
251{
252 struct btrfs_delayed_root *delayed_root;
253
254 if (!delayed_node)
255 return;
256
257 delayed_root = delayed_node->root->fs_info->delayed_root;
258
259 mutex_lock(&delayed_node->mutex);
260 if (delayed_node->count)
261 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
262 else
263 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
264 mutex_unlock(&delayed_node->mutex);
265
266 if (atomic_dec_and_test(&delayed_node->refs)) {
267 struct btrfs_root *root = delayed_node->root;
268 spin_lock(&root->inode_lock);
269 if (atomic_read(&delayed_node->refs) == 0) {
270 radix_tree_delete(&root->delayed_nodes_tree,
271 delayed_node->inode_id);
272 kmem_cache_free(delayed_node_cache, delayed_node);
273 }
274 spin_unlock(&root->inode_lock);
275 }
276}
277
278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279{
280 __btrfs_release_delayed_node(node, 0);
281}
282
283struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root *delayed_root)
285{
286 struct list_head *p;
287 struct btrfs_delayed_node *node = NULL;
288
289 spin_lock(&delayed_root->lock);
290 if (list_empty(&delayed_root->prepare_list))
291 goto out;
292
293 p = delayed_root->prepare_list.next;
294 list_del_init(p);
295 node = list_entry(p, struct btrfs_delayed_node, p_list);
296 atomic_inc(&node->refs);
297out:
298 spin_unlock(&delayed_root->lock);
299
300 return node;
301}
302
303static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node *node)
305{
306 __btrfs_release_delayed_node(node, 1);
307}
308
309struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310{
311 struct btrfs_delayed_item *item;
312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 if (item) {
314 item->data_len = data_len;
315 item->ins_or_del = 0;
316 item->bytes_reserved = 0;
317 item->delayed_node = NULL;
318 atomic_set(&item->refs, 1);
319 }
320 return item;
321}
322
323/*
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
329 *
330 * Note: if we don't find the right item, we will return the prev item and
331 * the next item.
332 */
333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 struct rb_root *root,
335 struct btrfs_key *key,
336 struct btrfs_delayed_item **prev,
337 struct btrfs_delayed_item **next)
338{
339 struct rb_node *node, *prev_node = NULL;
340 struct btrfs_delayed_item *delayed_item = NULL;
341 int ret = 0;
342
343 node = root->rb_node;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 prev_node = node;
349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 if (ret < 0)
351 node = node->rb_right;
352 else if (ret > 0)
353 node = node->rb_left;
354 else
355 return delayed_item;
356 }
357
358 if (prev) {
359 if (!prev_node)
360 *prev = NULL;
361 else if (ret < 0)
362 *prev = delayed_item;
363 else if ((node = rb_prev(prev_node)) != NULL) {
364 *prev = rb_entry(node, struct btrfs_delayed_item,
365 rb_node);
366 } else
367 *prev = NULL;
368 }
369
370 if (next) {
371 if (!prev_node)
372 *next = NULL;
373 else if (ret > 0)
374 *next = delayed_item;
375 else if ((node = rb_next(prev_node)) != NULL) {
376 *next = rb_entry(node, struct btrfs_delayed_item,
377 rb_node);
378 } else
379 *next = NULL;
380 }
381 return NULL;
382}
383
384struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node *delayed_node,
386 struct btrfs_key *key)
387{
388 struct btrfs_delayed_item *item;
389
390 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391 NULL, NULL);
392 return item;
393}
394
395struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
396 struct btrfs_delayed_node *delayed_node,
397 struct btrfs_key *key)
398{
399 struct btrfs_delayed_item *item;
400
401 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
402 NULL, NULL);
403 return item;
404}
405
406struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
407 struct btrfs_delayed_node *delayed_node,
408 struct btrfs_key *key)
409{
410 struct btrfs_delayed_item *item, *next;
411
412 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
413 NULL, &next);
414 if (!item)
415 item = next;
416
417 return item;
418}
419
420struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
421 struct btrfs_delayed_node *delayed_node,
422 struct btrfs_key *key)
423{
424 struct btrfs_delayed_item *item, *next;
425
426 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
427 NULL, &next);
428 if (!item)
429 item = next;
430
431 return item;
432}
433
434static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
435 struct btrfs_delayed_item *ins,
436 int action)
437{
438 struct rb_node **p, *node;
439 struct rb_node *parent_node = NULL;
440 struct rb_root *root;
441 struct btrfs_delayed_item *item;
442 int cmp;
443
444 if (action == BTRFS_DELAYED_INSERTION_ITEM)
445 root = &delayed_node->ins_root;
446 else if (action == BTRFS_DELAYED_DELETION_ITEM)
447 root = &delayed_node->del_root;
448 else
449 BUG();
450 p = &root->rb_node;
451 node = &ins->rb_node;
452
453 while (*p) {
454 parent_node = *p;
455 item = rb_entry(parent_node, struct btrfs_delayed_item,
456 rb_node);
457
458 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
459 if (cmp < 0)
460 p = &(*p)->rb_right;
461 else if (cmp > 0)
462 p = &(*p)->rb_left;
463 else
464 return -EEXIST;
465 }
466
467 rb_link_node(node, parent_node, p);
468 rb_insert_color(node, root);
469 ins->delayed_node = delayed_node;
470 ins->ins_or_del = action;
471
472 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
473 action == BTRFS_DELAYED_INSERTION_ITEM &&
474 ins->key.offset >= delayed_node->index_cnt)
475 delayed_node->index_cnt = ins->key.offset + 1;
476
477 delayed_node->count++;
478 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
479 return 0;
480}
481
482static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
483 struct btrfs_delayed_item *item)
484{
485 return __btrfs_add_delayed_item(node, item,
486 BTRFS_DELAYED_INSERTION_ITEM);
487}
488
489static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
490 struct btrfs_delayed_item *item)
491{
492 return __btrfs_add_delayed_item(node, item,
493 BTRFS_DELAYED_DELETION_ITEM);
494}
495
496static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
497{
498 struct rb_root *root;
499 struct btrfs_delayed_root *delayed_root;
500
501 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
502
503 BUG_ON(!delayed_root);
504 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
505 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
506
507 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
508 root = &delayed_item->delayed_node->ins_root;
509 else
510 root = &delayed_item->delayed_node->del_root;
511
512 rb_erase(&delayed_item->rb_node, root);
513 delayed_item->delayed_node->count--;
514 atomic_dec(&delayed_root->items);
515 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
516 waitqueue_active(&delayed_root->wait))
517 wake_up(&delayed_root->wait);
518}
519
520static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
521{
522 if (item) {
523 __btrfs_remove_delayed_item(item);
524 if (atomic_dec_and_test(&item->refs))
525 kfree(item);
526 }
527}
528
529struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
530 struct btrfs_delayed_node *delayed_node)
531{
532 struct rb_node *p;
533 struct btrfs_delayed_item *item = NULL;
534
535 p = rb_first(&delayed_node->ins_root);
536 if (p)
537 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538
539 return item;
540}
541
542struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
543 struct btrfs_delayed_node *delayed_node)
544{
545 struct rb_node *p;
546 struct btrfs_delayed_item *item = NULL;
547
548 p = rb_first(&delayed_node->del_root);
549 if (p)
550 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
551
552 return item;
553}
554
555struct btrfs_delayed_item *__btrfs_next_delayed_item(
556 struct btrfs_delayed_item *item)
557{
558 struct rb_node *p;
559 struct btrfs_delayed_item *next = NULL;
560
561 p = rb_next(&item->rb_node);
562 if (p)
563 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
564
565 return next;
566}
567
568static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
569 u64 root_id)
570{
571 struct btrfs_key root_key;
572
573 if (root->objectid == root_id)
574 return root;
575
576 root_key.objectid = root_id;
577 root_key.type = BTRFS_ROOT_ITEM_KEY;
578 root_key.offset = (u64)-1;
579 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
580}
581
582static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_delayed_item *item)
585{
586 struct btrfs_block_rsv *src_rsv;
587 struct btrfs_block_rsv *dst_rsv;
588 u64 num_bytes;
589 int ret;
590
591 if (!trans->bytes_reserved)
592 return 0;
593
594 src_rsv = trans->block_rsv;
595 dst_rsv = &root->fs_info->delayed_block_rsv;
596
597 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
599 if (!ret) {
600 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
601 item->key.objectid,
602 num_bytes, 1);
603 item->bytes_reserved = num_bytes;
604 }
605
606 return ret;
607}
608
609static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
610 struct btrfs_delayed_item *item)
611{
612 struct btrfs_block_rsv *rsv;
613
614 if (!item->bytes_reserved)
615 return;
616
617 rsv = &root->fs_info->delayed_block_rsv;
618 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
619 item->key.objectid, item->bytes_reserved,
620 0);
621 btrfs_block_rsv_release(root, rsv,
622 item->bytes_reserved);
623}
624
625static int btrfs_delayed_inode_reserve_metadata(
626 struct btrfs_trans_handle *trans,
627 struct btrfs_root *root,
628 struct inode *inode,
629 struct btrfs_delayed_node *node)
630{
631 struct btrfs_block_rsv *src_rsv;
632 struct btrfs_block_rsv *dst_rsv;
633 u64 num_bytes;
634 int ret;
635 bool release = false;
636
637 src_rsv = trans->block_rsv;
638 dst_rsv = &root->fs_info->delayed_block_rsv;
639
640 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
641
642 /*
643 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
644 * which doesn't reserve space for speed. This is a problem since we
645 * still need to reserve space for this update, so try to reserve the
646 * space.
647 *
648 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
649 * we're accounted for.
650 */
651 if (!src_rsv || (!trans->bytes_reserved &&
652 src_rsv != &root->fs_info->delalloc_block_rsv)) {
653 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
654 /*
655 * Since we're under a transaction reserve_metadata_bytes could
656 * try to commit the transaction which will make it return
657 * EAGAIN to make us stop the transaction we have, so return
658 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
659 */
660 if (ret == -EAGAIN)
661 ret = -ENOSPC;
662 if (!ret) {
663 node->bytes_reserved = num_bytes;
664 trace_btrfs_space_reservation(root->fs_info,
665 "delayed_inode",
666 btrfs_ino(inode),
667 num_bytes, 1);
668 }
669 return ret;
670 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
671 spin_lock(&BTRFS_I(inode)->lock);
672 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
673 &BTRFS_I(inode)->runtime_flags)) {
674 spin_unlock(&BTRFS_I(inode)->lock);
675 release = true;
676 goto migrate;
677 }
678 spin_unlock(&BTRFS_I(inode)->lock);
679
680 /* Ok we didn't have space pre-reserved. This shouldn't happen
681 * too often but it can happen if we do delalloc to an existing
682 * inode which gets dirtied because of the time update, and then
683 * isn't touched again until after the transaction commits and
684 * then we try to write out the data. First try to be nice and
685 * reserve something strictly for us. If not be a pain and try
686 * to steal from the delalloc block rsv.
687 */
688 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
689 if (!ret)
690 goto out;
691
692 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
693 if (!ret)
694 goto out;
695
696 /*
697 * Ok this is a problem, let's just steal from the global rsv
698 * since this really shouldn't happen that often.
699 */
700 WARN_ON(1);
701 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
702 dst_rsv, num_bytes);
703 goto out;
704 }
705
706migrate:
707 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
708
709out:
710 /*
711 * Migrate only takes a reservation, it doesn't touch the size of the
712 * block_rsv. This is to simplify people who don't normally have things
713 * migrated from their block rsv. If they go to release their
714 * reservation, that will decrease the size as well, so if migrate
715 * reduced size we'd end up with a negative size. But for the
716 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
717 * but we could in fact do this reserve/migrate dance several times
718 * between the time we did the original reservation and we'd clean it
719 * up. So to take care of this, release the space for the meta
720 * reservation here. I think it may be time for a documentation page on
721 * how block rsvs. work.
722 */
723 if (!ret) {
724 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
725 btrfs_ino(inode), num_bytes, 1);
726 node->bytes_reserved = num_bytes;
727 }
728
729 if (release) {
730 trace_btrfs_space_reservation(root->fs_info, "delalloc",
731 btrfs_ino(inode), num_bytes, 0);
732 btrfs_block_rsv_release(root, src_rsv, num_bytes);
733 }
734
735 return ret;
736}
737
738static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
739 struct btrfs_delayed_node *node)
740{
741 struct btrfs_block_rsv *rsv;
742
743 if (!node->bytes_reserved)
744 return;
745
746 rsv = &root->fs_info->delayed_block_rsv;
747 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
748 node->inode_id, node->bytes_reserved, 0);
749 btrfs_block_rsv_release(root, rsv,
750 node->bytes_reserved);
751 node->bytes_reserved = 0;
752}
753
754/*
755 * This helper will insert some continuous items into the same leaf according
756 * to the free space of the leaf.
757 */
758static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
759 struct btrfs_root *root,
760 struct btrfs_path *path,
761 struct btrfs_delayed_item *item)
762{
763 struct btrfs_delayed_item *curr, *next;
764 int free_space;
765 int total_data_size = 0, total_size = 0;
766 struct extent_buffer *leaf;
767 char *data_ptr;
768 struct btrfs_key *keys;
769 u32 *data_size;
770 struct list_head head;
771 int slot;
772 int nitems;
773 int i;
774 int ret = 0;
775
776 BUG_ON(!path->nodes[0]);
777
778 leaf = path->nodes[0];
779 free_space = btrfs_leaf_free_space(root, leaf);
780 INIT_LIST_HEAD(&head);
781
782 next = item;
783 nitems = 0;
784
785 /*
786 * count the number of the continuous items that we can insert in batch
787 */
788 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
789 free_space) {
790 total_data_size += next->data_len;
791 total_size += next->data_len + sizeof(struct btrfs_item);
792 list_add_tail(&next->tree_list, &head);
793 nitems++;
794
795 curr = next;
796 next = __btrfs_next_delayed_item(curr);
797 if (!next)
798 break;
799
800 if (!btrfs_is_continuous_delayed_item(curr, next))
801 break;
802 }
803
804 if (!nitems) {
805 ret = 0;
806 goto out;
807 }
808
809 /*
810 * we need allocate some memory space, but it might cause the task
811 * to sleep, so we set all locked nodes in the path to blocking locks
812 * first.
813 */
814 btrfs_set_path_blocking(path);
815
816 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
817 if (!keys) {
818 ret = -ENOMEM;
819 goto out;
820 }
821
822 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
823 if (!data_size) {
824 ret = -ENOMEM;
825 goto error;
826 }
827
828 /* get keys of all the delayed items */
829 i = 0;
830 list_for_each_entry(next, &head, tree_list) {
831 keys[i] = next->key;
832 data_size[i] = next->data_len;
833 i++;
834 }
835
836 /* reset all the locked nodes in the patch to spinning locks. */
837 btrfs_clear_path_blocking(path, NULL, 0);
838
839 /* insert the keys of the items */
840 setup_items_for_insert(trans, root, path, keys, data_size,
841 total_data_size, total_size, nitems);
842
843 /* insert the dir index items */
844 slot = path->slots[0];
845 list_for_each_entry_safe(curr, next, &head, tree_list) {
846 data_ptr = btrfs_item_ptr(leaf, slot, char);
847 write_extent_buffer(leaf, &curr->data,
848 (unsigned long)data_ptr,
849 curr->data_len);
850 slot++;
851
852 btrfs_delayed_item_release_metadata(root, curr);
853
854 list_del(&curr->tree_list);
855 btrfs_release_delayed_item(curr);
856 }
857
858error:
859 kfree(data_size);
860 kfree(keys);
861out:
862 return ret;
863}
864
865/*
866 * This helper can just do simple insertion that needn't extend item for new
867 * data, such as directory name index insertion, inode insertion.
868 */
869static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
870 struct btrfs_root *root,
871 struct btrfs_path *path,
872 struct btrfs_delayed_item *delayed_item)
873{
874 struct extent_buffer *leaf;
875 struct btrfs_item *item;
876 char *ptr;
877 int ret;
878
879 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
880 delayed_item->data_len);
881 if (ret < 0 && ret != -EEXIST)
882 return ret;
883
884 leaf = path->nodes[0];
885
886 item = btrfs_item_nr(leaf, path->slots[0]);
887 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
888
889 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
890 delayed_item->data_len);
891 btrfs_mark_buffer_dirty(leaf);
892
893 btrfs_delayed_item_release_metadata(root, delayed_item);
894 return 0;
895}
896
897/*
898 * we insert an item first, then if there are some continuous items, we try
899 * to insert those items into the same leaf.
900 */
901static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
902 struct btrfs_path *path,
903 struct btrfs_root *root,
904 struct btrfs_delayed_node *node)
905{
906 struct btrfs_delayed_item *curr, *prev;
907 int ret = 0;
908
909do_again:
910 mutex_lock(&node->mutex);
911 curr = __btrfs_first_delayed_insertion_item(node);
912 if (!curr)
913 goto insert_end;
914
915 ret = btrfs_insert_delayed_item(trans, root, path, curr);
916 if (ret < 0) {
917 btrfs_release_path(path);
918 goto insert_end;
919 }
920
921 prev = curr;
922 curr = __btrfs_next_delayed_item(prev);
923 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
924 /* insert the continuous items into the same leaf */
925 path->slots[0]++;
926 btrfs_batch_insert_items(trans, root, path, curr);
927 }
928 btrfs_release_delayed_item(prev);
929 btrfs_mark_buffer_dirty(path->nodes[0]);
930
931 btrfs_release_path(path);
932 mutex_unlock(&node->mutex);
933 goto do_again;
934
935insert_end:
936 mutex_unlock(&node->mutex);
937 return ret;
938}
939
940static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
941 struct btrfs_root *root,
942 struct btrfs_path *path,
943 struct btrfs_delayed_item *item)
944{
945 struct btrfs_delayed_item *curr, *next;
946 struct extent_buffer *leaf;
947 struct btrfs_key key;
948 struct list_head head;
949 int nitems, i, last_item;
950 int ret = 0;
951
952 BUG_ON(!path->nodes[0]);
953
954 leaf = path->nodes[0];
955
956 i = path->slots[0];
957 last_item = btrfs_header_nritems(leaf) - 1;
958 if (i > last_item)
959 return -ENOENT; /* FIXME: Is errno suitable? */
960
961 next = item;
962 INIT_LIST_HEAD(&head);
963 btrfs_item_key_to_cpu(leaf, &key, i);
964 nitems = 0;
965 /*
966 * count the number of the dir index items that we can delete in batch
967 */
968 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
969 list_add_tail(&next->tree_list, &head);
970 nitems++;
971
972 curr = next;
973 next = __btrfs_next_delayed_item(curr);
974 if (!next)
975 break;
976
977 if (!btrfs_is_continuous_delayed_item(curr, next))
978 break;
979
980 i++;
981 if (i > last_item)
982 break;
983 btrfs_item_key_to_cpu(leaf, &key, i);
984 }
985
986 if (!nitems)
987 return 0;
988
989 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
990 if (ret)
991 goto out;
992
993 list_for_each_entry_safe(curr, next, &head, tree_list) {
994 btrfs_delayed_item_release_metadata(root, curr);
995 list_del(&curr->tree_list);
996 btrfs_release_delayed_item(curr);
997 }
998
999out:
1000 return ret;
1001}
1002
1003static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004 struct btrfs_path *path,
1005 struct btrfs_root *root,
1006 struct btrfs_delayed_node *node)
1007{
1008 struct btrfs_delayed_item *curr, *prev;
1009 int ret = 0;
1010
1011do_again:
1012 mutex_lock(&node->mutex);
1013 curr = __btrfs_first_delayed_deletion_item(node);
1014 if (!curr)
1015 goto delete_fail;
1016
1017 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1018 if (ret < 0)
1019 goto delete_fail;
1020 else if (ret > 0) {
1021 /*
1022 * can't find the item which the node points to, so this node
1023 * is invalid, just drop it.
1024 */
1025 prev = curr;
1026 curr = __btrfs_next_delayed_item(prev);
1027 btrfs_release_delayed_item(prev);
1028 ret = 0;
1029 btrfs_release_path(path);
1030 if (curr)
1031 goto do_again;
1032 else
1033 goto delete_fail;
1034 }
1035
1036 btrfs_batch_delete_items(trans, root, path, curr);
1037 btrfs_release_path(path);
1038 mutex_unlock(&node->mutex);
1039 goto do_again;
1040
1041delete_fail:
1042 btrfs_release_path(path);
1043 mutex_unlock(&node->mutex);
1044 return ret;
1045}
1046
1047static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048{
1049 struct btrfs_delayed_root *delayed_root;
1050
1051 if (delayed_node && delayed_node->inode_dirty) {
1052 BUG_ON(!delayed_node->root);
1053 delayed_node->inode_dirty = 0;
1054 delayed_node->count--;
1055
1056 delayed_root = delayed_node->root->fs_info->delayed_root;
1057 atomic_dec(&delayed_root->items);
1058 if (atomic_read(&delayed_root->items) <
1059 BTRFS_DELAYED_BACKGROUND &&
1060 waitqueue_active(&delayed_root->wait))
1061 wake_up(&delayed_root->wait);
1062 }
1063}
1064
1065static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066 struct btrfs_root *root,
1067 struct btrfs_path *path,
1068 struct btrfs_delayed_node *node)
1069{
1070 struct btrfs_key key;
1071 struct btrfs_inode_item *inode_item;
1072 struct extent_buffer *leaf;
1073 int ret;
1074
1075 mutex_lock(&node->mutex);
1076 if (!node->inode_dirty) {
1077 mutex_unlock(&node->mutex);
1078 return 0;
1079 }
1080
1081 key.objectid = node->inode_id;
1082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083 key.offset = 0;
1084 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1085 if (ret > 0) {
1086 btrfs_release_path(path);
1087 mutex_unlock(&node->mutex);
1088 return -ENOENT;
1089 } else if (ret < 0) {
1090 mutex_unlock(&node->mutex);
1091 return ret;
1092 }
1093
1094 btrfs_unlock_up_safe(path, 1);
1095 leaf = path->nodes[0];
1096 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097 struct btrfs_inode_item);
1098 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099 sizeof(struct btrfs_inode_item));
1100 btrfs_mark_buffer_dirty(leaf);
1101 btrfs_release_path(path);
1102
1103 btrfs_delayed_inode_release_metadata(root, node);
1104 btrfs_release_delayed_inode(node);
1105 mutex_unlock(&node->mutex);
1106
1107 return 0;
1108}
1109
1110/*
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1115 */
1116int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root)
1118{
1119 struct btrfs_root *curr_root = root;
1120 struct btrfs_delayed_root *delayed_root;
1121 struct btrfs_delayed_node *curr_node, *prev_node;
1122 struct btrfs_path *path;
1123 struct btrfs_block_rsv *block_rsv;
1124 int ret = 0;
1125
1126 if (trans->aborted)
1127 return -EIO;
1128
1129 path = btrfs_alloc_path();
1130 if (!path)
1131 return -ENOMEM;
1132 path->leave_spinning = 1;
1133
1134 block_rsv = trans->block_rsv;
1135 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1136
1137 delayed_root = btrfs_get_delayed_root(root);
1138
1139 curr_node = btrfs_first_delayed_node(delayed_root);
1140 while (curr_node) {
1141 curr_root = curr_node->root;
1142 ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143 curr_node);
1144 if (!ret)
1145 ret = btrfs_delete_delayed_items(trans, path,
1146 curr_root, curr_node);
1147 if (!ret)
1148 ret = btrfs_update_delayed_inode(trans, curr_root,
1149 path, curr_node);
1150 if (ret) {
1151 btrfs_release_delayed_node(curr_node);
1152 btrfs_abort_transaction(trans, root, ret);
1153 break;
1154 }
1155
1156 prev_node = curr_node;
1157 curr_node = btrfs_next_delayed_node(curr_node);
1158 btrfs_release_delayed_node(prev_node);
1159 }
1160
1161 btrfs_free_path(path);
1162 trans->block_rsv = block_rsv;
1163
1164 return ret;
1165}
1166
1167static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168 struct btrfs_delayed_node *node)
1169{
1170 struct btrfs_path *path;
1171 struct btrfs_block_rsv *block_rsv;
1172 int ret;
1173
1174 path = btrfs_alloc_path();
1175 if (!path)
1176 return -ENOMEM;
1177 path->leave_spinning = 1;
1178
1179 block_rsv = trans->block_rsv;
1180 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1181
1182 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183 if (!ret)
1184 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185 if (!ret)
1186 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187 btrfs_free_path(path);
1188
1189 trans->block_rsv = block_rsv;
1190 return ret;
1191}
1192
1193int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194 struct inode *inode)
1195{
1196 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 int ret;
1198
1199 if (!delayed_node)
1200 return 0;
1201
1202 mutex_lock(&delayed_node->mutex);
1203 if (!delayed_node->count) {
1204 mutex_unlock(&delayed_node->mutex);
1205 btrfs_release_delayed_node(delayed_node);
1206 return 0;
1207 }
1208 mutex_unlock(&delayed_node->mutex);
1209
1210 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1211 btrfs_release_delayed_node(delayed_node);
1212 return ret;
1213}
1214
1215void btrfs_remove_delayed_node(struct inode *inode)
1216{
1217 struct btrfs_delayed_node *delayed_node;
1218
1219 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220 if (!delayed_node)
1221 return;
1222
1223 BTRFS_I(inode)->delayed_node = NULL;
1224 btrfs_release_delayed_node(delayed_node);
1225}
1226
1227struct btrfs_async_delayed_node {
1228 struct btrfs_root *root;
1229 struct btrfs_delayed_node *delayed_node;
1230 struct btrfs_work work;
1231};
1232
1233static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1234{
1235 struct btrfs_async_delayed_node *async_node;
1236 struct btrfs_trans_handle *trans;
1237 struct btrfs_path *path;
1238 struct btrfs_delayed_node *delayed_node = NULL;
1239 struct btrfs_root *root;
1240 struct btrfs_block_rsv *block_rsv;
1241 unsigned long nr = 0;
1242 int need_requeue = 0;
1243 int ret;
1244
1245 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1246
1247 path = btrfs_alloc_path();
1248 if (!path)
1249 goto out;
1250 path->leave_spinning = 1;
1251
1252 delayed_node = async_node->delayed_node;
1253 root = delayed_node->root;
1254
1255 trans = btrfs_join_transaction(root);
1256 if (IS_ERR(trans))
1257 goto free_path;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1261
1262 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263 if (!ret)
1264 ret = btrfs_delete_delayed_items(trans, path, root,
1265 delayed_node);
1266
1267 if (!ret)
1268 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1269
1270 /*
1271 * Maybe new delayed items have been inserted, so we need requeue
1272 * the work. Besides that, we must dequeue the empty delayed nodes
1273 * to avoid the race between delayed items balance and the worker.
1274 * The race like this:
1275 * Task1 Worker thread
1276 * count == 0, needn't requeue
1277 * also needn't insert the
1278 * delayed node into prepare
1279 * list again.
1280 * add lots of delayed items
1281 * queue the delayed node
1282 * already in the list,
1283 * and not in the prepare
1284 * list, it means the delayed
1285 * node is being dealt with
1286 * by the worker.
1287 * do delayed items balance
1288 * the delayed node is being
1289 * dealt with by the worker
1290 * now, just wait.
1291 * the worker goto idle.
1292 * Task1 will sleep until the transaction is commited.
1293 */
1294 mutex_lock(&delayed_node->mutex);
1295 if (delayed_node->count)
1296 need_requeue = 1;
1297 else
1298 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299 delayed_node);
1300 mutex_unlock(&delayed_node->mutex);
1301
1302 nr = trans->blocks_used;
1303
1304 trans->block_rsv = block_rsv;
1305 btrfs_end_transaction_dmeta(trans, root);
1306 __btrfs_btree_balance_dirty(root, nr);
1307free_path:
1308 btrfs_free_path(path);
1309out:
1310 if (need_requeue)
1311 btrfs_requeue_work(&async_node->work);
1312 else {
1313 btrfs_release_prepared_delayed_node(delayed_node);
1314 kfree(async_node);
1315 }
1316}
1317
1318static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319 struct btrfs_root *root, int all)
1320{
1321 struct btrfs_async_delayed_node *async_node;
1322 struct btrfs_delayed_node *curr;
1323 int count = 0;
1324
1325again:
1326 curr = btrfs_first_prepared_delayed_node(delayed_root);
1327 if (!curr)
1328 return 0;
1329
1330 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331 if (!async_node) {
1332 btrfs_release_prepared_delayed_node(curr);
1333 return -ENOMEM;
1334 }
1335
1336 async_node->root = root;
1337 async_node->delayed_node = curr;
1338
1339 async_node->work.func = btrfs_async_run_delayed_node_done;
1340 async_node->work.flags = 0;
1341
1342 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343 count++;
1344
1345 if (all || count < 4)
1346 goto again;
1347
1348 return 0;
1349}
1350
1351void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1352{
1353 struct btrfs_delayed_root *delayed_root;
1354 delayed_root = btrfs_get_delayed_root(root);
1355 WARN_ON(btrfs_first_delayed_node(delayed_root));
1356}
1357
1358void btrfs_balance_delayed_items(struct btrfs_root *root)
1359{
1360 struct btrfs_delayed_root *delayed_root;
1361
1362 delayed_root = btrfs_get_delayed_root(root);
1363
1364 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1365 return;
1366
1367 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1368 int ret;
1369 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1370 if (ret)
1371 return;
1372
1373 wait_event_interruptible_timeout(
1374 delayed_root->wait,
1375 (atomic_read(&delayed_root->items) <
1376 BTRFS_DELAYED_BACKGROUND),
1377 HZ);
1378 return;
1379 }
1380
1381 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1382}
1383
1384/* Will return 0 or -ENOMEM */
1385int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386 struct btrfs_root *root, const char *name,
1387 int name_len, struct inode *dir,
1388 struct btrfs_disk_key *disk_key, u8 type,
1389 u64 index)
1390{
1391 struct btrfs_delayed_node *delayed_node;
1392 struct btrfs_delayed_item *delayed_item;
1393 struct btrfs_dir_item *dir_item;
1394 int ret;
1395
1396 delayed_node = btrfs_get_or_create_delayed_node(dir);
1397 if (IS_ERR(delayed_node))
1398 return PTR_ERR(delayed_node);
1399
1400 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1401 if (!delayed_item) {
1402 ret = -ENOMEM;
1403 goto release_node;
1404 }
1405
1406 delayed_item->key.objectid = btrfs_ino(dir);
1407 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408 delayed_item->key.offset = index;
1409
1410 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411 dir_item->location = *disk_key;
1412 dir_item->transid = cpu_to_le64(trans->transid);
1413 dir_item->data_len = 0;
1414 dir_item->name_len = cpu_to_le16(name_len);
1415 dir_item->type = type;
1416 memcpy((char *)(dir_item + 1), name, name_len);
1417
1418 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1419 /*
1420 * we have reserved enough space when we start a new transaction,
1421 * so reserving metadata failure is impossible
1422 */
1423 BUG_ON(ret);
1424
1425
1426 mutex_lock(&delayed_node->mutex);
1427 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428 if (unlikely(ret)) {
1429 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430 "the insertion tree of the delayed node"
1431 "(root id: %llu, inode id: %llu, errno: %d)\n",
1432 name,
1433 (unsigned long long)delayed_node->root->objectid,
1434 (unsigned long long)delayed_node->inode_id,
1435 ret);
1436 BUG();
1437 }
1438 mutex_unlock(&delayed_node->mutex);
1439
1440release_node:
1441 btrfs_release_delayed_node(delayed_node);
1442 return ret;
1443}
1444
1445static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446 struct btrfs_delayed_node *node,
1447 struct btrfs_key *key)
1448{
1449 struct btrfs_delayed_item *item;
1450
1451 mutex_lock(&node->mutex);
1452 item = __btrfs_lookup_delayed_insertion_item(node, key);
1453 if (!item) {
1454 mutex_unlock(&node->mutex);
1455 return 1;
1456 }
1457
1458 btrfs_delayed_item_release_metadata(root, item);
1459 btrfs_release_delayed_item(item);
1460 mutex_unlock(&node->mutex);
1461 return 0;
1462}
1463
1464int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root, struct inode *dir,
1466 u64 index)
1467{
1468 struct btrfs_delayed_node *node;
1469 struct btrfs_delayed_item *item;
1470 struct btrfs_key item_key;
1471 int ret;
1472
1473 node = btrfs_get_or_create_delayed_node(dir);
1474 if (IS_ERR(node))
1475 return PTR_ERR(node);
1476
1477 item_key.objectid = btrfs_ino(dir);
1478 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479 item_key.offset = index;
1480
1481 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1482 if (!ret)
1483 goto end;
1484
1485 item = btrfs_alloc_delayed_item(0);
1486 if (!item) {
1487 ret = -ENOMEM;
1488 goto end;
1489 }
1490
1491 item->key = item_key;
1492
1493 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1494 /*
1495 * we have reserved enough space when we start a new transaction,
1496 * so reserving metadata failure is impossible.
1497 */
1498 BUG_ON(ret);
1499
1500 mutex_lock(&node->mutex);
1501 ret = __btrfs_add_delayed_deletion_item(node, item);
1502 if (unlikely(ret)) {
1503 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504 "into the deletion tree of the delayed node"
1505 "(root id: %llu, inode id: %llu, errno: %d)\n",
1506 (unsigned long long)index,
1507 (unsigned long long)node->root->objectid,
1508 (unsigned long long)node->inode_id,
1509 ret);
1510 BUG();
1511 }
1512 mutex_unlock(&node->mutex);
1513end:
1514 btrfs_release_delayed_node(node);
1515 return ret;
1516}
1517
1518int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1519{
1520 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1521
1522 if (!delayed_node)
1523 return -ENOENT;
1524
1525 /*
1526 * Since we have held i_mutex of this directory, it is impossible that
1527 * a new directory index is added into the delayed node and index_cnt
1528 * is updated now. So we needn't lock the delayed node.
1529 */
1530 if (!delayed_node->index_cnt) {
1531 btrfs_release_delayed_node(delayed_node);
1532 return -EINVAL;
1533 }
1534
1535 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536 btrfs_release_delayed_node(delayed_node);
1537 return 0;
1538}
1539
1540void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541 struct list_head *del_list)
1542{
1543 struct btrfs_delayed_node *delayed_node;
1544 struct btrfs_delayed_item *item;
1545
1546 delayed_node = btrfs_get_delayed_node(inode);
1547 if (!delayed_node)
1548 return;
1549
1550 mutex_lock(&delayed_node->mutex);
1551 item = __btrfs_first_delayed_insertion_item(delayed_node);
1552 while (item) {
1553 atomic_inc(&item->refs);
1554 list_add_tail(&item->readdir_list, ins_list);
1555 item = __btrfs_next_delayed_item(item);
1556 }
1557
1558 item = __btrfs_first_delayed_deletion_item(delayed_node);
1559 while (item) {
1560 atomic_inc(&item->refs);
1561 list_add_tail(&item->readdir_list, del_list);
1562 item = __btrfs_next_delayed_item(item);
1563 }
1564 mutex_unlock(&delayed_node->mutex);
1565 /*
1566 * This delayed node is still cached in the btrfs inode, so refs
1567 * must be > 1 now, and we needn't check it is going to be freed
1568 * or not.
1569 *
1570 * Besides that, this function is used to read dir, we do not
1571 * insert/delete delayed items in this period. So we also needn't
1572 * requeue or dequeue this delayed node.
1573 */
1574 atomic_dec(&delayed_node->refs);
1575}
1576
1577void btrfs_put_delayed_items(struct list_head *ins_list,
1578 struct list_head *del_list)
1579{
1580 struct btrfs_delayed_item *curr, *next;
1581
1582 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583 list_del(&curr->readdir_list);
1584 if (atomic_dec_and_test(&curr->refs))
1585 kfree(curr);
1586 }
1587
1588 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589 list_del(&curr->readdir_list);
1590 if (atomic_dec_and_test(&curr->refs))
1591 kfree(curr);
1592 }
1593}
1594
1595int btrfs_should_delete_dir_index(struct list_head *del_list,
1596 u64 index)
1597{
1598 struct btrfs_delayed_item *curr, *next;
1599 int ret;
1600
1601 if (list_empty(del_list))
1602 return 0;
1603
1604 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605 if (curr->key.offset > index)
1606 break;
1607
1608 list_del(&curr->readdir_list);
1609 ret = (curr->key.offset == index);
1610
1611 if (atomic_dec_and_test(&curr->refs))
1612 kfree(curr);
1613
1614 if (ret)
1615 return 1;
1616 else
1617 continue;
1618 }
1619 return 0;
1620}
1621
1622/*
1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1624 *
1625 */
1626int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627 filldir_t filldir,
1628 struct list_head *ins_list)
1629{
1630 struct btrfs_dir_item *di;
1631 struct btrfs_delayed_item *curr, *next;
1632 struct btrfs_key location;
1633 char *name;
1634 int name_len;
1635 int over = 0;
1636 unsigned char d_type;
1637
1638 if (list_empty(ins_list))
1639 return 0;
1640
1641 /*
1642 * Changing the data of the delayed item is impossible. So
1643 * we needn't lock them. And we have held i_mutex of the
1644 * directory, nobody can delete any directory indexes now.
1645 */
1646 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647 list_del(&curr->readdir_list);
1648
1649 if (curr->key.offset < filp->f_pos) {
1650 if (atomic_dec_and_test(&curr->refs))
1651 kfree(curr);
1652 continue;
1653 }
1654
1655 filp->f_pos = curr->key.offset;
1656
1657 di = (struct btrfs_dir_item *)curr->data;
1658 name = (char *)(di + 1);
1659 name_len = le16_to_cpu(di->name_len);
1660
1661 d_type = btrfs_filetype_table[di->type];
1662 btrfs_disk_key_to_cpu(&location, &di->location);
1663
1664 over = filldir(dirent, name, name_len, curr->key.offset,
1665 location.objectid, d_type);
1666
1667 if (atomic_dec_and_test(&curr->refs))
1668 kfree(curr);
1669
1670 if (over)
1671 return 1;
1672 }
1673 return 0;
1674}
1675
1676BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677 generation, 64);
1678BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679 sequence, 64);
1680BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681 transid, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684 nbytes, 64);
1685BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686 block_group, 64);
1687BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1693
1694BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1696
1697static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698 struct btrfs_inode_item *inode_item,
1699 struct inode *inode)
1700{
1701 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1703 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707 btrfs_set_stack_inode_generation(inode_item,
1708 BTRFS_I(inode)->generation);
1709 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1710 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1713 btrfs_set_stack_inode_block_group(inode_item, 0);
1714
1715 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716 inode->i_atime.tv_sec);
1717 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718 inode->i_atime.tv_nsec);
1719
1720 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721 inode->i_mtime.tv_sec);
1722 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723 inode->i_mtime.tv_nsec);
1724
1725 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726 inode->i_ctime.tv_sec);
1727 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728 inode->i_ctime.tv_nsec);
1729}
1730
1731int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1732{
1733 struct btrfs_delayed_node *delayed_node;
1734 struct btrfs_inode_item *inode_item;
1735 struct btrfs_timespec *tspec;
1736
1737 delayed_node = btrfs_get_delayed_node(inode);
1738 if (!delayed_node)
1739 return -ENOENT;
1740
1741 mutex_lock(&delayed_node->mutex);
1742 if (!delayed_node->inode_dirty) {
1743 mutex_unlock(&delayed_node->mutex);
1744 btrfs_release_delayed_node(delayed_node);
1745 return -ENOENT;
1746 }
1747
1748 inode_item = &delayed_node->inode_item;
1749
1750 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1753 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1758 inode->i_rdev = 0;
1759 *rdev = btrfs_stack_inode_rdev(inode_item);
1760 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761
1762 tspec = btrfs_inode_atime(inode_item);
1763 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1765
1766 tspec = btrfs_inode_mtime(inode_item);
1767 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1769
1770 tspec = btrfs_inode_ctime(inode_item);
1771 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1773
1774 inode->i_generation = BTRFS_I(inode)->generation;
1775 BTRFS_I(inode)->index_cnt = (u64)-1;
1776
1777 mutex_unlock(&delayed_node->mutex);
1778 btrfs_release_delayed_node(delayed_node);
1779 return 0;
1780}
1781
1782int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root, struct inode *inode)
1784{
1785 struct btrfs_delayed_node *delayed_node;
1786 int ret = 0;
1787
1788 delayed_node = btrfs_get_or_create_delayed_node(inode);
1789 if (IS_ERR(delayed_node))
1790 return PTR_ERR(delayed_node);
1791
1792 mutex_lock(&delayed_node->mutex);
1793 if (delayed_node->inode_dirty) {
1794 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1795 goto release_node;
1796 }
1797
1798 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799 delayed_node);
1800 if (ret)
1801 goto release_node;
1802
1803 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804 delayed_node->inode_dirty = 1;
1805 delayed_node->count++;
1806 atomic_inc(&root->fs_info->delayed_root->items);
1807release_node:
1808 mutex_unlock(&delayed_node->mutex);
1809 btrfs_release_delayed_node(delayed_node);
1810 return ret;
1811}
1812
1813static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1814{
1815 struct btrfs_root *root = delayed_node->root;
1816 struct btrfs_delayed_item *curr_item, *prev_item;
1817
1818 mutex_lock(&delayed_node->mutex);
1819 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820 while (curr_item) {
1821 btrfs_delayed_item_release_metadata(root, curr_item);
1822 prev_item = curr_item;
1823 curr_item = __btrfs_next_delayed_item(prev_item);
1824 btrfs_release_delayed_item(prev_item);
1825 }
1826
1827 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828 while (curr_item) {
1829 btrfs_delayed_item_release_metadata(root, curr_item);
1830 prev_item = curr_item;
1831 curr_item = __btrfs_next_delayed_item(prev_item);
1832 btrfs_release_delayed_item(prev_item);
1833 }
1834
1835 if (delayed_node->inode_dirty) {
1836 btrfs_delayed_inode_release_metadata(root, delayed_node);
1837 btrfs_release_delayed_inode(delayed_node);
1838 }
1839 mutex_unlock(&delayed_node->mutex);
1840}
1841
1842void btrfs_kill_delayed_inode_items(struct inode *inode)
1843{
1844 struct btrfs_delayed_node *delayed_node;
1845
1846 delayed_node = btrfs_get_delayed_node(inode);
1847 if (!delayed_node)
1848 return;
1849
1850 __btrfs_kill_delayed_node(delayed_node);
1851 btrfs_release_delayed_node(delayed_node);
1852}
1853
1854void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1855{
1856 u64 inode_id = 0;
1857 struct btrfs_delayed_node *delayed_nodes[8];
1858 int i, n;
1859
1860 while (1) {
1861 spin_lock(&root->inode_lock);
1862 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863 (void **)delayed_nodes, inode_id,
1864 ARRAY_SIZE(delayed_nodes));
1865 if (!n) {
1866 spin_unlock(&root->inode_lock);
1867 break;
1868 }
1869
1870 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1871
1872 for (i = 0; i < n; i++)
1873 atomic_inc(&delayed_nodes[i]->refs);
1874 spin_unlock(&root->inode_lock);
1875
1876 for (i = 0; i < n; i++) {
1877 __btrfs_kill_delayed_node(delayed_nodes[i]);
1878 btrfs_release_delayed_node(delayed_nodes[i]);
1879 }
1880 }
1881}
1882
1883void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1884{
1885 struct btrfs_delayed_root *delayed_root;
1886 struct btrfs_delayed_node *curr_node, *prev_node;
1887
1888 delayed_root = btrfs_get_delayed_root(root);
1889
1890 curr_node = btrfs_first_delayed_node(delayed_root);
1891 while (curr_node) {
1892 __btrfs_kill_delayed_node(curr_node);
1893
1894 prev_node = curr_node;
1895 curr_node = btrfs_next_delayed_node(curr_node);
1896 btrfs_release_delayed_node(prev_node);
1897 }
1898}
1899
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "delayed-inode.h"
10#include "disk-io.h"
11#include "transaction.h"
12#include "ctree.h"
13#include "qgroup.h"
14
15#define BTRFS_DELAYED_WRITEBACK 512
16#define BTRFS_DELAYED_BACKGROUND 128
17#define BTRFS_DELAYED_BATCH 16
18
19static struct kmem_cache *delayed_node_cache;
20
21int __init btrfs_delayed_inode_init(void)
22{
23 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 sizeof(struct btrfs_delayed_node),
25 0,
26 SLAB_MEM_SPREAD,
27 NULL);
28 if (!delayed_node_cache)
29 return -ENOMEM;
30 return 0;
31}
32
33void __cold btrfs_delayed_inode_exit(void)
34{
35 kmem_cache_destroy(delayed_node_cache);
36}
37
38static inline void btrfs_init_delayed_node(
39 struct btrfs_delayed_node *delayed_node,
40 struct btrfs_root *root, u64 inode_id)
41{
42 delayed_node->root = root;
43 delayed_node->inode_id = inode_id;
44 refcount_set(&delayed_node->refs, 0);
45 delayed_node->ins_root = RB_ROOT;
46 delayed_node->del_root = RB_ROOT;
47 mutex_init(&delayed_node->mutex);
48 INIT_LIST_HEAD(&delayed_node->n_list);
49 INIT_LIST_HEAD(&delayed_node->p_list);
50}
51
52static inline int btrfs_is_continuous_delayed_item(
53 struct btrfs_delayed_item *item1,
54 struct btrfs_delayed_item *item2)
55{
56 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57 item1->key.objectid == item2->key.objectid &&
58 item1->key.type == item2->key.type &&
59 item1->key.offset + 1 == item2->key.offset)
60 return 1;
61 return 0;
62}
63
64static struct btrfs_delayed_node *btrfs_get_delayed_node(
65 struct btrfs_inode *btrfs_inode)
66{
67 struct btrfs_root *root = btrfs_inode->root;
68 u64 ino = btrfs_ino(btrfs_inode);
69 struct btrfs_delayed_node *node;
70
71 node = READ_ONCE(btrfs_inode->delayed_node);
72 if (node) {
73 refcount_inc(&node->refs);
74 return node;
75 }
76
77 spin_lock(&root->inode_lock);
78 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79
80 if (node) {
81 if (btrfs_inode->delayed_node) {
82 refcount_inc(&node->refs); /* can be accessed */
83 BUG_ON(btrfs_inode->delayed_node != node);
84 spin_unlock(&root->inode_lock);
85 return node;
86 }
87
88 /*
89 * It's possible that we're racing into the middle of removing
90 * this node from the radix tree. In this case, the refcount
91 * was zero and it should never go back to one. Just return
92 * NULL like it was never in the radix at all; our release
93 * function is in the process of removing it.
94 *
95 * Some implementations of refcount_inc refuse to bump the
96 * refcount once it has hit zero. If we don't do this dance
97 * here, refcount_inc() may decide to just WARN_ONCE() instead
98 * of actually bumping the refcount.
99 *
100 * If this node is properly in the radix, we want to bump the
101 * refcount twice, once for the inode and once for this get
102 * operation.
103 */
104 if (refcount_inc_not_zero(&node->refs)) {
105 refcount_inc(&node->refs);
106 btrfs_inode->delayed_node = node;
107 } else {
108 node = NULL;
109 }
110
111 spin_unlock(&root->inode_lock);
112 return node;
113 }
114 spin_unlock(&root->inode_lock);
115
116 return NULL;
117}
118
119/* Will return either the node or PTR_ERR(-ENOMEM) */
120static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 struct btrfs_inode *btrfs_inode)
122{
123 struct btrfs_delayed_node *node;
124 struct btrfs_root *root = btrfs_inode->root;
125 u64 ino = btrfs_ino(btrfs_inode);
126 int ret;
127
128again:
129 node = btrfs_get_delayed_node(btrfs_inode);
130 if (node)
131 return node;
132
133 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 if (!node)
135 return ERR_PTR(-ENOMEM);
136 btrfs_init_delayed_node(node, root, ino);
137
138 /* cached in the btrfs inode and can be accessed */
139 refcount_set(&node->refs, 2);
140
141 ret = radix_tree_preload(GFP_NOFS);
142 if (ret) {
143 kmem_cache_free(delayed_node_cache, node);
144 return ERR_PTR(ret);
145 }
146
147 spin_lock(&root->inode_lock);
148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 if (ret == -EEXIST) {
150 spin_unlock(&root->inode_lock);
151 kmem_cache_free(delayed_node_cache, node);
152 radix_tree_preload_end();
153 goto again;
154 }
155 btrfs_inode->delayed_node = node;
156 spin_unlock(&root->inode_lock);
157 radix_tree_preload_end();
158
159 return node;
160}
161
162/*
163 * Call it when holding delayed_node->mutex
164 *
165 * If mod = 1, add this node into the prepared list.
166 */
167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 struct btrfs_delayed_node *node,
169 int mod)
170{
171 spin_lock(&root->lock);
172 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 if (!list_empty(&node->p_list))
174 list_move_tail(&node->p_list, &root->prepare_list);
175 else if (mod)
176 list_add_tail(&node->p_list, &root->prepare_list);
177 } else {
178 list_add_tail(&node->n_list, &root->node_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
180 refcount_inc(&node->refs); /* inserted into list */
181 root->nodes++;
182 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 }
184 spin_unlock(&root->lock);
185}
186
187/* Call it when holding delayed_node->mutex */
188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 struct btrfs_delayed_node *node)
190{
191 spin_lock(&root->lock);
192 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193 root->nodes--;
194 refcount_dec(&node->refs); /* not in the list */
195 list_del_init(&node->n_list);
196 if (!list_empty(&node->p_list))
197 list_del_init(&node->p_list);
198 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 }
200 spin_unlock(&root->lock);
201}
202
203static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 struct btrfs_delayed_root *delayed_root)
205{
206 struct list_head *p;
207 struct btrfs_delayed_node *node = NULL;
208
209 spin_lock(&delayed_root->lock);
210 if (list_empty(&delayed_root->node_list))
211 goto out;
212
213 p = delayed_root->node_list.next;
214 node = list_entry(p, struct btrfs_delayed_node, n_list);
215 refcount_inc(&node->refs);
216out:
217 spin_unlock(&delayed_root->lock);
218
219 return node;
220}
221
222static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 struct btrfs_delayed_node *node)
224{
225 struct btrfs_delayed_root *delayed_root;
226 struct list_head *p;
227 struct btrfs_delayed_node *next = NULL;
228
229 delayed_root = node->root->fs_info->delayed_root;
230 spin_lock(&delayed_root->lock);
231 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232 /* not in the list */
233 if (list_empty(&delayed_root->node_list))
234 goto out;
235 p = delayed_root->node_list.next;
236 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 goto out;
238 else
239 p = node->n_list.next;
240
241 next = list_entry(p, struct btrfs_delayed_node, n_list);
242 refcount_inc(&next->refs);
243out:
244 spin_unlock(&delayed_root->lock);
245
246 return next;
247}
248
249static void __btrfs_release_delayed_node(
250 struct btrfs_delayed_node *delayed_node,
251 int mod)
252{
253 struct btrfs_delayed_root *delayed_root;
254
255 if (!delayed_node)
256 return;
257
258 delayed_root = delayed_node->root->fs_info->delayed_root;
259
260 mutex_lock(&delayed_node->mutex);
261 if (delayed_node->count)
262 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 else
264 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 mutex_unlock(&delayed_node->mutex);
266
267 if (refcount_dec_and_test(&delayed_node->refs)) {
268 struct btrfs_root *root = delayed_node->root;
269
270 spin_lock(&root->inode_lock);
271 /*
272 * Once our refcount goes to zero, nobody is allowed to bump it
273 * back up. We can delete it now.
274 */
275 ASSERT(refcount_read(&delayed_node->refs) == 0);
276 radix_tree_delete(&root->delayed_nodes_tree,
277 delayed_node->inode_id);
278 spin_unlock(&root->inode_lock);
279 kmem_cache_free(delayed_node_cache, delayed_node);
280 }
281}
282
283static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284{
285 __btrfs_release_delayed_node(node, 0);
286}
287
288static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 struct btrfs_delayed_root *delayed_root)
290{
291 struct list_head *p;
292 struct btrfs_delayed_node *node = NULL;
293
294 spin_lock(&delayed_root->lock);
295 if (list_empty(&delayed_root->prepare_list))
296 goto out;
297
298 p = delayed_root->prepare_list.next;
299 list_del_init(p);
300 node = list_entry(p, struct btrfs_delayed_node, p_list);
301 refcount_inc(&node->refs);
302out:
303 spin_unlock(&delayed_root->lock);
304
305 return node;
306}
307
308static inline void btrfs_release_prepared_delayed_node(
309 struct btrfs_delayed_node *node)
310{
311 __btrfs_release_delayed_node(node, 1);
312}
313
314static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315{
316 struct btrfs_delayed_item *item;
317 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318 if (item) {
319 item->data_len = data_len;
320 item->ins_or_del = 0;
321 item->bytes_reserved = 0;
322 item->delayed_node = NULL;
323 refcount_set(&item->refs, 1);
324 }
325 return item;
326}
327
328/*
329 * __btrfs_lookup_delayed_item - look up the delayed item by key
330 * @delayed_node: pointer to the delayed node
331 * @key: the key to look up
332 * @prev: used to store the prev item if the right item isn't found
333 * @next: used to store the next item if the right item isn't found
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 struct btrfs_key *key,
341 struct btrfs_delayed_item **prev,
342 struct btrfs_delayed_item **next)
343{
344 struct rb_node *node, *prev_node = NULL;
345 struct btrfs_delayed_item *delayed_item = NULL;
346 int ret = 0;
347
348 node = root->rb_node;
349
350 while (node) {
351 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 rb_node);
353 prev_node = node;
354 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355 if (ret < 0)
356 node = node->rb_right;
357 else if (ret > 0)
358 node = node->rb_left;
359 else
360 return delayed_item;
361 }
362
363 if (prev) {
364 if (!prev_node)
365 *prev = NULL;
366 else if (ret < 0)
367 *prev = delayed_item;
368 else if ((node = rb_prev(prev_node)) != NULL) {
369 *prev = rb_entry(node, struct btrfs_delayed_item,
370 rb_node);
371 } else
372 *prev = NULL;
373 }
374
375 if (next) {
376 if (!prev_node)
377 *next = NULL;
378 else if (ret > 0)
379 *next = delayed_item;
380 else if ((node = rb_next(prev_node)) != NULL) {
381 *next = rb_entry(node, struct btrfs_delayed_item,
382 rb_node);
383 } else
384 *next = NULL;
385 }
386 return NULL;
387}
388
389static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 struct btrfs_delayed_node *delayed_node,
391 struct btrfs_key *key)
392{
393 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 NULL, NULL);
395}
396
397static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398 struct btrfs_delayed_item *ins,
399 int action)
400{
401 struct rb_node **p, *node;
402 struct rb_node *parent_node = NULL;
403 struct rb_root *root;
404 struct btrfs_delayed_item *item;
405 int cmp;
406
407 if (action == BTRFS_DELAYED_INSERTION_ITEM)
408 root = &delayed_node->ins_root;
409 else if (action == BTRFS_DELAYED_DELETION_ITEM)
410 root = &delayed_node->del_root;
411 else
412 BUG();
413 p = &root->rb_node;
414 node = &ins->rb_node;
415
416 while (*p) {
417 parent_node = *p;
418 item = rb_entry(parent_node, struct btrfs_delayed_item,
419 rb_node);
420
421 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422 if (cmp < 0)
423 p = &(*p)->rb_right;
424 else if (cmp > 0)
425 p = &(*p)->rb_left;
426 else
427 return -EEXIST;
428 }
429
430 rb_link_node(node, parent_node, p);
431 rb_insert_color(node, root);
432 ins->delayed_node = delayed_node;
433 ins->ins_or_del = action;
434
435 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436 action == BTRFS_DELAYED_INSERTION_ITEM &&
437 ins->key.offset >= delayed_node->index_cnt)
438 delayed_node->index_cnt = ins->key.offset + 1;
439
440 delayed_node->count++;
441 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442 return 0;
443}
444
445static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446 struct btrfs_delayed_item *item)
447{
448 return __btrfs_add_delayed_item(node, item,
449 BTRFS_DELAYED_INSERTION_ITEM);
450}
451
452static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453 struct btrfs_delayed_item *item)
454{
455 return __btrfs_add_delayed_item(node, item,
456 BTRFS_DELAYED_DELETION_ITEM);
457}
458
459static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460{
461 int seq = atomic_inc_return(&delayed_root->items_seq);
462
463 /*
464 * atomic_dec_return implies a barrier for waitqueue_active
465 */
466 if ((atomic_dec_return(&delayed_root->items) <
467 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
468 waitqueue_active(&delayed_root->wait))
469 wake_up(&delayed_root->wait);
470}
471
472static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473{
474 struct rb_root *root;
475 struct btrfs_delayed_root *delayed_root;
476
477 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478
479 BUG_ON(!delayed_root);
480 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482
483 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484 root = &delayed_item->delayed_node->ins_root;
485 else
486 root = &delayed_item->delayed_node->del_root;
487
488 rb_erase(&delayed_item->rb_node, root);
489 delayed_item->delayed_node->count--;
490
491 finish_one_item(delayed_root);
492}
493
494static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495{
496 if (item) {
497 __btrfs_remove_delayed_item(item);
498 if (refcount_dec_and_test(&item->refs))
499 kfree(item);
500 }
501}
502
503static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 struct btrfs_delayed_node *delayed_node)
505{
506 struct rb_node *p;
507 struct btrfs_delayed_item *item = NULL;
508
509 p = rb_first(&delayed_node->ins_root);
510 if (p)
511 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512
513 return item;
514}
515
516static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 struct btrfs_delayed_node *delayed_node)
518{
519 struct rb_node *p;
520 struct btrfs_delayed_item *item = NULL;
521
522 p = rb_first(&delayed_node->del_root);
523 if (p)
524 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525
526 return item;
527}
528
529static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 struct btrfs_delayed_item *item)
531{
532 struct rb_node *p;
533 struct btrfs_delayed_item *next = NULL;
534
535 p = rb_next(&item->rb_node);
536 if (p)
537 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538
539 return next;
540}
541
542static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543 struct btrfs_root *root,
544 struct btrfs_delayed_item *item)
545{
546 struct btrfs_block_rsv *src_rsv;
547 struct btrfs_block_rsv *dst_rsv;
548 struct btrfs_fs_info *fs_info = root->fs_info;
549 u64 num_bytes;
550 int ret;
551
552 if (!trans->bytes_reserved)
553 return 0;
554
555 src_rsv = trans->block_rsv;
556 dst_rsv = &fs_info->delayed_block_rsv;
557
558 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559
560 /*
561 * Here we migrate space rsv from transaction rsv, since have already
562 * reserved space when starting a transaction. So no need to reserve
563 * qgroup space here.
564 */
565 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
566 if (!ret) {
567 trace_btrfs_space_reservation(fs_info, "delayed_item",
568 item->key.objectid,
569 num_bytes, 1);
570 item->bytes_reserved = num_bytes;
571 }
572
573 return ret;
574}
575
576static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
577 struct btrfs_delayed_item *item)
578{
579 struct btrfs_block_rsv *rsv;
580 struct btrfs_fs_info *fs_info = root->fs_info;
581
582 if (!item->bytes_reserved)
583 return;
584
585 rsv = &fs_info->delayed_block_rsv;
586 /*
587 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
588 * to release/reserve qgroup space.
589 */
590 trace_btrfs_space_reservation(fs_info, "delayed_item",
591 item->key.objectid, item->bytes_reserved,
592 0);
593 btrfs_block_rsv_release(fs_info, rsv,
594 item->bytes_reserved);
595}
596
597static int btrfs_delayed_inode_reserve_metadata(
598 struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_inode *inode,
601 struct btrfs_delayed_node *node)
602{
603 struct btrfs_fs_info *fs_info = root->fs_info;
604 struct btrfs_block_rsv *src_rsv;
605 struct btrfs_block_rsv *dst_rsv;
606 u64 num_bytes;
607 int ret;
608
609 src_rsv = trans->block_rsv;
610 dst_rsv = &fs_info->delayed_block_rsv;
611
612 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613
614 /*
615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 * which doesn't reserve space for speed. This is a problem since we
617 * still need to reserve space for this update, so try to reserve the
618 * space.
619 *
620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 * we always reserve enough to update the inode item.
622 */
623 if (!src_rsv || (!trans->bytes_reserved &&
624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 ret = btrfs_qgroup_reserve_meta_prealloc(root,
626 fs_info->nodesize, true);
627 if (ret < 0)
628 return ret;
629 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
630 BTRFS_RESERVE_NO_FLUSH);
631 /*
632 * Since we're under a transaction reserve_metadata_bytes could
633 * try to commit the transaction which will make it return
634 * EAGAIN to make us stop the transaction we have, so return
635 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636 */
637 if (ret == -EAGAIN) {
638 ret = -ENOSPC;
639 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640 }
641 if (!ret) {
642 node->bytes_reserved = num_bytes;
643 trace_btrfs_space_reservation(fs_info,
644 "delayed_inode",
645 btrfs_ino(inode),
646 num_bytes, 1);
647 } else {
648 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
649 }
650 return ret;
651 }
652
653 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
654 if (!ret) {
655 trace_btrfs_space_reservation(fs_info, "delayed_inode",
656 btrfs_ino(inode), num_bytes, 1);
657 node->bytes_reserved = num_bytes;
658 }
659
660 return ret;
661}
662
663static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664 struct btrfs_delayed_node *node,
665 bool qgroup_free)
666{
667 struct btrfs_block_rsv *rsv;
668
669 if (!node->bytes_reserved)
670 return;
671
672 rsv = &fs_info->delayed_block_rsv;
673 trace_btrfs_space_reservation(fs_info, "delayed_inode",
674 node->inode_id, node->bytes_reserved, 0);
675 btrfs_block_rsv_release(fs_info, rsv,
676 node->bytes_reserved);
677 if (qgroup_free)
678 btrfs_qgroup_free_meta_prealloc(node->root,
679 node->bytes_reserved);
680 else
681 btrfs_qgroup_convert_reserved_meta(node->root,
682 node->bytes_reserved);
683 node->bytes_reserved = 0;
684}
685
686/*
687 * This helper will insert some continuous items into the same leaf according
688 * to the free space of the leaf.
689 */
690static int btrfs_batch_insert_items(struct btrfs_root *root,
691 struct btrfs_path *path,
692 struct btrfs_delayed_item *item)
693{
694 struct btrfs_fs_info *fs_info = root->fs_info;
695 struct btrfs_delayed_item *curr, *next;
696 int free_space;
697 int total_data_size = 0, total_size = 0;
698 struct extent_buffer *leaf;
699 char *data_ptr;
700 struct btrfs_key *keys;
701 u32 *data_size;
702 struct list_head head;
703 int slot;
704 int nitems;
705 int i;
706 int ret = 0;
707
708 BUG_ON(!path->nodes[0]);
709
710 leaf = path->nodes[0];
711 free_space = btrfs_leaf_free_space(fs_info, leaf);
712 INIT_LIST_HEAD(&head);
713
714 next = item;
715 nitems = 0;
716
717 /*
718 * count the number of the continuous items that we can insert in batch
719 */
720 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
721 free_space) {
722 total_data_size += next->data_len;
723 total_size += next->data_len + sizeof(struct btrfs_item);
724 list_add_tail(&next->tree_list, &head);
725 nitems++;
726
727 curr = next;
728 next = __btrfs_next_delayed_item(curr);
729 if (!next)
730 break;
731
732 if (!btrfs_is_continuous_delayed_item(curr, next))
733 break;
734 }
735
736 if (!nitems) {
737 ret = 0;
738 goto out;
739 }
740
741 /*
742 * we need allocate some memory space, but it might cause the task
743 * to sleep, so we set all locked nodes in the path to blocking locks
744 * first.
745 */
746 btrfs_set_path_blocking(path);
747
748 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
749 if (!keys) {
750 ret = -ENOMEM;
751 goto out;
752 }
753
754 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
755 if (!data_size) {
756 ret = -ENOMEM;
757 goto error;
758 }
759
760 /* get keys of all the delayed items */
761 i = 0;
762 list_for_each_entry(next, &head, tree_list) {
763 keys[i] = next->key;
764 data_size[i] = next->data_len;
765 i++;
766 }
767
768 /* reset all the locked nodes in the patch to spinning locks. */
769 btrfs_clear_path_blocking(path, NULL, 0);
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size,
773 total_data_size, total_size, nitems);
774
775 /* insert the dir index items */
776 slot = path->slots[0];
777 list_for_each_entry_safe(curr, next, &head, tree_list) {
778 data_ptr = btrfs_item_ptr(leaf, slot, char);
779 write_extent_buffer(leaf, &curr->data,
780 (unsigned long)data_ptr,
781 curr->data_len);
782 slot++;
783
784 btrfs_delayed_item_release_metadata(root, curr);
785
786 list_del(&curr->tree_list);
787 btrfs_release_delayed_item(curr);
788 }
789
790error:
791 kfree(data_size);
792 kfree(keys);
793out:
794 return ret;
795}
796
797/*
798 * This helper can just do simple insertion that needn't extend item for new
799 * data, such as directory name index insertion, inode insertion.
800 */
801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root,
803 struct btrfs_path *path,
804 struct btrfs_delayed_item *delayed_item)
805{
806 struct extent_buffer *leaf;
807 char *ptr;
808 int ret;
809
810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 delayed_item->data_len);
812 if (ret < 0 && ret != -EEXIST)
813 return ret;
814
815 leaf = path->nodes[0];
816
817 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
818
819 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
820 delayed_item->data_len);
821 btrfs_mark_buffer_dirty(leaf);
822
823 btrfs_delayed_item_release_metadata(root, delayed_item);
824 return 0;
825}
826
827/*
828 * we insert an item first, then if there are some continuous items, we try
829 * to insert those items into the same leaf.
830 */
831static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
832 struct btrfs_path *path,
833 struct btrfs_root *root,
834 struct btrfs_delayed_node *node)
835{
836 struct btrfs_delayed_item *curr, *prev;
837 int ret = 0;
838
839do_again:
840 mutex_lock(&node->mutex);
841 curr = __btrfs_first_delayed_insertion_item(node);
842 if (!curr)
843 goto insert_end;
844
845 ret = btrfs_insert_delayed_item(trans, root, path, curr);
846 if (ret < 0) {
847 btrfs_release_path(path);
848 goto insert_end;
849 }
850
851 prev = curr;
852 curr = __btrfs_next_delayed_item(prev);
853 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
854 /* insert the continuous items into the same leaf */
855 path->slots[0]++;
856 btrfs_batch_insert_items(root, path, curr);
857 }
858 btrfs_release_delayed_item(prev);
859 btrfs_mark_buffer_dirty(path->nodes[0]);
860
861 btrfs_release_path(path);
862 mutex_unlock(&node->mutex);
863 goto do_again;
864
865insert_end:
866 mutex_unlock(&node->mutex);
867 return ret;
868}
869
870static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root,
872 struct btrfs_path *path,
873 struct btrfs_delayed_item *item)
874{
875 struct btrfs_delayed_item *curr, *next;
876 struct extent_buffer *leaf;
877 struct btrfs_key key;
878 struct list_head head;
879 int nitems, i, last_item;
880 int ret = 0;
881
882 BUG_ON(!path->nodes[0]);
883
884 leaf = path->nodes[0];
885
886 i = path->slots[0];
887 last_item = btrfs_header_nritems(leaf) - 1;
888 if (i > last_item)
889 return -ENOENT; /* FIXME: Is errno suitable? */
890
891 next = item;
892 INIT_LIST_HEAD(&head);
893 btrfs_item_key_to_cpu(leaf, &key, i);
894 nitems = 0;
895 /*
896 * count the number of the dir index items that we can delete in batch
897 */
898 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
899 list_add_tail(&next->tree_list, &head);
900 nitems++;
901
902 curr = next;
903 next = __btrfs_next_delayed_item(curr);
904 if (!next)
905 break;
906
907 if (!btrfs_is_continuous_delayed_item(curr, next))
908 break;
909
910 i++;
911 if (i > last_item)
912 break;
913 btrfs_item_key_to_cpu(leaf, &key, i);
914 }
915
916 if (!nitems)
917 return 0;
918
919 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
920 if (ret)
921 goto out;
922
923 list_for_each_entry_safe(curr, next, &head, tree_list) {
924 btrfs_delayed_item_release_metadata(root, curr);
925 list_del(&curr->tree_list);
926 btrfs_release_delayed_item(curr);
927 }
928
929out:
930 return ret;
931}
932
933static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
934 struct btrfs_path *path,
935 struct btrfs_root *root,
936 struct btrfs_delayed_node *node)
937{
938 struct btrfs_delayed_item *curr, *prev;
939 int ret = 0;
940
941do_again:
942 mutex_lock(&node->mutex);
943 curr = __btrfs_first_delayed_deletion_item(node);
944 if (!curr)
945 goto delete_fail;
946
947 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
948 if (ret < 0)
949 goto delete_fail;
950 else if (ret > 0) {
951 /*
952 * can't find the item which the node points to, so this node
953 * is invalid, just drop it.
954 */
955 prev = curr;
956 curr = __btrfs_next_delayed_item(prev);
957 btrfs_release_delayed_item(prev);
958 ret = 0;
959 btrfs_release_path(path);
960 if (curr) {
961 mutex_unlock(&node->mutex);
962 goto do_again;
963 } else
964 goto delete_fail;
965 }
966
967 btrfs_batch_delete_items(trans, root, path, curr);
968 btrfs_release_path(path);
969 mutex_unlock(&node->mutex);
970 goto do_again;
971
972delete_fail:
973 btrfs_release_path(path);
974 mutex_unlock(&node->mutex);
975 return ret;
976}
977
978static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
979{
980 struct btrfs_delayed_root *delayed_root;
981
982 if (delayed_node &&
983 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984 BUG_ON(!delayed_node->root);
985 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986 delayed_node->count--;
987
988 delayed_root = delayed_node->root->fs_info->delayed_root;
989 finish_one_item(delayed_root);
990 }
991}
992
993static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
994{
995 struct btrfs_delayed_root *delayed_root;
996
997 ASSERT(delayed_node->root);
998 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003}
1004
1005static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006 struct btrfs_root *root,
1007 struct btrfs_path *path,
1008 struct btrfs_delayed_node *node)
1009{
1010 struct btrfs_fs_info *fs_info = root->fs_info;
1011 struct btrfs_key key;
1012 struct btrfs_inode_item *inode_item;
1013 struct extent_buffer *leaf;
1014 int mod;
1015 int ret;
1016
1017 key.objectid = node->inode_id;
1018 key.type = BTRFS_INODE_ITEM_KEY;
1019 key.offset = 0;
1020
1021 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022 mod = -1;
1023 else
1024 mod = 1;
1025
1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027 if (ret > 0) {
1028 btrfs_release_path(path);
1029 return -ENOENT;
1030 } else if (ret < 0) {
1031 return ret;
1032 }
1033
1034 leaf = path->nodes[0];
1035 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036 struct btrfs_inode_item);
1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038 sizeof(struct btrfs_inode_item));
1039 btrfs_mark_buffer_dirty(leaf);
1040
1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 goto no_iref;
1043
1044 path->slots[0]++;
1045 if (path->slots[0] >= btrfs_header_nritems(leaf))
1046 goto search;
1047again:
1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049 if (key.objectid != node->inode_id)
1050 goto out;
1051
1052 if (key.type != BTRFS_INODE_REF_KEY &&
1053 key.type != BTRFS_INODE_EXTREF_KEY)
1054 goto out;
1055
1056 /*
1057 * Delayed iref deletion is for the inode who has only one link,
1058 * so there is only one iref. The case that several irefs are
1059 * in the same item doesn't exist.
1060 */
1061 btrfs_del_item(trans, root, path);
1062out:
1063 btrfs_release_delayed_iref(node);
1064no_iref:
1065 btrfs_release_path(path);
1066err_out:
1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 btrfs_release_delayed_inode(node);
1069
1070 return ret;
1071
1072search:
1073 btrfs_release_path(path);
1074
1075 key.type = BTRFS_INODE_EXTREF_KEY;
1076 key.offset = -1;
1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 if (ret < 0)
1079 goto err_out;
1080 ASSERT(ret);
1081
1082 ret = 0;
1083 leaf = path->nodes[0];
1084 path->slots[0]--;
1085 goto again;
1086}
1087
1088static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root,
1090 struct btrfs_path *path,
1091 struct btrfs_delayed_node *node)
1092{
1093 int ret;
1094
1095 mutex_lock(&node->mutex);
1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 mutex_unlock(&node->mutex);
1098 return 0;
1099 }
1100
1101 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102 mutex_unlock(&node->mutex);
1103 return ret;
1104}
1105
1106static inline int
1107__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108 struct btrfs_path *path,
1109 struct btrfs_delayed_node *node)
1110{
1111 int ret;
1112
1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114 if (ret)
1115 return ret;
1116
1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118 if (ret)
1119 return ret;
1120
1121 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122 return ret;
1123}
1124
1125/*
1126 * Called when committing the transaction.
1127 * Returns 0 on success.
1128 * Returns < 0 on error and returns with an aborted transaction with any
1129 * outstanding delayed items cleaned up.
1130 */
1131static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132{
1133 struct btrfs_fs_info *fs_info = trans->fs_info;
1134 struct btrfs_delayed_root *delayed_root;
1135 struct btrfs_delayed_node *curr_node, *prev_node;
1136 struct btrfs_path *path;
1137 struct btrfs_block_rsv *block_rsv;
1138 int ret = 0;
1139 bool count = (nr > 0);
1140
1141 if (trans->aborted)
1142 return -EIO;
1143
1144 path = btrfs_alloc_path();
1145 if (!path)
1146 return -ENOMEM;
1147 path->leave_spinning = 1;
1148
1149 block_rsv = trans->block_rsv;
1150 trans->block_rsv = &fs_info->delayed_block_rsv;
1151
1152 delayed_root = fs_info->delayed_root;
1153
1154 curr_node = btrfs_first_delayed_node(delayed_root);
1155 while (curr_node && (!count || (count && nr--))) {
1156 ret = __btrfs_commit_inode_delayed_items(trans, path,
1157 curr_node);
1158 if (ret) {
1159 btrfs_release_delayed_node(curr_node);
1160 curr_node = NULL;
1161 btrfs_abort_transaction(trans, ret);
1162 break;
1163 }
1164
1165 prev_node = curr_node;
1166 curr_node = btrfs_next_delayed_node(curr_node);
1167 btrfs_release_delayed_node(prev_node);
1168 }
1169
1170 if (curr_node)
1171 btrfs_release_delayed_node(curr_node);
1172 btrfs_free_path(path);
1173 trans->block_rsv = block_rsv;
1174
1175 return ret;
1176}
1177
1178int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179{
1180 return __btrfs_run_delayed_items(trans, -1);
1181}
1182
1183int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184{
1185 return __btrfs_run_delayed_items(trans, nr);
1186}
1187
1188int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189 struct btrfs_inode *inode)
1190{
1191 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192 struct btrfs_path *path;
1193 struct btrfs_block_rsv *block_rsv;
1194 int ret;
1195
1196 if (!delayed_node)
1197 return 0;
1198
1199 mutex_lock(&delayed_node->mutex);
1200 if (!delayed_node->count) {
1201 mutex_unlock(&delayed_node->mutex);
1202 btrfs_release_delayed_node(delayed_node);
1203 return 0;
1204 }
1205 mutex_unlock(&delayed_node->mutex);
1206
1207 path = btrfs_alloc_path();
1208 if (!path) {
1209 btrfs_release_delayed_node(delayed_node);
1210 return -ENOMEM;
1211 }
1212 path->leave_spinning = 1;
1213
1214 block_rsv = trans->block_rsv;
1215 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216
1217 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218
1219 btrfs_release_delayed_node(delayed_node);
1220 btrfs_free_path(path);
1221 trans->block_rsv = block_rsv;
1222
1223 return ret;
1224}
1225
1226int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227{
1228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1229 struct btrfs_trans_handle *trans;
1230 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231 struct btrfs_path *path;
1232 struct btrfs_block_rsv *block_rsv;
1233 int ret;
1234
1235 if (!delayed_node)
1236 return 0;
1237
1238 mutex_lock(&delayed_node->mutex);
1239 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240 mutex_unlock(&delayed_node->mutex);
1241 btrfs_release_delayed_node(delayed_node);
1242 return 0;
1243 }
1244 mutex_unlock(&delayed_node->mutex);
1245
1246 trans = btrfs_join_transaction(delayed_node->root);
1247 if (IS_ERR(trans)) {
1248 ret = PTR_ERR(trans);
1249 goto out;
1250 }
1251
1252 path = btrfs_alloc_path();
1253 if (!path) {
1254 ret = -ENOMEM;
1255 goto trans_out;
1256 }
1257 path->leave_spinning = 1;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262 mutex_lock(&delayed_node->mutex);
1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265 path, delayed_node);
1266 else
1267 ret = 0;
1268 mutex_unlock(&delayed_node->mutex);
1269
1270 btrfs_free_path(path);
1271 trans->block_rsv = block_rsv;
1272trans_out:
1273 btrfs_end_transaction(trans);
1274 btrfs_btree_balance_dirty(fs_info);
1275out:
1276 btrfs_release_delayed_node(delayed_node);
1277
1278 return ret;
1279}
1280
1281void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282{
1283 struct btrfs_delayed_node *delayed_node;
1284
1285 delayed_node = READ_ONCE(inode->delayed_node);
1286 if (!delayed_node)
1287 return;
1288
1289 inode->delayed_node = NULL;
1290 btrfs_release_delayed_node(delayed_node);
1291}
1292
1293struct btrfs_async_delayed_work {
1294 struct btrfs_delayed_root *delayed_root;
1295 int nr;
1296 struct btrfs_work work;
1297};
1298
1299static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300{
1301 struct btrfs_async_delayed_work *async_work;
1302 struct btrfs_delayed_root *delayed_root;
1303 struct btrfs_trans_handle *trans;
1304 struct btrfs_path *path;
1305 struct btrfs_delayed_node *delayed_node = NULL;
1306 struct btrfs_root *root;
1307 struct btrfs_block_rsv *block_rsv;
1308 int total_done = 0;
1309
1310 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311 delayed_root = async_work->delayed_root;
1312
1313 path = btrfs_alloc_path();
1314 if (!path)
1315 goto out;
1316
1317 do {
1318 if (atomic_read(&delayed_root->items) <
1319 BTRFS_DELAYED_BACKGROUND / 2)
1320 break;
1321
1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323 if (!delayed_node)
1324 break;
1325
1326 path->leave_spinning = 1;
1327 root = delayed_node->root;
1328
1329 trans = btrfs_join_transaction(root);
1330 if (IS_ERR(trans)) {
1331 btrfs_release_path(path);
1332 btrfs_release_prepared_delayed_node(delayed_node);
1333 total_done++;
1334 continue;
1335 }
1336
1337 block_rsv = trans->block_rsv;
1338 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339
1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341
1342 trans->block_rsv = block_rsv;
1343 btrfs_end_transaction(trans);
1344 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345
1346 btrfs_release_path(path);
1347 btrfs_release_prepared_delayed_node(delayed_node);
1348 total_done++;
1349
1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351 || total_done < async_work->nr);
1352
1353 btrfs_free_path(path);
1354out:
1355 wake_up(&delayed_root->wait);
1356 kfree(async_work);
1357}
1358
1359
1360static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361 struct btrfs_fs_info *fs_info, int nr)
1362{
1363 struct btrfs_async_delayed_work *async_work;
1364
1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366 if (!async_work)
1367 return -ENOMEM;
1368
1369 async_work->delayed_root = delayed_root;
1370 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371 btrfs_async_run_delayed_root, NULL, NULL);
1372 async_work->nr = nr;
1373
1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 return 0;
1376}
1377
1378void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379{
1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381}
1382
1383static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384{
1385 int val = atomic_read(&delayed_root->items_seq);
1386
1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388 return 1;
1389
1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 return 1;
1392
1393 return 0;
1394}
1395
1396void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397{
1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399
1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402 return;
1403
1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405 int seq;
1406 int ret;
1407
1408 seq = atomic_read(&delayed_root->items_seq);
1409
1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411 if (ret)
1412 return;
1413
1414 wait_event_interruptible(delayed_root->wait,
1415 could_end_wait(delayed_root, seq));
1416 return;
1417 }
1418
1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420}
1421
1422/* Will return 0 or -ENOMEM */
1423int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424 struct btrfs_fs_info *fs_info,
1425 const char *name, int name_len,
1426 struct btrfs_inode *dir,
1427 struct btrfs_disk_key *disk_key, u8 type,
1428 u64 index)
1429{
1430 struct btrfs_delayed_node *delayed_node;
1431 struct btrfs_delayed_item *delayed_item;
1432 struct btrfs_dir_item *dir_item;
1433 int ret;
1434
1435 delayed_node = btrfs_get_or_create_delayed_node(dir);
1436 if (IS_ERR(delayed_node))
1437 return PTR_ERR(delayed_node);
1438
1439 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1440 if (!delayed_item) {
1441 ret = -ENOMEM;
1442 goto release_node;
1443 }
1444
1445 delayed_item->key.objectid = btrfs_ino(dir);
1446 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1447 delayed_item->key.offset = index;
1448
1449 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1450 dir_item->location = *disk_key;
1451 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1452 btrfs_set_stack_dir_data_len(dir_item, 0);
1453 btrfs_set_stack_dir_name_len(dir_item, name_len);
1454 btrfs_set_stack_dir_type(dir_item, type);
1455 memcpy((char *)(dir_item + 1), name, name_len);
1456
1457 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1458 /*
1459 * we have reserved enough space when we start a new transaction,
1460 * so reserving metadata failure is impossible
1461 */
1462 BUG_ON(ret);
1463
1464
1465 mutex_lock(&delayed_node->mutex);
1466 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1467 if (unlikely(ret)) {
1468 btrfs_err(fs_info,
1469 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1470 name_len, name, delayed_node->root->objectid,
1471 delayed_node->inode_id, ret);
1472 BUG();
1473 }
1474 mutex_unlock(&delayed_node->mutex);
1475
1476release_node:
1477 btrfs_release_delayed_node(delayed_node);
1478 return ret;
1479}
1480
1481static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1482 struct btrfs_delayed_node *node,
1483 struct btrfs_key *key)
1484{
1485 struct btrfs_delayed_item *item;
1486
1487 mutex_lock(&node->mutex);
1488 item = __btrfs_lookup_delayed_insertion_item(node, key);
1489 if (!item) {
1490 mutex_unlock(&node->mutex);
1491 return 1;
1492 }
1493
1494 btrfs_delayed_item_release_metadata(node->root, item);
1495 btrfs_release_delayed_item(item);
1496 mutex_unlock(&node->mutex);
1497 return 0;
1498}
1499
1500int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1501 struct btrfs_fs_info *fs_info,
1502 struct btrfs_inode *dir, u64 index)
1503{
1504 struct btrfs_delayed_node *node;
1505 struct btrfs_delayed_item *item;
1506 struct btrfs_key item_key;
1507 int ret;
1508
1509 node = btrfs_get_or_create_delayed_node(dir);
1510 if (IS_ERR(node))
1511 return PTR_ERR(node);
1512
1513 item_key.objectid = btrfs_ino(dir);
1514 item_key.type = BTRFS_DIR_INDEX_KEY;
1515 item_key.offset = index;
1516
1517 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1518 if (!ret)
1519 goto end;
1520
1521 item = btrfs_alloc_delayed_item(0);
1522 if (!item) {
1523 ret = -ENOMEM;
1524 goto end;
1525 }
1526
1527 item->key = item_key;
1528
1529 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1530 /*
1531 * we have reserved enough space when we start a new transaction,
1532 * so reserving metadata failure is impossible.
1533 */
1534 BUG_ON(ret);
1535
1536 mutex_lock(&node->mutex);
1537 ret = __btrfs_add_delayed_deletion_item(node, item);
1538 if (unlikely(ret)) {
1539 btrfs_err(fs_info,
1540 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1541 index, node->root->objectid, node->inode_id, ret);
1542 BUG();
1543 }
1544 mutex_unlock(&node->mutex);
1545end:
1546 btrfs_release_delayed_node(node);
1547 return ret;
1548}
1549
1550int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1551{
1552 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1553
1554 if (!delayed_node)
1555 return -ENOENT;
1556
1557 /*
1558 * Since we have held i_mutex of this directory, it is impossible that
1559 * a new directory index is added into the delayed node and index_cnt
1560 * is updated now. So we needn't lock the delayed node.
1561 */
1562 if (!delayed_node->index_cnt) {
1563 btrfs_release_delayed_node(delayed_node);
1564 return -EINVAL;
1565 }
1566
1567 inode->index_cnt = delayed_node->index_cnt;
1568 btrfs_release_delayed_node(delayed_node);
1569 return 0;
1570}
1571
1572bool btrfs_readdir_get_delayed_items(struct inode *inode,
1573 struct list_head *ins_list,
1574 struct list_head *del_list)
1575{
1576 struct btrfs_delayed_node *delayed_node;
1577 struct btrfs_delayed_item *item;
1578
1579 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1580 if (!delayed_node)
1581 return false;
1582
1583 /*
1584 * We can only do one readdir with delayed items at a time because of
1585 * item->readdir_list.
1586 */
1587 inode_unlock_shared(inode);
1588 inode_lock(inode);
1589
1590 mutex_lock(&delayed_node->mutex);
1591 item = __btrfs_first_delayed_insertion_item(delayed_node);
1592 while (item) {
1593 refcount_inc(&item->refs);
1594 list_add_tail(&item->readdir_list, ins_list);
1595 item = __btrfs_next_delayed_item(item);
1596 }
1597
1598 item = __btrfs_first_delayed_deletion_item(delayed_node);
1599 while (item) {
1600 refcount_inc(&item->refs);
1601 list_add_tail(&item->readdir_list, del_list);
1602 item = __btrfs_next_delayed_item(item);
1603 }
1604 mutex_unlock(&delayed_node->mutex);
1605 /*
1606 * This delayed node is still cached in the btrfs inode, so refs
1607 * must be > 1 now, and we needn't check it is going to be freed
1608 * or not.
1609 *
1610 * Besides that, this function is used to read dir, we do not
1611 * insert/delete delayed items in this period. So we also needn't
1612 * requeue or dequeue this delayed node.
1613 */
1614 refcount_dec(&delayed_node->refs);
1615
1616 return true;
1617}
1618
1619void btrfs_readdir_put_delayed_items(struct inode *inode,
1620 struct list_head *ins_list,
1621 struct list_head *del_list)
1622{
1623 struct btrfs_delayed_item *curr, *next;
1624
1625 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1626 list_del(&curr->readdir_list);
1627 if (refcount_dec_and_test(&curr->refs))
1628 kfree(curr);
1629 }
1630
1631 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1632 list_del(&curr->readdir_list);
1633 if (refcount_dec_and_test(&curr->refs))
1634 kfree(curr);
1635 }
1636
1637 /*
1638 * The VFS is going to do up_read(), so we need to downgrade back to a
1639 * read lock.
1640 */
1641 downgrade_write(&inode->i_rwsem);
1642}
1643
1644int btrfs_should_delete_dir_index(struct list_head *del_list,
1645 u64 index)
1646{
1647 struct btrfs_delayed_item *curr;
1648 int ret = 0;
1649
1650 list_for_each_entry(curr, del_list, readdir_list) {
1651 if (curr->key.offset > index)
1652 break;
1653 if (curr->key.offset == index) {
1654 ret = 1;
1655 break;
1656 }
1657 }
1658 return ret;
1659}
1660
1661/*
1662 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1663 *
1664 */
1665int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1666 struct list_head *ins_list)
1667{
1668 struct btrfs_dir_item *di;
1669 struct btrfs_delayed_item *curr, *next;
1670 struct btrfs_key location;
1671 char *name;
1672 int name_len;
1673 int over = 0;
1674 unsigned char d_type;
1675
1676 if (list_empty(ins_list))
1677 return 0;
1678
1679 /*
1680 * Changing the data of the delayed item is impossible. So
1681 * we needn't lock them. And we have held i_mutex of the
1682 * directory, nobody can delete any directory indexes now.
1683 */
1684 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1685 list_del(&curr->readdir_list);
1686
1687 if (curr->key.offset < ctx->pos) {
1688 if (refcount_dec_and_test(&curr->refs))
1689 kfree(curr);
1690 continue;
1691 }
1692
1693 ctx->pos = curr->key.offset;
1694
1695 di = (struct btrfs_dir_item *)curr->data;
1696 name = (char *)(di + 1);
1697 name_len = btrfs_stack_dir_name_len(di);
1698
1699 d_type = btrfs_filetype_table[di->type];
1700 btrfs_disk_key_to_cpu(&location, &di->location);
1701
1702 over = !dir_emit(ctx, name, name_len,
1703 location.objectid, d_type);
1704
1705 if (refcount_dec_and_test(&curr->refs))
1706 kfree(curr);
1707
1708 if (over)
1709 return 1;
1710 ctx->pos++;
1711 }
1712 return 0;
1713}
1714
1715static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1716 struct btrfs_inode_item *inode_item,
1717 struct inode *inode)
1718{
1719 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1720 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1721 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1722 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1723 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1724 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1725 btrfs_set_stack_inode_generation(inode_item,
1726 BTRFS_I(inode)->generation);
1727 btrfs_set_stack_inode_sequence(inode_item,
1728 inode_peek_iversion(inode));
1729 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1730 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1731 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1732 btrfs_set_stack_inode_block_group(inode_item, 0);
1733
1734 btrfs_set_stack_timespec_sec(&inode_item->atime,
1735 inode->i_atime.tv_sec);
1736 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1737 inode->i_atime.tv_nsec);
1738
1739 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1740 inode->i_mtime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1742 inode->i_mtime.tv_nsec);
1743
1744 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1745 inode->i_ctime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1747 inode->i_ctime.tv_nsec);
1748
1749 btrfs_set_stack_timespec_sec(&inode_item->otime,
1750 BTRFS_I(inode)->i_otime.tv_sec);
1751 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1752 BTRFS_I(inode)->i_otime.tv_nsec);
1753}
1754
1755int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1756{
1757 struct btrfs_delayed_node *delayed_node;
1758 struct btrfs_inode_item *inode_item;
1759
1760 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1761 if (!delayed_node)
1762 return -ENOENT;
1763
1764 mutex_lock(&delayed_node->mutex);
1765 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1766 mutex_unlock(&delayed_node->mutex);
1767 btrfs_release_delayed_node(delayed_node);
1768 return -ENOENT;
1769 }
1770
1771 inode_item = &delayed_node->inode_item;
1772
1773 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1774 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1775 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1776 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1777 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1778 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1779 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1780 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1781
1782 inode_set_iversion_queried(inode,
1783 btrfs_stack_inode_sequence(inode_item));
1784 inode->i_rdev = 0;
1785 *rdev = btrfs_stack_inode_rdev(inode_item);
1786 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1787
1788 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1789 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1790
1791 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1792 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1793
1794 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1795 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1796
1797 BTRFS_I(inode)->i_otime.tv_sec =
1798 btrfs_stack_timespec_sec(&inode_item->otime);
1799 BTRFS_I(inode)->i_otime.tv_nsec =
1800 btrfs_stack_timespec_nsec(&inode_item->otime);
1801
1802 inode->i_generation = BTRFS_I(inode)->generation;
1803 BTRFS_I(inode)->index_cnt = (u64)-1;
1804
1805 mutex_unlock(&delayed_node->mutex);
1806 btrfs_release_delayed_node(delayed_node);
1807 return 0;
1808}
1809
1810int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root, struct inode *inode)
1812{
1813 struct btrfs_delayed_node *delayed_node;
1814 int ret = 0;
1815
1816 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1817 if (IS_ERR(delayed_node))
1818 return PTR_ERR(delayed_node);
1819
1820 mutex_lock(&delayed_node->mutex);
1821 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1822 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1823 goto release_node;
1824 }
1825
1826 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1827 delayed_node);
1828 if (ret)
1829 goto release_node;
1830
1831 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1832 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1833 delayed_node->count++;
1834 atomic_inc(&root->fs_info->delayed_root->items);
1835release_node:
1836 mutex_unlock(&delayed_node->mutex);
1837 btrfs_release_delayed_node(delayed_node);
1838 return ret;
1839}
1840
1841int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1842{
1843 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1844 struct btrfs_delayed_node *delayed_node;
1845
1846 /*
1847 * we don't do delayed inode updates during log recovery because it
1848 * leads to enospc problems. This means we also can't do
1849 * delayed inode refs
1850 */
1851 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1852 return -EAGAIN;
1853
1854 delayed_node = btrfs_get_or_create_delayed_node(inode);
1855 if (IS_ERR(delayed_node))
1856 return PTR_ERR(delayed_node);
1857
1858 /*
1859 * We don't reserve space for inode ref deletion is because:
1860 * - We ONLY do async inode ref deletion for the inode who has only
1861 * one link(i_nlink == 1), it means there is only one inode ref.
1862 * And in most case, the inode ref and the inode item are in the
1863 * same leaf, and we will deal with them at the same time.
1864 * Since we are sure we will reserve the space for the inode item,
1865 * it is unnecessary to reserve space for inode ref deletion.
1866 * - If the inode ref and the inode item are not in the same leaf,
1867 * We also needn't worry about enospc problem, because we reserve
1868 * much more space for the inode update than it needs.
1869 * - At the worst, we can steal some space from the global reservation.
1870 * It is very rare.
1871 */
1872 mutex_lock(&delayed_node->mutex);
1873 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1874 goto release_node;
1875
1876 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1877 delayed_node->count++;
1878 atomic_inc(&fs_info->delayed_root->items);
1879release_node:
1880 mutex_unlock(&delayed_node->mutex);
1881 btrfs_release_delayed_node(delayed_node);
1882 return 0;
1883}
1884
1885static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1886{
1887 struct btrfs_root *root = delayed_node->root;
1888 struct btrfs_fs_info *fs_info = root->fs_info;
1889 struct btrfs_delayed_item *curr_item, *prev_item;
1890
1891 mutex_lock(&delayed_node->mutex);
1892 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1893 while (curr_item) {
1894 btrfs_delayed_item_release_metadata(root, curr_item);
1895 prev_item = curr_item;
1896 curr_item = __btrfs_next_delayed_item(prev_item);
1897 btrfs_release_delayed_item(prev_item);
1898 }
1899
1900 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1901 while (curr_item) {
1902 btrfs_delayed_item_release_metadata(root, curr_item);
1903 prev_item = curr_item;
1904 curr_item = __btrfs_next_delayed_item(prev_item);
1905 btrfs_release_delayed_item(prev_item);
1906 }
1907
1908 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1909 btrfs_release_delayed_iref(delayed_node);
1910
1911 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1912 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1913 btrfs_release_delayed_inode(delayed_node);
1914 }
1915 mutex_unlock(&delayed_node->mutex);
1916}
1917
1918void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1919{
1920 struct btrfs_delayed_node *delayed_node;
1921
1922 delayed_node = btrfs_get_delayed_node(inode);
1923 if (!delayed_node)
1924 return;
1925
1926 __btrfs_kill_delayed_node(delayed_node);
1927 btrfs_release_delayed_node(delayed_node);
1928}
1929
1930void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1931{
1932 u64 inode_id = 0;
1933 struct btrfs_delayed_node *delayed_nodes[8];
1934 int i, n;
1935
1936 while (1) {
1937 spin_lock(&root->inode_lock);
1938 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1939 (void **)delayed_nodes, inode_id,
1940 ARRAY_SIZE(delayed_nodes));
1941 if (!n) {
1942 spin_unlock(&root->inode_lock);
1943 break;
1944 }
1945
1946 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1947
1948 for (i = 0; i < n; i++)
1949 refcount_inc(&delayed_nodes[i]->refs);
1950 spin_unlock(&root->inode_lock);
1951
1952 for (i = 0; i < n; i++) {
1953 __btrfs_kill_delayed_node(delayed_nodes[i]);
1954 btrfs_release_delayed_node(delayed_nodes[i]);
1955 }
1956 }
1957}
1958
1959void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1960{
1961 struct btrfs_delayed_node *curr_node, *prev_node;
1962
1963 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1964 while (curr_node) {
1965 __btrfs_kill_delayed_node(curr_node);
1966
1967 prev_node = curr_node;
1968 curr_node = btrfs_next_delayed_node(curr_node);
1969 btrfs_release_delayed_node(prev_node);
1970 }
1971}
1972