Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Mediatek MT7530 DSA Switch driver
   4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
   5 */
   6#include <linux/etherdevice.h>
   7#include <linux/if_bridge.h>
   8#include <linux/iopoll.h>
   9#include <linux/mdio.h>
  10#include <linux/mfd/syscon.h>
  11#include <linux/module.h>
  12#include <linux/netdevice.h>
  13#include <linux/of_irq.h>
  14#include <linux/of_mdio.h>
  15#include <linux/of_net.h>
  16#include <linux/of_platform.h>
  17#include <linux/phylink.h>
  18#include <linux/regmap.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/reset.h>
  21#include <linux/gpio/consumer.h>
  22#include <linux/gpio/driver.h>
  23#include <net/dsa.h>
  24
  25#include "mt7530.h"
  26
  27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
  28{
  29	return container_of(pcs, struct mt753x_pcs, pcs);
  30}
  31
  32/* String, offset, and register size in bytes if different from 4 bytes */
  33static const struct mt7530_mib_desc mt7530_mib[] = {
  34	MIB_DESC(1, 0x00, "TxDrop"),
  35	MIB_DESC(1, 0x04, "TxCrcErr"),
  36	MIB_DESC(1, 0x08, "TxUnicast"),
  37	MIB_DESC(1, 0x0c, "TxMulticast"),
  38	MIB_DESC(1, 0x10, "TxBroadcast"),
  39	MIB_DESC(1, 0x14, "TxCollision"),
  40	MIB_DESC(1, 0x18, "TxSingleCollision"),
  41	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
  42	MIB_DESC(1, 0x20, "TxDeferred"),
  43	MIB_DESC(1, 0x24, "TxLateCollision"),
  44	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
  45	MIB_DESC(1, 0x2c, "TxPause"),
  46	MIB_DESC(1, 0x30, "TxPktSz64"),
  47	MIB_DESC(1, 0x34, "TxPktSz65To127"),
  48	MIB_DESC(1, 0x38, "TxPktSz128To255"),
  49	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
  50	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
  51	MIB_DESC(1, 0x44, "Tx1024ToMax"),
  52	MIB_DESC(2, 0x48, "TxBytes"),
  53	MIB_DESC(1, 0x60, "RxDrop"),
  54	MIB_DESC(1, 0x64, "RxFiltering"),
  55	MIB_DESC(1, 0x68, "RxUnicast"),
  56	MIB_DESC(1, 0x6c, "RxMulticast"),
  57	MIB_DESC(1, 0x70, "RxBroadcast"),
  58	MIB_DESC(1, 0x74, "RxAlignErr"),
  59	MIB_DESC(1, 0x78, "RxCrcErr"),
  60	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
  61	MIB_DESC(1, 0x80, "RxFragErr"),
  62	MIB_DESC(1, 0x84, "RxOverSzErr"),
  63	MIB_DESC(1, 0x88, "RxJabberErr"),
  64	MIB_DESC(1, 0x8c, "RxPause"),
  65	MIB_DESC(1, 0x90, "RxPktSz64"),
  66	MIB_DESC(1, 0x94, "RxPktSz65To127"),
  67	MIB_DESC(1, 0x98, "RxPktSz128To255"),
  68	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
  69	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
  70	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
  71	MIB_DESC(2, 0xa8, "RxBytes"),
  72	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
  73	MIB_DESC(1, 0xb4, "RxIngressDrop"),
  74	MIB_DESC(1, 0xb8, "RxArlDrop"),
  75};
  76
  77/* Since phy_device has not yet been created and
  78 * phy_{read,write}_mmd_indirect is not available, we provide our own
  79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
  80 * to complete this function.
  81 */
  82static int
  83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
  84{
  85	struct mii_bus *bus = priv->bus;
  86	int value, ret;
  87
  88	/* Write the desired MMD Devad */
  89	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
  90	if (ret < 0)
  91		goto err;
  92
  93	/* Write the desired MMD register address */
  94	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
  95	if (ret < 0)
  96		goto err;
  97
  98	/* Select the Function : DATA with no post increment */
  99	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
 100	if (ret < 0)
 101		goto err;
 102
 103	/* Read the content of the MMD's selected register */
 104	value = bus->read(bus, 0, MII_MMD_DATA);
 105
 106	return value;
 107err:
 108	dev_err(&bus->dev,  "failed to read mmd register\n");
 109
 110	return ret;
 111}
 112
 113static int
 114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
 115			int devad, u32 data)
 116{
 117	struct mii_bus *bus = priv->bus;
 118	int ret;
 119
 120	/* Write the desired MMD Devad */
 121	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
 122	if (ret < 0)
 123		goto err;
 124
 125	/* Write the desired MMD register address */
 126	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
 127	if (ret < 0)
 128		goto err;
 129
 130	/* Select the Function : DATA with no post increment */
 131	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
 132	if (ret < 0)
 133		goto err;
 134
 135	/* Write the data into MMD's selected register */
 136	ret = bus->write(bus, 0, MII_MMD_DATA, data);
 137err:
 138	if (ret < 0)
 139		dev_err(&bus->dev,
 140			"failed to write mmd register\n");
 141	return ret;
 142}
 143
 144static void
 145core_write(struct mt7530_priv *priv, u32 reg, u32 val)
 146{
 147	struct mii_bus *bus = priv->bus;
 148
 149	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 150
 151	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
 152
 153	mutex_unlock(&bus->mdio_lock);
 154}
 155
 156static void
 157core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
 158{
 159	struct mii_bus *bus = priv->bus;
 160	u32 val;
 161
 162	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 163
 164	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
 165	val &= ~mask;
 166	val |= set;
 167	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
 168
 169	mutex_unlock(&bus->mdio_lock);
 170}
 171
 172static void
 173core_set(struct mt7530_priv *priv, u32 reg, u32 val)
 174{
 175	core_rmw(priv, reg, 0, val);
 176}
 177
 178static void
 179core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 180{
 181	core_rmw(priv, reg, val, 0);
 182}
 183
 184static int
 185mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
 186{
 187	struct mii_bus *bus = priv->bus;
 188	u16 page, r, lo, hi;
 189	int ret;
 190
 191	page = (reg >> 6) & 0x3ff;
 192	r  = (reg >> 2) & 0xf;
 193	lo = val & 0xffff;
 194	hi = val >> 16;
 195
 196	/* MT7530 uses 31 as the pseudo port */
 197	ret = bus->write(bus, 0x1f, 0x1f, page);
 198	if (ret < 0)
 199		goto err;
 200
 201	ret = bus->write(bus, 0x1f, r,  lo);
 202	if (ret < 0)
 203		goto err;
 204
 205	ret = bus->write(bus, 0x1f, 0x10, hi);
 206err:
 207	if (ret < 0)
 208		dev_err(&bus->dev,
 209			"failed to write mt7530 register\n");
 210	return ret;
 211}
 212
 213static u32
 214mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
 215{
 216	struct mii_bus *bus = priv->bus;
 217	u16 page, r, lo, hi;
 218	int ret;
 219
 220	page = (reg >> 6) & 0x3ff;
 221	r = (reg >> 2) & 0xf;
 222
 223	/* MT7530 uses 31 as the pseudo port */
 224	ret = bus->write(bus, 0x1f, 0x1f, page);
 225	if (ret < 0) {
 226		dev_err(&bus->dev,
 227			"failed to read mt7530 register\n");
 228		return ret;
 229	}
 230
 231	lo = bus->read(bus, 0x1f, r);
 232	hi = bus->read(bus, 0x1f, 0x10);
 233
 234	return (hi << 16) | (lo & 0xffff);
 235}
 236
 237static void
 238mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
 239{
 240	struct mii_bus *bus = priv->bus;
 241
 242	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 243
 244	mt7530_mii_write(priv, reg, val);
 245
 246	mutex_unlock(&bus->mdio_lock);
 247}
 248
 249static u32
 250_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
 251{
 252	return mt7530_mii_read(p->priv, p->reg);
 253}
 254
 255static u32
 256_mt7530_read(struct mt7530_dummy_poll *p)
 257{
 258	struct mii_bus		*bus = p->priv->bus;
 259	u32 val;
 260
 261	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 262
 263	val = mt7530_mii_read(p->priv, p->reg);
 264
 265	mutex_unlock(&bus->mdio_lock);
 266
 267	return val;
 268}
 269
 270static u32
 271mt7530_read(struct mt7530_priv *priv, u32 reg)
 272{
 273	struct mt7530_dummy_poll p;
 274
 275	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
 276	return _mt7530_read(&p);
 277}
 278
 279static void
 280mt7530_rmw(struct mt7530_priv *priv, u32 reg,
 281	   u32 mask, u32 set)
 282{
 283	struct mii_bus *bus = priv->bus;
 284	u32 val;
 285
 286	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 287
 288	val = mt7530_mii_read(priv, reg);
 289	val &= ~mask;
 290	val |= set;
 291	mt7530_mii_write(priv, reg, val);
 292
 293	mutex_unlock(&bus->mdio_lock);
 294}
 295
 296static void
 297mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
 298{
 299	mt7530_rmw(priv, reg, 0, val);
 300}
 301
 302static void
 303mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 304{
 305	mt7530_rmw(priv, reg, val, 0);
 306}
 307
 308static int
 309mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
 310{
 311	u32 val;
 312	int ret;
 313	struct mt7530_dummy_poll p;
 314
 315	/* Set the command operating upon the MAC address entries */
 316	val = ATC_BUSY | ATC_MAT(0) | cmd;
 317	mt7530_write(priv, MT7530_ATC, val);
 318
 319	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
 320	ret = readx_poll_timeout(_mt7530_read, &p, val,
 321				 !(val & ATC_BUSY), 20, 20000);
 322	if (ret < 0) {
 323		dev_err(priv->dev, "reset timeout\n");
 324		return ret;
 325	}
 326
 327	/* Additional sanity for read command if the specified
 328	 * entry is invalid
 329	 */
 330	val = mt7530_read(priv, MT7530_ATC);
 331	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
 332		return -EINVAL;
 333
 334	if (rsp)
 335		*rsp = val;
 336
 337	return 0;
 338}
 339
 340static void
 341mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
 342{
 343	u32 reg[3];
 344	int i;
 345
 346	/* Read from ARL table into an array */
 347	for (i = 0; i < 3; i++) {
 348		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
 349
 350		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
 351			__func__, __LINE__, i, reg[i]);
 352	}
 353
 354	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
 355	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
 356	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
 357	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
 358	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
 359	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
 360	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
 361	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
 362	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
 363	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
 364}
 365
 366static void
 367mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
 368		 u8 port_mask, const u8 *mac,
 369		 u8 aging, u8 type)
 370{
 371	u32 reg[3] = { 0 };
 372	int i;
 373
 374	reg[1] |= vid & CVID_MASK;
 375	reg[1] |= ATA2_IVL;
 376	reg[1] |= ATA2_FID(FID_BRIDGED);
 377	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
 378	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
 379	/* STATIC_ENT indicate that entry is static wouldn't
 380	 * be aged out and STATIC_EMP specified as erasing an
 381	 * entry
 382	 */
 383	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
 384	reg[1] |= mac[5] << MAC_BYTE_5;
 385	reg[1] |= mac[4] << MAC_BYTE_4;
 386	reg[0] |= mac[3] << MAC_BYTE_3;
 387	reg[0] |= mac[2] << MAC_BYTE_2;
 388	reg[0] |= mac[1] << MAC_BYTE_1;
 389	reg[0] |= mac[0] << MAC_BYTE_0;
 390
 391	/* Write array into the ARL table */
 392	for (i = 0; i < 3; i++)
 393		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
 394}
 395
 396/* Setup TX circuit including relevant PAD and driving */
 397static int
 398mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
 399{
 400	struct mt7530_priv *priv = ds->priv;
 401	u32 ncpo1, ssc_delta, trgint, i, xtal;
 402
 403	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
 404
 405	if (xtal == HWTRAP_XTAL_20MHZ) {
 406		dev_err(priv->dev,
 407			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
 408			__func__);
 409		return -EINVAL;
 410	}
 411
 412	switch (interface) {
 413	case PHY_INTERFACE_MODE_RGMII:
 414		trgint = 0;
 415		/* PLL frequency: 125MHz */
 416		ncpo1 = 0x0c80;
 417		break;
 418	case PHY_INTERFACE_MODE_TRGMII:
 419		trgint = 1;
 420		if (priv->id == ID_MT7621) {
 421			/* PLL frequency: 150MHz: 1.2GBit */
 422			if (xtal == HWTRAP_XTAL_40MHZ)
 423				ncpo1 = 0x0780;
 424			if (xtal == HWTRAP_XTAL_25MHZ)
 425				ncpo1 = 0x0a00;
 426		} else { /* PLL frequency: 250MHz: 2.0Gbit */
 427			if (xtal == HWTRAP_XTAL_40MHZ)
 428				ncpo1 = 0x0c80;
 429			if (xtal == HWTRAP_XTAL_25MHZ)
 430				ncpo1 = 0x1400;
 431		}
 432		break;
 433	default:
 434		dev_err(priv->dev, "xMII interface %d not supported\n",
 435			interface);
 436		return -EINVAL;
 437	}
 438
 439	if (xtal == HWTRAP_XTAL_25MHZ)
 440		ssc_delta = 0x57;
 441	else
 442		ssc_delta = 0x87;
 443
 444	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
 445		   P6_INTF_MODE(trgint));
 446
 447	/* Lower Tx Driving for TRGMII path */
 448	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
 449		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
 450			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
 451
 452	/* Disable MT7530 core and TRGMII Tx clocks */
 453	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
 454		   REG_GSWCK_EN | REG_TRGMIICK_EN);
 455
 456	/* Setup core clock for MT7530 */
 457	/* Disable PLL */
 458	core_write(priv, CORE_GSWPLL_GRP1, 0);
 459
 460	/* Set core clock into 500Mhz */
 461	core_write(priv, CORE_GSWPLL_GRP2,
 462		   RG_GSWPLL_POSDIV_500M(1) |
 463		   RG_GSWPLL_FBKDIV_500M(25));
 464
 465	/* Enable PLL */
 466	core_write(priv, CORE_GSWPLL_GRP1,
 467		   RG_GSWPLL_EN_PRE |
 468		   RG_GSWPLL_POSDIV_200M(2) |
 469		   RG_GSWPLL_FBKDIV_200M(32));
 470
 471	/* Setup the MT7530 TRGMII Tx Clock */
 472	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
 473	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
 474	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
 475	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
 476	core_write(priv, CORE_PLL_GROUP4,
 477		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
 478		   RG_SYSPLL_BIAS_LPF_EN);
 479	core_write(priv, CORE_PLL_GROUP2,
 480		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
 481		   RG_SYSPLL_POSDIV(1));
 482	core_write(priv, CORE_PLL_GROUP7,
 483		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
 484		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
 485
 486	/* Enable MT7530 core and TRGMII Tx clocks */
 487	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
 488		 REG_GSWCK_EN | REG_TRGMIICK_EN);
 489
 490	if (!trgint)
 491		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
 492			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
 493				   RD_TAP_MASK, RD_TAP(16));
 494	return 0;
 495}
 496
 497static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
 498{
 499	u32 val;
 500
 501	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
 502
 503	return (val & PAD_DUAL_SGMII_EN) != 0;
 504}
 505
 506static int
 507mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
 508{
 509	return 0;
 510}
 511
 512static void
 513mt7531_pll_setup(struct mt7530_priv *priv)
 514{
 515	u32 top_sig;
 516	u32 hwstrap;
 517	u32 xtal;
 518	u32 val;
 519
 520	if (mt7531_dual_sgmii_supported(priv))
 521		return;
 522
 523	val = mt7530_read(priv, MT7531_CREV);
 524	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
 525	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
 526	if ((val & CHIP_REV_M) > 0)
 527		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
 528						    HWTRAP_XTAL_FSEL_25MHZ;
 529	else
 530		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
 531
 532	/* Step 1 : Disable MT7531 COREPLL */
 533	val = mt7530_read(priv, MT7531_PLLGP_EN);
 534	val &= ~EN_COREPLL;
 535	mt7530_write(priv, MT7531_PLLGP_EN, val);
 536
 537	/* Step 2: switch to XTAL output */
 538	val = mt7530_read(priv, MT7531_PLLGP_EN);
 539	val |= SW_CLKSW;
 540	mt7530_write(priv, MT7531_PLLGP_EN, val);
 541
 542	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 543	val &= ~RG_COREPLL_EN;
 544	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 545
 546	/* Step 3: disable PLLGP and enable program PLLGP */
 547	val = mt7530_read(priv, MT7531_PLLGP_EN);
 548	val |= SW_PLLGP;
 549	mt7530_write(priv, MT7531_PLLGP_EN, val);
 550
 551	/* Step 4: program COREPLL output frequency to 500MHz */
 552	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 553	val &= ~RG_COREPLL_POSDIV_M;
 554	val |= 2 << RG_COREPLL_POSDIV_S;
 555	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 556	usleep_range(25, 35);
 557
 558	switch (xtal) {
 559	case HWTRAP_XTAL_FSEL_25MHZ:
 560		val = mt7530_read(priv, MT7531_PLLGP_CR0);
 561		val &= ~RG_COREPLL_SDM_PCW_M;
 562		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
 563		mt7530_write(priv, MT7531_PLLGP_CR0, val);
 564		break;
 565	case HWTRAP_XTAL_FSEL_40MHZ:
 566		val = mt7530_read(priv, MT7531_PLLGP_CR0);
 567		val &= ~RG_COREPLL_SDM_PCW_M;
 568		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
 569		mt7530_write(priv, MT7531_PLLGP_CR0, val);
 570		break;
 571	}
 572
 573	/* Set feedback divide ratio update signal to high */
 574	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 575	val |= RG_COREPLL_SDM_PCW_CHG;
 576	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 577	/* Wait for at least 16 XTAL clocks */
 578	usleep_range(10, 20);
 579
 580	/* Step 5: set feedback divide ratio update signal to low */
 581	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 582	val &= ~RG_COREPLL_SDM_PCW_CHG;
 583	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 584
 585	/* Enable 325M clock for SGMII */
 586	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
 587
 588	/* Enable 250SSC clock for RGMII */
 589	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
 590
 591	/* Step 6: Enable MT7531 PLL */
 592	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 593	val |= RG_COREPLL_EN;
 594	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 595
 596	val = mt7530_read(priv, MT7531_PLLGP_EN);
 597	val |= EN_COREPLL;
 598	mt7530_write(priv, MT7531_PLLGP_EN, val);
 599	usleep_range(25, 35);
 600}
 601
 602static void
 603mt7530_mib_reset(struct dsa_switch *ds)
 604{
 605	struct mt7530_priv *priv = ds->priv;
 606
 607	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
 608	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
 609}
 610
 611static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
 612{
 613	return mdiobus_read_nested(priv->bus, port, regnum);
 614}
 615
 616static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
 617			    u16 val)
 618{
 619	return mdiobus_write_nested(priv->bus, port, regnum, val);
 620}
 621
 622static int
 623mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
 624			int regnum)
 625{
 626	struct mii_bus *bus = priv->bus;
 627	struct mt7530_dummy_poll p;
 628	u32 reg, val;
 629	int ret;
 630
 631	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 632
 633	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 634
 635	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 636				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 637	if (ret < 0) {
 638		dev_err(priv->dev, "poll timeout\n");
 639		goto out;
 640	}
 641
 642	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
 643	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
 644	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 645
 646	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 647				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 648	if (ret < 0) {
 649		dev_err(priv->dev, "poll timeout\n");
 650		goto out;
 651	}
 652
 653	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
 654	      MT7531_MDIO_DEV_ADDR(devad);
 655	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 656
 657	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 658				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 659	if (ret < 0) {
 660		dev_err(priv->dev, "poll timeout\n");
 661		goto out;
 662	}
 663
 664	ret = val & MT7531_MDIO_RW_DATA_MASK;
 665out:
 666	mutex_unlock(&bus->mdio_lock);
 667
 668	return ret;
 669}
 670
 671static int
 672mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
 673			 int regnum, u32 data)
 674{
 675	struct mii_bus *bus = priv->bus;
 676	struct mt7530_dummy_poll p;
 677	u32 val, reg;
 678	int ret;
 679
 680	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 681
 682	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 683
 684	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 685				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 686	if (ret < 0) {
 687		dev_err(priv->dev, "poll timeout\n");
 688		goto out;
 689	}
 690
 691	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
 692	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
 693	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 694
 695	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 696				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 697	if (ret < 0) {
 698		dev_err(priv->dev, "poll timeout\n");
 699		goto out;
 700	}
 701
 702	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
 703	      MT7531_MDIO_DEV_ADDR(devad) | data;
 704	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 705
 706	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 707				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 708	if (ret < 0) {
 709		dev_err(priv->dev, "poll timeout\n");
 710		goto out;
 711	}
 712
 713out:
 714	mutex_unlock(&bus->mdio_lock);
 715
 716	return ret;
 717}
 718
 719static int
 720mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
 721{
 722	struct mii_bus *bus = priv->bus;
 723	struct mt7530_dummy_poll p;
 724	int ret;
 725	u32 val;
 726
 727	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 728
 729	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 730
 731	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 732				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 733	if (ret < 0) {
 734		dev_err(priv->dev, "poll timeout\n");
 735		goto out;
 736	}
 737
 738	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
 739	      MT7531_MDIO_REG_ADDR(regnum);
 740
 741	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
 742
 743	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 744				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 745	if (ret < 0) {
 746		dev_err(priv->dev, "poll timeout\n");
 747		goto out;
 748	}
 749
 750	ret = val & MT7531_MDIO_RW_DATA_MASK;
 751out:
 752	mutex_unlock(&bus->mdio_lock);
 753
 754	return ret;
 755}
 756
 757static int
 758mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
 759			 u16 data)
 760{
 761	struct mii_bus *bus = priv->bus;
 762	struct mt7530_dummy_poll p;
 763	int ret;
 764	u32 reg;
 765
 766	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 767
 768	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 769
 770	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
 771				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
 772	if (ret < 0) {
 773		dev_err(priv->dev, "poll timeout\n");
 774		goto out;
 775	}
 776
 777	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
 778	      MT7531_MDIO_REG_ADDR(regnum) | data;
 779
 780	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 781
 782	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
 783				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
 784	if (ret < 0) {
 785		dev_err(priv->dev, "poll timeout\n");
 786		goto out;
 787	}
 788
 789out:
 790	mutex_unlock(&bus->mdio_lock);
 791
 792	return ret;
 793}
 794
 795static int
 796mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
 797{
 798	int devad;
 799	int ret;
 800
 801	if (regnum & MII_ADDR_C45) {
 802		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
 803		ret = mt7531_ind_c45_phy_read(priv, port, devad,
 804					      regnum & MII_REGADDR_C45_MASK);
 805	} else {
 806		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
 807	}
 808
 809	return ret;
 810}
 811
 812static int
 813mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
 814		     u16 data)
 815{
 816	int devad;
 817	int ret;
 818
 819	if (regnum & MII_ADDR_C45) {
 820		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
 821		ret = mt7531_ind_c45_phy_write(priv, port, devad,
 822					       regnum & MII_REGADDR_C45_MASK,
 823					       data);
 824	} else {
 825		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
 826	}
 827
 828	return ret;
 829}
 830
 831static int
 832mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
 833{
 834	struct mt7530_priv *priv = bus->priv;
 835
 836	return priv->info->phy_read(priv, port, regnum);
 837}
 838
 839static int
 840mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
 841{
 842	struct mt7530_priv *priv = bus->priv;
 843
 844	return priv->info->phy_write(priv, port, regnum, val);
 845}
 846
 847static void
 848mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
 849		   uint8_t *data)
 850{
 851	int i;
 852
 853	if (stringset != ETH_SS_STATS)
 854		return;
 855
 856	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
 857		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
 858			ETH_GSTRING_LEN);
 859}
 860
 861static void
 862mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
 863			 uint64_t *data)
 864{
 865	struct mt7530_priv *priv = ds->priv;
 866	const struct mt7530_mib_desc *mib;
 867	u32 reg, i;
 868	u64 hi;
 869
 870	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
 871		mib = &mt7530_mib[i];
 872		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
 873
 874		data[i] = mt7530_read(priv, reg);
 875		if (mib->size == 2) {
 876			hi = mt7530_read(priv, reg + 4);
 877			data[i] |= hi << 32;
 878		}
 879	}
 880}
 881
 882static int
 883mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
 884{
 885	if (sset != ETH_SS_STATS)
 886		return 0;
 887
 888	return ARRAY_SIZE(mt7530_mib);
 889}
 890
 891static int
 892mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
 893{
 894	struct mt7530_priv *priv = ds->priv;
 895	unsigned int secs = msecs / 1000;
 896	unsigned int tmp_age_count;
 897	unsigned int error = -1;
 898	unsigned int age_count;
 899	unsigned int age_unit;
 900
 901	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
 902	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
 903		return -ERANGE;
 904
 905	/* iterate through all possible age_count to find the closest pair */
 906	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
 907		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
 908
 909		if (tmp_age_unit <= AGE_UNIT_MAX) {
 910			unsigned int tmp_error = secs -
 911				(tmp_age_count + 1) * (tmp_age_unit + 1);
 912
 913			/* found a closer pair */
 914			if (error > tmp_error) {
 915				error = tmp_error;
 916				age_count = tmp_age_count;
 917				age_unit = tmp_age_unit;
 918			}
 919
 920			/* found the exact match, so break the loop */
 921			if (!error)
 922				break;
 923		}
 924	}
 925
 926	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
 927
 928	return 0;
 929}
 930
 931static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
 932{
 933	struct mt7530_priv *priv = ds->priv;
 934	u8 tx_delay = 0;
 935	int val;
 936
 937	mutex_lock(&priv->reg_mutex);
 938
 939	val = mt7530_read(priv, MT7530_MHWTRAP);
 940
 941	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
 942	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
 943
 944	switch (priv->p5_intf_sel) {
 945	case P5_INTF_SEL_PHY_P0:
 946		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
 947		val |= MHWTRAP_PHY0_SEL;
 948		fallthrough;
 949	case P5_INTF_SEL_PHY_P4:
 950		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
 951		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
 952
 953		/* Setup the MAC by default for the cpu port */
 954		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
 955		break;
 956	case P5_INTF_SEL_GMAC5:
 957		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
 958		val &= ~MHWTRAP_P5_DIS;
 959		break;
 960	case P5_DISABLED:
 961		interface = PHY_INTERFACE_MODE_NA;
 962		break;
 963	default:
 964		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
 965			priv->p5_intf_sel);
 966		goto unlock_exit;
 967	}
 968
 969	/* Setup RGMII settings */
 970	if (phy_interface_mode_is_rgmii(interface)) {
 971		val |= MHWTRAP_P5_RGMII_MODE;
 972
 973		/* P5 RGMII RX Clock Control: delay setting for 1000M */
 974		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
 975
 976		/* Don't set delay in DSA mode */
 977		if (!dsa_is_dsa_port(priv->ds, 5) &&
 978		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
 979		     interface == PHY_INTERFACE_MODE_RGMII_ID))
 980			tx_delay = 4; /* n * 0.5 ns */
 981
 982		/* P5 RGMII TX Clock Control: delay x */
 983		mt7530_write(priv, MT7530_P5RGMIITXCR,
 984			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
 985
 986		/* reduce P5 RGMII Tx driving, 8mA */
 987		mt7530_write(priv, MT7530_IO_DRV_CR,
 988			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
 989	}
 990
 991	mt7530_write(priv, MT7530_MHWTRAP, val);
 992
 993	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
 994		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
 995
 996	priv->p5_interface = interface;
 997
 998unlock_exit:
 999	mutex_unlock(&priv->reg_mutex);
1000}
1001
1002static int
1003mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1004{
1005	struct mt7530_priv *priv = ds->priv;
1006	int ret;
1007
1008	/* Setup max capability of CPU port at first */
1009	if (priv->info->cpu_port_config) {
1010		ret = priv->info->cpu_port_config(ds, port);
1011		if (ret)
1012			return ret;
1013	}
1014
1015	/* Enable Mediatek header mode on the cpu port */
1016	mt7530_write(priv, MT7530_PVC_P(port),
1017		     PORT_SPEC_TAG);
1018
1019	/* Disable flooding by default */
1020	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1021		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1022
1023	/* Set CPU port number */
1024	if (priv->id == ID_MT7621)
1025		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1026
1027	/* CPU port gets connected to all user ports of
1028	 * the switch.
1029	 */
1030	mt7530_write(priv, MT7530_PCR_P(port),
1031		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1032
1033	/* Set to fallback mode for independent VLAN learning */
1034	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1035		   MT7530_PORT_FALLBACK_MODE);
1036
1037	return 0;
1038}
1039
1040static int
1041mt7530_port_enable(struct dsa_switch *ds, int port,
1042		   struct phy_device *phy)
1043{
1044	struct dsa_port *dp = dsa_to_port(ds, port);
1045	struct mt7530_priv *priv = ds->priv;
1046
1047	mutex_lock(&priv->reg_mutex);
1048
1049	/* Allow the user port gets connected to the cpu port and also
1050	 * restore the port matrix if the port is the member of a certain
1051	 * bridge.
1052	 */
1053	if (dsa_port_is_user(dp)) {
1054		struct dsa_port *cpu_dp = dp->cpu_dp;
1055
1056		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1057	}
1058	priv->ports[port].enable = true;
1059	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1060		   priv->ports[port].pm);
1061	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1062
1063	mutex_unlock(&priv->reg_mutex);
1064
1065	return 0;
1066}
1067
1068static void
1069mt7530_port_disable(struct dsa_switch *ds, int port)
1070{
1071	struct mt7530_priv *priv = ds->priv;
1072
1073	mutex_lock(&priv->reg_mutex);
1074
1075	/* Clear up all port matrix which could be restored in the next
1076	 * enablement for the port.
1077	 */
1078	priv->ports[port].enable = false;
1079	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1080		   PCR_MATRIX_CLR);
1081	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1082
1083	mutex_unlock(&priv->reg_mutex);
1084}
1085
1086static int
1087mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1088{
1089	struct mt7530_priv *priv = ds->priv;
1090	struct mii_bus *bus = priv->bus;
1091	int length;
1092	u32 val;
1093
1094	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1095	 * largest MTU of the slave ports. Because the switch only has a global
1096	 * RX length register, only allowing CPU port here is enough.
1097	 */
1098	if (!dsa_is_cpu_port(ds, port))
1099		return 0;
1100
1101	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1102
1103	val = mt7530_mii_read(priv, MT7530_GMACCR);
1104	val &= ~MAX_RX_PKT_LEN_MASK;
1105
1106	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1107	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1108	if (length <= 1522) {
1109		val |= MAX_RX_PKT_LEN_1522;
1110	} else if (length <= 1536) {
1111		val |= MAX_RX_PKT_LEN_1536;
1112	} else if (length <= 1552) {
1113		val |= MAX_RX_PKT_LEN_1552;
1114	} else {
1115		val &= ~MAX_RX_JUMBO_MASK;
1116		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1117		val |= MAX_RX_PKT_LEN_JUMBO;
1118	}
1119
1120	mt7530_mii_write(priv, MT7530_GMACCR, val);
1121
1122	mutex_unlock(&bus->mdio_lock);
1123
1124	return 0;
1125}
1126
1127static int
1128mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1129{
1130	return MT7530_MAX_MTU;
1131}
1132
1133static void
1134mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1135{
1136	struct mt7530_priv *priv = ds->priv;
1137	u32 stp_state;
1138
1139	switch (state) {
1140	case BR_STATE_DISABLED:
1141		stp_state = MT7530_STP_DISABLED;
1142		break;
1143	case BR_STATE_BLOCKING:
1144		stp_state = MT7530_STP_BLOCKING;
1145		break;
1146	case BR_STATE_LISTENING:
1147		stp_state = MT7530_STP_LISTENING;
1148		break;
1149	case BR_STATE_LEARNING:
1150		stp_state = MT7530_STP_LEARNING;
1151		break;
1152	case BR_STATE_FORWARDING:
1153	default:
1154		stp_state = MT7530_STP_FORWARDING;
1155		break;
1156	}
1157
1158	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1159		   FID_PST(FID_BRIDGED, stp_state));
1160}
1161
1162static int
1163mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1164			     struct switchdev_brport_flags flags,
1165			     struct netlink_ext_ack *extack)
1166{
1167	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1168			   BR_BCAST_FLOOD))
1169		return -EINVAL;
1170
1171	return 0;
1172}
1173
1174static int
1175mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1176			 struct switchdev_brport_flags flags,
1177			 struct netlink_ext_ack *extack)
1178{
1179	struct mt7530_priv *priv = ds->priv;
1180
1181	if (flags.mask & BR_LEARNING)
1182		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1183			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1184
1185	if (flags.mask & BR_FLOOD)
1186		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1187			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1188
1189	if (flags.mask & BR_MCAST_FLOOD)
1190		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1191			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1192
1193	if (flags.mask & BR_BCAST_FLOOD)
1194		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1195			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1196
1197	return 0;
1198}
1199
1200static int
1201mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1202			struct dsa_bridge bridge, bool *tx_fwd_offload,
1203			struct netlink_ext_ack *extack)
1204{
1205	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1206	struct dsa_port *cpu_dp = dp->cpu_dp;
1207	u32 port_bitmap = BIT(cpu_dp->index);
1208	struct mt7530_priv *priv = ds->priv;
1209
1210	mutex_lock(&priv->reg_mutex);
1211
1212	dsa_switch_for_each_user_port(other_dp, ds) {
1213		int other_port = other_dp->index;
1214
1215		if (dp == other_dp)
1216			continue;
1217
1218		/* Add this port to the port matrix of the other ports in the
1219		 * same bridge. If the port is disabled, port matrix is kept
1220		 * and not being setup until the port becomes enabled.
1221		 */
1222		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1223			continue;
1224
1225		if (priv->ports[other_port].enable)
1226			mt7530_set(priv, MT7530_PCR_P(other_port),
1227				   PCR_MATRIX(BIT(port)));
1228		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1229
1230		port_bitmap |= BIT(other_port);
1231	}
1232
1233	/* Add the all other ports to this port matrix. */
1234	if (priv->ports[port].enable)
1235		mt7530_rmw(priv, MT7530_PCR_P(port),
1236			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1237	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1238
1239	/* Set to fallback mode for independent VLAN learning */
1240	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1241		   MT7530_PORT_FALLBACK_MODE);
1242
1243	mutex_unlock(&priv->reg_mutex);
1244
1245	return 0;
1246}
1247
1248static void
1249mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1250{
1251	struct mt7530_priv *priv = ds->priv;
1252	bool all_user_ports_removed = true;
1253	int i;
1254
1255	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1256	 * bridge. Don't set standalone ports to fallback mode.
1257	 */
1258	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1259		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1260			   MT7530_PORT_FALLBACK_MODE);
1261
1262	mt7530_rmw(priv, MT7530_PVC_P(port),
1263		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1264		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1265		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1266		   MT7530_VLAN_ACC_ALL);
1267
1268	/* Set PVID to 0 */
1269	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1270		   G0_PORT_VID_DEF);
1271
1272	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1273		if (dsa_is_user_port(ds, i) &&
1274		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1275			all_user_ports_removed = false;
1276			break;
1277		}
1278	}
1279
1280	/* CPU port also does the same thing until all user ports belonging to
1281	 * the CPU port get out of VLAN filtering mode.
1282	 */
1283	if (all_user_ports_removed) {
1284		struct dsa_port *dp = dsa_to_port(ds, port);
1285		struct dsa_port *cpu_dp = dp->cpu_dp;
1286
1287		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1288			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1289		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1290			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1291	}
1292}
1293
1294static void
1295mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1296{
1297	struct mt7530_priv *priv = ds->priv;
1298
1299	/* Trapped into security mode allows packet forwarding through VLAN
1300	 * table lookup.
1301	 */
1302	if (dsa_is_user_port(ds, port)) {
1303		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1304			   MT7530_PORT_SECURITY_MODE);
1305		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1306			   G0_PORT_VID(priv->ports[port].pvid));
1307
1308		/* Only accept tagged frames if PVID is not set */
1309		if (!priv->ports[port].pvid)
1310			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1311				   MT7530_VLAN_ACC_TAGGED);
1312
1313		/* Set the port as a user port which is to be able to recognize
1314		 * VID from incoming packets before fetching entry within the
1315		 * VLAN table.
1316		 */
1317		mt7530_rmw(priv, MT7530_PVC_P(port),
1318			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1319			   VLAN_ATTR(MT7530_VLAN_USER) |
1320			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1321	} else {
1322		/* Also set CPU ports to the "user" VLAN port attribute, to
1323		 * allow VLAN classification, but keep the EG_TAG attribute as
1324		 * "consistent" (i.o.w. don't change its value) for packets
1325		 * received by the switch from the CPU, so that tagged packets
1326		 * are forwarded to user ports as tagged, and untagged as
1327		 * untagged.
1328		 */
1329		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1330			   VLAN_ATTR(MT7530_VLAN_USER));
1331	}
1332}
1333
1334static void
1335mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1336			 struct dsa_bridge bridge)
1337{
1338	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1339	struct dsa_port *cpu_dp = dp->cpu_dp;
1340	struct mt7530_priv *priv = ds->priv;
1341
1342	mutex_lock(&priv->reg_mutex);
1343
1344	dsa_switch_for_each_user_port(other_dp, ds) {
1345		int other_port = other_dp->index;
1346
1347		if (dp == other_dp)
1348			continue;
1349
1350		/* Remove this port from the port matrix of the other ports
1351		 * in the same bridge. If the port is disabled, port matrix
1352		 * is kept and not being setup until the port becomes enabled.
1353		 */
1354		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1355			continue;
1356
1357		if (priv->ports[other_port].enable)
1358			mt7530_clear(priv, MT7530_PCR_P(other_port),
1359				     PCR_MATRIX(BIT(port)));
1360		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1361	}
1362
1363	/* Set the cpu port to be the only one in the port matrix of
1364	 * this port.
1365	 */
1366	if (priv->ports[port].enable)
1367		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1368			   PCR_MATRIX(BIT(cpu_dp->index)));
1369	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1370
1371	/* When a port is removed from the bridge, the port would be set up
1372	 * back to the default as is at initial boot which is a VLAN-unaware
1373	 * port.
1374	 */
1375	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1376		   MT7530_PORT_MATRIX_MODE);
1377
1378	mutex_unlock(&priv->reg_mutex);
1379}
1380
1381static int
1382mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1383		    const unsigned char *addr, u16 vid,
1384		    struct dsa_db db)
1385{
1386	struct mt7530_priv *priv = ds->priv;
1387	int ret;
1388	u8 port_mask = BIT(port);
1389
1390	mutex_lock(&priv->reg_mutex);
1391	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1392	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1393	mutex_unlock(&priv->reg_mutex);
1394
1395	return ret;
1396}
1397
1398static int
1399mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1400		    const unsigned char *addr, u16 vid,
1401		    struct dsa_db db)
1402{
1403	struct mt7530_priv *priv = ds->priv;
1404	int ret;
1405	u8 port_mask = BIT(port);
1406
1407	mutex_lock(&priv->reg_mutex);
1408	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1409	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1410	mutex_unlock(&priv->reg_mutex);
1411
1412	return ret;
1413}
1414
1415static int
1416mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1417		     dsa_fdb_dump_cb_t *cb, void *data)
1418{
1419	struct mt7530_priv *priv = ds->priv;
1420	struct mt7530_fdb _fdb = { 0 };
1421	int cnt = MT7530_NUM_FDB_RECORDS;
1422	int ret = 0;
1423	u32 rsp = 0;
1424
1425	mutex_lock(&priv->reg_mutex);
1426
1427	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1428	if (ret < 0)
1429		goto err;
1430
1431	do {
1432		if (rsp & ATC_SRCH_HIT) {
1433			mt7530_fdb_read(priv, &_fdb);
1434			if (_fdb.port_mask & BIT(port)) {
1435				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1436					 data);
1437				if (ret < 0)
1438					break;
1439			}
1440		}
1441	} while (--cnt &&
1442		 !(rsp & ATC_SRCH_END) &&
1443		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1444err:
1445	mutex_unlock(&priv->reg_mutex);
1446
1447	return 0;
1448}
1449
1450static int
1451mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1452		    const struct switchdev_obj_port_mdb *mdb,
1453		    struct dsa_db db)
1454{
1455	struct mt7530_priv *priv = ds->priv;
1456	const u8 *addr = mdb->addr;
1457	u16 vid = mdb->vid;
1458	u8 port_mask = 0;
1459	int ret;
1460
1461	mutex_lock(&priv->reg_mutex);
1462
1463	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1464	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1465		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1466			    & PORT_MAP_MASK;
1467
1468	port_mask |= BIT(port);
1469	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1470	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1471
1472	mutex_unlock(&priv->reg_mutex);
1473
1474	return ret;
1475}
1476
1477static int
1478mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1479		    const struct switchdev_obj_port_mdb *mdb,
1480		    struct dsa_db db)
1481{
1482	struct mt7530_priv *priv = ds->priv;
1483	const u8 *addr = mdb->addr;
1484	u16 vid = mdb->vid;
1485	u8 port_mask = 0;
1486	int ret;
1487
1488	mutex_lock(&priv->reg_mutex);
1489
1490	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1491	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1492		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1493			    & PORT_MAP_MASK;
1494
1495	port_mask &= ~BIT(port);
1496	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1497			 port_mask ? STATIC_ENT : STATIC_EMP);
1498	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1499
1500	mutex_unlock(&priv->reg_mutex);
1501
1502	return ret;
1503}
1504
1505static int
1506mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1507{
1508	struct mt7530_dummy_poll p;
1509	u32 val;
1510	int ret;
1511
1512	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1513	mt7530_write(priv, MT7530_VTCR, val);
1514
1515	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1516	ret = readx_poll_timeout(_mt7530_read, &p, val,
1517				 !(val & VTCR_BUSY), 20, 20000);
1518	if (ret < 0) {
1519		dev_err(priv->dev, "poll timeout\n");
1520		return ret;
1521	}
1522
1523	val = mt7530_read(priv, MT7530_VTCR);
1524	if (val & VTCR_INVALID) {
1525		dev_err(priv->dev, "read VTCR invalid\n");
1526		return -EINVAL;
1527	}
1528
1529	return 0;
1530}
1531
1532static int
1533mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1534			   struct netlink_ext_ack *extack)
1535{
1536	struct dsa_port *dp = dsa_to_port(ds, port);
1537	struct dsa_port *cpu_dp = dp->cpu_dp;
1538
1539	if (vlan_filtering) {
1540		/* The port is being kept as VLAN-unaware port when bridge is
1541		 * set up with vlan_filtering not being set, Otherwise, the
1542		 * port and the corresponding CPU port is required the setup
1543		 * for becoming a VLAN-aware port.
1544		 */
1545		mt7530_port_set_vlan_aware(ds, port);
1546		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1547	} else {
1548		mt7530_port_set_vlan_unaware(ds, port);
1549	}
1550
1551	return 0;
1552}
1553
1554static void
1555mt7530_hw_vlan_add(struct mt7530_priv *priv,
1556		   struct mt7530_hw_vlan_entry *entry)
1557{
1558	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1559	u8 new_members;
1560	u32 val;
1561
1562	new_members = entry->old_members | BIT(entry->port);
1563
1564	/* Validate the entry with independent learning, create egress tag per
1565	 * VLAN and joining the port as one of the port members.
1566	 */
1567	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1568	      VLAN_VALID;
1569	mt7530_write(priv, MT7530_VAWD1, val);
1570
1571	/* Decide whether adding tag or not for those outgoing packets from the
1572	 * port inside the VLAN.
1573	 * CPU port is always taken as a tagged port for serving more than one
1574	 * VLANs across and also being applied with egress type stack mode for
1575	 * that VLAN tags would be appended after hardware special tag used as
1576	 * DSA tag.
1577	 */
1578	if (dsa_port_is_cpu(dp))
1579		val = MT7530_VLAN_EGRESS_STACK;
1580	else if (entry->untagged)
1581		val = MT7530_VLAN_EGRESS_UNTAG;
1582	else
1583		val = MT7530_VLAN_EGRESS_TAG;
1584	mt7530_rmw(priv, MT7530_VAWD2,
1585		   ETAG_CTRL_P_MASK(entry->port),
1586		   ETAG_CTRL_P(entry->port, val));
1587}
1588
1589static void
1590mt7530_hw_vlan_del(struct mt7530_priv *priv,
1591		   struct mt7530_hw_vlan_entry *entry)
1592{
1593	u8 new_members;
1594	u32 val;
1595
1596	new_members = entry->old_members & ~BIT(entry->port);
1597
1598	val = mt7530_read(priv, MT7530_VAWD1);
1599	if (!(val & VLAN_VALID)) {
1600		dev_err(priv->dev,
1601			"Cannot be deleted due to invalid entry\n");
1602		return;
1603	}
1604
1605	if (new_members) {
1606		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1607		      VLAN_VALID;
1608		mt7530_write(priv, MT7530_VAWD1, val);
1609	} else {
1610		mt7530_write(priv, MT7530_VAWD1, 0);
1611		mt7530_write(priv, MT7530_VAWD2, 0);
1612	}
1613}
1614
1615static void
1616mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1617		      struct mt7530_hw_vlan_entry *entry,
1618		      mt7530_vlan_op vlan_op)
1619{
1620	u32 val;
1621
1622	/* Fetch entry */
1623	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1624
1625	val = mt7530_read(priv, MT7530_VAWD1);
1626
1627	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1628
1629	/* Manipulate entry */
1630	vlan_op(priv, entry);
1631
1632	/* Flush result to hardware */
1633	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1634}
1635
1636static int
1637mt7530_setup_vlan0(struct mt7530_priv *priv)
1638{
1639	u32 val;
1640
1641	/* Validate the entry with independent learning, keep the original
1642	 * ingress tag attribute.
1643	 */
1644	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1645	      VLAN_VALID;
1646	mt7530_write(priv, MT7530_VAWD1, val);
1647
1648	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1649}
1650
1651static int
1652mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1653		     const struct switchdev_obj_port_vlan *vlan,
1654		     struct netlink_ext_ack *extack)
1655{
1656	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1657	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1658	struct mt7530_hw_vlan_entry new_entry;
1659	struct mt7530_priv *priv = ds->priv;
1660
1661	mutex_lock(&priv->reg_mutex);
1662
1663	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1664	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1665
1666	if (pvid) {
1667		priv->ports[port].pvid = vlan->vid;
1668
1669		/* Accept all frames if PVID is set */
1670		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1671			   MT7530_VLAN_ACC_ALL);
1672
1673		/* Only configure PVID if VLAN filtering is enabled */
1674		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1675			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1676				   G0_PORT_VID_MASK,
1677				   G0_PORT_VID(vlan->vid));
1678	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1679		/* This VLAN is overwritten without PVID, so unset it */
1680		priv->ports[port].pvid = G0_PORT_VID_DEF;
1681
1682		/* Only accept tagged frames if the port is VLAN-aware */
1683		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1684			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1685				   MT7530_VLAN_ACC_TAGGED);
1686
1687		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1688			   G0_PORT_VID_DEF);
1689	}
1690
1691	mutex_unlock(&priv->reg_mutex);
1692
1693	return 0;
1694}
1695
1696static int
1697mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1698		     const struct switchdev_obj_port_vlan *vlan)
1699{
1700	struct mt7530_hw_vlan_entry target_entry;
1701	struct mt7530_priv *priv = ds->priv;
1702
1703	mutex_lock(&priv->reg_mutex);
1704
1705	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1706	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1707			      mt7530_hw_vlan_del);
1708
1709	/* PVID is being restored to the default whenever the PVID port
1710	 * is being removed from the VLAN.
1711	 */
1712	if (priv->ports[port].pvid == vlan->vid) {
1713		priv->ports[port].pvid = G0_PORT_VID_DEF;
1714
1715		/* Only accept tagged frames if the port is VLAN-aware */
1716		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1717			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1718				   MT7530_VLAN_ACC_TAGGED);
1719
1720		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1721			   G0_PORT_VID_DEF);
1722	}
1723
1724
1725	mutex_unlock(&priv->reg_mutex);
1726
1727	return 0;
1728}
1729
1730static int mt753x_mirror_port_get(unsigned int id, u32 val)
1731{
1732	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1733				   MIRROR_PORT(val);
1734}
1735
1736static int mt753x_mirror_port_set(unsigned int id, u32 val)
1737{
1738	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1739				   MIRROR_PORT(val);
1740}
1741
1742static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1743				  struct dsa_mall_mirror_tc_entry *mirror,
1744				  bool ingress, struct netlink_ext_ack *extack)
1745{
1746	struct mt7530_priv *priv = ds->priv;
1747	int monitor_port;
1748	u32 val;
1749
1750	/* Check for existent entry */
1751	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1752		return -EEXIST;
1753
1754	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1755
1756	/* MT7530 only supports one monitor port */
1757	monitor_port = mt753x_mirror_port_get(priv->id, val);
1758	if (val & MT753X_MIRROR_EN(priv->id) &&
1759	    monitor_port != mirror->to_local_port)
1760		return -EEXIST;
1761
1762	val |= MT753X_MIRROR_EN(priv->id);
1763	val &= ~MT753X_MIRROR_MASK(priv->id);
1764	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1765	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1766
1767	val = mt7530_read(priv, MT7530_PCR_P(port));
1768	if (ingress) {
1769		val |= PORT_RX_MIR;
1770		priv->mirror_rx |= BIT(port);
1771	} else {
1772		val |= PORT_TX_MIR;
1773		priv->mirror_tx |= BIT(port);
1774	}
1775	mt7530_write(priv, MT7530_PCR_P(port), val);
1776
1777	return 0;
1778}
1779
1780static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1781				   struct dsa_mall_mirror_tc_entry *mirror)
1782{
1783	struct mt7530_priv *priv = ds->priv;
1784	u32 val;
1785
1786	val = mt7530_read(priv, MT7530_PCR_P(port));
1787	if (mirror->ingress) {
1788		val &= ~PORT_RX_MIR;
1789		priv->mirror_rx &= ~BIT(port);
1790	} else {
1791		val &= ~PORT_TX_MIR;
1792		priv->mirror_tx &= ~BIT(port);
1793	}
1794	mt7530_write(priv, MT7530_PCR_P(port), val);
1795
1796	if (!priv->mirror_rx && !priv->mirror_tx) {
1797		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1798		val &= ~MT753X_MIRROR_EN(priv->id);
1799		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1800	}
1801}
1802
1803static enum dsa_tag_protocol
1804mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1805		     enum dsa_tag_protocol mp)
1806{
1807	return DSA_TAG_PROTO_MTK;
1808}
1809
1810#ifdef CONFIG_GPIOLIB
1811static inline u32
1812mt7530_gpio_to_bit(unsigned int offset)
1813{
1814	/* Map GPIO offset to register bit
1815	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1816	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1817	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1818	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1819	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1820	 */
1821	return BIT(offset + offset / 3);
1822}
1823
1824static int
1825mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1826{
1827	struct mt7530_priv *priv = gpiochip_get_data(gc);
1828	u32 bit = mt7530_gpio_to_bit(offset);
1829
1830	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1831}
1832
1833static void
1834mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1835{
1836	struct mt7530_priv *priv = gpiochip_get_data(gc);
1837	u32 bit = mt7530_gpio_to_bit(offset);
1838
1839	if (value)
1840		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1841	else
1842		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1843}
1844
1845static int
1846mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1847{
1848	struct mt7530_priv *priv = gpiochip_get_data(gc);
1849	u32 bit = mt7530_gpio_to_bit(offset);
1850
1851	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1852		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1853}
1854
1855static int
1856mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1857{
1858	struct mt7530_priv *priv = gpiochip_get_data(gc);
1859	u32 bit = mt7530_gpio_to_bit(offset);
1860
1861	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1862	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1863
1864	return 0;
1865}
1866
1867static int
1868mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1869{
1870	struct mt7530_priv *priv = gpiochip_get_data(gc);
1871	u32 bit = mt7530_gpio_to_bit(offset);
1872
1873	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1874
1875	if (value)
1876		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1877	else
1878		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1879
1880	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1881
1882	return 0;
1883}
1884
1885static int
1886mt7530_setup_gpio(struct mt7530_priv *priv)
1887{
1888	struct device *dev = priv->dev;
1889	struct gpio_chip *gc;
1890
1891	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1892	if (!gc)
1893		return -ENOMEM;
1894
1895	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1896	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1897	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1898
1899	gc->label = "mt7530";
1900	gc->parent = dev;
1901	gc->owner = THIS_MODULE;
1902	gc->get_direction = mt7530_gpio_get_direction;
1903	gc->direction_input = mt7530_gpio_direction_input;
1904	gc->direction_output = mt7530_gpio_direction_output;
1905	gc->get = mt7530_gpio_get;
1906	gc->set = mt7530_gpio_set;
1907	gc->base = -1;
1908	gc->ngpio = 15;
1909	gc->can_sleep = true;
1910
1911	return devm_gpiochip_add_data(dev, gc, priv);
1912}
1913#endif /* CONFIG_GPIOLIB */
1914
1915static irqreturn_t
1916mt7530_irq_thread_fn(int irq, void *dev_id)
1917{
1918	struct mt7530_priv *priv = dev_id;
1919	bool handled = false;
1920	u32 val;
1921	int p;
1922
1923	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1924	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1925	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1926	mutex_unlock(&priv->bus->mdio_lock);
1927
1928	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1929		if (BIT(p) & val) {
1930			unsigned int irq;
1931
1932			irq = irq_find_mapping(priv->irq_domain, p);
1933			handle_nested_irq(irq);
1934			handled = true;
1935		}
1936	}
1937
1938	return IRQ_RETVAL(handled);
1939}
1940
1941static void
1942mt7530_irq_mask(struct irq_data *d)
1943{
1944	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1945
1946	priv->irq_enable &= ~BIT(d->hwirq);
1947}
1948
1949static void
1950mt7530_irq_unmask(struct irq_data *d)
1951{
1952	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1953
1954	priv->irq_enable |= BIT(d->hwirq);
1955}
1956
1957static void
1958mt7530_irq_bus_lock(struct irq_data *d)
1959{
1960	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1961
1962	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1963}
1964
1965static void
1966mt7530_irq_bus_sync_unlock(struct irq_data *d)
1967{
1968	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1969
1970	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1971	mutex_unlock(&priv->bus->mdio_lock);
1972}
1973
1974static struct irq_chip mt7530_irq_chip = {
1975	.name = KBUILD_MODNAME,
1976	.irq_mask = mt7530_irq_mask,
1977	.irq_unmask = mt7530_irq_unmask,
1978	.irq_bus_lock = mt7530_irq_bus_lock,
1979	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1980};
1981
1982static int
1983mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1984	       irq_hw_number_t hwirq)
1985{
1986	irq_set_chip_data(irq, domain->host_data);
1987	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1988	irq_set_nested_thread(irq, true);
1989	irq_set_noprobe(irq);
1990
1991	return 0;
1992}
1993
1994static const struct irq_domain_ops mt7530_irq_domain_ops = {
1995	.map = mt7530_irq_map,
1996	.xlate = irq_domain_xlate_onecell,
1997};
1998
1999static void
2000mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2001{
2002	struct dsa_switch *ds = priv->ds;
2003	int p;
2004
2005	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2006		if (BIT(p) & ds->phys_mii_mask) {
2007			unsigned int irq;
2008
2009			irq = irq_create_mapping(priv->irq_domain, p);
2010			ds->slave_mii_bus->irq[p] = irq;
2011		}
2012	}
2013}
2014
2015static int
2016mt7530_setup_irq(struct mt7530_priv *priv)
2017{
2018	struct device *dev = priv->dev;
2019	struct device_node *np = dev->of_node;
2020	int ret;
2021
2022	if (!of_property_read_bool(np, "interrupt-controller")) {
2023		dev_info(dev, "no interrupt support\n");
2024		return 0;
2025	}
2026
2027	priv->irq = of_irq_get(np, 0);
2028	if (priv->irq <= 0) {
2029		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2030		return priv->irq ? : -EINVAL;
2031	}
2032
2033	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2034						 &mt7530_irq_domain_ops, priv);
2035	if (!priv->irq_domain) {
2036		dev_err(dev, "failed to create IRQ domain\n");
2037		return -ENOMEM;
2038	}
2039
2040	/* This register must be set for MT7530 to properly fire interrupts */
2041	if (priv->id != ID_MT7531)
2042		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2043
2044	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2045				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2046	if (ret) {
2047		irq_domain_remove(priv->irq_domain);
2048		dev_err(dev, "failed to request IRQ: %d\n", ret);
2049		return ret;
2050	}
2051
2052	return 0;
2053}
2054
2055static void
2056mt7530_free_mdio_irq(struct mt7530_priv *priv)
2057{
2058	int p;
2059
2060	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2061		if (BIT(p) & priv->ds->phys_mii_mask) {
2062			unsigned int irq;
2063
2064			irq = irq_find_mapping(priv->irq_domain, p);
2065			irq_dispose_mapping(irq);
2066		}
2067	}
2068}
2069
2070static void
2071mt7530_free_irq_common(struct mt7530_priv *priv)
2072{
2073	free_irq(priv->irq, priv);
2074	irq_domain_remove(priv->irq_domain);
2075}
2076
2077static void
2078mt7530_free_irq(struct mt7530_priv *priv)
2079{
2080	mt7530_free_mdio_irq(priv);
2081	mt7530_free_irq_common(priv);
2082}
2083
2084static int
2085mt7530_setup_mdio(struct mt7530_priv *priv)
2086{
2087	struct dsa_switch *ds = priv->ds;
2088	struct device *dev = priv->dev;
2089	struct mii_bus *bus;
2090	static int idx;
2091	int ret;
2092
2093	bus = devm_mdiobus_alloc(dev);
2094	if (!bus)
2095		return -ENOMEM;
2096
2097	ds->slave_mii_bus = bus;
2098	bus->priv = priv;
2099	bus->name = KBUILD_MODNAME "-mii";
2100	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2101	bus->read = mt753x_phy_read;
2102	bus->write = mt753x_phy_write;
2103	bus->parent = dev;
2104	bus->phy_mask = ~ds->phys_mii_mask;
2105
2106	if (priv->irq)
2107		mt7530_setup_mdio_irq(priv);
2108
2109	ret = devm_mdiobus_register(dev, bus);
2110	if (ret) {
2111		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2112		if (priv->irq)
2113			mt7530_free_mdio_irq(priv);
2114	}
2115
2116	return ret;
2117}
2118
2119static int
2120mt7530_setup(struct dsa_switch *ds)
2121{
2122	struct mt7530_priv *priv = ds->priv;
2123	struct device_node *dn = NULL;
2124	struct device_node *phy_node;
2125	struct device_node *mac_np;
2126	struct mt7530_dummy_poll p;
2127	phy_interface_t interface;
2128	struct dsa_port *cpu_dp;
2129	u32 id, val;
2130	int ret, i;
2131
2132	/* The parent node of master netdev which holds the common system
2133	 * controller also is the container for two GMACs nodes representing
2134	 * as two netdev instances.
2135	 */
2136	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2137		dn = cpu_dp->master->dev.of_node->parent;
2138		/* It doesn't matter which CPU port is found first,
2139		 * their masters should share the same parent OF node
2140		 */
2141		break;
2142	}
2143
2144	if (!dn) {
2145		dev_err(ds->dev, "parent OF node of DSA master not found");
2146		return -EINVAL;
2147	}
2148
2149	ds->assisted_learning_on_cpu_port = true;
2150	ds->mtu_enforcement_ingress = true;
2151
2152	if (priv->id == ID_MT7530) {
2153		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2154		ret = regulator_enable(priv->core_pwr);
2155		if (ret < 0) {
2156			dev_err(priv->dev,
2157				"Failed to enable core power: %d\n", ret);
2158			return ret;
2159		}
2160
2161		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2162		ret = regulator_enable(priv->io_pwr);
2163		if (ret < 0) {
2164			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2165				ret);
2166			return ret;
2167		}
2168	}
2169
2170	/* Reset whole chip through gpio pin or memory-mapped registers for
2171	 * different type of hardware
2172	 */
2173	if (priv->mcm) {
2174		reset_control_assert(priv->rstc);
2175		usleep_range(1000, 1100);
2176		reset_control_deassert(priv->rstc);
2177	} else {
2178		gpiod_set_value_cansleep(priv->reset, 0);
2179		usleep_range(1000, 1100);
2180		gpiod_set_value_cansleep(priv->reset, 1);
2181	}
2182
2183	/* Waiting for MT7530 got to stable */
2184	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2185	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2186				 20, 1000000);
2187	if (ret < 0) {
2188		dev_err(priv->dev, "reset timeout\n");
2189		return ret;
2190	}
2191
2192	id = mt7530_read(priv, MT7530_CREV);
2193	id >>= CHIP_NAME_SHIFT;
2194	if (id != MT7530_ID) {
2195		dev_err(priv->dev, "chip %x can't be supported\n", id);
2196		return -ENODEV;
2197	}
2198
2199	/* Reset the switch through internal reset */
2200	mt7530_write(priv, MT7530_SYS_CTRL,
2201		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2202		     SYS_CTRL_REG_RST);
2203
2204	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2205	val = mt7530_read(priv, MT7530_MHWTRAP);
2206	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2207	val |= MHWTRAP_MANUAL;
2208	mt7530_write(priv, MT7530_MHWTRAP, val);
2209
2210	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2211
2212	/* Enable and reset MIB counters */
2213	mt7530_mib_reset(ds);
2214
2215	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2216		/* Disable forwarding by default on all ports */
2217		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2218			   PCR_MATRIX_CLR);
2219
2220		/* Disable learning by default on all ports */
2221		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2222
2223		if (dsa_is_cpu_port(ds, i)) {
2224			ret = mt753x_cpu_port_enable(ds, i);
2225			if (ret)
2226				return ret;
2227		} else {
2228			mt7530_port_disable(ds, i);
2229
2230			/* Set default PVID to 0 on all user ports */
2231			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2232				   G0_PORT_VID_DEF);
2233		}
2234		/* Enable consistent egress tag */
2235		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2236			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2237	}
2238
2239	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2240	ret = mt7530_setup_vlan0(priv);
2241	if (ret)
2242		return ret;
2243
2244	/* Setup port 5 */
2245	priv->p5_intf_sel = P5_DISABLED;
2246	interface = PHY_INTERFACE_MODE_NA;
2247
2248	if (!dsa_is_unused_port(ds, 5)) {
2249		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2250		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2251		if (ret && ret != -ENODEV)
2252			return ret;
2253	} else {
2254		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2255		for_each_child_of_node(dn, mac_np) {
2256			if (!of_device_is_compatible(mac_np,
2257						     "mediatek,eth-mac"))
2258				continue;
2259
2260			ret = of_property_read_u32(mac_np, "reg", &id);
2261			if (ret < 0 || id != 1)
2262				continue;
2263
2264			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2265			if (!phy_node)
2266				continue;
2267
2268			if (phy_node->parent == priv->dev->of_node->parent) {
2269				ret = of_get_phy_mode(mac_np, &interface);
2270				if (ret && ret != -ENODEV) {
2271					of_node_put(mac_np);
2272					of_node_put(phy_node);
2273					return ret;
2274				}
2275				id = of_mdio_parse_addr(ds->dev, phy_node);
2276				if (id == 0)
2277					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2278				if (id == 4)
2279					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2280			}
2281			of_node_put(mac_np);
2282			of_node_put(phy_node);
2283			break;
2284		}
2285	}
2286
2287#ifdef CONFIG_GPIOLIB
2288	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2289		ret = mt7530_setup_gpio(priv);
2290		if (ret)
2291			return ret;
2292	}
2293#endif /* CONFIG_GPIOLIB */
2294
2295	mt7530_setup_port5(ds, interface);
2296
2297	/* Flush the FDB table */
2298	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2299	if (ret < 0)
2300		return ret;
2301
2302	return 0;
2303}
2304
2305static int
2306mt7531_setup(struct dsa_switch *ds)
2307{
2308	struct mt7530_priv *priv = ds->priv;
2309	struct mt7530_dummy_poll p;
2310	struct dsa_port *cpu_dp;
2311	u32 val, id;
2312	int ret, i;
2313
2314	/* Reset whole chip through gpio pin or memory-mapped registers for
2315	 * different type of hardware
2316	 */
2317	if (priv->mcm) {
2318		reset_control_assert(priv->rstc);
2319		usleep_range(1000, 1100);
2320		reset_control_deassert(priv->rstc);
2321	} else {
2322		gpiod_set_value_cansleep(priv->reset, 0);
2323		usleep_range(1000, 1100);
2324		gpiod_set_value_cansleep(priv->reset, 1);
2325	}
2326
2327	/* Waiting for MT7530 got to stable */
2328	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2329	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2330				 20, 1000000);
2331	if (ret < 0) {
2332		dev_err(priv->dev, "reset timeout\n");
2333		return ret;
2334	}
2335
2336	id = mt7530_read(priv, MT7531_CREV);
2337	id >>= CHIP_NAME_SHIFT;
2338
2339	if (id != MT7531_ID) {
2340		dev_err(priv->dev, "chip %x can't be supported\n", id);
2341		return -ENODEV;
2342	}
2343
2344	/* all MACs must be forced link-down before sw reset */
2345	for (i = 0; i < MT7530_NUM_PORTS; i++)
2346		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2347
2348	/* Reset the switch through internal reset */
2349	mt7530_write(priv, MT7530_SYS_CTRL,
2350		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2351		     SYS_CTRL_REG_RST);
2352
2353	mt7531_pll_setup(priv);
2354
2355	if (mt7531_dual_sgmii_supported(priv)) {
2356		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2357
2358		/* Let ds->slave_mii_bus be able to access external phy. */
2359		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2360			   MT7531_EXT_P_MDC_11);
2361		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2362			   MT7531_EXT_P_MDIO_12);
2363	} else {
2364		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2365	}
2366	dev_dbg(ds->dev, "P5 support %s interface\n",
2367		p5_intf_modes(priv->p5_intf_sel));
2368
2369	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2370		   MT7531_GPIO0_INTERRUPT);
2371
2372	/* Let phylink decide the interface later. */
2373	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2374	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2375
2376	/* Enable PHY core PLL, since phy_device has not yet been created
2377	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2378	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2379	 * function.
2380	 */
2381	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2382				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2383	val |= MT7531_PHY_PLL_BYPASS_MODE;
2384	val &= ~MT7531_PHY_PLL_OFF;
2385	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2386				 CORE_PLL_GROUP4, val);
2387
2388	/* BPDU to CPU port */
2389	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2390		mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2391			   BIT(cpu_dp->index));
2392		break;
2393	}
2394	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2395		   MT753X_BPDU_CPU_ONLY);
2396
2397	/* Enable and reset MIB counters */
2398	mt7530_mib_reset(ds);
2399
2400	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2401		/* Disable forwarding by default on all ports */
2402		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2403			   PCR_MATRIX_CLR);
2404
2405		/* Disable learning by default on all ports */
2406		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2407
2408		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2409
2410		if (dsa_is_cpu_port(ds, i)) {
2411			ret = mt753x_cpu_port_enable(ds, i);
2412			if (ret)
2413				return ret;
2414		} else {
2415			mt7530_port_disable(ds, i);
2416
2417			/* Set default PVID to 0 on all user ports */
2418			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2419				   G0_PORT_VID_DEF);
2420		}
2421
2422		/* Enable consistent egress tag */
2423		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2424			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2425	}
2426
2427	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2428	ret = mt7530_setup_vlan0(priv);
2429	if (ret)
2430		return ret;
2431
2432	ds->assisted_learning_on_cpu_port = true;
2433	ds->mtu_enforcement_ingress = true;
2434
2435	/* Flush the FDB table */
2436	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2437	if (ret < 0)
2438		return ret;
2439
2440	return 0;
2441}
2442
2443static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2444				     struct phylink_config *config)
2445{
2446	switch (port) {
2447	case 0 ... 4: /* Internal phy */
2448		__set_bit(PHY_INTERFACE_MODE_GMII,
2449			  config->supported_interfaces);
2450		break;
2451
2452	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2453		phy_interface_set_rgmii(config->supported_interfaces);
2454		__set_bit(PHY_INTERFACE_MODE_MII,
2455			  config->supported_interfaces);
2456		__set_bit(PHY_INTERFACE_MODE_GMII,
2457			  config->supported_interfaces);
2458		break;
2459
2460	case 6: /* 1st cpu port */
2461		__set_bit(PHY_INTERFACE_MODE_RGMII,
2462			  config->supported_interfaces);
2463		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2464			  config->supported_interfaces);
2465		break;
2466	}
2467}
2468
2469static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2470{
2471	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2472}
2473
2474static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2475				     struct phylink_config *config)
2476{
2477	struct mt7530_priv *priv = ds->priv;
2478
2479	switch (port) {
2480	case 0 ... 4: /* Internal phy */
2481		__set_bit(PHY_INTERFACE_MODE_GMII,
2482			  config->supported_interfaces);
2483		break;
2484
2485	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2486		if (mt7531_is_rgmii_port(priv, port)) {
2487			phy_interface_set_rgmii(config->supported_interfaces);
2488			break;
2489		}
2490		fallthrough;
2491
2492	case 6: /* 1st cpu port supports sgmii/8023z only */
2493		__set_bit(PHY_INTERFACE_MODE_SGMII,
2494			  config->supported_interfaces);
2495		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2496			  config->supported_interfaces);
2497		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2498			  config->supported_interfaces);
2499
2500		config->mac_capabilities |= MAC_2500FD;
2501		break;
2502	}
2503}
2504
2505static int
2506mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2507{
2508	struct mt7530_priv *priv = ds->priv;
2509
2510	return priv->info->pad_setup(ds, state->interface);
2511}
2512
2513static int
2514mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2515		  phy_interface_t interface)
2516{
2517	struct mt7530_priv *priv = ds->priv;
2518
2519	/* Only need to setup port5. */
2520	if (port != 5)
2521		return 0;
2522
2523	mt7530_setup_port5(priv->ds, interface);
2524
2525	return 0;
2526}
2527
2528static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2529			      phy_interface_t interface,
2530			      struct phy_device *phydev)
2531{
2532	u32 val;
2533
2534	if (!mt7531_is_rgmii_port(priv, port)) {
2535		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2536			port);
2537		return -EINVAL;
2538	}
2539
2540	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2541	val |= GP_CLK_EN;
2542	val &= ~GP_MODE_MASK;
2543	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2544	val &= ~CLK_SKEW_IN_MASK;
2545	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2546	val &= ~CLK_SKEW_OUT_MASK;
2547	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2548	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2549
2550	/* Do not adjust rgmii delay when vendor phy driver presents. */
2551	if (!phydev || phy_driver_is_genphy(phydev)) {
2552		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2553		switch (interface) {
2554		case PHY_INTERFACE_MODE_RGMII:
2555			val |= TXCLK_NO_REVERSE;
2556			val |= RXCLK_NO_DELAY;
2557			break;
2558		case PHY_INTERFACE_MODE_RGMII_RXID:
2559			val |= TXCLK_NO_REVERSE;
2560			break;
2561		case PHY_INTERFACE_MODE_RGMII_TXID:
2562			val |= RXCLK_NO_DELAY;
2563			break;
2564		case PHY_INTERFACE_MODE_RGMII_ID:
2565			break;
2566		default:
2567			return -EINVAL;
2568		}
2569	}
2570	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2571
2572	return 0;
2573}
2574
2575static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2576			       phy_interface_t interface, int speed, int duplex)
2577{
2578	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2579	int port = pcs_to_mt753x_pcs(pcs)->port;
2580	unsigned int val;
2581
2582	/* For adjusting speed and duplex of SGMII force mode. */
2583	if (interface != PHY_INTERFACE_MODE_SGMII ||
2584	    phylink_autoneg_inband(mode))
2585		return;
2586
2587	/* SGMII force mode setting */
2588	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2589	val &= ~MT7531_SGMII_IF_MODE_MASK;
2590
2591	switch (speed) {
2592	case SPEED_10:
2593		val |= MT7531_SGMII_FORCE_SPEED_10;
2594		break;
2595	case SPEED_100:
2596		val |= MT7531_SGMII_FORCE_SPEED_100;
2597		break;
2598	case SPEED_1000:
2599		val |= MT7531_SGMII_FORCE_SPEED_1000;
2600		break;
2601	}
2602
2603	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2604	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2605	 *
2606	 * The speed check is unnecessary as the MAC capabilities apply
2607	 * this restriction. --rmk
2608	 */
2609	if ((speed == SPEED_10 || speed == SPEED_100) &&
2610	    duplex != DUPLEX_FULL)
2611		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2612
2613	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2614}
2615
2616static bool mt753x_is_mac_port(u32 port)
2617{
2618	return (port == 5 || port == 6);
2619}
2620
2621static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2622					 phy_interface_t interface)
2623{
2624	u32 val;
2625
2626	if (!mt753x_is_mac_port(port))
2627		return -EINVAL;
2628
2629	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2630		   MT7531_SGMII_PHYA_PWD);
2631
2632	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2633	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2634	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2635	 * encoding.
2636	 */
2637	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2638		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2639	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2640
2641	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2642
2643	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2644	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2645	 */
2646	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2647		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2648		   MT7531_SGMII_FORCE_SPEED_1000);
2649
2650	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2651
2652	return 0;
2653}
2654
2655static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2656				      phy_interface_t interface)
2657{
2658	if (!mt753x_is_mac_port(port))
2659		return -EINVAL;
2660
2661	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2662		   MT7531_SGMII_PHYA_PWD);
2663
2664	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2665		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2666
2667	mt7530_set(priv, MT7531_SGMII_MODE(port),
2668		   MT7531_SGMII_REMOTE_FAULT_DIS |
2669		   MT7531_SGMII_SPEED_DUPLEX_AN);
2670
2671	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2672		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2673
2674	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2675
2676	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2677
2678	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2679
2680	return 0;
2681}
2682
2683static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2684{
2685	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2686	int port = pcs_to_mt753x_pcs(pcs)->port;
2687	u32 val;
2688
2689	/* Only restart AN when AN is enabled */
2690	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2691	if (val & MT7531_SGMII_AN_ENABLE) {
2692		val |= MT7531_SGMII_AN_RESTART;
2693		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2694	}
2695}
2696
2697static int
2698mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2699		  phy_interface_t interface)
2700{
2701	struct mt7530_priv *priv = ds->priv;
2702	struct phy_device *phydev;
2703	struct dsa_port *dp;
2704
2705	if (!mt753x_is_mac_port(port)) {
2706		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2707		return -EINVAL;
2708	}
2709
2710	switch (interface) {
2711	case PHY_INTERFACE_MODE_RGMII:
2712	case PHY_INTERFACE_MODE_RGMII_ID:
2713	case PHY_INTERFACE_MODE_RGMII_RXID:
2714	case PHY_INTERFACE_MODE_RGMII_TXID:
2715		dp = dsa_to_port(ds, port);
2716		phydev = dp->slave->phydev;
2717		return mt7531_rgmii_setup(priv, port, interface, phydev);
2718	case PHY_INTERFACE_MODE_SGMII:
2719		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2720	case PHY_INTERFACE_MODE_NA:
2721	case PHY_INTERFACE_MODE_1000BASEX:
2722	case PHY_INTERFACE_MODE_2500BASEX:
2723		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2724	default:
2725		return -EINVAL;
2726	}
2727
2728	return -EINVAL;
2729}
2730
2731static int
2732mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2733		  const struct phylink_link_state *state)
2734{
2735	struct mt7530_priv *priv = ds->priv;
2736
2737	return priv->info->mac_port_config(ds, port, mode, state->interface);
2738}
2739
2740static struct phylink_pcs *
2741mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2742			      phy_interface_t interface)
2743{
2744	struct mt7530_priv *priv = ds->priv;
2745
2746	switch (interface) {
2747	case PHY_INTERFACE_MODE_TRGMII:
2748	case PHY_INTERFACE_MODE_SGMII:
2749	case PHY_INTERFACE_MODE_1000BASEX:
2750	case PHY_INTERFACE_MODE_2500BASEX:
2751		return &priv->pcs[port].pcs;
2752
2753	default:
2754		return NULL;
2755	}
2756}
2757
2758static void
2759mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2760			  const struct phylink_link_state *state)
2761{
2762	struct mt7530_priv *priv = ds->priv;
2763	u32 mcr_cur, mcr_new;
2764
2765	switch (port) {
2766	case 0 ... 4: /* Internal phy */
2767		if (state->interface != PHY_INTERFACE_MODE_GMII)
2768			goto unsupported;
2769		break;
2770	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2771		if (priv->p5_interface == state->interface)
2772			break;
2773
2774		if (mt753x_mac_config(ds, port, mode, state) < 0)
2775			goto unsupported;
2776
2777		if (priv->p5_intf_sel != P5_DISABLED)
2778			priv->p5_interface = state->interface;
2779		break;
2780	case 6: /* 1st cpu port */
2781		if (priv->p6_interface == state->interface)
2782			break;
2783
2784		mt753x_pad_setup(ds, state);
2785
2786		if (mt753x_mac_config(ds, port, mode, state) < 0)
2787			goto unsupported;
2788
2789		priv->p6_interface = state->interface;
2790		break;
2791	default:
2792unsupported:
2793		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2794			__func__, phy_modes(state->interface), port);
2795		return;
2796	}
2797
2798	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2799	mcr_new = mcr_cur;
2800	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2801	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2802		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2803
2804	/* Are we connected to external phy */
2805	if (port == 5 && dsa_is_user_port(ds, 5))
2806		mcr_new |= PMCR_EXT_PHY;
2807
2808	if (mcr_new != mcr_cur)
2809		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2810}
2811
2812static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2813					 unsigned int mode,
2814					 phy_interface_t interface)
2815{
2816	struct mt7530_priv *priv = ds->priv;
2817
2818	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2819}
2820
2821static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2822				       unsigned int mode,
2823				       phy_interface_t interface,
2824				       int speed, int duplex)
2825{
2826	if (pcs->ops->pcs_link_up)
2827		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2828}
2829
2830static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2831				       unsigned int mode,
2832				       phy_interface_t interface,
2833				       struct phy_device *phydev,
2834				       int speed, int duplex,
2835				       bool tx_pause, bool rx_pause)
2836{
2837	struct mt7530_priv *priv = ds->priv;
2838	u32 mcr;
2839
2840	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2841
2842	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2843	 * variants.
2844	 */
2845	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2846	    (phy_interface_mode_is_8023z(interface))) {
2847		speed = SPEED_1000;
2848		duplex = DUPLEX_FULL;
2849	}
2850
2851	switch (speed) {
2852	case SPEED_1000:
2853		mcr |= PMCR_FORCE_SPEED_1000;
2854		break;
2855	case SPEED_100:
2856		mcr |= PMCR_FORCE_SPEED_100;
2857		break;
2858	}
2859	if (duplex == DUPLEX_FULL) {
2860		mcr |= PMCR_FORCE_FDX;
2861		if (tx_pause)
2862			mcr |= PMCR_TX_FC_EN;
2863		if (rx_pause)
2864			mcr |= PMCR_RX_FC_EN;
2865	}
2866
2867	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2868		switch (speed) {
2869		case SPEED_1000:
2870			mcr |= PMCR_FORCE_EEE1G;
2871			break;
2872		case SPEED_100:
2873			mcr |= PMCR_FORCE_EEE100;
2874			break;
2875		}
2876	}
2877
2878	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2879}
2880
2881static int
2882mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2883{
2884	struct mt7530_priv *priv = ds->priv;
2885	phy_interface_t interface;
2886	int speed;
2887	int ret;
2888
2889	switch (port) {
2890	case 5:
2891		if (mt7531_is_rgmii_port(priv, port))
2892			interface = PHY_INTERFACE_MODE_RGMII;
2893		else
2894			interface = PHY_INTERFACE_MODE_2500BASEX;
2895
2896		priv->p5_interface = interface;
2897		break;
2898	case 6:
2899		interface = PHY_INTERFACE_MODE_2500BASEX;
2900
2901		priv->p6_interface = interface;
2902		break;
2903	default:
2904		return -EINVAL;
2905	}
2906
2907	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2908		speed = SPEED_2500;
2909	else
2910		speed = SPEED_1000;
2911
2912	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2913	if (ret)
2914		return ret;
2915	mt7530_write(priv, MT7530_PMCR_P(port),
2916		     PMCR_CPU_PORT_SETTING(priv->id));
2917	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2918				   interface, speed, DUPLEX_FULL);
2919	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2920				   speed, DUPLEX_FULL, true, true);
2921
2922	return 0;
2923}
2924
2925static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2926				    struct phylink_config *config)
2927{
2928	struct mt7530_priv *priv = ds->priv;
2929
2930	/* This switch only supports full-duplex at 1Gbps */
2931	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2932				   MAC_10 | MAC_100 | MAC_1000FD;
2933
2934	/* This driver does not make use of the speed, duplex, pause or the
2935	 * advertisement in its mac_config, so it is safe to mark this driver
2936	 * as non-legacy.
2937	 */
2938	config->legacy_pre_march2020 = false;
2939
2940	priv->info->mac_port_get_caps(ds, port, config);
2941}
2942
2943static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2944			       unsigned long *supported,
2945			       const struct phylink_link_state *state)
2946{
2947	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2948	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2949	    phy_interface_mode_is_8023z(state->interface))
2950		phylink_clear(supported, Autoneg);
2951
2952	return 0;
2953}
2954
2955static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2956				 struct phylink_link_state *state)
2957{
2958	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2959	int port = pcs_to_mt753x_pcs(pcs)->port;
2960	u32 pmsr;
2961
2962	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2963
2964	state->link = (pmsr & PMSR_LINK);
2965	state->an_complete = state->link;
2966	state->duplex = !!(pmsr & PMSR_DPX);
2967
2968	switch (pmsr & PMSR_SPEED_MASK) {
2969	case PMSR_SPEED_10:
2970		state->speed = SPEED_10;
2971		break;
2972	case PMSR_SPEED_100:
2973		state->speed = SPEED_100;
2974		break;
2975	case PMSR_SPEED_1000:
2976		state->speed = SPEED_1000;
2977		break;
2978	default:
2979		state->speed = SPEED_UNKNOWN;
2980		break;
2981	}
2982
2983	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2984	if (pmsr & PMSR_RX_FC)
2985		state->pause |= MLO_PAUSE_RX;
2986	if (pmsr & PMSR_TX_FC)
2987		state->pause |= MLO_PAUSE_TX;
2988}
2989
2990static int
2991mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2992			      struct phylink_link_state *state)
2993{
2994	u32 status, val;
2995	u16 config_reg;
2996
2997	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2998	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2999	state->an_complete = !!(status & MT7531_SGMII_AN_COMPLETE);
3000	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
3001	    (status & MT7531_SGMII_AN_ENABLE)) {
3002		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
3003		config_reg = val >> 16;
3004
3005		switch (config_reg & LPA_SGMII_SPD_MASK) {
3006		case LPA_SGMII_1000:
3007			state->speed = SPEED_1000;
3008			break;
3009		case LPA_SGMII_100:
3010			state->speed = SPEED_100;
3011			break;
3012		case LPA_SGMII_10:
3013			state->speed = SPEED_10;
3014			break;
3015		default:
3016			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3017			state->link = false;
3018			return -EINVAL;
3019		}
3020
3021		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3022			state->duplex = DUPLEX_FULL;
3023		else
3024			state->duplex = DUPLEX_HALF;
3025	}
3026
3027	return 0;
3028}
3029
3030static void
3031mt7531_sgmii_pcs_get_state_inband(struct mt7530_priv *priv, int port,
3032				  struct phylink_link_state *state)
3033{
3034	unsigned int val;
3035
3036	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3037	state->link = !!(val & MT7531_SGMII_LINK_STATUS);
3038	if (!state->link)
3039		return;
3040
3041	state->an_complete = state->link;
3042
3043	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3044		state->speed = SPEED_2500;
3045	else
3046		state->speed = SPEED_1000;
3047
3048	state->duplex = DUPLEX_FULL;
3049	state->pause = MLO_PAUSE_NONE;
3050}
3051
3052static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
3053				 struct phylink_link_state *state)
3054{
3055	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3056	int port = pcs_to_mt753x_pcs(pcs)->port;
3057
3058	if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3059		mt7531_sgmii_pcs_get_state_an(priv, port, state);
3060		return;
3061	} else if ((state->interface == PHY_INTERFACE_MODE_1000BASEX) ||
3062		   (state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3063		mt7531_sgmii_pcs_get_state_inband(priv, port, state);
3064		return;
3065	}
3066
3067	state->link = false;
3068}
3069
3070static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3071			     phy_interface_t interface,
3072			     const unsigned long *advertising,
3073			     bool permit_pause_to_mac)
3074{
3075	return 0;
3076}
3077
3078static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3079{
3080}
3081
3082static const struct phylink_pcs_ops mt7530_pcs_ops = {
3083	.pcs_validate = mt753x_pcs_validate,
3084	.pcs_get_state = mt7530_pcs_get_state,
3085	.pcs_config = mt753x_pcs_config,
3086	.pcs_an_restart = mt7530_pcs_an_restart,
3087};
3088
3089static const struct phylink_pcs_ops mt7531_pcs_ops = {
3090	.pcs_validate = mt753x_pcs_validate,
3091	.pcs_get_state = mt7531_pcs_get_state,
3092	.pcs_config = mt753x_pcs_config,
3093	.pcs_an_restart = mt7531_pcs_an_restart,
3094	.pcs_link_up = mt7531_pcs_link_up,
3095};
3096
3097static int
3098mt753x_setup(struct dsa_switch *ds)
3099{
3100	struct mt7530_priv *priv = ds->priv;
3101	int i, ret;
3102
3103	/* Initialise the PCS devices */
3104	for (i = 0; i < priv->ds->num_ports; i++) {
3105		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3106		priv->pcs[i].priv = priv;
3107		priv->pcs[i].port = i;
3108		if (mt753x_is_mac_port(i))
3109			priv->pcs[i].pcs.poll = 1;
3110	}
3111
3112	ret = priv->info->sw_setup(ds);
3113	if (ret)
3114		return ret;
3115
3116	ret = mt7530_setup_irq(priv);
3117	if (ret)
3118		return ret;
3119
3120	ret = mt7530_setup_mdio(priv);
3121	if (ret && priv->irq)
3122		mt7530_free_irq_common(priv);
3123
3124	return ret;
3125}
3126
3127static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3128			      struct ethtool_eee *e)
3129{
3130	struct mt7530_priv *priv = ds->priv;
3131	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3132
3133	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3134	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3135
3136	return 0;
3137}
3138
3139static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3140			      struct ethtool_eee *e)
3141{
3142	struct mt7530_priv *priv = ds->priv;
3143	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3144
3145	if (e->tx_lpi_timer > 0xFFF)
3146		return -EINVAL;
3147
3148	set = SET_LPI_THRESH(e->tx_lpi_timer);
3149	if (!e->tx_lpi_enabled)
3150		/* Force LPI Mode without a delay */
3151		set |= LPI_MODE_EN;
3152	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3153
3154	return 0;
3155}
3156
3157static const struct dsa_switch_ops mt7530_switch_ops = {
3158	.get_tag_protocol	= mtk_get_tag_protocol,
3159	.setup			= mt753x_setup,
3160	.get_strings		= mt7530_get_strings,
3161	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3162	.get_sset_count		= mt7530_get_sset_count,
3163	.set_ageing_time	= mt7530_set_ageing_time,
3164	.port_enable		= mt7530_port_enable,
3165	.port_disable		= mt7530_port_disable,
3166	.port_change_mtu	= mt7530_port_change_mtu,
3167	.port_max_mtu		= mt7530_port_max_mtu,
3168	.port_stp_state_set	= mt7530_stp_state_set,
3169	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3170	.port_bridge_flags	= mt7530_port_bridge_flags,
3171	.port_bridge_join	= mt7530_port_bridge_join,
3172	.port_bridge_leave	= mt7530_port_bridge_leave,
3173	.port_fdb_add		= mt7530_port_fdb_add,
3174	.port_fdb_del		= mt7530_port_fdb_del,
3175	.port_fdb_dump		= mt7530_port_fdb_dump,
3176	.port_mdb_add		= mt7530_port_mdb_add,
3177	.port_mdb_del		= mt7530_port_mdb_del,
3178	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3179	.port_vlan_add		= mt7530_port_vlan_add,
3180	.port_vlan_del		= mt7530_port_vlan_del,
3181	.port_mirror_add	= mt753x_port_mirror_add,
3182	.port_mirror_del	= mt753x_port_mirror_del,
3183	.phylink_get_caps	= mt753x_phylink_get_caps,
3184	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3185	.phylink_mac_config	= mt753x_phylink_mac_config,
3186	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3187	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3188	.get_mac_eee		= mt753x_get_mac_eee,
3189	.set_mac_eee		= mt753x_set_mac_eee,
3190};
3191
3192static const struct mt753x_info mt753x_table[] = {
3193	[ID_MT7621] = {
3194		.id = ID_MT7621,
3195		.pcs_ops = &mt7530_pcs_ops,
3196		.sw_setup = mt7530_setup,
3197		.phy_read = mt7530_phy_read,
3198		.phy_write = mt7530_phy_write,
3199		.pad_setup = mt7530_pad_clk_setup,
3200		.mac_port_get_caps = mt7530_mac_port_get_caps,
3201		.mac_port_config = mt7530_mac_config,
3202	},
3203	[ID_MT7530] = {
3204		.id = ID_MT7530,
3205		.pcs_ops = &mt7530_pcs_ops,
3206		.sw_setup = mt7530_setup,
3207		.phy_read = mt7530_phy_read,
3208		.phy_write = mt7530_phy_write,
3209		.pad_setup = mt7530_pad_clk_setup,
3210		.mac_port_get_caps = mt7530_mac_port_get_caps,
3211		.mac_port_config = mt7530_mac_config,
3212	},
3213	[ID_MT7531] = {
3214		.id = ID_MT7531,
3215		.pcs_ops = &mt7531_pcs_ops,
3216		.sw_setup = mt7531_setup,
3217		.phy_read = mt7531_ind_phy_read,
3218		.phy_write = mt7531_ind_phy_write,
3219		.pad_setup = mt7531_pad_setup,
3220		.cpu_port_config = mt7531_cpu_port_config,
3221		.mac_port_get_caps = mt7531_mac_port_get_caps,
3222		.mac_port_config = mt7531_mac_config,
3223	},
3224};
3225
3226static const struct of_device_id mt7530_of_match[] = {
3227	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3228	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3229	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3230	{ /* sentinel */ },
3231};
3232MODULE_DEVICE_TABLE(of, mt7530_of_match);
3233
3234static int
3235mt7530_probe(struct mdio_device *mdiodev)
3236{
3237	struct mt7530_priv *priv;
3238	struct device_node *dn;
3239
3240	dn = mdiodev->dev.of_node;
3241
3242	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3243	if (!priv)
3244		return -ENOMEM;
3245
3246	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3247	if (!priv->ds)
3248		return -ENOMEM;
3249
3250	priv->ds->dev = &mdiodev->dev;
3251	priv->ds->num_ports = MT7530_NUM_PORTS;
3252
3253	/* Use medatek,mcm property to distinguish hardware type that would
3254	 * casues a little bit differences on power-on sequence.
3255	 */
3256	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3257	if (priv->mcm) {
3258		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3259
3260		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3261		if (IS_ERR(priv->rstc)) {
3262			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3263			return PTR_ERR(priv->rstc);
3264		}
3265	}
3266
3267	/* Get the hardware identifier from the devicetree node.
3268	 * We will need it for some of the clock and regulator setup.
3269	 */
3270	priv->info = of_device_get_match_data(&mdiodev->dev);
3271	if (!priv->info)
3272		return -EINVAL;
3273
3274	/* Sanity check if these required device operations are filled
3275	 * properly.
3276	 */
3277	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3278	    !priv->info->phy_read || !priv->info->phy_write ||
3279	    !priv->info->mac_port_get_caps ||
3280	    !priv->info->mac_port_config)
3281		return -EINVAL;
3282
3283	priv->id = priv->info->id;
3284
3285	if (priv->id == ID_MT7530) {
3286		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3287		if (IS_ERR(priv->core_pwr))
3288			return PTR_ERR(priv->core_pwr);
3289
3290		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3291		if (IS_ERR(priv->io_pwr))
3292			return PTR_ERR(priv->io_pwr);
3293	}
3294
3295	/* Not MCM that indicates switch works as the remote standalone
3296	 * integrated circuit so the GPIO pin would be used to complete
3297	 * the reset, otherwise memory-mapped register accessing used
3298	 * through syscon provides in the case of MCM.
3299	 */
3300	if (!priv->mcm) {
3301		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3302						      GPIOD_OUT_LOW);
3303		if (IS_ERR(priv->reset)) {
3304			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3305			return PTR_ERR(priv->reset);
3306		}
3307	}
3308
3309	priv->bus = mdiodev->bus;
3310	priv->dev = &mdiodev->dev;
3311	priv->ds->priv = priv;
3312	priv->ds->ops = &mt7530_switch_ops;
3313	mutex_init(&priv->reg_mutex);
3314	dev_set_drvdata(&mdiodev->dev, priv);
3315
3316	return dsa_register_switch(priv->ds);
3317}
3318
3319static void
3320mt7530_remove(struct mdio_device *mdiodev)
3321{
3322	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3323	int ret = 0;
3324
3325	if (!priv)
3326		return;
3327
3328	ret = regulator_disable(priv->core_pwr);
3329	if (ret < 0)
3330		dev_err(priv->dev,
3331			"Failed to disable core power: %d\n", ret);
3332
3333	ret = regulator_disable(priv->io_pwr);
3334	if (ret < 0)
3335		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3336			ret);
3337
3338	if (priv->irq)
3339		mt7530_free_irq(priv);
3340
3341	dsa_unregister_switch(priv->ds);
3342	mutex_destroy(&priv->reg_mutex);
3343}
3344
3345static void mt7530_shutdown(struct mdio_device *mdiodev)
3346{
3347	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3348
3349	if (!priv)
3350		return;
3351
3352	dsa_switch_shutdown(priv->ds);
3353
3354	dev_set_drvdata(&mdiodev->dev, NULL);
3355}
3356
3357static struct mdio_driver mt7530_mdio_driver = {
3358	.probe  = mt7530_probe,
3359	.remove = mt7530_remove,
3360	.shutdown = mt7530_shutdown,
3361	.mdiodrv.driver = {
3362		.name = "mt7530",
3363		.of_match_table = mt7530_of_match,
3364	},
3365};
3366
3367mdio_module_driver(mt7530_mdio_driver);
3368
3369MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3370MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3371MODULE_LICENSE("GPL");