Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
 
 
 
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24
  25#define BTRFS_DELAYED_WRITEBACK		400
  26#define BTRFS_DELAYED_BACKGROUND	100
 
 
 
 
  27
  28static struct kmem_cache *delayed_node_cache;
  29
  30int __init btrfs_delayed_inode_init(void)
  31{
  32	delayed_node_cache = kmem_cache_create("delayed_node",
  33					sizeof(struct btrfs_delayed_node),
  34					0,
  35					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  36					NULL);
  37	if (!delayed_node_cache)
  38		return -ENOMEM;
  39	return 0;
  40}
  41
  42void btrfs_delayed_inode_exit(void)
  43{
  44	if (delayed_node_cache)
  45		kmem_cache_destroy(delayed_node_cache);
  46}
  47
  48static inline void btrfs_init_delayed_node(
  49				struct btrfs_delayed_node *delayed_node,
  50				struct btrfs_root *root, u64 inode_id)
  51{
  52	delayed_node->root = root;
  53	delayed_node->inode_id = inode_id;
  54	atomic_set(&delayed_node->refs, 0);
  55	delayed_node->count = 0;
  56	delayed_node->in_list = 0;
  57	delayed_node->inode_dirty = 0;
  58	delayed_node->ins_root = RB_ROOT;
  59	delayed_node->del_root = RB_ROOT;
  60	mutex_init(&delayed_node->mutex);
  61	delayed_node->index_cnt = 0;
  62	INIT_LIST_HEAD(&delayed_node->n_list);
  63	INIT_LIST_HEAD(&delayed_node->p_list);
  64	delayed_node->bytes_reserved = 0;
  65}
  66
  67static inline int btrfs_is_continuous_delayed_item(
  68					struct btrfs_delayed_item *item1,
  69					struct btrfs_delayed_item *item2)
  70{
  71	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  72	    item1->key.objectid == item2->key.objectid &&
  73	    item1->key.type == item2->key.type &&
  74	    item1->key.offset + 1 == item2->key.offset)
  75		return 1;
  76	return 0;
  77}
  78
  79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  80							struct btrfs_root *root)
  81{
  82	return root->fs_info->delayed_root;
  83}
  84
  85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  86{
  87	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  88	struct btrfs_root *root = btrfs_inode->root;
  89	u64 ino = btrfs_ino(inode);
  90	struct btrfs_delayed_node *node;
  91
  92	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  93	if (node) {
  94		atomic_inc(&node->refs);
  95		return node;
  96	}
  97
  98	spin_lock(&root->inode_lock);
  99	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 
 100	if (node) {
 101		if (btrfs_inode->delayed_node) {
 102			atomic_inc(&node->refs);	/* can be accessed */
 103			BUG_ON(btrfs_inode->delayed_node != node);
 104			spin_unlock(&root->inode_lock);
 105			return node;
 106		}
 107		btrfs_inode->delayed_node = node;
 108		atomic_inc(&node->refs);	/* can be accessed */
 109		atomic_inc(&node->refs);	/* cached in the inode */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110		spin_unlock(&root->inode_lock);
 111		return node;
 112	}
 113	spin_unlock(&root->inode_lock);
 114
 115	return NULL;
 116}
 117
 118/* Will return either the node or PTR_ERR(-ENOMEM) */
 119static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 120							struct inode *inode)
 121{
 122	struct btrfs_delayed_node *node;
 123	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 124	struct btrfs_root *root = btrfs_inode->root;
 125	u64 ino = btrfs_ino(inode);
 126	int ret;
 127
 128again:
 129	node = btrfs_get_delayed_node(inode);
 130	if (node)
 131		return node;
 132
 133	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 134	if (!node)
 135		return ERR_PTR(-ENOMEM);
 136	btrfs_init_delayed_node(node, root, ino);
 137
 138	atomic_inc(&node->refs);	/* cached in the btrfs inode */
 139	atomic_inc(&node->refs);	/* can be accessed */
 140
 141	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 142	if (ret) {
 143		kmem_cache_free(delayed_node_cache, node);
 144		return ERR_PTR(ret);
 145	}
 146
 147	spin_lock(&root->inode_lock);
 148	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 149	if (ret == -EEXIST) {
 150		kmem_cache_free(delayed_node_cache, node);
 151		spin_unlock(&root->inode_lock);
 
 152		radix_tree_preload_end();
 153		goto again;
 154	}
 155	btrfs_inode->delayed_node = node;
 156	spin_unlock(&root->inode_lock);
 157	radix_tree_preload_end();
 158
 159	return node;
 160}
 161
 162/*
 163 * Call it when holding delayed_node->mutex
 164 *
 165 * If mod = 1, add this node into the prepared list.
 166 */
 167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 168				     struct btrfs_delayed_node *node,
 169				     int mod)
 170{
 171	spin_lock(&root->lock);
 172	if (node->in_list) {
 173		if (!list_empty(&node->p_list))
 174			list_move_tail(&node->p_list, &root->prepare_list);
 175		else if (mod)
 176			list_add_tail(&node->p_list, &root->prepare_list);
 177	} else {
 178		list_add_tail(&node->n_list, &root->node_list);
 179		list_add_tail(&node->p_list, &root->prepare_list);
 180		atomic_inc(&node->refs);	/* inserted into list */
 181		root->nodes++;
 182		node->in_list = 1;
 183	}
 184	spin_unlock(&root->lock);
 185}
 186
 187/* Call it when holding delayed_node->mutex */
 188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 189				       struct btrfs_delayed_node *node)
 190{
 191	spin_lock(&root->lock);
 192	if (node->in_list) {
 193		root->nodes--;
 194		atomic_dec(&node->refs);	/* not in the list */
 195		list_del_init(&node->n_list);
 196		if (!list_empty(&node->p_list))
 197			list_del_init(&node->p_list);
 198		node->in_list = 0;
 199	}
 200	spin_unlock(&root->lock);
 201}
 202
 203struct btrfs_delayed_node *btrfs_first_delayed_node(
 204			struct btrfs_delayed_root *delayed_root)
 205{
 206	struct list_head *p;
 207	struct btrfs_delayed_node *node = NULL;
 208
 209	spin_lock(&delayed_root->lock);
 210	if (list_empty(&delayed_root->node_list))
 211		goto out;
 212
 213	p = delayed_root->node_list.next;
 214	node = list_entry(p, struct btrfs_delayed_node, n_list);
 215	atomic_inc(&node->refs);
 216out:
 217	spin_unlock(&delayed_root->lock);
 218
 219	return node;
 220}
 221
 222struct btrfs_delayed_node *btrfs_next_delayed_node(
 223						struct btrfs_delayed_node *node)
 224{
 225	struct btrfs_delayed_root *delayed_root;
 226	struct list_head *p;
 227	struct btrfs_delayed_node *next = NULL;
 228
 229	delayed_root = node->root->fs_info->delayed_root;
 230	spin_lock(&delayed_root->lock);
 231	if (!node->in_list) {	/* not in the list */
 
 232		if (list_empty(&delayed_root->node_list))
 233			goto out;
 234		p = delayed_root->node_list.next;
 235	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 236		goto out;
 237	else
 238		p = node->n_list.next;
 239
 240	next = list_entry(p, struct btrfs_delayed_node, n_list);
 241	atomic_inc(&next->refs);
 242out:
 243	spin_unlock(&delayed_root->lock);
 244
 245	return next;
 246}
 247
 248static void __btrfs_release_delayed_node(
 249				struct btrfs_delayed_node *delayed_node,
 250				int mod)
 251{
 252	struct btrfs_delayed_root *delayed_root;
 253
 254	if (!delayed_node)
 255		return;
 256
 257	delayed_root = delayed_node->root->fs_info->delayed_root;
 258
 259	mutex_lock(&delayed_node->mutex);
 260	if (delayed_node->count)
 261		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 262	else
 263		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 264	mutex_unlock(&delayed_node->mutex);
 265
 266	if (atomic_dec_and_test(&delayed_node->refs)) {
 267		struct btrfs_root *root = delayed_node->root;
 
 268		spin_lock(&root->inode_lock);
 269		if (atomic_read(&delayed_node->refs) == 0) {
 270			radix_tree_delete(&root->delayed_nodes_tree,
 271					  delayed_node->inode_id);
 272			kmem_cache_free(delayed_node_cache, delayed_node);
 273		}
 
 
 274		spin_unlock(&root->inode_lock);
 
 275	}
 276}
 277
 278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 279{
 280	__btrfs_release_delayed_node(node, 0);
 281}
 282
 283struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 284					struct btrfs_delayed_root *delayed_root)
 285{
 286	struct list_head *p;
 287	struct btrfs_delayed_node *node = NULL;
 288
 289	spin_lock(&delayed_root->lock);
 290	if (list_empty(&delayed_root->prepare_list))
 291		goto out;
 292
 293	p = delayed_root->prepare_list.next;
 294	list_del_init(p);
 295	node = list_entry(p, struct btrfs_delayed_node, p_list);
 296	atomic_inc(&node->refs);
 297out:
 298	spin_unlock(&delayed_root->lock);
 299
 300	return node;
 301}
 302
 303static inline void btrfs_release_prepared_delayed_node(
 304					struct btrfs_delayed_node *node)
 305{
 306	__btrfs_release_delayed_node(node, 1);
 307}
 308
 309struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 310{
 311	struct btrfs_delayed_item *item;
 312	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 313	if (item) {
 314		item->data_len = data_len;
 315		item->ins_or_del = 0;
 316		item->bytes_reserved = 0;
 317		item->delayed_node = NULL;
 318		atomic_set(&item->refs, 1);
 319	}
 320	return item;
 321}
 322
 323/*
 324 * __btrfs_lookup_delayed_item - look up the delayed item by key
 325 * @delayed_node: pointer to the delayed node
 326 * @key:	  the key to look up
 327 * @prev:	  used to store the prev item if the right item isn't found
 328 * @next:	  used to store the next item if the right item isn't found
 329 *
 330 * Note: if we don't find the right item, we will return the prev item and
 331 * the next item.
 332 */
 333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 334				struct rb_root *root,
 335				struct btrfs_key *key,
 336				struct btrfs_delayed_item **prev,
 337				struct btrfs_delayed_item **next)
 338{
 339	struct rb_node *node, *prev_node = NULL;
 340	struct btrfs_delayed_item *delayed_item = NULL;
 341	int ret = 0;
 342
 343	node = root->rb_node;
 344
 345	while (node) {
 346		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 347					rb_node);
 348		prev_node = node;
 349		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 350		if (ret < 0)
 351			node = node->rb_right;
 352		else if (ret > 0)
 353			node = node->rb_left;
 354		else
 355			return delayed_item;
 356	}
 357
 358	if (prev) {
 359		if (!prev_node)
 360			*prev = NULL;
 361		else if (ret < 0)
 362			*prev = delayed_item;
 363		else if ((node = rb_prev(prev_node)) != NULL) {
 364			*prev = rb_entry(node, struct btrfs_delayed_item,
 365					 rb_node);
 366		} else
 367			*prev = NULL;
 368	}
 369
 370	if (next) {
 371		if (!prev_node)
 372			*next = NULL;
 373		else if (ret > 0)
 374			*next = delayed_item;
 375		else if ((node = rb_next(prev_node)) != NULL) {
 376			*next = rb_entry(node, struct btrfs_delayed_item,
 377					 rb_node);
 378		} else
 379			*next = NULL;
 380	}
 381	return NULL;
 382}
 383
 384struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 385					struct btrfs_delayed_node *delayed_node,
 386					struct btrfs_key *key)
 387{
 388	struct btrfs_delayed_item *item;
 389
 390	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 391					   NULL, NULL);
 392	return item;
 393}
 394
 395struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
 396					struct btrfs_delayed_node *delayed_node,
 397					struct btrfs_key *key)
 398{
 399	struct btrfs_delayed_item *item;
 400
 401	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 402					   NULL, NULL);
 403	return item;
 404}
 405
 406struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
 407					struct btrfs_delayed_node *delayed_node,
 408					struct btrfs_key *key)
 409{
 410	struct btrfs_delayed_item *item, *next;
 411
 412	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 413					   NULL, &next);
 414	if (!item)
 415		item = next;
 416
 417	return item;
 418}
 419
 420struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
 421					struct btrfs_delayed_node *delayed_node,
 422					struct btrfs_key *key)
 423{
 424	struct btrfs_delayed_item *item, *next;
 425
 426	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 427					   NULL, &next);
 428	if (!item)
 429		item = next;
 430
 431	return item;
 432}
 433
 434static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 435				    struct btrfs_delayed_item *ins,
 436				    int action)
 437{
 438	struct rb_node **p, *node;
 439	struct rb_node *parent_node = NULL;
 440	struct rb_root *root;
 441	struct btrfs_delayed_item *item;
 442	int cmp;
 
 443
 444	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 445		root = &delayed_node->ins_root;
 446	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 447		root = &delayed_node->del_root;
 448	else
 449		BUG();
 450	p = &root->rb_node;
 451	node = &ins->rb_node;
 452
 453	while (*p) {
 454		parent_node = *p;
 455		item = rb_entry(parent_node, struct btrfs_delayed_item,
 456				 rb_node);
 457
 458		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 459		if (cmp < 0)
 460			p = &(*p)->rb_right;
 461		else if (cmp > 0)
 
 462			p = &(*p)->rb_left;
 463		else
 464			return -EEXIST;
 
 465	}
 466
 467	rb_link_node(node, parent_node, p);
 468	rb_insert_color(node, root);
 469	ins->delayed_node = delayed_node;
 470	ins->ins_or_del = action;
 471
 472	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 473	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 474	    ins->key.offset >= delayed_node->index_cnt)
 475			delayed_node->index_cnt = ins->key.offset + 1;
 476
 477	delayed_node->count++;
 478	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 479	return 0;
 480}
 481
 482static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 483					      struct btrfs_delayed_item *item)
 484{
 485	return __btrfs_add_delayed_item(node, item,
 486					BTRFS_DELAYED_INSERTION_ITEM);
 487}
 488
 489static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 490					     struct btrfs_delayed_item *item)
 491{
 492	return __btrfs_add_delayed_item(node, item,
 493					BTRFS_DELAYED_DELETION_ITEM);
 494}
 495
 
 
 
 
 
 
 
 
 
 
 496static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 497{
 498	struct rb_root *root;
 499	struct btrfs_delayed_root *delayed_root;
 500
 
 
 
 501	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 502
 503	BUG_ON(!delayed_root);
 504	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 505	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 506
 507	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 508		root = &delayed_item->delayed_node->ins_root;
 509	else
 510		root = &delayed_item->delayed_node->del_root;
 511
 512	rb_erase(&delayed_item->rb_node, root);
 513	delayed_item->delayed_node->count--;
 514	atomic_dec(&delayed_root->items);
 515	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
 516	    waitqueue_active(&delayed_root->wait))
 517		wake_up(&delayed_root->wait);
 518}
 519
 520static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 521{
 522	if (item) {
 523		__btrfs_remove_delayed_item(item);
 524		if (atomic_dec_and_test(&item->refs))
 525			kfree(item);
 526	}
 527}
 528
 529struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 530					struct btrfs_delayed_node *delayed_node)
 531{
 532	struct rb_node *p;
 533	struct btrfs_delayed_item *item = NULL;
 534
 535	p = rb_first(&delayed_node->ins_root);
 536	if (p)
 537		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 538
 539	return item;
 540}
 541
 542struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 543					struct btrfs_delayed_node *delayed_node)
 544{
 545	struct rb_node *p;
 546	struct btrfs_delayed_item *item = NULL;
 547
 548	p = rb_first(&delayed_node->del_root);
 549	if (p)
 550		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 551
 552	return item;
 553}
 554
 555struct btrfs_delayed_item *__btrfs_next_delayed_item(
 556						struct btrfs_delayed_item *item)
 557{
 558	struct rb_node *p;
 559	struct btrfs_delayed_item *next = NULL;
 560
 561	p = rb_next(&item->rb_node);
 562	if (p)
 563		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 564
 565	return next;
 566}
 567
 568static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
 569						   u64 root_id)
 570{
 571	struct btrfs_key root_key;
 572
 573	if (root->objectid == root_id)
 574		return root;
 575
 576	root_key.objectid = root_id;
 577	root_key.type = BTRFS_ROOT_ITEM_KEY;
 578	root_key.offset = (u64)-1;
 579	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
 580}
 581
 582static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 583					       struct btrfs_root *root,
 584					       struct btrfs_delayed_item *item)
 585{
 586	struct btrfs_block_rsv *src_rsv;
 587	struct btrfs_block_rsv *dst_rsv;
 
 588	u64 num_bytes;
 589	int ret;
 590
 591	if (!trans->bytes_reserved)
 592		return 0;
 593
 594	src_rsv = trans->block_rsv;
 595	dst_rsv = &root->fs_info->delayed_block_rsv;
 
 
 596
 597	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 598	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 
 
 
 
 599	if (!ret) {
 600		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 601					      item->key.objectid,
 602					      num_bytes, 1);
 603		item->bytes_reserved = num_bytes;
 604	}
 605
 606	return ret;
 607}
 608
 609static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 610						struct btrfs_delayed_item *item)
 611{
 612	struct btrfs_block_rsv *rsv;
 
 613
 614	if (!item->bytes_reserved)
 615		return;
 616
 617	rsv = &root->fs_info->delayed_block_rsv;
 618	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 
 
 
 
 619				      item->key.objectid, item->bytes_reserved,
 620				      0);
 621	btrfs_block_rsv_release(root, rsv,
 622				item->bytes_reserved);
 623}
 624
 625static int btrfs_delayed_inode_reserve_metadata(
 626					struct btrfs_trans_handle *trans,
 627					struct btrfs_root *root,
 628					struct inode *inode,
 629					struct btrfs_delayed_node *node)
 630{
 
 631	struct btrfs_block_rsv *src_rsv;
 632	struct btrfs_block_rsv *dst_rsv;
 633	u64 num_bytes;
 634	int ret;
 635	bool release = false;
 636
 637	src_rsv = trans->block_rsv;
 638	dst_rsv = &root->fs_info->delayed_block_rsv;
 639
 640	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 641
 642	/*
 643	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 644	 * which doesn't reserve space for speed.  This is a problem since we
 645	 * still need to reserve space for this update, so try to reserve the
 646	 * space.
 647	 *
 648	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 649	 * we're accounted for.
 650	 */
 651	if (!src_rsv || (!trans->bytes_reserved &&
 652	    src_rsv != &root->fs_info->delalloc_block_rsv)) {
 653		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 
 
 
 
 
 654		/*
 655		 * Since we're under a transaction reserve_metadata_bytes could
 656		 * try to commit the transaction which will make it return
 657		 * EAGAIN to make us stop the transaction we have, so return
 658		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 659		 */
 660		if (ret == -EAGAIN)
 661			ret = -ENOSPC;
 
 
 662		if (!ret) {
 663			node->bytes_reserved = num_bytes;
 664			trace_btrfs_space_reservation(root->fs_info,
 665						      "delayed_inode",
 666						      btrfs_ino(inode),
 667						      num_bytes, 1);
 
 
 668		}
 669		return ret;
 670	} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
 671		spin_lock(&BTRFS_I(inode)->lock);
 672		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 673				       &BTRFS_I(inode)->runtime_flags)) {
 674			spin_unlock(&BTRFS_I(inode)->lock);
 675			release = true;
 676			goto migrate;
 677		}
 678		spin_unlock(&BTRFS_I(inode)->lock);
 679
 680		/* Ok we didn't have space pre-reserved.  This shouldn't happen
 681		 * too often but it can happen if we do delalloc to an existing
 682		 * inode which gets dirtied because of the time update, and then
 683		 * isn't touched again until after the transaction commits and
 684		 * then we try to write out the data.  First try to be nice and
 685		 * reserve something strictly for us.  If not be a pain and try
 686		 * to steal from the delalloc block rsv.
 687		 */
 688		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 689		if (!ret)
 690			goto out;
 691
 692		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 693		if (!ret)
 694			goto out;
 695
 696		/*
 697		 * Ok this is a problem, let's just steal from the global rsv
 698		 * since this really shouldn't happen that often.
 699		 */
 700		WARN_ON(1);
 701		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
 702					      dst_rsv, num_bytes);
 703		goto out;
 704	}
 705
 706migrate:
 707	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 708
 709out:
 710	/*
 711	 * Migrate only takes a reservation, it doesn't touch the size of the
 712	 * block_rsv.  This is to simplify people who don't normally have things
 713	 * migrated from their block rsv.  If they go to release their
 714	 * reservation, that will decrease the size as well, so if migrate
 715	 * reduced size we'd end up with a negative size.  But for the
 716	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 717	 * but we could in fact do this reserve/migrate dance several times
 718	 * between the time we did the original reservation and we'd clean it
 719	 * up.  So to take care of this, release the space for the meta
 720	 * reservation here.  I think it may be time for a documentation page on
 721	 * how block rsvs. work.
 722	 */
 723	if (!ret) {
 724		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 725					      btrfs_ino(inode), num_bytes, 1);
 726		node->bytes_reserved = num_bytes;
 727	}
 728
 729	if (release) {
 730		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 731					      btrfs_ino(inode), num_bytes, 0);
 732		btrfs_block_rsv_release(root, src_rsv, num_bytes);
 733	}
 734
 735	return ret;
 736}
 737
 738static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 739						struct btrfs_delayed_node *node)
 
 740{
 741	struct btrfs_block_rsv *rsv;
 742
 743	if (!node->bytes_reserved)
 744		return;
 745
 746	rsv = &root->fs_info->delayed_block_rsv;
 747	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 748				      node->inode_id, node->bytes_reserved, 0);
 749	btrfs_block_rsv_release(root, rsv,
 
 
 
 
 
 750				node->bytes_reserved);
 751	node->bytes_reserved = 0;
 752}
 753
 754/*
 755 * This helper will insert some continuous items into the same leaf according
 756 * to the free space of the leaf.
 757 */
 758static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
 759				struct btrfs_root *root,
 760				struct btrfs_path *path,
 761				struct btrfs_delayed_item *item)
 762{
 763	struct btrfs_delayed_item *curr, *next;
 764	int free_space;
 765	int total_data_size = 0, total_size = 0;
 766	struct extent_buffer *leaf;
 767	char *data_ptr;
 768	struct btrfs_key *keys;
 769	u32 *data_size;
 770	struct list_head head;
 771	int slot;
 772	int nitems;
 773	int i;
 774	int ret = 0;
 775
 776	BUG_ON(!path->nodes[0]);
 777
 778	leaf = path->nodes[0];
 779	free_space = btrfs_leaf_free_space(root, leaf);
 780	INIT_LIST_HEAD(&head);
 781
 782	next = item;
 783	nitems = 0;
 784
 785	/*
 786	 * count the number of the continuous items that we can insert in batch
 787	 */
 788	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 789	       free_space) {
 790		total_data_size += next->data_len;
 791		total_size += next->data_len + sizeof(struct btrfs_item);
 792		list_add_tail(&next->tree_list, &head);
 793		nitems++;
 794
 795		curr = next;
 796		next = __btrfs_next_delayed_item(curr);
 797		if (!next)
 798			break;
 799
 800		if (!btrfs_is_continuous_delayed_item(curr, next))
 801			break;
 802	}
 803
 804	if (!nitems) {
 805		ret = 0;
 806		goto out;
 807	}
 808
 809	/*
 810	 * we need allocate some memory space, but it might cause the task
 811	 * to sleep, so we set all locked nodes in the path to blocking locks
 812	 * first.
 813	 */
 814	btrfs_set_path_blocking(path);
 815
 816	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
 817	if (!keys) {
 818		ret = -ENOMEM;
 819		goto out;
 820	}
 821
 822	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
 823	if (!data_size) {
 824		ret = -ENOMEM;
 825		goto error;
 826	}
 827
 828	/* get keys of all the delayed items */
 829	i = 0;
 830	list_for_each_entry(next, &head, tree_list) {
 831		keys[i] = next->key;
 832		data_size[i] = next->data_len;
 833		i++;
 834	}
 835
 836	/* reset all the locked nodes in the patch to spinning locks. */
 837	btrfs_clear_path_blocking(path, NULL, 0);
 838
 839	/* insert the keys of the items */
 840	setup_items_for_insert(trans, root, path, keys, data_size,
 841			       total_data_size, total_size, nitems);
 842
 843	/* insert the dir index items */
 844	slot = path->slots[0];
 845	list_for_each_entry_safe(curr, next, &head, tree_list) {
 846		data_ptr = btrfs_item_ptr(leaf, slot, char);
 847		write_extent_buffer(leaf, &curr->data,
 848				    (unsigned long)data_ptr,
 849				    curr->data_len);
 850		slot++;
 851
 852		btrfs_delayed_item_release_metadata(root, curr);
 853
 854		list_del(&curr->tree_list);
 855		btrfs_release_delayed_item(curr);
 856	}
 857
 858error:
 859	kfree(data_size);
 860	kfree(keys);
 861out:
 862	return ret;
 863}
 864
 865/*
 866 * This helper can just do simple insertion that needn't extend item for new
 867 * data, such as directory name index insertion, inode insertion.
 868 */
 869static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 870				     struct btrfs_root *root,
 871				     struct btrfs_path *path,
 872				     struct btrfs_delayed_item *delayed_item)
 873{
 874	struct extent_buffer *leaf;
 875	struct btrfs_item *item;
 876	char *ptr;
 877	int ret;
 878
 
 879	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 880				      delayed_item->data_len);
 
 881	if (ret < 0 && ret != -EEXIST)
 882		return ret;
 883
 884	leaf = path->nodes[0];
 885
 886	item = btrfs_item_nr(leaf, path->slots[0]);
 887	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 888
 889	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 890			    delayed_item->data_len);
 891	btrfs_mark_buffer_dirty(leaf);
 892
 893	btrfs_delayed_item_release_metadata(root, delayed_item);
 894	return 0;
 895}
 896
 897/*
 898 * we insert an item first, then if there are some continuous items, we try
 899 * to insert those items into the same leaf.
 900 */
 901static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 902				      struct btrfs_path *path,
 903				      struct btrfs_root *root,
 904				      struct btrfs_delayed_node *node)
 905{
 906	struct btrfs_delayed_item *curr, *prev;
 907	int ret = 0;
 908
 909do_again:
 910	mutex_lock(&node->mutex);
 911	curr = __btrfs_first_delayed_insertion_item(node);
 912	if (!curr)
 913		goto insert_end;
 914
 915	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 916	if (ret < 0) {
 917		btrfs_release_path(path);
 918		goto insert_end;
 919	}
 920
 921	prev = curr;
 922	curr = __btrfs_next_delayed_item(prev);
 923	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 924		/* insert the continuous items into the same leaf */
 925		path->slots[0]++;
 926		btrfs_batch_insert_items(trans, root, path, curr);
 927	}
 928	btrfs_release_delayed_item(prev);
 929	btrfs_mark_buffer_dirty(path->nodes[0]);
 930
 931	btrfs_release_path(path);
 932	mutex_unlock(&node->mutex);
 933	goto do_again;
 934
 935insert_end:
 936	mutex_unlock(&node->mutex);
 937	return ret;
 938}
 939
 940static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 941				    struct btrfs_root *root,
 942				    struct btrfs_path *path,
 943				    struct btrfs_delayed_item *item)
 944{
 945	struct btrfs_delayed_item *curr, *next;
 946	struct extent_buffer *leaf;
 947	struct btrfs_key key;
 948	struct list_head head;
 949	int nitems, i, last_item;
 950	int ret = 0;
 951
 952	BUG_ON(!path->nodes[0]);
 953
 954	leaf = path->nodes[0];
 955
 956	i = path->slots[0];
 957	last_item = btrfs_header_nritems(leaf) - 1;
 958	if (i > last_item)
 959		return -ENOENT;	/* FIXME: Is errno suitable? */
 960
 961	next = item;
 962	INIT_LIST_HEAD(&head);
 963	btrfs_item_key_to_cpu(leaf, &key, i);
 964	nitems = 0;
 965	/*
 966	 * count the number of the dir index items that we can delete in batch
 967	 */
 968	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 969		list_add_tail(&next->tree_list, &head);
 970		nitems++;
 971
 972		curr = next;
 973		next = __btrfs_next_delayed_item(curr);
 974		if (!next)
 975			break;
 976
 977		if (!btrfs_is_continuous_delayed_item(curr, next))
 978			break;
 979
 980		i++;
 981		if (i > last_item)
 982			break;
 983		btrfs_item_key_to_cpu(leaf, &key, i);
 984	}
 985
 986	if (!nitems)
 987		return 0;
 988
 989	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 990	if (ret)
 991		goto out;
 992
 993	list_for_each_entry_safe(curr, next, &head, tree_list) {
 994		btrfs_delayed_item_release_metadata(root, curr);
 995		list_del(&curr->tree_list);
 996		btrfs_release_delayed_item(curr);
 997	}
 998
 999out:
1000	return ret;
1001}
1002
1003static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004				      struct btrfs_path *path,
1005				      struct btrfs_root *root,
1006				      struct btrfs_delayed_node *node)
1007{
1008	struct btrfs_delayed_item *curr, *prev;
 
1009	int ret = 0;
1010
1011do_again:
1012	mutex_lock(&node->mutex);
1013	curr = __btrfs_first_delayed_deletion_item(node);
1014	if (!curr)
1015		goto delete_fail;
1016
 
1017	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 
1018	if (ret < 0)
1019		goto delete_fail;
1020	else if (ret > 0) {
1021		/*
1022		 * can't find the item which the node points to, so this node
1023		 * is invalid, just drop it.
1024		 */
1025		prev = curr;
1026		curr = __btrfs_next_delayed_item(prev);
1027		btrfs_release_delayed_item(prev);
1028		ret = 0;
1029		btrfs_release_path(path);
1030		if (curr)
 
1031			goto do_again;
1032		else
1033			goto delete_fail;
1034	}
1035
1036	btrfs_batch_delete_items(trans, root, path, curr);
1037	btrfs_release_path(path);
1038	mutex_unlock(&node->mutex);
1039	goto do_again;
1040
1041delete_fail:
1042	btrfs_release_path(path);
1043	mutex_unlock(&node->mutex);
1044	return ret;
1045}
1046
1047static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048{
1049	struct btrfs_delayed_root *delayed_root;
1050
1051	if (delayed_node && delayed_node->inode_dirty) {
 
1052		BUG_ON(!delayed_node->root);
1053		delayed_node->inode_dirty = 0;
1054		delayed_node->count--;
1055
1056		delayed_root = delayed_node->root->fs_info->delayed_root;
1057		atomic_dec(&delayed_root->items);
1058		if (atomic_read(&delayed_root->items) <
1059		    BTRFS_DELAYED_BACKGROUND &&
1060		    waitqueue_active(&delayed_root->wait))
1061			wake_up(&delayed_root->wait);
1062	}
1063}
1064
1065static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066				      struct btrfs_root *root,
1067				      struct btrfs_path *path,
1068				      struct btrfs_delayed_node *node)
1069{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070	struct btrfs_key key;
1071	struct btrfs_inode_item *inode_item;
1072	struct extent_buffer *leaf;
 
 
1073	int ret;
1074
1075	mutex_lock(&node->mutex);
1076	if (!node->inode_dirty) {
1077		mutex_unlock(&node->mutex);
1078		return 0;
1079	}
1080
1081	key.objectid = node->inode_id;
1082	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083	key.offset = 0;
1084	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
 
 
 
 
 
 
 
 
1085	if (ret > 0) {
1086		btrfs_release_path(path);
1087		mutex_unlock(&node->mutex);
1088		return -ENOENT;
1089	} else if (ret < 0) {
1090		mutex_unlock(&node->mutex);
1091		return ret;
1092	}
1093
1094	btrfs_unlock_up_safe(path, 1);
1095	leaf = path->nodes[0];
1096	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097				    struct btrfs_inode_item);
1098	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099			    sizeof(struct btrfs_inode_item));
1100	btrfs_mark_buffer_dirty(leaf);
1101	btrfs_release_path(path);
1102
1103	btrfs_delayed_inode_release_metadata(root, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104	btrfs_release_delayed_inode(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105	mutex_unlock(&node->mutex);
 
 
1106
1107	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108}
1109
1110/*
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1115 */
1116int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117			    struct btrfs_root *root)
1118{
1119	struct btrfs_root *curr_root = root;
1120	struct btrfs_delayed_root *delayed_root;
1121	struct btrfs_delayed_node *curr_node, *prev_node;
1122	struct btrfs_path *path;
1123	struct btrfs_block_rsv *block_rsv;
1124	int ret = 0;
 
1125
1126	if (trans->aborted)
1127		return -EIO;
1128
1129	path = btrfs_alloc_path();
1130	if (!path)
1131		return -ENOMEM;
1132	path->leave_spinning = 1;
1133
1134	block_rsv = trans->block_rsv;
1135	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1136
1137	delayed_root = btrfs_get_delayed_root(root);
1138
1139	curr_node = btrfs_first_delayed_node(delayed_root);
1140	while (curr_node) {
1141		curr_root = curr_node->root;
1142		ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143						 curr_node);
1144		if (!ret)
1145			ret = btrfs_delete_delayed_items(trans, path,
1146						curr_root, curr_node);
1147		if (!ret)
1148			ret = btrfs_update_delayed_inode(trans, curr_root,
1149						path, curr_node);
1150		if (ret) {
1151			btrfs_release_delayed_node(curr_node);
1152			btrfs_abort_transaction(trans, root, ret);
 
1153			break;
1154		}
1155
1156		prev_node = curr_node;
1157		curr_node = btrfs_next_delayed_node(curr_node);
1158		btrfs_release_delayed_node(prev_node);
1159	}
1160
 
 
1161	btrfs_free_path(path);
1162	trans->block_rsv = block_rsv;
1163
1164	return ret;
1165}
1166
1167static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168					      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
1169{
 
1170	struct btrfs_path *path;
1171	struct btrfs_block_rsv *block_rsv;
1172	int ret;
1173
 
 
 
 
 
 
 
 
 
 
 
1174	path = btrfs_alloc_path();
1175	if (!path)
 
1176		return -ENOMEM;
 
1177	path->leave_spinning = 1;
1178
1179	block_rsv = trans->block_rsv;
1180	trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1181
1182	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183	if (!ret)
1184		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185	if (!ret)
1186		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187	btrfs_free_path(path);
1188
 
 
1189	trans->block_rsv = block_rsv;
 
1190	return ret;
1191}
1192
1193int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194				     struct inode *inode)
1195{
 
 
1196	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
 
 
1197	int ret;
1198
1199	if (!delayed_node)
1200		return 0;
1201
1202	mutex_lock(&delayed_node->mutex);
1203	if (!delayed_node->count) {
1204		mutex_unlock(&delayed_node->mutex);
1205		btrfs_release_delayed_node(delayed_node);
1206		return 0;
1207	}
1208	mutex_unlock(&delayed_node->mutex);
1209
1210	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	btrfs_release_delayed_node(delayed_node);
 
1212	return ret;
1213}
1214
1215void btrfs_remove_delayed_node(struct inode *inode)
1216{
1217	struct btrfs_delayed_node *delayed_node;
1218
1219	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220	if (!delayed_node)
1221		return;
1222
1223	BTRFS_I(inode)->delayed_node = NULL;
1224	btrfs_release_delayed_node(delayed_node);
1225}
1226
1227struct btrfs_async_delayed_node {
1228	struct btrfs_root *root;
1229	struct btrfs_delayed_node *delayed_node;
1230	struct btrfs_work work;
1231};
1232
1233static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1234{
1235	struct btrfs_async_delayed_node *async_node;
 
1236	struct btrfs_trans_handle *trans;
1237	struct btrfs_path *path;
1238	struct btrfs_delayed_node *delayed_node = NULL;
1239	struct btrfs_root *root;
1240	struct btrfs_block_rsv *block_rsv;
1241	unsigned long nr = 0;
1242	int need_requeue = 0;
1243	int ret;
1244
1245	async_node = container_of(work, struct btrfs_async_delayed_node, work);
 
1246
1247	path = btrfs_alloc_path();
1248	if (!path)
1249		goto out;
1250	path->leave_spinning = 1;
1251
1252	delayed_node = async_node->delayed_node;
1253	root = delayed_node->root;
 
 
1254
1255	trans = btrfs_join_transaction(root);
1256	if (IS_ERR(trans))
1257		goto free_path;
1258
1259	block_rsv = trans->block_rsv;
1260	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1261
1262	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263	if (!ret)
1264		ret = btrfs_delete_delayed_items(trans, path, root,
1265						 delayed_node);
 
 
 
1266
1267	if (!ret)
1268		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1269
1270	/*
1271	 * Maybe new delayed items have been inserted, so we need requeue
1272	 * the work. Besides that, we must dequeue the empty delayed nodes
1273	 * to avoid the race between delayed items balance and the worker.
1274	 * The race like this:
1275	 * 	Task1				Worker thread
1276	 * 					count == 0, needn't requeue
1277	 * 					  also needn't insert the
1278	 * 					  delayed node into prepare
1279	 * 					  list again.
1280	 * 	add lots of delayed items
1281	 * 	queue the delayed node
1282	 * 	  already in the list,
1283	 * 	  and not in the prepare
1284	 * 	  list, it means the delayed
1285	 * 	  node is being dealt with
1286	 * 	  by the worker.
1287	 * 	do delayed items balance
1288	 * 	  the delayed node is being
1289	 * 	  dealt with by the worker
1290	 * 	  now, just wait.
1291	 * 	  				the worker goto idle.
1292	 * Task1 will sleep until the transaction is commited.
1293	 */
1294	mutex_lock(&delayed_node->mutex);
1295	if (delayed_node->count)
1296		need_requeue = 1;
1297	else
1298		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299					   delayed_node);
1300	mutex_unlock(&delayed_node->mutex);
1301
1302	nr = trans->blocks_used;
 
 
 
 
 
 
 
 
 
1303
1304	trans->block_rsv = block_rsv;
1305	btrfs_end_transaction_dmeta(trans, root);
1306	__btrfs_btree_balance_dirty(root, nr);
1307free_path:
1308	btrfs_free_path(path);
1309out:
1310	if (need_requeue)
1311		btrfs_requeue_work(&async_node->work);
1312	else {
1313		btrfs_release_prepared_delayed_node(delayed_node);
1314		kfree(async_node);
1315	}
1316}
1317
 
1318static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319				     struct btrfs_root *root, int all)
1320{
1321	struct btrfs_async_delayed_node *async_node;
1322	struct btrfs_delayed_node *curr;
1323	int count = 0;
1324
1325again:
1326	curr = btrfs_first_prepared_delayed_node(delayed_root);
1327	if (!curr)
1328		return 0;
1329
1330	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331	if (!async_node) {
1332		btrfs_release_prepared_delayed_node(curr);
1333		return -ENOMEM;
1334	}
1335
1336	async_node->root = root;
1337	async_node->delayed_node = curr;
1338
1339	async_node->work.func = btrfs_async_run_delayed_node_done;
1340	async_node->work.flags = 0;
1341
1342	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343	count++;
1344
1345	if (all || count < 4)
1346		goto again;
1347
 
1348	return 0;
1349}
1350
1351void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1352{
1353	struct btrfs_delayed_root *delayed_root;
1354	delayed_root = btrfs_get_delayed_root(root);
1355	WARN_ON(btrfs_first_delayed_node(delayed_root));
1356}
1357
1358void btrfs_balance_delayed_items(struct btrfs_root *root)
1359{
1360	struct btrfs_delayed_root *delayed_root;
1361
1362	delayed_root = btrfs_get_delayed_root(root);
 
1363
1364	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
 
 
 
 
 
 
 
 
 
 
 
1365		return;
1366
1367	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
 
1368		int ret;
1369		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
 
 
 
1370		if (ret)
1371			return;
1372
1373		wait_event_interruptible_timeout(
1374				delayed_root->wait,
1375				(atomic_read(&delayed_root->items) <
1376				 BTRFS_DELAYED_BACKGROUND),
1377				HZ);
1378		return;
1379	}
1380
1381	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1382}
1383
1384/* Will return 0 or -ENOMEM */
1385int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386				   struct btrfs_root *root, const char *name,
1387				   int name_len, struct inode *dir,
1388				   struct btrfs_disk_key *disk_key, u8 type,
1389				   u64 index)
1390{
1391	struct btrfs_delayed_node *delayed_node;
1392	struct btrfs_delayed_item *delayed_item;
1393	struct btrfs_dir_item *dir_item;
1394	int ret;
1395
1396	delayed_node = btrfs_get_or_create_delayed_node(dir);
1397	if (IS_ERR(delayed_node))
1398		return PTR_ERR(delayed_node);
1399
1400	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1401	if (!delayed_item) {
1402		ret = -ENOMEM;
1403		goto release_node;
1404	}
1405
1406	delayed_item->key.objectid = btrfs_ino(dir);
1407	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408	delayed_item->key.offset = index;
1409
1410	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411	dir_item->location = *disk_key;
1412	dir_item->transid = cpu_to_le64(trans->transid);
1413	dir_item->data_len = 0;
1414	dir_item->name_len = cpu_to_le16(name_len);
1415	dir_item->type = type;
1416	memcpy((char *)(dir_item + 1), name, name_len);
1417
1418	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1419	/*
1420	 * we have reserved enough space when we start a new transaction,
1421	 * so reserving metadata failure is impossible
1422	 */
1423	BUG_ON(ret);
1424
1425
1426	mutex_lock(&delayed_node->mutex);
1427	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428	if (unlikely(ret)) {
1429		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430				"the insertion tree of the delayed node"
1431				"(root id: %llu, inode id: %llu, errno: %d)\n",
1432				name,
1433				(unsigned long long)delayed_node->root->objectid,
1434				(unsigned long long)delayed_node->inode_id,
1435				ret);
1436		BUG();
1437	}
1438	mutex_unlock(&delayed_node->mutex);
1439
1440release_node:
1441	btrfs_release_delayed_node(delayed_node);
1442	return ret;
1443}
1444
1445static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446					       struct btrfs_delayed_node *node,
1447					       struct btrfs_key *key)
1448{
1449	struct btrfs_delayed_item *item;
1450
1451	mutex_lock(&node->mutex);
1452	item = __btrfs_lookup_delayed_insertion_item(node, key);
1453	if (!item) {
1454		mutex_unlock(&node->mutex);
1455		return 1;
1456	}
1457
1458	btrfs_delayed_item_release_metadata(root, item);
1459	btrfs_release_delayed_item(item);
1460	mutex_unlock(&node->mutex);
1461	return 0;
1462}
1463
1464int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465				   struct btrfs_root *root, struct inode *dir,
1466				   u64 index)
1467{
1468	struct btrfs_delayed_node *node;
1469	struct btrfs_delayed_item *item;
1470	struct btrfs_key item_key;
1471	int ret;
1472
1473	node = btrfs_get_or_create_delayed_node(dir);
1474	if (IS_ERR(node))
1475		return PTR_ERR(node);
1476
1477	item_key.objectid = btrfs_ino(dir);
1478	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479	item_key.offset = index;
1480
1481	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
 
1482	if (!ret)
1483		goto end;
1484
1485	item = btrfs_alloc_delayed_item(0);
1486	if (!item) {
1487		ret = -ENOMEM;
1488		goto end;
1489	}
1490
1491	item->key = item_key;
1492
1493	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1494	/*
1495	 * we have reserved enough space when we start a new transaction,
1496	 * so reserving metadata failure is impossible.
1497	 */
1498	BUG_ON(ret);
 
 
 
 
 
1499
1500	mutex_lock(&node->mutex);
1501	ret = __btrfs_add_delayed_deletion_item(node, item);
1502	if (unlikely(ret)) {
1503		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504				"into the deletion tree of the delayed node"
1505				"(root id: %llu, inode id: %llu, errno: %d)\n",
1506				(unsigned long long)index,
1507				(unsigned long long)node->root->objectid,
1508				(unsigned long long)node->inode_id,
1509				ret);
1510		BUG();
1511	}
1512	mutex_unlock(&node->mutex);
1513end:
1514	btrfs_release_delayed_node(node);
1515	return ret;
1516}
1517
1518int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1519{
1520	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1521
1522	if (!delayed_node)
1523		return -ENOENT;
1524
1525	/*
1526	 * Since we have held i_mutex of this directory, it is impossible that
1527	 * a new directory index is added into the delayed node and index_cnt
1528	 * is updated now. So we needn't lock the delayed node.
1529	 */
1530	if (!delayed_node->index_cnt) {
1531		btrfs_release_delayed_node(delayed_node);
1532		return -EINVAL;
1533	}
1534
1535	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536	btrfs_release_delayed_node(delayed_node);
1537	return 0;
1538}
1539
1540void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541			     struct list_head *del_list)
 
1542{
1543	struct btrfs_delayed_node *delayed_node;
1544	struct btrfs_delayed_item *item;
1545
1546	delayed_node = btrfs_get_delayed_node(inode);
1547	if (!delayed_node)
1548		return;
 
 
 
 
 
 
 
1549
1550	mutex_lock(&delayed_node->mutex);
1551	item = __btrfs_first_delayed_insertion_item(delayed_node);
1552	while (item) {
1553		atomic_inc(&item->refs);
1554		list_add_tail(&item->readdir_list, ins_list);
1555		item = __btrfs_next_delayed_item(item);
1556	}
1557
1558	item = __btrfs_first_delayed_deletion_item(delayed_node);
1559	while (item) {
1560		atomic_inc(&item->refs);
1561		list_add_tail(&item->readdir_list, del_list);
1562		item = __btrfs_next_delayed_item(item);
1563	}
1564	mutex_unlock(&delayed_node->mutex);
1565	/*
1566	 * This delayed node is still cached in the btrfs inode, so refs
1567	 * must be > 1 now, and we needn't check it is going to be freed
1568	 * or not.
1569	 *
1570	 * Besides that, this function is used to read dir, we do not
1571	 * insert/delete delayed items in this period. So we also needn't
1572	 * requeue or dequeue this delayed node.
1573	 */
1574	atomic_dec(&delayed_node->refs);
 
 
1575}
1576
1577void btrfs_put_delayed_items(struct list_head *ins_list,
1578			     struct list_head *del_list)
 
1579{
1580	struct btrfs_delayed_item *curr, *next;
1581
1582	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583		list_del(&curr->readdir_list);
1584		if (atomic_dec_and_test(&curr->refs))
1585			kfree(curr);
1586	}
1587
1588	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589		list_del(&curr->readdir_list);
1590		if (atomic_dec_and_test(&curr->refs))
1591			kfree(curr);
1592	}
 
 
 
 
 
 
1593}
1594
1595int btrfs_should_delete_dir_index(struct list_head *del_list,
1596				  u64 index)
1597{
1598	struct btrfs_delayed_item *curr, *next;
1599	int ret;
1600
1601	if (list_empty(del_list))
1602		return 0;
1603
1604	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605		if (curr->key.offset > index)
1606			break;
1607
1608		list_del(&curr->readdir_list);
1609		ret = (curr->key.offset == index);
1610
1611		if (atomic_dec_and_test(&curr->refs))
1612			kfree(curr);
1613
1614		if (ret)
1615			return 1;
1616		else
1617			continue;
1618	}
1619	return 0;
1620}
1621
1622/*
1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1624 *
1625 */
1626int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627				    filldir_t filldir,
1628				    struct list_head *ins_list)
1629{
1630	struct btrfs_dir_item *di;
1631	struct btrfs_delayed_item *curr, *next;
1632	struct btrfs_key location;
1633	char *name;
1634	int name_len;
1635	int over = 0;
1636	unsigned char d_type;
1637
1638	if (list_empty(ins_list))
1639		return 0;
1640
1641	/*
1642	 * Changing the data of the delayed item is impossible. So
1643	 * we needn't lock them. And we have held i_mutex of the
1644	 * directory, nobody can delete any directory indexes now.
1645	 */
1646	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647		list_del(&curr->readdir_list);
1648
1649		if (curr->key.offset < filp->f_pos) {
1650			if (atomic_dec_and_test(&curr->refs))
1651				kfree(curr);
1652			continue;
1653		}
1654
1655		filp->f_pos = curr->key.offset;
1656
1657		di = (struct btrfs_dir_item *)curr->data;
1658		name = (char *)(di + 1);
1659		name_len = le16_to_cpu(di->name_len);
1660
1661		d_type = btrfs_filetype_table[di->type];
1662		btrfs_disk_key_to_cpu(&location, &di->location);
1663
1664		over = filldir(dirent, name, name_len, curr->key.offset,
1665			       location.objectid, d_type);
1666
1667		if (atomic_dec_and_test(&curr->refs))
1668			kfree(curr);
1669
1670		if (over)
1671			return 1;
 
1672	}
1673	return 0;
1674}
1675
1676BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677			 generation, 64);
1678BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679			 sequence, 64);
1680BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681			 transid, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684			 nbytes, 64);
1685BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686			 block_group, 64);
1687BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1693
1694BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1696
1697static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698				  struct btrfs_inode_item *inode_item,
1699				  struct inode *inode)
1700{
1701	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1703	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707	btrfs_set_stack_inode_generation(inode_item,
1708					 BTRFS_I(inode)->generation);
1709	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
 
1710	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1713	btrfs_set_stack_inode_block_group(inode_item, 0);
1714
1715	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716				     inode->i_atime.tv_sec);
1717	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718				      inode->i_atime.tv_nsec);
1719
1720	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721				     inode->i_mtime.tv_sec);
1722	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723				      inode->i_mtime.tv_nsec);
1724
1725	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726				     inode->i_ctime.tv_sec);
1727	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728				      inode->i_ctime.tv_nsec);
 
 
 
 
 
1729}
1730
1731int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1732{
 
1733	struct btrfs_delayed_node *delayed_node;
1734	struct btrfs_inode_item *inode_item;
1735	struct btrfs_timespec *tspec;
1736
1737	delayed_node = btrfs_get_delayed_node(inode);
1738	if (!delayed_node)
1739		return -ENOENT;
1740
1741	mutex_lock(&delayed_node->mutex);
1742	if (!delayed_node->inode_dirty) {
1743		mutex_unlock(&delayed_node->mutex);
1744		btrfs_release_delayed_node(delayed_node);
1745		return -ENOENT;
1746	}
1747
1748	inode_item = &delayed_node->inode_item;
1749
1750	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
 
 
1753	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757	inode->i_version = btrfs_stack_inode_sequence(inode_item);
 
 
 
1758	inode->i_rdev = 0;
1759	*rdev = btrfs_stack_inode_rdev(inode_item);
1760	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761
1762	tspec = btrfs_inode_atime(inode_item);
1763	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1765
1766	tspec = btrfs_inode_mtime(inode_item);
1767	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1769
1770	tspec = btrfs_inode_ctime(inode_item);
1771	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
 
 
1773
1774	inode->i_generation = BTRFS_I(inode)->generation;
1775	BTRFS_I(inode)->index_cnt = (u64)-1;
1776
1777	mutex_unlock(&delayed_node->mutex);
1778	btrfs_release_delayed_node(delayed_node);
1779	return 0;
1780}
1781
1782int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783			       struct btrfs_root *root, struct inode *inode)
1784{
1785	struct btrfs_delayed_node *delayed_node;
1786	int ret = 0;
1787
1788	delayed_node = btrfs_get_or_create_delayed_node(inode);
1789	if (IS_ERR(delayed_node))
1790		return PTR_ERR(delayed_node);
1791
1792	mutex_lock(&delayed_node->mutex);
1793	if (delayed_node->inode_dirty) {
1794		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1795		goto release_node;
1796	}
1797
1798	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799						   delayed_node);
1800	if (ret)
1801		goto release_node;
1802
1803	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804	delayed_node->inode_dirty = 1;
1805	delayed_node->count++;
1806	atomic_inc(&root->fs_info->delayed_root->items);
1807release_node:
1808	mutex_unlock(&delayed_node->mutex);
1809	btrfs_release_delayed_node(delayed_node);
1810	return ret;
1811}
1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1814{
1815	struct btrfs_root *root = delayed_node->root;
 
1816	struct btrfs_delayed_item *curr_item, *prev_item;
1817
1818	mutex_lock(&delayed_node->mutex);
1819	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820	while (curr_item) {
1821		btrfs_delayed_item_release_metadata(root, curr_item);
1822		prev_item = curr_item;
1823		curr_item = __btrfs_next_delayed_item(prev_item);
1824		btrfs_release_delayed_item(prev_item);
1825	}
1826
1827	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828	while (curr_item) {
1829		btrfs_delayed_item_release_metadata(root, curr_item);
1830		prev_item = curr_item;
1831		curr_item = __btrfs_next_delayed_item(prev_item);
1832		btrfs_release_delayed_item(prev_item);
1833	}
1834
1835	if (delayed_node->inode_dirty) {
1836		btrfs_delayed_inode_release_metadata(root, delayed_node);
 
 
 
1837		btrfs_release_delayed_inode(delayed_node);
1838	}
1839	mutex_unlock(&delayed_node->mutex);
1840}
1841
1842void btrfs_kill_delayed_inode_items(struct inode *inode)
1843{
1844	struct btrfs_delayed_node *delayed_node;
1845
1846	delayed_node = btrfs_get_delayed_node(inode);
1847	if (!delayed_node)
1848		return;
1849
1850	__btrfs_kill_delayed_node(delayed_node);
1851	btrfs_release_delayed_node(delayed_node);
1852}
1853
1854void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1855{
1856	u64 inode_id = 0;
1857	struct btrfs_delayed_node *delayed_nodes[8];
1858	int i, n;
1859
1860	while (1) {
1861		spin_lock(&root->inode_lock);
1862		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863					   (void **)delayed_nodes, inode_id,
1864					   ARRAY_SIZE(delayed_nodes));
1865		if (!n) {
1866			spin_unlock(&root->inode_lock);
1867			break;
1868		}
1869
1870		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1871
1872		for (i = 0; i < n; i++)
1873			atomic_inc(&delayed_nodes[i]->refs);
 
 
 
 
 
1874		spin_unlock(&root->inode_lock);
1875
1876		for (i = 0; i < n; i++) {
 
 
1877			__btrfs_kill_delayed_node(delayed_nodes[i]);
1878			btrfs_release_delayed_node(delayed_nodes[i]);
1879		}
1880	}
1881}
1882
1883void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1884{
1885	struct btrfs_delayed_root *delayed_root;
1886	struct btrfs_delayed_node *curr_node, *prev_node;
1887
1888	delayed_root = btrfs_get_delayed_root(root);
1889
1890	curr_node = btrfs_first_delayed_node(delayed_root);
1891	while (curr_node) {
1892		__btrfs_kill_delayed_node(curr_node);
1893
1894		prev_node = curr_node;
1895		curr_node = btrfs_next_delayed_node(curr_node);
1896		btrfs_release_delayed_node(prev_node);
1897	}
1898}
1899
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK		512
  19#define BTRFS_DELAYED_BACKGROUND	128
  20#define BTRFS_DELAYED_BATCH		16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27					sizeof(struct btrfs_delayed_node),
  28					0,
  29					SLAB_MEM_SPREAD,
  30					NULL);
  31	if (!delayed_node_cache)
  32		return -ENOMEM;
  33	return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38	kmem_cache_destroy(delayed_node_cache);
 
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42				struct btrfs_delayed_node *delayed_node,
  43				struct btrfs_root *root, u64 inode_id)
  44{
  45	delayed_node->root = root;
  46	delayed_node->inode_id = inode_id;
  47	refcount_set(&delayed_node->refs, 0);
  48	delayed_node->ins_root = RB_ROOT_CACHED;
  49	delayed_node->del_root = RB_ROOT_CACHED;
 
 
 
  50	mutex_init(&delayed_node->mutex);
 
  51	INIT_LIST_HEAD(&delayed_node->n_list);
  52	INIT_LIST_HEAD(&delayed_node->p_list);
 
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56					struct btrfs_delayed_item *item1,
  57					struct btrfs_delayed_item *item2)
  58{
  59	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60	    item1->key.objectid == item2->key.objectid &&
  61	    item1->key.type == item2->key.type &&
  62	    item1->key.offset + 1 == item2->key.offset)
  63		return 1;
  64	return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68		struct btrfs_inode *btrfs_inode)
  69{
 
 
 
 
 
 
  70	struct btrfs_root *root = btrfs_inode->root;
  71	u64 ino = btrfs_ino(btrfs_inode);
  72	struct btrfs_delayed_node *node;
  73
  74	node = READ_ONCE(btrfs_inode->delayed_node);
  75	if (node) {
  76		refcount_inc(&node->refs);
  77		return node;
  78	}
  79
  80	spin_lock(&root->inode_lock);
  81	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83	if (node) {
  84		if (btrfs_inode->delayed_node) {
  85			refcount_inc(&node->refs);	/* can be accessed */
  86			BUG_ON(btrfs_inode->delayed_node != node);
  87			spin_unlock(&root->inode_lock);
  88			return node;
  89		}
  90
  91		/*
  92		 * It's possible that we're racing into the middle of removing
  93		 * this node from the radix tree.  In this case, the refcount
  94		 * was zero and it should never go back to one.  Just return
  95		 * NULL like it was never in the radix at all; our release
  96		 * function is in the process of removing it.
  97		 *
  98		 * Some implementations of refcount_inc refuse to bump the
  99		 * refcount once it has hit zero.  If we don't do this dance
 100		 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101		 * of actually bumping the refcount.
 102		 *
 103		 * If this node is properly in the radix, we want to bump the
 104		 * refcount twice, once for the inode and once for this get
 105		 * operation.
 106		 */
 107		if (refcount_inc_not_zero(&node->refs)) {
 108			refcount_inc(&node->refs);
 109			btrfs_inode->delayed_node = node;
 110		} else {
 111			node = NULL;
 112		}
 113
 114		spin_unlock(&root->inode_lock);
 115		return node;
 116	}
 117	spin_unlock(&root->inode_lock);
 118
 119	return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124		struct btrfs_inode *btrfs_inode)
 125{
 126	struct btrfs_delayed_node *node;
 
 127	struct btrfs_root *root = btrfs_inode->root;
 128	u64 ino = btrfs_ino(btrfs_inode);
 129	int ret;
 130
 131again:
 132	node = btrfs_get_delayed_node(btrfs_inode);
 133	if (node)
 134		return node;
 135
 136	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137	if (!node)
 138		return ERR_PTR(-ENOMEM);
 139	btrfs_init_delayed_node(node, root, ino);
 140
 141	/* cached in the btrfs inode and can be accessed */
 142	refcount_set(&node->refs, 2);
 143
 144	ret = radix_tree_preload(GFP_NOFS);
 145	if (ret) {
 146		kmem_cache_free(delayed_node_cache, node);
 147		return ERR_PTR(ret);
 148	}
 149
 150	spin_lock(&root->inode_lock);
 151	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152	if (ret == -EEXIST) {
 
 153		spin_unlock(&root->inode_lock);
 154		kmem_cache_free(delayed_node_cache, node);
 155		radix_tree_preload_end();
 156		goto again;
 157	}
 158	btrfs_inode->delayed_node = node;
 159	spin_unlock(&root->inode_lock);
 160	radix_tree_preload_end();
 161
 162	return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171				     struct btrfs_delayed_node *node,
 172				     int mod)
 173{
 174	spin_lock(&root->lock);
 175	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176		if (!list_empty(&node->p_list))
 177			list_move_tail(&node->p_list, &root->prepare_list);
 178		else if (mod)
 179			list_add_tail(&node->p_list, &root->prepare_list);
 180	} else {
 181		list_add_tail(&node->n_list, &root->node_list);
 182		list_add_tail(&node->p_list, &root->prepare_list);
 183		refcount_inc(&node->refs);	/* inserted into list */
 184		root->nodes++;
 185		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186	}
 187	spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192				       struct btrfs_delayed_node *node)
 193{
 194	spin_lock(&root->lock);
 195	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196		root->nodes--;
 197		refcount_dec(&node->refs);	/* not in the list */
 198		list_del_init(&node->n_list);
 199		if (!list_empty(&node->p_list))
 200			list_del_init(&node->p_list);
 201		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202	}
 203	spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207			struct btrfs_delayed_root *delayed_root)
 208{
 209	struct list_head *p;
 210	struct btrfs_delayed_node *node = NULL;
 211
 212	spin_lock(&delayed_root->lock);
 213	if (list_empty(&delayed_root->node_list))
 214		goto out;
 215
 216	p = delayed_root->node_list.next;
 217	node = list_entry(p, struct btrfs_delayed_node, n_list);
 218	refcount_inc(&node->refs);
 219out:
 220	spin_unlock(&delayed_root->lock);
 221
 222	return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226						struct btrfs_delayed_node *node)
 227{
 228	struct btrfs_delayed_root *delayed_root;
 229	struct list_head *p;
 230	struct btrfs_delayed_node *next = NULL;
 231
 232	delayed_root = node->root->fs_info->delayed_root;
 233	spin_lock(&delayed_root->lock);
 234	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235		/* not in the list */
 236		if (list_empty(&delayed_root->node_list))
 237			goto out;
 238		p = delayed_root->node_list.next;
 239	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240		goto out;
 241	else
 242		p = node->n_list.next;
 243
 244	next = list_entry(p, struct btrfs_delayed_node, n_list);
 245	refcount_inc(&next->refs);
 246out:
 247	spin_unlock(&delayed_root->lock);
 248
 249	return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253				struct btrfs_delayed_node *delayed_node,
 254				int mod)
 255{
 256	struct btrfs_delayed_root *delayed_root;
 257
 258	if (!delayed_node)
 259		return;
 260
 261	delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263	mutex_lock(&delayed_node->mutex);
 264	if (delayed_node->count)
 265		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266	else
 267		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268	mutex_unlock(&delayed_node->mutex);
 269
 270	if (refcount_dec_and_test(&delayed_node->refs)) {
 271		struct btrfs_root *root = delayed_node->root;
 272
 273		spin_lock(&root->inode_lock);
 274		/*
 275		 * Once our refcount goes to zero, nobody is allowed to bump it
 276		 * back up.  We can delete it now.
 277		 */
 278		ASSERT(refcount_read(&delayed_node->refs) == 0);
 279		radix_tree_delete(&root->delayed_nodes_tree,
 280				  delayed_node->inode_id);
 281		spin_unlock(&root->inode_lock);
 282		kmem_cache_free(delayed_node_cache, delayed_node);
 283	}
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288	__btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292					struct btrfs_delayed_root *delayed_root)
 293{
 294	struct list_head *p;
 295	struct btrfs_delayed_node *node = NULL;
 296
 297	spin_lock(&delayed_root->lock);
 298	if (list_empty(&delayed_root->prepare_list))
 299		goto out;
 300
 301	p = delayed_root->prepare_list.next;
 302	list_del_init(p);
 303	node = list_entry(p, struct btrfs_delayed_node, p_list);
 304	refcount_inc(&node->refs);
 305out:
 306	spin_unlock(&delayed_root->lock);
 307
 308	return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312					struct btrfs_delayed_node *node)
 313{
 314	__btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319	struct btrfs_delayed_item *item;
 320	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321	if (item) {
 322		item->data_len = data_len;
 323		item->ins_or_del = 0;
 324		item->bytes_reserved = 0;
 325		item->delayed_node = NULL;
 326		refcount_set(&item->refs, 1);
 327	}
 328	return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:	  the key to look up
 335 * @prev:	  used to store the prev item if the right item isn't found
 336 * @next:	  used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342				struct rb_root *root,
 343				struct btrfs_key *key,
 344				struct btrfs_delayed_item **prev,
 345				struct btrfs_delayed_item **next)
 346{
 347	struct rb_node *node, *prev_node = NULL;
 348	struct btrfs_delayed_item *delayed_item = NULL;
 349	int ret = 0;
 350
 351	node = root->rb_node;
 352
 353	while (node) {
 354		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355					rb_node);
 356		prev_node = node;
 357		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358		if (ret < 0)
 359			node = node->rb_right;
 360		else if (ret > 0)
 361			node = node->rb_left;
 362		else
 363			return delayed_item;
 364	}
 365
 366	if (prev) {
 367		if (!prev_node)
 368			*prev = NULL;
 369		else if (ret < 0)
 370			*prev = delayed_item;
 371		else if ((node = rb_prev(prev_node)) != NULL) {
 372			*prev = rb_entry(node, struct btrfs_delayed_item,
 373					 rb_node);
 374		} else
 375			*prev = NULL;
 376	}
 377
 378	if (next) {
 379		if (!prev_node)
 380			*next = NULL;
 381		else if (ret > 0)
 382			*next = delayed_item;
 383		else if ((node = rb_next(prev_node)) != NULL) {
 384			*next = rb_entry(node, struct btrfs_delayed_item,
 385					 rb_node);
 386		} else
 387			*next = NULL;
 388	}
 389	return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 
 
 
 
 
 
 
 
 
 
 
 393					struct btrfs_delayed_node *delayed_node,
 394					struct btrfs_key *key)
 395{
 396	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 
 
 397					   NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401				    struct btrfs_delayed_item *ins,
 402				    int action)
 403{
 404	struct rb_node **p, *node;
 405	struct rb_node *parent_node = NULL;
 406	struct rb_root_cached *root;
 407	struct btrfs_delayed_item *item;
 408	int cmp;
 409	bool leftmost = true;
 410
 411	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412		root = &delayed_node->ins_root;
 413	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414		root = &delayed_node->del_root;
 415	else
 416		BUG();
 417	p = &root->rb_root.rb_node;
 418	node = &ins->rb_node;
 419
 420	while (*p) {
 421		parent_node = *p;
 422		item = rb_entry(parent_node, struct btrfs_delayed_item,
 423				 rb_node);
 424
 425		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426		if (cmp < 0) {
 427			p = &(*p)->rb_right;
 428			leftmost = false;
 429		} else if (cmp > 0) {
 430			p = &(*p)->rb_left;
 431		} else {
 432			return -EEXIST;
 433		}
 434	}
 435
 436	rb_link_node(node, parent_node, p);
 437	rb_insert_color_cached(node, root, leftmost);
 438	ins->delayed_node = delayed_node;
 439	ins->ins_or_del = action;
 440
 441	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 443	    ins->key.offset >= delayed_node->index_cnt)
 444			delayed_node->index_cnt = ins->key.offset + 1;
 445
 446	delayed_node->count++;
 447	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448	return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452					      struct btrfs_delayed_item *item)
 453{
 454	return __btrfs_add_delayed_item(node, item,
 455					BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459					     struct btrfs_delayed_item *item)
 460{
 461	return __btrfs_add_delayed_item(node, item,
 462					BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467	int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469	/* atomic_dec_return implies a barrier */
 470	if ((atomic_dec_return(&delayed_root->items) <
 471	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472		cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477	struct rb_root_cached *root;
 478	struct btrfs_delayed_root *delayed_root;
 479
 480	/* Not associated with any delayed_node */
 481	if (!delayed_item->delayed_node)
 482		return;
 483	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485	BUG_ON(!delayed_root);
 486	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490		root = &delayed_item->delayed_node->ins_root;
 491	else
 492		root = &delayed_item->delayed_node->del_root;
 493
 494	rb_erase_cached(&delayed_item->rb_node, root);
 495	delayed_item->delayed_node->count--;
 496
 497	finish_one_item(delayed_root);
 
 
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502	if (item) {
 503		__btrfs_remove_delayed_item(item);
 504		if (refcount_dec_and_test(&item->refs))
 505			kfree(item);
 506	}
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510					struct btrfs_delayed_node *delayed_node)
 511{
 512	struct rb_node *p;
 513	struct btrfs_delayed_item *item = NULL;
 514
 515	p = rb_first_cached(&delayed_node->ins_root);
 516	if (p)
 517		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519	return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523					struct btrfs_delayed_node *delayed_node)
 524{
 525	struct rb_node *p;
 526	struct btrfs_delayed_item *item = NULL;
 527
 528	p = rb_first_cached(&delayed_node->del_root);
 529	if (p)
 530		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532	return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536						struct btrfs_delayed_item *item)
 537{
 538	struct rb_node *p;
 539	struct btrfs_delayed_item *next = NULL;
 540
 541	p = rb_next(&item->rb_node);
 542	if (p)
 543		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545	return next;
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549					       struct btrfs_root *root,
 550					       struct btrfs_delayed_item *item)
 551{
 552	struct btrfs_block_rsv *src_rsv;
 553	struct btrfs_block_rsv *dst_rsv;
 554	struct btrfs_fs_info *fs_info = root->fs_info;
 555	u64 num_bytes;
 556	int ret;
 557
 558	if (!trans->bytes_reserved)
 559		return 0;
 560
 561	src_rsv = trans->block_rsv;
 562	dst_rsv = &fs_info->delayed_block_rsv;
 563
 564	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566	/*
 567	 * Here we migrate space rsv from transaction rsv, since have already
 568	 * reserved space when starting a transaction.  So no need to reserve
 569	 * qgroup space here.
 570	 */
 571	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572	if (!ret) {
 573		trace_btrfs_space_reservation(fs_info, "delayed_item",
 574					      item->key.objectid,
 575					      num_bytes, 1);
 576		item->bytes_reserved = num_bytes;
 577	}
 578
 579	return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583						struct btrfs_delayed_item *item)
 584{
 585	struct btrfs_block_rsv *rsv;
 586	struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588	if (!item->bytes_reserved)
 589		return;
 590
 591	rsv = &fs_info->delayed_block_rsv;
 592	/*
 593	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594	 * to release/reserve qgroup space.
 595	 */
 596	trace_btrfs_space_reservation(fs_info, "delayed_item",
 597				      item->key.objectid, item->bytes_reserved,
 598				      0);
 599	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603					struct btrfs_trans_handle *trans,
 604					struct btrfs_root *root,
 605					struct btrfs_inode *inode,
 606					struct btrfs_delayed_node *node)
 607{
 608	struct btrfs_fs_info *fs_info = root->fs_info;
 609	struct btrfs_block_rsv *src_rsv;
 610	struct btrfs_block_rsv *dst_rsv;
 611	u64 num_bytes;
 612	int ret;
 
 613
 614	src_rsv = trans->block_rsv;
 615	dst_rsv = &fs_info->delayed_block_rsv;
 616
 617	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 618
 619	/*
 620	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 621	 * which doesn't reserve space for speed.  This is a problem since we
 622	 * still need to reserve space for this update, so try to reserve the
 623	 * space.
 624	 *
 625	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 626	 * we always reserve enough to update the inode item.
 627	 */
 628	if (!src_rsv || (!trans->bytes_reserved &&
 629			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 630		ret = btrfs_qgroup_reserve_meta_prealloc(root,
 631				fs_info->nodesize, true);
 632		if (ret < 0)
 633			return ret;
 634		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 635					  BTRFS_RESERVE_NO_FLUSH);
 636		/*
 637		 * Since we're under a transaction reserve_metadata_bytes could
 638		 * try to commit the transaction which will make it return
 639		 * EAGAIN to make us stop the transaction we have, so return
 640		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 641		 */
 642		if (ret == -EAGAIN) {
 643			ret = -ENOSPC;
 644			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 645		}
 646		if (!ret) {
 647			node->bytes_reserved = num_bytes;
 648			trace_btrfs_space_reservation(fs_info,
 649						      "delayed_inode",
 650						      btrfs_ino(inode),
 651						      num_bytes, 1);
 652		} else {
 653			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
 654		}
 655		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	}
 657
 658	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659	if (!ret) {
 660		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 661					      btrfs_ino(inode), num_bytes, 1);
 662		node->bytes_reserved = num_bytes;
 663	}
 664
 
 
 
 
 
 
 665	return ret;
 666}
 667
 668static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 669						struct btrfs_delayed_node *node,
 670						bool qgroup_free)
 671{
 672	struct btrfs_block_rsv *rsv;
 673
 674	if (!node->bytes_reserved)
 675		return;
 676
 677	rsv = &fs_info->delayed_block_rsv;
 678	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 679				      node->inode_id, node->bytes_reserved, 0);
 680	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 681	if (qgroup_free)
 682		btrfs_qgroup_free_meta_prealloc(node->root,
 683				node->bytes_reserved);
 684	else
 685		btrfs_qgroup_convert_reserved_meta(node->root,
 686				node->bytes_reserved);
 687	node->bytes_reserved = 0;
 688}
 689
 690/*
 691 * This helper will insert some continuous items into the same leaf according
 692 * to the free space of the leaf.
 693 */
 694static int btrfs_batch_insert_items(struct btrfs_root *root,
 695				    struct btrfs_path *path,
 696				    struct btrfs_delayed_item *item)
 
 697{
 698	struct btrfs_delayed_item *curr, *next;
 699	int free_space;
 700	int total_data_size = 0, total_size = 0;
 701	struct extent_buffer *leaf;
 702	char *data_ptr;
 703	struct btrfs_key *keys;
 704	u32 *data_size;
 705	struct list_head head;
 706	int slot;
 707	int nitems;
 708	int i;
 709	int ret = 0;
 710
 711	BUG_ON(!path->nodes[0]);
 712
 713	leaf = path->nodes[0];
 714	free_space = btrfs_leaf_free_space(leaf);
 715	INIT_LIST_HEAD(&head);
 716
 717	next = item;
 718	nitems = 0;
 719
 720	/*
 721	 * count the number of the continuous items that we can insert in batch
 722	 */
 723	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 724	       free_space) {
 725		total_data_size += next->data_len;
 726		total_size += next->data_len + sizeof(struct btrfs_item);
 727		list_add_tail(&next->tree_list, &head);
 728		nitems++;
 729
 730		curr = next;
 731		next = __btrfs_next_delayed_item(curr);
 732		if (!next)
 733			break;
 734
 735		if (!btrfs_is_continuous_delayed_item(curr, next))
 736			break;
 737	}
 738
 739	if (!nitems) {
 740		ret = 0;
 741		goto out;
 742	}
 743
 744	/*
 745	 * we need allocate some memory space, but it might cause the task
 746	 * to sleep, so we set all locked nodes in the path to blocking locks
 747	 * first.
 748	 */
 749	btrfs_set_path_blocking(path);
 750
 751	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 752	if (!keys) {
 753		ret = -ENOMEM;
 754		goto out;
 755	}
 756
 757	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 758	if (!data_size) {
 759		ret = -ENOMEM;
 760		goto error;
 761	}
 762
 763	/* get keys of all the delayed items */
 764	i = 0;
 765	list_for_each_entry(next, &head, tree_list) {
 766		keys[i] = next->key;
 767		data_size[i] = next->data_len;
 768		i++;
 769	}
 770
 
 
 
 771	/* insert the keys of the items */
 772	setup_items_for_insert(root, path, keys, data_size,
 773			       total_data_size, total_size, nitems);
 774
 775	/* insert the dir index items */
 776	slot = path->slots[0];
 777	list_for_each_entry_safe(curr, next, &head, tree_list) {
 778		data_ptr = btrfs_item_ptr(leaf, slot, char);
 779		write_extent_buffer(leaf, &curr->data,
 780				    (unsigned long)data_ptr,
 781				    curr->data_len);
 782		slot++;
 783
 784		btrfs_delayed_item_release_metadata(root, curr);
 785
 786		list_del(&curr->tree_list);
 787		btrfs_release_delayed_item(curr);
 788	}
 789
 790error:
 791	kfree(data_size);
 792	kfree(keys);
 793out:
 794	return ret;
 795}
 796
 797/*
 798 * This helper can just do simple insertion that needn't extend item for new
 799 * data, such as directory name index insertion, inode insertion.
 800 */
 801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 802				     struct btrfs_root *root,
 803				     struct btrfs_path *path,
 804				     struct btrfs_delayed_item *delayed_item)
 805{
 806	struct extent_buffer *leaf;
 807	unsigned int nofs_flag;
 808	char *ptr;
 809	int ret;
 810
 811	nofs_flag = memalloc_nofs_save();
 812	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 813				      delayed_item->data_len);
 814	memalloc_nofs_restore(nofs_flag);
 815	if (ret < 0 && ret != -EEXIST)
 816		return ret;
 817
 818	leaf = path->nodes[0];
 819
 
 820	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 821
 822	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 823			    delayed_item->data_len);
 824	btrfs_mark_buffer_dirty(leaf);
 825
 826	btrfs_delayed_item_release_metadata(root, delayed_item);
 827	return 0;
 828}
 829
 830/*
 831 * we insert an item first, then if there are some continuous items, we try
 832 * to insert those items into the same leaf.
 833 */
 834static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 835				      struct btrfs_path *path,
 836				      struct btrfs_root *root,
 837				      struct btrfs_delayed_node *node)
 838{
 839	struct btrfs_delayed_item *curr, *prev;
 840	int ret = 0;
 841
 842do_again:
 843	mutex_lock(&node->mutex);
 844	curr = __btrfs_first_delayed_insertion_item(node);
 845	if (!curr)
 846		goto insert_end;
 847
 848	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 849	if (ret < 0) {
 850		btrfs_release_path(path);
 851		goto insert_end;
 852	}
 853
 854	prev = curr;
 855	curr = __btrfs_next_delayed_item(prev);
 856	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 857		/* insert the continuous items into the same leaf */
 858		path->slots[0]++;
 859		btrfs_batch_insert_items(root, path, curr);
 860	}
 861	btrfs_release_delayed_item(prev);
 862	btrfs_mark_buffer_dirty(path->nodes[0]);
 863
 864	btrfs_release_path(path);
 865	mutex_unlock(&node->mutex);
 866	goto do_again;
 867
 868insert_end:
 869	mutex_unlock(&node->mutex);
 870	return ret;
 871}
 872
 873static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 874				    struct btrfs_root *root,
 875				    struct btrfs_path *path,
 876				    struct btrfs_delayed_item *item)
 877{
 878	struct btrfs_delayed_item *curr, *next;
 879	struct extent_buffer *leaf;
 880	struct btrfs_key key;
 881	struct list_head head;
 882	int nitems, i, last_item;
 883	int ret = 0;
 884
 885	BUG_ON(!path->nodes[0]);
 886
 887	leaf = path->nodes[0];
 888
 889	i = path->slots[0];
 890	last_item = btrfs_header_nritems(leaf) - 1;
 891	if (i > last_item)
 892		return -ENOENT;	/* FIXME: Is errno suitable? */
 893
 894	next = item;
 895	INIT_LIST_HEAD(&head);
 896	btrfs_item_key_to_cpu(leaf, &key, i);
 897	nitems = 0;
 898	/*
 899	 * count the number of the dir index items that we can delete in batch
 900	 */
 901	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 902		list_add_tail(&next->tree_list, &head);
 903		nitems++;
 904
 905		curr = next;
 906		next = __btrfs_next_delayed_item(curr);
 907		if (!next)
 908			break;
 909
 910		if (!btrfs_is_continuous_delayed_item(curr, next))
 911			break;
 912
 913		i++;
 914		if (i > last_item)
 915			break;
 916		btrfs_item_key_to_cpu(leaf, &key, i);
 917	}
 918
 919	if (!nitems)
 920		return 0;
 921
 922	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 923	if (ret)
 924		goto out;
 925
 926	list_for_each_entry_safe(curr, next, &head, tree_list) {
 927		btrfs_delayed_item_release_metadata(root, curr);
 928		list_del(&curr->tree_list);
 929		btrfs_release_delayed_item(curr);
 930	}
 931
 932out:
 933	return ret;
 934}
 935
 936static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 937				      struct btrfs_path *path,
 938				      struct btrfs_root *root,
 939				      struct btrfs_delayed_node *node)
 940{
 941	struct btrfs_delayed_item *curr, *prev;
 942	unsigned int nofs_flag;
 943	int ret = 0;
 944
 945do_again:
 946	mutex_lock(&node->mutex);
 947	curr = __btrfs_first_delayed_deletion_item(node);
 948	if (!curr)
 949		goto delete_fail;
 950
 951	nofs_flag = memalloc_nofs_save();
 952	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 953	memalloc_nofs_restore(nofs_flag);
 954	if (ret < 0)
 955		goto delete_fail;
 956	else if (ret > 0) {
 957		/*
 958		 * can't find the item which the node points to, so this node
 959		 * is invalid, just drop it.
 960		 */
 961		prev = curr;
 962		curr = __btrfs_next_delayed_item(prev);
 963		btrfs_release_delayed_item(prev);
 964		ret = 0;
 965		btrfs_release_path(path);
 966		if (curr) {
 967			mutex_unlock(&node->mutex);
 968			goto do_again;
 969		} else
 970			goto delete_fail;
 971	}
 972
 973	btrfs_batch_delete_items(trans, root, path, curr);
 974	btrfs_release_path(path);
 975	mutex_unlock(&node->mutex);
 976	goto do_again;
 977
 978delete_fail:
 979	btrfs_release_path(path);
 980	mutex_unlock(&node->mutex);
 981	return ret;
 982}
 983
 984static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 985{
 986	struct btrfs_delayed_root *delayed_root;
 987
 988	if (delayed_node &&
 989	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 990		BUG_ON(!delayed_node->root);
 991		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 992		delayed_node->count--;
 993
 994		delayed_root = delayed_node->root->fs_info->delayed_root;
 995		finish_one_item(delayed_root);
 
 
 
 
 996	}
 997}
 998
 999static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 
 
 
1000{
1001	struct btrfs_delayed_root *delayed_root;
1002
1003	ASSERT(delayed_node->root);
1004	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1005	delayed_node->count--;
1006
1007	delayed_root = delayed_node->root->fs_info->delayed_root;
1008	finish_one_item(delayed_root);
1009}
1010
1011static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012					struct btrfs_root *root,
1013					struct btrfs_path *path,
1014					struct btrfs_delayed_node *node)
1015{
1016	struct btrfs_fs_info *fs_info = root->fs_info;
1017	struct btrfs_key key;
1018	struct btrfs_inode_item *inode_item;
1019	struct extent_buffer *leaf;
1020	unsigned int nofs_flag;
1021	int mod;
1022	int ret;
1023
 
 
 
 
 
 
1024	key.objectid = node->inode_id;
1025	key.type = BTRFS_INODE_ITEM_KEY;
1026	key.offset = 0;
1027
1028	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029		mod = -1;
1030	else
1031		mod = 1;
1032
1033	nofs_flag = memalloc_nofs_save();
1034	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035	memalloc_nofs_restore(nofs_flag);
1036	if (ret > 0) {
1037		btrfs_release_path(path);
 
1038		return -ENOENT;
1039	} else if (ret < 0) {
 
1040		return ret;
1041	}
1042
 
1043	leaf = path->nodes[0];
1044	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045				    struct btrfs_inode_item);
1046	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047			    sizeof(struct btrfs_inode_item));
1048	btrfs_mark_buffer_dirty(leaf);
 
1049
1050	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051		goto no_iref;
1052
1053	path->slots[0]++;
1054	if (path->slots[0] >= btrfs_header_nritems(leaf))
1055		goto search;
1056again:
1057	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058	if (key.objectid != node->inode_id)
1059		goto out;
1060
1061	if (key.type != BTRFS_INODE_REF_KEY &&
1062	    key.type != BTRFS_INODE_EXTREF_KEY)
1063		goto out;
1064
1065	/*
1066	 * Delayed iref deletion is for the inode who has only one link,
1067	 * so there is only one iref. The case that several irefs are
1068	 * in the same item doesn't exist.
1069	 */
1070	btrfs_del_item(trans, root, path);
1071out:
1072	btrfs_release_delayed_iref(node);
1073no_iref:
1074	btrfs_release_path(path);
1075err_out:
1076	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1077	btrfs_release_delayed_inode(node);
1078
1079	return ret;
1080
1081search:
1082	btrfs_release_path(path);
1083
1084	key.type = BTRFS_INODE_EXTREF_KEY;
1085	key.offset = -1;
1086
1087	nofs_flag = memalloc_nofs_save();
1088	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089	memalloc_nofs_restore(nofs_flag);
1090	if (ret < 0)
1091		goto err_out;
1092	ASSERT(ret);
1093
1094	ret = 0;
1095	leaf = path->nodes[0];
1096	path->slots[0]--;
1097	goto again;
1098}
1099
1100static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101					     struct btrfs_root *root,
1102					     struct btrfs_path *path,
1103					     struct btrfs_delayed_node *node)
1104{
1105	int ret;
1106
1107	mutex_lock(&node->mutex);
1108	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109		mutex_unlock(&node->mutex);
1110		return 0;
1111	}
1112
1113	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114	mutex_unlock(&node->mutex);
1115	return ret;
1116}
1117
1118static inline int
1119__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120				   struct btrfs_path *path,
1121				   struct btrfs_delayed_node *node)
1122{
1123	int ret;
1124
1125	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126	if (ret)
1127		return ret;
1128
1129	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130	if (ret)
1131		return ret;
1132
1133	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134	return ret;
1135}
1136
1137/*
1138 * Called when committing the transaction.
1139 * Returns 0 on success.
1140 * Returns < 0 on error and returns with an aborted transaction with any
1141 * outstanding delayed items cleaned up.
1142 */
1143static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
 
1144{
1145	struct btrfs_fs_info *fs_info = trans->fs_info;
1146	struct btrfs_delayed_root *delayed_root;
1147	struct btrfs_delayed_node *curr_node, *prev_node;
1148	struct btrfs_path *path;
1149	struct btrfs_block_rsv *block_rsv;
1150	int ret = 0;
1151	bool count = (nr > 0);
1152
1153	if (TRANS_ABORTED(trans))
1154		return -EIO;
1155
1156	path = btrfs_alloc_path();
1157	if (!path)
1158		return -ENOMEM;
1159	path->leave_spinning = 1;
1160
1161	block_rsv = trans->block_rsv;
1162	trans->block_rsv = &fs_info->delayed_block_rsv;
1163
1164	delayed_root = fs_info->delayed_root;
1165
1166	curr_node = btrfs_first_delayed_node(delayed_root);
1167	while (curr_node && (!count || (count && nr--))) {
1168		ret = __btrfs_commit_inode_delayed_items(trans, path,
1169							 curr_node);
 
 
 
 
 
 
 
1170		if (ret) {
1171			btrfs_release_delayed_node(curr_node);
1172			curr_node = NULL;
1173			btrfs_abort_transaction(trans, ret);
1174			break;
1175		}
1176
1177		prev_node = curr_node;
1178		curr_node = btrfs_next_delayed_node(curr_node);
1179		btrfs_release_delayed_node(prev_node);
1180	}
1181
1182	if (curr_node)
1183		btrfs_release_delayed_node(curr_node);
1184	btrfs_free_path(path);
1185	trans->block_rsv = block_rsv;
1186
1187	return ret;
1188}
1189
1190int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1191{
1192	return __btrfs_run_delayed_items(trans, -1);
1193}
1194
1195int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1196{
1197	return __btrfs_run_delayed_items(trans, nr);
1198}
1199
1200int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1201				     struct btrfs_inode *inode)
1202{
1203	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1204	struct btrfs_path *path;
1205	struct btrfs_block_rsv *block_rsv;
1206	int ret;
1207
1208	if (!delayed_node)
1209		return 0;
1210
1211	mutex_lock(&delayed_node->mutex);
1212	if (!delayed_node->count) {
1213		mutex_unlock(&delayed_node->mutex);
1214		btrfs_release_delayed_node(delayed_node);
1215		return 0;
1216	}
1217	mutex_unlock(&delayed_node->mutex);
1218
1219	path = btrfs_alloc_path();
1220	if (!path) {
1221		btrfs_release_delayed_node(delayed_node);
1222		return -ENOMEM;
1223	}
1224	path->leave_spinning = 1;
1225
1226	block_rsv = trans->block_rsv;
1227	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228
1229	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
1230
1231	btrfs_release_delayed_node(delayed_node);
1232	btrfs_free_path(path);
1233	trans->block_rsv = block_rsv;
1234
1235	return ret;
1236}
1237
1238int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
 
1239{
1240	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1241	struct btrfs_trans_handle *trans;
1242	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1243	struct btrfs_path *path;
1244	struct btrfs_block_rsv *block_rsv;
1245	int ret;
1246
1247	if (!delayed_node)
1248		return 0;
1249
1250	mutex_lock(&delayed_node->mutex);
1251	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1252		mutex_unlock(&delayed_node->mutex);
1253		btrfs_release_delayed_node(delayed_node);
1254		return 0;
1255	}
1256	mutex_unlock(&delayed_node->mutex);
1257
1258	trans = btrfs_join_transaction(delayed_node->root);
1259	if (IS_ERR(trans)) {
1260		ret = PTR_ERR(trans);
1261		goto out;
1262	}
1263
1264	path = btrfs_alloc_path();
1265	if (!path) {
1266		ret = -ENOMEM;
1267		goto trans_out;
1268	}
1269	path->leave_spinning = 1;
1270
1271	block_rsv = trans->block_rsv;
1272	trans->block_rsv = &fs_info->delayed_block_rsv;
1273
1274	mutex_lock(&delayed_node->mutex);
1275	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1276		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277						   path, delayed_node);
1278	else
1279		ret = 0;
1280	mutex_unlock(&delayed_node->mutex);
1281
1282	btrfs_free_path(path);
1283	trans->block_rsv = block_rsv;
1284trans_out:
1285	btrfs_end_transaction(trans);
1286	btrfs_btree_balance_dirty(fs_info);
1287out:
1288	btrfs_release_delayed_node(delayed_node);
1289
1290	return ret;
1291}
1292
1293void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1294{
1295	struct btrfs_delayed_node *delayed_node;
1296
1297	delayed_node = READ_ONCE(inode->delayed_node);
1298	if (!delayed_node)
1299		return;
1300
1301	inode->delayed_node = NULL;
1302	btrfs_release_delayed_node(delayed_node);
1303}
1304
1305struct btrfs_async_delayed_work {
1306	struct btrfs_delayed_root *delayed_root;
1307	int nr;
1308	struct btrfs_work work;
1309};
1310
1311static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1312{
1313	struct btrfs_async_delayed_work *async_work;
1314	struct btrfs_delayed_root *delayed_root;
1315	struct btrfs_trans_handle *trans;
1316	struct btrfs_path *path;
1317	struct btrfs_delayed_node *delayed_node = NULL;
1318	struct btrfs_root *root;
1319	struct btrfs_block_rsv *block_rsv;
1320	int total_done = 0;
 
 
1321
1322	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323	delayed_root = async_work->delayed_root;
1324
1325	path = btrfs_alloc_path();
1326	if (!path)
1327		goto out;
 
1328
1329	do {
1330		if (atomic_read(&delayed_root->items) <
1331		    BTRFS_DELAYED_BACKGROUND / 2)
1332			break;
1333
1334		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335		if (!delayed_node)
1336			break;
1337
1338		path->leave_spinning = 1;
1339		root = delayed_node->root;
1340
1341		trans = btrfs_join_transaction(root);
1342		if (IS_ERR(trans)) {
1343			btrfs_release_path(path);
1344			btrfs_release_prepared_delayed_node(delayed_node);
1345			total_done++;
1346			continue;
1347		}
1348
1349		block_rsv = trans->block_rsv;
1350		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351
1352		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354		trans->block_rsv = block_rsv;
1355		btrfs_end_transaction(trans);
1356		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357
1358		btrfs_release_path(path);
1359		btrfs_release_prepared_delayed_node(delayed_node);
1360		total_done++;
1361
1362	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363		 || total_done < async_work->nr);
1364
 
 
 
 
1365	btrfs_free_path(path);
1366out:
1367	wake_up(&delayed_root->wait);
1368	kfree(async_work);
 
 
 
 
1369}
1370
1371
1372static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373				     struct btrfs_fs_info *fs_info, int nr)
1374{
1375	struct btrfs_async_delayed_work *async_work;
 
 
 
 
 
 
 
1376
1377	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378	if (!async_work)
 
1379		return -ENOMEM;
 
 
 
 
1380
1381	async_work->delayed_root = delayed_root;
1382	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1383			NULL);
1384	async_work->nr = nr;
 
 
 
 
1385
1386	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387	return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397	int val = atomic_read(&delayed_root->items_seq);
1398
1399	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400		return 1;
1401
1402	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403		return 1;
1404
1405	return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1413		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1414		return;
1415
1416	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1417		int seq;
1418		int ret;
1419
1420		seq = atomic_read(&delayed_root->items_seq);
1421
1422		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1423		if (ret)
1424			return;
1425
1426		wait_event_interruptible(delayed_root->wait,
1427					 could_end_wait(delayed_root, seq));
 
 
 
1428		return;
1429	}
1430
1431	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432}
1433
1434/* Will return 0 or -ENOMEM */
1435int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1436				   const char *name, int name_len,
1437				   struct btrfs_inode *dir,
1438				   struct btrfs_disk_key *disk_key, u8 type,
1439				   u64 index)
1440{
1441	struct btrfs_delayed_node *delayed_node;
1442	struct btrfs_delayed_item *delayed_item;
1443	struct btrfs_dir_item *dir_item;
1444	int ret;
1445
1446	delayed_node = btrfs_get_or_create_delayed_node(dir);
1447	if (IS_ERR(delayed_node))
1448		return PTR_ERR(delayed_node);
1449
1450	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451	if (!delayed_item) {
1452		ret = -ENOMEM;
1453		goto release_node;
1454	}
1455
1456	delayed_item->key.objectid = btrfs_ino(dir);
1457	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458	delayed_item->key.offset = index;
1459
1460	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461	dir_item->location = *disk_key;
1462	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463	btrfs_set_stack_dir_data_len(dir_item, 0);
1464	btrfs_set_stack_dir_name_len(dir_item, name_len);
1465	btrfs_set_stack_dir_type(dir_item, type);
1466	memcpy((char *)(dir_item + 1), name, name_len);
1467
1468	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1469	/*
1470	 * we have reserved enough space when we start a new transaction,
1471	 * so reserving metadata failure is impossible
1472	 */
1473	BUG_ON(ret);
1474
 
1475	mutex_lock(&delayed_node->mutex);
1476	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477	if (unlikely(ret)) {
1478		btrfs_err(trans->fs_info,
1479			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480			  name_len, name, delayed_node->root->root_key.objectid,
1481			  delayed_node->inode_id, ret);
 
 
 
1482		BUG();
1483	}
1484	mutex_unlock(&delayed_node->mutex);
1485
1486release_node:
1487	btrfs_release_delayed_node(delayed_node);
1488	return ret;
1489}
1490
1491static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492					       struct btrfs_delayed_node *node,
1493					       struct btrfs_key *key)
1494{
1495	struct btrfs_delayed_item *item;
1496
1497	mutex_lock(&node->mutex);
1498	item = __btrfs_lookup_delayed_insertion_item(node, key);
1499	if (!item) {
1500		mutex_unlock(&node->mutex);
1501		return 1;
1502	}
1503
1504	btrfs_delayed_item_release_metadata(node->root, item);
1505	btrfs_release_delayed_item(item);
1506	mutex_unlock(&node->mutex);
1507	return 0;
1508}
1509
1510int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511				   struct btrfs_inode *dir, u64 index)
 
1512{
1513	struct btrfs_delayed_node *node;
1514	struct btrfs_delayed_item *item;
1515	struct btrfs_key item_key;
1516	int ret;
1517
1518	node = btrfs_get_or_create_delayed_node(dir);
1519	if (IS_ERR(node))
1520		return PTR_ERR(node);
1521
1522	item_key.objectid = btrfs_ino(dir);
1523	item_key.type = BTRFS_DIR_INDEX_KEY;
1524	item_key.offset = index;
1525
1526	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1527						  &item_key);
1528	if (!ret)
1529		goto end;
1530
1531	item = btrfs_alloc_delayed_item(0);
1532	if (!item) {
1533		ret = -ENOMEM;
1534		goto end;
1535	}
1536
1537	item->key = item_key;
1538
1539	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1540	/*
1541	 * we have reserved enough space when we start a new transaction,
1542	 * so reserving metadata failure is impossible.
1543	 */
1544	if (ret < 0) {
1545		btrfs_err(trans->fs_info,
1546"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1547		btrfs_release_delayed_item(item);
1548		goto end;
1549	}
1550
1551	mutex_lock(&node->mutex);
1552	ret = __btrfs_add_delayed_deletion_item(node, item);
1553	if (unlikely(ret)) {
1554		btrfs_err(trans->fs_info,
1555			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556			  index, node->root->root_key.objectid,
1557			  node->inode_id, ret);
1558		btrfs_delayed_item_release_metadata(dir->root, item);
1559		btrfs_release_delayed_item(item);
 
 
1560	}
1561	mutex_unlock(&node->mutex);
1562end:
1563	btrfs_release_delayed_node(node);
1564	return ret;
1565}
1566
1567int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1568{
1569	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1570
1571	if (!delayed_node)
1572		return -ENOENT;
1573
1574	/*
1575	 * Since we have held i_mutex of this directory, it is impossible that
1576	 * a new directory index is added into the delayed node and index_cnt
1577	 * is updated now. So we needn't lock the delayed node.
1578	 */
1579	if (!delayed_node->index_cnt) {
1580		btrfs_release_delayed_node(delayed_node);
1581		return -EINVAL;
1582	}
1583
1584	inode->index_cnt = delayed_node->index_cnt;
1585	btrfs_release_delayed_node(delayed_node);
1586	return 0;
1587}
1588
1589bool btrfs_readdir_get_delayed_items(struct inode *inode,
1590				     struct list_head *ins_list,
1591				     struct list_head *del_list)
1592{
1593	struct btrfs_delayed_node *delayed_node;
1594	struct btrfs_delayed_item *item;
1595
1596	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1597	if (!delayed_node)
1598		return false;
1599
1600	/*
1601	 * We can only do one readdir with delayed items at a time because of
1602	 * item->readdir_list.
1603	 */
1604	inode_unlock_shared(inode);
1605	inode_lock(inode);
1606
1607	mutex_lock(&delayed_node->mutex);
1608	item = __btrfs_first_delayed_insertion_item(delayed_node);
1609	while (item) {
1610		refcount_inc(&item->refs);
1611		list_add_tail(&item->readdir_list, ins_list);
1612		item = __btrfs_next_delayed_item(item);
1613	}
1614
1615	item = __btrfs_first_delayed_deletion_item(delayed_node);
1616	while (item) {
1617		refcount_inc(&item->refs);
1618		list_add_tail(&item->readdir_list, del_list);
1619		item = __btrfs_next_delayed_item(item);
1620	}
1621	mutex_unlock(&delayed_node->mutex);
1622	/*
1623	 * This delayed node is still cached in the btrfs inode, so refs
1624	 * must be > 1 now, and we needn't check it is going to be freed
1625	 * or not.
1626	 *
1627	 * Besides that, this function is used to read dir, we do not
1628	 * insert/delete delayed items in this period. So we also needn't
1629	 * requeue or dequeue this delayed node.
1630	 */
1631	refcount_dec(&delayed_node->refs);
1632
1633	return true;
1634}
1635
1636void btrfs_readdir_put_delayed_items(struct inode *inode,
1637				     struct list_head *ins_list,
1638				     struct list_head *del_list)
1639{
1640	struct btrfs_delayed_item *curr, *next;
1641
1642	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1643		list_del(&curr->readdir_list);
1644		if (refcount_dec_and_test(&curr->refs))
1645			kfree(curr);
1646	}
1647
1648	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1649		list_del(&curr->readdir_list);
1650		if (refcount_dec_and_test(&curr->refs))
1651			kfree(curr);
1652	}
1653
1654	/*
1655	 * The VFS is going to do up_read(), so we need to downgrade back to a
1656	 * read lock.
1657	 */
1658	downgrade_write(&inode->i_rwsem);
1659}
1660
1661int btrfs_should_delete_dir_index(struct list_head *del_list,
1662				  u64 index)
1663{
1664	struct btrfs_delayed_item *curr;
1665	int ret = 0;
 
 
 
1666
1667	list_for_each_entry(curr, del_list, readdir_list) {
1668		if (curr->key.offset > index)
1669			break;
1670		if (curr->key.offset == index) {
1671			ret = 1;
1672			break;
1673		}
 
 
 
 
 
 
 
1674	}
1675	return ret;
1676}
1677
1678/*
1679 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1680 *
1681 */
1682int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
 
1683				    struct list_head *ins_list)
1684{
1685	struct btrfs_dir_item *di;
1686	struct btrfs_delayed_item *curr, *next;
1687	struct btrfs_key location;
1688	char *name;
1689	int name_len;
1690	int over = 0;
1691	unsigned char d_type;
1692
1693	if (list_empty(ins_list))
1694		return 0;
1695
1696	/*
1697	 * Changing the data of the delayed item is impossible. So
1698	 * we needn't lock them. And we have held i_mutex of the
1699	 * directory, nobody can delete any directory indexes now.
1700	 */
1701	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1702		list_del(&curr->readdir_list);
1703
1704		if (curr->key.offset < ctx->pos) {
1705			if (refcount_dec_and_test(&curr->refs))
1706				kfree(curr);
1707			continue;
1708		}
1709
1710		ctx->pos = curr->key.offset;
1711
1712		di = (struct btrfs_dir_item *)curr->data;
1713		name = (char *)(di + 1);
1714		name_len = btrfs_stack_dir_name_len(di);
1715
1716		d_type = fs_ftype_to_dtype(di->type);
1717		btrfs_disk_key_to_cpu(&location, &di->location);
1718
1719		over = !dir_emit(ctx, name, name_len,
1720			       location.objectid, d_type);
1721
1722		if (refcount_dec_and_test(&curr->refs))
1723			kfree(curr);
1724
1725		if (over)
1726			return 1;
1727		ctx->pos++;
1728	}
1729	return 0;
1730}
1731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1733				  struct btrfs_inode_item *inode_item,
1734				  struct inode *inode)
1735{
1736	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1737	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1738	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1739	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1740	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1741	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1742	btrfs_set_stack_inode_generation(inode_item,
1743					 BTRFS_I(inode)->generation);
1744	btrfs_set_stack_inode_sequence(inode_item,
1745				       inode_peek_iversion(inode));
1746	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1747	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1748	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1749	btrfs_set_stack_inode_block_group(inode_item, 0);
1750
1751	btrfs_set_stack_timespec_sec(&inode_item->atime,
1752				     inode->i_atime.tv_sec);
1753	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1754				      inode->i_atime.tv_nsec);
1755
1756	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1757				     inode->i_mtime.tv_sec);
1758	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1759				      inode->i_mtime.tv_nsec);
1760
1761	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1762				     inode->i_ctime.tv_sec);
1763	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1764				      inode->i_ctime.tv_nsec);
1765
1766	btrfs_set_stack_timespec_sec(&inode_item->otime,
1767				     BTRFS_I(inode)->i_otime.tv_sec);
1768	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1769				     BTRFS_I(inode)->i_otime.tv_nsec);
1770}
1771
1772int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1773{
1774	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1775	struct btrfs_delayed_node *delayed_node;
1776	struct btrfs_inode_item *inode_item;
 
1777
1778	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1779	if (!delayed_node)
1780		return -ENOENT;
1781
1782	mutex_lock(&delayed_node->mutex);
1783	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784		mutex_unlock(&delayed_node->mutex);
1785		btrfs_release_delayed_node(delayed_node);
1786		return -ENOENT;
1787	}
1788
1789	inode_item = &delayed_node->inode_item;
1790
1791	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1795			round_up(i_size_read(inode), fs_info->sectorsize));
1796	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1797	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1798	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1799	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1800        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1801
1802	inode_set_iversion_queried(inode,
1803				   btrfs_stack_inode_sequence(inode_item));
1804	inode->i_rdev = 0;
1805	*rdev = btrfs_stack_inode_rdev(inode_item);
1806	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1807
1808	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1809	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1810
1811	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1812	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1813
1814	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1815	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1816
1817	BTRFS_I(inode)->i_otime.tv_sec =
1818		btrfs_stack_timespec_sec(&inode_item->otime);
1819	BTRFS_I(inode)->i_otime.tv_nsec =
1820		btrfs_stack_timespec_nsec(&inode_item->otime);
1821
1822	inode->i_generation = BTRFS_I(inode)->generation;
1823	BTRFS_I(inode)->index_cnt = (u64)-1;
1824
1825	mutex_unlock(&delayed_node->mutex);
1826	btrfs_release_delayed_node(delayed_node);
1827	return 0;
1828}
1829
1830int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1831			       struct btrfs_root *root, struct inode *inode)
1832{
1833	struct btrfs_delayed_node *delayed_node;
1834	int ret = 0;
1835
1836	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1837	if (IS_ERR(delayed_node))
1838		return PTR_ERR(delayed_node);
1839
1840	mutex_lock(&delayed_node->mutex);
1841	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1842		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1843		goto release_node;
1844	}
1845
1846	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1847						   delayed_node);
1848	if (ret)
1849		goto release_node;
1850
1851	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1852	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1853	delayed_node->count++;
1854	atomic_inc(&root->fs_info->delayed_root->items);
1855release_node:
1856	mutex_unlock(&delayed_node->mutex);
1857	btrfs_release_delayed_node(delayed_node);
1858	return ret;
1859}
1860
1861int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1862{
1863	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1864	struct btrfs_delayed_node *delayed_node;
1865
1866	/*
1867	 * we don't do delayed inode updates during log recovery because it
1868	 * leads to enospc problems.  This means we also can't do
1869	 * delayed inode refs
1870	 */
1871	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1872		return -EAGAIN;
1873
1874	delayed_node = btrfs_get_or_create_delayed_node(inode);
1875	if (IS_ERR(delayed_node))
1876		return PTR_ERR(delayed_node);
1877
1878	/*
1879	 * We don't reserve space for inode ref deletion is because:
1880	 * - We ONLY do async inode ref deletion for the inode who has only
1881	 *   one link(i_nlink == 1), it means there is only one inode ref.
1882	 *   And in most case, the inode ref and the inode item are in the
1883	 *   same leaf, and we will deal with them at the same time.
1884	 *   Since we are sure we will reserve the space for the inode item,
1885	 *   it is unnecessary to reserve space for inode ref deletion.
1886	 * - If the inode ref and the inode item are not in the same leaf,
1887	 *   We also needn't worry about enospc problem, because we reserve
1888	 *   much more space for the inode update than it needs.
1889	 * - At the worst, we can steal some space from the global reservation.
1890	 *   It is very rare.
1891	 */
1892	mutex_lock(&delayed_node->mutex);
1893	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1894		goto release_node;
1895
1896	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1897	delayed_node->count++;
1898	atomic_inc(&fs_info->delayed_root->items);
1899release_node:
1900	mutex_unlock(&delayed_node->mutex);
1901	btrfs_release_delayed_node(delayed_node);
1902	return 0;
1903}
1904
1905static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1906{
1907	struct btrfs_root *root = delayed_node->root;
1908	struct btrfs_fs_info *fs_info = root->fs_info;
1909	struct btrfs_delayed_item *curr_item, *prev_item;
1910
1911	mutex_lock(&delayed_node->mutex);
1912	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1913	while (curr_item) {
1914		btrfs_delayed_item_release_metadata(root, curr_item);
1915		prev_item = curr_item;
1916		curr_item = __btrfs_next_delayed_item(prev_item);
1917		btrfs_release_delayed_item(prev_item);
1918	}
1919
1920	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1921	while (curr_item) {
1922		btrfs_delayed_item_release_metadata(root, curr_item);
1923		prev_item = curr_item;
1924		curr_item = __btrfs_next_delayed_item(prev_item);
1925		btrfs_release_delayed_item(prev_item);
1926	}
1927
1928	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1929		btrfs_release_delayed_iref(delayed_node);
1930
1931	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1932		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1933		btrfs_release_delayed_inode(delayed_node);
1934	}
1935	mutex_unlock(&delayed_node->mutex);
1936}
1937
1938void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1939{
1940	struct btrfs_delayed_node *delayed_node;
1941
1942	delayed_node = btrfs_get_delayed_node(inode);
1943	if (!delayed_node)
1944		return;
1945
1946	__btrfs_kill_delayed_node(delayed_node);
1947	btrfs_release_delayed_node(delayed_node);
1948}
1949
1950void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1951{
1952	u64 inode_id = 0;
1953	struct btrfs_delayed_node *delayed_nodes[8];
1954	int i, n;
1955
1956	while (1) {
1957		spin_lock(&root->inode_lock);
1958		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1959					   (void **)delayed_nodes, inode_id,
1960					   ARRAY_SIZE(delayed_nodes));
1961		if (!n) {
1962			spin_unlock(&root->inode_lock);
1963			break;
1964		}
1965
1966		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1967		for (i = 0; i < n; i++) {
1968			/*
1969			 * Don't increase refs in case the node is dead and
1970			 * about to be removed from the tree in the loop below
1971			 */
1972			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1973				delayed_nodes[i] = NULL;
1974		}
1975		spin_unlock(&root->inode_lock);
1976
1977		for (i = 0; i < n; i++) {
1978			if (!delayed_nodes[i])
1979				continue;
1980			__btrfs_kill_delayed_node(delayed_nodes[i]);
1981			btrfs_release_delayed_node(delayed_nodes[i]);
1982		}
1983	}
1984}
1985
1986void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1987{
 
1988	struct btrfs_delayed_node *curr_node, *prev_node;
1989
1990	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
 
 
1991	while (curr_node) {
1992		__btrfs_kill_delayed_node(curr_node);
1993
1994		prev_node = curr_node;
1995		curr_node = btrfs_next_delayed_node(curr_node);
1996		btrfs_release_delayed_node(prev_node);
1997	}
1998}
1999