Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * Mediatek MT7530 DSA Switch driver
   3 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14#include <linux/etherdevice.h>
  15#include <linux/if_bridge.h>
  16#include <linux/iopoll.h>
  17#include <linux/mdio.h>
  18#include <linux/mfd/syscon.h>
  19#include <linux/module.h>
  20#include <linux/netdevice.h>
  21#include <linux/of_gpio.h>
  22#include <linux/of_mdio.h>
  23#include <linux/of_net.h>
  24#include <linux/of_platform.h>
  25#include <linux/phy.h>
  26#include <linux/regmap.h>
  27#include <linux/regulator/consumer.h>
  28#include <linux/reset.h>
  29#include <linux/gpio/consumer.h>
  30#include <net/dsa.h>
  31
  32#include "mt7530.h"
  33
  34/* String, offset, and register size in bytes if different from 4 bytes */
  35static const struct mt7530_mib_desc mt7530_mib[] = {
  36	MIB_DESC(1, 0x00, "TxDrop"),
  37	MIB_DESC(1, 0x04, "TxCrcErr"),
  38	MIB_DESC(1, 0x08, "TxUnicast"),
  39	MIB_DESC(1, 0x0c, "TxMulticast"),
  40	MIB_DESC(1, 0x10, "TxBroadcast"),
  41	MIB_DESC(1, 0x14, "TxCollision"),
  42	MIB_DESC(1, 0x18, "TxSingleCollision"),
  43	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
  44	MIB_DESC(1, 0x20, "TxDeferred"),
  45	MIB_DESC(1, 0x24, "TxLateCollision"),
  46	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
  47	MIB_DESC(1, 0x2c, "TxPause"),
  48	MIB_DESC(1, 0x30, "TxPktSz64"),
  49	MIB_DESC(1, 0x34, "TxPktSz65To127"),
  50	MIB_DESC(1, 0x38, "TxPktSz128To255"),
  51	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
  52	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
  53	MIB_DESC(1, 0x44, "Tx1024ToMax"),
  54	MIB_DESC(2, 0x48, "TxBytes"),
  55	MIB_DESC(1, 0x60, "RxDrop"),
  56	MIB_DESC(1, 0x64, "RxFiltering"),
  57	MIB_DESC(1, 0x6c, "RxMulticast"),
  58	MIB_DESC(1, 0x70, "RxBroadcast"),
  59	MIB_DESC(1, 0x74, "RxAlignErr"),
  60	MIB_DESC(1, 0x78, "RxCrcErr"),
  61	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
  62	MIB_DESC(1, 0x80, "RxFragErr"),
  63	MIB_DESC(1, 0x84, "RxOverSzErr"),
  64	MIB_DESC(1, 0x88, "RxJabberErr"),
  65	MIB_DESC(1, 0x8c, "RxPause"),
  66	MIB_DESC(1, 0x90, "RxPktSz64"),
  67	MIB_DESC(1, 0x94, "RxPktSz65To127"),
  68	MIB_DESC(1, 0x98, "RxPktSz128To255"),
  69	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
  70	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
  71	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
  72	MIB_DESC(2, 0xa8, "RxBytes"),
  73	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
  74	MIB_DESC(1, 0xb4, "RxIngressDrop"),
  75	MIB_DESC(1, 0xb8, "RxArlDrop"),
  76};
  77
  78static int
  79mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
  80{
  81	int ret;
  82
  83	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
  84	if (ret < 0)
  85		dev_err(priv->dev,
  86			"failed to priv write register\n");
  87	return ret;
  88}
  89
  90static u32
  91mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
  92{
  93	int ret;
  94	u32 val;
  95
  96	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
  97	if (ret < 0) {
  98		dev_err(priv->dev,
  99			"failed to priv read register\n");
 100		return ret;
 101	}
 102
 103	return val;
 104}
 105
 106static void
 107mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
 108		  u32 mask, u32 set)
 109{
 110	u32 val;
 111
 112	val = mt7623_trgmii_read(priv, reg);
 113	val &= ~mask;
 114	val |= set;
 115	mt7623_trgmii_write(priv, reg, val);
 116}
 117
 118static void
 119mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
 120{
 121	mt7623_trgmii_rmw(priv, reg, 0, val);
 122}
 123
 124static void
 125mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 126{
 127	mt7623_trgmii_rmw(priv, reg, val, 0);
 128}
 129
 130static int
 131core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
 132{
 133	struct mii_bus *bus = priv->bus;
 134	int value, ret;
 135
 136	/* Write the desired MMD Devad */
 137	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
 138	if (ret < 0)
 139		goto err;
 140
 141	/* Write the desired MMD register address */
 142	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
 143	if (ret < 0)
 144		goto err;
 145
 146	/* Select the Function : DATA with no post increment */
 147	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
 148	if (ret < 0)
 149		goto err;
 150
 151	/* Read the content of the MMD's selected register */
 152	value = bus->read(bus, 0, MII_MMD_DATA);
 153
 154	return value;
 155err:
 156	dev_err(&bus->dev,  "failed to read mmd register\n");
 157
 158	return ret;
 159}
 160
 161static int
 162core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
 163			int devad, u32 data)
 164{
 165	struct mii_bus *bus = priv->bus;
 166	int ret;
 167
 168	/* Write the desired MMD Devad */
 169	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
 170	if (ret < 0)
 171		goto err;
 172
 173	/* Write the desired MMD register address */
 174	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
 175	if (ret < 0)
 176		goto err;
 177
 178	/* Select the Function : DATA with no post increment */
 179	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
 180	if (ret < 0)
 181		goto err;
 182
 183	/* Write the data into MMD's selected register */
 184	ret = bus->write(bus, 0, MII_MMD_DATA, data);
 185err:
 186	if (ret < 0)
 187		dev_err(&bus->dev,
 188			"failed to write mmd register\n");
 189	return ret;
 190}
 191
 192static void
 193core_write(struct mt7530_priv *priv, u32 reg, u32 val)
 194{
 195	struct mii_bus *bus = priv->bus;
 196
 197	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 198
 199	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
 200
 201	mutex_unlock(&bus->mdio_lock);
 202}
 203
 204static void
 205core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
 206{
 207	struct mii_bus *bus = priv->bus;
 208	u32 val;
 209
 210	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 211
 212	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
 213	val &= ~mask;
 214	val |= set;
 215	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
 216
 217	mutex_unlock(&bus->mdio_lock);
 218}
 219
 220static void
 221core_set(struct mt7530_priv *priv, u32 reg, u32 val)
 222{
 223	core_rmw(priv, reg, 0, val);
 224}
 225
 226static void
 227core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 228{
 229	core_rmw(priv, reg, val, 0);
 230}
 231
 232static int
 233mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
 234{
 235	struct mii_bus *bus = priv->bus;
 236	u16 page, r, lo, hi;
 237	int ret;
 238
 239	page = (reg >> 6) & 0x3ff;
 240	r  = (reg >> 2) & 0xf;
 241	lo = val & 0xffff;
 242	hi = val >> 16;
 243
 244	/* MT7530 uses 31 as the pseudo port */
 245	ret = bus->write(bus, 0x1f, 0x1f, page);
 246	if (ret < 0)
 247		goto err;
 248
 249	ret = bus->write(bus, 0x1f, r,  lo);
 250	if (ret < 0)
 251		goto err;
 252
 253	ret = bus->write(bus, 0x1f, 0x10, hi);
 254err:
 255	if (ret < 0)
 256		dev_err(&bus->dev,
 257			"failed to write mt7530 register\n");
 258	return ret;
 259}
 260
 261static u32
 262mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
 263{
 264	struct mii_bus *bus = priv->bus;
 265	u16 page, r, lo, hi;
 266	int ret;
 267
 268	page = (reg >> 6) & 0x3ff;
 269	r = (reg >> 2) & 0xf;
 270
 271	/* MT7530 uses 31 as the pseudo port */
 272	ret = bus->write(bus, 0x1f, 0x1f, page);
 273	if (ret < 0) {
 274		dev_err(&bus->dev,
 275			"failed to read mt7530 register\n");
 276		return ret;
 277	}
 278
 279	lo = bus->read(bus, 0x1f, r);
 280	hi = bus->read(bus, 0x1f, 0x10);
 281
 282	return (hi << 16) | (lo & 0xffff);
 283}
 284
 285static void
 286mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
 287{
 288	struct mii_bus *bus = priv->bus;
 289
 290	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 291
 292	mt7530_mii_write(priv, reg, val);
 293
 294	mutex_unlock(&bus->mdio_lock);
 295}
 296
 297static u32
 298_mt7530_read(struct mt7530_dummy_poll *p)
 299{
 300	struct mii_bus		*bus = p->priv->bus;
 301	u32 val;
 302
 303	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 304
 305	val = mt7530_mii_read(p->priv, p->reg);
 306
 307	mutex_unlock(&bus->mdio_lock);
 308
 309	return val;
 310}
 311
 312static u32
 313mt7530_read(struct mt7530_priv *priv, u32 reg)
 314{
 315	struct mt7530_dummy_poll p;
 316
 317	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
 318	return _mt7530_read(&p);
 319}
 320
 321static void
 322mt7530_rmw(struct mt7530_priv *priv, u32 reg,
 323	   u32 mask, u32 set)
 324{
 325	struct mii_bus *bus = priv->bus;
 326	u32 val;
 327
 328	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
 329
 330	val = mt7530_mii_read(priv, reg);
 331	val &= ~mask;
 332	val |= set;
 333	mt7530_mii_write(priv, reg, val);
 334
 335	mutex_unlock(&bus->mdio_lock);
 336}
 337
 338static void
 339mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
 340{
 341	mt7530_rmw(priv, reg, 0, val);
 342}
 343
 344static void
 345mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 346{
 347	mt7530_rmw(priv, reg, val, 0);
 348}
 349
 350static int
 351mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
 352{
 353	u32 val;
 354	int ret;
 355	struct mt7530_dummy_poll p;
 356
 357	/* Set the command operating upon the MAC address entries */
 358	val = ATC_BUSY | ATC_MAT(0) | cmd;
 359	mt7530_write(priv, MT7530_ATC, val);
 360
 361	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
 362	ret = readx_poll_timeout(_mt7530_read, &p, val,
 363				 !(val & ATC_BUSY), 20, 20000);
 364	if (ret < 0) {
 365		dev_err(priv->dev, "reset timeout\n");
 366		return ret;
 367	}
 368
 369	/* Additional sanity for read command if the specified
 370	 * entry is invalid
 371	 */
 372	val = mt7530_read(priv, MT7530_ATC);
 373	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
 374		return -EINVAL;
 375
 376	if (rsp)
 377		*rsp = val;
 378
 379	return 0;
 380}
 381
 382static void
 383mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
 384{
 385	u32 reg[3];
 386	int i;
 387
 388	/* Read from ARL table into an array */
 389	for (i = 0; i < 3; i++) {
 390		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
 391
 392		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
 393			__func__, __LINE__, i, reg[i]);
 394	}
 395
 396	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
 397	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
 398	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
 399	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
 400	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
 401	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
 402	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
 403	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
 404	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
 405	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
 406}
 407
 408static void
 409mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
 410		 u8 port_mask, const u8 *mac,
 411		 u8 aging, u8 type)
 412{
 413	u32 reg[3] = { 0 };
 414	int i;
 415
 416	reg[1] |= vid & CVID_MASK;
 417	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
 418	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
 419	/* STATIC_ENT indicate that entry is static wouldn't
 420	 * be aged out and STATIC_EMP specified as erasing an
 421	 * entry
 422	 */
 423	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
 424	reg[1] |= mac[5] << MAC_BYTE_5;
 425	reg[1] |= mac[4] << MAC_BYTE_4;
 426	reg[0] |= mac[3] << MAC_BYTE_3;
 427	reg[0] |= mac[2] << MAC_BYTE_2;
 428	reg[0] |= mac[1] << MAC_BYTE_1;
 429	reg[0] |= mac[0] << MAC_BYTE_0;
 430
 431	/* Write array into the ARL table */
 432	for (i = 0; i < 3; i++)
 433		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
 434}
 435
 436static int
 437mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
 438{
 439	struct mt7530_priv *priv = ds->priv;
 440	u32 ncpo1, ssc_delta, trgint, i;
 441
 442	switch (mode) {
 443	case PHY_INTERFACE_MODE_RGMII:
 444		trgint = 0;
 445		ncpo1 = 0x0c80;
 446		ssc_delta = 0x87;
 447		break;
 448	case PHY_INTERFACE_MODE_TRGMII:
 449		trgint = 1;
 450		ncpo1 = 0x1400;
 451		ssc_delta = 0x57;
 452		break;
 453	default:
 454		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
 455		return -EINVAL;
 456	}
 457
 458	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
 459		   P6_INTF_MODE(trgint));
 460
 461	/* Lower Tx Driving for TRGMII path */
 462	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
 463		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
 464			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
 465
 466	/* Setup core clock for MT7530 */
 467	if (!trgint) {
 468		/* Disable MT7530 core clock */
 469		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
 470
 471		/* Disable PLL, since phy_device has not yet been created
 472		 * provided for phy_[read,write]_mmd_indirect is called, we
 473		 * provide our own core_write_mmd_indirect to complete this
 474		 * function.
 475		 */
 476		core_write_mmd_indirect(priv,
 477					CORE_GSWPLL_GRP1,
 478					MDIO_MMD_VEND2,
 479					0);
 480
 481		/* Set core clock into 500Mhz */
 482		core_write(priv, CORE_GSWPLL_GRP2,
 483			   RG_GSWPLL_POSDIV_500M(1) |
 484			   RG_GSWPLL_FBKDIV_500M(25));
 485
 486		/* Enable PLL */
 487		core_write(priv, CORE_GSWPLL_GRP1,
 488			   RG_GSWPLL_EN_PRE |
 489			   RG_GSWPLL_POSDIV_200M(2) |
 490			   RG_GSWPLL_FBKDIV_200M(32));
 491
 492		/* Enable MT7530 core clock */
 493		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
 494	}
 495
 496	/* Setup the MT7530 TRGMII Tx Clock */
 497	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
 498	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
 499	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
 500	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
 501	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
 502	core_write(priv, CORE_PLL_GROUP4,
 503		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
 504		   RG_SYSPLL_BIAS_LPF_EN);
 505	core_write(priv, CORE_PLL_GROUP2,
 506		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
 507		   RG_SYSPLL_POSDIV(1));
 508	core_write(priv, CORE_PLL_GROUP7,
 509		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
 510		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
 511	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
 512		 REG_GSWCK_EN | REG_TRGMIICK_EN);
 513
 514	if (!trgint)
 515		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
 516			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
 517				   RD_TAP_MASK, RD_TAP(16));
 518	else
 519		mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
 520
 521	return 0;
 522}
 523
 524static int
 525mt7623_pad_clk_setup(struct dsa_switch *ds)
 526{
 527	struct mt7530_priv *priv = ds->priv;
 528	int i;
 529
 530	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
 531		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
 532				    TD_DM_DRVP(8) | TD_DM_DRVN(8));
 533
 534	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
 535	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
 536
 537	return 0;
 538}
 539
 540static void
 541mt7530_mib_reset(struct dsa_switch *ds)
 542{
 543	struct mt7530_priv *priv = ds->priv;
 544
 545	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
 546	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
 547}
 548
 549static void
 550mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
 551{
 552	u32 mask = PMCR_TX_EN | PMCR_RX_EN;
 553
 554	if (enable)
 555		mt7530_set(priv, MT7530_PMCR_P(port), mask);
 556	else
 557		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
 558}
 559
 560static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
 561{
 562	struct mt7530_priv *priv = ds->priv;
 563
 564	return mdiobus_read_nested(priv->bus, port, regnum);
 565}
 566
 567static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
 568			    u16 val)
 569{
 570	struct mt7530_priv *priv = ds->priv;
 571
 572	return mdiobus_write_nested(priv->bus, port, regnum, val);
 573}
 574
 575static void
 576mt7530_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
 577{
 578	int i;
 579
 580	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
 581		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
 582			ETH_GSTRING_LEN);
 583}
 584
 585static void
 586mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
 587			 uint64_t *data)
 588{
 589	struct mt7530_priv *priv = ds->priv;
 590	const struct mt7530_mib_desc *mib;
 591	u32 reg, i;
 592	u64 hi;
 593
 594	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
 595		mib = &mt7530_mib[i];
 596		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
 597
 598		data[i] = mt7530_read(priv, reg);
 599		if (mib->size == 2) {
 600			hi = mt7530_read(priv, reg + 4);
 601			data[i] |= hi << 32;
 602		}
 603	}
 604}
 605
 606static int
 607mt7530_get_sset_count(struct dsa_switch *ds, int port)
 608{
 609	return ARRAY_SIZE(mt7530_mib);
 610}
 611
 612static void mt7530_adjust_link(struct dsa_switch *ds, int port,
 613			       struct phy_device *phydev)
 614{
 615	struct mt7530_priv *priv = ds->priv;
 616
 617	if (phy_is_pseudo_fixed_link(phydev)) {
 618		dev_dbg(priv->dev, "phy-mode for master device = %x\n",
 619			phydev->interface);
 620
 621		/* Setup TX circuit incluing relevant PAD and driving */
 622		mt7530_pad_clk_setup(ds, phydev->interface);
 623
 624		/* Setup RX circuit, relevant PAD and driving on the host
 625		 * which must be placed after the setup on the device side is
 626		 * all finished.
 627		 */
 628		mt7623_pad_clk_setup(ds);
 629	} else {
 630		u16 lcl_adv = 0, rmt_adv = 0;
 631		u8 flowctrl;
 632		u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
 633
 634		switch (phydev->speed) {
 635		case SPEED_1000:
 636			mcr |= PMCR_FORCE_SPEED_1000;
 637			break;
 638		case SPEED_100:
 639			mcr |= PMCR_FORCE_SPEED_100;
 640			break;
 641		};
 642
 643		if (phydev->link)
 644			mcr |= PMCR_FORCE_LNK;
 645
 646		if (phydev->duplex) {
 647			mcr |= PMCR_FORCE_FDX;
 648
 649			if (phydev->pause)
 650				rmt_adv = LPA_PAUSE_CAP;
 651			if (phydev->asym_pause)
 652				rmt_adv |= LPA_PAUSE_ASYM;
 653
 654			if (phydev->advertising & ADVERTISED_Pause)
 655				lcl_adv |= ADVERTISE_PAUSE_CAP;
 656			if (phydev->advertising & ADVERTISED_Asym_Pause)
 657				lcl_adv |= ADVERTISE_PAUSE_ASYM;
 658
 659			flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
 660
 661			if (flowctrl & FLOW_CTRL_TX)
 662				mcr |= PMCR_TX_FC_EN;
 663			if (flowctrl & FLOW_CTRL_RX)
 664				mcr |= PMCR_RX_FC_EN;
 665		}
 666		mt7530_write(priv, MT7530_PMCR_P(port), mcr);
 667	}
 668}
 669
 670static int
 671mt7530_cpu_port_enable(struct mt7530_priv *priv,
 672		       int port)
 673{
 674	/* Enable Mediatek header mode on the cpu port */
 675	mt7530_write(priv, MT7530_PVC_P(port),
 676		     PORT_SPEC_TAG);
 677
 678	/* Setup the MAC by default for the cpu port */
 679	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
 680
 681	/* Disable auto learning on the cpu port */
 682	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
 683
 684	/* Unknown unicast frame fordwarding to the cpu port */
 685	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
 686
 687	/* CPU port gets connected to all user ports of
 688	 * the switch
 689	 */
 690	mt7530_write(priv, MT7530_PCR_P(port),
 691		     PCR_MATRIX(dsa_user_ports(priv->ds)));
 692
 693	return 0;
 694}
 695
 696static int
 697mt7530_port_enable(struct dsa_switch *ds, int port,
 698		   struct phy_device *phy)
 699{
 700	struct mt7530_priv *priv = ds->priv;
 701
 702	mutex_lock(&priv->reg_mutex);
 703
 704	/* Setup the MAC for the user port */
 705	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
 706
 707	/* Allow the user port gets connected to the cpu port and also
 708	 * restore the port matrix if the port is the member of a certain
 709	 * bridge.
 710	 */
 711	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
 712	priv->ports[port].enable = true;
 713	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
 714		   priv->ports[port].pm);
 715	mt7530_port_set_status(priv, port, 1);
 716
 717	mutex_unlock(&priv->reg_mutex);
 718
 719	return 0;
 720}
 721
 722static void
 723mt7530_port_disable(struct dsa_switch *ds, int port,
 724		    struct phy_device *phy)
 725{
 726	struct mt7530_priv *priv = ds->priv;
 727
 728	mutex_lock(&priv->reg_mutex);
 729
 730	/* Clear up all port matrix which could be restored in the next
 731	 * enablement for the port.
 732	 */
 733	priv->ports[port].enable = false;
 734	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
 735		   PCR_MATRIX_CLR);
 736	mt7530_port_set_status(priv, port, 0);
 737
 738	mutex_unlock(&priv->reg_mutex);
 739}
 740
 741static void
 742mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
 743{
 744	struct mt7530_priv *priv = ds->priv;
 745	u32 stp_state;
 746
 747	switch (state) {
 748	case BR_STATE_DISABLED:
 749		stp_state = MT7530_STP_DISABLED;
 750		break;
 751	case BR_STATE_BLOCKING:
 752		stp_state = MT7530_STP_BLOCKING;
 753		break;
 754	case BR_STATE_LISTENING:
 755		stp_state = MT7530_STP_LISTENING;
 756		break;
 757	case BR_STATE_LEARNING:
 758		stp_state = MT7530_STP_LEARNING;
 759		break;
 760	case BR_STATE_FORWARDING:
 761	default:
 762		stp_state = MT7530_STP_FORWARDING;
 763		break;
 764	}
 765
 766	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
 767}
 768
 769static int
 770mt7530_port_bridge_join(struct dsa_switch *ds, int port,
 771			struct net_device *bridge)
 772{
 773	struct mt7530_priv *priv = ds->priv;
 774	u32 port_bitmap = BIT(MT7530_CPU_PORT);
 775	int i;
 776
 777	mutex_lock(&priv->reg_mutex);
 778
 779	for (i = 0; i < MT7530_NUM_PORTS; i++) {
 780		/* Add this port to the port matrix of the other ports in the
 781		 * same bridge. If the port is disabled, port matrix is kept
 782		 * and not being setup until the port becomes enabled.
 783		 */
 784		if (dsa_is_user_port(ds, i) && i != port) {
 785			if (dsa_to_port(ds, i)->bridge_dev != bridge)
 786				continue;
 787			if (priv->ports[i].enable)
 788				mt7530_set(priv, MT7530_PCR_P(i),
 789					   PCR_MATRIX(BIT(port)));
 790			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
 791
 792			port_bitmap |= BIT(i);
 793		}
 794	}
 795
 796	/* Add the all other ports to this port matrix. */
 797	if (priv->ports[port].enable)
 798		mt7530_rmw(priv, MT7530_PCR_P(port),
 799			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
 800	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
 801
 802	mutex_unlock(&priv->reg_mutex);
 803
 804	return 0;
 805}
 806
 807static void
 808mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
 809{
 810	struct mt7530_priv *priv = ds->priv;
 811	bool all_user_ports_removed = true;
 812	int i;
 813
 814	/* When a port is removed from the bridge, the port would be set up
 815	 * back to the default as is at initial boot which is a VLAN-unaware
 816	 * port.
 817	 */
 818	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
 819		   MT7530_PORT_MATRIX_MODE);
 820	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
 821		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
 822
 823	priv->ports[port].vlan_filtering = false;
 824
 825	for (i = 0; i < MT7530_NUM_PORTS; i++) {
 826		if (dsa_is_user_port(ds, i) &&
 827		    priv->ports[i].vlan_filtering) {
 828			all_user_ports_removed = false;
 829			break;
 830		}
 831	}
 832
 833	/* CPU port also does the same thing until all user ports belonging to
 834	 * the CPU port get out of VLAN filtering mode.
 835	 */
 836	if (all_user_ports_removed) {
 837		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
 838			     PCR_MATRIX(dsa_user_ports(priv->ds)));
 839		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
 840			     PORT_SPEC_TAG);
 841	}
 842}
 843
 844static void
 845mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
 846{
 847	struct mt7530_priv *priv = ds->priv;
 848
 849	/* The real fabric path would be decided on the membership in the
 850	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
 851	 * means potential VLAN can be consisting of certain subset of all
 852	 * ports.
 853	 */
 854	mt7530_rmw(priv, MT7530_PCR_P(port),
 855		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
 856
 857	/* Trapped into security mode allows packet forwarding through VLAN
 858	 * table lookup.
 859	 */
 860	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
 861		   MT7530_PORT_SECURITY_MODE);
 862
 863	/* Set the port as a user port which is to be able to recognize VID
 864	 * from incoming packets before fetching entry within the VLAN table.
 865	 */
 866	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
 867		   VLAN_ATTR(MT7530_VLAN_USER));
 868}
 869
 870static void
 871mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
 872			 struct net_device *bridge)
 873{
 874	struct mt7530_priv *priv = ds->priv;
 875	int i;
 876
 877	mutex_lock(&priv->reg_mutex);
 878
 879	for (i = 0; i < MT7530_NUM_PORTS; i++) {
 880		/* Remove this port from the port matrix of the other ports
 881		 * in the same bridge. If the port is disabled, port matrix
 882		 * is kept and not being setup until the port becomes enabled.
 883		 * And the other port's port matrix cannot be broken when the
 884		 * other port is still a VLAN-aware port.
 885		 */
 886		if (!priv->ports[i].vlan_filtering &&
 887		    dsa_is_user_port(ds, i) && i != port) {
 888			if (dsa_to_port(ds, i)->bridge_dev != bridge)
 889				continue;
 890			if (priv->ports[i].enable)
 891				mt7530_clear(priv, MT7530_PCR_P(i),
 892					     PCR_MATRIX(BIT(port)));
 893			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
 894		}
 895	}
 896
 897	/* Set the cpu port to be the only one in the port matrix of
 898	 * this port.
 899	 */
 900	if (priv->ports[port].enable)
 901		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
 902			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
 903	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
 904
 905	mt7530_port_set_vlan_unaware(ds, port);
 906
 907	mutex_unlock(&priv->reg_mutex);
 908}
 909
 910static int
 911mt7530_port_fdb_add(struct dsa_switch *ds, int port,
 912		    const unsigned char *addr, u16 vid)
 913{
 914	struct mt7530_priv *priv = ds->priv;
 915	int ret;
 916	u8 port_mask = BIT(port);
 917
 918	mutex_lock(&priv->reg_mutex);
 919	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
 920	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
 921	mutex_unlock(&priv->reg_mutex);
 922
 923	return ret;
 924}
 925
 926static int
 927mt7530_port_fdb_del(struct dsa_switch *ds, int port,
 928		    const unsigned char *addr, u16 vid)
 929{
 930	struct mt7530_priv *priv = ds->priv;
 931	int ret;
 932	u8 port_mask = BIT(port);
 933
 934	mutex_lock(&priv->reg_mutex);
 935	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
 936	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
 937	mutex_unlock(&priv->reg_mutex);
 938
 939	return ret;
 940}
 941
 942static int
 943mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
 944		     dsa_fdb_dump_cb_t *cb, void *data)
 945{
 946	struct mt7530_priv *priv = ds->priv;
 947	struct mt7530_fdb _fdb = { 0 };
 948	int cnt = MT7530_NUM_FDB_RECORDS;
 949	int ret = 0;
 950	u32 rsp = 0;
 951
 952	mutex_lock(&priv->reg_mutex);
 953
 954	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
 955	if (ret < 0)
 956		goto err;
 957
 958	do {
 959		if (rsp & ATC_SRCH_HIT) {
 960			mt7530_fdb_read(priv, &_fdb);
 961			if (_fdb.port_mask & BIT(port)) {
 962				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
 963					 data);
 964				if (ret < 0)
 965					break;
 966			}
 967		}
 968	} while (--cnt &&
 969		 !(rsp & ATC_SRCH_END) &&
 970		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
 971err:
 972	mutex_unlock(&priv->reg_mutex);
 973
 974	return 0;
 975}
 976
 977static int
 978mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
 979{
 980	struct mt7530_dummy_poll p;
 981	u32 val;
 982	int ret;
 983
 984	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
 985	mt7530_write(priv, MT7530_VTCR, val);
 986
 987	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
 988	ret = readx_poll_timeout(_mt7530_read, &p, val,
 989				 !(val & VTCR_BUSY), 20, 20000);
 990	if (ret < 0) {
 991		dev_err(priv->dev, "poll timeout\n");
 992		return ret;
 993	}
 994
 995	val = mt7530_read(priv, MT7530_VTCR);
 996	if (val & VTCR_INVALID) {
 997		dev_err(priv->dev, "read VTCR invalid\n");
 998		return -EINVAL;
 999	}
1000
1001	return 0;
1002}
1003
1004static int
1005mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1006			   bool vlan_filtering)
1007{
1008	struct mt7530_priv *priv = ds->priv;
1009
1010	priv->ports[port].vlan_filtering = vlan_filtering;
1011
1012	if (vlan_filtering) {
1013		/* The port is being kept as VLAN-unaware port when bridge is
1014		 * set up with vlan_filtering not being set, Otherwise, the
1015		 * port and the corresponding CPU port is required the setup
1016		 * for becoming a VLAN-aware port.
1017		 */
1018		mt7530_port_set_vlan_aware(ds, port);
1019		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1020	}
1021
1022	return 0;
1023}
1024
1025static int
1026mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1027			 const struct switchdev_obj_port_vlan *vlan)
1028{
1029	/* nothing needed */
1030
1031	return 0;
1032}
1033
1034static void
1035mt7530_hw_vlan_add(struct mt7530_priv *priv,
1036		   struct mt7530_hw_vlan_entry *entry)
1037{
1038	u8 new_members;
1039	u32 val;
1040
1041	new_members = entry->old_members | BIT(entry->port) |
1042		      BIT(MT7530_CPU_PORT);
1043
1044	/* Validate the entry with independent learning, create egress tag per
1045	 * VLAN and joining the port as one of the port members.
1046	 */
1047	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1048	mt7530_write(priv, MT7530_VAWD1, val);
1049
1050	/* Decide whether adding tag or not for those outgoing packets from the
1051	 * port inside the VLAN.
1052	 */
1053	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1054				MT7530_VLAN_EGRESS_TAG;
1055	mt7530_rmw(priv, MT7530_VAWD2,
1056		   ETAG_CTRL_P_MASK(entry->port),
1057		   ETAG_CTRL_P(entry->port, val));
1058
1059	/* CPU port is always taken as a tagged port for serving more than one
1060	 * VLANs across and also being applied with egress type stack mode for
1061	 * that VLAN tags would be appended after hardware special tag used as
1062	 * DSA tag.
1063	 */
1064	mt7530_rmw(priv, MT7530_VAWD2,
1065		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1066		   ETAG_CTRL_P(MT7530_CPU_PORT,
1067			       MT7530_VLAN_EGRESS_STACK));
1068}
1069
1070static void
1071mt7530_hw_vlan_del(struct mt7530_priv *priv,
1072		   struct mt7530_hw_vlan_entry *entry)
1073{
1074	u8 new_members;
1075	u32 val;
1076
1077	new_members = entry->old_members & ~BIT(entry->port);
1078
1079	val = mt7530_read(priv, MT7530_VAWD1);
1080	if (!(val & VLAN_VALID)) {
1081		dev_err(priv->dev,
1082			"Cannot be deleted due to invalid entry\n");
1083		return;
1084	}
1085
1086	/* If certain member apart from CPU port is still alive in the VLAN,
1087	 * the entry would be kept valid. Otherwise, the entry is got to be
1088	 * disabled.
1089	 */
1090	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1091		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1092		      VLAN_VALID;
1093		mt7530_write(priv, MT7530_VAWD1, val);
1094	} else {
1095		mt7530_write(priv, MT7530_VAWD1, 0);
1096		mt7530_write(priv, MT7530_VAWD2, 0);
1097	}
1098}
1099
1100static void
1101mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1102		      struct mt7530_hw_vlan_entry *entry,
1103		      mt7530_vlan_op vlan_op)
1104{
1105	u32 val;
1106
1107	/* Fetch entry */
1108	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1109
1110	val = mt7530_read(priv, MT7530_VAWD1);
1111
1112	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1113
1114	/* Manipulate entry */
1115	vlan_op(priv, entry);
1116
1117	/* Flush result to hardware */
1118	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1119}
1120
1121static void
1122mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1123		     const struct switchdev_obj_port_vlan *vlan)
1124{
1125	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1126	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1127	struct mt7530_hw_vlan_entry new_entry;
1128	struct mt7530_priv *priv = ds->priv;
1129	u16 vid;
1130
1131	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1132	 * being set.
1133	 */
1134	if (!priv->ports[port].vlan_filtering)
1135		return;
1136
1137	mutex_lock(&priv->reg_mutex);
1138
1139	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1140		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1141		mt7530_hw_vlan_update(priv, vid, &new_entry,
1142				      mt7530_hw_vlan_add);
1143	}
1144
1145	if (pvid) {
1146		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1147			   G0_PORT_VID(vlan->vid_end));
1148		priv->ports[port].pvid = vlan->vid_end;
1149	}
1150
1151	mutex_unlock(&priv->reg_mutex);
1152}
1153
1154static int
1155mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1156		     const struct switchdev_obj_port_vlan *vlan)
1157{
1158	struct mt7530_hw_vlan_entry target_entry;
1159	struct mt7530_priv *priv = ds->priv;
1160	u16 vid, pvid;
1161
1162	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1163	 * being set.
1164	 */
1165	if (!priv->ports[port].vlan_filtering)
1166		return 0;
1167
1168	mutex_lock(&priv->reg_mutex);
1169
1170	pvid = priv->ports[port].pvid;
1171	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1172		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1173		mt7530_hw_vlan_update(priv, vid, &target_entry,
1174				      mt7530_hw_vlan_del);
1175
1176		/* PVID is being restored to the default whenever the PVID port
1177		 * is being removed from the VLAN.
1178		 */
1179		if (pvid == vid)
1180			pvid = G0_PORT_VID_DEF;
1181	}
1182
1183	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1184	priv->ports[port].pvid = pvid;
1185
1186	mutex_unlock(&priv->reg_mutex);
1187
1188	return 0;
1189}
1190
1191static enum dsa_tag_protocol
1192mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1193{
1194	struct mt7530_priv *priv = ds->priv;
1195
1196	if (port != MT7530_CPU_PORT) {
1197		dev_warn(priv->dev,
1198			 "port not matched with tagging CPU port\n");
1199		return DSA_TAG_PROTO_NONE;
1200	} else {
1201		return DSA_TAG_PROTO_MTK;
1202	}
1203}
1204
1205static int
1206mt7530_setup(struct dsa_switch *ds)
1207{
1208	struct mt7530_priv *priv = ds->priv;
1209	int ret, i;
1210	u32 id, val;
1211	struct device_node *dn;
1212	struct mt7530_dummy_poll p;
1213
1214	/* The parent node of master netdev which holds the common system
1215	 * controller also is the container for two GMACs nodes representing
1216	 * as two netdev instances.
1217	 */
1218	dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1219	priv->ethernet = syscon_node_to_regmap(dn);
1220	if (IS_ERR(priv->ethernet))
1221		return PTR_ERR(priv->ethernet);
1222
1223	regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1224	ret = regulator_enable(priv->core_pwr);
1225	if (ret < 0) {
1226		dev_err(priv->dev,
1227			"Failed to enable core power: %d\n", ret);
1228		return ret;
1229	}
1230
1231	regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1232	ret = regulator_enable(priv->io_pwr);
1233	if (ret < 0) {
1234		dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1235			ret);
1236		return ret;
1237	}
1238
1239	/* Reset whole chip through gpio pin or memory-mapped registers for
1240	 * different type of hardware
1241	 */
1242	if (priv->mcm) {
1243		reset_control_assert(priv->rstc);
1244		usleep_range(1000, 1100);
1245		reset_control_deassert(priv->rstc);
1246	} else {
1247		gpiod_set_value_cansleep(priv->reset, 0);
1248		usleep_range(1000, 1100);
1249		gpiod_set_value_cansleep(priv->reset, 1);
1250	}
1251
1252	/* Waiting for MT7530 got to stable */
1253	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1254	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1255				 20, 1000000);
1256	if (ret < 0) {
1257		dev_err(priv->dev, "reset timeout\n");
1258		return ret;
1259	}
1260
1261	id = mt7530_read(priv, MT7530_CREV);
1262	id >>= CHIP_NAME_SHIFT;
1263	if (id != MT7530_ID) {
1264		dev_err(priv->dev, "chip %x can't be supported\n", id);
1265		return -ENODEV;
1266	}
1267
1268	/* Reset the switch through internal reset */
1269	mt7530_write(priv, MT7530_SYS_CTRL,
1270		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1271		     SYS_CTRL_REG_RST);
1272
1273	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1274	val = mt7530_read(priv, MT7530_MHWTRAP);
1275	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1276	val |= MHWTRAP_MANUAL;
1277	mt7530_write(priv, MT7530_MHWTRAP, val);
1278
1279	/* Enable and reset MIB counters */
1280	mt7530_mib_reset(ds);
1281
1282	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1283
1284	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1285		/* Disable forwarding by default on all ports */
1286		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1287			   PCR_MATRIX_CLR);
1288
1289		if (dsa_is_cpu_port(ds, i))
1290			mt7530_cpu_port_enable(priv, i);
1291		else
1292			mt7530_port_disable(ds, i, NULL);
1293	}
1294
1295	/* Flush the FDB table */
1296	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1297	if (ret < 0)
1298		return ret;
1299
1300	return 0;
1301}
1302
1303static const struct dsa_switch_ops mt7530_switch_ops = {
1304	.get_tag_protocol	= mtk_get_tag_protocol,
1305	.setup			= mt7530_setup,
1306	.get_strings		= mt7530_get_strings,
1307	.phy_read		= mt7530_phy_read,
1308	.phy_write		= mt7530_phy_write,
1309	.get_ethtool_stats	= mt7530_get_ethtool_stats,
1310	.get_sset_count		= mt7530_get_sset_count,
1311	.adjust_link		= mt7530_adjust_link,
1312	.port_enable		= mt7530_port_enable,
1313	.port_disable		= mt7530_port_disable,
1314	.port_stp_state_set	= mt7530_stp_state_set,
1315	.port_bridge_join	= mt7530_port_bridge_join,
1316	.port_bridge_leave	= mt7530_port_bridge_leave,
1317	.port_fdb_add		= mt7530_port_fdb_add,
1318	.port_fdb_del		= mt7530_port_fdb_del,
1319	.port_fdb_dump		= mt7530_port_fdb_dump,
1320	.port_vlan_filtering	= mt7530_port_vlan_filtering,
1321	.port_vlan_prepare	= mt7530_port_vlan_prepare,
1322	.port_vlan_add		= mt7530_port_vlan_add,
1323	.port_vlan_del		= mt7530_port_vlan_del,
1324};
1325
1326static int
1327mt7530_probe(struct mdio_device *mdiodev)
1328{
1329	struct mt7530_priv *priv;
1330	struct device_node *dn;
1331
1332	dn = mdiodev->dev.of_node;
1333
1334	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1335	if (!priv)
1336		return -ENOMEM;
1337
1338	priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1339	if (!priv->ds)
1340		return -ENOMEM;
1341
1342	/* Use medatek,mcm property to distinguish hardware type that would
1343	 * casues a little bit differences on power-on sequence.
1344	 */
1345	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1346	if (priv->mcm) {
1347		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1348
1349		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1350		if (IS_ERR(priv->rstc)) {
1351			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1352			return PTR_ERR(priv->rstc);
1353		}
1354	}
1355
1356	priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1357	if (IS_ERR(priv->core_pwr))
1358		return PTR_ERR(priv->core_pwr);
1359
1360	priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1361	if (IS_ERR(priv->io_pwr))
1362		return PTR_ERR(priv->io_pwr);
1363
1364	/* Not MCM that indicates switch works as the remote standalone
1365	 * integrated circuit so the GPIO pin would be used to complete
1366	 * the reset, otherwise memory-mapped register accessing used
1367	 * through syscon provides in the case of MCM.
1368	 */
1369	if (!priv->mcm) {
1370		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1371						      GPIOD_OUT_LOW);
1372		if (IS_ERR(priv->reset)) {
1373			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1374			return PTR_ERR(priv->reset);
1375		}
1376	}
1377
1378	priv->bus = mdiodev->bus;
1379	priv->dev = &mdiodev->dev;
1380	priv->ds->priv = priv;
1381	priv->ds->ops = &mt7530_switch_ops;
1382	mutex_init(&priv->reg_mutex);
1383	dev_set_drvdata(&mdiodev->dev, priv);
1384
1385	return dsa_register_switch(priv->ds);
1386}
1387
1388static void
1389mt7530_remove(struct mdio_device *mdiodev)
1390{
1391	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1392	int ret = 0;
1393
1394	ret = regulator_disable(priv->core_pwr);
1395	if (ret < 0)
1396		dev_err(priv->dev,
1397			"Failed to disable core power: %d\n", ret);
1398
1399	ret = regulator_disable(priv->io_pwr);
1400	if (ret < 0)
1401		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1402			ret);
1403
1404	dsa_unregister_switch(priv->ds);
1405	mutex_destroy(&priv->reg_mutex);
1406}
1407
1408static const struct of_device_id mt7530_of_match[] = {
1409	{ .compatible = "mediatek,mt7530" },
1410	{ /* sentinel */ },
1411};
1412MODULE_DEVICE_TABLE(of, mt7530_of_match);
1413
1414static struct mdio_driver mt7530_mdio_driver = {
1415	.probe  = mt7530_probe,
1416	.remove = mt7530_remove,
1417	.mdiodrv.driver = {
1418		.name = "mt7530",
1419		.of_match_table = mt7530_of_match,
1420	},
1421};
1422
1423mdio_module_driver(mt7530_mdio_driver);
1424
1425MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1426MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1427MODULE_LICENSE("GPL");