Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
 
 
 
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24
  25#define BTRFS_DELAYED_WRITEBACK		400
  26#define BTRFS_DELAYED_BACKGROUND	100
 
 
 
 
  27
  28static struct kmem_cache *delayed_node_cache;
  29
  30int __init btrfs_delayed_inode_init(void)
  31{
  32	delayed_node_cache = kmem_cache_create("delayed_node",
  33					sizeof(struct btrfs_delayed_node),
  34					0,
  35					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  36					NULL);
  37	if (!delayed_node_cache)
  38		return -ENOMEM;
  39	return 0;
  40}
  41
  42void btrfs_delayed_inode_exit(void)
  43{
  44	if (delayed_node_cache)
  45		kmem_cache_destroy(delayed_node_cache);
  46}
  47
  48static inline void btrfs_init_delayed_node(
  49				struct btrfs_delayed_node *delayed_node,
  50				struct btrfs_root *root, u64 inode_id)
  51{
  52	delayed_node->root = root;
  53	delayed_node->inode_id = inode_id;
  54	atomic_set(&delayed_node->refs, 0);
  55	delayed_node->count = 0;
  56	delayed_node->in_list = 0;
  57	delayed_node->inode_dirty = 0;
  58	delayed_node->ins_root = RB_ROOT;
  59	delayed_node->del_root = RB_ROOT;
  60	mutex_init(&delayed_node->mutex);
  61	delayed_node->index_cnt = 0;
  62	INIT_LIST_HEAD(&delayed_node->n_list);
  63	INIT_LIST_HEAD(&delayed_node->p_list);
  64	delayed_node->bytes_reserved = 0;
  65}
  66
  67static inline int btrfs_is_continuous_delayed_item(
  68					struct btrfs_delayed_item *item1,
  69					struct btrfs_delayed_item *item2)
  70{
  71	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  72	    item1->key.objectid == item2->key.objectid &&
  73	    item1->key.type == item2->key.type &&
  74	    item1->key.offset + 1 == item2->key.offset)
  75		return 1;
  76	return 0;
  77}
  78
  79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  80							struct btrfs_root *root)
  81{
  82	return root->fs_info->delayed_root;
  83}
  84
  85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  86{
  87	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  88	struct btrfs_root *root = btrfs_inode->root;
  89	u64 ino = btrfs_ino(inode);
  90	struct btrfs_delayed_node *node;
  91
  92	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  93	if (node) {
  94		atomic_inc(&node->refs);
  95		return node;
  96	}
  97
  98	spin_lock(&root->inode_lock);
  99	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 
 100	if (node) {
 101		if (btrfs_inode->delayed_node) {
 102			atomic_inc(&node->refs);	/* can be accessed */
 103			BUG_ON(btrfs_inode->delayed_node != node);
 104			spin_unlock(&root->inode_lock);
 105			return node;
 106		}
 107		btrfs_inode->delayed_node = node;
 108		atomic_inc(&node->refs);	/* can be accessed */
 109		atomic_inc(&node->refs);	/* cached in the inode */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110		spin_unlock(&root->inode_lock);
 111		return node;
 112	}
 113	spin_unlock(&root->inode_lock);
 114
 115	return NULL;
 116}
 117
 118/* Will return either the node or PTR_ERR(-ENOMEM) */
 119static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 120							struct inode *inode)
 121{
 122	struct btrfs_delayed_node *node;
 123	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 124	struct btrfs_root *root = btrfs_inode->root;
 125	u64 ino = btrfs_ino(inode);
 126	int ret;
 127
 128again:
 129	node = btrfs_get_delayed_node(inode);
 130	if (node)
 131		return node;
 132
 133	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 134	if (!node)
 135		return ERR_PTR(-ENOMEM);
 136	btrfs_init_delayed_node(node, root, ino);
 137
 138	atomic_inc(&node->refs);	/* cached in the btrfs inode */
 139	atomic_inc(&node->refs);	/* can be accessed */
 140
 141	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 142	if (ret) {
 143		kmem_cache_free(delayed_node_cache, node);
 144		return ERR_PTR(ret);
 145	}
 146
 147	spin_lock(&root->inode_lock);
 148	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 149	if (ret == -EEXIST) {
 150		kmem_cache_free(delayed_node_cache, node);
 151		spin_unlock(&root->inode_lock);
 
 152		radix_tree_preload_end();
 153		goto again;
 154	}
 155	btrfs_inode->delayed_node = node;
 156	spin_unlock(&root->inode_lock);
 157	radix_tree_preload_end();
 158
 159	return node;
 160}
 161
 162/*
 163 * Call it when holding delayed_node->mutex
 164 *
 165 * If mod = 1, add this node into the prepared list.
 166 */
 167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 168				     struct btrfs_delayed_node *node,
 169				     int mod)
 170{
 171	spin_lock(&root->lock);
 172	if (node->in_list) {
 173		if (!list_empty(&node->p_list))
 174			list_move_tail(&node->p_list, &root->prepare_list);
 175		else if (mod)
 176			list_add_tail(&node->p_list, &root->prepare_list);
 177	} else {
 178		list_add_tail(&node->n_list, &root->node_list);
 179		list_add_tail(&node->p_list, &root->prepare_list);
 180		atomic_inc(&node->refs);	/* inserted into list */
 181		root->nodes++;
 182		node->in_list = 1;
 183	}
 184	spin_unlock(&root->lock);
 185}
 186
 187/* Call it when holding delayed_node->mutex */
 188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 189				       struct btrfs_delayed_node *node)
 190{
 191	spin_lock(&root->lock);
 192	if (node->in_list) {
 193		root->nodes--;
 194		atomic_dec(&node->refs);	/* not in the list */
 195		list_del_init(&node->n_list);
 196		if (!list_empty(&node->p_list))
 197			list_del_init(&node->p_list);
 198		node->in_list = 0;
 199	}
 200	spin_unlock(&root->lock);
 201}
 202
 203struct btrfs_delayed_node *btrfs_first_delayed_node(
 204			struct btrfs_delayed_root *delayed_root)
 205{
 206	struct list_head *p;
 207	struct btrfs_delayed_node *node = NULL;
 208
 209	spin_lock(&delayed_root->lock);
 210	if (list_empty(&delayed_root->node_list))
 211		goto out;
 212
 213	p = delayed_root->node_list.next;
 214	node = list_entry(p, struct btrfs_delayed_node, n_list);
 215	atomic_inc(&node->refs);
 216out:
 217	spin_unlock(&delayed_root->lock);
 218
 219	return node;
 220}
 221
 222struct btrfs_delayed_node *btrfs_next_delayed_node(
 223						struct btrfs_delayed_node *node)
 224{
 225	struct btrfs_delayed_root *delayed_root;
 226	struct list_head *p;
 227	struct btrfs_delayed_node *next = NULL;
 228
 229	delayed_root = node->root->fs_info->delayed_root;
 230	spin_lock(&delayed_root->lock);
 231	if (!node->in_list) {	/* not in the list */
 
 232		if (list_empty(&delayed_root->node_list))
 233			goto out;
 234		p = delayed_root->node_list.next;
 235	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 236		goto out;
 237	else
 238		p = node->n_list.next;
 239
 240	next = list_entry(p, struct btrfs_delayed_node, n_list);
 241	atomic_inc(&next->refs);
 242out:
 243	spin_unlock(&delayed_root->lock);
 244
 245	return next;
 246}
 247
 248static void __btrfs_release_delayed_node(
 249				struct btrfs_delayed_node *delayed_node,
 250				int mod)
 251{
 252	struct btrfs_delayed_root *delayed_root;
 253
 254	if (!delayed_node)
 255		return;
 256
 257	delayed_root = delayed_node->root->fs_info->delayed_root;
 258
 259	mutex_lock(&delayed_node->mutex);
 260	if (delayed_node->count)
 261		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 262	else
 263		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 264	mutex_unlock(&delayed_node->mutex);
 265
 266	if (atomic_dec_and_test(&delayed_node->refs)) {
 267		struct btrfs_root *root = delayed_node->root;
 
 268		spin_lock(&root->inode_lock);
 269		if (atomic_read(&delayed_node->refs) == 0) {
 270			radix_tree_delete(&root->delayed_nodes_tree,
 271					  delayed_node->inode_id);
 272			kmem_cache_free(delayed_node_cache, delayed_node);
 273		}
 
 
 274		spin_unlock(&root->inode_lock);
 
 275	}
 276}
 277
 278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 279{
 280	__btrfs_release_delayed_node(node, 0);
 281}
 282
 283struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 284					struct btrfs_delayed_root *delayed_root)
 285{
 286	struct list_head *p;
 287	struct btrfs_delayed_node *node = NULL;
 288
 289	spin_lock(&delayed_root->lock);
 290	if (list_empty(&delayed_root->prepare_list))
 291		goto out;
 292
 293	p = delayed_root->prepare_list.next;
 294	list_del_init(p);
 295	node = list_entry(p, struct btrfs_delayed_node, p_list);
 296	atomic_inc(&node->refs);
 297out:
 298	spin_unlock(&delayed_root->lock);
 299
 300	return node;
 301}
 302
 303static inline void btrfs_release_prepared_delayed_node(
 304					struct btrfs_delayed_node *node)
 305{
 306	__btrfs_release_delayed_node(node, 1);
 307}
 308
 309struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 310{
 311	struct btrfs_delayed_item *item;
 312	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 313	if (item) {
 314		item->data_len = data_len;
 315		item->ins_or_del = 0;
 316		item->bytes_reserved = 0;
 317		item->delayed_node = NULL;
 318		atomic_set(&item->refs, 1);
 319	}
 320	return item;
 321}
 322
 323/*
 324 * __btrfs_lookup_delayed_item - look up the delayed item by key
 325 * @delayed_node: pointer to the delayed node
 326 * @key:	  the key to look up
 327 * @prev:	  used to store the prev item if the right item isn't found
 328 * @next:	  used to store the next item if the right item isn't found
 329 *
 330 * Note: if we don't find the right item, we will return the prev item and
 331 * the next item.
 332 */
 333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 334				struct rb_root *root,
 335				struct btrfs_key *key,
 336				struct btrfs_delayed_item **prev,
 337				struct btrfs_delayed_item **next)
 338{
 339	struct rb_node *node, *prev_node = NULL;
 340	struct btrfs_delayed_item *delayed_item = NULL;
 341	int ret = 0;
 342
 343	node = root->rb_node;
 344
 345	while (node) {
 346		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 347					rb_node);
 348		prev_node = node;
 349		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 350		if (ret < 0)
 351			node = node->rb_right;
 352		else if (ret > 0)
 353			node = node->rb_left;
 354		else
 355			return delayed_item;
 356	}
 357
 358	if (prev) {
 359		if (!prev_node)
 360			*prev = NULL;
 361		else if (ret < 0)
 362			*prev = delayed_item;
 363		else if ((node = rb_prev(prev_node)) != NULL) {
 364			*prev = rb_entry(node, struct btrfs_delayed_item,
 365					 rb_node);
 366		} else
 367			*prev = NULL;
 368	}
 369
 370	if (next) {
 371		if (!prev_node)
 372			*next = NULL;
 373		else if (ret > 0)
 374			*next = delayed_item;
 375		else if ((node = rb_next(prev_node)) != NULL) {
 376			*next = rb_entry(node, struct btrfs_delayed_item,
 377					 rb_node);
 378		} else
 379			*next = NULL;
 380	}
 381	return NULL;
 382}
 383
 384struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 385					struct btrfs_delayed_node *delayed_node,
 386					struct btrfs_key *key)
 387{
 388	struct btrfs_delayed_item *item;
 389
 390	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 391					   NULL, NULL);
 392	return item;
 393}
 394
 395struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
 396					struct btrfs_delayed_node *delayed_node,
 397					struct btrfs_key *key)
 398{
 399	struct btrfs_delayed_item *item;
 400
 401	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 402					   NULL, NULL);
 403	return item;
 404}
 405
 406struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
 407					struct btrfs_delayed_node *delayed_node,
 408					struct btrfs_key *key)
 409{
 410	struct btrfs_delayed_item *item, *next;
 411
 412	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 413					   NULL, &next);
 414	if (!item)
 415		item = next;
 416
 417	return item;
 418}
 419
 420struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
 421					struct btrfs_delayed_node *delayed_node,
 422					struct btrfs_key *key)
 423{
 424	struct btrfs_delayed_item *item, *next;
 425
 426	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 427					   NULL, &next);
 428	if (!item)
 429		item = next;
 430
 431	return item;
 432}
 433
 434static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 435				    struct btrfs_delayed_item *ins,
 436				    int action)
 437{
 438	struct rb_node **p, *node;
 439	struct rb_node *parent_node = NULL;
 440	struct rb_root *root;
 441	struct btrfs_delayed_item *item;
 442	int cmp;
 
 443
 444	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 445		root = &delayed_node->ins_root;
 446	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 447		root = &delayed_node->del_root;
 448	else
 449		BUG();
 450	p = &root->rb_node;
 451	node = &ins->rb_node;
 452
 453	while (*p) {
 454		parent_node = *p;
 455		item = rb_entry(parent_node, struct btrfs_delayed_item,
 456				 rb_node);
 457
 458		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 459		if (cmp < 0)
 460			p = &(*p)->rb_right;
 461		else if (cmp > 0)
 
 462			p = &(*p)->rb_left;
 463		else
 464			return -EEXIST;
 
 465	}
 466
 467	rb_link_node(node, parent_node, p);
 468	rb_insert_color(node, root);
 469	ins->delayed_node = delayed_node;
 470	ins->ins_or_del = action;
 471
 472	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 473	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 474	    ins->key.offset >= delayed_node->index_cnt)
 475			delayed_node->index_cnt = ins->key.offset + 1;
 476
 477	delayed_node->count++;
 478	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 479	return 0;
 480}
 481
 482static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 483					      struct btrfs_delayed_item *item)
 484{
 485	return __btrfs_add_delayed_item(node, item,
 486					BTRFS_DELAYED_INSERTION_ITEM);
 487}
 488
 489static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 490					     struct btrfs_delayed_item *item)
 491{
 492	return __btrfs_add_delayed_item(node, item,
 493					BTRFS_DELAYED_DELETION_ITEM);
 494}
 495
 
 
 
 
 
 
 
 
 
 
 496static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 497{
 498	struct rb_root *root;
 499	struct btrfs_delayed_root *delayed_root;
 500
 
 
 
 501	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 502
 503	BUG_ON(!delayed_root);
 504	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 505	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 506
 507	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 508		root = &delayed_item->delayed_node->ins_root;
 509	else
 510		root = &delayed_item->delayed_node->del_root;
 511
 512	rb_erase(&delayed_item->rb_node, root);
 513	delayed_item->delayed_node->count--;
 514	atomic_dec(&delayed_root->items);
 515	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
 516	    waitqueue_active(&delayed_root->wait))
 517		wake_up(&delayed_root->wait);
 518}
 519
 520static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 521{
 522	if (item) {
 523		__btrfs_remove_delayed_item(item);
 524		if (atomic_dec_and_test(&item->refs))
 525			kfree(item);
 526	}
 527}
 528
 529struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 530					struct btrfs_delayed_node *delayed_node)
 531{
 532	struct rb_node *p;
 533	struct btrfs_delayed_item *item = NULL;
 534
 535	p = rb_first(&delayed_node->ins_root);
 536	if (p)
 537		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 538
 539	return item;
 540}
 541
 542struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 543					struct btrfs_delayed_node *delayed_node)
 544{
 545	struct rb_node *p;
 546	struct btrfs_delayed_item *item = NULL;
 547
 548	p = rb_first(&delayed_node->del_root);
 549	if (p)
 550		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 551
 552	return item;
 553}
 554
 555struct btrfs_delayed_item *__btrfs_next_delayed_item(
 556						struct btrfs_delayed_item *item)
 557{
 558	struct rb_node *p;
 559	struct btrfs_delayed_item *next = NULL;
 560
 561	p = rb_next(&item->rb_node);
 562	if (p)
 563		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 564
 565	return next;
 566}
 567
 568static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
 569						   u64 root_id)
 570{
 571	struct btrfs_key root_key;
 572
 573	if (root->objectid == root_id)
 574		return root;
 575
 576	root_key.objectid = root_id;
 577	root_key.type = BTRFS_ROOT_ITEM_KEY;
 578	root_key.offset = (u64)-1;
 579	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
 580}
 581
 582static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 583					       struct btrfs_root *root,
 584					       struct btrfs_delayed_item *item)
 585{
 586	struct btrfs_block_rsv *src_rsv;
 587	struct btrfs_block_rsv *dst_rsv;
 
 588	u64 num_bytes;
 589	int ret;
 590
 591	if (!trans->bytes_reserved)
 592		return 0;
 593
 594	src_rsv = trans->block_rsv;
 595	dst_rsv = &root->fs_info->delayed_block_rsv;
 
 
 596
 597	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 598	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 
 
 
 
 599	if (!ret) {
 600		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 601					      item->key.objectid,
 602					      num_bytes, 1);
 603		item->bytes_reserved = num_bytes;
 604	}
 605
 606	return ret;
 607}
 608
 609static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 610						struct btrfs_delayed_item *item)
 611{
 612	struct btrfs_block_rsv *rsv;
 
 613
 614	if (!item->bytes_reserved)
 615		return;
 616
 617	rsv = &root->fs_info->delayed_block_rsv;
 618	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 
 
 
 
 619				      item->key.objectid, item->bytes_reserved,
 620				      0);
 621	btrfs_block_rsv_release(root, rsv,
 622				item->bytes_reserved);
 623}
 624
 625static int btrfs_delayed_inode_reserve_metadata(
 626					struct btrfs_trans_handle *trans,
 627					struct btrfs_root *root,
 628					struct inode *inode,
 629					struct btrfs_delayed_node *node)
 630{
 
 631	struct btrfs_block_rsv *src_rsv;
 632	struct btrfs_block_rsv *dst_rsv;
 633	u64 num_bytes;
 634	int ret;
 635	bool release = false;
 636
 637	src_rsv = trans->block_rsv;
 638	dst_rsv = &root->fs_info->delayed_block_rsv;
 639
 640	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 641
 642	/*
 643	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 644	 * which doesn't reserve space for speed.  This is a problem since we
 645	 * still need to reserve space for this update, so try to reserve the
 646	 * space.
 647	 *
 648	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 649	 * we're accounted for.
 650	 */
 651	if (!src_rsv || (!trans->bytes_reserved &&
 652	    src_rsv != &root->fs_info->delalloc_block_rsv)) {
 653		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 654		/*
 655		 * Since we're under a transaction reserve_metadata_bytes could
 656		 * try to commit the transaction which will make it return
 657		 * EAGAIN to make us stop the transaction we have, so return
 658		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 659		 */
 660		if (ret == -EAGAIN)
 661			ret = -ENOSPC;
 662		if (!ret) {
 663			node->bytes_reserved = num_bytes;
 664			trace_btrfs_space_reservation(root->fs_info,
 665						      "delayed_inode",
 666						      btrfs_ino(inode),
 667						      num_bytes, 1);
 668		}
 669		return ret;
 670	} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
 671		spin_lock(&BTRFS_I(inode)->lock);
 672		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 673				       &BTRFS_I(inode)->runtime_flags)) {
 674			spin_unlock(&BTRFS_I(inode)->lock);
 675			release = true;
 676			goto migrate;
 677		}
 678		spin_unlock(&BTRFS_I(inode)->lock);
 679
 680		/* Ok we didn't have space pre-reserved.  This shouldn't happen
 681		 * too often but it can happen if we do delalloc to an existing
 682		 * inode which gets dirtied because of the time update, and then
 683		 * isn't touched again until after the transaction commits and
 684		 * then we try to write out the data.  First try to be nice and
 685		 * reserve something strictly for us.  If not be a pain and try
 686		 * to steal from the delalloc block rsv.
 687		 */
 688		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 689		if (!ret)
 690			goto out;
 691
 692		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 693		if (!ret)
 694			goto out;
 695
 696		/*
 697		 * Ok this is a problem, let's just steal from the global rsv
 698		 * since this really shouldn't happen that often.
 699		 */
 700		WARN_ON(1);
 701		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
 702					      dst_rsv, num_bytes);
 703		goto out;
 704	}
 705
 706migrate:
 707	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 708
 709out:
 710	/*
 711	 * Migrate only takes a reservation, it doesn't touch the size of the
 712	 * block_rsv.  This is to simplify people who don't normally have things
 713	 * migrated from their block rsv.  If they go to release their
 714	 * reservation, that will decrease the size as well, so if migrate
 715	 * reduced size we'd end up with a negative size.  But for the
 716	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 717	 * but we could in fact do this reserve/migrate dance several times
 718	 * between the time we did the original reservation and we'd clean it
 719	 * up.  So to take care of this, release the space for the meta
 720	 * reservation here.  I think it may be time for a documentation page on
 721	 * how block rsvs. work.
 722	 */
 723	if (!ret) {
 724		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 725					      btrfs_ino(inode), num_bytes, 1);
 726		node->bytes_reserved = num_bytes;
 727	}
 728
 729	if (release) {
 730		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 731					      btrfs_ino(inode), num_bytes, 0);
 732		btrfs_block_rsv_release(root, src_rsv, num_bytes);
 733	}
 734
 735	return ret;
 736}
 737
 738static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 739						struct btrfs_delayed_node *node)
 
 740{
 741	struct btrfs_block_rsv *rsv;
 742
 743	if (!node->bytes_reserved)
 744		return;
 745
 746	rsv = &root->fs_info->delayed_block_rsv;
 747	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 748				      node->inode_id, node->bytes_reserved, 0);
 749	btrfs_block_rsv_release(root, rsv,
 
 
 
 
 
 750				node->bytes_reserved);
 751	node->bytes_reserved = 0;
 752}
 753
 754/*
 755 * This helper will insert some continuous items into the same leaf according
 756 * to the free space of the leaf.
 757 */
 758static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
 759				struct btrfs_root *root,
 760				struct btrfs_path *path,
 761				struct btrfs_delayed_item *item)
 762{
 763	struct btrfs_delayed_item *curr, *next;
 764	int free_space;
 765	int total_data_size = 0, total_size = 0;
 766	struct extent_buffer *leaf;
 767	char *data_ptr;
 768	struct btrfs_key *keys;
 769	u32 *data_size;
 770	struct list_head head;
 771	int slot;
 772	int nitems;
 773	int i;
 774	int ret = 0;
 775
 776	BUG_ON(!path->nodes[0]);
 777
 778	leaf = path->nodes[0];
 779	free_space = btrfs_leaf_free_space(root, leaf);
 780	INIT_LIST_HEAD(&head);
 781
 782	next = item;
 783	nitems = 0;
 784
 785	/*
 786	 * count the number of the continuous items that we can insert in batch
 787	 */
 788	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 789	       free_space) {
 790		total_data_size += next->data_len;
 791		total_size += next->data_len + sizeof(struct btrfs_item);
 792		list_add_tail(&next->tree_list, &head);
 793		nitems++;
 794
 795		curr = next;
 796		next = __btrfs_next_delayed_item(curr);
 797		if (!next)
 798			break;
 799
 800		if (!btrfs_is_continuous_delayed_item(curr, next))
 801			break;
 802	}
 803
 804	if (!nitems) {
 805		ret = 0;
 806		goto out;
 807	}
 808
 809	/*
 810	 * we need allocate some memory space, but it might cause the task
 811	 * to sleep, so we set all locked nodes in the path to blocking locks
 812	 * first.
 813	 */
 814	btrfs_set_path_blocking(path);
 815
 816	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
 817	if (!keys) {
 818		ret = -ENOMEM;
 819		goto out;
 820	}
 821
 822	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
 823	if (!data_size) {
 824		ret = -ENOMEM;
 825		goto error;
 826	}
 827
 828	/* get keys of all the delayed items */
 829	i = 0;
 830	list_for_each_entry(next, &head, tree_list) {
 831		keys[i] = next->key;
 832		data_size[i] = next->data_len;
 833		i++;
 834	}
 835
 836	/* reset all the locked nodes in the patch to spinning locks. */
 837	btrfs_clear_path_blocking(path, NULL, 0);
 838
 839	/* insert the keys of the items */
 840	setup_items_for_insert(trans, root, path, keys, data_size,
 841			       total_data_size, total_size, nitems);
 842
 843	/* insert the dir index items */
 844	slot = path->slots[0];
 845	list_for_each_entry_safe(curr, next, &head, tree_list) {
 846		data_ptr = btrfs_item_ptr(leaf, slot, char);
 847		write_extent_buffer(leaf, &curr->data,
 848				    (unsigned long)data_ptr,
 849				    curr->data_len);
 850		slot++;
 851
 852		btrfs_delayed_item_release_metadata(root, curr);
 853
 854		list_del(&curr->tree_list);
 855		btrfs_release_delayed_item(curr);
 856	}
 857
 858error:
 859	kfree(data_size);
 860	kfree(keys);
 861out:
 862	return ret;
 863}
 864
 865/*
 866 * This helper can just do simple insertion that needn't extend item for new
 867 * data, such as directory name index insertion, inode insertion.
 868 */
 869static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 870				     struct btrfs_root *root,
 871				     struct btrfs_path *path,
 872				     struct btrfs_delayed_item *delayed_item)
 873{
 874	struct extent_buffer *leaf;
 875	struct btrfs_item *item;
 876	char *ptr;
 877	int ret;
 878
 
 879	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 880				      delayed_item->data_len);
 
 881	if (ret < 0 && ret != -EEXIST)
 882		return ret;
 883
 884	leaf = path->nodes[0];
 885
 886	item = btrfs_item_nr(leaf, path->slots[0]);
 887	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 888
 889	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 890			    delayed_item->data_len);
 891	btrfs_mark_buffer_dirty(leaf);
 892
 893	btrfs_delayed_item_release_metadata(root, delayed_item);
 894	return 0;
 895}
 896
 897/*
 898 * we insert an item first, then if there are some continuous items, we try
 899 * to insert those items into the same leaf.
 900 */
 901static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 902				      struct btrfs_path *path,
 903				      struct btrfs_root *root,
 904				      struct btrfs_delayed_node *node)
 905{
 906	struct btrfs_delayed_item *curr, *prev;
 907	int ret = 0;
 908
 909do_again:
 910	mutex_lock(&node->mutex);
 911	curr = __btrfs_first_delayed_insertion_item(node);
 912	if (!curr)
 913		goto insert_end;
 914
 915	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 916	if (ret < 0) {
 917		btrfs_release_path(path);
 918		goto insert_end;
 919	}
 920
 921	prev = curr;
 922	curr = __btrfs_next_delayed_item(prev);
 923	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 924		/* insert the continuous items into the same leaf */
 925		path->slots[0]++;
 926		btrfs_batch_insert_items(trans, root, path, curr);
 927	}
 928	btrfs_release_delayed_item(prev);
 929	btrfs_mark_buffer_dirty(path->nodes[0]);
 930
 931	btrfs_release_path(path);
 932	mutex_unlock(&node->mutex);
 933	goto do_again;
 934
 935insert_end:
 936	mutex_unlock(&node->mutex);
 937	return ret;
 938}
 939
 940static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 941				    struct btrfs_root *root,
 942				    struct btrfs_path *path,
 943				    struct btrfs_delayed_item *item)
 944{
 945	struct btrfs_delayed_item *curr, *next;
 946	struct extent_buffer *leaf;
 947	struct btrfs_key key;
 948	struct list_head head;
 949	int nitems, i, last_item;
 950	int ret = 0;
 951
 952	BUG_ON(!path->nodes[0]);
 953
 954	leaf = path->nodes[0];
 955
 956	i = path->slots[0];
 957	last_item = btrfs_header_nritems(leaf) - 1;
 958	if (i > last_item)
 959		return -ENOENT;	/* FIXME: Is errno suitable? */
 960
 961	next = item;
 962	INIT_LIST_HEAD(&head);
 963	btrfs_item_key_to_cpu(leaf, &key, i);
 964	nitems = 0;
 965	/*
 966	 * count the number of the dir index items that we can delete in batch
 967	 */
 968	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 969		list_add_tail(&next->tree_list, &head);
 970		nitems++;
 971
 972		curr = next;
 973		next = __btrfs_next_delayed_item(curr);
 974		if (!next)
 975			break;
 976
 977		if (!btrfs_is_continuous_delayed_item(curr, next))
 978			break;
 979
 980		i++;
 981		if (i > last_item)
 982			break;
 983		btrfs_item_key_to_cpu(leaf, &key, i);
 984	}
 985
 986	if (!nitems)
 987		return 0;
 988
 989	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 990	if (ret)
 991		goto out;
 992
 993	list_for_each_entry_safe(curr, next, &head, tree_list) {
 994		btrfs_delayed_item_release_metadata(root, curr);
 995		list_del(&curr->tree_list);
 996		btrfs_release_delayed_item(curr);
 997	}
 998
 999out:
1000	return ret;
1001}
1002
1003static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004				      struct btrfs_path *path,
1005				      struct btrfs_root *root,
1006				      struct btrfs_delayed_node *node)
1007{
1008	struct btrfs_delayed_item *curr, *prev;
 
1009	int ret = 0;
1010
1011do_again:
1012	mutex_lock(&node->mutex);
1013	curr = __btrfs_first_delayed_deletion_item(node);
1014	if (!curr)
1015		goto delete_fail;
1016
 
1017	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 
1018	if (ret < 0)
1019		goto delete_fail;
1020	else if (ret > 0) {
1021		/*
1022		 * can't find the item which the node points to, so this node
1023		 * is invalid, just drop it.
1024		 */
1025		prev = curr;
1026		curr = __btrfs_next_delayed_item(prev);
1027		btrfs_release_delayed_item(prev);
1028		ret = 0;
1029		btrfs_release_path(path);
1030		if (curr)
 
1031			goto do_again;
1032		else
1033			goto delete_fail;
1034	}
1035
1036	btrfs_batch_delete_items(trans, root, path, curr);
1037	btrfs_release_path(path);
1038	mutex_unlock(&node->mutex);
1039	goto do_again;
1040
1041delete_fail:
1042	btrfs_release_path(path);
1043	mutex_unlock(&node->mutex);
1044	return ret;
1045}
1046
1047static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048{
1049	struct btrfs_delayed_root *delayed_root;
1050
1051	if (delayed_node && delayed_node->inode_dirty) {
 
1052		BUG_ON(!delayed_node->root);
1053		delayed_node->inode_dirty = 0;
1054		delayed_node->count--;
1055
1056		delayed_root = delayed_node->root->fs_info->delayed_root;
1057		atomic_dec(&delayed_root->items);
1058		if (atomic_read(&delayed_root->items) <
1059		    BTRFS_DELAYED_BACKGROUND &&
1060		    waitqueue_active(&delayed_root->wait))
1061			wake_up(&delayed_root->wait);
1062	}
1063}
1064
1065static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066				      struct btrfs_root *root,
1067				      struct btrfs_path *path,
1068				      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069{
 
1070	struct btrfs_key key;
1071	struct btrfs_inode_item *inode_item;
1072	struct extent_buffer *leaf;
 
 
1073	int ret;
1074
1075	mutex_lock(&node->mutex);
1076	if (!node->inode_dirty) {
1077		mutex_unlock(&node->mutex);
1078		return 0;
1079	}
1080
1081	key.objectid = node->inode_id;
1082	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083	key.offset = 0;
1084	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1085	if (ret > 0) {
1086		btrfs_release_path(path);
1087		mutex_unlock(&node->mutex);
1088		return -ENOENT;
1089	} else if (ret < 0) {
1090		mutex_unlock(&node->mutex);
1091		return ret;
1092	}
1093
1094	btrfs_unlock_up_safe(path, 1);
 
 
 
 
 
 
 
 
 
 
 
 
1095	leaf = path->nodes[0];
1096	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097				    struct btrfs_inode_item);
1098	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099			    sizeof(struct btrfs_inode_item));
1100	btrfs_mark_buffer_dirty(leaf);
1101	btrfs_release_path(path);
1102
1103	btrfs_delayed_inode_release_metadata(root, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104	btrfs_release_delayed_inode(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105	mutex_unlock(&node->mutex);
 
 
1106
1107	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108}
1109
1110/*
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1115 */
1116int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117			    struct btrfs_root *root)
1118{
1119	struct btrfs_root *curr_root = root;
1120	struct btrfs_delayed_root *delayed_root;
1121	struct btrfs_delayed_node *curr_node, *prev_node;
1122	struct btrfs_path *path;
1123	struct btrfs_block_rsv *block_rsv;
1124	int ret = 0;
 
1125
1126	if (trans->aborted)
1127		return -EIO;
1128
1129	path = btrfs_alloc_path();
1130	if (!path)
1131		return -ENOMEM;
1132	path->leave_spinning = 1;
1133
1134	block_rsv = trans->block_rsv;
1135	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1136
1137	delayed_root = btrfs_get_delayed_root(root);
1138
1139	curr_node = btrfs_first_delayed_node(delayed_root);
1140	while (curr_node) {
1141		curr_root = curr_node->root;
1142		ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143						 curr_node);
1144		if (!ret)
1145			ret = btrfs_delete_delayed_items(trans, path,
1146						curr_root, curr_node);
1147		if (!ret)
1148			ret = btrfs_update_delayed_inode(trans, curr_root,
1149						path, curr_node);
1150		if (ret) {
1151			btrfs_release_delayed_node(curr_node);
1152			btrfs_abort_transaction(trans, root, ret);
 
1153			break;
1154		}
1155
1156		prev_node = curr_node;
1157		curr_node = btrfs_next_delayed_node(curr_node);
1158		btrfs_release_delayed_node(prev_node);
1159	}
1160
 
 
1161	btrfs_free_path(path);
1162	trans->block_rsv = block_rsv;
1163
1164	return ret;
1165}
1166
1167static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168					      struct btrfs_delayed_node *node)
 
 
 
 
1169{
 
 
 
 
 
 
 
1170	struct btrfs_path *path;
1171	struct btrfs_block_rsv *block_rsv;
1172	int ret;
1173
 
 
 
 
 
 
 
 
 
 
 
1174	path = btrfs_alloc_path();
1175	if (!path)
 
1176		return -ENOMEM;
1177	path->leave_spinning = 1;
1178
1179	block_rsv = trans->block_rsv;
1180	trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1181
1182	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183	if (!ret)
1184		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185	if (!ret)
1186		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187	btrfs_free_path(path);
1188
 
 
1189	trans->block_rsv = block_rsv;
 
1190	return ret;
1191}
1192
1193int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194				     struct inode *inode)
1195{
 
 
1196	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
 
 
1197	int ret;
1198
1199	if (!delayed_node)
1200		return 0;
1201
1202	mutex_lock(&delayed_node->mutex);
1203	if (!delayed_node->count) {
1204		mutex_unlock(&delayed_node->mutex);
1205		btrfs_release_delayed_node(delayed_node);
1206		return 0;
1207	}
1208	mutex_unlock(&delayed_node->mutex);
1209
1210	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	btrfs_release_delayed_node(delayed_node);
 
1212	return ret;
1213}
1214
1215void btrfs_remove_delayed_node(struct inode *inode)
1216{
1217	struct btrfs_delayed_node *delayed_node;
1218
1219	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220	if (!delayed_node)
1221		return;
1222
1223	BTRFS_I(inode)->delayed_node = NULL;
1224	btrfs_release_delayed_node(delayed_node);
1225}
1226
1227struct btrfs_async_delayed_node {
1228	struct btrfs_root *root;
1229	struct btrfs_delayed_node *delayed_node;
1230	struct btrfs_work work;
1231};
1232
1233static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1234{
1235	struct btrfs_async_delayed_node *async_node;
 
1236	struct btrfs_trans_handle *trans;
1237	struct btrfs_path *path;
1238	struct btrfs_delayed_node *delayed_node = NULL;
1239	struct btrfs_root *root;
1240	struct btrfs_block_rsv *block_rsv;
1241	unsigned long nr = 0;
1242	int need_requeue = 0;
1243	int ret;
1244
1245	async_node = container_of(work, struct btrfs_async_delayed_node, work);
 
1246
1247	path = btrfs_alloc_path();
1248	if (!path)
1249		goto out;
1250	path->leave_spinning = 1;
1251
1252	delayed_node = async_node->delayed_node;
1253	root = delayed_node->root;
 
 
1254
1255	trans = btrfs_join_transaction(root);
1256	if (IS_ERR(trans))
1257		goto free_path;
1258
1259	block_rsv = trans->block_rsv;
1260	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1261
1262	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263	if (!ret)
1264		ret = btrfs_delete_delayed_items(trans, path, root,
1265						 delayed_node);
 
 
 
1266
1267	if (!ret)
1268		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1269
1270	/*
1271	 * Maybe new delayed items have been inserted, so we need requeue
1272	 * the work. Besides that, we must dequeue the empty delayed nodes
1273	 * to avoid the race between delayed items balance and the worker.
1274	 * The race like this:
1275	 * 	Task1				Worker thread
1276	 * 					count == 0, needn't requeue
1277	 * 					  also needn't insert the
1278	 * 					  delayed node into prepare
1279	 * 					  list again.
1280	 * 	add lots of delayed items
1281	 * 	queue the delayed node
1282	 * 	  already in the list,
1283	 * 	  and not in the prepare
1284	 * 	  list, it means the delayed
1285	 * 	  node is being dealt with
1286	 * 	  by the worker.
1287	 * 	do delayed items balance
1288	 * 	  the delayed node is being
1289	 * 	  dealt with by the worker
1290	 * 	  now, just wait.
1291	 * 	  				the worker goto idle.
1292	 * Task1 will sleep until the transaction is commited.
1293	 */
1294	mutex_lock(&delayed_node->mutex);
1295	if (delayed_node->count)
1296		need_requeue = 1;
1297	else
1298		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299					   delayed_node);
1300	mutex_unlock(&delayed_node->mutex);
1301
1302	nr = trans->blocks_used;
 
 
 
 
 
 
 
 
 
1303
1304	trans->block_rsv = block_rsv;
1305	btrfs_end_transaction_dmeta(trans, root);
1306	__btrfs_btree_balance_dirty(root, nr);
1307free_path:
1308	btrfs_free_path(path);
1309out:
1310	if (need_requeue)
1311		btrfs_requeue_work(&async_node->work);
1312	else {
1313		btrfs_release_prepared_delayed_node(delayed_node);
1314		kfree(async_node);
1315	}
1316}
1317
 
1318static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319				     struct btrfs_root *root, int all)
1320{
1321	struct btrfs_async_delayed_node *async_node;
1322	struct btrfs_delayed_node *curr;
1323	int count = 0;
1324
1325again:
1326	curr = btrfs_first_prepared_delayed_node(delayed_root);
1327	if (!curr)
1328		return 0;
1329
1330	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331	if (!async_node) {
1332		btrfs_release_prepared_delayed_node(curr);
1333		return -ENOMEM;
1334	}
1335
1336	async_node->root = root;
1337	async_node->delayed_node = curr;
1338
1339	async_node->work.func = btrfs_async_run_delayed_node_done;
1340	async_node->work.flags = 0;
1341
1342	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343	count++;
1344
1345	if (all || count < 4)
1346		goto again;
1347
 
1348	return 0;
1349}
1350
1351void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1352{
1353	struct btrfs_delayed_root *delayed_root;
1354	delayed_root = btrfs_get_delayed_root(root);
1355	WARN_ON(btrfs_first_delayed_node(delayed_root));
1356}
1357
1358void btrfs_balance_delayed_items(struct btrfs_root *root)
1359{
1360	struct btrfs_delayed_root *delayed_root;
1361
1362	delayed_root = btrfs_get_delayed_root(root);
 
1363
1364	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
 
 
 
 
 
 
 
 
 
 
 
1365		return;
1366
1367	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
 
1368		int ret;
1369		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
 
 
 
1370		if (ret)
1371			return;
1372
1373		wait_event_interruptible_timeout(
1374				delayed_root->wait,
1375				(atomic_read(&delayed_root->items) <
1376				 BTRFS_DELAYED_BACKGROUND),
1377				HZ);
1378		return;
1379	}
1380
1381	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1382}
1383
1384/* Will return 0 or -ENOMEM */
1385int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386				   struct btrfs_root *root, const char *name,
1387				   int name_len, struct inode *dir,
1388				   struct btrfs_disk_key *disk_key, u8 type,
1389				   u64 index)
1390{
1391	struct btrfs_delayed_node *delayed_node;
1392	struct btrfs_delayed_item *delayed_item;
1393	struct btrfs_dir_item *dir_item;
1394	int ret;
1395
1396	delayed_node = btrfs_get_or_create_delayed_node(dir);
1397	if (IS_ERR(delayed_node))
1398		return PTR_ERR(delayed_node);
1399
1400	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1401	if (!delayed_item) {
1402		ret = -ENOMEM;
1403		goto release_node;
1404	}
1405
1406	delayed_item->key.objectid = btrfs_ino(dir);
1407	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408	delayed_item->key.offset = index;
1409
1410	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411	dir_item->location = *disk_key;
1412	dir_item->transid = cpu_to_le64(trans->transid);
1413	dir_item->data_len = 0;
1414	dir_item->name_len = cpu_to_le16(name_len);
1415	dir_item->type = type;
1416	memcpy((char *)(dir_item + 1), name, name_len);
1417
1418	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1419	/*
1420	 * we have reserved enough space when we start a new transaction,
1421	 * so reserving metadata failure is impossible
1422	 */
1423	BUG_ON(ret);
1424
1425
1426	mutex_lock(&delayed_node->mutex);
1427	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428	if (unlikely(ret)) {
1429		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430				"the insertion tree of the delayed node"
1431				"(root id: %llu, inode id: %llu, errno: %d)\n",
1432				name,
1433				(unsigned long long)delayed_node->root->objectid,
1434				(unsigned long long)delayed_node->inode_id,
1435				ret);
1436		BUG();
1437	}
1438	mutex_unlock(&delayed_node->mutex);
1439
1440release_node:
1441	btrfs_release_delayed_node(delayed_node);
1442	return ret;
1443}
1444
1445static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446					       struct btrfs_delayed_node *node,
1447					       struct btrfs_key *key)
1448{
1449	struct btrfs_delayed_item *item;
1450
1451	mutex_lock(&node->mutex);
1452	item = __btrfs_lookup_delayed_insertion_item(node, key);
1453	if (!item) {
1454		mutex_unlock(&node->mutex);
1455		return 1;
1456	}
1457
1458	btrfs_delayed_item_release_metadata(root, item);
1459	btrfs_release_delayed_item(item);
1460	mutex_unlock(&node->mutex);
1461	return 0;
1462}
1463
1464int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465				   struct btrfs_root *root, struct inode *dir,
1466				   u64 index)
1467{
1468	struct btrfs_delayed_node *node;
1469	struct btrfs_delayed_item *item;
1470	struct btrfs_key item_key;
1471	int ret;
1472
1473	node = btrfs_get_or_create_delayed_node(dir);
1474	if (IS_ERR(node))
1475		return PTR_ERR(node);
1476
1477	item_key.objectid = btrfs_ino(dir);
1478	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479	item_key.offset = index;
1480
1481	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
 
1482	if (!ret)
1483		goto end;
1484
1485	item = btrfs_alloc_delayed_item(0);
1486	if (!item) {
1487		ret = -ENOMEM;
1488		goto end;
1489	}
1490
1491	item->key = item_key;
1492
1493	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1494	/*
1495	 * we have reserved enough space when we start a new transaction,
1496	 * so reserving metadata failure is impossible.
1497	 */
1498	BUG_ON(ret);
 
 
 
 
 
1499
1500	mutex_lock(&node->mutex);
1501	ret = __btrfs_add_delayed_deletion_item(node, item);
1502	if (unlikely(ret)) {
1503		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504				"into the deletion tree of the delayed node"
1505				"(root id: %llu, inode id: %llu, errno: %d)\n",
1506				(unsigned long long)index,
1507				(unsigned long long)node->root->objectid,
1508				(unsigned long long)node->inode_id,
1509				ret);
1510		BUG();
1511	}
1512	mutex_unlock(&node->mutex);
1513end:
1514	btrfs_release_delayed_node(node);
1515	return ret;
1516}
1517
1518int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1519{
1520	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1521
1522	if (!delayed_node)
1523		return -ENOENT;
1524
1525	/*
1526	 * Since we have held i_mutex of this directory, it is impossible that
1527	 * a new directory index is added into the delayed node and index_cnt
1528	 * is updated now. So we needn't lock the delayed node.
1529	 */
1530	if (!delayed_node->index_cnt) {
1531		btrfs_release_delayed_node(delayed_node);
1532		return -EINVAL;
1533	}
1534
1535	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536	btrfs_release_delayed_node(delayed_node);
1537	return 0;
1538}
1539
1540void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541			     struct list_head *del_list)
 
1542{
1543	struct btrfs_delayed_node *delayed_node;
1544	struct btrfs_delayed_item *item;
1545
1546	delayed_node = btrfs_get_delayed_node(inode);
1547	if (!delayed_node)
1548		return;
 
 
 
 
 
 
 
1549
1550	mutex_lock(&delayed_node->mutex);
1551	item = __btrfs_first_delayed_insertion_item(delayed_node);
1552	while (item) {
1553		atomic_inc(&item->refs);
1554		list_add_tail(&item->readdir_list, ins_list);
1555		item = __btrfs_next_delayed_item(item);
1556	}
1557
1558	item = __btrfs_first_delayed_deletion_item(delayed_node);
1559	while (item) {
1560		atomic_inc(&item->refs);
1561		list_add_tail(&item->readdir_list, del_list);
1562		item = __btrfs_next_delayed_item(item);
1563	}
1564	mutex_unlock(&delayed_node->mutex);
1565	/*
1566	 * This delayed node is still cached in the btrfs inode, so refs
1567	 * must be > 1 now, and we needn't check it is going to be freed
1568	 * or not.
1569	 *
1570	 * Besides that, this function is used to read dir, we do not
1571	 * insert/delete delayed items in this period. So we also needn't
1572	 * requeue or dequeue this delayed node.
1573	 */
1574	atomic_dec(&delayed_node->refs);
 
 
1575}
1576
1577void btrfs_put_delayed_items(struct list_head *ins_list,
1578			     struct list_head *del_list)
 
1579{
1580	struct btrfs_delayed_item *curr, *next;
1581
1582	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583		list_del(&curr->readdir_list);
1584		if (atomic_dec_and_test(&curr->refs))
1585			kfree(curr);
1586	}
1587
1588	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589		list_del(&curr->readdir_list);
1590		if (atomic_dec_and_test(&curr->refs))
1591			kfree(curr);
1592	}
 
 
 
 
 
 
1593}
1594
1595int btrfs_should_delete_dir_index(struct list_head *del_list,
1596				  u64 index)
1597{
1598	struct btrfs_delayed_item *curr, *next;
1599	int ret;
1600
1601	if (list_empty(del_list))
1602		return 0;
1603
1604	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605		if (curr->key.offset > index)
1606			break;
1607
1608		list_del(&curr->readdir_list);
1609		ret = (curr->key.offset == index);
1610
1611		if (atomic_dec_and_test(&curr->refs))
1612			kfree(curr);
1613
1614		if (ret)
1615			return 1;
1616		else
1617			continue;
1618	}
1619	return 0;
1620}
1621
1622/*
1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1624 *
1625 */
1626int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627				    filldir_t filldir,
1628				    struct list_head *ins_list)
1629{
1630	struct btrfs_dir_item *di;
1631	struct btrfs_delayed_item *curr, *next;
1632	struct btrfs_key location;
1633	char *name;
1634	int name_len;
1635	int over = 0;
1636	unsigned char d_type;
1637
1638	if (list_empty(ins_list))
1639		return 0;
1640
1641	/*
1642	 * Changing the data of the delayed item is impossible. So
1643	 * we needn't lock them. And we have held i_mutex of the
1644	 * directory, nobody can delete any directory indexes now.
1645	 */
1646	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647		list_del(&curr->readdir_list);
1648
1649		if (curr->key.offset < filp->f_pos) {
1650			if (atomic_dec_and_test(&curr->refs))
1651				kfree(curr);
1652			continue;
1653		}
1654
1655		filp->f_pos = curr->key.offset;
1656
1657		di = (struct btrfs_dir_item *)curr->data;
1658		name = (char *)(di + 1);
1659		name_len = le16_to_cpu(di->name_len);
1660
1661		d_type = btrfs_filetype_table[di->type];
1662		btrfs_disk_key_to_cpu(&location, &di->location);
1663
1664		over = filldir(dirent, name, name_len, curr->key.offset,
1665			       location.objectid, d_type);
1666
1667		if (atomic_dec_and_test(&curr->refs))
1668			kfree(curr);
1669
1670		if (over)
1671			return 1;
 
1672	}
1673	return 0;
1674}
1675
1676BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677			 generation, 64);
1678BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679			 sequence, 64);
1680BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681			 transid, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684			 nbytes, 64);
1685BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686			 block_group, 64);
1687BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1693
1694BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1696
1697static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698				  struct btrfs_inode_item *inode_item,
1699				  struct inode *inode)
1700{
1701	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1703	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707	btrfs_set_stack_inode_generation(inode_item,
1708					 BTRFS_I(inode)->generation);
1709	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
 
1710	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1713	btrfs_set_stack_inode_block_group(inode_item, 0);
1714
1715	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716				     inode->i_atime.tv_sec);
1717	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718				      inode->i_atime.tv_nsec);
1719
1720	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721				     inode->i_mtime.tv_sec);
1722	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723				      inode->i_mtime.tv_nsec);
1724
1725	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726				     inode->i_ctime.tv_sec);
1727	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728				      inode->i_ctime.tv_nsec);
 
 
 
 
 
1729}
1730
1731int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1732{
 
1733	struct btrfs_delayed_node *delayed_node;
1734	struct btrfs_inode_item *inode_item;
1735	struct btrfs_timespec *tspec;
1736
1737	delayed_node = btrfs_get_delayed_node(inode);
1738	if (!delayed_node)
1739		return -ENOENT;
1740
1741	mutex_lock(&delayed_node->mutex);
1742	if (!delayed_node->inode_dirty) {
1743		mutex_unlock(&delayed_node->mutex);
1744		btrfs_release_delayed_node(delayed_node);
1745		return -ENOENT;
1746	}
1747
1748	inode_item = &delayed_node->inode_item;
1749
1750	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
 
 
1753	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757	inode->i_version = btrfs_stack_inode_sequence(inode_item);
 
 
 
1758	inode->i_rdev = 0;
1759	*rdev = btrfs_stack_inode_rdev(inode_item);
1760	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761
1762	tspec = btrfs_inode_atime(inode_item);
1763	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1765
1766	tspec = btrfs_inode_mtime(inode_item);
1767	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1769
1770	tspec = btrfs_inode_ctime(inode_item);
1771	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
 
 
1773
1774	inode->i_generation = BTRFS_I(inode)->generation;
1775	BTRFS_I(inode)->index_cnt = (u64)-1;
1776
1777	mutex_unlock(&delayed_node->mutex);
1778	btrfs_release_delayed_node(delayed_node);
1779	return 0;
1780}
1781
1782int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783			       struct btrfs_root *root, struct inode *inode)
 
1784{
1785	struct btrfs_delayed_node *delayed_node;
1786	int ret = 0;
1787
1788	delayed_node = btrfs_get_or_create_delayed_node(inode);
1789	if (IS_ERR(delayed_node))
1790		return PTR_ERR(delayed_node);
1791
1792	mutex_lock(&delayed_node->mutex);
1793	if (delayed_node->inode_dirty) {
1794		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
 
1795		goto release_node;
1796	}
1797
1798	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799						   delayed_node);
1800	if (ret)
1801		goto release_node;
1802
1803	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804	delayed_node->inode_dirty = 1;
1805	delayed_node->count++;
1806	atomic_inc(&root->fs_info->delayed_root->items);
1807release_node:
1808	mutex_unlock(&delayed_node->mutex);
1809	btrfs_release_delayed_node(delayed_node);
1810	return ret;
1811}
1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1814{
1815	struct btrfs_root *root = delayed_node->root;
 
1816	struct btrfs_delayed_item *curr_item, *prev_item;
1817
1818	mutex_lock(&delayed_node->mutex);
1819	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820	while (curr_item) {
1821		btrfs_delayed_item_release_metadata(root, curr_item);
1822		prev_item = curr_item;
1823		curr_item = __btrfs_next_delayed_item(prev_item);
1824		btrfs_release_delayed_item(prev_item);
1825	}
1826
1827	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828	while (curr_item) {
1829		btrfs_delayed_item_release_metadata(root, curr_item);
1830		prev_item = curr_item;
1831		curr_item = __btrfs_next_delayed_item(prev_item);
1832		btrfs_release_delayed_item(prev_item);
1833	}
1834
1835	if (delayed_node->inode_dirty) {
1836		btrfs_delayed_inode_release_metadata(root, delayed_node);
 
 
1837		btrfs_release_delayed_inode(delayed_node);
1838	}
1839	mutex_unlock(&delayed_node->mutex);
1840}
1841
1842void btrfs_kill_delayed_inode_items(struct inode *inode)
1843{
1844	struct btrfs_delayed_node *delayed_node;
1845
1846	delayed_node = btrfs_get_delayed_node(inode);
1847	if (!delayed_node)
1848		return;
1849
1850	__btrfs_kill_delayed_node(delayed_node);
1851	btrfs_release_delayed_node(delayed_node);
1852}
1853
1854void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1855{
1856	u64 inode_id = 0;
1857	struct btrfs_delayed_node *delayed_nodes[8];
1858	int i, n;
1859
1860	while (1) {
1861		spin_lock(&root->inode_lock);
1862		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863					   (void **)delayed_nodes, inode_id,
1864					   ARRAY_SIZE(delayed_nodes));
1865		if (!n) {
1866			spin_unlock(&root->inode_lock);
1867			break;
1868		}
1869
1870		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1871
1872		for (i = 0; i < n; i++)
1873			atomic_inc(&delayed_nodes[i]->refs);
 
 
 
 
 
1874		spin_unlock(&root->inode_lock);
1875
1876		for (i = 0; i < n; i++) {
 
 
1877			__btrfs_kill_delayed_node(delayed_nodes[i]);
1878			btrfs_release_delayed_node(delayed_nodes[i]);
1879		}
1880	}
1881}
1882
1883void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1884{
1885	struct btrfs_delayed_root *delayed_root;
1886	struct btrfs_delayed_node *curr_node, *prev_node;
1887
1888	delayed_root = btrfs_get_delayed_root(root);
1889
1890	curr_node = btrfs_first_delayed_node(delayed_root);
1891	while (curr_node) {
1892		__btrfs_kill_delayed_node(curr_node);
1893
1894		prev_node = curr_node;
1895		curr_node = btrfs_next_delayed_node(curr_node);
1896		btrfs_release_delayed_node(prev_node);
1897	}
1898}
1899
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK		512
  19#define BTRFS_DELAYED_BACKGROUND	128
  20#define BTRFS_DELAYED_BATCH		16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27					sizeof(struct btrfs_delayed_node),
  28					0,
  29					SLAB_MEM_SPREAD,
  30					NULL);
  31	if (!delayed_node_cache)
  32		return -ENOMEM;
  33	return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38	kmem_cache_destroy(delayed_node_cache);
 
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42				struct btrfs_delayed_node *delayed_node,
  43				struct btrfs_root *root, u64 inode_id)
  44{
  45	delayed_node->root = root;
  46	delayed_node->inode_id = inode_id;
  47	refcount_set(&delayed_node->refs, 0);
  48	delayed_node->ins_root = RB_ROOT_CACHED;
  49	delayed_node->del_root = RB_ROOT_CACHED;
 
 
 
  50	mutex_init(&delayed_node->mutex);
 
  51	INIT_LIST_HEAD(&delayed_node->n_list);
  52	INIT_LIST_HEAD(&delayed_node->p_list);
 
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56					struct btrfs_delayed_item *item1,
  57					struct btrfs_delayed_item *item2)
  58{
  59	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60	    item1->key.objectid == item2->key.objectid &&
  61	    item1->key.type == item2->key.type &&
  62	    item1->key.offset + 1 == item2->key.offset)
  63		return 1;
  64	return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68		struct btrfs_inode *btrfs_inode)
  69{
 
 
 
 
 
 
  70	struct btrfs_root *root = btrfs_inode->root;
  71	u64 ino = btrfs_ino(btrfs_inode);
  72	struct btrfs_delayed_node *node;
  73
  74	node = READ_ONCE(btrfs_inode->delayed_node);
  75	if (node) {
  76		refcount_inc(&node->refs);
  77		return node;
  78	}
  79
  80	spin_lock(&root->inode_lock);
  81	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83	if (node) {
  84		if (btrfs_inode->delayed_node) {
  85			refcount_inc(&node->refs);	/* can be accessed */
  86			BUG_ON(btrfs_inode->delayed_node != node);
  87			spin_unlock(&root->inode_lock);
  88			return node;
  89		}
  90
  91		/*
  92		 * It's possible that we're racing into the middle of removing
  93		 * this node from the radix tree.  In this case, the refcount
  94		 * was zero and it should never go back to one.  Just return
  95		 * NULL like it was never in the radix at all; our release
  96		 * function is in the process of removing it.
  97		 *
  98		 * Some implementations of refcount_inc refuse to bump the
  99		 * refcount once it has hit zero.  If we don't do this dance
 100		 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101		 * of actually bumping the refcount.
 102		 *
 103		 * If this node is properly in the radix, we want to bump the
 104		 * refcount twice, once for the inode and once for this get
 105		 * operation.
 106		 */
 107		if (refcount_inc_not_zero(&node->refs)) {
 108			refcount_inc(&node->refs);
 109			btrfs_inode->delayed_node = node;
 110		} else {
 111			node = NULL;
 112		}
 113
 114		spin_unlock(&root->inode_lock);
 115		return node;
 116	}
 117	spin_unlock(&root->inode_lock);
 118
 119	return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124		struct btrfs_inode *btrfs_inode)
 125{
 126	struct btrfs_delayed_node *node;
 
 127	struct btrfs_root *root = btrfs_inode->root;
 128	u64 ino = btrfs_ino(btrfs_inode);
 129	int ret;
 130
 131again:
 132	node = btrfs_get_delayed_node(btrfs_inode);
 133	if (node)
 134		return node;
 135
 136	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137	if (!node)
 138		return ERR_PTR(-ENOMEM);
 139	btrfs_init_delayed_node(node, root, ino);
 140
 141	/* cached in the btrfs inode and can be accessed */
 142	refcount_set(&node->refs, 2);
 143
 144	ret = radix_tree_preload(GFP_NOFS);
 145	if (ret) {
 146		kmem_cache_free(delayed_node_cache, node);
 147		return ERR_PTR(ret);
 148	}
 149
 150	spin_lock(&root->inode_lock);
 151	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152	if (ret == -EEXIST) {
 
 153		spin_unlock(&root->inode_lock);
 154		kmem_cache_free(delayed_node_cache, node);
 155		radix_tree_preload_end();
 156		goto again;
 157	}
 158	btrfs_inode->delayed_node = node;
 159	spin_unlock(&root->inode_lock);
 160	radix_tree_preload_end();
 161
 162	return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171				     struct btrfs_delayed_node *node,
 172				     int mod)
 173{
 174	spin_lock(&root->lock);
 175	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176		if (!list_empty(&node->p_list))
 177			list_move_tail(&node->p_list, &root->prepare_list);
 178		else if (mod)
 179			list_add_tail(&node->p_list, &root->prepare_list);
 180	} else {
 181		list_add_tail(&node->n_list, &root->node_list);
 182		list_add_tail(&node->p_list, &root->prepare_list);
 183		refcount_inc(&node->refs);	/* inserted into list */
 184		root->nodes++;
 185		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186	}
 187	spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192				       struct btrfs_delayed_node *node)
 193{
 194	spin_lock(&root->lock);
 195	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196		root->nodes--;
 197		refcount_dec(&node->refs);	/* not in the list */
 198		list_del_init(&node->n_list);
 199		if (!list_empty(&node->p_list))
 200			list_del_init(&node->p_list);
 201		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202	}
 203	spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207			struct btrfs_delayed_root *delayed_root)
 208{
 209	struct list_head *p;
 210	struct btrfs_delayed_node *node = NULL;
 211
 212	spin_lock(&delayed_root->lock);
 213	if (list_empty(&delayed_root->node_list))
 214		goto out;
 215
 216	p = delayed_root->node_list.next;
 217	node = list_entry(p, struct btrfs_delayed_node, n_list);
 218	refcount_inc(&node->refs);
 219out:
 220	spin_unlock(&delayed_root->lock);
 221
 222	return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226						struct btrfs_delayed_node *node)
 227{
 228	struct btrfs_delayed_root *delayed_root;
 229	struct list_head *p;
 230	struct btrfs_delayed_node *next = NULL;
 231
 232	delayed_root = node->root->fs_info->delayed_root;
 233	spin_lock(&delayed_root->lock);
 234	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235		/* not in the list */
 236		if (list_empty(&delayed_root->node_list))
 237			goto out;
 238		p = delayed_root->node_list.next;
 239	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240		goto out;
 241	else
 242		p = node->n_list.next;
 243
 244	next = list_entry(p, struct btrfs_delayed_node, n_list);
 245	refcount_inc(&next->refs);
 246out:
 247	spin_unlock(&delayed_root->lock);
 248
 249	return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253				struct btrfs_delayed_node *delayed_node,
 254				int mod)
 255{
 256	struct btrfs_delayed_root *delayed_root;
 257
 258	if (!delayed_node)
 259		return;
 260
 261	delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263	mutex_lock(&delayed_node->mutex);
 264	if (delayed_node->count)
 265		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266	else
 267		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268	mutex_unlock(&delayed_node->mutex);
 269
 270	if (refcount_dec_and_test(&delayed_node->refs)) {
 271		struct btrfs_root *root = delayed_node->root;
 272
 273		spin_lock(&root->inode_lock);
 274		/*
 275		 * Once our refcount goes to zero, nobody is allowed to bump it
 276		 * back up.  We can delete it now.
 277		 */
 278		ASSERT(refcount_read(&delayed_node->refs) == 0);
 279		radix_tree_delete(&root->delayed_nodes_tree,
 280				  delayed_node->inode_id);
 281		spin_unlock(&root->inode_lock);
 282		kmem_cache_free(delayed_node_cache, delayed_node);
 283	}
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288	__btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292					struct btrfs_delayed_root *delayed_root)
 293{
 294	struct list_head *p;
 295	struct btrfs_delayed_node *node = NULL;
 296
 297	spin_lock(&delayed_root->lock);
 298	if (list_empty(&delayed_root->prepare_list))
 299		goto out;
 300
 301	p = delayed_root->prepare_list.next;
 302	list_del_init(p);
 303	node = list_entry(p, struct btrfs_delayed_node, p_list);
 304	refcount_inc(&node->refs);
 305out:
 306	spin_unlock(&delayed_root->lock);
 307
 308	return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312					struct btrfs_delayed_node *node)
 313{
 314	__btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319	struct btrfs_delayed_item *item;
 320	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321	if (item) {
 322		item->data_len = data_len;
 323		item->ins_or_del = 0;
 324		item->bytes_reserved = 0;
 325		item->delayed_node = NULL;
 326		refcount_set(&item->refs, 1);
 327	}
 328	return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:	  the key to look up
 335 * @prev:	  used to store the prev item if the right item isn't found
 336 * @next:	  used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342				struct rb_root *root,
 343				struct btrfs_key *key,
 344				struct btrfs_delayed_item **prev,
 345				struct btrfs_delayed_item **next)
 346{
 347	struct rb_node *node, *prev_node = NULL;
 348	struct btrfs_delayed_item *delayed_item = NULL;
 349	int ret = 0;
 350
 351	node = root->rb_node;
 352
 353	while (node) {
 354		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355					rb_node);
 356		prev_node = node;
 357		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358		if (ret < 0)
 359			node = node->rb_right;
 360		else if (ret > 0)
 361			node = node->rb_left;
 362		else
 363			return delayed_item;
 364	}
 365
 366	if (prev) {
 367		if (!prev_node)
 368			*prev = NULL;
 369		else if (ret < 0)
 370			*prev = delayed_item;
 371		else if ((node = rb_prev(prev_node)) != NULL) {
 372			*prev = rb_entry(node, struct btrfs_delayed_item,
 373					 rb_node);
 374		} else
 375			*prev = NULL;
 376	}
 377
 378	if (next) {
 379		if (!prev_node)
 380			*next = NULL;
 381		else if (ret > 0)
 382			*next = delayed_item;
 383		else if ((node = rb_next(prev_node)) != NULL) {
 384			*next = rb_entry(node, struct btrfs_delayed_item,
 385					 rb_node);
 386		} else
 387			*next = NULL;
 388	}
 389	return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 
 
 
 
 
 
 
 
 
 
 
 393					struct btrfs_delayed_node *delayed_node,
 394					struct btrfs_key *key)
 395{
 396	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 
 
 397					   NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401				    struct btrfs_delayed_item *ins,
 402				    int action)
 403{
 404	struct rb_node **p, *node;
 405	struct rb_node *parent_node = NULL;
 406	struct rb_root_cached *root;
 407	struct btrfs_delayed_item *item;
 408	int cmp;
 409	bool leftmost = true;
 410
 411	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412		root = &delayed_node->ins_root;
 413	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414		root = &delayed_node->del_root;
 415	else
 416		BUG();
 417	p = &root->rb_root.rb_node;
 418	node = &ins->rb_node;
 419
 420	while (*p) {
 421		parent_node = *p;
 422		item = rb_entry(parent_node, struct btrfs_delayed_item,
 423				 rb_node);
 424
 425		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426		if (cmp < 0) {
 427			p = &(*p)->rb_right;
 428			leftmost = false;
 429		} else if (cmp > 0) {
 430			p = &(*p)->rb_left;
 431		} else {
 432			return -EEXIST;
 433		}
 434	}
 435
 436	rb_link_node(node, parent_node, p);
 437	rb_insert_color_cached(node, root, leftmost);
 438	ins->delayed_node = delayed_node;
 439	ins->ins_or_del = action;
 440
 441	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 443	    ins->key.offset >= delayed_node->index_cnt)
 444			delayed_node->index_cnt = ins->key.offset + 1;
 445
 446	delayed_node->count++;
 447	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448	return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452					      struct btrfs_delayed_item *item)
 453{
 454	return __btrfs_add_delayed_item(node, item,
 455					BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459					     struct btrfs_delayed_item *item)
 460{
 461	return __btrfs_add_delayed_item(node, item,
 462					BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467	int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469	/* atomic_dec_return implies a barrier */
 470	if ((atomic_dec_return(&delayed_root->items) <
 471	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472		cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477	struct rb_root_cached *root;
 478	struct btrfs_delayed_root *delayed_root;
 479
 480	/* Not associated with any delayed_node */
 481	if (!delayed_item->delayed_node)
 482		return;
 483	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485	BUG_ON(!delayed_root);
 486	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490		root = &delayed_item->delayed_node->ins_root;
 491	else
 492		root = &delayed_item->delayed_node->del_root;
 493
 494	rb_erase_cached(&delayed_item->rb_node, root);
 495	delayed_item->delayed_node->count--;
 496
 497	finish_one_item(delayed_root);
 
 
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502	if (item) {
 503		__btrfs_remove_delayed_item(item);
 504		if (refcount_dec_and_test(&item->refs))
 505			kfree(item);
 506	}
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510					struct btrfs_delayed_node *delayed_node)
 511{
 512	struct rb_node *p;
 513	struct btrfs_delayed_item *item = NULL;
 514
 515	p = rb_first_cached(&delayed_node->ins_root);
 516	if (p)
 517		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519	return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523					struct btrfs_delayed_node *delayed_node)
 524{
 525	struct rb_node *p;
 526	struct btrfs_delayed_item *item = NULL;
 527
 528	p = rb_first_cached(&delayed_node->del_root);
 529	if (p)
 530		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532	return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536						struct btrfs_delayed_item *item)
 537{
 538	struct rb_node *p;
 539	struct btrfs_delayed_item *next = NULL;
 540
 541	p = rb_next(&item->rb_node);
 542	if (p)
 543		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545	return next;
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549					       struct btrfs_root *root,
 550					       struct btrfs_delayed_item *item)
 551{
 552	struct btrfs_block_rsv *src_rsv;
 553	struct btrfs_block_rsv *dst_rsv;
 554	struct btrfs_fs_info *fs_info = root->fs_info;
 555	u64 num_bytes;
 556	int ret;
 557
 558	if (!trans->bytes_reserved)
 559		return 0;
 560
 561	src_rsv = trans->block_rsv;
 562	dst_rsv = &fs_info->delayed_block_rsv;
 563
 564	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566	/*
 567	 * Here we migrate space rsv from transaction rsv, since have already
 568	 * reserved space when starting a transaction.  So no need to reserve
 569	 * qgroup space here.
 570	 */
 571	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572	if (!ret) {
 573		trace_btrfs_space_reservation(fs_info, "delayed_item",
 574					      item->key.objectid,
 575					      num_bytes, 1);
 576		item->bytes_reserved = num_bytes;
 577	}
 578
 579	return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583						struct btrfs_delayed_item *item)
 584{
 585	struct btrfs_block_rsv *rsv;
 586	struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588	if (!item->bytes_reserved)
 589		return;
 590
 591	rsv = &fs_info->delayed_block_rsv;
 592	/*
 593	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594	 * to release/reserve qgroup space.
 595	 */
 596	trace_btrfs_space_reservation(fs_info, "delayed_item",
 597				      item->key.objectid, item->bytes_reserved,
 598				      0);
 599	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603					struct btrfs_trans_handle *trans,
 604					struct btrfs_root *root,
 
 605					struct btrfs_delayed_node *node)
 606{
 607	struct btrfs_fs_info *fs_info = root->fs_info;
 608	struct btrfs_block_rsv *src_rsv;
 609	struct btrfs_block_rsv *dst_rsv;
 610	u64 num_bytes;
 611	int ret;
 
 612
 613	src_rsv = trans->block_rsv;
 614	dst_rsv = &fs_info->delayed_block_rsv;
 615
 616	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 617
 618	/*
 619	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 620	 * which doesn't reserve space for speed.  This is a problem since we
 621	 * still need to reserve space for this update, so try to reserve the
 622	 * space.
 623	 *
 624	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 625	 * we always reserve enough to update the inode item.
 626	 */
 627	if (!src_rsv || (!trans->bytes_reserved &&
 628			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 629		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
 630					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
 631		if (ret < 0)
 632			return ret;
 633		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 634					  BTRFS_RESERVE_NO_FLUSH);
 635		/* NO_FLUSH could only fail with -ENOSPC */
 636		ASSERT(ret == 0 || ret == -ENOSPC);
 637		if (ret)
 638			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 639	} else {
 640		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641	}
 642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643	if (!ret) {
 644		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 645					      node->inode_id, num_bytes, 1);
 646		node->bytes_reserved = num_bytes;
 647	}
 648
 
 
 
 
 
 
 649	return ret;
 650}
 651
 652static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 653						struct btrfs_delayed_node *node,
 654						bool qgroup_free)
 655{
 656	struct btrfs_block_rsv *rsv;
 657
 658	if (!node->bytes_reserved)
 659		return;
 660
 661	rsv = &fs_info->delayed_block_rsv;
 662	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 663				      node->inode_id, node->bytes_reserved, 0);
 664	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 665	if (qgroup_free)
 666		btrfs_qgroup_free_meta_prealloc(node->root,
 667				node->bytes_reserved);
 668	else
 669		btrfs_qgroup_convert_reserved_meta(node->root,
 670				node->bytes_reserved);
 671	node->bytes_reserved = 0;
 672}
 673
 674/*
 675 * This helper will insert some continuous items into the same leaf according
 676 * to the free space of the leaf.
 677 */
 678static int btrfs_batch_insert_items(struct btrfs_root *root,
 679				    struct btrfs_path *path,
 680				    struct btrfs_delayed_item *item)
 
 681{
 682	struct btrfs_delayed_item *curr, *next;
 683	int free_space;
 684	int total_size = 0;
 685	struct extent_buffer *leaf;
 686	char *data_ptr;
 687	struct btrfs_key *keys;
 688	u32 *data_size;
 689	struct list_head head;
 690	int slot;
 691	int nitems;
 692	int i;
 693	int ret = 0;
 694
 695	BUG_ON(!path->nodes[0]);
 696
 697	leaf = path->nodes[0];
 698	free_space = btrfs_leaf_free_space(leaf);
 699	INIT_LIST_HEAD(&head);
 700
 701	next = item;
 702	nitems = 0;
 703
 704	/*
 705	 * count the number of the continuous items that we can insert in batch
 706	 */
 707	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 708	       free_space) {
 
 709		total_size += next->data_len + sizeof(struct btrfs_item);
 710		list_add_tail(&next->tree_list, &head);
 711		nitems++;
 712
 713		curr = next;
 714		next = __btrfs_next_delayed_item(curr);
 715		if (!next)
 716			break;
 717
 718		if (!btrfs_is_continuous_delayed_item(curr, next))
 719			break;
 720	}
 721
 722	if (!nitems) {
 723		ret = 0;
 724		goto out;
 725	}
 726
 727	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 
 
 
 
 
 
 
 728	if (!keys) {
 729		ret = -ENOMEM;
 730		goto out;
 731	}
 732
 733	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 734	if (!data_size) {
 735		ret = -ENOMEM;
 736		goto error;
 737	}
 738
 739	/* get keys of all the delayed items */
 740	i = 0;
 741	list_for_each_entry(next, &head, tree_list) {
 742		keys[i] = next->key;
 743		data_size[i] = next->data_len;
 744		i++;
 745	}
 746
 
 
 
 747	/* insert the keys of the items */
 748	setup_items_for_insert(root, path, keys, data_size, nitems);
 
 749
 750	/* insert the dir index items */
 751	slot = path->slots[0];
 752	list_for_each_entry_safe(curr, next, &head, tree_list) {
 753		data_ptr = btrfs_item_ptr(leaf, slot, char);
 754		write_extent_buffer(leaf, &curr->data,
 755				    (unsigned long)data_ptr,
 756				    curr->data_len);
 757		slot++;
 758
 759		btrfs_delayed_item_release_metadata(root, curr);
 760
 761		list_del(&curr->tree_list);
 762		btrfs_release_delayed_item(curr);
 763	}
 764
 765error:
 766	kfree(data_size);
 767	kfree(keys);
 768out:
 769	return ret;
 770}
 771
 772/*
 773 * This helper can just do simple insertion that needn't extend item for new
 774 * data, such as directory name index insertion, inode insertion.
 775 */
 776static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 777				     struct btrfs_root *root,
 778				     struct btrfs_path *path,
 779				     struct btrfs_delayed_item *delayed_item)
 780{
 781	struct extent_buffer *leaf;
 782	unsigned int nofs_flag;
 783	char *ptr;
 784	int ret;
 785
 786	nofs_flag = memalloc_nofs_save();
 787	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 788				      delayed_item->data_len);
 789	memalloc_nofs_restore(nofs_flag);
 790	if (ret < 0 && ret != -EEXIST)
 791		return ret;
 792
 793	leaf = path->nodes[0];
 794
 
 795	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 796
 797	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 798			    delayed_item->data_len);
 799	btrfs_mark_buffer_dirty(leaf);
 800
 801	btrfs_delayed_item_release_metadata(root, delayed_item);
 802	return 0;
 803}
 804
 805/*
 806 * we insert an item first, then if there are some continuous items, we try
 807 * to insert those items into the same leaf.
 808 */
 809static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 810				      struct btrfs_path *path,
 811				      struct btrfs_root *root,
 812				      struct btrfs_delayed_node *node)
 813{
 814	struct btrfs_delayed_item *curr, *prev;
 815	int ret = 0;
 816
 817do_again:
 818	mutex_lock(&node->mutex);
 819	curr = __btrfs_first_delayed_insertion_item(node);
 820	if (!curr)
 821		goto insert_end;
 822
 823	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 824	if (ret < 0) {
 825		btrfs_release_path(path);
 826		goto insert_end;
 827	}
 828
 829	prev = curr;
 830	curr = __btrfs_next_delayed_item(prev);
 831	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 832		/* insert the continuous items into the same leaf */
 833		path->slots[0]++;
 834		btrfs_batch_insert_items(root, path, curr);
 835	}
 836	btrfs_release_delayed_item(prev);
 837	btrfs_mark_buffer_dirty(path->nodes[0]);
 838
 839	btrfs_release_path(path);
 840	mutex_unlock(&node->mutex);
 841	goto do_again;
 842
 843insert_end:
 844	mutex_unlock(&node->mutex);
 845	return ret;
 846}
 847
 848static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 849				    struct btrfs_root *root,
 850				    struct btrfs_path *path,
 851				    struct btrfs_delayed_item *item)
 852{
 853	struct btrfs_delayed_item *curr, *next;
 854	struct extent_buffer *leaf;
 855	struct btrfs_key key;
 856	struct list_head head;
 857	int nitems, i, last_item;
 858	int ret = 0;
 859
 860	BUG_ON(!path->nodes[0]);
 861
 862	leaf = path->nodes[0];
 863
 864	i = path->slots[0];
 865	last_item = btrfs_header_nritems(leaf) - 1;
 866	if (i > last_item)
 867		return -ENOENT;	/* FIXME: Is errno suitable? */
 868
 869	next = item;
 870	INIT_LIST_HEAD(&head);
 871	btrfs_item_key_to_cpu(leaf, &key, i);
 872	nitems = 0;
 873	/*
 874	 * count the number of the dir index items that we can delete in batch
 875	 */
 876	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 877		list_add_tail(&next->tree_list, &head);
 878		nitems++;
 879
 880		curr = next;
 881		next = __btrfs_next_delayed_item(curr);
 882		if (!next)
 883			break;
 884
 885		if (!btrfs_is_continuous_delayed_item(curr, next))
 886			break;
 887
 888		i++;
 889		if (i > last_item)
 890			break;
 891		btrfs_item_key_to_cpu(leaf, &key, i);
 892	}
 893
 894	if (!nitems)
 895		return 0;
 896
 897	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 898	if (ret)
 899		goto out;
 900
 901	list_for_each_entry_safe(curr, next, &head, tree_list) {
 902		btrfs_delayed_item_release_metadata(root, curr);
 903		list_del(&curr->tree_list);
 904		btrfs_release_delayed_item(curr);
 905	}
 906
 907out:
 908	return ret;
 909}
 910
 911static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 912				      struct btrfs_path *path,
 913				      struct btrfs_root *root,
 914				      struct btrfs_delayed_node *node)
 915{
 916	struct btrfs_delayed_item *curr, *prev;
 917	unsigned int nofs_flag;
 918	int ret = 0;
 919
 920do_again:
 921	mutex_lock(&node->mutex);
 922	curr = __btrfs_first_delayed_deletion_item(node);
 923	if (!curr)
 924		goto delete_fail;
 925
 926	nofs_flag = memalloc_nofs_save();
 927	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 928	memalloc_nofs_restore(nofs_flag);
 929	if (ret < 0)
 930		goto delete_fail;
 931	else if (ret > 0) {
 932		/*
 933		 * can't find the item which the node points to, so this node
 934		 * is invalid, just drop it.
 935		 */
 936		prev = curr;
 937		curr = __btrfs_next_delayed_item(prev);
 938		btrfs_release_delayed_item(prev);
 939		ret = 0;
 940		btrfs_release_path(path);
 941		if (curr) {
 942			mutex_unlock(&node->mutex);
 943			goto do_again;
 944		} else
 945			goto delete_fail;
 946	}
 947
 948	btrfs_batch_delete_items(trans, root, path, curr);
 949	btrfs_release_path(path);
 950	mutex_unlock(&node->mutex);
 951	goto do_again;
 952
 953delete_fail:
 954	btrfs_release_path(path);
 955	mutex_unlock(&node->mutex);
 956	return ret;
 957}
 958
 959static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 960{
 961	struct btrfs_delayed_root *delayed_root;
 962
 963	if (delayed_node &&
 964	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 965		BUG_ON(!delayed_node->root);
 966		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 967		delayed_node->count--;
 968
 969		delayed_root = delayed_node->root->fs_info->delayed_root;
 970		finish_one_item(delayed_root);
 
 
 
 
 971	}
 972}
 973
 974static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 975{
 976
 977	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
 978		struct btrfs_delayed_root *delayed_root;
 979
 980		ASSERT(delayed_node->root);
 981		delayed_node->count--;
 982
 983		delayed_root = delayed_node->root->fs_info->delayed_root;
 984		finish_one_item(delayed_root);
 985	}
 986}
 987
 988static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 989					struct btrfs_root *root,
 990					struct btrfs_path *path,
 991					struct btrfs_delayed_node *node)
 992{
 993	struct btrfs_fs_info *fs_info = root->fs_info;
 994	struct btrfs_key key;
 995	struct btrfs_inode_item *inode_item;
 996	struct extent_buffer *leaf;
 997	unsigned int nofs_flag;
 998	int mod;
 999	int ret;
1000
 
 
 
 
 
 
1001	key.objectid = node->inode_id;
1002	key.type = BTRFS_INODE_ITEM_KEY;
1003	key.offset = 0;
 
 
 
 
 
 
 
 
 
1004
1005	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1006		mod = -1;
1007	else
1008		mod = 1;
1009
1010	nofs_flag = memalloc_nofs_save();
1011	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1012	memalloc_nofs_restore(nofs_flag);
1013	if (ret > 0)
1014		ret = -ENOENT;
1015	if (ret < 0)
1016		goto out;
1017
1018	leaf = path->nodes[0];
1019	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1020				    struct btrfs_inode_item);
1021	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1022			    sizeof(struct btrfs_inode_item));
1023	btrfs_mark_buffer_dirty(leaf);
 
1024
1025	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026		goto out;
1027
1028	path->slots[0]++;
1029	if (path->slots[0] >= btrfs_header_nritems(leaf))
1030		goto search;
1031again:
1032	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1033	if (key.objectid != node->inode_id)
1034		goto out;
1035
1036	if (key.type != BTRFS_INODE_REF_KEY &&
1037	    key.type != BTRFS_INODE_EXTREF_KEY)
1038		goto out;
1039
1040	/*
1041	 * Delayed iref deletion is for the inode who has only one link,
1042	 * so there is only one iref. The case that several irefs are
1043	 * in the same item doesn't exist.
1044	 */
1045	btrfs_del_item(trans, root, path);
1046out:
1047	btrfs_release_delayed_iref(node);
1048	btrfs_release_path(path);
1049err_out:
1050	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1051	btrfs_release_delayed_inode(node);
1052
1053	/*
1054	 * If we fail to update the delayed inode we need to abort the
1055	 * transaction, because we could leave the inode with the improper
1056	 * counts behind.
1057	 */
1058	if (ret && ret != -ENOENT)
1059		btrfs_abort_transaction(trans, ret);
1060
1061	return ret;
1062
1063search:
1064	btrfs_release_path(path);
1065
1066	key.type = BTRFS_INODE_EXTREF_KEY;
1067	key.offset = -1;
1068
1069	nofs_flag = memalloc_nofs_save();
1070	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1071	memalloc_nofs_restore(nofs_flag);
1072	if (ret < 0)
1073		goto err_out;
1074	ASSERT(ret);
1075
1076	ret = 0;
1077	leaf = path->nodes[0];
1078	path->slots[0]--;
1079	goto again;
1080}
1081
1082static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1083					     struct btrfs_root *root,
1084					     struct btrfs_path *path,
1085					     struct btrfs_delayed_node *node)
1086{
1087	int ret;
1088
1089	mutex_lock(&node->mutex);
1090	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1091		mutex_unlock(&node->mutex);
1092		return 0;
1093	}
1094
1095	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1096	mutex_unlock(&node->mutex);
1097	return ret;
1098}
1099
1100static inline int
1101__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1102				   struct btrfs_path *path,
1103				   struct btrfs_delayed_node *node)
1104{
1105	int ret;
1106
1107	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1108	if (ret)
1109		return ret;
1110
1111	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1112	if (ret)
1113		return ret;
1114
1115	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1116	return ret;
1117}
1118
1119/*
1120 * Called when committing the transaction.
1121 * Returns 0 on success.
1122 * Returns < 0 on error and returns with an aborted transaction with any
1123 * outstanding delayed items cleaned up.
1124 */
1125static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
 
1126{
1127	struct btrfs_fs_info *fs_info = trans->fs_info;
1128	struct btrfs_delayed_root *delayed_root;
1129	struct btrfs_delayed_node *curr_node, *prev_node;
1130	struct btrfs_path *path;
1131	struct btrfs_block_rsv *block_rsv;
1132	int ret = 0;
1133	bool count = (nr > 0);
1134
1135	if (TRANS_ABORTED(trans))
1136		return -EIO;
1137
1138	path = btrfs_alloc_path();
1139	if (!path)
1140		return -ENOMEM;
 
1141
1142	block_rsv = trans->block_rsv;
1143	trans->block_rsv = &fs_info->delayed_block_rsv;
1144
1145	delayed_root = fs_info->delayed_root;
1146
1147	curr_node = btrfs_first_delayed_node(delayed_root);
1148	while (curr_node && (!count || nr--)) {
1149		ret = __btrfs_commit_inode_delayed_items(trans, path,
1150							 curr_node);
 
 
 
 
 
 
 
1151		if (ret) {
1152			btrfs_release_delayed_node(curr_node);
1153			curr_node = NULL;
1154			btrfs_abort_transaction(trans, ret);
1155			break;
1156		}
1157
1158		prev_node = curr_node;
1159		curr_node = btrfs_next_delayed_node(curr_node);
1160		btrfs_release_delayed_node(prev_node);
1161	}
1162
1163	if (curr_node)
1164		btrfs_release_delayed_node(curr_node);
1165	btrfs_free_path(path);
1166	trans->block_rsv = block_rsv;
1167
1168	return ret;
1169}
1170
1171int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1172{
1173	return __btrfs_run_delayed_items(trans, -1);
1174}
1175
1176int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1177{
1178	return __btrfs_run_delayed_items(trans, nr);
1179}
1180
1181int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1182				     struct btrfs_inode *inode)
1183{
1184	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1185	struct btrfs_path *path;
1186	struct btrfs_block_rsv *block_rsv;
1187	int ret;
1188
1189	if (!delayed_node)
1190		return 0;
1191
1192	mutex_lock(&delayed_node->mutex);
1193	if (!delayed_node->count) {
1194		mutex_unlock(&delayed_node->mutex);
1195		btrfs_release_delayed_node(delayed_node);
1196		return 0;
1197	}
1198	mutex_unlock(&delayed_node->mutex);
1199
1200	path = btrfs_alloc_path();
1201	if (!path) {
1202		btrfs_release_delayed_node(delayed_node);
1203		return -ENOMEM;
1204	}
1205
1206	block_rsv = trans->block_rsv;
1207	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1208
1209	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
1210
1211	btrfs_release_delayed_node(delayed_node);
1212	btrfs_free_path(path);
1213	trans->block_rsv = block_rsv;
1214
1215	return ret;
1216}
1217
1218int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
 
1219{
1220	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1221	struct btrfs_trans_handle *trans;
1222	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1223	struct btrfs_path *path;
1224	struct btrfs_block_rsv *block_rsv;
1225	int ret;
1226
1227	if (!delayed_node)
1228		return 0;
1229
1230	mutex_lock(&delayed_node->mutex);
1231	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1232		mutex_unlock(&delayed_node->mutex);
1233		btrfs_release_delayed_node(delayed_node);
1234		return 0;
1235	}
1236	mutex_unlock(&delayed_node->mutex);
1237
1238	trans = btrfs_join_transaction(delayed_node->root);
1239	if (IS_ERR(trans)) {
1240		ret = PTR_ERR(trans);
1241		goto out;
1242	}
1243
1244	path = btrfs_alloc_path();
1245	if (!path) {
1246		ret = -ENOMEM;
1247		goto trans_out;
1248	}
1249
1250	block_rsv = trans->block_rsv;
1251	trans->block_rsv = &fs_info->delayed_block_rsv;
1252
1253	mutex_lock(&delayed_node->mutex);
1254	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1255		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1256						   path, delayed_node);
1257	else
1258		ret = 0;
1259	mutex_unlock(&delayed_node->mutex);
1260
1261	btrfs_free_path(path);
1262	trans->block_rsv = block_rsv;
1263trans_out:
1264	btrfs_end_transaction(trans);
1265	btrfs_btree_balance_dirty(fs_info);
1266out:
1267	btrfs_release_delayed_node(delayed_node);
1268
1269	return ret;
1270}
1271
1272void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1273{
1274	struct btrfs_delayed_node *delayed_node;
1275
1276	delayed_node = READ_ONCE(inode->delayed_node);
1277	if (!delayed_node)
1278		return;
1279
1280	inode->delayed_node = NULL;
1281	btrfs_release_delayed_node(delayed_node);
1282}
1283
1284struct btrfs_async_delayed_work {
1285	struct btrfs_delayed_root *delayed_root;
1286	int nr;
1287	struct btrfs_work work;
1288};
1289
1290static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1291{
1292	struct btrfs_async_delayed_work *async_work;
1293	struct btrfs_delayed_root *delayed_root;
1294	struct btrfs_trans_handle *trans;
1295	struct btrfs_path *path;
1296	struct btrfs_delayed_node *delayed_node = NULL;
1297	struct btrfs_root *root;
1298	struct btrfs_block_rsv *block_rsv;
1299	int total_done = 0;
 
 
1300
1301	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1302	delayed_root = async_work->delayed_root;
1303
1304	path = btrfs_alloc_path();
1305	if (!path)
1306		goto out;
 
1307
1308	do {
1309		if (atomic_read(&delayed_root->items) <
1310		    BTRFS_DELAYED_BACKGROUND / 2)
1311			break;
1312
1313		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1314		if (!delayed_node)
1315			break;
1316
1317		root = delayed_node->root;
 
1318
1319		trans = btrfs_join_transaction(root);
1320		if (IS_ERR(trans)) {
1321			btrfs_release_path(path);
1322			btrfs_release_prepared_delayed_node(delayed_node);
1323			total_done++;
1324			continue;
1325		}
1326
1327		block_rsv = trans->block_rsv;
1328		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1329
1330		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331
1332		trans->block_rsv = block_rsv;
1333		btrfs_end_transaction(trans);
1334		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1335
1336		btrfs_release_path(path);
1337		btrfs_release_prepared_delayed_node(delayed_node);
1338		total_done++;
1339
1340	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1341		 || total_done < async_work->nr);
1342
 
 
 
 
1343	btrfs_free_path(path);
1344out:
1345	wake_up(&delayed_root->wait);
1346	kfree(async_work);
 
 
 
 
1347}
1348
1349
1350static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1351				     struct btrfs_fs_info *fs_info, int nr)
1352{
1353	struct btrfs_async_delayed_work *async_work;
 
 
1354
1355	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1356	if (!async_work)
 
 
 
 
 
 
1357		return -ENOMEM;
 
 
 
 
1358
1359	async_work->delayed_root = delayed_root;
1360	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1361			NULL);
1362	async_work->nr = nr;
 
 
 
 
1363
1364	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365	return 0;
1366}
1367
1368void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369{
1370	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1371}
1372
1373static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374{
1375	int val = atomic_read(&delayed_root->items_seq);
1376
1377	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378		return 1;
1379
1380	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381		return 1;
1382
1383	return 0;
1384}
1385
1386void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387{
1388	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389
1390	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1391		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1392		return;
1393
1394	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1395		int seq;
1396		int ret;
1397
1398		seq = atomic_read(&delayed_root->items_seq);
1399
1400		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1401		if (ret)
1402			return;
1403
1404		wait_event_interruptible(delayed_root->wait,
1405					 could_end_wait(delayed_root, seq));
 
 
 
1406		return;
1407	}
1408
1409	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1410}
1411
1412/* Will return 0 or -ENOMEM */
1413int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1414				   const char *name, int name_len,
1415				   struct btrfs_inode *dir,
1416				   struct btrfs_disk_key *disk_key, u8 type,
1417				   u64 index)
1418{
1419	struct btrfs_delayed_node *delayed_node;
1420	struct btrfs_delayed_item *delayed_item;
1421	struct btrfs_dir_item *dir_item;
1422	int ret;
1423
1424	delayed_node = btrfs_get_or_create_delayed_node(dir);
1425	if (IS_ERR(delayed_node))
1426		return PTR_ERR(delayed_node);
1427
1428	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429	if (!delayed_item) {
1430		ret = -ENOMEM;
1431		goto release_node;
1432	}
1433
1434	delayed_item->key.objectid = btrfs_ino(dir);
1435	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436	delayed_item->key.offset = index;
1437
1438	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439	dir_item->location = *disk_key;
1440	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441	btrfs_set_stack_dir_data_len(dir_item, 0);
1442	btrfs_set_stack_dir_name_len(dir_item, name_len);
1443	btrfs_set_stack_dir_type(dir_item, type);
1444	memcpy((char *)(dir_item + 1), name, name_len);
1445
1446	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1447	/*
1448	 * we have reserved enough space when we start a new transaction,
1449	 * so reserving metadata failure is impossible
1450	 */
1451	BUG_ON(ret);
1452
 
1453	mutex_lock(&delayed_node->mutex);
1454	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1455	if (unlikely(ret)) {
1456		btrfs_err(trans->fs_info,
1457			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1458			  name_len, name, delayed_node->root->root_key.objectid,
1459			  delayed_node->inode_id, ret);
 
 
 
1460		BUG();
1461	}
1462	mutex_unlock(&delayed_node->mutex);
1463
1464release_node:
1465	btrfs_release_delayed_node(delayed_node);
1466	return ret;
1467}
1468
1469static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1470					       struct btrfs_delayed_node *node,
1471					       struct btrfs_key *key)
1472{
1473	struct btrfs_delayed_item *item;
1474
1475	mutex_lock(&node->mutex);
1476	item = __btrfs_lookup_delayed_insertion_item(node, key);
1477	if (!item) {
1478		mutex_unlock(&node->mutex);
1479		return 1;
1480	}
1481
1482	btrfs_delayed_item_release_metadata(node->root, item);
1483	btrfs_release_delayed_item(item);
1484	mutex_unlock(&node->mutex);
1485	return 0;
1486}
1487
1488int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1489				   struct btrfs_inode *dir, u64 index)
 
1490{
1491	struct btrfs_delayed_node *node;
1492	struct btrfs_delayed_item *item;
1493	struct btrfs_key item_key;
1494	int ret;
1495
1496	node = btrfs_get_or_create_delayed_node(dir);
1497	if (IS_ERR(node))
1498		return PTR_ERR(node);
1499
1500	item_key.objectid = btrfs_ino(dir);
1501	item_key.type = BTRFS_DIR_INDEX_KEY;
1502	item_key.offset = index;
1503
1504	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1505						  &item_key);
1506	if (!ret)
1507		goto end;
1508
1509	item = btrfs_alloc_delayed_item(0);
1510	if (!item) {
1511		ret = -ENOMEM;
1512		goto end;
1513	}
1514
1515	item->key = item_key;
1516
1517	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1518	/*
1519	 * we have reserved enough space when we start a new transaction,
1520	 * so reserving metadata failure is impossible.
1521	 */
1522	if (ret < 0) {
1523		btrfs_err(trans->fs_info,
1524"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1525		btrfs_release_delayed_item(item);
1526		goto end;
1527	}
1528
1529	mutex_lock(&node->mutex);
1530	ret = __btrfs_add_delayed_deletion_item(node, item);
1531	if (unlikely(ret)) {
1532		btrfs_err(trans->fs_info,
1533			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1534			  index, node->root->root_key.objectid,
1535			  node->inode_id, ret);
1536		btrfs_delayed_item_release_metadata(dir->root, item);
1537		btrfs_release_delayed_item(item);
 
 
1538	}
1539	mutex_unlock(&node->mutex);
1540end:
1541	btrfs_release_delayed_node(node);
1542	return ret;
1543}
1544
1545int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1546{
1547	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1548
1549	if (!delayed_node)
1550		return -ENOENT;
1551
1552	/*
1553	 * Since we have held i_mutex of this directory, it is impossible that
1554	 * a new directory index is added into the delayed node and index_cnt
1555	 * is updated now. So we needn't lock the delayed node.
1556	 */
1557	if (!delayed_node->index_cnt) {
1558		btrfs_release_delayed_node(delayed_node);
1559		return -EINVAL;
1560	}
1561
1562	inode->index_cnt = delayed_node->index_cnt;
1563	btrfs_release_delayed_node(delayed_node);
1564	return 0;
1565}
1566
1567bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568				     struct list_head *ins_list,
1569				     struct list_head *del_list)
1570{
1571	struct btrfs_delayed_node *delayed_node;
1572	struct btrfs_delayed_item *item;
1573
1574	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1575	if (!delayed_node)
1576		return false;
1577
1578	/*
1579	 * We can only do one readdir with delayed items at a time because of
1580	 * item->readdir_list.
1581	 */
1582	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1583	btrfs_inode_lock(inode, 0);
1584
1585	mutex_lock(&delayed_node->mutex);
1586	item = __btrfs_first_delayed_insertion_item(delayed_node);
1587	while (item) {
1588		refcount_inc(&item->refs);
1589		list_add_tail(&item->readdir_list, ins_list);
1590		item = __btrfs_next_delayed_item(item);
1591	}
1592
1593	item = __btrfs_first_delayed_deletion_item(delayed_node);
1594	while (item) {
1595		refcount_inc(&item->refs);
1596		list_add_tail(&item->readdir_list, del_list);
1597		item = __btrfs_next_delayed_item(item);
1598	}
1599	mutex_unlock(&delayed_node->mutex);
1600	/*
1601	 * This delayed node is still cached in the btrfs inode, so refs
1602	 * must be > 1 now, and we needn't check it is going to be freed
1603	 * or not.
1604	 *
1605	 * Besides that, this function is used to read dir, we do not
1606	 * insert/delete delayed items in this period. So we also needn't
1607	 * requeue or dequeue this delayed node.
1608	 */
1609	refcount_dec(&delayed_node->refs);
1610
1611	return true;
1612}
1613
1614void btrfs_readdir_put_delayed_items(struct inode *inode,
1615				     struct list_head *ins_list,
1616				     struct list_head *del_list)
1617{
1618	struct btrfs_delayed_item *curr, *next;
1619
1620	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621		list_del(&curr->readdir_list);
1622		if (refcount_dec_and_test(&curr->refs))
1623			kfree(curr);
1624	}
1625
1626	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627		list_del(&curr->readdir_list);
1628		if (refcount_dec_and_test(&curr->refs))
1629			kfree(curr);
1630	}
1631
1632	/*
1633	 * The VFS is going to do up_read(), so we need to downgrade back to a
1634	 * read lock.
1635	 */
1636	downgrade_write(&inode->i_rwsem);
1637}
1638
1639int btrfs_should_delete_dir_index(struct list_head *del_list,
1640				  u64 index)
1641{
1642	struct btrfs_delayed_item *curr;
1643	int ret = 0;
 
 
 
1644
1645	list_for_each_entry(curr, del_list, readdir_list) {
1646		if (curr->key.offset > index)
1647			break;
1648		if (curr->key.offset == index) {
1649			ret = 1;
1650			break;
1651		}
 
 
 
 
 
 
 
1652	}
1653	return ret;
1654}
1655
1656/*
1657 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1658 *
1659 */
1660int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
 
1661				    struct list_head *ins_list)
1662{
1663	struct btrfs_dir_item *di;
1664	struct btrfs_delayed_item *curr, *next;
1665	struct btrfs_key location;
1666	char *name;
1667	int name_len;
1668	int over = 0;
1669	unsigned char d_type;
1670
1671	if (list_empty(ins_list))
1672		return 0;
1673
1674	/*
1675	 * Changing the data of the delayed item is impossible. So
1676	 * we needn't lock them. And we have held i_mutex of the
1677	 * directory, nobody can delete any directory indexes now.
1678	 */
1679	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680		list_del(&curr->readdir_list);
1681
1682		if (curr->key.offset < ctx->pos) {
1683			if (refcount_dec_and_test(&curr->refs))
1684				kfree(curr);
1685			continue;
1686		}
1687
1688		ctx->pos = curr->key.offset;
1689
1690		di = (struct btrfs_dir_item *)curr->data;
1691		name = (char *)(di + 1);
1692		name_len = btrfs_stack_dir_name_len(di);
1693
1694		d_type = fs_ftype_to_dtype(di->type);
1695		btrfs_disk_key_to_cpu(&location, &di->location);
1696
1697		over = !dir_emit(ctx, name, name_len,
1698			       location.objectid, d_type);
1699
1700		if (refcount_dec_and_test(&curr->refs))
1701			kfree(curr);
1702
1703		if (over)
1704			return 1;
1705		ctx->pos++;
1706	}
1707	return 0;
1708}
1709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711				  struct btrfs_inode_item *inode_item,
1712				  struct inode *inode)
1713{
1714	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720	btrfs_set_stack_inode_generation(inode_item,
1721					 BTRFS_I(inode)->generation);
1722	btrfs_set_stack_inode_sequence(inode_item,
1723				       inode_peek_iversion(inode));
1724	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727	btrfs_set_stack_inode_block_group(inode_item, 0);
1728
1729	btrfs_set_stack_timespec_sec(&inode_item->atime,
1730				     inode->i_atime.tv_sec);
1731	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732				      inode->i_atime.tv_nsec);
1733
1734	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735				     inode->i_mtime.tv_sec);
1736	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737				      inode->i_mtime.tv_nsec);
1738
1739	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740				     inode->i_ctime.tv_sec);
1741	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742				      inode->i_ctime.tv_nsec);
1743
1744	btrfs_set_stack_timespec_sec(&inode_item->otime,
1745				     BTRFS_I(inode)->i_otime.tv_sec);
1746	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747				     BTRFS_I(inode)->i_otime.tv_nsec);
1748}
1749
1750int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1751{
1752	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1753	struct btrfs_delayed_node *delayed_node;
1754	struct btrfs_inode_item *inode_item;
 
1755
1756	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1757	if (!delayed_node)
1758		return -ENOENT;
1759
1760	mutex_lock(&delayed_node->mutex);
1761	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1762		mutex_unlock(&delayed_node->mutex);
1763		btrfs_release_delayed_node(delayed_node);
1764		return -ENOENT;
1765	}
1766
1767	inode_item = &delayed_node->inode_item;
1768
1769	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1770	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1771	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1772	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1773			round_up(i_size_read(inode), fs_info->sectorsize));
1774	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1775	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1776	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1777	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1778        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1779
1780	inode_set_iversion_queried(inode,
1781				   btrfs_stack_inode_sequence(inode_item));
1782	inode->i_rdev = 0;
1783	*rdev = btrfs_stack_inode_rdev(inode_item);
1784	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1785
1786	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1787	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1788
1789	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1790	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1791
1792	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1793	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1794
1795	BTRFS_I(inode)->i_otime.tv_sec =
1796		btrfs_stack_timespec_sec(&inode_item->otime);
1797	BTRFS_I(inode)->i_otime.tv_nsec =
1798		btrfs_stack_timespec_nsec(&inode_item->otime);
1799
1800	inode->i_generation = BTRFS_I(inode)->generation;
1801	BTRFS_I(inode)->index_cnt = (u64)-1;
1802
1803	mutex_unlock(&delayed_node->mutex);
1804	btrfs_release_delayed_node(delayed_node);
1805	return 0;
1806}
1807
1808int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1809			       struct btrfs_root *root,
1810			       struct btrfs_inode *inode)
1811{
1812	struct btrfs_delayed_node *delayed_node;
1813	int ret = 0;
1814
1815	delayed_node = btrfs_get_or_create_delayed_node(inode);
1816	if (IS_ERR(delayed_node))
1817		return PTR_ERR(delayed_node);
1818
1819	mutex_lock(&delayed_node->mutex);
1820	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1821		fill_stack_inode_item(trans, &delayed_node->inode_item,
1822				      &inode->vfs_inode);
1823		goto release_node;
1824	}
1825
1826	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
 
1827	if (ret)
1828		goto release_node;
1829
1830	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1831	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1832	delayed_node->count++;
1833	atomic_inc(&root->fs_info->delayed_root->items);
1834release_node:
1835	mutex_unlock(&delayed_node->mutex);
1836	btrfs_release_delayed_node(delayed_node);
1837	return ret;
1838}
1839
1840int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1841{
1842	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1843	struct btrfs_delayed_node *delayed_node;
1844
1845	/*
1846	 * we don't do delayed inode updates during log recovery because it
1847	 * leads to enospc problems.  This means we also can't do
1848	 * delayed inode refs
1849	 */
1850	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1851		return -EAGAIN;
1852
1853	delayed_node = btrfs_get_or_create_delayed_node(inode);
1854	if (IS_ERR(delayed_node))
1855		return PTR_ERR(delayed_node);
1856
1857	/*
1858	 * We don't reserve space for inode ref deletion is because:
1859	 * - We ONLY do async inode ref deletion for the inode who has only
1860	 *   one link(i_nlink == 1), it means there is only one inode ref.
1861	 *   And in most case, the inode ref and the inode item are in the
1862	 *   same leaf, and we will deal with them at the same time.
1863	 *   Since we are sure we will reserve the space for the inode item,
1864	 *   it is unnecessary to reserve space for inode ref deletion.
1865	 * - If the inode ref and the inode item are not in the same leaf,
1866	 *   We also needn't worry about enospc problem, because we reserve
1867	 *   much more space for the inode update than it needs.
1868	 * - At the worst, we can steal some space from the global reservation.
1869	 *   It is very rare.
1870	 */
1871	mutex_lock(&delayed_node->mutex);
1872	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1873		goto release_node;
1874
1875	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1876	delayed_node->count++;
1877	atomic_inc(&fs_info->delayed_root->items);
1878release_node:
1879	mutex_unlock(&delayed_node->mutex);
1880	btrfs_release_delayed_node(delayed_node);
1881	return 0;
1882}
1883
1884static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1885{
1886	struct btrfs_root *root = delayed_node->root;
1887	struct btrfs_fs_info *fs_info = root->fs_info;
1888	struct btrfs_delayed_item *curr_item, *prev_item;
1889
1890	mutex_lock(&delayed_node->mutex);
1891	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1892	while (curr_item) {
1893		btrfs_delayed_item_release_metadata(root, curr_item);
1894		prev_item = curr_item;
1895		curr_item = __btrfs_next_delayed_item(prev_item);
1896		btrfs_release_delayed_item(prev_item);
1897	}
1898
1899	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1900	while (curr_item) {
1901		btrfs_delayed_item_release_metadata(root, curr_item);
1902		prev_item = curr_item;
1903		curr_item = __btrfs_next_delayed_item(prev_item);
1904		btrfs_release_delayed_item(prev_item);
1905	}
1906
1907	btrfs_release_delayed_iref(delayed_node);
1908
1909	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1910		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1911		btrfs_release_delayed_inode(delayed_node);
1912	}
1913	mutex_unlock(&delayed_node->mutex);
1914}
1915
1916void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1917{
1918	struct btrfs_delayed_node *delayed_node;
1919
1920	delayed_node = btrfs_get_delayed_node(inode);
1921	if (!delayed_node)
1922		return;
1923
1924	__btrfs_kill_delayed_node(delayed_node);
1925	btrfs_release_delayed_node(delayed_node);
1926}
1927
1928void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1929{
1930	u64 inode_id = 0;
1931	struct btrfs_delayed_node *delayed_nodes[8];
1932	int i, n;
1933
1934	while (1) {
1935		spin_lock(&root->inode_lock);
1936		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1937					   (void **)delayed_nodes, inode_id,
1938					   ARRAY_SIZE(delayed_nodes));
1939		if (!n) {
1940			spin_unlock(&root->inode_lock);
1941			break;
1942		}
1943
1944		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1945		for (i = 0; i < n; i++) {
1946			/*
1947			 * Don't increase refs in case the node is dead and
1948			 * about to be removed from the tree in the loop below
1949			 */
1950			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1951				delayed_nodes[i] = NULL;
1952		}
1953		spin_unlock(&root->inode_lock);
1954
1955		for (i = 0; i < n; i++) {
1956			if (!delayed_nodes[i])
1957				continue;
1958			__btrfs_kill_delayed_node(delayed_nodes[i]);
1959			btrfs_release_delayed_node(delayed_nodes[i]);
1960		}
1961	}
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
 
1966	struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
 
 
1969	while (curr_node) {
1970		__btrfs_kill_delayed_node(curr_node);
1971
1972		prev_node = curr_node;
1973		curr_node = btrfs_next_delayed_node(curr_node);
1974		btrfs_release_delayed_node(prev_node);
1975	}
1976}
1977