Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Performance events ring-buffer code:
  3 *
  4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8 *
  9 * For licensing details see kernel-base/COPYING
 10 */
 11
 12#include <linux/perf_event.h>
 13#include <linux/vmalloc.h>
 14#include <linux/slab.h>
 15#include <linux/circ_buf.h>
 
 
 16
 17#include "internal.h"
 18
 19static void perf_output_wakeup(struct perf_output_handle *handle)
 20{
 21	atomic_set(&handle->rb->poll, POLL_IN);
 22
 23	handle->event->pending_wakeup = 1;
 24	irq_work_queue(&handle->event->pending);
 25}
 26
 27/*
 28 * We need to ensure a later event_id doesn't publish a head when a former
 29 * event isn't done writing. However since we need to deal with NMIs we
 30 * cannot fully serialize things.
 31 *
 32 * We only publish the head (and generate a wakeup) when the outer-most
 33 * event completes.
 34 */
 35static void perf_output_get_handle(struct perf_output_handle *handle)
 36{
 37	struct ring_buffer *rb = handle->rb;
 38
 39	preempt_disable();
 40	local_inc(&rb->nest);
 
 
 
 
 
 41	handle->wakeup = local_read(&rb->wakeup);
 42}
 43
 44static void perf_output_put_handle(struct perf_output_handle *handle)
 45{
 46	struct ring_buffer *rb = handle->rb;
 47	unsigned long head;
 
 
 
 
 
 
 
 
 
 
 
 48
 49again:
 
 
 
 
 
 
 
 
 
 50	head = local_read(&rb->head);
 51
 52	/*
 53	 * IRQ/NMI can happen here, which means we can miss a head update.
 
 54	 */
 55
 56	if (!local_dec_and_test(&rb->nest))
 57		goto out;
 58
 59	/*
 60	 * Since the mmap() consumer (userspace) can run on a different CPU:
 61	 *
 62	 *   kernel				user
 63	 *
 64	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 65	 *			(A)		smp_rmb()	(C)
 66	 *	STORE $data			LOAD $data
 67	 *	smp_wmb()	(B)		smp_mb()	(D)
 68	 *	STORE ->data_head		STORE ->data_tail
 69	 *   }
 70	 *
 71	 * Where A pairs with D, and B pairs with C.
 72	 *
 73	 * In our case (A) is a control dependency that separates the load of
 74	 * the ->data_tail and the stores of $data. In case ->data_tail
 75	 * indicates there is no room in the buffer to store $data we do not.
 76	 *
 77	 * D needs to be a full barrier since it separates the data READ
 78	 * from the tail WRITE.
 79	 *
 80	 * For B a WMB is sufficient since it separates two WRITEs, and for C
 81	 * an RMB is sufficient since it separates two READs.
 82	 *
 83	 * See perf_output_begin().
 84	 */
 85	smp_wmb(); /* B, matches C */
 86	rb->user_page->data_head = head;
 87
 88	/*
 89	 * Now check if we missed an update -- rely on previous implied
 90	 * compiler barriers to force a re-read.
 
 91	 */
 
 
 
 
 
 
 
 
 92	if (unlikely(head != local_read(&rb->head))) {
 93		local_inc(&rb->nest);
 94		goto again;
 95	}
 96
 97	if (handle->wakeup != local_read(&rb->wakeup))
 98		perf_output_wakeup(handle);
 99
100out:
101	preempt_enable();
102}
103
104int perf_output_begin(struct perf_output_handle *handle,
105		      struct perf_event *event, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
106{
107	struct ring_buffer *rb;
108	unsigned long tail, offset, head;
109	int have_lost, page_shift;
110	struct {
111		struct perf_event_header header;
112		u64			 id;
113		u64			 lost;
114	} lost_event;
115
116	rcu_read_lock();
117	/*
118	 * For inherited events we send all the output towards the parent.
119	 */
120	if (event->parent)
121		event = event->parent;
122
123	rb = rcu_dereference(event->rb);
124	if (unlikely(!rb))
125		goto out;
126
127	if (unlikely(!rb->nr_pages))
 
 
128		goto out;
 
129
130	handle->rb    = rb;
131	handle->event = event;
132
133	have_lost = local_read(&rb->lost);
134	if (unlikely(have_lost)) {
135		size += sizeof(lost_event);
136		if (event->attr.sample_id_all)
137			size += event->id_header_size;
138	}
139
140	perf_output_get_handle(handle);
141
142	do {
143		tail = ACCESS_ONCE(rb->user_page->data_tail);
144		offset = head = local_read(&rb->head);
145		if (!rb->overwrite &&
146		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
147			goto fail;
 
 
 
148
149		/*
150		 * The above forms a control dependency barrier separating the
151		 * @tail load above from the data stores below. Since the @tail
152		 * load is required to compute the branch to fail below.
153		 *
154		 * A, matches D; the full memory barrier userspace SHOULD issue
155		 * after reading the data and before storing the new tail
156		 * position.
157		 *
158		 * See perf_output_put_handle().
159		 */
160
161		head += size;
 
 
 
162	} while (local_cmpxchg(&rb->head, offset, head) != offset);
163
 
 
 
 
 
164	/*
165	 * We rely on the implied barrier() by local_cmpxchg() to ensure
166	 * none of the data stores below can be lifted up by the compiler.
167	 */
168
169	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
170		local_add(rb->watermark, &rb->wakeup);
171
172	page_shift = PAGE_SHIFT + page_order(rb);
173
174	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
175	offset &= (1UL << page_shift) - 1;
176	handle->addr = rb->data_pages[handle->page] + offset;
177	handle->size = (1UL << page_shift) - offset;
178
179	if (unlikely(have_lost)) {
180		struct perf_sample_data sample_data;
181
182		lost_event.header.size = sizeof(lost_event);
183		lost_event.header.type = PERF_RECORD_LOST;
184		lost_event.header.misc = 0;
185		lost_event.id          = event->id;
186		lost_event.lost        = local_xchg(&rb->lost, 0);
187
188		perf_event_header__init_id(&lost_event.header,
189					   &sample_data, event);
190		perf_output_put(handle, lost_event);
191		perf_event__output_id_sample(event, handle, &sample_data);
192	}
193
194	return 0;
195
196fail:
197	local_inc(&rb->lost);
198	perf_output_put_handle(handle);
199out:
200	rcu_read_unlock();
201
202	return -ENOSPC;
203}
204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205unsigned int perf_output_copy(struct perf_output_handle *handle,
206		      const void *buf, unsigned int len)
207{
208	return __output_copy(handle, buf, len);
209}
210
211unsigned int perf_output_skip(struct perf_output_handle *handle,
212			      unsigned int len)
213{
214	return __output_skip(handle, NULL, len);
215}
216
217void perf_output_end(struct perf_output_handle *handle)
218{
219	perf_output_put_handle(handle);
220	rcu_read_unlock();
221}
222
223static void
224ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
225{
226	long max_size = perf_data_size(rb);
227
228	if (watermark)
229		rb->watermark = min(max_size, watermark);
230
231	if (!rb->watermark)
232		rb->watermark = max_size / 2;
233
234	if (flags & RING_BUFFER_WRITABLE)
235		rb->overwrite = 0;
236	else
237		rb->overwrite = 1;
238
239	atomic_set(&rb->refcount, 1);
240
241	INIT_LIST_HEAD(&rb->event_list);
242	spin_lock_init(&rb->event_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243}
244
245#ifndef CONFIG_PERF_USE_VMALLOC
246
247/*
248 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
249 */
250
251struct page *
252perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
253{
254	if (pgoff > rb->nr_pages)
255		return NULL;
256
257	if (pgoff == 0)
258		return virt_to_page(rb->user_page);
259
260	return virt_to_page(rb->data_pages[pgoff - 1]);
261}
262
263static void *perf_mmap_alloc_page(int cpu)
264{
265	struct page *page;
266	int node;
267
268	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
269	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
270	if (!page)
271		return NULL;
272
273	return page_address(page);
274}
275
276struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
 
 
 
 
 
 
 
 
277{
278	struct ring_buffer *rb;
279	unsigned long size;
280	int i;
281
282	size = sizeof(struct ring_buffer);
283	size += nr_pages * sizeof(void *);
284
 
 
 
285	rb = kzalloc(size, GFP_KERNEL);
286	if (!rb)
287		goto fail;
288
289	rb->user_page = perf_mmap_alloc_page(cpu);
290	if (!rb->user_page)
291		goto fail_user_page;
292
293	for (i = 0; i < nr_pages; i++) {
294		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
295		if (!rb->data_pages[i])
296			goto fail_data_pages;
297	}
298
299	rb->nr_pages = nr_pages;
300
301	ring_buffer_init(rb, watermark, flags);
302
303	return rb;
304
305fail_data_pages:
306	for (i--; i >= 0; i--)
307		free_page((unsigned long)rb->data_pages[i]);
308
309	free_page((unsigned long)rb->user_page);
310
311fail_user_page:
312	kfree(rb);
313
314fail:
315	return NULL;
316}
317
318static void perf_mmap_free_page(unsigned long addr)
319{
320	struct page *page = virt_to_page((void *)addr);
321
322	page->mapping = NULL;
323	__free_page(page);
324}
325
326void rb_free(struct ring_buffer *rb)
327{
328	int i;
329
330	perf_mmap_free_page((unsigned long)rb->user_page);
331	for (i = 0; i < rb->nr_pages; i++)
332		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
333	kfree(rb);
334}
335
336#else
337static int data_page_nr(struct ring_buffer *rb)
338{
339	return rb->nr_pages << page_order(rb);
340}
341
342struct page *
343perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
344{
345	/* The '>' counts in the user page. */
346	if (pgoff > data_page_nr(rb))
347		return NULL;
348
349	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
350}
351
352static void perf_mmap_unmark_page(void *addr)
353{
354	struct page *page = vmalloc_to_page(addr);
355
356	page->mapping = NULL;
357}
358
359static void rb_free_work(struct work_struct *work)
360{
361	struct ring_buffer *rb;
362	void *base;
363	int i, nr;
364
365	rb = container_of(work, struct ring_buffer, work);
366	nr = data_page_nr(rb);
367
368	base = rb->user_page;
369	/* The '<=' counts in the user page. */
370	for (i = 0; i <= nr; i++)
371		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
372
373	vfree(base);
374	kfree(rb);
375}
376
377void rb_free(struct ring_buffer *rb)
378{
379	schedule_work(&rb->work);
380}
381
382struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
383{
384	struct ring_buffer *rb;
385	unsigned long size;
386	void *all_buf;
387
388	size = sizeof(struct ring_buffer);
389	size += sizeof(void *);
390
391	rb = kzalloc(size, GFP_KERNEL);
392	if (!rb)
393		goto fail;
394
395	INIT_WORK(&rb->work, rb_free_work);
396
397	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
398	if (!all_buf)
399		goto fail_all_buf;
400
401	rb->user_page = all_buf;
402	rb->data_pages[0] = all_buf + PAGE_SIZE;
403	rb->page_order = ilog2(nr_pages);
404	rb->nr_pages = !!nr_pages;
 
 
405
406	ring_buffer_init(rb, watermark, flags);
407
408	return rb;
409
410fail_all_buf:
411	kfree(rb);
412
413fail:
414	return NULL;
415}
416
417#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Performance events ring-buffer code:
  4 *
  5 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  6 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  7 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
  8 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 
 
  9 */
 10
 11#include <linux/perf_event.h>
 12#include <linux/vmalloc.h>
 13#include <linux/slab.h>
 14#include <linux/circ_buf.h>
 15#include <linux/poll.h>
 16#include <linux/nospec.h>
 17
 18#include "internal.h"
 19
 20static void perf_output_wakeup(struct perf_output_handle *handle)
 21{
 22	atomic_set(&handle->rb->poll, EPOLLIN);
 23
 24	handle->event->pending_wakeup = 1;
 25	irq_work_queue(&handle->event->pending);
 26}
 27
 28/*
 29 * We need to ensure a later event_id doesn't publish a head when a former
 30 * event isn't done writing. However since we need to deal with NMIs we
 31 * cannot fully serialize things.
 32 *
 33 * We only publish the head (and generate a wakeup) when the outer-most
 34 * event completes.
 35 */
 36static void perf_output_get_handle(struct perf_output_handle *handle)
 37{
 38	struct perf_buffer *rb = handle->rb;
 39
 40	preempt_disable();
 41
 42	/*
 43	 * Avoid an explicit LOAD/STORE such that architectures with memops
 44	 * can use them.
 45	 */
 46	(*(volatile unsigned int *)&rb->nest)++;
 47	handle->wakeup = local_read(&rb->wakeup);
 48}
 49
 50static void perf_output_put_handle(struct perf_output_handle *handle)
 51{
 52	struct perf_buffer *rb = handle->rb;
 53	unsigned long head;
 54	unsigned int nest;
 55
 56	/*
 57	 * If this isn't the outermost nesting, we don't have to update
 58	 * @rb->user_page->data_head.
 59	 */
 60	nest = READ_ONCE(rb->nest);
 61	if (nest > 1) {
 62		WRITE_ONCE(rb->nest, nest - 1);
 63		goto out;
 64	}
 65
 66again:
 67	/*
 68	 * In order to avoid publishing a head value that goes backwards,
 69	 * we must ensure the load of @rb->head happens after we've
 70	 * incremented @rb->nest.
 71	 *
 72	 * Otherwise we can observe a @rb->head value before one published
 73	 * by an IRQ/NMI happening between the load and the increment.
 74	 */
 75	barrier();
 76	head = local_read(&rb->head);
 77
 78	/*
 79	 * IRQ/NMI can happen here and advance @rb->head, causing our
 80	 * load above to be stale.
 81	 */
 82
 
 
 
 83	/*
 84	 * Since the mmap() consumer (userspace) can run on a different CPU:
 85	 *
 86	 *   kernel				user
 87	 *
 88	 *   if (LOAD ->data_tail) {		LOAD ->data_head
 89	 *			(A)		smp_rmb()	(C)
 90	 *	STORE $data			LOAD $data
 91	 *	smp_wmb()	(B)		smp_mb()	(D)
 92	 *	STORE ->data_head		STORE ->data_tail
 93	 *   }
 94	 *
 95	 * Where A pairs with D, and B pairs with C.
 96	 *
 97	 * In our case (A) is a control dependency that separates the load of
 98	 * the ->data_tail and the stores of $data. In case ->data_tail
 99	 * indicates there is no room in the buffer to store $data we do not.
100	 *
101	 * D needs to be a full barrier since it separates the data READ
102	 * from the tail WRITE.
103	 *
104	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105	 * an RMB is sufficient since it separates two READs.
106	 *
107	 * See perf_output_begin().
108	 */
109	smp_wmb(); /* B, matches C */
110	WRITE_ONCE(rb->user_page->data_head, head);
111
112	/*
113	 * We must publish the head before decrementing the nest count,
114	 * otherwise an IRQ/NMI can publish a more recent head value and our
115	 * write will (temporarily) publish a stale value.
116	 */
117	barrier();
118	WRITE_ONCE(rb->nest, 0);
119
120	/*
121	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122	 * Otherwise we cannot be sure we caught the 'last' nested update.
123	 */
124	barrier();
125	if (unlikely(head != local_read(&rb->head))) {
126		WRITE_ONCE(rb->nest, 1);
127		goto again;
128	}
129
130	if (handle->wakeup != local_read(&rb->wakeup))
131		perf_output_wakeup(handle);
132
133out:
134	preempt_enable();
135}
136
137static __always_inline bool
138ring_buffer_has_space(unsigned long head, unsigned long tail,
139		      unsigned long data_size, unsigned int size,
140		      bool backward)
141{
142	if (!backward)
143		return CIRC_SPACE(head, tail, data_size) >= size;
144	else
145		return CIRC_SPACE(tail, head, data_size) >= size;
146}
147
148static __always_inline int
149__perf_output_begin(struct perf_output_handle *handle,
150		    struct perf_event *event, unsigned int size,
151		    bool backward)
152{
153	struct perf_buffer *rb;
154	unsigned long tail, offset, head;
155	int have_lost, page_shift;
156	struct {
157		struct perf_event_header header;
158		u64			 id;
159		u64			 lost;
160	} lost_event;
161
162	rcu_read_lock();
163	/*
164	 * For inherited events we send all the output towards the parent.
165	 */
166	if (event->parent)
167		event = event->parent;
168
169	rb = rcu_dereference(event->rb);
170	if (unlikely(!rb))
171		goto out;
172
173	if (unlikely(rb->paused)) {
174		if (rb->nr_pages)
175			local_inc(&rb->lost);
176		goto out;
177	}
178
179	handle->rb    = rb;
180	handle->event = event;
181
182	have_lost = local_read(&rb->lost);
183	if (unlikely(have_lost)) {
184		size += sizeof(lost_event);
185		if (event->attr.sample_id_all)
186			size += event->id_header_size;
187	}
188
189	perf_output_get_handle(handle);
190
191	do {
192		tail = READ_ONCE(rb->user_page->data_tail);
193		offset = head = local_read(&rb->head);
194		if (!rb->overwrite) {
195			if (unlikely(!ring_buffer_has_space(head, tail,
196							    perf_data_size(rb),
197							    size, backward)))
198				goto fail;
199		}
200
201		/*
202		 * The above forms a control dependency barrier separating the
203		 * @tail load above from the data stores below. Since the @tail
204		 * load is required to compute the branch to fail below.
205		 *
206		 * A, matches D; the full memory barrier userspace SHOULD issue
207		 * after reading the data and before storing the new tail
208		 * position.
209		 *
210		 * See perf_output_put_handle().
211		 */
212
213		if (!backward)
214			head += size;
215		else
216			head -= size;
217	} while (local_cmpxchg(&rb->head, offset, head) != offset);
218
219	if (backward) {
220		offset = head;
221		head = (u64)(-head);
222	}
223
224	/*
225	 * We rely on the implied barrier() by local_cmpxchg() to ensure
226	 * none of the data stores below can be lifted up by the compiler.
227	 */
228
229	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
230		local_add(rb->watermark, &rb->wakeup);
231
232	page_shift = PAGE_SHIFT + page_order(rb);
233
234	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
235	offset &= (1UL << page_shift) - 1;
236	handle->addr = rb->data_pages[handle->page] + offset;
237	handle->size = (1UL << page_shift) - offset;
238
239	if (unlikely(have_lost)) {
240		struct perf_sample_data sample_data;
241
242		lost_event.header.size = sizeof(lost_event);
243		lost_event.header.type = PERF_RECORD_LOST;
244		lost_event.header.misc = 0;
245		lost_event.id          = event->id;
246		lost_event.lost        = local_xchg(&rb->lost, 0);
247
248		perf_event_header__init_id(&lost_event.header,
249					   &sample_data, event);
250		perf_output_put(handle, lost_event);
251		perf_event__output_id_sample(event, handle, &sample_data);
252	}
253
254	return 0;
255
256fail:
257	local_inc(&rb->lost);
258	perf_output_put_handle(handle);
259out:
260	rcu_read_unlock();
261
262	return -ENOSPC;
263}
264
265int perf_output_begin_forward(struct perf_output_handle *handle,
266			     struct perf_event *event, unsigned int size)
267{
268	return __perf_output_begin(handle, event, size, false);
269}
270
271int perf_output_begin_backward(struct perf_output_handle *handle,
272			       struct perf_event *event, unsigned int size)
273{
274	return __perf_output_begin(handle, event, size, true);
275}
276
277int perf_output_begin(struct perf_output_handle *handle,
278		      struct perf_event *event, unsigned int size)
279{
280
281	return __perf_output_begin(handle, event, size,
282				   unlikely(is_write_backward(event)));
283}
284
285unsigned int perf_output_copy(struct perf_output_handle *handle,
286		      const void *buf, unsigned int len)
287{
288	return __output_copy(handle, buf, len);
289}
290
291unsigned int perf_output_skip(struct perf_output_handle *handle,
292			      unsigned int len)
293{
294	return __output_skip(handle, NULL, len);
295}
296
297void perf_output_end(struct perf_output_handle *handle)
298{
299	perf_output_put_handle(handle);
300	rcu_read_unlock();
301}
302
303static void
304ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
305{
306	long max_size = perf_data_size(rb);
307
308	if (watermark)
309		rb->watermark = min(max_size, watermark);
310
311	if (!rb->watermark)
312		rb->watermark = max_size / 2;
313
314	if (flags & RING_BUFFER_WRITABLE)
315		rb->overwrite = 0;
316	else
317		rb->overwrite = 1;
318
319	refcount_set(&rb->refcount, 1);
320
321	INIT_LIST_HEAD(&rb->event_list);
322	spin_lock_init(&rb->event_lock);
323
324	/*
325	 * perf_output_begin() only checks rb->paused, therefore
326	 * rb->paused must be true if we have no pages for output.
327	 */
328	if (!rb->nr_pages)
329		rb->paused = 1;
330}
331
332void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
333{
334	/*
335	 * OVERWRITE is determined by perf_aux_output_end() and can't
336	 * be passed in directly.
337	 */
338	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
339		return;
340
341	handle->aux_flags |= flags;
342}
343EXPORT_SYMBOL_GPL(perf_aux_output_flag);
344
345/*
346 * This is called before hardware starts writing to the AUX area to
347 * obtain an output handle and make sure there's room in the buffer.
348 * When the capture completes, call perf_aux_output_end() to commit
349 * the recorded data to the buffer.
350 *
351 * The ordering is similar to that of perf_output_{begin,end}, with
352 * the exception of (B), which should be taken care of by the pmu
353 * driver, since ordering rules will differ depending on hardware.
354 *
355 * Call this from pmu::start(); see the comment in perf_aux_output_end()
356 * about its use in pmu callbacks. Both can also be called from the PMI
357 * handler if needed.
358 */
359void *perf_aux_output_begin(struct perf_output_handle *handle,
360			    struct perf_event *event)
361{
362	struct perf_event *output_event = event;
363	unsigned long aux_head, aux_tail;
364	struct perf_buffer *rb;
365	unsigned int nest;
366
367	if (output_event->parent)
368		output_event = output_event->parent;
369
370	/*
371	 * Since this will typically be open across pmu::add/pmu::del, we
372	 * grab ring_buffer's refcount instead of holding rcu read lock
373	 * to make sure it doesn't disappear under us.
374	 */
375	rb = ring_buffer_get(output_event);
376	if (!rb)
377		return NULL;
378
379	if (!rb_has_aux(rb))
380		goto err;
381
382	/*
383	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
384	 * about to get freed, so we leave immediately.
385	 *
386	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
387	 * the same order, see perf_mmap_close. Otherwise we end up freeing
388	 * aux pages in this path, which is a bug, because in_atomic().
389	 */
390	if (!atomic_read(&rb->aux_mmap_count))
391		goto err;
392
393	if (!refcount_inc_not_zero(&rb->aux_refcount))
394		goto err;
395
396	nest = READ_ONCE(rb->aux_nest);
397	/*
398	 * Nesting is not supported for AUX area, make sure nested
399	 * writers are caught early
400	 */
401	if (WARN_ON_ONCE(nest))
402		goto err_put;
403
404	WRITE_ONCE(rb->aux_nest, nest + 1);
405
406	aux_head = rb->aux_head;
407
408	handle->rb = rb;
409	handle->event = event;
410	handle->head = aux_head;
411	handle->size = 0;
412	handle->aux_flags = 0;
413
414	/*
415	 * In overwrite mode, AUX data stores do not depend on aux_tail,
416	 * therefore (A) control dependency barrier does not exist. The
417	 * (B) <-> (C) ordering is still observed by the pmu driver.
418	 */
419	if (!rb->aux_overwrite) {
420		aux_tail = READ_ONCE(rb->user_page->aux_tail);
421		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
422		if (aux_head - aux_tail < perf_aux_size(rb))
423			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
424
425		/*
426		 * handle->size computation depends on aux_tail load; this forms a
427		 * control dependency barrier separating aux_tail load from aux data
428		 * store that will be enabled on successful return
429		 */
430		if (!handle->size) { /* A, matches D */
431			event->pending_disable = smp_processor_id();
432			perf_output_wakeup(handle);
433			WRITE_ONCE(rb->aux_nest, 0);
434			goto err_put;
435		}
436	}
437
438	return handle->rb->aux_priv;
439
440err_put:
441	/* can't be last */
442	rb_free_aux(rb);
443
444err:
445	ring_buffer_put(rb);
446	handle->event = NULL;
447
448	return NULL;
449}
450EXPORT_SYMBOL_GPL(perf_aux_output_begin);
451
452static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
453{
454	if (rb->aux_overwrite)
455		return false;
456
457	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
458		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
459		return true;
460	}
461
462	return false;
463}
464
465/*
466 * Commit the data written by hardware into the ring buffer by adjusting
467 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
468 * pmu driver's responsibility to observe ordering rules of the hardware,
469 * so that all the data is externally visible before this is called.
470 *
471 * Note: this has to be called from pmu::stop() callback, as the assumption
472 * of the AUX buffer management code is that after pmu::stop(), the AUX
473 * transaction must be stopped and therefore drop the AUX reference count.
474 */
475void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
476{
477	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
478	struct perf_buffer *rb = handle->rb;
479	unsigned long aux_head;
480
481	/* in overwrite mode, driver provides aux_head via handle */
482	if (rb->aux_overwrite) {
483		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
484
485		aux_head = handle->head;
486		rb->aux_head = aux_head;
487	} else {
488		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
489
490		aux_head = rb->aux_head;
491		rb->aux_head += size;
492	}
493
494	/*
495	 * Only send RECORD_AUX if we have something useful to communicate
496	 *
497	 * Note: the OVERWRITE records by themselves are not considered
498	 * useful, as they don't communicate any *new* information,
499	 * aside from the short-lived offset, that becomes history at
500	 * the next event sched-in and therefore isn't useful.
501	 * The userspace that needs to copy out AUX data in overwrite
502	 * mode should know to use user_page::aux_head for the actual
503	 * offset. So, from now on we don't output AUX records that
504	 * have *only* OVERWRITE flag set.
505	 */
506	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
507		perf_event_aux_event(handle->event, aux_head, size,
508				     handle->aux_flags);
509
510	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
511	if (rb_need_aux_wakeup(rb))
512		wakeup = true;
513
514	if (wakeup) {
515		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
516			handle->event->pending_disable = smp_processor_id();
517		perf_output_wakeup(handle);
518	}
519
520	handle->event = NULL;
521
522	WRITE_ONCE(rb->aux_nest, 0);
523	/* can't be last */
524	rb_free_aux(rb);
525	ring_buffer_put(rb);
526}
527EXPORT_SYMBOL_GPL(perf_aux_output_end);
528
529/*
530 * Skip over a given number of bytes in the AUX buffer, due to, for example,
531 * hardware's alignment constraints.
532 */
533int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
534{
535	struct perf_buffer *rb = handle->rb;
536
537	if (size > handle->size)
538		return -ENOSPC;
539
540	rb->aux_head += size;
541
542	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
543	if (rb_need_aux_wakeup(rb)) {
544		perf_output_wakeup(handle);
545		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
546	}
547
548	handle->head = rb->aux_head;
549	handle->size -= size;
550
551	return 0;
552}
553EXPORT_SYMBOL_GPL(perf_aux_output_skip);
554
555void *perf_get_aux(struct perf_output_handle *handle)
556{
557	/* this is only valid between perf_aux_output_begin and *_end */
558	if (!handle->event)
559		return NULL;
560
561	return handle->rb->aux_priv;
562}
563EXPORT_SYMBOL_GPL(perf_get_aux);
564
565/*
566 * Copy out AUX data from an AUX handle.
567 */
568long perf_output_copy_aux(struct perf_output_handle *aux_handle,
569			  struct perf_output_handle *handle,
570			  unsigned long from, unsigned long to)
571{
572	struct perf_buffer *rb = aux_handle->rb;
573	unsigned long tocopy, remainder, len = 0;
574	void *addr;
575
576	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
577	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
578
579	do {
580		tocopy = PAGE_SIZE - offset_in_page(from);
581		if (to > from)
582			tocopy = min(tocopy, to - from);
583		if (!tocopy)
584			break;
585
586		addr = rb->aux_pages[from >> PAGE_SHIFT];
587		addr += offset_in_page(from);
588
589		remainder = perf_output_copy(handle, addr, tocopy);
590		if (remainder)
591			return -EFAULT;
592
593		len += tocopy;
594		from += tocopy;
595		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
596	} while (to != from);
597
598	return len;
599}
600
601#define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
602
603static struct page *rb_alloc_aux_page(int node, int order)
604{
605	struct page *page;
606
607	if (order > MAX_ORDER)
608		order = MAX_ORDER;
609
610	do {
611		page = alloc_pages_node(node, PERF_AUX_GFP, order);
612	} while (!page && order--);
613
614	if (page && order) {
615		/*
616		 * Communicate the allocation size to the driver:
617		 * if we managed to secure a high-order allocation,
618		 * set its first page's private to this order;
619		 * !PagePrivate(page) means it's just a normal page.
620		 */
621		split_page(page, order);
622		SetPagePrivate(page);
623		set_page_private(page, order);
624	}
625
626	return page;
627}
628
629static void rb_free_aux_page(struct perf_buffer *rb, int idx)
630{
631	struct page *page = virt_to_page(rb->aux_pages[idx]);
632
633	ClearPagePrivate(page);
634	page->mapping = NULL;
635	__free_page(page);
636}
637
638static void __rb_free_aux(struct perf_buffer *rb)
639{
640	int pg;
641
642	/*
643	 * Should never happen, the last reference should be dropped from
644	 * perf_mmap_close() path, which first stops aux transactions (which
645	 * in turn are the atomic holders of aux_refcount) and then does the
646	 * last rb_free_aux().
647	 */
648	WARN_ON_ONCE(in_atomic());
649
650	if (rb->aux_priv) {
651		rb->free_aux(rb->aux_priv);
652		rb->free_aux = NULL;
653		rb->aux_priv = NULL;
654	}
655
656	if (rb->aux_nr_pages) {
657		for (pg = 0; pg < rb->aux_nr_pages; pg++)
658			rb_free_aux_page(rb, pg);
659
660		kfree(rb->aux_pages);
661		rb->aux_nr_pages = 0;
662	}
663}
664
665int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
666		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
667{
668	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
669	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
670	int ret = -ENOMEM, max_order;
671
672	if (!has_aux(event))
673		return -EOPNOTSUPP;
674
675	/*
676	 * We need to start with the max_order that fits in nr_pages,
677	 * not the other way around, hence ilog2() and not get_order.
678	 */
679	max_order = ilog2(nr_pages);
680
681	/*
682	 * PMU requests more than one contiguous chunks of memory
683	 * for SW double buffering
684	 */
685	if (!overwrite) {
686		if (!max_order)
687			return -EINVAL;
688
689		max_order--;
690	}
691
692	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
693				     node);
694	if (!rb->aux_pages)
695		return -ENOMEM;
696
697	rb->free_aux = event->pmu->free_aux;
698	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
699		struct page *page;
700		int last, order;
701
702		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
703		page = rb_alloc_aux_page(node, order);
704		if (!page)
705			goto out;
706
707		for (last = rb->aux_nr_pages + (1 << page_private(page));
708		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
709			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
710	}
711
712	/*
713	 * In overwrite mode, PMUs that don't support SG may not handle more
714	 * than one contiguous allocation, since they rely on PMI to do double
715	 * buffering. In this case, the entire buffer has to be one contiguous
716	 * chunk.
717	 */
718	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
719	    overwrite) {
720		struct page *page = virt_to_page(rb->aux_pages[0]);
721
722		if (page_private(page) != max_order)
723			goto out;
724	}
725
726	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
727					     overwrite);
728	if (!rb->aux_priv)
729		goto out;
730
731	ret = 0;
732
733	/*
734	 * aux_pages (and pmu driver's private data, aux_priv) will be
735	 * referenced in both producer's and consumer's contexts, thus
736	 * we keep a refcount here to make sure either of the two can
737	 * reference them safely.
738	 */
739	refcount_set(&rb->aux_refcount, 1);
740
741	rb->aux_overwrite = overwrite;
742	rb->aux_watermark = watermark;
743
744	if (!rb->aux_watermark && !rb->aux_overwrite)
745		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
746
747out:
748	if (!ret)
749		rb->aux_pgoff = pgoff;
750	else
751		__rb_free_aux(rb);
752
753	return ret;
754}
755
756void rb_free_aux(struct perf_buffer *rb)
757{
758	if (refcount_dec_and_test(&rb->aux_refcount))
759		__rb_free_aux(rb);
760}
761
762#ifndef CONFIG_PERF_USE_VMALLOC
763
764/*
765 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
766 */
767
768static struct page *
769__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
770{
771	if (pgoff > rb->nr_pages)
772		return NULL;
773
774	if (pgoff == 0)
775		return virt_to_page(rb->user_page);
776
777	return virt_to_page(rb->data_pages[pgoff - 1]);
778}
779
780static void *perf_mmap_alloc_page(int cpu)
781{
782	struct page *page;
783	int node;
784
785	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
786	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
787	if (!page)
788		return NULL;
789
790	return page_address(page);
791}
792
793static void perf_mmap_free_page(void *addr)
794{
795	struct page *page = virt_to_page(addr);
796
797	page->mapping = NULL;
798	__free_page(page);
799}
800
801struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
802{
803	struct perf_buffer *rb;
804	unsigned long size;
805	int i;
806
807	size = sizeof(struct perf_buffer);
808	size += nr_pages * sizeof(void *);
809
810	if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
811		goto fail;
812
813	rb = kzalloc(size, GFP_KERNEL);
814	if (!rb)
815		goto fail;
816
817	rb->user_page = perf_mmap_alloc_page(cpu);
818	if (!rb->user_page)
819		goto fail_user_page;
820
821	for (i = 0; i < nr_pages; i++) {
822		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
823		if (!rb->data_pages[i])
824			goto fail_data_pages;
825	}
826
827	rb->nr_pages = nr_pages;
828
829	ring_buffer_init(rb, watermark, flags);
830
831	return rb;
832
833fail_data_pages:
834	for (i--; i >= 0; i--)
835		perf_mmap_free_page(rb->data_pages[i]);
836
837	perf_mmap_free_page(rb->user_page);
838
839fail_user_page:
840	kfree(rb);
841
842fail:
843	return NULL;
844}
845
846void rb_free(struct perf_buffer *rb)
 
 
 
 
 
 
 
 
847{
848	int i;
849
850	perf_mmap_free_page(rb->user_page);
851	for (i = 0; i < rb->nr_pages; i++)
852		perf_mmap_free_page(rb->data_pages[i]);
853	kfree(rb);
854}
855
856#else
857static int data_page_nr(struct perf_buffer *rb)
858{
859	return rb->nr_pages << page_order(rb);
860}
861
862static struct page *
863__perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
864{
865	/* The '>' counts in the user page. */
866	if (pgoff > data_page_nr(rb))
867		return NULL;
868
869	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
870}
871
872static void perf_mmap_unmark_page(void *addr)
873{
874	struct page *page = vmalloc_to_page(addr);
875
876	page->mapping = NULL;
877}
878
879static void rb_free_work(struct work_struct *work)
880{
881	struct perf_buffer *rb;
882	void *base;
883	int i, nr;
884
885	rb = container_of(work, struct perf_buffer, work);
886	nr = data_page_nr(rb);
887
888	base = rb->user_page;
889	/* The '<=' counts in the user page. */
890	for (i = 0; i <= nr; i++)
891		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
892
893	vfree(base);
894	kfree(rb);
895}
896
897void rb_free(struct perf_buffer *rb)
898{
899	schedule_work(&rb->work);
900}
901
902struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
903{
904	struct perf_buffer *rb;
905	unsigned long size;
906	void *all_buf;
907
908	size = sizeof(struct perf_buffer);
909	size += sizeof(void *);
910
911	rb = kzalloc(size, GFP_KERNEL);
912	if (!rb)
913		goto fail;
914
915	INIT_WORK(&rb->work, rb_free_work);
916
917	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
918	if (!all_buf)
919		goto fail_all_buf;
920
921	rb->user_page = all_buf;
922	rb->data_pages[0] = all_buf + PAGE_SIZE;
923	if (nr_pages) {
924		rb->nr_pages = 1;
925		rb->page_order = ilog2(nr_pages);
926	}
927
928	ring_buffer_init(rb, watermark, flags);
929
930	return rb;
931
932fail_all_buf:
933	kfree(rb);
934
935fail:
936	return NULL;
937}
938
939#endif
940
941struct page *
942perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
943{
944	if (rb->aux_nr_pages) {
945		/* above AUX space */
946		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
947			return NULL;
948
949		/* AUX space */
950		if (pgoff >= rb->aux_pgoff) {
951			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
952			return virt_to_page(rb->aux_pages[aux_pgoff]);
953		}
954	}
955
956	return __perf_mmap_to_page(rb, pgoff);
957}