Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
 
 
 
 
 
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24
  25#define BTRFS_DELAYED_WRITEBACK		400
  26#define BTRFS_DELAYED_BACKGROUND	100
 
 
 
 
 
 
 
  27
  28static struct kmem_cache *delayed_node_cache;
  29
  30int __init btrfs_delayed_inode_init(void)
  31{
  32	delayed_node_cache = kmem_cache_create("delayed_node",
  33					sizeof(struct btrfs_delayed_node),
  34					0,
  35					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  36					NULL);
  37	if (!delayed_node_cache)
  38		return -ENOMEM;
  39	return 0;
  40}
  41
  42void btrfs_delayed_inode_exit(void)
 
 
 
 
 
  43{
  44	if (delayed_node_cache)
  45		kmem_cache_destroy(delayed_node_cache);
 
 
 
 
 
  46}
  47
  48static inline void btrfs_init_delayed_node(
  49				struct btrfs_delayed_node *delayed_node,
  50				struct btrfs_root *root, u64 inode_id)
  51{
  52	delayed_node->root = root;
  53	delayed_node->inode_id = inode_id;
  54	atomic_set(&delayed_node->refs, 0);
  55	delayed_node->count = 0;
  56	delayed_node->in_list = 0;
  57	delayed_node->inode_dirty = 0;
  58	delayed_node->ins_root = RB_ROOT;
  59	delayed_node->del_root = RB_ROOT;
  60	mutex_init(&delayed_node->mutex);
  61	delayed_node->index_cnt = 0;
  62	INIT_LIST_HEAD(&delayed_node->n_list);
  63	INIT_LIST_HEAD(&delayed_node->p_list);
  64	delayed_node->bytes_reserved = 0;
  65}
  66
  67static inline int btrfs_is_continuous_delayed_item(
  68					struct btrfs_delayed_item *item1,
  69					struct btrfs_delayed_item *item2)
  70{
  71	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  72	    item1->key.objectid == item2->key.objectid &&
  73	    item1->key.type == item2->key.type &&
  74	    item1->key.offset + 1 == item2->key.offset)
  75		return 1;
  76	return 0;
  77}
  78
  79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  80							struct btrfs_root *root)
  81{
  82	return root->fs_info->delayed_root;
  83}
  84
  85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  86{
  87	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  88	struct btrfs_root *root = btrfs_inode->root;
  89	u64 ino = btrfs_ino(inode);
  90	struct btrfs_delayed_node *node;
  91
  92	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  93	if (node) {
  94		atomic_inc(&node->refs);
  95		return node;
  96	}
  97
  98	spin_lock(&root->inode_lock);
  99	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 
 100	if (node) {
 101		if (btrfs_inode->delayed_node) {
 102			atomic_inc(&node->refs);	/* can be accessed */
 103			BUG_ON(btrfs_inode->delayed_node != node);
 104			spin_unlock(&root->inode_lock);
 105			return node;
 106		}
 107		btrfs_inode->delayed_node = node;
 108		atomic_inc(&node->refs);	/* can be accessed */
 109		atomic_inc(&node->refs);	/* cached in the inode */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110		spin_unlock(&root->inode_lock);
 111		return node;
 112	}
 113	spin_unlock(&root->inode_lock);
 114
 115	return NULL;
 116}
 117
 118/* Will return either the node or PTR_ERR(-ENOMEM) */
 119static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 120							struct inode *inode)
 121{
 122	struct btrfs_delayed_node *node;
 123	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 124	struct btrfs_root *root = btrfs_inode->root;
 125	u64 ino = btrfs_ino(inode);
 126	int ret;
 
 127
 128again:
 129	node = btrfs_get_delayed_node(inode);
 130	if (node)
 131		return node;
 132
 133	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 134	if (!node)
 135		return ERR_PTR(-ENOMEM);
 136	btrfs_init_delayed_node(node, root, ino);
 137
 138	atomic_inc(&node->refs);	/* cached in the btrfs inode */
 139	atomic_inc(&node->refs);	/* can be accessed */
 140
 141	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 142	if (ret) {
 
 143		kmem_cache_free(delayed_node_cache, node);
 144		return ERR_PTR(ret);
 145	}
 146
 147	spin_lock(&root->inode_lock);
 148	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 149	if (ret == -EEXIST) {
 150		kmem_cache_free(delayed_node_cache, node);
 151		spin_unlock(&root->inode_lock);
 152		radix_tree_preload_end();
 
 153		goto again;
 154	}
 
 
 
 
 155	btrfs_inode->delayed_node = node;
 156	spin_unlock(&root->inode_lock);
 157	radix_tree_preload_end();
 158
 159	return node;
 160}
 161
 162/*
 163 * Call it when holding delayed_node->mutex
 164 *
 165 * If mod = 1, add this node into the prepared list.
 166 */
 167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 168				     struct btrfs_delayed_node *node,
 169				     int mod)
 170{
 171	spin_lock(&root->lock);
 172	if (node->in_list) {
 173		if (!list_empty(&node->p_list))
 174			list_move_tail(&node->p_list, &root->prepare_list);
 175		else if (mod)
 176			list_add_tail(&node->p_list, &root->prepare_list);
 177	} else {
 178		list_add_tail(&node->n_list, &root->node_list);
 179		list_add_tail(&node->p_list, &root->prepare_list);
 180		atomic_inc(&node->refs);	/* inserted into list */
 181		root->nodes++;
 182		node->in_list = 1;
 183	}
 184	spin_unlock(&root->lock);
 185}
 186
 187/* Call it when holding delayed_node->mutex */
 188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 189				       struct btrfs_delayed_node *node)
 190{
 191	spin_lock(&root->lock);
 192	if (node->in_list) {
 193		root->nodes--;
 194		atomic_dec(&node->refs);	/* not in the list */
 195		list_del_init(&node->n_list);
 196		if (!list_empty(&node->p_list))
 197			list_del_init(&node->p_list);
 198		node->in_list = 0;
 199	}
 200	spin_unlock(&root->lock);
 201}
 202
 203struct btrfs_delayed_node *btrfs_first_delayed_node(
 204			struct btrfs_delayed_root *delayed_root)
 205{
 206	struct list_head *p;
 207	struct btrfs_delayed_node *node = NULL;
 208
 209	spin_lock(&delayed_root->lock);
 210	if (list_empty(&delayed_root->node_list))
 211		goto out;
 212
 213	p = delayed_root->node_list.next;
 214	node = list_entry(p, struct btrfs_delayed_node, n_list);
 215	atomic_inc(&node->refs);
 216out:
 217	spin_unlock(&delayed_root->lock);
 218
 219	return node;
 220}
 221
 222struct btrfs_delayed_node *btrfs_next_delayed_node(
 223						struct btrfs_delayed_node *node)
 224{
 225	struct btrfs_delayed_root *delayed_root;
 226	struct list_head *p;
 227	struct btrfs_delayed_node *next = NULL;
 228
 229	delayed_root = node->root->fs_info->delayed_root;
 230	spin_lock(&delayed_root->lock);
 231	if (!node->in_list) {	/* not in the list */
 
 232		if (list_empty(&delayed_root->node_list))
 233			goto out;
 234		p = delayed_root->node_list.next;
 235	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 236		goto out;
 237	else
 238		p = node->n_list.next;
 239
 240	next = list_entry(p, struct btrfs_delayed_node, n_list);
 241	atomic_inc(&next->refs);
 242out:
 243	spin_unlock(&delayed_root->lock);
 244
 245	return next;
 246}
 247
 248static void __btrfs_release_delayed_node(
 249				struct btrfs_delayed_node *delayed_node,
 250				int mod)
 251{
 252	struct btrfs_delayed_root *delayed_root;
 253
 254	if (!delayed_node)
 255		return;
 256
 257	delayed_root = delayed_node->root->fs_info->delayed_root;
 258
 259	mutex_lock(&delayed_node->mutex);
 260	if (delayed_node->count)
 261		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 262	else
 263		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 264	mutex_unlock(&delayed_node->mutex);
 265
 266	if (atomic_dec_and_test(&delayed_node->refs)) {
 267		struct btrfs_root *root = delayed_node->root;
 
 268		spin_lock(&root->inode_lock);
 269		if (atomic_read(&delayed_node->refs) == 0) {
 270			radix_tree_delete(&root->delayed_nodes_tree,
 271					  delayed_node->inode_id);
 272			kmem_cache_free(delayed_node_cache, delayed_node);
 273		}
 
 274		spin_unlock(&root->inode_lock);
 
 275	}
 276}
 277
 278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 279{
 280	__btrfs_release_delayed_node(node, 0);
 281}
 282
 283struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 284					struct btrfs_delayed_root *delayed_root)
 285{
 286	struct list_head *p;
 287	struct btrfs_delayed_node *node = NULL;
 288
 289	spin_lock(&delayed_root->lock);
 290	if (list_empty(&delayed_root->prepare_list))
 291		goto out;
 292
 293	p = delayed_root->prepare_list.next;
 294	list_del_init(p);
 295	node = list_entry(p, struct btrfs_delayed_node, p_list);
 296	atomic_inc(&node->refs);
 297out:
 298	spin_unlock(&delayed_root->lock);
 299
 300	return node;
 301}
 302
 303static inline void btrfs_release_prepared_delayed_node(
 304					struct btrfs_delayed_node *node)
 305{
 306	__btrfs_release_delayed_node(node, 1);
 307}
 308
 309struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 
 
 310{
 311	struct btrfs_delayed_item *item;
 312	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 
 313	if (item) {
 314		item->data_len = data_len;
 315		item->ins_or_del = 0;
 316		item->bytes_reserved = 0;
 317		item->delayed_node = NULL;
 318		atomic_set(&item->refs, 1);
 
 
 
 319	}
 320	return item;
 321}
 322
 323/*
 324 * __btrfs_lookup_delayed_item - look up the delayed item by key
 
 325 * @delayed_node: pointer to the delayed node
 326 * @key:	  the key to look up
 327 * @prev:	  used to store the prev item if the right item isn't found
 328 * @next:	  used to store the next item if the right item isn't found
 329 *
 330 * Note: if we don't find the right item, we will return the prev item and
 331 * the next item.
 332 */
 333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 334				struct rb_root *root,
 335				struct btrfs_key *key,
 336				struct btrfs_delayed_item **prev,
 337				struct btrfs_delayed_item **next)
 338{
 339	struct rb_node *node, *prev_node = NULL;
 340	struct btrfs_delayed_item *delayed_item = NULL;
 341	int ret = 0;
 342
 343	node = root->rb_node;
 344
 345	while (node) {
 346		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 347					rb_node);
 348		prev_node = node;
 349		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 350		if (ret < 0)
 351			node = node->rb_right;
 352		else if (ret > 0)
 353			node = node->rb_left;
 354		else
 355			return delayed_item;
 356	}
 357
 358	if (prev) {
 359		if (!prev_node)
 360			*prev = NULL;
 361		else if (ret < 0)
 362			*prev = delayed_item;
 363		else if ((node = rb_prev(prev_node)) != NULL) {
 364			*prev = rb_entry(node, struct btrfs_delayed_item,
 365					 rb_node);
 366		} else
 367			*prev = NULL;
 368	}
 369
 370	if (next) {
 371		if (!prev_node)
 372			*next = NULL;
 373		else if (ret > 0)
 374			*next = delayed_item;
 375		else if ((node = rb_next(prev_node)) != NULL) {
 376			*next = rb_entry(node, struct btrfs_delayed_item,
 377					 rb_node);
 378		} else
 379			*next = NULL;
 380	}
 381	return NULL;
 382}
 383
 384struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 385					struct btrfs_delayed_node *delayed_node,
 386					struct btrfs_key *key)
 387{
 388	struct btrfs_delayed_item *item;
 389
 390	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 391					   NULL, NULL);
 392	return item;
 393}
 394
 395struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
 396					struct btrfs_delayed_node *delayed_node,
 397					struct btrfs_key *key)
 398{
 399	struct btrfs_delayed_item *item;
 400
 401	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 402					   NULL, NULL);
 403	return item;
 404}
 405
 406struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
 407					struct btrfs_delayed_node *delayed_node,
 408					struct btrfs_key *key)
 409{
 410	struct btrfs_delayed_item *item, *next;
 411
 412	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 413					   NULL, &next);
 414	if (!item)
 415		item = next;
 416
 417	return item;
 418}
 419
 420struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
 421					struct btrfs_delayed_node *delayed_node,
 422					struct btrfs_key *key)
 423{
 424	struct btrfs_delayed_item *item, *next;
 425
 426	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 427					   NULL, &next);
 428	if (!item)
 429		item = next;
 430
 431	return item;
 432}
 433
 434static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 435				    struct btrfs_delayed_item *ins,
 436				    int action)
 437{
 438	struct rb_node **p, *node;
 439	struct rb_node *parent_node = NULL;
 440	struct rb_root *root;
 441	struct btrfs_delayed_item *item;
 442	int cmp;
 443
 444	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 445		root = &delayed_node->ins_root;
 446	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 447		root = &delayed_node->del_root;
 448	else
 449		BUG();
 450	p = &root->rb_node;
 
 451	node = &ins->rb_node;
 452
 453	while (*p) {
 454		parent_node = *p;
 455		item = rb_entry(parent_node, struct btrfs_delayed_item,
 456				 rb_node);
 457
 458		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 459		if (cmp < 0)
 460			p = &(*p)->rb_right;
 461		else if (cmp > 0)
 
 462			p = &(*p)->rb_left;
 463		else
 464			return -EEXIST;
 
 465	}
 466
 467	rb_link_node(node, parent_node, p);
 468	rb_insert_color(node, root);
 469	ins->delayed_node = delayed_node;
 470	ins->ins_or_del = action;
 471
 472	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 473	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 474	    ins->key.offset >= delayed_node->index_cnt)
 475			delayed_node->index_cnt = ins->key.offset + 1;
 476
 477	delayed_node->count++;
 478	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 479	return 0;
 480}
 481
 482static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 483					      struct btrfs_delayed_item *item)
 484{
 485	return __btrfs_add_delayed_item(node, item,
 486					BTRFS_DELAYED_INSERTION_ITEM);
 487}
 488
 489static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 490					     struct btrfs_delayed_item *item)
 491{
 492	return __btrfs_add_delayed_item(node, item,
 493					BTRFS_DELAYED_DELETION_ITEM);
 494}
 495
 496static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 497{
 498	struct rb_root *root;
 
 499	struct btrfs_delayed_root *delayed_root;
 500
 501	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 
 
 
 
 
 502
 503	BUG_ON(!delayed_root);
 504	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 505	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 506
 507	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 508		root = &delayed_item->delayed_node->ins_root;
 509	else
 510		root = &delayed_item->delayed_node->del_root;
 511
 512	rb_erase(&delayed_item->rb_node, root);
 513	delayed_item->delayed_node->count--;
 514	atomic_dec(&delayed_root->items);
 515	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
 516	    waitqueue_active(&delayed_root->wait))
 517		wake_up(&delayed_root->wait);
 518}
 519
 520static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 521{
 522	if (item) {
 523		__btrfs_remove_delayed_item(item);
 524		if (atomic_dec_and_test(&item->refs))
 525			kfree(item);
 526	}
 527}
 528
 529struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 530					struct btrfs_delayed_node *delayed_node)
 531{
 532	struct rb_node *p;
 533	struct btrfs_delayed_item *item = NULL;
 534
 535	p = rb_first(&delayed_node->ins_root);
 536	if (p)
 537		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 538
 539	return item;
 540}
 541
 542struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 543					struct btrfs_delayed_node *delayed_node)
 544{
 545	struct rb_node *p;
 546	struct btrfs_delayed_item *item = NULL;
 547
 548	p = rb_first(&delayed_node->del_root);
 549	if (p)
 550		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 551
 552	return item;
 553}
 554
 555struct btrfs_delayed_item *__btrfs_next_delayed_item(
 556						struct btrfs_delayed_item *item)
 557{
 558	struct rb_node *p;
 559	struct btrfs_delayed_item *next = NULL;
 560
 561	p = rb_next(&item->rb_node);
 562	if (p)
 563		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 564
 565	return next;
 566}
 567
 568static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
 569						   u64 root_id)
 570{
 571	struct btrfs_key root_key;
 572
 573	if (root->objectid == root_id)
 574		return root;
 575
 576	root_key.objectid = root_id;
 577	root_key.type = BTRFS_ROOT_ITEM_KEY;
 578	root_key.offset = (u64)-1;
 579	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
 580}
 581
 582static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 583					       struct btrfs_root *root,
 584					       struct btrfs_delayed_item *item)
 585{
 586	struct btrfs_block_rsv *src_rsv;
 587	struct btrfs_block_rsv *dst_rsv;
 
 588	u64 num_bytes;
 589	int ret;
 590
 591	if (!trans->bytes_reserved)
 592		return 0;
 593
 594	src_rsv = trans->block_rsv;
 595	dst_rsv = &root->fs_info->delayed_block_rsv;
 596
 597	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 598	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 
 
 
 
 
 
 599	if (!ret) {
 600		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 601					      item->key.objectid,
 602					      num_bytes, 1);
 603		item->bytes_reserved = num_bytes;
 
 
 
 
 
 
 604	}
 605
 606	return ret;
 607}
 608
 609static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 610						struct btrfs_delayed_item *item)
 611{
 612	struct btrfs_block_rsv *rsv;
 
 613
 614	if (!item->bytes_reserved)
 615		return;
 616
 617	rsv = &root->fs_info->delayed_block_rsv;
 618	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 619				      item->key.objectid, item->bytes_reserved,
 620				      0);
 621	btrfs_block_rsv_release(root, rsv,
 622				item->bytes_reserved);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623}
 624
 625static int btrfs_delayed_inode_reserve_metadata(
 626					struct btrfs_trans_handle *trans,
 627					struct btrfs_root *root,
 628					struct inode *inode,
 629					struct btrfs_delayed_node *node)
 630{
 
 631	struct btrfs_block_rsv *src_rsv;
 632	struct btrfs_block_rsv *dst_rsv;
 633	u64 num_bytes;
 634	int ret;
 635	bool release = false;
 636
 637	src_rsv = trans->block_rsv;
 638	dst_rsv = &root->fs_info->delayed_block_rsv;
 639
 640	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 641
 642	/*
 643	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 644	 * which doesn't reserve space for speed.  This is a problem since we
 645	 * still need to reserve space for this update, so try to reserve the
 646	 * space.
 647	 *
 648	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 649	 * we're accounted for.
 650	 */
 651	if (!src_rsv || (!trans->bytes_reserved &&
 652	    src_rsv != &root->fs_info->delalloc_block_rsv)) {
 653		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 654		/*
 655		 * Since we're under a transaction reserve_metadata_bytes could
 656		 * try to commit the transaction which will make it return
 657		 * EAGAIN to make us stop the transaction we have, so return
 658		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 659		 */
 660		if (ret == -EAGAIN)
 661			ret = -ENOSPC;
 662		if (!ret) {
 663			node->bytes_reserved = num_bytes;
 664			trace_btrfs_space_reservation(root->fs_info,
 665						      "delayed_inode",
 666						      btrfs_ino(inode),
 667						      num_bytes, 1);
 668		}
 669		return ret;
 670	} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
 671		spin_lock(&BTRFS_I(inode)->lock);
 672		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 673				       &BTRFS_I(inode)->runtime_flags)) {
 674			spin_unlock(&BTRFS_I(inode)->lock);
 675			release = true;
 676			goto migrate;
 677		}
 678		spin_unlock(&BTRFS_I(inode)->lock);
 679
 680		/* Ok we didn't have space pre-reserved.  This shouldn't happen
 681		 * too often but it can happen if we do delalloc to an existing
 682		 * inode which gets dirtied because of the time update, and then
 683		 * isn't touched again until after the transaction commits and
 684		 * then we try to write out the data.  First try to be nice and
 685		 * reserve something strictly for us.  If not be a pain and try
 686		 * to steal from the delalloc block rsv.
 687		 */
 688		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 689		if (!ret)
 690			goto out;
 691
 692		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 693		if (!ret)
 694			goto out;
 695
 696		/*
 697		 * Ok this is a problem, let's just steal from the global rsv
 698		 * since this really shouldn't happen that often.
 699		 */
 700		WARN_ON(1);
 701		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
 702					      dst_rsv, num_bytes);
 703		goto out;
 704	}
 705
 706migrate:
 707	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 708
 709out:
 710	/*
 711	 * Migrate only takes a reservation, it doesn't touch the size of the
 712	 * block_rsv.  This is to simplify people who don't normally have things
 713	 * migrated from their block rsv.  If they go to release their
 714	 * reservation, that will decrease the size as well, so if migrate
 715	 * reduced size we'd end up with a negative size.  But for the
 716	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 717	 * but we could in fact do this reserve/migrate dance several times
 718	 * between the time we did the original reservation and we'd clean it
 719	 * up.  So to take care of this, release the space for the meta
 720	 * reservation here.  I think it may be time for a documentation page on
 721	 * how block rsvs. work.
 722	 */
 723	if (!ret) {
 724		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 725					      btrfs_ino(inode), num_bytes, 1);
 726		node->bytes_reserved = num_bytes;
 727	}
 728
 729	if (release) {
 730		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 731					      btrfs_ino(inode), num_bytes, 0);
 732		btrfs_block_rsv_release(root, src_rsv, num_bytes);
 733	}
 734
 735	return ret;
 736}
 737
 738static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 739						struct btrfs_delayed_node *node)
 
 740{
 741	struct btrfs_block_rsv *rsv;
 742
 743	if (!node->bytes_reserved)
 744		return;
 745
 746	rsv = &root->fs_info->delayed_block_rsv;
 747	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 748				      node->inode_id, node->bytes_reserved, 0);
 749	btrfs_block_rsv_release(root, rsv,
 
 
 
 
 
 750				node->bytes_reserved);
 751	node->bytes_reserved = 0;
 752}
 753
 754/*
 755 * This helper will insert some continuous items into the same leaf according
 756 * to the free space of the leaf.
 
 
 
 
 
 
 757 */
 758static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
 759				struct btrfs_root *root,
 760				struct btrfs_path *path,
 761				struct btrfs_delayed_item *item)
 762{
 763	struct btrfs_delayed_item *curr, *next;
 764	int free_space;
 765	int total_data_size = 0, total_size = 0;
 766	struct extent_buffer *leaf;
 767	char *data_ptr;
 768	struct btrfs_key *keys;
 769	u32 *data_size;
 770	struct list_head head;
 771	int slot;
 772	int nitems;
 773	int i;
 774	int ret = 0;
 775
 776	BUG_ON(!path->nodes[0]);
 777
 778	leaf = path->nodes[0];
 779	free_space = btrfs_leaf_free_space(root, leaf);
 780	INIT_LIST_HEAD(&head);
 781
 782	next = item;
 783	nitems = 0;
 
 
 
 
 
 
 
 
 
 784
 785	/*
 786	 * count the number of the continuous items that we can insert in batch
 
 
 
 787	 */
 788	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 789	       free_space) {
 790		total_data_size += next->data_len;
 791		total_size += next->data_len + sizeof(struct btrfs_item);
 792		list_add_tail(&next->tree_list, &head);
 793		nitems++;
 
 
 
 
 794
 795		curr = next;
 796		next = __btrfs_next_delayed_item(curr);
 797		if (!next)
 798			break;
 799
 800		if (!btrfs_is_continuous_delayed_item(curr, next))
 
 
 
 
 801			break;
 802	}
 803
 804	if (!nitems) {
 805		ret = 0;
 806		goto out;
 807	}
 808
 809	/*
 810	 * we need allocate some memory space, but it might cause the task
 811	 * to sleep, so we set all locked nodes in the path to blocking locks
 812	 * first.
 813	 */
 814	btrfs_set_path_blocking(path);
 815
 816	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
 817	if (!keys) {
 818		ret = -ENOMEM;
 819		goto out;
 
 820	}
 821
 822	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
 823	if (!data_size) {
 824		ret = -ENOMEM;
 825		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826	}
 827
 828	/* get keys of all the delayed items */
 829	i = 0;
 830	list_for_each_entry(next, &head, tree_list) {
 831		keys[i] = next->key;
 832		data_size[i] = next->data_len;
 833		i++;
 834	}
 835
 836	/* reset all the locked nodes in the patch to spinning locks. */
 837	btrfs_clear_path_blocking(path, NULL, 0);
 838
 839	/* insert the keys of the items */
 840	setup_items_for_insert(trans, root, path, keys, data_size,
 841			       total_data_size, total_size, nitems);
 
 
 842
 843	/* insert the dir index items */
 844	slot = path->slots[0];
 845	list_for_each_entry_safe(curr, next, &head, tree_list) {
 846		data_ptr = btrfs_item_ptr(leaf, slot, char);
 847		write_extent_buffer(leaf, &curr->data,
 848				    (unsigned long)data_ptr,
 849				    curr->data_len);
 850		slot++;
 851
 852		btrfs_delayed_item_release_metadata(root, curr);
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854		list_del(&curr->tree_list);
 855		btrfs_release_delayed_item(curr);
 856	}
 857
 858error:
 859	kfree(data_size);
 860	kfree(keys);
 861out:
 
 862	return ret;
 863}
 864
 865/*
 866 * This helper can just do simple insertion that needn't extend item for new
 867 * data, such as directory name index insertion, inode insertion.
 868 */
 869static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 870				     struct btrfs_root *root,
 871				     struct btrfs_path *path,
 872				     struct btrfs_delayed_item *delayed_item)
 873{
 874	struct extent_buffer *leaf;
 875	struct btrfs_item *item;
 876	char *ptr;
 877	int ret;
 878
 879	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 880				      delayed_item->data_len);
 881	if (ret < 0 && ret != -EEXIST)
 882		return ret;
 883
 884	leaf = path->nodes[0];
 885
 886	item = btrfs_item_nr(leaf, path->slots[0]);
 887	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 888
 889	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 890			    delayed_item->data_len);
 891	btrfs_mark_buffer_dirty(leaf);
 892
 893	btrfs_delayed_item_release_metadata(root, delayed_item);
 894	return 0;
 895}
 896
 897/*
 898 * we insert an item first, then if there are some continuous items, we try
 899 * to insert those items into the same leaf.
 900 */
 901static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 902				      struct btrfs_path *path,
 903				      struct btrfs_root *root,
 904				      struct btrfs_delayed_node *node)
 905{
 906	struct btrfs_delayed_item *curr, *prev;
 907	int ret = 0;
 908
 909do_again:
 910	mutex_lock(&node->mutex);
 911	curr = __btrfs_first_delayed_insertion_item(node);
 912	if (!curr)
 913		goto insert_end;
 914
 915	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 916	if (ret < 0) {
 917		btrfs_release_path(path);
 918		goto insert_end;
 919	}
 920
 921	prev = curr;
 922	curr = __btrfs_next_delayed_item(prev);
 923	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 924		/* insert the continuous items into the same leaf */
 925		path->slots[0]++;
 926		btrfs_batch_insert_items(trans, root, path, curr);
 927	}
 928	btrfs_release_delayed_item(prev);
 929	btrfs_mark_buffer_dirty(path->nodes[0]);
 930
 931	btrfs_release_path(path);
 932	mutex_unlock(&node->mutex);
 933	goto do_again;
 934
 935insert_end:
 936	mutex_unlock(&node->mutex);
 937	return ret;
 938}
 939
 940static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 941				    struct btrfs_root *root,
 942				    struct btrfs_path *path,
 943				    struct btrfs_delayed_item *item)
 944{
 
 
 945	struct btrfs_delayed_item *curr, *next;
 946	struct extent_buffer *leaf;
 947	struct btrfs_key key;
 948	struct list_head head;
 949	int nitems, i, last_item;
 950	int ret = 0;
 951
 952	BUG_ON(!path->nodes[0]);
 953
 954	leaf = path->nodes[0];
 
 
 
 
 
 
 
 
 
 
 
 
 955
 956	i = path->slots[0];
 957	last_item = btrfs_header_nritems(leaf) - 1;
 958	if (i > last_item)
 959		return -ENOENT;	/* FIXME: Is errno suitable? */
 960
 961	next = item;
 962	INIT_LIST_HEAD(&head);
 963	btrfs_item_key_to_cpu(leaf, &key, i);
 964	nitems = 0;
 965	/*
 966	 * count the number of the dir index items that we can delete in batch
 
 
 967	 */
 968	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 969		list_add_tail(&next->tree_list, &head);
 970		nitems++;
 971
 972		curr = next;
 973		next = __btrfs_next_delayed_item(curr);
 974		if (!next)
 975			break;
 976
 977		if (!btrfs_is_continuous_delayed_item(curr, next))
 978			break;
 979
 980		i++;
 981		if (i > last_item)
 982			break;
 983		btrfs_item_key_to_cpu(leaf, &key, i);
 
 
 
 984	}
 985
 986	if (!nitems)
 987		return 0;
 988
 989	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 990	if (ret)
 991		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	list_for_each_entry_safe(curr, next, &head, tree_list) {
 994		btrfs_delayed_item_release_metadata(root, curr);
 995		list_del(&curr->tree_list);
 996		btrfs_release_delayed_item(curr);
 997	}
 998
 999out:
1000	return ret;
1001}
1002
1003static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004				      struct btrfs_path *path,
1005				      struct btrfs_root *root,
1006				      struct btrfs_delayed_node *node)
1007{
1008	struct btrfs_delayed_item *curr, *prev;
1009	int ret = 0;
1010
1011do_again:
1012	mutex_lock(&node->mutex);
1013	curr = __btrfs_first_delayed_deletion_item(node);
1014	if (!curr)
1015		goto delete_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016
1017	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1018	if (ret < 0)
1019		goto delete_fail;
1020	else if (ret > 0) {
1021		/*
1022		 * can't find the item which the node points to, so this node
1023		 * is invalid, just drop it.
 
 
 
1024		 */
1025		prev = curr;
1026		curr = __btrfs_next_delayed_item(prev);
1027		btrfs_release_delayed_item(prev);
1028		ret = 0;
1029		btrfs_release_path(path);
1030		if (curr)
1031			goto do_again;
1032		else
1033			goto delete_fail;
1034	}
1035
1036	btrfs_batch_delete_items(trans, root, path, curr);
1037	btrfs_release_path(path);
1038	mutex_unlock(&node->mutex);
1039	goto do_again;
1040
1041delete_fail:
1042	btrfs_release_path(path);
1043	mutex_unlock(&node->mutex);
1044	return ret;
1045}
1046
1047static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048{
1049	struct btrfs_delayed_root *delayed_root;
1050
1051	if (delayed_node && delayed_node->inode_dirty) {
1052		BUG_ON(!delayed_node->root);
1053		delayed_node->inode_dirty = 0;
 
1054		delayed_node->count--;
1055
1056		delayed_root = delayed_node->root->fs_info->delayed_root;
1057		atomic_dec(&delayed_root->items);
1058		if (atomic_read(&delayed_root->items) <
1059		    BTRFS_DELAYED_BACKGROUND &&
1060		    waitqueue_active(&delayed_root->wait))
1061			wake_up(&delayed_root->wait);
1062	}
1063}
1064
1065static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066				      struct btrfs_root *root,
1067				      struct btrfs_path *path,
1068				      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069{
 
1070	struct btrfs_key key;
1071	struct btrfs_inode_item *inode_item;
1072	struct extent_buffer *leaf;
 
1073	int ret;
1074
1075	mutex_lock(&node->mutex);
1076	if (!node->inode_dirty) {
1077		mutex_unlock(&node->mutex);
1078		return 0;
1079	}
1080
1081	key.objectid = node->inode_id;
1082	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083	key.offset = 0;
1084	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1085	if (ret > 0) {
1086		btrfs_release_path(path);
1087		mutex_unlock(&node->mutex);
1088		return -ENOENT;
1089	} else if (ret < 0) {
1090		mutex_unlock(&node->mutex);
1091		return ret;
1092	}
1093
1094	btrfs_unlock_up_safe(path, 1);
 
 
 
 
 
 
 
 
 
 
1095	leaf = path->nodes[0];
1096	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097				    struct btrfs_inode_item);
1098	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099			    sizeof(struct btrfs_inode_item));
1100	btrfs_mark_buffer_dirty(leaf);
1101	btrfs_release_path(path);
 
 
1102
1103	btrfs_delayed_inode_release_metadata(root, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104	btrfs_release_delayed_inode(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105	mutex_unlock(&node->mutex);
 
 
1106
1107	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108}
1109
1110/*
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1115 */
1116int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117			    struct btrfs_root *root)
1118{
1119	struct btrfs_root *curr_root = root;
1120	struct btrfs_delayed_root *delayed_root;
1121	struct btrfs_delayed_node *curr_node, *prev_node;
1122	struct btrfs_path *path;
1123	struct btrfs_block_rsv *block_rsv;
1124	int ret = 0;
 
1125
1126	if (trans->aborted)
1127		return -EIO;
1128
1129	path = btrfs_alloc_path();
1130	if (!path)
1131		return -ENOMEM;
1132	path->leave_spinning = 1;
1133
1134	block_rsv = trans->block_rsv;
1135	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1136
1137	delayed_root = btrfs_get_delayed_root(root);
1138
1139	curr_node = btrfs_first_delayed_node(delayed_root);
1140	while (curr_node) {
1141		curr_root = curr_node->root;
1142		ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143						 curr_node);
1144		if (!ret)
1145			ret = btrfs_delete_delayed_items(trans, path,
1146						curr_root, curr_node);
1147		if (!ret)
1148			ret = btrfs_update_delayed_inode(trans, curr_root,
1149						path, curr_node);
1150		if (ret) {
1151			btrfs_release_delayed_node(curr_node);
1152			btrfs_abort_transaction(trans, root, ret);
1153			break;
1154		}
1155
1156		prev_node = curr_node;
1157		curr_node = btrfs_next_delayed_node(curr_node);
 
 
 
 
 
 
 
1158		btrfs_release_delayed_node(prev_node);
1159	}
1160
 
 
 
 
 
 
 
1161	btrfs_free_path(path);
 
 
 
1162	trans->block_rsv = block_rsv;
1163
1164	return ret;
1165}
1166
1167static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168					      struct btrfs_delayed_node *node)
1169{
 
 
 
 
 
 
 
 
 
 
 
 
1170	struct btrfs_path *path;
1171	struct btrfs_block_rsv *block_rsv;
1172	int ret;
1173
 
 
 
 
 
 
 
 
 
 
 
1174	path = btrfs_alloc_path();
1175	if (!path)
 
1176		return -ENOMEM;
1177	path->leave_spinning = 1;
1178
1179	block_rsv = trans->block_rsv;
1180	trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1181
1182	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183	if (!ret)
1184		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185	if (!ret)
1186		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187	btrfs_free_path(path);
1188
 
 
1189	trans->block_rsv = block_rsv;
 
1190	return ret;
1191}
1192
1193int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194				     struct inode *inode)
1195{
 
 
1196	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
 
 
1197	int ret;
1198
1199	if (!delayed_node)
1200		return 0;
1201
1202	mutex_lock(&delayed_node->mutex);
1203	if (!delayed_node->count) {
1204		mutex_unlock(&delayed_node->mutex);
1205		btrfs_release_delayed_node(delayed_node);
1206		return 0;
1207	}
1208	mutex_unlock(&delayed_node->mutex);
1209
1210	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	btrfs_release_delayed_node(delayed_node);
 
1212	return ret;
1213}
1214
1215void btrfs_remove_delayed_node(struct inode *inode)
1216{
1217	struct btrfs_delayed_node *delayed_node;
1218
1219	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220	if (!delayed_node)
1221		return;
1222
1223	BTRFS_I(inode)->delayed_node = NULL;
1224	btrfs_release_delayed_node(delayed_node);
1225}
1226
1227struct btrfs_async_delayed_node {
1228	struct btrfs_root *root;
1229	struct btrfs_delayed_node *delayed_node;
1230	struct btrfs_work work;
1231};
1232
1233static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1234{
1235	struct btrfs_async_delayed_node *async_node;
 
1236	struct btrfs_trans_handle *trans;
1237	struct btrfs_path *path;
1238	struct btrfs_delayed_node *delayed_node = NULL;
1239	struct btrfs_root *root;
1240	struct btrfs_block_rsv *block_rsv;
1241	unsigned long nr = 0;
1242	int need_requeue = 0;
1243	int ret;
1244
1245	async_node = container_of(work, struct btrfs_async_delayed_node, work);
 
1246
1247	path = btrfs_alloc_path();
1248	if (!path)
1249		goto out;
1250	path->leave_spinning = 1;
1251
1252	delayed_node = async_node->delayed_node;
1253	root = delayed_node->root;
 
 
 
 
 
 
1254
1255	trans = btrfs_join_transaction(root);
1256	if (IS_ERR(trans))
1257		goto free_path;
1258
1259	block_rsv = trans->block_rsv;
1260	trans->block_rsv = &root->fs_info->delayed_block_rsv;
 
 
 
 
 
1261
1262	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263	if (!ret)
1264		ret = btrfs_delete_delayed_items(trans, path, root,
1265						 delayed_node);
1266
1267	if (!ret)
1268		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1269
1270	/*
1271	 * Maybe new delayed items have been inserted, so we need requeue
1272	 * the work. Besides that, we must dequeue the empty delayed nodes
1273	 * to avoid the race between delayed items balance and the worker.
1274	 * The race like this:
1275	 * 	Task1				Worker thread
1276	 * 					count == 0, needn't requeue
1277	 * 					  also needn't insert the
1278	 * 					  delayed node into prepare
1279	 * 					  list again.
1280	 * 	add lots of delayed items
1281	 * 	queue the delayed node
1282	 * 	  already in the list,
1283	 * 	  and not in the prepare
1284	 * 	  list, it means the delayed
1285	 * 	  node is being dealt with
1286	 * 	  by the worker.
1287	 * 	do delayed items balance
1288	 * 	  the delayed node is being
1289	 * 	  dealt with by the worker
1290	 * 	  now, just wait.
1291	 * 	  				the worker goto idle.
1292	 * Task1 will sleep until the transaction is commited.
1293	 */
1294	mutex_lock(&delayed_node->mutex);
1295	if (delayed_node->count)
1296		need_requeue = 1;
1297	else
1298		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299					   delayed_node);
1300	mutex_unlock(&delayed_node->mutex);
1301
1302	nr = trans->blocks_used;
 
 
 
 
 
1303
1304	trans->block_rsv = block_rsv;
1305	btrfs_end_transaction_dmeta(trans, root);
1306	__btrfs_btree_balance_dirty(root, nr);
1307free_path:
1308	btrfs_free_path(path);
1309out:
1310	if (need_requeue)
1311		btrfs_requeue_work(&async_node->work);
1312	else {
1313		btrfs_release_prepared_delayed_node(delayed_node);
1314		kfree(async_node);
1315	}
1316}
1317
 
1318static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319				     struct btrfs_root *root, int all)
1320{
1321	struct btrfs_async_delayed_node *async_node;
1322	struct btrfs_delayed_node *curr;
1323	int count = 0;
1324
1325again:
1326	curr = btrfs_first_prepared_delayed_node(delayed_root);
1327	if (!curr)
1328		return 0;
1329
1330	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331	if (!async_node) {
1332		btrfs_release_prepared_delayed_node(curr);
1333		return -ENOMEM;
1334	}
1335
1336	async_node->root = root;
1337	async_node->delayed_node = curr;
1338
1339	async_node->work.func = btrfs_async_run_delayed_node_done;
1340	async_node->work.flags = 0;
1341
1342	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343	count++;
1344
1345	if (all || count < 4)
1346		goto again;
1347
 
1348	return 0;
1349}
1350
1351void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1352{
1353	struct btrfs_delayed_root *delayed_root;
1354	delayed_root = btrfs_get_delayed_root(root);
1355	WARN_ON(btrfs_first_delayed_node(delayed_root));
1356}
1357
1358void btrfs_balance_delayed_items(struct btrfs_root *root)
1359{
1360	struct btrfs_delayed_root *delayed_root;
1361
1362	delayed_root = btrfs_get_delayed_root(root);
 
1363
1364	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
 
 
 
 
 
 
 
 
 
 
 
1365		return;
1366
1367	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
 
1368		int ret;
1369		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
 
 
 
1370		if (ret)
1371			return;
1372
1373		wait_event_interruptible_timeout(
1374				delayed_root->wait,
1375				(atomic_read(&delayed_root->items) <
1376				 BTRFS_DELAYED_BACKGROUND),
1377				HZ);
1378		return;
1379	}
1380
1381	btrfs_wq_run_delayed_node(delayed_root, root, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382}
1383
1384/* Will return 0 or -ENOMEM */
1385int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386				   struct btrfs_root *root, const char *name,
1387				   int name_len, struct inode *dir,
1388				   struct btrfs_disk_key *disk_key, u8 type,
1389				   u64 index)
1390{
 
 
1391	struct btrfs_delayed_node *delayed_node;
1392	struct btrfs_delayed_item *delayed_item;
1393	struct btrfs_dir_item *dir_item;
 
 
1394	int ret;
1395
1396	delayed_node = btrfs_get_or_create_delayed_node(dir);
1397	if (IS_ERR(delayed_node))
1398		return PTR_ERR(delayed_node);
1399
1400	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
 
 
1401	if (!delayed_item) {
1402		ret = -ENOMEM;
1403		goto release_node;
1404	}
1405
1406	delayed_item->key.objectid = btrfs_ino(dir);
1407	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408	delayed_item->key.offset = index;
1409
1410	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411	dir_item->location = *disk_key;
1412	dir_item->transid = cpu_to_le64(trans->transid);
1413	dir_item->data_len = 0;
1414	dir_item->name_len = cpu_to_le16(name_len);
1415	dir_item->type = type;
1416	memcpy((char *)(dir_item + 1), name, name_len);
1417
1418	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
 
 
 
1419	/*
1420	 * we have reserved enough space when we start a new transaction,
1421	 * so reserving metadata failure is impossible
 
 
 
 
1422	 */
1423	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
1424
 
 
 
 
 
 
 
 
1425
1426	mutex_lock(&delayed_node->mutex);
1427	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428	if (unlikely(ret)) {
1429		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430				"the insertion tree of the delayed node"
1431				"(root id: %llu, inode id: %llu, errno: %d)\n",
1432				name,
1433				(unsigned long long)delayed_node->root->objectid,
1434				(unsigned long long)delayed_node->inode_id,
1435				ret);
1436		BUG();
 
 
 
 
 
1437	}
1438	mutex_unlock(&delayed_node->mutex);
1439
1440release_node:
1441	btrfs_release_delayed_node(delayed_node);
1442	return ret;
1443}
1444
1445static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446					       struct btrfs_delayed_node *node,
1447					       struct btrfs_key *key)
1448{
1449	struct btrfs_delayed_item *item;
1450
1451	mutex_lock(&node->mutex);
1452	item = __btrfs_lookup_delayed_insertion_item(node, key);
1453	if (!item) {
1454		mutex_unlock(&node->mutex);
1455		return 1;
1456	}
1457
1458	btrfs_delayed_item_release_metadata(root, item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459	btrfs_release_delayed_item(item);
 
 
 
 
 
 
 
1460	mutex_unlock(&node->mutex);
1461	return 0;
1462}
1463
1464int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465				   struct btrfs_root *root, struct inode *dir,
1466				   u64 index)
1467{
1468	struct btrfs_delayed_node *node;
1469	struct btrfs_delayed_item *item;
1470	struct btrfs_key item_key;
1471	int ret;
1472
1473	node = btrfs_get_or_create_delayed_node(dir);
1474	if (IS_ERR(node))
1475		return PTR_ERR(node);
1476
1477	item_key.objectid = btrfs_ino(dir);
1478	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479	item_key.offset = index;
1480
1481	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1482	if (!ret)
1483		goto end;
1484
1485	item = btrfs_alloc_delayed_item(0);
1486	if (!item) {
1487		ret = -ENOMEM;
1488		goto end;
1489	}
1490
1491	item->key = item_key;
1492
1493	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1494	/*
1495	 * we have reserved enough space when we start a new transaction,
1496	 * so reserving metadata failure is impossible.
1497	 */
1498	BUG_ON(ret);
 
 
 
 
 
1499
1500	mutex_lock(&node->mutex);
1501	ret = __btrfs_add_delayed_deletion_item(node, item);
1502	if (unlikely(ret)) {
1503		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504				"into the deletion tree of the delayed node"
1505				"(root id: %llu, inode id: %llu, errno: %d)\n",
1506				(unsigned long long)index,
1507				(unsigned long long)node->root->objectid,
1508				(unsigned long long)node->inode_id,
1509				ret);
1510		BUG();
1511	}
1512	mutex_unlock(&node->mutex);
1513end:
1514	btrfs_release_delayed_node(node);
1515	return ret;
1516}
1517
1518int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1519{
1520	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1521
1522	if (!delayed_node)
1523		return -ENOENT;
1524
1525	/*
1526	 * Since we have held i_mutex of this directory, it is impossible that
1527	 * a new directory index is added into the delayed node and index_cnt
1528	 * is updated now. So we needn't lock the delayed node.
1529	 */
1530	if (!delayed_node->index_cnt) {
1531		btrfs_release_delayed_node(delayed_node);
1532		return -EINVAL;
1533	}
1534
1535	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536	btrfs_release_delayed_node(delayed_node);
1537	return 0;
1538}
1539
1540void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541			     struct list_head *del_list)
 
 
1542{
1543	struct btrfs_delayed_node *delayed_node;
1544	struct btrfs_delayed_item *item;
1545
1546	delayed_node = btrfs_get_delayed_node(inode);
1547	if (!delayed_node)
1548		return;
 
 
 
 
 
 
 
1549
1550	mutex_lock(&delayed_node->mutex);
1551	item = __btrfs_first_delayed_insertion_item(delayed_node);
1552	while (item) {
1553		atomic_inc(&item->refs);
1554		list_add_tail(&item->readdir_list, ins_list);
1555		item = __btrfs_next_delayed_item(item);
1556	}
1557
1558	item = __btrfs_first_delayed_deletion_item(delayed_node);
1559	while (item) {
1560		atomic_inc(&item->refs);
1561		list_add_tail(&item->readdir_list, del_list);
1562		item = __btrfs_next_delayed_item(item);
1563	}
1564	mutex_unlock(&delayed_node->mutex);
1565	/*
1566	 * This delayed node is still cached in the btrfs inode, so refs
1567	 * must be > 1 now, and we needn't check it is going to be freed
1568	 * or not.
1569	 *
1570	 * Besides that, this function is used to read dir, we do not
1571	 * insert/delete delayed items in this period. So we also needn't
1572	 * requeue or dequeue this delayed node.
1573	 */
1574	atomic_dec(&delayed_node->refs);
 
 
1575}
1576
1577void btrfs_put_delayed_items(struct list_head *ins_list,
1578			     struct list_head *del_list)
 
1579{
1580	struct btrfs_delayed_item *curr, *next;
1581
1582	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583		list_del(&curr->readdir_list);
1584		if (atomic_dec_and_test(&curr->refs))
1585			kfree(curr);
1586	}
1587
1588	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589		list_del(&curr->readdir_list);
1590		if (atomic_dec_and_test(&curr->refs))
1591			kfree(curr);
1592	}
 
 
 
 
 
 
1593}
1594
1595int btrfs_should_delete_dir_index(struct list_head *del_list,
1596				  u64 index)
1597{
1598	struct btrfs_delayed_item *curr, *next;
1599	int ret;
1600
1601	if (list_empty(del_list))
1602		return 0;
1603
1604	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605		if (curr->key.offset > index)
1606			break;
1607
1608		list_del(&curr->readdir_list);
1609		ret = (curr->key.offset == index);
1610
1611		if (atomic_dec_and_test(&curr->refs))
1612			kfree(curr);
1613
1614		if (ret)
1615			return 1;
1616		else
1617			continue;
1618	}
1619	return 0;
1620}
1621
1622/*
1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1624 *
1625 */
1626int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627				    filldir_t filldir,
1628				    struct list_head *ins_list)
1629{
1630	struct btrfs_dir_item *di;
1631	struct btrfs_delayed_item *curr, *next;
1632	struct btrfs_key location;
1633	char *name;
1634	int name_len;
1635	int over = 0;
1636	unsigned char d_type;
1637
1638	if (list_empty(ins_list))
1639		return 0;
1640
1641	/*
1642	 * Changing the data of the delayed item is impossible. So
1643	 * we needn't lock them. And we have held i_mutex of the
1644	 * directory, nobody can delete any directory indexes now.
1645	 */
1646	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647		list_del(&curr->readdir_list);
1648
1649		if (curr->key.offset < filp->f_pos) {
1650			if (atomic_dec_and_test(&curr->refs))
1651				kfree(curr);
1652			continue;
1653		}
1654
1655		filp->f_pos = curr->key.offset;
1656
1657		di = (struct btrfs_dir_item *)curr->data;
1658		name = (char *)(di + 1);
1659		name_len = le16_to_cpu(di->name_len);
1660
1661		d_type = btrfs_filetype_table[di->type];
1662		btrfs_disk_key_to_cpu(&location, &di->location);
1663
1664		over = filldir(dirent, name, name_len, curr->key.offset,
1665			       location.objectid, d_type);
1666
1667		if (atomic_dec_and_test(&curr->refs))
1668			kfree(curr);
1669
1670		if (over)
1671			return 1;
 
1672	}
1673	return 0;
1674}
1675
1676BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677			 generation, 64);
1678BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679			 sequence, 64);
1680BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681			 transid, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684			 nbytes, 64);
1685BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686			 block_group, 64);
1687BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1693
1694BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1696
1697static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698				  struct btrfs_inode_item *inode_item,
1699				  struct inode *inode)
1700{
1701	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
 
 
1703	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707	btrfs_set_stack_inode_generation(inode_item,
1708					 BTRFS_I(inode)->generation);
1709	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
 
1710	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
 
 
1713	btrfs_set_stack_inode_block_group(inode_item, 0);
1714
1715	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716				     inode->i_atime.tv_sec);
1717	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718				      inode->i_atime.tv_nsec);
1719
1720	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721				     inode->i_mtime.tv_sec);
1722	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723				      inode->i_mtime.tv_nsec);
1724
1725	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726				     inode->i_ctime.tv_sec);
1727	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728				      inode->i_ctime.tv_nsec);
 
 
 
1729}
1730
1731int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1732{
 
1733	struct btrfs_delayed_node *delayed_node;
1734	struct btrfs_inode_item *inode_item;
1735	struct btrfs_timespec *tspec;
1736
1737	delayed_node = btrfs_get_delayed_node(inode);
1738	if (!delayed_node)
1739		return -ENOENT;
1740
1741	mutex_lock(&delayed_node->mutex);
1742	if (!delayed_node->inode_dirty) {
1743		mutex_unlock(&delayed_node->mutex);
1744		btrfs_release_delayed_node(delayed_node);
1745		return -ENOENT;
1746	}
1747
1748	inode_item = &delayed_node->inode_item;
1749
1750	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
 
 
1753	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757	inode->i_version = btrfs_stack_inode_sequence(inode_item);
 
 
 
1758	inode->i_rdev = 0;
1759	*rdev = btrfs_stack_inode_rdev(inode_item);
1760	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
 
 
 
 
1761
1762	tspec = btrfs_inode_atime(inode_item);
1763	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1765
1766	tspec = btrfs_inode_mtime(inode_item);
1767	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1769
1770	tspec = btrfs_inode_ctime(inode_item);
1771	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1773
1774	inode->i_generation = BTRFS_I(inode)->generation;
1775	BTRFS_I(inode)->index_cnt = (u64)-1;
1776
1777	mutex_unlock(&delayed_node->mutex);
1778	btrfs_release_delayed_node(delayed_node);
1779	return 0;
1780}
1781
1782int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783			       struct btrfs_root *root, struct inode *inode)
1784{
 
1785	struct btrfs_delayed_node *delayed_node;
1786	int ret = 0;
1787
1788	delayed_node = btrfs_get_or_create_delayed_node(inode);
1789	if (IS_ERR(delayed_node))
1790		return PTR_ERR(delayed_node);
1791
1792	mutex_lock(&delayed_node->mutex);
1793	if (delayed_node->inode_dirty) {
1794		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
 
1795		goto release_node;
1796	}
1797
1798	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799						   delayed_node);
1800	if (ret)
1801		goto release_node;
1802
1803	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804	delayed_node->inode_dirty = 1;
1805	delayed_node->count++;
1806	atomic_inc(&root->fs_info->delayed_root->items);
1807release_node:
1808	mutex_unlock(&delayed_node->mutex);
1809	btrfs_release_delayed_node(delayed_node);
1810	return ret;
1811}
1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1814{
1815	struct btrfs_root *root = delayed_node->root;
 
1816	struct btrfs_delayed_item *curr_item, *prev_item;
1817
1818	mutex_lock(&delayed_node->mutex);
1819	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820	while (curr_item) {
1821		btrfs_delayed_item_release_metadata(root, curr_item);
1822		prev_item = curr_item;
1823		curr_item = __btrfs_next_delayed_item(prev_item);
1824		btrfs_release_delayed_item(prev_item);
1825	}
1826
 
 
 
 
 
 
1827	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828	while (curr_item) {
1829		btrfs_delayed_item_release_metadata(root, curr_item);
1830		prev_item = curr_item;
1831		curr_item = __btrfs_next_delayed_item(prev_item);
1832		btrfs_release_delayed_item(prev_item);
1833	}
1834
1835	if (delayed_node->inode_dirty) {
1836		btrfs_delayed_inode_release_metadata(root, delayed_node);
 
 
1837		btrfs_release_delayed_inode(delayed_node);
1838	}
1839	mutex_unlock(&delayed_node->mutex);
1840}
1841
1842void btrfs_kill_delayed_inode_items(struct inode *inode)
1843{
1844	struct btrfs_delayed_node *delayed_node;
1845
1846	delayed_node = btrfs_get_delayed_node(inode);
1847	if (!delayed_node)
1848		return;
1849
1850	__btrfs_kill_delayed_node(delayed_node);
1851	btrfs_release_delayed_node(delayed_node);
1852}
1853
1854void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1855{
1856	u64 inode_id = 0;
1857	struct btrfs_delayed_node *delayed_nodes[8];
1858	int i, n;
1859
1860	while (1) {
 
 
 
1861		spin_lock(&root->inode_lock);
1862		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863					   (void **)delayed_nodes, inode_id,
1864					   ARRAY_SIZE(delayed_nodes));
1865		if (!n) {
1866			spin_unlock(&root->inode_lock);
1867			break;
1868		}
1869
1870		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1871
1872		for (i = 0; i < n; i++)
1873			atomic_inc(&delayed_nodes[i]->refs);
 
 
 
 
 
 
 
 
 
1874		spin_unlock(&root->inode_lock);
 
1875
1876		for (i = 0; i < n; i++) {
1877			__btrfs_kill_delayed_node(delayed_nodes[i]);
1878			btrfs_release_delayed_node(delayed_nodes[i]);
1879		}
1880	}
1881}
1882
1883void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1884{
1885	struct btrfs_delayed_root *delayed_root;
1886	struct btrfs_delayed_node *curr_node, *prev_node;
1887
1888	delayed_root = btrfs_get_delayed_root(root);
1889
1890	curr_node = btrfs_first_delayed_node(delayed_root);
1891	while (curr_node) {
1892		__btrfs_kill_delayed_node(curr_node);
1893
1894		prev_node = curr_node;
1895		curr_node = btrfs_next_delayed_node(curr_node);
1896		btrfs_release_delayed_node(prev_node);
1897	}
1898}
1899
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include "ctree.h"
  10#include "fs.h"
  11#include "messages.h"
  12#include "misc.h"
  13#include "delayed-inode.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "qgroup.h"
  17#include "locking.h"
  18#include "inode-item.h"
  19#include "space-info.h"
  20#include "accessors.h"
  21#include "file-item.h"
  22
  23#define BTRFS_DELAYED_WRITEBACK		512
  24#define BTRFS_DELAYED_BACKGROUND	128
  25#define BTRFS_DELAYED_BATCH		16
  26
  27static struct kmem_cache *delayed_node_cache;
  28
  29int __init btrfs_delayed_inode_init(void)
  30{
  31	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
 
 
 
 
  32	if (!delayed_node_cache)
  33		return -ENOMEM;
  34	return 0;
  35}
  36
  37void __cold btrfs_delayed_inode_exit(void)
  38{
  39	kmem_cache_destroy(delayed_node_cache);
  40}
  41
  42void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
  43{
  44	atomic_set(&delayed_root->items, 0);
  45	atomic_set(&delayed_root->items_seq, 0);
  46	delayed_root->nodes = 0;
  47	spin_lock_init(&delayed_root->lock);
  48	init_waitqueue_head(&delayed_root->wait);
  49	INIT_LIST_HEAD(&delayed_root->node_list);
  50	INIT_LIST_HEAD(&delayed_root->prepare_list);
  51}
  52
  53static inline void btrfs_init_delayed_node(
  54				struct btrfs_delayed_node *delayed_node,
  55				struct btrfs_root *root, u64 inode_id)
  56{
  57	delayed_node->root = root;
  58	delayed_node->inode_id = inode_id;
  59	refcount_set(&delayed_node->refs, 0);
  60	delayed_node->ins_root = RB_ROOT_CACHED;
  61	delayed_node->del_root = RB_ROOT_CACHED;
 
 
 
  62	mutex_init(&delayed_node->mutex);
 
  63	INIT_LIST_HEAD(&delayed_node->n_list);
  64	INIT_LIST_HEAD(&delayed_node->p_list);
 
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68		struct btrfs_inode *btrfs_inode)
 
  69{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70	struct btrfs_root *root = btrfs_inode->root;
  71	u64 ino = btrfs_ino(btrfs_inode);
  72	struct btrfs_delayed_node *node;
  73
  74	node = READ_ONCE(btrfs_inode->delayed_node);
  75	if (node) {
  76		refcount_inc(&node->refs);
  77		return node;
  78	}
  79
  80	spin_lock(&root->inode_lock);
  81	node = xa_load(&root->delayed_nodes, ino);
  82
  83	if (node) {
  84		if (btrfs_inode->delayed_node) {
  85			refcount_inc(&node->refs);	/* can be accessed */
  86			BUG_ON(btrfs_inode->delayed_node != node);
  87			spin_unlock(&root->inode_lock);
  88			return node;
  89		}
  90
  91		/*
  92		 * It's possible that we're racing into the middle of removing
  93		 * this node from the xarray.  In this case, the refcount
  94		 * was zero and it should never go back to one.  Just return
  95		 * NULL like it was never in the xarray at all; our release
  96		 * function is in the process of removing it.
  97		 *
  98		 * Some implementations of refcount_inc refuse to bump the
  99		 * refcount once it has hit zero.  If we don't do this dance
 100		 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101		 * of actually bumping the refcount.
 102		 *
 103		 * If this node is properly in the xarray, we want to bump the
 104		 * refcount twice, once for the inode and once for this get
 105		 * operation.
 106		 */
 107		if (refcount_inc_not_zero(&node->refs)) {
 108			refcount_inc(&node->refs);
 109			btrfs_inode->delayed_node = node;
 110		} else {
 111			node = NULL;
 112		}
 113
 114		spin_unlock(&root->inode_lock);
 115		return node;
 116	}
 117	spin_unlock(&root->inode_lock);
 118
 119	return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124		struct btrfs_inode *btrfs_inode)
 125{
 126	struct btrfs_delayed_node *node;
 
 127	struct btrfs_root *root = btrfs_inode->root;
 128	u64 ino = btrfs_ino(btrfs_inode);
 129	int ret;
 130	void *ptr;
 131
 132again:
 133	node = btrfs_get_delayed_node(btrfs_inode);
 134	if (node)
 135		return node;
 136
 137	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 138	if (!node)
 139		return ERR_PTR(-ENOMEM);
 140	btrfs_init_delayed_node(node, root, ino);
 141
 142	/* Cached in the inode and can be accessed. */
 143	refcount_set(&node->refs, 2);
 144
 145	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
 146	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
 147	if (ret == -ENOMEM) {
 148		kmem_cache_free(delayed_node_cache, node);
 149		return ERR_PTR(-ENOMEM);
 150	}
 
 151	spin_lock(&root->inode_lock);
 152	ptr = xa_load(&root->delayed_nodes, ino);
 153	if (ptr) {
 154		/* Somebody inserted it, go back and read it. */
 155		spin_unlock(&root->inode_lock);
 156		kmem_cache_free(delayed_node_cache, node);
 157		node = NULL;
 158		goto again;
 159	}
 160	ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
 161	ASSERT(xa_err(ptr) != -EINVAL);
 162	ASSERT(xa_err(ptr) != -ENOMEM);
 163	ASSERT(ptr == NULL);
 164	btrfs_inode->delayed_node = node;
 165	spin_unlock(&root->inode_lock);
 
 166
 167	return node;
 168}
 169
 170/*
 171 * Call it when holding delayed_node->mutex
 172 *
 173 * If mod = 1, add this node into the prepared list.
 174 */
 175static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 176				     struct btrfs_delayed_node *node,
 177				     int mod)
 178{
 179	spin_lock(&root->lock);
 180	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 181		if (!list_empty(&node->p_list))
 182			list_move_tail(&node->p_list, &root->prepare_list);
 183		else if (mod)
 184			list_add_tail(&node->p_list, &root->prepare_list);
 185	} else {
 186		list_add_tail(&node->n_list, &root->node_list);
 187		list_add_tail(&node->p_list, &root->prepare_list);
 188		refcount_inc(&node->refs);	/* inserted into list */
 189		root->nodes++;
 190		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 191	}
 192	spin_unlock(&root->lock);
 193}
 194
 195/* Call it when holding delayed_node->mutex */
 196static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 197				       struct btrfs_delayed_node *node)
 198{
 199	spin_lock(&root->lock);
 200	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 201		root->nodes--;
 202		refcount_dec(&node->refs);	/* not in the list */
 203		list_del_init(&node->n_list);
 204		if (!list_empty(&node->p_list))
 205			list_del_init(&node->p_list);
 206		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 207	}
 208	spin_unlock(&root->lock);
 209}
 210
 211static struct btrfs_delayed_node *btrfs_first_delayed_node(
 212			struct btrfs_delayed_root *delayed_root)
 213{
 214	struct list_head *p;
 215	struct btrfs_delayed_node *node = NULL;
 216
 217	spin_lock(&delayed_root->lock);
 218	if (list_empty(&delayed_root->node_list))
 219		goto out;
 220
 221	p = delayed_root->node_list.next;
 222	node = list_entry(p, struct btrfs_delayed_node, n_list);
 223	refcount_inc(&node->refs);
 224out:
 225	spin_unlock(&delayed_root->lock);
 226
 227	return node;
 228}
 229
 230static struct btrfs_delayed_node *btrfs_next_delayed_node(
 231						struct btrfs_delayed_node *node)
 232{
 233	struct btrfs_delayed_root *delayed_root;
 234	struct list_head *p;
 235	struct btrfs_delayed_node *next = NULL;
 236
 237	delayed_root = node->root->fs_info->delayed_root;
 238	spin_lock(&delayed_root->lock);
 239	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 240		/* not in the list */
 241		if (list_empty(&delayed_root->node_list))
 242			goto out;
 243		p = delayed_root->node_list.next;
 244	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 245		goto out;
 246	else
 247		p = node->n_list.next;
 248
 249	next = list_entry(p, struct btrfs_delayed_node, n_list);
 250	refcount_inc(&next->refs);
 251out:
 252	spin_unlock(&delayed_root->lock);
 253
 254	return next;
 255}
 256
 257static void __btrfs_release_delayed_node(
 258				struct btrfs_delayed_node *delayed_node,
 259				int mod)
 260{
 261	struct btrfs_delayed_root *delayed_root;
 262
 263	if (!delayed_node)
 264		return;
 265
 266	delayed_root = delayed_node->root->fs_info->delayed_root;
 267
 268	mutex_lock(&delayed_node->mutex);
 269	if (delayed_node->count)
 270		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 271	else
 272		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 273	mutex_unlock(&delayed_node->mutex);
 274
 275	if (refcount_dec_and_test(&delayed_node->refs)) {
 276		struct btrfs_root *root = delayed_node->root;
 277
 278		spin_lock(&root->inode_lock);
 279		/*
 280		 * Once our refcount goes to zero, nobody is allowed to bump it
 281		 * back up.  We can delete it now.
 282		 */
 283		ASSERT(refcount_read(&delayed_node->refs) == 0);
 284		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
 285		spin_unlock(&root->inode_lock);
 286		kmem_cache_free(delayed_node_cache, delayed_node);
 287	}
 288}
 289
 290static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 291{
 292	__btrfs_release_delayed_node(node, 0);
 293}
 294
 295static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 296					struct btrfs_delayed_root *delayed_root)
 297{
 298	struct list_head *p;
 299	struct btrfs_delayed_node *node = NULL;
 300
 301	spin_lock(&delayed_root->lock);
 302	if (list_empty(&delayed_root->prepare_list))
 303		goto out;
 304
 305	p = delayed_root->prepare_list.next;
 306	list_del_init(p);
 307	node = list_entry(p, struct btrfs_delayed_node, p_list);
 308	refcount_inc(&node->refs);
 309out:
 310	spin_unlock(&delayed_root->lock);
 311
 312	return node;
 313}
 314
 315static inline void btrfs_release_prepared_delayed_node(
 316					struct btrfs_delayed_node *node)
 317{
 318	__btrfs_release_delayed_node(node, 1);
 319}
 320
 321static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
 322					   struct btrfs_delayed_node *node,
 323					   enum btrfs_delayed_item_type type)
 324{
 325	struct btrfs_delayed_item *item;
 326
 327	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
 328	if (item) {
 329		item->data_len = data_len;
 330		item->type = type;
 331		item->bytes_reserved = 0;
 332		item->delayed_node = node;
 333		RB_CLEAR_NODE(&item->rb_node);
 334		INIT_LIST_HEAD(&item->log_list);
 335		item->logged = false;
 336		refcount_set(&item->refs, 1);
 337	}
 338	return item;
 339}
 340
 341/*
 342 * Look up the delayed item by key.
 343 *
 344 * @delayed_node: pointer to the delayed node
 345 * @index:	  the dir index value to lookup (offset of a dir index key)
 
 
 346 *
 347 * Note: if we don't find the right item, we will return the prev item and
 348 * the next item.
 349 */
 350static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 351				struct rb_root *root,
 352				u64 index)
 
 
 353{
 354	struct rb_node *node = root->rb_node;
 355	struct btrfs_delayed_item *delayed_item = NULL;
 
 
 
 356
 357	while (node) {
 358		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 359					rb_node);
 360		if (delayed_item->index < index)
 
 
 361			node = node->rb_right;
 362		else if (delayed_item->index > index)
 363			node = node->rb_left;
 364		else
 365			return delayed_item;
 366	}
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	return NULL;
 369}
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 372				    struct btrfs_delayed_item *ins)
 
 373{
 374	struct rb_node **p, *node;
 375	struct rb_node *parent_node = NULL;
 376	struct rb_root_cached *root;
 377	struct btrfs_delayed_item *item;
 378	bool leftmost = true;
 379
 380	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
 381		root = &delayed_node->ins_root;
 
 
 382	else
 383		root = &delayed_node->del_root;
 384
 385	p = &root->rb_root.rb_node;
 386	node = &ins->rb_node;
 387
 388	while (*p) {
 389		parent_node = *p;
 390		item = rb_entry(parent_node, struct btrfs_delayed_item,
 391				 rb_node);
 392
 393		if (item->index < ins->index) {
 
 394			p = &(*p)->rb_right;
 395			leftmost = false;
 396		} else if (item->index > ins->index) {
 397			p = &(*p)->rb_left;
 398		} else {
 399			return -EEXIST;
 400		}
 401	}
 402
 403	rb_link_node(node, parent_node, p);
 404	rb_insert_color_cached(node, root, leftmost);
 405
 406	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
 407	    ins->index >= delayed_node->index_cnt)
 408		delayed_node->index_cnt = ins->index + 1;
 
 
 
 409
 410	delayed_node->count++;
 411	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 412	return 0;
 413}
 414
 415static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 
 416{
 417	int seq = atomic_inc_return(&delayed_root->items_seq);
 
 
 418
 419	/* atomic_dec_return implies a barrier */
 420	if ((atomic_dec_return(&delayed_root->items) <
 421	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 422		cond_wake_up_nomb(&delayed_root->wait);
 
 423}
 424
 425static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 426{
 427	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
 428	struct rb_root_cached *root;
 429	struct btrfs_delayed_root *delayed_root;
 430
 431	/* Not inserted, ignore it. */
 432	if (RB_EMPTY_NODE(&delayed_item->rb_node))
 433		return;
 434
 435	/* If it's in a rbtree, then we need to have delayed node locked. */
 436	lockdep_assert_held(&delayed_node->mutex);
 437
 438	delayed_root = delayed_node->root->fs_info->delayed_root;
 
 
 439
 440	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
 441		root = &delayed_node->ins_root;
 442	else
 443		root = &delayed_node->del_root;
 444
 445	rb_erase_cached(&delayed_item->rb_node, root);
 446	RB_CLEAR_NODE(&delayed_item->rb_node);
 447	delayed_node->count--;
 448
 449	finish_one_item(delayed_root);
 
 450}
 451
 452static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 453{
 454	if (item) {
 455		__btrfs_remove_delayed_item(item);
 456		if (refcount_dec_and_test(&item->refs))
 457			kfree(item);
 458	}
 459}
 460
 461static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 462					struct btrfs_delayed_node *delayed_node)
 463{
 464	struct rb_node *p;
 465	struct btrfs_delayed_item *item = NULL;
 466
 467	p = rb_first_cached(&delayed_node->ins_root);
 468	if (p)
 469		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 470
 471	return item;
 472}
 473
 474static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 475					struct btrfs_delayed_node *delayed_node)
 476{
 477	struct rb_node *p;
 478	struct btrfs_delayed_item *item = NULL;
 479
 480	p = rb_first_cached(&delayed_node->del_root);
 481	if (p)
 482		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 483
 484	return item;
 485}
 486
 487static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 488						struct btrfs_delayed_item *item)
 489{
 490	struct rb_node *p;
 491	struct btrfs_delayed_item *next = NULL;
 492
 493	p = rb_next(&item->rb_node);
 494	if (p)
 495		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 496
 497	return next;
 498}
 499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 
 501					       struct btrfs_delayed_item *item)
 502{
 503	struct btrfs_block_rsv *src_rsv;
 504	struct btrfs_block_rsv *dst_rsv;
 505	struct btrfs_fs_info *fs_info = trans->fs_info;
 506	u64 num_bytes;
 507	int ret;
 508
 509	if (!trans->bytes_reserved)
 510		return 0;
 511
 512	src_rsv = trans->block_rsv;
 513	dst_rsv = &fs_info->delayed_block_rsv;
 514
 515	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 516
 517	/*
 518	 * Here we migrate space rsv from transaction rsv, since have already
 519	 * reserved space when starting a transaction.  So no need to reserve
 520	 * qgroup space here.
 521	 */
 522	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 523	if (!ret) {
 524		trace_btrfs_space_reservation(fs_info, "delayed_item",
 525					      item->delayed_node->inode_id,
 526					      num_bytes, 1);
 527		/*
 528		 * For insertions we track reserved metadata space by accounting
 529		 * for the number of leaves that will be used, based on the delayed
 530		 * node's curr_index_batch_size and index_item_leaves fields.
 531		 */
 532		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
 533			item->bytes_reserved = num_bytes;
 534	}
 535
 536	return ret;
 537}
 538
 539static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 540						struct btrfs_delayed_item *item)
 541{
 542	struct btrfs_block_rsv *rsv;
 543	struct btrfs_fs_info *fs_info = root->fs_info;
 544
 545	if (!item->bytes_reserved)
 546		return;
 547
 548	rsv = &fs_info->delayed_block_rsv;
 549	/*
 550	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 551	 * to release/reserve qgroup space.
 552	 */
 553	trace_btrfs_space_reservation(fs_info, "delayed_item",
 554				      item->delayed_node->inode_id,
 555				      item->bytes_reserved, 0);
 556	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 557}
 558
 559static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
 560					      unsigned int num_leaves)
 561{
 562	struct btrfs_fs_info *fs_info = node->root->fs_info;
 563	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
 564
 565	/* There are no space reservations during log replay, bail out. */
 566	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 567		return;
 568
 569	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
 570				      bytes, 0);
 571	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
 572}
 573
 574static int btrfs_delayed_inode_reserve_metadata(
 575					struct btrfs_trans_handle *trans,
 576					struct btrfs_root *root,
 
 577					struct btrfs_delayed_node *node)
 578{
 579	struct btrfs_fs_info *fs_info = root->fs_info;
 580	struct btrfs_block_rsv *src_rsv;
 581	struct btrfs_block_rsv *dst_rsv;
 582	u64 num_bytes;
 583	int ret;
 
 584
 585	src_rsv = trans->block_rsv;
 586	dst_rsv = &fs_info->delayed_block_rsv;
 587
 588	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 589
 590	/*
 591	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 592	 * which doesn't reserve space for speed.  This is a problem since we
 593	 * still need to reserve space for this update, so try to reserve the
 594	 * space.
 595	 *
 596	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 597	 * we always reserve enough to update the inode item.
 598	 */
 599	if (!src_rsv || (!trans->bytes_reserved &&
 600			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 601		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
 602					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
 603		if (ret < 0)
 604			return ret;
 605		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
 606					  BTRFS_RESERVE_NO_FLUSH);
 607		/* NO_FLUSH could only fail with -ENOSPC */
 608		ASSERT(ret == 0 || ret == -ENOSPC);
 609		if (ret)
 610			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 611	} else {
 612		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613	}
 614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615	if (!ret) {
 616		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 617					      node->inode_id, num_bytes, 1);
 618		node->bytes_reserved = num_bytes;
 619	}
 620
 
 
 
 
 
 
 621	return ret;
 622}
 623
 624static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 625						struct btrfs_delayed_node *node,
 626						bool qgroup_free)
 627{
 628	struct btrfs_block_rsv *rsv;
 629
 630	if (!node->bytes_reserved)
 631		return;
 632
 633	rsv = &fs_info->delayed_block_rsv;
 634	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 635				      node->inode_id, node->bytes_reserved, 0);
 636	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 637	if (qgroup_free)
 638		btrfs_qgroup_free_meta_prealloc(node->root,
 639				node->bytes_reserved);
 640	else
 641		btrfs_qgroup_convert_reserved_meta(node->root,
 642				node->bytes_reserved);
 643	node->bytes_reserved = 0;
 644}
 645
 646/*
 647 * Insert a single delayed item or a batch of delayed items, as many as possible
 648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
 649 * in the rbtree, and if there's a gap between two consecutive dir index items,
 650 * then it means at some point we had delayed dir indexes to add but they got
 651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
 652 * into the subvolume tree. Dir index keys also have their offsets coming from a
 653 * monotonically increasing counter, so we can't get new keys with an offset that
 654 * fits within a gap between delayed dir index items.
 655 */
 656static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 657				     struct btrfs_root *root,
 658				     struct btrfs_path *path,
 659				     struct btrfs_delayed_item *first_item)
 660{
 661	struct btrfs_fs_info *fs_info = root->fs_info;
 662	struct btrfs_delayed_node *node = first_item->delayed_node;
 663	LIST_HEAD(item_list);
 664	struct btrfs_delayed_item *curr;
 665	struct btrfs_delayed_item *next;
 666	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
 667	struct btrfs_item_batch batch;
 668	struct btrfs_key first_key;
 669	const u32 first_data_size = first_item->data_len;
 670	int total_size;
 671	char *ins_data = NULL;
 672	int ret;
 673	bool continuous_keys_only = false;
 
 674
 675	lockdep_assert_held(&node->mutex);
 
 
 676
 677	/*
 678	 * During normal operation the delayed index offset is continuously
 679	 * increasing, so we can batch insert all items as there will not be any
 680	 * overlapping keys in the tree.
 681	 *
 682	 * The exception to this is log replay, where we may have interleaved
 683	 * offsets in the tree, so our batch needs to be continuous keys only in
 684	 * order to ensure we do not end up with out of order items in our leaf.
 685	 */
 686	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 687		continuous_keys_only = true;
 688
 689	/*
 690	 * For delayed items to insert, we track reserved metadata bytes based
 691	 * on the number of leaves that we will use.
 692	 * See btrfs_insert_delayed_dir_index() and
 693	 * btrfs_delayed_item_reserve_metadata()).
 694	 */
 695	ASSERT(first_item->bytes_reserved == 0);
 696
 697	list_add_tail(&first_item->tree_list, &item_list);
 698	batch.total_data_size = first_data_size;
 699	batch.nr = 1;
 700	total_size = first_data_size + sizeof(struct btrfs_item);
 701	curr = first_item;
 702
 703	while (true) {
 704		int next_size;
 705
 
 706		next = __btrfs_next_delayed_item(curr);
 707		if (!next)
 708			break;
 709
 710		/*
 711		 * We cannot allow gaps in the key space if we're doing log
 712		 * replay.
 713		 */
 714		if (continuous_keys_only && (next->index != curr->index + 1))
 715			break;
 
 716
 717		ASSERT(next->bytes_reserved == 0);
 
 
 
 718
 719		next_size = next->data_len + sizeof(struct btrfs_item);
 720		if (total_size + next_size > max_size)
 721			break;
 
 
 
 722
 723		list_add_tail(&next->tree_list, &item_list);
 724		batch.nr++;
 725		total_size += next_size;
 726		batch.total_data_size += next->data_len;
 727		curr = next;
 728	}
 729
 730	if (batch.nr == 1) {
 731		first_key.objectid = node->inode_id;
 732		first_key.type = BTRFS_DIR_INDEX_KEY;
 733		first_key.offset = first_item->index;
 734		batch.keys = &first_key;
 735		batch.data_sizes = &first_data_size;
 736	} else {
 737		struct btrfs_key *ins_keys;
 738		u32 *ins_sizes;
 739		int i = 0;
 740
 741		ins_data = kmalloc(batch.nr * sizeof(u32) +
 742				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
 743		if (!ins_data) {
 744			ret = -ENOMEM;
 745			goto out;
 746		}
 747		ins_sizes = (u32 *)ins_data;
 748		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
 749		batch.keys = ins_keys;
 750		batch.data_sizes = ins_sizes;
 751		list_for_each_entry(curr, &item_list, tree_list) {
 752			ins_keys[i].objectid = node->inode_id;
 753			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
 754			ins_keys[i].offset = curr->index;
 755			ins_sizes[i] = curr->data_len;
 756			i++;
 757		}
 758	}
 759
 760	ret = btrfs_insert_empty_items(trans, root, path, &batch);
 761	if (ret)
 762		goto out;
 
 
 
 
 763
 764	list_for_each_entry(curr, &item_list, tree_list) {
 765		char *data_ptr;
 766
 767		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
 768		write_extent_buffer(path->nodes[0], &curr->data,
 769				    (unsigned long)data_ptr, curr->data_len);
 770		path->slots[0]++;
 771	}
 772
 773	/*
 774	 * Now release our path before releasing the delayed items and their
 775	 * metadata reservations, so that we don't block other tasks for more
 776	 * time than needed.
 777	 */
 778	btrfs_release_path(path);
 
 
 779
 780	ASSERT(node->index_item_leaves > 0);
 781
 782	/*
 783	 * For normal operations we will batch an entire leaf's worth of delayed
 784	 * items, so if there are more items to process we can decrement
 785	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
 786	 *
 787	 * However for log replay we may not have inserted an entire leaf's
 788	 * worth of items, we may have not had continuous items, so decrementing
 789	 * here would mess up the index_item_leaves accounting.  For this case
 790	 * only clean up the accounting when there are no items left.
 791	 */
 792	if (next && !continuous_keys_only) {
 793		/*
 794		 * We inserted one batch of items into a leaf a there are more
 795		 * items to flush in a future batch, now release one unit of
 796		 * metadata space from the delayed block reserve, corresponding
 797		 * the leaf we just flushed to.
 798		 */
 799		btrfs_delayed_item_release_leaves(node, 1);
 800		node->index_item_leaves--;
 801	} else if (!next) {
 802		/*
 803		 * There are no more items to insert. We can have a number of
 804		 * reserved leaves > 1 here - this happens when many dir index
 805		 * items are added and then removed before they are flushed (file
 806		 * names with a very short life, never span a transaction). So
 807		 * release all remaining leaves.
 808		 */
 809		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
 810		node->index_item_leaves = 0;
 811	}
 812
 813	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
 814		list_del(&curr->tree_list);
 815		btrfs_release_delayed_item(curr);
 816	}
 
 
 
 
 817out:
 818	kfree(ins_data);
 819	return ret;
 820}
 821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 823				      struct btrfs_path *path,
 824				      struct btrfs_root *root,
 825				      struct btrfs_delayed_node *node)
 826{
 
 827	int ret = 0;
 828
 829	while (ret == 0) {
 830		struct btrfs_delayed_item *curr;
 
 
 
 831
 832		mutex_lock(&node->mutex);
 833		curr = __btrfs_first_delayed_insertion_item(node);
 834		if (!curr) {
 835			mutex_unlock(&node->mutex);
 836			break;
 837		}
 838		ret = btrfs_insert_delayed_item(trans, root, path, curr);
 839		mutex_unlock(&node->mutex);
 
 
 
 
 840	}
 
 
 841
 
 
 
 
 
 
 842	return ret;
 843}
 844
 845static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 846				    struct btrfs_root *root,
 847				    struct btrfs_path *path,
 848				    struct btrfs_delayed_item *item)
 849{
 850	const u64 ino = item->delayed_node->inode_id;
 851	struct btrfs_fs_info *fs_info = root->fs_info;
 852	struct btrfs_delayed_item *curr, *next;
 853	struct extent_buffer *leaf = path->nodes[0];
 854	LIST_HEAD(batch_list);
 855	int nitems, slot, last_slot;
 856	int ret;
 857	u64 total_reserved_size = item->bytes_reserved;
 858
 859	ASSERT(leaf != NULL);
 860
 861	slot = path->slots[0];
 862	last_slot = btrfs_header_nritems(leaf) - 1;
 863	/*
 864	 * Our caller always gives us a path pointing to an existing item, so
 865	 * this can not happen.
 866	 */
 867	ASSERT(slot <= last_slot);
 868	if (WARN_ON(slot > last_slot))
 869		return -ENOENT;
 870
 871	nitems = 1;
 872	curr = item;
 873	list_add_tail(&curr->tree_list, &batch_list);
 874
 
 
 
 
 
 
 
 
 
 875	/*
 876	 * Keep checking if the next delayed item matches the next item in the
 877	 * leaf - if so, we can add it to the batch of items to delete from the
 878	 * leaf.
 879	 */
 880	while (slot < last_slot) {
 881		struct btrfs_key key;
 
 882
 
 883		next = __btrfs_next_delayed_item(curr);
 884		if (!next)
 885			break;
 886
 887		slot++;
 888		btrfs_item_key_to_cpu(leaf, &key, slot);
 889		if (key.objectid != ino ||
 890		    key.type != BTRFS_DIR_INDEX_KEY ||
 891		    key.offset != next->index)
 892			break;
 893		nitems++;
 894		curr = next;
 895		list_add_tail(&curr->tree_list, &batch_list);
 896		total_reserved_size += curr->bytes_reserved;
 897	}
 898
 
 
 
 899	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 900	if (ret)
 901		return ret;
 902
 903	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
 904	if (total_reserved_size > 0) {
 905		/*
 906		 * Check btrfs_delayed_item_reserve_metadata() to see why we
 907		 * don't need to release/reserve qgroup space.
 908		 */
 909		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
 910					      total_reserved_size, 0);
 911		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
 912					total_reserved_size, NULL);
 913	}
 914
 915	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
 
 916		list_del(&curr->tree_list);
 917		btrfs_release_delayed_item(curr);
 918	}
 919
 920	return 0;
 
 921}
 922
 923static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 924				      struct btrfs_path *path,
 925				      struct btrfs_root *root,
 926				      struct btrfs_delayed_node *node)
 927{
 928	struct btrfs_key key;
 929	int ret = 0;
 930
 931	key.objectid = node->inode_id;
 932	key.type = BTRFS_DIR_INDEX_KEY;
 933
 934	while (ret == 0) {
 935		struct btrfs_delayed_item *item;
 936
 937		mutex_lock(&node->mutex);
 938		item = __btrfs_first_delayed_deletion_item(node);
 939		if (!item) {
 940			mutex_unlock(&node->mutex);
 941			break;
 942		}
 943
 944		key.offset = item->index;
 945		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 946		if (ret > 0) {
 947			/*
 948			 * There's no matching item in the leaf. This means we
 949			 * have already deleted this item in a past run of the
 950			 * delayed items. We ignore errors when running delayed
 951			 * items from an async context, through a work queue job
 952			 * running btrfs_async_run_delayed_root(), and don't
 953			 * release delayed items that failed to complete. This
 954			 * is because we will retry later, and at transaction
 955			 * commit time we always run delayed items and will
 956			 * then deal with errors if they fail to run again.
 957			 *
 958			 * So just release delayed items for which we can't find
 959			 * an item in the tree, and move to the next item.
 960			 */
 961			btrfs_release_path(path);
 962			btrfs_release_delayed_item(item);
 963			ret = 0;
 964		} else if (ret == 0) {
 965			ret = btrfs_batch_delete_items(trans, root, path, item);
 966			btrfs_release_path(path);
 967		}
 968
 
 
 
 
 969		/*
 970		 * We unlock and relock on each iteration, this is to prevent
 971		 * blocking other tasks for too long while we are being run from
 972		 * the async context (work queue job). Those tasks are typically
 973		 * running system calls like creat/mkdir/rename/unlink/etc which
 974		 * need to add delayed items to this delayed node.
 975		 */
 976		mutex_unlock(&node->mutex);
 
 
 
 
 
 
 
 
 977	}
 978
 
 
 
 
 
 
 
 
 979	return ret;
 980}
 981
 982static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 983{
 984	struct btrfs_delayed_root *delayed_root;
 985
 986	if (delayed_node &&
 987	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 988		ASSERT(delayed_node->root);
 989		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 990		delayed_node->count--;
 991
 992		delayed_root = delayed_node->root->fs_info->delayed_root;
 993		finish_one_item(delayed_root);
 
 
 
 
 994	}
 995}
 996
 997static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 998{
 999
1000	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1001		struct btrfs_delayed_root *delayed_root;
1002
1003		ASSERT(delayed_node->root);
1004		delayed_node->count--;
1005
1006		delayed_root = delayed_node->root->fs_info->delayed_root;
1007		finish_one_item(delayed_root);
1008	}
1009}
1010
1011static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012					struct btrfs_root *root,
1013					struct btrfs_path *path,
1014					struct btrfs_delayed_node *node)
1015{
1016	struct btrfs_fs_info *fs_info = root->fs_info;
1017	struct btrfs_key key;
1018	struct btrfs_inode_item *inode_item;
1019	struct extent_buffer *leaf;
1020	int mod;
1021	int ret;
1022
 
 
 
 
 
 
1023	key.objectid = node->inode_id;
1024	key.type = BTRFS_INODE_ITEM_KEY;
1025	key.offset = 0;
 
 
 
 
 
 
 
 
 
1026
1027	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028		mod = -1;
1029	else
1030		mod = 1;
1031
1032	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033	if (ret > 0)
1034		ret = -ENOENT;
1035	if (ret < 0)
1036		goto out;
1037
1038	leaf = path->nodes[0];
1039	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1040				    struct btrfs_inode_item);
1041	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1042			    sizeof(struct btrfs_inode_item));
1043	btrfs_mark_buffer_dirty(trans, leaf);
1044
1045	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046		goto out;
1047
1048	/*
1049	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1050	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1051	 *
1052	 * But if we're the last item already, release and search for the last
1053	 * INODE_REF/EXTREF.
1054	 */
1055	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1056		key.objectid = node->inode_id;
1057		key.type = BTRFS_INODE_EXTREF_KEY;
1058		key.offset = (u64)-1;
1059
1060		btrfs_release_path(path);
1061		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1062		if (ret < 0)
1063			goto err_out;
1064		ASSERT(ret > 0);
1065		ASSERT(path->slots[0] > 0);
1066		ret = 0;
1067		path->slots[0]--;
1068		leaf = path->nodes[0];
1069	} else {
1070		path->slots[0]++;
1071	}
1072	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073	if (key.objectid != node->inode_id)
1074		goto out;
1075	if (key.type != BTRFS_INODE_REF_KEY &&
1076	    key.type != BTRFS_INODE_EXTREF_KEY)
1077		goto out;
1078
1079	/*
1080	 * Delayed iref deletion is for the inode who has only one link,
1081	 * so there is only one iref. The case that several irefs are
1082	 * in the same item doesn't exist.
1083	 */
1084	ret = btrfs_del_item(trans, root, path);
1085out:
1086	btrfs_release_delayed_iref(node);
1087	btrfs_release_path(path);
1088err_out:
1089	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1090	btrfs_release_delayed_inode(node);
1091
1092	/*
1093	 * If we fail to update the delayed inode we need to abort the
1094	 * transaction, because we could leave the inode with the improper
1095	 * counts behind.
1096	 */
1097	if (ret && ret != -ENOENT)
1098		btrfs_abort_transaction(trans, ret);
1099
1100	return ret;
1101}
1102
1103static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1104					     struct btrfs_root *root,
1105					     struct btrfs_path *path,
1106					     struct btrfs_delayed_node *node)
1107{
1108	int ret;
1109
1110	mutex_lock(&node->mutex);
1111	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1112		mutex_unlock(&node->mutex);
1113		return 0;
1114	}
1115
1116	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1117	mutex_unlock(&node->mutex);
1118	return ret;
1119}
1120
1121static inline int
1122__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1123				   struct btrfs_path *path,
1124				   struct btrfs_delayed_node *node)
1125{
1126	int ret;
1127
1128	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1129	if (ret)
1130		return ret;
1131
1132	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1133	if (ret)
1134		return ret;
1135
1136	ret = btrfs_record_root_in_trans(trans, node->root);
1137	if (ret)
1138		return ret;
1139	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1140	return ret;
1141}
1142
1143/*
1144 * Called when committing the transaction.
1145 * Returns 0 on success.
1146 * Returns < 0 on error and returns with an aborted transaction with any
1147 * outstanding delayed items cleaned up.
1148 */
1149static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
 
1150{
1151	struct btrfs_fs_info *fs_info = trans->fs_info;
1152	struct btrfs_delayed_root *delayed_root;
1153	struct btrfs_delayed_node *curr_node, *prev_node;
1154	struct btrfs_path *path;
1155	struct btrfs_block_rsv *block_rsv;
1156	int ret = 0;
1157	bool count = (nr > 0);
1158
1159	if (TRANS_ABORTED(trans))
1160		return -EIO;
1161
1162	path = btrfs_alloc_path();
1163	if (!path)
1164		return -ENOMEM;
 
1165
1166	block_rsv = trans->block_rsv;
1167	trans->block_rsv = &fs_info->delayed_block_rsv;
1168
1169	delayed_root = fs_info->delayed_root;
1170
1171	curr_node = btrfs_first_delayed_node(delayed_root);
1172	while (curr_node && (!count || nr--)) {
1173		ret = __btrfs_commit_inode_delayed_items(trans, path,
1174							 curr_node);
 
 
 
 
 
 
 
1175		if (ret) {
1176			btrfs_abort_transaction(trans, ret);
 
1177			break;
1178		}
1179
1180		prev_node = curr_node;
1181		curr_node = btrfs_next_delayed_node(curr_node);
1182		/*
1183		 * See the comment below about releasing path before releasing
1184		 * node. If the commit of delayed items was successful the path
1185		 * should always be released, but in case of an error, it may
1186		 * point to locked extent buffers (a leaf at the very least).
1187		 */
1188		ASSERT(path->nodes[0] == NULL);
1189		btrfs_release_delayed_node(prev_node);
1190	}
1191
1192	/*
1193	 * Release the path to avoid a potential deadlock and lockdep splat when
1194	 * releasing the delayed node, as that requires taking the delayed node's
1195	 * mutex. If another task starts running delayed items before we take
1196	 * the mutex, it will first lock the mutex and then it may try to lock
1197	 * the same btree path (leaf).
1198	 */
1199	btrfs_free_path(path);
1200
1201	if (curr_node)
1202		btrfs_release_delayed_node(curr_node);
1203	trans->block_rsv = block_rsv;
1204
1205	return ret;
1206}
1207
1208int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
 
1209{
1210	return __btrfs_run_delayed_items(trans, -1);
1211}
1212
1213int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1214{
1215	return __btrfs_run_delayed_items(trans, nr);
1216}
1217
1218int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1219				     struct btrfs_inode *inode)
1220{
1221	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1222	struct btrfs_path *path;
1223	struct btrfs_block_rsv *block_rsv;
1224	int ret;
1225
1226	if (!delayed_node)
1227		return 0;
1228
1229	mutex_lock(&delayed_node->mutex);
1230	if (!delayed_node->count) {
1231		mutex_unlock(&delayed_node->mutex);
1232		btrfs_release_delayed_node(delayed_node);
1233		return 0;
1234	}
1235	mutex_unlock(&delayed_node->mutex);
1236
1237	path = btrfs_alloc_path();
1238	if (!path) {
1239		btrfs_release_delayed_node(delayed_node);
1240		return -ENOMEM;
1241	}
1242
1243	block_rsv = trans->block_rsv;
1244	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1245
1246	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
1247
1248	btrfs_release_delayed_node(delayed_node);
1249	btrfs_free_path(path);
1250	trans->block_rsv = block_rsv;
1251
1252	return ret;
1253}
1254
1255int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
 
1256{
1257	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1258	struct btrfs_trans_handle *trans;
1259	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1260	struct btrfs_path *path;
1261	struct btrfs_block_rsv *block_rsv;
1262	int ret;
1263
1264	if (!delayed_node)
1265		return 0;
1266
1267	mutex_lock(&delayed_node->mutex);
1268	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1269		mutex_unlock(&delayed_node->mutex);
1270		btrfs_release_delayed_node(delayed_node);
1271		return 0;
1272	}
1273	mutex_unlock(&delayed_node->mutex);
1274
1275	trans = btrfs_join_transaction(delayed_node->root);
1276	if (IS_ERR(trans)) {
1277		ret = PTR_ERR(trans);
1278		goto out;
1279	}
1280
1281	path = btrfs_alloc_path();
1282	if (!path) {
1283		ret = -ENOMEM;
1284		goto trans_out;
1285	}
1286
1287	block_rsv = trans->block_rsv;
1288	trans->block_rsv = &fs_info->delayed_block_rsv;
1289
1290	mutex_lock(&delayed_node->mutex);
1291	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1292		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1293						   path, delayed_node);
1294	else
1295		ret = 0;
1296	mutex_unlock(&delayed_node->mutex);
1297
1298	btrfs_free_path(path);
1299	trans->block_rsv = block_rsv;
1300trans_out:
1301	btrfs_end_transaction(trans);
1302	btrfs_btree_balance_dirty(fs_info);
1303out:
1304	btrfs_release_delayed_node(delayed_node);
1305
1306	return ret;
1307}
1308
1309void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1310{
1311	struct btrfs_delayed_node *delayed_node;
1312
1313	delayed_node = READ_ONCE(inode->delayed_node);
1314	if (!delayed_node)
1315		return;
1316
1317	inode->delayed_node = NULL;
1318	btrfs_release_delayed_node(delayed_node);
1319}
1320
1321struct btrfs_async_delayed_work {
1322	struct btrfs_delayed_root *delayed_root;
1323	int nr;
1324	struct btrfs_work work;
1325};
1326
1327static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1328{
1329	struct btrfs_async_delayed_work *async_work;
1330	struct btrfs_delayed_root *delayed_root;
1331	struct btrfs_trans_handle *trans;
1332	struct btrfs_path *path;
1333	struct btrfs_delayed_node *delayed_node = NULL;
1334	struct btrfs_root *root;
1335	struct btrfs_block_rsv *block_rsv;
1336	int total_done = 0;
 
 
1337
1338	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1339	delayed_root = async_work->delayed_root;
1340
1341	path = btrfs_alloc_path();
1342	if (!path)
1343		goto out;
 
1344
1345	do {
1346		if (atomic_read(&delayed_root->items) <
1347		    BTRFS_DELAYED_BACKGROUND / 2)
1348			break;
1349
1350		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1351		if (!delayed_node)
1352			break;
1353
1354		root = delayed_node->root;
 
 
1355
1356		trans = btrfs_join_transaction(root);
1357		if (IS_ERR(trans)) {
1358			btrfs_release_path(path);
1359			btrfs_release_prepared_delayed_node(delayed_node);
1360			total_done++;
1361			continue;
1362		}
1363
1364		block_rsv = trans->block_rsv;
1365		trans->block_rsv = &root->fs_info->delayed_block_rsv;
 
 
1366
1367		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
1368
1369		trans->block_rsv = block_rsv;
1370		btrfs_end_transaction(trans);
1371		btrfs_btree_balance_dirty_nodelay(root->fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372
1373		btrfs_release_path(path);
1374		btrfs_release_prepared_delayed_node(delayed_node);
1375		total_done++;
1376
1377	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1378		 || total_done < async_work->nr);
1379
 
 
 
 
1380	btrfs_free_path(path);
1381out:
1382	wake_up(&delayed_root->wait);
1383	kfree(async_work);
 
 
 
 
1384}
1385
1386
1387static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1388				     struct btrfs_fs_info *fs_info, int nr)
1389{
1390	struct btrfs_async_delayed_work *async_work;
 
 
 
 
 
 
 
1391
1392	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1393	if (!async_work)
 
1394		return -ENOMEM;
 
 
 
 
 
 
 
1395
1396	async_work->delayed_root = delayed_root;
1397	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1398	async_work->nr = nr;
 
 
1399
1400	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1401	return 0;
1402}
1403
1404void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1405{
1406	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1407}
1408
1409static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1410{
1411	int val = atomic_read(&delayed_root->items_seq);
1412
1413	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1414		return 1;
1415
1416	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1417		return 1;
1418
1419	return 0;
1420}
1421
1422void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1423{
1424	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1425
1426	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1427		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1428		return;
1429
1430	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1431		int seq;
1432		int ret;
1433
1434		seq = atomic_read(&delayed_root->items_seq);
1435
1436		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1437		if (ret)
1438			return;
1439
1440		wait_event_interruptible(delayed_root->wait,
1441					 could_end_wait(delayed_root, seq));
 
 
 
1442		return;
1443	}
1444
1445	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1446}
1447
1448static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1449{
1450	struct btrfs_fs_info *fs_info = trans->fs_info;
1451	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1452
1453	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1454		return;
1455
1456	/*
1457	 * Adding the new dir index item does not require touching another
1458	 * leaf, so we can release 1 unit of metadata that was previously
1459	 * reserved when starting the transaction. This applies only to
1460	 * the case where we had a transaction start and excludes the
1461	 * transaction join case (when replaying log trees).
1462	 */
1463	trace_btrfs_space_reservation(fs_info, "transaction",
1464				      trans->transid, bytes, 0);
1465	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1466	ASSERT(trans->bytes_reserved >= bytes);
1467	trans->bytes_reserved -= bytes;
1468}
1469
1470/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1471int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1472				   const char *name, int name_len,
1473				   struct btrfs_inode *dir,
1474				   struct btrfs_disk_key *disk_key, u8 flags,
1475				   u64 index)
1476{
1477	struct btrfs_fs_info *fs_info = trans->fs_info;
1478	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1479	struct btrfs_delayed_node *delayed_node;
1480	struct btrfs_delayed_item *delayed_item;
1481	struct btrfs_dir_item *dir_item;
1482	bool reserve_leaf_space;
1483	u32 data_len;
1484	int ret;
1485
1486	delayed_node = btrfs_get_or_create_delayed_node(dir);
1487	if (IS_ERR(delayed_node))
1488		return PTR_ERR(delayed_node);
1489
1490	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1491						delayed_node,
1492						BTRFS_DELAYED_INSERTION_ITEM);
1493	if (!delayed_item) {
1494		ret = -ENOMEM;
1495		goto release_node;
1496	}
1497
1498	delayed_item->index = index;
 
 
1499
1500	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1501	dir_item->location = *disk_key;
1502	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1503	btrfs_set_stack_dir_data_len(dir_item, 0);
1504	btrfs_set_stack_dir_name_len(dir_item, name_len);
1505	btrfs_set_stack_dir_flags(dir_item, flags);
1506	memcpy((char *)(dir_item + 1), name, name_len);
1507
1508	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1509
1510	mutex_lock(&delayed_node->mutex);
1511
1512	/*
1513	 * First attempt to insert the delayed item. This is to make the error
1514	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1515	 * any other task coming in and running the delayed item before we do
1516	 * the metadata space reservation below, because we are holding the
1517	 * delayed node's mutex and that mutex must also be locked before the
1518	 * node's delayed items can be run.
1519	 */
1520	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1521	if (unlikely(ret)) {
1522		btrfs_err(trans->fs_info,
1523"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1524			  name_len, name, index, btrfs_root_id(delayed_node->root),
1525			  delayed_node->inode_id, dir->index_cnt,
1526			  delayed_node->index_cnt, ret);
1527		btrfs_release_delayed_item(delayed_item);
1528		btrfs_release_dir_index_item_space(trans);
1529		mutex_unlock(&delayed_node->mutex);
1530		goto release_node;
1531	}
1532
1533	if (delayed_node->index_item_leaves == 0 ||
1534	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1535		delayed_node->curr_index_batch_size = data_len;
1536		reserve_leaf_space = true;
1537	} else {
1538		delayed_node->curr_index_batch_size += data_len;
1539		reserve_leaf_space = false;
1540	}
1541
1542	if (reserve_leaf_space) {
1543		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1544		/*
1545		 * Space was reserved for a dir index item insertion when we
1546		 * started the transaction, so getting a failure here should be
1547		 * impossible.
1548		 */
1549		if (WARN_ON(ret)) {
1550			btrfs_release_delayed_item(delayed_item);
1551			mutex_unlock(&delayed_node->mutex);
1552			goto release_node;
1553		}
1554
1555		delayed_node->index_item_leaves++;
1556	} else {
1557		btrfs_release_dir_index_item_space(trans);
1558	}
1559	mutex_unlock(&delayed_node->mutex);
1560
1561release_node:
1562	btrfs_release_delayed_node(delayed_node);
1563	return ret;
1564}
1565
1566static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1567					       struct btrfs_delayed_node *node,
1568					       u64 index)
1569{
1570	struct btrfs_delayed_item *item;
1571
1572	mutex_lock(&node->mutex);
1573	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1574	if (!item) {
1575		mutex_unlock(&node->mutex);
1576		return 1;
1577	}
1578
1579	/*
1580	 * For delayed items to insert, we track reserved metadata bytes based
1581	 * on the number of leaves that we will use.
1582	 * See btrfs_insert_delayed_dir_index() and
1583	 * btrfs_delayed_item_reserve_metadata()).
1584	 */
1585	ASSERT(item->bytes_reserved == 0);
1586	ASSERT(node->index_item_leaves > 0);
1587
1588	/*
1589	 * If there's only one leaf reserved, we can decrement this item from the
1590	 * current batch, otherwise we can not because we don't know which leaf
1591	 * it belongs to. With the current limit on delayed items, we rarely
1592	 * accumulate enough dir index items to fill more than one leaf (even
1593	 * when using a leaf size of 4K).
1594	 */
1595	if (node->index_item_leaves == 1) {
1596		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1597
1598		ASSERT(node->curr_index_batch_size >= data_len);
1599		node->curr_index_batch_size -= data_len;
1600	}
1601
1602	btrfs_release_delayed_item(item);
1603
1604	/* If we now have no more dir index items, we can release all leaves. */
1605	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1606		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1607		node->index_item_leaves = 0;
1608	}
1609
1610	mutex_unlock(&node->mutex);
1611	return 0;
1612}
1613
1614int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1615				   struct btrfs_inode *dir, u64 index)
 
1616{
1617	struct btrfs_delayed_node *node;
1618	struct btrfs_delayed_item *item;
 
1619	int ret;
1620
1621	node = btrfs_get_or_create_delayed_node(dir);
1622	if (IS_ERR(node))
1623		return PTR_ERR(node);
1624
1625	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
 
 
 
 
1626	if (!ret)
1627		goto end;
1628
1629	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1630	if (!item) {
1631		ret = -ENOMEM;
1632		goto end;
1633	}
1634
1635	item->index = index;
1636
1637	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1638	/*
1639	 * we have reserved enough space when we start a new transaction,
1640	 * so reserving metadata failure is impossible.
1641	 */
1642	if (ret < 0) {
1643		btrfs_err(trans->fs_info,
1644"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1645		btrfs_release_delayed_item(item);
1646		goto end;
1647	}
1648
1649	mutex_lock(&node->mutex);
1650	ret = __btrfs_add_delayed_item(node, item);
1651	if (unlikely(ret)) {
1652		btrfs_err(trans->fs_info,
1653			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1654			  index, node->root->root_key.objectid,
1655			  node->inode_id, ret);
1656		btrfs_delayed_item_release_metadata(dir->root, item);
1657		btrfs_release_delayed_item(item);
 
 
1658	}
1659	mutex_unlock(&node->mutex);
1660end:
1661	btrfs_release_delayed_node(node);
1662	return ret;
1663}
1664
1665int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1666{
1667	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1668
1669	if (!delayed_node)
1670		return -ENOENT;
1671
1672	/*
1673	 * Since we have held i_mutex of this directory, it is impossible that
1674	 * a new directory index is added into the delayed node and index_cnt
1675	 * is updated now. So we needn't lock the delayed node.
1676	 */
1677	if (!delayed_node->index_cnt) {
1678		btrfs_release_delayed_node(delayed_node);
1679		return -EINVAL;
1680	}
1681
1682	inode->index_cnt = delayed_node->index_cnt;
1683	btrfs_release_delayed_node(delayed_node);
1684	return 0;
1685}
1686
1687bool btrfs_readdir_get_delayed_items(struct inode *inode,
1688				     u64 last_index,
1689				     struct list_head *ins_list,
1690				     struct list_head *del_list)
1691{
1692	struct btrfs_delayed_node *delayed_node;
1693	struct btrfs_delayed_item *item;
1694
1695	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1696	if (!delayed_node)
1697		return false;
1698
1699	/*
1700	 * We can only do one readdir with delayed items at a time because of
1701	 * item->readdir_list.
1702	 */
1703	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1704	btrfs_inode_lock(BTRFS_I(inode), 0);
1705
1706	mutex_lock(&delayed_node->mutex);
1707	item = __btrfs_first_delayed_insertion_item(delayed_node);
1708	while (item && item->index <= last_index) {
1709		refcount_inc(&item->refs);
1710		list_add_tail(&item->readdir_list, ins_list);
1711		item = __btrfs_next_delayed_item(item);
1712	}
1713
1714	item = __btrfs_first_delayed_deletion_item(delayed_node);
1715	while (item && item->index <= last_index) {
1716		refcount_inc(&item->refs);
1717		list_add_tail(&item->readdir_list, del_list);
1718		item = __btrfs_next_delayed_item(item);
1719	}
1720	mutex_unlock(&delayed_node->mutex);
1721	/*
1722	 * This delayed node is still cached in the btrfs inode, so refs
1723	 * must be > 1 now, and we needn't check it is going to be freed
1724	 * or not.
1725	 *
1726	 * Besides that, this function is used to read dir, we do not
1727	 * insert/delete delayed items in this period. So we also needn't
1728	 * requeue or dequeue this delayed node.
1729	 */
1730	refcount_dec(&delayed_node->refs);
1731
1732	return true;
1733}
1734
1735void btrfs_readdir_put_delayed_items(struct inode *inode,
1736				     struct list_head *ins_list,
1737				     struct list_head *del_list)
1738{
1739	struct btrfs_delayed_item *curr, *next;
1740
1741	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1742		list_del(&curr->readdir_list);
1743		if (refcount_dec_and_test(&curr->refs))
1744			kfree(curr);
1745	}
1746
1747	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1748		list_del(&curr->readdir_list);
1749		if (refcount_dec_and_test(&curr->refs))
1750			kfree(curr);
1751	}
1752
1753	/*
1754	 * The VFS is going to do up_read(), so we need to downgrade back to a
1755	 * read lock.
1756	 */
1757	downgrade_write(&inode->i_rwsem);
1758}
1759
1760int btrfs_should_delete_dir_index(struct list_head *del_list,
1761				  u64 index)
1762{
1763	struct btrfs_delayed_item *curr;
1764	int ret = 0;
 
 
 
1765
1766	list_for_each_entry(curr, del_list, readdir_list) {
1767		if (curr->index > index)
1768			break;
1769		if (curr->index == index) {
1770			ret = 1;
1771			break;
1772		}
 
 
 
 
 
 
 
1773	}
1774	return ret;
1775}
1776
1777/*
1778 * Read dir info stored in the delayed tree.
 
1779 */
1780int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
 
1781				    struct list_head *ins_list)
1782{
1783	struct btrfs_dir_item *di;
1784	struct btrfs_delayed_item *curr, *next;
1785	struct btrfs_key location;
1786	char *name;
1787	int name_len;
1788	int over = 0;
1789	unsigned char d_type;
1790
 
 
 
1791	/*
1792	 * Changing the data of the delayed item is impossible. So
1793	 * we needn't lock them. And we have held i_mutex of the
1794	 * directory, nobody can delete any directory indexes now.
1795	 */
1796	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1797		list_del(&curr->readdir_list);
1798
1799		if (curr->index < ctx->pos) {
1800			if (refcount_dec_and_test(&curr->refs))
1801				kfree(curr);
1802			continue;
1803		}
1804
1805		ctx->pos = curr->index;
1806
1807		di = (struct btrfs_dir_item *)curr->data;
1808		name = (char *)(di + 1);
1809		name_len = btrfs_stack_dir_name_len(di);
1810
1811		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1812		btrfs_disk_key_to_cpu(&location, &di->location);
1813
1814		over = !dir_emit(ctx, name, name_len,
1815			       location.objectid, d_type);
1816
1817		if (refcount_dec_and_test(&curr->refs))
1818			kfree(curr);
1819
1820		if (over)
1821			return 1;
1822		ctx->pos++;
1823	}
1824	return 0;
1825}
1826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1828				  struct btrfs_inode_item *inode_item,
1829				  struct inode *inode)
1830{
1831	u64 flags;
1832
1833	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1834	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1835	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1836	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1837	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1838	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1839	btrfs_set_stack_inode_generation(inode_item,
1840					 BTRFS_I(inode)->generation);
1841	btrfs_set_stack_inode_sequence(inode_item,
1842				       inode_peek_iversion(inode));
1843	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1844	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1845	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1846					  BTRFS_I(inode)->ro_flags);
1847	btrfs_set_stack_inode_flags(inode_item, flags);
1848	btrfs_set_stack_inode_block_group(inode_item, 0);
1849
1850	btrfs_set_stack_timespec_sec(&inode_item->atime,
1851				     inode_get_atime_sec(inode));
1852	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1853				      inode_get_atime_nsec(inode));
1854
1855	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1856				     inode_get_mtime_sec(inode));
1857	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1858				      inode_get_mtime_nsec(inode));
1859
1860	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1861				     inode_get_ctime_sec(inode));
1862	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1863				      inode_get_ctime_nsec(inode));
1864
1865	btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1866	btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1867}
1868
1869int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1870{
1871	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1872	struct btrfs_delayed_node *delayed_node;
1873	struct btrfs_inode_item *inode_item;
 
1874
1875	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1876	if (!delayed_node)
1877		return -ENOENT;
1878
1879	mutex_lock(&delayed_node->mutex);
1880	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1881		mutex_unlock(&delayed_node->mutex);
1882		btrfs_release_delayed_node(delayed_node);
1883		return -ENOENT;
1884	}
1885
1886	inode_item = &delayed_node->inode_item;
1887
1888	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1889	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1890	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1891	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1892			round_up(i_size_read(inode), fs_info->sectorsize));
1893	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1894	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1895	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1896	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1897        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1898
1899	inode_set_iversion_queried(inode,
1900				   btrfs_stack_inode_sequence(inode_item));
1901	inode->i_rdev = 0;
1902	*rdev = btrfs_stack_inode_rdev(inode_item);
1903	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1904				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1905
1906	inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1907			btrfs_stack_timespec_nsec(&inode_item->atime));
1908
1909	inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1910			btrfs_stack_timespec_nsec(&inode_item->mtime));
1911
1912	inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1913			btrfs_stack_timespec_nsec(&inode_item->ctime));
1914
1915	BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1916	BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
 
 
 
1917
1918	inode->i_generation = BTRFS_I(inode)->generation;
1919	BTRFS_I(inode)->index_cnt = (u64)-1;
1920
1921	mutex_unlock(&delayed_node->mutex);
1922	btrfs_release_delayed_node(delayed_node);
1923	return 0;
1924}
1925
1926int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1927			       struct btrfs_inode *inode)
1928{
1929	struct btrfs_root *root = inode->root;
1930	struct btrfs_delayed_node *delayed_node;
1931	int ret = 0;
1932
1933	delayed_node = btrfs_get_or_create_delayed_node(inode);
1934	if (IS_ERR(delayed_node))
1935		return PTR_ERR(delayed_node);
1936
1937	mutex_lock(&delayed_node->mutex);
1938	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1939		fill_stack_inode_item(trans, &delayed_node->inode_item,
1940				      &inode->vfs_inode);
1941		goto release_node;
1942	}
1943
1944	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
 
1945	if (ret)
1946		goto release_node;
1947
1948	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1949	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1950	delayed_node->count++;
1951	atomic_inc(&root->fs_info->delayed_root->items);
1952release_node:
1953	mutex_unlock(&delayed_node->mutex);
1954	btrfs_release_delayed_node(delayed_node);
1955	return ret;
1956}
1957
1958int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1959{
1960	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1961	struct btrfs_delayed_node *delayed_node;
1962
1963	/*
1964	 * we don't do delayed inode updates during log recovery because it
1965	 * leads to enospc problems.  This means we also can't do
1966	 * delayed inode refs
1967	 */
1968	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1969		return -EAGAIN;
1970
1971	delayed_node = btrfs_get_or_create_delayed_node(inode);
1972	if (IS_ERR(delayed_node))
1973		return PTR_ERR(delayed_node);
1974
1975	/*
1976	 * We don't reserve space for inode ref deletion is because:
1977	 * - We ONLY do async inode ref deletion for the inode who has only
1978	 *   one link(i_nlink == 1), it means there is only one inode ref.
1979	 *   And in most case, the inode ref and the inode item are in the
1980	 *   same leaf, and we will deal with them at the same time.
1981	 *   Since we are sure we will reserve the space for the inode item,
1982	 *   it is unnecessary to reserve space for inode ref deletion.
1983	 * - If the inode ref and the inode item are not in the same leaf,
1984	 *   We also needn't worry about enospc problem, because we reserve
1985	 *   much more space for the inode update than it needs.
1986	 * - At the worst, we can steal some space from the global reservation.
1987	 *   It is very rare.
1988	 */
1989	mutex_lock(&delayed_node->mutex);
1990	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1991		goto release_node;
1992
1993	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1994	delayed_node->count++;
1995	atomic_inc(&fs_info->delayed_root->items);
1996release_node:
1997	mutex_unlock(&delayed_node->mutex);
1998	btrfs_release_delayed_node(delayed_node);
1999	return 0;
2000}
2001
2002static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2003{
2004	struct btrfs_root *root = delayed_node->root;
2005	struct btrfs_fs_info *fs_info = root->fs_info;
2006	struct btrfs_delayed_item *curr_item, *prev_item;
2007
2008	mutex_lock(&delayed_node->mutex);
2009	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2010	while (curr_item) {
 
2011		prev_item = curr_item;
2012		curr_item = __btrfs_next_delayed_item(prev_item);
2013		btrfs_release_delayed_item(prev_item);
2014	}
2015
2016	if (delayed_node->index_item_leaves > 0) {
2017		btrfs_delayed_item_release_leaves(delayed_node,
2018					  delayed_node->index_item_leaves);
2019		delayed_node->index_item_leaves = 0;
2020	}
2021
2022	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2023	while (curr_item) {
2024		btrfs_delayed_item_release_metadata(root, curr_item);
2025		prev_item = curr_item;
2026		curr_item = __btrfs_next_delayed_item(prev_item);
2027		btrfs_release_delayed_item(prev_item);
2028	}
2029
2030	btrfs_release_delayed_iref(delayed_node);
2031
2032	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2033		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2034		btrfs_release_delayed_inode(delayed_node);
2035	}
2036	mutex_unlock(&delayed_node->mutex);
2037}
2038
2039void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2040{
2041	struct btrfs_delayed_node *delayed_node;
2042
2043	delayed_node = btrfs_get_delayed_node(inode);
2044	if (!delayed_node)
2045		return;
2046
2047	__btrfs_kill_delayed_node(delayed_node);
2048	btrfs_release_delayed_node(delayed_node);
2049}
2050
2051void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2052{
2053	unsigned long index = 0;
2054	struct btrfs_delayed_node *delayed_nodes[8];
 
2055
2056	while (1) {
2057		struct btrfs_delayed_node *node;
2058		int count;
2059
2060		spin_lock(&root->inode_lock);
2061		if (xa_empty(&root->delayed_nodes)) {
 
 
 
2062			spin_unlock(&root->inode_lock);
2063			return;
2064		}
2065
2066		count = 0;
2067		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2068			/*
2069			 * Don't increase refs in case the node is dead and
2070			 * about to be removed from the tree in the loop below
2071			 */
2072			if (refcount_inc_not_zero(&node->refs)) {
2073				delayed_nodes[count] = node;
2074				count++;
2075			}
2076			if (count >= ARRAY_SIZE(delayed_nodes))
2077				break;
2078		}
2079		spin_unlock(&root->inode_lock);
2080		index++;
2081
2082		for (int i = 0; i < count; i++) {
2083			__btrfs_kill_delayed_node(delayed_nodes[i]);
2084			btrfs_release_delayed_node(delayed_nodes[i]);
2085		}
2086	}
2087}
2088
2089void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2090{
 
2091	struct btrfs_delayed_node *curr_node, *prev_node;
2092
2093	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
 
 
2094	while (curr_node) {
2095		__btrfs_kill_delayed_node(curr_node);
2096
2097		prev_node = curr_node;
2098		curr_node = btrfs_next_delayed_node(curr_node);
2099		btrfs_release_delayed_node(prev_node);
2100	}
2101}
2102
2103void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2104				 struct list_head *ins_list,
2105				 struct list_head *del_list)
2106{
2107	struct btrfs_delayed_node *node;
2108	struct btrfs_delayed_item *item;
2109
2110	node = btrfs_get_delayed_node(inode);
2111	if (!node)
2112		return;
2113
2114	mutex_lock(&node->mutex);
2115	item = __btrfs_first_delayed_insertion_item(node);
2116	while (item) {
2117		/*
2118		 * It's possible that the item is already in a log list. This
2119		 * can happen in case two tasks are trying to log the same
2120		 * directory. For example if we have tasks A and task B:
2121		 *
2122		 * Task A collected the delayed items into a log list while
2123		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2124		 * only releases the items after logging the inodes they point
2125		 * to (if they are new inodes), which happens after unlocking
2126		 * the log mutex;
2127		 *
2128		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2129		 * of the same directory inode, before task B releases the
2130		 * delayed items. This can happen for example when logging some
2131		 * inode we need to trigger logging of its parent directory, so
2132		 * logging two files that have the same parent directory can
2133		 * lead to this.
2134		 *
2135		 * If this happens, just ignore delayed items already in a log
2136		 * list. All the tasks logging the directory are under a log
2137		 * transaction and whichever finishes first can not sync the log
2138		 * before the other completes and leaves the log transaction.
2139		 */
2140		if (!item->logged && list_empty(&item->log_list)) {
2141			refcount_inc(&item->refs);
2142			list_add_tail(&item->log_list, ins_list);
2143		}
2144		item = __btrfs_next_delayed_item(item);
2145	}
2146
2147	item = __btrfs_first_delayed_deletion_item(node);
2148	while (item) {
2149		/* It may be non-empty, for the same reason mentioned above. */
2150		if (!item->logged && list_empty(&item->log_list)) {
2151			refcount_inc(&item->refs);
2152			list_add_tail(&item->log_list, del_list);
2153		}
2154		item = __btrfs_next_delayed_item(item);
2155	}
2156	mutex_unlock(&node->mutex);
2157
2158	/*
2159	 * We are called during inode logging, which means the inode is in use
2160	 * and can not be evicted before we finish logging the inode. So we never
2161	 * have the last reference on the delayed inode.
2162	 * Also, we don't use btrfs_release_delayed_node() because that would
2163	 * requeue the delayed inode (change its order in the list of prepared
2164	 * nodes) and we don't want to do such change because we don't create or
2165	 * delete delayed items.
2166	 */
2167	ASSERT(refcount_read(&node->refs) > 1);
2168	refcount_dec(&node->refs);
2169}
2170
2171void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2172				 struct list_head *ins_list,
2173				 struct list_head *del_list)
2174{
2175	struct btrfs_delayed_node *node;
2176	struct btrfs_delayed_item *item;
2177	struct btrfs_delayed_item *next;
2178
2179	node = btrfs_get_delayed_node(inode);
2180	if (!node)
2181		return;
2182
2183	mutex_lock(&node->mutex);
2184
2185	list_for_each_entry_safe(item, next, ins_list, log_list) {
2186		item->logged = true;
2187		list_del_init(&item->log_list);
2188		if (refcount_dec_and_test(&item->refs))
2189			kfree(item);
2190	}
2191
2192	list_for_each_entry_safe(item, next, del_list, log_list) {
2193		item->logged = true;
2194		list_del_init(&item->log_list);
2195		if (refcount_dec_and_test(&item->refs))
2196			kfree(item);
2197	}
2198
2199	mutex_unlock(&node->mutex);
2200
2201	/*
2202	 * We are called during inode logging, which means the inode is in use
2203	 * and can not be evicted before we finish logging the inode. So we never
2204	 * have the last reference on the delayed inode.
2205	 * Also, we don't use btrfs_release_delayed_node() because that would
2206	 * requeue the delayed inode (change its order in the list of prepared
2207	 * nodes) and we don't want to do such change because we don't create or
2208	 * delete delayed items.
2209	 */
2210	ASSERT(refcount_read(&node->refs) > 1);
2211	refcount_dec(&node->refs);
2212}